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Zusammenfassung

Leben weist eine unermessliche Vielfalt und Komplexität auf. Die ihm zugrunde liegenden bio-
logischen Prozesse sind daran angepasst die unterschiedlichsten Aufgaben akkurat zu erfüllen.
Dass dies mit einer derartigen Präzision geschieht, ist umso erstaunlicher, wenn man bedenkt,
dass Fluktuationen in der Natur allgegenwärtig sind. Diese intrinsische Stochastizität vieler
Abläufe entsteht durch das diskrete Vorkommen der an dynamischen Prozessen beteiligten
Substanzen, und durch thermische Fluktuationen. In vorliegender Arbeit soll der Einfluss
von derartigen Fluktuationen an zwei spezifischen Beispielen erläutert werden. Der erste Teil
widmet sich evolutionären Prozessen, während im zweiten Teil Transport entlang von intra-
zellulären Filamenten, sogenannten Mikrotubuli, untersucht wird.

Evolution beschäftigt sich mit der zeitlichen Entwicklung von verschiedenen Merkmalen in
einer Population unter dem Einfluss von Selektion. Die dieser Dynamik zu Grunde liegen-
den Prozesse sind Geburt und Tod einzelner Individuen in einer Population. Damit besteht
eine enge Verbindung zwischen evolutionärer Dynamik und der zeitlichen Entwicklung von
Populationsgrößen, der sogenannten Populationsdynamik. Ein wichtiger Aspekt dieser Ar-
beit ist das Zusammenspiel dieser beiden Dynamiken. Hierzu wird ein stochastisches Modell
verwendet, das die zeitliche Entwicklung sowohl der Zusammensetzung als auch der Größe
einer Population berücksichtigt. Um diesen Ansatz zu validieren, wird ein spezielles, aber
wesentliches Beispiel analysiert: Es handelt sich um Bakterien, bei welchen das Kooperati-
onsdilemma auftritt. Kooperierende Bakterien produzieren ein Protein, das für die Gemein-
schaft von Vorteil ist, ein sogenanntes öffentliches Gut. Durch die damit verbundenen me-
tabolischen Kosten, haben Kooperatoren einen Nachteil gegenüber jenen Bakterien, die sich
nicht an der Produktion des öffentlichen Guts beteiligen, aber von dessen Präsenz profitieren.
Anhand dieses Beispiels stellt sich heraus, dass demographische Fluktuationen eine bemer-
kenswerte Rolle spielen. Durch sie können die Nachteile von Kooperatoren unter gewissen
Umständen überwunden werden. Dadurch kann der relative Anteil von Kooperatoren in der
Gesamtpopulation sogar zeitweise zunehmen. Obwohl dieser Anstieg nur transient ist, kann
ein ähnlicher Mechanismus in strukturierten Populationen auch auf längeren Zeitskalen Ko-
operation aufrechterhalten. In Populationen, die in Gruppen eingeteilt sind, welche immer
wieder neu gemischt werden, lassen sich zwei Mechanismen identifizieren, die kooperatives
Verhalten bevorzugen. Der

”
group-growth“-Mechanismus ermöglicht Evolution von Koopera-

tion, d.h. eine einzelne kooperierende Mutante kann sich solange ausbreiten bis es zu einer
stabilen Koexistenz zwischen Kooperatoren und nicht-kooperierenden Individuen kommt. Der

”
group-fixation“-Mechanismus führt indes dazu, dass sich rein kooperative Populationen bil-

den können, wenn zuvor ein gewisser Schwellwert im Anteil der Kooperatoren überschritten
wurde.

Der zweite Teil dieser Arbeit beschäftigt sich mit molekularen Motoren, welche sich entlang
von intrazellulären Filamenten, sogenannten Mikrotubuli, bewegen. Diese Motoren transpor-
tieren zum einen große Makromoleküle durch die Zelle, zum anderen können sie am Ende



der Mikrotubuli als Polymerase oder Depolymerase wirken und somit deren Länge regulieren.
Besonders wichtig wird diese Regulation während der Zellteilung, für die eine dynamische
Längenanpassung der Mikrotubuli essentiell ist. Untersucht wurde die Interaktion von depo-
lymerisierenden Motoren mit Mikrotubuli in einem stochastischen Modell, das insbesondere
Stauphänomene berücksichtigt. Durch jüngst durchgeführte Experimente lässt sich dieses Mo-
dell qualitativ validieren, ohne dass freie Fitparameter verwendet werden. Außerdem gibt das
Modell Aufschluß über die Rolle von molekularen Staus entlang der Filamente. Sie können das
Depolymerisationsverhalten entscheidend verändern. Die Folge ist die Ausbildung von zwei
unterschiedlichen Regimen. Im ersten hängt die Depolymerisationsgeschwindigkeit ausschließ-
lich von der mikroskopischen Abbaurate ab, während im zweiten Regime nur die Motorendich-
te auf dem Mikrotubulus von Belang ist. Da diese Motorendichte abhängig von der Länge des
Filaments ist, ändert sich auch die Depolymerisationsgeschwindigkeit mit eben dieser Länge.
In Kombination mit Polymerisation, die zum Wachsen der Mikrotubuli führt, kann diese
längenabhänge Depolymerisation zu einer wohldefinierten Länge des Mikrotubulus führen,
die sich von selbst adjustiert. Unter Berücksichtigung zweier unterschiedlicher Polymerisati-
onsszenarien, wurden insbesondere jene Regime untersucht, in denen sich diese stabile Länge
einstellt. Im exklusiven Szenario findet Polymerisation nur statt, wenn sich kein depolymeri-
sierender Motor am Ende des Filaments befindet, wohingegen Abbauvorgänge unabhänging
von dieser Besetzung im nicht-exklusiven Szenario möglich sind. Die dabei herausgearbeiteten
Unterschiede sollen in zukünftigen Experimenten dazu beitragen, das tatsächliche Polymeri-
sationsverhalten aufzuklären.

Die vorliegende Arbeit gliedert sich in zwei Teile. Nach einer kurzen Einleitung (Kapitel 1)
werden in Teil I die Grundlagen von evolutionärer Dynamik erklärt (Kaptitel 2). In Kapitel 3
liegt der Fokus auf dem Kooperationsdilemma in Population, die in Subpopulationen eingeteilt
sind. In Teil II werden die Interaktionen von molekularen Motoren mit Mikrotubuli analysiert.
Dabei beschäftigt sich Kapitel 4 mit deren Transporteigenschaften, während sich Kapitel 5
hauptsächlich der Längenregulation durch polymerisierende und depolymerisierende Motoren
widmet.



Abstract

Life shows an astonishing diversity and complexity. Its underlying biological processes are
adapted to fulfill various specific tasks with remarkable accuracy. The enormous precision,
with which life operates, is even more impressive considering the ubiquitious fluctuations
in nature. Fluctuations in diverse biological quantities arise due to intrinsic randomness
of biological processes caused by the discrete nature of the involved substances and thermal
influences. In this thesis, the impact of such fluctuations is discussed for two specific examples.
The first part is concerned with evolutionary dynamics, while the second part focusses on
transport on intracellular filaments.

The driving force of evolution is selection. It favors fitter individuals and thereby changes the
composition of a population. The origins of such evolutionary dynamics are varying birth and
death events of single individuals. Hence, evolutionary dynamics of a population is closely
related to population dynamics describing the time evolution of the population size. The
interplay of these two types of dynamics is an important aspect of this thesis. As such, we
propose a full stochastic model considering the evolution of both a population’s composition
and its size. To validate our approach, an important example is analyzed, namely the dilemma
of cooperation in bacterial populations. Cooperating bacteria produce a certain protein which
is beneficial for the population as a whole. As the production of this public good is metabol-
ically costly, cooperators have an evolutionary disadvantage compared to non-contributing
free-riders. This example illustrates the crucial role of demographic fluctuations, the impor-
tance of which increases with decreasing population size. In particular, during population
bottlenecks these fluctuations may be strong enough to overcome the selection disadvantage
of cooperators. For this reason, we find that the level of cooperation increases transiently. To
explain cooperative behavior also in the long run, we further study the repetitive fragmenta-
tion of a population into small subcolonies. In such a model, two distinct mechanisms favor
cooperative behavior. The group-growth mechanism facilitates the evolution of cooperation
from a single mutant to coexistence between cooperators and free-riders. In contrast, the
group-fixation mechanism can lead to a purely cooperative population under the condition
that a certain threshold level of cooperation is already present.

The second part of this thesis is concerned with molecular motor proteins walking along mi-
crotubule filaments which are constituents of the cytoskeleton. These motors transport large
macromolecules through the crowded cytosol. Furthermore, they can act as polymerases or
depolymerases at the microtubule tip and thereby regulate its length. This length-regulation
is especially important for cell division as a dynamic length adaption of the filaments is essen-
tial there. We investigate the interaction between depolymerizing motors and microtubules
in a stochastic model accounting for crowding phenomena. Importantly, our model can be
validated by comparison with recent experiments without employing any fit parameters. Our
model provides insight into the role of molecular jams along the track. These jams result in



two regimes of qualitatively different behavior. In the first regime, the depolymerization speed
depends solely on the microscopic depolymerization rate, while in the second regime the den-
sity of molecular motors on the filament regulates the speed. As the motor density depends on
the length of the microtubules, the depolymerization speed also varies with length. In com-
bination with polymerization a certain length can be adjusted. We investigate the regimes
where such a well-defined length can be achieved by analyzing two distinct polymerization
scenarios. In the exclusive scenario, the microtubule only polymerizes if the tip is unoccupied
by a depolymerizing motor. In the non-exclusive scenario, by contrast, polymerization always
happens at a certain rate. Our analysis reveals differences between these scenarios which may
help to clarify the actual depolymerization behavior in future experiments.

The outline of this thesis is as follows. In Chapter 1, a short introduction focussing on the
role of fluctuations is provided. Part I is concerned with evolutionary dynamics. In Chapter 2
the basic mathematical concepts are introduced while in Chapter 3 the dilemma of cooper-
ation for individuals divided into subcolonies is investigated. Part II focusses on transport
along microtubules. Chapter 4 mainly deals with the transport properties of molecular mo-
tors. Finally, in Chapter 5 length-regulation due to polymerization and depolymerization is
discussed.
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1 Fluctuations in Biological Systems

Life’s complexity and beauty raises many biological issues. Much progress was done in iden-
tifying the functional building blocks of living organisms. Higher, multicellular life forms are
composed of cells highly adapted to specific tasks as they build the nervous system, skin or
other organs. The cells in turn are structured and consist of a membrane which is stabilized
by its scaffolding, the cytoskeleton, and includes functional entities, the organelles [1]. The
information for this astonishingly complex construction plan is stored in DNA or RNA [2]
which encode for proteins [3] regulating the dynamic sequences accommodating life. These
dynamic sequences operate with a remarkable precision. This foreshadows an important as-
pect which is considered in this thesis, namely the role of fluctuations. Fluctuations are
ubiquitous in nature and thereby influence biological processes in various ways. Fluctuations
arise from intrinsic randomness in biological processes due to thermal fluctuations, as well as
the discreteness of relevant factors, such as chemical substances. Hence, they are inextricably
linked to biological functionality. In general, fluctuations result in distributions around the
mean which may alter the outcome of biological processes in two ways. First, they may re-
sult in deviations from the optimum or cause rare events which are not tolerated by a living
organisms. Second, fluctuations are not necessarily detrimental, but however, may result in
functional noise [4]. For example fluctuations can switch between the states of a bistable
system [5] and thereby lead to beneficial heterogeneity. All in all, the role of fluctuations in
biological processes varies and has to be understood in more detail to clarify the mechanisms
underlying biological functionality.

One important example highlighting the accuracy at which dynamic behavior in nature is
achieved is cell division. A complex sequence of dynamic steps has to be performed to
divide a mother cell into two daughter cells. In eukaryotic cells, the nucleus (mitosis or
meiosis) as well as the whole cell must divide [1]. This division consists of several consecutive
steps: During interphase the genetic material is doubled. In the ensuing phases, prophase,
metaphase and anaphase, chromosomes are condensed and distributed to both cell poles.
This separation is achieved by the mitotic spindle, which consists of thin filaments, namely
microtubules [6]. These microtubules attach to the chromosomes and pull them apart such
that a copy of each chromosome is located at both poles. In the last stage of mitoses, the
telophase, chromosomes decondense and the nucleus wall reforms. The division of the cell
itself mainly occurs during the late stages of nucleus division. Each of these steps is highly
dynamic and requires complex regulatory machinery [7]. Most dynamic processes in living
organisms involve gene regulation [8]. In its simplest form, the transcription of DNA to RNA
is influenced (transcriptional regulation). This can, for example, be achieved by binding of
different proteins to sites on the DNA close to the operon where transcription starts. These
proteins may have either an inhibiting or a catalyzing effect and thereby hamper or stimulate
the transcription of the respective gene sequence. Gene regulation may also be accomplished
by influencing the ensuing translation (translational regulation), where the RNA sequence is
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Figure 1.1: Illustration of the basic idea behind the Luria-Delbrück experiment. A Spontaneous mu-
tations may arise any time. They can then be enhanced through exponential growth of the
bacterial population. After infection, non-resistant wild types die. Therefore the variance
of the number of surviving bacteria is much higher than in the induced mutation scenario
(B). There, mutations arise as a consequence of the infection and the variance is created
solely by the intrinsic randomness of mutations.

read out and transferred into a chain of amino acids, forming a protein. Importantly, the
proteins produced in this process may, in turn, regulate genes and create feedback loops.
In total, this leads to a complex gene regulatory network. These networks are constantly
subject to fluctuations [9, 10, 11]. In fact the concentrations of the regulating enzymes and
proteins are not stable, but variable due to the discreteness of the relevant substances and
temperature. From this point of view, the precise functionality of gene regulation is even
more remarkable.

One of the most important experiments in modern biology also highlighting the role of fluc-
tuations was the Luria-Delbrück experiment [12]. Designed by the microbiologist Salvador
Edward Luria with theory from the physicist Max Delbrück, it was also one of the first collab-
orations between physics and biology in modern science. The question which was addressed
relates to bacteria subject to stress from a viral infection. After the infection most of the
bacteria die. But due to a few mutations, leading to resistant individuals, the population
can recover afterwards. The issue is whether these mutations occur as a consequence of the
exposure to the virus or whether they occur regularly but only gain functionality by ensur-
ing the survival when the virus is added. This question can also be associated with a more
general context, namely to decide whether Lamarck’s or Darwin’s theories on the evolution
of species hold. In Lamarckian theory [13], individuals acquire some needed characteristics,
e.g. the resistance against the virus when exposed to it, during life time and pass them to
their offspring. In contrast, variation is always present in Darwinian theory [14], but selec-
tion only favors it if the new characteristics leads to a fitness advantage. For the bacteria
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investigated in the Luria-Delbrück experiment, mutations causing resistance are of minor im-
portance until infection; after this point they become immensely beneficial. It was Salvador
Luria who realized that fluctuations are the key to decide which of these theories is true.
When he watched a colleague gambling, he noticed that fluctuations can have an enormous
impact, i.e. winning the jackpot. According to this idea he designed an experiment, also
called fluctuation test, which is depicted in Fig. 1.1. Observing a set of bacterial cultures (an
ensemble), the variance in the outcome differs depending on whether mutations are induced
or spontaneous. In the latter scenario, mutations can spread exponentially in the population
depending on how long before the infection they emerged. Therefore, subpopulations where
mutations happened early contain more resistant individuals than other ones. After infection,
non-resistant bacteria die and the number of surviving individuals is given by the number
of resistant ones. Thus, the variance in the population size is comparably large. In contrast
with induced mutations, resistance arises in response to the viral infection. Therefore, muta-
tions emerge more or less simultaneously after infection corresponding to a Poisson process.
Hence, the variance in the number of individuals is smaller than in the scenario discussed
above. As the Luria-Delbrück and many following experiments [15] confirmed, mutations
arise spontaneously in many examples. Modern research further investigated the emergence
of these mutations. It was shown that bacteria are able to increase their mutation rate in
response to stress but no evidence for directional mutations were found [16]. Recent stud-
ies also confirmed the existence of epigenetics [17], i.e. individuals achieve adaptions during
the life span by changing genetic regulation which can be passed over a few generations at
least. The achievements of Luria and Delbrück was honored in 1969 with the nobel price in
physiology or medicine.

The Luria-Delbrück experiment is also a paradigm for the progress possible through the
mutual enrichment of biology and physics. Since pioneers like Max Delbrück and Erwin
Schrödinger [18, 19], physicists have become more and more interested in the question at how
life operates and have formed a large community within physics. Biology, which has made
enormous achievements in understanding the building blocks and processes facilitating life, is
more and more turning to quantitive measurements in modern research. Physics, which has
always been a quantitive science, can accelerate this progress which is one of the keys for a
mechanistic understanding of the underlying processes. In this context theoretical modeling
is also important as it affords the reduction of a complex system to its most important
components, the influence of which can then be investigated. Combining experimental results
with such models may lead to a deeper understanding of biological phenomena. Furthermore,
concerning the topic of this thesis, fluctuations, physicists have gained much experience in this
field. In analogy to fluctuations arising from non-zero temperatures in many-body systems,
finite size fluctuations can be also handled. Combined with the know-how of biology this may
result in a broader knowledge concerning the role of fluctuations and how they promote and
jeopardize biological functionality.

The focus of this thesis lies in two particular examples highlighting the importance of fluc-
tuations in two different fields of biology, evolutionary dynamics and transport along mi-
crotubules. A short overview on the role of fluctuations in these fields is provided in the
following.
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Evolutionary Dynamics

One central question in the field of evolution is how the abundance of a certain trait evolves
over time. Darwin’s famous idea [14], based on reproduction, variation and heredity, was
the key to understand this: Individuals reproduce and mutations or recombinations lead to
variation in their phenotype. Different phenotypes have different success rates in reproduction
and survival, measured by their fitness. Selection, the driving force of evolution, favors fitter
individuals which then outcompete less adapted ones [20, 21]. Demographic fluctuations,
whose strength scales with the population size [22, 23], arise due to discrete birth and death
events of the individuals. Therefore, by chance, traits corresponding to a comparably small
fitness can also be augmented. As the size of populations is highly dynamic, the role of
fluctuations is even more pronounced as already indicated by the Luria-Delbrück experiment.
In the field of evolution another question also arises. While in many examples from cell biology
mainly robustness against fluctuations is important, here fluctuations can also be functional.
For example, a variable phenotype caused by noise can be advantageous if environmental
conditions change repeatedly [4, 24, 25].

Intracellular Transport

As mentioned above a cell is not a disordered accumulation of molecular building blocks but a
highly functional and organized entity. As transport through the crowded cytosol would often
be too slow, active transport mechanisms must be employed. For example, molecular motors
‘walking’ along intracellular filaments are used to accelerate the transport of metabolically
important substances [26]. As this transport is a non-equilibrium stochastic process fluctua-
tions are especially important. In addition, molecular motors not only transport cargos, they
also play a crucial role in cell division [27, 28, 29, 30]. The mitotic spindle, which distributes
chromosomes to the cell poles, consists of microtubules whose length has to be regulated.
By growth and shrinkage, these filaments search for chromosomes in the cytosol and bind
to them [6]. Afterwards, the microtubules shrink and thereby pull the chromosomes apart.
Recent experiments support the crucial role of molecular motors serving as polymerases and
depolymerases for length-regulation [31, 32, 33, 34]. But the exact mechanisms are not fully
resolved. Again, the robustness against fluctuations is of major interest, as a failure in the
length-regulation of microtubules would lead to the lethal inability to divide.

Outline

Part I of this thesis is concerned with evolutionary processes. In Chapter 2, we introduce
the basic ideas of evolutionary and population dynamics which are two closely related fields
in biology. We combine both views in a mathematical model which highlights the role of
fluctuations as they can change the evolutionary outcome drastically. In Chapter 3, we focus
on evolutionary dynamics in structured populations. We explain and study the dilemma of
cooperation as an example, a problem which is ubiquitous in nature. Hence, we introduce a
model describing the interaction of cooperating an free-riding individuals in group-structured
populations. Part II of this thesis deals with the interaction of molecular motors and micro-
tubules. In Chapter 4, we give an overview on the cytoskeleton including microtubules and
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motor proteins. Furthermore, we discuss driven exclusive transport as a model system for
molecular motors moving on cellular filaments. In Chapter 5, we focus on length-regulation
of microtubules, an essential mechanism for cell division. Finally, we discuss the influence of
depolymerizing motors on the microtubule in combination with its polymerization.
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Part I

Evolutionary Dynamics





2 Ecology and Evolution

Ecology and evolution are two intertwined fields in biology. A major aspect of ecology is
population dynamics which describes the time evolution of the number of individuals living
in a population. Evolutionary theory in its simplest form focusses on the change in the
composition of populations under the pressure of selection. Since both dynamics are based
on birth and death events, their coupling seems to be natural. One of the main issues of this
thesis is to investigate the interdependence of these two fields. Therefore, we introduce the
key concepts of both, population and evolutionary dynamics, in the following. In particular,
we focus on different scenarios of population growth. Further, we review mathematical models
describing evolutionary dynamics: the Price equation, the replicator equation, evolutionary
game theory, and approaches accounting for demographic fluctuations. Finally, we introduce
a stochastic model which takes the coupling of evolutionary and populations dynamics into
account.

2.1 Ecology

Ecology (greek: oikos, house, and logos, study) is concerned with the question how individuals
interact among each other and with their environment [35]. Populations do not evolve inde-
pendently of their surrounding, as their dynamics depends on various internal and external
factors. For example, nutrient supply plays an essential role. Depletion and replenishment
of nutrients and the number of individuals with which those have to be shared are crucial
for population dynamics. Thereby, this scramble competition engenders density-dependent
dynamics [36]. Moreover, there exist food-webs interrelating various different species living
in the same ecosystem in a complex way [37]. Its simplest form, a food-web consisting of just
two species: prey and predator, is discussed in the following [38, 39]. But different species
cannot only interact detrimentally, e.g. by preying or competing for nutrients. There also ex-
ist purely beneficial relationships as mutualism or symbiosis [40]. Furthermore, also external
factors, which do not depend on the species living in a population, strongly influence pop-
ulation dynamics. Examples are seasons subsequently changing the ecological conditions or
environmental catastrophes causing population bottlenecks. How all these factors collectively
govern the state of a population, is the main question tackled in ecology.

A major theme in ecology is population dynamics where the time evolution of the number
of individuals in a population is considered [41, 42]. One of the first theoretical approaches
in this field was proposed by Malthus in 1798 [43]. Neglecting other possible influences, he
assumed that individuals reproduce at a constant rate r1 while they die at a rate r2. Thereby,
Malthus arrived at the well-known formula of exponential growth,

N(t) = N0e
rt. (2.1)
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Figure 2.1: Three typical example for population dynamics. A Malthusian or exponential growth
of an unbounded population. B Logistic growth (Verhulst): Initially a population grows
exponentially while due to limited resources it later saturates at a fixed value, the carrying
capacity, K. C Predator prey dynamics (Lotka-Volterra): The number of prey and the
number of predators oscillate showing a relative phase shift.

Here, N(t) denotes the number of individuals at a certain time, t, and r := r1 − r2 is the net
growth rate. For an illustration, see Fig. 2.1A. If individuals live in a nutrient rich environment
and therefore do not compete for resources, population growth can be successfully described
by this equation.

In contrast, if resources are limited, nutrients have to be shared and reproduction and viability
depend on the number of individuals in a population. This effect can be modeled by making
the birth rates or death rates decreasing or increasing functions of total population size
respectively. The first scenario might be more suitable for bacterial populations which go
into a dormant state, i.e. they stop reproduction if nutrients are rare, while the second one
holds for organisms dying due to starvation. Without taking fluctuations into account, both
scenarios are mathematically equivalent. The ensuing population dynamics is given by the
well-known equation of logistic growth which was proposed by Verhulst in 1838 [44],

Ṅ = r(1−N/K)N, (2.2)

where the carrying capacity, K, corresponds to the maximal number of individuals which may
live in a population. For small initial populations sizes N(0) � K the solution of Eq. (2.2)
first grows exponentially and later saturates at K, cf. Fig. 2.1B.

In general, growth dynamics can be described mathematically by differential equations of
the form Ṅ(t) = F(N(t),v, t). Here, F(N(t),v, t) incorporates factors as birth, death, and
migration and depends on the size of a population N(t), a set of external factors v and time
t [42]. As the dynamics can have different time scales, varying results depending on the
temporal observation window may be found [45]. Further generalizations include for example
age-dependent reproduction rates or delayed interactions [46].

Important biological examples, where population dynamics is especially pronounced, are bac-
terial cultures. In Fig. 2.2 the typical growth behavior of such a bacterial colony is de-
picted [47]. After inoculating some bacteria into a growth medium, bacteria only increase in
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Figure 2.2: Illustration of typical growth phases of bacterial populations. A detailed description of
the phases can be found in the main text.

cell size but do not divide. In this lag phase the number of individuals remains relatively con-
stant over time. Then, bacteria start to divide and grow exponentially (exponential phase1).
In the ensuing stationary phase the number of bacteria saturates at the carrying capacity of
the medium. In this regime birth and death balance each other, either because bacteria go
into a metabolically dormant state or die more frequently (lysis) [48]. As mentioned before,
the latter two phases can be well described mathematically by logistic growth or its extension,
the generalized logistic function [49]. Finally, without adding additional nutrients to the cell
culture, the population shrinks as bacteria die due to starvation (phase of decline).

In the example of bacterial growth as well as in the more general equations discussed above
only one species was considered. But in ecology also the interplay of several interacting types
of individuals is studied. To exemplify this aspect, let us briefly review the predator prey
model. It consists of only two species: a predator P (t), subsisting on its prey, R(t). Such an
interdependence can be described by the well-known Lotka-Volterra equations,

Ṙ(t) =R(t)(a− bR(t)),

Ṗ (t) =P (t)(cR(t)− d). (2.3)

Here, the death rate of prey is increased by the presence of predators. As the predator feeds
on prey to gain energy for reproduction, its birth rate depends on the number of prey in a
population. The actual strength of these interactions is set by the parameters a, b, c, d > 0.
For specific sets of parameters the resultant dynamics is oscillatory with the populations
of each species showing a relative phase shift, see Fig. 2.1C. The phase shift arises due to
the positive and negative coupling, respectively. This example of a food-web highlights that
often the abundance of a species cannot be described reasonably without considering other
interacting species.

2.2 Evolution

The tree of life as shown in Fig. 2.3 visualizes the enormous variety and specification of
living species. Adapted to various different environmental conditions, a plethora of unique

1In biological literature, this phase is also called log phase as the growth curve is a straight line in a semi-
logarithmic plot.
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Figure 2.3: A simplified version of the tree of life. Adapted from [63]

species has evolved. From bacteria which can survive in almost every environment, via species
with remarkably varied life cycles, through to such sophisticated organisms as mammals,
biodiversity is truly remarkable. The question evolutionary biologists struggle with is why
and how life could yield such sophisticated organisms. This issue has many different aspects,
starting from the origin of life [50, 51, 52, 53, 54] to the evolution of multicellularity [55, 56, 57].

Since its foundation by Darwin and Wallace [58, 59] evolutionary theory has become one
of the most important fields in modern biology. The main idea behind this theory is a
combination of reproduction, variation, and selection [58, 59, 14, 60, 61, 62]: Individuals
reproduce and mutations or recombination cause variations in their characteristics. If these
variations are beneficial and thereby provoke a higher fitness, selection, the driving force of
evolution, favors them. Actually, the fitness of an individual is a measure for its adaptedness
to the circumstances it is living in.
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Proposed in 1859, Darwin’s theory of evolution did not include knowledge about modern
genetics. Namely, the DNA, as the storage of the genetic code, and the mechanisms of
heredity were not discovered yet. Only in 1865, Mendel shed light in this field by discovering
the famous Mendelian rules which describe how traits are passed in a predictable way [64].
Much progress was made in the 20th century, starting from the discovery of the genetic code
to its decryption [2]. Another crucial point for further development in this field was the
genotype to phenotype mapping. While the genotype is defined by the genetic code, the
phenotype is basically the sum of observable properties of an individual. Thereby, individuals
with a distinct genotype, can possess exactly the same phenotype and vice versa. Importantly,
selection acts on the phenotype level, while hard-wired variation is generated by mutation
and recombination of the genotype. Nowadays, population genetics and the modern synthesis
Neo-Darwinism [20, 65] have filled the gap between the originally proposed theory of Darwin
and the progress in the field of heredity. Thereby they became powerful tools to study genetic
variance in the genotype under the influence of selection acting on the phenotype.

Before elaborating on the theoretical aspects of evolutionary dynamics in more detail, let us
discuss briefly the concept of fitness. Depending on a multitude of factors, the origin of fitness
is not fully resolved [66, 67]. As mentioned above, fitness is a measure for the successfulness
of an individual of a certain type interacting with other species and its environment. To
get a deeper understanding, this fitness must not be taken as an abstract quantity but the
underlying mechanisms have to be considered. The fitness of an individual basically relies on
its reproduction and survival chances which in turn can depend on various factors. For exam-
ple the environment plays a crucial role: Nutrients, climate and the presence of deleterious
substances depend on the habitat a organism is living in. This idea is incorporated in the
niche theory [68]. Therein a niche is defined by a typical set of environmental conditions. As
these conditions and thus the ensuing fitness terms may vary dramatically in different niches,
this theory is a possible explanation for the observed biodiversity. Especially life under very
extreme conditions, e.g. if light or oxygen is rare [69], can be linked to such theories. Depend-
ing on various factors, which can change over time, fitness may also vary temporally. In this
context, the concept of static fitness landscapes can be replaced by fitness seascapes [70, 71]
accounting for dynamic changes in the fitness. Further, the reproduction success or survival
chances of species may depend on the presence of other species in the habitat. One famous
example, already discussed in the context of ecology, are food-webs [38, 39] or symbiotic rela-
tionships [40]. To incorporate this, fitness can be generalized through fitness terms depending
on the frequencies2 of all other traits in a populations. This so-called frequency-dependent
fitness is the key concept of evolutionary game theory [72] which we summarize in Sec. 2.3.3.
A related idea, which originated from the question why social behavior pays off, is inclusive
fitness theory [73]. At first glance, a high fitness can only be caused by large reproduction
rates or a high viability, which are directly compared to the corresponding rates of compet-
ing individuals. Besides these direct fitness terms, inclusive fitness also accounts for indirect
factors which favor an individual under the force of selection. For example, benefits arising in
social populations can be taken into account with such indirect fitness terms which build the
inclusive fitness in combination with the direct terms. A more detailed description of the ad-
vantages and disadvantages associated with cooperative behavior can be found in Chapter 3.
Sometimes the fitness also depends on, at the first sight, non-reasonable factors and therefore
selection favors disadvantageous traits, e.g. a peacock has an enormous tail resulting in its

2In evolutionary dynamics the term frequency corresponds to the fraction of a certain trait in the population.
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inability to fly. This question already puzzled Darwin, who proposed the theory of sexual
selection [74] to resolve this question. Therein, fitness depends on the reproduction success
which in turn is given by the mating success for species which reproduce sexually. Some traits,
like a long tail of peacocks, are selected because the mating partners choose accordingly to
these traits. The questions why some disadvantageous traits, as the tail of a peacock or the
dark mane of a lion3, have evolved can be summarized under the name Lek paradox [75].

2.3 Mathematical Formulation of Evolutionary Dynamics

In the following a short overview on the basic mathematical concepts describing evolution
under the pressure of selection is provided. We here focus on works which are important in
the context of this thesis and skip theories which do not support the understanding of our
papers. Some important examples of the latter are coalescence theory [76] and the Eigen
model [77, 78]. First, the Price equation, which is more or less a mathematical identity, is
explained. Then, the replicator equation, which compares fitness differences to determine the
evolutionary outcome, is considered. Between both exists a mapping, which is also discussed
in the following. Finally, we focus on the role of demographic fluctuations in evolutionary
processes.

2.3.1 Price Equation

In 1970, Price proposed his famous equation to describe evolution including mutation and
selection [79, 21, 80, 81]. To this day, the Price equation plays an important role, especially in
the context of kin selection, see Sec. 3.2.3. Therefore, we provide a short derivation following
Ref. [82]. Let us consider a population containing N individuals at time t. The individuals
are labeled by an index i ∈ {1, 2, ...N}. In the population a certain trait is observed, for
example the body height or the weight, and each individual has assigned a certain value of
this trait zi. Initially, each individual has the abundance hi = 1/N in the population4. The
average value of the trait is therefore given by 〈zi〉 :=

∑
i hizi = 1/N

∑
i zi

5. We are now
interested in how this average value of the trait changes in a time interval ∆t,

〈∆zi〉 = 〈z′i〉 − 〈zi〉, (2.4)

where 〈z′i〉 is the average trait value at time t′ = t + ∆t. Again this average value can be
calculated by 〈z′i〉 =

∑
i h
′
iz
′
i, but both the values of the trait, z′i, as well as the abundances, h′i,

might have changed during the time interval. The new trait can be rewritten as z′i = zi+∆zi.
The new abundance follows from the underlying dynamics whose influence is summarized into
a growth factor wi of an individual i. For instance, this growth factor is given by 2 for an
individual which reproduces once during the time interval, while it is zero for an individual
which dies. The new abundance of an individual i can then be derived by dividing its growth

3In a lion’s typical hot environment, such a dark mane is clearly disadvantageous.
4The index i can also be chosen to label the traits instead of the individuals. In this equivalent notation the

abundance hi corresponds to the probability to find the trait zi in the population.
5We choose the notation 〈zi〉 instead of 〈z〉i. As it will turn out in the following chapter, this notation has

some advantages when deriving Hamilton’s rule, see Sec. 3.2.2.



2.3 Mathematical Formulation of Evolutionary Dynamics 15

factor, wi, which corresponds to the number of individuals of type i at time t+∆t, by the new
population size, N ′. The new population size can be calculated by multiplying N with the
average growth factor in the population, 〈wi〉 =

∑
iwi/N . Taken together, the abundance at

time t + ∆t is given by h′i = wi
N ′ = wi

〈wi〉N = wi
〈wi〉hi. To derive the famous Price equation, we

now have to combine all considerations above. Plugging them in Eq. (2.4) leads to,

〈∆zi〉〈wi〉 = 〈ziwi〉 − 〈zi〉〈wi〉+ 〈∆ziwi〉
= Cov[ziwi] + 〈∆ziwi〉. (2.5)

The Price equation can be interpreted intuitively: Traits which are positively correlated to
the growth factors increase, while other ones decline.

2.3.2 Replicator Equation

Another standard description for different competing species is the replicator equation [72,
83, 84]. While the Price equation describes the mean value of a certain trait, the replicator
equation focusses on the fraction of individuals with the same trait or the abundance of a
certain species. The state of a population with d different traits (species) can be described
by the fraction of the population with the same trait, xk ∈ {x1, x2, .., xd}. The traits differ in
their fitness which are given by fk ∈ {f1, f2, ..fd}. The replicator equation then reads,

ẋk = (fk − f̄)xk or ẋk =
fk − f̄
f̄

xk in its adjusted form. (2.6)

On the right-hand side of the equation the fitness of a certain trait, fk, is compared with the
average fitness in the population, f̄ =

∑
k xkfk. Depending on whether the fitness of this

trait, fk, is smaller or larger than the average fitness, xk decreases or increases, respectively.
The division by f̄ in the adjusted form corresponds to a rescaling of time and does not alter
the evolutionary outcome. The replicator equation captures the essence of selection without
considering mutations. This can be resolved by employing the replicator-mutator equation
which has an additional term on the right hand side incorporating mutations from species k
to species l at rate µk→l. In a simple two species scenario it reads,

ẋk = (fk − f̄)xk − xkµk→l + xlµl→k. (2.7)

Between the Price equation discussed above and the replicator equation there exists a mapping
which is briefly sketched in the following. As mentioned above, in the replicator equation the
fractions of certain traits, xk, instead of the values of the traits, zi, themselves are considered.
To achieve a mapping, the more general quantity, zi, has to be chosen appropriately: The
trait zi now marks the belonging of an individual, i, to a certain species, k. Each species, k,
can be distinguished by its typical value of the trait zk. We therefore define new traits whose

values are z̃
(k)
i = 1 if the individual i is of type k and z̃

(k)
i = 0 if it belongs to any other

species. This can be summarized to z̃
(k)
i = δzi,zk . The fraction of species k is then given by

xk = 〈z̃(k)
i 〉 =

∑
i hiδzi,zk . The growth factor, wi, in the Price equation corresponds to the

fitness of an individual and therefore solely depends on the species the considered individual
belongs to. Therefore, it is given by wi =

∑
l δzi,zlfl. For example an individual, i, belonging
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to species k has the growth factor wi = fk. The average growth factors is then given by the

average fitness in the population, 〈wi〉 = f̄ . As mutations are not included, z̃
(k)
i does not

change and ∆z̃
(k)
i = 0 holds. Taken together, this yields the following modification of the

Price equation (2.5),

∆xkf̄ =
∑

i

hiz̃
(k)
i wi − f̄xk. (2.8)

The term
∑

i hiz̃
(k)
i wi =

∑
i,l hiδzi,zkδzi,zlfl is only nonzero, if the considered species is of type

k. Then its fitness is always given by fk. Therefore,
∑

i hiz̃
(k)
i wi = fk

∑
i hiδzi,zk = fkxk holds

and Eq. (2.8) simplifies to,
∆xkf̄ = (fk − f̄)xk. (2.9)

This expression is equivalent to the adjusted replicator equation for discrete time steps. Per-
forming the limit ∆t→ 0 then leads exactly to Eq. (2.6).

2.3.3 Evolutionary Game Theory

Evolutionary game theory (EGT) is a prominent extension of standard evolutionary models
and was introduced in 1973 by Price and Maynard-Smith [72, 85]. It employs the ideas
and concepts developed in game theory to describe evolutionary dynamics [86]. Namely, the
quality of a certain strategy depends on the strategies of all others participants in the game.
Applied to evolution this means that the fitness of a species depends on the composition of
the whole population (frequency-dependent fitness). Employing such frequency-dependent
fitness functions instead of constant ones in replicator dynamics is the main idea of EGT [72,
83, 84, 87].

To understand this in more detail, let us consider a population consisting of d species whose
composition is described by the vector x = (x1, x2, ..., xd) where xk is the fraction of species
k. The interactions between species result in different payoffs measuring the advantages and
disadvantages of these interactions. All these payoffs are summarized in the payoff matrix, P ,
where the entry Plm gives the payoff an individual belonging to species l gains if it interacts
with species m. The fitness, fk, then follows from averaging over all possible interactions with
other individual and is given by,

fk = (1 + sPx)k, (2.10)

where s is the selection strength weighting the summand 1 with the frequency-dependent part,
Px. For purely deterministic models this distinction is not necessary and s just leads to a
rescaling of time. In contrast, for approaches including fluctuations the dynamics may be con-
siderably influenced by the interplay of the frequency-independent and frequency- dependent
part as discussed in Sec. 2.3.4.

To understand the consequences of frequency-dependence in more detail we examine two-
player games of social dilemmas in the following. Such two-player games are described by
2 × 2 payoff matrices where the rows and columns correspond to the strategies cooperation
and defection, respectively,

P =

(
R S
T P

)
. (2.11)
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Game Payoff Characteristics

Coordination game S − P < 0, T −R < 0 Coexistence unstable
Prisoner’s dilemma S − P < 0, T −R > 0 Defection stable
Mutualism S − P > 0, T −R < 0 Cooperation stable
Snowdrift game S − P > 0, T −R > 0 Coexistence stable

Table 2.1: Classification of standard two-player games. Depending on the entries of the payoff matrix,
different scenarios with distinct evolutionary stable strategies emerge.

Here T stands for Temptation to defect, R for Reward for mutual cooperation, P for Punish-
ment for mutual defection, and S for Sucker’s payoff. The favored strategy whose frequency
increases in terms of EGT depends on these values. Therefore, four different games can be
classified depending on T ,R ,P, S [87, 88], see Table 2.1. As the principles governing the
ensuing dynamics are the same for all games, we restrict our discussion to the prisoner’s
dilemma defined by T > R > P > S. As it deals with the question if it is beneficial to
cooperate, it finds applications not only in biology, but also in sociology and economics. The
game can be explained by the following story which is also responsible for its name. Let us
consider a crime two imprisoned men have committed. Both are interrogated separately and
can decide whether they testify and thereby betray the other one or not. The authorities do
not have enough evidence to send somebody to jail for a long time without the testimonial
of the other prisoner. Therefore such a testimonial can be rewarded by a reduction in prison
sentence. It would be optimal, if both cooperated and did not testify. Then both would gain
R, the second largest value. But, if the players do not trust each other, their payoff is always
larger, i.e. less years in prison, when defecting as T > R and S > P hold. Hence, from
the point of view of a single prisoner, the optimal strategy is to defect. Another equivalent
interpretation of the dilemma of cooperation is the public goods game. There, a cooperator
provides a benefit b to other individuals. For providing the benefit, the cooperator has to pay
the cost c which is smaller than b6. In this context, defectors are often called free-riders. The
resulting payoff matrix is given by,

P =

(
b− c −c
b 0

)
. (2.12)

In an evolutionary setup, where cooperating individuals compete with free-riding ones, the
ensuing fitness terms of cooperators and free-riders directly follow from Eq. (2.10), fC =
1 + s(bx − c) and fD = 1 + sbx. Thus, the following replicator equation describes the
dynamics,

ẋ = −scx(1− x) < 0, (2.13)

where x is the fraction of cooperators. As the fitness difference is always negative, cooperators
go extinct even though it would be optimal if everyone cooperated. This so-called dilemma
of cooperation is ubiquitous in nature and we turn to it in more detail in Chapter 3.

Of course, evolutionary dynamics can also be applied to more than two species. Especially,
by considering three cyclic competing species [89, 90, 91] interesting results concerning the
dynamics in combination with spatial structure and/or fluctuations have been found [92, 93,
94, 95, 94, 96, 97, 98].

6For b < c the dilemma would not exist because then cooperation would never be a beneficial strategy.
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Figure 2.4: Illustration of the Moran process. An individual is chosen according to its fitness to replace
a randomly chosen individual.

2.3.4 The Role of Fluctuations

The so far, discussed approaches where purely deterministic, i.e. fluctuations in the number
of individuals where completely neglected. But in realistic populations fluctuations, causing
stochastic deviations from the mean, are present. One of the pioneers in this field was Wright
who emphasized the role of fluctuations in evolutionary dynamics [99]. To account for these
demographic fluctuations, individual-based modeling has to be employed. In the simplest
version, the total number of individuals in a population, N , is fixed. A prominent example is
the Fisher-Wright model [100, 101, 102, 103]. It assumes discrete generations each containing
N individuals. In every generation, the individuals reproduce with a probability proportional
to their abundance and their fitness. To additionally include continuous time instead of fixed
generations, rate-based modeling has to be employed. In standard urn models, transitions
rates for an individual of type A to replace an individual of type B describe the dynamics.
The exact form of these rates depends on the specific update-rule, e.g. Moran process [104] or
local-update rule [105]. Since results do not depend qualitatively on these microscopic details
for weak selection, we restrict our discussion to the Moran process in the following. For a
more general overview on stochastic models in this field see Ref. [106] for example.

As illustrated in Fig. 2.4, the Moran process is an urn model and the transition rates are
given by,

ΓA→B =
fA
f̄

NANB

N2
. (2.14)

An individual A is chosen to replace an individual B according to its fitness, fA/f̄ , and
its abundance in the population, NA/N . In contrast, the probability that an individual B is
replaced only depends on its abundance NB/N . The full stochastic dynamics can be described
by a master equation,

∂tP (NA, t) =
∑

S

[
(E−A − 1)ΓS→A + (E+

A − 1)ΓA→S
]
P (NA, t), (2.15)

where E±A are step operators increasing/decreasing the number of individuals of species S by
one [107], i.e. E±Af(NA) = f(NA±1). Solving such a master equation is almost never feasible.
Therefore, simplifications have to be made. As a first approach, the deterministic limit
neglecting all correlations and fluctuations can be studied. For a Moran process this mean-
field approximation just leads to the adjusted replicator equation, Eq. (2.6). To account for
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fluctuations, typically approximations like the Kramers-Moyal expansion [108] or the Omega
expansion proposed by van Kampen [107] have to be employed. While the first one works well
for a constant population size the second one is suitable for problems where this assumption
is skipped7. Performing a Kramers-Moyal expansion of Eq. (2.15) leads to the following
Fokker-Planck equation,

∂tP (x, t) = − ∂xα(x)P (x, t)︸ ︷︷ ︸
selection

+
1

2N
∂2
xβ(x)P (x, t)

︸ ︷︷ ︸
fluctuations

. (2.16)

The first part is the deterministic drift shifting the probability distribution according to the
coefficient α(x). The second term accounts for fluctuations and is often referred to as random
drift. The details of this random drift are reflected by the coefficient β(x) which is weighted
by N . The ensuing scaling of fluctuations as 1/

√
N is especially important: The smaller a

population is, the more pronounced is the role of fluctuations. Therefore, as we highlight in
the following chapter fluctuations can be enhanced by population bottlenecks. If individuals
occupy new habitats or undergo external catastrophes decimating their number, fluctuations
gain importance and may alter the evolutionary outcome drastically. Another example for
the importance of fluctuations are propagating fronts. At these front only a few individuals
enter a new environment and fluctuations gain special importance [109, 110, 111]. Due to
fluctuations also the speed at which populations move in the fitness landscape may be altered,
e.g. trapped in a local maximum, fluctuations enable a population to find the global maximum
faster if the population size is small [112].

The Model of Neutral Evolution

Besides these Neo-Darwinian models, another field focussing on the role of fluctuations and
random drift evolved. Both, Hubbell [22] and Kimura [23], introduced neutral models where
no fitness differences are included and the evolutionary outcome solely depends on random
walks of the abundances of different species through the species state simplex [113]. Note, that
even though Kimura took an ansatz neglecting fitness differences he never thought Darwinian
evolution was wrong. He just stated that there are regimes where stochastic effects are
dominant and thereby become the main driving force for evolution. This is also well-reflected
by his condition for neutral evolution [23, 65, 88],

sN ≈ 1, (2.17)

which describes the crossover between selection and fluctuation driven evolution. For sN � 1,
evolution is effectively neutral, i.e. fluctuations determine the evolutionary outcome, while
for sN � 1 selection is the dominant driving force.

2.4 The Mutual Interaction of Evolutionary and Population
Dynamics

As we have learned by now, ecology and evolution are closely related [114, 115]. While some
specific examples of this coupling, e.g. density-dependent selection [116, 117], have already

7This situation is considered in Sec. 2.4.
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Figure 2.5: The per capita birth and death rates for two different traits, A and B. Each rate depends
on a global, trait-independent and a relative, trait-dependent part. While the global and
relative fitness terms, g and fA/B affect the birth rates, the global and relative weakness
terms d and wA/B determine the death rates.

been considered, we go beyond this and include also demographic fluctuations in a general
model. Up to now fluctuations have been mostly studied in models like the Moran process
which do not include population dynamics. But when thinking about the microscopic driving
forces of population and evolutionary dynamics, their linkage becomes obvious as they are
both based on reproduction and death events of single individuals.

The Model

In contrast to the Moran process, where an individual always replaces another individual,
here decoupled birth and death events are considered [118, 119],

ΓS→2S = GSNS , ΓS→∅ = DSNS . (2.18)

The total reproduction rate of species S depends on its per capita reproduction rate, GS , and
the number of individuals of this species, NS . Analogously, the death rates are decomposed
in the per capita death rate, DS , and NS . Without loosing generality, the birth and death
rates can be factorized in global and relative parts, see Fig. 2.5,

GS = g(x, N)fS(x), DS = d(x, N)wS(x). (2.19)

Here, the global parts, the global birth g(x, N) and death functions d(x, N), account for
factors which influence all individuals in the same way, e.g. limited resources or changing
environmental conditions. In contrast, the relative parts, namely the relative birth fitness
fS(x) and the weakness wS(x), describe species-specific factors. They mainly determine the
internal evolution of different species, i.e. the change in the composition of population. This
becomes obvious by examining the deterministic equations following from the master equation
with transition rates according to Eq. (2.19),

∂tN = [g (x, N)− d (x, N)]N (2.20a)

∂txS = g(x, N) [fS(x)− 1 ]xS − d(x, N) [wS(x)− 1]xS , (2.20b)

where f̄ = w̄ = 1 is assumed without loss of generality. The first equation, which describes the
evolution of the population as a whole, does solely depend on the global parts. In contrast, the
second equation resembling the replicator equation, Eq. (2.6), describes the internal evolution
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of different traits. It compares the fitness (weakness) of an individual with the average fitness
(weakness). Both terms are weighted with the corresponding global functions. Note that
the fitness terms dominate the population in growth phases, while the weakness terms are
more important, if the population shrinks. Thus, by accounting for population dynamics
and by distinguishing between birth fitness and weakness, which is not possible in standard
approaches, a more complex picture of evolutionary dynamics can be obtained.

Van Kampen Approximation

Analogously to the results obtained in Sec. 2.3.4, fluctuations can also be described by a
Fokker-Planck equation in this model. But in contrast to the Moran process, the Kramers-
Moyal expansion fails, since it assumes a constant population size. Therefore, one has to
apply a van Kampen approximation [107]. The basic idea is to separate the influence of the
deterministic solution from the one of fluctuations. This is achieved by the following ansatz,

NS = ΩnS(t) +
√

ΩξS , (2.21)

where the stochastic variable NS , i.e. the number of individuals of type S, is rewritten in
terms of the deterministic solution, nS(t), and the stochastic variable, ξS , which describes
fluctuations in NS . The latter term is weighted by

√
Ω, where Ω scales the impact of fluctua-

tions and is proportional to the system size. Expanding the resulting master equation in
√

Ω,
leads to a Fokker-Planck equation in the variables ξ = (ξ1, ξ2, ...ξd) with the deterministic
solutions as time dependent parameters, n(t) = (n1(t), n2(t), ..., nd(t)),

∂tP (ξ, t) = −∂ξα(ξ,n(t))P (ξ; t) + ∂2
xβ(ξ,n(t),Ω)P (ξ; t). (2.22)

Since this Fokker-Planck equation depends on the fluctuation variables, ξ, instead of NS or
x, its interpretation is different from Eq. (2.16). Here, the drift term determines whether
fluctuations decay or are amplified and thereby alter the evolutionary outcome. An example
of the latter scenario is studied in [118, 119]. The second term of the Fokker-Planck equation
accounts for intrinsic noise due to birth and death events.

2.5 Manuscripts and Papers

2.5.1 Evolutionary Game Theory in Growing Populations

The letter “Evolutionary game theory in growing population”, Phys. Rev. Lett. 105, 178101
(2010), by Anna Melbinger, Jonas Cremer and Erwin Frey introduces the model presented
in Sec. 2.4. By applying it to the dilemma of cooperation in growing bacterial populations,
the influence of population dynamics on the internal evolution is exemplified. Therein our
assumptions are minimal: Cooperators reproduce slower than free-riders and more coopera-
tive populations grow faster. Based on asymmetric amplification of fluctuations a transient
increase in the level of cooperation can be found. In detail, this means that fluctuations
towards more cooperators enforce population growth, while the opposite ones hamper it.
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Thereby the weights in the probability distributions are shifted and, for weak enough selec-
tion, the fraction of cooperators increases. We complete our analyses by calculations of the
boundary between the regime of transient increase and immediate decrease by employing a
van Kampen approximation. This boundary is given by,

s =
p

2N0(1 + px0)
. (2.23)

Here, p scales the growth advantage of more cooperative populations, s is the strength of
selection and N0 and x0 are the initial population size and level of cooperators, respectively.
The boundary compares the growth advantage of more cooperative populations which arises
due to fluctuations scaling with

√
N , with the selection disadvantage of cooperators, s. It

resembles the condition of neutral evolution, Eq. (2.17).

2.5.2 Evolutionary and Populations Dynamics - A Coupled Approach

In the paper “Evolutionary and population dynamics - A coupled approach”, Phys. Rev. E
84, 051921 (2011), by Jonas Cremer, Anna Melbinger and Erwin Frey, the model introduced in
Sec. 2.4 is thoroughly discussed and analyzed. Especially, its mapping to standard approaches,
as the Moran processes, is pointed out. Further, we study the dilemma of cooperation in
growing bacterial populations. Here, two distinct growth scenarios are distinguished. In the
dormancy scenario bacteria stop growing if the population size reaches its carrying capacity.
In contrast, in the balanced growth scenario, a constant population size is reached due to birth
and death events happening at the same frequency. For both scenarios, we find a transient
increase of cooperation. We analyze this increase, depending on the growth advantage of
cooperative groups p, the initial fraction of cooperators x0, the strength of selection s, and the
initial population size N0. This is achieved by stochastic simulations and analytic calculations
employing van Kampen’s approximation. Thereby, we are able to find an analytic expression
for the boundary of the regime of transiently increasing cooperation depending on arbitrary
global growth functions g(x),

s =
∂x ln[g(x)]

N(1/g(x))

∣∣∣
x0

=
∂xg(x)

N(1/g(x))g(x)

∣∣∣
x0
. (2.24)

The regime, where the transient increase is present, therefore increases with a larger derivative
of the global growth function, ∂xg(x)|x0 , and decreases with its actual value, g(x0).

2.5.3 Conclusion and Outlook

Both, evolutionary and population dynamics, rely on birth and death events as the micro-
scopic origin of their dynamics. Therefore, a combined description is highly reasonable. In
contrast to standard approaches as the Fisher-Wright or Moran model, the model intro-
duced above decouples birth and death events and thereby offers the possibility to study
the interdependence of evolutionary and population dynamics. By investigating the dilemma
of cooperation in growing bacterial populations, we found that this coupling can lead to a
transient increase of cooperation. This increase is mainly caused by fluctuations which are
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asymmetrically amplified. Thus, the populations size has to be sufficiently small, i.e. a pop-
ulation bottleneck is present. An interesting extension of this approach would by to test how
repeated population bottlenecks affect the system. One example employing group structure
is discussed in Chapter 3. But these bottlenecks can also be modeled by time dependent
global growth and death functions. The repeatedly reoccurring small population numbers
might increase the influence of fluctuations also on larger time scales. Thereby cooperation
might be favored also in the long run.é

Additionally, the distinction between birth fitness and weakness offers the possibility to study
their influence separately. As mentioned above, fitness terms dominate during growth phases,
while weakness terms do so in shrinkage phases. The consequently arising question is how
the interplay between both leads to an effective fitness. A further interesting scenario is to
consider two species which have exactly the same fitness, but reproduce and die on two com-
pletely different time scales. Do these different time scales influence the evolutionary outcome,
when considering fluctuations? Furthermore, the model can be extended to account for age-
dependent reproduction rates, i.e. these rates change during the life-span of an individual.
Thereby, insights on age-structured populations [46] can be obtained.
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Existing theoretical models of evolution focus on the relative fitness advantages of different mutants in

a population while the dynamic behavior of the population size is mostly left unconsidered. We present

here a generic stochastic model which combines the growth dynamics of the population and its internal

evolution. Our model thereby accounts for the fact that both evolutionary and growth dynamics are based

on individual reproduction events and hence are highly coupled and stochastic in nature. We exemplify

our approach by studying the dilemma of cooperation in growing populations and show that genuinely

stochastic events can ease the dilemma by leading to a transient but robust increase in cooperation.
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Commonly, Darwinian evolution in terms of reproduc-
tion, selection, and variation is described in frameworks of
population genetics and evolutionary game theory [1–3].
These approaches model the internal evolutionary dynam-
ics of a species’ different strategies (or traits) in a relative
perspective. Namely, they compare fitness terms and focus
on the relative advantage and abundance of different traits.
In such a setup, the time evolution of the relative abun-
dance x of a certain strategy is frequently described by a
replicator equation,

@t x ¼ ðf� hfiÞx: (1)

A trait’s relative abundance will increase if its fitness f
exceeds the average fitness hfi in the population.

While in these evolutionary approaches the dynamics of
the population size N is mostly left unconsidered or as-
sumed to be fixed [3], in population ecology the dynamical
behavior of a species’ population size is studied. Models of
population dynamics [4,5] usually describe the time devel-
opment of the total number of individuals N by equations
of the form

@t N ¼ F ðN; tÞ: (2)

F ðN; tÞ is in general a nonlinear function which includes
the influence of the environment on the population, such as
the impact of restricted resources or the presence of other
species. By explicitly depending on time, a changing en-
vironment such as, for example, the seasonal variation of
resources can be taken into account.

The internal evolution of different traits and the dynam-
ics of a species’ population size are, however, not inde-
pendent [6]. Actually, species typically coevolve with other
species in a changing environment, and a separate descrip-
tion of both evolutionary and population dynamics is in
general not appropriate. Not only population dynamics
affects the internal evolution (as considered, for example,
by models of density-dependent selection [7]), but
also vice versa. Illustrative examples of the coupling are

biofilms which permanently grow and shrink. In these
microbial structures diverse strains live, interact, and out-
compete each other while simultaneously affecting the
population size [8]. So far, specific examples of this cou-
pling have been considered by deterministic approaches
only, e.g., [9,10]. However, classical and recent work have
emphasized the importance of fluctuations for internal
evolution which are only accounted for by stochastic,
individual-based models, e.g., [11–14].
In this Letter, we introduce a class of stochastic models

which consider the interplay between population growth
and its internal dynamics. Both processes are based
on reproduction events. A proper combined description
should therefore be solely based on isolated birth and death
events. Such an approach also offers a more biological
interpretation of evolutionary dynamics than common for-
mulations like the Fisher-Wright or Moran process
[1,3,12,15]. That is to say, fitter individuals prevail due to
higher birth rates and not by winning a tooth-and-claw
struggle where the birth of one individual directly results
in the death of another one. The advantage of our formu-
lation is illustrated by the dilemma of cooperation where a
transient increase in cooperation can be found [which does
not exist in standard approaches, Eq. (1)].
In the following, we consider two different traits, A and

B, in a well-mixed population; however, generalizing the
model to more traits is straightforward. The state of the
population is then described by the total number of indi-
viduals N ¼ NA þ NB and the fraction of one trait within
the population x ¼ NA=N. The stochastic evolutionary
dynamics is fully specified by stochastic birth and death
events with rates

�;!S ¼ GSðx; NÞNS; �S!; ¼ DSðx; NÞNS; (3)

where GSðx; NÞ and DSðx; NÞ are per capita reproduction
and death rates for an individual of type S 2 fA; Bg, re-
spectively. We consider these rates to be separable into
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a global and relative part, meaning a trait-independent and
trait-dependent part:

GS ¼ gðx; NÞfSðxÞ; DS ¼ dðx; NÞwSðxÞ: (4)

The global population fitness gðx; NÞ and the global popu-
lation weakness dðx; NÞ affect the population dynamics of
all traits in the same manner. For example, they account for
constraints imposed by limited resources or how one strat-
egy impacts the whole population. In contrast, the relative
fitness fSðxÞ and the relative weakness wSðxÞ characterize
the relative advantage of one strategy compared to the
other. They are different for each trait and depend, in a
first approach, only on the relative abundance x [16]. The
relative fitness terms fSðxÞ affect the corresponding birth
rates, and the relative weakness functions wSðxÞ describe
the chances for survival of distinct traits.

While in evolutionary game theory only the relative
fitness is considered [2], and common models of popula-
tion dynamics take only the global functions into account,
we consider here both global and relative fitness and show
how their interplay determines the evolutionary outcome of
a system. In the following, we set wAðxÞ ¼ wBðxÞ ¼ 1 in
order to compare our unifying approach with standard
formulations [2]. Though the full stochastic dynamics are
given by a master equation, it is instructive to disregard
fluctuations for now and examine the corresponding set of
deterministic rate equations:

@t x ¼ gðx; NÞðfAðxÞ � hfiÞx; (5a)

@t N ¼ ½gðx; NÞhfi � dðx; NÞ�N; (5b)

where hfi ¼ xfA þ ð1� xÞfB denotes the average fitness.
Equation (5a) has the form of a replicator equation [2].
However, in Eq. (5a) there is an additional factor, namely,
the global population fitness gðx; NÞ. This leads to a cou-
pling of x and N whose implications we will discuss later
on. Similarly, Eq. (5b) describing population growth is
coupled to the internal evolution, Eq. (5a). Note that for
frequency-independent global functions, gðx; NÞ � gðNÞ
and dðx; NÞ � dðNÞ, Eqs. (5) resemble Eqs. (1) and (2).
Only then, the deterministic dynamics reduces to the com-
mon scenario [12,13,15], where a changing population size
is immaterial to the evolutionary outcome of the dynamics
[3]. For the full stochastic dynamics the strength of fluc-

tuations scales as
ffiffiffiffiffiffiffiffiffi
1=N

p
[3,11,14] and thereby is strongly

affected by population growth.
In more realistic settings, the global fitness and weak-

ness functions, gðx; NÞ and dðx; NÞ, can also depend on the
relative abundance x. This implies an interdependence of
population growth and internal evolution. In the following,
we focus on one particular but very important example: the
dilemma of cooperation in a growing population. There is
an ongoing debate in sociobiology regarding how coopera-
tion within a population emerges in the first place and
how it is maintained in the long run [8,17]. Microbial
biofilms serve as versatile model systems [8,18–20].

There, cooperators are producers of a common good, usu-
ally a metabolically expensive biochemical product. For
example, for the proteobacteria Pseudomonas aeruginosa,
cooperators produce iron-scavenging molecules (sidero-
phores). Released into the environment, these molecules
strongly support the iron uptake of each individual in the
population [20]. Cooperators thereby clearly increase
the global fitness of the population as a whole, leading
to a faster growth rate and a higher maximum population
size [20]. In such a setting, however, nonproducers
(‘‘cheaters’’) have a relative advantage over cooperators
as they save the cost of providing the common good,
e.g., the production of siderophores. Hence, their relative
fraction is expected to increase within the population,
implying that the global fitness of the population declines.
Surprisingly, as we show in the following, a coupling
between growth and internal evolution can overcome this
dilemma transiently, and the average level of cooperators
can increase despite a disadvantage in relative fitness.
We model the internal evolutionary dynamics by the

prisoner’s dilemma game [2,17]. Within this standard ap-
proach, individuals are either cooperators (A) or cheaters
(B). While cooperators provide a benefit b to all players
at the expense of a (metabolic) cost c < b, a cheater saves
the cost by not providing the benefit. The relative fitness of
these traits is given by fAðxÞ ¼ 1þ s½ðb� cÞx� cð1� xÞ�
and fBðxÞ ¼ 1þ sbx, respectively, where the frequency-
independent and dependent parts are weighted by the
strength of selection s [12]. Analyzing the prisoner’s
dilemma per se, defectors are always better off than coop-
erators because of their advantage in relative fitness,
fAðxÞ< fBðxÞ [17]. In the following, we choose for specif-
icity b ¼ 3 and c ¼ 1; however, our conclusions are inde-
pendent of the exact values.
Importantly, cooperation positively affects the whole

population by increasing its global fitness, e.g., by produc-
tion of a common good such as siderophores. Here, we
consider bounded population growth with a growth rate
increasing with the cooperator fraction x. In detail, we
choose an x-dependent global fitness, gðxÞ ¼ 1þ px, and
an N-dependent global weakness, dðx; NÞ ¼ N=K, ac-
counting for limited resources. For p ¼ 0, one obtains
the well-known dynamics of logistic growth [21] with a
carrying capacity K. For p > 0, the carrying capacity,
Kð1þ pxÞ, depends on the fraction of cooperators. For
instance, for P. aeruginosa [20], the iron uptake, and hence
the birth rates, increase with a higher siderophore density
and therefore with a higher fraction of cooperators.
To analyze the evolutionary behavior of our model we

performed extensive simulations of the stochastic dynam-
ics given by the master equation determined by the birth
and death rates, Eq. (3). All ensemble averages were per-
formed over a set of 104 realizations. In Fig. 1 the average
population size N and the average fraction of cooperators
x are shown for different initial population sizes N0.
The influence of a frequency-dependent growth on the
population is twofold. First, starting in the regime of
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exponential growth, the frequency-dependent global fitness
may cause an overshoot in the population size [Fig. 1(a)].
Second, and more strikingly, the selection disadvantage of
cooperators can be overcome and a transient increase of
cooperation emerges [Fig. 1(b)]. It is maintained until a
time tc, which we term as the cooperation time.

Both phenomena rely on a subtle interplay between
internal evolution, with a selection pressure towards
more defectors, and population growth, with a growth
rate increasing with the fraction of cooperators. While
the overshoot in population size can already be understood
on the basis of the rate equations,

@t x ¼ �sð1þ pxÞxð1� xÞ; (6a)

@t N ¼ ½ð1þ pxÞhfi � N=K�N; (6b)

the transient increase of cooperation is a genuinely sto-
chastic event as discussed in detail below. A first impres-
sion of the antagonism between selection pressure and
growth can already be obtained by examining the charac-
teristic time scales. While the fraction of cooperators
changes on a time scale �x / 1=s, the population size
evolves on a time scale �N / 1. Hence, the strength of
selection s regulates the competition between population
growth and internal dynamics. For s � 1, selection is
much faster than growth dynamics. Therefore, the rapid
ensuing extinction of cooperators cannot be compensated
for by the growth advantage of populations with a larger
fraction of cooperators. In contrast, in the limit of weak
selection (s � 1), growth dynamics dominates selection
and both an overshoot in the population size and a transient
increase of cooperation become possible (see below). In
the following we focus on this latter, more interesting,
scenario of weak selection (�N < �x).

Let us first consider the overshoot in the population size
[Fig. 1(a)]. It is caused by a growth rate and a carrying
capacity which are increasing functions of the fraction of
cooperators (here we use p ¼ 10 as observed in microbial
experiments [19]). For t < �x, a small population [N �
Kð1þ px0Þ] with an initial fraction of cooperators x0
grows exponentially towards its comparatively large carry-
ing capacityKð1þ px0Þ. During this initial time period the
fraction of cooperators evolves only slowly and can be
considered as constant. On a longer time scale, t > �x,
however, selection pressure drives the fraction of cooper-
ators substantially below its initial value x0, leading to a
smaller carrying capacity, Kð1þ pxÞ. Finally, cooperators
go extinct and the population size decreases to K. This
functional form of NðtÞ is well described by the rate
equations (6); see black line in Fig. 1(a).
In contrast, the transient increase of cooperation, cf.

Fig. 1(b), cannot be understood on the basis of a simple
deterministic approach, where @tx � 0 holds strictly [see
black line in Fig. 1(b)]. It is a genuinely stochastic effect,
which relies on the amplification of stochastic fluctuations
generated during the initial phase of the dynamics where
the population is still small. In more detail, for small
populations, the fraction of cooperators is subject to strong
fluctuations and differs significantly from one realization
to another. Crucially, due to the coupling between the
growth of a population and its internal composition, these
fluctuations are amplified asymmetrically, favoring a more
cooperative population; i.e., growth, set by the global fit-
ness gðxÞ, is amplified by an additional cooperator while it
is hampered by an additional defector. This implies that the
ensemble of realizations becomes strongly skewed towards
realizations with more cooperators. If this effect is strong
enough the ensemble average xðtÞ ¼ P

iNA;iðtÞ=PiNiðtÞ,
which describes the mean fraction of cooperators when
averaging over different realizations i, increases with time.
Because of a subsequent antagonism between selection
pressure towards more defectors and asymmetric exponen-
tial amplification of fluctuations during growth phase, there
is only a transient increase of cooperation in a finite time
window, t 2 ½0; tc�. These findings are illustrated in a
movie in [22] showing the time evolution of the probability
distribution for an ensemble of stochastic realizations.
Additional qualitative and quantitative insights can be

gained from analytic calculations via a van Kampen ap-
proximation [23]; see the supplementary material [22].
Thereby starting with a master equation given by Eq. (3),
first and highermoments of the fluctuations can be obtained.
They show that fluctuations during the first generation
(i.e., doubling the initial population size on average) are
by far the dominant source for the variance in the compo-
sition of the population. In addition (see below), these
calculations give a strictly lower bound on the parameter
regime where the cooperation time is finite and thus quan-
tify the magnitude of fluctuations necessary to overcome
the strength of selection acting against cooperators.
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FIG. 1 (color online). The dilemma of cooperation in growing
populations. (a) Average population size over time. Because of a
cooperation-mediated growth advantage, it can show an over-
shoot. The gray (red) line corresponds to simulation results while
the black line is obtained by evaluating Eqs. (6). (b) The average
level of cooperation increases transiently for times t < tc, espe-
cially if the initial population size is small meaning fluctuations
are large. The parameters are given by x0 ¼ 0:5, b ¼ 3, c ¼ 1,
s ¼ 0:05, K ¼ 100, and p ¼ 10. In (a), N0 is 4. In (b), the gray
lines correspond to N0 ¼ 2 (blue), 4 (red), and 12 (green), from
top to bottom. The black line is obtained by evaluating Eqs. (6)
for N0 ¼ 4. Cooperation times tc are denoted by thin lines.
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Figure 2 shows the cooperation time tc with varying
selection strength s and initial population size N0. For
large s and N0 (light gray area), tc is identical to zero;
i.e., the fraction of cooperators always decreases as pre-
dicted by the deterministic replicator dynamics, Eq. (6a).
In contrast, if s and N0 are sufficiently small, tc is finite.
The transition between these regimes is discontinuous and
is marked by a steep drop in the cooperation time from a
finite value to zero; see Fig. 2 (inset). A strictly lower
bound for the phase boundary (Fig. 2, solid line) can be
derived analytically by comparing the antagonistic effects
of drift and fluctuations; see [22]. Its asymptotic behavior
for largeN0 is given by sN0 � p=ð1þ px0Þ (Fig. 2, dashed
line). This behavior resembles the condition for neutral
evolution [11,14]. Indeed, for sN0 < p=ð1þ px0Þ, fluctu-
ations dominate and the system evolves neutrally. It is this
neutral evolution leading to sufficiently large fluctuations
which in turn—by asymmetric amplification—result in a
transient increase of cooperation.

In summary, we introduced a general approach, which
couples the internal evolution of a population to its growth
dynamics. Both processes originate from birth and death
events and are therefore naturally described by a unifying
stochastic model. The standard formulations of evolution-
ary game theory and population dynamics emerge as special
cases. Importantly, by including the coupling, our model
offers the opportunity to investigate a broad range of phe-
nomena which cannot be studied by standard approaches.
We have demonstrated this for the prisoners’ dilemma in
growing populations. Here, a transient regime of increasing
cooperation can emerge by a fluctuation-induced effect. For
this effect, the positive correlation between global popula-
tion fitness and the level of cooperation is essential. Similar
to the Luria-Delbrück experiment [24], initial fluctuations
in the fraction of cooperators are exponentially amplified.
Here, this renders it possible for cooperators to overcome
the selection advantage of defectors.

In biological settings, growth is ubiquitous: populations
regularly explore new habitats, or almost go extinct by
external catastrophes and rebuild afterwards. For a realistic
description, it is therefore necessary to relax the assump-
tion of a decoupled population size. Especially for
bacterial populations undergoing a life cycle with a re-
peated change between dispersal and maturation phases
[8,18–20], a transient increase in cooperation may be
sufficient to overcome the dilemma of cooperation.
Financial support by the Deutsche Forschungsge-
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FIG. 2 (color online). Dependence of the cooperation time tc
on the strength of selection s and the initial population size N0.
There exist two distinct phases: the phase of transient maintained
cooperation (where tc > 0 holds) and the phase of extinction of
cooperation (where tc ¼ 0). The boundary of both phases (solid
line) is approximately given by sN0 � p=ð1þ px0Þ (dashed
line). The cooperation time tc is shown for varying s but fixed
N0 in the inset. See text and [22].
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Supplementary EPAPS document: conditions for the transient increase of
cooperation

The transient increase of cooperation emerges if initial fluctuations in the evolutionary

dynamics are sufficiently large such that the asymmetrical amplification of those can

overcome the selection advantage of cheaters. In this Supplementary Material we derive

the conditions for the transient increase. In particular, we give an analytical expression

for the phase boundary in Fig. 2 (black line).

The full stochastic dynamics is given by the master equation determined by the birth

and death rates, Eq. (3),

dP (A,B)

dt
= Γ∅→A(A−1, B)(A−1)P (A−1, B) + Γ∅→B(A,B−1)(B−1)P (A,B−1)

+ ΓA→∅(A+1, B)(A+ 1)P (A+1, B) + ΓB→∅(A,B+1)(B+1)P (A,B + 1)

− [Γ∅→A(A,B)A+ Γ∅→B(A,B)B + ΓA→∅(A,B)A+ ΓB→∅(A,B)B]P (A,B).

(7)

Here, A ≡ NA and B ≡ NB stand for the number of individuals of both traits. We

approximate the master equation upon performing a van Kampen expansion [1]. To this

end, we consider A and B as extensive variables which we write as

A = Ωa(t) +
√

Ωξ ,

B = Ωb(t) +
√

Ωµ . (8)

Here, Ω is of the order of the actual system size, and deterministically evolving densities

a(t) and b(t) are corrected by fluctuations ξ(t) and µ(t). By this Ansatz the strength

1



of fluctuations is correctly considered; their relative impact decreases like 1/
√

Ω with

increasing system size. In the following, we consider the initial dynamics of the population

when starting with a small population size N0. Then, Ω is of the order Ω ≈ N0. Death

events can be neglected as the initial population size is far below the carrying capacity,

N0/K ≈ 0.

To proceed, we expand Eq. (7) in orders of 1/
√

Ω. The deterministic equations follow

to leading order, O
(√

Ω
)

, see Eqs. (6) with N/K → 0 and x(t) = a(t)/ [a(t) + b(t)].

The next leading order, O(Ω0), results in a Fokker-Planck equation for the probability

distribution of the fluctuations, Π(ξ, µ). The dynamics in Π(ξ, µ) is coupled to the deter-

ministic equations and can be extended to include higher orders, O
(

1/
√

Ω
)

. From the

Fokker-Planck equation for Π(ξ, µ), differential equations for the first moments of ξ and

µ can be obtained. They have the following functional form,

∂t〈ξ〉 =C1〈ξ〉+ C2〈µ〉+
1√
Ω

(C3〈ξ2〉+ C4〈ξµ〉+ C5〈µ2〉) +O
(

1

Ω

)
,

∂t〈µ〉 =D1〈ξ〉+D2〈µ〉+
1√
Ω

(D3〈ξ2〉+D4〈ξµ〉+D5〈µ2〉) +O
(

1

Ω

)
. (9)

The constants Ci and Di with i ∈ {1, 2, 3, 4, 5}, depend on the parameters s , b, c, p, the

deterministic parts of the composition of the population, x(t) = a(t)/ [a(t) + b(t)], and

the population size n(t) = a(t)+b(t) (in units of Ω), respectively. Importantly, the second

moments couple into the dynamics only through O
(

1/
√

Ω
)

corrections.

Neglecting these second and higher order moments, the ensuing linear equation has

an unstable fixed point at (〈ξ〉, 〈µ〉)∗ = (0, 0). The eigendirection with the larger (posi-

tive) eigenvalue has a component in the ξ-direction which is significantly larger than its

component in the µ-direction. As a consequence, the fluctuations in the number of coop-

2



erators (ξ) are amplified more strongly than those of the defectors (µ); fluctuations are

asymmetrically amplified.

Next, we analyze the effect of the second moments on the dynamics. Consider a

single initial state without any variance (and all other higher moments identically zero),

starting the dynamics in the fixed point, (〈ξ〉, 〈µ〉)∗ = (0, 0). Then, since the first moments

are zero, only higher orders in Eq. (9) lead to deviations from the (linearly unstable)

fixed point. Once such deviations are generated these are amplified exponentially by the

(linearly) unstable dynamics, i.e. the first moments in Eq. (9). In more detail, consider

the differential equations of the second moments which, for t → 0, have the following

asymptotic form:

∂t〈ξ2〉 =n(1 + px) [1 + s(bx− c)]x,

∂t〈ξµ〉 =0,

∂t〈µ2〉 =n(1 + px)(1 + sbx)(1− x). (10)

Starting with zero at t = 0, both, 〈ξ2〉 and 〈µ2〉 increase linearly in time (note that

the fitness of a cooperator 1 + s(bx − c) > 0 since otherwise the birth rate would be

negative). Within one generation, tg = 1/ [(1 + px)(1 + s(b− c)x)] (compare Eq. (6b)),

i.e. doubling the population size on average, finite variances 〈ξ2〉g and 〈µ2〉g are generated.

This variance can be taken as a lower bound. We even expect this lower bound to be

a reasonable estimate for the actual value since the impact of the variance created in

following generations on Eqs. 9 is strongly suppressed by the exponential increase in

population size.

Upon inserting the values 〈ξ2〉g and 〈µ2〉g into Eq. (9) one can now calculate the time

3



evolution of the first moments, 〈ξ〉 and 〈µ〉. This allows to determine the conditions

necessary for a transient increase of cooperation by analyzing the fraction of cooperators

〈 A
A+B
〉; see Eqs. (8). The phase boundary separating the regimes of transient increase and

immediate decrease of cooperation is defined by the condition of an initially stationary

fraction of cooperators: ∂t〈 A
A+B
〉 = 0 at t ≈ 0.

The ensuing phase boundary is plotted in Fig. 2 (black line). The deviation from the

actual (numerically determined) transition line is small for intermediate Ω and goes to

zero for larger Ω. By evaluating the expression in orders of s/p, the lower bound of the

transition line can be further simplified. To first order one finds

s =
p

nΩ(1 + px)
, (11)

with Ωn = N0; see Fig. 2, dashed line. Note that this expression gives the asymptotically

correct results for large Ω.

It is instructive to compare this result with the theory of neutral evolution [2] where a

condition sN0 ∝ 1 separates regimes of neutral and selection-dominated evolution [2, 3].

In the present case, for the transient increase of cooperation to occur, the system has to

evolve neutrally in the initial phase to create a large enough variation in the fraction of

cooperators. Then, after being asymmetriclly amplified, these fluctuations can overcome

the selection pressure towards more defectors. This is mathematically reflected in Eqs. (9)

and (10). Initially, the second moments increase, Eqs. (10), which then feed into Eqs. (9)

and lead to an increase in the first moments. Finally, the good agreement of the phase

boundary with its lower bound, reassures that the variation in cooperators fraction is

mainly generated at the beginning of the dynamics.
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We study the interplay of population growth and evolutionary dynamics using a stochastic model based on
birth and death events. In contrast to the common assumption of an independent population size, evolution can be
strongly affected by population dynamics in general. Especially for fast reproducing microbes which are subject
to selection, both types of dynamics are often closely intertwined. We illustrate this by considering different
growth scenarios. Depending on whether microbes die or stop to reproduce (dormancy), qualitatively different
behaviors emerge. For cooperating bacteria, a permanent increase of costly cooperation can occur. Even if not
permanent, cooperation can still increase transiently due to demographic fluctuations. We validate our analysis
via stochastic simulations and analytic calculations. In particular, we derive a condition for an increase in the
level of cooperation.
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I. INTRODUCTION

The time evolution of size and internal composition of
a population are both driven by discrete birth and death
events. As a consequence, population dynamics and internal
evolutionary dynamics are intricately linked. The biological
significance of this coupling has previously been emphasized
[1–9]. Those studies mostly employ density-dependent fitness
functions to phenomenologically derive sets of coupled deter-
ministic equations for the size and composition of populations
in various ecological contexts. While those studies correctly
describe the evolutionary dynamics of large population sizes,
they do not account for stochastic effects arising at low
population sizes. These demographic fluctuations are naturally
described in the theoretical framework of stochastic processes
based on elementary birth and death events as recently
introduced [10]. In particular, this approach allows one to
explore the role of fluctuations in populations with a time-
varying population size.

To understand such interdependence of population and
evolutionary dynamics, it is instructive to first review the
decoupled and deterministic formulations of both. Evolution-
ary game theory is a well-defined framework to describe
the temporal development of different interacting traits or
strategies [11,12]. It has been established as a standard
approach to describe evolutionary dynamics if the fitness is
frequency-dependent (i.e., if the fitness of a certain strategy
depends on the abundance of other strategies within the
population). Within the most basic setup, well-mixed popu-
lations are assumed and the evolution of strategies is solely
determined by fitness advantages. The temporal development
of the abundance xS of a trait S follows a replicator dynamics
[11–13],

∂txS = (φS − φ̄)xS. (1)

A trait’s abundance increases if its fitness φS exceeds the av-
erage fitness φ̄ of the population. The frequency-dependence,
with φS a function of the abundances �x of all strategies, provoke
nonlinearities in Eq. (1). Starting from this standard approach,
many specific examples and extensions thereof have been
studied [12–14]. This comprises, for example, the prisoner’s

dilemma, the snowdrift game and other games in well-mixed
populations [11–13,15]. It further ranges from the role of
spatial arrangements and network interactions [16–25] via
cyclic dominance [7,26–33], structured populations [34,35],
modified update rules [36,37], multiplayer games [38], and
evolutionary algorithms [39] to the influence of internal and
external fluctuations [40–45]. While these models consider a
wide range of evolutionary aspects, they mostly rely on one
key assumption, a decoupled, constant population size.

In contrast, population dynamics focuses on the time
evolution of the population size and how it is determined
by environmental impacts like limited resources or seasonal
variations. The dynamics is typically described by differential
equations of the form [46–48],

∂tN = F (N ; t) , (2)

where F (N ; t) may explicitly depend on time [46]. The most
prominent example is logistic growth [49]. While a small
population grows exponentially, the growth rate decreases with
increasing population size due to limitations of resources and
the population size is bounded below a maximum carrying
capacity.

Illustrative examples of dynamical changes in the popula-
tion size comprise bacterial and other microbial populations
[50–52]: A surplus in nutrients or other metabolism-related
factors, can lead to an immediate and strong growth of the
population while resource limitations or antibiotics and other
detrimental factors can imply a stop in growth or even an abrupt
death of single individuals. Even for only slightly varying
environmental conditions, a fixed population size is thus rather
the exception than the rule.

But microbes not only show rich population dynamics,
they are also subject to diverse evolutionary forces [53–57].
Microbes live in interacting collectives of different traits.
Evolution is ubiquitous and strong forms of frequency de-
pendence can be observed. Public good scenarios where a
metabolically costly biochemical product is shared among
individuals are of particular interest from an evolutionary per-
spective (see, e.g., [51,55,58–60]). This includes, for example,
nutrient uptake, like disaccharides in yeast [61–63], collective
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fruiting body formation [64,65], or the active formation of
biofilms [52,57,66,67]. An example regarding iron uptake
is considered below in more detail [68–70]. Furthermore,
synthetical microbial systems have been considered [71,72].

Motivated by these recent studies of microbial systems, we
here investigate the consequences of such an interdependence
between evolutionary and population dynamics. Employing a
previously introduced theoretical approach [10], we study the
influence of different growth scenarios in combination with
demographic fluctuations.

The outline of this article is the following. In Sec. II
we discuss the stochastic dynamics and its deterministic
approximation. Furthermore, we consider the limits in which
the model maps to standard (deterministic and stochastic)
formulations of evolutionary dynamics. In Sec. III we consider
the dilemma of cooperation in growing populations. Here, an
increase of cooperation can be observed which is analyzed in
detail. In particular, we discuss the outcomes for two different
growth scenarios (i.e., a reproduction dynamics which either
is balanced by death events or simply arrests in the stationary
case). Finally, we close with a short conclusion in Sec. IV.

II. COUPLING OF EVOLUTIONARY AND
POPULATION DYNAMICS

A. Microscopic model

We consider a population of M different traits. Each trait
S is represented by NS individuals, such that the state of
the population is given by �N = (N1,N2, . . . ,NM ). We further
denote the frequencies of all different traits by �x = �N/N with
N = ∑

S NS being the total population size. The stochastic
evolutionary dynamics is formulated in terms of per capita
birth and death rates, GS and DS , respectively. The total rate
for the abundance of trait S to increase or decrease by one
individual is given by

�S→2S = GSNS, �S→∅ = DSNS. (3)

The various biological factors determining each rate can be
split up into two parts, a global and a relative contribution.
While the global term is trait-independent and affects all traits
in the same manner the relative term is trait-dependent and
sets the differences between traits. We write

GS = g(�x,N )fS(�x), DS = d(�x,N )wS(�x), (4)

and refer to g(�x,N ) and d(�x,N ) as global birth-fitness and
global weakness, respectively. The trait-dependent terms are
the relative birth-fitness fS(�x) and the relative weakness
wS(�x).1 While birth-fitness terms affect the birth rates, weak-
ness terms determine the expected survival times of individuals
and hence their viability. A short illustration of the stochastic
processes is given in Fig. 1 for the case of two different traits.

To specify the relative fitness terms, we follow the standard
approach of evolutionary game theory [11], and assume them
to depend linearly on the frequencies �x. Let P be the payoff

1In this work, we assume the relative parts to be independent of the
system size. However, including a density-dependent part also in the
relative terms is straightforward.

g fA g fB

dwA dwB

birth

death

trait A

trait B

FIG. 1. (Color online) The per capita birth and death rates for two
different traits, A [light gray (red)] and B [dark gray (blue)]. Each rate
depends on a global, trait-independent and a relative, trait-dependent
part. While the global and relative fitness terms g and fA/B affect
the birth rates, the global and relative weakness terms d and wA/B

determine the death rates.

matrix for birth events. Then, the corresponding fitness vector
for all traits is defined as

�φ = 1 + sP �x . (5)

Following standard formulations, the selection strength s

defines the relative weight of a frequency-dependent part
with respect to a background-fitness set to 1 [40,43]. As will
become clear in the following, it is convenient to make use of
normalized fitness values,

�f = �φ/φ̄, (6)

where φ̄ = ∑
S φSxS such that f̄ = ∑

S fSxS = 1. Without
loss of generality, this choice separates global and relative parts
in such a way that the dynamics of the population size depends
only on the global functions g and d; see also the following
Eq. (8a). An analogous approach with a payoff matrix V for
death events can be used to obtain the frequency-dependent
weakness functions wS , which are also taken as normalized,∑

S wSxS = 1. Of course, a more general, nonlinear frequency
dependance for both relative functions can readily be taken
into account. For example, in microbial systems the fitness
of an individual or the whole community depends in an
intricate way on a plethora of factors (e.g., the abundance of
individuals, secretion, and detection of signaling molecules,
toxin secretion leading to interstrain competition, and changes
in environmental conditions). Nonlinear frequency-dependent
fitness functions might help to account for such factors
(see, e.g., [58,62]).

In general, the global terms g(�x,N ) and d(�x,N ) depend
on the population size and are frequency dependent. Limited
growth is one example of size dependence. In such a setting,
small populations start to grow exponentially but growth is
bounded due to limited resources [e.g., d(�x,N ) increases with
N ]. Frequency-dependent terms can, for example, occur in
public good situations, as discussed in Sec. III.

B. Dynamics

The per-capita birth and death rates Eq. (4) define a
continuous-time Markov process [73,74]. It is described by
a master equation for the probability density P ( �N ; t) to find
the population in state �N at time t :

dP ( �N ; t)

dt
=

∑
S

[(E−
S − 1)GSNS + (E+

S − 1)DSNS]P ( �N ; t).

(7)
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Here, E±
S are step operators increasing or decreasing the

number of individuals of trait S by one [74], for example,

E±
S P ( �N ; t) = P (N1, . . . ,NS ± 1, . . . ,NM ; t) .

For a reference it is instructive to first consider a deter-
ministic limit where both fluctuations and correlations can
be neglected. Then, upon factorizing higher moments of the
probability density [73,74], one finds a closed set of equations
for the expected frequencies xS and the total population
size N :

∂tN = [g(�x,N )f̄ − d(�x,N )w̄]N, (8a)

∂txS = g(�x,N )[fS(�x) − f̄ ]xS − d(�x,N )[wS(�x) − w̄]xS,

(8b)

where f̄ = w̄ = 1 according to Eq. (6). To unclutter notation,
we have not explicitly marked the expectation values in Eq. (8)
but use the same notation as for the stochastic variables.

This set of coupled nonlinear equations resembles other
deterministic approaches [1–4,6–8] and has a simple interpre-
tation. Equation (8a) describes the population dynamics. As
is typical for a deterministic approach, the dynamics does not
depend on the global birth-fitness g and the global weakness d

separately, but only on their difference. Equation (8b) describes
the internal evolution of the population: The time evolution of
the frequency of a strategy S is given by the interplay between
a growth and a death term. Each of them consists of a relative
term measuring the surplus of the fitness or weakness relative
to the corresponding population average. The weight of these
terms are given by the respective global fitness functions g

and d. During phases of population growth, where g > d

holds [see Eq. (8a)], the growth term and hence differences
in relative birth-fitness dominate the internal evolution of
the population. Similarly, weakness differences are the main
evolutionary driving forces during population decline.

From these considerations it follows that both the time
scale of population and evolutionary dynamics have a crucial
impact on the dynamics. This is obvious if the time scales are
similar. Such biological situations have been observed in many
examples (see, e.g., [75–78]). But also if evolution happens on
longer time scales than ecology this coupling can affect the
evolutionary outcome as we show in the following.

Importantly, fluctuation cannot be ignored in general but
can change evolutionary dynamics dramatically. Then, the
deterministic approach given by Eq. (8) is not adequate. This
regards, for example, fixation and extinction events but also the
evolution of first and higher moments of a trait’s abundance.
For a proper description, one has to take the full stochastic
dynamics and master equation Eq. (7) into account. One
example where fluctuations drastically change the outcome
is given in the following Sec. III.

C. Mapping to standard approaches: replicator dynamics
and the Moran process

We now consider in which limits and to what extent
our stochastic approach resembles the standard approaches
of evolutionary dynamics. Let us first consider the special
case where the global rates g(�x,N ) ≡ g(N ) and d(�x,N ) ≡
d(N ) are frequency-independent and the ensuing deterministic

dynamics exhibits a stable fixed point N∗ in the population
size. Then, birth and death events exactly balance each other,
g(N∗) = d(N∗), such that N∗ is fixed, ∂tN

∗ = 0. This is, for
example, the case if the population size evolves according to a
logistic growth law and the carrying capacity has been reached.
In the deterministic limit, the internal dynamics, Eq. (8b),
simplifies to

∂txS = g(N∗)[fS(�x) − f̄ − wS(�x) + w̄]xS. (9)

The fraction xS evolves like in a standard replicator equation,
similar to Eq. (1). It is the difference of both relative terms, the
effective fitness fS − wS , which determines internal evolution.
Compared to Eq. (1), the additional constant prefactor g(N∗) in
Eq. (9) just rescales the time scale on which internal evolution
occurs [41].

Furthermore, also the full stochastic formulations of our
model and the standard stochastic approaches with a fixed
population size resemble each other. In those standard ap-
proaches, the birth of one individual is directly coupled to the
death of another one. The dynamics is described by update
rules. For example, for the time-continuous formulation used
here, the stochastic dynamics can be described by the Moran
process [40,41,43,44,79–81].2 In our formulation, this process
holds in the limit where the fixed point of the population size
N∗ is linearly stable with a large stability coefficient.3 Then,
a birth event is directly followed by a death event and vice
versa. The effective rate for such a combined birth-death event
is given by

�̃S→S ′ = �S ′→2S ′�S→∅ + �S→∅�S ′→2S ′ . (10)

The strength of fluctuations in the fraction of a certain species
is of the order 1/

√
N∗ and the transition rate �̃S→S ′ follows by

the logic of an urn model, where fitness-dependent individuals
reproduce to substitute other, randomly chosen, individuals
[40,41,43,79,80].

Beyond the Moran process, however, if N∗ is not linearly
stable with sufficiently high stability coefficients, then birth
and death events do not strictly follow each other. Depending
on the stability of the fixed point, evolutionary paths deviating
from N∗ by more than one individual have to be taken into
account to derive an effective rate for a combined birth-death
event.

In general, the population size changes with time, N =
N (t). For frequency-independent global rates, the determinis-
tic limit of the internal evolutionary dynamics resembles the
form of a replicator equation,

∂tN = [g(N ) − d(N )]N, (11a)

∂txS = {g(N )[fS(�x) − f̄ ] (11b)

− d(N )[wS(�x) − w̄]}xS. (11c)

2Similarly, the stochastic dynamics is described by a Fisher-Wright
process for discrete time steps. Other update rules are based on other
fitness functions or the way one individual replaces another one.

3To strictly ensure N to vary around N∗ with ±1, the fixed point
has to be linear stable with additional higher orders supporting the
stability.
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However, in contrast to Eq. (1), both relative fitness terms
f and w are now weighted by the global rates. This has
important implications. While in growth phases with g > d

the relative birth-fitness fS dominates the dynamics, the
relative weakness functions wS dominate during population
decline, g < d. Moreover, the time-varying population size
also leads to a changing strength of fluctuations ∼1/

√
N (t). In

particular, when fitness differences are weak and the dynamics
is close to neutral evolution, such a change might have strong
consequences [41,43,45,82,83].

III. THE DILEMMA OF COOPERATION
IN GROWING POPULATIONS

To exemplify the importance of coupling and fluctuations
offered by our approach, we here study the dilemma of
cooperation in growing populations. This is motivated by the
dynamics observed in microbial biofilms where strong forms
of cooperation can be observed [51,55,57,59,60,67]. Single
individuals produce metabolically costly products which they
release into the environment to support, for example, biofilm
formation or nutrient depletion. As these products are available
for other bacteria in the colony, the cooperating individuals are
producers of a public good, and, by having the extra load
of production, permanently run the risk to be undermined
by nonproducing free-riding strains. An example is provided
by the proteobacterium Pseudomonas aeruginosa [68–70].
To facilitate the metabolically important iron uptake, these
microbes produce siderophores which they release into the
environment. Given the high binding affinity to iron, these
proteins are capable of scavenging single iron atoms from
larger iron clusters. The iron-siderophore complex can then be
taken up by the bacteria, ensuring their iron supply. However,
as every bacterium, not only the producing ones, can take
advantage of the released siderophores there is a dilemma
of cooperation: While it would be optimal for the whole
population to cooperate, cooperators are endangered due to
their reproduction disadvantage.

In addition to the evolutionary dynamics, microbial
colonies are also subject to strong changes in population size
[50–52,84]. While in the presence of nutrients, small colonies
grow exponentially, growth is bounded due to limitations
in resources or deteriorating environmental conditions. This
includes insufficient amounts of nutrients, a lack of oxygen
or a poisoning by metabolites. Eventually the colony size
remains constant or even declines again [50]. Given the
exact interplay of these detrimental and other environmental
factors, and differing from species to species, growth dynamics
varies between two scenarios [85,86]. First, bacteria can
switch into a dormant state where individuals stay alive but
regulate reproduction rates and metabolic activity toward zero
(dormancy scenario). Depending on environmental conditions
dormancy can increase survival chances. For example, in the
presence of antibiotics, this downgraded metabolism can make
bacteria less vulnerable leading to persistence [87–90], or dor-
mancy might hedge a population against strongly fluctuating
environments [86,90,91]. Second, environmental conditions
can lead to death rates increasing with the population size
N while birth rates are only slightly affected [92]. The
population, therefore, reaches a state of dynamical maintained

population size with the death rates exactly balancing the birth
rates (scenario of balanced growth). In many populations, a
situation in between both scenarios is observed. In pathogenes
like P. aeruginosa, the fraction of individuals transferring to
the dormancy state varies between 20% and 80% [93]. In
the following we consider both scenarios and their impact on
internal evolution separately.

A. The balanced growth scenario

Let us first study the balanced growth dynamics where, in
the stationary state, birth and death events are both present,
but exactly balance each other such that the population size
is about constant. We consider a population which consists
of two traits, cooperators (C) and free-riders (F ). The total
number of individuals in the population is given by N = NC +
NF and the fraction of cooperators by x ≡ xC = NC/N . The
relative birth-fitness fS (φS , if not normalized) accounts for
the reproduction disadvantage of cooperating individuals. We
study the well-known prisoner’s dilemma [11]: 4

φC = 1 + s(b̃x − c̃), φF = 1+sb̃x, φ̄ = 1 + s(b̃ − c̃)x.

(12)

As introduced in Sec. II, the frequency-dependent part is
weighted with the strength of selection s. Individuals obtain a
benefit b̃ from direct interaction with cooperators, while only
cooperating individuals have to pay the cost c̃ for producing
the public good. For the resulting normalized fitness functions,
fS = φS/φ̄, the inequality fC < fF always holds; within the
same population, the reproduction rate of cooperators is always
smaller than the one of free-riders.

In the following, we take the payoff parameters to be
constant, c̃ = 1 and b̃ = 3. Then, s directly sets the time scale
of the internal evolution. The relative weakness is assumed to
be trait-independent and constant, wC = wF = 1; free-riders
and cooperators have equal survival chances.

Furthermore, because cooperators are the producers of a
public good, the overall growth condition of a population
improves with a higher level of cooperation. We here choose
the global birth-fitness to increase linearly with the level of
cooperation,

g(x) = 1 + px. (13)

The parameter p scales the positive impact of the presence
of public good on the population. In the scenario of balanced
growth, we consider death rates increasing with the population
size. For specificity, we assume logistic growth [49] and set

d(N ) = N/K. (14)

K scales the maximal size a population can reach (carrying
capacity) as discussed in detail below.

4More generally we could also study other types of interactions like
the snowdrift game. However, as we want to show the importance
of population dynamics for supporting cooperation we chose the
worst-case scenario for cooperation, the prisoner’s dilemma.
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The master equation (7) describing the full stochastic
dynamics then takes the form,

dP (NC,NF )

dt
= [(E−

C −1)gfCNC + ((E−
F −1)gfF NF

+ (E+
C −1)d NC + (E+

F −1)d NC]P (NC,NF ).

(15)

To explore the dynamics, we performed extensive stochastic
simulations. They were obtained by simulating i = 1, . . . ,R

different realizations with the Gillespie algorithm [94], ac-
cording to the master equation (15). In Fig. 2, we show the
ensemble averages of the population size 〈N〉 and the fraction
of cooperators 〈x〉 given by

〈N〉 =
∑

i

Ni(t)/R, (16a)

〈x〉 =
∑

i

NC,i(t)

/∑
i

Ni(t). (16b)

This choice for the average naturally accounts for the fact
that realizations with a larger population size have a larger
weight. It is especially important for biological situations
where several realizations exist at the same time (e.g., [72]).
In such an ensemble cooperation can increase in principle
if there is a positive correlation between population size
and the fraction of cooperators. The existence of this effect,
also known as Simpson’s paradox, has been shown recently
by Chuang et al. for microbial populations [72]. Here we
want to understand the dynamics underlying this correlation
underlying cooperation.

Starting with a small population, the system size grows
exponentially (exponential phase), reaches a maximum size,
and then declines again. Furthermore, and more strikingly,
the disadvantage of cooperators can be overcome and a
transient increase of cooperation can emerge. Even though
the transient increase is caused by demographic fluctuations,
it is instructive to examine the deterministic equations first.
They not only describe the overshoot in the population size
well, but also give insights into the relevant time scales of the
dynamics:

∂tx = −s(1 + px)x(1 − x), (17a)

∂tN =
(

1 + px − N

K

)
N. (17b)

The first equation describes the change in the average
fraction of cooperators. The dynamics occurs on the time scale
τx ∼ 1/s (i.e., the strength of selection sets the time scale
of internal evolution). Note that ∂tx � 0 always holds and
therefore the deterministic approximation cannot give rise to
any transient increase of cooperation. In contrast, the dynamics
of the total population size is well described deterministically
[see Fig. 2(a)]. It resembles the well-known equation of logistic
growth [49] with a frequency-dependent maximal population
size K(1 + px) (carrying capacity). During growth, changes
in the population size occur on a time scale τN ∼ 1 + px

[cf. Eq. (17b)]. In the limit of weak selection, τN is comparably
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FIG. 2. (Color online) Cooperation in growing populations.
Temporal development of ensemble averages. (a) The population
size. Starting with N0 = 4, the system grows exponentially until the
carrying capacity is reached. It then falls again due to selection and
a decreasing carrying capacity; see text. The full stochastic solution,
gray (red) line, is described well by the deterministic approximation,
black line. (b) The fraction of cooperators. It initially increases due to
asymmetric amplification of fluctuations, and then falls again due
to selection; see text. The level of cooperation x falls below its
initial value x0 at the cooperation time tC . The transient increase
is stronger for larger fluctuations and thus is stronger with a smaller
initial population size N0; see gray (colored) lines. The deterministic
approximations do not account for this behavior (cf. black line).
Parameters are s = 0.1 and p = 10.

smaller than the time scale τx on which selection occurs. This
and the frequency-dependent carrying capacity are the reason
for the overshoot: At the beginning the maximal population
size is given by K(1 + px0). Because cooperators go extinct,
the size decreases with time. As this reduction is happening on
a faster time scale than selection, τN < τx , the population size
grows toward a larger carrying capacity, and then subsequently
drops with decreasing carrying capacity due to a decline in
cooperation.

B. A transient increase of cooperation

The stochastic dynamics of the average fraction of cooper-
ators 〈x〉 is qualitatively different from its deterministic limit.
We observe a transient increase in the level of cooperation
during a time window (0,tC). The magnitude of the coopera-
tion time tC strongly depends on the initial population size N0

(cf. Fig. 2). The origin of this transient increase in cooperation
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is a genuine stochastic effect: Demographic fluctuations
during the initial phase are subsequently asymmetrically
amplified by the population dynamics. Heuristically, this
can be understood as follows; for a detailed mathematical
analysis employing a van Kampen expansion see the next
section.

For a small initial population size N0 demographic fluc-
tuations are effectively symmetric (i.e., the occurrence of an
additional cooperator or an additional free-rider are equally
likely). However, the consequences of these two directions of
demographic fluctuations differ strongly: In the exponential
phase, an additional cooperator amplifies the growth of the
population, while an additional free-rider hampers it. In other
words, fluctuations toward more cooperators imply a larger
growth rate and hence a larger population size. Therefore, those
realizations of the stochastic dynamics have a larger weight in
the ensemble average Eq. (16b) and enable an increase in
the overall fraction of cooperators. With these considerations,
a criterion for the transient increase of cooperation can be
obtained: Demographic fluctuations, which are of size

√
N

[41], have to be large enough to overcome the selection
pressure toward free-riders. This can already be inferred from
Fig. 2(b), where curves for three different values of the initial
population size are shown. For the smallest N0 the effect is
the strongest because fluctuations are large at the beginning.
In summary, a population bottleneck which corresponds to a
small initial population size can favor cooperation transiently.
Furthermore, if populations repeatedly undergo population
bottlenecks, the increase in cooperation can be manifested
also permanently.

C. Van Kampen expansion

As discussed above the transient increase of cooperation
is caused by fluctuations which are asymmetrically amplified.
In order to quantify these findings analytically, we employ an
Omega expansion in the system size according to van Kampen
[74] of the master equation (15). For generality, we perform
these calculations for arbitrary global growth function g(x).
The deterministic solutions are separated from fluctuations by
the following ansatz:

NC = �c(t) +
√

�ξ, NF = �f (t) +
√

�μ. (18)

c(t) and f (t) correspond to the deterministic solutions, as
shown below. ξ and μ are fluctuations in the number of co-
operators and free-riders. The relative strength of fluctuations
and the deterministic parts are weighted by powers of � which
scales with the current system size. For instance, to describe
the transient increase which is generated by fluctuations at the
beginning, � is given by N0. Hence, this ansatz accounts for
the fact that fluctuations scale as 1/

√
N [73]. Equation (15) is

expanded in orders of 1/
√

�. With Eq. (18), the step operators
E+

S ,E−
S are given by

E±
C = 1 ± 1√

�
∂ξ + 1

2�
∂2
ξ + O(�3/2),

(19)

E±
F = 1 ± 1√

�
∂μ + 1

2�
∂2
μ + O(�3/2).

Employing these and Eq. (18) in Eq. (15) leads to

∂tP (ξ,μ) −
√

�(ċ∂ξ + ḟ ∂μ)

=
[

−
√

�g

(
φC

φ̄
c∂ξ + φF

φ̄
f ∂μ

)

+�0(· · ·) + 1√
�

(· · ·) + O(�−3/2)

]
P (ξ,μ), (20)

where terms of the order �/K and higher are neglected.
Initially, starting with a small population, these higher orders
are very small because � ≈ N0 and N0  K holds. The
orders �0 and 1/

√
� depend on c,f,s,b̃,c̃,g,∂ξ ,∂μ,ξ,μ and

are not written out in this equation for clarity. By collecting
terms of order

√
� and using the identities n = c(t) + f (t)

and x = c(t)/ [c(t) + f (t)] the deterministic equations (17)
are obtained (for K → ∞). Higher orders of Eq. (20) lead
to a Fokker-Planck equation for P (ξ,μ). From this Fokker-
Planck equation, differential equations for the first and second
moments of the fluctuations can be obtained. The first moments
are given by

〈ξ̇〉 =
[
gφC

φ̄
+ x(1 − x)∂x

gφC

φ̄

]
〈ξ 〉

− x2∂x

g(x)φC

φ̄
〈μ〉 + 1

2n
√

�
[(1−x)2〈ξ 2〉

− 2x(1−x)〈ξμ〉+x2〈μ2〉]∂2
x

gφCx

φ̄
,

〈μ̇〉 = (1 − x)2∂x

gφF

φ̄
〈ξ 〉 +

[
gφF

φ̄
− x(1 − x)∂x

gφF

φ̄

]
〈μ〉

+ 1

2n
√

�
[(1−x)2〈ξ 2〉−2x(1−x)〈ξμ〉+x2〈μ2〉]

× ∂2
x

gφF (1 − x)

φ̄
. (21)

Note that the second moments only couple at order 1/
√

�.
Neglecting these higher orders, Eq. (21) is linear and has an
unstable fixed point at (ξ,μ)∗ = (0,0).

Next, we analyze the impact of the second moments on
the dynamics. Their coupling into Eq. (21) is only important
for small times, when the first moments are still at the initial
condition, the unstable fixed point (ξ,μ)∗ = (0,0). Therefore,
it is appropriate to examine the second moments for small
times, t → 0. They then have the asymptotic form,

∂t 〈ξ 2〉=2ng
φC

φ̄
x, ∂t 〈ξμ〉=0, ∂t 〈μ2〉 = 2ng

φF

φ̄
(1 − x).

(22)

Due to the inhomogeneity of the differential equations, the
second moments 〈ξ 2〉 and 〈μ2〉 immediately start to grow.
These nonzero second moments now couple back into the
first moments Eq. (21), and push them out of the unstable
fixed point. To quantify this, the solution of Eq. (22) is
employed in Eq. (21). The resulting equations are solved
for small but finite times. As the increase of cooperation is
caused by fluctuations, fluctuations have to establish first.
As fixed time we here consider the doubling time of the
initial population td = 1/g(x). Within the time window [0,td ]
evolution is neutral (s  g(x)) and thus x = x0 holds. The
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approximation leads to a lower bound for the strength of
fluctuations. Furthermore, the initial conditions are given by
〈ξ0〉 = 〈μ0〉 = 〈ξ 2

0 〉 = 〈μ2
0〉 = 0. If the initially generated and

asymmetrically enhanced fluctuations are large enough to
overcome the selection disadvantage, the transient increase
of cooperation arises. To quantify this, the total fraction of
cooperators in the system has to be examined:

d

dt
〈x〉 = 〈NC〉

〈NC + NF 〉 = ẋ + 1/
√

�〈ξ̇〉
n + 1/

√
�(〈ξ 〉 + 〈μ〉)

− (xn + 1/
√

�)(〈ξ̇〉 + 〈μ̇)

(n
√

� + 1/�(〈ξ 〉 + 〈μ〉))2
. (23)

For d
dt

〈x〉 > 0 the transient increase of cooperation is
present. The condition d

dt
〈x〉 = 0 leads, to first order in s,

to the transition line,

s = ∂x ln[g(x)]

n(1/g(x))�

∣∣∣∣
x0

= ∂xg(x)

n(1/g(x))�g(x)

∣∣∣∣
x0

. (24)

Here, � is given by the initial population size N0. For
smaller s there is a transient increase in cooperation, while for
larger s the level of cooperation decreases immediately. This
resembles the condition for neutral evolution (e.g., [45,82]);
evolution is only neutral for sN � const. Thus, only if
fluctuations are strong during the initial phase of the dynamics,
such that the system behaves neutrally, are they sufficient
to overcome the selection pressure toward free-riders. The
phase boundary and thereby the strength of the transient
increase depends on ∂xg(x)|x0 and g(x0). Both terms have
antagonistic impacts on the transition line. The reason for
this behavior is that the initial doubling time (i.e., the time
during which fluctuations are the most pronounced) decreases
with increasing g(x0). The positive enhancement relies on
the growth advantage of more cooperative realizations, which
depends on ∂xg(x)|x0 at the beginning. Note that for nonlinear
growth functions, where ∂xg(x)|x0 also depends on x0, the
transient increase can even be reduced by accounting for higher
orders. This behavior was also experimentally observed in
recent studies with microbes, where the growth advantage of
cooperators was tuned [72]. In the next paragraph, we show
that the calculated phase boundaries match our simulation
results very well for several distinct global growth functions.

D. Phase diagrams

In the following we consider how the duration tC of
the transient increase in cooperation depends on the system
parameters for the specific global growth function g(x) =
1 + px (cf. Fig. 3). Then, the transition line between a transient
increase tC > 0, and an immediate decrease tC = 0, given by
Eq. (24), now reads

s = p

n�(1 + px0)
, (25)

where n� = 2N0. For smaller selection strength, s <
p

n�(1+px0) , the asymmetric amplification of fluctuations is suf-
ficient to overcome the selection disadvantage of cooperators
while for larger selection strength, s >

p

n�(1+px0) , free-riders
prevail.
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FIG. 3. (Color online) The transient increase of cooperation and
its dependence on parameters. Encoded in gray (colored) scale, the
cooperation time tC is plotted for three different pairs of parameters:
{N0,s}, {N0,p}, and {x0,s} in (a), (b), and (c), respectively. The
boundary between the regimes of transient increase and immediate
decrease are in good agreement given by Eq. (24), plotted as
black lines. In the inset of (a), the cooperation time is shown for
varying selection strength s: tC sharply drops at the boundary. Not
varied parameters are given by p = 10,x0 = 0.5 in (a); s = 0.05 and
x0 = 0.5 in (b); p = 10,N0 = 6 in (c).

In Fig. 3, we compare this result of the analytical cal-
culations with the stochastic simulations. We observe that
upon increasing the strength of selection s, which sets the
advantage of free-riders, the cooperation time tC decreases.
In contrast, stronger demographic fluctuations, their strength
scales as 1/

√
N0, prolong the duration of the transient increase

[i.e., tC increases with decreasing N0; cf. Fig. 3(a)]. These two
antagonistic effects lead to a sharp phase boundary between the
regimes of transient increase (tC > 0) and immediate decrease
(tC = 0); see inset of Fig. 3(a). Here, the cooperation time
steeply drops to zero if the strength of selection exceeds a
critical value. The boundary line is in good agreement with
Eq. (25); cf. black line in Fig. 3(a).

In Fig. 3(b), the cooperation time is shown for varying initial
population size N0 and strength of the global fitness advantage
due to cooperators p. Now, the phase boundary is determined
by the interplay between the size of demographic fluctuations
and its amplification due to the global fitness advantage of more
cooperative populations. N0 has to be small enough for the
asymmetric amplification mechanism to be effective. Again,
the phase boundary is in good agreement with Eq. (24); see
solid black line in Fig. 3(b).

In Fig. 3(c), the cooperation time is plotted for varying
initial cooperator fraction x0 and selection strength s. We
find that the cooperation time decreases with increasing x0.
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Remarkably, for small x0, the amplification mechanism is
especially pronounced and therefore able to compensate com-
parably large selection strengths s. This is again well described
by Eq. (25) [see Fig. 3(c), solid black line]. The observation is
of possible relevance for the evolution of cooperation since it
allows a small initial fraction of cooperators to proliferate in
the population.

Taken together, our analytical calculations provide a mech-
anistic understanding for the transient increase of cooperation
and its dependence on the system parameters s, p, x0, and
N0. We have quantitatively calculated the phase boundary
and gained insights into the basic nature of the transient
increase: First, the probability distribution in the cooperator
fraction 〈x〉 is broadened due to neutral evolution; note
that Eq. (25) resembles the condition for neutral evolution
[45,82]. Second, these initially generated fluctuations are
asymmetrically amplified and can, therefore, cause an increase
in the level of cooperation.

E. The dormancy scenario

Let us now consider the dormancy scenario where the
ability to reproduce decreases with increasing population size.
For specificity, we assume the global birth and death functions
to be given by

g(x,N ) = 1 + px − N

K
, and d = 0. (26)

In this scenario individuals do not die but the birth rates
decrease toward zero as the population size reaches its carrying
capacity. The relative functions, fS and wS , are the same as
before; the weakness terms are constant and the fitness terms
given by Eq. (12).

To understand the differences in the evolutionary outcome,
we again study the deterministic rate equations first. They are
given by

∂tN =
(

1 + px − N

K

)
N, (27a)

∂tx = −s

(
1 + px − N

K

)
x(1 − x). (27b)

The equation describing population growth is formally
identical to the corresponding equation in the balanced
growth scenario Eq. (17b). Differences arise because in the
present case there is mutual feedback between internal and
population dynamics. This coupling implies that both arrest
once the population size reaches its carrying capacity. In the
arrested state there is a relation between population size N∗
and composition x∗: 1 + px∗ = N∗/K . Thus, the reached
stationary state (x∗,N∗) depends on the initial values x0 and
N0. The precise mapping depends on the selection strength s.
For weak selection (small s), the population dynamics is much
faster than the internal dynamics and hence the population size
reaches a stationary state while the composition is still at its
initial value x0 [i.e., N∗ = K(1 + px0)]. In contrast, for strong
selection, cooperators go extinct quickly with x∗ = 0 such that
the stationary population size becomes N∗ = K . An example
for the deterministic dynamics is shown as a solid black line in
Fig. 4. As for balanced growth, the deterministic dynamics
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FIG. 4. (Color online) The dilemma of cooperation in the
dormancy scenario. (a) The growth dynamics. Initially, the small
population grows exponentially until growth is stopped [cf. light
gray (red) line]. This behavior is well described by the deterministic
equation (27a); see black line. In contrast, for the balanced growth
scenario, the dynamics continue and, due to selection, the population
size falls again; see dark gray (blue) line. (b) The fraction of
cooperators. Equal to the balanced growth scenario, dark gray (blue)
line, there is an initial increase of cooperation due to asymmetric
amplification within the dormancy scenario. Again, this is not
described by the deterministic approximation Eq. (27b). However, in
contrast to the balanced growth scenario, the higher level of selection
is later fixed due to the stop in growth dynamics. Parameters are given
by s = 0.05, p = 10, and N0 = 4.

exhibits a strictly monotonous decrease in the cooperator
fraction, with the difference that now the asymptotic value
is arrested at some finite value. These differences are also
reflected in the stochastic dynamics, where the asymmetric
amplification mechanism is acting (cf. Fig. 4). In the initial
phase of the dynamics, this mechanism affects the time
evolution of the cooperator fraction in the same way as for
balanced growth, namely it leads to an initial increase of
cooperation. Differences in birth and death rates Eqs. (13)
and (26) are negligible for small population size. The arrest
of the dynamics only becomes effective at later times where
an increase in population size implies a significantly declining
birth rate. As a consequence even the stochastic dynamics
becomes arrested such that the initial rise in the cooperator
fraction may become manifested as a permanent increase. This
will be the case if the dynamics becomes arrested during the
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FIG. 5. (Color online) The transient increase of cooperation for
the dormancy scenario. The cooperation time tC depending on the
initial population size N0 and the strength of selection s. The condition
for a transient increase of cooperation to occur is still given by Eq. (24)
(black line). In addition, due to the stop in growth dynamics, there is
an additional regime, where the increase becomes permanent [dark
gray (dark blue) area]. The permanent increase is also shown in
the inset, where the cooperation time is shown for varying strength
of selection. If, for a given initial population size, selection is
sufficiently slow compared to fixation of the growth dynamics, the
increase of cooperation becomes permanent. Parameters are given by
p = 10,x0 = 0.5.

time window where the asymmetric amplification mechanism
acts; see red line in Fig. 4(b).

In summary, there are now three scenarios for the dynamics
(cf. Fig. 5). In addition to the immediate decline and transient
increase there is now also a permanent increase in the
cooperator fraction. The analytical expression separating the
regimes of transient increase and immediate decline still
holds Eq. (25) because it is due to the same mechanism as
before. We did not manage to derive an explicit expression for
the transition line to permanently increase. However, as the
existence of a permanent increase in the cooperator fraction
depends on the asymmetric amplification mechanism, the
regime of permanent increase is bounded by a hyperbolic line
beneath the one given by Eq. (24). The latter is a necessary
but not a sufficient condition for the permanent increase to
occur.

IV. CONCLUSION

In this article, we have given a synthesis of evolutionary
and population dynamics. This is based on the understanding
that birth and death events are the driving forces underlying
changes in the size as well as the composition of a population
[10]. Both processes are inherently stochastic and inevitably
lead to demographic fluctuations whose magnitude depends
on the population size. The ensuing stochastic formulation
thereby naturally accounts for the coupling between inter-
nal evolutionary dynamics and population dynamics. The
evolutionary outcome of the dynamics is determined by the
interplay between selection pressure and random drift caused
by demographic fluctuations. Since our approach allows
one to study evolutionary dynamics with varying population
size we can explore ecological situations where the relative
impact of deterministic and stochastic evolutionary forces

change with time. Thereby demographic fluctuations may
lead to a dynamics which is qualitatively different from
the corresponding deterministic dynamics: Beyond creating
a broad distribution in size and composition, the coupling can
strongly distort the distribution and thus strongly influence
average values. For the public good scenario, discussed in
this paper, this corresponds to an asymmetric amplification
mechanism which yields a transient increase in the level of
cooperation.

In the absence of a coupling between internal evolution
and population dynamics, the impact of population size on
the internal evolutionary dynamics reduces to a modulation
in the strength of demographic fluctuations. If, in addition,
the deterministic population dynamics exhibits a strongly
attractive fixed point at a finite population size, our model
maps to a standard description of evolutionary dynamics (i.e.,
the Moran process).

The general observations made for the coupled stochastic
dynamics are exemplified by the dilemma of cooperation in
growing populations. Here, fluctuations in combination with
growth lead to a transient increase of cooperation. The origin of
this increase is the asymmetric amplification of fluctuations.
As the presence of cooperators increases the growth rates,
fluctuations toward those are enhanced. Therefore growth
dynamics cannot be ignored but can be an essential part in
evolution. Furthermore, the details of the growth dynamics
can be crucial in determining the evolutionary outcome. As
we have considered for the dilemma of cooperation and
two extremes of microbial growth dynamics, cooperation
can either increase only transiently or the higher level can
even fixate due to dormancy. Our analytical derived transition
line provides the same sufficient condition for the transient
increase in both scenarios. Furthermore, the same line is
also a necessary condition for the permanent increase for
the dormancy scenario. In actual populations, both scenarios
are present with a fraction of 20%–80% dormant bacteria
[93]. While the transient increase does not depend on this
fraction, the permanent increase is smaller than for purely
dormant bacteria. The discussed scenarios for the increase
of cooperation, rely on demographic fluctuations which are
especially pronounced during population bottlenecks. Such
bottlenecks may be caused by seasonal changes of the
environment, migration into new habitats, and range expansion
(e.g., [46,95–99]). In addition, if the permanent increase is
not present, repeated bottlenecks provoking regular occurring
growth phases can favor cooperative behavior by stabilizing a
former transient increase. This becomes especially important
in the context of biofilms where population structure and
involved restructuring mechanisms can drastically change
evolutionary outcome [66,71,72].
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3 The Dilemma of Cooperation in Structured
Populations

The previous chapter was concerned with the coupling of evolutionary and population dy-
namics and how such a coupling in combination with demographic fluctuations can result in
a transient increase of cooperation. Taking this as a starting point, the idea that repeated
population bottlenecks may lead to a permanent rather than a transient increase, seems nat-
ural. Therefore, we now study the dilemma of cooperation in rearranging group-structured
populations. Before elaborating on the consequences of these reoccurring population bottle-
necks, we give an overview on the dilemma of cooperation. Then, we introduce the framework
of multilevel selection. Furthermore, we discuss group and kin selection, two closely related
theories explaining cooperative behavior. Finally, we introduce a model accounting for reoc-
curring population bottlenecks and show that it is capable of explaining both, the evolution
and maintenance of cooperation.

3.1 The Dilemma of Cooperation

Cooperative behavior is ubiquitous in nature. From rudimentary species, such as bacteria, to
insects and mammals, individuals help one-another, apparently disregarding the evolutionary
disadvantages that such assistance entails. In terms of Darwinian selection, these costs are
tantamount to a smaller fitness, which ultimately would lead to the extinction of the cooper-
ating species without any further influences. Essentially, this is the dilemma of cooperation:
Cooperators die out, even though it was optimal if the whole population would cooperate.
How nonetheless cooperation can be maintained and even has evolved in the first place, is a
puzzling question in evolutionary biology [120]. Also Darwin was aware of this problem and
stated1 in “Origin of the Species” [14]:

I (...) will confine myself to one special difficulty, which at first appeared to me
insuperable, and actually fatal to my whole theory.

By considering selection in more complex settings such as structured populations or individ-
uals with advanced abilities like memory and recognition, the dilemma can in principle be
solved. Before discussing these possible solutions in more detail, let us first present some
examples for cooperation in the realm of nature elucidating the variety and omnipresence of
such social behavior, see Fig. 3.1. In human behavior, cooperation and the ensuing dilemma
can be found on almost every scale and in diverse fields ranging from politics to economics or

1The citation actually refers to eusociality, which is an especially pronounced form of cooperation discussed
in the following.
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Figure 3.1: Three examples for cooperative behaviors in the realm of nature. Monkeys raise the alarm
to warn their conspecifics. The picture was taken by Angelika Bentin who kindly provided
it [121]. Worker bees support their queen which is reproducing solely (eusociality). The
picture was taken by Dr. Silke Meyer-Arndt who kindly provided it [122]. In bacterial
biofilms, some bacteria produce public goods and provide it to all other members of the
colony.The picture is taken from [123].

sociology. This starts with interactions of individuals in small entities like families, e.g. doing
the household, through to whole states, e.g. the reduction of CO2 emissions. Humans are
endowed with a broad range of mechanisms ensuring cooperation [124]. Due to our ability to
recognize and remember other individuals, we can distinguish cooperators from cheaters and
thereby prevent an interaction with them, warn others, or even punish them [125].

Other examples for cooperative behavior in mammals are the alarm calls of birds and mon-
keys [126]. By raising these alarms, they warn their fellows whose risk to fall to prey is thereby
reduced. But as they increase their own chances for being caught by a predator at the same
time, the dilemma arises. One of the most extreme examples for cooperation can be found
in eusocial populations [127]. This eusocial behavior mainly emerges in insect populations,
e.g. bees and ants, but also the naked mole rat, a mammal living in eastern africa, shows
eusociality. In these species only a few individuals reproduce, e.g. the queen bee. All others,
the so-called workers, dedicate themselves to raise the queen’s offspring.

But also for less complex species, remarkable forms of cooperation are present. For exam-
ple, the slime mold Dictyostelium discoideum forms multicellular spores if nutrient supply is
low [128]. These spores consist of a stalk and an outer membrane built of individuals which
do not survive but protect the inner ones. Similar sporulation is also present in myxobacteria
colonies [129]. This is only one example for the astonishing forms of cooperation featured by
bacterial populations. A more detailed overview is presented in the following section.

3.1.1 Social Bacteria

Bacteria are the most widespread life forms on our planet. These, only at first glance, simple
organisms exhibit tremendous diversity, specification and adaptedness to various environ-
mental conditions. Bacteria show various phenotypes [130] depending on the environmental
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conditions. For instance, during prolonged starvation Bacillus subtilis differentiates into phe-
notypic distinct cell types to realize different survival strategies like the uptake of foreign RNA
(competence) [131, 132, 133]. Even more surprising, bacteria also act socially: They cooperate
by the production of a public good [134, 135], divide labor [136] and use quorum sensing for
the organization of a whole population [137]. A prominent example for a cooperating microbe
is the proteobacterium Pseudomonas aeruginosa [135]. Iron, which is usually bound in large
cluster, is essential for the metabolism of these bacteria. Therefore, some individuals, the so-
called producers, provide siderophores, which are iron scavenging proteins, and release them
as a public good into the environment. Because of their large binding affinity to iron, these
proteins can solve single iron molecules and build siderophore-iron complexes. The freely
diffusing complexes can be equally taken up by cooperators and non-contributing free-riders.
The dilemma arises due to the metabolic costs associated with the production of the public
good: Producers replicate slower than free-riders and thereby have a fitness disadvantage.
There exist several other examples for public goods, e.g. sticky polymers connecting a micro-
bial colony and causing its ability to swim as observed in Pseudomonas fluorescens[134] or
invertases hydrolyzing disaccharides into monosaccharides in the budding yeast Saccaromyces
cerevisiae [138, 139, 140].

Bacteria often live in complex biofilms heightening the importance of social behavior and
conflicts. [141, 130, 142]. In such biofilms, bacteria compete for resources or support each
other by cooperation and division of labor [143, 144, 145]. Thus, a biofilm, as a complex entity
built up of many independent subunits, is a model system for understanding the evolution
of multicellularity [144]. Much research concerning the social behavior of bacteria is done
in simplified model systems offering the possibility to gain understanding under well-defined
conditions [146]. Experiments have been performed in artificial environments ranging from
nano-landscapes on a chip [147, 148] to simple rearranging group-structures [135, 149, 82].
The latter approach is especially useful for studying the influence of reoccurring population
bottlenecks. For instance, these bottlenecks can account for species showing a life cycle. In a
broader interpretation group structure is also a null model for dispersal of bacteria into new
habitats where an initially small founder colony grows and becomes a large subpopulation [141,
130]. Such synthetic biology experiments, which help to clarify the mechanisms promoting
cooperation in simple setups, may also lead to a broader understanding of social behavior in
complex biological environments.

3.1.2 Dicrocoelium Dentriticum - the Small Liver Fluke

The small liver fluke Dicrocoelium dentriticum is another remarkable example for cooperative
behavior in nature. It is a parasite affecting cattle and sheep and has an astonishing life
cycle where cooperation plays an essential role. The life cycle consists of three consecutive
steps [150], see Fig 3.2:

1. An adult D. dentriticum lives in the liver of its primary hosts which are cows and
sheep usually. Here, it reproduces sexually. The thereby generated eggs are excreted
afterwards.

2. Then the eggs are incorporated by snails, the first intermediate hosts. There, they
develop to larvae which the snail excretes in slime balls.
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Primary Host: 
Sheep or Cow

First Intermediate Host: 
Snail

Second Intermediate Host: 
Ant

Manipulation of the ants
nervous system: Ants climb

onto  blades of grass Slime balls extreted
by the snail are eaten

by ants

Snails feed from
the excrements

of the cattle

Primary host become
infected when an ant is
accidentally ingested 

Figure 3.2: Life cycle of D. dentriticum. For a more detailed description see text.

3. The slime balls are eaten by ants, the second intermediate hosts, where they continue
their development with asexual reproduction and become cercariae. The next step in
their development is truly astonishing. Most of the cercariae stay in the gut of the ant,
while a single one (or a few, this point is not clear in literature) sacrifices itself for the
sake of the whole colony. It enters the ganglion, the nervous system of the ant, and
manipulates the host’s behavior in the following way: Each night an infected ant climbs
onto a blade of grass where its chances of being eaten by cows or sheep are increased. At
days, sun would kill the ant including the parasite. This is avoided as the ant leaves the
blade of grass and fulfills its standard daily routine till the next night comes. Finally,
the ant is eaten and the cycle restarts. The cycle as described above is well accepted in
literature, but still many details are not know. This especially concerns the last step of
the cycle and its interpretation as stated above.

In this life cycle the most extreme form of cooperation emerges: One individual sacrifices
itself in order to render the survival of a whole subpopulation possible. An infiltration by
cheaters would be fatal, as the fraction of cooperators would decrease until no cooperators
are left and the whole population would go extinct.

The solution of the dilemma is the existence of subpopulations [151]. Groups containing no or
just a few cooperative liver fluke larvae have a smaller probability to continue their live cycle.
Therefore, as illustrated in Fig. 3.3, two antagonistic effects influence the time evolution of
the fraction of cooperators: On the one hand its fraction is decreased due to the death of one
cooperator manipulation the ganglion. On the other hand groups with no cooperators die out
and the probability distribution is shifted to more cooperative groups.

By evaluating this idea mathematically, a condition for the maintenance of cooperation can be
stated. For simplicity let us consider only one intermediate host which takes up N0 liver fluke
eggs according to a probability distribution P (NC), where NC is the number of cooperators.
In the worst case scenario for cooperators, this is a binomial distribution, i.e. there is no
positive assortment mechanism favoring larger conglomerations of cooperators. In the host,
the eggs become larvae and start reproduction such that the total number and the number
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Figure 3.3: The influences of the life cycle of D. dentriticum on the probability distribution. Due to
the selection disadvantage of cooperators, it is shifted to less cooperators during each life
cycle. In contrast, the extinction of subpopulations with a low level of cooperators causes
a shift to the right.

of cooperators increase to N ′ and N ′C , respectively. During this phase, also the probability
distribution changes to P ′(N ′C). In fact, it is smoothened and broadened due to reproduction
events, but its mean is still given by x0 = 〈NC/N〉t=0, because both types of individuals
reproduce at the same rate. To calculate the total change in the probability distribution and
thereby its mean, two facts have to be considered. First, the mean is shifted to the left due
to the death of a cooperator in each ant,

〈N ′C〉 ∝
∑

N ′
C

P ′(N ′C)(N ′C − 1) = x0N
′ − (1− P ′(0)) = x0N

′ − 1 + P (0), (3.1)

where the conditions
∑

N ′
C
P ′(N ′C)N ′C = x0N

′,
∑

N ′
C
P ′(N ′C) = 1, and the fact that the

probability for non-cooperative subpopulations does not change over time, P ′(0) = P (0), are
employed. To account for the positive shift in the probability distribution caused by the ex-
tinction of non-cooperative subpopulations, the probability distribution has to be normalized
again. Therefore, it has to be divided by the probability that a subpopulation continues the
life cycle, i.e. the probability that initially at least one cooperator is present in the group,
1− P (0). The resultant fraction of cooperators is given by,

x′ =
x0

1− P (0)︸ ︷︷ ︸
Group Advantage

of Cooperators

− 1

N ′︸︷︷︸
Select. Disadv.
of Cooperators

. (3.2)

Note that a second intermediate host would additionally broaden the distribution and increase
the probability P (0). Therefore, the advantage of cooperators would be even larger than in
Eq. (3.2). For the particular example discussed above, this approach might be extended by
a certain probability that also subpopulations without any cooperators survive. In addition,
the fact, that not every cooperator accomplishes manipulating the ant can be considered
by a success probability Ps(N

′
C). If the per capita manipulation success of cooperators, s,
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was independent of the number of cooperators in the host, it would be given by Ps(N
′
C) =

sN
′
C . However, all these extensions do not alter the qualitative results and for a quantitative

discussions the experimental data is still lacking.

3.2 Possible Solutions Solving the Dilemma

Cooperative behavior is a central thread in evolutionary theory . The solutions to the ensuing
dilemma are as diverse as the observed forms of cooperation [152, 153]. In general, they can
be subdivided into two classes: reciprocity and structure.

The first one, reciprocity basically relies on the assumption that individuals possess advanced
abilities like memory and recognition. Due to these skills they may remember their inter-
action partner’s strategy and adjust their own behavior accordingly. Depending on how
this adjustment is achieved one can distinguish direct and indirect reciprocity, depending on
whether the reward for cooperation is given by the same interaction partner or by someone
else in the population [153, 154, 155]. Another related idea is punishment penalizing defecting
individuals [125, 156, 157].

But cooperative behavior can also be maintained without such sophisticated abilities. In-
stead structure organizing individuals into subpopulations, in which members interact with
each other more likely, increases the survival chances of cooperators [158, 159]. For exam-
ple interactions on lattices [160, 161, 162, 163], networks [164, 165, 166] or set-structured
populations [167, 168] can favor cooperation. Note that in literature sometimes the effect
of spatial structure, especially networks, is also called reciprocity [154], since networks can
‘memorize’ previous interactions by relinking. In this thesis, we focus on interaction in
groups [169, 170, 171, 172, 173, 174, 175, 140] which can be embedded in the framework
of multilevel selection [21, 176] as explained in the following.

3.2.1 Multilevel Selection

Examining the example of D. dentriticum, we have already learned that in principle the
disadvantage of cooperators can be overcome by advantages on a higher level2. This idea is
generalized in the framework of multilevel selection [21]. As illustrated in Fig. 3.4, on the
lower level 1 different phenotypes interact in subpopulations under the pressure of selection.
Thereby, the composition of a subpopulation can be changed. On a higher level 2 these
subpopulations compete against each other analogously to level 1. Hence, the composition of
such a subpopulation corresponds to its phenotype which determines the fitness. Analogously,
even more levels can be introduced each of them consisting of entities whose phenotypes
depend on the dynamics on the levels below. Therefore, disadvantages arising on one level
must not necessarily lead to the extinction of the corresponding species, but can be balanced
by advantages on other levels. For D. dentriticum this advantage of a subpopulation (higher
level) is caused by better chances for infecting a host. In bacteria, the growth rate or viability

2For the small liver fluke, the advantage on the higher level arises as subpopulations consisting of only a few
individuals have a reduced probability to infect their primary host.
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Level 3 Level 2 Level 1

Figure 3.4: Illustration of selection acting on three different levels.

of a subpopulation containing more cooperators can be increased leading to an advantage on
the level of these subpopulations.

In recent years, the theory of multilevel selection has become of considerable interest con-
cerning the question of multicellularity, which again is an example for the dilemma of cooper-
ation [177][56]: How can single cells build highly organized entities like human beings [178]?
A single cell, which is not contributing but only reproducing as fast as possible would lead
to a failure of the whole organism3. Analogous problems arise on various scales, e.g. on
the gene, chromosome and organelle level, leading to the view that selection takes places on
different levels to sustain such high forms of organization. How and under which conditions,
these major transitions, e.g. from unicellular to multicellular life, can emerge is a tackling
question [55, 179].

3.2.2 Hamilton’s Rule

As we have seen above, the disadvantage of cooperative behavior can in principle be overcome
by advantages on higher levels of selection. Hamilton’s rule is a simple inequality comparing
the benefits arising from cooperation with its total costs [79, 180],

RB > C (3.3)

where R is the relatedness, which is a measure for the amount of the benefit B directly
supporting cooperators, and C are the costs. A common misunderstanding concerns the
interpretation of R,B and C. These quantities are some complex functions assessing the
relatedness, benefit and costs. They are not necessarily their direct measurable values, e.g. the
energy which is needed for providing the benefit. Therefore, a short derivation of Hamilton’s
rule is provided to clarify the meaning of R,B and C.

Hamilton’s rule can be derived employing the Price equation, Eq. (2.5), on two levels: the
inter- and intra-group level. On the lower intra-group level individuals compete against each
other while on the upper inter-group level whole subpopulations are subject to selection. In

3This exactly happens when a mutation towards a cancer cell emerges
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Level Ind. Abu. Average Small Entity Large Entity Gr. F.

Inter α Hα 〈Xα〉 =
∑

αXαHα Group Zα Set of groups 〈Zα〉 Wα

Intra i hi,α 〈xi,α〉α =
∑

i xi,αhi,α Individual zi,α Group 〈zi,α〉α = Zα wi,α

Table 3.1: Comparison of the different quantities and averages on the inter and intra group level.
From left to right, the summation index, the abundance, the average, the smaller and the
larger entity and the growth factors are shown

the following we employ the Price equation on both levels. Hence, all quantities introduced in
Sec. 2.3.1 now come into play on the intra- and inter-group level. Let us start with the lower
level describing the internal evolution of a subpopulation (group). Each individual therein is
classified by its trait zi,α ∈ {0, 1} where 0 corresponds to a free-rider and 1 to a cooperator.
The index i specifies the individual and α its group. The factor hi,α corresponds to a trait’s
abundance. Summing them up leads to the average trait of a group Zα = 〈zi,α〉α =

∑
i zi,αhi,α.

The reproduction success of an individual in a time interval ∆t is given by the growth factor
wi,α. Now let us consider the upper level where a group corresponds to an individual on the
lower level. Thus, each group has a trait Zα with the abundance Hα and again the average
value in the whole ensemble, now consisting of groups, can be taken, 〈Zα〉 =

∑
α ZαHα. The

group growth factor is given by Wα. Note, that there are two kinds of averages, the one
within a group summing over all individuals, 〈xi,α〉α, and the inter group average summing
over all groups, 〈Xα〉. In Table. 3.1 the corresponding terms on both levels are summarized.

Mathematically an increase in the global level of cooperators corresponds to 〈∆Zα〉 > 0. This
condition can be evaluated employing the Price equation on the inter-group level,

〈∆Zα〉〈Wα〉 = Cov[ZαWα] + 〈∆ZαWα〉 > 0. (3.4)

The trait of a group, Zα = 〈zi,α〉α depends on the group composition which is described by
the Price equation on the intra-group level,

∆〈zi,α〉α〈wi,α〉α = Cov[ziwi]α. (3.5)

In this equation, the term 〈∆zi,αwi,α〉α is not present as mutations towards different pheno-
types are excluded and ∆zi,α = 0 holds. By multiplying this expression with Hα and summing
over all groups, α, it transforms to,

∑

α

Hα∆z̄αw̄α =
∑

αHαCov[ziwi]α

〈∆ZαWα〉 = 〈Cov[ziwi]α〉. (3.6)

Combining Eqs. (3.4) and (3.6) leads to the following condition for the regime of stable
cooperation,

Cov[Zα,Wα] + 〈Cov[ziwi]α〉 > 0. (3.7)

Now, the identity Cov[AαBα]α = K(Aα, Bα)Var[Aα] (and accordingly on the intra-group
level Cov[ai,αbi,α]α = kα(ai,α, bi,α)Var[ai,α]α) following from linear regression can be used to
further simplify the inequality,

K(Zα,Wα)Var[Zα] + 〈kα(zi,α, wi,α)Var[zi,α]α〉 > 0. (3.8)
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The factor kα(zi,α, wi,α) corresponds to the disadvantage of cooperators within each group.
If this disadvantage does not depend on the group α, which is for example the case for
public good producing bacteria whose metabolic disadvantage is independent of the group
composition, Eq. (3.8) can be further simplified:

Var[Zα]

〈Var[zi,α]α〉
K(Zα,Wα) > −kα(zi,α, wi,α). (3.9)

This expression is exactly Hamilton’s rule and the relatedness, benefit and cost can now
be identified: R = Var[Zα]

〈Var[zi,α]α〉 , B = K(Zα,Wα) and C = −kα(zi,α, wi,α). Importantly these

quantities are not constants but non-linear functions. Therefore, the often used simplified un-
derstanding of cost, benefit and relatedness leads to enormous misinterpretations concerning
the reasons of cooperation. For example, as shown in Ref. [82], increasing the positive effect
of a public good on the population does not necessarily raise the benefit, B. Furthermore, the
variance terms in R are only fully understood when their origins are clarified. Importantly,
the relatedness relies on the assumption of population structure. This fact is often not ex-
plained when the rule is stated. This becomes especially obvious when considering only one
group. Then, there is no variance in the group’s trait Var[Zα] = 0, which leads to R = 0.
Therefore, cooperation cannot be maintained, as 0 · B > C never holds. Thus, population
structure is essential to explain cooperation with Hamilton’s rule. Furthermore, even though
Hamilton’s rule provides a condition for cooperative behavior, it does not include the micro-
scopic processes underlying the dynamics. To gain further understanding for the mechanisms
favoring cooperation, the full dynamics has to be analyzed carefully.

3.2.3 Group and Kin Selection

Group and kin selection are two closely related theories, which were subject to a long-standing
debate. Even though both can in principle be attributed to the framework of multilevel
selection and are closely related mathematically, their distinct interpretations have caused a
broad gap between some of their proponents. In the following, both theories and the ensuing
debate are explained.

Group Selection

The main issue of group selection, which was first brought up by Darwin [74] is based on
the same idea as multilevel selection [101, 99]: There exists selection on a higher group
level which may alter the evolutionary outcome. One historical problem concerning group
selection is that in first approaches selection on the lower level was neglected [181]. This point
entailed many concerns in the usefulness of group selection [182] even though intra-group
evolution was considered later on. One of the first approaches accounting also for selection
on the individual level was the haystack model introduced by Maynard Smith [183, 184, 185]
which exemplarily describes the evolution of mice in different haystacks. But he and others
doubted that group selection could be a general tool to explain cooperative behavior due to
the restrictive conditions, such as strictly separated groups or a well-defined regrouping step,
which were assumed [186]. Nowadays many extensions of the idea of group selection including
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a weaker definition of the term group have been proposed successfully explaining cooperative
behavior, e.g. [187, 151, 188, 184, 189, 170, 171, 174, 190, 21]. But still much criticism is
formulated, especially from the field of kin selection.

Kin Selection

Kin selection focusses on relatedness of individuals and Hamilton’s rule to explain cooperative
behavior [100, 191, 192, 193]. This idea has been successfully employed in many examples [180,
194, 195, 81]. Haldane, who was one of the founders of population genetics, described this
idea with a wink [196]:

You can jump into the river and risk your life to either save two brothers or eight
cousins.

In literature often the following too simplified explanation is given. Helping relatives is bene-
ficial as one’s own genetic material is spread also by these relatives. Even though not entirely
wrong, this statement may lead to misunderstandings: First, it implies that cooperating in-
dividuals help other ones on purpose. In general, especially without abilities like memory or
recognition, this does not hold. Also, Haldane was aware of this problem when stating [196]:

But on the two occasions when I have pulled possibly drowning people out of the
water (at an infinitesimal risk to myself) I had no time to make such calculations.

Furthermore there is some ambiguity concerning the term relatedness. As learned from Hamil-
ton’s rule the relatedness, R, relies on the variance in the composition of subpopulations con-
cerning cooperative traits. As this matter of fact is often ignored, we want to point out two
considerations directly following from the definition of the term relatedness in Hamilton’s
rule: First, a high relatedness in other genes than the ones causing cooperative behavior,
does not provoke the maintenance of cooperation. Second, not necessarily consanguinity, but
similarity in the cooperative trait, which must not necessarily be passed by the same genes, is
required. Another important side note concerns structure which is a necessary requirements
for R > 0 as already pointed out in Sec 3.2.2. Thus, also kin selection fits in the framework
of multilevel selection [197].

The Debate

Taken together, both group and kin selection provide theoretical frameworks to describe the
evolution and maintenance of cooperative behavior. While the theory of group selection fo-
cusses on structure to explain cooperation, kin selection concentrates on relatedness as the
reason for cooperative behavior. But actually relatedness as well as structure are necessary
for both theories which therefore strongly resemble each other: On the one hand, groups
can only favor cooperation if some of them have a higher level of cooperators and thereby a
selection advantage compared to other groups. In terms of kin selection this differences in the
group composition correspond to the term relatedness. On the other hand, the relatedness,
as we have learned from Hamilton’s rule, is not an absolute value but depends on the vari-
ance in the composition of all groups. Thereby also structure is essential for this quantity.



3.3 On the Role of Dynamics and Fluctuations 55

Furthermore, both theories need a mechanism ensuring a high variance in the composition of
the populations. This variance declines over time as populations fixate. Hence, to maintain a
variance which is large enough to favor cooperative behavior a dynamic restructuring mech-
anism can be important. Following the considerations above, both theories are more or less
equivalent [198, 199]. But still, there is a heavy debate going on between some proponents of
both theories, e.g. [153, 200, 201] or [202, 195]. Another similar controversy arises concerning
inclusive fitness theory, e.g. [203, 204, 205, 206, 207, 208, 209], which is closely related to
kin selection [176]. In inclusive fitness theory [191] the conservative fitness term is extended
by an additional term, reflecting indirect benefits as they can arise due to advantages of re-
latedness or structure. The heavy debate is even more peculiar when considering the open
question arising in both theories [210]: Why can a high relatedness be maintained? Are there
additional assortment mechanisms provoking variance in the group structure? What are the
microscopic reasons leading to an inclusive fitness? What are the dynamic processes under-
lying both theories? How can cooperative behavior have emerged in the first place? These
and many other questions are still not satisfactorily answered.

3.3 On the Role of Dynamics and Fluctuations

As already mentioned, there are a plenty of open questions concerning the evolution of co-
operation. In this thesis, we especially focus on the influence of fluctuations and dynamics.
In evolutionary processes these demographic fluctuations scale as

√
N . Structure, leading to

small groups of interacting individuals, thereby increases the strength of fluctuations. This
is not only a theoretical consideration. Many real populations undergo life cycles including
phases of small population sizes, e.g. parasites infecting a host as D. dendriticum. Also
for bacterial populations or biofilms, where microbes permanently undergo phases of biofilm
initiation, maturation, maintenance, and dispersal, the idea of life cycles is widely accepted
[211, 212, 213, 214, 215]. Furthermore, population bottlenecks can also be induced by en-
vironmental catastrophes or seasonal changes. In addition, populations may also explore
new habitats. Usually only few individuals form such a founder colony, which again is an
example for a bottleneck in the population size. All in all, demographic fluctuations, which
are especially enhanced during phases of small populations sizes, are not negligible. These
fluctuations can have a considerable impact on the dynamics and thereby explain coopera-
tive behavior [216, 217, 218]. Furthermore, the restructuring mechanisms, which as mentioned
above are essential to maintain a high variance in the composition of subpopulations, are often
associated with fluctuations since the population size is often small after such a restructuring
event.

Aside from demographic fluctuations, also dynamics are crucial for evolution. While the
Price equation compares only two time snapshots, dynamic approaches also account for each
time step in between. Only by considering this full dynamic behavior, the evolutionary
outcome depending on the parameters can be fully understood, as exemplified in the following
section. Therefore, individual based modeling including both, dynamics and fluctuations, is
essential. This can for example be achieved by the approaches considered in the previous
chapter. In this context, models accounting for both, population and evolutionary dynamics,
are also important [114, 115, 116, 117]. Employing those, the evolutionary advantages and
disadvantages on all levels of selection can be fully understood.
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3.4 Papers and Manuscripts

3.4.1 Growth dynamics and the evolution of cooperation in microbial
populations

In the article “Growth dynamics and the evolution of cooperation in microbial populations”,
Scientific Reports, 2, 281 (2012), by Jonas Cremer, Anna Melbinger and Erwin Frey, we an-
alyze the evolution of cooperation in group-structured populations. In our model, groups are
randomly formed and then evolve according to the model introduced in Sec. 2.4 [118]. We
thereby account for both, stochastic and dynamic effects, which both are crucial as our anal-
ysis shows. After a certain time T , groups are merged and the cycle restarts. By thoroughly
analyzing the stochastic dynamics two distinct fluctuation driven mechanisms promoting co-
operation can be found. The group-growth mechanisms, which relies on asymmetric ampli-
fication of fluctuations, can cause a transient increase of cooperation in a single regrouping
step. If the merging time T lies in the time interval of the transient increase, stable coexis-
tence between cooperators and defectors can be reached in the long run. Intriguingly this also
enables the evolution of cooperation, as a single mutation towards a cooperator can spread
in the population. The second effect, the group-fixation mechanism, relies on a larger group
size of cooperative groups. If the number of purely cooperating groups is high enough, the
fraction of cooperators does not decline. Under permanent regrouping, this makes coopera-
tion an evolutionary stable strategy above a certain threshold value, i.e. cooperation is stable
against invasion by cheaters.

3.4.2 Conclusion and Outlook

In our model we investigated the influence of group structure on the evolution of cooperative
behavior. We especially focussed on the role of demographic fluctuations and the dynamic
intra-group evolution. As it turned out, both play a crucial role. Demographic fluctuations
result in two distinct mechanisms promoting cooperation. For small regrouping times the
group-growth mechanism acts, while the group-fixation mechanism is only present for large
regrouping times. In this context it would by interesting to study how varying regrouping
times alter the evolutionary outcome. Distinct sequences of short and long times could lead
to different evolutionary outcomes, e.g. a single mutant could overtake the whole population.

In addition, it would be very interesting to confirm our predictions experimentally. By varying
the regrouping time the influence of the group-growth and group-fixation mechanism can be
adjusted. We plan to perform such experiments in collaboration with Prof. Kerstin Jung and
Prof. Heinrich Jung from the chair of microbiology at Ludwig-Maximilians University. They
designed a cooperating Pseudomonas pudita mutant producing the siderophore pyoverdin.
First results from their measurements are promising and we are looking forward to upcoming
results.

Furthermore, the influence of mutations has to be studied. These mutations may result in
a changed phenotype and thereby disturb the system. Also migration of individuals has a
similar effect. The robustness of our results against these perturbations is of large relevance
and a pending research project.



3.4 Papers and Manuscripts 57

In our model, we incorporated the benefit of cooperation as growth advantage, which was
motivated by bacteria like P. aeruginosa [135]. But there exist also other examples for
beneficial behavior supporting a population. For instance, some biofilms are only able to
swim on a liquid if enough cooperators are present (P. fluorescens [134]). Studying how
these other advantages influence the evolutionary outcome would be very interesting. As our
model highlights details of the dynamics matter. Hence it is not sufficient to identify two
antagonistic effects, but it is also essential to uncover the underlying mechanisms. Only then
the emergence and maintenance of cooperative behavior can be understood.



Growth dynamics and the evolution of
cooperation in microbial populations
Jonas Cremer, Anna Melbinger & Erwin Frey

Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-
Maximilians-Universität München, Theresienstrasse 37, D-80333 München, Germany.

Microbes providing public goods are widespread in nature despite running the risk of being exploited by
free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following
recent experiments, we consider the role of population growth and the repetitive fragmentation of
populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals
that demographic fluctuations, which lead to a large variance in the composition of colonies, promote
cooperation. Biased by population dynamics these fluctuations result in two qualitatively distinct regimes of
robust cooperation under repetitive fragmentation into groups. First, if the level of cooperation exceeds a
threshold, cooperators will take over the whole population. Second, cooperators can also emerge from a
single mutant leading to a robust coexistence between cooperators and free-riders. We find frequency and
size of population bottlenecks, and growth dynamics to be the major ecological factors determining the
regimes and thereby the evolutionary pathway towards cooperation.

O
ne pivotal question in evolutionary biology is the emergence of cooperative traits and their sustainment
in the presence of free-riders1–6. By providing a public good, cooperative behavior of every single
individual would be optimal for the entire population. However, non-contributing free-riders may take

evolutionary advantage by saving the costs for providing the benefit and hence jeopardize the survival of the
whole population. In evolutionary theory kin selection1,7–9, multi-level selection10–13, and reciprocity14 have been
found to provide conceptual frameworks to resolve the dilemma4–6. For higher developed organisms, stable
cooperation is generally traced back to specific mechanisms like repeated interaction2,14, punishment15,16, and
kin discrimination1,6,17,18. But how can cooperation emerge in the first place and be maintained without abilities
like memory or recognition? Answering this question is especially important within the expanding field of biofilm
formation19–24. There, a successfully cooperating collective of microbes runs the risk to be undermined by non-
producing strains saving the metabolically costly supply of biofilm formation18,20,23,24. Sophisticated social beha-
vior cannot be presumed to explain the high level of cooperation observed in nature and experiments18–20,24–31.
Instead, different forms of limited dispersal, such as spatial arrangements, or fragmentation into groups are
essential to resolve the dilemma of cooperation among such microbial organisms1,32,33. Indeed, in nature microbes
typically live in colonies and biofilms. Remarkable, although details strongly differ from species to species, most
microbial populations follow a life-cycle of colony initiation, maturation, maintenance and dispersal leading
to new initiation, see e.g.24,34–37. Well-studied examples include Pseudomonas aeruginosa38, Escherichia coli39,
Bacillus subtilis40 and Myxococcus xanthus41. Even though such a life-cycle is often complexly regulated e.g. by
environmental impacts and including collective behavior of colonies, populations bottlenecks alternating with
growth phases are essential components of most microbial life-cycles. Employing simplified setups, recent
experiments address the role of population bottlenecks and growth by studying structured microbial populations
of cooperators and free-riders25,26,28,29,31. In these setups small founder colonies differing in composition were
cultivated in separate habitats. For example, Chuang et al.29 used 96-well plates as structured environment with a
dilution of synthetically designed E.coli strains where the cooperative strain is producer of a public good
provoking antibiotic resistance. A microbial life-cycle was generated in the lab by regularly mixing all colonies
after a certain time and inoculating new cultures. Under these conditions, an increase in the overall level of
cooperation was observed even though free-riders have a growth advantage within every colony. However, the
precise conditions under which cooperation is favored are subtle8,9,11,13,31,33,42–49. A possible theoretical explanation
for the observed increase in cooperation is the antagonism between two levels of selection, as widely discussed in
the literature12. Here, these levels, intra- and inter-group evolution, arise as population dynamics alternates
between independent evolution in subpopulations (groups) and global competition in a merged well-mixed
population. Due to the dilemma of cooperation, free-riders are always better off than cooperators within each
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group (intra-group evolution). In contrast, on the inter-group level,
groups with a higher fraction of cooperators are favored over groups
with a lower one.

In this article, we study the interplay between the dynamics at the
intra- and inter-group evolution and how it may provoke the main-
tenance or even the emergence of cooperation. We propose a generic
individual-based model which includes three essential elements: a
growth disadvantage of cooperators within each group, an advantage
of groups incorporating more cooperative individuals, and regularly
occurring regrouping events; cf. Fig. 1. Well-known from the theories
of kin1,7,9,49 and multi-level selection12,29,49,50, cooperation can increase
in principle: While, within a group i, the fraction of cooperators, ji,
decreases, groups also change their size, ui, such that the fraction of
cooperators in the total population, given by the weighted average,
x~
P

iniji=
P

ini, may still increase. Such an increase is an example
of Simpson’s paradox29. To occur, a decreasing fraction of coopera-
tors, ji, within groups must be compensated by changing weights, ui/
N, in the total population of size N~

P
ini, i.e. by a sufficiently high

positive correlation between a group’s size and its fraction of coop-
erators50. Here we want to go beyond stating this mathematical fact
and reveal the ecological factors underlying these correlations. To
this end the full stochastic dynamics at the intra- and inter-group
level will be analyzed. A key element will be the intricate coupling
between the dynamics of the composition and the dynamics of the
overall size of a group. This applies in particular to microbial popula-
tions where the reproduction rate of microbes strongly depends on
environmental conditions and thereby also on the composition of the
population51. Therefore, a proper theoretical formulation has to
account for a dynamics in the group size52,53 rather than assuming
it to be constant as in most classical approaches54–56. Such a dynamic
formulation will allow us to investigate ecological mechanisms for
the evolution and maintenance of cooperation.

Motivated by microbial life-cycles24,34–37 and the aforementioned
experiments25,26,28,29,31, we consider a population of cooperators and
free-riders and its evolution in a repetitive cycle consisting of three
consecutive steps33, cf. Fig. 1. In the group formation step, the total

population with a fraction of cooperators, x0, is divided into a set of
M groups by an unbiased stochastic process such that the group size
and the fraction of cooperation vary statistically with mean values n0

and x0, respectively. Subsequently, the groups evolve independently
(group evolution step). In each group, both the fraction of cooperators
and the group size vary dynamically and change over time.
Independent of the specific details, the groups’ internal dynamics
has the following characteristic features: First, because of the costs
for providing the benefit, cooperators have a selection disadvantage,
s, compared to cheaters in the same group. In particular, cooperators
reproduce slower than cheaters and hence the fraction of cooperators
decreases within each group (intra-group evolution). Second, con-
sidering the benefit of cooperation, groups with more cooperators
grow faster and can reach a higher maximum size (carrying capacity)
than groups of mainly cheaters (inter-group evolution)52,53. The
benefit of cooperators is implemented by the growth rate of an
individual proportional to (1 1 pji(t)), where ji(t) is the fraction of
cooperators in the group the individual belongs to. Resource-limited
logistic growth is considered by a death term depending on the group
size. For specificity we assume growth conditions comparable to those
observed by Chuang et al.29. Details are given in the materials and
method section and the supplementary information. After evolving
separately for a certain time t 5 T, all groups are merged (group
merging), and the cycle restarts by forming new groups according to
the current fraction of cooperators, x, in the whole population. It is
the interplay of these three steps, characterized by the initial group
size, n0, the selection strength, s, and the regrouping time, T, which
determines the long-term evolution of the population.

Results
Fig. 2A shows the time evolution of the overall fraction of coopera-
tors during a group evolution step. We find three distinct scenarios:
decrease (red), transient increase (green), and permanent increase of
cooperation (blue). Their origin can be ascribed to two ecological
mechanisms: more cooperative groups grow faster (group-growth
mechanism) and purely cooperative groups can reach a larger car-
rying capacity (group-fixation mechanism).

A permanent increase of cooperation can be explained on the basis
of the group-fixation mechanism: for asymptotically long times the
intra-group evolution reaches a stationary state, where each group
consist solely of either cooperators or free-riders. Which state is
favored depends on the interplay between selection pressure and
stochastic effects. Because cheaters have a relative fitness advantage,
they tend to outcompete cooperators in groups with a mixed initial
composition. However, there are two stochastic effects leading to
purely cooperative groups. First, the stochastic process of group
formation results in a distribution of group compositions also con-
taining a fraction of groups which consist of cooperators only.
Second, random drift57,58, which is most pronounced during a popu-
lation bottleneck where group sizes are small, can cause a group to
become fixed in a state with cooperators only. Due to the benefit of
cooperators for the whole group, these purely cooperative groups
reach a much higher carrying capacity than those left without any
cooperator. Hence, although inferior in terms of number of groups,
purely cooperative groups through their large group size contribute
with a large statistical weight to the total composition of the popu-
lation, and thereby ensure maintenance or even increase of the level
of cooperation for long times, cf. Fig. 2A blue curve.

In order for the group-fixation mechanism to become effective the
evolutionary dynamics has to act for time scales longer than the
selection time, ts: 5 1/s, which measures the time scale on which
selection acts. For smaller times, a temporary increase in cooperation
level is observed provided the initial group size is small enough, cf.
Fig. 2A. The initial rise is caused by the group-growth mechanism
during the growth phase of colonies, see Fig. 2C. Given a distribution
of initial group compositions, it asymmetrically amplifies the size of

Figure 1 | Repetitive cycle of population dynamics. The time evolution of

a population composed of cooperators (blue) and free-riders (red) consists

of three cyclically recurring steps. Group formation step: we consider a well-

mixed population which is divided into M separate groups (i 5 1, …, M)

by an unbiased stochastic process such that the initial group size and the

fraction of cooperation vary statistically with mean values n0 and x0,

respectively. Group evolution step: groups grow and evolve separately and

independently; while the fraction of cooperators decrease within each

group, cooperative groups grow faster and can reach a higher carrying

capacity. Group merging step: after a regrouping time, T, all groups are

merged together again. With the ensuing new composition of the total

population, the cycle starts anew.
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those groups which contain more cooperators. This effect becomes
stronger with a broader distribution, or, equivalently, a smaller initial
group size n0. Eventually the initial rise has to decline since, due to the
internal selection advantage of free-riders, the fraction of cooperators
is always decreasing within each mixed group. As a consequence, the
overall benefit of cooperators through faster growth of more coop-
erative groups is only transient. After a certain time, the cooperation
time, tc, the fraction of cooperators, x(t), falls again below its initial
value, x0, unless the group-fixation mechanism is strong enough to
ensure a permanent increase. Finally, if group-internal selection
is too strong compared with the growth advantage of cooperative
groups, the level of cooperation cannot increase even transiently, cf.
Fig. 2A, red curve.

Combining all three steps of the cycle we now ask for the evolu-
tionary outcome after many iterations, k, of the cycle. For very small
bottlenecks, n0 # 3, both the groupfixation and the group-growth
mechanism result in a a purely cooperative population and cannot be
distinguished. This is shown in Fig. 3A for parameters corresponding
to the experiments by Chuang et al.29; the experimental results and
the results of our stochastic model are in excellent agreement. For
larger bottlenecks, n0 5 5, and depending on the relative magnitude
of the regrouping time T, we find two fundamentally distinct scen-
arios, see Fig. 3B. For large regrouping times, T ? ts, there is a
threshold value, x�u, for the initial cooperator fraction, x0, above
which cooperators take over the whole population and below which
they go extinct. In contrast, for regrouping times smaller than the
selection time, T # ts, independent of the initial value, x0, the popu-
lation reaches a stationary state where cooperators are in stable coex-
istence with free-riders. As explained next, these two scenarios are
closely tied to the group-growth and group-fixation mechanisms; for
an illustration see the supplementary videos. The threshold value for
maintenance of cooperation at large regrouping times is a con-
sequence of group-fixation and the larger carrying capacity of purely
cooperative groups. Since for T ? ts the intra-group dynamics has
reached a stationary state, fixation leaves the population with groups

consisting of either cooperators or defectors only. The probability of
fixation in the respective state and hence the fraction of purely coop-
erative groups after completing one cycle strongly depends on the
initial cooperator fraction. Now, if the initial cooperator fraction
becomes too low, the number of cooperative groups will be too rare
such that even their larger maximum group size is no longer suf-
ficient for them to gain significant weight in the total population, and
the overall cooperator fraction in the population will decline. Thus
there must be a critical value for the cooperator fraction, x�u, below
which, upon iterating the cycle the fraction of cooperators will
decline more and more, see Fig. 3B (red line). In contrast, above
the critical value purely cooperating groups are becoming more fre-
quent upon regrouping, and therefore cooperators will eventually
take over the population completely, cf. Fig. 3B (blue line).

When groups are merged during the phase of transient increase of
cooperation, T # ts, the stationary level of cooperation does not
depend on the initial one. This behavior is due to the dependence
of the change of the cooperator fraction during one cycle, Dx, on the
initial fraction, x0 as discussed in the following; see also Fig. 2B. As we
have already eluded to in the discussion of the group-growth mech-
anism, stochasticity during group formation and during the initial
neutral phase of the group evolution dynamics results in a broad
distribution of group compositions. The evolutionary dynamics is
acting on this distribution in an antagonistic fashion. While, due to
the higher growth rate of more cooperative groups, the distribution
develops a positive skew leading to an increase in the average overall
cooperation, the group-internal selection pressure is counteracting
this effect by reducing the cooperator fraction within each group.
The relative strength of the former effect is largest for small initial
cooperator fraction since this allows the largest positive skew to
develop. Hence, for a given regrouping time, if the change in overall
cooperator fraction Dx is positive for small x0 it must become nega-
tive for sufficiently large x0, as illustrated in Fig. 2B. For a more
detailed mathematical discussion of these effects we refer to the
supplementary information. As a consequence, in populations with

Figure 2 | Evolution while individuals are arranged in groups (group-evolution step). (A) Population average of cooperator fraction, x, as a function of

time t. Depending on the average initial group size, n0, three different scenarios arise: decrease of cooperation (red line, n0 5 30), transient increase of

cooperation (green line, n0 5 6, increase until cooperation time tc) and permanently enhanced cooperation (blue line, n0 5 4). These three scenarios arise

from the interplay of two mechanisms. While the group-growth mechanism, due to faster growth of more cooperative groups, can cause a maximum in the

fraction of cooperators for short times, the group-fixation mechanism, due to a larger maximum size of purely cooperative groups, assures cooperation for

large times. Both mechanisms become less efficient with increasing initial group sizes and are not effective in the deterministic limit (dashed black line,

solution of Eq. (S7) for N0 5 6) as the rely on fluctuations. (B) The strength of the group-growth mechanism decreases with an increasing initial fraction

of cooperators. This is illustrated by comparing the time evolution for three different initial fractions of cooperators and a fixed initial group size n0 5 5.

After a fixed time, here t 5 3.03, the fraction of cooperators is larger than the initial one for x0 5 0.2, equal to it for x0 5 0.5, and eventually becomes

smaller than the initial value, as shown for x0 5 0.8. (C) Change of the average group size, n 5 Sivi /M. At the beginning the groups grow exponentially,

while they later saturate to their maximum group size. As this maximum size depends on the fraction of cooperators, the average group size declines with

the loss in the level of cooperation (n0 5 6, green line). The deterministic solution for the same set of parameters which does not account for fluctuations

(dashed black line, solution of Eq. (S7)) describes this behavior qualitatively. s 5 0.1, p 5 10.
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a small initial fraction of defectors, the defectors increase in fre-
quency. At the same time, when the initial fraction of cooperators
is low, they also increase in number, finally leading to stable coexist-
ence of cooperators and defectors at some fraction x�s . This stationary
fraction of cooperators is independent of the starting fraction and
solely determined by the parameters of the evolutionary dynamics.

The interplay of both the group-growth and group-fixation mech-
anism leads, depending on the regrouping time, to different scenarios
for the levels of cooperation. These are summarized in the bifurcation
diagram Fig. 3C, where the stable and unstable fixed points of the
regrouping dynamics, x�s and x�u, are shown as functions of the

regrouping time. The scenarios can be classified according to their
stability behavior under regrouping as follows: For large regrouping
times, T ? ts, the group-fixation mechanism leads to bistable beha-
vior. With decreasing T, the fixation mechanism loses ground while
the group-growth mechanism becomes more prominent. There is a
intermediate scenario: the dynamics is bistable with full cooperation
as well as coexistence as stable fixed points. For even smaller times,
only the group-growth mechanism remains effective and the rare
strategy here always outperforms the common one such that each
strategy can invade but not overtake the other: coexistence. Finally,
for T = ts, cooperators always take over the population, effectively
leading to purely cooperative populations.

Discussion
In this article, we have studied the influence of population dynamics
and fluctuations on the evolution and maintenance of cooperation.
We specifically account for alternating population bottlenecks and
phases of microbial growth. Thereby, our model serves as a null-
model for cooperation in rearranging populations25,26,28,29,31, e.g. dur-
ing microbial and parasitic life-cycles24,41,59–61, and bacterial biofilm
formation24,34–37. The final outcome of the dynamics depends on
the interplay between the time evolution of size and composition of
each subpopulation. While a growth advantage of more cooperative
groups favors cooperators, it is counteracted by the evolutionary
advantage of free-riders within each subpopulation. We have inves-
tigated the stochastic population dynamics and the ensuing correla-
tions between these two opposing factors. Depending on whether
groups are merged while they are still exponentially growing or
already in the stationary phase, two qualitatively different mechan-
isms are favored, the group-growth and the group-fixation mech-
anism. Importantly, our analysis identifies demographic noise as one
of the main determinants for both mechanisms. First, demographic
noise during population bottlenecks creates a broad distribution in
the relative abundance of cooperators and free-riders within the set
of subpopulations. The growth advantage of more cooperative sub-
populations implies an asymmetric amplification of fluctuations and
possibly yields to an increase of cooperation in the whole population
(group-growth mechanism). Our analysis shows that this can enable
a single cooperative mutant to spread in the population which then,
mediated by the dynamics, reaches a stationary state with coexisting
cooperators and free-riders. Second, if the founder populations con-
tain only very few individuals, demographic fluctuations strongly
enhance the fixation probability of each subpopulation which then
consists of cooperators or free-riders only. Purely cooperative groups
can reach a much higher carrying capacity. However, only if the
relative weight of purely cooperative groups is large enough, this
effect leads to an increase in the level of cooperation in the whole
population (group-fixation mechanism). From our theoretical ana-
lysis of the population dynamics we conclude this to be the case only
if the initial fraction of cooperators is above some threshold value.

As shown by comparison with experiments by Chuang et al.29 the
proposed model is able to describe microbial dynamics quantita-
tively. Moreover, our model makes predictions how the evolutionary
outcome varies depending on population dynamics and bottlenecks,
and how the discussed mechanisms can provoke cooperation. These
predictions can be tested experimentally by new experiments similar
to those of Chuang et al. and others25,26,28,29,31: For example, by varying
easily accessible parameters like the bottleneck size n0 or the regroup-
ing time T, the relative influence of both mechanisms can be tuned.
Then the resulting level of cooperation and the ensuing bifurcation
diagrams can be quantitatively compared with our theoretical pre-
dictions.

As we assume the worst case scenario for cooperators, e.g ran-
domly formed groups and no additional assortment, our findings are
robust: The discussed pathways towards cooperation based on a
growth-advantage of more cooperative groups and restructuring

Figure 3 | Evolution of the overall cooperator fraction under repeated
regrouping. After many iterations, k, of the evolutionary cycle, a stationary

level of cooperation is reached. (A) For small population bottlenecks, n0 #

3, group-growth and group-fixation mechanisms are effective and lead to

purely cooperative populations. Growth parameters, bottleneck size and

the regrouping time are chosen according to the experiments by Chuang

et al.29, see supplementary information. Without any fitting parameters,

our simulation results (colored lines) are in good agreement with the

experimental data (black points). (B) For larger bottlenecks, n0 5 5, and

depending on the relative efficiency of the group-growth and group-

fixation mechanism, two qualitatively different regimes can be

distinguished. While the group-growth mechanism leads to stable

coexistence of cooperators and free-riders (green lines), the group-fixation

mechanism can lead to a pure state of either only cheaters (red line) or only

cooperators (blue line). The relative impact of these mechanisms depends

strongly on the regrouping time T. For short regrouping times (Tshort 5 2.5

, ts , green lines), the group-growth mechanism is effective, while for

sufficiently long regrouping times (Tlong 5 20 . ts, blue and red lines) the

group-fixation mechanism acts more strongly. (C) With parameters equal

to (B), the detailed interplay of the group-growth and group-fixation

mechanisms is summarized in a bifurcation diagram showing the

stationary levels of cooperation as a function of the regrouping time T.

Depending of the relative efficiency of both mechanism, four different

regimes arise: pure cooperation, coexistence, intermediate, and bistability.

The times Tshort and Tlong correspond to the green and red/blue lines

shown in (B). Parameters are x0 5 0.086, T 5 3.1, s 5 0.05 and p 5 6.6 in

(A); see also supplementary information. In (B), x0 5 {0.1 (green), x0 5 0.9

(green)} and x0 5 {0.5 (red), x0 5 0.6 (blue)} for Tshort 5 2.5 and Tlong 5

20, respectively. s 5 0.1 and p 5 10 in (B/C).
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are expected to stay effective when accounting also for other bio-
logical factors like positive assortment, spatial arrangements of
groups, mutation, or migration1.

Shown by our analysis, a regular life-cycle favors cooperation.
Besides better nutrient exploitation, this advantage for cooperation
might be one reason for the evolution of more complex, controlled
life-cycles including collective motion of microbes, local lysis, and
sporulation24,34–37.

Methods
We used a stochastic, individual-based model where each individual is either a
cooperator or a free-rider. In the group formation step groups are formed at random.
The initial group size, n0,i, is Poisson distributed (with mean n0). Given this size, the
fraction of cooperators j0,i follows by a binomial distributed number of cooperators.
During the evolution step, each individual is subject to random birth and death
events. The dynamics is given by a time-continuos Markov process where the change
of the probability, htP(ni, ji; t), is given by a master equation. In detail, the basal per
capita birth rate of each individual depends linearly on the group level of cooperation
ji, while the per capita death rate increases linearly with the group size ni the indi-
vidual belong to. In addition, free-riding individuals have a higher birth-rate where
the strength of selection s measures the advantage of free-riding individuals. Full
details are given in the supplementary information. The time scale is such that a small
population of only free-riders initially grows exponentially with the average size ni,0

exp t. To investigate the dynamics and both evolutionary mechanisms we performed
extensive computer simulations by employing the Gillespie algorithm62. Group size is
M 5 5 ? 103 in Fig. 2, and M 5 5 ? 104 in Fig. 3.
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In this supplementary text, we give a more detailed discussion of our model and

the group-growth mechanism. Furthermore we show comparisons of our analysis with

experiments by Chuang et al. [1].

1 The Model

Here, we give details on the consecutive steps of the ”life-cycle” of the meta-population.

We first specify the group formation step before considering the dynamics within groups

(group evolution step).

1.1 The Group Formation Step

Starting with an initial fraction of cooperators x0 in the population, M groups are formed.

Both, group size and group composition, are randomly distributed. Each group i ∈ [1,M ]

initially consists of ν0, i individuals. If the population from which the groups are formed

1



is much larger than Mn0, ν0, i follows a Poisson distribution1,

P (ν0, i) =
n
ν0, i
0

ν0, i!
exp (−n0) , (S1)

with mean n0. Further, the initial composition of each group is also formed randomly.

The probability for ζ0, i cooperators in a group i is assumed to be given by a Binomial

distribution

P (ζ0, i) =

(
ν0, i
ζ0, i

)
x
ζ0, i
0 (1− x0)ν0, i−ζ0, i (S2)

with mean x0ν0,i. The initial fraction of cooperators ξ0, i within each group is thereby

given by ξ0, i =
ζ0, i
ν0, i

.

By this we assume the groups to be formed at random without any bias. This corre-

sponds to a worst case scenario for cooperators which gain no additional advantage due

to positive assortment. Note, that the same initial distribution of group compositions is

reached if one assumes both, the initial number of cooperators (C) and free-riders (F), to

be Poisson distributed with mean values λC and λF , respectively. The mean values are

related by n0 = λC + λF and x0 = λC/(λC + λF ).

1.2 The Group Evolution Step

After the groups were formed randomly, they grow and evolve separately. In the following,

we consider the dynamics within one specific group i in detail. As emphasized in the main

text, we include two essential requirements experiments on microbial systems have in

common. First, in each group cooperators (C) grow slower than free-riders (F ). Second,

groups with a higher fraction of cooperators grow faster and are bounded by a higher

maximum group size (carrying capacity) than groups with a lower one. To account for

these facts, the growth rates have to consist of a group related and a trait/type specific

1This holds for typical conditions of small population bottlenecks as observed in bacterial life-cycles.
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part [2, 3]. We, therefore, denote the per capita growth rate of an individual of type

S ∈ {C,F} within group i as

GS(ξi) = g(ξi)
fS(ξi)

〈f〉 , (S3)

where g(ξi) is the group related, fS(ξi), S ∈ {C,F} is the species related part, and

〈f〉 = ξifC(ξi) + (1 − ξi)fF (ξi) is the average fitness. The normalization of the fitness,

fS(ξi)/〈f〉, is a convenient choice to disentangle the influence of global and relative parts

more easily. Further, the group related part, g(ξi), which accounts for the growth advan-

tage of more cooperative groups, is assumed to increase linearly with ξi. For specificity,

we use experimental conditions similar to those presented in reference [1, 4]. In these

experiments, a purely cooperating population growth to an about ten times higher popu-

lation size than a purely defecting one. In our model, the maximum population size scales

with g and therefore we set

g(ξi) = r(1 + pξi). (S4)

Here r determines the overall time scale for growth and defines our units of time, i.e. it is

set to one unless specified otherwise. In the main text we have used p = 10 for specificity;

see also section 3 where we compare with the experimental data by Chuang et a. [1].

Note, however, that the qualitative findings, especially both evolutionary mechanisms,

do not depend on the exact form of g(ξi) but only on the fact that g(ξi) is monotonically

increasing with the fraction of cooperators. The trait specific part, fS(ξi), includes the

different growth rates of cooperators and free-riders within group i. We here employ the

standard formulation of evolutionary game theory and assume it to be given by the payoff

matrix of a Prisoner’s dilemma game [5, 6]. The trait specific parts are given by

fC(ξi) =1 + s [bξi − c] ,

fF (ξi) =1 + sbξi, (S5)
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and the fitness advantage of free-riders ∆f = fF (x)− fC(x) = −sc is frequency indepen-

dent. For specificity, we set b = 3 and c = 1. Thereby, the selection strength s is the only

free parameter controlling the fitness difference, ∆f , which corresponds to the advantage

of free-riders within each group. In the experiments [1, 4], the selection strength was of

the order s ∼ 0.05. In our manuscript, we set s = 0.1 as an upper approximation of this

value.

To model growth bounded by restricted resources we further introduce per capita

death rates which increase linearly with the number of individuals in a group,

DS(νi) =
νi
K
. (S6)

These are independent of the specific type S and lead to logistic-like growth within each

group. K sets the scale of the maximum group size [7]. In detail, for purely defecting

groups the carrying capacity is K while it is (1+10)K for purely cooperating ones. For the

discussed results, only the ratio of group sizes and not their absolute values are important.

Hence, for numerical convenience, we set K to a constant value, K = 100.

The full stochastic dynamics follows a master equation which can be derived by the

per capita growth and death rates, Eqs. (S3) and (S6). This master equation gives the

temporal evolution of P (ξ i; νi; t), the probability for group i to consist of νi individuals

with a fraction of ξi cooperators at time t. We use the Gillespie algorithm to perform

stochastic simulations [8].

While fluctuations strongly affect the dynamics, it is still instructive to look at the

deterministic description where fluctuations during the group-evolution step are neglected.

This deterministic dynamics within each group, i, is then given by rate equations for the
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Figure S1: Dynamics in single groups. A Evolution of cooperation. For a mixed group
(green), the fraction of cooperators declines due to the fitness advantage of free-riders
while it stays constant for purely cooperating (blue) or defecting (red) groups. B Logistic
like growth of the group size. For pure groups, the group-related advantage of more
cooperative groups is most visible. Purely cooperating groups (blue) grow faster and
reach a larger maximum carrying capacity than groups of only free-riders (red). A mixed
group (green) grows faster than a group of only free-riders at the beginning. However
also in the initially mixed group only free-riders can remain in the long run, and the
carrying capacities of both groups become the same. The simulation average over different
realizations of only one group. Parameters are n0 = 6 and s = 0.1, ξ0 is equal to 0 (red),
0.5 (green), and 1 (blue).

fraction of cooperators ξi and the total group size νi:

∂tξi = −s(1 + 10ξi)ξi(1− ξi),

∂tνi = (1 + 10ξi − νi/K)νi. (S7)

Thus, in a deterministic manner, intra-group evolution is described by a replicator-like

dynamics while the size of each group follows logistic growth (with a ξi dependent growth

rate and carrying capacity). We illustrate this dynamics in Fig. SS1 for three different

initial conditions.
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Table S1: Per capita growth rates of cooperators and free-riders in two groups

group 1 group 2

fraction of cooperators ξi 3/4 1/4
per capita growth rate cooperators, g(ξi)fC(ξi)/〈f〉 8.31 3.33
per capita growth rate free-riders, g(ξi)fF (ξi)/〈f〉 9.05 3.58

Two groups, i = 1 and i = 2 in comparison. While the per capita growth rates of
cooperators are smaller than the per capita growth rates of free-riders within every group,
the per capita growth rate of cooperators in the more cooperative group 1 strongly exceeds
the per capita growth rate of free-riders in the less cooperative group 2 due to the group
related fitness g(ξi). The strength of selection is given by s = 0.1.

2 The Group-Growth Mechanism

As stated in the main text, the group-growth mechanism relies on the faster growth of more

cooperative groups. Even though cooperators reproduce slower compared to free-riders

in the same group, the positive effect on group-growth can outbalance this disadvantage.

For an illustration, see the specific example given in Table S1.

Here, we quantify the growth advantage of more cooperative groups. For this, we

consider only short times t � 1/s. Then, and in the limit of weak selection, s � 1, the

deterministic time evolution, given by Eqs. (S7), is

ξi =ξ0,i

νi =ν0,i exp [g(ξ0,i)t] .

The overall fraction of cooperators can be calculated by averaging over all possible initial

group compositions,

x(t) =

∑
i P (ξ0, i; ν0,i)ξiνi∑
i P (ξ0, i; ν0,i)νi

.

By differentiating with respect to time t, we find the following expression

d

dt
x = Cov(x, g(x)). (S8)
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Figure S2: How the group-growth mechanism depends on the fraction of cooperators.
Two sets of two groups are compared, one with a low fraction of cooperators (bottom)
and one with a high one (top). Both groups evolve for a certain time, here with g ∝ 1+3x
and no selection advantage for free-riders, s = 0. As can be readily seen, the change in the
fraction of cooperators is larger for groups with a smaller initial fraction of cooperators.

This corresponds to a Price equation on the group level [9, 10], here stating that

an increase in the fraction of cooperators is possible in principle if there is a positive

correlation between x and the group related growth g(x). However, for longer times

t > 1/s the selection advantage of free-riders counteracts the group-growth mechanism

such that it can only act transiently.

As shown in the main text, the strength of the group-growth mechanism depends

strongly on the initial fraction of cooperators. This is illustrated in Fig. SS2.

3 Comparison with experiments on synthetic micro-

bial system by Chuang, Rivoire and Leibler

We have compared our theoretical analysis with recent experiments by Chuang et al. [1]

on a synthetic microbial model system. They have studied regrouping populations with

initial population size n0 in the range between 2 and 3, an initial cooperator fraction

7



of x0 = 0.086, and a regrouping time T = 12 − 13 h. Other model parameters were

estimated as follows. The inherent fitness advantage of free-riders relative to cooperators

was observed to be in the range between 1.04 and 1.05. In our model this translates to

fC = 1 , (S9)

fD = 1.05 , (S10)

where in contrast to equation (S3) we did not normalize the species related part, i.e. 〈f〉 ≡

1. The growth curves for different compositions of the population (see Fig.S3 in [1]) give

access to the overall growth rate and its frequency dependence. From Fig.S3 in [1] we

estimate:

r = 6.8× 10−4 min−1 , (S11)

p = 6.6 . (S12)

Employing these parameters in our model we have simulated the regrouping dynamics and

find good agreement with the experimental results, cf. Fig. S3a. Since the population

dynamics is still within the exponential growth phase at the regrouping time, we interpret

the observed increase of cooperation as a group-growth mechanism. However, because of

the particular set of experimental parameters, the resulting stationary cooperator fraction

is very close to one which makes it difficult to observe coexistence between cooperators

and free-riders. We can now use our theoretical model to explore the effects of an increase

in the regrouping time. Changing the regrouping time from T = 12.5 h to T = 375 h

we find that the time evolution of the cooperator fraction remains qualitatively similar,

despite the fact that now cooperation increases because of the group-fixation mechanism,

cf. Fig. S3b. Thus even by changing the regrouping time these small values of n0 do not

allow to distinguish between the two mechanisms. However, as discussed in the main text,

8



larger values of n0 (in the range of 4− 6) give a clear signature of each of the mechanisms

upon varying the regrouping time.
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Figure S3: Increase in the level of cooperation for conditions resembling those examined by
Chuang et al. [1]. A Short regrouping time, T = 12.5h. The measurements by Chuang et
al. (black points) in comparison with the predictions of our model. Solid lines denote the
expected level of cooperation. The dashed lines show the corresponding mean plus/minus
the standard deviation. B, Large regrouping time T = 375h. For similar conditions,
but a longer regrouping time, the outcome is qualitatively the same and only cooperators
prevail. For both parts of the figure parameters are x0 = 0.086, r = 6.8 × 10−4 min−1,
fC = 1, fD = 1.05, p = 6.6. In A, K = 1.5× 106. In B, K = 1.5× 105.

4 Captions of supporting videos

The two supplementary videos illustrate the group-growth and the group-fixation mech-

anism:

1. Video S1: Evolution of cooperation, caused by the group-growth mechanism

2. Video S2: Reaching purely cooperative behavior, caused by the group-fixation mech-

anism.

In detail, both videos show the probability distribution for groups of size N containing

a fraction of cooperators, x and how it changes with time during the group evolution
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step. The green dot indicates the mean fraction of cooperators. For several regrouping

steps the evolutionary outcome depends strongly on the relative impact of the growth and

fixation mechanisms. Here, this is exemplary shown for regrouping times T = 2.5, [video

1, group-growth mechanism dominates] and T = 20 [video 2, group-fixation mechanism

dominates]. Parameters are given by n0 = 5, s = 0.1, and M = 5000 for both videos.

4.1 Video S1

Small regrouping times (group-growth mechanism, see text): A single cooperating mutant

can spread in the population. Starting from a very low initial fraction of cooperators,

the level of cooperation increases during every regrouping step until a stable level of

cooperation is reached. This behavior is caused by the faster growth of more cooperative

groups as illustrated in the video by the strong correlation between the level of cooperation

within a group and its speed of growth.

4.2 Video S2

Large regrouping times (group-fixation mechanism, see text): Above a certain threshold

value in the level of cooperation, cooperators can overtake the entire population since

purely cooperative groups are present and can play out their advantage in reaching a

higher maximum group size even though all initially mixed groups are taken over by

cheaters only.
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Part II

Molecular Motors and their
Interaction with Microtubules





4 Transport on Microtubules

The second part of this thesis focusses on motor proteins interacting with microtubules (MTs)
which are filamentous constituents of the cytoskeleton [1]. In this chapter, the basis to un-
derstand MT-motor interactions, like transport processes and length-regulation, is provided.
First, the cytoskeleton and its constituents, with a special focus on microtubules, are intro-
duced. Then, we discuss motor proteins which play a central role in transport processes as
well as in the length-regulation of microtubules. The latter is addressed in more detail in
Chapter 5. Subsequently, we provide a brief overview on the theoretical models describing
the movement of such molecular motors along microtubules. Finally, a specific example is
discussed. Therein, motor proteins on two parallel microtubule filaments obstruct each other
due to large cargos bound to them. Thereby the transport properties of the system are
strongly altered compared to a non-obstruction scenario.

4.1 Cytoskeleton

The cell is not merely an accumulation of proteins, organelles and other building blocks
bounded by the cell membrane. Rather it is a highly structured entity including various
compartments, functional areas and interconnections of these [1]. The cytoskeleton is the
scaffolding stabilizing and organizing the cell. For long times, it was generally acknowl-
edged that only eukaryotes have such stabilizing structures, but recent studies also uncovered
cytoskeletal filaments in prokaryotes [219] and evidence for them in archaea [220]. The cy-
toskeleton is highly dynamic and adapted to diverse requirements which go far beyond a
simple provision of mechanical support: It has to deal with stress and hence be elastic. At
the same time rigidity is required to stabilize the cell structure. Moreover, dynamic rear-
rangements of the cytoskeleton which happen during each cell cycle have to be feasible. The
cytoskeleton meets all these ostensibly contradicting challenges and thereby facilitates many
cellular processes which are essential for the metabolism. Just to mention a few, cytoskeletal
filaments play a central role in intracellular transport processes [26], cell division [1], neuronal
morphogenesis [221] and cell locomotion [222].

The purpose of these structures is versatile and so is their design. In principle, three distinct
classes of fibrous proteins forming the cytoskeleton can be distinguished: microfilaments,
intermediate filaments and microtubules.

Microfilaments

Microfilaments, as their name indicates, are the smallest cytoskeletal filaments with a diameter
of approximately 6 nm. They consist of filamentous actin (F-actin) and exist across species
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A B

Figure 4.1: A Microscopic picture of endothelial cells. The nucleus is labelled in blue, the microtubules
in green and the actin network in red. B Mitotic spindle formed of microtubules (green)
during cell division. The mitotic spindle attaches to chromatids and pulls them apart.
The pictures are taken from [223] and [224].

in slightly modified forms [1]. Each filament is built of two intertwined actin α-helices and is
polar, i.e. it has a distinguished direction. This polarity and the elasticity (the persistence
length is given by lp ≈ 15µm) play a crucial role for the functionality of microfilaments. Actin
is the most dynamic constituent of the cytoskeleton. Organized in bundles or in networks
which are stabilized by cross-linkers, actin filaments fulfill several tasks: elastic stabilization
of cells, muscle contraction, cell motility and transport due to molecular motors walking along
them [225].

Intermediate Filaments

Intermediate filaments, as keratin or vimentin, usually have a diameter of 10 nm and are
often highly elastic. Due to their high rigidity and flexibility they are perfectly suited to
cope with mechanical stress. Intermediate filaments are present at the nucleus and at the
cell membrane where they are among others important for cell-cell junctions. Many diseases,
as muscular dystrophy, are caused by disfunction of intermediate filaments which then loose
their flexibility [226].

Microtubules

With a diameter of 25 nm and a length up to 25 µm, microtubules (MTs) are the largest
cytoskeletal filaments. They are hollow tubes, mostly consisting of 13 protofilaments, which in
turn are built of αβ-tubulin heterodimers, cf. Fig. 4.2. In contrast to micro- and intermediate
filaments, MTs are rigid and not elastic (lp = 6mm). As actin, they are polar and have a
minus and a plus end. Tubulin, which diffuses in the cytosol, can attach at both sides, but
its attachment rate at the plus end is much higher than at the minus end [227]. Hence,
MTs grow mainly at the plus end and thereby explore cellular space. Due to their dynamic
length [228], they are important for processes as cell division. For instance, recent studies
in fission yeast studied the role of MTs for the nucleus positioning [229]: Fission yeast is a
rod-shaped cell. In the interphase the nucleus has to be positioned in the middle of the cell
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Figure 4.2: Illustration of a microtubule. It consists of 13 protofilaments which form a hollow tube with
a diameter of 25 nm. The protofilaments are composed of α− and β-tubulin heterodimers.

to facilitate correct cell division. Even though the details are not fully resolved yet, MTs
play a central role in this process. Growing from the nucleus towards the cell periphery,
where they push against the cell walls, MTs are able to locate the cell center. Also in a later
stage of cell division MTs play a crucial role. During mitosis, they form the mitotic spindle
(see Fig. 4.1) most likely organized by centrosomes located at opposing cell poles [230, 6].
After the nucleus has dissolved, MTs attach to the chromatids via kinetochores and push
them apart such that one set of chromosomes is finally located at each cell pole. Therefore,
dynamic length changes are essential for a proper separation of chromosomes. Concerning
this length-regulation much insights were gained in recent years: MTs display stochastic
changes between growth and shrinkage states, called dynamic instability [231, 232]. The
reason for this behavior seems to be the molecular structure of the protofilaments [233]. αβ-
tubulin can either bind GTP or GDP and thereby form GTP- and GDP-bound heterodimers,
respectively. The latter have a curved structure and therefore organization of 13 filaments
into a microtubule causes internal stress. This is balanced by a cap at the MT tip consisting
of straight GTP-bound tubulin. Within the MT the tubulin dimers hydrolyze to GDP-bound
tubulin which does not have the ability to stabilize the MT. As long as hydrolysis does not
emerge at the tip, the cap is able to compensate for the mechanical stress in the MT. If also
the tip is hydrolyzed, the 13 filaments are not longer held together and large parts of the
MT dissolve due to the intrinsic curvature of the filaments: a so-called catastrophe happens.
Afterwards, MTs recover as tubulin dimers constantly attach at the tip. This ensuing growth
phase is called rescue. Recent studies suggest that these rescue dynamics also rely on the
presence of GTP heterodimers in the interior of the MT, i.e. the MT depolymerizes till
the tip reaches an inner GTP-bound area [234]. Also theoretical work was done to explain
dynamic instability [235, 236, 237, 238]. Besides this intrinsic length-dynamics, MTs change
their length due to interactions with molecular motors or in response to force [239]. Thereby,
length can be regulated, see Chapter 5. Furthermore, MTs play a crucial role for the movement
of prokaryotic cells. In combination with the molecular motor dynein which produces forces,
MTs actuate the flagella and thereby the cells. Another example for the functionality of MTs
is the transport of large cellular building blocks through the cell, for which diffusion through
the crowded cytosol is slow. Instead, molecular motors “walk” along MTs having attached
cargos, like organelles or other macromolecules.



80 4. Transport on Microtubules

minus end plus end

cargo
(macromolecules,
organelles)

hydrolyses
of ATPkinesin

head

stalk

tail

A B

10nm

Figure 4.3: Illustration of the structure and functionality of kinesin. A Microscopic and schematic
picture of kinesin. John Heuser kindly provided the freeze-etch electron micrograph on
the left.B Kinesins walking along the MT transport cargos bounded to their tail.

4.2 Molecular Motors

Microtubules obtain a large part of their functionality in combination with associated proteins.
These proteins do not only transport cargos along the filament, but also exert forces or
interact with the filaments and thereby trigger polymerization and depolymerization [240].
The most prominent examples of these proteins are dynein and kinesin. Kinesin consists of
a head domain, a stalk and a tail where cargos can bind, see Fig. 4.3A. Molecular motors
literally walk along single filaments of an MT [241, 242] gaining energy from the hydrolysis of
ATP [243], cf. Fig. 4.3B. For kinesins and myosins1, this hydrolysis leads to conformational
changes in the protein which in turn cause a power stroke [244]. While dyneins walk from
the plus to the minus end along the protofilament axis and hence transport cargos from the
cell periphery to the nucleus, kinesins move vice versa [241]. Each of their steps covers the
distance of a tubulin dimer (8.4 nm) [245]. Though the exact molecular mechanisms for this
movement are not fully resolved, for kinesins the most promising hypothesis is the hand-
over-hand mechanism [246, 247]. It suggests that both heads (corresponding to the feet of
the motor) move alternately. Most kinesins walk processively [248], i.e. they do not detach
from the MT for large run-lengths [249]. Taken together, molecular motors can walk uni-
directionally on polar MTs, have the ability to bind large cargos, and can be regulated [243].
Thereby, they are optimal machineries to perform intracellular transport processes [250].

Besides transporting cellular building blocks, molecular motors accomplish also other impor-
tant tasks. A prominent example are MT polymerases and depolymerases [240, 251]. Due
to the stabilizing GTP cap at the tip, length-dynamics can consequently be regulated at the
plus end. This makes motors walking towards the tip perfect candidates to govern length-
dynamics. Besides these walking motors, there exist also other forms of so called plus-end
tracking proteins (+TIPs) which have specific binding rates to the tip or which are associated
with other +TIPs [227]. For example the depolymerizing kinesin MCAK diffuses unbiased on
the MT until it reaches the tip [252, 31]. Motors from the kinesin-8 or kinesin-13 (also known
as Kin I or M-type kinesin) protein families, play a crucial role in length-regulation [253, 254].

1Myosin is a molecular motor interacting with actin and plays a crucial role for muscle contraction.



4.3 Driven Exclusion Processes 81

Kinesin-13 motors are in the focus of research and best characterized. In vivo studies high-
light their essential role for spindle formation and nucleus positioning [255]. That supports
the idea that a proper length-regulation is necessary for these processes. To gain further
understanding of the molecular mechanisms underlying this length-regulation of MTs, several
in vitro experiments were performed where the interaction of just a few motor types with
the MT was studied [256, 32, 257, 34], cf. Chapter 5. However, the exact mechanisms of
length-regulation and the reasons for the use of molecular motors are not fully resolved yet.
From an evolutionary point of view, it seems to be obvious that a complex regulatory mecha-
nism employing motors has a certain functionality for cells, e.g. length-dependent regulation:
Molecular motors need plenty of ATP, the cellular energy unit, for their movement along
filaments. For the depolymerization of a single tubulin dimer, not only the energy for the de-
pletion but also for the motor running towards the tip has to be provided. If the sole purpose
was to shorten the MT, also diffusive proteins could be employed which do not need energy
for reaching the tip. Instead motors are used. The advantage seems to be the possibility of
length-regulation which arises due to crowding effects as discussed in Chapter 5.

4.3 Driven Exclusion Processes

Molecular transport along MTs can be described by driven exclusion processes. This class
of models accounts for directional transport including crowding effects due to an on-site
interaction, i.e. each site is occupied by at most one particle. In the following we review the
most important models in the context of this thesis.

4.3.1 Totally Asymmetric Simple Exclusion Process

The Totally Asymmetric Simple Exclusion Process (TASEP) is a paradigm of non-equilibrium
statistical physics [258, 259, 260, 261]. It was originally proposed by MacDonald to describe
the translation of mRNA [262]: To build proteins, ribosomes ‘read’ the genetic code and
translate it into a chain of amino acids. In doing so, they walk uni-directionally along a
mRNA strand and mutually obstruct each other. Nowadays, the TASEP also serves as a
simplistic model describing the movement of molecular motors along MTs. This description
especially accounts for crowding effects and the ensuing traffic jams. Actually these crowding
effects can strongly influence the transport properties of a system [263, 264, 265, 266].

As shown in Fig. 4.42, the TASEP consists of a one-dimensional lattice with L sites. The
particle configuration is described by a set of discrete occupation numbers, ni ∈ {0, 1} with
i = {1, 2, ..., L}. On the lattice, particles can move uni-directionally to the right provided that
the next site is empty. Their hopping rate ν can be set to one, corresponding to a rescaling of
time. At the boundaries particles enter and leave the system at rates α and β, respectively.
Despite the simple considerations leading to the TASEP, it shows a comparably rich phe-
nomenology including some characteristic properties of systems far away from equilibrium.
This fact is one of the reasons for the outstanding position of TASEP in non-equilibrium sta-
tistical physics which is comparable to the Ising model’s importance for equilibrium statistical

2In this figure the more general TASEP/LK model is shown which reduces to the TASEP for ωa = ωd = 0.
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Figure 4.4: Illustration of the TASEP with Langmuir kinetics (TASEP/LK). Particles enter at the
left-hand side of the system at rate α and leave at the right-hand side at rate β. On the
lattice, they move uni-directionally to the right provided that the next site is empty. Their
hopping rate ν = 1 sets the time scale of the system. Particles from the surrounding can
attach at empty lattice sites at rate ωa. Analogously particles can detach from the lattice
at rate ωd. Setting the rate ωa and ωd to zero, the model reduces to the standard TASEP.

mechanics. This view is encourage by the fact that it can be solved analytically by employing
recursion relations [267], the matrix product ansatz [268, 269] or the Bethe ansatz [269, 270].
Remarkably, also a simple mean-field approach (or hydrodynamic limit), where correlations
between neighboring sites are neglected, 〈ni−1ni〉 = 〈ni−1〉〈ni〉, leads to the exact current-
density relation3. The resulting current, J , depends solely on the particle density in bulk. As
the density is constant except for boundary effects, 〈ni〉 = ρ(x) = ρ, the current is given by,

J = ρ(1− ρ), (4.1)

where the factor 1 − ρ accounts for exclusion as it is the probability that the next site is
unoccupied.

The phase behavior sensitively depends on the boundary conditions. Those play such an
important role as the system is driven far away from equilibrium: Due to transport, boundary
effects are directly fed into the system [258]. Therefore, also in one dimension, several phases
and phase transitions emerge [271]. In contrast, in equilibrium physics such one-dimensional
phase transitions only arise under very restrictive conditions, e.g. zero temperature, long-
range interactions or infinite interaction energy [272, 273, 258]. Besides derivations from the
full analytic solutions or the extremal current principle [271, 274, 275], the phase behavior
can also be understood intuitively as follows: For α < β and α < 0.5, the left boundary is the
bottleneck of the system, i.e. less particles can enter the system than leave it. Therefore, the
entering current determines the system and equating JIN = α(1− ρ), with the bulk current,
Eq. (4.1), leads to the bulk density ρ = α in the so-called low density phase. Analogously,
the bulk density follows if the bottleneck is at the right, β < α and β < 0.5. Employing
the exiting current JEX = βρ, the bulk density ρ = 1 − β in the high density phase can
be derived. If neither the entering nor the exiting current are bottlenecks, α, β > 0.5, the
transport behavior of the system sets the density to a value where the current is maximized
(maximal current phase). This is the case for ρ = 0.5, since the number of particles and
the number of holes, onto which particles can hop, is optimized for half filled systems. A
summary of the ensuing phase behavior depending on α and β is shown in Fig. 4.5.

3Due to particle exclusion, it is not obvious that these correlations cancel out.
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Figure 4.5: Phase diagram of the TASEP. For small entering rates α < 0.5 and α < β the system is
determined by the entering current and a low density is realized in the system (LD). In
contrast, for β < 0.5 and β < α crowding effects cause the high density phase (HD). If
both boundary rates are large α, β > 0.5, the maximal current phase (MC) arises.

4.3.2 TASEP/LK

In contrast to the considerations above, molecular motors do not only enter the MT at its
first site and leave at its last site. Instead, motor proteins freely diffuse in the cytosol and are
able to attach anywhere at the MT. This is illustrated in Fig. 4.6 where an MT consisting of
13 filaments surrounded by motors diffusing in the cytosol is depicted. For a more realistic
description, the TASEP/LK model was proposed [276, 277]. Here, the standard TASEP
model is extended with Langmuir kinetics, i.e. attachment and detachment rates, ωa and ωd,
at each site of the lattice, see Fig. 4.4. Thus, the particle density is not constant anymore but
explicitly depends on the spatial position: Particles accumulate over the lattice and are lost
due to detachment kinetics. Employing the hydrodynamic and continuum limit, the following

Figure 4.6: Illustration of the role of collective phenomena on an MT. Motors diffusing in the cy-
tosol can attach anywhere at the MT. Also interactions between motors on neighboring
protofilaments are possible. A. Vilfan kindly provided the figure.
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Figure 4.7: Typical density profiles for the TASEP/LK model with α = 0 and β = ωd

ωa+ωd
. At the

left motors accumulate and thereby cause an approximately linear increase in the density
until the Langmuir density is reached. Colored lines are simulation result, while solid and
dotted black lines correspond to the full and approximative analytic solutions of Eq. (4.2),
respectively.

differential equation for the particle density depending on the lattice position can be obtained,

∂tρ(x) = [2ρ(x)− 1] ∂xρ(x) + ωa − (ωa + ωd)ρ(x). (4.2)

The density profiles can be calculated analytically employing Lambert W functions [276, 277].
As the phenomenology of the model is rich, we restrict our discussion of the density profiles
to a specific set of parameters4. We set the right boundary to β = ωd

ωa+ωd
as then its influence

is not visible in bulk. As particle-hole symmetry holds, effects similar to the ones arising
at the left boundary are possible in more general situations. Further, we set α = 0. This
specific value of the boundary is especially relevant for transport along MTs, i.e. the first
site is not populated at a higher rate than the bulk. In Fig. 4.7 typical ensuing steady state
density profiles are shown. Starting from the left, particles accumulate at the lattice with
an approximately linear density profile with slope ωa. In this approximation the density
profile at the minus end is given by ρ−(x) = ωax. At the right hand side of the system, the
density reaches the constant Langmuir density. This density can be calculated from Eq. (4.2)
employing ∂xρ(x) = 0 and is given by ρLa = ωa

ωa+ωd
. Only for ρLa ≤ 0.5, the linear profile

can match the Langmuir density continuously and the position of the domain wall, `−, is
determined by the condition, ρ−(`−) = ρLa. In contrast, for ρLa > 0.5, the transition to
the Langmuir density is discontinuous and can be calculated assuming current conservation,
ρ−(`−) = 1 − ρLa. Current conservation holds for ωa � 1 and ωd � 1. Taken together,
in linear approximation the transition from the regime, where particles accumulate, to the
regime, where the Langmuir density is reached, happens at [278],

`− =

{
1

ωd(K+1) for K < 1 ,
1

c ωa(K+1) for K > 1 .
(4.3)

Here, K = ωa/ωd is the binding constant characterizing the interplay of attachment and
detachment.

4For a detailed description of the density profiles and phases see [277].
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4.3.3 Extensions of these Models

In biological scenarios, various other effects come into play. In order to find more realistic
descriptions for biological transport processes, many interesting extensions of the TASEP
have been studied. For example, the fact that motors are not just particles but enzymes
following complex biochemical cycles [279, 280] was included. Further, compartmentalization
and the interaction of diffusive and directed transport areas [281, 282] or complex binding
properties of the motors [283] were investigated. In addition, the influence of defects on the
molecular track [284, 285, 286] and spatially extended particles [287] were studied.

Since motors do not only move on single protofilaments of the MT, multilane models are also
of large relevance [288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299]. Therefore, many
models accounting for two or more coupled lanes have been investigated. Particles can change
lanes [288, 289, 290] or obstruct each others movement [292, 294, 296, 297]. The latter arises
due to attractive or repulsive forces and steric exclusion as motors sometimes carry large
cargos. Taken together, the coupling between lanes can be either caused by lane switching
events or an interaction between particles on different lanes. For both scenarios much progress
has been achieved and interesting phenomena, like non-trivial density profiles [288, 289],
spontaneous symmetry breaking [294, 296, 297] and domain walls [288, 289, 293] have been
discovered.

4.4 Papers and Manuscripts

4.4.1 Two Lanes with Particle Exclusion and Obstruction

In the article “Driven transport on two lanes with particle exclusion and obstruction”, Phys.
Rev. E 83, 031923 (2011), we employing a two lane model to study how the movement
of motors is influenced by an obstruction of neighboring particles. As it turned out, this
obstruction, e.g. stemming from large cargos attached to motors, has a strong impact on the
transport dynamics. We neglected lane changes since they seem to play a minor role [300].

e−U β↑

β↓

11

1

1

vacancy
particle

reservoir

ρ↑res

ρ↓res

Figure 4.8: Illustration of the two-channel model including obstruction between neighboring particles
on different lanes. The hopping rates are set to 1 if the next site is empty, except for the
scenario when particles obstruct each other. Then, the hopping rate is reduced to e−U .
At the left boundary particles enter from reservoirs ρ↑↓res while they leave the system at
rates β↑↓ on the right.
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Several phases emerge which cannot be found in single lane models. These phases can be
divided into two classes: boundary and bulk induced phases. The transport properties of the
latter are robust against small changes of the rates at the boundaries. Hence, they might
be relevant if a constant particle current is needed, e.g. a constant supply by a certain
macromolecule transported by motors. In contrast, boundary induced phases are tunable
by the entering and exiting rates and thereby offer the possibility to regulate the particle
currents.

4.4.2 Conclusion and Outlook

Transport on MTs is an important task which is often accomplished by molecular motors.
In particular, the transport of large macromolecules which otherwise would diffuse slowly, is
essential. Here, we focussed on the influence of a mutual obstruction between particles moving
on two different filaments on the same MT. It would be interesting to extend this two lane
approach to more lanes. Especially, the realistic situation of 13 filaments which form a hollow
tube could be considered to estimate the effects of such an obstruction for the movement of
motors along MTs.

Much progress has been achieved in applying driven diffusive systems to biological transport
phenomena. However, still may questions are unsolved, especially, when thinking about the
simultaneous influence of several extensions of the TASEP. For instance, it would be important
to study the influence of lane changes on the two lane model presented above. In principle,
these lane changes can lead to position dependent density profiles. It would be interesting,
how the ensuing phase behavior alters compared to the scenario presented here. In addition,
particles in the cytosol can be taken into account explicitly by also allowing motors to attach
to and detach from the lattice.
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may occur in biological contexts due to steric hinderance where motor proteins carry cargos by “walking” on
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I. INTRODUCTION

Driven diffusive systems are of importance in various fields
of physics and biology [1,2], since they serve as simplistic
models for biological transport phenomena [3–6], traffic flow
[7–10], fast ionic conductors [11], as well as quasiclassical spin
transport [12]. Furthermore, they provide valuable insights into
nonequilibrium statistical mechanics. As an example, and in
contrast to equilibrium systems, their bulk behavior is sensitive
to the boundaries [13]. Boundary induced phase transitions
in one dimension may emerge resulting in complex phase
behavior.

The most prominent example of driven lattice gases, the
totally asymmetric exclusion process (TASEP), was originally
proposed as a simple model for the motion of multiple
ribosomes along a mRNA strand during protein translation
[14]. In this model, particles move unidirectionally along a
one-dimensional lattice, provided the next site is empty. Exact
solutions, e.g., by employing the Bethe ansatz [15] or a matrix
product ansatz [16], are feasible, yet much insight can readily
be obtained from simple mean-field considerations [2].

Intracellular transport constitutes another fascinating bio-
logical application [17] of driven systems. Here, molecular
motors such as kinesin or dynein, driven by the hydroly-
sis of adenosine triphosphate (ATP), move unidirectionally
along microtubules [3]. Macromolecules or other cellular
constituents, which often are too large to diffuse fast enough
through the crowded cytosol, are carried by motor proteins,
and are then actively transported to the location where
they are needed. Recent theoretical studies motivated by
these processes have investigated the influence of attachment
and detachment of the motors to the microtubules [18–22],
extended particles [23], the influence of defects on the track
[24–26], and the competition between different motor species
[27,28]. Further attention has been paid to transport along
several coupled channels where particles move in parallel. This
coupling can be either achieved by allowing lane-switching
events [12,29–37] or by a possible influence of a particle in

one channel on the motion in the other channel [7,38]. Here we
consider the latter case and investigate how mutual obstruction
of motor proteins on neighboring lanes, for example, stemming
from large cargos attached to them, affects the transport
properties of the system.

Driven diffusive systems may also serve as a description
for spin transport with possible applications in the field of
spintronics. For instance, such spin currents flow in a chain of
quantum dots where electrons are driven by an external voltage
in a way that only the lowest energy levels can be occupied
[39]. Hence not more than one electron of each internal state
is permitted per site and electrons located in the immediate
vicinity repel each other due to Coulomb interaction. A model
taking Pauli’s exclusion principle into account while ignoring
phase coherence has been investigated recently [12,30,31], yet
Coulomb blockade has been neglected. In the present paper
we focus on the influence of a mutual obstruction mimicking,
for example, Coulomb interaction. To identify its effect on the
collective transport properties in the clearest way, we disregard
spin-flip events which can cause intriguing behavior on their
own [12,30,31].

A simple lattice model that incorporates mutual obstruction
on two lanes has been investigated by Popkov and Peschel [7].
The steric hindrance there is manifested in the hopping rates
that explicitly depend on the configuration on the opposing
lane. As a consequence of this coupling of the lanes, a variety
of peculiar phases arises which has been neatly rationalized
in terms of a cluster approximation. Particularly, symmetry
breaking, which arises even though the boundary conditions
are symmetric, is observed and analyzed.

In this paper we extend the model of Ref. [7] by considering
asymmetric boundary conditions and rates instead of reservoirs
at the right boundary. We introduce the model in Sec. II, both
in the two-lane and in the spin-transport picture. In Sec. III we
describe the stochastic simulations and provide first insights
in how particle obstruction affects the behavior. Namely, we
identify three regimes of qualitatively different behavior. In

031923-11539-3755/2011/83(3)/031923(10) ©2011 American Physical Society
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Sec. IV, we analytically compute the current-density relations
within a one-site cluster approximation. Section V presents a
discussion on how the current-density relation, obtained via an
extremal-current principle, allows us to identify the system’s
different phases and to analytically predict the phase diagram.
We summarize our main findings in Sec. VI and provide a brief
conclusion.

II. MODEL

We examine a driven diffusive system which serves as
a minimal model for the transport on two parallel lanes,
which are coupled by a repulsive short-range interaction. The
same model describes classical driven spin transport with
Coulomb blockade. In the following we specify the dynamics
in detail, presenting both the two-lane and the spin-transport
representation.

A. Two-channel representation

Consider particle transport along two parallel channels,
each of them containing N discrete lattice sites; see Fig. 1.
Each site may contain at most one particle (on-site exclusion),
such that the occupation number of site i on the upper (lower)
channel, n

↑
i (n↓

i ), can only take values 0 or 1, corresponding to
a vacant or an occupied site, respectively.

Particles enter from two entangled reservoirs located at the
left-hand side of the system. At each time step, the reservoir is
in one of the four possible states: (i) double occupation with
probability κ∗, (ii) only the upper reservoir is occupied with
probability ρ

↑
res − κ∗, (iii) only the lower reservoir is occupied

with probability ρ
↓
res − κ∗, and (iv) both reservoir sites are

empty with probability 1 − ρ
↑
res − ρ

↓
res + κ∗. Thus ρ

↑
res and ρ

↓
res

are the average densities on the upper and lower reservoir,
respectively, and κ∗ corresponds to the double-occupation
density in the reservoir.

In bulk, particles move unidirectionally to the right. Due to
obstruction, the hopping rate thereby depends on the particle
configuration at the other lane. A particle attempting to proceed
by one site is obstructed if a particle resides on the subsequent
site of the other channel. However, this obstruction is relevant
only when the particle does not experience obstruction in its
current position, meaning when its current neighboring site on

e−U β↑

β↓

11

1

1

vacancy
particle

reservoir

ρ↑res.

ρ↓res.

FIG. 1. (Color online) Illustration of the two-lane representation.
Particles enter from two reservoirs at the left boundary with densities
ρ↑

res,ρ
↓
res. In bulk, hopping rates depend on the particle configuration

of the, respective, other lane. At the right boundary particles leave at
rates β↑,β↓.

e−U β↑111

reservoir

ρ↑res.ρ
↓
res.

FIG. 2. (Color online) Illustration of an exclusion model with two
internal states, adopting the language of spin transport. Particles in
state ↑ (↓) enter the system at the left boundary from a reservoir with
density ρ↑

res.(ρ
↓
res.) and leave at the right boundary with rate β↑(β↓).

In bulk, particles hop to the right, always respecting Pauli’s exclusion
principle. If an unpaired particle moves to a site which is already
occupied by a particle of the other spin state the hopping rate is
decreased to e−U ; otherwise, the hopping rate is set to 1.

the other channel is empty. We model this effect by reducing
the hopping rate to a value e−U (U > 0) in this case, while the
rate is unity for all other configurations. In the biological
context of molecular motors walking along microtubuli, the
reduced hopping rate corresponds to the spatial obstruction
stemming from large cargos attached to motor proteins.

Last, the rules of the model are completed by specifying
how particles leave the system after traversing the bulk. Here,
we consider that particles at the right boundary leave with the
exiting rates β↑,β↓ in contrast to [7] (see Fig. 1).

B. Spin-transport representation

The model can be readily interpreted in the context of
spin transport where it serves as a description for classical
spin currents (see Fig. 2). The analogy to the two-channel
picture is the following: A particle situated at the upper (lower)
lane maps to a particle with spin up (spin down). At the left
boundary particles enter from a spin reservoir with densities
ρ

↑
res,ρ

↓
res. Having traversed the lattice, they leave the system

at the right boundary with exiting rates β↑,β↓. In bulk, the
particles move to the right always respecting Pauli’s exclusion
principle, i.e., only one particle per internal state is permitted
per site. According to the two-lane representation, the hopping
rates depend on the particle configuration of the system. A
short-range repulsive interaction reduces the hopping rate for
an unpaired particle onto a site which is already occupied by a
particle of the other spin state to e−U , as compared to 1 for the
other configurations. The parameter U > 0 may be viewed as
an effective interaction potential, originating from a repulsive
Coulomb interaction, where particles on the same site (though
different spin states) gain potential energy. In this context,
one can also consider an increased hopping rate away from a
double occupation, yet, one can show that this does not change
our results qualitatively [40]. For clarity, we employ only the
two-channel representation in the following.

A model similar to the one introduced above was recently
proposed in [7]. However, only symmetric situations were
considered with entrance/exit reservoirs that were equal an
both lanes. As a further difference to our model the authors
did model the exiting processes through reservoirs at the right
side instead of exiting rates. Because we explicitly investigate
the asymmetric case, with entrance and exit properties that
differ for the two lanes, and because of our usage of exit rates
we find a multitude of interesting phenomena, summarized
in Sec. VI. The asymmetry between the two lanes requires
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a two-dimensional generalization of the extremal-current
principle. The derivation of this two-dimensional extremal-
current principle constitutes a key result of our work; we show
how it successfully describes much of the system’s behavior.

III. CLASSIFICATION OF THE SYSTEM’S SENSITIVITY
ON THE POTENTIAL

The steady-state bulk densities ρ
↑
i = 〈n↑

i 〉,ρ↓
i = 〈n↓

i 〉,
where 〈·〉 indicates a coarse-grained time average, constitute
key observables. Because of particle conservation, their tem-
poral evolution can be obtained from the particle flux ji−1 onto
site i and the one away from it, ji :

∂tρ
↑
i = j

↑
i−1 − j

↑
i ,

(1)
∂tρ

↓
i = j

↓
i−1 − j

↓
i .

The currents, j↑
i ,j

↓
i , contain correlations between neighboring

sites on the lattice. To find an analytic description, these
correlations have to be accounted for by a suitable closure
relation, e.g., by a mean-field approximation or a one-site
cluster approximation.

Stochastic simulations provide another route to gain insight
into the system’s behavior. In this section we first detail
the simulation algorithm, and then describe three classes of
behavior that emerge for different interaction strength.

A. Stochastic simulations

We have determined the system’s stationary state via
stochastic simulations with random sequential updating, using
the dynamic rules introduced in the previous section and
employing the Gillespie algorithm [41,42]. We have performed
time averages over about 105 time intervals, each containing
10 × L time steps and the lattice size is set to L = 1000. At
the left boundary, the reservoir dynamics is specified in terms
of the three parameters, ρ

↑
res,ρ

↓
res, and κ∗. Here, we restrict

the discussions to the case of relaxed reservoirs, where the
correlations in the reservoirs reflect the ones in bulk, which
is particularly illuminating and amenable to a theoretical
description. Then, the double occupation density can be
determined from the average densities, ρ

↑
res,ρ

↓
res according to

Eq. (A4) derived in the Appendix. In general, and apart from
boundary effects such as boundary layers, we found constant
density profiles in the system. To determine the corresponding
value of the average density in bulk for constant density
profiles, we only considered the 0.2 × L sites in the center
of both channels. Our simulations confirm to a large extent
the analytic approximations which are to be discussed in the
following sections.

B. Dependence on the interaction strength U

In the case of vanishing coupling, i.e., U = 0, the system
simply corresponds to two uncoupled TASEPs. In the presence
of obstruction, and thereby coupling between both channels,
this picture changes drastically upon increasing the effective
interaction strength. Our stochastic simulations show three
regimes of qualitatively different behavior, which are illus-
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FIG. 3. (Color online) Average bulk densities obtained by
stochastic simulations on the upper (red, gray) and lower lane (black)
for varying potential strength U . The parameters are ρ↑

res = ρ↓
res =

0.5, β↑ = 0.1, and β↓ = 0.3. Three regimes of qualitatively different
behavior emerge. In the first one (I) the system qualitatively behaves
like two uncoupled systems. In regime II, the density in the lower
channel strongly decreases, while the density in the upper channel is
still large. This nontrivial behavior is discussed in detail in Secs. IV
and V. In regime III, for strong coupling, the system behaves like a
one-channel TASEP.

trated in Fig. 3. In the following, we discuss these regimes,
and provide a mapping on TASEP for two of them.

1. Weak coupling

In the first regime (I), for small coupling strength U , the
system almost behaves like two uncoupled lanes, except for
the fact that the densities are slightly reduced. This regime
can be well described by a simple mean-field approximation,
where correlations between different lattice sites, i �= j ,
are neglected, 〈n↑(↓)

i n
↑(↓)
j 〉 ≈ 〈n↑(↓)

i 〉〈n↑(↓)
j 〉, or by a one-site

cluster approximation which is to be discussed in detail in
the following section. In this regime the phase behavior
qualitatively corresponds to the one already known from
TASEP. On a quantitative level, differences arise as the phase
transition lines are shifted compared to the uncoupled case.

2. Intermediate coupling

In regime II, the one of intermediate coupling strength, an
intriguing phase behavior emerges. For instance, for the set of
parameters shown in Fig. 3 , the density in the upper channel
remains rather undisturbed by the obstruction, while the one
in the lower channel drops to a comparatively small value.
The nontrivial behavior in regime II is caused by the influence
of the potential on the transport properties in bulk as well as
on the boundaries. Especially, the exiting current is strongly
influenced by the interaction potential resulting in smaller
densities at the right boundary than expected for uncoupled
systems. We rationalize this behavior in the following section.
Because the system operates far from equilibrium, this change
in the boundary conditions has a strong impact on the system.

Second, the transport properties in bulk also react sensi-
tively to the coupling. As discussed in detail in the following

031923-3



MELBINGER, REICHENBACH, FRANOSCH, AND FREY PHYSICAL REVIEW E 83, 031923 (2011)

section, this causes changes in the currents’ dependences on
the bulk densities for potentials larger than a critical strength
UC = ln 4 ≈ 1.4.

Furthermore, other intriguing phenomena, such as domain
walls between a low and a high density phase, are found.
Also, there exist phases where the system depends sensitively
on both boundaries, namely, the total current of the system
is fixed by the right boundary while the exact value of the
densities in bulk depends on the left boundary.

3. Strong coupling

A further increase in U leads to strong obstruction between
the lanes with new qualitative behavior. In this regime of
strong coupling (III) double occupancy of a site almost never
occurs due to the vanishing hopping rate e−U that would yield
this configuration. Therefore the transport properties of two
coupled channels is similar to a single-channel TASEP. This
mapping cannot always be performed if the boundaries are
reservoirs. It then only holds for the special case of small
reservoir densities. Otherwise correlations between the upper
and the lower reservoir are large. They are transported in
the bulk and there destroy the effective one-lane behavior.
Especially, the behavior shown in Fig. 3 would drastically
change, if the exiting rates β↑ = 0.1 and β↓ = 0.3 would be
replaced by the corresponding right reservoirs, namely the
description holding for regime II would then apply and the
bulk densities would not show the one-channel behavior.

Introducing the total density, τi = 〈n↑
i + n

↓
i 〉, and per-

forming the limit e−U → 0, which yields 〈n↑
i n

↓
i 〉 = 0, in the

expression for the currents [Eq. (A1)], one can identify the
following mean-field current-density relation, already familiar
from TASEP:

J = τ (1 − τ ). (2)

Due to the large potential in this regime, particles on different
lanes are not able to “overtake” each other. Hence the ratio of
the densities in both channels is fixed to the value given by the
reservoir densities at the left boundary,

ρ↑

ρ↓ = ρ
↑
res

ρ
↓
res

. (3)

In Fig. 3 we have used equal reservoir densities for the upper
and the lower lane, and as a consequence the bulk densities of
both lanes are equal.

The exact phase behavior can be determined by relating
the boundary conditions of the two-lane system to the
corresponding boundary conditions of the effective one-lane
TASEP, for which the exact phase diagram is known. For
reservoir densities ρ

↑
res,ρ

↓
res < 0.5, the effective entering rate is

obtained by simply adding both reservoir densities:

αeff = ρ↑
res + ρ↓

res. (4)

The effective exiting rate displays a more complex dependence
on the boundary processes because the individual exiting rates
influence the exiting current on both channels. To find a good
estimate of the effective exiting rate, we consider the average
time a particle spends on the last lattice site before it leaves
the channel. This time is the inverse of the corresponding
exiting rate. The weight of both waiting times is given by the

ratio of particles in the upper and lower lane. Hence a fraction
ρ

↑
res/(ρ↑

res + ρ
↓
res) of all particles spend 1/β↑ time units on the

last lattice site, and a fraction ρ
↓
res/(ρ↑

res + ρ
↓
res) of the particles

1/β↓ time units. The average time is the sum of both times
weighted with their frequency,

ρ
↑
res

ρ
↑
res + ρ

↓
res

1

β↑ + ρ
↓
res

ρ
↑
res + ρ

↓
res

1

β↓ ,

yielding the effective exiting rate,

βeff = (ρ↑
res + ρ

↓
res)β↑β↓

ρ
↑
resβ↓ + ρ

↓
resβ↑ . (5)

For reservoir densities ρ
↑
res,ρ

↓
res > 0.5, the double occupa-

tion density at the reservoir does not vanish and is transported
into the system. Hence the system can exhibit total densities
larger than one if its bulk behavior is determined by the left
boundary. In this case, the description we introduce below for
the regime of intermediate coupling applies.

IV. CURRENT-DENSITY RELATION

The interaction between neighboring particles directly
affects the transport properties of the system. The current’s
dependence on the bulk densities is very sensitive on the
coupling. Above a certain value the current-density relation
changes qualitatively resulting in a rich phase behavior as we
show in the following section.

A. One-site cluster approximation

With increasing coupling strength U , the occupation num-
bers of the same site on different lanes become more and more
correlated and a simple mean-field approximation fails. How-
ever, by employing a one-site cluster approximation we obtain
a valuable expression for the currents depending on the bulk
densities as demonstrated in [7]. To account for correlations
between the same site on different lanes, we introduce, besides
the single particle densities ρ

↑
i = 〈n↑

i 〉,ρ↓
i = 〈n↓

i 〉, the double
occupation density on site i, κi := 〈n↑

i n
↓
i 〉 as an additional

variable [43].
Then, the probabilities for the other three particle configu-

rations on site i, unoccupied or occupied by one particle either
on the upper or the lower lane, can be expressed in terms of
ρ

↑
i ,ρ

↓
i , and κi . We neglect all other correlations and employ

the standard decoupling approximation scheme there.
Assuming spatially homogeneous density profiles, the

currents on the upper and the lower lane can be expressed
in terms of ρ↑,ρ↓, and κ . The details of the calculations are
presented in the Appendix. We obtain

j↑ = ρ↑(1 − ρ↑) + μ,
(6)

j↓ = ρ↓(1 − ρ↓) + μ,

where ρ↑(↓)(1 − ρ↑(↓)) is the particle current known from
TASEP and μ = κ − ρ↑ρ↓ is the correlation correction
reducing the current compared to the case without any
coupling. Here, the double occupation density κ is the positive
solution of the quadratic equation,

0 = (1 − e−U )κ2 + [1 − (1 − e−U )ρ]κ − e−Uρ↑ρ↓, (7)
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where ρ = ρ↑ + ρ↓ is the total density. We will employ these
results in the following section within the framework of an
extremal-current principle to investigate the phase behavior as
a function of the coupling strength.

In agreement with the considerations in the previous
section, the double occupation density vanishes in the limit
U → ∞, while it simplifies to κ = ρ↑ρ↓ for U → 0. The
latter limit connects the one-site cluster approximation to the
simple mean-field approximation, which is accurate for small
potentials.

B. Dependence of the currents on the potential U

The current displays a sensitive dependence on the strength
of interaction, U . For small interaction strength, the currents
on each lane are almost independent of the density on the other
lane. Indeed, these currents are approximately parabolic with
respect to the density in the respective lane; see Fig. 4(a). The
maximal current on the upper channel j

↑
max occurs for ρ↑ =

1/2,ρ↓ = 0, and ρ↑ = 1/2,ρ↓ = 1 since the obstruction does
not affect the transport on the upper lane for these densities.
With an increase in the potential U , the particle flux decreases,
in particular, for densities around ρ↑ = ρ↓ = 1/2, as shown
in Fig. 4(b).

This behavior is also reflected in the total current as shown
in Figs. 4(c) and 4(d). For small potentials, the total current

ρ↑

ρ
↓

(a) Single-channel current, j↑,
for U = 0.3

ρ↑

ρ
↓

(b) Single-channel current, j↑,
for U = 2

ρ↑

ρ
↓

(c) Total current, J , for U = 0.3

ρ↑

ρ
↓

(d) Total current, J , for U = 2

FIG. 4. (Color online) Contour plots for the individual (top)
and the total current (bottom), depending on the bulk densities, for
U = 0.3 (left) and U = 2 (right) using Eq. (6). In gray scale, black
corresponds to vanishing current, and white to the respective maximal
currents j↑

max,Jmax. The colored (gray) contour lines indicate currents
of value 0.95 · j↑

max and 0.95 · Jmax (red), 0.8 · j↑
max and 0.8 · Jmax

(blue), 0.5 · j↑
max, and 0.5 · Jmax(green), 0.3 · j↑

max and 0.3 · Jmax

(orange) from inside to outside. Increasing the obstruction strength,
the single maximum splits into two, separated by a saddle. The
transition happens at a critical value of the interaction, UC = ln 4 ≈
1.4.

in bulk displays a single maximum located at ρ↑ = ρ↓ = 1/2;
see Fig. 4(c). In this regime the potential only affects the value
of the maximum but not its position, i.e., it does not change
the topology of the phase diagrams. Beyond a critical value
of the potential, UC = ln 4 ≈ 1.4, the total current displays
a qualitatively different behavior, as has been described in
Ref. [7]. At the critical value, two maxima separated by
a saddle evolve in the current-density relation for the total
current; see Fig. 4(d). The location of these maxima is
evaluated in the Appendix. Upon further increasing U , the
maxima move apart. In the limit of large potentials two
elongated maxima evolve and the saddle becomes a valley
located at ρ↑ = 1 − ρ↓. The bimodal structure leads to a richer
phase diagram than in the weak coupling regime, U < ln 4.
Similar extrema in the currents were found previously for one-
channel systems, e.g., when next-nearest-neighbor interactions
are taken into account [44].

C. Influence of the potential U on the right boundary

At the right boundary (i = L) exiting rates control the
currents out of the system:

j
↑
EX = β↑ρ

↑
L,

(8)
j

↓
EX = β↓ρ

↓
L.

These currents are either determining the system or are virtual
currents which are important for predicting the phase behavior
in the system as explained in the following section. If these
exiting currents also set the bulk currents, i.e., if j↑ = j

↑
EX

and j↓ = j
↓
EX, we can compute the bulk densities (which then

equal the densities at the right boundary) depending on the
exiting rates via Eq. (8). The densities at the right boundary
also play a key role for determining the phase diagrams, as we
will see below. For a small coupling strength, we find ρ↑(↓) ≈
1 − β↑↓, as familiar from TASEP. The transport properties
change rapidly when repulsion between particles increases. In
particular, for potentials larger than UC the double-maxima
structure of the bulk current comes into play and causes a
discontinuous dependence of the bulk density on the exiting
rates. Such a jump in the densities is exemplified in Fig. 5 for
the case of equal exiting rates.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

FIG. 5. The dependence of the bulk densities, ρ↑ = ρ↓, on equal
exiting rates β↑ = β↓ for systems determined by the right boundary.
It is obtained by evaluating Eq. (8). The interaction strength U = 3.0
is above the critical value UC.
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V. PHASE BEHAVIOR

The system’s phases depend on the boundary conditions as
well as on the strength of internal obstruction. In the following,
we employ the extremal-current principle to evaluate the
analytic expressions for the currents obtained in the previous
section to get insight into the phase behavior. We then discuss
these phases and point out some special features arising from
the coupling.

A. Extremal-current principle

The extremal-current principle (ECP) often governs the
phase behavior of driven diffusive systems [13,44,45]. So
far the ECP has only been established for one-dimensional
systems. Here we describe a two-dimensional generalization
and show that it successfully describes the phase behavior
of our two-lane model. We start with a short description of
the standard one-dimensional ECP, and then extend it to two
coupled lanes.

The ECP for transport on a single lane can be formulated
by considering two characteristic velocities. The first is the
collective velocity, vc = ∂j/∂ρ, which reveals information of
the stability of a given bulk density ρ against perturbations:
only densities with vc = 0 (as well as those determined
by the boundaries) are stable. The second quantity is the
shock velocity vs = [j (ρ1) − j (ρ2)]/(ρ1 − ρ2) that gives the
direction in which a domain wall between two densities,
ρ1 and ρ2, travels. In this way, vs determines which of
both densities, ρ1 or ρ2, dominates. To find the system’s
bulk density, it therefore suffices to first identify the stable
densities, using the collective velocity, and then, by pairwise
comparison via the shock velocity, single out the bulk density.
These considerations are summarized by the extremal-current
principle:

j = max
ρ∈[ρ+,ρ−]

j (ρ) for ρ+ > ρ−,

(9)
j = min

ρ∈[ρ+,ρ−]
j (ρ) for ρ+ < ρ−,

where ρ+ is the density at the left boundary, and ρ− is the
density at the right boundary. Hence the system is either
determined by the entering or exiting current or by an extremal
current corresponding to a density in between the boundary
densities.

On two coupled lanes, the currents in bulk are generically
influenced by both lanes. We therefore have to consider the
dependence of the currents on both ρ↑ and ρ↓. As in the
one-dimensional case, either the maximal or the minimal
(total) current (see Fig. 6, blue and green area) determines
the transport in the system, and the velocities vc and vs govern
which of both scenarios is realized. However, in order to decide
which of both cases applies it is no longer sufficient to compare
the densities at the boundaries. Because of many potentially
conflicting cases a rigorous derivation of the ECP provides a
considerable challenge. We have, however, observed that the
following intuitive version of the ECP describes our model’s
phase behavior in the full parameter space.

In the one-dimensional ECP an extremal current belonging
to a density in the interval determines the system. In the two-
dimensional scenario the interval is replaced by a rectangle

 0

 1

 0  1

1 2

3 4

FIG. 6. (Color online) Contour plot of the total current, depending
on the bulk densities. The bulk densities emerging for special values of
equal reservoir densities (ρ↑

res = ρ↓
res), namely continuously increasing

from 0 to 1, are displayed as black dots. The other parameters are
β↑ = β↓ = 0.3 and U = 3.0. The red contour line corresponds to the
total exiting current as emerges if the right boundary determines the
bulk densities. It marks the transition from the minimal (blue area,
lower left corner) to the maximal (green area, upper right corner)
current principle and two phase transitions. In the lower left corner
the system is in the IN/IN phase, crossing the red contour line it enters
the EX/EX phase. Upon further increase in the reservoir densities the
IN/IN phase is reached again in the upper right corner, before the
MC/MC phase arises where the densities are limited by the bulk
properties.

bounded by the boundary densities, (ρ↑
L,ρ

↓
L) and (ρ↑

res,ρ
↓
res).

Depending on the boundary conditions either the minimal or
the maximal current gives the bulk currents. The currents,
which have to be considered are the entering and the exiting
current or a mixture of both, i.e., one lane is determined by the
left while the other one is determined by the right boundary.
The exiting current can be calculated by equating Eqs. (6) and
(8) with Eq. (7). For the specific example U = 3,β↑ = β↓ =
0.3, the corresponding contour line of the current-density
relation consists of several disjoint lines; see Fig. 6 where the
red line has four parts which are denoted as 1, 2, 3, and 4. Then,
the part that includes the point (ρ↑

L,ρ
↓
L) marks the boundary

where the maximal or minimal current is selected. In the
example discussed here this boundary is given by line 2 in
Fig. 6. The extrema to be considered for the ECP are located
at the boundary of the rectangle given by (ρ↑

L,ρ
↓
L) (ρ↑

res,ρ
↓
res),

or at the extremum on the rectangle. This extremum can be
inside the rectangle or also at its boundary.

To illustrate the extremal-current principle we consider
a path where the reservoir densities are gradually increased
along the diagonal ρres = ρ

↑
res = ρ

↓
res for fixed exiting rates and

interaction strength. Even though we choose this path as an
example, our results hold for arbitrary boundary conditions
as exemplified in the following. Figure 7 displays the bulk
densities and the phase transitions that occur. For small
reservoir densities the minimal current is selected, which is
given by the left reservoirs there. Upon crossing the current
contour line (1) for the first time, the left reservoir current
is larger than the exiting current, and transport is determined
by the exiting rates. Crossing the contour line that includes
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FIG. 7. (Color online) Average bulk densities for increasing
reservoir densities ρres = ρ↑

res = ρ↓
res. The parameters are set to β↑ =

β↓ = 0.3 and U = 3; the situation corresponds to Fig. 6. The phases
introduced here are discussed in Sec. V B. Red (gray) circles denote
simulation results; black lines correspond to analytical predictions
from the ECP.

the point (ρ↑
L,ρ

↓
L) (line 2), does not give rise to a phase

transition, since now the maximum current determines the
bulk current. In this domain the exiting current is larger than
the left reservoir current. The next phase transition happens
when the current at the left boundary exceeds the exiting
current. Again, the phase transition occurs at a segment of the
red contour line (line 3). Upon a further increase, the second
maximum of the current-density relation is reached, and the
maximal-current phase is entered. For reservoir densities larger
than (ρ↑

I ,ρ
↓
I ), i.e., for the maximum bulk current, see Eq. (A6)

in the Appendix, a maximum current is attained.

B. Phases

As discussed above the system either adopts its minimal
or maximal current, depending on the boundary conditions.
These extremal currents can be either given by one boundary or
by an extremum of the current-density relation itself. Hence we
can distinguish two classes of phases in the system, boundary-
and bulk-induced phases. The first one is highly sensitive to
small changes in the boundary conditions, while in the latter
one the densities are determined by the bulk properties and do
not depend on the entering and exiting parameters.

1. Boundary-induced phases

The boundary-induced phases depend either on the enter-
ing or exiting processes, and we consequently differentiate
between IN and EX phases. In our model, we employ particle
reservoirs at the left boundary, but exiting rates at the right
one. As a consequence the left and the right boundary influence
the bulk densities in qualitatively different ways. Indeed, in
the case where both lanes are determined be the left boundary
(IN/IN phase), the bulk densities are given by the reservoirs
densities, ρ↑ = ρ

↑
res,ρ

↓ = ρ
↓
res. In contrast, if a system is in the

EX/EX phase, only the total current is fixed to the value given
by the right boundary, whereas the bulk densities also depend
on the reservoir densities at the left boundary, for ρ

↑
res <>ρ

↓
res

holds ρ↑ �
>ρ↓. Further mixed phases (IN/EX or EX/IN) may

 0

 0.25

 0.5

 0.75

 1

 0  0.2  0.4  0.6  0.8  1
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ρ↑res.

IN/IN EX/IN

FIG. 8. (Color online) Average bulk densities for different upper
reservoir densities ρ↑

res. Parameters are ρ↓
res = 0.02, β↑ = β↓ = 0.3,

U = 3.0. If both reservoir densities are small, the system is in the
IN/IN phase where both bulk densities are given by the reservoirs.
This changes for larger ρ↑

res. While the lower lane is still determined
by the left boundary, the upper lane is governed by the right boundary
(EX/IN phase).

become relevant where the current on one lane is determined
by the left boundary and the current on the other is fixed by
the exiting current.

The IN/IN and the EX/IN phase are exemplified in Fig. 8
where we show the average bulk densities depending on the
upper reservoir density ρ

↑
res. Parameters are chosen such that

a transition from the IN/IN to the EX/IN phase emerges at
a certain value of ρ

↑
res. Only in the IN/IN phase do the bulk

densities vary when changing the upper reservoir density ρ
↑
res;

in the EX/IN phase they are almost undisturbed by changes in
ρ

↑
res.

2. Bulk-induced phases

In the bulk-determined phases, the current is given by an
extremum of the current-density relation. Here we restrict the
discussion to the case where a maximum occurs (MC phase),
yet one can find parameter regions where a saddle fixes the
phase behavior [40].

In the maximum-current phase a localized domain wall
can emerge, separating a high-density regime at the left and
a low-density regime at the right; see Fig. 9. This scenario,
previously found in Ref. [13], occurs if both maxima (ρ↑

I ,ρ
↓
I )

and (ρ↑
II ,ρ

↓
II ), Eq. (A6) in the Appendix, are accessible. Each

domain along the lane then corresponds to one of the maximal
currents. In particular, the current is continuous at the domain
wall. In Fig. 9, the reservoir density at the left boundary is
larger than the density corresponding to the second maximum,
while the density at the right boundary is smaller than the den-
sity corresponding to the first maximum. Hence in the vicinity
of each boundary the density which is closer to the respective
boundary density arises. Depending on the exact values of
the boundary densities, the domain wall is located between
the left hand side and the middle of the system. Increasing
the reservoir densities the domain wall moves further to the
right. In Fig. 7, the MC/MC phase is shown for symmetric
boundary conditions. The black line denotes the analytically
obtained density corresponding to the second maximum of the
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FIG. 9. Density profile of a state exhibiting maximal current.
The parameters are ρ↑

res = ρ↓
res = 1, β↑ = β↓ = 1, U = 3.0, and L =

1000. The current remains spatially constant while the density shows
a high value at the left and a low value at the right. Both densities
correspond to maxima in the current-density relation, ρI ,ρII . An
unusual localized domain wall forms between them; see text.

current density relation. It is in excellent agreement with the
simulation results.

C. Phase diagrams

Employing the extremal-current principle, the phase di-
agrams can be characterized completely also for unequal
boundary densities.. As described above, there exist several
phases which are either determined by the boundaries or by the
bulk transport properties of the system. According to the ECP
the phase transition lines are given by equating the entering
and exiting currents or by the structure of the current-density
relation. The bulk current dominates if the maximum on the
rectangle bounded by the corners (ρ↑

res,ρ
↓
res), (ρ↑

L,ρ
↓
L) is not

given by either of these points. It is clear that a transition from
a left-reservoir or right-exiting-currents dominated phase to
a maximum-current phase can emerge only if the extremum
traverses the boundary of the rectangle considered. Further
transitions to an IN/EX and EX/IN phase are identified
using again the extremal-current principle employing con-
tour lines corresponding to the total current in the mixed
phases.

In Fig. 10 we exemplify a phase diagram depending on
unequal reservoir densities. The exiting rates are fixed to
β↑ = β↓ = 0.3 and the potential is set to U = 3, a value
where the current-density relation shows two maxima. The
parameters are identical to the ones of Figs. 6 and 7. In Fig. 10,
the stochastic simulations (red dots) are in good agreement
with the analytic calculations (black lines). Because the latter
ones were obtained employing the ECP also for unequal
reservoir densities, the strength and generality of the ECP can
be confirmed. Due to the symmetry between both lanes, the
phase diagram is symmetric along its diagonal, ρ

↑
res = ρ

↓
res.

In the lower left corner, where both reservoir densities are
small, both channels are determined by the entering current
(IN/IN phase). Increasing only one reservoir density, the
minimal current is no longer given by the entering current
on the respective lane. Hence the system reaches the EX/IN

FIG. 10. (Color online) A generic phase diagram with the
reservoir densities as control parameters. The exiting rates are fixed
to β↑ = β↓ = 0.3 and the interaction strength is set to U = 3.0.
The red (gray) dots denote simulation results of the transition lines,
while the black lines are calculated employing the ECP. Besides the
combinations of phases which are determined by entering or exiting
currents, phases which do not exist for U < ln 4 are also present.
Namely, a second IN/IN phase, which exhibits a high density, and the
MC/MC, where the maximal current determines the bulk densities,
occur.

phase (IN/EX phase). The phase-transition lines between the
IN/IN and IN/EX phase, as well as the ones between the IN/EX
and the EX/EX phase, are given by contour lines of the current
on an individual lane, Eq. (6). In the middle of the phase
diagram, both channels are determined by the exiting currents.
As mentioned above, only the total current is fixed in this
phase, in contrast to the bulk densities which also depend on
the reservoir densities at the left boundary. The dotted line
marks the region where the bulk densities on both channels
are equal. On this line the bulk densities can be calculated
employing Eq. (8). For a further increase in the reservoir
densities, the IN/IN phase arises again where the bulk currents
as well as the bulk densities are given by the left boundary.
This phase would not arise if we had chosen entering rates,
rather than particle reservoirs, at the left boundary, because
boundary densities larger than 1/2 would then not emerge. In
our case, such large densities cause currents larger than the
entering current. These dominate the system according to the
extremal-current principle. For even larger reservoir densities
the crest of the current-density relation, which marks the phase
transition from the IN/IN to the MC/MC phase, is reached,
and the bulk densities remain constant at the values where the
second maximum is located.

VI. SUMMARY AND CONCLUSION

In this paper we have examined a driven two-channel
model where the motion of particles along both channels
is coupled via a repulsive short-range interaction. The latter
causes intriguing phenomena and phases. Varying the strength
of particle obstruction, three regimes of qualitatively different
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behavior evolve. First, for small coupling the system approx-
imately acts as two uncoupled lanes, i.e., the phases and
phase diagram qualitatively correspond to the ones already
known from TASEP. These results can be confirmed by
employing a simple mean-field approach or a one-site cluster
approximation. Second, for moderate interaction strength the
transport properties of the system are strongly influenced by
the obstruction between neighboring particles. This regime
emerges around a critical interaction strength, UC = ln 4 [7],
where a single maximum of the current-density relation splits
into two, separated by a saddle. Third, when the obstruction is
large, the two coupled lanes effectively behave as a single one.
In this case, we have identified a mapping from the parameters
governing entering and exiting processes in our system to
effective rates for a single-lane TASEP. This mapping then
allows us to carry over known results from TASEP, such as its
phase diagram. Hence for different strengths of the obstruc-
tion a variety of peculiar phases surface which can be
accessed by manipulating the system at the boundary only. The
boundary-sensitive phases respond gradually upon tuning the
left reservoir or the exiting rates, whereas the maximal-current
phase is robust against such changes.

In contrast to previous work [7], we explicitly investigated
the two-channel system with a broken lane symmetry. We
thereby followed the proposition in [7] that the ECP might be
generic for multichannel system. As a key result we indeed
derive a suitable generalization of the ECP to two dimensions.
We thereby approve that not the densities but the currents
govern the transitions between the minimal and the maximal
current principle, a distinction that cannot be made within
one-dimensional or symmetric situations. The accuracy with
which the system’s phase behavior can be predicted with
our two-dimensional ECP is astonishing and suggests it for
further applications. In further contrast to [7] we specifically
investigated the dependence on the potential U . For small
potentials the system’s behavior is not sensitive on whether
reservoir or rates are chosen at the boundaries. However, for
intermediate and large potentials, reservoirs or rates at the
boundaries make a difference. For example, the system does
not behave like a one-channel system for large potentials if
reservoirs are chosen instead of rates at the right boundary,
as has been done in [7]. Because we employ exiting rates
at the right boundary, we observe interesting effects such as a
strong impact of the potential U on the exiting current (Fig. 5),
and two transitions instead of one in the bulk densities upon
increasing U (Fig 3).

It would be interesting to consider also lane changes
(respectively, spin flips) of the particles as they proceed along
the channel. Such events are expected in realistic applications
such as intracellular transport, highway traffic on multiple
lanes, or hopping transport of electrons through a chain of
quantum dots. The correlations induced by frequent lane
changes [32,46], ignoring mutual obstruction, are accurately
described by a one-site cluster approximation similar to the one
we employed. Yet, for rare lane changes a simple mean-field
approximation suffices to describe the arising localized domain
walls [12]. The combination of obstruction, lane switching,
and possibly also defects constitutes a promising route to
discover novel and unexpected collective phenomena in driven
transport.

In conclusion, we have shown that the ECP can be
generalized to higher dimensions to serve as an appropriate
tool for the investigation of driven multichannel systems. We
therefore think that extremal-current principle is a promising
starting point to achieve a deeper understanding of complex
transport phenomena.
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APPENDIX: CURRENT-DENSITY RELATION

In this Appendix, we derive an analytic description for the
current-density relation within a one-site cluster approxima-
tion. The individual currents onto a site i can be obtained be
evaluating the particle fluxes onto this site,

j
↑
i = 〈e−U (n↑

i−1 − n
↑
i−1n

↓
i−1)(n↑

i − n
↑
i n

↓
i )〉

+ 〈(n↑
i−1 − n

↑
i−1n

↓
i−1)(1 − n

↑
i − n

↓
i + n

↑
i n

↓
i )〉

+ 〈n↑
i−1n

↓
i−1(1 − n

↑
i )〉, (A1)

and similarly for j
↓
i . This expression is evaluated employing

the one-site cluster approximation discussed in Sec. IV A.
The essence of the approach consists of considering all
four possible states of the two opposing sites, whereas all
correlations between neighboring sites are factorized. Thus a
complete description is achieved in terms the mean double-
occupation density κi = 〈n↑

i n
↓
i 〉 besides the average densities

ρ
↑
i = 〈n↑

i 〉 and ρ↓ = 〈n↓
i 〉. Then the closure relation for the

currents is derived,

j
↑
i = e−U (ρ↑

i−1 − κi−1)(ρ↑
i − κi)

+ (ρ↑
i−1 − κi−1)(1 − ρ

↑
i − ρ

↓
i + κi)

+ κi−1(1 − ρ
↑
i ). (A2)

Similar to Eq. (A1), the time evolution for the double-
occupation density κi involves averages of products of occupa-
tion variables ni . Within the same truncation of the hierarchy,
one finds

∂tκi = e−U (ρ↑
i−1 − κi−1)(ρ↓

i − κi)

+ e−U (ρ↓
i−1 − κi−1)(ρ↑

i − κi)

+ κi−1(ρ↑
i + ρ

↓
i − 2κi)

− κi(2 − ρ
↑
i+1 − ρ

↓
i+1). (A3)

In the steady state and for spatially homogeneous density
profiles, the double occupation density κ obeys a quadratic
equation with solution

κ = λρ − 1 +
√

(λρ − 1)2 + 4λ(1 − λ)ρ↑ρ↓

2λ
. (A4)

Here, λ = 1 − e−U corresponds to the inverse dwell time in
the obstructed case and ρ = ρ↑ + ρ↓ to the total density.
Combining this result with the closure relation for the current,
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Eq. (A2), the closed expression for the current-density relation
follows,

j↑ = ρ↑(1 − ρ↑ − ρ↓) + κ,
(A5)

j↓ = ρ↓(1 − ρ↑ − ρ↓) + κ.

The total current J = j↑ + j↓ displays a single maximum
for small interactions U located at ρ↑ = ρ↓ = 1/2. This

maximum is replaced a saddle for strong coupling and two
maxima of equal height appear on the diagonal. These new
maxima are located at

ρ
↑
I,II = ρ

↓
I,II = 1

2
±

√
1 − 5e−U + 4e−2U

4(1 − e−U )
. (A6)

These solutions are only real for potentials larger than the
critical value, UC = ln 4.
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5 Length-Dependent Regulation

In the previous chapter, the basic biological and physical properties of molecular motors
interacting with MTs were summarized. In this chapter, we focus on these motors acting
as depolymerases or polymerases. Their influence on the MT length plays a key role for
cell division. In the following, we concentrate on two specific proteins, the depolymerase
Kip3p and the polymerase XMAP215. We briefly summarize recent experimental findings
concerning their interactions with MTs. Then, we introduce a model combining molecular
traffic on MTs with the length-dynamics arising from polymerases and depolymerases. We
validate this model by comparing it to experimental results which were obtained without
polymerization. Finally, we discuss the interplay between depolymerization and polymeriza-
tion dynamics [301]. We there especially focus on the scenarios where a well-regulated length
is achieved.

5.1 Experimental Findings

In vivo experiments show that the presence of certain proteins interacting with MTs is crucial
for cell division and affects nucleus positioning as well as the mitotic spindle [27, 302, 28,
29, 30]. A common explanation is, that this originates from proteins facilitating length-
regulation of MTs through which cell division is supported. Up to the present, a multitude of
these proteins were discovered, for an overview see [240]. Their importance is also confirmed
by computer simulations, which show that length-regulation is crucial to optimize nucleus
positioning during interphase [303]. In order to gain a deeper molecular understanding for
the underlying mechanisms, in vitro experiments were performed [31, 32, 33, 34]. In these
experiments, only a few selected proteins and their interactions with the MT and among
each other were investigated. In addition, also theoretical models were employed to describe
dynamic length changes caused by directed or diffusing depolymerases [304, 305, 306].

XMAP215 - A Polymerizing Protein

Concerning polymerizing activity, the microtubule associated protein XMAP215 is a well-
studied example [307, 27, 256, 308, 33]. In vivo and in vitro experiments display that this
protein enhances growth of MTs. An up to tenfold enhancement of the growth speed was
observed in vitro. However, the exact mechanism causing polymerization is still not resolved.
Recent studies indicate that XMAP215 surfs on the MT tip where it processively polymerizes
the MT, while older studies argue that it acts as a template and thereby adds several tubulin
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A B

Figure 5.1: Experimental kymographs of the MT length versus time as measured by Varga et al. [34].
Depending on the length three different regimes can be distinguished: (i) initial accu-
mulation, (ii) exponentially decreasing MT length, and (ii∗) constant depolymerization
speed.

dimers at the same time [309]. In other polymerizing proteins also treadmilling1 was found
to be the mechanism, i.e. particles attach at the tip where they facilitate polymerization and
detach afterwards [310, 257]. In contrast to other TIP+ proteins, XMAP215 is not a motor
but diffuses on the MT as well as in the cytosol to reach the tip.

Kip3p - A Depolymerizing Motor

Several experiments observing the interplay of depolymerases with MTs showed, that the de-
polymerization speed is length-dependent, i.e. longer MTs depolymerize faster than shorter
ones [32, 29, 30, 34]. Understanding this length-dependent speed might be an essential step for
uncovering the mechanisms behind length-regulation. In experiments of Varga et al. [32, 34],
kinesin-8 from budding yeast, Kip3p, was investigated. This motor and its homologs show
depolymerizing activity [311, 28, 312]. To purify the findings from effects of dynamic in-
stability, the MTs where stabilized to inhibit catastrophes. Fluorescently labeled motors
were employed to study the motor density governing length-dependent depolymerization. In
Fig. 5.1, typical kymographs, i.e. the MT length versus time, are shown. In general, shorter
MTs depolymerize slower than longer ones, but depending on the parameters the depolymer-
ization behavior can also be described in more detail: For small motor concentrations in the
surrounding, the MT length decays exponentially (ii) after a short initialization time (i), see
Fig. 5.1A. For larger concentrations an additional regime comes into play, where the MT has
a constant depolymerization speed (ii∗), cf. Fig. 5.1B. But also for these concentrations, the
MT length decays exponentially below a certain length (ii). Taken together, the experiments
revealed that, depending on the MT length and the motor concentration, which triggers the
motor density on the MT, the depolymerization speed alters. In addition, also other quanti-
tative measurements were performed to further clarify the role of depolymerizing motors. For

1The term treadmilling is ambiguous. It is also and more frequently used to describe the following movement
mechanism of filaments. Their constituents detach at one side of the filament and attach at the opposite
side.
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example, the question whether depolymerization happens processively was addressed. In this
context, processive means that motors stay at the plus end after depolymerizing a tubulin
dimer. Experiments measuring the stoichiometry [34] indicate the non-processive scenario.
In addition, quantities as the end-residence time of motors at the last site and the particle
flux were measured. The main findings of these measurements in Ref. [34] are:

• The end-residence time of Kip3p at the tip of the MT depends on its concentration
in the surrounding media. This finding indicates that depolymerization happens coop-
eratively, i.e more than one motor is needed to cause a depolymerization event. For
non-cooperative depolymerization, the end-residence time would not depend on the
motor concentration.

• The end-residence time is the inverse of the macroscopic depolymerization speed.

• The macroscopic depolymerization speed is directly proportional to the particle flux
towards the tip.

5.2 Depolymerization

To gain further understanding of the experimentally observed depolymerization dynamics, we
employ a stochastic model. As shown in Fig. 5.2, we extend the TASEP/LK model, discussed
in the previous chapter, with a dynamic right boundary. The model consists of a lattice of

ωd
δ0

δ1

ν
c
ωa

non-cooperative

cooperative

Figure 5.2: Illustration of the model including depolymerization and crowding effects. Particles attach
and detach at rates ωa = cω̃a and ωd, respectively. In bulk, they move unidirectionally
to the right provided the next site is empty. At the right boundary particles leave the
lattice coincidentally removing the last lattice site (indicated by scissors). This can either
happen non-cooperatively (only one particle is involved) or cooperatively (two particles
are needed) at rates δ0 and δ1, respectively.

size L with occupied or empty sites, ni ∈ {0, 1}. On the lattice particles can move to the right
provided the next site is empty. Again we set the hopping rate to ν = 1. This corresponds to
a rescaling of time with the basic time unit τ = 1/ν. In addition, motors (particles) attach
at rate ωa = cω̃a and detach at rate ωd. The factor c in the attachment rate corresponds to
the proportionality of this rate to the motor concentration in the surrounding. As binding
to and unbinding from the MT happen on larger time scales than hopping events [32], we
consider the biological relevant scenario of weak kinetics, ωa � 1 and ωd � 1, in the following.
In contrast to standard TASEP-like models, the length of the lattice, L , is not fixed, but
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Figure 5.3: Kymographs from our stochastic simulations corresponding to the ones measured in ex-
periments for the motor concentrations: c = 1.1, 1.7, 2.6 and 5.8 nM (A, B, C, D) and
fixed depolymerization rates δ0 = ν and δ1 = 0. The other parameters are extracted
from Ref. [34] and are given by τ = ν−1 = 0.16 s, ωa ≈ 5.3 × 10−4 nM−1site−1 τ−1 and
ωd ≈ 7.6 × 10−4site−1 τ−1. Individual trajectories of molecular motors are shown in
green, MTs in red. For low concentrations, c < 1.4 nM, depolymerization slows down
gradually [34]. At higher concentrations, c > 1.4 nM, there is a rather abrupt change in
depolymerization speed, from linear to exponential. This change is correlated with a steep
decrease in the motor density (DW), indicated as white dashed lines.

shrinks in the presence of motors. In the non-cooperative scenario, a single motor is sufficient
to depolymerize a tubulin dimer at rate δ0. In contrast, for cooperative depolymerization, a
tubulin dimer is only removed at rate δ1 after another particle has arrived at the second to
last site. The total depolymerization rate is therefore given by,

∆ = δ0nL + δ1nL−1nL . (5.1)

Consequently, the macroscopic depolymerization speed depends on both depolymerization
rates, δ0 and δ1, and the particle configuration at the tip,

∂tL = Vdepol = − (δ0ρ+ + δ1κ+) . (5.2)

Here ρ+ := 〈nL〉 is the probability that the last site is occupied, and κ+ := 〈nL−1nL〉 denotes
the probability that both the last and second to last site are populated.

As stated in the previous chapter, the density in the TASEP/LK model increases approx-
imately linearly at the left-hand side of the system before it saturates to the value ρLa at
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`−, see Fig. 4.7. This gives rise to the observed length-dependency: For small MT length,
the density increases linearly triggering the depolymerization speed. Therefore, shortening
of the MT reduces the motor density at the tip and slows down the depolymerization speed.
Calculating this in detail leads exactly to the observed exponential shortening. In contrast,
if the MT is longer than `− initially, the Langmuir density is present at the tip. Shortening
does not result in a change of this density as long as `− is not reached. In this regime, the
depolymerization speed is constant. For a more detailed discussion see the paper at the end
of this chapter. Importantly, depolymerization dynamics are strongly influenced by micro-
scopic traffic jams arising at the tip. As other models excluded crowding or studied parameter
regimes where it is unimportant, they could not observe these crowding phenomena which
lead to length-dependent depolymerization dynamics [304, 305].

The length-dependent polymerization speed is also reflected in the kymographs of our model
which were obtained via stochastic simulations, see Fig. 5.3. Note, that all parameters of
the model were directly extracted from measurements and no fitting parameter is involved.
The different concentrations result in different Langmuir densities and different slopes at the
initial accumulation phase. The parameters used in Fig. 5.3A and 5.3B correspond to the
experimental data shown in Fig. 5.1. Both, the time scales as well as the existence of a
length-dependent and a constant speed regime agree nicely with our results. In Fig. 5.3C and
5.3D even higher motor concentrations are shown where the difference between both regimes
is more pronounced.

The manuscript in Sec. 5.4 provides a more detailed description of our findings regarding
length-dependent depolymerization, the effect of cooperativity and bottlenecks causing mi-
croscopic traffic jams.

5.3 Depolymerization and Polymerization

Despite the fact that molecular motors depolymerize MTs, also polymerization is present,
see Sec. 4.1. Single tubulin dimers diffusing in the cytosol attach to the MT plus end and
thus increase its length. This polymerization can also be catalyzed by molecular motors,
like XMAP215, which diffuse along the MT. The antagonism between polymerization and
length-dependent depolymerization can in principle lead to a well-defined MT length [301].

According to the previous section, we model such MTs with a one dimensional lattice, see
Fig. 5.4. We extend the model accounting for shrinkage by polymerization happening at rate
γ. We study two possible scenarios for this growth process at the right boundary correspond-
ing to the MT tip. First, in the exclusive scenario, polymerization events only take place if
the tip is not occupied by a depolymerizing motor. This accounts for depolymerizing motors
which hinder polymerization, e.g. because they slightly buckle the filaments at the plus end or
shield the tip. Second, we consider the non-exclusive scenario where polymerization may also
happen when the last site is occupied, see Fig. 5.4. In recent studies, the effect of polymeriza-
tion dynamics triggered by motor proteins was investigated without taking depolymerization
into account; these models apply to hyphal growth in fungi [313, 314].

One of our aims is to uncover the macroscopic consequences of the microscopic differences
between exclusive and non-exclusive depolymerization. We thereby want to suggest new
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experiments which help to clarify whether polymerization happens exclusively, non-exclusively
or as a mixture of both. Further, as mentioned above, the ability of length-regulation is
crucial for the biological functioning of processes like cell division. We want to answer how
this length-regulation works and why it is such robust. Therefore, we first discuss both, the
exclusive and the non-exclusive scenario, separately focussing on the mechanisms triggering
the MT length. Finally, both scenarios are compared.

5.3.1 The Exclusive Scenario

The dynamics of the MT length is determined by the particle density at the plus end, ρ+,
which triggers depolymerization and polymerization,

∂tL = −δρ+ + γ(1− ρ+). (5.3)

The critical density, ρc+, which separates the regimes of MT growth and shrinkage, follows
from ∂tL = 0,

ρc+ =
γ

γ + δ
. (5.4)

For ρ+ < ρc+ the MT grows, while it shrinks for ρ+ > ρc+.

Consequently, the tip density has to be calculated to determine whether the MT is in a growth
or shrinkage state. It strongly depends on the right hand side boundary, i.e. the rates δ and γ,
and the incoming particle flux JIN = ρ(x) (1− ρ(x)). To simplify our calculations, we neglect
the spatially non-trivial density profiles arising in the TASEP/LK for the moment. Instead,
we study a simplified model where the Langmuir density, ρLa, is adjusted at the left hand
side of the system2. This enables us to predict the depolymerization behavior depending on
a fixed bulk density. In Sec. 5.3.3, the results obtained in the simplified model are extended
to the full model where particles accumulate at the left boundary (antenna profile) and then
reach the density ρLa.

The analysis of the tip density is performed in a comoving frame: The frame of observation
moves with the MT tip such that a polymerization event corresponds to the movement of

2For the TASEP/LK model introduced in the previous chapter, this corresponds to α = ρLa.

ωd
δ

ν
c
cωa

γ

Figure 5.4: Illustration of the model including depolymerization and exclusive polymerization. The
model shown in Fig. 5.2 is extended by exclusive polymerization, i.e. tubulin dimers can
attach at rate γ if the tip is free from motors.



5.3 Depolymerization and Polymerization 103

ωd
δ

ν
c
cωa

γ

Figure 5.5: Illustration of the model including depolymerization and non-exclusive polymerization.
In contrast to the exclusive model shown in Fig. 5.4, tubulin dimers attach at rate γ
independently of the tip occupancy.

all particles to left, while depolymerization causes all particles to hop to the right, for an
illustration see Fig. 5.6. This simplifies our calculations as the tip triggering the dynamics is
static in this frame. The time evolution of the tip density is then given by,

∂tρ+ = ρB(1− ρB)︸ ︷︷ ︸
particle current

− γ(1− ρ+)ρB︸ ︷︷ ︸
frame shift, left

+ δρ+ρB︸ ︷︷ ︸
frame shift, right

− δρ+︸︷︷︸
ex. current

. (5.5)

The first term corresponds to particles hopping to the right if the next site is empty, the
particle current. The second and third term arise due to frame shifts caused by polymerization
and depolymerization events, respectively. The last term is the exiting current for particles
leaving the system at the right boundary. The bulk density, ρB, is either given by the left
boundary ρLa for ρLa < ρmax or ρmax, the density causing the maximal current. This can be
understood intuitively: If the number of particles entering the system exceeds its transport
capacity, a jam at the left boundary arises. This leads to a reduction in the number of entering
particles till exactly ρmax is reached. For simplicity, we only consider bulk densities smaller
than the maximal density in the following. A more detailed discussion of the consequences
of the maximal current is presented for the non-exclusive scenario, Sec. 5.3.2. However, the
maximal current can be also derived in the exclusive scenario. But as the calculations are
involved and it turns out that ρmax does not influence the outcome in the relevant parameter
regime, we skip them at this point.

Eq. (5.5) has a fixed point which is given by,

ρ∗+ =
ρB(1− ρB)− γρB

δ(1− ρB)− γρB
. (5.6)

Importantly, this fixed point can be stable or unstable. Furthermore, it may lie outside the
physical parameter range, ρ∗+ ∈ [0, 1]. For an illustration see Fig. 5.7. In the following, we
analyze the stability in particular for the physically relevant parameter regimes.

Assuming small perturbations around the fixed point, ρ∗+ + ε in Eq. (5.5), the stability can
be evaluated. The following critical line separates a stable and an unstable area in the phase
space,

γ̃ =
1− ρB

ρB
δ. (5.7)

For γ < γ̃ the fixed point is stable, while it is unstable for γ > γ̃. In the unstable regime, the
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δc

γ

ct = 0

A Depolymerization B Polymerization
t = 0

t = ∆t
?

Figure 5.6: Illustration of the comoving frame. A depolymerization event corresponds to the instan-
taneous movement of all particles to the right while polymerization causes movement to
the left.

system can show bistability. Then, the tip density at a later time strongly depends on the
initial condition ρ0. Neglecting fluctuations trivially yields, ρ+ = 0 for ρ0 < ρ∗+ and ρ+ = 1
for ρ0 > ρ∗+, see Fig. 5.7C. Only in regimes where the unstable fixed point does not lie in the
physical parameter range, ρ∗+ < 0 or ρ∗+ > 1, the tip density does not depend on the initial
condition, cf. Fig. 5.7D. The reason for this behavior is that the drift does not change sign
in the physical parameter range, i.e. ∂tρ+ < 0 for ρ∗+ > 1 and ∂tρ+ > 0 for ρ∗+ < 0. For all
other values of the unstable fixed point, fluctuations play a crucial role. They can push the
tip density from one side to the other side of the fixed point and thereby cause a change in
the tip density from 0 to 1 and vice versa. This change in the tip density is equivalent to
phases of persistent growth (ρ+ = 0) and shrinkage (ρ+ = 1). Therefore, the regime of an
unstable fixed point seems to be inappropriate for length-regulation.

In contrast, if the fixed point is stable, tip density fluctuations play a less pronounced role as
they decay at a fast time scale 1/ν. The resulting tip density is again bounded, ρ+ ∈ [0, 1],
and reads,

ρ+ =





0 for ρLa > 1− γ,
1 for ρLa > δ,

ρ∗+ else.

(5.8)

Note that due to the condition for a stable fixed point, γ < 1−ρB
ρB

δ, the first (γ > 1− ρB) and
the second condition (ρB > δ) can never be fulfilled simultaneously. In Fig. 5.8, stochastic
simulations of the tip density for different sets of parameters are shown and compared to the
analytic results. Both agree extremely well. For small depolymerization rates, the tip density
is always one because the tip acts as a bottleneck hindering particles to leave the system.
Above the value ρB = ρLa, the tip density decreases according to Eq. (5.6).

Using this validated description of the tip density, we can now quantify the regimes of poly-
merization and depolymerization. In the unstable regime, the outcome sensitively depends on
initial conditions and fluctuations. A regulatory mechanism is not feasible. In contrast, a well
regulated tip density triggers the length-dynamics in the stable regime. Equating Eqs. (5.4)
and (5.8) yields the transition line from the regime of depolymerization to the regime of
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Figure 5.7: Illustration of the stability of the fixed point. In A and B the fixed point is stable, while it
is unstable in C and D. The positive and negative drift causing the stability is illustrated
with red and blue arrows, respectively. In B and C, the fixed point lies outside the realistic
parameter range. Analyzing the drift, leads to the grey fixed points which then determine
the system.

unbounded growth for a stable fixed point, γ < 1−ρB
ρB

δ. The phase boundary is given by,

1

γ
=

1

ρB(1− ρB)
− 1

δ
. (5.9)

In Fig. 5.9, this analytic solution is compared with simulation results. The drift of the MT
tip, i.e. the speed of the tip, is shown for different sets of parameters. In the gray area, where
the drift is negative, MTs mainly depolymerize and shrink, while they grow to infinity in the
colored area. At first sight, the shape of the phase boundary might seem to be counterintuitive,
because the regime where MTs depolymerize is more pronounced for small depolymerization
rates, i.e. the MT shrinks even for comparably large polymerization rates. The reason for that
behavior is a bottleneck at the tip: Small depolymerization rates, δ, lead to long end-residence
times of the motors at the tip, τres = 1/δ. During this time interval, motors from bulk can
accumulate at the tip, where a traffic jam emerges. Although depolymerization happens
slowly, the tip is always occupied suppressing polymerization completely. This changes in the
non-exclusive scenario as discussed in the following.
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Figure 5.8: Tip density ρ+ versus the depolymerization rate δ for different parameters. Solid lines
indicate simulation results, while the analytic calculations are shown as bullets. For small
depolymerization rates and a thereby strong bottleneck at the right-hand side of the
system, the tip density always takes its maximal values, while it steadily decreases with
increasing δ for δ > ρLa.
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Figure 5.9: Netto drift of the MT tip for different sets of parameters. In the grey shaded area the
drift is negative and the MT depolymerizes, while it is positive in the colored area. The
black lines are the analytic solutions, see Eq. (5.9), and describe the phase boundary very
well. In the upper left corner the fixed point is unstable and the analytic solution fails
due the sensitiveness of the outcome on the initial conditions and fluctuations.
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5.3.2 The Non-Exclusive Scenario

The phase behavior of the non-exclusive scenario can be derived in analogy to the exclusive
scenario. The differential equation for the lattice length now reads,

∂tL = −δρ+ + γ. (5.10)

In contrast to Eq. (5.3), polymerization does not depend on the occupation of the last lattice
site resulting in the term γ instead of γρ+. The critical density is now given by,

ρc+ =
γ

δ
. (5.11)

To decide, whether the system is in the depolymerizing or polymerizing regime, the tip density
has to be calculated. In contrast to the exclusive scenario, some more involved arguments
are necessary here. Let us first consider the differential equation for the tip density, which
analogously to Eq. (5.5) reads,

∂tρ+ = ρB(1− ρB)− γρB − δρ+(1− ρB). (5.12)

As already seen in the exclusive scenario, the tip density ρ+ depends on the bulk density
ρB. Importantly, this bulk density is determined by the phase of the system. If the system
is in the IN phase (corresponding to the LD phase in standard TASEP) ρB = ρLa holds,
while ρB = ρmax in the MC phase. Furthermore, the system can also be determined by the
right boundary (EX or HD phase), again leading to different bulk and tip densities. Note,
that for the standard TASEP, different phases do not entail differing boundary conditions.
In contrast, here each phase shows different bulk densities ρB and tip densities ρ+. To
determine whether the entering, the exiting or the maximal current regulate the system, we
employ the extremal current principle (ECP) relying on two velocities) [271, 274, 275]: The
collective velocity vcoll(ρ)=∂ρJ determines the direction in which a local density perturbation
spreads. Thereby, one is able to determine whether a certain bulk density is stable against
perturbations, i.e. for a density ρ stable at the left (right) boundary vcoll(ρ)>0 (vcoll(ρ)<0)
has to hold. The boundary conditions result in densities at the plus and the minus-end,
respectively, whose stabilities can now be tested employing vcoll. If these densities are stable
against small perturbations, we call them ρleft and ρright as they are given by the system’s
left and right boundary, respectively. If either one or both of these boundary densities are
not stable, perturbations change these densities and ρleft and ρright are given by the first
stable density which is determined by vcoll(ρ) = 0. The shock velocity vshock(ρleft, ρright) =
(J(ρleft)−J(ρright))/(ρleft−ρright) determines the direction in which a virtual domain wall
between the densities at the left and the right, ρleft and ρright, moves and thereby which
of these densities is realized in bulk. In more detail, for vshock > 0 the left density, ρleft,
dictates the bulk density, while for vshock < 0 the right density, ρright, is realized. In the
model discussed, particles are transported to the right and therefore jams spread from right
to left. Hence, the virtual domain wall arises at the right boundary and the tip densities ρleft

+

and ρright
+ determine vshock

Let us first consider the density at the left boundary which is given by ρleft = min [ρLa, ρmax].
The reason for this cut-off is as follows. Above ρmax the bulk density is not robust against
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Figure 5.10: Current-density relation for a system determined by the entering current. The current
is positive for ρB ∈ [0, 1− γ] and its maximum is located at 1−√γ.

perturbations as vcoll = ∂ρJ(ρ)|ρLa < 0 holds. Thereby the bulk density decreases to the value
where the current is maximal. The exact value of ρmax and all other relevant densities are
derived in the following. Let us first consider the IN phase: The bulk density is determined by
the left boundary, ρB = ρLa. The tip density, ρ+,IN, can be calculated evaluating Eq. (5.12),

ρ+,IN =
ρLa(1− ρLa)− γρLa

δ(1− ρLa)
. (5.13)

We can use this identity to find the density, at which the entering current is maximal. There-
fore, we need the particle current in the comoving frame which is given by,

J(ρB, ρ+) = ρB(1− ρB)− γρB + δρ+ρB. (5.14)

Plugging in the tip density, Eq. (5.13), leads to the following current-density relation,

J =
ρB(1− ρB − γ)

1− ρB
. (5.15)

Fig. 5.10 shows the current depending on the bulk density. It is fairly surprising that the
current is only positive for densities smaller 1 − γ. But in the regime, where regulation is
feasible, ρB ≤ 1 − γ always holds as we show in the following. Well-know from other driven
diffusive systems [260], the maximum of the current-density relation determines the transport
behavior in broad parameter regimes. If the entering density exceeds ρmax, i.e for Langmuir
densities ρLa > 1−√γ, Eq. (5.13) directly transforms to,

ρ+,MC =
(1−√γ)2

δ
, (5.16)

the tip density in the MC phase. In this regime, the tip density does not depend on the
density at the left boundary.

The third possibility for the tip density comes into play when the right boundary and the
exiting current, JEX, determine the system. Consequently, the bulk density equals the tip
density, ρB = ρ+, and Eq. (5.12) simplifies to,

∂tρ+ = ρ+(1− ρ+)− γρ+ − δρ+(1− ρ+). (5.17)
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Figure 5.11: Illustration of the right boundary determining the phase behavior for Langmuir densities,
ρLa, smaller than the maximal current density 1 − γ. Density profiles corresponding
to the IN phase are shown in blue while the ones corresponding to the EX phase are
red. The tip densities can either both be smaller or larger than the Langmuir density,
ρ<+,IN, ρ<+,EX and ρ>+,IN, ρ>+,EX respectively. Both scenarios are depicted here. If this
system is determined by the entering current as in this illustration, the tip density,
which would arise in the EX phase, ρ+,EX, serves as a virtual bottleneck. Therefore the
tip density corresponding to the maximal exiting current is chosen. In other words, the
IN phase arises for ρ<+,IN > ρ<+,EX or ρ>+,IN < ρ>+,EX (A), while the EX phase emerges for

ρ<+,IN < ρ<+,EX or ρ>+,IN > ρ>+,EX (B).

In the steady state, the tip density is given by,

ρ+,EX = 1− γ

1− δ . (5.18)

To decide which phase is realized in bulk, a slightly modified form of the extremal current
principle (ECP) can be used [271, 274, 275]. In principle one can determine the phase behavior
of the system employing the shock velocity vshock as introduced above. In the following we
provide a more intuitive explanation which is equivalent to the ECP. For simplicity, let us
assume ρLa < ρmax, i.e. the maximal current never determines the transport in bulk. Thus,
we focus on the IN and EX phase and the corresponding phase transition. The regime
ρLa > ρmax and the phase transition from MC to EX phase can be analyzed analogously
simply by replacing ρLa by ρmax. For ρLa < ρmax, there are two possible scenarios for the
bulk densities as sketched in Fig. 5.11: In the IN phase (blue line), the density at the left
boundary is given by ρLa and the tip density has a distinct value, ρ+,IN, which lies either
above or below ρLa. In contrast, in the EX phase (red line), both the bulk and the tip
density are given by the same value ρ+,EX. Before turning to the question which phase is
realized depending on the parameters, we first show that either both possible tip densities lie
above ρLa (indicated by a ’>’ superscript), ρ>+,IN and ρ>+.EX, or below ρLa (indicated by a ’<’

superscript), ρ<+,IN and ρ<+,EX. Upon employing Eq. (5.13), ρLa ≷ ρ+,IN can be expressed as,

ρLa ≷ ρ−(1− ρ− − γ)

δ(1− ρ−)
. (5.19)

Rearraging yields,

ρLa ≷ 1− γ

1− δ = ρ+,EX. (5.20)
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Figure 5.12: Phase diagram depending on the depolymerization and polymerization rates. The phase
boundaries are given by γ = (1− δ)2, γ = (1− ρLa)2 and δ = ρLa.

With these results at hand we can now decide which phase is realized in the system. To this
end we need to compare the current from the left boundary [Eq. (5.14)], J left = J(ρLa, ρ+,IN)]
and the current from the right [J right = J(ρ+,EX, ρ+,EX)]. If ρ<+,IN > ρ<

+,EX or ρ>+,IN <

ρ>+,EX holds, the particle current from the left is always smaller than the one from the right.
Therefore, no traffic jams arise at the right boundary. Hence the density profile resulting from
the left boundary is not disturbed and the IN phase is present, see Fig. 5.11A. In contrast, for
ρ<

+,IN
< ρ<

+,EX or ρ>+,IN > ρ>
+,EX , the tip density determined by the exiting current, ρ+,EX, acts

as a bottleneck and a traffic jam arises at the tip. As this traffic jam becomes macroscopic,
i.e. it spreads back into the system it results in a bulk density given by the tip density ρ+,EX;
the system is in the EX phase, (Fig 5.11B). Analogously, one can analyze the phase transition
between the MC- and EX-phase for Langmuir densities larger than ρmax

The phase behavior derived by these jamming arguments can also be interpreted in terms of
the ECP: The boundary which determines the system is the one corresponding to the larger
exiting current. Taken together, the phase behavior is the following:

• IN phase: The bulk density is given by the Langmuir density ρLa. According to the
considerations above, this phase emerges if the conditions (ρLa < 1−√γ) ∧ (δ > ρLa)
are fulfilled.

• EX phase: The bulk density is given by the tip density, ρ+,EX, determined by the right
boundary if

[
(ρLa < 1−√γ) ∧ (δ < ρLa)

]
∨
[
(ρLa > 0.5) ∧ (δ < 1−√γ)

]
holds.

• MC phase: The bulk density is given by ρmax for (ρLa > 1−√γ) ∧ (δ > 1−√γ).

The resulting phase diagram depending on the depolymerization and polymerization rates
is shown in Fig. 5.12. Depending on the left boundary, ρLa, the transition lines shift. In
particular, the IN phase becomes smaller for larger Langmuir densities.

To complete our calculations, we have to combine the conditions for the different phases with
the corresponding tip densities, Eqs. (5.13),(5.16) and (5.18),
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ρ+ =





ρ+,IN for (ρLa < 1−√γ) ∧ (δ > ρLa),

ρ+,EX for
[
(ρLa < 1−√γ) ∧ (δ < ρLa)

]
∨
[
(ρLa > 0.5) ∧ (δ < 1−√γ)

]

ρ+,MC for (ρLa > 1−√γ) ∧ (δ > 1−√γ).

(5.21)

In Fig. 5.13, these analytic results for the tip density are compared with simulation data.
While the latter is indicated by solid lines, black lines with different colored symbols cor-
respond to analytic solutions in different phases: circles (IN), squares (EX) and diamonds
(MC). All agree very well with the stochastic simulations and thereby also validate the phase
diagram presented above. Another interesting aspect is that the tip density never exceeds
1− γ, the root of the current-density relation. This can also be understood intuitively. Con-
sider a full occupied bulk, resulting in an occupied tip. For vanishing depolymerization rates,
the tip density only changes if polymerization events happen. Therefore the tip density is 1
with probability 1− γ and 0 with probability γ. Accordingly, the mean is given by 1− γ.

Now the boundary between a steadily depolymerizing and polymerizing regime can be cal-
culated by equating ρ+ with the critical density. Then, for the different phases also three
different but continuously matching boundaries follow,

γc =





ρLa(1− ρLa) for (ρLa < 1−√γ) ∧ (δ > ρLa),

δ(1− δ) for
[
(ρLa < 1−√γ) ∧ (δ < ρLa)

]
∨
[
(ρLa > 0.5) ∧ (δ < 1−√γ)

]
,

1
4 for (ρLa > 1−√γ) ∧ (δ > 1−√γ).

(5.22)
In Fig. 5.14, the analytic phase boundary is compared to simulation results. A sharp line

separates the regime of unbounded growth (colored) from the depolymerizing regime (gray).
In contrast to the exclusive scenario, small depolymerization rates do not favor shrinkage,
since they do not block polymerization events. In this regime, the phase boundary is approxi-
matively linear indicating the antagonism between polymerization and depolymerization. For
larger values of δ, the phase boundary is independent of the depolymerization rate. This is
surprising as the microscopic model does not seem to have features independent of δ. Actu-
ally, the influences of the depolymerization rate on the tip density and the critical density
exactly cancel out.

5.3.3 Length-Regulation

In contrast to the simplified model system discussed so far, the full model has space-dependent
density profiles. As shown in Fig. 4.7, starting at the zero on the left-hand side of the lattice,
the density increases until it has reached the Langmuir density. Instead of the constant
Langmuir density, now this bulk density feeds the tip density. The polymerizing regime
is not affected by this spatial density profiles. This can be understood intuitively: If the
Langmuir density (the highest bulk density), which causes the fastest depolymerization speed,
is not sufficient to overcome the growth due to polymerization, the full density profile which,
depending on the spatial position, is even smaller can never lead to shrinking MTs. In
contrast, for sets of parameters in the depolymerizing regime of the simplified model, γ < γc,
the MT shortens until the tip is in the antenna profile. There, the bulk density decreases
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Figure 5.13: Tip density, ρ+, versus the depolymerization rate δ for different parameters. Solid lines
indicate simulation results while the analytic calculations are shown as bullets, squares
and diamonds for the IN, EX and MC phase, respectively. Starting from its maximal
value 1− γ at δ = 0, the tip densities decrease with increasing δ.

with every depolymerization event until a stable fixed point is reached. The resulting MT
length can be calculated for both the exclusive and the non-exclusive scenario. Furthermore,
regulation to a length equal to the domain wall position, `−, is also feasible for ρLa > 0.5. This
happens, if the Langmuir density is large enough to cause depolymerization and the highest
antenna density, 1 − ρLa, results in polymerization. In this scenario the variance of the MT
length is very small, because small length fluctuations lead to drastic changes in the density
and thereby to a large reset force. To calculate the fixed point, the density profiles have to be
equated with the regulation density, at which the boundary between the polymerizing and the
depolymerizing regime is reached, ρr,n and ρr,ne for the exclusive and non-exclusive scenario,
respectively. These regulation densities can be obtained by solving Eqs. (5.6) and (5.13) for
the density, ρLa. The density profiles can be obtained by solving Eq. (4.2) as shown in detail
in Ref. [277]. Here, only a short summary of all relations which are utilized is presented. The
rescaled density reads,

σ(x) =
K + 1

K − 1
[2ρ(x)− 1]− 1, (5.23)
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Figure 5.14: Tip speed of the MT tip for different sets of parameters. In the gray shaded area the
drift is negative and the MT depolymerizes, while it is positive in the colored regime.
The black lines are the analytic solutions, see Eq. 5.22 and describe the phase boundary
very well.

and solves Eq. (4.2) at the left boundary under the following condition,

|σ(x)|eσ(x) =
2K

1−K exp

[
ωd

(K + 1)2

K − 1
x+

2K

1−K

]
. (5.24)

In combination with Eqs. (5.6) or (5.13), the resulting length of the MT can be derived. With

ρr,e = 1
2

(
1−

√
1− 4γδ

γ+δ

)
and ρr,ne = 1

2

(
1−√1− 4γ

)
for the exclusive and non-exclusive

scenario, respectively, it reads,

x∗ =
2ρr

(K + 1)ωd
+

K − 1

(K + 1)2ωd
ln

[
(K + 1)(1− 2ρr) +K − 1

2K

]
. (5.25)

In Fig. 5.15, these analytic results (black) are compared with simulation data (colored). We
only show parameter regimes where regulation is possible, i.e. the gray areas in Figs. 5.9
and 5.14. In the exclusive scenario, the achieved mean length depends on both, the depoly-
merization and the polymerization rates. In contrast, the position of the fixed point does
not depend on the depolymerization rate in the non-exclusive scenario. The reason is the
same one already causing the boundary of polymerizing and depolymerizing regime to be
independent of δ (in the EX or MC phase), see Fig. 5.14: The effect of the depolymerization
rate cancels out.

5.3.4 Comparison of the Exclusive and Non-Exclusive Scenario

In real biological settings both, the exclusive and the non-exclusive scenario, seem to be
plausible. Therefore, a comparison between both might lead to experiments which are able
to clarify the microscopic details underlying length-regulation. Suitable observables have to
be measurable and controllable. We choose the speed of the MT tip, ∂tL, depending on
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Figure 5.15: Length of the MT depending on δ and γ for the exclusive (left) and non-exclusive sce-
nario (right). The simulation results match nicely the analytic calculation (black lines).
Interestingly, the MT length does only depend on the depolymerization rate δ in the
exclusive scenario.
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the Langmuir density, ρLa, and the polymerization rate, δ. The tip speed is a macroscopic
quantity allowing for measurements which are comparably easy to perform while both the
polymerization rate and the Langmuir density can be regulated. The latter depends on the
motor and the salt concentration3 in the surrounding. The polymerization rate γ can be
modified by different tubulin concentrations or by adding polymerizing proteins. In Fig. 5.16,
the tip speed for different sets of parameters for the exclusive (left) and non-exclusive (right)
scenario is shown for the simplified model disregarding spatial density profiles. In the full
model, the gray area corresponds to MT with a well-defined length, while the filaments grow
to infinity in the colored regime.

Even though the instability of the tip density reduces the adjustability in the exclusive sce-
nario, the depolymerizing regime where regulation can be achieved is more extended. In
contrast in the non-exclusive scenario, the gray area is much smaller and also less sensitive on
a change in the depolymerization rate δ. Especially, in the EX phase, the bulk density does
not influence the tip density anymore. Thereby, the exclusive scenario seems to be more suit-
able for length-regulatory mechanisms, while the non-exclusive scenario can robustly trigger
polymerization and depolymerization. This is especially interesting when considering that
both scenarios are possible in real biological systems. For example, the production of certain
proteins could lead to a change from the exclusive to the non-exclusive scenario and vice
versa.

5.3.5 Discussion

Taken together, we characterized the interplay between depolymerases shortening the MT and
polymerization lengthening it. We therefore investigated two models. Both include motor
induced depolymerization and two distinct forms of polymerization: In the exclusive scenario,
MTs only grow if the tip is unoccupied by depolymerizing motors. In contrast, the model
with non-exclusive polymerization allows MTs to grow independently of the tip occupation.
In the simplest scenario, the polymerization rate reflects the intrinsic attachment rate of
tubulin dimers at the tip. For this kind of polymerization in principle both, the exclusive
and non-exclusive scenario, are conceivable. Our analysis also holds, if γ is increased by
TIP+ proteins, which either have a high binding affinity to the MT plus end or diffuse along
the MT. Experiments with XMAP215 suggest, that its diffusion rate is much larger than
the speed of depolymerases. Then, in a first approximation, polymerases fill up the sites
which are not occupied by depolymerases and thereby increase the polymerization rate if the
last site is unoccupied. This interpretation leads to the exclusive-scenario. One interesting
extension of the model would be to account for polymerizing motors explicitly. Furthermore,
polymerization may also happen cooperatively. How this changes the length-dynamics is also
an interesting question for future research.

In both models, the tip density triggers the growth dynamics of the MT, i.e. there exists
a critical tip density above which the MT grows persistently. Below, length-regulation is in
principle possible. For the exclusive scenario, the regulated regime, where a certain fixed
length adjusts, is broader than for the non-exclusive scenario. We quantified the regimes of
unbounded growth and depolymerization for both polymerization types. Thereby we hope to

3By changing the salt concentration the run-length can be tuned [315]
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make a contribution helping to decide which scenario describes MT dynamics more accurate.
Depending on the growth rate, which is tunable by changing the tubulin concentration, and
the Langmuir density, which depends on the motor and salt concentration, we compared both
scenarios. While in the exclusive scenario the regime of length-regulation is relatively broad,
the non-exclusive scenario allows for robust unbounded growth or shrinkage.

5.4 Papers and Manuscripts

5.4.1 Crowding of Molecular Motors Determines Microtubule Depolymerization

In the paper “Crowding of molecular motors determines microtubule depolymerization”, Bio-
phys. J. 101, 2190 (2011), by Louis Reese, Anna Melbinger and Erwin Frey, we investigated
the interaction of depolymerizing motors with MTs. We employed the model introduced in
Sec. 5.2. Besides the good agreement with the experiments already discussed, we investigated
the influence of cooperative depolymerization, i.e. the MT only degrades if both the last
and the second to last site are occupied. Intriguingly, cooperativity does not influence the
depolymerization speed. Only the end-residence time of motors at the tip is changed. This
quantity is thereby well-suited to further investigate experimentally the role of cooperativity.
In addition, we studied the dependence of the depolymerization speed on the bulk density and
the microscopic depolymerization rate. Here, bottleneck effects play a crucial role [284, 285].
Due to such bottlenecks at the tip, microscopic traffic jams arise altering the depolymeriza-
tion dynamics. We found, that two qualitatively different scenarios can be distinguished. In
the rate-limited regime only the microscopic depolymerization rate δ gives the depolymeriza-
tion speed. In contrast, in the density-limited regime the speed solely depends on the bulk
density which in turn depends on the position on the MT. Thereby, the experimentally found
length-dependent depolymerization speed can only be observed in the latter regime.

5.4.2 Conclusion and Outlook

We were able to validate our model by comparing it to experimental result. Thereby, it
seems to be a promising starting point for various other investigations concerning the length-
dynamics of MTs. As already discussed above, one possibility is to include also polymerization
dynamics. Furthermore, one can account for correlations in the attachment and detachment
rates to make our model more realistic. If a motor has detached from the MT the probability
that it attaches in close vicinity of its former position is increased. This extension might
cause an even better quantitative agreement of our results with experimental data. But also
depolymerization itself has to be studied further. For example, until now the model describes
the behavior of artificially stabilized MTs which do not exhibit dynamic instability. How
these stochastic length changes are influenced by depolymerases is relevant to understand
MT regulation in living cells. Especially, if these polymerases allow to trigger the stochastic
growth and shrinkage would be interesting. Concerning experiments, our model also is a
starting point for new measurements. In combination with theoretical considerations these
experiments might be able to elucidate the microscopic rates and mechanisms governing
depolymerization and, thereby, length-regulation.



Crowding of Molecular Motors Determines Microtubule
Depolymerization
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München, Munich, Germany

ABSTRACT The assembly and disassembly dynamics of microtubules (MTs) is tightly controlled by MT-associated proteins.
Here, we investigate how plus-end-directed depolymerases of the kinesin-8 family regulate MT depolymerization dynamics.
Using an individual-based model, we reproduce experimental findings. Moreover, crowding is identified as the key regulatory
mechanism of depolymerization dynamics. Our analysis reveals two qualitatively distinct regimes. For motor densities above
a particular threshold, a macroscopic traffic jam emerges at the plus-end and the MT dynamics become independent of the
motor concentration. Below this threshold, microscopic traffic jams at the tip arise that cancel out the effect of the depolymer-
ization kinetics such that the depolymerization speed is solely determined by the motor density. Because this density changes
over the MT length, length-dependent regulation is possible. Remarkably, motor cooperativity affects only the end-residence
time of depolymerases and not the depolymerization speed.

INTRODUCTION

Microtubules (MTs) are cytoskeletal filaments that serve
a central role in intracellular organization (1,2) and several
cellular processes, including mitosis (3,4), cytokinesis (5),
and intracellular transport (6). They can cope with these
diverse tasks because they are highly dynamic structures
that continually assemble and disassemble through the addi-
tion and removal of tubulin heterodimers at their ends.
GTP hydrolysis is the energy source that drives switching
between persistent states of growth and shrinkage, in a
stochastic process termed dynamic instability (7–10). Each
cellular process uses a specific set of MT-associated proteins
(MAPs) to tightly regulate the rates of growth and shrinkage
as well as the rate of transition between these states (11–13).

Depolymerases from the kinesin-8 and kinesin-13 protein
families (e.g., Kip3p and MCAK, respectively) are impor-
tant regulators of MT dynamics. They are thought to pro-
mote switching of MTs from growth to shrinkage
(catastrophes) (12). Whereas MCAK lacks directed motility
and diffuses along MTs (14), Kip3p is a highly processive
plus-end-directed motor (15,16). Proteins from the kine-
sin-8 family are important for regulating MT dynamics in
diverse organisms. Kif18A is a key component in chromo-
some positioning in mammalian cells (17–19), where it
regulates plus-end dynamics. Its orthologs, the plus-end-
directed motors Kip3p in budding yeast (16) and Klp5/6
in fission yeast (20–22), show depolymerizing activity. A
notable feature shared by these MT plus-end depolymerases
is that they depolymerize longer MTs more rapidly than
they do shorter ones (15,17,21,23). A similar length-depen-
dent regulation of MT assembly by kinesin-5 motors was
observed in in vivo studies of chromosome congression in

budding yeast (24). The key experimental observations
from in vitro studies of Kip3p (23) are that 1), the end-
residence time of Kip3p at the tip depends on the bulk
concentration of Kip3p and correlates inversely with the
macroscopic depolymerization speed; and 2), the macro-
scopic depolymerization rate is directly proportional to the
flux of Kip3p toward the MT plus-end.

It is thought that length-dependent depolymerization
kinetics serves several purposes (2). For example, posi-
tioning of the nucleus at the cell center during interphase
is achieved by growing MTs that push against the cell poles
while remaining attached to the nucleus. A higher rate of
catastrophes for longer MTs implies that shorter MTs
have an increased contact time with the cell poles. Computer
simulations show that this leads to a higher efficiency of
nuclear positioning during interphase (25).

There is convincing experimental evidence that molec-
ular traffic along MTs strongly affects the MT depolymer-
ization dynamics. However, in vitro experiments cannot
yet fully explore the underlying traffic dynamics. Theoret-
ical investigations using individual-based models can be
instrumental in furthering a mechanistic understanding of
this process. Fortunately, such models can be constructed
on the basis of substantial quantitative data available from
in vitro experiments (15,23) characterizing the binding
kinetics and the motor activity of plus-end-directed motors.
Therefore, we sought to identify the molecular mechanisms
underlying the observed correlation between depolymeriza-
tion dynamics and molecular traffic along MTs.

In this study, we constructed an individual-based model
for the coupled dynamics of MT depolymerization and
molecular traffic of plus-end-directed motors. This model
quantitatively reproduces previous experimental results
(15,23). Moreover, we make precise quantitative predictions
for the density profiles of molecular motors on the MT and
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demonstrate that molecular crowding and ensuing traffic
jams regulate the depolymerization dynamics. We find
two qualitatively distinct regimes of depolymerization dyn-
amics: At low bulk concentrations of depolymerases, the
depolymerization speed of MTs is density-limited and is
a function of the bulk concentration and average motor
speed alone. There is a sharp threshold in bulk depolymer-
ase concentration above which macroscopic traffic jams
emerge and the depolymerization speed is simply given by
the microscopic depolymerization rate. Of note, none of
these features are affected by the degree of cooperativity
in the depolymerization kinetics. In contrast, the end-resi-
dence time of a depolymerase (i.e., the typical time it spends
at the plus-end) is strongly correlated with cooperativity. We
outline how these predictions from our theoretical analysis
can be tested experimentally.

RESULTS

Model definition

We use an individual-based model, as illustrated in Fig. 1, to
describe the dynamics of plus-end-directed depolymerases.
Motor proteins, present at a constant bulk concentration c,
are assumed to randomly bind to and unbind from the MT
lattice with rates ua and ud, respectively. Bound motors
are described as Poisson steppers (A more detailed bio-
chemical model for motors on MTs has to await further
experimental analysis. One of the different possible
schemes has recently been studied by Klumpp et al. (26).)
that processively walk along individual protofilaments
toward the plus-end at an average speed u (27). These
motors hinder each other sterically because individual
binding sites i ¼ 1;.; L on each protofilament can be either
empty ðni ¼ 0Þ or occupied by a single motor ðni ¼ 1Þ.
Because switching between protofilaments is rare (27),
transport along each of the protofilaments can be taken as
independent, and the model becomes effectively one-dimen-
sional (28) (Fig. 1 B). Models of this type were recently
discussed as minimal models for intracellular transport
(29–32). In its given formulation, where the cytosol is
considered as a homogeneous and constant reservoir of
motors, it is equivalent to the driven lattice gas model known
as the totally asymmetric simple exclusion process with
Langmuir kinetics (TASEP/LK) (29). A central finding
from this model is that the interplay between on-off (Lang-
muir) kinetics and directed transport along protofilaments
can result in ‘‘traffic jams’’ in which the density profile of
motors along a protofilament shows a sharp increase from
a low-density to a crowded high-density regime (29,31).
Crowding effects such as these (33,34) are important for
a molecular understanding of MT dynamics. Previous theo-
retical studies on this topic largely disregarded crowding
effects or considered parameter regimes in which they are
unimportant (35–37). Depolymerization, including crowd-

ing effects, has also been investigated for diffusive depoly-
merases such as MCAK (38).

At the plus-end of the systems, we consider depolymeriza-
tion dynamics that arise due to the interaction of molecular
motors with the MT tip. Motivated by recent experiments
(23), we assume nonprocessive depolymerization, i.e., a
molecular motor dissociates from the lattice after triggering
depolymerization. Because the molecular mechanisms are
not yet fully resolved, we study two scenarios of depolymer-
ization (see Fig. 1 B). In the noncooperative scenario, the
dissociation rate depends only on whether the last site is
empty or occupied by a motor. If the last site is occupied,
nL ¼ 1, the MT depolymerizes at rate d0. However, recent
single-molecule studies indicate that Kip3p may act cooper-
atively (23), which we consider as our second scenario. After
arriving at the plus-end, the motor is observed to pause and
depolymerize a tubulin dimer only after a second Kip3p
has arrived behind it. In this scenario, a tubulin dimer is
depolymerized with rate d1 if both the last and the second-
to-last sites are occupied, nL�1 ¼ nL ¼ 1. Therefore, the total
depolymerization rate can be written as:

D ¼ d0nL þ d1nL�1nL: (1)

For stabilized MTs, the spontaneous depolymerization
rate is small (23) and thus is not considered here. The relative

A

B non-
cooperative

cooperative

FIGURE 1 Illustration of MT and motor dynamics. Molecular motors

present at concentration c randomly attach to unoccupied tubulin dimers

along the MT lattice with rate ua. While bound, they processively move

toward the plus-end at rate n, and unbind with rate ud. Because motors

do not switch lanes (protofilaments), the MT lattice (A) becomes effectively

one-dimensional (B). Each lattice site ni (with i ¼ 1;.; L numbering the

sites) may be empty ðni ¼ 0Þ or occupied by a single motor ðni ¼ 1Þ. At
the plus-end, the motors act as depolymerases (indicated by scissors) either

alone with rate d0 or cooperatively with rate d1.
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magnitude of the noncooperative rate d0 and the cooperative
rate d1 determines the degree of cooperativity of the depoly-
merization kinetics. In an average over many realizations
of the stochastic process (ensemble average), the depolymer-
ization speed Vdepol depends on the occupation of the last two
binding sites by depolymerases (Fig. 1 B):

Vdepol ¼ ðd0rþ þ d1kþÞa; (2)

where a is the lattice spacing. Here rþ :¼ hnLi is the prob-
ability that the last site is occupied (i.e., the expected motor
density at the plus-end), and kþ :¼ hnL�1nLi denotes the
probability that both the last and second-to-last sites
are occupied. We analyzed this model via stochastic simula-
tions and analytic calculations (for further details, see the
Supporting Material).

Validation of the model and its parameters

The model parameters are, as far as they are available, fixed
by experimental data. The motor speed, u, the motor run
length, ‘, and motor association rate, ua, were measured
previously (23):

u ¼ 3:2 mm min�1;

ua ¼ 24 nM�1min�1mm�1;

‘z11 mm:

Using an MT lattice spacing of a ¼ 8:4 nm, we derive the
corresponding parameters in our model as follows: The
motor speed v corresponds to 6.35 lattice sites per second,
i.e., a hopping rate of n ¼ u=a ¼ 6:35 s�1. The inverse
hopping rate t :¼ n�1 ¼ 0:16 s and the size a of a tubulin
dimer serve as our basic timescale and length scale,
respectively. Then, the measured association rate corre-
sponds to a rateuaz5:3�10�4 nM�1site�1t�1. The dissoci-
ation rate, ud ¼ u=‘, is derived as the ratio of the mean
motor speed, v, and the mean motor run length, ‘. The latter
equals 1310 lattice sites. Thus, the dissociation rate is
expressed as udz7:6� 10�4site�1t�1. In contrast to the
transport behavior on the MT, the parameters concern-
ing the depolymerization rates, d0=1, cannot be directly ex-
tracted from experiments. However, there is evidence for
a depolymerization rate as high as the motor speed, u
(15,23). As a starting point for the following discussion, we
tentatively take d0 ¼ n.

Using the above set of parameters, we now phenomeno-
logically compare the results from numerical simulations
of our model with observations from experiments. Specifi-
cally, we consider kymographs of the MT, which show
how the MT length and the motor density on the MT evolve
over time. For the simulation data shown in Fig. 2, we
consider an MT consisting of 14 independent proto-
filaments and investigate the dynamics for the noncoopera-

tive scenario and a range of motor concentrations,
c ¼ 1:2; 1:8; 2:6 nM (Fig. 2, A–C). Surprisingly, as shown
later, neither the cooperativity of the motors nor a decrease
in the depolymerization rates led to different shapes of
kymographs (see also Fig. S1).

We find an initial time period in which, starting from an
empty MT lattice, the motors first fill up the lattice (39,40).
This is followed by a timewindow inwhich themotor density
exhibits a quasi-stationary profile, i.e., the density at a certain
distance from the minus-end does not change except for
boundary effects induced by the plus-end. The corresponding
density profiles are illustrated in Fig. 2 E and discussed in
more detail in the following section. In this quasi-stationary
regime, the depolymerization dynamics shows qualitatively
different behavior depending on the concentration of free
motor molecules: At a low concentration, c < 1:4 nM, and
thus a low density of motors on the MT, depolymerization
slows down gradually in the course of time (Fig. 2 A).
When the motor concentration increases to larger values,
c > 1:4 nM, an intermediate regime emerges in which the
depolymerization speed stays roughly constant (Fig. 2, B
and C). Remarkably, we find that during this regime, the
depolymerization speed is directly proportional to the motor
density, VdepolðLÞ ¼ r�ðLÞ u (Fig. 2D). At a third stage in the
depolymerization process, there is a rather abrupt change in
the depolymerization speed right where the density profile
also shows a steep drop (Fig. 2, C–E). After we have elabo-
rated more on the theoretical model, we will discuss why
there is such a tight correlation between the depolymeriza-
tion dynamics and the density profile.

All of these qualitative features of MT dynamics are iden-
tical to those found experimentally (15,23), and suggest that
the density profile and, in particular, traffic jams formed on
the MT lattice are the main determinants of the depolymer-
ization dynamics. Moreover, the timescales of the dynamics
agree quantitatively well with experimental results for the
same motor concentrations (15,23). This validates our theo-
retical model because up to the depolymerization rate d, all
of the model parameters were derived from experimental
data (23).

Density profiles at the minus-end (bulk density)

The above observations strongly point toward a tight corre-
lation between the depolymerization speed and the motor
density profile at the minus-end, r�ðxÞ, which we hence-
forth call the bulk (motor) density. The quasi-stationary
bulk density profiles shown in Fig. 2 E were obtained by
assuming very long lattices; effects caused by the plus-end
are not visible in the vicinity of the minus-end. A more
detailed discussion of these simulations can be found in
the Supporting Material. Because this bulk density will
play an important role in the following analysis, we summa-
rize its features here as obtained from analytical calculations
detailed in the Supporting Material.
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At the minus-end, the density profiles show an initial
linear increase. This is an ‘‘antenna effect’’ (15), as illus-
trated in Fig. 3 A. Motors that attach in proximity to the
MT minus-end immediately move toward the plus-end,
thereby generating an approximately linearly increasing
accumulation of motors. The slope is given by K=‘, where
K ¼ cua=ud denotes the binding constant. At sufficiently
large distances from the minus-end, the density profile
becomes flat and dominated by Langmuir kinetics with
the ensuing Langmuir density:

rLa ¼
K

1þ K
¼ cua

cua þ ud

: (3)

The full density profile is obtained by concatenating
the antenna profile and the flat Langmuir profile such that
the motor current is continuous along the MT. We find
two qualitatively distinct scenarios (Fig. 2 E). For low
concentrations of molecular motors, c, the antenna profile
matches the asymptotic Langmuir density continuously, re-
sulting in a wedge-like profile. In contrast, above a certain
threshold value for the concentration, determined by the

binding constant K�c ¼ 1, the two profiles can no longer
be matched continuously and the density profile displays
a sharp discontinuity, also termed a ‘‘domain wall’’ (DW)
(29). In other words, if the Langmuir density rises above
a critical value of rcLa ¼ 0:5, a crowding-induced traffic
jam will result (41) (Fig. 3 A). The density profiles obtained
from the analytic calculations and the stochastic simulations
agree nicely, as illustrated in Fig. 2 E. In particular, the
theoretical analysis gives an explicit expression for the
width of the antenna-like profile:

‘�z‘

8><
>:

1

1þ K
for K<1;

1

Kð1þ KÞ for K>1:
(4)

This result reduces to the average run length of molecular
motors, ‘ ¼ u=ud, in the limit of a very low binding
constant, K � 1, where crowding effects can be neglected
(37). However, with increasing K, the regime with an
antenna-like profile becomes significantly shorter than ‘
(Fig. 2 F).

A B

C D

E

F

Antenna Profile

Langmuir Density

Domain Wall

Continuous
Transition
(Wedge)

FIGURE 2 Validation of the theoretical model. (A–C) Time-space plots of stochastic simulations for a range of motor concentrations and depolymerization

rate d0 ¼ 6:35 sites s�1. The density of molecular motors is shown as the bright area (green), and the MT is shown as the dim area (red; for details, see

Supporting Material). For low concentrations, c < 1:4 nM, depolymerization slows down gradually (23). At higher concentrations, c > 1:4 nM, there is

a rather abrupt change in MT shortening. This change is correlated with a steep decrease in the motor density (DW), indicated as dotted lines. (D) The depo-

lymerization speed, Vdepol, as a function of the length of the shrinking MT LðtÞ, extracted from the simulation data shown in the kymograph (gray). The

position of the DW (dotted), and the predicted depolymerization speed, Vdepol ¼ urðLÞ (see also Eq. 10), using the linear approximation for the motor density

profile (black) and the density profile extracted from stochastic simulations (green), coincide very well with the observed depolymerization speed;

u ¼ 6:35 sites s�1 is the walking speed of the motors. (E) Density profiles at the minus-end from stochastic simulations (lines with symbols), exact solutions

(solid), and linearized theory (dotted) are shown. (F) As a function of the motor concentration, c, and the distance from the minus-end, there are distinct types

of density profiles. At motor concentration lower than c ¼ 1:4 nM (thin black), the density of motors along the MT is low and the profile is smooth. The

Langmuir density is reached continuously after a certain MT length (dashed, numerical). At high concentrations, c>1:4 nM, there are two regions along

the MT separated by an intervening DW (black, exact; see SupportingMaterial): an approximately linear antenna profile and a flat profile (Langmuir density).

Linear approximations for the continuous and discontinuous transitions (Eq. 4) are shown as well (gray). Thin lines refer to the density profiles shown in E.
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Depolymerization dynamics is independent
of cooperativity

We now address how the cooperativity of the depolymeriza-
tion kinetics affects the macroscopic depolymerization
speed. There are two limiting cases: noncooperative depoly-
merization (nc) with ðd0; d1Þ ¼ ðd; 0Þ, and fully cooperative
depolymerization (fc) with ðd0; d1Þ ¼ ð0; dÞ (for an illustra-
tion, see Fig. 3, B and C). Remarkably, we find from our
stochastic simulations, shown in Fig. 4, that there is no
difference in depolymerization speed for these two limiting
cases. Even when the depolymerization dynamics contains
cooperative as well as noncooperative terms, we do not
find any significant differences in the depolymerization
speed (Fig. 4 B).

This observation from our stochastic simulations can be
explained by the following molecular mechanism: Consider
a model with fully cooperative depolymerization kinetics.
Then, after the first motor has arrived at the plus-end, the
terminal site of the MT will remain occupied from that
time on. Depolymerization only occurs if another motor
arrives at the second-to-last site. In other words, while the
last site remains occupied, the second-to-last site triggers
the depolymerization. Hence, as far as the depolymerization
speed is concerned, the fully cooperative model is identical
to a noncooperative model with the same molecular rate d.
In the noncooperative model, the terminal tubulin dimer is
removed at rate d once a molecular motor has arrived at
the last site (Fig. 3 B). In the fully cooperative model, the
terminal tubulin dimer is removed once a molecular motor

has arrived at the second-to-last site next to a permanently
occupied last site (Fig. 3 C).

Depolymerization dynamics is strongly affected
by crowding

To gain further insights in the correlation between the depo-
lymerization speed and the density of motors on the MT, we
performed stochastic simulations focusing on the MT plus-
end by regarding the dynamics in a comoving frame. Instead
of simulating the full-length MTwith an antenna profile and
a subsequent flat Langmuir density, we considered a reduced
model in which the density at the left end is set equal to the
Langmuir density rLa. For long MTs, the Langmuir density
is always reached, so that the reduced system is fully equiv-
alent to the original model. Our simulations show two
clearly distinct regimes of depolymerization dynamics
(Fig. 4): For small, microscopic depolymerization rates,
dt < rLa, the polymerization speed is rate-limited:
Vdepol ¼ ad. In contrast, for rates dt > rLa, the depolymer-
ization speed is density-limited, and the Langmuir density
is the limiting factor: Vdepol ¼ rLau. The boundary between
the two regimes is remarkably sharp and given by

B C

CrowdingAntenna

Transport

Minus-End Plus-End

A

(Langmuir)

FIGURE 3 Illustration of the antenna and crowding regimes, and cooper-

ativity. (A) Starting from an empty MT, motors start to accumulate on the

MT lattice by attachment and subsequent transport to the plus-end. The

combined effect of Langmuir kinetics and steric exclusion between

the motors leads to two sharply separated regimes. Starting from the

minus-end, the motor density increases linearly (antenna profile). At

a certain critical length ‘�, a macroscopic traffic jam arises because parti-

cles hinder each other and crowding dominates the MT density. (B and C)

Illustration of noncooperative (B, nc) and fully cooperative (C, fc) depoly-

merization kinetics. With regard to the depolymerization speed, both

models are effectively equal (see main text).

A

B

u
u

FIGURE 4 Scaling plot for the depolymerization speed Vdepol. (A) Upon

rescaling, both the macroscopic depolymerization speed, Vdepol, and the

microscopic depolymerization rate, d, with the Langmuir density, rLa, all

data collapse onto one universal scaling function V (solid gray). A sharp

transition at dt ¼ r�La distinguishes the rate-limited regime from the

density-limited regime. (B) Comparison of cooperative and noncooperative

depolymerization, with the macroscopic depolymerization speed Vdepol as

a function of Langmuir density rLa. For d :¼ d0 þ d1 ¼ 0:7n different

degrees of cooperativity are displayed as indicated in the graph.
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r�La ¼ dt: (5)

This implies that the depolymerization speed can switch
between being density-limited and rate-limited by changing
the concentration c or the values of the biochemical rates
of depolymerases binding to and unbinding from the MT
lattice. Overall, the depolymerization speed obeys a scaling
law

Vdepol ¼ rLauV

�
dt

rLa

�
¼

�
ad for dt % rLa
rLau for dt > rLa

; (6)

where V ðxÞ is a universal scaling function with the simple
form V ðxÞ ¼ x for x < 1 and V ðxÞ ¼ 1 for x > 1. Exper-
imentally, this implies that one should find data collapse
when using such a scaling plot (Fig. 4 A).

To gain a molecular understanding of these remarkable
features of the depolymerization speed, one needs to have
a closer look at the density profile of the molecular motors
at the MT tip. If the depolymerization rate is small, d < n,
motors leave the tip more slowly than they arrive. Therefore,
the MT tip acts as a bottleneck for molecular transport that
disturbs the density profiles either locally or macroscopi-
cally. A weak bottleneck induces a local perturbation
(‘‘spike’’) (33). These spikes are sharp changes of the
density profile with a typical extension that scales with the
size of a heterodimer. However, if the strength of a bottle-
neck exceeds a threshold value, the spike extends to a macro-
scopic perturbation (‘‘traffic jam’’) (33). Fig. 5 A illustrates
how, for a given Langmuir density, rLa ¼ 2=3, the effect
on the density profile changes from a spike (blue) to an
extended traffic jam (red and green) when the depolymer-
ization rate is d.

Let us now analyze the conditions and consequences of
such bottlenecks in more detail. Suppose we are in a param-
eter regime where the plus-end disturbs the density profile
only locally, i.e., on the scale of a heterodimer. Then, we
may take the bulk density to be equal to the Langmuir
density, rLa, up to the last site (the plus-end) where it jumps
to some higher or lower value rþ. The particle loss current at
the plus-end due to MT depolymerization is then given by

Jdepol ¼ ð1� rLaÞrþd: (7)

The factor 1� rLa arises because the particle number
decreases only if a particle depolymerizes the MT and the
second-to-last site, L� 1, is unoccupied. Otherwise, the
depolymerization dynamics and the associated frame shift
of the MT lattice do not change the occupation of the last
site. This particle loss has to be balanced by the incoming
particle flux,

JLa ¼ rLað1� rLaÞn: (8)

Equating these particle fluxes (Eqs. 7 and 8) implies the
following condition for the motor density at the plus-end:

rþ ¼
(
rLa

dt
for rLa % dt

1 for rLa > dt
; (9)

where the fact that the motor density is bounded rþ % 1 is
already accounted for. The particle density on the last site, in
turn, determines the depolymerization speed. For rLa < dt,
one obtains according to Eqs. 2 and 9:

Vdepol ¼ rþda ¼ rLau: (10)

Remarkably, here the effect of the depolymerization
kinetics (d) cancels out such that the macroscopic depoly-
merization speed is independent of the molecular details
of depolymerization kinetics and is solely determined by
the Langmuir density, i.e., the motor density in the bulk,

C

A B

FIGURE 5 Density profiles at the plus-end, corresponding phase

diagram, and depolymerization scenarios. (A) Density profiles at the MT

plus-end in the comoving frame for c ¼ 2:9 nM, and d ¼ 0:1; 0:3 (left),

0:35; 0:5 (middle), and 0:8 n (right). The simulation results and analytical

solutions (black; see Supporting Material) agree nicely. (B) Depending on

the value of d and the density of motors, rLa, there are three different classes

of density profiles at the plus-end: wedge-like (diamonds), traffic jams with

a DW (square), and spikes (circles). The transition between profiles with an

extended traffic jam and a localized spike (solid line) also marks a qualita-

tive change in the depolymerization speed. Whereas the depolymerization

speed is density-limited in the spike regime, it is rate-limited in the DW

and wedge regime. Symbols correspond to parameters as displayed in panel

A. (C) Depending on the value of d and the density of motors, rLa, there are

three different regimes of depolymerization dynamics. In regime a, depoly-

merization is density-limited for arbitrary MT length. In contrast, depoly-

merization is rate-limited for long MTs and density-limited for short

MTs in regimes b and g. For details, see the main text.
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r�ðxÞ, and not at the tip of the MT. This result crucially
depends on the presence of a microscopic spike. It explains
the hitherto puzzling experimental result that the depoly-
merization speed is directly proportional to the bulk motor
current along the MT (23) (Fig. S2).

Because the density is bounded, rþ%1, density profiles
with a spike are only possible if the densities are not too
large, rLa < dt. This is the case for the blue curve in
Fig. 5 A. For densities exceeding the critical density,
r�La ¼ dt, the bottleneck-induced perturbation in the density
profile can no longer remain a local spike, but has to become
macroscopic in extent (33) (see green and red curves in
Fig. 5 A and the Supporting Material).

One finds that over an extended region, the binding sites
at the plus-end then remain permanently occupied such that
rþ ¼ 1. This immediately implies that the depolymerization
speed becomes density-independent and proportional to the
microscopic depolymerization rate:

Vdepol ¼ ad: (11)

There is a tight correlation between the shape of the
density profiles and the macroscopic depolymerization
speed. The analytic results explain the molecular mecha-
nism behind the numerically observed scaling law (Eq. 6),
with a sharp transition from density-regulated to rate-
limited depolymerization dynamics at a critical value of
r�La ¼ dt (cf. the classification of density profiles and depo-
lymerization regimes shown in Fig. 5 B).

Actually, the above calculations can be generalized to the
regime in which the motor density exhibits an antenna-like
linear profile, i.e., for MT length shorter than ‘�. As detailed
in the Supporting Material, we find that the depolymeriza-
tion speed is rate-limited, Vdepol ¼ ad, if MTs are shorter
than ‘� but still longer than a second threshold length:

‘d :¼
da

cua

¼ ‘ dt

K
: (12)

In contrast, for ‘d > ‘�, the depolymerization speed in the
antenna regime is always length-dependent and strictly
follows the shape of the antenna profile, r�ðxÞ:

Vdepol ¼ r�ðLÞu: (13)

Using Eq. 4, the condition ‘d > ‘� on the threshold
lengths is equivalent to dt > rLa for K < 1, and to
dt > 1� rLa for K > 1.

Combining all of the above results, we find three mecha-
nisms that govern the depolymerization dynamics, as illus-
trated in Fig. 5 C:

a. For dt > rLa, the depolymerization speed is always
density-regulated and given by VdepolðLÞ ¼ r�ðLÞu,
where L is the time-dependent length of the MT. In
this parameter regime, the depolymerization speed is
a direct map of the bulk motor density profile on the

MT, r�ðxÞ, a feature that can be exploited experimen-
tally to measure the profile.

b. For rLa > dt > 1� rLa, the depolymerization speed is
rate-limited for MTs longer than ‘�, and becomes
density-limited as soon as the MT length falls below
‘�, where the density profile is antenna-like. This
implies that there is a discontinuous jump in the depoly-
merization speed right at L ¼ ‘�.

g. Finally, for all other values of dt, the depolymerization
speed of the MT remains rate-limited for lengths larger
than a threshold length ‘d. At ‘d, which is smaller than
‘� in this parameter regime, there is again a discontinuous
jump to a density-limited depolymerization dynamics.

If the depolymerization rate is larger or equal to the
hopping rate of molecular motors, dt R 1, then dt > rLa
is always obeyed simply because rLa % 1. In this regime,
all of the molecular details of the depolymerization kinetics
are irrelevant. Neither the cooperativity nor the actual value
of the depolymerization rate matters in terms of the depoly-
merization speed; instead, only the bulk density regulates
the speed. Note that this was the case for the data shown
in Fig. 2, where we tentatively made the parameter choice
dt ¼ 1. If the motors are faster than the depolymerization
process, dt < 1, we have to distinguish between the param-
eter regimes (a, b, and g, Fig. 5 C). Here the value of the
depolymerization rate matters if the bulk density exceeds
a certain threshold concentration, rLa > dt, and the MTs
are long enough. Finally, the depolymerization speed
always becomes density-dependent and hence length-
dependent if the MT length is short enough; the correspond-
ing threshold length is ‘reg ¼ min½‘�; ‘d�.

The end-residence time strongly depends
on cooperativity

In contrast to the depolymerization speed, the mean end-
residence time tres is strongly affected by the degree of co-
operativity. Fig. 6 displays tres as obtained from our
stochastic simulations for noncooperative and fully cooper-
ative depolymerization kinetics. Our simulations show that
the end-residence time for the fully cooperative model is
identical to the average lifetime of a terminal tubulin dimer
tfcres ¼ td :¼ a=Vdepol (Fig. 6 A). Even for the noncoopera-
tive model, tncres equals td for large residence times and devi-
ates from it only at small values. The relatively sharp
transition to a constant lifetime of the terminal tubulin dimer
occurs right at tncres ¼ t=rLa, i.e., the end-residence time
equals the waiting time for a molecular motor to arrive at
the MT tip. For tncres < t=rLa, the lifetime of the terminal
tubulin dimer is identical to the arrival time (Fig. 6, A and
B). Once the arrival time becomes shorter than the inverse
depolymerization rate, the end-residence time levels off at
tncres ¼ 1=d. These results show that the dependence of the
end-residence time on density can be used to quantify the
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degree of cooperativity. This would require experiments
with motor densities on the MT larger than those studied
up to now (15,23).

The observation that the depolymerization speed is inde-
pendent of the degree of cooperativity seems to be at odds
with the experimental finding that the end-residence time,
tres, of Kip3p depends on the total Kip3p concentration
and is inversely proportional to the macroscopic depolymer-
ization speed (23). Actually, however, there is no contradic-
tion and the findings are readily explained within our
theoretical model: For a noncooperative model, tncres is
simply given by the depolymerization rate, because after
they arrive, the particles stay at the tip until they depoly-
merize the MT:

tncres ¼
1

d
: (14)

For a fully cooperative model, tfcres depends not only on
d but also on the rate at which the second-to-last site

becomes populated. Say the probability for the second-to-
last site to be occupied is rþ. Then, t

fc
res is given by a sum

of two contributions arising from the cases in which the
second-to-last site is empty or occupied, respectively:

tfcres ¼ ð1� rþÞ
�

t

rLa
þ 1

d

�
þ rþ

1

d
: (15)

If the second-to-last site is empty (which is the case with
probability 1� rþ) tres is the sum of arrival time t=rLa and
depolymerization time 1=d. Otherwise, the end-residence
time tres simply equals 1=d.

As shown in the previous section, two distinct scenarios
arise: For small bulk densities such that rLa < dt, the
density profile at the plus-end exhibits a microscopic spike
with rþ ¼ rLa=dt. For large densities, rLa > dt, a macro-
scopic traffic jam emerges such that rþ ¼ 1. This result ob-
tained for the motor density at the MT tip (Eq. 9) may now
be used to calculate tfcres using Eq. 15:

tfcres ¼

8>><
>>:

1

d
for rLa>dt;

t

rLa
else:

(16)

This agrees well with the results from stochastic simula-
tions displayed in Fig. 6. A comparison with Eq. 6 shows
that the end-residence time equals the typical depolymeriza-
tion time, i.e., the expected lifetime of a terminal tubulin
dimer, tfcres ¼ td. This is in agreement with experimental
findings regarding the unbinding rate of motors at the
plus-end (23) and strongly supports the conclusion that
depolymerization of MTs by Kip3p is fully cooperative.
Varga et al. (23) measured the end-residence time of motors
on double stabilized MTs, i.e., where depolymerization is
switched off. They observed that the end-residence time is
inversely correlated with the concentration of Kip3p, and
fit their data with an exponential using a cutoff. This is in
accordance with our results shown in Fig. 6 B. However,
because depolymerization has been switched off in the
experiment, the rate d, corresponding to the cutoff, now
has to be interpreted as an unbinding-rate of motors at the
plus-end. It would be highly interesting to design experi-
ments in which the depolymerization kinetics remains
switched on, because this would allow one to measure the
magnitude of the microscopic depolymerization rate d.

DISCUSSION

In this work, we analyzed the effect of crowding and coop-
erativity on the depolymerization dynamics of MTs. To that
end, we constructed an individual-based model for the
coupled dynamics of plus-end-directed motor traffic and
MT depolymerization kinetics. The model is based on
well-established molecular properties of motors from the

A

B

FIGURE 6 Motor end-residence times tres for cooperative and noncoop-

erative depolymerization. (A) Mean end-residence time tres plotted against

the mean depolymerization time td. Data were recorded for a range of

depolymerization rates d ¼ 0:02.2 n. Noncooperative (shaded) and

cooperative (black) dynamics are shown for different densities. (B) Mean

end-residence time tres as a function of the Langmuir density rLa for various

depolymerization rates (in units of n). For noncooperative depolymeriza-

tion, tres is given by 1=d (shaded lines). For the fully cooperative scenario

(symbols), tres depends on whether the system is in the density-limited

ðdt > rLaÞ or in the rate-limited ðdt < rLaÞ regime. While, for dt > rLa,

the end-residence time is given by tres ¼ t=rLa (solid gray line), for

dt < rLa, it is density-independent and determined by the microscopic

depolymerization rate tres ¼ 1=d (see also Eq. 16).
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kinesin-8 family, i.e., the motors move on single protofila-
ments with high processivity at an average speed u, and
exchange of motors between the bulk and the MT follows
Langmuir kinetics. All parameters of the model, including
the average walking speed, run length, and attachment
rate, were directly extracted from available in vitro data
(23). We validated our model by reproducing the onset of
length-dependent depolymerization as studied recently
(15,23). Without using any additional fitting parameter, we
found the same regimes of density profiles and ensuing
depolymerization dynamics as in the experiments, i.e., a
linear antenna-profile with a length-dependent depolymer-
ization speed and a flat profile with a constant depolymer-
ization speed. Moreover, we identified a threshold density
of motors above which a crowding-induced traffic jam
emerges at the minus-end. The predicted shape and extent
of these traffic jams should be amenable to experiments
that raise the depolymerase concentration c or change its
rates of binding to and unbinding from the MT.

The interplay between motor traffic and depolymerization
kinetics at the MT plus-end leads to strong correlations
between the depolymerization dynamics and density
profiles of depolymerases. The plus-end acts as a bottleneck,
and crowding effects cause traffic jams. We find two quali-
tatively distinct regimes: Motor densities below a critical
threshold value, r�La ¼ dt, always show a local spike-like
perturbation at the plus-end, the extent of which is the
size of a heterodimer. Above this threshold density, macro-
scopic traffic jams may emerge. These distinct density
profiles at the plus-end affect the depolymerization speed
and the end-residence time in qualitatively different ways.
A quantitative analysis of the model using stochastic simu-
lations as well as analytical calculations led to the following
main results:

The end-residence time of a depolymerase strongly
depends on the degree of cooperativity. Whereas for nonco-
operative depolymerization kinetics the end-residence time
is given by the microscopic depolymerization rate d, it is
density-dependent in the fully cooperative case: Increasing
the Langmuir density above the threshold value r�La ¼ dt,
the end-residence time changes from being inversely
proportional to the density rLa to a constant value d�1.
These results suggest an interesting way to determine the
cooperativity of depolymerization kinetics and measure
the value of the depolymerization rate d. Although when
the concentration c is increased, the end-residence time
should be independent of concentration for noncooperative
kinetics, it should strongly depend on concentration in the
cooperative case. Experimental evidence points toward the
latter (23).

In contrast, the depolymerization speed does not depend
on the degree of cooperativity of the depolymerization
kinetics. Noncooperative and fully cooperative versions of
the model give identical results. As a function of depolymer-
ase concentration and the MT length, the depolymerization

dynamics exhibits two qualitatively distinct regimes: The
depolymerization speed is either density-limited and deter-
mined by the bulk density of molecular motors, r�ðxÞ, or
rate-limited and dictated by the value of the microscopic
depolymerization rate, d. Both regimes emerge due to
crowding of molecular motors at the plus-end, which acts
as a bottleneck for molecular traffic.

Density-limited regimes are correlated with microscopic
traffic jams (‘‘spikes’’) at the plus-end: The density profile
self-organizes into a shape that cancels out all the effects
of the depolymerization kinetics such that the depolymer-
ization speed is solely determined by the bulk motor density,
r�ðxÞ, and the average motor speed, u. Note that only in this
regime length-dependent regulation is possible, because the
density changes over the MT length. As emphasized above,
if the depolymerization rate d is larger than the hopping rate
of the molecular motors, d>n, this remains the only regime
of depolymerization dynamics. Then, the depolymerization
speed is limited by the velocity of the plus-end directed
motors, which is in accordance with recent experimental
findings for Kip3p (23). In a parameter regime where motors
depolymerize more slowly than they walk, d<n, there is
a second rate-limited regime above the threshold density
r�La and for MTs longer than some threshold length ‘reg
where Vdepol ¼ ad. In this regime, the plus-end acts as
a strong bottleneck for molecular traffic. This causes
a macroscopic traffic jam such that the motor density steeply
rises to full occupation of all lattice sites at the plus-end of
the MT. The cellular system sacrifices its ability to regulate
the speed of depolymerization and only regains it once the
MT length falls below ‘reg, where the depolymerization
speed again becomes density-regulated. From an evolu-
tionary perspective, one might speculate that the system
has evolved toward d ¼ n, because this would allow regula-
tion of the depolymerization dynamics over the broadest
possible range.

Beyond these observations, other predictions of our
stochastic model can be put to the test in experiments. By
varying the motor concentration, two interesting observa-
tions could be made: First, the phase diagram for the density
profiles at the minus-end could be scrutinized experimen-
tally. Second, the predictions on the density-profiles at the
plus-end and their predicted strong correlations to the
macroscopic depolymerization dynamics might be acces-
sible to single-molecule studies. Manipulation of the molec-
ular properties of the motor (e.g., the run length, attachment
rate (42), average speed, and depolymerization rate) would
change the intrinsic biochemical rates of the system and
could potentially lead to new parameter regimes. In addi-
tion, our results regarding the length and concentration
dependence of the depolymerization process might be rele-
vant in vivo, e.g., for mitotic chromosome alignment (18). In
our theoretical studies, we explored the full parameter
range, and therefore clear predictions are available for
comparison.
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We believe that in a more general context, our theoretical
work provides new conceptual insights into the role of
collective and cooperative effects in MT assembly and
disassembly dynamics. Future research could focus on
the antagonism between polymerases and depolymerases
(12,43,44), spontaneous MT dynamics mediated by GTP
hydrolysis, the abundance of molecular motors in a cell,
or more-detailed modeling of molecular motors (26). This
may finally lead to a molecular understanding of the regula-
tory mechanisms of cellular processes in which MT
dynamics plays a central role.
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In this Supporting Material, details concerning the mathematical formulation and
the stochastic simulations are given. In particular, the density profiles and the domain
wall positions at the minus- and the plus-end are derived analytically. Further, some
additional results are provided: (i) We show that the shapes of MT depolymerization
curves (kymographs) are to a large extent independent of the choice of the depolymer-
ization rate δ; see Fig. S1. (ii) Analytical and numerical results from our theory are
compared to experimental data on the relation between depolymerization speed and
motor current (1); see Fig. S2.

Mathematical formulation

In this article, we employ a lattice gas model. Its state is described by a set of occupation
numbers ni ∈ {0, 1} where i = 1, . . . , L denotes the lattice sites. In contrast to the
notation in the main text, we here choose units of length and time such that the hopping
rate from site to site and the lattice constant are both set to one. For an analytical
description of the steady state density profiles of the molecular motors along the MT we
consider the ensemble-averaged densities and currents:

ρi := 〈ni〉 , (S1)

Ji := 〈ni(1− ni+1)〉 . (S2)

Note that the current Ji accounts for particle exclusion: a particle at site i moves to site
i+ 1 at rate ν = 1 only if site i+ 1 is unoccupied. The steady state results from a local
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balance between the transport current (2),

JTi := 〈ni−1(1− ni)〉 − 〈ni(1− ni+1)〉 , (S3)

the particle exchange with the bulk,

JLai := c ωa〈1− ni〉 − ωd〈ni〉 , (S4)

and the depolymerization current, which sets the boundary condition at the plus-end.
We now perform a mean-field approximation, where all spatial correlations are neglected,
and a continuum limit keeping only the leading order terms (3). Then, the transport
current simplifies to,

JT (x) =
(
2ρ(x)− 1

)
∂xρ(x) , (S5)

i.e. the transport current is proportional to the density gradient like a diffusion current in
Fick’s law but modified with a density-dependent prefactor which reflects site-exclusion
between motors. The Langmuir current is given by

JLa(x) = c ωa
(
1− ρ(x)

)
− ωdρ(x) . (S6)

Density profiles at the minus-end

Within the above introduced framework the motor density profiles on the MT can be
calculated analytically. In particular, the domain wall position, can be derived exactly
as well as upon employing a linear approximation for the density profile close to the
minus-end. For simplicity, we first consider the latter, especially because its results
approximate the exact solution rather well over a broad range of parameters.

Linear approximation

In the immediate vicinity of the minus-end (x = 0) the density is small such that the
full equation for the current balance, JT + JLa = 0,

(2ρ(x)− 1)∂xρ(x) + c ωa(1− ρ(x))− ωdρ(x) = 0 , (S7)

reduces to ∂xρ = c ωa, which is solved by a linear (antenna) profile:

ρ−(x) ≈ c ωax . (S8)

At sufficiently large distances from the minus-end the density profile becomes flat. There-
fore, JT vanishes and the system is dominated by the Langmuir kinetics, JLa = 0. Then,
an asymptotic solution of Eq. S7 is given by the Langmuir density

ρLa =
K

1 +K
=

c ωa
c ωa + ωd

. (S9)

The full density profile is obtained by concatenating the antenna profile and the flat
Langmuir profile such that the (local) current is continuous along the MT. There are
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two qualitatively distinct scenarios. For low bulk concentrations of molecular motors,
c, the antenna profile matches the asymptotic Langmuir density continuously resulting
in a wedge-like profile; compare Fig. 2E in the main text. Approximately, the matching
point, ρ−(d−w) = ρLa, is

`−w ≈
K

cωa(K + 1)
. (S10)

In contrast, above a certain threshold value for the bulk concentration, determined by
K−c = 1, the two profiles can no longer be matched continuously and the density profile
displays a localized discontinuity (2), also termed a “domain wall” (DW). Its position
is determined by a local current continuity condition (2, 3), ρ−(d−) = 1− ρLa, and can
again be estimated using the linear antenna profile:

`− ≈ 1

c ωa(K + 1)
. (S11)

Taken together, Eq. (5) from the main text is obtained,

`− =

{
1

ωd(K+1) for K < 1 ,
1

c ωa(K+1) for K > 1 .
(S12)

Exact solution and domain wall position

To obtain the full solution Eq. S7 has to be solved as already demonstrated in Ref. (3).
Introducing a rescaled density at the minus-end σ−(x) = K+1

K−1 (2ρ(x)− 1)− 1 in Eq. S7
a transformed differential equation can be obtained

∂xσ−(x) + ∂x ln |σ(x)−| = ωd
(K + 1)2

K − 1
,

which is mathematically equivalent to Eq. S7 and can be solved analytically

σ−(x) = W−1 (−Y−(x)) . (S13)

Here W−1 is the second real branch of the Lambert W -function (4) and Y−(x) reads (3)

Y−(x) =

∣∣∣∣
−2K

K − 1

∣∣∣∣ exp

{
ωd

(K + 1)2

K − 1
x− 2K

K − 1

}
. (S14)

Herein the boundary condition ρ−(0) = 0 corresponding to σ−(0) = −2K/(K − 1) has
already been accounted for. The local current condition for the domain wall, ρ−(d−) =
1 − ρLa which corresponds to σ−(d−) = −2 for the rescaled density, now enables us to
calculate the DW position. Combining this condition with Eqs. S13 and S14 leads to

d−(ωd,K) =
2 + (K − 1) ln(1− 1/K)

ωd(K + 1)2
. (S15)
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Density profiles at the plus-end

Analogously to the minus-end, we now evaluate the density profiles and ensuing DW
at the plus-end. Because the tip steadily depolymerizes, the calculations have to be
performed in a comoving frame which is introduced first.

Comoving frame

In the comoving frame, the above defined last lattice site L, i.e. the plus-end, is defined
as the first site of the MT. This is equivalent to reverting the motor movement. Since
molecular motors in the comoving frame move towards the first site of the lattice, the
transport current changes sign JTi = −JT ;Coi

JT ;Coi := 〈ni+1(1− ni)〉 − 〈ni(1− ni−1)〉 , (S16)

using the mean-field approximation as introduced above this leads to

JT ;Co(x) = −(2ρ− 1)∂xρ(x) . (S17)

The particle adsorption/desorption current JLai is unaffected. However, there is another
contribution to the current balance in the comoving frame due to depolymerization:
Similar to the above definitions of the local currents, a local current which accounts for
depolymerization in the comoving frame arises

JCoi = δ(ni+1 − ni) . (S18)

Employing a mean-field approximation this expression simplifies to,

JCo(x) = δ∂xρ(x) . (S19)

This current term can be understood as follows. Due to the depolymerizing activity of
a motor at the plus-end, in the comoving frame all motors on the MT simultaneously
approach the plus-end. In summary, by introducing a comoving frame the mean-field
equation for the density at the MT plus-end ρ+(x) is obtained. In the steady state it
reads

(2ρ+ − 1− δ)∂xρ+ + cωa(1− ρ+)− ωdρ+ = 0 . (S20)

Density profiles

The above equation is solved in close analogy to Eq. S7. In terms of a rescaled density

σ+(x) =
2ρ+(x)− 2 K

K+1

2 K
K+1 − (1 + δ)

, (S21)

the rescaled differential equation reads

σ′+(x) + ∂x ln |σ+(x)| = ωd(K + 1)2

K − 1− (K + 1)δ
. (S22)
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The exact solutions to this equation are compared to stochastic simulations in the main
text (Fig. 5A).

The solutions of this equation for δ = 0 are discussed in (3) and in parts above.
However, in the case of depolymerization, i.e. for δ > 0, two special solutions exist:
Depending on the density of motors on the MT two classes of solutions for the density
at the plus-end ρ+(x) can be distinguished. These are wedge-like or traffic jam density
profiles; see Fig. 5A in the main text. The boundary condition for these qualitatively
distinct density profiles is ρ+(L) = 1. Defining

Y (x) = |σ+(L)| exp

{
ωd(K + 1)2

K − 1− δ(K + 1)
(x− L) + σ+(L)

}
, (S23)

the two solutions for density profiles in the main text (black lines in Fig. 5A) are

ρ(x) =

{
ρLa + 1

2(2ρLa − (1 + δ))W0(Y (x)) wedge-like

ρLa + 1
2(2ρLa − (1 + δ))W−1(−Y (x)) traffic jam.

(S24)

W0 and W−1 denote the first and the second real branch of the Lambert function.
The reason for the form of these two solutions is the bottleneck (5) arising due to
depolymerization (see main text). This bottleneck fixes the value of the tip density to
its maximum ρ+(L) = 1 for ρLa > δ. The transition from a traffic jam to a wedge-like
density profile is thus not boundary-induced, i.e. due to a particular value of ρ+(L) < 1,
but may be attributed to the depolymerizing activity of motors at the plus-end. As
discussed in the main text, this transition is sharp and can be quantified in terms of ρLa
and δ; see Fig. 5B.

Domain wall position at the plus-end

As already shown in the main text, microscopic jams can substantially influence the
depolymerization dynamics. For large bulk concentrations, this perturbation no longer
remains a local spike, but affects the profile on a macroscopic scale (5). Because the
perturbation is macroscopic we can again use a hydrodynamic description, now with the
boundary condition ρ+(L) = 1. Close to the plus-end Eq. S20 gives an approximately
linear profile

ρ+(x) ≈ 1− ωd
1− δ (L− x) . (S25)

The slope increases with increasing depolymerization rate δ, c.f. Fig. 5A in the main
text. In close analogy with the discussion for the minus-end there are two scenarios
for concatenating this linear profile with the Langmuir density. Here, for large enough
Langmuir density and/or small enough depolymerization rates, we obtain a wedge-like
profile with a matching point given by ρ+(d+w) = ρLa:

d+w ≈ L−
1− δ

ωd(1 +K)
; (S26)
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compare the green curves in Fig. 5A in the main text. Upon increasing the depolymer-
ization rate or decreasing the Langmuir density a DW emerges whose position can be
determined using current conservation, ρ+(d+) = 1− ρLa + δ:

d+ ≈ L−
[

K

1 +K
− δ
]

1− δ
ωd

; (S27)

compare the red curves in Fig. 5A. The DW is most pronounced for K < 1. The height
of the DW vanishes as K approaches the threshold value

K+
c =

1 + δ

1− δ (S28)

from below. Equivalently, for a given K, the critical depolymerization rate reads

δc =
K − 1

K + 1
= 2ρLa − 1 =

c ωa − ωd
c ωa + ωd

. (S29)

Together with the condition for spikes, ρLa < δ, this relation organizes the shapes of the
density profiles into three classes: Microscopic jams at the tip, wedge profiles and DW
profiles.

Depolymerization dynamics of the antenna profile

In the main text we have discussed how a spatially uniform density ρLa affects depoly-
merization dynamics. Here we briefly show that our approach is also applicable to linear
antenna profiles, i.e. for MTs shorter than a certain threshold length, L < `−, cf.
Eq. (S12) and main text. Just as in the main text we equate the particle loss current
due to depolymerization,

Jdepol(x) = [1− ρ−(x)] ρ+(x)δ , (S30)

and the particle flux towards the plus-end,

J−(x) = [1− ρ−(x)] ρ−(x) , (S31)

and find

ρ+(x) =

{
ρ−(x)
δ for L < δ

cωa
,

1 for L > δ
cωa

.
(S32)

Since, according to Eq. (2) in the main text, the density at the plus-end determines
the depolymerization speed, Vdepol = δρ+(x), the position-dependence of the tip density
maps to a length-dependence of the polymerization speed. For MTs shorter than `− but
longer than a certain depolymerization length `d = δ/cωa the depolymerization speed is
length-independent

Vdepol = ρ+δ = δ . (S33)
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Analogously to the result for constant bulk densities, this result shows that for MTs
longer than the depolymerization length `d the dynamics of depolymerization of the
antenna profile can not be distinguished from the dynamics as induced by a flat density
profile. In contrast, at a MT length shorter than `d the depolymerization speed becomes
length-dependent and follows the shape of the antenna density profile ρ−(x):

Vdepol(L) = ρ+(L)δ = ρ−(L) . (S34)

These results generalize the rate-limited and density-limited regimes discussed in the
main text to non-uniform densities. Moreover, they show that once filaments become
shorter than `−, i.e. the density profile is antenna-like, there is a second spike-induced
length scale `d which is the relevant length scale for the onset of length-dependent
depolymerization of MTs.

Combining these results with the analogous conditions for the Langmuir plateau
discussed in the main text, leads to the depolymerization regimes summarized in Fig. 5C
and Table S1. Simply put, the depolymerization dynamics changes from rate-limited to
density-limited when the bulk density falls below the threshold density δ: ρ−(L) ≤ δ. For
Langmuir densities below the threshold density, ρLa < δ, the bulk density remains below
the threshold density for the whole MT length such that the depolymerization dynamics
is always density-limited and given by: Vdepol = ρ−(L). This corresponds to regime (α)
in Fig. 5C. For Langmuir densities above the threshold, ρLa > δ, the depolymerization
dynamics is rate-limited in the Langmuir plateau and given by Vdepol = δ. In the
antenna-like regime of the density profile, i.e. for L ≤ `−, we have to distinguish between
two cases: (i) K > 1 (ρLa > 0.5) where the bulk density profile exhibits a domain wall,
and (ii) K < 1 (ρLa < 0.5) where the bulk density profile is wedge-like. In the latter
case, the bulk-density profile changes slowly and hence remains above the threshold δ
for some time even below L = `−. Only for MTs shorter than `d, given by ρ−(`d) = δ,
the dynamics changes from rate- to density-limited. This corresponds to regime (γ)
in Fig. 5C. In contrast, for K > 1 (ρLa > 0.5), the bulk density ρ−(x) exhibits a
discontinuous jump from the Langmuir density to 1− ρLa right at `−. If this maximum
value of the antenna-like profile is less than the threshold density, 1 − ρLa < δ, then
the depolymerization dynamics discontinuously switches from rate-limited to density-
limited. This defines regime (β) in Fig. 5C. Otherwise, if 1 − ρLa > δ, we are back to
regime (γ). In summary, all regimes show a constant depolymerization speed for long
MTs in the Langmuir plateau. Depending on the relative magnitude of the Langmuir
density and the depolymerization rate this regime is either density-limited and given by
ρLa or rate-limited and given by δ, cf. second column in Table S1. In all scenarios the
dynamics becomes length-dependent at some scale which is, however, different. While
for regimes α and β, it coincides with the beginning of the antenna-like density profile
`−, it is given by `d for regime (γ) cf. third column in Table S1.
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Regime Condition Constant Vdepol Critical MT length

(α) ρLa < δ Vdepol = ρLa `−
(β) ρLa > δ > 1− ρLa Vdepol = δ `−
(γ) else Vdepol = δ `d

TABLE S1: Summary of the similarities and differences in the depolymerization regimes
(α), (β) and (γ). While for MTs longer than a critical length (third column) the de-
polymerization speed is constant (second column), it becomes length-dependent below
this critical length and is then given by Vdepol = ρ−(L).

Numerical implementation

The stochastic dynamics of the individual-based model was simulated using a Gillespie
algorithm (6) and employing the rates introduced above. Note that this method provides
the mathematically exact stochastic dynamics. This is essential for the investigation of
dynamic phenomena like length-dependent shortening.

In Fig. 2A-D, our simulations of the motor traffic started from an initial condition
where the MT lattice was empty and subsequently filled up with motors triggering the
depolymerization dynamics. To visualize time-dependent MT length and motor densities
in one kymograph we implemented 14 protofilaments and averaged the motor intensities
and MT lengths, see Fig. 2A-C. In detail, the visualization of kymographs was achieved
as described in the following. From stochastic simulation data of the MT, each second the

occupation numbers of motors along the MT n
(j)
i , where j indexes the 14 protofilaments

of the MT, were evaluated and converted to RGB color values:

Ri =
∑14

j=1 1−n
(j)
i

14 , Gi =
∑14

j=1 n
(j)
i

14 , Bi = 0. (S35)

These values display the density of motors as green and the uncovered MT surface as
red. Hence, if the MT is completely empty it is red, while at complete motor coverage
it is green.

Steady state motor densities as shown in Figs. 2E and 5A were obtained by time-
averaging over 104 independent realizations after an equilibration time of 2000 time
steps; note that for a constant lattice size time and ensemble averages yield identical
results (2). In Fig. 5A, the density profiles were recorded in the comoving frame of the
MT plus-end, while density profiles in Fig. 2E were recorded in the rest frame of the MT
minus-end. In Fig. 2E, the density profiles resulting from the minus end without any
influences from the plus end are shown. This can be viewed as an infinitely long lattice.
To simulate such a lattice, we chose the following boundary conditions. We neglected
depolymerization as it arises at infinity. Further, we set the exiting rate for motors at
the last site equal to 1− ρLa. Then, the transport behavior at the tip is the same as on
the lattice, if the Langmuir density is reached, ρ(x) = ρLa.

In the second part of the article we focus on the dependence of the depolymerization
speed on the motor density. To this end, simulations were performed in a comoving
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frame where the density at the minus-end was fixed to the Langmuir density. This
was achieved by extending the lattice one site to left with each depolymerization step
and filling the thereby created site with the probability ρLa. This procedure may also be
interpreted as an infinite MT allowing to observe motor dynamics at the MT tip without
perturbations arising from the length-dependent depolymerization regime.

We measured the mean end-residence time of individual motors at the plus-end τres
and the mean lifetime of the terminal tubulin dimer τd. Data of these were obtained by
averaging over 104 time steps τ , cf. Figs. 4 and 6.

How kymographs become independent of the depolymeriza-
tion rate

In Fig. S1 we provide data that explicitly shows the parameter independence of MT
depolymerization. This results has been generalized in the main text to all possible
motor concentrations and depolymerization rates.

FIGURE S1: Kymographs as they become independent of the depolymerization rate δ.
Time-space plots of depolymerizing MTs for different depolymerization rates are shown,
ranging from δ = 0.1 ν (red) to 1.0 ν (blue), the latter value corresponds to the motor
speed of v = 6.35 sites s−1. For slow depolymerization rate, δ / 0.5, the depolymerization
speed is related to the microscopic depolymerization rate δ, whereas for rates δ ' 0.5
the depolymerization speed is independent of the depolymerization rate but depends on
the density of motors on the MT, as outlined in the main text.

Comparison with experiments: dependence of the depoly-
merization speed on the bulk flux and bulk density

Experimentally it was found that the depolymerization speed is linearly correlated with
the flux of molecular motors towards the plus-end (1). We have collected data from our

9



FIGURE S2: Depolymerization speed ∆L/∆T as a function of the bulk motor current
on the MT, JLa. Data from stochastic simulations for two different depolymerization
rates δ = 0.5 ν (◦) and 0.8 ν (/) are shown, each for a set of Langmuir densities (colors)
corresponding to concentrations c = 0.16 . . . 13 nM. To illustrate the effect of statistics,
small symbols show individual measurements as obtained from 103 fixed time measure-
ments ∆T = 500τ , while large symbols indicate their mean 〈∆L/∆T 〉. Good agreement
with experimental data (2) measured in the low density regime is found (1). Here, the
theoretical prediction given by JLa (solid) is hardly discernible from a linear best fit to
experiments (dashed).

simulations similar to experiments. Figure S2 shows a scatter plot for the depolymeriza-
tion speed as a function of the bulk flux of motors, JLa, for two values of the microscopic
depolymerization rate δ. The noise in the ensemble of realizations has two sources. The
bulk current fluctuates since the Langmuir kinetics responsible for the bulk density ρLa
is a stochastic process. The depolymerization speeds vary from realization to realization
because the depolymerization kinetics is a Poisson-like process. Also shown in Fig. S2 are
ensemble averages. These mean values, as predicted in the main text, show the following
behavior. For a macroscopic depolymerization speed lower than the depolymerization
rate, ∆L/∆T < δa, it is density-limited and identical to the bulk density:

∆L

∆T
= ρLav for ρLa < δτ . (S36)

Rewriting this relation in terms of the bulk current means that the data should fall on
the parabola displayed as the solid curve in Fig. S2. For low densities, ρLa / 0.25, where
crowding effects are weak, this implies ∆L/∆T = ρLav ≈ JLa as observed experimentally
(1); see Fig. S2.

As the bulk density is increased two things happen. First, crowding effects become
important invalidating the linear relationship between bulk current and depolymeriza-
tion speed. It would be interesting to test our prediction that the depolymerization
speed is linear in the bulk density by using higher motor concentrations or changed bio-
chemical rates such that K becomes significantly larger than 1. Second, if ρLa > δτ , the
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depolymerization speed becomes rate-limited:

∆L

∆T
= aδ for ρLa > δτ . (S37)

This puts an obvious upper bound on the depolymerization speed. It cannot become
larger than the microscopic rate of depolymerization at the plus-end. If the depoly-
merization rate is larger than the hopping rate of the molecular motors, δ > ν, the
depolymerization speed is, for all possible values of the bulk density, strictly given by
the bulk density.
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gute drei Jahre eine Bürogemeinschaft gebildet hat, bedanken. Dank zahlreicher Diskussionen
an unserem Whiteboard und auch abends bei einem kollegialen Bier, haben sich mir viele
Zusammenhänge erschlossen. Besonders bemerkenswert war unsere gute Büroatmosphäre,
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Danke, Euch beiden, ohne Euch wäre ich nicht da, wo ich jetzt bin. Meinen beiden Schwester
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