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ABBREVIATIONS 

ACC     animal cell culture 
A-E     AML1-ETO 
AF-9 MLLT3: mixed-lineage leukemia, translocated to 3 
     (official gene nomenclature) 
AML     acute myeloid leukemia 
AP-1     activator protein-1 
APL     acute promyelocytic leukemia 
APS     ammonium peroxidisulfate 
AraC     cytosine arabinoside 
Art-1     AML1-regulated transmembrane protein-1 
ATF-2     activating transcription factor-2 
ATP     adenosin 5’-triphosphate 
ATRA     all-trans retinoic acid 
BCL-2     B-cell lymphoma-2 
BM     bone marrow 
bp     base pair 
BSA     bovine serum albumin 
bZIP     basic domain/leucine zipper 
cAMP     adenosine 3’, 5’-cyclic monophosphate 
CBF     core binding factor 
cDNA     complementary DNA 
C/EBPα    CCAAT/enhancer binding protein alpha 
Ci     curie 
CML     chronic myeloid leukemia 
CMV     cytomegalovirus 
comp     competitor 
CRE     cyclic-AMP response element 
CREB     cyclic-AMP response element binding protein 
dAP-1     distal AP-1 
ddH2O     double distilled water 
DMEM    Dulbeccos modified Eagle medium 
DMSO     dimethyl sulfoxide 
DNA     deoxyribonucleic acid  
dNTP     3’-deoxyribonucleoside triphosphate 
DSMZ Deutsche Sammlung von Mikroorganismen und 

Zellkulturen GmbH 
DTT dithiothreitol 
EDTA ethylendiaminetetraacetatic acid 
EMSA electrophoretic mobility shift assay 
ERK     extracellular regulated kinase 
ETO     eight-twenty-one 



FAB     French-American-British 
FBS     fetal bovine serum 
fg     femtogram 
FITC     fluorescein isothiocyanate 
G418     genticin disulfate salt 
G6PD     glucose-6-phosphate dehydrogenase 
G-CSF(R)    granulocyte-colony stimulating factor (receptor) 
GM-CSF    granulocyte/macrophage-colony stimulating factor 
GST     glutatione S-transferase 
HCl     hydrochloric acid 
HEPES    N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid 
HRP     horseradish peroxidase 
Ig     immunoglobulin 
IL     interleukin 
inv(16)     inversion 16 
JIP-1     c-Jun interacting protein-1 
JNK     c-Jun N-terminal kinase 
KCl     potassium chloride 
kDa     kilodalton 
LB     luria bertani 
MAP(K)    mitogen activated protein (kinase) 
M-CSF    macrophage-colony stimulating factor 
MEF-2     myocyte enhancer factor-2 
MgCl2     magnesium chloride 
MLL     mixed lineage leukemia 
mRNA     messenger RNA 
n     number of patients 
NaCl     sodium chloride 
NaOH     sodium hydroxide 
NF-jun     nuclear factor jun 
NF-κB     nuclear factor-kappaB 
NHR     nervy homology region 
NP40     octylphenylpolyethylene glycol 
PAGE     polyacrylamide gel electrophoresis 
pAP-1     proximal AP-1 
PBS     phosphate-buffered saline 
PCR     polymerase chain reaction 
pH     pondus hydrogenii 
PML     promyelocytic leukemia protein 
PMSF     phenylmethylsulphonyl fluoride 
RARα     retinoic acid receptor alpha 
RNA     ribonucleic acid 
rpm     revolutions per minute 
s     shift 



ss     supershift 
SAPK     stress-activated protein kinase 
S.D.     standard deviation 
SDS     sodium dodecyl sulfate 
Ser     serine 
SMMHC    smooth muscle myosin heavy chain 
SP-1     specificity protein-1 
STAT     signal transducers and activators of transcription 
t(8;21)     translocation(8;21) 
TAE     Tris/acetate/EDTA  
TBE     Tris/borate/EDTA  
TBS     Tris-buffered saline 
TBST     Tris-buffered saline with Tween20 
TCR     T-cell receptor 
TE     Tris/EDTA  
TEMED    N, N, N’, N’-tetramethylenediamine 
Tet     tetracycline 
TGFβ     transforming growth factor beta 
Thr     threonine 
TLE     transducin-like enhancer 
TPA     12-o-tetradecanoylphorbol-13-acetat 
Tris     tris(hydroxymethyl)aminomethan 
Tris⋅Cl     Tris hydrochloride 
TWEEN20    polyoxyethylenesorbitan monolaurate 
Tyr     tyrosine 
U     unit 
U937Z/A-E U937 cell line with Zn2+-inducible expression of  

AML1-ETO 
U937T/A-E U937 cell line with Tet-regulated expression of 

AML1-ETO 
UV     ultraviolet 
v/v     volume/volume 
w/v     weight/volume 
Zn2+     zinc 
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1. INTRODUCTION 

1.1 Proto-oncogene c-jun and JNK signaling pathway 

The nuclear proto-oncogene c-jun encodes a major component of the AP-1 

(activator protein-1) transcription factor family comprising the Jun (c-Jun, JunB, JunD), 

Fos (c-Fos, Fra-1, Fra-2, FosB) and CREB/ATF (ATF-2, ATF-3) proteins.1,2 AP-1 

transcription factors belong to the bZIP superfamily of proteins, which dimerize and bind 

DNA via the basic domain/leucine zipper region, respectively.3-5 Dimerization is a 

prerequisite for binding to the DNA consensus site in target gene promoters and thus for 

transcriptional activity.3,6 

c-Jun homodimerizes or heterodimerizes with other AP-1 family members and 

dependent on the heterodimerizing partner, c-Jun recognizes either TPA or cAMP response 

elements in promoters.7-9 TPA response elements are phorbol ester and growth factor 

inducible and preferentially bind c-Jun homodimers or c-Jun/c-Fos heterodimers. cAMP 

response elements (CRE) preferentially bind ATF/CREB family members or ATF-2/c-Jun 

heterodimers.10 

Interestingly, the promoter region of the c-jun gene itself contains two variant         

AP-1/CRE binding sites, a proximal and a distal site, which are important for basal 

promoter activity.11 The more proximal AP-1 site differs from the AP-1 site in the 

collagenase promoter by a nucleotide insertion (underlined) and has the sequence:            

5’-TGACATCA-3’. The distal AP-1 site differs from the AP-1 site in the SV40 enhancer 

by an additional base pair (underlined): 5’-TTACCTCA-3’.11 c-Jun preferentially 

heterodimerizes with ATF-2 at these two AP-1/CRE sites.12-14 The more proximal          

AP-1/CRE (pAP-1) site is the main site at which c-Jun stimulates its own transcription in a 

positive autoregulatory loop.15,16  



1. Introduction   
________________________________________________________________________ 

2

For transcriptional and autoregulatory activity, c-Jun requires phosphorylation by 

the Jun NH2-terminal kinase (JNK).17-19 JNK belongs together with p38 and ERK to the 

mitogen activated protein (MAP) kinase family. MAP kinases (MAPK) are phosphorylated 

on threonine and tyrosine residues by dual-specificity MAPK kinases, which are 

themselves activated by MAPK kinase kinases.20 JNK interacts with c-Jun via a small 

region (delta domain) within the NH2-terminal activation domain19,21 and phosphorylates 

Serine 63 (Ser63) and Serine 73 (Ser73) in c-Jun, which increases the transactivation 

potential of c-Jun.17,18  After phosphorylation, inactive JNK remains bound to c-Jun and 

mediates degradation of c-Jun by ubiquitination.22  

c-Jun is an environmental sensor and the JNK signaling pathway connects c-Jun to a 

variety of extracellular factors, such as UV irradiation,12,23  growth factors24 and 

cytokines.25-27 Thus, c-Jun and JNK regulate crucial physiological processes like 

proliferation, apoptosis or differentiation. Functional properties of c-Jun and JNK vary 

dependent on the cell type and cell stage, the incoming signals and also the dimer 

composition.28,29 

c-Jun is, however, also located at the end of signaling cascades that include 

important oncogenes active in human tumors.1,13,30 Oncogenes like Ha-ras,31 cot32 and met33 

require phosphorylation of Ser63 and Ser73 in c-Jun by JNK for their transformation 

capacities. c-Jun alone is, in contrast to its viral counterpart v-Jun, a relatively weak inducer 

to transformation.34 It has been described that N-terminal phosphorylation of Ser63 and 

Ser73, located in the transactivation domain of c-Jun, augments c-Jun mediated 

transformation.35,36 This is further indicated in transgenic mice, which express a dominant 

negative form of c-Jun lacking the transactivation domain including the Ser63 and Ser73 

phosphorylation sites. These mice are protected against skin tumor promotion.37  
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Furthermore, overexpression of c-Jun has been associated with transformation and 

tumor promotion. Overexpression of c-Jun can result from sustained JNK phosphorylation, 

which prevents degradation of c-Jun by ubiquitination.38,39 Overexpression of c-Jun and 

constitutive activation of JNK have therefore been associated with a variety of solid 

cancers.40-42 Generally, reversion of highly tumorigenic cell lines to a non-tumorigenic 

phenotype is associated with c-Jun downexpression.43  

In addition, overexpression of c-Jun and sustained JNK activation has been shown 

to play an important role in leukemic cells with translocations. Chronic myeloid leukemia 

(CML) cells with the translocations t(9;22) or t(3;21) show elevated AP-1 activity, which 

has been associated with the leukemic transformation process.44-47 Studies on t(9;22) have 

further revealed that the resulting BCR-ABL fusion gene constitutively activates the JNK 

signaling pathway and increases c-Jun expression in BCR-ABL positive patient cells.48  

There are indications that enhanced AP-1 activity might also play a role in 

translocations associated with acute myeloid leukemia (AML). Overexpression of the 

AML1-ETO fusion gene, resulting from the translocation t(8;21), in fibroblast cells, results 

in transformation and has been associated with increased levels of phosphorylated Ser63 in 

c-Jun and enhanced AP-1 activity.49 The pathophysiological importance of these findings, 

however, has not been confirmed in primary leukemia patient samples on the basis of 

increased levels of c-Jun expression.  
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1.2 Acute myeloid leukemia and translocation t(8;21) 

Acute myeloid leukemia (AML) accounts for about 1-1.5% of all cancers in 

Western countries.50 AML is a clonal disorder resulting from an acquired somatic mutation 

in hematopoietic progenitor cells and is characterized by an accumulation of immature 

myeloid cells in the bone marrow, which are arrested in maturation. Frequently in AML, 

the acquired mutation is the consequence of a balanced reciprocal chromosomal 

translocation, which disrupts genes residing in the breakpoint regions of the translocation 

by generating fusion genes.51,52 The genes located at these breakpoints often encode 

transcription factors which are master regulators of hematopoietic cell differentiation, 

apoptosis or proliferation.53  

Despite the heterogeneity of AML, the identification of recurring chromosomal 

rearrangements and the resulting molecular abnormalities have identified distinct subgroups 

of patients with predictable clinical features and therapeutic responses.54 The most frequent 

cytogenetic abnormalities in AML, accounting for approximately 40% of all AMLs, are the 

translocations t(8;21), t(15;17), inv(16) or t(9;11), encoding for the AML1-ETO,         

PML-RARa, CBFß-SMMHC or MLL-AF9 fusion proteins, respectively.51  

AML1-ETO is associated with approximately 40% of AML cases with the M2 

subtype according to the French-American-British (FAB) classification and represents one 

of the most frequent chromosomal translocation in AML (18-20%).51 t(8;21) is a balanced 

translocation between chromosomes 8 and 21 resulting at the molecular level in the fusion 

of the AML1 gene normally located on chromosome 21q22 with the ETO                       

(Eight-Twenty-One) gene on chromosome 8q22.55,56 

The wildtype AML1 gene encodes for the CBFα2 protein, which is a physiological 

component of the core binding factor (CBF) family.57 AML1 appears to function as a 

transcriptional organizer necessary for the development of definitive hematopoietic stem 

cells.58 In fact, CBF null mice die in utero in the absence of terminal hematopoietic 

differentiation.59-61  
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Transcriptional function of AML1 is mediated through the core enhancer DNA 

sequence present in promoters and enhancers of a large number of hematopoietic specific 

genes.62 AML1 binds this sequence through the runt homology domain and its DNA 

binding affinity is increased by heterodimerization with CBFβ.63 Finally, AML1 has been 

shown to co-operate with other basic transcription factors in activating a set of 

hematopoietic specific genes.64 

ETO was unknown prior to its identification as the fusion partner of AML1 in 

t(8;21).55,65,66 ETO is expressed as a nuclear phosphoprotein in brain and in CD34+ 

hematopoietic cells.67,68 It contains four evolutionarily conserved regions, the so-called 

nervy homology regions (NHR) 1-4, which have been shown to make several contacts with       

co-repressors and histone deacetylases.69 Although ETO is a nuclear zinc-finger containing 

protein and thus might function as a transcriptional regulator, there is no experimental 

evidence to suggest that it can directly bind to DNA.  

In the translocation t(8;21), the DNA binding domain (runt domain) of AML1 is 

fused to nearly the complete ETO gene yielding a protein of 752 amino acids.55,65,70 Several 

important regions of AML1 are lost, like the C-terminal transactivation domain, interaction 

sites for TLE and sin3 co-repressors, the nuclear targeting signal and a MAPK 

phosphorylation site.71 AML1-ETO sequesters the co-activator CBFβ from wildtype AML1 

by binding CBFβ through the retained runt domain more efficiently.72 Thus, AML1-ETO 

can bind to AML1 target genes instead of wildtype AML1,62 and dominantly represses 

transcription of AML1 target genes by permanently tethering a repressor complex to AML1 

responsive promoters through ETO.73-76 The importance of disruption of wildtype AML1 

by AML1-ETO is shown by a similar phenotype in AML1 knock-out and AML1-ETO 

knock-in studies.77,78 
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AML1-ETO blocks the transactivation of wildtype AML1 target genes important for 

myeloid differentiation, like the TCRβ reporter, the GM-CSF promoter, c-fos,79 Art-1,80 or 

the TGFβ signaling pathway.81 Furthermore, AML1-ETO disrupts the protein-protein 

interactions of AML1 with important myeloid transcription factors like C/EBPα82,83 or 

MEF-2,84 and also represses transactivation through those transcription factors. Therefore, 

AML1-ETO might be responsible for the differentiation arrest in t(8;21). Along with that, 

several cellular and murine model systems have documented the ability of AML1-ETO to 

inhibit myeloid differentiation.45,85-88 

It has recently been shown that AML1-ETO might also be responsible for the gain 

of function properties characterizing leukemogenesis. Expression of AML1-ETO in 

primary human CD34+ stem cells, the target cell affected in AML, results in a proliferative 

and survival advantage of leukemic cells, which promotes their expansion.89 Introduction of 

the AML1-ETO cDNA into the AML1 locus by homologous recombination leads to 

embryonic lethality in heterozygous animals.77,78  Culturing the yolk sac cells of these mice, 

however, yields dysplastic monocytic colonies.77 In a similar AML1-ETO knock-in mouse 

study, aberrant myelomonocytic colonies are derived from fetal liver.78 Therefore, despite 

the fact that AML-ETO alone has not been shown to cause leukemia,90,91 these studies 

indicate that AML1-ETO encourages uncontrolled cell growth and might predispose to 

leukemia.  

Along with that, several positively regulated target genes of AML1-ETO have been 

described. AML1-ETO has been reported to activate the macrophage-colony stimulating 

factor (M-CSF) receptor promoter in co-operation with wildtype AML1 via the core 

enhancer consensus site. It is proposed that AML1-ETO enhances the transactivation 

potential of wildtype AML1 by sequestering AML1 bound corepressors.92  

Furthermore, AML1-ETO has been shown to transactivate the BCL-2 promoter via 

the AML1 consensus site in AML1-ETO expressing Kasumi-1 cells.93 The physiological 

relevance of these findings is, however, doubtful, since in primary t(8;21) positive patient 

cells, BCL-2 expression is lower than in other forms of leukemia.94,95  
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It has recently been shown that expression levels of the granulocyte-colony stimulating 

factor (G-CSF) receptor are increased in AML1-ETO containing cell lines and in fresh 

t(8;21) positive leukemic cells.96 The data indicates that AML1-ETO induces the 

expression of the G-CSF receptor promoter in an indirect manner by increasing the 

expression of C/EBPε , which transactivates the G-CSF receptor promoter.96  

Interestingly, a differential display analysis using AML1-ETO expressing cells has 

revealed a surprising number of genes that are increased in their expression levels, but are 

not target genes of AML1.97  

Only few of these positively regulated target genes of AML1-ETO have been 

confirmed in primary t(8;21) positive cells. Furthermore, the molecular mechanisms behind 

the gain of function properties of AML1-ETO remain largely unknown. 
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2. AIM OF THE STUDY 

• Based on the role of c-Jun and the JNK signaling pathway in the transformation process 

of chromosomal translocations associated with CML, we hypothezised that c-Jun might 

also play a role in reciprocal chromosomal translocations in AML.  

What are the expression levels of c-jun in primary AML patient cells with the most 

common AML-associated cytogenetic abnormalities: t(8;21), t(15;17), inv(16) or 

t(11q23/MLL)? 

• It has previously been described that overexpression of AML1-ETO in fibroblast cells 

results in an increase in phosphorylated Ser63 in c-Jun, which has been implicated in 

the transformation process.49 Phosphorylated c-Jun can autoregulate its expression.15,16 

Are the expression levels of c-jun enhanced in primary t(8;21) positive patient cells 

and myeloid cell lines? 

Is c-jun a direct target of AML1-ETO and what is the role of the JNK signaling 

pathway, which can phosphorylate Ser63 in c-Jun, in myeloid cells? 

Is the JNK signaling pathway of importance for the functional and biological 

properties of t(8;21) positive AML? 

• AML1-ETO has no known kinase activity. It is currently unknown how AML1-ETO 

enhances the phosphorylation of a protein. 

What might be the underlying molecular mechanism of AML1-ETO influencing a 

signaling pathway? 
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3. MATERIALS 

3.1 Cell lines 

U937 

Human histiocytic lymphoma. Source: ACC5, DSMZ, Braunschweig, Germany 

U937 WITH ZINC-INDUCIBLE EXPRESSION OF AML1-ETO (U937Z/A-E) 

Source: Pier Giuseppe Pelicci, Instituto Europeo di Oncologia, Milano 

U937 WITH TET-REGULATED EXPRESSION OF AML1-ETO (U937T/A-E) 

Source: Dong-Er Zhang, The Scripps Research Institute, La Jolla88 

U937 TET (U937T)  

Control cell line containing the tetracycline-responsive transcriptional repressor 

tTA. Source: Dong-Er Zhang, The Scripps Research Institute, La Jolla88 

KASUMI-1 

Human acute myeloid leukemia. Source: ACC220, DSMZ, Braunschweig, 

Germany 

293T 

Human embryonal kidney. Source: ACC305, DSMZ, Braunschweig, Germany 

3.2 Patient material 

Patient samples were referred to the Laboratory for Leukemia Diagnostics, 

Department of Medicine III, Klinikum Großhadern, Munich, for routine cytogenetic and 

cytomorphologic analyses. All samples were from the time of diagnosis. AML patient 

samples analyzed by microarray analysis had only a single translocation, the group of 

t(11q23/MLL) positive patient samples contained one sample with a t(11;19), one sample 

with a t(6;11), one with a t(11;22) and seven samples with a t(9;11).  



3. Materials  10 
_________________________________________________________________________ 

 

In the t(8;21) positive patient samples analyzed by real-time PCR, thirteen patients 

had an AML FAB subtype M2 and in three cases the AML FAB subtype had not been 

analyzed (patient numbers 8, 10 and 15, Figure 2). Three patients had a t(8;21) as sole 

cytogenetic abnormality (patient numbers 7, 11 and 16, Figure 2), thirteen had loss of a sex 

chromosome, two had trisomy 8 (patient numbers 2 and 10, Figure 2) and one a t(15;20) 

(patient number 10, Figure 2). The AML1-ETO transcript was observed in all cases (patient 

numbers 1 to 16, Figure 2).  

3.3 Plasmids, reporter constructs, primers, 

oligonucleotides 

PLASMIDS 

pcDNA3.1 

Eukaryotic expression vector. Source: Invitrogen, Groningen, The Netherlands 

pCMV5 

Eukaryotic expression vector, 4.7Kb, with ampicillin resistance gene and strong 

CMV promoter. Source: Amersham Pharmacia, Freiburg, Germany 

pRL-null 

Control reporter vector for the Dual-luciferase reporter assay system containing 

the cDNA encoding Renilla luciferase without eukaryotic promoter and/or 

enhancer elements. Source: Promega, Madison, WI, USA 

pGdBBX 

 Full-length G6PD cDNA in the expression vector pUC12. 

Source: Andreas Hochhaus, III. Medizinische Universitätsklinik, Mannheim, 

Germany98 

Human pCMV5 AML1-ETO 

Source: Scott Hiebert, St. Jude Children’s Hospital, Memphis, USA 
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Human pCMV5 ETO 

(S. Hiebert) 

Human pCMV5 CBFß 

(S. Hiebert) 

Human pCMV5 AML1 

 (S. Hiebert) 

Murine pSV-SPORT1 c-jun 

Source: Trang Hoang, Clinical Research Institute of Montreal, QC, Canada 

Human pCMV5 JIP-1 

Source: Roger Davis, Howard Hughes Medical Institute, Massachusetts, USA 

Murine pSP65 c-jun 

c-jun for in vitro translation using SP6 polymerase. Source: Elisabetta Mueller 

and Bruce Spiegelman, Dana Farber Cancer Institute, Boston, MA99  

REPORTER CONSTRUCTS 

Human c-jun promoter [bp -1780 to bp +731] in pGL3  

Source: Wayne Vedeckis, State University Medical Center, New Orleans, USA 

Human c-jun promoter [bp -952 to bp +731] in pGL3  (W. Vedeckis) 

Human c-jun promoter [bp -719 to bp +731] in pGL3  (W. Vedeckis) 

Human c-jun promoter [bp -345 to bp +731] in pGL3  (W. Vedeckis) 

Human c-jun promoter [bp -180 to bp +731] in pGL3  (W. Vedeckis) 

Human c-jun promoter [bp -63 to bp +731] in pGL3  (W. Vedeckis) 
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Human c-jun promoter [bp -79 to bp +170] in pGL2  

Source: Xiao-Fan Wang, Duke University Medical Center, Durham, North 

Carolina, USA 

Human c-jun promoter [bp -79 to bp +170] in pGL2 with the proximal AP-1 site: 

5’-tg aca tca-3’ mutated to 5’-at cca cca-3’ (X.-F. Wang) 

Minimal c-fos promoter element containing 3x NF-?B binding sites in pGL2 

Source: Marius Ueffing, Institute of Human Genetics, GSF, Munich, Germany 

Minimal c-fos promoter element containing 3x mutated NF-?B binding sites in 

pGL2 (Marius Ueffing) 

Human M-CSF receptor promoter [bp -416 to bp +71] in pXP2 

Source: D.E. Zhang, Scripps Research Institute, La Jolla, CA, USA92 

pGL2, pGL3 

 Luciferase reporter gene vectors. Source: Promega, Mannheim, Germany 

pXP2 

Luciferase reporter gene vector. Source: Stephen Nordeen, Department of 

Pathology, University of Colorado, Denver, USA 

PRIMERS 

c-jun Sense: 5’-gca tga gga acc gca tcg ctg cct cca agt-3’100 

c-jun Antisense: 5’-gcg acc aag tcc ttc cca ctc gtg cac act-3’100 

G6PD Sense: 5’-ccg gat cga cca cta cct ggg caa g-3’98 

G6PD Antisense: 5’-gtt ccc cac gta ctg gcc cag gac ca-3’98 

AML1-ETO Sense: 5’-atg acc tca ggt ttg tcg gtc g-3’ 

AML1-ETO Antisense: 5’-tga act ggt tct tgg agc ctc ct-3’ 

G-CSF receptor Sense: 5’-cct gga gct gag aac tac cg-3’101 

G-CSF receptor Antisense: 5’-tcc cgg ctg agt tat agg-3’101 
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G-CSF Sense: 5’-gct tga gcc aac tcc ata gc-3’ 

G-CSF Antisense: 5’-aaa tgc agg gaa gga cac ag-3’ 

pcjun -63/+170 Sense: : 5’-tgg gct att ttt agg ggt tga ctg g-3’ 

pcjun -63/+170 Antisense: 5’-agc cac agg cgc tag ctc tgg g-3’ 

OLIGONUCLEOTIDES FOR EMSA 

Human c-jun promoter [bp -88 to bp -28] 

5’-tgg gaa ggc ctt ggg gtg aca tca tgg gct att ttt agg ggt tga ctg gta gca gat aag-3’ 

Human c-jun promoter [bp -88 to bp -28] with mutated proximal AP-1 site 

5’-tgg gaa ggc ctt ggg gat cca cca tgg gct att ttt agg ggt tga ctg gta gca gat aag-3’ 

AML1 consensus site 62 

5’-aat tcg agt att gtg gtt aat acg-3’ 

3.4 Antibodies, peptides 

ANTIBODIES 

anti c-Jun/AP-1 (N) 

Polyclonal rabbit antibody against the amino terminal domain of c-Jun. Dilution for 

Western blot: 1:1,000. Used also in EMSA (200µg/0.1ml). Source: Santa Cruz 

Biotechnology, Santa Cruz, CA 

anti ETO (C-20)  

Polyclonal goat antibody against the carboxy terminus of ETO. Dilution for 

Western blot: 1:1,000. Used also in EMSA (200µg/0.1ml). Source: Santa Cruz 

anti β-tubulin (H-235)  

Polyclonal rabbit antibody against amino acids 210-444 at the carboxy terminus of 

β-tubulin. Dilution: 1:500. Source: Santa Cruz 
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anti JNK1 (C-17)  

Polyclonal rabbit antibody against the carboxy terminus of JNK1. Dilution: 1:1,000. 

Source: Santa Cruz 

anti AML1 (N-20)  

Polyclonal goat antibody against the amino terminus of AML1. Used in EMSA 

(200µg/0.1ml). Source: Santa Cruz 

anti c-fos (4)  

Polyclonal rabbit antibody against the amino terminus of c-fos. No cross-reactivity 

to Fos B, Fra-1 or Fra-2. Used in EMSA (200µg/0.1ml). Source: Santa Cruz 

anti ATF-2 (F2BR-1)  

Mouse monoclonal antibody against amino acids 350-505 within the DNA binding 

and dimerization domain of ATF-2. Used in EMSA (200µg/0.1ml).                

Source: Santa Cruz 

anti GST (Z-5) 

Rabbit polyclonal antibody against GST fusion proteins. Dilution: 1:1,000.      

Source: Santa Cruz 

normal IgG rabbit  

Isotype control for rabbit antibodies. Source: Santa Cruz 

normal IgG goat 

Isotype control for goat antibodies. Source: Santa Cruz 

anti phosphorylated Thr183/Tyr185 in SAPK/JNK  

Polyclonal rabbit antibody. Detects SAPK/JNK only when activated by 

phosphorylation at Thr183/Tyr185. Dilution: 1:1,000. Source: New England 

Biolabs, Schwalbach, Germany 

 

 



3. Materials  15 
_________________________________________________________________________ 

 

anti phosphorylated Thr71 in ATF-2  

Polyclonal rabbit antibody. Recognizes ATF-2 only when phosphorylated at Thr71. 

Dilution: 1:1,000. Source: New England Biolabs 

anti phosphorylated Ser63 in c-Jun 

Polyclonal rabbit antibody, detects phosphorylated Ser63 in c-Jun, but does not 

cross-react with the corresponding phosphorylated forms of JunD or JunB.    

Dilution: 1:1,000. Source: New England Biolabs 

anti phosphorylated Ser73 in c-Jun 

Polyclonal rabbit antibody, detects phosphorylated Ser73 in c-Jun and Ser100 in 

JunD, but does not cross-react with up to 0.5µg of nonphosphorylated c-Jun or 

JunD. Dilution: 1:1,000. Source: New England Biolabs 

donkey anti rabbit IgG (NA934)  

HRP-conjugated secondary antibody. Dilution: 1:2,000. Source: Amersham 

Pharmacia, Freiburg, Germany 

rabbit anti goat (P0449)  

HRP-conjugated secondary antibody. Dilution: 1:2,000. Source: DAKO, Denmark 

PEPTIDES 

JNK inhibitor I (L)-form 

A cell permeable, biologically active peptide that diminishes JNK signaling 

pathway by blocking the activation of transcription factor c-Jun. 20 amino acids of 

the islet-brain-1 protein, an isoform of JIP-1, inhibiting JNK induced 

phosphorylation of c-Jun by interacting in the JNK binding domain (delta domain) 

of c-Jun, are fused to 10 amino acids of a HIV-TAT carrier, which rapidly 

translocates into the cells. Source: Calbiochem, Darmstadt, Germany102 
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HIV-TAT 48-57, Negative control 

A highly cell-permeable 10-amino acid carrier peptide derived from HIV-TAT     

48-57 sequence that is modified with two proline residues. Source: Calbiochem, 

Darmstadt, Germany102 

3.5 Laboratory materials 

CHEMICALS 

Acrylamide/Bisacrylamide 40% (Serva, Heidelberg, Germany) 

Agarose (Serva, Heidelberg, Germany) 

Ammonium peroxidisulfate (APS) (Bio-rad, Munich, Germany) 

[γ-32P]ATP (3000Ci/mmol at 10mCi/ml) (Amersham Pharmacia, Freiburg, Germany) 

Bio-rad Protein estimation kit (Bio-rad, Munich, Germany) 

Detection system ECL® (Amersham Pharmacia, Freiburg, Germany) 

DNA molecular weight markers (Roche Diagnostics, Mannheim, Germany) 

dNTPs (Promega, Mannheim, Germany) 

Dual-luciferase reporter assay system (Promega, Mannheim, Germany) 

Dulbeccos modified Eagle medium (DMEM) (PAN, Aidenbach, Germany) 

Effectene® transfection kit (Qiagen, Hilden, Germany) 

Ethidium bromide (Life Technologies, Karlsruhe, Germany) 

Fast Start DNA SYBR Green I kit (Roche Diagnostics, Mannheim, Germany) 

Genzyme TACSTM AnnexinV kit (R&D systems, Wiesbaden, Germany) 

Granocyte® 34: Human recombinant G-CSF (Chugai, Frankfurt, Germany) 

L-Glutamine (Life Technologies, Karlsruhe, Germany) 

Liquid nitrogen (Linde, Munich, Germany) 

Maxiprep® DNA isolation kit (Qiagen, Hilden, Germany) 

Onmiscript® RT cDNA synthesis kit (Qiagen, Hilden, Germany) 
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PBS (PAN, Aidenbach, Germany) 

PCR primers, oligo dT (Metabion, Martinsried, Germany) 

Penicillin-Streptomycin (Life Technologies, Karlsruhe, Germany) 

poly(dI-dC) (Amersham Pharmacia, Freiburg, Germany) 

Protein markers (Amersham Pharmacia, Freiburg, Germany) 

Restriction enzymes (New England Biolabs, Schwalbach, Germany) 

RNasin® RNase inhibitor (Promega, Mannheim, Germany) 

RNeasy® RNA isolation kit (Qiagen, Hilden, Germany) 

RPMI 1640 medium (PAN, Aidenbach, Germany) 

SAPK/JNK assay kit (Cell signaling technology, Beverly, USA) 

SDS (Bio-rad, Munich, Germany) 

T4 polynucleotide kinase (New England Biolabs, Schwalbach, Germany) 

Taq polymerase (Qiagen, Hilden, Germany) 

TnT® reticulocyte lysate system (Promega, Mannheim, Germany) 

TOPO TA PCR2.1 (Invitrogen, Groningen, The Netherlands) 

Tran 35S-labelT M (>1000Ci/mmol at 10mCi/ml) (ICN Biomedicals, Eschwege, Germany) 

Tris (Bio-rad, Munich, Germany)  

Trypan blue 0.5% (Serva, Heidelberg, Germany) 

Trypsin (PAN, Aidenbach, Germany) 

All the other chemicals were obtained from Sigma (St. Louis, USA). 

LABORATORY EQUIPMENT, CONSUMABLES 

Incubator for bacteria (Heraus, Hanau, Germany) 

Shaker for bacteria (New Brunswick Scientific, Nürtingen, Germany) 

Blotting paper (Schleicher& Schüll, Dassel, Germany) 

ECL® films (Amersham Pharmacia, Freiburg, Germany) 

Eppendorf® tabletop centrifuge 5415D (Eppendorf, Hamburg, Germany) 
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Developing machine (Agfa-gevaert, Leverkusen, Germany) 

Gel electrophoresis systems (Bio-rad, Munich, Germany; OWL, Portsmouth, USA) 

Heating block (Techne, Cambridge, UK) 

ImmobilonT M-P transfer membranes (Millipore, Bedford, Massachusetts, USA) 

Parafilm M® (American National Can, Greenwich, USA) 

Thermal cycler (Perkin Elmer, Norwalk, USA) 

Light CyclerT M real-time PCR machine (Roche Diagnostics, Mannheim, Germany) 

Luminometer Turner Designs TD-20/20 (Promega, Madison, WI, USA) 

pH-meter (WTW, Weilheim, Germany) 

Photometer (Amersham Pharmacia, Freiburg, Germany) 

Pipettes (Gilson, Langenfeld, Germany) 

Pipette tips (Star Labs, K&K Laborbedarf, Munich, Germany) 

QuickSpin® columns (Roche Diagnostics, Mannheim, Germany) 

Freezing vials (Nunc, Roskilde, Danmark) 

Liquid nitrogen tank (Cryoson, Schöllkrippen, Germany) 

Cell culture incubator (WTB, Tuttlingen, Germany) 

Microscope (Zeiss, Oberkochen, Germany) 

Pipettes, Tissue culture flasks, Centrifuge vials (Sarstedt, Nümbrecht, Germany) 

Sterile benches (BDK, Sonnenbühl, Germany) 

Sterile filters (Gelman Sciences, Ann Arbor USA) 

Neubauer® counting chamber (Brand, Wertheim, Germany) 
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3.6 Buffer, media, solutions 

ELECTROPHORESIS BUFFER (SDS-PAGE) 

25mM Tris, pH 8.3 

250mM Glycine 

0.1% (w/v) SDS 

SDS/ACRYLAMIDE GEL FOR WESTERN BLOT 

 Running gel (10%)   Stacking gel (10%) 

 40% (v/v) Acrylamide  40% (v/v) Acrylamide   

 1.5M Tris, pH 8.8   0.5M Tris, pH 6.8 

 10% (w/v) SDS   10% (w/v) SDS 

 10% (w/v) APS   10% (w/v) APS 

 0.0005% (v/v) TEMED  0.0005% (v/v) TEMED  

TAE (TRIS/ACETATE/EDTA) ELECTROPHORESIS BUFFER 

40mM Tris acetate 

 2mM Na2EDTA·2H2O 

TBE (TRIS/BORATE/EDTA) ELECTROPHORESIS BUFFER 

 890mM Tris  

 890mM Boric acid 

 10mM EDTA, pH 8.0 

SDS-PAGE GEL LOADING DYE (2X) 

125mM Tris·Cl, pH 6.8 

4% (w/v) SDS 

10% (v/v) β-Mercapto-ethanol 

30% (v/v) Glycerol 

0.004% (w/v) Bromophenol blue 
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WESTERN BLOT STRIPPING SOLUTION 

0.1M β-Mercapto-ethanol 

2% (w/v) SDS 

1M Tris, pH 6.8 

TE BUFFER 

10mM Tris·Cl, pH 8.0 

1mM EDTA 

ELECTROPHORESIS TANK BUFFER (WESTERN BLOT) 

125mM Tris  

960mM Glycine 

0.5% (w/v) SDS 

TRANSFER BUFFER, pH 8.5 

25mM Tris 

0.2M Glycine 

20% (v/v) Methanol 

TRIS-BUFFERED SALINE (TBS) 

100mM Tris·Cl, pH 7.5 

150mM NaCl 

TBST (TBS PLUS TWEEN20) 

100mM Tris·Cl, pH 7.5 

150mM NaCl  

0.05% (v/v) Tween20 

BLOCKING BUFFER 

TBS 

0.1% (v/v) Tween20 

5% (w/v) nonfat dry milk 
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PRIMARY ANTIBODY DILUTION BUFFER 

TBS 

0.05% (v/v) Tween20 

2.5% (w/v) nonfat dry milk 

PRIMARY ANTIBODY DILUTION BUFFER 

(FOR PHOSPHORYLATED PROTEINS) 

TBS 

0.05% (v/v) Tween20 

5% (w/v) BSA 

WHOLE CELL LYSIS BUFFER (RIPA LYSIS BUFFER) 

1% (v/v) NP40 

0.5% (w/v) Sodium deoxycholate 

0.1% (w/v) SDS 

0.15M NaCl 

5mM EDTA 

50mM Tris, pH 8.0 

10mM Sodium pyrophosphate 

50mM Sodium fluoride 

0.2mM Sodium orthovanadate 

1mM PMSF 

10mg/ml Pepstatin A, Leupeptin, Aprotinin, Antipain, Chymostatin 
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NUCLEAR EXTRACT BUFFERS 

Buffer A:    Buffer C: 

20mM HEPES, pH 7.9  10mM HEPES, pH 7.9 

25% (v/v) Glycerol   1.5mM MgCl2 

420mM NaCl    10mM KCl 

1.5mM MgCl2    0.5mM DTT 

0.2mM EDTA    0.2mM PMSF 

0.5mM DTT 

0.2mM PMSF 

EMSA BINDING BUFFER 

4mM HEPES, pH 7.9 

40mM KCl 

10mM MgCl2 

1mM Diothiothreitol (DTT) 

0.2mM Phenylmethylsulfonyl fluoride (PMSF) 

4% (v/v) Glycerol 

10X ANNEALING BUFFER FOR EMSA 

20mM Tris, pH 7.5 

10mM MgCl2 

50mM NaCl 

1mM DTT 

TRIS-GLYCINE ELECTROPHORESIS BUFFER FOR EMSA, pH 8.3 

0.25M Tris  

1.9M Glycine 

10mM EDTA 
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5.2% POLYACRYLAMIDE GEL FOR EMSA 

40% (v/v) Bisacrylamide 1:19 

890mM Tris  

890mM Boric acid 

10mM EDTA, pH 8.0 

10% (w/v) APS  

0.0005% TEMED 

5X BINDING BUFFER FOR EMSA 

4mM HEPES, pH 7.9 

40mM KCl 

10mM MgCl2 

1mM DTT 

0.2mM PMSF 

4% (v/v) Glycerol 

GROWTH MEDIUM FOR BACTERIA 

LB (luria bertani) medium with respective antibiotics 

MAMMALIAN CELL CULTURE MEDIA 

293T cell line 

DMEM 

10% (v/v) FBS 

1% (v/v) L-Glutamine 

1% (v/v) Penicillin-Streptomycin 

U937, U937/Zn2+-inducible AML1-ETO and Kasumi-1 cell lines 

RPMI 

10% (v/v) FBS 

1% (v/v) L-Glutamine 

1% (v/v) Penicillin-Streptomycin 
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U937/TET cell line  

RPMI 

10% (v/v) FBS 

1% (v/v) L-Glutamine 

1µg/ml Tetracycline 

0.5µg/ml Puromycin 

U937/TET/AML1-ETO cell line  

RPMI 

10% (v/v) FBS 

1% (v/v) L-Glutamine 

1µg/ml Tetracycline 

0.5µg/ml Puromycin 

1mg/ml G418  

Other buffers were provided by kits. 
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4. METHODS 

4.1 Cell culture methods 

INDUCIBLE CELL LINES 

U937/Zn2+-inducible AML1-ETO (U937Z/A-E) 

AML1-ETO cDNA is under the control of the human metallothionein promoter in the 

expression vector pPC18. Adding 100µM Zn2+ to the cell culture medium induced the 

expression of AML1-ETO. 

U937/TET-regulated AML1-ETO (U937T/A-E) 

AML1-ETO cDNA is under the control of the tetracycline-responsive transcriptional 

repressor tTA. For the induction of tetracycline-controlled AML1-ETO, cells were washed 

three times in 50ml of PBS and seeded at 1x105 cells/ml in the maintenance medium in the 

absence of tetracycline. 

PRIMING WITH G-CSF 

U937T/A-E cells were grown for 48 hours with or without tetracycline and subsequently 

treated with 10µM or 100µM of human recombinant G-CSF for 15 or 30 minutes. RIPA 

lysates were prepared and analyzed by Western blot for the amount of phosphorylated 

Thr183/Tyr185 in JNK. 

JNK INHIBITOR PEPTIDE 

U937T/A-E and U937T cells were grown for 72 hours in the presence or absence of 

tetracycline. 1µM of JNK specific inhibitor peptide or HIV-TAT 48-57 negative peptide 

control was added to the cells at the time of induction. 
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SUPERNATANT EXPERIMENTS 

Supernatants of 1x107 U937T/A-E and U937T cells were harvested 48 hours after removal 

of tetracycline. 1x107 wildtype U937 cells were centrifuged, the supernatant removed and 

the cell pellet resuspended with the supernatants of U937T/A-E or U937T cells. Wildtype 

U937 cells were incubated for 15 or 30 minutes with the supernatants and immediately kept 

on ice. Whole cells were lysed using RIPA buffer (see buffers) and the lysates were kept at 

-80°C. Lysates were analyzed by Western blot for expression of phosphorylated Ser63 in  

c-Jun and phosphorylated Thr183/Tyr185 in JNK. 

4.2 Transient transfections using Effectene® reagent 

Transient transfection using the Effectene® transfection kit allows transfection in the 

presence of FBS, which was prefered in this study because of the serum induced 

fluctuations in c-Jun expression.  

FOR ADHERENT CELLS 

293T cells were plated 24 hours prior to transfection at about 5x105 cells/ml in 75cm2 

flasks to achieve a 50-60% confluence on the day of transfection. In a 1.5ml Eppendorf 

tube, 2µg of DNA was diluted in 300µl of EC buffer (DNA condensation buffer, 

Effectene® transfection kit) and 16µl of Enhancer (Effectene® transfection kit). The 

Enhancer forms complexes with the transfected DNA. Complexes were vortexed for 1 

second and incubated for 2 to 5 minutes at room temperature. 20µl of Effectene® 

transfection reagent (Effectene® transfection kit) was added to the DNA enhancer 

mixture. The complex was vortexed for 10 seconds and incubated at room temperature 

for 5 to 10 minutes to allow transfection complex formation. During this period, the 

growth medium was gently aspirated from the cells and 12ml of fresh DMEM with FBS 

and antibiotics was added. The transfection complexes were pipetted drop-wise onto the 

cells with 1ml of DMEM containing FBS.  

The dish was gently swirled to ensure uniform distribution of the transfection complexes 

and cells were incubated for 48 hours at 37°C at 5% CO2. 



4. Methods  27 
_________________________________________________________________________ 

 

FOR SUSPENSION CELLS 

24 hours prior to transfection, U937 cells were split to 3x105 cells/ml. On the day of 

transfection, 1x106 cells were plated in 1.6ml of medium with FBS and antibiotics into  

6 well plates. 1µg of DNA was diluted in 100µl of EC buffer (Effectene® transfection 

kit). 6µl Enhancer and 20µl of Effectene® transfection reagent (Effectene® transfection 

kit) were added, the solution was applied to the cell suspension with 600µl of RPMI 

medium with FBS and antibiotics and incubated for 30 hours.  

U937T or U937T/A-E cells were kept in the maintenance medium with or without 

tetracycline for 12 hours prior to transfection and harvested 24 hours after transfection.  

4.3 PCR cloning 

For generation of a human c-jun promoter construct ranging from bp -63 to bp +170 in 

pGL2, the fragment was amplified by PCR using pcjun -63/+170 Sense and Antisense 

primers (see primers). The c-jun promoter construct ranging from bp -79 to bp +170 served 

as a template. 1µl of the PCR product was immediately cloned into the plasmid vector 

pCR2.1 according to TOPO TA cloning strategy. Subsequently, the fragment was released 

by Kpn/XhoI digest and subcloned into the Kpn/XhoI site of pGL2 luciferase vector.  
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4.4 Reverse transcriptase PCR 

ISOLATION OF TOTAL RNA ACCORDING TO THE RNEASY® METHOD 

3x106 suspension cells (cell lines or peripheral blood monocytes of patient samples) 

were washed twice with PBS and transferred with 1ml of PBS into 1.5ml Eppendorf 

tubes. To disrupt and lyse the cells, cells were spun at 300g for 5 minutes and 

resuspended in 350µl of RLT buffer (RNeasy® RNA isolation kit). For homogenization, 

the lysate was transferred to a QIAshredder® column (RNeasy® RNA isolation kit) and 

centrifuged for 2 minutes at maximum speed in an Eppendorf tabletop centrifuge. 350µl 

of 70% ethanol were added to adjust the binding conditions and the sample was added to 

an RNeasy® mini spin column (RNeasy® RNA isolation kit), in which the RNA could 

absorb to the membrane. Contaminants were removed by wash spins at 10,000 rpm for 

15 seconds with 700µl of buffer RW1 (RNeasy® RNA isolation kit) and with 500µl of 

RPE buffer (RNeasy® RNA isolation kit). To wash out all of the ethanol, 500µl RPE 

buffer was added and another 2 minute-spin at maximum speed was performed. For 

RNA elution, the column was placed in a 1.5ml collection tube and 40µl of RNase-free 

water was directly pipetted onto the column and centrifuged for 1 minute at 10,000 rpm. 

Total RNA was stored at -80°C. 

FIRST-STRAND cDNA SYNTHESIS 

Reverse transcriptases (RT) with RNA dependent DNA polymerase activity synthesize 

complementary DNA (cDNA) from an RNA template for subsequent PCR or cloning 

experiments. 1µg of RNA was transcribed in 20µl of reverse transcriptase reaction 

containing 2µl of 5mM dNTPs, 2µl of 10x RT buffer (Omniscript® RT kit), 2µl of 

10µM 17mer oligo dT primer, 1µl of 10U/µl RNasin® RNase inhibitor, 1µl of 4U/µl 

Omniscript® reverse transcriptase (Omniscript® RT kit) and RNase-free water up to 

20µl. The cDNA synthesis mix was incubated for 90 minutes at 37°C and the cDNA was 

stored at -20°C. 
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SEMI-QUANTITATIVE RT-PCR 

We performed semi-quantitative hot-start PCR using a thermal cycler in order to 

optimize PCR conditions prior to performing quantitative real-time PCR. PCR was 

performed in 20µl containing 2µl cDNA template, 200µM of each dNTP, 1.5mM 

MgCl2, 0.7µM of sense and antisense primer and 2.5U Taq polymerase. PCR products 

were electrophoresed through a 1% agarose gel and visualized by ethidium bromide 

staining. 

QUANTITATIVE REAL-TIME PCR 

Quantitative real-time PCR using the LightCyclerT M (LC) real-time PCR system enables 

real-time monitoring of PCR product formation. PCR cycles, in which the PCR product 

increases logarithmically, can be identified and the initial concentration of the target 

DNA determined. We used the Fast Start DNA SYBR Green I kit. SYBR Green I dye is 

a fluorescence dye, which binds to double-stranded DNA. A fluorescence signal is being 

recorded at the end of each elongation phase and the increasing amounts of PCR product 

can be monitored from cycle to cycle.  

We quantified the expression of the transcription factors c-jun and AML1-ETO in U937 

cell lines with Zn2+-inducible expression of AML1-ETO and in t(8;21) positive patient 

samples relative to the expression of the housekeeping gene G6PD. We performed 

relative quantification of the target genes by forming ratios between the target genes and 

the housekeeping gene G6PD (target gene/G6PD). The initial concentrations of the 

target genes and the housekeeping gene G6PD were calculated using a standard curve. 

For this purpose, we serially diluted a G6PD plasmid: pGdBBX to 10,000fg, 1,000fg or 

100fg. Upregulation of c-jun upon AML1-ETO induction or the upregulation of   

AML1-ETO upon addition of Zn2+ were shown as fold upregulation compared to time 

point zero, which was set to 1. For the patient samples, values of target gene/G6PD 

ratios were directly compared to each other. 
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PCR was performed using 2µl of 10x mastermix solution (provided, contains Fast-Start 

Taq DNA polymerase, reaction buffer, dNTP mix, SYBR Green I dye and 10mM 

MgCl2), 2µl cDNA (from cell lines or patient samples), 4mM MgCl2, 7.5µM of each 

primer and RNase-free water to a final volume of 20µl. After 10 minutes initial 

denaturation at 95°C to activate the polymerase, amplification occurred in a three-step 

cycle procedure with denaturation at 95°C for 0 seconds, annealing at 64°C for             

10 seconds and extension at 72°C for 25 seconds. This three-step cycle was repeated 35 

times. Fluorescence of SYBR Green I was measured after each extension step at 530nm. 

The final PCR cycle was followed by a melting curve analysis to confirm PCR product 

identity and differentiate it from non-specific products (for example primer-dimer 

products). For the melting curve analysis, the products were denatured at 95°C, annealed 

at 65°C and then slowly heated up to 95°C with fluorescence measurement at 0.2°C 

increments. Amplification products from the LightCycler were checked by 

electrophoresis on 1% ethidium bromide stained agarose gels. The estimated size of the 

amplified fragments matched the calculated size: for c-jun: 409bp, G6PD: 343bp, G-CSF 

receptor: 276bp, G-CSF: 591bp and AML1-ETO: 250bp. 

4.5 Reporter assay for Firefly and Renilla luciferase 

We studied the effects of leukemic fusion genes or transcription factors on gene 

expression by transiently transfecting cells with plasmids containing the relevant 

promoters 5’ of a Firefly luciferase reporter gene. All samples were transfected with a 

Renilla luciferase “control” reporter plasmid. Normalizing the activity of the 

experimental reporter to the activity of the internal control reporter minimized 

experimental variability caused by differences in cell viability or transfection efficiency. 

The activities of Firefly luciferase of the experimental reporter and Renilla luciferase of 

the pRL-null control plasmid were measured sequentially from a single sample using the 

Dual-luciferase reporter assay system. 
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Transfected cells were washed twice with PBS and lysed in 100µl of Passive lysis buffer 

(Dual-luciferase reporter assay system) by agitation for 30 minutes. Passive Lysis buffer 

was provided as a 5x concentrate, diluted in ddH2O and stored at 4°C up to one month.  

The Luciferase assay reagent II (LARII) (Dual-luciferase reporter assay system) was 

resuspended in 10ml of Luciferase assay buffer and was storable for 1 month at -20°C or 

for 1 year at -70°C. The 50X Stop&Glo stock solution (Dual-luciferase reporter assay 

system), used to quench Firefly luciferase luminescence, was prepared by transferring 

200µl of Stop&Glo substrate solvent (Dual-luciferase reporter assay system) to the 

lyophilized Stop&Glo substrate (Dual-luciferase reporter assay system). This solution 

has to be kept on ice and was storable at -70°C for 1 month. Immediately before use, 1x 

Stop&Glo working solution was prepared with Stop&Glo buffer (Dual-luciferase 

reporter assay system) and kept on ice. 

20µl of cell lysate was diluted in 100µl of LARII and the Firefly luciferase 

luminescence of the transfected reporter plasmid measured using the TD20/20 

luminometer. After addition of 100µl Stop&Glo working solution, which quenched the 

Firefly luciferase, the remaining Renilla luciferase of the internal control plasmid     

pRL-null was measured. A ratio between Firefly and Renilla luciferase was calculated 

automatically.  

4.6 Cell lysates, in vitro translation 

RIPA LYSATES 

Adherent cells were scraped in 10ml of PBS. Subsequently, approximately 1x107 cells 

were washed twice in PBS by centrifuging the cells at 1,000 rpm for 10 minutes. 

Suspension cells were washed directly. Washed cells were resuspended in 1ml of PBS, 

transferred to 1.5ml Eppendorf tubes and spun for 10 seconds at maximum speed. The 

pellet was resuspended in 50µl of RIPA lysis buffer with proteinase and phosphatase 

inhibitors (see buffers) and incubated on ice for 30 minutes.  
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During incubation time, cell lysates were vortexed every 10 minutes. After incubation, 

lysates were spun at 4°C for 30 minutes at maximum speed. The supernatant was 

collected and stored immediately at -80°C. 

NUCLEAR EXTRACTS 

Adherent cells were scraped in 10ml of ice-cold PBS and approximately 1x107 cells 

were washed twice in PBS at 1,000 rpm for 10 minutes. Suspension cells were washed 

directly. Cell pellets were resuspended in 1ml of PBS, transferred to 1.5ml Eppendorf 

tubes and spun at 6,600 rpm for 20 seconds. Pellets were resuspended in 400µl cold 

Buffer A (see buffers), were swollen on ice for 15 minutes and vortexed for 10 seconds. 

The nuclei were pelleted in a tabletop centrifuge for 10 seconds at maximum speed. 

Subsequently, the nuclei pellets were resuspended in 40µl of Buffer C (see buffers) by 

pipetting up and down. This was followed by a 20-minute incubation period on ice, 

during which the tubes were flicked occasionally. The cell debris was pelleted at 

maximum speed for 3 minutes at 4°C and the supernatants were saved and stored at        

-80°C. 

IN VITRO TRANSLATION 

AML1-ETO and c-jun were in vitro transcribed and translated using the TnT® 

reticulocyte lysate system with SP6 polymerase and were labeled at amino acid 

methionine with Tran 35S-labelT M (>1000Ci/mmol at 10mCi/ml). For a 50µl reaction we 

used: 

TnT® rabbit reticulocyte lysate (provided)  25µl 

TnT® reaction buffer (provided)    2µl 

SP6 polymerase     1µl 

amino acid mixture minus methionine (provided) 1µl 

Tran 35S-labelTM (>1000Ci/mmol at 10mCi/ml)  4µl 

RNasin® RNase inhibitor (40U/µl)   1µl 

DNA template (1µg)     variable  

RNase-free water     up to 50µl 
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Reagents were mixed and incubated at 30°C for 90 minutes. 

4.7 Western blot analysis 

PROTEIN MEASUREMENT 

For measuring total protein concentration, we performed a colorimetric assay based on 

the Bradford-dye binding procedure103 according to the protocol of the Bio-rad protein 

estimation kit. The assay is based on the color change of Coomassie blue in response to 

various concentrations of protein. We mixed 20µl of 1:20 diluted protein lysate with 1ml 

of 1:5 diluted reagent dye, incubated the mixture for 15 minutes and determined the 

color change at 595nm using a spectrophotometer. We included BSA protein standards 

of known concentrations for generating a standard curve with which we could calculate 

the protein concentration in µg/µl.  

SDS-PAGE AND WESTERN BLOT 

Lysates containing 100µg of proteins were diluted in 2x SDS-PAGE gel loading dye 

(see buffers) and boiled at 95°C for 5 minutes. Proteins were electrophoretically 

separated according to their molecular weight through a 10% SDS/Acrylamide gel (see 

buffers) at 125 volts. 10µl of molecular weight standard was included in each gel. The 

separated proteins were wet-transferred to ImmobilonTM-P transfer membranes, which 

had been pre-soaked in methanol, rinsed with ddH20 and kept in transfer buffer (see 

buffers) for 15 minutes. The transfer cassette was prepared in the following sequence: 

sponge > blotting paper > gel > transfer membrane > blotting paper > sponge. The 

transfer chamber was filled with transfer buffer and the proteins were transferred at 100 

volts for 90 minutes at 4°C. After the transfer, the membrane was blocked for 2 hours in 

a blocking buffer (see buffers) to prevent unspecific binding of the antibodies to the 

membrane. The blocked membrane was washed three times with TBST (see buffers) to 

get rid of excess blocking solution and the primary antibody was added at a dilution of 

1:1,000 and incubated overnight at 4°C.  
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Antibodies recognizing phosphorylated proteins were diluted in TBST with 1% (w/v) 

BSA, antibodies against unphosphorylated proteins in TBST with 2.5% (w/v) nonfat dry 

milk. After three 5-minute washes with TBST, the appropriate peroxidase-linked 

secondary antibody diluted 1:2,000 in TBST with 2.5% (w/v) nonfat dry milk was added 

and incubated for 1 hour at room temperature.  

After a final washing step, four 5-minute washes with TBST, the proteins were detected 

using chemiluminescence. For that, the two ECL® solutions of the ECL® detection 

system were mixed in equal quantities (2 + 2ml for an 8 x 10cm membrane) and added 

to the moist membrane for 1 minute. The blot was immediately exposed to a film for 

approximately 60 seconds and developed. This method allows „stripping“ the membrane 

up to three times and performing different immunodetections on the same blot. In this 

study, each blot was stripped and re-blotted with an anti β-tubulin antibody in order to 

control for even protein loading. For stripping, the membrane was rotated in the 

waterbath at 55°C for 30 minutes in stripping solution (see buffers), rinsed 1x with 

TBST, blocked for 2 hours and incubated with the primary antibody as described above. 

SAPK/JNK ASSAY KIT 

We employed a non-radioactive method using the SAPK/JNK assay kit to measure c-Jun 

phosphorylating activity at residues Ser63 and Ser73 in c-Jun, which is generally JNK 

specific. 250µg protein of whole cell lysates was incubated overnight with N-terminal  

c-Jun (amino acids 1-89) fusion protein bound to glutathione sepharose (GST) beads to 

pull down JNK. Amino acids 1-89 in c-Jun contain a high-affinity binding site for JNK 

just N-terminal to the Ser63 and Ser73 phosphorylation sites. The beads were washed 

twice with a provided cell lysis buffer (SAPK/JNK assay kit), followed by two washes 

with a provided kinase buffer (SAPK/JNK assay kit). The kinase reaction was carried 

out during a 30-minute incubation period at 30°C in the presence of non-radioactive 

ATP. The reaction was terminated with 25µl of 2x SDS-PAGE gel loading dye (see 

buffers) and c-Jun phosphorylation was measured by Western blot using an antibody 

against phosphorylated Ser63 in c-Jun, which is usually JNK specific.  
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Using this method, the possibility cannot be ruled out that kinases other than JNK 

phosphorylate Ser63 in c-Jun. The serine/threonine kinase c-Raf-1/c-mil, for example, 

has been shown to phosphorylate Ser63 in c-Jun in a JNK independent manner. For 

verification, we confirmed the results obtained by the SAPK/JNK assay kit by directly 

measuring phosphorylated Thr183/Tyr185 in JNK by Western blot. 

To rule out direct binding of JNK to GST, lysates were incubated with GST beads alone. 

Blots were stripped and reblotted with a GST antibody to control for variability in gel 

loading.  

4.8 Electrophoretic mobility shift assay (EMSA) 

PREPARATION OF DOUBLE-STRANDED OLIGONUCLEOTIDES 

20µg of two complementary oligonucleotides were diluted in a total volume of 100µl of 

1x annealing buffer (see buffers). The oligonucleotide mix was heated to 95°C for          

5 minutes and slowly cooled down in order to anneal the complementary 

oligonucleotides (for example by switching off the water bath and allowing to cool 

overnight). Double-stranded oligonucleotides were stored at -20°C. 

LABELING OF THE PROBE 

10µl of double-stranded oligonucleotides were diluted in 70µl of 1x annealing buffer to 

make a 50ng/µl oligonucleotide stock. In 20µl labeling reaction, 1µl of the 50ng/µl 

oligonucleotide stock was mixed with 2µl of 10x polynucleotide kinase buffer, 5µl of 

10mCi/ml [γ-32P]ATP (3000Ci/mmol), 2µl of polynucleotide kinase (10,000U/ml) and 

ddH2O. The reaction was incubated for 1 hour at 37°C. To remove un-incorporated 

oligonucleotides, the labeled oligonucleotides were purified using QuickSpin® columns. 

For that, the columns were pre-centrifuged at 1,000 rpm for 2 minutes to remove the 

buffer and then 20µl of labeled oligonucleotides were added to the column and spun for 

5 minutes at 2,800 rpm. The labeled oligonucleotides were stored in a lead box at -20°C. 
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GELSHIFT ASSAY 

A 5.2% polyacrylamide gel (see buffers) was prepared and polymerised for 20 to 30 

minutes. The wells were rinsed with a 1ml pipette and the gel was pre-run for               

30 minutes at 140 volts. Meanwhile, the 20µl binding reaction was prepared in the 

following sequence: 4µl of 5x binding buffer (see buffers) > 2µl of poly(dI-dC) as a   

non-specific competitor DNA > ddH2O > Protein > 200 fold molar excess (100ng) of 

unlabeled competitor oligonucleotides > 1µl of labeled probe. As a protein source, we 

used either 5µg of nuclear extracts or 3µl of in vitro translated protein or unprogrammed 

reticulocyte lysate. The reaction was incubated for 30 minutes at room temperature. For 

supershift experiments, 3µl of 200µg IgG/0.1ml antibody was added and incubated for 

another 30 minutes at room temperature. Reactions were electrophoresed at 130 volts at 

4°C, dried and placed on x-ray film at -80°C with an intensifying screen.  

4.9 AnnexinV apoptosis assay 

In the early apoptotic process, phospholipid asymmetry is disrupted leading to the 

exposure of phosphatidylserine on the outer leaflet of the cytoplasmic membrane. 

AnnexinV is an anticoagulant protein that preferentially binds negatively charged 

phospholipids. We used AnnexinV-FITC conjugates for rapid detection of apoptotic 

cells by flow cytometry. Cells were washed twice with PBS containing 2% of FBS at 

1,600 rpm for 5 minutes and softly vortexed in between. Then, 2µl of 50µg/ml 

AnnexinV-FITC and 2µl of 50µg/ml propidium iodide were added in a total volume of 

100µl of AnnexinV binding buffer and incubated for 20 minutes in the dark. 
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ANALYSIS BY FLOW CYTOMETRY 

10,000 cells were analyzed by flow cytometry. The X-axis of the dot blot reflected the 

logarithmic AnnexinV-FITC fluorescence and the Y-axis the propidium iodide 

fluorescence. Thus, unlabeled viable cells appeared in the lower left quadrant, early 

apoptotic cells that have bound AnnexinV in the lower right quadrant and late apoptotic 

or necrotic cells that have taken up the propidium iodide appeared in the upper right 

quadrant of the dot blot. We compared the percentage of AnnexinV-FITC positive cells.  

4.10 Statistical analysis 

To compare the median of two groups, we performed the Mann-Whitney Wilcoxon test. 

In this study, we compared the absolute signal intensities for c-jun expression analyzed 

by microarray analysis (Affymetrix chips). The signal intensity for c-jun expression in 

each of the most frequent AML-associated translocations was compared to c-jun 

expression in normal bone marrow cells and the differences analyzed for their statistical 

significance. A p-value =0.05 indicated statistically significant differences between two 

groups. 

In order to analyze whether there is a positive correlation between two factors within the 

same group, in our case between the mRNA expression of c-jun and the mRNA 

expression of AML1-ETO in t(8;21) positive patient samples, we calculated a Pearson 

correlation coefficient (r). r represents the deviation of two factors from a regression line. 

r=1 reflects the optimum, in the case of two factors lying directly on the regression line. 

The respective p-value for r was calculated for statistical significance. A p-value =0.05 

indicated statistical significance. 
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5. RESULTS 

5.1. High c-jun mRNA expression levels in leukemia patient 

cells with t(8;21), t(15;17) or inv(16), and correlative mRNA 

expression levels for AML1-ETO and c-jun within t(8;21) 

positive leukemia patient cells 

CML leukemia cells with the translocation t(9;22) have previously been associated 

with increased c-jun expression. Thus, we examined whether mRNA expression levels for 

c-jun are also elevated in AML leukemia cells with the most common cytogenetic 

abnormalities. Microarray analysis was performed of AML patient cells with translocation 

t(8;21), t(15;17), inv(16), translocations involving the mixed lineage leukemia (MLL) gene 

on chromosome 11q23: t(11q23/MLL), or of normal bone marrow cells, in a co-operation 

with the Leukemia Diagnostic Department, Klinikum Großhadern, Munich.  

In the present study this data was statistically analyzed for the expression of human 

c-jun. We found that in normal bone marrow cells, c-jun mRNA expression levels were 

consistent with a standard deviation of 18.7 (Figure 1). Therefore, c-jun mRNA expression 

levels in normal bone marrow cells served as a reference point to which we compared the 

mean and standard deviations of c-jun mRNA expression levels in leukemia patient cells. 

We found increased expression of c-jun mRNA in t(8;21), t(15;17) or inv(16) positive 

primary leukemia patient cells. This increase was statistically significant when compared to 

expression levels of c-jun mRNA in normal bone marrow cells (Figure 1). There was, 

however, no statistically significant change between c-jun mRNA expression levels in 

t(11q23/MLL) positive leukemia patient cells and normal bone marrow cells, indicating 

that t(11q23/MLL) positive patient cells had basal levels of c-jun mRNA expression. CML 

patient cells with t(9;22) were included as positive controls. These had significantly higher 

c-jun mRNA expression levels (Figure 1). 
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Standard deviations of c-jun mRNA expression levels in t(8;21), t(15;17) or inv(16) 

positive leukemia patient cells were about 4 times higher compared to normal bone marrow 

cells (Figure 1). In the case of t(8;21), for which the standard deviation was highest, we 

therefore investigated whether the high variation in c-jun mRNA expression levels was a 

consequence of fluctuating mRNA expression levels of AML1-ETO.  

We performed real-time PCR for AML1-ETO (Figure 2A) and c-jun (Figure 2B) of 

16 t(8;21) positive patient samples and found a 13 fold variation between the mRNA 

expression levels of AML1-ETO and c-jun. In order to determine whether these variations 

were correlated, the average ratios of c-jun (Figure 2B) and AML1-ETO (Figure 2C) 

mRNA expression levels were compared by correlation analysis. We found statistically 

significant correlation between c-jun and AML1-ETO mRNA expression levels within 

t(8;21) patient samples with a p-value =0.01 (Figure 2C).  

This data indicates that t(8;21), t(15;17) or inv(16) positive leukemic AML patient 

cells contain significantly higher mRNA expression levels of c-jun than normal bone 

marrow cells. Furthermore, within t(8;21) positive AML patient cells, the mRNA 

expression levels of AML1-ETO and c-jun are correlated. 
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Figure 1: High c-jun mRNA expression in leukemia patient cells with t(8;21), 

t(15;17), inv(16) or t(9;22) compared to normal bone marrow cells.  

Comparison of absolute signal intensities for c-jun mRNA expression from microarray 

analysis (Affymetrix) of leukemia patient cells with t(8;21), t(15;17), inv(16), t(9;22), or 

t(11q23/MLL) to normal bone marrow (BM) cells. Number of patients analyzed (n) and the 

standard deviation (S.D.) is given for each group. The median c-jun expression of these 

leukemic translocations was statistically compared to c-jun expression in normal bone 

marrow cells using the Mann-Whitney Wilcoxon test. A p-value ≤0.05 indicates statistical 

significance. 
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Figure 2: Highly significant correlation between c-jun and AML1-ETO mRNA 

expression levels within t(8;21) positive AML cells. 

(A) Real-time PCR for AML1-ETO (A-E) and G6PD of 16 t(8;21) positive AML patient 

samples. Ratios for A-E/G6PD were compared to each other. Data is shown as mean             

± standard deviation (S.D.) of 2 different experiments. Patient numbers 3, 5, 6, 8, 10, 12 

and 15 have only been analyzed once for the expression of A-E/G6PD. 

(B) Real-time PCR for c-jun of the same patient samples as described in (A). Ratios of      

c-jun/G6PD are given. Data is shown as mean ± S.D. of 2 different experiments.  

(C) Correlation analysis: Average ratios for c-jun/G6PD and A-E/G6PD expression of      

16 t(8;21) positive AML patient samples are plotted as an xy scatter plot. Correlation 

coefficient (r) and p-value are shown. A p-value ≤0.05 indicates statistical significance. 
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5.2 AML1-ETO induction increases c-jun mRNA and c-Jun 

protein expression  

To demonstrate that AML1-ETO itself is responsible for the increased c-jun mRNA 

expression levels in t(8;21) positive patients samples, we used a myeloblastic U937 cell 

line with AML1-ETO under the control of a zinc-inducible metallothionein promoter 

(U937Z/A-E) and performed quantitative real-time PCR for AML1-ETO and c-jun at 

different time points of AML1-ETO induction. In this inducible system, AML1-ETO was 

maximally expressed (6 fold) after 2 hours of Zn2+-induction and slowly decreased 

thereafter (Figure 3A, upper panel). As shown in Figure 3A, middle panel, AML1-ETO 

expression induced an approximately 5 fold increase in c-jun expression after 4 and 6 hours 

of Zn2+-induction and c-jun levels remained elevated at 16 hours of induction. The addition 

of Zn2+ did not affect c-jun expression in control parental U937 cells (Figure 3A, lower 

panel). 

To investigate whether c-Jun protein levels are also affected upon AML1-ETO 

induction, Western blot experiments were performed using a tetracycline-regulated   

AML1-ETO expressing U937 cell line (U937T/A-E). This cell line expresses high and 

tightly controlled levels of AML1-ETO protein upon tetracycline withdrawal that can be 

easily quantified by Western blot analysis (Figure 3B, upper panel).88 c-Jun protein 

expression increased between 24 and 48 hours of AML1-ETO induction in the U937T/A-E 

cell line (Figure 3B, middle panel), whereas c-Jun expression remained unchanged in the 

U937T control cell line (Figure 3B, lower panel). 

Thus, expression analysis by real-time PCR or Western blot using two different 

inducible systems for AML1-ETO, clearly showed upregulation of c-jun mRNA or c-Jun 

protein expression, respectively, upon AML1-ETO induction in myeloid U937 cells. 
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Figure 3A: Upregulation of c-jun mRNA expression upon AML1-ETO induction. 

Real-time PCR analysis for AML1-ETO (A-E) and c-jun. U937Z/A-E and U937 cells were 

washed twice in phosphate-buffered saline (PBS) and stimulated with 100µM Zn2+           

for 1, 2, 4, 6, 8, 12 or 16 hours (h Zn2+). cDNA was prepared and tested for expression of  

c-jun, AML1-ETO (A-E) and housekeeping gene G6PD using real-time PCR technology. 

Ratios of c-jun/G6PD (middle panel) and A-E/G6PD (upper panel) are shown as fold 

upregulation compared to time point zero (no addition of Zn2+), which was set to 1 fold. 

Wildtype U937 cells were analyzed for c-jun expression to control for Zn2+effects (lower 

panel). Data is shown as mean ± S.D. of 3 different experiments. 
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Figure 3B: Upregulation of c-Jun protein expression upon AML1-ETO induction.  

Western blot analysis using whole cell lysates of U937T/A-E and U937T cell lines. Cells 

were washed three times with PBS and grown for 24, 48, 72 or 90 hours in the maintenance 

medium with tetracycline (+tet: no AML1-ETO expression), or without tetracycline           

(-tet: AML1-ETO expression). Western blot analysis for AML1-ETO using an anti ETO 

antibody (a ETO) of U937T/A-E cell lysates is shown in the upper panel. Kasumi-1 cell 

lysates containing AML1-ETO were included as positive controls. The middle panel shows 

the same U937T/A-E cell lysates examined for expression of c-Jun. In the lower panel, the 

empty vector U937T cell lysates were blotted for c-Jun to control for tet-off effects on       

c-Jun protein expression. In vitro translated (ivt.) AML1-ETO (A-E) and c-Jun proteins 

were included as controls in order to verify protein sizes. Reticulocyte lysate (ret. lys.) 

represents a negative control for in vitro translation containing only reticulocyte lysate. 

Every blot was stripped and reblotted for ß-tubulin as a loading control. 
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5.3 AML1-ETO enhances the positive autoregulatory activity of 

c-Jun by transactivating the human c-jun promoter through 

the proximal AP-1 site 

Next, we studied whether the increased level of c-Jun protein upon AML1-ETO 

expression resulted from direct stimulation of the human c-jun promoter. Furthermore, it 

was of interest to compare the transactivating capacity of AML1-ETO to wildtype AML1 

and ETO protein. Thus, we transiently transfected U937 cells with the full-length human   

c-jun promoter controlling the luciferase reporter gene and co-transfected AML1-ETO, 

AML1 or ETO. AML1 alone has been shown to be a weak transactivator, therefore, we 

also co-transfected AML1 and its co-activator CBFβ together, which have been shown to 

co-operatively upregulate the M-CSF receptor promoter104 (Figure 4B, lower panel, right). 

AML1-ETO transactivated the full-length human c-jun promoter around 3 fold, 

whereas neither wildtype AML1, with or without CBFβ, nor wildtype ETO showed 

transactivation capacity (Figure 4B, upper panel). A minimal promoter for NF-?B fused to 

the luciferase gene, which was not transactivated upon AML1-ETO, served as a negative 

control (Figure 4B, lower panel, left). Since ETO has not been described to be capable of 

DNA binding, there was no positive control available. 

Thus, we concluded that AML1-ETO transactivation capacity on the c-jun promoter 

is an acquired function of the fusion protein. 

We next went on mapping the site in the c-jun promoter being transactivated by 

AML1-ETO by transiently transfecting various 5’ c-jun promoter deletion mutants11 into 

U937 cells. The site in the c-jun promoter being transactivated by AML1-ETO could be 

narrowed down to a region between bp -180 to bp +731 (around 3.5 fold upregulation of   

c-jun promoter activity) and bp -63 to bp +731 (upregulation of c-jun promoter activity was 

lost) (Figure 4C).  
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Interestingly, in the longer c-jun promoter constructs ranging from bp -1780 to                   

bp -345/+731, transactivation capacity of AML1-ETO decreased up to 1.5 fold, which 

implies loss of positive response elements (Figure 4C). The increase in c-jun activation by 

AML1-ETO upon removal of the sequence from bp -345 to bp -180 suggests the presence 

of a repressive element (possibly the upstream AP-1 site). The bp -180 to bp +731 c-jun 

promoter construct still contains the proximal AP-1 site (see Figure 4A).  

Importance of the AP-1 site for AML1-ETO transactivation has previously been 

shown for a minimal AP-1 promoter derived from the collagenase gene in fibroblast cells.49 

Therefore, for fine mapping, we transiently transfected U937 cells with a c-jun promoter 

construct ranging from bp -79 to bp +170 or the same construct with the proximal AP-1 site 

mutated. Co-transfection of AML1-ETO transactivated the bp -79 to bp +170 c-jun 

promoter construct up to 4.5 fold. Transactivation capacity was reduced to 1.5 fold when 

the proximal AP-1 site was mutated and lost when we transfected a bp -63 to bp +170 

construct which was included to rule out importance of the 3’ promoter region between    

bp +170 and bp +731 (Figure 4D). 

These results indicate that in U937 cells, AML1-ETO increased AP-1 activity of the 

c-jun promoter via the proximal AP-1 site.  

Strikingly, the proximal AP-1 site is also the site to which c-Jun can feed back to 

autoregulate its expression. Thus, we hypothesized that AML1-ETO might enhance the 

autoregulatory capacity of c-Jun by increasing the amount of c-Jun protein. Therefore, we 

transiently transfected the bp -79 to bp +170 c-jun promoter construct and co-transfected   

c-jun, AML1-ETO or c-jun and AML1-ETO together into U937 cells, which contain only 

little endogenous c-Jun. AML1-ETO alone transactivated the c-jun promoter construct 

around 4 fold, c-jun transactivated its own promoter around 30 fold and upon                   

co-transfection of AML1-ETO around 90 fold (Figure 4E).  

These results suggest that c-jun and AML1-ETO co-operatively transactivate the    

c-jun promoter and that AML1-ETO enhanced the autoregulatory nature of c-jun. 
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Figure 4A: Schematic representation of the proximal human c-jun promoter   

with important transcription factor binding sites in myeloid cells.  

The proximal c-jun promoter contains 2 AP-1 sites, a proximal (pAP-1) and a distal    

(dAP-1) one, a CAAT binding site for CCAAT/enhancer binding proteins (C/EBPs) and 

binding sites for the transcription factors NF-jun, SP-1 and GATA-1. 
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Figure 4B: AML1-ETO but not wildtype AML1 or ETO transactivates the       

full-length human c-jun promoter. 

Upper panel: Effect of AML1-ETO, AML1, CBFß or ETO on the transactivation capacity 

of the full-length human c-jun promoter (pcjun -1780/+731). U937 cells were transiently 

transfected with 0.6µg of the full-length human c-jun promoter or the promoterless vector 

pGL3. 0.05µg of the internal control plasmid pRL-null was added in all transfections. 

0.2µg of expression plasmids for AML1-ETO (A-E), AML1, CBFß or ETO in pCMV5, or 

empty vector alone were co-transfected and luciferase activities determined 30 hours after 

transfection. The normalized luciferase activity of each c-jun promoter construct was 

arbitrarily defined as 1 fold promoter activity. The promoter activity in presence of   

AML1-ETO was presented in relation to it (fold promoter activity). Thus, effects of  

AML1-ETO on the empty vector plasmid (pGL3) could be more visible. Transfection data 

is shown as mean ± standard deviation (S.D.) of 3 separate experiments.  

Lower panel, left: Negative control for the transactivation capacity of AML1-ETO (A-E). 

U937 cells were transiently transfected with 0.6µg of a minimal NF-?B promoter and the 

same construct with mutated NF-?B site. 0.2µg of A-E was co-transfected and the promoter 

activity determined. Promoter activity upon co-transfection of AML1-ETO was presented 

in relation to the promoter activity of the NF-?B promoter construct, which was arbitrarily 

set to 1 fold. Transfection data is shown as mean ± S.D. of 3 separate experiments. 

Lower panel, right: Positive control for the transactivation capacities of AML1 and CBFß. 

The macrophage-colony stimulating factor receptor promoter (pMCSF-R) was transiently 

transfected into U937 cells and 0.2µg of AML1 and CBFß was co-transfected. Data was 

presented as described above. 
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Figure 4C: Mapping of the AML1-ETO responsive site in the human c-jun 

promoter. 

0.6µg of 5’ truncation mutants of the human c-jun promoter (pcjun -1780, -952, -719, -345, 

-180, -63/ +731) were transiently transfected into U937 cells and co-transfected with 0.2µg 

of pCMV5 AML1-ETO expression plasmid. The normalized luciferase activity of each     

c-jun promoter construct was arbitrarily defined as 1 fold. The promoter activity in 

presence of AML1-ETO was presented in relation to it (fold promoter activity). 

Transfection data is shown as mean ± S.D. of 3 separate experiments. 
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Figure 4D: Fine mapping of the AML1-ETO responsive site in the proximal c-jun 

promoter.  

Transient transfection of U937 cells with 0.6µg of a proximal c-jun promoter construct 

(pcjun -79/+170) or the same construct with the proximal AP-1 site mutated                

(pcjun -79/+170 mAP-1), with a bp -63 to bp +170 c-jun promoter construct                

(pcjun -63/+170) or the empty vector pGL2. 0.1µg of the expression plasmid pCMV5 

AML1-ETO (A-E) was co-transfected and promoter activity analyzed. The normalized 

luciferase activity of each c-jun promoter construct was arbitrarily defined as 1 fold. The 

promoter activity in presence of AML1-ETO was presented in relation to it (fold promoter 

activity). Transfection data is shown as mean ± S.D. of 3 separate experiments. 
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Figure 4E: Co-operative transactivation of the c-jun promoter by                 

AML1-ETO and c-jun.  

U937 cells were transiently transfected with 0.6µg of a proximal c-jun promoter construct 

(pcjun -79/+170) or the empty vector pGL2 and co-transfected with 0.1µg of AML1-ETO   

(A-E), c-jun, or A-E and c-jun together. Transfection was performed and the data analyzed 

as described above. 
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5.4 AML1-ETO cannot directly bind to the c-jun promoter 

To investigate whether AML1-ETO enhanced AP-1 activity of the c-jun promoter 

by directly binding to DNA, we performed electrophoretic mobility shift assays (EMSA). 

As described in Figure 5A, nuclear extracts of AML1-ETO transfected 293T cells could not 

specifically bind to a c-jun promoter oligonucleotide ranging from bp -88 to bp -28: pcjun 

(-88/-28) oligo, but positively bound to a control AML1 consensus site oligonucleotide 

(AML1 binding site oligo) (Figure 5B). Along with these results, DNA binding of    

AML1-ETO has only been shown through the wildtype AML1 consensus site 

TG(T/c)GGT,62 which is absent in the human c-jun promoter.  

Thus, we concluded that AML1-ETO might transactivate the human c-jun promoter 

in an indirect manner. 
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Figure 5: No physical binding of AML1-ETO to the proximal c-jun promoter.  

(A) Electrophoretic mobility shift assay (EMSA) with a proximal c-jun promoter 

oligonucleotide: pcjun (-88/-28) oligo. Oligonucleotide probes were incubated with 5µg of 

nuclear extracts of AML1-ETO transfected 293T cells (293T/A-E), or were mock 

transfected with the empty vector pCMV5 (293T/EV). 200 fold molar excess of unlabeled 

competitor self-probe (+comp) was added to the electrophoretic mobility shift assay. No 

specific supershifting of the band-shift complexes (non-specific bands were marked with     

an asterisk *) were produced with anti ETO (α ETO) or anti AML1 (α AML1) antibodies. 

Anti IgG (α IgG) antibody was added as an isotype control. In vitro translated c-Jun        

(ivt c-Jun) was used as a positive binding control to the c-jun promoter oligonucleotide and 

produced a specific shift (s) which could be competed away with 200x of competitor, was 

supershifted (ss) with c-Jun antibody and was absent in reticulocyte lysate (ret. lys.).  

(B) EMSA as described above using an oligonucleotide containing an AML1 binding site 

(AML1 binding site oligo) as positive binding control for nuclear extracts of AML1-ETO 

transfected 293T cells (293T/A-E).  
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5.5 AML1-ETO induces the JNK signaling pathway 

The c-jun promoter integrates several MAPK signaling pathways.105 At the 

proximal AP-1 site, pre-bound c-Jun is mainly targeted by the JNK signaling pathway,106 

which increases transcriptional activity of c-Jun by phosphorylating Ser63 and Ser73 in     

c-Jun.17,18 Therefore, the JNK signaling pathway might be involved in the indirect 

stimulation of the c-jun promoter by AML1-ETO. 

We assayed the activity of JNK induced phosphorylation of Ser63 in c-Jun in 

U937T/A-E cells after 48 hours of AML1-ETO induction (U937T/A-E 48h -tet). U937T 

cells were included as a negative control (U937T 48h -tet). As shown in Figure 6A, 

phosphorylation of Ser63 in c-Jun was increased upon AML1-ETO induction in the  

AML1-ETO expressing cell lysates (lanes 3 and 4), whereas no effect on c-Jun 

phosphorylation was seen upon tetracycline withdrawal in the U937T control lysates 

(Figure 6A, lanes 1 and 2). 

In order to rule out the possibility that kinases other than JNK phosphorylate Ser63 

in c-Jun,107 we directly measured the phosphorylation of JNK upon AML1-ETO induction. 

AML1-ETO induction for 48 hours increased phosphorylation of the 46 and the 54 kDa 

isoforms of JNK1 and JNK2,108 and was maximally increased at 72 hours. There was no 

upregulation of JNK phosphorylation in the U937T control cell lysates (Figure 6B). To 

investigate whether AML1-ETO induction influenced the expression of JNK, we analyzed 

the same blot for JNK1 expression, which was not enhanced upon AML1-ETO induction 

(Figure 6B).  

We further analyzed the phosphorylation of the endogenous JNK targets c-Jun and 

ATF-2 upon AML1-ETO expression. AML1-ETO induction for 48 and 72 hours increased 

JNK specific phosphorylation of Ser63 and Ser73 in c-Jun and Thr71 in ATF-2 by Western 

blot analysis (Figure 6C). There was a non-specific tetracycline-off effect on 

phosphorylation of c-Jun and ATF-2 at 24 hours in the U937T control cell line, which was, 

however, only transient and not visible at 48 and 72 hours of tetracycline withdrawal. 
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These results suggest that AML1-ETO activated the JNK pathway by inducing the 

phosphorylation of JNK and its targets c-Jun and ATF-2. 
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Figure 6A: AML1-ETO induces JNK specific activation of c-Jun. 

In vitro kinase assay for JNK. Cell lysates of U937T and U937T/A-E cells, grown for       

48 hours in the presence (+tet) or absence (48h -tet) of tetracycline, were incubated with  

GST N-terminal c-Jun (amino acids 1-89) fusion beads (lanes 1-4) or GST beads alone 

(lanes 5 and 6). Kinase reaction was triggered and indirectly analyzed by performing 

Western blot for JNK dependent phosphorylation of Ser63 in c-Jun: c-JunP (Ser63). As a 

control for even protein loading, the same blot was stripped and reblotted with a GST 

antibody.  
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Figure 6B: AML1-ETO induces phosphorylation of JNK. 

Western blot using an antibody against phosphorylated Thr183 and Tyr185 in JNK, which 

recognizes JNK isoforms of 46 and 54 kDa (JNKP p46, JNKP p54). Cell lysates of U937T 

and U937T/A-E cells were grown with tetracycline, or for 24, 48, or 72 hours without 

tetracycline. Blots were stripped and reblotted with an anti JNK1 antibody (α JNK1) to 

determine JNK1 expression, stripped again and reblotted for ß-tubulin as loading control. 
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Figure 6C: AML1-ETO induces phosphorylation of the JNK targets c-Jun and 

ATF-2. 

Western blot for phosphorylated Ser63 in c-Jun: c-JunP (Ser63), phosphorylated Ser73 in  

c-jun: cjunP (Ser73) and for phosphorylated Thr71 in ATF-2: ATF-2P (Thr71) using cell 

lysates of U937T and U937T/A-E cells grown for 24, 48 or 72 hours in the presence or in 

the absence of tetracycline. Each blot was re-blotted for ß-tubulin to control for protein 

loading.  
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5.6 Increased DNA binding of c-Jun and ATF-2 to the proximal 

AP-1 site of the c-jun promoter upon AML1-ETO induction 

The proximal AP-1 site is preferentially occupied by the AP-1 transcription factors 

and JNK targets c-Jun and ATF-2, which were both phosphorylated upon AML1-ETO 

induction. Therefore, we investigated by EMSA whether c-Jun and ATF-2 also bind to the 

proximal AP-1 site of the c-jun promoter in U937 cells and whether AML1-ETO induction 

has any effect on AP-1 composition or DNA binding capacity.  

Nuclear extracts of U937T/A-E or U937T cells, grown for 48 hours under 

tetracycline removal, served as a protein source. EMSA revealed that in U937 cells, c-Jun 

and ATF-2 could bind to the proximal AP-1 site of the c-jun promoter, but not c-fos. 

Binding to the proximal AP-1 site was confirmed by performing EMSA using a c-jun 

promoter oligonucleotide with mutated AP-1 site. AML1-ETO induction for 48 hours in the 

U937T/A-E cells (U937T/A-E) did not change the composition of AP-1 factors binding to 

the proximal AP-1 site compared to nuclear extracts of U937T control cells (Figure 7A). 

However, EMSA with increasing concentrations of specific competitor DNA revealed that 

upon AML1-ETO expression, the DNA binding of c-Jun and ATF-2 to the c-jun promoter 

was increased (Figure 7B).  

These results indicate that in U937 cells c-Jun and ATF-2 can bind to the proximal 

AP-1 site of the c-jun promoter. Thus, via phosphorylating c-Jun and ATF-2, the JNK 

signaling pathway might connect AML1-ETO to the proximal AP-1 site of the c-jun 

promoter. Furthermore, via stimulating the JNK pathway, AML1-ETO enhanced the DNA 

binding capacity of c-Jun and ATF-2 to the proximal AP-1 site, which might result in 

enhanced c-jun promoter activity. 
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Figure 7A: c-Jun and ATF-2 bind to the proximal AP-1 site in U937 cells. 

EMSA using a bp -88 to bp -28 c-jun promoter oligonucleotide: pcjun (-88/-28) (left panel) 

or a bp -88 to bp -28 c-jun promoter oligonucleotide with mutated AP-1 site: pcjun            

(-88/-28) mAP-1 (right panel). Nuclear extracts of U937T cells (U937T) and U937T/A-E 

cells (U937T/A-E), both grown under tetracycline withdrawal for 48 hours, were compared. 

Equal quantities of nuclear extracts were added to the binding reaction and produced a 

doubled-banded shift, of which the slower migrating band was supershifted with c-Jun or 

ATF-2 antibodies, but not with antibodies against c-fos. The faster-migrating band was 

supershifted neither with c-Jun nor with ATF-2 or c-fos antibodies. Specificity of the    

band-shifts was established by adding 200 fold excess of non-radioactive pcjun (-88/-28) 

self-probe (+comp). α IgG rabbit was used as isotype control. EMSA using pcjun (-88/-28) 

mAP-1 as a probe failed to bind c-Jun or ATF-2. Asterisks (*) indicate unspecific shifts. 
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Figure 7B: Increased DNA binding of c-Jun and ATF-2 upon AML1-ETO 

induction. 

EMSA using a bp -88 to bp -28 c-jun promoter oligonucleotide: pcjun (-88/-28), as 

described in Figure 7A. Increasing concentrations of non-radioactive pcjun (-88/-28)    

self-probe (25ng to 100ng) were added in order to slowly compete away the slower 

migrating shift composed of c-Jun and ATF-2. Asterisks (*) indicate unspecific shifts.  
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5.7 Interference with the JNK signaling pathway disrupts the 

functional properties of AML1-ETO 

In order to elucidate the functional importance of the JNK signaling pathway for 

AML1-ETO induced transactivation of the c-jun promoter, we investigated whether 

disruption of the JNK signaling pathway can interfere with the transactivation capacity of 

AML1-ETO on the c-jun promoter (Figure 8A).  

For that, we transiently transfected a proximal c-jun promoter construct                

(bp -79 to bp +170) into U937T/A-E and U937T cells, each grown with or without 

tetracycline and overexpressed JIP-1. JIP-1 is a scaffold protein which aggregates 

components of the JNK pathway to a functional signaling module.109 In overexpression 

studies, however, JIP-1 sequesters JNK from its nuclear targets,110 like c-Jun and ATF-2, 

and thus functions as an inhibitor of JNK regulated gene expression.111 Overexpression of 

JIP-1 in U937T/A-E cells after 36 hours of AML1-ETO induction, reduced transactivation 

capacity of AML1-ETO approximately 5 fold, from around 260 to 40 fold, which suggests 

that JNK might play a role in the stimulation of the c-jun promoter by AML1-ETO.  

Furthermore, we assessed whether the inhibition of JNK could revert the biological 

function of AML1-ETO. AML1-ETO induction for 3 days in U937 cells has been shown to 

induce proliferation arrest and apoptosis.88 We tried to block AML1-ETO induced 

apoptosis with cell-permeable JNK specific inhibitor peptides (JNK inh.).102 As revealed in 

AnnexinV assay, addition of these peptides to U937T/A-E cells after 72 hours of      

AML1-ETO induction reduced AML1-ETO induced apoptosis by around 30%, while 

addition of the HIV-TAT 48-57 negative control peptide (neg.co.) had no effect. No effect 

was seen for U937T/A-E cells grown in the presence of tetracycline or for the U937T 

control cell line (Figure 8B). 

These results underline the biological importance of the JNK signaling pathway for  

AML1-ETO induced apoptosis in U937 cells.  



5. Results  65 
_________________________________________________________________________ 

 

 

Figure 8A: Disruption of the JNK signaling pathway reduces the transactivation 

capacity of AML1-ETO on the c-jun promoter.  

After 12 hours of growth with tetracycline (+tet) or without tetracycline (-tet), U937T and 

U937T/A-E cells were transiently transfected with a c-jun promoter construct ranging from 

bp -79 to bp +170 (pcjun -79/+170) or the empty vector pGL2 and co-transfected with 

0.2µg of JIP-1. Cells were analyzed 24 hours post transfection. The normalized luciferase 

activity of each construct was arbitrarily defined as 1 fold promoter activity. The promoter 

activity in presence of AML1-ETO was presented in relation to it (fold promoter activity). 

Thus, effects of AML1-ETO on the empty vector plasmid (pGL2) could be more visible. 

Transfection data is shown as mean ± S.D. of 3 separate experiments.  
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Figure 8B: Interfering with the JNK signaling pathway reduces AML1-ETO 

induced apoptosis.  

Flow cytometry analysis of AnnexinV-FITC positive U937T/A-E and U937T cells grown 

for 72 hours in the presence or absence of tetracycline (+tet/-tet). 1µM of JNK specific 

inhibitor peptide (JNK inh.) or negative peptide control (neg. co.) was added to the cells at 

the time of induction. The upper panel shows overlays of counts of AnnexinV-FITC 

positive cells. Cells only are represented in blue, cells + JNK inhibitor in red and           

cells + negative control in green. In the lower panel, the average percentages of   

AnnexinV-FITC positive cells were blotted against each other. Data is shown as mean ± 

S.D. of three independent experiments using U937T/A-E cells and two independent 

experiments using U937T cells. 
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5.8 Indirect stimulation of the JNK signaling pathway by 

AML1-ETO: possible role for G-CSF and its receptor 

The question remains how AML1-ETO, which has no known kinase activity, 

induced the JNK signaling pathway. To investigate if AML1-ETO indirectly stimulated 

JNK signaling by inducing autocrine stimuli, supernatants of U937T/A-E or U937T cells 

were added onto wildtype U937 cells and whole cell lysates were analyzed by Western blot 

for phosphorylated JNK or c-Jun. Supernatants of U937T/A-E (Figure 9A, lanes 3 and 4) 

but not U937T cells (Figure 9A, lanes 1 and 2) increased phosphorylation of c-Jun and 

JNK in wildtype U937 cells, similar to what was observed for the cellular fraction of 

AML1-ETO expressing cells (Figure 6B).  

AML1-ETO has recently been shown to upregulate the expression of the 

granulocyte-colony stimulating factor (G-CSF) receptor,96 which can mediate Ras-

dependent activation of the JNK signaling pathway.112 Furthermore, in an ovarian cancer 

cell line, induction with G-CSF increases JNK signaling and c-Jun expression.101  

Therefore, we examined the expression of G-CSF and its receptor in U937T/A-E 

cells by real-time PCR and found that AML1-ETO induction increased the mRNA 

expression of G-CSF (Figure 9B, upper panel) and the G-CSF receptor (Figure 9B, lower 

panel) in the U937T/A-E cells after 24 hours of AML1-ETO induction. Furthermore, we 

found that priming of U937T/A-E cells after 48 hours of AML1-ETO induction with        

G-CSF further increased AML1-ETO induced phosphorylation of Thr183 and Tyr185 in 

JNK. This indicates that exogenous G-CSF enhanced the effect of AML1-ETO on JNK 

signaling (Figure 9C). G-CSF also slightly increased the phosphorylation of JNK in the 

U937T/A-E cells grown in the presence of tetracycline (U937T/A-E +tet) (Figure 9C), 

which might be due to the endogenous expression of the G-CSF receptor in U937 cells.113  

These results indicate that AML1-ETO might stimulate JNK signaling by inducing 

autoregulatory loops in U937 cells, which might involve G-CSF and its receptor. 
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Figure 9A: Indirect activation of the JNK signaling pathway by AML1-ETO. 

Western blot analysis for phosphorylated Ser63 in c-Jun: c-JunP (Ser63) and 

phosphorylated Thr183 and Tyr185 in JNK: JNKP (Thr183/Tyr185). Supernatants of 1x107 

U937T/A-E cells (S/N U937T/A-E) (lanes 3 and 4) and U937T cells (S/N U937T) (lanes 1 

and 2) were harvested 48 hours after growth in the absence of tetracycline and added to 

1x107 wildtype U937 cells for 15 or 30 minutes. Whole cell lysates were prepared and 

analyzed. Both blots were re-blotted for ß-tubulin. 
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Figure 9B: Upregulation of G-CSF and G-CSF receptor mRNA expression upon 

AML1-ETO (A-E) induction. 

Real-time PCR for G-CSF (upper panel) and G-CSF receptor (G-CSF-R) (lower panel) of 

U937T/A-E and U937T cells after different hours of tetracycline withdrawal (hrs -tet). 

Ratios for G-CSF/G6PD (upper panel) and G-CSF-R/G6PD (lower panel) are shown as 

fold upregulation compared to time point zero (+tet), which was set to 1 fold. Data is 

shown as mean ± S.D. of 3 different experiments. 
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Figure 9C: G-CSF increases AML1-ETO induced phosphorylation of JNK. 

Western blot for phosphorylated Thr183 and Tyr185 in JNK: JNKP (Thr183/Tyr185), 

detecting p46 and p54 isoforms of JNK. U937T/A-E cells were grown for 48 hours in the 

absence of tetracycline (48 hrs -tet) or in the presence of tetracycline (48 hrs +tet) and 

stimulated with 10µM or 100µM G-CSF for 15 or 30 minutes. Blots were stripped and 

reblotted for ß-tubulin as loading control. 
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Figure 10: Model for regulation of c-Jun expression by AML1-ETO.  

AML1-ETO induces c-Jun expression in an indirect manner. AML1-ETO induces the 

expression of a humoral factor, for example G-CSF, which in turn leads to G-CSF receptor 

(G-CSF-R) mediated stimulation of the JNK signaling pathway. JNK signaling connects 

AML1-ETO to the proximal AP-1 site of the c-jun promoter, at which pre-bound c-Jun and 

ATF-2 are phosphorylated by JNK. Phosphorylated c-Jun and ATF-2 stimulate c-jun 

promoter activity and c-Jun expression. 
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 6. DISCUSSION 

Approximately 40% of AML is associated with the translocations t(8;21), t(15;17), 

inv(16) or t(9;11), encoding for the AML1-ETO, PML-RARa, CBFß-SMMHC, or      

MLL-AF9 fusion proteins, respectively.51 Despite the diversity of the involved fusion 

partners, these AML-associated chimeric proteins deregulate their target genes through 

common mechanisms.114 We suggest that these AML fusion proteins might also affect 

common targets and demonstrate in the present study that proto-oncogene c-jun was a 

frequently upregulated target gene (Figure 1).  

In the case of t(8;21), we identified that AML1-ETO, by employing an indirect 

mechanism including the JNK signaling pathway, upregulated c-Jun expression through the 

proximal AP-1 site. Furthermore, stimulation of c-jun expression was an acquired function 

of the AML1-ETO chimera independent of wildtype AML1 (Figure 4B).  

AML1-ETO can directly interfere with wildtype AML1 dependent transactivation 

in a dominant negative manner by either binding to AML1 consensus sites via the retained 

DNA binding domain,62,115 or by physically interacting with transcription factors instead of 

AML1 on their target gene promoters.82-84 Differential display analysis has, however, 

revealed that the majority of AML1-ETO target genes are independent of wildtype 

AML1,97 which suggests that they might be regulated in an indirect manner. The c-jun 

promoter does not contain AML1 consensus sites and in addition, we found that wildtype 

AML1 had no effect on c-jun promoter activity (Figure 4B). Furthermore, AML1-ETO 

could not bind to the proximal AP-1 site (Figure 5), which was mapped to be the      

AML1-ETO responsive site (Figures 4C+D).  

Physical interaction between c-Jun and AML1 has been reported via the runt 

domain of AML1,116 which is retained in AML1-ETO. This suggests that prebound c-Jun 

might also interact with AML1-ETO and tether AML1-ETO to the promoter.  
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However, we could not find such interaction between prebound c-Jun and     

AML1-ETO at the level of the c-jun promoter (data not shown). These findings imply that 

regulation of the c-jun promoter by AML1-ETO is indirect.  

Previous studies have indicated that specific signaling events might be important for 

the functional properties of AML1-ETO. Transformation capacities of AML1-ETO in 

NIH3T3 cells have been associated with elevated levels of phosphorylated Ser63 in c-Jun.49 

Also wildtype ETO requires H-Ras for transformation of 3T3 fibroblast cells.117 Therefore, 

pathways like the JNK pathway, which are both ras and c-Jun dependent, are candidate 

mechanisms for AML1-ETO dependent signaling.  

Unlike the leukemic fusion protein BCR-ABL, AML1-ETO has no known intrinsic 

kinase activity on its own, thus it appears more likely that it interferes with such signaling 

pathways in a rather indirect manner. ETO can interact with the regulatory subunit of type 

II cyclic AMP-dependent protein kinase via the NHR3 domain which is retained in   

AML1-ETO.118 Thus, one possible mode of action might be that AML1-ETO upregulates 

the activity of a kinase, or downregulates the activity of a kinase phosphatase by physical 

binding. An alternative possibility, which we have found to be more likely, is that      

AML1-ETO upregulates the expression of a cytoplasmic factor, which activates receptor 

mediated JNK signaling. A candidate factor for this is the hematopoietic growth factor     

G-CSF (Figure 9).  

It has previously been shown that primary AML blast cells can produce and respond 

to their own growth factors, like G-CSF, GM-CSF or IL1β,119,120 which allow them to grow 

autonomously.119 One group found that exogenous G-CSF results in differentiation of 

t(8;21) positive cells121 and cell lines,122 and they associate G-CSF induced differentiation 

with activation of the STAT signaling pathway.122 Stimulation of the JNK signaling 

pathway123 and c-Jun expression101 upon G-CSF administration is, however, associated 

with G-CSF induced growth stimulation.124,125  There is also evidence that AML1-ETO 

might play a role in proliferation upon G-CSF. AML1-ETO blocks G-CSF induced 

differentiation of IL-3 dependent cell lines and leads to G-CSF dependent proliferation.87  
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Furthermore, AML1-ETO promotes the expansion and self-renewal capacities of 

human hemopoietic stem cells.89 The mechanism is currently unknown, but an involvement 

of AML1-ETO in G1-to S-phase progression is discussed, as wildtype AML1 has shown to 

inhibit cell cycle progression.126 Also c-Jun has been implicated in G1-to S-phase 

progression and cell proliferation by negatively regulating tumor suppressors and cell cycle 

regulators.127  

We suggest that AML1-ETO and c-Jun might share additional functional properties, 

as c-Jun activation was also involved in the pro-apoptotic function of AML1-ETO in U937 

cells (Figure 8B). As described in this study, however, inhibition of the JNK signaling 

pathway in U937 cells reduced apoptosis only by about 30%, suggesting additional factors 

within AML1-ETO induced apoptosis (Figure 8B).  

This notion is further supported by our findings that AML1-ETO and c-jun mRNA 

expression levels correlated in primary t(8;21) positive cells and the fluctuating mRNA 

expression levels of AML1-ETO were responsible for the variability in c-jun expression 

(Figure 2). The biological relevance of the low levels of c-jun and AML1-ETO expression 

in some of the t(8;21) positive samples is unknown. A follow-up study on the expression 

levels of AML1-ETO and c-jun might give important insights whether patients with low 

levels of AML1-ETO and c-jun reach complete remission more rapidly. 

By assuming that upregulated c-Jun expression is important for proliferation or 

transformation properties of leukemic blast cells, as reported in leukemic translocations in 

CML,44,45,47  disruption of the c-Jun regulating JNK pathway might have therapeutic benefit. 

Inhibition of JNK has therapeutic potential in inflammatory diseases like rheumatoid 

arthritis128 or diabetes.102 t(8;21) expressing Kasumi-1 and SKNO cell lines are unique 

among a panel of myeloid cell lines that undergo apoptosis in response to dexamethasone 

treatment.129 Dexamethasone, a glucocorticoid with anti-inflammatory actions, reduces     

c-jun mRNA levels via the glucocorticoid receptor by inhibiting transactivation via the 

proximal and distal AP-1 sites of the c-jun promoter.11 This indicates that downregulation 

of c-Jun expression might be advantageous. 
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Alternatively, proliferation capacity in leukemic cells might be beneficial during 

standard chemotherapy of AML, as it increases sensitivity to S-phase specific cytotoxic 

agents such as cytosine arabinoside (AraC). One group investigated the proliferative 

activity in blast cells of various prognostic subgroups and found that blast cells from 

patients in the favorable subgroup including t(8;21), t(15;17) or inv(16), showed higher 

proliferative activity compared to the intermediate or unfavorable group.130 Intriguingly, we 

found high levels of c-jun expression in AML patient cells with translocations associated 

with good response to AraC, in t(8;21), t(15;17) or inv(16), whereas c-jun expression was 

low in t(11q23/MLL) positive patient samples, which are associated with bad prognosis.131 

The good prognosis subgroups are also more likely to produce endogenous G-CSF,       

GM-CSF or IL3.130 In accordance with this data we found that AML1-ETO upregulated the 

expression of G-CSF (Figure 9B, upper panel). 

Besides, we found that also t(15;17) positive acute promyelocytic leukemia (APL) 

patient samples have high levels of c-jun mRNA in comparison to normal bone marrow 

cells. Interestingly, t(15;17) positive patient cells contain high levels of G-CSF receptor and 

proliferate upon G-CSF priming, which increases their vulnerability to cell-cycle specific 

drugs.132 Increased endogenous G-CSF during differentiation therapy with ATRA results in 

proliferation,133 and ATRA treatment leads to increased AP-1 activity.134 These findings 

suggest that G-CSF, AP-1 activity and increased cell proliferation might also be important 

features in APL.  

In summary, our results indicate that high expression levels of proto-oncogene c-jun 

are a common feature amongst “good prognosis” AML-associated translocations. In the 

case of the translocation t(8;21), AML1-ETO upregulated c-Jun expression and activity in 

patient cells and cell lines by positively autoregulating c-Jun expression through the 

proximal AP-1 site of the c-jun promoter. c-Jun regulation was indirect via the JNK 

signaling pathway that in turn might be indirectly stimulated by positive autoregulatory 

loops which might involve G-CSF (Figure 10).  
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We propose that the identification of common targets and mechanisms amongst 

“good prognosis” AML-associated translocations might provide valuable knowledge for 

improving the therapeutic outcome of other AMLs. 
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7. SUMMARY 

Overexpression of proto-oncogene c-jun and constitutive activation of the Jun NH2-

terminal kinase (JNK) signaling pathway have been implicated in the leukemic 

transformation process. However, c-jun expression has not been investigated in acute 

myeloid leukemia (AML) cells containing the most common chromosomal translocations. 

t(8;21) is one of the most common AML-associated translocation and results in the   

AML1-ETO fusion protein. Overexpression of AML1-ETO in NIH3T3 cells leads to 

increased phosphorylation of Ser63 in c-Jun, which is generally JNK dependent. The role 

of the JNK signaling pathway for the functional properties of AML1-ETO is, however, 

unknown.  

In the present study we found high expression levels of c-jun mRNA in t(8;21), 

t(15;17) or inv(16) positive patient cells by microarray analysis. Within t(8;21) positive 

patient samples, there was a correlation between AML1-ETO and c-jun mRNA expression 

levels. In myeloid U937 cells, c-jun mRNA and c-Jun protein expression levels increased 

upon induction of AML1-ETO. AML1-ETO transactivated the human c-jun promoter 

through the proximal AP-1 site via activating the JNK signaling pathway. JNK targets       

c-Jun and ATF-2, which also bind to the proximal AP-1 site in U937 cells, were also 

phosphorylated upon AML1-ETO induction. Furthermore, AML1-ETO induction increased 

the DNA binding capacity of c-Jun and ATF-2 to the proximal AP-1 site of the c-jun 

promoter, which might result in their enhanced transactivation capacities.  

Interference with JNK and c-Jun activation by using JIP-1 or a JNK inhibitor 

reduced the transactivation capacity of AML1-ETO on the c-jun promoter and the pro-

apoptotic function of AML1-ETO in U937 cells. AML1-ETO seems to activate the JNK 

signaling pathway by inducing the expression of a cytoplasmic factor, possibly G-CSF, 

because supernatant of AML1-ETO expressing cells was sufficient to induce 

phosphorylation of JNK and c-Jun in wildtype U937 cells.  
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This data demonstrates a novel mechanism of how AML1-ETO might exert positive 

effects on target gene expression and identifies the proto-oncogene c-jun as a common 

target gene in AML patient cells.  
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8. ZUSAMMENFASSUNG 

Überexpression des Proto-Onkogens c-jun und konstitutive Aktivierung des         

Jun NH2-terminalen Kinase (JNK)-Signaltransduktionsweges sind wichtig für die 

leukämische Transformation in der Chronischen Myeloischen Leukämie. Die Expression 

von c-jun bei Akuter Myeloischer Leukämie (AML) mit den häufigsten reziproken 

Translokationen ist jedoch unbekannt. Bei einer der häufigsten AML Translokation t(8;21) 

wurde in Fibroblastenzellen gezeigt, daß das AML1-ETO-Fusionsgen die Phosphorylierung 

des Serin 63 in c-Jun erhöht. Die Rolle des JNK-Signalweges, der c-Jun am Serin 63 

phosphorylieren kann, für die Funktion von AML1-ETO wurde bisher jedoch nicht 

untersucht. Weiterhin kann aktiviertes c-Jun durch eine positive Rückkoppelungsschleife 

über den c-jun Promotor zur Erhöhung der c-Jun Expression führen. 

In der vorliegenden Arbeit konnten wir zeigen, daß AML Patientenzellen mit den 

häufigen Translokationen: t(8;21), t(15;17) oder inv(16) mehr c-jun mRNA besitzen im 

Vergleich zu Knochenmarkszellen gesunder Probanden. Weiterhin fanden wir eine hohe 

Korrelation zwischen der AML1-ETO und der c-jun mRNA bei t(8;21) positiven 

Patientenzellen. Induktion von AML1-ETO in der myeloischen U937 Zellinie erhöhte 

sowohl c-jun mRNA als auch c-Jun Proteinexpression. Damit konnten wir zeigen, daß 

AML1-ETO die Erhöhung der c-jun Expression bewirkt. Wir untersuchten den 

molekularen Mechanismus in U937 Zellen mittels transienter Transfektionen und fanden, 

daß AML1-ETO den c-jun Promotor durch die proximale AP-1 Seite transaktiviert. Diese 

Transaktivierung erfolgte indirekt über Aktivierung des JNK-Signaltransduktionsweges 

durch AML1-ETO. AML1-ETO-Induktion führte auch zur Phosphorylierung der         

JNK-Zielproteine c-Jun und ATF-2. Diese konnten im Gelretardierungsassay an die 

proximale AP-1 Seite des c-jun Promotors binden und wurden durch AML1-ETO-

Induktion in ihrer Bindungsfähigkeit verstärkt. Deshalb nehmen wir an, daß die 

Transaktivierungskapazität des c-jun Promotors durch AML1-ETO über die Aktivierung 

des JNK-Signalweges läuft.  
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Interferenz mit der Aktivierung von JNK und c-Jun mittels JIP-1 oder eines JNK 

Inhibitors konnte die Transaktivierung des c-jun Promotors durch AML1-ETO und auch 

die pro-apoptotische Funktion von AML1-ETO in U937 Zellen reduzieren. Da AML1-ETO 

keine Kinasefunktion besitzt, stellt sich jedoch die Frage, wie AML1-ETO den             

JNK-Signalweg beeinflussen kann. Wir konnten zeigen, daß Überstände AML1-ETO 

exprimierender U937 Zellen ausreichend sind für die Phosphorylierung von JNK und        

c-Jun. Dies führte zu der Annahme, daß AML1-ETO die Expression eines 

cytoplasmatischen Faktors erhöht, der wiederum den JNK-Signalweg beeinflußt. Dieser 

Faktor könnte G-CSF sein, da wir zeigen konnten, daß die Induktion von AML1-ETO in 

U937 Zellen die Expression von G-CSF und des G-CSF-Rezeptors erhöht und exogene 

Stimulation AML1-ETO exprimierender U937 Zellen mit G-CSF die Phosphorylierung von 

JNK erhöht.  

Die Induzierung positiver autoregulierender Loops durch AML1-ETO stellt einen 

neuen molekularen Mechanismus dar, wie AML1-ETO die transkriptionelle Aktivität 

seiner Zielgene positiv beeinflussen könnte. Weiter zeigen wir, daß das Proto-Onkogen     

c-jun in AML Patientenzellen mit reziproken Translokationen häufig überexprimiert ist. 
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