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Men ought to know that from nothing else but the brain come joys, delights, laughter 

and sports, and sorrows, griefs, despondency, and lamentations. ... And by the same 

organ we become mad and delirious, and fears and terrors assail us, some by night, 

and some by day, and dreams and untimely wanderings, and cares that are not 

suitable, and ignorance of present circumstances, desuetude, and unskillfulness. All 

these things we endure from the brain, when it is not healthy... 

 
Hippocrates, On the Sacred Disease (400 BCE) 
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Abstract 

Anxiety disorders, such as posttraumatic stress disorder (PTSD), are characterized 

by a high prevalence and debilitating symptoms. However, the current first-line 

treatment for these conditions, which consists of selective serotonin reuptake 

inhibitors (SSRIs) and cognitive behavioral therapy, alongside symptomatic treatment 

with benzodiazepines, does not represent by far a functional solution for all affected 

patients. Therefore, identifying and characterizing novel candidates for alternative 

anxiolytic therapies are a crucial focus of psychiatric and neurobiological research. 

This study focuses on Neuropeptide S (NPS), a newly identified endogenous 

neuropeptide that has been shown to exert strong anxiolytic effects upon 

intracerebral injection in rodents. In an approach that combines basic research with 

incipient clinically relevant application, novel mechanisms and brain targets of NPS-

mediated anxiolytic effects were identified, and a noninvasive application procedure 

also applicable in patients, namely the intranasal administration, was established for 

the first time for NPS in mouse models. 

In a first step, the feasibility of intranasal NPS delivery was established in mice using 

fluorophore-coupled NPS to allow intracerebral tracking. This method permitted for 

the first time tracking of intranasally applied substances within the brain at a single-

cell resolution. These results not only proved the applicability of intranasal NPS 

administration in the mouse, but also allowed identification and characterization of 

hitherto undescribed cerebral NPS target cells, which were shown to be most likely 

exclusively neurons. Moreover, specific uptake of fluorescently labeled NPS in the 

hippocampus provided the first direct evidence linking this brain region, a well-known 

major player in the regulation of fear expression, to the NPS circuitry. Further 

investigation into the functional role of the hippocampus in NPS-elicited anxiolytic 

effects revealed that local microinjections of NPS into the ventral CA1 (vCA1) region 

are sufficient to elicit anxiolysis in C57BL6/N mice on the elevated plus maze (EPM). 

In a second step, behavioral and molecular effects of intranasal NPS treatment were 

characterized in C57BL/6N mice. Intranasal application of NPS was shown here to 

produce anxiolytic effects similar to those described by others after intracerebral 

injection. This finding represents the basis for the implementation of a future NPS-
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based therapy via nasal sprays in patients suffering from anxiety disorders. 

Furthermore, the molecular effects of NPS treatment on cerebral protein expression 

were examined here for the first time. This research led to identification of novel 

downstream targets of NPS-mediated regulation in the hippocampus and the 

prefrontal cortex. These new targets include proteins involved in the glutamatergic 

system and in synaptic plasticity, both of which are known to be dysregulated in 

anxiety disorders. 

Finally, the effects of intranasal NPS treatment, hitherto described only in non-

pathological animal models, were examined for the first time in mouse models of 

anxiety disorders, namely the high anxiety behavior (HAB) mice and a mouse model 

of PTSD. In HAB mice, NPS treatment elicited anxiolytic effects similar to those 

observed in C57BL/6N mice. In the mouse model of PTSD, NPS counteracted 

disease-related changes in expression levels of hippocampal synaptic proteins. 

To sum up, this work expands the current state-of-knowledge concerning the 

molecular and mechanistic background of NPS-mediated anxiolysis by characterizing 

the role of the hippocampus in the NPS circuitry and by identifying novel downstream 

targets of NPS. The data on anxiolytic effects of intranasal NPS treatment especially 

in mouse models of anxiety disorders furthermore establishes the therapeutic 

potential of NPS as a novel anxiolytic treatment. 
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1. Introduction 

1.1. The endocrine stress response 

The term “stress”, used for a long time only in physical sciences as a synonym for 

“tension”, was coined in its physiological sense by Hans Selye as late as the 1930s. 

Nowadays, it is applied almost exclusively to designate the biological phenomenon 

that Selye defined as “the non-specific response of the body to any demand placed 

upon it” (Selye, 1956).  

The most important characteristic of stress is the disruption of systemic homeostasis 

(Cannon, 1932). The human organism can respond to stressors on different levels. In 

most cases, this response is beneficial (Chrousos and Gold, 1992), since it allows 

adaptation to extraordinary circumstances via two well-described different endocrine 

pathways, known as the central stress pathways (Praag et al., 2004; Steckler et al., 

2005): 1) activation of the sympathetic nervous system, a fast process leading to 

immediate response readiness; and 2) activation of the hypothalamo-pituitary-adrenal 

(HPA) axis, a slower reaction resulting in long-term readjustment of internal 

processes.  

The sympathetic nervous system is activated to achieve a fight-or-flight response to 

an imminent threat. This leads to increased release of catecholamines, especially 

adrenaline (from the adrenal medulla) and noradrenaline (released peripherally from 

the adrenal medulla and centrally from the locus coeruleus (LC)). Adrenaline 

increases cardiac frequency and blood pressure, dilates the bronchi, and activates 

lipolysis and glucose release and biosynthesis. Noradrenaline, on the other hand, 

also possesses a neurotransmitter function, by which it can increase arousal and 

modulate cognitive and affective processes (Steckler et al., 2005).  

Long-term adaptation to stressors is additionally mediated via increased activity of 

the HPA axis (see Figure 1). The HPA axis involves complex interactions between 

various brain structures and glands. Stressors act as stimuli which lead to increased 

secretion of the neuropeptides vasopressin and corticotropin-releasing hormone 

(CRH) from the paraventricular nucleus (PV) of the hypothalamus. These in turn are 

transported from the median eminence to the pituitary and stimulate, in the anterior 
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lobe of the pituitary, release of adrenocorticotropic hormone (ACTH), which ultimately 

activates the adrenal cortex to upregulate synthesis of glucocorticoid hormones such 

as cortisol (or corticosterone in rats and mice). These glucocorticoids then exert, 

mainly via the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR), 

a variety of actions, such as suppression of immune activity and increased glucose 

availability to adapt to stressful environmental cues. Interestingly, effects of 

glucocorticoids on synaptic plasticity have also been postulated as potential players 

in stress-induced changes in synaptic plasticity via regulation of the glutamatergic 

system (Krugers et al., 2010). This process occurs at least partly by corticosterone-

mediated increase 1) in the release of glutamate (Karst et al., 2005); 2) in the 

availability of subunits 1 and 2 (GluR1 and GluR2) of the α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) receptor (a ionotropic glutamate receptor) 

at the postsynaptic site (Groc et al., 2008); and 3) in the synaptic insertion of GluR2-

containing AMPA receptors (Karst et al., 2005; Martin et al., 2009). 

 

Figure 1. Schematic overview of the HPA axis response to stress. 

A mechanism for avoiding pathological changes due to stress is the strict regulation 

of the HPA axis by negative feedback such as GR-mediated decrease in 
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hypothalamic CRH production (Holsboer, 1999), which allows restoration of 

homeostasis in hormone and neurotransmitter levels. Thus, there are no adverse 

consequences for the organism (Chrousos and Gold, 1992). Chronic stress, 

however, can lead to impairment of this negative feedback loop: hypothalamic CRH 

expression can no longer be suppressed by glucocorticoids (Praag et al., 2004). This 

is the case in many patients suffering from affective disorders like depression and 

anxiety disorders. 

1.2. The HPA axis in psychiatric disorders 

Major signs of a dysregulated HPA axis include changes in circulating levels of CRH, 

vasopressin, ACTH and cortisol, which are due inter alia to differential regulation of 

their transcription and translation rates. Thus, in major depression, the HPA system 

was found to be hyperactive, with increased CRH production (Raadsheer et al., 

1995) and increased levels of circulating ACTH (Deuschle et al., 1997); on the other 

hand, CRH deficiency has also been observed in a minority of patients (Posener et 

al., 2000). Panic disorder (PD) and generalized anxiety disorder (GAD) have been 

associated with increased concentrations of cortisol in the cerebrospinal fluid (CSF) 

and hypertrophy of the pituitary and adrenal glands due to hyperactivity (Chalmers et 

al., 1996). 

The long-lasting changes in CRH and cortisol levels found in affective disorders have 

also been postulated to trigger behavioral effects, including increased anxiety. 

Anxiety is defined as pathological and generalized fear and manifests itself as a 

persistent, unpleasing and often unsubstantiated feeling of worriedness, in the 

absence of any acute stimulus that might trigger fear (American Psychiatric 

Association, 2000). It is comorbid with many psychiatric conditions, such as 

depression (Pini et al., 1997). In animal models, high doses of CRH have been 

shown to elicit anxiogenic effects, such as decrease in exploration of novel 

environments and increased freezing and acoustic startle response (ASR) (Heinrichs 

et al., 1997); similarly, transgenic mice that overproduce CRH are hyperanxious 

(Stenzel-Poore et al., 1994).  
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1.3. Anxiety disorders 

Anxiety in itself can also constitute an independent pathological condition, as in the 

case of anxiety disorders. According to the fourth edition of the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-IV), these include panic disorder (PD), 

generalized anxiety disorder (GAD), phobias (social, specific and agoraphobia), 

acute stress disorder and posttraumatic stress disorder (PTSD) (American 

Psychiatric Association, 2000). The lifetime prevalence of any anxiety disorder is 28.8 

% (Kessler et al., 2005) and the symptoms are debilitating. Thus, in PD, patients are 

prone to recurrent panic attacks which involve acute fear and discomfort occurring in 

the absence of true danger and coupled to activation of the sympathetic nervous 

system (American Psychiatric Association, 2000).   

Anxiety and fear regulation involve activation of and interaction between various 

brain structures. Most important among them are the amygdala, the prefrontal cortex 

and the hippocampus. A combination of patient and animal studies have pinpointed 

the amygdala as the primary region involved in the response to fearful stimuli 

(Mathew et al., 2008; Shin and Liberzon, 2009); together with the hippocampus, it 

has been related to learning of fear conditioning (Kjelstrup et al., 2002; Maren and 

Holt, 2004; McHugh et al., 2004). The prefrontal cortex on the other hand seems to 

play a large role in fear extinction, which also requires formation of new memories 

(Santini et al., 2004; Kim et al., 2010). These structures have been shown to be 

involved in the pathology of anxiety disorders. In PD, amygdala hyperactivity has 

been reported in subgroups of PD patients (Domschke et al., 2008), and in the 

medial prefrontal cortex, gray matter volumes were found to be reduced (Asami et al., 

2008; Uchida et al., 2008).  

Dysregulations of endocrine and neurotransmitter systems in anxiety disorders 

include among others: 1) dysregulation of the HPA axis, leading to altered levels in 

CRH, ACTH and cortisol (see also 1.2.); 2) increased activity of the glutamatergic 

system; 3) reduction in levels of monoamine transmitters such as noradrenaline and 

serotonin; and 4) changes in levels of neuropeptides, such as Substance P and 

Neuropeptide Y (NPY) (Mathew et al., 2008).   
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Currently, treatment of anxiety disorders consists in a combination of psychotherapy, 

where the gold standard is cognitive-behavioral therapy (Mathew et al., 2008), and 

pharmacotherapy. The first-line pharmacological treatment are selective serotonin 

reuptake inhibitors (SSRIs), alongside symptomatic treatment with benzodiazepines 

(Ravindran and Stein, 2010b). The SSRIs work mainly by inhibiting the reuptake of 

serotonin from the presynaptic cleft via the presynaptic serotonin transporter, thus 

increasing overall cerebral levels of serotonin. Benzodiazepines target a specific 

binding site of the ionotropic γ-amino butyric acid subtype A (GABAA) receptor and 

enhance the effect of the inhibitory neurotransmitter GABA, reducing amygdala 

activation and thereby achieving anxiolysis. However, these medications do not 

represent a functional solution for all anxiety disorders. For instance, in PTSD 

patients, while SSRI treatment generally has good results in the case of civilian 

trauma, it failed to be effective in most studies with combat-related PTSD (Shiromani 

et al., 2009). 

1.3.1. Posttraumatic stress disorder (PTSD) 

Posttraumatic stress disorder (PTSD) is one of the most common anxiety disorders 

(Steckler et al., 2005) and affects a minority of persons exposed to a trauma such as 

rape, assault or combat, as well as natural disasters and accidents (Yehuda and 

LeDoux, 2007). Approximately 6.8 % of people exposed to a traumatic event develop 

PTSD, whereas around 75 % of the total population are exposed to trauma once in 

their life (Kessler et al., 1995, 2005). Given the wide range of causes that may lead to 

PTSD, the risk of developing this disorder applies to the entire population.  

DSM-IV defines the core symptoms of PTSD as: 1) persistent reexperiencing of the 

traumatic event; 2) persistent avoidance of trauma-related stimuli and numbing of 

general responsiveness following trauma; and 3) hyperarousal following trauma 

(American Psychiatric Association, 2000). For fulfillment of these diagnostic criteria, 

this symptom complex has to persist for at least 1 month. PTSD symptoms can occur 

starting several weeks up to decades after the event.  

Since PTSD is not a mandatory consequence of experiencing a trauma, research has 

also been focusing on identifying pre-traumatic factors that may influence the 

development of this disease. These factors include structural brain abnormalities 
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(Yehuda and LeDoux, 2007) and environmental, genetic, and epigenetic 

contributions (Afifi et al., 2010; Schmidt et al., 2011; Yehuda et al., 2011). Thus, 

hippocampal volume was found to be reduced in PTSD patients (Rauch et al., 2006; 

Bremner, 2007), but additionally, smaller hippocampal volumes have also been 

correlated to higher risk of developing PTSD (Gilbertson et al., 2002; Pitman et al., 

2006). These results indicate a role of the hippocampus in PTSD vulnerability 

(Pitman et al., 2001). Twin studies have shown significantly greater risk for 

developing PTSD in monozygotic twins independent of differences in environment 

(True et al., 1993). However, gene-environment interactions generally play a major 

role in creating a predisposition for developing PTSD (Afifi et al., 2010). Thus, the 

effect of gene variants and environment has been examined in PTSD especially for 

genes associated with regulation of the HPA axis and coding inter alia for CRH 

(Tyrka et al., 2009), GR (Bachmann et al., 2005) and FK506 binding protein 5 

(FKBP5) (Binder et al., 2008). In the gene coding for FKBP5, which regulates 

cortisol-binding affinity to GR and nuclear translocation of GR, four single nucleotide 

poylmorphisms (SNPs) were found to interact with the severity of child abuse as 

predictor of adult PTSD symptoms. Changes in gene expression may also occur via 

epigenetic modifications, which are in themselves a consequence of environmental 

influences, especially in early life-phases (Schmidt et al., 2011). A strong hint in this 

direction is provided by analysis of gene expression patterns in survivors of the 

terrorist attacks on the World Trade Center, which revealed different gene expression 

of e.g. FKPB5 in patients with current PTSD (Yehuda et al., 2009). 

The ongoing search for alternative PTSD medication is of great importance, since the 

current therapy situation is not satisfactory. Despite a wide variety of available 

therapeutics ranging from SSRIs to symptomatic treatment with benzodiazepines 

(Ravindran and Stein, 2009, 2010b; Steckler and Risbrough, 2011), specific targeting 

of PTSD core symptoms is as yet still not possible. Although treatment of anxiety 

disorders with either antidepressants or a combination of antidepressants and 

cognitive therapy is usually effective, it requires weeks for onset of action and 

furthermore often leads only to partial remission (Furukawa et al., 2006; Ravindran 

and Stein, 2009; Rodrigues et al., 2011). Benzodiazepines on the other hand act very 

fast, however, due to their high abuse potential as well as other negative side-effects 

including sedation and dependency, they are not optimal as a long-term anti-anxiety 
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therapy (Cloos and Ferreira, 2009; Ravindran and Stein, 2009; Tan et al., 2010). It is 

therefore essential to develop effective anxiolytics with a rapid onset of action and 

lacking the undesirable side-effects of benzodiazepines (Ravindran and Stein, 

2010a; Rudolph and Knoflach, 2011; Steckler and Risbrough, 2011). In order to 

achieve this goal, it is crucial to work towards a better understanding of PTSD 

pathology and thereby identify new potential drug targets. 

The neurobiological underpinnings of PTSD are as yet imperfectly understood, as is 

the case with most psychiatric disorders. Some players have however already been 

identified, such as the serotonin system and the HPA axis. The serotonin system, 

target of SSRI therapeutic actions, is also a major player in PTSD pathology (Praag 

et al., 2004). Activation of the serotonergic receptor system leads to rapid anxiolytic 

effects; in PTSD, however, decreased levels of serotonin coupled to impaired 

receptor activation and redistribution of receptor expression may contribute to 

symptoms like hyperarousal and intrusive memories (Southwick et al., 1999b). The 

HPA axis is the most extensively characterized system with regard to PTSD (Ehlert et 

al., 2001; Shea et al., 2005; de Kloet et al., 2006). For instance, some studies have 

shown overall hypocortisolism in PTSD patients (Yehuda et al., 1995), accompanied 

by changes in the noradrenergic system, which may be partly responsible for the 

state of hyperarousal and facilitated retrieval of traumatic memories (flashbacks) 

experienced in PTSD (Southwick et al., 1999a). 

Apart from the HPA axis and the serotonin system, PTSD also goes along with 

disturbance of the balance in various other neurotransmitter systems. Dysregulation 

has been found in the glutamatergic system (Heim and Nemeroff, 2009; Rossi et al., 

2009), as well as in synaptic plasticity (Alfarez et al., 2006; Kozlovsky et al., 2007; 

Ježek et al., 2010; Acheson et al., 2011). Other neurotransmitters that have been 

associated with PTSD include neuropeptides. For example, NPY was found to be 

decreased in the plasma and CSF of combat veterans with PTSD (Rasmusson et al., 

2000; Sah et al., 2009); galanin mRNA expression was reduced in the hippocampus 

and frontal cortex in a mouse model of PTSD (Kozlovsky et al., 2009); and 

endogenous opioids have been associated with some symptoms of PTSD (Heim and 

Nemeroff, 2009).  
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Novel approaches for PTSD treatment aim at restoring homeostasis in these 

neurotransmitter circuits. Examples include modulating the activity of the 

glutamatergic system for instance via N-methyl-D-aspartate (NMDA) receptor 

antagonists (Steckler and Risbrough, 2011) and D-cycloserine (DCS), an NMDA 

receptor agonist, which enhances extinction and/or replacement of traumatic 

memories (Yamamoto et al., 2008). Neuropeptides have also emerged as promising 

candidates for alternative anxiolytic therapies (Hökfelt et al., 2003). For instance, the 

aforementioned NPY was associated with resistance to and recovery from PTSD 

both in humans (Yehuda et al., 2006) and in animal models of PTSD (Cohen et al., 

2011). Consequently, a variety of ligands and activity modulators for the various NPY 

receptor subtypes have been designed (Brothers and Wahlestedt, 2010). However, 

the wide variety of NPY receptor subtypes makes specific modulation of the 

NPYergic system with a view towards reducing anxiety a challenge that has not as 

yet been overcome. Ideally, therapeutic substances would target only one type of 

receptor very specifically in the central nervous system (CNS).  

1.4. Neuropeptide S and its receptor, NPSR 

In contrast to NPY, animal experiments showed that Neuropeptide S (NPS) exerts its 

effects via one receptor only (Zhu et al., 2010). This neuropeptide was identified by 

reverse pharmacology as the ligand for a previously orphan G-protein coupled 

receptor (GPCR), GPR154, that henceforth became known as the NPS receptor 

(NPSR) (Xu et al., 2004). NPS is a 20 amino acid long neuropeptide, with a highly 

conserved sequence among various species of vertebrates (Figure 2A), which hints 

at its crucial importance in the brain circuitry (Xu et al., 2004; Reinscheid, 2007). The 

name of the peptide is derived from the aminoterminal residue in its sequence, 

serine, which is conserved across all species. Structure-activity studies on NPS 

showed its aminoterminal structures (NPS 1-10), which are also the best conserved 

across species, to be especially relevant for its biological activity and for activation of 

the cognate receptor; the C-terminal structures may however be required for in vivo 

activity (Roth et al., 2006). 

NPSR, the only known NPS receptor, is coupled to either Gs or Gq (Reinscheid et al., 

2005). Upon binding to its receptor, NPS leads to intracellular increase in cyclic 

adenosine monophosphate (cAMP) and Ca2+ levels, and to activation of the mitogen-
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activated protein kinase (MAPK) cascade (Reinscheid et al., 2005) (Figure 2B). 

These effects hint at a potential role of NPS in the regulation of cell proliferation. 

NPS can interact with and modulate various neurotransmitter systems (Raiteri et al., 

2009; Boeck et al., 2010; Mochizuki et al., 2010; Si et al., 2010), most important 

among which is the glutamatergic system (Han et al., 2009; Okamura et al., 2010). 

Furthermore, NPS treatment has regulatory effects on the HPA axis (Figure 2C), 

increasing plasma ACTH and corticosterone concentrations in vivo in rats after 

intracerebral injection, and stimulating CRH and vasopressin after incubation with 

hypothalamic explants (Smith et al., 2006). Most importantly, NPS effects do not 

seem to be mediated via the benzodiazepine binding site of the GABAA receptor 

(Leonard et al., 2008), which suggests that NPS treatment will not have the common 

side effects of benzodiazepine treatment (Cloos and Ferreira, 2009; Tan et al., 2010; 

Ravindran and Stein, 2010b). 

 

Figure 2.  NPS, NPSR and NPS-elicited effects. A Sequence of active NPS in various 
species (Xu et al., 2004). B Effects of NPS upon binding to NPSR on the 
intracellular level as described in (Reinscheid et al., 2005). C Effects of NPS on 
a systemic level upon intracerebroventricular (ICV) injection in rodents: 
behavioral effects as described in (Xu et al., 2004; Leonard et al., 2008) and 
effects on the HPA axis as described in (Smith et al., 2006). 

Despite the variety of its effects, NPS expression in the rat is restricted almost 

exclusively to three brain regions: the peri-locus coeruleus, the parabrachial nucleus 

and the principal sensory 5 nucleus of the trigeminus (Xu et al., 2004, 2007). Also, in 

the mouse, NPS precursor mRNA is found in only two brain regions: the Kölliker-
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Fuse nucleus and the pericoerulear area (Clark et al., 2011). NPSR, on the other 

hand, is widely expressed throughout the brain in regions ranging from cortical areas 

such as the olfactory, somatosensory and motor cortex to deep subcortical structures 

such as the amygdaloid and thalamic nuclei (Xu et al., 2007). There are however 

discrepancies between reports on NPSR mRNA and protein expression patterns in 

the rat brain, as well as between murine and rat NPSR mRNA expression. In the rat, 

in situ hybridization (ISH) studies reveal no NPSR mRNA expression in the CA1, CA2 

and CA3 regions and in the dentate gyrus (Xu et al., 2007). In contrast, protein 

expression studies performed using an NPSR antibody describe presence of NPSR 

protein in those same areas, albeit at low expression levels (Leonard and Ring, 

2011). Similarly, NPSR mRNA was found to be expressed in the murine basolateral 

amygdala (BLA), where also strong effects on neuronal activity were elicited after 

local treatment with this substance (Jüngling et al., 2008; Clark et al., 2011), whereas 

in the rat BLA, NPSR mRNA expression was very low and protein expression was 

completely absent. Due to these conflicting reports, the ultimate identity of the NPS 

target neurons and target brain regions that contribute to its behavioral effects still 

remains elusive. 

Intracerebroventricular (ICV) injection into mice revealed that NPS elicits a variety of 

behavioral effects, including increased locomotion and hyperarousal (Xu et al., 2004; 

Rizzi et al., 2008). Most relevant for the thesis at hand however are the well-

described strong anxiolytic effects of NPS treatment (Figure 2C), which highlight the 

potential of NPS as a novel alternative therapy for anxiety disorders, including PTSD 

(Xu et al., 2004; Jüngling et al., 2008; Leonard et al., 2008; Rizzi et al., 2008; Fendt 

et al., 2010). Also, a transcriptionally and functionally hyperactive NPSR variant 

expressing an A/T SNP in the coding region has been associated with panic disorder 

(Okamura et al., 2007; Domschke et al., 2010) and overinterpretation of fear-related 

experiences (Raczka et al., 2010; Dannlowski et al., 2011; Lennertz et al., 2011). 

Moreover, NPS-producing neurons have also been reported to become activated 

upon stress exposure (Liu et al., 2011). All these findings support the hypothesis that 

endogenous NPS plays an important role in the anxiety circuit and has strong 

potential as an alternative therapy of anxiety-related symptoms.  
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1.5. Intranasal application 

In order to further investigate the therapeutic potential of NPS with a view towards 

implementing it as a therapy in patients suffering from pathological anxiety, one of the 

first steps consists in establishing a noninvasive administration method that can be 

easily applied in humans. One such possible alternative to the intracerebral injection 

commonly used in animal models is the intranasal application.  

Intranasal application has been shown both in humans and in animals to be 

appropriate for targeting the CNS in the case of several substances, including 

neuropeptides (e.g. oxytocin and vasopressin) (Gozes et al., 2000; Born et al., 2002; 

Dufes et al., 2003; Guastella et al., 2010; Shi et al., 2010). Use of radioactively 

labeled ligands (Figure 3) has led to identification of two different pathways which 

substances can follow in order to reach the brain after intranasal application (Thorne 

et al., 1995, 2004). Along one pathway, substances are transported along the 

olfactory nerve via the olfactory bulb to rostral and subcortical brain regions. The 

second pathway follows the myelin sheaths of the trigeminal nerves to target caudal 

cerebral structures such as the brainstem and the cerebellum. Timeline studies have 

shown this process to be surprisingly rapid, with substances reaching the brain within 

minutes of administration and remaining detectable up to hours after treatment 

(Thorne et al., 2004; Dhuria et al., 2009).  

 

Figure 3.  Targeting of CNS via intranasal application (adapted from (Thorne et al., 2004)). A 
Cerebral substance distribution after intranasal application follows two different 
pathways: the peripheral olfactory system to the olfactory bulb and rostral brain 
(red) and the peripheral trigeminal system to the brainstem (blue). B 
Autoradiography of representative sagittal brain section after intranasal 
application of radioactively labeled ligand. 
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Given the previous success of intranasal therapy with some neuropeptides (Born et 

al., 2002; Guastella et al., 2010), NPS seems to be a prime candidate for intranasal 

application. However, since the nose-brain barrier permeability of substances is 

highly influenced by their polarity and molecular weight (Ozsoy et al., 2009; Dhuria et 

al., 2010), it is very difficult to predict whether a given compound will successfully 

reach the brain upon intranasal instillation. Consequently, the feasibility of this 

procedure has to be established afresh for every substance of interest. In addition, 

due to the largely unknown pharmacodynamics and pharmacokinetics which differ 

substantially between intranasally administered and intracerebrally injected agents 

(Thorne et al., 1995; Thorne and Frey, 2001), new protocols have to be established 

for characterizing the treatment-induced phenotype. 

1.6. Mouse models of anxiety disorders 

To test the potential of intranasally applied NPS as a therapeutic, it is necessary to 

examine its effects in animal models of the pathological conditions that should 

subsequently be treated in patients. While it is not possible to check for paranoia in 

mouse models of schizophrenia or for flashbacks in mouse models of PTSD, it is 

possible, using various behavioral paradigms, to describe changes in the anxiety- 

and fear-related behavior inherent to the animals. It has also been proven in many 

cases that this type of behavior can be influenced by anxiolytic and anti-depressive 

medication (Garcia et al., 2008) similarly to patients (Autry et al., 2011), which 

supports the validity of these models. Most importantly, these models allow for 

differentiating between trait and state anxiety. Trait anxiety is defined as an individual 

predisposition to respond, whereas state anxiety is a context-dependent response to 

certain stimuli and is accompanied by physiological arousal as described above (see 

1.1.) (Endler and Kocovski, 2001). Trait and state anxiety can both be pathologically 

altered. 

In this work, two different mouse models exhibiting increased anxiety-like behavior 

were used to test the anxiolytic effects of intranasally applied NPS: 1) high anxiety 

behavior (HAB) mice, which model the condition of trait anxiety; and 2) a mouse 

model of PTSD, which represents the condition of state anxiety. 
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1.6.1. The HAB mice, a mouse model for inbred anxiety 

HAB mice are a mouse model of pathologically high anxiety, inbred for over 40 

generations in a CD1 background (Krömer et al., 2005; Landgraf et al., 2007; Bunck 

et al., 2009; Hambsch et al., 2010). HAB mice are selected at 7-13 weeks for their 

specific high anxiety behavior on the elevated plus-maze (EPM) in comparison to low 

behavior anxiety (LAB) mice, which are similarly inbred; outbred CD1 mice are 

employed as normal anxiety behavior (NAB) controls (Krömer et al., 2005). The EPM, 

an elevated platform with two open and two enclosed arms (see Figure 4A) allows for 

precise quantification of anxiety-like behavior by comparing the time mice spend in 

the closed arms to the time they spend in the open arms (Lister, 1987) (see Figure 

4B). Mice tend to explore new environments; however, they also instinctively prefer to 

remain in the closed arms where they feel more protected than in the open. In 

exceptionally anxious mice, the amount of time spent exploring is significantly biased 

in favor of the closed arms. In mice characterized by lower-than-typical anxiety, the 

bias is reversed. The behavior on the EPM at the age of testing is considered to 

predict later anxiety and stress-coping behavior (Krömer et al., 2005). 

  

Figure 4.  Overview of the EPM. A Setup. B Schematic overview of mouse behavior on the 
EPM: hyper-anxious mice will tend to restrict themselves to the closed arms, while 
mice showing low anxiety will preferentially explore the open arms. 

The comparability of this model to the situation in patients has been established on 

the molecular level as well. For instance, it was found that HAB and LAB mice show 

significant differences in expression of various proteins associated with stress 

responsiveness, as well as metabolic differences (Landgraf et al., 2007; Filiou et al., 

2011; Zhang et al., 2011; Filiou and Turck, 2012). Thus, in HAB mice, expression and 

release of vasopressin, a neuropeptide with a major role in the HPA axis (see 1.1.), 
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are strongly upregulated due to a SNP in the vasopressin promoter region, whereas 

the opposite situation is observed in LAB mice (Landgraf et al., 2007). This model is 

especially interesting since it allows for investigation of high trait anxiety on a very 

complex level of interactions between neuroendocrine, behavioral and genetic factors 

(Landgraf et al., 2007). Therefore, it complements very well the mouse model of 

PTSD, which represents a model of state anxiety. 

1.6.2. The mouse model of PTSD 

The mouse model used here has been established in the C57BL/6N strain and is 

based on an electrical footshock as one-time trauma exposure (Siegmund and 

Wotjak, 2007). The difference to classical Pavlovian conditioning, which also uses a 

footshock as conditioning stimulus, consists in that, in the case described here, the 

electrical current applied is more than twice as high (1.5 mA as opposed to 0.7 mA), 

and ca. five times higher than the pain threshold of C57BL/6N mice (Siegmund et al., 

2005), making this experience considerably more painful and therefore traumatic. 

Differences in behavior were considered relevant 28 days after shock, an incubation 

period which allows for attenuation of acute and PTSD-non-related effects and also 

takes into consideration the possibility of delayed phenotype onset. 28 days after 

trauma, shocked mice have been shown to develop a PTSD-like phenotype 

(Siegmund and Wotjak, 2007). This is characterized by: 1) increased sensitized fear 

as measured by their freezing behavior in a neutral context, corresponding to the 

physiological response in patients upon exposure to trauma-related stimuli that may 

symbolize or resemble an aspect of the traumatic event (trigger phenomenon); 2) 

reduced social response accompanied by social withdrawal in a social interaction 

test, corresponding to significant impairment in the social behavior of patients; and 3) 

hyperarousal as shown by heightened startle reaction in response to neutral tones of 

increasing intensities, exactly as observed in PTSD patients (Siegmund and Wotjak, 

2007; Golub et al., 2011). Additionally, cerebral changes that have been described in 

PTSD patients are also found in shocked mice, such as hippocampal shrinkage 

(Wignall et al., 2004; Golub et al., 2011).  
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1.7. Goals 

Anxiety disorders are among the most common psychiatric conditions, with a high 

prevalence and severe impact not only on the life quality of the individual, but also on 

the well-being of society as a whole. The current treatment situation is unsatisfactory, 

and in consequence, developing alternative medication and better characterizing its 

mode of action is of crucial importance. 

The present work is situated at the crossroad between basic and applied research. 

Therefore, the main purpose consisted in characterizing the mechanisms of action 

and the targets of NPS, a novel and promising candidate for the development of 

alternative anxiolytic therapeutics, as well as in validating a therapeutic procedure 

that can easily be applied in humans. 

The first goal was establishing the feasibility of intranasal NPS treatment in mice. 

Here, two important points had to be proved: (1) that intranasally applied NPS can 

bypass the nose-brain barrier to reach the brain, especially the regions known to be 

involved in the anxiety circuit like amygdala and hippocampus; and (2) that intranasal 

application of NPS elicits similar anxiolytic effects as intracerebral injection.  

The second focal point of investigation concerned the regulatory effects of NPS 

treatment on cerebral protein expression. This was especially relevant in the case of 

systems that have already been associated with NPS effects and that were shown to 

be dysregulated in PTSD, such as the glutamatergic system and proteins involved in 

synaptic plasticity.  

Finally, the therapeutic potential of NPS was examined in mouse models of two 

different pathological conditions, i.e. the HAB mice and the mouse model of PTSD. 
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2. Methods and materials 

For a complete list of all devices, materials, substances, kits, buffer recipes and 

software used in this work please see Supplementary Tables 1-6. 

2.1. Cell biology 

2.1.1. Generation of tagged NPSR constructs 

In order to investigate the trafficking of NPSR and its interactions with its ligand in 

vitro, it was necessary, given the lack of a functioning NPSR antibody, to generate 

tagged NPSR constructs. This process was performed in multiple steps: 1) isolation 

of total mRNA from murine brain regions known to express NPSR mRNA; 2) reverse 

transcription of total mRNA into cDNA; 3) amplification of NPSR cDNA with specific 

NPSR primers; and 4) cloning of NPSR cDNA into plasmids to produce recombinant 

NPSR tagged with either enhanced green fluorescent protein (EGFP) or FLAG.  

2.1.1.1. Isolation of total mRNA from murine brain regions 

Total mRNA was isolated from a section of the murine brain which contained regions 

where NPSR mRNA had been previously described, such as the hippocampus, the 

paraventricular hypothalamic nucleus, cortical regions and amygdaloid nuclei (Figure 

5). The isolated brain part was estimated generously to include as many regions with 

NPSR expression as possible, in order to maximize NPSR mRNA yield. 

Total mRNA was isolated according to the TRIzol protocol established in our 

laboratory. The brain tissue sample was taken up in 2 ml RNase-free plastic tubes, 1 

ml TRIzol was added and the sample was homogenized with a turrax at room 

temperature (RT). The homogenized sample was shaken vigorously by hand and 

incubated for 5 min at RT. For phase separation, 200 µl choloroform were added, the 

sample was shaken vigorously by hand for 15 seconds and then incubated for 2-3 

min at RT. Subsequently, the sample was centrifuged at 13000 rotations per minute 

(rpm) for 15 min at 4 °C, and the watery colorless phase was transferred into a new 

tube. For precipitation, 0.5 ml isopropanol were added and the solution was mixed by 

inverting the tube 10 times. After 10 min incubation at RT, the sample was 

centrifuged at 13 krpm and 4 °C for 10 min and the supernatant was discarded. This 
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was followed by a washing step on ice. 1 ml 70 % ethanol was added and the pellet 

washed by inverting and flicking the tubes. After centrifugation at 13 krpm and 4 °C 

for 10 min, the supernatant was discarded and the pellet was dried at RT for ca. 60 

min (until all visible traces of ethanol had disappeared). The pellet was then 

redissolved in 50 µl H2O treated with diethylpyrocarbonate (DEPC) (DEPC-H2O) and 

stored at -80 °C. Total mRNA concentration was determined by measurement with a 

Nanophotometer. 

 

Figure 5. Isolated murine brain regions for isolation of total mRNA. A Overview of murine 
brain. Solid black lines indicate cutting points for brain region isolation. B Sagittal 
brain section where dotted black lines indicate selected lateral overview plates 
(adapted from (Franklin and Paxinos, 2007)). 1 DEn: dorsal endopiriform cortex; 
BLA: basolateral amygdala, anterior part; BLP: basolateral amygdala, posterior 
part; CA1-3 regions of the hippocampus. 2 Cg1,2: cingulate cortex; PV: 
paraventricular hypothalamic nucleus; MnPO: median preoptic nucleus; 3V: third 
ventricle. 3 S1: somatosensory cortex; ACo: cortical amygdala; CeC: central 
amygdala, cortical part; CeM: central amygdala, medial part; BMA, BMP: 
basomedial amygdala, anterior and posterior part; AHi: amygdalohippocampal 
region.  

2.1.1.2. Reverse transcription of total mRNA into cDNA 

Reverse transcription was performed using the Omniscript Reverse Transcription Kit 

according to the manufacturer’s instructions. In brief, 0.1 µg/µl total mRNA were 

added to a master mix containing a final concentration of 1x RT buffer, dNTP mix at 
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0.5 mM each dNTP, 1 µM Oligo-dT primers, 0.5 unit/µl RNase inhibitor, 0.2 units/µl 

Omniscript Reverse Transcriptase and RNase-free water to the desired volume. The 

solution was incubated for 1 hour at 37 °C in a PCR thermocycler to allow for reverse 

transcription and the resulting cDNA was stored at -20 °C thereafter. 

2.1.1.3. Amplification of NPSR cDNA from total cDNA 

The NPSR cDNA sequence for amplification was selected to include only the 

translatable sequence based on the complete NPSR cDNA sequence shown below 

(NCBI Reference Sequence: NM_175678). The sequence of interest is highlighted in 

yellow and contains a start and a stop codon. 

       61 gagacagtga gacctgaccc tgcctgagcc atgccagcca acctcacaga gggcagcttt 
      121 catgccaacc agactgtgcc gatgctagat tcttccccag tagcttgcac tgaaattgtg 
      181 acgttcactg aagcactggt ggctgaggag tggggctcct tctactcctc ctttaagaca 
      241 gaacagctga taaccctgtg ggtcctgttt gtcgtcacta ttgtgggaaa ctctgttgtg 
      301 ctgttctcca cgtgcagaag aaaaagaaag tccagaatga ccttctttgt gacacaattg 
      361 gccatcacag actccttcac gggcctgatc aacatcttga cagacattat ttggcgattc 
      421 acaggagact tcatggcccc tgacctggtt tgcagagtcg tccgctactt gcaggttgtc 
      481 ctgctgtatg cctctaccta cgtcctggtg tccctcagca tagacagata ccatgccatc 
      541 gtttacccca tgaagtttct tcaaggagag aagcaagcca aagtcctcat cggaatagcg 
      601 tggagcctct cgttcctgtt ctccattccc acgctgatca tatttgggaa aaggacactt 
      661 tccaatggtg aggtgcagtg ctgggcactg tggccggatg actcctactg gaccccgtac 
      721 atgaccatcg tcgcctttct ggtgtacttc attcccttgg caattatcag cgttatctat 
      781 ggccttgtga tccgaactat ttggatgaaa agcaaaaccc atgagacggt gatttccaac 
      841 tgctcagatg gcaaactatg ctgcagctac aaccgagggc tcatctctaa ggcaaaaatc 
      901 aaggccatca agtatagcat cgtcataatc cttgctttca tctgctgctg gagcccatac 
      961 ttcctctttg acatattaga caacttcaac gtccttccag acaccaagga gcgtttctat 
     1021 gcctctgtga ttatccagaa cctgcccgcc ttgaacagtg ccattaaccc cctcatctac 
     1081 tgcatcttca gcagctccat ctgctccccc tgcaagatgc aaagatcaca ggattccaga 
     1141 atgacatacc gagagagaag cgagagacac gagatgcaga ttctctccaa gccggaattc 
     1201 atctaaaccc tgaggcagta gtgctaggct gaacttagtc agctctcctg gatctttacc 
  

NPSR was amplified from total cDNA using specific primers for cloning into pEGFP-

C1 and pcDNA3.1 (-) plasmids (see Table 1). For tagging NPSR with FLAG, the 

FLAG-tag sequence (shown here in blue) was inserted into the reverse primer and 

the stop codon of the NPSR cDNA sequence was replaced by a stop codon within 

the reverse primer. The primers contained inserted restriction sites. The primer 

sequences are listed in Table 2 (restriction sites shown in red). 
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Table 1. Plasmids used for cloning EGFP-NPSR and NPSR-FLAG constructs. 

Plasmid Manufacturer 
pEGFP-C1 Clontech, Mountain View, CA, USA 
pcDNA3.1 (-) Invitrogen, Darmstadt, Germany 
 

Table 2.   Primer sequences used for amplification of murine NPSR from murine cDNA for 
cloning into pEGFP-C1 and pcDNA3.1 (-). 

Plasmid Primer Primer sequence 
Restriction 

enzyme 
Insert 
size 

forward 
5’-AATGCCTCGAGTTATGC 
CAGCCAACCTCACAGAG-3’ 

XhoI 
pEGFP-C1 and 
pcDNA3.1 (-) 

reverse 
5’-GCCGCGGATCCTCAGCCT 
AGCACTACTGCCTC-3’ 

BamHI 
1150 bp 

forward 
5’-CTAGCTCGAGATGCCAGC 
CAACCTCACAGA-3’  

XhoI 

pcDNA3.1 (-) 
with FLAG-tag 

reverse 

5’-CTAGGGATCCCTACTTG 
TCGTCATCGTCTTTGTAGTC
GATGAATTCCGGCTTGGA 
GA-3’ 

BamHI 
1146 bp 

 
The PCR master mix contained 1 µg template cDNA per reaction volume of 100 µl, 

which included a final concentration of 1x PCR Buffer, dNTPs at 0.2 mM each dNTP, 

1.5 mM MgCl2, forward and reverse primer at 0.5 µM each primer, 2.5 units Taq 

polymerase and autoclaved distilled H2O (dH2O) as needed. 

The PCR program used for amplification was as follows:  

1. initial denaturation: 94 °C – 3 min 
2. denaturation: 94 °C – 45 seconds 
3. annealing: 56 °C – 30 seconds 
4. elongation: 72 °C – 1.5 min 
5. final elongation: 72 °C – 10 min 
6. pause at 4 °C 
 

Products were stored at -20 °C until further use. 

2.1.1.4. Cloning insert into plasmid 

Insertion of the PCR product into the corresponding vector occurred according to the 

“sticky end” principle. Inserts and plasmids were digested with the respective 

enzymes in a 50 µl volume for 2 hours in a water bath at 37 °C. The restriction digest 

40 cycles 
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solution contained 1 µg of plasmid added to 5 µl 10x NEBuffer 3 + 5 µl 10x bovine 

serum albumin (BSA), 4 units restriction enzyme and dH2O.  

Products of the restriction digest were loaded on a 

Tris/Borate/Etylenediaminetetraacetic acid (EDTA) (TBE) agarose gel containing 

0.01 % ethidium bromide (EtBr) and separated by gel electrophoresis. As EtBr 

intercalates in the DNA strands and glows upon UV stimulation, the DNA bands 

could be visualized under UV light and cut from the gel with a scalpel. DNA was 

eluted from the gel with the QIAquick Gel Extraction Kit using a microcentrifuge 

according to the manufacturer’s instructions. In brief, the excised bands were 

weighed in 2 ml tubes and 3 volumes Buffer QG were added to 1 volume of gel (100 

mg ~ 100 µl) and subsequently incubated for 10 min at 50 °C, vortexing every 2-3 

min to speed up agarose solubilization. Afterwards, 1 gel volume isopropanol was 

added to the solution to increase yield and mixed. The mixture was then pipetted into 

a QIAquick spin column and DNA was bound to the column membrane by 

centrifugation at 13.2 krpm for 1 min. The centrifugation was repeated after addition 

of 1 ml Buffer QG to remove all traces of agarose. DNA was washed by addition of 

0.75 ml Buffer PE followed by two centrifugation steps to completely remove all 

ethanol traces. DNA was eluted into a clean 2 ml tube by addition of 30 µl dH2O, 

incubation at RT for 1 min and subsequent centrifugation. Products were stored at -

20 °C. 

To ligate the insert into the vector, insert and vector were added in a 6:1 ratio for 10 

ng vector to 2 µl Reaction Buffer for T4 ligase, 1 µl of T4 ligase and water up to 20 µl 

total volume. The mixture was incubated at room temperature for 10 min and the 

reaction was then stopped by inactivating the enzyme at 65 °C for 15 min (otherwise 

the transformation efficiency would be significantly decreased). Products were stored 

at -20 °C.   

For amplifying the DNA, competent bacteria (E. coli DH5α) were transformed with the 

vectors containing the inserts. Around 10 ng DNA were added to 50 µl solution of 

competent bacteria and incubated on ice for 30 min. The heat-shock was performed 

at 42 °C for 45 seconds, then 900 µl SOC-medium (Super Optimal Broth (SOB) 

medium with 20 mM glucose) were added and followed by incubation for 60 min on a 

thermomixer at 37 °C and 600-700 rpm to initiate ampicillin resistance. The bacterial 
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suspension was plated on lysogeny broth (LB) (containing 1x ampicillin and 

kanamycin) agar plates and incubated overnight at 37 °C. Since the plasmids contain 

an ampicillin resistance gene, only bacteria that have taken up the construct and 

express this gene are expected to grow and form colonies in the presence of 

ampicillin. The next day, colonies were picked with a pipette tip and transferred to an 

Erlenmeyer flask containing 500 ml lysogeny broth (LB) medium with 1x ampicillin 

and then incubated for 14-16 hours at 37 °C on a mixer at 200 rpm to allow for 

bacterial growth. 

DNA was isolated from the bacterial suspension using the PureYield Plasmid 

Midiprep System according to the manufacturer’s instructions. In brief, a lysate was 

prepared by centrifuging cells at 5000 g and resuspending the pellet in Cell 

Resuspension Solution. For DNA purification, the suspension was mixed with Cell 

Lysis Solution (avoiding precipitate formation) and subsequently with Neutralization 

Solution. Cellular debris was cleared by centrifugation at 15000 g for 15 min and by 

vacuum passage through a Clearing Column, which filtered out the lysate and where 

DNA bound to the binding membrane of the Binding Column. Afterwards, the column 

was washed with Column Wash Solution. After drying, DNA was eluted in 600 µl 

Nuclease-Free Water. DNA concentrations were measured with the 

Nanophotometer. Products were stored at -20 °C. Correct insert integration was 

checked by sequencing of the product (outsourced to GATC Biotech AG, Konstanz, 

Germany). 

2.1.2. Transfection of HEK cells with the NPSR constructs 

In order to characterize the behavior of the NPSR constructs on a cellular level, the 

constructs were used to transfect human embryonic kidney (HEK) cells, an 

immortalized cell line that has previously been used to study NPSR distribution 

(Bernier et al., 2006). Cells were cultured in 10 cm dishes in an incubator at 37 °C 

and 5 % CO2, using Dulbecco’s modified Eagle’s medium (DMEM) with 10 % fetal 

calf serum (FCS), 1 % sodium pyruvate and 1 % antibiotic-antimycotic solution. Cells 

were split 1:10 twice a week. For splitting, medium was removed and cells washed 

with phosphate buffered saline (PBS) to remove all traces of FCS which inhibits the 

trypsin used for detaching cells. PBS was removed and trypsin-EDTA solution was 

added. The cells were then incubated for 1 min in the incubator to increase enzyme 
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activity, followed by medium addition, and the cells were taken up in suspension and 

then passaged to another culture vessel.  

For seeding, cells were taken up in suspension, diluted with trypan blue which stains 

dead cells and counted using the Neubauer counting chamber. From the result, the 

number of live cells per ml can be extrapolated according to the following formula:  

number of cells / ml = (number of live cells in all quadrants / 4) x dilution factor x 104 

2.5 x 106 HEK cells per well were seeded in 24-well plates and allowed to grow in the 

incubator until they had reached 50-60 % confluence (ca. 24 hours). The 

transfections were performed using the ExGen 500 in vitro Transfection Reagent. 2 

µg DNA in 100 µl 150 mM NaCl were vortexed gently and spun down briefly, then 6 

equivalents ExGen (3.3 µl) were added, the solution was vortexed for 10 seconds 

and incubated at RT for 10 min to allow formation of DNA/ExGen-complexes. Then 

100 µl solution were pipetted per well and the culture plate was centrifuged for 5 min 

at 280 g at RT. Cells were incubated for 48 hours to allow for expression of construct.  

Correct construct expression was checked on two levels: mRNA and protein level. 

2.1.2.1. Expression of NPSR constructs on mRNA level 

Total mRNA was isolated from transfected cells using the NucleoSpin RNA II Kit 

according to the manufacturer’s instructions. In brief, medium was removed and cells 

washed with PBS, then 350 µl Buffer RA1 containing 1 % β-mercaptoethanol were 

added to lyse the cells. The cells were taken up in suspension and pipetted up and 

down vigorously to improve the lysis process, then the lysate was filtered by passing 

through a NucleoSpin Filter in a centrifugation step of 1 min at 13.2 krpm. The 

supernatant was adjusted for RNA binding by mixing with 350 µl ethanol and the 

RNA was bound to the silica membrane of a NucleoSpin RNA II Column in a 

centrifugation step. The silica membrane was then desalted by addition of 350 µl 

Membrane Desalting Buffer (MDB) and centrifugation for drying. DNA was digested 

by addition of 95 µl DNase reaction mixture (consisting of 10 µl reconstituted DNase 

(rDNase) and 90 µl Reaction Buffer for rDNase) and incubation for 15 min at RT. The 

silica membrane was washed in three steps separated by centrifugation steps of 30 

seconds: 1) 200 µl Buffer RA2 to inactivate the DNase; 2) 600 µl Buffer RA3; and 3) 
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250 µl Buffer RA3. The final centrifugation step lasted 2 min to completely dry the 

membrane. Highly pure, DNA-free RNA was eluted in 40 µl RNase-free H2O.  

Products were stored at -80 °C. 

The total mRNA was reversely transcribed into cDNA as described above (2.1.1.2.) 

and NPSR was amplified specifically via PCR (2.1.1.3.). To check if the isolated 

mRNA amount was similar in both transfected and control samples, actin-beta 

amplification was performed in parallel as described above (2.1.1.3.) with the 

following changes: annealing temperature = 62 °C; and used primers: forward: 5’–

CTACAATGAGCTGCGTGTGGC–3’; reverse: 5’–CAGGTCCAGACGCAGGATGGC–

3’. PCR products were checked for length and intensity by separation via gel 

electrophoresis (2.1.1.4.). 

2.1.2.2. Immunofluorescence of NPSR constructs  

For checking NPSR expression on the protein level, cells were seeded on cover slips 

coated with 0.1 % gelatin. For coating, the cover slips were incubated in a Petri dish 

in the gelatin solution for up to 3 hours at RT. The gelatin was then removed and the 

cover slips were washed three times in PBS and were then stored in PBS at 4 °C in a 

Petri dish sealed with parafilm. 

36 hours after transfection, medium was removed, cover slips were washed three 

times with ice-cold PBS and then fixed in 4 % paraformaldehyde (PFA) solution 

overnight at 4 °C. The next day, cover slips were placed on parafilm, washed three 

times with PBS and then permeabilized by incubation with 0.1 % triton in PBS for 20 

min. All steps were performed at RT; after addition of fluorescent compounds, all 

steps were performed in the dark. After washing, unspecific binding sites were 

blocked by incubation with 10 % BSA in PBS for 60 min in the dark. The blocking 

solution was then removed and the antibody dilution in 1 % BSA in PBS was added 

and incubated for 60 min in the dark. After washing, the secondary fluorophore-

coupled antibody was added followed by an identical incubation step as previously. 

Finally, the cells were washed and counterstained for 10 min with a 1:5000 dilution of 

4’,6-diamidino-2-phenylindole (DAPI) from a stock solution of 1 mg/ml in PBS. DAPI 

intercalates in the DNA and can be stimulated with fluorescent light to emit a blue 

signal, thereby creating a nuclear counterstain. After a last washing step, the cover 
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slips were then mounted with a fluorescence-preserving medium, Shandon Immu-

Mount. 

For the NPSR-FLAG construct, a primary FLAG-antibody was used and detected 

with a secondary antibody coupled to Alexa488 (green). For the EGFP-NPSR 

construct, no staining except the nuclear staining was used, since EGFP already 

emits a green signal that allows for localization of the fusion protein. Primary 

antibodies are listed in Table 3, secondary antibodies are listed in Table 4. 

Table 3. Primary antibodies for immunofluorescence. 

Antibody Dilution Species Manufacturer 

Anti-FLAG 1:100 rabbit Sigma-Aldrich, St Louis, MA, 
USA 

 

Table 4. Secondary antibodies for immunofluorescence. 

Antibody Dilution Species Manufacturer 

Anti-rabbit 
Alexa488 

1:300 donkey Invitrogen, Darmstadt, Germany 

 

Image acquisition was performed using either an epifluorescence or a confocal 

microscope. 

2.1.3. Stimulation with Cy3-NPS 

In order to examine receptor behavior upon ligand stimulation, transfected HEK cells 

were stimulated with a fluorescent NPS conjugate, Cy3-NPS, which emits a red 

signal upon stimulation with light of a certain wavelength. This method allowed for 

tracking of receptor-ligand complex via fluorescent signals.  

To visualize the receptor-ligand complex, a protocol from (Grady et al., 1995) was 

adapted. In brief, 100 nM Cy3-NPS in PBS was added to the cell medium and the 

cells (previously seeded on coated cover slips) were incubated at 4 °C for 60 min to 

allow for binding of the ligand to the membranary receptor and to inhibit cell 

metabolism. Medium was then removed and cells were washed three times with ice-
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cold PBS to remove all traces of unbound ligand. Cells were then either fixed 

immediately in ice-cold PFA as described above (2.1.2.2.), or warm medium was 

added and the cells were incubated in the incubator to allow for receptor-ligand 

internalization and processing, since at 37 °C, the cellular metabolism is again 

upscaled. In cells expressing FLAG-NPSR, immunofluorescent stainings were 

performed (2.1.2.2.); cells expressing EGFP-NPSR were only stained for nuclear 

visualization. 

Image acquisition was performed using either an epifluorescence or a confocal 

microscope. 

2.2. ICV and intranasal application of fluorescent NPS conjugates in mice 

2.2.1. Animals 

For visualization of Cy3-NPS uptake in vivo, 10 weeks old male C56BL/6N mice bred 

in the animal facility of the Max Planck Institute (MPI) of Biochemistry, Martinsried, 

were used. 

2.2.2. Stereotactic surgery and ICV injection 

For stereotactic surgery, the mice were fixed in a stereotactic frame and kept under 

forene (100 %, V/V) anesthesia (active substance: isofluran; induction: 2.5 %; 

maintenance: 1.5 %; in O2; flow rate: 1 l/min) for the entire duration of the surgery 

(ca. 30 min). The mice received acute analgetic treatment with Metacam 

subcutaneously (s.c.) during surgery (0.5 mg/kg; in NaCl). 23 gage stainless-steel 

guide cannulas were implanted unilaterally at the following coordinates: 0.3 mm 

caudal and 1.1 mm lateral from the bregma; and 1.3 mm ventral from the skull 

surface (Figure 6). The guide cannulas were fixed with the aid of two screws and a 

two-component adhesive. The mice were allowed to recover for 7 days after surgery 

to restore system homeostasis. Substance infusions were performed manually on 

mice anesthetized by brief inhalation of isoflurane using a 30 gage injection cannula 

connected to a Tygon tube and a 10 µl Hamilton syringe. After infusion, the injection 

cannula was kept in place for an additional 30 s to prevent substance outflow. Mice 

were injected with 2 µl of either Cy3-NPS or rhodamine-NPS (10 µM) or 

unconjugated rhodamine (1 g/ml) in PBS and sacrificed 30 min after injection. To 
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additionally check the uptake specificity of fluorescent NPS conjugates, 2 µl of native 

rat NPS at 50 or 100 µM in Ringer solution were pre-injected 10 min before injection 

of Cy3-NPS. 

 

Figure 6.  Injection site and distribution pattern of Cy3-NPS. Injection site shown on the left 
as a red star. The hypothesis stated that Cy3-NPS would enter the cerebrospinal 
fluid (CSF) upon ICV delivery and from there distribute throughout the entire brain 
(shown here on the right as red arrows) and be internalized specifically into cells 
expressing active NPSR at the membrane. Brain overview adapted from (Franklin 
and Paxinos, 2007). 

In order to determine whether the internalization of the fluorescent NPS conjugates 

was dependent upon NPSR or upon other mechanisms, these were co-injected with 

specific NPSR antagonists: either [D-Cys(tBu)5]NPS (Camarda et al., 2009) or the 

active enantiomer of 3-oxo-1,1-diphenyl-tetrahydrooxazolo-[3,4-a]pyrazine-7-

carboxylic acid 4-fluoro-benzylamide (SHA 68), (R)-SHA 68, both 1.5 mM (= 150 fold 

concentration of Cy3-NPS) (Okamura et al., 2008; Trapella et al., 2011). Animals 

were sacrificed by cervical dislocation 30 min after injection. 

2.2.3. Intranasal application of fluorescent NPS conjugates 

To determine whether NPS can reach its specific cerebral target cells after intranasal 

delivery, Cy3-NPS was applied intranasally in mice anesthetized with ketamine-

rompun at 0.1 ml/10 g and placed in a supine position, with the head supported at a 

45 degree angle to the body. This has been determined by others to be the optimal 

position in which least substance loss to the sinuses occurs (van den Berg et al., 

2002). Cy3-NPS (10 µM) or unconjugated rhodamine (10 g/ml) in a volume of 7 µl 

were applied alternatingly to each nostril using a 10 µl pipette; after 5 min, the 

procedure was repeated. This break was designed to avoid overfilling of the nostrils 
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and substance loss by exhalation. The mice were sacrificed by cervical dislocation 30 

min after application. 

2.2.4. Brain removal and immunohistochemistry 

After sacrifice, the whole brains were removed immediately and post-fixed in 4 % 

PFA overnight at 4°C, then shock-frozen in methylbutane and stored at -80°C. 

Cryosections of 40 µm were then cut from the olfactory bulb until the first third of the 

cerebellum.  

For observation of the distribution pattern of Cy3-NPS, the sections were thaw-

mounted and counterstained with DAPI for 15 min, then washed by immersion into 

PBS. After mounting with Shandon Immu-Mount, the sections were stored at 4°C. 

To quantify Cy3-NPS uptake between ICV and intranasal administration, a four-point 

scale was used to score both signal intensity and number of labeled cells as follows: 

very strong, +++; strong, ++; moderate, +; weak/scattered, -/+; and no signal, -. 

For characterization of the cells that took up Cy3-NPS on the basis of specific 

markers for various cell types, stainings against these markers were performed on 

free-floating brain sections. The markers selected were as follows: 1) neurofilament 

as a neuronal marker; 2) glial fibrillary acidic protein (GFAP) as an astrocytic marker; 

and 3) ionized calcium binding adaptor molecule 1 (Iba-1) as a marker for 

macrophages and microglia. Primary antibodies are listed in Table 5, secondary 

antibodies in Table 6. 

Table 5. Primary antibodies for immunohistochemistry on brain sections. 

Antibody Dilution Species Manufacturer 

Neurofilament 1:1000 mouse Abcam, Cambridge, UK 
GFAP 1:250 rabbit DAKO, Glostrup, Denmark 
Iba-1 1:1000 rabbit Wako, Richmond, VA, USA 
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Table 6. Secondary antibodies for immunohistochemistry on brain sections. 

Antibody Dilution Species Manufacturer 

Anti-rabbit 
Alexa488 

1:300 donkey Invitrogen, Darmstadt, Germany 

Anti-mouse 
Alexa488 

1:300 donkey Invitrogen, Darmstadt, Germany 

 

Brain sections were taken up during cutting in a freezing buffer and then stored at -20 

°C in the dark. For immunohistochemistry, all incubation steps were performed in a 6-

well plate on a shaker to ensure optimal distribution of the reagents over the entire 

surface and among all brain sections. The minimal required volume was 0.5 ml per 

well. All steps were performed in the dark and after wrapping the vessel in aluminium 

foil. Brain sections were washed three times for 10 min in PBS and then blocked in 

10 % goat serum and 1 % triton in PBS for 1 hour at RT. Then sections were 

incubated with primary antibodies in 1 % goat serum and 0.3 % triton in PBS 

overnight at RT or for 2 days at 4 °C. After three washing steps of 10 min each in 

PBS, the sections were incubated with the secondary antibody coupled to Alexa488 

(green, so as to not overlap with the red signal from the fluorophore-coupled NPS) 

diluted in the same solution as for the primary antibody. The sections were then 

washed six times with PBS for 15 min per washing step; DAPI was included in the 

fourth washing step. For mounting, the sections were transferred to a box filled with 

double distilled H2O (ddH2O) and mounted on the slides using a thin brush. 

Image acquisition was performed using either an epifluorescence or a confocal 

microscope. 

2.3. Analysis of behavioral and molecular effects of intranasal NPS application 

2.3.1. Animals 

For behavioral experiments after intranasal NPS application and for the mouse model 

of PTSD, 6 weeks old male C57BL/6N mice were purchased from Charles River and 

allowed to habituate until they were 10 weeks old, at which time-point the 

experiments started. Male 10 weeks old HAB mice were obtained from the breeding 

facility of the MPI of Biochemistry, Martinsried. The mice that underwent the PTSD 
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paradigm were housed in groups of 4 mice per cage; all other mice were housed 

singly. All experiments were approved by the Government of Upper Bavaria and 

were in accordance with European Union Directive 86/609/EEC. 

2.3.2. Intranasal NPS application in C57BL/6N and HAB mice 

Two mouse groups were used for each experiment. A control group was mock-

treated with the NPS solvent (vehicle treatment) and a treatment group received the 

active substance. 

Native rat NPS diluted in Ringer solution was applied intranasally in the alert mice 

which were restrained manually during application in a supine position with the head 

fixed in a position of approximately 45 degrees to the body (see Figure 7). The 

application was performed as in the case of Cy3-NPS (2.2.3.), allowing a 5 min break 

to avoid exhalation and overfilling of the nostrils, as well as reduced or delayed 

absorbtion. Mice were held immobile for 10 seconds after substance application until 

all the substance had been absorbed. Substance exhalation was carefully monitored 

during and after application and was found to be minimal to non-occurring.  

 

Figure 7. Intranasal treatment in alert mice restrained manually. 

To determine the optimal NPS dose for eliciting behavioral effects after intranasal 

application, the C57BL/6N mice received 7, 14 and 28 nmol of substance per mouse. 

The HAB mice then received the dose that had been determined to be optimal in this 

first assay, which was 14 nmol per mouse.  
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2.3.2.1. Behavioral assays 

The mice were tested 4 hours after application. The question of interest was whether 

intranasal application of NPS has the same anxiolytic effects as described by others 

for ICV injection. However, since it is very difficult to distinguish between increased 

locomotion and reduced anxiety, parameters that relate to both these aspects were 

examined in each test. 

The mice were tested in three different assays performed in the following order: open 

field, dark-light box and EPM (for an overview of the experimental timeline see Figure 

22). Each test lasted for 5 min, with a 5 min interval between single tests. The open 

field, which consists of an open round arena, was performed first to obtain a baseline 

of locomotion as measured by the total distance traveled. If there are no differences 

in locomotion in the open field, it can be safely assumed that the treatment had no 

effect on locomotion. To double-check, locomotion-related indices were also 

investigated in the subsequent anxiety tests. The principle of the dark-light box, 

which consists of two chambers (a small black and dark one and a white, brightly lit 

larger one, connected by a single passage), relies on the fact that mice naturally 

prefer darker environments where they feel more protected from potential predators. 

On the other hand, mice also like to explore new environments, an aspect which is 

taken into account by making the “risky” light chamber larger. Reduced anxiety will 

be mirrored by an increased percentage of time spent in the light chamber. To 

characterize possible changes in locomotion, the percent distance traveled in the 

light chamber was also compared between vehicle and NPS treatment. Finally, in the 

EPM, a plus-shaped platform elevated at ca. 1 m above the floor and consisting of 

two open and two closed arms (described in detail in 1.6.2.), the percent time spent 

on the open arm served as a measure of anxiety, while the number of entries into the 

closed arms was taken as a reliable indicator of locomotion. The animals’ behavior 

during testing was videotaped and relevant parameters were analyzed with the 

tracking software ANY-maze version 4.30. 

2.3.2.1.1. Statistical analysis 

The data was analyzed using one-way analysis of variance (ANOVA) with 

Bonferroni’s post hoc test in the case of the C57BL/6N mice and two-tailed unpaired 
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t-test for the HAB mice. Outliers were excluded using Grubbs’ test. p-values between 

0.1 and 0.05 were considered to represent a trend, p-values below 0.05 were 

considered significant.  

2.3.2.2. Analysis of molecular changes after NPS treatment 

2.3.2.2.1. Preparation of single brain regions and selection of candidates 

To better characterize the changes elicited by NPS treatment in protein expression 

(which had not been described until now), especially such changes as might shed 

light on the anxiolytic mechanisms of NPS, two brain regions that have been strongly 

linked to anxiety and fear formation and extinction were chosen: the hippocampus 

(Hc) and the prefrontal cortex (Pfc). In these brain regions, candidates involved in the 

glutamatergic system and in synaptic plasticity were selected for investigation 

following a hypothesis-driven approach, since both NPS effects and the pathological 

processes of anxiety disorders have been associated with these systems. These 

candidates were: subunits 1 and 2 of the AMPA receptor (GluR1 and GluR2); the 

astrocytic glutamate transporter (Glt-1); and isoforms I and II of synapsin. Changes in 

expression levels of these candidates were examined on the mRNA as well as on the 

protein level. The single brain regions were prepared on ice from the freshly isolated 

brain. For subsequent total mRNA isolation, the brain regions were isolated 4 hours 

after treatment, since changes on the transcriptional level are very fast, preserved in 

RNase-free 2 ml tubes and shock-frozen in liquid nitrogen. For protein isolation, the 

brain regions were isolated 24 hours after treatment, to allow time for effects on the 

protein level to materialize, shock-frozen in methylbutane (pre-cooled and stored on 

dry ice) and then kept in 2 ml tubes. All samples were stored at -80 °C. 

2.3.2.2.2. mRNA isolation and real-time PCR 

mRNA was isolated as described in detail in 2.1.1.1. and then reverse transcribed 

into cDNA as described in 2.1.1.2.. For evaluation of candidate mRNA expression, 

real-time PCR was performed. The QuantiFast SYBR Green PCR Kit was used 

according to the manufacturer’s instructions. In brief, 5 µl QuantiFast Mix were mixed 

with 1 µl forward and 1 µl reverse primer from a stock of 5 pmol/µl and with 1 µl H2O, 

the master mix was pipetted into glass capillaries and then 2 µl cDNA were added. 
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Before real-time PCR, the samples were centrifuged briefly. The real-time PCR 

settings used were as follows:  

1. initial denaturation: 95 °C – 10 min 
2. denaturation: 95 °C – 10 seconds 
3. annealing + elongation: 60 °C – 30 seconds 
 

A melting curve was generated at the end of every run to ensure the quality of the 

PCR product. Crossing points (Cp) were calculated automatically using the absolute 

quantification fit points method. Relative gene expression was determined by the 2-

ΔΔC
T method (Livak and Schmittgen, 2001). Cp values were normalized to expression 

levels of the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase 

Gapdh. Primers designed by others were used for Glt-1 (Perisic et al., 2010), GluR1 

and GluR2 (Blanco et al., 2011). Self-designed primers are shown in Table 7. 

Table 7. Real-time PCR primers for synapsin I and II and Gapdh. 

Gene of interest Forward primer Reverse primer 

Synapsin I 
5’-CACCGACTGGGCAAA 
ATACT-3’ 

5’-TCCGAAGAACTTC 
CATGTCC-3’ 

Synapsin II 
5’-CCTTCATCGACGCCA 
AGTAT-3’ 

5’-GAGCAGGCATCTAC 
CCAGAG-3’ 

Gapdh 
5’-CCATCACCATCTTC 
CAGGAGCGAG-3’ 

5’-GATGGCATGGACTGT 
GGTCATGAG-3’ 

 

2.3.2.2.2. Protein isolation and immunoblotting 

A protease inhibitor cocktail was freshly added at 1x final concentration to 

homogenization and extraction buffer before use. 100 µl homogenization buffer were 

added to each brain tissue sample and the tissue was homogenized thoroughly with 

the turrax. An equal amount of extraction buffer was added and the lysate 

subsequently sonicated thirty times. The samples were then centrifuged at 13 krpm 

for 5 min at RT to spin down the debris and the supernatant was transferred into a 

new tube. This lysis method does not open the nucleus; the lysate therefore contains 

exclusively cytosolic and membranary protein fractions. 

Protein concentration was determined using the BCA Protein Assay Reagent 

(bicinchoninic acid) according to the manufacturer’s instructions. In brief, a BSA 

40 cycles 
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standard in water was prepared with descending protein concentrations: 2 mg/µl, 1.5 

mg/µl, 1 mg/µl, 0.75 mg/µl, 0.5 mg/µl, 0.25 mg/µl, 0.125 mg/µl, 0.025 mg/µl and 0 

mg/µl. The BCA working reagent was made by mixing BCA Reagent A with Reagent 

B at a ratio of 50:1. 200 µl working reagent were pipetted per well of a 96-well plate 

and 25 µl of the standards and subsequently of the samples were added. The plate 

was incubated in the dark at 37 °C for 1 hour to allow for development of the 

colorimetric reaction. In an alkaline medium, proteins reduce Cu2+ to Cu1+; BCA 

forms a complex with Cu1+, which leads to development of a violet-colored 

compound, the intensity of which is proportional to the protein concentration in the 

sample. Absorbance was then measured at 562 nm in a plate reader. Protein 

samples were then adjusted to a concentration of 2 µg/µl for loading on the gel. The 

dilutions were made with dH2O containing protease inhibitor cocktail at 1x 

concentration and with Laemmli buffer and then inactivated for 10 min at 95 °C. 

For immunoblotting, proteins were loaded on gels and separated by sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Each gel consisted of a 

separation gel (lower part) and a stacking gel containing the wells (upper part). For 

the stacking gel the solution contained 25 % lower Tris buffer, 1 % of 20 % SDS, 30 

% acrylamide at the desired concentration for the needed gel percentage, dH2O up to 

the desired volume (25 ml solution sufficient for 4 gels), and initializing factors for the 

polymerization: 0.26 % of 10 % ammonium persulfate (APS) and 0.26 % 

tetraethylmethylenediamine (TEMED). The gel was cast between two glass plates 

and the solution was covered with isopropanol in order to avoid bubble formation and 

unevenness. After the gel had solidified, all traces of isopropanol were discarded and 

the stacking gel was cast. The stacking gel consisted of 23 % upper Tris buffer, 1 % 

of 20 % SDS, 13 % of 30 % acrylamide, dH2O up to the desired volume (10 ml 

solution sufficient for 4 gels), and initializing factors for the polymerization: 0.25 % of 

10 % APS and 0.25 % TEMED. The stacking gel was then cast on top of the 

separation gel and the comb was inserted to create the wells (15 wells per gel, 

maximal volume per well: 20 µl). After the stacking gel had polymerized, the gels 

were either used immediately or stored at 4 °C wrapped in wet towels for up to one 

week. For loading, gels were placed in Laemmli running buffer and loaded with equal 

amounts of the samples, including a protein marker ranging between 170 kDa and 25 

kDa. The electrophoresis was performed first at 80 V, until the proteins had passed 



2. Materials and methods 

 
 

34

the edge between stacking gel and separation gel (ca. 20 min) and then at 120 V for 

as long as deemed necessary for optimal separation (ca. 90 min). During the blotting 

process, proteins were transferred from the gel to a nitrocellulose membrane. Gel 

and membrane overlapped and were wrapped in two layers of filter paper and two 

layers of sponge on each side. Blotting was performed in WetBlot Buffer at 400 mA 

for 1 hour. To check for adequate protein transfer, the membranes were stained in 

Ponceau solution to unspecifically stain all proteins. Excess Ponceau was washed off 

in dH2O and the membranes were then blocked in 5 % milk solution in Tris-buffered 

saline with Tween 20 (TBST) for 1 hour at RT on a shaker at 30 rpm. Membranes 

were then incubated with the primary antibody diluted in 2.5 % milk in TBST for up to 

48 hours at 4 °C on a shaker at 30 rpm. Excess antibody was washed off in three 

washing steps of 10 min each in TBST on a shaker at 70 rpm and membranes were 

then incubated in secondary antibody coupled to horseradish peroxidase (HRP), 

diluted as described for the primary antibody, for 1 hour at RT on a shaker at 30 rpm. 

After three more washing steps, membranes were incubated in a self-made HRP 

substrate solution for 1 min on a shaker at 30 rpm to initiate the luminescence 

reaction, which was then detected on X-ray films in a dark room using an automated 

developing machine. Primary antibodies are listed in Table 8, secondary antibodies 

in Table 9. 

Quantification of protein expression was performed by quantification of the pixel 

density of the protein bands on digitalized films using ImageJ software. Protein 

expression was normalized to the housekeeping protein GAPDH. 

Table 8. Primary antibodies for immunoblotting. 

Antibody Dilution Species Manufacturer 

GluR1 1:100 goat 
Santa Cruz Biotechnologies, Santa Cruz, 
CA, USA 

GluR2 1:100 goat 
Santa Cruz Biotechnologies, Santa Cruz, 
CA, USA 

Glt-1 1:100 goat 
Santa Cruz Biotechnologies, Santa Cruz, 
CA, USA 

synapsin 1:2000 rabbit Synaptic Systems, Göttingen, Germany 

GAPDH 1:2000 mouse 
Santa Cruz Biotechnologies, Santa Cruz, 
CA, USA 
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Table 9. Secondary antibodies for immunoblotting. 

Antibody Dilution Species Manufacturer 

Anti-goat 1:10000 donkey 
Santa Cruz Biotechnologies, Santa Cruz, 
CA, USA 

Anti-mouse 1:25000 goat Sigma-Aldrich, St Louis, MA, USA 
Anti-rabbit 1:7500 goat Sigma-Aldrich, St Louis, MA, USA 
 

2.3.2.2.3. Statistical analysis 

Normalized data from real-time PCR and immunoblotting were analyzed using the 

two-tailed unpaired t-test. p-values between 0.1 and 0.05 were considered to 

represent a trend, p-values below 0.05 were considered significant. 

2.3.3. Intranasal NPS application in a mouse model of PTSD 

2.3.3.1. Behavioral assays 

The PTSD mouse model is based on administration of a strong electrical foot-shock 

(1.5 mA) considered equivalent to trauma in humans. This shock is administered in a 

rectangular shock context containing a grid. As shown previously, the development of 

the PTSD-like phenotype reaches a maximum at day 28 post-shock and persists in 

the long-term until at least as late as day 60 (Siegmund and Wotjak, 2007; Golub et 

al., 2011). To investigate the curative effects of intranasal NPS treatment on the full-

blown PTSD pathology, shocked mice were divided into two groups: mock-treatment 

with Ringer solution (vehicle) and treatment with 8 nmol NPS in Ringer solution as 

described above (2.3.2.). Treatment was performed 2 hours before behavioral 

testing. This time-point was chosen earlier than the previously used one (4 hours, 

2.3.2.1.) in the hope that the behavioral effects would be even more marked earlier 

on. Three behavioral tests were performed on three consecutive days to test for 

specific symptoms of the PTSD-like phenotype and acute NPS treatment was 

performed 2 hours before each test. First, the freezing behavior in the shock context 

was measured to check for fear expression to trauma-specific cues. For this purpose, 

mice were placed in the conditioning context (described above) and their freezing 

behavior was scored for 3 min, freezing being defined as no further movement of the 

mouse (Siegmund and Wotjak, 2007). Second, to test for social interaction, which 

has been shown to be strongly decreased in PTSD patients, mice were kept in their 



2. Materials and methods 

 
 

36

home cage (placed in a sound-isolated cubicle), allowed to habituate for 3 min and 

then exposed to a similarly treated interaction partner, who represented the control 

(vehicle was always paired off with vehicle and NPS treatment was always paired off 

with NPS treatment). Social interaction was described as sniffing, licking, close 

following and allogrooming (cleaning the control partner’s body), whereas avoidance 

of social interaction was defined as escaping to the other end of the cage and 

keeping the approaching interaction partner at bay in an upright position with lifted 

paws (Siegmund and Wotjak, 2007). These two parameters were scored for 4 min. 

Finally, to test for hyperarousal, the startle reflex, which is highly increased in PTSD 

patients, was quantified. In this case, the acoustic startle reflex was measured: mice 

were exposed to 4 different startle stimuli (white noise, duration: 20 ms) of growing 

intensity (75 dB, 90 dB, 105 dB and 115 dB), 15 seconds apart, and the startle 

response was measured (Golub et al., 2011).  

2.3.3.2. Protein and mRNA expression in Hc and Pfc 

Brain regions (Pfc and Hc) were isolated as described above (2.3.2.3.1.) 24 hours 

after the last treatment. The same candidates were examined on mRNA and protein 

levels by real-time PCR and immunoblotting, respectively (2.3.2.3.1.-3.). 

2.3.3.3. Measurement of corticosterone plasma levels 

Trunk blood was isolated from the decapitated mice 24 hours after the last treatment, 

between 09:00 a.m. and 12:00 a.m., and collected in tubes containing EDTA to 

prevent clotting. The samples were then centrifuged at RT, 8000 rpm, for 10 min, to 

separate plasma from cell pellet. The plasma was then transferred into a new tube 

and stored at -20 °C. 

Corticosterone plasma levels were measured using the Corticosterone (Rat/Mouse) 

solid phase enzyme-linked immunoabsorbent assay (ELISA) kit according to the 

manufacturer’s instructions. The ELISA was based on the principle of competitive 

binding. In brief, after all reagents had reached RT, 10 µl of calibrator solutions C0-

C5 containing increasing corticosterone concentrations (0 – 15 – 50 – 185 – 640 – 

2250 ng/ml) and of each sample were pipetted into separate wells into a 

microtiterplate containing wells coated with polyclonal rabbit anti-corticosterone 

antibody; measurements were performed in duplicates. 100 µl incubation buffer per 
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well were then added, followed by 50 µl per well of enzyme conjugate containing 

HRP-coupled corticosterone. After 2 hours incubation at RT on a microplate mixer, 

the content of the wells was discarded and the wells were rinsed 4 times with 300 µl 

1x washing solution per well. 200 µl of substrate solution containing 

tetramethylbenzidine (TMB) and H2O2 were added to each well and the plate was 

incubated for 30 min in the dark; the reaction was subsequently stopped by addition 

of 50 µl stop solution to each well. The absorbances of the wells’ content were then 

measured at 450 nm in a microplate reader.   

2.3.3.4. Statistical evaluation 

All statistical evaluations were performed using GraphPad Prism 5.03. 

2.3.3.4.1. Behavioral assays 

The % freezing for context-specific fear was compared between the two groups using 

the two-tailed unpaired t-test. The % social interaction was similarly compared 

between the two groups using the two-tailed unpaired t-test. For evaluation of the 

acoustic startle response (ASR), the response intensity was compared between the 

two groups using a two-way ANOVA with group (vehicle vs. NPS) as one factor and 

tone-pitch (75 dB, 90 dB, 105 dB and 115 dB) as the second factor, followed by 

Bonferroni’s post hoc test. 

2.3.3.4.2. Protein and mRNA data 

Expression levels of protein and mRNA were compared between the two groups 

using the two-tailed unpaired t-test (see 2.3.2.3.3.). 

2.3.3.4.3. Corticosterone plasma levels 

A standard curve was plotted on a semi-log plot using the calibrator concentrations in 

ng/ml (X values) and the corresponding assay results (the measured absorbances, Y 

values) as reference points. As the value 0 cannot be plotted on a semi-log plot, the 

zero-concentration X value was approximated using 1.0e-003, which is two log units 

below the lowest non-zero X value, in order to plot the top of the curve as accurately 

as possible. All X values were subsequently log transformed. The curve was then fit 

according to a nonlinear regression and sigmoidal dose-response with variable slope. 
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The unknown X values corresponding to the corticosterone concentrations in the 

samples were then interpolated from the fitted curve and reverse-transformed from 

the log values to obtain the corticosterone concentrations in ng/ml. The mean 

corticosterone concentration values were compared between vehicle and treatment 

groups using the two-tailed unpaired t-test.    

2.4. Behavioral effects of NPS treatment via injection into the ventral CA1 

region (vCA1) 

2.4.1. Stereotactic surgery 

Stereotactic surgery was performed as described above (2.2.2.). Guide cannulas 

were implanted at the following coordinates: 3.1 mm posterior and ± 3 mm lateral 

from the bregma, and 2 mm ventral from the skull surface. For behavioral 

experiments, animals were implanted bilaterally; for injection of Cy3-NPS 

implantation was performed unilaterally. 

2.4.2. Injection of Cy3-NPS into vCA1 

Cy3-NPS was administered unilaterally at a concentration of 0.01 nmol/µl and in a 

total volume of 0.7 µl (solvent: Ringer solution) as described above (2.3.2.). Brains 

were removed and cryosections were collected and counterstained with DAPI as 

described above (2.2.4.). 

2.4.3. Behavioral assays 

Mice were injected bilaterally either with 0.1 nmol native rat NPS in a total volume of 

0.5 µl for each side (solvent: Ringer solution) (treatment group) or with 0.5 µl of 

Ringer solution for each side (vehicle group). 30 min after injection, three behavioral 

assays (open field, dark-light test and EPM) were performed sequentially in the order 

mentioned, as described previously (2.3.2.1.). 24 hours after the behavioral assays, 

mice were injected bilaterally with fluorescein, which emits a green signal upon 

stimulation and can therefore be seen very well in brain sections. Mice were 

immediately sacrificed afterwards and the locations of the guide cannulas were 

checked in histological cryosections of 40 µm counterstained with DAPI (see above). 

Mice with deviating injection sites were excluded from all further analysis.  
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2.4.3.1. Statistical analysis 

Statistical analysis was performed using the two-tailed unpaired t-test. 
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3. Results 

3.1. Cloning of NPSR and in vitro analysis of NPSR-NPS interaction  

In order to characterize the behavior of NPSR upon NPS binding, constructs of the 

murine NPSR were generated that allow tracking of the receptor upon expression in 

cell culture. The experiments were performed with two different constructs, i.e. 

EGFP-NPSR and NPSR-FLAG (see Figure 8).  

 

 

Figure 8.  Cloning strategy of tagged NPSR constructs. A In pEGFP-C1, NPSR was inserted 
after the EGFP-sequence. B In pcDNA 3.1 (-), the FLAG-tagged NPSR sequence 
was inserted. PCMV: cytomegalovirus promoter. KanR/AmpR: kanamycin/ampicillin 
resistance gene. MCS: multiple cloning site. 

In the EGFP-NPSR construct, NPSR was coupled N-terminally to enhanced green 

fluorescent protein (EGFP) to allow for direct tracking by microscopy imaging without 

additional stainings. In the NPSR-FLAG construct, the FLAG tag was attached C-

terminally to NPSR, in order to rule out that the interaction between NPSR and EGFP 

may influence the behavior of the receptor. NPSR-FLAG was visualized by 

immunofluorescent stainings against the FLAG tag. A fluorescent NPS conjugate 

(Cy3-NPS) was used for stimulation of cells transfected with the receptor constructs 

to allow for visualization of their interaction. All experiments were performed in HEK 

cells, since they are the most commonly used cell line for initial characterization of 

constructs and have been previously used for investigation of human and murine 

NPSR distribution (Bernier et al., 2006). 
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3.1.1. Visualization of EGFP-NPSR and FLAG-NPSR in HEK cells 

Gel electrophoresis of NPSR amplification products with specific primers in cDNA 

from HEK cells showed that NPSR mRNA is expressed specifically in HEK cells 

transiently transfected with plasmids containing EGFP-NPSR and NPSR-FLAG 

(Figure 9A, B). No NPSR expression was detected by this method in HEK cells either 

transfected with the empty cloning vector or untransfected (Figure 9A, B). Control 

actin amplification confirmed that similar amounts of cDNA were present in all 

investigated samples (Figure 9A). 

 

Figure 9. Cloning and expression of NPSR constructs. A 3 % TBE agarose gel showing 
PCR products actin and NPSR from cDNA of HEK cells transfected with NPSR in 
pcDNA3.1 (-) and untransfected. Predicted band weight: NPSR = 1125 bp; actin = 
270 bp. B 3 % TBE agarose gel showing PCR product NPSR amplified from 
cDNA of HEK cells transfected with NPSR-FLAG in pcDNA3.1 (-) and 
untransfected. Predicted band weight: NPSR = 1125 bp. C EGFP-NPSR (green) 
expression in HEK cells as compared to EGFP expression in HEK cells 
transfected with pEGFP-C1. Image taken with an epifluorescence microscope in 
live cells at 20x magnification. Scale bars, 40 μm. D Immunostaining against 
FLAG (green) in HEK cells expressing NPSR-FLAG. Nuclear staining: DAPI 
(blue). Image taken with a confocal microscope at 60x magnification. Scale bar, 
20 μm. 
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Epifluorescence and confocal microscopy of living and fixed cells revealed that the 

tagged NPSR constructs are also well expressed at the protein level (Figure 9C, D). 

Both constructs were expressed cytosolically as well as at the membrane, which 

coincides with results obtained by others after immunostaining of HEK cells 

expressing hemagglutinin (HA)-tagged NPSR in permeabilized and non-

permeabilized cells (Bernier et al., 2006). There were significant differences in the 

amount of expressed protein between HEK cells transfected with EGFP-NPSR and 

those transfected with the empty pEGFP-C1 vector (Figure 9C). While EGFP was 

very strongly expressed throughout the cell with no significant differences between 

compartments, EGFP-NPSR had a lower expression intensity and was comparably 

more highly expressed at the cell membrane. NPSR-FLAG, visualized by 

immunostaining of FLAG on PFA-fixed cells, showed the membranary distribution of 

the receptor even more clearly (Figure 9D).  

3.1.2. Stimulation of NPSR-expressing HEK cells with Cy3-NPS 

To investigate the behavior of receptor-ligand complex after ligand stimulation, Cy3-

NPS was added to HEK cells expressing EGFP-NPSR. 10 min after ligand addition, 

Cy3-NPS had already bound to its receptor in a highly specific manner, as revealed 

by colocalization of red and green signals, and the receptor-ligand complex was 

internalized into the cells (Figure 10). There, it accumulated into cytoplasmic and 

perinuclear vesicles, as shown previously for other neuropeptides upon binding to 

their GPCRs (Grady et al., 1995).   

 

Figure 10. HEK cells transiently transfected with EGFP-NPSR (green) after 10 min of 
incubation with Cy3-NPS (red) (adapted from (Ionescu et al., 2012)). Nuclear 
staining: DAPI (blue). Rightmost panel depicts an overlay of all three channels 
and shows colocalization of Cy3-NPS and EGFP-NPSR (yellow) in cytoplasmic 
(arrows) and perinuclear (arrowheads) vesicular structures. All images were 
taken with a confocal microscope. Scale bars, 20 µm. 
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These results were confirmed also for FLAG-NPSR (Figure 11), confirming that the 

specific behavior observed here is not due to any interaction of the receptor with the 

quite large EGFP. 

In order to better characterize the rough dynamics of this process, HEK cells 

expressing FLAG-NPSR were stimulated with Cy3-NPS (Figure 11). A timeline of 

receptor-ligand internalization showed that immediately after ligand addition (0 min), 

Cy3-NPS bound to the receptor at the cell membrane and created an overlapping 

outline of the cell surface. At 10 min, the receptor-ligand complex had for the most 

part been internalized into the cell in small cytoplasmic vesicles, and the receptor 

fraction at the membrane was depleted in comparison with the previous time-point. At 

30 min, Cy3-NPS and some of the receptor to which it had bound had mostly 

accumulated in a large perinuclear vesicle, with only a few smaller vesicles still 

present in the rest of the cytoplasm; the receptor presence at the membrane had 

been restored almost completely to the initial state. 

 

Figure 11. Timeline of Cy3-NPS internalization in HEK cells expressing NPSR-FLAG at 3 
different time-points: 0 min, 10 min and 30 min after Cy3-NPS addition. Nuclear 
staining: DAPI (blue). Immunostaining against FLAG: green. Cy3-NPS: red. All 
images were taken with a confocal microscope. Scale bars, 20 μm. 
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These results showed fluorescently labeled NPS to be appropriate for tracking at 
single-cell resolution interactions with the receptor and intracellular internalization in 
cell culture. 

3.2. Brain target regions and target neurons of NPS 

Therefore, relying upon the above results obtained in cell culture, Cy3-NPS was used 

here for investigating the intracerebral distribution pattern in vivo after intranasal 

delivery. Since, as described previously in detail (see 1.5.), targeting the CNS after 

intranasal administration is dependent upon many factors, such as size and polarity 

of the molecule under investigation, this approach served to establish for the first 

time the feasibility of intranasal delivery in the case of NPS. Fluorophore-conjugated 

NPS was used because the radioactively labeled ligands employed so far for intra-

CNS tracking after intranasal administration have a very low spatial resolution that 

enables localization only to brain regions and not to single cells or subcellular 

compartments (Thorne et al., 2004).  

First, in vivo tracking of this substance was investigated using intracerebroventricular 

(ICV) injection, an established method for brain delivery into mice; this experiment 

was then reproduced for intranasal application. The hypothesis underlying these 

experiments was that Cy3-NPS will become distributed evenly throughout all cerebral 

structures upon reaching the brain and will accumulate specifically in cells expressing 

NPSR via internalization of the receptor-ligand complex. 

3.2.1. Identification of brain target regions and cells of NPS by 

intracerebroventricular (ICV) administration of Cy3-NPS 

In order to check whether the NPSR-dependent intracellular internalization of Cy3-

NPS observed in cell culture also works in vivo, Cy3-NPS was delivered to the brain 

first by ICV injection. 

At 30 min after unilateral ICV administration of Cy3-NPS, the substance had 

distributed throughout the brain and uptake within single cells in specific brain 

regions had occurred. A complete overview of brain regions where cells took up Cy3-

NPS is available in Table 10. 
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Table 10. Overview of brain regions targeted by Cy3-NPS. 
 
Forebrain 
        Accumbens nucleus 
        Anterior olfactory area, ventral part 
        Anterior olfactory area, external part
Basal ganglia 
         Globus pallidus 
Cerebral cortex 
         Primary motor cortex 
         Secondary motor cortex 
         Somatosensory cortex 
         Cingulate cortex, area 1 
         Endopiriform cortex 
Amygdala 
          Medial amygdaloid nuclei 
          Anterior cortical amygdaloid nuclei 
          Posterior cortical amygdaloid 
              nuclei 
          Basolateral amygdala 
          Central amygdala 
          Lateral amygdala 
          Bed nucleus of the stria terminalis  
              (intraamygdaloid division) 
          Amygdalohippocampal area 
Hippocampus 
           Dentate gyrus 
           CA1 
           CA2 
           CA3 
           Ventral hippocampus, granular 
              layer of dentate gyrus  
 

Thalamus 
          Medial habenula 
          Lateral habenula 
          Paraventricular thalamic nucleus 
          Mediodorsal thalamic nucleus 
Hypothalamus 
         Arcuate nucleus 
         Paraventricular nucleus 
         Dorsomedial nucleus 
         Ventromedial nucleus 
         Periventricular nucleus  
         Suprachiasmatic nucleus  
Preoptic area 
         Median preoptic nucleus 
         Ventromedial preoptic nucleus 
         Vascular organ of the lamina       
              terminalis 
Midbrain and brainstem areas 
          Dorsal raphe 
          Posterodorsal tegmental nucleus 
          Periaqeductal gray 
          Central gray of the pons 
          Red nucleus 
          Locus coeruleus 
          Barrington’s nucleus 
          Medial parabrachial nucleus 
          Medial vestibular nucleus 
Cerebellum 
           Purkinje cells     

 

Cell populations containing Cy3-NPS were identified in regions associated with 

stress-response and learning such as the lateral habenula and the mediodorsal 

thalamic nuclei, respectively (Figure 12B), as well as in regions with neuroendocrine 

function, such as the arcuate and ventromedial hypothalamic nuclei (Figure 12C). 
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Figure 12.  Representative selection of mouse brain regions targeted by ICV-administered 
fluorescent Cy3-NPS (Ionescu et al., 2012). A-D Leftmost panels show a 
schematic overview of murine brain regions (Franklin and Paxinos, 2007). 
Middle panels show nuclear counterstain DAPI (blue) (scale bar, 100 µm) and 
cell populations having taken up Cy3-NPS (red). The images in the red channel 
are presented in two different magnifications (scale bars, 100 µm and 10 µm) – 
white rectangles indicate area of magnification. Rightmost panels show an 
overlay of the blue and red channels (scale bar, 100 µm). A Cortical structures: 
primary somatosensory cortex (S1). B Thalamic structures: paraventricular 
thalamic nucleus (PV), sporadically in medial habenula (MHb), lateral habenula 
(LHb), mediodorsal thalamic nucleus (MD): medial (MDM), central (MDC) and 
lateral (MDL). Third ventricle (3V). C Hypothalamic structures: periventricular 
hypothalamic nucleus (Pe), dorsomedial hypothalamic nucleus (DM), 
ventromedial hypothalamic nucleus (VMH), arcuate hypothalamic nucleus (Arc). 
Third ventricle (3V). D Brainstem structures: central gray of the pons (CGPn), 
medial vestibular nucleus (MVe), sporadically in posterodorsal tegmental 
nucleus (PDTg), Barrington’s nucleus (Bar), sporadically in locus coeruleus (LC) 
and in medial parabrachial nucleus (MPB). Fourth ventricle (4V). All images 
were acquired with a confocal microscope and are representative for a total of 
10 mice. See Table 10 for a complete list of brain regions where uptake of Cy3-
NPS was detected. 

Most interestingly, Cy3-NPS uptake was detected also in regions farther away from 

the cerebroventricular system, for instance in cortical regions (Figure 12A), and in 

very caudal brain regions like the locus coeruleus, the tegmental nucleus, 

Barrington’s nucleus and the parabrachial nucleus (Figure 12D). Even in the 
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cerebellum, which is distant from both the ventricular system and the injection site, 

single cells were found to contain Cy3-NPS (Figure 13). This data proves that ICV 

administration of Cy3-NPS is capable of targeting the entire murine brain, not only 

regions close to the ventricular system. 

 

Figure 13.  Representative image of Cy3-NPS uptake in neurons of the cerebellum after ICV 
injection. Upper panel shows schematic overview and Nissl staining of the brain 
section (Franklin and Paxinos, 2007). Crus1: crus 1 of the ansiform lobule. 4V: 
fourth ventricle. Images were taken with a confocal microscope at 10x 
magnification. Scale bars, 100 µm. 

 

3.2.2. Specificity of Cy3-NPS uptake 

In order to ascertain that the observed Cy3-NPS uptake is specific for the unlabeled 

neuropeptide and dependent upon NPSR expression at the cell membrane, various 

control experiments were performed. 
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Figure 14.  Intracerebral distribution of Cy3-NPS and rhodamine-NPS shown here 
exemplarily in two brain regions 30 min after ICV delivery of substance 
(leftmost panels: overview images, Franklin and Paxinos, 2007) (Ionescu et 
al., 2012). Left panel: rhodamine-NPS (images taken with an epifluorescence 
microscope, representative for a total of 5 mice). Right panel: Cy3-NPS 
(images taken with a confocal microscope). A Third ventricle (3V). 
Hypothalamic structures: anterior parvicellular paraventricular hypothalamic 
nucleus (PaAP), ventral paraventricular hypothalamic nucleus (PaV), 
dorsolateral and ventromedial suprachiasmatic nucleus (SChDL, SChVM). B 
Optical tract (opt). Amygdaloid structures: medial posteroventral and 
posterodorsal amygdaloid nuclei (MePV, MePD), posteromedial cortical 
amygdaloid nucleus (PMCo). Scale bars, 100 µm. 

First, the distribution patterns of two different fluorescent NPS conjugates (Cy3-NPS 

and rhodamine-NPS) upon ICV injection were examined (Figure 14). Comparison of 

substance uptake in various brain regions, such as hypothalamic structures (Figure 

14A) and amygdaloid nuclei (Figure 14B), revealed identical distribution and 

internalization patterns for Cy3-NPS and rhodamine-NPS. In addition, the same 

experiment was performed to compare the distributions of Cy3-NPS and 

unconjugated rhodamine, respectively (Figure 15). As visible in an example from the 

olfactory region, Cy3-NPS is specifically internalized into certain cells, while pure 
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rhodamine distributes evenly in the brain parenchyma, forming aggregates that do 

not correspond to any cellular structure. These results prove that the uptake 

observed is dependent only upon NPS and not upon the fluorescent tag, nor upon 

the combination of NPS and fluorescent tag. 

 

Figure 15. Intracerebral distribution of unconjugated rhodamine shown exemplarily in a 
region from the olfactory bulb 30 min after ICV administration (Ionescu et al., 
2012). Images were taken with an epifluorescence microscope. Image from the 
same area 30 min after ICV administration of Cy3-NPS (left panel). Image was 
taken with a confocal microscope. Ventral and external part of the anterior 
olfactory area (AOV, AOE) (overview image, Franklin and Paxinos, 2007). Scale 
bars, 20 µm. 

Second, to prove that NPS uptake occurs via interaction with an NPS-specific binding 

partner expressed at the cell membrane, unlabeled NPS was pre-injected at fivefold 

concentration of Cy3-NPS 10 min before ICV administration of Cy3-NPS. The 

assumption was that the unlabeled NPS would saturate the binding partners and 

therefore inhibit Cy3-NPS uptake 10 min later. Since this approach does not exclude 

the existence of an additional binding partner besides the already known NPSR, two 

competitive NPSR-antagonists, the peptidergic antagonist [D-

Cys(tBu)5]Neuropeptide S (Camarda et al., 2009) and (R)-SHA68, the active 

enantiomer of SHA 68 (Okamura et al., 2008; Trapella et al., 2011), were co-injected 

with Cy3-NPS in a parallel experiment. Uptake and distribution of the fluorescent 

substance were subsequently examined. As expected, pre-injection of unlabeled 

NPS as well as co-injection with the competitive NPSR-antagonists strongly reduced 

Cy3-NPS uptake throughout the brain (Figures 16 and 17). Therefore, it can be 
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concluded that intracellular Cy3-NPS uptake is dependent upon expression of active 

NPSR at the cell membrane.  

To sum up, these control experiments indicate that by this method, it was possible to 

identify the hitherto unknown physiological target cells and target brain regions of 

NPS.  

 

Figure 16. Analysis of NPSR-dependence of Cy3-NPS uptake in vivo (adapted from 
(Ionescu et al., 2012)). From left to right: Coronal sections through mouse brain 
(overview (Franklin and Paxinos, 2007)) without and after pre-injection of native 
NPS at 5fold concentration 10 min before ICV administration of Cy3-NPS, and 
after co-injection with the NPSR antagonists [D-Cys(tBu)5]Neuropeptide S and 
(R)-SHA68 at 150fold concentration. A Posteroventral nucleus of the medial 
amygdala (MePV), cortical amygdala (ACo). Scale bars, 20 µm. B Exemplary 
image from the preoptic area comparing uptake of Cy3-NPS. Median preoptic 
nucleus (MnPO), the vascular organ of the lamina terminalis (VOLT) and the 
ventromedial preoptic nucleus (VMPO). Optic tract (opt). All images are 
representative for a total of 4 mice pre-treated with native NPS before ICV 
administration of Cy3-NPS and a total of 3 mice co-treated with the antagonists. 
Scale bars, 100 µm. All images were taken with a confocal microscope. 
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Figure 17. Uptake of Cy3-NPS after pre-injection of native NPS or NPSR antagonists 
(adapted from (Ionescu et al., 2012)). Leftmost panels show overview images of 
the respective brain regions (Franklin and Paxinos, 2007). Exemplary images of 
brain areas from murine brains having received pre-injection of native NPS at 
5fold concentration before ICV administration of Cy3-NPS or after coinjection of 
Cy3-NPS and NPSR antagonists [D-Cys(tBu)5]NPS and (R)-SHA 68 at 150fold 
concentration. A Thalamic structures (compare Figure 12B); and B 
hypothalamic structures (compare Figure 12C). Third ventricle: 3V. All images 
were taken with a confocal microscope. Scale bars, 100 µm. 

3.2.3. Characterization of cell types taking up Cy3-NPS 

As shown above, intracerebral Cy3-NPS administration is not only a valid method to 

track NPS delivery into the brain at the cellular level, but also led to identification of 

NPS target brain regions and cells. Therefore, in a next step, these cells were 

characterized with regard to their subtype. 

Cells that had internalized Cy3-NPS appeared, from a morphological point of view, 

very similar to neurons: they were larger and had fewer processes when compared to 

either astroglia or microglia. In addition, immunostainings with antibodies against 

neuronal markers (neurofilament – NF, Figure 18A) as well as against astroglial 

(GFAP, Figure 18B) and microglial markers (Iba-1, Figure 18C) revealed that the 

Cy3-NPS signal colocalizes only with the neuronal marker. 
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Figure 18.   Analysis of cell types targeted by Cy3-NPS (Ionescu et al., 2012). A Co-staining 
with the neuronal marker neurofilament (NF) (green). This representative image 
was taken from the dentate gyrus. Scale bar, 20 µm. Z-stack of 10 images in 1 
µm intervals. B Hippocampal CA3 region after co-staining with glial fibrillary 
acidic protein (GFAP) (green), an astroglial marker. Z-stack of 18 images in 1 
µm intervals. Scale bar, 20 µm. C Dentate gyrus after co-staining with the 
microglial marker Iba-1 (green). Z-stack of 19 slices in 1 µm intervals. Scale bar, 
20 µm. Cy3-NPS: red; nuclear counterstain DAPI: blue. All images were 
acquired with a confocal microscope and are representative for a total of 10 
mice. 
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These results strongly suggest that the cells taking up Cy3-NPS in a highly specific 

NPSR-dependent manner are most likely neurons. Therefore, the assumption is 

obvious that these target neurons of NPS are also the ones responsible for mediating 

NPS-elicited behavioral effects. 

3.2.4. Intranasal administration of Cy3-NPS 

Relying on this data, the next step consisted in applying Cy3-NPS intranasally and 

examining the distribution pattern in comparison to the one observed after ICV 

injection of the labeled substance. Intranasal administration of Cy3-NPS led to 

substance distribution and intracellular uptake following a pattern highly similar to 

ICV injection. Although the targeted brain regions were largely identical to the ones 

observed after ICV injection, the intensity of the Cy3-NPS signal in the single cells 

was significantly lower after intranasal instillation than after injection of Cy3-NPS 

directly into the cerebral ventricles. A comparison of the targeted brain regions and of 

the Cy3-NPS signal intensities throughout the entire brain after ICV and intranasal 

administration can be found in Table 11.  
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Table 11. Overview of brain regions targeted by Cy3-NPS comparing ICV 
and intranasal administration as regards intensity and number of 
cells having taken up Cy3-NPS (adapted from (Ionescu et al., 
2012)).    

                  

         

  ICV IN    ICV IN 
Forebrain     Thalamus     

    Accumbens nucleus ++ ++    Medial habenula +++ +++ 
    Anterior olfactory area,  
           ventral part 

++ ++    Lateral habenula +++ +++ 

    Anterior olfactory area,        
           external part 

++ ++    Paraventricular thalamic  
           nucleus 

+++ +++ 

Basal ganglia        Mediodorsal thalamic nucleus +++ +++ 
         Globus pallidus +++ -/+ Hypothalamus     

Cerebral cortex        Arcuate nucleus ++ ++ 
    Primary motor cortex +++ -/+    Paraventricular nucleus ++ ++ 

    Secondary motor cortex +++ -/+    Dorsomedial nucleus ++ ++ 
    Somatosensory cortex +++ -/+    Ventromedial nucleus ++ ++ 

    Cingulate cortex, area 1 ++ -/+    Periventricular nucleus  ++ ++ 
    Endopiriform cortex ++ -/+    Suprachiasmatic nucleus  ++ ++ 

Amygdala     Preoptic area     
    Medial amygdaloid nuclei ++ -/+    Median preoptic nucleus + + 

    Anterior cortical amygdaloid         
            nuclei 

++ -/+    Ventromedial preoptic nucleus + + 

    Posterior cortical amygdaloid       
            nuclei 

++ -/+    Vascular organ of the lamina  
           terminalis 

+ + 

    Basolateral amygdala + + Midbrain and brainstem areas     
    Central amygdala + -/+    Dorsal raphe + + 

    Lateral amygdala + -/+    Posterodorsal tegmental  
           nucleus 

+ + 

    Bed nucleus of the stria  
            terminalis  
           (intraamygdaloid division) 

+ +    Periaqeductal gray + + 

                     Central gray of the pons + + 

    Amygdalohippocampal area + +    Red nucleus + + 
Hippocampus        Locus coeruleus ++ + 

    Dentate gyrus + +    Barrington’s nucleus ++ + 
    CA1 +++ +++    Medial parabrachial nucleus + + 

    CA2 +++ +++    Medial vestibular nucleus + + 
    CA3 +++ +++ Cerebellum     

    Ventral hippocampus, granular  
            layer of dentate gyrus 

+++ +++    Purkinje cells     +++ + 

            
             

 

 

 

The Cy3-NPS uptake pattern in single cells largely corresponded to the one 

observed in cell culture upon stimulation with Cy3-NPS, especially with regard to the 
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vesicular internalization pattern (Figure 19A). Furthermore, the Cy3-NPS signal 

colocalized as expected exclusively with the neurofilament signal, showing that 

intranasal NPS application also targets only neurons (Figure 19B). Control 

experiments with intranasal rhodamine application showed a different distribution 

pattern than intranasally applied Cy3-NPS, confirming the specificity of the uptake 

after intranasal application (Figure 19C). 

 

Figure 19. Intracerebral distribution of Cy3-NPS after intranasal administration. Intraneuronal 
uptake of Cy3-NPS (red) 30 minutes after intranasal delivery shown exemplarily in 
the hippocampus. Nuclear staining: DAPI (blue). A Overview of the hippocampus 
after intranasal Cy3-NPS application. Rad: radiate layer of the hippocampus; Or: 
oriens layer of the hippocampus. White inset: Hippocampal neuron from the 
oriens layer (CA3 region), Z-stack of 10 images in 1 µm intervals. B Hippocampal 
neuron from the pyramidal layer (CA3 region) after NF staining (green). All 
images were taken with a confocal microscope and are representative for a total 
of 3 mice. C Intracerebral distribution of unconjugated rhodamine shown 
exemplarily in a region from the olfactory bulb 30 min after intranasal 
administration. Image taken with an epifluorescence microscope. Scale bars, 20 
µm. 
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In conclusion, intranasal application of Cy3-NPS demonstrates that NPS can reach 

the brain following this administration method and is internalized specifically into its 

target neurons in brain regions identified previously by ICV administration. 

3.2.5. Identification of the hippocampus as a novel target brain region of NPS  

The findings from this study also shed light on the brain regions involved in the 

anxiolytic effects of NPS. Cy3-NPS uptake was detected in the dorsal endopiriform 

cortex, as well as in the basal ganglia and in amygdaloid nuclei, most important 

among which is the basolateral amygdala, a brain region closely linked to anxiety 

regulation and associated with NPS effects in mice (Jüngling et al., 2008; Meis et al., 

2008; Fendt et al., 2010) (Figure 20). 

 

Figure 20.  Amygdaloid structures targeted by Cy3-NPS (bright white): central amygdala 
(CeA), medial amygdala (MeA), basolateral amygdala (BLA), basomedial 
amygdala (BMA). Cortical structures: dorsal endopiriform cortex (DEn). Basal 
ganglia: globus pallidus (GP). Image taken with a confocal microscope. Scale 
bar, 200 µm. Adapted from (Ionescu et al., 2012). 

Most fascinating however was the identification of the hippocampus as a novel target 

brain region of NPS. Both ICV and intranasal administration of Cy3-NPS led to 

uptake of the labeled substance in the CA1, CA2 and CA3 regions as well as in the 

dentate gyrus (Tables 10 and 11, Figure 19A and Figure 21A). Cy3-NPS was 
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internalized with high specificity into the cell bodies and throughout the processes of 

certain neuronal populations of the hippocampus (Figure 21B, C). This new finding 

immediately raises questions concerning the mechanistic role of the hippocampus in 

the NPS-dependent regulation of fear and anxiety. 

 

Figure 21.  The hippocampus as a novel target region of NPS. A Representative overview 
image of the hippocampus after ICV injection of Cy3-NPS. Scale bar, 100 µm. B 
Morphologically representative cells from the granular dentate gyrus. Granular 
dentate gyrus (GrDG), molecular dentate gyrus (MoDG). Scale bar, 20 µm. Z-
stack of 15 images in 0.59 µm intervals. C Morphologically representative cell 
from the CA3 region. Scale bar, 20 µm. Z-stack of 13 images in 0.59 µm 
intervals. All images were taken with a confocal microscope. 

 

3.3. Behavioral and molecular effects of intranasally applied NPS 

After having ascertained that intranasally applied NPS reaches and distributes 

through the mouse brain, the next step was to reproduce the anxiolytic effects seen 

after ICV administration. An additional aspect under investigation was the regulatory 

effect of NPS on protein and mRNA expression levels of selected candidates. 
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3.3.1. Behavioral phenotype after intranasal NPS application 

Since the pharmacodynamics of intranasal application are known to be very different 

from those of ICV injection (Thorne et al., 1995; Thorne and Frey, 2001), the optimal 

dosis for observing behavioral effects would most likely differ. In order to establish 

the optimal NPS dose for eliciting behavioral effects after intranasal treatment, three 

different NPS doses (7, 14 and 28 nmol) were applied intranasally in C57BL/6N mice 

and their effects were compared in three different behavioral tests: open field, dark-

light test and elevated plus maze (EPM). In view of these differences between ICV 

and intranasal administration, animals were tested at 4 hrs after intranasal 

application rather than at 30 min, as for ICV treatment (see Figure 22 for an overview 

of the experimental schedule). The time-point for behavioral testing after intranasal 

treatment was chosen according to data from literature which show that effective 

concentrations of intranasally applied substances can be detected in the CNS up to 4 

hrs after application (Thorne et al., 1995; Jansson and Björk, 2002). 

 

Figure 22. Experimental timeline: intranasal NPS application at 0 and at 5 min in alert 
C57BL/6N and HAB mice restrained manually. Behavioral testing 4 hours after 
first application: A open field, B dark-light box, and C EPM. 

The open field, performed first to obtain a baseline of locomotion, showed no 

differences in locomotion for any of the three doses between controls and treated 

mice (F2, 26 = 1.364; p = 0.2733) (Figure 23A). However, in the dark-light test, a trend 

towards decreased latency to the first entry into the light compartment (a parameter 

for measuring anxiety) was observed for animals treated with 14 and 28 nmol NPS 

(F2, 24 = 3.382; p = 0.0508) (Figure 23B). This was especially meaningful since the 

locomotion as measured in percent distance traveled in the light chamber did not 
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change (F2, 24 = 0.2080; p = 0.8136), hinting at locomotion-independent anxiolytic 

effects. Most important, clear-cut anxiolytic effects were observed in the EPM, where 

animals treated with 14 nmol NPS significantly increased their percent time spent on 

the open arm (F2, 24 = 4.127; p = 0.0288) (Figure 23C). Here again, the observed 

anxiolytic effects were locomotion-independent, as the number of entries into the 

closed arm (a reliable indicator of locomotion in the EPM) did not differ between 

groups (F2, 24 = 0.5957; p = 0.5591). 

 

Figure 23.  Behavioral effects of transnasally delivered NPS in C57BL/6N mice. C57BL/6N 
mice were tested 4 hrs after intranasal NPS treatment (7 nmol, 14 nmol and 28 
nmol) in A open field, B dark-light test (% time in the light chamber: F2, 24 = 
1.666; p = 0.2102) and C EPM. n = 10. Statistical analysis: one-way ANOVA 
with Bonferroni’s post hoc test. The data is shown as % change relative to 
control. t p < 0.1; * p < 0.05. All data are shown as mean ± s.e.m. 

These results showed 14 nmol NPS to be the optimal dose for intranasal application 

with the goal of eliciting anxiolytic effects in mice. These anxiolytic effects were 

locomotion-independent and became most evident when animals were tested 4 

hours after application. 
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3.3.2. Regulatory effects of NPS on protein and mRNA expression of proteins 

involved in the glutamatergic system and synaptic plasticity 

Until now, there was no data in literature examining the regulatory effects of NPS on 

cerebral protein and mRNA expression in vivo. Therefore, candidates representing 

likely targets for NPS-mediated regulation were selected relying on publications that 

link NPS to the glutamatergic system (Han et al., 2009) and to synaptic function 

(Jüngling et al., 2008; Raiteri et al., 2009). These candidates included subunits 1 and 

2 of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor 

(GluR1 and GluR2) and the astrocytic glutamate transporter (Glt-1), as well as 

isoforms I and II of synapsin. The expression of these candidates was examined on 

both mRNA and protein levels after intranasal NPS treatment (for a complete 

overview of the experimental schedule please see Figure 24). These investigations 

were performed after treatment with 14 nmol NPS in brain regions that have been 

associated with anxiety regulation, such as the hippocampus (moreover newly 

identified in this work as a target brain region of NPS) and the prefrontal cortex. 

Furthermore, analyses were performed at two different time-points. mRNA 

expression levels were investigated 4 hours after treatment, since regulation of 

mRNA expression is usually a fast process. Protein expression levels were examined 

both 4 hours after treatment (the time-point where behavioral effects are most 

pronounced) and 24 hours after treatment, since usually, the cellular protein 

synthesis machinery is too slow to produce detectable changes in protein expression 

levels within 4 hours. 

 

Figure 24.  Overview of the experimental schedule for isolation of brain regions at 4 hours 
after treatment for mRNA isolation (subsequently analyzed by real-time PCR) 
and at 24 hours after treatment for protein isolation (subsequently analyzed by 
immunoblotting). 
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In mRNA expression, there was a trend towards decrease of Glt-1 expression in the 

hippocampus of NPS-treated mice as compared to controls (t = 1.865, df = 8, p = 

0.0992) (Figure 25A), accompanied by an increase in the prefrontal cortex (t = 4.562, 

df = 7, p = 0.0026) (Figure 25B).  

 

Figure 25. Effects of transnasally delivered NPS (14 nmol) 4 hours after application on 
mRNA levels in hippocampus (Hc) and prefrontal cortex (Pfc) of C57BL/6N 
mice. A Real-time PCR analysis of Hc lysate from C57BL/6N mice 4 hours after 
intranasal NPS treatment. GluR1: t = 1.236, df = 7, p = 0.2562; GluR2: t = 
1.242, df = 8, p = 0.2493; Synapsin I: t = 0.3580, df = 4, p = 0.7385; Synapsin II: 
t = 1.243, df = 7, p = 0.2540. B Real-time PCR analysis of Pfc lysate from 
C57BL/6N mice 4 hours after intranasal NPS treatment. GluR1: t = 0.7166, df = 
5, p = 0.5057; GluR2: t = 0.6839, df = 8, p = 0.5133; Synapsin I: t = 1.063, df = 
7, p = 0.3230. Internal expression control: GAPDH. C57BL/6N: n = 5 for each 
group. Statistical analysis: two-tailed unpaired t-test. t p < 0.1; * p < 0.05; ** p < 
0.01. All data are shown as mean ± s.e.m. 

 

As expected, there were no changes in protein levels at 4 hours after treatment in 

either the hippocampus or the prefrontal cortex (Figure 26). 
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Figure 26. Effects of transnasally delivered NPS (14 nmol) 4 hours after application on 
protein levels in hippocampus (Hc) and prefrontal cortex (Pfc) of C57BL/6N 
mice. A Immunoblot analysis of Hc lysate from C57BL/6N mice 4 hours after 
intranasal NPS treatment. GluR1: t = 1.192, df = 8, p = 0.2675; GluR2: t = 
0.657, df = 8, p = 0.5552; Glt-1: t = 0.02711, df = 8, p = 0.9790; Synapsin Ia-
b/IIa: t = 1.506, df = 6, p = 0.1828. B Immunoblot analysis of Pfc lysate from 
C57BL/6N mice 4 hours after intranasal NPS treatment. GluR1: t = 0.1030, df = 
8, p = 0.9205; GluR2: t = 0.8469, df = 8, p = 0.4217; Glt-1: t = 0.03901, df = 8, p 
= 0.9698; Synapsin Ia-b/IIa: t = 1.384, df = 6, p = 0.2038. Internal expression 
control: GAPDH (35 kDa in immunoblot excerpts). Blot excerpts show three 
representative adjacent bands of each group. The immunoblot data represent 
cumulated data from at least three independent experiments. C57BL/6N: n = 5 
for each group. Statistical analysis: two-tailed unpaired t-test. All data are shown 
as mean ± s.e.m. 

24 hours after treatment, synapsin Ia-b/IIa protein expression significantly increased 

in the hippocampus (t = 2.561, df = 8, p = 0.0336) (Figure 27A). Additionally, in the 

prefrontal cortex, NPS treatment significantly increased protein expression of GluR1 

(t = 3.219, df = 8, p = 0.0123) and Glt-1 (t = 2.561, df = 8, p = 0.0336) (Figure 27B). 
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Figure 27. Effects of transnasally delivered NPS (14 nmol) 24 hours after application on 
protein levels in hippocampus (Hc) and prefrontal cortex (Pfc) of C57BL/6N 
mice. A Immunoblot analysis of Pfc lysate from C57BL/6N mice 24 hours after 
intranasal NPS treatment. GluR2: t = 0.2798, df = 8, p = 0.7868; Synapsin Ia-
b/IIa: t = 1.549, df = 6, p = 0.1601. B Immunoblot analysis of Hc lysate from 
C57BL/6N mice 24 hours after intranasal NPS treatment. GluR1: t = 1.271, df = 
8, p = 0.2396; GluR2: t = 0.9666, df = 8, p = 0.3621; Glt-1: t = 1.628, df = 8, p = 
0.1421. Internal expression control: GAPDH (35 kDa in immunoblot excerpts). 
Blot excerpts show three representative adjacent bands of each group. The 
immunoblot data represent cumulated data from at least three independent 
experiments. C57BL/6N: n = 5 for each group. Statistical analysis: two-tailed 
unpaired t-test. * p < 0.05; ** p < 0.01. All data are shown as mean ± s.e.m. 

To sum up, behavioral effects of NPS treatment were accompanied by changes in 

mRNA expression levels; long-term NPS-elicited changes were found in protein 

expression levels. These findings demonstrate the ability of NPS to regulate 

expression of proteins associated with the glutamatergic circuit and with synaptic 

plasticity in brain regions involved in anxiety such as the hippocampus and the 

prefrontal cortex. These regulatory effects are dependent on the examined 

candidate, the brain region and the time-point after treatment and occur differentially 

on protein and mRNA levels. 

3.4. The role of the ventral hippocampus in NPS-elicited anxiolytic effects 

As described previously in this work, the hippocampus was identified as a novel NPS 

target region by ICV and intranasal administration of Cy3-NPS (see Figures 19 and 

21). Additionally, electrophysiological recordings have confirmed that NPS affects 
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basal synaptic transmission and plasticity at CA3-CA1 synapses (Ionescu et al., 

2012). Therefore, the next step consisted in characterizing the role of the 

hippocampus in mediating the anxiolytic effects of NPS at the behavioral level by 

local injection of NPS into the ventral CA1 region, a method widely used hitherto for 

characterization of the amygdala in NPS-elicited behavior (Jüngling et al., 2008; 

Fendt et al., 2010). 

3.4.1. Cy3-NPS distribution is restricted to the ventral CA1 region (vCA1) after 

local injection 

In order to ascertain that NPS, after injection into vCA1, will not spread to other brain 

regions and thereby result in hippocampus-independent effects, Cy3-NPS was 

injected into vCA1 and its distribution was subsequently analyzed. Already a small 

amount of Cy3-NPS (0.01 nmol) resulted in intracellular uptake close to the injection 

site (Figure 28).  

 

Figure 28. Cy3-NPS (0.01 nmol) is locally confined to the injection site after injection into 
vCA1. Injection site on sagittal brain section (4x magnification), followed by 20x 
magnification. Nuclear staining: DAPI (blue). Cy3-NPS: red. Long arrows 
indicate injection site. Short arrows indicate cells having taken up Cy3-NPS. All 
images were taken with a confocal microscope. DG: dentate gyrus; vCA1: 
ventral CA1 region; CA3 region. Scale bars 4x: 200 µm; scale bars 20x: 40 µm. 
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Figure 29. Cy3-NPS (0.07 nmol) is locally confined to the injection site after injection into 
vCA1. A Leftmost: Injection site on anatomical plate (Franklin and Paxinos, 
2007). Middle and right: Overlay of DAPI (nuclear staining, blue) and Cy3 (red) 
signals at 4x (left) and 20x (right) magnification. Arrow indicates injections site 
on brain section. B Left: Anatomical plate showing lateral amygdala (LA) and 
basolateral amygdala (BLA) (Franklin and Paxinos, 2007), and (right) overview 
of amygdala in brain section after injection of vCA1 at 4x magnification (overlay: 
DAPI and Cy3 channels; inset: Cy3 channel). All images were taken with a 
confocal microscope. Scale bars 4x: 200 µm; scale bars 20x: 20 µm. 

3.4.2. NPS injection into vCA1 leads to anxiolytic locomotion-independent 

effects 

Having proved that NPS does not spread outside the injection site, the next question 

was whether injection of NPS into vCA1 is sufficient to produce similar anxiolytic 

effects as the already published intra-amygdala (Jüngling et al., 2008) and ICV 

injection (Xu et al., 2004; Jüngling et al., 2008; Leonard et al., 2008; Rizzi et al., 

2008). Since locomotory changes may influence anxiety-related read-out in 

behavioral assays, basal locomotion was examined in the open field and anxiety- and 

locomotion-related parameters in the dark-light test and in the EPM, which have been 

shown to highlight different aspects of anxiety-related behavior (Gonzalez et al., 

1996; van Gaalen and Steckler, 2000; Bailey et al., 2007) (for a complete overview of 
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the experimental schedule please see Figure 30). Injection sites into vCA1 are shown 

in Figure 31A.  

 

Figure 30. Overview of experimental timeline of NPS injection into vCA1. Injection was 
performed at 0 min, and 30 min later, mice underwent the behavioral assays 
open field, dark-light box and EPM in this sequence. 

Intrahippocampal NPS treatment did not affect locomotion in any of the three tests 

(Figure 22B-D). Most important, however, NPS elicited anxiolytic effects in the EPM, 

as shown by a significant increase in the percent time spent on the open arm (t = 

2.227, df = 14, p = 0.0429) (Figure 31D). These anxiolytic effects were locomotion-

independent, since the total number of entries in the closed arm remained 

unchanged (t = 0.2035, df = 14, p = 0.8416) (Figure 31D). These test-specific effects 

coincide well with our previous findings that intranasally applied NPS elicits the 

strongest anxiolytic effects in the EPM (Ionescu et al., 2012). 

Taken together, these results not only confirm our previous report of NPS target 

neurons in the hippocampus (Ionescu et al., 2012), but also show that 

intrahippocampal injection of NPS is sufficient to produce anxiolytic behavioral 

effects.  
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Figure 31. NPS injection into the ventral CA1 region (vCA1) produces anxiolytic, locomotion-
independent effects in the EPM. A Overview of injection sites on anatomical plate 
(Franklin and Paxinos, 2007). B Basal locomotion in open field test (t = 1.928, df = 
14, p = 0.0744). C Anxiety- and locomotion-related parameters in the dark-light 
test (% time in light chamber: t = 0.04641, df = 14, p = 0.9636; % distance in light 
chamber: t = 0.7346, df = 14, p = 0.4747). D Anxiety- and locomotion-related 
parameters in the EPM. Data are shown ± s.e.m. Statistical analysis: two-tailed 
unpaired t-test. * p < 0.05. 

 

3.5. Acute intranasal NPS treatment in high anxiety behavior (HAB) mice, a 

mouse model for pathological anxiety 

Intranasal NPS treatment was shown here to elicit anxiolytic effects in C57BL/6N 

mice. The next step was to examine the therapeutic effects of NPS in a mouse model 

of pathological anxiety. The HAB mice that have been inbred for over 40 generations 
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for pathologically high trait anxiety (Landgraf et al., 2007) (see 1.6.1.) were selected 

for this purpose. NPS was applied intranasally at 14 nmol/animal, the dose that was 

found to have optimal anxiolytic effects in the EPM in C57BL/6N mice (see 3.3.1.). 

The mice were then exposed to the same behavioral testing paradigm as used for 

C57BL/6N mice (open field, dark-light test and EPM) 4 hours after application (see 

Figure 22). 

3.5.1. Behavioral phenotype after intranasal NPS application 

In the open field, NPS had no effects on basal locomotion (t = 0.8610, df = 19, p = 

0.2000) (Figure 32A). In the dark-light test, however, the percent time spent in the 

light chamber was significantly increased (t = 2.316, df = 18, p = 0.0163) and 

moreover, there was also a trend towards decreased latency to the first entry in the 

light chamber, as observed in C57BL/6N mice (t = 1.451, df = 18, p = 0.0820) (Figure 

32B). These results were locomotion-independent, as the percent distance traveled 

in the light chamber remained unchanged between NPS-treated and control animals 

(t = 0.8146, df = 18, p = 0.2130). NPS treatment did not induce any changes in the 

EPM, either in the percent time spent on the open arm (t = 0.6839, df = 18, p = 

0.2514) or in the number of entries into the closed arm (t = 0.07032, df = 18, p = 

0.4724) (Figure 32C). 

In conclusion, NPS treatment can induce anxiolytic effects even in the case of 

pathologically high anxiety, an aspect which had hitherto not been investigated. This 

is evidenced in the case of the HAB mice by locomotion-independent reduction of 

anxiety in the dark-light test. 
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Figure 32.  Behavioral effects of transnasally delivered NPS in HAB mice. HAB mice were 
tested 4 hours after intranasal NPS treatment (14 nmol) in A open field, B dark-
light test and C EPM. n = 10. Statistical analysis: one-sided unpaired t-test. t p < 
0.1; * p < 0.05. All data are shown as mean ± s.e.m. 

 

3.5.2. Regulatory effects of NPS on protein and mRNA expression of proteins 

involved in the glutamatergic system and synaptic plasticity 

Since it has been established previously in this work that NPS has regulatory effects 

on protein expression in C57BL/6N mice, it was interesting to examine this aspect in 

the HAB mice as well. For this purpose, the same candidates that had been 

examined in C57BL/6N mice (GluR1, GluR2, Glt-1 and synapsin isoforms I and II) 

were now investigated at the mRNA level 4 hours after treatment and at the protein 

level 24 hours after treatment in hippocampus and prefrontal cortex. 
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4 hours after treatment, NPS treatment led to significantly decreased mRNA 

expression of GluR1 (t = 2.361, df = 8, p = 0.0459) as well as to a trend towards 

decreased mRNA expression of Glt-1 (t = 2.198, df = 8, p = 0.0591) in the 

hippocampus (Figure 33A). The last finding corresponds to the observations in the 

hippocampus of NPS-treated C57BL/6N mice. In the prefrontal cortex, NPS had no 

effects on mRNA expression of the examined candidates (Figure 33B). 

 

Figure 33. Effects of transnasally delivered NPS (14 nmol) 4 hours after application on 
mRNA levels in hippocampus (Hc) and prefrontal cortex (Pfc) of HAB mice. A 
Real-time PCR analysis of Hc lysate from HAB mice 4 hours after intranasal 
NPS treatment. GluR2: t = 1.540, df = 8, p = 0.1620; Synapsin I: t = 1.123, df = 
8, p = 0.2940; Synapsin II: t = 1.339, df = 5, p = 0.2383. B Real-time PCR 
analysis of Pfc lysate from HAB mice 4 hours after intranasal NPS treatment. 
GluR1: t = 0.7371, df = 7, p = 0.4850; GluR2: t = 0.7957, df = 8, p = 0.4492; Glt-
1: t = 0.2440, df = 7, p = 0.8143; Synapsin I: t = 0.8174, df = 8, p = 0.4373; 
Synapsin II: t = 0.4126, df = 8, p = 0.6907. HAB: n = 5 for each group. Statistical 
analysis: two-tailed unpaired t-test. t p < 0.1; * p < 0.05. All data are shown as 
mean ± s.e.m. 

24 hours after treatment, there were no differences in protein expression levels of the 

examined candidates in the hippocampus (Figure 34A). However, in the prefrontal 

cortex, NPS-treated HAB mice displayed a trend towards increased protein 

expression of GluR1 (t = 2.228, df = 10, p = 0.0500), as well as significantly 

increased GluR2 protein expression (t = 2.832, df = 10, p = 0.0178) (Figure 34B). 
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Figure 34. Effects of transnasally delivered NPS (14 nmol) 24 hours after application on 
protein levels in hippocampus (Hc) and prefrontal cortex (Pfc) of HAB mice. A 
Immunoblot analysis of Hc lysate from HAB mice 24 hours after intranasal NPS 
treatment. GluR1: t = 0.2502, df = 9, p = 0.8081; GluR2: t = 0.1124, df = 10, p = 
0.9127; Glt-1: t = 1.582, df = 10, p = 0.1447; Synapsin Ia-b/IIa: t = 1.197, df = 9, 
p = 0.2619. B Immunoblot analysis of Pfc lysate from HAB mice 24 hours after 
intranasal NPS treatment. Glt-1: t = 0.8817, df = 9, p = 0.4009; Synapsin Ia-
b/IIa: t = 0.9739, df = 10, p = 0.3531. Internal expression control: GAPDH (35 
kDa in immunoblot excerpts). Blot excerpts show three representative adjacent 
bands of each group. The immunoblot data represent cumulated data from at 
least three independent experiments. HAB: n = 5 for each group. Statistical 
analysis: two-tailed unpaired t-test. t p < 0.1; * p < 0.05. All data are shown as 
mean ± s.e.m. 

In conclusion, NPS exerts regulatory effects on mRNA and protein expression of 

candidates involved in the glutamatergic circuit also in a mouse model of pathological 

anxiety. These regulatory effects of intranasally applied NPS in HAB mice overlap in 

part with those observed in C57BL/6N mice, i.e. in the case of Glt-1 mRNA 

expression in the hippocampus and GluR1 protein expression in the prefrontal 

cortex.  

3.6. Acute intranasal NPS treatment in a mouse model of PTSD 

In order to test whether NPS treatment can improve PTSD-related symptoms, 

shocked mice were treated intranasally with either NPS or vehicle daily on three 

consecutive days starting at day 28 post-shock, a time-point at which a full-blown 

PTSD-like pathology has been described in this mouse model (Siegmund and 
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Wotjak, 2007). Behavioral and molecular analyses were then performed to examine 

the influence of NPS on the phenotype of these mice. 

3.6.1. Behavioral results 

The behavioral phenotype of the mice was evaluated in three tests performed on 

three consecutive days (for an overview of the experimental schedule see Figure 35).  

 

Figure 35.  Overview of the experimental timeline in intranasal NPS application in a mouse 
model of PTSD. A At day 0 (d0), mice received the electric shock. B At day 28 
(d28), mice were treated intranasally with either vehicle or NPS and 2 hours 
later tested for conditioned fear in the shock context. C At day 29 (d29), mice 
were treated with either vehicle or NPS and 2 hours later tested for social 
interaction. D At day 30 (d30), mice were treated with either vehicle or NPS and 
2 hours later tested for their acoustic startle response. E At day 31 (d31), mice 
were sacrificed for brain removal, from which protein and mRNA were 
subsequently isolated. 

 

 

Figure 36.  Behavioral effects of NPS treatment in the mouse model of PTSD. A Response 
to reexposure to conditioning context (CS +) measured in % freezing. B 
Measure of social interaction. C Intensity of acoustic startle response (ASR) to a 
tone of increasing sound level. The data represents mean peak startle 
amplitude in response to 30 stimuli of each intensity value. 

The parameters measured were: percent freezing in the shock context (CS +), 

percent social interaction and intensity of acoustic startle response (ASR) depending 
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on noise intensity. No differences were observed in these parameters between NPS-

treated and vehicle-treated shocked mice (Figure 36). 

3.6.2. Analyses of mRNA and protein expression in hippocampus and 

prefrontal cortex in the PTSD mouse model 

The molecular effects of NPS treatment were examined in this mouse model in 

addition to the behavioral read-out of NPS-treated shocked mice, in order to fully 

characterize the potential therapeutic effects of this substance. Therefore, in addition 

to behavioral testing, changes in mRNA and protein levels of selected candidates 

that had been found to be regulated by NPS treatment in non-shocked C57BL/6N 

and HAB mice (see 3.3.2. and 3.5.2.) were examined in the hippocampus and 

prefrontal cortex, two brain regions that have been described as affected in PTSD 

(Shin et al., 2004, 2006; Golub et al., 2011). Again, these candidates were GluR1, 

GluR2, Glt-1, and synapsin (isoforms I and II). 

In the hippocampus of shocked mice, NPS treatment led to increased synapsin I (t = 

2.408, df = 7, p = 0.0469) and II (t = 2.525, df = 8, p = 0.0355) mRNA levels, as well 

as to an upward trend in synapsin Ia-b/IIa protein expression (t = 2.140, df = 7, p = 

0.0696) compared to vehicle-treated controls 24 hours after the last application 

(Figure 37D). 

In addition, a trend towards increased expression of GluR1 (t = 2.049, df = 8, p = 

0.0746) and GluR2 (t = 2.016, df = 7, p = 0.0836) mRNA was observed (Figure 37A). 

On the protein level, these changes did not materialize in the case of GluR1, 

whereas GluR2 protein expression decreased significantly (t = 4.341, df = 7, p = 

0.034) (Figure 37B). On the other hand, Glt-1 mRNA and protein expression 

remained unaffected (Figure 37C). 

In the prefrontal cortex, NPS treatment resulted in an upward trend in GluR2 mRNA 

expression (t = 2.2028, df = 8, p = 0.0770), while GluR2 protein expression remained 

unchanged (t = 1.591, df = 8, p = 0.1504) (Figure 38A). There were no other changes 

in mRNA or protein expression of any of the observed candidates (Figure 38B, C and 

D). 
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Figure 37.  Effects of NPS treatment in the hippocampus on mRNA and protein expression of proteins 
involved in the glutamatergic circuit and in synaptic plasticity in shocked mice. A GluR1 
mRNA and protein (t = 0.2528, df = 8, p = 0.8068) expression. B GluR2 mRNA and 
protein expression. C Glt-1 mRNA (t = 1.219, df = 8, p = 0.2575) and protein (t = 0.7859, 
df = 8, p = 0.4546) expression. D Synapsin I and II mRNA and synapsin Ia-b/IIa protein 
expression expression. Internal expression control: GAPDH (35 kDa in immunoblot 
excerpts). Blot excerpts show three representative adjacent bands of each group. The 
immunoblot data represent cumulated data from at least three independent experiments. 
n = 5. Statistical analysis: two-tailed unpaired t-test. t p < 0.1; * p < 0.05. All data are 
shown as mean ± s.e.m. 

 

Figure 38.   Effects of NPS treatment in the prefrontal cortex on mRNA and protein expression of 
proteins involved in the glutamatergic circuit and in synaptic plasticity in shocked mice. 
A GluR2 mRNA and protein (t = 1.591, df = 8, p = 0.1504) expression. B GluR1 mRNA 
(t = 1.719, df = 8, p = 0.1239) and protein (t = 1.591, df = 8, p = 0.5467) expression. C 
Glt-1 mRNA (t = 0.8482, df = 8, p = 0.4210) and protein (t = 0.7889, df = 8, p = 0.4529) 
expression. D Synapsin I and II mRNA expression (t = 0.2337, df = 7, p = 0.8219) and 
synapsin Ia-b/IIa protein expression (t = 0.6485, df = 8, p = 0.5348). Internal expression 
control: GAPDH (35 kDa in immunoblot excerpts). Blot excerpts show three 
representative adjacent bands of each group. The immunoblot data represent 
cumulated data from at least three independent experiments. n = 5. Statistical analysis: 
two-tailed unpaired t-test. t p < 0.1. All data are shown as mean ± s.e.m. 
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3.6.3. Corticosterone plasma levels 

Given that NPS has been shown to influence the HPA axis (Smith et al., 2006), which 

is known to be affected in PTSD (Ehlert et al., 2001; Shea et al., 2005; de Kloet et al., 

2006), corticosterone levels were investigated by corticosterone ELISA in plasma 

samples of shocked mice. Acute NPS treatment at day 28 after shock led to a trend 

towards increased plasma corticosterone levels compared to vehicle treatment (t = 

1.802, df = 14, p = 0.0932) (Figure 39B).  

In conclusion, NPS treatment in the PTSD mouse model did not affect the behavioral 

phenotype. At the molecular level on the other hand, NPS regulated expression 

levels of examined candidates both on mRNA and on protein level and, most 

importantly, led to an increase in synapsin levels that had also been observed in non-

shocked C57BL/6N mice (see 3.3.2.). Moreover, NPS increased circulating 

corticosterone plasma levels up to 24 hours after treatment. 

 

Figure 39.   Corticosterone levels in plasma obtained from trunk blood of shocked mice after 
NPS treatment. A Fitted curve in a semi-log plot showing known corticosterone 
concentrations in ng/ml at the power of 10 from the calibrator samples C0-C5 
and the corresponding absorbtion values. B Graph showing mean 
corticosterone concentrations (extrapolated from fitted curve) of the two groups. 
Statistical analysis: two-tailed unpaired t-test. t p < 0.1. All data are shown as 
mean ± s.e.m. 
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4. Discussion 

4.1. Anxiolytic effects of intranasally applied NPS in C57BL/6N and HAB mice 

The main focus of this study was the characterization of NPS-elicited anxiolytic 

effects in view of the potential of NPS as a novel therapeutic for anxiety disorders, 

including PTSD. NPS represents a prime candidate for this purpose, since, although 

it has been reported to have reward-like effects (Cao et al., 2011), it does not act via 

the GABAA receptor like benzodiazepines and therefore will most likely not have their 

undesirable side-effects, especially as regards sedation, a common secondary action 

of benzodiazepine treatment (Cloos and Ferreira, 2009).  

Most important for the implementation of an NPS-based therapy in patients was 

establishing a non-invasive application procedure appropriate for use in humans, as 

opposed to the ICV administration that was hitherto used in rodents. The results 

presented here show for the first time that intranasally applied NPS can successfully 

target the mouse brain. Although work done by others has already revealed that 

intranasally applied substances, among them neuropeptides, can target the CNS 

(Born et al., 2002; Dufes et al., 2003; Thorne et al., 2004, 2008; Dhuria et al., 2009), 

this was until now not proven in the case of NPS. Testing the feasibility of intranasal 

NPS delivery was crucial, since only the molecular structure of a substance is 

generally not sufficient to predict whether and to what extent the substance of 

interest will reach the brain after intranasal delivery (Ozsoy et al., 2009; Dhuria et al., 

2010). In addition, even if the substance is able to bypass the nose-brain barrier and 

reach the brain, it is still a considerable challenge to identify the correct dosis for 

eliciting the desired therapeutic effects, since the nasal bioavailability of hydrophilic 

peptides and proteins is usually below 1 % (Ozsoy et al., 2009), in part as a 

consequence of the neuropeptide-degrading enzymes of the nasal mucosa (Ohkubo 

et al., 1994).  

It is therefore remarkable that here, NPS could not only be tracked within the murine 

brain after intranasal application, but also induced locomotion-independent anxiolytic 

effects in mice. The data on successful transnasal delivery of NPS to alert mice 

presented here strongly encourage the development of NPS-based anxiolytics by 

providing the basis for intranasal NPS administration in patients.  
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The behavioral results obtained in C57BL/6N mice treated intranasally with NPS are 

very similar to the ones described previously by others after ICV injection of NPS 

(Jüngling et al., 2008; Leonard et al., 2008). The effects of NPS on both anxiety and 

locomotion were examined in two different standardized behavioral assays: the dark-

light test and the EPM. This was done to improve the characterization of the NPS-

induced behavioral phenotype, since both tests have been shown to cover different 

facets of anxiety (van Gaalen and Steckler, 2000; Bailey et al., 2007). The first test 

performed was the open field, which may be considered a fairly stressful experience 

for the animals. While it cannot be excluded with absolute certainty that the sequence 

of the tests might affect the behavioral readout, it is unlikely to assume that the 

control and treatment group were affected differently by this experience, as they did 

not show any difference in locomotion in the open field. The only possible way to 

circumvent the potential inter-test effects would have been to perform the assays on 

different days, so as to allow sufficient time for the influence of the single tests to 

disappear. However, this would have led to the additional difficulty of repeated NPS 

treatment, which would also have biased the results due to potential effects of 

chronic versus acute treatment. Although the behavioral effects of intranasal NPS 

treatment become apparent at a later time-point than described for ICV injection (4 

hours instead of 30 min), this difference is most likely a consequence of dissimilar 

pharmacokinetics and targeting efficiencies of intranasally versus ICV-administered 

drugs (Thorne et al., 1995, 2008; Shi et al., 2010). This assumption is supported by 

the fact that at 30 min after intranasal application, a much weaker signal was 

observed than after ICV application. Therefore, although NPS reaches the brain 

rapidly after intranasal administration, additional time may be necessary for the 

substance to reach its brain target cells in the full concentration required to produce 

behavioral effects. In combination with the results describing NPS-induced changes 

in expression levels of candidate proteins up to 24 hours after treatment, future 

studies characterizing an even more extended timeline of NPS effects will be helpful. 

As shown here for the first time, NPS treatment also exerts anxiolytic effects in HAB 

mice, a mouse model of pathological anxiety. These effects become apparent in HAB 

mice only in the dark-light test and not in the EPM as well, where reduced anxiety 

was also apparent in C57BL/6N mice. This may be the consequence of different 

neurobiological mechanisms underlying the general condition of trait anxiety 
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represented by the HAB mice versus the temporary condition of state anxiety 

(Krömer et al., 2005; Bunck et al., 2009). Moreover, the HAB mice are selected 

according to their behavior on the EPM (Krömer et al., 2005; Hambsch et al., 2010), 

which means that they have already been exposed to this test once. This prior 

exposure may additionally sensitize them towards this test and may contribute to 

making their behavior particularly resistant against pharmacologically induced 

changes in this test, as shown by others in the case of benzodiazepine treatment 

(Gonzalez and File, 1997). NPS-elicited anxiolytic effects in HAB mice are highly 

promising, since they show that NPS may mitigate the phenotypic consequences of a 

genetic predisposition to high anxiety-related behavior. 

These results represent a starting point for future studies exploring the precise 

pharmacokinetics of intranasally applied NPS. Additionally, this application method 

will most likely facilitate animal experiments studying NPS effects, since it 

considerably reduces the stress the animals are exposed to during treatment as 

compared to the surgery-dependent intracerebral injection used in previous studies 

(Xu et al., 2004; Jüngling et al., 2008; Leonard et al., 2008; Fendt et al., 2010). 

4.2. Identification of target brain regions and target neurons of NPS by NPSR-

mediated internalization of Cy3-NPS 

Here, the brain target regions and target neurons of NPS were identified with a high 

specificity by application of Cy3-NPS. Fluorescently labeled neuropeptides have 

been previously used by others both to study specific receptor-ligand interactions and 

to identify target cells both in vitro (Bunnett et al., 1995; Grady et al., 1995) and in 

vivo (Hubbard et al., 2009). The work at hand is however the first one to combine in 

vitro use of fluorophore-coupled ligands with intracerebral tracking after intranasal 

application in vivo.  

The cell culture results presented here prove that intracellular Cy3-NPS uptake is 

receptor-mediated and takes place only in those cells that express NPSR at the 

membrane. This GPCR-dependent internalization process occurs upon highly 

specific interaction between the ligand and its respective receptor and represents a 

cellular desensitization mechanism described also for other neuropeptide receptors 

(Grady et al., 1995; Hökfelt et al., 2003; Reyes et al., 2006). However, in the case of 
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NPS, this phenomenon had not yet been explicitly demonstrated. The only work in 

this direction so far had been performed using vasopressin stimulation of a chimeric 

construct of vasopressin and NPS receptor elements (Gupte et al., 2004). Therefore, 

the physiological significance of those findings was limited. The results obtained in 

the course of the study presented here constitute the first evidence for agonist-

induced internalization of wild-type murine NPSR. Although it is known that some 

neuropeptides can directly cross the plasma membrane and exert effects in a 

receptor-independent manner (Saban et al., 2002; Prochiantz and Joliot, 2003; 

Marinova et al., 2005), this does not seem to be the case here, since the only uptake 

observed occurs in cells expressing the tagged NPSR-construct. Moreover, Cy3-NPS 

is highly apparent at the membrane immediately following stimulation, in contrast to 

cell-penetrating neuropeptides, such as dynorphin, which are located mainly in the 

cytoplasm (Marinova et al., 2005). Finally, the Cy3-NPS signal colocalized 

exclusively with the signal of the receptor-specific immunostaining (Figures 10, 11). 

This is quite compelling evidence for the fact that NPS internalization is dependent 

upon expression of active NPSR at the cell membrane. 

These cell culture results permit the assumption that the internalization of Cy3-NPS 

in single cells of various brain regions upon ICV and intranasal administration in vivo 

also represents a receptor-mediated process. Besides proving the feasibility of 

targeting the brain by intranasal administration, this approach led to another major 

finding, namely the identification of the hitherto unknown NPS target brain regions 

and target neurons. The validity of these results is supported by publications which 

link some of the brain regions identified here with NPS-mediated effects. This is the 

case for the basolateral and lateral amygdaloid nuclei; here, not only were anxiolytic 

effects described upon local NPS injection, but also NPSR mRNA expression was 

found in the mouse (Jüngling et al., 2008). This also holds true for the hypothalamus 

(Smith et al., 2006; Fedeli et al., 2009; Yoshida et al., 2010). Moreover, the target 

brain regions of NPS were identified here by two different application methods, 

intranasal and ICV administration. Since the distribution pathways of substances vary 

according to the delivery approach used, the overlap between NPS target brain 

regions identified by these two methods very much strengthens the conclusion that 

these brain regions are indeed the physiological targets of NPS (see Table 11). 

These results partly contradict previous NPSR expression studies, as for instance in 
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the case of the hippocampus, where Cy3-NPS uptake is observed in the work at 

hand but where no NPSR mRNA seems to be expressed in the rat brain (Xu et al., 

2007). This is most likely the consequence of differential NPSR expression patterns 

between rat and mouse, a fact that has already been proven in the case of the 

basolateral amygdala, where abundant NPSR mRNA expression was detected only 

in the mouse (Jüngling et al., 2008). Additionally, control experiments in which Cy3-

NPS uptake was blocked using NPSR-specific antagonists strongly indicate that this 

uptake is NPSR-dependent. Furthermore, the internalization pattern of Cy3-NPS in 

brain neurons after intranasal administration coincides with that observed in cell 

culture upon internalization of the receptor-ligand complex (see Figures 10, 11, 19). 

Finally, it is known that, in NPSR-KO mice, NPS treatment no longer exerts its 

described effects (Zhu et al., 2010), thus proving that NPSR is the only mediator of 

NPS actions. The ultimate confirmation, which could result from an immunostaining 

against NPSR and investigation of the signal compared to the Cy3-NPS signal, 

represents an important future experimental approach.  

The novelty of these findings consists in the identification of the physiological target 

brain regions and target cells of NPS. In contrast to current NPSR expression studies 

using ISH and immunostaining, the NPS target cells identified here are the ones 

where NPSR is expressed not only on mRNA level or within the cytoplasm, but is 

actually present at the membrane and can therefore bind to its ligand and most likely 

as a consequence activate the signaling cascade. Furthermore, using a fluorescent 

conjugate of NPS it was possible, for the first time, to track intranasally administered 

substances at the single cell level. This much improves the anatomical resolution of 

intracerebral distribution patterns hitherto available with radioactively labeled ligands 

(Thorne et al., 2004, 2008). 

4.3. The hippocampus: A novel player in NPS-mediated anxiolytic effects 

Most important, both intranasal and ICV administration of Cy3-NPS led to 

identification of the hippocampus as a novel NPS target region. NPSR mRNA and 

protein expression studies contain contradictory results with respect to the 

hippocampus. In the rat, no NPSR mRNA expression was detected in the CA1, CA2 

and CA3 regions and in the dentate gyrus by ISH (Xu et al., 2007); immunostaining 

against NPSR on the other hand revealed sparse immunoreactivity in these same 
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hippocampal regions (Leonard and Ring, 2011). In the study at hand, however, 

abundant Cy3-NPS uptake was observed in the ventral as well as throughout the 

dorsal hippocampus, spanning all CA regions and the dentate gyrus.  

As far as NPS effects in the hippocampus are concerned, there was until now no 

direct link between NPS treatment and modulation of hippocampal function with 

regard to NPS-elicited anxiolytic effects. The only observations so far relating NPS to 

the hippocampus presented only an indirect link between NPS actions and the 

hippocampal region by showing that NPS treatment increases phosphorylation of 

cAMP-response element binding protein (CREB) in the hippocampus, which the 

authors of the study hypothesized to play a role in reversing impairment of spatial 

memory after rapid eye movement (REM) sleep deprivation (Zhao et al., 2010). 

The work at hand demonstrates that NPS injection specifically into the ventral 

hippocampus is sufficient to elicit anxiolytic effects similar to those observed after 

intra-amygdala and ICV injection (Xu et al., 2004; Jüngling et al., 2008). As shown in 

the present study, these behavioral changes are initiated only within the ventral CA1 

region (the site of injection), since it was shown here additionally that Cy3-NPS 

distribution upon intrahippocampal injection remains locally restricted and does not 

reach the amygdala. Moreover, electrophysiological data obtained in parallel to this 

work show modulation of basal synaptic transmission, of transmitter release 

probability and of short- and long-term plasticity in the ventral hippocampus 2 hours 

after slice incubation with NPS (Ionescu et al., 2012). Interestingly, these 

electrophysiological results could be replicated in slices from the ventral 

hippocampus prepared 4 hours after intranasal NPS treatment in C57BL/6N mice 

(Dine*, Ionescu* et al., in preparation). This strongly supports the conclusion that the 

observed NPS-elicited activity changes are of physiological relevance and pertain to 

the endogenous brain network activity.  

Here is shown that NPS treatment upregulates hippocampal synapsin Ia-b/IIa protein 

expression in mice 24 hours after application. This observation strengthens the 

electrophysiologically identified increase in neurotransmitter release probability after 

NPS treatment. As synapsin has been shown to be involved in modulation of 

neurotransmitter release by regulation of synaptic vesicles availability (Humeau et al., 

2001; Baldelli et al., 2007; Cesca et al., 2010), increased synapsin expression may 
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mirror an increased number of synaptic vesicles at presynaptic terminals. 

Furthermore, the protein data obtained 24 hours after NPS treatment suggest that 

the effects observed 2 hours after slice incubation with NPS may continue in the 

long-term. More detailed investigation of NPS effects over an extended period of 

time, as well as high-resolution microscopy, for instance electron microscopy, to 

accurately quantify potential changes in the synaptic vesicle pools will be needed for 

verifying this hypothesis. 

The anxiolytic effects elicited by NPS injection into the ventral CA1 region and the 

synapsin upregulation upon intranasal NPS treatment together with the 

electrophysiological data showing NPS-induced modulation of hippocampal activity 

strongly point towards the hippocampus as a novel major player in NPS-mediated 

anxiolytic effects (Figure 40). This is especially important since hitherto, the main 

focus has been on the amygdala as the key mediator of the anxiolytic NPS effects 

(Meis et al.; Jüngling et al., 2008; Fendt et al., 2010; Pape et al., 2010). The findings 

presented here do not contradict this model; rather, they complement it. The ventral 

hippocampus and especially the ventral CA1 region are associated with the 

amygdaloid nuclei by extensive bidirectional connections (Fanselow and Dong, 2010) 

(green arrows in Figure 40). Moreover, during the past decade, the role of the ventral 

hippocampus in regulating anxiety and fear formation and expression has emerged 

more and more clearly (Kjelstrup et al., 2002; Bannerman et al., 2004; McHugh et al., 

2004). Therefore, the data presented here strongly suggest that upon NPS 

stimulation, the ventral hippocampus modulates the activity of amygdaloid nuclei to 

decrease anxiety in addition to the direct effects of NPS in the amygdala. 
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Figure 40.  Effects of NPS in amygdaloid structures (Pape et al., 2010) and in the ventral 
CA1 region (Franklin and Paxinos, 2007). Red arrows show identified targets of 
NPS. Green arrows show input connections from the lateral amygdala to the 
ventral CA1 region and output connections from the ventral CA1 region to the 
central amygdala. LA: lateral amygdala; BLA: basolateral amygdala; EPC: 
endopiriform cortex; CeA: central amygdala; vCA1: ventral CA1 region; mpara: 
medial paracapsular interneurons; lpara: lateral paracapsular interneurons. 

 

4.4. NPS and the glutamatergic system in C57BL/6N and HAB mice 

In addition to hippocampal regulation of synapsin expression, NPS treatment also led 

to regulation of protein and mRNA expression of proteins associated with the 

glutamatergic system. 

Although NPS actions have been previously linked to the glutamatergic system (Han 

et al., 2009; Okamura et al., 2010, 2011), there was hitherto no data available on 

regulatory effects of NPS in vivo. This work provides evidence that NPS treatment 

differentially regulates cerebral expression of GluR1, GluR2 and Glt-1 on both mRNA 

and protein level in C57BL/6N mice as well as in HAB mice in a region- and strain-

dependent manner (see Figures 25-27, 33, 34). This is especially relevant since the 

glutamatergic system is known to be affected in psychiatric disorders like PTSD, 

where toxically increased glutamate release is thought to play a role in hippocampal 

shrinkage, as well as in consolidation of traumatic memories (Ravindran and Stein, 

2009; Rossi et al., 2009). 

GluR1 protein expression is increased in the prefrontal cortex of NPS-treated 

C57BL/6N mice, whereas GluR2 expression remains unaffected. This process might 
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result in an increased GluR1:GluR2 ratio, which reflects an enhancement of AMPA 

receptor function (Isaac et al., 2007). As acute potentiation of AMPA receptors in the 

prefrontal cortex has been shown to facilitate fear extinction (Zushida et al., 2007), 

specific upregulation of GluR1 by NPS treatment might provide a hint towards long-

term NPS-mediated fear extinction following chronic NPS treatment. This speculation 

is supported by results showing that NPS treatment can facilitate fear extinction upon 

intra-amygdala injection (Jüngling et al., 2008). To further test this hypothesis, 

investigation of GluR1 and GluR2 expression specifically at the membrane as well as 

an AMPA binding assay will have to be performed in order to check whether the 

observed increase in total-cell GluR1 protein expression is also mirrored on a 

functional level. 

In HAB mice, in contrast to C57BL/6N mice, NPS treatment upregulates protein 

expression of both GluR1 and GluR2. This might be the consequence of a different 

baseline activity of the glutamatergic system in the two strains, especially since the 

HAB mice represent a model of pathologically enhanced trait anxiety. In anxiety 

disorders and PTSD, hyperactivity of the glutamate system might lead to chronic 

potentiation of AMPA receptors and thereby to glutamate excitotoxicity (Tanaka et 

al., 2000). It has been noted that affected neurons express a reduced amount of 

GluR2 subunits. Therefore, it can be speculated that NPS actions under pathological 

conditions are capable of restoring homeostasis in the glutamate system. 

In C57BL/6N mice, NPS also upregulates cerebral Glt-1 mRNA and protein 

expression in the prefrontal cortex in addition to the expression of AMPA receptor 

subunits. Since glutamate excitotoxicity has been reported in PTSD (Ravindran and 

Stein, 2009; Rossi et al., 2009), increase in Glt-1 levels may represent a possible 

damage-limiting mechanism of NPS actions. Moreover, since Glt-1 is expressed 

exclusively by astrocytes (Huang and Bergles, 2004), these data show that NPS, 

although it targets only neurons, can ultimately impact the entire cellular brain 

network. 

The changes in protein expression described here represent valuable starting points 

for further investigation of the mechanisms underlying complex NPS-mediated 

effects, especially in the context of the behavioral and electrophysiology results. 

These changes in protein expression only become apparent 24 hours after treatment. 
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However, regulation of membrane transport and insertion mechanisms may occur 

already at an earlier time point and lead to the electrophysiological and behavioral 

effects described at 2 and 4 hours after NPS administration, respectively. Further 

studies on protein levels of cellular subfractions and on protein dynamics are needed 

to clarify this aspect. The fact that the cerebral expression of the examined 

candidates is differentially modulated at protein and mRNA levels, as well as the fact 

that these processes seem to be time-, region- and strain-dependent, suggest that 

NPS-mediated regulation of protein expression taps into a variety of 

posttranscriptional and posttranslational mechanisms to exert its effects.  

Taken together, these expression analyses provide new insights into potential 

regulatory mechanisms of NPS in vivo, which have hitherto been explored in vitro 

and at the RNA level only (Vendelin et al., 2006). 

4.5. Effects of NPS treatment on cerebral protein expression in a mouse model 

of PTSD 

Regulatory effects of NPS on protein expression were also described in a mouse 

model of PTSD (Siegmund and Wotjak, 2007). Previous screening of protein 

expression in this mouse model revealed the synapsin isoforms I and II to be 

downregulated in the hippocampus at day 28 post-shock (Herrmann et al., 

submitted). Upon intranasal NPS treatment at day 28, treated mice displayed 

increased synapsin I and II mRNA expression in the hippocampus compared to 

vehicle-treated controls, as well as a trend towards increased synapsin Ia-b/IIa 

protein expression. This finding is most interesting, since it shows that NPS treatment 

has the potential to reverse molecular changes that can be attributed to the PTSD 

pathology.  

Moreover, 24 hours after application, NPS treatment trendwise increased 

corticosterone levels in plasma of treated mice as compared to vehicle-treated 

controls. This observation confirms findings that show stimulatory effects of NPS on 

the HPA axis and increased plasma corticosterone 10 to 40 min after NPS ICV 

injection (Smith et al., 2006). It adds to the previous data by showing that NPS 

effects on blood corticosterone levels are robust enough to last up to 24 hours after 

treatment. Additionally, it provides valuable support in favor of the applicability of 
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NPS as an alternative treatment for PTSD, since in PTSD patients, cortisol plasma 

levels have been found to be decreased (Yehuda et al., 1995; Gill et al., 2008; 

Vythilingam et al., 2010). Upon successful treatment cortisol levels increased in 

responders (Olff et al., 2007). Therefore, these results may point towards an incipient 

success of NPS therapy that might, in time, attenuate at least part of the PTSD 

symptoms. Finally, elevated corticosterone levels after NPS treatment very nicely 

relate to NPS-induced upregulation of hippocampal synapsin expression, since it has 

been shown in cell culture of hippocampal neurons that corticosterone stimulation 

increases synapsin Ia-b expression on the protein level (Revest et al., 2010). 

Moreover, corticosterone has been shown to contribute to synaptic plasticity by 

regulating AMPA receptor trafficking differentially via the glucocorticoid receptor (GR) 

and the mineralocorticoid receptor (MR) (Avital et al., 2006; Krugers et al., 2010). 

Indeed, NPS treatment also evokes changes in expression of AMPA receptor 

subunits GluR1 and GluR2, as described here. 

NPS treatment in the PTSD mouse model elicited no behavioral phenotype. This may 

however be due to the fact that at day 28, the mice already exhibit a full-blown PTSD 

phenotype (Siegmund and Wotjak, 2007) which may be difficult to alleviate by acute 

treatment only. Chronic treatment would have to be attempted at this time-point in 

order to better characterize the curative effects of NPS in the case of PTSD. 

However, the results presented here show that this mouse model could be 

appropriate to study the therapeutic and potential curative effects of NPS on PTSD 

symptoms. Traumatized mice treated with NPS respond to treatment as far as 

corticosterone plasma levels are concerned and they additionally show restoration in 

levels of synapsin, newly identified as a potential biomarker of PTSD (Herrmann et 

al., submitted).  

4.6. Summary 

To sum up, the work presented here establishes a non-invasive procedure for NPS 

administration in mice whereby anxiolytic and HPA axis-regulating effects of NPS are 

preserved, and that may be implemented in patients. Intranasal application of Cy3-

NPS allowed visualization of NPS target cells at a single-cell resolution, thus 

establishing for the first time the use of fluorophore-coupled ligands for substance 

tracking after intranasal application. By this technique, the hippocampus was 
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identified as a novel target brain region of NPS which contributes to mediating its 

anxiolytic effects. Together with results on the regulatory effects of NPS on protein 

and mRNA expression in various brain regions associated with anxiety, these 

findings give new insights into the molecular basis of NPS-elicited effects. Finally, 

therapeutic actions of NPS are shown here for the first time in a high anxiety mouse 

model, the HAB mice, and trauma-counteracting effects of NPS treatment on 

hippocampal expression of synaptic proteins are described here in a mouse model of 

PTSD. This study therefore provides a solid basis for developing an NPS-based 

therapy for patients suffering from anxiety disorders like PD and PTSD.  
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5. Supplementary Material 

 
Supplementary Table 1. List of devices used in this work. 
 
 

Device Firm 

Bio-Rad DNA Subcell system (agarose 
gel electrophoresis) 

Bio-Rad, Munich, Germany 

Cell culture incubator Heraeus 240i Thermo Scientific, Waltham, MA, USA 

Confocal microscope Olympus IX81 
Olympus Soft Imaging Systems GmbH, 
Münster, Germany 

Cryostat Microm HM 500 OM Thermo Scientific, Walldorf, Germany 

Dynatech MR5000 plate reader 
Dynatech Laboratories, Denkendorf, 
Germany 

Epifluorescence microscope Olympus 
BX61 

Olympus Soft Imaging Systems GmbH, 
Münster, Germany 

Kodak M35 X-OMAT Processor 
Carestream Health Inc, Rochester, NY, 
USA 

LightCycler®2.0 Roche Diagnostics, Mannheim, Germany 

Mini-Protean Electrophoresis System 
(SDS-PAGE) 

Bio-Rad, Munich, Germany 

Nanophotometer Implen, Munich, Germany 

PCR thermocycler TProfessional Biometra, Göttingen, Germany 

Plate centrifuge 5804 R Eppendorf, Hamburg, Germany 

Protean GelDoc 2000 system (agarose 
gel analysis) 

Bio-Rad, Munich, Germany 

Shaker Gyro-Rocker SSL3 Stuart, Staffordshire, UK 

Sonifier Cell Disruptor B15 Branson, USA 

Stereotact TSE Systems, Bad Homburg, Germany 

Table centrifuge 5415 R Eppendorf, Hamburg, Germany 

Turrax homogenizer VDI12 VWR, Darmstadt, Germany 
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Supplementary Table 2. List of materials used in this work. 
 
 
 

Material Firm 

0.2 ml PCR tubes Eppendorf, Hamburg, Germany 

1.5 ml tubes Eppendorf, Hamburg, Germany 

10 µl Hamilton syringe Hamilton Bonaduz AG, Bonaduz, Switzerland 

2 ml tubes Eppendorf, Hamburg, Germany 

23 gage guide cannulas 
Josef Peske GmbH & Co. KG, Aindling-
Arnhofen, Germany 

30 gage injection cannulas VWR, Darmstadt, Germany 

Cell culture vessels (10 cm 
dishes, 6/24/96-well plates) 

Josef Peske GmbH & Co. KG, Aindling-
Arnhofen, Germany 

Cover slips 12 mm  
Marienfeld GmbH & Co. KG, Lauda-
Königshofen 

Dual-Cement Basis + 
Katalysator 

Pluradent AG & Co. KG, Munich, Germany 

EDTA 1.5 ml tubes for blood 
Josef Peske GmbH & Co. KG, Aindling-
Arnhofen, Germany 

FujiFilm X-Ray 18x24 100NF 
Röntgen Bender GmbH & Co. KG, Baden-
Baden, Germany 

Gloves SemperGuard 
latex/nitrile powder-free 

Semperit Technische Produkte, Vienna, 
Austria 

LightCycler capillaries (20 µl) Roche Diagnostics, Mannheim, Germany 

Netwells for immunostainings VWR, Darmstadt, Germany 

Neubauer Counting Chamber 
improved 

Carl Roth GmbH + Co., Karlsruhe, Germany 

Nitrocellulose membrane Carl Roth GmbH + Co., Karlsruhe, Germany 

Parafilm 
Josef Peske GmbH & Co. KG, Aindling-
Arnhofen, Germany 

Research pipettes Eppendorf, Hamburg, Germany 

RNase/DNase-free 0.5 ml tubes Eppendorf, Hamburg, Germany 

RNase-free 2 ml tubes Eppendorf, Hamburg, Germany 

Screws DIN84 1.0x2 Paul Korth GmbH, Lüdenscheid, Germany 

Slides Superfrost® Plus Thermo Scientific, Waltham, MA, USA 

Surgical instruments TSE Systems, Bad Homburg, Germany 

Tygon tube VWR, Darmstadt, Germany 
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Supplementary Table 3. List of substances used in this work (sorted alphabetically). 
 
 
 
 

Substance 
Firm 

(R)-SHA 68 
Generous gift from A. Sailer, 
Novartis Basel, Switzerland 

[D-Cys(tBu)5]NPS 
Generous gift from N. Singewald, 
University of Innsbruck, Austria 

10x PCR Reaction Buffer (- MgCl2) Invitrogen, Grand Island, NY, USA 

25x Protease Inhibitor Cocktail Roche, Grenzach-Wyhlen, Germany 

4’,6-diamidino-2-phenylindole (DAPI) 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Acrylamide 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Agar-Agar, Kobe I 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Ammonium persulfate (APS) 
RheinPerChemie GmbH, Hamburg, 
Germany 

Ampicillin  
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Antibiotic-antimycotic solution Gibco, Darmstadt, Germany 

BamHI 
New England Biolabs, Ipswich, MA, 
USA 

Borate Merck KGaA, Darmstadt, Germany 

Bovine serum albumin (BSA): Albumin 
fraction V 

Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Bromphenolblue Merck KGaA, Darmstadt, Germany 

Chloroform 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Cy3-NPS 
Phoenix Pharmaceuticals, 
Karlsruhe, Germany 

Diethylpyrocarbonate (DEPC) 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Dimethylsufoxide (DMSO) Invitrogen, Grand Island, NY, USA 

dNTPs Invitrogen, Grand Island, NY, USA 

Dulbecco’s modified Eagle’s medium 
(DMEM) 

Gibco, Darmstadt, Germany 

Ethanol Sigma-Aldrich, St Louis, MA, USA 

Ethidium bromide (EtBr) Sigma-Aldrich, St Louis, MA, USA 

Ethylene glycol 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Ethylenediaminetetraacetic acid (EDTA) VWR, Darmstadt, Germany 
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ExGen 500 in vitro Transfection Reagent Fermentas, St Leon-Rot, Germany 

Fetal calf serum (FCS) Gibco, Darmstadt, Germany 

Fluorescein Invitrogen, Grand Island, NY, USA 

Forene 100 % (V/V) Abbott, Wiesbaden, Germany 

Formaldehyde min. 37 % Merck KGaA, Darmstadt, Germany 

Gelatin 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Glucose 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Glycerin ≥ 86 % 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Glycin 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Goat serum Sigma-Aldrich, St Louis, MA, USA 

Hank’s Balanced Salt Solution with 
phenol red 

Gibco, Darmstadt, Germany 

Isopropanol VWR, Darmstadt, Germany 

Kanamycin 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Ketamine hydrochloride 
Essex Pharma GmbH, Munich, 
Germany 

LB Broth EZMix™ Powder Sigma-Aldrich, St Louis, MA, USA 

Metacam 
Boehringer Ingelheim, Biberach, 
Germany 

Methanol 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Methylbutane 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

MgCl2 (50 mM) Invitrogen, Grand Island, NY, USA 

Milk powder 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

TFM Tissue Freezing Medium 
TBS Triangle Biomdeical Sciences, 
Inc, Durham, NC, USA 

NEBuffer 3 
New England Biolabs, Ipswich, MA, 
USA 

NPS (rat) Bachem, Weil am Rhein, Germany 

PageRuler Prestained Protein Ladder Invitrogen, Grand Island, NY, USA 

peqGold Ladder-Mix (100-1000 bp) PeqLab, Erlangen, Germany 

peqGold Universal Agarose PeqLab, Erlangen, Germany 

Phosphate buffered saline (PBS) Gibco, Darmstadt, Germany 

Ponceau S AppliChem, Darmstadt, Germany 

Reaction Buffer for T4 ligase 
New England Biolabs, Ipswich, MA, 
USA 
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Rhodamine B Sigma-Aldrich, St Louis, MA, USA 

Rhodamine-NPS 
Phoenix Pharmaceuticals, 
Karlsruhe, Germany 

Shandon Immu-Mount 
Thermo Scientific, Waltham, MA, 
USA 

Sodium pyruvate Gibco, Darmstadt, Germany 

Sulfosalycilic acid 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

T4 ligase 
New England Biolabs, Ipswich, MA, 
USA 

Taq polymerase Invitrogen, Grand Island, NY, USA 

Tetraethylmethylenediamine (TEMED) 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Trichloroacetic acid 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Tris 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Triton X-100 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Trypan blue Sigma-Aldrich, St Louis, MA, USA 

Trypsin Gibco, Darmstadt, Germany 

Tween 20 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

XhoI 
New England Biolabs, Ipswich, MA, 
USA 

Xylazin hydrochloride 
Bayer Vital GmbH, Lederhosen, 
Germany 

β-mercaptoethanol 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

 
 
Supplementary Table 4. List of kits used in this work. 
 
 
 

Kit Firm 

BCA Protein Assay Reagent Thermo Scientific, Waltham, MA, USA 

Corticosterone (Rat/Mouse) ELISA 
DRG Instruments GmbH, Marburg, 
Germany 

NucleoSpin RNA II Kit Macherey-Nagel, Düren, Germany 

Omniscript Reverse Transcription Kit Qiagen, Hilden, Germany 

PureYield Plasmid Midiprep System Promega, Madison, WI, USA 

QIAquick Gel Extraction Kit Qiagen, Hilden, Germany 

QuantiFast SYBR Green PCR Kit Qiagen, Hilden, Germany 
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Supplementary Table 5. Buffer recipes used in this work. 
 
 
Buffer recipes 

 

Ampicillin 50 mg/ml 

-- 1 g in 20 ml H2O 

-- sterile filtration, aliquots of 1 ml at -20 °C 

 

Ammoniumpersulfate (APS) 10 % 

-- 1 g in 10 ml H2O, aliquots of 1 ml at -20 °C 

 

Agar plates for bacterial growth 

-- 20 g LB broth 

-- 15 g Agar-Agar (1.5 %) 

-- 1 l H2O 

-- add antibiotic (ampicillin at a final concentration of 100 µg/ml) 

-- cast plates 

 

DEPC H2O 

-- 2 ml DEPC in 2 l H2O, mix overnight at RT 

-- autoclave twice 

 

Freezing buffer for free-floating brain sections 

-- 25 % ethylene glycol 

-- 25 % glycerin 

-- 50 % PBS 

 

HRP substrate solution 

-- luminol stock 250 mM (266 mg in 6 ml DMSO) 

-- coumaric acid stock 90 mM (38 mg in 2.5 ml DMSO) 

 

LB medium 

-- 20 g LB broth in 1 l dH2O 

-- autoclave 
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Kanamycin 30 mg/ml 

-- 300 mg in 10 ml H2O 

-- concentration for agar plates: 30 µg/µl 

 

Ketamine-rompun 

-- 2% rompun 2% 

-- xylazin – xylazin hydrochloride 

-- 5% ketamine 10% (ketamine hydrochloride) 

-- in NaCl 

 

Laemmli dilution buffer (LAP+) for protein dilutions, 5x 

-- 5 % SDS 

-- 40 % glycin 

-- 160 mM Tris, pH = 6.8 

-- 5 % β-mercaptoethanol 

-- pinch of bromphenolblue 

-- H2O ad 10 ml 

-- aliquots of 0.5 ml at -20 °C 

 

Laemmli running buffer, 10x 

-- 25 mM Tris 

-- 192 mM glycin 

-- 0.5 % SDS 

-- H2O ad 1 l 

 

4 % PFA 

-- 100 ml Stock Solution A (27,6 g NaH2PO4 in 1000 ml ddH2O) + 400 ml Stock 
Solution B (35,6 g Na2HPO4 in 1000 ml ddH2O) 

-- 100 ml formaldehyde 37 % diluted with ddH2O up to 500 ml 

-- filter formaldehyde with two filters to remove calcium and prevent salt formation 

-- together: 1 l 4 % PFA in phosphate buffer 

 

Ponceau S solution 

-- 0.2 % Ponceau S 

-- 3 % trichloroacetic acid 

-- 3 % sulfosalycilic acid 
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-- dH2O ad 1 l 

 

TBS 10x 

-- 100 mM Tris 

-- 1.5 mM NaCl 

-- H2O ad 1 l, pH = 7.6 

-- for TBS-T: 1 l 10x TBS + 10 ml Tween-20, H2O ad 10 l, mix well 

 

Trypsin EDTA 

-- 1600 ml H2O 

-- 200 ml HBSS (10x with phenol red) 

-- 200 ml 10x trypsin 

-- mix and filter 

 

TBE 10x 

-- 90 mM Tris 

-- 90 mM borate 

-- 2.5 mM EDTA, pH = 8 

 

WetBlot Buffer 10x 

-- 250 mM Tris 

-- 1900 mM glycin 

-- H2O ad 1 l 

-- for 1x WetBlot Buffer ready-to-use: 100 ml 10x WetBlot Buffer + 700 ml H2O + 200 
ml methanol 
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Supplementary Table 6. List of software used in this work. 
 
 
 

Software Firm 

ImageJ software 
http://rsbweb.nih.gov/ij/, Rasband, W.S., 
ImageJ, U.S. National Institutes of Health 
Bethesda, Maryland, USA 

Adobe Photoshop CS5 Adobe 
LightCycler software 2.0 Roche Diagnostics, Mannheim, Germany
Confocal microscope: FluoView FV 1000 
2.1.2.5 

Olympus Soft Imaging Systems GmbH, 
Münster, Germany 

Statistical analysis: GraphPad Prism 
5.03 

GraphPad Software, La Jolla, CA, USA 

ANY-maze 4.30 Stoelting, Wood Dale, IL, USA 

Epifluorescence microscope: cell^F 2.8 
Olympus Soft Imaging Systems GmbH, 
Münster, Germany 
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