Logo
DeutschClear Cookie - decide language by browser settings
Stahl, Stefan (2012): Konnektivität molekularer Domänen bei der kraftinduzierten Entfaltung einzelner Biomoleküle. Dissertation, LMU München: Faculty of Physics
[img]
Preview
PDF
Stahl_Stefan.pdf

16Mb

Abstract

In den zellulären Stoffwechsel- und Signalnetzwerken existiert eine Vielzahl von logischen Abhängigkeiten, die auf Prozesse auf molekularer Ebene zurückzuführen sind. So lässt sich beispielsweise die Effizienz einer biochemischen Reaktion über Enzyme regulieren, deren Aktivitätsgrad von äußeren Parametern abhängt. Kraft stellt eine dieser Einflussgrößen dar. Diese Arbeit befasst sich damit, das Verhalten mehrerer, logisch verknüpfter, molekularer Domänen unter Krafteinwirkung zu studieren und sich deren Eigenschaften für nanotechnologische Verfahren zu Nutze zu machen. Neben der Untersuchung von in der Natur vorkommenden Proteinen mit multiplen Domänen wurden artifizielle DNA- und proteinbasierte Systeme mit verschiedener Bindungsstärke konstruiert. Dies ermöglicht den gerichteten Transport einzelner, molekularer Bausteine mit der Präzision eines Rasterkraftmikroskopes im Nanometer-Bereich. Mithilfe dieser Single-Molecule Cut-and-Paste (SMCP) Technik können auf der Basis gerichteter, molekularer Erkennung räumliche Arrangements funktioneller Bausteine geschaffen werden. Diese lassen sich mittels Fluoreszenzmikroskopie als isoliertes System betrachten. Die Zielsetzung bei der Untersuchung der natürlichen Systeme war es, deren Abhängigkeiten zu verstehen und herauszufinden, wie sich diese mit ihrer Funktion und den an das Protein gestellten Umgebungsbedingungen in Einklang bringen lassen. Die dabei gewonnene Erkenntnis liefert nicht nur wichtige Beiträge zur biologischen und medizinischen Grundlagenforschung, sondern kann, wie am Beispiel der SMCP-Technik ersichtlich, auch hilfreich bei der Entwicklung neuartiger Messmethoden der molekularen Bio- und Nanotechnologie sein. Mittels Einzelmolekülkraftspektroskopie im „Konstante-Kraft“ (engl. Force-Clamp) Modus wurde die Kooperativität der fünf Proteindomänen des Enzyms Titinkinase untersucht. Dieses Muskelprotein wandelt in der Skelett- und Herzmuskulatur mechanische in biochemische Signale um und regelt dadurch den Umsatz weiterer Proteine und die Expression von Genen. Es wird gezeigt, dass sich die einzelnen mechanisch induzierten Entfaltungsschritte gegenseitig bedingen und dass dies inhärent durch die molekulare Faltung des Proteins vorgegeben wird. Da Kraft zum natürlichen Parameterraum dieses Moleküls gehört, muss seine Struktur an kraftinduzierte konformationelle Änderungen angepasst sein. Durch die Abhängigkeit der Energiebarrieren während der Entfaltung wird gewährleistet, dass stabilisierende und enzymatisch wirksame Domänen nicht vor regulatorischen Domänen entfalten. Myosin-Light-Chain Kinase (MLCK) ist ein weiteres Muskelenzym, bei dem es Hinweise auf eine mechanische Aktivierbarkeit gibt. Einzelmolekülexperimente dieser Dissertation zeigen, dass die Entfaltung der Kinase ebenfalls in mehreren Schritten vonstatten geht und dass einer der Zwischenzustände durch ATP-Bindung stabilisiert wird. Die absoluten Entfaltungskräfte liegen dabei unter denen der Titinkinase, was der Hypothese der mechanischen Aktivierbarkeit entgegenkommt. Als weiteres System wurde das Cellulosom des thermophilen Bakteriums Clostridium Thermocellum auf seine mechanische Stabilität überprüft. Cellulosome sind an der Außenseite von Bakterien und Pilzen verankerte Proteinkomplexe, die in der Lage sind Lignozellulose zu zersetzen. Bei der Prozessierung der Cellulose können im Cellulosom hohe Scherkräfte auftreten, da dieses das gesamte Bakterium mit dem makromolekularen Substrat verknüpft. Mittels AFM-basierter Kraftspektroskopie wurde die Wirkung von Kraft auf einen Verbund verschiedener Konstituenten eines Cellulosoms untersucht. Es wird gezeigt, dass sich der Komplex im Vergleich zu anderen Biomolekülen durch eine extrem hohe mechanische Stabilität auszeichnet. Innerhalb der hohen Entfaltungskräfte besteht eine Hierarchie für die verschiedenen Komponenten. Bei vergleichsweise niedrigen Kräften entfalten die enzymatischen Domänen gefolgt von mittleren Kräften für das Entkoppeln der Enzyme mit dem Bindungspartner Cohesin. Sehr hohen Kräften halten die intramolekularen Wechselwirkungen der Cohesine und der Cellulose bindenden Domänen stand. Die Abstufung hoher Stabilitäten stellt eine sehr gute Anpassung an die natürlichen Anforderungen des Proteinkomplexes dar. Für die durchgeführten Messungen wurde ein modulares Kraftmikroskop (AFM) entwickelt, das sich mit einem einzelmolekülsensitiven Fluoreszenzmikroskop kombinieren lässt. Die spezielle Konstruktion weist eine extrem hohe mechanische Stabilität auf. Mittels einer photothermischen Regelung kann das AFM darüber hinaus für sensitive Bildgebung weicher molekularer Oberflächen oder in einen extrem schnellen kraftspektroskopischen Messmodus mit konstanter Zugkraft verwendet werden. Die akkurate Arbeitsweise des Systems wurde in einem internationalen Vergleichsversuch bestätigt.