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Summary 

In their natural habitat bacteria are exposed to many environmental threats. Besides rapidly 

changing physicochemical parameters and an almost constant lack of nutrients, they also 

have to deal with the presence of antimicrobial compounds produced by competing 

organisms. The bacterial cell envelope is the interface between the cytoplasm and the 

environment. Its integrity is crucial for survival, which makes it a preferred target for 

antibiotics. In order to deal with cell envelope impairing agents and conditions before 

severe damage actually occurs, bacteria developed a number of signal transducing systems 

that enable them to sense the presence of antibiotics and respond appropriately by 

differential gene expression. Two different signal transducing principles orchestrate such 

responses: two-component systems (TCSs) and extracytoplasmic function (ECF) σ factors. 

The response of the Gram-positive model organism Bacillus subtilis to cell wall antibiotics 

has been studied extensively and involves four TCS (LiaRS, BceRS, PsdRS and YxdJK) 

and at least three ECF σ factors (σW, σM and σX). In the context of this thesis, we 

determined cell envelope stress responses with a focus on ECF σ factors. 

In the first part of this work, we investigated and compared the response of B. subtilis to 

the cyclic lipopeptide antibiotics daptomycin and friulimicin B, which are both active 

against even multi-resistant Gram-positive pathogens. Genome-wide in-depth expression 

profiling at both the transcriptome and proteome level revealed that both antibiotics trigger 

an ECF σ factor-dependent response involving primarily σM and σV. This response was 

more strongly induced by friulimicin B than by daptomycin. In contrast, daptomycin 

exclusively and strongly induced the LiaRS TCS. These expression signatures indicate that 

both antibiotics act via completely different mechanisms of action, although they are 

structurally similar and generally interfere with cell envelope integrity. This demonstrates 

the great potential and specificity of global expression profiling as a powerful approach to 

characterize the mechanism of action of novel antibiotics or even differentiate between 

chemically related compounds. 

In the second part, we determined the transcriptional response of B. subtilis to 

rhamnolipids, which are industrially important biosurfactants produced by Pseudomonas 

aeruginosa. Rhamnolipids also display antimicrobial activity by interfering with the 
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integrity of biological membranes. A genome-wide DNA microarray analysis of B. subtilis 

after treatment with rhamnolipids revealed for the first time that a single antimicrobial 

compound is able to induce two normally independent stress responses: the cell envelope 

stress response, in this case represented by the LiaRS TCS and the ECF σ factor σM, and 

the secretion stress response mediated by the CssRS TCS. Moreover, the LiaRS TCS and 

σ
M have a protective function against damage caused by rhamnolipids, while the role of 

CssRS in this response is still unclear.  

Finally, we characterized a novel group of ECF σ factors with unique features, namely 

ECF41, which was identified in the context of a comprehensive classification of this 

protein family. A detailed bioinformatics analysis revealed a wide distribution of ECF41 σ 

factors with about 400 proteins from ten different bacterial phyla. This group shows an 

unusual but highly conserved genomic context. Obvious anti-σ factors are missing in the 

direct vicinity of the genes encoding the ECF41 σ factors. Instead, the ECF41 genes are 

associated with genes encoding carboxymuconolactone decarboxylases, oxidoreductases or 

epimerases. These transcriptional units represent the only targets and are often preceded by 

a highly conserved promoter motif recognized by the corresponding ECF41 σ factor, which 

has been experimentally demonstrated for both Bacillus licheniformis and Rhodobacter 

sphaeroides. Moreover, the ECF41 proteins harbor a large C-terminal extension, which is 

not present in other ECF σ factors. We demonstrated that this extension is clearly involved 

in regulation of ECF41 σ factor activity and possibly functions as a fused anti-σ factor-like 

domain. 
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Zusammenfassung 

Bakterien sind in ihrer natürlichen Umgebung einer Vielzahl von schädlichen 

Umwelteinflüssen ausgesetzt. Neben schnell wechselnden physikalisch-chemischen 

Parametern und einem fast ständigen Nährstoffmangel stellen auch antimikrobielle 

Substanzen, welche von konkurrierenden Organismen produziert werden, eine große 

Herausforderung dar. Die bakterielle Zellhülle ist die Verbindung zwischen dem 

Cytoplasma und der Umgebung und ihre Integrität ist essentiell für das Überleben der 

Zelle, was sie zu einem bevorzugten Angriffspunkt für Antibiotika macht. Es ist daher 

wichtig, bereits auf zellhüllschädigende Substanzen und Bedingungen zu reagieren bevor 

die Zelle ernsthaft gefährdet ist. Daher haben Bakterien eine Vielzahl von 

signaltransduzierenden Systemen entwickelt, welche es ermöglichen Antibiotika 

wahrzunehmen und angemessen darauf zu reagieren. Zwei verschiedene Prinzipien der 

Signaltransduktion vermitteln solche Reaktion: Zweikomponentensysteme und 

extracytoplasmic function (ECF) σ-Faktoren. Die Antwort des Gram-positiven 

Modellorganismus Bacillus subtilis auf Zellwandantibiotika wurde bereits ausführlich 

untersucht und umfasst vier Zweikomponentensysteme (LiaRS, BceRS, PsdRS and 

YxdJK) und mindestens drei ECF σ-Faktoren (σW, σM and σX). Im Rahmen dieser 

Doktorarbeit haben wir solche Zellhüllstress-Antworten mit einem besonderen Fokus auf 

ECF σ-Faktoren untersucht. 

Im ersten Teil dieser Arbeit haben wir die Antwort von B. subtilis auf die zyklischen 

Lipopeptid-Antibiotika Daptomycin und Friulimicin B, welche beide sogar gegen multi-

resistente Gram-positive Pathogene wirksam sind, untersucht und verglichen. Genom-

weite Expressionsanalysen sowohl auf Ebene des Transkriptoms als auch des Proteoms 

zeigten, dass beide Antibiotika eine ECF σ-Faktor-abhängige Antwort induzieren, welche 

hauptsächlich von σM und σV vermittelt wird. Diese Induktion ist sehr viel stärker für 

Friulimicin B als für Daptomycin. Im Gegensatz dazu induziert ausschließlich Daptomycin 

das LiaRS Zweikomponentensystem. Diese Unterschiede in den Expressionsprofilen 

deuten an, dass beide Antibiotika spezifische und komplett verschiedene 

Wirkmechanismen aufweisen, obwohl sie strukturell sehr ähnlich sind und generell die 

Zellhüllintegrität beeinträchtigen. Dies veranschaulicht das große Potential sowie die 
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Spezifität der Analyse solcher Expressionsprofile als einen Ansatz für die 

Charakterisierung neuer Antibiotika oder sogar der Differenzierung zwischen chemisch 

sehr ähnlichen Substanzen. 

Im zweiten Teil haben wir die transkriptionelle Antwort von B. subtilis auf Rhamnolipide 

untersucht, welches von Pseudomonas aeruginosa produzierte und industriell wichtige 

Biotenside sind. Rhamnolipide beeinträchtigen die Integrität von biologischen Membranen 

und weisen somit auch antimikrobielle Eigenschaften auf. Eine auf DNA-Microarrays 

basierende Transkriptom-Analyse von B. subtilis nach Behandlung mit Rhamnolipiden 

zeigte erstmals, dass eine einzige antimikrobiell wirksame Substanz zwei normalerweise 

unabhängige Stressantworten induziert: die Zellhüllstress-Antwort, in diesem Fall vertreten 

durch das Zweikomponentensystem LiaRS und den ECF σ-Faktor σM, und die 

Sekretionsstress-Antwort vermittelt durch das Zweikomponentensystem CssRS. LiaRS und 

σ
M zeigen eine schützende Funktion gegenüber Schädigungen verursacht durch 

Rhamnolipide, während die Rolle des CssRS Zweikomponentensystems in dieser Antwort 

bisher unklar ist.  

Zum Schluss haben wir eine neue Gruppe von ECF σ-Faktoren (ECF41) charakterisiert, 

welche einzigarte Merkmale aufweist und im Rahmen einer umfassenden Klassifizierung 

dieser Proteinfamilie identifiziert wurde. Eine detaillierte bioinformatische Analyse lässt 

eine weite Verbreitung dieser ECF41 σ-Faktoren mit etwa 400 Proteinen aus zehn 

verschiedenen bakteriellen Phyla erkennen. Außerdem weist diese Gruppe einen 

ungewöhnlichen, jedoch stark konservierten genomischen Kontext auf.  Es gibt keinen 

offensichtlichen Anti-σ-Faktor in direkter genomischer Nähe der ECF41 σ-Faktor-

kodierenden Gene. Stattdessen sind sie mit Genen assoziiert, welche entweder 

Carboxymuconolacton-Decarboxylasen, Oxidoreduktasen oder Epimerasen kodieren. 

Diese transkriptionellen Einheiten stellen die einzigen ECF41-abhängigen Zielgene dar 

und besitzen ein stark konserviertes Promotor-Motiv, welches von den dazugehörigen 

ECF41 σ-Faktoren erkannt wird, wie experimentell in Bacillus licheniformis und 

Rhodobacter sphaeroides gezeigt werden konnte. Darüber hinaus haben die ECF41-

Proteine eine große C-terminale Erweiterung, die in keinen anderen ECF σ-Faktoren 

vorkommt. Diese Erweiterung ist wesentlich an der Regulation der ECF41 σ-Faktoren 

beteiligt und fungiert möglicherweise als eine fusionierte Anti-σ-Faktor-ähnliche Domäne. 
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Chapter 1 

Introduction 

Bacteria are very adaptable organisms and inhabit almost every possible habitat. The soil is 

a densely populated ecosystem with an enormous diversity of microorganisms. Microbial 

life in this environment is characterized by high competition between different organisms, 

lack of nutrients and rapidly changing physicochemical parameters, such as temperature, 

oxygen concentration or moisture. To survive in such a complex and life-threatening 

habitat, bacteria have to constantly monitor their environment and respond to changes 

before their vitality is seriously endangered. Therefore, they developed a number of signal 

transducing systems to orchestrate these responses and enable survival even under severe 

stress conditions (Paul & Clark, 1996, Storz & Hengge-Aronis, 2000). 

1.1 The bacterial cell envelope  

The bacterial cell envelope, which includes the membrane(s) and other components 

surrounding the cytoplasm, is an essential and complex multilayered structure. Its integrity 

and functionality is crucial for survival and has to be maintained at any time. The cell 

envelope counteracts the high internal osmotic pressure, gives the cell its shape and 

protects it from environmental threats, but it also serves as a selective barrier for nutrients 

and other molecules. Besides these mere physical characteristics, the cell envelope also 

constitutes an important communication interface between the cell and its surroundings. It 

contains a number of different sensory systems allowing the cell to monitor and respond to 

environmental changes (Dijkstra & Keck, 1996, Silhavy et al., 2010). 

Based on their cell envelope structure and according staining behavior, bacteria can be 

classified into two major groups: the Gram-positives and Gram-negatives (Fig. 1.1) 
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(Popescu & Doyle, 1996). The interior layer of the cell envelope, the inner or cytoplasmic 

membrane, is identical in both groups. It is a phospholipid bilayer containing integral 

membrane proteins, which are often involved in essential processes like energy production 

or transport. However, the outer layers of the cell envelopes of Gram-positive and Gram-

negative bacteria differ significantly and are therefore introduced in detail in the following 

paragraphs. 

 

Figure 1.1. Composition of the Gram-positive and Gram-negative cell envelope. CAP, covalently 
attached protein; IMP, integral membrane protein; LP, lipoprotein; LPS, lipopolysaccharide; LTA, 
lipoteichoic acid; OMP, outer membrane protein; WTA, wall teichoic acid. The figure is taken from (Silhavy 

et al., 2010). 

The outer layer of the Gram-positive cell envelope consists of a multi-layered 

peptidoglycan sacculus, also called cell wall, which can achieve a thickness of up to 50 

nm. This allows the Gram-positive cell to withstand turgor pressures in the order of 20 atm 

(in contrast to 2-5 atm in the case of the single-layered peptidoglycan of Gram-negative 

bacteria (see below)). The overall structure of peptidoglycan can be best described as a 

fisherman’s net, giving the sacculus both enormous strength and flexibility (Delcour et al., 

1999). Another major component of most Gram-positive cell walls are teichoic acids, 

which are polymers of glycerol- or ribitol-phosphate units. They can be either covalently 

attached to the peptidoglycan (wall teichoic acids) or anchored in the cytoplasmic 

membrane (lipoteichoic acids) (Delcour et al., 1999, Neuhaus & Baddiley, 2003). Teichoic 
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acids are responsible for the overall negative net charge of the Gram-positive cell surface 

and can serve as a phosphate reservoir or scavengers of cations (Hughes et al., 1973). 

The composition of the Gram-negative cell envelope is more complex. In addition to a 

thin, often single-layered peptidoglycan sacculus, Gram-negative bacteria contain an outer 

membrane. In contrast to the cytoplasmic membrane, this outer membrane is an 

asymmetrical bilayer composed of phospholipids and lipopolysaccharides at the inner and 

outer leaflet, respectively. Lipopolysaccharides are glycolipids consisting of a hydrophobic 

membrane anchor, termed lipid A, and a covalently attached core oligosaccharide, which is 

often extended by a repeating oligosaccharide, called O-antigen (Bos et al., 2007). 

Lipopolysaccharides can play a role in pathogenicity since they are responsible for the 

endotoxic shock caused by Gram-negative bacteria (Raetz & Whitfield, 2002). Two kinds 

of proteins are associated with the outer membrane: lipoproteins attached to the inner 

leaflet and integral outer membrane proteins with a cylindrical β-barrel conformation. 

While the function of most lipoproteins is still unknown, the integral outer membrane 

proteins often facilitate the passive diffusion of small molecules (Bos et al., 2007, Silhavy 

et al., 2010). The viscous space between the outer and inner membrane is called periplasm. 

It contains a high concentration of different kinds of proteins, for example periplasmic 

binding proteins involved in sugar and amino acid transport or chaperones functioning in 

envelope biogenesis (Silhavy et al., 2010). 

The cell envelopes of some bacteria contain additional components, such as proteinaceous 

structures called S-layers (Sleytr et al., 1993) or extracellular matrices involved in biofilm 

formation (Branda et al., 2005). The Corynebacterineae, including the important pathogen 

Mycobacterium tuberculosis, are generally classified as Gram-positive bacteria, but they 

have a very complex and unusual cell envelope containing  arabinogalactan and covalently 

attached mycolic acids, giving them a waxy appearance and high antibiotic tolerance 

(Dover et al., 2004). 

1.2 Cell wall biosynthesis  

Peptidoglycan is an essential and specific component of the cell envelope of almost all 

bacteria. Its main function is the maintenance of cell shape and integrity. Any degradation 

of the cell wall or inhibition of its biosynthesis consequently results in cell lysis (Vollmer 
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et al., 2008). Although the exact chemical composition of peptidoglycan varies from 

species to species, the main elements are linear glycan strands connected by short peptides. 

The glycan strands consist of alternating N-acetyl-muramic acid and N-acetyl-glucosamine 

molecules linked by β-(1,4)-glycosidic bonds. These glycan strands are crosslinked by a 

pentapeptide bridge attached to N-acetyl-muramic acid, which consequently leads to the 

characteristic net-like structure. Although the bacterial cell wall has been extensively 

studied for decades, even central questions regarding its architecture still remain mostly 

unanswered. One controversy is the orientation of the peptidoglycan components relative 

to the surface and axis of the cell. Two mutually exclusive models are being discussed: the 

“layered” model, in which both the glycan strands and peptides run parallel to the 

cytoplasmic membrane, and the “scaffold” model, in which the glycan strands run 

perpendicular and the peptides parallel to the membrane (Vollmer & Seligman, 2010). 

Another controversial aspect concerns the complexity of the Gram-positive cell envelope. 

Instead of a homogenous cell wall layer, cryo-electron microscopy revealed an inner wall 

zone with low-electron density and an outer wall zone with high-electron density in both 

Bacillus subtilis and Staphylococcus aureus. The outer zone seems to represent the actual 

cell wall consisting of peptidoglycan, while the inner zone can be interpreted as an extra-

protoplasmatic compartment similar to the periplasmic space of Gram-negative bacteria 

(Matias & Beveridge, 2005, Matias & Beveridge, 2006). These data emphasize our limited 

understanding of bacterial cell envelope composition and peptidoglycan architecture, and 

future research might significantly change our current view of these fundamental 

structures. 

The biosynthesis of peptidoglycan can be divided into three sections (Fig. 1.2): (i) 

synthesis of cell wall precursors in the cytoplasm, (ii) membrane-anchored assembly of 

these precursors and transport through the cytoplasmic membrane, and (iii) incorporation 

of new peptidoglycan units into the existing cell wall. Starting point of the cell wall 

biosynthesis is UDP-activated N-acetyl-glucosamine, which comes from the central carbon 

metabolism. N-acetyl-glucosamine is converted to N-acetyl-muramic acid in a two-step 

reaction catalyzed by MurA and MurB. Thereafter, the first three amino acids of the 

pentapeptide, classically consisting of alternating L- and D-amino acids, are added 

successively by the ligases MurC, MurD and MurE. The last two residues of the 

pentapeptide are first united and then attached as a dipeptide. The corresponding enzymes 
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are the ligases Ddl and MurF. The resulting N-acetyl-muramic acid pentapeptide is 

coupled to the lipid carrier undecaprenol-monophosphate at the interior side of the 

cytoplasmic membrane by the translocase MraY. The resulting complex is called lipid I. 

Subsequent addition of N-acetyl-glucosamine by the glycosyltransferase MurG results in 

lipid II, which is comprised of the complete peptidoglycan subunit linked via a 

pyrophosphate to the lipid carrier. The cell wall precursor is then translocated by a flippase 

to the exterior side of the cytoplasmic membrane and incorporated into the existing 

peptidoglycan through transglycosylation and transpeptidation. The remaining 

undecaprenol-pyrophosphate is dephosphorylated and transferred to the interior side of the 

membrane to be available for binding and transfer of another cell wall precursor. The steps 

of cell wall biosynthesis involving the lipid carrier undecaprenol are called lipid II cycle 

(Delcour et al., 1999, Foster & Popham, 2002, Mohammadi et al., 2011).   

 

Figure 1.2. Cell wall biosynthesis and its inhibition by antimicrobial compounds. Important steps of the 
cell wall biosynthesis are shown schematically, their cellular location is indicated below. Cell wall antibiotics 
mentioned in the text are given and placed next to their biological target. Antibiotics in blue sequester the 
substrate of a given step, antibiotics in red inhibit the corresponding enzyme. Daptomycin and rhamnolipids 
as compounds that target the cytoplasmic membrane are displayed in black. The curved line represents the 
lipid carrier undecaprenol, the ovals amino acids. Abbreviations: GlcNac, N-acetyl-glucosamine, MurNac; 
N-acetyl-muramic acid; UDP, uridine diphosphate; UMP, uridine monophosphate; P, phosphate group; Pi, 
inorganic phosphate. Names of amino acids are shown as three-letter code. This figure is taken from (Jordan 

et al., 2008), with modifications.  
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Although a functional peptidoglycan layer seems to be important for cell integrity and 

growth, cell wall-deficient bacteria, so-called L-forms, have been discovered (Dienes, 

1947, Klieneberger, 1935). Since then, L-forms of many different bacterial species have 

been generated and successfully cultured in osmotically protective media. Naturally 

occurring L-forms can also be isolated from human samples and their contribution to a 

variety of diseases has been discussed. In this context, loss of the cell wall in the course of 

L-form formation can be viewed as a neat survival strategy to escape cell wall active 

antibiotics (Wyrick & Rogers, 1973, Glover et al., 2009, Domingue GJ & Woody, 1997). 

1.3 Cell wall antibiotics 

The cell wall and its biosynthesis are preferred targets for antibiotics and almost every step 

is inhibited by at least one of these compounds (Schneider & Sahl, 2010). Important 

antibiotics as well as their site of interference with cell wall biosynthesis are shown in Fig. 

1.2. Although many of them target the later lipid-linked steps, two antibiotics that 

intervene with synthesis of cell wall precursors in the cytoplasm have been developed for 

clinical use and are actually used for treatment of infections in humans. Fosfomycin is a 

broad-spectrum antibiotic that inhibits the first step of cell wall biosynthesis, which is the 

formation of UDP-N-acetyl-glucosamine catalyzed by MurA. This reaction requires 

phosphoenol pyruvate as a cofactor. Fosfomycin is a structural analogue of this cofactor 

and inactivates MurA by covalently binding to an active cysteine residue (Kahan et al., 

1974). Resistance can be gained by enzymatic inactivation of fosfomycin catalyzed by 

metalloglutathione or metallothiol transferases (Bernat et al., 1997, Cao et al., 2001), 

enhanced expression of MurA or alterations in fosfomycin uptake systems (Horii et al., 

1999). 

D-cycloserine prevents completion of the pentapeptide responsible for the net-like 

structure of peptidoglycan. It inhibits two enzymes: the D-alanine racemase, which 

converts L-alanine to D-alanine, and the D-alanine/D-alanine ligase, which forms the 

corresponding dipeptide (Lambert & Neuhaus, 1972, Neuhaus & Lynch, 1964). Resistance 

can be achieved either by removal of the antibiotic with an efflux pump or overexpression 

of the target proteins (Feng & Barletta, 2003, Matsuo et al., 2003). 
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The lipid II cycle is the target of a conspicuously large number of antibiotics (Fig. 1.2). 

One reason for this might be the location at the exterior of the cell and therefore easy 

accessibility of the target for the antibiotic. But also the lipid-anchored steps occurring at 

the inside of the cytoplasmic membrane are inhibited. Tunicamycin inhibits formation of 

lipid I catalyzed by the translocase MraY, but it is not suitable for therapeutic use due to 

inhibition of mammalian glycoprotein biosynthesis. Tunicamycin is structurally similar to 

UDP-activated sugars and therefore blocks the MraY reaction in bacteria (Brandish et al., 

1996). 

Vancomycin, the most medically relevant drug within the large group of glycopeptide 

antibiotics, binds tightly to the terminal D-alanyl-D-alanine of the peptide chain of lipid II 

at the outside of the cell and thereby inhibits the crosslinking (Kahne et al., 2005). Use of 

an alternative dipeptide terminus composed of D-alanyl-D-lactate significantly reduces the 

affinity of vancomycin and results in vancomycin resistance (Walsh et al., 1996). Some 

bacteria naturally use this alternative dipeptide. Therefore, it is not surprising that the 

genetic information for this resistance mechanism was transferred to clinically relevant 

bacteria, for example resulting in vancomycin-resistant S. aureus (VRSA). Vancomycin is 

clinically used as a last resort antibiotic reserved for treatment of serious infections with 

(often multi-resistant) Gram-positive bacteria, but resistance to it becomes more and more 

common (Weigel et al., 2003). 

A new antibiotic for treatment of vancomycin-resistant enterococci, which has been 

already developed into phase III of clinical trials, is ramoplanin, a non-ribosomally 

synthesized lipoglycodepsipeptide antibiotic. The exact mechanism of action (MOA) of 

ramoplanin is not yet completely understood. Inhibition of both the formation of lipid II, 

catalyzed by the glycosyltransferase MurG, and the transglycosylation step of cell wall 

biosynthesis have been suggested as possible targets. Further research indicated that 

binding of lipid II and blocking of transglycosylation is the biologically more relevant 

inhibition mechanism (Breukink & de Kruijff, 2006, Fang et al., 2006, Walker et al., 

2005). 

The phosphoglycolipid antibiotic moenomycin directly inhibits the enzyme catalyzing the 

transglycosylation step. It displays biological activity against various Gram-positive 

bacteria including methicillin- and vancomycin-resistant enterocooci, but it was not further 
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developed into a drug for treatment of infections in humans due to suboptimal 

pharmacokinetic properties (Ostash & Walker, 2010). 

Daptomycin is one of only a few antibiotics that have been approved for clinical use within 

the last decade. This lipodepsipeptide antibiotic is used for treatment of infections caused 

by Gram-positive pathogens and is effective against methicillin-resistant S. aureus 

(MRSA) and vancomycin-resistant enterococci (Baltz et al., 2005). Daptomycin interferes 

with cell envelope integrity, but its mechanism of action is not yet fully understood and a 

defined molecular target within the cell wall biosynthesis pathway has not been identified 

(Schneider et al., 2009). Initial investigations proposed inhibition of lipoteichoic acid 

biosynthesis (Canepari & Boaretti, 1996), but the currently accepted model considers the 

binding to and Ca2+-dependent integration into the cytoplasmic membrane. Subsequent 

oligomerization and pore formation may lead to leakage of ions from the cytoplasm, arrest 

of macromolecular biosynthesis and finally cell death (Silverman et al., 2003). Recent 

studies challenge this model and suggest that binding of Ca2+ ions leads to initial formation 

of micelles in solution accompanied by conformational changes of daptomycin. In close 

proximity to the cytoplasmic membrane, these micelles dissociate and daptomycin may 

insert into the phospholipid bilayer leading to the already mentioned effects (Straus & 

Hancock, 2006). Although daptomycin was introduced to the market only recently, first 

cases of resistance in the clinical environment as well as cross-resistance between 

vancomycin and daptomycin have been reported (Enoch et al., 2007, Hidron et al., 2008, 

Patel et al., 2006). These observations underline the alarmingly rapid resistance 

development and urgent need for the marketing of antibiotics with novel MOAs.  

A promising candidate for such a novel antibiotic is the lipopeptide friulimicin B, which 

has already entered clinical development. Friulimicin B is structurally similar to 

daptomycin and also active against multi-resistant Gram-positive bacteria (Aretz et al., 

2000, Vertesy et al., 2000), but shows a completely different MOA. Instead of impairing 

membrane integrity, it specifically forms a complex with undecaprenol-monophosphate 

and thereby prevents formation of a functional cell envelope in Gram-positive bacteria 

(Schneider et al., 2009). 

Lantibiotics are post-translationally modified peptide antibiotics, which contain the 

unusual amino acid lanthionine as their name-giving feature. Their MOA involves lipid II-
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binding, which is sometimes followed by pore formation. Lantibiotics of group A, 

including nisin, use lipid II as a docking molecule: they first specifically bind to lipid II 

and then form pores, thereby combining inhibition of cell wall biosynthesis with 

membrane permeabilization. In contrast, lantibiotics of group B, for example mersacidin, 

exert their antibacterial activity only by binding lipid II without subsequent pore formation. 

Resistance against these positively charged antibiotics can for example be achieved by 

lowering the overall negative net-charge of the Gram-positive cell envelope by D-alanine 

insertion into teichoic acids (Breukink & de Kruijff, 2006, Schneider & Sahl, 2010).  

Bacitracin is a non-ribosomally synthesized cyclic dodecylpeptide antibiotic primarily 

active against Gram-positive bacteria. It is produced as a mixture of up to 50 different 

congeners (Kang et al., 2001) and requires a divalent metal ion for its biological activity 

(Ming & Epperson, 2002). Bacitracin presumably binds to undecaprenol-pyrophosphate, 

which is released during the transglycosylation reaction. This complex formation prevents 

dephosphorylation of the lipid carrier and thus completion of the lipid II cycle (Stone & 

Strominger, 1971, Storm & Strominger, 1973). Resistance against bacitracin can be 

achieved by removal of the antibiotic by specific transporters (Mascher et al., 2003, Ohki 

et al., 2003a), de novo synthesis of undecaprenol-monophosphate (Cain et al., 1993, 

Chalker et al., 2000), expression of alternative undecaprenol-pyrophosphate phosphatases 

(Bernard et al., 2005, Cao & Helmann, 2002, Ohki et al., 2003b) or exopolysaccharide 

production (Pollock et al., 1994, Tsuda et al., 2002). 

Incorporation of the newly synthesized peptidoglycan units into the existing cell wall is 

targeted by the clinically most important class of antimicrobial compounds, the β-lactam 

antibiotics. Their characteristic feature is a β-lactam ring, which structurally mimics the D-

alanyl-D-alanine terminus of the pentapeptide of peptidoglycan units. Consequently, they 

are recognized by the active site of transpeptidases (which are therefore also called 

penicillin binding proteins), and block the crosslinking of glycan chains catalyzed by these 

enzymes (Strominger & Tipper, 1965). The most important resistance mechanism is the 

synthesis of β-lactamases, which hydrolyze the β-lactam ring and thereby inactivate the 

antibiotic (Ghuysen, 1991). Other resistance strategies are the removal of the antibiotic 

from its active site by efflux pumps (Poole, 2005) or the synthesis of altered penicillin 

binding proteins that maintain their physiological function but show decreased affinity to 

the harmful antibiotic (Dowson et al., 1994, Hakenbeck, 1999). 



Chapter 1 

10 

Besides these classical and often clinically relevant antibiotics, a variety of other secondary 

microbial metabolites display biological activity (Berdy, 2005). One example for such 

bioactive secondary metabolites are biosurfactants, which are surface-active molecules 

commercially used for bioremediation processes, as components of cosmetic products or 

detergents (Banat et al., 2000). Some of these biosurfactants, such as rhamnolipids, also 

have antimicrobial properties and could therefore be of interest for therapeutic 

applications. The antimicrobial activity of rhamnolipids is based on cell surface 

modifications like an increase in hydrophobicity and membrane permeability (Lang et al., 

1989, Vasileva-Tonkova et al., 2011). 

1.4 Regulatory networks orchestrating cell envelope stress 

responses  

The presence of antibiotics produced by competing organisms and abiotic stresses like 

suboptimal temperature or pH necessitate the development of signal transducing systems. 

These systems allow the sensing of extracellular stimuli and transfer of the signal through 

the membrane to the cytoplasm, where an appropriate response, usually in the form of 

differential gene expression, is triggered. 

The sensing of and response to cell envelope stress is mediated by two different modes of 

signal transduction: two-component systems (TCSs) and extracytoplasmic function (ECF) 

σ factors. Both systems consist of two proteins: a membrane-anchored sensor (histidine 

kinase (HK) or anti-σ factor, respectively) and a cytoplasmic transcriptional regulator 

(response regulator (RR) or ECF σ factor, respectively). In the absence of an inducing 

stimulus, the regulator is usually kept inactive. Upon perception of a cell envelope stress 

signal by the sensor protein, the regulator becomes activated and mediates the cellular 

response by modifying gene expression (Jordan et al., 2008). The mechanism of signal 

transduction of TCSs and ECF σ factors will be presented in detail in sections 1.5 and 1.6. 

The regulatory networks orchestrating cell envelope stress responses in Escherichia coli 

and B. subtilis are well investigated and will be introduced in the following sections. 
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1.4.1 Cell envelope stress response of Escherichia coli 

The cell envelope stress response of the Gram-negative model bacterium E. coli is 

orchestrated by two TCSs, one ECF σ factor and the phage shock protein system. These 

signal transducing systems partly overlap with regard to their inducing conditions and 

regulons (Rowley et al., 2006, Ruiz & Silhavy, 2005).  

The first TCS, BaeRS, is induced upon exposure to cell envelope stresses in form of 

indole, flavonoids, spheroplast formation or misfolded proteins and controls expression of 

three operons, one of these including the genes encoding the TCS. The other gene products 

are multidrug efflux pumps and a periplasmic protein of unknown function (Leblanc et al., 

2011, Raffa & Raivio, 2002). The second TCS, CpxAR, is induced by various signals 

including alkaline pH, misfolded periplasmic proteins or abnormalities in the inner 

membrane, for example changes in lipid composition. The RR CpxR directly controls 

expression of about 100 operons, some of which are also part of the σE regulon (De Wulf et 

al., 2002, Ruiz & Silhavy, 2005).  

The main signal for activation of the ECF σ factor σE is the accumulation of misfolded 

proteins in the cell envelope, which can be caused for example by heat or ethanol. It 

controls a large regulon of about 50 transcriptional units including genes encoding 

chaperones and proteases involved in cell envelope maintenance (Ades, 2004, Rhodius et 

al., 2006). 

The PspA-mediated phage shock protein response is triggered by a variety of stress 

conditions, including mislocalization of envelope proteins, high temperature, presence of 

proton ionophores and the name-giving filamentous phage infection. The physiological 

role of the phage shock protein response is still unclear, but a function in maintenance of 

membrane integrity and proton-motive force has been discussed (Ades, 2004, Darwin, 

2005, Kleerebezem et al., 1996, Rhodius et al., 2006). 

1.4.2 Cell envelope stress response of Bacillus subtilis 

The cell envelope stress response network of the Gram-positive model organism B. subtilis 

is more complex than that of E. coli and involves four TCSs and at least three ECF σ 

factors (Fig. 1.3). The TCSs can be further divided into two subgroups: the cell envelope 



Chapter 1 

12 

stress sensing TCS LiaRS and three paralogous TCSs genetically and functionally linked to 

ABC transporters.  

 

Figure 1.3. Graphical overview of the regulatory network orchestrating the cell envelope stress 
response of B. subtilis. ECF σ factors and the corresponding anti-σ factors are illustrated in green, TCSs 
associated with ABC transporters in blue and the LiaRS system in red. Transmembrane sensor proteins are 
shown on top, the regulators below and the corresponding target genes at the bottom. Arrows indicate 
regulation, dotted lines cross-regulation. Antibiotics inducing these systems are displayed above the graphic. 
Abbreviations: BAC, bacitracin; CAP, cationic antimicrobial peptides; CEP, cephalosporin; DAP, 
daptomycin; FOS, fosfomycin; FRI, friulimicin B; LAN, lantibiotics; MOE, moenomycin; RAM, 
ramoplanin; VAN, vancomycin; CM, cytoplasmic membrane. The figure is taken from (Jordan et al., 2008), 
with modifications. 

The LiaRS TCS strongly responds to a wide variety of cell wall antibiotics, especially 

compounds interfering with the lipid II cycle, such as bacitracin, vancomycin, ramoplanin 

or cationic antimicrobial peptides (Mascher et al., 2004, Pietiäinen et al., 2005). Induction 

can also be observed upon exposure to ethanol, detergents, organic solvents and alkaline 

shock (Mascher et al., 2004, Petersohn et al., 2001, Wiegert et al., 2001). Moreover, the 

LiaRS TCS is activated without any external stimulus at the onset of stationary phase, 

albeit to a much weaker extent compared to antibiotic induction (Jordan et al., 2007). The 

TCS is genetically and functionally linked to a third protein, LiaF, thereby actually 
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constituting a three-component system. This membrane protein acts as a strong inhibitor of 

LiaRS-mediated signal transduction (Jordan et al., 2006). The RR LiaR regulates 

expression of the liaIHGFSR operon. Basal expression of the last four genes, encoding the 

three-component system and the putative membrane-anchored protein LiaG, is ensured by 

a weak constitutive promoter upstream of liaG. Activation of LiaR strongly upregulates 

expression from a promoter upstream of liaI, resulting in the synthesis of two transcripts: a 

major transcript consisting of liaIH and a transcript including the whole operon (Mascher 

et al., 2004).  

Deletion of the inhibitory protein LiaF, which results in a constitutive active RR LiaR, 

induces transcription of two additional loci, yhdYZ-yhdA and ydhE. Although all three 

transcripts expressed under these artificial conditions are preceded by a putative LiaR 

binding site, only expression of liaIH seems to be biologically relevant (Jordan et al., 2006, 

Wolf et al., 2010). LiaH is a phage shock protein homologue and forms large oligomeric 

rings (Wolf et al., 2010), which has been also described for the homologous proteins PspA 

of E. coli and  Vipp1 of Arabidopsis thaliana (Aseeva et al., 2004, Hankamer et al., 2004). 

LiaI is a small membrane protein possibly interacting with LiaH. The physiological role of 

the lia system in B. subtilis is still unclear and only a very few phenotypes associated with 

LiaH have been discovered, including resistance against the cell wall antibiotics 

daptomycin and enduracidin and some oxidative stress agents. It has been suggested that 

the LiaFSR system coordinates a phage shock protein response in B. subtilis and, 

presumably, other Firmicutes bacteria (Wolf et al., 2010). 

The remaining three TCSs involved in orchestrating the cell envelope stress response in B. 

subtilis (Fig. 1.3) are genetically linked to genes encoding ABC transporters, thereby 

forming efficient detoxification modules. The best understood example of these modules is 

the BceRS-BceAB system, which responds to the presence of bacitracin and, to a lesser 

extent, the lantibiotics actagardine and mersacidin as well as the defensin plectasin (Ohki 

et al., 2003a, Staroń et al., 2011). Activation of the RR BceR results in increased 

expression of the ABC transporter BceAB, which functions as a resistant determinant and 

facilitates removal of the antibiotic from its active site (Mascher et al., 2003, Ohki et al., 

2003a). However, BceAB is also crucial for stimulus perception, since the HK BceS alone 

is not sufficient for bacitracin sensing (Bernard et al., 2007, Rietkötter et al., 2008). 

Phylogenetic analysis of BceRS-BceAB-like systems in Firmicutes bacteria revealed a 
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tight evolutionary correlation and suggests a common novel signaling and resistance 

mechanism, possibly involving a sensory complex composed of the HK and ABC 

transporter (Dintner et al., 2011).  

The PsdRS-PsdAB module responds to and mediates resistance against the lipopeptide 

antibiotic enduracidin and the lantibiotics nisin, subtilin, actagardine and gallidermin 

(Staroń et al., 2011). Noteworthy, all these compounds are peptide antibiotics interacting 

with lipid II. Weak induction has also been observed for bacitracin, but it has been shown 

to be due to cross-activation of the RR PsdR by the paralogoues BceRS system (Mascher 

et al., 2003, Rietkötter et al., 2008). 

Only little is known about the third module, YxdJK-YxdLM. As is also true for the other 

systems, expression of yxdLM encoding the ABC transporter is dependent on the RR YxdK 

(Joseph et al., 2004). The only inducer identified so far is the human cationic antimicrobial 

peptide LL-37 (Pietiäinen et al., 2005, Staroń et al., 2011). Since it is unlikely that B. 

subtilis, naturally inhabiting the soil, has evolved systems specifically responding to 

human peptides, a biologically relevant inducer of this module still has to be identified. 

The genome of B. subtilis encodes seven ECF σ factors, of which at least three (σW, σM and 

σ
X) are involved in orchestrating the cell envelope stress response. With regard to its signal 

transducing mechanism and physiological function best investigated ECF σ factor of B. 

subtilis is σW. As is typical for ECF σ factors, the sigW gene is transcribed together with its 

anti-σ factor, rsiW, from an autoregulated promoter. σW is activated by cell wall antibiotics 

such as vancomycin, cephalosporin C or D-cycloserine (Cao et al., 2002b), the mammalian 

cationic peptides LL-37 and PG-1 (Pietiäinen et al., 2005) as well as alkaline shock 

(Wiegert et al., 2001), but it is not required for resistance against these compounds and 

conditions. Its regulon was identified using a combination of different approaches 

including in silico promoter search (Huang et al., 1999), in vivo DNA microarray analysis 

and an in vitro technique called ROMA (Run-Off transcription/Microarray Analysis) (Cao 

et al., 2002a, MacLellan et al., 2009a). Altogether, σW recognizes ~30 promoters 

controlling expression of about 60 genes, many of which encode membrane proteins, 

transporters, small peptides or proteins involved in detoxification. Thus, it has been 

postulated that σW mediates an antibiosis stress response including production of and 

protection against antibiotics (Butcher & Helmann, 2006). Indeed, increased expression of 
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the fosB gene, which is part of the σW regulon, provides resistance against fosfomycin (Cao 

et al., 2001). A sigW mutant is also more sensitive to a wide variety of antimicrobial 

compounds produced by competing Bacillus species. Moreover, systematic deletion of all 

σ
W regulon members identified genes directly conferring resistance against antibiotics, for 

example sdpI against the antimicrobial protein SdpC and the yqeZ-yqfAB operon against 

sublancin (Butcher & Helmann, 2006). 

The gene encoding σM is co-transcribed with yhdLK, which function as negative regulators 

of σM activity (Horsburgh & Moir, 1999). σM is induced under acid, heat, salt and 

superoxide stress as well as upon exposure to cell wall antibiotics like bacitracin, 

vancomycin and fosfomycin (Mascher et al., 2003, Thackray & Moir, 2003, Cao et al., 

2002b). A comprehensive analysis including several complementary approaches identified 

almost 60 genes organized in 30 operons to be direct targets of σM under conditions of 

antibiotic stress. The functions of these genes are very diverse and include gene regulation, 

cell envelope related functions like cell wall synthesis, shape determination and cell 

division, DNA monitoring and repair as well as detoxification (Eiamphungporn & 

Helmann, 2008). For example, bacitracin-induced expression of bcrC, conferring 

resistance against this antibiotic, is dependent on σM, although the corresponding promoter 

is also recognized by σW (Cao & Helmann, 2002). Furthermore, resistance to paraquat, a 

superoxide-generating agent, can be also attributed to σM, which directly controls 

expression of yqjL encoding a putative hydrolase (Cao et al., 2005). Analysis of the σM 

regulon also revealed indirect effects of antibiotic induction. Among the genes controlled 

by σM is spx encoding a transcription factor, which in turn regulates expression of several 

antibiotic-inducible genes. Thereby, σM indirectly controls expression of the Spx regulon 

(Eiamphungporn & Helmann, 2008).  

The gene of the third ECF σ factor, σX, forms an operon with rsiX, encoding the 

corresponding anti-σ factor, and is transcribed during logarithmic and early stationary 

growth phase (Huang et al., 1997). σX controls expression of about ten operons encoding 

proteins involved in cell envelope composition, surface metabolism and cell division (Cao 

& Helmann, 2004). Based on these functions, it has been suggested that σX generally 

regulates modification of the cell envelope. The products of the σX target operon 

dltABCDE introduce positively charged amino acids into teichoic acids, thereby reducing 

the negative net charge of the cell wall. These changes in cell surface charge consequently 
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affect both autolysis and resistance to cationic antimicrobial peptides. Indeed, a sigX 

mutant strain shows increased autolysis and is more sensitive to nisin (Cao & Helmann, 

2004), thereby supporting the hypothesis that σX plays a role in cell surface modification.  

ECF σ factors control expression of often large regulons with a significant regulatory 

overlap (Mascher et al., 2007, Qiu & Helmann, 2001). A stimulus does not always activate 

a single ECF σ factor, which mediates a proper response by upregulation of a specific 

regulon. Rather, the ECF response is more complex and often involves several ECF σ 

factors controlling distinct but overlapping sets of genes. Therefore, it is not surprising that 

mutations in single ECF-encoding genes do not always lead to obvious phenotypes. While 

single mutations do not affect antibiotic susceptibility, simultaneous deletion of σW, σM and 

σ
X revealed increased sensitivity against cell wall antibiotics such as D-cycloserine, nisin 

and cephalosporin C (Mascher et al., 2007). 

1.5 Signal transducing mechanisms orchestrating cell envelope 

stress responses 

Bacterial signal transducing systems consist of at least two domains: an input or sensor 

domain, which detects the signal, and an output or effector domain, which orchestrates the 

cellular response. These two domains can be located on one polypeptide chain, as is true 

for one-component systems, or separated on two different proteins (Fig. 1.4). The principle 

of two co-operating proteins, which is represented by TCSs and ECF σ factors, enables 

transmembrane signaling. This includes the sensing of an extracellular stimulus and 

transfer of the signal through the membrane to the cytoplasm, where the effector mediates 

a proper cellular response, usually in the form of differential gene expression.  

1.5.1 One-component systems 

One-component systems are the simplest and most widely distributed form of bacterial 

signal transduction, in which the input and output domains are fused on a single 

polypeptide chain. The input domain perceives a signal and then modulates activity of the 

output domain, which usually functions as a transcriptional regulator. This regulator either 

activates or represses transcription of its target gene(s), whose number can vary from a 

single gene up to several hundred (Ulrich et al., 2005). Classical examples for such 
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transcriptional regulators are the E. coli lac repressor LacI (Lewis et al., 1996) or the 

cAMP receptor protein (CRP) (Kolb et al., 1993).  

 

Figure 1.4. Overview of signal transducing systems in bacteria. The modular structure of one-component 
systems, TCSs and ECF σ factors as well as their basic signal transducing mechanism are shown 
schematically. See text for details. This figure is taken from (Staroń & Mascher, 2010a).  

1.5.2 Two-component systems 

While one-component systems are predominantly designed to respond to intracellular 

signals, TCSs are suitable for transmembrane signaling. A classical TCS consists of two 

different proteins: a sensor protein, which functions as a HK, and an effector protein, the 

RR. Both proteins contain at least two domains and the signal transduction is based on 

phosphotransfer reactions. The HK senses a specific stimulus with its N-terminal input 

domain, which results in an intramolecular conformational change and 

autophosphorylation of a conserved histidine residue within the C-terminal transmitter 

domain. Subsequently, this phosphate group is transferred to a conserved aspartate residue 

within the N-terminal receiver domain of the RR. The cellular response is then mediated 

by the C-terminal effector domain of the activated RR and usually involves protein-DNA 

interaction leading to differential gene expression. The whole system is set back to the pre-

stimulus state by dephosphorylation of the RR, catalyzed either by an external 
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phosphatase, the corresponding HK or the RR itself (Mascher et al., 2006, Stock et al., 

2000).  

Depending on their architecture, HKs can be divided into three main groups, which 

perceive either an extracellular, a cytoplasmic or a membrane-associated stimulus. The 

largest group contains the extracellular-sensing HKs, typically detecting the presence of 

solutes or nutrients. These kinases are transmembrane proteins with at least two 

transmembrane helices flanking a large extracellular sensory domain. The kinase domain is 

located in the cytoplasm, which necessitates signal transduction through the membrane 

(Mascher et al., 2006). One of the best investigated HKs, EnvZ from E. coli, belongs to 

this group. Together with its cognate RR OmpR, this TCS plays a central role in the 

adaptation to changes in extracellular osmolarity, although the periplasmic domain of 

EnvZ does not seem to be essential for sensing the corresponding signal (Leonardo & 

Forst, 1996, Tanaka et al., 1998). 

The second-largest group contains the cytoplasmic-sensing HKs. These are membrane-

anchored or soluble proteins, in which both the sensory and kinase domain are located in 

the cytoplasm. Signals sensed by these kinases are mainly cytoplasmic solutes or proteins 

reporting the physiological state of the cell (Mascher et al., 2006). Well-understood 

examples of this group are KinA, involved in sporulation of B. subtilis (Msadek, 1999), 

and CheA, which regulates chemotaxis in proteobacteria (Bilwes et al., 2003). 

The third and very diverse group is formed by HKs that possess two to 20 transmembrane 

regions, which are connected by very short intra- or extracellular linkers. An obvious 

sensory domain is missing in these proteins, suggesting that the stimulus sensed by these 

kinases is within or associated with the membrane interface. Such stimuli could be loss of 

cell envelope integrity, ion gradients, change of mechanical parameters such as turgor 

pressure or signals derived from other transmembrane proteins. HKs of TCSs orchestrating 

the cell envelope stress response in B. subtilis, such as LiaRS or BceRS, belong to this 

group (Mascher, 2006, Mascher et al., 2006).  

The examples mentioned above demonstrate the enormous variety of signals that can be 

sensed by TCSs. However, not only the input but also the output can vary depending on the 

effector domain of the RR. About two-thirds of all known RRs contain a DNA-binding 

domain, thereby functioning as transcriptional regulators. But they can also have 
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enzymatic, RNA-, ligand- or protein-binding domains, enabling almost unlimited 

variations in the response mediated by these proteins (Galperin, 2006, Galperin, 2010).   

The modularity of both the HK and the RR further increases the flexibility of TCSs. The 

signal transducing process does not necessarily have to lead from a single HK to a single 

RR. Rather, the modular architecture enables modifications such as amplification, 

branching of pathways or even integration of different signals into one cascade, thereby 

leading to the same output (Gao & Stock, 2009). 

1.5.3 Alternative σ factors and the extracytoplasmic function protein family 

Another possibility to control gene expression at the level of transcription initiation is the 

use of σ factors, which constitute an essential component of the RNA polymerase (RNAP). 

Transcription is a complex and highly coordinated process. The bacterial RNAP consists of 

a core complex with a subunit stoichiometry of α2ββ’ω. This core enzyme is capable of 

transcription elongation and termination. Promoter recognition and transcription initiation 

additionally require the σ factor, which binds to the core enzyme and recruits the resulting 

RNAP holoenzyme to an appropriate promoter. Therefore, σ factors can be considered as 

specificity factors providing a fundamental mechanism for orchestrating differential gene 

expression (Burgess & Anthony, 2001). 

All bacteria contain a primary (or housekeeping) σ factor, which is responsible for general 

expression of most genes. In addition, most bacteria - especially those living in complex 

habitats - contain alternative σ factors, which are only activated under certain conditions. 

They compete with and eventually replace the primary σ factor, thereby redirecting RNAP 

to initiate transcription from a specific set of alternative promoters. In the absence of a 

stimulus, alternative σ factors are kept inactive by a cognate anti-σ factor through direct 

protein-protein interaction (Brown & Hughes, 1995, Helmann, 2010, Helmann & 

Chamberlin, 1988).  

Bacterial σ factors can be divided into two major groups: the σ70 and the σ54 protein family 

(Gruber & Gross, 2003, Helmann & Chamberlin, 1988). The σ54-like proteins are unique 

transcriptional activators and do not show any sequence homology to other σ factors. 

Although they are widely distributed, not every bacterium harbors a σ54 protein and, if 

present, usually no more than one σ54-encoding gene is found in a genome (Buck et al., 

2000). In contrast, every bacterium contains at least one, but often several (up to 63 in 
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Streptomyces coelicolor) proteins of the σ70 family, which is named after the prototypical 

primary σ factor of E. coli. Based on their domain architecture, the proteins of this family 

can be divided into four phylogenetic groups, often correlating with specific functions. 

Group 1 contains the essential primary σ factors, such as the name giving σ70 of E. coli or 

σ
A of B. subtilis, which are composed of four distinct domains (designated regions σ1 

through σ4) as well as a non-conserved region (NCR) adjacent to σ2. Proteins of group 2 

have the same domain architecture and are therefore closely related to group 1 σ factors, 

but they are not essential for growth. The most extensively studied example of this group is 

σ
S, the master regulator of the general stress response in E. coli. Proteins of group 3 lack 

both the σ1 domain and the NCR. They are more divergent in sequence than proteins of 

group 1 and 2 and can be further divided into clusters correlating with specific functions, 

including flagella biosynthesis, sporulation and heat shock response. Group 4 is the 

numerically largest and most diverse group and contains the proteins of the ECF family, 

named after their function in response to extracellular stimuli (Gruber & Gross, 2003, 

Helmann & Chamberlin, 1988, Paget & Helmann, 2003).  

The ECF σ factors are the smallest proteins of the σ70 family and contain only two of the 

four conserved domains, σ2 and σ4 (Fig. 1.5 A), which are sufficient for all σ factor 

functions, e.g. interaction with RNAP and recognition of specific target promoters. Each 

domain can be further subdivided into distinct regions. Domain σ2 comprises regions 2.1 to 

2.4. The first two of these regions are important for RNAP core binding, while region 2.4 

recognizes the -10 element of promoter DNA. Region 2.3 is involved in promoter melting. 

Domain σ4 also interacts with RNAP and is involved in recognition and binding of the -35 

promoter element, primarily via the helix-turn-helix motif of region 4.2 (Gruber & Gross, 

2003). The classical promoter region recognized by the primary σ factor consists of two 

highly conserved regions, the -10 (‘TTGACA’) and the -35 (‘TATAAT’) region 

(Helmann, 1995). In contrast, the ECF σ factors recognize alternative promoter sequences, 

often characterized by a highly conserved ‘AAC’ motif in the -35 and ‘CGT’ in the -10 

region (Fig. 1.5 B) (Helmann, 2002, Lane & Darst, 2006).  

ECF σ factors can be easily recognized due to their domain architecture and consequently 

smaller size compared to other σ factors. They are widely distributed within the bacterial 

kingdom and bacteria contain an average of six ECF genes per genome. Only a very few 

organisms, mostly obligate symbionts or pathogens with very small genomes, do not 
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harbor any ECF σ factor at all. A classification based on sequence similarities and genomic 

context conservation identified more than 40 distinct groups of ECF σ factors (Staroń et 

al., 2009). The two predominant groups contain the RpoE-like and FecI-like proteins, 

whose signal transducing mechanisms have been well studied in E. coli. Another large 

group includes ECF σ factors associated with cytoplasmic-sensing anti-σ factors, which 

also have been investigated experimentally. In addition to these well characterized types of 

ECF σ factors, the classification identified a number of novel groups with unique features 

and so far unknown signaling mechanisms (Staroń et al., 2009). An overview of already 

well-established ECF-dependent signal transduction as well as possible novel types of 

signal transducing mechanisms is given in the following section. 

 

Figure 1.5. Domain architecture and target promoters of ECF σ factors. (A) Domain architecture of ECF 
σ factors with domains σ2 and σ4 as well as according subregions are shown schematically. C and N 
correspond to the C- and N-terminus. Interactions of subregions 2.4 and 4.2 with the target promoter -10 and 
-35 region, respectively, are indicated by arrows. (B) Weblogo of typical ECF-dependent target promoters. 
The weblogo was generated using the WebLogo tool (Crooks et al., 2004) available at 
http://weblogo.berkeley.edu. It graphically represents a position weight matrix and illustrates the degree of 
conservation for each nucleotide. The matrix is based on the shown autoregulated promoters of the seven 
ECF σ factors from B. subtilis (Butcher et al., 2008). 
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1.6 Mechanisms of ECF σ factor activation 

In general, the activity of an ECF σ factor is controlled by a cognate anti-σ factor, often 

consisting of a cytoplasmic and an extracellular domain linked by one transmembrane 

helix. In the absence of a stimulus, the anti-σ factor tightly binds the ECF σ factor with its 

inhibitory cytoplasmic domain, thereby preventing RNAP interaction and promoter 

recognition. In the presence of a suitable stimulus, the anti-σ factor gets inactivated. This 

results in the release and subsequent activation of the ECF σ factor, which then substitutes 

the primary σ factor and initiates transcription from alternative promoters (Helmann, 

2002). While the ECF σ factors show a highly conserved domain structure, the 

composition of anti-σ factors is very diverse. Some of them contain a so-called anti-sigma 

domain (ASD), but other anti-σ factors are comprised of domains of unknown function. 

Consequently, the mechanisms of stimulus perception and subsequent ECF σ factor 

activation also differ significantly. The few already well-investigated examples 

demonstrate an enormous mechanistic diversity (Fig. 1.6) and there is still a great potential 

for the identification of completely novel ECF-dependent signal transducing mechanisms 

(Staroń et al., 2009).  

1.6.1 Regulated proteolysis of transmembrane anti-σ factors 

The best understood mechanism of ECF σ factor activation is regulated intramembrane 

proteolysis (RIP), in which an environmental stimulus results in complete proteolytic 

degradation of a transmembrane anti-σ factor (Fig. 1.6 A). The first step of RIP, called site-

1 proteolysis, comprises the proteolytic processing of the extracytoplasmic part of the anti-

σ factor. This step is necessary to make the anti-σ factor accessible for site-2 proteolysis, 

which represents the actual intramembrane cleavage event. The family of peptidases 

catalyzing this key step of RIP has been named intramembrane cleaving proteases (I-

CLiPs). The complex of the remaining anti-σ/ECF σ factor is then released to the 

cytoplasm, where the anti-σ factor is completely degraded by additional proteases, leading 

to a free and thereby activated σ factor (Heinrich & Wiegert, 2009).  
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Figure 1.6. Examples of ECF-dependent signal transduction. See text for details. This figure is taken 
from (Staroń & Mascher, 2010a). 

The best investigated ECF σ factors regulated by RIP are σE of E. coli and σW of B. 

subtilis. σE forms a complex with its transmembrane anti-σ factor RseA and the 

periplasmic protein RseB, which has an additional inhibitory function. The cascade leading 

to active σE is triggered by misfolded outer membrane proteins. A conserved peptide at the 

C-terminus, which is only exposed when these outer membrane proteins are not folded 

properly, binds to and activates the membrane-anchored serine protease DegS. Active 

DegS is responsible for site-1 proteolysis and removes the C-terminal part of RseA, 

thereby making it a substrate for the membrane-embedded RseP protease. This site-2 

protease cleaves RseA within the membrane and the remaining complex of processed 
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RseA and σE is released into the cytoplasm. Site-2 clipped RseA presents a C-terminal 

proteolytic tag, which is recognized by cytoplasmic proteases such as ClpXP. Subsequent 

complete degradation of RseA results in a free and active σE able to start transcription of 

corresponding target genes, including its own autoregulated operon rpoE-rseABC (Ades, 

2008, Ades, 2004). 

σ
W from B. subtilis is kept inactive by direct interaction with the N-terminal part of the 

transmembrane anti-σ factor RsiW. The proteolytic cascade leading to activation of σW 

basically resembles the σE/RseA system described above. Nevertheless, there are some 

remarkable differences and the proteases involved can be grouped into two proteolytic 

modules. Module I consists of the proteases PrsW and Tsp. Site-1 proteolysis is mediated 

by PrsW, but the exact molecular signal activating this protease is still unknown. In 

contrast to E. coli DegS, which is a classical serine protease, PrsW belongs to a 

superfamily of probably membrane-embedded metalloproteases. Further C-terminal 

degradation of site-1 processed RsiW by the tail-specific protease Tsp is crucial for RsiW 

to become a substrate for module II, which consists of RasP and cytoplasmic proteases like 

ClpXP. As in E. coli, site-2 proteolysis, which is catalyzed by RasP, uncovers a proteolytic 

tag recognized by ClpXP. Complete degradation of the anti-σ factor leads to activation of 

σ
W and consequently expression of sigW-rsiW and other target genes (Heinrich et al., 2009, 

Heinrich & Wiegert, 2006, Heinrich & Wiegert, 2009). 

1.6.2 Conformational change of soluble anti-σ factors 

Anti-σ factors are not necessarily transmembrane proteins. Instead, they can also be 

soluble proteins, thereby sensing cytoplasmic stimuli. Their inactivation and therefore 

release of the ECF σ factor is based on an intramolecular conformational change (Fig. 1.6 

B). The best understood example for such an anti-σ factor is ChrR of Rhodobacter 

sphaeroides controlling activity of the ECF σ factor σE, which is responsible for the 

cellular response to singlet oxygen (Anthony et al., 2004, Anthony et al., 2005). ChrR is 

comprised of two domains: an N-terminal ASD domain and a C-terminal cupin-like 

domain (CLD). In contrast to other ASD-containing anti-σ factors, ChrR requires Zn2+ ions 

for its inhibitory function. Therefore, ChrR and similar cytoplasmic-sensing anti-σ factors 

are members of the so-called ZAS (Zn2+ anti-σ) family. In the absence of singlet oxygen, 

ChrR binds σE with its ASD. While this domain is sufficient to inhibit activity of the ECF 
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σ factor, the transcriptional response to singlet oxygen requires the CLD. Singlet oxygen 

causes dissociation of the σE/ChrR complex, resulting in expression of its autoregulated 

operon rpoE-chrR and cycA, encoding the periplasmic electron carrier cytochrome c2 

(Greenwell et al., 2011, Newman et al., 2001, Newman et al., 1999). 

Another example for an anti-σ factor of the ZAS family is RsrA of S. coelicolor, which 

regulates the activity of σR. Like ChrR, RsrA coordinates a Zn2+ ion and forms a complex 

with σR. The Zn2+ ion is released in the presence of thiol-oxidative stress, resulting in 

formation of a disulfide bond between two histidine residues and consequently a 

conformational change that releases and therefore activates σR (Zdanowski et al., 2006, 

Kang et al., 1999). Many of the σR-dependent target genes encode proteins involved in 

counteracting thiol-oxidative stress, such as thioredoxins, and proteins involved in 

biosynthesis of thiol-containing compounds like cysteine and molybdopterin (Paget et al., 

2001). 

1.6.3 Transcriptional activation involving a two-component system 

The signal transducing mechanism leading to activation of an ECF σ factor not always 

involves an anti-σ factor. Instead, the ECF σ factor can also form a functional module with 

a TCS (Fig. 1.6 C), as has been shown for σE from S. coelicolor. Here, transcription of the 

ECF σ factor, which is required for normal cell envelope integrity, is controlled by the 

TCS CseBC. CseC is a membrane-anchored HK that perceives the signal and 

phosporylates the cognate RR CseB. The signal sensed by CseC has yet to be identified, 

but it most likely arises from cell envelope damage, since σE is activated by a wide range 

of unrelated cell wall antibiotics. The activated RR CseB induces transcription of sigE, the 

structural gene encoding the ECF σ factor. This leads to an increase in the cellular 

concentration of σE, which, in turn, replaces other σ factors and redirects expression to its 

target genes. In addition to primarily monocistronic transcription, sigE is also part of a 

larger operon including the genes encoding CseA and the TCS CseBC. CseA is a 

lipoprotein localized at the outside of the cytoplasmic membrane, which somehow 

influences CseBC activity, but the specific function and mechanism is still unclear (Hong 

et al., 2002, Hutchings et al., 2006, Paget et al., 1999). 
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1.6.4 Partner switching mechanism 

The signal transduction pathway leading to an active ECF σ factor can be even more 

complex involving both an anti-σ factor and a specialized TCS (Fig. 1.6 D). Such an 

unusual and elaborate cascade mediates the general stress response of α-proteobacteria. 

The best-understood and name-giving example is EcfG from Methylobacterium extorquens 

(Francez-Charlot et al., 2009), but the signal transducing mechanism has been also 

investigated in other α-proteobacteria including Bradyrhizobium japonicum, Sinorhizobium 

meliloti, Caulobacter crescentus and Rhizobium etli (Alvarez-Martinez et al., 2007, Bastiat 

et al., 2010, Gourion et al., 2009, Martinez-Salazar et al., 2009, Sauviac et al., 2007). 

Besides the actual EcfG-like σ factor, the cascade usually involves three additional 

proteins: a NepR-like anti-σ factor, a PhyR-like RR and often a HK. The structural genes 

encoding these proteins are organized in a well-defined but variable locus (Staroń et al., 

2009). NepR-like anti-σ factors are small soluble proteins that bear no sequence similarity 

to other anti-σ factors. The PhyR-like proteins are unusual RRs with specialized domain 

architecture. In contrast to other RRs, PhyR-like proteins carry the receiver domain at the 

C-terminus. The N-terminal output domain shows high sequence similarity to ECF σ 

factors, especially to EcfG-like proteins. Nevertheless, important residues for DNA 

binding are missing, indicating that PhyR-like RRs do not function directly as 

transcriptional regulators. Rather, PhyR-like RRs mimic EcfG-like proteins and function as 

anti-anti-σ factors. As an additional component, genes encoding HKs are often located in 

close vicinity of the EcfG-like σ factors. These HKs are very diverse in sequence and 

domain architecture and can be either periplasmic- or cytoplasmic-sensing proteins. The 

only specific feature can be found within the phosphotransfer domain. HKs linked to EcfG-

like σ factors carry one of two very similar domains predominantly found in α-

proteobacteria, thereby distinguishing them from other HKs (Francez-Charlot et al., 2009, 

Herrou et al., 2010, Staroń & Mascher, 2010b, Staroń & Mascher, 2010a). 

In the absence of a stimulus, NepR-like anti-σ factors bind EcfG-like σ factors, thereby 

keeping them inactive. An appropriate stimulus, such as heat and osmotic stress or carbon 

and nitrogen starvation, is most probably sensed by the associated HK, leading to 

phosphorylation and thereby activation of the PhyR-like RR. Activated PhyR-like proteins 

function as anti-anti-σ factors and release of the σ factor from the anti-σ factor occurs via a 



Chapter 1 

27 

partner switching mechanism. The ECF σ factor-like domain of phosphorylated PhyR has 

high affinity for the NepR-like anti-σ factors, thereby replacing EcfG-like proteins. This 

allows the ECF σ factors to associate with RNA polymerase and initiate transcription of 

stress-related gene (Francez-Charlot et al., 2009, Francez-Charlot et al., 2010). 

1.6.5 Activation involving protein-protein interactions 

Stimulus perception can also be achieved by direct interaction of the anti-σ factor with 

other proteins usually not involved in signal transduction (Fig. 1.6 E). The best 

investigated example for such a mechanism is the FecI-FecR pair, which regulates iron 

acquisition in E. coli. The signal transducing cascade communicating the presence of ferric 

citrate from the outside of the cell to the cytoplasm involves the outer membrane 

transporter protein FecA, which serves as a signal receiver and outer membrane 

transmitter. In the absence of ferric citrate, the anti-σ factor FecR binds the ECF σ factor 

FecI with its N-terminal ASD, thereby keeping FecI inactive. Is ferric citrate present in the 

environment, it is bound by FecA and the signal is transferred by direct protein-protein 

interaction from the periplasmic N-terminal domain of FecA to the periplasmic C-terminus 

of the anti-σ factor FecR. This signal is transmitted by an unknown mechanism through the 

inner membrane, resulting in activation of FecI, which initiates transcription of the 

fecABCDE operon, encoding a ferric citrate uptake system. Contradictory to the anti-σ 

factor paradigm, FecR remains intact after signal transduction and is even required for full 

FecI-dependent transcription, thereby acting as both an anti-σ factor and mediator of σ 

factor activity. Transcription of the fecIR operon, encoding the ECF σ and anti-σ factor, 

respectively, is not autoregulated. Instead, its expression is controlled by the Fur repressor, 

whose inhibitory function is abolished at low intracellular iron concentrations. This ensures 

the presence of the regulatory components when iron is limited, while expression of the 

corresponding uptake system additionally requires the availability of the specific substrate 

(Braun & Mahren, 2005, Braun et al., 2006). 

1.6.6 Novel types of ECF-dependent signal transducing mechanisms 

In addition to these well-established ECF σ factor-dependent signal transducing 

mechanisms described above, the comprehensive classification of ECF σ factors by Staroń 

and colleagues identified a number of novel groups with unique features (Fig. 1.6 F). Most 
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of them have not been intensively studied, but initial characterization of some proteins as 

well as data derived from sequence and genomic context analyses indicate the discovery of 

yet completely unknown signaling modules and mechanisms. Some of these ECF σ factors 

are associated with unusual anti-σ factors, either carrying domains of unknown function or 

having a special architecture, for example regarding the number of transmembrane regions. 

Other ECF σ factors are genomically linked to completely unrelated proteins like sensor 

kinases or enzymes. Moreover, in some cases the ECF σ factor itself contains additional 

domains, while an obvious anti-σ factor is missing (Staroń et al., 2009). 

1.7 Aims of this work 

The response to cell envelope stress is orchestrated by two signal transducing principles: 

TCSs and ECF σ factors, both consisting of an often membrane-anchored sensor protein 

and a cytoplasmic regulator, which mediates the cellular response in form of differential 

gene expression. These systems allow the sensing of and response to cell envelope-related 

stimuli, which could be the presence of harmful compounds like antibiotics or a general 

loss of cell envelope integrity (Jordan et al., 2008). 

One aim of this work was to elucidate the response of the Gram-positive model organism 

B. subtilis to compounds that interfere with or inhibit biosynthesis of a functional cell 

envelope. First, the response to two clinically relevant antibiotics, daptomycin and 

friulimicin B, should be investigated by global in-depth expression profiling at both the 

transcriptome and proteome level. These two antibiotics are structurally similar and 

interfere with cell envelope integrity, but it has been suggested that they have a completely 

different molecular MOA. Similarities and differences in the expression profiles as well as 

comparison with responses provoked by antibiotics with already well-known targets should 

provide data to gain a deeper understanding of the specific MOA of daptomycin and 

friulimicin B. Secondly, the transcriptional response of B. subtilis to rhamnolipids, which 

are biosurfactants produced by the soil bacterium Pseudomonas aeruginosa, should be 

investigated by DNA microarray analysis. While rhamnolipids are not used for treatment 

of infections, thereby not being classical antibiotics, they show antimicrobial activity. The 

resulting gene expression profile should be further analyzed and possible resistance 

determinants identified. 
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The second aim of this work was the characterization of a novel group of ECF σ factors 

(ECF41), which was identified by a comprehensive classification of this protein family 

(Staroń et al., 2009). Special features of this group are the lack of an obvious anti-σ factor 

and an unusual C-terminal extension of the ECF proteins. The phylogenetic distribution 

and genomic context conservation of this novel group should be determined. A target 

promoter as well as the corresponding target genes should be identified by both in silico 

and in vivo approaches, possibly assigning a function to the ECF41 σ factors. Moreover, a 

potential role of the C-terminal extension in the signal transducing process should be 

considered and the influence of mutations and truncations on promoter activation and 

interaction with RNAP should be investigated. To gain a representative understanding of 

the whole group of ECF41 σ factors, experiments should be carried out in two organisms 

from different bacterial phyla, namely Bacillus licheniformis and R. sphaeroides. 
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The related lipo(depsi)peptide antibiotics daptomycin and friulimicin B show great potential in the treat-
ment of multiply resistant gram-positive pathogens. Applying genome-wide in-depth expression profiling, we
compared the respective stress responses of Bacillus subtilis. Both antibiotics target envelope integrity, based
on the strong induction of extracytoplasmic function � factor-dependent gene expression. The cell envelope
stress-sensing two-component system LiaRS is exclusively and strongly induced by daptomycin, indicative of
different mechanisms of action in the two compounds.

Staphylococcus aureus is a leading cause of nosocomial in-
fections, especially in mechanically ventilated patients. Its re-
markable potential to acquire and accumulate high-level resis-
tance against most of the classical antibiotics (including
vancomycin) used for the treatment of gram-positive infections
is one of the reasons for the ongoing mortality caused by
hospital-acquired S. aureus infections (7, 17).

Daptomycin is the first of a new class of cyclic lipodepsipep-
tide antibiotics (Fig. 1A) with strong bactericidal activities
against gram-positive pathogens (2). It interferes with cell en-
velope integrity, and cell death occurs presumably by either
membrane depolarization or membrane perforation (19, 20).
Friulimicin B, an acidic, cyclic lipopeptide produced by Acti-
noplanes friuliensis, shows structural similarities to daptomycin
(Fig. 1B) and is also active against multidrug-resistant gram-
positive bacteria (1, 22).

As part of a coordinated effort to study and characterize its
mode of action, we have performed comparative in-depth ex-
pression profiling for both antibiotics. This technique is a pow-
erful approach to elucidate the inhibitory mechanisms of novel
antimicrobial compounds (4, 9) and has been successfully ap-
plied to characterize and differentiate antimicrobial actions,
often using Bacillus subtilis as a model organism (3, 10). B.
subtilis is particularly well suited for studying cell wall antibi-

otics, since the regulatory network orchestrating its cell enve-
lope stress response (CESR) is well characterized. It consists of
four two-component systems and at least four extracytoplasmic
function (ECF) � factors (11).

Here, we present results from an in-depth analysis of the
expression signature provoked by the treatment of B. subtilis
with sublethal amounts of daptomycin and friulimicin B. Our
data show that both antibiotics specifically target cell envelope
integrity. But significant differences in the corresponding
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FIG. 1. Chemical structures of the lipodepsipeptide antibiotic dap-
tomycin (A) and the lipopeptide antibiotic friulimicin B (B).
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CESRs, as clearly documented by transcriptomics, proteomics,
and detailed gene expression profiling, strongly suggest differ-
ent modes of action of the two structurally related antibiotics.

(This study was presented in part at the 47th International
Conference on Antimicrobial Agents and Chemotherapy, Chi-
cago, IL, 17 to 20 September 2007 [25]).

Transcriptomics and proteomics. For microarray experi-
ments, midlogarithmic cultures of B. subtilis were challenged
with 1 �g/ml (sublethal amounts) of either daptomycin or
friulimicin B. The cells were harvested 10 min postinduction,
and cell pellets were directly snap-frozen in liquid nitrogen.
RNA preparation and microarray experiments were per-
formed essentially as described previously (13, 23). To validate
the gene expression profiles, we also performed two-dimen-
sional gel electrophoresis of the cytoplasmic proteome of B.
subtilis cells, quantifying de novo protein synthesis after the
addition of daptomycin or friulimicin B by incubating the cul-
tures in the presence of L-[35S]methionine, as described previ-
ously (3). The results are summarized in Table 1 and Fig. 2.
The complete microarray data sets can be found in the sup-

plemental material and, together with additional supporting
information, at http://microbial-stress.iab.kit.edu/87.php.

Both antibiotics induced a limited number of genes, most of
which could be assigned to known CESR regulons. Daptomy-
cin specifically and strongly activated the LiaRS two-compo-
nent system, with more than 200-fold induction of its primary
target genes, liaIH. This induction has also been observed
recently in an independent study (9a) and is in good agreement
with data from the orthologous VraSR system of S. aureus
which was also induced by daptomycin (16). Moreover, a
strong LiaH induction was also observed with proteomics anal-
ysis, where it was identified in three strong neighboring spots
(differing in their isoelectric points), indicative of posttransla-
tional modifications (Fig. 2).

Both compounds induced numerous genes known to be reg-
ulated by ECF � factors. This ECF-dependent response was
much stronger for friulimicin B (Table 1). In addition, only
seven genes/proteins of unknown regulation were differentially
expressed (Table 1 and Fig. 2), including the actin homolog
mreBH, which was induced about three- to fourfold by both

TABLE 1. Marker genes induced by daptomycin and/or friulimicin B

Gene(s)a
Induction by:b

Regulator(s)c Localization
(putative)d Homology, function, remarkse

DAP FRI

ywaC 4.5 � 4.3 8.7 � 3.8 �V, �M, �W C Putative GTP-pyrophosphokinase
mreBH 3.9 � 1.9 3.1 � 1.2 C Control of cell shape; membrane-associated
ydaH 3.3 � 0.3 9.1 � 2.4 �M M Conserved membrane protein
yqjL 3.3 � 0.3 8.9 � 1.6 �V, �M C Putative hydrolase
bcrC 3.3 � 1.0 8.2 � 2.8 �V, �M, �W, �X M Undecaprenyl pyrophosphate phosphatase
yrhH 3.1 � 1.3 8.5 � 3.4 �V, �M, �W C Putative methyltransferase
liaIH(GFSR) 429 � 53 � LiaRS M, S Conserved membrane protein; phage-shock protein A

homolog (three-component regulatory system)
gerAAABAC 15 � 2.9 � (LiaRS) M, S Downstream lia operon, known polar effect from PliaI
ybeF 4.6 � 0.9 � M Conserved membrane protein
sigM-yhdLK � 7.4 � 4.0 �M C, M ECF � factor
yjbC-spx � 7.2 � 1.7 �V, �M, �W C Glutaredoxin family; transcriptional regulator Spx
sms-yacKL � 7.1 � 0.5 �M C, C, M DNA repair/binding proteins; membrane protein
radC � 6.9 � 2.1 �M C DNA repair protein
ypuA � 6.5 � 2.3 �M S Conserved hypothetical
ypbG � 6.4 � 1.0 �M S Putative phosphoesterase
ypuD � 6.2 � 0.7 �M S Unknown
ycgRQ � 5.9 � 0.6 �V, �M M Conserved membrane protein; permease
yrhIJ � 5.7 � 0.8 �M C, Cytochrome P450; transcriptional repressor BscR
sigV-yrhM � 5.1 � 2.0 �V C, M ECF � factor
yfnI � 4.7 � 2.0 �M M (S)f Similar to phosphoglycerol transferases
yebC � 4.1 � 0.6 �M M Unknown
yppC � 4.1 � 0.4 C Conserved hypothetical
ywnJ � 4.1 � 0.1 �M, �X M Unknown
ywtF � 3.9 � 0.6 �M C (S)f Putative transcriptional regulator
pbpI � 3.8 � 1.3 M Class B penicillin-binding protein
rodA � 3.8 � 0.9 �M M Control of cell shape and elongation
ylxW � 3.5 � 0.3 �M M Unknown
yoxD � 3.7 � 0.2 C Putative 3-oxoacyl-acyl-carrier protein
yqiG � 3.4 � 0.4 C Putative NADH-dependent flavin oxidoreductase
yjbQ � 3.4 � 0.2 M Putative Na�/H� antiporter

a Only genes that were induced �threefold in three independent experiments by daptomycin and/or friulimicin B are shown. The proteins corresponding to the
underlined genes were also significantly upregulated in the cytoplasmic proteome (Fig. 2).

b Average induction ratio of the highest value for each locus (usually the first gene in an operon) and the corresponding standard deviation are given. DAP,
daptomycin; FRI, friulimicin B; �, no significant induction.

c Assignment of regulators is based on the corresponding regulon papers: LiaRS (12), �M (8), �V (24), �W (6), and �X (5).
d Localization of the corresponding proteins is based on the presence of transmembrane regions (membrane proteins) and signal peptides (secreted proteins)

detected with SMART. C, cytoplasmic proteins; M, membrane proteins; S, secreted proteins.
e Putative function is derived from BSORF/Subtilist entries (at http://bacillus.genome.ad.jp/ and http://genolist.pasteur.fr/SubtiList/genome.cgi, respectively), NCBI

blast (http://blast.ncbi.nlm.nih.gov/Blast.cgi), or SMART (http://smart.embl-heidelberg.de/) analysis.
f YfnI and YwtF are assigned to secreted proteins based on experimental evidence (21).
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FIG. 2. Synthesis patterns of marker proteins after induction with
daptomycin (DAP) or friulimicin B (FRI) compared to patterns of
untreated control cells. Details from the two-dimensional gels of the
cytoplasmic proteome (“spot albums” of marker proteins) are shown
for two time points postinduction with each of two compounds.
(A) Proteins induced by both antibiotics. (B) Daptomycin-specific
spots. (C) Friulimicin B-specific spots. See text for details.
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compounds. Five more genes without known regulator, some
of which are potentially involved in cell envelope biogenesis,
specifically responded to friulimicin B (Table 1). All genes
identified in our analysis have been linked to CESR of B.
subtilis previously (data not shown). While no expression sig-
nature available so far resembles that of friulimicin B, both the
transcriptome and the proteome profile for daptomycin closely
resemble those of bacitracin (3, 14).

In-depth gene expression profiling. The results of our mi-
croarray study led to three follow-up analyses on the specificity
of the corresponding CESR. (i) We analyzed the induction of
all seven ECF � factors by quantitative real-time reverse trans-
criptase PCR (RT-PCR), based on the known and highly ECF-
specific autoregulation of their own genes, to determine the
respective inducer spectrum and strength. The primers used
for amplification are listed in Table 2. Both antibiotics activate
�M and �V, with friulimicin B provoking a significantly stron-
ger response. In addition, friulimicin B also induced the un-
characterized ECF � factor �YlaC (Table 3).

(ii) The much stronger activation of ECF target genes by
friulimicin B was not due to the corresponding lack of liaIH
induction, as demonstrated by the induction values of ECF
genes in the liaIH mutant strain TMB0389, which were iden-
tical to those in the wild type (data not shown). The stronger
ECF response to friulimicin B is therefore LiaIH independent
and a true antibiotic-specific difference in the corresponding
gene induction profiles.

(iii) We also quantified the activity of the LiaR target pro-
moter PliaI as a function of the daptomycin/friulimicin B con-
centrations over a range of 4 orders of magnitude by perform-
ing a �-galactosidase assay (using strain BFS2470 as described
previously) (15). PliaI induction was indeed only observed in
the presence of daptomycin and in a very narrow window of
antibiotic concentrations (between 0.5 and 2 �g/ml) (data not
shown). These results strongly suggest different modes of ac-
tion for daptomycin and friulimicin B.

Conclusions. Our data clearly allowed the identification of
cell envelope integrity as the site of daptomycin and friulimicin
B action, but the results strongly suggest mechanistic differ-
ences between the two compounds. This assumption is primar-
ily based on the dramatic differences in the LiaRS response.
Moreover, friulimicin B activates both �M and �V more
strongly than daptomycin and, additionally, induces �YlaC ex-
pression (summarized in Fig. 3). The strong similarities of
CESR between daptomycin and bacitracin were initially
viewed as an indication that daptomycin might interfere with
the lipid II cycle of cell wall biosynthesis. But a detailed bio-
chemical mechanism of action study revealed that friulimicin
B, like amphomycin but in contrast to the membrane-interfering
daptomycin, inhibits cell wall biosynthesis by binding bactopre-
nol phosphate (18).

This work was supported by grants from the Deutsche Forschungs-
gemeinschaft (to T.M.), the Fonds der Chemischen Industrie (to T.M.
and M.H.), the Bundesministerium für Bildung und Forschung (to
G.H., U.M., and M.H.; project name, Unternehmen Region-Zentren
für Innovationskompetenz; project number from PtJ, 03ZIK012;
project running time, June 2005 to May 2010), and the Bildungsmin-
isterium of the country Mecklenburg-Vorpommern (to M.H.). Fund-
ing for Combinature Biopharm AG (now Merlion Pharmaceuticals
GmbH) for friulimicin-related work was granted by the BMBF (project
name, BioChancePLUS; project number from PtJ, 0313173; and
project running time, April 2004 to March 2007). T.W. was supported
by a Chemiefonds Ph.D. scholarship from the Fonds der Chemischen
Industrie.

We thank Anja Hoffmann and Susanne Paprotny for excellent tech-
nical assistance, Anna-Barbara Hachmann, John D. Helmann, Tanja
Schneider, and Hans-Georg Sahl for sharing data prior to publication,
and the Decodon GmbH (Greifswald, Germany) for their cooperation.

REFERENCES

1. Aretz, W., J. Meiwes, G. Seibert, G. Vobis, and J. Wink. 2000. Friulimicins:
novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity
from Actinoplanes friuliensis sp. nov. I. Taxonomic studies of the producing
microorganism and fermentation. J. Antibiot. (Tokyo) 53:807–815.

2. Baltz, R. H., V. Miao, and S. K. Wrigley. 2005. Natural products to drugs:
daptomycin and related lipopeptide antibiotics. Nat. Prod. Rep. 22:717–741.

3. Bandow, J. E., H. Brotz, L. I. Leichert, H. Labischinski, and M. Hecker.
2003. Proteomic approach to understanding antibiotic action. Antimicrob.
Agents Chemother. 47:948–955.

4. Brazas, M. D., and R. E. Hancock. 2005. Using microarray gene signatures
to elucidate mechanisms of antibiotic action and resistance. Drug Discov.
Today 10:1245–1252.

5. Cao, M., and J. D. Helmann. 2004. The Bacillus subtilis extracytoplasmic-
function �X factor regulates modification of the cell envelope and resistance
to cationic antimicrobial peptides. J. Bacteriol. 186:1136–1146.

6. Cao, M., P. A. Kobel, M. M. Morshedi, M. F. Wu, C. Paddon, and J. D.
Helmann. 2002. Defining the Bacillus subtilis �W regulon: a comparative
analysis of promoter consensus search, runoff transcription/macroarray anal-
ysis (ROMA), and transcriptional profiling approaches. J. Mol. Biol. 316:
443–457.

7. de Lencastre, H., D. Oliveira, and A. Tomasz. 2007. Antibiotic resistant
Staphylococcus aureus: a paradigm of adaptive power. Curr. Opin. Microbiol.
10:428–435.

8. Eiamphungporn, W., and J. D. Helmann. 2008. The Bacillus subtilis �M

regulon and its contribution to cell envelope stress responses. Mol. Micro-
biol. 67:830–848.

FIG. 3. Schematic representation of the regulatory networks or-
chestrating the daptomycin (DAP) and friulimicin B (FRI) stress re-
sponses. The thickness of the arrows corresponds to the strength of
induction of the given regulators (see text and Table 1 for details).
TCS, two-component system.

TABLE 3. Induction of ECF � factors and liaH by daptomycin and
friulimicin B

Gene
Induction by:a

DAP FRI

sigM 2.4 � 0.1 8.7 � 3.8
sigV 2.4 � 0.7 7.4 � 2.3
sigW 1.4 � 0.3 0.9 � 0.0
sigX 0.8 � 0.2 0.8 � 0.0
sigY 0.9 � 0.1 1.8 � 0.3
sigZ 1.0 � 0.0 1.2 � 0.1
ylaC 1.0 � 0.0 2.9 � 0.3
liaH 1170 � 426 0.9 � 0.0

a Levels of change given are the average � standard deviation of the results of
two independent real-time RT-PCR experiments, performed essentially as pre-
viously described (23), using an iScript one-step RT-PCR kit with Sybr green
(Bio-Rad) according to the manufacturer’s recommended procedure. DAP, dap-
tomycin; FRI, friulimicin B.

1622 WECKE ET AL. ANTIMICROB. AGENTS CHEMOTHER.



9. Fischer, H. P., and C. Freiberg. 2007. Applications of transcriptional profil-
ing in antibiotics discovery and development. Prog. Drug Res. 64:23–47.

9a.Hachmann, A.-B., E. R. Angert, and J. D. Helmann. 2009. Genetic analysis of
factors affecting susceptibility of Bacillus subtilis to daptomycin. Antimicrob.
Agents Chemother. 53:XXX.

10. Hutter, B., C. Schaab, S. Albrecht, M. Borgmann, N. A. Brunner, C.
Freiberg, K. Ziegelbauer, C. O. Rock, I. Ivanov, and H. Loferer. 2004.
Prediction of mechanisms of action of antibacterial compounds by gene
expression profiling. Antimicrob. Agents Chemother. 48:2838–2844.

11. Jordan, S., M. I. Hutchings, and T. Mascher. 2008. Cell envelope stress
response in Gram-positive bacteria. FEMS Microbiol. Rev. 32:107–146.

12. Jordan, S., A. Junker, J. D. Helmann, and T. Mascher. 2006. Regulation of
LiaRS-dependent gene expression in Bacillus subtilis: identification of inhib-
itor proteins, regulator binding sites, and target genes of a conserved cell
envelope stress-sensing two-component system. J. Bacteriol. 188:5153–5166.
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25. Zühlke, D., B. Voigt, M. Hecker, S. Jordan, T. Mascher, S. Pelzer, and H.
Labischinski. 2007. Distinct mode of action of the lipopeptide antibiotic
friulimicin B and the lipodepsipeptide daptomycin: a proteomic study, abstr.
F1-1641. Abstr. 47th Intersci. Conf. Antimicrob. Agents Chemother.

VOL. 53, 2009 B. SUBTILIS RESPONSES TO DAPTOMYCIN AND FRIULIMICIN B 1623



 

36 

Chapter 3 

The rhamnolipid stress response of Bacillus subtilis. 

Wecke, T., Bauer, T., Harth, H., Mäder, U., and Mascher, T. 2011.  

FEMS Microbiology Letters 323:113-123 

 

 

 

 

 

 

 

 

Author contributions: 

Tina Wecke performed the experiments, cluster analysis and transcriptome data analysis. 

Tobias Bauer contributed to strain construction and growth curve experiments during his 

bachelor thesis. Henning Harth and Ulrike Mäder performed the initial microarray 

analysis. Tina Wecke and Thorsten Mascher designed the experiments and wrote the paper. 



R E S EA RCH L E T T E R

The rhamnolipid stress response of Bacillus subtilis

Tina Wecke1, Tobias Bauer1, Henning Harth1, Ulrike Mäder2 & Thorsten Mascher1
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Abstract

Rhamnolipids are biosurfactants produced by the soil bacterium Pseudomonas

aeruginosa. In addition to their high industrial potential as surface-active mole-

cules, rhamnolipids also have antimicrobial properties. In densely populated

habitats, such as the soil, production of antimicrobial compounds is important

to inhibit growth of competitors. For the latter, it is crucial for survival to

sense and respond to the presence of those antibiotics. To gain a first insight

into the biological competition involving biosurfactants, we investigated the

cellular response of the model organism Bacillus subtilis upon exposure to

rhamnolipids by genome-wide transcriptional profiling. Most of the differen-

tially expressed genes can be assigned to two different regulatory networks: the

cell envelope stress response mediated by the two-component system LiaRS

and the extracytoplasmic function r factor rM and the CssRS-dependent secre-

tion stress response. Subsequent phenotypic analysis demonstrated a protective

function of LiaRS and rM against cell lysis caused by rhamnolipids. Taken

together, we present the first evidence that a single antimicrobial compound

can simultaneously induce genes from two independent stress stimulons.

Introduction

The soil is a complex habitat characterized by high popu-

lation density and nutrient limitation. To survive in such

a competitive environment, bacteria developed a number

of different strategies. One such strategy is the production

of antimicrobial compounds to inhibit growth of compet-

itors (Paul & Clark, 1996; Tate, 2000). In addition to

classical antibiotics that target essential structures or pro-

cesses within the bacterial cell, antimicrobial activities,

often based on biophysical effects, can also be assigned to

ionophores, ion-channel forming agents or biosurfactants

(Berdy, 2005).

Biosurfactants are surface-active molecules synthesized

by microorganisms. They consist of a hydrophilic and a

hydrophobic part and are able to reduce surface tension

and enhance the emulsification of hydrocarbons. Biosurf-

actants are commercially used for bioremediation pro-

cesses as well as the pharmaceutical, cosmetics, and food

industries (Banat et al., 2000). Rhamnolipids are biosurf-

actants produced by the soil bacterium Pseudomonas

aeruginosa. These surface-active molecules are glycolipids

composed of one or two L-rhamnose moieties and one or

two b-hydroxydecanoic acid residues (Soberon-Chavez

et al., 2005). The synthesis from rhamnose and fatty acid

precursors is catalyzed by the products of three genes,

rhlABC, and regulated in a cell density-dependent manner

by quorum sensing. The amount and composition of syn-

thesized rhamnolipids depends on growth conditions and

available carbon source (Soberon-Chavez et al., 2005).

Rhamnolipids have been shown to exhibit antimicro-

bial activity against Gram-positive bacteria and, but to a

much lesser extent, also against Gram-negative species

(Itoh et al., 1971; Lang et al., 1989). They modify the cell

surface by increasing its hydrophobicity and membrane

permeability (Vasileva-Tonkova et al., 2011). Although
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the production of rhamnolipids by P. aeruginosa is well

understood (Soberon-Chavez et al., 2005), only little is

known about the physiological reaction to the presence of

this biosurfactant.

The response to antimicrobial compounds that interfere

with the cell envelope integrity has been extensively studied

in the model organism Bacillus subtilis. Here, the regulatory

network of the cell envelope stress response is mediated by

two regulatory principles: two-component systems (TCS)

and extracytoplasmic function (ECF) r factors. Four TCS

(BceRS, LiaRS, PsdRS and YxdJK) and at least three ECF r
factors (rM, rW and rX) have been described to respond

to cell wall antibiotics, such as vancomycin, bacitracin,

or cationic antimicrobial peptides (Jordan et al., 2008).

Bacillus subtilis inhabits the same environment as the

rhamnolipid-producing species P. aeruginosa. Therefore,

we decided to investigate the response of B. subtilis

to rhamnolipids by genome-wide DNA microarray analy-

sis followed by hierarchical clustering of differentially

expressed genes and phenotypic characterization to gain a

first insight into this interspecies competition.

Materials and methods

Bacterial strains and growth conditions

Bacillus subtilis and Escherichia coli were routinely grown

in LB medium at 37 °C with aeration. All strains and

plasmids used in this study are listed in Table 1. Standard

cloning techniques were applied (Sambrook & Russell,

2001) and transformation was carried out as described

(Harwood & Cutting, 1990). Ampicillin (100 lg mL�1)

was used for selection of E. coli, kanamycin (10 lg mL�1)

and erythromycin (1 lg mL�1) plus lincomycin (25 lg
mL�1) for macrolide-lincosamide-streptogramin B (MLS)

resistance were used for selection of B. subtilis mutants.

Rhamnolipids were isolated from P. aeruginosa as a mix-

ture of mono- and di-rhamnolipid (Müller et al., 2010),

dissolved in ethanol and used at the indicated concentra-

tions. All experiments were performed with rhamnolipids

from the same purification, as the composition and bio-

logical activity varies between different cultivations of

P. aeruginosa (R. Hausmann, pers. commun.).

Preparation of total RNA

Bacillus subtilis W168 was grown aerobically in LB med-

ium at 37 °C until an OD600 nm of c. 0.5. The culture was

split and one sample was induced with sublethal concen-

trations (50 lg mL�1) of rhamnolipids, leaving the other

sample as uninduced control. After 10 min, 30 mL cul-

ture were mixed with 15 mL cold killing buffer (20 mM

Tris–HCl, pH 7.0, 0.5 mM MgCl2, 20 mM NaN3), har-

vested by centrifugation and frozen in liquid nitrogen,

before the pellets were stored at �80 °C. Total RNA was

isolated as described previously (Wolf et al., 2010). Con-

taminating DNA was removed using the RNase-free

DNase kit (Qiagen) and quality control of the RNA was

performed with an RNA 6000 Nano LabChip Kit (Agilent

Technologies) on an Agilent 2100 Bioanalyzer according

to the manufacturer’s instructions.

DNA microarray analysis

RNA samples from three independent cultivations were

used for cDNA synthesis and hybridized with dye-swap

to Agilent custom DNA microarrays. Synthesis of fluores-

cently labeled cDNA, hybridization and scanning of the

microarrays were performed as described previously (Otto

et al., 2010). Data were extracted and processed using

Table 1. Strains, vectors, and plasmids used in this study

Strain

Genotype or

characteristic(s)*

Reference, source

or construction

E. coli strains

DH5a recA1 endA1 gyrA96

thi hsdR17rK- mK

+relA1 supE44 Φ80

DlacZDM15

D(lacZYA-argF)U169

Laboratory stock

B. subtilis

strains

W168 Wild type, trpC2 Laboratory stock

TMB149 W168 sigW::MLS LFH-PCR?W168

TMB329 W168 DliaF Wolf et al. (2010)

TMB589 W168 DliaR pMAD-based clean

deletion

TMB1003 W168 sigM::kan HB0829 chrom.

DNA?W168

TMB1070 W168 cssRS::kan LFH-PCR?W168

TMB1392 W168 DliaR sigM::

kan sigW::MLS

HB0829 chrom.

DNA?TMB589

TMB1393 W168 sigM::kan

sigW::MLS

HB0829 chrom.

DNA?TMB1003

HB0829 NCIB3610 sigM::

kan sigW::MLS

Mascher et al. (2007)

Vectors or

plasmids

pMAD bgaB, ermC, bla, MCS Arnaud et al. (2004)

pDG780 pBluescriptKS+ kan,

source of resistance

cassette for LFH-PCR

Guerout-Fleury et al.

(1995)

pDG647 pSB119, MLS, source

of resistance cassette

for LFH-PCR

Guerout-Fleury et al.

(1995)

pDW104 pMAD DliaR This study

chrom. DNA, chromosomal DNA.

*Resistance cassettes: kan, kanamycin; MLS, macrolide-lincosamide-

streptogramin B; spec, spectinomycin.
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the FEATURE EXTRACTION software (version 10.5; Agilent

Technologies). For each gene on the microarray, the

error-weighted average of the log ratio values of the indi-

vidual probes was calculated using the ROSETTA RESOLVER

software (version 7.2.1; Rosetta Biosoftware). The com-

plete dataset containing induction ratios for all genes

is available at http://www.syntheticmicrobe.bio.lmu.de/

publications/supplemental/index.html.

Measurement of induction by quantitative

real-time RT-PCR

Measurement of transcript abundance was performed in

duplicate by quantitative real-time RT-PCR using the

QuantiFast SYBR Green RT-PCR Kit (Qiagen) according

to the manufacturer’s protocol, with minor modifications.

In brief, 100 ng of DNA-free RNA were used in a total

reaction volume of 20 lL with 0.3 lM of each primer

(Table 2). The reaction was carried out in a MyiQ Cycler

(BioRad). Expression of rpsJ and rpsE was monitored as

constitutive reference. Relative induction levels were cal-

culated as fold changes using the formula: Fold change =
2�DDCt ; with �DDCt = (Ct,gene x � Ct,constitutive gene)condition

I � (Ct,gene x � Ct,constitutive gene)condition II (Talaat et al.,

2002).

Hierarchical clustering analysis

Clustering was performed using the program CLUSTER 3.0

(de Hoon et al., 2004). Transcriptome data were derived

from this work or published studies (Cao et al., 2002a;

Mascher et al., 2003; Lulko et al., 2007; Wecke et al.,

Table 2. Oligonucleotides used in this study

Nr Name Sequence

Real-time RT-PCR

0125 liaH-RT fwd TGAAACAGCACACGATTGCC

0126 liaH-RT rev GTTTGCCTGTTCATAGGAAGC

1890 cssR-RT fwd TGGATTCTCGATATCATGCTG

1891 cssR-RT rev TAGTCATTGCTGCCAATCTC

1886 htrA-RT fwd AACGAGGATTCGGATGGTTC

1887 htrA-RT rev TGTAACAGATTGCGTTTGCTG

1888 htrB-RT fwd GCCTTATCTGCCGTCAGAC

1889 htrB-RT rev ATTCCGACAATCGTAGGCTC

0826 sigM-RT fwd GTTTACAGGTTCCTGCTCTC

0827 sigM-RT rev ATGAAGGCGTTTCGCGCCA

0156 rpsJ-RT fwd GAAACGGCAAAACGTTCTGG

0157 rpsJ-RT rev GTGTTGGGTTCACAATGTCG

0158 rpsE-RT fwd GCGTCGTATTGACCCAAGC

0159 rpsE-RT rev TACCAGTACCGAATCCTACG

LFH-PCR

0342 sigW up fwd CCGAGAAGTTCAGGGCAAGCC

0343 sigW up rev CCTATCACCTCAAATGGTTCGCTGCGATGTCCGCAAATGCATCC

0344 sigW do fwd CGAGCGCCTACGAGGAATTTGTATCGCGGATTCACAGAGGCAGAGAGC

0345 sigW do rev GCTGAACCGCTTTCGTGCC

1793 cssR up fwd TTTCACTTTCTGAGCTGGAG

1794 cssR up rev CCTATCACCTCAAATGGTTCGCTGTTCATTCAGGTTATCCTCATC

1795 cssS do fwd CGAGCGCCTACGAGGAATTTGTATCGGGTGTATCATACCGCATAGC

1796 cssS do rev ATTGAGACGGCTTCACAGTG

0137 kan fwd CAGCGAACCATTTGAGGTGATAGG

0138 kan rev CGATACAAATTCCTCGTAGGCGCTCGG

0139 mls fwd CAGCGAACCATTTGAGGTGATAGGGATCCTTTAACTCTGGCAACCCTC

0140 mls rev CGATACAAATTCCTCGTAGGCGCTCGGGCCGACTGCGCAAAAGACATAATCG

0147 kan check rev CTGCCTCCTCATCCTCTTCATCC

0056 kan check fwd CATCCGCAACTGTCCATACTCTG

0148 mls check rev GTTTTGGTCGTAGAGCACACGG

0057 mls check fwd CCTTAAAACATGCAGGAATTGACG

DliaR deletion mutant

1060 liaR up fwd (BamHI) AGCCGGATCCGACAACGGGAATCAGCCTGC

1120 liaR up rev CGAGATGATTTCGGTGTGCGCTGACCATTTCATGATCATC

1059 liaR do fwd CGCACACCGAAATCATCTCG

1061 liaR do rev (NcoI) TATACCATGGGCTGACACAGCAAATTCTCG

Restriction sites for cloning are highlighted in bold, linker regions for joining reactions are underlined.
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2009). The datasets represent the following conditions:

50 lg mL�1 rhamnolipids (10 min), 1 lg mL�1 daptomy-

cin (10 min), 1 lg mL�1 friulimicin (10 min), 2 lg mL�1

vancomycin (10 min), 100 lg mL�1 bacitracin (5 min)

and secretion stress caused by overexpression of the a-amy-

lase AmyQ. For reasons of clarity, cluster analysis was

restricted to genes induced � threefold and repressed

�fivefold by rhamnolipids.

Allelic replacement mutagenesis using long-

flanking homology PCR

The long-flanking homology (LFH) PCR is derived from a

published procedure (Wach, 1996) and performed as previ-

ously described (Mascher et al., 2003). In brief, resistance

cassettes were amplified from suitable vectors as template

(Guerout-Fleury et al., 1995). About 1000-bp DNA frag-

ments flanking the region to be deleted were amplified by

PCR using chromosomal DNA of B. subtilis W168 as tem-

plate. These fragments are here called up- and do-frag-

ments. The up-reverse and do-forward primers carry c. 25-

bp nucleotides complementary to the sequence of the resis-

tance cassettes. All obtained fragments were purified and

used as template in a second PCR with the corresponding

up-forward and do-reverse primers. The PCR products

were directly used to transform B. subtilis W168. Transfor-

mants were screened by colony PCR using the up-forward

and do-reverse primers with check primers annealing

within the resistance cassette. Integrity of the regions flank-

ing the resistance cassette was verified by sequencing of

PCR products. The resulting strains are listed in Table 1,

the oligonucleotides in Table 2.

Construction of a markerless DliaR deletion

mutant

A markerless DliaR deletion strain was constructed using

the vector pMAD (Arnaud et al., 2004) and the oligonucle-

otides listed in Table 2. The procedure has been described

previously (Wolf et al., 2010). In brief, about 1000-bp

regions upstream and downstream of liaR were amplified

using PCR, thereby introducing a 20-bp extension to the

3′-end of the up-fragment, which is complementary to the

5′-end of the do-fragment. The fragments were fused by a

second PCR and the resulting product was cloned into

pMAD, generating pDW104. Bacillus subtilis W168 was

transformed with pDW104 and incubated at 30 °C with

MLS selection on LB agar plates containing 100 lg mL�1

X-Gal (5-bromo-4-chloro-3-indolyl-b-D-
galactopyranoside). Blue colonies were selected and

incubated for 6–8 h at 42 °C in LB medium with MLS

selection, which results in the integration of the plasmid

into the chromosome. Again, blue colonies were selected

and incubated for 6 h at 30 °C in LB medium without

selection. Subsequently, the culture was shifted to 42 °C for

3 h, before the cells were plated on LB agar plates without

selection. White colonies were picked and checked for MLS

sensitivity, indicating the loss of the plasmid. Those har-

boring a clean deletion of liaR were identified using PCR.

Concentration-dependent lysis curve

experiments

Bacillus subtilis wild-type and mutant strains were inocu-

lated from fresh overnight cultures and grown aerobically

in LB medium until an OD600nm of c. 0.5. The cultures were

split into 1 mL samples and different concentrations of

rhamnolipids were added. The effect of rhamnolipids on cell

density of each sample was monitored over a period of 7 h.

Results and discussion

The transcriptional response to rhamnolipids

Genome-wide expression profiling is a powerful approach

to characterize the response to a certain stimulus, such as

the presence of antimicrobial compounds. It has also

been used to gain insights into inhibitory mechanisms

and to differentiate between different modes of action of

novel antibiotics (Hutter et al., 2004; Fischer & Freiberg,

2007; Wecke et al., 2009). We used genome-wide DNA

microarray analysis to investigate the response of the

model organism B. subtilis to the presence of rhamnoli-

pids, which have been shown to affect cell envelope integ-

rity (Vasileva-Tonkova et al., 2011). B. subtilis was treated

with sublethal concentrations (50 lg mL�1) of rhamnoli-

pids, which is sufficient to induce a transcriptional

response, but does not impair growth of the culture, as

can be demonstrated by concentration-dependent lysis

curve experiments (see below and Fig. 3). After 10 min

of induction, total RNA was prepared and DNA micro-

array analysis performed. Expression of 40 loci was

�fivefold increased by rhamnolipids compared with the

mRNA levels of an uninduced culture (Table 3 and

Fig. 1a). Almost half of these loci can be assigned to

known regulons of TCS or ECF r factors. The most

strongly induced locus was the liaIHGFSR operon

(c. 640-fold), which is autoregulated by the LiaRS TCS

(Mascher et al., 2004). The first two genes of this locus,

liaIH, represent the main targets of LiaRS-dependent sig-

nal transduction and liaH encodes a phage-shock protein

homolog. The LiaRS TCS is activated by cell wall anti-

biotics, especially lipid II-interacting compounds, but it

does not mediate resistance against most of its inducers

(Mascher et al., 2004; Wolf et al., 2010). Strong expression

of the lia locus also resulted in significant read-through
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Table 3. Genes significantly induced or repressed by rhamnolipids

Gene(s)* Fold changes† Regulators‡ Homology, (putative) function, remarks

Genes induced �fivefold

liaIHGFSR 640 ± 501 LiaRS Phage-shock protein homolog, TCS, unknown

htrA 58 ± 15 CssRS Serine protease

htrB 26 ± 6.6 CssRS Serine protease

yuxN 13 ± 4.5 Putative transcriptional regulator, TetR family

yqjL 11 ± 1.2 rM Putative hydrolase

pbpE-racX 11 ± 5.2 rW Penicillin binding protein 4, amino acid racemase

yhaSTU 10 ± 4.4 Potassium efflux K+/H+ antiporter

yxeI 9.4 ± 2.2 Similar to penicillin amidase

yraA 8.6 ± 3.5 Similar to general stress protein

yuaE 8.2 ± 2.8 Hypothetical protein with DUF1569 domain

yrhHIJ 8.0 ± 3.5 rM, rX, rV Putative methyltransferase, transcriptional regulator, and reductase

sigM-yhdLK 7.8 ± 1.3 rM ECF r factor

yebC 7.8 ± 1.4 rM Putative membrane protein

ybfO 7.7 ± 3.3 rW Similar to erythromycin esterase

ylbP 7.4 ± 2.1 Putative acetyltransferase, GNAT family

phoA 7.2 ± 3.8 Alkaline phosphatase A

bcrC 7.2 ± 2.7 rV, rM, rW, rX Undecaprenyl pyrophosphate phosphatase

gabD 7.1 ± 2.7 Succinate-semialdehyde dehydrogenase

ywrO 7.0 ± 2.5 Similar to NAD(P)H oxidoreductase

ydaH 6.9 ± 2.4 rM Putative membrane protein with DUF2837 domain

opuCABCD 6.8 ± 4.8 Osmoprotection

ypbGH 6.7 ± 1.4 rM Putative phosphoesterase and MecA paralog

yceB 6.5 ± 2.8 Putative monooxygenase

yvrD 6.5 ± 1.1 Similar to ketoacyl-carrier protein reductase

ywaC 6.4 ± 2.8 rW, rM, rV Similar to GTP-pyrophosphokinase

yqjG 6.2 ± 1.7 Similar to lipoprotein SpoIIIJ-like

yheCDE 6.0 ± 1.1 Spore coat proteins

yhjN 5.9 ± 0.8 Putative membrane-anchored ammonia monooxygenase

dhaS 5.8 ± 1.4 Aldehyde dehydrogenase

yfjR 5.8 ± 2.8 Similar to 3-hydroxyisobutyrate dehydrogenase

radC 5.5 ± 1.8 rM DNA repair protein

yvgP 5.5 ± 0.9 Monovalent cation/H+ antiporter NhaK

trxA 5.4 ± 1.2 Thioredoxin, putative monooxygenase

nfrA-ywcH 5.2 ± 1.2 NADPH-linked nitro/flavin reductase, similar to monooxygenase

gerAABC 5.2 ± 2.2 Germination, downstream of liaIHGFSR

ypuA 5.2 ± 0.9 rM, rV Protein of unknown function with DUF1002 domain

ywnJ 5.2 ± 1.5 rM, rW, rX Putative VanZ-like membrane protein

yrbC 5.1 ± 2.5 Uncharacterized conserved protein with DUF28 domain

ycgJ 5.0 ± 1.6 Putative methyltransferase

yfiBC 5.0 ± 1.4 Similar to ABC transporter

Genes repressed � fivefold

cydABCD 0.19 ± 0.09 Cytochrome bd ubiquinol oxidase

rbsRKDACB 0.19 ± 0.07 Ribose transport

yuaJ 0.19 ± 0.07 Putative thiamine transporter

yonPO 0.18 ± 0.07 Hypothetical proteins (prophage SPb)

narGHJI 0.18 ± 0.05 Nitrate reductase

mtbP 0.17 ± 0.06 Modification methylase

pur operon 0.17 ± 0.08 Purine biosynthesis

yxaI 0.17 ± 0.08 Putative membrane protein

yolJ 0.15 ± 0.06 Similar to glycosyltransferase

xylAB 0.13 ± 0.02 Xylose metabolism

sboAXablA-G 0.13 ± 0.03 Bacteriocin subtilosin A

bdbA 0.12 ± 0.06 Thiol-disulfide oxidoreductase
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transcription of the downstream located gerAAABAC

operon, which has been observed previously for both

B. subtilis and Bacillus licheniformis (Mascher et al., 2003;

Wecke et al., 2006).

The genes htrA (c. 60-fold) and htrB (c. 25-fold), both

encoding serine proteases, were also strongly induced by

rhamnolipids (Table 3 and Fig. 1a). Expression of both

genes is controlled by the TCS CssRS, which is activated

by heat and secretion stress. Expression of cssRS itself was

not induced by rhamnolipids, similar to the effect of heat

stress, although moderately increased expression of this

operon can be observed under secretion stress conditions

caused by overexpression of the secretory protein a-amy-

lase (Darmon et al., 2002; Hyyryläinen et al., 2005).

Almost one-third of the remaining �fivefold induced

loci represent target genes of ECF r factors, predomi-

nantly rM, with its own autoregulated operon sigM-

yhdLK being approximately eightfold induced (Table 3

and Fig. 1a). As a result of a previously described regula-

tory overlap between different ECF r factors of B. subtilis

(Qiu & Helmann, 2001; Mascher et al., 2007), expression

of some genes, such as bcrC and ywaC, can be regulated

by more than one ECF r factor. But the autoregulated

loci of the remaining six ECF r factors of B. subtilis were

not significantly induced (� threefold), indicating that

the ECF response to rhamnolipids is mediated mainly by

rM. This ECF r factor is activated by cell wall antibiotics

like vancomycin, bacitracin, and phosphomycin, but also

under acid, salt, and heat stress conditions (Cao et al.,

2002a, b; Mascher et al., 2003; Thackray & Moir, 2003).

Other genes significantly induced by rhamnolipids can-

not be assigned to known cell envelope stress regulons.

They often encode proteins of unknown function or pro-

teins presumably involved in metabolic and redox pro-

cesses (e.g. gabD encoding a succinate-semialdehyde

dehydrogenase or trxA encoding thioredoxin).

We verified the main findings of our DNA microarray

analysis, in particular the activation of the TCS LiaRS

and CssRS as well as rM, independently by real-time RT-

PCR and basically obtained the same results, albeit with an

overall higher induction ratio (Fig. 1b). Such discrepancy

Table 3. Continued.

Gene(s)* Fold changes† Regulators‡ Homology, (putative) function, remarks

pyr operon 0.07 ± 0.06 PyrR Pyrimidine biosynthesis

pstSCABABB 0.07 ± 0.03 PhoPR Phosphate ABC transporter

des 0.06 ± 0.04 DesKR Fatty acid desaturase

*Only genes that were induced or repressed � fivefold on average are listed.
†Highest induction ratios for each locus (usually the first gene in an operon) and the corresponding standard deviation are given.
‡Assignment of regulators is based on (Turner et al., 1994; Qi et al., 1997; Huang & Helmann, 1998; Huang et al., 1999; Aguilar et al., 2001;

Hyyryläinen et al., 2001; Wiegert et al., 2001; Cao et al., 2002a,b; Darmon et al., 2002; Cao & Helmann, 2004; Zellmeier et al., 2005; Jordan

et al., 2006; Eiamphungporn & Helmann, 2008).

Fig. 1. The transcriptional response to rhamnolipids. (a) Scatter plot

of DNA microarray analysis. The average signal intensities for each

gene are shown from cells induced with 50 lg mL�1 rhamnolipids for

10 min (y-axis) and uninduced control (x-axis). The pyr operon (▲),

pstSCABABB (D), des (●) and genes regulated by LiaRS (□), CssRS (♦)
and rM (■) are highlighted; all other genes are represented as gray

squares. (b) Verification of the transcriptome data by real-time RT-

PCR. Real-time RT-PCR was performed as described in Materials and

methods with the same RNA as used for DNA microarray analysis.

Induction ratios for each gene were calculated based on the

uninduced control, as described previously (Talaat et al., 2002). Each

value is the average of two microarray hybridizations or real-time RT-

PCR experiments, the error bar indicating the standard deviation.
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was observed in numerous studies before and is attributed

to the overall lower dynamic range of DNA microarrays

compared with other methods such as real-time RT-PCR

(Conway & Schoolnik, 2003; Pappas et al., 2004).

Treatment with rhamnolipids also led to decreased

expression of a certain set of genes (Fig. 1a and Table 3).

Among the �fivefold repressed loci are genes encoding

proteins involved in purine and pyrimidine biosynthesis

(pyr and pur operon), phosphate transport (pstSCABABB)

and sugar metabolism (rbsRKDACB, xylAB) (Table 2).

Differential expression of the pyr operon in response

to cell envelope stress has been observed previously for

B. licheniformis (Wecke et al., 2006).

With almost 20-fold repression, the most strongly

downregulated gene is des, which encodes a fatty acid

desaturase (Aguilar et al., 1998). Expression of des is con-

trolled by the TCS DesRK and induced by cold shock.

The desaturase is important for maintaining membrane

fluidity at low temperature by introducing double bonds

in phospholipids (Aguilar et al., 2001), indicating that

rhamnolipid treatment at sublethal concentrations could

interfere with membrane fluidity.

Hierarchical clustering analysis of genes

differentially expressed in response to

rhamnolipids

Our DNA microarray analysis clearly indicates that

rhamnolipids induce both the cell envelope and the secre-

tion stress response. To further validate this novel induc-

tion pattern, we performed hierarchical clustering analysis

using transcriptome data of B. subtilis induced with differ-

ent cell wall antibiotics (vancomycin, bacitracin, daptomy-

cin and friulimicin) and exposed to secretion stress. For

reason of clarity, we limited our analysis to genes induced

� threefold and repressed �fivefold by rhamnolipids.

Genes controlled by the same regulator form discrete

clusters based on their expression pattern under different

stress conditions (Fig. 2a). Genes belonging to the cell

envelope stress response of B. subtilis are grouped in three

clusters and can be assigned to two regulators, rM and

the LiaRS TCS (Fig. 2b). They are induced by cell wall

antibiotics and rhamnolipids, but not by secretion stress

(with the exception of liaH). One of these three clusters

contains the target operon of the LiaRS TCS as well as

the downstream genes gerAAAB. The other two clusters

include mostly target genes of rM. Noteworthy, within

the rM regulon, there is a subset of genes, including the

mreBCDminCD operon involved in cell division, that is

not induced by vancomycin (upper part of rM1 cluster in

Fig. 2b). Differences in the induction profiles of subsets

of rM-dependent genes have been observed previously

(Eiamphungporn & Helmann, 2008).

Genes mediating the secretion stress response also clus-

ter together (Fig. 2b). The CssRS-dependent target genes

htrA and htrB are not only induced by secretion stress

and rhamnolipids, but also weakly by vancomycin and

bacitracin.

Genes repressed by rhamnolipids show almost unchanged

expression under the other conditions tested (Fig. 2c).

One exception is the pyr operon, which is strongly repressed

by rhamnolipids, but weakly induced by friulimicin and

vancomycin.

Taken together, the hierarchical clustering analysis indi-

cates that rhamnolipids induce a combination of two dif-

ferent stress responses: the cell envelope stress response

represented by the LiaRS TCS and the ECF r factor rM,

and the heat and secretion stress response mediated by

CssRS. Simultaneous induction of the LiaRS TCS and rM

is common for cell wall antibiotics such as daptomycin,

vancomycin, or bacitracin (Mascher et al., 2003; Hach-

mann et al., 2009; Wecke et al., 2009). But none of the

rM-dependent target genes is induced by secretion stress,

while both the CssRS and LiaRS TCS are induced by cell

wall antibiotics, rhamnolipids, and secretion stress, but

with different intensities (Fig. 2d).

The LiaRS TCS and rM protect cells from

rhamnolipid-dependent lysis

Bacteria use signal transducing systems to detect harmful

compounds and alter gene expression to protect the cell.

We hypothesize that the signal transducing systems acti-

vated by rhamnolipids confer resistance and counteract

cell damage caused by this antimicrobial compound.

Therefore, we compared the growth behavior of B. subtilis

wild-type cultures exposed to different rhamnolipid con-

centrations with strains carrying gene deletions leading to

‘ON’ or ‘OFF’ states of the induced signal transducing

systems, which results either in no or constitutively high

expression of the corresponding target genes. The strains

were grown in LB medium to mid-logarithmic growth

phase, the cultures were split and different concentrations

of rhamnolipids were added. Subsequent lysis of each

sample was monitored by measuring OD600 nm.

For the B. subtilis wild-type strain W168, a concentra-

tion of 50 lg mL�1 rhamnolipids did not affect growth

(Fig. 3), but was sufficient to induce a transcriptional

response as investigated using DNA microarray analysis

(Fig. 1a and Table 3). Higher concentrations of rhamnoli-

pids lead to rapid lysis of the culture within 1 h after

addition (Fig. 3). Remarkably, even after severe lysis the

cultures resumed growth.

To reveal a possible protective function of the LiaRS

TCS, we compared the lysis in response to rhamnolipids of

two strains carrying deletions in the lia locus: deletion of
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the response regulator LiaR results in a ‘Lia OFF’ mutant,

while deletion of the inhibitory protein LiaF represents a

‘Lia ON’ strain with constitutive expression of the target

genes liaIH (Jordan et al., 2006; Wolf et al., 2010). Behav-

ior of the DliaR mutant was comparable to the wild-type

strain, while the DliaF mutant clearly displayed recovery

advantages and regained growth more quickly even after

addition of high rhamnolipid concentrations (Fig. 3). We

also investigated the effect of rhamnolipids on a mutant

strain lacking the CssRS TCS that orchestrates the secretion

stress response, but did not observe any differences com-

pared with the wild type (Fig. 3).

As a large part of the induced genes are regulated by

rM, we investigated how this ECF r factor contributes to

resistance against rhamnolipids. Compared with the wild

type, a sigM::kan mutant strain showed an impaired

growth phenotype (Fig. 3). While growth of the wild type

was not affected at concentrations of 50 lg mL�1, growth

of the sigM::kan mutant was clearly arrested. rM controls

expression of at least 30 operons involved in cell division,

DNA repair and cell envelope synthesis (Eiamphungporn

& Helmann, 2008). Another ECF r factor which controls

a similar large regulon is rW (Helmann, 2006). Since

expression of the sigW–rsiW operon was induced 2.8-fold

by rhamnolipids (Table S1), we also included a sigW::

MLS mutant strain in our lysis curve experiments. But

this strain shows the same behavior as the wild type, indi-

cating that rW is not responsible for resistance against

rhamnolipids (Fig. 3). Therefore, the ECF response to

rhamnolipids is mainly mediated by rM, which is in

Fig. 2. Hierarchical clustering analysis of genes differentially expressed in response to rhamnolipids. The clustering analysis was performed using

the software CLUSTER 3.0 (de Hoon et al., 2004). Transcriptome data for Bacillus subtilis treated with friulimicin (fri), vancomycin (van),

rhamnolipids (rha), bacitracin (bac), daptomycin (dap) and exposed to secretion stress (sec) caused by overexpression of a-amylase were analyzed

(see Materials and methods for details). Green indicates induction of the corresponding gene, red repression under the designated condition.

Cluster analysis was limited to genes induced � threefold and repressed � fivefold by rhamnolipids (a). Cluster containing target genes of rM,

LiaRS and CssRS (b) and genes repressed by rhamnolipids (c) are shown in detail. A schematic representation of the network orchestrating the

response to rhamnolipids summarizes the results of the cluster analysis (d). The thickness of the arrows corresponds to the induction of the given

regulators. Sec, secretion stress; Rha, rhamnolipids; Ces, cell envelope stress.
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agreement with induction ratios of the sigM and sigW

operons (eight- vs. threefold, respectively).

We also tested if a combined deletion of both rM and

rW has an additive affect and leads to a more pro-

nounced phenotype, as a functional overlap of ECF r fac-

tors in response to different antimicrobial compounds

has already been demonstrated (Mascher et al., 2007).

Indeed, the double mutant shows an increased sensitivity

compared with the sigM::kan strain, as it did not resume

growth in the presence of 100 lg mL�1 rhamnolipid

(Fig. 3). Additional deletion of liaR, resulting in inactiva-

tion of a third cell wall stress responsive system, did not

lead to a stronger susceptibility phenotype (Fig. 3). Taken

together, rM seems to play a central role in rhamnolipid

resistance, while rW and the LiaRS TCS have only minor

functions.

Summary and conclusions

Here, we present the first investigation of the transcrip-

tional response to rhamnolipids, industrially important

surface-active molecules with antimicrobial properties. In

B. subtilis, exposure to rhamnolipids provokes a complex

reaction that combines the cell envelope and secretion

stress response (Fig. 2d). The main regulators orchestrating

this response are the TCS LiaRS and CssRS, as well as the

ECF r factor rM. In addition to the target genes of these

regulators, a number of genes encoding either metabolic

enzymes or hypothetical proteins of unknown functions

are also induced. Our data show a protective role of LiaRS

and rM against rhamnolipid damage, while the CssRS TCS

has no effect on rhamnolipid sensitivity (Fig. 3).

As rhamnolipids alter the properties of membranes,

induction of the cell envelope stress response could help

to maintain cell envelope integrity. While the physiologi-

cal role of most of the strongly induced genes has not

been elucidated yet, some of them have known or

assumed functions in counteracting membrane damage.

The LiaR-controlled liaIH operon encodes a small mem-

brane protein and a member of the phage-shock protein

family, respectively. Their gene products have recently

been linked to resistance against daptomycin, another

membrane-perturbating agent (Hachmann et al., 2009;

Wolf et al., 2010). Other genes, like the ECF-regulated

bcrC gene and the pbpE-racX operon encode functions

involved in cell envelope biogenesis, which might also

help to stabilize the envelope against membrane damage.

Moreover, and given the prominent role of rM in pro-

tecting cells from rhamnolipid damage (Fig. 3), it is note-

worthy that some of the most strongly induced rM-target

genes of unknown function, such as yebC, ywnJ or ydaH,

encode putative membrane proteins (Table 3). A possible

role of these proteins in counteracting membrane damage

needs to be addressed in future studies.

In contrast, the physiological role of CssRS activation by

rhamnolipids is not clear. Its induction could indicate

severe changes of membrane protein composition and

accumulation of misfolded secreted proteins in the cell

envelope caused by rhamnolipid treatment. Alternatively,

rhamnolipid-dependent interference with membrane integ-

Fig. 3. Growth of Bacillus subtilis wild-type and mutant strains exposed to different concentrations of rhamnolipids. Bacillus subtilis wild type

(W168), TMB1070 (cssRS::kan), TMB589 (DliaR), TMB329 (DliaF ), TMB1003 (sigM::kan), TMB149 (sigW::MLS), TMB1393 (sigM::kan sigW::MLS)

and TMB1392 (DliaR sigM::kan sigW::MLS) were grown in LB medium to mid-logarithmic growth phase. The cultures were split into 1 mL

samples and induced with increasing concentrations of rhamnolipids: 0 lg mL�1 (■), 50 lg mL�1 (□), 100 lg mL�1 (▲), 200 lg mL�1 (D) and

300 lg mL�1 (♦). Cell density was monitored by measuring OD600nm over a time period of 7 h.
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rity could affect functionality of the secretion machinery.

The CssRS TCS has also been shown to be not only

induced by mammalian peptidoglycan recognition pro-

teins, but also seems to be required for the killing mecha-

nism of these proteins (Kashyap et al., 2011).

Although the data presented here clearly indicates that

rhamnolipids interfere with cell envelope integrity, future

studies will be required to gain an understanding of the

mode of action of rhamnolipids and its use as antimicrobial

active compound. Taken together, this is the first analysis

of a bacterial stress stimulon in response to rhamnolipids

showing that a single antimicrobial compound induces a

combination of two normally independent stress responses.
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Hyyryläinen HL, Bolhuis A, Darmon E et al. (2001) A novel

two-component regulatory system in Bacillus subtilis for the

survival of severe secretion stress. Mol Microbiol 41: 1159–
1172.
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Abstract 

Bacteria need signal transducing systems to respond to environmental changes. Next to 

one- and two-component systems, alternative σ factors of the extracytoplasmic function 

(ECF) protein family represent the third fundamental mechanisms of bacterial signal 

transduction. A comprehensive classification of these proteins identified more than 40 

phylogenetically distinct groups, most of which are not experimentally investigated. Here, 

we present the characterization of such a group with unique features, termed ECF41. 

Among analyzed bacterial genomes, ECF41 σ factors are widely distributed with about 

400 proteins from ten different phyla. They lack obvious anti-σ factors that typically 

control activity of other ECF σ factors, but their structural genes are often predicted to be 

co-transcribed with carboxymuconolactone decarboxylases, oxidoreductases or epimerases 

based on genomic context conservation. We demonstrate for Bacillus licheniformis and 

Rhodobacter sphaeroides that the corresponding genes are preceded by a highly conserved 

promoter motif and are the only detectable targets of ECF41-dependent gene expression. In 

contrast to other ECF σ factors, proteins of group ECF41 contain a large C-terminal 

extension, which is crucial for σ factor activity. Our data strongly suggest that ECF41 σ 

factors are regulated by a novel mechanism possibly based on the presence of a fused anti-

σ factor-like domain. 

Introduction 

Bacteria populate complex habitats in which extracellular conditions can change very 

rapidly. In order to survive in such an environment, bacterial cells have to be able to sense 

and respond to these variations before cell damage actually occurs. Therefore, bacteria 

need signal transducing systems, which enable them to sense these extracellular changes 

and respond by differential gene expression.  

A common mechanism to control gene expression at the level of transcription initiation is 

the use of σ factors, which constitute an essential subunit of the RNA polymerase (RNAP) 

holoenzyme and determine the promoter specificity. In addition to the primary σ factor, 

which is responsible for general expression of most genes in exponentially growing cells, 

most bacteria contain one or more alternative σ factors. These proteins are activated only 

under certain conditions and control expression of a specific set of target genes by 
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recognizing alternative promoter sequences (Helmann, 2010, Helmann & Chamberlin, 

1988). 

Most σ factors belong to the σ70 family based on their relation to the primary σ factor of 

Escherichia coli, σ70 (Gruber & Gross, 2003, Paget & Helmann, 2003). Based on sequence 

similarity, domain architecture and function, the proteins of the σ70 family can be divided 

into four groups. Group 1 comprises the essential primary σ factors, which contain four 

highly conserved domains (designated σ1 through σ4) (Gruber & Gross, 2003). Group 2 σ 

factors are closely related to group 1 proteins, but are not essential for growth. The group 3 

σ factors lack the σ1 domain and have functions in cellular processes such as sporulation, 

flagella biosynthesis, or heat shock response. The largest and most diverse group 4 

contains the proteins of the ECF family, named after their function in response to 

extracellular stimuli (Butcher et al., 2008, Helmann, 2002, Lonetto et al., 1994). 

In contrast to other σ70 proteins, the ECF σ factors only contain two of the four conserved 

domains, σ2 and σ4, which are sufficient for promoter recognition and interaction with 

RNAP. The bipartite promoter recognized by ECF σ factors typically contains a highly 

conserved ‘AAC’ signature in the -35 region and a ‘CGT’ motif in the -10 region 

(Helmann, 2002). In general, ECF σ factors autoregulate their own expression and are co-

transcribed with a gene encoding an anti-σ factor, which regulates the activity of the σ 

factor. In the absence of a stimulus, the anti-σ factor binds the ECF σ factor and keeps it 

inactive. Upon receiving the appropriate signal, the anti-σ factor gets inactivated, thereby 

releasing and activating the σ factor (Butcher et al., 2008, Helmann, 2002). The major 

principles of σ factor activation are based on either the regulated proteolysis of a 

membrane-anchored anti-σ factor as exemplified by RseA-σE
 of E. coli and RsiW-σW

 of 

Bacillus subtilis (Ades, 2004, Heinrich & Wiegert, 2009) or conformational changes of a 

soluble anti-σ factor, as has been described for RsrA-σR of Streptomyces coelicolor 

(Campbell et al., 2008, Kang et al., 1999). For yet other examples, such as S. coelicolor σE 

or EcfG-homologs in α-proteobacteria, two-component systems play a crucial role in 

regulating the activity of the ECF σ factors (Francez-Charlot et al., 2009, Hong et al., 

2002).  

A recent classification of the ECF σ factor protein family based on sequence similarity and 

genomic context conservation revealed a wide distribution and combinatorial complexity 
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of ECF-dependent signal transduction. This study identified more than 40 phylogenetically 

distinct groups of ECF σ factors including major groups containing the E. coli σE- and 

FecI-like proteins as well as cytoplasmic-sensing ECF σ factors. But in addition to these 

well-understood examples, a number of ECF groups were identified that have not yet been 

investigated experimentally (Staroń et al., 2009).  

Here, we describe the characterization of one such uncharacterized group, ECF41. This 

group is widely distributed with about 400 proteins from 10 different phyla. Based on their 

genomic organization, the genes encoding these ECF41 σ factors are not transcriptionally 

linked to genes encoding proteins related to known anti-σ factors. Instead, they are located 

next to genes encoding carboxymuconolactone decarboxylases (CMD proteins), 

oxidoreductases or epimerases. To extract general features of ECF41-dependent gene 

regulation, we experimentally investigated ECF41 σ factors from two different organisms, 

Bacillus licheniformis (Firmicutes) and Rhodobacter sphaeroides (α-proteobacteria). In 

both organisms, the ECF41 σ factor appears to control expression of a single transcript that 

is preceded by a highly conserved ECF41-specific promoter motif. A unique feature of 

ECF41 proteins is the presence of a large C-terminal extension, containing a number of 

conserved signature motifs. We provide evidence that this C-terminal extension is involved 

in regulation of σ factor activity and we propose that it functions as a fused anti-σ factor 

domain.  

Experimental procedures 

Bioinformatics analysis. 510 ECF41 proteins were extracted in October 2010 from the 

MiST2 database (Ulrich & Zhulin, 2010) available at http://mistdb.com. False positives 

(unclassified ECF σ factors) and redundant proteins (proteins from more than one 

sequenced strain per species) were removed leaving 373 sequences for further analysis. 

Multiple sequence alignments were performed using ClustalW (Thompson et al., 1994) 

and phylogenetic trees were generated from gapless multiple sequence alignments using 

the Neighbor-Joining method of the Phylip (Felsenstein, 1989) program Protdist, both 

implemented in the BioEdit program package (Hall, 1999). Genomic context analysis was 

performed using the databases MicrobesOnline (Alm et al., 2005) at 

http://www.microbesonline.org and MiST2 (Ulrich & Zhulin, 2010) available at 
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http://mistdb.com/. Protein domain architecture was analyzed using the SMART database 

(Letunic et al., 2006, Schultz et al., 1998) available at http://smart.embl-heidelberg.de/. 

250 bp region upstream of the genes encoding the ECF41 σ factors and the corresponding 

COE were analysed for putative promoter motifs either manually or with the help of 

MEME (Bailey & Elkan, 1994), available at http://meme.nbcr.net/. Conservation of 

putative target promoters was illustrated using the WebLogo tool (Crooks et al., 2004) at 

http://weblogo.berkeley.edu. The promoter sequence of group ECF41 σ factors was used to 

screen the genomes of R. sphaeroides 2.4.1 and B. licheniformis DSM13 for putative target 

genes with the help of the virtual footprint algorithm (Münch et al., 2005), implemented 

into the Prodoric database (Münch et al., 2003) at http://www.prodoric.de/vfp/. As input 

pattern, the generated position weight matrix or the promoter consensus as IUPAC code 

was used.  

Bacterial strains and growth conditions. B. subtilis, B. licheniformis and E. coli were 

grown in LB medium at 37°C with aeration. R. sphaeroides was grown aerobically in 

Sistrom’s minimal medium (Sistrom, 1960) at 30°C. All strains used in this study are listed 

in Table 4.1. The antibiotics spectinomycin (100 µg/ml), chloramphenicol (5 µg/ml) and 

erythromycin (1 µg/ml) plus lincomycin (25 µg/ml) for macrolide-lincosamide-

streptogram (MLS) resistance were used for selection of B. subtilis and B. licheniformis 

mutants. Plasmid containing E. coli strains were grown with ampicillin (100 µg/ml) or 

kanamycin (50 µg/ml). R. sphaeroides mutants were selected using tetracycline (1 µg/ml), 

spectinomycin (25 µg/ml) or kanamycin (25 µg/ml).  

DNA manipulations. Standard cloning techniques were applied (Sambrook & Russell, 

2001). All plasmids used in this study are listed in Table 4.2, oligonucleotides in Table 4.3. 

E. coli strain S17-1 (Simon et al., 1983) was used for conjugational DNA transfer in R. 

sphaeroides. In brief, a 1:1 cell mixture of exponentially growing donor and recipient 

strains were harvested, washed, and resuspended in LB medium. The cell mixture was 

applied to a filter disc and incubated overnight on a LB plate at 30°C. The filter disc was 

transferred to Sistrom’s minimal medium (Sistrom, 1960) and incubated for 3 h at 30°C on 

a shaker, before the cells were plated on agar plates with selection. Conjugants were 

obtained after 3-4 days incubation at 30°C.  
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Table 4.1. Bacterial strains used in this study 

Strain Genotype or characteristic(s) Source or reference 

E. coli strains   

S17-1 C600::RP-4 2-(Tc::Mu)(Km::Tn7) thi pro hsdR 

hsdM
+
recA 

(Simon et al., 1983) 

DH5α recA1 endA1 gyrA96 thi hsdR17(rK- mK+) relA1 

supE44 Φ80∆lacZ∆M15 ∆(lacZYA-argF)U169 

(Sambrook & Russell, 
2001) 

   
B. subtilis strains   

W168 Wild type strain, trpC2 Laboratory stock 
1A774 JH642 rpoC::(His6-tag) SpR BGSC (C. Moran) 
TMB1099 1A774 pPH0401 This study 
TMB1100 1A774 pPH0403 This study 
TMB1101 1A774 pTW0412 This study 
TMB695 W168 pPH0401 This study 
TMB746 W168 pPH0403 This study 
TMB666 W168 pTW0412 This study 
TMB428 W168 thrC::pTW6302 This study 
TMB455 TMB428 amyE::pTW901 This study 
TMB451 W168 amyE::pTW901 This study 
TMB456 TMB428 amyE::pTW902 This study 
TMB574 TMB451 thrC::pTW6304 This study 
TMB575 TMB451 thrC::pTW6305 This study 
TMB577 TMB451 thrC::pTW6307 This study 
TMB623 TMB428 pHCMC04 This study 
TMB696 TMB428 pPH0401 This study 
TMB744 TMB428 pPH0405 This study 
TMB743 TMB428 pPH0404 This study 
TMB742 TMB428 pPH0403 This study 
TMB741 TMB428 pPH0402 This study 
TMB667 TMB428 pTW0412 This study 
TMB795 TMB428 pPH0406 This study 
TMB797 TMB428 pPH0407 This study 
TMB1016 TMB428 pTW0414 This study 
TMB793 TMB428 pPH0408 This study 
   
B. licheniformis strains   

DSM13 Wild type strain Laboratory stock 
MW3 DSM13∆hsdR1 ∆hsdR2 (Waschkau et al., 2008) 
TMBli003 MW3 ∆ydfG This study 
TMBli006  MW3 ∆ecf41Bli This study 
   
R. sphaeroides strains   

2.4.1 Wild type strain Laboratory stock 
TMR003 2.4.1 pTW0503 This study 
TMR004 YSD418 pTW0501 This study 
TMR005 YSD418 pTW0502 This study 
TMR006 YSD418 pTW0503 This study 
YSD418 2.4.1 PRSP_0606::pSUP202-lacZ This study 
YSD354 2.4.1 pIND4 This study 
YSD239 2.4.1 ∆RSP_0606-ecf41Rsp Ω::SpecR This study 
YSD333 2.4.1 pYSD161 This study 
YSD434 YSD418 pIND4 This study 
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Table 4.2. Vectors and plasmids used in this study 

Name Genotype or characteristic featuresa Primers for cloning Source or reference 

Vectors    

pDG1663 lacZ fusion vector, integrates in thrC, MLSR   (Guerout-Fleury et 

al., 1996) 
pHCMC04 Xylose-inducible expression vector, CmR  (Nguyen et al., 

2005) 
pIND4 IPTG-inducible expression vector, KnR   (Ind et al., 2009) 
pSUP202 Mobilizable vector, ApR, CmR, TcR  (Simon et al., 1983) 
pSWEET Xylose-inducible expression vector, 

integrates in amyE, CmR 
 (Bhavsar et al., 

2001) 
pMAD Shuttle vector for construction of makerless 

deletion mutans, MLSR 
 (Arnaud et al., 

2004) 
pHP45Ω Source of Ω::SpecR cassette  (Prentki & Krisch, 

1984) 
pGEM-T Cloning vector  Promega Corp. 
    
Plasmids    

pTW101 pMAD ecf41Bli up/do 779/780, 781/782 This study 
pTW102 pMAD ydfG up/do 783/784, 785/786 This study 
pTW6302 pDG1663 PydfG(-146-54)-lacZ 712/713 This study 
pTW6304 pDG1663 PnhaX(-355-40)-lacZ 1130/1131 This study 
pTW6305 pDG1663 PybpE(-111-63)-lacZ 1136/1137 This study 
pTW6307 pDG1663 PuvrX(-173-54)-lacZ 1132/1133 This study 
pTW901 pSWEET ecfI41Bli 699/669 This study 
pTW902 pSWEET ecf41Bli-ydfG 699/705 This study 
pPH0401 pHCMC04 ecf41Bli-FLAG 1416/1294 This study 
pPH0405 pHCMC04 ecf41Bli aa1-270-FLAG 1416/1471 This study 
pPH0404 pHCMC04 ecf41Bli aa1-234-FLAG 1416/1470 This study 
pPH0403 pHCMC04 ecf41Bli aa1-204-FLAG 1416/1469 This study 
pPH0402 pHCMC04 ecf41Bli aa1-192-FLAG 1416/1468 This study 
pTW0412 pHCMC04 ecf41Bli aa1-167-FLAG 1416/1411 This study 
pPH0406 pHCMC04 ecf41Bli WLPEP→A-FLAG 1416/1474, 

1475/1294 
This study 

pPH0407 pHCMC04 ecf41Bli DGGGK→A-FLAG 1416/1476, 
1478/1294 

This study 

pPH0408 pHCMC04 ecf41Bli NPDKL→A-FLAG 1416/1479 This study 
pTW0414 pHCMC04 ecf41Bli INDQKGVL→A-FLAG 1416/1579, 

1580/1294 
This study 

pSUP202-
lacZ 

pSUP202 with promoter-less lacZ gene 199/200 This study 

pSUP202-
PRSP_0606-lacZ 

PRSP_0606 fused to lacZ gene 109/219 This study 

pYSD122 pSUP202 with the Ω::SpecR cassette and 
genomic regions flanking RSP_0606-
ecf41Rsp 

109/110/125/126 This study 

pYSD161 pIND4 ecf41Rsp 185/186 This study 
pTW0501 pIND4 ecf41Rsp 1881/1603 This study 
pTW0502 pIND4 ecf41Rsp aa1-169 1881/1604 This study 
pTW0503 pIND4 ecf41Rsp aa1-206 1881/1605 This study 
aResistance cassettes: MLSR, macrolide-lincosamide-streptogram; CmR, chloramphenicol; KnR, kanamycin; ApR, ampicillin; TcR, 
tetracycline; SpecR, spectinomycin  
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Table 4.3. Oligonucleotides used in this study 

Number and name Sequence 

Construction of promoter lacZ fusiona  
712 (PydfG fwd (EcoRI)) AGTCGAATTCCTTGGAATCCGGAAGGCGAT 
713 (PydfG rev (BamHI)) AGCTGGATCCCATTCCTCTGTATCCCTCAG 
1130 (PnhaX fwd (EcoRI)) AGTCGAATTCGCACACTGTGTACCAGCATG 
1131 (PnhaX rev (BamHI)) AGTCGGATCCTTCCGTCAAACGCGACTATG 
1132 (PuvrX fwd (EcoRI)) AGTCGAATTCAAATTCCGAACTGGAATGGTC 
1133 (PuvrX rev (EcoRI)) AGTCGGATCCAGCTCCGCATATCAACGCAC 
1136 (PypbE fwd (EcoRI)) AGTCGAATTCGATTGAGCTTTGAACGGACAG 
1137 (PypbE rev (BamHI)) AGTCGGATCCTCATTTCAGCGCTGGCCTTC 
109 (RSP_0606-ecf41Rsp operon fwd) AGGCAAAGTAGAGACCGCGTCC 
219 (RSP_0606 promoter rev (XbaI)) ATGTTCTAGACGCTCTCTCCTTTTGCAACTGA 
210 (lacZ start codon  (ScaI, XbaI)) CTAGTACTGTATCTAGATGACCATGATTACGGATTC

A 
200 (lacZ terminator rev) CATTACGGATCTTTTCTTTCG 
  
Mutagenesis/expression experimentsa b c d  
1416 (3xFLAG-ecf41Bli fwd (BamHI)) AGTCGGATCCAAGGAGGTGAGGATCTATGGATTATAAG

GATCATGATGGTGATTATAAGGATCATGATATCGACTACA

AAGACGATGACGACAAGGAATATTATCGACAATATCA
TTC 

1294 (ecf41Bli  rev (AatII)) AGTCGACGTCTTATATTTTAATGTGCTTCAGTTTATC 
1471 (ecf41Bli 270 rev (AatII)) AGTCGACGTCTCAATTTTTGACGGAATCGCCTTC 
1470 (ecf41Bli 234 rev (AatII)) AGTCGACGTCTCAAAAGCGGCCGGAAAAGCTTC 
1469 (ecf41Bli 204 rev (AatII)) AGTCGACGTCTCACACTTTTCCGCCGCCATCT 
1468 (ecf41Bli 192 rev (AatII)) AGTCGACGTCTCATTCAATCAATTTCTTGGAAAACTC 
1411 (ecf41Bli 167 rev (AatII)) AGTCGACGTCTCATTCTTCAACCGGCTGTGAA 
1474 (WLPEP up rev) AGCCGCTGCGGCAGCTTCCCCGATATATACCTCC 
1475 (WLPEP do fwd) GCTGCCGCAGCGGCTCAGGTGGCGCTTTCAGCTC 
1476 (DGGGK up rev) AGCCGCTGCGGCAGCTGTATACAATACGGCATCTTC 
1478 (DGGGK do fwd) GCTGCCGCAGCGGCTGTGCGCAGCGCTTTGAGA 
1479 (NPDKL rev (AatII)) AGTCGACGTCTTATATTTTAATGTGCTTAGCCGCTGC

AGCAGCTGACACGATAAACACATTTTTGACG 
1579 (INDQKGVL up rev) TGCGGCAGCAGCCGCTGCGGCAGCATCGACTGGCAT

AAAGCGGC 
1580 (INDQKGVL do fwd) GCTGCCGCAGCGGCTGCTGCCGCAATCATGAAAAAC

AACCGCCCGGCT 
699 (ecf41Bli fwd (PacI)) TACGTTAATTAATTTTAGGCAAAATATCTATGGG 
669 (ecf41Bli rev (BamHI)) GACTGGATCCTTATATTTTAATGTGCTTCAGTTTATC 
705 (ecf41Bli-ydfG rev (BamHI)) AGCTGGATCCCGCTCAAATAAAGTGAAAGATAG 
1881 (ecf41Rsp fwd (NcoI)) GTCACCATGGCGCCTGACGTCTACCTGCA 
1603 (ecf41Rsp  rev (HindIII)) GTCAAAGCTTTCAGTTGAGCCTGATACGGGTC 
1604 (ecf41Rsp 169 rev (HindIII)) GTCAAAGCTTTCACGCTGCCTCGCGCTCCACCT 
1605 (ecf41Rsp 206 rev (HindIII)) GTCAAAGCTTTCAGACCTTGCCGCCACCGTCCGA 
185 (ecf41Rsp fwd (BsrDI)) GTAGCAATGCATGTCGCCTGACGTCTACCTGCAG 
186 (ecf41Rsp rev (HindIII)) GTAAAGCTTTCAGTTGAGCCTGATACGGGTCAGC 
  
Deletion mutantsa d   
779 (ecf41Bli clean up fwd (BamHI)) AGTCGGATCCTATCCAGCCGATTGTCGTCA 
780 (ecf41Bli clean up rev) GGAGTTTGTGACAAAAAACGAGACGCTCCCCCATAG

ATATTTTGC 
781 (ecf41Bli clean do fwd) CGTTTTTTGTCACAAACTCC 
782 (ecf41Bli clean do rev (EcoRI)) AGTCGAATTCACCTACTTTCACATTGAACAAG 
783 (ydfG clean up fwd (BamHI)) AGTCGGATCCTGGCGCTTTCAGCTCAAATC 
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Number and name Sequence 

784 (ydfG clean up rev) GTCTATTCCTCCTTTAAGTGTT 
785 (ydfG clean do fwd) AACACTTAAAGGAGGAATAGACTTGAAATCCCCCCA

ACACAG 
786 (ydfG clean do rev (EcoRI)) AGTCGAATTCCCGTCGATCATCAGATCCGT 
109 (RSP_0606- ecf41Rsp operon fwd) AGGCAAAGTAGAGACCGCGTCC 
110 (RSP_0606- ecf41Rsp operon rev) ACGGGTTGGCACGCTGGATGAG 

125 (RSP_0606 rev-inverted) GCGTTTGAAATGGTCGGTCATGC 
126 (RSP_ ecf41Rsp fwd-inverted) TGACCCGTATCAGGCTCAACTG 
  
Northern Hybridization  
688 (ydfG-fwd) CTGAGGGATACAGAGGAATG 
761 (ydfG-probe-T7-rev) CTAATACGACTCACTATAGGGAGACGATGGCAATC

CTGTTCCAG 

  
5’RACE  
679 (RACE PCR) GATATGCGCGAATTCCTG 
689 (GSP1-ydfG) CTTGCATCCTTCGTATGCATA 
690 (GSP2-ydfG) CACATCCGTTCAGCTGTGA 
1414 (GSP1-RSP_0606) AGCGTGCATCTGCAGACAGA 
1415 (GSP2-RSP_0606) AGCTGGATCCCATCTTCACCAGATGCAGCA 

aRestriction sites are highlighted in bold. 
bSequence of FLAG-tag is shown in underlined italics. 
cInserted sequences (stop codons or Shine-Dalgarno sequences) are highlighted in italics. 
dLinker sequences for amino acid exchanges and joining reactions are underlined. 
eSequence representing the T7 promoter for in vitro transcription is shown in bold and underlined. 

Construction of markerless ecf41Bli and ydfG deletion mutants in B. licheniformis. 

Markerless B. licheniformis ∆ecf41Bli and ∆ydfG mutants were constructed using the vector 

pMAD (Arnaud et al., 2004). 700 bp fragments up- and downstream of ecf41Bli and ydfG 

were amplified by PCR using the oligonucleotides listed in Table 4.3, introducing 

extensions at the 3’ end of the up fragments which are complementary to the 5’ end of the 

down fragments. These regions were used to fuse the fragments in a second joining PCR. 

The resulting products were then cloned into pMAD using BamHI and EcoRI generating 

pTW101 and pTW102. The plasmids were introduced into B. licheniformis MW3 as 

described (Waschkau et al., 2008). Generation of markerless deletion mutants basically 

followed the established procedure (Arnaud et al., 2004). In brief, transformants were 

incubated at 30°C with MLS selection on LB agar plates supplemented with X-Gal. Blue 

colonies were picked and incubated for 6-8 h at 42°C in LB medium with MLS selection, 

resulting in the integration of the plasmid into the chromosome. Again, blue colonies were 

picked from LB X-Gal plates and incubated for 6 h at 30°C in LB medium without 

selection. Subsequently, the liquid culture was shifted to 42 °C for 3 h, and the cells were 
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then plated on LB X-Gal plates, this time without selective pressure. White colonies that 

had lost the plasmid were picked and deletion of ecf41Bli or ydfG was checked by PCR. 

Construction of a RSP_0606-ecf41Rsp deletion mutant in R. sphaeroides. RSP_0606-

ecf41Rsp with 1.3 kb flanking regions on both sides was amplified from chromosomal DNA 

of R. sphaeroides using oligonucleotides 109 and 110 and ligated into the vector pGEM-T 

(Promega). To replace RSP_0606-ecf41Rsp with a resistance cassette, the regions flanking 

the genes and the plasmid were amplified using internal oligonucleotides (125, 126) and 

ligated to the Ω fragment derived from pHP45Ω (Prentki & Krisch, 1984), conferring 

spectinomycin resistance. The resulting construct was amplified using oligonucleotides 

109 and 110, cloned into the suicide vector pSUP202 (which contains a tetracycline 

resistance marker) digested with ScaI to make pYSD122. The plasmid pYSD122 was than 

conjugated into R. sphaeroides 2.4.1. Double recombinants corresponding to the deletion 

mutants were selected for spectinomycin resistance and sensitivity to tetracycline. Plasmid 

constructs were verified by sequencing, and the deletion in the R. sphaeroides genome was 

verified by PCR. 

Measurement of promoter activity by β-galactosidase assays. Because of the lack of 

genetic tools for B. licheniformis, we developed a heterologous expression system in B. 

subtilis, an organism lacking an ECF41 σ factor. A DNA fragment from B. licheniformis 

containing the intergenic region between ydfG and ecf41Bli was fused to a promoter-less 

lacZ gene using the vector pDG1663 and integrated into the thrC locus of B. subtilis. In 

addition, we fused a FLAG-tag to the N-terminus of Ecf41Bli and its mutated or truncated 

versions and expressed the protein from the xylose-inducible promoter of the shuttle vector 

pHCMC04, allowing determination of PydfG activity by β-galactosidase assays in response 

to Ecf41Bli expression. The resulting B. subtilis strains were inoculated from fresh 

overnight cultures and grown in LB medium at 37°C with aeration until they reached an 

OD600 of ~0.4. The cultures were split and 0.5% xylose was added to one sample to induce 

expression of Ecf41Bli from the inducible promoter. After incubation for 1 h at 37°C, 2 ml 

of each sample were harvested and the cell pellets frozen at -20°C. The pellets were 

resuspended in 1 ml working buffer and assayed for β-galactosidase activity with 

normalization to cell density (Miller, 1972). 
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A DNA fragment containing the upstream region of RSP_0606 was amplified and cloned 

into the suicide vector pSUP202 carrying a promoter-less lacZ gene. The resulting plasmid 

was conjugated into R. sphaeroides and integrated into the chromosome by single crossing 

over, thereby bringing the expression of β-galactosidase under control of PRSP_0606. Full-

length and truncated ecf41Rsp was amplified and cloned into the overexpression vector 

pIND4, thereby bringing its expression under control of an IPTG-inducible promoter. The 

resulting R. sphaeroides strains were grown aerobically in Sistrom’s minimal medium 

(Sistrom, 1960) to an OD600 of ~0.4. The cultures were split and expression of Ecf41Rsp 

was induced in one sample by adding 100 µM IPTG. After 3 h the cells were harvested and 

β-galactosidase activity was measured as described (Miller, 1972). 

Preparation of total RNA. B. licheniformis MW3 (wt) and TMBli003 (∆ecf41Bli) were 

grown aerobically in LB medium at 37°C. Every 2 hours 30 ml samples were taken and 

mixed with cold killing buffer (20 mM Tris-HCl, pH 7.0, 0.5 mM MgCl2, 20 mM NaN3), 

harvested by centrifugation and frozen in liquid nitrogen, before the pellets were stored at -

80°C. The cells were resuspended in 200 µl killing buffer, immediately transferred to a 

pre-cooled Teflon vessel and disrupted with a Micro-Dismembrator U (Sartorius) for 3 min 

at 2000 rpm. The resulting cell powder was resuspended in 3 ml prewarmed lysis solution 

(4 M guanidine-thiocyanate, 25 mM sodium acetate, pH 5.2, 0.5% N-lauroyl sarcosinate) 

and total RNA was extracted twice with acid phenol (phenol/chloroform/isoamylalcohol 

25/24/1, pH 4.5-5) and once with chloroform (chloroform/isoamylalcohol 24/1) followed 

by isopropanol precipitation. Contaminating DNA was removed using the Baseline-ZERO 

DNAse (Epicentre Biotechnologies) according to the manufacturer’s protocol. RNA was 

quantified with a NanoDrop 1000 Spectrophotometer (Thermo Scientific) and used for 

5’RACE and Northern Blot analysis. 

R. sphaeroides YSD354 (pIND4) and YSD333 (pYSD161) were grown aerobically in 

Sistrom’s minimal medium (Sistrom, 1960) containing 25 µg/ml kanamycin at 30°C. At 

OD600 of ~0.3 expression of Ecf41Rsp was induced by adding 100 µM IPTG. After 3 hours 

44 ml of culture were mixed with 6 ml stop solution (5% acid phenol in ethanol) and 

harvested by centrifugation. The pellets were frozen in an ethanol/dry ice bath and stored 

at -80°C. Cells were resuspended in 2 ml lysis solution (2% SDS, 16 mM EDTA) and 

incubated at 65°C for 5 min. RNA was extracted three times with acid phenol prewarmed 

to 65°C followed by chloroform extraction and isopropanol precipitation. To remove 
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contaminating DNA the RNA was incubated with 2 units RQ1 DNase (Promega) in the 

presence of 80 units RNasin Plus RNase Inhibitor (Promega) for 30 min at 37°C. The RNA 

was finally purified with the RNeasy Mini Kit (Qiagen) and used for DNA Microarray 

analysis and 5’RACE. 

Probe preparation and Northern Blot analysis. A ~500 bp internal fragment of ydfG 

was amplified by PCR with oligonucleotides listed in Table 4.3. A digoxigenin (DIG)-

UTP-labeled RNA probe was synthesized by in vitro transcription using the DIG RNA 

Labeling Mix (Roche) and T7 RNA polymerase (Roche) according to the manufacturer’s 

protocol.  

For Northern Blot analysis 10 µg of total RNA were separated under denaturing conditions 

on a 1% formaldehyde agarose gel and transferred to a positively charged nylone 

membrane (Roche) in a downward transfer using 20x SSC (3 M NaCl, 0.3 M sodium 

citrate, pH 7.0) as transfer buffer. The RNA was crosslinked by exposing the membrane to 

UV light. The blot was prehybridized at 68°C for 1 h with hybridization solution (5x SSC, 

50% formamide, 2% Blocking Reagent (Roche), 0.1% N-lauroyl sarcosinate and 0.02% 

SDS). Hybridization was carried out overnight at 68°C in the same solution with 1 µg 

DIG-labeled RNA probe. The membrane was washed twice for 5 min at room temperature 

(2x SSC, 0.1 % SDS) and three times for 15 min at 68°C (0.1x SSC, 0.1 % SDS). The 

signal was detected with an anti-digoxigenin antibody conjugated to alkaline phosphatase 

(Roche) and CDP-Star (Roche) according to the manufacturer’s instructions. The signals 

were visualized using a LumiImager (Peqlab). 

DNA microarray analysis. RNA samples from three independent cultivations were used 

for cDNA synthesis and DNA microarray hybridization. 10 µg of total RNA were mixed 

with 3 µg random hexamers and denatured at 70°C for 10 min before the temperature was 

decreased in 6 cycles (1 min each) by 10C°/cycle to 10°C to optimize annealing of the 

hexamers. cDNA was synthesized using SuperScript II Reverse Transcriptase (Invitrogen) 

according to the manufacturer’s instruction. Temperature was increased from 20°C to 42°C 

in 22 cycles of 3 min with 1°C increment followed by incubation at 42°C for 1 hour and 

inactivation at 70°C for 10 min. Remaining RNA was removed by alkaline hydrolysis and 

cDNA was purified using the PCR Purification Kit (Qiagen). 3.2 µg cDNA were 

fragmented with 0.25 units RQ1 DNase (Promega) for 10 min at 37°C followed by 
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inactivation for 10 min at 98°C. cDNA was labelled using the BioArray Terminal Labeling 

Kit with Biotin-ddUTP for DNA Probe Array Assays (Enzo) according to the 

manufacturer’s protocol. Labeled cDNA samples (3µg/array) were hybridized to 

Affymetrix (Santa Clara, CA) custom arrays (Pappas et al., 2004) according to the 

manufacturer’s directions. Processing, normalization, and statistical analysis of the array 

data were performed in the R statistical software environment (http://www.r-project.org/). 

Data were normalized using the affyPLM package with default settings (Bolstad, 2004). 

Differentially expressed genes were detected using the limma package with a false 

discovery rate set at 0.05 (Smyth, 2005).  

Determination of transcriptional start sites by 5’-RACE. The 5’ ends of ydfG and 

RSP_0606 mRNAs were identified by rapid amplification of cDNA ends (RACE). 15 µg 

of total RNA were incubated with 25 units tobacco acid pyrophosphatase (TAP, Epicentre 

Biotechnologies) in the delivered buffer at 37°C for 60 min in the presence of 40 units 

Super RNaseIn RNAse inhibitor (Ambion). As a control, 15 µg RNA were incubated under 

the same conditions, but without TAP. The reactions were phenol/chloroform extracted 

and ethanol precipitated. After dissolving the pellets in water, the RNA was mixed with 

500 pmol RACE adapter (5’-GAUAUGCGCGAAUUCCUGUAGAACGAACACUAGA-

AGAAA-3’) and denatured at 95°C for 5 min. Ligation of the adapter was carried out at 

17°C overnight with 100 units T4 RNA ligase (Epicentre Biotechnologies) in the presence 

of 80 units Super RNaseIn RNAse inhibitor (Ambion). Again, the reactions were 

phenol/chloroform extracted, ethanol precipitated and the pellets were resuspended in 

water. 1 µg RNA was used for reverse transcription with gene specific primers (GSP1, 

Table 4.3) and the iScript Select cDNA Synthesis Kit (Bio-Rad) according to the 

manufacturer’s protocol. The cDNA was then amplified with nested primers and a primer 

complementary to the RACE adapter sequence (GSP2 and 679, Table 4.3) and the 

transcription start sites were identified by sequencing. 

Western Blot analysis. B. subtilis strains containing overexpression plasmids were grown 

in LB medium at 37° to an OD600 ~0.4. Expression of Ecf41Bli-FLAG and its variants was 

induced by adding 0.5 % xylose. After 1 h 15 ml of each culture were harvested. The 

pellets were resuspended in ZAP buffer (10 mM Tris, pH 7.4, 200 mM NaCl), cells were 

lysed by sonication and cell debris was removed by centrifugation. 20 µg of the cleared 

lysate were separated by SDS-PAGE and transferred to a Polyvinylidene difluoride 
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(PVDF) membrane using a Mini Trans-Blot Electrophoretic Transfer Cell (Bio-Rad) 

according to the manufacturer’s instructions. The membrane was then incubated overnight 

at 4°C with blotto (2.5% skim milk in TBS (50 mM Tris, pH 7.6, 150 mM NaCl)) to 

prevent non-specific binding. Then, the membrane was incubated with the primary 

antibody (anti-FLAG (Sigma) diluted 1:2000 in blotto) at room temperature for 1 h 

followed by four 10 min washing steps with blotto. Then the blot was incubated for 1 h 

with the secondary antibody (anti-rabbit IgG HRP conjugate (Promega) diluted 1:2000 in 

blotto). After four washing steps with blotto, the membrane was washed with TBS before 

the signals were detected with a LumiImager (Peqlab) using AceGlow (Peqlab) as 

chemiluminescence substrate. 

RNAP pull-down assays. Different versions of Ecf41Bli-FLAG under control of a xylose-

inducible promoter were introduced into B. subtilis 1A774, which contains a His6-tag fused 

to the β’ subunit of the RNAP, to form strains TMB1099 (wt Ecf41Bli), TMB1100 (Ecf41Bli 

204) and TMB1101 (Ecf41Bli 167). As controls, the same constructs were transformed into 

B. subtilis W168 resulting in TMB695, TMB746 and TMB666. The RNA pull-down 

assays were performed as described previously (MacLellan et al., 2008). In brief, 100 ml 

LB medium supplemented with 5 µg/ml chloramphenicol were inoculated from fresh 

overnight cultures and grown till OD600 ~0.4. Cultures were induced with 0.5% xylose for 

1 hour and cells were harvested by centrifugation. The pellets were resuspended in 

phosphate buffer (50 mM phosphate buffer, pH 7.6, 100 mM NaCl, 0.1 mM PMSF, 5 mM 

imidazole) and cells were lysed by sonication. The cleared lysate was loaded on a column 

containing 0.5 ml Ni2+-NTA metal affinity beads. The beads were washed with each 10 

column volumes of the above mentioned phosphate buffer containing 5, 10 and 20 mM 

imidazole. Elution was carried out using 0.5 ml phosphate buffer with increasing imidazole 

concentration (50, 100, 250 and 500 mM). Samples of the cleared lysate, washing steps 

and elution fractions were run in duplicates on 10 and 12% SDS-PAGE gels and checked 

for presence of RNAP (coomassie staining) and Ecf41Bli-FLAG (Western Blot using anti-

FLAG antibodies). For quantitative analysis 5 µg of lysate as well as 5 and 10 µg of the 

100 mM imidazole elution fractions were used and analysed as mentioned above.  
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Results 

In silico analysis of group ECF41 σ factors 

Phylogenetic distribution. The initial analysis of group ECF41 (Staroń et al., 2009) was 

based on a dataset generated in 2008 containing 115 ECF41 protein sequences from five 

different phyla. To account for the huge increase in bacterial genomes sequenced within 

the last three years, we re-analysed group ECF41 based on 373 ECF41 σ factors extracted 

in October 2010 from the Microbial Signal Transduction Database (MiST2) (Ulrich & 

Zhulin, 2010) (Table S1). The proteins of group ECF41 are widely distributed and can be 

found in ten different phyla (Table 4.4): Actinobacteria (68%, 252 proteins), Proteobacteria 

(23%, 84 proteins), Firmicutes (4%, 15 proteins) and Chloroflexi (3%, 11 proteins), 

Acidobacteria (4 proteins), Bacteriodetes, Cyanobacteria (2 proteins each) and 

Spirochaetes, Verrucomicrobia and Gemmatimonadetes (1 protein each). It should be 

noted that some phyla are heavily underrepresented among the available genome 

sequences, as has been discussed recently (Staroń et al., 2009).  

Table 4.4. Phylogenetic distribution of ECF41 σ factors 

Phyla 
ECF41 

proteins per 
phylum 

% of ECF41 
proteins 

Species with 
ECF41 
protein 

% of 
sequenced 

species 

Sequenced 
genomes/speciesa 

Actinobacteria 252 68 60 51 181/118 
Proteobacteria 84 23 66 15 705/414 
Firmicutes 15 4.0 10 2.5 404/182 
Chloroflexi 11 2.9 3 60 15/5 
Acidobacteria 4 1.1 4 67 6/6 
Bacteriodetes 2 0.5 2 4.4 53/45 
Cyanobacteria 2 0.5 2 6.3 44/32 
Spirochaetes 1 0.3 1 5.6 23/18 
Verrucomicrobia 1 0.3 1 25 4/4 
Gemmatimonadetes 1 0.3 1 100 1/1 
a Numbers of sequenced genomes and species of each phylum were extracted from the MiST2 database (Ulrich & Zhulin, 2010) in 
October 2010. 

The 373 proteins of group ECF41 derive from 150 different species. Therefore, these 

organisms often encode more than one copy of the ECF41 gene in the genome (Table 4.4 

and S1). Especially within the Actinobacteria multiple copies are very common. Only 14 

out of the 60 ECF41-containing actinobacterial species harbor just one copy of this σ 

factor, while the genomes of the remaining 46 contain several copies. Especially the genus 
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Streptomyces contains large numbers of ECF41 σ factors with at least 4 copies per genome, 

which may reflect the complex lifestyle of these bacteria (Flärdh & Buttner, 2009). The 

ECF41 copy number correlates well with the genome size and the overall abundance of 

signal transducing systems. For example, the genome of S. coelicolor encodes as many as 

45 ECF σ factors (Bentley et al., 2002), 13 of which belong to group ECF41. A high 

abundance of ECF41 genes can also be found in the phylum Chloroflexi (11 ECF41 σ 

factors/3 genomes), whereas most of the Proteobacteria (84 ECF41 σ factors/66 genomes) 

and Firmicutes (15 ECF41 σ factors/10 genomes) harbour only one to two ECF41 σ factors 

per genome.  

We constructed an unrooted phylogenetic tree based on a gapless multiple sequence 

alignment of all 373 ECF41 σ factors using the Neighbor-Joining method implemented in 

the Phylip program Protdist (Felsenstein, 1989) provided by the BioEdit Sequence 

Alignment Editor (Hall, 1999) (Fig. 4.1).  

 

Figure 4.1. Phylogenetic tree of ECF41 σ factors. The phylogenetic tree is based on a gapless multiple 
sequence alignment of 373 ECF41 protein sequences constructed using ClustalW (Thompson et al., 1994). 
The resulting phylogenetic tree was calculated using the neighbor-joining method of the Phylip (Felsenstein, 
1989) program Protdist implemented in the BioEdit Sequence Alignment Editor (Hall, 1999). Assignment to 
bacterial phyla is indicated by a color code. Ecf41Rsp of R. sphaeroides, Ecf41Bli of B. licheniformis and σJ of 
M. tuberculosis are highlighted. 
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In general, the terminal nodes representing sequences of ECF41 σ factors cluster according 

to the phylum (Fig. 4.1). The two phyla containing the highest number of sequences 

(Actinobacteria and Proteobacteria) are divided into five and three different branches, 

respectively. One cluster within one actinobacterial branch is rather diverse and includes 

ECF σ factors from Proteobacteria, Chloroflexi, Firmicutes and Acidobacteria. The 

remaining ECF41 σ factors from Firmicutes as well as Chloroflexi form single branches. 

The ECF41 proteins from Bacteriodetes and Cyanobacteria also cluster together, whereas 

the proteins from Acidobacteria, Spirochaetes, Verrucomicrobia and Gemmatimonadetes 

cluster within or between actinobacterial and proteobacterial branches (Fig. 4.1). 

Genomic context conservation. In contrast to most ECF σ factors studied to date (Butcher 

et al., 2008), no gene encoding an obvious anti-σ factor can be found in direct vicinity of 

the genes encoding the ECF41 σ factors. Instead, they are genomically associated with 

genes encoding CMD proteins, oxidoreductases or epimerases (COE) (Table S1 and Fig. 

4.2). While this genomic context is highly conserved, the order and orientation of the 

associated genes is diverse. In almost 50% of the cases, both genes are orientated in the 

same direction and could potentially be transcribed as an operon. In less than 20% the 

genes are orientated divergently. The remaining ~30% of ECF41 σ factors do not cluster 

with genes encoding COE. Such “orphans” are especially abundant in actinobacterial 

species (Fig. 4.2), which contain multiple copies of ECF41 genes in the genome. But in 

general, at least one copy of the ECF41 genes shows the conserved genomic context. 

Carboxymuconolactone decarboxylases. Commonly, proteins of the CMD family 

(PF02627) can be divided into two main groups: the γ-CMD proteins and the AhpD-like 

alkylhydroperoxidases (Ito et al., 2006). The γ-CMD proteins are involved in the 

degradation of aromatic compounds. They catalyze the decarboxylation of γ-

carboxymuconolactone to β-ketoadipate enol-lactone in the protocatechuate branch of the 

β-ketoadipate pathway (Eulberg et al., 1998). The best investigated example of the second 

group is the alkylhydroperoxidase AhpD of Mycobacterium tuberculosis. This protein 

contains a CxxC motif critical for catalytic activity and is part of the antioxidant defense 

system of this organism (Hillas et al., 2000, Koshkin et al., 2003). In the archaeon 

Methanosarcina acetivorans it was shown that the product of gene MA3736 encodes an 

uncharacterized CMD protein homolog with disulfide reductase activity dependent on a 

CxxC motif (Lessner & Ferry, 2007). It was suggested to play a role in the oxidative stress 
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response of this organism. All CMD proteins genomically linked to ECF41 σ factors 

contain a conserved CxxC motif, suggesting a role of this group in the defense against 

oxidative stress. 

 

Figure 4.2. Genomic context conservation of ECF41 σ factors. ECF σ factors are shown by black, CMD 
proteins by grey, oxidoreductases by striped and epimerases by dotted arrows. Genes encoding hypothetical 
proteins, that either contain the conserved promoter motif or are located between the ECF41 σ factor and the 
COE, are displayed in white. The genomic context is represented according to the phylum with the number of 
species in parentheses. The number in front of each context indicates how often this combination of genes 
occurs within the designated phylum. 

 



Chapter 4 

66 

Oxidoreductases. The reactions catalyzed by oxidoreductases can be very diverse, but are 

always characterized by the transfer of electrons from one molecule to another, often using 

NAD(P)H or FAD as cofactors. Since oxidoreductases can use a variety of different 

molecules as electron donor or acceptor, it is difficult to assign a specific function to these 

enzymes. In case of genes next to ECF41 σ factors, they were classified as oxidoreductase 

if their product carried at least one of the following Pfam domains: Oxidored_FMN, 

Flavodoxin_2, Pyr_redox/_2, FAD_binding_2/3/4, Amino_oxidase, Pyridox_oxidase or 

FMN_red.  

Epimerases. The third group contained either a NmrA (PF05368) or an Epimerase 

(PF01370) domain. NmrA is a negative transcriptional regulator of AreA and involved in 

nitrogen metabolite repression in different fungi. The crystal structure of NmrA revealed a 

Rossmann fold and similarity to members of the short-chain dehydrogenase/reductase 

family (Stammers et al., 2001), which generally deploy nucleotide-sugar substrates for 

chemical conversions. The Rossmann-fold is typical for two domain redox enzymes that 

use NAD+ as cofactor. The UDP-galactose 4-epimerase is the best understood example of 

this family and catalyzes the conversion of UDP-galactose to UDP-glucose (Allard et al., 

2001). 

Miscellaneous. In some cases, genes encoding other than the above mentioned proteins can 

also be linked to ECF41 σ factors. These neighboring genes were included in Fig. 4.2 if 

they (i) carry the typical promoter sequence (see below), or (ii) are located between the 

ECF41- and the COE-encoding genes. Most of these other genes encode hypothetical 

proteins of unknown function. Four of these hypothetical proteins (Table S1) contain the 

conserved β-barrel domain of the cupin superfamily, which members often function as 

dioxygenases in bacteria (Dunwell et al., 2004). The C-terminal domain of the cytoplasmic 

anti-σ factor ChrR from R. sphaeroides σE also adopts such a cupin fold (Campbell et al., 

2007). In all four cases, the genes encoding these cupin fold proteins are in the same 

orientation than the ECF σ factor and presumably form an operon. 

ECF41 proteins contain a large C-terminal extension. Group 4 alternative σ factors 

contain the smallest proteins of the σ70 family, in which only regions σ2 and σ4 are 

sufficient for promoter recognition and RNAP interaction. An alignment of classical ECF 

σ factors from different organisms and proteins of group ECF41 revealed a large C-
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terminal extension of about 100 amino acids only present in ECF41 σ factors (Fig. 4.3). 

Based on an alignment of all ECF41 proteins (Fig. S1), we identified three conserved 

motifs within this extension. Another characteristic feature of the ECF41 proteins is a 

highly conserved WLPEP motif in the linker region between σ2 and σ4, which usually does 

not show much sequence conservation in other ECF σ factors (Fig. 4.3).  

 

Figure 4.3. Characteristic features of group ECF41 proteins and comparison with classical ECF σ 
factors. The multiple sequence alignment of selected ECF σ factors was constructed using ClustalW 
(Thompson et al., 1994). Identical amino acids at the same position are shaded in black, similar amino acids 
in grey. The σ2 and σ4 domains and the C-terminal extension are marked. Conserved motives of ECF41 
proteins are defined by the complete multiple sequence alignment of group ECF41 (Fig. S1) and underlined. 
Abbreviations: Bce, Bacillus cereus; Bli, Bacillus licheniformis; Bsu, Bacillus subtilis; Eco, Escherichia coli; 
Nfa, Nocardia farcinica; Rsp, Rhodobacter sphaeroides; Reu, Ralstonia eutropha. 

By analogy to other group 4 σ factors, we expect activity of the ECF41 proteins to be 

regulated. Based on the observations regarding the genomic context and domain 

architecture of ECF41 σ factors, we propose three hypotheses to explain their regulation: 

(i) the COE genes could be targets of ECF41-dependent regulation, (ii) the COE could be 

part of the signal transducing mechanism and function as an anti-σ factor, or (iii) the C-

terminal extension could be involved in controlling σ factor activity.  

To address these hypotheses directly and generalize our findings, we experimentally 

investigated ECF41 σ factors from two different organisms: BLi04371 of B. licheniformis 
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and RSP_0607 of R. sphaeroides. We named the genes encoding the ECF41 σ factors to 

ecf41Bli and ecf41Rsp and used these terms for the following analysis. The genomic 

neighborhood including the genes encoding the CMD proteins YdfG and RSP_0606 is 

shown in Fig. 4.4 A.  

 

Figure 4.4. Targets of ECF41-dependent signal transduction. (A) Genomic context organization and 
target promoter sequence of the ECF41 σ factors from B. licheniformis and R. sphaeroides. Genes encoding 
the ECF41 σ factor (black) and the CMD protein (grey) as well as the promoter sequences are shown. 
Flanking genes not belonging to the ECF41 loci are shown in white. The -35 and -10 region, the 
transcriptional start site +1 and the ATG start codon are highlighted in bold. The RACE adapter sequence is 
indicated by lower case letters. (B) Northern Blot analysis of Ecf41Bli-dependent ydfG expression in B. 

licheniformis. B. licheniformis MW3 (wt) and TMBli003 (∆ecf41Bli) were grown aerobically in LB medium. 
At the time points indicated by arrows, samples of both strains were harvested and total RNA was prepared. 
10 µg total RNA were separated on a 1% formaldehyde gel and transferred to a nylon membrane followed by 
hybridization and detection with a DIG-labeled ydfG-specific probe. Ribosomal RNA is shown to ensure 
equal amounts of RNA in each lane. (C) Weblogo of ECF41-dependent target promoters. The weblogo was 
generated using the WebLogo tool (Crooks et al., 2004) available at http://weblogo.berkeley.edu. The 
weblogo graphically represents a position weight matrix and illustrates the degree of sequence conservation 
for each nucleotide. The matrix is based on 285 putative promoter sequences identified upstream of genes 
encoding ECF41 σ factors and COE. (D) ECF41-dependent target promoter activation. B. subtilis strains 
TMB696 (Ecf41Bli) and TMB623 (pHCMC04) were grown in LB medium to OD600 ~0.4 and split into two 
samples. In one sample, expression of Ecf41Bli was induced by addition of 0.5 % xylose and cells were 
harvested after 1 h. R. sphaeroides strains TMR005 (Ecf41Rsp) and YSD434 (pIND4) were grown in 
Sistrom’s minimal medium to OD600 ~0.3 and split into two samples. In one sample, expression of Ecf41Rsp 
was induced by 100 µM IPTG. After 3 hours, the cells were harvested. PydfG and PRSP_0606 activities were 
measured by β-galactosidase assays with normalization to cell density.  
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Targets of ECF41 σ factors 

COE-encoding genes represent targets of ECF41-dependent signal transduction. We 

first investigated if the COE-encoding genes next to the ECF41 σ factors are targets of the 

ECF41-dependent signal transduction. Therefore, we monitored expression of ydfG at 

different growth phases in a B. licheniformis wild type and an isogenic ∆ecfI41Bli deletion 

strain. Both strains show no difference in growth behavior (Fig. 4.4 B) indicating that 

Ecf41Bli is not required under standard laboratory conditions. At designated time points 

samples of both strains were taken, total RNA was prepared and Northern Blot analysis 

was performed using a ydfG-specific probe. At the transition from the exponential to the 

stationary growth phase, a ~0.5 kb transcript appears in the wild type strain in agreement 

with a monocistronic expression of ydfG (Fig. 4.4 B). No ydfG transcript is visible in the 

∆ecfI41Bli deletion mutant, demonstrating that detectable expression of ydfG is completely 

Ecf41Bli-dependent under the condition tested.  

We also examined the transcriptome upon overexpression of Ecf41Rsp in R. sphaeroides by 

DNA microarrays to test if a similar result can be obtained in another organism and to 

possibly identify additional target genes of ECF41 σ factors. The mRNA level for ecf41Rsp 

was ~80-fold increased in cells overexpressing this protein. The only other more than 2-

fold induced gene was RSP_0606 (~3-fold), which encodes the associated CMD protein 

(data not shown). These results indicate that Ecf41Rsp seems to control expression of only a 

single transcript that contains the ecf41Rsp and RSP_0606 genes.  

Analysis of ECF41-dependent target promoters in B. licheniformis and R. 

sphaeroides. Since ECF σ factors recognize alternative promoter sequences, we 

investigated if the identified ECF41 target genes ydfG and RSP_0606 are preceded by such 

a unique sequence motif. We therefore mapped the transcriptional start site by 5’RACE in 

RNA samples from cells overexpressing the ECF41 σ factor (R. sphaeroides) or samples 

taken throughout the growth cycle (B. licheniformis) (Fig. 4.4 B). In both organisms, we 

identified a “G” residue as the transcriptional start site followed by a 22/23 bp untranslated 

region containing a suitable ribosome binding site (Fig. 4.4 A). Upstream of this start point 

we identified a bipartite sequence motif with similarity to ECF-dependent promoter 

elements: a -35 region identical in both organisms (“TGTCACA”) and a -10 region 

(“TGTT” or “CGTC”). 
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Next we tested if this predicted target promoter responds to the corresponding ECF41 σ 

factor. Because of the lack of genetic tools for B. licheniformis, we heterologously 

expressed Ecf41Bli-FLAG from a xylose-inducible promoter in B. subtilis, an organism 

lacking an ECF41 σ factor, and measured the activity of the target promoter PydfG 

transcriptionally fused to lacZ by β-galactosidase assays (Fig. 4.4 D). Without xylose, the 

resulting reporter strain TMB696 shows only low PydfG activity, presumably due to weak 

basal expression of Ecf41Bli from PxylA in complex LB medium. Addition of 0.5 % xylose 

increased promoter activity ~70-fold, indicating that Ecf41Bli activates PydfG upon its 

overexpression. Almost no β-galactosidase activity was detectable in the control strain 

TMB623, harboring only the empty expression vector, demonstrating that PydfG from B. 

licheniformis is not recognized and activated by any σ factor of B. subtilis under the 

laboratory conditions used in these experiments. 

To test for promoter recognition in R. sphaeroides, we expressed Ecf41Rsp from an IPTG-

inducible promoter and measured the activity of the target promoter PRSP_0606 by β-

galactosidase assays. Without inducer present, strain TMR005 shows PRSP_0606 activity of 

about 25 Miller Units, which can be increased 2-fold by addition of IPTG (Fig. 4.4 D). The 

high PRSP_0606 activity of TMR005 in the absence of IPTG is presumably due to background 

transcription from the leaky promoter of the expression plasmid. In comparison, the control 

strain YSD434, which carries the empty vector, shows only marginal promoter activity. 

These results from two independent organisms demonstrate that the promoter identified by 

5’RACE (Fig. 4.4 A) specifically responds to the overexpression of ECF41 σ factors. 

Prediction of a general ECF41-dependent target promoter motif. After we identified 

an ECF41-dependent promoter in two organisms, we expected that this motif should also 

be present in the ECF41 loci other organisms. To verify this, we extracted 250 bp regions 

upstream of the COE- as well as the ECF41-encoding genes and searched for  

overrepresented sequence motifs with similarity to the identified promoter, either manually 

or by using the MEME algorithm (Bailey & Elkan, 1994). We identified these two motifs 

separated by a 16+/-1 bp spacer within most of these regions and constructed a weblogo 

based on 285 sequences (Fig. 4.4 C). The -10 region with the consensus ‘CGTC’ is 

comparable to many typical ECF promoters, whereas the -35 consensus ‘TGTCACA’ is 

specific for group ECF41. This bipartite promoter motif can be found upstream of both the 

COE- and ECF41-encoding genes, often preceding a potential operon consisting of these 
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two genes (Table 4.5 and Table S1). In about one-third of all ECF41 σ factors, the COE-

encoding gene is located upstream of and in the same orientation than the ECF gene. Here, 

the COE gene usually carries the promoter motif while the ECF σ factor lacks it. In case of 

this predominant locus organization, both genes could form an operon transcribed from the 

COE promoter. If the ECF σ factor is located upstream of the COE gene, less than 30% of 

the ECF- and almost 50% of the COE-encoding genes harbour the promoter, in case of 

20% both genes are preceded by the motif. About 17% of the ECF41 σ factors show 

opposite orientation relative to the COE gene, either >ECF><COE< or <ECF< >COE>. In 

the latter case often both genes are preceded by the motif, whereas for the first combination 

usually only either the ECF- or COE-encoding gene shows the promoter. More than 30% 

of all ECF41 σ factors do not show the genomic context conservation. Of these “orphan” 

genes, only 30% are preceded by the ECF41-specific promoter.  

Table 4.5. Genomic context and promoter occurrence  

Genomic contexta Number PECF
b PCOE

b 

>ECF> 126 (34%) 38 n.a. 
>COE> >ECF> 107 (29%) - 97 
>ECF> >COE> 53 (14%) 14 24 
>ECF> <COE< 9 (2%) 3 4 
<ECF< >COE> 55 (15%) 36 41 
ungrouped 23 (6%) n.a. n.a. 
aThe arrows indicate the organization of the genes. ECF, gene encoding an 
ECF41 σ factor; COE, gene encoding a CMD protein, oxidoreductase or 
epimerase; ungrouped, genomic context differs from the above mentioned 
groups and contains genes encoding hypothetical proteins of unknown 
function. 
 b “-“, no promoter occurs upstream of the gene; n.a., the corresponding 
gene is not present or was omitted from analysis in case of ungrouped 
genomic context. 

Next we used the derived position weight matrix graphically represented in Fig. 4.4 C to 

perform genome-wide searches for additional ECF41 target promoters in R. sphaeroides 

and B. licheniformis, using the algorithm virtual footprint (Münch et al., 2005) 

implemented in the Prodoric database (Münch et al., 2003). In both organisms, only a few 

potential ECF41 target promoters could be identified (Table 4.6), but none exactly matched 

the ECF41 consensus. Construction of transcriptional lacZ-fusions to three of these 

promoters from B. licheniformis (PnhaX, PuvrX and PypbE) and subsequent determination of β-

galactosidase activity did not reveal any Ecf41Bli-dependent activation. Even expression of 
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a highly active truncated version of Ecf41Bli (see below) did not result in any promoter 

activation (data not shown).  

Table 4.6. Putative ECF41 target promoters in B. licheniformis and R. sphaeroides 

Genea Promoter sequenceb 
5’ 

UTRc 
Putative function, homology 

B. licheniformis   

BLi01248 TGTCACAAAAACATAAATAATAGATGTC 142 Hypothetical, putative membrane protein 
Bli03073 TGTCACCCCTTCCTT-TTTCGAGCCGTC 109 Hypothetical, putative membrane protein 
hprP TGTCACGCTTGCTTTTATTTTTCTCGTC 163 Putative phosphatase 
mtrB TGTCACTTCAGCTGT-AAGGGGAACGTT 76 Transcription attenuation protein 
nhaX TGTCACGTTTAGGTG--CTTTTGTTGTT 199 Stress response protein 
pucR TGTCACAAATCCGCT--CATTTTTTGTT 39 Purine catabolism regulatory protein 
sat TGTCACAAGCGTTCTGCTGGCATCTGTC 97 Sulfate adenylyltransferase, dissimilatory-type 
spoIISB TGTCACAGAATTTGA-TTATCTCCTGTT 60 Stage II sporulation protein SB 
uvrX TGTCACCTTCTTTCC-AAAGAAGGTGTT 120 DNA-damage repair protein 
ybxF TGTCACTAAAAATTG-TCATCATATGTT 68 Firmicutes ribosomal L7Ae family protein 
ydfG TGTCACAAACTCCGT-TTCTCTCTTGTT 31 Putative CMD protein 
yfmE TGTCACGGCAATGAT-TGGGACGCCGTT 42 Heme ABC type transporter HtsABC, permease  
ykpA TGTCACAAAGAAAGTGGAAATAAGCGTT 108 ABC transporter, ATP-binding protein 
ypbE TGTCACGGCACATTTTTTGATCGATGTT 48 Unknown, LysM domain, cell wall degradation 
yvdI TGTCACACTGCTCATTTCTTTCATTGTC 63 Maltose/maltodextrin ABC transporter  
    
R. sphaeroides   

gcvH TGTCACGTCCGGCG-GCTTCGGCCCCTC 151 Glycine cleavage system H protein,  
repA  TGTCACCGTTTCG--CCCCAAGAACGTG 152 RepA partitioning protein/ATPase, ParA type 
rplL  TGTCACCCACC--ATGTTGGACCCCATC 20 Ribosomal protein 
RSP_0606 TGTCACAACCGC-CTTCCCTCGCCCGTC 32 Putative CMD protein 
aGenes highlighted in bold were tested for activation by the corresponding ECF41 σ factor. 
bUnderlining indicates -35 (left) and -10 (right) regions, the spacing was adjusted indicated by dashes. 
c5’UTR, length of 5’-untranslated region (in nucleotides) between the postulated transcriptional start site and the AUG start codon. 

In addition, we performed genome-wide analysis on the presence and conservation of the 

ECF41 promoter motif upstream of orthologous genes in a wide range of ECF41-harboring 

organisms. While this in silico analysis has been successfully used to identify candidate 

promoters and core regulons for other regulators including ECF σ factors (Dufour et al., 

2010, Dufour et al., 2008), it failed to reveal any potential conserved regulon members, 

with the exception of genes encoding the COE or ECF41 σ factor (Fig. 4.5). Taken 

together, our collective data strongly suggest that the proteins of group ECF41 generally 

control only a single target gene or operon, which includes the COE and the ECF41 σ 

factor, if co-transcribed. The COE-encoding genes therefore represent the only known and 

detectable targets of ECF41-dependent gene expression. 
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Figure 4.5. Potential ECF41 target genes across selected bacteria. The analysis was performed as 
described (Dufour et al., 2008). Shown are groups of orthologous genes (columns) that contain the putative 
ECF41 binding motif in their promoter regions across indicated species (rows). A gray box means that the 
organism does not possess a homolog for the corresponding group; black means that it possesses a homolog 
for the group but no conserved ECF41 binding motif was found in its upstream region; red and yellow means 
that an ECF41 binding motif was found in the promoter region for the gene. Shades from red to yellow 
represent the similarity to the ECF41 consensus promoter motif with yellow being most similar. 

Phenotypes linked to ECF41-dependent gene expression. In B. licheniformis and R. 

sphaeroides, the only detectable target gene of the ECF41 σ factor encodes a CMD protein. 

These proteins are not necessarily involved in degradation of aromatic compounds, but 

could also exhibit a role in the oxidative stress response (Hillas et al., 2000, Lessner & 

Ferry, 2007). Additionally, a strain of M. tuberculosis lacking the ECF41 σ factor σJ is 

slightly more sensitive to H2O2 (Hu et al., 2004). Based on these observations, we 

investigated a potential link between ECF41 σ factors and oxidative stress response. We 

determined minimal inhibitory concentrations and performed serial dilution spot tests to 

compare the viability of a R. sphaeroides wild type and RSP_0606-ecf41Rsp deletion 

mutant (YSD239) or Ecf41Rsp overexpression strain (TMR003) strain  as well as B. 

licheniformis wild type and ∆ecf41Bli or ∆ydfG (TMBli006 or TMBli003) deletion strains, 

respectively. No significant differences were observed in the presence of H2O2, cumene 

hydroperoxide, t-butyl hydroperoxide or paraquat (data not shown). 

We subsequently performed phenotype microarray (PM) analysis. This high-throughput 

approach allows testing hundreds of different conditions in parallel in order to identify 

phenotypes associated with genetic alterations (Bochner, 2003). Our PM analysis included 
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960 assays for carbon, nitrogen, phosphorus and sulfur utilization, nutrient stimulation, pH 

and osmotic stress as well as chemical sensitivity tests covering 240 different substances 

(see http://www.biolog.com/PM_Maps.html for details). We compared phenotypic 

differences between the R. sphaeroides wild type strain and RSP_0606-ecf41Rsp deletion 

(YSD239) as well as an Ecf41Rsp overexpression strain (TMR006). Overall, only a very 

few phenotypes can be linked to the expression or deletion of the ECF41 σ factor 

(supplementary material). Besides resistance to spectinomycin due to the resistance 

cassette, strain YSD239 showed only a positive phenotype against the sulfonamide 

antibiotic sulfadiazine. As expected, strain TMR006 displayed relative resistance to 

aminoglycoside antibiotics (kanamycin, neomycin, geneticin, paromomycin) due to the 

resistance cassette of the overexpression plasmid. Surprisingly, gained phenotypes can be 

observed for the carbon sources adonitol, D-mannitol, D-sorbitol and glucose, suggesting a 

metabolic function of ECF41 in utilization of additional carbon sources. But none of these 

additional phenotypes not due to the presence of a resistance cassette could be verified by 

serial dilution spot tests (data not shown). 

Hence, we were not able to identify any ECF41-related phenotype. Therefore, we can so 

far only speculate on the physiological role of ECF41 σ factors. One likely possibility is 

that the COE proteins are involved in a very specific, presumably degradative metabolic 

pathway, instead of mediating a stress response. In the presence of a suitable substrate, the 

synthesis of the COE proteins could then be induced to facilitate the conversion of the 

metabolite. 

The wide distribution and conservation of ECF41 σ factors indicates an important cellular 

role of these proteins. Since ECF41 proteins are particularly abundant in Actinobacteria 

with sometimes more than 10 copies per genome (Table 4.4 and S1), it might be 

worthwhile to study the function of ECF41 σ factors in members of this bacterial phylum. 

Alternatively, one could establish a high-throughput approach to study induction of the 

COE genes in response to a wide array of chemical compounds. Moreover, a biochemical 

analysis of representative COE proteins might also help to shed some light on the 

physiological role ECF41-dependent gene regulation. 
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Signal Transduction of ECF41 σ factors 

The activity of ECF σ factors is normally regulated by a cognate anti-σ factor. The genes 

encoding these two proteins are usually located next to each other on the chromosome and 

co-transcribed (Butcher et al., 2008, Helmann, 2002). As mentioned above, no obvious 

anti-σ factor is encoded in direct vicinity to the genes encoding the ECF41 σ factors. The 

results of our in silico analysis (Fig. 4.2 and 4.3) suggest that either the corresponding COE 

or the C-terminal extension of the ECF41 proteins could be involved in the regulation of σ 

factor activity. We first tested if expression of YdfG has any influence on the target 

promoter activation by Ecf41Bli, but did not observe any effects (data not shown). 

Therefore, we focused our attention on the C-terminal extension. A multiple sequence 

alignment of all ECF41 proteins (Fig. S1) revealed four highly conserved motifs, three 

within the C-terminal extension and one in the linker region between σ2 and σ4 (Fig. 4.3). 

To study a possible function of these unique features, we investigated the effect of (i) 

exchanging the conserved motifs against alanine residues and (ii) C-terminal truncations of 

Ecf41Bli.  

Mutational study of conserved motifs. First, we constructed overexpression plasmids 

with variants of Ecf41Bli, in which either of the conserved motives is exchanged against 

alanine residues (Fig. 4.6 A). The resulting modified versions of Ecf41Bli, which also 

carried N-terminal FLAG-tags, were expressed heterologously in B. subtilis and the effect 

on PydfG activation was measured by β-galactosidase assays (Fig. 4.6 B). Exchange of 

INDQKGVL showed the strongest effect and resulted in about 3-fold higher activity 

compared to expression of the wild type protein. The other amino acid exchanges also led 

to alterations in promoter activity. The proteins with exchanges in WLPEP showed 

reduced and in DGGGK increased activity, NPDKL is comparable to the wild type version 

of Ecf41Bli. Expression of all these Ecf41Bli-FLAG variants was verified by Western Blot 

analysis using a FLAG-tag specific antibody (data not shown).  
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Figure 4.6. Influence of highly conserved residues of Ecf41Bli on target promoter activation. (A) 
Schematic representation of cloned Ecf41Bli alleles with amino acid exchanges. The name of each variant is 
given at the beginning of each line. The domains σ2 and σ4 as well as the C-terminal extension are displayed 
as grey boxes. The highly conserved motives and the exchange of amino acids against alanine residues are 
shown. (B) β-galactosidase activities of B. subtilis strains overexpressing the Ecf41Bli-FLAG variants. Strains 
TMB696 (wt), TMB795 (WLPEP), TMB797 (DGGGK), TMB1016 (INDQKGVL) and TMB793 (NPDKL) 
were grown in LB medium to OD600 ~0.4 and split into two samples. In one sample, protein expression was 
induced by addition of 0.5 % xylose. The cells were harvested after 1 h and β-galactosidase activity was 
measured as described. Expression of each allele was verified by Western Blot analysis using a FLAG-tag 
specific antibody. 

Sequential deletion analysis of the C-terminal extension. Next, we investigated variants 

of Ecf41Bli lacking increasing parts of the C-terminal extension. We constructed five C-

terminally truncated alleles of ecf41Bli-FLAG and tested their ability to activate the target 

promoter PydfG. The different mutant proteins were named according to their length (Fig. 

4.7 A). Truncation of only 15 C-terminal amino acids of Ecf41Bli (270) resulted in a 4-fold 

higher activity compared to the wild type protein (Fig. 4.7 B). Further truncations (234 and 

204) led to even higher activity up to a ~20-fold increase relative to the full-length protein. 

In contrast, expression of variant 167, which lacks the whole extension, completely lost the 

ability to activate the target promoter. This was unexpected, since regions σ2 and σ4 are 

usually sufficient for promoter recognition and activation by other ECF σ factors. This 

indicates that at least N-terminal parts of the extension are required for ECF41-dependent 

promoter activation, although partly truncations lead to a highly active protein. Expression 

of all of these Ecf41Bli-FLAG variants was verified by Western Blot (Fig. 4.8 B and data 

not shown). 
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Figure 4.7. Effect of C-terminal truncations of ECF41 σ factors on target promoter activation. (A) 
Schematic representation of C-terminally truncated Ecf41Bli proteins of B. licheniformis. Details are shown as 
described for Fig. 4.6. The proteins are named according to their length (B) β-galactosidase activities of B. 

subtilis strains overexpressing truncated Ecf41Bli-FLAG proteins. Strains TMB696 (wt), TMB744 (270), 
TMB743 (234), TMB742 (204), TMB741 (192) and TMB667 (167) were grown in LB medium to OD600 
~0.4 and split into two samples. In one sample, protein expression was induced by addition of 0.5 % xylose. 
The cells were harvested after 1 h and β-galactosidase activity was measured. (C) Schematic representation 
of C-terminally truncated Ecf41Rsp proteins of R. sphaeroides. Details are shown as described for Fig. 4.6. 
(D) β-galactosidase activities of R. sphaeroides strains overexpressing truncated Ecf41Rsp proteins. Strains 
TMR004 (wt), TMR005 (169) and TMR006 (206) were grown in Sistrom’s minimal medium to OD600 ~0.4 
and split into two samples. In one sample, expression of Ecf41Rsp variants was induced by 100 µM IPTG. 
After 3 hours, the cells were harvested and β-galactosidase assays were performed. 

To test if similar results can be observed for Ecf41Rsp, we tested the effects of C-terminal 

truncations on σ factor function in R. sphaeroides (Fig. 4.7 C and D). Expression of the C-

terminal truncated Ecf41Rsp (206) led to ~120-fold higher PRSP_0606 activity than the full-
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length protein, whereas deletion of the whole extension (169) resulted in a total loss of 

promoter activation. Our collective data therefore strongly suggest that the C-terminal 

extension of group ECF41 proteins might represent a fused anti-σ domain, which is 

involved in controlling σ factor activity.  

Interaction of Ecf41Bli with RNA polymerase. Bacterial σ factors form a complex with 

the RNAP core enzyme and recruit the resulting holoenzyme to the corresponding target 

promoters (Burgess & Anthony, 2001). To demonstrate that Ecf41Bli interacts with RNAP, 

we performed in vivo RNAP pull-down assays. Ecf41Bli-FLAG was expressed from a 

xylose-inducible promoter in a B. subtilis strain carrying a His6-tagged β’-subunit of 

RNAP. The His6-tag was used for rapid purification of RNAP holoenzyme (Anthony et al., 

2000). The success of the purification was verified by the presence of bands on a 

Coomassie stained SDS-PAGE gel corresponding to the ββ’ and α subunits (Fig. 4.8 A). 

Western Blot analysis with a FLAG-tag specific antibody shows that Ecf41Bli-FLAG co-

purifies with RNAP (Fig. 4.8 B). The same protein is not detectable in the elution samples 

of cells lacking the His6-tag (data not shown) indicating that enrichment of Ecf41Bli-FLAG 

from B. licheniformis is due to interaction with RNAP. 

 

Figure 4.8. Interaction of Ecf41Bli with RNA polymerase. (A) SDS-PAGE of Ni affinity-purified proteins 
from strains TMB1099 (wt), TMB1100 (204) and TMB1101 (167) carrying a His6-tag fused to the β’ subunit 
of the RNAP. The different truncated versions of Ecf41Bli-FLAG were overexpressed and the RNAP complex 
was purified (see Experimental procedures for details). 5 µg of the cleared lysate and 5 and 10 µg of the 100 
mM imidazole elution fractions were loaded. (B) Detection of co-purified Ecf41Bli-FLAG and its variants by 
Western Blot analysis of a gel identical to the one in (A) using a FLAG-tag specific antibody. 
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Next, we analyzed if the observed effect of Ecf41Bli truncations (Fig. 4.7 A and B) on 

target promoter activation can be explained by their ability to interact with RNAP core 

enzyme. We repeated the RNAP pull-down assay quantitatively with the highly active 

(204), the inactive (167) and the wild type version of Ecf41Bli-FLAG. All three proteins are 

expressed at comparable levels in soluble form as demonstrated by Western Blot analysis 

of the cleared lysate before purification, but show considerable different binding behavior 

to RNAP (Fig. 4.8 B). Hardly any binding can be observed for the shortest Ecf41Bli protein 

(167), which is consistent with its inability to activate the target promoter (Fig. 4.7 B). In 

contrast, the protein with only partly truncated extension (204) co-purifies with RNAP to a 

much lesser extent than the full-length protein although promoter activation is significantly 

higher.  

Altogether, C-terminal truncations of Ecf41Bli significantly alter the binding behavior to 

RNAP, but this affinity does not completely reflect the observed σ factor activity of the 

corresponding allele. While loss of promoter activation for the complete deletion of the C-

terminal extension can be – at least partially – explained by the significantly reduced 

ability of the shortest version of Ecf41Bli (167) to interact with RNAP, additional factors 

must account for the strongly increased promoter activation of the partly truncated version 

(204), despite its weaker interaction with RNAP compared to the wild type protein.  

Taken together, our data demonstrates that the ECF41 σ factors seem to have a completely 

new way of signal transduction presumably not involving a second protein functioning as 

an anti-σ factor. Instead, the C-terminal extension, which is not present in other ECF σ 

factors, affects both the target promoter activation and binding to RNAP (Fig. 4.7 and 4.8). 

Discussion 

A recent classification identified a large number of novel groups of ECF σ factors with 

unique features compared to “classical” ECF σ factors (Staroń et al., 2009), including 

group ECF41. This group shows a wide phylogenetic distribution with about 400 proteins 

from ten different phyla (Table 4.4, Table S1 and Fig. 4.1). The genomic context of group 

ECF41 is highly conserved and distinct from other ECF groups. An obvious anti-σ factor is 

missing. Instead, a gene encoding a CMD protein, an oxidoreductase or an epimerase 

(COE) is located directly up- or downstream of the ECF41 σ factor (Fig. 4.2). We did not 
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observe any function of the COE proteins in signal transduction, but identified the 

neighbouring genes encoding these proteins as the sole targets of ECF41 σ factors, both by 

in silico and comprehensive gene expression analyses. We identified a unique promoter 

signature (TGTCACA-n16-CGTC) upstream of these COE genes that is recognized by the 

corresponding ECF41 σ factor (Fig. 4.4).  

The most important finding of our study concerns the regulatory role of the C-terminal 

extension of group ECF41, which is not present in any other group of ECF σ factors 

(Staroń et al., 2009). Based on our data, ECF41-dependent signal transduction does not 

seem to involve a second protein that functions as an anti-σ factor. Instead, our data clearly 

demonstrate the importance of the C-terminal extension for both target promoter activation 

and affinity to RNAP (Fig. 4.7 and 4.8). Moreover, our sequential deletion analysis 

indicates that the extension plays both a positive and negative role in ECF41-dependent 

gene regulation. A short N-terminal part of the extension directly following the region σ4 is 

absolutely required for σ factor activity, in contrast to other ECF σ factors described so far. 

But most of the C-terminal part of the extension clearly plays a negative regulatory role: 

even partial deletions result in a strongly increased activity of the target promoters in both 

organisms studied (Fig. 4.7), suggesting that this part of the extension functions as a fused 

anti-σ domain. To our knowledge, this is the first report of an anti-σ factor-like domain 

being fused to its σ factor. Based on our results, we propose that the group of ECF41 σ 

factors represent a novel mechanism of ECF-dependent signal transduction. 

While our data clearly establishe a regulatory role of the C-terminal extension for the 

activity of the ECF41 σ factors, the exact molecular mechanism will be the subject of 

further investigations. One possibility would be that the C-terminal extension functions as 

a sensory domain. In the absence of a suitable trigger, it could keep the σ factor domains 

inactive through intra- or intermolecular interactions. Presence of the input signal could 

then result in a conformational change that releases the σ factor domains from the 

inhibitory grip of the extension, thereby initiating transcription of the COE genes. Such a 

mechanism involving intramolecular interactions has for example been described for the 

primary σ factor of E. coli, σ70. While this σ factor does not need to be activated, binding 

of free σ70 to DNA and efficient transcription initiation is inhibited by region 1.1, 

presumably by interaction with the σ4 DNA-binding domain (Dombroski et al., 1993a, 

Johnson & Dombroski, 1997). An inhibitory role of an N-terminal region has also been 
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shown for alternative σ factors such as E. coli σ32 (Dombroski et al., 1993a). If a similar 

mechanism also applies to the C-terminal region of ECF41 σ factors needs to be 

investigated.  

Alternatively, though maybe less likely, a stimulation sensed by the C-terminal anti-σ 

domain could also result in a conformational change that exposes a protease recognition 

site. After regulated cleavage, the truncated and thereby activated σ factor would then 

mediate transcription initiation. Alternative σ factors like σK and σE, that are involved in 

the sporulation process in B. subtilis, are known to be expressed as inactive precursors. 

Activation is achieved by regulated proteolytic processing of the N-terminus of these 

proteins (LaBell et al., 1987, Lu et al., 1990, Zhang et al., 1998). But in addition to its 

inhibitory function, the role of the extension of ECF41 proteins seems to be more complex. 

Partial deletion of the C-terminal extension results in high activity, but at least the N-

terminal part of the extension is also required for transcription. Since a complete deletion 

of the C-terminal extension seems to decrease the affinity of the ECF41 σ factor to RNAP 

(Fig. 4.8), the N-terminal part of the extension could be involved in stabilizing the complex 

of RNAP and σ factor. So far, we do not know any inducing conditions for ECF41-

dependent gene expression. Hence, we could not investigate the influence of the C-

terminal extension in signal transduction under natural conditions. 

Moreover, a comprehensive phenotypic profiling of R. sphaeroides RSP_0606-ecf41Rsp 

deletion and Ecf41Rsp overexpression strains using phenotype microarrays (Bochner, 2003) 

did not reveal any function related to ECF41 σ factors. Therefore, biochemical 

characterization of the COE proteins could help to shed some light on the physiological 

role of ECF41-dependent gene regulation. 

Future studies will be necessary to unravel both the physiological role and the mechanistic 

details underlying ECF41-dependent signaling. But the data presented in this initial study 

clearly demonstrates the value of our ECF classification and can serve as blueprint for 

studying additional conserved and novel groups of ECF σ factors, with yet to be explored 

mechanisms of signal transduction and gene regulation. 
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Chapter 5 

Discussion 

In their natural habitat, bacteria encounter a number of environmental threats including the 

presence of antibiotics. Because of its crucial function, a preferred target of antibiotics is 

the bacterial cell wall. Inhibition of its biosynthesis and severe loss of its integrity rapidly 

cause cell death. In order to survive in such menacing habitats, bacteria developed a 

number of signal transducing systems, which enable the sensing of and response to harmful 

compounds and conditions. In the Gram-positive model organism B. subtilis the response 

to cell wall active antibiotics is well-known and orchestrated by two signal transducing 

principles: TCSs and ECF σ factors.  

This thesis aimed to investigate the response to antimicrobial compounds with a focus on 

the role of ECF σ factors. In chapter 2 we investigated and compared the response of B. 

subtilis to daptomycin and friulimicin B, two structurally similar and clinically relevant 

antibiotics, by in-depth expression profiling on both the transcriptome and proteome level. 

Chapter 3 presented the transcriptional response of B. subtilis to rhamnolipids, which are 

industrially important biosurfactants showing also antimicrobial activity. Finally, in 

chapter 4 we characterized a novel group of ECF σ factors (ECF41) including a 

comprehensive bioinformatics analysis and experimental investigations in both B. 

licheniformis and R. sphaeroides. 

The following discussion is divided into two parts: In the first part (section 5.1), the impact 

of genome-wide expression profiling on antibiotic research will be reviewed. In the second 

part (section 5.2 to 5.5), the results presented in chapters 2 to 4 of this thesis will be 

discussed in detail and put into the context of recent findings and the available literature. 
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5.1 

Antibiotic research in the age of omics – from expression 

profiles to interspecies communication 

Wecke, T., and Mascher, T. 2011. 
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Antibiotic research in the age of omics: from expression profiles
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The ‘age of omics’ has revolutionized our way of studying microbial physiology by introducing global analysis
tools such as comparative genomics and global expression techniques including DNA microarrays (transcrip-
tomics) and two-dimensional protein gel electrophoresis (proteomics). From the very beginning, such
approaches have also been incorporated into the portfolio of antibiotic research. Genome mining has been
used to explore the hidden biosynthetic potential in sequenced bacterial chromosomes, but also to search
for novel antibiotic targets. Moreover, numerous studies investigating changes in expression patterns in
response to antibiotic presence at the level of both the transcriptome and proteome have been performed
over the years, which have helped us gain a deeper understanding of antimicrobial action. This review will
focus on the impact that applying global expression studies has had on antibiotic research in the last
decade. Signatures of differential gene expression in response to antibiotics have led to a deeper understanding
of bacterial resistance mechanisms as well as stress response networks. They have also helped to predict the
mechanism of action of novel antimicrobial compounds or to identify potential antibiotic-specific biosensors.
Moreover, such studies have revealed novel inhibitory mechanisms of seemingly well-known drugs that
might be useful for the development of co-drugs for antibiotic therapy and have identified the potential role
of antibiotics as mediators of intercellular communication.

Keywords: antibacterials, transcriptomics, proteomics, expression profiling, DNA microarray

Introduction
The dawning of the genomic era has fostered high hopes in the
field of antibiotic discovery. After the disillusionment of the
failure of high-throughput screenings of compound libraries
had settled, scientists eagerly leaped at this new potential
‘magic bullet’ of antibiotic discovery. Academic researchers,
small biotech start-ups and the major pharmaceutical compa-
nies in unison praised the potential of genomic information
and genome-wide expression tools, such as DNA microarrays
and proteomics, as an almost fail-proof bet in identifying and
characterizing novel antimicrobial targets and compounds. In
the years 1998–2002 alone, more than 30 review articles were
devoted to this subject, with only just about as many finished
microbial genomes and hardly any global expression studies
available to back up the hopes and wishes. It was a time of
general euphoria of what the ‘age of omics’ might bring.

Now, almost 10 years later, with close to 2000 microbial
genomes sequenced, and a similar number of published transcrip-
tome studies, the use of genomic information and techniques for
the development and study of new antimicrobial compounds is
still going strong. But many of the recent overview articles are
much more cautious in what they promise1 – 3 or even announce
the renaissance of classical approaches for drug discovery.4 With

the first decade closing in, this seems to be a good time to look
back on what we have learned from applying omics tools to the
discovery and analysis of antimicrobial compounds. Have any
novel antimicrobial activities been discovered by these new
tools? Did the powerful global expression techniques help to
unravel or predict the mechanism of action (MOA)? Could this
knowledge, if gained, be used to develop reliable high-throughput
screens to narrow down the site of action for the next generation
of compounds? Which of the old hopes were justified and what
promises were fulfilled in these 10 years? And where do we go
from here?

Three core aspects of genomics were always linked to sup-
porting the development of new antibiotics: (i) identification of
new drug targets by comparative genomics; (ii) exploitation of
the biosynthetic potential hidden in microbial genomes by
genome mining; and (iii) study of drug action based on genome-
wide expression profiling.

Identification of novel drug targets by
comparative genomics
High hopes were initially raised that the powerful new tools of
genome mining and comparative genomics would pave the

# The Author 2011. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved.
For Permissions, please e-mail: journals.permissions@oup.com
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way to identifying new targets for drug development.5 – 7 Signifi-
cant progress has been made in developing methods and data-
bases for the prediction and identification of potential drug
targets in silico,8 – 11 but little has yet emerged from these
efforts. One obstacle to this process might be the restrictive defi-
nition of good antibiotic targets as products of conserved essen-
tial genes,2 which are at the core of most current bioinformatical
target identification pipelines. Moreover, many essential func-
tions are not encoded by a single essential gene,12 thereby ham-
pering their identification, since it is not easy to recognize
genomic redundancy by sequence-based approaches alone.
Nevertheless, promising results have recently been reported
describing the identification of potential new targets that could
be used in drug screening programmes. One example is the
ATP binding protein YjeE from Haemophilus influenzae, where
its use in an affinity-based screen identified a novel group of anti-
bacterial agents.13 A comparable screen of a wide variety of bio-
active compounds with known modes of action showed that
expression of the orthologous protein in Escherichia coli was
increased in the presence of fluoroquinolone antibiotics such as
norfloxacin.14

Similar approaches raised hopes to identify new drugs for
better treatment of Mycobacterium tuberculosis infections. A
medium-throughput whole-cell assay with live mycobacteria
revealed diarylquinolines as a new class of anti-tuberculosis
drugs, with R207910 being the most active of these com-
pounds.15 Subsequent whole-genome sequencing identified
mutations in the atpE gene, encoding the ATPase synthase
subunit c, as being responsible for inter-strain differences in
susceptibility. The low degree of sequence similarity between
AtpE of mycobacteria and other bacteria as well as humans
makes this protein a very promising target, and preliminary
pharmacokinetic studies in humans appear encouraging.
Another study used a whole-cell screen to identify pyrimi-
dine–imidazole compounds that inhibit the growth of Myco-
bacterium bovis and M. tuberculosis.16 Full-genome
sequencing of spontaneous resistant mutants in combination
with other MOA studies linked the biological activity of pyrimi-
dine–imidazoles to glycerol metabolism. Unfortunately, these
compounds did not display any antibacterial activity in an in
vivo mouse model, since this metabolic pathway is not rel-
evant for M. tuberculosis during infection of mice. Nevertheless,
these data clearly demonstrate the impact of central meta-
bolic pathways on drug efficacy. It is important to consider
such connections in order to successfully develop screens for
antibiotic discovery.

The power of such whole-cell screens can be further increased
by combination with specific reporter gene assays, as has been
demonstrated in a study on DNA gyrase inhibitors and other
DNA damaging agents using Pseudomonas aeruginosa as a
model bacterium.17 A strain containing the luciferase operon
fused to a promoter that responds to ciprofloxacin was used to
screen a library of 2000 bioactive compounds and identified 13
compounds that inhibit DNA synthesis, although by different
mechanisms.

The above cited studies clearly demonstrate the feasibility of
screening compound libraries using either isolated targets or
whole cells, although, to our knowledge, none of these
approaches led to novel antibiotics in clinical development.

Genome mining to exploit the hidden
antibiotic biosynthetic potential
In contrast to harnessing (comparative) genomics for the predic-
tion of new drug targets, the discovery of novel antibiotic biosyn-
thesis loci by genome mining is a promising and straightforward
road to the identification of new compounds.18 – 20 In recent
years, appropriate software tools have been developed to ident-
ify biosynthetic gene clusters and predict the structure of the
corresponding products.21 – 23 To date, a number of antibiotic bio-
synthesis loci have been characterized by a combination of
genome mining and subsequent functional characterization,
including those for cyclic lipopeptide antibiotics from P. aerugi-
nosa and Bacillus amyloliquefaciens,24,25 polyketides from
B. amyloliquefaciens26 and polymyxin from Paenibacillus poly-
myxa.27 Moreover, genome mining together with comparative
metabolic profiling and comparative genomics also helped to
identify an important class of chemical compounds that function
as antibiotic biosynthesis inducers in actinobacteria.28 This
discovery might pave the way for the controlled induction of bio-
synthetic pathways, which is currently one of the major limit-
ations for the biotechnological production of secondary
metabolites, as most antibiotic biosynthetic pathways are not
expressed under standard laboratory conditions.19 Additional
strategies to activate the expression of silent biosynthetic gene
clusters include the optimization of growth conditions29 or
alterations of the transcription or translation machinery, such as
spontaneous mutations in RNA polymerase or ribosomal protein
S12 that activated production of antibacterial compounds in
different Streptomyces species.30 An altogether different and
novel strategy applies synthetic biology tools to optimize drug pro-
duction. Biosynthetic gene clusters identified by genome mining
can be divided into modules that are often responsible for biosyn-
thesis of a distinct moiety of the final compound. These modules
can be modified and subsequently combined in a plug-and-play
fashion using a host strain already pre-engineered for maximal
expression of certain compounds as the biochemical production
chassis.31 In fact, it was possible to generate unnatural but func-
tional trimodular polyketide synthetases by such a rearrangement
process, which synthesized the expected products.32

Global expression studies of antibiotic action
This mini-review will primarily focus on this third impact of geno-
mics on antibiotic research in recent years. Studying the global
response of bacterial populations to the presence of antibiotics
was among the very first applications of the DNA microarray
technology in the early years of microbial transcriptomics.33 An
ever-increasing number of such studies have been published in
the last 10 years, covering all classical antibiotic targets and a
plethora of different compounds that were tested on a broad
range of microorganisms (Table 1). At about the same time,
in-depth proteome profiling of antibiotic action was also devel-
oped, albeit only for a few model organisms, especially Bacillus
subtilis.34 – 36

While antibiotic induction experiments based on DNA micro-
arrays are technically simple and easy to perform with high
reproducibility between biological replicates, the comparability
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Table 1. Global expression studies on genome-wide responses to antibiotic actiona

Cellular target or antibioticb Organismc Typed Purpose of study, remarksb Ref.

CELL WALL SYNTHESIS
BAC, PEN, VAN B. licheniformis T identification of the cell wall stress response network 41

VAN B. subtilis T identification of the cell wall stress response network 38

BAC B. subtilis T identification of the cell wall stress response network 39

b-lactams B. subtilis T transcriptional signatures (AMX, LEX, CTX, FOX, OXA, PEN) for
MOA predictions

55

CYC, FOF, RIS, VAN B. subtilis T transcriptional signatures for MOA predictions 55

BAC, CYC, MET, VAN B. subtilis P proteome signatures for MOA predictions 56

MET, OXA, VAN B. subtilis T MOA prediction based on transcriptional profiles and
conditional mutants

106

DAP B. subtilis T identification of resistance determinants 49

DAP, FRI B. subtilis P/T mRNA/protein signatures for MOA prediction of closely
related compounds

62

END, BAC B. subtilis T comparative transcriptional signature using a high-density
tiling chip

107

NIS B. subtilis P/T identification of resistance determinants 108

PLE B. subtilis T transcriptional and signature and target identification 65

RAM, MOE B. subtilis T characterization of regulatory systems orchestrating cell wall
stress response

109

AMX C. difficile T transcriptional signature 110

AMP E. coli T transcriptional signature 111

AMP E. coli T transcriptional signature 112

AMD, CSD E. coli T characterization of the cell wall stress response network 113

VAN E. faecalis P comparison of the proteome signature of a VAN-resistant
strain and a clinical isolate

47

Lcn972 L. lactis T characterization of a cell wall stress response system 114

EMB C. glutamicum T MOA study on this anti-tuberculosis drug 115

EMB M. smegmatis P proteome profile for compound comparison with ISO and
5-CPA

61

b-lactams, EMB M. tuberculosis T transcriptional signatures for MOA predictions 54

EMB M. tuberculosis T study on multidrug tolerance 51

VAN M. tuberculosis T transcriptional signature 116

AMX P. multocida T comparative transcriptional signature (together with ENR
and TET)

60

IPM P. aeruginosa T transcriptional signature in biofilms 117

CAZ P. aeruginosa T effect of antibiotics on quorum sensing 118

BAC, CYC, OXA S. aureus T characterization of cell wall stress response 46

VAN S. aureus T characterization of cell wall stress response; comparison
methicillin-susceptible S. aureus/vancomycin-intermediate
S. aureus

42 – 45

FOX S. aureus T impact on haemolytic activity and study of a cell wall stress
response system

119

NIS, OXA, VAN S. aureus T global signatures to compare cell wall stress and membrane
depolarization

120

FOF S. aureus T MOA studies on early-stage cell wall biosynthesis inhibitors 121

MER S. aureus T transcriptional signature 122

FOF S. aureus T transcriptional signature dependent on concentration and
exposure time

123

VAN S. pneumoniae T characterization of cell wall stress response 124

PEN S. pneumoniae T characterization of cell wall stress response 125

CAS S. cerevisiae T transcriptional signature 126

CAS C. albicans T transcriptional signature 127

PEN P. chrysogenum T effects of antibiotic biosynthesis 128

BAC, NIS S. pneumoniae T comparison of the transcriptional signatures of three
different AMPs

129

Continued
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Table 1. Continued

Cellular target or antibioticb Organismc Typed Purpose of study, remarksb Ref.

DNA TOPOLOGY
diverse compounds B. subtilis T transcriptional signatures (CIP, COU, MXF, NAL, NOR, NOV) for

MOA predictions

55

NOV, CIP, NQO, MIT B. subtilis P proteome signatures for MOA predictions 56

AZA, CIP, NAL B. subtilis T MOA prediction based on transcriptional profiles and
conditional mutants

106

DAU, ADM B. subtilis P comparison of the proteome signatures of two functionally
related drugs

130

NOR E. coli T transcriptional signature 111

NOR E. coli T transcriptional signature, induction of prophage genes 131

NOR E. coli T gene expression response to and oxidative damage by DNA
gyrase inhibition

67

OFX E. coli T transcriptional signature 112

SIM E. coli T transcriptional signature 132

NOV, LVX, OFX M. tuberculosis T transcriptional signatures for MOA predictions 54

CIP M. tuberculosis T transcriptional signature, induction of SOS response 68

ENR P. multocida T comparative transcriptional signature (together with AMX
and TET)

60

CIP P. aeruginosa T transcriptional signatures, identification of fluoroquinolone
resistance genes

52

CIP P. aeruginosa T effect of antibiotics on quorum sensing 118

CIP S. pneumoniae T transcriptional signature comparison between wild-type and
CIP-resistant mutant

53

CIP, ENR S. enterica P elucidate the cellular response and mechanism of resistance 133

ELB S. aureus P/T proteomic and transcriptional signature 134

FATTY ACID SYNTHESIS
CER, TCS B. subtilis T transcriptional signatures for MOA predictions 55

CER B. subtilis P proteome signatures for MOA predictions 56

PLC, PLS, CER, TCS B. subtilis P proteomic signature for fatty acid biosynthesis inhibition 135

ISO M. smegmatis P proteome profile for compound comparison with EMB and
5-CPA

61

ISO M. tuberculosis P quantitative proteome signature to establish new technique 136

ISO, TLM, TCS M. tuberculosis T transcriptional signatures to discriminate antibiotic
responses

137

CER, ETH, ISO, TLM M. tuberculosis T transcriptional signatures for MOA predictions 54

ISO, TIO, THL M. tuberculosis T transcriptional signature 138

ISO M. tuberculosis T transcriptional signature 33

ETH, ISO M. tuberculosis T transcriptional signature 139

TCS S. aureus T transcriptional signature 140

TCS S. enterica P proteomic signature comparison of different strains,
identification of TCS resistance determinants

141

FOLATE SYNTHESIS
DAS, SAA, SMZ, TMP B. subtilis T transcriptional signatures for MOA predictions 55

MEMBRANE BIOSYNTHESIS, INTEGRITY AND RESPIRATION
diverse compounds B. subtilis T transcriptional signatures (GRA, MON, NIG, NIT, POL, TRI) for

MOA predictions

55

NIT, GRA, TRI, MON B. subtilis P proteome signatures for MOA predictions 56

LL-37, PG-1, PLL B. subtilis T signature of CAMP stress response and underlying regulatory
network

40

DAP B. subtilis T transcriptional signatures, identification of DAP resistance
determinants

49

RHL B. subtilis T transcriptional signature 142

Continued
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Table 1. Continued

Cellular target or antibioticb Organismc Typed Purpose of study, remarksb Ref.

MNZ C. difficile T transcriptional signature 110

CEC E. coli T transcriptional signatures for MOA prediction 143

ESC E. coli P proteome signature and MOA studies 144

CCCP, NIG, VAL M. tuberculosis T transcriptional signatures for MOA predictions 54

DAP, CCCP S. aureus T global signatures to compare cell wall stress and membrane
depolarization

120

TEM, OVI, DRS S. aureus T transcriptional response to CAMPs 145

CHI S. simulans T transcriptional profile as part of an MOA study 63

POL S. typhimurium P/T proteomic and transcriptome study of virulence genes
induction by CAMPs

146

AMB A. fumigatus P/T proteomic and transcriptional signature 147

AMB, NYT S. cerevisiae T transcriptional signature 148

AMB, KTC S. cerevisiae T transcriptional signature 126

AMB, KTC C. albicans T transcriptional signature 127

AMB, KTC T. rubrum T transcriptional signature 149

LL-37 S. pneumoniae T comparison of the transcriptional signatures of three
different AMPs

129

ENT B. cereus T transcriptional signature 150

PROTEIN SYNTHESIS
TET A. baumannii P proteome signature of a multidrug-resistant strain 151

TET, IPM A. baumannii P proteome signature of a multidrug-resistant strain 152

diverse compounds B. subtilis T signatures (CLR, CLI, CHL, ERY, FUS, NEO, PUR, SPT, TET) for
MOA predictions

55

diverse compounds B. subtilis P signatures (ACT, CHL, ERY, FUS, GEN, KAN, MUP, PUR, STR,
TET) for MOA predict.

56

ACT, AZM, CHL, GEN B. subtilis T MOA prediction based on transcriptional profiles and
conditional mutants

106

CHL, ERY, GEN B. subtilis T transcriptional signature 153

CLI C. difficile T transcriptional signature 110

ERY E. faecalis T transcriptional signature 154

KAN E. coli T transcriptional signature 111

diverse compounds E. coli P proteome signatures (CHL, ERY, FUS, KAN, PUR, STR, TET) for
MOA prediction

155

CTC E. coli P proteome signature 156

CAP, ROX, STR, TET M. tuberculosis T transcriptional signatures for MOA predictions 54

CAP M. tuberculosis T transcriptional signatures for MOA determination 157

STR M. tuberculosis P proteome signature and elucidation of resistance
mechanism

158

STR M. tuberculosis P proteome signature and comparison of susceptible and
resistant isolates

48

TET P. multocida T comparative transcriptional signature (together with AMX
and ENR)

60

AZM P. aeruginosa T effect of antibiotics on quorum sensing 118

AZM P. aeruginosa T transcriptional signature and MOA prediction 159

CST P. aeruginosa T transcriptional signature 160

FUS S. aureus T characterization of FUS stimulon 161

TGC S. aureus T transcriptional signature of biofilm-associated cells of
methicillin-resistant S. aureus

162

ERY S. typhimurium global induction pattern, using a 6500-clone promoter-lux
library

83

CHL, ERY, PUR, TET S. pneumoniae T transcriptional signatures for MOA prediction 163

CHL T. maritima T transcriptional signature 164

STR Y. pestis T transcriptional signature 165

CHL Y. pestis T transcriptional signature 166
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Table 1. Continued

Cellular target or antibioticb Organismc Typed Purpose of study, remarksb Ref.

TET P. falciparum T study of antimalarial activity 167

DOX T. whipplei T transcriptional signature 168

RNA SYNTHESIS
RIF, 5FU B. subtilis P proteome signatures for MOA predictions 56

RIF E. coli P/T transcriptional/proteome signature 111,155

RIF, RFP M. tuberculosis T transcriptional signatures for MOA predictions 54

RIF S. typhimurium global induction pattern, using a 6500-clone promoter-lux
library

83

OTHERS
FUR B. subtilis T global induction pattern 169

MOI B. subtilis T MOA prediction based on transcriptional profiles and
conditional mutants

106

PAMP E. coli T global induction pattern 170

TPP E. coli P proteomics as part of an overall characterization of the
cellular response

171

5-CPA M. smegmatis P proteome profile for compound comparison with ISO and
EMB

61

DER S. aureus T analysis of bacterial resistance to anionic peptides 50

BBR S. aureus T global induction pattern to initiate MOA studies 172

hBD3 S. aureus T global induction pattern as part of MOA studies 173

CRY S. aureus T MOA prediction based on transcriptional profiling 174

RHO S. aureus P proteome signature 175

FUR S. enterica T transcriptional signature and inhibition of biofilm formation 176

SAF, QAD S. cerevisiae T transcriptional signatures of two closely related compounds 177

5FC S. cerevisiae T transcriptional signature 126

BBR S. flexneri T transcriptional signature 178

5FC C. albicans T global gene induction pattern of these antifungal drugs 127

GOM X. fastidiosa T transcriptional signature and effect of biofilm formation 86

aThe studies listed here are compiled from three independent PubMed searches performed in June 2011 using the search strings ‘antibiotic AND DNA
microarray’, ‘antibiotic AND transcriptome’ and ‘antibiotic AND proteomic’.
bAbbreviations: 5-CPA, 5-chloropyrazinamide; 5FC, flucytosine; 5FU, 5-fluoro-uracil; ACT, actinonin; ADM, adriamycin; AMB, amphotericin B; AMD, amdi-
nocillin; AMX, amoxicillin; AMP, ampicillin; AMPs, antimicrobial peptides; AZA, azaserine; AZM, azithromycin; BAC, bacitracin; BBR, berberin chloride;
CAMP, cationic antimicrobial peptide; CAP, capreomycin; CCCP, carbonyl cyanide m-chlorophenylhydrazone; CEC, cecropin A; CAZ, ceftazidime; CER, cer-
ulenin; LEX, cefalexin; CTC, chlortetracycline; CTX, cefotaxime; FOX, cefoxitin; CAS, caspofungin; CHI, chitosan; CIP, ciprofloxacin; CLR, clarithromycin;
CLI, clindamycin; CHL, chloramphenicol; CST, colistin; COU, coumermycin A1; CRY, cryptotanshinone; CSD, cefsulodin; CYC, D-cycloserine; DAP, dapto-
mycin; DAS, dapsone; DAU, daunomycin; DER, dermcidin; DRS, dermaseptin; DOX, doxycycline; ELB, ELB-21; EMB, ethambutol; END, enduracidin; ENR,
enrofloxacin; ENT, enterocin AS-48; ERY, erythromycin; ESC, esculentin-1b(1-18); ETH, ethionamide; FOF, fosfomycin; FRI, friulimicin B; FUR, furanones;
FUS, fusidic acid; GEN, gentamicin; GOM, gomesin; GRA, gramicidin; IPM, imipenem; ISO, isoniazid; KAN, kanamycin; KTC, ketoconazole; LVX, levoflox-
acin; MER, mersacidin; MET, methicillin; MIT, mitomycin C; MNZ, metronidazole; MOE, moenomycin; MOI, moiramide B; MON, monensin; MXF, moxiflox-
acin; MUP, mupirocin; NAL, nalidixic acid; NEO, neomycin; NIG, nigericin; NIS, nisin; NIT, nitrofurantoin; NOR, norfloxacin; NOV, novobiocin; NQO, 4-
nitroquinolone-1-oxide; NYT, nystatin; OFX, ofloxacin; OVI, ovispirin-1; OXA, oxacillin; PAMP, proline-rich antimicrobial peptide; PEN, penicillin G; PLC, pla-
tencin; PLE, plectasin; PLS, platensimycin; POL, polymyxin B; PUR, puromycin; RAM, ramoplanin; RHL, rhamnolipids; RHO, rhodomyrtone; RIF, rifampicin;
RFP, rifapentine; RIS, ristocetin; ROX, roxithromycin; SAA, sulfacetamide; SAF, saframycin; SIM, simocyclinone; SMZ, sulfamethizole; SPT, spectinomycin;
STR, streptomycin; TCS, triclosan; TEM, temporin L; TET, tetracycline; THL, tetrahydrolipstatin; TGC, tigecycline; TIO, tiocarlide; TLM, thiolactomycine;
TMP, trimethoprim; TPP, tea polyphenols; TRI, Triton X-114; VAL, valinomycin; VAN, vancomycin.
cAbbreviations: A. baumannii, Acinetobacter baumannii; A. fumigatus, Aspergillus fumigatus; B. cereus, Bacillus cereus; B. licheniformis, Bacillus licheni-
formis; B. subtilis, Bacillus subtilis; C. albicans, Candida albicans; C. difficile, Clostridium difficile; C. glutamicum; Corynebacterium glutamicum; E. faecalis,
Enterococcus faecalis; E. coli, Escherichia coli; L. lactis, Lactococcus lactis; M. smegmatis, Mycobacterium smegmatis; M. tuberculosis, Mycobacterium
tuberculosis; P. multocida, Pasteurella multocida; P. chrysogenum, Penicillium chrysogenum; P. falciparum, Plasmodium falciparum; P. aeruginosa, Pseu-
domonas aeruginosa; S. cerevisiae, Saccharomyces cerevisiae; S. enterica, Salmonella enterica; S. typhimurium, Salmonella typhimurium; S. flexneri, Shi-
gella flexneri; S. aureus, Staphylococcus aureus; S. simulans, Staphylococcus simulans; S. pneumoniae, Streptococcus pneumoniae; T. maritima,
Thermatoga maritima; T. rubrum, Trichophyton rubrum; T. whipplei, Tropheryma whipplei; X. fastidiosa, Xylella fastidiosa; Y. pestis, Yersinia pestis.
dT, transcriptome study; P, proteomic study.
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between individual studies—even within the same organism—is
unfortunately greatly hampered by the lack of a defined gold
standard. Hence, a wide range of different experimental con-
ditions was used by the individual research groups. Cultures
were induced at different cell densities, using both complex
and minimal media. The antibiotic concentrations varied
greatly between individual studies, ranging from subinhibitory
up to 10 times the MIC. The same is true for the induction
time (i.e. the time between antibiotic addition and harvesting
of the cells), which could be anywhere between 5 min and
.1 h. The last aspect is additionally affected by the downstream
protocol from cell harvest to lysis of the culture. While some
groups took painstaking care that transcription was immediately
stopped after a defined induction time, the protocol of other
groups potentially allowed for an extra induction time during
the downstream processing of cells. All of these parameters, of
course, dramatically affect the overall expression signature.
However, as a first estimate, subinhibitory concentrations and
short induction times provoke very narrow, compound-specific
responses, whereas higher antibiotic concentrations and longer
induction times result in the detection of both non-specific and
secondary effects of antibiotic action.

The motivation for these studies was as varied as the com-
pounds tested. In many cases, the papers primarily describe
the expression signature of an individual compound. These
papers are somewhat characteristic for the early period of micro-
array studies, often offering the infamous long lists of gene
names and induction values. While still being published regularly,
restrictive editorial policies have either required substantial
additional data or forced publication of such studies in note
formats or low-impact journals. While these studies—as with
any global expression profile—can always be a treasure chest
for extracting information on genes of interest, they will not be
further addressed in the context of this review article (but are
comprehensively listed in Table 1). Instead, we will focus our
attention on those studies that have resulted in a deeper under-
standing of some aspects of antimicrobial action.

Resistance mechanisms and stress response
networks
Some genome-wide antibiotic induction experiments were per-
formed with the goal of unravelling resistance mechanisms
and/or the underlying regulatory network that orchestrates anti-
biotic stress responses. This approach was especially successful
in identifying and characterizing cell envelope stress responses
and the corresponding signal transduction systems in many
Gram-positive bacteria.37 A number of independent studies in
the Gram-positive model organism B. subtilis have revealed a
complex regulatory network consisting of more than 10 partly
overlapping signalling systems.38 – 40 Based on these studies, a
regulatory network of similar complexity was deconvoluted in
the related organism Bacillus licheniformis by applying a combi-
nation of comparative transcriptomics and in silico regulon
mining.41 A set of studies in Staphylococcus aureus first
allowed the identification of the cell envelope stress response
in this human pathogen, and subsequently the in-depth profiling
of antibiotic resistance traits in multiresistant strains as well as
different vancomycin-resistant clinical isolates.42 – 46 Similar

studies, in which the proteome/transcriptome of susceptible
and resistant strains or different clinical isolates were compared,
have been performed for vancomycin-induced Enterococcus fae-
calis47 and streptomycin-induced M. tuberculosis.48 A correlation
between the overall antibiotic induction profiles and the
expression of resistance determinants was also investigated for
a number of other compounds, such as daptomycin in B. subti-
lis,49 dermcidin in S. aureus,50 ethambutol in M. tuberculosis51

or the fluoroquinolone antibiotic ciprofloxacin in P. aeruginosa
and Streptococcus pneumoniae.52,53

Large-scale expression panels for MOA
predictions and identification of suitable
antibiotic biosensors
The motivation of many antibiotic induction experiments was
the assumption that the MOA of a given compound is reflected
by the function of the genes/proteins it induces. This hypothesis
led to a number of comprehensive expression studies under
standardized conditions in which large panels of antimicrobial
compounds from different functional classes were compared in
order to produce a gene/protein induction database for MOA
prediction of novel compounds. The three landmark publications
included two transcriptome panels in B. subtilis and M. tuberculo-
sis54,55 as well as a comprehensive proteome study, again in
B. subtilis.56 All three studies demonstrated that it was indeed
possible to identify specific induction patterns for both individual
and functional classes of antibiotics. These expression signatures
could then be applied to narrow down the site of action of novel
antimicrobial compounds that were also included in the
panel.54 – 56 The quantity and quality of the collected expression
data are crucial for MOA prediction. For example, Hutter et al.55

generated a comprehensive database containing genome-wide
expression profiles of B. subtilis treated with 37 antibacterial
compounds with known MOAs from six different classes. This
dataset was tested with regard to its use as a reference for
MOA prediction studies. The success of this strategy correlated
with the number of expression profiles available for each class
and worked exceptionally well for cell wall and protein biosyn-
thesis inhibitors. A hierarchical clustering analysis of expression
data from cells treated with antibiotics from these two MOA
classes reveals completely different expression patterns
(Figure 1). Antibiotics targeting protein biosynthesis all cluster
together and, accordingly, induce a homogeneous set of genes
that is not induced by any of the cell wall active compounds.
In contrast, cell wall antibiotics fall into two distinct clusters
that correlate well with the respective MOA. All b-lactams,
which inhibit the last extracellular step of cell wall biosynthesis,
form one distinct cluster, while the second cluster contains anti-
biotics interfering with earlier membrane-anchored steps of the
biosynthetic pathway.

Comprehensive datasets of expression profiles also enabled
the identification of marker genes for specific antibiotic classes.
Several B. subtilis reporter strains, in which the promoter of the
marker gene is fused to the luciferase reporter gene, have been
generated and shown to respond to antibiotics that interfere
with major biosynthetic pathways of bacterial cells (inhibition
of fatty acid, protein, RNA, DNA or cell wall biosynthesis).57,58

Expression of these marker genes can also be indicative for a
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specific MOA. For example, the ytrABCDEF operon is strongly
induced by glycopeptide antibiotics like vancomycin or ristocetin,
but not (or only weakly) by other cell wall antibiotics (Figure 1).
These so-called biosensors have been successfully used to
predict or confirm the mode of action of poorly characterized
agents.59 Although this approach seems very promising, there
are also clear limitations. Only compounds provoking a response
similar to known induction profiles can be classified correctly,
making identification of completely new targets impossible.
Moreover, antibiotics induce gene expression only within a
certain window of concentration, often impeding the use of bio-
sensors in standardized high-throughput screenings. A low con-
centration of a compound might not be sufficient for induction
of the biosensor, whereas a high concentration might be lethal
for the cell. This could also be an explanation of why compounds
with well-known MOAs do not always induce the corresponding
biosensor.58,59

MOA studies on individual compounds
A side aspect of the studies described above is the direct com-
parison of individual compounds in order to define similarities
and differences in the MOA based on the expression signature.
Small panels often include a number of functionally diverse com-
pounds, such as a transcriptome study in Pasteurella multocida
using amoxicillin (cell wall biosynthesis), enrofloxacin (DNA
gyrase) and tetracycline (translation elongation) stress
responses.60 A similar study at the proteome level was per-
formed in Mycobacterium smegmatis and included the three
anti-tuberculosis drugs ethambutol (cell envelope), isoniazid
(fatty acid biosynthesis) and 5-chloropyrazinamide (unknown
cellular target).61 These studies mostly revealed a combination
of characteristic compound-specific induction profiles (including
target genes/proteins involved in the cellular process inhibited
by the respective antibiotic) and antibiotic-independent (often
overlapping) general stress responses.

Direct comparative expression studies have also been per-
formed to discriminate the MOA of chemically closely related
compounds, such as the lipo(depsi)peptide antibiotics daptomy-
cin and friulimicin B.62 Transcriptional profiling was also used in
combination with physiological and biochemical studies for
detailed MOA studies of novel compounds. Such analyses have
been performed for chitosan,63 the lipopeptide antibiotic friulimi-
cin B62,64 and the defensin plectasin.65 Knowledge of the tran-
scriptional response to novel compounds usually provides
indirect but convincing evidence of the affected cellular
pathway. This allows the performance of specific biochemical
follow-up experiments to identify the exact target molecule
and MOA, as demonstrated for the aforementioned compound
friulimicin B.62,64

In addition to unravelling specific responses and elucidation
of the MOA, transcriptional profiling sometimes also revealed

important secondary effects of antimicrobial drug action. The
sB-dependent general stress response is induced by the cell
wall antibiotic vancomycin in both Listeria monocytogenes66

and B. subtilis.38 In the latter organism, sB is also activated by
treatment with bacitracin.39 Although both antibiotics target
cell wall biosynthesis, they do not share a common MOA,
suggesting that induction of sB occurs as a secondary response
to a general loss in cell envelope integrity. DNA damage caused
by quinolone antibiotics induces the SOS response, resulting in
increased expression of enzymes involved in DNA repair, recom-
bination and mutagenesis.67 – 69 These observations might point
towards a new direction of antimicrobial therapy, e.g. the devel-
opment of co-drugs that target (and thereby suppress) protec-
tive functions embedded in such secondary responses, as will
be discussed further below.

New inhibitory mechanisms of old drugs
The increasing and on-going emergence of resistant bacterial
strains necessitates the development of new classes of anti-
biotics with completely novel MOAs. An overview of antibiotic dis-
covery within the last 70 years together with an up-to-date
survey of new antibiotics already in clinical trials and an
outlook on future progress is nicely summarized in a recent
review by Coates et al.70 Development and marketing of ana-
logues of already well-investigated antibiotics is less risky and
financially more feasible than the identification of completely
novel antibiotic classes. But in addition to putting effort into
developing new antibiotics, it might also be a worthwhile endea-
vour to more closely investigate the effects of already existing
and clinically used drugs, since global expression studies on anti-
microbial action also helped to discover novel inhibitory mechan-
isms for seemingly well-known compounds.

Several studies have presented evidence that the interaction
of an antibiotic with its specific target is not the only path
leading to cell death.67,71 Most importantly, it was demonstrated
that several compounds induce the production of reactive
oxygen species, which significantly contribute to the killing
potential of bactericidal antibiotics. A microarray analysis of
E. coli cells treated with the DNA gyrase inhibitor norfloxacin
revealed not only induction of the SOS response, but also
up-regulation of genes involved in the response to oxidative
stress and iron-sulphur cluster biosynthesis.67 Moreover, this
study presented convincing evidence that norfloxacin treatment
induces Fenton reaction-mediated formation of hydroxyl rad-
icals, ultimately causing cell death. Even antibiotics of different
classes (such as quinolones, b-lactams or aminoglycosides)
that interact with different primary targets within the cell
mediate killing by this common mechanism in both Gram-
negative and Gram-positive bacteria.71 These landmark studies
indicate that reactive oxygen species represent a central aspect
of the killing mechanism of many bactericidal antibiotics.

Figure 1. Hierarchical clustering analysis of genes differentially expressed in response to cell wall and protein biosynthesis inhibitors. The clustering
analysis was performed using the software Cluster 3.0.179 Transcriptome data for B. subtilis treated with fosfomycin (FOF), cefotaxime (CTX), penicillin
G (PEN), cefalexin (LEX), amoxicillin (AMX), bacitracin (BAC), daptomycin (DAP), ristocetin (RIS), vancomycin (VAN), friulimicin (FRI), erythromycin (ERY),
neomycin (NEO), chloramphenicol (CHL), spectinomycin (SPT), tetracycline (TET), clindamycin (CLI) and fusidic acid (FUS) were derived from published
studies.39,55,62 Green indicates induction of the corresponding gene and red indicates repression under the designated condition. Cluster analysis was
limited to genes induced ≥5-fold by at least one antibiotic. Distinct clusters are highlighted and the corresponding gene names are given.
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In contrast, bacteriostatic drugs did not provoke the generation
of reactive oxygen species.

Development of co-drugs
The efficacy of a single antibiotic can often be enhanced by the
administration of a second antimicrobial compound with comp-
lementary properties, i.e. a co-drug. A classic example of this
concept is the combination of the sulphonamide antibiotic sulfa-
methoxazole and its potentiator trimethoprim. These two com-
pounds inhibit different steps of the folate pathway and have a
greater effect when applied together than given separately.72,73

Another more recent example is the combination of the semi-
synthetic streptogramins quinupristin and dalfopristin.74 These
two antibiotics together are bactericidal because of synergistic
effects; binding of one compound to the ribosome enhances
the binding and efficacy of the second drug.75,76

During the last decade, the use of genome-wide expression
profiling on antibiotic action has opened new doors to the identi-
fication and development of co-drugs. Non-essential proteins
from secondary responses (e.g. those involved in counteracting
oxidative stress and its resulting damage), which have thus far
been ignored in the process of antibacterial drug discovery and
development, could serve as possible new targets for co-drugs
to potentiate the effect of already established antibiotics. The
killing effect of antibiotics can also be increased by inhibition or
deletion of systems counteracting cellular damage, such as the
SOS response induced by quinolone and aminoglycoside anti-
biotics.71,77 Synergism can also be achieved by a combination
of antibiotics, in which cell envelope damage caused by one
compound increases the uptake of a second drug.78 A different
approach using a combination of two different compounds has
already been successfully applied to overcome b-lactam resist-
ance.79 Here, the most important resistance mechanism is the
production of b-lactamases. This defence strategy can be over-
come by the co-administration of inhibitors with high binding
affinity and low hydrolysing rate, often being b-lactams them-
selves, which bind to the catalytic site, resulting in the inacti-
vation of b-lactamases.80,81

Beyond antimicrobial action: antibiotics as
signalling molecules and vice versa
As already mentioned previously, antibiotic induction exper-
iments, especially when performed at subinhibitory concen-
trations, also revealed a whole new layer of antibiotic action
that goes beyond mere growth inhibition. Antibiotics affect bac-
terial cells differentially depending on the concentration, a
phenomenon also known as hormesis.82 While growth inhibition
occurs at high doses, low antibiotic concentrations have a stimu-
lating effect and specifically modulate global gene expression.
This phenomenon provokes questions about the role of
antibiotics in nature, where the actual concentration rarely
reaches inhibitory levels outside the direct vicinity of the produ-
cing strain. Is there a second function besides interspecies com-
petition? The seminal collaborative study from the Davies’s and
Surette’s labs already indicated the potential of antibiotics as a
means of interspecies chemical communication, e.g. in the soil
environment.83 Expression of up to 5% of the Salmonella

typhimurium genes can be positively or negatively affected by
different antibiotics at concentrations well below the MIC,
leading to no or only minor effects on growth. Many of the cor-
responding gene products are involved in transport processes,
virulence or DNA repair. Moreover, similar studies also unravelled
novel links between antibiotic stress responses and bacterial
differentiation and intracellular communication. Even very
complex phenotypes can be induced by antibiotic treatment at
subinhibitory concentrations. Ciprofloxacin, tetracycline and
tobramycin not only increased the expression of genes involved
in differentiation in P. aeruginosa, but also actually induced
biofilm formation.84,85 The antimicrobial peptide gomesin also
increased biofilm formation of the plant pathogen Xylella fasti-
diosa.86 This is a crucial finding, since cells within a biofilm are
generally more resistant to antibiotic treatment due to high
cell density, slow growth and production of an extracellular
matrix, resulting in antibiotic exclusion.87 Therefore, it is a neat
survival strategy for a bacterial population to already respond
to very low antibiotic concentrations by inducing differentiation
into a biofilm, thereby increasing antibiotic resistance before
the compound concentration reaches a critical level.

The result of bacterial signalling mediated by antibiotics does
not have to be related to resistance advantages. For example,
antibiotics can fulfil important regulatory functions regarding
their own biosynthesis or other cellular processes. This is
especially true for antimicrobial peptides, such as lantibiotics,88

bacteriocins89 and microcins,90 which have recently gained a
lot of attention.91 The production of lantibiotics from Gram-
positive bacteria, such as nisin from Lactococcus lactis and sub-
tilisin from B. subtilis, is regulated in a concentration-dependent
manner92 by a process called quorum sensing.93 The biosyn-
thesis of another antimicrobial molecule, the lipopeptide
antibiotic surfactin, is connected to the quorum-sensing
process responsible for competence development.94 In this
way, B. subtilis uses a single pathway to regulate two adaptive
processes, antibiotic biosynthesis and DNA uptake. However,
antibiotics can also negatively affect quorum sensing and sub-
sequent differentiation. For example, subinhibitory concen-
trations of tobramycin significantly lower the accumulation of
an autoinducer in P. aeruginosa, which subsequently impairs
swarming motility, biofilm formation and pyocyanin pro-
duction.95 The previously mentioned studies clearly demonstrate
that antibiotics are not only (or not even primarily) used for bio-
logical warfare, but also play an important role in bacterial
signalling.

However, this link between cellular signalling and antimicro-
bial activities also works the other way around. Classical quorum-
sensing autoinducers, such as N-acylhomoserine lactones used
by Gram-negative bacteria, can also have antibacterial proper-
ties. One such molecule (3-oxo-N-acylhomoserine lactone) syn-
thesized by P. aeruginosa exhibits activity against Gram-positive
bacteria, but not against Gram-negative species.96 Such studies
suggest that bacteria not only use typical antibiotics to gain
competitive advantages, but also molecules embedded in their
natural life style. Moreover, they emphasize the concept that
many, if not most, antibiotics seem to have more than one func-
tion. And growth inhibition might sometimes (maybe often?) be
only a beneficial side effect in addition to the primary function in
its natural habitat. From an ecological point of view, it is rather
attractive to think of antibiotics as dual-use goods that
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combine signalling and differentiation of the producer species
with growth suppression of potential competitors for the same
ecological niche.

Summary and outlook
This article highlights the most significant achievements of
applying omics tools to antibiotic research. Clearly, some of the
initial hopes were premature and could not be fulfilled, despite
some promising advances, as has also been discussed in a
recent article by Livermore.97 Up to now, no new lead compound
has emerged from these global approaches, and antibiotic
research in recent years has been primarily characterized by
the development of analogues of known compounds rather
than the discovery of novel antibiotic classes.98 But often the dis-
covery of compounds with promising antimicrobial activities is
not the major issue. It takes a lot of time and (financial) effort
to develop and finally introduce a new compound into the
market.97 Considering the costs and challenges for the clinical
development of a new antibiotic, as well as the short-term thera-
peutic use once it is on the market, it is often more profitable for
pharmaceutical companies to invest in therapeutic areas other
than anti-infectives.99,100 Hence, a number of major pharma-
ceutical companies that initially embraced the promises
and potential of omics approaches for antimicrobial research
and development have given up on this strategy and left the
field to smaller start-up companies. Nevertheless, global
expression profiling studies have significantly deepened our
understanding of antibiotic inhibition and uncovered unexpected
new layers of antimicrobial action with regard to additional
inhibitory effects of bactericidal drugs and the role of antibacter-
ial compounds as signalling molecules for intra- and interspecies
communication.

The development of new co-drugs seems to be a particularly
promising approach for combating the ever-increasing threat of
multiresistant human pathogens. Given the paucity of new anti-
biotic classes in the late stages of clinical development, regaining
or even enhancing the inhibitory potential of well-established
drugs might be an alternative route for improving clinical antimi-
crobial therapy.

While the initial hopes of what the ‘age of omics’ might bring
for antibiotic discovery may not have been fulfilled (at least so
far), global expression profiling approaches have definitely
opened new doors for future antibacterial research. An especially
powerful approach to combating the ever-increasing threat of
microbial resistance, which has only become feasible in recent
years with the advent of high-throughput sequencing strategies,
is comparative whole-genome sequencing of antibiotic-
susceptible versus -resistant strains, especially when combined
with antibiotic-induced expression profiling panels of the same
strains. Such information may be crucial to not only identifying
resistance mechanisms, but to gaining insight into potential
targets for new (co-)drugs. Likewise, comparative genomics of
large numbers of pathogenic and closely related non-pathogenic
strains might also be a promising strategy for the discovery of
novel antibiotic targets.

Once a potential novel drug target with suitable features (e.g.
essential functionality, conservation amongst bacteria and lack
of a counterpart in mammalian cells) has been identified, the

next challenge is the development of sensitive high-throughput
screens of large compound libraries. Since the binding of a com-
pound to a target does not always correlate with antibacterial
activity, the use of whole cells instead of isolated targets for
screening could directly select for compounds with beneficial
pharmaceutical properties, such as the ability to penetrate bac-
terial cells or resist efflux. However, although a number of new
targets have been identified and used in screening programmes,
the resulting number of potential new antibacterial agents has
been disappointingly small.99 To increase the success of these
high-throughput screens, the compound libraries should be
expanded to include unconventional classes, chemically modi-
fied molecules, as well as natural products from new sources,
such as secondary metabolites from marine microorganisms.101

So far, all antibiotics are derived from culturable organisms.
However, as most microbes cannot currently be cultured under
laboratory conditions,102 it might be worthwhile to start explor-
ing the biosynthetic potential of non-culturable bacteria by
metagenomic approaches, a technique that has thus far been
applied primarily to study the antibiotic resistance profile (the
resistome) in a given habitat, such as the soil.103 Large
genomic DNA fragments isolated from complex habitats can
be cloned into suitable vectors and the corresponding genes
can be expressed and screened for antibacterial activity.1,104,105

It will be interesting to see how these new directions might
influence the field of antibiotic research a decade from now.
Most likely there will be new twists and turns, new hopes and
ideas that we are currently not even aware of. Global expression
profiling, even after having become an established tool (or
because of this) will surely prove to be a valuable approach to
fostering our knowledge of antibiotic action for many years to
come.

Note added in proof
While this article was in proof, a comprehensive review was pub-
lished by Romero et al. that beautifully summarizes our current
state of knowledge on the role of antibiotics as signalling mol-
ecules (Romero D, Traxler MF, López D et al. Antibiotics as
signal molecules. Chem Rev 2011; doi:10.1021/cr2000509).
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5.2 Mechanism of action of  daptomycin and friulimicin B 

Analysis of differential gene expression upon antibiotic treatment is a powerful tool to gain 

information about the MOA of novel antimicrobial compounds, as has been discussed in 

the previous section. Therefore, we investigated changes in gene expression in response to 

two clinically relevant lipopeptide antibiotics, daptomycin and friulimicin B, on both the 

transcriptome and proteome level in B. subtilis (chapter 2, Table 1 and Fig. 2). Although 

these antibiotics are structurally similar, they provoke different expression profiles, as can 

be best demonstrated by a graphical representation of the microarray analysis presented in 

chapter 2 (Fig. 5.1). 

 

Figure 5.1. Graphical comparison of the daptomycin (y axis) and friulimicin B stimulon (x axis). Genes 
regulated by LiaRS (□) and ECF-dependent target genes (■) that were induced ≥ 3-fold by at least one of the 
antibiotics are highlighted. Additional marker genes are highlighted (∆, ▲, �) and their names are given. 
Note that the induction of gerAAABAC is due to a known polar effect of the liaI promoter. All other genes are 
represented as small grey dots.  

Both antibiotics induce numerous ECF-dependent target genes. Induction of this ECF 

response is much stronger for friulimicin B than for daptomycin. The only ECF-

independent gene significantly induced by both antibiotics is mreBH encoding a cell shape-
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determining protein. Daptomycin specifically and strongly activates the LiaRS TCS, 

resulting in increased expression of liaIHGFSR as well as read-through transcription of the 

downstream located gerAAABAC operon, which has also been observed previously after 

induction with other antibiotics (Mascher et al., 2003). Another gene exclusively induced 

by daptomycin is ybeF encoding a small putative membrane protein. The striking 

differences in the transcriptional responses induced by daptomycin and friulimicin B, 

which were also confined by the corresponding proteome profiles, strongly suggest that 

these structurally similar antibiotics act via different MOAs. In the following sections, 

conclusions drawn from these expression profiles as well as recent studies regarding the 

MOA of daptomycin and friulimicin B will be discussed. 

5.2.1 Daptomycin 

The response to daptomycin has also been investigated by other research groups. In S. 

aureus, daptomycin induced a typical cell wall stress stimulon including genes related to 

the cell envelope or involved in different cellular processes, DNA metabolism or protein 

fate (Muthaiyan et al., 2008). Such an expression profile is characteristic for cell wall-

active antibiotics like oxacillin, bacitracin or D-cycloserine (Utaida et al., 2003). A 

significant number of genes belonging to this cell wall stress stimulon are controlled by the 

TCS VraSR, which is homologous to the B. subtilis LiaRS TCS (Muthaiyan et al., 2008).  

An analysis of the transcriptional and physiological response to daptomycin in B. subtilis, 

the same organism we used, was also performed by Hachmann and colleagues (Hachmann 

et al., 2009). In agreement with our results, the most strongly induced locus was the target 

operon of the LiaRS TCS followed by a number of ECF σ factor-dependent genes, 

primarily targets of σM. In addition, expression of yvrI and yvrL was also strongly induced. 

YvrI is part of an unusual two-subunit bacterial σ factor controlling expression of the 

oxdC-yvrL operon, encoding an oxalate decarboxylase and a regulatory protein, 

respectively (MacLellan et al., 2009b, MacLellan et al., 2008).  

Moreover, genetic alterations within the lia locus as well as deletions of different ECF σ 

factors influence daptomycin resistance. Deletion mutants carrying resistance cassettes in 

genes like liaIH or liaR, in which the physiologically relevant genes of the lia locus are not 

present or inducible, respectively, show increased daptomycin susceptibility. In contrast, 

deletion of liaF, leading to constitutive expression of the lia locus, does not influence 
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resistance. A slight increase in susceptibility has also been observed for mutant strains of 

σ
M and σW. This phenotype can be further enhanced by combination of deletion mutants, 

either of both ECF σ factors or with liaIH/liaR (Hachmann et al., 2009).  

Although daptomycin has been clinically used for several years now, its exact MOA is still 

unknown. It is generally established that daptomycin affects membrane integrity by 

insertion and probably pore formation, but the steps leading to this final cause of cell death 

are still subject of discussion. It has been suggested that Ca2+-bound daptomycin first 

inserts into the cytoplasmic membrane and then oligomerizes to form pores. Subsequently, 

this disrupts membrane integrity resulting in depolarization and leakage of ions, ultimately 

causing cell death (Silverman et al., 2003). Another model proposed that daptomycin binds 

Ca2+ and forms loose micelles in solution. In close proximity to the membrane, these 

micelles dissociate and daptomycin inserts into the membrane, possibly followed by 

oligomerization, leakage and cell death (Straus & Hancock, 2006). A very recent study 

examined oligomerization of daptomycin both in solution and in association with 

membranes by fluorescence resonance energy transfer (FRET) analysis. It was 

demonstrated that daptomycin indeed forms oligomers associated with bacterial membrane 

vesicles, but not in solution at antimicrobially relevant concentrations. The conditions 

necessary for oligomerization resembled those required for antibacterial activity, 

suggesting that the oligomer represents the functional membrane lesion (Muraih et al., 

2011).  

Oligomerization on membrane vesicles correlates with the presence of 

phosphatidylglycerol, an essential and major anionic component of bacterial membranes. It 

has been suggested that binding of daptomycin to the negatively charged 

phosphatidylglycerol is mediated by Ca2+ ions (Muraih et al., 2011). A connection between 

the lipid composition of membranes and the antimicrobial activity of daptomycin has also 

been observed in vivo. A reduced level of phosphatidylglycerol, which is due to mutations 

in pgsA encoding the corresponding synthase, increases resistance of B. subtilis to 

daptomycin, while susceptibility to cell wall biosynthesis inhibitors like vancomycin is not 

affected (Hachmann et al., 2009, Hachmann et al., 2011). In contrast, deletion of mprF, 

which encodes the enzyme catalyzing formation of the positively charged lysyl-

phosphatidylglycerol, results in increased sensitivity to daptomycin (Hachmann et al., 

2009). In addition, enhanced translocation of the cationic lysyl-phosphatidylglycerol to the 
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outer membrane leaflet, which thereby introduces additional positive charges into the 

membrane, correlates with a more resistant phenotype in S. aureus (Jones et al., 2008). 

Conversely, mutations in mprF, which are usually expected to lead to decreased lysyl-

phosphatidylglycerol content, occur early during resistance development in S. aureus 

(Friedman et al., 2006). The exact consequences of these mutations, especially whether 

they are loss- or gain-of-function mutations, need to be investigated and compared to the 

effects of intended mprF alterations.  

Besides changes in susceptibility, modifications in the membrane lipid composition also 

influence the binding behavior of daptomycin to the cell surface. Daptomycin is normally 

concentrated on newly formed division septa and in a helical pattern along the long axis of 

B. subtilis cells (Hachmann et al., 2009), which is a pattern characteristic for anionic 

phospholipids (Barák et al., 2008). Depletion of phosphatidylglycerol leads to an overall 

weaker binding of daptomycin and loss of the helical localization pattern (Hachmann et al., 

2009). 

Investigation of resistance development and mechanisms can help to understand the MOA 

of antibiotics. A common feature of the resistance mechanisms mentioned above, either 

decreased levels of phosphatidylglycerol in B. subtilis or increased lysyl-

phosphatidylglycerol synthesis and translocation in S. aureus, is reduction of the overall 

negative net charge of the cell envelope. These data suggest that the Ca2+-daptomycin 

complex functions similar to cationic antimicrobial peptides. Composition and charge of 

the cell membrane seem to be important for the biological activity of Ca2+-bound 

daptomycin. Presumably, it preferentially interacts with and inserts into membrane regions 

enriched in anionic lipids.  

Another way to gain information about the MOA of antibiotics is the comparison of 

induction patterns to expression profiles provoked by well-known antimicrobial 

compounds. A list of studies providing such expression profiles as well as a discussion 

about the potential and limitations of such approaches has been presented in detail in 

section 5.1. Oligomerization and pore formation in bacterial membranes seem to be an 

important step in the MOA of daptomycin, but transcriptome studies suggest an additional 

mechanism involving the inhibition of cell wall biosynthesis. In S. aureus daptomycin 

induces a set of genes that is also induced by the proton ionophore carbonyl cyanide m-
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chlorophenylhydrazone, which is in agreement with the membrane interfering properties of 

both compounds. But additional induction of a typical cell wall stress stimulon, including 

the VraSR TCS, resembles expression profiles provoked by cell wall antibiotics such as 

vancomycin, oxacillin, bacitracin and D-cycloserine (Muthaiyan et al., 2008, Utaida et al., 

2003). The homologous LiaRS TCS, the main regulatory system responding to daptomycin 

treatment in B. subtilis (Chapter 2, Table 1 and (Hachmann et al., 2009)), is usually 

strongly induced by cell wall active compounds like bacitracin, nisin, ramoplanin or 

vancomycin (Mascher et al., 2004), which inhibit cell wall biosynthesis, especially by 

interfering with different steps of the lipid II cycle. These induction profiles suggest that 

daptomycin, in addition to membrane perforation, also interferes with cell wall 

biosynthesis. Since antibiotics with a similar induction profile preferentially block steps of 

the lipid II cycle, it seems likely that daptomycin also acts via such a mechanism. 

Nevertheless, an actual target within the cell wall biosynthesis pathway has not yet been 

identified (Schneider et al., 2009). 

5.2.2 Friulimicin B 

Friulimicin B primarily provokes an ECF σ factor-dependent response, while the TCS 

LiaRS, which usually responds to cell wall biosynthesis inhibitors, is not induced at all 

(chapter 2, Table 1 and Fig. 5.1). This induction pattern suggests that friulimicin B 

generally interferes with cell envelope integrity rather than interacting with a specific 

target within the cell wall biosynthesis pathway. But a detailed biochemical MOA study 

revealed that friulimicin B inhibits cell wall biosynthesis (Schneider et al., 2009). 

Friulimicin B does not affect membrane integrity but specifically forms a complex with the 

lipid carrier undecaprenol-monophosphate in a Ca2+-dependent manner, thereby blocking 

formation of lipid I. The lipid carrier undecaprenol-monophosphate is also involved in 

transport of other cell envelope components such as teichoic acids, indicating that 

friulimicin B might block multiple pathways (Schneider et al., 2009). Recently, the role of 

Ca2+ ions for the antimicrobial activity of friulimicin B has been investigated by a model 

membrane approach. It was demonstrated that friulimicin B interacts with membranes 

containing undecaprenol-monophosphate in the presence of Ca2+ ions (Reder-Christ et al., 

2011), thereby confirming the above stated MOA in which undecaprenol-monophosphate 

constitutes the target of friulimicin B (Schneider et al., 2009). It has also been suggested 
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that Ca2+ ions form a bridge between the negatively charged friulimicin B and the 

phosphate moiety of the lipid carrier. Moreover, it has been postulated that Ca2+ ions also 

influence the secondary structure of friulimicin B, probably shifting the antibiotic into a 

conformation suitable for target binding (Reder-Christ et al., 2011).  

Although friulimicin B is structurally very similar to daptomycin, the data mentioned 

above clearly demonstrate that it acts via a completely different molecular MOA. The fact 

that first failures in treatment of S. aureus infections with daptomycin have already been 

reported underlines the urgent need for antibiotics with novel MOAs (Jones et al., 2008). A 

common feature of cell wall antibiotics like vancomycin, ramoplanin or bacitracin, which 

interfere with the lipid II cycle, is induction of the LiaRS TCS in B. subtilis (Jordan et al., 

2008, Mascher et al., 2004, Salzberg et al., 2011). Although the lack of LiaRS induction by 

friulimicin B suggests a different MOA for this antibiotic, it nevertheless also interferes 

with the lipid II cycle, albeit by inhibition of a different step. Most cell wall-active 

antibiotics specifically interact with the lipid II complex, thereby inhibiting the later lipid-

linked steps of cell wall biosynthesis (Breukink & de Kruijff, 2006, Schneider & Sahl, 

2010). In contrast, friulimicin B prevents the first step of the lipid II cycle, the formation of 

lipid I, by binding to undecaprenol-monophosphate (Schneider et al., 2009). The only 

antibiotic known that also interferes with this step is tunicamycin. Although both 

antibiotics prevent lipid I formation, their molecular MOA is completely different. 

Tunicamycin mimics UDP-activated sugars, which leads to a competitive and reversible 

inhibition of MraY, the enzyme catalyzing formation of lipid I (Bettinger & Young, 1975, 

Brandish et al., 1996). In contrast, friulimicin B forms a tight complex with undecaprenol-

monophosphate, which results in the depletion of one of the substrates necessary for lipid I 

formation, while the activity of MraY is not affected (Schneider et al., 2009). To our 

knowledge, the response to tunicamycin has not been investigated on a genome-wide level. 

Nevertheless, it has been shown that the LiaRS TCS of B. subtilis responds to the presence 

of tunicamycin (Mascher et al., 2004). Our data show that the LiaRS system is not induced 

by friulimicin B (chapter 2, Table 1 and Fig. 5.1), although both antibiotics cause 

inhibition of lipid I synthesis. These data suggest that friulimicin B has a completely novel 

and unique MOA. So far, there is no antibiotic on the market or even known that shares 

this MOA, making friulimicin B an exceptionally promising drug candidate for clinical use 

against Gram-positive bacteria including MRSA. Moreover, the lipid carrier undecaprenol-
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monophosphate is a target that cannot be altered as easily as proteins or the D-Ala-D-Ala 

terminus of the pentapeptide of lipid II, the latter being a common mechanism for 

resistance against the last resort antibiotic vancomycin (Schneider et al., 2009, Walsh et 

al., 1996). 

The data presented in chapter 2 and discussed above clearly show that global expression 

profiling is indeed a powerful and efficient tool to characterize novel antimicrobial 

compounds. As has been demonstrated for the lipopeptide antibiotics daptomycin and 

friulimicin B (chapter 2 and Fig. 5.1), even closely related compounds can induce a distinct 

set of genes which reflects completely different MOAs. Thereby, in-depth expression 

profiling can provide valuable hints regarding the MOA of novel compounds, which have 

to be validated by detailed biochemical MOA studies. 

5.3 The stress response of Bacillus subtilis to rhamnolipids 

Rhamnolipids are biosurfactants produced by the soil bacterium P. aeruginosa. In addition 

to their industrial importance, rhamnolipids also show antimicrobial activity, especially 

against Gram-positive species (Itoh et al., 1971, Lang et al., 1989). We investigated the 

transcriptome of B. subtilis after exposure to rhamnolipids by genome-wide DNA 

microarray analysis and further determined the response by hierarchical clustering analysis 

and phenotypic characterization (chapter 3). The most striking finding of this study was the 

simultaneous induction of two usually independent stress responses: the cell envelope 

stress response, including the TCS LiaRS and the ECF σ factor σM, and the CssRS-

mediated secretion stress response.  

Although rhamnolipids clearly display antimicrobial activity, their exact MOA is still 

unclear. In general, it has been suggested that they influence the permeability of biological 

membranes due to their properties as chemical detergents (Lang et al., 1989). Indeed, 

rhamnolipids have been shown to alter surface hydrophobicity and increase membrane 

permeability followed by an elevated level of released extracellular proteins (Vasileva-

Tonkova et al., 2011). The toxic effects of rhamnolipids are more drastic for Gram-positive 

species, such as B. subtilis, than for Gram-negative bacteria. Therefore, the composition of 

the Gram-negative cell envelope, most likely the outer membrane, seems to have a 

protective function against this biosurfactant (Vasileva-Tonkova et al., 2011). 
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Induction of the cell envelope stress response in B. subtilis (chapter 3, Table 3 and Fig. 2) 

correlates well with the proposed interference of rhamnolipids with cell membrane 

integrity. Such an expression pattern with strong induction of the LiaRS TCS and a (weak) 

ECF σ factor-dependent response has been also observed for the membrane interfering 

antibiotic daptomycin (Fig. 5.1 and (Hachmann et al., 2009)) and cell wall biosynthesis 

inhibitors like bacitracin and vancomycin (Cao et al., 2002b, Mascher et al., 2003). Often, 

signal transducing systems detect a harmful compound and alter gene expression to protect 

the cell and ensure its survival.  Such a role has been postulated for σW of B. subtilis, which 

controls expression of an antibiosis regulon providing protection against certain antibiotics 

(Butcher & Helmann, 2006). Induction of the LiaRS TCS does not always protect the cell 

against damage caused by the inducing compound. A protective role of the LiaRS TCS has 

been only demonstrated for a few antibiotics, for example daptomycin, and some oxidative 

stress generating agents (Hachmann et al., 2009, Wolf et al., 2010). While rhamnolipids 

strongly induce the LiaRS TCS (chapter 3, Table 3), our concentration-dependent lysis 

curve experiments showed that the effect on susceptibility is rather low. A ∆liaF mutant 

strain, in which the lia locus is strongly and constitutively expressed, is slightly more 

resistant against rhamnolipids. However, a Lia “OFF” strain, in which the RR LiaR is 

deleted, does not show any alterations in growth behavior after rhamnolipid treatment 

compared to the wild type (chapter 3, Fig. 3).  

In contrast, ECF σ factors clearly contribute to resistance against rhamnolipids. Deletion of 

σ
M significantly increases sensitivity (chapter 3, Fig. 3), showing that this ECF σ factor and 

its target genes provide protection against cell damage caused by rhamnolipids. Moreover, 

combination of σM and σW deletions enhances the observed phenotype (chapter 3, Fig. 3). 

Such an effect based on the regulatory overlap of several ECF σ factors in B. subtilis has 

been observed before. While often hardly any phenotype can be discovered for single ECF 

σ factor mutant strains, combined deletions of multiple ECF σ factors revealed increased 

sensitivity against several antibiotics and detergents (Hachmann et al., 2009, Mascher et 

al., 2007). 

In the case of the cell wall antibiotic daptomycin, susceptibility of B. subtilis can be further 

increased by simultaneous deletion of liaIH and one to three ECF σ factors (σM, σW and 

σ
X) (Hachmann et al., 2009), thereby deleting the major systems orchestrating the cell 

envelope stress response in this organism (Jordan et al., 2008). We tested if such an 



Chapter 5 

109 

additive effect can be also seen for rhamnolipids, but did not observe any differences in 

growth behavior after deleting LiaR in addition to σM and σW (chapter 3, Fig. 3). 

Altogether, these data show that the main protection against cell envelope damage caused 

by rhamnolipids comes from induction of ECF σ factors. For other cell wall antibiotics, 

such as bacitracin or vancomycin, a similar protective role has been also observed for ECF 

σ factors but not for the LiaRS system (Mascher et al., 2007, Wolf et al., 2010). 

Our microarray analysis also revealed induction of genes not belonging to a typical cell 

envelope stress stimulon. Rhamnolipids caused increased expression of htrA and htrB 

(chapter 3, Table 3 and Fig. 1), both encoding membrane-bound serine proteases. 

Transcription of these two genes is controlled by the TCS CssRS, which is usually 

activated upon heat and secretion stress (Darmon et al., 2002). Severe secretion stress can 

be caused by overexpression of extracellular proteins, such as the α-amylase AmyQ or the 

alkaline phosphatase PhoA (Darmon et al., 2006, Hyyryläinen et al., 2001). Induction of 

the CssRS TCS by rhamnolipids suggests that these compounds also cause some kind of 

secretion stress, possibly either by interfering with secretion machineries or protein 

folding. In E. coli accumulation of misfolded proteins within extracellular compartments 

induces the cell envelope stress response consisting of the TCSs BaeRS and CpxAR as 

well as the ECF σ factor σE (Raffa & Raivio, 2002, Ruiz & Silhavy, 2005). CssRS of B. 

subtilis constitutes a homolog of the CpxAR TCS of E. coli (Hyyryläinen et al., 2001). 

Therefore, CssRS might represent a TCS that responds to similar effects of cell envelope 

interfering compounds that trigger the corresponding response in the Gram-negative E. 

coli. The TCSs of both organisms are induced by accumulation of misfolded secretory 

proteins and control expression of genes encoding extracellular chaperones or proteases, 

showing that both systems are, at least partially, functionally equivalent. It is possible that 

the elevated amount of released protein caused by rhamnolipids, which is possibly due to 

increased membrane permeability instead of enhanced protein secretion (Vasileva-

Tonkova et al., 2011), triggers the secretion stress response in B. subtilis. 

Although the CssRS TCS is clearly induced by rhamnolipids (chapter 3, Table 3 and Fig. 

1), we did not observe any differences in growth inhibition between a CssRS deletion and 

wild type strain (chapter 3, Fig. 3). These data demonstrate that the CssRS TCS does not 

confer resistance against the effects caused by rhamnolipids. Other studies have shown that 

CssRS is required to combat the severe effects of “real” secretion stress in the form of 
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overexpressed AmyQ (Hyyryläinen et al., 2001). These findings together with our results 

suggest that secretion stress generated by rhamnolipids is not crucial for growth inhibition 

by this biosurfactant. Instead, it might be a consequence of increased membrane 

permeability caused by rhamnolipids, which might increase the level of extracellular 

proteins or impair functionality of secretion machineries and membrane-anchored proteins 

responsible for maintenance of the secretom. 

Taken together, the stress stimulon provoked by rhamnolipids in B. subtilis suggests that 

the major MOA of rhamnolipids is indeed related to the membrane, as is demonstrated by 

induction of a typical cell envelope stress response. Nevertheless, there has to be a second 

impact leading to induction of the secretion stress response, which has not yet been 

observed for other cell envelope interfering antimicrobial compounds. 

5.4 Characterization of the novel ECF41 σ factors 

Typically, the activity of an ECF σ factor is controlled by direct protein-protein interaction 

with an anti-σ factor. Inactivation of this anti-σ factor results in the release and therefore 

activation of the ECF σ factor (Helmann, 2002). In addition to such classical and well 

investigated ECF σ factors, a comprehensive survey and subsequent classification of these 

proteins identified a number of novel groups with unique features and unknown signaling 

mechanisms (Staroń et al., 2009). One of these groups is ECF41, whose detailed 

characterization is presented in chapter 4 of this thesis. Our analysis revealed that this 

group of ECF σ factors is widely distributed in bacteria. It consists of more than 400 

proteins deriving from ten different phyla. The unusual genomic context of the ECF41 σ 

factors is highly conserved. It differs from the classical locus organization in the lack of 

genes encoding obvious anti-σ factors. Instead, a gene encoding either a 

carboxymuconolactone decarboxylase (CMD), an oxidoreductase or an epimerase is 

located in direct vicinity of the ECF41 genes. In contrast to often large regulons of other 

ECF σ factors, we found that ECF41 proteins regulate expression of only a single 

transcript, which is often comprised of the ECF41 σ factor and/or the neighboring gene 

mentioned above. This transcriptional unit is preceded by a distinct and highly conserved 

group-specific promoter motif, which is recognized by the corresponding ECF41 σ factor. 

Moreover, the ECF41 proteins carry a large C-terminal extension that is not present in 
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other ECF σ factors. We demonstrated experimentally in two different organisms that this 

extension is involved in regulation of σ factor activity. These results lead us to postulate 

that this extension functions as a fused anti-σ factor-like domain, thereby constituting a 

completely novel mechanism of ECF σ factor-dependent signal transduction (chapter 4). 

5.4.1 Biological function of ECF41 σ factors and their targets 

A good approach to assign a physiological function to an ECF σ factor is the analysis of its 

regulon. In general, the function of the target genes reflects the contribution of an ECF σ 

factor to counteracting specific stress situations, as has been shown for σR of S. coelicolor, 

which mediates a thiol-oxidative stress response (Paget et al., 2001), or σW of B. subtilis, 

controlling an antibiosis regulon (Butcher & Helmann, 2006). Therefore, analysis of the 

function of ECF41-dependent target genes could provide some hints for the physiological 

role of this novel group of ECF σ factors. 

The target gene of the ECF41 σ factor in both B. licheniformis and R. sphaeroides encodes 

a CMD protein. The prototypical function of these enzymes is degradation of aromatic 

compounds, which has been demonstrated for proteins from Rhodococcus opacus and 

Bradyrhizobium japonicum (Eulberg et al., 1998, Lorite et al., 1998).  They catalyze the 

decarboxylation of γ-carboxymuconolactone to β-ketoadipate enol-lactone within the 

protocatechuate branch of the β-ketoadipate pathway. Importantly, all CMD proteins 

linked to ECF41 σ factors carry a highly conserved CxxC motif (Fig. 5.2), which 

distinguishes them from the classical γ-CMD proteins involved in metabolism of aromatic 

compounds.  

An already characterized protein originally annotated as CMD protein, which carries such 

a CxxC motif, is MdrA from the archaeon Methanosarcina acetivorans. This protein is 

encoded in an operon with putative oxidative stress genes. It shows disulfide reductase 

activity and iron-sulfur cluster formation, both dependent on the CxxC motif. It has been 

suggested that MdrA plays a role in the oxidative stress response of this organism, possibly 

mediating repair of proteins containing disulfide bonds or iron-sulfur clusters, which were 

damaged by oxidative stress (Lessner & Ferry, 2007). The CMD protein family also 

includes alkylhydroperoxidases, with AhpD of M. tuberculosis being the best understood 

example. AhpD contains a CxxC motif crucial for its catalytic function. Besides 

alkylhydroperoxidase activity, AhpD serves as a reducing partner for the peroxiredoxin 
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AhpC. Together, these two proteins constitute important elements of the antioxidant 

defense system of M. tuberculosis (Hillas et al., 2000, Koshkin et al., 2003). Based on 

these two investigated examples, it can be proposed that the function of CMD proteins 

containing a conserved CxxC motif is counteracting oxidative stress. 

 

Figure 5.2. Multiple sequence alignment of selected CMD proteins. The alignment was constructed using 
ClustalW (Thompson et al., 1994). Identical amino acids are shaded in black, similar amino acids in grey. 
Cysteine residues of the highly conserved CxxC motif are highlighted in red. The CMD proteins are grouped 
into proteins linked to ECF41 σ factors and γ-CMD proteins with a (putative) function in the protocatechuate 
metabolism. The name of the CMD proteins is given at the beginning of each line. They derive from the 
following organisms: BLi04370 (YdfG) from B. licheniformis, RSP_0606 from R. sphaeroides, SCO2743 
from S. coelicolor, GYMC10_0387 from Geobacillus sp. Y412MC10, bll7811 from B. japonicum, 
Oter_3133 from Opitutus terrae, Acid345_3513 from Koribacter versatilis, Krac_12621 from Ktedonobacter 

racemifer, GAU_2974 from Gemmatimonas aurantiaca, Snas_2023 from Stackebrandtia nassauensis, PcaL 
from R. opacus, PcaC from B. japonicum, Bpro_1856 from Polaromonas sp. JSP666, PputGB1_4433 from 
Pseudomonas putida and Rpic12D_2061 from Ralstonia pickettii. Note that PcaL constitutes a fusion protein 
and only the CMD domain is included in the alignment. 

Results from investigations of M. tuberculosis σJ, the only ECF41 σ factor that has been 

studied in addition to Ecf41Bli and Ecf41Rsp, also suggest a general role of the ECF41 σ 

factors in response to oxidative stress. The genome of M. tuberculosis harbors two ECF41-

encoding genes, sigJ and sigI, which are both so-called “orphans” not associated with COE 

genes (chapter 4, Table S1). Only sigI is preceded by the typical ECF41-dependent 

promoter sequence, and it has been shown to be the only target recognized by σJ 
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(Homerova et al., 2008). This reveals a cascade in which one ECF41 σ factor activates 

transcription of another member of this group. Although a number of similar putative 

promoter sequences can be found in the genome of M. tuberculosis, several approaches 

failed to assign them as relevant targets of σI or σJ (Homerova et al., 2008, Rodrigue et al., 

2007). This supports our results showing that ECF41 σ factors, unlike other ECF σ factors, 

do not control expression of a large regulon (chapter 4). The only known phenotype 

associated with σJ is a weakly increased sensitivity to H2O2 in a mutant strain (Hu et al., 

2004). However, we performed sensitivity tests and did not observe any differences in 

growth behavior of mutant and wild type strains of both B. licheniformis and R. 

sphaeroides in the presence of oxidative stress producing agents, including H2O2, cumene 

hydroperoxide, t-butyl hydroperoxide and paraquat (data not shown). Moreover, we 

performed a phenotype microarray analysis with R. sphaeroides wild type, Ecf41Rsp 

deletion and overexpression strains. Despite about 1200 different tested conditions, 

including the presence of oxidative stress agents, antimicrobial compounds and a wide 

range of metabolic substrates, this analysis did not reveal any reproducible phenotypes 

(supplementary material and data not shown). All the above mentioned approaches are 

based on growth behavior under stress conditions coupled with genetic alterations. Since 

they did not provide any hints for the function of the ECF41 group, biochemical 

characterization of the target gene products could shed some light on their physiological 

role.  

Knowledge of the exact function of the COE gene products, which can be either CMD 

proteins, oxidoreductases or epimerases, would also allow drawing conclusions regarding 

the signal leading to activation of the ECF41 σ factors. In general, the COE proteins are 

predicted to catalyze redox reactions or chemical conversions. Therefore, instead of a 

compound causing oxidative or another kind of stress, the inducing stimulus could also be 

an alternative nutrient source, for whose metabolism the COE genes encode an important 

enzyme. The presence of a specific substrate might somehow be sensed by the ECF41 σ 

factor, which in turn triggers the expression of corresponding metabolic enzymes. This 

hypothesis is in good agreement with the observation that ydfG, which is the ECF41-

dependent target gene encoding a CMD protein in B. licheniformis, is expressed at the 

transition from the exponential to the stationary growth phase (Fig. 4.4 B). In addition,  an 

increase of the sigJ mRNA level in M. tuberculosis has been observed during stationary 
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phase (Hu & Coates, 2001). A characteristic feature of this growth phase is nutrient 

depletion. One important strategy for survival under these conditions is the use of 

alternative nutrients, including compounds that require unusual degradation pathways and 

specialized signal transducing systems controlling the expression of the corresponding 

enzymes dependent on substrate availability. The ECF41 σ factors and their target genes 

could be involved in regulation and accomplishment of such specialized degradative 

reactions. 

Differentiation is another possibility to deal with the deteriorating conditions during 

stationary phase. Especially bacteria with very complex life cycles, such as some 

Actinobacteria that even show multicellular differentiation, often contain a particularly 

large number of signal transducing systems (Bentley et al., 2002, Flärdh & Buttner, 2009). 

Based on the phylogenetic analysis of ECF41 proteins, these σ factors are especially 

abundant within the Actinobacteria (Table 4.4 and Fig. 4.1), which makes species from this 

phylum particularly interesting for further studies. Many of them, especially the 

Streptomyces species, contain multiple copies of the ECF41 gene in the genome (chapter 4, 

Table S1). This conspicuous abundance of ECF41 σ factors within one genome indicates 

an important function in the often elaborated lifestyles of these species. On the one hand, 

functional and regulatory redundancy has to be considered during experimental 

investigations when more than one ECF41 gene is present in a single genome. On the other 

hand, an important function of these transcriptional regulators, which is indicated by their 

high abundance, could simplify the search for a specific phenotype associated with ECF41 

σ factors. 

5.4.2 Regulatory role of the C-terminal extension in signal transduction 

The most interesting feature of the ECF41 proteins is a large C-terminal extension, which 

is exclusively present in this group of ECF σ factors. Within this extension, we identified 

three highly conserved motifs (Fig. 4.3). To investigate a possible function of this 

extension in signal transduction, we determined the impact of mutations and truncations of 

this extension on promoter activation. Exchange of the conserved motifs of Ecf41Bli against 

alanine residues caused only minor alterations in target promoter activation (Fig. 4.6), 

whereas C-terminal truncations of the ECF41 proteins revealed more drastic effects (Fig. 

4.7). Partial truncation of the extension results in strongly increased target promoter 
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activity. The most obvious effect can be observed for the partly truncated variant Ecf41Bli 

(204), which increased promoter activity ~20-fold relative to the full-length protein (Fig. 

4.7). In contrast, loss of the whole extension (variant 167) completely abolished σ factor 

activity (Fig. 4.7). Moreover, these truncations also alter the affinity of Ecf41Bli to RNAP. 

The shortest variant (167) hardly co-purifies with RNAP, which is in good agreement with 

its inability to activate the target promoter. In contrast, the highly active variant (204) co-

purifies with RNAP to a much lesser extent then the full-length protein (Fig. 4.8). These 

data demonstrate an important regulatory role of this extension, but the effects cannot be 

explained solely by altered affinity for RNAP. Considering that an obvious anti-σ factor is 

missing in the direct genomic context of the ECF41 genes, the extension could possibly 

constitute a fused anti-σ factor-like domain. But besides a mere inhibitory function, parts 

of the C-terminal extension are also required for ECF41-dependent transcription, since its 

entire deletion completely abolished σ factor activity (Fig. 4.7). Such a behavior is very 

unusual, because regions σ2 and σ4 alone are normally sufficient for transcription initiation 

by other ECF σ factors. This suggests that the signal transduction of ECF41 σ factors is 

based on a completely novel and so far unknown signal transducing cascade, which will be 

the subject of further investigations. At this time, it can be only speculated about the exact 

molecular mechanism of ECF41 σ factor activation. 

A feasible approach to gain indications regarding a possible mechanism how the extension 

influences σ factor activity is comparison of its sequence and structure to other already 

investigated proteins. A BLAST search (Altschul et al., 1990), which is based on sequence 

similarity alone, did not reveal any proteins other than ECF41 members. In order to 

identify structurally similar proteins, we first predicted the secondary structure of ECF41 σ 

factors using the secondary structure prediction server Jpred 3 (Cole et al., 2008). The 

secondary structure predicted for Ecf41Rsp as well as an alignment of ECF41 proteins and 

classical ECF σ factors representative for the Jpred 3 analysis is shown in Fig. 5.3. The σ2 

and σ4 domains consist of several α-helices as has already been demonstrated for σ70 

proteins (Campbell et al., 2002). The C-terminal extension is predicted to form both α-

helices and β-sheets of different lengths (Fig. 5.3). The highly conserved motifs are mainly 

located in regions without a distinct secondary structure. Especially the WLPEP motif, 

whose amino acid sequence is exceptionally highly conserved, lies within an unstructured 

region connecting the σ2 and σ4 domains (Fig. 5.3).  
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Figure 5.3. Predicted secondary structure of group ECF41 proteins. The multiple sequence alignment of 
selected ECF σ factors was constructed using ClustalW (Thompson et al., 1994). Identical amino acids at the 
same position are shaded in black, similar amino acids in grey. The secondary structure for Ecf41Rsp was 
predicted using Jpred 3 (Cole et al., 2008) available at http://www.compbio.dundee.ac.uk/www-jpred/. α-
helices are shown as cylindrical forms, β-sheets as arrows. The σ2 and σ4 domains and the C-terminal 
extension are marked. Conserved motives of ECF41 σ factors are highlighted by black lines. The ECF σ 
factors derive from the following organisms: Ecf41Bli from B. licheniformis, Ecf41Rsp and RSP_2681 from R. 

sphaeroides, MSMEG_5444 from Mycobacterium smegmatis, gll0669 from Gleobacter violaceus, 
Franean1_1629 from Frankia sp. EAN1pec, PHZ_c2577 from Phenylobacterium zucineum, Ajs_2746 from 
Acidovorax sp. J42, Bphyt_2345 from Burkholderia phytofirmans, Reut_B5467 from Ralstonia eutropha, 
SigM and SigW from B. subtilis and RpoE and FecI from E. coli. 

Based on this highly conserved secondary structure, we predicted a three-dimensional 

model (Fig. 5.4), which provides some interesting hints for possible signal transducing 

mechanisms and further investigations. 
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Figure 5.4. Hypothetical three-dimensional model of ECF41 σ factors. HHpred (Söding et al., 2005) was 
used to search the PDB database (Berman et al., 2000) for proteins with known structure similar to Ecf41Rsp. 
The σ2 and σ4 domains were modeled on the already well-known structure of other ECF σ factors. The best 
hit for the C-terminal extension of Ecf41Rsp was limonene-1,2-epoxide hydrolase of Rhodococcus 

erythropolis with 15% similarity. The three-dimensional model was predicted with the program Modeller 
(Šali & Blundell, 1993) and graphically presented using the UCSF Chimera package from the Resource for 
Biocomputing, Visualization, and Informatics at the University of California, San Francisco (Pettersen et al., 
2004). The modeling was performed in collaboration with Gregor Witte. 

The hypothetical three-dimensional model of ECF41 σ factors consists of three domains 

with a distinct fold connected by unstructured linker regions (Fig. 5.4). The σ2 and σ4 

domains are modeled on the already well-known structure of other ECF σ factors. The 

modeling of the C-terminal extension of Ecf41Rsp from R. sphaeroides is based on the 

known structure of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis 

(Arand et al., 2003). Similarly, the same analysis performed for Ecf41Bli from B. 

licheniformis revealed similarity to a protein of unknown function from Burkholderia 

pseudomallei (data not shown), which carries a nuclear transport factor 2 (NTF2)-like 

domain, thereby showing structural similarity to mammalian NTF2 (Bullock et al., 1996). 

While these two proteins are not functionally related to each other or to σ factors, they both 
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have the same secondary structure and it has been shown that they form dimers (Arand et 

al., 2003, Bullock et al., 1996).  

In general, an ECF σ factor is regulated through direct protein-protein interaction with an 

anti-σ factor. Without a stimulus, this anti-σ factor keeps the ECF σ factor inactive. In the 

presence of a suitable stimulus, the anti-σ factor gets inactivated and releases the ECF σ 

factor, which initiates transcription of its target genes (Butcher et al., 2008, Helmann, 

2002). The most common mechanisms for the inactivation of anti-σ factors are either 

regulated proteolysis or conformational changes (Campbell et al., 2008, Heinrich & 

Wiegert, 2009). ECF41 σ factors are not associated with obvious anti-σ factors, but carry a 

large C-terminal extension involved in regulation of σ factor activity (Fig. 4.3 and 4.7). 

Therefore, we suggest that this extension functions as a fused anti-σ factor-like domain. 

Based on the hypothetical three-dimensional model of ECF41 proteins (Fig. 5.4) as well as 

σ factor activation mechanisms described in the literature, three possible signal transducing 

principles involving the C-terminal extension can be proposed for ECF41 σ factors: (i) 

intermolecular interaction, (ii) intramolecular interaction, and (iii) proteolysis of the 

extension. These three possibilities will be discussed in detail in the following sections. 

5.4.2.1 Intermolecular interaction 

Intermolecular interaction could be a conceivable mechanism for regulation of ECF41 σ 

factor activity. One attractive hypothesis is that ECF41 proteins exist as dimers in the cell, 

thereby keeping themselves inactive. Thereby, the C-terminal extension could constitute a 

dimerization interface. This hypothesis is supported by the fact that the proteins, on which 

the three-dimensional structure of the C-terminal extension is modeled (see above and Fig. 

5.4), form dimers (Arand et al., 2003, Bullock et al., 1996). In case of the ECF41 σ factors, 

a suitable stimulus could trigger conformational changes and dissociation, resulting in a 

monomeric form that is able to interact with RNAP and promoter DNA. To test this 

hypothesis, we carried out initial protein-protein interaction studies based on a bacterial 

two-hybrid system. These assays showed that the ECF41 σ factors of both B. licheniformis 

and R. sphaeroides interact (weakly) with themselves (Fig. 5.5), which indicates possible 

oligomerization. Nevertheless, this indirect indication needs to be validated by further 

interaction studies. 
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Figure 5.5. Oligomerization of ECF41 σ factors. The genes of ecf41Bli and ecf41Rsp were cloned into 
pUT18, pUT18C, pKT25 and pKT25N, thereby generating either N- or C-terminal fusions to the T18 or T25 
fragment of adenylate cyclase from Bordetella pertussis. The bacterial two-hybrid assay was performed 
according to (Karimova et al., 2000). Blue color indicates protein-protein interaction. The positive control is 
based on the derivatives pKT25-zip and pUT18-zip, in which the leucine zipper GCN4 is genetically fused to 
the T25 and T18 fragment, respectively. The negative control is based on the empty vectors.  

5.4.2.2 Intramolecular interaction 

The inhibitory effect of the extension could also occur through intramolecular interaction. 

For example, the C-terminal extension might interact with the σ2 or σ4 domain, thereby 

preventing binding of the ECF41 σ factor to RNAP or promoter DNA. An appropriate 

stimulus could induce a conformational change resulting in an active σ factor. Such a 

conformational change that abolishes the inhibitory function could be triggered, for 

example, by disulfide bond formation, as has already been demonstrated for soluble anti-σ 

factors such as RsrA of S. coelicolor (Kang et al., 1999, Zdanowski et al., 2006). Instead 

of actual dissociation of an anti-σ/σ factor complex, a conformational change could 

uncover or rearrange parts of the ECF41 protein important for σ factor function. 

Intramolecular interaction combined with an inhibitory effect has also been observed for 

σ
70 of E. coli. While this primary σ factor does not need to be activated, specific binding of 

free σ70 to promoter DNA is inhibited by its N-terminal region 1.1. It is proposed that this 

autoinhibitory region sterically blocks the access of promoter DNA to the DNA-binding 

domains. Interaction of σ70 with the RNAP core enzyme induces a movement of region 1.1 

that probably unmasks the DNA-binding domains, thereby allowing this σ factor the 

recognition of target promoters only as part of the RNAP holoenzyme (Callaci et al., 1999, 

Dombroski et al., 1993a, Dombroski et al., 1993b). In case of ECF41 σ factors, the C-

terminal extension could play such an inhibitory role by blocking the binding to target 

promoter DNA. Instead of RNAP holoenzyme formation, the so far unknown inducing 

signal for group ECF41 could trigger a conformational change resulting in free and thereby 

functional DNA-binding domains. In this context the highly conserved WLPEP motif of 

ECF41 σ factors could be of importance. It is located between the σ2 and σ4 domains, a 
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region which usually does not exhibit much sequence and structure conservation (Fig. 5.3 

and chapter 4, Fig. S1). Its exceptionally high conservation and exclusive presence in 

ECF41 σ factors suggest an important function of the amino acids within this motif. It 

could serve as an interaction interface, possibly being affected by the C-terminal extension. 

Alternatively, the WLPEP motif could also be important for positioning and stabilization 

of the σ2 and σ4 domains, thereby supporting binding to DNA or RNAP. A stabilizing 

function is in good agreement with the fact that exchange of the WLPEP motif of Ecf41Bli 

against alanine residues results in a weak but significant decrease in target promoter 

activation (Fig. 4.6). RNAP pull-down or bandshift assays with a corresponding derivative 

of the ECF41 σ factor could reveal if the WLPEP motif influences binding to RNAP or 

promoter DNA. It would be also interesting to test if the exchange of this motif against 

alanine residues also weakens the strong promoter activation by the truncated and highly 

active Ecf41Bli variant (204).  

5.4.2.3 Proteolysis 

Proteolysis of the C-terminal extension could also be a possibility for activation of ECF41 

σ factors. Such a mechanism can be found for σ factors regulating sporulation in B. 

subtilis. At least two examples are known, in which the σ factor is synthesized as an 

inactivate precursor and then activated by proteolysis. Membrane-bound pro-σE, the 

precursor of σE, whose expression is induced early during sporulation, is most likely 

processed to its active state by the putative protease SpoIIGA (Piggot & Hilbert, 2004). 

Pro-σK is the precursor of σK, which is responsible for expression of late sporulation genes 

in the mother cell. Pro-σK carries 20 N-terminal residues that promote association of this σ 

factor to the mother cell membrane and inhibit binding to RNAP and promoter DNA. 

Cleavage of these 20 residues and thereby activation of this σ factor via SpoIVFB occurs 

tightly regulated at later sporulation stages (Piggot & Hilbert, 2004, Zhang et al., 1998, 

Zhou & Kroos, 2004). With regard to the ECF41 σ factors, cleavage of a certain C-

terminal part responsible for the inhibitory function of this extension could lead to an 

active ECF41 protein. In this case, the N-terminal part of the extension, which we found to 

be required for σ factor activity (Fig. 4.7), would be still present. The signal triggering 

such a proteolysis could be either perceived directly by a protease or another protein, 

which in turn activates a corresponding protease. In another conceivable scenario, the C-

terminal extension could constitute the sensor, which may change its conformation after 
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signal perception and expose a protease recognition site. Nevertheless, a protease or other 

protein involved in such a mechanism still needs to be identified.  

5.5 Conclusions 

The aim of this thesis was the investigation of cell envelope stress responses with a special 

focus on the role and mechanistic details of ECF σ factor-dependent signal transduction. 

Genome-wide expression profiling, usually performed on model organisms after treatment 

with specific antimicrobial compounds, is a good and often utilized approach to identify 

the regulatory networks orchestrating stress responses. Moreover, such studies can also 

provide valuable indications regarding the MOA of antibiotics. This significantly 

contributes to the knowledge of the MOA of novel antimicrobial compounds and can be 

even used to speculate about their clinical relevance and success. 

ECF σ factors play a major role in mediating cell envelope stress responses. For some ECF 

σ factors, the function and signal transducing mechanisms are already well understood. But 

a classification of these proteins performed by Staroń and colleagues (Staroń et al., 2009) 

identified a number of novel groups of ECF σ factors and provides a valuable resource for 

the detailed characterization of ECF σ factor-dependent gene regulation. Chapter 4 of this 

thesis presented the first analysis of such a novel group. The unique features of this group, 

especially the regulatory C-terminal extension, nicely illustrate the great diversity of ECF σ 

factor-dependent signal transduction und encourage the investigation of further groups 

with yet unknown signaling mechanisms. Just recently, a novel ECF σ factor of 

Myxococcus xanthus, named CorE, has also been shown to carry a short C-terminal 

extension while an obvious anti-σ factor is missing. This extension contains several 

cysteine residues important for stimulus perception and controls copper-dependent DNA 

binding and thereby activity of CorE. While this short extension of CorE resembles the 

function of an anti-σ domain, the exact mechanism of signal transduction is still unclear 

(Gómez-Santos et al., 2011). Although CorE-like proteins and ECF41 σ factors do not 

belong to the same group of ECF σ factors, their regulation presumably involves a fused 

anti-σ domain rather than a second protein functioning as an anti-σ factor. These studies 

demonstrate that there is still a great potential for the discovery of completely novel and 

complex ECF σ factor-dependent signal transducing mechanisms.  
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Supplementary material 

Detailed experimental procedures and additional figures for 

chapter 2 

Strains, media and growth conditions. B. subtilis strains were routinely grown in LB 

medium at 37°C with aeration, except where stated otherwise. Erythromycin (1 µg/ml) 

plus lincomycin (25 µg/ml) for MLS resistance were used for the selection of strain 

BFS2469, tetracycline (10 µg/ml) was used for selection of strain TMB389. Friulimicin B 

was obtained from MerLion Pharmaceuticals GmbH, and other drugs from their respective 

manufacturers.  

RNA preparation. B. subtilis 168 wild type strain was grown aerobically at 37°C in LB 

medium to mid-log phase. The culture was split and induced with friulimicin B or 

daptomycin (1 µg/ml each) with one sample remaining as the uninduced control. After 10 

min of induction 30 ml of each sample were mixed with 15 ml cold killing buffer (20 mM 

Tris-HCl pH 7.0, 5 mM MgCl2, 20 mM NaN3), harvested by centrifugation and frozen in 

liquid nitrogen. For cell disruption, the pellet was resuspended in 200 µl killing buffer, 

immediately dropped into the Teflon vessel (filled and pre-cooled with liquid nitrogen), 

and then disrupted with a Mikro-Dismembrator U (Sartorius). The resulting cell powder 

was resuspended in 3 ml of lysis solution (4 M guanidine-thiocyanate, 0.025 M Na-acetat 

pH 5.2, 0.5% N-lauroylsarcosinate) and the RNA was extracted twice by 

phenol/chloroform/isoamylalcohol 25/24/1 followed by chloroform/isoamylalcohol 24/1 

extraction and ethanol precipitation. RNA samples were DNase-treated with the RNase-

free DNase kit (Qiagen) according to the manufacturer’s instructions and purified using 

RNeasy mini columns (Qiagen). The quality control of the RNA preparations was 

performed with the RNA 6000 Nano LabChip Kit (Agilent Technologies) on the Agilent 

2100 Bioanalyzer according to the manufacturer’s instructions. 

DNA microarray analysis. The RNA samples obtained from three independent 

cultivations were used for independent cDNA synthesis and DNA array hybridization. 

Generation of the Cy3/Cy5-labeled cDNAs and hybridization to B. subtilis whole-genome 



Supplementary material 

123 

DNA microarrays (Eurogentec) were performed as described (Jürgen et al., 2005). The 

slides were scanned with a ScanArray Express scanner (PerkinElmer). Quantitation of the 

signal and background intensities was carried out using the ScanArray Express image 

analysis software. 

Transcriptome data analysis. Data was analyzed using the GeneSpring software (Agilent 

Technologies). Raw signal intensities were first transformed by intensity dependent 

LOWESS normalization. The normalized array data were subjected to a statistical analysis 

using Cyber-T, a program based on a t-test combined with a Bayesian statistical framework 

(Baldi & Long, 2001). The software is accessible through a web interface at 

http://cybert.microarray.ics.uci.edu. The mRNA abundance was considered to be 

significantly different between the untreated control samples and the samples obtained 

after treatment with the respective antibiotic if (i) the Cyber-T Bayesian P value was < 

0.001 and (ii) the average fold change was at least 3 in three independent experiments. The 

potential and known functions of the encoded proteins were initially inferred from the 

SubtiList (http://genolist.pasteur.fr/SubtiList/) or BSORF databases  

(http://bacillus.genome. ad.jp/). An in-depth analysis of the identified marker genes (as 

listed in Table 2) was performed using the SMART (Letunic et al., 2006, Schultz et al., 

1998) and MicrobesOnline (Alm et al., 2005) databases, at http://smart.embl-

heidelberg.de/ and http://www.microbesonline.org/, respectively. 

Quantitative real time RT-PCR. Measurement of transcript abundance was performed by 

quantitative real-time RT-PCR using iScript one-step RT-PCR kit with SYBR Green (Bio-

Rad) according to the manufacturer’s procedure with minor modifications: In brief, 100 ng 

of DNA-free total RNA was used in a total reaction volume of 20 µl with 0.3 µM of each 

primer (see Table 1). The amplification reaction was carried out in an MyiQ Cycler 

(BioRad) using the following program: reverse transcription at 50°C for 10 min, followed 

by a 95°C denaturing/activation step for 5 min, followed by 45 cycles (95°C for 10 sec), 

(60°C for 30 sec). After a subsequent denaturation (95°C for 1 min) and annealing (55°C 

for 1 min) the setpoint temperature was increased in 80 cycles (10 sec each) by 

0.5°C/cycle, starting from 55°C, to determine the melting temperatures of the PCR 

products. Expression of rpsJ and rpsE was monitored as constitutive reference. These 

genes were chosen due to their stable expression behaviour under various growth and 

stress conditions in B. subtilis (data not shown). Expression of liaI and genes encoding 
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ECF σ factors was calculated as fold changes using the formula: Fold change = 2-∆∆Ct; with 

-∆∆Ct = (Ct(gene x)-Ct(constitutive gene))condition I – (Ct(gene x)-Ct(constitutive gene))condition II (Talaat et al., 

2002). 

Concentration-dependent killing curve/β-galactosidase assays. These experiments were 

performed as described (Mascher et al., 2004). In brief, strain BFS2470 was grown in LB 

medium with MLS selection to OD600 ~ 0.5 and daptomycin/friulimicin B were added to a 

final concentration ranging from 0.01 to 50 µg/ml. An uninduced culture was used as a 

negative control. The cultures were incubated with aeration at 37°C. A sample was taken 

after 30 min for β-galactosidase assay and the turbidity of the remaining culture was 

measured for at least 5 hours to monitor the concentration-dependent effects of the 

antibiotics on growth. 

L-[
35

S]methionine labelling of proteins and 2D-PAGE analysis. B. subtilis 168 wild 

type strain was grown aerobically at 37°C in Belitsky minimal medium (Stülke et al., 

1993) to mid-log phase. 10 and 30 minutes after addition of daptomycin or friulimicin B 

(1,5 and 1,0 µg/ml, respectively) the cells as well as untreated control cells were labelled 

with 15 µCi/ml [35S]-methionine. After 5 minutes incorporation of radioactive methionine, 

the reaction was stopped by adding an excess of nonradioactive methionine (1mM) and 

chloramphenicol (100µg/ml) to stop translation. Samples were taken and the cytoplasmic 

protein fraction isolated as described earlier (Bandow et al., 2003). 2D-PAGE using 

Immobiline dry strips (IPG, Amersham Biosciences) (pH 4-7) loaded with 80 µg protein 

extract as well as visualization of radiolabelled proteins and dual channel imaging using 

Delta2D software (Decodon) were carried out as described (Bernhardt et al., 1999, 

Bernhardt et al., 2003). 
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Figure S1. Killing curves and concentration-dependent induction of the liaI promoter in B. subtilis 

cultures treated with daptomycin and friulimicin B. (A) Killing curves daptomycin. LB medium was 
inoculated from a fresh overnight culture of B. subtilis W168 and incubated at 37°C with aeration. Cell 
density was monitored by measuring OD600 at regular intervals. At mid-logarithmic growth phase (OD600 ~ 
0.5) the culture was split and induced with different concentrations of daptomycin (■, uninduced control; □, 
0.5 µg/ml; �, 1 µg/ml; �, 2 µg/ml; �, 5 µg/ml; � 10 µg/ml; �, 50 µg/ml). (B) Friulimicin killing curves, 
using the same experimental conditions as above. (C) Induction of the liaI promoter. Strain BFS2470 (B. 

subtilis W168 liaI::pMUTIN) was grown in LB medium as described above and induced with different 
concentrations of daptomycin  (grey bars) and friulimicin  (striped bars), respectively, for 30 min, with one 
sample remaining as the uninduced control. The cells  were harvested and β-galactosidase assays were 
performed as described in the detailed experimental procedures. The PliaI activity, expressed in Miller Units 
(Miller, 1972), is shown on the y-axis.  
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Figure S2. Proteome analysis. Protein expression profiles of B. subtilis 168 before (green image) and after 
10 or 30 min of the exposure (red image) to friulimicin B (left) and daptomycin (right), respectively, are 
shown. 
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Supplementary material provided on CD 

The following supplementary material can be found on the enclosed CD. 

Chapter 2 

Table S1 daptomycin. Excel file containing the complete microarray dataset for 

daptomycin. The normalized array data were analyzed using the software Cyber-T (Baldi 

& Long, 2001), which is available at http://cybert.microarray.ics.uci.edu. The output of this 

analysis  including several statistical parameters is given in form of an excel table. 

Table S2 friulimicin B. Excel file containing the complete microarray dataset for 

friulimicin B, which was analyzed as described above for daptomycin. 

Chapter 3 

Table S1. Excel file of the complete microarray dataset containing rhamnolipid induction 

ratios for each gene of B. subtilis. The ratio values are averages from three independent 

microarray experiments and calculated from intensity data using the Rosetta Resolver 

software (version 7.2.1, Rosetta biosoftware).  

Chapter 4 

Table S1. Excel file containing the non-redundant dataset with 373 proteins extracted from 

the MiST2 database (Ulrich & Zhulin, 2010) in October 2010. The dataset was analyzed 

regarding the genomic context and occurrence of the ECF41-dependent promoter motif. 

Pfam domains of the COE proteins were identified using the SMART database (Letunic et 

al., 2006, Schultz et al., 1998). Abbreviations: ECF, gene encoding the ECF41 σ factor; 

COE, gene encoding a carboxymuconolactone decarboxylase, oxidoreductases or 

epimerase; CMD, gene encoding a carboxymuconolactone decarboxylase; Ox, gene 

encoding an oxidoreductases; Epi, gene encoding an epimerase; Hypo, gene encoding a 

hypothetical protein. 

Figure. S1. Genbank file containing an alignment of ECF41 proteins. The alignment 

containing 373 ECF41 protein sequences was constructed using ClustalW (Thompson et 

al., 1994). 
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PM_deletion_versus_wt. Word document containing results of the phenotypic microarray 

analysis performed for R. sphaeroides strains YSD239 (ΔRSP_0606-ecf41Rsp) and 2.4.1 

(wt). 

PM_overexpression_versus_wt. Word document containing results of the phenotypic 

microarray analysis performed for R. sphaeroides strains TMR003 (pIND4 ecf41Rsp aa1-206) 

and 2.4.1 (wt). 
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