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Preface

Individuals face a variety of financial incentives, which are valuable instruments to

allocate resources and to steer behavior. Governments use them in a variety of contexts

like, for instance, tobacco taxes or subsidies for new technologies. Another example is

the prospect of higher earnings due to higher education, which provides an important

incentive in our society to advance the long-term investments in education. Empirical

evaluations are an important way to assess the extent to which individuals react to

incentives.

This dissertation consists of four self-contained chapters. The first two chapters

analyze the 2004 health care reform in Germany. An important aim of the reform was

to strengthen cost consciousness and personal responsibility of the insured. The focus in

the first two chapters is on a particular element of the reform, namely a per-quarter fee

for doctor visits, and the question how this treatment affects individuals’ decisions to

visit a doctor. The time dimension of the fee implies that individuals sometimes do not

have to take the fee into account when making decisions. While the treatment status

is usually based on characteristics that can easily be observed (like age and gender),

in this case, it follows implicitly from the design of the treatment. In this application,

an individual’s treatment status actually depends on previous and future demand for

health care, and this complicates the evaluation of the fee. In the first chapter, I exploit

the fact that the treatment status depends on previous health care demand, to form

a unique identification strategy. In the second chapter Amelie Wuppermann and I

develop an econometric model which takes into account that the perceived treatment

status depends on future health care demand. The results suggest that certain groups

are ex-ante or ex-post unaffected by the fee. A narrower definition of the group that
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is actually affected makes it possible to reveal the true effect of the fee. The focus of

the last two chapters is on the enhancement of econometric methods. Examples from

health and labor economics are given for illustrative purposes.

In chapter 1, I use the German Socio-Economic Panel to estimate the effects of the

2004 health care reform. Among other things, the reform imposes a fee of e 10 for the

first visit to a doctor in each quarter of the year. Patients who have already paid the fee

are therefore exempt for the rest of the calendar quarter implying that the treatment

status depends on previous health care demand. Exploiting random variation of the

treatment level over different interview days, I find a substantial effect of the new

fee on the probability of visiting a physician. In addition, the identification strategy

makes it possible to disentangle this effect from the influences of the contemporaneous

increase of co-payments for prescription drugs. I verify the crucial assumptions of my

approach using a claims data set from the largest German sickness fund. Overall, the

probability of visiting a physician decreased by around 5 percentage points. Due to

my identification strategy, I can attribute at least half of this effect to the per-quarter

fee for doctor visits.

In chapter 2, Amelie Wuppermann and I revisit the analysis of the reform in spirit

of the literature about nonlinear price schedules. We provide empirical evidence of

heterogeneous reactions that are in line with theoretical considerations. Using insur-

ance claims data from the largest German sickness fund we find that some individuals

strongly react to the new price schedule while there is a group of individuals that does

not react at all. This is the group with the worst health in which some individuals

may know ex-ante that they cannot avoid the fee. Following van Kleef et al. (2009) we

suggest a further reform of the system that may help to also increase cost consciousness

among individuals in bad health while possibly even decreasing the financial burden

for these individuals.

In chapter 3, I extend the literature on hurdle models, which are frequently used to

model count data. Recent developments in the count data literature make it possible

to relax commonly imposed assumptions of these models. Based on these findings,

I develop two extensions of hurdle models which make popular specifications more

flexible. Both extensions nest the models that have been estimated previously and
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they can thus be tested by appropriate parametric restrictions. An example from

health economics illustrates the relevance of both model extensions.

In chapter 4, I employ the new variance estimator for generalized empirical

likelihood that has recently been proposed by Newey and Windmeijer (2009) to address

the problem that the usual variance estimator understates the true variance. In Monte

Carlo examples they show that t-statistics based on the new variance estimator have

nearly correct size. I replicate their Monte Carlo simulations and additionally report

results for a wider range of the simulation parameters. Moreover, my simulation re-

sults suggest that two-stage least squares estimates are poor starting values for the

continuous updating estimator, especially when the sample size is small and/or the

identification is weak. Finally, I use the continuous updating estimator to assess the

private returns to education using a well-known data set, and additionally report the

many weak instruments standard errors of Newey and Windmeijer (2009).



Chapter 1

Quarterly co-payments, demand for health care and

response behavior - Evidence from survey and claims

data

1.1 Introduction

Insurance firms try to implement incentives to avoid excessive claims. This is

particularly important in health insurance markets because some therapies depend

on patient choice. The first visit to a doctor for a new illness, for instance, is solely

a patient’s decision. Here co-payments could be an appropriate instrument to reduce

moral hazard. The introduction and increase of co-payments have been important in-

struments of past health care reforms in the German statutory health insurance. There

are, for instance, co-payments for drugs, hospitalization and doctor visits. These in-

struments have a direct fiscal effect because the insurer covers a lower amount. In

addition, there might be a reduction in the demand for health care services because

the insured avoid excessive use. Such an inhibiting effect on utilization was also a

professed goal of the co-payment for doctor visits which was introduced in Germany in

2004. This study exploits random variation in the day of the interview of a survey to

reveal the causal effect of the new fee. Accounting for the structure of the data, there

is a significant decline in the probability of visiting a doctor. To verify the essential
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assumptions of my approach, I imitate a survey with two randomly assigned interview

days using claims data from the “Allgemeine Ortskrankenkasse” (AOK), which is the

largest sickness fund in Germany.

According to the OECD (2008), around 90% of the German population are covered

by statutory health insurance (SHI). The regulation of SHI is heavily influenced by

governmental decisions. One example is the implementation of a broad health care

reform in 2004 which tried to strengthen cost consciousness and personal responsibility

by increasing co-payments. An important part of this reform was the introduction of

co-payments for doctor visits. Since 2004, most SHI-insured adults have had to pay

e 10 for the first visit to a doctor in a calendar quarter. Children and teenagers up to

the age of 18 are exempt from co-payments. Moreover, there are also exemption rules

for adults. They can apply for an exemption by paying one or two percent of their

income in advance. Alternatively, they can choose a gate-keeping model. In this case

they often have to pay only e 10 a year but must visit a general practitioner (GP) first.

When more specialised care is required, the patients receive a referral from this GP.

The e 10 fee also covers additional doctor visits within a calendar quarter. So

it is a “per-quarter” fee, which is independent of the volume of services rendered in

connection with this or later visits within a quarter. This characteristic distinguishes

the co-payment from “per-visit” fees. The effects of a per-visit co-payment have been

analyzed in several studies (Roemer et al., 1975; Jung, 1998; van de Voorde et al.,

2001). For instance, Jung (1998) investigated the effects of implementing such a fee

in Korea. He found an remarkable decrease in the number of doctor visits and in the

probability of seeking medical care. The effects of a per-quarter co-payment, however,

should be different because this fee is not intended to affect all parts of the distribution.

It creates a new incentive to avoid the first visit to a doctor in a quarter. However, in

contrast to a per-visit fee, it generates no incentives to reduce the number of doctor

visits within a quarter once the fee is paid.

Additionally, co-payments for prescription drugs have been increased at the same

time as the introduction of the e 10 fee and this complicates the evaluation of the fee.

Prior to the reform, patients had to pay e 4 for small, e 4.50 for medium and e 5 for

large quantities of drugs. Since 2004 it has been a function of the retail price and the
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patient has had to bear 10% of the drug price. The co-payment amounts at least to

e 5 and at most to e 10. The effects of increasing co-payments for prescription drugs

on the demand for doctor visits were extensively investigated by Winkelmann (2004a,

2004b, 2006). He analyzed the influence of an earlier health care reform implemented

in 1997. The most radical element of this reform was the increase of co-payments for

prescription drugs (Winkelmann 2004a). All three studies found a link between the

propensity to visit a doctor and co-payments for prescription drugs. Therefore, the

health care reform of 2004 could affect the behavior of health care consumers through

both the increased prescription fees and the introduction of co-payments for doctor

visits. This study, however, introduces a method to disentangle these two effects and

to uncover the impact of the co-payment for doctor visits.

There are two studies dealing with the introduction of the e 10 fee. Both are based

on the German Socio-Economic Panel (GSOEP). Augurzky et al. (2006) tried to assess

the effect of the reform on the probability of seeing a physician using a differences-

in-differences approach. They compared statutory health insured participants with

privately insured persons, and youths, because the latter two groups are exempt from

the fee. Schreyögg and Grabka (2010) applied a similar estimation strategy. Further-

more, they used a zero-inflated negative binomial regression and a negative binomial

hurdle model to directly model the number of doctor visits. Both studies concluded

that the co-payment for doctor visits had failed to reduce the demand for doctor vis-

its and argued that this ineffectiveness stems from the fact that it is a per-quarter

fee. The present study, however, reveals that this characteristic does not make the fee

ineffective; rather, it is the reason why the effect cannot be observed in the GSOEP

using simple differences-in-differences approaches. In addition to a simple comparison

of physician visits over time between privately and statutorily insured individuals, this

study uses a second natural experiment that exploits exogenous variation in the day

of the interview. This allows me to disentangle the impact of the per-quarter fee from

the effects of other parts of the reform. Using this approach, I show that the reform

as a whole decreases the probability of visiting a physician by 5 percentage points.

The per-quarter fee causes at least half of this effect. To put things in perspective,

Winkelmann (2004a, 2004b, 2006) has already shown that an increase in prescription
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fees indirectly affects the demand for doctor visits, so it would come as a surprise if

fees for doctor visits had no direct effect on it.

This chapter is organized as follows. The next section describes the second natural

experiment which identifies the causal effect of the new fee. Section 3 explains the

data sets used in this analysis and the estimation strategies. Section 4 shows that the

co-payment alters the observable behavior in the survey data in a special manner. The

effect of the new fee can only be observed once the model accounts for the structure of

the data. Section 5 concludes.

1.2 Identification strategy

The GSOEP is an annual survey started in 1984 which, among other things, includes

a question about the number of visits to a doctor in the last three months before the

interview.1 Thus the observed three-month period depends on the day of the interview.

The interviews are conducted every day from January to October. This variation can

be used to identify the causal effect of the new fee if, depending on the day of the

interview, the participants are differentially affected by the fee. As already mentioned,

a special characteristic of the fee is that it must only be paid at the first visit in a

quarter. This characteristic makes it possible to identify random samples of the SHI-

insured population that are differently affected by the per-quarter fee. The following

example is to show that the probability of having to pay the e 10 fee and thus the

treatment level depends on the day of the interview.

By way of illustration, Figure 1.1 shows the reporting period for an interview con-

ducted at August 15th. The reporting period can be separated into two equal periods

- one period before and one period after the end of the calendar quarter (p2 and p3

in Figure 1.1). Period 1, on the other hand, is the unobserved part of the previous

calendar quarter. Since period 3 starts at the beginning of a new calendar quarter, all

respondents are affected by the per-quarter fee in period 3. However, the treatment

status in period 2 is less clear cut because participants do not have to pay the fee in
1 The question reads as follows: Have you gone to a doctor within the last three months? If yes, please
state how often.
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Figure 1.1: Decomposition of the reporting period and degree of misclassification
according to the AOK sample

the second period if they have already paid it in the first period. According to the 2004

claims data set, 56% of the population had already paid the fee in period 1 (see also

Figure 1.1). Hence, a large fraction of the population was indeed unaffected by the

new fee in period 2 which was a part of the reporting period. Previous research results

(e. g. Schreyögg and Grabka, 2010) were, however, based on a clear-cut treatment

status. They assumed that all participants in the GSOEP were equally affected by the

reform independent of the day of the interview. Hence, there was a misclassification in

the treatment level, which generally leads to an attenuation bias (Aigner, 1973). This

explains why previous studies did not find significant effects. In the next paragraph I

explain the underlying problem more formally and provide a solution to overcome it.
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The probability of at least one doctor visit within the reporting period can easily

be obtained by

Pr(y > 0) = 1− Pr(y = 0)

= 1− Pr(s2 = 0, s3 = 0)

= 1− Pr(s2 = 0)Pr(s3 = 0)

= 1− [Pr(s1 = 0, s2 = 0) + Pr(s1 > 0, s2 = 0)]Pr(s3 = 0) (1.1)

where the number of doctor visits in period pk is sk for k = 1, 2, 3 and the number of

visits in the reporting period is y = s2 + s3. For illustration purposes, I assume that

the doctor visits follow a Poisson process. This justifies the third equality because all

periods are disjoint time intervals. The Law of Total Probability then gives the fourth

equality. It separates the individuals into two groups. Firstly, the group of individuals

that had not visited a doctor in the first period and therefore had to pay the fee in the

second period. Secondly, the group of individuals that had visited a doctor in the first

period and thus had access to free visits in the second period. Compared to the years

before the reform, the out-of-pocket costs during period 2 were unchanged in the latter

group. This is the variation in the treatment level that I want to exploit in this study.

Whenever the reporting period differs from a calendar quarter, like in a survey,

there is a misclassification of the treatment status in a simple before-after comparison in

which all observations are considered as treated after the reform. Actually, Pr(s1 > 0)

is the probability of a false-positive treatment status in the second period. Since the

reporting period consists of period 2 and 3, I can observe the true reform effect only

if Pr(s1 > 0) = 0. The group of participants who were interviewed at the end of a

calendar quarter is the only group where I know for sure that this condition is true. I

therefore hypothesize that the true reform effect and in particular the causal effect of the

per-quarter fee can only be observed in the group of participants who were interviewed

at the end of a calendar quarter. To get rid of the misclassification problem, I use

different models that account for the day of the interview. The details of these models

are explained in the next section.
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1.3 Data and estimation

I use two separate data sets to verify my identification strategy. The primary source

of data is the GSOEP, which is an annual survey started in 1984. The second data

source is a claims data set from the largest German sickness fund. I have used this

data set to imitate a survey with two randomly assigned interview days. This enables

me to verify essential assumptions of my identification strategy that are untestable

with survey data. In the following, I finalize my identification strategy and state my

hypotheses. Then, I explain how the claims data set can be used to investigate the

validity of the assumptions.

I created a data set using the GSOEP and a data set using claims data from the

AOK. I selected a period of four years centered around the health care reform of 2004

and used the years 2002/03 to observe the behavior before the reform and 2005/06 as

post-reform years.2 The sample includes men and women aged 20 to 60. The basic

estimation strategy is to pool the data over the four years and evaluate the effect of the

fee on the probability of at least one visit to a doctor in the observed three months.3

I use linear probability models (LPM) to determine the effect of the reform. The

conditional probability of at least one doctor visit is Pr(y > 0|xk,w) = x′kβk +w′γ

where y is the number of doctor visits. The index k refers to different parameterizations

of the linear index x′β which have been estimated to evaluate the effect of the reform.

They are explained in more detail in the following paragraph. The vector w stands

for other characteristics controlled for in the regressions. It contains a second-order

polynomial in age, two indicators for self-reported health status, three indicators for

interview season and employment status. Furthermore, I include the variables female,

years of education, married, household size, welfare recipient and household income.4

The LPM have been estimated using different parameterizations. One current
2 The year 2004 has to be ignored because many interviews in the GSOEP take place in the first three
months and thus the observed three-month period lies partly in the pre- and post-reform time.

3 Generally, it is possible to analyze the effect on the number of visits using a count data model. In this
study, however, I am primarily interested in the binary decision whether an individual visits a doctor
or not because not visiting a doctor is the only way to avoid the fee.

4 In the claims data set I can observe only individuals’ age and gender.



Co-payments, demand for health care and response behavior 11

method to evaluate health care reforms in Germany is to compare privately and statuto-

rily insured persons with a differences-in-differences approach because privately insured

persons are unaffected by these changes. Under the assumption of a common trend

between privately and statutorily insured persons, this approach can identify the effect

of the entire reform only if this effect is independent of when the interview took place.

Here x′kβk is

x′1β1 = β1,1after + β1,2SHI + β1,3after * SHI (1.2)

where the variable after indicates the post-reform years and the variable SHI is an

indicator of whether a person is SHI-insured. The interaction between after and SHI

denotes a statutorily insured observation after the reform.

As hypothesized in section 1.2, SHI-insured participants in the GSOEP are, depend-

ing on the day of their interview, differently affected by the new fee. The estimation

strategy in equation (1.2), which has also been used in previous studies, ignores the

variation of the day of the interview which may lead to a misclassification of the treat-

ment status. The models discussed in the following use the information about the day

of the interview to assess the reform effect and in particular the causal effect of the

per-quarter fee:

x′2β2 = β2,1after + β2,2SHI + β2,3after * SHI * q + β2,4after * SHI * (1-q) (1.3)

where q measures the degree of misclassification which rises with decreasing overlap

between reporting period and calendar quarter. I use a dichotomous and a continuous

measure of the misclassification. In the latter case q is the distance of the day of the

interview to the nearest end of a calendar quarter and q = 0 indicates individuals

who were interviewed at the end of a quarter where the misclassification is zero. β2,4
therefore reveals the true reform effect. The assumption that the reform effect is

independent of the day of the interview can be rejected once β2,4 is significantly different

from β2,3. Additionally, it is possible to identify the reform effect by a dichotomous

variable that splits the participants into two groups - similar to the example discussed

in section 1.2. In group A the interview took place at the end of a quarter (plus or minus
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10 days).5 Group B contains the remaining sample.6 The results from the dichotomous

measure are very similar to the results from the continuous measure, indicating that

the misclassification in group A is close to zero. I therefore rely on the dichotomous

measure in the following analysis.

The final estimation strategy makes it possible to disentangle the influence of the

per-quarter fee from the effect of the contemporaneous increase of co-payments for

drugs. This is because group A and B are equally affected by the increase in prescription

fees but they are differently exposed to the new fee for doctor visits. The difference

between both groups is caused by some members of group B who had access to free

visits in the second period but who would have been induced to participate completely

if they had been interviewed at the end of a calendar quarter. The probability of having

to pay the fee is thus different between both groups and if the fee works, this will affect

each group’s demand for medical care differently. Here the analysis is very similar to

the estimation of a local average treatment effect (Imbens and Angrist, 1994). Using

only SHI-insured observations, the different trends can be estimated by

x′3β3 = β3,1after + β3,2A + β3,3after *A (1.4)

where β3,2 is expected to be zero since both groups are untreated before the reform.

The parameter β3,3 identifies the post-reform difference between both groups, which

is caused by the lower treatment level in group B. Furthermore, β3,3 should be larger

in magnitude in the sicker population because they visit a doctor on average more

often than healthy people. Hence, more of them have access to free visits and the

misclassification of the treatment status in the second period is higher, implying that
5 The group A indicator must contain some days around the end of a calendar quarter since too few
participants were interviewed exactly at the end of a quarter.

6 Schreyögg and Grabka (2010) apply a similar approach but do not use the variation of the day of the
interview to identify the causal effect of the new fee. They restrict their sample to those respondents
who gave their interview within 15 days before the end of a quarter. This classification, however,
incorrectly assigns persons to their group B that were interviewed close to the end of a calendar
quarter where the misclassification is close to zero - namely, those participants who were interviewed
at the beginning of a calendar quarter. This classification, thus, decreases the exogenous variation in
the degree of misclassification and it is not surprising that they only found slightly larger effects for
their group A.
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a larger fraction of individuals contributes to the identification.

There are two essential assumptions of my identification strategy. The first one

is that the distance to the end of a calendar quarter was assigned to each survey

participant in a way that can be considered as random. The evidence in the GSOEP

data strongly suggests a random assignment. Nevertheless, I additionally verify this

assumption using the claims data set. Here I can randomly split the sample to simulate

certain interview or reporting periods and compare the results of equation (1.4) with the

corresponding results from the GSOEP. The first “interview period” starts on July 1st

and ends on September 30th of each year, i.e. it covers a full calendar quarter. This is

group A in the claims data set. The “interview period” of group B is from May 16th to

August 15th of each year. I used the claims data set to calculate the number of doctor

visits in both “interview periods”. The second key assumption is that the probability

of visiting a doctor in the different interview periods would have been the same in the

absence of the new fee. Here seasonal fluctuations are a potential concern since both

“interview periods” are not completely overlapping. I used the 16 to 17 year olds to

investigate this assumption. Given a common trend, this group makes it possible to

separate seasonal effects, since people younger than 18 do not have to co-pay at all.

Hence, in the absence of seasonal effects there should be no difference between both

“interview periods” in the group of 16 to 17 year olds. The random assignment and

the absence of seasonal effects would suggest that there are also no differences between

both “interview periods” in the adult population – apart from the variation in the

probability of having to pay the fee.

1.4 Results

Table 1.1 shows that the per-quarter fee alters the observable behavior of the

SHI-insured persons in the GSOEP in a special manner. It displays the sample means

for the years before and after the reform grouped by whether or not the respondents

were interviewed at the end of a quarter. Interestingly, after the reform the share

of respondents with at least one doctor visit is significantly lower when participants

were interviewed at the end of a quarter (group A) compared to the second group of
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interviews which took place sometime in the middle of a quarter (group B). This is,

however, not the case before the reform. In both groups 64% visit their doctor at

least once in three months before the reform. The unconditional probability decreases

to 61.6% in group A after the reform, whereas it stays unchanged at around 64% in

group B. Apart from the stronger decline in group B, the results are very similar in the

claims data set from the AOK Hesse. Here I can also see a difference between group

A and B after the reform but no difference before the reform.

Table 1.1 also gives evidence that the distance to the end of a calendar quarter is

quasi-randomly assigned. There are namely no significant differences between group A

and B in important predictors of need for medical care. For instance, the average age

in the GSOEP is 40 in both groups and around 54% of the respondents are female.

Self-reported health (SRHS) is also very similar in both groups. In contrast to the

AOK Hesse data set, the assignment to both groups was not by definition random in

the GSOEP. Therefore it is here particularly important to see that there is neither a dif-

ference in the outcome before the reform nor any differences in important explanatory

variables.

In this paragraph I verify my identification strategy using the claims data set.

Table 1.2 compares and contrasts the estimation results from the GSEOP data with the

results from the AOK claims data. The corresponding estimation strategy is described

in equation (1.4). The first two columns are based on the survey data, the third

column shows the corresponding results from the claims data set and the last column

shows the results for the 16 to 17 year olds which allows me to separate potential

seasonal effects. There are some differences between the survey data and the claims

data set. Firstly, while I can observe many potential covariates in the survey, I only

observe individuals’ age and gender in the claims data set. For comparison reasons,

the covariates in Table 1.2 are thus restricted to a second-order polynomial in age and

a gender indicator. Secondly, while the individuals in the claims data set are insured

with AOK, the survey participants can be insured in all existing statutory sickness

funds. This is particularly important because if someone is SHI-insured, he can choose

between all statutory sickness funds. As a result, the risk pool of AOK may differ

from the other sickness funds. According to official figures, AOK insurees are slightly
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Table 1.1: Group means before and after the reform

GSOEP AOK Hesse
2002 & 2003 2005 & 2006 2002 & 2003 2005 & 2006

At least one doctor visit 0.640 0.616 0.658 0.581
0.640 0.642 0.659 0.610

Age 39.77 40.36 40.62 40.86
39.94 40.65 40.69 40.96

Female 0.532 0.548 0.471 0.480
0.534 0.543 0.477 0.485

SRHS (1: very good, ..., 5: very bad) 2.475 2.529
2.495 2.525

Education in years 11.75 12.01
11.82 11.90

Married 0.626 0.616
0.620 0.594

Household size 3.063 3.024
3.035 2.955

Welfare recipient 0.037 0.053
0.038 0.069

Ln(income) 7.719 7.767
7.695 7.695

Observations 3,680 3,430 152,086 147,923
19,664 16,770 152,091 147,563

Only SHI-insured observations are used in the GSOEP sample (Group A / Group B).
Note: The lower fraction of women in the AOK Hesse sample is in accordance with official figures. See e.g.
“GKV-Versicherte nach Alter und Wohnort GKV-Statistik KM6 zum 1. Juli 2005”, Federal Ministry of Health.

older than the entire population.7 Therefore I also provide the estimation results for

the group of survey participants who are insured with AOK (see column 2). Finally,

there is a regional difference. While all individuals in the claims data set live in Hesse,

the GSEOP is a German-wide survey. However, I do not believe that this affects

the comparability of both samples since Hesse is a large federal state and certainly

representative of Germany.

The results are striking. Although I randomly split the claims data set into two

groups, there is a significant difference in the probability of visiting a physician be-

tween these two groups after the reform which was not the case before the reform (see

column 3 of Table 1.2). On the other hand, splitting the 16 to 17 year olds into two

groups with different “interview periods” does not lead to a significant difference (see

column 4), indicating that the effect on the adult population is not due to seasonal
7 Source, available only in German: "GKV-Versicherte nach Alter und Wohnort GKV-Statistik KM6
zum 1. Juli 2005", Federal Ministry of Health.
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Table 1.2: Estimation results from the different data sets

GSOEP GSOEP AOK Hesse
AOK only 20-60 16-17

Age/10 -0.0861 -0.0475 -0.1473 0.3875
(0.0185) (0.0326) (0.0051) (0.0542)

Age2/100 0.0161 0.0135 0.0234
(0.0023) (0.0040) (0.0000)

Female 0.1495 0.1583 0.1719 0.1654
(0.0058) (0.0102) (0.0016) (0.0061)

After -0.0024 -0.0064 -0.0523 -0.0130
(0.0047) (0.0085) (0.0016) (0.0086)

A 0.0015 0.0143 0.0011 -0.0105
(0.0085) (0.0147) (0.0020) (0.0088)

After x A -0.0260 -0.0382 -0.0279 -0.0076
(0.0123) (0.0217) (0.0023) (0.0122)

Observations 43,544 13,760 599,663 27,763
Dependent variable: at least one doctor visit. Parameter estimates
after separate linear regressions using only SHI-insured observations.
Cluster-robust standard errors in parentheses.

fluctuations. While the post-reform difference in the adult population is significant,

the pre-reform difference between both groups is not. This is the expected result when

the group assignment is random and when there are no seasonal differences between

both “interview periods” in the years before the reform. Given the random assignment

in the claims data set and the likely absence of seasonal influences, I therefore conclude

that the post-reform difference stems from the variation in the probability of having

to pay the new fee as hypothesized in section 1.2.

These results are very similar in the survey data set indicating that my identification

strategy also works in the GSOEP. But while the decline in group B, which can be

interpreted as the general effect of the reform, is about 5.2% in the claims data set, it

is insignificant in the survey data set. Given the accuracy of the claims data set, this

may point to a survey effect in the response behavior of the participants. The estimates

from the differences-in-differences regression, which are discussed in more detail later

in this study, strengthen this suggestion. They reveal an overall effect of 4.2-5.4% in

the GSOEP sample (see Table 1.3). This is distinctly larger than the overall effect of

2.8% in the GSOEP sample reported in Table 1.2, and also closer to the overall effect

of 8.0% in the AOK sample. The following part of the results is based on the GSOEP
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Table 1.3: Estimation results from the GSOEP data set

full sample if A = 1
Age / 10 -0.0982 -0.0984 -0.0981 -0.0529

(0.0179) (0.0179) (0.0179) (0.0392)
Age2/100 0.0123 0.0123 0.0123 0.0073

(0.0022) (0.0022) (0.0022) (0.0047)
Female 0.1350 0.1351 0.1350 0.1413

(0.0058) (0.0058) (0.0058) (0.0120)
Education / 10 0.0791 0.0795 0.0792 0.0910

(0.0110) (0.0110) (0.0110) (0.0230)
Married 0.0293 0.0292 0.0293 0.0311

(0.0065) (0.0065) (0.0065) (0.0141)
Household size -0.0247 -0.0247 -0.0248 -0.0232

(0.0024) (0.0024) (0.0024) (0.0052)
Good health -0.1691 -0.1693 -0.1692 -0.1780

(0.0053) (0.0053) (0.0053) (0.0121)
Bad health 0.1629 0.1628 0.1628 0.1520

(0.0061) (0.0061) (0.0061) (0.0144)
Welfare recipient -0.0114 -0.0117 -0.0116 -0.0282

(0.0134) (0.0134) (0.0134) (0.0340)
Ln(income) 0.0375 0.0376 0.0377 0.0313

(0.0058) (0.0058) (0.0058) (0.0129)
After 0.0146 0.0135 0.0141 0.0128

(0.0118) (0.0118) (0.0118) (0.0296)
SHI 0.0312 0.0316 0.0314 0.0474

(0.0104) (0.0104) (0.0104) (0.0238)
After x SHI -0.0226 -0.0537

(0.0125) (0.0314)
q is continuous dichotomous

After x SHI x q -0.0082∗ -0.0184∗
(0.0136) (0.0126)

After x SHI x (1-q) -0.0417∗ -0.0430∗
(0.0143) (0.0146)

Observations 49,326 49,326 49,326 8,084
Dependent variable: at least one doctor visit in the reporting period.
Models also account for seasonal effects and employment status.
Cluster-robust standard errors in parentheses.
∗ The parameter estimates are significantly different at the 1%-level.

data because in this data set I can take advantage of the richer set of covariates and

moreover can observe the privately insured as an additional contemporaneous control

group.
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Table 1.3 displays the average marginal effects of the probit regressions that com-

pare privately and statutorily insured individuals. Most effects are very similar to those

found in Winkelmann (2004a). The probability of visiting a doctor is u-shaped in age

and women are more likely to see a physician than men. The effects of education and

household size are larger in the present study and married persons are somewhat more

likely to visit a physician in Winkelmann’s sample. The estimation strategy in the first

column is a simple differences-in-differences approach conditional on covariates (see

equation (1.2)). According to these estimates, the reform leads to a slight decrease in

the probability of visiting a physician in the group of SHI-insured persons. It is only

weakly significant at the 10%-level despite the large sample size. This result is in line

with previous research which concluded that the per-quarter fee had failed to reduce

the demand for doctor visits (Augurzky et al., 2006; Schreyögg and Grabka, 2010).

However, this conclusion changes once the reform effect can vary with the degree of

misclassification as in equation (1.3) (compare columns 2 and 3 of Table 1.3). Now,

there is a strong and highly significant reform effect in both models given the misclassi-

fication is close to zero, i.e. q = 0. Figure 1.2 displays the reform effect over the entire

Figure 1.2: Average marginal effects for each day of the interview (GSOEP)
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range of q. The average marginal effect of the reform is significantly stronger at the

end of a calendar quarter, while I wrongly assume that the reform effect is constant in

the simple differences-in-differences regression in equation (1.2). Comparing the reform

effect at the end of a calendar quarter with the effect in the middle of a quarter, allows

me to assess the effect of the per-quarter fee. According to Figure 1.2, at least half

of the reform effect is caused by the per-quarter co-payment for doctor visits. The

underlying estimates are significantly different at the 1%-level (see Table 1.3).

The model in the first column of Table 1.3 is inappropriate to evaluate the new

co-payment for doctor visits. It assumes that the reform effect is independent of when

the interview took place although GSEOP participants are differently affected by the

new fee. Column 4 shows the estimation results for the group of participants who

were interviewed around the end of a quarter. The misclassification is almost zero in

this group. Here there is a significantly stronger decline in the probability of visiting

a physician in the group of statutorily health insured individuals than in the group

of privately insured. The average reform effect is -0.054 which is very similar to the

results from the second and third column (-0.042 and -0.043). The reform effect in

column 4 is, however, less significant, which is probably due to the distinctly smaller

sample size.

An important result of this study is that the true reform effect can only be found if

the reporting period is a full calendar quarter. Table 1.4 reports the estimation results

for equation (1.4) which compares the different trends between participants interviewed

around the end of a calendar quarter with the remaining sample. The estimation

strategy in Table 1.4 is the same as in Table 1.2 but in the former table I only use the

GSOEP data set and can thus take advantage of the richer set of covariates. According

to the last row of Table 1.4, there is a significantly stronger decline in the probability

of visiting a doctor in group A than in group B, similar to the results in Table 1.2.

The post-reform difference between group A and B should be larger in the group of

sick people, because they are more likely to visit a doctor in the unobserved period

than healthy people. Thus, a larger fraction of them has had access to free visits and

contributes to the identification. The upper panel in Table 1.4 shows the estimation

results of equation (1.4) and the sample means of the outcome variable grouped by
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Table 1.4: Comparison of trends for different subgroups of the population (GSOEP)

Pre-reform
Regressions Parameter estimates Number of Probability
conditional on SRHS After A After x A doctor visits of any use Obs.
very good 0.0277 0.0009 0.0239 0.99 0.43 4,075

(0.0169) (0.0289) (0.0429)
good -0.0018 0.0013 -0.0392 1.35 0.56 20,138

(0.0076) (0.0129) (0.0186)
satisfactory -0.0156 0.0156 -0.0253 2.49 0.72 13,525

(0.0084) (0.0152) (0.0210)
poor -0.0021 0.0341 -0.0675 5.02 0.88 4,769

(0.0112) (0.0179) (0.0275)
bad 0.0122 -0.0014 -0.0717 9.35 0.94 1,030

(0.0171) (0.0295) (0.0466)

Entire sample -0.0028 0.0084 -0.0314 2.24 0.64 43,544
(0.0047) (0.0085) (0.0120)

Dependent variable: at least one doctor visit in the reporting period.
Parameter estimates after separate linear regressions using only SHI-insured observations.
Covariates are the same as in Table 1.3. Cluster-robust standard errors in parentheses.

self-reported health status. The rise in the probability of visiting a doctor at least once

and in the number of doctor visits indicate that the group of individuals with access

to free visits increases with decreasing health status. As expected, the point estimate

for the post-reform difference between group A and B is largest in the sick population.

However, it is not significant (p-value=0.124) which might be caused by the distinctly

smaller sample size. Apart from the group which reports a satisfactory health status,

the point estimate rises in magnitude with decreasing health status. This indicates

that the sicker population contributes more to the identification, which might be due

to a true reduction in demand for medical care. However, since sick people have a

high need for medical care, it is unrealistic that they permanently reduce their visits

to zero in order to avoid paying e 10 per quarter. The difference between both groups

in the sicker population may therefore also be caused by a second effect of the fee. It

may have generated an incentive to cluster a given level of care in as few as possible

calendar quarters. So once people have access to free visits, they may be tempted to

group their visits into this quarter. This would affect the observable behavior in group

B stronger because some members of group B are exempt from the fee already at the

beginning of their reporting period. The post-reform difference between both groups
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could therefore also be caused by an incentive to cluster visits. Such a behavior would

also lead to a larger variance in the number of doctor visits. In the claims data set

there is indeed an increase in the variance after the reform. While the sample variance

was 26.7 before the reform, it rises to 30.5 after the reform. I will investigate this issue

in more detail in a follow-up analysis.

1.5 Conclusion

This study exploits exogenous variation in the day of the interview to assess the effect of

a per-quarter fee for doctor visits on utilization. This approach is appealing because it

compares random samples of the SHI-insured population that are differentially affected

by the new fee. Therefore, a differences-in-differences regression makes it possible to

disentangle its influence from potential macro effects. In particular, it separates the

influence of the fee from the effect of the contemporaneous increase of co-payments for

drugs.

The key contribution of this study is to show the necessity of comparing full quarters

before and after the reform to assess the effect of the 2004 health care reform. Otherwise

the treatment status is not clear-cut since some statutorily insured individuals have

had access to free visits after the reform. Ignoring this leads to an underestimation of

the reform effect due to a misclassification of the treatment status. The attenuation

bias increases with decreasing overlap between reporting period and calendar quarter.

The majority of participants in the GSOEP, however, has not been interviewed at the

end of a calendar quarter and their treatment status is thus subject to misclassification.

The true effect of the fee is therefore diluted in a simple before-after comparison.

The present study overcomes this problem by accounting for the misclassification.

The probability of visiting a physician is significantly influenced by the health care

reform of 2004. It decreased by around 5 percentage points. Due to my identification

strategy, I can attribute at least half of this effect to the per-quarter fee for doctor

visits.



Chapter 2

Heterogeneous effects of a nonlinear price schedule

for outpatient care†

2.1 Introduction

Nonlinear price schedules are a common feature of many health insurance systems.

Nonlinearities often arise due to deductibles or combinations of co-payments and

maximum out-of-pocket amounts. In order to increase cost consciousness the insured

have to bear part of their health care costs. But once the sum of out-of-pocket expen-

ditures exceeds a certain amount, co-payments for further health care use decrease or

even drop to zero. Economic theory predicts that not all insured react to co-payments

in the same way if the latter are combined with maximum out-of-pocket amounts.

Instead, individuals’ price sensitivity is predicted to depend on expected future health

care use, which naturally varies between individuals. For example, in a price schedule

where costs drop to zero once out-of-pocket expenditures exceed a certain amount,

individuals who expect that their out-of-pocket expenditures will exceed the maximum

amount have little incentive to reduce care today. They will likely have to pay the

same overall amount independent of their health care use today (Keeler et al., 1977;

Ellis, 1986).
† This chapter is joint work with Amelie Wuppermann. Peter Ihle, Ingrid Schubert and Joachim Winter
also participate in the project but are not co-authors of this chapter.
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In this study, we provide an empirical example for these theoretical considerations.

One of the challenges in this type of analysis is that individuals’ expectations on future

health care use are unobserved. In earlier studies this problem has been solved by pre-

dicting the missing information based on observable characteristics or prior health care

use (see Ellis, 1986; Contoyannis et al., 2005; Meyerhoefer and Zuvekas, 2010). In this

study, we present results that are in line with the theoretical predictions without con-

structing expectations. Instead, we allow for heterogeneous effects of the introduction

of a nonlinear price schedule in a finite mixture model. In this model, we can estimate

reactions for different classes of individuals without having to specify a priori which

individual belongs to which class. We thus do not need to observe expected health care

use a priori.

For our analysis, we use exogenous variation in the price schedule introduced by a

recent reform of the German statutory health insurance system. The statutory health

insurance is the public health insurance system in Germany that is mandatory for most

employees and covers around 90% of the German population. In 2004, a nonlinear

price schedule for doctor visits was introduced in this system. Before 2004 the publicly

insured did not have to co-pay for doctor visits. Since 2004, they have to pay a fee

of e 10 for the first visit to a doctor in each calendar quarter. Additional visits in

the same quarter are free of charge. The consumer price thus drops from e 10 to e 0

after the first doctor visit in a quarter. This per-quarter fee should mainly affect the

decision of a first visit in a quarter, because it is the first visit that determines whether

the fee has to be paid. Additional visits within one quarter do not change the overall

costs.1 We therefore focus on the question whether the reform affected the probability

of at least one visit in a quarter. We call this access to outpatient care.

Due to the nonlinearity in the price for doctor visits introduced by this reform, we

expect that whether individuals change their behavior following the reform depends

on individuals’ expectations of health care use which in turn depend on their health

status. For individuals who expect that they will likely have to visit a doctor within the

next three months, access to outpatient care might not change. Healthy individuals,
1 Of course, individuals could try to fit as many visits as possible into one quarter once the first visit
has taken place in order to avoid paying the fee in later quarters. We focus on this possible heaping
of visits in a follow-up analysis.
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however, might expect that they can avoid paying the fee and the probability of no

doctor visits might increase.

The literature that focuses on the effect of the specific reform of the German statu-

tory health insurance delivers mixed results. Augurzky et al. (2006) and Schreyögg and

Grabka (2010) find that the reform had essentially no effect on the health care use of

the statutorily insured in the German Socio-Economic Panel (GSOEP). Using the same

data set Farbmacher (2009), on the contrary, presents evidence according to which the

statutorily insured on average reduced their propensity to visit a doctor. Farbmacher’s

results are in line with Rückert et al. (2008) who find that individuals surveyed in the

Bertelsmann Healthcare Monitor report avoiding and delaying doctor visits. We add

to this literature in two ways. First, we use a new data set for our analysis. Our data

is based on health insurance claims from the largest German sickness fund. The main

advantage compared to survey data is that we reliably observe doctor visits. Second,

we are the first to take into account that the newly introduced per-quarter fee has

an implicit deductible structure. We therefore focus on heterogeneous effects in our

analysis.

Our results indicate that the average probability of no doctor visit significantly

increases after the reform by about 4 percentage points. This result is in line with

Rückert et al. (2008) and Farbmacher (2009) and indicates that the reform affected

access to health care on average. Furthermore, we find evidence for heterogeneous

effects that are in line with the theoretical considerations by Keeler et al. (1977): The

results of our finite mixture model indicate that for about 36% of individuals access

to outpatient care is not changed by the reform. Among the remaining individuals, on

the contrary, access decreases significantly after the reform. Post-estimation analyses

further indicate that the individuals who do not react to the reform are sicker than the

others. They might not react to the new co-payment because they expect that they

cannot avoid paying the fee due to their health status, i.e. they assume to have at least

one visit in a quarter anyway.

While our results indicate that the per-quarter fee is successful in influencing the

healthier individuals’ behavior, sicker individuals do not react to the fee. Following an

idea proposed by van Kleef et al. (2009), we suggest to change the timing of the fee for
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sick individuals: Instead of a fee that is due for the first visit in a quarter, which sick

individuals cannot avoid due to their health status, individuals should get a certain

number of free visits before the fee applies. The number of free visits should ideally be

individual specific and depend on the unavoidable number of visits. As this is difficult

to reliably observe, characteristics that are not easily influenced by an individual, such

as age and sex, could serve as criteria. Our analysis suggest that women up to the age

of 50 should for example get one visit for free, while men in the same age group should

continue to pay at the first visit.

This chapter is structured as follows: The next section describes the health care

reform in more detail. Section 3 introduces the data set and Section 4 explains our

estimation strategy. In Section 5 the results are presented. Section 6 contains a dis-

cussion of the results and Section 7 concludes.

2.2 Incentive effects of the reform

The health care reform that we analyze became effective at the beginning of the year

2004. With this reform various financial incentives have been implemented in the

German statutory health insurance with the intend to increase patients’ cost con-

sciousness which may help to reduce moral hazard. The most radical element of the

reform has been the introduction of a per-quarter fee for doctor visits. While patients

did not have to co-pay for doctor visits before the reform, they have to pay e 10 for the

first visit to a physician in each quarter of the year since the reform in 2004. Further

doctor visits to the same doctor within this quarter are free of charge. Visits in the

same quarter to other doctors are also exempt from the fee if the patient gets a referral

by the doctor whom he visited at first. Alternatively, patients can visit other doctors

without referral and pay the fee again.

Additional parts of the reform have been an increase in prescription fees and the

abolishment of the possibility to prescribe over the counter medications. Since 2004

the patients have to copay at least e 5 and at most e 10 for their drugs - depending

on the drug price. The pre-reform prescription fees were between e 4 and e 5. Thus

in the best case there has been no increase in prescription fees while the increase in
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fees could have been up to 150% in the worst case. Furthermore, the sickness funds no

longer pay for eyeglasses and visual aids. Figure 2.1 shows the changes in Germany’s

consumer price index for medical care. The reform has permanently increased the

prices for medical care. According to this index, it has been the largest health care

reform in Germany for more than a decade.

 

Figure 2.1: Germany’s consumer price index for medical care
Source: German Federal Statistical Office, own visualization

The per-quarter fee for doctor visits was the central element of the reform and

attracted a lot of attention in the media. We are mainly interested in its effect on

the probability of visiting a physician. As paying the fee can only be avoided by not

visiting any physician within a quarter, it should mainly affect access to outpatient

care where access is measured as the probability of at least one visit to any type of

physician.

The per-quarter fee has introduced a nonlinearity in the price schedule. The reason

for this is its implicit deductible. It has to be paid only at the first visit in a calendar

quarter. Hence, given a referral the patient’s price for doctor visits drops to zero after

the first visit. This nonlinearity generates varying incentives depending on the individ-

ual’s health status. Keeler et al. (1977), for instance, show that under uncertainty a

rational individual facing a deductible will not base decisions on nominal prices. The

authors instead argue that “the greater the chance that future expenditures will exceed

the deductible, the cheaper today’s visit to the doctor”. A rational individual will thus

anticipate that the price drops to zero at a certain consumption level. In the German
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case the intertemporal effect on prices is relatively easy to assess because it only de-

pends on individuals’ knowledge about their probability of visiting a physician in the

next three months. In the extreme case their behavior is unaffected by the per-quarter

fee once they know that they have to visit a doctor in a certain calendar quarter (e. g.

to get a new prescription of a medicine for a chronic disease). The effective price for

doctor visits is thus lower for individuals with chronic conditions. Hence, if demand

for outpatient care depends on effective prices, we expect a weaker decrease in demand

for individuals with high risks of doctor visits than among low risk individuals. In this

argument we assume that individuals still visit doctors in case of major conditions and

take medically indicated drugs (e.g. to treat chronic diseases) despite the increase in

co-payments. This assumption can be justified by the low co-payment level. Generally,

individuals in Germany will not get into severe financial troubles due to out-of-pocket

expenditures.

2.3 Data

The analysis is based on insurance claims data from the largest German sickness fund in

the years 2002 to 2005. The data contains information on a 18.75% random subsample

of all individuals in the German state of Hesse who are insured with this sickness fund.

At the beginning of each year a sample refreshment is taken in order to keep the sample

representative for the insured population.2

The data contains information on doctor visits, the type of doctor visited, diagnoses

made at each visit measured in ICD-10 codes and prescribed medications. As we are

interested in the reactions to the introduction of the per-quarter fee, which can only be

avoided by not visiting any physician within a quarter, we aggregate the information

in the claims data to the quarterly level. Furthermore, we group information on the

different doctor visits into visits to general practitioners (GPs) and visits to specialists.

The data then contains information on the number of GP visits per quarter and the

number of specialist visits per quarter for each individual.
2 See http://www.pmvforschungsgruppe.de/content/02_forschung/02_b_sekundaerd_1.htm for a short
description of the data in German.
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The main advantage of using claims data compared to survey data is that doctor

visits are reliably observed. However, the only information on individuals’ health that

is contained in the data comes from the diagnosis codes and prescription drugs. This

information is only available for individuals who have seen a doctor. Independent of

doctor visits only information on age and sex is available. A disadvantage of the data is

thus that it only contains few observables that do not depend on whether an individual

has visited a doctor.

An additional drawback is that the data set consists only of publicly insured in-

dividuals and therefore includes no adults for whom nothing has changed due to the

reform and who could thus serve as a control group in our analysis. Only individuals

younger than 18 are generally exempt from paying the per-quarter fee. They, however,

may not be suitable as a control group for the entire adult population.3 We thus revert

to before-after comparisons to identify the effects of the reform in the adult popula-

tion. Our results therefore rely on the assumption that in the absence of the reform

no changes in health care use would have occurred or that if there were changes they

were not considerably large.

Our sample is further restricted to all individual-quarter pairs for which we observe

the use of outpatient services within the entire quarter. Individual-quarter pairs are

excluded, for example, if the individual switches from or to a different insurer within

the quarter. This ensures that the length of the period at risk is the same for each

observation.

Table 2.1 shows descriptive statistics for the third quarter of each year.4 The average

age is almost unchanged over time reflecting the conducted refreshments of the sample.

The average number of doctor visits in our sample is around 4.5 per quarter. On average

individuals visit a GP a little less than once a month and a specialist 1.7 times per

quarter. This in international comparison relatively high use of physician services is in

line with information from other data on doctor visits in Germany (see Grobe et al.,

2010).

While the average number of doctor visits per quarter does not show a clear change
3 This feature of the reform suggests a natural division in treatment and control group among teenagers.
We conduct a difference-in-difference analysis for teenagers in a follow-up study.

4 The descriptive statistics are very similar for all quarters of the year.
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Table 2.1: Descriptive statistics

3Q 2002 3Q 2003 3Q 2004 3Q 2005
Variable Mean SD Mean SD Mean SD Mean SD
Age 51.87 18.71 52.16 18.75 52.31 18.81 52.17 18.88

19-39 0.31 0.46 0.30 0.46 0.29 0.46 0.29 0.46
40-59 0.31 0.46 0.31 0.46 0.32 0.47 0.33 0.47
60-79 0.31 0.46 0.31 0.46 0.31 0.46 0.30 0.46
≥ 80 0.07 0.26 0.08 0.27 0.08 0.27 0.08 0.27

Female 0.52 0.50 0.52 0.50 0.52 0.50 0.52 0.50
# GP visits 2.77 4.12 2.75 4.11 2.77 4.16 2.85 4.33
GP>0 0.63 0.48 0.63 0.48 0.60 0.49 0.59 0.49
# GP visits truncated at 0 4.43 4.45 4.40 4.45 4.65 4.51 4.83 4.72
# Specialist visits 1.75 3.65 1.70 3.49 1.63 3.57 1.71 3.73
Specialist>0 0.46 0.50 0.46 0.50 0.42 0.49 0.42 0.49
# Specialist visits truncated at 0 3.83 4.60 3.70 4.37 3.89 4.64 4.05 4.85
GP= 0 & Specialist = 0 0.27 0.44 0.27 0.44 0.33 0.47 0.33 0.47
N 256,071 249,851 246,379 248,328

after the reform, two possible effects of the increased co-payments become evident in

Table 2.1. Between 2003 and 2004, the fraction of individuals with at least one GP

visit and the fraction with at least one specialist visit in the third quarter both decline,

from 63% to 60% for GPs and from 46% to 42% for specialists. Individuals thus seem

to avoid to contact either type of doctor after the reform.

As the co-payment can only be avoided by seeing neither type of physician, we

are particularly interested in how the probability of no doctor visit within a quarter

changed after the reform. Information on this is contained at the bottom of Table 2.1.

While in the third quarter of 2002 and 2003, roughly 27% of the sample visit neither

a GP nor a specialist, this is the case for 33% of individuals in the years after the

reform. The average probability of no doctor visit per quarter thus increases by about

6 percentage points after the reform.

The change in the probability of no doctor visit in 2004 compared to 2003 is also

depicted in Figure 2.2. This figure shows the changes in the third quarter of 2004

compared to 2003 separately for men and women in different age groups and in different

health status. The health status is captured by the Charlson Index (Charlson et al.,

1987). This index is based on 17 diseases identified from the diagnosis codes available

in our data set. Each disease is assigned a weight between 1 and 6 depending on disease
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Figure 2.2: Changes in the probability of no doctor visit by age and Charlson index

severity.5 The Charlson Index is the sum of these weights, truncated at 2. A value of

0 thus indicates that an individual had no diagnosis of any of the Charlson conditions

and a value of 1 or 2 indicates the presence of more severe co-morbidities.

As the Charlson Index is based on diagnosis codes and those codes are only available

if an individual has seen a doctor, the Charlson Index is endogenous. In order to

mitigate this problem, we construct the Charlson Index for the observations in the

third quarter of each year based on their diagnoses in the two prior quarters. For

example, the “Charlson 0” group in 2003 contains all individuals who had no diagnoses

of Charlson conditions in the first two quarters of 2003.

Figure 2.2 presents evidence for heterogeneous effects across the different groups.

The probability of no doctor visit generally increases after the reform with similar

magnitude for both genders. These increases are much smaller for individuals with a

Charlson Index of 2 than for the other groups. Sicker individuals thus seem to react

less to the reform than healthier ones. This holds true for all age groups and both

genders. Furthermore, there is some evidence that women who are older than 70 react

less to the reform than younger women conditional on the Charlson group. For men

there is no clear age pattern.

Overall, Figure 2.2 indicates that the change in the probability of no doctor visit

is stronger for healthy than for less healthy individuals. These descriptive results,
5 A list of the diseases and corresponding weights is displayed in Appendix A.1.
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however, rely on an endogenous measure of health. In order to test our hypothesis of

heterogeneous results without having to rely on the health information in the data,

we use a finite mixture model. This model allows us to estimate different effects for

separate groups in the population without having to explicitly stratify the data by

observable characteristics a priori.

2.4 Econometric framework

Our data consists of a panel of individuals across time and across different physician

types. Individuals can seek care from GPs (y1it) and/or specialists (y2it). The panel is

unbalanced over time, and each individual i is observed in Ti quarters. Over time and

physician types, individual i is thus observed 2 · Ti.
Suppose that individual i belongs to a latent class j for the entire observational pe-

riod. The probability of belonging to class j is πj. Within a latent class, we use bivariate

probits to jointly model the decision to visit a GP and/or a specialist. Although we are

mostly interested in whether individuals visit any doctor within a quarter, independent

of the type of doctor visited, we use the separate information on GPs and specialists in

order to gain potentially relevant information. This additional information might allow

a more accurate classification of individuals into latent classes. The joint probability

of the dependent variables over the observed period is the product of Ti independent

probabilities, given fixed class membership, i.e.,

Pr(y1i, y2i|xi, θj) =

Ti∏
t=1

Φ2[(2y1it − 1)xitβj, (2y2it − 1)xitγj, (2y1it − 1)(2y2it − 1)ρj](2.1)

where Φ2() stands for the cumulative bivariate normal distribution function and xi

denotes the vector of covariates that includes age, sex, seasonal fixed effects and year

fixed effects. θj contains the vector of parameters for GP visits (βj), the vector of

parameters for specialist visits (γj), and the parameter ρj. The latter indicates the

extent to which the errors in the underlying structural model covary.
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The log-likelihood function is given by

ln(L) =
I∑
i=1

ln

(
J∑
j=1

πjPr(y1i, y2i|xi, θj)

)
(2.2)

where I is the number of individuals in the dataset and J is the number of latent classes.

The likelihood function is maximized directly using the Newton-Raphson algorithm.

First and second derivatives are calculated numerically in Stata’s optimization pack-

age. In order to get a manageable data set for this estimation, we use a 3% random

subsample for this part of our analysis. This gives us on average a little more than

7,500 individuals per quarter.

For the interpretation of our results we calculate average marginal effects of the

variables in xi on Pr(y1i = 1|xi, θj) and Pr(y2i = 1|xi, θj). Standard errors of the

marginal effects are calculated using the delta method. As the reform effect is captured

by changes in the probability of no doctor visit, we also calculate marginal effects on

the probability of no doctor visit, i.e. on Pr(y1i = 0, y2i = 0|xi, θj).6

Furthermore, we calculate posterior probabilities of membership in the different

latent classes for each individual i as

Pr(y1i, y2i ∈ k|xi, θ̂) =
π̂kPr(y1i, y2i|xi, θ̂k)∑J
j=1 π̂jPr(y1i, y2i|xi, θ̂j)

(2.3)

where Pr(y1i, y2i|xi, θ̂k) is defined as in equation (2.1).

These posterior probabilities on the one hand help to see how well the different latent

classes are separated by the estimation. On the other hand, one can assign individuals

to a specific latent class based on their posterior probabilities and then characterize

each latent class using observable characteristics. In addition to the variables age and

sex that are included in xi we use the health information contained in the claims data

in this part of the analysis. As this information is only available conditional on doctor

visits we do not include it in the vector of control variables and it is thus external to

the estimation.
6 See Appendix A.2 for details.
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2.5 Results

Table 2.2 reports AIC and BIC information criteria for the finite mixture bivariate

probit model described in the last section with different number of latent classes. In

addition to finite mixture models with 2, 3, and 4 latent classes we estimated a standard

one-component bivariate probit model. Estimations with more than 4 latent classes

failed to converge and are likely overparameterized. The information criteria displayed

in Table 2.2 indicate that the model with 4 latent classes fits the data best. Further-

more, the posterior probabilities for the four latent classes are well separated as the

figure in Appendix A.3 shows. We therefore focus on the results of this model.

Marginal effects and their standard errors based on the results of our finite mixture

bivariate probit model with 4 latent classes are reported in Table 2.3. In addition to

the marginal effects in the different latent classes, Table 2.3 displays the overall effects

that are derived as weighted averages of the effects in the different latent classes. As a

comparison, the last column of Table 2.3 reports marginal effects and standard errors

based on the standard bivariate probit model.

The overall marginal effects and the marginal effects of the standard bivariate probit

model have the same signs and are similar in magnitude. Women have a higher prob-

ability to visit a GP and to visit a specialist at least once in a quarter than men. The

probability to visit a GP at least once increases with age, particularly so for individ-

uals aged 40 to 60. The probability to visit a specialist at least once only increases

for individuals in this age group. The probabilities to visit either type of doctor at

least once are lower in the summer months (quarter 2 and 3) and higher in the last

quarter compared to the first quarter of a year. Overall, the marginal effects thus show

expected signs.

Table 2.2: Model selection

Model N LogL df AIC BIC
Bivariate Probit 120,521 -148,116.6 25 296,283 296,526
2 LC FMM Bivariate Probit 120,521 -130,342.6 51 260,787 261,282
3 LC FMM Bivariate Probit 120,521 -122,594.1 77 245,342 246,089
4 LC FMM Bivariate Probit 120,521 -118,899.9 103 238,006 239,005
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Table 2.3: FMM bivariate probit – marginal effects

LC 1 LC 2 LC 3 LC 4 Overall BiProbit
GP
Female 0.028** 0.016 0.041** 0.082* 0.037*** 0.067***

(0.010) (0.016) (0.013) (0.035) (0.009) (0.007)
Age Splines

Age 19-40 0.003*** 0.002 0.003** 0.001 0.003*** 0.002***
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Age 40-60 0.002 0.002 0.007** 0.006 0.004** 0.007***
(0.002) (0.003) (0.002) (0.005) (0.001) (0.001)

Age 60-80 -0.001 -0.001 -0.005 -0.009 -0.003 0.000
(0.003) (0.008) (0.004) (0.013) (0.003) (0.001)

Age > 80 -0.003 0.004 0.008 0.013 0.004 -0.008*
(0.007) (0.028) (0.013) (0.034) (0.008) (0.003)

Quarter Dummies
Q2 -0.005 -0.012 -0.007 -0.031*** -0.011*** -0.011***

(0.005) (0.006) (0.006) (0.009) (0.003) (0.003)
Q3 -0.011* -0.021** -0.016** -0.046*** -0.020*** -0.020***

(0.005) (0.007) (0.006) (0.011) (0.003) (0.003)
Q4 0.017*** 0.008 0.022*** -0.014 0.012*** 0.010***

(0.005) (0.008) (0.006) (0.011) (0.003) (0.003)
Year Dummies

2003 0.007 -0.012 0.023*** -0.008 0.006 0.001
(0.006) (0.008) (0.006) (0.015) (0.003) (0.003)

2004 0.031*** -0.055*** -0.052*** 0.017 -0.022*** -0.027***
(0.008) (0.009) (0.009) (0.020) (0.004) (0.004)

2005 0.028** -0.033** -0.065*** 0.041 -0.018*** -0.027***
(0.009) (0.011) (0.010) (0.023) (0.004) (0.004)

Specialist
Female 0.083*** 0.081*** 0.110*** 0.197*** 0.107*** 0.164***

(0.015) (0.011) (0.013) (0.028) (0.009) (0.007)
Age Splines

Age 19-40 0.002 -0.001 0.002 -0.006** 0.000 -0.001*
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Age 40-60 0.004 0.002 0.002 0.014*** 0.004** 0.008***
(0.002) (0.002) (0.002) (0.004) (0.001) (0.001)

Age 60-80 -0.009*** 0.000 -0.009*** 0.006 -0.005* -0.006***
(0.002) (0.003) (0.002) (0.007) (0.002) (0.001)

Age > 80 -0.005 -0.009 -0.007 -0.045 -0.012 -0.014***
(0.004) (0.011) (0.005) (0.024) (0.007) (0.003)

Quarter Dummies
Q2 -0.002 -0.003 -0.002 -0.010 -0.003 -0.004

(0.007) (0.005) (0.006) (0.010) (0.003) (0.003)
Q3 -0.004 -0.002 -0.009 -0.034** -0.009** -0.010**

(0.006) (0.006) (0.006) (0.010) (0.003) (0.003)
Q4 0.005 0.000 -0.006 -0.009 -0.002 -0.003

(0.006) (0.006) (0.006) (0.010) (0.003) (0.003)
Year Dummies

2003 0.041*** -0.014* -0.009 0.006 0.005 0.002
(0.007) (0.007) (0.007) (0.011) (0.004) (0.004)

2004 0.004 -0.047*** -0.031*** -0.090*** -0.033*** -0.037***
(0.009) (0.007) (0.008) (0.015) (0.004) (0.004)

2005 -0.004 -0.028*** -0.017 -0.107*** -0.028*** -0.033***
(0.010) (0.008) (0.009) (0.016) (0.004) (0.004)

ρ 0.367*** 0.559*** 0.410*** 0.236*** 0.489***
(0.021) (0.017) (0.014) (0.030) (0.008)

πj 0.265 0.248 0.355 0.132

Notes: πj is the probability of class membership in latent class j. Standard errors for the
marginal effects in parentheses. They are calculated using the delta method. Standard errors of
the underlying coefficients are clustered at the individual level. *p<0.05; **p<0.01; ***p<0.001
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Of particular interest for our analysis are the changes in the probabilities of doctor

visits over the years. The effects of the year dummies capture these changes compared

to the reference year 2002. The overall results of the finite mixture bivariate probit

model and the standard bivariate probit concordantly show significant reductions in

the probabilities in the years 2004 and 2005 compared to 2002. In 2003, however, there

is no significant difference to 2002. As 2003 is a pre-reform year, the absence of an

effect in 2003 supports the assumption that there would have been no changes in the

outcome variable in the absence of the reform.

These overall effects, however, are composed of different effects in the latent classes.

While there are reductions in the probability to visit a GP and in the probability to

visit a specialist in latent classes 2 and 3 after the reform, in latent class 4 only the

probability of a specialist visit is reduced. In latent class 1, there is even an increase

in the probability to visit a GP after the reform while the probability to consult a

specialist does not change significantly.

The results in Table 2.3 thus suggest that the reform has an effect on access to

outpatient care and that this effect might be heterogeneous across individuals. How-

ever, as the per-quarter fee has to be paid at the first visit to a doctor in a quarter

independent of the type of doctor visited, while all additional visits to other doctors

are free of charge, it is more informative to analyze the change in the probability of not

visiting any doctor. The marginal effects on Pr(y1i = 0, y2i = 0|xi, θj) are displayed in

Figure 2.3.

The overall effect displayed in Figure 2.3 is not significant in the pre-reform year

2003 compared to 2002, but highly significant in the post-reform years 2004 and 2005. It

indicates that individuals went to see a doctor at least once with an almost 4 percentage

points lower probability after the reform. Furthermore, Figure 2.3 presents evidence

for heterogeneous reform effects: While latent class 1 does not react to the reform,

there are strong reactions in latent classes 2, 3 and 4.

In latent class 1, the probability of no doctor visit is reduced by about 1 percentage

point in the post-reform years 2004 and 2005 compared to 2002. However, the same

change already occurs in the pre-reform year 2003. These changes therefore cannot be

interpreted as reform effects.



Heterogeneous effects of a nonlinear price schedule 36

 

-4

-2

0

2

4

6

8

10

12

Overall LC1 LC2 LC3 LC4

P
e

rc
e

n
ta

ge
 P

o
in

ts
 

2003 2004 2005

Figure 2.3: Changes in the probability of no doctor visit
Note: Error bars indicate 99%-confidence intervals.

In latent classes 2, 3 and 4 to the contrary, we see strong changes in the probability

of no doctor visit in the post-reform years compared to 2002. The changes in 2003 are

only significant in latent class 3 and much smaller in magnitude than the post-reform

changes. Individuals in latent classes 2, 3 and 4 thus react to the reform by going to

see a doctor with a lower probability.

Naturally, the question arises, what distinguishes the individuals belonging to the

different latent classes? Given the parameter estimates, we derive the posterior prob-

abilities for each individual i to belong to the four different latent classes as described

in the previous section. Each individual is then assigned to the latent class with the

highest posterior probability. Table 2.4 reports averages of observed characteristics

for the different latent classes. Beside age and sex, Table 2.4 includes information on

diagnoses in form of the Charlson Index and on prescription drugs that individuals

got from GPs and specialists. The latter are measured in defined daily doses (DDDs).7

These give a rough measure of drug consumption within the different classes and adjust

for the fact that different drugs can be of different potency. The DDDs do not take

into account, however, which amount of the drugs was actually prescribed.

Additionally, Table 2.4 shows the fraction of observations in each latent class that is

exempt from co-payments. Before and after the reform in 2004, individuals could apply

for an exemption from co-payments if the amount of their co-payments exceeded 2% of
7 DDDs are defined by the World Health Organization, see
http://www.whocc.no/ddd/definition_and_general_considera/ for a definition.
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Table 2.4: Comparison of latent classes

LC 1 LC 2 LC 3 LC 4
Age 57.43 44.03 56.72 44.64
Female 0.60 0.40 0.51 0.62
Charlson Index 0.98 0.17 0.85 0.47

Fraction Charlson=0 45.19 83.54 51.32 69.45
Fraction Charlson=1 9.57 6.17 9.80 8.25
Fraction Charlson=2 43.52 5.21 36.72 18.38

DDD 201.26 13.07 156.22 79.73
Exempt from co-payments 0.18 0.02 0.12 0.08

% of individuals 36.24 29.91 26.67 7.18

Notes: Fractions of Charlson Index do not add up to 1 because of
missing observations. DDD stands for defined daily dose.

their gross yearly income. Welfare recipients and chronically sick individuals could

be entirely exempt from co-payments before the reform. Since 2004, however, the 2%

rule also applies to welfare recipients and the chronically sick can only be exempt from

further payments within a year when they have already co-paid 1% of their gross yearly

income. Individuals can apply for these exemptions already at the beginning of each

year. In order to do so, they have to pay either 1% or 2% of their gross yearly income

up front to their insurer. The information on whether individuals are exempt from co-

payments is only available after the reform. The results in Table 2.4 thus only include

observations in the post-reform period.8

The last row of Table 2.4 shows that about 36% of individuals were assigned to

latent class 1, 30% to latent class 2, 27% to latent class 3 and 7% to latent class 4.

Comparing the different latent classes, it becomes evident that latent class 1 does not

seem to differ generally from the other latent classes in terms of age or sex. Observations

assigned to latent class 1 are on average of the same age as observations in latent class 3,

and the sex composition in latent class 1 is similar to the one in latent class 4. There

are differences, however, concerning the Charlson Index, the DDDs and exemptions

from co-payments. Observations in latent class 1 have a higher average Charlson

Index and an average DDD that is markedly higher than in the other latent classes.

Observations in latent class 1 thus have more severe diagnoses and take more potent
8 For all variables that are available before the reform the results are almost identical for the pre-reform
period.
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drugs on average, indicating that these observations are sicker than observations in the

other latent classes. This confirms the hypothesis that among the individuals who do

not react to the reform are the relatively sick.

Given the exemption rules described above, one could argue that individuals who

know ex ante that they will be exempt from all co-payments do not react to the intro-

duction of the per-quarter fee. In line with this argument, Table 2.4 shows that latent

class 1 has the largest fraction of observations that are exempt from co-payments. How-

ever, there are still 82% of observations in latent class 1 that do not react to the intro-

duction of the per-quarter fee, even though they are not exempt from co-payments in

general. The nonlinearity of the per-quarter fee thus results in heterogeneous reactions

not only through the general exemption rules.

Overall, the results from the finite mixture model confirm that the introduction

of the per-quarter fee in the German statutory health insurance had heterogeneous

effects: Around 36% of individuals are ex post assigned to the class that does not react

to the reform, while there are strong reactions among the rest. Consistent with the

theory of Keeler et al. (1977), the results indicate that among the individuals who do

not react to the introduction of the per-quarter fee are the ones who are relatively sick.

2.6 Discussion

Our results indicate that the per-quarter fee fails to influence the health care use of

high-risk individuals. One way to affect the behavior of high-risk individuals as well

might be to introduce a fee for every single visit to a doctor. However, the disadvantage

of a per-visit fee would be an increasing financial burden, especially for high-risk indi-

viduals. A different solution that would allow to affect high-risk individuals’ behavior

without increasing their financial burden is related to the idea of “shifted deductibles”

by van Kleef et al. (2009). The authors propose a new design of nonlinear price sched-

ules which might even decrease the financial burden for high-risk individuals. They

suggest to use a deductible that does not start at zero like a traditional deductible

but at an individual specific starting point which depends on risk characteristics of

the individuals. This overcomes the problem that high-risk individuals often know
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for sure that their expenditures will reach the level of the deductible in which case

co-payments will only have an income effect. As a shifted deductible increases the

uncertainty about the out-of-pocket expenditures, it may increase the incentive effect

for high-risk individuals.

Shifted deductibles in our application translate to allowing different numbers of

free doctor visits before the per-quarter fee has to be paid. Depending on their health

status some statutorily insured individuals in Germany should receive free care up to

a certain threshold. How many visits individuals receive for free before the fee applies

should optimally be individual specific. However, as van Kleef et al. (2009) note

using objective criteria like age and sex might be “practical and understandable to

consumers”.

Similar to van Kleef et al. (2009) we calculate the number of free visits that

maximize the uncertainty about the out-of-pocket expenditures based on the observed

number of visits for different groups of individuals. Figure 2.4 shows the empirical

cumulative distribution function of doctor visits in the third quarter of 2003 - truncated

at 10 - and the optimal number of free visits for six different age groups separately

for men and women. According to van Kleef et al. (2009) the optimal starting point

of a deductible maximizes the uncertainty about the out-of-pocket expenditures. We

use the variance as a measure of the uncertainty. In our application the variance is

maximized at the threshold that splits the empirical cumulative distribution function

into two equal parts. This is because people either have to pay the fee or not, which

is a dichotomous event. The variance of this event is thus maximized at a probability

of 0.5.

According to Figure 2.4, the optimal number of free visits is almost always unequal

to zero which is the current number of free visits. While young men should pay the fee at

the first visit in each quarter, young women should get one or two free visits per quarter.

This gender difference can be justified, for instance, by preventive examinations that

are provided regularly to young women. An additional cause might be the contraceptive

pill that is available only with prescription in Germany leading to additional doctor

visits for women compared to men.
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Figure 2.4: Empirical CDF of doctor visits and number of free visits grouped by age
and sex

With four free visits per quarter even a 60 year old woman, for instance, might

have a real chance to avoid the fee by slightly changing her behavior. Assuming that

people within the groups are homogeneous, implies that the entire population now faces

similar effective prices. However, it is very likely that the homogeneity assumption does

not hold in Figure 2.4 since the classification of the groups is too crude. An additional

dimension like the Charlson index as a measure of chronic conditions is certainly helpful

to make the groups more homogeneous. On the other hand, this measure is not as

objective as age and sex. Table 2.5 contains the optimal number of free visits by age

and Charlson groups separately for men and women. Since the level of doctor visits is

generally higher, women should get more free visits than men which would then also

cover, for instance, the higher level of preventive care. According to Table 2.5, women

up to the age of 50 should get one free visit per quarter but only if they have none of

the Charlson diseases. Otherwise they should get up to five free visits depending on

their risk characteristics.
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Table 2.5: Number of free visits separately for age, sex and Charlson index

Charlson index
Men Women

Age 0 1 2+ 0 1 2+
19-29 0 1 2 1 3 4
30-39 0 1 3 1 3 4
40-49 0 1 3 1 3 5
50-59 0 2 4 2 3 5
60-69 1 2 5 2 4 6
70+ 1 3 6 3 5 7

2.7 Conclusion

In this paper, we present empirical evidence for heterogeneous effects of a nonlinear

price schedule that was introduced in the German statutory health insurance. The

nonlinearity takes the form of a co-payment for doctor visits that only has to be paid

for the first visit in each quarter of the year. Prices for doctor visits in the same quarter

drop to zero once the fee has been paid.

Following theoretical considerations on health care demand in the presence of non-

linear price schedules, we anticipate that the per-quarter fee changes access to health

care differently across individuals. In particular, individuals who expect in the begin-

ning of a quarter that they will have to visit a physician at some point within the

quarter have a lower incentive to change behavior than individuals who expect that no

visit will be necessary. As the expectations on doctor visits likely depend on individu-

als’ health status we expect that the reform effects vary between individuals with good

and bad health.

In a descriptive analysis we find that individuals in worse health react less to the

reform than healthier individuals. Our measure of health, however, depends on the

outcome variable. Namely, it is only observed if individuals visit a doctor. We therefore

allow for unobserved heterogeneity in a finite mixture model. The results of this model

show that some individuals react to the reform while others do not. Examining the

different groups indicates that those individuals who do not react are in worse health.

Our results are thus in line with the theoretical predictions of how nonlinear price

schedules affect the demand for medical care.
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Our findings allow two conclusions. First, the per-quarter fee seems to be effective

to increase cost consciousness for many individuals, in particular the healthier ones.

Second, there are individuals – among them the sick – who do not react to the introduc-

tion of the per-quarter fee. The reform thus seems to fail to increase cost consciousness

and to reduce moral hazard in this group.

Following the idea of van Kleef et al. (2009) we suggest a slight refinement to the

current system that might be more effective in reducing moral hazard for all individ-

uals. We suggest shifted thresholds as a means to change the behavior of higher-risk

individuals as well. With a shifted threshold individuals would get different numbers

of doctor visits for free in each quarter before having to pay a fee. Since the number

of free visits increases with decreasing health status, even high-risk individuals would

have a chance to avoid the new fee by changing their behavior. Furthermore, allowing

a certain number of free visits for high-risk individuals has the potential of reducing

the financial burden for these individuals.



Appendices
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A.1 Definition of Charlson index

Table 2.6: Definition of Charlson Score

Charlson Comorbidity Assigned Weights
1 Myocardial infarction 1
2 Congestive heart failure 1
3 Peripheral vascular disease 1
4 Cerebrovascular disease 1
5 Dementia 1
6 Chronic pulmonary disease 1
7 Rheumatic disease 1
8 Peptic ulcer disease 1
9 Mild liver disease 1
10 Diabetes without complications 1
11 Diabetes with chronic complications 2
12 Hemiplegia or paraplegia 2
13 Renal disease 2
14 Cancer 2
15 Moderate or severe liver disease 3
16 Metastatic carcinoma 6
17 AIDS/HIV 6
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A.2 Marginal Effects

This appendix describes how the marginal effects on the probabilities of each

type of doctor visit and on the joint probability that neither type of visit occurs

(Pr(y1i = 0, y2i = 0|xi, θj)) are calculated. Standard errors for the marginal effects

are derived using the delta method. Each marginal effect is calculated for each indi-

vidual i and for each of the J latent classes. We report the average marginal effects

of each latent class j as the average over all individual marginal effects in this class.

Furthermore, the weighted average of the effects in the different latent classes gives an

overall effect. For continuous explanatory variables the marginal effects are calculated

using the calculus method. Marginal effects of binary variables are calculated with the

finite difference method.

For a continuous variable x the marginal effects on Pr(yki = 1|xi, θ̂j) with k ∈ {1, 2}
in latent class j for individual i are calculated as

MExiPr(y1i = 1|xi, θ̂j)j = β̂x,jφ(x′iβ̂j) (2.4)

MExiPr(y2i = 1|xi, θ̂j)j = γ̂x,jφ(x′iγ̂j) (2.5)

where φ() stands for the standard normal density function. We report
1
I

∑I
i=1MExiPr(yki = 1|xi, θ̂j)j.
The marginal effects of a continuous variable x on the joint probability for y1i and

y2i in latent class j are calculated for individual i as follows:

MExiPr(y1i = 0, y2i = 0|xi, θ̂j)j =
∂Φ2(q1ix

′
iβ̂j, q2ix

′
itγ̂j, q1iq2iρ̂j)

∂xi
(2.6)

= q1iβ̂x,jφ(q1ix
′
itβ̂j)Φ

q2ix′itγ̂j − q21iq2iρ̂jx′itβ̂j√
1− ρ̂2j


+ q2iγ̂x,jφ(q2ix

′
itγ̂j)Φ

q1ix′iβ̂j − q1iq22iρ̂jx′iγ̂j√
1− ρ̂2j
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where Φ2() stands for the cumulative bivariate normal distribution function, Φ() indi-

cates the standard normal cdf, and qki = 2yki − 1, with k ∈ {1, 2}.
The calculation of marginal effects of discrete variables is illustrated for the year

dummies. The marginal effects of the years 2003, 2004 and 2005 with 2002 as reference

in latent class j for individual i are calculated as

MEyear,iPr(y1i = 1|xi, θ̂j)j = Φ(x′iβ̂j + β̂year,j)− Φ(x′iβ̂j) (2.7)

MEyear,iPr(y2i = 1|xi, θ̂j)j = Φ(x′iγ̂j + γ̂year,j)− Φ(x′iγ̂j) (2.8)

for the marginal probabilities, and as

MEyear,iPr(y1i = 0, y2i = 0|xi, θ̂j)j = Φ2

(
q1i(x

′
iβ̂j + β̂year,j), q2i(x

′
iγ̂j + γ̂year,j), q1iq2iρ̂j

)
− Φ2(q1ix

′
iβ̂j, q2ix

′
iγ̂j, q1iq2iρ̂j) (2.9)

for the joint probability of y1i and y2i. β̂j and γ̂j now stand for the vectors of parameter

estimates for all variables excluding the year indicators. Marginal effects for the variable

female and the quarter dummies are calculated analogously.

The overall marginal effect, i.e. the marginal effect averaged over the latent classes,

for any continuous or discrete variable x is then derived as weighted average of the

marginal effects across the different latent classes

MExi =
J∑
j=1

πjMExi,j (2.10)

Again, averages over all individuals are reported.

Standard errors for the average marginal effects are derived using the delta method

that delivers the variance for each average marginal effect as

V ar(ME) = ∇′gV ar(θ)∇g (2.11)

where θ is the vector of all parameters that are estimated (βj,γj,ρj, and pj, where
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πj =
exp(pj)

1+
∑C

c=1 exp(pc)
with C = J − 1), and ∇g stands for the gradient of the marginal

effect, ME = g(θ), with respect to θ. In order to calculate the variance on the average

marginal effect, we set each element in the gradient to its sample average.
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A.3 Posterior probabilities

Figure 2.5: Posterior probabilities



Chapter 3

Extensions of hurdle models for overdispersed count

data†

3.1 Introduction

Proposed by Mullahy (1986), the notion of a hurdle model is still very popular in

modeling count data. It can be used in various contexts, such as job changes, fish-

ing, or use of health care. The hurdle model typically combines a binary model to

model participation (for example, modeling the patient’s decision to visit the doctor)

with a zero-truncated count data model to model the extent of participation for those

participating (for example, modeling the number of doctor visits). In contrast with

a single-index model, the hurdle model permits heterogeneous effects for individuals

below or above the hurdle. In many applications the hurdle is set at zero and can

therefore also solve the problem of excess zeros, that is, the presence of more zeros

in the data than what was predicted by single-index count-data models. There are

many possible combinations of binary and truncated count-data models. An often-

used model combines a probit or logit model with a zero-truncated negative binomial

model (for example, Vesterinen et al., 2010 and Wong et al., 2010).

In health economics, for instance, Pohlmeier and Ulrich (1995) has been one of the
† Parts of this chapter have been published in Farbmacher (2011a)
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first studies to analyze the number of doctor visits using a hurdle model. The number

of doctor visits may serve as a proxy for demand for health care. This measure may

be determined by a two-part decision process. At first, it is up to the patient whether

to visit a doctor. After the first contact, though, the physician influences the intensity

of treatment (Stoddart and Barer, 1981 and Pohlmeier and Ulrich, 1995). Assuming

that the error terms of the binary and the truncated models are uncorrelated, the

maximization process can be separated. In this case, one can first maximize a binary

model with at least one doctor visit as the dependent variable using the full sample.

Second, one can estimate a zero-truncated regression separately using only observations

with positive counts.

To account for unobserved heterogeneity, Pohlmeier and Ulrich (1995) applied a

zero-truncated model based on the negative binomial distribution. While this often

improves the fit of the model, some of the underlying assumptions are mainly based

on convenience. Recent developments in the count data literature make it possible

to relax these assumptions. For instance, Greene (2008) proposed a generalization of

the negative binomial model and Dhaene and Santos Silva (2011) showed a general

way to increase the flexibility of models in which unobserved heterogeneity has to be

integrated out. Based on these findings, I develop extensions of the truncated negative

binomial and the truncated Poisson log-normal model, which can be used to make the

second part of hurdle models more flexible.

This chapter is structured as follows: The next section describes the basic specifi-

cations of truncated count data models and explains the proposed model extensions.

These extensions are then applied to the Pohlmeier and Ulrich (1995) data set in section

3. Section 4 concludes.
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3.2 Econometric models

To account for unobserved heterogeneity, inference is often based on the marginal

distribution h(yi|xi) obtained after integrating out ui:

h(yi|xi) =

∫ ∞
0

f(yi|xi, ui)g(ui|xi)dui (3.1)

where g(·) is called the mixing distribution. Santos Silva (2003) mentioned that there

are two alternative approaches to construct hurdle models if unobserved heterogeneity

is present. On the one hand, if f(yi|xi, ui) is an untruncated count data distribution,

the mixing is done in the first step and the truncating follows in the second step. On the

other hand, if f(yi|xi, ui) is already a truncated distribution, the order between mixing

and truncating is the other way round. The choice between these two alternatives is

not innocuous, and this seemingly slight difference can lead to substantially different

results. The reason for this is the assumption of independence, g(ui|xi) = g(ui), which

is required before integration. It can be assumed to hold in the actual population or

in the truncated one, but generally not in both populations at the same time (see also

footnote 4 in Santos Silva, 2003).1

To get a closed-form solution of the integral in (3.1), all truncated models based

on the negative binomial distribution belong to the class of models where the mixing

is done in the first step. If, for instance, f(yi|xi, ui) is of the Poisson form and ui is

independent of xi and follows a gamma distribution, we obtain the negative binomial

(NB) models. Greene (2008) proposed the NB-P model which encompasses the often

used NB-1 and NB-2. Its probability function is

Pr(yi = n|xi) =
Γ(mi + yi)

Γ(mi)Γ(yi + 1)

(
mi

λi +mi

)mi
(

λi
λi +mi

)yi
for n ≥ 0 (3.2)

1 A simple example illustrates this problem: Assume that a count data variable is generated by a Poisson
process where the mean depends on a covariate x and an unobserved variable u. Independence holds in
the actual population. For a given value of x, it is now more likely to get truncated if the unobserved
individual effect is lower than average. As a consequence, x and u are correlated in the truncated
population.
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where λi = exp(xiβ), mi = 1
δ
λ
(2−P )
i = exp((2−P )xiβ− ln(δ)). δ and P are parameters

to be estimated in addition to β. Setting P = 1 or P = 2 gives the NB-1 or NB-2

model.

I use a truncated version of the NB-P model to analyze strictly positive counts. It

can be obtained by dividing the probability function by 1− Pr(yi = 0|xi):

Pr(yi = k|yi > 0,xi) =
Pr(yi = k|xi)

1− Pr(yi = 0|xi)
for k ≥ 1 (3.3)

Thus the log-likelihood contribution of the zero-truncated NB-P is

lnLIi = lnΓ(mi + yi)− lnΓ(mi)− lnΓ(yi + 1)

+ln(si) + yiln

(
λi

λi +mi

)
− ln(1− si) (3.4)

where si = (mi/(λi +mi))
mi .

While the likelihood of the zero-truncated NB-P model has a closed-form expression,

there is no such result for the zero-truncated Poisson log-normal model. Winkelmann

(2004a), for instance, used the latter model to analyze demand for health care. In

contrast to the NB-P model, f(yi|xi, ui) is now already a truncated probability func-

tion (namely, the zero-truncated Poisson function) and ui is log-normal distributed, in-

dependent of xi. The likelihood contribution of the zero-truncated Poisson log-normal

model is

LIIi =

∫ ∞
−∞

exp(−exp(xiβ + σεi))exp(xiβ + σεi)
yi

(1− exp(−exp(xiβ + σεi)))yi!
φ(εi)dεi (3.5)

where εi = ln(ui) is standard normally distributed and φ(·) denotes the density function

of the standard normal distribution. It has to be approximated numerically (e.g. by

Gauss-Hermite quadrature). Dhaene and Santos Silva (2011) proposed a general way to

increase the flexibility of models in which unobserved heterogeneity has to be integrated

out. Their basic idea is “that replacing g(·) with some other density is equivalent

to transforming εi monotonically and keeping g(·)”. Using this procedure, we can



Extensions of hurdle models 53

thus relax the distributional assumptions about εi and get the following likelihood

contribution:

LIIIi =

∫ ∞
−∞

f(yi|xiβ + σd(εi))φ(εi)dεi (3.6)

where f(·) denotes the probability function of the zero-truncated Poisson model as in

equation (3.5) and d(·) links the true but unknown density of εi to the maintained

distributional assumptions about g(·). To make the model from (3.5) more flexible,

we can replace εi with some approximation of d(εi). Dhaene and Santos Silva (2011)

suggested to use a polynomial in εi or a transformation to normality. For the latter, they

use d(εi) = sinh(θεi)/θ. I choose the same transformation and adapt their procedure

to the truncated model. After a change of variable, the integrals in (3.5) and (3.6) can

be written as

LII,IIIi =
1√
π

∫ ∞
−∞

f(yi|xiβ + σd(
√

2νi))exp(−ν2i )dνi (3.7)

where d(·) is the identity function in model II and d(·) = sinh(θ
√

2νi)/θ in model III. If

θ goes to zero, d(·) becomes the identity function and model III converges to model II.

Since there is no analytical solution of the integral in (3.7), it has to be approximated

numerically. The likelihood contributions of the actually estimated models therefore

are

LII,IIIi =̇
1√
π

R∑
r=1

f(yi|xiβ + σd(
√

2νr))ωr (3.8)

where νr and ωr are the nodes and weights for the quadrature.2

2 Details about the approximation are given in Appendices A.1 and A.2.
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To compare the results of the models, I calculate relative marginal effects which in

the zero-truncated negative binomial models are

∂E(·)+

∂xj

1

E(·)+
= βj −

simi

(
Qβjln(mi+exp(xiβ)

mi
) +

miQβj+exp(xiβ)βj
mi+exp(xiβ)

−Qβj
)

1− si
(3.9)

where Q = (2 − P ). Generally, marginal effects of models based on integration have

to be approximated numerically. The relative marginal effects of the zero-truncated

Poisson log-normal models are

∂E(·)+

∂xj

1

E(·)+
=

∫ ∞
−∞

βj −
exp(−µi)µiβj
1− exp(−µi)

φ(εi)dεi (3.10)

where µi = exp(xiβ + σεi) and µi = exp(xiβ + σ(sinh(θεi)/θ)) for model II or III,

respectively. In the considered application, however, evaluating the marginal effects

at εi = 0 gives almost the same results and eases the calculation of standard errors.

Therefore I report the marginal effects evaluated at εi = 0.3 The reported marginal

effects of binary regressors are the relative mean differences between groups.

3.3 Application

In this section, I use the data studied by Pohlmeier and Ulrich (1995) to illustrate the

model extensions described above. The aim of their study was to emphasize that the

decision to contact a physician is a two-part decisionmaking process. The importance of

this two-part process was strengthened by a former institutional setting of the statutory

health insurance in Germany: “[O]nce [the patient] has submitted the sickness voucher

to his physician of choice, medical services for the relevant quarter are supplied by this

physician only” (Pohlmeier and Ulrich, 1995, my insertions). If the patient wanted

to visit another doctor in the relevant quarter, he needed a referral from the doctor

whom he visited first. The physicians thus were “gatekeepers” in the statutory health

insurance system, which covered more than 90% of those living in Germany.

3 Table 3.3 in Appendix A.3 shows the marginal effects based on quadrature.
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The dataset is a cross-section of 5,096 individuals from the 1985 German Socio-

Economic Panel. The authors separately analyzed the number of visits to a general

practitioner (GP) and the number of visits to a specialist in the last three months. In

both cases they used a zero-truncated NB-1 in the second part of the hurdle model.

Using the same dataset, Santos Silva and Windmeijer (2001) showed that an important

assumption of the hurdle model, namely the assumption of a single illness spell, is

violated in the case of visits to specialists. Therefore I only use visits to GPs to

illustrate the model extensions discussed in the previous section. Table 3.1 shows the

variables used in the analysis with descriptive statistics for the full and the truncated

sample.

Table 3.2 presents the relative marginal effects for the models discussed in this

chapter. The vector of explanatory variables is the same as in Pohlmeier and Ulrich

(1995).4 Relative marginal effects are reported only for those variables that are signifi-

cant at the 10% level in at least one of the specifications. Within the negative binomial

models, the zero-truncated NB-P model has the greatest likelihood. The additionally

estimated parameter P is around 1.33 and significantly different from 1 and 2. Thus

the zero-truncated NB-1 and NB-2 models are rejected in favor of the NB-P model.

The relative marginal effects of the NB-P model tend to be larger in magnitude than

the NB-1 results reported by Pohlmeier and Ulrich (1995). In particular the effects of

physician density and private insurance increase distinctly in the NB-P model and are

both now clearly significant.

The specifications based on the Poisson log-normal distribution fit the data even

better than its negative binomial alternatives. In addition, a Vuong (1989) test is

performed to select between the truncated NB-P model and the flexible version of the

truncated Poisson log-normal model more formally. Since both models are overlapping,

I have first tested whether they overlap in this particular application. The additional

parameters are, however, significantly different from the values which would reduce

them to a standard truncated Poisson model. The Vuong test statistic for the flexible
4 The variation in some of these variables is probably endogenous. The effect of private insurance, for
example, might be partly due to a selection effect. Therefore, in what follows I will not reveal causal
mechanisms. The aim of the following discussion is to show how model choice can affect the estimates
in the analysis of overdispersed count data.
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Table 3.2: Relative marginal effects

Zero-truncated
Negative binomial Poisson log-normal

NB 1 NB 2 NB P Standard Flexible
(1) (2) (3) (4) (5)

Education -0.002 -0.016 -0.016 -0.012 -0.012
(0.010) (0.009) (0.011) (0.007) (0.008)

Physician density 0.548 1.129 1.003 0.842 0.839
(0.289) (0.656) (0.450) (0.415) (0.433)

Female 0.041 0.050 0.060 0.091 0.100
(0.035) (0.056) (0.047) (0.039) (0.040)

Chronic illness 0.333 0.476 0.463 0.399 0.403
(0.141) (0.099) (0.110) (0.069) (0.074)

Private insurance -0.073 -0.198 -0.195 -0.111 -0.105
(0.047) (0.063) (0.075) (0.054) (0.056)

Heavy labor job 0.070 0.218 0.152 0.104 0.093
(0.046) (0.085) (0.065) (0.052) (0.055)

Self-determining -0.074 -0.099 -0.119 -0.105 -0.109
(0.034) (0.050) (0.042) (0.033) (0.033)

Sick leave 0.225 0.408 0.376 0.325 0.328
(0.101) (0.106) (0.096) (0.071) (0.071)

δ 4.082 5.490 5.347 — —
(0.340) (1.886) (0.952)

P 1.000 2.000 1.327 — —
(fixed) (fixed) (0.069)

σ — — — 0.982 0.885
(0.030) (0.043)

θ — — — — 0.380
(0.051)

Log-likelihood -3,945.08 -3,931.00 -3,921.16 -3,886.16 -3,881.90
Dependent variable: Number of visits to a GP given any use of GP services.
Models also account for the other covariates displayed in table 3.1.
Standard errors are obtained by the delta rule.
Vuong test statistic for (5) versus (3): 3.72. H0 : both models are equivalent. The test statistic
is standard normally distributed.
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version of the truncated Poisson log-normal model against the NB-P model is 3.72

and hence the null hypothesis is rejected in favor of the specification based on the

Poisson log-normal distribution. The relative marginal effects of the truncated Poisson

log-normal models are mostly in between the NB-1 and NB-P results. While the

gender difference is insignificant in the negative binomial models, there is a significant

difference between men and women according to the Poisson log-normal models.

3.4 Conclusion

Hurdle models based on the zero-truncated Poisson log-normal distribution are rarely

used in applied work, although they incorporate some advantages compared with their

negative binomial alternatives. These models are appealing from a theoretical point of

view and, additionally, perform much better in many applications.

Recent developments in the count data literature make it possible to relax com-

monly imposed assumptions of hurdle models. I use these techniques to propose two

extensions of hurdle models. Both extensions nest the models that have been estimated

previously. This allows one to simply test these models by appropriate parametric

restrictions. An example from health economics shows that the more flexible models

can lead to distinctly different marginal effects.



Appendices
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A.1 Gauss-Hermite Quadrature

When there is no analytical solution of an integral, it can be approximated numerically

using e.g. Gauss-Hermite quadrature. The likelihood contributions that are actually

used in the estimation can be derived by:

LII,IIIi =

∫ ∞
−∞

f(yi|xiβ + σd(εi))φ(εi)dεi

=

∫ ∞
−∞

f(yi|xiβ + σd(εi))
1√
2π
exp(−1

2
ε2i )dεi

after a change of variable εi =
√

2νi,

LII,IIIi =

∫ ∞
−∞

f(yi|xiβ + σd(
√

2νi))
1√
2π
exp(−1

2
(
√

2νi)
2)
√

2dνi

=
1√
π

∫ ∞
−∞

f(yi|xiβ + σd(
√

2νi))exp(−ν2i )dνi

=̇
1√
π

R∑
r=1

f(yi|xiβ + σd(
√

2νr))ωr

where =̇ indicates the approximation.

A.2 Implementation in Stata

The models discussed in this chapter are estimated in Stata using adaptive

Gauss-Hermite quadrature. Adaptive quadrature shifts and scales the quadrature

points to place them under the peak of the integrand which most likely improves the

approximation (compare section 6.3.2 in Skrondal and Rabe-Hesketh, 2004 for a de-

tailed discussion). Many Stata commands such as xtpoisson implement an approach

proposed by Liu and Pierce (1994). They argue that the mode of the integrand and the

curvature at the mode can be used as shifting and scaling factors. Instead of calculating

these factors, I use the corresponding values of the standard (untruncated) Poisson log-

normal model to implement the adaptive quadrature. The reason for this is a built-in
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Figure 3.1: Integrand of zero-truncated model (solid curve) and standard model
(dashed curve)

command in Stata that only gives the corresponding values for the standard Poisson

log-normal model. The integrand, however, is often very similar in both models, espe-

cially for high values of the dependent variable. This indicates that these values might

also be good guesses for the scaling and shifting factors of the zero-truncated models.

Figure 3.1 shows the integrands of the standard and zero-truncated Poisson log-normal

model. In this example they are almost identical for higher values of the dependent

variable.
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A.3 Relative marginal effects using quadrature

Table 3.3: Relative marginal effects using quadrature

Zero-truncated
Poisson log-normal
Standard Flexible

Education -0.012 -0.012
(0.007) (0.007)

Physician density 0.843 0.838
(0.459) (0.452)

Female 0.091 0.100
(0.037) (0.036)

Chronic illness 0.405 0.408
(0.061) (0.058)

Private insurance -0.111 -0.105
(0.058) (0.057)

Heavy labor job 0.105 0.093
(0.057) (0.057)

Self-determining -0.105 -0.108
(0.032) (0.035)

Sick leave 0.327 0.329
(0.064) (0.066)

Models also account for the other covariates displayed in table 3.1.
Bootstrap standard errors based on 100 replications.
Flexible model converged in only 66% of the replications.



Chapter 4

Continuously updated GMM with many weak

moment conditions:

An application in labor economics†

4.1 Introduction

Endogeneity is a common phenomenon in applied econometrics and it generally

prevents a causal interpretation of ordinary least squares regressions. The availabil-

ity of valid instruments can solve this problem. One criterion for a valid instrument is

sufficient correlation between the endogenous variable and the instrument. Instruments

that do not fulfill this criterion are called weak. Weak instruments are not unusual in

applied econometrics. Angrist and Krueger (1991)’s quarter-of-birth instrument is a

famous example for a weak instrument. They used it to estimate individuals’ returns

to education. Yogo (2004) presented an example of weak instruments in macroeco-

nomics. The poor performance of two-stage least squares (2SLS) estimation with weak

instruments has been extensively discussed in Staiger and Stock (1997)’s seminal study.

Thus, there is a need for an estimator with better properties than 2SLS in case of weak

instruments.

The continuous updating estimator, for instance, could be such an estimator.
† Parts of this chapter have been published in Farbmacher (2011b)
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Hansen et al. (1996) showed that the continuous updating estimator is typically less

median biased than 2SLS. However, there are still some problems remaining. For in-

stance, Guggenberger (2005, 2008) mentioned that its criterion function is difficult to

optimize, which can lead to spurious results. Moreover, the dispersion of the estimator

is often tremendously high, which may complicate the interpretation of the results (see

e.g. Hansen et al., 1996 and Hausman et al., 2011). Furthermore, the usual formula

for the variance estimator seems to understate the true variance especially when iden-

tification is weak (see e.g. Han and Phillips, 2005 or Newey and Windmeijer, 2009).

For this reason, Newey and Windmeijer (2009) proposed a new variance estimator for

generalized empirical likelihood (GEL) estimators. It addresses the problem that usual

standard errors are too small when there are many weak instruments. In Monte Carlo

simulations they apply the new variance estimator for a member of GEL estimators,

namely the continuous updating estimator. t-statistics based on the new variance

estimator have nearly correct size in a wide range of cases. I replicate their simulations

for the linear model using the continuous updating estimator with usual standard errors

and the many weak instruments standard errors of Newey and Windmeijer. Moreover,

I report results for a wider range of the parameters involved. For comparison the jack-

knife instrumental variable estimator (JIVE2) of Angrist et al. (1999) and two-stage

least squares have also been estimated. Finally, I re-estimate Angrist and Krueger

(1991)’s returns to education using these estimators and additionally compare them to

the limited information maximum likelihood (LIML) estimator.

An additional finding of my Monte Carlo simulations is that two-stage least squares

estimates are particularly poor starting values for the continuous updating estimator,

especially when the sample size is small and/or the identification is weak. A potential

reason for this is the likely presence of local optima and the fact that the continuous

updating estimator often converges to these local optima if they are close to the 2SLS

estimates. The nearness of the local optima to the 2SLS estimates then suggest that

the performance of the continuous updating estimator is also affected by the proper-

ties of 2SLS. Furthermore, this study shows that extreme estimates of the continuous

updating estimator, which are often reported in Monte Carlo simulations, are more

likely to be a failure of the optimization routine than a property of the continuous
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updating estimator.

This chapter is organized as follows. The next section describes the continuous

updating estimator and the new variance estimator proposed by Newey andWindmeijer

(2009). Section 3 first explains the design of the conducted Monte Carlo simulation and

discusses the expected performance of 2SLS under these conditions. Then, it provides

the simulation results. Section 4 applies the new variance estimator to the Angrist and

Krueger (1991) data set. Section 5 concludes.

4.2 Continuously updated GMM

The model considered here is linear and homoskedastic with

yi = x′iβ0 + ui (4.1)

where yi is a scalar, xi is a l× 1 vector of explanatory variables and β0 is a l× 1 vector

of true parameters satisfying the moment conditions

E(ziui) = 0 (4.2)

where zi is a m× 1 vector of instruments. Denote

gi(β) = zi(yi − x′iβ), ĝ(β) = n−1
n∑
i=1

gi(β), (4.3)

Ω̂(β) = n−1
n∑
i=1

ziz
′
i(yi − x′iβ)2 (4.4)

where β is a l × 1 parameter vector to be estimated. Hansen (1982)’s two-step

generalized method of moments (GMM) estimator is given by

β̈ = arg min
β
Q̈(β), Q̈(β) = ĝ(β)′Ŵ ĝ(β)/2, Ŵ = Ω̂(β̇)−1 (4.5)



Continuously updated GMM 66

with β̇ is obtained using a suboptimal choice of the weighting matrix. Then, Ŵ min-

imizes the asymptotic variance of β̈. The continuous updating estimator proposed by

Hansen et al. (1996) simultaneously minimizes over β in the sample analogue of the

moment conditions and the weighting matrix, that is

β̂ = arg min
β
Q̂(β), Q̂(β) = ĝ(β)′Ω̂(β)−1ĝ(β)/2. (4.6)

The jth element of the first derivative of Q̂(β) is

∂Q̂(β)

∂βj
=
∂ĝ(β)

∂βj

′

Ω̂(β)−1ĝ(β)− ĝ(β)′Ω̂(β)−1Λ̂j(β)Ω̂(β)−1ĝ(β) (4.7)

and the jkth element of the second derivative of Q̂(β) is

∂2Q̂(β)

∂βjβk
=
∂2ĝ(β)

∂βj∂βk
Ω̂(β)−1ĝ(β) +

∂ĝ(β)

∂βj

′

Ω̂(β)−1
∂ĝ(β)

∂βk

− 2
∂ĝ(β)

∂βj

′

Ω̂(β)−1Λ̂k(β)Ω̂(β)−1ĝ(β)− 2
∂ĝ(β)

∂βk

′

Ω̂(β)−1Λ̂j(β)Ω̂(β)−1ĝ(β)

− ĝ(β)′Ω̂(β)−1
∂Λ̂j(β)

∂βk

′

Ω̂(β)−1ĝ(β)

+ 4ĝ(β)′Ω̂(β)−1Λ̂k(β)Ω̂(β)−1Λ̂j(β)Ω̂(β)−1ĝ(β) (4.8)

where in the considered linear model

∂ĝ(β)

∂βj
= n−1

n∑
i=1

−zixij,
∂2ĝ(β)

∂βj∂βk
= 0, (4.9)

Λ̂j(β) =
∂Ω̂(β)

∂βj
/2 = n−1

n∑
i=1

−ziz′ixij(yi − x′iβ), (4.10)

∂Λ̂j(β)

∂βk
= n−1

n∑
i=1

ziz
′
ixijxik. (4.11)
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The usual formula of the variance-covariance matrix is

V̂c =
(
Ĝ′Ω̂(β̂)−1Ĝ

)−1
, with Ĝ =

∂ĝ(β̂)

∂β
=

(
∂ĝ(β̂)

∂β1
, ... ,

∂ĝ(β̂)

∂βl

)
. (4.12)

According to the usual formula, the asymptotic variance of β̂ is V̂c/n. Standard errors

based on this matrix are often too small in applications with many instruments (see

e.g. Han and Phillips, 2005). t-statistics based on the new variance estimator of Newey

and Windmeijer (2009) have, however, nearly correct size in a wide range of cases. The

proposed variance estimator of Newey and Windmeijer (2009) is

V̂ = Ĥ−1D̂(β̂)′Ω̂(β̂)−1D̂(β̂)Ĥ−1 (4.13)

where Ĥ is a Hessian term containing the elements defined in equation (4.8) and D̂j(β̂)

is the jth column of D̂(β̂):

D̂j(β̂) =
∂ĝ(β̂)

∂βj
− Λ̂j(β̂)Ω̂(β̂)−1ĝ(β̂). (4.14)

The asymptotic variance of β̂ is V̂ /n. Newey and Windmeijer (2009, p.692) noted

that V̂ converges to V̂c when m is fixed and identification is strong. In this case,

ĝ(β̂) converges in probability to zero and the second term in equation (4.14) vanishes.

Furthermore, the Hessian term is then equal to the numerator in equation (4.13).
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4.3 Monte Carlo simulation

4.3.1 Simulation design

The design of the Monte Carlo experiment is

yi = α + βxxi + ui

xi = z′iπ + vi

ui = ρvi +
√

1− ρ2wi

vi ∼ N(0, 1), wi ∼ N(0, 1), zi ∼ N(0, I), π =

√
CP

mn
ιm

where ιm is a m-vector of ones. x has no causal effect on y (i.e. βx = 0) and the

constant is set to zero as well. Firstly, I use the same parameters as Newey and

Windmeijer (2009) to replicate some of their results. The sample size n is 200 in their

simulation; the concentration parameter CP is equal to 10, 20 or 35; the degree of

endogeneity ρ is equal to 0.3, 0.5 or 0.9; the number of instruments m is 3 or 15;

the number of replications is 10,000. Secondly, I extend their analysis using a wider

range of the simulation parameters. Throughout the continuous updating estimator is

estimated with Mata’s optimize function. The gradient and the Hessian are calculated

analytically.

I use Hahn and Hausman (2002)’s expression for the approximate finite sample bias

of the 2SLS estimator as a theoretical guideline for the interpretation of the Monte

Carlo results:1

E(b2SLS)− β ≈ cov(u, v)
n
m
π′Rπ + var(v)

=
ρ

CP
m2 ι′mRιm + 1

(4.15)

1 Bun and Windmeijer (2011) recently developed an alternative bias approximation. They compared
it with the Hahn and Hausman approximation and showed that the latter may be inaccurate for
modest m.
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where R = E[z′z/n] and z = (z′1 · · · z′n)′. The equality in the second line follows from

the choice of the simulation parameter π. Now, n is no longer in the denominator

implying that increasing n does not reduce bias. Thus we cannot expect unbiased

estimates from 2SLS under the asymptotics where π =
√
a/n, even if the sample size

is large as, for instance, in Angrist and Krueger (1991). This has been shown by

Staiger and Stock (1997) and more recently by Hahn and Hausman (2002). According

to equation (4.15), the approximate bias of 2SLS is increasing in ρ andm and decreasing

in CP/m, which is the population F -statistic from the first stage regression.

For comparison purposes, Table 4.5 in the appendix replicates the results from

Newey and Windmeijer (2009). It reports median bias and rejection frequencies of

Wald tests for the null hypothesis H0 : βx = 0. These are very similar to Newey

and Windmeijer’s Monte Carlo results. Figure 4.2 to 4.4 report the results graph-

ically for a wider range of the simulation parameters and for different sample sizes

(n = 25, 100, 800). These results are discussed in section 4.3.3. Only one parameter is

varied at a time. The other two values are fixed at a certain level (ρ = 0.9, m = 5,

CP = 10). When m is varied, I additionally hold the first stage F -statistic fixed as

the number of instruments increases. It implies that the set of instruments is equally

strong with increasing m. Setting π =
√

CP
n
ιm the approximate bias becomes

E(b2SLS)− β ≈ ρ
CP
m
ι′mRιm + 1

(4.16)

which does now not depend on m given that the first stage F -statistic is fixed.

4.3.2 Continuous updating estimator and starting values

In the next section, I compare the theoretical considerations about the approximate

mean bias of 2SLS to the simulation results. However, instead of the mean bias, I

report the median bias from the simulations. The reason for this is the “no-moments

problem” of the continuous updating estimator that has been reported extensively in

the literature. Guggenberger (2005, 2008), for instance, evaluated the criterion function

of the continuous updating estimator using a grid over the parameter space, and his
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results do therefore not rely on a minimization routine. He found that the contin-

uous updating estimator takes on large values with a much higher probability than

2SLS. This leads to a substantial dispersion in the estimates. In a recent Monte Carlo

simulation Hausman et al. (2011) compared the performance of different estimators –

among them the continuous updating estimator. They used a derivative based opti-

mization which could potentially not converge. In their results some extreme estimates

of βx completely preclude the interpretation of the first two moments of the continuous

updating estimator.

The following simulation suggests that these extreme estimates are, however, from

estimations that did not converge. I provide two different sets of estimates from the

continuous updating estimator. The first set of estimates is based on just one optimiza-

tion in which the starting values are obtained from 2SLS, which might be considered

as a natural choice of the starting values.2 On the other hand, for the second set of

estimates I use five fixed starting values (FSV) for βx (-2,-1,0,1,2)3 and additionally the

2SLS estimates. The results of the continuous updating estimator in the second set are

then obtained from the optimization with the lowest criterion function Q̂(β) given that

the optimization converged. Table 4.1 shows measures of central tendency and disper-

sion for both sets of estimates and additionally the fraction of simulation replications

that converged. It is interesting to see that some extreme estimates of βx completely

preclude the interpretation of the mean and the variance whenever the results contain

some estimates from optimizations that did not converge. On the other hand, when

I focus on converged optimizations, I can eliminate these extreme estimates (compare

last two columns in Table 4.1). This may indicate that extreme estimates of βx are

rather a failure of the optimization routine than a property of the continuous updating

estimator. Overall, the probability that the optimization converges increases when I

additionally use fixed starting values, and it even reaches 100% in the simulations with

100 or 800 observations. Nevertheless, the variance and in some cases also the mean

are still tremendously high, pointing to the “no-moments problem”.

2 For instance, a user-written command in Stata uses the 2SLS estimates as starting values (see Baum
et al. 2007).

3 The starting value for the constant is set to zero.
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Figure 4.1: Criterion function of the continuous updating estimator with multiple
optima (m = 5, ρ = 0.9, CP = 1, n=25)

Adding fixed starting values appears to affect the median bias as well. It tends to

be larger in the first set of estimates in which the starting values are obtained from

2SLS. This effect is particularly pronounced in the simulations with 25 observations.

But it can also be observed in larger samples given that the identification is extremely

weak. For instance, using Hausman et al. (2011)’s simulation with n = 400, ρ = 0.3,

m = 50 and CP = 8, the median bias is 0.136 with 2SLS starting values and 0.091

with fixed and 2SLS starting values. This result is not reported in the table.

Figure 4.1 suggests a potential reason for the difference in the median bias. It

displays the criterion function of an example data set which has been evaluated for all

values of βx between -2 and 2 using a step size of 0.01.4 In Figure 4.1 you can see a

local minimum which is very close to the 2SLS estimate marked on the upper axis. In

this example the continuous updating estimator ends up in this local minimum when

I use the 2SLS estimate as starting value. Such a situation can be observed very often

when the sample size is small and/or the identification is weak.

I performed an additional Monte Carlo simulation using the simple example dis-

cussed in the previous paragraph to analyze the effect of starting values on the reported
4 Such a brute force approach has also been suggested by Hansen et al. (1996) and Guggenberger (2005,
2008). It finds the true minimizer given that it lies between -2 and 2. However, since this approach is
computationally demanding in higher dimensions, I revert to a model without constant.
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performance of the continuous updating estimator more systematically. Again, the

criterion function has been evaluated using a fine grid with step size of 0.01, but now

for all values of βx in between -5 and 5. Using this range, there was at least one

minimum in almost all simulation replications. The minimum of all these optima is

denoted as global optimum (βglobal).5 All other optima are local (βlocal). The variables

ζ and CSV shall be defined as follows:

ζ = 1
(
|β̂2SLS − βlocal| < |β̂2SLS − βglobal|

)
, (4.17)

CSV = 1

(∣∣∣∣∣ β̂SVCUE − βlocal
(β̂SVCUE + βlocal)/2

∣∣∣∣∣ < 0.05

)
(4.18)

where β̂2SLS is the 2SLS estimator and β̂SVCUE denotes the continuous updating estimator

that is supposed to depend on the choice of the starting values (SV ). The first variable,

ζ, is equal to one when β̂2SLS is closer to the local than to the global optimum. The

second variable, CSV , indicates the convergence of the continuous updating estimator

to a local optimum where convergence is assumed if the relative difference between the

continuous updating estimator and the local optimum is smaller than 5%.

Table 4.2 shows the simulation results of the continuous updating estimator for both

sets of starting values, and additionally provides the results from the 2SLS estimator

and the global optimum. Throughout, the presence of local optima decreases with

the sample size and the strength of the identification. Local optima are particularly

likely in simulations with both small sample size and low concentration parameter. For

instance, 44% of the replications exhibit local optima in the simulation with n = 25

and CP = 1. Table 4.2 also shows the fraction of replications in which the continuous

updating estimator converges to a local optimum, i.e. Pr(CSV = 1). Overall, this

probability increases considerably when only 2SLS is used as starting value compared

to using fixed starting values as well (0.253 vs. 0.001 in the example with n = 25 and

CP = 1). This effect is particularly pronounced when the 2SLS estimates are closer

to the local than to the global optimum, i.e. ζ = 1 (0.540 vs. 0.001 in case of n = 25

5 Of course, it is just the global optimum in between -5 and 5.
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and CP = 1). On the other hand, the 2SLS estimates work well when they are nearer

to the global optimum, i.e. ζ = 0 (0.017 vs. 0.001 in the simulation with n = 25 and

CP = 1). While it is not surprising that the continuous updating estimator converges

more likely to a local optimum when the chosen starting values are close to this local

optimum, it is particularly problematic in this case because 2SLS is generally more

biased than the continuous updating estimator. The nearness of the local optimum to

the 2SLS estimate may then suggest that the reported performance of the continuous

updating estimator is affected by the properties of 2SLS.

The last three columns in Table 4.2 support this suggestion. They show the median

bias and the nine decile range for the continuous updating estimator with 2SLS as start-

ing values and, on the other hand, with fixed starting values and 2SLS. Additionally,

I report the global optima from the grid evaluation and the estimates from 2SLS.

The median bias and the nine decile range of the continuous updating estimator turn

out to be almost equally large for both sets of starting values when the continuous

updating estimator with 2SLS starting values does not converge to a local optimum

(C2SLS = 0). On the other hand, they are distinctly different when the continuous up-

dating estimator with 2SLS starting values converges to a local optimum (C2SLS = 1).

As expected, choosing 2SLS as starting values increases the reported bias but, on the

other hand, also decreases the reported dispersion of the continuous updating estima-

tor. The results from the grid evaluation are always very similar to the results from

the continuous updating estimator with fixed starting values. On the contrary, the

continuous updating estimator with 2SLS starting values performs as poor as the 2SLS

estimator given that it converges to a local optimum. This confirms the importance

of trying different starting values not only in real-world data sets but also in Monte

Carlo simulations. The impact of this on the unconditional results depends essentially

on the frequency of local optima. For instance, while a difference in the median bias

can also be observed in larger samples and with stronger identification, this effect does

not change the unconditional median bias since the frequency of local optima is almost

zero in these examples.6

6 This can also be observed in Table 4.1. Note, however, that the estimations in Table 4.1 are not
completely comparable because they include a constant.
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Using the same line of arguments, it follows that all estimates, which are more biased

than the continuous updating estimator, are generally poor starting values whenever

local optima are present. Han and Phillips (2006), for example, used ordinary least

squares estimates as starting values for the continuous updating estimator in their

simulations. This, although not reported here, do not work either. A generalization

of this approach to a multidimensional parameter space is in principle possible but

cumbersome due to the computational burden.

4.3.3 Median bias and rejection frequencies

Figures 4.2, 4.3 and 4.4 show the simulation results for n = 25, n = 100 and n = 800,

respectively.7 The graphs show the relationships predicted by equations (4.15) and

(4.16). The 2SLS median bias increases with the degree of endogeneity and decreases

with the concentration parameter. Apart from the specifications that are close to the

just-identified case, the median bias is also independent of the number of instruments

as has been shown in equation (4.16). Moreover a comparison of the graphs shows,

as expected, that increasing the sample size does not reduce the median bias of 2SLS

under weak instruments asymptotics. The continuous updating estimator appears to

perform slightly worse in the tiny sample with just 25 observations (Figure 4.2) than in

Figure 4.3, where the sample size is 100, and Figure 4.4, where the sample size is 800.

However, it clearly outperforms 2SLS and JIVE2 once the sample size is reasonably

large (see Figures 4.3 and 4.4).

According to the simulation with the largest sample size, the continuous updating

estimator is almost median unbiased and this result is, interestingly, independent of

the degree of endogeneity. Obviously, the bias increases in the neighborhood of an

unidentified model where the instruments are completely uninformative. Nevertheless,

the continuous updating estimator becomes median unbiased once the concentration

parameter is around 5 which implies a population first stage F -statistic of around 1.

This is considerably lower than the rule of thumb for 2SLS, which is around 10.

This result is consistent with recent Monte Carlo results of Hansen et al. (2008).
7 The continuous updating estimator has been estimated with different starting values (-2,-1,0,1,2) to
prevent convergence problems and local optima.
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They found that the use of LIML, which matches the continuous updating estimator

in the case of a linear model and homoskedasticity (see e.g. Hausman et al., 2011 and

Guggenberger, 2005, 2008), is often adequate in situations where the F -statistic takes

on values around one. For instance, in their simulation LIML is almost unbiased with

ρ = 0.8, m = 8 and CP = 8.

While the continuous updating estimator is less median biased than 2SLS and

JIVE2 in almost all situations, the rejection frequencies for H0 : βx = 0 with the usual

standard errors (CUE) are far too high especially in small samples. In contrast to this,

the rejection frequencies with the new variance estimator (CUEC) proposed by Newey

and Windmeijer (2009) are often very close to the nominal level once the sample size

is reasonably large.

According to Figures 4.3 and 4.4, the rejection frequency of 2SLS increases con-

stantly with rising number of instruments although the sets of instruments are equally

strong. This has already been shown in Staiger and Stock (1997)’s figure 3. The

rejection frequency of the continuous updating estimator based on the new variance

estimator is, however, close to the nominal size and independent of the number of

instruments once the number of instruments is larger than 4. It performs also better

than the continuous updating estimator with usual standard errors especially when the

sample size is 100. Furthermore, it depends only slightly on the degree of endogeneity

and is nearly level-correct for all values of the concentration parameter apart from

situations in which the model is almost unidentified.
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Figure 4.2: Median bias and rejection frequencies when n = 25
(Step size: ρ = 0.02, CP = 2, m = 1; 10,000 replications each)
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Figure 4.3: Median bias and rejection frequencies when n = 100
(Step size: ρ = 0.02, CP = 2, m = 1; 10,000 replications each)
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Figure 4.4: Median bias and rejection frequencies when n = 800
(Step size: ρ = 0.02, CP = 2, m = 1; 10,000 replications each)
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So far, the degree of endogeneity has been fixed at a very high level to evaluate

the performance of Newey and Windmeijer’s variance estimator under extreme con-

ditions. Based on a literature review, Hansen et al. (2008) argue that values of

ρ ≥ 0.8 may not be very relevant for practice. In the following, I set ρ = 0.3 which is,

according to Hansen et al. (2008)’s literature review, a more realistic value. Following

Chamberlain and Imbens (2004), I also add an additional element to the Monte Carlo

design that makes the simulations more comparable to the situation in Angrist and

Krueger (1991)’s data set. Chamberlain and Imbens (2004) divide the set of instru-

ments into a small set of basic instrumental variables and a set of doubtful instrumental

variables. Using Angrist and Krueger (1991)’s application, they argue that the basic

variation stems from the quarter-of-birth dummies, while the quarter-of-birth inter-

actions are the doubtful set of instruments. In the following, I also split the set of

instruments into two subsets. The first set contains a fixed number of relevant in-

struments (m1) while the second set of instruments is completely irrelevant (m2). In

Figures 4.5 to 4.7 the number of irrelevant instruments is 0, 2 and 6, respectively,

while the concentration parameter has been fixed at six different values. Hence, the

population first stage F -statistic decreases from Figures 4.5 to 4.7, which is similar

to the application discussed in the next section. Once the doubtful quarter-of-birth

interactions are included, the first stage F -statistic decreases considerably.

In this simulation design the performance of 2SLS is extremely poor because not

only the bias increases with the number of instruments but also the rejection frequency,

given a constant bias, increases with the number of instruments (see e.g. Figure 4.4).

Therefore I only discuss the results from the continuous updating estimator in the

following. Without including the irrelevant instruments (see Figure 4.5), the divergence

between t-statistics based on the usual standard errors and NW’s standard errors does

not seem to be great. While both densities appear to be non-normal for low values

of the concentration parameter, they converge to a normal distribution as the concen-

tration parameter increases. Figures 4.6 and 4.7 show that the inclusion of irrelevant

instruments affects especially the t-statistics based on the usual standard errors. The

density becomes even bimodal for low values of the concentration parameter. However,

the performance of t-statistics based on the new variance estimator stays almost iden-
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Figure 4.5: Simulation densities of t-statistics when n = 100
(ρ = 0.3, m1 = 2, m2 = 0; 10,000 replications each). Dashed lines show CUEC;

longer dashes show CUE; solid lines show standard normal distributions.

tical as the number of irrelevant instruments increases. For instance, with 6 irrelevant

instruments and a concentration parameter of 16, the density of the CUEC is almost

normal. Throughout, whenever the performance of both variance estimators is poor,

the actual size of the test seems to be slightly higher for positive estimates than for

negative ones. This pattern is the other way round when the correlation is negative.

The corresponding graph for m2 = 6 is displayed in Appendix A.2.
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Figure 4.6: Simulation densities of t-statistics when n = 100
(ρ = 0.3, m1 = 2, m2 = 2; 10,000 replications each). Dashed lines show CUEC;

longer dashes show CUE; solid lines show standard normal distributions.

4.4 Application†

Angrist and Krueger (1991) estimated the effect of schooling on income using a sample

of 329,500 men born 1930-39 from the 1980 census. This sample has been extensively

used as an application in the weak instruments literature. Using randomly generated

indicators for quarter of birth, Bound et al. (1995), for instance, showed that 2SLS

suffer from finite-sample bias even if the sample size is as large as in Angrist and

Krueger’s sample. Staiger and Stock (1997) suggested that LIML point estimates are
† Following the results from the previous section, I tried different starting values for the
education parameter in all regression specifications where the identification was particularly weak
(F -statistic<1.5). The 2SLS starting values, however, performed well in this application.
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Figure 4.7: Simulation densities of t-statistics when n = 100
(ρ = 0.3, m1 = 2, m2 = 6; 10,000 replications each). Dashed lines show CUEC;

longer dashes show CUE; solid lines show standard normal distributions.

more reliable in situations where the first-stage F -statistic is small. However, they also

showed that the coverage rate of LIML using the conventional standard errors might be

too low in case of weak instruments. Almost a decade later, Cruz and Moreira (2005)

picked up this issue and calculated LIML confidence intervals for this application that

are based on a conditional likelihood test. Moreira (2003) showed that confidence

regions based on this test have correct coverage probability even when identification is

weak. Chamberlain and Imbens (2004) proposed a new estimator which also performs

better in terms of coverage rate and employed this estimator to the Angrist and Krueger

(1991) data set. In both studies the usual standard errors of LIML turned out to be

too small. I therefore report sandwich-type standard errors which lead to the same

test decisions as in Cruz and Moreira (2005).
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While the LIML estimator is more reliable than 2SLS, it is not robust against certain

types of heteroskedasticity (see e.g. Bekker and van der Ploeg, 2005 and Hausman

et al., 2007). The contribution of the present study is to analyze the Angrist and

Krueger (1991) data set using an estimator that is robust to both heteroskedasticity

and weak identification. The presence of heteroskedasticity in the wage equation is

not unlikely. Klein and Vella (2009), for instance, discussed some potential sources of

heteroskedasticity. However, the extent to which heteroskedasticity affects the point

estimates of returns to education is an empirical question.

The aim of Angrist and Krueger (1991) is to estimate the causal effect of compulsory

schooling on earnings using the variation that quarter of birth induces in school atten-

dance. An increasing number of studies argues that this variation is not, or at least

not completely, exogenous. Such a conclusion would preclude a causal interpretation

of the results. For instance, in a very early study, Bound et al. (1995) discussed poten-

tial channels of a direct effect of quarter of birth on wages. They concluded that the

existence of such a direct effect is quite plausible. Bound and Jaeger (2000) renewed

their concerns some years later. More recently, Buckles and Hungerman (2008) showed

that mothers’ socioeconomic characteristics vary depending on season of birth. These

characteristics can explain a considerable fraction of the relationship between quarter

of birth and schooling which indicates that the variation in quarter of birth is at least

not completely exogenous. Buckles and Hungerman (2008) also noted that control-

ling for family background characteristics might not be enough to produce consistent

estimates since there could still be a correlation between season of birth and the unob-

servables in the model. Following the literature about weak instruments, I nevertheless

use this application to illustrate the performance of Newey and Windmeijer (2009)’s

new variance estimator.

I re-estimate the model in the second column of Angrist and Krueger (1991)’s

table V for 100 random subsamples using the continuous updating estimator. Each

subsample contains around 30% of the dataset. Table 4.3 shows the median and the

standard deviation of the estimated coefficients and the corresponding Wald statis-

tics for 2SLS, JIVE2 and the continuous updating estimator with the usual and the

new variance estimator. The effect of education is slightly stronger when I use the
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Table 4.3: Estimates of returns to education from 100 random subsamples

# IVs State effects Year effects Coeff. 2SLS JIVE2 CUE CUEC
30 No Yes Effect size 0.082 0.100 0.092 0.092

(0.022) (0.202) (0.041) (0.041)
Wald statistic 11.90 2.490 15.37 4.865

(5.814) (2.467) (9.762) (4.320)
Median (Standard deviation); Wald test of H0 : no returns to education (χ2

1-distributed).

continuous updating estimator compared with 2SLS. It is even somewhat stronger

when I use JIVE2. The JIVE2 estimates are much more dispersed than the estimates

from the continuous updating estimator. While the usual variance estimator of the

continuous updating estimator leads to even larger Wald statistics than 2SLS, the

corrected variance estimator gives distinctly lower Wald statistics. JIVE2 is more con-

servative than Newey and Windmeijer’s corrected variance estimator in this regression

specification. Nakov (2010) also used this data set from which he drew 100 random

subsamples with 50,000 observations in each. He reported the estimates for JIVE1 and

JIVE2. While the median of the effect size is very similar to his findings, the standard

deviation is distinctly lower in my simulation. The smaller standard deviation is, how-

ever, in line with Davidson and MacKinnon (2006). Although they found that JIVE1

is more dispersed than 2SLS, the differences are quite modest in large samples.

Table 4.4 shows the results using the full sample of men born 1930-39. I use the same

four regression specifications as Angrist and Krueger (1991) in their table V and table

VII (column 7 and 8). Additionally, I estimate the specification proposed by Bound

et al. (1995). They included only three indicator variables for quarter of birth, which

is the basic source of exogenous variation. The first-stage F -statistic is 13.5 in this

regression specification and thus above the rule of thumb for 2SLS. Not surprisingly,

the estimates of the returns to education in the first column of Table 4.4 are very similar

for 2SLS, LIML and the continuous updating estimator. The many weak instruments

standard errors are also very close to the usual standard errors. The number of excluded

instruments is distinctly larger in Angrist and Krueger (1991)’s specification. The

instruments in column 2 to 5 of Table 4.4 are obtained by interacting quarter of birth

with 9 year of birth indicators. The instruments in the last column are obtained by
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interacting quarter of birth with 9 year of birth and 50 state of birth indicators. The

first-stage F -statistic reported for these five specifications is now distinctly lower which

might bias the 2SLS estimator towards the OLS estimator (see e.g. Bound et al., 1995

and Staiger and Stock, 1997). Staiger and Stock (1997) also show that this bias is less

of a problem for LIML than 2SLS.

The point estimates of the continuous updating estimator are always close to the

LIML estimates. This is also the case for the many weak instruments standard errors

Table 4.4: Returns to education on men’s log weekly earnings (born 1930-1939)

BJB AK
(1) (2) (3) (4) (5) (6)

OLS 0.063 0.071 0.071 0.063 0.063 0.063
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

2SLS 0.142 0.089 0.076 0.081 0.060 0.081
(0.033) (0.016) (0.029) (0.016) (0.029) (0.011)

LIML 0.146 0.093 0.081 0.084 0.057 0.098
(0.035) (0.020) (0.060) (0.020) (0.052) (0.022)

JIVE2 0.202 0.096 0.116 0.090 0.086 0.144
(0.066) (0.022) (0.266) (0.026) (0.211) (0.052)

CUE 0.146 0.095 0.085 0.086 0.061 0.102
usual SE (0.033) (0.016) (0.029) (0.017) (0.029) (0.011)
many weak instruments SE (0.035) (0.020) (0.058) (0.020) (0.050) (0.022)

Excluded instruments:
Quarter of birth × × × × × ×
Quarter of birth × year of birth × × × × ×
Quarter of birth × state of birth ×
Number of excluded instruments 3 30 28 30 28 178
F (excluded instruments) 13.5 4.80 1.42 4.62 1.40 1.78
Control variables:
Age, Age2 × × × ×
Race, SMSA, married × × × ×
9 Year-of-birth dummies × × × × ×
8 Region-of-residence dummies × × × ×
50 State-of-birth dummies ×
Number of observations: 329,509. Robust SE in parentheses.

BJB: Bound et al. (1995)’s regression specification; AK: Angrist and Krueger (1991)’s regression specification.
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and the standard errors of LIML. Figure 4.4 from the simulation results shows that

the difference between the usual and NW’s standard errors is inversely related to the

strength of the instruments. This pattern can also be observed in the real data set.

While the relative difference is around 6% in Bound et al. (1995)’s specification, it is

up to 100% in the other specifications where the first-stage F -statistic is considerably

lower.8

4.5 Conclusion

This study analyzes the finite-sample properties of the continuous updating estimator.

While it is well-known that trying different starting values is necessary to obtain the

global minimum of the criterion function of the continuous updating estimator, it is

interesting to see that this can also affect its reported performance in Monte Carlo

simulations. To put it the other way around, choosing the two-stage least squares

estimates as starting values turns out to be a poor choice, especially when the sample

size is small and/or the identification is weak. A potential reason for this is the likely

presence of local optima and the fact that the continuous updating estimator often

converges to these local optima if they are close to the 2SLS estimates. In these

cases the continuous updating estimator seems to be distinctly more biased and less

dispersed. This study also shows that extreme estimates of the continuous updating

estimator, which are often reported in Monte Carlo simulations, are more likely to

be a failure of the optimization routine than a property of the continuous updating

estimator.

The continuous updating estimator becomes almost median unbiased in my

simulation design once the population first stage F -statistic is around 1. This is con-

siderably lower than the rule of thumb for 2SLS, which is around 10. The median bias

appears to be independent of the degree of endogeneity. Throughout, the continuous

updating estimator outperforms 2SLS and JIVE2 once the sample size is reasonably

large. However, the rejection frequencies with the usual standard errors are far too
8 This pattern can also be observed in the 1920-29 cohort and in the 1940-49 cohort. The corresponding
results are reported in Appendix A.3 and A.4.
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high especially in small samples. In contrast to this, the rejection frequencies with

the new variance estimator proposed by Newey and Windmeijer (2009) are often very

close to the nominal level once the sample size is reasonably large. Additionally, the

new variance estimator depends only slightly on the inclusion of irrelevant instruments.

This property makes it particularly attractive for the analysis of Angrist and Krueger

(1991)’s regression specifications in which a large set of quarter-of-birth interactions

weakens the identification.



Appendices
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A.1 Narrow replication of NW (2009)

Table 4.5: Median bias and rejection frequencies

CP=10 CP=20 CP=35
Bias RF Bias RF Bias RF

ρ = 0.3
m=3
2SLS 0.0507 0.0447 0.0267 0.0474 0.0140 0.0503
JIVE2 -0.0366 0.0208 -0.0388 0.0289 -0.0216 0.0388
CUEC 0.0050 0.0376 0.0016 0.0407 0.0020 0.0436

m=15
2SLS 0.1796 0.1622 0.1291 0.1333 0.0894 0.1112
JIVE2 0.0615 0.0167 -0.0160 0.0236 -0.0161 0.0334
CUEC 0.0328 0.0746 0.0052 0.0642 0.0020 0.0554

ρ = 0.5
m=3
2SLS 0.0871 0.0820 0.0444 0.0722 0.0253 0.0636
JIVE2 -0.0695 0.0368 -0.0591 0.0339 -0.0332 0.0389
CUEC 0.0034 0.0533 0.0016 0.0469 0.0017 0.0465

m=15
2SLS 0.2983 0.4022 0.2125 0.3039 0.1483 0.2254
JIVE2 0.0870 0.0438 -0.0279 0.0376 -0.0270 0.0373
CUEC 0.0475 0.1018 0.0069 0.0737 -0.0005 0.0546

ρ = 0.9
m=3
2SLS 0.1589 0.1908 0.0825 0.1323 0.0479 0.0993
JIVE2 -0.1354 0.0679 -0.1007 0.0439 -0.0569 0.0394
CUEC 0.0029 0.0767 0.0022 0.0624 0.0015 0.0548

m=15
2SLS 0.5356 0.9343 0.3801 0.7988 0.2644 0.6255
JIVE2 0.0861 0.1405 -0.0586 0.0778 -0.0447 0.0615
CUEC 0.0149 0.0955 0.0022 0.0685 0.0006 0.0555

n = 200; α = βx = 0; 10,000 replications.

Rejection frequencies for H0 : βx = 0 using Wald tests.

The results for JIVE2 are not comparable since Newey and Windmeijer

have estimated a generalization of JIVE2.



Continuously updated GMM 92

A.2 Simulation densities of t-statistics when ρ < 0

Figure 4.8: Simulation densities of t-statistics when ρ is negative (ρ = −0.3,
m1 = 2, m2 = 6, n = 100; 10,000 replications each). Dashed lines show CUEC;

longer dashes show CUE; solid lines show standard normal distributions.
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A.3 Returns to education (men born 1920-1929)

Table 4.6: Returns to education on men’s log weekly earnings (born 1920-1929)

BJB AK
(1) (2) (3) (4) (5) (6)

OLS 0.070 0.080 0.080 0.070 0.070 0.069
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

2SLS 0.056 0.077 0.131 0.067 0.101 0.089
(0.021) (0.015) (0.034) (0.015) (0.034) (0.011)

LIML 0.055 0.076 0.255 0.066 0.282 0.131
(0.021) (0.020) (0.156) (0.020) (0.357) (0.037)

JIVE2 0.051 0.076 -0.081 0.065 0.032 0.481
(0.027) (0.021) (0.137) (0.024) (0.042) (0.638)

CUE 0.056 0.075 0.257 0.065 0.286 –†

usual SE (0.021) (0.015) (0.045) (0.015) (0.052)
many weak instruments SE (0.021) (0.021) (0.124) (0.020) (0.242)

Excluded instruments:
Quarter of birth × × × × × ×
Quarter of birth × year of birth × × × × ×
Quarter of birth × state of birth ×
Number of excluded instruments 3 30 28 30 28 176
F (excluded instruments) 24.7 4.60 1.17 4.57 1.12 1.51
Control variables:
Age, Age2 × × × ×
Race, SMSA, married × × × ×
9 Year-of-birth dummies × × × × ×
8 Region-of-residence dummies × × × ×
50 State-of-birth dummies ×
Number of observations: 247,199. Robust SE in parentheses. † Estimation did not converge.

BJB: Bound et al. (1995)’s regression specification; AK: Angrist and Krueger (1991)’s regression specification.
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A.4 Returns to education (men born 1940-1949)

Table 4.7: Returns to education on men’s log weekly earnings (born 1940-1949)

BJB AK
(1) (2) (3) (4) (5) (6)

OLS 0.052 0.057 0.057 0.052 0.052 0.052
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

2SLS 0.201 0.055 0.095 0.039 0.078 0.067
(0.059) (0.014) (0.022) (0.015) (0.024) (0.011)

LIML 0.293 0.054 0.137 0.029 0.124 0.088
(0.119) (0.025) (0.049) (0.027) (0.070) (0.028)

JIVE2 1.623 0.055 0.124 0.035 0.128 0.117
(3.888) (0.017) (0.042) (0.019) (0.077) (0.048)

CUE 0.293 0.055 0.140 0.030 0.129 0.090
usual SE (0.073) (0.014) (0.023) (0.015) (0.025) (0.011)
many weak instruments SE (0.105) (0.025) (0.049) (0.027) (0.067) (0.029)

Excluded instruments:
Quarter of birth × × × × × ×
Quarter of birth × year of birth × × × × ×
Quarter of birth × state of birth ×
Number of excluded instruments 3 30 28 30 28 178
F (excluded instruments) 6.25 7.27 3.27 6.54 2.71 1.93
Control variables:
Age, Age2 × × × ×
Race, SMSA, married × × × ×
9 Year-of-birth dummies × × × × ×
8 Region-of-residence dummies × × × ×
50 State-of-birth dummies ×
Number of observations: 486,926. Robust SE in parentheses.

BJB: Bound et al. (1995)’s regression specification; AK: Angrist and Krueger (1991)’s regression specification.
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