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Zusammenfassung

Satellitengestützte geodätische Messmethoden, insbesondere GPS (Global
Positioning System), sind von zunehmender Bedeutung in den Geowissen-
schaften und erlauben neue Einblicke in verschiedenste geophysikalische Pro-
zesse. Zeitreihen hochpräziser Positionsmessungen von Punkten auf der Erd-
oberfläche ermöglichen unter anderem die Bestimmung von Relativgeschwin-
digkeiten tektonischer Einheiten, die Messung von Verformungsraten der
Kruste an aktiven Störungen und Vulkanen und erlauben es Rückschlüsse auf
die rheologischen Parameter der Lithosphäre und der Asthenosphäre zu zie-
hen. Mit zunehmender Länge und Genauigkeit der Zeitreihen ist es möglich,
auch zeitabhängige dynamische tektonische Prozesse in GPS Zeitreihen zu
identifizieren.

Die Schwierigkeiten in der Interpretation der Messungen bestehen un-
ter anderem darin, von Punktmessungen auf kontinuierliche Deformations-
muster zu schließen, zeitlich korreliertes Rauschen zu quantifizieren, um
realistische Fehlergrenzen anzugeben, und schließlich zeitabhängige tekto-
nische Signale von zeitabhängigem Rauschen zu trennen. In dieser Arbeit
werden Lösungsansätze zu diesen Punkten erarbeitet. Zunächst wird ein
Algorithmus entwickelt, durch den aus einem diskreten Geschwindigkeits-
feld, ohne Vorgabe weiterer Randbedingungen (Geometrie der Störungen
etc.), der kontinuierliche zweidimensionale Tensor der Verformungsraten ab-
geleitet werden kann. Aus der Tensoranalysis erhält man Informationen
zur maximalen Scher- und Rotationsverformungsrate, sowie zur Dilatati-
onsrate. Die Anwendung dieses Algorithmus auf verschiedene Datensätze in
Südkalifornien und Island zeigt, dass hiermit sowohl aktive Störungen iden-
tifiziert, als auch Informationen über Bruchflächen von Erdbeben aus ko-
bzw. postseismischen GPS Messungen abgeleitet werden können. Außerdem
wurden zeitabhängige Signale in den GPS Geschwindigkeitsfeldern ersicht-
lich.

Im zweiten Teil dieser Arbeit wird ein weiterer Algorithmus ein-
geführt, der unter Berücksichtigung der Effekte zeitabhängigen Rauschens
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ZUSAMMENFASSUNG

die Berechnung der Varianz innerhalb von GPS Geschwindigkeitsfeldern
ermöglicht. Somit wird außerdem der Notwendigkeit Rechnung getragen,
realistische Fehlergrenzen als Grundlage zur Konfidenzabschätzung von Mo-
dellen zu definieren. Dieser Algorithmus basiert auf der Allan Varianz, die
bei der Messung der Stabilität von Oszillatoren Verwendung findet und aus-
schließlich im Zeitbereich berechnet wird. Er wird ausführlich mit verschie-
denen synthetischen Zeitreihen und Fehlermodellen getestet und auf einen
südafrikanischen Datensatz angewandt. Der Vergleich mit Methoden, die auf
einer Spektralanalyse oder einem Maximum Likelihood Estimator beruhen
zeigt, dass der relativ schnelle Algorithmus stabile und verlässliche Angaben
liefert.

Zuletzt wird der entwickelte Algorithmus erweitert, um die Kovarianz der
Geschwindigkeit zu erhalten. Die Anwendung auf verschiedene Datensätze
an konvergenten Plattengrenzen, wo regelmäßig Kriechereignisse in Form
von Slow Slip Events auftreten, zeigt für einige Stationen stark richtungs-
abhängige und räumlich korrelierte Geschwindigkeitsfehler. Des Weiteren
konnte eine Zeitkorrelation beobachtet werden, die auf einen tektonischen
Ursprung der Ereignisse hinweist. Die korrigierten Zeitreihen, von denen
die modellierten Ereignisse subtrahiert wurden, haben dagegen richtungs-
unabhängig eine Zeitkorrelation, die etwa dem 1/f Rauschen entspricht,
und weisen keine räumlich korrelierten stark exzentrischen Fehlerellipsen
auf. Die Analyse ermöglicht somit eine qualitative Bewertung der Modelle
zeitabhängiger Signale in GPS Zeitreihen.
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1
Introduction

The Global Positioning System (GPS) designed by the US Department of
Defense for military and civilian navigation and positioning became fully
operational in 1994. Since then it has become the method of choice for
studying a variety of geophysical processes (e.g. Segall and Davis, 1997).
The increasing number of continuously operating GPS receivers along with
an improving precision of the position measurement provides the possibility
to better and better study the motion of tectonic plates, crustal deformation
at faults and volcanoes, and glacial isostatic adjustment. GPS is also used to
contribute to atmospheric and ionospheric studies and measurements of sea
level changes. Recent developments in high rate GPS indicate an increasing
role of GPS in seismology (e.g. Larson, 2009).

Along with the availability of longer position time series and the
increasing accuracy of the measurements GPS will become still more
important in the study of time dependent transient tectonic signals, pro-
viding insights into processes such as earthquake cycles from which we can
derive information on rheologic properties of the crust and asthenosphere.
However, there are still several important aspects that need to be addressed.
Among others, the following three points are important to understand the
signal derived by geodetic measurements: (1) the derivation of continuous
deformation patterns from point measurements without to have to specify
the fault geometry, (2) the provision of realistic uncertainty estimates, and
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1 INTRODUCTION

(3) the separation of the signal from time correlated noise. Those points
are addressed in the different parts of this thesis, which is structured in
three main chapters that have been published in or are submitted to peer
reviewed journals with myself as first author. Although not part of the
thesis, the work developed for my dissertation has already been utilized by
two other papers of which I am a co-author (Jiang et al., 2012; Malservisi
et al., 2012).

Chapter 2 provides a method to obtain the full continuous 2d strain rate
tensor from dense GPS networks. This work was motivated by the need to
identify regions of strain accumulation in seismic hazard assessment. It has
been partially funded by Munich Re and was published in Natural Hazards
and Earth System Sciences. The presented method is designed to detect pre-
viously unknown structures, so it does not require any additional information
like fault geometry. A comparison by the Southern California Earthquake
Center (Sandwell et al., 2010) of 16 methods to calculate strain rates showed
that our algorithm is amongst the best performing and provides the most
reliable results of all the methods that do not include fault geometries.

Additionally, this work showed that many GPS velocity fields exhibit
significant transient signals. On the one hand these signals bias the
results, if they are not modeled properly, on the other hand they provide
important information about different geophysical properties. Although
uncertainties were not introduced explicitly in the analysis, during the work
for this chapter it became apparent that realistic GPS velocity uncertainty
estimates are inevitable for any confidence estimates of models based on
GPS data.

As a result, in Chapter 3 I adopted the Allan Variance that is commonly
used in the estimation of oscillator stability and modified it in order to
characterize the time correlated noise content in GPS time series. This
work that provides realistic velocity uncertainty estimated in the presence
of time correlated noise, has been published in the Journal of Geophysical
Research. The algorithm is computationally cheap and has been tested
thoroughly with synthetic time series and different error models. The
calculations are done in the time domain, which makes it robust to gaps in
time series. Additionally, the velocity uncertainty estimation is separated
into two independent steps, which provides the possibility to independently
test for an appropriate error model. The method has been applied to the
South African TrigNet network and tested with an independent method

2



based on maximum likelihood estimation.

Finally, in Chapter 4 I enhanced the method to estimate the velocity
uncertainty providing the full velocity covariance in the presence of time
correlated noise that may vary in different directions. This work has been
submitted to the Geophysical Journal International and provides realistic
2d GPS velocity confidence intervals. This analysis forms the basis for the
study of transient signals in GPS time series that are caused by tectonic pro-
cesses. So the analysis was applied to time series of GPS networks that are
affected by transients. GPS sites in Costa Rica and Cascadia exhibit a highly
time correlated signal in some preferred direction that can be explained by
tectonic related transients like slow slip events or volcanic induced deforma-
tion. Models that account for these signals can independently be tested by
analyzing the noise content of the residual time series.
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2
Strain rate patterns from dense GPS

networks

by M. Hackl, R. Malservisi, and S. Wdowinski
Published in Natural Hazards and Earth System Sciences, 2009, 9(4), 1177-
1187

Abstract

The knowledge of the crustal strain rate tensor provides a description of geo-
dynamic processes such as fault strain accumulation, which is an important
parameter for seismic hazard assessment, as well as anthropogenic deforma-
tion. In the past two decades, the number of observations and the accuracy
of satellite based geodetic measurements like GPS greatly increased, pro-
viding measured values of displacements and velocities of points. Here we
present a method to obtain the full continuous strain rate tensor from dense
GPS networks. The tensorial analysis provides different aspects of defor-
mation, such as the maximum shear strain rate, including its direction, and
the dilatation strain rate. These parameters are suitable to characterize the
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2 STRAIN RATE PATTERNS FROM DENSE GPS NETWORKS

mechanism of the current deformation. Using the velocity fields provided by
SCEC and UNAVCO, we were able to localize major active faults in South-
ern California and to characterize them in terms of faulting mechanism. We
also show that the large seismic events that occurred recently in the study
region highly contaminate the measured velocity field that appears to be
strongly affected by transient post-seismic deformation. Finally, we applied
this method to co-seismic displacement data of two earthquakes in Iceland,
showing that the strain fields derived by these data provide important in-
formation on the location and the focal mechanism of the ruptures.

2.1 Introduction

The 1994, Mw = 6.7 Northridge and the 1995, Mw = 6.8 Kobe earth-
quakes caused unprecedented damages of more than US $ 40 billion and
US $ 100 billion, respectively. This was considerably more than could have
been expected by earthquakes of comparable moment magnitude in Califor-
nia and Japan. These large damages were explained by the unexpectedly
high magnitudes of these events for these particular areas (Smolka, 2007).
These two events demonstrated in a dramatic way the shortcomings of tra-
ditional seismic hazard assessment, mainly based on probabilistic models
derived from catalogs of regional seismicity and supplemented by additional
geologic information only for known active faults (e.g. McGuire, 1993; Muir-
Wood, 1993). In the case of Northridge, the rupturing fault was previously
unknown without any surface expression and, hence, termed blind thrust
fault. In Kobe the fault was assumed to be related to low seismic hazard.

The basic explanation for seismic activity is derived from the elastic re-
bound theory (Reid, 1910), suggesting that earthquakes are the result of a
sudden release of elastic strain energy accumulated in a steadily deforming
crust. Thus, seismic hazard assessment might be improved by detecting
localized patterns of crustal deformation. Due to the development of satel-
lite based positioning technologies, such as the Global Positioning System
(GPS), it is nowadays possible to detect small displacements of the Earth’s
surface with sub-centimeter precision. These observations provide insights
into crustal motion and deformation processes at new scales in both spatial
density and accuracy. However, precise repeated positioning measurements
provide only displacement information of a finite number of points. In order
to derive local and regional deformation patterns, an analysis method needs
to be applied.
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2.2. METHODS

Here we present a fast and economic method to identify deformation and
strain rate patterns in Southern California from dense geodetic networks by
using a simple interpolation scheme that requires only geodetic velocities as
input. This method is independent of the local geologic setting, thus it can
easily be applied wherever geodetic measurements are available, even if the
local geology is not fully known. By interpolating the velocity component
fields using splines in tension (Wessel and Bercovici, 1998), it is possible to
detect major active faults as well as regions of high strain rate related to tec-
tonic activity or human-induced deformation (i.e. oil and water pumping).
We applied this method to data collected in Southern California, a tectoni-
cally active region between the North American and the Pacific plates. We
also applied the method to data from regions experiencing post-seismic and
co-seismic deformation, gaining information about transient behavior and
rupture mechanisms.

Although strain rate is a good indicator of the deformation accumulated
in a region, it does not directly correlate with the amount of elastic energy
released by seismic events. Thus, it can only be a supportive, independent
observation for regional seismic hazard estimation; additional information
and models are required to fully quantify the amount of elastic energy stored
in the area. Still, the results of this method can be utilized as a starting point
for further numerical models and/or geological investigations to estimate
current fault activities.

2.2 Methods

2.2.1 Strain rate analyses

Previous works used geodetic observations to quantify the regional strain
rate pattern and the accumulating strain on faults. Here we provide a
brief overview of the various methods; a full analysis and comparison of
those works is out of the scope of this paper. Probably the most common
method is based on a discretization of the investigated area into triangles
(e.g. Delauney triangulation) and computation of internal strain rate for
each triangle (see e.g. Frank, 1966; Shen et al., 1996; Cai and Grafarend,
2007; Fernandes et al., 2007; Wdowinski et al., 2007). This method is very
similar to the computation of stress and strain rate for each element in a
finite element model, another way used to calculate a continuous strain field
from geodetic data (Jimenez-Munt et al., 2003). In general, these methods
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2 STRAIN RATE PATTERNS FROM DENSE GPS NETWORKS

do not have redundancy of data and hence can not detect and remove out-
liers. Furthermore they produce a continuous displacement field, but the
obtained strain rate is discontinuous.

Other methods use inversion techniques to map the strain rate field. For
example, Spakman and Nyst (2002) based their inversion on the technique
of seismic tomography. They assign strain rate to a previously discretized
area by using different paths of relative displacement between pairs of obser-
vation points. Haines et al. (1998), Kreemer et al. (2000), and Beavan and
Haines (2001) used point observations of displacement observed by geode-
tic networks and strain evaluated by geologic and geophysical information
(e.g. earthquake focal mechanisms) to invert for the Eulerian pole that lo-
cally minimizes the strain rate and velocity field residuals along a regional
curvilinear reference system. As any inversion scheme these methods are
computationally expensive. Furthermore, tomographic methods need to im-
pose the location of faults so they can only be used to quantify the slip
deficit on known structures, but not to identify unknown faults. In general,
inversion based methods require assumptions on the constitutive law of the
crust in order to relate the observed deformation to strain rate.

Interpolation of geodetic data can produce continuous strain rate fields
suitable to identify new structures without having to assume anything about
the deformation mechanisms. For this reason, different schemes have been
suggested. Wdowinski et al. (2001) interpolated the velocity field along small
circles relative to the pole of rotation that minimizes the residual (called
pole of deformation). Allmendinger et al. (2007) used different approaches
(nearest neighbor and distance weighted) to obtain continuous velocity fields
from which a strain rate pattern can be calculated. Kahle et al. (2000)
interpolated velocity fields in the Eastern Mediterranean by using a least-
square collocation method based on a covariance function. Here we use a
computationally cheap and fast spline interpolation of gridded data.

2.2.2 Interpolation

The principal aim of our method is to obtain a continuous strain rate field
using only geodetic data. To do this, we performed a separate interpolation
of the east and north velocity components on a regular grid using the splines
in tension algorithm described by (Wessel and Bercovici, 1998). The tension
is controlled by a factor T , where T = 0 leads to a minimum curvature (i.e.
natural bicubic spline), while T = 1 leads to a maximum curvature, allowing
for maxima and minima only at observation points. As long as the grid size
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2.2. METHODS

is not significantly smaller than the average site distribution, the results are
not very sensitive to the choice of T . We set T = 0.3, the value suggested
by Wessel and Bercovici (1998) for topographic interpolation. In order to
perform the interpolation, the region is divided into a regular grid with cell
size comparable to the average distance of geodetic sites. For cells with only
one value, the observed value was assigned to the cell. Where a grid cell
contained more than one observation, the median of all the included data
was computed. Since the grid size is based on the average density of GPS
sites, regions of denser datasets often need to be averaged. In spite of the
loss of information, this has the advantage that outliers are removed and do
not bias the results.

The interpolation will give two continuous scalar fields corresponding to
the north and east components of the velocity. A basic assumption in this
process is that the two components of the interseismic velocities are inde-
pendent. Indeed, the correlation between the two fields is usually small and
the error introduced by this assumption is smaller than the one associated
with the interpolation scheme itself.

Since we use a spline interpolation function for the two components of the
velocity fields, it is possible to calculate the derivatives along the local north
and east directions, producing four continuous fields that can be linearly
combined in a continuous representation of the strain rate tensor.

Assuming small deformations, the components of the strain rate tensor
are defined as:

ε̇ij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(2.1)

where i, j substitute east and north.
In a similar way, it is possible to compute the antisymmetric rotation

rate tensor:

ω̇ij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
(2.2)

At this point, any tensorial analysis can be performed. The eigenspace
analysis of the tensor is the starting point for the full description of defor-
mation at every gridpoint, providing different aspects of the strain rate. The
eigenvectors of the strain rate, for example, represent the direction of max-
imum and minimum strain rates, while their associated real eigenvalues λ1
and λ2 represent the magnitude (note that we follow the notation that pos-
itive values indicate extension and negative values stand for compression).

The maximum shear strain rate and its direction might provide a tool
to identify active faults, since motion along faults is related to shear on
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2 STRAIN RATE PATTERNS FROM DENSE GPS NETWORKS

that structure. Faults oriented in this direction are the ones most likely
to rupture in a seismic event. The maximum shear strain rate at every
gridpoint can be obtained by a linear combination of the maximum and
minimum eigenvalues:

ε̇max shear =
λ1 − λ2

2
, (2.3)

while the direction of maximum shear is oriented 45◦ from the direction of
the eigenvector corresponding to the largest eigenvalue:

θ1,2 =
1

2
arctan

(
2ε̇ij

ε̇ii − ε̇jj

)
±45◦ (2.4)

Note that Eqn. (2.4) corresponds to two conjugate perpendicular directions
that cannot be distinguished without further constraints.

The trace of the tensor,

δ = ε̇ii + ε̇jj (2.5)

corresponds to the relative variation rate of surface area (dilatation) and
thus can indicate regions of thrusting or normal faulting.

It is interesting to note that our method is not limited to the analysis
of inter-seismic data. We also applied the method to co-seismic displace-
ment vectors to obtain the associated strain field, which is useful for iden-
tifying rupture zones or even deducing earthquake focal mechanisms (see
Section 2.3.6). If the studied velocity field is affected by post-seismic de-
formation, the method can be used to evaluate time dependent changes of
the strain rate. It is interesting that the use of inter-seismic velocities not
corrected by transient behavior contaminates the strain rate field in a way
that can be used to obtain information about the rupture mechanism (see
Section 2.3.5) and about the structure and rheological properties of the crust.

2.3 Results

In order to test the method, we chose to apply it to a region with a dense
coverage of geodetic measurements and well known from a geologic, seismic,
and geomorphologic point of view. For this reason, we chose to apply the
method to observations in Southern California, because (1) it is one of the
most extensively instrumented areas of the world, (2) it has high density
of known active faulting, (3) it is well understood from a geological and
geophysical point of view.
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2.3. RESULTS

2.3.1 Geologic setting

Tectonics in Southern California are dominated by the right lateral transcur-
rent plate boundary between the North American (NA) and Pacific plates.
The two plates have been grinding past each other for about 25-30 Myr,
creating a broad deformation zone mainly composed of subparallel strike
slip faults. This zone has been shifted several times before the current San
Andreas Fault Zone developed about eight Myr ago (Atwater and Stock,
1988).

The present day relative motion between NA and the Pacific Plate is
at first order right lateral with a total velocity of about 49±3 mm/yr (e.g.
Plattner et al., 2007), oriented ∼N 37◦W. While in Central California ∼80%
of the motion is taken up by the San Andreas Fault (SAF) (Prescott et al.,
2001), in Southern California it is partitioned on different faults, of which
the SAF, the San Jacinto Fault (SJF), and the Elsinore Fault (ELS) are
the most prominent ones. These three faults account for about 80% of the
relative motion (Bennett et al., 1996). This fault system consists of mul-
tiple segments, whose interaction is still not completely understood. The
remaining 20% of the slip are accommodated offshore and along different
fault systems further east, like the Eastern California Shear Zone (ECSZ)
and the Basin and Range area (Fig. 2.1). In the past two decades four earth-
quakes Mw≥6.5 occured in the region, their location and focal mechanism1

are also shown in Fig. 2.1.

2.3.2 Data

We used data provided mainly by two sources, the Southern California
Earthquake Center (SCEC) (Shen et al., 2003) and the Scripps Orbit and
Permanent Array Center (SOPAC) (Jamason et al., 2004). The SCEC
dataset is composed of observations based on different geodetic techniques
between 1970 and October 2001 (a full description is given by Shen et al.
(2003)). The SOPAC dataset consists of continuous GPS measurements
covering the time period from 1990 to 2008. It includes data provided by
the Plate Boundary Observatory2 (PBO). To better allow for constraints
on areas along the border of our study region, we also included campaign
observations from the Eastern California Shear Zone (ECSZ) and North-

1from: USGS National Earthquake Information Center, http://neic.usgs.gov/

neis/sopar/, accessed September 2008
2http://pboweb.unavco.org/?pageid=88
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Figure 2.1: Topographic map of Southern California with major faults. Red
lines indicate known faults and plate boundaries from: US Geological Survey
and California Geological Survey, 2006, Quaternary fault and fold database
for the United States, accessed September 2008, from USGS web site: http:
//earthquakes.usgs.gov/regional/qfaults/ and Michaud et al. (2004).
SAF: San Andreas Fault, SBM: San Bernadino Mountains, ECSZ: Eastern
California Shear Zone. Focal mechanisms from USGS.
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2.3. RESULTS

Table 2.1: Table of GPS velocity datasets used in the calculation.

Institution Number of sites used Sampling period
SCEC 769 1970–Oct 2001
SOPAC 991 1990–2008
UM 72 1994–2001

ern Baja California, Mexico, collected and processed by the University of
Miami (UM) (Dixon et al., 2002; Plattner et al., 2007, and LaFemina, P.,
personal communication, 2008) (see Table 2.1). In order to merge the differ-
ent datasets, the SOPAC and UM data were rotated into the SCEC North
America fixed reference frame (RF), using the Eulerian pole that minimizes
the residuals of the velocities at common sites (a list of common sites and
residuals is given in the supplementary material of Hackl et al. (2009)).

The final dataset consisted of 1261 velocity vectors within the area of
interest in Southern California and adjacent regions (see Fig. 2.2). Note,
that all the data centers provided the velocities corrected for discontinuities
in the time series (i.e. co-seismic, instrumentation changes, and transient
effects), providing long term inter-seismic velocities. This means that the
strain map obtained from the data should be a representation of the long
term strain accumulation in the region.

2.3.3 Strain rate tensor

Based on the distribution of the GPS observations, we tested different grid
sizes to identify the best resolution. Too fine grid size results in a highly
irregular strain rate map with high strain rate peaks at observation sites. It
would be possible to increase the tension T for the interpolation, but we no-
ticed that such an interpolation introduces numerous artifacts. Too coarse
grid size results in a very low and highly delocalized strain rate. The ideal
situation would be to have a grid with at least one observation per cell. Af-
ter different tests we found that a regular grid with cell size of 0.04◦, is most
suitable for the interpolation of the horizontal velocity field components for
Southern California. Using GMT routines (Wessel and Smith, 1991), we cal-
culated the strain rate tensor as described in Section 2.2.2. The script used
to produce the results in this paper is attached in the electronic supplemen-
tary material in Hackl et al. (2009). Fig. 2.3 shows the three components
of the strain rate tensor. In order to avoid over-interpreting artifacts due
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Figure 2.2: Map of Southern California with velocity arrows used in this
study in a fixed North America reference frame. Red arrows: velocity pro-
vided by the Scripps Orbit and Permanent Array Center (SOPAC); blue
arrows: data from the University of Miami; green arrows: data from the
crustal motion map (version 3) by the Southern California Earthquake Cen-
ter (SCEC).
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to the interpolation scheme, we masked out (white color) interpolated val-
ues located at distances greater than ∼0.5◦ (15 grid cell) from the closest
observation site in all the figures.

This method is not suitable to calculate absolute values of strain rates.
Since this value is related to the gradient of the velocity field, the rate is
limited by the grid size, the minimal distance along which it is possible to
observe a velocity change. This is a shortcoming of the introduced method,
because the absolute values of the strain rate are limited by this fact and
might hence be underestimated. Smaller grid sizes could overcome this prob-
lem, but they are associated with increasing uncertainties. However, the
method is suitable to determine relative strain and strain rate changes quite
well.

2.3.4 Horizontal maximum shear strain rate

The plate boundary in Southern California is mainly of transcurrent nature.
Thus, the direction and magnitude of the maximum shear strain rate are
good scalar fields to represent the strain rate tensor. These two parameters
are suitable to characterize the amount of localization of the shear defor-
mation and the direction along which strike slip faulting is more favorable.
In Fig. 2.4, the color scale indicates the magnitude of the maximum shear
strain rate, while the crosses indicate the two conjugate maximum shear
directions. At first glance, the image shows a very high similarity with the
seismic hazards maps published by USGS3. This is essentially due to the fact
that the “warm” color regions in Fig. 2.4 clearly reflect the location of the
principal plate boundary between North America and the Pacific, following
the trace of the SAF. The maximum shear strain rate is highest in the south
along the Imperial Fault and along the central section of the SAF (north of
the Carrizo Segment). This can partially be a consequence of the fact that
in these regions the fault system is less complex, thus the deformation can
better localize along the major segments of the fault. Probably, the high
shear strain rates are related to the local aseismic creep of those segments of
the SAF system. Creeping faults release part of the relative motion between
the two sides by aseismic slip, implying that a large part of the deforma-
tion is accommodated on the fault plane in a really narrow region with very
high shear strain rates. These do not necessarily correspond to high seismic
hazard, since large parts of the deformation is not accumulated as elastic

3see e.g.: http://earthquake.usgs.gov/hazards/products/
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Figure 2.3: Continuous symmetric strain rate tensor components obtained
by summing the directional derivatives of the previously interpolated con-
tinuous velocity component fields (see Eqn. 2.1). Each panel corresponds to
one of the three components of the strain rate tensor as indicated in each
figure. Calculated values at a distance greater than ∼0.5◦ (15 cells) from
any observation site are masked out.
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energy (Bürgmann et al., 2001; Malservisi et al., 2005). Central Southern
California is dominated by a more complex structure of slip partitioning,
which is also reflected in broader zones of relatively high shear strain rates,
extending from the ECSZ to the Transverse Ranges.

At the transition between the Transverse Range region and the Imperial
Valley, the map clearly shows that the maximum shear strain rate is parti-
tioned between the SAF and SJF, with a minor contribution at the Elsinore
Fault. The secondary plate boundary along the ECSZ/Walker Lane is also
clearly visible. This plate boundary separates the Sierra Nevada Block from
the Basin and Range and accounts for about 11 mm/yr of relative motion
(Dixon et al., 2000). The map shows relatively high shear strain rates in
the Owens Valley region and at the south eastern part of the Mojave Re-
gion (probably due to recent large seismic events in the region). The Great
Valley, which is characterized by low strain rates in the map, is essentially
rigid and almost no deformation is observed. Within the Great Valley some
deformation is observed at latitude ∼35.5◦N. Although it might be related
to artifacts due to the lack of data, it is interesting to note that this re-
gion is intensively used for oil extraction. Wdowinski et al. (2007) already
suggested that anomalous signals there may reflect data contamination by
oilfield operations near Bakersfield. The two regions of deformation are also
clearly visible as large subsiding areas in regional InSAR studies (Amelung,
F., personal comm., 2008).

Apart from creeping fault regions, locations of past large seismic events
appear on the map as particularly bright spots. This is notable for the lo-
cation of the Landers (1992, Mw = 7.3), Hector Mine (1999, Mw = 7.1),
and San Simeon (2003, Mw = 6.6) earthquakes. Apart from these recent
events, also large earthquakes that happened before the start of the data ac-
quisition seem to be apparent in the dataset. In particular, there are bright
spot at the location of the 1872 (Intensity XI) Owens Valley and 1993 Eu-
reka Valley (Mw = 6.1) events. Since the velocities have been corrected for
co-seismic displacements and for short term post-seismic deformations, it is
likely that the observed high shear strain rates are related to visco-elastic re-
laxation. According to visco-elastic models (e.g. Savage and Lisowski, 1998),
the surface velocity at a locked fault is highest right after an earthquake and
decreases with time at a rate controlled by the local rheology. This tran-
sient behavior does not only explain why regions of recent seismic events
appear much brighter, but also the relatively low rates at the SAF Mojave,
the Transverse Range, and the Elsinore Fault, which have not experienced
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Figure 2.4: Map of Southern California with magnitude (see colorbar) and
direction (and its perpendicular, see black crosses) of maximum shear strain
rates. The size of the crosses is proportional to the magnitude of the maxi-
mum shear strain rate. Locations of observation sites are indicated by black
circles and known faults (see Fig. 2.1) by brown lines. Values at a distance
greater than 15 grid cells from any observation site are masked out.
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large seismic events in the past century and are supposed to be late in their
earthquake cycles.

In order to test the interpolation and to analyze transient behavior, we
performed separate analyses of the data from SCEC and SOPAC. As shown
in Table 2.1, the two datasets include observations from different time spans
(Fig. 2.5). In particular, the inclusion of data released by PBO within
the SOPAC dataset allows for studying a more recent velocity field. A
visual inspection of the two figures shows that it is not possible to do a
full comparison of the two strain rate fields. The interpolation method is
particular sensitive to site density, as high strain rates are directly related
to big velocity changes within a narrow region. This becomes apparent in
places like the Los Angeles Basin, where the SCEC dataset is much denser
than the SOPAC one. The method is also sensitive to the smoothing of the
fields at the boundaries, as shown, for example, at the northern end of the
SAF and at the Imperial fault. Thus, it is crucial to include observations
for regions outside the one of interest (here: the inclusion of the data from
UM or PBO data outside Southern California) in order to reduce possible
artifacts caused by edge smoothing.

Nevertheless, we note a considerable change of the maximum shear strain
rate between the maps in Fig. 2.5 in regions with comparable data distri-
bution like the San Simeon area or the Landers/Hector Mine region. In the
San Simenon region, the bright spot is present only in the SOPAC field.
Since the 2003 earthquake happened after the release of the SCEC CMM
v3 velocity field that was utilized here. The absence of the signal in the old
strain rate field clearly indicates that the high shear is not associated with
fault loading, but with post-seismic relaxation (see Fig. 2.6).

In a similar way, we can observe that, despite the similar coverage of
geodetic observations, the maximum shear strain rate in the Landers/Hector
Mine area is situated closer to the location of the Landers event for the SCEC
data, and closer to the Hector Mine event for the SOPAC data. We relate
this location shift of the maximum shear strain rate to the time span of
the data collection in the two datasets. The post-seismic relaxation due
to the 1992 Landers earthquake is clearly visible in the shear strain rate
calculated using SCEC data only (see Fig. 2.5, A), whereas the high strain
rates are probably related to post-seismic effects of the 1999 Hector Mine
and the 2003 Mw = 6.5 San Simeon events, which show up in Fig. 2.5
(B). Unfortunately, a similar analysis was not possible for the Owens Valley
and Eureka Valley events, since the signal is mainly derived from episodic
GPS observations conducted by the UM group and cannot be divided into
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Figure 2.5: Same as Fig. 2.4 using subsets of the data. (A) Map of the
maximum shear strain rate based only on velocity data of SCEC collected
between 1970 and October 2001. (B) Map of the maximum shear strain rate
using data from SOPAC spanning the period from 1990 up to September
2008. Values at a distance greater than 15 grid cells from any observation
site are masked out. Brown lines indicate known faults (see Fig. 2.1).
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different observation periods. A full study of the time series of the single
GPS observations and the variation of the velocities with time is necessary
to further investigate time dependent changes in the strain rate fields. Still,
the comparison of the two strain rate fields shows that the method is also
suitable for studying transient strain rates.

To conclude, the direction of maximum shear strain rate, indicated by
the crosses in Figures 2.4 and 2.5, is mainly controlled by the direction of
the SAF and is mainly parallel to the fault traces. While parts of the SAF
show a partial rotation of the maximum shear strain rate direction along the
Transverse Range, this is not the case in the Los Angeles basin, where the
direction of the maximum shear strain rate does not appear to be oriented
along the SAF. Probably, this is due to the fact that this region is controlled
by thrust faulting and the current analysis of the strain rate does not allow
for the full study of the three-dimensional tensor.

2.3.5 Dilatation rate

As a second example of the strain rate tensor analysis, we look at its trace.
The sum of the diagonal elements of the tensor gives the rate of relative
change of area (volume in 3-D) and provides the possibility to identify regions
of compression or extension. Fig. 2.6 shows an example of this analysis using
only SOPAC data in the region of the San Simeon earthquake. As previously
mentioned, the velocity field in this area is strongly influenced by post-
seismic visco-elastic relaxation and/or afterslip induced by the 2003 event.
Indeed, the map of dilatation rate in the earthquake region reproduces the
pattern of compression and extension of the published focal mechanism1.
The highly localized dilatation pattern suggests that afterslip and not a
broad-scale visco-elastic relaxation is the dominant post-seismic mechanism.
A dilatation rate pattern similar to the focal mechanism was also obtained
for the Hector Mine earthquake. Using SCEC data only, we obtained a
more complex dilatation rate pattern from post-seismic deformation of the
Landers event, which coincides quite well with Coulomb stress data modeled
by King et al. (1994). The obtained patterns show the strength of the
introduced method in the analysis of the transient behavior of the strain rate
and that the local velocity field is highly influenced by transient deformation
probably induced by earthquake cycle effects.

At the northern end of the SAF in Fig. 2.6, we see that the dilatation rate
shows a complex pattern. It is possible that this pattern reflects an artifact
of the analysis. But it is worthy to note that this region corresponds to
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Figure 2.6: Continuous dilatation rate field (see colorbar) of western central
California calculated from inter-seismic velocities, where negative values in-
dicate compression and positive values extension. Black circles indicate site
positions and brown lines known faults (see Fig. 2.1). Values at a distance
greater than 15 grid cells from any observation site are masked out. The
dilatation pattern reflects the focal mechanism of the San Simeon Mw = 6.5
earthquake on December 22nd, 2003 (from USGS1). The high dilatation
rates along the SAF are probably caused by creeping segments.
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the transition between creeping and locked parts of the SAF and that the
regional deformation may be influenced by the local pattern of creep and
transient deformation (Nadeau and Guilhem, 2009). Furthermore, this is
also the location of the 2004 ParkfieldMw = 6.0 earthquake, which influences
the local strain rate. A more detailed analysis of this pattern is beyond the
scope of this work.

2.3.6 Co-seismic strain

As a last example, we applied our method to a static displacement field
instead of velocity data. The same interpolation method can be used to
analyze a displacement field and results in strain instead of strain rate. It
provides insights into the co-seismic deformation, slip location, and rupture
characteristics. We applied the method to the two Mw = 6.5 and Mw = 6.4
earthquakes on 17 and 21 June, 2000 in the South Iceland seismic zone,
analyzing the displacement of 50 sites in South Western Iceland (Árnadóttir
et al., 2001) (see Fig. 2.7). As expected by the strike slip nature of the
two events, the rupture zones appear very clearly in a map of the maximum
shear strain. The two bright spots in the map coincide with the location of
the aftershocks recorded in the two weeks after the events4. Furthermore,
the direction of the high shear zone is in good agreement with one of the
planes of the focal mechanisms1. This suggests that the interpolation can
clearly identify the region of the rupture.

The dilatation analysis shows that the far field has a very good agreement
with the observed focal mechanism. The region between the two faults is
clearly influenced by both events presenting a more complex pattern than
the one expected by the focal mechanisms. However, our geodesy based
analysis can provide independent information for resolving the rupture plain
ambiguity of the focal mechanism solution.

2.4 Conclusions

Given the importance of strain accumulation on the earthquake cycle, the
study of regional strain rate is crucial for any seismic hazard assessment.
Interpolation methods, as the one presented here, allow a derivation of the

4from: Icelandic Meteorological Office, http://hraun.vedur.is/ja/englishweb/

earthquakes.html, accessed September 2008
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Figure 2.7: Coseismic displacement (A), shear strain (B), and dilatation
(C) caused by the two strike slip events on 17 June and 21 June, 2000 in the
South Iceland seismic zone. Focal mechanisms from USGS1. Dots indicate
seismic events in the period from 15 to 30 June, 2000 (from: Icelandic
Meteorological Office4). The shear strain reflects the position and direction
of the ruptures, while the dilatation coincides with focal mechanisms.
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full tensor of strain rate from dense geodetic networks without the necessity
to include any assumptions on the deformation mechanisms.

The analysis of the Southern California GPS data clearly shows that the
method is capable to identify major regions of deformation. In particular, it
indicates the importance of “secondary” plate boundaries like the Eastern
California Shear Zone or the San Jacinto fault as regions of localized defor-
mation. This suggests the importance of studying the full diffuse boundary
between the NA and Pacific plates in the analysis of deformation patterns.
An analysis of the maximum shear strain rate indicates that, apart from
the LA basin, the direction of maximum shear is mainly controlled by the
orientation of the SAF.

The strain rate map of Southern California also indicates a strong in-
fluence of transient effects. In particular, high strain rates are associated
with regions of creeping, where the deformation is strongly localized close
to the fault plane, and with regions affected by post-seismic deformation.
Our analysis of the SCEC and SOPAC data for Southern California clearly
demonstrates that the post-seismic deformation associated with past events
is a strong component of the velocity field. An analysis of the evolution of
the strain rate field is possible through the use of velocities derived from
different periods. This analysis would provide important insight into the
post-seismic mechanism and rheological properties of the crust and the as-
thenosphere. The presence of localized strain rate associated with seismic
events that did not happen recently, like the Owens Valley or Landers earth-
quakes, indicates that the visco-elastic relaxation (e.g. Savage and Lisowski,
1998) has a strong impact on the observed geodetic field. This transient
behavior can create a major challenge in the seismic hazard assessment.
Current low strain rates at active faults cannot directly be related to low
seismic hazard. At the contrary, the associated low strain rates can be an
indication that the fault is late in its earthquake cycle, thus the rupture
probability might be particularly high. On the other hand, bright spots in a
strain rate map associated with faults that recently experienced earthquakes
could be related to a current low seismic hazard. Similarly, the high strain
rates at creeping sections of a fault can be associated to low seismic haz-
ard. Thus, the strain rate map can contribute to seismic hazard assessment
through the identification of regions of localized deformation, but numerical
modeling of the full lithospheric behavior, the seismic history, and geolog-
ical studies of the single faults are necessary in order to fully quantify the
amount of elastic energy accumulated. Still, geodetically derived strain rate
maps produce important geometric and regional constraints necessary for a
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correct modelling of the faults in the area. This analysis can also provide
important information regarding the regions where more geological studies
are necessary.

Finally, we would like to point out that the interpolation of geodetic data
should not be limited to the study of velocity fields and associated strain
rates, but can also be applied to other fields like co-seismic displacement
data. For example, the analysis of the co-seismic strain derived from the ob-
served displacements during the June 2000 earthquakes in Iceland indicates
that the obtained strain tensor provides important insights into the location
and direction of the events as well as information about the rupture.
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Abstract

We present a method to derive velocity uncertainties from GPS position
time series that are affected by time correlated noise. This method is based
on the Allan variance, which is widely used in the estimation of oscillator
stability and neither requires spectral analysis nor Maximum Likelihood
Estimation (MLE). The Allan variance of the rate (AVR) is calculated in
the time domain and hence is not too sensitive to gaps in the time series.
We derived analytical expressions of the AVR for different kinds of noises

29
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SERIES: EXAMPLES FROM THE ANALYSIS OF THE SOUTH
AFRICAN TRIGNET NETWORK

like power law noise, white noise, flicker noise, random walk, and found an
expression for the variance produced by an annual signal. These functional
relations form the basis of error models that have to be fitted to the AVR in
order to estimate the velocity uncertainty. Finally we applied the method
to the South Africa GPS network TrigNet. Most time series show noise
characteristics that can be modelled by a power law noise plus an annual
signal. The method is computationally very cheap and the results are in
good agreement with the ones obtained by methods based on MLE.

3.1 Introduction

Satellite based geodetic techniques provide an outstanding tool to measure
crustal motions and deformations. Geodetically derived velocities of sur-
face points provide necessary constraints to study tectonic plate motion,
strain localization of active geological features, and to estimate rheological
properties of the crust and the underlying asthenosphere (e.g. Dixon, 1991).
In general, geodetic velocities and their uncertainties are indirectly derived
through repeated position measurements of given points.

The measured relative position x(t) of the point is the result of antenna
motion and noise ε(t). Any contribution to the measured antenna position
is either modelled or considered to be noise. In geodynamics and tectonics
the constant long term (inter-seismic) rate is usually of major interest. Un-
fortunately, a constant long term signal is not the only contribution to the
antenna motion. Sudden (e.g. offset due to antenna changes or co-seismic
displacement), periodic (e.g. annual or semiannual seasonal deformations),
or transient (e.g. post-seismic deformation) signals are typically present in
position time series. Some of the deviations from the long term linear mo-
tion due to these contributions can be modelled and subtracted in order to
improve the measured velocity of the observed point (Segall, 2010). Still,
the “corrected” time series remain affected by multiple sources of noise that
cannot be completely removed from the signal (e.g. atmospheric delays,
clock instability, monument motion, orbit error, etc.).

Johnson and Agnew (1995), Zhang et al. (1997), Mao et al. (1999), and
Williams et al. (2004) showed that GPS velocity uncertainties are underesti-
mated by factors from 2 to 11, if only white noise (not time correlated noise)
is considered. This suggests that time correlated noise has to be taken into
account in the calculation of velocity uncertainties.
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Mao et al. (1999) presented an error model that includes colored (time
correlated) noise. Their empirical formula is based on spectral analysis and
Maximum Likelihood Estimation (MLE) of 23 globally distributed GPS sta-
tions with three years of data and takes into account flicker noise and random
walk.

Williams (2003b) also presented an empirical method to derive velocity
uncertainties, followed by the presentation of CATS, a software package for
the analysis of time series (Williams, 2008). CATS can be used to perform
a thorough time series analysis based on MLE for a variety of error models.
A full analysis of the colored noise included in the time series through MLE
is computationally expensive (depending on the error model up to O(n3),
for a time series of length n). Bos et al. (2008) presented an MLE approach
that reduced the number of computations significantly (O(n2) for a power
law plus white noise error model), if there are no gaps in the time series.
However, many published GPS velocity uncertainties are still computed as-
suming pure white noise or scaling the white noise by some empirical value
derived from the repeatability of the time series (e.g. Dixon et al., 2000).
Only in a few cases is time correlated noise included, in general through
the use of some empirical formula that does not require a full analysis of the
time series (e.g. Mao et al., 1999). Still these methods can lead to both large
overestimation and underestimation of the correct velocity uncertainty.

There has been some debate on the choice of the error model and whether
a random walk signal, mainly due to monument motion, is present in geode-
tic data or not. Continuous strainmeter and tiltmeter measurements at the
Ida and Cecil Green Piñon Flat Observatory show a power law process close
to random walk (Wyatt, 1982, 1989). This is in agreement with geodimeter
and trilateration measurements (Langbein et al., 1987; Langbein and John-
son, 1997). However, the analyses of Zhang et al. (1997) and Mao et al.
(1999) suggest that flicker noise is the prevalent signal in GPS time series
and random walk plays a secondary role. A comprehensive analysis of South-
ern California and South Nevada GPS sites by Langbein (2004, 2008) using
MLE reveals that the time series are characterized by either flicker noise,
random walk, general power law noise, or a combination of them and only
in a few cases are these noises more complex including band-pass-filtered
noise, first-order Gauss-Markov processes, or broadband seasonal noise. Re-
cent studies by Hill et al. (2009) and King and Williams (2009) on short
baselines, however, suggest that monument stability is not a dominant error
source. Santamaŕıa-Gómez et al. (2011) favor an error model consisting of
white noise plus a power law noise, which is close to flicker noise for many

31



3 ESTIMATION OF VELOCITY UNCERTAINTIES FROM GPS TIME
SERIES: EXAMPLES FROM THE ANALYSIS OF THE SOUTH
AFRICAN TRIGNET NETWORK

sites. This is also in agreement with Hill et al. (2009) and King and Williams
(2009).

However, it is very difficult to distinguish between time correlated noise
and velocity variations from transient phenomena (like post seismic defor-
mation). For example Hackl et al. (2009) showed that the long term inter-
seismic velocity field in Southern California (active plate boundary) can be
affected by seismic cycle effects, which could explain a trend towards higher
time correlation nearby active tectonic features.

Here we present a method to estimate GPS velocity uncertainties. In
contrast to the different scaling methods, our method accounts for site char-
acteristics but does not require spectral analysis nor MLE. It is based on
the Allan Variance, an analysis often used as a measurement of frequency
stability in clocks and oscillators (Allan, 1966; Barnes, 1966; Rutman, 1978)
and it is applied to the slope of the time series. As the calculation is done
in the time domain, the method is not too sensitive to gaps in the data
and it is computationally cheap. The method provides the variance of the
rate as a function of the considered time span (up to ∼ 1/4 of the total
time series length) without any assumption of the noise characteristics. The
method is an extension of the one suggested by Caporali (2003) to estimate
the stability of time series as a function of time. It is tested with synthetic
time series and finally applied to the South Africa GPS network TrigNet, a
network almost not affected by tectonic deformation.

3.2 Time correlated variance

Like many geophysical phenomena, noise in GPS position time series can be
described as a power law process (Mandelbrot, 1983; Agnew, 1992). This
one-dimensional stochastic process ε(t) is characterized by a power spectrum
of the form

Px (f) = P0

(
f

f0

)ν
, (3.1)

where f is the temporal frequency, P0 and f0 are normalizing constants,
and ν is the spectral index (Mandelbrot and Van Ness, 1968). White noise
corresponds to ν = 0, flicker noise to ν = −1, random walk to ν = −2.
There are many ways to deal with time correlated noise mostly based on
spectral analyses (e.g. Lomb, 1976; Scargle, 1982) or on MLE (e.g. Williams,
2008; Bos et al., 2008). Another way to deal with time correlated noise was
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developed to calculate clock uncertainties and is called Allan variance or two-
sample variance (Allan, 1966; Barnes, 1966; Rutman, 1978). It is defined
as one half of the average of the squared differences between consecutive
readings of the observable sampled over a certain interval τ (Eqn. 3.2).

σ2 (τ) =
1

2 (n− 1)

∑
i

(mi+1 (τ)−mi (τ))2 (3.2)

where τ is the bin length, n the number of bins, and mi(τ) the mean of the
observable in the i-th bin.

The variance computed in this way is a function of the distribution being
measured and the sample period. For stationary processes (ν > −1) this
variance is identical to the classical variance and thus it can be identified with
the variance of the observable (Allan, 1966). In the case of non-stationary
processes the Allan variance for a certain bin length is independent of the
time series length and the sampling frequency. Thus, the Allan variance is
convergent in contrast to the classical variance. Although the meaning of
a variance is questionable in the case of non-stationary processes the Allan
variance still provides insights into the noise characteristics in those cases
(Allan, 1987).

The Allan variance has already been applied to geodetic time series to
study uncertainties associated with site positions (Le Bail, 2004). Here,
the Allan variance has been modified in the sense that the mean of each
bin is replaced by its slope. To avoid confusion we will call the variance
computed in this way Allan variance of the rate (AVR). In simple terms,
the time series is divided into n bins of equal length τ . Then the slope of
the time series is calculated for every bin by linear regression. The AVR
corresponding to a given τ is then defined as one half of the variance of the
differences of the slopes of two consecutive bins. Fig. 3.1 shows a synthetic
time series and the corresponding AVR that is displayed in a log-log plot
as a function of the bin length τ . The statistical significance of the AVR
depends on the number of bin pairs used in the computation. In tests
with synthetic time series reasonable results were obtained down to four bin
pairs. The necessity of at least four bins to compute a statistical significant
variance limits the maximum time span for which the variance can be directly
computed to ∼ 1/4 of the total length of the time series. The statistics of
the AVR can be significantly improved at the expense of computational
time for computing the AVR for overlapping bins (e.g. Howe et al., 1981).
This requires more calculation steps, but provides better results in terms of
statistical significance. The variance associated to the full series needs to
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Figure 3.1: Synthetic time series (A,B) and corresponding AVR (C ). The
time series is divided in n bins of length τ and the slope of each bin is
calculated by linear regression (red and blue lines in A, B). The AVR is
calculated using Eqn. 3.2. The red circle at τ = 64 days corresponds to the
bins shown in A, the blue circle at τ = 256 days corresponds to the bins
shown in B. The light grey circles in the AVR are based on less than four
bin pairs, hence they are statistically poorly constrained and should not be
included in the fit of an error model.
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be extrapolated assuming an error model. Still the AVR provides a visual
representation of the improvement of the velocity uncertainty with increasing
time length independently from the selected error model.

Gaps in the time series do not dramatically affect the calculation of the
AVR. We tested the method with synthetic time series where gaps were
created removing up to 50% of the points and obtained very similar results
compared to the corresponding time series without gaps. As an empirical
rule derived by tests with synthetic time series we found that if a bin contains
at least 30% of the data points and the time span covered in the bin is at
least 50% of τ it can be included in the calculation. It is worthy to mention
that it does not make a difference whether the time series is detrended or
not, since only the difference of slopes of consecutive bins is used. While
the upper limit of the length of τ is specified by the time series length, the
lower limit is specified by the sampling rate and numerical stability. Testing
with synthetic time series we found that starting from bin length τ larger
than four times the sampling rate improves the numerical stability of the
calculation drastically.

3.3 Error model

The method described in Section 3.2 provides the velocity uncertainty for
any interval length of the time series within the accessible range of τ limited
by the necessity of multiple bins to get a statistically significant value of
the variance and by the sampling period (4t < τ < L/4, where t is the
sampling period and L the length of the time series). In most cases we want
to assess the velocity uncertainty corresponding to the full length of the time
series. In order to do so an error model based on assumptions on the noise
characteristics is required and a corresponding function has to be adjusted
to the slope variance. Its extrapolation to the full length of the time series
can then be interpreted as the variance of the velocity of the full time series.
The extrapolation requires a function based on assumptions on the noise
characteristics. Unless a complete analysis of all noise contributions in GPS
time series is considered, the choice of the right error model will be subject
to debate. Here, some of the most common error models were applied to the
AVR of synthetic time series, in order to validate the presented method.
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3.3.1 Power law noise

Agnew (1992) analyzed the time-domain behavior of Gaussian power law
noise (Eqn. 3.1) and derived the relation

σx (T ) ∝ T
−(ν+1)

2 (3.3)

for the standard deviation σx of the position for a given time series with a
spectral index ν and length T . This implies that for ν ≤ −1 the position
uncertainty does not decrease with increasing the length of the time series,
the process is not stationary. It has been stated by (Allan, 1966; Bos et al.,
2008) that the variance σ2 of the linear velocity v is proportional to:

σ2
v (T ) ∝ T−(ν+3) (3.4)

Here we provide a mathematical proof of this relation. The time domain
behaviour of the one-dimensional power law process x(t) is characterized by
the Eqn. (3.1). Following the argumentation of Agnew (1992) an expression
for the variance of the velocity σ2

w(T ) can be derived by introducing

wT (t) = v(t+ T )− v(t)

=
d

dt
(x(t+ T )− x(t)) (3.5)

which can be rewritten as a convolution using the formulation of Bracewell
(1965)

wT (t) =
d

dt
(x(t) ∗ [δ(t− T )− δ(t)])

= x(t) ∗ d

dt
[δ(t− T )− δ(t)] (3.6)

The Fourier transform of this expression is

Fw(f) =

∫ ∞
−∞

x(t) · e−2πitfdt ·
∫ ∞
−∞

d

dt
[δ(t− T )− δ(t)] · e−2πitfdt (3.7)

This can be rewritten as

Fw(f) = Fx(f) · 2πif ·
(
e−2πiTf − 1

)
(3.8)

by applying ∫ ∞
−∞

dδ(x)

dx
f(x)dx =

d

dx
f(0) (3.9)
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Then the power spectrum Pw(f) of can be calculated by

Pw(f) = Fw · F ?
w

= Fx · F ?
x · 2πif ·

(
e−2πiTf − 1

)
·
[
2πif ·

(
e−2πiTf − 1

)]?
= Px(f) · 32π2f 2 sin2 (πfT ) (3.10)

The variance σ2
w(T ) of the velocity w(T ) is defined as

σ2
w(T ) =

∫ ∞
0

Pw(f)df

=

∫ ∞
0

Px(f) · 32π2f 2 sin2 (πfT ) df (3.11)

Finally, Px(f) can be specialized by Eqn. (3.1) and the integration variable
changed to u := πfT . Then we find

σ2
w(T ) =

32P0

πν+1f ν0
T−(ν+3)

∫ ∞
0

uν+2 sin2(u)du

= Cν
P0

f ν0
T−(ν+3) (3.12)

Note, that the integral tends to infinity and Cν → ∞, if all frequencies
from 0 to ∞ are considered. In reality, they are limited by the sampling
frequency and the length of the time series, thus Cν can be an arbitrary large
number. However, in the case of Gaussian distributed noise this expression
nevertheless implies the linear relationship

µ = − (ν + 3) (3.13)

between the spectral index ν and the slope µ of the AVR in a log-log plot
(see Table 3.1). This relationship between µ and ν is also in agreement
with Williams (2003b). Unlike the position, the velocity information still
improves with observation length for ν > −3.

In the case of a power law noise the AVR of the velocity as a function of
the length of the time series can be modelled by:

σ2
v (T ) = apl · T µ (3.14)

In order to test the presented method, 21,000 time series with spectral
indices −2 ≤ ν ≤ 0 were created and analyzed. A subset of 1,000 points were
taken from time series of 10,000 points to avoid boundary effects. All time
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Table 3.1: Spectral index ν and corresponding slopes of the AVR in a log-log
plot µ for the most frequently mentioned noises with Gaussian distribution.

ν µ
white noise 0 -3
flicker noise -1 -2
random walk -2 -1

series were generated as a superposition of Ornstein-Uhlenbeck processes
(Kasdin, 1995; Milotti, 2006). The time series were also analyzed using
CATS, a psd spectral analysis Matlab routine (Stoica and Moses, 1997;
Welch, 1967; Oppenheim and Schafer, 1989) and by a method introduced
by Lomb (1976) and Scargle (1982). The Matlab routine is based on the
periodogram, which is a widely used, simple, and fast algorithm, although
it is known to be a biased estimate (e.g. Stoica and Moses, 1997) and is
included only for completeness.

The results are summarized in Fig. 3.2 showing the average and the
dispersion of the difference between the estimated spectral index for the dif-
ferent methods and the spectral index utilized to create the time series. The
errorbars denote the standard deviation of the estimates. Although CATS is
clearly the best performing method, it is evident that all the different meth-
ods are able to estimate the correct spectral index within the corresponding
dispersion and with a relative accuracy smaller than 0.1. A bias in the psd
method is clearly visible for low spectral indexes. We also note that the AVR
tends to produce a slightly higher power spectrum at high spectral indexes
probably due to the numerical stability choice of starting the integration
from τ > 4t (thus partially decreasing the contribution of white noise). We
also note an increase in the dispersion of the results at lower spectral indexes
probably due to the necessity to limit the interpolation to τ not longer than
1/4 of the length of the time series.

3.3.2 White noise, flicker noise, and random walk

Previous studies (e.g. Zhang et al., 1997; Mao et al., 1999) suggested that
the noise in GPS time series consists of a combination of white noise, flicker
noise, and random walk. One reason for the use of these three particular
noise contributions was that the derivations of the corresponding covariance
matrices existed only for these integer spectral indices. Although today it is
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Figure 3.2: Estimated spectral indices with standard deviations from syn-
thetic time series. The time series were created with length of 10,000 days,
but only 1,000 were used in order to avoid boundary effects. 1,000 time series
of each spectral index were created and analyzed by the AVR method intro-
duced here. The spectral indices were estimated by a nonlinear fit weighting
the data points by τ (blue). For comparison 100 time series of each spec-
tral index were analyzed by CATS (green), a MatLab implemented function
to calculate the power spectral density (red), and a method introduced by
Lomb (1976) and Scargle (1982) (black). The later two methods provide
power spectra and the spectral indices were calculated by linear regression
of the log-log representation of the power spectra.
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possible to derive the covariance matrix for any power law noise by fractional
differencing and integrating, the estimation of the spectral index along with
the noise magnitudes is computationally expensive. Therefore most GPS
velocity uncertainties are still calculated assuming an error model consisting
of the aforementioned noise types.

The method presented here is also able to deal with error models consist-
ing of a combination of white noise, flicker noise, and random walk by using
the relationship between spectral index and power law behavior of the AVR
(Eqn. 3.13). For this error model the variance of the rate can be written as:

σ2
wn+fl+rw(τ) = awn · τ−3 + afl · τ−2 + arw · τ−1 (3.15)

where awn, afl, and arw are the coefficients for white noise, flicker noise, and
random walk respectively. Table 3.1 summarizes the different noise types,
their spectral indices and the corresponding AVR exponents.

In the case of a linear combination of different noise types it is interest-
ing to look at the values τco, where the slope of the AVR changes (crossover
bin length). For these bin lengths the contribution of the corresponding
noise types have the same magnitude. The τco separate regimes where the
specific noise contributions are dominant. Noise processes with lower spec-
tral indices, for example random walk, are dominant at larger bin lengths,
while noise with a higher spectral index such as white noise is dominant for
shorter bin lengths. Therefore error sources with a correspondingly small ν
(ν → −∞) can never be ruled out for finite time series, since low spectral
index processes may become dominant for bin lengths exceeding the length
of the time series.

Similarly to what we did for testing the power law model, synthetic time
series consisting either of one noise type or a combination of different noise
types were created. Then the AVR was computed. Finally, we adjusted the
parameters awn, afl, and arw in the error model function (Eqn. 3.15) to fit
the AVR (see Fig. 3.3 and Table 3.2). In general we were able to estimate the
correct noise contributions in the accessible range of bin lengths (a region
bounded below by four times the sampling frequency and above by 1/4 of
the length of the time series).

As an example we can look at the case of “white noise + random walk”
(Fig. 3.3 E). Eqn. (3.15) was adjusted to the variances looking for the values
of awn, afl, and arw that represent the calculated variances best. We used
those parameters to extrapolate function (3.15) to the full length of the
time series (red lines Fig. 3.3). This value is the velocity variance of the
given time series. As expected for this particular synthetic time series with
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Figure 3.3: Synthetic time series (left) and the corresponding AVRs (right).
The time series consist of white noise, flicker noise, or random walk and any
possible combination of these noise types. The coefficients in Eqn. 3.15 -
the error model (red lines in the figures on the right) - are estimated by
least square fitting to the variances based on more than four bin pairs (blue
circles in variance plots) and are summarized in Table 3.2. The cross over
periods τco (in days) confine intervals where the different noise contributions
are dominant.
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Table 3.2: Parameter estimates of example time series shown in Fig. 3.3
.

noise awn afl arw σ2
v

[mm2· day] [mm2] [mm2/day] [(mm/yr)2]
white noise 142 2.22 · 10−14 2.22 · 10−14 0.026
flicker noise 4.94 4.26 2.22 · 10−14 0.25
random walk 2.22 · 10−14 2.22 · 10−14 0.143 2.52
wn + fl 136 4.17 2.22 · 10−14 0.25
wn + rw 34.7 2.22 · 10−14 0.122 2.33
fl + rw 2.21 4.67 0.143 2.53
wn + fl + rw 191 33.6 0.204 3.09

τco(wn-fl) τco(fl-rw) τco(wn-rw)
[days] [days] [days]

white noise 6.38 · 1015 1.00 7.99 · 107

flicker noise 1.16 1.92 · 1014 1.49 · 107

random walk 1.00 1.15 · 10−13 3.34 · 10−7

wn + fl 32.5 1.88 · 1014 7.81 · 107

wn + rw 1.56 · 1015 1.82 · 10−13 169
fl + rw 0.473 32.8 4.01
wn + fl + rw 5.69 165 30.6

only white noise and random walk the coefficient afl is negligible. For this
particular time series, the crossover bin length of white noise and random
walk τco(wn − rw) is 169 days. This means that for observations shorter
than this time span white noise is the dominant noise contribution while for
longer observations it is random walk. For flicker noise a virtually vanishing
contribution is estimated and crossover bin lengths are thus meaningless.

3.3.3 Seasonal effects

Many GPS time series show annual signals mainly due to seasonal load-
ing. In most cases the seasonal signals are just modelled by the first and
the second harmonics of a sine function, where the fundamental period is
one year. The signal is then subtracted from the time series. Blewitt and
Lavallée (2002) showed that a seasonal signal still affects the velocity uncer-
tainty and presented the following series to estimate the velocity uncertainty
introduced by a seasonal signal:

σ2
annual(τ) =

18T 2a21
π2τ 4

T
2∆t∑
k=1

1

k3

(
cos

(
πkτ

T

)
− T

πkτ
sin

(
πkτ

T

))2

(3.16)
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where a1 is the amplitude of the contribution at the fundamental period T ,
∆t is the sampling interval, and τ is the length of the time series. Blewitt
and Lavallée (2002) indicated that the contributions with k = 1, 2 (annual
and semiannual) account for ∼ 90% of the total variance. Eqn. (3.16) is
limited to τ > T , which makes it difficult to use it for fitting in the presence
of noise, since the adjustment should include the full range of τ . Bos et al.
(2010) showed the importance of including the effect of colored noise when
dealing with periodic signals.

A periodic signal is not a stochastic process and as a consequence the
AVR cannot directly be identified with the velocity variance. Here we dis-
cuss the effect of a periodic signal on the AVR and show how the method
presented here can be used to estimate the amplitude at the fundamental
period, which then can be used along with Eqn. (3.16) to estimate correct
velocity uncertainties. There are two advantages of doing so: (1) the ampli-
tude is estimated along with other (colored) noise parameters and (2) the
phase is not present in this formulation.

The AVR for a pure sinusoidal signal of the form

x(t) = a · sin
(

2π

T
t+ Φ

)
(3.17)

where a is the amplitude of the signal, T its period, and Φ a phase can
be calculated analytically with Maple (TM). The expression obtained is
very complex and not suitable for fitting an error model, but it can be
approximated by

σ2
annual(τ) =

36T 2a2

π2τ 4
sin2

(πτ
T

)
·
(
T

πτ
sin
(πτ
T

)
− cos

(πτ
T

))2

(3.18)

where a is the amplitude of the sinusoidal signal that can be solved for by
fitting the data for a given period T (e.g. T = 365 days for an annual signal).

Eqn. (3.18) is identical to the one derived by Blewitt and Lavallée (2002)
for the velocity bias from a sinusoidal signal, apart from a phase not present
on the AVR. The absence of the phase term is due to the fact that the AVR
is computed using the difference of consecutive bin pairs. At every phase of
a harmonic signal the difference is zero at integer multiples of T independent
from the phase. In this way, as long as we have enough bins, the phase bias
to the AVR is averaged out.

It is possible to apply the AVR and to fit an adequate model that ac-
counts for the colored noise (like the ones described in Sections 3.3.1 and
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3.3.2) combined with the expression of the annual signal (Eqn. 3.18). By
fitting the AVR to this model, a (that can be identified with a1 in Eqn. 3.16)
can be estimated along with the parameters describing the time correlated
noise (e.g. µ and apl in Eqn. 3.14). The values obtained by the fit can then
be used in a linear combination of the selected noise model (e.g. Eqn. 3.14)
and Eqn. 3.16 to extrapolate the variance to the full length of the time series.

As an example we created a synthetic time series consisting of flicker
noise plus an annual signal of arbitrary phase. Fig. 3.4 shows the time
series (top) and the corresponding AVR (bottom). The red curve repre-
sents the adjusted model consisting of a linear combination of Eqn. 3.14 and
Eqn. 3.18 corresponding to the parameters apl, µ, and a1 that best repro-
duce the observed variance. The obtained parameter a1 (corresponding to
the amplitude of the sinusoidal signal) can now be used in the linear com-
bination of Eqn. 3.14 and Eqn. 3.16 for extrapolation to the full length of
the time series (black curve in Fig. 3.4). The values of the black curve at
the full time series length corresponds to the velocity variance when we take
into account both colored noise and a periodic signal.

Note, that for τ > T the variance introduced by an annual signal de-
creases with τ−4, even faster than white noise.

3.3.4 Offsets and velocity changes

Sometimes GPS time series are affected by offsets or changes in rates.
Sources for offsets could include antenna changes or co-seismic displace-
ments. Velocity changes have been observed after large earthquakes, but
could also be related to other effects like monumentation or water pumping.
These signals affect the AVR. Although no analytical expressions for these
cases were derived, we want to point out some characteristics.

An offset in the time series causes a change in trend of the AVR. In the
case of “white noise + offset” the slope variance shows a similar behavior
like a random walk process, which is in agreement with Williams (2003a).

If there is a change of rate in the time series, it is possible that the
corresponding AVR of the rate shows a kink and increases with τ for a
certain range of integration intervals.

The above mentioned error models are not suitable for uncertainty esti-
mation of time series affected by offsets or velocity changes, since the models
do not account for those effects. However, it is possible to identify corre-
sponding patterns in the AVR and correct affected time series and/or apply
different kinds of error models.
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Figure 3.4: Synthetic time series consisting of flicker noise plus a sinusoidal
signal with period T = 365 days and amplitude a = 5 mm (top) and the
corresponding AVR (bottom). Green cirlces are based on four or less in-
dependent bin pairs and thus not included in the fitting. Blue circles are
based on more than four bin pairs and were used to fit a linear combination
of Eqn. 3.14 and Eqn. 3.18 (red line). The obtained values are apl = 3.9,
µ = −2.0, and a1 = 4.7, which compares well to the amplitude of the peri-
odic signal. For extrapolation to the length of the time series the obtained
parameter were set into a linear combination of Eqn. 3.14 and 3.16 (black
line). The calculated velocity uncertainty in this case is σv = 0.20 mm/yr.
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3.4 TrigNet

TrigNet is a network of about 50 continuously operating GNSS base sta-
tions distributed throughout South Africa (see Fig. 3.5). Data span up
to nine years for most of the TrigNet sites and are freely available (http:
//www.trignet.co.za/). They were processed using the Bernese GPS Soft-
ware, V5.0 (Dach et al., 2007) using state of the art analysis strategies and
standards. For consistency, orbit products from the CODE (Center for Or-
bit Determination in Europe) Analysis Center of the International GNSS
Service (IGS) were used (Dow et al., 2009). Tracking data were analyzed in
daily batches in ionosphere-free linear combination and phase ambiguities
were resolved to integers. Two-hourly troposphere zenith delay and daily
gradient parameters were estimated for each station. Station velocities were
retrieved by combining daily solutions at the normal equation level. Some 30
IGS stations were included into the network to realize the geodetic datum.

The obtained velocities were rotated into a South Africa fixed reference
frame by an Euler rotation minimizing the velocity residuals (Malservisi
et al., 2008). Most residual velocities are < 1 mm/yr (Table 3.3), as expected
for an Archean cratonic region not affected by tectonic deformation. In order
to solve for any internal deformation the velocity uncertainty is crucial. In
theory, the residuals with respect to the stable region like South Africa
should be of the same order of magnitude as the error. The formal error
is about 0.01 − 0.02 mm/yr for the horizontal components of most sites -
a magnitude smaller than the observed residuals, suggesting a clear signal
in the observed velocity field. Given the almost random distribution of the
azimuth of the residuals we expect that for the majority of the sites this
is not the case and that the error is largely underestimated due to the fact
that the formal error neglects time correlated noise.

On the other hand, the application of the method introduced by Mao
et al. (1999) produced errors significantly larger (almost one order of mag-
nitude) than the residuals indicating that the uncertainties of the velocity
field are overestimated. Given the importance of the associated error in the
interpretation of such small residuals, it is clearly important to make a more
complete analysis of the uncertainty associated with the studied velocity
field. The AVR provides a quick method to improve the error estimation.
Given the availability of specific algorithms to compute time correlated un-
certainties for GPS velocities like CATS, the algorithm presented by Bos
et al. (2008), or the one presented here we strongly suggest that neither pure
white noise models nor empirical methods (e.g. Mao et al., 1999) should be
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Figure 3.5: Spatial distribution of the South African GPS network TrigNet.
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used for the estimation of velocity uncertainties from continuous GPS or
semi-permanent sites with sufficient amount of data.

3.4.1 CATS vs AVR

In order to estimate correct velocity uncertainties for the TrigNet time series
CATS and the AVR method were applied. For both methods the same
error model consisting of a power law noise plus an annual signal was used.
The three components were treated independently in the calculation of the
uncertainty, which is common practice. For the majority of the sites the
spectral indices computed for the three components of the velocity are very
similar, indicating that all the components are subject to the similar type
of noise.

In the case of the AVR an error model consisting of a linear combina-
tion of Eqn. (3.14) and Eqn. (3.18) was adjusted to the variances, solving
for the parameters apl, µ, and a1 by weighted nonlinear least-squares. In
order to improve the numerical stability of the least-square fit, only bins
with lengths τ > 6 days were included in the parameter estimation. To
put more importance to the variances at greater τ and to stabilize the es-
timation of the parameters the computed variances were weighted by τ . In
tests with synthetic time series this weighting clearly improved the param-
eter estimation. This method is similar to the use of the logarithm of the
data, a common practice in inversion methods when dealing with data with
very different scales. Finally, the velocity uncertainties were estimated by
extrapolating the linear combination of Eqn. (3.14) and Eqn. (3.16) to the
full length of the time series. As an example Fig. 3.6 shows the time series
and the corresponding slope variance at Hermanus (HNUS).

In general, the calculations led to comparable results for both methods
as summarized in Table 3.3 and Fig. 3.7. Note, that the calculation times
are significantly different, on a standard desktop PC (Dual Core 2.93 GHz,
4 GB RAM) the analysis of the network using CATS takes several days,
while it takes only a few minutes (hours in the case of overlapping bins) to
calculate the uncertainties using the AVR of the rate.

The results calculated with the Allan variance tend to be slightly more
conservative. A possible reason for this difference could be how white noise,
that is likely to be present in the time series, is treated in the two methods.

The shift towards higher uncertainties in our method becomes more ap-
parent for sites with larger uncertainty σ, probably due to the fact that
these time series are in general shorter thus more influenced by white noise.
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Figure 3.6: Time series (left) and corresponding AVRs (green and blue cir-
cles in the figures on the right) of the velocities for the three components of
the GPS site at Hermanus (HNUS), South Africa. Variances that are based
on more than six bin pairs (blue circles) were used to fit an error model (red
line), which consists of a linear combination of power law noise (Eqn. 3.14)
and an annual signal (Eqn. 3.18). The following parameter were obtained:
apl(north) = 22.3, µ(north) = −2.53, a1(north) = 1.32, apl(east) = 16.3,
µ(east) = −2.57, a1(east) = 0.58 apl(up) = 225, µ(up) = −2.53, and
a1(up) = 3.26. The rate uncertainty is the result of the extrapolation
of the black curve (see Fig. 3.4). The stars in the variance plots denote
the variances of the velocities, the corresponding standard deviations are
σ(north) = 0.065 mm/yr, σ(east) = 0.045 mm/yr, and σ(up) = 0.053
mm/yr.
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Figure 3.7: Scatter plots of the spectral indices (left) and the calculated
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ponents of the TrigNet data set using CATS and AVR.
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Another reason for discrepancies of the two methods could be non Gaussian
noise. The estimation of the spectral index in our method is based on the
assumption of Gaussian distributed noise and the result could deviate from
the one obtained by a different method.

In general, the results of the two methods are more similar in cases where
the selected error model fits well the computed AVR (i.e. the red curve in
the figures fits well the blue dots). This behavior emphasizes the importance
of the right choice of the error model and also shows the potential of the
AVR to visually check whether an error model is suitable or not.
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SERIES: EXAMPLES FROM THE ANALYSIS OF THE SOUTH
AFRICAN TRIGNET NETWORK

3.5 Conclusion

Although CATS provides a broad set of different error models and a more ro-
bust estimation of the velocity uncertainty being based on MLE, the method
presented here gets similar results and is faster for many choices of error
models. The computation time is on the same order than for the algorithm
presented by Bos et al. (2008) in the case of overlapping bins. The AVR has
also the advantage to separate the estimation of the velocity uncertainty
into two independent steps. First the variance is calculated as a function
of varying bin length. In a second step an error model is used to compute
the velocity uncertainty. This provides the possibility to choose an error
model according to the computed variances and eventually the possibility to
change the model in the case that the fit of the variance is not satisfactory
without having to redo the full analysis. It is thus possible to dedicate more
effort in the choice and the adjustment of the error model.

Once the error is estimated correctly, the residual velocities for the
TrigNet GPS network are of the same order than the estimated uncertainties
for the majority of the sites in Fig. 3.8, as expected for stable rigid plate
setting. Some of the sites do still present significant residuals. In particular,
some sites in the region around Johannesburg (e.g. HRAO) show a clear
velocity signal that is likely caused by human induced deformation. Sites
in the northeastern part of South Africa (e.g. PBWA or ULDI) have sig-
nificant eastward residuals possibly associated with the deformation at the
complex plate boundary between the Nubian and Somalian plates (Stamps
et al., 2008). We also want to point out that some of the residuals can be
associated with monumentation problems. In particular, PRET is installed
on an unstable building, while QTWN and GEOR are combinations of mul-
tiple sites loosely connected by survey ties. BFTN and TDOU show high
temporal correlations and relatively large errors, which could be related to
local hydrological effects or monumentation problems. It is important to
note that this interpretation of the velocity field as tectonic or non-tectonic
deformation is only possible after a correct estimation of the effects of time
correlated noise on the velocity uncertainties.

Fig. 3.9 shows the standard deviations of the velocities for the three
components of the Trignet sites. As expected for sites that are subject to
similar noise the shapes of the curves are quite similar for the different sites,
but also for the three components with the up component being shifted
towards larger uncertainties. The bump at τ ≈ 183 days that is present in
most of the curves results from the seasonal signal present in the time series.
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Figure 3.8: Horizontal residual velocity field of the South African GPS
network TrigNet. The velocities are plotted with two error ellipses (95%
confidence interval) corresponding to the different methods of uncertainty
estimation (see Table 3.3). Blue ellipses correspond to the uncertainties cal-
culated with CATS, red ellipses to the uncertainties calculated by the AVR
method.
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Figure 3.9: Standard deviations of the rates for three components of the
Trignet sites as a function of bin length. Most of the sites show an almost
linear behavior in the log-log plot and a bump at τ ≈ 183 days. The shapes
of most of the curves are similar indicating similar sources of noise for the
majority of the sites, which is also true for the different components.
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Apart from that the almost linear behavior in the log-log plot indicates that a
power law assumption is reasonable, although a trend to convexity is present
in some curves suggesting a piecewise power law behavior. The curves of
a few sites differ significantly from the average shape and are very likely
subject to additional processes. They possibly require additional processing
and modelling and the velocities obtained should be handled with special
care. Note, that the method presented here provides this kind of analysis
independently of assumptions on the error model.
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Abstract

We provide a method to derive the covariance of GPS velocities in the pres-
ence of time correlated noise based on the Allan variance of the rate (AVR).
The velocity variance is calculated for different directions, which allows for
noise properties, that are direction dependent. The results of this covari-
ance analysis are not only useful for estimating realistic uncertainties for any
model or application based on GPS velocities, but are of particular interest
if the analyzed time series exhibits transient signals. Since time correlated
noise and transients might result in similar patterns of time correlation in
the velocity variance, this analysis can be used to test models of the tran-
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sient processes. We show that GPS sites in subduction zones experiencing
slow slip events (SSEs) show significant time correlation in the direction of
the SSE associated with highly eccentric velocity confidence ellipses in the
direction of relative plate motion. This time correlation is reduced signifi-
cantly after modeling and subtracting these events from the time series. We
use data from Mount St. Helens to show that models of volcanic activity,
based on GPS time series similarly benefit from our noise analysis.

4.1 Introduction

GPS position time series provide an outstanding tool to measure crustal
motion and deformation (e.g. Dixon, 1991; Segall and Davis, 1997). The
availability of longer time series and the enhanced data quality allow a better
and better analysis of time dependent effects in continental deforming zones.
These analyses may provide insights to processes as the seismic cycle and
allow drawing conclusions on parameters as the rheology of the crust and
the underlying asthenosphere (e.g. Malservisi et al., 2001; Schmalzle et al.,
2006; Perfettini and Avouac, 2007; Bürgmann and Dresen, 2008).

However, time series are subject to many different kinds of time corre-
lated noise, whose various sources like the impact of multipath, clock and
orbit errors, ionospheric and tropospheric effects can hardly be quantified
properly (Johnson and Agnew, 1995; Zhang et al., 1997; Mao et al., 1999;
Williams et al., 2004; Langbein, 2008). Networks of GPS sites may also
be affected by spatially correlated noise (e.g. Wdowinski et al., 1997; Dong
et al., 2006). The effect of the correlated noise on the time series can be
similar to the one caused by transients posing the problem of separating the
signal from the noise (e.g. Williams, 2003b,a; Hackl et al., 2011). One way
to adress this problem has been introduced by Ji and Herring (2011), who
were able to identify transient signals in GPS time series from the Akutan
volcano by state estimation and principal component analysis.

Transient events in GPS time series are very common. They can result,
for example, from post seismic relaxation (e.g. Savage and Lisowski, 1998;
Perfettini and Avouac, 2007; Hackl et al., 2009; Hammond et al., 2010),
glacial isostatic adjustment (e.g. Johansson et al., 2002; Sella et al., 2007),
volcanic deformation (e.g. Dzurisin, 2003; Saballos et al., 2012), anthro-
pogenic deformation (e.g. Bawden et al., 2001), and atmospheric processes
(e.g. Jade and Vijayan, 2008, and references therein) and affect continuous
GPS (CGPS) time series. A prominent tectonic mechanism that occurs at
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4.2. DIRECTIONAL NOISE ANALYSIS

many subduction type plate boundaries and can result in a deviation from
a linear trend in GPS time series are slow slip events (SSEs) (e.g. Hirose
et al., 1999; Dragert et al., 2001). A review of the process can be found in
Schwartz and Rokosky (2007). To first order SSEs manifest themselves as
quasi-periodic offsets in GPS time series (e.g. Szeliga et al., 2008; Schmidt
and Gao, 2010). Williams et al. (2004); Hackl et al. (2011) showed that
uncorrected offsets in time series make the noise to appear more time corre-
lated (in the case of white noise plus offset it is similar to random walk). In
general transient signals occur in some preferred direction and affect regional
networks of GPS time series. Therefore we developed an algorithm based
on the Allan Variance of the rate (AVR) (Hackl et al., 2011) that is capable
of classifying time correlated noise for every chosen direction and used the
results to calculate the variance and covariance of the rate along with the
noise parameters. Based on this, we are able to identify sites in Costa Rica
and Cascadia affected by transients and to draw conclusions on the quality
of models accounting for SSEs.

4.2 Directional noise analysis

GPS time series provide the temporal variation of the antenna position and
can be interpreted as long term rate, possibly including some time dependent
effects (e.g. annual signals, post seismic relaxation, etc), and time correlated
noise. Note that if the time dependent effects are not explicitly included in
the analysis, they are implicitly considered to be part of the noise. In this
paper we focus on the analysis of the noise to infer the uncertainty of the
long term rate. The uncertainty is defined by the standard deviation σ,
which is derived from the variance σ2 and provides a confidence interval.
In the following we assume only Gaussian distributed noise and refer to
the standard deviation as the uncertainty. In the two dimensional case the
confidence interval is represented by the confidence ellipse or error ellipse (in
three dimensions it is the error ellipsoid). Most velocity vectors are drawn
along with the 95% confidence ellipse, this also holds for this paper. The
2d representation of the variance is called variance ellipse and, unlike the
confidence ellipse, for most applications it does not have a relevant physical
meaning.

Following Strang and Borre (1997) the horizontal velocity variance can
be expressed by the positive definite covariance matrix
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Σ =

(
σ2
1 σ12

σ12 σ2
2

)
(4.1)

where σ2
1 and σ2

2 are the variances in x1 and x2 direction and σ12 is the
covariance. This is a positive-semidefinite matrix, thus it can be diagonal-
ized by non-negative diagonal elements σ2

max and σ2
min and geometrically

represented by a variance ellipse.
According to the law of error propagation (e.g. Bevington and Robin-

son, 2003), the velocity variance in direction ϕ defined by the unit vector
(cosϕ, sinϕ)T , is calculated by

σ2(ϕ) = (cosϕ, sinϕ)

(
σ2
1 σ12

σ12 σ2
2

)(
cosϕ
sinϕ

)
= σ2

1 cos2 ϕ+ 2σ12 cosϕ sinϕ+ σ2
2 sin2 ϕ (4.2)

This result can also be obtained by pure geometrical considerations based
on the confidence ellipse. The principal semi-axes of the confidence ellipse
represent the maximum and minimum velocity uncertainties σmax and σmin,
respectively, or multiples of them. In the case of a two dimensional Gaussian
distribution the probability of a velocity to fall inside the confidence ellipse
can be calculated by

W = 1− e−
1
2
k2

, (4.3)

where k indicates the multiple of σ that underlies the confidence ellipse.
The squares of σmax and σmin are the entries of the diagonalized form of

Σ. The velocity uncertainty in any direction ϕ is given by the projection of
the ellipse in that direction (Fig. 4.1). Thus the velocity uncertainty σ(ϕ)
is identical to the support function of an ellipse, the so-called pedal curve:

σ(ϕ) =
√
σ2
max cos2(ϕ− α) + σ2

min sin2(ϕ− α) (4.4)

where α is the angle between x1-axis and the major semi-axis of the
ellipse. This pedal curve is the locus of points, where any line from the
origin intersects a perpendicular line that is tangent to the ellipse. It can
be shown (e.g. Strang and Borre, 1997) that Eqn. (4.4) is also equivalent to
Eqn. (4.2) if Σ is not diagonalized.

The antenna position at any solution can be projected into every direc-
tion by the dot product of the position vector and the unit vector of the
chosen direction. In the horizontal 2d case the east and north components
of the position time series can be used to compute the projected position in
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φ

σ(φ)

x1

x2

σmax
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Figure 4.1: Confidence ellipse (green) and corresponding support function
(blue).
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any given direction ϕ at each time. The resulting time series is used to cal-
culate the corresponding velocity variance σ2(ϕ). If the velocity variance is
known for at least three different horizontal directions ϕ, the full horizontal
covariance matrix of the velocity can be obtained by inverting Eqn. (4.2). Of
course, this analysis can easily be extended to three dimensions, considering
six unknowns and Σ being a 3×3 matrix that is represented by an ellipsoid.
Due to the law of error propagation the horizontal confidence ellipse is the
projection of this 3d ellipsoid on to the horizontal plane.

In order to derive the horizontal covariance matrix we project the east
and north components of a position time series into at least three different
directions ϕ obtaining time series ξϕ(t). Then the velocity variance σ2(ϕ)
is calculated for each time series by applying the Allan variance of the rate
(AVR) (Hackl et al., 2011) and fitting an adequate error model. By doing
so it is possible to obtain different time correlation parameters for different
directions. Finally, the covariance matrix is obtained by fitting Eqn. 4.2 to
the different velocity variances. This process is also shown in more detail in
Fig. 4.2.

4.3 Costa Rica

We analyzed the time series computed by Jiang et al. (2012) of twelve con-
tinuous GPS sites in Costa Rica, ten in the Nicoya peninsula and two close
to the peninsula. The network was initiated in 2002 to study strain accu-
mulation of slow slip events in the adjacent subduction zone (Outerbridge
et al., 2010) and completed in 2008. For each site the horizontal components
of the time series were projected into 18 different horizontal directions and
the AVR for every direction was calculated. Then we applied two different
error models, (1) “white noise + flicker noise + random walk” and (2) “white
noise + power law noise” to compute the variance of the rate for each of the
18 directions. These variances are then fitted using Eqn. (4.2) in order to
obtain the 2d velocity covariance for the two different error models. As an
example Fig. 4.2 (top) shows this process in more detail for site GRZA for
the “white noise + power law noise” model. The blue dots correspond to
the variances of the time series projected into directions varying of 10◦ in az-
imuth. These results are fitted using Eqn. 4.2 (green curve) and the principal
components, which are graphically represented by the red variance ellipse,
are estimated. The corresponding 1σ confidence ellipse (black) is presented
in the lower part of Fig. 4.2 together with the function representing the pro-
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Figure 4.2: Horizontal velocity variances (top) of site GRZA based on a
white noise plus power law noise error model. Blue dots represent the es-
timated variances for the different directions. These variances have been
fitted (green curve) using Eqn. 4.2. Note, that the corresponding variance
ellipse (red curve) represents the variance and not the uncertainty. The
black ellipse (bottom) represents the 1σ confidence ellipse. The blue curve
is the pedal curve and represents the actual 1σ uncertainty in any direction.
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jection of the uncertainty into all horizontal directions (pedal curve). The
ellipse in Fig. 4.2 (bottom) shows the one sigma confidence ellipse (1σ un-
certainty) and the projection of the uncertainty into all horizontal directions
(blue pedal curve).

The results from the analysis of the Costa Rican sites are summarized
in Tables 4.1 and 4.2, and in Figs. 4.4 and 4.5. It is interesting to note that
the uncertainty estimates of the two different error models produce very
similar results in terms of azimuth and magnitude of the confidence ellipse
for most sites (black and red ellipses in Fig. 4.4). As observed by Hackl
et al. (2011), the few cases with significantly different results correspond to
sites where the chosen error model does not fit the AVR very well. Sites
BON2, GRZA, LEPA, LMNL, PUMO, and QSEC show relatively large and
eccentric velocity confidence ellipses with the major semi-axis oriented SW-
NE. While the direction of the inter-seismic rate coincides well with the
relative plate motion direction, the rate uncertainty is highest normal to
the plate boundary, approximately rotated of 20 degrees to the east with
respect to the relative plate motion direction. This is probably related to
the fact that strain at this plate boundary is partitioned between a nearly
normal component at the subduction zone and a trench parallel strike slip
component in the back-arc associated with a fore-arc block (LaFemina et al.,
2009; Outerbridge et al., 2010; Jiang et al., 2012). A similar behavior is
observed at many oblique subduction type plate boundaries (e.g. Fitch, 1972;
McCaffrey, 1992).

Offsets and velocity changes in time series result in a noise pattern that is
similar to highly time correlated noise (Williams, 2003a; Hackl et al., 2011).
If offsets occur in some preferred direction, an increased time correlation and
therefore a larger uncertainty would be inferred in that particular direction.
Hence, a possible explanation for the large eccentricities of the site velocity
uncertainties are SSEs that can to first order be described as offsets (Brown
et al., 2005, 2009; Tryon, 2009; Outerbridge et al., 2010; Davis et al., 2011;
Walter et al., 2011). Jiang et al. (2012) identified five events close to the
Nicoya peninsula during the period from 2002 to 2011.

The orientations of the major semi-axis of the uncertainty ellipses of the
six above mentioned sites are in good agreement with the direction of the
induced surface displacement due to the SSEs modeled by Jiang et al. (2012).
Although the stations HATI, IND1, and PNEG present a similar pattern,
their signals appear to be more complicated. Only HUA2 and PUJE show
a different pattern with the major semi-axes being oriented N-S. These two
sites lie in between two different patches that experience SSEs as indicated
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Figure 4.3: Spectral indices of GRZA (blue dots) that were estimated along
with the variances (see Figure 4.2). Values far from the origin represent
high time correlation. The green circle corresponds to flicker noise, the red
circle to random walk. The spectral indices have been estimated from the
raw time series (top) and from the residual time series after correcting for
the SSEs (bottom).
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Table 4.1: Estimated noise amplitudes and 1σ velocity uncertainties in prin-
cipal axis directions based on a ”white noise + flicker noise + random walk”
error model of continuous GPS sites in Costa Rica.

site azimuth principal σv awn afl arw
deg cw from N axis (mm/yr) (mm · day0.5) (mm) (mm/day0.5)

raw res raw res raw res raw res raw res
BON2 41.88 46.65 max 3.50 0.90 2.17 1.84 0.00 1.58 0.46 0.11

min 0.65 0.56 1.85 1.80 1.36 1.40 0.07 0.06
GRZA 38.72 31.07 max 3.95 1.27 1.76 1.53 1.29 1.62 0.47 0.14

min 1.06 0.71 2.05 2.09 0.71 0.88 0.12 0.08
HATI 45.05 37.73 max 1.35 0.31 1.83 1.78 1.15 1.19 0.15 0.00

min 0.23 0.26 1.92 2.04 1.15 0.98 0.00 0.00
HUA2 9.66 63.6 max 1.46 0.25 1.91 1.58 0.96 1.67 0.23 0.00

min 0.01 0.17 1.67 1.89 1.55 1.10 0.00 0.00
IND1 45.22 50.15 max 1.17 0.31 1.94 2.17 2.35 2.09 0.17 0.00

min 0.27 0.20 2.23 2.27 1.41 1.35 0.03 0.00
LEPA 28.38 36.52 max 3.29 0.32 1.83 1.57 0.00 1.24 0.39 0.00

min 1.26 0.26 1.88 1.84 0.81 1.00 0.14 0.00
LMNL 39.44 -50.66 max 1.57 0.34 1.86 1.89 0.74 1.06 0.17 0.00

min 0.01 0.30 1.84 1.81 1.17 0.94 0.00 0.00
PNEG 62.26 65.2 max 0.62 0.56 2.29 2.43 2.04 1.83 0.00 0.00

min 0.42 0.41 2.39 2.41 1.38 1.35 0.00 0.00
PUJE -0.66 -85.77 max 1.30 0.24 2.21 1.96 0.89 1.55 0.20 0.00

min 0.53 0.19 1.93 2.12 1.59 1.21 0.07 0.01
PUMO 24.52 -79.83 max 2.83 0.39 1.77 1.65 0.00 1.20 0.29 0.00

min 0.77 0.37 1.60 1.55 1.28 1.13 0.05 0.00
QSEC 29.93 28.78 max 3.62 1.27 2.11 1.64 0.00 1.66 0.43 0.14

min 0.90 0.31 2.12 2.12 1.02 1.03 0.10 0.02
SAJU 51.28 62.12 max 3.38 0.57 1.73 1.71 1.20 1.43 0.32 0.00

min 0.01 0.43 1.74 1.87 1.36 1.06 0.00 0.00
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Table 4.2: Estimated power law indices and 1σ velocity uncertainties in
principal axis directions based on a “white noise + power law noise“ error
model of continuous GPS sites in Costa Rica.

site azimuth principal σv power law
deg cw from N axis (mm/yr) index

raw res raw res raw res
BON2 37.8 41.57 max 4.30 0.82 -2.16 -1.42

min 0.01 0.52 -1.28 -1.29
GRZA 33.15 14.83 max 4.10 1.12 -2.02 -1.62

min 0.88 0.66 -1.61 -1.35
HATI 41.56 57.72 max 1.13 0.36 -1.60 -1.16

min 0.30 0.11 -1.15 -0.57
HUA2 8.79 21.24 max 1.37 0.21 -1.91 -0.98

min 0.23 0.12 -1.38 -0.74
IND1 46.53 40.79 max 0.94 0.28 -1.43 -0.93

min 0.20 0.10 -0.93 -0.65
LEPA 26.98 6.08 max 3.88 0.33 -2.14 -1.04

min 1.24 0.12 -1.82 -0.57
LMNL 44.59 70.46 max 1.58 0.13 -2.02 -0.56

min 0.01 0.12 -1.18 -0.33
PNEG 42.96 65.73 max 0.73 0.24 -1.13 -0.51

min 0.34 0.14 -0.82 -0.36
PUJE 5.53 29.9 max 1.14 0.27 -1.80 -1.17

min 0.01 0.08 -1.04 -0.64
PUMO 26.05 15.26 max 3.42 0.22 -2.32 -0.73

min 0.47 0.15 -1.63 -0.48
QSEC 30.34 25.97 max 4.08 1.20 -2.14 -1.58

min 0.01 0.39 -1.42 -1.20
SAJU 48.68 44.76 max 3.05 0.31 -1.82 -0.63

min 0.01 0.13 -0.98 -0.32
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Figure 4.4: Figure of the Nicoya peninsula, Costa Rica, with interseismic
GPS velocity field. All velocities are with respect to a fixed Carribean Plate.
(A) shows 95% velocity confidence ellipses using the raw time series, where
red ellipses are based on a “white noise + flicker noise + random walk”
error model, and black ellipses on a “white noise + power law” error model.
Orange arrows indicate horizontal displacements during the SSE according
to Jiang et al. (2012). (B) shows the 95% confidence ellipses of the velocities
(black and red ellipses are the same than in (A)) in a larger scale. Orange
and blue ellipses represent the 95% confidence ellipses of the rates (“white
noise + flicker noise + random walk”: orange; “white noise + power law
noise”: blue) based on the residual time series, after subtracting the SSE
modeled by Jiang et al. (2012) from the time series.
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by the large scatter of directions for the model SSE, which also reflects in a
broad scatter of directions for the modeled SSE displacements.

To test the possibility that the orientation of the ellipses is controlled
by the high time correlated noise introduced by the SSE, we subtract from
each time series the corresponding surface displacements caused by SSEs
as modeled by Jiang et al. (2012). The corrected velocity variances do not
indicate the presence of a preferred orientation anymore, but the ellipses
seem to become more circular instead, indicating that a significant portion
of the apparent time correlation in the time series is explained by transients
present in the time series. This is also confirmed by the noise characteristics
of the raw time series and the corrected time series for each direction. In the
case of the “white noise + flicker noise + random walk” error model the raw
time series exhibit a significant amount of random walk that is drastically
reduced in the corrected time series (Table 4.1). A similar conclusion can
be drawn from the ”white noise + power law noise” error model, where the
spectral index (measure of time correlation) that is estimated along with
uncertainty is significantly smaller (higher time correlation) in the case of
the uncorrected time series, especially in the directions of the SSEs (Table 4.2
and Fig. 4.5). These results are also summarized in Fig. 4.4 (B), where the
95% confidence ellipses of the velocities are shown. The residual time series,
after subtracting the SSEs, show less eccentricity (blue and orange ellipses)
compared to the raw time series (black and red ellipses).

4.4 PANGA

If the presence of SSE in Costa Rica is the principal factor in the eccentricity
of the confidence ellipses a similar behavior should be observed in other
regions affected by SSE as the Cascadia subduction zone. Among others,
Dragert et al. (2001); Miller et al. (2002); Rogers and Dragert (2003) describe
SSEs accompanied by non volcanic tremor at this plate boundary, where the
Juan de Fuca plate is subducted beneath the North American plate at a rate
of ∼ 38mm/yr. 34 SSEs between 1997 and 2005 have been characterized by
Szeliga et al. (2008) using GPS data. The events occurred at Puget Sound
and south of the Sound down to ∼ 46◦ North. The region is covered by
∼ 600 continuously operating GPS sites providing the possibility to analyze
the spatial distribution of transients.
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Figure 4.5: Interpolated fields of the estimated spectral indices (see colorbar)
in direction of the highest time correlation (black bars). A spectral index of
-1 corresponds to flicker noise, -2 to random walk. (A) shows the spectral
indices calculated from the cleaned time series (corrected for trends, offsets,
annual, and semiannual signals). (B) is based on time series that have
additionally been corrected for modeled SSEs.
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Figure 4.6: PANGA GPS interseismic velocity field with 95% confidence
ellipses calculated using a “white noise + power law noise” error model
(black) and a “white noise + flicker noise + random walk” error model (red).
Red arrows indicate plate motions with respect to stable North America.
The orange rectangular indicates the position of Mount St. Helens (see
Fig. 4.8)
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We applied the same analysis we did for the Costa Rica sites to all time
series of the PANGA (Pacific Northwest Geodetic Array1) network with
more than 4 years of data (Fig. 4.6). As expected, many coastal sites show
uncertainty ellipses that are elongated almost perpendicular to the plate
boundary, similar to the observation in Costa Rica. Inbound sites have
ellipses that are elongated aligned to the relative plate motion direction.
Uncertainty ellipses of sites further to the east, close to the volcanic arc
are oriented mainly E-W again. Sites south and east of the area affected
by SSEs have in general smaller uncertainties with randomly distributed
principal axes.

For the “white noise + power law noise” error model we estimated the
spectral indices of the power law noise along with the uncertainties. Fig. 4.7
shows an interpolation of the smallest spectral index (highest time correla-
tion) and the corresponding directions. For this analysis we excluded the
sites around Mount St. Helens since the volcanic activity is likely to mask
the effects of SSEs (these sites are analyzed in Section 4.5). Fig. 4.7 A shows
the spectral index for detrended time series corrected for known offsets and
filtered from annual and semiannual signals. Usually, GPS time series that
are not affected by transients exhibit a power law noise that is close to flicker
noise (ν = −1) (e.g. Mao et al., 1999; Hackl et al., 2011). However, most of
the sites in this region affected by SSEs show time correlated noise close to
random walk (ν = −2).

The geodetic group at the Central Washington University (T. Melbourne
pers. comm., 29 November 2011) measured the offsets in the time series
caused by 20 SSEs between 1997 and 2011 and modeled the surface dis-
placements caused by these events. The analysis of the spectral index for
the time series corrected for the modeled surface displacement or the mea-
sured offset are presented in Fig. 4.7 B and C, respectively. In both cases
the time correlation of the noise in the regions affected by SSE is reduced
significantly. Some sites, however, show still relatively high time correlation.
This is especially true for the sites close to the coast of Puget Sound. A part
for the obvious possibility of an incomplete correction of the effects due to
SSEs, a very likely reason for high time correlated noise in this region is the
presence of transient effects due to the Mw = 6.8 Nisqually earthquake in
2001. It is intriguing that the region where the the spectral index is not
reduced to flicker noise is highly correlated with the area mostly affected
by surface displacement during the earthquake (Bustin et al., 2004). This

1http://www.geodesy.cwu.edu/
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Figure 4.7: Interpolated fields of the estimated spectral indices (see colorbar)
in direction of the highest time correlation (black bars). (A) shows the
spectral indices calculated from the cleaned time series (corrected for trends,
offsets, annual, and semiannual signals). (B) is based on time series that
have additionally been corrected for 20 modeled SSEs. (C) is based on time
series that have been corrected for the measured offsets during the SSEs.
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would also be the region more affected by post-seismic relaxation. It is very
likely that the high time correlated noise in these time series after the cor-
rection for the SSE do reflect this transient phenomena. Another source
of crustal deformation in that region is glacial isostatic adjustment (James
et al., 2000).

4.5 Mount St. Helens

Mount St. Helens is the most active strato-volcano in the Cascade volcanic
arc (e.g. Scott et al., 2008). It experienced a dome building eruption in 2004
and ongoing activity until 2010. The associated ground deformation was
measured by GPS (Dzurisin et al., 2008; Lisowski et al., 2008; Palano et al.,
2012). Lava extruded building a dacite dome during the first part of the
unrest. The associated deflation of a magma chamber caused surrounding
GPS sites to move towards the center of the volcano. Subsequently, the
magma chamber was filled up again causing a complex pattern of inflation.

We analyzed time series that were not corrected for any volcanic induced
transients applying the method introduced above. Results are summarized
in Fig. 4.8. Black arrows show the inter-seismic long term rates with 95%
confidence ellipses (red ellipses). This region is affected by SSEs despite the
distance from the plate boundary. Close to Mt. St. Helens however, the
situation is more complex due to different phases of volcanic activity. As an
example, the green arrows in Fig. 4.8 represent modeled horizontal velocities
in a local reference frame during the deflation phase. Most confidence ellipses
are clearly affected and show significant uncertainties radial to the center of
Mt. St. Helens. These deflation velocities are supposed to have an effect
on the long term velocities distorting the confidence ellipses. However, the
velocities and their confidence ellipses are also affected by the inflation and
the subduction related transients (see Section 4.4). Additionally, the GPS
antennas are affected by snow accumulation.

Many GPS time series are affected by time dependent signals. Those
signals can be caused by a variety of sources including tectonic related tran-
sients and time correlated noise. The analysis of transients provides insights
to processes like post-seismic relaxation, SSEs, and volcanic deformation.
The tectonic mechanisms usually result in a high time correlation (simi-
lar to a random walk process) in some preferred direction associated with
large and highly eccentric velocity confidence ellipses. Additionally, tectonic
related transients often show a spatial correlation in dense GPS networks.
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Figure 4.8: Interseismic horizontal GPS velocities (black arrows) at the
Mount St. Helens volcano in a stable North America reference frame. Red
ellipses show the 95% confidence ellipses of the rates based on a “white noise
+ flicker noise + random walk” error model (red). The green arrows show
the modeled site velocities during a deflation period Oct. 2004 - Oct. 2005
in a local reference frame (Lisowski et al., 2008). The blue circle indicates
the position of the caldera.
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In order to analyze the directional dependence of time correlated noise in
GPS time series, we computed the velocity covariance from GPS time series.
The full covariance of the rate of GPS time series is obtained by projecting
the position time series into different horizontal directions, applying the
Allan variance of the rate for every direction in order to estimate the velocity
variance in this direction, and fit Eqn. 4.2 to the variances. This method is
easy to implement, accounts for time correlated noise, and allows for different
noise characteristics for different directions.

Most GPS sites in Costa Rica and Cascadia that experience SSEs have
velocity confidence ellipses which are elongated in the direction of known
transient events as SSEs. After subtracting models that account for the
transients from the time series, the confidence ellipses are significantly less
eccentric. This indicates that SSEs account for a large portion of the ap-
parent time correlated “noise” in the analyzed networks. Time series not
affected by or corrected for transients show a dominant time correlation close
to flicker noise. A similar behavior, although in a more complex context,
can be observed at Mount St. Helens due to volcanic deformation.

Accurate GPS velocity estimates are necessary in order to provide confi-
dence intervals of any model that is based on GPS velocities. Furthermore,
the examples of Costa Rica and Cascadia demonstrate the importance of the
full covariance in networks that are affected by transients, which result in a
spatial correlation of the time correlation. For example, if the Costa Rica
data are used to compute the rotation of Nicoya peninsula, the confidence
interval of the Euler pole is significantly affected by the unidirectional GPS
velocity confidence ellipses. The importance of the orientation of highly ec-
centric error ellipses can also be exemplified by the analysis of the residuals
of slowly deforming regions. In these regions the deformation signal is often
of the same magnitude than the uncertainties. In those cases the presence
of a signal is inferred by a non-random distribution of the azimuth of the
residuals (e.g. Plattner et al., 2007; Malservisi et al., 2012). While this ob-
servation is reasonable in the case of isotropic error ellipses, a bias might
be introduced in the case of spatially coherent eccentric error ellipses. In
the latter case, the observed “noise” has a preferred direction implying that
also the residuals could present a preferred orientation without to represent
a signal.
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5
Conclusion and Outlook

An increasing number of GPS receivers, the improving accuracy of the
position measurement, and the deployment of new GNSS systems like
GLONASS, Galileo, and Beidou provide continuously improving oppor-
tunities for earth sciences. Some of the principal challenges consist in
extracting the information that is related to tectonics, drawing conclusions
on crustal deformation rates, and characterizing the noise in order to
separate it from the signal. The principal goal of this thesis is to contribute
to different aspects of the application of GPS measurements in tectonics.
In a first part I set up an algorithm to derive the continuous 2d strain rate
tensor from dense GPS networks. Then I developed a method to estimate
realistic velocity uncertainties in the presence of time correlated noise.
Subsequently, I implemented an algorithm to obtain the full GPS velocity
covariance. The results of these three methods are discussed in the following.

In chapter 2 (Hackl et al., 2009) I developed a method that provides the
continuous 2d strain rate tensor and its characteristics such as the maximum
shear strain rate, the rotation and dilatation strain rates. It has been shown
that active structures can be identified by the method, which does not
require any additional information such as the fault geometry, and that the
estimated strain rates are in good agreement with independently calculated
values (Sandwell et al., 2010). Furthermore, the algorithm is also capable to
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infer fault rupture characteristics, when applied to co-seismic and or post-
seismic displacement vectors. Additionally, it has been shown in the context
of this work that many GPS velocity fields are biased by transient signals.
On the one hand the presence of biases due to transient behavior implies
that the error budget in GPS time series has to be estimated including time
dependent effects, on the other hand the transient signals provide important
information, if the transients can be modeled properly. Those aspects where
addressed in the subsequent work. Future work on further development
of the strain rate analysis may include the use of the vertical component,
the integration of other geodetic techniques like InSAR, and the tempo-
ral evolution of the strain rate field along with realistic confidence estimates.

In chapter 3 (Hackl et al., 2011), I developed a method to characterize
the noise content of GPS time series in the presence of time correlated noise.
This algorithm is based on the Allan variance, which is widely used in the
estimation of oscillator stability and can be applied in the presence of time
correlated noise. A lot of emphasis was placed on thorough testing with
synthetic time series and the effect of different kinds of noise on the Allan
variance of the rate (AVR). The robust and fast algorithm, which does not
require spectral analysis in the frequency domain, was tested on the South
African TrigNet network and the results were compared against the ones
obtained by a maximum likelihood estimation based method. However, this
algorithm provides a lot of possibilities for further expansions. In a first step
the effect of a temporal change of the time correlated noise on the AVR may
be analyzed. Due to advancing models, the repeatability of GPS position
measurements continuously improves. This may also reflect in the velocity
uncertainty. Another possible enhancement can address current and future
developments in high rate GPS and the related necessity of real time noise
analysis. A possible “dynamic AVR” can provide an important contribution.

Finally, in chapter 4 I implemented an algorithm to obtain the full ve-
locity covariance from GPS time series (Hackl et al., 2012). This provides
realistic velocity uncertainty confidence intervals in the presence of time cor-
related noise. The uncertainties are important for models that are based on
GPS rates and form the basis of confidence estimates of any information
derived from GPS velocities. I showed that GPS networks at subduction
zones can be significantly affected by transients caused by slow slip events,
which result in spatially correlated highly eccentric error ellipses. Subtract-
ing the modeled displacements of those events from the time series, reduces
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significantly the eccentricity. Thus, the covariance analysis is particularly
useful in the detection of transient signals in GPS time series and can pro-
vide an independent measure of the model quality. A thorough analysis of
different GPS networks along with statistical characterizations of different
effects caused by tectonic and tropospheric settings are possible topics to
be addressed in future studies. Finally, the development is clearly heading
towards more complex velocity models that account not only for the long
term rate, but also for a number of time dependent mechanisms. Models of
those time dependent effects will improve dramatically our understanding
of many processes in the system earth.
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