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1 INTRODUCTION 

 
Genetically modified animals were shown to be a powerful tool, creating a better 

understanding of gene function and the nature of genetic diseases [1]. Despite still 

being the most widely used and versatile animal models, not all biomedical 

questions can be addressed using rodents due to their size or short life span. Large 

animal models such as pigs are more suitable for many biomedical purposes and are 

able to mimic human genetic diseases to a much greater extent than rodents due to 

their size, physiology or metabolism [2, 3]. But feasible new pig models need to be 

generated by modifying the porcine genome in a site-specific manner.  

In the last decades, different gene targeting tools were designed and established for 

site-specific modification of the DNA. However, many of them struggle with low 

targeting efficiencies or specificities. One promising approach to overcome the low 

targeting rate is the introduction of DNA double-strand breaks (DSBs) at the target 

site, which triggers the cellular repair machinery, struggling to eliminate this severe 

DNA lesion. Two major pathways are known to repair the DNA DSBs. Non-

homologous end joining (NHEJ) is an error-prone repair system promoting the 

ligation of the two DNA strands, resulting mostly in sequence alterations like 

deletions, insertions or sequence rearrangements and was used to generate knock-

outs of endogenous genes [4, 5]. The more accurate way to repair a DNA DSB is 

offered by homologous recombination (HR). This repair pathway uses a homologous 

DNA sequence as a template, the sister chromatid or an exogenous targeting vector, 

to restore the disrupted segment and has already been applied to correct a mutated 

gene [6-8]. 

For a targeted introduction of DSBs artificial proteins containing a DNA binding 

domain and a DNA cleavage domain, mostly consisted of the FokI endonuclease that 

cut the DNA unspecificly, were developed. Zinc finger nucleases (ZFNs) and the novel 

transcription activator-like effector nucleases (TALENs) represent such chimeric 

proteins. Both carry the FokI endonuclease for DNA cleavage, but differ in their DNA 

binding domains.  

In this study, both nuclease technologies were applied to modify the porcine 

genome. We demonstrated the ability to alter the DNA of two porcine genes, the 
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cystic fibrosis transmembrane conductance regulator (CFTR) gene and the porcine 

dystrophin gene (DMD). ZFN has been shown to mediate genome alterations by 

both mechanisms, the NHEJ and the HR repair pathway. In order to generate a 

transgenic pig model carrying a reporter gene driven by the CFTR promoter, we 

transfected porcine primary cells with CFTR-specific ZFNs and different targeting 

vectors, varying in the length of their homology arms. The notably high targeting 

efficiency, capable of inducing heterozygous and homozygous targetings, proves the 

potential of nuclease technologies for genome modification and the subsequent 

generation of a porcine animal model. The method applied in this work can be used 

for a variety of genomic loci within the porcine genome in the future and thereby 

help to elucidate fundamental mechanisms leading to human diseases.     
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2 REVIEW OF THE LITERATURE 

 

2.1 Genetic engineering 

 
Long before the modern science of genetics was established, mankind practiced 

selective breeding to modify plants and animals for its intent. After the discovery of 

DNA, genes and proteins and the existence of direct determination between them, 

humans were enabled to manipulate this genetic information by the means of 

molecular techniques. Today, two general pathways can be distinguished to modify 

the genome in a desired way, non-specific genome editing and gene targeting. 

Non-specific genome modification is based on two major approaches chemical or 

insertional mutagenesis. Both provide tools to alter the genome, but a prediction of 

the resulting modifications is difficult.  

Chemical mutagenesis can be achieved by chemical agents such as ethyl-nitroso-

urea (ENU), which mostly causes single base-pair mutations throughout the genome. 

The application of this widely used mutagen in animals, e.g. in mice, results in 

mutant phenotypes, which can be screened and characterized [9, 10] and thus, can 

be exploited to display the connection between particular genes and proteins. 

Nevertheless, the identification of mutated genes responsible for observed 

phenotypes remains critical [11] as the observed phenotypes can be caused by 

several different mutations. 

However, this problem can be overcome by additive gene transfer, which involves 

the transfer of exogenous genetic material into cells and its integration into the 

cell’s genome, becoming a so called transgene. The vector commonly contains a 

promoter, the coding region of the gene of interest and a polyadenylation (pA) 

cassette to provide sufficient transcription of the transgene.  

 As the delivered gene integrates randomly into the genome, gene disruption, 

functional knockouts or other alterations can occur [12, 13]. Furthermore, the 

phenotype may result not only from the defined transgene, but also from 

differences in genetic and/or epigenetic background [14, 15].  

Mostly, transgenes integrate into a genomic locus as a single copy, but they are also 

able to form tandem head-to-tail arrays that consist of few to several hundred 
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copies lined up one after the other [16] and result in some cases in unspecific 

inhibitory effects [17, 18]. In addition multiple copies of a transgene can decrease its 

expression [19] or cause even transgene silencing in some cases as shown in plants 

[20, 21], Drosophila [22] and mice [19]. Furthermore, integration site, chromatin 

accessibility and cell type are important factors for a stable transgene expression 

(reviewed in [23]).  

In contrast to the random outcome of insertional mutagenesis, it might be desirable 

to aim at a more predictable outcome of the induced genetic modification. Site-

specific genome modification, also known as gene targeting, meaning the mutation 

of a defined site in the genome, represents a valuable alternative in this respect. 

 

2.2  Molecular tools for site-specific genome modifications 

 
2.2.1  DNA-based targeting strategies 

 
Gene targeting strategies are commonly based on homologous recombination (HR) 

between the target site in the genome and an artificially introduced vector, 

consisting of a transgene flanked by sequences homologous to the target site. 

Recombination occurs also as a natural cellular process at a very low frequency of 

one targeting event per 105 to 107 cells [24, 25]. Studies revealed that HR depends 

on cell cycle and damage-induced expression of proteins, which are main 

components of the recombination complex [26, 27]. Initial evidence for DNA 

damage induced HR was demonstrated by DNA-damaging agents 

(methylmethanesulfonate, UV light as well as SV40 virus), triggering homologous 

exchanges between sister chromatids [28]. HR is known to be a major DNA-repair 

pathway in mammalian cells, where DNA breakage events activates the cellular DNA 

damage response, whose enzymatic machinery repairs the break by sequence 

exchange with any available homologous template, i.e. usually the sister chromatid, 

but also an introduced gene targeting vector [6, 7]. Thereby, a resection of DNA 

takes place at the breakage site and the resulting single-stranded DNA (ssDNA) 

becomes coated by replication protein A forming a binding substrate for the RAD52 

protein. Subsequently, RAD52 interacts with RAD51 and the active nucleoprotein 

filament binds to a homologous double-stranded DNA template forming a structure 
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called Holliday junction. With the help of RAD54 a sequence exchange is performed, 

followed by separation of the repaired DNA strand and the homologous template 

(reviewed in [29]).  

The involvement of the recombination machinery in the repair of DNA double-strand 

breaks (DSBs) might also be used as a tool for the integration of a desired mutation 

into a defined site by providing the modification within a fragment that is 

homologous to the target site. This homology-based targeting strategy relies on the 

very rare moment of DSBs within the desired locus and extensive homology arms 

are needed to obtain sufficient targeting frequencies. The targeted recombination of 

an exogenous DNA with the host genome is very efficient in yeast [30], but in 

vertebrates targeting vectors will be rather inserted into the genome randomly than 

in a specific manner [31].  

In order to distinguish the rare process of HR with exogenous DNA from random 

integrants, transfected cells need to be screened for targeted insertion of the 

transgene. One strategy to detect cell clones carrying a stably integrated transgene 

is a simple positive selection strategy. Thereby, the transgene consists not only of a 

gene of interest, but also of an antibiotic resistance cassette (neomycin, blasticidin, 

puromycin or hygromycin). However, this strategy allows the selection of cells with 

stably integrated vectors, either targeted or randomly inserted. Consequently, a 

large number of cell clones need to be screened by further methods to identified 

those that are correctly targeted [32]. Diverse strategies have been developed to 

overcome the low rate of HR in vertebrate cells, each of them providing distinct 

advantages, but also have their limits. 

 

2.2.1.1 Negative selection  

 In order to enrich the number of cell clones with a correctly integrated transgene, a 

positive-negative selection can be applied to segregate these cells from cells with 

randomly inserted transgenes [33]. In addition to the positive selection marker a 

negative selection cassette such as thymidine kinase or diphtheria toxin A is placed 

outside of the homology arm on the linearized targeting vector. In case of a targeted 

recombination, the negative selection marker will get lost, making these clones 

resistant to both selective treatments. Randomly integrated cells will contain both 
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selection markers and will die as the negative selection produces toxic components 

[34]. However, this method is not applicable for all cell types and purposes.  

 

2.2.1.2 Trapping approaches 

A more powerful strategy is promoter-trap positive selection. The transgene 

contains a promoter-less positive selection marker, which utilizes the promoter of 

the target gene to drive its expression [25, 35], and thus, only targeted integrants 

will provide a cell survival. In contrast, random integrants remain sensitive to the 

selection agent as the promoter-less selection marker will not be expressed. The 

limit of this approach is that the promoter of the target gene must be active to 

provide a selection marker expression. 

Similar to this strategy is the polyadenylation-trap positive selection, where the 

positive selection cassette lacking a termination signal needs the pA sequence of the 

target gene to be able to express the selection marker correctly [36]. In contrast, 

cells with a random integration express only an unstable transcript that gets 

degraded easily [37]. The pA-trapping strategy avoids the limitations of promoter 

trapping which is only applicable for genes that are active in the targeted cells as the 

function of the pA-signal is not dependent on transcriptional regulation. 

 

2.2.1.3 Recombinase-based systems for targeted gene alteration 

A variety of genetic tools has been developed for DNA modification and all of them 

struggle to achieve highly targeted sequence engineering. Site-specific recombinases 

recognize and mediate the recombination between short, defined DNA sequences, 

causing the integration, excision or inversion of DNA segments [38].  

Simple recombinase systems, e.g. Cre and the flippase recombination enzyme (Flp), 

mediate recombination between identical target recognition sequences in actively 

dividing and postmitotic cells of most tissue types. Cre recombinase, from E.coli 

bacterionphage P1, recognizes and recombines 34 bp long target sites termed loxP 

[39]. The yeast Flp recombinase 48 bp flippase recognition target (FRT) sites that are 

similar to the loxP sites according to a 13 bp palindromic sequencer (inverted 

repeats), separated by an 8 bp asymmetric core sequence (spacer) [38]. In contrast 

to loxP sites, FRT contains a third 13 bp direct site [40]. The recombinase molecules, 
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each bound to one repeat, cleave the DNA and provide recombination in the central 

spacer region [41]. In general, first recombinase recognition sequence is introduced 

into a region of interest by conventional gene targeting and secondly, recombinases 

are used to induce a desired modification into their recognition sites, suggesting that 

the limitations of the first step make this strategy unsuitable for high-throughput 

gene targeting application. 

 

2.2.1.4 Triplex forming oligonucleotides (TFOs) for induction of HR events 

Increase of frequency of HR was observed in experiments which are based on the 

triplex forming oligonucleotides (TFOs) method, using 10 to 30 nucleotide long single 

stranded sequences that bind purine-rich target sequences of the major grove of 

DNA with high specificity and binding affinity. TFOs-mediated triple helix formation 

activates the cellular DNA repair machinery and leads to recombination events 

between homologous sequences [42]. Linked to a short DNA donor fragment that is 

homologous to the target site, TFOs were demonstrated to mediate gene correction 

with a frequency up to 2 % [43, 44]. In addition, further studies revealed that TFOs 

drive recombination of a donor fragment also without being linked to it, which 

would enable the use of larger donor DNA sequences delivered separately (reviewed 

in [44]). Nevertheless, regions suitable for high affinity TFO binding are rare, 

approximately once per kilobase of genomic DNA, and TFO delivery into the cell and 

its stability inside the cell also represent main limitations of this technique (reviewed 

in [24]). 

 

2.2.1.5 Adeno-associated virus targeting vectors 

The Adeno-associated virus (AAV) is a ssDNA helper-dependent parvovirus that 

replicates or causes a productive infection exclusively in association with a helper 

virus such as an adenovirus or herpesvirus. However, the ability to transduce a 

variety of cell types, dividing and non-dividing, makes AAV-based vectors an 

important tool for gene transfer and targeting [45, 46]. Wild-type AAV can integrate 

in a site-specific manner at the preferred AAVS1 locus on the long arm of 

chromosome 19 (19q13-qter) in humans, although, large homology does not exist 

between this site and the AAV genome [47] and thus, recombination is somehow 
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supported by parts of the viral genome. The Rep helicase of AAV has been found to 

mediate the recombination between the viral genome and a Rep binding element at 

the AAVS1, resulting in the integration of a small fraction of viral DNA [48].  

AAV vectors were widely used for insertional mutagenesis, but targeted 

modifications have also been achieved including single base pair substitution, 

deletions and insertions either [49, 50] demonstrating targeting rates of 0.1 to 1.0 % 

[51]. AAV vector-mediated gene correction has been established for example in 

creating a mutated lacZ transgene, the β–glucuronidase gene, the 

fumarylacetoacetate hydrolase (Fah) gene [52, 53] and human embryonic stem cells 

(ESCs) and induced pluripotent stem cells (iPSCs) were successfully modified [54]. 

Furthermore, cystic fibrosis transmembrane conductance regulator gene (CFTR) 

deficient pigs and CFTR-ΔF508 heterozygous pigs were generated using recombinant 

AAV targeting vectors, containing inverted terminal repeats at both ends of the 

targeting construct as the only viral sequences [55]. Another group reported the 

generation of a breast cancer associated gene 1 (BRCA1) knock-out pig using 

recombinant AAV-mediated gene targeting as well, demonstrating that homology 

arms of isogenic DNA are required for a successful HR-based targeting [56, 57]. 

Nevertheless, the limited ability to harbor foreign DNA might restrict the application 

of AAV vectors in some gene targeting approaches [49].   

 

2.2.1.6  Artificial chromosome type vectors 

Extended homologous regions positively influence the targeting efficiency. However, 

conventional HR-based vectors have a limited packing ability of 20 kb foreign DNA, 

but other vector types are capable to accommodate larger DNA fragments, which 

enables the construction of large homologous sequences. Yeast artificial 

chromosomes (YACs), phage artificial chromosomes (PACs) and bacterial artificial 

chromosomes (BACs) were initially developed for analysis and mapping of complex 

genomes to provide libraries for genome sequencing. YACs, which are linear vectors, 

enable cloning of DNA fragments up to 1 Mb [58] and are mostly used for additive 

transgenesis in animals, e.g. to analyze genomic regulatory systems avoiding 

position effects [59] or to create mouse models [60], but difficulties with the 

manipulation of YAC libraries have been reported [61]. In contrast, PAC systems can 
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carry 100 kb long fragments and BACs, the most commonly used, harbor DNA 

fragments up to 300 kb [62].  

The BAC cloning system is based on the well-characterized E. coli fertility (F-) factor, 

which is maintained in low copy number in E. coli cells to avoid recombination 

events between the homologous DNA fragments. Different manipulation methods 

[63, 64] allow the construction of BACs for targeting experiments as they can be 

designed to carry large homology sequences. In addition, their circular form shows 

high stability and facilitates their isolation and manipulation. Methods for a high 

throughput generation of BAC targeting vectors for a variety of genes, e.g. in murine 

ESCs with an average targeting rate of 3.8 %, has been introduced. Due to the size of 

several 10 kb, conventional screening methods using end-point PCR are not 

applicable. Instead, different screening techniques have been established so far, 

including DNA fluorescence in situ hybridization (FISH) and real-time quantitative 

PCR-based “loss-of-native-allele” assays [65]. In addition, this technique was 

successfully employed for site-directed mutagenesis by disrupting protein kinase 

ATM and tumor suppressor gene p53 in human ESCs [66]. Furthermore, a CFTR 

deficient pig [67] was produced demonstrating targeting rates of > 1 % due to 

application of primary cells and proving  the capability of this technique.  

 

2.2.2  Designed nucleases for gene targeting strategies 

 
One promising idea to overcome the poor efficiency of gene targeting events based 

on conventional HR strategies is the forced introduction of DSBs into a desired locus. 

The promoting effect of forced induction of DSBs on HR results in an up to 1000 – 

5000-fold increased rate of recombination events, as reported for several gene 

targeting experiments [68, 69]. Designed nucleases have the capability to induce 

DSBs in a sequence specific manner, making them a promising tool for targeted gene 

modification (figure 2-1 [70]). 
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Figure 2-1: Genome engineering by non-homologous end-joining- (NHEJ) or 

homologous recombination-based repair of double-stranded DNA breaks. DSBs can 

be repaired by two major mechanisms: NHEJ (right) and HR (left). Both repair pathways can be used 

to modify a desired DNA locus in a specific manner. 

 
An alternative approach of gene targeting, in addition to HR, is the second major 

mechanism for the repair of DSBs, non-homologous end joining (NHEJ). In mammals 

NHEJ is the preferred repair pathway for DSBs and functions throughout the cell 

cycle [71]. A protein complex consisting of Mre11, RAD50 and Nbs1 [72, 73] in 

combination with the ligase IV (Lig4) enzyme provides ligation of the broken DNA 

strands without any or very little (1-6 bp) homology [30]. While NHEJ normally 

ligates genomic DNA strands, exogenous DNA might also participate in this process 

[74], and thus become a stably integrated transgene. The exonuclease activity 

during NHEJ leads to resection of the cleaved DNA and causes minor modifications 

at the terminal ends, generating in ~70 % of the cases deletions of variable lengths, 

insertions or substitutions at the break site [4]. These sequence alterations result in 

gene disruption and has been proven to be a successful tool for gene knock-out [75]. 

In contrast to HR, which generates site-specific and defined modifications, NHJE at a 

double-strand break that has been introduced by a site-specific nuclease results in 

mutations that are introduced at a target site, but their constitution is not precisely 

predictable. 
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In the last decades, different tools for DSB-based gene targeting were identified and 

different nucleases were developed to bind and cleave the desired DNA sequence. 

 

2.2.2.1  Homing endonucleases 

First DSB-induced targeting strategies involved the use of endonucleases such as I-

SceI isolated from the yeast Saccharomyces cerevisiae [76]. This intron-encoded 

homing nuclease (also called meganuclease) is responsible for copying an intron 

from an intron-containning allele of the 21S ribosomal gene to an intronless allele of 

the same gene [77]. The allele lacking the specific intron, contains an 18 bp 

recognition site (homing site), which is a cleavage substrate for this enzyme. The 

homing site on the intron-containig allele is disrupted by the intron preventing 

cleavage by the endonuclease. The produced DSBs at the homing site activate the 

HR-based repair pathway and thus, lead to an unidirectional gene conversion event 

(homing), which promotes a spread of the intron containing homing endonuclease 

gene to related alleles lacking the intron [69]. I-SceI is a very rare cutting enzyme, 

that occurs randomly throughout the genome with a very low probability 

(approximately once every 7×1010 bp) and is predicted to be absent from most 

mammalian-sized genomes [76]. This aspect is important as unpredicted cleavage of 

any endogenous recognition site would result in unwanted genomic alterations with 

undesirable consequences. 

I-SceI-based gene targeting for genetic modification of cell lines has been used in a 

two step strategy [76]. First I-SceI site needs to be inserted into the target locus in a 

classical HR step using a replacement vector and a selection marker, which is an 

extremely low-efficiency process. In the next targeting round the locus is retargeted 

using an I-SceI expressing plasmid and a second replacement vector achieving 

recombination frequencies up to 5000-fold higher than in the first step [78]. 

Although I-SceI was successfully applied in mammalian cells for generation of stably 

transfected cell lines with single copy integrations [79, 80], several approaches to 

modify the recognition site of the homing nucleases have been developed [81]. Even 

engineering of novel chimeric proteins [82] has been successfully used in some 

cases, but the technology remains challenging, making this approach unsuitable for 

high throughput targeted modification and broad application [83].   
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2.2.2.2  Zinc-finger nucleases (ZFN) 

A further DSB-based targeting strategy involves a type of artificial enzyme called 

zinc-finger nuclease, which is a chimeric protein consisting of a DNA cleavage 

domain and a DNA binding domain. Initially, it was based on the observation, that 

FokI, a type II restriction enzyme, has a DNA recognition domain and a separate 

cleavage domain, which has no sequence specificity. Furthermore, it was observed 

that alternative DNA sequences could be cleaved by replacing the natural occurring 

sequence recognition domain by alternative DNA-binding domains [84]. FokI DNA 

cleavage domain was equipped with new binding domains for desired DNA 

sequences by using Cys2His2 zinc finger motifs (ZF) [85]. DNA-binding ZFs can be 

found in many proteins that regulate eukaryotic protein-nucleic acid interactions 

such as transcription. They fold into a ββα configuration and coordinate one zinc ion 

with two cysteine and two histidine residues to stabilize their folding structure [86]. 

The crystal structure of Zif268, a three-finger protein, revealed that each ZF 

recognizes specifically 3 bp of DNA by binding into the major DNA groove with its α-

helix. It was suggested that defined sequences of 18 bp or more should be targeted 

to ensure specificity of appropriate sets of ZF [87] [88].  
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Figure 2-2: ZFN pair binding to a targeting DNA sequence. Each ZFN consists of three ZFs 

and is fused to a DNA cleavage domain. The two endonuclease domains need to form a dimer to be 

catalytically active. 

 
For a successful introduction of DSBs into the targeted DNA sequence by ZFN, 

dimerization of the FokI domain is essential (figure 2-2 [86]). Therefore a pair of 

ZFNs, each binding to the DNA sequence in opposite orientation with three ZFs, 

allows the FokI domain to form a catalytically active cleavage dimer within the 

binding sites. However, in addition to the desired heterodimers, the ZFN monomers 

can also form homodimers and introduce DSBs in unwanted sites of the genome. 

Early experiments revealed that in some cell types ZFN showed cytotoxic effects due 

to cleavage of nontarget sequences, reflecting unspecificity of the ZFN and limiting 

the potential of the ZFN technology for gene targeting. This problem could be widely 

solved by creating FokI variants with altered protein surfaces that preferentially 

heterodimerize [89].  

 

2.2.2.2.1 Design of customized zinc-finger nucleases 

Theoretically, ZFNs might be designed for any of the 64 DNA triplet combinations. 

Single fingers with pre-characterized specificities [88, 90] can then simply be joined 

together to form binding domains for any desired DNA sequence. This “modular 

assembly” is easy to perform, but only 6 % of ZFN pairs designed with this method 
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are functional [91], furthermore they show low activity and/or high cytotoxicity due 

to interaction between the single ZFs [92].  

In order to overcome this problem pre-characterized multifinger domains, which 

show high DNA-binding affinities and specificities [93] can be selected for 

oligomerized pool engineering (OPEN). The Zinc Finger Consortium 

(www.zincfingers.com), a group of academic laboratories, established a publicly 

available platform containing an archive of engineered zinc-finger arrays that 

showed a higher success rate than enzymes obtained by modular assembly [94].  

In addition, a web-based software, the Zinc Finger Targeter (ZiFiT), was established 

to provide a simple and rapid tool to scan a DNA sequence for potential ZFN binding 

sites, for engineering by modular assembly or OPEN, as well as to evaluate and 

validate ZFN targets [95]. A further publicly available database for ZFNs is the 

recently established ZFNGenome [70]. This platform provides information about 

potential ZFN target sites, their chromosomal localization and their targeting 

capability. In addition, ready-made ZFNs can be obtained from a commercial 

supplier that provides validated ZFNs for many targeting sites 

(http://www.sigmaaldrich.com/life-science/zinc-finger-nuclease-technology.html). 

Nevertheless, the improvement of binding specificity and DNA affinity, both a 

further limitation of this technology, remains an important research topic. 

 

2.2.2.2.2 Applications of ZFNs 

In one of the initial experiments, ZFNs were used to disrupt the yellow gene of 

Drosophila melanogaster via NHEJ demonstrated targeting rates of 1:250 in the male 

germ line [96]. Later studies revealed ZFN targeting frequencies to 10 % and higher 

[5] making this method a promising tool for standard applications in the gene 

targeting research area. 

Possible applications of engineered ZFNs involve targeted mutagenesis by NHEJ for 

the study of gene function. This gene strategy has been successfully performed in 

plants, animals for creating model organisms and in cell culture for therapeutic 

purposes, e.g. disrupting of chemokine receptor 5 (CCR5), a co-receptor for HIV by 

ZFNs to establish HIV-1 resistance in CD4+ T cells [97, 98]. 
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ZFN technology also provides targeted gene correction by combination of forced 

DSBs induction and HR between cleaved genomic DNA and a template DNA. The 

method can be use to repair dysfunctional genes involved in recessive monogenetic 

diseases, but also for numerous other purposes. ZFN-based therapy approaches 

have already been reported for X-linked severe combined immunodeficiency (SCID), 

sickle cell anemia, cystic fibrosis and myotonic dystrophy [99, 100] and the 

permanent and heritable gene correction by ZFNs will find applications for other 

diseases as well. Gene-targeted insertions were successfully performed in cultured 

cells, e.g. human ESCs and iPSCs, where a green fluorescent protein (GFP) gene and 

a puromycin resistance gene were introduced and their expression controlled by the 

OCT4 promoter [101], in plants  to introduce missense mutations [102]  as well as in 

Drosophila flies [103]. Furthermore, reporter genes might be integrated into a 

defined site in the genome to achieve ectopic expression. Genes such as lacZ, GFP or 

resistance genes (to puromycin, neomycin, blasticidin) act as easily-detectable 

markers to monitor cellular mechanisms or to study expression conditions when the 

marker is inserted under an endogenous promoter. 

 

2.2.2.2.3 Potential barriers 

Although the application of ZFN technology proved to be suitable for gene targeting 

in organisms ranging from plants, to insects and mammals, the cytotoxic potential of 

ZFNs in complex organisms is still under debate. The assumed reason of cellular 

cytotoxicity is the ability of ZFN to create off-target DSBs, as the degree of 

cytotoxicity is directly correlated with of extra DSBs that are being created [104-

106].  

While new software and platforms were established to provide a rapid and efficient 

way to design new ZF arrays, a certain proportion of ZFN pairs fail, no matter which 

method has been used for their construction. Unfortunately, binding specificity and 

affinity of chosen ZF sets are major issues and thus, it is still necessary to evaluate 

newly designed ZFNs extensively in time-consuming studies.  

In order to facilitate adequate affinity, each ZFN should contain at least three zinc 

finger motifs. More ZFs can be added to the nuclease domain to increase the binding 

efficiency of the nuclease. However, this lowers the ZFN specificity by increasing the 
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possibility that some of the added ZFs can promote binding to off-target sites. Even 

the best designed ZF arrays show affinity for other sequences than they are 

supposed to. Moreover, it is also possible that some sequences or genomic regions 

are unsuitable for targeting at all due to their inherent particularly inaccessible 

chromatin structure or DNA modifications [107]. Since methods to measure 

accessibility are difficult, it is often easier to construct several ZFNs for different 

regions close to the desired targeting site. 

Although ZFN technology is a precise gene targeting tool with many advantages, the 

discussed challenges might be relevant for certain approaches and for using this 

technique for therapeutic purposes in human. Therefore, it is crucial to develop 

direct and simple analysis methods for the detection of off-target cleavages.  

 

2.2.2.3 Transcription activator-like effector nucleases (TALENs) 

Statistically, a suitable ZFN binding site is only found every 500 bp [94, 108]. A novel 

class of designed nucleases has been engineered recently, the transcription 

activator-like effector nucleases, which could bind the DNA on average every 35 bp 

[109]. Similar to the ZFNs, these artificial enzymes contain a FokI cleavage domain, 

but the DNA binding domain is comprised of transcription activator-like (TAL) 

effectors. 

TAL effectors are proteins isolated from pathogens of the Xanthomonas genus, 

which infect plants including pepper, rice, citrus, cotton, tomato, and soybeans by 

injecting a variety of effector proteins via their type III secretion system. Once 

delivered into the host cell, TAL effectors translocate into the nucleus and bind to 

effector-specific sequences in host promoters and activate transcription [110]. TAL 

effector proteins contain a N-terminal translocation domain, central repeats 

(commonly 12 – 30) that provide sequence-specific DNA binding and a C-terminal 

nuclear translocation domain as well as a transcriptional activation domain (figure 2-

3) [111]. The conserved 33 – 35 residues long repeats of the TAL effector DNA 

binding domain are arranged in tandem arrays and differ predominantly in residue 

position 12 and 13. These two positions, also called repeat variable di-residues 

(RVDs) preferentially recognize one of the four DNA bases forming a “one repeat to 

one base” code [112].  
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Figure 2-3: TALE protein fused to a FokI endonuclease. TALEN can specifically bind DNA 

sequences with their repeats segment (shown in red and blue) and consequently introduce a DSB by 

the FokI dimer into the DNA targeting site [113].   

 
Consequently, repeats binding with high efficiency to a unique base have been 

described as well as repeats that are less specific and thus, bind to more or even all 

bases. The existence of a code facilitates the prediction of the DNA binding sites of 

naturally occurring TAL effectors and enables the design and construction of 

customized TAL effector repeat arrays for any DNA target sequence [114, 115] 

making these proteins invaluable for developing of new gene targeting tools. Unlike 

ZFNs, TALENs can be constructed by assembling repeats in a random manner, which 

already has been proven in initial studies [115]. However, designing TALE nucleases 

by standard cloning approaches revealed to be challenging due to their high 

homology and the high number of repeats, but these obstacles could be overcome 

by the newly developed Golden Gate cloning and software based strategies allowing 

the construction of TALENs for a large variety of targeting loci in Arabidopsis, 

tobacco, Drosophila and zebrafish [109, 116, 117]. Until today, successful in vitro 

targeting of GFP, eGFP and human CFTR and HPRT1 genes has been achieved with 

comparable mutation rates as ZFNs [109, 112]. Although, these studies, which 

involved ZFNs and TALENs targeting the same locus, have revealed a lower 

cytotoxicity for TALENs [112] and also no target site overlapping or crosstalk 

between individual repeats in a TAL effector array has been reported yet, the 

technique still requires further characterization regarding its specificity and potential 

off-target effects.  

 



REVIEW OF THE LITERATURE 

 - 18 - 

2.3 Vector delivery systems 

 
By which means ever a gene of interest is to be modified, the targeting tool has to 

be introduced into cells or embryos by an appropriate delivery system. The 

commonly used delivery systems are based on chemical, physical and viral 

approaches. 

 

2.3.1 DNA transfer by viral vectors 

 
Viruses have a natural ability to transfer their genome into cells efficiently. For gene 

delivery purposes viral vectors have been developed by removal of their genes 

required for viral propagation and replacing them by (trans-) genes of interest. 

Consequently, the deficient viral genome is able to transduced cells and in some 

cases integrate into the cell’s genome as efficiently as its wild-type counterpart, but 

is, on the other hand, unable to proliferate and infect his host. 

Retroviral vectors are capable to integrate foreign DNA into the host genome, but 

these vectors are limited by the fact that most of them infect only dividing cells, 

since they can reach the chromatin only when the nucleus membrane is disrupted 

during the division event.  

Lentiviral vectors have the ability to target also non-dividing cells (e.g. neurons) 

through mitosis-independent transport of the viral DNA into the host nucleus [118]. 

Initially, unlike other viral vectors, they were thought, to escape epigenetic silencing 

[119, 120], however, later studies demonstrated that one-third of the transgenes 

integrated via lentiviral vectors showed low to undetectable expression levels [121] 

exhibiting a potential limitation of this delivery system. 

Adenoviral vectors have the advantage of being highly infectious in vitro and in vivo, 

however, transfection experiments revealed a very low integration rate and 

consequently is limited to the transient presence of the vector in the cell, making 

this delivery system unsuitable for gene targeting purposes. 

The AAV vectors have not only the ability to target a DNA region by integrating into 

the genome they also are capable of transducing cells and thus, represent an 

important delivery system. Although, AAV-mediated gene targeting experiments 

have shown promising targeting rates, as already described above, their targeting 
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frequency is even higher when combined with I-SceI meganuclease-based 

technology [122, 123]. 

Nevertheless, all viral delivery systems show limitations due to their ability to induce 

immunological reactions, their preference for random integration and their low 

capacity to harbor foreign DNA (usually 10 kb maximum).  

 

2.3.2 Non-viral delivery systems 

 
Chemical-based delivery methods include cationic polymers, liposomes and calcium 

phosphate [124].  

Synthetic cationic polymers (e.g. DEAE-dextran and polyethylenimine) bind the 

negatively charged DNA and thus, facilitate the cellular uptake via endocytosis [125]. 

Liposomes deliver DNA by encapsulating it with positively charged cationic lipids and  

subsequently fusing with the plasmalemma or the endosome [126], thus, facilitating 

a cellular uptake of the negatively charged DNA. Calcium phosphate, on the other 

hand, causes a DNA precipitation on the cell surface resulting in a spontaneous 

endocytosis of a small amount of DNA. Chemical methods show low transfection 

efficiency and are not applicable for all cell types and transfection purposes. 

However, commercially available systems for lipofection are pre-optimized and 

provide high transfection efficiency and application for a wide range of cell types. 

Physical methods include DNA microinjection that can be performed into the 

cytoplasm or directly into the nucleus. Although, it represents the most efficient 

delivery method, DNA has to be injected individually into each cell making it rather 

suitable for one-cell embryo injection. 

Electroporation is another physical delivery method that transfects a variety of cell 

types with high efficiency. An applied electric field creates transient pores in the cell 

membrane and increases the mobility of DNA added to the electroporation solution 

facilitating the uptake of DNA into the cells [127]. In order to overcome an increased 

apoptosis rate of electroporated cells, commercially available equipment with pre-

optimized settings and chemical solutions for different cell types can be applied to 

deliver targeting DNA directly into the nucleus [128]. 
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2.4 Nuclease-based animal models  

 
Generation of genetically modified animals has proven to be a powerful tool to 

study gene function, analyze disease and produce animal models for therapeutical 

purposes. Although cultured cells are used as model systems for a variety of 

applications, not all complex questions can be answered using cell culture. 

In order to generate new animal models being able to mimic human genetic 

diseases, the targeted knock-out of an endogenous gene is one possible and widely 

used strategy. Before the development of artificial nuclease technologies, the 

production of site-directed mutagenesis in animals was restricted to HR using 

conventional DNA vectors, a time consuming and inefficient technique, in addition 

to the introduction of a permanent selection marker such as an antibiotic cassette 

for screening and selection of targeted cells. Also, the gene knock-out strategy 

initially was restricted to mice and later to rats [129], because of lacking ESCs from 

other species. In recent studies, HR was performed also in other animals, using  

somatic cell nuclear transfer (SCNT) of genetically modified primary cells [3]. 

Nevertheless, regarding the highly skilled SCNT technology and the low efficiency of 

HR in primary cells, targeting in non-mouse species is a tremendous effort.  

I-SceI meganuclease was successfully used to produce transgenic animals, including 

several fish species, amphibia and ascidians [130, 131], but no mammalian model 

was generated using this technology yet. 

ZFN-induced gene knock-out has been achieved in Drosophila flies, where the yellow 

locus was targeted [96]. Zebrafish were modified by ZFN technology targeting the 

golden and no-tail/Brachyury (ntl) genes [132]. In mice, site-specific ZFN-mediated 

gene insertion of a GFP gene succeeded [133] and furthermore, IgM-knock-out rats 

were produced. These rats were mature B lymphocytes- and heavy chain Ig-deficient 

and were generated to analyze the role of antibodies in a variety of pathological 

situations. While most of the 22 obtained founder animals carried deletions on only 

one allele, one founder showed biallelic mutations on both IgM alleles. In addition, 

some of the animals carried more than one deletion, indicating that ZFNs acted over 

a certain time period of the embryonic development and thus, generated mosaic 

animals [134].  
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As the TALEN technology has been established recently, not many animal models 

were reported yet. One group has been utilized this strategy in vivo and reported 

IgM knock-out rats [135]. The rat IgM locus was disrupted by TALENs designed for 

exon 2 of this gene and delivered as DNA or mRNA. 

All mentioned animal models were generated by injecting the DNA or mRNA 

encoding ZFNs directly into the embryos resulting in a mutation frequency between 

7 and 46 % for alterations on one allele. In addition, up to 50 % of these mutations 

were found to create biallelic knock-outs. However, mosaic animals were observed, 

using ZFN or TALEN technology due to a delay in activity of the designed nuclease or 

a cleavage of already-modified sequences [4, 135].  

 

2.4.1 Pigs in biomedical research 

 
Traditionally, mice have always been model organisms to study human physiology. 

Most human genes have orthologs in mouse, whose functions are closely related. 

Furthermore, the mouse is a small animal that is easy and relatively cheap to 

maintain and has a short breeding cycle.  

Despite these advantages, mice represent only a limited model for humans due to 

their size, their short life span or their capability to reflect more complex human 

diseases. One example for the limitation of the mouse model is cystic fibrosis, which 

is caused in human by a mutation in the CFTR gene. Mice with a mutation on a 

corresponding gene do not show a related airway phenotype as humans [136]. 

In contrast, pigs represent a highly potential animal model for human diseases due 

to their size, physiology, anatomy, pathology and metabolism (reviewed in [2]). 

Since SCNT has successfully been established for porcine cells [137-139], it was 

possible to produce pig models for various human diseases. 

For complementation of the deficient CF mouse model, CFTR knock-out pigs were 

generated by different gene targeting methods [55, 67] displaying similar defects as 

seen in human patients, including meconium ileus, exocrine pancreatic destruction, 

and focal biliary cirrhosis. Consequently, the adjusted phenotype of this model 

enables a better understanding of the pathogenesis of this disease and facilitates 

the development of new therapy strategies for cystic fibrosis. 
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In addition to the mouse model, pigs with an altered BRCA1 gene were produced. 

Porcine fibroblasts were modified by AAV-mediated targeting of the BRCA1 gene 

exon 11 [57]. Although the characterization and phenotype of these animals is not 

reported to date, BRCA1 knock-out pigs might contribute to a better understanding 

of BRCA1-associated breast cancer in human. 

In order to address different biomedical questions, further pig models were 

generated by additive gene transfer. 

Pigs expressing mutated GIPRdn under the control of rat insulin 2 (Ins2) promoter 

were established due to a limited usage of mouse models for human type 2 diabetes 

mellitus [140]. Glucose-dependent insulinotropic polypeptide (GIP), secreted in 

response to fat and glucose, shows a reduced insulinotropic affect in type 2 diabetic 

patients due to variations in the GIP-receptor (GIPR). The GIPRdn transgenic pigs 

were used to analyze what role GIPR plays in maintenance of pancreatic islet 

function and structure. Moreover, two other transgenic porcine diabetes models 

were reported carrying a mutation in the Ins2 and in the hepatocyte nuclear factor 1 

alpha gene, respectively (reviewed in [3]).  

Neurodegenerative disease models include for example pigs with a mutated amyloid 

precursor protein gene (APPsw) resulting in an Alzheimer’s disease phenotype [141]. 

Huntington’s disease pigs were generated by inserting 75 CAG trinucleotid repeats 

into the triple region of exon 1 of the Huntington gene (HTT) [142] and a retinitis 

pigmentosa disease model was produced by additive gene transfer of a mutated 

rhodopsin gene (RHO) resulting in night blind pigs [143]. 

For analysis of muscle metabolism and cardiovascular regulation by endothelial cell 

nitric oxide synthase (eNOS) pigs with an inserted eNOS transgene were produced 

[144] demonstrating the variable application of transgenic pigs.  

Due to their anatomical and physiological similarities, pigs represent also promising 

donor organisms for xenotransplantation. The hyperacute rejection of donor organs 

after a transplantation from pig to primate can be overcome by modification of 

alpha-1,3-galactosyltrasferase (GGTA1) gene, which encode the GGTA epitop, the 

major xenoantigen triggering immune rejection. Therefore, different GGTA knock-

out pig models with mutations on different exons of this gene were generated by 
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different groups, demonstrating strategies to overcome incompatibilities of pigs and 

primates (reviewed in [145]). 

 

2.4.2  Artificial nucleases for modification of porcine genome 

 
The first group that showed how ZFN technology can be applied to pigs was 

Watanabe et al, 2010 [75]. Porcine eGFP-transgenic fetal fibroblasts were 

transfected in vitro with GFP specific ZFN mRNA via electroporation and screened 

for GFP negative cells revealing a targeting rate of approximately 15 %. First ZFN-

based gene modified piglets were reported one year later demonstrating again the 

knock-out of GFP in adult porcine ear fibroblasts hemizygous for the eGFP transgene 

[146].  

Another group established the first ZFN-based knock-out pig model by disrupting the 

GGTA1 gene on both alleles. The study demonstrated the suitability of the ZF 

method for gene modification of endogenous genes in pigs without introducing a 

transgenic sequence or selection cassette into the genome [5]. 

Transgenic pigs generated via TALEN-mediated modification have not been reported 

so far. 

 

2.5 Aim of the study 

 
The examples discussed above illustrate the importance of pigs in biomedical 

research and at the same time demonstrate that further research is needed to 

generate suitable models for human diseases. In order to achieve this, it is necessary 

to select an optimal molecular tool that is convincing in targeting specificity and 

efficiency. The abundance of genetic tools for modifying the mammalian genome 

offers potential in order to find a targeting strategy for many different purposes. 

Although every individual strategy provides many advantages, it is essential to select 

the targeting tool carefully according to their respective limits. Furthermore, not 

every strategy can be used for modifying the pig genome, as no porcine ESCs are 

available to date.    
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To determine a targeting tool that provides a simple and fast generation of 

transgenic pigs, we examined the suitability of the relatively new ZFN in generating 

genomic modifications.  

In this study, ZFNs were used to generate a functional gene knock-out of the porcine 

CFTR gene by transfecting porcine primary kidney cells with ZFN mRNA of plasmid 

DNA.  

In addition, the combination of ZFN technology with already-established BAC vectors 

was investigated to determine potential increase in targeting efficiency and to 

compare the successfully used BAC technology with new developed targeting 

strategies. 

The potential of ZFN to mediate gene replacement was determined by co-

transfecting these proteins with a DNA template. Therefore, a targeting vector was 

designed carrying an exogenous lacZ gene to replace exon 1 of the CFTR gene and to 

insert lacZ under the CFTR promoter for generation of lacZ-transgenic pigs.  

We also evaluated the newly designed TALENs for their application in porcine 

primary cells and their targeting ability. Furthermore, ZFNs and TALENs were 

constructed for the same exons of the porcine dystrophin (DMD) gene in order to 

compare their targeting efficiencies. 

The examination and establishment of new gene targeting technologies is crucial for 

generation of new pig models that in turn are essential research tools for 

understanding the development and progression of human diseases.   
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3 MATERIALS AND METHODS 

 

3.1 Materials 

 
All chemicals were used in p.a.-quality and buffers and solutions were prepared with 

deionized water, aqua bidest, obtained from a Millipore device (Milli-Q®), and 

stored at room temperature, if not stated otherwise.  

 

3.1.1 Apparatuses and consumables 

 
Table 3-1: Apparatuses used 

Apparatus name Manufacturer 

AccuJet pro Pipetman Brand, Wertheim 

Agarose gel electrophoresis chamber OWL Inc., USA 

Zeiss Axiovert 200 M fluorescence microscope Carl Zeiss, Oberkochen 

Cellavista High End System Roche, Mannheim 

Centrifuges 5415 D, 5417 R, 5810R Eppendorf, Hamburg 

Centrifuge Biofuge pico Heraeus, Osterode 

Centrifuge Labofuge M Heraeus, Osterode 

Centrifuge Rotanda 96 Hettich, Tuttlingen 

Chyo scales  YMC Co., Japan 

Eppendorf HH Mastercycler Gradient Eppendorf, Hamburg 

GeneAmp® PCR System 9700 Applied Biosystems, USA 

GeneQuant Pro spectrophotometer Amersham, UK 

Gel documentation system BioRad, Munich 

GFL 3031 shaker Hilab, Düsseldorf 

Glass pipettes Hirschmann, Eberstadt 

Incubators 
Memmert, Schwabach 

Heraeus, Osterode 

Microscope DM IL Leica, Wetzlar 



MATERIALS AND METHODS 

 - 26 - 

MS1 minishaker IKA Labortechnik, Staufen 

Finnpipette® Multichannel pipet (300 μl) Thermo Fisher Scientific, USA 

Neubauer counting chamber Assistent, Sondheim 

Microprocessor pH meter WTW, Weilheim 

Pipettes (2 µl, 10 µl, 20 µl, 100µl, 200 µl, 1000 µl) Eppendorf, Hamburg 

Polyacrylamide gel electrophoresis chamber 
BioRad, Munich 

Power Pac 300 gel electrophoresis unit 

RH Basic heating plate with magnetic stirrer IKA Labortechnik, Staufen 

Severin 900 microwave Severin, Sundern 

SS35 50 ml centrifuge tubes Eppendorf, Hamburg 

Steril benches Laminair® HB2448K, HB2472 Heraeus, Osterode 

Thermomixer 5436 Eppendorf, Hamburg 

Thermostat Plus Eppendorf, Hamburg 

Water bath sub14 Grant, UK 

WB6 water bath 
Firmengruppe Preiss-Daimler, 

Medingen 

 

 
Table 3-2: Consumables 

Consumer item Manufacturer 

ABgene® 96-well PCR plates Thermo Scientific, Ulm 

Centrifuge tubes (15 ml, 50 ml) Falcon®, Becton Dickinson, Heidelberg 

6-well, 96-well F-bottom culture dishes Greiner bio-one, Frickenhausen 

60 mm, 100 mm culture dishes Sarstedt, Nümbrecht 

Cultupe sterile culture tubes Simport, Canada 

Cryotubes 1 ml NuncTM, Denmark 

Cryotubes 2 ml Almeco, Denmark 

Parafilm®M American Can Company, USA 

PCR reaction tubes (0.2 ml) Braun, Wertheim 
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Pipette tips Eppendorf, Hamburg 

Pipette tipps with filter Axygen Inc., USA 

QIAtip 500 Qiagen, Hilden 

SafeGrip® Latex gloves SLG, Munich 

SafeGrip® Nitril gloves SLG, Munich 

Safe-Lock reaction tubes (1.5 ml, 2 ml) Eppendorf, Hamburg 

Serological pipettes  Greiner bio-one, Frickenhausen 

Steritop GP 0,22 μm Express®plus membrane Millipore, USA 

Sterivex GP 0,22 μm Millipore, USA 

 
 
 
3.1.2 BAC constructs, plasmids and bacterial strains 

 
Table 3-3: BAC and plasmid constructs used 

 

BAC/plasmid 

name 
Clone number 

 

Description 

248CFTRlacZ 24-5 
BAC, containing lacZ and neokan resistance 

cassette 

248CFTRlacZ 2-5 
BAC, containing lacZ and neokan resistance 

cassette 

pBSK-CFTR-lacZ  8 Containing lacZ and neokan resistance cassette 

pBluescript II SK (-) (pBSK) Thermo Fisher Scientific, USA 

pGEM®- T Easy Vector Promega, USA 

 
Table 3-4: Bacterial strains 

Strain Manufacturer 

DH10B New England Biolabs, USA 

TOP10 Invitrogen, Karlsruhe 
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3.1.3 Buffers, media and solutions 

 

Table 3-5: Buffers and solutions used for molecular cloning protocols 
 

Buffer/solution 
 

Components 

Chloroform-isoamylalcohol 

(CiA) 

96 ml chloroform 

4 ml isoamylalcohol 

Stored at 4°C protected from light 

DNA loading buffer (10 ×) 

10 % glycerol in aqua bidest. 

1 spatula tip of bromophenolblue 

Add 0.5 M NaOH until colour turns blue 

Stored at 4°C. 

DNA molecular weight 

standards 

100 μl pUC8 Mix Marker 8 or 1 kb DNA ladder 

standard 

100 μl 6 × loading dye 

400 μl aqua bidest 

Stored at -20 °C 

dNTPs 
2 mM or 10 mM respectively dATP, dCTP, dGTP, dTTP 

Stored at -20 °C 

Formamide loading dye (98 %) 

10 ml formamide 

0.5 mg bromphenolblue 

0.5 mg xylene cyanol 

200 µl EDTA (0.5 M) 

LB medium 

5 g yeast extract 

10 g tryptone/peptone 

2.5 g NaCl 

Ad 1000 ml aqua bidest 

pH 7.0 (adjust with 5 M NaOH) 

Autoclave 

LB-agar plates 

5 g yeast extract 

10 g tryptone/peptone 

5 g NaCl 

pH 7.0 (adjust with 5 M NaOH) 
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15 g agar-agar 

Autoclave 

Cool down to 60°C 

Add 1 ml respective antibiotic (ampicillin 50 mg/ml, 

chloramphenicol 

12.5 mg/ml, kanamycin 25 mg/ml) 

Pour into culture dishes 

Stored at 4°C 

Lysis buffer for DNA isolation  

(High salt precipitation) 

100 μl PK buffer (1 ×) 

10 μl SDS (10 %) 

4.4 μl DTT (1 M) 

Phenol-chloroform-

isoamylalcohol (PCiA) 

25 ml phenol 

25 ml CiA 

Stored at 4°C, protected from light 

PEG-MgCl2 

40 % (w/v) PEG 8000 

30 mM MgCl2 

Stored at room temperature 

PK buffer (10 ×) 

200 mM Tris 

1 M NaCl 

40 mM EDTA 

Stored at room temperature 

Proteinase K 20 mg/ml Stored at 4°C 

Rnase A 20 mg/ml Stored at 4°C 

Sequencing buffer (5 ×) 

17.5 ml 1 M Tris/HCl (pH 9.0) 

125 μl 1 M MgCl2 

Ad 50 ml aqua bidest 

Stored at -20°C 

Super Optimal Broth (SOC) 

medium 

2.5 g yeast extract 

10 g tryptone/peptone 

0.25 g NaCl 

Ad 500 ml aqua bidest 

pH 7.0 (adjust with 5 M NaOH) 
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Autoclave 

Ad 2 M MgCl2 (final concentration 10 mM) 

Ad 1 M Glucose (final concentration 20 mM) 

Solution A 

50 mM glucose 

25 mM Tris/HCl pH 8.0 

10 mM EDTA/NaOH pH 8.0 

Solution B 

0.1 M NaOH 

0.5 % (w/v) SDS 

Prepared freshly before use 

Solution C 

3 M KOAc 

pH 4.8 with 9 M HOAc 

Autoclave 

STE 

10 mM Tris/HCl pH 8.0 

100 mM NaCl 

1 mM EDTA/NaOH pH 8.0 

Tbf I 

30 mM KOAc pH 6.0 

100 mM CaCl2 

15 % (w/v) glycerol 

Ad 250 ml aqua bidest 

Autoclave 

Ad 1 M MnCl2 (final concentration 50 mM) 

Tbf II 

10 mM MOPS pH 7.0 

75 mM CaCl2 

10 mM KCl 

15 % (w/v) glycerol 

Ad 20 ml aqua bidest 

Autoclave 

T-buffer 
10 mM Tris 

Adjust to pH 8.0 with HCl 

TAE (50 ×) 

242 g Tris 

100 ml 0.5 M EDTA (pH 8.0) 

57 ml AcOH 
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Ad 1000 ml aqua bidest 

Diluted to respective concentration prior to use. 

 
 
3.1.4 Chemicals 

 
Table 3-6: Chemicals used 

Chemical name Manufacturer 

Acetic acid (glacial) (HOAc)  Merck, Darmstadt 

Acrylamide-bisacrylamide (40 %) 
Roth, Karlsruhe 

Agar-agar  

Agarose  low-melting Thermo Fisher Scientific, USA 

Agarose UltraPureTM  Invitrogen, Karlsruhe 

Agarose Universal Bio&SELL, Nürnberg 

Ammonium persulfate (APS) 

Roth, Karlsruhe 
Ampicillin 

Bromophenolblue 

Calciumchlorid (CaCl2) 

Chloramphenicol Sigma-Aldrich, Steinheim 

Chloroform Merck, Darmstadt 

Dithiothreitol (DTT) Biomol, Hamburg 

Ethylenediaminetetraacetic acid (EDTA) Roth, Karlsruhe 

 Ethanol (EtOH) 

Ethidiumbromide Merck, Darmstadt 

Geneticin (G418) Invitrogen, Karlsruhe 

Glucose Roth, Karlsruhe 

 Glycerol 
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Hydrochloric acid, 37 % (HCl) 

Isopropyl-beta-D-thiogalactopyranoside 

(IPTG) 
Thermo Fisher Scientific, USA 

Isoamylalcohol  Roth, Karlsruhe 

 Kanamycin 

Magnesium chloride (MgCl2) Merck, Darmstadt 

Manganese(II) chloride (MnCl2) 

Roth, Karlsruhe 

N, N, N', N'-tetramethylethylenediamine 

(TEMED) 

3-(N-morpholino)propanesulfonic acid 

(MOPS) 

Polyethylenglycol (PEG) 8000 

Roth, Karlsruhe 

 

Peptone/Tryptone 

Phenol 

Potassium acetate (KOAc) 

Potassium chloride (KCl) Sigma-Aldrich, Steinheim 

di-Potassiumhydrogenphosphate (KH2PO4) 

Roth, Karlsruhe 
2-Propanol (iPrOH) 

Sodiumdodecylsulfate (SDS), ultrapure 

Sodium chloride (NaCl) 

Sodiumdihydrogenphophate-1-hydrate 

(Na2HPO4+2H2O) 
Merck, Darmstadt 

Sodium hydroxide (NaOH)  

Sodium pyruvate Invitrogen, Karlsruhe 
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3.1.5 Enzymes, kits and other reagents 

 
Table 3-7: Enzymes used for molecular cloning protocols 

Enzyme name Manufacturer 

T4 DNA ligase and buffer (10x) Thermo Fisher Scientific, USA 

Taq polymerase and buffer (10x) Agrobiogen, Hilgertshausen 

Proteinase K Roth, Karlsruhe 

Restriction enzymes and buffer (10x) Thermo Fisher Scientific, USA 

Ribonuclease A (RNase A) Roche, Mannheim 

  
 
Table 3-8: Kits 

Kit name Manufacturer 

CloneJETTM PCR Cloning Kit Thermo Fisher Scientific, USA 

E.Z.N.A.TM Endo-free Plasmid Maxi Kit Omega, USA 

NucleoSpin® Gel and PCR Clean-up Macherey-Nagel, Düren 

QIAEX® II Gel Extraction Kit 

Qiagen, Hilden 

QIAGEN Large-Construct Kit + EndoFree 

Tris-(hydroxymethyl)-aminomethan (Tris) 

Roth, Karlsruhe Yeast extract 

5-Brom-4-chlor-3-indoxyl-β-

Dgalactopyranosid (X-Gal) 
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Plasmid Buffer Set 

SURVEYOR® Nuclease Kits Transgenomic, USA 

 
3.1.6 Other reagents 

 
Table 3-9: Reagents used for molecular cloning protocols 

Name of reagent Manufacturer 

Agarase Thermo Fisher Scientific, USA 

BigDye® terminator v3.1 Applied Biosystems, USA 

DNA loading dye (6x) 

Thermo Fisher Scientific, USA dNTPs (dATP, dCTP, dGTP, dTTP) 

Gene RulerTM 1 kb DNA Ladder 

 
 
3.1.7 Materials for cell culture  

 
Table 3-10: Cell line used 

Cell line Cell type Culturing medium Splitting ratio 

Niere m 
Primary porcine 

kidney cells 
DMEM, 10 % FCS Every 2 days, 1:4- 1:5 

 
 

Table 3-11: Kits and apparatuses used 

Kit/Apparatus name Manufacturer 

AmaxaTM Basic NucleofactorTM Kit for 

Primary Mammalian Fibroblasts 
Lonza, Cologne 

NucleofectorTM II 
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Table 3-12: Media and solutions used for cell culture 

 
 
 
 
 
 

 

Medium/solution Components 

Cell culture medium 

DMEM with 

10 % or 15 % (v/v) FCS 

1 % (v/v) Non-essential amino acids (100 ×) 

1 % (v/v) Sodium pyruvate (100 ×) 

1 % (v/v) L-glutamine (200 mM) + 

Penicillin/Streptomycin (100 ×) 

0.1 mM β-mercaptoethanol 

Stored at 4°C 

Cryo medium 

10 % (v/v) DMSO 

90 % (v/v) FCS 

Prepared freshly before use on ice 

PBS without Ca/Mg  

8 g NaCl 

0.2 g KCl 

0.2 g KH2PO4 

2.14 g Na2HPO4+7H2O 

Ad 1000 ml aqua bidest 

pH 7.2-7.4 

Selection medium  
Cell culture medium  

1.2 mg/ml G418 

Stop medium 
10 % (v/v) FCS 

90 % (v/v) DMEM 

Trypsin/EDTA 

PBS without Ca/Mg  

0.5 % (w/v) Trypsin 

0.04 % (w/v) EDTA 
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Table 3-13: Reagents and chemicals used for cell culture 

Reagent/Chemical name Manufacturer 

Acetic acid (glacial) Merk, Darmstadt 

β-Mercaptoethanol Sigma-Aldrich, Steinheim 

Colcemid  

CollagenR Serva, Heidelberg 

DifcoTM Trypsin 250 BD, USA 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, Steinheim 

Dulbecco Modified Eagle Medium 

(DMEM) 

Invitrogen, Karlsruhe 
Fetal calf serum (FCS) 

Karyomax (colcemid) 

L-Glutamine (200 mM) 

PAA, Austria 
L-Glutamine + Penicillin/Streptomycin 

(100x) 

Methanol Roth, Karlsruhe 

Non-essential amino acids (100x) Invitrogen, Karlsruhe 

Vectashield Mounting Medium with 

DAPI 
Vector Laboratories, USA 
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3.1.8 Oligonucleotides 

 
Oligonucleotides were designed by hand and manufactured by Thermo Fisher 

Scientific, USA. 

 
Table 3-14: Primer used for molecular cloning and screening analysis 

 

Primer name 
 

Primer sequence 

Cs1f 5’-GTG GAG AAA GCC GCT AGA G-3’ 

Cs3r 5’-CCT CTT TCC TGG GCA CGT GTC CTT C-3’ 

Cs9f 5’-GGA ACT GGA AGC AAA TGA CAT-3’ 

Cs5r 5’-TTC CAA AGC TCA GCT AGA CAC-3’ 

scr1nr 5’-AGA ATG AGA CCC TTG TTT G-3’ 

neo1f 5’-CTG CTA AAG CGC ATG CTC CAG-3’ 

neoR-1r 5’-TCG ATC GTC CTG TAA GTC TGC-3’ 

scr-2lf 5’-TTG AGG CAC ATC ACT GGG TC-3’ 

scr-2lr 5’-ACG TTC AGA CGT AGT GTG ACG-3’ 

M13 5'-GGA AAC AGC TAT GAC CAT G-3' 

T7 5'-GTA ATA CGA CTC ACT ATA GG-3' 

pJETforward 5'-CGA CTC ACT ATA GGG AGA GCG GC-3' 

pJETreverse 5'-AAG AAC ATC GAT TTT CCA TGG CAG-3' 

neokanf 5'-GAC AAT AGC AGG CAT GCT G-3’ 

neokanR 5'-GTG GAT GTG GAA TGT GTG C-3' 

lacZr 5’-GTT CGG ATA ATG CGA ACA G-3’ 

CFTR-3armr 5’-TAC TTG CGG CGG CAA GTC CAA GTG ATC AGT CC-3’ 

CFTR-5armf 5’-CTG GTT GGT ACC TTC TGT CCT CGA G TGT C-3’ 

neoSr 5’-GAG TCA ACT AGT CCT CAG AAG AAC TCG TCA AG-3’ 

neoPf 5’-CAG CTG TGC TCG ACG TTG TC-3’ 

neor21 5’-CCA CCA TGA TAT TCG GCA AGC AG-3’ 
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neor22 5’-CAC GGG TAG CCA ACG CTA TGT C-3’ 

neof21 5’-AGA TGG ATT GCA CGC AGG TTC TC-3’ 

PGKr 5’-GCT GCT AAA GCG CAT GCT CCA GAC-3’ 

PGK41f 5’-CAG TCT GGA GCA TGC GCT TTA GCA G-3’ 

PGK107f 5’-CAC ACA TTC CAC ATC CAC CGG TAG-3’ 

3armf1 5’-GTC TGC AGA GGC CAG CAT CTT CTC CAA AC-3’ 

3armr3 5’-ATG GTA CCG GAA TGG CAT TTA GGT TCT TCC AAG-3’ 

5armf1 5’-ACG AGC TCG GTA CCT AGG TTT GTA CTC CAT TCA G-3’ 

5armr2 5’-TTG GAT CCG GGC TCG AGC TCC TAA TGC CA-3’ 

CFTR5arm-2f 5’-GAG GCA TTA ATC AGA CCA AAG-3’ 

CFTR5arm-3f 5’-CTC ACC TAA GCC TGA GAC TAA-3’ 

CFTR5arm-4f 5’-ACA CAC TAG GAT TCA GGA ATT-3’ 

CFTR5arm-1r 5’-CTC GGA CAC TCG AGG ACA GAA-3’ 

CFTR5arm-2r 5’-ATT CTG ACT CCC AAC CTT CCT-3’ 

CFTR5arm-3r 5’-ACA TTT CTA ACT CAA CGA TC-3’ 

CFTR3arm-1f 5’-TGA GCA GTT TGT CTG GAG CAT-3’ 

CFTR8-1f 5’-ACA ATA GCA GGA ATC ACT AGT G-3’ 

CFTR8-1r 5’-GGA AGT TTT TCC TGT CAT ACT-3’ 

pBSK1f 5’-TCA CTG ATT AAG CAT TGG TAA CTG-3’ 

pBSK1r 5’-CTC ACA ATT CCA CAC AAC ATA-3’ 

CFTR402f 5’-GGC GCC GAG AAG AGT AGG G-3’ 

CFTR621r 5’-TTT CCA CCC CAA ACG CAG-3’ 

OCTqf2 5’-CAG GTA GGT TAG GCT GAT AG-3’ 

OCTqr1 5’-CAA GTT CAT GAA CGG CAG AAC-3’ 

NGqf6  5’-GAG GCT TCA CTT GTT AAG GG-3’ 

NGqr4  5’-CTG AGA TCA GGG TAG ACA TAC-3’ 
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3.1.9 Software 

 
Table 3-15: Software used 

Software name Manufacturer 

BioEdit Sequencer Alignment Editor Ibis bioscience, USA 

Double DigestTM Thermo Fisher Scientific, USA 

Finch TV Version 1.3.1 Geospiza Inc., USA 

NEBcutter V2.0 New England Biolabs, USA 

Cellavista SW Workstation Version 2.0.0.23 Roche, Mannheim 

 

 

3.1.10 ZFNs and TALENs 

 
ZFNs for exon 1 of the porcine CFTR gene were designed and manufactured by 

Sigma-Aldrich, USA. Each ZFN set was delivered as plasmid DNA and mRNA (pooled 

mRNA of both ZFNs) and stored at -80°C to avoid degeneration. 

ZFNs and TALENs for exon 49 of the porcine DMD gene were designed and 

constructed by Prof. Dr. Toni Cathomen, and delivered as plasmid DNA. 

 

Table 3-16: ZFNs designed for targeting of the CFTR exon 1.  

Upper-case letters indicate the ZFN binding site, lower-case letters indicate the ZFN cleavage site. 

ZFN set  Targeting sequence 

Set 1  

ZFN 1 5’- GACATCACCgCAGGTCagaga-3’ 

ZFN 2 5’- gaAAAAGGGGCGAGAGGCAG-3’ 

Set 2 ZFN 3 5’- GACCCCGGTTCCCCCagagac-3’ 
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ZFN 4 5’- acCATGCAGAGGTCGCC-3’ 

Set 3 

ZFN 5 5’- ACCCCGGTTCCCCCAgagac-3’ 

ZFN 6 5’- acCATGCAGAGGTCGCC-3’ 

 
Table 3-17: ZFNs designed for targeting of the DMD exon 49. 

Upper-case letters indicate the ZFN binding site, lower-case letters indicate the ZFN cleavage site. 

ZFN name Targeting sequence 

DMDe49L 5’-GCTAAACAGccgga-3’  

DMDe49R 5’-tgTGGAAGGGA-3’ 

 
Table 3-18: TALENs designed for targeting of the DMD exons 48 and 49. 

TALEN 

name 
Targeting sequence 

TALe48 5’-TTGAAGAACAATTAAATCATCTGCTTGTGTGGCTATCTCC-3’ 

TALe49 
5’-TAGCAGTTCAAGCTAAACAGCCGGA-

TGTGGAAGGGATTTTGTCTAAAGGGCA-3’ 

 
 

3.2 Methods 

 
3.2.1 Cell culture protocols 

 
For transfection experiments a primary porcine cell line, “Niere m“, isolated from 

the kidney of a 3 months old male Landrace pig, was used. The isolation and 

cultivation protocols for these cells have been established by Dr. Annegret Wünsch. 

Niere m cells are a mixed cell population consisting of cells with flat, ellipsoid, 

fibroblast-like but also ones with rounder, epithelial-like morphology.  
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The suitability of this cell line for nuclear transfer and targeting has been tested by 

Dr. Annegret Wünsch and Dr. Mayuko Kurome. 

All cell culture experiments were performed in a sterile laminar airflow cabinet. Also 

all media, solutions and material that were in direct contact with the cells were 

autoclaved or sterile filtered to avoid contamination of cell. Media and solutions 

were pre-warmed to 37°C in a water bath and culture dishes were pre-warmed to 

room temperature. Culture dishes were coated with Collagen R (0.2 mg/ml) diluted 

in aqua bidest. Cells were incubated at 37 °C, 5 % CO2 and 95 % humidity. 

 

3.2.1.1 Cultivating and passaging of cells 

Porcine kidney cells were cultivated in growth cell culture medium containing 10 % 

FCS. Cells were usually grown up to a confluency of about 80 – 100 % in a 10 cm cell 

culture dish and subsequently split as following.  

Niere m medium was aspirated and cells were washed with 4 ml PBS twice. To 

detach the cells from culture dish surface, they were incubated with 1.5 ml 

trypsin/EDTA (0.5 %) for approximately 3 min at 37°C until the cells got a round 

shape and started detaching. The reaction was stopped by with 8.5 ml stop medium 

and cells were transferred to a 15 ml falcon tube. To determine the amount of cells, 

10 µl of cell suspension was filled into a Neubauer hemocytometer and counted. 1 x 

106 cells were transferred to a new falcon tube and centrifuged for 5 min at 180 x g. 

After removing the supernatant, cell pellet was resuspended in 10 ml of fresh cell 

culture medium and transferred to a new 10 cm cell culture dish. 

 
3.2.1.2  Thawing and freezing of cells 

Frozen kidney cells were taken out of the liquid nitrogen tank and immediately 

transferred to a 37°C water bath. The thawed cell suspension was transferred into a 

15 ml falcon containing 9 ml of pre-warmed stop medium. Stop medium containing 

thawed cells was spun down according to the protocol 3.2.1.1 and the cell pellet was 

resuspended in an appropriate amount of cell culture medium according to the 

splitting ratio and distributed to new 10 cm cell culture dishes. For each transfection 

experiment two 10 cm cell culture dishes were prepared, containing 1 × 106 cells 

each. The remaining cells were frozen in 1 ml pre-cooled FCS containing 10 % DMSO, 

placed at -80°C and transferred in liquid nitrogen for long term storage afterwards. 



MATERIALS AND METHODS 

 - 42 - 

3.2.1.3  Transfection  

For cell transfection the Amaxa Nucleofector™ Technology from Lonza was applied. 

This technology is based on electrical pulses and cell type specific solutions in order 

to transfer the foreign DNA directly into the nucleus [128]. 

Niere m was harvested and counted according to protocol 3.2.1.1. For transfection 

0.5 x 106 or 1 x 106 cells were resuspended with 100 µl nucleofection solution of the 

AmaxaTM Basic NucleofectorTM Kit for Primary Mammalian Fibroblasts. In case of 

transfection with a ZFN only, 1 µg of ZFN was added. In case of co-transfection of 

DNA and ZFN 1 µg ZFN and 9 µg DNA has been added. Transfection with BAC DNA 

was performed with 5 µg of DNA. Cell suspension was transferred to nucleofection 

cuvette and after pulsing the cells according to program U-012 of the Amaxa 

nucleofector the cells were transferred to 6-well cell culture dish containing 5 ml cell 

culture medium supplemented with 15 % FCS. The transfected cells were cultivated 

for 48 h at 37°C for recovery, resulting in 100 % confluence. Medium exchange was 

performed 24 h after transfection.  

 

3.2.1.4  Cell individualization 

To obtain cell clones originated from one cell after transfection with ZFN and 

without using additional selection marker, it was essential to individualize the cell 

population 48 h after transfection. Therefore cells were harvested and counted 

according to protocol 3.2.1.1. The cell pellet was resuspended in an appropriate 

amount of cell culture medium containing 15 % FCS and distributed to 96-well 

dishes. An amount of 2 cells per well was seeded on cell culture plates. For a 

sufficient proliferation, the cell clones were cultivated for one week and the medium 

was exchanged every 72 h. Subsequently, cell culture plates were screened for single 

cell clones, which were evaluated and processed. Cell clones of good condition and a 

confluency of 60 – 70 % were washed with 100 µl PBS twice and detached by 

incubating the cell clones with 30 µl trypsin/EDTA (0.5 %) at 37°C for 4 min. The 

reaction was stopped with 170 µl cell culture medium containing 15 % FCS to reach a 

final volume of 200 µl. Each cell clone was propagated in two different wells, one for 

DNA isolation and the other for cryopreservation for potential SCNT. Both portions 

of the cell clones were harvested as described after reaching 100 % confluency. The 
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fraction for DNA isolation was resuspended with 170 µl stop medium after 

trypsinizing, transferred to a 1.5 ml tube and subsequently centrifuged for 5 min at 

400 x g. The supernatant was removed and the clone pellet was frozen at -80°C. The 

fraction for cryopreservation was resuspended in 170 µl pre-cooled FCS containing 

10 % DMSO after trypsinizing, transferred to a 1.5 ml tube and then immediately to -

80°C for storage (figure 3-1). 

 

 

Figure 3-1: Overview over the cell culture procedure using a ZFN. Porcine kidney cells 

(“Niere m”) were transfected with ZFN designed for exon 1 of the CFTR gene. Thereafter cells were 

seeded on 96-well dish and screened after 7 days of cultivation. Well proliferating single cell clones 

were splitted and stored at -80°C for different purposes. 

 

3.2.1.5  Selection 

Cells transfected with BAC DNA or other plasmid DNA carrying a neomycin 

resistance cassette were cultivated in selection medium containing 1.2 mg/ml 

geneticin (G418) to obtain single cell clones. The geneticin concentration was 

determined by Dr. Annegret Wünsch to eliminate Niere m cells, which have not 

integrated transfected DNA into their genome within one week. The cells were 

harvested and counted according to protocol 3.2.1.1 48 h after transfection and 

then resuspended in an appropriate amount of selection medium. Transfected cells 
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were mixed with non-treated wild-type Niere m cells and subsequently distributed 

to 96-well cell culture dishes. To obtain optimal cell growing conditions 500 

transfected and 1500 wild-type cells were seeded per well, adding up to a final cell 

number of 2000 cells per well. Medium was exchanged every 72 h and after 7 days 

the 96-well plates were screened for G418 resistant clones. Single cell clones were 

cultivated and processed as described in 3.2.1.4.  

 

3.2.1.6 Screening 

For detection of single cell clones the Cellavista High End System was applied. 

Therefore, the selection medium was removed from the 96-well plates and 200 µl of 

fresh selection medium was added to each well. Subsequently, the plates were 

individually screened and the screening results were evaluated by the Cellavista SW 

Workstation controlling and evaluation software (figure 3-2).  

 

 

Figure 3-2: Cellavista SW Workstation software. Single cell clones on 96-well plates were 

screened by Cellavista High End System providing the documenting and tracking of cell clone 

proliferation. 
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3.2.1.7  Karyotype analysis  

In order to analyze the karyotype of Niere m, a metaphase preparation had to be 

performed. Therefore cells were grown to a confluency of 70-90 % in a 10 cm dish 

and 100 µl colcemide (Karyomax; 10 µg/ml) were added to 10 ml cell culture 

medium. Subsequently, cells were incubated for 1 h at 37°C and then washed, 

trypsinized and centrifuged as described before (see protocol 3.2.1.2). The 

supernatant was removed and the cell pellet was resuspended in 1 ml stop medium, 

followed by a hypotonic treatment with 13 ml of 75 mM KCl, which were added drop 

wise to the cells by dropping. After incubation for 15 min at 37°C, cells were spun 

down again at 320 x g for 5 min and the supernatant was discarded. Thereafter, the 

cell pellet was resuspended in 1 ml stop medium and 10 ml ice-cold fixative 

containing 75 % methanol and 25 % glacial acetic acid were slowly added. Then, cell 

suspension was dropped onto a 45°C preheated glass slide, dried, mounted with 

Vectashield Mounting Medium with DAPI and sealed with a cover glass. 

Chromosomes were detected using an inverted epifluorescence microscope 

(Axiovert 200M, Zeiss) and analyzed by the ImageJ software. 

 
3.2.2 Molecular genetic protocols 

Molecular genetics protocols were used for modification of BAC DNA, cloning of 

pBSK-CFTR-lacZ8 and for analysis of generated single cell clones.  

 

3.2.2.1  PCR 

3.2.2.1.1   End-point PCR 

The polymerase chain reaction (PCR) amplifies genetic sequences of interest, 

defined by specific primer sequences which were designed manually and 

manufactured by Thermo Fisher Scientific, USA. The reaction was performed in 0.2 

ml PCR tubes at room temperature and the components were mixed to a final 

volume of 25 µl. 
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Table 3-19: Standard PCR components 

Reagents Volume [µl] 

PCR buffer 10 x 2.5 

dNTP (2 mM) 2.5 

MgCl2 (15 mM) 2.5 

Taq-polymerase (5/µl) 0.2 

Primer forward (10 µM) 0.5 

Primer reverse (10 µM) 0.5 

Template DNA 1 

ddH2O 15.3 

 
 
Table 3-20: Standard PCR program 

Steps Temperature [°C] Time [sec] Cycles 

First denaturation 95 240 1 

Denaturation 95 30 
 

35 
Annealing * 30 

Elongation 72 ** 

Final elongation 72 60 1 

Hold 4 ∞  

 
 

Annealing temperature (*) depends on the primer sequence used for the reaction 

and was calculated by the 4 + 2 rule (2°C for each A and T, 4°C for each G and C, 

value − 5) and is indicated within the respective experiments in the results section. 

The elongation time (**) depends on the length of the amplicon and is calculated 

with 2 kb/min. Conventionally, 45 sec were used, exceptions are indicated within the 

respective experiments, described in the results section. 

 

3.2.2.1.2  Colony PCR 

Colony PCR is used after transformations in order to quickly screen occuring E. coli 

colonies for insertion of the desired plasmids. Therefore a reaction mix should be 

prepared according to protocol 3.2.2.1.1 and aliquoted to 0.2 ml PCR tubes at room 
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temperature. Instead of 1 µl DNA, a small amount of bacteria cells are used as a 

template. To do this, a single colony was touched with a fine pipette tip, dipped into 

the PCR reaction mix and was repeatedly pipetted up and down for better 

homogenization.  

 

3.2.2.1.3  q-PCR 

In genetic targeting experiments using BAC vectors, the copy number of wild-type 

alleles of the target locus as well as two independent reference loci was determined 

via q-PCR by Dr. Nikolai Klymiuk. The relative copy number of wild-type alleles at the 

target locus respective to the reference loci provided information whether the BAC 

recombined with the target site or inserted randomly.   

 
3.2.2.2  Agarose gel electrophoresis 

Agarose gel electrophoresis was used to separate DNA fragments according to their 

length. 1 x TAE buffer was heated with 0.7 % agarose UltraPureTM  or 1 % low 

melting agarose in a microwave to allow melting of agarose. After cooling down to 

60 °C, ethidiumbromide (0.5 μg/ml) was added and the gel was poured into a gel 

tray attached with a comb. The chamber was filled with 1 x TAE and the comb was 

removed after gel polymerization. DNA samples were mixed with 1/10 volume DNA 

loading dye and loaded into the gel slots together with a molecular weight standard. 

An electric current was applied to the chamber. Voltage was applied to achieve 5 

V/cm. DNA bands were visualized by UV-light and were characterized by comparing 

them with the molecular weight standard. If DNA fragments were used for further 

purposes fragments were excised under UV-light for DNA eluation. 

 

3.2.2.3  Elution  

For further processing DNA fragments were eluted from the gel, which was 

performed by NucleoSpin® Extract II Kit following the manufacturer’s protocol. DNA 

was finally eluted with 30 µl elution buffer provided by the supplier. In order to 

determine the concentration of the eluted DNA 2 µl of the eluate was mixed with 15 

µl H2O and 2 µl DNA loading dye and loaded together with a molecular weight 

standard onto 0.7 % agarose gel prepared and run according to protocol 3.2.2.2. 
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Intensity of the bands was compared with bands of the molecular weight standard 

to determine the approximate amount of DNA and calculate the concentration. 

For elution of DNA from a low-melting agarose gel, the desired DNA fragment was 

cut out of the gel, transferred into a 1.5 ml tube and placed on a heating plate at 

70°C for approximately 10 min. The tube with the completely melted agarose gel 

was then transferred to a 42°C water bath and equilibrated for 5 min. Subsequently, 

1 unit of Agarase per 100 mg of 1 % agarose was added, mixed and incubated for 30 

min at 42°C. In order to hydrolyze the agarose, 0.3 M sodium acetate was added and 

the tube was chilled for 5 min on ice. After centrifugation at 15000 x g for 10 min the 

supernatant was transferred into a new 1.5 ml tube and PCiA extraction was 

performed for at least three times (see 3.2.2.5). DNA was precipitated by adding 3 

volumes of 100 % EtOH and incubating at -20°C for 60 min. Finally, DNA was 

centrifuged at 15000 x g for 15 min, the supernatant was removed and the pellet 

was washed with 1 ml 70 % EtOH over night. The next day the pellet was again 

centrifuged at 15000 x g for 5 min, air dried for 6 min and resolved in 15 µl T-buffer. 

For quantification of the eluted DNA 2 µl of the eluate were mixed with 98 µl H2O 

and 20 µl, 5 µl, 2 µl and 1 µl were loaded onto 0.7 % agarose gel. Intensity of the 

bands was compared with bands of the molecular weight standard to determine the 

approximate amount of DNA and calculate the concentration. 

 
3.2.2.4  Digestion of DNA with restriction enzymes 

This method can either be used to preparatively digest plasmid DNA for cloning or 

for analytical purposes, meaning to test the correctness of a plasmid. Recognition 

sites of restriction enzymes can be identifyed with the help of NEBcutter V2.0 

software. For DNA digestion with more than one enzyme, optimal restriction 

conditions can be obtained from DoubleDigestTM. The amount of DNA used for 

digestion depends on further processing, however, at least 1 µg DNA was digested 

with at least 1 unit restriction enzyme in 10 µl reaction mix. Restriction reaction was 

incubated at least 2 h at 37°C according to the amount of DNA and the optimal 

conditions of the used restriction enzyme. 
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Table 3-21: Components of an analytical and preparative digest 

Components Analytical digest 
Preparative digest 

(for cloning) 

Preparative digest 

(for transfection) 

Buffer 10 x 2 µl 2 µl 10 µl 

Enzyme 1 0.3 µl 1 µl 5 µl 

Enzyme 2 0.3 µl 1 µl 5 µl 

Plasmid DNA 1 µg 2-5 µg 20 µg 

ddH2O Ad 25 µl Ad 25 µl Ad 100 µl 
 

 

 The analytical digest was mixed with 2.5 µl DNA loading dye and loaded on 0.7 % 

agarose gel, together with a molecular weight standard in order to determine the 

restriction products, which were visualized by UV-light as described in 3.2.2.2. 

Sampels of a preparative digest needed to be purified by PCiA extraction before 

running on the gel. For the preparation of linearized DNA for transfection into 

porcine primary cells, digested DNA was loaded on low melting agarose gel. 

 

3.2.2.5  PCiA extraction 

After digestion it might necessary to inactivate or to remove enzymes completely 

from a DNA sample as the restriction enzymes would otherwise continuously cleave 

the DNA. For some restriction enzymes this is performed by heating of the samples 

to 65°C for 15 min, but not all enzymes are sensitive to heat inactivation. In this 

case, DNA is purified by phenol-chloroform extraction before gel separation. 

The restriction reaction volume was filled up to 150 µl with ddH2O and 100 µl PCiA 

were added. Then the mixture was shaken for 1 min, followed by centrifugation for 

3 min at 16000 × g to separate the two phases. The upper aqueous phase containing 

the nucleic acids was transferred into a new 1.5 ml reaction tube without disturbing 

the interphase or the lower organic phase containing enzymes. 1/10 of sample 

volume of 3 M NaOAc and 3 volumes of EtOH 100 % (cooled to −20 °C) were added 

and samples were placed at −80°C for 60 min. Subsequently the samples were 

centrifuged at 16000 x g at 4°C for 30 min and the supernatant was removed. The 

DNA pellet was washed with 500 µl 70 % EtOH, centrifuged for 2.5 min and the EtOH 

was discarded. After air drying the DNA pellet for 6 min, it was resolved in 20 µl T-
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buffer and loaded on an UltraPureTM  agarose gel. The band of interest was excised 

and eluted according to protocol 3.2.2.3. 

 

3.2.2.6  Ligation 

For cloning DNA fragments into a vector it is necessary to ligate the parts by T4 DNA 

ligase. Vector and insert, which might be either a DNA fragment or PCR product, 

were ligated in stoichiometric amounts in a 1.5 ml tube in a total volume of 20 µl 

and incubated for at least 4 h at room temperature. Termination of the ligation 

reaction was achieved by placing the samples on 65°C thermo block for 15 min. 

 

Table 3-22: Standard ligation components 
 

Reagents 
 

Volume [µl] 

Vector DNA (max. 100 ng) * 

Insert DNA ** 

Ligase buffer 10 x 2 

T4 DNA ligase 1 

ddH2O Ad 20 µl 

 

 

Amount of insert DNA (**) was stoichiometric equally added to the reaction mix 

depending on the amount of vector DNA (*), which should not exceed 100 ng in 

total. 

 

3.2.2.7  Heat shock transformation 

In order to multiply plasmids with a high copy number and to minimize mutation 

events, the plasmids were transformed into a competent E. coli stain, TOP 10, by 

heat shock transformation. Therefore competent cells were thawed up on ice, 4 µl 

of plasmid DNA previously ligated according to protocol 3.2.2.6 was added and 

mixed gently. In case of a re-transformation only 1 µl of a 1/1000 dilution of a 

plasmid was used. After incubating the cells on ice for 20 min, they were placed in a 

42°C water bath for 43 sec and immediately brought back on ice for 2 min. 1 ml of 

SOC medium was added to the cells and they were incubated on 37°C for 45 min for 

recovery. After spinning the cell down at 2300 x g for 5 min 800 µl of the 
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supernatant medium was removed, the cells were resuspended in the remaining 

medium and plated on LB agar plates containing an appropriate antibiotic (ampicillin 

50 μg/ml, kanamycin 25 μg/ml and chloramphenicol 12.5 μg/ml). For cloning of PCR 

fragments into blue/white selectable plasmid (e.g. pGEM T-easy) plates were 

additionally supplemented with 40 μl IPTG (100 mM) and 40 µl X-Gal (20 mg/ml in 

Dimethylformamide) for differentiation of positive (insert containing) and negative 

(emply) plasmid colonies. After incubating the plates at 37°C over night the bacteria 

colonies were counted and plates were wrapped with Parafilm®M and stored at 4°C 

until further processing. 

 

3.2.2.8  Preparation of heat shock competent cells 

A 5 ml overnight culture of the E. coli-stain TOP10 was inoculated and 1 ml was 

transferred into 250 ml TYM medium the next day. Bacteria were grown to an OD600 

value of 0.7 -0.8, distributed to 6x SS35 centrifugation tubes and incubated in ice-

water for 10 min. After centrifugation with 1300 x g at 4°C for 10 min, the pellets 

were resuspended in 12 ml pre-cooled TbfI solution each carefully avoiding air 

bubbles and distributed on 2 x SS35 centrifugation tubes. The cell solution was left in 

ice-water for 10 min again and centrifuged as described above. The supernatant was 

discarded, and pellets were carefully resuspended in 4.8 ml TbfII solution each. A 

volume of 100 µl cell suspension per tube was distributed on an appropriate amount 

of pre-cooled 1.5 ml reaction tubes placed on ice. The tubes were transferred to -

80°C for long term storage. 

 

3.2.2.9  DNA isolation 

Depending on the type of the DNA, different protocols were used for isolation. In 

any case, the concentration of the isolated DNA was measured with the GeneQuant 

Pro spectrometer at a wave length of 260 nm by adding 5 μl DNA to 95 μl aqua 

bidest (1:20 dilution) and the samples were stored at -20°C (plasmids) or 4°C 

(genomic DNA). 

 

 

 



MATERIALS AND METHODS 

 - 52 - 

3.2.2.9.1  Isolation of genomic DNA 

DNA from primary cell clones grown in 96-well cell culture plates was isolated via 

high salt precipitation protocol. Lysis buffer for DNA isolation by high salt 

precipitation was freshly prepared, 100 µl were added to the cell pellet and mixed 

thoroughly. The samples were incubated at 60°C for 1 h and 2 μl proteinase K were 

added, followed by incubation at 60°C for another 60 min. After that, 30 μl of 4.5 M 

NaCl were added, samples were placed on ice immediately and subsequently 

centrifuged at 16100 × g for 20 min. The supernatant was transferred into a new 

reaction tube and the DNA was precipitated with 90 μl 2-propanol. After 

centrifugation at 16100 × g for 20 min, supernatant was removed and the DNA pellet 

was washed with 200 μl 70 % EtOH overnight. Samples were centrifuged the other 

day at 16100 × g for 20 min, the supernatant was discarded and the DNA pellets 

were air dried for 6 min. DNA was resolved in 30 μl T-buffer and left at 60°C for 2 - 6 

h. 

 

3.2.2.9.2  Isolation of plasmid DNA 

Preparation of plasmid  

To isolate plasmid DNA 5 ml LB medium containing the appropriate antibiotic 

(ampicillin 50 μg/ml, kanamycin 25 μg/ml and chloramphenicol 12.5 μg/ml) were 

inoculated with bacteria colony carrying the desired plasmids and grown with 

shaking at 37°C overnight. For long-time storage of certain plasmids glycerol stocks 

were made by mixing 900 μl 60 % glycerol with 300 μl overnight bacterial culture, 

which were stored at −80°C. For the preparation of plasmids, overnight cultures 

were centrifuged at 1300 × g for 10 min and the supernatant was removed. Pellets 

were resuspended in 750 μl STE buffer, transferred into a new 1.5 ml reaction tube 

and centrifuged again at 4500 × g. Bacteria pellets were resuspended thoroughly in 

200 μl solution A and 400 μl of solution B was added. The samples were mixed 

gently by inverting the tubes several times and placed on ice for 5 min. Lysis reaction 

was neutralized with 300 μl of solution C. After gently mixing, sample tubes were 

placed on ice for another 3 min for precipitation of proteins and cell debris and then 

centrifuged for 10 min at 16100 × g. The supernatants were transferred into new 1.5 

ml reaction tubes, 4 μl RNase A was added to each tube, which were then incubated 
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at 37°C for 45 min. Afterwards a PCiA extraction was performed as described in 

3.2.2.5 to remove RNase and other protein contaminations. Following that, DNA was 

precipitated with 650 µl 2-propanol and pelleted by centrifugation at 16100 × g for 

10 min. The supernatant was discarded and the DNA pellet was washed with 700 μl 

70 % EtOH overnight. In order to remove the EtOH samples were centrifuged at 

16100 × g for 5 min, supernatant was discarded and DNA pellet was air dried for 6 

min. DNA was resolved in 55 μl T-buffer and incubated at 55°C for 1 h. 

 

Endotoxin-free preparation of plasmid DNA or BAC DNA 

For transfection of DNA into porcine primary cells, 200 ml LB medium containing an 

appropriate antibiotic (ampicillin 50 μg/ml or kanamycin 25 μg/ml) were inoculated 

with a bacterial colony containing the desired plasmid or BAC, and incubated with 

shaking overnight at 37°C. 

Plasmid DNA was isolated endotoxin-free using the E.Z.N.A.TM Endo-free Plasmid 

Maxi Kit following the manufacturer’s protocol. 

BAC DNA was isolated using the Large-Construct Kit following the manufacturer’s 

protocol. To remove any endotoxins, the protocol was slightly modified. In brief, 

BAC was isolated from E.coli by alkaline lysis and precipitated with iPrOH to reduce 

the volume. BAC was resolved in 9.5 ml of xx buffer and linearized DNA was digested 

with 200 µl ATP-dependend exonuclease and 300 µl 100 mM ATP at 37°C for 60 min. 

Then, 850 µl buffer ER was added and the DNA was incubated at 4°C for 30 min for 

endotoxin removal. For final purification, 10 ml of Buffer QS was added and the 

sample was loaded on pre-equilibrated QIA-tip 500 columns, following the 

manufacturer’s protocol again. 

 

3.2.2.10   PEG precipitation 

For a successful sequencing of plasmids it is necessary to purify them additionally via 

precipitation with polyethylene glycol (PEG) precipitation. 20 μl PEG-MgCl2 and 20 μl 

aqua bidest were mixed with 20 μl plasmid and incubated for 10 min at room 

temperature. The mixture was centrifuged for 20 min at 16100 × g and the 

supernatant was discarded. Then the DNA pellet was washed with 100 μl 70 % EtOH 
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overnight and centrifuged for 2 min at 16100 × g afterwards. The supernatant was 

removed and the DNA pellet air died for 6 min and resolved in 20 μl T-buffer. 

 

3.2.2.11   Sequencing 

In order to determine the exact sequence of analysed DNA, samples were 

sequenced by capillary sequencing at the Helmholtz centre, Munich. For sequencing 

plasmid DNA was precipitated with PEG according to protocol 3.2.2.10 and PCR 

products were purified via NucleoSpin® Extract II Kit following the manufacture’s 

protocol. In order to obtain an appropriate amount of DNA for the sequencing 

reaction, the following formula was used for calculation: 

 

DNA amount (ng) = the length of sequence, which is to be sequenced (bp)⁄ 100 × 1.5 

 

Plasmid DNA was diluted with aqua bidest to the desired concentration and 1 µl was 

used for sequencing reaction, whereas purified PCR products were used directly. In 

case of plasmid DNA, fragments ligated into a pGEM vector were sequenced using 

pGEM specific primers T7 and M13, however, for other vectors specific primer were 

designed. PCR products were sequenced using the same primer as has been used for 

PCR reaction of this amplicon.  

Sequencing reaction mix was prepared in 0.2 ml reaction tubes at room temperature 

with a final volume of 10 ml.  

 
 
Table 3-23: Standard sequencing components 
 

Reagents 
 

Volume [µl] 

sequencing buffer 5 x 4  

BigDye chemical 1 

Primer (10 µM) 1 

Template 1 

ddH2O 3 
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Table 3-24: Standard sequencing program 
 

Steps 
 

Temperature [°C] 
 

Time [sec] 
 

Cycles 

First denaturation 95 60 1 

Denaturation 95 5 
 

40 
Annealing 50 10 

Elongation 60 240 

Hold 4 ∞  

 
 
After sequencing reaction the samples were purified using 2.5 µl 125 mM EDTA and 

30 µl 100 % EtOH (cooled to -20°C) for each reaction tube. The tubes were left on ice 

for 15 min and then centrifuged at 16000 x g at 4°C for 30 min. After removing the 

supernatant the DNA pellet was washed with 50 µl 70 % EtOH. The next day samples 

were centrifuged again for 5 min on 16100 × g, EtOH was discarded and samples 

were air dried for 6 min. DNA was resolved in 30 μl aqua bidest, transferred to a 

sequencing plate (ABgene® 96-well PCR plates) and stored at -20°C before 

transportation to the Helmholtz centre. The results were analysed with the help 

FinchTV Version 1.3.1 and BioEdit software. 

 

3.2.2.12   Next generation sequencing 

Porcine primary cells transfected with ZFNs and TALENs, respectively, designed to 

target the porcine DMD gene were analyzed for introduced mutations at the 

targeting site by next generation sequencing. Cells were incubated after transfection 

for 48 h at 37°C and harvested. Genomic DNA was isolated from a mixed cell 

population for each cell culture experiment via high salt precipitation and the 

targeting site of ZFNs and TALENs was amplified. The produced amplicons were 

sequenced in Gene Center Munich on the Illumina Genome Analyzer IIx. 

 

3.2.2.13   CelI assay 

Single cell clones were screened for ZFN-mediated mutations via CelI assay. ZFN 

targeting site of single cell clones and wild-type DNA was amplified by end-point PCR 

(see 3.2.2.1.1) and 10 µl were used for the mutation detection assay. Therefor the 

SURVEYOR® Nuclease Kit was applied following the manufacturer’s protocol. The 



MATERIALS AND METHODS 

 - 56 - 

obtained DNA fragments were mixed with 1 µl DNA loading dye and loaded on 0.7 % 

agarose gel, together with a molecular weight standard for separation. Finally, the 

results were visualized by UV-light as described in 3.2.2.2.  

 

3.2.2.14   Single-strand conformation polymorphism (SSCP) 

ZFN transfected single cell clones were screened for induced mutation at the ZFN 

cleavage site via SSCP. Polyacrylamide gel electrophoresis was applied to separate 

single-stranded DNA according to their conformation. For a 12 % gel the following 

components were mixed: 

 

Table 3-25: Polyacrylamide gel components 

Components Volume (ml) 

40 % Acrylamide-bisacrylamide 6 

10 x TAE 1 

Glycerol 2 

ddH2O 11 

 

80 µl of 10 % APS and 32 µl of TEMED were added to the solution and poured 

immediately between two glass plates fixed in a gel caster. An appropriate comb 

according to the sample number was attached. After polymerization the glass plates 

together with the gel were placed in an electrophoresis chamber and filled up with 

0.5 x TAE and the comb was removed. Voltage was applied to achieve 10 V/cm in 

order to prerun the gel for 45 min.  

The ZFN target site of the cell clones was amplified b end-point PCR (see 3.2.2.1.1) 

and 4 µl of the produced PCR product were mixed with 12 µl of formamide loading 

dye. The samples were heated at 95°C for 10 min and immediately placed at -20°C 

for further 10 min. Subsequently, the samples were loaded into the gel slots 

together with an appropriate molecular weight standard and run for at least 1 h. 

DNA was stained with ethidiumbromide (0.5 μg/ml) and visualized by UV-light. 
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4 RESULTS 

 
In preliminary experiments, primary pig cells were examined for their suitability to 

genomic modifications by designed nucleases. For all experiments a primary cell 

culture, Niere m, was used. The cells were isolated by Dr. Annegret Wünsch from the 

kidney of a three months old Landrace boar and showed a typical heterogeneous 

morphology. After passaging this mixed population several times, spindle-shaped 

cells dominated and resulted in fibroblast-like cultures at passage 13 (P13; figure 4-

1). The proliferative potential was evaluated until passage 29 and we did not 

observe any morphological signs of senescence. Moreover, long-term experience of 

our lab showed that Niere m cells are suitable for SCNT after 10 passages. 

Morphology and karyotype results of this work are consistent with results generated 

by Anne Richter later on during her Ph.D. thesis.   

 

 

Figure 4-1: Morphology of Niere m. Passage 2 (P2) of porcine kidney cells show mixed 

morphology of (A) rounder endothelial-like cells and (B) fibroblasts-like morphology in P6. The insets 

show magnifications of the indicated areas (scale bar: 200 µm and 50 µm, respectively).       
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Niere m cells showed high proliferation potential in cell culture and the karyotype 

has been determined to evaluate the genetic stability of the cell line. 155 Niere m 

cells blocked in metaphases by colcemid were screened using an inverted 

epifluorescence microscope. 100 were found to be spread sufficiently and counting 

of chromosomes revealed that 80 % of the cells carried the expected karyotype of 

2n=38, XY (figure 4-2). 

 

 

Figure 4-2: Karyotype analysis. Chromosomes of porcine kidney cells (P3) in metaphase stage 

spread and stained on a slide for determination of the karyotype of these cells, showing a normal 

karyotype of 2n=38,XY (scale bar: 10 µm). 

 

The general transfection efficiency of Niere m cells was determined by transfecting 

0.5 x 106 cells with 1 µg of a GFP encoding plasmid. Transfected cells were visualized 

by an inverted epifluorescence microscope 24 h after transfection and revealed a 

transfection efficiency of 60 to 70 % (figure 4-3). 
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Figure 4-3: Determination of transfection efficiency of porcine kidney cells. (A) Niere 

m transfected with GFP acquired with transmission light and (B) with a fluorescence filter. Visual 

evaluation results in an efficiency rate of approximately 60 – 70 % (exposure time: 516.4 ms, scale 

bar: 200 µm). 

 

 

Site-directed mutagenesis via NHEJ induced by nuclease-mediated DSBs does not 

involve integration of exogenous DNA and thus genetically modified cells cannot be 

identified by antibiotic selection. For identification of cell clones with induced 

mutations, cells have to be separated, cultured independently and characterized 

prior to SCNT. To achieve a sufficient number of cells for genomic analysis each 

clone has to undergo at least 15 cell divisions. Although the Niere m cells did not 

show any signs of senescence at passage 15, their cultivation as individual clones 

might impair their proliferation and survival capability. 

Thus, the potential of Niere m cells to grow as discrete cell clones was tested by 

dilution assays in 96-well cell culture dishes. Seeding 192 cells per 96-well plate 

resulted in a sufficient number of single cell clones, but a high number of wells 

containing more than one clone was observed. Plates with 96 cells showed only 10 

wells, containing more than one clone, but a lower number of defined single cell 

clones was observed as well (table 4-1). Consequently, 192 cells per 96-well plate 

were used for further experiments. 
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Table 4-1: Overview of single clones obtained after seeding the cells with different 

dilutions. 

 Cells/ 96well Number of plates Single clones Multi clones 

 96 2 35 10 

 192 2 61 32 

 

 

4.1 Evaluation of ZFN efficiency 

 
To give opportunity to both, the disruption of the CFTR gene by non-functional 

mutations due to NHEJ as well as the introduction of a defined sequence 

modification by homologous recombination at the target site with a DNA vector 

after DSB, we selected ZFN sets to target the exon 1 of the CFTR gene (figure 4-4). 

This exon contains 134 bp 5’UTR transcriptional start site and 52 bp of CFTR coding 

region. Three ZFN pairs were obtained from the supplier (Sigma-Aldrich) all of them 

cleaving the CFTR locus within the 5’ UTR, 98 bp, 1 bp and 1 bp upstream of the 

transcriptional start codon ATG (figure 4-5). 

 

 

Figure 4-4: ZFN binding sites.  
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Figure 4-5: Binding and cleavage sites of CFTR ZFNs. Although targeting sites of ZFN sets 2 

and 3 differ only in one base pair, ZFN set 2 shows a higher cleavage activity. 

 

 For each ZFN pair, plasmid DNA and mRNA encoding one ZFN were tested. In 

addition, Niere m cells were incubated at 30°C or 37°C after transfection of 0.5 x 106 

cells with 1 µg nucleic acid. The cells were plated onto 6 cm dishes and recovered for 

48 h. DNA was isolated from splitted cells and the target locus was amplified by PCR 

and cloned into a destination vector (figure 4-6).  

 

 

Figure 4-6: Examination of ZFN cleavage activity. Niere m cells were transfected with 

different ZFN pairs and cells were incubated at 30°C and 37°C, respectively. Cells were harvested for 

DNA isolation and amplification of the ZFN binding site. The obtained PCR products were cloned into 

the pGEM T-easy vector and transformed into TOP10 competent cells. For each ZFN set 
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approximately 100 bacterial colonies were picked for colony PCR and the resulting amplicons were 

sequenced in order to determine DNA alteration at the ZFN targeting site. Targeting sites were 

amplified using primer pair Cs1f/Cs3r for ZFN sets 1 (annealing temperature: 62°C), and Cs9f/Cs5r for 

ZFN set 2 and 3 (annealing temperature: 58°C). 

 

100 clones were sequenced for each experiment. Analysis of the sequences revealed 

that deletions of 2-70 bp were dominant whereas insertions and single nucleotide 

polymorphisms were detected with a lower frequency. The latter might also occur 

from PCR-derived misincorporation of dNTPs. However, the probability for this event 

is low as the likelihood of a PCR mistake within a region of 10 bp, corresponding to 

the cleavage site, after 35 cycles is below 1 %, based on an assumed error rate of 10-

6 for the Taq polymerase. Regarding the different parameters examined, NHEJ 

occurred more often at 30°C (table 4-2) than at 37°C (table 4-3). For the other 

examined features the findings were less consistent. While transfection experiments 

using ZFN plasmids recovered highest efficiency of ZFN set 2 at both temperatures, 

mRNA transfection was significantly more efficient in some cases, but did not reveal 

any mutations in others. This was particularly true for mRNA of ZFN set 2, which 

failed to produce any modifications in repeated attempts at 30°C, probably due to 

mRNA degeneration. Consequently, this mRNA was not used for further 

experiments. 

 
Table 4-2: Cleavage efficiency of CFTR ZFN pairs at 30°C.  

 ZFN set 1 ZFN set 1 ZFN set 2 ZFN set 2 ZFN set 3 ZFN set 3 

Temperature 30°C 30°C 30°C 30°C 30°C 30°C 

Incubation 

time 
48 h 48 h 48 h 48 h 48 h 48 h 

DNA Plasmid mRNA Plasmid mRNA Plasmid mRNA 

Colony 

number 
100 100 105 103 100 101 

Colonies 

positive for a 

mutation 

4 38 18 0 3 11 

Efficiency 4 % 38 % 17 % 0 % 3 % 11 % 
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Table 4-3: Cleavage activity rate of CFTR ZFN pairs at 37°C (n.d. = not determined).  

 ZFN set 1 ZFN set 1 ZFN set 2 ZFN set 2 ZFN set 3 ZFN set 3 

Temperature 37°C 37°C 37°C 37°C 37°C 37°C 

Incubation 

time 
48 h 48 h 48 h 48 h 48 h 48 h 

DNA Plasmid mRNA Plasmid mRNA Plasmid mRNA 

Colony 

number 
100 96 100 n.d. 100 101 

Colonies 

positive for a 

mutation 

5 7 11 n.d. 4 0 

Efficiency 5 % 7 % 11 % n.d. 4 % 0 % 

 

 

4.2 Screening of ZFN-mediated mutations 

 
Several methods are available to screen the generated single cell clones for ZFN-

mediated mutations at the target site. The most commonly used is an assay based 

on the heterodimerzation of DNA strands and their cleavage by the enzyme CelI 

[147]. After amplification of the target locus by end-point PCR, the PCR products 

were again denaturated and re-hybridized, forming either homodimers of fully 

complementary DNA or heterodimer, occurring from the hybridization of DNA 

fragments descending from different alleles and resulting in imperfect double helix. 

These mismatches are recognized and cleaved by CelI.  Although various efforts 

were made in preliminary experiments to optimize the specificity of the CelI enzyme, 

the method remained unsuitable for the targeting locus (figure 4-7).  
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Figure 4-7: CelI assay. (A) Hybrid DNA fragments of clone DNA carrying a mutation on the target 

site and wild-type DNA form mismatches which are recognized and cleaved by CelI. (B) Optimization 

experiments for screening porcine CFTR locus. Lanes 1-3 and 5-6 show amplified ZFN target site of 

wild-type Niere m cells with addition of MgCl2 in different concentrations (0.15 mM, 0.25 mM and 1.5 

mM) digested by CelI, resulting in unspecific cleavage. Lanes 4 and 8 show the untreated PCR product 

(M: molecular weight standard, wt= wild-type). (C) Screening results of single cell clones, performed 

by CelI assay (digested fragments are indicated by the arrow). The clones were previously confirmed 

carrying a mutation at the ZFN target site, but cell clone c18 was not detected by CelI possibly, 

whereas a mutation was indicated by sequencing analysis. 

 

A further technique for detection of induced mutations is the single strand 

conformation polymorphism (SSCP) assay [148]. Again the target locus is amplified 

by PCR, but different alleles are detected by their differences in mobility after 

denaturation and formation of secondary structures of single DNA strands. In 

repeated screening experiments PCR products of generated single cell clones were 

denatured and run on a polyacrylamide gel, but the distinct differentiation of 

targeted and wild-type cell clones remained critical (figure 4-8).  
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Figure 4-8: Single strand conformation polymorphism. (A) The denatured PCR products 

form different conformations depending on their DNA sequence and therefore, they show different 

mobility on a polyacrylamide gel. (B) DNA from clones with proven mutations were compared to DNA 

from wild-type (wt) DNA (M=molecular weight standard). 

 

The third evaluated method was the sequencing of amplified ZFN targeting site, 

either directly or after cloning into plasmids. This represents a robust method that is 

easily transferable to different targeting sites. As both, CelI digest and SSCP revealed 

the necessity for specific optimization for each target site, sequencing remained the 

preferred screening method. Therefore, it was decided to screen the generated 

single cell clones by sequencing, providing a reliable method not only to detect 

induced mutations, but also to characterize them. 
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4.3 NHEJ-mediated gene targeting 

 
The high rates of ZFN-induced mutations suggest that disruption of both wild-type 

alleles might be achievable in one experiment although, at an expected frequency 

lower than 10 %. The preliminarily confirmed capability of Niere m cells to 

proliferate as single cell clones suggests that transfection of cells with ZFN, 

subsequent growth as discrete clones and the characterization of defined clones 

would give rise to the identification of clones with defined biallelic mutations prior 

to SCNT. 

0.5 x 106 cells were transfected with 1 µg of ZFN set 2 plasmid DNA and incubated in 

6 cm cell culture dishes for 48 h (EPO191010) and 72 h (EPO240211) at 30°C. 

Subsequently, cells were harvested and seeded on 96-well cell culture dishes at a 

number of 192 cells per 96-well plate (figure 4-9). 

 

 

Figure 4-9: Generation of single cell clones. Niere m cells were transfected with ZFNs and 

after 48 h or 72 h distributed on 96-well cell culture dishes with a dilution of 192 cells per plate. 

Proliferating cell clones were splitted and harvested in two portions for cryopreservation and DNA 

isolation. ZFN targeting site of each cell clone was amplified for sequencing analysis (ex1= exon 1). 
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In total 4800 cells were seeded on 25 96-well plates for EPO191010 and 2880 on 15 

96-well cell culture dishes for EPO240211. After an incubation time of one week, 385 

cell clones were splitted for EPO191010 and 267 of them were harvested for 

screening. In this initial experiment no cell clones were used for cryopreservation. In 

EPO240211, 211 single cell clones were splitted after one week and 134 were 

harvested for DNA analysis and cryopreservation, respectively. Thus, a total of 401 

single cell clones was obtained from both electroporation experiments and out of 

these, 325 were used to isolate genomic DNA via high salt precipitation. PCR 

products of the target locus were amplified and sequenced, revealing that 74 (23 %) 

clones carried a mutation at the ZFN cleavage site (table 4-4). Various different 

mutations were detected at the ZFN cleavage site (figure 4-10 and 4-11) 

 

Table 4-4: ZFN application to generate single cell clones. 

ZFN set 2 EPO191010 EPO240211 

Cell passage P6 P3 

DNA Plasmid Plasmid 

Temperature 30°C 30°C 

Incubation time 48h 72h 

Single cell clones 385 211 

Harvested cell clones 267 (70 %) 134 (64 %) 

Sequenced cell clones 191 134 

Clones positive for a mutation 49 (26 %) 25 (19 %) 

Biallelic targeted cell clones 4 (2 %) 10 (7 %) 
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Figure 4-10: Mutations after transfection with ZFN set 2. The type of the introduced 

mutation is not predictable, resulting in a variety of different sequence alterations. 
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Figure 4-11: Electropherogramm of single cell clone C70. Sequenced clone showed a 

mixed signal due to mutation, introduced by ZFN-triggered NHEJ. 

 

Electropherogram analysis of the clone sequences was used to spot candidate clones 

that might carry mutations on both alleles. For 14 of these clones the PCR product 

was ligated into the pGEM T-easy vector and 10 plasmids were sequenced for each 

clone. All 14 cell clones revealed that both CFTR alleles carried distinct mutations 

(figure 4-12). In all cases, a maximum of 2 distinct alleles was found, indicating that 

ZFNs are active immediately after transfection, but activity declines before the cells 

divide. The type and frequency of the mutations corresponded to, and thus 

confirmed, the mutations found in mixed populations. 

Although the cleavage site of ZFN pair 2 is located only 1 bp upstream of the CFTR 

start codon, in this experiment we only identified 2 of the biallelic targeted cell 

clones (i.e. 0.6 % of screened clones) with a disrupted ATG. Both clones however 

carried still one allele with an intact start codon and consequently, are not capable 

of the production of CFTR-null pigs, lacking both functional alleles. 
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Figure 4-12: Biallelic targeted single cell clones. Cloning and sequencing of candidate 

clones showed modifications on both alleles of the CFTR gene. 

 

However, the finding that (i) customer designed ZFNs resulted in reproducible 

modifications of the target site and (ii) the high efficiency of NHEJ facilitated the 

generation of biallelic gene alterations in considerable numbers give evidence that 

nuclease based technologies are suitable for genomic modifications in pig primary 

cells. The fact that we did not achieve null-alleles of CFTR was caused by the ZFN 

binding site selection due to initially intended usage of ZFN for both, NHEJ-induced 

introduction of mutations and HR-based gene targeting. 

 

4.4 HR-mediated gene targeting 

 
In a second experiment, we combined ZFN sets with modification vectors to 

introduce a reporter gene into the porcine CFTR locus. A BAC vector was constructed 

as described previously [67] with the exception that the lacZ gene was placed 

downstream of the start codon in order to replace exon 1 of the CFTR gene rather 

than a STOP box as described in the publication. The BAC vector, CFTR-248-lacZ BAC 

24-5 (designed and constructed by Katrin Krähe and Dr. Nikolai Klymiuk), was used 

directly providing homologous arms of 84 kb and 88 kb, respectively, and a smaller, 

truncated vector was created as the BAC construct was modified by shortening the 
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homology arms to 1685 bp and 1190 bp, respectively. The smaller vector (figure 4-

13) was generated by digestion of the BAC vector with AvrII/BstBI to obtain a 8606 

bp DNA fragment consisting of a 5’ homology arm (1685 bp long), the lacZ gene, a 

neomycin resistance cassette together with a phosphoglycerate kinase (PGK) 

promoter providing transcription in any transfected cell type [32] and a 

polyandenylation termination signal, as well as a 1190 bp long 3’ homology arm 

(figure 4-13). Subsequently, the DNA fragments were co-ligated with a SacI/XbaI 

adapter into a SacI/ClaI digested pBSK vector. A plasmid carrying the truncated 

vector was analyzed by sequencing to affirm the correct sequence composition and 

to determine possible alterations in the exogenous lacZ genes and the neomycin 

resistance cassette. Thus, both vectors shared the lacZ reporter gene as well as a 

neomycin resistance cassette for modification of the CFTR gene, but differed by the 

length of their homology arms. The targeting vectors were prepared free of 

endotoxins prior using for transfection experiments in the cell culture. The BAC 

vector was linearized with AscI and the truncated vector was excised from the 

plasmid backbone with the enzymes AvrII/SacII. 

 

 

 

Figure 4-13: CFTR-lacZ-8 for replacement of exon 1 of the CFTR gene. Constructed 

plasmid consists of lacZ and a neomycin resistance cassette flanked by homologous arms and 

linearized by AvrII and SacII for transfection of Niere m cells. Primer, indicated in purple and red, can 

only produce an amplicon when the vector is recombined correctly with the targeting site. 
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4.4.1 Truncated vector 

 
Two electroporation experiments were performed using 1 µg of ZFN set 1 in 

combination with 9 µg of the linearized vector for transfection of 0.5 x 106 Niere m 

cells. To provide a sufficient rate of homologous recombination between the CFTR 

locus and a targeting vector, Niere m cells were incubated at 37°C for 48 h after 

electroporation for recovery (table 4-5). 

 

Table 4-5: Transfection experiments using pBSK-CFTR-lacZ-8 and ZFN set 1 for co-

transfection. 

Nucleofection 
Cell 

passage 

Incubation 

temperature/time 

DNA 

concentration 

DNA 

(µg) 

ZFN set 1 

DNA/mRNA 

(µg) 

EPO040611 P2 37°C/48 h 1140 ng/µl 2 n.d./2 

EPO050711 P3 37°C/48 h 1140 ng/µl 8,9 0.5/2 

 

 

Then, cells were distributed on 96-well cell culture dishes, mixed with untreated 

porcine kidney cells in a ratio of 1:4 for better cell proliferation. For positive 

selection of clones with an integrated vector, cells were grown in selection cell 

culture medium containing 1.2 µg/ml G418 and 15 % FCS and screened for single cell 

clones after one week. For EPO040611 32 single cell clones were detected and 13 

were harvested for analysis. Co-transfection of targeting DNA and ZFN plasmid DNA 

of EPO050711 resulted in 133 single cell clones and 58 of them were obtained for 

screening. After transfection with ZFN mRNA, 302 single cell clones were recovered 

and 152 showed well proliferation (table 4-6). 
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Table 4-6: Single cell clones generated after transfection with ZFN set 1 and pBSK-

CFTR-lacZ-8.  

Experiment EPO040611 EPO050711 

DNA Plasmid Plasmid mRNA 

Single cell clones 32 133 302 

Harvested cell clones 13 58 152 

Analyzed cell clones 13 58 152 

clones positive  

for a knock-in 
0 0 4 (fragmentary) 

 

Clones were splitted 1:2 on two different plated to be harvested, partly for DNA 

analysis and partly for cryopreservation for optional SCNT. For both experiments 

genomic DNA was isolated from the single cell clones and end-point PCR was 

performed using the screening primer neof1/scr1nr, amplifying a 1397 bp long 

amplicon, if the vector has been correctly copied into the target site (figure 4-13). 

Isolated DNA was also used for PCR with control primer Cs1f/Cs3r, amplifying a 363 

bp fragment, in order to determine the DNA quality. No PCR products were obtained 

from single cell clones using screening primer, indicating that the transfected 

targeting vector has not been copied into the targeting site. However, amplification 

of the targeting site using the control primer revealed unexpected PCR fragments of 

1025 bp in four single cell clones generated using ZFN set 1 mRNA. PCR product of 

the four single cell clones was cloned into the pGEM vector and colony PCR was 

performed with 10 bacterial colonies for each cell clone after transformation. 

Subsequently, the obtained PCR products were sequenced, revealing the insertion of 

DNA fragments occurring from the vector. In all four cases, the insert represents a 

659-661 bp fragment of the PGK promoter of the neomycin resistance cassette 

(figure 4-14). The observed insertion of the fragment occurred rather from DNA 

capture during the NHEJ repair procedure that by HR-based insertion. The reason 

why in all four cell clones a similar fragment was inserted was not further 

investigated. However, it was evident that additional genetic modification had taken 

place in other parts of the genome, since the clones were resistant to G418, 

suggesting that the cell clones carried a complete neomycin resistance cassette.  
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Figure 4-14: Screening of generated clones by PCR using primer Cs1f/Cs3r. Clones 

with no targeted knock-in show a 363 bp band, four single cell clones resulted in a 1025 bp band, 

indicating a fragmentary insertion of 659-661 bp (M: molecular weight standard). 

 

4.4.2 BAC vector 

 
As reviewed, the efficiency of HR-based gene targeting can be increased by using 

vectors with long homologous arms [67]. This strategy was successfully used in our 

lab to modify the CFTR locus by BAC vectors. Targeting efficiency of 1.2-2.9 % has 

been achieved in our lab in previous projects. In this experiment we aimed to 

increase the frequency of HR events by ZFN-mediated DSB. Targeting efficiency of 

the CFTR-248-lacZ 24-5 BAC was compared with the efficiency of HR-based targeting 

when BAC was co-transfected with ZFN.  

0.5 x 106 Niere m cells were transfected with 3.4 µg of CFTR-248-lacZ BAC DNA (lot 

1) and incubated for 48 h (table 4-7). Afterwards, the cells were seeded on 96-well 

cell culture dishes, mixed with untreated Niere m cells in a ratio of 1:4, and grown in 

selection cell culture medium for one week before screening for single cell clones. In 

nucleofection experiment EPO141111, 32 single cell clones were detected and 17 of 

them harvested for further analysis and cryopreservation (table 4-7). For 

experiments EPO281111 A and B, DNA from two different preparations (DNA lot 1 

and 2) has been used, resulting in 111 single cell clones for EPO281111 A, 81 of 

which were harvested. No clones could be obtained from nucleofection EPO281111 

B, probably due to a possible BAC DNA degradation during or after the preparation 

(table 4-7). 
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Table 4-7: Electroporation experiments using BAC CFTR-248-lacZ 24-5 (n.d. = not 

determined). 

Nucleofection EPO141111 EPO281111 A EPO281111 B 

Cell passage P4 P3 P3 

Incubation 

temperature/time 
37°C/48 h 37°C/48 h 37°C/48 h 

DNA lot 1 1 2 

DNA concentration 340 ng/µl 340 ng/µl 275 ng/µl 

DNA (µg) 3.4 3.4 2.75 

Single cell clones 32 111 0 

Harvested cell 

clones 
17 81 n.d. 

Analyzed cell clones 17 81 n.d. 

Cell clones with a 

targeted lacZ 

knock-in 

1 0 n.d. 

 

 

The generated cell clones were screened using “loss-of-native-allele” assay via q-

PCR, which allows a relative comparison between the amplified copy numbers of the 

target locus with two reference loci (figure 4-15). Correctly targeted single cell 

clones carry an HR-mediated insertion of the BAC transgene at the target site, 

replacing exon 1 of the CFTR gene either on one or on both alleles. A primer pair 

(CFTR402f/CFTR621r) was designed for amplification of the wild-type CFTR target 

locus. In addition, primer pairs OCTqf2/OCTqr1 for amplification of the OCT4 gene 

and NGqf6/NGqr4 for the NANOG gene were designed, in order to use the 

amplicons of these two genes as references. For BAC which integrates off-target - 

randomly - into the genome remain both CFTR alleles intact and the copy numbers 

of the produced amplicons of CFTR, OCT4 and NANOG gene will result in a ratio of 

2:2 (OCT4/CFTR or NANOG/CFTR) as would occur in wild-type cells. In case the CFTR 

gene is targeted correctly on one of the two alleles (heterozygous targeting), the 

ratio of OCT4/CFTR or NANOG/CFTR changes to 2:1. Cell clones carrying a transgene 
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on both CFTR exon 1 alleles (homozygous targeting) show a ratio of 2:0 (OCT4/CFTR 

or NANOG/CFTR), since the wild-type target locus is replaced on both alleles and is 

not detectable by the PCR. A standard curve was obtained by serial dilutions of DNA 

from un-transfected Niere m cells varying from 25-10000 copies per sample. The 

copy numbers of standards and clones have been determined in duplicates. 

 

 

Figure 4-15: q-PCR screening method. The copy number of the target locus was compared 

with the copy number of two reference genes, OCT4 and NANOG. mAut 7: maternal autosomal 

chromosome 7, pAut 7: paternal autosomal chromosome 7, WT: wild-type. 

 

Genomic DNA from the produced 98 cell clones was isolated via high salt 

precipitation for q-PCR screening. For each cell clone copy number values were 

generated for the CFTR, OCT4 and NANOG loci. Clones showing copy numbers lower 

than 30 at the reference site were excluded from further analysis. For the other 

clones relative copy number of OCT4/CFTR and NANOG/CFTR were calculated. 

Based on the assumption of the approximate targeting rate of 1-3 %, as was found in 

other targeting experiments in our lab, one would expect the mean value of the 

relative copy number ratio within a given set of clones to tend towards 1.0. The 

rarely occurring clones with heterozygous HR were identified as outliners within the 

majority of clones that did not undergo HR.  
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We determined the mean relative copy number (mvc) as well as their standard 

deviation (sd) within a given set of clones and defined an exclusion limit (el) as 

following: 

 

el = mvc ± 2 * sd 

 

Clones with both the OCT4/CFTR and NANOG/CFTR relative copy numbers above the 

exclusion limit were examined in repeated assays. Of the 98 clones generated from 

transfection of Niere m cells with the CFTR-248-lacZ 24-5 BAC 1 clone (L2) was 

identified as outliner and confirmed in a second assay. The calculated targeting 

efficiency of 1 % was in the expected range of other BAC targeting experiments 

(figure 4-16).  

 

 
Figure 4-16: NANOG/CFTR and OCT4/CFTR copy number ratios. L1-L17 represent cell 

clones of EPO141111 and La1-La16 are cell clones of EPO281111 A. Cell clone L2 was targeted 

correctly on one allele of the CFTR gene. Cell clone La5 is not considered as targeted in repeated 

experiments. Dotted line indicates the mv=1.3 which represent the elimination limit.  

 

Large homologous sequences are known to promote HR events. In order to 

determine the effect of BAC vectors with large homology arms on the frequency of 

HR events, we co-transfected the CFTR-248-lacZ 24-5 BAC with ZFN set 2. Niere m 

cells were transfected with, 3.4 µg BAC DNA (lot 1) for EPO291211 and for 

EPO250112 and EPO260112 1 µg (lot 3) was used for each experiment. After 

electroporation, cells were incubated for 48 h at 37°C and distributed on 96-well cell 

0,0

0,5

1,0

1,5

2,0

2,5

3,0

L1 L1
0

L1
1

L1
2

L1
3

L1
4

L1
5

L1
6

L1
7 L2 L3 L4 L5 L6 L7 L8 L9 La
1

La
1

0
La

1
1

La
1

2
La

1
3

La
1

4
La

1
5

La
1

6
La

2
La

3
La

4
La

5
La

6
La

7
La

8
La

9
N

8
3

N
8

4
N

8
5

N
8

6
N

8
7

N
8

8

NG/CFTR OCT/CFTR



RESULTS 

 - 78 - 

culture dishes. Cells of EPO250112 experiment were seeded in two different 

dilutions. Transfected Niere m cells were mixed with untreated cells in a ratio of 1:4 

(EPO250112 A) and 1:2 (EPO250112 B). After one week incubation with selection 

medium plates were screened for single cell clones. Overall, 75 cell clones were 

harvested for DNA analysis and cryopreservation (table 4-8). 

 

Table 4-8: Electroporation experiments using BAC CFTR-248-lacZ 24-5 DNA and ZFN 

set 2. 

Nucleofection EPO291211 
EPO250112 

A 
EPO250112 B EPO260112 

Cell passage P4 P5 P5 P5 

Incubation 

Temperature/time 
37°C/48 H 37°C/48 H 37°C/48 H 37°C/48 H 

DNA lot 1 3 3 3 

DNA concentration 340 ng/µl 660 ng/µl 660 ng/µl 660 ng/µl 

DNA (µg) 3.4 1 1 1 

Single cell clones 27 53 40 8 

Harvested cell clones 16 22 31 6 

Analyzed cell clones 16 22 31 6 

Heterozygote 

targeting 
6 (38 %) 8 (36 %) 15 (48 %) 3 (50 %) 

Homozygote 

targeting 
4 (25 %) 0 5 (16 %) 1 (16 %) 

 

Q-PCR screening was performed as described above, but the identification of 

outliners was impaired by the finding that only a minority of clones revealed a copy 

number ratio around one. Instead, three ranges of relative copy numbers were 

defined, those clones with a copy number ratio around 1, those with a copy number 

ratio around 2 and those with a copy number above 5, representing the CFTRWT/WT, 

CFTRlacZ/WT and CFTRlacZ/lacZ alleles. For CFTRWT/WT and CFTRlacZ/WT mvc and sd were 

calculated and following el was determined: 
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el = mvc ± 2*sd  

 

The copy number ratio of NANOG/CFTR and OCT4/CFTR should be infinite in the 

case of homozygous targeting. However, due to unspecific amplification of a 

genomic fragment in the absence of the CFTR template, this value becomes finite 

and ranges between 6.7 and 106.1 (figure 4-17). All clones were clearly assigned to 

one of the tree ranges for both, the NANOG/CFTR and OCT4/CFTR relative copy 

numbers. Of the 75 clones examined, 32 were heterozygously targeted whereas 10 

showed HR events at both alleles (figure 4-18), indicating a targeting rate of 56 % 

which was considered higher than the rate of NHEJ determined for ZFN set 2 at 37°C 

(11 %).  

 

 
 

Figure 4-17: Dissociation curve of CFTR q-PCR screening. Primers binding specifically to 

the CFTR locus show a distinct high peak. Unspecifically binding of primer pairs in absence of the CFTR 

locus, as is the case for homozygously targeted cell clones, shows a different, lower peak (highlighted) 

and can be clearly distinguished from control samples containing no DNA template at all. 
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Figure 4-18: q-PCR analysis of cell clones. Single cell clones A65-A81 have been generated in 

EPO281111 using the BAC vector alone. Cell clone A80 is not considered as correctly targeted in 

repeated experiments. The other cell clones resulted from experiments with combination of BAC 

vector and ZFN. Cell clones (Z1-Z16) of EPO291211 are showing heterozygous (Z3, Z4, Z6, Z10, Z12, 

Z15) and homozygous (Z1, Z5, Z7, Z9) targeting. Heterozygous and homozygous targeting was also 

found in cell clones of EPO 250112 A, B (Za1-Za22 and Zb1-Zb31) and EPO260112 (Zc1-Zc6), showing 

mv of > 1.3 (indicated by the dotted line, back arrows indicate a higher mv as shown by the diagram).  
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4.5 TALENs  

 
Even though zinc-finger-based nucleases were shown to be effective in the 

experiments described above, the relatively rare occurrence of suitable binding sites 

in mammalian genomes (approximately every 350 bp) limits their usage. This was 

exemplified by our study, where the intended application of ZFN for both, NHEJ and 

HR, at the porcine CFTR gene was not possible. Thus, nucleases with alternative DNA 

binding domains such as TALENs, which are assumed to have suitable binding sites 

every 35 bp, are of interest. However, while ZFN have been optimized for years and 

are available from various sources, TALEN technology is still in its infancy. To date, 

publications about gene targeting experiments using TALENs in porcine cells are not 

available. Therefore, the suitability for transfection and targeting of porcine primary 

cells and the cytotoxic potential of these nucleases needed to be investigated. We 

examined the application of TALENs for another porcine gene, the X-linked DMD. 

Two TALENs as well as one ZFN were designed and constructed by Prof. Dr. Toni 

Cathomen to introduce mutations into exon 48 or 49 of the DMD gene (figure 4-19).  

 

 

 

Figure 4-19: Binding and cleavage sites of DMD ZFN and TALENs. For sequencing 

analysis targeting sites were amplified with primer ex49ZFN2f/ex49ZFN3r for TALEN and ZFN of exon 

49 and ex48TAL2f/ex48TAL2r for TALEN of exon 48 (annealing temperature: 60°C for both primer 

pairs). 
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In contrast to the CFTR-specific ZFNs that were purchased from a commercial 

supplier, nucleases for DMD gene were designed based on publically available 

databases for ZFNs and TALENs. All nucleases were delivered as plasmids and 

transfected into Niere m cells after an endotoxin-free preparation. 

0.5 x 106 Niere m cells were transfected with 1 µg TALEN or ZFN DNA and incubated 

on 6 cm cell culture dishes for 48 h at 37°C (figure 4-20). After transfection 

differences in viability and proliferation capability were observed. Although, an 

equal number of Niere m cells has been used for each transfection experiment, 24 h 

after transfection the cells transfected with TALNe49 showed a notably lower cell 

confluency as cell of the other two experiments due to a possible cytotoxic effect of 

TALENe49. Subsequently, the cells were harvested and genomic DNA was isolated 

from a mixed cell population for each experiment via high salt precipitation, 

according to procedure described for the initial characterization of ZFNs. 
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Figure 4-20:  Niere m cells transfected with nucleases for porcine DMD gene. (A, B) 

Porcine kidney cells transfected with TALENe48, (C, D) TALENe49 and (E, F) with ZFNe49 and 

incubated for 48 h at 37°C. Cells showed different proliferation potentials 24 h after transfection, 

indicating nuclease activity (scale bars: 200 µm). 
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However, instead of cloning PCR products and sequencing plasmids, here we 

followed an alternative strategy using deep sequencing technology that enables the 

high throughput analysis of nucleic acids. The limitation of an expected read length 

of approximately 80 bp was overcome by the analysis of two overlapping PCR 

products for each nuclease binding site. The PCR products were designed to contain 

the forward primer of the amplicon 40 bp upstream of the binding site and the 

reverse primer of the other amplicon 40 bp downstream of the binding site. The PCR 

amplicons were 279 bp to 355 bp long due to technical reasons. The potential 

restriction of introduced mutations larger than 300 bp was taken into account, since 

initial characterization of ZFNs (see above) revealed only gaps of 2 bp to 70 bp 

resulting from NHEJ based cleavage site repair. 

For all three nucleases, at least 45,000 reads were analyzed for each PCR product 

and results showed deletions and insertions at the targeting site or at least in closest 

proximity to it for both, TALENs and ZFN (table 4-9). 

For TALENe48 overall 48 sequence modifications, 34 deletions and 14 insertions 

were detected (table 4-10).  

 

Table 4-9: Sequencing analysis overview of TALENs and ZFN designed for the DMD 

gene (indels = insertions and deletions). 

  TALENe48 TALENe49 ZFNe49 

Reads for amplicon1 80000 53000 60000 

Reads for amplicon2 77000 78000 45000 

Insertions 14 1 254 

Deletions 34 125 118 

Indels 48 (<0.1 %) 126 (<0.1 %) 372 (0.35 %) 

 

In contrast to the ZFN-mediated mutations observed before, cells transfected with 

TALENe48 showed mutations of only 1 bp length and the mutations were spread 

widely over the targeting sequence with no preference for the cleavage site (figure 

4-21). TALENe49 also showed a very low cleavage activity. In total, 126 sequence 

alterations were detected, revealing 125 deletions and 1 insertion. Again, all 

mutations had a length of 1 bp and were spread widely around the targeting site 
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(figure 4-22).  In contrast to the introduced deletions no other point-mutations have 

been found, indicating that the detected alterations rather occurred from TALEN-

mediated DSBs than from an error of the polymerase during the PCR procedure. 

Analysis of ZFNe49 PCR products recovered 118 deletion of mostly 1bp to 5 bp, but 

longer deletions of 31 bp were a rarer event (table 4-11). In addition, 254 insertions 

were detected at the targeting site, showing in most cases duplications of 5 bp. The 

ZFN-mediated mutations were accumulatively located, as observed before for CFTR-

specific ZFNs, at the ZFN cleavage site or very close to it (figure 4-23) and no 

mutations were found outside of this segment with one exception, indicating that 

the detected point mutations here rather resulted from ZFN cleavage than simply 

due to a PCR error. 

 

Table 4-10: Sequencing results of TALENe48 and TALENe49 transfection. 

 TALENe48 TALENe49 

Deletions 
Length 1 1 

Frequency 34 124 

Insertions 
Length 1 1 

Frequency 14 1 

 

Table 4-11: Results of ZFNe49 transfection. 

Deletions Insertions 

Length (bp) Frequency Length (bp) Frequency 

31 13 6 2 

25 2 5 121 

15 1 4 45 

13 6 3 24 

8 6 2 37 

6 3 1 25 

5 14 

3 29 

1 44 



 

  

 

 

Figure 4-21: Mutations mediated by TALENe48. Sequencing analysis revealed deletions and insertion of 1 bp, widely spread over the targeting site (capital letters). 

 



 

  

 
Figure 4-22: Sequencing results for TALENe49. Only a few deletions of 1 bp were found for TALENe49. Again, the sequence alterations were detected rarely direct at 

the targeting site (capital letters). 

 
 



 

  

 

Figure 4-23: Distribution of ZFNe49-mediated mutations at the targeting site. As expected sequence alterations occurred directly at the cleavage site (capital 

letters) and also very close to it. Number of deletions and duplication for amplicon 1 and 2 are different due to the unequal number of reads sequenced for each amplicon. 
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5 DISCUSSION 

 
A variety of applications in biomedicine and biotechnology, including the generation 

of transgenic animals depend on the capability to alter DNA sequences stably and in 

a site-specific manner. Until recently, gene targeting has been conventionally 

achieved by homologous recombination of host genome with DNA-based vectors 

[55, 67]. Despite several pig models having been established by different gene 

targeting strategies [5, 55, 67], modifications of the porcine genome remain a time 

consuming and complex procedure. Hence, alternative targeting tools providing 

rapid and reliable genetic modification are required. The novel technology of 

designed nucleases offers a powerful tool and enlarges the options to modify the 

porcine genome in a specific manner. However, the overall suitability of these 

technologies still needs to be proven in porcine primary cells. This study aimed at 

the evaluation of designed nucleases for modification of the porcine genome and 

presents strategies to improve the targeting efficiency. Nucleases were tested for 

NHEJ- or HR-introduced modification on autosomes and sex chromosomes. In 

addition to establishment of reproducible targeting and screening protocols, a lacZ- 

reporter for the CFTR gene was generated. Moreover, the gained data suggest that 

the usage of nucleases in combination with DNA-based vectors provides an efficient 

tool to examine the cellular repair machinery in mammalian cells.  

 

Zinc finger nuclease, which consists of a specific DNA binding domain linked to a FokI 

endonuclease for DNA cleavage, is one of the promising artificial molecules used for 

gene targeting [84]. Theoretically, they can be designed to target every possible DNA 

locus due to the binding domain, which is formed by variable zinc finger motifs [88]. 

Web-based tools as the ZiFiT software and others allow a rapid selection of suitable 

ZFN binding sites for many different target genes and modular assembly or other 

techniques, enabling a quick construction of ZFNs [95]. Although, publicly available 

platforms exist, providing archives of engineered zinc-finger arrays for ZFN design, 

the construction of novel ZFNs for new targeting loci remains time consuming and 

requires the employment of extensive tests [94].  
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In this project we used two different sources of ZFN. ZFN sets for the CFTR gene 

were designed by a commercial supplier (Sigma-Aldrich) and carried a DNA binding 

domain of 5 and 6 ZFs, respectively, each of them specifically recognize and bind to 

3 nucleotides. Similarly constructed ZFNs for modification of the porcine genome 

were published in two studies. In both publications an exogenous eGFP gene was 

targeted in vitro and in vivo by commercial ZFNs obtained from the same supplier 

and consisted of 5 and 6 ZFs, respectively [75, 146]. In another publication, reporting 

a biallelic modification of the porcine GGTA1 gene and a consequent knock-out of 

this gene, the ZFNs were constructed by the group itself, however these nucleases 

also carried a DNA binding domain of 5 ZFs [5]. Thus, the specificity of ZFN binding is 

ensured by a length of at least 30 bp. This is considerably above a limit of 17 bp that 

guaranties the uniqueness of a defined sequence in mammalian genomes, at least 

by statistical means and thus, lowers the risk of off-target binding and cleavage [89]. 

In contrast, the DMD-specific ZFNs were designed by the publically available 

database and did only provide binding to 18 bp. The shorter binding length of the 

DMD-specific ZFN pair (3 ZFs for each ZFN) might have resulted in a lower affinity to 

the targeting site and thus, may have caused the poor efficiency of DMD 

modification.  

The CFTR-specific ZFNs were designed for exon 1 as an introduced mutation in this 

exon would subsequently lead to a frame shift of the transcript, preventing the 

production of a truncated protein [149]. Statistically, a suitable binding site for ZFN 

can be found every 500 bp [94, 108]. Therefore, no ZFN binding sites were found for 

the encoding region of CFTR exon 1, providing a sufficient cleavage activity for 

targeting experiments. Anyway, the detected binding sites were located very close 

to the start codon, expecting to be still capable to mediate mutations that affect the 

coding region. Three ZFN sets showing the highest cleavage activity were delivered, 

enabling the defined modification of CFTR via NHEJ and HR.  

 

Examination of ZFN targeting efficiency was performed at two different 

temperatures as it had been described previously, that optimal temperature for a 

high cleavage activity of ZFN was 30°C [150]. The mechanism how the low 

temperature affects the targeting is unclear, but one explanation might be that the 
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low temperature is retarding the protein activity necessary for a correct DNA repair 

and thus, more DSBs are repaired in an incorrect manner. Since the porcine primary 

cells require a constant temperature of 37°C for an optimal proliferation, the 

differences in cell proliferation and ZFN activity were investigated at 30°C and 37°C. 

Altogether, the ZFN designed for the CFTR gene showed a lower activity at 37°C than 

at 30°C. Other than reported [150], the target cell line Niere m showed no notable 

stagnation of proliferation when incubated at 30°C, although the observed number 

of apoptotic cells after transfection seemed to be slightly increased at the lower 

cultivation temperature. Interestingly, ZFN pairs 2 and 3 for the CFTR gene were 

composed of one common ZFN (5O12) and one ZFN (4J9 and 4L23, respectively) that 

differed by only 1 bp in the binding sequence. The efficiency of the ZFNs, however, 

differed significantly and underlines the importance of appropriate ZFN design. 

Data recovered that ZFN sets delivered as mRNA had shown a particularly strong 

decrease of activity when incubated at 37°C possibly caused by a quicker 

degradation at the higher temperature, but for sets 1 and 3 delivered as plasmid 

DNA cleavage activity remained similar at both temperatures. No target site 

alterations were detected in three independent experiments using the mRNA of ZFN 

set 2 probably caused by degradation of this mRNA. However, the activity of ZFN set 

2, transfected as plasmid DNA, was still high at both tested temperatures, suggesting 

the application of this set for further targeting experiments.  

 

Several mutation detection methods were tested in order to identify a reliable and 

rapid protocol. Although, amplification and cloning of the ZFN targeting sites for 

colony PCR and the subsequent sequencing analysis are time consuming, this 

procedure allows picturing the general cleavage efficiency of each ZFN under 

standard conditions in a mixed cell population without longsome generation of 

single cell clones and an individual examination of each clone. The commonly used 

CelI assay for mutation detection [147, 151] was unsuitable for the CFTR targeting 

segment due to unspecific cleavage of the CelI enzyme in this locus and extensive 

optimization efforts would be needed for application of this method. Further 

mutation detection assays like single strand conformation polymorphism [152] also 
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required optimization for each targeting locus, like optimal amplicon size, 

polyacrylamide gel concentration and a matching denaturation protocol. 

 

For targeting of the CFTR gene ZFN set 2 was used as this ZFN pair cleaves the DNA 3 

bp upstream of the start codon and the probability that mutations at the cleavage 

site affect the ATG codon is high. Furthermore, initial experiments demonstrated the 

high cleavage activity of this ZFN set at both temperatures. Despite the high 

efficiency rate of ZFN set 1 mRNA, the cleavage site of this ZFN is 98 bp upstream of 

the start codon and  initial experiments revealed deletion of maximum 70 bp at the 

targeting site, making set 1 unsuitable for disruption of the transcriptional start 

codon via NHEJ. Targeting efficiencies of up to 20 % were reported previously [99] 

for in vitro experiments and up to 15 % for targeting of porcine cells [75]. Direct 

comparison recovers that targeting rate of 26 % and 19 % obtained in our 

experiments is consistent with their results. However, the biallelic targeting rate of 2 

% and 4 % is lower than reported [99, 146] and only 2 of the biallelicly targeted 

single cell clones showed a deletion of the ATG start codon. The data suggests that 

in case the ZFN targeting site is located outside of the coding region the induced 

mutations not always generate a functional gene knock-out due to the 

unpredictability of introduced mutation. A disruption of the transcriptional reading 

frame is possible, but assumes the generation of a large number of clones to obtain 

a single cell clone with the desired mutation on both alleles, e. g. a deletion large 

enough to eliminate the start codon. ZFN targeting sites located within the coding 

region facilitate a reading frame shift as deletions of only a few base pairs lead to a 

modification of the transcript. Therefore, a further targeting strategy was applied for 

generation CFTR knock-out animals based on the ZFN technology. 

 

In contrast to the site-directed, but undefined mutations generated by NHEJ after 

ZFN induced DSBs, combination of ZFN with a DNA vector provides the opportunity 

to introduced mutations not simply at a defined site, but also in a defined manner. 

Various data have been published, reporting ZFN-mediated and HR-based gene 

targeting in transformed cell lines [94, 99, 153], but also in ESCs and iPSCs [101] as 

well as in mouse primary fibroblasts [8]. In the latter, a previously inserted, mutated 
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eGFP transgene was corrected via ZFN-mediated homologous recombination, 

resulting in a targeting efficiency of approximately 2 %. Generally, the targeting 

vector used for ZFN-mediated targeting consists of a transgene flanked by short 

homologous arms of 500-2000 bp [101, 154], requiring in some cases isogenic DNA 

[56], but not in all [101]. In order to facilitate screening, a selection system is 

needed, e.g. a GFP reporter gene [8, 154] or a selection cassette.  

Here we aimed at the HR-mediated introduction of a lacZ reporter gene at the 

porcine CFTR locus. In order to study the role of CFTR in selected tissues or the 

embryonic development in pigs, transgenic animals carrying a reporter lacZ gene 

driven by the CFTR promoter need to be established. The activation and the 

expression level of the CFTR gene can then be analyzed in different embryonic 

stages by detecting the lacZ expression via X-Gal staining as was demonstrated in 

mice models [155, 156]. Two targeting vectors, a BAC vector with homology arms of 

> 80 kb and a truncated vector with homology arms of < 1700 bp, were designed for 

HR-based targeting experiments. Both vectors carried a modification of 

approximately 5700 bp, containing a lacZ gene as well as a neomycin selection 

cassette. Electroporation experiments using the smaller targeting vector in 

combination with ZFN set 1 plasmid DNA or mRNA showed no HR events, although a 

cleavage had taken place at the targeting site, illustrated by NHEJ events with parts 

of the targeting construct in 4 of 152 cell clones. One possible explanation might be 

that the homology arms (1685 bp and 1190 bp) of the targeting construct were too 

short. Successful HR-mediated gene targeting has already been shown with 

homology arms < 1000 bp and in special cases as little as 50 bp as well [74, 101, 

153]. However, it was reported that the length of homology arms depend on the 

length of the embedded transgene, since the copying process of large transgenes 

requires more stability by larger homology arms, assuming that an insert of 5700 bp 

require larger homology arms than 1200 bp as used for the experiment [74]. In 

addition, the successfully used vectors mentioned in the above publications carried 

homology arms that were placed directly left and right of the ZFN cleavage site. In 

contrast the used lacZ targeting construct carried a 3’ homology arm, homologous 

with a sequence 3500 bp downstream of the ZFN targeting site, which might have 

constricted the homologous recombination. The distance of the 5’ homology arm 
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(98 bp) might not have interfered with HR as it was  reported before that efficient 

recombination takes place within 400 bp surrounding the induced DSB [86].  

In contrast, to the devastating experience of combining ZFN with a small targeting 

vector, showing no HR events at the target site, the usage of modified BAC was more 

fruitful. These vectors were successfully used for modification of mouse ESCs [65] 

and porcine primary fibroblasts as well [67]. In our lab we have demonstrated HR-

mediated gene targeting of porcine genes with BAC vectors alone and achieved a 

targeting efficiency of 1.2 % to 2.9 % for CFTR, GGTA and DMD genes. In this study, 

the transfection of pig cells with a lacZ containing BAC resulted in a targeting 

efficiency of a similar rate (1 %). The combination of the BAC with a ZFN pair, 

however, boosted the targeting efficiency by more than an order of magnitude (56 

%). 

 

Although, ZFN combined with AAV targeting vectors was reported previously [157, 

158], achieving targeting efficiencies of up to 65 % in human cell lines, both groups 

showed targeting of an eGFP transgene. In other reports, ZFN were also co-

transfected with integrase-defective lentiviral vectors [159] for targeting of 

transformed cell lines and human ESCs, achieving efficiencies of up to 50 %, but 

targeting rates for primary cells remained low [8]. Combination of ZFN-induced DSBs 

and HR-mediated gene targeting using a BAC targeting vector as donor DNA has not 

been reported to date and was applied in this work for the first time. The increased 

HR in the presence of ZFN induced DSBs is in accordance with others [99, 153, 154], 

demonstrating that DSBs are of crucial importance for HR-based gene targeting.  

The impressive rates of HR, however, depended on proper optimization of the 

transfection procedure and critical balance of cells and nucleofected DNA. In the 

initial experiments with 1 µg of different ZFNs more than 200 single cell clones were 

obtained, depending on the amount of transfected ZFN encoding DNA, 

electroporations delivered considerably different numbers and viability of cells. 

Experiments with BAC DNA were more critical, as a decreased number of single cell 

clones was obtained from these transfections. This might be explained by the large 

size of the BAC vector of approximately 200 kb. The uptake of large amount of 



DISCUSSION 

- 94 - 
 

exogenous DNA might be precarious for primary cells and consequently, reduce 

their viability.  

Co-transfection experiments with ZFN and BAC DNA showed an even more 

pronounced decrease in the number of single cell clones and minor changes in the 

ratio of ZFN/vector or DNA/cells resulted in complete failure of the experiment. 

These results suggest that the following protocol represents the capacity limit of 

nucleofection. On the other hand, the huge size of the BAC vector requires high 

amount of DNA due to stoichiometric reasons. 

A striking finding of this study was the extraordinary rate of HR (56 %) compared to 

NHEJ (11 %), using ZFN pair 2 at 37°C. This might be explained by the dominant role 

of HR in DSBs repair, which would be in contrast to a previous report [71]. This 

hypothesis might explain the well-known aspect of ZFN that their potential for 

mutagenesis is higher at 30°c than at 37°C [150]. Taking into account a considerable 

proportion of HR in DSBs as well as the impaired activity of the cellular 

recombination machinery at 30°C, it is obvious that ZFN activity is not higher at the 

lower temperature but the preference of the two pathways, HR and NHEJ, to repair 

a DSB shifted towards the latter. In addition, the high rate of HR was achieved with 

an approximate transfection efficiency of 60-70 %, indicating that the recombination 

event at the target site is extremely efficient, as it required the entry of both ZFN 

plasmid and the BAC vector. It seems that both events, ZFN-mediated DSBs as well 

as BAC-mediated homologous recombination, work at a level of almost 100 %, 

meaning that every cell transfected with both, ZFN and BAC, will certainly be 

correctly targeted.   

In conclusion, our ZFN data revealed their efficacy for genetic modification via NHEJ 

and HR in primary pig cells and the experiments gave insights into the repair 

mechanisms after DNA DSBs. However, the rare occurrence of ZFN binding sites in 

mammalian genome limits their usage. Therefore, TALENs might be alternative 

nuclease tools.  

 

TALENs were reported to be less cytotoxic [112] and be available for a broader 

application due to a higher frequency of targeting sites [109]. Furthermore, 

improved protocols enabled the design of TALENs with a promising targeting 
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efficiency for a variety of genes [109, 160, 161]. TALENs and a ZFN pair were 

designed to target the porcine DMD gene to evaluate their efficiency for genetic 

modification in porcine cells. 

The aim was the generation of a large animal model for Duchenne muscular 

dystrophy (DMD) and - in later experiments - the transformation of the severe DMD 

phenotype to a milder BMD phenotype by exon skipping. Thus, only exons encoding 

an integer number of amino acids were valuable targets for our approach. 

Exon 48 and 49 of DMD were selected as target loci with TALENs designed for both 

exons and a ZFN only for exon 49. TALENs and ZFN for the porcine DMD gene were 

not obtained from a commercial supplier, but designed using publicly available 

platforms and protocols [4, 70, 95, 109]. Therefore, the constructed nucleases were 

not extensively pre-evaluated, but tested directly by transfecting porcine primary 

cells. After transfection, differences in cell proliferation and viability were observed. 

TALE nucleases have been used for targeting of human transformed cell lines and for 

human ESCs and iPSCs as well, achieving promising targeting efficiencies in NHEJ- 

and HR-based targeting experiments [162, 163]. However, targeting of primary cells 

was not reported to date. Transfection of porcine primary kidney cells with TALENs 

and ZFN for the porcine DMD gene resulted in marginal targeting efficiencies 

approximately 100-fold lower than reported for other cell types [162, 163] or than 

demonstrated in this project for the CFTR locus. A general sensitivity of porcine 

primary cells was excluded due to the contra directory findings for the CFTR-specific 

ZFNs. However, the Gaussian-like distribution of mutations around the cleavage site 

of ZFN was in contrast to the distribution of TALEN-induced mutations, showing no 

order at all and suggesting that on the one hand the binding affinity of the TALEN 

DNA binding domain might be not efficient enough to provide a stable dimerization 

of the FokI domain and thus, a cleavage of the DNA. On the other hand it might be 

more critical to target a gene that is located on the X-chromosome, like DMD, than 

on an autosomal chromosome, like CFTR, as the repair mechanisms of sex 

chromosomes in male cells are not completely understood. Generally, the repair of 

DSBs on sex chromosomes in male cells via HR is not possible as no sister chromatid 

is available. Therefore, DSBs  might be repaired by alternative repair mechanisms, 
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like microhomology-mediated end joining or other end joining pathways that are 

less error-prone [31]. 

The poor efficiency of TALENs, even in comparison to the DMD-specific ZFNs, 

indicates the necessity of further optimizations to develop functional TALENs, e.g. 

the length of the DNA binding domain or the length of the spacer between the two 

domains [112].   

The proper construction of designed nucleases remains a challenge, since the 

publically available platforms are mostly optimized for species like plants (soybean, 

rice and maize), yeast, nematode, fruit fly, zebrafish, mouse, rat and human, but 

there is no platform providing optimized ZFN arrays or TALEN binding sites for the 

pig genome [70]. This makes it difficult to identify suitable targeting sites in the 

porcine genome or to evaluate the chosen ones for off-target cleavage. Although the 

TALEN and ZFN binding sites can be investigated for binding affinity to other 

sequences than the target locus, the generated nucleases cannot be tested for their 

suitability to target the porcine genome and therefore, the constructed nucleases 

might show unexpected off-target cleavage.  

 

Different aspects can be addressed in future experiments in order to complement 

the results of this project.  

The characterized Niere m single cell clones carrying the lacZ reporter gene at the 

CFTR targeting site need to be tested for their suitability for SCNT, examining the 

capability of the targeted cell clones to generate viable animals after SCNT. LacZ-

reporter animals reflect an invaluable model system to address a variety of 

questions according CFTR gene expression and regulation in different embryonic 

stages. Combined with the previously established CFTR knock-out pigs, it might give 

an insight into compensatory mechanisms of cells caused by the lack of the CFTR. 

Further, the combination of two targeting strategies, i.e. ZFN and BAC targeting 

vector, resulted in unexpected high targeting efficiencies. However, the combination 

of BAC vector and ZFN should be tested for further loci as well, e.g. the DMD gene. 

Targeting of the porcine DMD gene, using ZFN/TALEN with BAC constructs, can help 

to examine whether the results obtained from the CFTR targeting are representative 

for other targeting loci as well. It needs to be investigated whether the low targeting 
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efficiency of ZFN/TALEN for DMD can be increased by the addition of a BAC vector 

and whether the observed targeting of an X-chromosome linked gene - like DMD - is 

more critical than a gene on an autosome. In addition, the combination of ZFN and 

BAC vector might provide an interesting tool for the examination of the cellular DNA 

repair machinery.  

    

Designed nucleases are a promising tool for targeting the porcine genome. When 

designed and constructed thoroughly, ZFNs can target desired loci via either non-

homologous end joining or homologous recombination. For the latter donor DNA 

containing large homologous regions, e.g. BAC vectors, triggers the recombination 

event with a particular high frequency. The newly developed TALENs represent a 

potential targeting strategy, but for application for the porcine genome this 

technology still requires further investigations.  
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6 SUMMARY 

 
Modification of the porcine genome using nuclease-based targeting tools 
 
Artificial nucleases, consisting of a DNA binding domain and a DNA cleavage domain, 

have the ability to specifically bind defined DNA loci and introduce double-strand 

breaks (DSBs) in order to activate the cellular damage response. The cellular repair 

system eliminates the DSBs by either non-homologous end joining (NHEJ) or 

homologous recombination (HR). Both repair pathways can be used to introduce 

desired DNA alterations into the host genome. Zinc finger nucleases (ZFNs) and 

transcription activator-like effector nucleases (TALENs) represent designed nuclease-

based targeting tools for the introduction of DSBs at genomic target sites. The 

general suitability of both techniques to target various cell types in vitro and in vivo 

has already been shown in previous studies. Several genetically modified animals 

have been generated using these nucleases, demonstrating their potential for the 

generation of animal models crucially needed. As animal models are essential 

implements for understanding of gene functions, study of human diseases and 

development or improvement of therapeutic treatments, the engineering or 

evaluation of new gene targeting tools for the generation of these animals are 

important.  

The aim of this work was the modification of the porcine cystic fibrosis 

transmembrane conductance regulator (CFTR) gene using ZFNs which in turn 

promotes NHEJ and HR. To achieve this, three ZFN sets were obtained, targeting 

exon 1 of the CFTR gene. In preliminary experiments of this work, the targeting 

efficiency has been determined at different temperatures (30°C and 37°C) by 

transfecting primary porcine kidney cells (Niere m) either with ZFN-encoding plasmid 

DNA or mRNA. ZFN set 2 was found to result in the highest cleavage efficiency at 

both temperatures and thus, was used for further experiments. As the future 

purpose will be the generation of CFTR knock-out pigs, single cell-derived clones 

were produced after transfection with ZFN and subsequent screening of these 

clones resulted in a targeting efficiency of up to 26 %. 4 % of these targeted clones 

carried a mutation on even both alleles. The binding sites of CFTR-specific ZFNs are 



SUMMARY 

- 99 - 
 

located not within the coding region, but 1 bp upstream of the transcriptional start 

codon (ATG). Therefore, only 2 cell clones showed a disrupted ATG and generation 

of functional knock-out at the CFTR gene was ultimately not possible using the NHEJ 

pathway. 

In order to target the gene via HR, two targeting vectors, both carrying a β-

galactosidase (lacZ) reporter gene and a neomycin resistance cassette, were 

designed for a co-transfection with ZFN. The bacterial artificial chromosome (BAC) 

vector contained homology arms of over 80 kb, while the truncated vector carried 

homology arms of 1200-1700 bp. Transfection experiments using the truncated 

vector did not show HR events at the ZFN cleavage site. In contrast, targeting 

efficiencies of the BAC vector were unexpectedly high. In total, 56 % of the 

generated single cell clones carried the introduced lacZ gene and the resistance 

cassette at the target site. Furthermore, 13 % of these cell clones were 

homozygously targeted, demonstrating the high potential of these experiment 

settings. 

Targeting experiments with TALENs that were designed to bind exon 48 and 49 of 

the porcine dystrophin (DMD) gene resulted in a particular low targeting efficiency 

(<1 %). Deep sequencing of the generated single cell clones revealed induced 

mutations of 1 bp, which were not located at the targeting site as was observed in 

ZFN experiments, but were spread widely all over the TALEN binding site. These data 

suggested a low binding affinity and cleavage activity of the constructed TALENs. 

However, as the DMD gene is located at the X-chromosome, alternative repair 

systems might be involved in the repair of induced DSBs, resulting in a low frequency 

of mutations at the target site and further experiment would be necessary to 

address this aspect more closely. 
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7 ZUSAMMENFASSUNG 

Modifikation des Schweinegenoms mit Hilfe Nuklease-basierenden Targetings 
 

Künstliche Nukleasen, die aus einer DNA bindenden Domäne und einer DNA 

schneidenden Domäne bestehen, besitzen die Fähigkeit festgelegte DNA-Loci 

spezifisch zu binden und Doppelstrangbrüche (DSBs) einzufügen, um dadurch die 

zelluläre Antwort auf DNA-Schäden zu aktivieren. Das zelluläre Reparatursystem 

beseitigt den DSB entweder mittels der nicht-homologen Endverknüpfung (NHEJ) 

oder mittels homologer Rekombination (HR). Beide Reparaturwege können benutz 

werden, um gewünschten DNA-Veränderungen in das Zielgenom einzuführen. 

Zinkfingernukleasen (ZFN) und Transcription Activator-like Effectors Nukleasen 

(TALEN) repräsentieren konstruierte Nuklease-basierende Targetingmethoden zur 

Einführung von DSB an jedem beliebigen Zielort im Genom. Beide Technologien 

haben ihre prinzipielle Fähigkeit zum Gentrageting in verschiedenen Zelltypen in vivo 

und in vitro in vorherigen Studien bereits gezeigt. Mehrere genetisch modifizierte 

Tiere wurden mittels dieser Nukleasen erstellt, was ihr Potenzial in der Entwicklung 

von Tiermodelle beweist. Da Tiermodelle essentielle Hilfsmittel für das Verständnis 

von Genfunktionen, die Untersuchung menschlicher Krankheiten und die 

Entwicklung oder Optimierung von therapeutischen Behandlungen sind, ist die 

Entwicklung und Evaluation neuer Targeting-Tools für die Erstellung dieser Tiere 

wichtig.  

Das Ziel dieser Arbeit war es, das Cystic Fibrosis Transmembrane Conductance 

Regulator- (CFTR) Gen im Schwein mit Hilfe von ZFN und die daraus resultierenden 

NHEJ und HR zu verändern. Um dies zu erreichen, wurden drei ZFN Sets erstellt, 

welche jeweils Exon 1 des CFTR-Gens binden. In vorbereitenden Experimenten 

wurde die Targetingeffizienz bei unterschiedlichen Temperaturen (30°C und 37°C) 

bestimmt, indem primäre Schweinenierenzellen (Niere m) sowohl mit ZFN-

kodierender Plasmid-DNA als auch mRNA transfiziert wurden. Der Befund zeigte, 

dass ZFN Set 2 die höchste Effizienz bei beiden Temperaturen aufwies, weshalb 

dieses für weitere Experimente verwendet wurde. Da das über diese Arbeit 

hinausführende Ziel die Erstellung eines CFTR knock-out Schweins ist, wurden nach 

der Transfektion mit ZFN Einzelzellklone hergestellt und diese wiederum einzeln auf 
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Modifikationen untersucht, was eine Targetingeffizienz von bis zu 26 % ergab. 4 % 

der getargeteten Klone trugen eine Mutation auf beiden Allelen. Die Bindungsstellen 

der CFTR-spezifischen ZFNs befanden sich nicht in der kodierenden Region, sondern 

1 bp vor dem Transkriptionsstartcodon (ATG). Daher zeigten nur 2 Zellklone ein 

zerstörtes ATG und die Erstellung von einem funktionalen Knock-out des CFTR-Gens 

mittels NHEJ war daher nicht möglich. 

Um das Gen mittels HR zu targeten, wurden zwei Targetingvektoren, die beide ein β-

galactosidase- (lacZ) Gen und eine Neomycin-Resistenzkassette tragen, konstruiert 

und mit ZFN co-transfiziert. Der bakteriellen artifiziellen Chromosom-(BAC) Vektor 

enthielt homologe Arme von über 80 kb, während der trunkierte Vektor homologe 

Arme von 1200-1700 bp trug. Transfektionsexperimente mit dem trunkierten Vektor 

ergaben keine homologe Rekombination an der ZFN-Schnittstelle. Dagegen war die 

Targetingeffizienz des BAC-Vektors unerwartet hoch. Insgesamt trugen 56 % der 

generierten Einzelzellklone das eingefügte  lacZ-Gen und die Resistenzkassette an 

der ZFN-Bindungsstelle. Desweiteren waren 13 % der Zellklone homozygot 

getargeted und zeigten damit das große Potential dieses Experimentaufbaus.  

Targetingexperimente mit TALENs, die konsturiert waren, um an das Exon 48 und 49 

des Schweinedystrophingens (DMD) zu binden, ergaben eine besonders niedrige 

Targetingeffizienz (<1 %). Hochdurchsatzsequenzierung der generierten 

Einzelzellkone zeigte eingeführte Mutationen von 1 bp, die nicht an der TALEN-

Bindungsstelle lokalisiert waren, wie es in ZFN-Experimenten beobachtet wurde, 

sondern über die TALEN-Bindungsstelle verteilt waren. Die Daten legen eine niedrige 

Bindungsaffinität und Spaltungsaktivität der erstellten TALENs nahe. Da sich das 

DMD-Gen jedoch auf dem X-Chromosom befindet, könnten alternative 

Reparatursysteme an der Reparatur der eingefügten DSBs beteiligt sein, die eine 

niedrige Mutationsfrequenz verursachen. Allerdings sind noch weitere Experimente 

notwendig, um diesen Aspekt näher zu beleuchten. 
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