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Summary 

 

In highly compartmentalized and structurally complex eukaryotic cells cytoskeleton- 

associated motor proteins accomplish a significant part of logistic work and bring 

cellular components to their place of action.  

The kinesin superfamily counts at least 14 different major classes whose members 

combine two motor domains necessary to move along a microtubule filament. Most 

kinesin motors are homodimers, so the heterotrimeric structure of kinesin-2 makes it 

a unique member of the kinesin superfamily. Molecular details of the oligomer 

assembly by two distinct motor domains and one accessory subunit of kinesin-2 are 

largely unknown, which to uncover was one of the objectives of this work.  

A multifaceted approach combining biophysical and biochemical methods was 

applied to kinesin-2 from Caenorhabditis elegans to demonstrate how nature favours 

heterodimerization and prevents homodimerization of motor domains in a protein 

family in which preferentially homodimers are formed.  

The C-terminal end of the stalk in both motor domains, kinesin like proteins 11 and 

20 (KLP11 and KLP20), contains a “seed” sequence of two heptad repeats, which is 

necessary and sufficient to induce dimerization. Lack of the short seed makes 

dimerization impossible regardless of the provided stalk length. On the other hand, 

despite its short length the seed is sufficient for stable dimerization of the two 

interacting partners.  

Once initiated by the seed, a coiled-coil is formed that spans the entire stalk in the 

KLP11/20 motor. However, results indicate that the N-terminal part of the stalk is able 

to uncoil providing some space between the motor heads and thus giving them 

certain flexibility, which may affect kinesin’s stepping behaviour. In addition to 

explaining the formation of the kinesin-2 stalk, the seed sequence identified here 

bears great potential for generating specific heterodimerization in other protein 

biochemical applications.  

The third subunit of the heterotrimeric complex, kinesin associated protein (KAP), 

necessary for interaction with cargo, interacts only with the KLP11 motor. The 

interaction site was localized in the random coil tail of KLP11 and the middle segment 

of KAP, which consists of 9 Armadillo repeats. 
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The second objective of this work was to investigate how kinesin-2 is regulated by 

means of autoinhibition, a regulatory mechanism, which seems to have co-evolved 

with the kinesin family. Results indicate that the free KLP20 random coil tail interacts 

with the KLP11 head in the wild type motor, thus abolishing catalytic activity. Both 

tails are capable of inhibiting motor heads in trans. The heads must be in dimeric 

state in order to be inhibited and the most significant inhibition is achieved when the 

two different heads are combined.  

This work provides comprehensive molecular insights into the subunit assembly and 

regulation of the catalytic activity in kinesin-2 from C. elegans. It further paves the 

way for detailed investigation of these processes in the future.  
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Zusammenfassung 

In strukturell komplexen eukaryotischen Zellen, welche viele verschiedene 

Kompartimente enthalten, sind es die Zytoskelett-assoziierten Motorproteine, welche 

für die Logistik verantwortlich sind. Myosine, Dyneine und Kinesine transportieren 

Zellkomponenten zu den Zellloci, in welchen sie gebraucht werden. 

Die Kinesin-Superfamilie zählt 14 Unterklassen, deren Mitglieder aus zwei 

Motorketten  bestehen, was für den Langstreckentransport auf Mikrotubuli notwendig 

ist. Die meisten Kinesine sind Homodimere, daher ist die heterotrimere Struktur von 

Kinesin-2 einzigartig in der gesamten Kinesin-Superfamile. Molekulare Details der 

Kombination von zwei verschiedenen Motorketten und einer akzessorischen 

Untereinheit sind weitestgehend unbekannt.  

Eine interdisziplinäre Untersuchung von Kinesin-2 aus C. elegans, in welcher 

biochemische und biophysikalische Methoden kombiniert wurden, beschreibt den 

Oligomerisierungsmechanismus in diesem Motor. Erkenntnisse wurden darüber 

geliefert, wie die Natur die Heterodimerisierung der Homodimerisierung vorzieht in 

einer Proteinfamilie, welche hauptsächlich Homodimere hervorbringt.  

Das C-terminale Ende der Schaft-Domäne (stalk) agiert als der 

„Dimerisierungskeim“. Dieser „Keim“ ist etwa zwei Heptaden groß und unbedingt 

notwendig, aber auch vollkommen ausreichend, um die Heterodimiersierung von 

KLP11 und KLP20 (Motor-Untereinheiten von Kinesin-2 in C. elegans) zu 

bewerkstelligen. Ist diese Sequenz nicht vorhanden, so kommt es zu keiner 

Dimerisierung von KLP11 und 20, ganz gleich welcher Anteil von dem -helikalen 

Schaft noch zur Verfügung steht.  

Ist die Dimerisierung einmal durch den Keim induziert, so wird ein coiled-coil 

ausgebildet, welches sich über den gesamten Schaft bis zu den Motorköpfen 

erstreckt. Ergebnisse deuten jedoch darauf hin, dass sich die N-terminale Hälfte des 

Schafts unter Umständen entwinden kann. Dieses würde sich auf die Flexibilität der 

Köpfe und ihr Schreitverhalten auswirken.  

Die dritte Untereinheit des Komplexes, das Kinesin assoziierte Protein (KAP), 

welches den Kontakt zum Cargo herstellt, interagiert mit der KLP11 Motor-

Untereinheit. KLP20 ist an der Interaktion nicht beteiligt. Für die Interaktion sind der 
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unstrukturierte Schwanz von KLP11 und der mittlere Sequenzbereich von KAP 

notwendig. Der letztere besteht aus neun Armadillo-Motiven. 

Ein weiteres Ziel dieser Arbeit war es die Regulation der katalytischen Aktivität von 

Kinesin-2 zu untersuchen. Der Mechanismus der Autoinhibierung scheint sich mit 

dieser Proteinfamilie entwickelt zu haben und auch auf das heterodimere Kinesin-2 

zuzutreffen. Interaktionsuntersuchungen deuten darauf hin, dass der Schwanz von 

KLP20 mit dem Kopf von KLP11 interagiert und die katalytische Aktivität unterbindet. 

In trans scheinen jedoch beide Schwänze eine inhibierende Wirkung zu haben, 

solang die Köpfe im dimeren Zustand vorliegen. Am effektivsten ist die Inhibierung, 

wenn die zwei verschiedenen Köpfe kombiniert werden und sich an ihrer nativen 

Position befinden.  

Diese Arbeit gewährt tiefe Einblicke in die Regulation der Domänenassemblierung, 

sowie in die Regulation der katalytischen Aktivität von Kinesin-2 und ist eine solide 

Grundlage für die weiterführenden Untersuchungen von diesen Prozessen. 
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Introduction 

1 Intracellular transport and molecular motors 

In eukaryotes intracellular transport systems have evolved to cope with increasing 

infrastructural demands of highly compartmentalized and polarized cells. Molecular 

motors bring cell components to their place of action, thus localizing organelles, 

proteins and RNA molecules, assembling mitotic spindles, moving chromosomes, 

specifying cleavage planes, and contributing to the assembly, stability and beating of 

cilia and flagella. 

Molecular motors, kinesins, dyneins, and myosins are cytoskeleton-associated nano-

machines, which harness chemical energy from ATP hydrolysis to carry out 

mechanical work. These three families of motors are responsible for virtually all 

biological movements. All eukaryotes including those with slimmed-down genomes 

(e. g. budding yeast) have multiple genes for kinesins, dyneins and myosins, which 

form real motor superfamilies. These many different motors in one family are 

responsible for the transport of different cargo and are expressed at different cell 

stages and in different tissues in more complex organisms. 

All molecular motors use only polarized components of the cytoskeleton as tracks: 

Myosins move on actin filaments, while kinesins and dyneins use microtubules as 

tracks. Some of the motors are capable of undertaking many consecutive steps 

before falling off the track, thus accomplishing the challenging task of long-range 

transport.  

The long-range transport is especially important in elongated structures such as 

axons in neurons and motile and immotile cilia. Depending on the cell type, cilium is 

a moving and/or sensory organelle that transduces a multitude of sensory stimuli and 

is a key participant in intercellular signalling (Marshall and Nonaka, 2006; Singla and 

Reiter, 2006). Impaired cilium assembly leads to severe disorders like polycystic 

kidney disease (Lin et al., 2003), hydrocephalus, situs inversus (Nonaka et al., 1998; 

Marszalek et al., 1999; Takeda et al., 1999) or retinal degeneration (Mukhopadhyay 

et al., 2010).  
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All these disorders involve mutations in kinesin-2, one of at least 14 members in the 

kinesin superfamily of microtubule associated motor proteins (Brown et al., 1999; 

Miki et al., 2001; Miki et al., 2005), which is essential for proper assembly and 

maintenance of cilia and flagella (Cole et al., 1998; Brown et al., 1999; Signor et al., 

1999; Scholey, 2008), as well as for intraflagellar trafficking (Cole et al., 1998; 

Orozco et al., 1999) (Figure 1).  

 

 

 

Figure 1: Intraflagellar transport (IFT) in C. elegans. Components of the IFT machinery and ciliary 
cargo assemble at or near the transition zone (basal body). Two kinesins, heterotrimeric kinesin-2 and 
homodimeric OSM-3-kinesin, bind IFT particles, ciliary precursors and dynein, and transport these along 
the middle segment in the anterograde (+) direction. BBS proteins act to stabilize the association between 
the motors and IFT particle subcomplexes A and B. In the distal segment, OSM-3-kinesin alone transports 
the IFT particles and dynein/cargo. At the distal tip of the cilium cargo unloading, motor switching and 
turnover occurs. Then kinesin-2, components of the IFT machinery and presumably other ciliary 
molecules are recycled back to the base of the cilium using the IFT-dynein molecular motor. The lengths of 
the transition zone (1 μm), middle segment (4 μm) and distal segment (2.5 μm) regions are shown (for 
amphid cilia) along with transverse view schematics of the microtubule arrangements (on top). Adapted 
from Inglis et al., 2007. 
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2 Kinesin superfamily  

Since their discovery (Brady, 1985; Scholey et al., 1985; Vale et al., 1985) kinesins 

have grown to a protein superfamily with continuously increasing number of 

members. Through gene duplication and recombination evolution produced at least 

14 different major kinesin classes (Miki et al., 2001; Miki et al., 2005), which are 

universal from the bottom of the eukaryotic radiation. This large diversity explains 

why kinesins are capable of fulfilling many different tasks in the cell.  

Although kinesins vary in shape, there are overarching principles concerning their 

molecular architecture, underlining their common origin. A detailed mechanistic 

inquiry into kinesins’ overall architecture therefore is a prerequisite to the molecular 

understanding of how these motors accomplish their versatile cellular tasks. Three 

main domains are identified in all kinesins: Catalytic head, stalk and tail (Figure 2). 

 

 

 

Figure 2: Structural organization of kinesins. All kinesins display modular morphology containing a 
head, stalk and tail domain. Structural organization of kinesins is depicted here on the example of kinesin-
1 (adapted from Woehlke and Schliwa, 2000). The catalytic head is the motor domain where ATP-binding 
and hydrolysis take place. The motor head also contains the microtubule binding site and is the moving 
part of the motor. The stalk domain is responsible for dimerization and thus contains one or more -
helical stretches, which build a coiled-coil. These -helical stretches can be separated by more flexible 
regions like kinks and hinges, the number and length of which is family dependent. The tail domain can be 
globular or unstructured and is the cargo or accessory subunit binding site. The tail further plays a role in 
regulation of catalytic activity in some kinesin families.  

 

 

The catalytic head contains the microtubule interaction site as well as the ATP-

binding pocket (Hirokawa et al., 1989) and is the actual motor domain. It is 40% 

conserved among all kinesin classes (Vale and Fletterick, 1997; Hirokawa et al., 
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1998; Ogawa et al., 2004), which demonstrates its essential role for the functioning of 

the motor. The motor domain is found at the N- or C-terminus or in the middle of the 

protein sequence (Figure 3). The head position seems to affect the direction of 

kinesin movement. While most kinesins with an N-terminal head move towards the 

plus-end of microtubules, the C-terminal head leads to a movement towards the 

minus-end (Endow and Waligora, 1998). Kinesins with the motor domain in the 

middle of the protein sequence accumulate at the ends of microtubules (Ogawa et 

al., 2004). 

 

 

 

Figure 3: Diversity in the kinesin superfamily. Despite their common features in the structural 
organization kinesin families display morphological diversity. Kinesins can be monomers (kinesin-3), 
homodimers (most of the kinesin families), heterotrimers (one of the two members of the kinesin-2 
family), and tetramers (kinesin-5). The motor domain can be placed at the N-terminus (most kinesins), C-
terminus (kinesin-14) or in the middle of the sequence (kinesin-13). Kinesin-2 family with its mouse 
orthologues is high-lightened by a red square (adapted from Verhey and Hammond, 2009).  
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The neck linker and the neck domain connect the motor head to the stalk. The 

conformational change of these small domains (10 and 40 amino acids on average) 

during the ATPase cycle is essential for kinesin movement (Endow and Waligora, 

1998). The stalk is an -helical structure responsible for dimerization of two kinesin-

chains via a coiled-coil. Most kinesins are dimers but there are also monomers, 

trimers and tetramers (Vale and Fletterick, 1997) (Figure 3).  

The tail domain shows the greatest diversity among kinesin families, which explains 

the ability to bind to diverse cargoes and to fulfil many different tasks (Vale and 

Fletterick, 1997; Woehlke and Schliwa, 2000). 

 

2.1 Catalytic heads’ role in kinesin movement 

Kinesins can move processively or unprocessively along microtubules. In processive 

movement motor undertakes many consecutive steps without falling off the track. To 

establish processive movement cooperation of two heads is required that ensures 

maintenance of physical contact with microtubules (Hancock and Howard, 1998). 

Nevertheless, there are also processive monomeric (Okada and Hirokawa, 1999) 

and unprocessive dimeric kinesins (Sablin et al., 1998). Both modes of movement 

represent adaptations to the required physiological function. 

Processively moving kinesins undertake discrete 8 nm steps, which is the distance 

between β-tubulin subunits in a microtubule (Svoboda et al., 1993). Stepping is 

directly coupled to ATP hydrolysis: one mechanical step requires the hydrolysis of 

one ATP molecule. The catalytic heads of unbound kinesins contain ADP, which is 

rapidly released upon interaction with microtubules. The ADP release increases the 

heads affinity for the microtubule. In the next step ATP is bound inducing 

conformational changes of the head and the neck-linker. The neck-linker associates 

with the catalytic head leading to a power-stroke that brings the rear head to the next 

β-tubulin subunit in front of the leading head (Gilbert et al., 1995; Johnson and 

Gilbert, 1995; Farrell et al., 2002) (Figure 4). While the new leading head releases its 

ADP and binds tightly to the microtubule, the new rear head is hydrolyzing its ATP 

causing the unzipping of the neck linker and dissociation of the head from the 

microtubule due to reduction in microtubule affinity. The new rear head can now be 

brought forward by a new power-stroke induced by the neck-linker association with 
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the new leading head (head-over-head stepping, (Yildiz et al., 2004) (Figure 4). In 

order to walk processively, the two heads must perform biphasic kinetics, i. e. their 

ATPase cycles must be coupled and out of phase (Hackney, 1994; Ma and Taylor, 

1997; Gilbert et al., 1998), so that at any time-point at least one head is attached to a 

microtubule. Thus processivity in principle requires two heads (Hancock and Howard, 

1998). 

 

 

 

 

Figure 4: Processive kinesins move 
head-over-head. The ATPase cycles of 
the two heads are biphasic, thus 
preventing detachment of the two heads 
at the same time. Keeping the ATPase 
cycles out of phase ensures the 
processive movement. Upon microtubule 
binding the catalytic head loses its ADP 
(white head 1 in panel 1.). In the next 
step the same head binds ATP (red head 
1 in panel 2.) causing the head 2 (blue) 
with its bound ADP (panel 2.) to swap to 
the next -tubulin subunit (white) in 
front of the head 1 (panel 3.). Now the 
head 2 loses its ADP (panel 4.) and tightly 
associates with the microtubule (panel 
5.) while the head 1 hydrolyzes its ATP 
(panel 5.) and its ADP-bound state 
lowers its affinity for microtubules 
(panel 6.). Upon ATP-binding by head 2 
head 1 swaps to the next -tubulin 
subunit in front of the head 2 and the 
cycle starts again (adapted from Farrell 
et al., 2002). 
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2.2 Role of the tail domain in kinesin regulation 

Hydrolyzing one ATP molecule per step makes processive kinesins large energy 

consumers. Because kinesins are activated upon contact with microtubules 

independently of carrying cargo or not, a mechanism must exist, which prevents 

kinesins from walking when they do not have cargo to transport and thus prevent the 

waste of ATP.  

The mechanism of catalytic regulation is very well studied in the case of kinesin-1. 

The catalytic activity is regulated by means of autoinhibition (Figure 5). During this 

process the motor folds at the flexible hinge in the middle of the stalk region thus 

allowing the tail region to interact with the motor heads (Hackney et al., 1992; Coy et 

al., 1999; Friedman and Vale, 1999; Stock et al., 1999; Seiler et al., 2000; Yonekura 

et al., 2006; Cai et al., 2007; Dietrich et al., 2008; Hackney et al., 2009). This 

interaction leads to slowed ADP release and thus to significant reduction in the 

stepping rate, while the affinity for microtubules remains unchanged (Coy et al., 

1999; Stock et al., 1999; Hackney and Stock, 2000, 2008; Wong et al., 2009). 

Meanwhile the exact interaction site was revealed by the crystal structure, which 

showed that the microtubule-binding site remains exposed, while the head-tail-

interaction acts as a “lock down” preventing the movement of the motor domains that 

is needed to undock the neck linker and release ADP (Kaan et al., 2011). Tails are 

even capable of inhibition when added in trans to active motor heads (Coy et al., 

1999; Stock et al., 1999; Yonekura et al., 2006; Dietrich et al., 2008; Hackney and 

Stock, 2008; Wong et al., 2009). A similar mechanism was demonstrated for the 

monomeric kinesin-3 (Lee et al., 2004; Yamada et al., 2007; Hammond et al., 2009) 

and there are strong indications that autoinhibition also regulates the catalytic activity 

of the homodimeric kinesin-2 (Imanishi et al., 2006; Hammond et al., 2010). 

 

 

Figure 5: Tail domain regulates the 
catalytic activity in some kinesin families. 
Some kinesin motors have flexible regions 
(kinks or hinges) it their stalk domain. This 
feature allows the motor to fold and bring 
the tail domain in the proximity of the heads, 
thus enabling their interaction. For some 
kinesin families this interaction was shown 
to inhibit motor’s activity. 
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3 Kinesin-2 

Kinesin-2 is a heterogeneous kinesin class of processive, plus-end directed motors 

(Cole et al., 1993). It includes homodimeric and heterotrimeric members (Figure 3), 

which both seem to have co-evolved with cilia and flagella, since these motors are 

essential for proper assembly and maintenance (Cole et al., 1998; Brown et al., 

1999; Signor et al., 1999; Scholey, 2008), as well as for the function of these 

structures throughout eukaryotic phyla (Morris and Scholey, 1997; Cole et al., 1998; 

Orozco et al., 1999; Pan and Snell, 2002; Rosenbaum and Witman, 2002; Lin et al., 

2003; Scholey and Anderson, 2006; Scholey, 2008).  

After its discovery in sea urchin eggs (Cole et al., 1993) kinesin-2 orthologues have 

been found in many different organisms from green algae, ciliated protozoa, 

nematodes to vertebrates including mammals and humans.  

 

3.1 Kinesin-2 function 

The homo- and the heterodimeric kinesin-2 are together responsible for the 

intraflagellar transport (IFT), a mechanism by which cilia are built and maintained (Lin 

et al., 2003)  (Figure 1). Besides transporting building blocks, proper IFT and cilium 

functioning are also essential for processes like sensory transduction during mating 

in Chlamydomonas (Pan and Snell, 2002), vision (Pazour et al., 2002) and 

chemosensory behaviour in metazoans (Perkins et al., 1986; Starich et al., 1995). 

This points to the vital role of motile and immotile cilia in all forms of eukaryotic life.  

Motile cilia move fluid past cells, e. g. mucus in the airway, while immotile cilia are 

sensory organelles essential for e. g. proper kidney functioning and are key players 

in transducing a multitude of sensory stimuli, like chemical concentration of growth 

factors, hormones, odorants and developmental morphogens and are thus inevitable 

for sight, smell, and mechanosensation (Marshall and Nonaka, 2006; Singla and 

Reiter, 2006).  

During the course of evolution kinesin-2 has adopted various different and cell type 

dependent functions also outside the cilium. These include vital roles in development 

especially of elongated structures like axons, spermatids and photoreceptors 

(Yamazaki et al., 1995; Miller et al., 1999; Takeda et al., 2000; Mukhopadhyay et al., 
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2010; Wang et al., 2010), organelle sorting and anterograde transport in axons (Coy 

and Howard, 1994; Kondo et al., 1994; Yamazaki et al., 1995), endoplasmic 

reticulum and Golgi membrane transport (Le Bot et al., 1998), dispersion of 

melanosomes (Tuma et al., 1998), localization of RNA molecules (Heinrich and 

Deshler, 2009), participation in embryonic development (Morris and Scholey, 1997; 

Nonaka et al., 1998; Marszalek et al., 1999; Takeda et al., 1999), signal transduction 

(Kolpakova-Hart et al., 2007; Corbit et al., 2008; Ocbina and Anderson, 2008), as 

well as in mitotic spindle assembly (Haraguchi et al., 2006), chromosome 

segregation (Miller et al., 2005) and cytokinesis (Fan and Beck, 2004). Because of 

the large diversity of intracellular tasks and involvement in some tumors like Hippel-

Lindau tumor (Mans et al., 2008) and breast cancer (Lukong and Richard, 2008), it is 

important to better understand this motor protein. 

 

3.2 Kinesin-2 structure 

Unlike other processive kinesins predestined for long-range transport, which are 

homodimers (Hancock and Howard, 1998), some members of the kinesin-2 family 

consist of two distinct motor domains and an accessory cargo binding subunit (Cole 

et al., 1998). In C. elegans the two motor domains are named kinesin like protein 11 

and 20 (KLP11 and 20) and the cargo-binding domain is called kinesin associated 

protein (KAP) (Figure 6). This heterotrimeric structure is unique in the kinesin 

superfamily.  

Both motor domains consist of an N-terminal globular catalytic head, a central stalk, 

and a C-terminal unstructured tail (Rashid et al., 1995; Yamazaki et al., 1995; Cole, 

1999). Whereas the extended stalk with its -helical structure represents the site of 

motor subunit heterodimerization (Rashid et al., 1995; Cole, 1999), the proline-rich 

unstructured tail is thought to interact with the accessory subunit (Wedaman et al., 

1996; Yamazaki et al., 1996). KAP is a globular protein with a high -helical content 

not predicted to form coiled-coils (Wedaman et al., 1996; Sarpal and Ray, 2002).  

An evolutionarily conserved helix breaker site, situated in the middle of the stalk 

region, is present in all kinesin-2 sequences (G450S451 in KLP11 and G444G445 in 

KLP20). This helix breaker may allow the motor dimer to fold (Imanishi et al., 2006; 

Dietrich et al., 2008; Hackney et al., 2009; Wong et al., 2009) and has been shown to 
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influence the activity of the kinesin-2 motors from C. elegans (Imanishi et al., 2006; 

Brunnbauer et al., 2010) and mouse (Hammond et al., 2010). However, a detailed 

molecular mechanism of how the kinesin-2 motors are autoinhibited still remains 

elusive. From a mechanistic point of view, this question is especially intriguing in the 

case of the heterodimeric kinesin-2. Are both tails required for efficient autoregulation 

or is one subunit enough to inhibit the activities of the catalytic heads? 

 

 

 
Figure 6: Kinesin-2 architecture. (A) Schematic overview of the C. elegans 
heterotrimeric kinesin-2. KLP (kinesin like protein) 11 and 20 have N-terminal motor 
domains and form a heterodimer that C-terminally associates with the cargo binding 
subunit, Kinesin Associated Protein (KAP). (B) Linear maps of the two motor subunits 
and KAP.  For the motor subunits the head, coiled-coil stalk and random coil tail 
domains are shown together with the amino acid positions that delimit their borders. 
The helix breaker positions are indicated in both motor domains; they allow folding of 
the tail onto the head domains to auto-regulate catalytic activity. For KAP the 
conserved part containing Armadillo repeats is depicted. 
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Astonishingly, none of the kinesin-2 motor domains seems to be able to form stable 

homodimers, neither in vitro, nor in vivo (Rashid et al., 1995; Yamazaki et al., 1995; 

De Marco et al., 2003). This strong preference for heterodimerization suggests its 

functional importance, but the evolutionary advantage of combining three different 

subunits into a functional entity is not yet understood (Brunnbauer et al., 2010). 

Although a significant amount of work has been done to provide insights into the 

mechanisms underlying kinesin-2 complex assembly (De Marco et al., 2001; Chana 

et al., 2002; De Marco et al., 2003; Chana et al., 2005), it is still not clear which 

regions are sufficient and which are necessary for heterodimer formation. A 

particularly conspicuous region is the highly charged stretch at the beginning of the 

stalk found in heterodimeric pairs of KRP85/95 from sea urchin, Xklp3A/B from 

Xenopus laevis, and Kif3A/3B from mouse (Rashid et al., 1995; De Marco et al., 

2001; Chana et al., 2002). Intriguingly, the two distinct polypeptide chains have 

complementary charges, which intuitively suggest a role in heterodimerization. 

However, the contribution of these charged regions to heterodimerization in kinesin-2 

is ambiguous (De Marco et al., 2001; Chana et al., 2002; Chana et al., 2005). 

 

4 Goals of this thesis 

Not only its diverse cellular roles but also its unique morphology make kinesin-2 a 

valuable object for investigation. What is the evolutionary advantage of combining 

three different subunits and what is the molecular basis of kinesin-2 complex 

assembly? It is intriguing how nature ensures heterodimerization in a protein family 

whose members are mostly homodimers. Which regions are necessary and sufficient 

for heterodimerization? How does the accessory subunit associate with the motor? 

What are the consequences of this complex assembly for the motor’s activity?   

To offer answers to those questions this work has focused on the heterodimeric 

kinesin-2 motor form C. elegans. To find out which regions in its motor subunits, 

KLP11 and KLP20, are necessary and sufficient for dimerization, a number of N- and 

C-terminally truncated constructs of different lengths were generated. In a 

multifaceted approach using co-immunoprecipitation assays (co-IP), transmission 

electron microscopy (TEM), Förster (fluorescence) energy transfer (FRET) and 
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circular dichroism spectroscopy (CD) this work elucidates the mechanistic principles 

of kinesin-2 heterodimerization.  

Previous work in our laboratory demonstrated that the catalytic activity of the 

KLP11/20 motor is regulated via the universally conserved helix breaker position 

(Brunnbauer et al., 2010). Such helix breakers are found in other kinesins and the 

prevalent model states that the folding of the distal tails onto the catalytic head 

domains is responsible for the motor’s autoregulation. To provide a detailed 

mechanistic framework of how the heterodimeric tail affects the motor’s catalytic 

activity, ATPase assays were performed in which isolated tails were added in trans to 

monomeric and dimeric kinesin-2 motor variants to dissect the effects of tail-

mediated inhibition. In addition, the distal tails were removed in the wild type 

heterodimer to narrow down the region responsible for the observed autoinhibition. 

By determining the ATP turnover (kcat) and the affinity for microtubules (Km) first 

insights were obtained how autoinhibition is achieved in the KLP11/20 heterodimer.  
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Materials and methods 

1 Materials 

All instruments, computer programs, and buffers used are named in the methods. 

1.1 Reagents and laboratory consumables 

Standard laboratory chemicals were purchased from BioMol, Biorad, Fluka, 

Invitrogen, Merck, PeqLab, Roche, Roth, Serva or Sigma and had the degree of 

purity "p.a." unless otherwise mentioned. Media and buffers used in this study were 

prepared with de-ionised water (Millipore), sterilized either by autoclaving or passing 

through a micro-filter (pore size 0.2 µm). 

Laboratory consumables were predominantly purchased from Grainer, Nunc, Peske 

and Sarstedt. 

 

1.2 DNA 

1.2.1 Full-length sequences of KLP11, KLP20 and KAP 

The full-length DNA sequences of KLP11, KLP20 and KAP were a kind gift from Prof. 

Jonathan M. Scholey (University of California, Davis) and were provided as cDNA 

cloned into the pDest8 plasmid (Invitrogen). 

1.2.2 Cyan and yellow fluorescent proteins (CFP and YFP) 

CFP and YFP DNA sequences were synthesized by GenScript. 

1.2.3 Primers 

All cloning primers used in this study were designed manually to include desired tags 

and restriction sites and were synthesized by Biomers (Ulm). Sequencing primers 

were designed with the help of GenScript DNA Sequencing Primers Design Tool 

(http://www.genscript.com/cgi-bin/tools/sequencing_primer_design) to align every 

400bp and were also synthesized by Biomers (Ulm). 
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1.2.4 Vectors 

All constructs were cloned into pFastBac1TM (Invitrogen) as a donor plasmid for 

generating bacmids in MAX Efficiency® DH10BacTM competent E. coli cells (see 

methods). 

 

 

Figure 7: Plasmid map of pFastBac1.  All KLP11, KLP20 and KAP constructs used in 
this work were cloned into pFastBac1 plasmid using SpeI and NotI restriction sites 
(red) in the multiple cloning site (MCS). Ampicilin resistance (Amp, light blue) was the 
selection marker during amplification of the recombinant plasmid in E. coli XL1 blue, 
which is then used for recombinant bacmid generation in E. coli DH10 cells. E. coli DH10 
cells further contain a helper plasmid encoding a transposase that uses Tn7 sites (dark 
blue) to translocate the gene of interest into the bacmid, where it disrupts the lacZ gene. 

 

1.3 Cells 

Chemically competent E. coli XL1-blue strain (Stratagene) was used for plasmid 

amplification. 

Chemically competent MAX Efficiency® DH10BacTM competent E. coli cells 

(Invitrogen) served for bacmid (baculovirus shuttle vector) generation (see methods). 

All proteins were expressed in Spodoptera frugiperda Sf9 cells (Invitrogen) as part of 

the Bac-to-BacTM eukaryotic expression system (Invitrogen). 
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2 Methods 

2.1 Molecular biological methods 

All constructs were generated using standard molecular biological methods. 

2.1.1 Cloning 

Truncations were introduced by PCR on the original full-length cDNA in linearized 

pDest8 vector (1.2.1). Primers were designed not only to align the start and the end 

of the desired sequence, but also to contain restriction sites and to encode desired 

tags. The forward primers contain the SpeI and the reverse primers the NotI 

restriction site. Two different restriction sites ensure insertion of the PCR product in 

the correct orientation into the pFastBac1TM plasmid. Depending on the construct the 

tag is located either at 5’ or at 3’ end of the sequence. PCR was performed with the 

high fidelity Pfx50TM DNA polymerase (5 U/µl, Invitrogen) in a thermo block (MWG 

Biotech, Primus 96plus) using provided polymerase buffer (10X Pfx50TM PCR mix) and 

10 mM dNTP mix. 

PCR products were SpeI/NotI digested according to enzymes’ manufacturer’s 

recommendation (New England Biolabs, NEB). 

Digested DNA was purified by electrophoresis in an analytical agarose gel of high 

purity (1 % in TAE buffer) from which the DNA was then eluted using Qiagen Gel 

Extraction Kit. 

Digested and purified PCR products were cloned into the SpeI/NotI digested and 

dephosphorylated (Antarctic phosphatase, NEB) pFastBac1 vector (Invitrogen) with 

T4 ligase (NEB) in a ligase buffer and with ATP provided by the manufacturer with 

the ligase.  

Some truncated motor constructs were fused to fluorophores for Förster resonance 

energy transfer (FRET) measurements. Cyan and yellow fluorescent proteins were 

custom synthesized by GenScript as cDNA with desired cloning sites at both ends. 

The fluorophores were then fused to the motor subunits by applying 

restriction/ligation strategy. The fusion products were then ligated into pFastBac1 

vector as described above. 
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Recombinant pFastBac1 was then used to generate the construct coding baculovirus 

by described and established method (Baclulovirus-Sf9 expression system described 

by O’Reilly et al. (1992), Invitrogen). 

 

TAE buffer: 24.2 % Tris base, 5.7 % glacial acetic acid, 50 mM EDTA (pH 7.0) 

 

2.1.2 Generation and isolation of baculovirus shuttle vectors (bacmids) 

Recombinant pFastBac1 vectors were amplified by heat shock transformation into 

chemically competent E. coli XL1-blue cells. After the heat shock at 42 °C cells were 

recovered in S.O.C medium before they were plated onto LB-ampicillin agar plates. 

Four to six ampicillin-resistant colonies were inoculated in 4 ml LB-ampicillin medium 

for further growth in shaking culture. Amplified pFastBac1 vector was isolated using 

Qiagen Mini-Preparation kit. All amplified pFastBac1 vectors were SpeI/NotI digested 

and separated on an agarose gel to check for the correct size of the insert. 

Before performing any experiments all vectors to be used for recombinant bacmid 

generation were sequenced by the DNA sequencing facility of the LMU, Munich 

(biology faculty, genetics department), and the insert sequence accurately checked 

for its correctness.  

After amplification recombinant pFastBac1 was transformed into chemically 

competent MAX Efficiency® DH10BacTM competent E. coli cells (Invitrogen). This 

specific E. coli strain contains a transposase coding helper plasmid, as well as a 

Autographa californica nuclear polyhedrosis virus (AcNPV) bacmid containing the 

low-copy-number mini-F replicon, a kanamycin resistance marker, and a segment of 

DNA encoding the lacZ peptide. By site-specific transposition of the mini-Tn7 

element containing the gene of interest from the pFasBac1 donor plasmid to the mini-

attTn7 attachment site on the bacmid, the lacZ gene compensating for the 

chromosomal deletion of lacZ is disrupted (Figure 8 and Invitrogen instruction 

manual). Transposition functions are provided in trans by the helper plasmid, which 

further confers resistance to tetracycline.  
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Figure 8: Bacmid generation in MAX Efficiency® DH10BacTM E. coli 
cells. Recombinant pFastBac1 is transformed into E. coli DH10 cells, which 
contain Autographa californica nuclear polyhedrosis virus (AcNPV) 
bacmid and a helper plasmid encoding transposase. By site-specific 
transposition of the gene of interest from the pFasBac1 to the bacmid the 
lacZ gene is disrupted thus enabling the blue/white selection of colonies 
containing the recombinant bacmid. Cells from white colonies are 
amplified using ampicilin, gentamycin and kanamycin as selection markers 
and the bacmid is isolated (adapted from BacuVanceTM Baculovirus 
Expression System (GenScript)). 

 

 

Transformed MAX Efficiency® DH10BacTM cells were plated on Bluo-Gal LB agar 

plates for blue-white selection. White colonies were once again spread on Bluo-Gal 

supplemented LB agar plates to exclude false positive results. Colonies growing 

white both times were then inoculated in 6 ml LB DH10 selection medium and 

bacmids isolated using reagents from the Qiagen DNA Mini-Preparation Kit (see 

2.1.3 Bacmid isolation). 

 

S.O.C medium: 2 % Tryptone, 0.5 % yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 

mM MgCl2, 2 % 1 M Glucose 

LB-ampicillin medium/agar: 1 % Tryptone, 0.5 % yeast extract, 0.5 % NaCl, 100 

µg/ml Amicilin, (1.5 % agar) 

Bluo-Gal LB: 1 % Tryptone, 0.5 % yeast extract, 1 % NaCl, 50 µl/ml kanamycin, 7 

µg/ml gentamycin, 10 µg/ml tetracycline, 100 µg/ml Bluo-Gal, 40 µg/ml IPTG 

DH10 selection medium: LB, 50 µl/ml kanamycin, 7 µg/ml gentamycin, 10 µg/ml 

tetracycline 
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2.1.3 Bacmid isolation 

The first steps up to the centrifugation after adding P3 buffer from Qiagen Plasmid 

Purification Mini Kit are performed as described in the Qiagen handbook. The 

supernatant was then mixed with equivalent volume of isopropanol and centrifuged 

again at room temperature and 14000 rpm for 30 min. Pellet was washed in 250 µl 

ethanol and centrifuged again for 10 min at room temperature and 14000 rpm. After 

discarding the supernatant the pellet dried completely and was then resuspended in 

70 µl TE buffer. For better dissolving the sample was kept at 37 °C for 10 min.  

TE buffer: 10 mM Tris-HCl; 1 mM EDTA; pH 8 

 

2.2 Cell biological methods 

2.2.1 Cell culture  

Sf9 cells were cultivated for the protein expression purposes. The Sf9 cell line was 

developed from ovaries of the fall army worm (Spodoptera frugiperda) (Vaughn et al., 

1977) and is a specific host for the baculovirus. 

Cells were grown in shaking culture at 28-30°C and 110rpm and kept at densities 

between 1 and 5*106 cells per millilitre. Cells are kept and diluted in Sf-900 serum 

free medium (SFM) (Invitrogen) supplemented with 10 % FBS and 0.1 mg/ml 

gentamycin (PAA). 

Cell density was checked daily by diluting cells in trypan blue (Sigma) solution (0.4 % 

in PBS) and counting the cells in a Neubauer counting chamber (Brand) in a Leitz 

Labovert microscope. 

 

PBS: 140 mM NaCl, 2.7 mM KCl, 1.8 mM KH2PO4, 10 mM Na2HPO4, pH 7.4 

 

2.2.1 Bac-to-bac expression system  

The next step from isolated bacmid to a construct coding baculovirus is the bacmid 

transfection into Sf9 cells. 

The DNA was coated with Cellfectin reagent (Invitrogen) and added to adherent Sf9 

cells washed in serum free medium at a density of 0.5*106 cells/ml in a 6-well culture 
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plate (Cellstar, Greiner). The samples are incubated for 5 h and then washed with 

serum free medium. Transfected cells are incubated in supplemented medium 4-7 

days. During this time the bacmid DNA is translated and virus particles are formed 

leading to cell lysis. These processes are visible as cell swelling and holes in the cell 

lawn.  

The so called P0 virus generation is harvested in that the medium (2 ml) is taken up 

into a syringe and pressed through a micro filter with 0.2 µm pore size. Virus was 

amplified by infecting larger volume (20-30 ml) of cells at 106 cells per ml with the 

virus and incubating again for 4-7 days. Intact cells and cell debris are separated 

from the virus (P1 generation) containing medium by centrifugation at 3500rpm for 10 

minutes in a 50 ml tube (Greiner). Pellets were used for test purification of the protein 

(see 2.3.1 and 2.3.2). The size was checked via SDS-PAGE and Coomassie staining 

of the polyacrylamide (PAA) gel. The respective gel bands were cut out and analyzed 

by mass spectrometry (Zentrallabor für Proteinanalytik, LMU Munich). 

For protein expression cells were grown to 2*106 cells per ml and infected with the 

amount of virus required for decent protein concentration. The amount was unique 

for every virus and virus generation and dependent on the volume of the cell culture. 

Infected cells were incubated for 48-72 h and harvested before virus particles formed 

and cell lysis occurred by centrifugation at 3500 rpm for 10 min.  

 

2.3 Biochemical methods 

2.3.1 Protein purification via 6xHis affinity tag 

Depending on the experiments proteins were purified either in PIPES or sodium 

phosphate buffer. 

Harvested cells were lysed in the lysis buffer (4 ml for 100 ml cells) and centrifuged in 

an ultracentrifuge (Beckmann L8-M, rotors 70.1 Ti, 50.2 Ti, or Beckmann Optima TL, 

rotor TLA 100.3) at 30000 rpm for 10 min to separate the cell debris from the lysate. 

The lysate was then incubated with washed Ni-NTA coated sepharose beads (Ni-

NTA agarose, Qiagen) for 1h (500µl Ni-NTA beads for 4ml cell lysate). The beads 

were washed twice with 2.5x volume Ni-NTA washing buffer. Depending on the 

volume used, the sepharose incubated with the cell lysate was either poured onto a 
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column (Poly-Prep® chromatography column, pore size 30µm, Biorad) or washed in 

the batch in an Eppendorf reaction tube. 

 

Column purification (beads volume > 100 µl): 

The fluid phase was let to flow through before the beads were extensively washed 

with the washing buffer to discard all unbound protein. Bound protein was eluted by 

300-500 mM imidazole in the elution buffer with which the beads were incubated for 

30 min on the column. 

 

Batch purification (beads volume < 100µl): 

After incubation the sample was centrifuged and the supernatant removed. Six 

washing steps were performed of resuspending the Ni-NTA agarose pellet with 

bound protein in washing buffer and a following centrifugation step. Protein was 

eluted by incubating the washed beads in the elution buffer for 30 min. 

Purified protein was either used immediately or shock-frozen in liquid nitrogen and 

stored at -70 °C. 

 

PIPES basic buffer: 80 mM PIPES, 200 mM KAc, 1 mM MgCl2, 1 mM DTT and 100 

µM ATP, when constructs containing the catalytic head domain were purified. 

Na-phosphate basic buffer: 50 mM NaH2PO4+Na2HPO4, 200 mM KAc, 1 mM 

MgCl2, 1 mM DTT and 100 µM ATP, when constructs containing the catalytic head 

domain were purified. 

Ni-NTA washing buffer: basic buffer, 10 mM -mercaptoethanol 

Lysis buffer: basic buffer, 1 % Triton-X 100, protease inhibitor cocktail (cmplete, 

Roche), 20 mM imidazole, pH 8 

Washing buffer: basic buffer, 40 mM imidazole, pH 6.3 

Elution buffer: basic buffer, 500 mM imidazole, pH 7.2 

 

2.3.2 Protein purification via Flag tag 

Affinity purification of the proteins via Flag-tag was performed analogous to the 

6xHis-tag affinity purification.  
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The cell lysate was incubated with agarose beads coated with anti-Flag antibody 

(ANTI-FLAG® M2 Affinity Gel, Sigma) for 90 min. For washing the beads were either 

poured onto the column, or washed in a batch, again depending on the volume of the 

medium. Anti-Flag beads were washed with washing buffer and subsequently with 

the same amount of basic buffer. Protein elution happened by incubating the beads 

with the elution buffer, containing a large excess of FLAG-peptide (Sigma), once or 

twice for 30 min.  

 

PIPES basic buffer: 80 mM Pipes, 200 mM KAc, 1 mM MgCl2, and 1 mM DTT (For 

purification of constructs containing the catalytic head domain 100 µM ATP were 

added.) 

Na-phosphate basic buffer: 50 mM NaH2PO4+Na2HPO4, 200 mM KAc, 1mM 

MgCl2, and 1 mM DTT (For purification of constructs containing the catalytic head 

domain 100 µM ATP were added.) 

Lysis buffer: basic buffer, 1 % Triton-X 100 and protease inhibitor cocktail 

(cmplete, Roche) 

Washing buffer: basic buffer with 500 mM KAc, 1 mM EGTA and 0.02 % Tween 

Elution buffer: basic buffer with 100 µg/ml FLAG-peptide (Sigma) 

 

2.3.3 Gel filtration 

Gel filtration was performed with the Äkta purifier 100 (GE Healthcare) and the 

Superdex 200 10/300 GL gel filtration column (GE Healthcare). Gel filtration was the 

second instance purification step after the affinity purification and was done to verify 

the integrity of kinesin-2 complexes with truncated subunits, like KLP11-C and 

KLP20-C (see the construct list on page 89 and results section 2.1.1). When 

required, samples were concentrated by centrifugation in an Amicon® Ultra 

centrifugal filter unit (10 kDa exclusion size, Millipore) before loading onto the 

column. The sample volume was 150 µl (1.5x V of the sample loop of 100µl) 

 

Gel filtration buffer: 80 mM PIPES, 200 mM KAc, 1 mM MgCl2, 1 mM DTT, 1 mM 

EGTA 
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2.3.4 Co-immunoprecipitation assays 

Sf9 cells were co-infected with two Baculoviruses, one coding for a Flag-tagged and 

one for untagged or 6xHis-tagged interaction partner. Overexpressed protein was 

affinity-purified via the Flag-tag. Elution was checked for the content of 

untagged/6xHis-tagged protein via SDS-PAGE and Coomassie-staining of the gel. 

Depending on the size of purified proteins 10-15 % PAA gels were used 

(Rotiphorese® Gel 30, Roth). Prospective gel bands were analyzed by mass 

spectrometry (ZfP, LMU Munich). 

When no co-precipitation of the 6xHis-tagged partner with its Flag-tagged partner 

was observed, Ni-NTA purification was performed to ensure that the 6xHis-tagged 

protein was indeed expressed.  

 

2.3.5 Tubulin preparation from pork brain and polymerization of purified tubulin 

Tubulin used in this work was isolated from pork brain. On the day of preparation five  

brains from freshly slaughtered pigs were collected at the local slaughterhouse and 

transported on ice. Tubulin was isolated according to Mandelkow et al. (1985) in a 

one-day process. 

For polymerization of microtubules the tubulin solution was centrifuged for 10 min at 

4 °C and 80000 rpm (Beckman ultracentrifuge Optima TL, rotor TLA 100.3 or 120.1) 

to remove denaturated and aggregated tubulin, which cannot polymerize anymore. 1 

mM GTP was added to the supernatant, which was then incubated for at least 30 min 

at 35 °C. Polymerized filaments were stabilized by adding 20 µM Taxol and 

incubating for another 30 min at 35 °C. 

For the ATPase assay (2.3.6) microtubules were purified from unpolymerized tubulin 

by a spin-down (15 min, 80000 rpm, 25 °C) over a sucrose cushion. The pellet was 

then washed and resuspended in 12A25 buffer containing 20 µM Taxol. 

The tubulin concentration was determined photometrically after denaturating 

microtubules in tubulin dimers with guanidinium hydrochloride according to Huang 

and Hackney, 1994. The concentration was calculated applying the law of Lambert-

Beer: 
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E=*c*d 
 

c (tubulin dimmers in g/l)=E280/1.03*dilution factor 
 
 

where E is the extinction of the solution measured at =280nm,  is the extinction 

coefficient of tubulin at 280nm (280=1.03), c is the tubulin concentration in g/l and d 

the path length (=1 cm). 

With the tubulin dimer size of 100 000 g/mol molar concentration of tubulin in solution 

could be determined: 

 
c (mol/l)= c (g/l)/molecular weight (g/mol) 

 

GTP: 100mM in H2O 

12A25 buffer: 12 mM Aces-KOH, 25 mM KAc, 2 mM MgAc, 0.5 mM EGTA, pH 6.8 

Sucrose cushion: 40 % Sucrose in 12A25 buffer 

 

2.3.6 Microtubule affinity assay 

Polymerized microtubules were incubated with Flag-tag purified (Methods 2.3.2) tail 

monomers and the tail dimer for 30 min at room temperature. The samples were then 

centrifuged over a 40 % sucrose cushion for 10 min at 80000 rpm and 25 °C. The 

supernatant on the sucrose cushion was carefully removed and the cushion 

discarded. The pellet was resuspended in 12A25 buffer containing 250 mM NaCl and 

incubated for 20 min at room temperature before it was centrifuged again as 

described above. The supernatant on the sucrose cushion was carefully removed 

and the cushion discarded. The pellet was resuspended in 12A25 buffer containing 

250 mM NaCl. Both supernatants and both pellets were analyzed for tail content by 

SDS-PAGE. 

 

2.3.7 Enzymatically coupled ATPase assay 

The microtubule-stimulated ATPase activity of different kinesin-2 constructs was 

measured in an assay in which the ATP hydrolysis by kinesin-2 was coupled to 

NADH oxidation by an ATP regeneration system (Figure 9).  
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The pyruvate kinase (PK) in the ATP regeneration system regenerates the 

hydrolyzed ATP so that the ATP concentration remains unchanged during the whole 

assay. Simultaneously, PK oxidizes phosphoenolpyruvate (PEP), another component 

of the regeneration system, to pyruvate, which is then reduced to lactate by lactate 

dehydrogenase (LDH), also a part of the regeneration system. NADH in the 

regeneration system acts as proton donor in this last reaction and gets oxidized to 

NAD+, so that hydrolysis of one ATP molecule by kinesin-2 is coupled to oxidation of 

one NADH molecule. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Enzymatic coupling during the ATPase assay. 
Enzymes are depicted in red, substrates in blue and reaction 
products in green. Pyruvate kinase (PK), lactate dehydrogenase 
(LDH), PEP and NADH are contained in the regeneration system. 
The diagram shows how the hydrolysis of one ATP molecule by a 
kinesin catalytic head is coupled to oxidation of one NADH 
molecule by LDH. While the hydrolyzed ATP is regenerated by PK 
the decrease in NADH concentration is followed photometrically 
at =340nm. 

 

The decrease of NADH concentration over time is followed photometrically at 340 nm 

and calculated applying the law of Lambert-Beer (2.3.5): 

 

E/t=*c(NADH)*d/t 
 

with E/t being the over time changing extinction (corresponds to maximal reaction 

velocity vmax),  being the extinction coefficient of NADH (280=6.22) and d being the 

+ 
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path length. The assay is performed in 96-well PS-microplate, flat bottom, half area 

(Greiner) with an area size A=0.15 cm2/well. The reaction volume is 50 µl 

corresponding to 0.05 cm3. The path length is thus d=0.333 cm (d=V/A). 

The coupling of hydrolysis of one ATP molecule to oxidation of one NADH molecule 

and vmax being E/t gives: 

 

cATPmax/s=(vmax/6.22*0.333) mM/s 
 
 

To determine kinesin-2 Michaelis-Menten enzyme kinetics the motor was stimulated 

with increasing microtubule concentration (cMT=1-80 µM) at constant ATP 

concentration (1mM) and the ATPase-rate (cATPmax/ckinesin-2) determined. 

Setting the ATPase rate in relation to cMT, the  kcat (the maximal number of 

hydrolyzed ATP molecules per kinesin head and second) and Km (cMT at which 

1/2vmax is reached) were determined. 

  

ATPase-rate=(kcat* cMT)/(Km+ cMT) 
 
 

E340 was recorded at 27 °C over 30 min with a spectrophotometer (Bio Tek). 50 µl 

reaction volume was composed of 37 µl microtubule dilution in 12A25 with 20 µM 

Taxol, 10 µl protein dilution with defined protein concentration (7.7 µl) and 

regeneration system (2.3 µl) in 12A25, as well as 3 µl of 15 mM Mg*ATP in 12A25 

mixed in this order. ATP starts the reaction and was therefore added just before the 

measurement. For the background measurement, either MT dilution, or ATP was 

substituted by buffer (12A25 with 20 µM Taxol).  

Depending on the construct, kinesin-2 concentration used was 50, 80 or 100 nM. 

 

12A25 buffer: 12 mM Aces-KOH, 25 mM KAc, 2 mM MgAc, 0.5 mM EGTA, pH 6.8 

ATP regeneration system: 1.5 mM NADH in 100 mM HEPES, 3 mM PEP in 12A25, 

1.6 U/ml PK, 2.2 U/ml LDH 

Taxol: 4 mM in DMSO 

Mg*ATP: 100 mM ATP in H2O, 100 mM MgCl2  
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2.4 Biophysical methods 

To assess the length and integrity of the heterologous coiled-coil between the stalks 

of KLP11 and KLP20 a number of biophysical methods was applied. Transmission 

electron microscopy (TEM) should provide a global picture of the kinesin-2 

heterotrimer. Förster resonance energy transfer (FRET) should give confidence in 

the coiled-coil length and circular dichroism (CD) spectroscopy should determine the 

number of amino acids involved in coiled-coil formation.  

 

2.4.1 Transmission electron microscopy 

For imaging of the kinesin-2 heterotrimer, purified protein particles were adsorbed 

onto glow-discharged formvar- and carbon-coated Cu400-TEM grids and then 

stained immediately using a 2 % aqueous uranyl formate solution containing 25 mM 

NaOH. Imaging was performed using a Philips CM100 operated at 100 kV. 

Particles were collected from the micrographs using “boxer” application of the EMAN 

1.9 software (http://blake.bcm.edu, National Center for Macromolecular Imaging, 

Baylor College of medicine). Particle length and distance between globular domains 

were determined using ImageJ 1.45 software (Wayne Rasband).  

 

2.4.2 In solution Förster resonance energy transfer measurements 

FRET allows detection of molecule-molecule interactions in nanometer range and is 

therefore used as molecular nanoscale. The quantitative theory on molecular 

resonance transfer was first described by Förster (Förster, 1946, 1948) and finds a 

very broad application field especially with fluorophores and is therefore also called 

fluorescence resonance energy transfer. FRET is a non-radiative transfer of energy 

from an excited donor molecule to a suitable acceptor molecule in a very close 

proximity (<10 nm). The donor and acceptor molecules are different fluorophores with 

spectral overlap. It is necessary that the emission spectrum of the donor fluorophore 

overlaps with the excitation spectrum of the acceptor fluorophore (Figure 10). Ideally, 

the maxima of these two spectra overlap and the emission spectra of the two 

fluorophores are separated. In the case that FRET occurs, the excitation of the donor 

fluorophore results in emission characteristic for the acceptor fluorophore. In addition 

to spectral overlap, FRET efficiency (E) also depends on the distance between two 
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fluorophores of the FRET pair. Decreasing efficiency with the sixth power of the 

fluorophore distance makes FRET a very sensitive method resolving in nanometer 

range.  

 
  

  

 

 

 

 

Figure 10: Donor-acceptor pairs and FRET efficiency. Left panel: CFP and YFP are a widely 
used FRET pair because the emission spectrum of CFP overlaps with the absorption spectrum of 
YFP (green area). On the other hand, the absorption spectrum of CFP overlaps only slightly with the 
absorption spectrum of YFP. This means that YFP will to the greatest extent be excited by the CFP 
emission caused by CFP excitation at certain wavelength. Such YFP excitation can, however, only 
occur if CFP and YFP are close enough, i. e. closer than 8nm (Kalab and Soderholm). Right panel: 
The solid curve represents the relationship between the efficiency of FRET and the distance 
separating the donor and the acceptor. The equation describes this relationship accurately and 
shows that the efficiency (E) decreases with the sixth exponential of the distance between the two 
probes (R). Ro is the Förster distance, that is, the distance between the donor and acceptor probe at 
which the energy transfer is (on average) 50% efficient.  

 

CFP and YFP (cyan and yellow fluorescent protein) is the most commonly used 

fluorescent protein FRET pair in which the energy is transferred from CFP to YFP 

(Figure 10). All KLP11 constructs used were Flag-tagged and fused to YFP, whereas 

all KLP20 constructs contained a 6xHis-tag and were fused to CFP. To ensure the 

greatest possible heterodimer content in the protein solution the co-expressed FRET 

pair was purified via the Flag-tag in the first instance and successively the elution 

was purified again via the 6xHis-tag. 

For the FRET measurements KLP11-YFP/ KLP20-CFP dimers were used at a 

concentration of 50 nM. The optimal protein concentration was determined by 

successive dilution of the protein solution until optimal fluorescence intensities were 

reached. For the calculation of the net FRET signal heterodimers containing only one 

fluorophore, KLP11-YFP/ KLP20 and KLP11/ KLP20-CFP, were measured in the 

YFP and the CFP channel at a concentration of 50 nM. These constructs were also 
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used to determine the ideal excitation wavelength, which turned out to be 435 nm for 

CFP and 505 nm for YFP. While the measurement in the YFP channel was a mere 

quality control, the spectra of dimers containing only one fluorophore measured in the 

CFP channel were subtracted from the actual FRET measurement (heterodimers 

with both fluorophores) to obtain the net FRET signal.  

 

Net FRET = (KLP 11-YFP/ KLP 20-CFP)CFP channel – (KLP 11-YFP/ KLP 20) CFP channel 

– (KLP 11/ KLP 20-CFP) CFP channel 

 

Subtracting the emission of KLP11-YFP/ KLP20 excited in the CFP channel 

eliminates the “bleed-through” of YFP into the CFP channel, i. e. the emission of YFP 

that occurs by direct 435 nm excitation. Subtracting the emission of KLP11/ KLP20-

CFP excited in the CFP channel removes residual CFP emission remaining after 

FRET and leaves the clean FRET signal, i. e. YFP emission after excitation by CFP 

emission. 

In the YFP channel 505 nm was the excitation wavelength and the emission was 

scanned between 500 and 550 nm with the YFP emission maximum at 530 nm. For 

the CFP channel, the emission of the fluorophores excited with 435 nm was scanned 

in the range between 470 nm and 550 nm. The CFP emission maximum lies at 490 

nm. The CFP channel is at the same time the FRET channel. For each measurement 

10 spectra were recorded and averaged at a scanning speed of 10 nm/min with 

PerkinElmer LS55 fluorescence spectrometer. 

To calculate FRET efficiency following equation was applied: 
 

E=1-(Fda/Fd) 
 

E is FRET efficiency, Fda is the fluorescence intensity of the donor in the presence of 

acceptor, Fd is the fluorescence intensity of the donor in the absence of acceptor. 

Approximate distances between fluorophores were calculated by: 
 

r=R0*(1/E-1)1/6  (from E=R0
6/R0

6-r6) 
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where r is the distance between fluorophores, R0 is the Förster radius for CFP and 

YFP (4,92nm (Patterson et al., 2000)). Förster radius is the distance at which E=0.5. 

 

2.4.3 Circular dichroism spectroscopy 

Chiral structures, such as amino acids, are optically active, meaning they rotate the 

plane of monochromatic linearly polarized light. The benzene ring in the aromatic 

amino acids phenylalanine, tryptophan and tyrosine acts as a chromophore and 

absorbs left and right circular polarized light unequally in the chiral environment, 

which results in elliptical polarization of light that passes through the sample. 

 

 

 
Figure 11: Far UV CD spectra of protein 
secondary structures. Protein secondary 
structures -helix, -sheet and random coil 
all display characteristic far UV (250-180 
nm) spectra.  The -helix and coiled-coil 
spectrum (yellow) is characterized by two 
minima at 208 nm and 222 nm and a 
maximum at 190 nm. 

 

 

 

 

By circular dichroism spectroscopy the difference in absorption for left and right 

handed components can be measured, which is then expressed as  in millidegrees 

(mdeg), which is the ellipticity of the beam outgoing from the sample. Circular 

dichroism is an excellent method for analyzing the protein secondary structure in 

solution and is also useful for following the changes in folding as a function of 

temperature. Protein secondary structures -helix, -sheet and random coil display 

characteristic far UV (250-180 nm) spectra (Figure 11). -helix and coiled-coil 

spectrum typically have two negative bands at 222 nm and 208 nm and one positive 

band at 190 nm (Chen et al., 1974). Using  at 222 nm and 208 nm from the 

recorded far UV spectrum the number of amino acids involved in coiled-coil formation 

in the construct measured can be determined by applying following equations:  
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Molar ellipticity []: 

[] = /(10*C*l)  
 

where  is measured ellipticity in mdeg, C is the molar concentration (mol/l) of the 

protein and l is the cell path in cm. [] is expressed in deg*cm2*decimole-1.  

For proteins the mean residue molar ellipticity is used []MRW: 
 

[]MRW = /(10*Cr*l) 
 

Formula is still the same, but Cr is the mean residue molar concentration:  

Cr = (n*1000*cg)/MW 

where n is the number of peptide bonds (residues), cg is the protein concentration in 

g/ml and MW is the molecular weight of the species in g/mol. 

 

Mean residue molar ellipticity at 222 nm of a 100 % -helical protein with a certain 

number of residues is predicted to be: 

 

[]222 = -40 x 103 x (1-4.6/n) (Chen et al., 1974; Gans et al., 1991) 
 
where n is the number of residues in the protein. 

 

The helical content in % of the protein measured was calculated from the observed 

[θ]222 value and the predicted mean residue molar ellipticity: 

 

-helix (%) = [θ]222 observed/[θ]222 predicted*100 
 
The number of helical residues in analyzed protein was calculated by multiplying the 

% of helical content with chain length. 

Proteins for CD spectroscopy were purified in sodium-phosphate buffer (2.3.1 and 

2.3.2) and subsequently dialyzed in pure 50 mM sodium-phosphate buffer 

(sample:dialysis buffer=1:2000) to remove FLAG-peptides, imidazole, DTT and salt 

because of their absorbing properties in the UV range. Dialysis was performed in 

Slide-A-Lyzer dialysis cassettes (Thermo scientific) twice for one hour. 
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Far UV spectra 

To determine the number of residues involved in coiled-coil formation in kinesin-2 

heterodimer, circular dichroism spectra were recorded between 250 and 190 nm in a 

JASCO 815 spectrometer in a thermostatically controlled (20 °C) quartz cell of 0.1 

cm path length. Accumulation and averaging of 10 spectra was performed with a 

scanning speed of 20 nm/min, response time 4 s and band width 1 nm.  Spectra 

were normalized to their mean residue molar ellipticity [θ]MRW (deg*cm2*dmol-1). 

 

Temperature-dependent CD spectroscopy  

To analyze dimer stabilities and helix-coil transitions, temperature-dependent 

spectrum measurements were performed. Temperature was raised from 10 °C to 80 

°C with 2 °C/min. Spectra were recorded every 5 °C (50 nm/min, 5 accumulations) 5 

minutes after the temperature was reached between 250 nm and 190 nm. Spectra 

were normalized to their mean residue molar ellipticity [θ]MRW (deg*cm2*dmol-1) and 

analyzed for isodichroic point.  

 

Melting curves 

To determine the melting temperature of coiled-coils melting curves were recorded 

by following the change of [θ]222 between 20 °C and 80 °C with a temperature slope 

of 2 °C/min, a response of 16 s and band width of 1 nm. Fraction of folded protein at 

a given temperature was calculated by equation: 

 
ff = ([θ]-[θ]u) / ([θ]n - [θ]u) 

 
[θ]n and [θ]u represent the ellipticity values for the fully folded and fully unfolded 

species, respectively. [θ] is the observed ellipticity at 222 nm at any temperature. 

Melting temperature is at ff = 0.5 (Greenfield, 2006). 

 

All spectra were deconvoluted manually using equations above, as well as by using 

Dichroweb (Provencher and Glockner, 1981; van Stokkum et al., 1990; Whitmore 

and Wallace, 2004, 2008). Both methods delivered the same results.  
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Results 

1 Regulation of the catalytic activity 

To prevent ATP waste in the cell a mechanism must exist that regulates kinesin’s 

catalytic activity when the motor is not engaged in active transport of cargo. While 

the autoinhibition mechanism is well studied for the kinesin-1 family, only little is 

known how the regulation is accomplished in kinesin-2. The homodimeric family 

member seems also to be regulated by autoinhibition like kinesin-1, a process in 

which the tail domains play essential role (Imanishi et al., 2006; Hammond et al., 

2010). 

There are only few indications that the tail domains may be a part of regulation 

mechanism in heteromeric kinesin-2. Brunnbauer et al. (2010) showed that 

replacing the two glycine residues at the helix breaker position by glutamates in 

both motor chains leads to a constitutively active motor. In line with results obtained 

from kinesin-1, this result suggests that preventing folding of the tail domains onto 

the catalytic heads serves as an activating switch in kinesin-2 as well. Furthermore, 

this study demonstrated that solely switching the head positions also abolishes the 

ability of autoinhibition. These results together not only emphasize a potential role 

of the tails in the regulation of catalytic activity, but they also indicate that the 

different tails might have distinct tasks in this process. It can be speculated that 

specific interaction sites between the heads and the tails exist, and that the heads 

and the tails must be in their proper position for autoinhibition to work.  

Comparing the catalytic properties of a number of different mutations and 

truncations of KLP11 and KLP20 in monomeric and dimeric state in ATPase assays 

(Methods 2.3.6) promises mechanistic insights into this regulation process. 

 

1.1 Tail domains are necessary for motor inhibition 

To test the tails’ potential role in inhibiting the ATPase activity of the motor heads of 

KLP11 and KLP20, the catalytic activity of the wild type motor was not only 

compared to the EE-mutant, but also to that of a truncated motor dimer lacking the 

tail domains at the C-terminus (Figure 12). 
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In the EE-mutant the helix-breaker residues, G450S451 in KLP11 and G444G445 in 

KLP20 (Figure 6), were replaced by glutamates. If the heterodimer is indeed able to 

fold at the helix-breaker position, replacing the flexible residues by glutamates 

should prevent the potential interaction of heads and tails. Figure 12 shows that 

removal of the flexible residues in the stalk abolishes the capability of the motor to 

autoinhibit its catalytic activity (blue line). To directly demonstrate the involvement of 

the distal tails in autoinhibition, a C-terminally truncated motor that contains the wild 

type stalk was tested. This construct is potentially able to perform autoinhibitory 

folding but lacks the putative inhibitory tail regions. 

Figure 12 depicts the average activities of the three motor variants in the form of 

Michaelis-Menten kinetics. The kcat of the motor lacking the tail domains (green line) 

is indistinguishable from the previously described EE-mutant, demonstrating that 

the absence of the C-terminus prevents autoinhibition and confining the inhibitory 

domain to the distal tails. Taken together, these results demonstrate that preventing 

folding and/or eliminating the tails abolish inhibition in the KLP11/20 motor. 

 

 

Figure 12: Influence of the tail domain and the helix breaker on the catalytic activity 
of kinesin-2. The wild type full-length motor displays almost no activity (red). Mutating the 
helix breaker and thus abolishing the flexibility of this position leads to a robust motor activity 
(blue). Almost the same activity is achieved by deleting the random coil (RC) tail (green). This 
result confirms the role of the helix breaker and the tail region in regulation of motor activity. 
Furthermore, the decreased affinity for microtubules (Km) of KLP11/20noRC indicates a new 
role of the tail domain in MT binding. kcat is the catalytic constant giving the number of 
hydrolyzed ATP molecules per kinesin head and second.  

 

MT [µM] 
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1.2 Tail domains could anchor the inactive motor to microtubules 

Interestingly, the motor without the tails shows considerably lower affinity for 

microtubules compared to the EE-mutant (Km in Figure 12), which points to an 

additional role of this domain. The tail’s affinity for microtubules was already 

described in the case of kinesin-1 (Dietrich et al., 2008) along with its additional role 

as an anchor, so that inactive motor does not diffuse from the track but is ready for 

a new transport event. 

Whether kinesin-2 tail domains show affinity for microtubules for themselves was 

tested in the microtubule affinity assay (Methods 2.3.6). Figure 13 demonstrates 

that both tails (KLP11-C and KLP20-C, constructs 31 and 32, page 91) indeed 

interact with the filaments, as they co-pellet through a 40 % sucrose cushion. If no 

interaction between the tails and the filaments occurred, the tails would stay in the 

supernatant on the cushion. 

Figure 13 further shows that this interaction, if of ionic nature requires salt 

concentrations higher than 250 mM to be reversed, which points to a rather stable 

binding of the interaction partners. Thus, the tail domains of kinesin-2 could, as well 

as in kinesin-1, serve as an anchor of the inactive motor.  

 

 

Figure 13: Both kinesin-2 tails bind to microtubules. The mixture of tails and microtubules 
contains 50 mM KAc. After the first centrifugation step (gel on the left) both tails, as well as the tail 
dimer are found in the pellet (P) with microtubules. In the case of KLP11 tail a small portion is also 
found unbound in the supernatant (S, blue asterisk) along with unpolymerized tubulin. The same is 
probably true for KLP20 tail but due to its smaller size it is not visible after Coomassie-staining at this 
concentration. The pellet was resuspended in buffer now containing 250 mM KAc. After the second 
centrifugation step (gel on the right) tails were still found associated with the microtubules. This 
time no unbound tail was detected in the supernatant. KLP11 tail is depicted by a blue and KLP20 by 
a red asterisk. S=supernatant, P=pellet, M=protein marker (sizes in kDa).  
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1.3 Inhibition requires dimeric state of the heads 

To test which tail influences which head, truncated monomeric motors were used 

that include only the catalytic head domain and the neck linker. Purified C-terminal 

tails of KLP11 and KLP20 along with the tail heterodimer were added in trans to the 

monomeric motor in motor to tail molar ratio of 1:20.  

Non-inhibited heads were both robustly active showing even higher kcat values than 

the EE-mutant (Table 1). This truncation effect is also observed for kinesin-1 (Coy 

et al., 1999; Hackney and Stock, 2008; Adio et al., 2009) and indicates the 

necessity of regions further C-terminal for motor regulation. Surprisingly, none of 

the tail combinations added in trans had an inhibitory effect on the monomeric 

KLP11 and KLP20 head compared to the non-inhibited control (Figure 14, Table 1). 

Interestingly, previous experiments with kinesin-1 demonstrated that the tail domain 

of only one chain interacts with both heads of the dimeric molecule whereas the 

monomeric heads showed no significant inhibition (Hackney et al., 2009). To test if 

this also applies to the kinesin-2 motor, the KLP11 and KLP20 head domains were 

homodimerized by the GCN4 leucine zipper. Homodimerization was necessary to 

distinguish which tail influences which head’s kinetics (Figure 14).  
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Figure 14: Kinesin-2 motor heads must be in dimeric state to be inhibited. While homodimerized 
kinesin-2 heads, KLP11 GCN4 and KLP 20 GCN4, could be partially inhibited by adding tail constructs in 
trans, no such effect was observed with monomeric heads excluding the possibility that the inhibition is 
due to crowding effects caused by the presence of excess of tail constructs. Red line: non-inhibited 
motor, blue line: KLP11 tail added, green line: KLP20 tail added, black line: KLP11/20 tail dimer added. 

 

Again non-inhibited motor was compared with samples where tails were added in 

trans (1:20 molar ratio of heads and tails). The activities of the artificially dimerized 

motors were reduced to 80 % compared to the control (Table 2). KLP11 GCN4 

homodimer could be most effectively inhibited by the tail dimer (residual activity 

79.5 %), followed by the KLP20 tail (87 %) and the KLP11 tail (88.4 %). KLP20 

GCN4 homodier was most effectively inhibited by the KLP20 tail (80.5 %) followed 

by the KLP11 tail (86 %). The tail dimer could reduce the ATPase activity of KLP20 

GCN4 head dimer only to 93 %. 

 

Table 1. Comparison of the catalytic activity of different kinesin-2 motor variants  

Inhibitor1 non-inhibited KLP11-C KLP20-C KLP11/20-C 

Motor kcat 

KLP11 mono 32.4 31.5 31.1 35.0 

KLP20 mono 24.4 30.4 30.4 24.6 

KLP11 GCN4 46.7 41.2 40.6 37.7 

KLP20 GCN4 50.3 43.3 40.5 46.9 

KLP11/20 EE 22.6 12.2 14.1 14.3 

1Inhibitors were added in 20fold molar excess 

 

 

Unfortunately, the KLP11/20 GCN4 head heterodimer could not be purified in 

amounts needed for the ATPase assay, nor did the tandem protein purification 

result in the required 1:1 molar ratio for the heterodimer. 

Taken together, the homodimeric heads could be partly inhibited in trans. However, 

the extent of the observed inhibition is rather low. It is conceivable that the inhibition 

in trans requires higher concentrations of the tail domains to take greater effect. Or, 

more likely, the artificially dimerized motors via the GCN4 leucine zipper may not 

represent a close enough mimic for the kinesin-2 dimeric state. 

In fact, Brunnbauer et al. (2010) demonstrated that the heads in the KLP11/20 

heterodimer must be in their wild type positions for the motor to be autoinhibited. 
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Swapping the positions of the head domains leads to a constitutively active motor. 

In line with these results, a significant reduction of ATPase activity was observed 

with the EE-mutant when the tails were added in trans. The EE-mutant was most 

effectively inhibited by the KLP11 tail where the ATPase activity was reduced to 54 

%. KLP20 tail and the tail dimer showed the comparable effects of reducing the 

motor activity to 62 %. 

 

Table 2. Inhibitory potential of the tails on the kinesin-2 motor constructs  

Motor 
 Residual ATPase rate1  

 inhibitor  

KLP11 GCN4 
79.8 % 87% 8.,4% 

KLP11/20-C KLP20-C KLP11-C 

KLP20 GCN4 
80.5% 86% 93% 

KLP20-C KLP11-C KLP11/20-C 

KLP11/20 EE 
54% 62%  

KLP11-C KLP20-C and KLP11/20-C 

1compared to the motor activity without inhibitor added 

 

 

1.4 Co-immunoprecipitation of inhibitors with motors 

Although it was possible to inhibit the motor constructs in trans by adding different 

tails, these experiments failed to identify which tail affects which head. The KLP11 

and 20 GCN4 head homodimers as well as the EE-mutant all display different 

inhibition patterns (Table 2). To show direct interactions between the tails and motor 

domains, tails were co-expressed with monomeric and homodimeric head 

constructs and their interaction analyzed by pull-down experiments (co-IP). Co-

expression with the EE-mutant made no sense because asymmetric dimers would 

have formed (Results 2.1.3) leading to false positive results. For the co-IPs the salt 

concentration in all buffers (Methods 2.3.2) was reduced to 50 mM KAc to stabilize 

the possibly weak head-tail interaction as seen with kinesin-1. 

None of the monomeric heads pulled down any of the tails (Figure 15), which is 

consistent with the lack of inhibitory effect on these motor constructs. Also KLP20 

GCN4 failed to show co-precipitation with the tail constructs. Only KLP11 GCN4 
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seems to form a stable interaction with the KLP20 tail (Figure 15). This result 

underlines the requirement of a dimeric state of the heads to interact with the tail, as 

the monomeric KLP11 head does not interact with KLP20 tail. 

 

 

Figure 15: KLP20 tail stably binds to KLP11 head. 6xHis-tagged tails in 
monomeric and dimeric state were co-expressed with Flag-tagged kinesin-2 head 
monomers and GCN4 homodimers. Tails were only co-purified with KLP11 GCN4 
and this only in presence of KLP20 tail (blue asterisks). KLP11 tail alone was not 
co-precipitated. Protein bands indicated by red asterisks were identified as mouse 
IgG, which originates from the Anti-Flag resin. This result indicates a stable 
interaction between KLP11 head and KLP20 head. The head must, however, be in a 
dimeric state. Identities of the protein bands were confirmed by LC-MS/MS. 
Marker (M) protein sizes are in kDa. 
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2 Domain assembly  

Kinesin-2 is so far the only double-headed motor which combines two distinct 

catalytic subunits along with a non-catalytic accessory subunit to one functional 

heterotrimeric entity.  To reveal how the two motor domains dimerize and where the 

accessory subunit (KAP) binds to the motor dimer, truncated KLP11 and KLP20 

constructs were generated to be tested in different biochemical and biophysical 

assays. All truncation constructs used in this study are listed in the construct list on 

page 89. 

 

2.1 Dimerization of truncated KLP11 and KLP20 constructs 

To test the dimerization properties of different motor truncations differently tagged 

KLP11 and KLP20 constructs were co-expressed in Sf9 cells and then purified. 

Since the affinity tag purification aims only at one binding partner, obtaining both 

motors by co-immunoprecipitation (co-IP) indicates a stable interaction of KLP11 

and KLP20. 

 

2.1.1 The C-terminal half of the stalk is necessary and sufficient for 

heterodimerization of KLP11 and KLP20 

In the first step the wild-type KLP11 and KLP20 motors were cut in half at the 

predicted helix breaker positions G451/S452 in KLP11 and G444/G445 in KLP20 (Figure 

6). The helix breaker separates the stalk in two halves of the same length and 

functions as a hinge-joint whose flexibility is important for autoregulation in kinesins 

(Results 1.1) (Hammond et al.; Imanishi et al., 2006; Brunnbauer et al., 2010; 

Hammond et al., 2010). The N-terminal halves, KLP11-N1-449 and KLP20-N1-443, 

comprise the head and the stalk up to the helix breaker position (Figure 17), 

whereas the C-terminal halves, KLP11-C450-782 and KLP20-C444-646, include the helix 

breaker, the C-terminal half of the stalk, and the C-terminal tail that is predicted be a 

random coil (Figures 16 and 20). Both halves of the stalk are predicted to form a 

coiled-coil (Figure 16) (Lupas et al., 1991).  
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Figure 16: Coiled-coil predictions for KLP11 and KLP20. Virtually the entire 
stalk region in KLP11 and KLP20 is predicted to form a coiled-coil (Lupas et al., 1991). 
The predictions are, however, limited to homodimeric coiled-coil formation. 
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Using the Baculovirus expression system (Methods 2.2.1) N-terminally Flag-tagged 

KLP11-N1-449 was co-expressed with N-terminally 6xHis-tagged KLP20-N1-443. 

Likewise, the N-terminally 6xHis-tagged KLP11-C450-782 was co-expressed with N-

terminally Flag-tagged KLP20-C444-646. Unexpectedly, despite its 13 predicted 

heptad repeats, attempts to co-purify the truncated KLP20-N with its Flag-tagged 

KLP11-N counterpart were not successful (Figure 17A). This is not due to failed 

expression of KLP20-N1-443, as pull down experiments with Ni-NTA confirmed the 

presence of 6xHis-KLP20-N1-443 in the cell lysate (Figure 17A).  
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Figure 17: The C-terminal half of the stalk is necessary and sufficient for motor dimerization. 
The motor was cut at the helix breaker position. (A) Pull-down experiments of the N-terminal halves. 
The cell lysate was split for two different purification procedures, via anti-Flag and Ni-NTA, respectively, 
to ensure that both proteins are expressed successfully. The co-expression did not pull down the 
corresponding partner and was indistinguishable from the single expressions (single expr.). (B) Pull-
down experiments of the C-terminal halves. Single expressions were performed with KLP11-Flag and 
KLP20-Flag. For co-expressions (co-expr.) KLP11-6xHis and KLP20-Flag constructs were used. Co-
purification of KLP11-6xHis along with KLP20-Flag via anti-Flag showed heterodimerization of these 
two polypeptides. Proteins were analyzed by SDS PAGE. The identities of all protein bands were 
confirmed by mass spectrometry (LC-MS/MS). Marker protein sizes are shown in kDa. 

. 

 

In corresponding experiments with Flag-tagged KLP20-C444-646, its 6xHis- KLP11-

C450-782 counterpart faithfully co-purified (Figure 17B). According to these results 

only the C-terminal half of the stalk is capable of forming a stable coiled-coil by itself 

and is not only sufficient but also necessary for dimerization.  

To test the specificity and stability of this C-terminal heterodimer size-exclusion 

chromatography was employed. The protein eluted as a mono-disperse population 

in a 1:1 molar ratio, as SDS-PAGE analysis shows, ruling out a possible 

dissociation into monomers (Figure 18). Theoretically, the heterodimer could 

dissociate into monomers and subsequently form homodimers, which would not be 

separated using size-exclusion chromatography owing to their similar sizes. To rule 

out this possibility, the heterodimeric complex was re-co-precipitated from the 

eluted fractions using the Flag-tag at the KLP20 subunit in a 1:1 ratio (Figure 18, gel 

on the right). Taken together, the protein is faithfully purified as a specific 

heterodimer and remains as such after the size exclusion chromatography. These 

results underline that the C-terminal halves of the KLP11 and KLP20 polypeptides 

form a specific and stable heterodimer, as does the full length KLP11/20 

(Brunnbauer et al., 2010). 
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Figure 18: Size exclusion chromatography of KLP11/20-C reveals its heterodimeric 
state. Both interacting partners are always present in a 1:1 molar ratio. Presence of monomeric 
or even homodimeric KLP11 or KLP20 could not be detected. The same result was published for 
wild type KLP11/20 (Brunnbauer et al., 2010) demonstrating the high specificity of 
heterodimerization. Purifying pooled fractions 11 and 12 via FLAG-tag (Flag-KLP20-C; 6xHis-
KLP11-C) after gel filtration again delivered a heterodimer with 1:1 molar ratio of interacting 
partners, thus further underlining the stability and specificity of the heterodimer. 

 
 

2.1.2 Heterodimerization of KLP11/20 is triggered by a seed located at the C-

terminal end of the stalk 

Is the N-terminal half of the stalk sequence only an unstable coiled-coil, which can 

be stabilized by including regions further C-terminal, or is a region in the C-terminal 

half of the stalk necessary to induce dimerization? 

To test possible stabilizing properties of the C-terminal half of the stalk the N-

terminal pair of KLP11-N1-449 and KLP20-N1-443 was systematically extended 
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towards the C-terminus. In six consecutive steps these constructs were elongated 

by adding sets of at least 12 amino acids up to a chain length of KLP11-N1-530 and 

KLP20-N1-525 (Figure 19A). The longest constructs KLP11-N1-530 and KLP20-N1-525 

lack just three predicted heptads of the C-terminal end of the stalk (Figures 6 and 

16). Again, none of the extensions led to co-purification (Figure 19A, gel). These 

findings predict a distant, C-terminal region to be necessary for heterodimer 

formation. 

Including this C-terminal portion of the stalk (amino acids 531-548 yielding KLP111-

548 and amino acids 526-550 yielding KLP201-550) led to successful co-purification of 

both polypeptide chains (Figure 19B). This result demonstrates that the C-terminal 

tails (KLP11-RC548-782 and KLP20-RC550-646), both predicted to be random coils (RC) 

(Lupas et al., 1991; Tripet et al., 2000), are not required for heterodimerization. 

Indeed, co-expressed random coil tails KLP11-RC and KLP20-RC did not form 

dimers (Figure 20). This leads to the conclusion that the C-terminal end of the stalk 

(i.e., KLP11530-548 and KLP20525-550) includes a trigger without which heterodimer 

formation of the full-length KLP11/KLP20 motor is not possible. 

To test whether this C-terminal region of the stalk is sufficient to form dimers on its 

own, and in an attempt to define the shortest sequence that is sufficient for 

dimerization, the random coil tails KLP11-RC548-782 and KLP20-RC550-646 were 

elongated by, respectively, 10, 18, and 24 amino acids of the stalk towards the N-

terminus (Figure 19C). These roughly correspond to the last one, two or three 

heptads of the stalk. Accordingly, these constructs were named RC+1, RC+2, and 

RC+3.  

While KLP11-RC548-782 and KLP20-RC550-646 did not dimerize (Figure 20), their 

elongation by merely 10 amino acids towards the N-terminus (RC+1) already led to 

co-purification, as did RC+2 and RC+3 (Figure 19C). Thus, surprisingly, merely 10 

amino acids of the C-terminal end of the stalk are sufficient to act as a seed for 

heterodimerization, requiring neither the preceding nor the following amino acids. 
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Figure 19: The C-terminal end of the stalk is essential for KLP11/20 dimerization. (A) The N-
terminal halves of KLP11 and KLP20 in Figure 17A were elongated in six steps to include increasing 
numbers of residues from the stalk region. None of these extensions resulted in co-purification of the co-
expressed partners (gel). To exclude the possibility that lack of protein expression is responsible for the 
obtained results, for each case the cell lysate was divided in two equal parts for Ni-NTA and -Flag 
purification, respectively, to demonstrate that both polypeptides were expressed properly. Marker 
protein sizes are shown in kDa. (B) Dimerization takes place only if the entire stalk region is included as 
shown schematically on the left panel. The right panel shows the successful co-purification of KLP11-
6xHis with KLP20-Flag via anti-Flag. (C) An elongation of the random coil tails (RC) towards the N-
terminus by merely 10 residues is sufficient for co-purification via anti-flag. Numbers correspond to the 
amino acid positions in the full-length chain. The identities of all protein bands were confirmed by mass 
spectrometry (LC-MS/MS). Marker protein sizes are shown in kDa. 
 
 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 20: Random coil tails do not dimerize. (A) The probability of the C-termini of KLP11 
(upper panel) and KLP20 (lower panel) to form a coiled-coil is predicted to be zero (COILS, Lupas et 
al., 1991). (B) According to the coiled-coil predictions none of the attempts to co-purify the co-
expressed random coil tails from the cell lysate were successful. The identity of all protein bands 
was confirmed by LC-MS/MS (*=keratin). Marker protein sizes are shown in kDa.  
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2.1.3 Full-length partner cannot compensate for the C-terminal truncation in 

the other motor 

All truncated constructs were combined with their respective full-length (FL) partner 

in asymmetric co-expression and co-precipitation experiments (Figure 21A). Again, 

all N-terminally truncated constructs still containing the C-terminal end of the stalk 

dimerized with their FL partner despite different length of the interacting partners 

(Figure 21C). None of the C-terminally truncated constructs formed an asymmetric 

dimer with their FL partner (Figure 21B), confirming the necessity of the C-terminal 

end of the stalk for dimerization. It must be provided in both interacting partners 

since no length of the partner stalk can compensate the missing end. This short 

sequence of only 10 amino acids is thus the seed for heterodimerization of KLP11 

and KLP20, and is absolutely necessary to induce coiled-coil formation.  
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Figure 21: Asymmetric co-expressions of kinesin-2 variants. A wild-type motor chain was co-
expressed with each truncation variant of the partner chain. (A) Full-length wild type motors are 
depicted separately as linear maps with indicated domains and the helix breaker position. In the upper 
panel all C-terminal truncations are presented in one linear map each for KLP 11 (blue) and KLP 20 
(red). The elongations of KLP11/20-N are shown as white lines with the ending amino acid position and 
named N+1 to 6. None of these co-expressions led to co-precipitation of the partner (red cross and gels 
in (B)). The lower panel depicts the elongations of the random coil tail in a single linear map. Starting 
positions are represented by a white line and named RC+1 to 3. Each of the N-terminally truncated 
variant was successfully co-precipitated with its full-length partner (green sign and gels in (C)). (B) The 
upper gel shows representative co-purifications of full-length wild type 6xHis-KLP11 with the two 
longest variants of C-terminally truncated Flag-KLP20 (N+5 (+5) and N+6 (+6)). Flag-purification 
delivered KLP20 bands but no KLP11 band, the expected position of which is depicted by “KLP11 wt” 
next to the gel. The lower gel shows representative co-purifications of full-length wild type Flag-KLP20 
with the longest variants of C-terminally truncated 6xHis-KLP 11 (N+4 to 6). Tandem purification again 
shows that no heterodimer formation occurs. (C) The upper gel shows the co-immunoprecipitation of 
the full-length wild type KLP11 with RC-elongations of KLP20. In the lower gel the tandem purification 
(Flag and Ni-NTA) of the full-length wild type KLP20 with RC-elongations of KLP11 is depicted. In both 
cases heterodimers could be isolated underlining the importance of the end of the stalk and that the 
dimerization seed consists of this part of the chain in both interacting partners. In (B) and (C) numbers 
on the left edge of the gels represent protein marker sizes in kDa.  
 

 

 

2.1.4 Kinesin Associated Protein (KAP) binds only to KLP11 

The C-terminal part of the motor is not only necessary for dimerization, but is also 

supposed to be the binding site of the third subunit of the complex, kinesin 

associated protein (KAP). Co-immunoprecipitation experiment with Flag-tagged 

KLP20 and 6xHis-tagged KLP11 and KAP revealed that the KLP11/20 C-terminal 

dimer was sufficient for KAP binding (Figure 22A). To test whether the dimerized 

state of motor tails is a prerequisite for interaction with KAP, KAP was co-expressed 

with differently tagged KLP11-C and KLP20-C, respectively. The pull-down of Flag-

tagged motor tail and 6xHis-tagged KAP revealed that not only no dimerization of 

tail domains is required, but also that KAP solely binds to KLP11-C (Figure 22B), 

which is 100 amino acids longer at the C-terminus than KLP20-C (Figure 6). 

 

 

 

 

 

 

 



 

Results 

 

 53 

 

 

 

 

 

 

 

 

Figure 22: KAP binds to the C-terminal half of KLP11. (A) Co-expression of KAP with the C-
terminal half of kinesin-2 led to successful trimer formation. The complex was isolated by Flag-
purification using Flag-KLP20-C and 6xHis-KLP11-C and 6xHis-KAP. (B) Co-expressing 6xHis-KAP with 
each motor chain half (Flag-tagged) separately showed that KAP binds only to KLP11-C. Protein marker 
sizes (M) are in kDa.  
 

To further investigate if KAP binds to the random coil tail or the C-terminal half of 

the stalk in KLP11, KAP was co-purified with the KLP11 random coil (RC) tail 

(construct nr. 23 in the list of constructs, page 89) and the C-terminally truncated 

motor lacking the random coil KLP111-548 (construct nr. 5), respectively. Figure 23 

shows KAP interaction only with the RC tail. Binding of KAP to this domain of 

KLP11 can be an explanation for its larger size compared to the corresponding 

region of its partner motor KLP20. 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: KAP binds to the random coil tail of KLP11. To determine whether KAP binds to the 
random coil tail or to the C-terminal part of the stalk KAP was co-expressed with KLP11-RC (A) and 
KLP11 no RC (KLP111-548, (B)), respectively. Whereas 6xHis-KAP was pulled down by Flag-KLP11-RC 
(lane A in the gel, KAP indicated by an asterisk), no co-purification of 6xHis-KAP occurred with Flag-
KLP111-548 (lane B in the gel). Because of the similar sizes of KAP and KLP111-548 the upper border of the 
protein band was analyzed by LC-MS/MS but no KAP was detected. Protein marker sizes are in kDa.  
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Looking at KLP11 RC tail more closely and comparing it with kinesin-2 orthologues 

from Chlamydomonas, sea urchin and mouse, a short motif in the middle of the 

random coil tail appeared to be somewhat conserved among species (T-Coffee 

8.93). It was intriguing to test whether this short sequence (construct nr. 39) was the 

actual interaction site with KAP. Furthermore, KAP was also truncated to include 

only the Armadillo-repeats (Figure 6, construct nr. 38). Successful co-

immunoprecipitation showed that the small region from the KLP11 RC tail and the 

Armadillo-motif in KAP are indeed sufficient for interaction of these two binding 

partners (Figure 24). Neither the N-terminal, nor the C-terminal end of KAP is 

necessary for the interaction with the motor. 

 

 

 

 

 

 

 

 

Figure 24: Small conserved region in the random coil of KLP11 and the 
Armadillo-motif in KAP are sufficient for interaction. The identity of protein bands 
from the gel was confirmed by LC-MS/MS.  

 

2.2 Transmission electron microscopy of the wild type kinesin-2 

reveals an extended coiled-coil 

The pull-down experiments demonstrated the necessity of the C-terminal end of the 

stalk to induce coiled-coil formation between KLP11 and KLP20. Moreover, the N-

terminal halves of the prospective dimerization domains of these two heterodimer 

partners cannot form a complex on their own. These results raise questions about 

the extent of coiled-coil formation in the wild-type KLP11/KLP20 heterodimer and its 

consequences for the structural organization of kinesin-2. Is the seed the sole 

dimerization site, leaving the heads hanging on the undimerized N-terminal portions 

of the stalk? This is a tempting speculation considering the inability of C-terminally 

KLP11 
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truncated constructs to dimerize. Or does the seed trigger the formation of a coiled-

coil along the entire stalk, bringing the heads into close proximity? Completely 

dimerized stalks are generally considered characteristic for kinesins. The coiled-coil 

length and the degree of flexibility of the heads would certainly affect the stepping 

behavior of the motor, therefore transmission electron microscopy (TEM) should 

clarify the molecular structure of the KLP11/KLP20/KAP heterotrimer. If the entire 

stalk dimerizes, the two heads are expected to be found in close proximity to each 

other.  

For this experiment all three wild type protein subunits, KLP11, KLP20 and the 

accessory subunit, KAP, were co-expressed in Sf9 cells. A Flag-tag at the C-

terminus of KLP20 was used to pull down a trimeric complex from the cell lysate in 

the subunit ratio of 1:1:1 and very high purity (Figure 25, right panel).  

TEM shows two globular domains at one end of a rod-shaped structure and a single 

globular domain at the other (Figure 25, left panel). The calculated (Image J) overall 

length is 56.31 nm    5.9 nm (n=183), which is in good agreement with values of 

other orthologues (Kondo et al., 1994; Yamazaki et al., 1995; Wedaman et al., 

1996). The two globular subunits and the single globular domain appear to be 

connected by a single thin shaft that possesses a certain degree of flexibility. Our 

micrographs thus indicate the presence of a coiled-coil structure along a significant 

portion of the stalk, which brings the two globular domains into proximity of 10.9 nm 

 1.79 nm as measured between the centers of the globular domains.  

 
Figure 25: Transmission electron microscopy indicates a long stalk and motor heads in 
close proximity. The micrograph shows representative images of the KLP11/20/KAP trimeric 
complex (n=183). Quantification of recorded particles delivered a motor length of 56.31 nm  5.9 
nm and an average distance between the centers of the motor domains of 10.9 nm  1.79 nm. Bar, 
50 nm. Right panel shows the pull-down of the heterotrimeric complex used for TEM recordings via 
the Flag-tagged KLP20 polypeptide chain. 
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However, TEM is a relatively low-resolution method to assess the integrity of a 

coiled-coil and surface interactions may affect the overall integrity of the protein. 

Therefore a sensitive, solution-based spectroscopy was next applied to interrogate 

the molecular anatomy of the KLP11/20 stalk.   

 

2.3 FRET analysis confirms the close apposition of the two heads 

when the full-length stalk is present 

Förster resonance energy transfer (FRET) was used as a molecular nanoscale to 

determine whether the heads are indeed brought into close proximity by stalk 

dimerization over the whole length, as suggested by TEM. To this end, the wild type 

motor domains were replaced by either cyan (donor) or yellow (acceptor) 

fluorescent protein (CFP or YFP) (Figure 27). This FRET pair is ideal for two 

reasons. First, an efficient FRET signal is obtained if the fluorophores are less than 

10 nm apart (Wu and Brand, 1994; Lakowicz, 1999; Shaner et al., 2005; Shaner et 

al., 2007), which is the expected distance of the two heads if the stalk forms an 

extended coiled-coil (see TEM results 2.2). Second, the dimensions of the 

fluorophores are similar to the actual size of the kinesin heads. The KLP11 head 

was replaced by YFP (KLP11-YFP) and the KLP20 head by CFP (KLP20-CFP) 

(Figure 27). The presence of two different affinity purification tags on the two 

polypeptide chains (KLP20-CFP-6xHis-tag and KLP11-Flag-tag) allowed the 

purification of heterodimers in a 1:1 ratio (Figure 26).  

 

 

Figure 26: Co-expression of the FRET 
constructs. Differentially tagging KLP11 and 
KLP20 FRET-constructs (Flag-tag and 6xHis-
tag, respectively) enabled dimer purification 
in a 1:1 molar ratio. FL-KLP11-YFP/FL-KLP20-
CFP comprises the entire stalk; (RC+2)-KLP11-
YFP/(RC+2)-KLP20-CFP serves as a positive 
control; (RC+2)-KLP11-YFP/FL-KLP20-CFP 
and FL-KLP11-YFP/(RC+2)-KLP20-CFP serve 
as negative controls. Marker protein sizes are 
shown in kDa. 
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Depending on the extent of the coiled-coil, the following predictions can be made: If 

the coiled-coil starts at the C-terminal end and zips up the entire stalk, the two 

fluorophores at the N-terminus will be placed in close proximity, allowing FRET to 

occur. If however, coiled-coil only forms at the C-terminal end of the stalk, FRET will 

be highly unlikely. Indeed, a clear FRET signal for full-length KLP11/20 could be 

obtained (Figure 26, bottom panel).  

As a positive control served a fusion construct of the fluorohores with the RC+2 

pair, where due to its short dimerization sequence of 18 amino acids (Figure 19C) 

the fluorophores must be within FRET distance. RC+2 was used rather than RC+1 

because of its greater stability and greater yield after purification. This construct 

also displays an unambiguous FRET signal (Figure 26, middle panel).  

For generating a negative control the ability of asymmetric dimerization of full-length 

and an N-terminally truncated partner was exploited (Results 2.1.3, figure21). The 

negative control was a dimer consisting of full-length KLP11-YFP and KLP20-RC+2 

linked to CFP.  This pair dimerizes via the seed sequence at the C-terminal end of 

the stalk, but the two fluorophores are placed too far apart (> 20 nm) for FRET to 

occur (Figure 26, top panel).  

After determining FRET efficiencies, approximate FRET distances were calculated 

(Methods 2.4.2) to be 4.6 nm in the positive control and 4.95 nm in the full-length 

construct. No distance information for the negative control could be calculated due 

to the lack of a FRET signal. The lack of a positive FRET signal is explicable given 

the motor’s overall length of 50 nm. With a fluorophore size of 5 nm (Shaner et al., 

2007) the distance between the two fluorophores is expected to be over 20 nm.  

Taken together, these findings demonstrate that the coiled-coil must encompass a 

stalk domain large enough to place the motor heads within a distance of between 3 

nm and 8 nm, a distance range for sensitive FRET measurements with CFP and 

YFP (Kalab and Soderholm). These results confirm the conclusions drawn from the 

TEM analysis, which suggested close proximity of the head domains in the full 

length KLP11/20 heterodimer (Figure 25). 
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Figure 27: FRET analysis confirms the close proximity of the motor heads in wild type kinesin-
2. Curves represent net FRET signal obtained after subtracting signals obtained with only one 
fluorophore (YFP or CFP) in the CFP channel (which is also the FRET channel) from the signal obtained 
with the FRET-pair (KLP11-YFP/KLP20-CFP) in the CFP channel. When excited with 435nm CFP 
transfers energy to YFP (excitation wavelength 505nm), which then emits with a maximum at 530nm. 
FRET signal is thus visible as a peak at 530nm. Due to the large separation of the fluorophores in the 
negative control (FL-KLP11/(RC+2)-KLP20) the curve represents only the remainder of the CFP 
emission spectrum and no maximum at 530nm. Positive control (RC+2)-KLP11/20 and FL-KLP11/20 
both display FRET signals at 530nm. After determining FRET efficiencies, distances between CFP and 
YFP were calculated to be 4.6 nm in the positive control (RC+2)-KLP11/20 and 4.9 nm in FL-KLP11/20. 
FL=full length, RC=random coil tail. 
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2.4 Circular dichroism spectroscopy gauges the extent of stalk 

formation 

2.4.1 Coiled-coil content grows with growing chain length 

To quantify the -helical content in the stalk, constructs of different lengths were 

examined by circular dichroism (CD) spectroscopy. For measurements of the full-

length dimer the globular motor domains were removed, leaving the stalk and the 

RC tail (constructs nr. 7 and 8, page 89). Other constructs analyzed were 

KLP11/20-C and RC+1 and RC+2 dimers (Figure 28).  

 

 

 

 

 

 

 

 
Figure 28: Constructs for CD analysis. Analyzing kinesin-2 constructs of 
increasing length in monomeric and dimeric state by circular dichroism 
spectroscopy shall quantify the part of the stalk involved in coiled-coil 
formation, as well as give answers whether homodimers can form. (RC+1)-
KLP11/20 and (RC+2)-KLP11/20 are both represented by the shortest 
dimer since they differ in length only slightly (by 8 amino acids). KLP11/20-
C (dimer in the middle) is expected to show significantly more secondary 
structure than the RC-constructs because of its increase in chain length. 
Further increase of signal in the case of the longest dimer would confirm the 
TEM and FRET results. Heads were removed to avoid dilution of the coiled-
coil signal.  

 
 

The CD spectra were evaluated for double minima at 208 nm and 222 nm and a 

maximum at 190 nm, features characteristic of an -helix (Chen et al., 1972; Chen 

et al., 1974; Cooper and Woody, 1990). Interestingly, despite more than 90 % of 

random coil, the small percentage of -helical content in the RC+1 and RC+2 

heterodimers was still detectable, and the predicted -helical content (in percent 

and amino acid residues) from the CD spectra closely matched the prediction based 

on sequence analysis (Figure 29A, Table 3). More importantly, the comparison of 

the absorption characteristics between the RC+1 to RC+2 constructs shows a 
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significant increase in the stability of the coiled-coil, a result that corroborates the 

pull-down experiments (Figure 19C). Not only the minimum at the shorter 

wavelength shifts towards 208 nm, indicating a transition from a random coil 

(negative band minimum at 197 nm) to an -helix, but also the value at 222 nm 

decreases significantly (Chen et al., 1974).  This suggests once more that although 

a certain length is necessary for stable dimerization, it is not more than 

approximately two heptads.  

Comparison of the CD spectra of full-length KLP11/20 and KLP11/20-C offers 

interesting insights into the stability of the coiled-coil in the N-terminal half of the 

stalk. If this region forms a stable coiled-coil higher amplitudes are expected 

(indicative of more secondary structure) of the extrema in the full-length KLP11/20 

spectrum, because the coiled-coil in this dimer is twice as long as that of KLP11/20-

C. Strikingly, however, there is no apparent difference in the -helical content in 

these two dimers (Figure 29B), although full-length KLP11/20 is 100 amino acids 

longer than KLP11/20-C (Table 3). The number of predicted -helical residues 

calculated from CD spectra is identical for both dimers (Table 3). However, in the 

KLP11/20-C pair the prediction (in percent and number of residues) exceeds the 

actual number of residues of its stalk portion by 70 amino acids (Table 3). 

Conversely, the CD spectrum of KLP11/20 predicts a coiled-coil that is shorter by 

30 amino acids than the actual stalk sequence. Also the [θ]222/[θ]208 ratio, which is 

indicative of coiled-coil content (Zhou et al., 1992; Muhle-Goll et al., 1994), is higher 

for the KLP11/20-C pair than for full-length KLP11/20 (Table 3). However, FL-

KLP11/20 delivered a FRET signal, meaning that the N-terminal half of the stalk 

must form a coiled-coil at least transiently in order to bring the fluorophores within 

the 5 nm distance. Furthermore, the missing 30 amino acids correspond in the 

coiled-coil prediction (Figure 16) prediction to approximately half of the N-terminal 

part of the stalk. Considering the FRET and CD results together, it is tempting to 

speculate that transitions between the coiled and uncoiled state happen in this part 

of the stalk.   
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2.4.2 FL-KLP11/20 is not thermodynamically more stable than KLP11/20-C  

If the N-terminal half of the stalk forms a stable coiled-coil, then FL-KLP11/20 is 

supposed to be more thermally stable than KLP11/20-C. To test the thermal stability 

of the two dimers melting curves were recorded by following the change of θ222. 

The melting temperature, Tm, is comparable for both constructs (FL-KLP11/20 

Tm=39.6 °C; KLP11/20-C Tm=39.14 °C) (Figure 29C), indicating no substantial gain 

in thermal stability in the full-length dimer and again suggesting that the N-terminal 

half of the stalk forms a somewhat less stable or a transient coiled-coil.  

 

 
 
 
 
 
 
 
 
 
 
 
Figure 29: CD spectroscopy indicates an increasing coiled-coil fraction with growing chain 
length under native conditions. (A) Spectra of (RC+1)-KLP11/20 and (RC+2)-KLP11/20 are 
dominated by a random coil morphology (minimum at 195 nm) due to a low -helical content. Note the 
increase in coiled-coil stability from RC+1 to RC+2 achieved with only eight more amino acids. Not only 
the first minimum shifts towards 208 nm, but also the minimum at 222 nm becomes more prominent, 
both signatures indicative of increasing secondary structure. (B) KLP11/20-C and FL-KLP11/20 show 
typical spectra of α-helical coiled-coil with double minima at 208 nm and 222 nm and a maximum at 190 
nm. (C) Melting curves were recorded by following the change of ellipticity at 222 nm between 10 °C and 
80 °C. The fraction of folded protein was calculated as ff = ([θ]-[θ]u) / ([θ]n - [θ]u), where [θ]n and [θ]u 

represent the ellipticity values for the fully folded and fully unfolded species, respectively, and [θ]  the 
observed ellipticity at 222 nm at any temperature. The comparable melting temperatures for KLP11/20-
C and FL-KLP11/20 indicate low stability of the coiled coil in the N-terminal half of the stalk. 
 
 

2.4.3 KLP11 and KLP20 do not homodimerize  

The stalks of KLP11 and KLP20 are coiled-coil forming -helices, so the question 

arises whether the motor subunits also homodimerize. To test this, FL-KLP11, FL-

KLP20, KLP11-C and KLP20-C were expressed separately and their far UV-spectra 

analyzed and compared to those of corresponding dimers.  

Figure 30 shows that both heterodimers deliver typical coiled-coil spectra with 

almost equal minima at 208 and 222 nm with [θ]222/[θ]208 ratios being almost 1 

(Table 3). [θ]222/[θ]208 = 1 is characteristic for dimers, which contain 100 % coiled-
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coil (Zhou et al., 1992; Muhle-Goll et al., 1994). Deeper minimum at 208 nm than at 

222 nm, which leads to [θ]222/[θ]208 ratio significantly lower than 1 is indicative of a 

monomeric -helix population. The latter is the case for the single expressions of 

the polypeptide chains (Figure 30). Whereas the spectra of heterodimers show 

[θ]222/[θ]208 ratios of 0.97 for KLP11/20-C and 0.89 for FL-KLP11/20, those of single 

expressions are 0.68 for KLP11-C, 0.79 for KLP20-C, 0.69 FL-KLP11 and 0.74 for 

FL-KLP20. These results indicate that heterodimerization is favoured and that 

single motor chains stay monomeric in the absence of their dimerization partner. 

 

 

 

Figure 30: KLP11 and KLP20 prefer hetero- to homodimer formation under native 
conditions. For both KLP11/20-C and FL-KLP11/20, the spectra show significantly more 
secondary structure for the heterodimers (higher absorption at 208 nm and 222 nm and higher 
maximum at 190 nm). In support of spectra, the [θ]222/[θ]208 ratio, index for coiled-coil content 
is higher for the heterodimers (0.97 for KLP11/20-C; 0.89 FL-KLP11/20, see Table 3), indicating 
that motor domains indeed do not form homodimers but remain in monomeric state. 
 

 

Short monomeric RC+1-3 constructs were unfortunately not stable after the 

purification and during the measurement, thus it was not possible to obtain spectra 

that could deliver information on the oligomerization state. But this again 

demonstrates greater stability of the dimers when co-expressed versus monomers. 

To exclude that potential KLP11/11 and KLP20/20 homodimers do exist but contain 

less coiled-coil, resulting in spectra typical of a monomeric -helix, temperature-

dependent CD measurements were performed with dimers and monomers of both 

lengths, C-terminal half and full length constructs (Figure 28). The denaturation 

process was followed as described in Methods section 2.4.3. The spectra reveal 
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one isodichroic point for all the monomers/homodimers but two isodichroic points 

for both heterodimers (Figure 31), indicating that heterodimers unfold in a 3-state 

process, while monomers do this in a 2-state process. In monomers the two states 

are the -helix and the unfolded protein. The three states in the case of 

heterodimers are coiled-coil, -helix and unfolded protein.  

 

 

 

 

 

 

 

 

Figure 31: Temperature dependent CD measurements of monomeric and dimeric KLP11/20-C 
and FL-KLP11/20. The samples were heated from 10 °C to 80 °C and spectra recorded every 5°C 5 min 
after the temperature was reached. While denaturation of monomeric constructs is a 2-state process 
(one isodichroic point (red square)), heterodimers denaturate in a 3-state process (two isodichroic 
points). The two states are -helix and unfolded state; the three states are coiled-coil, -helix and 
unfolded state. 

 

Table 3. Summary of circular dichroism analysis 

Peptide dimers 
Chain 

lengtha 

[θ]222 # of α-helical residues % of α-helical content 
[θ]222/[θ]208

f 
observed predicted b included c calculated d included calculated e 

          

(RC+1)-KLP11/20 253     -1,124 -39,275   10   8     4 3 KLP11-C 0.68 

        KLP20-C 0.79 

(RC+2)-KLP11/20 261     -2,790 -39,298 18 18 7 7 KLP11/20-C 0.97 

          

KLP11/20-C  341 -19,885 -39,459 107 172 32 50 FL-KLP11 0.69 

        FL-KLP20 0.74 

FL-KLP11/20  434 -15,727 -39,575 205 172 48     40 FL-KLP11/20 0.89 
a Number of amino acids in KLP11 peptide including tag-residues 
b The predicted molar ellipticity was calculated from the equation [θ]222 = -40 x 103 x (1-4.6/n) (Chen et al., 1974; Gans et al., 1991), where n is the 

number of residues in the peptide. 
c n = chain length – random coil tail - tag  
d The number of helical residues was calculated by multiplying the % of helical content with chain length. 
e The (%) helical content was calculated from the ration of the observed [θ]222 value divided by the predicted molar ellipticity(b) x 100. 
f [θ]222/[θ]208 ratio >1 is used as an index of coiled-coil formation; the lower the ratio the more single stranded α-helices are contained (Zhou et al., 

1992; Muhle-Goll et al., 1994)  
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Discussion 

Heteromeric kinesin-2 is an essential player in a variety of transport processes in the 

eukaryotic cell, especially in elongated structures. It is a unique member of the 

kinesin superfamily because it is the only motor to combine three distinct subunits 

into a functional entity.   

One goal of this thesis was to elucidate the regulation mechanism of kinesin-2 

catalytic activity. Michaelis-Menten kinetics of different motor truncations show that 

kinesin-2 can be autoinhibited and that its heteromeric structure is crucial for this 

process. 

Furthermore, the principles of heterodimerization in this unique kinesin were 

successfully determined providing a more complete understanding of its 

submolelcular structure. The importance of the C-terminal end of the stalk domain 

came into light, as it is necessary for triggering specific heterodimerization between 

KLP11 and KLP20. 

Dimerization of KLP11 and 20 is, however, not necessary for the binding of the third 

subunit, KAP. The cargo-binding domain interacts only with a short and somewhat 

conserved sequence in KLP11 random coil tail via its Armadillo-like domain. 

 

1 Heterodimeric structure is required for autoinhibition 

The catalytic activity has to be regulated to avoid futile ATP hydrolysis when the 

motor is not bound to its cargo. Autoinhibition has been shown to be the regulation 

mechanism of kinesin-1 (Coy et al., 1999; Stock et al., 1999; Yonekura et al., 2006; 

Cai et al., 2007; Dietrich et al., 2008; Hackney and Stock, 2008; Hackney et al., 

2009; Wong et al., 2009) and kinesin-3 (Lee et al., 2004; Yamada et al., 2007; 

Hammond et al., 2009). During this process the motor folds, allowing interaction 

between the tail domain and N-terminal regions, which abolishes ATPase activity. 

Molecular details of autoinhibition are best studied in kinesin-1. Here one tail domain 

interacts with both heads after folding at the hinge region in the middle of the stalk 

domain (Hackney et al., 2009). The tail interacts with both heads and acts as a lock-

down that prevents head movement (Kaan et al., 2011).  
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Although there is still no evidence for direct interaction of head and tail domains in 

kinesin-2, it has been shown that the tail domain is crucial for the regulation of 

homodimeric kinesin-2 from C. elegans and mouse (Imanishi et al., 2006; Hammond 

et al., 2010). Both, deletion and mutation of the hinge region led to a robustly active 

motor (Imanishi et al., 2006). The same results were obtained by deletion of the tail 

domain (Hammond et al., 2010).  

This work confirms the role of protein folding in catalytic regulation of heteromeric 

kinesin-2 indicated by Brunnbauer et al. (2010). Furthermore, results here provide an 

insight into molecular details of the regulation process. 

While the wild-type motor is constantly inactive, mutation of its hinge region from 

G450S451 in KLP11 and G444G445 in KLP20 to EE in both chains resulted in robust 

motor activity (Figure 12). Because of its size and negative charge, the glutamate 

side chain hinders the folding of the heterodimer at the hinge region, thus preventing 

the head-tail interaction, which explains motor activation. Robust activity was also 

achieved by deletion of both tail domains in the motor dimer with the wild-type hinge 

(Figure 12). From these results it can be concluded that heteromeric kinesin-2 is also 

autoinhibited by its tail by a similar or the same mechanism as in homodimeric 

kinesin-2.  

In contrast to other kinesins in heteromeric kinesin-2 there are two different catalytic 

units and two different potential inhibitors. Here it could be shown that both tails play 

a role during inhibition (Results 1.3 and 1.4) but which tail affects which head still 

remains elusive. 

Monomeric heads could not be inhibited by any of the tails (Figure 14, Table 1). This 

is in accordance with findings in kinesin-1 whose tail binds only weakly to a 

monomeric head (Hackney et al., 2009). Apparently, the dimeric state of the kinesin-

1 heads is necessary for tail binding but the heads need not dimerize via the native 

neck coiled-coil since any artificial coiled-coil would lead to the same result. The 

same was found here to be true for kinesin-2. While monomeric heads remained 

unaffected, artificially homodimerized heads and the EE-mutant were successfully 

inhibited by addition of the tails (Figure 14, Table 2) albeit the artificially dimerized 

heads were significantly less prone to inhibition in trans by the tails. The reason for 

this might be a suboptimal tail-to-motor ratio or more probably the absence of the 

native neck region.  Different than Hackney et al. (2009), Friedman and Vale (1999) 
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postulated that the inactivation of kinesin-1 requires the native neck region. The neck 

coiled-coil contains conserved charged residues positioned asymmetrically on its 

surface, which could serve as a platform for the tail binding. The neck of kinesin-1 

also contains conserved residues that destabilize the coiled-coil, indicating that 

partial melting of this structure may be required for tail-mediated repression of motor 

activity (Friedman and Vale, 1999). This finding fits the CD analysis of kinesin-2 in 

this work, which points to lower coiled-coil stability in the neck and the N-terminal half 

of the stalk, a feature that will be discussed in more detail later on.  

That the EE-mutant was most effectively inhibited supports the possible importance 

of the native neck in this process but its concrete role remains to be determined.  On 

the other hand, the success of EE-mutant inhibition can also be due to the 

heterodimeric state of the heads. The heterodimer provides an asymmetric 

conformation for tail binding, which might be essential not only for the head-tail 

interaction but also for the inhibition outcome. Thus, probably the overall 

conformation of the folded heterodimer is an important feature of the autoinhibition 

mechanism. 

Taken together, both heads and both tails are required for catalytic regulation. 

However, the head of KLP11 appears to be the key target, as the KLP11 homodimer 

successfully pulled down co-expressed tails in the co-IP assay (Figure 15). The two 

different heads of kinesin-2 were already shown by Brunnbauer et al. (2010) to 

display different characteristics. While full-length kinesin-2 with two KLP20 heads is a 

processive motor, two KLP11 heads make it unprocessive. Combination of the two 

heads results in a processive motor. The evolutionary advantage of combining two 

different motors can thus be the task splitting: while KLP20 accomplishes 

processivity, KLP11 mediates catalytic regulation.  

The same can be concluded for the tails: although both tails are important for 

inhibition, the key player appears to be the KLP20 tail because it co-precipitated with 

KLP11 GCN4 head homodimer (Figure 15). The KLP11 tail, on the other hand, was 

identified here as the KAP binding site, which might be its primary role. Nevertheless, 

KLP11 tail also clearly plays a role during inhibition. In trans, the KLP11 tail alone 

significantly inhibits the EE-mutant. Thus, KLP20 tail might be essential for the initial 

binding of the tails to the heads and for the initial steps of inhibition, while KLP11 tail 

plays a complementary role. 
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2 Co-factors in kinesin-2 kinetics 

The purity of wild type motor dimer purifications indicates that no co-factors, including 

KAP, are needed for inhibition. Yamazaki et al. (1996) showed that KAP does not 

influence the kinetics of the active kinesin-2. Further, this work demonstrates that 

effective autoinhibition of the motor is achieved without the KAP subunit (Figure 12).  

Whether KAP is still associated with the inhibited motor is not clear but it is intriguing 

that in vivo only 70 % of the KAP were found in complex with kinesin-2 (Yamazaki et 

al., 1995, 1996). It is thus tempting to speculate that the remaining 30 % dissociated 

from the inhibited motor and that KAP binding might activate the motor. This effect, 

however, could not be observed in in vitro experiments during this thesis (data not 

shown) but it cannot be excluded that such activation happens only under in vivo 

conditions because it might require other co-factors or even KAP and/or motor 

modifications. Supportive findings revealed KAP as a phosphorylation target for 

different kinases, such as Src tyrosine kinase (Shimizu et al., 1996) and breast tumor 

kinase, BRK (Lukong and Richard, 2008) during different cell stages (Haraguchi et 

al., 2006). The phosphorylation takes place in the C-terminal region and is important 

for cargo binding (Nagata et al., 1998; Haraguchi et al., 2006). It can be speculated 

that KAP phosphorylation and subsequent cargo binding are required for motor 

activation.  

Phosphorylation was also shown to directly regulate the catalytic activity of other 

kinesins (Verhey and Hammond, 2009). In the concrete case of heteromeric kinesin-

2, a MAP kinase was found to affect motor’s behaviour in vivo. In C. elegans’ sensory 

cilia, dye-filling kinase 5 (Dyf-5) restricts kinesin-2 activity to the middle segment of 

the cilium, i. e. to the part with the microtubule doublet (Figure 1), (Burghoorn et al., 

2007). During this PhD thesis no direct phosphorylation of either of the kinesin-2 

subunits by Dyf-5 could be detected (data not shown). It was further speculated that 

Dyf-5 may phosphorylate tubulin subunits, thus marking the path for kinesin-2 but no 

tubulin phosphorylation could be detected neither. Since Dyf-5 is a MAP-kinase 

(Burghoorn et al., 2007) it is probable that the target lies further upstream in the 

cascade and that this whole cascade rather than Dyf-5 alone influences the kinesin-2 

behaviour.  
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Nevertheless, Dyf-5 seems to inactivate kinesin-2 because the Dyf-5 knockout leads 

to increased kinesin-2 activity, i. e., the motor then moves along the distal segment of 

the cilium as well (Burghoorn et al., 2007). An inhibitory effect of MAP-kinase 

cascade was also observed for kinesin-1 (Verhey and Hammond, 2009).  

But how is the autoinhibition released? Is the motor activated simply by cargo binding 

(Coy et al., 1999), or are there co-factors, that mediate activation after cargo binding 

to the tail? In kinesin-1 the tail does not bind directly to the cargo but involves co-

factors. The binding of such co-factors is sufficient to release the autoinhibition of 

kinesin-1(Blasius et al., 2007; Hackney and Stock, 2008). In contrast, when the co-

factor of human kinesin-3 binds to the tail, the motor is still inactive. It requires cargo 

binding for activation to take place (Yamada et al., 2007). How the activation is 

accomplished in heteromeric kinesin-2, whether KAP binding is sufficient, or whether 

interaction with cargo must be provided as well, remains to be determined in future 

experiments and will be best studied in vivo.  

Since autoinhibition was found to regulate catalytic activity already in three kinesin 

families (kinesin-1 to 3), it is conceivable that this mechanism has co-evolved with 

kinesin motors. However, it remains to be seen whether autoinhibition can be found 

in other kinesin families as well. 

 

3 KAP on top of it 

Though the cargo-binding subunit of kinesin-2, KAP, does not influence the motor’s 

catalytic activity (Yamazaki et al., 1996; Zhang and Hancock, 2004), it is 

indispensable for the proper function of the motor in vivo (Sarpal et al., 2003; Mueller 

et al., 2005; Ou et al., 2007). KAP knockdown leads to severe cell dysfunctions, 

including aberrant progression of mitosis or elimination of ciliary axonemes from 

certain neuron types (Sarpal et al., 2003; Haraguchi et al., 2006), and intact KAP 

protein is essential for kinesin-2 localization to the basal bodies of Chlamydomonas 

flagellae (Mueller et al., 2005). 

Here the interaction site of KAP from C. elegans with the motor was identified. KAP 

binds only to the random coil tail of KLP11 via its Armadillo-like domain. Studies on 

Drosophila KAP showed interaction with the stalk for which stabilizing properties 

were suggested. Further, the importance of the N-terminal end of the KAP sequence 
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for the interaction was demonstrated (Doodhi et al., 2009). Neither of these findings 

could be confirmed for C. elegans KAP. The N- and C-terminally truncated KAP103-671 

construct containing only Armadillo repeats bound successfully to the middle 

segment of the KLP11 random coil tail, thus excluding the necessity of both, the N-

terminal end of KAP and the stalk domain of the motor. KAP orthologues from sea 

urchin and mouse also bind only to the tail region (Wedaman et al., 1996; Yamazaki 

et al., 1996) and there are some indications of the general importance of the C-

terminal region (Nagata et al., 1998; Jimbo et al., 2002; Deacon et al., 2003; Lukong 

and Richard, 2008) rather than the N-terminal end. The C-terminal region of KAP 

contains conserved sequences and in some orthologues it is tyrosine-rich with 

consensus sequences for different kinases (Shimizu et al., 1996; Sarpal and Ray, 

2002). Beside high tyrosine content, the C-terminal region also contains a conserved 

phenylalanine, which is critical for KAP function but the exact role is still unknown 

(Mueller et al., 2005).  

However, as shown here the very last 25 amino acids downstream of the Armadillo 

repeats (Figure 6) in the CeKAP are not required for motor interaction (Figure 24). 

The interaction with the middle segment of the KLP11 random coil tail is probably 

facilitated by one of the 9 Armadillo repeats. Whether this region is important for 

cargo interaction and whether it is modified still has to be determined.  

Brunnbauer et al. (2010) failed to co-precipitate KAP with KLP11 wild type monomer 

but were successful in pulling down KAP with KLP11 EE-mutant. This suggests that 

KAP gets released upon motor folding just like the finding that approximately 30 % of 

the KAP protein is not bound to the motor dimer under in vivo conditions (Yamazaki 

et al., 1995, 1996). Whether KAP indeed dissociates from the complex upon motor 

inhibition still needs to be experimentally shown. In general, little is known on how 

KAP fulfils its function and whether KAP also has a role as dissociated monomer. 

 

As seen so far, random coil tails of KLP11 and 20 are important for the interaction 

with the cargo binding domain, KAP, and for the autoregulation of catalytic activity. 

However, the random coil tails do not contribute to dimerization of KLP11 and KLP20 

(Figures 19B and 20). Heterodimerization of the two motor chains is carried out 

merely by their stalk domains.  
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4 From seed to stalk 

This work provides a molecular understanding of how heterodimerization of the motor 

chains is accomplished in C. elegans kinesin-2 (Figure 32).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Identification of the dimerization seed by systematic N- and C-
terminal elongations of truncated KLP11 and KLP20 polypeptide chains. No 
dimerization occurs unless the C-terminal end of the stalk is present. C-terminally 
truncated constructs must thus be elongated to include the entire stalk, whereas 
elongation of random coil tails by only 10 amino acids already leads to dimerization. 
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According to coiled-coil predictions (Figure 16) the whole stalk domain of both motors 

is able to form a coiled coil. The same is true for the well-studied kinesin-1 in which 

the neck domain or fusion to any part of the stalk is sufficient for stable dimer 

formation (Grummt et al., 1998; Kallipolitou et al., 2001; Verbrugge et al., 2009). 

Surprisingly, C-terminally truncated KLP11 and KLP20 were unable to dimerize 

(Figures 17A and 19A), unless both contained the entire stalk domain (Figure 19B). 

Dimerization requires a small seed at the C-terminal end of the stalk (Figure 19C). 

Without it, heterodimerization does not take place even though the rest of the stalk is 

predicted to form a sufficiently stable coiled-coil (Figure 16). The mere number of 

heptad repeats is apparently not sufficient for dimerization of the two motor domains 

(Figures 17A and 19A). The short sequence of about two heptads at the C-terminal 

end of the stalk can be considered a genuine trigger that dictates the overall structure 

of the entire stalk.  

Such trigger sites have been found also in other proteins (Steinmetz et al., 1998; 

Burkhard et al., 2000; Araya et al., 2002), though coiled-coils may fold also in their 

absence (Lee et al., 2001). In C. elegans kinesin-2, however, the trigger is strictly 

required; its presence provokes an all-or-none response in stalk formation (Figures 

19B, 19C and 32). Once triggered, the entire stalk domain forms a coiled-coil 

structure starting at the stalk’s C-terminus that brings the two motor domains in close 

proximity to each other (Figures 25 and 26). Thus, although sufficient for stable 

dimerization (Fig 19C) the seed does not represent the entire dimerization site. Such 

direct evidence for extensive coiled-coils in kinesins’ stalks existed until now only for 

kinesin-1 whose stalk forms an -helical coiled coil when expressed without the head 

and tail domains (de Cuevas et al., 1992). Moreover, even portions excised from the 

stalk can form stable dimers. These include the neck (Morii et al., 1997; Romberg et 

al., 1998; Rashid et al., 2005), the N-terminal and C-terminal halves of the stalk (de 

Cuevas et al., 1992), and the C-terminal ~80 amino acids of the stalk (Dietrich et al., 

2008). These findings argue against the requirement for a general trigger sequence 

and against a directed coiled-coil formation in kinesin-1 as it was shown here for 

kinesin-2. 
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5 Only with the right partner 

What might be the reason for the different modes of dimer formation of the closely 

related kinesin-1 (no specific or a single trigger) and kinesin-2 (clearly specified 

seed)? Structurally, the major difference is that kinesin-1 forms homodimers whereas 

kinesin-2 is heterodimer. Therefore, a mechanism must exist to prefer 

heterodimerization over homodimerization. The latter is also possible in kinesin-2, 

though exceptional (De Marco et al., 2003). An ideal way indeed would be to specify 

a site where the two different chains have to come together first, analogous to the 

bottom stop and slider of a mechanical zipper that must be brought in contact before 

the zipper can be closed. 

Studies of another representative of the kinesin-2 family, Xklp3A/B of Xenopus 

laevis, hinted at the importance of the C-terminal half of the stalk for dimerization (De 

Marco et al., 2001). Neither the neck nor the highly charged stretch next to the neck 

region, which is typical for many kinesin-2 motors (but not KLP11/20), are required 

for heterodimer formation. The exact region was not specified but was believed to 

encompass ~100 amino acids at the C-terminal end of the stalk (De Marco et al., 

2001). A trigger site was not identified, however.  

A preference for heterodimer formation was suggested for sea urchin (Rashid et al., 

1995), X. leavis (De Marco et al., 2001) and mouse (Chana et al., 2005) kinesin-2. If 

the same is true for Fla8/10, kinesin-2 from Chlamydomonas reinhardtii, and if all 

orthologues heterodimerize by triggered coiled-coil formation, this means that the 

seeded mode of dimerization is evolutionarily conserved (ranging from unicellular 

algae to mouse) and probably essential for favouring hetero- over homodimerization.  

In mouse, there is even a third kinesin-2 motor chain.  Besides Kif3A (corresponds to 

KLP11) and Kif3B (corresponds to KLP20) there is also Kif3C, which is more related 

to Kif3B than to Kif3A (Muresan et al., 1998). Kif3C displays tissue-specific 

expression pattern. It is enriched in brain, retina and lung where it shows specific 

cellular localization. Although Kif3C can act as an independent motor it also forms 

heterodimers with Kif3A, but never with Kif3B. This exquisite specificity emphasizes 

once more how nature can fine-tune interactions within the kinesin-2 class. 

This work confirms this specificity and preference of heterodimerization for the C. 

elegans orthologue, not only by the co-precipitation analysis delivering protein bands 
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in 1:1 molar ratio (Figure 17B, 19B and 19C), but also by CD measurements 

delivering higher ellipticity of dimers (Figure 30) and also higher ratios of [θ222]/[θ208] 

than of monomers (Table 3). Furthermore, temperature-dependent CD 

measurements of monomeric and dimeric KLP11/20-C and FL-KLP11/20 result in 

one isodichroic point for monomers and two isodichroic points for dimers (Figure 31), 

indicating a 2-state denaturing process for monomers and a 3-state process for 

dimers.  The two states are -helix and unfolded protein and the three states are 

coiled-coil, -helix and unfolded protein, which again indicates a preference of 

heterodimerization.  

The difference between KLP11/20 and the other orthologues is that it lacks the 

charged regions following the neck, which are present in sea urchin KRP85/95, X. 

laevis Xklp3A/B, and mouse Kif3A/3B. Fla8/10, the orthologue from Chlamydomonas 

reinhardtii, also lacks charged stretches. Since Fla8/10 and KLP11/20 diverged much 

earlier in evolution than the orthologues from frog and mouse, the charged region 

does not seem to be a prerequisite for heterodimerization, though it was shown to 

play a role in the stabilization of the neck of mouse Kif3A/3B (Chana et al., 2005). 

Thus a contribution of the charged region to overall dimer stability cannot be 

generally excluded.  

 

6 The stability issue 

Concerning the dimer stability, the CD data implicate that the coiled-coil stability of 

the N-terminal half differs from that of the rest of the stalk as indicated by the lack of 

a significant increase in ellipticity of full-length KLP11/20 compared to KLP11/20-C. 

Moreover, the calculated number of -helical residues is lower by 30 amino acids 

than the actual number contained between the neck and the C-terminal random coil 

(Table 3). Because the 30 amino acids are approximately half of the N-terminal part 

of the stalk, it can be speculated that the discrepancy hints at an interconversion of 

coiled and uncoiled states of this region.  The option that these 30 amino acids are 

permanently uncoiled can be excluded regarding the positive FRET result. Thus, the 

neck and the N-terminal end of the stalk must at least transiently form a coiled-coil. 

Another possibility is that the coiled-coil of the N-terminal half of the stalk is not as 

tightly coiled as the C-terminal half though it is able to maintain a dimerized state. A 
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lower stability of the N-terminal part of the stalk was already suggested for kinesin-

1(de Cuevas et al., 1992). In general, the ends of coiled-coils were shown to be more 

flexible (Zhou et al., 1992). Moreover, small disruptions in the flow of heptads, the so 

called stutters and stammers, may lead to either overwinding or underwinding of the 

coiled coil (Brown et al., 1996), resulting in either an increase or a decrease in 

helicity. Overwinding in the C-terminal half of the stalk would not only account for its 

higher stability, it may also explain that its calculated number of amino acids exceeds 

the actual number by 70. Conversely, underwinding of the N-terminal half of the stalk 

may account for the calculated 30 amino acids less than actually present in full-

length KLP11/20. Support for the overwinding/underwinding suggestion comes from 

the melting profiles of FL-KLP11/20 and KLP11/20-C (Figure 29C). The FRET signal 

and the calculated distance of 4.95 nm in the FL-KLP11-20 indicate that the N-

terminal half of the stalk also forms a coiled coil but the lack of gain in thermal 

stability between KLP11/20-C and FL-KLP11/20 suggests that this part of the coiled-

coil is either less stable or undergoes coiling/uncoiling.  

Evidence for higher flexibility of the N-terminal half of the stalk has now been 

provided for two dimeric processive kinesins, kinesin-1 and kinesin-2. This suggests 

that this feature may be important for force generation, processivity, supertwist 

release or autoregulation of kinesin’s catalytic activity and may be common for 

dimeric processive kinesins. Whether this part of the stalk is indeed capable of 

switching conformations remains to be determined. 

 

7 The seed as a common good 

Finally, one aspect of the work described here deserves particular consideration 

because it points to applications beyond the study of heterodimeric coiled-coils. 

Because of its short length and high specificity, the nucleation seed identified here 

holds the promise of serving as a useful tool to induce specific heterodimerization of 

any two proteins. A protein sequence containing the seed can simply be fused to any 

pair of polypeptides by appropriate primer design. The use of such seeds for specific 

heterodimerization would further avoid chemical interference, such as introducing 

disulfide bonds, and the need for oxidizing or reducing environments, leaving the 

proteins in their native state and enabling protein analysis under physiological 

conditions.
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Outlook 

This work provides the first molecular insights in regulation of the subunit assembly 

and catalytic activity in kinesin-2 from C. elegans. It is further a solid basis for 

detailed investigation of these processes, such as revealing the molecular 

mechanism of favouring hetero- over homodimerization. This requires a detailed 

study of the amino acid composition of the stalk and especially of the seed sequence. 

Since some obvious features like complementary charges in the two motor chains, 

which would lead to repulsion in the homodimer, are not provided and thus not the 

reason for heterodimerization, a closer inspection of the heptad composition should 

be performed. Here the sequences of Kif3A, 3B and 3C, kinesin-2 orthologues from 

mouse, should be taken into consideration. Given the fact that Kif3B and 3C are both 

KLP20 homologues and that both heterodimerize with Kif3A, but never with each 

other (Muresan et al., 1998), the comparison of the sequences might provide an idea 

about heterodimerization background. This analysis would provide a basis for 

mutation experiments, which could lead to homodimerization, thus revealing the 

importance of specific amino acids for heterodimerization. 

Because of its small size the detailed structure of the seed sequence can be 

analyzed by nuclear magnetic resonance (NMR) spectroscopy along with the nature 

of binding forces in the two peptides. The seed’s potential as a biochemical zipper of 

molecules should be tested by fusing it to peptides other than kinesin-2 and 

subsequent co-IP assays. 

As to the opposite end of the motor, this work indicates that the coiled-coil in the N-

terminal half of the stalk displays lower stability than the C-terminal half and that it 

may be able to transiently uncoil. Whether the N-terminal part of the stalk is indeed 

capable of switching conformations remains to be determined by future experiments 

such as measuring and comparing the forces needed to pull the peptide chains apart 

from both stalk ends.  

Possible implications of this feature should also be explored, including the potential 

role in autoinhibition. Ideally, the in trans inhibition by tails of the EE-mutant, 

KLP11/20 GCN4 head heterodimer, and the GCN4 heterodimer of motors including 

the N-terminal half of the stalk should be compared.  This comparison would provide 
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information on whether any region further C-terminal from the heads is required for 

efficient inhibition by tails. 

The importance of the helix breaker or the hinge region for this process was 

demonstrated by mutation into glutamates. To confirm this position as the folding 

point of the motor, the helix breaker can simply be deleted and then the motor activity 

analyzed. In general, the conformation of the folded protein is completely unknown. 

Where are the exact interaction sites between the tails and the heads/necks? Some 

idea on this can be given by cross-link experiments. It is further still elusive which tail 

influences which head. Light can be shed on this by an ATPase assay with 

asymmetric dimers consisting of one full-length wild type partner and with one motor 

chain lacking the random coil tail. Moreover, the tails’ influence can be tested in a 

gliding assay in which motors are C-terminally attached to the glass surface, while 

the motor domains are free in solution and cause gliding of bound microtubules. By 

comparing motilities of unaffected motors and after flowing the tail constructs into the 

chamber, the effect of the tails can be elucidated in more detail using different motor 

constellations mentioned in this work. Do they just hinder or slow down the filament 

movement or their attachment to the motors as well? 

Last but not least, the interaction site of KAP with KLP11 can be narrowed down by 

further truncations of KAP. Finding the region of the Armadillo-like domain that 

interacts with KLP11 would reveal regions of this domain responsible for cargo 

binding and provide a basis for investigations of how kinesin-2 binds cargo and 

possible regulation of this process. 
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List of constructs 

Construct nr. and name Amino acid stretch Size in kDa illustration 

 

1. KLP11 wt 

 

 

1-782 

 

88.1 

 

2. KLP20 wt 

 

1-646 73.5  

3. KLP11 EE 

 

1-782 
G450S451-> EE 

88.1  

4. KLP20 EE 

 

1-646 
G444S445-> EE 

73.5  

5. KLP11  
noRC 
 

1-548 62.9  

6. KLP20 
noRC 
 

1-550 62.5  

7. KLP11  
no head 
 

425-782 48.7  

8. KLP20 
no head 
 

301-646 35.4  

9. KLP11-N 

 

1-449 51.3  

10.  KLP20-N 

 

1-443 49.9  

11.  KLP11-N+1 

 

1-463 52.7  

12.  KLP11-N+2 

 

1-475 54.2  

13.  KLP11-N+3 

 

1-487 55.8  
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Construct nr. and name Amino acid stretch Size in kDa illustration 

 

14.  KLP11-N+4 

 

 

1-498 

 

57 

 

15.  KLP11-N+5 

 

1-511 58.6  

16.  KLP11-N+6 

 

1-530 60.9  

17.  KLP20-N+1 

 

1-457 51.5  

18.  KLP20-N+2 

 

1-468 52.8  

19.  KLP20-N+3 

 

1-480 54.2  

20. KLP20-N+4 

 

1-491 55.6  

21. KLP20-N+5 

 

1-504 57  

22. KLP20-N+6 

 

1-525 59.5  

23.  KLP11 RC 

 

549-782 25.8  

24.  KLP20 RC 

 

551-646 11  

25.  KLP11 RC+1 

 

538-782 27  

26.  KLP11 RC+2 

 

530-782 27.8  

27.  KLP11 RC+3 

 

524-782 28.6  
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Construct nr. and name Amino acid stretch Size in kDa illustration 

 

28. KLP20 RC+1 

 

540-646 

 

12.3 

 

 

29.  KLP20 RC+2 

 

535-646 

 

12.9 

 

 

30. KLP20 RC+3 

 

 

529-646 

 

13.6 

 

31.  KLP11-C 

 

450-782 37.5  

32.  KLP 20-C 

 

444-646 23.6  

33.  KLP11 mono 

 

1-365 41  

34.  KLP20 mono 

 

1-353 39.1  

35.  KLP11 GCN4 

 

1- 365 plus GCN4 45.1  

36.  KLP20 GCN4 

 

1-353  plus GCN4 43.2  

37.  KAP 

 

1-696 78.6  

38.  KAParm 

 

103-672 64.3  

39.  KLP11 RCcons 

 

636-763 12  
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Protein sequences 

KLP11 

M V E I M K K S S K Q E T V K V I V R C R P L S S Q E I A N N Y S K I V H M R P Q R G Q I E L K 
N P K E Q D E P S K D F T F D A I Y D E N S T Q S D L Y E E T F R D L V D S V L N G Y N A T I F 
A Y G Q T G T G K T H T M E G K S S D P E Q R G V I Y K C I D H I F E H M A A S H N Q E Y L V R 
A S Y L E I Y Q E E L R D L L E A E S N K K L E I K E R P D G G V Y V K D L T S K L T R T V G E I 
H E V M I R G N G H R S V G R T N M N E H S S R S H A I F I I T V E C S R I G E D G E S H I T V G 
R L N L V D L A G S E R Q S K T G A T G E R F K E A T K I N L S L S A L G N V I S A L V D A K S A 
H I P Y R D S K L T R L L Q D S L G G N S K T V M V A C I G P A S Y N F E E T L G T L R Y A N R 
A K N I K N Q P K I N E D P K D A L L R E F Q E E I E M L R E Q L K Q R K T R S R D G A T Q S F 
Y D A E R A K L E D D I E A I Q K D D S L I K H E K D R L I R E I Q E K H D L L E K E R I E Q A R V 
A E R I A N I Q S R L I V G S E E D G R L E S R T K E Q H A Q L E K K R R E L A E Q K R R E R E 
M V E A L E R Q E E D T V D L K Q T F S D L R T E V E A K T K K L K K M L I K L R Q A R N E I R 
D V S G A Y S D E R Q D L D Q T I A E V S K E L K L K L L I V E N F I P R D V S E R I K E R A E W 
N E D S F E W N V N A F Q S T S S N S S T P L N N T I E V N E D G V F T R S S G A D S G V S V 
S G G N G T P A T S Q F L D K R L V A T P G C R R P M S M C E R M L V E T A R E Q F G A Q R 
R P P I S G S G S F V E A T I P E E T I R F C G E N V V V F S A L E R F V P E V T D S D P S T F S 
N S M M M S A R R P S I E N L T I D A S K V L V P I L N Q S T M I L K N S K N G Q A R N D T M P 
P N G S M R R S Q N 

Catalytic head stalk  random coil tail 

Borders of KLP11 RCcons 

 

 

 

KLP20 

M E G A E K V K V V V R C R P I S T T E K L Q G H K I A V T C N D E E K A V N I K S L S Q E D P 
P R T F Y F D A V F S P N T D Q M T V Y N V A A R P I V E N V L K G Y N G T I F A Y G Q T G T G 
K T F T M A G D L E P V E M R G I I P N S F A H I F D H I A K C Q H D T T F L V R V S Y L E I Y N 
E E I R D L L S K D H N G N L E I K E R P D V G V Y V R N L S N P T V E N A S K M Q A L M E F G 
S K N R K V G A T A M N L E S S R S H A M F T V T I E S C R N G L V T Q G K L Q L V D L A G S 
E R Q S K T G A Q G E R L K E A A K I N L S L S T L G N V I S S L V D G K S T H I P Y R N S K L T 
R L L Q D S L G G N S K T V M I A N V G P A T Y N Y D E T L S T L R Y A N R A K N I Q N V A K I 
N E D P K D A Q L R K F Q L E I E A L R K I L D E E N P G D D E N Q E E A W E A K M Q E R E V 
E M E K K R K I L E E R V N S A V N D E E T H R L V K E M M E N E A E L K K A R S E H E K L R S 
K L E K I E K K L I V G G E N L L E K V E E Q A K L L E V N N K E L E Q S K F Q E A H L R T Q L E 
E R T A V K V E I E E R Y S S L Q E E A F V K S K K I K K V S N E L K D A R A E L K D L E E D H 
Q R Q V E A M L D D I R Q L R K E L L L N I A I I D E Y I P V E H V E L I E K Y V S W S E E H G D 
W Q L K A I A Y T G N N M R A S A P P A K K E F S N N N Q T V P M Y Y S Y R A D L G A S T A E 
H R P R T S S K K H R A S I R L Q Q L L T 

Catalytic head stalk  random coil tail 
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KAP 

M N Q V S I D A H P S D Q A I I V R F E Q S P T N V E S L G H Q K I I H L K E M S L D V D I R A L 
S N V I L Q K C L F I P A T S R S Q L E Q V L F Y I Q K R G N Q R I S A R S R S S S A V S F D R R 
P I H S P T I S A E L G K I D E Y I E C F Y G E T S V E K N K G A V A L Y E L S K N P Q N L T Q L 
V N N E T L M M A L A R V F R E D W K K H F E V G T N I M N L F V N I S K F S C L H G I L L H H 
K I G T L C V N A M E H E T K R Y D F W I A E M K K T D Q E T L R K L K T A I R K Q A M L L A A 
C V T F L T N L A T D I S V E L K M V R R N L V A L L V K C L Q M S S E S T S S L T T A T I K F L 
L K L S I F D E N K I V M E Q N G T I E K L L K L F P I Q D P E L R K A V I M L L F N F S F D S K N 
L P K M V N G G L V P H M A S L L D S D T K A L N M M Y L L S C N D D A K A M L A Y T D A I K L 
L M K D V L S G T G S E V T K A V L L N I C L E K R N A Q L V C G Q R G Q G L D L L M E M S I N 
S R D L M L I K V V R A I S S H E G A T Q N M F L K W I E T L I G I A K N E G A D N S E S K S S F 
G L E C M G T V A E L K V A P W A K I I Q S E N L V P W M K T Q L Q E G I D E S E E V T V L R D 
I K P L Q L Q I V I A C G T M A R Q L D A A R L L A P L I D T F V Q L L Q S C Q I D D E F V V Q L L 
Y V F L Q F L K H K E L S A R L M T Q D S A L G A H M I D L M H D A N A V V R E V C D N A L L I 
M G E H S K E W A K R I A G E R F K W H N A Q W L E M V E R D D S E F V D Y D D E D F G A D 
L K F D H Y D D G F D M N E P L F 

Armadillo motif 

 

 

 

GCN4: 

R M K Q L E D K V E E L L S K N Y H L E N E V A R L K K L V G E 
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