
Essays in Econometrics

Inaugural–Dissertation

zur Erlangung des Grades

Doctor oeconomiae publicae (Dr. oec. publ.)

an der Ludwig–Maximilians–Universität München

2011

vorgelegt von

Martin Spindler

Referent: Prof. Dr. Joachim Winter

Korreferent: Prof. Dr. Gebhard Flaig

Promotionsabschlussberatung: 16. Mai 2012





Acknowledgement

First, I would like to thank my advisor Joachim Winter for his enormous efforts and constant

support for both research and organizational issues. He was always willing to take time and

to listen to my problems.

I am also grateful to Liangjun Su. The cooperation with him was a great experience. Working

jointly with him was a fruitful source of motivation and learning.

Furthermore I am indebted to Bernard Salanié who accompanied my research from the early
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Chapter 1

Introduction

The concept of asymmetric information which comprises two distinct phenomena, notably

moral hazard and adverse selection, establishes the core of microeconomics. The whole subfield

of contract theory is built on the notion of asymmetric information. The importance is also

stressed by the award of Nobel Prize in Economics to pioneers in this field in the year 2001.

Adverse selection describes the situation in which parties have different information before

a contract is signed. This idea was introduced in the highly celebrated article Akerlof (1970).

Akerlof showed that informational asymmetries might influence the functioning of markets or

may even lead to market failure. His leading example was the second-hand car market where

potential sellers have an advantage in assessing the quality of their car.

Moral hazard characterizes problems which arise after a contract is signed and results from

different levels of information between parties, e.g., because one party can observe the outcome

of certain events while the other is not able to do this. This idea was worked out in Holmström

(1979).

Since its introduction, asymmetric information has successfully been applied (mostly the-

oretically) amongst others to public finance, finance, labor economics, personnel economics

and insurance economics and the theory has been extended in many directions.

The term “adverse selection” itself originated in the context of insurance. Insurance markets

have become one of the earliest applications. Arrow (1963), Pauly (1974) and Rothschild

and Stiglitz (1976) analyzed insurance markets under the assumption that insurees have more

information about their risk than the insurance companies have. In this case in equilibrium

a menu of contracts is offered and “good” risks choose a partial insurance while “bad” risks

choose full coverage at a higher price per unit of insurance. After an insurance contract is

signed the incentives for careful behavior of an insured person are reduced as the individual
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conduct cannot be observed by the insurance company in many cases and possible damages

are borne by the insurance company. Therefore moral hazard is also important in insurance

markets as first pointed out by Shavell (1979).

In economics in general and in insurance economics in particular the theory of asymmetric

information has been developed at a rapid pace. Surveys for the field of insurance are Dionne

et. al. (2000) and Winter (2000). But in contrast to the theoretical development the empirical

and econometric analysis lagged behind and to this point we would like to contribute.

One problem in the empirical analysis of contract theory is that either suitable data sets for

the question at hand do not exist or - if they exist - are often not available for research.

But insurance markets have proved a fruitful and productive field for empirical studies. In

most cases insurance contracts are standardized. Insurance companies store the relevant in-

formation which is necessary to test the theoretical predictions and they have large data bases

in order to run statistical analysis. Cohen and Siegelman (2010) give a recent overview of

testing for asymmetric information in insurance markets. One central question is, if insurees

really have a better assessment of their risk than insurance companies. This question and the

question if asymmetric information is prevalent in a market are important for contractual,

institutional and regulatory issues. Problems for which knowledge about the extent of asym-

metric information is decisive are, e.g., how to design social insurance, either to introduce a

compulsory public insurance in the case of market failure or to relinquish it to the private

sector. An other important question concerns regulation. In order to assess the effects of

prohibition to use certain variables for risk classification on the market outcome, an analysis

of the extent of adverse selection is indispensable. A recent example is the ban to base the

insurance rate on sex. Such interventions might even lead to a break down of markets if

adverse selection is dominant. Recent results indicate that there is no general answer to this

question and it seems that it depends on the concrete market resp. risk under consideration

and the detailed contractual and institutional design.

Testing for asymmetric information does not have a long tradition in economics. The

basic models of asymmetric information predict a positive correlation between risk and cover-

age. Chiappori and Salanié (2000) introduce tests for this positive correlation. This approach

was widely applied in other studies. One drawback of parametric approaches is that they

are vulnerable with respect to the functional and distributional specification. Chiappori and

Salanié (2000) also apply a nonparametric test for which all variables have to be binary. Such

a transformation might lead to a loss of information. Therefore a general nonparametric test

for asymmetric information is beneficial.

One problem connected with tests for positive correlation is that also the result of zero cor-
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relation might be compatible with the existence of selection on risk, i.e., adverse selection.

DeMeza and Webb (2001) show that if insurees differ in risk aversion (preferences) and if ad-

ditionally risk averse individuals are ,e.g., more cautious then selection on preferences might

superimpose the selection on the risk type and might lead to a negative or zero correlation

despite adverse selection. Therefore the interpretation of the positive correlation test is not

unambiguous. There are several ways to circumvent this problem. Chiappori et al. (2006)

introduce a generalized positive correlation property which even holds if the agents have dif-

ferent preferences. Another way to control for differences in preferences is to use unused

observables as proposed by Finkelstein and Poterba (2006). Both tests have high demands

concerning the data. They require either information about the premium or the existence of

variables which are contained in the data set but not used for pricing resp. risk classification

(so called unused observables). An other possible procedure with lower data requirements is

to use finite mixture models to account for unobserved heterogeneity. In order to test for

asymmetric information with them no more information is required than with the standard

test procedures.

In chapter 2 we tackle two distinct problems: one methodological and one empirical.

The basic models of asymmetric information predict a positive correlation between risk and

coverage and there are several ways to test for this property. Procedures have been proposed

by Chiappori and Salanié (2000), Dionne et al. (2001) and Kim et. al. (2009). One natural

question is if all these tests deliver consistent results, not in a statistical sense but in the

sense of answering the underlying question in the same way. These tests build on different

principles resp. different translations of the formal definition of asymmetric information into

a statistical framework. We show that all tests deliver robust results and therefore the choice

of a particular method is only of minor importance.

Moreover, the literature has reached a consensus that asymmetric information is not prevalent

in the automobile insurance.1 Our analysis shows that this conclusion is not correct in general

and that the arrangement and organization of the markets and the contracts have a great

influence on the fact if insurees have an informational advantage and possibly can use this

advantage. Because of a special arrangement of the car insurance in Germany we can show that

the extent of asymmetric information depends on the kind of risk which is precisely covered.

Therefore we stress the importance of institutional and contractual conditions in detail which

finally enable or disable the insureds to use possible asymmetries in the information structure.

In chapter 3 a nonparametric test for asymmetric information is proposed and applied

to French automobile data. The test is based on an alternative interpretation what asym-

1For a detailed literature review we refer to chapter 2.
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metric information resp. its absence means. The absence of asymmetric information means

that the choice of a contract Y (discrete variable) provides no information for predicting the

“performance” variable Z (discrete or continuous, e.g., the number of claims or the sum of

reimbursements), conditional on the vector X of all exogenous variables (discrete and contin-

uous). Therefore we can transform the problem of testing the absence of asymmetric infor-

mation into a test for conditional independence: F (Z|X,Y ) = F (Z|X) almost surely (a.s.)

where, e.g., F (Z|X,Y ) denotes the conditional cumulative distribution function (CDF) of Z

given (X,Y ) . We propose a nonparametric test statistic to test the conditional independence

of Z and Y given X. We show that the test statistic is asymptotic normally distributed under

the null hypothesis of conditional independence (or absence of asymmetric information) and

diverges to infinity in the presence of conditional dependence (or asymmetric information).

Parametric tests are fragile to both functional and distributional form misspecification which

are a severe problem in this field. For example, in the automobile insurance market it is

common knowledge that the age of the driver has a nonlinear effect on the probability of an

accident, but such a nonlinear effect has rarely been taken into account in the literature. For

another example, the error term in the binary model for modeling the choice of an insurance

contract may not be either normally or logistically distributed, and tests for asymmetric in-

formation based on the probit or logit model can therefore yield misleading conclusions in

the case of incorrect distributional specification. Our test can control for both for arbitrary

functional and distributional forms.

We then apply our test to a French automobile insurance data set and compare our testing

results with the results found in the literature.

In the last part of the dissertation, which consists of two chapters, we pursue two goals:

one is to deliver results for the accident insurance which covers elementary risks of individuals.

The other is to control for unobserved heterogeneity which might lead to a zero correlation

of risk and coverage although there is selection on risk. DeMeza and Webb (2001) show, as

mentioned above, that also a zero or negative correlation is compatible with adverse selection

and this complicates the interpretation of results.

In order to deal with this problem there are two possible solutions: the “unused”observables

test introduced by Finkelstein and Poterba (2006) or finite mixture models to account explic-

itly for unobserved heterogeneity. As the data set we analyze contains variables which are not

used for risk classification - a rare situation - we can apply the test with unused observables.

The basic idea is that if there is a variable which is not used for risk classification but simul-

taneously influences the choice of coverage and is a predictor for risk then there is asymmetric

information.
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Moreover, we will also apply mixtures of bivariate probit models to account for heterogeneity.

A first application of finite mixture models to test for asymmetric information is found in Gan

et. al. (2011).

First, we analyze the data set with the standard parametric and a nonparametric test. In

order to be able to compare the results, we apply all tests to the same subsample. Because of

computational limitations the nonparametric test can only be applied to relatively small sub-

samples. We find evidence for the existence of asymmetric information for small and middle

insured sums. For high values the evidence is not so clear.

In the second part, we try to control for the unobserved heterogeneity by applying the meth-

ods mentioned above. We find asymmetric information even when controlling for unobserved

heterogeneity while the extent varies with the chosen insured sum.

As the dissertation was written in a cumulative way and has its origin in several papers,

some sections of the chapters are similar. But to avoid confusion and unnecessary cross

references they have been retained.
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Chiappori, P.-A., Salanié, B. 1997. Empirical contract theory: the case of insurance data.

European Economic Review 41, 943-950.
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Chapter 2

Asymmetric Information in the

Market for Automobile Insurance:

Evidence from Germany∗

2.1 Introduction

Since Akerlof (1970), the consequences of asymmetric information, in particular adverse selec-

tion and moral hazard, have been explored in a vast body of research. The initial gap between

the theoretical developments and empirical studies of asymmetric information has recently be-

come narrower. In particular, insurance markets have proved a fruitful and productive field for

empirical studies, for two reasons: First, insurance contracts are usually highly standardized;

they can be described completely by a relatively small set of variables and data on the insured

person’s claim history, i.e., the occurrence of claims and the associated costs, is stored in the

database of an insurance company. Second, insurance companies have hundreds of thousands

or even millions of clients and therefore the samples are sufficiently large to conduct powerful

statistical tests. The markets for automobile insurance, annuities and life insurance, crops in-

surance, as well as long-term care and health insurance provide large samples of standardized

contracts for which performances are recorded and are well suited for testing the theoretical

predictions of insurance theory. Chiappori and Salanié (1997) provide a detailed justifica-

tion for using insurance data to test contract theory. Cohen and Siegelman (2010) present a

comprehensive overview of approaches for testing for adverse selection in insurance markets,

covering a large number of empirical studies in different insurance branches.

∗This chapter is based on joint work with Joachim Winter and Steffen Hagmayer.
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In statistical terms, the notion of asymmetric information implies a positive (conditional)

correlation between coverage and risk. Several different methods how to test for asymmetric

information have been proposed in the literature. We present the most important and powerful

(parametric) tests and apply them to a German car insurance data set. Our study contributes

to the existing literature in several respects. We present the first study analyzing the German

car insurance market. The German car insurance market is the largest in Europe and therefore

for many insurance companies the most important sales market for their insurance policies.

We had unique access to the data set of one of the largest insurance companies in the field of

automobile insurance in Germany.

Second, the literature has reached consensus that asymmetric information is not prevalent

in the automobile insurance. Our analysis shows that his conclusion is not correct in general

and that the arrangement and organization of the markets and contracts have a great influence

on the fact if insurees have an informational advantage and possibly can use this. Because

of a special arrangement of the car insurance in Germany we can show that the extent of

asymmetric information depends on the kind of risks which are precisely covered. Therefore

we stress the importance of institutional and contractual conditions in detail which finally

enable or disable the insureds to use possible asymmetries in the information structure.

Third, several tests for asymmetric information have been proposed in the literature.

Chiappori and Salanié propose tests for the positive correlation property, Dionne et. al.

(2001) use a two stage approach and Kim et. al. (2009) modify a multinomial approach.

Most studies only apply a selection of these tests. We apply all tests on the same data set and

see that they give consistent results, not in a statistical sense but in the sense of answering the

underlying question in the same way. These tests build on different principles resp. different

translations of the formal definition of asymmetric information into a statistical framework.

We show that all tests deliver robust results and therefore the choice of a particular method

is only of minor importance.

Finally, by applying the framework of Chiappori et al. (2006) we can also test whether

consumers know their loss distribution, if in this market the non-increasing profit assumption

holds, i.e., that contracts with higher coverage earn not higher profits, and, most importantly,

we can test if some form of generalized positive correlation property holds, which also allows for

differences in risk preferences. The first two statements are interesting on their own although

they serve as assumptions for the last one. One important practical question in insurance

economics is if insurees can correctly estimate their loss distribution or if the overestimate

or underestimate their risk. We test this in section 6. Another important issue in insurance

markets is the question about the market structure. In section 6 we can show that the non-
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increasing profit condition holds in this market and in this period, which indicates that there is

strong competition among insurance firms, which is in line with descriptions of this particular

market that we discuss in section 3 suggest.

The rest of the paper is structured as follows. Section 2 outlines the theory of asymmetric

information and summarizes the empirical literature relevant for our paper. Section 3 describes

the arrangement of car insurance in Germany and the structure of the German automobile

insurance market. In section 4, we describe the data set. In section 5, we review briefly the

parametric tests used in this field and present the results for our data set. In section 6, we

introduce the generalized positive correlation property and some related tests and present the

results. Final remarks and conclusions are contained in Section 7.

2.2 Asymmetric Information in Insurance Markets: Theory

and Evidence

In their seminal paper Rothschild and Stiglitz (1976) introduce the notion of adverse selec-

tion in insurance markets that has since then been extended in many directions.1 In the

basic model, the insureds have private information about the expected claim, exactly speak-

ing about the probability that a claim with fixed level occurs, while the insurers do not have

this information. Thus there are two groups with different claim probabilities, the “bad” and

“good” risks. The agents have identical preferences which are moreover perfectly known to

the insurer. Additionally, perfect competition and exclusive contracts are assumed. Exclusive

contracts mean that an insuree can buy coverage only from one insurance company. This al-

lows firms to implement nonlinear (especially convex) pricing schemes which are typical under

asymmetric information. Under this setting insurance companies offer a menu of contracts in

equilibrium: a full insurance which is chosen by the “bad” risks and a partial coverage which

is bought by the “good” risks. In general, contracts with more comprehensive coverage are

sold at a higher (unitary) premium.

Clearly, one expects a positive correlation between “risk” and “coverage” (conditional on

observables). Since the assumptions in the Rothschild and Stiglitz model are very simplistic

and normally not fulfilled in real applications, an important question to address is how robust

this coverage-risk correlation is. Chiappori et al. (2006) show that the positive correlation

property extends to much more general models under a suitable defined notion. Especially

the notion of positive correlation is generalized in this context. Under competitive markets

1For a detailed survey on adverse selection and the related moral hazard problem, see Dionne, Doherty and
Fombaron (2000) and Winter (2000), respectively.
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this property is also valid in a very general framework entailing heterogeneous preferences,

multiple level of losses, multidimensional adverse selection plus possible moral hazard and

even non-expected utility theory. In the case of imperfect competition some form of positive

correlation must hold if the agent’s risk aversion becomes public information. In the case of

private information the property does not necessarily hold (c.f. Jullien et al. (2007)).

While adverse selection concerns “hidden information”, moral hazard deals with “hidden

action”. Moral hazard occurs when the expected loss (accident probability or level of damage)

is not exogenous, as assumed in the adverse selection case, but depends on some decision or

action made by the subscriber (e.g., effort or prevention) which is neither observable nor

contractible. A higher coverage leads to decreased efforts and therefore to a higher expected

loss. Therefore moral hazard also predicts a positive correlation between “coverage” and

“risk”.

Although both phenomena lead to a positive risk-coverage correlation, there is one im-

portant difference: under adverse selection the risk of the potential insuree affects the choice

of the contract, whereas under moral hazard the chosen contract influences the behavior and

therefore the expected loss. So there exists reversed causality in both cases.2

In sum, the theory of asymmetric information3 predicts a positive correlation between

(appropriately defined) “risk” and “coverage” which should be quite robust.

To proceed, it is worth mentioning that to test for asymmetric information, the researcher

needs to have access to the same information which is also available to the insurer and used

for pricing. The theory of adverse selection predicts that the insurance company offers a menu

of contracts to indistinguishable individuals. Individuals are (ex ante) indistinguishable for

the insurer if they share the same characteristics. Therefore the positive risk-coverage corre-

lation is valid only conditional on the observed characteristics. Different groups of observable

equivalent individuals are offered different menus of contracts with different prices according

to their risk exposure.4 Only within each class are the mechanisms described above valid.

Despite the scarcity of data sets in empirical contract theory, the automobile insurance

market has been analyzed extensively. Amongst others, automobile insurance markets in

France (Salanié and Chiappori (2000, 2006) and Richaudeau (1999)), Israel (Cohen (2005)),

Canada (Dionne et al. (2001)), Korea (Kim et al. (2009)), Japan (Saito (2009)) and the

Netherlands (Zavadil (2011)) have been analyzed. In one of the first studies, Puelz and Snow

2To disentangle moral hazard from adverse selection is an important problem in the empirical literature.
The first attempt is Dionne et al. (2004). An overview over different possible strategies for dealing with this
problem can be found in Cohen and Siegelman (2010).

3It seems that in the empirical insurance literature adverse selection is more stressed than the moral hazard
aspect which only receives minor attention, see, e.g., Cohen and Siegelman (2010).

4For the theory of risk classification under asymmetric information see Crocker and Snow (2000).
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(1994) confirm the existence of asymmetric information, but Dionne et al. (2001) show that

this might be due to misspecification of their model. In general, there is a tendency to confirm

absence of asymmetric information, e.g., Salanie and Chiappori (2000), Kim et al. (2009),

Dionne et al. (2001) and Zavadil (2011). Only in the market of Israel asymmetric information

is found for experienced drivers but this can be contributed to a special feature of this market.

Insurance companies in Israel cannot gather information about the driving history of their

new customers. This gives consumers who change their insurer some advantage. The evidence

for asymmetric information found by Kim et al. (2009) seems to be relatively weak.

2.3 Automobile Insurance in Germany

Like in many other countries, a third-party vehicle insurance is mandatory for all vehicles

in Germany. This is the so called “KFZ-Haftpflicht”. This is a liability insurance that

covers damage inflicted to other drivers and their cars. Moreover, insurance companies offer

additional non-compulsory coverage where two different types must be distinguished which

cover own damages. The first one is the so called “Teilkasko”(TK). This type covers own

damages and losses caused by theft, natural disasters (storm, hail, lightning strike, flood),

collusion with furred game and so on. The second type is the “Vollkasko”(VK). It covers

accidental damage on the own car, even if caused by oneself, and damages caused by vandalism

of strangers. For both types the insuree can choose a deductible.

In the German car insurance there is also a so called “Schadendsfreiheitsrabatt”(SFR), a

uniform experience rating system which applies only to the “Vollkasko”, but not to damages

due to the “Teilkasko”. The number of years without accident are counted separately for the

“Haftpflicht ”and the “Vollkasko”and according to these numbers every insuree is divided into

a certain class (“Schadensfreiheitsklasse”(SFK)). With every class a certain coefficient bt is

associated which is a proxy for past experience. At any date/year t, the premium is defined

as the product of a basis amount and this coefficient. The basic amount can be defined

freely by the insurance companies according to their risk classification but cannot be related

to past experience. Suppose, the bonus coefficient is bt at the beginning of the tth period.

Then the occurrence of an accident during the period leads to a categorization into another

SFK class and ,e.g., an increase of 25 percent at the end of the period (i.e., bt+1 = 1.25bt),

whereas an accident-free year leads to a reduction of the coefficient according to the new

class. Additionally, the coefficient is to be restricted to lie between 230 % and 30 % in the

“Haftpflicht”and between 125 % and 30 % in the “Vollkasko”.

The basis amount of the premium is calculated according to different risk classes. Due
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Table 2.1: An overview of the German car insurance market in 2008

“Haftpflicht” “Teilkasko” “Vollkasko”

number of insured cars in million 39.69 12.6 20.76
number of claims in million 2.57 1.30 3.43
claims expenditure in billion Euro 9.22 0.95 5.00
average claim in Euro 3, 600 730 1, 460

source: GDV (2010).

to variables like age, sex, profession, area, etc., the insurees are divided into different risk

classes which should reflect their accident probabilities, and the premium to be paid is then

determined.

In 2009, the size of German motor insurance markets was about 20 billion Euro. 39.69

million cars were covered by “Haftpflichtversicherung”which is compulsory for every car owner;

this is thus the total number of registered cars. A detailed survey of key figures for the year

2008 is given in Table 2.1.

In 2009 the premium income was 20, 057 million Euro and expenditures for claims were

19, 420 million Euro. There are 104 companies in the market competing for contracts, a

wider offer than in many other countries in western Europe. A very important statistic for

insurance companies is the so called “combined ratio”, cost and claims divided by the premium

income. This figure was in the last years about 100 %, in 2008 and 2009 the industry average

was slightly above 100 %. A combined ration over 100 indicates that the insurer is making

an underwriting loss. The reason is that in the last five years there was a price battle in

this market with cutting rates in each year leading to insurance rates similar to the level of

those of the early 1980s (see Bloomberg (09/06/2010)). Between 2004 and 2009, the average

premium decreased by 15.9 % (cf. GenRe (2010)). A detailed analysis of the German car

insurance and the prevailing price war in the last years is given in GenRe (2010). While

most insurance markets show a tendency towards oligopolies, in the last years the German

car insurance market was very competitive, close to perfect competition as the figures above

and recent market surveys indicate.5 In section 6 we also test for the non increasing profit

hypothesis which holds in most settings of competitive markets but is more general than a

simple null-profit condition.

5GenRe (2010), Bloomberg (11/13/2009), Reuters (01/28/2009), Reuters (05/17/2010) and Handelsblatt
(09/01/2010) give recent information for the developments on the German car insurance market, especially for
the existing price war and the hard competition.
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2.4 The Data Set

For our analysis we had access to the database of the insurance contracts of a major company

in Germany. We conducted separated analysis for the “Teilkasko”(TK) and “Vollkasko”(VK)

due to the different scopes of indemnity and liability rules. Besides, we analyzed both the

whole portfolio of contracts and a subsample restricted to young drivers6. The concentration

on beginners enables us to rule out learning effects which might arise in time on the side of the

insuree or the insurance company. As the database is too voluminous we restrict our analysis

in both cases to random samples.7 We use data comprehending the year 2009. The data set

contains information about each contract in the sample for a full contract year. The sample

size in the TK is n = 5, 321 for the whole portfolio and n = 5, 647 for the beginners, in the

VK n = 7, 200 resp. n = 6, 466 for the beginners. The level of deductibles in the TK are 0,

150, 300 and 500 Euro and 0, 300, 1, 000 and 2, 500 Euro in the VK. As 2, 500 Euro is very

seldom chosen we omit this level of deductible. In the TK case we use the number of claims

exceeding 500 Euro and in the VK the number of claims exceeding twice the highest level of

deductible, i.e., 2 · 1, 000 = 2, 000 Euro as a measure for the ex post risk. In the TK there is

no incentive not to claim accidents as there is no bonus / malus coefficient. In the VK case

there is an incentive not to claim all accidents as accidents lead to a worsening of the the risk

classification and therefore to a higher premium. But we argue that claims higher than 2, 000

Euro are filed in any case. In general, as accidents below the deductible are not reported to

the insurance company and cannot be observed we have to restrict to claims being higher

than certain thresholds as mentioned above. Otherwise also in the absence of asymmetric

information a positive correlation would be possibly detected.

A detailed statistical analysis of the chosen deductibles and the number of accidents ac-

cording to the chosen deductibles for both the whole portfolio and the novice drivers broken

down into Teilkasko and Vollkasko is provided in Tables 2.2–2.5.

As our data set stems from the company with one of the highest market shares and is

diversified across regions in Germany, across all occupations and ages it can be assumed that

the structure of our data is representative for the the whole population and therefore our

results can be generalized to the whole market.

6In actuarial science the expression “young drivers”refers not to the age of the driver but to the driving
experience.

7For the analysis of the whole portfolio the random sample was drawn from the set of all contracts which
were signed after January 1, 2007. As there are changes in the product menu and contract conditions from
time to time, thereby we can secure that the contracts are really comparable and differ only in the chosen
deductible.
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Table 2.2: Number of accidents according to the choice of deductible in the TK for the whole
portfolio

level of deductible / number
of accidents

0 1 2 sum

0 552 (0.914) 50 (0.083) 4 (0.003) 604
150 4349 (0.953) 208 (0.046) 7 (0.001) 4564
300 107 (0.964) 4 (0.036) 0 (0.000) 111
500 40 (1.00) 0 (0.000) 0 (0.000) 40

Notes: Figures in brackets denote the relative frequency of the number of accidents for the corresponding
level of deductible.

Table 2.3: Number of accidents according to the choice of deductible in the VK for the whole
portfolio

level of deductible / number
of accidents resp. share

0 1 2 sum

0 54 (0.982) 1 (0.018) 0 (0.000) 55
150 486 (0.972) 14 (0.028) 0 (0.000) 500
300 5182 (0.977) 119 (0.022) 2 (0.001) 5303
500 962 (0.969) 31 (0.031) 0 (0.000) 993
1000 129 (0.985) 2 (0.015) 0 (0.000) 131

Notes: Figures in brackets denote the relative frequency of the number of accidents for the corresponding
level of deductible.

Table 2.4: Number of accidents according to the choice of deductible in the TK for the novice
drivers

level of deductible / number
of accidents

0 1 2 sum

0 377 (0.887) 44 (0.103) 4 (0.010) 425
150 4723 (0.940) 288 (0.057) 15 (0.003) 5026
300 148 (0.961) 6 (0.039) 0 (0.000) 154
500 40 (1.00) 2 (0.000) 0 (0.000) 40

Notes: Figures in brackets denote the relative frequency of the number of accidents for the corresponding
level of deductible.
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Table 2.5: Number of accidents according to the choice of deductible in the VK for the novice
drivers

level of deductible / number
of accidents resp. share

0 1 2 3 sum

0 3 (1.000) 0 (0.000) 0 (0.000) 0 (0.000) 13
150 205 (0.995) 1 (0.005) 0 (0.000) 0 (0.000) 206
300 4619 (0.964) 167 (0.035) 6 (0.001) 1 (0.000) 4793
500 1194 (0.954) 56 (0.045) 2 (0.001) 0 (0.000) 1252
1000 129 (0.960) 8 (0.040) 0 (0.000) 0 (0.000) 202

Notes: Figures in brackets denote the relative frequency of the number of accidents for the corresponding
level of deductible.

2.5 Testing for Adverse Selection and Moral Hazard

2.5.1 Statistical Procedures

In this section, we present several different methods for testing asymmetric information. In an

econometric sense we want to test if there is a positive correlation between risk and coverage.8

X denotes the exogenous variables which are used for risk classification by the insurance

company, Y the chosen contract, e.g., the chosen deductible, and Z measures the risk. The

risk is measured as “ex post risk”, e.g., by the number of accidents or the caused damage

payments by the insuree. An index i refers to a certain individual resp. contract which is

omitted if there is no confusion.

2.5.1.1 Unrelated probit regressions

The first approach is to define two probit models, one for the choice of the coverage Yi (either

compulsory/basic coverage or comprehensive coverage) and the other for the occurrence of an

accident Zi (either no accident being blamed for or at least one accident with fault):{
Yi = 1(Xiβ + εi > 0)

Zi = 1(Xiγ + ηi > 0)
(5.1)

where εi and ηi are independent standard normal errors, and β and γ are coefficient vectors

(as columns). The row vector Xi denotes the covariates of individual i. First these two

8We will concentrate on parametric tests which are well established in this field and can be implemented
by most statistical software packages. Spindler and Su (2011) present a nonparametric test for asymmetric
information.
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Table 2.6: Description of the variables

name description number of categories
“Teilkasko” “Vollkasko”

commitment to work-
shop

yes/no 2 2

profession categorial 9 9
region categorial 6 4
type of vehicle categorial 6 6
no-claims bonus bonus / malus coeffi-

cient; categorial
– 8

kilometers per year categorial 9 9
age of car when being
bought

categorial 8 7

lodging of the car over
night combined with
housing

categorial 12 12

driver age of the driver and po-
tential drivers – catego-
rial

18 25

keeper of the car categorial 5 5
payment method categorial 6 6
bonus yes/no 2 2
protection against up-
grading

yes /no, in the case
of an accident the no-
claims bonus is not
raised

– 2

deductible different possible values 4 5
number of accidents discrete
payment for damages continuous

Note: For the young drivers the number of categories is slightly different, i.e., smaller, as they have a little bit lower variation in their
characteristics.
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probit models are estimated independently and then the generalized residuals ε̂i and η̂i
9 are

calculated. These are required for the following test statistic

Wn =
(
∑n

i=1 ε̂iη̂i)
2∑n

i=1 ε̂
2
i η̂

2
i

. (5.2)

Under the null of conditional independence, cov(εi, ηi) = 0 and Wn is distributed asymptoti-

cally as χ2(1) as shown by Gourieroux et al. (1987).

Chiappori and Salanié (1997, 2000) introduced this approach. One drawback is that informa-

tion is lost as Y and Z have to be defined as binary variables.

2.5.1.2 Bivariate Probit regression

A related approach is to estimate a bivariate probit model in which εi and ηi are distributed

as bivariate normal with correlation coefficient ρ which hast to be estimated, and then to test

whether ρ = 0 or not. In order to test this hypothesis the Wald-, Score- oder LR-test can be

used.

2.5.1.3 Two-stage regressions

Multinomial approach (Kim et al. (2009)) Depending on the number of categories of

the choice variable Y this procedure varies a little bit. In the case of a dichotomous Y in

the first stage a bivariate probit of the choice of contract on the exogenous variables, i.e., the

variables used for risk classification, is run. The probit equation is of the form

Yi = 1(Xiβ + εi > 0) (5.3)

with εi iid and standard normal. Then the generalized residuals ε̂i are obtained:

ε̂i =
φ(Xiβ̂)

Φ(Xiβ̂)(1− Φ(Xiβ̂))

[
Yi − Φ(Xiβ̂)

]
, (5.4)

where φ and Φ are the density and cumulative distribution functions of the standard normal

distribution and β̂ is the estimated coefficient vector. As an unexplained probability of making

a corresponding coverage choice, ε̂i captures the extent of private information in the binary

choice of Yi, conditional on the observables.

In the case of more than two categories of Yi an ordered multinomial choice model is applied.

9For example, the generalized residual ε̂i estimates E (εi|Yi) . See Gourieroux et al. (1987) for the definition
of generalized residuals in limited dependent models and applications.
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For example Yi is equal to 0 if policyholder i chooses no optional coverage (i.e., liability only),

1 for some optional coverage and 2 for all optional coverage / full coverage. For the kind

of insurance we will analyze (separately for Teil- and Vollkasko) Yi is equal to 0 if someone

chooses the highest possible deductible, equal to 1 if someone chooses some medium deductible

and 2 for no deductible.

A multinomial choice model is given by

Yi =


0 if Y ∗i ≤ µ1
1 if µ1 < Y ∗i ≤ µ2
2 if Y ∗i ≤ µ2

(5.5)

where Y ∗i denotes a latent variable representing the policyholders utility associated with in-

surance coverage, and µ1 and µ2 are unknown thresholds for observed categories. The ordered

multinomial choice model can be estimated using an ordered probit regression.

With an ordered multinomial variable Yi ∈ {0, 1, 2} the above procedure is not directly

applicable. In order to obtain the unexplained probabilities equivalent to the one in the binary

choice model the choice of three contracts is split up in two binary choices.10 Therefore they

define two auxiliary variables Y 1
i and Y 2

i . Y 1
i = 0 if Yi = 0 and Y 1

i = 1 if Yi ∈ {1, 2}.
Accordingly, Y 2

i = 0 if Yi ∈ {0, 1} and Y 1
2 = 1 if Yi = 2. Then the generalized residuals are

calculated by

ε̂1i =
φ(Xiβ̂ − µ̂1)

Φ(Xiβ̂ − µ̂1)(1− Φ(Xiβ̂ − µ̂1))

[
Y 1
i − Φ(Xiβ̂ − µ̂1)

]
(5.6)

ε̂2i =
φ(Xiβ̂ − µ̂2)

Φ(Xiβ̂ − µ̂2)(1− Φ(Xiβ̂ − µ̂2))

[
Y 2
i − Φ(Xiβ̂ − µ̂2)

]
(5.7)

with β̂ the estimated coefficient vector and µ̂1, µ̂2 the estimated thresholds for observed

categories.

ε̂1i and ε̂2i can be interpreted as the unexplained probabilities associated with Y 1
i and Y 2

i .

For example, ε̂1i estimates the unexplained probability of choosing any optional coverage

(Yi ∈ 1, 2) over no optional coverage (Yi = 0). ε̂2i can be interpreted in an analogous way.

If we include these two residuals in the ”accident equation“in the 2nd step as regressors, the

regression coefficient of ε̂1i captures the effect of information asymmetry in the choice between

no optional coverage (Yi = 0) and some optional coverage (Yi = 1) and the coefficient of ε̂2i

10The exposition follows Kim et al. (2009), also the interpretation of the residuals below follows their pre-
sentation.
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captures the effect of information asymmetry in the choice between some optional coverage

(Yi = 1) and all optional coverage (Yi = 2).

Therefore in a second step we run a negative binomial regression or alternatively Poisson

regression of the number of accidents Zi in the contract year on the exogenous regressors

including the generalized regressors calculated according to 5.6 and 5.7. The distribution of

the number of accidents Zi in the case of the negative binomial regression is given by

P(Zi) =
Γ(Zi + 1

σ2 )
[
σ2 exp(Xiβ̂0 + ε̂iβ̂ε)

]Zi
Γ( 1

σ2 )Γ(Zi + 1)
[
1 + σ2 exp(Xiβ̂0 + ε̂iβ̂ε)

]Zi+ 1

σ2
i

(5.8)

with Γ the Gamma function and β̂0, β̂ε the estimated coefficient vectors. ε̂i is defined as

(ε̂1i , ε̂
2
i ).

Statistically significant and positive β̂ε indicates the existence of asymmetric information

between the parties.

As a two stage nonlinear estimation procedure is used one has to apply the Murphy-Topel

standard error estimates in the second stage (Murphy and Topel (1985)). As in the second

regression regressors are included which are estimated themselves in the first step one has to

account for this additional source of uncertainty and correct the induced bias in the variance.

An adapted version which is tailored to the situation above can be found in the appendix of

Kim et al. (2009).

Allowing for nonlinearities (Dionne et al. (2001)) Dionne et al. (2001) choose the

following procedure. In the first step Ê(Z|X) is computed by the estimation of a negative

binomial regression of the distribution of accidents by using basic rating variables of the insurer

as regressors. In the second step, a probit model with the chosen deductible as independent

variable is run. The exogenous variables are the same as in the first step plus the expected

number of claims estimated from the 1st step and the actual number of accidents.

In one of the first empirical studies, Puelz and Snow (1994) consider an ordered logit

formulation for the deductible choice variable and find strong evidence for the presence of

asymmetric information in the market for automobile collision insurance in Georgia. But

Dionne et al. (2001) show that this correlation might be spurious because of the highly con-

strained form of the exogenous effects or the misspecification of the functional form used in

the regression. They propose to add the estimate Ê(Zi|Xi) of the conditional expected value

of Zi given Xi as a regressor into the ordered logit model to take into account the nonlinear

effect of the risk classification variables, and by accounting for this, they find no residual
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asymmetric information in the market for Canadian automobile insurance.

2.5.2 Results

In this section we present our results. In order to check for robustness we apply all the

parametric tests presented in the previous section to the Teilkasko and Vollkasko for both

subsamples. This gives us a comprehensive picture and enables us to detect asymmetric

information. The results for the whole portfolio are summarized in Table 2.7, the results

for the novice drivers in Table 2.8. As the results for both groups are surprisingly relatively

similar we will first present the results for the whole portfolio in some detail, especially the

interpretation. Afterwards we will compare the results for the both subsamples.

In the Teilkasko the picture seems to be clear-cut. Both tests building up on the two

Probits and the bivariate Probit reject the Null hypothesis of conditional independence on

a significance level of α = 0.01. In applying a 2 step estimation procedure the number

of accidents has a significant influence in predicting the choice of deductible (β̂accidents =

0.517). In order to take into account nonlinearities, we also take up the expected number

of accidents, additional to the number of accidents. The expected number of accidents is

estimated according to a Poisson regression in which all variables used for risk classification

by the insurance company are included. We also applied a Negative Binomial regression but as

the results are similar to the Poisson regression and as we find no indication for overdispersion

we omit them. While in Dionne et al. (2001) the addition of the expected number of accidents

made the coefficient of the number of accidents insignificant our results are not changed so that

the actual number of accidents remains a significant predictor for the choice of the deductible.

Therefore also the two step estimation confirms the existence of asymmetric information in the

Teilkasko. The multinomial approach shows that there is no asymmetric information in the

choice between the highest possible deductible and some lower deductible. This information

is contained in the coefficient of ε1. In the choice between some deductible and full insurance,

presumably the most important decision, the generalized residual ε2 has a significant positive

influence which indicates asymmetric information.

The interpretation of the results of the Vollkasko is similar but the results are contrary as

can be seen in Table 2.7. The estimated coefficient of ρ is clearly not significantly different

from zero and the test statistic W using the generalized residuals does not reject conditional

independence on a significance level α = 0.01. In the two step estimation the number of

accidents is not a significant variable, regardless of taking into account nonlinearities. Also

the multinomial approach shows no indication of asymmetric information if one examines the

detailed choice between certain levels of deductible. The results for the young drivers are
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interpreted in an analogous way. A comparison of Table 2.7 and 2.8 shows that the pattern

for the whole portfolio and the novice drivers is surprisingly similar and robust.

To sum up, we detect the existence of asymmetric information in the Teilkasko, but not

in the Vollkasko, regardless whether the drivers are experienced or are novice drivers.

Table 2.7: Results for the whole portfolio (contracts signed after January 1, 2007)

Test Procedure TK VK

Two Probits W = 21.9 W = 0.01
reject conditional indepen-
dence (α = 0.01, 0.05)

do not reject conditional inde-
pendence (α = 0.01, 0.05)

Bivariate Probit ρ = 0.286 (0.049) ρ = −0.1403 (0.126)
reject conditional indepen-
dence (α = 0.01, 0.05)

do not reject conditional inde-
pendence (α = 0.01, 0.05)

2 step estimation β̂accidents = 0.517∗,∗∗ (0.083) β̂accidents = 0.036 (0.094)
(Dionne et
al. (2009)) {

β̂accidents = 0.509∗,∗∗(0.083)

β̂exp acc = 1.4(1.098)

{
β̂accidents = 0.019(0.095)

β̂exp acc = 1.725(1.090)

Multinomial ap-
proach

βε̂1 = 1.721 (2.038/2.056) βε̂1 = 0.338 (0.332/0.332)

βε̂2 = 0.352∗,∗∗ (0.079/0.149) βε̂2 = 0.053 (0.386/0.386)

Notes: *, ** indicate significance at the 1 % and 5 %, respectively.

Figures in brackets indicate the standard errors, and for the multinomial approach
additionally the Murphy-Topel standard errors.
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Table 2.8: Results for novice drivers

Test Procedure TK VK

Two Probits W = 15.4 W = 3.86
reject conditional indepen-
dence (α = 0.01, 0.05)

do not reject conditional inde-
pendence for α = 0.01 and re-
ject for α = 0.05

Bivariate Probit ρ = 0.227 (0.066) ρ = −0.0101 (0.108)
reject conditional indepen-
dence (α = 0.01, 0.05)

do not reject conditional inde-
pendence (α = 0.01, 0.05)

2 step estimation β̂accidents = 0.388∗,∗∗ (0.075) β̂accidents = −0.123 (0.076)
(Dionne et
al. (2009)) {

β̂accidents = 0.386∗,∗∗(0.076)

β̂exp acc = 0.640(1.375)

{
β̂accidents = −0.125(0.076)

β̂exp acc = 1.306(1.871)

Multinomial ap-
proach

βε̂1 = 0.1241 (0.2676) βε̂1 = 0.038 (0.167)

βε̂2 = 0.4136∗,∗∗ (0.074) βε̂2 = −1.785 (4.086)

Notes: *, ** indicate significance at the 1 % and 5 %, respectively.

Figures in brackets indicate the standard errors, and for the multinomial approach
additionally the Murphy-Topel standard errors.

2.6 The Generalized Positive Correlation Property

2.6.1 Statistical Procedures

As mentioned earlier, Chiappori et al. (2006) extend the positive correlation property (for

suitably defined notions) to much more general models, entailing heterogeneous preferences,

multiple level of losses, multidimensional adverse selection plus possibly moral hazard and even

nonexpected utility. Their generalized positive correlation property relies on several general

assumptions and generalizes the notion of positive correlation between risk and coverage. The

most important assumptions among these are the assumption of “realistic expectations”and

the “nonincreasing profit”(NIP) assumption. ”Realistic expectations” means that when agents

choose a contract, they correctly assess their accident probability and loss distribution. With

other words, they know their loss distribution. The NIP assumption states that if a contract

C2 covers more than a contract C1, then the expected profits generated by C2 are not higher

than profits under C1: π(C2) ≤ π(C1).

These assumptions resp. the implied predictions can be tested with the data and the results
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are of interest on their own. As we apply them to contracts with deductibles we present only

the special cases for contracts with deductibles. In the following C1 and C2 are contracts

with straight deductibles, where C2 covers more than C1, i.e., the deductible for contract 1

is higher, d1 ≥ d2. P1, P2 denote the corresponding premia, R1, R2 denote the indemnities

for every possible claim under each contract and can be approximated by loss minus the

deductible in our case.

Under the null that the insurees know their loss distribution, i.e., have realistic expectations,

the following property should hold in the case of straight deductibles

P2 − P1 ≥ q1(d1 − d2)

q1 denotes the probability that the loss L is above the deductible d1 under C1: q1 = Prob(L >

d1).

The condition of NIP can be formulated in this special case as

P1/(1 + t)− P2/(1 + t) ≥ (1 + λ)(R1 −R2)

with t the tax rate and λ the loading factor.

Finally, under the two assumptions mentioned above (and some other weak conditions) a

generalized positive correlation property holds which in our case can be written as11

(1 +K)(E2 − E1) ≥ d2(q2 − q1).

K is defined as (1 + t)(1 + λ) − 1, Ei denotes the expected loss under contract i. This

can be approximated by the payment of compensation in the case of an accident plus the

corresponding deductible. qi is the probability of a claim under contract Ci.

It is important to mention that the inequalities above are only valid for individuals with the

same observables X and therefore have to be checked for all cells separately.

In order to test if these inequalities hold one forms a test statistic T for each cell. In the case

of realistic expectations T is given by

T = P2 − P1 − q1(d1 − d2)

for the NIP

T = P1/(1 + t)− P2/(1 + t)− (1 + λ)(R1 −R2)

11Chiappori et al. (2006) give further explanations and an intuition for the result.
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and finally for the positive correlation property

T = (1 +K)(E2 − E1)− d2(q2 − q1).

As these test statistics are calculated for every cell we get an empirical distribution for each

test statistic. Under the null hypothesis that T (X) = 0 for all X, these numbers should be

distributed as a standard normal distribution N(0, 1). There are several ways to come to

a test decision. One way is to calculate the standardized mean and to conduct a t-test if

the mean is different from zero. Additionally we report the share of the number of positive

signs of our test statistic as we think that this offers valuable additional information to get an

overview over the dispersion of the distribution. All variables which are required are in the

data set or can be estimated. As we have in the TK and VK several levels of deductibles we

compare them pairwise.

2.6.2 Results

In this section we present the results of the above tests according to TK and VK. We applied

the tests to the whole portfolio of contracts in the year 2009. In order to save space we only

present the results if one of the deductibles involved in the comparisons contains at least more

than 5 % of the contracts of the total portfolio.

The first question to address is if the customers have realistic expectations. Our results

show that for both the TK and VK and for the different choices of deductibles the null can

be rejected on any reasonable significance level and therefore the customers have realistic

expectations about their true loss distribution.

Table 2.9: Realistic expectations - VK 2009

coverage 1 coverage 2 number of cells std. mean t-statistic share of pos. signs

300 150 6, 843 1.90 157.55 0.998
500 150 6, 595 2.19 178.23 1.000
500 300 8, 730 1.89 176.43 0.999

coverage in Euro. sample size appr. 2.3 mio.



2.6 The Generalized Positive Correlation Property 27

Table 2.10: Realistic expectations - TK 2009

coverage 1 coverage 2 number of cells std. mean t-statistic share of pos. signs

150 0 1, 880 1.72 74.68 0.999

coverage in Euro. sample size appr. 1.2 mio.

The second question to be addressed is if the non increasing profit assumption holds.

This is also interesting with regard to the market structure resp. competition on this market.

Tables 2.11 and 2.12 below show that the mean is significantly different from zero and therefore

the null can be rejected. But the share of observations with positive sign falls below 50 %.

Therefore the situation is not completely clear as the value of the test statistic suggests, but

there is a tendency that the NIP assumption is fulfilled.

Table 2.11: Non increasing profit assumption (NIP) - VK 2009

coverage 1 coverage 2 number of cells std. mean t-statistic share of pos. signs

300 150 6, 843 0.04 3.70 0.38
500 150 6, 595 0.07 5.56 0.44
500 300 8, 730 0.02 2.09 0.62

coverage in Euro. sample size appr. 2.3 mio.

Table 2.12: Non increasing profit assumption (NIP)- TK 2009

coverage 1 coverage 2 number of cells std. mean t-statistic share of pos. signs

150 0 1, 880 0.06 2.57 0.450

coverage in Euro. sample size appr. 1.2 mio.

Finally we present the results of the general positive correlation tests, summarized in

Tables 2.13 and 2.14. For the Teilkasko we can reject the null hypothesis (on a significance

level of 1 %) and therefore confirm the result of asymmetric information in this part of the

automobile insurance. The share of the cells with positive sign is approximately 75.6 %. This

result is in line with the results we received by applying the parametric procedures of the

previous section. For the VK the picture is not so clear cut. The tests confirm the existence
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of a positive correlation property. This contradicts the previous section at a first glance. But

the number of cells with positive sign is quite low. For the comparisons of deductibles which

we omitted the share goes down to about one fourth. Therefore the overwhelming number of

cells has negative sign. This makes it plausible that despite of our test statistic the positive

correlation property does not hold for most cells and therefore the existence of asymmetric

information seems to be doubtful resp. the effect is not strong. Moreover, a detailed look at

the cells reveals that the high value of the test statistics is driven by some cells with a sparse

number of observations which could be classified as outliers.

Summing up, we can confirm that the drivers have realistic expectations with regard to

their loss distribution and that in this market (and this period) the NIP condition holds.

Moreover, we show that the generalized positive correlation property holds for the Teilkasko.

For the Vollkasko the picture is not so clear cut. Depending on the chosen test, evidence for

the Vollkasko that this property also holds is quite weak.

Table 2.13: Generalized positive correlation - VK 2009

coverage 1 coverage 2 number of cells std. mean t-statistic share of pos. signs

300 150 6, 843 0.09 7.56 0.410
500 150 6, 595 0.15 12.26 0.495
500 300 8, 730 0.08 7.45 0.659

coverage in Euro. sample size appr. 2.3 mio.

Table 2.14: Generalized positive correlation - TK 2009

coverage 1 coverage 2 number of cells std. mean t-statistic share of pos. signs

150 0 1, 880 0.40 17.42 0.756

coverage in Euro. sample size appr. 1.2 mio.

2.7 Discussion and Concluding Remarks

In this paper, we analyzed a data set on automobile insurance in Germany. This market is of

interest not only because it is the largest such market in Europe, but also because particular

contractual arrangements allow us to analyze asymmetric information with respect to different



2.7 Discussion and Concluding Remarks 29

kind of risks which are usually covered by car insurance.

Our first conclusion is that in Teilkasko (partial insurance), asymmetric information exists.

This is confirmed by the tests in section 5 and 6. By weighing all test results we would deny the

existence of asymmetric information in the Vollkasko resp. the effect is very weak compared

to the Teilkasko. This is valid for both the young driver and the whole portfolio.

The Vollkasko covers damages to the own car or own body which are not covered in the

Teilkasko. This are especially damages in the case of an accident for which one is at his own

fault. Damages to the other party are covered by the Haftpflichtversicherung. In contrast

to the Teilkasko there is a bonus / malus coefficient in the Vollkasko, i.e., an accident for

which the policy holder is liable leads to a worsening of this coefficient and thus to a higher

premium in the following years. As there is an incentive in the Vollkasko not to file all

accidents we limited our analysis to claims which are twice as high as the highest deductible,

i.e., we considered only damages above 2, 000 Euro. Accidents with this magnitude are in

nearly almost cases filed as a claim to the insurance company. In the Vollkasko we find no

convincing evidence for the existence of asymmetric information.

When we restrict our analysis to “young driver”, i.e., drivers with no driving experience

it is reasonable to assume that these insured persons do not have an informational advantage

concerning their accident probability. This means that in the Vollkasko case we can exclude

adverse selection and therefore the analysis can be interpreted as a test for moral hazard.

But our results show that there is no positive correlation as predicted by the theory of moral

hazard. This might be due to the existence of the experience rating which is in a way deterrent

and prohibitive and does not exist in the Teilkasko.

If one does not want to maintain the assumption that young drivers have no informational

advantage than different effects must cancel each other which might be possible but not very

probable.

If we have a look at the whole portfolio the pattern is the same. Drivers have an informa-

tional advantage in the Teilkasko. The absence of asymmetric information in the Vollkasko

might be explained in the following way: the bonus / malus coefficient is on the one side a

good proxy for the ability and driving history of the driver and on the other side a suitable

scheme to induce careful driving.

One could presume that in the Teilkasko in particular risks are covered which cannot be

influenced by individual behavior to the same extent as risks in the Vollkasko, so that the

influence of individual behavior is not the most important factor. Therefore one might argue

that moral hazard is of minor importance in the Teilkasko so that the positive correlation is

driven by adverse selection. This means that the insurees are aware of potential risks like
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storms, etc. and choose the level of deductible (full insurance / deductible) according to their

risk exposure.

Another result is that the insurees know their loss distribution, i.e., have realistic expecta-

tions. This rules out the possible explanation that insurees have different abilities in assessing

the risks related to the Teilkasko or Vollkasko. We can also conclude that drivers do not over-

or underestimate their risk as it is often conjectured.

We also checked the NIP assumption and found that its holds. Usually insurance markets

are characterized by an oligopolistic market structure, but this results confirms our conjecture

from section 3 that the German market during this period is close to perfect competition.
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Chapter 3

Nonparametric Testing for

Asymmetric Information∗

3.1 Introduction

Since Akerlof (1970) the notion of asymmetric information, comprising adverse selection and

moral hazard, has been explored at a rapid pace. At the same time people observed a wide

gap between the theoretical development and empirical studies in asymmetric information.

This gap has recently become narrower. In particular, the insurance market has been a

fruitful and productive field for empirical studies. There are two reasons for this. First,

insurance contracts are usually highly standardized and can completely be described by a

relatively small set of variables, and insurees’ performances, i.e., the occurrence of a claim

and possibly its cost, are exactly filed in the database of an insurance company. Second,

insurance companies have hundreds of thousands or even millions of clients and therefore the

samples are sufficiently large for econometric studies. Hence, fields like automobile insurance,

annuities and life insurance, crops insurance, long-term care and health insurance offer a large

sample of standardized contracts for which performances are recorded and therefore are well

suited for testing the theoretical predictions of contract theory. For a detailed justification for

using insurance data to test contract theory, see Chiappori and Salanié (1997). For a recent

overview over the issue of testing for adverse selection in insurance markets, see Cohen and

Siegelman (2010). The latter paper covers a large number of empirical studies in different

insurance branches.

In statistical terms, the theoretical notion of asymmetric information implies a positive

(conditional) correlation between coverage and risk as both adverse selection and moral haz-

∗This chapter is based on joint work with Liangjun Su.
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ard predict this positive correlation. In their seminal paper Chiappori and Salanié (2000)

propose both parametric and nonparametric methods to test this. Their nonparametric tests

are restricted to discrete data with only two categories per variable even though some of

the variables in the data set are continuous and others have far more than two categories.

Therefore, in order to conduct Chiappori and Salanié’s nonparametric test, all variables must

be transformed to binary variables, which often results in a loss of information. Following

the lead of Chiappori and Salanié (2000), most subsequent studies use a variation of their

parametric testing procedure which has become somewhat standard in the empirical contract

theory. Nevertheless, these parametric tests are fragile to both functional and distributional

form misspecifications which are a severe problem in this field. For example, in the automobile

insurance market it is common knowledge that the age of the driver has a nonlinear effect on

the probability of an accident, but such a nonlinear effect has rarely been taken into account

in the literature. For another example, the error term in the binary model for modeling the

choice of an insurance contract may not be either normally or logistically distributed, and tests

for asymmetric information based on the probit or logit model can therefore yield misleading

conclusions in the case of incorrect distributional specification. For this reason, in this paper

we propose a new purely nonparametric test for asymmetric information based on the notion

of conditional independence, which avoids the problem of either functional or distributional

misspecification.

The absence of asymmetric information means that the choice of a contract Y (discrete

variable) provides no information for predicting the “performance” variable Z (discrete or

continuous, e.g., the number of claims or the sum of reimbursements), conditional on the

vector X of all exogenous variables (discrete and continuous). Therefore we can transform

the problem of testing the absence of asymmetric information into a test for conditional

independence: F (Z|X,Y ) = F (Z|X) almost surely (a.s.) where, e.g., F (Z|X,Y ) denotes

the conditional cumulative distribution function (CDF) of Z given (X,Y ) . We propose a

nonparametric test statistic to test the conditional independence of Z and Y given X. We

show that the test statistic is asymptotic normally distributed under the null hypothesis of

conditional independence (or absence of asymmetric information) and diverges to infinity in

the presence of conditional dependence (or asymmetric information). We then apply our test

to a French automobile insurance data set and compare our testing results with the results

found in the literature.

The rest of the paper is structured as follows. Section 2 outlines the theory of asymmetric

information. Section 3 reviews the standard statistical tools for testing asymmetric infor-

mation. We introduce a new nonparametric test for conditional independence in Section 4.
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We conduct a small set of Monte Carlo simulations to examine the performance of the new

test in Section 5. We apply our test to test for the asymmetric information in the French

insurance market in Section 6. Final remarks are contained in Section 7. All technical details

are relegated to the Appendix.

3.2 The Theory of Asymmetric Information

In their seminal paper Rothschild and Stiglitz (1976) introduce the notion of adverse selec-

tion in insurance markets that has been extended in many directions since then.1 In the

basic model, the insureds have private information about the expected claim, exactly speak-

ing about the probability that a claim with fixed level occurs, while the insurers do not have

this information. Thus there are two groups with different claim probabilities, the “bad” and

“good” risks. The agents have identical preferences which are moreover perfectly known to

the insurer. Additionally, perfect competition and exclusive contracts are assumed. Exclusive

contracts mean that an insuree can buy coverage only from one insurance company. This al-

lows firms to implement nonlinear (especially convex) pricing schemes which are typical under

asymmetric information. Under this setting insurance companies offer a menu of contracts in

equilibrium: a full insurance which is chosen by the “bad” risks and a partial coverage which

is bought by the “good” risks. In general, contracts with more comprehensive coverage are

sold at a higher (unitary) premium.

Therefore, one expects a positive correlation between “risk” and “coverage” (conditional

on observables). Since the assumptions in the Rothschild and Stiglitz model are very simplis-

tic and normally not fulfilled in real applications, an important question to address is how

robust this coverage-risk correlation is. Chiappori et al. (2006) show that the positive corre-

lation property extends to much more general models, as already conjectured by Chiappori

and Salanié (2000). Under competitive markets this property is also valid in a very general

framework entailing heterogeneous preferences, multiple level of losses, multidimensional ad-

verse selection plus possible moral hazard and even non-expected utility theory. In the case

of imperfect competition some form of positive correlation holds if the agent’s risk aversion is

public information. In the case of private information the property does not necessarily hold

(c.f. Jullien et al. (2007)).

While adverse selection concerns “hidden information”, moral hazard deals with “hidden

action”. Moral hazard occurs when the expected loss (accident probability or level of damage)

1For a detailed survey on adverse selection and the related moral hazard problem, see Dionne, Doherty and
Fombaron (2000) and Winter (2000), respectively.
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is not exogenous, as assumed in the adverse selection case, but depends on some decision or

action made by the subscriber (e.g., effort or prevention) which is neither observable nor

contractible. A higher coverage leads to decreased efforts and therefore to a higher expected

loss. Therefore moral hazard also predicts a positive correlation between “coverage” and

“risk”.

Although both phenomena lead to a positive risk-coverage correlation, there is one im-

portant difference: under adverse selection the risk of the potential insuree affects the choice

of the contract, whereas under moral hazard the chosen contract influences the behavior and

therefore the expected loss. So there exists reversed causality in both cases.2

In sum, the theory of asymmetric information predicts a positive correlation between

(appropriately defined) “risk” and “coverage” which should be quite robust.3

To proceed, it is worth mentioning that to test for asymmetric information, the researcher

needs access to the same information which is also available to the insurer and used for pricing.

The theory of adverse selection predicts that the insurance company offers a menu of contracts

to indistinguishable individuals. Individuals are (ex ante) indistinguishable for the insurer if

they share the same characteristics. Therefore the positive risk-coverage correlation is valid

only conditional on the observed characteristics. Different groups of observable equivalent

individuals are offered different menus of contracts with different prices according to their

risk exposure.4 Only within each class are the mechanisms described above valid.

3.3 Standard Testing Procedures

In this section we review some tests of asymmetric information in the literature. We first

outline the general structure of the problem and then review the parametric and nonparametric

testing procedures in turn.

3.3.1 General Structure

In the following we denote by X the vector of exogenous control variables to be conditional

on, by Y a decision or choice variable, and by Z the endogenous “performance” variable. In

the context of insurance, X usually includes variables that are used for risk classification by

2To disentangle moral hazard from adverse selection is an important problem in the empirical literature.
The first attempt is Dionne et. al. (2004). An overview over different possible strategies for dealing with this
problem can be found in Cohen and Siegelman (2010).

3It seems that in the empirical insurance literature adverse selection is more stressed than the moral hazard
aspect which only receives minor attention, see, e.g., Cohen and Siegelman (2010).

4For the theory of risk classification under asymmetric information see Crocker and Snow (2000).
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the insurance company, Y could be the choice of deductibles, and Z could be the number of

accidents or claims or the sum of reimbursements caused by accidents.5 As we shall see, we

allow both continuous and discrete variables in X, and Z can be continuous or discrete. For

concreteness, we assume that Y is a discrete variable. There is no asymmetric information if

and only if the prediction of the endogenous variable Z based on X and Y jointly coincides

with its prediction based on X alone. Formally, this can be stated in terms of the equivalence

of two conditional CDFs:

F (Z|X,Y ) = F (Z|X) a.s., (3.1)

where, e.g., F (Z|X,Y ) denotes the conditional CDF of Z given (X,Y ). Intuitively, this

means that the choice of the contract, e.g., the choice of a certain deductible, provides no

useful information for predicting the risk, e.g., the number of claims, as soon as the risk

classes are controlled for. Equivalently, we can interchange the roles of Z and Y :

F (Y |X,Z) = F (Y |X) a.s., (3.2)

where, e.g., F (Y |X,Z) denotes the conditional CDF of Y given (X,Z). (3.2) says that the

number of claims (or the sum of reimbursements caused by accidents) does not provide useful

information to predict the choice of deductibles as long as we control the risk classes. Either

(3.1) or (3.2) indicates the conditional independence of Y and Z given X.6

3.3.2 Parametric Testing Procedures

Almost all empirical studies analyzing the positive risk-coverage correlation property use one

of the following two types of parametric procedures.

The first approach is to run a regression of Zi on Yi and Xi and to test whether the

coefficient of Yi is zero or not. When Zi is continuously valued, the regression model is

Zi = β0 + β1Yi + β′2Xi + εi, (3.3)

where εi is the error term, β0, and
(
β1, β

′
2

)
are intercept and slope coefficients, respectively,

5The distinction of accidents and claims is a very important point in the empirical literature as not every
accident leads to a claim. Neglecting this issue might lead to biased results.

6Alternatively, one can use conditional probability density or mass functions to form the independence
between Y and Z conditional on X : f (Z|X,Y ) = f (Z|X) , or f (Y |X,Z) = f (Y |X) a.s., where, e.g.,
f (Z|X,Y ) denotes the conditional probability density or mass function of Z given (X,Y ) . See Su and White
(2007, 2008, 2010) for other equivalent formulations.
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and the prime denotes transpose. When Zi is a dummy variable, the regression model is

Zi = 1(β0 + β1Yi + β′2Xi + εi > 0), (3.4)

where εi is assumed to be either normally or logistically distributed, and 1 (A) = 1 if A is

true and 0 otherwise. If Zi is a discrete variable that has more than two categories, then one

can use the ordered logit model. One obvious drawback of this approach is that it neglects

by construction the potential nonlinear effects of the controlled variables, and a test based on

(3.3) is designed to test the conditional mean independence of Zi and Yi given Xi, which is a

much weaker condition than conditional independence at the distributional level. In addition,

the distributional assumption in the probit, logit, or ordered logit model may not hold, and

once this happens, tests for asymmetric information can lead to misleading conclusions.

In one of the first empirical studies Puelz and Snow (1994) consider an ordered logit

formulation for the deductible choice variable and find strong evidence for the presence of

asymmetric information in the market for automobile collision insurance in Georgia. But

Dionne et al. (2001) show that this correlation might be spurious because of the highly

constrained form of the exogenous effects or the misspecification of the functional form used

in the regression. They propose to add the estimate Ê(Zi|Xi) of the conditional expected

value of Zi given Xi as a regressor into the ordered logit model to take into account the

nonlinear effect of the risk classification variables, and by accounting for this, they find no

residual asymmetric information in the market for Canadian automobile insurance.

A second and more advanced approach was introduced by Chiappori and Salanié (1997,

2000) and has become widespread in the empirical contract theory since then. They define

two probit models, one for the choice of the coverage Yi (either compulsory/basic coverage or

comprehensive coverage) and the other for the occurrence of an accident Zi (either no accident

being blamed for or at least one accident with fault):{
Yi = 1(β′Xi + εi > 0)

Zi = 1(γ′Xi + ηi > 0)
(3.5)

where εi and ηi are independent standard normal errors, and β and γ are coefficients. They

first estimate these two probit models independently, calculate the generalized residuals ε̂i
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and η̂i, and then construct the following test statistic7

Wn =
(
∑n

i=1 ε̂iη̂i)
2∑n

i=1 ε̂
2
i η̂

2
i

. (3.6)

Under the null of conditional independence, cov(εi, ηi) = 0 and Wn is distributed asymptot-

ically as χ2(1). Alternatively, one can estimate a bivariate probit model in which εi and ηi

are distributed as bivariate normal with correlation coefficient ρ to be estimated, and then

test whether ρ = 0 or not. They find no evidence of asymmetric information in the French

automobile insurance market.

3.3.3 Nonparametric Testing Procedures

Motivated by the χ2-test for independence in the statistics literature, Chiappori and Salanié

(2000) propose a nonparametric test for asymmetric information by restricting all variables

in Xi, Yi, and Zi to be binary. They choose a set of m exogenous binary variables in Xi, and

construct M ≡ 2m cells in which all individuals have the same values for all variables in Xi.

For each cell they set up a 2 × 2 contingency table generated by the binary values of Yi and

Zi, and conduct a χ2-test for independence. This results in M test statistics, each of which is

distributed asymptotically as χ2 (1) under the null hypothesis. They aggregate these M test

statistics in three ways to obtain three overall test statistics for conditional independence: one

is the Kolmogorov-Smirnoff test statistic that compares the empirical distribution function

of the M test statistics with the CDF of the χ2 (1) distribution; the second is to count the

number of rejections for the independence test for each cell which is asymptotically distributed

as binomial B(M,α) under the null, where α denotes the significance level of the χ2 test within

each cell; and the third is the sum of all the test statistics for each individual cell, which is

asymptotically χ2(M) distributed under the null. Again, using these nonparametric methods,

they find no evidence for the presence of asymmetric information in the French automobile

insurance market.

7For example, the generalized residual ε̂i estimates E (εi|Yi) . See Gourieroux et al. (1987) for the definition
of generalized residuals in limited dependent models.
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3.4 A New Nonparametric Test

In this section we propose a new nonparametric test for asymmetric information based on the

formulation in (3.1). The null hypothesis is

H0 : F (Z|X,Y ) = F (Z|X) a.s., (4.1)

and the alternative hypothesis is

H1 : Pr {F (Z|X,Y ) = F (Z|X)} < 1. (4.2)

We consider the case where Y is a discrete random variable (typically a dummy variable),

Z can be either discrete or continuous, and X contains both continuous and discrete vari-

ables. Note that early literature on testing for conditional independence mainly focus on the

case where both Y and X are continuously distributed, see, Delgado and González-Manteiga

(2001), Su and White (2007, 2008, 2010), Song (2009), Huang (2009), Huang and White

(2009), to name just a few. Even though we restrict our attention mainly on the case where

Y is discrete, we remark that in the case of continuous Y, the proposed test continues to work

with little modification.

3.4.1 The Test Statistic

Given observations {(Xi, Yi, Zi)}ni=1 , one could propose a test based on the comparison of two

conditional cumulative distribution (CDF) estimates, one is the conditional CDF of Z given

X (F (z|x)) and the other is the conditional CDF of Z given (X,Y ) (F (z|x, y)).Nevertheless,

for the reason elaborated at the end of this section, we will compare F (z|x, y) with F (z|x, ỹ)

for different values y and ỹ instead.

For more rigorous notation, one could use FZ|X (z|x) (FZ|X,Y (z|x, y)) to denote the condi-

tional CDF of Z given X ((X,Y )). Below we make reference to these CDFs and several

probability density functions (PDFs) simply using the list of their arguments – for example,

p (x, y, z) , p (x, y) and p (x) denote the PDFs of (Xi, Yi, Zi), (Xi, Yi), and Xi, respectively.

This notation is compact, and we hope, sufficiently unambiguous. In addition, even though a

PDF is most commonly associated with continuous distributions, here we use it to denote the

Radon–Nikodym derivative of a CDF with respect to the Lebesgue measure for the continuous

component and the counting measure for the discrete component.

To allow for both continuous and discrete regressors in Xi, write Xi = (Xc′
i , X

d′
i )
′

where
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Xc
i denotes a pc × 1 vector of continuous regressors in Xi and Xd

i denotes a pd × 1 vector of

remaining discrete regressors with pd ≡ p − pc. For simplicity, we assume that none of the

discrete regressors has a natural ordering and each takes only a finite number of values.8 We

use Xc
is (Xd

is) to denote the sth component of Xc
i (Xd

i ), where s = 1, · · · , pc (pd). We assume

that Xd
is takes cs different values in X ds ≡ {0, 1, · · · , cs − 1}, s = 1, · · · , pd, and Yi takes cy

different values in Y ≡ {0, 1, · · · , cy − 1}.

Fix y ∈ Y. We consider the estimation of F (z|x, y) by using the local linear method. For

this purpose, we define the kernels for the continuous regressor Xc
i and discrete regressor Xd

i

separately. For the continuous regressor, we choose a product kernel function Q (·) of q (·) and

a vector of smoothing parameters h ≡ (h1, ..., hpc)
′. LetQh,j (xc) ≡ Πpc

s=1h
−1
s q

((
Xc
js − xcs

)
/hs

)
and

Qh,ji ≡ Qh
(
Xc
j −Xc

i

)
=

pc∏
s=1

h−1s q
((
Xc
js −Xc

is

)
/hs
)
, (4.3)

where, for example, xc ≡ (xc1, · · · , xcpc)
′, and Xc

is denote the sth element in Xc
i . For the discrete

regressor, we follow Racine and Li (2004) and Li and Racine (2007, 2008) and use a variation

of the kernel function of Aitchison and Aitken (1976):

l
(
Xd
js, X

d
is, λs

)
=

{
1 if Xd

js = Xd
is

λs otherwise
(4.4)

where λs ∈ [0, 1] is the smoothing parameter. In the special case where λs = 0, l (·, ·, ·) reduces

to the usual indicator function as used in the nonparametric frequency approach. Similarly,

λs = 1 leads to a uniform weight function, in which case, the Xd
is regressor will be completely

smoothed out in the sense that it will not affect the nonparametric estimation result. The

product kernel function for all the discrete vectors is given by

Lλ,ji ≡ Lλ
(
Xd
j , X

d
i

)
≡

pd∏
s=1

λ
1(Xd

js 6=Xd
is)

s , (4.5)

where λ ≡ (λ1, · · · , λpd)′. Combining (4.3) and (4.5), we obtain the product kernel function

for the conditioning vector Xi:

Khλ,ji ≡ Khλ (Xj , Xi) = Qh
(
Xc
j −Xc

i

)
Lλ

(
Xd
j , X

d
i

)
. (4.6)

8When some of the conditioning variables in Xi have a natural ordering, one can easily modify the discrete
kernel defined below following either Racine and Li (2004) or Li and Racine (2007, 2008).
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Now, fix a point Xi = (Xc′
i , X

d′
i )
′
. It follows from the first order Taylor expansion that

F (z|Xj , y) ≈ F (z|Xi, y) +
.
F (z|Xi, y)′

(
Xc
j −Xc

i

)
(4.7)

for any Xc
j in the neighborhood of Xc

i and Xd
j = Xd

i , where
.
F (z|x, y) = ∂F (z|x) /∂xc, i.e.,

the derivative is only taken with respect to the continuous component xc of x ≡ (xc′, xd
′
)
′
.

Given observations {(Xi, Yi, Zi)}ni=1 , we estimate F (Zi|Xi, y) by solving the weighted least

squares minimization problem

min
β

n∑
j=1

[
1 {Zj ≤ Zi} − β0 − β′1

((
Xc
j −Xc

i

)
/h
)]2

Khλ,ji1
y
j , (4.8)

where β ≡
(
β0, β

′
1

)′
and 1yj ≡ 1 (Yj = y) . Our estimator F̂ (Zi|Xi, y) is the minimizing inter-

cept term in the above problem. Let τ h

(
Xc
j − xc

)
≡
(

1,
((
Xc
j − xc

)
/h
)′)′

. Then it is easy

to verify that

F̂ (Zi|Xi, y) = e′1 [Sny (Xi)]
−1 1

n

n∑
j=1

Khλ,ji1
y
jτ h

(
Xc
j −Xc

i

)
1 (Zj ≤ Zi)

where e1 ≡ (1, 0, · · · , 0)′ is a (pc + 1)-vector, and

Sny (Xi) ≡ 1
n

∑n
j=1Khλ,ji1

y
jτ h(Xc

j −Xc
i )τ h(Xc

j −Xc
i )
′.

We measure the variations in F̂ (Zi|Xi, y) across different values of y and different obser-

vations by

Dn ≡
cy−2∑
r=0

cy−1∑
s=r+1

n∑
i=1

[
F̂ (Zi|Xi, r)− F̂ (Zi|Xi, s)

]2
.

We study the asymptotic properties of Dn under H0, a sequence of Pitman local alternatives,

and the global alternative H1. We will show that after being appropriately recentered and

scaled, Dn is asymptotically normally distributed under the null and local alternatives, and

diverges to infinity under the global alternative.

3.4.2 Assumptions

Throughout the paper we use ξi, ζi, and ς i to denote (X ′i, Yi, Zi)
′ , (X ′i, Yi)

′ , and (X ′i, Zi)
′ ,

respectively. Similarly, let ξ ≡ (x′, y, z)′ , ζ ≡ (x′, y)′ and ς ≡ (x′, z)′ . With a little bit abuse

of notation, we use p (ξ) , p (ζ) , and p (x) to denote the PDF of ξi, ζi, and Xi, respectively.

Similarly, F (z|x, y) ≡ F (z|xc, xd, y) denotes the conditional CDF of Zi given (Xc′
i , X

d′
i , Yi)

′
.

To facilitate our asymptotic analysis, we make the following assumptions.
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Assumption A.1 The sequence {ξi}
n
i=1 is independent and identically distributed (IID) with

CDF Fξ.

Assumption A.2 (i) The support X c of Xc
i is compact.

(ii) p (ξ) is uniformly bounded over its support X × Y × Z, where X ≡ X c × X d, X d ≡
X d1 × · · · × X dpd , and Z is the support of Zi. p (ζ) ≡ p

(
xc, xd, y

)
is bounded away from 0 for

all xc ∈ X c, xd ∈ X d, and y ∈ Y.

Assumption A.3 Let η ≡
(
xd, y

)
. (i) For each η ∈ X d×Y and z ∈ Z, F (z|xc, η) is Lipschitz

continuous in xc ∈ X c and has all partial derivatives up to order 2 with respect to xc.

(ii) For each η ∈ X d × Y and z ∈ Z, the second order partial derivatives with respect to

xc, ∂2F (z|xc, η)/∂xcs∂x
c
t , s, t = 1, · · · , pc, are uniformly bounded and Hölder continuous on

X c : for xc, x̃c ∈ X c, |∂2F (z|xc, η)/∂xcs∂x
c
t −∂2F (z|x̃c, η)/∂xcs∂x

c
t | ≤ C ||xc − x̃c||, where C is

a generic finite constant and ‖·‖ denotes the Euclidean norm.

(iii) For each xc ∈ X c and η ∈ X d×Y, |F (z|xc, η)−F (z̃|xc, η) | ≤ C |z− z̃| for all z, z̃ ∈ Z.

Assumption A.4 (i) The kernel function q : R → R+ is a continuous, bounded, and sym-

metric PDF.

(ii) u→ |u|4 q (u) is integrable on R with respect to Lebesgue measure.

(iii) Let qj(u) ≡ ujq(u) for all j = 0, · · · , 3. For some C1 < ∞ and C2 < ∞, either q (·)
is compactly supported such that q (u) = 0 for |u| > C1, and |qj(u)− qj(ũ)| ≤ C2 |u− ũ| for

any u, ũ ∈ R and for all j = 0, · · · , 3; or q(·) is differentiable, |dqj (u) /du| ≤ C1, and for some

ι0 > 1, |dqj (u) /du| ≤ C1 |u|−ι0 for all |u| > C2 and for all j = 0, · · · , 3.

Assumption A.5 Let h! ≡ Πpc
s=1hs. As n → ∞, ‖h‖ → 0, ‖λ‖ → 0, ||λ|| is of the same

order as ||h||2, n (h!)2 / log n→∞, n (h!)1/2 ‖h‖4 → 0, and ‖h‖4 /h!→ 0.

Remark 1. The IID assumption in assumption A.1 is standard in cross sectional study.

One could allow heterogeneity but that would complicate the presentation to a large degree.

Assumption A.2 is standard for nonparametric local polynomial estimation with mixed regres-

sors. Assumptions A.3-A.4 are used to obtain uniform consistency for the local polynomial

estimator of Masry (1996) and Hansen (2008). Assumption A.5 imposes appropriate condi-

tions on the bandwidth. In particular A.5 implies that undersmoothing is required for our

test and pc < 4. This is typical in nonparametric tests when local linear regression is involved.

In the case where pc ≥ 4, one has to rely upon higher order local polynomial regressions.
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3.4.3 The Asymptotic Distribution of the Test Statistic

Let Sy (x) ≡ E[Khλ (Xj , x) 1yjτ h(Xc
j−xc)τ h(Xc

j−xc)′],Ky

(
ζj , x

)
≡ e′1[Sy (x)]−1τ h

(
Xc
j − xc

)
Khλ(Xj , x)1yj , and 1z,y (ς i) ≡ 1 {Zi ≤ z} −F (z|Xi, y) . Define

Bn ≡
(h!)1/2

n2

n∑
i=1

n∑
j=1

cy−2∑
r=0

cy−1∑
s=r+1

[
Kr

(
ζj , Xi

)
1Zi,r (ςj)−Ks

(
ζj , Xi

)
1Zi,s (ςj)

]2
, (4.9)

and

σ2n ≡ 2h!EiEj

cy−2∑
r=0

cy−1∑
s=r+1

∫ {
Kr (ζi;x) 1z,r (ς i)−Ks (ζi, x) 1z,s (ς i)

}
{Kr

(
ζj ;x

)
1z,r (ςj)

− Ks (ζi, x) 1z,s (ς i)}Fξ (dξ)

]2
(4.10)

where Ei denote the expectation with respect to ξi. Let σ20 ≡ limn→∞ σ
2
n.

Our first result says that after centering, (h!)1/2Dn is asymptotically normally distributed

under H0.

Theorem 3.4.1 Suppose Assumptions A.1-A.5 hold. Then under H0, (h!)1/2Dn − Bn
d→

N
(
0, σ20

)
.

To implement the test, we need to consistently estimate Bn and σ20. For this purpose, let

1̂Zi,y (ςj) ≡ 1 {Zj ≤ Zi} − F̂ (Zi|Xj , y) .

Let K̂r

(
ζj ;x

)
≡ e′1[Snr (x)]−1τ h

(
Xc
j − xc

)
Khλ (Xj , x) 1yj . Let

α̂ij,rs ≡ K̂r

(
ζj ;Xi

)
1̂Zi,r (ςj)− K̂s

(
ζj ;Xi

)
1̂Zi,s (ςj) , and β̂ij,rs ≡

1

n

n∑
l=1

α̂li,rsα̂lj,rs.

Define

B̂n ≡
(h!)1/2

n2

n∑
i=1

n∑
j=1

cy−2∑
r=0

cy−1∑
s=r+1

α̂2
ij,rs, and σ̂2n ≡

2h!

n (n− 1)

n∑
i=1

n∑
j 6=i

cy−2∑
r=0

cy−1∑
s=r+1

β̂ij,rs

2

.

We demonstrate in Theorem 3.4.2 below that B̂n −Bn = oP (1) and σ̂2n − σ20 = oP (1) . Then

we can compare

Tn ≡
(

(h!)1/2Dn − B̂n
)
/

√
σ̂2n (4.11)

to the one-sided critical value zα, the upper α percentile from the N (0, 1) distribution. We
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reject the null at level α if Tn > zα.

To examine the asymptotic local power of the test, we consider the following sequence of

Pitman local alternatives:

H1 (γn) : F (z|x, r)− F (z|x, s) = γnδn,rs (ς) for a.e. ξ, (4.12)

where γn → 0 as n→∞ and δn,rs (·) is a continuous function such that µ0 ≡ limn→∞
∑cy−2

r=0∑cy−1
s=r+1E[δn,rs (ς i)]

2 <∞. The following theorem establishes the local power of the test.

Theorem 3.4.2 Suppose Assumptions A.1-A.5 hold.

Then under H1 (γn) with γn = n−1/2(h!)−1/4, Tn
d→ N (µ0/σ0, 1) .

Thus, the test has nontrivial power against Pitman local alternatives that converge to zero

at rate n−1/2(h!)−1/4. The asymptotic local power function is given by 1 − Φ (zα − µ0/σ0) ,
where Φ is the standard normal CDF.

The following theorem establishes the consistency of the test under the global alternative

H1 stated in (4.2).

Theorem 3.4.3 Suppose Assumptions A.1-A.5 hold. Then under H1, n
−1(h!)−1/2Tn =

µA/σ0 + oP (1) , where µA ≡
∑cy−2

r=0

∑cy−1
s=r+1E [F (Zi|Xi, r)− F (Zi|Xi, s)]

2 , so that

P (Tn > cn) → 1 under H1 for any nonstochastic sequence cn = o
(
n(h!)1/2

)
.

Remark 2. Alternatively, one can consider testing the conditional independence of Y

and Z given X based upon the comparison of F (z|x) with F (z|x, y) . In this case, the test

statistic would be

D̃n ≡
n∑
i=1

[
F̃ (Zi|Xi)− F̃ (Zi|Xi, Yi)

]2
,

where F̃ (z|x) and F̃ (z|x, y) are local linear estimates of F (z|x) and F (z|x, y) by smoothing all

discrete variables in Xi and (Xi, Yi) , respectively. After being suitably centered and rescaled,

D̃n can be shown to be asymptotically normally distributed. The key assumption for the

asymptotic normality of D̃n would require that the bandwidth (λy, say) used in smoothing

the discrete variable Yi tends to zero as n → ∞. Nevertheless, under the null hypothesis of

conditional independence, Yi is an irrelevant variable in the prediction of Zi or 1 (Zi ≤ z) ,
implying that the optimal bandwidth for λy should tend to 1 as n → ∞ (see Li and Racine

(2007)). Thus this creates a dilemma for the choice of λy, making it extremely difficult to

control the finite sample level of a test based upon D̃n. In contrast, when we construct our

Dn test statistic, we obtain the estimate F̂ (Zi|Xi, y) of F (Zi|Xi, y) for different values of y

without smoothing the discrete variable Yi (see (4.8)) and thus avoid the above dilemma.
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3.5 Monte Carlo Simulations

In this section we conduct some Monte Carlo experiments to evaluate the finite sample per-

formance of our test. We consider two data generating processes (DGPs):

DGP 1.

Yi = 1 (εY i ≤ mY (Xi)) ,

Zi = 1 (εZi ≤ mZ (Xi)) ,

mY (Xi) =
Xc
i1 − 0.5Xc

i2 + φ (Xc
i2)−Xc

i1X
c
i2 − 0.5Xc

i1X
d
i1 + 0.5Xd

i1 + 0.5Xd
i1X

d
i2√

1 +Xc2
i1 +Xc2

i2

,

mZ (Xi) = φ (Xc
i1)X

c
i2 −Xc

i1 −Xc
i2X

d
i2 + 0.5Xd

i1X
d
i2 + δYiX

c
i1,

where Xi ≡
(
Xc
i1, X

c
i2, X

d
i1, X

d
i2

)′
, φ is the N (0, 1) PDF, Xc

i1 is IID U (0, 4) , Xc
i2 is IID,

computed as the sum of 48 independent random variables, each uniformly distributed on

[−0.25, 0.25], P
(
Xd
i1 = l

)
= 1/4 for l = 0, 1, 2, 3, P

(
Xd
i2 = l

)
= 1/5 for l = 0, 1, 2, 3, 4, εY 1 is

IID N (0, 1), εZi is IID N (0, 1), and all these variables are mutually independent. δ controls

the degree of conditional dependence between Yi and Zi given Xi. Given Xi, Yi and Zi are

conditionally independent when δ = 0 and conditionally dependent otherwise.

DGP 2.

Yi = 1 (εY i ≤ mY (Xi)) ,

Zi = mZ (Xi) + s εZi,

where Xi ≡
(
Xc
i1, X

c
i2, X

d
i1, X

d
i2

)′
, εY i and εZi are generated as in DGP 1, mY and mZ are as

defined in DGP1, and s is taken to ensure the signal-noise ratio in the equation for Zi to be

1 across all simulations.

Clearly, DGP 1 generates binary Yi and Zi variables whereas DGP 2 generates binary

Yi and continuous Zi. In both DGPs the Xi vector includes two continuous variables, Xc
i1

and Xc
i2, and two discrete variables, Xd

i1 and Xd
i2. Note that our test is based on local

linear regressions, which typically require compactly supported conditioning variables. This

motivates the otherwise awkward way we generate Xc
i2 in DGPs 1-2. According to the central

limit theorem, we can treat Xc
i2 as being nearly standard normal random variables but with

compact support [−12, 12].

Notice that the two discrete variables in Xi partition the data into 4 × 5 = 20 cells. In

conjunction with the 2 categories of dummy Yi, this will partition the data into 20× 2 = 40

cells if we adopt the conventional nonparametric frequency approach to do the estimation
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and testing. If the number of observations n is small, say, 100, each cell has a tiny amount

of observations on average and some empty cells in practice, this will make the estimation

of the CDF F (z|x, y) extremely difficult. A nonparametric-frequency-based test should not

be expected to perform well in terms of both level and power. Even with nonparametric

smoothing over the discrete variables in Xi as advocated by our test, the problem continues

to be hard but less severe.

To construct the test statistic, we need to choose both kernel and bandwidth. We choose

the product of Gaussian kernel for the two continuous regressors: q (x) = (2π)−1/2 exp
(
−x2/2

)
.

Since there is no data-driven procedure to choose the bandwidths h = (h1, h2)
′ and λ =

(λ1, λ2)
′ for our testing problem, we choose them according to the rule of thumb:

hl = γsXc
l
n−1/4.5, λl = γn−2/4.5for l = 1, 2, (5.1)

where sXc
l

is the sample standard deviation of Xc
il and γ is a fixed constant. We study the

behavior of our test with different choices of γ in order to examine the sensitivity of our test

to the bandwidth sequence. Robinson (1991, p.448) proposes very similar devices. Note that

these choices for h and λ and the kernel function meet the requirements for our test. Through

a preliminary simulation study, we find our bootstrap-based test is not sensitive to the choice

of γ when we take γ ∈ [0.5, 2] . So we fix γ = 1 for our simulation results.

It is well known that the asymptotic normal distribution typically cannot approximate the

finite sample distribution of many nonparametric test statistics. This is especially true for

our test when we have discrete conditioning variables in Xi with reasonably large number of

categories. So we suggest using a bootstrap method to obtain the bootstrap p-values. Here,

we generate the bootstrap data {(X∗i , Y ∗i , Z∗i )}ni=1 based on the following local bootstrap

procedure:

1. Set (X∗i , Y
∗
i ) = (Xi, Yi) for each i ∈ {1, · · · , n} .

2. For i = 1, · · ·n, given X∗i , draw Z∗i from the following local constant nonparametric

estimate of F (z|X∗i ) :

F̃
h̃λ̃

(z|X∗i ) =

∑n
j=1Kh̃λ̃

(Xj , X
∗
i ) 1 (Zj ≤ z)∑n

j=1Kh̃λ̃
(Xj , X∗i )

(5.2)

where h̃ and λ̃ are the bandwidth used in the estimation of F (z|X∗i ) .

3. Compute the bootstrap test statistic T ∗n in the same way as Tn by using

{(X∗i , Y ∗i , Z∗i )}ni=1 instead.
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Table 3.1: Finite sample rejection frequency for DGPs 1-2

DGP Sample δ Our test Nonparametric frequency approach

size hl = sXc
l
n−1/4.5, λl = n−2/4.5 hl = sXc

l
n−1/4.5, λl = 0

n 1% 5% 10% 1% 5% 10%

1 200 0 0.036 0.092 0.144 0.100 0.224 0.288

1 0.420 0.592 0.644 0.200 0.268 0.348

2 0.900 0.920 0.924 0.472 0.620 0.656

400 0 0.024 0.068 0.104 0.088 0.216 0.296

1 0.628 0.720 0.764 0.156 0.312 0.384

2 0.904 0.924 0.932 0.512 0.648 0.728

800 0 0.016 0.040 0.068 0.160 0.348 0.448

1 0.840 0.880 0.884 0.204 0.396 0.492

2 0.968 0.968 0.968 0.628 0.752 0.836

2 200 0 0.020 0.068 0.124 0.028 0.080 0.176

1 0.064 0.160 0.268 0.068 0.172 0.232

2 0.176 0.300 0.448 0.088 0.240 0.312

400 0 0.004 0.016 0.072 0.032 0.132 0.196

1 0.080 0.192 0.288 0.068 0.172 0.248

2 0.268 0.504 0.632 0.100 0.196 0.328

800 0 0.000 0.032 0.056 0.020 0.128 0.216

1 0.168 0.304 0.408 0.100 0.276 0.360

2 0.600 0.768 0.812 0.136 0.296 0.380

4. Repeat steps 1-3 B times to obtain B bootstrap test statistic
{
T ∗nj

}B
j=1

. Calculate

the bootstrap p-values p∗ ≡ B−1
∑B

j=1 1
(
T ∗nj ≥ Tn

)
and reject the null hypothesis of

conditional independence if p∗is smaller than the prescribed level of significance.

The above procedure is coined as the local bootstrap procedure by Paparoditis and Politis

(2000) who also explain how to generate the bootstrap observations computationally. It works

no matter whether Zi is discrete or continuous. In the case where Zi is continuous, we can

also generate a smooth version of Z∗i through Z∗∗i = Z∗i + bηi, where b ≡ b (n)→ 0 as n→∞,
and ηi is drawn from N (0, 1) . In our simulations and applications, we generate Z∗i and Z∗∗i

for the case where Zi is discrete and continuous, respectively. When Zi is continuous, we set

b = sZn
−1/6 with sZ being the sample standard deviation of Zi. Our simulations indicate that

the choice of b plays little role in the performance of our test. For simplicity, we set h̃ = h

and λ̃ = λ.

Table 3.1 reports the empirical rejection frequencies of our test at 1%, 5%, and 10%

nominal levels for DGPs 1-2. Also reported in the table is a variant of our test based on
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the idea of nonparametric frequency, which is obtained by setting the smoothing parameters

for the discrete variables in Xi to be 0 in the calculation of our test statistic. To save

on computational time, we use 250 replications for each sample size n and 100 bootstrap

resamples in each replication. We summarize some important findings from Table 3.1.

First, the level of our nonparametric smoothing test is reasonably well behaved despite

the fact that it tends to be oversized when n is small and the average number of observations

per cell is small. In the case where n = 200, Xd
i ≡ (Xd

i1, X
d
i2)
′ and Yi partition the 200

observations into 40 cells so that each cell contains only 5 observations on average. Given

the two conditioning variables Xc
i1 and Xc

i2, one cannot expect the conditional CDF for each

cell values of Xd
i and Yi to be well estimated no matter whether we choose to smooth Xd

i

or not. This definitely has some adverse effect on the performance of our test. Despite this,

our nonparametric smoothing test seems to perform well even if n is small and the average

number of observations per cell is small. As n and the average number of observations per

cell double, the levels of our test tend to be improved and get close to the nominal levels.

Second, our test has power to detect deviations from conditional independence no matter

whether Zi is discrete or continuous. In DGP 1 when δ changes from 0 to 1 (resp. 2) so

that Yi becomes to affect Zi conditional on Xi, the unconditional probability for Zi to take

value 1 increases from 0.38 to 0.52 (resp. 0.60). Our nonparametric smoothing test can detect

such changes very well even for small n. As n doubles, the above changes of unconditional

probabilities remain the same as we change δ, but the power of our test increases. In DGP 2,

Zi is continuously valued. The power performance does not appear to be as well as the case of

DGP 1 because we normalize the error terms in the equation for Zi to ensure the signal-noise

ratio to be 1 across different values of δ. If we set s = 1 in the equation for Zi and allow the

signal to become stronger as δ increases, we can observe significant improvement of the power

performance of our test.

Third, in terms of both size and power, our smoothing nonparametric test significantly

dominates the nonparametric-frequency-based test. The latter test tends to be oversized

for both DGPs and all sample sizes under investigation. Despite its oversize, as expected,

the latter test is much less powerful in detecting deviations from the null of conditional

independence than our nonparametric smoothing test.



52 3. Nonparametric Testing for Asymmetric Information

3.6 Empirical Application

In this section we apply the nonparametric test to an automobile insurance data set.9 We

first briefly introduce the automobile insurance market in France where our data set stems

from, then discuss configurations of the data set and present our empirical findings. Noting

that the design of automobile insurance is relatively similar in most countries, so we believe

that our methodology is broadly applicable.

3.6.1 Principles of the Automobile Insurance in France

In France, like in many other countries, all cars must be insured at the “responsabilité civile”

(RC) level.10 This is a liability insurance that covers damage inflicted to other drivers and

their cars. Moreover, insurance companies offer additional non-compulsory coverage. The

most common one is called “assurance tous risques” (TR), which also covers damage to the

insured car or the driver in the case of an accident at which he or she is at fault. The insurees

can choose from different comprehensive insurance contracts which vary in the value of the

deductible (fixed or proportional).

A special feature of the car insurance is the so called “bonus/ malus”, a uniform experience

rating system. At any date/year t, the premium is defined as the product of a basis amount

and a “bonus” coefficient. The basic amount can be defined freely by the insurance companies

according to their risk classification but cannot be related to past experience. The past

experience is captured by the so called “bonus/ malus” coefficient whose evolution is strictly

regulated. Suppose, the bonus coefficient is bt at the beginning of the tth period. Then the

occurrence of an accident during the period leads to an increase of 25 percent at the end of

the period (i.e., bt+1 = 1.25bt), whereas an accident-free year implies a reduction of 5 percent

at the end (i.e., bt+1 = 0.95bt). Additionally, several special rules are applied, which include

the permission to overcharge contracts held by young drivers. But the surcharge is limited to

140 percent of the basis rate and is forced to decrease by half every year in which the insuree

has not had an accident.

The basis amount of the premium is calculated according to different risk classes. Due

to variables like age, sex, profession, area, etc., the insurees are divided into different risk

classes which should reflect their accident probabilities, and the premium to be paid is then

determined.

9Despite the scarcity of insurance data sets the car insurance has been analyzed for different countries
amongst others by Chiappori and Salanié (1997, 2000), Richaudeau (1999), Cohen (2005), Saito (2006) and
Kim et. al. (2009).

10The description of the French car insurance follows Chiappori and Salanié (2000).
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3.6.2 Configurations of the Data Set

We use a data set of the French federation of insurers (FFSA) which conducted in 1990 a

survey of its members.11 This data set was also used in Chiappori and Salanié (1997, 2000).

With a sampling rate of 1/20 the data set consists of 41 variables on 1, 120, 000 contracts and

25 variables on 120, 000 accidents for the year 1989. For each driver all variables which are

used by insurance companies for pricing their contracts - age of the driver, sex, profession of

the driver, year of drivers license, age of the car, type of the car, use of the car, and area -

plus the characteristics of the contract and the characteristics of the accident, if occurred, are

available. We restrict our analysis to all “young”drivers who obtained their driver license in

1988.12 This reduces the sample size to n = 6, 333.

As Chiappori and Salanié (2000) argue, focusing on young drivers has two major advan-

tages. In a subsample of young drivers the driving experience is much more homogeneous than

that in the total population in which groups of different experiences are pooled. Therefore the

heteroskedasticity problem is mitigated and less severe. The concentration on young drivers

also avoids the problems associated with the experience rating and the resulting bias. The

past driving history is usually observed by the insurance companies. The past driving records

are highly informative on probabilities of accident and used for pricing. The bonus coefficient

is a very excellent proxy for this variable. However, the introduction of this variable is quite

delicate because of its endogeneity. This problem can be circumvented either by using panel

data or by using only data on beginners.13 We pursue the second approach and concentrate

on novice drivers.

One important issue in testing for asymmetric information is the distinction between

accidents and claims.14 The data set of insurance companies comprises claims. But whether

an accident - once it has occurred - is declared to the insurance company and becomes a claim

depends on the decision of the insuree. This decision is mainly determined by the nature of

the contract. For example, accidents whose damage is below the deductible or is not covered

are usually not declared. Therefore one might expect a positive correlation between the type

of contract (coverage) and the probability of a claim - even in the absence of ex ante moral

hazard.15 One strategy to handle this problem is to discard all accidents in which only one

automobile was involved. Whenever two cars are involved, a declaration is nearly inevitable.

11The FFSA comprehends 21 companies that together have 70 percent market share of the French automobile
insurance market.

12“Young” refers not to the actual age but to the driving experience.
13For a detailed discussion see Chiappori and Heckmann (1999).
14This problem is, e.g., discussed in detail in Cohen and Siegelman (2010).
15The phenomenon that accidents that are not covered are not declared is sometimes called “ex post moral

hazard”.
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To make the results comparable with those of Chiappori and Salanié (2000) and to check

for robustness we examine several different configurations of the data set. Let Xi denote the

set of exogenous control variables for individual i. Let Yi = 0 if individual i buys only the

minimum legal coverage (a RC contract) and 1 if individual i buys any form of comprehensive

coverage (a TR contract). First we consider discrete Zi where Zi = 1 if i has at least one

accident in which he or she is judged to be at fault and 0 otherwise (no accident occurred or i

was not at fault). Then we consider the case where Zi is continuous and defined by the total

payments caused by the insuree, which is also included in the data set.

For the random variables in Xi, we consider three configurations. In Configuration I we

include the following control variables in Xi : sex (2), make of car (8), performance of the

car (6), type of use (4), type of area (5), profession of the driver (8), region (10), age of the

driver, and age of the car, where numbers in brackets indicate the number of categories for the

corresponding discrete variables, and variables without numbers indicate they are continuous

variables. These control variables are similar to those used by Chiappori and Salanié (2000)

for their probit-model- or χ2-based tests except that we do not transform the age of the car

and that of the driver to discrete variables.

Our nonparametric test requires that the number of observations per cell should not be

too small. So we also consider another two configurations for Xi. In Configuration II we omit

the variable, make of the car, which describes the home country of the manufacturer of the

car. We think that the most important part of the information concerning an automobile can

be captured by the performance of the car, so that the omission of this variable should have no

significant influence on the results. For example, the accident probability of an Italian and a

French compact car should not differ significantly, all other things being equal. Additionally,

we reduce the number of categories for some discrete variables according to Column 3 in Table

3.2. Again, we argue that merging categories which are nearly identical or closely related does

not bias the results.

In Configuration III we use only two categories for each of the seven discrete variables in

Xi. As surveyed above, Salanié and Chiappori (2000) also conduct nonparametric tests where

they code all control variables as binary and apply a χ2 independence test to each cell, and

then aggregate the resulting test statistics in three different ways. Our third configuration

enables a direct comparison of our nonparametric test with their nonparametric tests.

Configurations IV - VI correspond to Configurations I - III, respectively. In the settings

IV - VI we only replace the discrete dummy variable Zi by its continuous counterpart, i.e., by

the total payments caused through accidents by the insuree to the insurance company. In all

configurations, we treat the age of the car and the age of the driver as continuous variables.
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See Table 3.2 for a summary of these configurations.

Table 3.2: An overview of the data configurations

Variables\Configurations I II III IV V VI

Yi 2 2 2 2 2 2
Zi 2 2 2 X X X
sex 2 2 2 2 2 2
make of car 8 - 2 8 - 2
performance of car 6 6 2 6 6 2
type of use 4 3 2 4 3 2
type of area 5 2 2 5 2 2
profession of driver 9 5 2 9 5 2
region 10 5 2 10 5 2
age of driver X X X X X X
age of car X X X X X X

Note: Integers denote the number of categories for the corresponding discrete variables.

An “X” in the table denotes that the corresponding variable is a continuous variable.

3.6.3 Empirical Results

In this subsection we apply the nonparametric test to the data set introduced in the above

subsection. Table 3.3 reports the bootstrap p-values for our nonparametric test under var-

ious configurations of the data set. Given the large sample size (n = 6, 333) and the need

of bootstrap, the computational burden for our bootstrap-based nonparametric test is very

heavy. Simulations for smaller sample sizes with different choices of the number of bootstrap

replications (B = 100, 200, 300) indicate that our testing results are insensitive to the choice

of B. So we only set B = 100 for our applications. Also due to the large sample size and the

large number of control variables, it is difficult to use least squares cross validation method to

choose data-driven bandwidths to conduct our nonparametric test. For this reason we adopt

the rule of thumb to choose the bandwidths: hl = γsXc
l
n−1/4.5 and λs = γn−2/4.5 for the

continuous and discrete control variables, respectively. To check the sensitivity of the test to

the choice of bandwidth, we consider four values of γ : 0.75, 1, 1.25, and 1.5. These choices

of bandwidths fulfill the requirements of Assumption A.5.

We summarize some important findings from Table 3.3. First, it indicates that in all

cases we fail to reject the null hypothesis of absence of asymmetric information at the 10%

significance level. This means that the knowledge of the choice of the contract does not contain
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Table 3.3: Bootstrap p-values for our nonparametric test under various configurations

γ\Configurations I II III IV V VI

γ = 0.75 0.82 0.54 0.24 1.00 1.00 1.00
γ = 1 0.79 0.62 0.13 1.00 1.00 1.00
γ = 1.25 0.77 0.66 0.14 1.00 1.00 1.00
γ = 1.5 0.76 0.72 0.21 1.00 1.00 1.00

information for predicting the probability of an accident or the other way round, knowing the

number of accidents (discrete) or the caused damages (continuous) is of no value for predicting

the chosen contract. Therefore our test affirms the Chiappori and Salanié’s (2000) findings

that there is no evidence of asymmetric information in the market for automobile insurance

in France. The results are very robust to different configurations of data and choices of

bandwidth. Second, Table 3.3 reveals that an aggregation of the categories of the discrete

control variables leads to a decrease of the p-values so that a reduction of information might

disguise asymmetric information. Therefore, a (non-)parametric test that relies on highly

aggregated information might yield misleading or wrong conclusions. Third, Table 3.3 also

reveals that using the payments of the insurance companies instead of the number of accidents

leads to a strengthening of the absence of asymmetric information. Again, a reduction of

information might lead to wrong test conclusions.

Recently Kim et al. (2009) have argued that the absence of asymmetric information in

most empirical studies might be due to the dichotomous measurement approach that induces

the excessive bundling of contracts with different deductibles. In reality the insurees can

choose between several deductibles referring to different fields of coverage. But most studies

aggregate this choice opportunities to a binary choice between “compulsory” coverage and

“additional” coverage so that the choice variable Yi becomes binary. Kim et al. (2009) claim

that excessive bundling in coverage measurements might disguise the existence of asymmetric

information. So they apply a multinomial measurement approach, which is parametric in

nature, and demonstrate the evidence of asymmetric information in their data set obtained

from a major automobile insurance company in Korea.

Since our data set also contains the exact level of the chosen deductible, we can investigate

this hypothesis as our test is fully applicable to this problem. A very small proportion of the

contracts has proportional deductibles which are dropped for this analysis. Therefore the

sample size decreases to n = 6, 219. We divide the chosen deductible into three (0 − 100,

101 − 1500, and > 1500) groups. The results are reported in Table 3.4 for different data
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Table 3.4: Bootstrap p-values for our nonparametric test when the choice variable has three
deductible levels

γ\Configurations I II III

γ = 0.75 0.71 0.73 0.73
γ = 1 0.67 0.71 0.88
γ = 1.25 0.69 0.64 0.68
γ = 1.5 0.64 0.77 0.75

configurations introduced above. In comparison to the settings defined in Table 3.2, the

choice variable Yi now has three categories, but everything else remains unchanged in the

data set. Clearly, Table 3.4 confirms the absence of asymmetric information in the data.

We also tried a finer division for the deductible so that Yi has more categories. In all cases,

our results are robust in that they all confirm the absence of asymmetric information in

the data. Intuitively speaking, if there is no asymmetric information in the most important

choice between compulsory and comprehensive insurance, one should not expect asymmetric

information in the minor decision of the exact deductible when the money at stack is not so

high.

3.7 Concluding Remarks

We propose a new nonparametric test for asymmetric information in this paper and apply

it to a French automobile insurance data set. Our main conclusion is that we cannot detect

asymmetric information in the data set despite different configurations of the control variables

and different choices of bandwidth parameters. Our nonparametric test does not require spec-

ification of any functional or distributional form among the sets of variables of interest and

it is not subject to any misspecification problem given the right choice of control variables.

We also show that excessive bundling does not necessarily result in a disguise of asymmetric

information. Both in the case of the binary choice between “compulsory” coverage and “ad-

ditional” coverage and in the case of several deductibles (three and more groups) we confirm

the absence of asymmetric information. Our results are also very strong in contrast to Kim

et al. (2009).

Since nearly all other classes of insurance, such as the legal protection insurance, private

health insurance, and disability insurance, are structured in the same way as the auto insur-

ance, applications to data sets in these subfields are immediate and might help to gain new
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insights. Moreover, our test can be applied to more general settings, either to testing for

asymmetric information in other fields or more generally, to testing the general hypothesis of

conditional independence.
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3.8 Mathematical Appendix

Let ∆j,y (x, z) ≡ F (z|Xj , y)−F (z|x, y)−
∑pc

s=1

(
∂F
(
z|xc, xd, y

)
/∂xcs

) (
Xc
js − xcs

)
, Vny (ς) ≡

1
n

∑n
j=1 Khλ (Xj , x) 1yjτ h(Xc

j − xc)1z,y (ςj) , and

Bny (ς) ≡ 1
n

∑n
j=1Khλ (Xj , x) 1yjτ h(Xc

j − xc)∆j,y (x, z) . Let Sy (x) ≡ E[Sny (x)] and By (ς) ≡
E[Bny (ς)]. The following lemma establishes the uniform consistency of F̂ (z|x, y) .

Lemma 3.8.1 Suppose Assumptions A.1-A.5 hold. Then uniformly in ξ ≡ (x′, y, z)′ we

have: F̂ (z|x, y) −F (z|x, y) = e′1[Sy (x)]−1[Vny (ς) + By (ς)] + OP (ν2n +νn(‖h‖2 + ‖λ‖)) =

OP (νn + ‖h‖2 + ‖λ‖), where νn ≡ n−1/2 (h!)−1/2
√

log n.

Proof. Since [Sny (x)]−1 Sny (x) = Ipc+1 where Ipc+1 is a (pc + 1) × (pc + 1) identity

matrix, we obtain the following standard bias and variance decomposition:

F̂ (z|x, y)− F (z|x, y) = e′1[Sny (x)]−1Vny (ς) + e′1[Sny (x)]−1Bny (ς) , (8.1)

where e′1 is the first row of Ipc+1. By Theorems 2 and 4 in Masry (1996) with little modification

to account for discrete regressors,16

Sny (x) = Sy (x) +OP (νn) ,Vny (ς) = OP (νn) , and Bny (ς)−By (ς) = OP (νn(‖h‖2 + ‖λ‖)),

where the probability orders hold uniformly in x ∈ X and y ∈ Y. By the Slutsky lemma,

[Sny (x)]−1 =
{
Sy (x) +

[
Sny (x)− Sy (x)

]}−1
= [Sy (x)]−1 +OP (νn) . (8.2)

By the same argument as used in the proof of Theorem 4.1 of Boente and Fraiman (1991),

we can show that Vny (ς) = OP (νn) uniformly in ς under Assumption A.3. It follows that

F̂ (z|x, y) −F (z|x, y) = e′1{[Sy (x)]−1 + OP (νn)}{Vny (ς) +[By (ς) +OP (νn(‖h‖2 + ‖λ‖)]}
= e′1[Sy (x)]−1[Vny (ς) +By (ς)] +OP (ν2n +νn(‖h‖2 + ‖λ‖)) = OP (νn + ‖h‖2 + ‖λ‖).

Proof of Theorems 3.4.1 and 3.4.2

We only prove Theorem 3.4.2, as the proof of Theorem 3.4.1 is a special case.

16The compact support of the kernel function in Masry (1996) can be easily relaxed, following the line of proof
in Hansen (2008, Theorem 4). Masry (1996) only allows continuous regressors, which can also be extended to
the case of mixed regressors. Since Xd

i and Yi only take finite number of possible values, they have no impact
on the uniform probability order.
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First, we decompose (h!)1/2Dn as follows:

(h!)1/2Dn = (h!)1/2
cy−2∑
r=0

cy−1∑
s=r+1

n∑
i=1

[
F̂ (Zi|Xi, r)− F̂ (Zi|Xi, s)

]2
= (h!)1/2

cy−2∑
r=0

cy−1∑
s=r+1

n∑
i=1

{[
F (Zi|Xi, r)− F (Zi|Xi, s)

]2
+
[
F̂ (Zi|Xi, r)− F (Zi|Xi, r)− F̂ (Zi|Xi, s) + F (Zi|Xi, s)

]2
+2 [F (Zi|Xi, r)− F (Zi|Xi, s)]

×
[
F̂ (Zi|Xi, r)− F (Zi|Xi, r)− F̂ (Zi|Xi, s) + F (Zi|Xi, s)

]}
≡ Dn1 +Dn2 + 2Dn3.

Under H1(n
−1/2 (h!)−1/4), we prove the theorem by showing that (i) Dn1

P→ µ0, (ii) Dn2 −
Bn

d→ N
(
0, σ20

)
, (iii) Dn3 = oP (1) , (iv) B̂n = Bn+oP (1) , and (v) σ̂2n = σ20 +oP (1). For (i),

Dn1 = n−1
∑cy−2

r=0

∑cy−1
s=r+1

∑n
i=1 δn,rs(ς i)

2 = µ0 + oP (1) under H1(n
−1/2 (h!)−1/4). It remains

to show (ii)-(iv).

To show (ii), we first apply Lemma 3.8.1 to obtain

Dn2 = (h!)1/2
cy−2∑
r=0

cy−1∑
s=r+1

n∑
i=1

[
F̂ (Zi|Xi, r)− F (Zi|Xi, r)− F̂ (Zi|Xi, s) + F (Zi|Xi, s)

]2
= (h!)1/2

cy−2∑
r=0

cy−1∑
s=r+1

n∑
i=1

[
e′1[Sr (Xi)]

−1Vnr (ς i)− e′1[Ss (Xi)]
−1Vns (ς i)

+ e′1[Sr (Xi)]
−1Br (ς i)− e′1[Ss (Xi)]

−1Bs (ς i) +OP (ν2n + νn(‖h‖2 + ‖λ‖))
]2

= (h!)1/2
cy−2∑
r=0

cy−1∑
s=r+1

n∑
i=1

[
e′1
{

[Sr (Xi)]
−1Vnr (ς i)− [Ss (Xi)]

−1Vns (ς i)
}]2

+ 2 (h!)1/2
cy−2∑
r=0

cy−1∑
s=r+1

n∑
i=1

e′1
{

[Sr (Xi)]
−1Vnr (ς i)− [Ss (Xi)]

−1Vns (ς i)
}

× e′1
{

[Sr (Xi)]
−1Br (ς i)− [Ss (Xi)]

−1Bs (ς i)
}

+ (h!)1/2
n∑
i=1

[
e′1
{

[Sr (Xi)]
−1Br (ς i)− [Ss (Xi)]

−1Bs (ς i)
}]2

+n (h!)1/2OP

(
ν2n + νn(‖h‖2 + ‖λ‖))

)
OP

(
νn + ‖h‖2 + ‖λ‖

)
≡ Dn21 + 2Dn22 +Dn23 + oP (1) (8.3)



3.8 Mathematical Appendix 61

where the definitions of Dn21, Dn22, and Dn23 are self-evident. Using the notation de-

fined above eq. (4.9), we have Dn21 = (h!)1/2

(n−1)2
∑n

i=1

∑cy−2
r=0

∑cy−1
s=r+1[

∑n
j=1 ϕrs

(
ξi, ξj

)
]2, where

ϕrs
(
ξi, ξj

)
≡ Kr

(
ζj ;Xi

)
1Zi,r (ςj)−Ks

(
ζj ;Xi

)
1Zi,s (ςj) . Decompose Dn21 as follows

Dn21 =
(h!)1/2

n2

n∑
i=1

n∑
j=1

n∑
k=1

cy−2∑
r=0

cy−1∑
s=r+1

ϕrs
(
ξi, ξj

)
ϕrs (ξi, ξk)

=
(h!)1/2

n2

n∑
i=1

n∑
j 6=i

n∑
k 6=i,j

cy−2∑
r=0

cy−1∑
s=r+1

ϕrs
(
ξi, ξj

)
ϕrs (ξi, ξk)

+
(h!)1/2

n2

n∑
i=1

n∑
j=1

cy−2∑
r=0

cy−1∑
s=r+1

ϕrs
(
ξi, ξj

)2
+

2 (h!)1/2

n2

n∑
i=1

n∑
j 6=i

cy−2∑
r=0

cy−1∑
s=r+1

ϕrs
(
ξi, ξj

)
ϕrs (ξi, ξi)

≡ Vn +Bn +Rn, say. (8.4)

Let ϕrs
(
ξi, ξj , ξk

)
≡ [ϕrs

(
ξi, ξj

)
ϕrs (ξi, ξk)+ϕrs

(
ξj , ξi

)
ϕrs

(
ξj , ξk

)
+ϕrs (ξk, ξi)ϕrs

(
ξk, ξj

)
]/3.

Then

Vn =
6 (h!)1/2

n2

∑
1≤i<j<k≤n

cy−2∑
r=0

cy−1∑
s=r+1

ϕrs
(
ξi, ξj , ξk

)
=

(n− 1) (n− 2)

n
V n,

where V n ≡ 6(h!)1/2

n(n−1)(n−2)
∑

1≤i<j<k≤n
∑cy−2

r=0

∑cy−1
s=r+1 ϕrs

(
ξi, ξj , ξk

)
. Note that for all i 6=

j 6= k, θ ≡ E
[
ϕrs

(
ξi, ξj , ξk

)]
= 0, ϕrs,1 (a) ≡ E

[
ϕrs

(
a, ξj , ξk

)]
= 0, and ϕrs,2 (a, ã) ≡

E [ϕrs (a, ã, ξk)] = 1
3E[ϕrs (ξk, a) ϕrs (ξk, ã)]. Let ϕrs,3 (a, ã, a) ≡ ϕrs (a, ã, a) − ϕrs,2 (a, ã) −

ϕrs,2 (a, a)− ϕrs,2 (ã, a) . By the Hoeffding decomposition,

V n = 3H(2)
n +H(3)

n ,

where H
(2)
n ≡ 2(h!)1/2

n(n−1)
∑

1≤i<j≤n
∑cy−2

r=0

∑cy−1
s=r+1 ϕrs,2

(
ξi, ξj

)
and

H
(3)
n ≡ 6(h!)1/2

n(n−1)(n−2)
∑

1≤i<j<k≤n
∑cy−2

r=0

∑cy−1
s=r+1 ϕrs,3(ξi, ξj , ξk).Noting that E

[
ϕrs,3 (a, ã, ξi)

]
=

0 and that ϕrs,3 is symmetric in its arguments by construction, it is straightforward to

show that E[H
(3)
n ] = 0 and E[H

(3)
n ]2 = O(n−3 (h!)−1). Hence, H

(3)
n = OP (n−3/2 (h!)−1/2) =

oP
(
n−1

)
by the Chebyshev inequality. It follows that Vn = n(n−2)

n−1 V n = {1 + o (1)}Hn +

oP (1) , where

Hn ≡
2 (h!)1/2

n

∑
1≤i≤j≤n

cy−2∑
r=0

cy−1∑
s=r+1

3ϕrs,2
(
ξi, ξj

)
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=
2 (h!)1/2

n

∑
1≤i<j≤n

cy−2∑
r=0

cy−1∑
s=r+1

∫
ϕrs (a, ξi)ϕrs

(
a, ξj

)
Fξ (da) .

As Hn is a second order degenerate U -statistic, it is straightforward but tedious to verify

that all the conditions of Theorem 1 of Hall (1984) are satisfied, implying that a central

limit theorem applies to Hn : Hn
d→ N

(
0, σ20

)
, where the asymptotic variance of Hn is

given by σ20 ≡ limn→∞ σ
2
n and σ2n ≡ 2h!EiEj [

∑cy−2
r=0

∑cy−1
s=r+1

∫
ϕrs (ξ, ξi)ϕrs

(
ξ, ξj

)
Fξ (dξ)]2 =

2h!EiEj [
∑cy−2

r=0

∑cy−1
s=r+1

∫
[Kr (ζi;x) 1z,r (ς i)−Ks (ζi;x) 1z,s (ς i)] [Kr

(
ζj ;x

)
1z,r (ςj)−Ks

(
ζj ;x,

)
1z,s (ςj)]Fξ (dξ)]2. Consequently

Vn
d→ N

(
0, σ20

)
. (8.5)

For Rn, it is easy to verify that E (Rn) = 0 and E
(
R2
n

)
= O

(
n(h!)−1

)
= o (1) . So Rn = oP (1)

by the Chebyshev inequality. Combined with (8.4) and (8.5), we have

Dn21 −Bn
d→ N

(
0, σ20

)
. (8.6)

Let brs (ς i) ≡ e′1
{

[Sr (Xi)]
−1Br (ς i)− [Ss (Xi)]

−1Bs (ς i)
}
. Then Dn22 =

∑cy−2
r=0

∑cy−1
s=r+1

(Dn22,rs1−Dn22,rs2), where Dn22,rs1 ≡ (h!)1/2
∑n

i=1 e
′
1[Sr (Xi)]

−1Vnr (ς i) brs (ς i) and Dn22,rs2

≡ (h!)1/2
∑n

i=1 e
′
1[Ss (Xi)]

−1Vns (ς i) brs (ς i) . Write

Dn22,rs1 = n−1 (h!)1/2
n∑
i=1

n∑
j 6=i

e′1[Sr (Xi)]
−1Khλ (Xj , Xi) 1rjτ h(Xc

j −Xc
i )1Zi,r (ςj) brs (ς i)

+n−1 (h!)1/2
n∑
i=1

e′1[Sr (Xi)]
−1Khλ (Xi, Xi) 1riτ h(Xc

i −Xc
i )1Zi,r (ς i) brs (ς i)

≡ Dn22,rs1a +Dn22,rs1b, say.

Noting that brs (ς i) = OP (‖h‖2+‖λ‖), it is straightforward to show thatDn22,rs1b = OP ((h!)−1/2

(‖h‖2 + ‖λ‖)) = oP (1) . Noting that E (Dn22,rs1a) = 0 and E
(
D2
n22,rs1a

)
= O(nh!(‖h‖2 +

‖λ‖)2) = o (1) , we have Dn22,rs1a = oP (1) by the Chebyshev inequality. Similarly, we can

show thatDn22,rs1b = oP (1) and thusDn22,rs1 = oP (1) . By the same token, Dn22,rs2 = oP (1) .

It follows that

Dn22 = oP (1) . (8.7)

By Lemma 3.8.1 and Assumption A.5, we have Dn23 = n (h!)1/2OP (‖h‖4) =

OP (n ‖h‖4 (h!)1/2) = oP (1) . This, in conjunction with (8.3), (8.6) and (8.7), implies that

Dn2 −Bn
d→ N

(
0, σ20

)
.
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Next, we show (iii). By Lemma 3.8.1, under H1

(
n−1/2(h!)−1/4

)
we have

Dn3 =

cy−2∑
r=0

cy−1∑
s=r+1

n−1/2 (h!)1/4
n∑
i=1

[
e′1[Sr (Xi)]

−1Vnr (ς i)− e′1[Ss (Xi)]
−1Vns (ς i))

+ e′1[Sr (Xi)]
−1Br (ς i)− e′1[Ss (ζi)]

−1Bs (ς i)
]
δn,rs(ς i)

+ n1/2 (h!)1/4OP

(
ν2n + νn

(
‖h‖2 + ‖λ‖

))
≡

cy−2∑
r=0

cy−1∑
s=r+1

[Dn31,rs −Dn32,rs +Dn33,rs −Dn34,rs] + oP (1) ,

where, for example, Dn31,rs ≡ n−1/2 (h!)1/4
∑n

i=1 e
′
1[Sr (Xi)]

−1 Vnr (ς i) δn,rs(ς i), and Dn3l,rs,

l = 2, 3, 4, are analogously defined. Decompose

Dn31,rs = n−3/2 (h!)1/4
n∑
i=1

n∑
j 6=i

e′1[Sr (Xi)]
−1τ h

(
Xc
j −Xc

i

)
Khλ (Xj , Xi) 1

r
j1Zi,r (ςj) δn,rs(ς i)

+n−3/2 (h!)1/4
n∑
i=1

e′1[Sr (Xi)]
−1τ h (0)Khλ (Xi, Xi) 1

r
i1Zi,r (ς i) δn,rs(ς i)

≡ Dn31,rs1 +Dn31,rs2, say.

It is easy to show that Dn31,rs2 = OP (n−1/2 (h!)−3/4) = oP (1) by Assumption A.5. For

Dn31,rs1, noting that E [Dn31,rs1] = 0 and

E [Dn31,rs1]
2

= n−3 (h!)1/2
n∑
i=1

n∑
i′=1

n∑
j 6=i,i′

E
{
e′1[Sr (Xi)]

−1τ h
(
Xc
j −Xc

i

)
Khλ (Xj , Xi) 1rj1Zi,r (ςj) δn,rs(ς i)

×e′1[Sr (Xi′)]
−1τ h

(
Xc
j −Xc

i′
)
Khλ (Xj , Xi′) 1Zi′ ,r (ςj) δn,rs(ς i′)

}
+n−3 (h!)1/2

n∑
i=1

n∑
j 6=i

E
{
e′1[Sr (Xi)]

−1τ h
(
Xc
j −Xc

i

)
Khλ (Xj , Xi) 1rj1Zi,r (ςj) δn,rs(ς i)

×e′1[Sr (Xj)]
−1τ h

(
Xc
i −Xc

j

)
Khλ (Xi, Xj) 1ri1Zj ,r (ς i) δn,rs(ςj)

}
= O

(
(h!)1/2 + n−1 (h!)−1/2

)
= o (1) ,

we have Dn31,rs1 = oP (1) by the Chebyshev inequality. Hence Dn31,rs = oP (1) . Similarly

Dn32,rs = oP (1) . Noting that supς
∣∣Br (ς)

∣∣ = O(‖h‖2 + ‖λ‖), we have

Dn33,rs ≤ n1/2 (h!)1/4O
(
‖h‖2 + ‖λ‖

)
n−1

n∑
i=1

|δn,rs(ς i)| = OP

(
n1/2 ‖h‖2 (h!)1/4

)
= oP (1) .
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Similarly Dn34,rs = oP (1) . Consequently, Dn3 = oP (1) .

We now show (iv). Noting that a2 − b2 = (a− b)2 + 2 (a− b) b, we have B̂n − Bn =∑cy−2
r=0

∑cy−1
s=r+1Bn1,rs +2

∑cy−2
r=0

∑cy−1
s=r+1Bn2,rs, where

Bn1,rs ≡
(h!)1/2

n2

n∑
i=1

n∑
j 6=i
{α̂ij,r − α̂ij,s}2 ,

Bn2,rs ≡
(h!)1/2

n2

n∑
i=1

n∑
j 6=i

[α̂ij,r − α̂ij,s][Kr

(
ζj ;Xi

)
1Zi,r (ςj)−Ks

(
ζj ;Xi,

)
1Zi,s (ςj)],

and α̂ij,r = e′1[Snr (Xi)]
−1τ h

(
Xc
j −Xc

i

)
Khλ (Xj , Xi) 1rj 1̂Zi,r (ςj)−Kr

(
ζj , Xi

)
1Zi,r (ςj) . Not-

ing that [Snr (Xi)]
−1 = [Sr (Xi)]

−1+OP (νn) and 1̂z,r (ςj)−1z,r (ςj) = F (z|Xj , r)−F̂ (z|Xj , r) =

OP (νn + ‖h‖2 + ‖λ‖) uniformly in Xj and z, we have

α̂ij,r = e′1[Sr (Xi)]
−1τ h

(
Xc
j −Xc

i

)
Khλ (Xj , Xi) ×1rj{1̂Zi,r (ςj)− 1Zi,r (ςj)}+OP (νn) . It fol-

lows that

|Bn1,rs| ≤
(h!)1/2

(n− 1)2

n∑
i=1

n∑
j 6=i

∥∥τ h (Xc
j −Xc

i

)
Khλ (Xj , Xi)

∥∥2 ×OP ((νn + ‖h‖2 + ‖λ‖
)2)

= OP

(
(h!)−1/2 (ν2n + ‖h‖4 + ‖λ‖2)

)
= oP (1) ,

and similarly |Bn2,rs| = OP

(
(h!)−1/2 (νn + ‖h‖2 + ‖λ‖)

)
= oP (1) under Assumption A.5.

Consequently, B̂n −Bn = oP (1) .

For (v), noticing that

β̂ij,rs =
1

n

n∑
l=1

{
Kr (ζi, Xl) 1Zl,r (ς i)−Ks (ζi, Xl) 1Zl,s (ς i)

}
×
{
Kr

(
ζj , Xl

)
1Zl,r (ςj)−Ks

(
ζj , Xl

)
1Zl,s (ςj)

}
+ oP (1)

=

∫ {
Kr (ζi, x) 1z,r (ς i)−Ks (ζi, x) 1z,s (ς i)

}
{Kr

(
ζj , x

)
1z,r (ςj)

−Ks

(
ζj , x

)
1z,s (ςj)}Fξ (dξ) + oP (1) ,

we have σ̂2n = σ20 + op (1) by the law of large numbers for U-statistics. �

Proof of Theorems 3.4.3

Using the notation defined in the proof of Theorem 3.4.2, we again write n−1Dn =

n−1 (h!)−1/2 (Dn1 + Dn2 + 2Dn3). Under H1, it is easy to show that n−1 (h!)−1/2Dn1 =∑cy−2
r=0

∑cy−1
s=r+1 E[F (Zi|Xi, r) −F (Zi|Xi, s)]

2 + oP (1) , n−1 (h!)−1/2Dn2 = OP (ν2n + ‖h‖4 +
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‖λ‖2) = oP (1) , and n−1 (h!)−1/2Dn3 = OP (νn + ‖h‖2 + ‖λ‖) = oP (1) . On the other hand,

n−1 (h!)−1/2 B̂n = OP
(
n−1

)
= oP (1) and σ̂2n = σ20 + oP (1). It follows that n−1 (h!)−1/2 Tn =

(n−1Dn − n−1 (h!)−1/2 B̂n)/
√
σ̂2n

P→
∑cy−2

r=0

∑cy−1
s=r+1E[F (Zi|Xi, r) −F (Zi|Xi, s)]

2/σ0, and the

conclusion follows. �
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Chapter 4

Asymmetric Information in the

Accident Insurance∗

4.1 Introduction

Over the last years testing for asymmetric information in insurance markets has gained much

popularity. This leads to narrowing the gap between theory and empirical evidence. Empirical

results also show directions for further theoretical developments.

The theory of asymmetric information is well understood for a long time. The phenomenon

of “adverse selection”was first analyzed by Akerlof (1970). Rothschild and Stiglitz (1976)

introduced the notion of adverse selection in insurance markets. Moral hazard, the second

constituent of asymmetric information, has been developed by Holmström (1979) and with

application to insurance markets by Shavell (1979). The models for both phenomena predict a

positive correlation between risk and coverage. Although it is in general difficult to disentangle

adverse selection and moral hazard, tests for asymmetric information as a whole are possible.

While theory has been highly developed, empirical studies lagged behind. One reason is the

scare availability of data sets in this field. A cornerstone in this development was Chiappori

and Salanié (2000). They introduced bivariate testing procedures for the positive correlation

property which became the standard test in this field. Google scholar counts approximately

500 citations on their paper. The basic idea is to define binary proxy variables for risk,

usually measured as ex post risk, and for coverage, i.e., the chosen contract. Then tests

for conditional correlation (parametric ones and a simple nonparametric one) are conducted.

Their procedure was applied amongst others in Cohen (2005), Saito (2006), Aarbu (2010),

Spindler et al. (2011), Muermann and Straka (2011).

∗This chapter is based on joint work with Liangjun Su.
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In a recent paper Su and Spindler (2011) introduce a general nonparametric test for

asymmetric information. The basic idea is an alternative resp. more general definition of

what asymmetric information means. The absence of asymmetric information means that

the choice of a contract Y provides no information for predicting the “performance” variable

Z (e.g., the number of claims or the sum of reimbursements), conditional on the vector X

of all exogenous variables. Therefore one can transform the problem of testing the absence

of asymmetric information into a test for conditional independence: F (Z|X,Y ) = F (Z|X)

where, F (Z|X,Y ) denotes the conditional cumulative distribution function (CDF) of Z given

(X,Y ) .

The advantage of nonparametric tests is that they do not rely on certain distributional and

functional specifications. For example probit models rely on the normal assumption which

might be questionable in insurance applications. Moreover, insurance companies use non-

linear influences, e.g., cross effects, for risk classification. These might be unknown to the

econometrician despite his access to the data, as the pricing formula is usually not disclosed.

The main focus of this paper is to apply both parametric and nonparametric tests to a novel

data set and to compare the results.

The rest of the paper is structured as follows. In section 2 we give an introduction to

accident insurance. Section 3 presents the data set we use. Section 4 gives a repetition of the

applied testing procedures. In section 5 we show the results and finally conclude in section 6.

4.2 The Accident Insurance

The accident insurance is very elementary for many insurees as it covers risks which touch the

existence of individuals. In Germany there are two pillars concerning the accident insurance:

a compulsory and a private voluntary accident insurance. The statutory accident insurance

covers only risks related to the workplace. These are risks like working and commuting

accidents and occupational diseases. In case of such an event this insurance covers the costs

for reconstituting the health or pays a pension in the case of incapacity for work. As the

compulsory accident insurance applies only to employees (e.g., not for freelancers) and the

indemnification payments from the compulsory accident insurance are very limited in the case

of an accident and - as mentioned before - only accidents related to work are covered, a private

accident insurance is a very important supplement.

The (private) accident insurance usually covers the following eventualities: invalidity and

dismemberment, death, and a hospital per diem1 in the case of a hospital stay. These are the

1Strictly speaking, the daily payment in the case of a hospital stay consists of two parts, a hospital per
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basic risks which are covered by default. Besides, some insurance companies offer additional

insurance payments, e.g., reimbursements of costs for treatment at a health resort or costs

for plastic surgery. It is important to mention that the eventualities are only covered if they

arise as a consequence of an accident.

For each eventuality the insuree can choose the level of payments in case of occurrence of

the event insured. The premium depends on these chosen levels. Additionally, the insurance

companies can use variables like occupation, sex, age and so on for risk classification and

rating. These observables also determine the insurance premium. In case of invalidity the

insuree chooses the level (i.e., insured sum) for the case of a total disability (100 %). For

lower degrees of disabilities which are determined according to a dismemberment schedule

(“Gliedertaxe”) a proportional share of the chosen level is paid out by the insurance com-

pany. Additionally, for the invalidity case the insuree can choose between certain schedules

of progression. For example the insuree can choose to get the full amount for total disability

already from disabilities of 50 % onwards or to get from certain level of disability (in most

cases relatively high degrees of disability) on twice or five times the chosen basic amount. The

chosen progression clearly influences the insurance premium paid by the insuree.

To close this section some facts and figures about the accident insurance in Germany

(GDV (2010)) are given: In Germany 40.8 % of the households have an accident insurance. In

the year 2009 the premium income was 6,389 million Euro, claims expenditure 2,928 million

Euro. This results in a claims ratio of 58.2 %.

4.3 The Data Set

For our analysis we have access to a data set of a German insurance company. The data set

contains all contracts which were valid in the year 2005 (i.e., which were valid / under risk

at January 1, 2005) or signed afterwards. These contracts are traced for a period of four

years (until the end of 2008). For example, let us assume that a contract was signed before

01/01/2005 and was still active at this date and therefore in the data set. Then possibly three

things can happen which are recorded in the database (not necessarily mutually exclusive):

1. One accident (or possibly several accidents) occurred during the period. Then the kind

of claim and the amount of payments are recorded.

2. No claim was filed during this period.

diem and a convalescence allowance, but this distinction is only of minor importance for the analysis.
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3. The contract was terminated during this period. Then both termination date and claim

history up to termination are recorded.

Under one contract several different persons can be insured. For example a father can take out

a policy for him, his wife and his kids. Such constellations are also captured in the database.

For each insured risk personal data and the claim history are filed. As we want to test the risk

assessment of the individual for itself, not the ability to assess the risk of other individuals,

we restrict to contracts containing only one insured person.

For each insured individual the following information is contained in the database:

1. personal information which is partially used for pricing / rating, e.g., date of birth, sex,

occupation.

2. full information about the contract: date of signing of the contract, date of termination

(if it applies), chosen amount of insurance benefit for each eventuality, annual adjust-

ment.

3. detailed information concerning the claims.

The data set contains approximately 2.5 million contract years. This corresponds to n =

957, 506 insurees.

When testing for asymmetric information the following pitfall may arise: Let us assume

that a contract was signed on March 1, 1990. If the contract remained valid until 2005 it is

still under consideration and in the sample. But if for example an accident occurred in the

year 2000 then the contract was set “historic”and is not in the sample. Therefore there is a

sample selection with a tendency for “good”risks being in the sample given the same date of

signing (“attrition bias”).

A way to circumvent this problem is to take the subsample of all contracts which were signed

after January 1, 2005 and to trace them through the period. This subsample has still a size of

n = 77, 125. It is reasonable that the individuals might have an information advantage con-

cerning their accident probability but not concerning the timing of an accident.2 Therefore

this procedure should not influence the results or distort them.

2According to personal communication with actuaries, the accident probability rises with age, i.e., in higher
age accidents occur more often, but this increase concerns good and bad risks comparably.
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Table 4.1: Descriptive statistics of the whole sample

Variable Minimum Mean Maximum

duration of the contract until
01/01/2005 (in years)

0 8.60 35

insurance sum for disability
(w/o factor)

0 60, 315 230, 082

factor 1 3 5
insurance sum for death 0 7, 712 51, 130
insurance sum for hospital per
diem

0 15 65

insurance sum for rent 0 165 1075
cost of claims for disability 0 1, 930 1, 003, 953
cost of claims for death 0 59 96, 500
cost of claims for hospital per
diem

0 4.8 18, 630

sample size n = 957, 506

Table 4.2: Number of claims

Eventuality Whole sample Subsample

invalidity 12, 901 455
death 170 11
hospital per diem 15, 552 392
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Table 4.3: Descriptive statistics of the subsample

Variable Minimum Mean Maximum

age 14.6 40.3 97
insurance sum for disability 3, 835 103, 823 1, 032, 500
insurance sum for death 767 5, 415 51, 130
insurance sum for hospital per
diem

2.5 8.3 65

cost of claims for disability 0 13.9 115, 000
cost of claims for death 0 1.29 21000
cost of claims for hospital per
diem

0 1.9 5, 458

sample size n = 77, 125

4.4 Methods

In this section we give a short review of the methods applied and customize them to the

accident insurance. In the literature mainly parametric procedures are used. We additionally

present and apply a nonparametric test which was introduced in Su and Spindler (2011).

In the following, X denotes the exogenous variables which are used for risk classification by

the insurance company. Y denotes the chosen contract. In accident insurance individuals can

only choose the insured sum for each eventuality, i.e., the sum which is paid out in the case

of death, the sum for a 100 % invalidity (together with the chosen progression resp. factor) or

the daily payment for a hospital stay, all other conditions being the same. Z measures the

risk. The risk is measured as “ex post risk”, e.g., by the number of accidents or the caused

damage payments by the insuree. An index i refers to a certain individual or contract which

is omitted if there is no confusion.

4.4.1 Parametric Methods

The theory of asymmetric information predicts a positive correlation between risk and cover-

age conditional on all observables X which are used by the insurance companies for pricing.

There are several econometric procedures to test this conditional “positive correlation prop-

erty”. This can be done by using two probits or a bivariate probit model. These procedures

were applied for the first time for testing asymmetric information in Chiappori and Salanié

(2000) and since then have become the standard procedures in this field.
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4.4.1.1 Two Probits

One approach is to define two probit models, one for the choice of the coverage Yi (either low

or high insured sum) and the other for the occurrence of an accident Zi:{
Yi = 1(Xiβ + εi > 0)

Zi = 1(Xiγ + ηi > 0)
(4.1)

where εi and ηi are independent standard normal errors, and β and γ are coefficient vectors

(as columns). Yi is defined as 1, if the insured sum is above a predefined cut off value

and 0 if equal or below. Zi is 1 if at least one accident happened during the period under

consideration and 0 otherwise. The row vector Xi denotes the covariates of individual i. First,

both probit models are estimated independently and then the generalized residuals3 ε̂i and η̂i

are calculated. These are required for the following test statistic

Wn =
(
∑n

i=1 ε̂iη̂i)
2∑n

i=1 ε̂
2
i η̂

2
i

. (4.2)

Under the null of conditional independence, cov(εi, ηi) = 0 and Wn is distributed asymptoti-

cally as χ2(1) as shown by Gourieroux et al. (1987).

Chiappori and Salanié (1997, 2000) introduced this approach. One drawback is that infor-

mation is lost as Y and Z have to be defined as binary variables. This is not problematic

for the risk variable as more than one accident is extremely seldom. But for coverage Yi one

must choose a cut off point to define the low and high insured sums. In order to check for

robustness of our results we will choose several cut off points to see how the definition of the

binary variable Yi influences the results.

4.4.1.2 Bivariate Probit

A related approach is to estimate a bivariate probit model in which εi and ηi are distributed

as bivariate normal with correlation coefficient ρ which has to be estimated, and then to test

whether ρ = 0 or not. In order to test this hypothesis the Wald-, Score- oder LR-test can be

used.

3For example, the generalized residual ε̂i estimates E (εi|Yi) . See Gourieroux et al. (1987) for the definition
of generalized residuals in limited dependent models and applications.
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4.4.2 Nonparametric Methods

4.4.2.1 A Simplified Nonparametric Test

Motivated by the χ2-test for independence in the statistics literature, Chiappori and Salanié

(2000) propose a nonparametric test for asymmetric information by restricting all variables

in Xi, Yi, and Zi to be binary. They choose a set of m exogenous binary variables in Xi, and

construct M ≡ 2m cells in which all individuals have the same values for all variables in Xi.

For each cell they set up a 2 × 2 contingency table generated by the binary values of Yi and

Zi, and conduct a χ2-test for independence. This results in M test statistics, each of them is

distributed asymptotically as χ2 (1) under the null hypothesis. They aggregate these M test

statistics in three ways to obtain three overall test statistics for conditional independence: one

is the Kolmogorov-Smirnoff test statistic that compares the empirical distribution function

of the M test statistics with the CDF of the χ2 (1) distribution; the second is to count the

number of rejections for the independence test for each cell which is asymptotically distributed

as binomial B(M,α) under the null, where α denotes the significance level of the χ2 test

within each cell; and the third is the sum of all test statistics for each individual cell, which

is asymptotically χ2(M) distributed under the null.

One drawback is that all variables have to be binary or be forced to be binary which leads

to a loss of information. In the case of accident insurance all observables used for pricing

are binary, but, e.g., the insuree can choose the insured sums freely and therefore Y is not

restricted to be binary. If one would like to control for age or the duration of the contract

this approach has only limited power.

4.4.2.2 A General Nonparametric Approach

An alternative interpretation of asymmetric information resp. its absence is that the chosen

contract contains no information concerning the distribution of accidents resp. vice versa. In

the case of no asymmetric information (null hypothesis) one would expect that

H0 : F (Y |X,Z) = F (Y |X) (4.3)

where F denotes the conditional distribution function, Y the chosen contract and Z the risk.

This means that the number of accidents has no predictive power for the choice of contract.

Su and Spindler (2011) propose a test which builds upon this principle. To apply this test,

Y has to be discrete, Z can be discrete or continuous and X can consist of both discrete and

continuous variables.
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They estimate the conditional distribution functions by using the local linear method and

permit smoothing also for discrete variables. The test statistic is given by

Dn ≡
cy−2∑
r=0

cy−1∑
s=r+1

n∑
i=1

[
F̂ (Zi|Xi, r)− F̂ (Zi|Xi, s)

]2
,

where cy denotes the number of categories of the variable Y . F̂ is estimated with local lin-

ear regression and smoothing of the continuous and discrete variables in X, as mentioned

above. Under the null hypothesis the test statistic is asymptotically normally distributed

(after removal of a bias term) and the test is consistent under the global alternative. For

further details and a Monte Carlo simulation which confirms the power of the test in small

samples we refer to Su and Spindler (2011). As for nonparametric procedures the asymptotic

results are in general only a bad approximation for small samples we determine the p-values

via bootstrapping.

As mentioned above, the insuree can chose the insured sum for the eventualities freely. There-

fore Y is continuous in nature, but the chosen sums are usually chosen either in thousands of

Euro (death, invalidity) or in whole Euro (hospital per diem). Additionally, there are some

focal points so that the variable Y can be regarded as discrete with a manageable number of

categories. In the case of the accident insurance a higher chosen insured sum also leads to

higher payments when an accident occurs. This would introduce a spurious positive correla-

tion. Therefore we do not use the exact sum paid in case of occurrence of the event insured

but we code Z as a binary indicator variable for the occurrence of at least one accident.

To construct the test statistic, one needs to choose both the kernel and in particular the

bandwidth. As there is no data-driven procedure to choose the bandwidth for smoothing the

continuous and discrete variables for our approach, we choose them according to a rule of

thumb. As the choice of the bandwidth is crucial we use a multiplicative constant γ to vary

the bandwidth in order to check for robustness.

4.5 Results

In this section we present the results. We analyze each eventuality separately as a joint anal-

ysis would be more confusing and not bring much additional benefit. Further we only present

the results for the eventuality of invalidity. The danger of invalidity is the main reason why

insurees buy accident insurance. The results for the hospital per diem can be found in the

appendix.

In insurance economics there is also the puzzle of unused observables. This states that in-
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surance companies often do not use all the available information for pricing (Finkelstein and

Poterba (2006)). In the case of accident insurance only sex and the riskiness of the occupa-

tion, which is given by two categories, are used for pricing. Other variables like age, place

of residence and so on are not used although they are available. Therefore we conduct the

analysis both only on the variables used by the insurance company and on an extended set

of observational variables which are available in the data set. The extended configuration

contains in addition family status, occupation, age and information whether the insuree has

chosen the option to increase the insured sum automatically on an annual basis (annual ad-

justment).

In order to make the parametric and nonparametric tests comparable we apply them to the

same random subsample of size n = 7, 000.

In order to test for asymmetric information several different parametric tests have been pro-

posed in the literature, e.g., Dionne et al. (2001). Spindler et al. (2011) show that these tests

deliver consistent results and therefore we restrict our analysis to the most popular procedures.

4.5.1 Invalidity

4.5.1.1 Parametric Procedures

In order to apply the introduced parametric procedures one has to define binary variables for

“risk”and “coverage”. Risk is measured as ex post risk and is defined as 1 if there was at

least one accident resp. claim and 0 otherwise, i.e., if there has been no accident during the

considered period. For the “choice of contract”we also define a binary variable which is set to

1 if the insured sum is above a cut off value and 0 if it is below or equal to this threshold. In

order to check for robustness and to analyze if or how the asymmetric information varies with

the level of the insured sum we variegate this cut off level. The contracts are identical, only

the level of insured sum and therefore the insurance premium, which also depends on the risk

variables, are different. In Tables 4.4 and 4.5 below the results for the basic and extended

configuration are given according to different cut off values for the proxy for the choice of

contract, i.e., choice of insured sum.

The positive correlation between risk and coverage is significant for the “low”and “mid-

dle”cut off levels (10, 000 Euro, 50, 000 Euro and 100, 000 Euro) for both the basic and the

extended configuration. For higher thresholds the correlation gets insignificant and remains

positive for the original risk classification, while it even turns negative for the extended set of

risk variables yet remaining insignificant. The strength of correlation is monotone decreasing

with the level of the cut off value. Both the test relying on the two probits and the sim-
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ple nonparametric test confirm these results. One important observation is that additional

variables like age can reduce the level of positive correlation, which means a reduction of the

extent of asymmetric information, but cannot completely eliminate it. For the “low”cut offs

we observe a quite high positive correlation of approximately 0.5. This indicates that the

choice between none or only a very basic coverage and a considerable amount of insurance is

driven by asymmetric information. For higher values this effect fades out implying that the

choice of really high insured sums is not driven by informational asymmetries.

Table 4.4: Results - basic configuration, subsample

cut off point
in Euro

10, 000 50, 000 100, 000 200, 000 300, 000 400, 000

bivariate ρ 0.4963∗∗∗ 0.4014∗∗∗ 0.3447∗∗∗ 0.0853 0.0436 0.0653
probit s.e. 0.0699 0.0662 0.0663 0.0706 0.1057 0.1214

t-statistic 7.10 6.06 5.45 1.21 0.41 0.54
LR-Test 46.40 33.78 27.35 1.42 0.17 0.28

two probits W 30.45 24.31 15.17 0.84 0.56 0.19

simple np test χ2 34.10 26.49 24.49 5.16 0.55 0.61
∗∗∗, ∗∗, ∗ denote statistical significance at the 1 %, 5%, and 10 % level, respectively.

Table 4.5: Results - extended configuration (sex, occupation, family, age, dynamic), subsample

cut off point
in Euro

10, 000 50, 000 100, 000 200, 000 300, 000 400, 000

bivariate ρ 0.5510∗∗∗ 0.3410∗∗∗ 0.2347∗∗∗ −0.0154 −0.0520 −0.0185
probit s.e. 0.0846 0.0901 0.0820 0.0763 0.1106 0.1262

t-statistic 6.52 3.79 2.88 −0.2 −0.47 −0.15
LR-Test 32.56 15.34 10.36 0.05 0.22 0.02

two probits W 27.44 20.04 11.14 0.15 0.15 0.11
∗∗∗, ∗∗, ∗ denote statistical significance at the 1 %, 5 %, and 10 % level, respectively.

4.5.1.2 Nonparametric Procedure

In this section we present the results of the nonparametric test introduced in Su and Spindler

(2011). This test is robust against functional and distributional misspecification. We analyze
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a basic and extended setting of exogenous variables as described in the previous section. Again

we have to define variables for risk and coverage. For risk we use the same definition, i.e., a

binary variable with 1 if there was at least one accident and 0 otherwise.4 Our test restricts

the variable for the choice of contract to be discrete. This is no real limitation as there are

some “focal points”of the insured sum which are chosen by default. For the variable Y we use

different configurations which are given below. In configurations 1, 2 and 3, Y is defined as a

binary variable with different cut offs. The thresholds are 200, 000 Euro, 100, 000 Euro, and

50, 000 Euro respectively. Configuration 4, 5 and 6 take some kind of “higher resolution”and

are defined in the following way:

Y =


0, if x ≤ a1

1, if a1 < x ≤ a2

2, if x > a2

For configuration 4 we specify a1 = 50, 000 Euro and a2 = 200, 000 Euro, for 5 the correspond-

ing thresholds are 100, 000 Euro and 250, 000 Euro and for configuration 6 we use 25, 000 Euro

and 100, 000 Euro.

As the choice of the smoothing parameter is critical in nonparametric tests, we check different

parameters γ and therefore bandwidths for robustness. A more detailed explanation for the

choice of the smoothing parameter can be found in Su and Spindler (2011).

By comparing corresponding configurations we observe that additional information helps to

Table 4.6: Bootstrap p-values for our nonparametric test with different numbers of choice
levels and different variables

γ\Configurations Basic 1 Basic 6 Ext. 1 Ext. 2 Ext. 3 Ext. 4 Ext. 5 Ext. 6

γ = 0.75 0.22 0.03 0.56 0.05 0.09 0.13 0.33 0.20
γ = 1 0.26 0.04 0.38 0.00 0.03 0.09 0.07 0.14
γ = 1.25 0.20 0.06 0.41 0.07 0.04 0.10 0.10 0.21
γ = 1.5 0.24 0.11 0.26 0.05 0.04 0.11 0.16 0.20

dilute the asymmetric information. The p-values for the extended version are considerably

higher than the p-values for the corresponding basic configuration.

4Although the test is capable of using a continuous variable or a variable with more than two categories for
the claim and although the payments in the case of an accident are filed we cannot use this detailed information
because the exact level of disability is not filed and therefore we maintain the binary definition.
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In line with the results of the parametric tests we find that for high cut off values (200, 000

Euro) there is no asymmetric information while for 100, 000 Euro and 50, 000 Euro we detect

asymmetric information even for the extended version (configuration 1 versus 2 and 3). A

very important finding is that dividing the variable for the choice of contract Y into more

categories decreases the p-values and some of the p-values come close to the significance level

of 10 %. This shows that also for the (nonparametric) test information aggregation might

lead to a disguise of asymmetric information. This can be seen if we compare, for example,

configuration 1 and 4. Both involve the cut off values 200, 000 Euro while the latter one also

takes a smaller threshold into account.

Another interesting comparison is between configuration 2 and 6. In this case the “finer reso-

lution”of the choice variable, i.e., taking more of the available information into account, leads

to not rejecting the null hypothesis and no detection of asymmetric information.

These two comparisons show that the effect of information aggregation is undetermined.

4.5.2 Hospital per diem

Here we present the results for the hospital per diem. We apply the parametric procedures

and the nonparametric test to the same subsample. For reasons of clarity we give only an

overview of the results. The corresponding tables can be found in the appendix.

As the hospital per diem is part of the same contract as the insurance for invalidity, the same

variables are available and pricing uses sex and the risk category of the occupation. Similar

to invalidity, further variables are available but not used. Therefore we use several different

settings for our analysis. We use the basic setting (sex and risk category) and an extended

version which includes additionally family status, age, exact occupation, academic degree and

dynamic, i.e., if the insured sum is raised automatically from year to year. For the parametric

procedures we set different cut off points for the definition of the variable Y . The contracts

only differ in the hospital per diem paid during a stay in hospital, all other conditions being

equal.

For the nonparametric tests we define the variable Y as following: In configuration 1, Y is 0 if

the payment per day is below or equal to 25 Euro and 1, if above. In configuration 2 the cut

off value is 15 Euro and 20 Euro in configuration 3. In setting 4, Y is 0 if the daily allowance

is below or equal to 15 Euro, 1 if between 15 and 30 Euro (including 30 Euro) and 2 if above

30 Euro a day.

We observe that for the low and middle ranges of the cut off values the parametric tests

indicate a strong positive correlation between risk and coverage while for high values the

correlation becomes even insignificant. The correlation decreases with increasing thresholds.
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For the thresholds of 5, 10 and 15 Euro the correlation is quite high.

For the nonparametric procedure we see again that additional information (either for the

risk classification X or the measurement of the contract choice Y ) weakens the extent of

asymmetric information (see either basic vs. extended configuration or configuration 1 vs. 4).

In the nonparametric setting we do not find asymmetric information even for the low cut off

point, i.e., setting 2. In this case, relying on too restrictive functional assumptions might lead

to wrong results and therefore the use of standard methods might be problematic.

4.6 Conclusion

In this paper we apply both parametric tests and a nonparametric test to the accident in-

surance which has – as far as we know – never been analyzed in the literature under the

perspective of asymmetric information. We analyze invalidity which is the most important

risk covered by the contracts. For low and middle thresholds we find a quite strong correlation

of risk and coverage which confirms the prediction of the basic equilibrium models of adverse

selection and moral hazard. For the high cut off values we do not find a significant positive

correlation. An interpretation of this finding might be that the motive to buy exceptional high

insurance coverage is driven by other motives than an informational advantage of the insured.

For low and middle choices of coverage informational asymmetries and their use seems to be

very important.

Additionally, we also have a look at the hospital per diem although it is only of minor im-

portance but nevertheless we make an important observation. While the parametric tests find

a positive correlation between risk and coverage for the low cut off values, the nonparametric

test for conditional independence does not reject the null hypothesis and indicates absence

of asymmetric information. It seems that in this example functional and especially distribu-

tional departures from the standard assumptions are prevalent and influence the results of

the corresponding tests.

In future studies it would be interesting to analyze the exact dependence structure resp. joint

distribution of risk and coverage for the different eventualities in more detail. This might re-

veal interesting insights into the choice behavior of insureds



4.7 Appendix: Hospital per diem 83

4.7 Appendix: Hospital per diem

Table 4.7: Results - basic configuration, subsample

cut off point
in Euro

5 10 15 20 25 30 40

bivariate ρ 0.6761∗∗∗ 0.5214∗∗∗ 0.4124∗∗∗ 0.1905∗∗ 0.1243 0.1683 0.1971
probit s.e. 0.0742 0.0606 0.0626 0.0821 0.0984 0.1094 0.1268

t-statistic 9.11 8.61 6.59 2.32 1.26 1.54 1.56
LR-Test 74.31 58.20 39.97 5.07 1.53 2.20 2.20

two probits W 29.60 23.12 14.03 2.01 0.90 1.20 1.18
simple np test χ2 67.35 67.59 54.01 9.70 11.43 9.59 8.08
∗∗∗, ∗∗, ∗ denote statistical significance at the 1 %, 5 %, and 10 % level, respectively.

Table 4.8: Results - extended configuration (sex, academic degree, occupation, family, dy-
namic, age), subsample

cut off point 5 10 15 20 25 30 40

bivariate ρ 0.6163∗∗∗ 0.4717∗∗∗ 0.3610∗∗∗ 0.1534∗ 0.0780 0.1463 0.2076
probit s.e. 0.0817 0.0669 0.0690 0.0866 0.1045 0.1155 0.1330

t-statistic 7.54 6.85 5.23 1.77 0.76 1.27 1.56

two probits W 22.73 18.26 11.02 1.05 0.30 0.79 0.93
∗∗∗, ∗∗, ∗ denote statistical significance at the 1 %, 5 %, and 10 % level, respectively.

Table 4.9: Bootstrap p-values for our nonparametric test with different numbers of choice
levels and different variables

γ\Configurations Basic 1 Basic 4 Ext. 1 Ext. 4 Ext. 2 Ext. 3

γ = 0.75 0.24 0.22 0.45 0.98 0.23 0.26
γ = 1 0.32 0.28 0.31 0.93 0.19 0.42
γ = 1.25 0.32 0.26 0.31 0.97 0.20 0.41
γ = 1.5 0.25 0.23 0.44 0.95 0.22 0.43
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Chapter 5

Asymmetric Information and

Unobserved Heterogeneity: The

Case of Accident Insurance

5.1 Introduction

Asymmetric information is an important phenomenon in many markets and in particular in

insurance markets. Testing for asymmetric information has become a very important issue

in the literature over the last two decades, since it allows to test theoretical predictions and

to depict new directions for research.1 Two shortcomings are currently still present in this

emerging field: One is that many insurance branches have not been analyzed yet, although

recent studies show that there is no general answer if there is asymmetric information in

insurance markets or not. It depends on the insurance resp. risk under consideration and

the institutional and contractual design. The second shortcoming relates to the test strategy.

DeMeza and Webb (2001) show that if insurees differ in risk aversion (preferences) and if risk

averse individuals are, e.g., more cautious then selection on preferences might superimpose

the selection on the risk type and this might lead to a negative or zero correlation despite

adverse selection.

We contribute to the literature in both directions: Firstly, we analyze the accident insur-

ance which - as far as we know - has never been analyzed before in the literature, although

this kind of insurance covers risks which are really essential. Secondly, we try to control for

heterogeneity, e.g., differences in risk aversion, by applying finite mixture models.

1Cohen and Siegelman (2010) give a survey over recent developments in this field.
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The paper is structured as follows: In section 2 we give a short introduction to the theory of

asymmetric information and the principles of the testing procedures. In section 3 the accident

insurance is introduced. Before we present the results (section 6) the data set (section 4) and

the applied testing procedures (section 5) are explained. Finally, we conclude in section 7.

5.2 The Theory of Asymmetric Information and the Basic

Testing Procedures

Asymmetric information comprises two different phenomena, adverse selection and moral

hazard.2 Many equilibrium models of asymmetric information predict that insurees with

more insurance coverage should be more likely to experience a loss, i.e., a positive correlation

between risk and coverage. With moral hazard, a higher insurance coverage reduces the cost

of the occurrence of the insured event. This lowers the incentives for prevention or cautious

behavior and therefore the expected loss is increased after signing of an insurance contract.

Adverse selection means that the insured knows his risk type ex ante, i.e., before the contract

is signed, while the insurance company does not have this information. The insurees who

know that they have a high risk will buy contracts with more coverage than the “good”types.

As “bad”risk types have a higher marginal utility of insurance at a given price they also accept

a higher per unit price for coverage and this can be exploited by the insurance companies by

offering a menu of contracts to screen the different types.

Therefore the theory of asymmetric information predicts a positive correlation between risk

and coverage. To identify the risk of an insuree, insurance companies use observables like age,

sex and so on for risk classification. Thus the positive correlation property is conditional on

all observables which are used for pricing.

In order to test if there is positive correlation one has to set up two equations, one for the

coverage (Ci) and one for the risk resp. loss (Li). By Xi we denote the exogenous variables

which are used for risk classification. To keep the exposition simple we use linear models:

Ci = Xi ∗ β + εi (2.1)

Li = Xi ∗ γ + ηi (2.2)

with error terms εi, ηi. Under the null hypothesis of zero correlation between risk and coverage,

i.e., symmetric information, the residuals in the two equations should be uncorrelated. A

significant positive correlation is an indication for asymmetric information.

2Winter(2000) and Dionne et al. (2000) give surveys over both phenomena.
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This kind of test for positive correlation has been widely used in the literature, Cutler and

Zeckhauser (2000) review studies in health economics, Cohen and Siegelman (2010) give an

overview over results for many different insurance branches. The evidence for asymmetric

information is not clear-cut and varies with the kind of insurance.

One important finding is that the absence of a correlation between coverage and risk can be

consistent with the presence of asymmetric information. DeMeza and Webb (2001) show that

when individuals have private information not only about their risk but also about their risk

aversion and when risk averse individuals are less risky (e.g., because they are more cautious)

then we might also observe a zero or even negative correlation in insurance markets. Coined

in other words, if individuals with stronger preferences for insurance are also of lower risk,

then preference-based selection may offset risk-based selection and the sign of the correlation

is undetermined. When insurees have private information about risk type (Ti) and about risk

aversion (Ai) both influence the unobservable error terms from above:3

εi = Ti ∗ κ1 +Ai ∗ κ2 + νi (2.3)

ηi = Ti ∗ ξ1 +Ai ∗ ξ2 + τ i, (2.4)

where νi and τ i denote error terms. The principle of the correlation test is that in case of

private information about the risk type, the risk type Ti is positively correlated with coverage

and risk, i.e., κ1 > 0 and ξ1 > 0. But, as stated above, if risk aversion Ai is positively

correlated with coverage (κ2 > 0) and negatively correlated with risk (ξ2 < 0), then the

correlation between the error terms εi and ηi may be zero or negative. In this case a test for

positive correlation might produce misleading results.

This shows that unobserved heterogeneity in insurance markets, especially when one tests

for positive correlation, is very important and should be taken into consideration. There

are several ways to test for asymmetric information and to control for heterogeneity. One

is to employ unused observables as proposed in Finkelstein and Poterba (2006) or to use

finite mixture models to account for differences in risk aversion. We will explain these testing

procedures in the following sections.

5.3 The Accident Insurance

The accident insurance is very elementary for many insurees as it covers risks which touch the

existence of individuals. In Germany there are two pillars concerning the accident insurance:

3This exposition follows Finkelstein and Poterba (2006).
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a compulsory accident insurance and a voluntary private accident insurance. The statutory

accident insurance covers only risks which are related to the workplace. These are risks like

working and commuting accidents and occupational diseases. In the case of such an event

this insurance covers the costs for reconstituting the health or pays a pension in the case of

incapacity for work. As the compulsory accident insurance applies only to employees (e.g.,

not to self-employed), as the indemnity sums from the compulsory accident insurance are very

limited in the case of an accident and - as mentioned before - apply only to work accidents,

a private accident insurance is a very important supplement.

The (private) accident insurance usually covers the following eventualities: invalidity and

dismemberment, death, and a hospital per diem4 in the case of a hospital stay. These are the

basic risks which are covered by default. Besides, some insurance companies offer additional

insurance payments, e.g., reimbursements of costs for treatment at a health resort or costs

for plastic surgery. It is important to mention that the eventualities are only covered if they

arise as a consequence of an accident.

For each eventuality the insuree can choose the level of payments in case of occurrence of the

event insured. The premium depends on these chosen levels. Additionally, the insurance com-

panies can use variables like occupation, sex, age and so on for risk classification and rating.

These observables also determine the insurance premium. In the case of invalidity the insuree

chooses the level (i.e. insured sum) for the case of a total disability (100 %). For lower degrees

of disabilities which are determined according to a dismemberment schedule (”Gliedertaxe”)

a proportional share of the chosen level is paid out by the insurance company. Additionally,

for the invalidity case the insuree can choose between certain schedules of progression. For

example the insuree can choose to obtain the full amount for total disability from disabilities

of 50 % onwards or to obtain twice or five times the chosen basic amount from certain levels

of disability (in most cases relatively high degrees of disability) on. The chosen progression

clearly influences the insurance premium paid by the insuree.

The accident insurance offers two additional characteristics which distinguishes its analy-

sis from, e.g., the automobile insurance:

Disentangling adverse selection and moral hazard Most studies can only test for asym-

metric information as a whole but not for moral hazard and adverse selection separately. Es-

pecially in cross section data the positive correlation cannot be broken down in its constituent

parts. It seems reasonable to assume that an accident insurance does not lower the diligence

and prudence of the insureds as the consequences are in any case dramatic. For example

4Strictly speaking, the daily payment in the case of a hospital stay consists of two parts, a hospital per
diem and a convalescence allowance, but this distinction is only of minor importance for the analysis.
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in health economics it is often assumed that ex ante moral hazard is negligible. Addition-

ally, cases in which the insured event is caused by purpose or gross negligence are extremely

seldom.5 Therefore if one wants to maintain this assumption the accident insurance offers

the opportunity to test only for adverse selection. Otherwise we still offer an analysis of the

aggregate effects of asymmetric information.

Accidents vs. claims In the case of insurance contracts with deductibles like in the automo-

bile insurance the distinction between accidents and claims is important. Accidents which are

below the deductible are usually not filed and this kind of accidents are unobservable for the

econometricians. One way out is to consider only accidents in the analysis which are above

a certain threshold exceeding the highest deductible in any case, but this leads - technically

speaking - to the comparison of truncated (conditional) distributions. As in the casualty in-

surance all accidents are filed the “accidents vs. claim problem”does not exist here in contrast

to many other classes of insurance which have been analyzed recently in the literature.

To close this section we give some facts and figures about the accident insurance in Ger-

many (GDV (2010)): In Germany 40.8 % of the households have an accident insurance. In

the year 2009 the premium income was 6,389 million Euro and claims expenditure was 2,928

million Euro. This results in a claims ratio of 58.2 %.

5.4 The Data Set

For our analysis we have access to a proprietary data set of a German insurance company.

The data set contains all contracts which were valid in the year 2005 (i.e., which were valid /

under risk at January 1, 2005) or signed afterwards. These contracts are traced for a period

of four years (until the end of 2008). For example, let us assume that a contract was signed

before 01/01/2005 and was still active at this date. Then possibly three things can happen

which are recorded in the database (not necessarily mutually exclusive):

1. One accident (or possibly several accidents) occurred during the period. Then the kind

of claim and the amount of payments are recorded.

2. No claim was filed during this period.

3. The contract was terminated during this period. Then both the termination date and

claim history up to termination are recorded.

Under one contract several different persons can be insured. For example a father can take out

a policy for him, his wife and his kids. Such constellations are also captured in the database.

5Personal communication with actuaries.
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For each insured risk personal data and claim history are filed. As we want to test the risk

assessment of the individual for itself, not the ability to assess the risk of other individuals,

we restrict to contracts under which only one person is insured.

For each insured individual the following information is contained in the database:

1. personal information which is partially used for pricing / rating, e.g., date of birth, sex,

occupation.

2. full information about the contract: date of signing of the contract, date of termination

(if it applies), chosen amount of insurance benefit for each eventuality, annual adjust-

ment.

3. detailed information concerning the claims.

The data set contains appr. 2.5 million contract years. This corresponds to n = 957, 506

insurees.

While testing for asymmetric information the following pitfall may arise: Let us assume that

a contract was signed on March 1, 1990. If the contract remained valid until 2005 it is still

under consideration and in the sample. But if for example an accident occurred in the year

2000 then the contract was set “historic”and is not in the sample. Therefore there is a sample

selection with a tendency for “good”risks being in the sample given the same date of signing

(“attrition bias”).

A way to circumvent this problem is to take the subsample of all contracts which were signed

after January 1, 2005 and to trace them through the period. This subsample has still a size

of n = 77, 125. It is reasonable that the individuals might have an informational advantage

concerning their accident probability but not concerning the timing of an accident.6 Therefore

this procedure should not influence the results or distort them.

6According to personal communication with actuaries, the accident probability rises with age, i.e., in higher
age accidents occur more often, but this increase should concern good and bad risks comparably.
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Table 5.1: Descriptive statistics of the whole sample

Variable Minimum Mean Maximum

duration of the contract until
01/01/2005 (in years)

0 8.60 35

insurance sum for disability
(w/o factor)

0 60, 315 230, 082

factor 1 3 5
insurance sum for death 0 7, 712 51, 130
insurance sum for hospital per
diem

0 15 65

insurance sum for rent 0 165 1075
cost of claims for disability 0 1, 930 1, 003, 953
cost of claims for death 0 59 96, 500
cost of claims for hospital per
diem

0 4.8 18, 630

sample size n = 957, 506

Table 5.2: Number of claims

Eventuality Whole sample Subsample

invalidity 12, 901 455
death 170 11
hospital per diem 15, 552 392
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Table 5.3: Descriptive statistics of the subsample

Variable Minimum Mean Maximum

age 14.6 40.3 97
insurance sum for disability 3, 835 103, 823 1, 032, 500
insurance sum for death 767 5, 415 51, 130
insurance sum for hospital per
diem

2.5 8.3 65

cost of claims for disability 0 13.9 115, 000
cost of claims for death 0 1.29 21000
cost of claims for hospital per
diem

0 1.9 5, 458

sample size n = 77, 125

5.5 Methods

In this section we give a short review of the applied methods and customize them to the

accident insurance. First, we present the tests for positive correlation introduced by Chiappori

and Salanié (2000). This will be the reference point. Second, we give a summary of the test of

unused observables (Finkelstein and Poterba (2006)) and finally we introduce finite mixture

models.

In the following X denotes the exogenous variables which are used for risk classification by

the insurance company. Y denotes the chosen contract. In the accident insurance this is the

insurance sum chosen for each eventuality, for example the sum which is paid out in the case

of death, the sum for a 100 % invalidity (together with the chosen progression resp. factor) or

the daily payment for a hospital stay. All other conditions of the contracts are identical. Z

measures the risk. The risk is measured as “ex post risk”, e.g., by the number of accidents

or the caused damage payments by the insuree. An index i refers to a certain individual

resp. contract which is omitted if there is no confusion.

5.5.1 Testing for a Positive Correlation

The theory of asymmetric information predicts a positive correlation between risk and cover-

age conditional on all observables X which are used by the insurance companies for pricing.

There are several econometric procedures to test this conditional “positive correlation prop-

erty”. This can be done by using two probits or a bivariate probit model. These procedures
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were applied to testing asymmetric information for the first time in Chiappori and Salanié

(2000) and since then have become the standard procedures in this field.

5.5.1.1 Two Probits

One approach is to define two probit models, one for the choice of the coverage Yi (either low

or high insured sum) and the other for the occurrence of an accident Zi (either no accident

resp. damage case occurred or at least one):{
Yi = 1(Xiβ + εi > 0)

Zi = 1(Xiγ + ηi > 0)
(5.1)

where εi and ηi are independent standard normal errors, and β and γ are coefficient vectors

(as columns). Yi is defined as 1, if the insured sum is above a cut off value and 0 if equal

or below. Zi is 1 if at least one accident happened during the period under consideration

and 0 otherwise. The row vector Xi denotes the covariates of individual i. First these two

probit models are estimated independently and then the generalized residuals ε̂i and η̂i
7 are

calculated. These are required for the following test statistic

Wn =
(
∑n

i=1 ε̂iη̂i)
2∑n

i=1 ε̂
2
i η̂

2
i

. (5.2)

Under the null of conditional independence, cov(εi, ηi) = 0 and Wn is distributed asymptoti-

cally as χ2(1) as shown by Gourieroux et al. (1987).

Chiappori and Salanié (1997, 2000) introduced this approach. One drawback is that infor-

mation is lost as Y and Z have to be defined as binary variables. This is not problematic

for the risk variable as more than one accident is extremely seldom. But for coverage, Yi one

must choose a cut off point to define the low and high insured sums. In order to check for

robustness of our results we will choose several cut off points to see how the definition of the

binary variable Yi influences the results.

5.5.1.2 Bivariate Probit

A related approach is to estimate a bivariate probit model in which εi and ηi are distributed

as bivariate normal with correlation coefficient ρ, which has to be estimated, and then to test

whether ρ = 0 or not. In order to test this hypothesis the Wald-, Score- oder LR-test can be

7For example, the generalized residual ε̂i estimates E (εi|Yi) . See Gourieroux et al. (1987) for the definition
of generalized residuals in limited dependent models and applications.
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used.

5.5.2 Test with Unused Observables

The test for asymmetric information was introduced by Finkelstein and Poterba (2006). The

basic principle of this test is that the existence of a variable resp. characteristic that is known

to insuree, but unknown or not used by the insurance company, e.g., for regulatory or legal

reasons and that is (positively) correlated with both coverage and risk is an indication for

asymmetric information. In the case of symmetric information there should not exist any

variable or buyer characteristic that is correlated with both insurance coverage and risk of

loss, conditional on the risk class.

This test can be formalized and implemented in the following way (using the notation from

section 2). With a potential unused observable W we estimate the following system:8

Ci = Xi ∗ β +Wi ∗ α+ εi (5.3)

Li = Xi ∗ γ +Wi ∗ δ + ηi (5.4)

If we reject the hypothesis α = 0 and δ = 0 simultaneously for the variable W under consid-

eration, then there is asymmetric information.

In order to implement the test we need the same information which is needed for the positive

correlation tests introduced in the previous section, i.e., information about coverage, risk and

the exogenous variables used for pricing by the insurance company, and additionally we need

variables which are contained in the data but not used for risk classification / pricing (so

called unused observables). When there are one or several unused variables and for each we

cannot reject the null hypothesis of joint insignificance than this does not necessarily mean

that there is no asymmetric information. This can be simply due to the fact that we do not

observe all relevant (unused) variables. This is a limitation to this test and must be taken

into account when interpreting the results.

Finding an unused observable that is significant in both equations is compatible with both

adverse selection and moral hazard. When there is external information that this character-

istic is correlated with risk occurrence for other reasons than insurance coverage, this is an

indication for adverse selection and moral hazard as the unique source for the asymmetric

information can be excluded.

8The exposition follows Finkelstein and Poterba (2006).
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5.5.3 Finite Mixture Models

In this section we briefly introduce finite mixture models which are well established in the

statistical literature, especially in combination with the EM-algorithm for estimation. For a

more detailed introduction we refer to McLachlan and Peel (2000) and Fruehwirth-Schnatter

(2006). Leisch (2004) and Gruen and Leisch (2007) also give an introduction to finite mixture

models and provide an implementation in the R package flexmix.

A finite mixture model with K components is given by

h(y|x,w, ψ) =
K∑
k=1

πk(w,α)fk(y|x, θk),

ψ = (α, θ1, . . . , θK) is the vector of all parameters for the mixture density h(). It consists of

the parameter for the mixture probability α and the parameters for the separate component

distributions θi, i = 1, . . . ,K. fk denotes the density of the kth component. y denotes the

response, x the predictor and w the concomitant variables.

For the component weights πk it is required that for all w

K∑
k=1

πk(w,α) = 1 and πk(w,α) > 0 ∀k.

In many applications the mixture distributions πk are independent of the concomitant vari-

ables and thus constant.

The most common method for maximum likelihood (ml) estimation of finite mixture models

with known number of components is the EM algorithm. The EM algorithm was originally

introduced for ml estimation of incomplete data (Dempster et al. (1977)). The ml estimation

of finite mixtures models can be interpreted in this way: Each observation belongs to a certain

class for which we do not observe the component membership and therefore we are in the case

of incomplete data. Formally, we define a latent variable zn ∈ {0, 1}K for each observation n

which indicates the class membership, i.e., znk (kth component of the vector zn) is equal to 1

if the observation belongs to class k and 0 otherwise. In the EM algorithm these unobserved

class memberships znk are treated as missing values and replaced by estimations of the a

posteriori probabilities p̂nk. For a sample of N observations the EM algorithm is given by:

E-step: Given the parameter estimates ψ(i) from the ith iteration, replace the missing data

znk by the estimated a posteriori probabilities

p̂nk =
πk(wn, α

(i))fk(yn|xn, θ
(i)
k )∑K

u=1 πu(wn, α(i))fu(yn|xn, θ(i)u )
.
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M-step: Given the estimates for the a posteriori probabilities p̂nk from the previous step,

obtain the new estimates ψ(i+1) by maximising

Q(ψ(i+1)|ψ(i)) = Q1(θ
(i+1)|ψ(i)) +Q2(α

(i+1)|ψ(i))

with

Q1(θ
(i+1)|ψ(i)) =

N∑
n=1

K∑
k=1

p̂nk log(fk(yn|xn, θ
(i+1)
k ))

and

Q2(α
(i+1)|ψ(i)) =

N∑
n=1

K∑
k=1

p̂nk log(πk(wn, α
(i+1))).

Q1 and Q2 can be maximized separately.

The EM algorithm tends to converge only very slowly and only to a local optimum. There-

fore many variants of the EM algorithm have been proposed in the literature to overcome

these shortcomings. Two popular versions, which are also implemented in flexmix, are the

stochastic EM (SEM) and classification EM (CEM). They add an additional step between the

expectation and maximization step in which the estimated a-posteriori probabilities are used

to assign each observation to exactly one component, either in a stochastic or deterministic

way. For further details we refer to the literature.

For our data set at hand we consider a mixture of bivariate probit models. For the bivariate

probits we use the parametrization proposed in Greene (2008).

5.6 Results

We present only the results for the eventuality invalidity. The danger of invalidity is the

main reason why insurees buy accident insurance. In the case of the accident insurance only

sex and the riskiness of the occupation which is given by two categories are used for pricing.

Other variables like age, place of residence and so on are not used although they are available.

Therefore we conduct the standard test procedures both only on the variables used by the

insurance company (“basic setting”) and on an extended set of observational variables which

are available in the data set. The extended configuration takes additionally family status,

occupation, age and if the insuree has chosen the option to increase the insured sum auto-

matically on an annual basis (annual adjustment). These additional variables allow us also

to apply the “unused observables test”.
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5.6.1 Basic Parametric Tests

In order to apply the introduced parametric procedures one has to define binary variables for

”risk” and ”coverage”.9 Risk is measured as ex post risk and is defined as 1 if there was at

least one accident resp. claim and 0 otherwise, i.e., if there has been no accident during this

period. For the ”choice of contract” we also define a binary variable which is set to 1 if the

insured sum is above a predefined cut off value and 0 if below or equal to this threshold. In

order to check for robustness and to analyze if resp. how the asymmetric information varies

with the level of the insured sum we variegate this cut off level. The contracts are identical,

only the levels of insured sums can be chosen by the insuree. In Tables 5.4 and 5.5 below the

results for the basic and extended setting are given according to different cut off values for

the proxy of the insured sum.

The positive correlation between risk and coverage is significant for the “low”and “mid-

dle”cut off levels (10, 000 Euro, 50, 000 Euro, 100, 000 Euro and 200, 000 Euro) for both the

basic and the extended configuration. For higher thresholds the correlations remain signifi-

cant for the basic setting, while they become insignificant for the extended configuration.10

For the low cut off values the correlation is quite high (between 0.5 and 0.6) for both settings.

When interpreting the results one has to keep in mind that in large samples already small

differences become (statistically) significant, while they are economically meaningless. This

might apply to the small but significant correlation of the high insurance sums in the basic

setting.

We apply tests relying on two probits, on a bivariate probit and a nonparametric test intro-

duced in Chiappori and Salanié (2000) for the basic setting. As all variables used for risk

classification are binary in the basic configuration this test is a natural choice. All these tests

give consistent results as can be seen in the table.

One important finding is that additional information might reduce resp. eliminate the ob-

served asymmetric information in the accident insurance.

9In the literature several different parametric methods to test for asymmetric information have been pro-
posed. Spindler et al. (2011) show that these procedures deliver quite consistent results so that restriction to
the correlation test is no limitation.

10In the extended version we included age also as year dummies but this has only a slight influence on the
results.
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Table 5.4: Results - basic configuration

cut off point
in Euro

10, 000 50, 000 100, 000 200, 000 300, 000 400, 000

bivariate ρ 0.5614∗∗∗ 0.5152∗∗∗ 0.3903∗∗∗ 0.1805∗∗∗ 0.1211∗∗∗ 0.0862∗∗

probit s.e. 0.0245 0.0229 0.0207 0.0213 0.0301 0.0372
t-statistic 22.9 22.45 18.87 8.48 4.02 2.320
LR-Test 516.0 470.1 325.3 69.0 15.4 5.1

two probits W 298.20 275.15 190.68 35.18 7.70 2.98

simple np test χ2 425.8 404.2 323.3 120.9 129.0 107.5
∗∗∗, ∗∗, ∗ denote statistical significance at the 1 %, 5 %, and 10 % level, respectively.

Table 5.5: Results - extended configuration (sex, occupation, family, age, dynamic)

cut off point
in Euro

10, 000 50, 000 100, 000 200, 000 300, 000 400, 000

bivariate ρ 0.6209∗∗∗ 0.5296∗∗∗ 0.2918∗∗∗ 0.0878∗∗∗ 0.0455 0.0108
probit s.e. 0.0281 0.0280 0.0271 0.0234 0.0314 0.0383

t-statistic 22.07 18.91 10.75 3.76 1.45 0.281
LR-Test 369.4 303.0 142.0 15.31 2.122 0.080

two probits W 286.0 262.2 176.6 30.5 6.2 2.18
∗∗∗, ∗∗, ∗ denote statistical significance at the 1 %, 5 %, and 10 % level, respectively.

5.6.2 Test with Unused Observables

In this section we present the results of the test with unused observables. As mentioned

before, the insurance company uses only sex and the riskiness of the occupation (binary

variable) for classification. In the data set there are more variables like age, family status,

annual adjustment of the insured sum and so on. Therefore we are in the rare situation to

have additional information and to conduct the test with unused observables.

There are several possibilities to implement this test. One possibility is to set up two

probits, one for the risk and one for the choice of coverage. As regressors we choose in both

equations the variables which are used by the insurance company for risk classification and

additionally we add one of the unused characteristics. The dependent variables for risk and

choice of insurance sum are defined as in the section before. In order to define the binary
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proxy for the coverage we have to choose a certain cut off value. To check for robustness we

choose different cut off values.

An alternative approach is to model the equation for risk by a Cox proportional-hazards

regression. In our data set the time of the occurrence of accidents is filed and therefore this

can also be interpreted as survival data. Introductions for survival analysis are amongst others

Klein and Moeschberger (2003) and Kalbfleisch and Prentice (2002).

The Cox proportional-hazards regression models the hazard rate as a function of time t as

log (hi(t)) = α(t) + β1 ∗ xi1 + · · ·+ βk ∗ xik

or equivalently,

hi(t) = h0(t) + exp(β1 ∗ xi1 + · · ·+ βk ∗ xik)

where xi1, . . . , xik denote the covariates of individual i. The model is semiparametric because

while the baseline hazard function h0(t) can take any form, the covariates enter the model in

a linear way. The hazard function, which is time dependent in the Cox model, assesses the

instantaneous risk of demise at time t, conditional on survival to that time.

In the context of testing for asymmetric information we are searching for a variable that

influences simultaneously the choice of coverage and the hazard function, i.e., the survival

function. The choice of coverage is modeled as a probit.

In Table 5.6 below we present the results for both specifications, i.e., modeling the risk equation

as probit and as survival model, and for different cut off values in the coverage equation.

We find two unused observables which have an significant influence on both variables, age

and surprisingly, the choice for an annual adjustment of the insured sum (“dynamic”). We

report the parameter estimates and the corresponding t-values for both equations for the

unused variable. We omit the parameter estimates of the other variables which are included

as regressors, i.e., a constant, sex and risk of occupation class but they are available upon

request. We present only the results for the additionally taken up unused observable in the

table.

The estimated survival model is independent of the choice equation, but we repeat the

results for each cut off value to see the results for both equations one below the other. The

variable annual adjustment (“dynamic”) was coded in the following way: 0 if this option was

chosen and 1 otherwise. Therefore the parameters for dynamic in the survival model are

interpreted in the following way: Thus for example, holding the other covariates constant,

not choosing the annual adjustment reduces the hazard of having an accident by a factor of

e−0.543 ≈ 0.60 on average - that is by approximately 40 %.
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Table 5.6: Results - unused observables

Unused Variable Cut off Equ. Parameter t-value

bivariate probit

age

50, 000
risk −0.002 −1.43
cov. −0.020 −68.6∗∗∗

100, 000
risk −0.002 −1.79∗

cov. −0.021 −69.6∗∗∗

200, 000
risk −0.002 −1.85∗

cov. −0.012 −37.5∗∗∗

”dynamic”

50, 000
risk −0.428 −12.5∗∗∗

cov. −3.038 −123.7∗∗∗

100, 000
risk −0.443 −13.0∗∗∗

cov. −2.146 −167.5∗∗∗

200, 000
risk −0.426 −12.5∗∗∗

cov. −1.281 −114.5∗∗∗

survival model

age

50, 000
risk −0.014 −4.73∗∗∗

cov. −0.020 −68.6∗∗∗

100, 000
risk −0.014 −4.73∗∗∗

cov. −0.21 −69.6∗∗∗

200, 000
risk −0.014 −4.73∗∗∗

cov. −0.012 −37.4∗∗∗

”dynamic”

50, 000
risk −0.543 −5.47∗∗∗

cov. −3.041 −123.5∗∗∗

100, 000
risk −0.543 −5.47∗∗∗

cov. −2.148 −167.5∗∗∗

200, 000
risk −0.542 −5.47∗∗∗

cov. −1.281 −114.5∗∗∗

∗∗∗, ∗∗, ∗ denote statistical significance
at the 1 %, 5 %, and 10 % level, respectively.

One could suppose that the age has a significant influence on the choice of coverage and also

on the risk. For risk this is the case when we use the survival model, for the probit the

characteristic age is only at the edge to become significant. For the choice of coverage age has

a significant influence.

Surprisingly, the decision of the insuree to choose an annual adjustment contains a lot of

information for the choice of risk and coverage and is highly significant in both equations and

for all thresholds.
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5.6.3 Results of the Finite Mixture Models

In this section we present the results of the finite mixture models. For each component we

used a bivariate probit model. We implemented the mixture model in R using the package

flexmix.11 As the EM algorithm is only capable of finding local maxima we used different

starting values (random assignment, 10− 20 trials). We repeated the procedure for different

cut off values to check for robustness and to compare the results with the results of a single

component.

Each component consists of a bivariate probit (risk and coverage) and we present the corre-

sponding parameter estimates stacked in a column in Table 5.7. Sex is coded as 0 for male

and 1 for female. The occupation dummy is set to 1 for dangerous jobs and 0 for normal jobs.

In the last row we present the AIC and for all three models it is lower than the corresponding

value for the one component bivariate probit model. Therefore the two component model is

preferable to a one component model from the point of model selection.

For the models with thresholds 50, 000 and 100, 000 Euro we observe quite similar patterns

resp. components: We can identify a group which has a lower risk to have an accident

(Comp. 1), while Comp. 2 has a higher risk to have an accident as is indicated by the higher

constant. But the choice of coverage is similar for both groups. The constants are not signifi-

cantly different. Nevertheless we observe a high correlation between risk and coverage within

each component. For the model with the highest threshold the interpretation is slightly dif-

ferent: we observe again one group which is less risky (Comp. 1) than the other. The choice

of contract is similar for both groups. The only difference is that for Comp. 2 we have a zero

correlation, while for Comp. 1 the correlation is significantly positive.

11The package flexmix is described in Leisch (2004) and Gruen and Leisch (2007).
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Table 5.7: Results - two components

cut off 50,000 cut off 100,000 cut off 200,000

Comp. 1 Comp. 2 Comp. 1 Comp. 2 Comp. 1 Comp. 2
risk
constant −3.097∗∗∗ −1.847∗∗ −3.040∗∗∗ −1.795∗∗∗ −3.042∗∗∗ −1.863∗∗∗

(0.712) (0.846) (0.467) (0.340) (0.584) (0.390)
age 0.009∗ −0.015∗ 0.009∗∗ −0.018∗∗ 0.008∗ −0.015

(0.005) (0.008) (0.004) (0.009) (0.005) (0.009)
sex 0.259 −0.544∗∗ 0.203 −0.524∗∗∗ 0.255 −0.520∗∗

(0.247) (0.258) (0.194) (0.200) (0.277) (0.236)
occupation 0.139 0.071 0.111 0.093 0.222 0.021

(0.175) (0.095) (0.129) (0.087) (0.170) (0.089)
coverage
constant 0.725∗∗∗ 0.730∗∗∗ 0.635∗∗∗ 0.672∗∗∗ −0.169 −0.213∗

(0.052) (0.069) (0.062) (0.077) (0.152) (0.114)
age −0.020∗∗∗ −0.020∗∗∗ −0.021∗∗∗ −0.021∗∗∗ −0.013∗∗∗ −0.012∗∗∗

(0.0004) (0.005) (0.0003) (0.0007) (0.001) (0.001)
sex 0.098 0.082 0.077 0.078 −0.097 −0.068

(0.093) (0.084) (0.077) (0.077) (0.137) (0.131)
occupation 0.015 −0.017 −0.074∗∗∗ −0.121∗∗∗ −0.323∗∗∗ −0.263∗∗∗

(0.019) (0.065) (0.024) (0.046) (0.084) (0.052)
correlation 0.582∗∗∗ 0.554∗∗∗ 0.508∗∗∗ 0.349 0.325∗∗∗ 0.040

(0.330) (0.325) (0.133) (0.172) (0.059) (0.122)
AIC 106, 758.1 105.591, 7 83, 508.1
∗∗∗, ∗∗, ∗ denote statistical significance at the 1 %, 5 %, and 10 % level, respectively.

5.7 Conclusion

In this paper we analyzed the extent of asymmetric information in the accident insurance

especially taking into account unobserved heterogeneity. While the accident insurance covers

various eventualities we concentrate on invalidity as it is the main reason for choosing this

kind of insurance and covers risks which are essential for the insured. Beside the standard

tests for asymmetric information we also apply the test with unused observables and use a

finite mixture model with two components. As there are used relatively few variables for

risk classification in the accident insurance we are in the rare situation to find variables

in the data set which are not used by the insurance companies. We find that the unused

observables age and surprisingly the option to choose an annual adjustment of the insured

sum have an influence on both the choice of the insured sum and the probability of having an

accident. Therefore they indicate the existence of asymmetric information even in the presence

of differences in preferences (risk aversion). The finite mixture model indicates the existence
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of two different types of insurees. The concrete interpretation depends on the definition of

the cut off value for the definition of the proxy for risk but it is not straightforward in the

sense of high and low risk averse types as in Gan et al. (2011). For each component we

find a significant positive correlation of risk and coverage and therefore we can confirm the

result of the standard model especially for low and middle range insured sums. For the high

insured sum the correlation within each group is lower and for one component we find a zero

correlation between risk and coverage, therefore absence of asymmetric information. This

result is quite interesting as it delivers a deeper insight than the one component model and

shows that two different types can be identified.

In future research we would like to analyze more deeply the joint distribution and de-

pendence structure of risk and coverage and to refine the finite mixture approach, e.g., by

applying it to the extended set of variables and to check for stability.
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