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Summary

CO2 is a ubiquitous gas that is perceived by many insects via their olfactory system. Comparing

Drosophila melanogaster and blood feeding mosquitoes illustrates how CO2 elicits species specific

behavior. While flies strongly avoid CO2, mosquitoes are attracted by the gas and use it for host

detection. In parallel, the anatomical localization of the responsive neurons and their synaptic con-

nectivity differs in the two species. Drosophila CO2 neurons sit on the antennae and target to the

V-glomerulus in the antennal lobe, while mosquito CO2 neurons sit on the maxillary palp and target

to the food odor responsive medial glomerulus. A previously discovered mutant of miR-279 shed

some light on the molecular evolution of CO2 neuron formation in flies and mosquitoes (Cayirlioglu

et al., 2008). A mutation of miR-279 causes the formation of ectopic CO2 neurons on the maxillary

palp, which mistarget to a medial glomerulus in the antennal lobe. On the molecular level, miR-279

was shown to repress the neurogenic transcription factor Nerfin-1 (Cayirlioglu et al., 2008). In the

presented work, I followed-up the study by focusing on the molecular network surrounding the stud-

ied microRNA. I wanted to identify an upstream regulator of miR-279 and the factors that control

downstream of miR-279 the suppression of CO2 neurons on the maxillary palp.

A hypomorphic allele of the transcription factor Prospero, prosIG2227, was found to exhibit a similar

expression of ectopic CO2 neurons on mutant palps. I compared the phenotypes of the miR-279 and

Prospero mutants on the anatomical, electrophysiological and developmental level. On the anatomical

level, both mutations led to the development of ectopic CO2 neurons on adult maxillary palps without

influencing the development of antennal CO2 neurons. The ectopic maxillary palp neurons wired in the

labial nerve and innervated the V-glomerulus together with the antennal CO2 neurons but grew further

to innervate a medial glomerulus. In addition to the newly identified hypomorphic allele of Prospero,

two more Prospero alleles were analyzed. A complete loss-of function allele, pros17 (Doe et al., 1991),

and another hypomorphic allele, prosvoila78(Grosjean et al., 2001). In parallel to prosIG2227, the two

other mutant alleles showed the same expression of ectopic CO2 neurons which mistargeted to the

medial glomerulus in the antennal lobe. Moreover, the full loss-of-function allele of Prospero showed

in addition to the mistargeting phenotype an overall loss of neurons. This observation was in line with

previous studies on the sensory neurons on the thorax of the fly (Manning and Doe, 1999).

Apart from the CO2 neuron receptor, also two more receptor classes, Or42a and Or59c, were
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affected by mutations in miR-279 and Prospero. Or42a and Or59c expressing neurons are in the

wildtype located on the maxillary palp and target a medial glomerulus. In the miR-279 and Prospero

mutant background, the axons targeted first the V-glomerulus before reaching the medial glomerulus.

Single sensillum recordings (SSR) on the hybrid sensilla revealed that the ectopic neurons were

functionally responding to CO2 and to the key ligands of either Or42a or Or59c, iso-amylacetate or

3-octanol.

Analyzing the development of the maxillary palp, I found in collaboration with Dr. Laura Loschek

that in the wildtype, both, Prospero and miR-279 were co-expressed throughout pupal development,

although the onset of miR-279 was slightly delayed as compared to Prospero. In both mutants, the

ectopic neurons formed within the basiconic sensilla on the maxillary palp by augmenting the neuron

number from two to three. The full loss of Prospero, showed again additional phenotypes. Apart from

the three neuron sensilla, pros17 mutants showed either misdifferentiation of the olfactory neurons or

a conversion of the neuronal to the non-neuronal fate.

Based on the phenotypical similarity and the overlap in expression, I tested the genetic inter-

action of Prospero and miR-279. By re-expressing miR-279, the Prospero mutant phenotype was

almost completely rescued indicating that Prospero acts upstream of miR-279 during MP CO2 neu-

ron suppression. In contrast, re-expression of Prospero in the miR-279 mutant background, only

slightly reduced the mistargeting phenotype. This slight rescue suggested that Prospero might also

act independently on the suppression of MP CO2 neurons although less efficient.

To test whether Prospero is controlling the microRNA in a direct way, I screened for predicted

Prospero binding sites in the putative miR-279 enhancer. The putative miR-279 enhancer fragment

contained the genomic region 2kb upstream of the microRNA gene and was previously shown to rescue

the miR-279 phenotype (Cayirlioglu et al., 2008). Within the enhancer, 18 putative Prospero binding

sites were identified wherein 5 turned out to be highly conserved among 6 Drosophila species. To

test for direct binding of Prospero to one of these sites, I performed an Electromobility Shift Assay

(EMSA). In this in vitro assay, Prospero bound strongly to oligos containing one of the predicted sites

(P4), which lay outside the 1.2 kb long primary transcript of miR-279.

As Prospero was shown to act as repressor as well as activator (Choksi et al., 2006), I tested the

effect of Prospero binding to the miR-279 enhancer in a S2 cell reporter assay. In S2 cells the enhancer

reporter was highly expressed. By mutating all four predicted Prospero binding sites or reducing the

levels of Prospero using RNAi, the expression of the enhancer reporter was highly reduced. Increasing

the levels of Prospero through overexpression, did not lead to a change neither of the wildtype nor

the mutated reporter indicating a saturation of the reporter expression.

To verify in vivo binding of Prospero to the promotor, I performed a Chromatin Immunoprecip-

itation (ChIP) asssay. The α-FLAG-Prospero immunoprecipitated fraction of chromatin was tested

via PCR for the presence of miR-279 enhancer fragments surrounding the predicted binding sites.
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Corroborating with the in vitro assay, a fragment containing the conserved P4 site was amplified. In

vivo, an enhancer reporter of miR-279 was repressed in the Prospero mutant background. This effect

was observed in the developing maxillary palp as well as in adult palps. In summary, in vitro and in

vivo data showed that Prospero is acting upstream of miR-279. Upon direct binding of Prospero to

the miR-279 enhancer, the microRNA is activated and acts together with the transcription factor on

the suppression of CO2 neuron formation on the maxillary palp.

To find downstream targets of both regulators that influence the observed phenotype, I focused on

a combination of experimentally verified targets of Prospero (Choksi et al., 2006) and predicted targets

of miR-279 using online tools like e.g. Target Scan. The overlap of the two lists contained 20 common

targets. Functional classification of these using Gene Ontology (GO) term analysis revealed that the

identified common targets cluster into three categories: neuronal development, cell fate determination

and neurogenesis. Reducing the levels of these candidate genes in the mutant background revealed,

that RNAi of Nerfin-1 was able to rescue the miR-279 mutant phenotype to 100% and the prosIG2227

phenotype to 80%. A second predicted target, Escargot, was shown to be expressed in early stages

of MP development. In S2 cells, miR-279 downregulated 3’UTR luciferase reporter of Nerfin-1 and

Escargot. In vivo, the expression of Escargot was significantly increased in the background of both

mutants.

As these results suggested that Escargot and Nerfin-1 are repressed by miR-279 and Prospero, I

tested whether reduction of the target level in the mutant background would affect the number of

ectopic CO2 neurons. As a result, decreasing the level of either Nerfin-1, Escargot or a combination of

both, reduced the number of ectopic CO2 neurons in both mutants to comparable levels. Increasing

the level of either Escargot or Nerfin-1 in the wildtype did not induce the formation of CO2 neurons

on the MP. However, a combination of the two targets, led to the formation of ectopic CO2 neurons

on the MP which performed mistargeting to a medial glomerulus.

Taken together, the presented work describes a regulatory network consisting of a transcription

factor and a microRNA which cooperate to suppress the development of a mosquito-like CO2 receptor

neuron on the maxillary palp of Drosophila melanogaster. Here, the neurogenic transcription factor

Prospero is repressing the expression of Escargot and Nerfin-1 in a coherent feed-forward loop em-

ploying miR-279. Furthermore, the two target molecules are shown to be necessary and sufficient to

suppress CO2 neuron development on the maxillary palp.
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Chapter 1

Introduction

1.1 The Adult Olfactory System of Drosophila melanogaster

Navigating through their natural environments, animals are immersed in odors. Based on species

specific receptor repertoires, odors can be interpreted and thus allow to locate food sources, to

identify mates, promoting reproduction and to avoid predators and thus guaranteeing survival.

Olfactory cues differ from visual and auditory signals in many ways. First, they cannot be

characterized by simple parameters like wavelength or frequency. The complexity of interpreting

odorous cues is reflected in the large set of different receptors that have been evolved to tackle

this challenge. Second, the discrimination of odors relies on combinatorial coding at every

single step of olfactory processing. The functional organization of olfactory systems resemble

each other across the phyla suggesting that different species share common strategies of how

to detect odors.

Flies perceive odors via two olfactory appendages attached to their head: the antennae

and the maxillary palps. Both appendages carry olfactory sensilla containing one to up to four

olfactory sensory neurons (OSNs) that express different combinations of olfactory receptors.

On the antenna roughly 1200 olfactory neurons are found (Stocker, 2001) which project via the

antennal nerve bundle together with fibers form auditory, hygro-sensitive and thermo-sensitive

sensory neurons to the antennal lobe. The olfactory sensilla are exclusively found on the

third segment of the antennae. The shaft of the sensilla encapsulates the dendrites of the

olfactory sensory neurons (OSN) (Zacharuk, 1980) and support cells ensure that the neurons

are electrically separated from neighboring cells. Three different types of sensilla are found on

the antenna: small and large basiconics, trichoids and coeloconics (Shanbhag et al., 2000). The

distribution of the three types is very stereotyped and the amount of trichoid and large basiconic
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A
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D EC
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Figure 1.1: The olfactory system of Drosophila melanogaster A. Schematic drawing of a fly head indicating

the position of antennae, maxillary palps, antennal nerve, labial nerve and the antennal lobe (copyright Julia

Froehlich). B. Schematic of relative positions of different sensilla types on antenna and maxillary palp (Kaupp,

2010). C-E. Electronmicrographs of small and large basiconic (C), trichoid (D) and coeloconic (E) sensilla.

sensilla is sexually dimorphic (Stocker, 2001) indicating a putative role in pheromone detection.

Anatomically, the maxillary palp has a simpler structure with only 120 olfactory neurons. The

OSNs on the maxillary palp are exclusively housed in one sensilla type, the basiconic with only

two neurons per sensillum. The axons of these OSNs fasciculate with gustatory neurons and

travel via the labial nerve through the suboesophagal ganglion (SOG) to the antennal lobe.

1.1.1 Odorant Receptors

The odor response pattern of the sensilla subtypes differs. Basiconic sensilla respond largely

to food odors (Goldman et al., 2005; Hallem and Carlson, 2006). Trichoid sensilla were found

to respond to the pheromone cis-vaccenyl acetate (cVA)(Ha and Smith, 2006) and coeloconic



1.1 The Adult Olfactory System of Drosophila melanogaster 3

sensilla are tuned to acids, ammonia, and humidity (Yao et al., 2005). The response specificity

of the different sensilla types is based on the expression of distinct chemoreceptors. To detect

odors, the fly uses two different subsets of receptors, the olfactory receptors (ORs) and the

recently characterized ionotropic receptors (IRs) (Benton et al., 2006). In Drosophila 60 genes

Trichiod
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Coeloconic
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Figure 1.2: Response properties of sensilla subtypes. Overview of response properties of different sensilla

types and their respective olfactory receptors (adapted from Vosshall and Stocker (2007)).

code for 62 olfactory receptors as two are subject to alternative splicing (Robertson et al., 2003).

In mammals, reptiles, birds, amphibians, fish and nematodes chemosensory cues are detected

via receptors of the transmembrane domain G protein-coupled receptor (GPCR) superfamily

(Buck and Axel, 1991; Troemel et al., 1995; Bargmann, 2006). The invertebrate receptors were

found in a bioinformatic screen searching for seven transmembrane proteins in the Drosophila

genome. Unlike vertebrate receptors, insect chemoreceptors are not related to GPCRs (Vosshall

et al., 1999; Benton et al., 2006; Wistrand et al., 2006). Mechanistically, the chemoreceptors

function as odor-gated ion channels (Sato et al., 2008; Wicher et al., 2008). In comparison,

vertebrate ORs resemble metabotropic receptors such as the glutamate receptor. All insect

ORs are expressed as a heterodimer along with the co-receptor ORCO (previously know as

Or83b) (Benton et al., 2006). The co-receptor together with an odor specific OR is expressed

in the ciliated dendrites of OSNs. ORCO was shown to be necessary and sufficient for receptor

targeting to the ciliated dendrites and for establishing a functional receptor dimer (Benton et al.,

2006). The broad function of ORCO is reflected in the expression in almost all olfactory sensilla
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types except for coeloconic sensilla. Apart from ORCO, all OR genes are expressed in a defined

subpopulation of neurons.

COOH

NH2

COOH

NH2

Vertebrate olfactory receptors

Rhodopsin

C. elegans chemoreceptors(1)

Vertebrate VIRs

C. elegans chemoreceptors(2)

C. elegans chemoreceptors(3)

Vertebrate V2R

mGluRs

Drosophila olfactory receptors

Drosophila gustatory receptors

A B

Figure 1.3: Comparison of vertebrate and invertebrate chemoreceptors A. Membrane topology of ver-

tebrate GPCRs (red) and insect seven transmembrane domain olfactory receptors (blue). B. Phylogenetic

tree showing the distribution of the two different chemoreceptor types in the animal kingdom (adapted from

Bargmann (2006)).

Based on a bioinformatic screen searching for insect genes that are enriched in OSNs,

members of the ionotropic glutmate receptor (iGluR) gene family were found to accumulate

in coeloconic sensilla (Benton et al., 2009). These members of variant iGluRs were further

characterized as a new class of chemosensory receptors. Structurally, they differ from the well

known kainate, AMPA and NMDA classes of iGluRs as they show divergent ligand-binding

domains and the lack of a glutamate binding residue. IRs function as heteromers consisting of

one receptor with either one or two broadly expressed co-receptors (IR8a and IR25a) (Abuin

et al., 2011). IRs respresent an evolutionary old way of chemodetection as they are conserved

in bacteria, plants and animals (Benton et al., 2009). An interesting example for the function
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of IRs is the involvement of IR84a in courtship behavior (Grosjean et al., 2011).

iGluRs

antennal IRs

divergent IRs

  Ir76b       IrX       IrY

A B

Figure 1.4: Evolution of ionotropic receptors (IRs) A. Phylogenetic tree indicating the evolutionary distance

of iGluRs e.g. NMDA1, antennal ionotropic receptors (IRs) and divergent IRs (Benton et al., 2006). B.

Schematic structure of an IR complex (Kaupp, 2010).

1.1.2 The Pathway of Olfactory Information

From the antenna and maxillary palp, neurons that express either a specific set of ORs or

IRs send their axons to the primary relay center of olfactory information in the central nervous

system (CNS), the antennal lobe (AL). The AL comprises around 46 structures called glomeruli.

In each glomerulus the axons of OSNs coming from the peripheral appendages form synapses
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with the dendrites of projection neurons that relay the olfactory information to higher brain

centers. All OSNs which express the same OR, target to a distinct glomerulus in a stereotyped

pattern. Based on that observation, the enhancer regions of the receptor genes can be used to

generate reporters to label a specific glomerulus. Thereby, a topographic representation of the

olfactory information was defined and every glomerulus was assigned to a specific OR (Couto

et al., 2005; Fishilevich and Vosshall, 2005). The few glomeruli that were unassigned could be

later defined as the target areas of IRs (Benton et al., 2009). From the initial description of the

A

B

Figure 1.5: The olfactory map in Drosophila melanogaster A. 3D reconstrcution of a male antennal lobe.

The position of 49 glomeruli starting from the anterior to the posterior glomeruli, are shown. B. The location of

glomeruli targeted by or reporter constructs. The constructs are direct fusions of ORX-Gal4 and UAS mcD8GFP

(green). To stain the neuropil the α- nc82 antibody (magenta) was used Couto et al. (2005).

olfactory map some organization principles could be deducted. First, sensilla of the same type

target to a similar area in the antennal lobe, for instance antennal basiconic sensilla occupy

the medial edge. Second, two large lateral glomeruli were found to be sexually dimorphic. As
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a third design principle, 45 olfactory receptors converge in 36 glomeruli (Couto et al., 2005;

Fishilevich and Vosshall, 2005), while the remaining nine are innervated by IRs (Benton et al.,

2009). Finally, it was hypothesized that neurons tuned to similar odors also target similar areas

in the AL (Couto et al., 2005; Fishilevich and Vosshall, 2005; Hallem and Carlson, 2006).

The targeting logic of IRs is largely similar to the ORs (Fig.1.6). Most IRs target one

glomerulus except for IR64a innervating two glomeruli. Similarly, IR40a has a more complex

columnar targeting pattern (Silbering et al., 2011). Moreover, the majority of the IRs project to

the contralateral antennal lobe, although a subset of IRs (IR40a and IR75d) exclusively target

ipsilateral postsynaptic targets (Silbering et al., 2011). The glomeruli that are innervated by IRs

and ORs are separated from each other in the antennal lobe. However, second order neurons

integrate the information of both subsystems and interdigitate them in higher brain centers. In

line with this anatomical pairing of IR and OR pathways, behavioral responses of flies rely on a

combination of both chemoreceptor pathways (Silbering et al., 2011).

The synaptic arrangement within the antennal lobe is complex. Two classes of neurons send

their dendrites to the antennal lobe: The lateral interneurons (LNs) and the projection neurons

(PNs). Lateral interneurons horizontally connect the glomeruli with each other, while PNs

transmit the olfactory information vertically to the higher brain centers. Given this arrangement,

the question arose whether the lateral connections together with PNs modify odor information

already at the level of the antennal lobe or whether the antennal lobe only functions as relay

station. Using functional imaging, no evidence for a modifying role of the antennal lobe was

found. Instead, the odor-evoked activity of incoming OSNs and PN dendrites seemed to be

identical (Ng et al., 2002; Wang et al., 2003). In contrast, whole cell patch clamp experiments

revealed that PNs are more broadly tuned than OSNs and have a temporally more complex

firing pattern (Wilson et al., 2004). This finding supports the idea of a ”cross-talk” in the

antennal lobe based on LNs (Sachse and Galizia, 2002; Ng et al., 2002). Most of the LNs

are GABAergic. Supported by electronmicroscopy data, inhibitory LNs directly connect to PNs

and therefore establish a network of lateral inhibition (Mori et al., 1999; Sachse and Galizia,

2002; Christensen et al., 1993). This GABA-mediated effect provides a mechanism to modulate

olfactory gain on the level of the antennal lobe (Olsen and Wilson, 2008). These modifications

might differ from glomerulus to glomerulus depending on the precision versus dynamic range

that is needed to detect a given odor. Moreover, cholinergic LNs were identified which form

mixed chemical-electrical synapses with inhibitory LNs and solely electrical synapses with PNs.

It seems that every excitatory LN is connected to every PN thereby forming a broad recurrent

inter-connective network (Yaksi and Wilson, 2010; Huang et al., 2010). Thus excitatory LNs can
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A

B

C

Figure 1.6: Localisation and targeting of ionotropic receptors (IRs) A. The position of coeloconic sensilla

subtypes is indicated using reporter lines for ac1 (IR92a), ac2 (IR41a, ac3 (or35a) and ac4 (IR84a) driving

the expression of UAS-nls-GFP. Scale bar indicates 20 µm. B. IRX-Gal4 reporter lines express UASmcD8GFP

(green) to label the targeted area in the antennal lobe. The neuropil is stained with nc82 (magenta). Scale bar

20 µm. C. 3D reconstruction of a female antennal lobe. The areas targeted by IRs (green) and ORs (purple)

are indicated. (Silbering et al., 2011)

elicit a broad excitation of divers PNs upon stimulation with an odor. Moreover, the network

can lead to a synchronization of PN activity, which might improve the detection of weak odors

(Wilson, 2011). On the other hand, excitatory LNs are thought to activate inhibitory LNs that

in turn inhibit PNs. Thereby, a balance between overall excitation and inhibition might be

achieved (Yaksi and Wilson, 2010).

Following the pathway of olfactory information, the PNs target two higher brain centers: the

mushroom body (MB) and the lateral horn (LH). Higher brain centers also exhibit a topographic

map of odor representation, but are yet differently organized compared with the antennal lobe.

Axons from distinct PNs follow four different tracts to reach the mushroom body and the
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Figure 1.7: The pathway of olfactory information. A schematic drawing showing the steps of olfactory

information processing in the fly. OSNs from the periphery target the antennal lobe and synapse to the dendrites

of projection neurons (PNs), which further transmit the information to higher brain centers (Mushroom Body

and Lateral Horn) (Masse et al., 2009)

lateral horn: the inner antennocerebral tract (iACT), the outer antennocerebral tract (oACT),

the middle antennocerebral tract (mACT) and the inner-middle antennocerebral tract (imACT)

(Tanaka et al., 2008). Among these tracts the iACT is the most prominent.

Following mostly the iACT, PNs from specific glomeruli target distinct zones in the MB

and the LH. In the MB, the major input region is the calyx. Here, the PNs synapse with

roughly 2500 intrinsic MB neurons called Kenyon cells (Strausfeld et al., 2003). Based on their

axonal projections, Kenyon cells divide into at least three different subsystems (α/β; α′/β′;

γ) (Crittenden et al., 1998; Lee et al., 1999). Within the calyx, the Kenyon cells are aligned

in concentric zones targeted by distinct PNs originating from specific glomeruli. The output

pattern of the Kenyon cells reflects the combined activity of several PNs and might therefore be

used for coincidence detection. Hence, the MB can integrate a wide range of odor information.

Previous studies have shown that the MB has a strong impact on olfactory learning (de Belle and

Heisenberg, 1994; Heisenberg et al., 1985; Zars, 2000; Heisenberg, 2003; Keene and Waddell,

2007). Moreover, the anatomical subdivisions correlate with different functions. The α β and

the α′ β′ system correlate with intermediate and long term memory, whereas the γ lobe is

involved in short term memory (Akalal et al., 2006; Krashes et al., 2007; McGuire et al., 2001;

Pascual and Préat, 2001; Zars, 2000). In the LH, PN axons target the dorso-ventral and the
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antero-posterior axes. These distinct zones are again linked to different brain areas. Unlike the

MB, the LH is presumably involved in innate and experience-independent odor recognition (de

Belle and Heisenberg, 1994; Heimbeck et al., 2001; Tanaka et al., 2004). Given the recent

effort in defining the neuronal circuits in the fly brain, some described aspects of the higher

brain centers will have to be revised.

1.2 Development of the Olfactory System

1.2.1 Sensilla Develop Through a Series of Assymmetric Cell Divisions

Sensory neurons are housed in sensilla that are comprised of different cell types (neurons, hair,

socket and sheath cells) (Rodrigues and Hummel, 2008). As these different cell types are derived

from a single sensory organ precursor (SOP), sensilla became a well established model system

to study cell fate determination. Apart from the celluar diversity, different sensilla types exhibit

a great morphological diversity for instance in the number of innervating neurons or form and

presence of external structures. Due to the diverse morphology, the ontogeny of different sensilla

types has been a matter of debate. Intense studies on the bristle sensilla sitting on the thorax

of the fly in comparison with other sensory sensilla revealed, that throughout development the

basic series of asymmetric cell divisions and transcription factors employed are highly similar.

Based on these observations, a canonical model of sensillum development was proposed (Lai

and Orgogozo, 2004). According to the canonical model of sensilla formation, four cell divisions

occur to give rise to the different cell types. In the first division, the SOP divides into a pIIa

(outer cell lineage) and pIIB (neuronal lineage) cells. The pIIb divides before the pIIa cell into

the pIIIb cell and one glia cell. While the pIIa cell finally divides to generate 2 external cells, the

neuronal pIIIb cell divides one more time to give rise to a sheath cell and a neuron. Throughout

the cell division a specific set of transcription factors are switched to distinguish the fate of

sibling cells. The canonical model may provide the basis of the development of most different

sensilla types. So far, the development of many different sensilla types is not understood, and

currently a subject of investigation.

Olfactory sensilla are innervated by up to 4 neurons. The SOP divides first to give rise

to the precursors cell of outer (pIIa) and inner (pIIb) cell lineages. In the following step pIIa

appears to divide in pOa and pOb that are positive for the transcription factor cut and further

differentiate into shaft and socket cells, which continue to express the transcription factor cut.

The inner or neuronal lineage precursor pIIb divides further in pNa and pNb. Both are positive
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for Senseless, Elav and Prospero but differ in the expression of Seven-up in pNa and Pon in

pNb. The pNb cell divides one more time and differentiate into two neurons that are positive

for Elav. The pNa cell also undergoes one more division and gives rise to one repo positive cell

and one additional precursor, the pNa’ cell. The pNa’ cell expresses high Notch levels. After an

additional division, the pNa’ cell divides into two neurons that express Elav. This model remains

to be proven but would illustrate the formation of one sensillum with totally four neurons and

four outer cells (Fig.1.8). Olfactory sensilla with less neurons probably follow this model of

cell divisions but undergo apoptosis to remove the dispensable cells (Rodrigues and Hummel,

2008).

SOP

pIIb pIIa

pNbpNa

pOa pOb

pNa’

n n n n

N

N

N

n

n

n

n n

sheath

hair cell
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B

Figure 1.8: Lineage formation in the olfactory system. A. Scheme of the series of asymmetric cell divisions

that give rise to an olfactory sensillum innervated by four neurons. SOP, sensory organ precursor; N, Notch

levels; B. Scheme of a sensilla containing four neurons (n), one sheath cell and the surrounding cell types

(socket, hair and shaft cell).
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1.2.2 Development of Olfactory Sensilla Subtypes

In the olfactory system three different morphologies of sensilla are found: basiconica, trichoidea

and coeloconica (Fig1.1). The choice between the different types is driven by the expression

of pro-neuronal genes. Which type of sensilla is formed is dependent on the expression of

two basic helix-loop-helix transcription factors, Amos and Atonal. As a consequence, loss-of

function of atonal resulted in loss of coeloconic sensilla (Gupta and Rodrigues, 1997b). While

mis-expression of atonal converts the basiconic and trichoidea sensilla into coeloconic (Jhaveri

et al., 2000) Therefore, atonal is defining the fate of coeloconic sensilla. The expression of

atonal is driven by patterning genes like Hedgehog and Wingless (Jhaveri et al., 2000). The

trichoid and basiconic sensilla types are depending on the expression of amos (Goulding et al.,

2000). A complete loss of amos removes all basiconic sensilla from the antenna while trichoidea

are only partly affected (Gupta et al., 1998). This led to the assumption that additional factors

are upstream of amos to define the trichoidea cell fate. In contrast, basiconic sensilla on the

maxillary palp are defined by atonal (Gupta and Rodrigues, 1997a).

1.2.3 Notch Signaling Defines Sensilla Differentiation and Diversifies

the Neuronal Lineages

The best studied sensilla are the microaechaete bristles or external sensory (ES) organs on the

thorax of the fly. Due to the similar ontogeny of these mechanosensory structures and other

ES organs many parallel events in the lineages have been described (Jan and Jan, 1994). In

the bristle lineage a cluster of undifferentiated epidermal cells acquires the potential to become

neuronal by expressing the proneuronal genes Amos and Atonal and also the ES organ specific

Achaete, Scute and Lethal of Scute genes also referred as AS-C class (Garćıa-Bellido, 1979;

Campuzano and Modolell, 1992; Ghysen et al., 1993). Within a cluster only one cell retains the

neuronal potential, the sensory organ precursor or SOP. The signaling pathway responsible is the

Notch-signaling pathway. The Notch receptor receives inputs from Delta and Jagged/Serrate

membrane bound ligand families. Upon binding proteolytic events take place and release the

intracellular domain of Notch (NICD) to the cytoplasm. The NICD travels to the nucleus and

activates the expression of Notch dependent genes. At all steps many co-factors and suppressors

were found to modify Notch signaling. The subsequent asymmetric cell divisions are further

dependent on Notch. After a cell division one of the sister cell sends Notch signals while the

other becomes a Notch signal receiver. Excess Notch signaling, e.g. due to mis-expression

of Notch pathway components or loss of numb, remodels all sister cells in signal receiving
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cells, while loss of Notch signaling results in cells that only send Notch signals. An extreme

result of these events are cells that form sensilla only with external structures or sensilla only

with neurons. Notch signaling throughout sensilla development is unidirectional and leads to

an asymmetric distribution of cell fate determinants. In a recent study, Notch was shown to

influence cell cycle arrest in ES organ cells. Upon forcing post-mitotic cells to proliferate by

overexpression of cyclinE, only cells that are independent of Notch underwent extra divisions.

In this process, Notch cooperated with the neuronal fate determinant Prospero (see section

1.4)(Simon et al., 2009).

In the olfactory system Notch signaling was shown to influence lineage formation as well

as odor receptor choice and targeting (Endo et al., 2007). Mutants of the activator of Notch

signaling, mastermind (mam) and an inhibitor of Notch signaling, numb, gave some insights

into the asymmetric role of Notch signaling in these two different aspects of olfactory system

development. First, early in development Notch signaling influences lineage formation. When

Notch activity is reduced throughout sensillum development by loss-of-function of mam, the

pIIa lineage is converted to the pIIb and the pNa acquires a pNb fate. As a result, all progenies

acquire a pNb fate and the external lineage is not formed. In contrast, mutations in numb

exclusively affect the development of inner cell lineages, such that all cells in the pNb lineage

are transformed into a pNa fate. Hence, Notch does not directly influence the identity of

pNa progeny. But probably has an impact on the precursors of pNa and pNb. Second, Notch

signaling influences odor receptor choice and targeting. The set of glomeruli can also be

separated in glomeruli that are targeted by cells with high Notch levels (Notch-ON) and by

cells with low Notch levels (Notch-OFF) (Fig.1.9). The asymmetry in Notch levels is achieved

during cell divisions. Mutants of mam show a multiplication of neurons which follow the Notch-

OFF pathway. While neurons exhibit a normal targeting, instead of one, two OSNs per sensillum

are formed (Endo et al., 2007). A recent follow-up study in the olfactory system showed how

Notch signaling can be further modified through expression of Hamlet. During cell division the

daughter cell inherits the Notch activity of the parental cell. Expression of Hamlet is able to

erase this inherited Notch state, and thereby Hamlet modifies the subsequent signaling. In this

process, Hamlet acts as chromatin remodeling protein that specifically makes the Notch target

promotor accessible for Supressor of Hairless (Su(H)) (Endo et al., 2011).

1.2.4 Prospero a Neurogenic Transcription Factor

Prospero was first identified in a screen for regulators of neuronal fate in the embryonic central

(CNS) and peripheral nervous system (PNS). Mutants of Prospero developed abnormal cell
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A B

Figure 1.9: Notch signaling influences the targeting of the antennal lobe. Schematic drawing of the

glomeruli in the antennal lobe indicating the glomeruli targted by OSNs with high Notch levels (Notch-ON;

magenta) versus low Notch levels (Notch-OFF; green) (Endo et al., 2007).

lineages in both the embryonic CNS and PNS producing neurons with defects in axon pathfinding

(Doe et al., 1991). Later, it was shown that Prospero is asymmetrically localized in the basal

cortex of a differentiating neuroblast (Spana and Doe, 1995). To do so, Prospero requires the

co-factor Miranda (Shen et al., 1997). In the adult eye sense organ and in the external sensory

organ on the notum, Prospero is expressed in the early pIIb cell, which belongs to the neuronal

lineage. Loss-of-function of Prospero, causes the formation of a ”double bristle” indicating a

conversion of the pIIb into the pIIa lineage. In this case, the hair and socket cells duplicate

at the expense of neurons and glia cells. The conversion of the pIIb into the pIIA lineage

was more frequently observed in the eye sense organ than in notum sensilla. Similar to the

CNS, neurons mis-differentiate and have defects in axons and dendrites (Fig.1.10) (Manning

and Doe, 1999). Gain-of-function experiments with Prospero resulted in sensilla with more

neurons and glia cells than hair and socket cell. Here, the opposite conversion from pIIa to

pIIb lineage occurred (Manning and Doe, 1999). In the fully differentiated sensilla, Prospero

expression labels the sheath cell. Structurally, Prospero is an atypical homeobox transcription

factor which binds to two distinct DNA binding motifs (Hassan et al., 1997; Cook et al.,

2003). In order to understand the molecular function of Prospero, target genes had to be

identified. Therefore, the genome-wide binding profile of Prospero in Drosphila embryos was

studied using a methylation-based chromatin profiling technique called DamID (Choksi et al.,

2006). In this assay, Prospero was fused to the E.coli adenine methyltransferase (Dam) and

ubiquitously expressed in vivo. Upon DNA binding, the Dam enzyme leaves a methyl group
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Figure 1.10: Prospero is required for proper sensillum differentiation A. Schematic on wildtype sensillum

development. B. Loss-of-function of Prospero leads to conversion of the pIIB into pIIa lineage or to mis-

differentiated pIIb lineage resulting in neurons lacking a wildtype axon and dendrite morphology (Manning and

Doe, 1999).

on local adenines, which are embedded in a GATC sequence. Methylated whole genomic DNA

extracts were further cut with a methylgroup sensitive restriction enzyme, DpnI. The resulting

fragments were labeled and analyzed on a tilling array. Using this technique around 1.602

in vivo binding sites of Prospero were identified. An annotation of these genes using GO

(gene ontology) term analysis revealed that most of the targets fall into three categories: Cell

fate determination, nervous system development and regulation of transcription. Interestingly,

41% of all annotated neuroblast fate genes, 45% of genes involved in gliogenesis and 9% of

all known cell cycle genes were close to in vivo Prospero binding sites (Choksi et al., 2006).

Expression analysis of these genes comparing wildtype and mutant embryos, revealed that

Prospero is activating genes that are important for differentiation e.g. zfh and Lim-1 (Garces

and Thor, 2006; Lilly et al., 1999) or FasI and FasII (Elkins et al., 1990; Lin et al., 1994).

On the other hand, Prospero acts as a tumor suppressor, because neuroblasts in Prospero

mutants overproliferate and fail to differentiate (Fig.1.11). Therefore, Prospero has a dual role

in inhibiting proliferation presumably through repression of mitosis and actively inducing cell

differentiation (Choksi et al., 2006).



16 1. Introduction

Figure 1.11: Neuroblast clones of wildtype (A). and of prospero mutant(B) in the embryonic CNS stained with

the lipophilic dye Dil A. wildtype clone from a single neuroblast extend their axons (arrows)which is normal

for neurons in the CNS. B.Prospero mutant clones produce more cells and rarely form outgrowths. Neurites in

mutant clones are short and blunt (arrow) (Choksi et al., 2006)

1.3 CO2 Neurons are Highly Specialized Olfactory Neu-

rons in Insects

1.3.1 CO2 as a behavioral trigger in Drosophila and Mosquito

CO2 is an ubiquitous gas, which is perceived by many insect species. In some species it allows

the animal to find an appropriate source for egg laying, some larvae find profitable food sources

and bees control their O2 versus CO2 levels in the stock in order to establish optimal atmospheric

conditions (Guerenstein and Hildebrand, 2008). In Drosophila melanogaster, larvae and adult,

strongly avoid CO2 (Suh et al., 2004). CO2 elicits an immediate escape response as being the

main component of the Drosophila stress odor (dSO), which is emitted by stressed flies. In

experimental conditions, stress is triggered through vigorous shaking or electric shock. Hence,

self-emitted CO2 might act as a conspecific alarm signal which allows other flies to flee from

dangerous situations (Suh et al., 2004). In contrast, in their natural environment, flies feed

on rotten fruits that highly emit CO2. During the ripening process, some studies found that

the CO2 emission decreases. Therefore, CO2 could allow the fly to find a profitable food

source (Guerenstein and Hildebrand, 2008). In contrast, these major food sources such as

fruits and yeast on fermenting fruits were shown to strongly emit CO2 (Faucher et al., 2006;

Golding et al., 1999). Moreover, other studies found CO2 in the headspace of both unripe

and ripe fruits. In climacteric plants e.g. banana CO2 emission increases with ripening. The
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question arises why flies can overcome the aversive cue and still approach fruits and yeast,

which is required in order to find appropriate food sources. It was hypothesized, that other

compounds are emitted by fermenting fruits, which reduce the innate avoidance behavior of

flies through directly binding and inhibiting the CO2 receptors. Indeed two volatiles, 1-hexanol

and 2,3-butandione were found to inhibit the electrophysiological and the behavioral response

toward CO2 (Turner and Ray, 2009). Both are emitted by fruits and yeast whereas 1-hexanol

is directly synthesized through oxidation of unsaturated fatty acids and 2,3 butandione is a by-

product of fermentation. The concentration of both compounds is drastically increased upon

ripening. Interestingly, unlike flies, blood-feeding mosquitoes are highly attracted by CO2 for

host detection. Female mosquitoes change their flight direction toward a CO2 plume (Dekker

et al., 2005). Synergistically with components of human sweat, (L+)lactic acids and 1-octen-3-

ol, CO2 leads to high attraction of several mosquito species (Dekker et al., 2002). Mosquitoes

in a wind tunnel that are tested on a filamentous plume that resembles the stimulus of a distant

host, try eagerly to approach the source (Guerenstein and Hildebrand, 2008).

1.3.2 The Anatomical and Molecular Basis of CO2 Detection in

Drosophila and Anopheles

In the olfactory system, CO2 is a unique cue as the perception relies completely on a pair

of specialized receptors in OSNs which target only a single glomerulus in the antennal lobe.

The pair of receptors was previously assigned to the class of gustatory receptors and therefore

maintained their names: Gr21a and Gr63a (Jones et al., 2007; Kwon et al., 2007). In the adult

fly, 25-30 neurons on the antenna housed in ab1c sensilla express the receptor pair (de Bruyne

et al., 2001; Suh et al., 2004). These neurons innervate the ventral (V-) glomerulus in the

antennal lobe (Fig.1.12). When tested in a binary choice assay, adult flies with an inactivated

Gr21a expressing neuron fail to distinguish between the two sides (Suh et al., 2004). Generally,

gas sensors in other animals e.g. the guanylate cyclases in C.elegans are present in the cytosol,

the Gr21a/Gr63a receptor pair was the first membrane associated gas sensor described (Jones

et al., 2007; Kwon et al., 2007). Whether other cytosolic compounds are necessary for CO2

detection or the actual metabolite of CO2 that is recognized by Gr21a/Gr63a receptor complex

remains to be solved. Moreover, the higher brain centers involved in CO2 processing remain to

be identified.

Interestingly, the CO2 receptor pair homologue in mosquito (aga-Gr22 and aga-Gr24) shares

a high similarity in sequence with the fly receptors. In contrast, the location of the Anopheles
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Gr21a + Gr63a

A B

D E

C

Figure 1.12: CO2 detection in Drosophila melanogaster . A. Electronmicrograph of a Drosophila antenna

(taken by Siju Purayil). B. In situ of Gr21a and Gr63a receptors showing co-expression on the fly antenna

(Jones et al., 2007). C. Scheme of the ab1C sensillum housing Gr21a/Gr63a positive sensilla (Jones et al.,

2007). D and E. Reporter lines for Gr21a-Gal4 (D) and Gr63a-Gal4 (E) driving the expression of UAS-sytGFP

(green), label the V-glomerulus (Kwon et al., 2007).

gambiae neurons and the targeting pattern differs. Unlike fly CO2 neurons, mosquito CO2

neurons are exclusively located on the maxillary palp and target medial glomeruli in the mosquito

antennal lobe (Fig.1.13). The medial glomeruli are associated with food sources and therefore

reflect the ecologically important function of CO2 in host detection and blood feeding (see

section 1.5).

1.3.3 miR-279 Is Involved in CO2 Neuron Development

In general, only few factors were identified which lead to the formation of odor specific sensilla.

In case of CO2 neuron carrying sensilla, a microRNA was identified which acts on suppression

of CO2 neurons on the maxillary palp. microRNAs are small 21-23 nucleotide long non-coding

RNAs and act as repressors of target mRNAs through complementary binding of the 3’untrans-

lated region (3’UTR). They are transcribed as longer pri-miRNAs (500-3000 bases), which are

cleaved into shorter pre-miRNAs (around 70 bases long) by the enzyme complex Drosha/Pasha

and exported into the cytoplasm. The pre-miRNA is further trimmed to the double stranded

21-23 bases long miRNA, which is further processed into a single stranded active microRNA
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Figure 1.13: CO2 detection in Anopheles gambiae A. Scheme of a capitate peg sensillum on the MP of

Anopheles gambiae. The sensillum is innervated by three neurons, one expressing the receptors which mediate

CO2 detection, namely Gr22, Gr23 and Gr24 (Lu et al., 2007). B1 and B2. In situ for CO2 receptors on the

MP of Anopheles gambiae (Lu et al., 2007). C. Confocal image of the mosquito antennal lobe indicating the

targeted glomeruli of capitate peg sensilla (Ghaninia et al., 2007).

(Bartel, 2004; He and Hannon, 2004; Meister and Tuschl, 2004). MicroRNAs detect their

binding partners via their so-called seed region. The seed region stretches from nucleotide

2-7 and allows perfect pairing to the 3’UTR of the target mRNA (Bartel, 2009). The effi-

ciency of these sites is characterized by two properties: the seed-pairing stability (SPS) and the

target-site abundance (TA)(Garcia et al., 2011). Surprisingly, microRNAs with low proficiency

and therefore few targets like the nematode lys-6 and the mammalian miR-23 share a low

seed-pairing stability but a high target-site abundance. By reducing these two parameters the

binding changes toward a random binding or ”off-target” effect. As these two properties are

only connected to the seed region, an influence of surrounding regions can be largely excluded

(Garcia et al., 2011). MicroRNAs are integrated in a RNA-protein containing complex (RISC

complex or miRNP)(Ambros, 2004; Bartel, 2004; Cullen, 2004; He and Hannon, 2004). Within
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this complex, microRNAs attenuate the translation of the respective target mRNA. Three mod-

els exist which explain the mechanism after the mRNA is recognized by the microRNA. The

common model is the inhibition of translation initiation: RNA binding proteins are thought

to bind to the cap region of the mRNA and therefore compete with the translation initiation

factors like eIF4E (Kiriakidou et al., 2007). In contrast to this model, two more possible ex-

planations exist, which are both concentrating on post-initiation events. One model states a

premature ribosome drop-off (Petersen et al., 2006) and in another study the degradation of

the nascent protein chain was proposed (Nottrott et al., 2006). Understanding the mechanism

of how mRNAs are degraded upon microRNA binding will help to refine experiments that aim

to describe the effect of a suppression mediated by a microRNA within a certain cell type or

tissue.
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Figure 1.14: miR-279 controls CO2 neuron development in Drosophila melanogaster A. Antennae

and maxillary palp expressing Gr21a-Gal4 driving UAS mcD8-GFP (green) label CO2 neurons on antennae in

control flies. Flies carrying a mutation for miR-279 962−7 show ectopic CO2 neurons on the maxillary palp. B.

The CO2 neuron reporter line labels the V-glomerulus in the antennal lobe of control flies, while miR-279 962−7

mutants show additional mistargeting to a medial glomerulus (Cayirlioglu et al., 2008).

MicroRNAs represent an evolutionary old strategy to regulate mRNA expression. In general,

two different concepts try to understand the underlying mechanisms of evolutionary changes.

First, changes in expression and function occur because of random, non-synonymous mutations

within the coding regions of genes. Second, changes in protein output occur due to changes in

the cis-regulatory regions of genes e.g. mutations in enhancer regions and in 3’UTRs. Hence,

altering the possibility of microRNA binding could shift the expression patterns of their target

mRNAs. The two models are not conflicting and examples for both mechanisms are found in the

literature (Stern and Orgogozo, 2008). Drosophila and Anopheles gambiae diverged around 250
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million years ago. Among many other species specific adaptations, flies and mosquitoes acquired

a different behavior toward CO2 which is accompanied by a relocation of the sensory neurons.

A specific microRNA, miR-279, was found to play a role in the suppression of CO2 neuron

formation on the maxillary palp of Drosophila. Mutants of miR-279 expressed ectopic CO2

neurons on the maxillary palp that mistargeted to a medial glomerulus (Cayirlioglu et al., 2008)

(Fig.1.14). The antennal CO2 neurons were not affected in number and targeting. Interestingly,

the location and the targeting pattern of the mutant CO2 neurons highly resembled the CO2

neurons found in mosquito (Fig.1.13). Based on this high similarity, it was hypothesized that

miR-279 acts as a molecular switch in the evolution of the chemosensory system of flies and

mosquitoes (Cayirlioglu et al., 2008).

The transcription factor Nerfin-1 was identified as downstream target of miR-279. The

ectopic CO2 neurons on the MP were found to express elevated levels of Nerfin-1 (Fig.1.15).

In S2 cells, the nerfin-1 3’UTR reporter was found to be directly targeted and repressed by

miR-279 (Cayirlioglu et al., 2008). The 1.6 kb long 3’UTR of Nerfin-1 contains 21 predicted

binding sites for 18 different microRNAs (Kuzin et al., 2007), which puts Nerfin-1 under a tight

post-transcriptional control. Out of the 21 sites, 6 sites are recognized by miR-279 (Cayirlioglu

et al., 2008).

mutant

Nerfin-1 cells/MP

control

0       20      40      60     80

*
*

Figure 1.15: mir-279 represses Nerfin-1. Control palps do not express CO2 neurons on the MP but do

have cells positive for Nerfin-1 (magenta). mir-279 962−7 mutant palps show ectopic CO2 neurons (green) that

overlap with α Nerfin-1 staining (magenta). Overall the number of Nerfin-1 positive cells is elevated on mutant

MPs compared to control flies (see quantification).

Nerfin-1 together with Nerfin-2 was found in an in situ screen to affect nervous system

development. Nerfin-1 mutant embryos exhibit altered axon guidance especially in commissural

and connective axon fascicles in the embryonic CNS. In line with this phenotype, Nerfin-1 was

shown to act upstream of axon guidance molecules like robo, lar and futsch. The expression of

Nerfin-1 itself seems to be dependent on Prospero (Kuzin et al., 2005).
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1.4 Aims of the Thesis

The following work continues the analysis of miR-279 on the supression of CO2 neuron de-

velopment on the maxillary palp (MP) of Drosophila melanogaster. Based on the observation

that a hypomorphic allele of Prospero, prosIG2227, developed a highly similar phenotype as the

microRNA, I studied whether Prospero is an upstream factor directly controlling the expression

of miR-279. Generally, work on microRNAs focused on the identification of downstream tar-

gets. Although it is conceptually approved that transcription factors are controlling the activity

of microRNAs (Hobert, 2008), only a few studies dealt with the identification of these factors

(Bethke et al., 2009). I started with a detailed comparison of the mutant phenotype of miR-279

and prosIG2227 in pupae and in adult flies. As a result, both mutants switch CO2 sensing neu-

rons into a mosquito-like fate by inducing the development of MP CO2 neurons which perform

mistargeting to a medial glomerulus. To establish the relationship of Prospero and miR-279, I

undertook a series of in vitro and in vivo experiments which proved that Prospero is directly

binding to the enhancer region of miR-279. Furthermore, I was interested to find factors that

are involved in suppressing CO2 neurons on the MP of Drosophila melanogaster. To this end, I

tested predicted common targets of miR-279 and Prospero. From the list of common targets,

I focused on two neurogenic transcription factors, Escargot and Nerfin-1. Using S2 cell assays

and in vivo analysis, I could show that both are repressed by miR-279 and Prospero. Moreover,

raising the level of Escargot and Nerfin-1 in the wildtype background led to the formation of

ectopic CO2 neurons on the maxillary palp. These results suggested that Escargot and Nerfin-1

are necessary and sufficient to suppress the formation of ectopic CO2 neurons.

To summarize, the presented work describes the regulatory network suppressing CO2 neuron

development on the MP of Drosophila. The transcription factor Prospero employs in a coherent

feed-forward loop miR-279 to tightly control and repress the common targets Escargot and

Nerfin-1. Elevated levels of both target genes were shown to be necessary and sufficient to

induce formation of ectopic CO2 neurons on the MP.

The results of the thesis are published in Hartl et al. (2011).
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Results

2.1 miR-279 and Prospero Supress CO2 Neurons on the

Maxillary Palp

In a previous study a P-element insertion into the locus of miR-279 resulted in the formation

of ectopic CO2 neurons on the maxillary palp, while wildtype CO2 neurons were exclusively

found on the antenna. Additionally to the gain of neurons, these extra cells mistargeted to a

medial glomerulus in the antennal lobe (Cayirlioglu et al., 2008). The targeting of the ectopic

neurons from the maxillary palp occurred via the labial nerve, whereas wildtype antennal CO2

neurons targeted via the antennal nerve (see Fig.1.1). Hence, miR-279 was shown to be

essential for the suppression of CO2 neuron formation on the Drosophila maxillary palp. Since

the location and the targeting pattern of the ectopic CO2 neurons resembled the arrangement

of CO2 neurons found in mosquito (Fig.1.13), the microRNA was hypothesized to act as a

molecular switch in the evolution between flies and mosquitoes. In order to gain insight into

the mechanisms regulating the microRNA, I analyzed a mutant allele of Prospero that showed a

similar phenotype as the miR-279 mutant. The new hypomorphic allele of Prospero, prosIG2227,

was found in a collection of lethal ethane methyl sulfonate (EMS) mutants. The point mutation

resulted in a change of amino acid 850 from a Leucine into an Arginine in one of the Prox-1

domains (Fig.2.1). Similar to the miR-279 mutant, the hypomorphic allele of Prospero was

lethal in early stages of development. To analyze the phenotype in the olfactory system, I

induced mutant clones using eyFLP combined with MARCM. Early in development, mutant

clones in the eye and the olfactory organs were induced using eyFLP while the brain remained

wildtype. The mutant cells expressing one of the receptors for CO2, Gr21a, were labeled with
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GFP. Using MARCM and cell lethal only the mutant cells expressing the respective Gal4 reporter

were labeled. In our case, neurons expressing the CO2 receptor reporter, Gr21a (Gr21a-Gal4

UAS-mcD8 GFP) were analyzed. In control flies, CO2 neurons were restricted to the antenna

and targeted the V-glomerulus via the antennal nerve. In the prosIG2227 mutant background,

every maxillary palp analyzed developed ectopic CO2 neurons (15±0.9). In comparison, on

MPs of miR-279 962−7 mutants around 16±0.6 ectopic CO2 neurons were expressed. Similar to

miR-279 962−7 also Prospero mutant palps targeted a medial glomerulus in the antennal lobe

via the labial nerve (Fig.2.2 A,B). In contrast, the number and targeting of CO2 neurons on the

antennae was not affected by any of the analyzed mutations. Exposing organisms to EMS can

1                 250                     500                 750                        1000                  1400aa

Prox-1Prox-1

850aa

Leu Arg

Prox-1 Prox-1 Prox-1

Figure 2.1: The point mutation in the hypomorphic Prospero allele, prosIG2227. A sketch of the EMS

induced point mutation into the Prospero locus indicating the length of the protein and the relative position of

the five Prox-1 domains. The EMS point mutation causes a change of amino acid 850 from a Leucin into an

Arginin.

lead to a variety of mutagenic effects such as deletions or point mutations which are due to the

transition in methylation of guanidin residues. In addition, the DNA defects occur randomly

throughout the genome. To test whether the EMS generated mutant was really specific for

Prospero, I analyzed two more mutant alleles of Prospero for the presence of ectopic CO2

neurons on the maxillary palp and the mistargeting to the medial glomerulus. One of the

mutant alleles was a null mutant of Prospero, pros17 (Manning and Doe, 1999), while the other

one was a hypomorphic allele prosvoila78 (Grosjean et al., 2001). The voila allele resulted from

a P-element insertion into the enhancer region of Prospero followed by an imprecise excision

(Grosjean et al., 2001). During sensillum formation, pros17 caused a partial conversion of the

neuronal to the non-neuronal lineage (Manning and Doe, 1999) (see Introduction). In line

with these previous results, I saw that the overall CO2 neuron number on the antenna in the

pros17 mutant background was reduced to 51.5% (19.4 ± 4 to 10 ± 1.3 cells) (Fig.2.2 F).

Nevertheless, the mutant brains exhibited the mistargeting phenotype in the antennal lobe due

to ectopic CO2 neuron formation in the maxillary palp. But as the number of neurons was

overall reduced in the pros17 background, the axon bundles from both antennal and labial nerve
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were thinner (Fig.2.2 D3). Therefore, also the number of ectopic CO2 neurons was reduced in

pros17 mutant palps (Fig.2.2 F). prosvoila78 mutant flies showed a similar phenotype as compared

to prosIG2227, both, in number and expression of ectopic neurons on the MP (Fig.2.2 F).

To test whether the mutations of miR-279 and Prospero also affected the targeting of other

olfactory receptors (OR) a set of different OR markers (OrX-Gal4-UASmcD8GFP) was tested.

Among all olfactory receptors analyzed, only the targeting of two additional classes, Or42a and

Or59c, was affected by the mutations (Fig.2.3, Fig.2.4 A-E).

Wildtype Or42a and Or59c neurons are expressed in sensilla on the maxillary palp and target

the medial glomerulus via the labial nerve (Fig.1.1). In both, miR-279 962−7, prosIG2227, pros17

and prosvoila78 mutants, neurons expressing these receptor classes mistargeted the V-glomerulus

(Fig.2.4 B,C,D,E). Using in situs, I observed a co-expression of Or42a or Or59c receptor with

the ectopic Gr21a receptors (Fig.2.4 F). Hence, the mutant hybrid sensilla expressed additional

neurons that co-express Gr21a with either Or42a or Or59c receptors. And although the wildtype

Or42a and Or59c receptors were found on the MP and targeted according to their wildtype

innervation pattern, the set that was co-expressed in the hybrid sensilla performed a mistargeting

to the V-glomerulus.

The antennae and MPs in pros17 mutants exhibited additionally an overall neuron loss for

all OR marker tested (Fig.2.3 B). Hence, complete loss of Prospero during sensilla development

resulted in two phenotypes, a more general defect leading to an overall neuron loss and a more

specific phenotype highly similar to the one observed for prosIG2227 and miR-279 962−7 mutants.

The general effect was in line with previous reports on other sensilla types e.g., bristles on the

thorax of the fly (Manning and Doe, 1999).

Figure 2.2 (following page): mir-279 and Prospero affect location and targeting of CO2 neurons.

Mutations in prosIG2227 (B1) and miR-279 962−7 (C1) cause the formation of ectopic CO2 neurons on the

maxillary palp. These ectopic CO2 neurons mistarget to a medial glomerulus in the antennal lobe (B3,B3,C3,C4)

while wildtype neurons innervate the V-glomerulus (A3,A4). Also, a loss-of-function mutant of Prospero pros17

develops ectopic CO2 neurons that perform medial mistargeting (D1-D4), although the overall neuron number

is reduced on both antennae and maxillary palps (F). This neuron loss effects also the thickness of the axon

bundle as it appears thinner (D3). Another hypomorphic Prospero allele, prosvoila78, resulted in a comparable

phenotype as prosIG2227(E1-E4). F. Quantification of Gr21a positive cells on control and mutant MPs and

antennae.
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To address whether the ectopic neurons were also functionally responding to CO2, single

sensillum recordings (SSR) were performed by Dr.Siju Purayil, a postdoctoral fellow in the

laboratory. To this end, recordings from mutant sensilla on the MP were performed while

stimulating the neurons with CO2 as ligand for Gr21a receptors (Jones et al., 2007; Kwon

et al., 2007). Since the ectopic neurons co-expressed the receptors for Or42a and Or59c, the

ligands, isoamyl-acetate and 3-octanol (de Bruyne et al., 1999) were tested to show whether

these receptors were functionally in the hybrid sensilla. Unlike wildtype sensilla, hybrid sensilla

of miR-279 962−7 and prosIG2227 mutants responded to CO2 with a comparable spike number

(Fig.2.5 A,B). Moreover, the same mutant sensilla which were sensitive to CO2 additionally

responded to the ligands of Or42a and Or59c (Fig.2.5 C). In line with the anatomical results of

the mutant lines, the ectopic CO2 neurons that either co-expressed Or42a or Or59c in basiconic

sensilla on the MP also responded to ligands of the respective receptors.

Taken together, mutant palps of miR-279 and Prospero failed to suppress the formation of

CO2 neurons and developed a similar amount of ectopic CO2 neurons which mistargeted via the

labial nerve to a medial glomerulus in the antennal lobe. Additionally, both mutations led to

mistargeting of two more olfactory receptors, Or42a and Or59c. In the mutant background, the

two receptor classes mistargeted the V-glomerulus, while wildtype Or42a and Or59c expressing

neurons innervate a medial glomerulus. In situs for the receptors showed that the ectopic MP

CO2 neurons co-expressed either Or42a or Or59c. In single sensillum recordings, the ectopic

CO2 neurons of both mutants were responding to CO2 as well as to the key ligands of Or42a

and Or59c. Therefore, the mutant allele of miR-279 and the hypomorphic Prospero allele,

prosIG2227, exhibited an anatomically and physiologically highly similar phenotype.

Figure 2.3 (following page): Most OR marker are unaffected by miR-279 962−7 and prosIG2227 A. A set

of antennal and maxillary palp OR marker in the mutant background of miR-279 962−7, prosIG2227 and pros17

show no phenotype. B. Quantification of Or83b positive neurons on MP in control, prosIG2227 and pros17 flies.
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Figure 2.4: Or42a and Or59c are co-expressed with ectopic CO2 neurons and mistarget to the V-

glomerulus A-E. Or42a and Or59c targeting is altered in the miR-279 and various Prospero mutant back-

ground. Additionally to the medial food-associated glomerulus (arrowhead), the V-glomerulus is innervated

(arrow). F. In situs on mutant maxillary palps show that ectopic Gr21a positive neurons co-express the recep-

tors Or42a and Or59c. The third ectopic neuron is integrated in the basiconic sensilla structures.
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Figure 2.5: Ectopic CO2 neurons func-

tionally respond to CO2, isoamyl-

acetate and 3-octanol. Single sensillum

recordings (SSR) of wildtype and mutant

sensilla. A. Stimulation with CO2 trig-

gered no response in wildtype palps. In

contrast, mutant palps of miR-279 962−7

and prosIG2227 were responding to CO2.

B. Both mutants respond with a compa-

rable spike number to the given stimulus.

C. Also the ligands of Or42a (isoamyl-

acetate) and Or59c (3-octanol) trigger ac-

tivity in the mutant sensilla.
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2.2 miR-279 and Prospero Expression Throughout MP

Development

The similarity of the miR-279 962−7 and prosIG2227 phenotypes suggested that both molecules

act in the same pathway to suppress CO2 neuron formation on wildtype maxillary palps. As a

prerequisite, I tested in collaboration with Dr. Laura Loschek whether both molecules are co-

expressed in relevant developmental stages. The olfactory appendages, antennae and maxillary

palp, develop throughout the pupal stage. The maxillary palp develops from the antennal part

of the eye-antennal disc (Lebreton et al., 2008). The olfactory lineage starts to develop from a
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sensory organ precursor (SOP) cell. The SOP gives rise to the precursors of the non-neuronal

lineage (pIIa) and the neuronal lineage (pIIb). The marker for the neuronal lineage is Elav.

In the developing maxillary palp, Elav was already expressed at 6 hrs APF. At this timepoint,

only a few cells expressed Prospero (Fig.2.6 A,A1,2). At 25 hrs APF, two populations of cells

expressed Prospero in a low and a high intensity. At this stage various combinations of Prospero

and Elav positive cells were found. Next to cells that either expressed Elav or Prospero, other

cells were found that expressed high levels of Prospero and low levels of Elav, and vice versa

(Fig.2.6 B, B1,2). At 45 hrs APF, the sensilla were fully differentiated with two cells expressing

the neuronal marker Elav as a marker for mature neurons and a third cell positive for Prospero

labeling the sheath cell (Fig.2.6 C, C1,2). These findings were consistent with previous published

data on sensillum development (Doe et al., 1991). Therefore, I concluded that the maxillary

palp develops according to the canonical pathway of sensillum formation.

To assess the expression of miR-279 during MP development a 2kb-enhancer fragment of

miR-279 fused to Gal4 was used which drove the expression of GFP. In a previous study, this

enhancer fragment was sufficient to rescue the miR-279 962−7 phenotype (Cayirlioglu et al.,

2008). The expression of miR-279 started similar to Prospero and Elav at 6 hrs APF (Fig.2.6

D, D1−5). At 30 hrs APF, miR-279 was highly expressed in the future MP and again overlapped

with Prospero (Fig.2.6 E, E1,2). At 42 hrs APF, the broad expression of miR-279 was largely

reduced to only a few cells that still overlapped with Prospero expression but both were no

longer co-expressed with Elav (Fig.2.6 F, F1,2, G, G1,2). At 70 hrs APF, Prospero and miR-279

were still co-expressed in sheath cells of the MP (Fig.2.6 H, H1,2).

Thus, miR-279 and Prospero were co-expressed in the neuronal lineage during sensilla

development on the maxillary palp. The expression of Prospero started early in pIIB, while

the onset of miR-279 was slightly delayed and started in late pIIb or early pIIIb. In the fully

differentiated sensilla, miR-279 and Prospero were excluded from neurons and confined to the

sheath cells.
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2.3 The Development of Mutant Sensilla on the Maxillary

Palp

2.3.1 Extra Neurons Develop within Basiconic Sensilla in the Maxil-

lary Palp

The extra neurons formed on the maxillary palp of miR-279 962−7 and prosIG2227 mutants could

develop either within an extra sensillum containing only one single neuron or the extra neuron

was integrated within the basiconic sensilla. To test which possibility accounted for the analyzed

mutants, Elav-Gal4 and MARCM in wildtype and mutant flies was used to selectively label the

neuronal lineage. In collaboration with Dr. Laura Loschek, palps were dissected at 45 hrs APF.

At this stage, it was not possible to use the specific driver for CO2 neurons, since the onset

of Gr21a-Gal4 was later than the analyzed timepoint. In wildtype palps, I only saw basiconic

sensilla carrying two neurons positive for Elav-Gal4 and α-Elav staining. Next to the neurons

a single cell, the sheath cell, was positively labeled with α-Prospero. Interestingly, mutant

sensilla of miR-279 962−7 and prosIG2227 contained three cells positive for Elav-Gal4 and Elav

protein. Attached to the three neuron cluster, the sheath cell could be identified through positive

staining for Prospero. The mutant prosIG2227 palps exhibited the same phenotype, however,

with a lower expression of Prospero in the sheath due to hypomorphic mutation. Hence, the

mutation in miR-279 962−7 or prosIG2227 induced a phenotype with tree instead of two neurons

in the basiconic sensilla.

In adult sensilla, the CO2 neuron specific driver Gr21a-Gal4 could be used to label the

neurons. In the miR-279 962−7 and prosIG2227, sensilla carried three neurons positive for Elav-

Gal4 and α-Elav staining and one was positive for Gr21a-Gal4.

Figure 2.6 (following page): Expression of Prospero and miR-279 throughout the development of the

maxillary palp. A. Prospero starts to be expressed at 6 hrs APF in the primordium of the maxillary palp and

overlaps with Elav (A, A1 and A2). B. At 25 hrs APF, Prospero is more largely expressed and partially overlaps

with Elav (B, B1 and B2). C. At 45 hrs APF, Prospero labels the sheath cell in the differentiated sensillum

and is excluded from neurons that are positive for Elav (C, C1 and C2). D. miR-279 starts to be expressed at

low levels at 6 hrs APF and is overlapping with Prospero (D,D1 and D2) as well as with Elav (D3-D5). E. At

30 hrs APF, the expression of miR-279 is increased and does also partially overlap with Prospero. F. At 42

hrs APF, levels of miR-279 are again reduced, but still overlap with α Prospero staining. G. At 42 hrs APF,

miR-279 is no longer co-expressed in α Elav positive cells (G, G2). H. Also in the mature palp at 72hrs APF,

Prospero positive cells co-express miR-279.
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In addition, maxillary palps of pros17 mutants were analyzed. Besides the sensilla with three

neurons (in 54% of analyzed palps), two more types of altered sensilla were present: sensilla with

only one neuron (31% of palps analyzed) and sensilla containing four Elav-Gal4 positive cells but

none expressing Elav protein (15.5%). Probably, these sensilla failed to fully differentiated due

to the complete loss of Prospero in the pros17 background. In line with previous reports in other

sensilla lineages (Manning and Doe, 1999), both effects are likely due to a conversion of the

neuronal (pIIb) to the non-neuronal (pIIa) lineage. Therefore, also during sensilla development

of maxillary palps, Prospero functioned to distinguish the neuronal versus the non-neuronal

lineage as a full loss of Prospero resulted partially in undifferentiated neurons. Moreover, the

hypomorphic allele of Prospero, prosIG2227, uncovered a second, later role of Prospero within

the pIIb lineage of the maxillary palp sensilla. Here, Prospero restricted neuron number within

one sensillum and thereby suppressed specifically the formation of ectopic CO2 neurons on the

MP. In contrast, the number and the development of sheath cells was not affected.

Taken together, Prospero and miR-279 accounted for neuron number per sensillum as the

mutant sensilla on the maxillary palp expressed three instead of two neurons in the pupal

stage. In adult palps, ectopic CO2 receptor neurons developed within sensilla containing three

neurons. Unlike the hypomorphic allele, a complete loss of Prospero in pros17 showed additional

phenotypes as, for instance, the lack of neuronal differentiation and conversion of the pIIb in

the pIIa lineage.

2.3.2 The Development of CO2 Neurons is not Induced by Late Cell

Division

To test whether additional neurons occurred because of an extra cell division post-differentiation,

I labeled new born neurons at different time points of MP development with Elav-Gal4. Previous

experiments suggested that the development of the olfactory sensilla was completed at around

30 hrs APF. Therefore, I chose different time points before and after 30 hrs APF and induced via

heatshock the expression of ElavGal4-UASmcD8GFP (Elav:GFP) which labeled all neurons and

Figure 2.7 (following page): miR-279 and Prospero mutant sensilla on the maxillary palp. A. At 45hrs

APF, wildtype MPs only carry basiconic sensilla, with two neurons positive for αElav. B-D. Mutant sensilla

of miR-279 962−7, prosIG2227 and pros17 have an extra neurons and carry sensilla with three neurons on their

MPs. E. On adult maxillary palps, in the miR-279 mutant background, three neurons are formed in the sensilla

with one being positive for the CO2 neuron marker (Gr21a Gal4 UASmcD8GFP). F. In the prosIG2227 mutant

background, sensilla that carry the ectopic CO2 neuron, express three neurons.
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Figure 2.8: Additional phenotypes in pros17 mutants. A. At 45 hrs APF control sensilla on the maxillary

palp form two neurons. B-C. In the pros17 background, sensilla with only one neuron positive for Elav protein

(B, B1, B2, B3) were observed. A second phenotype was observed, where sensilla formed 4 cells positive for

Elav-Gal4 but not for Elav protein (C, C1, C2, C3). D. Quantification of phenotypes on the maxillary palps in

the mutant background.

the projections that were formed after the heatshock. I compared Elav:GFP labeled neurons

on adult maxillary palps of all analyzed Prospero mutant alleles and the miR-279 mutant

with wildtype palps which were treated in the same conditions. In summary, all flies of any

mutant background and wildtype had Elav:GFP positive cells on the MP before 25hrs APF.

Any heatshock applied after this timepoint did not result in Elav positive cells on the maxillary

palp. Hence, all analyzed mutants were not delayed in sensilla development as the neurons did

not form after 30hrs APF. Moreover, the development of extra neurons did not occur due to

an additional late cell division in mutant sensilla as compared to wildtype.
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Figure 2.9: Ectopic CO2 neurons do not form after 30 hrs APF. Adult maxillary palps that underwent

heatshock at 3rd instar and at 30 hrs APF. Elav-Gal4 is only expressed before 30 hrs APF. Mutant palp

development is not delayed and extra neurons do not occur because of extra cell divisions after 30 hrs APF.

2.3.3 Mutant Sensilla are not Formed Upon Lack of Cell Death or

Altered Cell Cycle Activity

Next, I tested whether extra neurons are formed due to a lack of apoptosis or because of a

general failure in cell cycle. I chose the apoptosis inhibitor p35 and the cell cycle protein CyclinE

and overexpressed both in wildtype flies. A previous study showed that CyclinE is a downstream

target of Prospero (Choksi et al., 2006). For overexpression in mutant clones, I used a direct

fusion of Gr21-sytGFP recombined to β-actin-Gal4 and induced eyeless Flp (eyFLP) clones (see

methods). β-actin-Gal4 was only active in eyFLP induced clones. The entire population of CO2

neurons were labeled with Gr21a-sytGFP. The antennal lobes of these flies were analyzed for

the presence or absence of a miR279 962−7-like mistargeting phenotype. None of the analyzed

flies developed extra CO2 neurons on the MP which mistargeted to the medial glomerulus. The

finding that changes in general cell cycle and apoptosis factors were not sufficient to induce

ectopic neurons suggested that more specific (e.g. neurogenic) factors might be required to

induce the formation of ectopic CO2 neurons. Moreover, CyclinE as a downstream target of

Prospero was not sufficient to induce the expression of extra CO2 neurons on the maxillary palp

and might not directly be involved in the pathway to suppress CO2 neurons.
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2.4 The Molecular Interaction of Prospero and miR-279

2.4.1 Overexpression of miR-279 Rescues the prosIG2227 Phenotype

As both miR-279 and Prospero were co-expressed in the neuronal lineage of MP development,

I tested whether Prospero activity was necessary for the expression of miR-279. To this end, I

performed a rescue experiment, where Prospero or miR-279 were overexpressed in the mutant

background. The overexpression constructs contained the cDNA of the respective gene fused

to a UAS transcriptional response element. To express either miR-279 or a full length version of

Prospero, I used a flystock that contained a Gr21a-synaptotagmin-GFP direct fusion recombined

to β-actin-Gal4. As a result, overexpression of miR-279 completely rescued the miR-279 962−7

mutant phenotype. Similarly, the prosIG2227 mutant phenotype could be completely rescued

by expressing a full length version of Prospero. Surprisingly, also expression of miR-279 in the

prosIG2227 mutant background led to a rescue of 80%. Contrarily, when Prospero was expressed

in the miR-279 962−7 mutant background, only a partial rescue of 37% was detected (Fig. 2.10).
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Figure 2.10: Genetic interaction and rescue experiments of miR-279 and Prospero. Expression of

UASprospero rescues the prosIG2227 phenotype to 100%, while expression in the miR-279 mutant rescues only

37% of the mutant phenotype. Re-expressing UASmiR-279 in the miR-279 mutant background results in a full

rescue, and also the prosIG2227 phenotype is rescued to 80%.

These results indicated that Prospero and miR-279 act in a common pathway suppressing

CO2 neuron formation in the wildtype maxillary palp. In this regulatory network, Prospero is
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putatively upstream of miR-279 as expression of miR-279 almost fully rescued the prosIG2227

phenotype. As expression of Prospero in the miR-279 962−7 mutants partially rescued the

phenotype, it could not be excluded that Prospero is able to act independently and in parallel

to miR-279 to suppress CO2 neuron formation on the maxillary palp. However, as the rescue

of the miR-279 962−7 phenotype by expressing full length Prospero was only 37%, this parallel

pathway might be less efficient than the miR-mediated suppression.

2.4.2 Prospero Binds Directly to the miR-279 Enhancer

Given that Prospero and miR-279 genetically interact, I hypothesized that Prospero being a

transcription factor could directly bind to the miR-279 enhancer region. The 2kb upstream

region of the miR-279 gene was shown to be sufficient to rescue the miR-279 962−7 phenotype

(Cayirlioglu et al., 2008). Therefore, I refer to this genomic region as miR-279 enhancer. To

identify putative binding sites of Prospero, I used the already published motifs: TWAGVYD

(Cook et al., 2003) and CWYNNCY (Choksi et al., 2006). Using bioinformatic tools, a search

for these two motifs in the miR-279 enhancer region was performed. In total 18 predicted

Prospero binding sites were identified in the enhancer region (Fig. 2.11). By comparing these

predicted sites with the same genomic region of five other Drosophila species (D.simulans,

D.yakuba, D.erecta, D.ananassae, D.pseudoobscura), I found five highly conserved Prospero

binding sites (Fig. 2.11).

MicroRNAs are transcribed as a longer pri-microRNAs, before they get exported and further

trimmed to shorter pre-miRs yielding mature microRNAs (Lee et al., 2003). To define the length

of the primary transcript of miR-279, I conducted a 5’RACE. The resulting PCR product had a

length of 1.2 kb and matched the sequence of the miR-279 upstream region (Fig. 2.12).

According to the distribution of predicted binding sites, I found that three putative Prospero

binding sites lay outside of the primary transcript and two sites within the primary transcript

(see Fig.2.12).

To test the functionality of these sites, I used an electromobility shift assay (EMSA). Using

this assay, I tested whether Prospero could in vitro directly bind to the predicted Prospero

binding sites found in the miR-279 enhancer fragment. I focused on two predicted Prospero

binding sites, P1 and P4, where the former lay within the primary transcript and the latter

outside (see Fig.2.12). For the EMSA, I purified the Prospero homeobox motif and assayed

with oligos containing one of the predicted Prospero sites, P1 or P4. Prospero bound oligos were

identified by a shifted band due to the higher molecular weight of the protein-DNA complex.

On the gel, only the oligos containing the P4 site were shifted (Fig.2.13 lane 3). In a control
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Figure 2.11: Putative Prospero binding sites in the miR-279 enhancer. Predicted Prospero binding sites

in the miR-279 enhancer fragment are compared to the same genomic region in 6 different Drosophila species.

The most conserved sites are highlighted (red).

experiment, where I mutagenized the binding motifs, the shift of P4 oligos was strongly reduced

(Fig.2.13 lane 4). Hence, purified Prospero directly bound to the miR-279 enhancer in vitro.

The binding was mediated by the highly conserved Prospero binding site P4 which lay outside

the primary transcript.
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Figure 2.12: 5’RACE PCR product of the miR-279 RNA. A. The PCR product of the 5’RACE indicates

that miR-279 is transcribed as a longer mRNA around 1.2kb. B. The miR-279 enhancer fragment contains

predicted Prospero binding sites. The length of the primary transcript is indicated. The sequence of the motifs

is shown as well as the sequences of the mutagenized motifs.

2.4.3 Prospero Activates miR-279 Expression in S2 Cells

As Prospero is known to act both as activator and repressor of its target genes (Choksi et al.,

2006), I assessed the effect of Prospero binding to the miR-279 enhancer using a luciferase

reporter assay in S2 cells. In this assay, luciferase was expressed under the control of the miR-

279 enhancer. I compared the expression of the wildtype enhancer with the mutated enhancer

containing mutations in the Prospero binding sites (Fig.2.12B). The wildtype enhancer was

highly activated in S2 cells. By mutating four of the predicted binding sites of Prospero

(Fig.2.12 B), the expression of the reporter dropped to 60%±10% (compare panel 1 and 5 in

Fig.2.14).

To further measure the effect of Prospero to the miR-279 expression, I increased and

decreased the levels of Prospero in S2 cells. In case of both the wildtype and mutated enhancer,

overexpression of full length Prospero using ubiquitin-Gal4 did not affect the level of luciferase

expression (compare panel 2 and 6 in Fig.2.14). This suggested that the amount of Prospero

which was endogenously expressed in S2 cells was already sufficient to express the maximum level

of the miR-279 enhancer reporter. In contrast, decreasing the level of Prospero using RNAi

against Prospero (RNAipros), reduced substantially the expression of the wildtype enhancer

reporter by 70±6.2% (see panel 3 Fig.2.14). Likewise, the reporter expression under the control
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Figure 2.13: Purified Prospero binds to the miR-279 enhancer. Only P4 containing oligos are bound by

purified Prospero which results in a shifted band (lane 3). Oligos containing a mutated Prospero binding motif

do not bind the transcription factor anymore (lane 4).

of the mutated enhancer was reduced to 49± 7% (see panel 7 Fig.2.14). In a control experiment,

I transfected an unrelated RNAi construct against insulin receptor (InR) together with the

reporter constructs. Unlike RNAipros, RNAiInR did not affect the expression of any reporter

construct (panel 4 and 8 Fig.2.14). Hence, Prospero could activate the expression of miR-279

by directly binding to the enhancer. The activation was in part mediated via the predicted

Prospero binding sites as mutating these sites decreased the expression level. Moreover, the

mir-279 enhancer was less expressed when Prospero levels were reduced in the cell using RNAi.

Nevertheless, in these conditions the miR-279 enhancer was still expressed suggesting that

either additional Prospero binding sites might be involved in the activation of miR-279 or other

factors might be important for miR-279 activation.
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Figure 2.14: Quantification of miR-279 reporter luciferase assay in S2 cells. The wildtype miR-279

enhancer is expressed in S2 cells (column 1). Mutating the predicted Prospero binding sites in the miR-279

enhancer reduces the expression of the luciferase reporter (column 5). Overexpression of Prospero does not

significantly affect the expression of the wildtype enhancer nor of the mutated version (columns 2 and 6). The

expression of the wildtype enhancer is strongly reduced when levels of Prospero are reduced using RNAi (column

4). The transfection of RNAiInR does not affect the expression of miR-279 enhancer reporter (column 8). The

firefly luciferase expression is normalized to the expression of a co-transfected renilla luciferase.

2.4.4 Prospero Binds to the miR-279 Enhancer in vivo

To test whether Prospero binds to the miR-279 enhancer in vivo, I performed a chromatin

immunoprecipitation (ChIP) experiment. To do so, I overexpressed a FLAG-tagged version

of Prospero in Drosophila embryos. To preserve the interaction of Prospero with genomic

DNA, the tissue was crosslinked. Chromatin was extracted, sheared and further mixed with

α-FLAG antibody. The antibody bound to FLAG-tagged Prospero also recovered chromatin

which was recognized by the transcription factor. To verify, whether Prospero bound to DNA

flanking the P4 site in the miR-279 enhancer, I performed a PCR with the recovered chromatin

and primers flanking this site. Compared to the input, 48% of chromatin was recovered by

immunoprecipitation using an α-FLAG antibody, while no PCR product was detected in the

samples which were probed with an unspecific mouse IgG instead of the α-FLAG antibody. The

same was true for a third control, where instead of an antibody water was added to the mix

(Fig.2.15). In conclusion, Prospero bound the P4 site in vivo, corroborating the findings of the

EMSA experiment.

Next, to tested whether Prospero was modifiying the activity of miR-279 in vivo, I used

a miR sensor flystock. The miR sensor contained a GFP gene, which was expressed under

the control of two regulatory sequences. First, the GFP expression was driven by a tubulin
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Figure 2.15: Prospero binds to the miR-279 enhancer in a ChIP assay. Quantification of the immunopre-

cipitated fraction of chromatin using α-Flag-Prospero to the input chromatin. Sequence of the in vivo binding

site of Prospero to the miR-279 enhancer.

promotor and therefore broadly expressed. To restrict the GFP expression, the cDNA was fused

to a 3’UTR sequence which contained multiple miR-279 binding sites and therefore restricted

the expression of GFP to cells lacking miR-279 expression. Hence, in tissues expressing miR-

279, GFP was repressed while in tissues with no miR-279, GFP was expressed. The sensor could

be used to distinguish cells with a mature, functional form of miR-279 from cells which lack

miR-279. As a control, I analyzed a control sensor flystock which broadly expressed GFP driven

by the tubulin promotor. The control sensor was not regulated by microRNAs as a 3’UTR

sequence was missing. Therefore, this construct might be active in any cell which expresses

tubulin Gal4.

I analyzed the embryonic CNS at stage 16 with either the miR sensor or the control sensor

in the genetic background. The CNS of embryos expressing the control sensor, was broadly

labeled with GFP which overlapped with α-Prospero staining (Fig.2.16A). Interestingly, the

miR-sensor was more sparsely expressed in the embryonic CNS and not a single GFP positive

cell overlapped with α-Prospero staining (Fig.2.16A). According to the logic of the sensor

constructs, the GFP positive cells in the miR sensor background did not express an active

version of miR-279, whereas non-labeled cells expressed an active version of miR-279, which

repressed the sensor-GFP mRNA. The missing overlap of GFP positive cells with α-Prospero

staining indicated that Prospero positive cells expressed an mature miR-279. Together with the

previous results showing that Prospero directly bound to the miR-279 promotor in vitro and in



2.4 The Molecular Interaction of Prospero and miR-279 45

vivo to activate the microRNA, I further found in vivo evidence that Prospero was overlapping

with a mature form of miR-279 in the embryonic CNS.
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Figure 2.16: Prospero activates miR-279 in the CNS of Drosophila embryos. A. Expression of miR-

279 sensor and control sensor constructs in the embryonic CNS of embryos at stage 16. B. miR-279 sensor

expression in embryonic CNS at stage 16 in the prosIG2227 mutant background. Quantification of miR-279

sensor intensity using the Region of interest (ROI) in different panels.

To test whether Prospero was indeed activating miR-279, I expressed the miR sensor under

the control of a tubulin promotor element in the background of the prosIG2227 mutant. In the

hypomorphic mutant allele, the residual Prospero protein was sufficent for a immunochemical

detection. Here, GFP was expressed in α-Prospero positive cells indicating that miR-279 was

less active in the Prospero mutant background (Fig.2.16B). Unfortunately, I was not able to test

the sensor constructs in the developing maxillary palp as the control sensor was not expressed

in MPs at 6 hrs APF (Fig.2.17). Therefore, I could not draw any conclusion from experiments

performed with the miR sensor in the developing olfactory system.

To analyze, how reduced levels of Prospero affected the expression of miR-279 in the

developing olfactory system, I used a miR-reporter construct (miR-279 -Gal4) containing the

miR-279 enhancer fused to Gal4. I tested the miR-reporter at 6 hrs APF, when miR-279 was

first detected in Prospero positive cells. In wildtype palps, 75% of the analyzed palps co-

expressed Prospero and the miR-reporter (Fig.2.18 A,B). Also, in miR-279 962−7 mutant palps

the reporter co-labeled Prospero positive cell in 69% of the palps analyzed (Fig.2.18 A,B). This

indicated that miR-279 expressing cells were fully differentiated in the miR-279 962−7 mutant

background. In contrast, only in 16% of the analyzed prosIG2227 mutant palps co-expressed
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Figure 2.17: Expression of the control sensor in developing MPs at 6 hrs APF. At 6 hrs APF, the control

sensor is only expressed in the antenna (asterisk) but not in the MP (circle)(data obtained from Laura Loschek).

The reason for this is currently not known. Scale bar 5 microns.

Prospero. Similar results were obtained in adult palps. In this case, the miR reporter was visible

in 100% and 80% of the analyzed wildtype palps and miR-279 962−7 mutant palps. Whereas in

prosIG2227 mutant palps only 54% expressed the miR-reporter. In the pros17 mutant background,

the miR-reporter was only in 42% of analyzed palps detectable (Fig.2.18 C).

In summary, I could show that Prospero bound to chromatin of the miR-279 enhancer

in vivo employing the conserved binding site P4. The same site was also in vitro bound by

purified Prospero (Fig 2.13). Flies that carry a construct that monitored the activity of miR-

279 showed that in the embryonic CNS, Prospero overlapped with the mature miR-279. In the

Prospero hypomorphic mutant background, the activity of miR-279 was reduced. Moreover, in

the developing and adult olfactory system, miR-279 expression was dependent on Prospero as

in the prosIG2227 mutant background the miR-279 reporter was less expressed. Taken together,

Prospero directly activates miR-279 in vivo.

2.5 Common Targets of miR-279 and Prospero

2.5.1 Identification of Common miR-279 and Prospero Targets

The experiments showed, that Prospero regulates the expression of miR-279 to suppress the

formation of CO2 neurons on the maxillary palp of wildtype flies. As the two molecules are

involved in the same developmental process, I tried to unravel downstream regulated factors.

To find common targets of miR-279 and Prospero, I compared a list of verified in vivo Prospero

targets (Choksi et al., 2006) with lists of putative miR-279 targets taken from prediction tools

e.g.,TargetScan (www.targetscan.org/fly/) (see methods). Thereby, I could identify 20
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Figure 2.18: miR-279 reporter expression is reduced in Prospero mutant palps in vivo A. Expression of

miR-279 reporter constructs in the developing maxillary palps at 6 hrs APF. B. Quantification of the miR-279

reporter and Prospero expressing cells in the genetic background of the mutants at 6 hrs APF. C. Quantification

of miR-279 reporter expressing cells in adult maxillary palps in wildtype and mutant background of miR-279
962−7, prosIG2227 and pros17.

common targets (Fig.2.19). The intersection of miR-279 and Prospero targets was subjected

to a Gene Ontology (GO) term analysis to classify the targets according to their function. I

found that 12 out of 20 common targets were highly enriched in the three functional groups,

cell fate determination, nervous system development and neurogenesis (Fig.2.20). As these

functions were highly related to the phenotype observed, I investigated some of the targets

more closely in a genetic interaction experiment. I hypothesized if miR-279 and Prospero acted

as repressors, a reduction of the target level would lead to a rescue of the observed phenotype.

To reduce the target level, I used transgenic UAS-RNAi fly lines that were expressed using the

above described Gr21a-sytGFP β-actin-Gal4 stock. The following targets were chosen: RNAi

Ptx, RNAi lola, RNAi scute, RNAi spineless, RNAi nerfin-1 and RNAi escargot. Out of these,

only RNAi nerfin-1 altered the mistargeting pattern of both mutants. Reducing the levels

of Nerfin-1 surprisingly rescued the phenotype of miR-279 962−7 completely and of prosIG2227

mutant to 80% (Fig.2.21). For the other RNAi lines, I could not finally clarify whether they

were not involved in the pathway or the RNAi lines were not functional. At least none of the
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Figure 2.19: List of common targets. Prospero and miR-279 share 20 common targets.

used RNAi lines resulted in additional phenotypes.

In summary, miR-279 and Prospero shared common predicted targets which fell predom-

inantly into the three different functional groups cell fate determination, nervous system de-

velopment and neurogenesis. Out of these, the previously identified miR-279 target Nerfin-1

(Cayirlioglu et al., 2008), showed an effect on the suppression of CO2 neurons. When Nerfin-1

was downregulated by RNAi in the miR-279 and the Prospero mutant background, both pheno-

types were rescued. Hence, Nerfin-1 could be verified as a downstream target of miR-279 and

Prospero in vivo. Since downregulation of Nerfin-1 rescued the phenotype, the target must be

repressed by the microRNA and the transcription factor in the wildtype. The effect of Escargot

could not be determined using RNAi as the available construct was not functional.
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Figure 2.20: Gene Ontology (GO) analysis of common miR-279 and Prospero targets. Percentage of

miR-279, Prospero and common targets to fall in a given Gene Ontology (GO) category. Common targets are

enriched in the categories cell fate determination, nervous system development, regulation of gene expression

and neurogenesis.

2.5.2 Escargot and Nerfin-1 are Targets of miR-279 in S2 Cells

To test whether Escargot was a target of miR-279, I expressed a 3’UTR reporter construct in

S2 cells. The reporter construct contained the 3’UTR of escargot fused to a Renilla luciferase

gene. The vector was transfected into S2 cells together with UAS-miR279 construct which

was driven with ubiquitin-Gal4. Upon binding of miR-279, the escargot reporter expression

was downregulated to 51±9%. As a control, miR-315 was expressed together with the 3’UTR

reporter, which didn’t affect the escargot reporter expression (Fig.2.22 B). Nerfin-1 was already

shown to be a target of miR-279 in S2 cells (Cayirlioglu et al., 2008). As a positive control, I

repeated a nerfin-1 3’UTR reporter construct in S2 cells. Binding of miR-279 to the nerfin-1

3’UTR reporter resulted in a reduction to 27±10% of the reporter expression. Again increased

levels of miR-315 had no effect on the nerfin-1 3’UTR reporter (Fig.2.22 A). This experiment
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Figure 2.21: Reducing levels of Nerfin-1 in the mutant background rescues the mistargeting phenotype.

RNAi nerfin-1 in the mutant background of miR-279 962−7 and prosIG2227 rescues the mistargeting phenotype

to 100% and 80%, respectively (column 1 and 2). Expressing RNAi nerfin-1 in the control does not alter the

targeting of CO2 neurons (3).

showed that both Escargot and Nerfin-1 were directly suppressed by miR-279 in S2 cells.
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Figure 2.22: miR-279 represses the expression of Escargot and Nerfin-1 in S2 cells. A. The expression of

the nerfin-1 3’UTR reporter expression is significantly reduced upon overexpressing miR-279 to 27±10%. B. The

expression of the escargot 3’UTR reporter is significantly suppressed to 51±9% upon miR-279 overexpression.

In both cases, overexpression of miR-315 does not affect the expression.

2.5.3 Expression of the Common Targets, Escargot and Nerfin-1, in

the Developing MP

To assess the expression of the transcription factor Escargot, I used a fly stock containing a lacZ

labeled P-element insertion in the escargot locus (esg-P[lacZ]). In collaboration with Dr.Laura

Loschek, maxillary palps were dissected at various stages of development. At 6 hrs APF, the

transcription factor was broadly expressed in the MP (Fig.2.23 A) and stayed switched on until

25 hrs APF, when the expression was slightly decreased (Fig.2.23 B). At 30 hrs APF, the

expression of esg-P[lacZ] was no longer detectable (Fig.2.23 C). At even later stages (48 hrs

APF), Escargot expression was completely absent on the MP (Fig.2.23 D). Co-staining with

α-Prospero revealed that only at 6 hrs APF a few cells co-expressed Prospero and Escargot

(Fig.2.23).

In a previous publication, Nerfin-1 was shown to be expressed in the olfactory appendages

(Cayirlioglu et al., 2008). I could not reproduce the staining to analyze all the relevant stages

during MP development, because a functional antibody could not be obtained.

An alternative strategy to determine the expression of a gene is the use of fosmids. The

fosmid vectors include a large piece of genomic DNA around 36 kb in average, together with

an attB site for site-directed integration into the fly genome (Ejsmont et al., 2009). The DNA
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Figure 2.23: Escargot is expressed early steps of MP development. A. At 6 hrs APF esg-lacZ is present

in the developing MP (white dashed circle). Cells expressing esg-lacZ (blue) are overlapping with Prospero

staining (magenta) (see arrows A1,2 ,3). B. At 25 hrs APF the expression of esg-lacZ is drastically reduced.

Only a few cells express esg-lacZ (B1,2), C and D. At 30 and 48 hrs APF the esg-lacZ expression is no longer

detectable in the MP (C2, D2).
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fragments resulted from a random restriction digest of whole genomic DNA. The single pieces

contained genes together with the surrounding genomic environment which putatively covers

a large part of the regulatory elements. Through recombineering the genomic region could

be tagged with cassettes containing a fluorescent protein e.g. GFP, mcherry with or without

localization signals. The tagged fosmid could be used to study the endogenous expression

pattern in vivo. Due to the lack of a functional antibody for Nerfin-1, I tagged the fosmid

clone of nerfin-1 gene with nls-mcherry tagging. The tag was inserted 5’ of the gene to avoid a

damage of the 3’UTR. I received two fly lines and tested the expression of the Nerfin-1 fosmid

in embryos. Unfortunately, in all stages tested the expression of the fosmid was not detectable

in any of the lines. The reasons for this are currently unknown. A possible explanation might

be that important regulatory elements for Nerfin-1 expression were missing in the fosmid or

that the expression of Nerfin-1 was overall very low. To test the latter possibility the fosmid

lines could be analyzed in the miR-279 mutant background.

2.5.4 Nerfin-1 and Escargot are Targets of miR-279 and Prospero

in vivo

Since reducing levels of Nerfin-1 using RNAi rescued the phenotype of miR-279 962−7 and

prosIG2227, I tested whether miR-279 and Prospero repress Escargot in vivo. Nerfin-1 was

already shown to be upregulated in miR-279 mutant palps and to co-localise with the ectopic

CO2 neurons (Cayirlioglu et al., 2008). As the anti-body for Nerfin-1 was not working for

me, I was not able to perform the same experiment in the prosIG2227 mutants. To assess

the impact of the mutations of miR-279 and prosIG2227 mutation on Escargot, I analyzed the

expression of esg-P[lacZ] in the mutant background in developing palps at 6 hrs APF. At this

timepoint, around 16% of the palps co-expressed Escargot and Prospero in the wildtype. In

the miR-279 962−7 and prosIG2227 mutant palps the level of Escargot was increased. Moreover,

90% and 61% of the miR-279 962−7 and prosIG2227 mutant palps co-expressed Prospero and

Escargot (Fig.2.24). Surprisingly, as the escargot-lacZ allele was an insertion into the escargot

enhancer, also in the miR-279 962−7 background the expression was increased. Given that miR-

279 mediated a post-transcriptional repression, the increase of the esg-lacZ reporter reflecting

the enhancer activity was surprising since no Escargot-lacZ fusion mRNA was transcribed. The

reasons for that are still unknown. Nevertheless, the experiment demonstrated that Prospero

acts on the genomic level to repress the expression of Escargot in the wildtype. When the levels

of Prospero are decreased, the repression was removed and Escargot expression was increased
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Figure 2.24: Escargot expression in the MP is elevated in the mutant background. The expression of

esg-lacZ in wildtype and mutant background at 6 hrs APF. In the wildtype esg-lacZ is only sparsely expressed in

the developing MP area. In miR-279 962−7 mutants the expression of esg-lacZ is enhanced compared to wildtype

MPs. Also the percentage of cells co-expressing Prospero and esg-lacZ is increased. Similarly in prosIG2227

mutant MPs, the expression of esg-lacZ and also the overlap with Prospero staining are increased.

As the experiments suggested that miR-279 and Prospero repress the level of their targets, I

tested whether decreased target levels in the mutant background reduced the number of ectopic

CO2 neurons on the MP. To do so, I crossed a heterozygous mutant allele of either nerfin-1,

escargot or a combination of both to the miR-279 962−7 or the prosIG2227 background. By

reducing the level of Nerfin-1 in prosIG2227, I detected a reduction of the number of ectopic

CO2 neurons by 40%. Similarly, decreased levels of Escargot in the miR-279 962−7 and the

prosIG2227 mutant palps reduced the number of ectopic CO2 neurons to 44% and 33%, respec-

tively (Fig.2.25 A,B). Although a reduction of Nerfin-1 and Escargot together in the prosIG2227

mutant background, did not result in a decreased number of ectopic CO2 neurons compared to

the reduction achieved by reducing only one target (Fig.2.25 A). Reducing the levels of Hb9,

which was predicted to be a target of miR-279 but not of Prospero, in the miR-279 962−7

background had no influence on the number of CO2 neurons (Fig.2.25 B). Therefore, Nerfin-1
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and Escargot are common targets of miR-279 and Prospero and act specifically on MP CO2

neuron suppression.
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Figure 2.25: Lower levels of Nerfin-1 and Escargot decrease the number of ectopic CO2 neurons. A.

Removing one copy of escargot or nerfin-1 by introducing a heterozygous mutant in the prosIG2227 background

reduces the number of ectopic neurons to 33% and 40%, respectively. Reducing the levels of both targets in the

prosIG2227 mutant background, does not significantly further reduce the number of ectopic CO2 neurons. B.

Removing one copy of escargot in the miR-279 962−7 background reduces the number of ectopic CO2 neurons

to 44%. Reducing the level of Hb9 in the miR-279 962−7 background has no influence on the number of CO2

neurons.

In conclusion, reduction of the levels of Nerfin-1 and Escargot, diminished the number of

ectopic CO2 neurons and also rescued the mistargeting phenotype in both mutants. Therefore,

both Nerfin-1 and Escargot are involved in the regulatory network that is responsible to repress

the formation of CO2 neurons on the maxillary palps of wildtype flies.
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2.5.5 Nerfin-1 and Escargot Are Necessary and Sufficient for the For-

mation of CO2 Neurons

As I characterized candidate molecules which were important to generate mosquito-like CO2

neurons on the maxillary palps of Drosophila, I addressed the question whether the target

molecules that were tightly suppressed by miR-279 and Prospero in vitro and in vivo, are

sufficient to induce the formation of ectopic MP CO2 neurons in the wildtype flies. To do so,

I overexpressed in eyFLP-clones Nerfin-1 and Escargot and a combination of the two using the

above described Gr21asytGFP actin-Gal4 stock in wildtype flies. Overexpression of a either

Escargot or Nerfin-1, never altered the targeting of the Gr21a positive neurons (Fig.2.26). In

stark contrast, overexpression of a combination of Nerfin-1 and Escargot led to a mistargeting in

40% of the analyzed brains. The phenotype highly resembled the miR-279 962−7 and prosIG2227

phenotype as axons innervated the antennal lobe via the labial nerve and mistargeted a medial

glomerulus (Fig.2.26). Therefore, high levels of Nerfin-1 and Escargot together were sufficient

to generate a miR-279 962−7 and prosIG2227 like phenotype in maxillary palps. Additionally,

the axon bundle from the antennal nerve was thiner as compared with the wildtype situation

potentially suggesting that Escargot and Nerfin-1 were also involved in the development of the

antennal CO2 neurons.
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Figure 2.26: Elevated Nerfin-1 and Escargot levels are sufficient to form ectopic CO2 neurons in the

wildtype. Overexpression of Nerfin-1 and Escargot independently in the wildtype background does not effect

the targeting pattern of CO2 neurons. In contrast, overexpression of both targets together leads to mistargeting

to a medial glomerulus via the labial nerve in 40% of the analyzed brains, indicating the formation of ectopic

CO2 neurons on the MP. As a control, also overexpression of CyclinE and p35 as markers for cell cycle defects

or apoptosis does not alter the targeting pattern of CO2 neurons.
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2.6 A Model on CO2 Neuron Suppression on the MP

In conclusion, I formulated a model of the factors that were required to suppress the formation

of CO2 neurons on the maxillary palp in Drosophila. I found that Prospero via activation of

miR-279 and also independently- although less sufficient- suppressed the expression of Escargot

and Nerfin-1. As a consequence of this effective suppressive network, no ectopic CO2 neurons

developed on the fly maxillary palp. If either of the suppressors was missing for instance in

miR-279 962−7 or prosIG2227 mutants, the levels of Escargot and Nerfin-1 were elevated and

around 20 cells on the maxillary palp started expressing the receptor for CO2. These extra

neurons sent their axons to the antennal lobe via the labial nerve and mistargeted a medial

glomerulus (Fig.2.27). All analyzed aspects of the ectopically formed neurons highly resembled

in localization, targeting pattern and ligand specificity the CO2 neurons found in mosquitoes.
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Figure 2.27: Model on CO2 neuron suppression on the MP in Drosophila. In wildtype flies Prospero

can suppress the expression of the two targets Nerfin-1 and Escargot directly by binding to the enhancer and

indirectly through miR-279. miR-279 downregulates Nerfin-1 and Escargot on the post-transcriptional level

and thereby, suppresses the formation of CO2 neurons. If either Prospero or miR-279 are missing, the levels of

Nerfin-1 and Escargot are elevated and lead in turn to the formation of ectopic CO2 neurons on the MP.
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2.7 The Candidate Circuit in Mosquito

Due to the mosquito-like phenotype it was tempting to ask whether the candidate molecules

were conserved and involved in CO2 neuron development in mosquitoes. The Anopheles gam-

biae genome was fully sequenced in 2002 (Holt et al., 2002) and meanwhile the annotation pro-

gressed (e.g.www.vectorbase.org). I found that all identified candidate genes are conserved

in Anopheles gambiae. An interesting aspect for future research might be, whether changes

in 3’UTRs of aga-escargot and aga-nerfin-1 evolved that inhibit the binding of aga-miR-279.

According to prediction tools, aga-miR-279 has 150 predicted targets, but aga-escargot as well

as aga-nerfin-1 are not among them (see Materials and Methods). To verify this experimen-

tally, I performed a 3’RACE of aga-nerfin-1 for which I extracted mRNA from mosquito pupae.

Preliminary results suggested that the non-translated 3’UTR region of aga-nerfin-1 was reduced

compared with the nerfin-1 3’UTR in Drosophila melanogaster. As the 3’UTR length was shown

to be variable in different developmental stages as well as in different tissues especially in the

nervous system (Hilgers et al., 2011), the experiments need to be repeated in various tissues

at different developmental time points. Another possibility that might have led to changes in

localization might be differences in the expression of the candidate genes. To address this ques-

tion, I identified putative enhancer regions of Anopheles gambiae candidate genes to generate

fly reporter lines carrying mosquito enhancer fragments. These reporter constructs will be used

to establish transgenic fly lines.
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Discussion

The presented work unraveled a regulatory gene network that specifically suppressed the forma-

tion of CO2 neurons on the maxillary palp of Drosophila melanogaster. The network contains

the neurogenic, atypical homeobox transcription factor Prospero which controls the expression

of Escargot and Nerfin-1, both being transcription factors implicated in neuronal development.

To do so, Prospero controls the target expression directly on the genomic level and in parallel

on the post-transcriptional level through miR-279. In vitro and in vivo experiments showed

that miR-279 is in turn directly activated by Prospero. If either miR-279 or Prospero were

missing in the maxillary palps, ectopic CO2 neurons formed. These ectopic neurons expressed

the receptor for CO2 and also either Or42a or Or59c. In addition, ectopically formed neurons

also responded to CO2 and to the ligands of Or42a and Or59c. The targeting of these olfactory

neurons was altered. Gr21a positive neurons mistargeted a medial glomerulus instead of the

V-glomerulus. Or42a and Or59c positive neurons usually targeted the medial glomerulus, but

in the mutant background additionally to the V-glomerulus. Interestingly, the pattern of the

ectopic CO2 neurons highly resembled the location and the targeting of mosquito CO2 neurons.

In mosquitoes, CO2 neurons are expressed on the maxillary palp and target a medial glomerulus

in the antennal lobe. Since the mutant CO2 neurons resemble the mosquito CO2 neurons in

location and targeting, makes the unraveled network interesting in order to gain some insight

how CO2 detection in flies and mosquitoes evolved. Future studies will focus on the regulation

of MP CO2 neuron development in mosquitoes. In Drosophila, miR-279 and Prospero were

expressed throughout the development of the neuronal lineage of olfactory sensilla. Sensilla

on the maxillary palp form according to the canonical model of sensilla development (Lai and

Orgogozo, 2004). In the mutant background of either miR-279 or Prospero, the predominant

basiconic sensilla type on the maxillary palp innervated by two neurons is altered to three neu-
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rons. Therefore, the ectopic neurons formed within a basiconic sensillum on the maxillary palp.

The developmental analysis demonstrated clearly that Prospero and miR-279 were co-expressed

in the developing olfactory tissue and regulated the neuron number per sensillum by specifically

suppressing the developmental program to form CO2 neurons. Furthermore, in vitro and in

vivo experiments showed that Prospero directly bound to the miR-279 enhancer. The binding

exhibited a strong activation of miR-279 as in S2 cells downregulation of Prospero through

RNAi led to a strong decrease of luciferase reporter activity. Moreover, in vivo reporter of

miR-279 expression were strongly decreased in the Prospero mutant.

To define the downstream targets of miR-279 and Prospero, lists of predicted or exper-

imentally verified targets were compared. The overlap was clustered into functional groups

using GO term analysis. The predicted common targets of miR-279 and Prospero fell into

three categories: nervous system development, cell fate determination and neurogenesis. As

these categories were highly connected to the phenotypes observed, a couple of targets were

subjected to an RNAi screen. Out of the tested targets, RNAi against nerfin-1 strongly rescued

the phenotype of miR-279 and Prospero. In S2 cell reporter assays, miR-279 could be shown

to suppress besides Nerfin-1, also Escargot. Escargot was expressed in early stages of maxillary

palp development but downregulated in later stages. In contrast, in the miR-279 and Prospero

mutant background, Escargot expression was highly upregulated in the developing maxillary

palp. Together with the S2 cell results, these data suggested that Escargot was repressed by

miR-279 and Prospero. Furthermore, elevated levels of Escargot and Nerfin-1 together in the

wildtype maxillary palp, led to the formation of ectopic MP CO2 neurons which mistargeted

the medial glomerulus. As a result, Escargot and Nerfin-1 were shown to be necessary and

sufficient to induce the formation of ectopic CO2 neurons.

Taken together, the tight regulation of miR-279 and Prospero acting on Escargot and

Nerfin-1 suppresses the formation of ectopic mosquito-like CO2 neurons on the maxillary palp

of Drosophila melanogaster. The mutation of either Prospero and miR-279 uncovered an

evolutionary intermediate state of mosquito and Drosophila CO2 neurons through the missing

suppression of Escargot and Nerfin-1.
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3.1 Prospero and miR-279 Together Define Neuron Num-

ber

According to Dr. Laura Loschek’s and my data, MP sensillum development follows the canonical

model of sensilla formation (Lai and Orgogozo, 2004). Comparable to other sensilla, Prospero is

expressed in the neuronal lineage and labels the sheath cell in the mature MP sensillum. In line

with studies on bristle sensilla (Manning and Doe, 1999), where complete loss of Prospero led to

a conversion of the pIIb to the pIIa lineage and subsequently to neuron loss, loss-of-function of

Prospero (pros17) results in a loss of neurons in several OR classes on the antenna and the MP

(Fig.2.8). In addition to this phenotype, the new hypomorphic allele of Prospero, prosIG2227,

uncovered a second function of Prospero during late stages of olfactory MP development. In

this case, Prospero together with miR-279 defines the correct number of neurons in basiconic

sensilla on the MP by preventing the formation of an additional neuron. In both, prosIG2227

and miR-279 962−7 mutant palps, the 2-neuron basiconic sensilla type develops a third neuron

positive for the neuronal marker Elav. Interestingly, the 3-neuron hybrid sensillum expresses

both CO2 receptors and either one of the food odor receptors, Or42a or Or59c. This specific

phenotype of Prospero resembles the role in the embryonic CNS, where Prospero prevents

overproliferation likely through repression of mitosis (Choksi et al., 2006).

As Prospero acts on a variety of processes and tissues during neuronal development (Man-

ning and Doe, 1999; Choksi et al., 2006), the OR-type specific phenotype of the hypomorphic

allele is surprising. The appendage specificity might be influenced by proneuronal genes that

define antennal and MP regions. Prior to the onset of neurogenic factors, the activity of two

pro-neuronal genes, amos and atonal (Gupta and Rodrigues, 1997b; Goulding et al., 2000)

determines the fate of the sensory precursor cells. Indeed, antennal and maxillary palp sensilla

belong to different lineages. While amos defines the fate of some types of sensilla belonging

to the future antenna, sensilla on the MP are derived from the atonal lineage (Gupta and

Rodrigues, 1997b; Goulding et al., 2000). Within these lineages, different transcription factors

pre-pattern the fate of the cells through activation of different developmental signaling path-

ways which finally determine the choice of receptors. Interestingly, CO2 neurons of mosquito

share the developmental origin with fly MP sensilla and therefore of the ectopic CO2 neurons in

prosIG2227 and miR-279 962−7 mutants as both belong to the atonal lineage (Lu et al., 2007).

Hence, the activity of proneuronal genes might predefine the expression of certain types of

olfactory receptor neurons and inhibit the development of other subsets.

Given that the activity of proneuronal genes apparently relays the development of sensory
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organs in one direction, another factor could be important for the specificity of the observed

phenotype. Generally to specify distinct subtypes of olfactory sensory neurons, either the expres-

sion of cell type specific factors is required or different levels of the same factors are expressed.

According to the canonical model of sensilla development, various subtypes of sensilla employ

the same set of transcription factors and signalling pathways. Therefore, varying the expression

level of these factors might differentially affect the specification of distinct sensilla subtypes.

This hypothesis can account for the phenotypes in the pros17 full mutant and the prosIG2227

hypomorphic allele. Whereas the full mutant of Prospero affects largely olfactory sensilla de-

velopment on both appendages, the hypomorphic allele only affects two OSNs on the MP.

Moreover, in the external sensory organ, Prospero was shown to cooperate with Notch to pre-

vent additional cell divisions in the neuronal pIIB lineage (Simon et al., 2009). The differential

expression and activity of neuronal determinants like Prospero and Notch might have con-

tributed to the overall variety of sensilla types. Such mechanism are required to generate the

large diversity of olfactory sensilla. The hypomorphic prosIG2227 allele revealed a specific effect

of Prospero on the neuronal lineage of MP sensilla especially affecting CO2 neuron suppression.

Whether or how Notch signaling is involved in this process remains to be studied.

Besides a specific effect on the MP, inducing mutant clones of prosIG2227 and miR-279 962−7

in the less diverse external sensory organs on the thorax, resulted occasionally in the formation

of an additional neuron suggesting a more general role of Prospero and miR-279 in regulation

of neuron number (Fig.3.1). Hence, the combined action of Prospero and miR-279 seems to

be conserved in at least two sensory neuron lineages.

Taken together, the hypomorphic allele of Prospero revealed a new, specific role in the

regulation of neuron number in two lineages of olfactory receptors in late MP development.

The temporal activity of Prospero on suppression of CO2 neuron development is enhanced

through the interaction with miR-279. The fact that only MP neurons are affected might be

due to the different pro-neuronal genes initiating the development of olfactory sensilla on the

MP and antenna. As Prospero and Notch were shown to interact in the determination of neuron

number in the external sensory organs, the effect of Notch signaling remains to be studied on

CO2 neuron suppression. In bristle sensilla which contain only one neuron of the same type,

miR-279 and Prospero also influence the number of neurons suggesting a more general role of

the microRNA and the transcription factor. Interestingly, in parallel to basiconic sensilla on the

MP also bristle sensilla are dependent on atonal (Gupta and Rodrigues, 1997a).
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Figure 3.1: Prospero and miR-279 define neuron number in bristle sensilla Wildtype ES organ sensillum

carrying one neuron positively labeled for Elav-Gal4 UASmcD8GFP (A1) and stained α-Elav (A2), and one

sheath cell positive for α-Prospero. A 3D-reconstruction of the sensillum is shown (A4). Mutant ES organ

sensilla of miR-279 962−7(B, B1−4), prosIG2227 (C, C1−4) and pros17 (D, D1−4) develop a second extra neuron

within the sensillum positively labeled for the neuronal marker Elav (data obtained by Laura Loschek).

3.2 miR-279 and Prospero Act in a Coherent Feed-Forward

Loop

The expression of microRNAs depends on transcription factors (TFs). So far there are only few

studies on TFs activating microRNAs are available (Bethke et al., 2009) as previous work mainly

focused on the identification of post-transcriptional targets. The presented model intergrates

miR-279 in a regulatory network governed by Prospero and regulating Escargot and Nerfin-1

(Fig.3.2). Prospero and miR-279 share common targets and cooperate in repressing their ex-

pression. In genetic rescue experiments, re-expression of the microRNA in the hypomorphic

Prospero mutant background yielded to a higher rescue than vice versa. These data suggest

that the suppression of Escargot and Nerfin-1, through a combination of miR-279 and Prospero
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is more efficient than Prospero’s suppression on the genomic level. There are several possibil-

ities, why the combined repression by the transcription factor and the microRNA is stronger.

Developmental processes require the expression of potent transcription factors that control the

expression of a battery of genes e.g. Prospero was shown to bind to the regulatory regions of

more than 1.800 genes during embryonic development (Choksi et al., 2006). These powerful

genes have a restricted time slot of action, which requires a tight regulation. microRNAs could

act as a fail-safe mechanism in case the genomic repression of a TF is either to slow or to weak

and would therefore lead to excessive mRNA levels of the targets. Interestingly, in adult neuronal

stem cells prior to differentiation, mRNAs of developmental regulators are already excessively

transcribed, which leads to an accumulation of the respective mRNA (Beckervordersandforth

et al., 2010). To eliminate these mRNAs from the cell, microRNAs seem to be an appropriate

way as repression on the genomic level can only inhibit de novo transcription. I propose that

through miR-279, Prospero is able to potentiate the repression of Escargot and Nerfin-1 by

extending the mode of action to the post-transcriptional level. The two identified target genes

are powerful genes involved in nervous system development and differentiation. For example,

Nerfin-1 is necessary for proper neuron differentiation in the embryonic CNS by controlling the

expression of guidance factors like robo2, wnt5, derailed, Go-alpha47a, Lar and futsch that are

necessary for proper neuron targeting (Kuzin et al., 2005). Moreover, Escargot was shown to

regulate neuronal differentiation in the external sensory organ lineage, where mutants of Escar-

got developed a double-bristle phenotype (Yang et al., 2010). Interestingly, adult stem cells in

the midgut of Drosophila are further examples for a general role of Escargot and Prospero in

cell proliferation. Here, Escargot labels a population of diploid cell, which give rise to Prospero

positive cells (Micchelli and Perrimon, 2006).

On wildtype palps, increased levels of Escargot and Nerfin-1 induced ectopic CO2 neuron

development. This effect was not induced by sheer inhibition of apoptosis through p35 or

enhancement of cell cycle progression through CyclinE. Thus, Escargot and Nerfin-1 in combi-

nation are necessary and sufficient for CO2 neuron suppression on the MP.

In conclusion, miR-279 and Prospero act in a powerful and temporally defined way on CO2

neuron suppression on the maxillary palp in Drosophila. This suppression is achieved through

the tight repression of Escargot and Nerfin-1, both being powerful regulators of nervous system

development (Kuzin et al., 2005; Yang et al., 2010). The combinatorial effect of Escargot and

Nerfin-1 could be shown to act specifically on CO2 neuron development. Therefore, I identified

a regulatory network acting on a subsystem of olfactory sensilla. The question how Escargot and

Nerfin-1 are cooperating on neuronal differentiation and specification is still not understood.
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Figure 3.2: Enhancing repression through the use of microRNAs. A. Effect of Prospero’s genomic

repression on the protein level of Escargot and Nerfin-1. B. Prospero’s enhanced repressive effect by including

miR-279 in the network. The upper panel illustrates the protein level before repression while the lower panel

illustrates the protein level after repression of either Prospero alone or together with miR-279.

This question might be resolved by uncovering genes that underly the control of Escargot and

Nerfin-1. So far, single mutants neither of Escargot nor Nerfin-1 show a phenotype in the

development of CO2 neurons.

The question which factors are actually directly regulating the expression of the CO2 recep-

tors remains open. Several steps could be tested to find some answers. One possibility is that

Escargot and Nerfin-1 are directly regulating the receptor expression. This hypothesis is rather

unlikely since the two transcription factors are expressed really early in development and the

expression of the receptors starts only in the late pupal stages. Hence, the temporal overlap

between the expression of Escargot and Nerfin-1 and the receptors, Gr21a and Gr63a, might

be missing. Therefore the factors which are in the miR-279/ Prospero pathway to regulate

CO2 receptor expression remain to be elucidated. Interestingly, mutations in components of the

DREAM complex resulted in mistargeting of the CO2 receptor expressing neurons to the medial

glomerulus (personnel communication by Anananda Ray). The DREAM complex is predicted to

directly bind to the Gr21a receptor enhancer. Whether this complex is downstream of Escargot

and Nerfin-1 is still elusive.

3.3 Evolvability of sensory systems

The olfactory receptors for CO2 of flies and mosquitoes are highly conserved (Jones et al., 2007;

Kwon et al., 2007). In contrast to the sequence similarity, the localization and the targeting

pattern of CO2 neurons differ between both species (Jones et al., 2007; Kwon et al., 2007;
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Ghaninia et al., 2007; Lu et al., 2007). Moreover, the behavior triggered by CO2 is opposite,

as flies strongly avoid CO2, whereas mosquitoes are highly attracted and use the cue for host

detection (Suh et al., 2004; Guerenstein and Hildebrand, 2008). I showed that flies mutant

for either Prospero or miR-279, develop ectopic CO2 neurons on the maxillary palp whithout

affecting the antennal CO2 neurons. The ectopic neurons mistarget to a medial glomerulus and

respond to CO2. Throughout development, the ectopic neurons are formed within basiconic

sensilla altering the 2-neuron sensilla type to a 3-neuron type. In all analyzed aspects, the ectopic

CO2 neurons due to the prosIG2227 or miR-279 962−7 mutations highly resemble mosquito CO2

neurons (Ghaninia et al., 2007; Lu et al., 2007). Together with the intact antennal CO2 neurons,

the mutant flies might represent an evolutionary intermediate state between fly and mosquito

(Cayirlioglu et al., 2008; Jones, 2008). Interestingly, a single mutation in only one microRNA

or a transcription factor can promote such dramatic changes in OSN choice and wiring.

Do the genes identified as supressors of CO2 neurons also play a role in the malaria mosquito

Anopheles gambiae (aga)? The comparison is worthwhile as all candidate genes are conserved

in Anopheles gambiae. Two different changes might have occurred in the evolution of Anophe-

les and Drosophila. First, the homologues of escargot and nerfin-1 in mosquito might not be

recognized by aga-miR-279 and therefore might not be suppressed. Variations in the 3’UTR

sequences and length are most likely to trigger such changes. According to prediction tools,

aga-Nerfin-1 and aga-Escargot are no longer targets of aga-miR-279. A preliminary 3’RACE

to determine the length of the mosquito nerfin-1 3’UTR indeed showed that the sequence is

shortened as compared the Drosophila nerfin-1 3’UTR. Predictions and preliminary results sug-

gest that the regulatory 3’UTR changed throughout evolution and might have varied the target

selection of miR-279. Second, the expression of all mosquito candidate genes including miR-279

might be altered through changes in the enhancer that could lead in turn to a recruitment of

different trans factors.

Another interesting aspect of these results is that relocation of OSNs from MP to antenna

might have triggered the expression of a different behavior from attraction to avoidance. The

relocation of the OSNs coincided with a change in wiring of the neurons. The ectopic CO2

neurons target to the medial glomerulus, which is in mosquito and Drosophila associated with

the detection of food odors (Ghaninia et al., 2007; Fishilevich and Vosshall, 2005; Couto et al.,

2005). Interestingly, a recent study showed that attraction behavior is dependent on a single

glomerulus (Semmelhack and Wang, 2009). Redirecting the wiring to another glomerulus might

be sufficient to connect an odor to different neuronal circuits that in turn change the behavior.

However, mutant flies of miR-279 tested in a behavioral paradigm still avoid CO2, which might
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Figure 3.3: Comparison of CO2 neuron targeting and behavioral output. In wildtype Drosophila CO2

neurons are expressed on the antenna and target the V-glomerulus. These flies strongly avoid the gas. In miR-

279 and Prospero mutant flies, CO2 neurons are also expressed on the maxillary palp and target the medial

glomerulus. Mutant flies behave indifferent toward the gas. Mosquito CO2 neurons are formed exclusively on

the maxillary palp and target a medial food-associated glomerulus. Blood-feeding mosquitoes use CO2 for host

detection and are highly attracted to the gas.

be due to the unimpaired CO2 neurons on the antennae (Cayirlioglu et al., 2008). After removal

of the antennae, flies were still not attracted but indifferent to CO2. Given that the sensilla of

the ectopic CO2 neurons connect to a food related glomerulus are functional, starvation might

promote attraction behavior.

In case of blood-feeding mosquitoes the advantage to be attracted to CO2 as part of host

detection and thereby ensuring food supply is obvious, however, the avoidance of Drosophila is

not fully understood yet. Although CO2 is probably used as a conspecific alarm signal, flies do

not avoid CO2 emitted by yeast and fruits. How flies can distinguish in a context dependent

manner, maybe in computing food odors and CO2 is only studied in the periphery. Chemicals

present in ripening fruits and produced as by-product of fermentation can inhibit the activity

of CO2 neurons (Turner and Ray, 2009). Moreover, how gustatory attraction to CO2 (Fischler
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et al., 2007) is integrated with olfaction-mediated avoidance, is also not studied yet. Possibly,

the different qualities of short, when the fly tastes CO2, versus long range stimulation, when

the fly smells CO2, allow for an appropriate discrimination (Scott, 2011). However, the involved

cellular mechanisms are not yet identified.
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3.4 Conclusion

The presented work unraveled a regulatory network that is involved in the suppression of CO2

neuron formation on the maxillary palp of Drosophila. The identified network shows for the

first time that the broadly acting transcription factor Prospero employs a microRNA to tightly

control the expression of targets that are also repressed on the genomic level. This finding first

exemplifies the need of tight regulation of developmentally powerful genes. Second it shows

how a broadly acting factor acts on a defined subset of olfactory neurons. Prospero is expressed

in almost every neuronal cell in the fly. Therefore it is hard to imagine, how the transcription

factor might contribute to the differentiation of specific cell types. In this study, the usage of

a specific microRNA to tightly regulate target genes or mRNAs might be one answer to this

question. Another aspect might be the hypomorphic nature of the studied Prospero allele. In

contrast, to the complete loss of Prospero, which additionally and more prominently showed a

neuronal loss, the hypomorphic allele specifically acted in the neuron number in two olfactory

neuron classes on the MP. This argues for the observation that neurogenic factors act on a

temporally and level dependent manner to generate variety in different sensilla subtypes.

Since the formation of ectopic MP CO2 neurons which perform mistargeting to the medial

glomerulus highly resembles the CO2 neuron pattern found in mosquito, the regulatory ele-

ments detected might have played a role in the evolution of flies and mosquitoes. Whether

these factors also play a role in mosquito might be the next interesting question to answer.

Studying the factors further might answer, how sensory neurons relocate throughout evolu-

tion from one appendage to another and why this re-location alters wiring and the underlying

behavior. The comparison of flies and mosquito and their behavior toward CO2 is especially

interesting since the two species represent two extreme cases. How in evolution attraction was

changed into avoidance could be answered by elucidating the mosquito factor guiding CO2

neuron development.

Apart from that, studying microRNAs seemed to be feasible in a model organism like

Drosophila which proofed to be genetically easily modifiable and the number of Drosophila

microRNAs is limited. However, miR-279 is among the few microRNAs which show a pheno-

type. Recent studies showed that apart from the CO2 neurons the microRNA is also involved in

specifying migratory border cells vs. non-migratory follicle cells in the Drosophila ovary (Yoon

et al., 2011). Non-migratory cells distinguish themselves from migratory cells through low lev-

els of unpaired (Upd) and hence reduced STAT levels. miR-279 was shown to directly repress

STAT and thereby reinforces the cellular fate to become a follicle cell. In another context,
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miR-279 mutants showed a phenotype in the circadian rhythm. Unlike control flies, miR-279

mutants exhibited arrhythmic behavior. On the molecular level, miR-279 was shown to repress

Upd in the output neurons of the circadian clock. Interestingly, the microRNA could be a

molecular link between the internal clock to cells that regulated rest and activity (Luo and

Sehgal, 2012). In both studies, miR-279 is regulating components of the JAK/STAT pathway.

The two studies exemplify that microRNAs are important in developmental processes but also

act in the fully differentiated organism to regulate behavior. Therefore miR-279 could be used

to study, how a single microRNA is differently regulated in various systems imposing different

cell fates. Thereby, a more complete picture how cellular identities are specified using common

factors would be achieved.



Chapter 4

Material and Methods

4.1 Molecular techniques

4.1.1 Media

LB media (per liter)

• 10g NaCl

• 10g tryptone

• 5g yeast extract

• 20g agar

• pH 7 (NaOH)

For selection:

• add appropriate antibiotic e.g.100 µg/ml Ampicilin, 50 µg/ml Kanamycin or 30 µg/ml

Chloramphenicol

• for plates + 15g Agar

NZY plus media (per liter)

• 10g NZ amine

• 5g yeast extract
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• 5g NaCl

• pH 7.5

after autoclaving, add the following sterile filtered solutions:

• 12.5ml of 1M MgCl2

• 12.5ml of 1M MgSO4

• 10ml of 2M glucose solution

4.2 Enzymes and Standards

Polymerases:

• Taq (NEB)

• Takara Taq

Restriction enzymes were purchased from NEB and used according to the manufacturers

instructions.

4.3 Commercial Kits

• Maxi prep Kit (Qiagen)

• Spin Mini prep Kit (Qiagen)

• Gel Extraction Kit (Qiagen)

• PCR product purification Kit (Qiagen)

• MultiSite Directed Mutagenesis (Stratagene)

• Magna EZ ChIP Kit (Millipore)

• Effectene Transfection Reagent (Qiagen)
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4.4 Oligonucleotides

mutagenesis primer

mutP1 fwd acagttcaaatgtgccgtctaatttctaatgatttaatttc

mutP2 fwd gcgcgtgtgtaagacgttgattgttagtgtacgg

mutP3 fwd cctggtacaatgaagattcgcatttagaataaggca

mutP4 fwd gggaggaaagcattcacagacaacaacccttctggg

EMSA oligos

P1 fwd gatgcaagcagcatttacagttcaaatgtgccgtctaattagaaatgatttaatttcaat

mutP1 fwd gatgcaagcagcatttacagttcaaatgtgccgtctaatttctaatgatttaatttcaat

P4 fwd gagggtagcgcaaggaaaggggaggaaagctaagacagacaacaacccttctggg

mutP4 fwd gagggtagcgcaaggaaagggggaggaaagcattcacagacaacaacccttctggg

3’UTR primer

3’UTR escargot primer fwd acctcgagggcaatatatttatatatac

3’UTR escargot primer rev acgcggctgtatgtaaataaaat

miR-279 promotor primer

miR-279 promotor fwd gagctcgaaatgccagtattgcaaac

miR-279 promotor rev ctcgagcaaatactaagaaaatcaat

4.5 Plasmids

• TOPO-TA (Invitrogen)

• TOPO pENTR (Invitrogen)

• pGEX-prosL (Cook et al., 2003)

• pUAStattB-prospero (fulllength)
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• RNAi prospero (VDRC)

• RNAi insulin receptor (VDRC)

• pGl3 (empty) (Promega)

• miR-279 promotor-pGl3 (Hartl et al., 2011)

• miR-279 promotor-2x mutated-pGL3

• miR-279 promotor-4x mutated-pGl3

• pTK Renilla (Promega)

• psi-CHECK2 (Promega)

• psi-CHECK2-nerfin-1 3’UTR (Cayirlioglu et al., 2008)

• psi-CHECK2-escargot 3’UTR (Hartl et al., 2011)

• UAS-dsred-miR-279 (Cayirlioglu et al., 2008)

• UAS-dsred-miR-315 (Cayirlioglu et al., 2008)

• ubiquitin-Gal4 (Cayirlioglu et al., 2008)

4.6 Bacteria Strains

Chemically competent cells, TOP10, were purchased from Invitrogen and were used for amplifi-

cation of plasmids and cloning. For overexpression of the homeodomain of Prospero, Bl21 cells

were used, as these strain is deficient of the lon(8) and the ompT proteases. The strain pur-

chased from Novagen (Bl21(DE3)plysS) had an additional copy of a lysis enzyme that allowed

for an easier lysis of the cells.

4.7 Antibodies

4.7.1 Primary and Secondary Antibodies for Immunohistochemistry

Primary antibodies were used in the following dilutions:
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• mouse α-NC82 (DSHB), 1:20;

• mouse α-Disclarge (DSHB), 1:50;

• mouse α-Prospero (DSHB), 1:20;

• mouse and rat α-Elav (DSHB), 1:50;

• rabbit and mouse α-GFP (Clontech), 1:2000 and 1:500, respectively.

All secondary antibodies were ordered from Dianova and used at 1:200:

• α-mouse-CY5

• α-rat-CY3

• α-rabbit-488

4.7.2 Antibodies for ChIP Assay

For Chromatin Immunoprecipitation of FLAG-Prospero, the M2 α-FLAG antibody from Sigma

was used.

4.8 Molecular Techniques

4.8.1 Molecular Cloning

Molecular cloning was performed using the classical restriction enzyme digest which leads to

sticky ends followed by a ligation of the digested vector and insert using the T4 ligase (NEB).

4.8.2 Electromobility Shift Assay (EMSA)

For the electromobility shift assay the homeodomain of Prospero was purified from BL21 cells

transfected with the construct pGex-prosL that was kindly provided by Tiffany Cook. Oligos

containing the predicted Prospero binding sites were annealed and radiolabeled with [γ32P ]

ATP using T4 polynucleotide kinase (Fermentas).

P1fwd gatgcaagcagcatttacagttcaaatgtgccgtctaattagaaatgatttaatttcaat

mutP1fwd gatgcaagcagcatttacagttcaaatgtgccgtctaatttctaatgatttaatttcaat
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P4fwd gagggtagcgcaaggaaaggggaggaaagctaagacagacaacaacccttctggg

mutP4fwd gagggtagcgcaaggaaagggggaggaaagcattcacagacaacaacccttctggg

The labeled oligos were mixed with the purified proteins in binding buffer (20mM HEPES

pH7.5, 100mM NaCl, 1mM DTT, 5mM MgCl2) and incubated for 20min at RT. Subsequently

the mixture was loaded on a 0.5% TBE pre-run minigel. The gel was dried and exposed to a

Phospho screen overnight.

4.8.3 Chromatin immunoprecipitation (ChIP)

Embryos (UAS-Flag-Pros/X; actin-Gal4/+) were collected and fixed as previously described

(Sandmann et al., 2006). The embryos were fixed in a crosslinking solution (50mM HEPES,

1mM EDTA, 0.5mM EGTA, 100mM NaCl, pH 8,0) for 15min under vigorous shaking. The

crosslinking solution was stopped by adding PBS with 125mM glycine and 0.1% Triton-X.

Embryos were washed twice with PBT (0,1% Triton-X), dried and frozen in -80 C. For cell lysis

embryos were dounced in PBS with 0.1% Triton-X and protease inhibitor, centrifuged and the

pellet dissolved in cell lysis buffer (5mM HEPES pH 8.0, 85mM KCl, 0.5% NP-40 and protease

inhibitor). After the centrifugation, the pellet was dissolved in nuclear lysis buffer ( 50mM

HEPES pH 8.0, 10mM EDTA, 0,5% N-Laurylsarkosin and protease inhibitor) and incubated at

room temperature for 20min. Lysates were sonicated (Sonicator sonoplus, Bandelin) until an

approximate fragment length of 500-1000bp was achieved. The sheared chromatin fragments

were incubated overnight with magnetic beads and α-FLAG M2 (Sigma) to detect Flag-Prospero

or mouse IgG as unspecific binding control. Beads were washed and the bound chromatin

was eluted according to the manufacturer’s instructions (Magna ChIP G Kit, Millipore). The

chromatin was checked for the presence of miR-279 enhancer fragments by PCR using the

following primer sets:

ChIP P4 fwd gtatataatggacaagaagaagaataagcag

ChIP P4 rev catgcggaatttcagttgtttccttttatatc

An input control was included into the PCR.

4.9 Cell Culture Lines

Drosophila Schneider cells (S2) (Invitrogen) were grown in cell culture. The S2 cell line was

derived from a primary culture of late stage (20-24 hours old) Drosophila melanogaster embryos
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(Schneider, 1972). S2 cells were incubated at 25oC without CO2 as a loose, semi-adherent

monolayer in tissue culture flasks. For maintenance, S2 cells were splitted in a ratio of 1:3 or

1:10 and further incubated for 3 or 7 days, respectively.

4.9.1 Promotor S2 Cell Analysis

The genomic 2kb upstream region of miR-279 was amplified and cloned into the pGL3 vector.

This putative enhancer region was further mutagenised at the predicted conserved Prospero

binding sites using the Stratagene QuickChange Lightning Multi Site-Directed Mutagenesis

Kit. The following primers were used to perform the nucleotide exchange:

mutP1 fwd acagttcaaatgtgccgtctaatttctaatgatttaatttc

mutP2 fwd gcgcgtgtgtaagacgttgattgttagtgtacgg

mutP3 fwd cctggtacaatgaagattcgcatttagaataaggca

mutP4 fwd gggaggaaagcattcacagacaacaacccttctggg

S2 cells were transfected with a reporter construct carrying either the wild type enhancer frag-

ment, a promoter fragment with mutated sites P1 and P2 or a construct with mutations at all

putative and conserved Prospero binding sites. For normalization, the pTK Renilla vector that

expresses the Renilla luciferase was co-transfected. Both vectors were used in a concentration

of 500ng. The 106 cells were seeded in 6-well plates and transfected the next day with the

constructs described. For transfection the Effectene transfection reagent (Qiagen) was used

according to the manual provided. Approximately 16h after transfection the cells were lysed

and luciferase expression assayed using the Dual Luciferase Kit (Promega) according to the

manufacturer’s instructions. For overexpression of Prospero, a full length EST (LD37627 from

BDGP) was subcloned into the pattB-UAS vector (donation from the Basler lab). The RNAi

pros construct was a gift from the VDRC library (Construct ID 109284). To drive the expres-

sion of both constructs ubiquitin-Gal4 was co-transfected. All experiments were performed in

triplicates.

4.9.2 3’UTR S2 Cell Assay

To generate luciferase targets, we amplified a 1.8kb nerfin-1 fragment (including the entire

3’UTR and 220bp of downstream sequence), and a 644bp escargot 3’UTR fragment and cloned
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these downstream of the renilla luciferase coding region in psiCHECK2; this vector contains an

internal firefly luciferase gene that serves as an internal control. For the miR-279 expression

construct, I cloned 415 bp of genomic sequence, centered on the miR-279 hairpin, into the

3’UTR of UAS-DsRed. Different 3’UTRs were fused to a luciferase reporter construct. psiCheck,

a control 3’UTR; the entire nerfin-1 3’UTR; escargot 3’UTR with one predicted miR-279 binding

sites. Subsequently, I transfected 100 ng target, 50 ng ub-Gal4 and 100 ng UAS-DsRed-miR-

279 plasmids into 1x106 S2 cells in 24 well format. For transfection the Effectene transfection

reagent (Qiagen) was used according to the manufacturer’s instructions. Three days later,

the cells were lysed, subjected to the dual luciferase assay (Promega) and analyzed on a plate

luminometer (Tecan). Triplicate transfections were performed and data of four repetitions were

pooled.

4.10 Fly Maintenance and Genetics

4.10.1 Fly Food and Rearing Conditions

Crosses and weak stocks were maintained on standard medium at 25oC at around 60-70%

humidity. The general stock maintenance was at 18oC. For selection of markers, flies were

anesthetized using CO2.

4.10.2 Genotypes

Control:

eyflp;Gr21a-Gal4,UAS-mCD8GFP/+;FRT82/FRT82Gal80E2F

eyflp;Gr21-sytGFP/+;FRT82/FRT82Gal80E2F

eyflp;miR-279-Gal4,UAS-mCD8GFP/+; FRT82/FRT82Gal80E2F

hsflp;Elav-Gal4,UAS-mCD8GFP/+; FRT82/FRT82Gal80

hsflp;miR-279-Gal4,UAS-mCD8GFP/+; FRT82/FRT82Gal80E2F

eyflp; Gr21a-sytGFP actGal4;FRT82/FRT82ClGal80

eyflp; Gr21a-sytGFP actGal4/RNAipros; FRT82/FRT82ClGal80

eyflp; Gr21a-Gal4 UASmCD8GFP/ RNAinerfin-1; FRT82 /FRT82ClGal80
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eyflp; Gr21a-sytGFP actGal4/RNAispineless; FRT82/FRT82ClGal80

(a.o. RNAi constructs against gcm, senseless, Ptx1)

eyflp; Gr21a-Gal4 UASmCD8GFP/ escargotk00606; FRT82 /FRT82ClGal80

eyflp; Gr21a-Gal4 UASmCD8GFP/ +; FRT82 hb9kk30/FRT82ClGal80

eyflp; Gr21a-Gal4 UASmCD8GFP/ +; FRT82 /FRT82ClGal80

eyflp; OrX-Gal4 UASsytGFP/+; FRT82/FRT82ClGal80

eyflp; OrX-Gal4 UASmCD8GFP/+; FRT82/FRT82ClGal80

eyflp; FRT40A/FRT40A GAL80 or CL;Gr21a-GAL4,UASmCD2

Mutants: The miR-279 962−7 resulted from a P-element insertion in the enhancer region of

the miR-279 gene (Cayirlioglu et al., 2008). The hypomorphic allele of Prospero, prosIG2227,

resulted from a point mutation due to EMS mutagenesis (Hartl et al., 2011). pros17 is a

complete loss-of-function allele of Prospero (Manning and Doe, 1999). prosvoila78 represents

a hypomorphic allele of Prospero which resulted from a P-element insertion into the enhancer

region of Prospero followed by an imprecise excision (Grosjean et al., 2001).

eyflp;Gr21a-Gal4,UAS-mCD8GFP/+;FRT82 mutant/FRT82Gal80E2F

eyflp;Gr21-sytGFP/+;FRT82 mutant/FRT82Gal80E2F

eyflp;miR-279-Gal4,UAS-mCD8GFP/+; FRT82 mutant/FRT82Gal80E2F

hsflp;miR-279-Gal4,UAS-mCD8GFP/+; FRT82 mutant/FRT82Gal80E2F

hsflp, Elav-Gal4UASmCD8GFP; FRT82 mutant/FRT82Gal80

eyflp; Gr21a-sytGFP actGal4; FRT82 mutant/FRT82ClGal80

eyflp; Gr21a-sytGFP actGal4/ UASmiR-279 or UASpros or UASnerfin-1;FRT82 mutant/FRT82ClGal80

eyflp; Gr21a-sytGFP actGal4/ RNAinerfin-1; FRT82 mutant/FRT82ClGal80

eyflp; Gr21a-Gal4 UASmCD8GFP/ RNAipros; FRT82 mutant/FRT82ClGal80

eyflp; Gr21a-sytGFP actGal4/RNAispineless; FRT82 mutant/FRT82ClGal80
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(a.o. RNAi constructs against gcm, senseless, Ptx1)

eyflp; Gr21a-Gal4 UASmCD8GFP/ +; FRT82 mutant hb9kk30/FRT82ClGal80

eyflp; Gr21a-Gal4 UASmCD8GFP/ escargotk00606; FRT82 mutant/FRT82ClGal80

eyflp; Gr21a-Gal4 UASmCD8GFP/+; FRT82 mutant nerfin159/FRT82ClGal80

eyflp; OrX-Gal4 UASsytGFP/+; FRT82 mutant/FRT82ClGal80

eyflp; OrX-Gal4 UASmCD8GFP/+; FRT82 mutant/FRT82ClGal80

eyflp; FRT40A escargotk00606/FRT40A GAL80 or CL;Gr21a-GAL4,UASmCD2

eyflp;Gr21a-sytGFP actGal4/ UASescargot or UASnerfin-1

or UASescargot, UASnerfin-1; FRT82/FRT82ClGal80

eyflp;Gr21a-sytGFP actGal4/ UASp35 or UAScyclinE; FRT82/FRT82ClGal80

4.10.3 eyeless Flp

For large clones in the antenna and the maxillary palp an eyeless-FLP insertion on the X

chromosome was used. The eyeless promotor used was previously described for the visual

system (Newsome et al., 2000). The construct used generates around 50-70% mutant cells in

the olfactory appendages.

4.10.4 MARCM

The Mosaic Ananlysis with a Repressible Cell Marker technique (MARCM) is widely used in

Drosophila in order to generate and label mutant cells in a tissue specific manner (Lee and Luo,

2001). To do so, the Gal4/UAS system (Brand and Perrimon, 1993) is combined with Gal80

to repress the expression of Gal4. Heterozygous cells carry the Gal80 transgene in trans to the

mutation but on the same chromosomal arm as the mutated gene of interest. Upon mitotic

recombination mediated by the FRT/FLP system, Gal80 is removed from the homozygous

mutant cell. Hence, the expression of the fluorescent label by the Gal4/UAS system is possible

and allows the detection of mutant cell and their daughters.
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4.10.5 The Screen for Mutant Alleles

The screen that revealed the hypomorphic Prospero and the loss-of-function miR-279 962−7

(Cayirlioglu et al., 2008) mutant alleles was performed on a library of P-element insertion lines

and EMS mutants that were per se lethal. In order to be able to analyze them MARCM and

FRT/FLP mosaic analysis that rendered only the tissues where eyFLP was active mutant while

the rest of the fly remained wildtype. To analyse phenotypes, the mutant cells were labeled by

three different subsets of olfactory receptors (Or47a, Or47b and Gr21a). The screen resulted in

three miR-279 -like mutants out of 6000 analyzed mutants on the third chromosome that were

analyzed.

4.10.6 MARCM Analysis of Lethal Mutant Alleles

MARCM analysis was carried out on flies of either sex of the following genotype: hsFLP

or eyFLP; OR-gal4 UAS-sytGFP (or UAS-mCD8GFP)/+; FRT82 mutation/FRT82 Gal80

(E2F). ORN labeling was achieved by fusing the promoter-elements to GAL4 or directly to

synaptotagmin-GFP. Mutations included FRT82B miR-279962−7 (Cayirlioglu et al., 2008), FRT82B

pros17 (Manning and Doe, 1999), FRT82B prosIG2227 (Hartl et al., 2011), and FRT82B

prosvoila78 (Grosjean et al., 2001). All analyses were done in mosaic animals. Gr21a tran-

scriptional reporter was used for CO2 neurons (i.e. Gr21a-GAL4 driving membrane-bound GFP

(UAS-mCD8GFP)), to detect cell bodies in the antenna and the maxillary palp. Elav-GAL4

was used to label neurons. miR-279-GAL4 contains the 2kb DNA stretch upstream of miR-279

gene. As previously shown, this driver rescues the mutant phenotype of miR-279 loss-of-function

allele (Cayirlioglu et al., 2008). miR-279-GAL4 was used to label cells and their daughter cells

expressing miR-279 in mosaic animals. Alternatively, a transgene provided by S. Cohen was

used to detect miR-279 activity in vivo: miR-sensor. Sensor constructs contain a green flu-

orescent protein (GFP) driven by a tubulin-promotor. The GFP is fused to a 3’UTR that in

our case contained several binding for miR-279. In cells where the microRNA is present the

GFP in the miR-sensor is downregulated, while in cells without miR-279, GFP is expressed.

Therefore, the miR-sensor is a reporter for the activity of the microRNA in the tissue. In the

control sensor construct any 3’UTR is absent. Therefore, the construct is expressed wherever

the utilized tubulin-promotor is active. I analyzed the expression of the sensor constructs in the

embryonic CNS.
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4.10.7 Rescue and Genetic Interaction Experiments

Rescue and genetic interaction experiments were carried out by using cDNAs fused to UAS

transcriptional response elements. UAS-construct expression was under the control of the

β-actin promoter, but the expression was restricted to only the mutant tissue in the MP and

antenna upon eyFLP expression and mitotic recombination.UAS-Pros constructs were generated

and generously provided by F. Matsuzaki, C. Doe, and A. Brand. UAS-dsred-miR-279 was a

gift by E. Lai. UAS-nerfin transgenic flies and nerfin-1 loss-of-function alleles were generously

provided by Ward Odenwald. UAS-escargot was ordered from Bloomington.

4.10.8 RNAi Flies

Transgenic flies carrying RNAi constructs were ordered from the VDRC or Kyoto stock centers.

RNAi was expressed in exactly the same manner as the UAS constructs in mutant tissue of

antenna and MP only.

4.10.9 Genetic Interaction Using Loss-of-Function Alleles

The number of ectopic CO2 neurons was tested mutant alleles of Prospero prosIG2227 and

in the miR-279 mutant background. Also heterozygous mutations of escargot (P(lacZ)esg)

and nerfin-1(nerfin159) and a combination of both was introduced in the mutant background.

The ectopic neurons in the MPs were counted and compared. Escargot loss-of-function and

P(lacZ)esg flies were ordered from the Bloomington stock center.

4.10.10 Collection of Embryos

The plates for embryo collection contained 23g of danish agar (Roth) boiled in 1l of apple juice.

The flies were put in a collection cage that was closed by a apple agar plate. The plates were

exchanged twice per day, in the morning after an overnight collection and in the evening. The

collected eggs covered all developmental stages in about the same ratios. The embryos were

on the plate dechorinated in 30% bleach(Sigma) for 2 min at RT. The dechorinated embryos

were collected in a sieve and rinsed extensively with tap water. It is important to remove the

bleach completely from the embryos. For fixation the embryos were transferred in an Eppendorf

tube that contained 50% Heptan, 45% PBS and 5% Formaldehyde. Under vigorous shaking

to mix the two phases of the solution the tissue was fixed for 21min at RT. The lower layer

was subsequently removed, replaced with Methanol and again removed. These sequence was
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repeated until the embryos were fully soaked with Methanol and sink down in the Eppendorf

tube. At this step they can be frozen at -20oC. To avoid bleaching of GFP, methanol can be

replaced by 70% Ethanol.

4.10.11 Tissue Dissection and Antibody Staining

For the analysis of ORN axon targeting in the adult brain, eyFLP mosaic flies were dissected,

adult brains were fixed, and immunostained. For analysis of cell body number and position,

heatshock and eyFLP were used to create mosaic mutant tissue. Quantifications of ORN

number were carried out on adult MPs and antennae. Detailed developmental analysis was

carried out with eyFLP mosaic clones. Analysis in the developing olfactory neurons was carried

out with the use of eyFLP and hsFLP. White pupae were selected and incubated at 25◦C until

the stage of interest was reached. MPs and antenna regions were dissected in ice cold PBS and

collected in 4% PFA on ice. Upon fixation for 1h at RT in 4% PFA in PBL, tissues were washed

2x 15 min in PBS-0.5% Triton, followed by 1h incubation in blocking solution (20% donkey

serum, 0.5% Triton in PBS). Primary antibody was incubated over night at 4◦C in blocking

solution without Triton. After washing 2x 15 min in PBS-0.5% Triton, tissues were incubated

with secondary antibody for 1h at RT in blocking solution without Triton. Tissues were washed

once again for 2x 15 min in PBS-0.5% Triton and mounted with Vectashield mounting medium.

Dechorinated and fixed Embryos were first stained following the same procedure as described

above. After staining the embryonic CNS was dissected using thin needles. All tissues were

analyzed using confocal microscopy at an Olympus FV1000 or a Leica SP2 confocal. Pictures

were processed in Adobe Photoshop, Adobe Illustrator, ImageJ, and Microsoft PowerPoint. For

sensor quantification, single sections at comparable position between wild type and mutant,

taken at same intensities and resolution, were divided into seven regions of interest (ROI). The

mean of pixel intensity was quantified using ImageJ software and plotted using Microsoft Excel.

solution:

PBL:

PBS + Triton-X

4% PFA

0.1M Na2 HPO4

100 mM Lysine (1) HCl
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pH 7.4

Primary antibodies were used in the following dilutions:

• mouse α-NC82 (DSHB), 1:20;

• mouse α-disclarge (DSHB), 1:50;

• mouse α-prospero (DSHB), 1:20;

• mouse and rat α-Elav (DSHB), 1:50;

• rabbit and mouse anti-GFP (Clontech), 1:2000 and 1:500, respectively

All secondary antibodies were ordered from Dianova and used at 1:200:

• α-mouse-CY5

• α-rat-CY3

• α-rabbit-488

4.10.12 Electrophysiology

genotype of control fly analysed: eyflp; Gr21aGal4 UASmcD8GFP; FRT82ClGal80/FRT82

genotype of mutant fly analysed: eyflp; Gr21aGal4 UASmcD8GFp; FRT82 prosIG2227 or

miR-279 962−7

Extracellular single sensillum recordings from maxillary palp were performed according to

the procedure described previously (de Bruyne et al., 1999). Briefly, a fly was trapped into

a truncated pipette tip with its proboscis protruding out and mounted on a glass slide. The

protruding proboscis and maxillary palps were secured and stabilized on a coverslip with the

help of a tapered glass micro pipette. The preparation was visualized with a Leica DM6000

FS microscope at 750X magnification and maxillary palp basiconic sensilla were identified by

the expression of GFP in mutant flies eyflp; Gr21aGal4 UASmcD8GFp; FRT82 prosIG2227 or

miR-279 962−7. A glass reference electrode filled with 0.01M KCl was inserted into the eye and a

recording glass electrode filled with the same solution was used to record from the maxillary palp

basiconic sensilla. Action potentials were recorded using a CV-7B headstage and MultiClamp

700B amplifier (Molecular Devices). The signals were sampled at 10 KHz and digitized and fed
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into a computer by Digidata 1440A. The spikes were visualized and recorded in Clampex 10.2

acquisition software and sorting of spikes were done manually with Clampfit 10.2 software off

line. A continuous and humidified airstream (2000 ml/min) was delivered to the fly throughout

the experiment via an 8mm diameter glass tube positioned 10mm away from the preparation.

A custom-made odor delivery system was used for stimulation in all experiments (Smartec,

Martinsried). For CO2 stimulation, 500 ms pulses of CO2 were delivered into the continuous

airstream with the help of mass flow controllers and solenoid valves. For odor stimulation,

specific odors were diluted 1:10 in paraffin oil and 300 ml/min odor pulse were delivered into

the continuous airstream using headspace method. During the odor stimulation the continuous

airstream flow was maintained always at 2000 ml/min with the help of mass flow controllers and

solenoid valves. The spikes in the recorded traces were sorted according to spike amplitude. The

spike quantification was done by counting number of spikes over 500 ms duration immediately

after the onset of CO2 response and subtracting from the number of spikes counted over a 500

ms window before the stimulation. The obtained number of spikes were doubled and presented

as spikes/s.

4.11 in silico Analysis

4.11.1 Bioinformatic Analysis

The presence of the Prospero binding motifs TWAGVYD (Cook et al., 2003) or CWYNNCY

(Choksi et al., 2006) in the 2kb upstream region of the miR-279 gene was tested using the

RSA tools software. The predicted putative binding sites were further evaluated by testing the

conservation in 6 different Drosophila species (D. melanogaster, D. yakuba, D.simulans, D.

erecta, D. ananassae, D. pseudoobscura) using the VISTA genome browser.

RSA tools software: http://rsat.ulb.ac.be/rsat/genome-scale-dna-pattern_form.

cgi

VISTA genome browser: http://pipeline.lbl.gov/cgi-bin/gateway2

4.11.2 GO term Analysis and miR-279 Prediction Tools

A genome wide list of Prospero in vivo targets was previously published (Choksi et al., 2006).

miR-279 target gene predictions were generated with the following online software:



86 4. Material and Methods

TargetScan http://www.targetscan.org/fly_12,

PicTar http://pictar.mdc-berlin.de/cgi-bin/new_PicTar_fly.cgi?species=fly,

miRBase http://www.mirbase.org

Only targets that appeared at least in two of the predictions were used for the comparison to the

list of Prospero target genes. Gene ontology analysis was carried out using GOstat (Beissbarth

and Speed, 2004). All predictions were Benjamini-corrected and GO terms with a p>0.01 were

disregarded. Targets for aga-miR-279 were predicted using miRBase.

Results can be found here:

http://www.ebi.ac.uk/enright-srv/microcosm/cgi-bin/targets/v5/hit_list.pl?

genome_id=377&mirna_id=aga-miR-279&external_name=&gene_id=&go_class=function&go_

term=&logic=phrase&terms=

aga-nerfin-1 is AGAP002601, and aga-escargot is AGAP008274



Bibliography

L. Abuin, B. Bargeton, M.H. Ulbrich, E.Y. Isacoff, S. Kellenberger, and R. Benton. Functional

architecture of olfactory ionotropic glutamate receptors. Neuron, 69:44–60, 2011.

D.-B.G. Akalal, C.F. Wilson, L. Zong, N.K. Tanaka, K. Ito, and R.L. Davis. Roles for Drosophila

mushroom body neurons in olfactory learning and memory. Learn Mem, 13:659–668, 2006.

V. Ambros. The functions of animal microRNAs. Nature, 431:350–355, 2004.

C.I. Bargmann. Comparative chemosensation from receptors to ecology. Nature, 444:295–301,

2006.

D.P. Bartel. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116:281–297,

2004.

D.P. Bartel. MicroRNAs: Target recognition and regulatory functions. Cell, 136:215–233, 2009.

R. Beckervordersandforth, P. Tripathi, J. Ninkovic, E. Bayam, A. Lepier, B. Stempfhuber,

F. Kirchhoff, J. Hirrlinger, A. Haslinger, D.C. Lie, J. Beckers, B. Yoder, M. Irmler, and
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