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Summary

DNA methylation plays a central role in epigenetic regulation of mammalian
gene expression. The overall pattern of DNA methylation is established during
early development and is essential for lineage specification and maintenance of
di↵erentiated states. These observations led to the notion that DNA methylation
represents a stable epigenetic mark which is subjected to little changes after the
initial setting of cell type specific patterns. In the last decade this idea evolved
into a more dynamic view where DNA methylation levels can rapidly change in
response to internal and external signalling. However, it remained highly debated
what mechanisms are used to remove DNA methylation marks, a process that is
required in order to explain the observable DNA methylation dynamics. Recently,
the Tet family of enzymes were described to catalyse the oxidation of 5-methyl-
cytosine (5-mC) to 5-hydroxymethyl-cytosine (5-hmC), a potential intermediate
in DNA demethylation.
To gain first insights into in the function of 5-hmC in epigenetic gene regulation
we developed a sensitive enzymatic assay for quantification of 5-hmC content in
genomic DNA. Using this assay we discovered that 5-hmC is most abundant in the
central nervous system and changes dramatically during development. In addition,
we showed that Tet3 is the major Tet protein in adult tissues and its expression
correlates well with 5-hmC content during early development. Furthermore, we
used the assay to quantify genomic 5-hmC levels in patients with myeloid leukemia
uncovering a correlation between global gene expression profile, Tet2 mutational
status and 5-hmC content. Additionally, we characterised a novel restriction en-
zyme PvuRts1I that specifically cleaves 5-hmC containing DNA and can be used
to analyse localisation of 5-hmC in genomic DNA. Next, we addressed the ques-
tion how 5-hmC is integrated in the epigenetic network. Interestingly, we found
that 5-hmC is not recognized by the 5-mC binding protein MeCP2 representing a
mechanism by which oxidation of 5-mC could lead to gene activation. Moreover,
we discovered that the CXXC domain of Tet1 represents a specific subtype of
CXXC zinc-finger domains found in a small group of proteins involved in the wnt
signalling pathway.
Using a fluorescence microscopy based high-throughput assay we systematically
analysed the involvement of epigenetic factors in transgene silencing and discov-
ered a so far unknown pathway by which silencing is achieved. At last, we studied
the function of designer transcription activator-like e↵ectors (dTALEs) in activat-
ing the oct4 promoter and found that in combination with low dosages of epigenetic
inhibitors oct4 transcription could e�ciently be activated.
In conclusion, we developed a new set of methods for quantification and mapping
of 5-hmC and used these to gain first insights into the function of 5-hmC and
Tet enzymes in development and disease. Moreover, we further elucidated the
function of epigenetic factors in transgene silencing and developed a technique for
targeted transcriptional activation using dTALEs in combination with epigenetic
inhibitors.
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1 Introduction

1.1 Epigenetic information

“One can say. . . that the elucidation of the genetic code is indeed a great achievement. It

is, in a sense, the key to molecular biology because it shows how the great polymer lan-

guages, the nucleic acid language and the protein language, are linked together.”[Crick,

1958].

Francis Crick was right to predict a breakthrough in molecular biology by the discovery

of the genetic code. However, the “key to molecular biology” has proven to open a

door into a room (or rather a hall) filled with many answers but even more questions.

The direct connection between “nucleic acid language” and “protein language” which

seemed so obvious and straight forward in the late 1950’s turned out to be an extremely

complex, inter-dependent relationship.

Considering the enormous variety of cell types, their di↵erent functions and morpholo-

gies it became clear that knowing the nucleotide sequence alone is only a small part of

the puzzle. Although all cells of a given multicellular organism contain the same genetic

information, they di↵er in their function and gene expression profiles; hence the distinct

properties of the cells do not reside in the nucleotide sequence but in how the cells

make use of their common genomic background. This level of information was termed

epigenetic (epi (Greek): over, above). Epigenetic mechanisms control cell-, tissue-, and

development- specific gene expression and are therefore responsible for the identity of

di↵erent cell types. Moreover, epigenetic information is heritable and thus can be passed

on from one cell to its progeny.

1.2 Histone modifications and Histone variants

Eukaryotic DNA is organized into a higher order structure called chromatin. The ba-

sic unit of chromatin is the nucleosome, which consists of 147 base pairs (bp) of DNA

wrapped around an octamer of core histones. This histone octamer is composed of two
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Introduction 3

heterodimers of histone H3 and H4 associated with two heterodimers of histones H2A

and H2B [Finch et al., 1977; Dubochet and Noll, 1978]. These proteins share related

globular domains that mediate histone-histone interaction and DNA binding. Besides,

each histone also harbors a 20-35 amino acid long N-terminal peptide that extends from

the surface of the nucleosome. The histone“tails” and to a lower extend the core of the

protein are subject to a large number and variety of posttranslational modifications, in-

cluding methylation and acetylation of lysines and arginines, phosphorylation of serines

and threonines, ubiquitinylation and sumoylation of lysines, as well as ribosylation. It is

believed that many of these modifications play important roles in the regulation of tran-

scription. In principle, this can be achieved in two ways. Some modifications may lead

to alterations in structure and charge of the nucleosome which cause changes in DNA

binding and nucleosome packaging. For example acetylation of lysine residues neutral-

izes their positive charge which may weaken the interaction with the negatively charged

DNA backbone and thus lead to an open chromatin state where transcription factors can

access DNA more e�ciently. Although this might be a possibility by which histone mod-

ifications can regulate transcriptional activity, it is likely that most act by controlling

the recruitment of regulatory factors. For example, the chromodomain of heterochro-

matin protein 1 (HP1) binds to histone H3 when lysine (K) 9 is methylated [Lachner

et al., 2001] and this can lead to repression of transcription [Danzer and Wallrath, 2004].

Furthermore, the bromodomains of several proteins involved in transcriptional activa-

tion bind to acetylated lysines of histone H3 and H4 [Jacobson et al., 2000]. Histone

modifications can also lead to the recruitment of DNA methyltransferases and thereby

to DNA methylation and transcriptional repression [Tachibana et al., 2008].

Another mechanism by which histones modulate chromatin is via histone variants. While

the major histone proteins are encoded by multiple copies of histone genes, histone vari-

ants are usually present as single-copy genes. Furthermore, histone variants exhibit

significant di↵erences in the primary sequence compared to the major histones. Some

variants have distinct biophysical characteristics that are thought to alter the properties

of nucleosomes, while others localize to specific regions of the genome. Some histone

variants are exchanged with the pre-existing histones during development and di↵er-

entiation leading to tissue-specific expression patterns. These observations have led to

the suggestion that the histone variants have specialized functions in regulation of chro-

matin dynamics. Several histone variants have been shown to function in transcription,

particularly in repression. One example is the H2A variant MacroH2A which local-

izes to the inactive X-chromosome and some models suggest that the C-terminal tail of
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4 1.3. DNA methylation

MacroH2A can repress transcription enzymatically. Other variants have been shown to

aid in transcriptional activation like H2A-Bbd which facilitates nucleosome displacement

by destabilizing the nucleosome [Kamakaka and Biggins, 2005].

While nucleosomes have long been viewed as stable complexes, there is strong evidence

that they are highly dynamic, being constantly altered in their composition, structure,

and location along the DNA. Chromatin-remodeling complexes contain ATPase sub-

units and are know to slide nucleosomes, replace histones, or alter the histone-DNA

interactions [Kamakaka and Biggins, 2005; Längst and Becker, 2004].

1.3 DNA methylation

DNA methylation in mammals refers to the addition of a methyl-group to the 5’ carbon

atom of cytosine which leads to the formation of 5-methyl cytosine (5-mC). It occurs

predominantly at CpG dinucleotides but is also found at non-CpG sites albeit to a lesser

degree [Lister et al., 2009; Laurent et al., 2010]. In mammalian somatic cells 4% of

cytosines are methylated, which accounts for 70%-80% of all CpG dinucleotides in the

genome [Ehrlich et al., 1982]. The remaining 20%-30% mainly comprise CpG islands,

regions with a high CpG density which are associated with most promoters of constitu-

tively expressed genes and 40% of genes that display a tissue-specific expression profile

[Larsen et al., 1992]. While methylation in promoter regions is thought to be associated

with gene silencing [Colot and Rossignol, 1999], there is emerging evidence that highly

transcribed genes carry methylation marks in the gene body, but the functional conse-

quences of this are unknown so far [Ball et al., 2009; Laurent et al., 2010].

Several mechanisms have been proposed on how global DNA methylation patterns are

established. While there is evidence that DNA-binding factors are involved in creating

and keeping regions from being methylated especially in the context of CpG islands

[Brandeis et al., 1994; Macleod et al., 1994; Dickson et al., 2010], other studies could

show that certain chromatin marks and DNA methylation occur in relation to each

other [Weber et al., 2007; Meissner et al., 2008; Hawkins et al., 2010]. A number of

factors have been identified that could mediated the functional interplay between DNA

methylation and chromatin modifications. These factors have been shown to bind to

histone modifications and CpG sites thereby connecting both epigenetic mechanisms

[Zhao et al., 2009; Hashimoto et al., 2010; Rottach et al., 2010; Pichler et al., 2011].

A recent study revealed that in addition to trans acting mechanisms mentioned above,

promoter sequences contain metyhlation-determining regions (MDRs) that are su�cient
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Introduction 5

to mediate both hypomethylation and de novo methlyation in cis [Lienert et al., 2011].

1.3.1 DNA methylation in development and disease

DNA methylation has several important biological functions. During embryonic devel-

opment the genome experiences large changes in methylation levels. While the genomes

of egg and sperm cells are highly methylated [Sanford et al., 1987], the methylation is

rapidly lost after fertilization by passive [Rougier et al., 1998] and active [Mayer et al.,

2000; Gu et al., 2011; Wossidlo et al., 2011] mechanisms. After implantation embryonic

DNA methylation patterns are re-established through lineage-specific de novo methyla-

tion [Kafri et al., 1992; Santos et al., 2002]. The importance of DNA methylation during

embryonic development is supported by the discovery that embryos, which have defects

in DNA methylation show severe developmental deficiencies and die before birth [Okano

et al., 1999]. Another important function of CpG methylation is the maintenance of

mono-allelic expression of imprinted genes [Li et al., 1993]. In Embryos lacking the

maintenance DNA methyltransferase Dnmt1, alleles of both Igf2 and Igf2r, which are

normally paternally and maternally expressed, respectively, are silenced. Furthermore,

the H19 gene, which is normally maternally transcribed, is bi-allelically expressed. In

addition to its crucial role in imprinting, DNA methylation is also important for the

X-inactivation in female mammals as the expression of Xist is controlled by methylation

[Norris et al., 1994]. Moreover, DNA methylation is crucial for chromosomal stabil-

ity. Patients with the ICF syndrome (Immunodeficiency, Centromere Instability, Facial

Anomalies syndrome) carry a hypomorphic germline mutation in the gene coding for the

de novo methyltransferase DNMT3B and exhibit, besides other defects, a loss of DNA

methylation in centromeric and pericentromeric repeat regions [Miniou et al., 1997]. This

leads to pericentromeric decondensation and chromosomal instability. Consistent with

these findings, mouse embryonic stem cells (ESCs) lacking the two de novo methyltrans-

ferases dnmt3a/dnmt3b, exhibit elevated rates of centromeric sister chromatid exchange

[Jaco et al., 2008]. In addition, CpG methylation is crucial for the silencing of retro-

viruses and transposon inactivation [Cherry et al., 2000].

Aberrant changes in global DNA methylation patterns are characteristic for many cancer

types. In many cases a combination of global hypomethylation and promoter-localized

hypermethlyation is observed. However, the hypermethylation is not always confined

to promoter regions but can be spread over large gene “neighborhoods” up to whole

chromosome bands resulting in severe changes of gene expression patterns [Miremadi

et al., 2007].
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6 1.3. DNA methylation

  


Figure 1: Schematic representation of the catalytic mechanism of Dnmts adapted from [Schermelleh
et al., 2005]. The low reactivity of the C5 is overcome by a covalent complex formation at the C6 by
a conserved prolylcystein dipeptide. After methyl-group transfer from S-adenosyl-L-methionine (SAM)
the covalent bond is resolved by �-elimination.

1.3.2 Mammalian DNA methyltransferases

There are two types of DNA methyltransferase (Dnmt) activities in mammals, de novo

methylation and maintenance methylation. de novo methylation is by definition the

creation of new methylation marks at previously unmethylated CpG sites. It is impor-

tant during di↵erentiation and embryonic development [Okano et al., 1999] as well as

for silencing of retroviral expression. The methylation pattern established by de novo

methylation has to be passed on from one cell to its progeny. This is achieved by main-

tenance DNA methylation. The di↵erence to de novo methylation is that methylation

marks are not set on unmethylated but on hemi-methylated DNA which is produced

during DNA replication. The catalytic mechanism by which cytosine-C5 DNA methyl-

transferases catalyze the generation of 5-mC is conserved from prokaryotes to mammals.

These enzymes overcome the low reactivity of the cytosine C5 atom by covalent complex

formation at the C6 position. After flipping the target base out of the DNA helix, a

process called “base flipping”, the thiolate of a conserved prolylcysteinyl (PC) dipep-

tide forms a covalent bond with the C6 of the cytosine. This leads to the activation of

the C5 atom for the methyl-group transfer from S-adenosyl-L-methionine (SAM), the

common methyl group donor for all methyltransferases (Figure 1). Subsequently, the

covalent bond is resolved by �-elimination. In mammals there are three families of DNA

methyltransferases which will be described in more detail in the next paragraphs.

In mammals there are three types of DNA methyltransferases (Dnmts). Dnmt1, Dnmt2

and Dnmt3 of which the first and the latter are known to catalyze the formation of 5-mC.

In their catalytical region they display a high homology to bacterial DNA (cytosine-5)

methyltransferases (Figure 2). Moreover, the basic enzymatic mechanism is conserved

6



Introduction 7

Figure 2: Schematic representation of the mammalian DNA methyltransferase family adapted from
[Rottach et al., 2009]. All Dnmts have a similar C-terminal catalytic domain characterized by the
highly conserved motifs (I-X) also found in prokaryotic DNA (cytosine-5) methyltransferases. The
Dnmts di↵er, however, in their regulatory region. Dnmt1 contains the PCNA binding domain (PBD),
the pericentric heterochromatin targeting sequence (TS), a CXXC-type zinc finger motif (ZnF) , and
two bromo adjacent homology domains (BAH). The start codon of the long (ATGL) and short (ATGS)
isoforms, as well as the seven lysine-glycine repeat linker (KG7) are indicated. The regulatory domains
of Dnmt3a and 3b comprise a PWWP domain named after a conserved Pro-Trp-Trp-Pro motif of the
plant homeodomain (PHD)

.

between mammals and bacteria. In contrast to their prokaryotic ancestors, mammalian

Dnmts do not exhibit strong sequence specificity. However, the spatial distribution of

5-mC in mammalian genomes is vital. The necessary specificity is mediated by a large

Nterminal regulatory region that contains several di↵erent domains which mediate the

interaction with proteins that regulate the localization and activity of the methyltrans-

ferases. (Figure 2).

In this context it is important to take into account that DNA methylation is part of a

complex epigenetic network. DNA methylation, chromatin modifications and chromatin

remodeling pathways mutually a↵ect each other in multiple ways. The N-terminal region

of the Dnmts is responsible for the correct integration of DNA methylation in this net-

work. Through its direct cross-talk with chromatin or indirectly through interaction with

other proteins the N-terminal region regulates the localization and activity of the Dnmts.

For example, Dnmt3L binds directly to unmethylated H3K4 via its plant homeodomain

(PHD domain) [Jia et al., 2007]. However, in most cases the interpretation of chromatin

signals is achieved indirectly and Dnmts have been shown to interact with a variety

of proteins that are involved in epigenetic processes. Interactions have been described

with histone 3 lysine 9 (H3K9) methyltransferases (HMTs), Suv39h1, SetDB1 and G9a,

7



8 1.3. DNA methylation

components of the Polycomb repressive complex 2, histone deacetylases (HDACs) and

the heterochromatin protein 1 (HP1) [Cedar and Bergman, 2009].

Dnmt1

Dnmt1 was the first eukaryotic DNAmethyltransferase to be discovered [Bestor, 1988]. It

has been shown that it methylates hemimethylated DNA much more e�ciently then un-

methylated substrates [Bestor and Ingram, 1983] which led to the assignment of Dnmt1

as a maintenance DNA methyltransferase. Although there is evidence that Dnmt1 has

de novo methylation activity in vitro [Pradhan et al., 1997], it is most likely that its

main biological role in vivo is maintaining genomic methylation patterns. This is sup-

ported by the finding that Dnmt1 colocalizes with the replication machinery [Leonhardt

et al., 1992]. At replication sites hemimethylated DNA is formed when the newly syn-

thesized unmethylated strand pairs with the methylated template strand. Although

the (transient) association with the replication machinery makes it possible that Dnmt1

could directly methylate newly forming hemimethylated CpG sites, it seems not to be

essential for maintaining postreplicative methylation levels [Schermelleh et al., 2007;

Spada et al., 2007]. Intriguingly, Dnmt1 alone is not su�cient to stably maintain DNA

methylation as in ESCs lacking both de novo methyltransferases, Dnmt3a and Dnmt3b,

global methylation levels slowly decrease during long term culture, although they still

express Dnmt1 [Chen et al., 2003a]. Furthermore, Dnmt1 is ubiquitously expressed and

its presence is essential for the survival of somatic cells where apoptosis is induced via

a p53 mediated pathway, when Dnmt1 is depleted [Jackson-Grusby et al., 2001]. The

importance of Dnmt1 during development is shown by the fact that mice lacking Dnmt1

do not develop correctly and exhibit a growth arrest prior the 8-somite stage [Li et al.,

1992; Lei et al., 1996]. Moreover, Dnmt1 plays a crucial role in the maintenance of

chromosomal stability as mice expressing Dnmt1 at strongly reduced levels are viable

at birth but soon develop aggressive T cell lymphomas with a high frequency of chro-

mosome 15 trisomy [Gaudet et al., 2003]. The murine somatic form of Dnmt1 consist

of an 1100 amino acid long N-terminal regulatory region and a 500 amino acid long

C-terminal catalytic domain (Figure 2). The latter is common to all eukaryotic Dn-

mts and consists basically of ten conserved motifs which are crucial for the catalytic

activity. The N-terminal region is build up by a number of functional domains that

have regulatory functions. The first 125 amino acids mediate the interaction with the

DMAP1 transcriptional repressor [Rountree et al., 2000]. Dnmt1, except in early devel-

opment, exhibits a nuclear localization and has several nuclear localization signals (NLof

8
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Figure 3: Scheme of the cell cycle dependent localization of Dnmt1 and its involved domains [Easwaran
et al., 2004]. Dnmt1 associates with replication foci (RF) during early to mid S-phase via its PCNA
binding domain (PBD). From late S-phase to M-phase targeting sequence (TS) mediated heterochro-
matin loading is observable.

which the major one is formed by amino acids 178-202 [Cardoso and Leonhardt, 1999].

Furthermore, the N-terminal region contains the PCNA binding domain (PBD) which

mediates the interaction with the Proliferating Cell Nuclear Antigen (PCNA)[Chuang

et al., 1997]. PCNA is a trimeric protein that serves as a loading platform for many

proteins involved in DNA replication and repair. Together with the targeting sequence

(TS) domain, located at amino acids 310-629, it is responsible for the cell cycle depen-

dent localization pattern of Dnmt1. While PCNA mediates the accumulation of Dnmt1

at replication foci throughout S phase, the TS domain mediates the accumulation at

pericentric heterochromtin from late S-phase till early G1 (Figure 3)[Easwaran et al.,

2004].

In addition to these two domains, Dnmt1 also contains a zinc (Zn) binding domain

which is located between amino acids 649-696 and mediates DNA binding [Fatemi et al.,

2001]. Another domain of the N-terminal region is the Polybromo- homology domain

(PBHD) which resides between amino acid 762-964 and contains two BAH (bromo adja-

cent homology) domains that are likely involved in protein-protein interactions [Nicolas

and Goodwin, 1996]. There are several isoforms of Dnmt1 of which two are expressed

in somatic cells, namely Dnmt1s and Dnmt1b. Dnmt1s is the predominant form and

is expressed in all dividing cells. Dnmt1b which contains additional 48 nucleotides be-

tween exon 4 and 5 [Hsu et al., 1999] is expressed at much lower levels than Dnmt1s

and has been described only in human. Both have comparable enzymatic properties but

9



10 1.3. DNA methylation

the function of the Dnmt1b isoform is so far not clear. In oocytes and preimplantation

embryos another isoform, Dnmt1o, is expressed. It is transcribed from an oocyte specific

promoter and its first exon di↵ers from the one of Dnmt1s and Dnmt1b [Gaudet et al.,

1998].

Dnmt2

Dnmt2 shows a high homology to other DNA methyltransferases. The inferred protein

sequence contains all 10 catalytic motifs in the canonical order (Figure 2). In contrast

to other eukaryotic DNA methyltransferases, Dnmt2 homologues do not possess a reg-

ulatory N-terminal region and in this respect resemble more closely bacterial cytosine

methyltransferases. In addition, the crystal structure of human DNMT2 revealed that

the structures of DNMT2 and the bacterial restriction methyltransferase M.HhaI are

essentially superimposable [Dong et al., 2001]. In fact, the Dnmt2 family is the most

strongly conserved and most widely distributed family of eukaryotic cytosine methyl-

transferase homologues [Goll and Bestor, 2005]. Despite all similarities to other cyto-

sine methyltransferases, the functional role of the Dnmt2 family remained enigmatic as

Dnmt2 homologues could not be shown to possess considerable DNA methyltransferase

activity and mice lacking Dnmt2 do not exhibit DNA methylation abnormalities [Okano

et al., 1998b]. In 2006 it was shown that DNMT2 methylates the aspartic acid transfer

RNA (tRNAAsp) at cytosine 38 in the anticodon loop [Goll et al., 2006].

Interestingly, analysis of tRNAAsp sequences showed complete conservation of the anti-

codon loop in species whose genomes encode Dnmt2 homologues, whereas in C. elegans

and S. cerevisiae, which lack a Dnmt2 homologue, tRNAAsp anticodon loops have di-

verged. These findings indicate coevolution of Dnmt2 and the anticodon loop of tRNA

Asp. However, the functional consequence of the tRNAAsp methylation remains unclear.

The only phenotypic e↵ect of Dnmt2 depletion reported so far was found in zebrafish,

where a knockdown in embryos results in di↵erentiation defects in particular organs,

including retina, liver, and brain. In agreement with its role in tRNAAsp methylation,

cytoplasmatically located Dnmt2 could rescue this phenotype [Rai et al., 2007]. Dnmt2

seems to have an additional role in some organisms. In Drosophila very low levels of cy-

tosine methylation are present [Gowher et al., 2000]. Its genome encodes only a Dnmt2

methyltransferase and lacks any of the canonical de novo or maintenance Dnmts. In

this organism, as well as in Dictyostelium [Kuhlmann et al., 2005], Dnmt2-dependent

DNA methylation was shown to be necessary for retrotransposon silencing and telomere

integrity [Phalke et al., 2009].
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Dnmt3

The mammalian genome encodes two functional Dnmt3 methyltransferases, namely

Dnmt3a and Dnmt3b, and a third homologue, Dnmt3L which lacks cytosine methyl-

transferase activity. Dnmt3a and Dnmt3b are closely related proteins that, similar to

Dnmt1, possess an N- terminal regulatory region and a C-terminal catalytic domain

(Figure 2). Both were found to methylate CpG dinucleotides in vitro without preference

for hemimethylated DNA and thereby assigning their possible role as de novo Dnmts

[Okano et al., 1998a]. This was confirmed in vivo, by using a stable episomal system that

employs plasmids as targets for de novo DNA methylation [Hsieh, 1999] and by the find-

ing that dnmt3a/dnmt3b double knockout ESCs exhibit an inability to de novomethylate

newly introduced retroviral elements while the maintenance of imprinted methylation

pattern is not a↵ected [Okano et al., 1999].

The N-terminal regions of Dnmt3a and Dnmt3b harbor a PWWP domain which is found

in many chromatin-associated proteins. By mutagenesis analysis this domain was shown

to be required for pericentric heterochromatin association. Furthermore, disruption of

the PWWP domain abolishes the ability of Dnmt3a and Dnmt3b to methylate major

satellite repeats at pericentric heterochromatin [Chen et al., 2004]. Both proteins also

contain an ATRX-homology domain, a cystein rich zinc-binding domain mainly found

in proteins involved in eukaryotic transcription regulation. It has been shown that the

ATRX-homology domain of Dnmt3a is su�cient to repress transcription, independently

of the methyltransferase activity, by associating with the histone deacetylase HDAC1

[Fuks et al., 2001]. In addition, this domain has been shown to mediate the binding to

symmetrically di-methylated arginine 3 at Histone 4 (H4R3) [Zhao et al., 2009]. Dnmt3a

and Dnmt3b have both been shown to be important in mouse embryonic development

and di↵erentiation. Both genes are expressed in ESCs and form a complex in vivo. Single

knockout of either Dnmt3a or Dnmt3b in ESC results in reduction of promoter methy-

lation of the pluripotency markers Oct-4 and Nanog upon di↵erentiation via retinoic

acid treatment. Simultaneous knockout of Dnmt3a and 3b completely abolishes de novo

methylation at these loci [Li et al., 2007]. Besides their similarities and synergistic func-

tion, Dnmt3a and Dnmt3b also have some non- overlapping functions which become

obvious by the phenotypic di↵erences of Dnmt3a and Dnmt3b single knockout embryos.

While the latter die at around E9.5, dnmt3a-/- appear normal at birth and die not be-

fore 4 weeks of age. Global methylation patterns seem to be normal in dnmt3a deficient

mice [Okano et al., 1999]. Deletion of Dnmt3a in the female germ line leads to hy-

pomethylation at di↵erentially methylated regions (DMR) of all maternally imprinted

11
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genes examined so far. In contrast, dnmt3b knockout in germ cells does not result in such

a phenotype [Kaneda et al., 2004]. Inactivation of dnmt3b, but not dnmt3a, in mouse

embryonic fibroblasts (MEF), results in partial loss of genome wide DNA methylation.

This suggests that, in addition to the major maintenance methyltransferase Dnmt1,

Dnmt3b is required for maintaining DNA methylation in somatic cells [Dodge et al.,

2005]. In ESCs however, both de novo methyltransferases need to be absent in order

to achieve a gradual loss of global DNA methylation [Li et al., 2007]. Dnmt3L shows

high homology to Dnmt3a and Dnmt3b in its N- and C-terminal domains but lacks the

PWWP domain (Figure 2). The catalytic motifs have been subject to nonconservative

substitutions and Dnm3L is not able to catalyze cytosine methylation.

Dnmt3L is mainly expressed in the germ line where it is essential for the establishment

of a subset of methylation patterns [Bourc’his et al., 2001]. Interestingly, it seems that

Dnmt3L has di↵erent functions in male and female germ cells. In male mice targeted

disruption of dnmt3L causes azoospermia with germ line cells displaying nonhomologous

synapsis, asynapsis, and the accumulation of highly abnormal synaptonemal complexes.

Abnormal synapsis is likely to be a secondary e↵ect of the observed hypomethylation

of transposable elements [Bourc’his and Bestor, 2004]. In contrast, dnmt3L deficiency

does not interfere with oogenesis and oocytes are methylated normally at transposons.

However, female germ cells exhibit a methylation defect in single copy sequences as-

sociated with maternal imprinting instead [Bourc’his et al., 2001]. As Dnmt3L is not

catalytically active, the methylation defects in Dnmt3L-deficient mice are thought to be

caused by the missing activation of Dnmt3a as Dnmt3L stimulates the de novo methy-

lation activity of Dnmt3a in vivo [Chedin et al., 2002]. In addition, targeted disruption

of dnmt3a results in phenotypes similar to Dnmt3L knockout [Kaneda et al., 2004].

1.3.3 Factors that bind methylated CpGs

One main function of DNA methylation is transcriptional silencing and there are two

models of how this is achieved. The first model suggests that CpG methylation interferes

with the binding of transcription factors that require contact with cytosine in the major

groove of the double helix [Hark et al., 2000]. While the second model proposes that DNA

methylation is translated into a repressive chromatin state. This is mediated by factors

that recognize and bind to methylated CpGs which repress transcription indirectly by

the recruitment of corepressors. So far there are three protein families known that bind

methyl-CpG.

12
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Methyl-CpG-binding-domain (MBD) family proteins

The first methyl-CpG binding protein discovered was MeCP2. It was shown that it

exhibits a strong preference for methylated DNA which is mediated by its methyl-CpG-

binding domain (MBD). Additionally to the MBD it also contains a transcriptional

repression domain (TRD) [Meehan et al., 1989; Nan et al., 1993]. Homology searches

identified four additional proteins containing an MBD which where termed MBD1-4

(Figure 4). All MBD proteins, except MBD3, specifically recognize and bind methy-

lated CpGs [Hendrich and Bird, 1998]. Furthermore, MBDs have been shown to be

involved in transcriptional repression, except MBD4 which is involved in DNA damage

response [Hendrich and Bird, 1998], by cooperating with histone deacetylases and his-

tone methylases [Clouaire and Stancheva, 2008]. For example, MeCP2 binds methylated

CpGs and recruits histone deacetylases via its interaction with Sin3A [Nan et al., 1998].

In addition, MeCP2 recruits histone methyltransferases like Suv39 which methylate ly-

sine 9 on histone 3 and thereby creates a binding site for HP1, a major constituent of

heterochromatin [Lachner et al., 2001; Fuks et al., 2003]. MeCP2 is not the only connec-

tion between DNA methylation and transcriptional repression as MeCP2-deficient cells

nevertheless repress methylated constructs [Ng and Bird, 1999]. In these cells alternative

pathways involving di↵erent MBDs, like MBD3, might be used. MBD3 is a component

of the Mi2/NuRD deacetylase complex [Wade et al., 1999] which is the most abundant

macromolecular form of histone deacetylase complexes found in mammalian cells, as well

as in Xenopus eggs and embryos.

13



14 1.3. DNA methylation

Figure 4: Schematic diagram of the MBD protein family [Rottach et al., 2009]. All family members
contain a methyl-CpG-binding domain (MBD). MBD1, MBD2 and MeCP2 additionally harbour a
transcriptional repression domain (TRD). MBD4 the only family member with catalytic activity which
is mediated by its DNA N-glycosylase domain. In addtion to its MBD and TRD domain, MBD1 also
contains three CXXC-type zinc-finger domains (CxxC).

SRA domain proteins

It was recently discovered that Dnmt1 needs the presence of another protein, called

Np95, to stably maintain genomic methylation levels. In ESCs lacking Np95, also know

as Uhrf1, global and local DNA methylation levels are defective and almost identical to

that of dnmt1 knockout cells [Sharif et al., 2007]. Furthermore, Np95 colocalizes with

Dnmt1 in vivo at replication forks during mid-to-late-S-phase when pericentromeric het-

erochromatin is replicated [Papait et al., 2007]. Co-immunoprecipitation experiments

showed a direct interaction of Np95 and Dnmt1 [Sharif et al., 2007]. In addition, it has

been shown that Np95 can bind directly to methyl-CpG via its SRA (SET and RING

associated) domain [Unoki et al., 2004]. All these data suggest that Np95 recruits Dnmt1

to hemimethylated CpG sites at replication forks so that Dnmt1 can copy the methyla-

tion mark onto the newly synthesized strand. Cocrystallization of the SRA domain with

a hemimethylated DNA substrate showed that upon binding, the 5-mC is flipped out of

the DNA helix and positioned in a binding pocket [Hashimoto et al., 2008]. Interestingly,

a similar mechanism for DNA binding has been described for DNA methyltransferases

[Klimasauskas et al., 1994] and this base flipping is thought to be involved in the coor-

dinated transfer of the hemi-methylated CpG site from Np95 to Dnmt1.

In general SRA domain proteins fall in two distinct families. The first is characterized

by the association of the SRA domain with PHD and RING domains. The only known

mammalian homologues discovered so far are Np95 and the closely related Np97, also
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Figure 5: Schematic diagram of the SRA domain proteins Np95 and Np97 [Rottach et al., 2009].
Np95 and Np97 consist of an N-terminal ubiquitin-like domain (Ubl) followed by a Tudor, a plant
homeodomain (PHD) and a SET and RING associated domain (SRA). At the C-terminus both proteins
harbour a really interesting new gene domain (RING).

known as Uhrf2. However in Arabidopsis thaliana at least five members have been iden-

tified. The second family of SRA domain proteins is thought to be plant-specific and

includes members of the SUVH of SET domain histone methyltransferases.

Besides the SRA domain, Np95 harbors at least four other functional domains, an

ubiquitin-like domain (UBL), followed by a tandem tudor domain, a plant homeodomain

(PHD), and a really interesting new gene (RING) domain (Figure 5). All of the domains

are somehow connected to chromatin formation which makes Np95 a possible mediator

between DNA methylation and chromatin modulation. For example, the RING domain

is thought to confer E3 ubiquitin ligase activity on Np95 and shows specific activity for

histone H3 [Citterio et al., 2004] and histone tail ubiquitinylation is an important de-

terminant in the regulation of chromatin structure and gene transcription [Jason et al.,

2002]. Furthermore, the PHD domain has been shown to bind to methylated histone 3

lysine 9 (H3K9), a repressive chromatin marker [Karagianni et al., 2008]. In addition,

the PHD domain of Np95 has been proposed to be involved in large-scale reorganization

of pericentromeric heterochromatin by recruiting chromatin modifying enzymes and Dn-

mts [Papait et al., 2007]. Another domain of Np95 that binds to chromatin is the tandem

tudor domain which was crystallized with trimethylated H3K9 bound [Hashimoto et al.,

2009]. Moreover, Np95 interacts with the histone methyltransferase HDAC1 and the

histone methyltransferase G9a, both of which are involved in heterochromatin forma-

tion [Unoki et al., 2004; Kim et al., 2009]. In summary, the fact that Np95 contains

domains that recognize DNA methylation as well as repressive histone marks and the

ability to recruit histone modifying enzymes, suggests that it may functionally link DNA

methylation and chromatin modifications.

Kaiso family proteins

The third protein family that is known to bind methylated CpGs is the Kaiso fam-

ily. These proteins harbor a three-zinc-finger motif that mediates methyl-CpG binding

15



16 1.4. Mouse embryonic stem cells as a model of early mammalian development

Figure 6: Schematic diagram of the Kaiso family proteins [Rottach et al., 2009]. Kaiso, ZBTB4, and
ZBTB38 are characterized by several zinc finger motifs. Binding to methylated DNA is mediated by a
C2H2 zinc finger motif (yellow). The broad complex, tramtrack, and bric brac (BTB/POZ) domain is
depicted in gray.

[Prokhortchouk et al., 2001]. The founding member kaiso and the recently identified

kaiso-like proteins ZBTB4 and ZBTB38 also contain a poxvirus and zinc finger (POZ)

domain that is involved in protein-protein interaction (Figure 6). This domain is thought

to be involved in transcriptional repression as kaiso lacking the POZ domain is not ca-

pable of silencing methylated reporters. However, transcriptional silencing was not di-

minished in the presence of the histone deacetylase inhibitor TSA as shown for MBDs

[Prokhortchouk et al., 2001]. Inconsistent with these findings, kaiso seems to be part of

the repressive N-CoR complex which contains HDAC and histone remodeling activities

[Yoon et al., 2003]. Moreover, ZBTB4 and ZBTB38 have also been shown to mediate re-

pression of transcription [Filion et al., 2006]. In summary, Kaiso family proteins might

mediate methylation dependent transcriptional repression in a way similar to that of

MBD proteins.

1.4 Mouse embryonic stem cells as a model of early

mammalian development

ESCs are pluripotent cells derived from the inner cell mass (ICM) of the blastocyst

[Evans and Kaufman, 1981]. Murine ESCs retain the full developmental potential of the

ICM as they can contribute to all tissues of the embryo and adult in vivo after rein-

troduction into mouse blastocysts [Bradley et al., 1984]. This feature makes it possible

to create knockout mice and cell lines which are an important tool in elucidating the

function of proteins in vivo. Furthermore, deletion of several genes, including Dnmts,

are lethal for somatic cells while their ESC counterparts are viable. In vitro, ESC can
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be di↵erentiated into a broad range of cell type representative for all three germ layers

of the mouse embryo [Lake et al., 2000]. Moreover, during in vitro di↵erentiation ESC

undergo developmental changes and processes similar to that seen in the ICM during

early embryonic development. These properties make mouse ESCs an optimal tool for

studying early processes in embryonic development.

1.4.1 Self-renewal and pluripotency of ESCs

Self-renewal and pluripotency are key features of ESCs. They can be expanded indefi-

nitely in culture and retain their full developmental potential without exhibiting a bias

in the generation of di↵erent somatic lineages or germline cells upon reintroduction to

the embryo. Although ESCs exhibit a characteristic pattern of epigenetic modifications

they seem not to be crucial for self-renewal and pluripotency. This is supported by the

finding that ESCs deficient for important epigenetic regulators, such as DNA methyl-

transferases or histone methyltransferases, are viable without compromising self-renewal

or genomic integrity [Tsumura et al., 2006]. However, perturbation of DNA methyla-

tion and the chromatin modifying machinery often results in increased cell death during

di↵erentiation [Jackson et al., 2004]. Nevertheless, rescue of the epigenetic machinery

by reintroduction of the missing components results in full restoration of the develop-

mental potential which suggests a role in successful lineage commitment rather than in

retaining pluripotency. In contrast, depletion of ESCs of one of the three transcriptional

organizers, Oct4, Sox2, and Nanog results unscheduled di↵erentiation into trophoblast

and hypoblast cells which cannot be rescued by reintroduction of these factors [Nichols

et al., 1998; Niwa, 2007]. These fate choices are considered abnormal as they resemble

lineages that ICM cells have already passed beyond their segregation points prior to ESC

establishment. This indicates that nave pluripotency of ESCs is critically dependent on

the action of Oct4, Sox2, and Nanog rather than on the epigenetic machinery.

1.4.2 Role of Oct4, Sox2, and Nanog in pluripotency

ESCs are in a constant struggle between di↵erentiation and self-renewal. Interestingly,

in both decisions the three transcriptional organizers Oct4, Sox2, and Nanog seem to

be involved. All three are expressed in cells of the ICM and ESCs. They appear to be

responsible for the ongoing repression of the expression and activity of lineage specifi-

cation factors and thereby in retaining pluripotency [Smith, 2005]. However, Oct4 and

Sox2 seem also to be key regulators in the extinction of pluripotency by directing the
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Figure 7: Self-renewal of the pluripotent ESC state requires overcoming the FGF4/Erk signal. Inhibi-
tion of FGF4/Erk signalling by small molecules prevents spontaneous di↵erentiation of ESCs in culture.
Leukemia inhibiting factor (LIF) stimulates STAT3 signalling which promotes ESC self-renewal and
proliferation.

expression of fibroblast growth factor 4 (FGF4). FGF4 propels ESCs towards lineage

specification via the mitogen activated protein (MAP) kinase Erk1/2 pathway. Impor-

tantly the FGF4/Erk signal does not lead to the di↵erentiation of a certain lineage but

results in a general susceptibility for further lineage specific signaling. Consistent with

this, blocking of this signaling pathway leads to a general impairment of di↵erentiation

[Kunath et al., 2007; Silva and Smith, 2008](Figure 7). In summary, by promoting the

expression of FGF4, Oct4 and Sox2 synergistically drive ESCs into di↵erentiation. Con-

sequently, to maintain the naive undi↵erentiated ESCs in culture the signaling by FGF4

needs to be inhibited. This can be achieved by the addition of the cytokine leukemia

inhibiting factor (LIF). LIF stimulates the Stat3 transcription factor signaling which

acts downstream of Erk and also promotes ESC growth and viability. In addition small-

molecule inhibitors of the MAP kinase kinase (MAPKK or MEK) can be used to inhibit

Erk signaling (Figure 7).

In contrast to the homogenous expression Oct4 and Sox2, Nanog expression is sub-

jected to great fluctuations (Figure 8A). Interestingly, constitutive expression of Nanog

is su�cient to prevent ESC di↵erentiation even in the presence of active FGF4/Erk

signaling. Moreover, Nanog-deficient ESCs can remain undi↵erentiated and pluripotent

in culture, but exhibit a greatly increased tendency to di↵erentiate [Chambers et al.,
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Figure 8: (A) Immunostaining shows highly variable levels of Nanog protein (green) in Oct4 (red)
positive undi↵erentiated ESCs. (B) Nanog prevents di↵erentiation of ESCs. Coincidence of low Nanog
expression and elevated FGF4/Erk signaling (pErk) result in susceptibility for further lineage specific
signals (symbolized by A,B and C expression circuits) [Silva and Smith, 2008].

2007]. This suggests that Nanog counteracts the FGF4/Erk signaling and thereby re-

tains pluripotency. Moreover, the cell-to-cell heterogeneity of expression levels creates

di↵erences in the resistance to di↵erentiation. This means that those ESCs in a culture

that express low levels of Nanog are prone to exit self-renewal and will start to di↵er-

entiate if intrinsic and/or extrinsic lineage specific signals are present above a certain

threshold. Although it seems that ESCs can repeatedly switch between high and low

levels of Nanog expression, it is clear that many cells that express little Nanog will start

to di↵erentiate.

In summary, the three transcriptional organizers Oct4, Sox2, and Nanog together re-

press lineage-associated transcriptional activity. In addition, Oct4 and Sox2 activate the

expression of FGF4 which signals via the MAP kinase Erk1/2 promoting lineage speci-

fication of ESCs. This is antagonized by Nanog via an unknown mechanism. As Nanog

expression is highly variable among ESCs, coincidence of low Nanog levels with ele-

vated FGF4/Erk signaling leads to activation of intrinsic lineage-specific transcriptional

activity resulting in di↵erentiation and loss of self-renewal (Figure 8B).

1.4.3 Embryonic stem cell di↵erentiation

Mouse ESCs are routinely cultivated in the presence of feeder layers to maintain pluripo-

tency and self-renewal. These feeder cells can also be substituted by LIF and with cells

grown on gelatinized culture dishes. When feeder cells or LIF is removed ESCs spon-

taneously di↵erentiate into derivatives of the three embryonic germ layers, mesoderm,

endoderm, and ectoderm [Keller, 2005]. In principle, there are three important methods
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20 1.4. Mouse embryonic stem cells as a model of early mammalian development

Figure 9: Embryonic (A) and embryoid body (B) development [Li and Yurchenco, 2006]. Embryoid
bodies closely resemble the embryonic transition from undi↵erentiated inner cell mass (ICM) to a two
germ-layer structure corresponding to the early egg cylinder stage embryo just before gastrulation.

that have been developed to promote the e�cient and reproducible di↵erentiation of

ESCs; the culture of ESC as monolayers on extracellular matrix proteins, the culture

of ESCs directly on stromal layers, and the formation of three-dimensional aggregates

known as embryoid bodies (EBs). This part of the introduction will focus on the dif-

ferentiation via EBs and its parallels to early embryonic development. As already men-

tioned, ESCs are derived from the inner cell mass of blastocysts. When di↵erentiated as

EBs they closely resemble the embryonic transition from undi↵erentiated ICM to a two

germ-layer structure corresponding to the early egg cylinder stage embryo just before

gastrulation (Figure 9). Like the ICM, embryoid bodies will first develop a primitive

endoderm which forms on the surface of the EB. This is followed by the assembly of

the embryonic basement membrane between the visceral endoderm, which derives from

the primitive endoderm, and the ICM-like cells. At this stage also a parietal endoderm

is di↵erentiating but due to the lack of trophoectoderm it only forms small periph-

eral aggregates. Subsequently, the ICM-like cells of EBs produce a central cavitation,

mainly by apoptosis, with di↵erentiation of the surviving cells into epiblast cells. Until

this point the di↵erentiation of EBs very closely resembles the developmental events of

the embryos ICM [Li and Yurchenco, 2006]. Moreover, the epiblast cells of both will

di↵erentiate into cells of the di↵erent germ layers. However, while in embryonic develop-
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ment this follows directed and well coordinated pathways, in EBs epiblast cells exhibit a

more random di↵erentiation pattern though there are several methods that make more

directed di↵erentiation possible at this stage.

1.5 DNA hydroxymethylation

Until recently the only known covalent epigenetic modification on DNA was methylation

at position 5 of cytosine. In 2009, however, it was discovered that 5-mC is further

oxidized by the enyzme ten-eleven translocation 1 (TET1) to 5-hydroxymethylcytosine

(5-hmC) [Tahiliani et al., 2009] a base that was already detected in mammalian DNA

in 1972 but at this time mainly considered as a by-product of oxidative DNA damage

[Penn et al., 1972]. In the short time since the discovery of the oxidation from 5-mC

to 5-hmC by Tet1 an impressive amount of publications has accumulated (Figure 10).

Many possible biological functions for 5-hmC in epigenetic gene regulation have been

proposed and it has become increasingly clear that oxidation of 5-mC plays an important

role in DNA demethylation.

1.5.1 Ten-eleven-translocation protein family

TET1 was the first protein of the Ten-eleven-translocation protein family to be discov-

ered by genetic analysis of several cases of acute myeloid leukemia (AML) harbouring

a t(10;11)(q22;q23). This chromosomal rearrangement was shown to result in an N-

terminal fusion of the mixed lineage leukemia (MLL) H3K4 methyltransferase to the

C-terminus of TET1. TET1 was found to be a member of a novel and well conserved

protein family of, at this time, unknown biological function [Ono et al., 2002; Lors-

bach et al., 2003]. The function of Tet proteins was discovered by their homology to

the DNA modifying enzymes JBP1 and JBP2 in Trypanosomes. JBP1 and JBP2 be-

long to the 2-oxoglutarate- and Fe(II)-dependent dioxygenase (2OGFeDO) superfamily

and catalyse the oxidation of the methyl-group of thymine leading to the formation of

5-hydroxymethyluracil (hmU) the first step in the biosynthesis of base J (�-D-glucosyl-

hydroxymethyluracil). Like the JBP proteins, Tet proteins contain a 2OGFeDO domain

characterized by a double-stranded � helix (DSBH) fold which in the case of Tet pro-

teins has been shown to catalyse the oxidation of 5-mC to 5-hmC [Tahiliani et al.,

2009]. Moreover, it has been discovered that Tet proteins can further oxidise 5-hmC

to 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC) [He et al., 2011; Pfa↵eneder
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Figure 10: Numbers of publication found by a PubMed search with “5-hydroxymethylcytosine” in title
or abstract since 1972

et al., 2011].

In addition to the DSBH domain a directly adjacent cystein-rich region (Cys) was found

to be essential for the catalytic activity, at least in the case of Tet1 (Figure 11) [Tahiliani

et al., 2009]. Furthermore, Tet1 harbours a functional CXXC type zinc finger domain.

The CXXC domain can also be found in several other chromatin proteins and plays a role

in DNA binding and possible protein-protein interactions. The CXXC domain seems to

be absent in Tet2 and Tet3. However, in the direct chromosomal vicinity to the Tet2

genomic locus the CXXC4 gene can be found which is believed to have been segregated

from an ancestral Tet2-CXXC4 fusion gene suggesting a possible functional link of the

two proteins [Iyer et al., 2009]. In the case of Tet3 confusing and contradicting reports

have been made about whether or not a CXXC is present in the protein. Upstream of

the annotated Tet3 locus open reading frame (ORF) has been predictedin silico that

contains a CXXC domain [Katoh and Katoh, 2004]. The relatively short distance of

this putative ORF to the Tet3 locus makes it possible that a splicing isoform of Tet3

exists which contains this CXXC domain. However, experimental data supporting this

hypothesis are still missing.

1.5.2 5-hmC and DNA demethylation

First indications that Tet proteins and 5-hmC may be involved in DNA demethylation

came from the observation that overexpression of TET1 in cultured cells leads to a

decrease in 5-mC levels [Tahiliani et al., 2009]. In turn, depletion of TET1 in ESCs leads

to an increase of DNA methylation levels globally as well as at specific genomic regions,
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Figure 11: Schematic representation of the murine Ten-eleven translocation protein family. All three
Tet proteins harbour a cystein-rich region (Cys) followed by the catalytic domain characterised by a
double stranded � helix (DSBH) fold. Tet1 contains a CXXC-type zinc finger domain (CXXC) in its
N-terminal part. In the direct chromosomal vicinity of Tet2 the CXXC4 gene can be found which
might be functionally linked to Tet2. A putative ORF close upstream of Tet3 codes for a CXXC-type
zinc-finger which might be spliced to Tet3.

such as LINE1 retrotransposons and transcription factor binding sites [Ficz et al., 2011;

Xu et al., 2011]. Tet1 has been shown to be important for the demethylation of brain-

derived neurotrophic factor (Bdnf) and fibroblast growth factor 1 (Fgf1) promoters in

the adult mouse brain [Guo et al., 2011]. Finally, loss of 5-mC in the male pronucleus

of zygotes correlates with an increase of 5-hmC staining and Tet3-depletion results in

failure to demethylate the paternal genome as well as promoters of pluripotency genes,

such as oct4 and nanog [Gu et al., 2011; Iqbal et al., 2011; Wossidlo et al., 2011]. The

close functional link of Tet proteins to DNA methylation in animals is also evident in the

fact that Tets only occur in species that express a DNA methyltransferase (Figure 12).

However, Dnmts can be found in species that do not express Tet proteins suggesting that

other mechanisms for DNA demethylation exist. In fact, in plants, which do not have

genes coding for Tet proteins, DNA demethylation is well studied. Several mechanisms

by which 5-hmC contributes to DNA demethylation have been proposed which include

DNA repair pathways and prevention of DNA methylation maintenance.

DNA demethylation by DNA repair pathways

DNA demethylation has long been a highly debated field. The only widely accepted

mechanism, in mammals, has been passive demethylation where DNA methylation is

not maintained through replication and thereby diluted during each cell cycle. However,

it has become increasingly clear that DNA demethylation can also occur in a replication

independent context e.g. in post-mitotic tissues such as neurons. Moreover, at several

stages during development DNA methylation levels decrease with kinetics that can not

be accounted for by passive DNA demethylation alone. Active DNA demethylation is
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Figure 12: Evolutionary conservation of Tet and Dnmt proteins. Tet proteins only occur in species
that also express a Dnmt. The figure was generated using iTOL coupled to a PSI-blast (e-value =
3e-24) using the mouse sequences of Dnmts (Dnmt1, Dnmt2, Dnmt3a and Dnmt3b) and Tets (Tet1,
Tet2 and Tet3) [Letunic and Bork, 2007]
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best studied in plants where a family of DNA glycosylases is responsible for the removal

of 5-mC. DNA glycosylases cleave the glycosidic bond between 5-mC and the deoxyri-

bose, creating an abasic site (AP). An AP endonuclease removes the deoxyribose at the

AP site and the gap is filled by DNA polymerase and DNA ligase. The result of this

base excision repair (BER) pathway is the replacement of the methylated cytosine by

an unmethylated cytosine [Zhu, 2009].

In mammals similar mechanisms have been proposed. In contrast to the glycosylases

in plants, known mammalian glycosylases like thymine DNA glycosylase (TDG) and

methyl-CpG-binding domain protein 4 (MBD4) only show weak activity on 5mC in

vitro. However, these enzymes have strong activities against T:G mismatches which can

be created through deamination of 5mC by cytidine deaminases [Zhu et al., 2000]. In

fact, cytidine deaminases of the apolipoprotein B mRNA editing catalytic polypeptide

(APOBEC) family have been shown to be involved in active DNA demethylation by

deaminating 5-mC.

One member of the APOBEC family, the activation-induced cytidine deaminase (AID),

has been studied in great detail over the last decade because of its critical role in gener-

ating antibody diversity in lymphocytes [Chaudhuri et al., 2007; Delker et al., 2009]. In

B-lymphocytes AID takes part in somatic hyper-mutation and class-switch recombina-

tion by deaminating cytosines to uracils which in turn are processed by error-prone BER

or mismatch repair (MMR) pathways. This mechanism results in mutations essential

for the vast diversity of antibodies present in mammals [Liu and Schatz, 2009; Maul

and Gearhart, 2010]. For a long time AID was thought to preferentially target the im-

munoglobulin locus in B -lymphocytes by an unknown mechanism. However, studies in

B-lymphocytes of mice deficient in BER and MMR revealed that AID acts extensively

on non-immunoglobulin loci and that these regions are protected by error-free repair

mechanisms. At that time these findings were interpreted as a protection mechanism

against miss targeted AID activity [Liu et al., 2008]. Only recently, AID has been im-

plicated in active DNA demethylation.

First findings suggesting a role for AID in DNA demethylation came from studies done

in zebrafish embryos. Overexpression of AID or zebrafish APOBEC deaminases and

the DNA glycosylase MBD4 led to DNA demethylation of the genome and of injected

methylated DNA [Rai et al., 2008]. Evidence for a role of AID in DNA demethyla-

tion in mammals was found in mice completely lacking AID. In the primordial germ

cells of these animals an increase in genome-wide methylation was observable. How-

ever, AID null mice are viable and fertile suggesting that other redundant pathways
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26 1.5. DNA hydroxymethylation

may exist which can compensate for the loss of AID [Popp et al., 2010]. Studies of

nuclear reprogramming provided the first evidence that AID plays a role in active DNA

demethylation [Bhutani et al., 2010]. Fusion of mouse ESCs with human fibroblast into

non-dividing heterokaryons leads to rapid loss of DNA methylation at the promoters of

the pluripotency genes OCT4 and NANOG in the somatic genome. This process was

shown to be AID-dependent as knock-down of AID using siRNA resulted in complete

loss of pluripotency promoter demethylation and transcriptional induction. Moreover,

the AID gene is located in a cluster of pluripotency genes together with nanog and stella

and is coexpressed with these genes in oocytes, embryonic germ cells and tissues where

DNA demethylation has been shown to occur [Morgan et al., 2004; Bhutani et al., 2010].

Besides the APOBEC family, DNA methyltransferases have been proposed to play an

important role in active DNA demethylation by deaminating 5-mC. In human breast

cancer cells the de novo methyltransferases Dnmt3a and 3b can convert 5-mC to T

through deamination during the activation of oestradiol-estrogen receptor target gene

pS2 by E2. The resulting T:G mismatch is then removed by BER [Mtivier et al., 2008].

Similar observations were made during the activation of the vibronectin gene by the nu-

clear receptor chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI).

Moreover, Dnmt3a was found to interact with the glycosylase TDG and could enhance

COUP-TF1-mediated activation of a methylated reporter gene [Gallais et al., 2007].

The involvement of DNA methyltransferases in setting and removing DNA methylation

raises the question how these counteracting functions are separated and controlled.

The accumulating evidence for the involvement of deamination-coupled DNA repair in

active DNA demethylation let to the identification of several DNA glycosylases involved

in this process. The family of glycosylases implicated in the deamination-coupled BER

pathway are members of the uracil DNA glycosylase (UDG) family that include TDG,

MBD4 and single-stranded-selective monofunctional uracil-DNA glycosylase 1 (SMUG1)

[Zhu et al., 2000; Cortellino et al., 2011; Guo et al., 2011]. The DNA glycosylases TDG

and SMUG1 have been shown to convert 5-hmU to cytosine suggesting that they act in

concert with Tet and AID/APOBEC proteins. Interestingly, knock-out of TDG results

in early embryonic lethality underscoring the importance of BER glycosylases during

development and DNA demethylation. TDG has been shown to directly interact with

AID by immunoprecipitation experiments [Cortellino et al., 2011; Guo et al., 2011].

Recent studies revealed that Tet proteins can further oxidize 5-hmC to 5-fC and 5-

caC. Both cytosine derivatives are present in mouse organs and cultured cells although

in a much lower abundance then 5-hmC. Interestingly, 5-caC and 5-fC are specifically
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Figure 13: Active DNA demethylation pathways in mammals. 5-mC can be directly deaminated by
AID/APOBEC family or Dnmt3 proteins producing a T:G mismatch wich is repaired by TDG/MBD4
glycosylases. Alternatively, 5-mC is oxidized to 5-hmC by Tet proteins and either deaminated to 5-
hmU by AID/APOBEC proteins or further oxidized to 5-caC. 5-hmU and 5-caC are then recognized
by TDG/MBD4/SMUG glycosylases.

recognized by TDG and siRNA mediated depletion of TDG leads to accumulation of

5-caC [He et al., 2011; Ito et al., 2011; Maiti and Drohat, 2011].

Taken together these data suggest that in mammals, in contrast to the one-step process

in plants, active DNA demethylation may occur in a two-step process. However, the

first step of the demethylation pathway either involves deamination of 5-mC/5-hmC by

APOBEC family deaminases or further oxidation of 5-hmC by Tet proteins. In either

case the modified cytosine is then recognized by glycosylases of the UDG family and

5-mC is replaced by an unmodified cytosine via the BER/MMR pathway (Figure 13).

DNA demethylation by prevention of DNA methylation maintenance

A di↵erent mechanism by which 5-hmC may contribute to DNA demethylation is pas-

sive DNA demethylation. Hemi-modified 5-hmCpGs are not recognized by Dnmt1

and thereby DNA methylation is not maintained at theses sites [Valinluck and Sow-

ers, 2007]. Recently, in vivo evidence for this potential mechanism has been found in

pre-implantation embryos where 5-hmC is passively lost through replication [Inoue and

Zhang, 2011]. However, it is not clear whether 5-hmC mediated passive DNA demethy-

lation is a general mechanism and further studies are required to clarify this question.
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28 1.5. DNA hydroxymethylation

1.5.3 Biological function of 5-hmC

5-hmC in pluripotency

Many studies have looked at the roles of 5-hmC and Tet1 in ESCs where Tet1 is pre-

dominantly expressed. Immunofluorescence staining for 5-hmC showed that while 5-mC

is enriched in pericentromeric heterochromatin, 5-hmC seems to mainly occurs in eu-

chromatic regions suggesting that it might be associated with gene activity (Ficz et

al., 2011; Szulwach et al., 2011a). Extensive genome-wide mapping of 5-hmC and Tet1

revealed that both are enriched at transcriptional start sites (TSSs) and within gene

bodies [Ficz et al., 2011; Pastor et al., 2011; Williams et al., 2011; Wu et al., 2011a; Xu

et al., 2011]. Tet1 depletion results in an increase of 5-mC at Tet1-targeted CpG islands

suggesting that Tet1 and 5-hmC play a role in maintaining CpG island hypomethylation

either by blocking access to the DNA methylation machinery or by demethylating 5-mC

[Wu et al., 2011a]. Moreover, 5-hmC has been found to be enriched at binding sites

for pluripotency-associated transcription factors suggesting a function in maintaining

pluripotency[Ficz et al., 2011; Wu et al., 2011a]. In gene bodies presence of 5-hmC can

be consistently correlated with gene expression and several genes are down-regulated

upon Tet1 knock-down in ESCs [Ficz et al., 2011; Pastor et al., 2011; Wu et al., 2011b;

Xu et al., 2011]. However, a large number of genes are derepressed by Tet1-depletion

many of which are Polycomp repressive complex 2 (PRC2) targets [Wu et al., 2011b].

In ESCs, PRC2 targets are often bivalently marked by active (H3K4me3) and repressive

(H3K27me3) histone marks and enriched for genes important during development [Bern-

stein et al., 2006]. These genes are referred to as poised and can rapidly be activated

or silenced upon di↵erentiation. Tet1 and 5-hmC have been shown to be enriched at

bivalent genes and Tet1 knock-down results in impaired binding of PRC2 to theses tar-

gets suggesting that maintenance of a hypomethylated state of these genes is required

for PRC2 function. [Ficz et al., 2011; Pastor et al., 2011; Williams et al., 2011; Wu

et al., 2011a,b]. In addition, Tet1 has been found to interact with the Sin3a co-repressor

complex, which is involved in histone deacetylation implying an additional non-catalytic

function for Tet1 in gene repression [Williams et al., 2011].

The findings that Tet1 expression as well as 5-hmC levels rapidly decrease upon dif-

ferentiation suggests a function of Tet1 and 5-hmC in maintaining pluripotency. This

hypothesis is supported by the observation that during the reprogramming of fibrob-

lasts into induced pluripotent stem cells (iPSCs), Tet1 is reactivated and 5-hmC levels

increase [Tahiliani et al., 2009; Koh et al., 2011]. Tet1 and Tet2 were shown to be reg-
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ulated by pluripotency related transcription factors Oct4 and Sox2 and Tet1 depletion

in ESCs leads to down-regulation of several pluripotency related genes accompanied

by an increase in methylation of their promoters [Ficz et al., 2011; Williams et al.,

2011; Wu et al., 2011a]. Furthermore, extra-embryonic lineage markers are derepressed

in Tet1- depleted ESCs increasing the transdi↵erentiation potential of these cells into

extra-embryonic tissues upon di↵erentiation into embryoid bodies and in teratoma for-

mation [Ito et al., 2011; Koh et al., 2011]. However, both tet1 and tet2 knock-out mice

are viable and fertile, although tet1-/- mice display an overall reduced body size [Dawlaty

et al., 2011; Ko et al., 2011; Li et al., 2011b; Moran-Crusio et al., 2011]. In summary, it

is not clear to what extend Tet1 and 5-hmC contribute to pluripotency. Although Tet1

seems to regulate developmentally important genes, it is not crucial for embryonic de-

velopment. To elucidate whether 5-hmC itself is required for embryogenesis, generation

of triple Tet-knockout mice would be necessary as only a 35% reduction in 5-hmC levels

in tet1knockout ESCs is observable [Dawlaty et al., 2011].

1.6 Transcription activator-like e↵ectors

1.6.1 Biology of TAL e↵ectors

Transcription activator-like e↵ectors (TALEs) were discovered as key proteins in the

pathogenicity of xanthomonads. Xanthomonas patovars are Gram-negativ phytopatho-

genic bacteria of considerable agricultural impact that infect a wide range of important

crops. The bacteria enter their host through natural openings, such as stomata and

hydathodes, or wounds and grow in the intercellular spaces of the pant tissue. The

pathogenicity of Xanthomonas is dependent on a type III secretion (T3S) system by

which the bacteria inject TALEs into the plant cells. TALEs are then imported into

the nucleus where they activate genes important for colonization and spreading of the

pathogen (Figure 14)[Kay and Bonas, 2009]. TAL e↵ectors are a family of proteins found

in many but not all species of Xanthomonads. Individual Xanthomonas strains can have

up to several dozen di↵erent TALEs. All TALEs share a common N-terminal domain re-

quired for the T3S mediated secretion and a C-terminus containing nuclear localization

signals and an acidic transcriptional activation domain (AD). However, TALEs di↵er

in their central domain which consists of nearly perfect, 33-34 amino acid (aa) long re-

peats. In the beginning of the central repeat domain a non-canonical repeat is found

which seems to be conserved among di↵erent TALEs. The domain ends with a 20 aa
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30 1.6. Transcription activator-like e↵ectors

Figure 14: The function of TALEs during Xanthomonas infection. TALEs are injected into the plant
cell cytoplasms by Type 3 secretion (T3S). Subsequently, the protein is imported into the nucleus where
it activates the expression of genes important for pathogen survival.

long truncated repeat. TALEs di↵er in the number of repeats and the single repeats

di↵er within and across TALEs mainly at residue 12 and 13. These two aa long poly-

morphisms are referred to as repeat-variable diresidues (RVDs) [Bogdanove et al., 2010]

(Figure 15A).

By identifying the sequences that are targeted by di↵erent TALEs it was discovered

that di↵erent RVDs associate preferentially with certain nucleotides, with the four most

common RVDs (HD, NG, NI and NN) mediating the binding to the four nucleotides

(Figure 15). A non-canonical repeat in the beginning of the central repeat domain

seems to bind thymine. With this information it is possible to generate designer TALEs

(dTALEs) by arranging the repeats and the string of RVDs to target a defined DNA

sequence [Boch et al., 2009; Moscou and Bogdanove, 2009]. The length of the sequences

that have been successfully targeted ranged up to 19 base pairs. Target sites are only

limited by the requirement for the presence of a thymine as the first nucleotide. Intrigu-

ingly, the length of the targeted sequence implies that for binding such a long sequence

the TALE has to follow the helical turns of the DNA. This model is supported by the

recently published crystal structures of two di↵erent TALEs binding to DNA. TALEs

seem to bind DNA by following the helical turns along the major groove [Deng et al.,

2012; Mak et al., 2012](Figure 15B and C).
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Figure 15: DNA recognition of TALEs. (A) Schematic representation of a TALE with its central
repeat domain, the C-terminal NLS and activation domain (AD). Each repeat is represented by a blue
ellipse. The RVDs responsible for the binding to the four nucleotides are NN, HD NI and NG. (B-C)
Crystal structure of the TAL e↵ector PthXo1 bound to its DNA target (PBD 3ugm). (B) Bottom view.
(C) Side view.

1.6.2 Designer TAL e↵ectors as a tool for genome editing

The discovery of the TALE code has lead to a broad application of TAL e↵ectors in

biotechnology. The straightforward relationship between the type of repeat and DNA

sequence it recognizes allows a simple designing of dTALEs to target any desired DNA

sequence. Several strategies have been developed that allow cheap, reliable and quick

assemble of dTALEs with desired specificities. All stratagies are based on Golden Gate

cloning a method that relies on type IIs restriction enzymes which cleave outside their

recognition sequence and create unique 4-bp overhangs. Well planned design of the

overhangs produced by these enzymes allows ligation of multiple DNA fragments in an

ordered fashion in a single reaction [Engler et al., 2008, 2009].

The main application is the use of dTALEs for targeted editing of genomic sequences.

For this purpose dTALEs are used to target the catalytic domain of the FokI nuclease

to specific sites in the genome to introduce DNA double-strand breaks (DSBs). Because

FokI nucleases work as dimers, the TALE nucleases (TALENs) are designed as pairs that

bind opposing DNA target sites which are seperated by a spacer (Figure 16). This layout

allows the FokI monomers to dimerize only at the desired location and create a DSB.
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32 1.6. Transcription activator-like e↵ectors

Figure 16: designer TALEs as tool for genomic targeting. dTALEs are fused to FokI monomers to
generate TALE nucleases (TALENs). TALENs are desgined as pairs binding opposing DNA target
sites which a separated by a spacer. When both TALENs bind there target sites the FokI nucleases
dimerize and generate a double-strand break (DSB) within the spacer sequence. The DSB is repaired by
either non homologous end joining or homologous recombination. The latter is used to insert selection
cassettes for further selection of clones containing mutated alleles.

The created DSBs are then repaired by one of two highly conserved pathways which

can be exploited to introduce specific DNA sequence modifications [Carroll, 2011]. In

non homologous end joining (NHEJ), the broken chromosome is repaired by imprecise

rejoining. NHEJ therefore introduces random mutation in form of small deletions or

insertions at the break site which can disrupt gene function. The second pathway that

can be induced by DSBs is homologous recombination (HR) (Figure 16). HR is an error-

free DNA repair pathway in which homologous sequences of the sister chromatid, or any

other homologous template in close proximity, are used to repair the damaged site. This

pathway can be exploited to introduce specific mutations or additional sequences into

the targeted locus.

First findings that TALENs can be used to introduce site specific mutations came from

reporter assays performed in yeast (Christian et al., 2010). Subsequent studies showed

the potential of TALENs to mediate site-directed mutagenesis in human embryonic kid-

ney cells with high e�ciency [Miller et al., 2011]. Since then TALENs have been applied

in a varitey of experimental systems. Human embryonic stem cells and induced pluripo-

tent stem cells were successfully modified at five di↵erent loci by TALEN-mediated

targeting [Hockemeyer et al., 2011]. In plants TALENs were shown to cleave a epi-

somal target in leaves of tabacco as well as to introduce NHEJ-mediated mutagenesis

of an endogenous locus in Arabidopsis thaliana [Cermak et al., 2011; Mahfouz et al.,
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2011]. In Caenorhabditis elegans and Caenorhabditis briggsae TALENs were used to

introduce mutations in germ line cells of adults which successfully produced o↵-spring

with mutations in the targeted genomic loci [Wood et al., 2011]. Somatic and hertiable

gene knock-outs have been made in zebrafish using TALENs [Huang et al., 2010; Sander

et al., 2011]. Furthermore, IgM knock-out rats were generated by embryo microinjection

of TALEN DNA or mRNA constructs [Tesson et al., 2011].

A general concern in using targeted nucleases for genome editing is the possibility of

mutagenesis at unintended sites. This is of particular importance for therapeutic appli-

cations of TALENs in humans. Although specificity is expected to be relatively high due

to the required pairing of two TALENs to generate an active nuclease, it is not clear how

many unintended mutations are introduced by TALENs. Complete genome sequencing

before and after TALEN treatment would need to be performed in order to answer this

question.

1.7 Aims of this work

DNAmethylation plays a central role in epigenetic regulation of mammalian gene expres-

sion. The overall pattern of DNA methylation is established during early development

and is essential for lineage specification and maintenance of di↵erentiated states. These

observations led to the notion that DNA methylation represents a stable epigenetic mark

which is subjected to little changes after the initial setting of cell type specific patterns.

In the last decade this idea evolved into a more dynamic view where DNA methylation

levels can rapidly change in response to internal and external signalling. However, it

remained highly debated what mechanisms are used to remove DNA methylation marks,

a process that is required in order to explain the observable DNA methylation dynam-

ics. Recently, the Tet family of enzymes were described to catalyse the oxidation of

5-methyl-cytosine (5-mC) to 5-hydroxymethyl-cytosine (5-hmC), a potential intermedi-

ate in DNA demethylation.

At first, I aimed at developing a new set methods to quantify and map 5-hmC in ge-

nomic DNA. Using these new techniques I wanted to gain first insights into the function

of 5-hmC and Tet enzymes by analysing the abundance of this modification in mouse

tissues, during di↵erentiation and in myeloid leukemia. Moreover, I tried to analyse the

functional links between 5-hmC and other epigenetic networks by studying the 5-hmC

binding characteristics of known 5-mC binding proteins as well as by analysing the func-

tion of the Tet1 CXXC domain.
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Furthermore, I tried to identify new epigenetic factors and networks involved in trans-

gene silencing. For this I wanted to develop an assay based on the di↵erent silencing

characteristics of two commonly used promoter systems. At last, I aimed at study-

ing the function of designer transcription activator-like e↵ectors (dTALEs) in activating

transcription of the pluripotency gene oct4.
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ABSTRACT

The recent discovery of genomic 5-hydroxy-
methylcytosine (hmC) and mutations affecting the
respective Tet hydroxylases in leukemia raises
fundamental questions about this epigenetic modi-
fication. We present a sensitive method for fast
quantification of genomic hmC based on specific
transfer of radiolabeled glucose to hmC by a
purified glucosyltransferase. We determined hmC
levels in various adult tissues and differentiating
embryonic stem cells and show a correlation with
differential expression of tet genes.

INTRODUCTION

DNA methylation plays a crucial role in the epigenetic
regulation of gene expression during development and
disease (1). The post-replicative addition of a methyl
group to the carbon-5 of cytosine has long been the only
known enzymatic modification to bases in mammalian
genomic DNA, and due to its crucial role as an epigenetic
mark it is often referred to as the fifth base. Recently, the
Ten-Eleven Translocation 1 gene (tet1) was shown to
encode a 2-ketoglutarate- and Fe(II)-dependant
hydroxylase that converts genomic 5-methylcytosine
(mC) to 5-hydroxymethylcytosine (hmC) and on the
basis of sequence homology the closely related Tet2 and
3 proteins are expected to catalyze the same reaction (2,3).
To date hmC has been detected in genomic DNA isolated
from embryonic stem cells (ESCs) and some adult tissues
and it appears to be relatively abundant in the central
nervous system (2,4–6). The functional relevance of hmC
in these tissues is unknown and roles as an epigenetic
mark and/or an intermediate of oxidative demethylation
are intriguing possibilities (2,7). In addition,

translocations as well as nonsense and missense mutations
of tet genes have been identified in myelodysplastic syn-
dromes including several forms of myeloid leukemia
(8–10), raising the possibility that aberrant genomic
hmC patterns may be involved in these pathologies.
These observations grant sustained efforts to define the
role(s) of hmC in mammalian genomes.
Quantification and selective detection of genomic hmC

is technically challenging due to the relatively low abun-
dance and similarity of hmC to the more abundant mC,
not only in structural terms but also with respect to lack of
deamination by bisulfite treatment (11–12). We sought to
exploit enzymes involved in hmC modification that
evolved as part of the struggle between prokaryotes and
their viruses.
The three methods used so far to quantify global hmC

content in mammalian genomes are designed to detect
hmC in hydrolyzed DNA globally (HPLC/esi-ms/ms) or
at subsets of CpG sites (2,4,5). As hmC may also occur at
non-CpG sites, the latter type of methods may underesti-
mate its abundance. In addition, none of these procedures
is easily applicable to large sample numbers. We therefore
sought to establish a highly sensitive and accurate method
to detect hmC independently of sequence context and with
higher throughput capacity. To this aim, we turned our
attention to glucosyltransferases of T-even bacteriophages
that transfer glucose from UDP-glucose donor to genomic
hmC. Notably, all cytosines in the T4 genome are replaced
by hmC residues that are invariably modified by a- and
b-glucosyltransferases (a- and b-gt; Figure 1A). We
reasoned that by using UDP-[3H]glucose the incorpor-
ation of radiolabeled glucose in DNA should reflect the
abundance of hmC. We focused on b-gt rather than a-gt,
as it was shown to glucosylate to completion all tested
hmC-containing DNA substrates both in vivo and
in vitro, including the non-glucosylated T4 genome
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(13,14). This indicates that b-gt can glucosylate hmC in-
dependently of DNA sequence and structural context and
therefore is ideally suited for this assay.

MATERIALS AND METHODS

Cell culture and differentiation of ESCs

Undifferentiated J1 and E14 ESCs were maintained on
gelatin-coated dishes in Dulbecco’s modiEed Eagle’s
medium containing 16% fetal bovine serum (PAA
Laboratories GmbH), 0.1mM b-mercaptoethanol
(Invitrogen), 2mM L-glutamine, 1!MEM Non-essential
Amino Acid Solution, 100U/ml penicillin, 100 mg/ml
streptomycin (PAA Laboratories GmbH) and 1000U/ml
recombinant mouse LIF (Millipore). To induce embryoid
body (EB) formation, ESCs were resuspended in the
same medium as above but without LIF and cultured
in hanging drops (600 cells/20 ml drop) for 4 days.
Subsequently, EBs were cultured in bacterial culture
dishes and the medium was replaced every 4 days.

DNA and RNA isolation

All tissue samples were prepared from 6-week-old 129sv
mice. Genomic DNA and total RNA were isolated
from tissue samples using the NucleoSpin Triprep Kit
(Macherey-Nagel). Genomic DNA and total RNA were
isolated from ESCs and EBs using the Blood & Cell
culture DNA mini kit (QIAGEN) and TRIzol reagent

(Invitrogen), respectively. To avoid genomic DNA con-
tamination, isolated RNA was digested with recombinant
RNase-free DNase I (Roche) and further purified with the
QIAGEN RNeasy kit. Genomic DNA samples were
sheared to 500–1500 bp fragments by sonication to
reduce the viscosity and improve homogeneity. The con-
centration of genomic DNA samples was measured by
fluorometry. Fifty microliters of diluted sample were
mixed with 50 ml of 2!TNE (Tris 20mM, pH 7.4; NaCl
400mM and EDTA 2mM) containing 200 ng/ml of
Hoechst 33258. Fluorescence was measured in a
TECAN infinite M1000 plate reader (Ex: 350/10; Em:
455/10). Serial dilutions (20–2000 ng/ml) of the hmC con-
taining reference DNA fragment (see below) were used as
standard for quantification.

Protein expression and purification

The sequence encoding bacteriophage T4 b-gt was
synthesized at Mr. Gene GmbH (Regensburg) and cloned
into pET28b vector (Novagen). BL21(DE3) E. coli cells
carrying the expression construct were grown at 37"C
until A600=0.6–0.7 and induced with 1mM isopropyl
b-D-thiogalactopyranoside for 16 h at 20"C. Lysates were
prepared by sonication in 300mM NaCl, 50mM
Na2HPO4, 10mM imidazole, 1mM b-mercaptoethanol,
cleared by centrifugation and applied to nickel-
nitrilotriacetic acid column (QIAGEN) pre-equilibrated
with lysis buffer. Washing and elution were performed
with lysis buffer containing 20 and 250mM imidazole,
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Figure 1. Elements of the hmC glucosylation assay. (A) Schematic representation of the hmC glucosylation reaction catalyzed by b-gt.
(B) Coomassie blue stained gel showing the purified b-gt preparation. (C) Example of calibration curve using mixtures of hmC-containing and
unmodified reference fragment (equal total DNA amounts). Note the linear relationship between [3H]glucose incorporation and percentage of hmC.
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respectively. Eluted proteins were applied to a Superdex
S-200 preparative gel filtration column (GE Healthcare)
in 150mM NaCl, 20mM Tris, pH 8.0, 1mM DTT.
Fractions containing the b-gt peak were pooled and
applied to a ResourceQ anion exchange column (GE
Healthcare) in order to eliminate residual contaminants,
resulting in pure b-gt in the flowthrough.

Preparation of reference DNA fragments

Reference DNA fragments (1139 bp) containing 0 and
100% hmC were prepared by polymerase chain reaction
(PCR), using dCTP and 5-hydroxymethyl-dCTP (Bioline
GmbH), respectively. T4 phage DNA was used as
template with primers: 50-TGG AGA AGG AGA ATG
AAG AAT AAT-30 and 50-GTG AAG TAA GTA ATA
AAT GGA TTG-30, Phusion HF DNA Polymerase
(Finnzymes) and the following cycling profile: one cycle
of 98"C for 2min and 35 cycles of 98"C for 10 s; 58"C for
10 s; and 72"C for 30 s. Primer sequences were selected
that do not contain cytosine residues. PCR products
were purified by gel electrophoresis followed by silica
column purification (Nucleospin, Macherey-Nagel).

Quantitative hmC glucosylation assay

Reactions contained 150mM NaCl, 20mM Tris, pH 8.0,
25mM CaCl2, 1mM DTT, 2.8mM ‘cold’ UDP-glucose
(Sigma-Aldrich), 0.86 nM UDP-[3H]glucose (glucose-
6-3H; 60Ci/mmol; Hartmann Analytic GmbH), 1 mg of
DNA substrate and 36 nM recombinant b-gt in a total
volume of 50 ml. Reactions were incubated for 20min at
room temperature and terminated by heating at 65"C for
10min. Twenty microliters of each reaction were spotted
in duplicate on paper filters (Whatmann) and DNA was
precipitated by incubation in 5% TCA for 15min at room
temperature. Filters were washed twice with 5% TCA and
once with 70% ethanol. Remaining radioactivity was
measured using a Liquid Scintillation Analyzer Tri-Carb
2100TR (Packard) with quench indicating parameter set
on tSIE/AEC (transformed spectral index of the external
standard/automatic efficiency control) in 4ml of Rotiszint
Eco Plus scintillation liquid (Roth GmbH) in Snaptwist
vials (Simport). Samples were measured for 30min or until
the 2! value reached 2%. The percentage of hmC per total
cytosine was calculated from the incorporation of
[3H]glucose using a calibration curve measured with the
reference fragment series for every experiment. The per-
centage of hmC was then corrected for the difference in C
abundance between reference fragment (35%) and mouse
genome (42%).

cDNA synthesis and real-time PCR

Five hundred nanograms of total RNA were used for
cDNA synthesis with the High-Capacity cDNA Reverse
Transcription Kit (with RNase Inhibitor; Applied
Biosystems). Equal amounts of cDNA were used for
real-time PCR with Power SYBR Green PCR Master
Mix (Applied Biosystems) on a 7500 Fast Real-Time
PCR System (Applied Biosystems) according to the manu-
facturer’s instructions. Gene expression levels were

normalized to Gapdh and calculated using the compara-
tive CT method (!!CT method).
Primers for quantitative real-time PCR were designed

with the Primer Express software (Applied Biosystems)
and contained the following sequences: Gapdh forward
50-CAT GGC CTT CCG TGT TCC TA-30, Gapdh
reverse 50-CTT CAC CAC CTT CTT GAT GTC
ATC-30, Tet1 forward 50-CCA GGA AGA GGC GAC
TAC GTT-30, Tet1 reverse 50-TTA GTG TTG TGT
GAA CCT GAT TTA TTG T-30, Tet2 forward 50-ACT
TCT CTG CTC ATT CCC ACA GA-30, Tet2 reverse
50-TTA GCT CCG ACT TCT CGA TTG TC-30, Tet3
forward 50-GAG CAC GCC AGA GAA GAT CAA-30

and Tet3 reverse 50-CAG GCT TTG CTG GGA CAA
TC-30.

RESULTS AND DISCUSSION

T4 b-gt was expressed in bacteria as a 6 ! His tag fusion
and purified to homogeneity by sequential nickel-NTA,
size exclusion and ion exchange chromatography
(Figure 1B). To assess whether transfer of [3H]glucose to
DNA is proportional to the hmC content within the range
previously reported for mammalian tissues, we prepared a
series of standard DNA substrate samples with global
hmC content ranging from 0.25 to 2% of total cytosine
by mixing corresponding proportions of two preparations
of the same 1.2 kb DNA fragment, one having all cytosine
residues replaced by hmC and the other containing no
hmC (Figure 1C). Using a 325-fold excess of unlabelled
UDP-glucose, the incorporation of radiolabeled glucose in
1 mg of total DNA substrate was strictly linear in this
range. This standard sample series was measured in
every assay to generate a calibration curve for the calcu-
lation of hmC content in genomic DNA samples. We first
measured genomic hmC levels in wild-type and Dnmt1, 3a
and 3b triple knockout (TKO) J1 ESCs (15) (Figure 2A
and B). Due to the absence of all three major DNA
methyltransferases, genomic DNA from TKO ESCs is
expected to contain very little, if any, cytosine methyla-
tion. Indeed, the measured level of genomic hmC in TKO
ESCs was at the detection limit (0.025%) of our assay,
while genomic DNA from wild-type ESCs contained
0.3% hmC relative to total cytosine. Real-time reverse
transcription (RT) PCR analysis showed that Tet1–3
mRNA levels are similar in wild-type and TKO ESCs,
with Tet1 transcripts largely preponderant and Tet3
mRNA the least abundant (more than 40-fold lower
than Tet1). It was previously shown that differentiation
of mouse ESCs by withdrawal of LIF from monolayer
cultures for 5 days results in a reduction of genomic
hmC and concomitant decrease in Tet1 transcripts (2).
We followed genomic hmC and Tet1–3 transcript
dynamics during EB differentiation of two commonly
used wild-type ESC lines (Figure 2A and B and
Supplementary Figure S1). In both cases, a sharp
decrease of hmC content was evident after 4 days of EB
culture, but a substantial recovery was observed after add-
itional 4 days of culture (Day 8). Interestingly, the tet
genes showed distinct expression dynamics during ESCs
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differentiation. Tet1 transcripts drastically decreased
in the first 4 days and further dropped by Day 8 of EB
culture. Tet2 mRNA levels also decreased in the first
4 days, but were fully restored in Day 8 EBs.
In contrast, Tet3 transcripts doubled at Day 4 and in-
creased about 20 times by Day 8 of EB culture. Thus,
the relatively high hmC content in undifferentiated ESCs
correlates with high levels of Tet1 and, to a lower extent,
Tet2 transcripts, while the partial recovery of genomic
hmC in Day 8 EBs correlates with increased Tet2 and
Tet3 mRNA levels.
We then analyzed several adult mouse tissues

(Figure 2C and D). As reported earlier, the highest
levels of genomic hmC were found in brain regions,
although kidney also showed relatively high levels. In all
cases, the hmC content was at least four times higher than
the detection limit, while in a previous report using a dif-
ferent assay the same non-neural tissues were either mar-
ginally above or right at the detection limit (5). Abundant
hmC in brain tissues correlated with high levels of Tet3
and to a lower extent Tet2, a pattern similar to Day 8 EBs.
Thus, most differentiated tissues are characterized by very
low levels of Tet1 and high levels of Tet3, while undiffer-
entiated ESCs show the opposite pattern. It will be

interesting to determine whether all pluripotent cell types
have this pattern and at which stages along the specifica-
tion of the various somatic lineages the relative expression
levels of tet genes change. Interestingly, kidney represents
an exception among the adult tissues analyzed as it shows
relatively high hmC content and a prevalence of Tet2 tran-
scripts. This is consistent with a cellular defect in proximal
convoluted tubules of the kidney as the only phenotype
described for Tet2 null mice (16). These observations
suggest that Tet proteins have redundant roles and that
the lack of a specific Tet family member may result in
phenotypic alterations only in tissues where high levels
of that Tet enzyme cannot be compensated by the other
family members. In this context, it should be noted
that the assay described here could also be employed to
measure the enzymatic activity of Tet proteins and their
mutants identified in leukemia patients by using mC-
containing DNA substrates.

In conclusion, we have established an accurate assay for
the quantification of genomic hmC that: (i) is more sensi-
tive than previously described methods; (ii) is not subject
to sequence bias; (iii) allows simultaneous processing of
large sample numbers; and (iv) does not require
specialized and expensive equipment. It should be noted
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Figure 2. Quantification of genomic hmC and Tet transcripts in mouse tissues, undifferentiated ESCs and EBs. (A and C) hmC glucosylation assays.
The percentage of hmC per total cytosine was calculated from the incorporation of [3H]glucose using a calibration curve from the reference fragment
(see Figure 1C). Shown are average values and error bars from two (A) or one (C) biological replicates, each measured in two independent assays,
with the exception of hippocampus that was measured only once. In every assay, each sample was measured in duplicate. The dashed line in
(A) indicates the estimated limit of detection. (B and D) Real-time RT–PCR analysis for Tet transcript levels. Expression levels are all relative to
Tet1 in kidney (set to 1), so that values in b and d are directly comparable. Shown are average values and error bars from two (B) and one
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measured in triplicate. Genomic DNA and RNA samples used in A/C and B/C, respectively, were isolated from the very same cell and tissue lysates.
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that lower concentrations of ‘cold’ UDP-glucose should
allow scaling down the amount of substrate DNA
without loss of signal. This assay will be highly useful to
determine the global abundance of hmC in genomic DNA,
especially in situations where limited amounts of tissue are
available such as isolates of rare primary cell types and
clinical samples.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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SUPPLEMENTARY FIGURE S1 
 

 

 
 
Quantification of genomic hmC and Tet transcripts in undifferentiated E14 embryonic stem cells 
(ESCs) and embryoid bodies (EBs). (A) hmC glucosylation assay. The percentage of hmC over 
total cytosine is calculated from the incorporation of [3H]glucose using a calibration curve from 
the reference fragment (see Fig. 1C) and corrected for the difference in cytosine abundance 
between the latter (35%) and mouse genome (42%). Shown are values from one assay, where 
each sample was measured in duplicate. (B) Real time RT-PCR analysis for Tet transcript levels. 
Shown are average values and error bars from two independent cDNA synthesis reactions. In 
every PCR reaction each sample was measured in triplicate. Genomic DNA and RNA samples 
used in A and B, respectively, were isolated from the very same ESC and EB lysates. 
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ABSTRACT

In mammalian genomes a sixth base,
5-hydroxymethylcytosine (hmC), is generated by en-
zymatic oxidation of 5-methylcytosine (mC). This dis-
covery has raised fundamental questions about the
functional relevance of hmC in mammalian genomes.
Due to their very similar chemical structure, discrim-
ination of the rare hmC against the far more
abundant mC is technically challenging and to date
no methods for direct sequencing of hmC have been
reported. Here, we report on a purified recombinant
endonuclease, PvuRts1I, which selectively cleaves
hmC-containing sequences. We determined the
consensus cleavage site of PvuRts1I as hmCN11–12/
N9–10G and show first data on its potential to inter-
rogate hmC patterns in mammalian genomes.

INTRODUCTION

In higher eukaryotes, only the C5 position of genomic
cytosine is subject to enzymatically catalyzed
post-replicative modification. Methylation at this
position has long been known to play major roles in epi-
genetic control of transcriptional activity and, as a conse-
quence, to affect fundamental processes such as
development (including natural reprogramming of cell
fate), imprinting, X chromosome inactivation, genome
stability and predisposition to neoplastic transformation
(1,2). The recent discovery of the further modification of
5–methylcytosine (mC) to 5-hydroxymethylcytosine (hmC)
by the family of Tet dioxygenases has raised major ques-
tions on the functional relevance of this sixth base in
mammalian genomes (3,4). While recent evidence
supports a role for hmC as an intermediate in the erasure
of cytosine methylation (5), other roles in controlling

genomic functions cannot be excluded. The definition of
these roles will require profiling of genomic hmC patterns,
which presents a major technical challenge as hmC is struc-
turally and chemically very similar to mC but in general far
less abundant in mammalian genomes (3,4,6–9). The gold
standard methodology for profiling of genomic mC sites,
bisulfite conversion, cannot discriminate hmC from mC
and all available restriction endonucleases are either
equally sensitive to mC and hmC or not sensitive to
either (10–12). While antibodies raised against hmC are
commercially available, their use to probe hmC frequency
by DNA immunoprecipitation has yet to be reported and
the accuracy of this method will depend on the relative
affinity of these antibodies for hmC versus mC as the latter
is present in large excess in mammalian genomes. Very
recently enzymatic methods for selective labeling and
identification of hmC have been reported (7,13).
Interestingly, hmC is also present in the genomes of

viruses that infect bacteria and unicellular algae, where
it serves as protection against the restriction systems of
the host. In particular, hmC accounts for up to 100% of
the cytosine residues in the genomes of T-even coliphages.
In these phages the hydroxymethyl group is added at the
level of the dCMP precursor and further linked to glucose
(in both a- and b-configurations) or gentiobiose after in-
corporation of the nucleotide in the genome (14–16). We
sought to exploit enzymatic activities that evolved as part
of the struggle between bacteria and these viruses to se-
lectively detect hmC in mammalian genomes. Recently, we
described an assay for quantification of global genomic
hmC levels based on the transfer of tritiated glucose to
hmC by T4 b-glucosyltransferase (7). Interestingly, restric-
tion systems have evolved in bacteria that address the
phage counter defense measures by specifically recognizing
modified cytosine. Among these the McrBC system and
the recently described MspJI endonuclease recognize se-
quences containing both mC and hmC (17,18) and
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therefore per se are not useful to discriminate these
modified cytosines. At least two endonucleases,
PvuRts1I and GmrSD, were shown to restrict DNA con-
taining glucosylated hmC (19,20). However, GmrSD does
not cleave non-glucosylated (hmC-containing) T4 DNA,
has the additional disadvantages of being a heterodimer
and of co-purifying with the GroEL chaperonin (19).
PvuRts1I is encoded by a single gene present on the kana-
mycin resistance plasmid Rts1 originally isolated from
Proteus vulgaris and its restriction activity in vivo was
shown to be modulated by hmC glucosylation in a
complex fashion (20). However, as PvuRts1I was not
purified, its activity has not been characterized in vitro.
Here, we show that purified recombinant PvuRts1I se-

lectively cleaves hmC-containing DNA and determine its
cleavage site. In addition, we present initial data on the
use of hmC as a tool to investigate hmC patterns in mam-
malian genomes.

MATERIALS AND METHODS

Cloning and purification of PvuRts1I

The sequence encoding PvuRts1I was synthesized at Mr
Gene GmbH (Regensburg) and cloned into the pET28a
vector (Novagen). BL21(DE3) Escherichia coli cells
carrying the expression vector were grown in LB
medium at 37!C until A600=0.6–0.7 and induced with
1mM isopropyl b-D-thiogalactopyranoside for 16 h at
18!C. Lysates were prepared by sonication in 300mM
NaCl, 50mM Na2HPO4 pH 8.0, 10mM imidazole, 10%
glycerol and 1mM b-mercaptoethanol, cleared by centri-
fugation and applied to a nickel–nitrilotriacetic acid
column (QIAGEN) pre-equilibrated with lysis buffer.
Washing and elution were performed with lysis buffer con-
taining 20 and 250mM imidazole, respectively. Eluted
proteins were applied to a Superdex S-200 preparative
gel filtration column (GE Healthcare) in 150mM NaCl,
20mM Tris pH 8.0, 10% glycerol, 1mM DTT and peak
fractions were pooled. The stability of PvuRts1I upon
storage was improved by supplementation with 10%
glycerol.

Preparation of DNA substrates

In vivo a/b-glucosylated and non-glucosylated T4 phage
DNA was isolated essentially as described (4). Briefly,
T4 stocks were propagated on E. coli strain CR63,
which was also used for the isolation of glucosylated T4
DNA. To isolate non-glucosylated T4 DNA, wild-type T4
phage was amplified on an ER1565 galU mutant strain.
b-glucosylated T4 DNA was generated in vitro by treat-
ment of non-glucosylated T4 DNA with purified T4
b-glucosyltransferase (7). Genomic DNA was isolated
from mouse cerebellum and triple knockout (TKO) em-
bryonic stem cells (ESCs) (21) as described (7).
Reference DNA fragments containing exclusively hmC,

mC or unmodified cytosine residues were prepared by PCR
using 5-hydroxymethyl-dCTP (Bioline GmbH),
5-methyl-dCTP (Jena Bioscience GmbH) and dCTP, re-
spectively. T4 phage DNA template, Phusion HF DNA

Polymerase (Finnzymes) and primer 50-GTG AAG TAA
GTA ATA AAT GGA TTG-30, which does not contain
cytosine residues, were used for amplification of all refer-
ence DNA fragments. To generate the reference 1139 bp
fragment with 100% hmC for restriction with PvuRts1I the
second primer was 50-TGG AGA AGG AGA ATG AAG
AAT AAT-30, which also does not contain cytosine
residues. To generate the 800 and 500 bp control sub-
strates containing only mC and only unmodified cytosine
for restriction with PvuRTS1I the second primer was 50-
GCC ATA TTG ATA ATG AAA TTA AAT GTA-30 and
50-TCA GCA ATT TTA ATA TTT CCA TCT TC-30,
respectively. PCR products were purified by gel electro-
phoresis followed by silica column purification
(Nucleospin, Macherey-Nagel). The 140 bp fragment
used to determine the orientation of the PvuRTS1I
cleavage overhang was amplified with primers 50-TAT
ACT GAA GTA CTT CAT CA-30 and 50-CTT TGC
GTG ATT TAT ATG TA-30.

For the preparation of substrates with a single PvuRts1I
consensus containing hmC or mC in symmetrical or asym-
metrical configuration a 94 bp fragment was amplified
from the T4 genome with primers 50-CTC GTA GAC
TGC GTA CCA ATC TAA CTC AGG ATA GTT
GAT-30 and 50-TAT GAT AAG TAT GTA GGT TAT
T-30. This fragment contains a single site corresponding to
the identified PvuRts1I consensus hmCN11–12/N9–10G and
was used as a template according to the strategy depicted
in Figure 3. To generate substrates with symmetric
cytosine modifications or unmodified cytosine the
fragment was amplified with forward primer 50-CTC
GTA GAC TGC GTA CCA-30 and reverse primer 1
50-TAT GAT AAG TAT GTA GGT TAT T-30 in the
presence of the respective modified or unmodified dCTP.
To generate substrates with asymmetric cytosine modifi-
cations the same forward primer was paired with reverse
primer 2 50-TAT GAT AAG TAT GTA GGT TAT TCA
A-30.

DNA restriction with PvuRts1I and identification of
cleavage and recognition site

Unless otherwise stated the reaction conditions contained
150mM NaCl, 20mM Tris pH 8.0, 5mM MgCl2, 1mM
DTT. One unit of PvuRTS1I was defined as amount of
enzyme required to digest 1 mg of hmC-containing T4 DNA
in 15min at 22!C. For assessment of enzyme specificity,
100 ng of each control fragment were digested separately
or together with 200 ng of genomic DNA in 30 ml reactions
containing standard buffer and 1U of purified PvuRts1I
at 22!C for 15min.

For identification of the cleavage and recognition site,
the 1139 bp fully hydroxymethylated fragment amplified
from the T4 genome or whole non-glucosylated T4
DNA were digested under standard conditions.
Fragment ends were blunted with Klenow polymerase
(NEB) and cloned using the Zero Blunt" PCR Cloning
Kit (Invitrogen). Randomly selected clones were
sequenced and the data were analyzed using
WebLogo (22).
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RESULTS
hmC-specific endonuclease activity of PvuRts1I

His-tagged PvuRts1I was expressed in E. coli and purified
to homogeneity by sequential Ni2+ affinity and size exclu-
sion chromatography (Figure 1A). As bacteria carrying
the Rts1 plasmid were shown to restrict the
hmC-containing T-even phages, but not mC-containing
T-odd phages or ! phage, which does not contain
modified cytosine (20), we initially used T4 genomic
DNA as a substrate to test the activity of purified
PvuRts1I. T4 genomic DNA was isolated from both
galU+ and galU" strains, the latter being UDP-glucose
deficient and thus containing only non-glucosylated hmC.
Under the same digestion conditions non-glucosylated T4
DNA was digested more efficiently than both naturally a-
and b-glucosylated and in vitro b-glucosylated counter-
parts (Figure 1B). Non-glucosylated T4 DNA was
cleaved into fragments with an apparent size of about
200 bp, indicating that PvuRts1I recognizes a frequently
occurring sequence (Figure 1B and Supplementary
Figures S1 and S2). We then used non-glucosylated T4
DNA to test the activity of the enzyme under various con-
ditions. PvuRts1I was strictly dependant on Mg2+ ions,
which could not be substituted with Ca2+, and endonucle-
ase activity was maximal in the presence of 100–200mM
NaCl (Supplementary Figure S1A and B). However,
during purification we observed that the enzyme is
unstable in solutions of ionic strength lower than
150mM NaCl. The activity of PvuRts1I was found
highest at pH 7.5–8.0 and was unaffected by the
presence of Tween 20 or Triton X-100 (Supplementary
Figure S2A and B). We also observed that after prolonged
incubation PvuRts1I precipitates even at room tempera-
ture, consistent with the reported temperature sensitivity
of the phage restriction activity in cells carrying the Rts1
plasmid (20). Upon short incubation times maximal
activity was observed at 22!C (Supplementary Figure
2C). Thus, the relative amounts of enzyme and DNA sub-
strate were standardized so that digestion was complete in
15min at 22!C in the presence of 150mM NaCl
(Supplementary Figures S1C and S2C).

The specificity of PvuRts1I with respect to cytosine
modification was further tested by digesting reference
fragments containing exclusively unmodified cytosine

(500 bp), mC (800 bp) or hmC (1139 bp; Figure 1C).
Under standard digestion conditions purified PvuRts1I
selectively cleaved the hmC-containing fragment, consist-
ent with the relative restriction efficiency of bacterio-
phages with distinct cytosine modifications by bacteria
carrying the Rts1 plasmid (20).

Determination of PvuRts1I cleavage sites

To identify the cleavage pattern of PvuRts1I we generated
libraries of restriction fragments from either the whole T4
genome (Supplementary Figure S3) or an 1139 bp
fragment amplified from the same genome containing ex-
clusively hydroxymethylated cytosines (Figure 2).
Random sequencing of 161 and 133 fragment ends from
the whole T4 genome and 1139 bp fragment libraries
revealed that 85 and 89%, respectively, matched the con-
sensus sequence hmCN11–12/N9–10G. Among these 78 and
87%, respectively, showed one of three similar sequence
patterns, hmCN12/N10G, hmCN12/N9G and hmCN11/N9G,
while for the remaining fragment ends the exact number of
nucleotides between the modified cytosine and the
cleavage site could not be determined unambiguously
due to the occurrence of multiple hmC residues upstream
of the cleavage site. Of the sequenced fragment ends, 14
and 11% from the whole T4 genome and 1139 bp
fragment libraries, respectively, did not match the
hmCN11–12/N9–10G consensus. However, 100 and 80% of
these ends, respectively, contained at least one hmC residue
10–13 nt upstream of the cleavage site, while no guanine
was present in the T4 genomic sequence 10–11 nt down-
stream the cleavage site (Supplementary Figure S4). The
sequenced clones from the 1139 bp T4 genomic fragment
library corresponded to an 81% coverage of the fragment,
with some PvuRts1I fragments occurring multiple times,
while other fragments that were predicted on the basis of
the hmCN11–12/N9–10G consensus were not found (Figure 2
and Supplementary Figure S5). Examination of the
missing fragments did not show any common sequence
feature beyond the hmCN11–12/N9–10G consensus
(Supplementary Figure S6), suggesting that their absence
from the sequenced fragments was due to limited
sampling. Alignment of sequenced fragment ends from
the T4 genomic fragment library showed that 2 nt
around the cleavage site were missing from all clones, sug-
gesting a 2 nt 30-overhang cleavage pattern

Figure 1. Selective restriction of hmC-containing DNA by PvuRts1I. (A) Purified PvuRts1I was resolved on a SDS–polyacrylamide gel and stained
with coomassie blue. (B) T4 genomic DNA with the naturally occurring pattern of a- and b-glucosylated hmC, only b-glucosylated hmC or
non-glucosylated hmC was incubated without or with decreasing amounts of PvuRts1I as indicated. (C) Reference PCR fragments of 1139, 800
and 500 bp containing hmC, mC and unmodified cytosine at all cytosine residues, respectively, were incubated with or without PvuRTS1I as indicated.
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(Supplementary Figure S5). This was confirmed by direct
sequencing of the two fragments generated by digestion of
a 140 bp amplicon containing a single PvuRts1I site
(Supplementary Figure S7).
The results above reveal a symmetric nature of the

preferred cleavage sites and raise the issue of PvuRTs1I
activity on sites with modified cytosine in symmetric and
asymmetric configuration. To clarify this issue, we used a
PCR strategy to generate DNA substrates with identical
sequence and containing a single PvuRts1I consensus site
with hmC or mC in symmetrical and asymmetrical config-
urations or no modified cytosine (Figure 3A). In the
presence of enzyme amounts that did not cleave substrates
with unmodified and mC sites, digestion of substrates with
asymmetric hmC at the PvuRTs1I site was reduced with
respect to substrates with symmetric hmC, but still appre-
ciable. Residual undigested substrate with symmetric hmC
at the PvuRTs1I site in these reaction conditions was typ-
ically observed with such short substrates, but not with
longer ones.

Digestion of mammalian genomic DNA with PvuRts1I

To investigate cleavage site preference and efficiency of
PvuRts1I digestion for mammalian genomic DNA, we
initially selected the upstream regulatory region III of
the mouse nanog gene (23). As this region was shown to
be bound by Tet1 and to acquire CpG methylation upon
knockdown of Tet1 in ESCs (5), it represents a potential
candidate as a mammalian genomic sequence containing
hmC. Real time amplification of this region from ESC
genomic DNA did not show a significant decrease of
product after PvuRts1I digestion (data not shown). We
then devised a strategy to positively identify rare
PvuRts1I digestion products. After PvuRts1I digestion
genomic fragments were ligated to a linker with a
random 2nt 30-overhang. Ligation products were then
amplified using nanog specific primers paired with a
linker specific primer, but no amplification product
could be obtained (data not shown). This result may be
explained by an extremely seldom occurrence of hmC at

Figure 2. Cleavage site of PvuRts1I. A library of PvuRts1I restriction fragments was generated from an 1139 bp PCR fragment containing only
hydroxymethylated cytosine residues and the sequence of 133 restriction fragment ends from randomly chosen clones was determined. (A) Graphical
map of the fragment ends. A total of 119 analyzed fragment ends (triangles) matched the consensus sequence hmCN11–12/N9–10G, which was present
at 97 sites (thin vertical lines) in the 1139 bp PCR fragment (thick horizontal line). Fifty three fragment ends related to the sequence motif hmCN12/
N10G (dark green triangles), 37 to hmCN11/N10G (bright green triangles) and 14 to hmCN11/N9G (light green triangles), while 15 fragment ends
matching the consensus sequence hmCN11–12/N9–10G could not assigned unambiguously to any of these subsets (gray triangles). Fourteen fragment
ends did not match the prevalent consensus sequence (gray circles, see Supplementary Figure S3). (B) Occurrence of the three subsets of cleavage sites
and LOGO representation of the corresponding consensus sequence. The absolute height of each position reflects its overall conservation, while the
relative height of nucleotide letters represents their relative frequency. The slash in the three cleavage sequence subtypes indicates the exact cleavage
site.
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cleavage sites of this locus (especially in symmetric config-
uration), inefficiency of PvuRts1I digestion or both. In
this regard, it is important to consider that positive iden-
tification of hmC sites in this region of the nanog locus has
actually not been reported for ESCs. In addition, during
the revision of the present work a manuscript was pub-
lished (24) that could not confirm the reduced nanog ex-
pression and ESC differentiation previously reported
upon Tet1 knockdown (5), raising uncertainty about the
actual occurrence of hmC at the nanog promoter in ESCs.

As there are no clear and quantitative data on the levels
and density of hmC at specific genomic sites available yet
we generated defined substrates to validate the PvuRst1I
cut-ligation amplification protocol for the identification of
hmC sites. We PCR amplified region III of the nanog
promoter in the presence of increasing concentrations of
5-hydroxymethyl-dCTP and confirmed the incorporation
of proportional levels of hmC using the recently reported
b-glucosylation assay (7) (data not shown). Fragment
samples with increasing hmC content were then digested
with PvuRts1I and the same ligation/PCR strategy for the
identification of digestion products was applied as
described above (Supplementary Figure S8A). Detection
of fragments with ends corresponding to the PvuRts1I
cleavage pattern raised with increasing hmC content.

We previously quantified global hmC levels in genomic
DNA from ESCs and adult somatic tissues using in vitro

hmC glucosylation (7). Consistent with other studies
(3,6,8,9), this analysis revealed that genomic DNA from
adult brain regions has a high hmC content. In addition,
we showed that in ESCs that are TKO for all three major
DNA methyltransferases Dnmt1, 3a and 3b (21) genomic
hmC levels were around the estimated limit of detection,
although reproducibly above background. Therefore, we
compared the PvuRts1I restriction pattern of genomic
DNA from cerebellum and TKO ESCs as representative
of samples with high and very low hmC levels, respectively.
As internal controls, we co-digested each of the two
genomic DNA samples with the same reference fragments
as used to test the specificity of PvuRts1I with respect to
cytosine modification (Figure 1C). As expected from the
relative low abundance of hmC in mammalian genomic
DNA, there was a limited reduction of high molecular
weight fragments and appearance of lower molecular
weight smear (Figure 4). However, DNA from cerebellum
was clearly digested to a higher extent than DNA from
TKO ESCs as evident from the line scans across the re-
spective gel lanes (Figure 4). The low but appreciable
degree of digestion observed for genomic DNA from
TKO ESCs does not seem to result from relaxed specificity
or contaminating nuclease activities, as only control sub-
strates containing hmC, but not mC or unmodified
cytosine, were digested when incubated either separately
or together with genomic DNA (Figure 1C and Figure 4).

Figure 3. Differential activity of PvuRts1I on sites with symmetric and asymmetric hmC. Ninety-four bp long substrates with identical sequence were
generated that contain a single PvuRts1I consensus site (CN12/N10G) with hmC or mC in symmetrical and asymmetrical configurations or no modified
cytosine. (A) Strategy for generation of the substrates by PCR amplification in the presence of modified nucleotides. The size of the PvuRts1I
digestion products is indicated. (B) The variously modified substrates were digested with the indicated amounts of PvuRts1I and digestion products
were resolved on polyacrylamide gels. Note the reduced but tangible digestion of the substrate containing asymmetric hmC.
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Absence of digestion of control substrates containing mC
and unmodified cytosine was evident from the unaltered
ratio of their respective signals in the presence and absence
of enzyme. This result shows that the extent of digestion
by PvuRts1I reflects the relative hmC content in mamma-
lian genomic DNA.

DISCUSSION

Several modification and restriction systems have evolved
as defense and counter defense strategies in the struggle
between unicellular microorganisms and their viruses.
Here, we show that, in contrast to previously
characterized endonucleases which cleave hmC-containing
sequences, PvuRts1I has a preference for the
non-glucosylated form of this base and discriminates
against mC. This specificity makes PvuRts1I an attractive
tool to investigate genomic hmC patterns in higher eukary-
otes and complements the very recently published
methods for enzymatic labeling of this sixth base (7,13).
Importantly, we show that the extent of PvuRts1I di-

gestion reflects the relative abundance of hmC in genomic
DNA from cerebellum and TKO ESCs. The limited extent
of digestion even for samples with relatively high hmC
content is in line with the cleavage site preference and
dependence on cytosine modification that we determined.
We calculate that the statistical probability of the
PvuRts1I consensus site CN11–12/N9–10G in the mouse
genome is 0.126. Combined with the global hmC occur-
rence in mouse tissues (up to 0.13% of all bases or
0.65% of Cs) (3,7–9) this translates into a PvuRts1I
cleavage site every 1.9# 105 bases. As this is in the size
range of fragments typically obtained with standard pro-
cedures for isolation of genomic DNA, more careful iso-
lation methods should be used and/or PvuRts1I specific
ends could be enriched by ligating biotinylated PvuRts1I
compatible linkers. Alternatively, digestion conditions
could be optimized or DNA could be denatured and a

second strand synthesized with hmC nucleotides to cut
and reveal the likely more abundant hemimodified
PvuRts1I sites.

Notably, while cerebellum has been previously reported
among the tissues with the highest levels of genomic hmC
(3,7,9), complete absence of mC and therefore hmC would
be expected in TKO ESCs due to the lack of all three
major Dnmts (21). However, we previously detected hmC
levels slightly above background in TKO ESCs (7) and
here we show minimal but appreciable digestion by
PvuRts1I. In this context, it is interesting to note that
ESCs express the highly conserved Dnmt2 (25,26), the
only Dnmt family member with an intact catalytic
domain that has not been genetically inactivated in TKO
ESCs. Although Dnmt2 has a major role as a tRNA
methyltransferase and its function as a DNA
methyltransferase is still debated (27–32), it was recently
shown to methylate genomic sequences in Drosophila
(32,33). Future work should clarify whether the genome
of TKO ESCs harbors any residual mC and hmC.

Restriction of genomic DNA with PvuRts1I may be
combined with PCR amplification for analysis of specific
loci or with massive parallel sequencing or microarray hy-
bridization for genome-wide mapping. The calculations
reported above for the frequency of PvuRts1I cleavage
sites based on a random hmC distribution bring up the
argument that the extent of random breaks in genomic
DNA preparations would contribute very significant
noise in deep sequencing and microarray applications.
This drawback may at least be partially overcome if
specific PvuRts1I ends are enriched by ligating linkers
with a random 2nt 30-overhang as described here and dis-
cussed above, a strategy that can be integrated with pro-
cedures for generation of sequencing libraries. Also, our
simulation of genomic fragments containing known levels
of randomly distributed hmC clearly shows that relatively
high local concentrations of hmC sites are required for ef-
ficient detection by PvuRts1I. The first genome-wide hmC
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Figure 4. Restriction of mouse genomic DNA by PvuRts1I reflects hmC content. Genomic DNA from mouse cerebellum or TKO ESCs was mixed
with three reference PCR fragments of 1139, 800 and 500 bp containing hmC, mC and unmodified cytosine at all cytosine residues, respectively, and
incubated with or without PvuRts1I as indicated. Digests were resolved on a 0.8% agarose gel stained with ethidium bromide. Line scans of the gel
lanes are aligned to the image of the gel. Red and blue lines correspond to samples incubated with and without enzyme, respectively. Arrows point to
the main difference in the profiles form cerebellum and TKO ESC DNA digested with PvuRts1I (red lines).
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profiles from mammalian tissues have just been reported
(13). From these first data sets, it is apparent that genomic
hmC is not randomly distributed and that its accumulation
in gene bodies is proportional to transcriptional activity.
Thus, PvuRts1I may prove a valuable tool to probe hmC
accumulation at defined genomic regions. In addition, the
selectivity of PvuRts1I for hmC-containing sites may con-
stitute an advantage with respect to endonucleases such as
McrBC and MspJ1 as these enzymes do not discriminate
between mC and hmC and require in vitro enzymatic hmC
glucosylation to specifically protect hmC-containing sites
from digestion and thus distinguish them from mC sites.

In conclusion, we show that PvuRts1I is an hmC specific
endonuclease and provide a biochemical characterization
of its enzymatic properties for future applications as diag-
nostic tool in the analysis of hmC distribution at genomic
loci in development and disease.
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Supplementary Figure S1. Optimization of PvuRts1I restriction conditions using non-
glucosylated T4 genomic DNA as substrate. (A-B) Comparison of cleavage rates in the presence 
different ionic strength conditions and types and concentrations of bivalent ions. One µg of DNA 
was digested with 1U of enzyme in buffer containing 20 mM Tris pH 8.0 and (A) 5 mM MgCl2 
and the indicated concentrations of NaCl or (B) 150 mM NaCl and the indicated concentrations 
of MgCl2 or CaCl2. (C) Combined time course and enzyme titration in buffer containing 20 mM 
Tris pH 8.0, 150 mM NaCl and 5 mM MgCl2. 
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Supplementary Figure S2. Characterization of PvuRts1I activity under different pH (A), 
detergent conditions (B) and temperature (C). Non-glucosylated T4 genomic DNA was used as 
substrate. In A and C incubation was for 15 min at 22°C. 
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Supplementary Figure S3. Cleavage site of PvuRts1I as deduced from a restriction fragment 
library from the whole non-glucosylated T4 genome. A total of 161 fragment ends were 
sequenced. 137 fragment ends matched the consensus sequence hmCN11-12/N9-10G, of which 54 
related to the sequence motif hmCN12/N10G, 38 to hmCN11/N10G, 15 to hmCN11/N9G, while 30 could 
not be assigned unambiguously to any of these subsets due to the occurrence of multiple hmC 
residues upstream of the cleavage site. 24 fragment ends had at least one hmC residue at a 
distance 10-13 nucleotides from the cutting site, but no guanine was present in the T4 genomic 
sequence 10-11 nucleotides downstream the cleavage site. Shown is the occurrence (left) and 
LOGO graphic representation (right) of the three consensus sequence subtypes. In the graphic 
representations the absolute height of each position and the relative height of each nucleotide 
letter reflect overall conservation and relative nucleotide frequency, respectively (Crooks et al., 
2004). 
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Supplementary Figure S4. Sequences form the T4 genomic 1139 bp fragment cut by PvuRts1I 
that deviate from the predicted consensus sequence hmC N11-12 / N9-10 G. All cytosine residues are 
hydroxymethylated but for simplicity they are here indicated as Cs. hmC and guanine residues 11-
13 nucleotides upstream of and 9-10 nucleotides downstream to the cleavage site, respectively, 
are highlighted in red. Residues 21-23 nucleotides downstream of a hmC are shaded in light red. 



Szwagierczak et al. Supplementary Information�

6�
�

Supplementary Figure S5. Distribution of the sequenced PvuRts1I restriction fragments over 
the 1139 bp genomic fragment from T4. The sequences determined form clone inserts are shown 
in green and aligned to the sequence of the 1139 bp genomic fragment (in black type), while the 
sequences corresponding to the prevalent PvuRts1I recognition site hmC N11-12 / N9-10 G are shown 
above the sequence; the sites corresponding to fragments of the library that were actually 
sequenced are shown in red. The positions corresponding to the two nucleotide 3’ overhangs left 
by PvuRts1I digestion are highlighted in red and grey for experimentally determined and only 
predicted sites, respectively. The sequences of the primers used for amplification of the fragment 
1139 bp T4 genomic fragment are highlighted in green.  
 
 
    
                                      C----------**----------G 
                                      C----------**---------G                           C----------* 
                                      C---------**----------G                           C---------** 
                                     C----------**----------G                C----------**---------- 
TGGAGAAGGAGAATGAAGAATAATATGTGGAATCTTACCTTTACTTGTAATAGATTTAAAGGTTTCTTTATCAAAAGCGGGAAGAATACATTCATCGATA  100 
TGGAGAAGGAGAATGAAGAATAATATGTGGAATCTTACCTTTACTTGTA 
TGGAGAAGGAGAATGAAGAATAATATGTGGAATCTTACCTTTACTTGTA 
TGGAGAAGGAGAATGAAGAATAATATGTGGAATCTTACCTTTACTTGTAATAGATTTAAAGGTTTCTTTATCAAAGGCGGGAAGAATACATTCATCGA 
                                                   AGATTTAAAGGTTTCTTTATCAAAGGCGGGAAGAATACATTCATCGA 
 
 
 
 
         C----------**---------G  
         C---------**----------G                                                                   C 
*---------G                                                                                   C----- 
----------G                                                                                  C------ 
G                                                                   C----------**----------G C------ 
GTAGATGGACGATATTTCTGTTCAAGAATGTGTTCTTTTTCATTTACAGTAATCATAATTTCCTCATTCAAGTTTTAGTGTAAATTATAAAGGCCGAAGC  200 
                      CAAGAATGTGTTCTTTTTCATTTACAGTAATCATAATTTCCTCATTCAAGTTTTAGT 
                      CAAGAATGTGTTCTTTTTCATTTACAGTAATCATAATTTCCTCATTCAAGTTTTAGT 
                      CAAGAATGTGTTCTTTTTCATTTACAGTAATCATAATTTCCTCATTCAAGTTTTAGT 
                      CAAGAATGTGTTCTTTTTCATTTACAGTAATCATAATTTCCTCATTCAAGTTTTAGT 
 
 
 
              C----------**----------G                  
              C---------**---------G                                       
 C---------**---------G                         
C----------**---------G                              C----------**----------G   C---------**-------- 
C---------**----------G                            C----------**---------G     C----------**-------- 
----------**----------G                            C---------**----------G     C---------**--------- 
-----**----------G              C----------**---------G       C---------**---------G 
----**---------G                C---------**----------G      C----------**---------G 
---**----------G             C----------**----------G        C---------**----------G 
CCTCTATTAAAAATCGTGGGTAGAATCAGCTTCAAGAGCTACCACATAATTCGCGTGTTCACCTTCAAATTTAGCAGCACCTTGTTTACCTTTTGCCCAA  300 
            ATCGTGGGTAGAATCAGCTTCAAGAGCTGCCACATAATTCGCGTGTTCACCTTCAAATT 
                TGGGTAGAATCAGCTTCAAGAGCTACCACATAATTCGCGTGTTCACCTTCAAATT 
                                          CACATAATTCGCGTGTTCACCTTCAAATT 
                                          CACATAATTCGCGTGTTCACCTTCAAATT 
                                          CACATAATTCGCGTGTTCACCTTCAAATTTAGCAG 
                                          CACATAATTCGCGTGTTCACCTTCAAATTTAGCAGCACCTTGTTTAC 
                                             ATAATTCGCGTGTTCACCTTCAAATT 
 
 
 
                                         C----------**---------G 
-G                                       C---------**----------G 
-G                                      C----------**----------G 
-G                              C---------**---------G 
                          C---------**---------G 
                  C---------**---------G                                                    C------- 
  C----------**----------G                                               C----------**----------G 
AGCAGAAGTTTATAATTTCCTGGTTGCATTTTCATATTTGCCATATTGATAATGAAATTAAATGTATTTTCACCATCATAATCACCAAGAGTCAAAGAAT  400 
                                                     GAAATTAAATGTATTTTCACCATCATAATCACCAAGA�
                                                     GAAATTAAATGTATTTTCACCATCATAATCACCAAGAGTCAAAGAAT�
                                                      AAATTAAATGTATTTTCACCATCATAATCA�
                                                      AAATTAAATGTATTTTCACCATCATAATCACCAAGAGTCAAAGAAT�
                                                      AAATTAAATGTATTTTCACCATCATAATCACCAAGAGTCAAAGAAT 
                                                      AAATTAAATGTATTTTCACCATCATAATCACCAAGAGTCAAAGAAT 
                                                      AAATTAAATGTATTTTCACCATCATAATCACCAAGAGTCAAAGAAT 
                                                      AAATTAAATGTATTTTCACCATCATAATCACCAAGAGTCAAAGAAT 



Szwagierczak et al. Supplementary Information�

7�
�

                                                   C----------**---------G                         C 
                                                   C---------**----------G                        C- 
---**----------G              C----------**---------G                 C----------**----------G    C- 
                              C---------**----------G       C----------**----------G          C----- 
ATTTAACACGGGTCAGAGCAGAATCTTCTACTTTATTAAAACCGTTAATTACGATTTTACCTTCTTTTACCGTGATAGCAATTGTATCAATTTGCAGACC  500 
     ACACGGGTCAGAGCAGAATCTTCTACTTTATTAAA  CGTTAATTACGATTTTACC  CTTTTACCGTGATAGCAA  GTATCAATTTGCAGACC 
ATT  ACACGGGTCAGAGCAGAATCTTCTACTTTATTAAA  CGTTAATTACGATTTTACCTTCTTTTACC            GTATCAATTTGCAGACC 
     ACACGGGTCAGAGCAGAATCTTCTACTTTATTAAA                                           GTATCAATTTGCAGACC 
ATT  ACACGGGTCAGAGCAGAATCTTCTACTTTATTAAAACCGTTAATTACGATTTTACC                      GTATCAATTTGCAGACC 
ATT  ACACGGGTCAGAGCAGAATCTTCTACTTTATTAAAACCGTTAATTACGATTTTACC  
ATT      GGGTCAGAGCAGAATCTTCTACTTTATTAAAACCGTTAATTACGATTTTACC 
ATT                                        
ATT  
 
 
 
 
                                                              C----------**----------G 
            C----------**---------G                  C----------**----------G 
            C---------**----------G               C---------**---------G 
 C----------**---------G                    C----------**---------G 
 C---------**----------G                    C---------**----------G 
---------**---------G                       C---------**---------G 
---------**---------G              C----------**----------G    C----------**----------G        C---- 
--------**----------G           C----------**----------G       C----------**---------G      C------- 
-----**----------G           C----------**----------G          C---------**----------G   C---------- 
ACGAGATACACGCAACAGCTGTTGAAGGTCTTCAGCTTTAATTTCAGTAACAGCAGATGCTACCGGGAATGGAATTGGTTTATTAGGAGCAACTACTGTA  600 
ACGAG                                        AGTAACAGCAGATGCTACC            GGTTTATTAGGAGCAACTACTGTA 
ACGAGATACACGCAACAG                           AGTAACAGCAGATGCTACC            GGTTTATTAGGAGCAACTACTGTA 
ACGAGATACACGCAACAGCTGTTGAAGGTCTTCAGCTTTAATT  AGTAACAGCAGATGCTACCGGGAATGGA   GGTTTATTAGGAGCAACTACTGTA 
ACGAGATACACGCAACAGCTGTTGAAGGTCTTCAGCTTTAATT 
           GCAACAGCTGTTGAAGGTCTTCAGCTTTAATT 
 
 
 
 
 
             C----------**----------G 
             C----------**---------G 
             C---------**----------G 
             C---------**---------G 
          C----------**---------G 
          C---------**----------G 
       C----------**----------G 
-----**---------G                                                                 C---------**------ 
---**----------G                                          C----------**----------G      C----------* 
**----------G                              C----------**----------G                     C---------** 
CTCGGATCGGCTGCTGGCCAAAAAATTGTTGAGCGGGCATCAGCAATTTTAATATTTCCATCTTCTGACTGGGAAATTTCTGCATCATCATTAACTAAAG  700 
CTC                           GAGCGGGCATCAGCAATTTTAATATTTCCATCTTCTGACTGGGAAATTTCTGCATCATCATT 
CTCGGATCGGC                                             TCCATCTTCTGACTGGGAAATTTCTGCATCATCATTAACTAAAG 
CTCGGATCGGCTGCTGGCCAAAAA                                TCCATCTTCTGACTGGGAAATTTCTGCATCATCATTAACTAAAG 
                    AAAAATTGTTGAGCGGGC                                                        CTAAAG 
                    AAAAATTGTTGAGCGGGCATCAGCAATTTTAATA 
                    AAAAATTGTTGAGCGGGCATCAGCAATTTTAATA 
 
 
 
 
                                                                                               C- 
                                                                                                C--- 
                                                                                                C--- 
                                                                                                C--- 
                                                                                             C------ 
                                                                           C----------**---------G 
                                                                           C---------**----------G 
                                                                         C----------**---------G 
                                                                         C---------**----------G 
---G                                                                    C----------**----------G   
*---------G                                              C----------**----------G                
----------G                         C----------**----------G                                       
ACAGAATACCGAGAAAACCGTTCAAATCGTAAATTGCTACATCAAAATCAATAACGTCAGAAATATTTGCTTCCGCATAAGTTGTACCATTAACTGCGCG  800 
                                                 AATAACGTCAGAAATATTTGCTTCCGCATAAGTTG   CATTAACTGCGCG 
ACAGAATACCGAGAAAACCGTTCAAATCATAAATTGCTACATCAAAA                                        CATTAACTGCGCG 
ACAGAATACCGAGAAAACCGTTCAAATCATAAATTGCTACATCAAAA 
ACAGAATACCGAGAAAACCGTTCAAATCATAAATTGCTACATCAAAA 
 CAGAATACCGAGAAAACCGTTCAAATCGTAAATTGCTACATCAAAATCAATAACGTCAGAAATATTTGCTTCCGCATAAGTTG 
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--------**---------G 
-------**----------G 
-------**---------G 
------**----------G 
---**---------G 
                           C----------**---------G 
                           C---------**----------G 
                 C----------**---------G 
                 C---------**----------G 
                C----------**----------G 
                C---------**---------G                         C----------**----------G 
   C----------**----------G                       C----------**----------G 
AGTCATAATAAATTGACCGGATTTAAGCATAATACCAGAGTTAATAGTAGCGAAATTTTTAAGCAGAGCAGTAGTATCTTTAGACAGTTTCATGTAATTT  900 
AGTCATA                                                       GCAGAGCAGTAGTATCTTTAGACAGTTTCATGTAATTT 
AGTCATA                                                                     TCTTTAGACAGTTTCATGTAATTT 
                                                                            TCTTTAGACAGTTTCATGTAATTT 
 
 
 
 
                                                                  C----------**----------G 
                                                    C---------**---------G 
                                             C----------**---------G                        C------- 
                                             C---------**----------G               C---------**----- 
                               C----------**---------G              C----------**----------G 
                               C---------**----------G              C---------**---------G 
CCTTCAATTCAAATGAGATTTAATTTTATAACTAATTTAATAAAGCAATTAACGATTAAAATCAGCCGCAATTGTTTCCGCAACAATTTGAGCAGCAACA 1000 
C                                                        AAAATCAGCCGCAATTGTTTCCGCAACAATTTGAGCAGCAACA 
CCTTCAATTCAAATGAGATTTAATTTTATAACTAATTTAAT                 AAATCAGCCGCAATTGTTTC 
CCTTCAATTCAAATGAGATTTAATTTTATAACTAATTTAATAAAGCAATTAACG          GCCGCAATTGTTTCCGCAACAATTTGAGC 
                                                                    CAATTGTTTCCGCAACAATTTGAGC 
                                                                                 AACAATTTGAGCAGCAACA 
 
 
 
 
                                  C----------**----------G                 C---------**---------G 
---**----------G               C----------**----------G                  C----------**----------G 
----G                 C---------**---------G               C---------**---------G 
                     C----------**---------G       C---------**---------G                  C-------- 
                     C---------**----------G     C----------**----------G      C---------**--------- 
ATTAGACGTTCATCTGCATTACCGCAATAATCATCTTCAAGGCGTTCACCACATGAAGTCATAATAAATTTAGCACCGGCGTTTAGGGATTCTGTAGTAT 1100 
ATT                               CTTCAAGGCGTTCACCACATGAAGTC                               CTGTAGTAT 
                                                                                           CTGTAGTAT 
                                                                                           CTGTAGTAT 
                                                                                           CTGTAGTAT 
ATT                                                                                        CTGTAGTAT 
                                                                                           CTGTAGTAT 
                                                                                           CTGTAGTAT 
                                                                                           CTGTAGTAT 
                                                                                                GTAT 
                                                                                                  AT 
 
 
 
 
-**---------G 
G 
GTTTGCGCATTAGTTCAATCCATTTATTACTTACTTCAC 1139 
GTTTGCGCATTAGTTCAATCCATTTATTACTTACTTCAC 
GTTTGCGCATTAGTTCAATCCATTTATTACTTACTTCAC 
GTTTGCGCATTAGTTCAATCCATTTATTACTTACTTCAC 
GTTTGCGCATTAGTTCAATCCATTTATTACTTACTTCAC 
GTTTGCGCATTAGTTCAATCCATTTATTACTTACTTCAC 
GTTTGCGCATTAGTTCAATCCATTTATTACTTACTTCAC 
GTTTGCGCATTAGTTCAATCCATTTATTACTTACTTCAC 
GTTTGCGCATTAGTTCAATCCATTTATTACTTACTTCAC 
GTTTGCGCATTAGTTCAATCCATTTATTACTTACTTCAC 
GTTTGCGCATTAGTTCAATCCATTTATTACTTACTTCAC 
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Supplemental Figure S6. Analysis of sequences from the T4 genomic 1139 bp fragment 
matching the PvuRts1I consensus cleavage site hmCN11-12/N9-10G that were not found among the 
sequenced fragments. In the LOGO graphic representations on the right the absolute height of 
each position and the relative height of each nucleotide letter reflect overall conservation and 
relative nucleotide frequency, respectively (Crooks et al., 2004). 
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Supplementary Figure S7. Confirmation of a two nucleotide 3’ overhang cleavage pattern by 
PvuRts1I. A 140 bp fragment containing only hydroxymethylated cytosine residues and a single 
PvuRts1I site was amplified from the T4 genome and digested with PvuRts1I. The two ensuing 
PvuRts1I restriction fragments were directly sequenced from their respective 5’ ends employing 
the same primers used for amplifying the original 140 bp fragment. Alignment of the two 
sequence tracks to the original sequence revealed a two nucleotide gap consistent with a 3’ 
overhang configuration of these nucleotides at PvuRts1I ends. Only the ends of the sequence 
tracks corresponding to the PvuRts1I site are shown. The appropriately spaced hmC residues on 
either side of the cleavage site and opposite strands that constitute the PvuRts1I site are 
highlighted. The large adenine peaks (green) present at the end of each sequence track but not in 
the original sequence are due to addition of a 3’ overhanging adenine residue by the DNA 
polymerase used for the sequencing reaction. 
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Supplementary Figure S8. Identification of PvuRts1I fragments from substrates with increasing 
hmC content. (A) The proximal upstream regulatory region of the nanog locus (region III) was 
amplified in the presence of increasing concentrations of 5-hydroxymethyl-dCTP, yielding 
fragments with randomly distributed hmC sites in the respective proportions (not shown). These 
fragments were digested with PvuRts1I and ligated to linkers with random two nucleotide 
overhangs to match PvuRts1I ends. Ligation products were amplified with two distinct nanog 
specific primers (nanog P1 and P2) each paired with a linker specific primer. The PCR products 
obtained are shown in (B). The percentage of hmC in the original substrate fragments and the 
presence of the linker in the ligation reaction are indicated. NTC: no template control. (C) 
Products from PCR reactions shown in (B) were randomly cloned and sequenced. The numbers 
of sequences containing ends corresponding to the PvuRts1I consensus and site subtype are 
reported. The asterisk demarks a sequence that could not be univocally assigned to hmCN12/N9G 
or hmCN11/N9G due to the presence of consecutive C residues and is reported under both 
categories. In the case of substrates containing 10% hmC both primer sets yielded fragments with 
specific PvuRts1I digestion products that mapped to several predicted cleavage sites (not 
shown). We note that 1% hmC is in the same range as measured only in mouse tissues with the 
highest global hmC content (3,4,6-9,23). It follows that high local concentrations of hmC sites 
facilitate detection by PvuRts1I with this procedure. 
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SUPPLEMENTARY METHODS 
 
Generation of fragments from the nanog upstream region III containing known levels of hmC, 
PvuRts1I digestion and identification of digestion products. 
Genomic DNA from JM8A3.N1 ESCs (EUCOMM, Helmholtz Center Munich, Neuherberg, 
Germany) was isolated using the NucleoSpin Triprep Kit (Macherey-Nagel).  To prepare 
substrates containing different hmC levels (0%, 1%, 2,5%, 5%, 10%), genomic DNA from 
JM8A3.N1 cells was used as a template to amplify a 867 bp fragment from region III of the 
nanog promoter (Hattori et al, Genes to cell, 2007) using corresponding ratios of 
5-hydroxymethyl-dCTP (Bioline GmbH) and dCTP, Phusion HF DNA Polymerase (Finnzymes) 
and the following primers: nanog for 5´-TCA GGA GTT TGG GAC CAG CTA-3´ and nanog 
rev 5´-CCC CCC TCA AGC CTC CTA-3´. After purification of the PCR fragments using the 
NucleoSpin Extract II kit (Macherey-Nagel), 250ng of each fragment was digested with 2U of 
PvuRTS1I for 15min at 22°C and the enzyme was heat inactivated at 60°C for 20 min. 
Twentyfive nanograms of digested fragment were ligated to a linker containing random two 
nucleotide 3´ overhangs, generated by annealing the following primers: For 5´-CTC GTA GAC 
TGC GTA CCA TG NN-3´ and Rev 5´-CA TGG TAC GCA GTC TAC CAG-3´. The ligation 
reaction was carried out using T4 DNA Ligase (NEB) overnight at 16°C. As a control for 
ligation specificity, each fragment was ligated in the absence of the linker. To selectively amplify 
fragments cut by PvuRTS1I, the ligated products were amplified by PCR with Phusion HF DNA 
Polymerase (Finnzymes) using a linker specific forward primer (For 5´-CTC GTA GAC TGC 
GTA CCA TG-3´) and nanog specific reverse primers (P2: 5´-GAG TCA GAC CTT GCT GCC 
AAA-3´ and P1: 5´-GCC GTC TAA GCA ATG GAA GAA-3´). Libraries of digested and 
ligated fragments containing 1 and 10% hmC were generated using the Zero Blunt® PCR 
Cloning Kit (Invitrogen). Randomly selected clones were sequenced and analyzed for the 
presence of PvuRts1I ends. 
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Introduction

In mammals DNA methylation is restricted to cytosine residues
and mainly involves CpG dinucleotides. CpG methylation is
widespread across mammalian genomes, including gene bodies
regardless of their transcriptional activity [1–4]. However, highly
CpG-rich regions (CpG islands) are refractory to methylation and
mostly coincide with promoters of constitutively active genes. The
methylation state of other regulatory sequences with moderate to
low CpG density, including promoters and enhancers, shows
developmental and/or tissue-specific variations and positively
correlates with a transcriptionally silent state [1,3–8]. Dense
methylation of repetitive sequences is also thought to maintain
these elements in a silent state and thus contribute to genome
stability [9–11]. In mammals cytosine methylation is catalyzed by
a family of DNA methyltransferases (Dnmts) [12]. Dnmt3a and
Dnmt3b establish methylation patterns during embryonic devel-
opment of somatic as well as germ cell lineages and, consistently,
show developmental stage and tissue specific expression patterns.
In contrast, Dnmt1 is ubiquitous and generally the most abundant
DNA methyltransferase in mammalian tissues, where it associates
with the replication machinery and restores symmetrical methyl-
ation at hemimethylated CpG sites generated by the semi-

conservative DNA replication process [13]. Thus, Dnmt1
maintains methylation patterns with high fidelity and is essential
for embryonic development and genome integrity [9,14,15].

Dnmt1 is a large enzyme with a complex domain structure that
likely evolved by fusion of at least three genes [16]. It comprises a
regulatory N-terminal region and a C-terminal catalytic domain
connected by a linker of seven glycine-lysine repeats (Figure 1A)[17].
The N-terminal part contains a PCNA binding domain (PBD), a
heterochromatin targeting sequence (TS), a CXXC-type zinc finger
domain and two Bromo-Adjacent Homology domains (BAH1 and
BAH2). The C-terminal domains of mammalian Dnmts contain all ten
catalytic motifs identified in bacterial DNA (cytosine-5) methyltrans-
ferases [12]. Thus, prokaryotic and mammalian cytosine methyltrans-
ferases are thought to adopt the same catalytic mechanism. However,
the C-terminal domain of Dnmt1 is the only DNA methyltransferase
domain in Dnmts that is not catalytically active when expressed
separately. Indeed, interaction with the N-terminal part is required for
allosteric activation of the enzyme [18]. Remarkably, the first 580
amino acids (aa) of human DNMT1 are dispensable for both
enzymatic activity and substrate recognition, whereas deletion of the
first 672 aa results in an inactive enzyme [19]. Interestingly, this
truncation eliminates part of the CXXC domain, suggesting an
involvement of this domain in allosteric activation. However, addition
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of an N-terminal fragment containing the isolated CXXC domain to
the catalytic domain was not sufficient for catalytic activation [20].

CXXC-type zinc finger domains are found in several other
proteins with functions related to DNA or chromatin modification,
including the histone H3 lysine 4 (H3K4) methyltransferases mixed-
lineage leukaemia (MLL) proteins 1 and 4, the CpG-binding protein
(CGBP, also known as Cfp1 or CXXC1), the methyl-CpG binding
domain protein 1 (MBD1), the H3 lysine 36 (H3K36) demethylases
KDM2A and B (also known as JHD1A/FBXL11 and JHD1B/
FBXL10) and the MLL1 fusion partner TET1 (Figure 1A) [21–28].
The CXXC domains of some of these proteins were shown to
mediate specific binding to double stranded DNA templates
containing unmethylated CpG sites [21,22,29,30]. A region of
Dnmt1 which mainly includes the CXXC domain (aa 628–753) was
also shown to bind Zn ions and DNA [20,31,32]. However, available
data on the selectivity of this DNA binding activity are conflicting.
Whereas a fragment including aa 613–748 of mouse Dnmt1 was
shown to bind DNA with a slight preference for hemimethylated
CpG sites [20], aa 645–737 of human DNMT1 were shown to
selectively bind unmethylated DNA [32]. As these studies used
different constructs and species, the selectivity of DNA binding by
the CXXC domain of Dnmt1 with regard to CpG methylation state
and the role of the CXXC domain in allosteric activation and
substrate discrimination remain to be firmly established.

Notably, not all CXXC domains show DNA binding activity, as
exemplified by the fact that only one out of three CXXC domains
in MBD1 binds DNA [29]. Interestingly, TET1 was recently
shown to be a 2 oxoglutarate- and Fe(II)-dependent dioxygenase
responsible for converting genomic 5-methylcytosine (mC) to 5-
hydroxymethylcytosine (hmC) [33,34]. However, it is not known
whether the CXXC domain of TET1 is involved in recognition of
methylated DNA substrates.

Here we report a functional study and characterization of the
DNA binding activity for the CXXC domains of mouse Dnmt1
and Tet1 proteins. We generated isolated CXXC domain and
deletion constructs based on structural homology models to
minimize structural alterations. We show that the CXXC domain
of Dnmt1 preferentially binds DNA substrates containing
unmethylated CpG sites, but does not contribute significantly to
the DNA binding properties of the full length enzyme and is
dispensable for its catalytic activity in vitro and in vivo. In addition,
we found that the CXXC domain of Tet1 does not bind DNA in
vitro and is also dispensable for catalytic activity of Tet1 in vivo.

Results

Sequence homology and structural modeling identify
distinct CXXC domain subtypes

Dnmt1 contains a zinc finger domain of the CXXC type, which
is present in several mammalian proteins including MLL1

(Figure 1A–C) and is highly conserved among Dnmt1 sequences
from various animal species (Figure S1 in File S1). The primary
structure of CXXC domains spans two clusters of 6 and 2 cysteine
residues separated by a stretch of variable sequence and length.
Sequence alignment and homology tree construction identified
three distinct groups of CXXC domains (Figure 1B and C). The
sequence between the two cysteine clusters in the CXXC domains
of Dnmt1, CGBP/Cfp1, Fbxl19, Mll1, Mll2 and Kdm2 proteins
and CXXC domain 3 of Mbd1 is highly conserved and contains a
KFGG motif. The two other homology groups, including the
CXXC domains 1 and 2 of Mbd1 on one side and those of Tet1,
Cxxc4/Idax, Cxxc5/RINF and Cxxc10 on the other side, lack the
KFGG motif and diverge from the first group and from each other
in the sequence between the cysteine clusters. We generated
structural homology models for the CXXC domains of mouse
Dnmt1 and Tet1 using the NMR structure of the MLL1 CXXC
domain as a template (Figure 1D and E)[35]. The CXXC domains
of these proteins adopt an extended crescent-like structure that
incorporates two Zn2+ ions each coordinated by four cysteine
residues. The peptide of the MLL1 CXXC domain predicted to
insert into the major groove of the DNA double helix (cyan in
Fig. 1E) is located on one face of the structure and is contiguous to
the KFGG motif [35]. The predicted structure of the Tet1 CXXC
domain lacks the short 310 helix (g1 in Figure 1E) formed by
residues PKF and partially overlapping the KFGG motif, but is
similar to the MLL1 CXXC domain in the region of the DNA-
contacting peptide. However, each of the two predicted b-strands
in Tet1 carries three positive charges, whereas there is only one or
no charged residue in the C-terminal strands of the CXXC
domains in MLL1 and Dnmt1. Depending on the orientation of
the positively charged side chains, it cannot be excluded that the
charge density prevents strand pairing in the Tet1 CXXC domain.

The Dnmt1 CXXC domain binds unmethylated DNA
To investigate the binding properties of the Dnmt1 CXXC

domain, we generated a GFP fusion construct including aa 652–699
(GFP-CXXCDnmt1). According to our homology model the ends of
this fragment form an antiparallel b-sheet that structurally delimits
the domain as in MLL1. We first compared the localization and
mobility of GFP-CXXCDnmt1 and GFP in mouse C2C12
myoblasts. While GFP was diffusely distributed in both nucleus
and cytoplasm, GFP-CXXCDnmt1 was exclusively nuclear with a
punctuated pattern throughout the nucleoplasm and was enriched
in nucleoli, a pattern independent of cell cycle stage (Figure 2A and
Figure S2 in File S1). Enrichment in the nucleus and nucleoli is
frequently observed with constructs containing stretches with high
density of basic residues. After photobleaching half of the nuclear
volume we observed a slower fluorescence recovery rate for GFP-
CXXCDnmt1 than for GFP (Figure 2B). To rule out a contribution of
nucleolar interactions to the slower kinetics of GFP-CXXCDnmt1,

Figure 1. Sequence and predicted structural homology of CXXC domains. (A) Schematic representation of the domain structure in Dnmt1 and
Tet1. The catalytic domain and the N-terminal region of Dnmt1 are connected by seven lysine-glycine repeats [(KG)7]. PBD: PCNA binding domain; TS:
targeting sequence; CXXC: CXXC-type zinc finger domain; BAH1 and 2: bromo-adjacent homology domain; NLS: nuclear localization signal; Cys-rich:
cysteine rich region. (B) Alignment of mammalian CXXC domains. Numbers on the right side indicate the position of the last amino acid in the
corresponding protein. The Mbd1a isoform contains three CXXC motifs (Mbd1_1-3). Absolutely conserved residues, including the eight cysteines
involved in zinc ion coordination are highlighted in red and the conserved KFGG motif is in red bold face. Positions with residues in red face share 70%
similarity as calculated with the Risler algorithm [66]. At the top residues of MLL1 involved in b sheets b1 and b2 (black arrows), a helices a1 and a2 and
strict a turns (TTT) are indicated. All sequences are from M. musculus. Accession numbers (for GenBank unless otherwise stated): Dnmt1, NP_034196;
Mll1, NP_001074518; Mll4, O08550 (SwissProt); CGBP, NP_083144; Kdm2a, NP_001001984; Kdm2b, NP_001003953; Fbxl19, NP_766336; Mbd1,
NP_038622; CXXC4/Idax, NP_001004367; CXXC5, NP_598448; CXXC10 (see Materials and Methods). (C) A homology tree was generated from the
alignment in (B). The three subgroups of CXXC domains identified are in different colors. Average distances between the sequences are indicated. (D–E)
Homology models of the mouse Dnmt1 (D; red) and Tet1 (E; blue) CXXC domains superimposed to the CXXC domain of MLL1 (green; [35]). MLL1
residues that were described to contact DNA according to chemical shift measurements [35] are cyan in (E), while cysteines involved in coordination of
the two zinc ions are yellow. Arrows point to the KFGG motif in MLL1 and Dnmt1. The locations of a helices and b sheets are indicated as in (B).
doi:10.1371/journal.pone.0016627.g001
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we separately bleached nucleoplasmic and nucleolar regions and
found that GFP-CXXCDnmt1 has even faster kinetics within the
nucleolus (Figure S3 in File S1). These results are consistent with a
binding activity of GFP-CXXCDnmt1 in the nucleus and very
transient, unspecific binding in the nucleolus. To investigate
whether the CXXC domain of Dnmt1 binds DNA and its possible
selectivity with respect to CpG methylation we used a recently
developed fluorescent DNA binding assay [36,37]. GFP-
CXXCDnmt1 was transiently expressed in HEK293T cells, im-
munopurified with the GFP-trap (Figure S4 in File S1) and
incubated with fluorescent DNA substrates containing either no
CpG site or one central un-, hemi- or fully methylated CpG site in
direct competition. As shown in Figure 2C, GFP-CXXCDnmt1

displayed a significant preference for the substrate containing one
unmethylated CpG site, which increased substantially with a five-
fold higher concentration of the DNA substrates (Figure S5 in File
S1). These results are consistent with the reported binding pre-
ference of the CXXC domains in human DNMT1 and other factors
belonging to the same CXXC homology group [21,22,29,32].
Notably, the CXXC domains 1 and 2 of Mbd1 lack the KFGG
motif and do not bind DNA, while mutation of this motif prevented
DNA binding by the CXXC domain of MLL1 [29,38]. Therefore,

we generated a GFP-CXXCDnmt1 construct where the KFGG motif
was mutated to AAGG (GFP-CXXCDnmt1KF/AA, Figure S4 in File
S1) to test the requirement of the KFGG motif for binding by the
CXXC domain of Dnmt1. The mutant domain showed signifi-
cantly decreased binding to all DNA substrates and complete loss of
preferential binding to the unmethylated substrate in vitro
(Figure 2B). In addition, GFP-CXXCDnmt1KF/AA showed faster
recovery after photobleaching (FRAP) in vivo compared to the
corresponding wild type construct (Figure 2C). These results further
support the importance of the KFGG motif for DNA binding by
CXXC domains.

The CXXC domain of Tet1 shows no specific DNA binding
activity and is dispensable for enzymatic activity in vivo

It was recently shown that Tet1 oxidizes genomic mC to hmC.
However, the mechanism by which Tet1 is targeted to genomic
mC is not known. Our model for the structure of the Tet1 CXXC
domain diverged from the structure of the MLL1 CXXC domain
with respect to the KFGG motif but not to the DNA-contacting
peptide, suggesting that the Tet1 CXXC domain may still bind
DNA. To test this we generated a GFP-tagged Tet1 CXXC

Figure 2. Properties of isolated Dnmt1 and Tet1 CXXC domains. (A–B) Subcellular localization (A) and binding kinetics (B) of GFP-CXXCDnmt1,
GFP-CXXCDnmt1KF/AA, GFP-CXXCTet1 and GFP in mouse C2C12 myoblasts. Localization and binding kinetics were independent from the cell cycle stage
(Figures S2 and S5 in File S1). Arrowheads in (A) point to nucleoli. Scale bar: 5 mm. Binding kinetics were analyzed by FRAP. (C) DNA binding specificity
of the Dnmt1 and Tet1 CXXC domains. GFP, GFP-CXXCDnmt1, GFP-CXXCDnmt1KF/AA and GFP-CXXCTet1 were pulled down from extracts of transiently
transfected HEK293T cells and incubated with fluorescent DNA substrates containing no CpG site or one central un-, hemi- or fully methylated CpG
site in direct competition (noCGB, UMB, HMB, FMB, respectively). Shown are the mean DNA/protein ratios and corresponding standard errors from 5
(GFP), 4 (GFP-CXXCDnmt1 and GFP-CXXCDnmt1KF/AA) and 2 (GFP-CXXCTet1) independent experiments. * P = 0.01; ** P = 0.007; ***P = 0.001.
doi:10.1371/journal.pone.0016627.g002
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construct (GFP-CXXCTet1) following the same criteria as for GFP-
CXXCDnmt1 and investigated its cellular localization, in vivo
binding kinetics and in vitro DNA binding activity. GFP-CXXCTet1

was prevalently nuclear with a homogeneous distribution includ-
ing nucleoli that was independent of cell cycle stage (Figure 2A and
Figure S6 in File S1). After photobleaching GFP-CXXCTet1

showed very fast recovery kinetics similar to GFP (Figure 2B) and
its DNA binding activity in vitro was also similar to the background
levels of the GFP control (Figure 2C). We conclude that the
isolated CXXC domain of Tet1 has no specific DNA binding
activity. Together with the observation that the CXXC domains 1
and 2 of Mbd1 also lack the KFGG motif and do not bind DNA
[29] and that mutation of this motif reduced DNA binding by the
CXXC domains of both Dnmt1 (Figure 2C) and MLL1 [38], this
result indicates that the KFGG motif is a major determinant for
DNA binding by CXXC domains.

To assess whether the CXXC domain is required for catalytic
activity of Tet1 we generated a GFP-Tet1 fusion construct and a
corresponding mutant lacking the CXXC domain (GFP-
Tet1DCXXC). In C2C12 myoblasts GFP-Tet1 and GFP-
Tet1DCXXC showed punctuated nuclear patterns that did not
depend on the cell cycle stage (Figure 3A and data not shown).
The same constructs were transfected in HEK293T cells and
global levels of genomic hmC were measured using a recently
described hmC glucosylation assay [39]. Overexpression of GFP-
Tet1 and GFP-Tet1DCXXC determined a similar 5-fold increase of
genomic hmC levels relative to control samples overexpressing
GFP (Figure 3B), indicating that the CXXC domain is not
required for enzymatic activity of Tet1 in vivo.

Deletion of the CXXC domain does not affect the activity
of Dnmt1 in vitro

To explore the role of the CXXC domain in Dnmt1 function
we generated GFP-Dnmt1 fusion constructs where the CXXC
domain, as defined by our homology model, was deleted. We
reasoned that precise deletion of the entire structure delimited by
the antiparallel b-sheet (Figure 1D) would have the highest
chances to preserve native folding of the rest of the protein. We
introduced this deletion in GFP fusion constructs encoding either
the full length Dnmt1 or the isolated N-terminal region (GFP-
Dnmt1DCXXC and GFP-NTRDCXXC, respectively; Figure 4A and

Figure S4 in File S1). We then compared DNA binding properties,
catalytic activity and interaction between N-terminal region and
C-terminal catalytic domain of DCXXC and corresponding wild
type constructs. Competitive DNA binding assays with the same
set of substrates as used for the experiments with GFP-
CXXCDnmt1 and GFP-CXXCTet1 reported above (Figure 2C)
showed that both GFP-Dnmt1 and GFP-Dnmt1DCXXC bind DNA
independently of the presence and methylation state of a CpG site
(Figure 4B). As the isolated CXXC domain preferentially bound
the substrate containing an unmethylated CpG site, the result with
GFP-Dnmt1 and GFP-Dnmt1DCXXC indicates that the CXXC
domain contributes negligibly to the DNA binding specificity of
the full-length enzyme.

Several groups reported that interaction between the N-
terminal region and the C-terminal catalytic domain of Dnmt1
leads to allosteric activation of Dnmt1 [16,18–20,40]. To test
whether the CXXC domain is involved in this intramolecular
interaction, we co-expressed either GFP-tagged N-terminal region
(GFP-NTR) or GFP-NTRDCXXC constructs with a Cherry- and
His-tagged C-terminal domain (Ch-CTD-His) in HEK293T cells
and performed co-immunoprecipitation experiments. Ch-CTD-
His co-precipitated both GFP-NTR and GFP-NTRDCXXC,
indicating that the CXXC domain is dispensable for the
interaction between the N-terminal region and the C-terminal
domain of Dnmt1 (Figure 4C).

To investigate whether the CXXC domain is needed for
enzymatic activity or substrate recognition, we tested formation of
the covalent complex with cytosine and transfer of the methyl
group for GFP-Dnmt1 and GFP-Dnmt1DCXXC. We first employed
an assay to monitor covalent complex formation that exploits the
formation of an irreversible covalent bond between the enzyme
and the mechanism-based inhibitor 5-aza-2-deoxycytosine (5-aza-
dC). This results in permanent trapping of the enzyme by DNA
substrates containing 5-aza-dC, as opposed to the reversible
complex formed with substrates containing the natural substrate 2-
deoxycytosine (dC) [36]. GFP-Dnmt1 and GFP-Dnmt1DCXXC

were incubated with fluorescent DNA substrates containing either
dC (binding) or 5-aza-dC (trapping) at a single CpG site in direct
competition. DNA-protein complexes were then isolated by GFP
pulldown and molar DNA/protein ratios were calculated from
fluorescence measurements (Figure 4D). Covalent complex

Figure 3. Cellular localization and in vivo catalytic activity of GFP-Tet1 and GFP-Tet1DCXXC. (A) Live images of C2C12 myoblasts expressing
GFP-Tet1. Scale bar: 5 mm. (B) Genomic hmC content in HEK293T cells overexpressing GFP, GFP-Tet1 and GFP-Tet1DCXXC. Shown are mean values and
standard deviation of hmC percentage over total cytosine for three measurements from one transfection.
doi:10.1371/journal.pone.0016627.g003
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formation was then estimated by comparing trapping and binding
activities. GFP-Dnmt1 and GFP-Dnmt1DCXXC showed compara-
ble covalent complex formation rates (trapping/binding ratios),
which were about 15- and 12-fold higher for hemi- than un-
methylated substrates, respectively (Figure 4E). Together with the
data from binding experiments (Fig. 4B), this result indicates that
the preference of Dnmt1 for hemimethylated substrates is
determined at the covalent complex formation step rather than
upon DNA binding. Furthermore, the CXXC domain clearly does
not play a major role in determining either the efficiency or the
methylation state-specificity of covalent complex formation.

Next, we tested whether deletion of the CXXC domain affects
the ability of Dnmt1 to transfer [3H]methyl groups from the donor
S-adenosylmethionine (SAM) to a poly(dI?dC)-poly(dI?dC) sub-
strate, a standard DNA methyltransferase activity assay. This
showed that in vitro GFP-Dnmt1 and GFP-Dnmt1DCXXC are equally
active methyltransferases (Figure S7 in File S1). This result is in
contrast with a previous report showing that deletion of aa 647–690
in human DNMT1 encompassing the CXXC domain resulted in a
drastic loss of catalytic activity [32]. However, according to our
homology model the deletion by Pradhan et al. would eliminate the
predicted N-terminal b-strand (b1 in Figure 1) preventing the
formation of the antiparallel b-sheet and potentially distort the

folding of the rest of the protein. This is in contrast with our GFP-
Dnmt1DCXXC mutant that was designed to retain the b-sheet
structure. To test whether this may account for the observed
discrepancy, we generated GFP fusion constructs of wild type
human DNMT1 and the same deletion as reported by Pradhan et al.
and tested covalent complex formation with 5-aza-dC containing
DNA substrates as described above. While the human wild type
construct showed the same preference for hemimethylated over
unmethylated trapping substrates as the mouse constructs, this
preference was clearly reduced for the human CXXC deletion
mutant (Figure S8 in File S1). This result is consistent with the loss of
enzymatic activity shown by Pradhan et al. for this mutant and
together with the retention of trapping and catalytic activity by the
different deletion in GFP-Dnmt1DCXXC suggests that disruption of
the antiparallel b-sheet delimiting the CXXC domain results in
further distortion and loss of activity of the enzyme.

In conclusion, we showed that, in vitro, deletion of the CXXC
domain does not affect the interaction between N-terminal region
and C-terminal domain, DNA binding, the preference for
hemimethylated substrates upon covalent complex formation
and the methyltransferase activity of Dnmt1. Together, these
data strongly argue against an involvement of the CXXC domain
in allosteric activation of Dnmt1.

Figure 4. DNA binding specificity, intramolecular interaction and trapping of wild-type Dnmt1 and CXXC deletion constructs in
vitro. (A) Schematic representation of Dnmt1 expression constructs. (B) DNA binding specificity of GFP-Dnmt1 and GFP-Dnmt1DCXXC were assayed as
described in Figure 2C. (C) Co-immunoprecipitation of the C-terminal domain of Dnmt1 (Ch-CTD-His) and the N-terminal region with and without
deletion of the CXXC domain (GFP-NTR and GFP-NTRDCXXC, respectively). GFP fusions were detected using an anti-GFP antibody, while the C-terminal
domain construct was detected using an anti-His antibody. GFP was used as negative control. I = input, B = bound. (D) Comparison of binding and
trapping activities for GFP-Dnmt1 and GFP-Dnmt1DCXXC to monitor irreversible covalent complex formation with hemimethylated substrates. (E)
Relative covalent complex formation rate of GFP-Dnmt1 and GFP-Dnmt1DCXXC on substrates containing one un- (UMT) or hemi-methylated CpG site
(HMT) in direct competition. The trapping ratio for GFP-Dnmt1 on unmethylated substrate was set to 1. In (D) and (E) the means and corresponding
standard deviations of triplicate samples from three independent experiments are shown. GFP was used as negative control.
doi:10.1371/journal.pone.0016627.g004
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Deletion of the CXXC domain does not affect Dnmt1
activity in vivo

We then undertook a functional characterization of the GFP-
Dnmt1DCXXC construct in vivo. We first compared localization and
binding kinetics of GFP-Dnmt1 or GFP-Dnmt1DCXXC in mouse
C2C12 myoblasts co-transfected with RFP-PCNA, which served
as S-phase marker [41]. GFP-Dnmt1DCXXC showed the same cell-
cycle dependent nuclear localization pattern as previously shown
for GFP-Dnmt1 and endogenous Dnmt1 (Figure 5A)[42,43].
Interaction with PCNA via the PBD directs Dnmt1 to replication
foci throughout S-phase. In addition, in late S-phase and G2
Dnmt1 is enriched at chromocenters, clusters of pericentric
heterochromatin (PH) that are observed as discrete domains
densely stained by DNA dyes in mouse interphase cells.
Association of Dnmt1 with PH at these stages is mediated by
the TS domain [42]. Thus, the CXXC domain clearly does not
contribute to the subnuclear localization of Dnmt1 at this level of
resolution.

We also compared the mobility of GFP-Dnmt1 and GFP-
Dnmt1DCXXC in living C2C12 myoblasts by FRAP analysis
(Figure 5B). These experiments revealed that the kinetics of
Dnmt1 is not significantly affected by deletion of the CXXC
domain in early-mid as well as late S-phase.

To test covalent complex formation in living cells, we used a
previously established trapping assay [44]. Mouse C2C12
myoblasts were co-transfected with RFP-PCNA and either GFP-
Dnmt1 or GFP-Dnmt1DCXXC and treated with 5-aza-dC.
Immobilization of the Dnmt1 constructs at the site of action was
then measured by FRAP analysis (Figure 5C). GFP-Dnmt1 and

GFP-Dnmt1DCXXC showed very similar trapping kinetics, the
immobile enzyme fraction reaching nearly 100% after 20 and 40
minutes in early-mid and late S-phase, respectively. This result
clearly shows that the CXXC domain is dispensable for covalent
complex formation also in vivo.

Finally, we compared the ability of GFP-Dnmt1 and GFP-
Dnmt1DCXXC to restore DNA methylation patterns in mouse
dnmt12/2 ESCs. Cells transiently expressing either GFP-Dnmt1 or
GFP-Dnmt1DCXXC were FACS sorted 48 h after transfection.
Isolated genomic DNA was then bisulfite treated and fragments
corresponding to major satellite repeats, intracisternal type A
particle (IAP) interspersed repeats, skeletal a-actin and H19a
promoters were amplified and subjected to pyrosequencing
(Figure 6). As shown previously [43], under these conditions
GFP-Dnmt1 partially restored methylation of major satellite and
IAP repeats and the skeletal a-actin promoter, but not of the
imprinted H19a promoter, as establishment of the methylation
imprint requires passage through the germ line [45]. Methylation
patterns of all these sequences in cells expressing GFP-
Dnmt1DCXXC were very similar to those in GFP-Dnmt1
expressing cells, including the lack of (re-) methylation at the
H19a promoter. These results suggest that the CXXC domain is
not required for maintenance of DNA methylation patterns by
Dnmt1 and does not restrain the DNA methyltransferase activity
of Dnmt1 on unmethylated CpG sites. Thus, the CXXC domain
does not play a major role in subcellular localization, it does not
contribute to the global binding kinetics of Dnmt1 and, consistent
with the in vitro data reported above, is dispensable for maintaining
DNA methylation patterns in living cells.

Figure 5. Cell cycle dependant cellular localization, protein mobility and trapping of wild-type Dnmt1 and CXXC deletion
constructs in mouse C2C12 myoblasts. (A) Cell cycle dependent localization of GFP-Dnmt1 and GFP-Dnmt1DCXXC constructs. Scale bar: 5 mm. (B)
Analysis of binding kinetics of GFP-Dnmt1 and GFP-Dnmt1DCXXC in early and late S-phase cells by FRAP. The recovery curve for GFP is shown for
comparison. (C) In vivo trapping by FRAP analysis in cells treated with 5-aza-dC. The trapped enzyme fraction is plotted over time for early and late S-
phase cells. For each construct three to six cells in early-mid and late S phase were analysed per time point. Shown are mean values 6 SEM. In (A–C)
RFP-PCNA was cotransfected to identify cell cycle stages in living cells.
doi:10.1371/journal.pone.0016627.g005
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Discussion

We generated homology models based on the reported structure
of the MLL1 CXXC domain to design isolated CXXC domain
constructs and CXXC domain deletion mutants for Dnmt1 and
Tet1 with minimal probability of structural alteration. According
to these models CXXC domains are delimited by an antiparallel
b-sheet, a discrete structural element. Our data show that the
CXXC domain of mouse Dnmt1 preferentially binds DNA
substrates containing unmethylated CpG sites as previously shown
for CXXC domains of human DNMT1 and other mammalian
proteins. We note that sequences C-terminal to the corresponding
peptide in CGBP/Cfp1 were reported to be required for DNA
binding in vitro [22] and that only a significantly larger peptide
spanning the CXXC-3 domain of Mbd1a was tested for DNA
binding. However, sequences C-terminal to CXXC domains are
not conserved (Figure 1B) and our data show that they are not
required for DNA binding by the CXXC domain of Dnmt1.
Nevertheless, all the CXXC domains reported to selectively bind
unmethylated CpG sites cluster in a distinct homology group and
contain the KFGG motif. The latter was shown to be crucial for
DNA binding by the CXXC domain of MLL1 [38] and here we
extend this observation to the CXXC domain of Dnmt1.
Sequence alignment reveals two distinct CXXC domain homology
groups that lack the KFGG motif (Figure 1A). Consistent with a
role of this motif in DNA binding, members of these groups such
as CXXC-1/2 of Mbd1 [29] and the CXXC domain of Tet1 (this
study) show no DNA binding activity. While no specific function is
known for CXXC-1/2 of Mbd1, the CXXC domain of Tet1 is
closely related to those in CXXC4/Idax and CXXC5/RINF that
were shown to mediate protein-protein interactions [46–48]. This

suggests that the CXXC domain of Tet1, rather than mediating
DNA binding, may function as a protein-protein interaction
domain. However, our data do not rule out the possibility that the
DNA binding properties of the CXXC domain within the context
of full length Tet1 may be different from those of the isolated
domain. Nevertheless, we show that the CXXC domain is not
required for enzymatic activity of Tet1 in vivo.

Although we observed a clear DNA binding activity by the
isolated CXXC domain of Dnmt1, we found that, within the
context of the full length enzyme, this domain is dispensable for
overall DNA binding properties, preference for hemimethylated
substrates upon covalent complex formation, methyltransferase
activity and allosteric activation as well as for the ability to restore
methylation of representative sequences in dnmt1 null ESCs.
Consistent with our data, a recent report showed a preference of
the CXXC domain of human DNMT1 for substrates containing
unmethylated CpG sites [32]. However, the same report showed
that deletion of the CXXC domain from the human enzyme
results in a significant decrease in methyltransferase activity on
hemimethylated substrates in vitro and 25% lower methylation at
rDNA repeats upon overexpression in HEK293 cells, suggesting a
dominant negative effect of the deletion construct. These
discrepancies may be due to the fact that the fragment deleted
by Pradhan et al. includes the N-terminal strand of the predicted
antiparallel b-sheet, potentially leading to disruption of native
folding, to species-specific differences and/or to the analysis of
non-physiological expression levels in HEK293 cells. In our
trapping assay the same human deletion mutant showed reduced
covalent complex formation, consistent with loss of enzymatic
activity. The report from Pradhan et al. also showed that mutation
of cysteine 667 to glycine within the CXXC domain of human

Figure 6. The CXXC deletion construct of Dnmt1 restores methylation in dnmt1 null cells. Mouse dnmt12/2 ESCs transiently expressing
GFP-Dnmt1 or GFP-Dnmt1DCXXC were isolated by FACS-sorting 48 h after transfection and CpG methylation levels within the indicated sequences
were analyzed by bisulfite treatment, PCR amplification and direct pyrosequencing. Methylation levels of untransfected wild type and dnmt12/2 ESCs
are shown for comparison.
doi:10.1371/journal.pone.0016627.g006
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DNMT1 disrupts DNA binding and enzymatic activity. However,
as this point mutation involves one of the zinc coordinating
residues it is not unlikely to alter peptide folding with negative
consequences potentially extending beyond the CXXC domain
and including reduced enzymatic activity. In this respect the
dominant negative effect observed upon overexpression of this
mutant may be explained by the prevalent occurrence of Dnmt1
as a dimer [49]. These observations, together with preserved
ability for covalent complex formation and catalytic activity of our
CXXC domain deletion, support the validity of our homology
model-driven approach for functional characterization of the
CXXC domain. In addition, our genetic complementation
approach constitutes a rather physiologic functional assay.
However, due to the transient approach and the analysis of
genomic methylation at only a few representative sequences, subtle
or highly sequence specific effects of deletion of the CXXC
domain cannot be excluded.

It was recently shown that binding of Cfp1/CGBP and
KDM2A to CpG islands through their CXXC domains leads to
local enrichment and depletion of H3K4 and H3K36 methylation,
respectively [26,30]. Analogously, Dnmt1 may bind CpG islands
through its CXXC domain. However, this interaction would not
lead to a straightforward functional interpretation as CpG islands
with high CpG density are generally refractive to DNA
methylation and a function of Dnmt1 as a de novo DNA
methyltransferase is not well established. It could be envisaged
that binding to unmethylated CpG sites/islands by the CXXC
domain may have a negative effect on the enzymatic activity of
Dnmt1 and restrain its function as a de novo DNA methyltrans-
ferase. However, we show that in dnmt1 null ESCs methylation of
the imprinted H19a promoter is not restored upon expression of
either wild type or DCXXC Dnmt1 constructs, arguing against a
negative regulatory function of the CXXC domain.

Notably, binding of unmethylated CpG sites by KFGG motif-
containing CXXC domains does not exclude a role in protein-
protein interaction as the CXXC domain of MLL1 was reported
to interact with both DNA and Polycomb Repressive Complex 1
components HPC2/CBX4 and BMI-1 [21,50]. Therefore, it is
possible that the CXXC domain of Dnmt1 has regulatory
functions in specific cell types or developmental stages that may
involve DNA binding and/or interaction with other proteins. The
generation of dedicated animal models may be instrumental for
testing these possibilities.

Materials and Methods

Bioinformatic methods
Alignments were performed using the ClustalW2 software [51].

The CXXC domain homology tree (Figure 1C) was generated
from the alignment in Figure 1B with Jalview 2.4 by unweighted
pair group method with arithmetic mean (UPGMA). The
neighbor-joining method gave the same result. Average distances
between the sequences were calculated using the BLOSSUM62
matrix. The human CXXC10 coding sequence [52] was
determined by assembling ESTs AI438961, BX114363,
BX492895, BU633058.1, AW207644.1 and the genomic sequence
AC073046.7. The putative translational start site is located
16308 bp upstream of the annotated transcriptional start site of
TET3. A partial coding sequence of murine Cxxc10 containing
the CXXC domain was identified by aligning the human
CXXC10 protein sequence to the ORFs present in
NT_039353.7 upstream of the tet3 gene from position 35663306
to 35808487). A very high match was found 13266 nt upstream of
tet3 at positions 35676374-35676572 of NT_039353.7. To build

homology models for the CXXC domains of Dnmt1 (aa 645–696)
and Tet1 (aa 561–614), we submitted the respective sequences to
the HHpred server [53]. The best template was the CXXC
domain of MLL1 (PDB-ID: 2J2S). The 49 residues of the CXXC
domain in Dnmt1 can be aligned to this domain with 45%
sequence identity and only a single amino acid gap after residue
661 (Figure 1B). 3D models were calculated with the homology
modeling software MODELLER [54] (version 9.5) using this
alignment. Distance restraints were given to MODELLER to
enforce a distance of 2.360.1 Å between the eight sulphurs in the
Zn-coordinating cysteines and the Zn2+ ions. TM-align [55] was
used to superpose the model structure with the template domain.
Images were generated using the PyMol Molecular Graphics
System (Version 1.3, Schrödinger, LLC). The quality of the
models and the underlying alignments were checked with DOPE
[56] and Verify3D [57] and results for both models were found to
be comparable to the MLL1 template structure (2J2S).

Expression constructs
Fusion constructs were generated using enhanced green

fluorescent protein, monomeric red fluorescent protein or
monomeric cherry and are here referred to as GFP, RFP and
Cherry fusions, respectively. Mammalian expression constructs for
GFP, mouse GFP-Dnmt1, GFP-NTR and human RFP-PCNA
were described previously [42,44,49,58]. The deletion construct
GFP-Dnmt1DCXXC was obtained by replacing the sequence
coding for aa 655–696 with three alanine codons in the GFP-
Dnmt1 construct as described [59]. The GFP-DNMT1DCXXC

construct was generated by subcloning the sequence coding for
human DNMT1DCXXC from the homonymous construct by
Pradhan et al. [32] in the pEGFP-C2 vector (Clonetech). To
generate GFP-Tet1 three partially overlapping fragments span-
ning the Tet1 coding sequence were amplified using E14 ESCs
cDNA as template. The fragments were then joined by overlap
extension PCR and inserted into the pCAG-GFP-IB vector [43].
To generate GFP-Tet1DCXXC aa 569-621 of murine Tet1 were
deleted from GFP-Tet1 using a type IIs restriction endonuclease
approach as described [60]. To generate GFP-CXXCDnmt1 and
GFP-CXXCTet1 sequences coding for the respective CXXC
domains (aa 643-700 for Dnmt1 and 561-614 for Tet1) were
amplified by PCR using the GFP-Dnmt1 expression construct and
cDNA from E14 ESCs as templates, respectively. PCR fragments
were then inserted into the pCAG-GFP-IB vector. GFP-
NTRDCXXC was obtained by replacing the BglII-XhoI fragment
of GFP-NTR with the same fragment of GFP-Dnmt1DCXXC. Ch-
CTD-His was generated by replacing the GFP coding sequence in
a GFP-CTD construct [49] with the Cherry coding sequence. All
constructs were confirmed by sequencing.

Cell culture, transfection and cell sorting
HEK293T cells [61] and mouse C2C12 myoblasts [62] were

cultured in DMEM supplemented with 50 mg/ml gentamicin and
10% and 20% fetal calf serum, respectively. For expression of
fusion proteins HEK293T cells were transfected with polyethy-
lenimine (Sigma). For live cell imaging, C2C12 cells were grown
to 40% confluence on Lab-Tek chambers (Nunc) or m-slides
(Ibidi) and transfected with TransFectin transfection reagent
(BioRad) according to the manufacturer’s instructions. Mouse
ESCs were cultured as described [63] and transfected with
FuGENE HD (Roche) according to the manufacturer’s instruc-
tions. ESCs were sorted with a FACS Aria II instrument (Becton
Dickinson). The dnmt12/2 J1 ESCs used in this study are
homozygous for the c allele [14].
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In vitro DNA binding and trapping assays
In vitro DNA binding and trapping assays were performed as

described previously [36,37] with the following modifications.
DNA substrates labeled with four different ATTO fluorophores
(Tables S1 and S2 in File S1) were used at a final concentration of
125 nM each in the pull-down assay with immobilized GFP
fusions. After removal of unbound substrate, the amounts of
protein and DNA were determined by fluorescence intensity
measurements with a Tecan Infinite M1000 plate reader using
calibration curves from purified GFP or DNA coupled ATTO
fluorophores, respectively. The following excitation/emission 6
detection bandwidth settings were used: 490/511610 nm for
GFP, 550/580615 nm for ATTO550, 600/630615 nm for
ATTO590, 650/670610 nm for ATTO647N and 700/
720610 nm for ATTO700. Cross detection of GFP and different
ATTO dyes was negligible with these settings. Binding and
trapping ratios were calculated dividing the concentration of
bound DNA substrate by the concentration of GFP fusion on
the beads.

In vivo mC hydroxylation assay
Genomic DNA was isolated from HEK293T cells 24 h after

transfection with the GFP-Tet1 and GFP-Tet1DCXXC constructs
and global hmC levels were measured using the in vitro
glucosylation assay as previously described [63], except that
100 nM b-glucosyltransferase and only UDP-[3H]glucose donor
(0.43 mM) were used.

Co-immunoprecipitation
Co-immunoprecipitation was performed as described previously

[49,64]. Shortly, HEK293T cells were transiently co-transfected
with expression plasmids for GFP fusions and the Ch-CTD-His
construct, harvested and lysed. GFP fusions were pulled down
using the GFP-Trap [65] (Chromotek) and subjected to western
blotting using anti-GFP (Roche or Chromotek) and anti-His
(Invitrogen) monoclonal antibodies.

Live cell microscopy, FRAP analysis and live cell trapping
assay

Live cell imaging and FRAP experiments were performed as
described previously [43]. For each construct 6-15 nuclei were
averaged and the mean values as well as the standard errors were
calculated. For presentation, we used linear contrast enhancement
on entire images. The DNA methyltransferase trapping assay was
described previously [44]. Briefly, transfected cells were incubated
with 30 mM 5-aza-dC (Sigma) for the indicated periods of time
before photobleaching experiments. FRAP analysis was performed
with a confocal laser scanning microscope (TCS SP5, Leica)

equipped with a 636/1.4 NA Plan-Apochromat oil immersion
objective. Microscope settings were as described except that a
smaller region of interest (3 mm63 mm) was selected for photo-
bleaching. Mean fluorescence intensities of the bleached region
were corrected for background and for total loss of nuclear
fluorescence over the time course, and normalized by the mean of
the last 10 prebleach values.

DNA Methylation Analysis
Genomic DNA was isolated with the QIAmp DNA Mini Kit

(Qiagen) and 1.5 mg were bisulfite converted using the EZ DNA
Methylation-Gold Kit (Zymo research) according to the manu-
facturer’s instructions. Primer sets and PCR conditions for IAP-
LTR, skeletal a-actin and H19 promoters were as described [43].
Primer sequences for major satellites were AAAATGAGAAA-
CATCCACTTG (forward primer) and CCATGATTTT-
CAGTTTTCTT (reverse primer). For amplification we used
Qiagen Hot Start Polymerase in 1x Qiagen Hot Start Polymerase
buffer supplemented with 0.2 mM dNTPs, 0.2 mM forward
primer, 0.2 mM reverse primer, 1.3 mM betaine (Sigma) and
60 mM tetramethylammonium-chloride (TMAC, Sigma). Pro-
moter regions and IAP-LTR were amplified with two subsequent
(nested) PCR reactions and major satellite repeats were amplified
with a single amplification reaction. Pyrosequencing reactions
were carried out by Varionostic GmbH (Ulm, Germany).
Pyrosequencing primers are listed in Table S3 in File S1.

Supporting Information

File S1 Tables S1–S3, Figures S1–S8 and Supplemental
methods.
(PDF)
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Table S1. Sequences of DNA oligonucleotides used for preparation of double stranded DNA 

substrates. M: 5-methylcytosine. 

Name Sequence 

CG-up 5’- CTCAACAACTAACTACCATCCGGACCAGAAGAGTCATCATGG -3’ 

MG-up  5’- CTCAACAACTAACTACCATCMGGACCAGAAGAGTCATCATGG -3’ 

noCG-up 5’- CTCAACAACTAACTACCATCTGGACCAGAAGAGTCATCATGG -3’ 

Fill-In-550 5’- ATTO550-CCATGATGACTCTTCTGGTC -3’ 

Fill-In-590 5’- ATTO590-CCATGATGACTCTTCTGGTC -3’ 

Fill-In-647N 5’- ATTO647N-CCATGATGACTCTTCTGGTC -3’ 

Fill-In-700 5’- ATTO700-CCATGATGACTCTTCTGGTC -3’ 

 

Table S2. DNA substrates used for the in vitro DNA binding and trapping assays. 

Name CpG site Label Oligo I Oligo II dCTP reaction  Purpose 

noCGB 700 no CpG site 700 noCG-up Fill-In-700 dCTP Binding 

UMB 550 

unmethylated 

550 

CG-up 

Fill-In-550 

dCTP Binding 
UMB 590 590 Fill-In-590 

UMB 647N 647N Fill-In-647N 

UMB 700 700 Fill-In-700 

UMT 550 550 Fill-In-550 5-aza-dCTP Trapping

HMB 590 

hemimethylated 

590 

MG-up 

Fill-In-590 
dCTP Binding 

HMB 647N 647N Fill-In-647N 

HMT 550 550 Fill-In-550 
5-aza-dCTP Trapping

HMT 647N 647N Fill-In-647N 

FMB 647N fully methylated 647N MG-up Fill-In-647N 5methyl dCTP Binding 

 

Table S3. Primers used for pyrosequencing. Each primer is biotinylated at the 5’ end. 

Name Sequence 

skeletal D-actin-1 5’- AGTTGGGGATATTTTTTATA -3’ 

skeletal D-actin-1b  5’- TTTTGGTTAGTGTAGGAGAT -3’ 

skeletal D-actin-2 5’- TGGGAAGGGTAGTAATATTT -3’ 

H19-1 5’- ATAGTTATTGTTTATAGTTT -3’ 

H19-2 5’- AGGAATATGTTATATTTAT -3’ 

IAP LTR-1 5’- CCCTAATTAACTACAACCCA -3’ 

IAP LTR-2 5’- TGTAGTTAATTAGGGAGTGA -3’ 

Major Satellite-1 5’- AAAATGAGAAATATTTATTTG -3’ 

Major Satellite-2 5’- GAGAAATATATACTTTAGGA -3’ 
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Figure S1. Dnmt1 domain structure and alignment of Dnmt1 CXXC domains from different 

species. Numbers on the right side indicate the position of the last amino acid in each 

sequence. PBD: PCNA binding domain; TS: targeting sequence; CXXC: CXXC-type zinc 

finger domain; BAH1 and 2: bromo-adjacent homology domain; (KG)7: seven lysine-glycine 

repeats. Absolutely conserved residues are highlighted in red. Positions with residues in red 

face share 70% similarity as calculated with the Risler algorithm {Mohseni-Zadeh, 2004 

#133}. The alignment was generated with ClustalW2 and displayed with ESPript 2.2. 

GenBank accession numbers are: Mus musculus: NP_034196; Homo sapiens: 

NP_001124295; Bos taurus: NP_872592; Monodelphis domestica: NP_001028141; Gallus 

gallus: NP_996835; Xenopus laevis: NP_001084021; Danio rerio: NP_571264; 

Paracentrotus lividus: Q27746 (Swiss Prot); Apis mellifera: NP_001164522 (Dnmt1a); 

Bombyx mori: NP_001036980. 
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Figure S2. The cellular localization of GFP-CXXCDnmt1 is independent of cell cycle stage. 

Live images of C2C12 mouse myoblasts cotransfected with expression constructs for 

GFP-CXXCDnmt1 and RFP PCNA. The latter served for identification of the cell cycle stage. 

Scale bar: 5 µm. 
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Figure S3. Differential mobility of GFP-CXXCDnmt1 in nucleoli and nucleoplasm of mouse 

C2C12 myoblasts measured by FRAP analysis. Identical regions of interest over the 

nucleoplasm or nucleoli (as exemplified in the inset) were bleached and recovery curves were 

recorded over 30 seconds. GFP-CXXCDnmt1 kinetics is faster in nucleoli than in the nucleus, 

which indicates more transient (possibly unspecific) binding in the former than in the latter. 

Scale bar: 5 µm. 
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Figure S4. GFP fusion pulldowns from transiently transfected HEK293T cells using the 

GFP-trap. Shown is a SDS polyacrylamide gel stained with coomassie blue. I = input (1%); B 

= bound (10%). 
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Figure S5. The CXXC domain of Dnmt1 preferentially binds unmethylated CpG sites. GFP 

and GFP-CXXCDnmt1 purified from transiently transfected HEK293T cells with the GFP trap 

were challenged with fluorescent DNA substrates containing no CpG site or one central un-, 

hemi- or fully methylated CpG site in direct competition (noCGB, UMB, HMB and FMB, 

respectively) as in Figure 2C, except that a five-fold higher concentration (625 nM) of each 

substrate was used. 
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Figure S6. The cellular localization of GFP-CXXCTet1 is independent of cell cycle stage. Live 

images of C2C12 mouse myoblasts cotransfected with expression constructs for 

GFP-CXXCTet1 and RFP PCNA. The latter served for identification of the cell cycle stage. 

Scale bar: 5 µm. 
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Figure S7. Radioactive methyltransferase activity assay for GFP Dnmt1 and 

GFP-Dnmt1¨CXXC. The transfer of [3H]-methyl groups to poly(dI•dC)-poly(dI•dC) substrate 

was measured for increasing volumes of GFP fusion proteins immunopurified from 

transiently transfected HEK293T cells. Counts per minute (cpm) were normalized to the 

relative protein concentration as determined by SDS-PAGE analysis. GFP was used as 

negative control. Numbers above the bars indicate the volume (µl) of protein solution added. 
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Figure S8. Competitive DNA binding and trapping assays for human GFP-DNMT1 and 

GFP-DNMT1¨CXXC. GFP, GFP-DNMT1 and GFP-DNMT1¨CXXC were purified from 

transfected HEK293T cells using the GFP-trap and incubated with fluorescent DNA 

substrates containing one central unmethylated (UM) or hemimethylated (HM) CpG site in 

direct competition. Both substrates contained either dC (binding) or 5 aza dC (trapping) on the 

strand opposite to the differentially methylated one. The comparison of binding and trapping 

ratios reflects irreversible covalent complex formation. Note the reduction in trapping of 

GFP-DNMT1¨CXXC relative to GFP-DNMT1 by the hemimethylated substrate. Shown are 

mean values and standard deviation of DNA/protein ratios from two independent 

experiments. 
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In vitro methyltransferase activity assay 

Eight milligrams of His-tagged GFP-binding protein (GBP; Chromotek) were coupled to 1ml 

Ni-NTA agarose beads (Qiagen) by incubating for 2 h at 4°C in PBS and unbound protein 

was washed out twice with PBS. Extracts of HEK293T cells expressing GFP or a GFP fusions 

were prepared in 200 µl lysis buffer II (50 mM NaH2PO4 pH 8.0, 300 mM NaCl, 10 mM 

imidazole, 0.5 % Tween-20, 2 mM MgCl2, 1 mg/ml DNaseI, 2 mM PMSF, 1X mammalian 

protease inhibitor mix). After centrifugation, supernatants were diluted to 500 µl with 

immunoprecipitation buffer II (50 mM NaH2PO4 pH 8.0, 300 mM NaCl, 10 mM imidazole, 

0.05 % Tween-20) and precleared by incubation with 25 µl of equilibrated Ni-NTA agarose 

beads for 30 min at 4°C followed by centrifugation. Precleared extracts were then incubated 

with 40 µg of His-tagged GFP-trap coupled to Ni-NTA beads for 2 h at 4°C with constant 

mixing. GFP or GFP fusions were pulled down by centrifugation at 540 g. After washing 

twice with wash buffer II (50 mM NaH2PO4 pH 8.0, 300 mM NaCl, 20 mM imidazole, 0.05 

% Tween-20), complexes were eluted with 60 µl of elution buffer (10 mM Tris pH 7.5, 100 

mM KCl, 1 mM EDTA, 1 mM DTT, 250 mM imidazole) for 10 min at 25°C with constant 

mixing. 10 µl aliquots of all eluates were subjected to western blot analysis using mouse or rat 

monoclonal antibodies to GFP (Roche and Chromotek, respectively) and quantified by 

densitometry. Indicated volumes of eluate were incubated with 1 µg of poly(dI·dC)- 

poly(dI·dC) substrate (Sigma), 0.5 µg/µl of BSA and 1 µCi of S-adenosyl-[3H-

methyl]-methionine in 50 µl of trapping buffer (10 mM Tris pH 7.5, 100 mM KCl, 1 mM 

EDTA, 1 mM DTT) for 60 min at 37°C. 15 µl of each sample were spotted onto blotting 

paper and the DNA was precipitated with ice cold 5 % TCA. After washing twice with 5% 

TCA and once with cold 70 % ethanol, paper filters were air dried and analyzed by 

scintillation in 4 ml scintillation cocktail (Rotiszint® eco plus, Roth) for 5 min. 
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Genomic 5-hydroxymethylcytosine levels correlate with TET2 mutations and a distinct
global gene expression pattern in secondary acute myeloid leukemia

Leukemia (2011) 25, 1649–1652; doi:10.1038/leu.2011.134;
published online 31 May 2011

The TET proteins are 2-oxoglutarate- and Fe(II)-dependent
oxygenase catalyzing the conversion of 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC).1 The TET1
(ten–eleven translocation 1) gene was originally identified as
an MLL fusion partner in rare cases of acute myeloid leukemia
(AML) with a t(10;11)(q22;q23).2,3 The definite function of
5hmC still remains elusive, but hydroxylation of 5mC has been
suggested to be involved in the process of DNA demethylation.
This suggests a possible role of 5hmC in epigenetic gene
regulation. Recently, hemizygous deletions and mutations of
TET2 were found in a wide range of myeloid malignancies,
including myelodysplastic syndrome (MDS), myeloproliferative
disorders such as chronic myelomonocytic leukemia (CMML)
and in secondary AML (sAML).4–6 Interestingly, very recently,
myeloid neoplasias harboring heterozygous TET2 mutations
were shown to have decreased levels of 5hmC.7

To explore the relationship among TET2 mutations, global
gene expression profiles (GEPs) and 5hmC levels, we measured
5hmC levels in the genomic DNA in a series of 30 sAML patients
using a novel assay method employing b-glucosyltransferase
from bacteriophage T4.8 In addition to the TET2 mutational
status, we screened for IDH1/2 mutations (see Supplementary
Material).

All patients had developed AML after a preceding MDS,
refractory anemia with excess blast or CMML phase. The
average age at diagnosis was 70.8 years. Eight patients had a
normal karyotype (nk), eight patients had a complex aberrant

karyotype (ak) with more than three chromosomal aberrations
and the remainder of the patients had one or two chromosomal
aberrations, which are typical of MDS, that is, del(5)(q)
(two patients), þ 8 (five patients), "7 or del(7)(q) (six patients;
see Supplementary Table 1). We sequenced the complete
coding region of TET2 in all 30 patients. In all, 7 of the
30 patients (23.3%) had TET2 mutations. One patient (no. 16)
had single-nucleotide deletions in both alleles of TET2 at
amino-acid positions 218 and 519, which caused truncation
of the protein after 250 and 533 amino acids, respectively.
Two patients (nos. 15 and 26) had nonsense mutations
at positions 1216 and 1274, and four patients (nos. 7, 14, 20
and 30) had missense mutations (see Table 1). All the TET2
mutations (except for patient no. 16) were heterozygous.
We did not detect any deletions in patients with TET2 mutations
using a commercially available fluorescence in situ hybridiza-
tion probe for the TET2 locus. There was no significant
association between TET2 mutational status and any particular
chromosomal abnormality. Although there was a trend toward
a higher frequency of TET2 mutations in patients with a nk in
comparison with patients with an ak (50% (4 out of 8 nk
patients) versus 13.6% (3 out of 22 ak patients), w2-test:
P¼ 0.17).

The analysis of the 5hmC levels of the patients’ DNA using
the b-glucosyltransferase assay revealed a 5hmC content
of the DNA, ranging from 0.006 to 0.054%. This range of
5hmC levels, about 9- to 14-fold difference between the
lowest and highest measurements, agrees well with
the measurements reported by Ko et al.,7 although very
different patient groups were assayed. In contrast to the
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results presented by Ko et al.,7 we did not observe a clear
bimodal distribution of 5hmC values. This could be due to the
smaller sample number in our series (30 versus 88) and to
different patient characteristics in the two studies (mainly sAML
in our study versus a broader range of myeloid malignancies in
the study of Ko et al.7).

When we compared the presence of TET2 mutation with the
5hmC levels, we found a significant clustering of patients with
TET2 mutations in the lower half of 5hmC levels (Figure 1 a). All
but one patient with a TET2 mutation belonged to the group of
the 15 patients with the lowest 5hmC levels (w2-test: P¼ 0.03).
This corresponded to 5hmC levels of o0.02%. Only one
patient with a TET2 mutation, no. 26) had 5hmC levels of
40.020%. These results agree well with the observation of Ko
et al.7 Interestingly, there were several patients with very low
5hmC levels that did not have a TET2 mutation. As it was
reported recently that IDH1/2 mutations can impair TET2
function, which might also correlate with low 5hmC levels,9,10

we determined the mutational status of the IDH1 and IDH2
genes in our patients. Only three patients (nos. 7, 17 and 18)

had mutations at amino acid R140 in IDH2 (Table 1, Figure 1 a).
No mutations in IDH1 were detected. Interestingly, one
patient (no. 7) had both mutations in IDH2 and in TET2. In a
much larger series of patients reported by Figueroa et al.,10 no
patient with both a TET2 and an IDH1/2 mutation was
discovered. Patient no. 17 who had an IHD2 mutation had the
lowest 5hmC levels in our series. Patient no. 18 had
intermediate 5hmC levels. However, there are still eight patients
in the lower half of the 5hmC level range who have neither a
TET2 nor an IDH1/2 mutation. There was no correlation
between TET2 expression levels and 5hmC levels in our patients
(data not shown).

To determine the impact of TET2 mutations and 5hmC levels
on cellular function, we obtained GEPs from 28 patients
(all except patient nos. 9 and 22) and performed two
comparisons for differential gene expression: (1) patients with
TET2 mutations (7 patients) versus patients without TET2
mutations (21 patients) and (2) the 7 patients with the lowest
versus the 7 patients with the highest 5hmC levels. The top
differentially expressed genes in the high versus low 5hmC level

Table 1 Overview of the clinical diagnosis, TET2 and IHD2 mutational status, as well as 5hmC levels of the 30 sAML patients analyzed

No. Diagnosis TET2 mutations IDH2
mutations

5hmC (%) Standard deviation
of 5hmC levels

1 sAML after MDS Wt Wt 0.02550 0.00444
2 sAML M2 after MDS RA Wt Wt 0.02920 0.00185
3 sAML M4 after MDS Wt Wt 0.01804 0.00315
4 sAML M4 after MDS Wt Wt 0.01762 0.00321
5 sAML M2 after MDS Wt Wt 0.05458 0.00174
6 sAML M2 after MDS Wt Wt 0.03486 0.00186
7 sAML M4 after MDS p.Asn1753_Tyr1766dup

c.5256_5297dup42
p.Arg140Gln
c.419G4A

0.01208 0.00412

8 sAML M2 after MDS Wt Wt 0.01633 0.00384
9 sAML M4 after 5q syndrome Wt Wt 0.03204 0.00189

10 sAML M2 after MDS Wt Wt 0.01636 0.00312
11 sAML M2 after MDS Wt Wt 0.02774 0.00128
12 sAML M2 after MDS Wt Wt 0.04758 0.00087
13 sAML M4 after MDS Wt Wt 0.03065 0.00442
14 sAML M0 after CMML p.Glu1144Lys

c.3430G4A
Wt 0.01062 0.00162

15 sAML M1 after CMML p.Arg1216*
c.3646C4T

Wt 0.01010 0.00239

16 sAML M2 after CMML p.Val218Trpfs*32
c.651delC
p.Phe519Leufs*14
c.1557delT

Wt 0.00698 0.00224

17 sAML M2 after MDS Wt p.Arg140Gln
c.419G4A

0.00630 0.00056

18 sAML M2 after MPS Wt p.Arg140Gln
c.419G4A

0.02075 0.00385

19 MDS RAEB-2 transformation to AML M2 Wt Wt 0.01505 0.00325
20 sAML M2 after MDS p.Thr1270Pro

c.3808A4C
Wt 0.01655 0.00255

21 MDS RAEB-2, borderline AML M6 Wt Wt 0.04156 0.00334
22 sAML M4 after MDS Wt Wt 0.03973 0.00386
23 sAML M2 after MDS Wt Wt 0.03396 0.00538
24 sAML after 5q syndrome Wt Wt 0.02885 0.00230
25 sAML M0 after MDS Wt Wt 0.02051 0.00132
26 sAML M0 after OMF p.Gln1274*

c.3820C4T
Wt 0.02618 0.00432

27 MDS RAEB-2, borderline CMML-2 or AML M4 Wt Wt 0.00648 0.00075
28 sAML after MDS Wt Wt 0.00973 0.00202
29 MDS RAEB-2 transformation to AML Wt Wt 0.00758 0.00108
30 MDS RAEB-2, borderline AML M2 p.Ile1873Thr

c.5618T4C
Wt 0.00699 0.00081

Abbreviations: AML, acute myeloid leukemia; cDNA, complementary DNA; CMML, chronic myelomonocytic leukemia; 5hmC, 5-hydroxy-
methylcytosine; MDS, myelodysplastic syndrome; MPS, myeloproliferative disorder; OMF, osteomyelofibrosis; RA, refractory anemia; RAEB, RA
with excess blast; sAML, secondary AML; Wt, wild type.
Reference sequences: TET2 protein: NP_001120680.1; TET2 cDNA: NM_001127208.1; IDH2 protein: NP_002159.2; and IDH2 cDNA:
NM_002168.2.
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Figure 1 (a) Bar graph of 5hmC (%) levels of the 30 patients of this study. Patients with a TET2 mutation or an IDH2 mutation are indicated with a
red or a blue rectangle, respectively. The yellow bars indicate the samples that were used for the differential gene expression analysis in the
comparison of low versus high 5hmC levels. Note that the patients 9 and 22 did not have gene expression data of sufficient quality to be included
in this analysis. (b) Heatmaps of the 50 most significantly differentially expressed probe sets comparing samples with TET2 mutations (n¼7) versus
TET2 wild type (N¼21; top) and samples with low (n¼ 7) and high (n¼ 7) 5hmC levels (bottom).
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comparison had a lower P-value and had a higher degree
of deregulation than the differentially expressed genes from
the comparison TET2 mutated versus wild type (Figure 1 b;
Supplementary Figure 1 and Supplementary Tables 2 and 3).
These results indicate that 5hmC levels are most likely a more
relevant measurement to define biologically distinct secondary
leukemia subtypes than the TET2 (or IDH1/2) mutational status.
The fact that in some patient samples with low 5hmC levels
neither TET2 nor IDH1/2 mutations could be identified suggests
that additional genes might be directly or indirectly involved in
the regulation of 5hmC levels. To further elucidate the
regulation of 5hmC levels and their role in leukemogenesis,
larger groups of sAML as well as de novo AML patients need
to be studied.
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Immunophenotype-defined sub-populations are common at diagnosis in childhood
B-cell precursor acute lymphoblastic leukemia

Leukemia (2011) 25, 1652–1657; doi:10.1038/leu.2011.136;
published online 17 June 2011

Neoplasms often display significant heterogeneity in morpho-
logy, gene expression (including cell surface markers), genetic

aberrations, cell proliferation kinetics and response to therapy.1

Heterogeneity in antigen marker expression is well known in
acute myeloid leukemia (AML);2 however, has rarely been
studied in acute lymphoblastic leukemia (ALL). In ALL, shifts in
immunophenotypic and genetic profiles can occur between
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Supplemental Information:

Methods:

Patient Samples

Patient samples were obtained from the Laboratory for Leukemia Diagnostics, University of

Munich Hospital Grosshadern. The samples were received for routine cytogenetics and

molecular genetics diagnostics. The institutional review board of the University Hospital

Munich has approved the use of left over diagnostic samples for this research project in an

anonymous fashion.

Cytogenetics and FISH

Each sample was routinely karyotyped according to standard protocols (GTG banding). All

patients were screened for deletions of the TET2  locus using a fluorescence in situ

hybridization (FISH) probe covering the TET2 gene from marker RH43141 to RH69608 (XL

TET2, MetaSystems, Altlussheim, Germany).

Mutation Analysis

Sample Preparation

Cells from diagnostic bone marrow and peripheral blood samples were enriched by Ficoll

denstity gradient centrifugation and thereafter lysed by RLT buffer (Quiagen, Hilden,

Germany) and stored at -80 °C.

Genomic DNA was extracted from patient samples with secondary AML using QIAamp DNA

mini Kit (Quiagen, Hilden, Germany).

Sequencing of TET2

Sanger sequencing analysis was performed on PCR-amplified genomic DNA fragments

spanning the entire coding region of TET2 isoform a (primers are shown below).

For the PCR of TET2, 50 ng of genomic DNA was used and amplified with Taq PCR Master

Mix Kit (Quiagen, Hilden, Germany) in a 25 µl reaction using the following program: 95°C for

5 min, 35 cycles at 95°C for 30 sec, 56°C for 30 sec and 72°C for 1 min with a terminal

elongation at 72 °C for 5 min.

Purified PCR fragments were sequenced using the Big Dye Terminator v1.1 Cycle

Sequencing Kit on 3100 Avant Genetic Analyzer (Applied Biosystems, Darmstadt, Germany).
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All fragments were sequenced bidirectional and sequence variations were confirmed again

by sequencing from the original DNA.

Sequencing of IDH1/2

Sanger sequencing was performed on PCR- amplified genomic DNA fragments including the

genomic region of IDH1/2 containing the mutational hotspots R132 and SNP rs 11554137 in

the IDH1 exon 4, and R140 and R172 in the IDH2 exon 4.

For IDH1 the following primers were used:

IDH1-F 5’-CATAATGTTGGCGTCAAATGTG-3’, IDH1-R 5’-ACATGCAAAATCACATTATTGCC-3’
For IDH2 the following primers were used:

IDH2-F 5’-GTTCAAGCTGAAGAAGATGTGG-3’, IDH2-R 5’-TGTGGCCTTGTACTGCAGAG-3’

For the PCR of IDH1 and IDH2, 50 ng of genomic DNA was used and amplified with Taq

PCR Master Mix Kit (Quiagen, Hilden, Germany) in a 25 µl reaction using the following

program: 94°C for 5 min, 35 cycles at 94°C for 1min, 56°C for 1min and 72°C for 1 min with a

terminal elongation at 72 °C for 10 min.

Sequencing was performed as described above
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TET2 primers:

cDNA sequence: uc003hxk.2
Genomic sequence: hg18_chr4:106286391-106421407

NAME LEFT_PRIMER RIGHT_PRIMER         PRODUCT_SIZE

Exon3_1 CAGTTTGCTATGTCTAGGTATTCCG TTTCCCCTCCTGCTCATTC 740

Exon3_2 ATGTCTCCGATTTGAGTGATAAG CCCTGGATGTTATTTTCTGC 607

Exon3_3 TGCAATGCTAAATACCTGTTCC TTCTGACATTGGTCTTGTTTTCTC 607

Exon3_4 CATCTACACATGTATGCAGCCC TGGTCTGTTTTGGAGAAGTGC 607

Exon3_5 CCAAGTTGAAATGAATCAAGGG TGTATTGTTTGAACAAGAAACCTG 613

Exon3_6 CAAAATCAAGCGAGTTCGAG ATACAGGCATGTGGCTTGC 604

Exon3_7 GAAGCAAGAACAGCAGCAAAC TCTGAAGATAAATTTGCTAATTCTGG 600

Exon4 GCCCTTAATGTGTAGTTGGGG TGCTTTGTGTGTGAAGGCTG 271

Exon5 TGCCTCTTGAATTCATTTGC GGGTAACCCAATTCTCAGGG 234

Exon6 TGCAAGTGACCCTTGTTTTG CAACCAAAGATTGGGCTTTC 342

Exon7 CAGCTGCACAGCCTATATAATG TCACTTCATCTAAGCTAATGAATTCTC 279

Exon8 GGGATTCAAAATGTAAGGGG TGCAGTGGTTTCAACAATTAAG 323

Exon9 TGTCATTCCATTTTGTTTCTGG TCTGCTCCTCAACATGAGATG 691

Exon10 ACACACACGTTTTCTTTGGG cagaacttacaaGTTGATGGGG 511

Exon11_1 CCTACATTTAAGTATCCTCACTAGCC AACTGCTGAAACCATCTCCC 676

Exon11_2 AGGTATCCAAGCCAAGACCC GGATCCAGAAAGCTCTGCTC 593

Exon11_3 GTCAGGAAAAGCAGCCATTG CTGACAGGTTGGTTGTGGTC 594

5hmC Assay

For quantification of 5-hydroxymethylcytosine (hmC) in the genomic DNA samples a recently

published method was applied  (1). This method utilizes the beta –glucosyltransferase (β-gt)

from the bacteriophage T4 which specifically transfers the glucose moiety from UDP-glucose

to hmC. By measuring the incorporation of radioactively labeled glucose into genomic DNA

the hmC content of the DNA can be calculated.

The bacteriophage T4 protein β-gt was expressed and purified as described before  (1). In

brief, BL21(DE3) E. coli cells carrying the expression construct were grown at 37°C until A600

= 0.6–0.7 and induced with isopropyl β-d-thiogalactopyranoside for 16 h at 20°C. Cells were

lysed and the protein was purified using a nickel-nitrilotriacetic acid column (QIAGEN)

followed by gel filtration. Fractions containing the β-gt peak were pooled and applied to a
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ResourceQ anion exchange column (GE Healthcare) in order to eliminate residual

contaminants, resulting in pure β-gt in the flowthrough.

Reference PCR fragments containing a known amount of 5hmC were produced as described

before  (1).

Genomic DNA samples were sheared to 500–1500_bp fragments by sonication to reduce the

viscosity and improve homogeneity.

Reactions contained 150 mM NaCl, 20 mM Tris, pH 8.0, 25 mM CaCl2, 1 mM DTT, 0.86

nM UDP-[3H]glucose (glucose-6-3H; 60 Ci/mmol; Hartmann Analytic GmbH), 500 ng of DNA

substrate and 100 nM recombinant β -gt in a total volume of 50 µl. Reactions were

incubated for 20 min at room temperature and terminated by heating at 65°C for 10 min.

Unincorporated nucleotides were removed by using the NucleoSpin® Extract II kit

(Macherey-Nagel) according to manufacturers protocol. Remaining radioactivity was

measured using a Liquid Scintillation Analyzer Tri-Carb 2100TR (Packard) with quench

indicating parameter set on tSIE/AEC (transformed spectral index of the external

standard/automatic efficiency control) in 4 ml of Rotiszint Eco Plus scintillation liquid (Roth

GmbH) in Snaptwist vials (Simport). Samples were measured for 30 min or until the 2σ

value reached 2%. The percentage of hmC per total cytosine was calculated from the

incorporation of [3H]glucose using a calibration curve measured with the reference fragment

series for every experiment. The percentage of hmC was then corrected for the difference in

C abundance between reference fragment (17,5%) and human genome (20,5%).

Gene Expression profiles

For the expression analysis, RNA from patient samples was labeled and hybridized to

Affymetrix HG-U133A and HG-U133B or HG-U133plus2 chips as previously described  (2).

The  HG-U133A, HG-U133B and HG-U133plus2 .CEL files were first normalized separately

using robust multi-array (RMA) normalization and then combined into one matrix and

normalized all together using the empirical Bayes (eB) method as previously described  (3).

The normalized expression data were analyzed with the twilight program (4) in the R

software package (http://www.r-project.org/).
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Supplemental Figure Legends:

Figure 1:

Top:

Degree of up- and down regulation of the 50 most significantly deregulatd probe sets in the

comparison TET2 mutated (n = 7) versus TET2 wild type (n =21). The genes toward the right

side are upregulated in TET2 mutated samples. The scale is linear (i.e. 2 denotes a 2 fold

higher expression in TET2 mutated samples).

Bottom:

Degree of up- and down regulation of the 50 most significanlty deregulatd probe sets in the

comparison low (n = 7) versus high (n = 7) 5hmC levels. The genes toward the right side are

upregulated in samples with low 5hmC levels. The scale is linear (i.e. 2 denotes a 2 fold

higher expression in samples with low 5hmC levels).

Supplemental Tables:

Supplemental Table 1:

Additional clinical and karyotype data of the patients.

Supplemental Table 2:

The 50 most significantly deregulated probe sets in the comparison TET2 mutated (n = 7)

versus TET2 wild type (n =21).

Supplemental Table 3:

The 50 most significantly deregulated probe sets in the comparison low (n = 7) versus high (n

= 7) 5hmC levels.
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Abstract

Recent discovery of 5-hydroxymethylcytosine (5hmC) in genomic DNA raises the question how this sixth base is
recognized by cellular proteins. In contrast to the methyl-CpG binding domain (MBD) of MeCP2, we found that the SRA
domain of Uhrf1, an essential factor in DNA maintenance methylation, binds 5hmC and 5-methylcytosine containing
substrates with similar affinity. Based on the co-crystal structure, we performed molecular dynamics simulations of the
SRA:DNA complex with the flipped cytosine base carrying either of these epigenetic modifications. Our data indicate that
the SRA binding pocket can accommodate 5hmC and stabilizes the flipped base by hydrogen bond formation with the
hydroxyl group.
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Introduction

DNA methylation is an epigenetic modification that is well
known to control eukaryotic gene expression [1,2]. In fact,
methylation of regulatory sequences often correlates with a
transcriptionally silent state. DNA methylation in mammals occurs
as 5-methylcytosine (5mC) within CpG dinucleotides and is
catalyzed by a family of DNA methyltransferases (Dnmts) [3].
Dnmt members are distinguished by their function; while the de
novo methyltransferases Dnmt3a and Dnmt3b establish methyla-
tion patterns during development and cellular differentiation [4,5],
the maintenance methyltransferase Dnmt1 copies these patterns
during DNA replication [6,7,8]. Although DNA methylation per
se can prevent binding of transcriptional regulators [9], the main
mechanism by which transcriptional repression is achieved
appears to involve 5mC binding proteins (MBPs). MBPs
specifically recognize methylation marks and consequently stabi-
lize silent chromatin states by recruitment of histone modifying
enzymes and chromatin remodeling factors [10].

There are three families of MBPs known to date: the methyl-
CpG binding domain (MBD) family, the Uhrf family and the
Kaiso protein family. In contrast to the members of the MBD and
Kaiso families that specifically recognize fully methylated CpG
sites, Uhrf1, the best characterized member of the Uhrf family,
preferentially binds hemimethylated DNA, the substrate of
maintenance methylation [11,12,13,14]. Notably, crystal struc-

tures of the DNA binding domains of MeCP2 and Uhrf1 in
complex with DNA revealed striking differences: whereas the
MeCP2 MBD recognizes methylated CpG sites based on
hydration of the DNA major groove, the Uhrf1 (Set and Ring
associated) SRA domain uses a base-flipping mechanism to bind
DNA containing hemimethylated CpG sites [11,12,14,15].
Interestingly, Uhrf1 recently emerged as essential cofactor for
maintenance methylation potentially by recruiting Dnmt1 to its
target sites [13,16,17].

In addition to 5mC, genomic DNA has been recently shown to
contain 5-hydroxy-methylcytosine (5hmC), which results from
oxidation of 5mC catalyzed by Tet proteins [18,19,20]. This new
modification has been implicated in DNA demethylation, either
passively as 5hmC containing DNA is not a substrate for Dnmt1
[21], or actively by so far unknown mechanisms. The central
questions remain which proteins recognize 5hmC modified DNA
and whether 5hmC has a direct role in gene regulation similar to
its analog 5mC.

In this study, we characterized the 5mC/5hmC DNA binding
properties of two representative 5mC binding protein domains, the
MBD of MeCP2 and the SRA domain of Uhrf1. We found that in
contrast to the MBD, the SRA domain binds hydroxymethylated
DNA substrates with similar affinity as methylated substrates. We
investigated the binding mode and energies of Uhrf1 to DNA
substrates containing 5mC and 5hmC using molecular dynamics
simulations of the respective SRA:DNA complexes.
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Results

Uhrf1 binds DNA substrates containing
hydroxymethylated CpG sites

Using a newly established DNA binding assay [22,23] as well as
electrophoretic mobility shift assays, we investigated the DNA
binding activity of Uhrf1, its SRA domain (SRAUhrf1) and the
MBD of MeCP2 (MBDMeCP2) to methylated and hydroxymethy-
lated DNA in direct competition (Figure 1, Supplementary Figure
S1; note that all supplementary information can also be found in
the Combined Supporting Information File S1). We found that the
Uhrf1 constructs bind 5mC and 5hmC containing substrates with
similar affinities independent of whether one or both cytosine
residues of the palindromic CpG site were modified. Control
experiments performed with hemimethylated DNA in competition
with either unmethylated substrates or substrates containing no
CpG site showed that the observed binding activity to methylated
and hydroxymethylated DNA is indeed specific (Supplementary
Figure S2). In stark contrast to Uhrf1, we found that MBDMeCP2

clearly discriminates between methylation and hydroxymethyla-
tion, which is in accordance with previous reports [21,24].

Molecular dynamics simulations of SRA:DNA complexes
with 5mC and 5hmC

To investigate the binding mode of the SRA domain to DNA
containing 5mC or 5hmC, we performed molecular dynamics
simulations for both SRA:DNA complexes. Consistent with the in
vitro DNA binding data, modeling of an additional hydroxyl group
into the complex structure of the Uhrf1 SRA domain with DNA
containing hemimethylated CpG sites revealed no spatial
constraints for accommodation of the flipped 5hmC nucleotide
within the binding pocket (Figure 2). Based on these initial models

of the bound conformation, we performed molecular dynamics
simulations for a time interval of 57 ns and monitored the RMSD
and RMSF values (Supplementary Figures S3 and S4). In both
systems equilibrium was reached after 20 to 30 ns. To assure
evaluation of equilibrated systems, we continued the equilibrium
simulations for another 27 ns and used only the last 10 ns for
subsequent interaction energy analysis [25]. To evaluate the
stability of the flipped nucleotides within the binding site, we
monitored the occurrence and stability of all hydrogen bonds in
the vicinity of the binding site with respect to the progress of the
simulations (Figure 3).

Before starting the simulations, all water molecules from the X-
ray structure were removed and new water molecules were placed
by the setup solvation algorithm of NAMD [26]. Therefore, no
water molecules were present in the vicinity of the flipped
nucleotides at the beginning of the simulations. Interestingly, in
both simulations, water molecules from the water-filled simulation
box moved into the nucleotide binding site within the first couple
of nanoseconds (Figures 3C and 3D, hydrogen bonds 14 to 18).
During the remainder of the simulation time, one water molecule
was stabilized within the binding site by formation of distinct
hydrogen bonds with protein and DNA. Notably, the position of
this water molecule in the 5mC complex corresponds to that of a
conserved water molecule in the experimental structure (Supple-
mentary Figure S5), confirming the stability and accuracy of our
simulations.

Despite the presence of a conserved water molecule in the
binding pockets of both complexes, the corresponding hydrogen
bond networks showed interesting differences. In the 5mC
complex, this water molecule forms hydrogen bonds with the
phosphodiester group of the methylated nucleotide as well as with
the SRA residues I454 and G453, thereby bridging the DNA

Figure 1. DNA binding specificity of 5-methylcytosine binding proteins. (A+B) Relative DNA/protein ratios of Uhrf1, its SRA domain
(SRAUhrf1) and the MBD of MeCP2 (MBDMeCP2) with two differentially labeled DNA substrates in direct competition. (A) Binding to DNA substrates
containing a hemimethylated or hemihydroxymethylated CpG site (HMB versus HhMB, respectively). (B) Binding to DNA substrates containing a fully
methylated or fully hydroxymethylated CpG site (FMB versus FhMB, respectively). Results are shown as means of three independent experiments with
standard deviation error bars. Note that MBDMeCP2 preferentially binds to FMB, whereas the Uhrf1 constructs do not discriminate between FMB and
FhMB. (C) Electrophoretic mobility shift assays were performed with Uhrf1 or MBDMeCP2 and equimolar amounts of FMB (red) and FhMB (green) in
competition. The overlay of the two substrate channels reveals simultaneous shifting of both DNA substrates with Uhrf1, whereas with MBDMeCP2 the
FMB substrate shifts at a lower protein concentration than the FhMB substrate, confirming differential binding.
doi:10.1371/journal.pone.0021306.g001

Uhrf1 Binds Hydroxymethylated DNA
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backbone:protein interaction (Figure 3A–C, hydrogen bonds 14–
16, Figure 4A). Furthermore, direct hydrogen bonds between the
5mC DNA backbone and the protein are formed involving
residues G453, S486, and R489 (hydrogen bonds 1–4).

The hydrogen bond network of the 5hmC complex is more
stable compared to the 5mC complex (Figure 3D, compare with
3C). Most prominently, one additional and very stable hydrogen
bond is formed between the conserved water molecule and the
hydroxyl group of the 5hmC nucleotide (hydrogen bond 17). This
interaction seems to specifically stabilize the hydrogen bonding
network between the DNA backbone and the binding pocket
residues G453, S486, and R489 (hydrogen bonds 1–4). Interest-
ingly, these hydrogen bonds have been previously identified to be
important for DNA binding [14] and possibly stabilize the flipped
conformation of the nucleotide within the binding site. In addition,

the hydrogen bond network within the protein involving residues
V466 and G453 as well as residues T484 and D474 is stabilized in
the 5hmC complex (hydrogen bonds 11–13).

Since water dynamics and to some extent also DNA dynamics
can depend on the ion concentration parameters used in the
molecular dynamics simulation, we performed a second simulation
of the 5hmC complex with a higher ion concentration (Supple-
mentary Figure S6). Consistent to the first simulation with 5hmC,
we observed the same overall water dynamics and hydrogen
bonding patterns including hydrogen bond formation between the
hydroxyl group of the 5hmC nucleotide and the conserved water
molecule within the SRA structure. Notably, the stable hydrogen
bonding between protein residue S486 and the DNA backbone in
the first simulation (hydrogen bonds 2a and 2b) seems to be
replaced by a stable hydrogen bond of S486 with the water

Figure 2. Structure of the Uhrf1 SRA domain in complex with hemimethylated and hemihydroxymethylated DNA. (A) Experimental
structure of the Uhrf1 SRA domain in complex with hemimethylated DNA (PDB-ID:3fde, [14]). The protein is shown in cartoon and the DNA in licorice
representation. The 5mC nucleotide is highlighted in green. Note that the 5mC residue is flipped out of the DNA double helix. (B+C) Models of the
SRA binding pocket with bound 5mC (B) and 5hmC (C) serving as starting points for the molecular dynamics simulations. The location of the hydroxyl
group in the 5hmC complex is highlighted by the white arrow. The view is from the top of the binding site (DNA backbone) and rotated by 90
degrees compared to (A).
doi:10.1371/journal.pone.0021306.g002

Uhrf1 Binds Hydroxymethylated DNA
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Figure 3. Molecular dynamics simulations of the SRA domain in complex with 5mC and 5hmC containing DNA. (A+B) Three and two-
dimensional schematic drawings summarizing the hydrogen bond networks between the nucleotides, the SRA binding pocket, and a conserved
water molecule during the simulations. The numbers in (B) correspond to the numbering in (C+D). (C+D) Hydrogen bond occurrences during the
molecular dynamics simulations of the SRA domain in complex with either 5mC (C) or 5hmC containing DNA (D). Each vertical line represents a single
observed hydrogen bond. The hydrogen bond between 5hmC and the conserved water is highlighted in red.
doi:10.1371/journal.pone.0021306.g003
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molecule in the second simulation (hydrogen bond 18), indicating
two alternative interaction patterns for the S486 residue in the
5hmC complex (Figures 4B and 4C, compare Figure 3D and
Supplementary Figure S6B). In conclusion, these data suggest that
stable, water bridged hydrogen bond formation of the hydroxyl
group of the flipped 5hmC nucleotide with its surrounding occurs
in and stabilizes this DNA:SRA complex.

Similar interaction energies for SRA complexes with 5mC
and 5hmC containing DNA

To estimate the binding affinity between the Uhrf1 SRA domain
and DNA containing either 5mC or 5hmC, we calculated the
respective interaction energies using the linear interaction energy
(LIE) approach [25]. To exclude energy contributions due to base-
flipping when comparing the interaction of the DNA with the protein
(bound state) or with the solvent (unbound state), we simulated the
DNA in a flipped state in both cases. We determined the difference
between the binding energies of the two complexes (DDG =
DG5mC2DG5hmC). We included either i) the whole DNA and SRA
structure (DDG = 27.94 kcal/mol) or ii) the flipped nucleotide with its
five neighboring nucleotides and the binding pocket of the protein,
defined as all residues within a distance of 15 Å from the nucleotide in
the starting conformation (DDG = 26.65 kcal/mol). These values
suggest that the slight difference in binding affinity is predominantly
due to interaction of the flipped nucleotide with the proximal protein
residues that form the binding site. Considering the estimated
uncertainty of about 3–4 kcal/mol in our calculations, these values
indicate that both 5mC and 5hmC containing DNA substrates bind
with very similar affinity to the SRA domain of Uhrf1.

Discussion

In summary, we observed fundamentally different binding
specificities for the DNA binding domains of representative 5mC
binding proteins. Hydroxylation of 5mC clearly interferes with
DNA binding by the MBD of MeCP2 and might prevent
subsequent establishment of repressive chromatin structures in a
cellular context, thereby changing the cellular interpretation of an
epigenetic modification. Notably, MeCP2 expression is highest in
brain tissues where also 5hmC levels are highest [18,27,28]. In
stark contrast, Uhrf1, a key factor in maintenance methylation,
recognizes 5hmC as well as 5mC. The results of our molecular
dynamics simulations provide a structural explanation for
recognition of 5hmC. Interestingly, the flipped 5hmC base not
only fits into the binding pocket of the Uhrf1 SRA domain, but is

specifically stabilized by hydrogen bond formation involving the
5hmC hydroxyl group. This interaction is bridged by a conserved
water molecule present within the SRA binding pocket and seems
to stabilize the overall hydrogen bond network of the 5hmC
complex. Also in the 5mC complex a conserved water molecule is
found in the vicinity of the flipped cytosine, which in this case,
however, only interacts with the SRA domain and the backbone of
the DNA and not with the flipped nucleotide itself.

The specific binding of Uhrf1 to 5hmC containing DNA was
clearly unexpected and puts the existing hypothesis on Uhrf1 function
into a new perspective. Knock-out studies in mouse embryonic stem
cells and embryos revealed that Uhrf1 is essential for maintenance
DNA methylation by Dnmt1 [17]. Based on the specific binding of
Uhrf1 to hemimethylated CpG sites and its interaction with Dnmt1,
Uhrf1 was suggested to operate by recruiting Dnmt1 to its target sites
[11,12,13,14,17]. Recent studies suggested a role of hydroxymethyla-
tion in passive [21] and/or active [29,30,31] DNA demethylation.
The binding of Uhrf1 to hydroxymethylated DNA reported in this
study now raises the question how Uhrf1 contributes to change or
maintenance of methylation in vivo. In this context it should also be
noted that the preferential binding of Uhrf1 to hemimethylated DNA
is relatively weak, especially if compared to the intrinsic preference of
Dnmt1 for methylation of these substrates [22,23]. Moreover,
multiple interactions of Uhrf1 with repressive histone tail modifica-
tions [23] as well as other heterochromatin associated proteins
[32,33] seem to be required for the specific localization and targeting
of Uhrf1 in vivo. Together, these data strongly argue for a more
complex mechanism of Uhrf1 function in living cells and emphasize
the need for further studies to understand the pivotal role of Uhrf1 in
the establishment, maintenance and change of genome-wide
methylation patterns.

Using a combination of in vitro and in silico studies, we clearly
demonstrate that Uhrf1 can bind 5hmC containing DNA. It still
remains elusive whether or in which specific context Uhrf1 binds
5hmC modified DNA substrates in living cells. Uhrf1 binding to
5hmC and possible functional consequences in vivo are likely to
depend on additional interacting factors. Comparison of genome-
wide Uhrf1 ChIP profiles with 5mC and 5hmC distribution should
help to clarify the interactions and functions of Uhrf1 in vivo. Finally, it
is interesting to note that Uhrf1 is the only base-flipping protein with
so far unknown catalytic function on DNA. The direct interaction of
a water molecule with the hydroxyl group of 5hmC within the SRA
binding pocket might possibly point towards a role of Uhrf1 in the
further modification of this sixth DNA base. In conclusion, our study
provides new perspectives on the cellular interpretation and possible
further metabolism of this new epigenetic DNA modification.

Materials and Methods

Expression constructs, cell culture and transfection
Mammalian expression constructs for enhanced green fluorescent

protein (GFP), Uhrf1 (GFP-Uhrf1), the SRA domain of Uhrf1 (GFP-
SRAUhrf1) and the MBD of MeCP2 (MBDMeCP2-YFP) were
described previously [22,23,34]. Note that all constructs encode
fusion proteins of either GFP or yellow fluorescent protein (YFP).
HEK293T cells [35] were cultured in DMEM supplemented with
50 mg/ml gentamicin and 10% fetal calf serum. For expression of
GFP/YFP fusion proteins, HEK293T cells were transfected with the
corresponding expression constructs using polyethylenimine (Sigma).

DNA substrate preparation
Fluorescently labeled DNA substrates were prepared by mixing

two HPLC-purified DNA oligonucleotides (IBA GmbH, Supple-
mentary Tables S1 and S2) in equimolar amounts, denaturation

Figure 4. Hydrogen bond networks stabilizing 5mC and 5hmC
within the SRA binding pocket. (A) SRA complex with DNA
containing 5mC. (B+C) SRA complex with DNA containing 5hmC. In the
5hmC complex, the water molecule stably interacts with the hydroxyl
group of the nucleotide, but two alternative conformations of the SRA
binding pocket exist depending on the ion concentration. In the
absence of salt, binding involves an interaction of the S486 residue with
the phosphate group of the flipped nucleotide (B), whereas in the
presence of 0.5 M NaCl, residue S486 interacts with the conserved
water molecule (C).
doi:10.1371/journal.pone.0021306.g004
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for 30 sec at 92uC and slow cool-down to 25uC allowing
hybridization. After purification by 15% non-denaturing PAGE,
DNA substrates were resuspended in binding buffer (20 mM
TrisHCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM DTT).

Pull-down DNA binding assay
In vitro DNA binding assays were performed as described

previously [22,23]. In brief, GFP/YFP fusions were purified from
HEK293T extracts using the GFP-TrapH (ChromoTek GmbH)
and incubated with two differentially labeled DNA substrates at a
final concentration of 200 nM DNA/50–100 nM immobilized
protein for 45 min at room temperature in binding buffer. After
removal of unbound substrate, the amounts of protein and DNA
were determined by fluorescence intensity measurements with a
Tecan Infinite M1000 plate reader. Binding ratios were calculated
dividing the concentration of bound DNA substrate by the
concentration of GFP/YFP fusion on the beads, corrected by
values from a control experiment using DNA substrates of the
same sequence but with different fluorescent labels, and
normalized by the total amount of bound DNA.

Electrophoretic mobility shift assay
For competitive electrophoretic mobility shift assays, equimolar

amounts of two differentially labeled DNA substrates (250 nM
each) were incubated with increasing amounts of GFP/YFP fusion
protein (Supplementary Figure S1), subjected to 6% non-
denaturing PAGE and analyzed with a Typhoon scanner (GE
Healthcare), which allowed separate detection of DNA substrates
and protein by ATTO labels and GFP tag, respectively, using the
following laser/filter settings: 532 nm/580 nm (ATTO550),
633 nm/none (ATTO700), 488 nm/520 nm (GFP/YFP).

Molecular dynamics simulations
Molecular dynamics simulations were performed based on the

X-ray structure of the Uhrf1 SRA domain with the PDB identifier
3FDE [14], using the program NAMD 2.7b1 [26] and the
CHARMM22/27 force field [36,37]. Binding free energies were
estimated using the Linear Interaction Energy (LIE) model [25].

After energy minimization of 50,000 steps, one hydrogen atom
of the methyl group of the protein-bound 5-methylcytosine (5mC)
residue was substituted by a hydroxyl group using the tool psfgen.
CHARMM22 force field parameters were available for 5mC
(patch: PRES 5MC2), but not for 5-hydroxymethylcytosine
(5hmC). Therefore, a new 5hmC residue was created based on
the 5mC parameters and topology. For this purpose, one
hydrogen atom of the 5mC methyl group was exchanged by a
hydroxyl group. The charges of the hydroxyl group were
subsequently set to charges of the hydroxyl group of a serine
residue according to the CHARMM27; the charges of the CH2

group were adjusted accordingly (Supplementary Table S3). After
solvation, the 5mC and 5hmC structures were further energy
minimized for 50,000 steps. For each structure, two simulations
were performed, in which the charges were either neutralized or a
salt concentration of 0.5 M was used.

Each simulation was performed using periodic boundary condi-
tions and particle-mesh-ewald summation [38] for long range non-
bonded interactions. The non-bonded cutoff was set to 14 Å with a
switching/shifting distance of 12 Å. A stepsize of 1 fs was chosen.
The systems were heated from 0 to 200 K for 160 ps under constant
volume. Harmonic restraints (1000 kcal mol21 nm22) were applied
to all atoms of the complex. The heat up was continued without
harmonic restraints from 200 to 300 K for 80 ps under constant
pressure conditions, using a Nose-Hoover barostat [39,40] with a
target pressure of 1.01325 bar, an oscillation time scale of 100 fs, and

a damping time scale of 50 fs. The temperature was maintained by
Langevin dynamics using a damping coefficient of 5/ps. The
temperature bath was not coupled to hydrogen atoms. After the
heat up procedure, the simulations were continued for 57 ns. During
the simulations, all bond lengths were constrained to ideal values
using the Shake algorithm [41,42].

For analysis of the simulation results, all hydrogen bonds formed
by the flipped nucleotides and the binding site were identified and
monitored throughout the simulations and the occurrence of water
molecules in and around the binding site was monitored every
5 ps. In order to estimate the difference in the binding free energy
of the two nucleotides, we performed three further simulations in
which the protein and the two DNA molecules were simulated
separately using the conditions described above. To keep the DNA
in the flipped state, we additionally applied harmonic restraints to
the whole DNA backbone (atom names: C49, P, O1P, O2P, O59,
C59, C39, O39). The solvated single protein was simulated for
34 ns and the separated DNA molecules were simulated for 20 ns.

To estimate the binding affinity of the two DNA molecules to
the protein, we estimated the binding free energy according to the
Linear Interaction Energy (LIE) model [25]:

DGbind~aDSVvdw
DNA{sTzbDSVel

DNA{sTzc ð1Þ

DSV
el=vdw
DNA{sT~SV

el=vdw
bound T{SV

el=vdw
unboundT ð2Þ

In this approach the binding free energy is approximated by the
difference between the interaction energies DVel and DVvdw of the
ligand in the protein-ligand complex (bound state) and in solution
(unbound state). The ,. denotes the average values obtained
from the simulation trajectories. According to the linear response
approximation the weights a and b were set to 1 and 0.5,
respectively. We calculated the DNA-(protein+solvent) (bound
state) and the DNA-solvent (free state) interaction energies from
the trajectories of the DNA/SRA and the DNA/solvent
simulations, using the average energy over the last 10 ns.

Supporting Information

Figure S1 Electrophoretic mobility shift assays with
methylated and hydroxymethylated DNA substrates. In-
creasing amounts of Uhrf1, its SRA domain (SRAUhrf1) or the MBD
domain of MeCP2 (MBDMeCP2) were incubated with two differen-
tially ATTO-labeled DNA substrates, which contain either one
central fully methylated or fully hydroxymethylated CpG site (FMB-
ATTO700 or FhMB-ATTO550, respectively), in direct competition.
Samples were subjected to 6% non-denaturing PAGE and analyzed
with a Typhoon scanner (GE Healthcare). The first, second and third
columns show the scans for GFP/YFP, ATTO700 and ATTO550
fluorescence, respectively. The overlay of the two ATTO channels is
shown in the fourth column (FMB: red, FhMB:green).
(PDF)

Figure S2 DNA binding specificity of Uhrf1. Relative
DNA/Uhrf1 ratios are shown for two differentially labeled
fluorescent DNA substrates in direct competition. (A) Binding of
Uhrf1 to DNA substrates containing no CpG site or one central
hemimethylated CpG site (noCGB versus HMB, respectively). (B)
Binding of Uhrf1 to DNA substrates containing one central un- or
hemimethylated CpG site (UMB versus HMB, respectively).
Results are shown as means of three independent experiments
with standard deviation error bars. DNA substrates were prepared
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by hybridization as described in the main text, except for noCGB,
which was prepared by primer extension as described previously
[22]. See Supplementary Tables S1 and S2 for DNA oligonucle-
otide sequences and purification grade of the used substrates.
(PDF)

Figure S3 Atom-positional root-mean-square deviation of
the protein and DNA backbone atoms during the simula-
tions. The terminal DNA and protein residues were excluded from
the calculations in the ‘‘subset’’ sets (red and black lines).
(PDF)

Figure S4 Atom-positional root-mean-square fluctua-
tions of the protein (A, C) and both DNA strands (B, D)
during two simulation periods. Note that both structures
show the same flexibility pattern during both simulation periods
and are overall stable during both periods. This is in agreement
with the RMSD data in Figure S3, which shows that equilibration
is reached after 30 ns of simulation time.
(PDF)

Figure S5 Superposition of the equilibrated 5mC struc-
ture after simulation (atom-name specific coloring) and
the crystal structure (PDB-ID:3fde [14], green). The 5mC
nucleotide, the residue I454 of the SRA binding pocket and the
conserved water molecule are shown. Note that the distance
between the oxygen atoms of the conserved water molecules in the
two structures is only 1.1 Å.
(PDF)

Figure S6 Molecular dynamics simulations of the Uhrf1
SRA domain in complex with 5mC (A) and 5hmC (B)
containing DNA in 0.5 M NaCl. Hydrogen bond occurrences
during the simulation of the SRA:DNA complex using a
concentration of 0.5 M NaCl.
(PDF)

Table S1 Sequences of DNA oligonucleotides used for
preparation of double stranded fluorescent DNA sub-
strates. M: 5-methylcytosine. X: 5-hydroxymethylcytosine.
(PDF)

Table S2 DNA substrates used for the DNA binding
assays.
(PDF)

Table S3 Residue Topology File and parameters used
for the 5hmC residue during the simulations.
(PDF)

File S1 Combined supporting figures and tables.
(PDF)
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Supplementary Tables 

Supplementary Table S1. Sequences of DNA oligonucleotides used for preparation of 
double stranded fluorescent DNA substrates.  
M: 5-methylcytosine. X: 5-hydroxymethylcytosine. 
 
Name Sequence 
CGup 5’- CTCAACAACTAACTACCATCCGGACCAGAAGAGTCATCATGG -3’ 
MGup 5’- CTCAACAACTAACTACCATCMGGACCAGAAGAGTCATCATGG -3’ 
hmCGup 5'- CTCAACAACTAACTACCATCXGGACCAGAAGAGTCATCATGG -3' 
noCGup 5’- CTCAACAACTAACTACCATCTGGACCAGAAGAGTCATCATGG -3’ 
um550 5’- ATTO550-CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG -3’ 
um590 5’- ATTO590-CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG -3’ 
um647N 5’- ATTO647N-CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG -3’ 
um700 5’- ATTO700-CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG -3’ 
mC700 5'- ATTO700-CCATGATGACTCTTCTGGTCMGGATGGTAGTTAGTTGTTGAG -3' 

hmC550 5'- ATTO550-CCATGATGACTCTTCTGGTCXGGATGGTAGTTAGTTGTTGAG -3' 

550-Fill-In 5’- ATTO550-CCATGATGACTCTTCTGGTC -3’ 
 

 
 
 
Supplementary Table S2. DNA substrates used for the DNA binding assays. 
 
Name CpG site Label Oligo I Oligo II     Purification grade and use 
HMB550 hemimethylated ATTO550 MGup um550  hybridization of HPLC-purified oligos 

 gel-purification 
 used for data in figure 2 and 

supplementary figure 1 

HMB700 hemimethylated ATTO700 MGup um700 
HhMB700 hemihydroxymethylated ATTO700 hmCGup um700 
FMB700 fully methylated ATTO700 MGup mC700 
FhMB550 fully hydroxymethylated ATTO550 hmCGup hmC550 
noCG550 no CpG site ATTO550 noCGup 550-Fill-In  primer extension for noCG550 

 hybridization of HPLC-purified oligos 
for HMB substrates 

 gel-purification 
 used for data in supplementary figure 2A 

HMB550 hemimethylated ATTO550 MGup um550 
HMB647N hemimethylated ATTO647N MGup um647N 

     

UMB550 unmethylated ATTO550 CGup um550  hybridization of HPLC-purified oligos 
 used for data in supplementary figure 2B, 

n=2 
UMB590 unmethylated  ATTO590 CGup um590 
HMB590 hemimethylated ATTO590 MGup um590 
UMB647N unmethylated ATTO647N CGup um647N  hybridization of PAGE-purified oligos 

 used for data in supplementary figure 2B, 
n=1 

UMB700 unmethylated  ATTO700 CGup um700 
HMB700 hemimethylated ATTO700 MGup um700 
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Supplementary Table S3. Residue Topology File and parameters used for the 5hmC 
residue during the simulations.  

=============================================================================== 
TOPOLOGY (based on 5mC topology from patches: PRES 5MC2 and PRES DEO1)  
=============================================================================== 
! 5-hydroxy-methyl cytosine  
RESI 5HMC        -1.00  ! 
ATOM P    P       1.50  ! 
ATOM O1P  ON3    -0.78  !                      H42  H41 
ATOM O2P  ON3    -0.78  !                        \  /     
ATOM O5'  ON2    -0.57  !                         N4 
ATOM C5'  CN8B   -0.08  !                         | 
ATOM H5'  HN8     0.09  !              H3-O3      C4 
ATOM H5'' HN8     0.09  !                  \     /  \\ 
GROUP                   !             H5M2 -C5M-C5   N3 
ATOM C4'  CN7     0.16  !                  /    ||   | 
ATOM H4'  HN7     0.09  !              H5M1  H6-C6   C2 
ATOM O4'  ON6    -0.50  !                        \  / \\ 
ATOM C1'  CN7B    0.16  !                         N1   O2 
ATOM H1'  HN7     0.09  !                          \ 
GROUP                   !                           \ 
ATOM N1   NN2    -0.13  !                            \  
ATOM C6   CN3     0.05  !        O1P    H5' H4'  O4'  \ 
ATOM H6   HN3     0.17  !         |      |    \ /   \  \ 
ATOM C5   CN3D   -0.11  !        -P-O5'-C5'---C4'    C1' 
ATOM C5M  CN9     0.10  !         |      |     \     / \           
ATOM H5M1 HN9     0.09  !        O2P    H5''   C3'--C2' H1' 
ATOM H5M2 HN9     0.09  !                     / \   / \  
ATOM O3   OH1    -0.66  !                  O3' H3' H2' H2'' 
ATOM H3   H       0.43  !                   | 
ATOM C2   CN1     0.52  !                   |          
ATOM O2   ON1C   -0.49  !                             
ATOM N3   NN3    -0.66  !  
ATOM C4   CN2     0.65  !                    
ATOM N4   NN1    -0.75  !                    
ATOM H41  HN1     0.37   
ATOM H42  HN1     0.33   
GROUP 
ATOM C2'  CN8    -0.18  ! 
ATOM H2'' HN8     0.09  ! 
ATOM H2'  HN8     0.09  ! 
GROUP 
ATOM C3'  CN7     0.01 
ATOM H3'  HN7     0.09 
ATOM O3'  ON2    -0.57  
BOND P    O1P       P    O2P       P     O5' 
BOND O5'  C5'       C5'  C4'       C4'  O4'      C4'  C3'    O4'  C1' 
BOND C1'  N1        C1'  C2'       N1   C2       N1   C6 
BOND C2   N3        C4   N4        N4   H41      N4   H42 
BOND C4   C5        C2'  C3'       C3'  O3'      O3'  +P 
BOND C1'  H1'       C2'  H2''      C2'  H2'      C3'  H3'    C4'  H4'    C5'  H5' 
BOND C5'  H5''      C6   H6 
BOND C5   C5M  C5M  H5M1  C5M H5M2  C5M  O3  O3 H3     
ANGL C4   C5   C5M   C6   C5   C5M    
ANGL C5   C5M  H5M1  C5   C5M  H5M2  C5   C5M  O3  C5M O3 H3       
ANGL H5M1 C5M  H5M2  H5M1 C5M  O3    H5M2 C5M  O3     
DIHE C5M  C5   C4   N3   C5M  C5   C4   N4 
DIHE C5M  C5   C6   H6   C5M  C5   C6   N1 
DIHE H5M1 C5M  C5   C4   H5M1 C5M  C5   C6 
DIHE H5M2 C5M  C5   C4   H5M2 C5M  C5   C6 
DIHE O3   C5M  C5   C4   O3   C5M  C5   C6      
DIHE H3   O3   C5M  C5  H3   O3   C5M  H5M2      
DIHE H3   O3   C5M  H5M1        
DOUBLE   C2   O2    C5   C6        N3   C4 
IMPR C2   N1   N3   O2        C4   N3   C5   N4 
IMPR N4   C4   H41  H42       
DONO H42  N4    
DONO H41  N4    
DONO H3   O3          
ACCE O2   C2 
ACCE N3      
ACCE O1P  P 
ACCE O2P  P        
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ACCE O3' 
ACCE O4' 
ACCE O5' 
ACCE O3           
 
BILD -O3' P    O5'  C5'    1.6001  101.45  -46.90  119.00   1.4401 !alpha 
BILD -O3' O5'  *P   O1P    1.6001  101.45 -115.82  109.74   1.4802 
BILD -O3' O5'  *P   O2P    1.6001  101.45  115.90  109.80   1.4801 
BILD  P   O5'  C5'  C4'    1.5996  119.00 -146.00  110.04   1.5160 !beta 
BILD O5'  C5'  C4'  C3'    1.4401  108.83   60.00  116.10   1.5284 !gamma 
BILD C5'  C4'  C3'  O3'    1.5160  116.10  140.00  115.12   1.4212 !delta 
BILD C4'  C3'  O3'  +P     1.5284  111.92  155.00  119.05   1.6001 !epsilon 
BILD C3'  O3'  +P   +O5'   1.4212  119.05  -95.20  101.45   1.5996 !zeta 
BILD O4'  C3'  *C4' C5'    1.4572  104.06 -120.04  116.10   1.5160 
BILD C2'  C4'  *C3' O3'    1.5284  100.16 -124.08  115.12   1.4212 
BILD C4'  C3'  C2'  C1'    1.5284  100.16  -30.00  102.04   1.5251 
BILD C3'  C2'  C1'  N1     1.5284  101.97  147.89  113.71   1.4896 
BILD O4'  C1'  N1   C2     1.5251  113.71  -97.2   125.59   1.3783 !chi 
BILD C1'  C2   *N1  C6     1.4896  117.79 -180.00  120.6    1.364    
BILD C2   N1   C6   C5     1.399   120.6     0.0   121.0    1.337    
BILD C6   N1   C2   N3     1.364   120.6     0.0   118.9    1.356    
BILD N1   N3   *C2  O2     1.399   118.9   180.0   121.9    1.237    
BILD N1   C2   N3   C4     1.399   118.9     0.0   120.0    1.334    
BILD C5   N3   *C4  N4     1.426   121.8   180.00  118.9    1.337    
BILD N3   C4   N4   H41    1.337   117.9     0.00  118.9    1.01     
BILD H41  C4   *N4  H42    1.01    118.9   180.00  120.7    1.01     
BILD N1   C5   *C6  H6     0.0       0.0   180.0     0.0    0.0 
BILD C1'  C3'  *C2' H2'    1.5284  102.04 -114.67  110.81   1.01       
BILD O4'  C2'  *C1' H1'    0.0       0.0  -115.0     0.0    0.0 
BILD C1'  C3'  *C2' H2''   0.0       0.0   115.0     0.0    0.0 
BILD C1'  C3'  *C2' H2'    0.0       0.0  -115.0     0.0    0.0 
BILD C2'  C4'  *C3' H3'    0.0       0.0   115.0     0.0    0.0 
BILD C3'  O4'  *C4' H4'    0.0       0.0  -115.0     0.0    0.0 
BILD C4'  O5'  *C5' H5'    0.0       0.0  -115.0     0.0    0.0 
BILD C4'  O5'  *C5' H5''   0.0       0.0   115.0     0.0    0.0 
BILD C6   C4   *C5  C5M    0.0       0.0   180.0     0.0    0.0 
BILD C4   C5   C5M  H5M1   0.0       0.0   180.0     0.0    0.0 
BILD C5   H5M1 *C5M H5M2   0.0       0.0  -115.0     0.0    0.0 
BILD H5M1 H5M2 *C5M O3     0.0       0.0   115.0     0.0    0.0     
BILD C4   C5   C5M  O3     0.0       0.0    60.0     0.0    0.0    
BILD C5   C5M  O3   H3     0.0       0.0   180.0     0.0    0.0    
=============================================================================== 
 
=============================================================================== 
FORCEFIELD PARAMETERS: 
=============================================================================== 
... 
BONDS 
... 
!added for 5HMC TU_TCB TH und ISA 
OH1  CN9   428.000     1.4200 ! ACC. TO OH1-CT3 
... 
ANGLES 
... 
!added for 5HMC TU_TCB TH und ISA 
OH1  CN9  CN3D   75.700   110.1000 !ACC. TO  OH1-CT2-CT2 
OH1  CN9  HN9    45.900   108.8900 !ACC. TO  OH1-CT3-HA 
H    OH1  CN9    57.500   106.0000 !ACC. TO  H-OH1-CT2 
... 
DIHEDRALS 
... 
!added for 5HMC TU_TCB TH und ISA 
H    OH1  CN9  CN3D     1.3000  1     0.00 !ACC. TO  H-OH1-CT2-CT2 
H    OH1  CN9  CN3D     0.3000  2     0.00 !ACC. TO  H-OH1-CT2-CT2  
H    OH1  CN9  CN3D     0.4200  3     0.00 !ACC. TO  H-OH1-CT2-CT2 
CN3  CN3D CN9  OH1      0.0     3     0.0  !ACC. TO  CN3-CN3D-CN9-HN9 
CN2  CN3D CN9  OH1      0.35    3     0.0  !ACC. TO  CN3-CN3D-CN9-HN9 
HN9  CN9  OH1  H        0.1400  3     0.00 !ACC. TO  X-CT2-OH1-X   
... 
IMPROPER 
... 
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Supplementary Figures 

 

 

 

Supplementary Figure S1. Electrophoretic mobility shift assays with methylated and 
hydroxymethylated DNA substrates. Increasing amounts of Uhrf1, its SRA domain 
(SRAUhrf1) or the MBD domain of MeCP2 (MBDMeCP2) were incubated with two differentially 
ATTO-labeled DNA substrates, which contain either one central fully methylated or fully 
hydroxymethylated CpG site (FMB-ATTO700 or FhMB-ATTO550, respectively), in direct 
competition. Samples were subjected to 6 % non-denaturing PAGE and analyzed with a 
Typhoon scanner (GE Healthcare). The first, second and third columns show the scans for 
GFP/YFP, ATTO700 and ATTO550 fluorescence, respectively. The overlay of the two 
ATTO channels is shown in the fourth column (FMB: red, FhMB:green). 
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Supplementary Figure S2. DNA binding specificity of Uhrf1. Relative DNA/Uhrf1 ratios 
are shown for two differentially labeled fluorescent DNA substrates in direct competition. (A) 
Binding of Uhrf1 to DNA substrates containing no CpG site or one central hemimethylated 
CpG site (noCGB versus HMB, respectively). (B) Binding of Uhrf1 to DNA substrates 
containing one central un- or hemimethylated CpG site (UMB versus HMB, respectively). 
Results are shown as means of three independent experiments with standard deviation error 
bars. DNA substrates were prepared by hybridization as described in the main text, except for 
noCGB, which was prepared by primer extension as described previously [1]. See 
Supplementary Tables 1 and 2 for DNA oligonucleotide sequences and purification grade of 
the used substrates. 
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Supplementary Figure S3. Atom-positional root-mean-square deviation of the protein 
and DNA backbone atoms during the simulations. The terminal DNA and protein residues 
were  excluded  from  the  calculations  in  the  “subset”  sets (red and black lines). 
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Supplementary Figure S4. Atom-positional root-mean-square fluctuations of the protein 
(A, C) and both DNA strands (B, D) during two simulation periods. Note that both 
structures show the same flexibility pattern during both simulation periods and are overall 
stable during both periods. This is in agreement with the RMSD data in Figure S3, which 
shows that equilibration is reached after 30 ns of simulation time. 
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Supplementary Figure S5. Superposition of the equilibrated 5mC structure after 
simulation (atom-name specific coloring) and the crystal structure (PDB-ID:3fde [2], 
green). The 5mC nucleotide, the residue I454 of the SRA binding pocket and the conserved 
water molecule are shown. Note that the distance between the oxygen atoms of the conserved 
water molecules in the two structures is only 1.1 Å. 
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Supplementary Figure S6. Molecular dynamics simulations of the Uhrf1 SRA domain in 
complex with 5mC (A) and 5hmC (B) containing DNA in 0.5 M NaCl. Hydrogen bond 
occurrences during the simulation of the SRA:DNA complex using a concentration of 0.5 M 
NaCl. 
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Recent studies have indicated that nuclear protein of 95 kDa
(Np95) is essential for maintaining genomic methylation by
recruiting DNA methyltransferase (Dnmt) 1 to hemi-methylated
sites. Here, we show that Np95 interacts more strongly with
regulatory domains of the de novo methyltransferases Dnmt3a
and Dnmt3b. To investigate possible functions, we developed an
epigenetic silencing assay using fluorescent reporters in embryo-
nic stem cells (ESCs). Interestingly, silencing of the cytomegalo-
virus promoter in ESCs preceded DNA methylation and was
strictly dependent on the presence of either Np95, histone H3
methyltransferase G9a or Dnmt3a and Dnmt3b. Our results
indicate a regulatory role for Np95, Dnmt3a and Dnmt3b in
mediating epigenetic silencing through histone modification
followed by DNA methylation.
Keywords: DNA methylation; histone modification; epigenetics;
silencing; Uhrf1
EMBO reports (2009) 10, 1259–1264. doi:10.1038/embor.2009.201

INTRODUCTION
In mammals, DNA methylation contributes to the establishment and
maintenance of cell-type-specific gene expression programmes,
imprinting, X-chromosome inactivation and genome stability (Bird,
2002). The majority of genomic methylation occurs at cytosine
residues within CpG dinucleotides and is catalysed by the DNA
methyltransferases (Dnmt) 1, 3a and 3b. Dnmt1 is responsible for
maintaining genomic methylation, whereas Dnmt3a and Dnmt3b
are mainly involved in de novo establishment of methylation
patterns during cellular differentiation (Leonhardt et al, 1992; Li et al,
1992; Lei et al, 1996; Okano et al, 1999; Spada et al, 2007).
Nuclear protein of 95 kDa (Np95; also known as Uhrf1) has
recently been identified as an essential co-factor for maintaining
genomic methylation (Bostick et al, 2007; Sharif et al, 2007;
Achour et al, 2008). dnmt1!/! and np95!/! embryonic stem cells
(ESCs) and embryos have similar reduced levels of DNA methylation.
In addition, Np95 interacts with Dnmt1, binds hemi-methylated CpG
sites through its Set and Ring associated (SRA) domain and both Np95
and Dnmt1 accumulate at replication sites (Uemura et al, 2000;
Bostick et al, 2007; Papait et al, 2007; Arita et al, 2008; Avvakumov
et al, 2008; Hashimoto et al, 2008). Thus, it has been proposed that
Np95 mediates maintenance of genomic methylation by recruiting
Dnmt1 to hemi-methylated CpG sites generated during replication.

Here, we investigated a possible involvement of Np95 in
epigenetic regulation beyond its role in Dnmt1-mediated main-
tenance of DNA methylation. We found that Np95 interacts with
the de novo methyltransferases, Dnmt3a and Dnmt3b, and
mediates promoter silencing before DNA methylation is detected.

RESULTS AND DISCUSSION
Np95 interacts with Dnmt3a and Dnmt3b
Immunoprecipitation experiments showed that different isoforms
of both de novo methyltransferases Dnmt3a and Dnmt3b interact
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with Np95 in wild-type (wt) ESCs, including the more abundant
Dnmt3a2 and Dnmt3b1 (Fig 1A). Furthermore, using a green
fluorescent protein (GFP) trap (Rothbauer et al, 2008), we
co-immunoprecipitated endogenous Dnmt1 and isoforms of
Dnmt3a and Dnmt3b with a GFP–Np95 fusion construct
transiently expressed in np95!/! ESCs and, vice versa, endo-
genous Np95 co-immunoprecipitated with GFP–Dnmt3a or
GFP–Dnmt3b1 fusions in dnmt3a and 3b double knockout
(DKO) ESCs (supplementary Fig S1A,B online). In addition, we
observed co-immunoprecipitation of endogenous DNMT3b and
inverted CCAAT box binding protein of 90 kDa—the human
homologue of Np95—from human embryonic kidney 293T
(HEK293T) cell extracts (supplementary Fig S1C online). We
confirmed the interaction of Np95 with Dnmt3a/b by using a
recently developed fluorescent two hybrid assay (F2H; Zolghadr
et al, 2008). GFP–Dnmt3 fusion constructs were used as bait by
tethering them to a lac operator array present in baby hamster
kidney (BHK) cells, so that the array was visible as a distinct

nuclear spot of enriched GFP fluorescence (Fig 1B). A Cherry–
Np95 fusion (prey) accumulated at this spot only when GFP
fusions of full-length Dnmt3a and Dnmt3b1 or their amino-
terminal regions were used as bait and not when their isolated
Carboxy-terminal catalytic domains were used. We further
mapped the interaction of Np95 with Dnmt3a/b through co-
immunoprecipitation of deletion constructs and isolated domains
transiently expressed in HEK293T cells (supplementary Fig S2
online). The results were consistent with those produced by F2H:
the N-terminal regions of Dnmt3a and Dnmt3b1, but not their
C-terminal catalytic domains, interacted with Np95. Deletion of
the PHD or PWWP domains of Dnmt3a and Dnmt3b did not
eliminate the interaction with Np95. We then determined the
domains of Np95 involved in this interaction. We found that the
SRA domain and the N-terminal 298 amino acids of Np95, which
include the ubiquitin-like domain, interacted with Dnmt3a and
Dnmt3b1, whereas the PHD domain and the C-terminal 132
amino acids, including the Ring domain, did not. Furthermore,
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Fig 1 | Np95 interacts with de novo methyltransferases Dnmt3a and Dnmt3b. (A) Co-immunoprecipitation of Dnmt3a and Dnmt3b with Np95 in wt and

np95!/! E14 ESCs. The Dnmt3a2 isoform is shown in the lower panel. (B) F2H shows recruitment of Cherry–Np95 (prey) at the lac operator array

(indicated by arrowheads) when GFP fusions of full-length Dnmt3a and Dnmt3b1 (G-Dnmt3a/b fl) or their amino-terminal regions (G-Dnmt3a/b N)

are used as bait and not with their isolated C-terminal catalytic domains (G-Dnmt3a/b C). Scale bars, 5mm. (C) Co-immunoprecipitation of

Np95-His with GFP-tagged Dnmt1, Dnmt3a and Dnmt3b1 (G-Dnmt) transiently co-expressed in HEK293T cells. Co-expression of GFP was used as the

control. In the upper row, immunoprecipitations carried out in the presence of 150 mM NaCl throughout the procedure are shown, whereas in the

lower row, immunoprecipitation and wash buffers were carried out using 300 and 500 mM NaCl, respectively. Two per cent of input and supernatant

relative to bound fractions were loaded in (A) and (C). B, bound; Dnmt, DNA methyltransferase; ESCs, embryonic stem cells; F2H, fluorescent

two-hybrid assay; GFP, green fluorescent protein; HEK293T, human embryonic kidney 293T; I, input; Np95, nuclear protein of 95 kDa;
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we observed co-immunoprecipitation of endogenous Np95 with
GFP–Dnmt3a and GFP–Dnmt3b transiently expressed in dnmt1!/!

ESCs, indicating that Dnmt3a and Dnmt3b interact with Np95
independently of Dnmt1 (supplementary Fig S1D online). To
compare the relative association between endogenous Np95 and
Dnmts, we re-probed the blot in Fig 1A with a Dnmt1 antibody and
observed a substantially weaker signal for the co-immunoprecipitated
Dnmt1 relative to the input than in the case of Dnmt3a2 and
Dnmt3b1 (supplementary Fig S3A online). To compare further
the stability of Np95 interactions with the Dnmts, we transiently
co-expressed Np95-His with GFP–Dnmt1, GFP–Dnmt3a or
GFP–Dnmt3b1 in HEK293T cells and immunoprecipitated with
the GFP trap in the presence of different salt concentrations (Fig 1C;
supplementary Fig S3B online). Interestingly, under high salt
conditions, the interaction between Np95-His and GFP–Dnmt1
was lost, whereas co-immunoprecipitation of GFP–Dnmt3a and
GFP–Dnmt3b1 remained relatively unaffected. These data clearly
indicate that Np95 interacts more strongly with the de novo
methyltransferases, Dnmt3a and Dnmt3b, than with Dnmt1.

Np95, Dnmt3a/3b and G9a mediate epigenetic silencing
As DNA methylation has a central role in epigenetic silencing, we
investigated the requirement of DNA methyltransferases and
Np95 for promoter silencing in ESCs. We found that, on transient
transfection of wt ESCs, constructs driven by the cytomegalovirus
(CMV) promoter were rapidly silenced, as opposed to longer-
lasting expression of constructs driven by the chimeric CMV early
enhancer/chicken b actin (CAG) promoter (Fig 2), which is
consistent with the popularity of the CAG promoter for stable
transgene expression in ESCs and mice. We then established an
epigenetic silencing assay based on this observation. ESCs were
co-transfected with two distinct plasmids, one expressing mono-
meric red fluorescent protein (mRFP) under the CMV promoter,
the other expressing GFP driven by the CAG promoter. mRFP and
GFP expression was monitored after transfection for up to ten days
by using automated image acquisition and quantification
of fluorescent signals (supplementary Fig S4A online). The ratio
between mRFP and GFP expression declined steadily in wt ESCs,
reflecting preferential silencing of the CMV promoter (Fig 2).
By contrast, DKO ESCs and ESCs lacking all three major DNA
methyltransferases (dnmt1, 3a and 3b triple knockout) showed no
preferential silencing of the CMV promoter. Surprisingly, np95!/!

ESCs were also unable to silence the CMV promoter, whereas
dnmt1!/! ESCs showed only partly reduced silencing under these
conditions. Similar results were obtained on swapping GFP and
mRFP reporter sequences, ruling out potential artefacts due to
differences in their coding sequences or stability of the reporter
proteins (supplementary Fig S4B online). Thus, despite expressing
a full complement of DNA methyltransferases, ESCs lacking Np95
are as deficient in promoter silencing activity as ESCs lacking all
three major Dnmts. We next investigated whether silencing of the
CMV promoter correlates with CpG methylation. Interestingly,
promoter methylation was detected only ten days after transfec-
tion and was lower in np95!/! than in wt ESCs, whereas none of
the dnmt mutant ESCs showed appreciable DNA methylation
(Fig 3; supplementary Fig S5A online). At the same time no
obvious methylation was detected in any of the ESC lines within
the CpG island of the CAG promoter construct (supplementary
Fig S5B online). Thus, CMV promoter silencing depends on the

presence of both Np95 and de novo Dnmts, but ensues well
before de novo methylation of the promoter is detected. This
prompted us to investigate the involvement of repressive histone
methylation as a possible mechanism for the observed silencing.
We found that in the absence of histone H3 lysine 9 methyl-
transferases (H3K9MTs), G9a or Suv39h1/2, silencing of the CMV
promoter was completely abolished or reduced, respectively,
indicating that G9a and, in part, Suv39h1/2 are also required for
silencing (Fig 2B).

The results shown here indicate that Np95 interacts with
Dnmt3a and Dnmt3b and mediates silencing of the CMV
promoter by mechanisms that are, at least initially, independent
of de novo DNA methylation. Importantly, our data also show the
involvement of H3K9MTs, G9a and Suv39h1/2 in CMV promoter
silencing. H3K9MTs were reported to associate with de novo
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Dnmts, and major satellite repeats were found to be hypomethy-
lated in ESCs lacking either Suv39h1/2 or Dnmt3 enzymes.
However, major satellite transcript levels were altered only in
Suv39h1/2-deficient cells and not in Dnmt3-deficient cells (Fuks
et al, 2003; Lehnertz et al, 2003; Martens et al, 2005). A recent
study showed that G9a, Dnmt1, Dnmt3a and Dnmt3b are
required for normal methylation at long terminal repeats of
endogenous retrotransposable elements, although transcription of
these elements was increased in Dnmt-deficient ESCs, but not
G9a-deficient ESCs (Dong et al, 2008). Furthermore, recent studies
have shown that G9a interacts with Dnmt3a and Dnmt3b and
mediates de novo methylation of the oct4, nanog and dnmt3l
promoters on retinoic-acid-induced differentiation of ESCs (Feld-
man et al, 2006; Li et al, 2007; Epsztejn-Litman et al, 2008).
However, two of these studies showed that neither G9a nor de
novo Dnmts are required to silence the oct4 promoter, and G9a
was also found to be dispensable for silencing the nanog and
dnmt3l promoters (Feldman et al, 2006; Epsztejn-Litman et al,
2008). In the third study, nanog, but not oct4, was shown to be
silenced in differentiating ESCs lacking both Dnmt3a and Dnmt3b
(Li et al, 2007). We found that silencing of oct4 during embryoid
body differentiation is largely independent from the presence of
Np95 as well as all three major Dnmts, and occurs in the absence
of DNA methylation (D.M., F.S., S.B., and H.L., unpublished
data). These data, together with our findings on silencing of the
CMV promoter in ESCs, indicate that Dnmts, Np95 and H3K9MTs
mediate silencing through many mechanisms that do not
necessarily involve DNA methylation and might depend on the
presence of different cis elements and an intricate interplay with
other epigenetic and transcription factors. Interestingly, Np95 was
recently shown to interact with G9a (Kim et al, 2009) and here we
show that silencing of the CMV promoter in ESCs strictly depends
on Np95 and on de novo Dnmts as well as G9a. Taken together
these observations suggest that Np95, de novo Dnmts and G9a
might be involved in a common silencing pathway.

In summary, our data clearly support a crucial role of Np95 in
epigenetic silencing mediated by de novo DNA and histone
methyltransferases, and make Np95 an attractive target for
epigenetic reprogramming strategies.

METHODS
Cell culture and transfection. HEK293T cells, BHK cells and ESCs
were cultured and transfected as described by Schermelleh et al
(2007), except FuGENE HD (Roche, Mannheim, Germany) was
used for transfection of ESCs. The dnmt1!/! J1 ESCs used in this
study were homozygous for the c allele (Lei et al, 1996). BHK cells
were co-transfected on glass coverslips with GFP–Dnmt3 and
Cherry–Np95 constructs using Transfectin (Bio-Rad, Munich,
Germany) according to the manufacturer’s instructions. Cell
fixation and microscopy were carried out as described by
Zolghadr et al (2008).
Co-immunoprecipitation. ESCs and HEK293T cell extracts were
prepared in lysis buffer (20 mM Tris–HCl (pH 7.5), 0.5 mM EDTA,
2 mM phenylmethyl sulphonyl fluoride and 0.5% NP40) contain-
ing 150 or 300 mM NaCl (high-salt condition) and diluted with
lysis buffer without NP40. GFP trap (Rothbauer et al, 2008) and a
specific rabbit antiserum (Citterio et al, 2004) were used for
immunoprecipitation of GFP fusions and endogenous Np95,
respectively. GFP trap and protein G beads (Sigma, Taufkirchen,

Germany) were washed with dilution buffer containing increasing
salt concentrations (150 and 300 mM, or 300 and 500 mM NaCl
for the high-salt condition) and re-suspended in SDS–PAGE
sample buffer. The following mouse monoclonal antibodies
were used for immunoblotting: anti-His (C-terminal, Invitrogen,
Karlsruhe, Germany), anti-Dnmt3a (clone 64B1446, Imgenex, San
Diego, CA, USA) and anti-Dnmt3b (clone 52A1018, Abcam,
Cambridge, UK). Np95 was detected with the same antiserum
used for immunoprecipitation and a rabbit antiserum was used for
detection of Dnmt1 (Grohmann et al, 2005). Horseradish
peroxidase-conjugated rabbit anti-mouse or goat anti-rabbit
secondary antibodies (Sigma) and ECL Plus reagent (GE Health-
care, Munich, Germany) were used for detection.
Silencing assay. ESCs were co-transfected with pCAG-eGFP-IB
and pCMV-mRFP as described above and images from live cells
were acquired at the indicated time points with an InCell Analyser
1000 (GE Healthcare) using a # 20 air objective (NA¼ 0.45) and
standard filter settings for GFP and RFP. A total of 90–150 images
were acquired for each channel, using the same exposure time
throughout the time course. Cells were passaged every second day
and images were taken 4–5 h after seeding. Images were analysed
using ImageJ v1.42a software. To calculate fluorescent reporter
expression, pictures were processed using a Gaussian blur
algorithm (radius (sigma)¼ 2), and a threshold for maximal signal
and minimal background coverage was adjusted and applied to
each channel (supplementary Fig S4A online). The threshold was
converted into area selection and the total size of the selected area
was measured.
DNA methylation analysis. ESCs were transfected as in the
silencing assay with pCAG-eGFP-IB and pCMV-mRFP, and GFP-
positive cells were sequentially sorted with a FACSVantage or
FACSAria II (Becton Dickinson, Heidelberg, Germany) at days 2, 6
and 10 after transfection. After each sorting, total DNA was
isolated using the QIAmp DNA Mini kit (Qiagen, Hilden,
Germany) and bisulphite treated with the EZ DNA Methylation-
Gold kit (Zymo research, Orange, CA, USA). The following
primers were used for PCR amplification: CMV-forward TGGGAT
TTTTTTATTTGGTAGT; CMV-reverse ATGGGAGTTTGTTTTGG
TATTA; CAG-forward GGAGAGGTGAGGAGGTAGTTAATTAGA
and CAG-reverse CCCCAAACCCCTCAAAACTT. Pyrosequencing
was carried out by Varionostic GmbH (Ulm, Germany).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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Supplementary Figure S1. Np95 interacts with de novo methyltransferases Dnmt3a and 3b. 
(A) Co-immunoprecipitation of endogenous Dnmt3a2 (left and right), Dnmt3b isoforms (left) 
and Dnmt1 (right) with GFP-Np95 transiently expressed in np95-/- ESCs. Left and right panels 
are from independent experiments where 2 and 4% of input (I) relative to bound (B) fractions 
was loaded, respectively. (B) Co-immunoprecipitation of endogenous Np95 with either 
GFP-Dnmt3a (left panel) or GFP-Dnmt3b1 (central panel) transiently expressed in DKO 
ESCs. Transient expression of GFP was used as control (right panel). GFP and GFP fusions 
were immunoprecipitated with GFP-trap as in experiments shown in Fig. 1B. 2% of input (I) 
relative to bound (B) fractions was loaded. (C) Co-immunoprecipitation of endogenous 
ICBP90/UHRF1 and DNMT3b in HEK293T cells. Antibodies to mouse proteins cross-react 
with the respective human homologues. 4% of input (I) relative to bound (B) fractions was 
loaded. (D) Co-immunoprecipitation of endogenous Np95 with either GFP-Dnmt3a or 
GFP-Dnmt3b1 (lower panel) transiently expressed in dnmt1-/- ESCs. 
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Supplementary Figure S2. Mapping the interaction domains of Dnmt3a/b and Np95. (A) 
Schematic representation of GFP-Dnmt3a/b fusion constructs used for mapping the 
interaction site with Np95 (N-terminal GFP tag is not shown). (B) Co-immunoprecipitation of 
Np95-His with GFP-Dnmt3 constructs (G-3a/b) from extracts of transiently transfected 
HEK293T cells. (C) Schematic representation of Np95-His constructs used for mapping the 
interaction site with Dnmt3a/b. (D) Co-immunoprecipitation of Np95-His domains shown in c 
with GFP-Dnmt3a/b constructs from extracts of transiently transfected HEK293T cells. G 
indicates the GFP fusion. The GFP-trap was used for all the immunoprecipitations in panels B 
and D. 0.5% of input (I) and 40% of bound (B) fractions were loaded. PWWP, domain with 
conserved pro-trp-trp-pro motif; NLS, nuclear localization signal; PHD, plant homeodomain; 
Ubl, ubiquitin-like domain; SRA, set and ring associated domain; RING, really interesting 
new gene domain. Results of mapping are scored by + or -. 
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Supplementary Figure S3. Relative stability of Np95 interactions with Dnmt1, 3a and 3b. 
(A) The Dnmt3a/3b blot in Fig. 1A (shown here as middle and lower panels) was reprobed 
with an anti-Dnmt1 antibody (upper panel) to compare the relative amounts of endogenous 
Dnmts associated with Np95. The lower panel shows the Dnmt3a2 isoform. (B) The blots in 
Fig. 1C (shown here in the two upper panels) were reprobed with an anti-GFP antibody (two 
lower panels) to reveal that similar amounts of each GFP construct were immunoprecipitated 
in low and high salt conditions. Both results point to a tighter association of Np95 with 
Dnmt3a and 3b as compared to Dnmt1. 
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Supplementary Figure S4. (A) Automated procedure for quantification of fluorescent signals 
from digital micrographs for the promoter silencing assay. A macro was written for the 
ImageJ software that applies a Gaussian blur filter (left panel) and signal thresholding (right 
panel) to raw images (data not shown) and then calculates the total signal area. (B) Silencing 
assay results are not affected by the choice of fluorescent reporter. wt and np95-/- ESC were 
cotransfected with either CMV-driven mRFP and  CAG-driven GFP (red) or CAG-driven 
mRFP and CMV-driven GFP (blue) expression constructs and the ratio of CMV- over CAG-
driven fluorescence was quantified at the indicated time points after transfection as for Figure 
2A.
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Supplementary Figure S5. Methylation analysis of CMV and CAG promoters 2, 6 and 10 
days after transfection. ESCs with the indicated genotypes were transfected, sorted, total DNA 
was isolated and bisulfite treated as for Fig. 3. (A) The same proximal region of the CMV 
promoter was amplified and pyrosequenced as in Fig. 3. (B) A fragment of the CAG construct 
containing 13 CpG sites was amplified and subjected to pyrosequencing. The analyzed 
fragment spans across the 3’ part of the promoter, the first exon and the 5’ part of the first 
intron of the chicken ß-actin gene and is part of a CpG island. Methylation percentages at 
individual CpG sites within the respective promoter sequences are averaged. The plot on the 
left of A was derived from the same data presented in Fig. 3C. 
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Supplementary methods 
Plasmid construction. The CMV-driven enhanced GFP construct was from Clontech 
(pEGFP-C1). To generate the CMV-driven mRFP construct (pCMV-mRFP) the coding 
sequence for eGFP in pEGFP-C1 was replaced with that for mRFP from pRSETB-mRFP 
(Campbell et al, 2002; provided by Roger Tsien). To create CAG-driven eGFP, mRFP and 
mCherry expression constructs (pCAG-eGFP-IB, pCAG-mRFP-IB and pCAG-mCherry-IB, 
respectively) sequences coding for the respective fluorescent proteins from pEGFP, 
pRSETB-mRFP and pRSETB-mCherry (Shaner et al, 2004; also provided by R. Tsien) were 
inserted downstream to the CAG promoter in the pCAG-IRESblast vector(Chen et al, 2003). 
The expression construct for Np95-His was described previously (Citterio et al, 2004). To 
generate expression constructs for GFP-Np95, Ch-Np95, GFP-Dnmt3a and GFP-Dnmt3b1 the 
sequences coding for Np95, Dnmt3a or Dnmt3b1 were then transferred from the respective 
CMV promoter-driven constructs (Chen et al, 2003; Citterio et al, 2004) to either 
pCAG-eGFP-IB or pCAG-mCherry-IB downstream to sequences coding for the fluorescent 
protein. GFP-Dnmt3a and GFP-Dnmt3b1 deletion constructs were generated by overlap 
extension mutagenesis(Ho et al, 1989) to remove the following amino acids from Dnmt3a and 
3b1, respectively: 278-343 and 223-287��'PWWP); 485-582 and 435-532 ('PHD). GFP 
fusion constructs of N-terminal regions (aa 1-629 and 1-580) and C-terminal domains (aa 
630-908 and 581-859) of Dnmt3a and 3b, respectively, were generated by PCR cloning using 
full length constructs as templates. All constructs were characterised by sequencing and 
immunoblotting. 
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ABSTRACT

Specific control of gene activity is a valuable tool to
study and engineer cellular functions. Recent
studies uncovered the potential of transcription
activator-like effector (TALE) proteins that can be
tailored to activate user-defined target genes. It
remains however unclear whether and how epigen-
etic modifications interfere with TALE-mediated
transcriptional activation. We studied the activity
of five designer TALEs (dTALEs) targeting the oct4
pluripotency gene. In vitro assays showed that the
five dTALEs that target distinct sites in the oct4
promoter had the expected DNA specificity
and comparable affinities to their corresponding
DNA targets. In contrast to their similar in vitro
properties, transcriptional activation of oct4 by
these distinct dTALEs varied up to 25-fold. While
dTALEs efficiently upregulated transcription of the
active oct4 promoter in embryonic stem cells (ESCs)
they failed to activate the silenced oct4 promoter in
ESC-derived neural stem cells (NSCs), indicating
that as for endogenous transcription factors also
dTALE activity is limited by repressive epigenetic
mechanisms. We therefore targeted the activity of
epigenetic modulators and found that chemical in-
hibition of histone deacetylases by valproic acid or
DNA methyltransferases by 5-aza-20-deoxycytidine
facilitated dTALE-mediated activation of the
epigenetically silenced oct4 promoter in NSCs.
Notably, demethylation of the oct4 promoter
occurred only if chemical inhibitors and dTALEs
were applied together but not upon treatment with
inhibitors or dTALEs only. These results show that

dTALEs in combination with chemical manipulation
of epigenetic modifiers facilitate targeted transcrip-
tional activation of epigenetically silenced target
genes.

INTRODUCTION

The ability to specifically manipulate the expression of
endogenous genes by engineered designer transcription
factors has wide-ranging applications in basic and
applied biology (1–4). Availability of suitable DNA-
binding scaffolds that can be tailored to bind user-defined
target sequences has been the major limitation in the gen-
eration and application of designer transcription factors.
Recent studies however demonstrated that transcription
activator-like effector proteins (TALEs) from the plant
pathogenic bacterial genus Xanthomonas contain a
DNA-binding domain that can be adjusted to bind any
desired target sequence with high specificity (5–9). The
TALE DNA-binding domain is composed of tandem
arranged 33–35 amino acid repeats, with each repeat
binding to one base (10,11). Base preferences of repeats
are specified by residues 12 and 13, known as the repeat
variable diresidues (RVDs), that determine preferential
pairing with A (NI), C (HD), G (NK) and T (NG) nu-
cleotides, respectively. The use of this TALE code facili-
tates the assembly of TALE repeat arrays that bind any
desired DNA sequence (12).
A recent study investigated a large number of dTALEs

and found that most, but not all, activated the desired tar-
get promoters (5). Notably, the epigenetically controlled
oct4 and c-myc gene could not be upregulated by their
matching dTALEs, suggesting that epigenetic modifica-
tions affect dTALE-mediated gene activation.
We systematically investigated the application of

dTALEs to the murine pluripotency gene oct4 to clarify
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how epigenetic modifications affect their performance.
The inspection of five dTALEs that bind to distinct
DNA sequences within the oct4 promoter revealed
similar affinities to their DNA targets but up to 25-fold
differences in their efficiency as transcriptional activators.
Further studies revealed that dTALE-mediated activation
of a silent oct4 promoter in neural stem cells (NSCs) can
be drastically improved by treatment with the his-
tone deacetylase (HDAC) inhibitor valproic acid (VPA)
and the DNA methyltransferase inhibitor 5-aza-20-
deoxycytidine (5azadC). These data suggest that
chromatin modifications that are involved in
transcriptional gene silencing, hinder dTALE-mediated
gene activation and that simultaneous inhibition of
HDACs and DNA methyltransferases may overcome
this limitation of dTALE technology.

MATERIALS AND METHODS

Construction of plasmids

A Gateway cassette from pGWB5 (13) was amplified
(forward primer: 50-GGGGCGATCGCACAAGTTTGT
ACAAAAAAGCTGAACGAG-30; reverse primer: 50- G
GGGCGGCCGCAACCACTTTGTACAAGAAAGCT
GAACG-30), thereby adding AsiSI and NotI restriction
sites. This fragment was cloned via AsiSI and NotI into
pCAG_mCh (14) generating pCAG_mCh_GW. The
VP16AD was amplified from RSV
E2F1-VP16 (15) (forward primer: 50GGGGGTCTCT

CACCATGGATCCTGCCCCCCCGACCGATGTCAG
C-30; reverse primer:50-GGGGGTCTCCCTTCTACCCA
CCGTACTCGTCAATTCCAAGG-30), thereby adding a
BamHI restriction site to the 50 end and cloned into
pENTR-D- TOPO (Invitrogen) generating pENTR-D-
BamHI_VP16AD. TALE repeat arrays were generated
via multi-fragment cut-ligation using golden gate cloning
(16) and ligated either into pENTR-D-TALE-!rep-BpiI-
A or pENTR-D-TALE-!rep-BpiI-AC-VP16AD. All
entry clones were transferred by LR recombination
(Invitrogen) into the expression vector pCAG_mCh_GW.
The oct4 reporter construct (poct4-GFP) was generated

by inserting the XhoI/AvrII fragment of GOF-18 (17)
which includes the basepairs !1 to !4716 upstream of
the transcriptional start site of oct4 together with a
linker oligo (50-CCTAGGTGAGCCGTCTTTCCACCA
GGCCCCCGGCTCGGGGTGCGATCGCCGCCCAT
GG-30) into pGL-3 basic (Promega) cut with XhoI/NcoI.
Subsequently, the Luciferase ORF was removed by
cutting with KasI/FseI and the eGFP ORF (amplified
with: forward primer: 50-AAAGGCGCCAGTGAGCAA
GGGCG-30; reverse primer: 50-AAAGGCCGGCCTTAC
TTGTACAGCTCGTCC-30) was inserted.
The promoter mutants TB83, TB68, TB60 and TB31

were generated by site-directed mutagenesis using a
AsiSI/AatII derived sub-cloned poct4-GFP fragment as
template with either forward primer: 50-TCTCCCACCC
CCACAGCTCTGCTCCTTTGGGGAGGGAGAGGT
GAAAC-30, 50-GCTCTGCTCCTCCACCCACCCAGG
GGTTGGGGAGGGAGAGGTGAAACCG-30,00 50-CC
TCCACCCACCCAGGGGGCGGGGCCTTGGGGAG

GGAGAGGTGAAACCG-30 or 50-GGTCAAGGCTAG
AGGGTGGGATTGGGTTGGGGAGGGAGAGGTG
AAACCG-30 together with reverse primer: 50-GAAACTG
AGGCGAGCGCTATCTG-30, thereby deleting TB83,
TB68; TB60 and TB31 and inserting them individually
at the position of TB31.

Immunofluorescence staining

For immunostaining, ogNSCs were grown on cover slips
and transiently transfected with the T-83VP16 construct
for Oct4 stainings or untransfected for Pax6, Nestin and
Olig2 stainings. Cells were fixed with 2.0% or 3.7% for-
maldehyde in phosphate-buffered salie (PBS) and
permeabilized in PBS containing 0.2% Triton X-100.
The Oct4 staining was performed using a goat primary
antibody against the murine Oct4 (goat; 1:1000, Santa
Cruz) and a secondary anti-goat antibody coupled to
Alexa Fluor 647 (1:2000, Molecular Probes). The neural
stem cell markers Pax6 (rabbit; 1:1000, Millipore), Nestin
(mouse monoclonal, Rat-401; 1:10, Developmental
Studies Hybridoma Bank, University of Iowa) and Olig2
(rabbit; 1:500, Millipore) were detected with secondary
antibodies conjugated to Alexa Fluor 488 (Molecular
Probes). The antibodies were diluted in PBS containing
0.02% Tween 20 and 2% bovine serum albumin (BSA).
Cells were counterstained with DAPI and mounted in
Vectashield (Vector Laboratories). Images were acquired
with a Zeiss Axioplan 2 fluorescence microscope equipped
with a Plan-NEOFLUAR 40"/1.3 oil objective (Zeiss).

Cell culture, transfection and fluorescence-activated cell
sorting

HEK293T cells (18) were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 50 mg/ml
gentamicin and 10% fetal bovine serum (FBS).
For expression of fusion proteins, HEK293T cells were
transfected with polyethylenimine (Sigma). ogESCs were
cultured as described (19). ogNCSs were cultured in
N2B27 medium supplemented with 20 ng/ml FGF-2
and EGF. NSCs and ESCs were transfected using
Lipofectamin 2000 (Invitrogen) according to the manufac-
turer’s instructions and sorted with a fluorescence-
activated cell sorting (FACS) Aria II instrument (Becton
Dickinson).

Generation of transgenic cell lines

ogESCs were generated by transfecting wt J1 ESCs (20)
with the poct4-GFP reporter construct and repeated
sorting for eGFP expression. Finally, single cell sorting
was used to obtain a clonal transgenic cell line.

Derivation of NSCs from ESCs

ogESCs were differentiated into ogNSCs as previously
described (21–23). In brief, 3.5" 105 cells were plated in
a 25 cm2 culture flask with N2B27 medium containing
1000U/ml of LIF (ESGRO, Millipore). The next day
the medium was exchanged against N2B27 without LIF
to initiate differentiation into the neural lineage. After 7
days cells were plated in Euromed-N (Euroclone)
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supplemented with 20 ng/ml EGF and FGF2 (Peprotech).
After 5 days, neurospheres were collected and plated in
gelatin-coated flasks in N2B27 medium containing 20 ng/
ml EGF and FGF2 to allow outgrowth of NSCs.

Treatment of ogNSCs with epigenetic inhibitors

VPA sodium salt (Sigma-Aldrich) was dissolved in PBS at
a concentration of 250mM and sterile filtered. 5-aza-20-
deoxycytidine (Sigma-Aldrich) was dissolved in PBS at a
concentration of 30mM. Trichostatin A (TSA; Sigma-
Aldrich) was dissolved in dimethyl sulfoxide (DMSO)
at a concentration of 5mM. Cells were transfected with
the T-83 construct as described above. Medium was
changed after 12 h against medium containing dilutions
of the respective inhibitor or combination thereof as
indicated in Figure 4 and respective legend. Cells
were cultured for additional 36 h followed by FACS and
quantitative real-time-polymerase chain reaction
(qRT-PCR).

In vitro methylation and reporter gene assay

In vitro methylation of poct4-GFP was performed using
M.SssI (New England Biolabs). Forty-five units of enzyme
were incubated with 45 mg of plasmid DNA in the presence
of 160 mM SAM overnight. After 3 h of incubation, fresh
SAM (160 mM) was added to ensure complete methyla-
tion.Methylation status of the plasmid after in vitromethy-
lation was tested by digestion with MspI and HpaII
(Fermentas). For the reporter gene assay HEK293T cells
were plated in six-well plates and grown to 70% conflu-
ence. Subsequently, cells were co-transfected with the
reporter plasmid and the respective dTALE construct.
Forty-eight hours after transfection cells were lysed in
PBS containing 0.5% NP40 and mammalian protease in-
hibitors. The lysate was cleared by centrifugation and
eGFP and mCherry fluorescence was measured with a
Tecan Infinite M1000 plate reader.

RNA Isolation, cDNA synthesis and qRT-PCR

Isolation of RNA and reverse transcription was carried
out as described previously (19). Real-time PCR analysis
was performed on the 7500 Fast Real-Time PCR System
(Applied Biosystems) at standard reaction conditions
using either the TaqMan Gene Expression Master Mix
(Applied Biosystems) or the Power SYBR Green
PCR Master Mix (Applied Biosystems). The following
TaqMan Gene expression assays were used:
gapdh (Assay ID: Mm99999915_g1), oct4 (Assay ID:
Mm00658129_gH) and nanog (Assay ID: Mm01617
761_g1). Primer sequences for SYBR Green PCRs:
gapdh (For 50catggccttccgtgttccta 30 Rev 50cttcaccaccttctt
gatgtcatc 30); tet1 (for 50ccaggaagaggcgactacgtt 30 Rev 50

ttagtgttgtgtgaacctgatttattgt 30) and hnf4a (for 50

caagaggtccatggtgtttaagg 30, Rev 50 cggctcatctccgctagct
30). Relative mRNA levels were normalized to gapdh
and calculated with the comparative CT Method (!!CT
Method).

In vitro DNA-binding assays

In vitro DNA-binding assays were performed as described
previously (24,25) with the following modifications. Two
differentially fluorescently labeled DNA substrates corres-
ponding to position ! 39 to+18 (A) and !88 to !31 (B)
relative to the TSS of the oct4 promoter (Figure 3) were
used in direct competition. Substrates were prepared
by annealing 50 ATTO550 or ATTO647N labeled
lower strand with the respective unlabeled upper strand
oligonucleotide. For competition assays, 200-nM
ATTO647N-labeled substrate A and ATTO550-labeled
substrate B were added and incubated at room tempera-
ture (RT) for 1 h with constant mixing. Fluorescence
intensities were measured with a Tecan Infinite M1000
plate reader using the following excitation/emission
wavelengths: 490±10 nm / 511±10nm for eGFP,
550±15nm / 580±15nm for ATTO550 and
650±10nm / 670±10nm for ATTO647N. The measure-
ments were normalized using standard curves from
purified eGFP and ATTO-dye-labeled oligonucleotides.
Moreover, a control set of each substrate with distinct
fluorophores was used for normalization.

Fluorescence polarization measurements

DNA affinity was determined by fluorescence polarization
measurements. eGFP-dTALE fusion proteins were
purified as described above and eluted from the
Sepharose beads by addition of 250mM imidazol.
Different concentrations of GFP-dTALE fusion proteins
were incubated with their specific ATTO647N-labeled
substrates (1 nM). After incubation for 30min, at RT
fluorescence polarization was measured with a Tecan
Infinite M1000 plate reader using 635 nm for excitation
and 670±10nm for emission. The data of fluorescence
polarization over protein concentration were fitted with
y ¼ ymax$x

Kd+x using gnuplot (http://www.gnuplot.info).

DNA methylation analysis

For the analysis of DNA methylation levels at the oct4
promoter genomic DNA was isolated using the
NucleoSpin Triprep Kit (Macherey-Nagel). Bisulfite treat-
ment was performed using the EZ DNA Methylation-
GoldTM Kit (Zymo Research Corporation) according to
the manufacturer’s protocol. Subsequently, the oct4
promoter sequence was amplified in a semi-nested PCR
using the primers:

F1: 50-ATGGGTTGAAATATTGGGTTTATTTA-30

F2: 50-GTAAGAATTGAGGAGTGGTTTTAG-30

R1: 50ACCCTCTAACCTTAACCTCTAAC 30

R2=R1 with 50biotin

The biotinylated PCR products of the second PCR were
analyzed by pyrosequencing (Varionostic GmbH, Ulm,
Germany). The pyrosequencing covered five CpG sites
of which the average methylation level was calculated.
DNA methylation levels of major satellite repeats and
H19 promoter was performed as previously described (25).
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RESULTS

Design and construction of five dTALEs targeting the
murine oct4 promoter

We generated five dTALEs each targeting a distinct 19-bp
sequence of the murine pluripotency gene oct4 to test
whether the position of the target sequence influences
the efficiency of dTALE-mediated promoter activation.
These five dTALEs targeted sequences upstream or down-
stream of the Sp1/Sp3/hormone responsive element
(HRE) box (Figure 1A, Supplementary Figure S1).
DNA-binding TALE repeat arrays were generated
by Golden Gate cloning as described previously (6) and
transferred to mammalian expression vectors by Gateway
recombination (Supplementary Figure S1A). To monitor
transfection efficiency and expression levels, mCherry (26)
was fused to the N-terminus of the dTALEs.
Furthermore, we replaced the transcriptional activation
domain (AD) of the Xanthomonas wild-type TALE
protein (wtdTALEs) with the VP16 AD from the herpes
simplex virus (VP16dTALEs) and compared the activity
of these two distinct dTALE architectures.

dTALEs targeting distinct sites in the oct4 promoter have
similar affinities in vitro but differ strongly in their in vivo
performance as transcriptional activators

The activity of the different dTALEs was first analyzed in
a transient reporter gene assay. HEK293T cells were
co-transfected with an oct4 promoter-driven eGFP
reporter (poct4-eGFP) and a constitutively expressed
dTALE construct. Expression was analyzed by fluores-
cence measurement 48 h after transfection. Notably, the
VP16dTALEs activated the oct4 promoter to significantly
higher levels than the corresponding wtdTALEs (Figure
1C), despite the fact that the latter were expressed at
slightly higher levels (Supplementary Figure S2). The
most distal dTALE (T-83) yielded the strongest transcrip-
tional activation with both, the wtdTALE and
VP16dTALE architecture (Figure 1B and C). To test
whether the variable efficiency of the dTALEs with
distinct repeat arrays is caused by the location of the
target sites within the promoter, we replaced base pairs
!31 to !102 of the oct4 reporter construct which
contain the target sites of four of the five dTALEs, with
a shorter sequence containing one dTALE target site only.
The resulting four reporter constructs have the respective
dTALE target site at the same position (Figure 2A).
Transcriptional activation of these four mutated reporter
constructs by the corresponding VP16dTALEs was
greatly reduced as compared to the activation level of
the wild-type oct4 reporter. Three of the four
VP16dTALEs induced similar eGFP expression levels
(Figure 2B) while T-60 exhibited a slightly stronger acti-
vation in the mutated promoter. The enhanced activity of
T-60 is possibly due to the overlap of its target site with
the SP1 site in the wild-type promoter, which also results
in a relatively higher background in cells transfected only
with the mutated reporter construct containing the T-60
binding site (Figure 2C). The dTALEs used in this study
were designed to target different sequences within the

promoter region of oct4. The distinct RVD compositions
of these dTALE repeat arrays might result in different
binding affinity, causing the observed difference in tran-
scriptional activation. We therefore determined the
affinity and specificity of our dTALEs in vitro using
fluorescently labeled DNA substrates and eGFP–dTALE
fusion proteins. We found specific binding of all five
dTALEs to their respective DNA substrates (Figure 3A
and B). Dissociation constants were determined by fluor-
escence polarization and all dTALEs tested yielded
affinities for their specific substrates, with Kd values in
the low nanomolar to high picomolar range (Figure 3C).
Notably, the dTALE T-83, which was the strongest tran-
scriptional activator in vivo, had a comparably low affinity
in vitro. Together, these data strongly suggest that the
observed variations in dTALE-mediated activation of
the oct4 promoter are not due to inherent differences in
their binding affinity.

dTALEs activate methylated reporter plasmids

In addition to positional effects, we tested whether the
epigenetic state of the promoter might influence the
efficiency of dTALE-mediated transcriptional activation.
We methylated the poct4-GFP plasmid in vitro
(Supplementary Figure S3A) and determined its indu-
cibility by dTALEs. All dTALEs induced eGFP expres-
sion from the methylated oct4 promoter, yet to lower
levels as compared to the unmethylated reporter
(Figure 1D). Notably, the relative differences in the
activity of the highly potent T-83 and the other dTALEs
were up to 25-fold and thus more pronounced with the
methylated as compared to the unmethylated reporter
construct (Figure 1D). These results indicate that
dTALEs can activate heavily methylated promoter
sequences, albeit to a reduced extent, and suggest that
the lack of correlation between in vitro binding affinity
and in vivo activity of dTALES may reflect their different
ability to overcome other repressive epigenetic marks at
the target locus.

dTALEs hyperactivate endogenous oct4 expression in
embryonic stem cells

To test the ability of dTALEs to activate the endogenous
oct4 gene we generated mouse embryonic stem cells
(ESCs) stably carrying the poct4-GFP reporter construct
(ogESCs). ogESCs were tested with T-83 fused to the
VP16 AD (VP16 T83), the most efficient dTALE, and
compared with mCherry control vector. Transfected
mCherry-positive cells were selected using FACS and
total RNA was isolated followed by reverse transcription
and qRT-PCR. FACS analysis showed that ogESCs trans-
fected with the VP16 T-83 had a 3–4-fold higher mean
eGFP fluorescence intensity compared to control trans-
fected cells (Supplementary Figure S4A). Transcription
of the endogenous oct4 was induced about 2-fold as
determined by qRT-PCR (Supplementary Figure S4B).
The relatively low induction rate is likely due to the high
basal level of oct4 transcription in ESCs and the negative
feedback of Oct4 on its own promoter (27).
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Activation of oct4 in neural stem cells depends on
inhibition of repressive epigenetic mechanisms

To test whether dTALEs can also activate a transcription-
ally silent endogenous oct4 promoter, we differentiated
ogESCs into NSCs. During this differentiation process
the oct4 locus is epigenetically silenced and NSCs no
longer express oct4 (28). Analysis by immunofluorescence
showed that all cells were positive for the NSC markers
(21) Pax6, Nestin and Olig2 (Supplementary Figure S5),
indicating successful in vitro differentiation from ogESCs

to ogNSCs. The ogNSCs were transfected with the vector
encoding the dTALE VP16 T-83 or a control vector
encoding mCherry. Forty-eight hours after transfection
cells were analyzed by flow cytometry. In contrast to the
experiments with ogESCs, the dTALE VP16 T-83
activated neither the transgenic poct4-eGFP reporter nor
the endogenous oct4 promoter in ogNSCs (Figure 4A and
B). This could be due to the different epigenetic states of
the oct4 promoter in ESCs and NSCs. Whereas the oct4
promoter in ESCs is active and apparently accessible to
dTALEs, oct4 is not expressed in NSCs and the promoter

A

B

C D

Figure 1. Activation of a transgenic oct4 reporter construct by dTALEs in HEK293T cells. (A) Schematic representation of the 102-bp fragment
upstream of the transcriptional start site (TSS) of the oct4 promoter, including the binding site of the Sp1/Sp3 transcription factors, the hormone
responsive element (HRE) and two CpG sites (open circles). oct4-specific dTALEs are depicted in correspondence of the location of their target
sequence and designated according to the distance between the 50 end of their target sequence and the TSS. (B) Fluorescence microscopy images of
HEK293T cells co-transfected with the poct4- GFP reporter construct and the T-83 dTALE constructs. Left panel shows cells transfected with the
T-83 dTALE fused to the wild-type AD (wt AD). Right panel shows cells transfected with the T-83 dTALE fused to the VP16 AD. Scale
bar=200mm. (C) Transcriptional activation of the unmethylated poct4-GFP reporter construct by oct4-specific dTALEs. eGFP expression was
normalized to cells co-transfected with a control plasmid encoding the fluorescent protein mCherry (mCh) and poct4-GFP reporter construct.
(D) Transcriptional activation of the in vitro methylated poct4-GFP reporter construct by oct4-specific dTALEs. eGFP expression was normalized
to cells co-transfected with a control plasmid (mCh) and poct4-GFP reporter construct. To allow for a direct comparison of expression levels in
(C) and (D) the data observed on the methylated promoter were normalized to the mCherry values observed with the unmethylated promoter
(C). Error bars in (C) and (D) represent standard deviation from three independent experiments.
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might be less prone to dTALE-mediated activation.
Therefore, we envisaged that inhibiting the repressive epi-
genetic modifiers that prevent activation of the oct4
promoter in NSCs could allow dTALE-mediated activa-
tion of oct4. To test this hypothesis, we used the HDAC
inhibitors TSA (29) or VPA (30) as well as the DNA
methyltransferase (Dnmt) inhibitor 5-aza-2’-deoxycytidine
(5azadC) (31) to interfere with two major epigenetic mech-
anisms by which transcriptional silencing of genes is
achieved in mammals. Twelve hours after transfection
with VP16 T-83, ogNSCs were treated with the respective
inhibitor for additional 36 h. Treatment with 5azadC or
VPA but not TSA significantly increased relative
eGFP expression in cells transfected with VP16 T-83
(Figure 4A and Supplementary Figure S6A–C).
Similarly, endogenous oct4 transcript levels were induced
up to 60% as compared to the levels in ogESCs. However,
a combination of 5azadC and VPA did not show additive
nor synergistic effects (Figure 4A and B). Treatment with

the inhibitors alone did not result in transcriptional acti-
vation of the reporter nor the endogenous oct4 gene
(Figure 4A and B), demonstrating that the observed acti-
vation was due to the synergistic action of the dTALE and
the inhibitors. Cells transfected with the dTALE VP16
T-83 and treated with VPA, 5azadC or combinations of
both showed not only increased oct4 transcript levels but
also Oct4 protein (Figure 4F). Moreover, treatment of
VP16 T-83 transfected cells with VPA, 5azadC or combin-
ations of both exhibited up-regulation of the Oct4 target
genes nanog and tet1 (Figure 4C and D) (32–34). By
contrast, genes that are not part of the Oct4 regulatory
network were not influenced by treatment with inhibitors
and/or expression of dTALE VP16 T-83 on transcript
(Supplementary Figure S7A).

As both, 5azadC and VPA, have been reported to
induce DNA demethylation (31,35) we investigated the
effects of these inhibitors on the DNA methylation levels
of the oct4 promoter. Interestingly, in all samples that
were treated with the inhibitors only and/or transfected
with the control plasmid no change in DNA methylation
levels was observed. However, expression of the dTALE
VP16 T-83 together with VPA and/or 5azadC treatment
caused a reduction of DNA methylation at the oct4
promoter by %30% (Figure 4E). Treatment with inhibi-
tors alone or in combination with the dTALEs did not
influence methylation levels at the h19 locus and major
satellite repeats, showing that the observed effect is
specific for the oct4 promoter (Supplementary Figure
S7B and S7C). These results suggest a synergistic effect
of dTALEs and epigenetic inhibitors in mammalian cells.

DISCUSSION

Variable efficiency of different dTALEs in
transcriptional activation

In eukaryotic cells, transcriptional activation involves the
concerted action of multiple factors recognizing target
sites at different positions of gene promoters. The possi-
bility to generate dTALEs that bind different sites within
the promoter of target genes opens new possibilities to
probe and optimize conditions for targeted transcriptional
activation. We designed a panel of dTALEs targeting
distinct sites in the murine oct4 promoter and compared
their performance in vitro and in vivo. Expression of
dTALE T-83 resulted in a 2-fold increase of the oct4
mRNA in ESCs. Previous studies reported a number
of dTALEs targeting distinct promoters (5–7,36,37).
However, none of these studies has systematically
investigated whether the relative position of a dTALE
target site within a promoter affects its functionality. We
engineered five dTALEs, each targeting a distinct 19-bp
sequence within the oct4 promoter. All dTALEs yielded
Kd values in the low nanomolar to high picomolar range
and were expressed at similar levels but differed largely in
their efficiency in vivo. Remarkably T-83, the dTALE with
one of the lowest binding affinity, showed the highest
efficiency in oct4 promoter activation. Our data obtained
with recombinant oct4 promoter constructs showed that
deletions in the native oct4 promoter severely affected

A

B C

Figure 2. The location of a dTALE target sequence within the oct4
promoters can affect its functionality. (A) Schematic representation of
an oct4 promoter deletion construct in which base pairs !31 to !102
relative to the TSS were deleted and the target sequences of the four
dTALEs were inserted yielding the reporter constructs TB31, TB60,
TB68 and TB83. (B) Transcriptional activation of the reporter con-
structs TB31, TB60, TB68 and TB83 by corresponding dTALEs.
(C) Background activity of the mutated reporter constructs in cells
co-transfected with respective reporter and mCherry control.
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dTALE performance, indicating that the presence of a
specific binding site is not sufficient for efficient activation
of transcription. These results suggest that the different
capacity of dTALEs to activate transcription is less
determined by their intrinsic DNA-binding properties
but rather by their interactions at target promoters.
Studies with the viral transactivator VP16 had previously
indicated position-dependent interactions of the VP16 ac-
tivation domain, possibly with basal transcription factors
(38). Therefore, it is likely that also dTALEs are involved
in complex interactions at the promoter of target genes
that may either hinder or promote transcriptional
activation.

As multiple cis- and trans-acting factors and epigenetic
modifications are involved in the regulation of promoter
activity, it will be difficult to predict the efficiency of a
dTALE in silico. Hence, it seems important to construct
and test multiple dTALEs for a given target promoter to
obtain the most effective transcriptional activator. In the
past, the assembly of genes that encode custom-designed
repeat arrays was challenging and thus construction of
multiple dTALEs targeting one promoter was not a real-
istic task. However, this is no longer a bottleneck since the
recently established hierarchical ligation-based ‘Golden
Gate’ cloning approaches facilitate rapid generation of
genes encoding TALE repeat arrays (5,6,9,36,37,39,40).

Another potential bottleneck in the selection of efficient
dTALEs is the analysis of promoter activation by

RT-PCR or comparable assays. By contrast, promoter–
reporter fusions constructs facilitate rapid quantitative
comparison of multiple dTALEs but may not adequately
reflect the transcriptional regulation of the corresponding
endogenous genes. In this context, it should be noted that
the dTALE (T-83), performing best on plasmid reporters,
also most efficiently activated the chromosomal oct4
promoter (Supplementary Figure S6E). Thus, promoter–
reporter fusions may greatly facilitate the screening of dif-
ferent dTALE repeat arrays and experimental conditions
that can then be verified and optimized in a second step by
monitoring transcription of the endogenous genes.

Transcriptional activation by dTALEs is facilitated
by epigenetic inhibitors

In a recent study, dTALEs were shown to activate an
episomal oct4 reporter but not the endogenous oct4
promoter (5). Similarly, we observed a lack of dTALE-
mediated oct4 activation in NSCs, where the promoter is
silent. In ESCs, however, where the oct4 promoter is
active, our dTALE clearly increased oct4 transcription,
suggesting that dTALE activity depends on the epigenetic
state of the promoter. These results are consistent with the
reported multistep inactivation of the oct4 promoter that
occurs during cellular differentiation after implantation
and involves H3K9 as well as DNA methylation. This
tight epigenetic control apparently safeguards against

A

B

C

Figure 3. (A)DNA-binding properties of oct4 eGFP-dTALE fusion proteins in vitro. Schematic representation of the 102-bp upstream of the
transcriptional start site (TSS) of the oct4 promoter, including the binding site of the Sp1/Sp3 transcription factors, the hormone responsive
element (HRE) and two CpG sites (open circles). oct4 eGFP–dTALE fusion proteins are depicted at the position of their target sequence and
numbered according to the distance between the 50 end of their target sequence and the TSS of the oct4 gene. Binding assays were performed using
fluorescently labeled double-stranded DNA substrates corresponding to position !39 to+18 [substrate A (SA)] and !88 to !31 [substrate B (SB)]
relative to the TSS of the oct4 gene. Note that substrate A includes the targeting sequences of dTALEs T-11 and T-31 and substrate B includes the
targeting sequences of dTALEs T-60, T-68 and T-83. (B) DNA binding of eGFP-dTALE fusions to the specific substrate in competition with the
respective unspecific substrate. Shown are fluorescent intensity ratios of bound labeled DNA substrate/eGFP-dTALE fusions. eGFP was used as
negative control. Values represent means and ±SEM from three independent experiments. (C) DNA affinity measurements of the five dTALEs as
measured by fluorescence polarization. Upper panel shows the data points acquired for each dTALE and the corresponding fitted curves. The table
contains the Kd values for each dTALE calculated from the fittings using gnuplot and the function f xð Þ ¼ Ymax(x

Kd+x .
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Figure 4. Activation of the endogenous oct4 gene in NSCs requires inhibition of repressive epigenetic mechanisms. (A) Relative eGFP intensities as
measured by flow cytometry of mCherry-positive ogNSCs transfected with the VP16 T-83 dTALE construct (T-83). Cells transfected with control
plasmid (blue) or T-83 (red) were untreated or treated with TSA (30 nM), VPA (620 mM), 5azadC (10 nM) or a combination of VPA (310mM) and
five azadC (5 nM). (B) Relative levels of endogenous oct4 mRNA measured by quantitative real-time PCR of transfected, mCherry-positive ogNSCs
from (A) as well as untransfected ogNSCs and ogESCs as a reference. (C) DNA methylation levels of the oct4 promoter in samples from (A) and of
ogESCs as well as ogNSCs as reference. Percentage of methylation represents the average of five CpG sites in the proximal part of the oct4 promoter.
(D, E) Relative mRNA levels of tet1 and nanog as determined by quantitative real-time PCR of samples from (A) and of ogESCs as well as ogNSCs
as reference. (F) Fluorescence microscopy images of ogNSCs transfected with the T-83 construct in combination with 5azadC treatment (10 nM) or
no drug. Samples were stained for Oct4 protein (A647) and counterstained with DAPI. mCherry channel shows cells transfected with T-83. eGFP
channel shows expression of the oct4 reporter transgene. Scale bar represents 25 mm. For images of samples treated with the other inhibitors, see
Supplementary Figure S4. Error bars represent standard deviation from two to three independent experiments. Asterisks indicate samples where no
mRNA was detectable by quantitative real-time PCR.
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inappropriate reactivation of the oct4 gene and thus
prevents uncontrolled proliferation and cancer (41–43).

We found that chemical inhibition of repressive epigen-
etic modifiers like Dnmts and HDACs enabled dTALE-
mediated transcriptional activation of silent oct4 in NSCs.
Interestingly, of the two HDAC inhibitors tested only
VPA but not TSA treatment allowed efficient transcrip-
tional activation of oct4 by dTALEs. A similar difference
between the two inhibitors was previously reported for
cellular reprogramming and oct4 promoter activation
(44). One possible explanation for the different efficacy
of the two inhibitors could be their different target
specificities (45). Interestingly, VPA was shown to specif-
ically affect the proximal region of the oct4 promoter (46)
where also the T-83 dTALE binds. This might also explain
why inhibitor treatment of cells transfected with T-31, the
dTALE with the next greatest activity in the reporter
assays, did not facilitate the activation of oct4 (Supple-
mentary Figure S6E).

Previous studies reported that high concentrations of
VPA and/or 5azadC induce demethylation and reactiva-
tion of silent genes (35,47,44,46,38). Under our experimen-
tal conditions, however, these inhibitors induced DNA
demethylation of the oct4 promoter only in combination
with dTALEs, indicating a synergistic effect. A possible
explanation could be that binding of the dTALE interferes
with maintenance of DNA methylation and, thus, in com-
bination with the epigenetic inhibitors leads to reduction
of methylation levels. Such a synergistic effect would be
consistent with the recent realization that DNA methyla-
tion is rather dynamic and functionally linked to other
epigenetic pathways (48). The synergy between low con-
centrations of epigenetic inhibitors and dTALEs suggests
that silent target genes could be activated without
genome-wide demethylation and thus avoid unwanted
side effects.

In summary, we demonstrated that combining dTALEs
with DNA methylation and/or HDAC inhibitors facili-
tates selective activation of the endogenous oct4
pluripotency gene. As in turn also Oct4 target genes are
reactivated, dTALEs could be used for reprogramming of
somatic cells to induced pluripotent stem cells (iPSCs).
It remains to be investigated whether single or combin-
ations of several dTALEs are more efficient than present
reprogramming strategies involving the Oct4 protein itself.
However, in contrast to native transcription factors,
dTALEs can be specifically directed against single genes
or selected combinations of target genes and thereby allow
dissection of complex transcription networks to identify
key factors in biological processes like pluripotency and
differentiation. The combination with epigenetic inhibi-
tors may, in some cases, facilitate the activation of
tightly repressed genes and further expand the utility of
dTALEs in basic and applied biosciences.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–7.
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3 Discussion

3.1 The role and function of 5-hmC and Tet enzymes in

development and disease

3.1.1 Methods for quantification and mapping of 5-hmC

A first step towards understanding the function of 5-hmC is to analyse in what quanti-

ties 5-hmC occurs in di↵erent cell types and developmental stages. For this purpose we

developed a sensitive enzymatic method which is based on the specific transfer of a radi-

olabeled glucose to 5-hmC by �-glucosyltransferase (�-gt). This enzyme is used by the

T4 page to protect its genome, which contains exclusively hydroxymethylated cytosines,

against bacterial restriction endonucleases. To assess whether transfer of [3H]glucose by

the �-gt to DNA is proportional to the hmC content, we prepared a series of standard

DNA substrate samples by mixing corresponding proportions of two DNA fragment of

same length, one having all cytosine residues replaced by 5-hmC and the other contain-

ing no 5-hmC. With this standard we could show that the assay is linear over a range

of several orders of magnitude and extremely sensitive with a detection limit of 0.025%

5-hmC/C [Szwagierczak et al., 2010].

A crucial step for understanding the role of 5-hmC in the epigenetic landscape was to

analyse the dynamics of this modification during early embryonic development using em-

bryoid bodies (EBs). Di↵erentiation into EBs is a well established in vitro system that

recapitulates first steps of the preimplantation development [Li and Yurchenco, 2006].

Using our �-gt assay we analyzed the 5-hmC content of genomic DNA from undi↵erenti-

ated wildtype ESCs, four and eight day old EBs as well as DNA from ESCs lacking all 3

major DNA methyltransferases (Dnmt1, Dnmt3a and Dnmt3b; triple knockout (TKO)).

Interstingly, we could observe that 5-hmC levels are highly dynamic during the first

eight days of di↵erentiation. A sharp decrease in 5-hmC levels was evident after four

days of EB culture but a substantial recovery was observed after additional 4 days of

culture. Similar dynamics can be observed on the transcript levels of Tet1-3. While Tet1
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is expressed predominantly in ESCs, its transcript levels decrease drastically after four

days of EB culture. Tet3 is expressed at very low levels in ESCs but its mRNA levels

start to increase upon di↵erentiation with a dramatic increase between day four and day

eight concomitant with the recovery of the 5-hmC level. As expected, due to the lack

of DNA methylation no 5-hmC could be detected in TKO ESCs [Szwagierczak et al.,

2010]. These findings point to the fact that Tet1 is the main Tet enzyme responsible for

generation of 5-hmC in ESCs. In fact other studies could show that a knock-down of

Tet1 in ESCs results in increased 5-mC levels at certain CpG islands and deregulation of

gene expression of pluripotency-associated genes. Furthermore, Tet1-depletion in preim-

planation embryos and ESCs leads to a bias towards di↵erentation into extra-embryonic

tissues supporting a role for Tet1 in ESC maintenance and inner cell mass cell specifica-

tion [Ito et al., 2010; Ficz et al., 2011; Pastor et al., 2011; Wu et al., 2011b,a; Xu et al.,

2011]. Recent findings revealed that Tet1 is directly controlled by the pluripotency fac-

tor Oct4, integrating 5-hmC and Tet1 into the pluripotency network (Koh et al., 2011).

Moreover, a bioinformatic study which tried to identify a minimal set of pluripotency

markers found Tet1 as the best candidate using three di↵erent independent methods

[Scheubert et al., 2011].

Next we analysed the genomic 5-hmC levels and the expression of Tet enzymes in adult

mouse tissues. We found that adult tissues vary greatly in their 5-hmC content with

highest levels in the central nervous system. In contrast to ESCs, 5-hmC levels in adult

tissues correlate with high levels of Tet3 and to a lower extend Tet2, a pattern similar

to day eight EBs. Thus, most di↵erentiated tissues are characterised by very low levels

of Tet1 and high levels of Tet3, while undi↵erentiated ESCs show the opposite pattern

[Szwagierczak et al., 2010]. These findings further support the idea that Tet1 plays an

important role in pluripotency. Interestingly, kidney represents an exception among the

analysed tissues as it exhibits relatively high 5-hmC levels and Tet2 as the predominant

transcript. This is in accordance to previous findings in Tet2 null mice where the only

observable phenotype is a cellular defect in proximal convoluted tubules of the kidney

[Tang et al., 2008].

Most interesting is the finding that 5-hmC levels are highest in the central nervous

system (CNS). Cells of the CNS, in particular neurons, have to adapt to a very dy-

namic environment of inter- and intracellular contacts and signalling pathways. The

flexibility to respond to these di↵erent signals is achieved by a distinctive epigenetic

plasticity. In this context, DNA methylation dynamics have been shown to be involved

in activity-dependent gene regulation [Martinowich et al., 2003; Chen et al., 2003b; Ma
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et al., 2009], memory and learning [Miller and Sweatt, 2007; Day and Sweatt, 2010], and

repeat-associated transcript expression [Muotri et al., 2010; Skene et al., 2010]. Hydrox-

ylation of 5-mC to 5-hmC might present a mechanism by which these DNA methylation

dynamics are regulated.

To further understand the function of 5-hmC in gene regulation it is important to be

able to map its localisation in the genome. As 5-hmC is chemically and structurally very

similar to 5-mC discrimination of these two modification presents a major challenge. The

gold standard methodology for profiling of genomic 5-mC sites, bisulfite conversion, can-

not discriminate 5-hmC from 5-mC and all available restriction endonucleases are either

equally sensitive to mC and hmC or not sensitive to either [Huang et al., 2010; Jin et al.,

2010; Nestor et al., 2010].

We found reports of an endonuclease named PvuRts1I which restriction activity in vivo

was shown to be modulated by 5-hmC glucosylation in a complex fashion [Janosi et al.,

1994]. However, as PvuRts1I was not purified, its activity has not been characterized

in vitro. We could show that recombinant PvuRts1I selectively cleaves 5-hmC contain-

ing DNA and determined its cleavage site. Furthermore, we found that the extent of

PvuRts1I disgestion reflects the relative abundance of 5-hmC in genomic DNA from

cerebellum and TKO ESCs [Szwagierczak et al., 2010]. Restriction of genomic DNA

with PvuRts1I may be combined with PCR amplification for analysis of specific loci,

with massive parallel sequencing or microarray hybridisation for genome-wide mapping.

Due to its relatively complex and long recognition sequence cleavage sites occur in large

distances from another, raising the argument that the extent of random breaks in ge-

nomic DNA preparations would contribute very significant noise in deep sequencing and

microarray applications. This drawback can be overcome if Pvurts1I cut fragments are

enriched by linkers with specific 3’-overhangs.

3.1.2 Recognition of 5-hmC by the epigenetic machinery

DNA methylation is an epigenetic modification that is involved in the control of eu-

karyotic gene expression. In fact, methylation of regulatory elements correlated with a

transcriptional silent state. The mechanism by which the transcriptional repression is

achieved appears to involve 5-mC binding proteins (MBPs). MBPs specifically recognize

5-mC and consequently recruit histone modifying enzymes and chromatin remodelling

factors that establish a silent chromatin state [Sasai and Defossez, 2009].

Given the relatively well established mechanisms of how 5-mC is integrated in the epi-

genetic network, the discovery of 5-hmC in mammalian genomes immediately raised
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the question how this new modification is recognized and interpreted by the epigenetic

machinery. We therefore, characterised the 5-mC/5-hmC DNA binding properties of

two representative 5mC binding proteins, the methyl-CpG binding domain (MBD) of

MeCP2 and the SRA domain of Uhrf1. We found that in contrast to the MBD, the

SRA domain binds 5-hmC containing substrates with a similar a�nity as methylated

substrates. To better understand the binding mode and thermodynamics of Uhrf1 to

substrates containing 5-mC and 5-hmC we performed molecular dynamics simulations of

the respective SRA:DNA complexes. Surprisingly, we found that the flipped 5-hmC base

not only fits into the binding pocket of the Uhrf1 SRA domain, but is specifically sta-

bilised by hydrogen bond formation involving the 5-hmC hydroxyl group [Frauer et al.,

2011]. The specific binding of Uhrf1 to 5-hmC containing DNA was very surprising as

Uhrf1 was shown to be essential for the maintenance of DNA methylation by directing

Dnmt1 to hemimethylated CpG sites [Sharif et al., 2007]. The binding of Uhrf1 to hy-

droxymethylated DNA raises the question of how Uhrf1 contributes to the functions in

DNA demethylation or transcriptional activation proposed for 5-hmC. In this context it

should be noted that Uhrf1 is the only protein known that uses a base-flipping mecha-

nism for target recognition and has no described catalytic activity on the flipped base.

5-hmC clearly interferes with the binding by the MBD of MeCP2 and might prevent

subsequent establishment of repressive chromatin structures in a cellular context. Hy-

droxylation of 5-mC could thereby represent a mechanism of changing the cellulat inter-

pretation of an repressive epigenetic modification. Notably, MeCP2 is expressed highest

in the brain where also 5-hmC levels are highest. In fact, a recent study could show

that a functional correlation between 5-hmC levels and MeCP2 protein dosage exists

[Szulwach et al., 2011].

A key for understanding the function of 5-hmC in epigenetic gene regulation is to un-

cover the factors that are involved in its recognition and how these proteins integrate

5-hmC into the epigenetic network. While the “writers” of 5-hmC are known, infor-

mation about the “readers” is still largely missing. Uhrf1 might be just one of a large

family of 5-hmC binding proteins to be discovered and its exact function in vivo remains

to be elucidated. Recently, a member of the MBD protein family has been proposed to

be another 5-hmC binding protein. Mbd3 is part of the Mi2/NURD histone deacety-

lase complex and has been shown to bind preferentially to 5-hmC via its MBD. Mbd3

recruits the Mi2/NURD complex to 5-hmC marked genes and positively regulates their

expression by controlling promoter nucleosome occupancy [Yildirim et al., 2011].
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3.1.3 The role of the CXXC domain for Tet1 function

While the C-terminal part of Tet1, harbouring the catalytic DSBH and the cystein-rich

domain, is relatively well characterised, little is known about the N-terminal region. The

only domain described so far is a CXXC zinc-finger, a domain found in several other

proteins with functions related to DNA or chromatin modification. The CXXC domain

of some of these proteins were shown to mediate binding to double stranded DNA con-

taining unmethylated CpGs sites [Lee et al., 2001; Birke et al., 2002; Jørgensen et al.,

2004; Thomson et al., 2010]. We perfomed sequence alignments and homology tree con-

struction and identified three distinct groups of CXXC domains. The first group was

characterised by a KFGG motif between the two cystein clusters of the CXXC domain

and included Dnmt1, CGP, FBxl19, Mll1, Mll2 and Kdm2 proteins. The second and

third group, including the CXXC domains 1 and 2 of Mbd1 on one side and those of

Tet1, Cxxc4/Idax, Cxxc5/RINF and Cxxc10 on the other side, lack the KFGG motif

and diverge from the first group and from each other in the sequence between the cys-

teine clusters.

Based on structural homology models to the crystal structure of the MLL1 CXXC do-

main we generated GFP fusion constructs of the Dnmt1 and Tet1 CXXC zinc finger

(CXXCDnmt1, CXXCTet1) and tested their DNA binding properties using a fluorescent

DNA binding assay [Frauer and Leonhardt, 2009]. CXXCDnmt1 exhibited a preference for

unmethylated CpG containing substrate as expected for a KFGG containing MLL1/CGP

type CXXC domain [Lee et al., 2001; Birke et al., 2002]. Surprisingly, CXXCTet1 did

not show any DNA binding in these experiments [Frauer et al., 2011]. However, a re-

cent study showed that Tet1 binds to unmodified cytosine or 5-mC or 5-hmC containing

CpG-rich DNA through its CXXC domain [Xu et al., 2011]. The authors of this study

used a slightly longer and untagged CXXC domain. By changing the N-terminal GFP

tag to a C-terminal fusion of CXXCTet1 we were able to reproduce these findings (un-

published data). It is unclear what functional significance the strong binding of Tet1

to CpG containing DNA might have. However, binding of Tet1 to CpG rich sequences

could provide an additional layer of protection to limit the access of Dnmts.

Next, we analysed the influence of the CXXC domain on localisation and activity of

Tet1. For this purpose, we generated a GFP-Tet1 fusion lacking the CXXC domain

(Tet1CXXC). Using our �-gt assay we analysed the 5-hmC content of genomic DNA in

HEK293T cells overexpressing the wildtype or the deletion construct. The presence of

both constructs significantly increased the 5-hmC contents to similar levels suggesting

that deletion of the CXXC domain has no e↵ect on the catalytic activity under these
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conditions. In addition, wildtype Tet1 and Tet1CXXC exhibited a similar subnuclear

localisation in vivo.

The N-terminal region of Tet1 comprised almost two thirds of the protein. Homology

searches and domain prediction tools could so far not predict any similarities to other do-

mains/proteins except the CXXC domain. It is very likely that, similar to Dnmts which

also harbour a N-terminal regulatory domain, The N-terminal region of Tet1 contributes

to its localisation and integration in the epigenetic network.

3.1.4 Tet2 and 5-hmC in myeloid leukemia

TET1 was originally identified as an MLL fusion partner in rare cases of acute myeloid

leukemia (AML) with a t(10;11)(q22;q23) [Ono et al., 2002; Lorsbach et al., 2003]. Re-

cently, heterozygous deletions and mutations of TET2 were found in a wide range of

myeloid malignancies, including myelodysplastic syndrome (MDS), myeloproliferative

disorders such as chronic myelomonocytic leukemia (CMML) and in secondary AML

(sAML) [Delhommeau et al., 2009; Langemeijer et al., 2009; Mohamedali et al., 2009].

To get first insights into the relationship between TET2 mutations, global gene ex-

pression profile and 5-hmC levels, we measured the 5-hmC levels in the genomic DNA

of 30 sAML patients using our �-gt assay [Szwagierczak et al., 2010] which we opti-

mised to a detection limit of 0.005%. In addition to the TET2 mutational status, we

screened for IDH1/2 mutations. IDH1/2 catalyse the oxidative decarboxylation of isoc-

itrate to ↵-ketoglutarate (↵-KG ) and have been implicated in a variety of cancer types.

The most common mutations in IDH1/2 result in two enzymatic changes. A decreased

wildtype IDH function and gain of a new enzymatic activity to reduce ↵-KG to D-2-

hydroxyglutarate (D-2-HG). D-2-HG outcompetes ↵-KG for binding to several classes

of histone demethylases, PHD2 and TET enyzmes [Borodovsky et al., 2012]. Hence,

IDH1/2 mutations might result in altered 5-hmC levels by inhibiting TET enzyme ac-

tivity.

The analysis of the 5-hmC levels in the genomic DNA of the 30 sAML patients revealed

a 5-hmC content ranging from 0.006 to 0.054% [Konstandin et al., 2011]. Compared

to 5hmC levels in other human adult tissues genomic 5-hmC levels of blood samples

from patients with sAML were extremely low (60 fold (human lung) to 166 fold (human

brain) lower) [Kraus et al., 2012; Terragni et al., 2012]. Interestingly, low 5-hmC levels

seem to be a general feature of many cancer types and in the case of glioblastomas can

even be correlated with tumour malignancy [Kraus et al., 2012; Kudo et al., 2012; Yang

et al., 2012]. These findings suggest that loss of 5-hmC is not just a secondary e↵ect of
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global hypomethylation often observed in tumours. Reduced levels of 5-hmC could lead

to changes in gene expression patterns that directly a↵ect the expression of oncogenes

and thereby promote transformation.

In our study 7 out of 30 patients exhibited mutations in the TET2 gene and these 7

samples significantly clustered in the lower half of 5-hmC levels. Interestingly, several

patients with very low 5-hmC levels did not carry a TET2 mutation. Two of these

samples harboured an IDH2 mutation possibly explaining the low 5-hmC levels despite

the absence of a TET2 mutation. However, 8 patients did not exhibit TET2 nor IDH1/2

mutations but clustered in the lower half of 5-hmC levels [Konstandin et al., 2011]. It is

possible that these patients harbour mutations in one of the other TET genes. Another

explanation could be that the low 5-hmC levels result from mutations in genes upstream

or downstream of the TET enzymes. For example, Dnmts or their regulators could be af-

fected leading to genome-wide hypomethylation and thereby to reduced 5-hmC levels. In

addition, BER proteins that are implicated to be involved in the removal of 5-hmC could

be deregulated in these patients. Another interesting possibility is that genome-wide loss

of 5-hmC might be promoted by active/enhanced growth of cancer cells. 5-hmC might

prevent the maintenance of 5-mC by DNMT1 during replication leading to a passive

loss of 5-hmC. This hypothesis is supported by in vitro data showing a strongly reduced

activity of DNMT1 on DNA substrates containing hemi-hydroxylated (5-hmCpG/CpG)

CpG sites that could be produced in vivo by replication of 5-hmC [Valinluck and Sowers,

2007].

Next we analysed the global gene expression profiles (GEPs) from 28 patient samples.

No striking di↵erence could be seen when comparing the GEPs of patients with TET2

mutations against the GEPs of patients without TET2 mutations. However, when

we compared the GEPs of the 7 patients with the lowest versus the 7 patients with

the highest 5-hmC levels distinctive clustering of the two groups was observable [Kon-

standin et al., 2011]. Recently, similar observations were made in the context of chronic

myelomonocytic leukemia (CMML) (Prez et al., 2012). Taken together these results

indicate that 5-hmC levels are most likely more relevant to define biologically distinct

secondary leukemia subtypes than the TET2 or IDH1/2 mutational status. Interestingly,

a recent study could show that deletion of tet2 in mice leads to a dramatic reduction of

5-hmC levels in bone marrow cells and to the development of myeloid malignancies [Li

et al., 2011b]. These findings suggest that Tet2 is the predominant Tet enzyme in the

hematopoietic lineage and functions as a tumour suppressor to maintain cell homoeosta-

sis.
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3.1.5 5-hmC a stable epigenetic mark or a demethylation

intermediate?

With the discovery of 5-hmC the question emerged whether this new covalent DNA

modification represents a stable epigenetic mark by itself or an intermediate of DNA

demethylation. At first, it had been debated whether active DNA demethylation does

at all occur in mammals. But as more and more data accumulated that suggested the

active removal of 5-mC in mammalian genomes, the attention turned towards finding

the underlying mechanisms. The direct removal of the methyl group was thought to

be energetically unfavourable and soon many findings suggested that DNA repair path-

ways are involved in the process of active DNA demethylation. The critical step in

all the proposed mechanisms was the derivatisation of 5-mC by the cellular machinery.

Deamination was thought to be the likeliest mechanism by which the 5-mC could be

marked for the removal by the DNA repair machinery. However, the data that showed a

deamination of 5-mC was mainly indirect by showing the involvement of AID/APOBEC

enzymes or came from experiments performed in vitro. Therefore, it remained highly

debated whether DNA repair is involved in active DNA demethylation despite the accu-

mulating amount of data supporting this hypothesis. The discovery of the hydroxylation

of 5-mC by Tet enzymes o↵ered a simple explanation to the question of how a methy-

lated cytosine can be specifically marked for demethylation without contradicting the

existing data on deamination coupled DNA repair. In fact, shortly after the discovery

of 5-hmC is was shown that AID/APOBEC enzymes, a protein family already impli-

cated in deamination coupled repair of 5-mC, mediate active DNA demethylation by

deaminating 5-hmC to 5-hmU [Cortellino et al., 2011; Guo et al., 2011]. In addition to

linking active DNA demethylation to deamination coupled DNA repair, the presence of

5-hmC in mammalian genomes also reopens the possibility for a direct removal of the

methyl-group from 5-mC. Recent studies have shown that Tet enzymes further oxidise

5-hmC to 5-caC [He et al., 2011; Ito et al., 2011]. Although it was suggested that 5-caC

is recognised by the DNA repair machinery [He et al., 2011; Ito et al., 2011], the possibil-

ity remains that 5-caC is decarboxylated to cytosine by a so far unknown decarboxylase

presenting a pathway for DNA demethylation independent of DNA repair mechanisms.

Besides its relatively well established role in active DNA demethylation, 5-hmC might

also represent a stable epigenetic mark by itself. Especially in the nervous system 5-

hmC levels can account for up to 40% of all modified cytosines suggesting an additional

function as an epigenetic regulator [Szwagierczak et al., 2011; Szulwach et al., 2011]. In
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this context it is important to note that while Tet1 seems to have a dual function, the

presence of 5-hmC is generally correlated with transcriptional activity [Williams et al.,

2011; Wu et al., 2011b,a]. One explanation could be that MeCP2, a methylcytosine

binding protein especially abundant in the brain, does not bind to 5-hmC and thereby

preventing the establishment of a silent chromatin state [Frauer et al., 2011]. Another

indication that 5-hmC might be more than a DNA demethylation intermediate comes

from the recent finding that 5-hmC is bound by Mbd3. The recruitment of Mbd3 to 5-

hmC marked genes positively regulates their expression directly linking 5-hmC to active

gene expression [Yildirim et al., 2011]. Although there is first evidence that 5-hmC may

have a DNA demethylation independent function in gene regulation, further studies are

needed to identify the exact mechanisms.

3.2 The role of DNA methylation in transgene silencing

and its mechanism

Transgene expression is a widely used method in cell biology and several vector sys-

tems have been developed over the past decades for this purpose. The main di↵erences

among the vectors is the promoter which is used for transgene expression. While for

some applications transient expression for 1-2 days is su�cient, some experiments re-

quire stable long-term expression. We found that upon transient transfection of wt

ESCs constructs driven by the cytomegalovirus (CMV) promoter were rapidly silenced,

while constructs driven by the chimeric CMV early enhancer/chicken � actin (CAG)

promoter yielded long and stable expression. To understand the underlying mechanisms

of this observation we developed an epigenetic silencing assay. ESCs were cotransfected

with two distinct plasmids, one expressing monomeric red fluorescent protein (mRFP)

under the CMV promoter, the other expressing green fluorescent protein (GFP) driven

by the CAG promoter. We monitored RFP and GFP expression for up to ten days after

transfection by using automated image acquisition and quantification of fluorescent sig-

nals. While in wt ESCs CMV driven mRFP expression was rapidly silenced, dnmt3a/3b

knockout cells exhibited no silencing of the CMV promoter. Suprisingly, uhrf1-/- ESCs

were also unable to silence the CMV promoter whereas dnmt1-/- ESCs showed only

partially reduced silencing [Meilinger et al., 2009]. These findings suggest that Dnmt1

might play a minor role in this silencing process. Moreover, it implies a novel function

for Uhrf1 that is largely independent of Dnmt1. This was surprising, as Uhrf1 has been

reported to be functionally linked to Dnmt1 in maintaining DNA methylation [Sharif
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et al., 2007]. Interestingly, the silencing of the CMV promoter showed a similar depen-

dence on the presence of Uhrf1 as for the presence of Dnmt3a/Dnmt3b. In addition,

co-immunoprecipitation experiments revealed an interaction between Uhrf1 and both de

novo Dnmts. This suggests that Np95 might play a role in the de novo methylation

of the CMV promoter and that the silencing process is DNA methylation dependent.

Surprisingly, the CMV promoter exhibited nearly no DNA methylation in the first days

after transfection and reached only a very low level on the last day examined in wild type

ESCs. However, promoter methylation was less in uhrf1-/- cells than in wild type ES and

none of the dnmt deficient cell lines showed a significant amount of DNA methylation

at this time point [Meilinger et al., 2009]. Taken together, all these findings imply that

Uhrf1 is cooperating with Dnmt3a and Dnmt3b in mediating the silencing of the CMV

promoter and that this process, at least at its onset, is independent of DNA methylation.

This is in agreement with the finding that silencing precedes DNA methylation at the

promoters of certain genes [Feldman et al., 2006; Epsztejn-Litman et al., 2008].

The dependency of CMV promoter silencing on the presence of Dnmt3a/3b or Uhrf1 well

before de novo methylation can be detected could be due to the involvement of repressive

histone methylation. We therefore tested the involvement of the histone methyltrans-

ferases (HMTs) G9a and Suv39h1/2 using the epigenetic silencing assay. Interestingly,

both HMTs seem to be involved in this process although to a di↵erent extent. While in

the absence of G9a no preferential silencing of the CMV promoter was observable, cells

lacking Suv39h1/2 did only exhibit a partial silencing defect. This is likely due to the

functional di↵erences of the two HMTs. Suv39h1/2 tri-methylate lysine 9 of histone 3

(H3K9) and were shown to be involved in organization of silent chromatin domains such

as the pericentric heterochromatin [Jenuwein et al., 1998]. In contrast, G9a is crucial

for H3K9 mono- and di-methylation of euchromatin and it is essential for the transcrip-

tional silencing of several genes [Tachibana et al., 2002; Feldman et al., 2006]. This could

explain why G9a and not Suv39h1/2 is crucial for the silencing of the CMV promoter.

Taken together, the finding that DNA methylation seems to be set at a later stage in

the silencing process and the fact that HMTs are involved in the CMV promoter silenc-

ing suggests that histone modifications might be the primary mechanism by which the

silencing is initiated. This idea is supported by the finding that upon transfection into

mammalian cells, plasmids are chromatinized and both their expression and silencing is

associated with specific histone modifications [Riu et al., 2007].
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3.3 Designer TALEs as a tool for targeted

transcriptional activation

In eukaryotic cells, transcriptional activation involves the synergistic action of multiple

factors recognizing target sites at di↵erent positions of gene promoters. With the discov-

ery of the dTALE DNA binding specificity and its underlying code it became possible to

specifically designe TALEs that bind to user-defined target sequences. Previous studies

reported a number of dTALEs targeting distinct promoters [Geissler et al., 2011; Miller

et al., 2011; Morbitzer et al., 2011; Weber et al., 2011; Zhang et al., 2011]. However, none

of these studies has systematically investigated whether the relative position of a dTALE

target site within a promoter a↵ects its functionality. We designed five dTALEs, each

targeting a distinct 19-bp sequence within the oct4 promoter. All dTALEs yielded Kd

values in the low nanomolar to high picomolar range and were expressed at similar levels

but di↵ered largely in their e�ciency in vivo. Intriguingly, T-83, the dTALE with one of

the lowest binding a�nities, showed the highest e�ciency in oct4 promoter activation.

Our data obtained with recombinant oct4 promoter constructs showed that deletions

in the native oct4 promoter severely a↵ected dTALE performance, indicating that the

presence of a specific binding site is not su�cient for e�cient activation of transcription

[Bultmann et al., 2012]. These results suggest that the di↵erent capacity of dTALEs to

activate transcription is less determined by their intrinsic DNA-binding properties but

rather by their interactions at target promoters. Studies with the viral transactivator

VP16 had previously indicated position-dependent interactions of the VP16 activation

domain, possibly with basal transcription factors [Hagmann et al., 1997]. Therefore,

it is likely that also dTALEs are involved in complex interactions at the promoter of

target genes that may either hinder or promote transcriptional activation. As multiple

cis- and trans-acting factors and epigenetic modifications are involved in the regulation

of promoter activity, it will be di�cult to predict the e�ciency of a dTALE in silico.

Hence, it seems important to construct and test multiple dTALEs for a given target

promoter to obtain the most e↵ective transcriptional activator. Due to the modular

structure of the dTALE DNA binding domain construction of multiple TALEs in a time

and cost-e�cient manner using recently established hierarchical ligation-based Golden

Gate cloning approaches has become a feasible task Cermak et al. [2011]; Geissler et al.

[2011]; Li et al. [2011a]; Morbitzer et al. [2011]; Weber et al. [2011]; Zhang et al. [2011].

In a recent study, dTALEs were shown to activate an episomal oct4 reporter but not

the endogenous oct4 promoter [Zhang et al., 2011]. Similarly, we observed a lack of
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dTALE- mediated oct4 activation in neural stem cells (NSCs), where the promoter is

silent [Bultmann et al., 2012]. In ESCs, however, where the oct4 promoter is active, our

dTALE clearly increased oct4 transcription, suggesting that dTALE activity depends

on the epigenetic state of the promoter. These results are consistent with inactivation

of the oct4 promoter that occurs during cellular di↵erentiation after implantation and

involves H3K9 as well as DNA methylation. This tight epigenetic control apparently

safeguards against inappropriate reactivation of the oct4 gene and thus prevents uncon-

trolled proliferation and cancer [Gidekel et al., 2003; Looijenga et al., 2003; Feldman

et al., 2006]. Furthermore, the recentlys solved crystal structures of two TALEs showed

that the protein winds around the DNA along the major groove [Deng et al., 2012; Mak

et al., 2012]. Due to this conformation dTALE binding is very likely a↵ected by respres-

sive chromatin states as it has to compete with tightly packed nucleosome arrays for

DNA binding (Figure 17).

In line with this hypothesis, we found that chemical inhibition of repressive epigenetic

modifiers like Dnmts and histone deacetylases (HDACs) enabled dTALE- mediated tran-

scriptional activation of silent oct4 in NSCs. Interestingly, of the two HDAC inhibitors

tested only valproic acid (VPA) but not trichostatin A (TSA) treatment allowed e�-

cient transcriptional activation of oct4 by dTALEs. A similar di↵erence between the two

inhibitors was previously reported for cellular reprogramming and oct4 promoter activa-

tion [Huangfu et al., 2008]. One possible explanation for the di↵erent e�cacy of the two

inhibitors could be their di↵erent target specificities [Kim et al., 2006]. Interestingly,

VPA was shown to specifically a↵ect the proximal region of the oct4 promoter [Teng

et al., 2010] where also the T-83 dTALE binds. This might also explain why inhibitor

treatment of cells transfected with T-31, the dTALE with the next greatest activity in

the reporter assays, did not facilitate the activation of oct4. Previous studies reported

that high concentrations of VPA and/or 5azadC induce demethylation and reactiva-

tion of silent genes [Huangfu et al., 2008; Dong et al., 2010; Teng et al., 2010; Al-Salihi

et al., 2011]. Under our experimental conditions, however, these inhibitors induced DNA

demethylation of the oct4 promoter only in combination with dTALEs, indicating a syn-

ergistic e↵ect. A possible explanation could be that binding of the dTALE interferes

with maintenance of DNA methylation and, thus, in combination with the epigenetic in-

hibitors leads to reduction of methylation levels The synergy between low concentrations

of epigenetic inhibitors and dTALEs suggests that silent target genes could be activated

without genome-wide demethylation and thus avoid unwanted side e↵ects. In summary,

we demonstrated that combining dTALEs with DNA methylation and/or HDAC in-
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Figure 17: Crystal structures of (A) a nucleosome and (B) the PthXo1 TALE bound to DNA. Binding
of the TALE to nucleosomal DNA would probably lead to a sterical clash between the two proteins.

hibitors facilitates selective activation of the endogenous oct4 pluripotency gene. As in

turn also Oct4 target genes are reactivated, dTALEs could be used for reprogramming

of somatic cells to induced pluripotent stem cells (iPSCs). It remains to be investigated

whether single or combinations of several dTALEs are more e�cient than present repro-

gramming strategies involving the Oct4 protein itself. However, in contrast to native

transcription factors, dTALEs can be specifically directed against single genes or selected

combinations of target genes and thereby allow dissection of complex transcription net-

works to identify key factors in biological processes like pluripotency and di↵erentiation.

It will be interesting to investigate whether TALEs have to compete with nucleosomes

for DNA binding as suggested by the crystal structure. Intriguingly, TALEs evolved to

activate transcriptionally silent target genes in plant cells and can do this in a very e�-

cient manner. However, although plants and mammals rely on the same basic epigenetic

machinery, transcriptional activation on silent loci in mammals is much lower compared

to plants. This leads to the consideration that plant cells might express certain factors

that are missing in mammals which are recruited by the TALE proteins to the target site

and help to activate the target genes. Identifying these missing factors by comparing the
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interactions of dTALEs in mammals versus those in plants, could allow the activation

of silenced genes without the need for treatment with epigenetic inihibitors.

3.3.1 FairyTALE a simple web tool for dTALE target optimisation

Since the discovery of the code underlying the DNA binding specificity of the Xan-

thomonas Transcription-activator-like e↵ectors, TALEs have been successfully used in a

variety of application and have become a popular and powerful tool in genome editing

and engineering. The modular structure of the TALE DNA binding domain allows the

construction of dTALEs that bind to any user-defined DNA target sequence. Due to the

high degree of flexibiliy in target choice, optimization of target selection is challenging.

Given that the number of possible target sites in a 1000 base pair lond double-stranded

DNA fragment is statistically 500, manual search for potential target sites is tedious

and time-consuming. The target locus needs to be screened for sequences beginning

with a thymidine and to guarantee uniqueness of the found sequences, a BLAST search

for every potential target sequence needs to be performed. Due the low specificity

of guanine recognition by the NN diresidue the number of guanines in a sequence is

preferably to be kept at a minimum [Bogdanove et al., 2010]. In addition, low complexity

sequences and repeats should be avoided. To optimize and streamline the process TALE

target site definition, we developed a web tool called fairyTALE that allows e�cient

and automated selection of the best TALE target sites in a user-defined sequence for a

variety of applications.

Our web tool allows the definition of optimal target sites for single as well as dTALE

pairs. The user chooses the length of the dTALEs along with the targeted species and

Figure 18: Work-flow of the fairyTALE target finder. Sequence input is screened for potential TALE
target sites using the given parameters. Subsequently, potential sites are checked for possible o↵-targets
using NCBI BLAST. Intermediate and final results are send to the user via e-mail.
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several other parameters concerning dTALE target site composition (e.g. low complexity

filter). The web tool will find TALE target sequences with the given parameters and

check the number of possible o↵-targets via NCBI BLAST. Subsequently, unique TALE

target sites in the input sequence are returned to the user (Figure 18). The beta version

of the fairyTALE web tool was written exclusively in pythonTM using the Biopython

module [Rossum, 2003; Cock et al., 2009] and is freely available under:

http : // bultmann . alwaysdata . net /FT web . htm

We believe that the fairyTALE web tool optimizes the target site selection process and

increases the likelyhood of successful dTALE application by reducing the amount of

possible o↵-targets.
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