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Chapter 1

Introduction
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1.1 Research on financial stability

The continuing financial crisis starting in 2007 forces policy makers as well as aca-

demics around the world to think about adequate actions to guarantee the proper

functioning of the global financial system. At the latest the collapse of Lehman

brothers in 2008 showed that a globally interconnected financial network can trans-

mit shocks to financial centers all over the world. And recently the emerging Eu-

ropean sovereign debt crisis shows that there is an additional danger of spillover

effects from a sovereign default to the banking system which could serve again (e.g.

through the interbank market) as a shock transmitter to financial institutions all

over the world. As a response to these events happening during the financial crisis,

policy makers as well as academics are working on solutions to make the financial

system more resilient to shocks. Thus, more and more models and methods are de-

veloped to evaluate and improve the stability of the financial system. Additionally,

a great effort is made to develop and implement a new regulatory framework that

mitigates systemic risk.

A comprehensive summary of research on this topic has been provided by the Global

Financial Stability Report of the International Monetary Fund in April 2009.1 In

this report, different approaches to measure systemic risk due to the existence of

financial interlinkages are presented: One of these approaches is the Co-Risk anal-

ysis developed by Adrian and Brunnermeier (2008). This approach uses publicly

available market equity data as well as balance sheet data of financial institutions

to measure the Value at Risk (VaR) of one institution in distress conditional on an-

other institution (or the whole financial system) being in distress. This “Conditional

Value at Risk” (or CoVaR) can be calculated by using quantile regressions. Another

approach introduced by the International Monetary Fund (2009) is the distress de-

pendence matrix developed by Segoviano and Goodhart (2009). They generate a

1 See International Monetary Fund (2009), Chapter 2
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multivariate distribution describing implied asset price movements of different in-

stitutions. From this multivariate distribution, pairwise conditional probabilities

of distress can be derived. Thus, it is possible to calculate the probability of one

institution falling into distress conditional on the probability of another institution

being in distress.

These approaches use market data of financial institutions. This makes it possible

to assess systemic risk due to direct and indirect exposures between financial institu-

tions, as co-movements of risk should be, under the assumption of market efficiency,

captured by co-movements of the respective indicators (like equity returns or CDS

spreads). An additional advantage of market data is that they are publicly avail-

able, usually at a high frequency. As a result, various studies have been developed

recently that exploit the information inherent in market data to evaluate systemic

risk in financial systems. Another paper that uses market data for the analysis of

financial stability is Acharya et al. (2010). In this study, the authors use equity

return as well as CDS data to estimate the relationship between banks’ losses in

times of severe distress compared to moderately bad days. The European Central

Bank provides a summary and brief discussion of these and other studies that try

to quantify systemic risk in a special feature of its Financial Stability Review of

December 2010.2 However, one drawback of the approach using market data is that

markets are not efficient - especially not in times of distress. Market participants

tend to overreact in crisis times and underestimate risk in tranquil times. Addition-

ally, the anticipation of a government bail-out for institutions that are considered

as too big to fail may lead to an incorrect evaluation of the true risk inherent in

certain financial institutions.

Another approach mentioned in the Global Financial Stability Report of the In-

ternational Monetary Fund (2009) considers the financial system as an intercon-

nected network of financial institutions. This approach usually does not rely on
2 See European Central Bank (2010a), pp. 147-153

3



market data, but on detailed information about mutual interbank exposures. Of

course, this approach faces some problems of data availability, especially on an in-

ternational level. Additionally, there is usually only a focus on direct interlinkages

between banks. However, an advantage of this approach is, that results can be

clearly assigned to one specific channel of shock transmission and that it normally

uses quite reliable data. In this modeling approach, the financial system can be

seen as a directed graph with financial institutions being the nodes (or vertices)

and exposures between these institutions being the edges (or arcs). Within this

so-called network approach techniques originated within the theory of complex net-

works can be used. These techniques are already widely applied to other disciplines

like physics, computer science or sociology. In this context, a special feature in the

June 2010 Financial Stability Review of the European Central Bank3 as well as Hal-

dane and May (2011) provide an introduction how the theory of complex networks

can be applied to analyze the stability of financial systems.

1.2 Summary and contribution

Chapter 2 of this thesis is a contribution to the growing literature on financial net-

works. It is based on the paper “Completeness, interconnectedness and distribution

of interbank exposures - a parameterized analysis of the stability of financial net-

works”.4 In this chapter, the stability of a stylized financial system dependent on

certain characteristics is evaluated. Whereas existing empirical literature on this

topic has its focus on one particular network, theoretical (simulation as well as

model-based) literature on this topic concentrates on the effect of the completeness

and interconnectedness of the network on financial stability. This chapter extends

the existing literature on theoretical network analysis by one parameter: the degree

3 See European Central Bank (2010b), pp. 155-160
4 See Sachs (2010)
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of equality of the distribution of interbank exposures (measured by entropy).

In this chapter, a financial system is characterized by the total number of banks, the

total number of assets in the system, the share of interbank assets to total assets

and the banks’ equity ratio. Furthermore, three network structures are investigated:

a complete network, where a directed link between each financial institution exists, a

random graph, which denotes a usually incomplete network, where (in this case ho-

mogeneous) banks form their links randomly, and a so-called money center system,

which consists of large and strongly interconnected core banks as well as smaller

banks in the periphery that are linked to exactly one core bank. The crucial com-

ponent for the simulations is the matrix of interbank exposures. For given row and

column sums of the matrix, which are exogenously given by the parameters men-

tioned above, a large number of valid matrices of interbank exposures is generated

by simulation. These matrices are then characterized by the degree of equality how

the exposures are distributed.

After creating these matrices for a given financial system, domino effects are sim-

ulated. Thus, it is investigated what happens if one bank fails for some exogenous

reason. If losses on the exposures to the failed bank exceed the creditor banks’

capital, the creditor banks also fail.5 Several rounds of this contagion mechanism

could occur leading to a whole cascade of bank failures. One important component

in the contagion analysis is the loss given default (LGD), i.e. the share of the total

exposure to the failing bank that is actually lost and leads to write-downs on the

creditor banks’ equity. To keep the contagion analysis as simple as possible and to

be able to exclusively focus on the impact of the structure of the matrix of interbank

exposures, I assume a constant LGD within this chapter.6

5 Note that Chapter 2 does not deal with the existence of any regulatory minimum capital
ratios. Thus, I assume that a bank can operate properly as long as it has positive capital.
The following Chapters 3 and 4 will take a minimum capital ratio into account.

6 In Chapter 3 and 4 that contain an empirical analysis of the stability of the German banking
system, this assumption is not applied any more. Instead, a whole distribution of loss given
default is used for simulations.
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The first simulation exercise deals with a complete network and not too extreme

parameter values (i.e. very low equity ratios or very high LGDs). The first result

is that a more equal distribution of exposures leads to a more stable system as ex-

posures are better diversified among counterparties. In a next step, this analysis is

extended to a random graph. Looking at the average number of bank defaults for

a given connectivity (i.e. a given probability that a certain link exists), the results

of the theoretical model of Allen and Gale (2000), i.e. the non-monotonic relation-

ship between the completeness of the network and its stability, can be confirmed by

simulation. If, however, the distribution of interbank exposures is additionally con-

sidered, some deviant results can be shown. Thus, the second result of this chapter

is that financial stability does not only depend on the completeness and intercon-

nectedness of the network, but also on the degree of equality how the exposures are

distributed. Furthermore, two key parameters, the equity ratio and the loss given

default, are varied. It turns out that for parameter values that yield a very unstable

system (i.e. a very low equity ratio and a very high LGD) a more unequal distri-

bution of interbank exposures leads to a more stable system. Thus, in this case, an

equal distribution of exposures helps to spread the initial shock all over the system.

The next simulation exercise deals with money center models. Not surprisingly, the

more concentrated assets are in the core of the system, the more unstable it is. The

last simulation exercise in this chapter deals with a comparison of the stability of

money center systems to the stability of random graphs. On the reasonable assump-

tion that exposures among core banks are at least as large as exposures from core

to periphery banks, a money center system is less stable compared to a network of

homogeneous banks that form their links randomly.

To be able to analyze the influence of specific parameters like the structure of the

matrix of interbank exposures, banks’ capitalization or the loss given default, the

theoretical simulations in Chapter 2 use a highly simplified structure of a banking

system. Real world banking systems are, of course, much more complex, in particu-
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lar in terms of the system size and the heterogeneity of the banks. Chapter 3 and 4

of this thesis focus on a real-world banking system and investigate its stability using

actually realized supervisory data. To be more precise, we analyze the stability of

the German banking system using detailed information on interbank exposures as

well as data on actually realized loss given default in the interbank market.

Chapter 3 is based on joint work with Christoph Memmel and Ingrid Stein (Deutsche

Bundesbank) and provides a revised version of the paper “Contagion at the In-

terbank Market with Stochastic LGD”.7 The main emphasis of this chapter is on

modeling the loss given default. Our dataset shows that the empirical frequency

distribution of the loss given default is markedly u-shaped, i.e. in most of the cases

the LGD is either very low (e.g. due to good collateralization) or very high. This

u-shaped pattern is found for different subsamples concerning the type and the size

of the banks. A suitable approximation for our u-shaped LGD distribution can be

derived by using a beta distribution with parameters being less than one. Existing

empirical literature on interbank contagion mostly uses an exogenously given con-

stant LGD for simulations and then derives results dependent on the specification of

the LGD. However, as we have a whole distribution of interbank loss given defaults

available, it is possible to run our simulations on the assumption of a stochastic

LGD. Thus, we repeatedly simulate the failure of one particular bank, each time

drawing a set of LGD values from the estimated beta distribution. This exercise is

repeated for each bank in our sample. Contrary to the case of a constant LGD, where

only one number of bank defaults is obtained, our simulation method yields a whole

distribution of bank failures and therefore makes it possible to distinguish between

different scenarios. In our simulations that use on- and off-balance sheet exposure

data of German banks in the fourth quarter of 2010, we find that contagion in the

German interbank market may happen. Furthermore, we find that off-balance sheet
7 See Memmel et al. (2011)
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exposures considerably contribute to systemic risk and that netting (if enforceable)

could be a potential solution to the problem of direct interbank contagion.

Chapter 4 builds on Chapter 3 and is based on the paper “Contagion in the Inter-

bank Market and its Determinants”, which is a joint work with Christoph Memmel.8

In this chapter, the analysis of contagion within the German banking system is ex-

tended to a whole time period (from the first quarter of 2008 to the second quarter

of 2011). Thus, we run the contagion analysis already applied in Chapter 3 for each

quarter within the time period under consideration. The result of this exercise is

that the system becomes less vulnerable to direct interbank contagion over time.

To investigate the impact of our assumption of a stochastic LGD, we run the same

simulations again, but this time by assuming a constant LGD which equals the mean

of our LGD-dataset. We find that the effect of our assumption of a stochastic LGD

depends on the overall stability of the financial system. The assumption of a con-

stant LGD leads to an overestimation of the number of bank failures if the system is

rather unstable, as it is not taken into account that parts of the interbank exposures

have a high recovery rate (i.e. a low loss given default). In contrast, if the system is

rather stable, the assumption of a constant LGD leads to an underestimation of the

number of bank failures, as it is possible that some key exposures have a very low

recovery rate (i.e. a high loss given default). Thus, we conclude that it is important

to take into account the distribution of the LGD when running a contagion analysis.

Simulating by averaging out the LGD can lead to an over- or underestimation of

the stability of the financial system, respectively.

As we run stochastic simulations, we obtain a whole distribution of bank failures as

a result. To be able to compare the distributions of bank failures for different points

in time, we use the concept of stochastic dominance. However, to implement further

analysis it is desirable to condense the information of the whole distribution into
8 See Memmel and Sachs (2011)
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one indicator. By estimating a logit model, we show that it is possible to predict the

probability of a dominance relationship by the absolute difference in the expected

number of bank defaults. Thus, most of the information can be condensed into one

indicator, which is the expected number of bank defaults. This result simplifies the

investigation of the main determinants of financial stability. Following the theoret-

ical literature on interbank contagion (e.g. the simulation analysis in Chapter 2),

we estimate the impact of the following determinants: the banks’ capitalization,

their interbank lending, the mean of the beta distribution of the loss given default

and as a really systemic measure, the degree of equality how banks spread their

exposures (measured by entropy). Thus, we quantify the impact of the different

determinants of system stability. Additionally, we can confirm the results of the

theoretical simulations in Chapter 2 that a higher equity ratio, a lower amount of

interbank lending, a lower average loss given default and a more equal distribution

of interbank exposures leads to a more stable system.

Hence, some implications for the optimal design of a stable financial network can be

derived out of the following chapters. First, a rather equal distribution of interbank

exposures and thus a careful risk diversification makes the system more resilient to

an exogenous shock as long as banks are not too weak to absorb shocks (e.g. due to

a very low capitalization). Additionally, a centralized banking system with few large

banks in the core and many small banks that are linked to these few large banks

bears the risk that the failure of one large bank is a threat to all remaining banks

in the system. A decentralized system with banks of rather equal size naturally

allows more opportunities of risk diversification leading to a more stable system.

Not surprisingly, a better capitalization of banks (which is already included in the

Basel III framework) and a lower amount of interbank lending decrease the danger

of direct interbank contagion. This leads to the conclusion that a higher reliance on

wholesale funding by banks reduces the stability of the financial system. Another
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important implication can be drawn for the detection of systemic risk. In the fol-

lowing chapters, it is shown that simulations of direct contagion on the interbank

market are remarkably influenced by assumptions concerning parameters like the

loss given default. Thus, it is desirable to take into account a more realistic model-

ing approach of the loss given default by using a u-shaped frequency distribution.

During recent years, a great effort has already been made to enhance the resilience

of the financial system to certain shocks. Part of these efforts comprise the devel-

opment of the Basel III regulatory framework that is, among other things, designed

to improve banks’ capital and liquidity endowment. Furthermore, institutions like

the European Systemic Risk Board (responsible for the European Union) or the Fi-

nancial Stability Oversight Council (responsible for the United States) were created

to improve macroprudential surveillance and detect systemic risk.9 But, as often

stated among policy makers and academics, a lot of research still has to be done in

order to sufficiently understand various channels that influence financial stability.

This thesis constitutes a quantitative contribution to this research partially using

real data.

9 For a description of their tasks and possibilities of action see International Monetary Fund
(2011), Chapter 3, pp. 3-5
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Chapter 2

A parameterized analysis of the

stability of financial networks
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2.1 Introduction

Research on financial stability is an important topic in order to assess certain risks

and dangers within financial systems that potentially lead to huge losses for the

overall economy. Especially the investigation of various channels of interbank con-

tagion has been in the focus of recent research. This is also the aim of this chapter.

In this context, interbank contagion means that the failure of one financial insti-

tution leads to the failure of other financial institutions. To be more precise, this

chapter examines pure domino effects between banks. Thus, it is investigated what

happens if one bank fails and therefore a part of other banks’ claims to that bank

also fail. It is then possible that creditor banks lose all their capital and therefore

fail as well. In the worst case, there are subsequent rounds of failures until the

whole system defaults. Of course, this is just one channel through which interbank

contagion can occur. Further channels can be contagion due to liquidity problems

because of correlated asset portfolios among banks, contagion due to refinancing

problems affecting banks or contagion due to information spillovers. As a starting

point, however, to be able to exclusively focus on the effect of the structure of the

liability matrix on the stability of the financial network, only domino effects are

considered.

The main contributions of this chapter are, first, that there is an explicit investi-

gation of the impact of the structure of the matrix of interbank liabilities on the

stability of the interbank network. In this context, for given balance sheets of a hy-

pothetical banking system, a large number of valid matrices of interbank exposures

is created and characterized by the degree of equality of the distribution of exposures

(measured by entropy). Second, this chapter examines, how the impact of the struc-

ture of the matrix of interbank exposures on the stability of the financial system

interacts with other parameters like banks’ capitalization or the loss given default.

Third, this chapter provides a comparison of the stability of the financial system

12



between different network topologies like a complete network, a random graph and

a money center system with a core-periphery structure.

The main results are, first, that not only the topology of the network (e.g. its

completeness and interconnectedness) determines its stability but also how equally

interbank exposures are distributed. The second result is that the sign of the corre-

lation between the degree of equality of the distribution of interbank exposures and

the average number of bank failures depends on the number of interbank links within

the financial system as well as on banks’ equity ratio and the loss given default. Ad-

ditionally, by assuming reasonable parameter values concerning the amount of bi-

lateral interbank exposures, money center systems with asset concentration among

core banks are more unstable than networks with banks of homogeneous size that

form their links randomly.

This chapter is organized as follows. Section 2.2 gives an overview on the related

literature as well as this chapters’ main contributions to this literature. In Section

2.3 the basic structure of the financial system is defined. Section 2.4 explains in more

detail how interbank liability matrices are created and characterized. Simulations

of domino effects are run and results are presented in Section 2.5 which is divided

into the investigation of complete networks (Section 2.5.1), random graphs (Section

2.5.2) and money center models (Section 2.5.3). Section 2.6 summarizes the main

findings.

2.2 Literature

Various fields of studies have been developed to capture the numerous facets of this

comprehensive topic (for a literature survey, see Allen and Babus (2009)). From the

theoretical point of view, Allen and Gale (2000) show that interbank connections can

be useful in order to provide an insurance against liquidity shocks. Because of these

interbank linkages, however, the bankruptcy of one bank can lead to the bankruptcy
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of other banks. In this context, Allen and Gale show that a financial system with a

complete network structure is less prone to contagion than a financial system with

an incomplete network structure. In addition, they state that a disconnected system

is useful to limit contagion. Freixas et al. (2000) implement, among other things,

a theoretical analysis of contagion within a “money center system”, where banks in

the “periphery” are linked to one “core bank” but not to each other. They show

that there are parameter constellations under which the failure of a periphery bank

does not lead to contagion, whereas the failure of the “core bank” does.

Another part of the literature that investigates financial stability are empirical stud-

ies that use supervisory data to analyze the danger of domino effects within a bank-

ing system (for example van Lelyveld and Liedorp (2006), Upper and Worms (2004),

Wells (2004), Furfine (2003), Sheldon and Maurer (1998)). As a lot of detailed data

on interbank exposures are necessary but often not available, assumptions such

as maximum entropy are made concerning the structure of these exposures. This

means that banks are assumed to spread their interbank claims as equally as pos-

sible among their counterparties. However, it is likely that, under the maximum

entropy assumption, results are biased. In his summary of the analysis of interbank

contagion, Upper (2007) states that maximum entropy assumptions tend to under-

estimate the incidence but overestimate the severity of contagion. Mistrulli (2011)

investigates interbank contagion using actual Italian interbank data and compares

his findings with an analysis using the maximum entropy assumption. He finds

that, for most parameter constellations, the maximum entropy assumption tends to

underestimate the extent of contagion. There are, however, also some parameter

constellations (in particular a high loss given default) where the maximum entropy

assumption overestimates the scope of contagion.

Cifuentes et al. (2005) extend a contagion model of domino effects by simulations

that include contagion due to liquidity problems. Within their simulations they use
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a clearing algorithm developed by Eisenberg and Noe (2001).10 Liquidity effects are

considered in a similar way in the network model of Bluhm and Krahnen (2011).

Furthermore, the analysis of pure domino effects is extended by Chan-Lau (2010)

and Espinosa-Vega and Solé (2010) by additionally considering contagion due to

banks’ refinancing problems and due to risk transfers stemming from off-balance

sheet exposures. Also, the impact of market and funding liquidity risk on the sta-

bility of a financial network is investigated by Aikman et al. (2009).

In recent years there has been a growing literature which uses theory of complex net-

works to describe real-world financial systems and simulate the effects of potentially

dangerous events. For example, Boss et al. (2004) analyze the network topology of

the Austrian interbank market. Iori et al. (2008) apply network theory to describe

the Italian overnight money market. Haldane (2009) provides a characterization

of the world’s financial network. Georg (2011) models a financial system including

liquidity provision by the central bank and investigates the effect of the structure of

the network (e.g. a small-world network and a scale-free network) on its stability.

Additionally, Gai and Kapadia (2010), as well as Nier et al. (2007), use random

graphs to analyze the danger of contagion dependent on certain characteristics of

the financial system by simulation. Gai and Kapadia (2010) find that for a high

connectivity of the network, the probability that contagion occurs is low but the

impact if contagion occurs can be high. Nier et al. (2007) find out by parameter-

ized simulation some non-linearities between certain parameter values and financial

stability. Contrary to most of the empirical literature, where one special financial

system is considered to test the danger of contagion, simulation-based work instead

tries to find out the main characteristics that make a financial system especially

vulnerable to contagion.

As, up to now, only few studies exist about the detailed structure of real-world finan-
10 Eisenberg and Noe showed that under mild regularity conditions (strong connectivity and at

least one node has positive equity value or all nodes have positive operating cash flows) there
exists a unique fixed point that describes the clearing payment vector of the financial system.
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cial networks, this chapter considers several stylized structures and investigates their

impact on financial stability by simulation. This chapter builds on the empirical lit-

erature that uses entropy methods to construct and characterize interbank linkages

as well as on literature that tries to simulate the danger of contagion according to

certain characteristics of the financial system, in particular the matrix of interbank

exposures. For example, it extends the work of Mistrulli (2011) in such a way that

not only one matrix is compared to the maximum entropy solution but a great

variety of randomly generated matrices with different network structures. A new

approach in this chapter is that a large set of valid interbank matrices is constructed

by a random generator and then characterized according to certain properties, such

as entropy, relative entropy to the maximum entropy solution or connectivity.

Additionally, this chapter differs from Nier et al. (2007) in the sense that, first, bal-

ance sheets are constructed and, as a second step, the liability matrix is generated,

which is, besides row and column sums of the matrix, independent from banks’ bal-

ance sheets. Thus, stability results obtained in this chapter can be attributed purely

to changes in the liability matrix.

Furthermore, results can be interpreted as an extension to the theoretical litera-

ture about the impact of certain network patterns on contagion. Up to now the

focus has been exclusively on the completeness and interconnectedness of interbank

networks (see Allen and Gale (2000)). In this context, banks are modeled as com-

pletely homogeneous, especially with all interbank exposures being the same size.

This work, however, investigates a large number of possible matrices with various

possible specifications of interbank exposures and can thus have an additional focus

on the distribution of claims within the network for given completeness and intercon-

nectedness. Results of this chapter show that the distribution of interbank claims

within the network is an important parameter affecting the stability of the network.
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2.3 Structure of the financial system

The financial system is modeled as a network of N nodes where nodes 1 to N−1 are

financial institutions (referred to as banks in the following) and node N constitutes

the external (non-banking) sector (such as households or non-financial companies).

These nodes are linked by directed edges that depict direct claims/obligations be-

tween the financial institutions and the external sector. For some of the subsequent

financial networks modeled, it is assumed that there are two different types of banks,

core banks and periphery banks, that are equal within their groups but differ across

groups with regard to their connectivity and size, respectively. The distribution of

assets among the two types of banks is given by a concentration ratio CR, that

denotes the share of total bank assets that core banks hold.

Bank i’s balance sheet has the following structure:

AIBi + AEi = LIBi + LEi + Ei (2.1)

∀ i ε {1, ..., N − 1}.

Interbank assets AIBi (liabilities LIBi ) are claims (obligations) between banks. Ex-

ternal assets AEi are interpreted as credit to the external sector. External liabilities

LEi denote obligations of banks to the external sector such as customer deposits.

The balance sheet is completed by equity Ei that is given by the difference of bank

i’s total assets Ai (= AIBi + AEi ) and liabilities Li (= LIBi + LEi ).

The (risk unweighted) equity ratio, which is presumed to be equal across banks, is

given by:11

r = Ei
AIBi + AEi

(2.2)

11 More general models including banks with heterogeneous equity ratios can be implemented
in a straightforward way.
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∀ i ε {1, ..., N − 1}.

The financial system is characterized by the total amount of banks’ assets Abanks,

as well as the total amount of banks’ interbank assets AIB. The ratio of interbank

to total assets in the financial system is defined as:

φ = AIB

Abanks
(2.3)

Bank i’s total assets, total liabilities and equity of this stylized financial system can

be perfectly described by the total amount of banks’ assets Abanks, the total number

of banks N − 1, the number of core banks ncore, the concentration ratio CR and

banks’ equity ratio r.

The direct connections between the nodes can be illustrated by a liability matrix:

L =



A1 A2 . . . AN−1 AN

L1 0 L1,2 . . . L1,N−1 L1,N

L2 L2,1 0 . . . L2,N−1 L2,N

... ... ... ... ... ...

LN−1 LN−1,1 LN−1,2 . . . 0 LN−1,N

LN LN,1 LN,2 . . . LN,N−1 0



with Li,j being the obligation of bank i to bank j (i, j ε {1, ..., N − 1}). Because

banks and the external sector do not lend to themselves, Li,i = 0 ∀ i ε {1, .., N}.

Additionally, as banks are linked on both sides of their balance sheets, it is easy

to interpret row sums (= total liabilities) and column sums (= total assets) of the

matrix. The elements of the last row, LN,i (∀ i ε {1, .., N − 1}), are equal to banks’

external assets AEi . Thus, the sum of the elements in the last row of the matrix is
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equivalent to banks’ total external assets, which are given by (1 − φ) · Abanks. The

elements of the last column, Li,N (∀ i ε {1, .., N − 1}), are equal to banks’ external

liabilities LEi . Hence, the sum of the elements in the last column of the matrix (AN)

is equivalent to the total amount of external liabilities of banks. Furthermore, it

is assumed that the system is closed, i.e. there is no lending / borrowing to some-

where outside the network. Technically, this means that the sum of row sums of the

liability matrix has to be equal to the sum of column sums. Thus, total external

liabilities of banks (or total assets of the external sector AN) can be calculated by

the difference between total liabilities in the system (the external sector included)

and total assets of banks.12

2.4 Creation and characterization of liability ma-

trices

Regulators often face the problem of limited data. Sometimes only the row sums

and column sums of the liability matrix are observable. At least it is quite common

for some elements of the liability matrix to be missing. As already mentioned,

this problem is often surrounded by using the assumption that banks spread their

exposures as evenly as possible, which is equivalent to maximizing the entropy of

the (normalized) liability matrix.13 However, using matrices under the maximum

entropy assumption tends to bias the results.

The approach of this chapter is to abstract from generating only one matrix using

the maximum entropy assumption but to create, for given row and column sums,

a large number of valid liability matrices by a random generator. This is done in
12 In the aggregate AN , it is not considered that the external sector might be the owner of the

banks. Thus, AN only comprises the amount of banks’ liabilities that is provided by the
external sector.

13 For the calculation of the maximum entropy solution of a matrix with given row and column
sums, see Appendix 1.
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two steps: first, a random number Lrandij , that does not exceed the number of total

liabilities in the system Ltotal (or total assets in the system Atotal, respectively), is

assigned to each off-diagonal element. This random number is drawn from a uniform

distribution with Lrandij ε
[
0, Ltotal

]
, ∀ i 6= j, where RSgoal(i) is the aspired row

sum and CSgoal(j) is the aspired column sum associated to this element. The

interval the random number is drawn from seems at first more restrictive than

it is. A reduction/expansion of the interval of the uniform distribution to some

smaller/higher upper bound does not change the simulation results. To make the

matrix fit exactly, the RAS algorithm is applied:14 In a first step, each element of

the matrix is multiplied by the ratio of the aspired row sum (RSgoal(i)) and the

actual row sum (rs(i)).

Lij = Lij ·
RSgoal(i)
rs(i) (2.4)

In a second step, each element of the matrix is multiplied by the ratio of the aspired

column sum (CSgoal(j)) and the actual column sum (cs(j)).

Lij = Lij ·
CSgoal(j)
cs(j) (2.5)

By repeating these two steps sufficiently often, a matrix with elements that fit to

the aspired row and column sums will be generated.

The RAS algorithm shows some interesting features. First, restrictions to connec-

tivity can be imposed by setting certain elements equal to zero. These elements

will remain zero after running the algorithm. Second, given certain random starting

values within the matrix, the RAS algorithm yields a unique solution, independent

of the “position” of a certain bank within the matrix. The algorithm is also robust

to a transposition of the matrix. Third, the randomly generated starting values

determine a certain correlation structure within the matrix. The RAS algorithm

determines a unique solution that matches the given correlation structure as well as
14 For a detailed description of the RAS algorithm, see Blien and Graef (1991).
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possible and that fulfills row and column sum restrictions. However, there are cases

where the RAS algorithm does not provide a valid solution. This happens especially

when too many zero restrictions are imposed. Within the simulations, randomly

generated matrices that do not fit are dropped.

After liability matrices are generated, they have to be characterized. As the aim

of this chapter is to investigate the stability of the financial system dependent on

the matrix of interbank exposures, the focus is, for the following characterizations,

on the (N − 1 × N − 1) matrix that covers the interbank market. It is created by

deleting the last row and the last column of the (N ×N) liability matrix L.15 As a

next step, there has to be some normalization of matrices because entropy measures

have to be applied on probability fields. This is done by dividing all elements by the

total amount of interbank liabilities or interbank assets, respectively. As a result,

the elements of the normalized matrices add up to 1 and thus can be treated as

probabilities. In the following, all normalized elements are marked with a super-

script p and are written in lower case letters.

After normalization, the next step is to characterize matrices according to the fol-

lowing measures:

• Entropy: In information theory, entropy is a measure for information and

can, for example, be explained in the context of search problems. To be more

precise, entropy is a lower bound of the average path length from the root

to the leaves of a binary search tree. Thus, entropy is a lower bound to the

average number of yes/no questions that is needed to obtain full information.

The more equal the probability distribution of the elements in the search space,

the more questions are on average needed to obtain the desired element and,

hence, the higher entropy is. The more unequal the probability distribution,
15 As the sum of banks’ interbank assets has to be equal to banks’ interbank liabilities, the sum

of row sums of the (N − 1×N − 1) matrix is still equal to the sum of column sums.
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the lower entropy is. The lowest entropy (equal to zero) can be obtained

when one element in the search space occurs with probability 1 and the other

elements with probability 0, i.e. the most unequal distribution of elements

occurs.

This entropy measure can be reinterpreted to quantify the inequality of the

distribution of claims of a liability matrix. Using the normalization mentioned

above, the elements of the matrix can be seen as realizations of a probability

distribution of elements within a search space that need not be defined more

specifically. Entropy measures the amount of information inherent in these

realizations and is maximal if banks spread their claims / obligations as equally

as possible. The higher the entropy, the more equally interbank claims are

distributed for given row and column sums. The entropy is calculated by:16

ENT = −
N−1∑
i=1

N−1∑
j=1

lpij · ln
(
lpij
)

(2.6)

with 0 · ln(0) := 0.

• Relative entropy (Kullback-Leibler divergence) to maximum entropy

solution: The relative entropy is a measure for the difference between two

probability distributions. Given two normalized liability matrices Xp (in this

case the maximum entropy solution X∗, see Appendix 1, with last row and last

column deleted and normalized by the total amount of interbank liabilities)

and Lp (in this case a valid normalized liability matrix generated by random

generator), the relative entropy is given by:

RE =
N−1∑
i=1

N−1∑
j=1

lpijln

(
lpij
xpij

)
(2.7)

16 When applying the entropy measure in the context of binary search trees, log2 is used. How-
ever, in economics literature it is more common to use the natural logarithm. This is equivalent
to multiplying a constant factor.
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with 0 · ln(0) := 0 and 0 · ln(0
0) := 0.

A higher value of RE denotes a greater difference between the two distribu-

tions. In the financial system modeled here, a higher relative entropy means

a greater distance to the probability distribution of the maximum entropy so-

lution and thus a more unequal distribution of claims among banks. As long

as the relative entropy to the maximum entropy solution is considered and

banks are assumed to be of equal size, there is a negative linear relationship

between the entropy of a matrix and its relative entropy to the maximum

entropy solution.17

• Connectivity: The connectivity of the financial system can be described by

the probability that a directed link between two banks exists. While construct-

ing the liability matrix of a random graph, each off-diagonal interbank element

is (independently) given a certain positive real number with probability p and

0 with probability 1− p. This probability p is called Erdös-Rényi probability.

However, during implementation one has to be careful that, for given starting

values (including zeros with a certain probability), the RAS algorithm is able

to find a valid solution of matrix entries. This problem increases with decreas-

ing connectivity. The algorithm used in this chapter simply drops matrices

that are not valid.
17 The general derivation of this linear relationship is provided in Appendix 2. Simulation results

confirm this theoretical finding.
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2.5 Simulation of domino effects

Within these simulations, pure domino effects are modeled dependent on charac-

teristics of the interbank liability structure.18 As a trigger event, one bank fails.19

Assuming a certain loss given default (LGD), creditor banks lose a share of their

claims to the defaulting bank.20 If this lost share is larger than the creditor bank’s

equity, the creditor bank also fails. If one or more banks fail due to the first failure,

the next round starts with banks losing additional shares of their claims to failing

banks. Thus, a bank fails if:

∑Interbank exposures to failed banks ∗ LGD > Equity

For a large number of randomly generated matrices, it is investigated how many

banks fail on average, after the failure of one bank, dependent on the characteristics

of the liability matrix mentioned in Section 2.4. To be more precise, it is calculated

which percentage of total assets of the banking system belongs to failing banks, i.e.

which percentage of total bank assets is affected by bank failure.21 Note, however,

that this does not mean that all assets affected by bank failure actually default.

The amount of assets that actually default depends on the value of the loss given

default.

To depict the results graphically, value intervals of characteristics have to be de-

fined. One possibility to do this is to adjust interval size according to the number

of observations. After the random generation of matrices, they are sorted according
18 For advantages and disadvantages of modeling domino effects, see Upper (2007).
19 This is a rather simple way to model a shock on the financial system. A more sophisticated

approach is, for example, used by Elsinger et al. (2006), who apply aggregate macroeconomic
shocks to test for the resilience of the Austrian interbank market.

20 In this chapter, a constant, exogenously given LGD is assumed. An obvious extension is to
endogenize the LGD as, for example, in Degryse and Nguyen (2007).

21 An alternative target value to measure the harm of interbank contagion is the loss of the
external sector, which can be computed easily within this model.
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to their characterization values, and then intervals are defined with each interval

having the same number of observations.

The network simulations are run several times and for different banks failing first to

check how robust these results are with respect to sample changes and to changes

in the trigger event.

2.5.1 Complete networks

To begin with, simulations are run for complete networks, i.e. it is assumed that

there exists a directed link from each node to all other nodes. The parameter values

used for subsequent simulations are Abanks = 1.000, N = 11, ncore = 10, CR = 1

(i.e. all banks are the same size), φ = 0.3, r = 0.06 and LGD = 0.5. The following

figures show, for 50, 000 randomly generated matrices of interbank exposures, the

average percentage of total assets of the banking system affected by bank failures in

a network with 11 nodes (10 banks and the external sector) dependent on entropy

(Figure 2.1) and relative entropy to the maximum entropy solution (Figure 2.2),

each color representing a randomly generated sample.
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Figure 2.1: Stability of a complete network dependent on entropy
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From Figure 2.1 it can be seen that an increase in entropy leads to a lower average

percentage of banks’ assets affected. On the assumption that all banks are of equal

size, the average number of bank defaults dependent on entropy can be derived eas-

ily by multiplying the average percentage of banks’ assets affected by failure by the

total number of banks (in this case, 10). Hence, the more equally banks spread their

claims, the fewer institutions default on average. These results suggest that, within

a complete network and for the parameter values given above, shocks are absorbed

best if banks diversify their (credit) risk exposures well. The results, as well as all

subsequent simulation results, are robust to changes in the sample and to changes

in the bank that fails first.
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Figure 2.2: Stability of a complete network dependent on relative entropy

Figure 2.2, which shows the relation between relative entropy to the maximum en-

tropy solution and average percentage of banks’ assets affected, yields the inverse

result compared to Figure 2.1: The higher the relative entropy, the higher the per-

centage of banks’ assets affected and therefore the higher the average number of

bank failures. Thus, because of the negative linear relationship between entropy

and relative entropy shown in Appendix 2, Figure 2.2 also confirms that a more

equal distribution of claims leads to a more stable system.
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Up to now, the impact of the distribution of claims on financial stability can be

summed up as follows:

Result 1: In a complete network, for the parameter values given above,22 a lia-

bility matrix with an equal distribution of interbank exposures (a high entropy or

a low relative entropy to the maximum entropy solution, respectively) leads to a

more stable system than a liability matrix with an unequal distribution of interbank

exposures.

2.5.2 Random graphs

A connectivity of 100% is rather unrealistic. Thus, some network has to be designed

that omits some directed links within the financial system. One option in this con-

text is to model random graphs.

Concerning completeness and interconnectedness of the network only and assuming

that banks are completely homogeneous, especially with a completely homogeneous

asset / liability structure, subsequent results should be expected according to the

theoretical findings of Allen and Gale (2000). They examine three types of networks

that are displayed in Figure 2.3. The complete and perfectly interconnected network

(Figure 1 in Allen and Gale) is equivalent to a random graph with an Erdös-Rényi

probability of 100%. In this case, the possibility that contagion occurs is rather

low because the more complete a financial system, the greater is the potential for

risk diversification. With decreasing connectivity, the network structure moves to-

wards systems that are still highly interconnected but also incomplete (equivalent to

Figure 2 in Allen and Gale). Allen and Gale show that these systems are more vul-

nerable to contagion. With connectivity decreasing further, the network structure

becomes equivalent to the disconnected system in Figure 3 in Allen and Gale. This
22 In the sections below, it is specified in more detail for which parameter values these results

hold.
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disconnection can limit the extent of contagion. Hence there is a non-monotonic

relationship between completeness of the network and financial stability.
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FIG 1: Complete market structure FIG 2: Incomplete market structure FIG 3: Disconnected incomplete
market structure

Figure 2.3: Types of networks investigated by Allen and Gale (2000)

In the following simulations, the degree of disconnection is measured by the average

number of strongly connected components across all matrices in a sample. Within

a strongly connected component, every bank can be reached by every other bank.

This does not mean that there are direct links between all banks as in a complete

network. It is sufficient that there exists a directed path between all nodes. If the

graph contains only one strongly connected component, the failure of one bank can

(potentially after several rounds of contagion) cause the failure of all other banks.

If there is more than one strongly connected component, however, it is possible that

the failure of one bank cannot cause the failure of all other banks because not all

banks can be reached by the failing bank. Hence, the higher the average number of

strongly connected components for a given Erdös-Rényi probability, the more dis-

connected is the system.

As mentioned above, the analysis of Allen and Gale is based on a banking sys-

tem with completely homogeneous banks with a completely equal asset / liability

structure. Within the simulations of this chapter, in addition to completeness and

interconnectedness, a third aspect is introduced into the analysis: the distribution

of claims within the system.
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2.5.2.1 Varying connectivity

In the following, the default algorithm is run for different values of the Erdös-Rényi

probability p, all other parameter values kept equal to those in Section 2.5.1. Each

off-diagonal element of the liability matrix that denotes an interbank claim / obliga-

tion is set equal to zero with probability 1− p.23 As for certain zero constellations,

the RAS algorithm is not able to find a valid solution; matrices that do not fit are

dropped. Furthermore, matrices where the actual share of existing links to total pos-

sible links deviates more than 0.02 from the desired connectivity are also dropped.

Thus, only matrices that fit exactly to desired row and column sums and (almost)

exactly to desired connectivity are used for the analysis.

To capture the degree of disconnection of the randomly generated network, the num-

ber of strongly connected components is computed for each graph. After generating

a large number of matrices, the average number of strongly connected components

for a given Erdös-Rényi probability is calculated. It turns out that the system starts

to become disconnected for p = 0.5 with an average number of strongly connected

components of around 1.03. For p = 0.3, more randomly generated graphs are not

perfectly interconnected any more, which yields an average number of strongly con-

nected components of about 1.80. The degree of disconnection jumps up for p = 0.1,

where the average number of strongly connected components is around 9.07.

All the following simulations are implemented by generating 50, 000 matrices for

p = 100%, 90%, 70%, 50%, 30% and 10%, respectively. Table 2.1 shows overall

correlations between entropy (= ENT ), relative entropy (= RE) and connectivity

(= p) for an Erdös-Rényi probability of 10% to 100% (with 25, 000 matrices gener-

ated in 10%-steps, respectively) using the same parameter values as in the previous

23 Alternatively, the whole graph (including the node that denotes the external sector) can be
modeled as a random graph. The aim of this chapter is, however, to investigate the impact
of the network topology of the interbank market on financial stability. Furthermore, it is
certainly more realistic to assume that all banks have connections to the external sector.
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section.

characteristic p ENT RE
p 1 0.94 -0.94

ENT 1 -1
RE 1

Table 2.1: Correlation coefficients between characteristics in a random graph

As a first step, to capture the effect of completeness and interconnectedness on fi-

nancial stability, the average percentage of bank assets affected by failure dependent

on the connectivity of the financial system is calculated. Figure 2.4 shows the aver-

age percentage of banks’ assets affected by failure dependent on the median entropy

for a given Erdös-Rényi probability. It can be seen that a complete network (i.e.

with p = 100%) leads on average to matrices that are characterized by high en-

tropy. With decreasing connectivity, entropy also decreases, meaning that claims

are distributed more unequally (according to Table 2.1, there is a high correlation

of 0.94 between entropy and the Erdös-Rényi probability). Furthermore, Figure 2.4

shows that with decreasing completeness (i.e. a decreasing Erdös-Rényi probabil-

ity) the average percentage of assets affected by bank failure rises. This is in line

with the finding of Allen and Gale that an incomplete but perfectly interconnected

network leads to a less stable financial system than a complete network. The effect

appearing in Allen and Gale’s disconnected network can be observed for p = 10%.

For p = 10%, the average percentage of assets affected (and therefore the average

number of bank failures) is much lower than for p = 30% which can be explained by

the large rise in the average number of strongly connected components from around

1.80 to around 9.07.
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Figure 2.4: Average stability of the network dependent on connectivity and entropy

These results shown in Figure 2.4 can be obtained on average if networks are ex-

clusively characterized by their completeness and interconnectedness. However, the

effect of the structure of the financial system on financial stability can be analyzed

in more detail by additionally considering the effect of the distribution of claims for

a given connectivity. Intervals of characteristics are, as in Section 2.5.1, defined in

a way that the number of observations is the same within all intervals. Simulations

show that results are still not dependent on which bank failed first and the sample

generated.
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Figure 2.5: Stability of the network dependent on connectivity and distribution of
exposures (measured by entropy)
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In Figure 2.5 it can be seen that for p = 100% the same result is obtained as in

Figure 2.1. A liability matrix with a higher entropy leads to a lower average percent-

age of assets affected by bank failure and therefore a lower average number of bank

failures. However, with the 100% connectivity assumption, only rather high values

for entropy can be generated. Inserting zero off-diagonal “interbank” elements into

the matrix with 10% probability, which is equivalent to p = 90%, generates matrices

with a lower entropy. The negative correlation between bank failures and entropy

still holds for p = 90%. With decreasing connectivity, matrices with an even lower

entropy can be created. The negative correlation between entropy and average bank

failures, however, becomes weaker and turns into a positive correlation. This means

that for a given low Erdös-Rényi probability (for example p = 50%, p = 30% or

p = 10%), a comparatively high entropy leads on average to more banks defaulting

than a comparatively low entropy.

An interpretation for this observation is that, for a high connectivity, an equal

distribution of interbank claims is the best shock absorber due to credit risk diver-

sification, whereas an unequal distribution of claims increases the probability that

there is a second-round effect after the failure of one bank. On the contrary, when

connectivity is low, the failure of one bank is very likely to cause second-round effects

because the average amount of interbank exposures to the few connected banks is

very high. Hence, the more equal the distribution to the few other banks, the higher

the probability that all these banks fail because there are not enough counterparties

to diversify the losses induced by the shock. On the other hand, the more unequal

the distribution to the few other banks, the higher the probability that not all of

these banks fail and therefore the average number of failures is smaller in this case.

Thus, a change in the average percentage of assets in the banking sector affected

by failure (i.e. a change in the average number of bank failures) is not just due

to a change in connectivity but can also be due to a change in the distribution of

interbank claims. For example, though the overall average number of banks failing
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is higher for a connectivity of 30% compared to a connectivity of 50% (see Figure

2.4), a system with a very unequal distribution of interbank claims (low entropy)

and 30% connectivity is more stable than a system with a rather equal distribution

of interbank claims (high entropy) and 50% connectivity (see Figure 2.5). Also, a

system with a very equal distribution of interbank claims (high entropy) and 90%

connectivity is more stable than a network with 100% connectivity and a very un-

equal distribution of interbank claims (low entropy).

Thus, by additionally considering the distribution of claims within the system, it

can be seen that a complete network can be more unstable than an incomplete but

perfectly interconnected network. This finding extends the work of Allen and Gale

in a way that results could change if interbank claims are allowed to be heteroge-

neous.

Figure 2.6 and 2.7 show the average number of bank failures dependent on the rela-

tive entropy to the maximum entropy solution. As entropy and relative entropy are

exactly negatively correlated (see Appendix 2 and Table 2.1), these two figures can

be regarded as the mirror image of Figures 2.4 and 2.5.

0 0.5 1 1.5 2 2.5 3
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Relative entropy

%
 o

f t
ot

al
 a

ss
et

s 
of

 b
an

ki
ng

 s
ys

te
m

 a
ffe

ct
ed

 o
n 

av
er

ag
e

90 %

p = 100 %

70 %

50 %

30 %

10 %

Figure 2.6: Average stability of the network dependent on connectivity and relative
entropy
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Figure 2.7: Stability of the network dependent on connectivity and distribution of
exposures (measured by relative entropy)

The results of this paragraph can be summarized as follows:

Result 2: Financial stability does not only depend on the completeness and in-

terconnectedness of the network but also on the distribution of claims within the

system.

Result 3: For the parameter values given above,24 the sign of the correlation be-

tween the equality of the distribution of claims (measured by entropy and relative

entropy) and financial stability changes with decreasing completeness of the net-

work. For high completeness (and high interconnectedness) an equal distribution

of claims leads to the most stable system. For lower completeness (but still high

interconnectedness) the positive correlation between entropy and number of banks

failing weakens. For very low completeness (and low interconnectedness) a more

unequal distribution of interbank claims leads to a more stable system.

As long as banks are assumed to be of equal size, the characterization of matri-
24 In the sections below, it is specified in more detail for which parameter values these results

hold.
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ces by entropy and relative entropy yields exactly the same results. Thus, all the

following investigations are only made dependent on entropy. As a next step, some

sensitivity analysis is done by varying one parameter (LGD, equity ratio or ratio of

interbank assets to total assets in the banking system), as well as connectivity, and

fixing all other parameters at their benchmark value set in Section 2.5.1.

2.5.2.2 Varying loss given default and connectivity

Figure 2.8 shows the not very surprising result that, for a given connectivity, the

average percentage of assets affected by bank failure (and thus also the average num-

ber of bank failures) increases with an increasing loss given default. An interesting

observation is that for a high LGD (= 100%) the effect of a disconnected system

(equivalent to Figure 3 in Allen and Gale) is already visible between p = 50% and

p = 30%. Starting from p = 50% the average number of bank defaults decreases

with decreasing connectivity. Hence, the impact of the disconnection of the financial

system becomes more important for high rates of LGD where the average number

of bank defaults tends to be very high.
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Figure 2.8: Average stability of the network dependent on the loss given default
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Figure 2.9 shows that a LGD of 100% leads to a positive correlation between assets

affected by bank failure and entropy, even for a high connectivity of the network.

A LGD of 30% leads to a negative correlation between assets affected by bank fail-

ure and entropy, even for a low connectivity (up to p = 30%) of the network. An

explanation for this observation is that a high LGD makes a system vulnerable to

interbank contagion as a high share of claims to the failing banks defaults. Thus,

it can be assumed that contagion occurs with certainty. In this case, it is better

to have a relatively unequal distribution of interbank exposures so that only few

banks are hit by a second-round effect of contagion. For a low LGD, the system is

rather resilient to interbank contagion. In this case, second-round effects only occur

if interbank exposures are distributed very unequally, i.e. interbank claims are not

well diversified among counterparties. This result is exactly in line with the findings

of Mistrulli (2011), who shows that for low and medium LGDs, the maximum en-

tropy assumption tends to underestimate the severity of contagion. For high LGDs,

however, using the maximum entropy assumption leads to an overestimation of the

severity of contagion.
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Figure 2.9: Stability of the network dependent on the loss given default and the
distribution of interbank exposures
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2.5.2.3 Varying equity ratio and connectivity

Figure 2.10 shows, not surprisingly, that a lower equity ratio leads, for a given

Erdös-Rényi probability, to a higher average number of bank assets affected by fail-

ure. Again, the impact of the disconnection of the financial system becomes more

important for parameter constellations where the average number of bank defaults

tends to be very high, i.e. for low equity ratios.
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Figure 2.10: Average stability of the network dependent on the equity ratio

Looking at the effect of the distribution of claims for given connectivity in Figure

2.11, it can be seen that for an equity ratio of 9% the correlation of entropy and

percentage of assets affected by bank failure is negative for all values of p (except

p = 10%). For an equity ratio of 3% the correlation is always positive. Similar to

the variation of LGD, systems with high equity ratios are more stable with an equal

distribution of claims because second-round effects only occur when interbank claims

are not well diversified. Systems with low equity ratios are, for a given Erdös-Rényi

probability, more stable with an unequal distribution of claims so that second-round

effects (that occur almost with certainty) only hit few counterparties in the financial

system.
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Figure 2.11: Stability of the network dependent on the equity ratio and the distri-
bution of interbank exposures

2.5.2.4 Varying ratio of interbank assets to total assets and connectivity

Additionally, the ratio of interbank assets to total assets φ can be varied. Figure

2.12 shows that a higher ratio of interbank assets to total assets leads, for a given

Erdös-Rényi probability, to a higher average percentage of assets affected by bank

failure. This is not surprising because, for a given equity ratio and LGD, banks be-

come more vulnerable to the default of a neighboring bank. The reason is that, on

average, the bilateral exposure per counterparty increases with an increasing ratio

of interbank assets to total assets. Furthermore, for high numbers of bank failures

(i.e. high numbers of φ) the effect of a disconnected system is again already visible

for an Erdös-Rényi probability below 50%.
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Figure 2.12: Average stability of the network dependent on the share of interbank
assets

Figure 2.13 shows that the correlation between entropy and average percentage of

assets affected by failure changes from positive to negative at an Erdös-Rényi proba-

bility of around 70%, independent of the value of φ. Thus, contrary to the variation

of LGD and r, there is no influence of φ on the correlation between entropy and

average number of banks defaults.25 However, one has to be careful when compar-

ing samples of matrices with different φ. Looking at the range of entropy values

created for a given Erdös-Rényi probability in Figure 2.13 it can be seen that, for

higher values of φ, the random generator on average creates matrices with a higher

entropy. Thus, not the same entropy intervals can be compared when investigating

the average percentage of bank assets affected by failure for different values of φ.

25 In additional simulations the LGD and the equity ratio were varied for different values of
φ. The result is that high values of LGD or low values of r lead to a positive correlation
between entropy and the average percentage of assets affected, and low values of LGD or high
values of r lead to a negative correlation, independent of φ. Thus, a variation of LGD and r
changes the correlation between entropy and average percentage of assets affected by failure;
a variation of φ, however, does not.
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Figure 2.13: Stability of the network dependent on the share of interbank assets and
the distribution of interbank exposures

Paragraphs 2.5.2.2 to 2.5.2.4 can be summarized by the following result:

Result 4: For a given total amount of interbank assets, the sign of the correla-

tion between the equality of the distribution of claims (entropy) and the average

percentage of bank assets affected by failure (or average number of banks default-

ing, respectively) tends to be positive for parameters that make a system vulnerable

to interbank contagion (i.e. a high LGD and low equity ratios). On the other hand,

the sign of the correlation tends to be negative for parameters that make the system

resilient to interbank contagion (i.e. a low LGD and high equity ratios). For inter-

mediate parameter values, the sign of the correlation between the equality of the

distribution of claims and average number of banks defaulting changes from nega-

tive to positive with decreasing connectivity (see results in Section 2.5.1 and 2.5.2.1).

In further simulations, additional parameters are varied. At first, the total num-

ber of assets was changed. This, however, does not alter the results as relative

numbers (for example the equity ratio or the ratio of interbank assets to total as-

sets) do not change. Increasing the number of banks in the system makes it (all

other variables kept equal) less vulnerable to the failure of one bank as the average
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amount of bilateral exposures per counterparty decreases with an increasing number

of counterparties. Furthermore, these simulations were run for “extreme” parameter

values, i.e. parameters that all make a financial system very unstable (a high LGD,

a low equity ratio and a high share of interbank assets to total assets) or stable,

respectively. The results confirmed the main findings summarized in Result 4.
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2.5.3 Money center systems

The analysis of the impact of the distribution of claims on financial stability in ran-

dom graphs leads to some interesting results. It is, however, questionable, whether

a random graph is a good description of real world financial networks. In the liter-

ature, it is sometimes stated that a more adequate model of a financial system is a

scale-free network (see, for example, Boss et al. (2004) and Soramäki et al. (2007)).

Craig and von Peter (2010) prefer to model financial systems as (multiple) money

center systems, where few large core banks are strongly interconnected (i.e. they

form a complete network) and a larger number of small banks in the periphery are

only connected to core banks but not to other banks in the periphery. Figure 2.14

shows an example of a money center model (without the external sector).
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Figure 2.14: Example of a money center system with 15 banks (3 core banks and
12 banks in the periphery)
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The financial network in Figure 2.14, including the external sector, can be described

by an adjacency matrix:

L =



A1,core A2,core A3,core A4,per A5,per . . . A15,per AN

L1,core 0 1 1 | 1 1 . . . 0 1

L2,core 1 0 1 | 0 0 . . . 0 1

L3,core 1 1 0 | 0 0 . . . 1 1

− − − − − − − −

L4,per 1 0 0 | 0 0 . . . 0 1

L5,per 1 0 0 | 0 0 . . . 0 1
... ... ... ... | ... ... ... ... ...

L15,per 0 0 1 | 0 0 . . . 0 1

LN 1 1 1 1 1 . . . 1 0



The interbank part of this adjacency matrix, i.e. the (N − 1) × (N − 1) matrix

that is obtained when deleting the last row and the last column of L, can be written

in block matrix form:26

LIB =


Λ1 | Λ2

− − −

Λ3 | Λ4



By assumption, the money center model applied in this chapter has to follow cer-
26 The way this money center system is constructed is very similar to the “block-model approach”

of Craig and von Peter (2010). The conditions a money center system has to fulfill in this
chapter are, however, slightly different.
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tain patterns. First, all core banks are strongly connected to each other. Thus, all

off-diagonal elements of the top left corner of the adjacency matrix LIB (Λ1) have

to be equal to one. Second, each bank in the periphery is linked to exactly one

money center bank in both directions. Thus, the top right corner (Λ2) has exactly

one non-zero element per column and the bottom left corner of the adjacency matrix

(Λ3) is the exactly transposed version of the top right corner. Third, banks in the

periphery are not linked to each other. Hence, the bottom right corner (Λ4) con-

tains only zeros. Thus, by construction, the strongly connected component always

includes all financial institutions in the system.

After constructing the adjacency matrix, the edges of the graph obtain weights that

are, similar to the case of the random graph, created by a random generator. For

given row and column sums, elements are again adjusted by using the RAS algo-

rithm.

2.5.3.1 Varying the number of core banks and the concentration ratio

At first, the stability of a money center model is investigated by varying two main

parameters that characterize its pattern: the number of core banks ncore and the

concentration ratio CR. To create a more reasonable ratio of core banks to periphery

banks, the number of banks in the financial system is increased to 15, i.e. N = 16.

Remaining parameters are set at their benchmark values, i.e. LGD = 0.5, r = 0.06

and φ = 0.3. Total assets in the banking system are again set at Abanks = 1, 000 and

each simulation is run for a sample of 50, 000 randomly generated matrices. While

for the random graph it does not matter which bank fails first, for the money center

model it is assumed that a core bank fails.27

Figures 2.15 to 2.18 show the average percentage of total assets that are affected

by bank failure for ncore = 5 to ncore = 2. For each number of core banks the con-
27 Additionally, simulations with a periphery bank failing were run. Not surprisingly, in this

case, the financial system is more stable than in the case of a core bank failing.
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centration ratio is varied from CR = 0.99 (core banks hold almost all assets in the

banking system) to CR = 0.4 (core banks hold 40% of total assets in the banking

system). The lower bound of the concentration ratio is set in such a way that, for all

values of ncore investigated, it cannot happen that core banks have smaller balance

sheet totals than periphery banks.
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Figure 2.15: Stability of the network with five core banks
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Figure 2.16: Stability of the network with four core banks
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Figure 2.17: Stability of the network with three core banks
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Figure 2.18: Stability of the network with two core banks

Not surprisingly, entropy decreases with an increasing concentration ratio as a higher

concentration of assets among few core banks implies a more unequal distribution of

claims within the financial system. Furthermore, for a given number of core banks,

the average percentage of assets affected by bank failure increases with the concen-

tration ratio. One reason is that the total amount of assets of the bank that fails

first, and therefore the initial percentage of assets affected by bank failure, is higher.

But this is not the only effect. With increasing size of core banks compared to banks

in the periphery (i.e. a higher CR), and all other variables kept equal, the average

weights of the links between core banks increase. Thus, the amount of interbank
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assets between core banks becomes larger on average, which makes core banks more

vulnerable to interbank contagion. And the more core banks fail, the more banks

in the periphery are on average affected by domino effects.

Comparing the stability of the financial system by varying the number of core banks

ncore it can be seen that, all other parameters kept equal, the stability of the finan-

cial system increases with an increasing number of core banks. This effect is again

due to the size of the core banks. For a given concentration ratio, the size of the

core banks decreases with an increasing number of core banks. Thus, the average

amount of interbank assets between core banks also becomes smaller and the prob-

ability that domino effects between core banks occur, is reduced.

Hence, the main result of this paragraph is:

Result 5: Increasing asset concentration (a higher concentration ratio for a given

number of core banks or a lower number of core banks for a given concentration

ratio) within a money center system makes it more unstable on average.

2.5.3.2 Comparison to random graphs

Additionally, the stability of a money center system is compared to the stability

of a random graph. As a benchmark, the investigation of the stability of random

graphs with the same system size (in terms of total assets) and the same number of

banks as in the money center system is included in each subsequent figure. When

modeling the random graph, it is assumed that all banks have homogeneous balance

sheet totals and are linked randomly with a certain probability. The money center

system is interlinked according to the description in Section 2.5.3.

However, one has to be careful when setting the parameter values for the money

center system. Within a random graph, the average amount of bilateral interbank
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exposures (over the whole sample of generated matrices) is the same between all

banks. In a money center model, though, if the concentration ratio is chosen too

low (or the number of core banks is chosen too high), i.e. core banks do not have a

balance sheet total that is large enough compared to periphery banks, the assumed

network topology of the money center model leads to interbank connections where

core banks have less exposures to each other than to banks in the periphery. The

reason is that periphery banks have all their interbank exposures to one core bank

by assumption. To obtain a valid liability matrix for given balance sheet totals, the

result is a very low weight on interbank exposures among core banks. This does not

fit to realistic banking systems. Thus, in the following simulations, it is assumed

that the average amount of bilateral interbank assets each core bank holds against

another core bank is at least as high as the average amount of bilateral interbank

assets a core bank holds against a periphery bank. This amounts to a minimum

concentration ratio of CR = 0.25 for ncore = 2, CR = 0.35 for ncore = 3, CR = 0.4

for ncore = 4 and CR = 0.45 for ncore = 5.28

Figures 2.19 to 2.22 show that (for the same values of N , Abanks, φ, LGD and r

as in Section 2.5.3.1) the random graph is always more stable on average than the

money center system with the minimum concentration ratio derived above.29

28 These results are obtained by calculating the average amount of bilateral interbank assets
between two core banks and between a core and a periphery bank by simulation for different
values of CR (in steps of 0.05). The value of CR, where the discrepancy between the average
amount of interbank assets each core bank holds against another core bank and the average
amount of interbank assets a core bank holds against a periphery bank is minimal, is then
chosen as the minimum concentration ratio for further simulations.

29 In additional simulations the same result was obtained for extreme values of LGD and r.
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Several reasons for this result can be mentioned. First, in the money center model,

the initial percentage of assets affected by bank failure is larger than in the random

graph. The reason is that, for the given minimum concentration ratio, core banks in

the money center model are always larger than banks in a random graph. Second, a

large balance sheet total of the failing core bank implies on average a high amount

of interbank claims defaulting in the first round. Thus, the initial shock is larger

compared to a random graph. Third, among core banks there are only limited possi-

bilities of risk diversification, as they are only linked to the other core banks and to

few periphery banks. Additionally, there is no sufficient risk diversification possible

for periphery banks that hold all their claims against one core bank. Fourth, money

center models are always strongly connected by assumption, i.e. they have only one

strongly connected component. Hence, domino effects can never be curtailed by

disconnection of the financial system.

Thus, to summarize the main findings of this paragraph:

Result 6: On the assumption that the average amount of bilateral interbank assets

between two core banks is at least as high as between a core and a periphery bank, a

money center system with asset concentration among core banks is (in all previous
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simulations) less stable on average than a system of banks with homogeneous size

that follows a random graph.

2.6 Conclusion

In this chapter, the impact of the structure of the matrix of interbank liabilities on

financial stability is analyzed. After characterizing the financial system according

to the number of banks, total assets in the banking system, equity ratio, the ratio

of interbank to total assets and loss given default, a large number of valid interbank

liability matrices is created by a random generator for given row and column sums.

Thus, a new approach of this chapter is that interbank contagion is investigated

for a large sample of interbank matrices. These matrices are then characterized by

entropy and relative entropy to the maximum entropy solution, which constitute

measures of the equality of the distribution of interbank exposures. As a next step,

domino effects resulting from the default of one bank are modeled. As long as banks

are assumed to be of equal size (to be able to only focus on the effects of the structure

of the liability matrix), it does not matter which bank fails first. Additionally, as a

large number of valid matrices is generated, results do not depend on the sample of

matrices.

The first simulations are run for complete networks and “intermediate” parameter

values. The main result is that a more equal distribution of interbank claims leads

to a more stable financial system. These results, however, change if an incomplete

network is considered. Starting with a random graph and, again, “intermediate”

parameter values, it can be seen that the sign of the correlation between equality of

distribution of claims and percentage of assets affected by bank failure changes with

decreasing connectivity. Furthermore, a crucial result of these simulations is that

not only completeness and interconnectedness of a financial network, as investigated

theoretically in Allen and Gale (2000), matters, but also the distribution of claims
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within the financial network. In this chapter, cases can be shown where, contrary to

the findings of Allen and Gale, a complete network (with an unequal distribution of

claims) is less stable than an incomplete but perfectly interconnected network (with

an equal distribution of claims).

As a next step, further sensitivity analysis is implemented by varying loss given

default, banks’ equity ratio and the ratio of interbank assets to total assets. The

main result in this context is that the sign of the correlation between entropy and

the average percentage of assets affected by bank failure depends on connectivity,

loss given default and equity ratio. For high values of LGD and low values of r

(i.e. parameters that make a financial system vulnerable to interbank contagion)

the sign of the correlation between entropy and the average percentage of assets

affected tends to be positive, while for low values of LGD and high values of r (i.e.

parameters that make a financial system resilient to interbank contagion) the sign of

the correlation tends to be negative. For “intermediate” parameter values the sign

of the correlation changes from negative to positive with decreasing connectivity.

A second, probably more realistic, approach to modeling incomplete networks is to

consider money center systems. The main idea of money center models is to distin-

guish between large core banks that are strongly connected to each other and small

banks in the periphery that are only linked to one core bank. Not surprisingly, the

more concentrated assets are within a money center system, the less stable it is if

a core bank fails. Additionally, using reasonable parameters for the number of core

banks and the concentration of assets among core banks, it turns out that, for all

simulations run, the money center system is less stable than a random graph with

homogeneous bank size.

As a conclusion, this chapter extends the existing literature on interbank contagion

within a financial network by explicitly considering the distribution of claims within

the financial system, and therefore gives a variety of insights into the determinants

of financial stability. This approach can be widened to aspects of interbank con-
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tagion extending domino effects (for example contagion due to liquidity problems).

Therefore, this approach leaves a lot of new topics for future research.
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2.7 Appendix

2.7.1 Appendix 1: Generation of the maximum entropy so-

lution of an interbank liability matrix

The starting point is a matrix X with given row sums Li, i ∈ {1, ..., N} and column

sums Aj, j ∈ {1, ..., N}.30

X =



A1 A2 · · · AN

L1 · · · · · · · · · · · ·

L2 · · · · · · · · · · · ·
... ... ... ... ...

LN · · · · · · · · · · · ·



with ∑N
i=1 Li = L, ∑N

j=1 Aj = A and A = L.

As entropy methods must be applied on probability fields, some normalization of

row and column sums is necessary:

Xp =



ap1 ap2 · · · apN

lp1 · · · · · · · · · · · ·

lp2 · · · · · · · · · · · ·
... ... ... ... ...

lpN · · · · · · · · · · · ·



with lpi = Li

L
and apj = Aj

A
.

30 See Upper and Worms (2004)
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Furthermore ∑N
i=1 l

p
i = ∑N

j=1 a
p
j = 1.

The ap’s and lp’s are interpreted as realizations of the marginal distributions f(a)

and f(l), the elements of the liability matrix Xp
(
= xpij

)
as realizations of their joint

distribution f(a, l). If f(a) and f(l) are independent, the elements xpij of the nor-

malized matrix are given by xpij := lpi a
p
j . This results in maximizing the entropy of

Xp.

Xp =



ap1 ap2 · · · apN

lp1 xp11 xp12 · · · xp1N

lp2 xp21 xp22 · · · xp2N
... ... ... ... ...

lpN xpN1 xpN2 · · · xpNN



with ∑N
j=1 x

p
ij = lpi and ∑N

i=1 x
p
ij = apj .

The problem is that the matrix Xp has non-zero elements on the main diagonal

which means that banks lend to themselves. To avoid this phenomenon, a new ma-

trix Xp
0 with zero elements on the diagonal has to be created, i.e. xpij is set equal to

zero for i = j.

Xp
0 =



ap1 ap2 · · · apN

lp1 0 xp12 · · · xp1N

lp2 xp21 0 · · · xp2N
... ... ... ... ...

lpN xpN1 xpN2 · · · 0



The new matrix should deviate from the maximum entropy solution as little as

possible. Thus, out of all possible normalized matrices Xp, a matrix X∗ has to be
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created that minimizes the relative entropy with respect to the matrix Xp
0 .

x∗ = argmin xp′ · lnx
p

xp0
(2.8)

s.t. x∗ ≥ 0 and Ax∗ =
[
ap

′
, lp
]′
,

where x∗ and xp0 are (N2 − N) × 1 vectors containing the off-diagonal elements of

X∗ and Xp
0 , ap and lp are the row and column sums of Xp (

[
ap

′
, lp
]′

has the size

2N × 1), and A is a 2N × (N2 −N) matrix containing zeros and ones so that the

restrictions concerning row and column sums are fulfilled.

This minimization problem can be either solved using the RAS algorithm (see Blien

and Graef (1991)) or using the “fmincon-command” of MATLAB’s optimization

toolbox. Both approaches lead to the same results.31

After solving the minimization problem, a matrix X∗ is obtained that deviates from

the assumption of independence as little as possible.

X∗ =



ap1 ap2 · · · apN

lp1 0 x∗12 · · · x∗1N

lp2 x∗21 0 · · · x∗2N
... ... ... ... ...

lpN x∗N1 x∗N2 · · · 0



As a last step, X∗ can be transformed back into a “real” liability matrix X by

multiplying each element x∗ij as well as the row and column sums lpi and apj with L

or A.

31 However, using the “fmincon-command” can become computationally intensive if the liability
matrices are large.
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2.7.2 Appendix 2: Specification of the linear relationship

between entropy and relative entropy to the maximum

entropy solution

Consider a network of N nodes (N − 1 banks and one external sector) and, in

particular, the (N−1)×(N−1) interbank liability matrix that is normalized by the

total amount of interbank assets / liabilities. Normalization implies that the sum of

row as well as the sum of column sums has to be equal to 1. The characteristic of the

maximum entropy solution of the interbank matrix is that claims are distributed as

equally as possible for given row and column sums. Thus, on the assumption that

all banks are of equal size, the general result of the maximum entropy solution is a

matrix with row and column sums of 1
N−1 and off-diagonal elements of 1

(N−1)(N−2) ,

respectively:

X∗ =



1
N−1

1
N−1 · · · 1

N−1

1
N−1 0 1

(N−1)(N−2) · · · 1
(N−1)(N−2)

1
N−1

1
(N−1)(N−2) 0 · · · 1

(N−1)(N−2)
... ... ... ... ...

1
N−1

1
(N−1)(N−2)

1
(N−1)(N−2) · · · 0



The relative entropy is given by:

RE = ∑N−1
i=1

∑N−1
j=1 lpijln

(
lpij

xp
ij

)
with 0 · ln(0) := 0 and 0 · ln(0

0) := 0.

This equation can be rearranged:

RE = ∑N−1
i=1

∑N−1
j=1 lpijln

(
lpij
)
−∑N−1

i=1
∑N−1
j=1 lpijln

(
xpij
)
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Assuming that xpij constitutes an element of the matrix of the maximum entropy

solution, yields the following equation:

RE = ∑N−1
i=1

∑N−1
j=1 lpijln

(
lpij
)
−∑N−1

i=1
∑N−1
j=1 lpijln

(
1

(N−1)(N−2)

)
= ∑N−1

i=1
∑N−1
j=1 lpijln

(
lpij
)
− ln

(
1

(N−1)(N−2)

) (∑N−1
i=1

∑N−1
j=1 lpij

)
= ∑N−1

i=1
∑N−1
j=1 lpijln

(
lpij
)
− ln

(
1

(N−1)(N−2)

)
· 1

Entropy is given by:

ENT = −∑N−1
i=1

∑N−1
j=1 lpij · ln

(
lpij
)

with 0 · ln(0) := 0.

Inserting the equation for entropy yields the following result:

RE = −ENT − ln
(

1
(N−1)(N−2)

)
or

RE = ln ((N − 1)(N − 2))− ENT

As an example, consider 11 nodes in the system (10 banks and one external sector).

The relationship between entropy and relative entropy to the maximum entropy so-

lution is thus given by:

RE = 4.4998− ENT

This equation can be confirmed by simulation (see Figure 2.23).
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Chapter 3

Contagion in the interbank market

with stochastic loss given default∗

∗ This chapter is based on joint work with Christoph Memmel and Ingrid Stein. Opinions
expressed are those of the authors and do not necessarily reflect the views of the Deutsche
Bundesbank.
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3.1 Introduction

The collapse of Lehman Brothers turned the 2007/2008 turmoil into a deep global

financial crisis. But even before the Lehman default interbank markets ceased to

function properly. In particular, the fear of contagion via interbank markets played

a crucial role. While banks could gauge their direct losses from exposure to so-called

toxic assets, they could not assess their counterparties’ losses and creditworthiness

and were therefore not willing to lend money to other banks, causing the break-

down of interbank markets. This led to an unprecedented liquidity extension of

central banks and government rescue packages (see Stolz and Wedow (2010)) which,

however, could not avoid deep recessions in many countries of the world. From an

economic perspective, it is therefore essential to have a tool allowing to assess po-

tential contagion risks via interbank markets.

Creating such a tool is the aim of this chapter. We study contagion in the German

interbank market, one of the largest interbank markets in Europe. We carry out

a simulation exercise where we assume that a certain bank fails and examine how

this failure affects other banks’ solvency via direct effects and chain reactions in

the banking system. Throughout this (and also the next) chapter, our focus is on

14 large and internationally active German banks and the sectors of savings and

cooperative banks.

In our contagion analysis, we only investigate the direct, mechanic contagion effects

in the interbank market, which means that we analyze the direct (on and off-balance

sheet) exposure between the banks. What we do not consider are effects like a gen-

eral loss in confidence among banks which could lead to a drying up of the interbank

market and thereby to a liquidity shortage, contagion due to market perception, i.e.

that all banks with a similar business model are subject to distrust when such a

bank runs into distress, or herding behavior, where massive sales can drive the price

of an asset below its fundamental value and banks using fair-value accounting have
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to adjust asset values. Hence, our analysis covers only part of the possible contagion

effects. However, this analysis is relatively precise because it is based on hard data

and not so much on estimated economic relationships.

We investigate in particular the role of the loss given default (LGD) in the contagion

process which is a key factor for the extent of contagion in analyses like this. The

LGD, multiplied by the total exposure of a creditor bank to a debtor bank, gives the

actual loss of the creditor bank in the event that the debtor bank fails. The LGD

can vary between 0% (e.g. in the event that the defaulted loan is fully collateralized)

and 100% (which is equivalent to a zero recovery rate of the defaulted loan). As

there is usually only sparse information about recovery rates in the case of bank de-

faults, the standard approach in the literature on interbank contagion is to assume

a fixed value of the LGD and repeat the simulation exercise with different values

of this LGD. The literature generally finds that losses in the total banking system

crucially depend on the LGD value. Below a certain threshold of LGD potential

losses are minor. However, as soon as the LGD exceeds a certain threshold, there

are considerable risks of large parts of the banking system being affected and heavy

losses in the banking system occurring (see e.g. Upper and Worms (2004) and van

Lelyveld and Liedorp (2006)). Therefore, the standard approach has the consider-

able drawback that an assessment of contagion risks in the real world is difficult

and associated with great uncertainties. We, however, overcome this shortcoming

by using a unique dataset of realized LGDs of defaulted interbank exposures.

Our contributions to the literature are as follows. First, by using this dataset of

realized LGDs on the interbank market, we are able to investigate the empirical

patterns of actual LGDs of bank loans. Second, unlike the vast majority of papers

in the literature, we dispose of detailed data about the pairwise interbank exposures

and do not need to estimate them. Instead, we are able to precisely quantify in-

terbank exposures (including off-balance sheet and derivative positions) within the

national market. Third, in contrast to most papers in the literature, we conduct the
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simulation exercise with a stochastic LGD derived from the observed distribution

of LGDs (instead of a stepwise increase of constant values). We thereby obtain a

distribution of the number of contagious bank defaults which allows a more realistic

assessment of contagion risks.

Our main findings are, first of all, that LGDs follow a markedly u-shaped distribu-

tion, which can be reasonably well approximated by a beta distribution. Second of

all, using the precise information about interbank exposures and the distribution of

LGD, we find that contagion in the German interbank market may happen. Third,

for the point in time under consideration, we find that the number of bank defaults

increases on average when we assume a stochastic LGD instead of a constant one.

This chapter is structured in the following way: In Section 3.2, we give a brief

overview of the literature on interbank contagion as well as LGD modeling and

state our contribution to the literature. Section 3.3 deals with the description of the

contagion exercise and the structure of the interbank network. Section 3.4 summa-

rizes how we model the LGD. In Section 3.5, we show the results of the contagion

exercise and in Section 3.6 the conclusion is presented.

3.2 Literature

This chapter relates to three strands of the literature. The first strand is about em-

pirical simulation studies of interbank contagion (see Upper (2011) for an overview).

Especially national European interbank markets have been the focus of empirical

studies (see, for instance, van Lelyveld and Liedorp (2006) for the Netherlands, Shel-

don and Maurer (1998) for Switzerland or Mistrulli (2011) for Italy). In addition

to studies based on national interbank markets, there are cross-border contagion

simulations. These studies are either based on BIS data on consolidated banking

statistics (see Espinosa-Vega and Solé (2010) and Degryse et al. (2010)) or analyze

international sector interlinkages (see Castrén and Kavonius (2009)). Most papers
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in this strand do not have direct access to information on interbank exposures but

apply either statistical methods to derive the bilateral exposures or rely on data

which cover only part of the interbank exposures. We have a certain advantage

compared to these studies since we are able to precisely quantify the amount of bi-

lateral exposures for a system of 14 large and internationally active German banks

as well as the sectors of the savings and the cooperative banks. Our dataset is

based on the German credit register and includes off-balance sheet and derivative

positions. It contains all bilateral exposures of the 14 banks and two sectors above a

threshold of EUR 1.5m. This threshold is not relevant for the purpose of our study

since interbank exposures are typically large.

The second strand of literature we contribute to deals with extensions of the usual

contagion exercises. Cifuentes et al. (2005) introduce additional stress due to declin-

ing asset prices as a result of fire sales; Elsinger et al. (2006) integrate the interbank

contagion model in a stress testing setting that includes macroeconomic shocks.

Espinosa-Vega and Solé (2010) and Chan-Lau (2010) do not only consider credit

risk, but funding risk as well. They argue that the banks’ funding is hindered when

the interbank market does not function properly. Aikman et al. (2009) incorporate

various of these aspects into one quantitative model of systemic stability. Degryse

and Nguyen (2007) explicitly model the LGDs, deriving them endogenously from

the banks’ balance sheet composition. Our extension, too, is about LGD modeling.

However, we model the LGDs as stochastic.

The third strand of literature deals with the distribution of LGDs. Huang et al.

(2009) and Tarashev and Zhu (2008) choose a stochastic setting for the LGD. They

assume a triangular distribution with the probability mass concentrated in the cen-

ter of the distribution (more precisely at 55% and 50%, respectively). Crouhy et al.

(2000) model a stochastic LGD with the help of a beta distribution. They estimate

the parameters by using bond market data. Their estimations yield the result that

the LGD follows a unimodal beta distribution. Our contribution consists in estimat-
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ing the distribution of the LGDs of interbank exposures. We have a unique dataset

of realized interbank LGDs at our disposal. This data suggests a markedly u-shaped

density for the LGD, i.e. a distribution with a vast probability mass at zero and 100

per cent. This finding is in line with Dermine and de Carvalho (2006) and Bastos

(2010) who use a dataset of defaulted loans provided by a large Portuguese bank

and find a u-shaped LGD distribution for non-financial firms.

3.3 Round-by-round algorithm

In the event that a bank fails, the banks that have granted loans to this bank suffer

losses from their exposures. The contagion process in the interbank market may stop

after the first round, but may also propagate further through the system. Banks,

which fell into distress as a consequence of the initial distress, may now themselves

become a source of contagion. This process will continue round-by-round until no

new banks are affected (possibly leading to a large number of failures in total) or

until the supervisory authorities manage to put an end to this process.

In this section we describe a simulation exercise so as to study the extent to which

the German banking system may be prone to such a contagious process. We apply

the round-by-round algorithm as described in Upper (2011).

1. Initially, bank i fails exogenously.

2. As a result, banks whose exposure to bank i multiplied by the loss given

default (LGD) exceeds their buffer of tier-1 capital, also fail. We define a

bank to be in default in the event that its tier-1 capital ratio is below 6 per

cent of its risk weighted assets. This default definition is in line with the new

Basel accord where the minimum capital requirement is also set at 6%.32 We

do not take into account potential reactions of the lender banks. For example,
32 See Basel Committee on Banking Supervision (2010), paragraph 50.
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the lender banks may have hidden reserves which they release to raise their

tier-1 capital. Instead, we assume that write-offs on interbank loans decrease

the lender’s tier-1 capital by the same amount.

3. Further banks may fail if their combined exposure to the banks that have failed

so far (times the LGD) is greater than their capital buffer.

4. The contagious process stops when there is a round with no new failures.

Thus, bank j is in distress, if

Ej −
∑
k (LGDjk · xjk · 1k∈D)

RWAj − 0.2 ·∑k (xjk · 1k∈D) < 0.06 (3.1)

In this context, Ej is the tier-1 capital of bank j, xjk is the exposure of bank j to

bank k, 1k∈D is an indicator variable that takes on the value 1 in the event that bank

k is in distress (and 0 otherwise), LGDjk is the loss given default associated with

the exposure of bank j to bank k and RWAj are the risk weighted assets of bank

j. We assume that interbank claims receive a weight of 0.2 in banks’ risk weighted

assets.33 When calculating the tier-1 capital ratio, we also take into account that

every claim to a bank that failed completely disappears from the creditor bank’s

risk weighted assets.

One can argue that a bank can serve its debt unless the capital of this bank is

totally consumed and becomes negative. However, we use the stricter criterion of a

minimum level of 6% tier-1 capital. We do this for the following reasons: (i) When

a bank is shut down and liquidated (because, for instance, it no longer meets the

minimum regulatory capital requirements), it is questionable whether one receives

the bank assets’ book value, especially the book value of its illiquid positions may be

far higher than the proceeds from a hasty fire sale. (ii) A bank with a sharp drop in

its capital ratio will no longer have any access to short term funding at sustainable
33 The risk weight of 0.2 stems from the Basel I and Basel II framework applied to German

banks, see e.g. Deutsche Bundesbank (2004), p.77.

66



rates. Soon afterwards, the unfavorable funding conditions will have consumed what

is left of the capital.

We carry out this simulation exercise for each of 14 large and internationally active

banks in Germany (the biggest private commercial banks and the central institutes

of the savings and cooperative banks) and the two sectors of the savings and coop-

erative banks, which we treat as aggregate sectors. Thus, we consider 16 units in

total which potentially have bilateral exposures to each other. We treat the savings

and cooperative banks in an aggregate way because single banks that belong to this

group are usually very small.34 Hence, it is almost sure that the default of one of

these small banks would not trigger contagious reactions. If, however, the whole

sector of savings or cooperative banks were to be hit by an aggregate shock (which

is not completely unlikely because of similar business models), a contagious effect

on the rest of the banking system is quite possible. To sum up, we cover about 67%

of the total assets of the German banking system in our analysis.

To run the round-by-round algorithm, information is needed on (i) the pairwise

exposures between the banks and (ii) the appropriate loss, given a bank fails. Con-

cerning the pairwise exposures, we have detailed information on exposures within

the German interbank market. This leaves the question of determining the loss given

default. From the literature we know that this is crucial for the contagion exercises

(see e.g. Upper and Worms (2004)). Different solutions are possible.

1. Constant LGD. The loss given default is exogenously set to a constant value,

say 40% or 45%.35 To account for the fact that the LGD crucially drives the
34 Craig and von Peter (2010) show that only a small number of banks form the so-called core of

the German interbank market and that these core banks act as an intermediary for numerous
small banks (like savings and cooperative banks).

35 Kaufman (1994) gives an overview of loss given default estimates for bank failures; the esti-
mates vary considerably. James (1991) finds that the average loss of failed US banks during
the period of 1985 to 1988 was about 30%. In addition, there were direct costs associated
with the bank closures of 10% of the assets. In our dataset, the mean LGD is about 45%.
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results, one can vary the constant loss given default over a wide range of values.

The contagion exercise is then run for each different value of the LGD.

2. Endogenous LGD. If information on the actual over-indebtedness of the dis-

tressed bank, the bankruptcy cost and the degree of collateralization were

available, it would be possible to endogenously calculate the loss given de-

fault.

3. Stochastic LGD. Our supervisory data concerning the write-offs of interbank

loans show that the loss given default varies considerably, with a large portion

of the probability mass at 0% and at 100%. A possible explanation for this

quasi-dichotomy may be that the loans are either fully collateralized (as in the

Repo-market) or completely unsecured. This finding is not in line with the

assumption of a constant LGD (solution 1). Solution 1 would rather be in line

with a distribution of the LGDs concentrated in one point.

In this study, we use the third solution. In contrast to the existing literature that

exogenously assumes some constant LGD value, we have a unique dataset of ac-

tually realized LGDs on the interbank market. This dataset provides an empirical

frequency distribution of LGDs. The exact properties of the LGD distribution are

investigated in Section 3.4.

As outlined above, the first step for running the round-by-round algorithm consists

of establishing the matrix of mutual interbank exposures. We use Bundesbank data

from the German credit register (MiMiK) to obtain the necessary information.36

Unlike credit registers in most other countries, the German credit register also in-

cludes interbank loans and is not confined to non-financials. This data base offers

us a certain data advantage compared to other studies since we are able to deter-

mine the complete matrix of interbank exposures. By contrast, balance sheet data

only show (for each bank) the aggregate amount lent to or borrowed from all banks.

36 See Schmieder (2006) for more details about this database.
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Moreover, payment data or large exposure data are generally less comprehensive

than credit register data and include, for example in the case of payment data, in-

formation about short-term lending only.

The German credit register contains quarterly data on large exposures of banks to

individual borrowers or single borrower units (e.g. groups). Banking institutions

located in Germany are required to report if their exposures to an individual bor-

rower or the sum of exposures to borrowers belonging to one borrower unit exceeds

the threshold of EUR 1.5m at least once in the respective quarter. We think that

the threshold of EUR 1.5m does not cause a serious bias since the typical interbank

loan is relatively large and exceeds the threshold of EUR 1.5m.

The credit register applies a broad definition of a loan. Loans in this sense include

traditional loans, bonds, off-balance sheet positions and exposures from derivative

positions. However, trading book positions are excluded. We start by analyzing

gross on- and off-balance sheet exposures as a benchmark case. In Section 3.5.2,

we run simulations considering on-balance sheet exposures only. Furthermore, we

investigate the case of netting. It is, however, by far not clear whether netting can

be enforced in case of a bank failure.37

For the simulation exercise, we use data from the fourth quarter of 2010. The result-

ing matrix of interbank exposures gives some interesting insight into the German

interbank market. As we consider 14 large and internationally active German banks

as well as the savings and cooperative sector, we obtain a 16 × 16 matrix of inter-

bank exposures. Not surprisingly, we almost have a complete network, i.e. most

of the off-diagonal elements of this matrix are non-zero. To be precise, only two

off-diagonal elements are zero, i.e. only two of the 240 possible interbank relations

do not exist.

Table 3.1 in Appendix 1 shows some summary statistics of the interbank network we

consider in this chapter. To capture the inequality of how banks spread their inter-
37 See Mistrulli (2011) for this and other arguments concerning the simulation method.
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bank assets/liabilities among their counterparties and thus to evaluate how banks

differ in terms of their connections to other banks, we calculated for each bank

the normalized Herfindahl-Hirschman index (HHI) of the share of single interbank

assets/-liabilities to the bank’s total interbank assets/-liabilities (that are included

in our analysis).38 The maximum HHI of 1 would indicate that a bank has all its

interbank assets/-liabilities towards one single counterparty. The minimum HHI of

0 would indicate that a bank spreads its interbank assets/-liabilities as equally as

possible. The large difference between the 25% quantile (with an HHI of 0.05 and

0.11, respectively) and the 75% quantile (with an HHI of 0.28 and 0.38, respectively)

implies that results differ substantially among banks. The reason is that the central

institutions of the savings and cooperative banks concentrate their exposures on the

savings and cooperative sector, respectively, large private banks, however, do not.

It is also remarkable that banks in our network tend to spread their interbank assets

more equally than their interbank liabilities. The relative size of interbank exposures

(i.e. interbank assets/liabilities over tier-1 capital) is already quite large at the 25%

quantile, with 4% and 5%, respectively. The median of the relative size is at 12%

and 10%, respectively. This confirms that interbank exposures are a considerable

source of contagion.39

3.4 Loss given default (LGD)

As stated in the previous section, another key component for the contagion exercise

is the loss given default (LGD). We have some information about the loss rate banks

face in the event that a debtor bank defaults. More precisely, our LGD data are
38 Another method to measure the inequality would be to calculate for each bank the entropy

of the shares of single interbank exposures.
39 Generally, a single loan must not exceed 25% of a bank’s liable capital. Exceptions are,

however, exposures between banks within the associations of savings and cooperative banks,
respectively.

70



assigned to the respective lender bank and not - as usually - to the debtor bank. Al-

though we do not know the LGD of the lender bank for a default of a specific debtor

bank, we know for each lender bank the average LGD of interbank exposures (at an

annual frequency). We have data on the volume of non-performing interbank loans

and on the corresponding write-downs. For each bank and each year, two figures are

provided: the amount (in euro) of interbank loans for which provisions have been

made and the amount of these provisions. We interpret the ratio of these two figures

as a realization of the stochastic LGD of a single interbank relationship, not of an

average of two or more LGDs. It is important to have realizations of LGDs of single

interbank relationships because realizations of average LGDs tend to be biased to-

wards unimodal distributions; the average of, let’s say 50 LGDs, is by virtue of the

central limit theorem approximately normally distributed, even if the distribution

of single LGDs is markedly u-shaped.40 The data are taken from the quantitative

supervisory reports collected by the Bundesbank on banks in Germany.41 Based on

this data, we can estimate the distribution of LGDs.42

Looking at Figure 3.1, we see that the empirical distribution of the LGDs is markedly

u-shaped. This characteristic and the nature of the LGDs, especially its range be-

tween 0 and 1, suggest modeling the LGD distribution with the beta distribution.

Figure 3.1 also displays the probability density function of a beta distribution with

the estimated parameters. Compared to the empirical frequency distribution, only

small deviations can be observed. Statistical tests confirm this observation. The null

hypothesis of a χ2 goodness-of-fit test on whether our data follow a beta distribu-

tion with the estimated parameters α̂ and β̂, cannot be rejected on a 5% significance

level. Choosing ten equidistant intervals and comparing the observed frequency to
40 We will discuss this topic in more detail later in this section.
41 For more details on these data see Memmel and Stein (2008).
42 Note that the LGD data and the exposure data are not fully compatible: Whereas the LGD

data refers to unconsolidated accounts and includes both the trading and the banking book,
the exposure data refers to consolidated accounts and does not include the trading book. We
believe, however, that these lacks in compatibility do not call in question the use of the data.
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the expected frequency within the intervals yields a p-value of ≈ 0.075.43
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Figure 3.1: Relative frequency of the loss given default for interbank loans, derived
from data on German private commercial banks and the central institutions of the
savings and cooperative banks. 344 observations for the period 1998-2008

Therefore, we use the beta distribution for further analysis. The density of the beta

distribution is given by

f(x) = 1
B(α, β)x

α−1(1− x)β−1 x ∈ (0, 1) (3.2)

with

B(α, β) = Γ(α)Γ(β)
Γ(α + β) , (3.3)

43 The result of this test gives strong evidence that the assumed distribution is very close to the
observed distribution, as the test is very sensitive due to the large number of observations.
To illustrate the correlation between the number of observations and the sensitiveness of the
test, we run simulations with a sample randomly drawn from a beta distribution. Drawing
344 observations from a beta(0.28,0.35)-distribution 10, 000 times and testing each sample
against a beta(0.18,0.25)-distribution yields a probability of making a type II error (i.e. the
error of falsely accepting the null hypothesis) of around 18%. Repeating this exercise for only
half of the sample (i.e. drawing 172 observations each time) leads to a probability of making
a type II error of 62%. Thus, the larger the sample, the more sensitive the test becomes to
only small deviations from the distribution tested.

72



where Γ(·) is the Gamma-function. The parameters α > 0 and β > 0 determine the

shape of this distribution.44 The beta distribution is especially suited to model the

LGD because (i) the domain is confined to the economic sensible interval from 0 to

1, (ii) it is highly flexible and (iii) nests other distributions.45 For instance, when

both parameters equal one, then the beta distribution becomes a uniform distribu-

tion. When both of the parameters are smaller than one, the probability density

function is u-shaped with a large portion of the probability mass close to zero and

one. For parameter values close to zero, this distribution converges to the binomial

distribution. By contrast, the density is unimodal in the case of both parameters α

and β being greater than one. For very large parameter values, it converges to the

degenerate distribution, where the entire probability mass is concentrated on one

point. The expectation and the variance of a random variable X following a beta

distribution are functions of the parameters α and β:

E(X) =: µ = α

α + β
(3.4)

and

var(X) =: σ2 = αβ

(α + β)2(α + β + 1) (3.5)

Given estimates for the expectation and the variance, estimators for the parame-

ters α and β are obtained by solving the equations (3.4) and (3.5) for α and β,

respectively:46

α̂ = µ̂

(
µ̂(1− µ̂)

σ̂2 − 1
)

(3.6)

44 Figure 3.6 in Appendix 2 summarizes the possible shapes of the probability density function
dependent on the parameter values.

45 See e.g. Hahn and Shapiro (1967), p. 91.
46 This procedure is called method of matching moments, see e.g. Hahn and Shapiro (1967),

p.95. We do not use maximum likelihood-estimation because there is a considerable amount
of observations which equal exactly 0 and 1 and for which, therefore, the likelihood function
is not defined.
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β̂ = (1− µ̂)
(
µ̂(1− µ̂)

σ̂2 − 1
)

(3.7)

We calculate the sample mean and variance of the distribution of the LGD for the

whole sample and different subsamples and then estimate the parameters α and β

(see Tables 3.2 and 3.3 in Appendix 4). It is noteworthy that the average LGD of

savings banks being the creditors (= 58%) is well above the average LGD of the

total sample (= 38%). Cooperative banks, whose business model is comparable,

however, suffer only from a rather low LGD of 24% on average in the event they

incur losses on the interbank market. The average LGD incurred by large and inter-

nationally active banks is in between (= 45%). Furthermore, we see that the LGD

tends to be higher the larger the lender bank (measured as the lender bank’s total

assets). Irrespective of the subsample under consideration, we observe a u-shaped

distribution. We explicitly test the null hypothesis that the beta distribution is not

u-shaped, i.e. that α ≥ 1 or β ≥ 1 (see Figure 3.6). We do this by applying the

delta method.47 The result is that we can reject the null hypothesis on a 1% and 5%

significance level, respectively, in all cases. Thus, we can conclude that, irrespective

of the banking group and size of the lender banks, we can assume a u-shaped dis-

tribution of the LGD.48

As our analysis focuses mostly on large and internationally active banks in Ger-

many, it would be obvious to use this subsample to estimate the parameters of the

LGD distribution. This would give us 101 observations of realized LGDs. However,

the problem is that these LGDs are probably not only due to one single credit but

due to several credit relationships in distress. If we assume that the number of

defaulted credit relationships per bank and year follows a Poisson distribution, we

obtain for the case that exactly one debtor bank defaulted, given the bank reports
47 The details on the delta method are described in Appendix 3.
48 In the literature, however, the LGD is often modeled by using a unimodal distribution (which

implies that α > 1 and β > 1) or as a constant. Hence, these results may also have further
implications for this literature.
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non-zero write-downs, a probability of only 71%. Thus, we have the problem that

the reported LGD value of that bank is often (in about 29% of the cases) just an

average of several LGD values and the LGD distribution is therefore biased towards

unimodal distributions.49

We can mitigate this problem by including further banks in our sample for which

it is reasonable to assume that exactly one credit relationship is in distress, given

the bank reports non-zero write-downs. Thus, we include all private commercial

banks in our sample which yields a probability that exactly one single credit de-

faulted (given the bank reported non-zero write-downs) of 93%. Regional savings

banks and cooperative banks, which are generally small and medium-sized, are not

included in our sample. The reason is that we consider their position in the Ger-

man interbank market as less representative for our stability analysis because these

banks’ interbank market activities are very much characterized by relationships to

their central institutes. This is not the case for the smaller private banks. In addi-

tion, the mean LGD, which is not affected by the aforementioned problem, is quite

similar (around 45%) in the sample we chose and in the sample of the large and

internationally active banks (see Table 3.2). We therefore believe that our sample

is a balanced compromise between statistical properties (a high share of single de-

fault events) and economic fit (similarity of the banks in the contagion exercise and

estimation of the LGD distribution).

As our LGD-data are applied to situations of severe stress in the interbank market,

an important point to investigate is how LGDs change in crisis time compared to

normal times. Our data enable this as they contain the period from 1998 to 2008

and thus include the crisis year 2008. By comparing the mean LGD of the pre-crisis

years (1998-2007) to the crisis year 2008, we obtain the surprising result that the

LGDs in 2008 are, on average, lower compared to the period before. For the sample
49 The higher standard deviation of the sample used for the contagion analysis compared to the

sample of large and internationally active banks confirms our assumption, see Table 3.2.
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including all banks in 2008, we obtain 251 observations with a mean LGD of 0.27

(compared to 0.44 in pre-crisis years). The subsample of all private commercial

banks and the central institutions of the savings and cooperative banks (28 obser-

vations) yields a mean LGD of only 0.22 (compared to 0.47 in pre-crisis years). A

possible explanation for this fact is that banks become more cautious in times of

stress and e.g. demand more collateral for interbank lending. Thus, we conclude

that the potential rise of LGDs in times of severe stress (e.g. due to reduced asset

values in banks’ balance sheets) is counteracted by more precautious lending by

banks.

Our final sample of LGD observations consists of 344 observations in the period

from 1998 to 2008. Figure 3.1 shows the frequency distribution of the LGDs. Using

the sample mean µ̂ and variance σ̂2 as an estimator for the population mean and

variance, we obtain µ̂ = 0.45 and σ̂2 = 0.15. Inserting µ̂ and σ̂2 into equation (3.6)

and (3.7) yields α̂ = 0.28 and β̂ = 0.35. These parameter values indicate a u-shaped

distribution (see Figure 3.6).

As stated above, LGDs of banks can in theory be derived endogenously from their

balance sheet composition. However, we do not apply this solution because we

would have to make a lot of additional assumptions in our contagion exercise.50 For

example, we would have to make assumptions about who has to bear the losses that

arise from the bank failures. A standard assumption in a case like this is that losses

are distributed pro rata among creditors (see the clearing algorithm of Eisenberg

and Noe (2001)), which is definitely a strong assumption. For instance we find that

the mean LGD for totally unsecured interbank exposures is 64%, whereas it is only

24% for the at least partly collateralized ones. Additionally, it would be necessary

to model losses due to fire sales of assets of distressed banks. A detailed contagion

analysis with an endogenous LGD is thus not feasible since we lack the necessary

data. Besides, our data on realized LGDs suggest that the borrower banks’ balance
50 See Upper (2011) for an overview of these assumptions.
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sheet composition and other bank specific variables only explain a small fraction of

the LGD variation. We carried out a variance decomposition of the LGDs and we

find that most of the variation is due to the lender bank and due to the nature of

the relationship, i.e. the variation owing to the balance sheet composition of the

borrower bank is less important. Furthermore, endogenizing the LGD disregards the

time dimension. Upper (2011) cites the default of Bankhaus Herstatt as an example

for the observation that the LGD varies across the time horizon, i.e. the LGD de-

creases when the recovery horizon becomes longer. This observation is backed up by

Bastos (2010) who shows that the recovery rate (= 1−LGD) (though for defaulted

loans to non-financials) increases steadily with the recovery horizon. Thus, in our

opinion, the best approach is to use the u-shaped frequency distribution of the LGD

data that are derived from actual write-downs following the default of a bank.

3.5 Results

3.5.1 Benchmark case

The initial assumption for our simulations is that one of the 16 banks/banking

sectors51 fails. This could trigger a cascade of failures if the ratio of tier-1 capital

to risk weighted assets of one of the creditor banks falls below 6%. The simulations

(based on a stochastic LGD) are run by drawing from a beta distribution with

parameters α = 0.28 and β = 0.35. This means that, for each exposure of a

creditor bank to a bank in distress, we randomly draw an LGD value from the beta

distribution estimated in Section 3.4. We repeat this exercise by varying the bank

that fails first from bank number 1 to 16. In contrast to simulations based on a

constant LGD, the approach with a stochastic LGD yields for each of the 16 banks

a distribution of the number of banks in distress (and not only one single number of

51 For notational convenience we will call the sectors in the following just banks.

77



subsequent failures). We repeat the contagion exercise 100, 000 times for each bank,

with a different of the 16 banks starting the contagious process each time.

Figure 3.2 indicates the relative frequency of the number of bank failures, assuming

that the probability of the initial failure is the same for all of the 16 banks. The figure

shows that in 51% of the 1,600,000 simulation runs, no further failure occurs. In 8%

of the cases, however, 11 subsequent bank failures occur. On average, we observe

3.06 subsequent bank failures (i.e. 4.06 bank failures in total) in our simulations.

Figure 3.3 shows, among others, that in almost 18% of the cases more than ten banks

fail. These results indicate that there is a considerable risk of interbank contagion.
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Figure 3.2: Frequency distribution of bank failures
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Figure 3.3: Distribution function of bank failures
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3.5.2 Robustness checks

We carry out robustness checks concerning six issues. The first three checks consider

the robustness of the results to different LGD specifications. First, we investigate

if drawing from the beta distribution estimated from our dataset is a good ap-

proximation for the empirical distribution. Second, we examine if results change

significantly when using different LGD distributions for the savings and coopera-

tive sector. Third, we compare the simulation results of a stochastic LGD with

the results under the assumption of a constant LGD that is equal to the mean of

our dataset. The next two checks consider the specification of the matrix of in-

terbank exposures. With one special feature of our dataset (compared to most of

the existing literature) being the inclusion of off-balance sheet exposures, we thus

additionally run simulations excluding off-balance sheet exposures and compare the

results. In our fifth robustness check, we examine if netting of interbank assets and

liabilities between counterparties can solve the problem of contagion. Finally, we

check whether the number of bank failures is a good indicator for the stability of

the system as it is, of course, not only important how many banks fail but also

how many assets are affected by failure. Thus, as a last robustness check, we take

the balance sheet total of failing banks into account when judging the severity of

contagion.

Drawing from the empirical LGD distribution: To investigate the sensitivity

of our results with respect to the assumed distribution, we draw from the dis-

crete distribution observed by the data instead of the beta distribution. For

this purpose, one observed LGD value is randomly allocated to each exposure

of a creditor bank to a bank in distress. Compared to drawing the LGD from

a beta distribution, the results of this exercise do not differ much. The average

amount of bank failures is 4.11 (compared to 4.06 in Section 3.5.1). Further-

more, if we look at the relative frequency distribution as well as the cumulative
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distribution function of the total number of bank failures, there are virtually

no differences to the results of the simulations with the beta-distributed LGD.

We can therefore conclude that drawing from the beta distribution is a good

approximation for our observed LGD values.

Different LGD distribution for savings and cooperative banks: As our in-

terbank network consists not only of private commercial banks but also of

savings and cooperative banks, an obvious question is how results are driven

by the parameters of the beta distribution the LGDs are drawn from. As

Table 3.2 shows, LGDs corresponding to write-downs of savings and coopera-

tive banks rather resemble a beta(0.42,0.30) and beta(0.08,0.24) distribution,

respectively. Thus, we run our simulations by drawing from the respective

distributions for exposures of the savings and cooperative sector and from

the “standard” beta(0.28,0.35) distribution for the exposures of the remaining

banks.

The results of the contagion analysis differ only slightly from our benchmark

results. The overall expectation of bank failures is now at 4.24 (compared to

4.06 in the benchmark case). On the bank level, it is not clear whether the

system is more stable than in the benchmark case. The initial default of 5

of the 16 banks triggers more failures in the benchmark case; for the initial

default of 9 of the 16 banks, less failures occur in the benchmark case and

2 of the 16 banks do not trigger any further bank failure in any case. The

deviations of the expected number of bank defaults, given that one specific

bank fails are, however, rather small regarding the benchmark case and do not

exceed 0.95.

Stochastic versus constant LGD: As the standard assumption in the existing

literature is a constant LGD, we compare our simulation results generated

under the assumption of a stochastic LGD with results under the assumption
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of a constant LGD. We set the constant LGD equal to the mean of our LGD-

dataset (= 0.45, see Table 3.2). Contrary to the case of the stochastic LGD,

where we receive for each trigger bank a whole distribution of results, we obtain

for each trigger bank one single number of failures under the assumption of a

constant LGD. For only 4 of 16 initial bank failures, a constant LGD yields a

more unstable system (compared to the average number of bank failures under

the assumption of a stochastic LGD). In total, we obtain on average 2.69 bank

failures under the assumption of a constant LGD (compared to the average

of 4.06 bank failures under the assumption of a stochastic LGD). Thus, we

conclude that there is a certain risk of underestimating the effects of a bank

failure on financial stability if the distribution of the LGD is not considered.

On-balance sheet exposures only: Additionally, we examine the impact of in-

cluding off-balance sheet positions in our simulations. Most literature on in-

terbank contagion ignores off-balance sheet exposures due to data restrictions,

while we have considered them in our above simulations. We therefore repeat

the simulation exercise by excluding off-balance sheet positions. According to

our dataset, the ratio of off-balance sheet exposures to total exposures varies

considerably between banks. Table 3.1 shows that 25% of the banks hold less

than 6% of total interbank assets (3% of total interbank liabilities) off-balance

sheet. There are, however, also 25% of the banks that have a share of more

than 24% (10%) of off-balance sheet interbank assets (liabilities).

Not surprisingly, banks with a high amount of off-balance sheet positions on

their liability side trigger much less bank failures when ignoring these expo-

sures. In total, the average amount of bank failures is only 3.47 (compared to

4.06 when considering all exposures).

To elaborate the differences between the simulation results with and without

off-balance sheet exposures, we calculate the difference between the two rela-

tive frequency distributions of bank failures (see Figure 3.4). Figure 3.4 shows,
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for example, that the overall relative frequency of observing only one bank fail-

ure (i.e. contagion effects not occurring) is five percentage points higher when

only considering balance sheet exposures. For high numbers of bank defaults,

the result is reversed. For instance, the overall relative frequency of observing

12 bank failures is more than five percentage points higher when off-balance

sheet exposures are considered. Thus, Figure 3.4 shows that the inclusion of

off-balance sheet exposures leads to a higher frequency of observing extreme

events and therefore captures tail risk in a more adequate way. Therefore,

we can conclude that off-balance sheet exposures considerably contribute to

the interdependence of banks and possibly change the results of the stability

analysis in a remarkable way.
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Figure 3.4: Difference between the relative frequency distributions of bank failures
considering total exposures and on-balance sheet exposures only

Netting: As a next robustness check we examine how netting affects our results.

Thus, we assume that banks net their exposures to each other. Technically,

this means that we calculate the difference of element (i,j) and (j,i) of the

matrix of interbank exposures and change all negative entries to zero. The

outcome is a matrix of net interbank exposures.

The result is that, of course, far fewer bank failures occur. This could be
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seen easily by looking at our simulation method. A significant reduction of

interbank exposures necessarily induces less contagious bank failures. What is

surprising, however, is that contagion could still occur. Our simulations show

that in almost 13% of the 1,600,000 simulation runs, a second round effect

occurs. On average, 1.16 banks fail, which is naturally much less than in our

benchmark case (= 4.06 bank failures on average).

Balance sheet vs. number of banks Of course one could argue that the num-

ber of bank failures is not a good indicator for financial stability as also the

size of the defaulted bank matters. Hence, as an additional robustness check,

we use the ratio of assets that belong to banks that fail in reaction to the

trigger event to total assets that could theoretically fail as an indicator for

the contagious effects. A value of zero would thus mean that only the trigger

bank fails and no subsequent bank failures occur. A value of one means that

all banks in the system default.

In Figure 3.5 we compare the distribution function of the total number of bank

failures (which is the same as in Figure 3.3) with the distribution function of

the share of assets that belong to failing banks (without the trigger bank).

To make these two functions comparable, we divided the share of assets that

belong to failed banks into 16 intervals of the same size and counted the fre-

quency of results being in a particular interval. It is now easy to see that it is

e.g. more likely to observe 50% or less of the total assets of the banking system

(without trigger bank) failing compared to observe 8 or less bank failures.

Furthermore, our simulations show that on average 14% of assets in the remain-

ing banking system (without the trigger bank) are affected by bank failure.

By comparing this result to the average share of banks that fail subsequently

(= 3.05/15 ≈ 20%) we can conclude that the banks that fail in our simulations

belong on average to the smaller banks of our sample.
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Figure 3.5: Distribution function of bank failures (N) and share of assets that
belong to failing banks (BT)

3.6 Conclusion

In this chapter, we investigate contagion risk in the German interbank market. We

have access to a unique dataset on loss given defaults (LGDs) of interbank exposures.

Our data reveal that the frequency distribution of the LGD is markedly u-shaped,

i.e. defaults of interbank loans often imply either a low or a high loss. This markedly

u-shaped distribution stands in contrast to the assumption of a unimodal LGD dis-

tribution in the literature.

Next, we run simulations investigating the extent of potential contagion in the Ger-

man interbank market. For this purpose, we focus on 14 systematically relevant

German banks and the sectors of the savings and cooperative banks. We run simu-

lations under the assumption of a stochastic LGD by drawing from a beta distribu-

tion. The shape of the beta distribution is derived from our LGD dataset.

The result of our simulations is that contagion in the German interbank market may

happen. For the period of time under review (end 2010), we find that the contagion

exercise under the assumption of a stochastic LGD yields on average a more vul-

nerable system than under the assumption of a constant LGD. Furthermore, banks’
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off-balance sheet exposures considerably contribute to the interdependence of banks

and change the results of the stability analysis in a remarkable way.

An open question for research is to compare the loss distribution at different points

in time and to develop an indicator showing by how far the interbank market is

prone to contagious processes.
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3.7 Appendix

3.7.1 Appendix 1: Summary statistics of the interbank net-

work

p25 median p75 N

HHI(AIB) 0.05 0.10 0.28 16

HHI(LIB) 0.11 0.26 0.38 16

AIB/E 0.04 0.12 0.24 240

LIB/E 0.05 0.10 0.26 240

off-bs(AIB) 0.06 0.09 0.24 16

off-bs(LIB) 0.03 0.05 0.10 16

Table 3.1: HHI = normalized Herfindahl-Hirschman index; HHI(AIB)/HHI(LIB)
= bank-specific normalized HHI of the share of single interbank exposures to total
exposures on the asset/liability side of the bank’s balance sheet; AIB/E (LIB/E) =
ratio of single interbank exposures on the asset (liability) side of the bank’s balance
sheet to its tier-1 capital; off-bs(AIB)/off-bs(LIB) = bank-specific ratio of off-balance
sheet exposures to total exposures on the asset/liability side of the bank’s balance
sheet; p25 = 0.25-percentile; p75 = 0.75-percentile; N = number of observations
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3.7.2 Appendix 2: Beta distribution

β

1

1

u-shaped

uniform

unimodalmonotonously
decreasing

monotonously
increasing

estimate

α

Figure 3.6: Shapes of the probability density function of the beta distribution
dependent on the value of the parameters α and β
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3.7.3 Appendix 3: Delta method to test for the u-shape of

the beta distribution

Our goal is to explicitly test whether the observed LGD distribution is significantly

u-shaped, i.e. we test the null hypothesis that α ≥ 1 or β ≥ 1. We carry out a

sequence of two t-tests with the two null hypotheses α ≥ 1 and β ≥ 1, respectively.

In the event that we can reject both null hypotheses, we accept the hypothesis α < 1

and β < 1. Given the same significance level in both t-tests, the significance level of

the joint hypothesis α < 1 and β < 1 is at least as strong (see Frahm et al. (2010)).

Using the delta method and the relations given in Equations (3.6) and (3.7), we

derive the asymptotic distribution of the estimates for α̂ and β̂, respectively. Using

a first-order Taylor expansion, the delta method gives us a relation between the

variance-covariance matrix of the estimators µ̂ and σ̂2, and the variance-covariance

matrix of α̂ and β̂:

V ar

 α̂

β̂

 ≈ ∇
 f1 (µ̂, σ̂2)

f2 (µ̂, σ̂2)


T

· V ar

 µ̂

σ̂2

 · ∇
 f1 (µ̂, σ̂2)

f2 (µ̂, σ̂2)

 (3.8)

with f1 (µ̂, σ̂2) = α̂ = µ̂
(
µ̂(1−µ̂)
σ̂2 − 1

)
and f2 (µ̂, σ̂2) = β̂ = (1− µ̂)

(
µ̂(1−µ̂)
σ̂2 − 1

)
.

The variance-covariance matrix of µ̂ and σ̂2 is given by:

V ar

 µ̂

σ̂2

 =

 σ2
µ̂ σµ̂,σ̂2

σµ̂,σ̂2 σ2
σ̂2

 =

 1
N
σ2 1

N
µ3

1
N
µ3

1
N

(
µ4 − N−3

N−1σ
4
)
 (3.9)

where µ3 and µ4 denote the third and fourth central moments, respectively.52 For

implementation purposes, we replace the true moments by their estimators, i.e. σ̂2,

µ̂3 and µ̂4 are given by 1
N−1

∑N
i=1 (xi − µ̂)2, 1

N

∑N
i=1 (xi − µ̂)3 and 1

N

∑N
i=1 (xi − µ̂)4,

52 See, for example, Mood et al. (1974), p. 228, and Zhang (2007) for the variances and covari-
ances of the estimators µ̂ and σ̂2.
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respectively.53 From the Equations (3.8) and (3.9), we see that the variances of α̂

and β̂ are linear combinations of σ2
µ̂, σµ̂,σ̂2 and σ2

σ̂2 :

V ar (α̂) =
(
∂f1

∂µ̂

)2

· σ2
µ̂ + 2 ·

(
∂f1

∂µ̂

)
·
(
∂f1

∂σ̂2

)
· σµ̂,σ̂2 +

(
∂f1

∂σ̂2

)2

· σ2
σ̂2 (3.10)

V ar
(
β̂
)

=
(
∂f2

∂µ̂

)2

· σ2
µ̂ + 2 ·

(
∂f2

∂µ̂

)
·
(
∂f2

∂σ̂2

)
· σµ̂,σ̂2 +

(
∂f2

∂σ̂2

)2

· σ2
σ̂2 (3.11)

Calculations based on our sample (i.e. all private commercial banks and the cen-

tral institutions of the savings and cooperative banks) yield V ar (α̂) = 0.0007 and

V ar
(
β̂
)

= 0.0013. As a next step, we use these values to calculate the test statistics

T for the t-test with the null hypothesis that α ≥ 1 and β ≥ 1. The results Tα ≈ −27

and Tβ ≈ −18 clearly show that the null hypothesis can be rejected. Thus, we can

conclude that, contrary to the common assumption of a unimodal LGD distribution

in the literature, our dataset of the LGD follows a u-shaped distribution.

53 See Hahn and Shapiro (1967), p. 48.
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3.7.4 Appendix 4: Characteristics of the LGD distribution

for different subsamples of lender banks

Sample N Loss given default Beta distribution

Mean Standard dev. α β

All banks 667 0.38 0.39 0.20*** 0.33***

Sample used for simulations 344 0.45 0.39 0.28*** 0.35***

Large and internationally active banks 101 0.45 0.32 0.62*** 0.76**

Savings banks 50 0.58 0.38 0.42*** 0.30***

Cooperative banks 222 0.24 0.37 0.08*** 0.24***

Table 3.2: Mean and standard deviation of the empirical frequency distribution of
the LGD and estimated parameters of the respective beta distribution dependent
on different samples of lender banks; N = number of observations; “Large and inter-
nationally active” includes large private commercial banks and central institutions
of the savings and cooperative banks, “sample used for simulations” includes large
and internationally active banks and all private commercial banks; **/ *** means
significantly < 1 on the 5%/1%-level.
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Size group Loss given default Beta distribution

Mean Standard dev. α β

Smallest 20% 0.26 0.40 0.05*** 0.14***

2nd quintile 0.35 0.41 0.12*** 0.22***

3rd quintile 0.38 0.40 0.17*** 0.28***

4th quintile 0.48 0.38 0.33*** 0.36***

Largest 20% 0.42 0.33 0.53*** 0.73**

Table 3.3: Mean and standard deviation of the empirical frequency distribution of
the LGD and estimated parameters of the respective beta distribution dependent
on the lender banks’ size (= lender banks’ balance sheet total). Whole sample of
667 observations; **/ *** means significantly < 1 on the 5%/1%-level.
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Chapter 4

Contagion in the interbank market

and its determinants∗

∗ This chapter is based on joint work with Christoph Memmel. Opinions expressed are those
of the authors and do not necessarily reflect the views of the Deutsche Bundesbank.
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4.1 Introduction

The ongoing financial crisis shows the importance of stress testing exercises in test-

ing the resilience of financial systems given the occurrence of shocks. These results

are important for regulatory purposes as a more unstable system has to be regulated

more strictly. Furthermore, stress testing is important for bailout decisions: If there

is a danger of one financial institution failing, some careful analysis has to be made

on the issue of what this would mean for the rest of the financial system. To create

meaningful stress testing exercises, one has to think about various channels through

which financial distress could spread from one financial institution to another.

In many studies, the interbank market has been identified as one of these channels.

To be more precise, the failure of one bank can trigger the failure of its creditor banks

due to their direct exposures. This is the case if the write-downs on the exposures to

the failed bank cannot be absorbed by the creditor banks’ capital buffers. If one of

these creditor banks also fails, there could be another round of bank failures. This

procedure can lead to several rounds of bank failures and is therefore often denoted

as “domino effects”. Thus, one obvious stress testing exercise is to investigate how

many subsequent bank failures occur as a consequence of direct exposures in the

event that one bank fails for some exogenous reason.

Of course, there are other transmission channels of contagion, e.g. due to liquidity

problems that result out of asset fire sales, refinancing problems because of dried

up interbank markets or information contagion. Here, however, we exclusively deal

with contagion effects due to direct interbank exposures. We concentrate on this

channel because we have detailed data about German banks’ mutual credit expo-

sures at our disposal. This enables us to simulate the failure of one of the large and

internationally active German banks and to investigate the effects on other German

banks that arise from direct interbank linkages.

This analysis can be carried out for all banks in a banking system for a certain
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point in time. Repeating this exercise for different points in time makes it possible

to judge how the stability of the financial system (in terms of the danger of a domino

effect) evolves over time. This could give regulators important information on how

e.g. certain regulatory actions affect the stability of the financial system.

Our aim is to condense the results of the contagion exercises into one indicator for

each point in time and then to investigate its determinants. Investigating the de-

terminants of this indicator can help in two ways: First, determinants derived from

theoretical considerations can be empirically validated and their importance can be

assessed. Second, on the assumption that all interbank markets are similar, one can

transfer the results obtained here to interbank markets for which there is no detailed

data available.

Our analysis consists of three steps. First, we investigate the danger and the extent

of contagion for each point in time from the first quarter of 2008 to the second

quarter of 2011. Besides mutual exposures, a very important input variable for the

simulations is the loss given default (LGD), i.e. the percentage of the interbank

exposure that actually has to be written off in case of default. Thus, a LGD of

0% means that there are no write-downs (e.g. because of good collateral), a LGD

of 100% means a complete write-down of the exposures in the event of failure. In

most existing studies of contagion in the interbank market, an exogenously given

and constant LGD is used. Thus, the outcome of these contagion studies crucially

depends on the value of the LGD. We have, however, a unique dataset of actually

realized LGD available. Thus, following Chapter 3 we use a different approach, i.e.

we draw randomly from a beta distribution that is fitted to the empirical frequency

distribution of our dataset. Hence, our simulations are based on a stochastic in-

stead of a constant LGD. As a robustness check, we then compare these results

with results under the assumption of a constant LGD that equals the mean of our

dataset. It turns out that for rather stable systems, the assumption of a constant

LGD systematically yields a lower number of bank failures than the assumption of a
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stochastic LGD (and vice versa). We use the distribution functions of bank failures

for each point in time (which can be compared by using the concept of stochastic

dominance) as well as the expectation of bank failures as an indicator to investigate

how financial stability evolves over time. It turns out that the system becomes less

vulnerable to direct domino effects over the time span considered.

Second, we empirically check whether the information of a whole loss distribution

can be sufficiently summarized in a single indicator. Our metric is by how far an in-

dicator can predict whether or not the loss distribution of a given quarter dominates

the loss distribution of another quarter, i.e. the comparison of a whole distribution

(by using the concept of stochastic dominance) is condensed into a single indicator.

In this context, we use the expected number of failures as the indicator. The dis-

criminatory power of this indicator proves to be sufficiently high.

Third, having chosen this indicator, we investigate its determinants. Following the

literature on interbank contagion, we suggest four determinants: the capital in the

system, the percentage of interbank assets relative to total assets, the loss given

default and – as the really systemic measure – the degree of equality in the distribu-

tion of bilateral interbank exposures (measured by the entropy of the matrix). We

find that the coefficients for the four determinants have the expected sign and are

all significant. More important, they can explain more than 80% of the variation of

the indicator.

This chapter is structured as follows: In Section 4.2, we provide a short overview

of the literature in this field and point out our contribution. Then, in Section 4.3,

we describe the data, explain the contagion algorithm and show our results under

the assumption of a constant and a stochastic LGD. In Section 4.4, we investigate

if the expected number of bank failures is a suitable indicator for the stability of

the interbank market and, in Section 4.5, we explore the indicator’s determinants.

Section 4.6 concludes.
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4.2 Literature

This chapter contributes to three strands of the literature. First, our method for

simulating domino effects is similar to the empirical contagion analysis already ap-

plied to many countries (see e.g. Upper and Worms (2004) for Germany, Mistrulli

(2011) for Italy or van Lelyveld and Liedorp (2006) for the Netherlands). Upper

(2011) provides a comprehensive overview of this topic. Our approach, however,

differs from this “standard approach” as we do not model the LGD as constant but

as stochastic (see Chapter 3). To be able to evaluate how the vulnerability of the

system to interbank contagion evolves over time, we use a time series of 14 quarters.

A similar approach has been used by Degryse and Nguyen (2007). They investigate

contagion in the Belgian interbank market over a ten years period ending in 2002.

Another related paper in this context is Cont et al. (2010). They use a detailed

dataset on exposures in the Brazilian interbank market and investigate by using a

contagion exercise how the stability of the Brazilian banking system evolves from

mid 2007 to the end of 2008. Though the basic simulation mechanism of these two

papers is similar to ours, there are various differences to our approach (e.g. the de-

sign of the shock, the way the loss given default is modeled and the way the stability

of the system is evaluated).

Second, we develop an indicator of the interbank market’s resilience. Cont et al.

(2010) summarize their simulation results by developing an indicator of the systemic

importance of financial institutions for different points in time. Like these authors,

we have detailed information on direct interbank exposures. Additionally, we use a

dataset on actually realized loss given default (LGD) on the interbank market. Thus,

contrary to market-based indicators that are, for example, developed by Acharya

et al. (2010), Adrian and Brunnermeier (2008) and Huang et al. (2011), our stability

indicator relies on detailed supervisory data.

Third, the aim of this chapter is to find out which simple indicators of a financial sys-
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tem help to explain our (more sophisticated) stress testing results. Simple indicators

would be much more convenient for regulators to calculate and interpret compared

to more sophisticated ones. In this context, Drehmann and Tarashev (2011) study

the effects of simple indicators (such as bank size and interbank lending / borrow-

ing) on the systemic importance of banks. They find that these simple indicators

contribute well to the explanation of the more sophisticated systemic risk measures

of banks. Degryse and Nguyen (2007) find that a move from a complete structure of

claims towards a multiple money center structure within the Belgian banking sector

(measured by the share of domestic interbank exposures of large banks to total do-

mestic interbank exposures) as well as its increasing internationalization (measured

by the share of total domestic interbank exposures to total interbank exposures) re-

duced the danger of contagion in the domestic interbank market. Additionally, the

banks’ capitalization is identified as a crucial determinant of interbank contagion.

Cont et al. (2010) find that the size of interbank liabilities as well as some structural

features of the interbank network (measured by newly created indicators) have an

impact on financial stability.

The selection of the main determinants of our financial stability indicator is based

on literature that focuses on theoretical simulations of interbank contagion. In this

context, Nier et al. (2007) investigate, among other things, how the variation of

banks’ capital ratio, the size of banks’ interbank exposures as well as banks’ connec-

tivity affects the stability of the system. Gai and Kapadia (2010) show, among other

things, the impact of banks’ connectivity and capital ratio on financial stability. The

theoretical simulations in Chapter 2 examine the impact of banks’ equity ratio, the

amount of interbank lending, the loss given default and the degree of equality in how

banks spread their claims on the stability of the network. In addition to theoretical

simulations, the model of Allen and Gale (2000) also shows that it is important to

consider the network structure of the banking system for the stability analysis. We

test for four determinants of the vulnerability to interbank contagion: banks’ cap-
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italization, interbank lending, the loss given default and how equally banks spread

their claims among counterparties. The empirical investigations in this chapter con-

firm, among others, the theoretical simulations of Chapter 2, which show that a

higher capital ratio, less interbank lending within the system, a lower loss given

default and a more equal distribution of interbank claims (given not too extreme

parameter values) in a complete network yield a more stable system.

4.3 Simulation exercise

4.3.1 Data

Our simulation exercise starts with the exogenous failure of one bank within our

sample.54 Given the matrix of mutual interbank exposures and a loss given default

(LGD) assigned to each of these exposures, we calculate the losses (i.e. the write-

downs) of the creditor banks. If the tier-1 capital ratio of one of the creditor banks

falls below 6%, which is the critical threshold according to the Basel III capital

requirements as well as the EBA stress tests in 2010 (and implicitly in 2009), this

bank will also become distressed and fail. If at least one bank fails after the failure

of the trigger bank, there will be a next round in which the losses of the creditor

banks are calculated. This contagious process comes to an end if there is a round

with no new bank failures.

Thus, the required data for this analysis are, first, information on banks’ capital

as well as their risk weighted assets, second, data on banks’ mutual exposures and

third, data on the LGD. Our sample consists of 14 large and internationally active

German banks as well as the aggregate sectors of the savings and cooperative banks,

for which we have data from the first quarter of 2008 to the second quarter of 2011.55

54 For a general discussion of the round-by-round algorithm applied in this chapter see Upper
(2011). For a detailed description of the contagion algorithm see Chapter 3

55 For simplicity, these 16 entities are just called banks in the following.
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The banks’ equity (tier-1 capital) and their risk weighted assets (RWA) are taken

from the supervisory data storage system BAKIS.56 Data on the bilateral exposures

are taken from the German credit register, where all bilateral exposures are collected

provided that they exceed (or are equal to) a threshold of EUR 1.5m.57

To get a first overview of the data, Figures 4.1 to 4.3 show how key characteristics

of the banking system under consideration evolve over time. Figure 4.1 shows that

the capitalization of the banking system increased substantially over time from an

average of about 8.5% tier-1 capital relative to risk weighted assets in the first

quarter of 2008 to more than 12% in the second quarter of 2011. This is due

to an increase in banks’ tier-1 capital on the one hand and a reduction in risk

weighted assets on the other hand. Thus, banks raised their capital buffers during

this time span to improve their resilience to potential shocks. Additionally, the

weighted share of interbank assets (and thus the size of interbank linkages) relative

to the sum of banks’ balance sheet totals tends to decrease over time, as Figure 4.2

shows.58 Following an average of more than 13.5% of interbank assets in the third

quarter of 2009, the ratio decreased to 11.5% in the second quarter of 2011. The

decreasing ratio of interbank assets to total assets shows a decreasing amount of

interbank assets rather than an increase in banks’ balance sheet totals. To see how

the degree of equality in the distribution of interbank exposures evolves over time,

we calculate the entropy of the matrix of interbank linkages. Entropy methods

have been used in the literature on interbank contagion mostly to fill in missing

data into the matrix of bilateral interbank exposures.59 The underlying assumption

of this method is that banks spread these exposures as equally as possible among
56 For more information about the supervisory data in Germany see Memmel and Stein (2008).
57 For more information on the German credit register see Schmieder (2006).
58 One has to bear in mind that we only consider interbank assets within the system. As we

consider large and internationally active banks, it is quite likely that some banks will have
most of their interbank exposures abroad. However, looking at aggregate interbank lending
(of domestic banks) to all banks (including foreign banks) over the time span considered yields
the same result, i.e. a decrease in the share of interbank assets to total assets.

59 See e.g. Upper and Worms (2004)
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their counterparties, which is equivalent to maximizing the entropy of the matrix of

interbank exposures. In this chapter, we use this approach the other way round. As

the whole matrix of bilateral exposures is available, we calculate the entropy of the

matrix as a measure of how equally/unequally exposures are distributed. Figure 4.3

shows that the entropy of the matrix of mutual exposures has steadily decreased,

which means that interbank exposures tend to be distributed more unequally over

time. The network we consider is almost complete, i.e. there are no more than two

off-diagonal zero entries in the 16× 16 matrix of interbank exposures for each point

in time.

t E (total) RWA (total) BT (total) AIB (total) E/RWA
1 2008q1 226392126 2661052513 7591952739 950399701 0.08507616
2 2008q2 231148410 2664972563 7334094491 996857275 0.08673576
3 2008q3 238451362 2674085338 7432661601 988879728 0.08917119
4 2008q4 242932847 2630837875 7759258998 1011100839 0.09234049
5 2009q1 250345959 2736924775 7646418427 1039281005 0.0914698
6 2009q2 257010123 2597189100 7438244643 1012658571 0.09895703
7 2009q3 260218825 2564425288 7342683988 999623078 0.10147257
8 2009q4 259373835 2477214488 7062043039 939226086 0.10470383
9 2010q1 257484207 2495686400 7194756366 958583071 0.1031717

10 2010q2 257518540 2474581888 7613731338 944147532 0.10406548
11 2010q3 256161898 2374964025 7539271941 906366437 0.10785928
12 2010q4 266711996 2351628138 7855233533 883118117 0.11341589
13 2011q1 269035496 2283762688 7263870218 860532504 0.11780361
14 2011q2 272434520 2252468913 7160338568 823572618 0.12094929
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Figure 4.1: Development of the weighted tier-1 capital ratio of all 16 entities

t E (total) RWA (total) BT (total) AIB (total) E/RWA
1 2008q1 226392126 2661052513 7591952739 950399701 0.08507616
2 2008q2 231148410 2664972563 7334094491 996857275 0.08673576
3 2008q3 238451362 2674085338 7432661601 988879728 0.08917119
4 2008q4 242932847 2630837875 7759258998 1011100839 0.09234049
5 2009q1 250345959 2736924775 7646418427 1039281005 0.0914698
6 2009q2 257010123 2597189100 7438244643 1012658571 0.09895703
7 2009q3 260218825 2564425288 7342683988 999623078 0.10147257
8 2009q4 259373835 2477214488 7062043039 939226086 0.10470383
9 2010q1 257484207 2495686400 7194756366 958583071 0.1031717

10 2010q2 257518540 2474581888 7613731338 944147532 0.10406548
11 2010q3 256161898 2374964025 7539271941 906366437 0.10785928
12 2010q4 266711996 2351628138 7855233533 883118117 0.11341589
13 2011q1 269035496 2283762688 7263870218 860532504 0.11780361
14 2011q2 272434520 2252468913 7160338568 823572618 0.12094929
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Figure 4.2: Development of the ratio of interbank assets within the system to total
assets of all 16 entities
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Furthermore, we need data on the loss given default for our contagion exercise. In

this context, we use LGD-data from the quantitative supervisory reports for banks

in Germany, where once a year each bank had to report the actual provisions on

interbank loans as well as the total volume of the loan for which provisions have been

made. As in Chapter 3, we use the subsample of all German private commercial

banks plus the central institutions of the savings and cooperative banks. This gives

us an empirical frequency distribution with a mean of 0.45 and a standard deviation

of 0.39. Using this information and equations (3.6) and (3.7), we can approximate

the empirical frequency distribution by a (markedly u-shaped) beta distribution

with parameters α = 0.28 and β = 0.35. Figure 4.4 shows the empirical frequency

distribution of the actually observed LGD-data as well as the fitted beta distribution.

To incorporate the LGD as an explanatory variable into our analysis of the main

determinants of financial stability (see Section 4.5), we carry out the contagion

exercises for different LGD distributions: We change the parameters α and β of

the beta distribution (which can be easily calculated dependent on the mean and

variance of the distribution) so as to have expected LGDs of 25%, 35%, 55% and
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65%, respectively.60 The different beta distributions we use for our simulations are

shown in Figure 4.7 in Appendix 1.
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Figure 4.4: Empirical frequency distribution of the LGD data as well as the fitted
beta distribution

4.3.2 Stochastic loss given default

The simulation exercise is carried out using the round-by-round algorithm described

in Section 4.3.1. At first, all simulations are run by assuming that the LGD is

stochastic and follows the distribution shown in Figure 4.4, i.e. for each exposure

to a failing bank, we randomly draw a LGD from the estimated beta distribution

with parameters α = 0.28 and β = 0.35. To be more precise, we let one bank (e.g.

bank i) at a particular time (e.g. time t) fail, assign a randomly drawn LGD to

each interbank exposure and calculate how many banks fail in total due to domino

effects. We repeat that exercise (i.e. calculating the consequences of the failure of

bank i at time t) 100,000 times in total, each time randomly drawing a new set of

60 It is straightforward to adjust the variance of the beta distribution: In order to preserve the
structure of its density function, the ratio of the variance of a binomially distributed random
variable and a beta distributed random variable with the same mean should be constant, i.e.
µ1(1−µ1)

σ2
1

= µ2(1−µ2)
σ2

2
with µi(1 − µi) being the variance of a binomially distributed variable

with mean µi and σ2
i being the variance of a beta distributed variable with mean µi. With

µ being the expected value of the LGD distribution, we can thus calculate the parameters
α = µ · 0.65 and β = (1− µ) · 0.65.
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LGDs from the beta distribution with estimated parameters. As a next step, we let

another bank in the system fail (e.g. bank j) and calculate, again 100,000 times,

the number of bank failures. By repeating this exercise for each of the 16 banks in

the sample, we obtain a total of 1,600,000 results of bank failures for time t. We

aggregate these results in order to receive an empirical frequency distribution and the

respective cumulative distribution function of bank failures. As we have data for 14

points in time, we can generate 14 cumulative distribution functions that indicate

the stability of the banking system in each respective quarter. Additionally, we

calculate the overall mean of bank failures for each quarter. As we also investigate

the impact of the loss given default on the expected number of bank failures, we

repeat this contagion exercise for each point in time four times, each time drawing

from another LGD distribution shown in Figure 4.7.
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Figure 4.5: Distribution function of bank failures for the first quarter of 2008 to
the second quarter of 2011 (stochastic LGD)

Figure 4.5 shows the simulation results for the first quarter of 2008 to the second

quarter of 2011 under the assumption that the LGD follows the beta distribution

shown in Figure 4.4 (i.e. the distribution that is derived from our LGD-dataset). The
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cumulative distribution function of the first quarter of 2008 (2008q1), for example,

indicates that, under the assumption that each of the 16 entities fails with equal

probability, the probability of observing 13 or fewer bank failures is about 10%. The

probability of observing exactly 14 bank failures is around 80%. Thus, in the vast

majority of cases in the first quarter of 2008, more than 13 banks fail (including

the bank that fails first). This yields a rather unstable system. Looking at the

cumulative distribution function of the second quarter of 2011 (2011q2), we find a

different result. Here, the probability of observing just one bank failure (which is

the bank that failed exogenously) is almost 72%. In only 15% of the cases more

than 3 banks fail in total. Thus, in 2011q2, our results yield a considerably more

stable system compared to previous quarters. One interesting result we obtain is

that there is a substantial increase in system stability after the third quarter of 2009

(2009q3).
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Figure 4.6: Overall expectation of the number of bank failures for the period from
the first quarter of 2008 to the second quarter of 2011 (stochastic and constant LGD)

In addition to the cumulative distribution function, we characterize the stability

of the system for each point in time by one single number: the expectation of the

total number of bank defaults if one of the 16 entities fails. Thus, we calculate the

average number of bank defaults of all 1,600,000 simulation runs (again under the
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assumption that the loss given default follows the beta distribution shown in Figure

4.4) for each point in time. Figure 4.6 shows the development of this expectation over

time. The highest value is reached in the first quarter of 2009 with an expectation of

more than 14 bank defaults. In the following quarters the expectation continuously

decreases to fewer than 3 bank defaults in the second quarter of 2011. However, one

has to bear in mind that our simulations only consider direct contagion via domino

effects. Our simulations do not consider shocks on banks’ assets other than direct

interbank exposures. Thus, our simulations do not take into account, for example,

risks due to sovereign default and therefore show a very stable system in the first

and second quarter of 2011.

4.3.3 Stochastic versus constant loss given default

As a robustness check, we repeat the contagion exercise by assuming a constant

LGD which equals the mean of our empirical distribution (= 45%). Thus, we assign

the same LGD to each interbank exposure. This procedure yields, in contrast to the

stochastic case, only one number of bank failures given that bank i fails at time t.

Again, for each point in time we let each of the 16 entities fail and derive a number

of subsequent bank failures. And similarly to the case of the stochastic LGD, we can

summarize our results for each point in time by a cumulative distribution function

as well as the overall average number of bank failures.61

Figure 4.6 shows that there is, for most points in time, not very much difference in

the overall expectation of the number of bank failures between simulations with a

stochastic LGD and a constant LGD. On the bank level, however, there can be a

considerable variation in the results. For each of the 16 entities, we calculate the

results of the 14 points in time, which yields 224 observations. In 16% of these 224
61 The cumulative distribution functions (CDFs) under the assumption of a constant LGD look,

in terms of the relative positions of the different CDFs, very similar to the CDFs in Figure
4.5.
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observations, there is a deviation of more than 4 bank failures, in more than 40%

of the cases there is a deviation of more than one bank failure. The direction of

the deviation, however, varies. In 52% of the cases, a constant LGD yields a more

unstable system, in 39% of the cases, a constant LGD yields a more stable system

and in the remaining 9% of the cases there is no difference (this only happens when

there are no further bank failures in both cases).

A straightforward question in this context is what drives the result regarding whether

a constant LGD yields a more stable or unstable system. Visual inspection suggests

that the total number of bank failures, given that bank i fails at time t, is a crucial

factor. Thus, letDi,t be a dummy variable that takes on the value one if the failure of

bank i at time t yields a less stable system under the assumption of a constant LGD

and zero otherwise.62 In addition, let AVi,t be the average of the expected number

of bank failures (following the failure of bank i at time t) under the assumption of a

stochastic LGD and the respective number of bank failures under the assumption of

a constant LGD. We model the probability that the assumption of a constant LGD

will lead to a less stable system with a logit model, using AVi,t as the explanatory

variable.

Pr (Di,t = 1) = 1
1 + exp [−(β0 + β1AVi,t)]

(4.1)

Table 4.1 shows that we obtain the highly significant result that a higher average

number of bank failures increases the probability that a constant LGD will yield a

higher number of bank failures compared to a stochastic LGD.

As a robustness check we use a standard OLS regression to investigate the rela-

tionship between the discrepancy of the results under a constant and a stochastic

LGD and the average number of bank failures. Let CSi,t be the difference between

the number of failures under the assumption of a constant LGD and the expected
62 In this estimation, the cases where the constant and the stochastic LGD yield the same results

are included (Di,t takes on the value zero in these cases). As a robustness check we estimate
the model without these data. However, there is hardly any change in the results.
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number of failures under the assumption of a stochastic LGD (following the failure

of bank i at time t). This yields the following equation:

CSi,t = β0 + β1AVi,t + εi,t (4.2)

The last column of Table 4.1 shows that a higher average number of bank failures

indicates a higher value of CSi,t. The interpretation depends on the sign of CSi,t.

For a low average number of bank failures, the difference is negative, i.e. a stochastic

LGD yields a more unstable system and an increase in AVi,t moves CSi,t towards

zero. For a high average number of bank failures, the difference is positive, i.e. a

constant LGD yields a more unstable system and an increase in AVi,t also increases

the difference between the results of a constant and a stochastic LGD. Again, all

results are highly significant.

Variable Logit D CS

AVi,t 0.28*** 0.23***

(0.03) (0.02)

constant -2.38*** -2.50***

(0.34) (0.33)

Nobs 224 224

(Pseudo) R2 0.30 0.20

AUR 0.76 -

Table 4.1: Logit regression with Di,t being a dummy variable indicating that
the failure of bank i at time t yields more bank failures under the assumption of a
constant LGD compared to a stochastic LGD, and AVi,t corresponding to the average
number of bank failures with a constant and a stochastic LGD. OLS regression with
CSi,t being the difference of the (expected) number of failures under the assumption
of a constant and a stochastic LGD. Robust standard errors. AUR gives the area
under the ROC-curve; *** denotes significance at 1%-level.
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Intuitively, if the system is rather unstable (e.g. due to a low tier-1 capital ratio of

banks), a constant LGD leads to a higher average number of bank defaults than a

stochastic LGD as it is not possible in the constant case to randomly draw a very

low LGD that avoids contagion from one bank to another. In contrast, if the system

is rather stable, a constant LGD leads to a lower average number of bank defaults

compared to a stochastic LGD as it is not possible in the constant case to randomly

draw a very high LGD.

Empirically, we find that the LGD is not rather constant, but markedly u-shaped

(see Figure 4.4), i.e. the LGD is often low or high, but little probability mass is

centered around the expectation of the distribution in the middle. Thus, the sim-

plifying assumption of a constant LGD cannot be justified by empirical data, which

has important implications for our contagion exercise. Under the assumption of a

constant LGD, one tends to overestimate the extent of contagion in unstable sys-

tems and to underestimate it in rather stable systems. In Chapter 3, we investigate

the extent of contagion for one point in time (the fourth quarter of 2010). In this

context, we also compare the assumptions of a constant LGD and a stochastic LGD

and find that the assumption of a constant LGD underestimates the extent of con-

tagion. This is in line with the results of this section as Figure 4.5 shows a rather

stable system in 2010q4.

4.4 Development of an indicator

4.4.1 Stochastic dominance

As a next step, to evaluate our results from Section 4.3.2 in more detail, we have to

find a measure that allows us to compare the different distributions (and not only

numbers) of bank failures over time. One concept that makes this possible without
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many assumptions is stochastic dominance.63 This measure can be e.g. used in

decision theory if a preference relation between two assets with stochastic returns

has to be found. In our case, we can also form preference relations by assuming that

fewer bank failures are preferred to more bank failures. In this context, assume that

there are two cumulative distribution functions F (·) and G(·). The distribution F (·)

is said to have first-order stochastic dominance over the function G(·) if

F (x) ≥ G(x) (4.3)

for all x and strict inequality for at least one x.64 If there is first-order stochastic

dominance, every individual preferring less bank failures to more bank failures and

having the choice between two distributions, prefers the distribution that dominates

the other one according to the definition given by Equation (4.3).

There are two main drawbacks of the concept of first-order stochastic dominance:

First, there is no statement possible by how far one distribution is preferred to an-

other (dominated) distribution and, second, the comparison is not complete in a

mathematical sense, i.e. there is not always a dominance relationship between two

distributions.

The results of the analysis of first-order stochastic dominance are shown in Appendix

2. The matrix that describes the results confirms our findings in Section 4.3.2. The

most favorable distribution function of bank defaults is given in the second quarter

of 2011. This distribution dominates the distribution function of all other points in

time. The distribution function of the first quarter of 2009 does not dominate any
63 See Bawa (1975) and Schmid and Trede (2006), chapter 8, for more information about the

concept of stochastic dominance.
64 Note, however, that the definition of stochastic dominance in this paper is not exactly the

same as the standard definition which is based on the assumption that the respective utility
function is increasing (and not decreasing as in this paper). However, we can redefine the
utility function in a way that it is dependent on the number of solvent banks y := 16−x (with
x being the number of failed banks). Thus, it follows that ∂u

∂y > 0. Using this assumption, the
condition for first-order stochastic dominance is, that F (·) dominates G(·) if F (y) ≤ G(y) for
all y and strict inequality for at least one y. Redefining each CDF by making it dependent
on y and using this standard condition for stochastic dominance yields the same results.
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other quarter but is dominated by 12 other quarters. This result indicates that in

2009q1 the distribution function of bank defaults was quite unfavorable. However,

there is a dominance relationship between different points in time in only 70 of the

91 cases.65

Using a higher order stochastic dominance, one can mitigate the problem of com-

pleteness – at the expense of imposing additional assumptions.66

4.4.2 Whole distribution versus expectation

It is now possible (for most points in time) to compare the distribution functions

of bank failures. To analyze the main determinants for the stability of the financial

system it would, however, be much easier to use single numbers as an indicator of

financial stability. In the end, the question of whether a single number is suitable

to condense the information of a whole distribution needs to be answered with

empirical data. Our aim is to show that a statement based on the comparison

of two distribution functions is more or less equivalent to the comparison of the

expectations. To do so, we proceed as follows: Having 14 different distribution

functions (one for each quarter), we can make 91 (=14*13/2) bilateral comparisons,

i.e. we exclude comparisons with itself and double counts. Let F and G be the

cumulative distribution functions of time t1 and t2, respectively. Whenever there is a

(first-order) dominance relationship between F and G (irrespective of the direction),

65 We also calculated the relationships of first-order stochastic dominance for the distributions
of bank failures under the assumption of a constant LGD. In this case, we can even compare
87 of the 91 cases using the concept of first-order stochastic dominance.

66 We additionally investigated the second-order dominance relationships. To be able to do this,
we have to redefine each CDF to make it dependent on the number of solvent banks y. Under
the assumption that individuals prefer more solvent banks to less solvent banks and are risk

averse (∂u∂y > 0 and ∂2u
∂y2 < 0 ), F (·) is preferred to G(·) if

y∫
−∞

F (t) dt ≤
y∫
−∞

G (t) dt for all

y and strict inequality for at least one y. However, the number of dominance relationships
(= 72) only slightly increases compared to first-order stochastic dominance.
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the indicator variable Dt1,t2 takes on the value one. The variable ∆Ft1,t2 := abs(Ft1−

Ft2) is the corresponding absolute difference in the expected number of bank failures.

We model the probability of an existing dominance relationship with a logit model

and explain this probability with the absolute difference ∆Ft1,t2 .

Pr (Dt1,t2 = 1) = 1
1 + exp [−(β0 + β1∆Ft1,t2)] (4.4)

We expect a positive coefficient for β1: the larger the absolute difference in the

expected number of bank failures, the more likely the existence of a dominance

relationship. As a robustness check and to account for possible non-linearities, we

also include the squared term ∆F 2 in the model. The results are displayed in Table

4.2.

Variable Logit D Logit D

∆F 0.45*** 0.99***

(0.13) (0.35)

∆F 2 -0.06**

(0.03)

constant -0.50 -1.14**

(0.40) (0.55)

Nobs 91 91

Pseudo R2 0.25 0.27

AUR 0.85 0.82

Table 4.2: Logit regression where Dt1,t2 is a dummy variable indicating (first-order)
stochastic dominance between the distributions in t1 and t2 or vice versa, and ∆F
is the corresponding absolute difference in the expected number of bank failures.
Robust standard errors. AUR gives the area under the ROC-curve; ** and ***
denote significance at the 5% and 1%-level, respectively.
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As expected, the coefficient of the variable ∆F is positive and highly significant.

Additionally, to evaluate the discriminatory power of the model, we calculate the

area under the ROC-curve (AUR). The ROC (receiver operating characteristic)-

curve plots the type 1 error rate of the model against one minus the type 2 error

rate for different thresholds. The better the predictive power of the model, the lower

the type 2 error rate for a given type 1 error rate and the higher the area under

the ROC-curve. In the case of our model, the AUR is high with 0.85. Therefore,

we conclude that, in this case, the comparison of two distribution functions on the

one hand and the comparison of the two expectations on the other hand yields

rather similar results, i.e. the expected number of failures is a suitable indicator for

measuring the vulnerability of a banking system to contagion. There is no use in

including a quadratic term as done in the robustness check: The AUR is then even

lower than in the case without this quadratic term.

4.5 Determinants

As shown in the previous section, the information included in the whole distribution

can be summarized in one number without much loss of information. This single

number is the expectation of bank failures F and will be our indicator for the

vulnerability of the (German) interbank market. Drehmann and Tarashev (2011)

show that highly sophisticated measures of systemic risk contribution can be well

approximated by more objective figures like size and interbank lending. Following

this idea, we try to replicate our indicator using relatively easily available measures.

Following the results of the theoretical simulations in Chapter 2, we look at four

different determinants: the capital ratio CR, the extent of interbank lending IBL,

the average loss given default LGD and the structure of the interbank market ENT ,

measured by the entropy of the matrix of bilateral interbank exposures. As outlined

in Section 4.3.1, the entropy is a statistical tool that measures the degree of equality;
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the higher the entropy, the higher the degree of equality. Theoretical considerations

as laid down in Chapter 2 argue that a rather complete system ceteris paribus

becomes (for not too extreme parameter values) more stable the more equalized its

linkages are, i.e. the higher the entropy is.

We run the following linear regression:

Ft,i,j = β0 + β1CRt,i,j + β2IBLt,i,j + β3LGDt,i,j + β4ENTt,i,j + εt,i,j (4.5)

where CRt,i,j is the tier-1 capital ratio of the banking system at time t excluding

bank i, which is originally and exogenously in distress. Accordingly, IBLt,i,j is the

cumulated interbank lending of the banking system over the aggregate total assets

of the system at time t excluding bank i. ENTt,i,j is the entropy of the matrix of

bilateral interbank exposures at time t, excluding bank i. Figures 4.1 to 4.3 show the

evolution over time for the three determinants (in contrast to our regressors, these

figures show the determinants for the whole financial system). On the one hand, the

capital ratio in the system has increased significantly and interbank lending tends to

decrease; these two developments are believed to make the system more stable. On

the other hand, the exposures have become less equally distributed, which should

lead to a less stable system.

By creating variables in the way described above, we not only have variation in

the time dimension (as shown in Figures 4.1 to 4.3) but also in the cross-section

(i.e. between banks). The descriptive statistics shown in Table 4.3 indicate that the

endogenous variable Ft,i,j and two exogenous variables are characterized by a sub-

stantial part of cross-sectional variation. This enables us to apply a panel analysis.

The index j = 1, ..., 5 denotes the different average LGDs, ranging from 25% to 65%

in steps of 10 percentage points. As the variable LGD is set exogenously, we do not

report its mean and standard deviation in Table 4.3.
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Variable Mean Stand. dev. Between variation (Percentage)

F 9.08 5.00 15%

CR (%) 10.12 1.11 1%

IBL (%) 12.83 1.51 74%

LGD - -

ENT 4.21 0.10 39%

Table 4.3: Descriptive Statistics (for the case of an average LGD of 45%). The
column “Between variation” gives the between variance of the given variable as a
share of the total variance.

Table 4.4 shows the results of the linear regression (4.5) with bank dummies to

account for possible bank-specific effects. The results are in line with expectations.

We find that an increase in the capital ratio of the whole system by one percentage

point reduces the expected number of failing banks by more than four. This result is

highly significant. The exposure to the interbank market is also of great importance.

When interbank lending (relative to total assets) increases by one percentage point,

the number of expected failures will go up by 1.8 banks. When the LGD increases

by one percentage point, then the number of expected bank failures will go up by

0.14. The capital ratio and interbank lending – although calculated for the whole

system – are, after all, the (weighted) average of the single ratios, i.e. these ratios are

bank-specific measures by nature. The LGD is even specific to each borrower-lender-

relationship. By contrast, the entropy of the system is a truly systemic measure.

As mentioned above, it shows how equally interbank lending is distributed in the

banking system. A higher entropy means that banks spread their interbank assets

/ liabilities more equally among other banks in the system. The simulation results

in Chapter 2 indicate that for a rather complete network a more equal distribution

of interbank lending, i.e. a higher entropy of the matrix of interbank lending, leads
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(for not too extreme parameter values like an extremely low capitalization of banks)

to a more resilient system.

Variable Coefficient Stand. Dev.

CR -4.02*** 0.145

IBL 1.81*** 0.127

LGD 0.14*** 0.005

ENT -24.13*** 2.289

constant 130.07*** 10.618

Adj R2 0.813

Nobs 1120

Table 4.4: Results of the regression Ft,i,j = β0 +β1CRt,i,j+β2IBLt,i,j+β3LGDt,i,j+
β4ENTt,i,j + εt,i,j, where Ft,i,j is the expected number of failing banks in quarter t
given that bank i fails exogenously and the LGD is drawn from beta distribution
j. Pooled OLS regression with dummies for each bank and robust standard errors;
*** denotes significance at the 1%-level

Indeed, we find that an increase in entropy (= a more equal distribution of inter-

bank lending) leads to a reduction in the expected number of bank failures.67 As the

network we consider is almost complete (for each point in time there are no more

than two off-diagonal zero-entries in the 16× 16 matrix of interbank liabilities) and

parameter values are not too extreme (banks’ capitalization is not extremely low

and the LGD is not extremely high), our empirical results confirm the theoretical

simulation results in Chapter 2. These results are also in line with the theoretical

findings of Allen and Gale (2000), who show that a complete network (with maxi-

mum entropy of the matrix of mutual exposures) is more stable than an incomplete

but perfectly interconnected network (with a lower entropy of the matrix of mutual

67 This finding is in contrast to Figure 4.3, which shows a more unequal distribution of claims
over time although the stability of the system increased. However, it is quite likely that the
negative effect of a decreasing entropy is outweighed by the effect of banks’ capitalization and
interbank lending.
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exposures). The bank dummies also have a high explanatory power. All of them

are highly significant as well. In total, the four determinants as well as the bank

dummies can explain more than 80% of the variation in the indicator.

The relative importance of three of the four determinants can be assessed by assum-

ing a change in each determinant by one standard deviation. For the LGD, we do not

have a meaningful standard deviation because its variation is exogenously set by us.

Using the standard deviations reported in Table 4.3 and the estimated coefficients in

Table 4.4, we see a decrease of 4.5 in the number of expected failures when the cap-

ital ratio in the system increases by one standard deviation (here: 1.11 percentage

points). The corresponding numbers for interbank lending and entropy are 2.7 and

2.4, respectively. Hence, the capital ratio is the most important determinant. How-

ever, some of the determinants show a rather high correlation among themselves,

which has to be kept in mind when trying to quantify their exact contribution to

system stability.

4.6 Conclusion

This chapter investigates interbank contagion due to direct exposures for different

points in time. We have data on mutual interbank exposures from the first quarter

of 2008 to the second quarter of 2011. At first, following Chapter 3, we run conta-

gion simulations by drawing the loss given default from a beta distribution that is

fitted to a distribution of actually realized data of loss given default on the interbank

market. As a result, we obtain for each point in time a whole distribution as well

as the expected number of bank failures. We find that the system has become less

vulnerable to domino effects over time. As a robustness check, we compare these

results with the results obtained assuming a constant LGD and find that for a rather

stable system, the assumption of a constant LGD tends to underestimate the extent

of contagion, whereas for a rather unstable system the assumption of a constant
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LGD tends to overestimate the extent of contagion.

As a next step, we analyze whether the information of the whole distribution of bank

failures can be summarized in a single indicator like the expected number of bank

failures. Using the concept of stochastic dominance to compare the distributions for

different points in time, we find that the discriminatory power of the single indicator

is sufficiently high.

Finally, we investigate the main determinants of this indicator. We find that the

banks’ capital ratio, the share of interbank assets in the system in relation to total

assets, the loss given default and the degree of equality in the distribution of in-

terbank exposures (measured by entropy) are important determinants for financial

stability. We are thus able to confirm the importance of these determinants derived

from theoretical considerations.
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4.7 Appendix

4.7.1 Appendix 1: Beta distribution
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mean 
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Figure 4.7: Different beta distributions of the loss given default used for the con-
tagion simulations
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4.7.2 Appendix 2: Dominance relationships

Analysis of dominance relationships from the first quarter of 2008 (08q1) to the

second quarter of 2011 (11q2). If the element in row x and column y of the matrix

is equal to one, the distribution function of time y (first-order) stochastically domi-

nates the distribution function of time x.



08q1 08q2 08q3 08q4 09q1 09q2 09q3 09q4 10q1 10q2 10q3 10q4 11q1 11q2

08q1 0 0 0 0 0 0 0 1 1 1 1 1 1 1

08q2 0 0 0 0 0 0 0 1 1 0 1 1 1 1

08q3 0 0 0 0 0 0 0 0 0 0 1 1 1 1

08q4 0 0 0 0 0 0 1 1 1 1 1 1 1 1

09q1 1 1 0 1 0 1 1 1 1 1 1 1 1 1

09q2 0 0 0 0 0 0 1 1 1 1 1 1 1 1

09q3 0 0 0 0 0 0 0 1 1 1 1 1 1 1

09q4 0 0 0 0 0 0 0 0 0 0 1 1 1 1

10q1 0 0 0 0 0 0 0 0 0 0 1 1 1 1

10q2 0 0 0 0 0 0 0 0 0 0 1 1 1 1

10q3 0 0 0 0 0 0 0 0 0 0 0 1 1 1

10q4 0 0 0 0 0 0 0 0 0 0 0 0 1 1

11q1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

11q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0



119



Bibliography

Acharya, V. V., L. H. Pedersen, T. Philippon, and M. Richardson (2010). Measuring

systemic risk. Mimeo.

Adrian, T. and M. K. Brunnermeier (2008). CoVaR. Federal Reserve Bank of New

York Staff Reports No. 348, revised 2011.

Aikman, D., P. Alessandri, B. Eklund, P. Gai, S. Kapadia, E. Martin, N. Mora,

G. Sterne, and M. Willison (2009). Funding liquidity risk in a quantitative model

of systemic stability. Working Paper Bank of England No 372.

Allen, F. and A. Babus (2009). Networks in finance. in: Kleindorfer, P., Wind,

Y, and R. Gunther (2009). The Network Challenge. Wharton School Publishing,

Chapter 21.

Allen, F. and D. Gale (2000). Financial contagion. Journal of Political Econ-

omy 108(1), 1–33.

Basel Committee on Banking Supervision (2010). Basel III: A global regulatory

framework for more resilient banks and banking systems. Bank for International

Settlements.

Bastos, J. A. (2010). Forecasting bank loans loss-given-default. Journal of Banking

and Finance 34, 2510–2517.

Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of

Financial Economics 2, 95–121.

120



Blien, U. and F. Graef (1991). Entropieoptimierungsverfahren in der empirischen

wirtschaftsforschung. Jahrbuecher fuer Nationaloekonomie und Statistik 208(4),

399–413.

Bluhm, M. and J. P. Krahnen (2011). Default risk in an interconnected banking

system with endogenous asset markets. Mimeo.

Boss, M., H. Elsinger, M. Summer, and S. Thurner (2004). Network topology of the

interbank market. Quantitative Finance 4(6), 677–684.

Castrén, O. and I. K. Kavonius (2009). Balance sheet interlinkages and macro-

financial risk analysis in the euro area. ECB Working Paper Series No. 1124.

Chan-Lau, J. A. (2010). Balance sheet network analysis of too-connected-to-fail risk

in global and domestic banking systems. Working Paper IMF 10/107.

Cifuentes, R., G. Ferrucci, and H. S. Shin (2005). Liquidity risk and contagion.

Journal of the European Economic Association 3(2-3), 556–566.

Cont, R., A. Moussa, and E. B. e Santos (2010). Network structure and systemic

risk in banking systems. Mimeo.

Craig, B. and G. von Peter (2010). Interbank tiering and money center banks.

Working Paper Bank for International Settlements (BIS) No 322.

Crouhy, M., D. Galai, and R. Mark (2000). A comparative analysis of current credit

risk models. Journal of Banking and Finance 24, 59–117.

Degryse, H., M. A. Elahi, and M. F. Penas (2010). Cross-border exposures and

financial contagion. International Review of Finance 10, 209–240.

Degryse, H. and G. Nguyen (2007). Interbank exposures: An empirical examination

of contagion risk in the Belgian banking system. International Journal of Central

Banking 3, 132–171.

121



Dermine, J. and C. N. de Carvalho (2006). Bank loan losses-given-default: A case

study. Journal of Banking and Finance 30, 1219–1243.

Deutsche Bundesbank (2004). Monatsbericht. 09/2004.

Drehmann, M. and N. Tarashev (2011). Systemic importance: some simple indica-

tors. BIS Quarterly Review, March 2011.

Eisenberg, L. and T. H. Noe (2001). Systemic risk in financial systems. Management

Science 47(2), 236–249.

Elsinger, H., A. Lehar, and M. Summer (2006). Risk assessment for banking systems.

Management Science 52(9), 1301–1314.

Espinosa-Vega, M. A. and J. Solé (2010). Cross-border financial surveillance: A

network perspective. Working Paper IMF 10/105.

European Central Bank (2010a). Financial stability review. December 2010.

European Central Bank (2010b). Financial stability review. June 2010.

Frahm, G., T. Wickern, and C. Wiechers (2010). Multiple tests for the performance

of different investment strategies. Discussion Paper No. 5/10, Department of

Economic and Social Statistics, University of Cologne.

Freixas, X., B. Parigi, and J. C. Rochet (2000). Systemic risk, interbank relations

and liquidity provision by the central bank. Journal of Money, Credit and Bank-

ing 32, 611–638.

Furfine, C. H. (2003). Interbank exposures: Quantifying the risk of contagion.

Journal of Money, Credit and Banking 35, 111–128.

Gai, P. and S. Kapadia (2010). Contagion in financial networks. Proceedings of the

Royal Society, Series A: Mathematical, Physical and Engineering Sciences 466,

2401–2423.

122



Georg, C.-P. (2011). The effect of the interbank network structure on contagion and

common shocks. Discussion Paper 12/2011, Series 2, Deutsche Bundesbank.

Hahn, G. J. and S. S. Shapiro (1967). Statistical Models in Engineering. New York:

John Wiley & Sons.

Haldane, A. (2009). Rethinking the financial network. Speech delivered at the

Financial Student Association, Amsterdam.

Haldane, A. G. and R. M. May (2011). Systemic risk in banking ecosystems. Na-

ture 469, 351–355.

Huang, X., H. Zhou, and H. Zhu (2009). A framework for assessing the systemic risk

of major financial institutions. Journal of Banking and Finance 33, 2036–2049.

Huang, X., H. Zhou, and H. Zhu (2011). Systemic risk contributions. FEDS Working

Paper No. 2011-08.

International Monetary Fund (2009). Global financial stability report - responding

to the financial crisis and measuring systemic risks. April 2009.

International Monetary Fund (2011). Global financial stability report - grappling

with crisis legacies. September 2011.

Iori, G., G. de Masi, O. V. Precup, G. Gabbi, and G. Caldarelli (2008). A network

analysis of the italian overnight money market. Journal of Economic Dynamics

and Control 32(1), 259–278.

James, C. (1991). The losses realized in bank failures. Journal of Finance 46,

1223–1242.

Kaufman, G. G. (1994). Bank contagion: A review of the theory and evidence.

Journal of Financial Services Research 8, 123–150.

Memmel, C. and A. Sachs (2011). Contagion in the interbank market and its deter-

minants. Discussion Paper 17/2011, Series 2, Deutsche Bundesbank.

123



Memmel, C., A. Sachs, and I. Stein (2011). Contagion at the interbank market with

stochastic LGD. Discussion Paper 06/2011, Series 2, Deutsche Bundesbank.

Memmel, C. and I. Stein (2008). The prudential database BAKIS. Schmollers

Jahrbuch 128, 321–328.

Mistrulli, P. E. (2011). Assessing financial contagion in the interbank market: Max-

imum entropy versus observed interbank lending patterns. Journal of Banking

and Finance 35, 1114–1127.

Mood, A. M., F. A. Graybill, and D. C. Boes (1974). Introduction to the Theory of

Statistics (Third ed.). New York et al.: McGraw-Hill.

Nier, E., J. Yang, T. Yorulmazer, and A. Alentorn (2007). Network models and

financial stability. Journal of Economic Dynamics and Control 31, 2033–2060.

Sachs, A. (2010). Completeness, interconnectedness and distribution of interbank

exposures a parameterized analysis of the stability of financial networks. Discus-

sion Paper 08/2010, Series 2, Deutsche Bundesbank.

Schmid, F. and M. Trede (2006). Finanzmarktstatistik. Berlin: Springer-Verlag.

Schmieder, C. (2006). The Deutsche Bundesbank’s large credit database (BAKIS-M

and MiMiK). Schmollers Jahrbuch 126, 653–663.

Segoviano, M. A. and C. Goodhart (2009). Banking stability measures. Working

Paper IMF 09/4.

Sheldon, G. and M. Maurer (1998). Interbank lending and systemic risk: An empir-

ical analysis for Switzerland. Swiss Journal of Economics and Statistics 134(4.2),

685–704.

Soramäki, K., M. Bech, J. Arnold, R. Glass, and W. Beyeler (2007). The topology

of interbank payment flows. Physica A: Statistical Mechanics and its Applica-

tions 379(1), 317–333.

124



Stolz, S. and M. Wedow (2010). Extraordinary measures in extraordinary times:

Bank rescue operations in Europe and the US. Discussion Paper 13/2010, Series

1, Deutsche Bundesbank.

Tarashev, N. and H. Zhu (2008). Specification and calibration errors in measures of

portfolio credit risk: The case of the asrf model. International Journal of Central

Banking 4, 129–173.

Upper, C. (2007). Using counterfactual simulations to assess the danger of contagion

in interbank markets. Working Paper Bank for International Settlements (BIS)

No 234.

Upper, C. (2011). Simulation methods to assess the danger of contagion in interbank

markets. Journal of Financial Stability 7(3), 111–125.

Upper, C. and A. Worms (2004). Estimating bilateral exposures in the German

interbank market: Is there a danger of contagion? European Economic Review 48,

827–849.

van Lelyveld, I. and F. Liedorp (2006). Interbank contagion in the Dutch banking

sector. International Journal of Central Banking 2, 99–133.

Wells, S. (2004). Financial interlinkages in the United Kingdom’s interbank market

and the risk of contagion. Working Paper Bank of England No 230.

Zhang, L. (2007). Sample mean and sample variance: Their covariance and their

(in)dependence. The American Statistician 61, 159–160.

125



Curriculum Vitae

2010 - 2012 Visiting Ph.D.-Student

Deutsche Bundesbank, Frankfurt am Main

2008 - 2012 Ph.D. program in economics

Munich Graduate School of Economics

University of Munich

(Ludwig-Maximilians-Universität)

2003 - 2008 Studies in economics (Diplom-Volkswirtin)

University of Munich

(Ludwig-Maximilians-Universität)

2003 Abitur

Gymnasium Kirchheim bei München

7 July 1984 Born in Munich


	Introduction
	Research on financial stability
	Summary and contribution

	A parameterized analysis of the stability of financial networks
	Introduction
	Literature
	Structure of the financial system
	Creation and characterization of liability matrices
	Simulation of domino effects
	Complete networks
	Random graphs
	Varying connectivity
	Varying loss given default and connectivity
	Varying equity ratio and connectivity
	Varying ratio of interbank assets to total assets and connectivity

	Money center systems
	Varying the number of core banks and the concentration ratio
	Comparison to random graphs


	Conclusion
	Appendix
	Appendix 1: Generation of the maximum entropy solution of an interbank liability matrix
	Appendix 2: Specification of the linear relationship between entropy and relative entropy to the maximum entropy solution


	Contagion in the interbank market with stochastic loss given default
	Introduction
	Literature
	Round-by-round algorithm
	Loss given default (LGD)
	Results
	Benchmark case
	Robustness checks

	Conclusion
	Appendix
	Appendix 1: Summary statistics of the interbank network
	Appendix 2: Beta distribution
	Appendix 3: Delta method to test for the u-shape of the beta distribution
	Appendix 4: Characteristics of the LGD distribution for different subsamples of lender banks


	Contagion in the interbank market and its determinants
	Introduction
	Literature
	Simulation exercise
	Data
	Stochastic loss given default
	Stochastic versus constant loss given default

	Development of an indicator
	Stochastic dominance
	Whole distribution versus expectation

	Determinants
	Conclusion
	Appendix
	Appendix 1: Beta distribution
	Appendix 2: Dominance relationships



