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Abstract 

 

Alzheimer’s disease (AD) represents the most prevalent form of dementia and is 

characterized by the cerebral deposition of the neurotoxic amyloid beta (Aβ) peptide. Aβ 

is produced upon sequential cleavage of the amyloid precursor protein (APP) by β- and γ-

secretase. In addition, APP is constitutively shed by another protease activity referred to 

α-secretase. This is considered to be an important mechanism preventing the generation 

of Aβ, as cleavage of APP by α-secretase occurs within the Aβ domain. The protease 

activities of α- and β-secretase are thought to be inversely coupled, as they are assumed 

to compete for the same substrate APP. The molecular identity of α-secretase is unknown, 

but appears to be a member of a disintegrin and metalloprotease (ADAM) family of 

proteases. The aim of this thesis was to study the processing of APP by α-secretase in 

more detail. Therefore, a novel α-secretase-cleavage site-specific antibody was developed. 

RNAi-mediated knockdown of putative proteases with α-secretase activity showed that 

only the loss of function of ADAM10, but not of ADAM9, 17 or the matrix 

metalloproteinase 14 (MMP14), completely suppressed APP α-secretase cleavage in 

immortalized cell lines and in neuronal like cells. ADAM10 was essential for the 

constitutive α-cleavage of APP, whereas other proteases were unable to compensate for 

the loss of α-cleavage activity. Surprisingly, upon the genetically or pharmacologically 

induced loss of function of either ADAM10 or the β-secretase BACE1, almost no 

compensatory relationship between these two protease activities towards APP cleavage 

was observed. Instead, α- and β-secretase contributed to the proteolytic processing of 

APP in a stable ratio. However, ADAM10 could partially compete with γ-secretase for 

the cleavage of a C-terminal APP fragment generated by β-secretase. In conclusion, it 

was shown that ADAM10 is the only physiologically relevant, constitutive α-secretase of 

APP. 
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Zusammenfassung 

 

Die Alzheimer Krankheit, die häufigste Form von Demenz, wird durch eine zerebrale 

Ablagerung von beta Amyloid (Aβ) Peptiden gekennzeichnet. Aβ entsteht bei der 

Spaltung des Amyloid-Vorläufer-Proteins (Amyloid precursor protein, APP) durch die 

beiden Proteasen β- und γ-Sekretase. In einem anderen Proteolyseprozess wird APP 

durch die α-Secretase konstitutiv gespalten. Dieser Prozess ist ein wichtiger 

Mechanismus, der die Bildung der Aβ-Peptide verhindert, indem die α-Secretase 

innerhalb der Aβ-Domäne spaltet; es wird angenommen, dass in der Regel arbeiten α-and 

β-Secretase umgekehrt gekoppelt arbeite. Die α-Sekretase scheint eine Metalloprotease 

der ADAM (A disintegrin and metalloproteinase)-Familie zu sein, wobei diese Identität 

noch establiert werden muss. In dieser Arbeit wurde ein spezifischer Antikörper zur 

Untersuchung der α-Sekretase-Spaltung entwickelt. Das RNAi-basierte Ausschalten 

verschiedener Proteasen in Zellen zeigte, dass nur der Funktionsverlust von ADAM10, 

aber nicht von ADAM9, 17 oder MMP14 (Matrix metalloprotease 14) die α-Sekretase 

Spaltung von APP in immortalisierten Zell-Linien komplett unterdrückte. ADAM10 war 

für die konstitutive α-Spaltung von APP essentiell, während andere Proteasen den Verlust 

an α-Spaltung nicht kompensieren konnten. Überraschenderweise zeigte der 

Funktionsverlust von ADAM10 und β-Sekretase BACE1 untereinander fast gar keine 

kompensierende Beziehungen bezüglich der APP α-Spaltung, weder genetisch noch 

pharmakologisch in immortalisierten Zellen; α- und β-Sekretase trugen in einem stabilen 

Verhältnis zum APP proteolytischen Prozess bei. Dagegen konnte ADAM10 teilweise 

mit der γ-Sekretase um die Spaltung eines C-terminalen APP Fragments konkurrieren, 

das durch die β-Sekretase erzeugt wurde. Abschließend lässt sich sagen, dass ADAM10 

die einzige physiologisch gesehen relevante konstitutive α-Sekretase von APP ist.
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1 Introduction 

 

1.1 Alzheimer’s disease (AD) 

The research on Alzheimer’s disease (AD), which is named after the famous German 

psychiatrist and neuropathologist Alois Alzheimer, has been carried out since 1906 

(Alzheimer, 1907; Stelzmann et al., 1995). In the following 100 years, interdisciplinary 

studies have been unlocking the secrets of biochemical aspects the disease. AD-related 

amyloid beta (Aβ) peptide was purified (Glenner & Wong, 1984); the amyloid precursor 

protein (APP) was decoded (Kang et al., 1987); and the disease-related genetic mutations 

were revealed (Goate et al., 1991; Sherrington et al., 1995). The following table lists the 

most important milestones in the AD research (Table 1). The fascinating achievements 

provide possible direction of AD and related molecular biochemical research. 

 

Table 1 A historical perspective of AD research. 

Years Events References 

1906 Clinical phenotype definition 
Alzheimer, 1907;  
Stelzmann et al., 1995 

1984 Aβ purified from amyloid plaques and sequenced Glenner & Wong, 1984 
1986 Phosphorylated tau protein found in neurofibrillary tangles Grundke-Iqbal et al., 1986 
1986 APP sequence decoded Kang et al., 1987 
1991 The first APP mutation related to familial AD decoded Goate et al., 1991 
1995 PS mutations related to familial AD decoded Sherrington et al., 1995 

 

1999 BACE1 identified as β-secretase of APP Vassar et al., 1999 

 

Due to the dramatic rise in life expectancy during the 20th century, neurodegenerative 

disorders have become more threatening to the elder population. AD is becoming the 

most prevalent adult-onset dementia form nowadays (reviewed by Selkoe, 2001; 

reviewed by Karran et al., 2011). Although there are two types of AD described - the 

familial AD and the non-familial sporadic AD - they are phenotypically highly similar 

(reviewed by Selkoe, 2001). The phenotypic similarity makes it reasonable to assume that 

they also share similar molecular pathology and mechanism. The greatest risk factor for 

sporadic AD is age. With the predicted demographic increase of elderly populations, it is 

estimated that well over 100 million patients will develop AD by 2050 (reviewed by 

Karran et al., 2011).  
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1.1.1 Clinical symptoms of AD  

AD patients undergo progressive decline in various aspects of behavior, including 

memory impairment, disordered cognitive function, altered psychological performance, 

loss of social appropriateness and decline in language ability (reviewed by Selkoe, 2001; 

reviewed by Sisodia & St George-Hyslop, 2002). The clinical symptoms develop in 

various stages according to the severity of dementia (Table 2). In the first stage, the mild 

or early dementia stage, patients only show short-term memory impairment. They do not 

remember a conversation or activity and have difficulties to keep new information. After 

the first couple of years, most of them develop additional problems with cognitive 

functions, including spatial orientation and language disability. Patients may start to have 

growing problems to easily and correctly execute complex tasks. The personalities and 

emotions of patients would also receive a remarkable change, like losing interest to their 

surroundings and being often aggressive. Over several years or even a decade or more, 

patients are completely mentally disoriented with full disorientation, profound memory 

impairment and global cognitive deficits (reviewed by Selkoe & Schenk, 2003). 

 

Table 2 Clinical symptoms of AD development. 

 
Step 1 Step 2 Step 3 

Amnestic stage 
Progressive memory and  
motor decline 

Marked dementia 

• mild or early dementia 
• short-term memory impairment 
• difficulties to keep new information 

• problems with orientation and language 
• incorrect execution of complex tasks 
• changes in personality and emotion 

• completely 
mentally disoriented 

 

1.1.2 Pathological features of AD 

The molecular pathological description of AD began with the identification of a marked 

decrease in choline acetyltransferase (ChAT) in the cerebral cortex (reviewed by Selkoe 

& Schenck, 2003) and later characterized by abnormal protein deposition. Starting from 

1980s and during the decade following, the two brain lesions were recognized as 

diagnostic criteria of AD: the amyloid (senile) plaques and the neurofibrillary tangles 

(Figure 1) (reviewed by Selkoe, 1998; reviewed by Sisodia & St George-Hyslop, 2002; 

reviewed by Serrano-Pozo et al., 2011). 
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Figure 1 Morphological hallmarks of AD pathology. 
A) Amyloid deposits: plastic-embedded sections showing a mixture of spherical cores and an amorphous 
deposit (figure from Masters et al., 1985). 
B) Neurofibrillary tangles: immunochemical staining section of AD hippocampus with protein tau antibody 
(figure from Grundke-Iqbal et al., 1986). 
 

Amyloid plaques are deposits of aggregated amyloid beta (Aβ) peptides (Glenner & 

Wong, 1984; Masters et al., 1985), which are found almost exclusively in the 

extracellular space of the brain and the cerebral vascular system (reviewed by Selkoe, 

1999). In amyloid plaques, fibrillar Aβ peptides are found mainly as a 42-amino acid-

long form (Aβ42) (Iwatsubo et al., 1994). This is the more hydrophobic form that 

aggregates particularly easily and quickly (Jarrett et al., 1993; reviewed by Harper & 

Lansbury, 1997; Walsh et al., 1997). Together with Aβ42, a low proportion of a 40-

amino acid-long form (Aβ40) is found in the plaque, although it is normally more 

abundantly produced by cells (Asami-Odaka et al., 1995; reviewed by Selkoe, 1999). 

Amyloid plaques have a dense amyloid core, infiltrated by the dystrophic axons and 

dendrites and colocalized with activated microglia and reactive astrocytes (Pike et al., 

1994). It indicates a potential inflammatory component in the process. This form of 

plaques is specific for AD. An alternative form of amyloid plaques is called diffuse 

plaques or pre-amyloid deposits. The diffuse plaques contain only Aβ42 (Iwatsubo et al., 

1994; Lemere et al., 1996; Lambert et al., 1998) and are not surrounded by activated glial 

cells and neurons (Itagaki et al., 1989). These plaques are considered the immature form 



Introduction 

14 

of amyloid plaques. The diffuse plaques in the brain, however, can also be found in non-

demented elderly people (Tagliavini et al., 1988; Dickson et al., 1995).  

 

Neurofibrillary tangles are the second neuropathological hallmark of AD. They are 

intracellular lesions and consist mainly of a microtubule-associated abnormally 

phosphorylated form of the tau protein (Grundke-Iqbal et al., 1986), whose physiological 

function is to stabilize the axonal microtubule-associated cytoskeleton (reviewed by 

Mandelkow & Mandelkow, 1998; reviewed by Friedhoff et al., 2000). Under 

pathological conditions the protein is hyperphosphorylated, leading to a destabilization of 

microtubules and consequently to reduced mass transport and impaired impulse in 

neurons, which may be caused by an imbalance of various kinases and phosphatases 

(Illenberger et al., 1998; reviewed by Mandelkow & Mandelkow, 1998; reviewed by 

Selkoe, 2001).  

 

However, the two hallmarks of AD can be observed only in postmortem brain and 

considered to indicate the late stage of the disease. Thus, they are unlikely to provide 

crucial information for early diagnosis or epidemiological research. But still they shed 

light on the molecular biochemical research on AD pathology and help to better 

understand the etiology and molecular mechanisms behind. 

 

1.1.3 Amyloid cascade 

After the observation of two neuropathological hallmarks of AD, the idea that they are 

the result of disease-associated biochemical steps became accepted. Some more research 

was carried out to reveal the complete biochemical metabolism process. The 

identification of the Aβ peptide as a component of amyloid plaques is a milestone in the 

study of AD (Glenner & Wong, 1984; Masters et al., 1985). Later Kang et al. decoded 

the full length gene of precursor protein APP (Kang et al., 1987), whose proteolytic 

processing leads to the Aβ peptide generation. At the beginning of 1990s, there was an 

enthusiasm towards AD biochemical and genetic studies. The search for genetic linkages 

provided clues that missense mutations in APP caused autosomal dominant, early-onset 

AD. These mutations occurred in or around the Aβ region or γ-secretase cleavage site of 
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APP (Chartier-Harlin et al., 1991; Goate et al., 1991; Murrell et al., 1991) and increased 

the production of Aβ (Citron et al., 1992; Cai et al., 1993; Haass et al., 1994; Suzuki et 

al., 1994). Some more mutations were found in the genes encoding presenilins (PSs), the 

subunits of γ-secretase (Levy-Lahad et al., 1995; Rogaev et al., 1995; Sherrington et al., 

1995), an enzyme involved in Aβ production. These mutations increased the production 

of Aβ42 (Borchelt et al., 1996; Duff et al., 1996; Scheuner et al., 1996; Citron et al., 

1997; reviewed by Hardy, 1997; Tomita et al., 1997; Xia et al., 1997; Holcomb et al., 

1998). Another strong genetic risk factor for late-onset AD is the ε4 allele of 

apolipoprotein E (APOE) gene (Strittmatter et al., 1993). These findings, together with 

observations that Aβ readily forms neurotoxic, threadlike structures called fibrils in vitro 

or in vivo (Hilbich et al., 1991; Pike et al., 1993; Lorenzo & Yankner, 1994; LaFerla et 

al., 1995), bolstered the view that the accumulation of Aβ is a common initiating event 

that ultimately leads to neuronal dysfunction and eventually clinical manifestation of the 

disease in both familial and sporadic AD. The so called “amyloid cascade hypothesis” 

(Figure 2), positing that the deposition of the Aβ in the brain is a central event in AD 

pathology, has dominated research for the past twenty years (reviewed by Karran et al., 

2011). 

 

Although the direct relationship between the occurrence of amyloid plaques and neuronal 

degeneration in the central nervous system is so far not clear, the formation of plaques is 

thought to be the crucial primary insult in AD pathogenesis. However, evidence also 

assumed that the plaques were insufficient to cause neuronal death in vivo. The soluble 

Aβ oligomers may be responsible for neuronal dysfunction, while the plaques only form 

a reservoir for these species (Hartley et al., 1999; reviewed by Hardy and Selkoe, 2002; 

reviewed by Kawasumi et al., 2002; Walsh et al., 2002; reviewed by Glabe, 2006; 

reviewed by Haass & Selkoe, 2007; review Walsh & Selkoe, 2007). At the beginning of 

the cascade, changes happen to Aβ metabolism, such as an increased Aβ formation, a 

reduced degradation of Aβ, or a shift in the Aβ balance in favor of Aβ42 and the 

formation of diffuse plaques, which can induce the toxic effect to neurons directly or 

indirectly. The next step is to convert diffuse Aβ plaques to Aβ deposit fibrillars. The 

conversion activates microglia and astrocytes, triggering a local inflammatory reaction 
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and thereby damaging the surrounding neurons. The aggregation of Aβ peptide leads 

directly to an increased damage of neurons and changes in the intracellular milieu of cells, 

resulting in changes in kinase and phosphatase activities. Neurofibrillary tangles occur 

under such condition, which enhance neuronal dysfunction and death, together with 

amyloid plaques. The wide-spread neuronal dysfunction is regarded as the immediate 

cause of the disease (reviewed by Hardy & Selkoe, 2002; reviewed by Sisodia & St 

George-Hyslop, 2002). 

 

Figure 2 Amyloid cascade hypothesis. 
A shift in the Aβ balance in favor of Aβ42 leads to the formation of diffuse amyloid plaques, which may 
have the indirect toxic effect on neurons. Diffuse Aβ deposition then develops to mature amyloid plaques, 
which activates microglia and astrocytes, triggering a local inflammatory reaction from which damages the 
surrounding neurons. It also leads to changes in kinase and phosphatase activities resulting in the formation 
of neurofibrillary tangles. The tangles together with the Aβ deposition progressively give stress to neurons 
and therefore lead to wide spread neuronal dysfunction, which is regarded as the immediate cause of the 
disease. (modified picture from Hardy & Selkoe, 2002) 
 

1.1.4 Therapeutic approaches of AD 

Current therapeutic approaches of AD towards symptomatic aspects include the 

acetylcholinesterase (AChE) inhibitors (galantamine and rivastigmine), psychotropic 

drugs modifying behavioral symptoms and potential neurotrophic strategies (reviewed by 

Selkoe & Schenck, 2003; reviewed by Karran et al., 2011). These drugs improve some of 

the disease symptoms but do not treat the underlying mechanism, so the effects are 

limited. 
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Because Aβ is at the beginning of the amyloid cascade, considerable attention has been 

focused on attempts to develop therapies for AD towards metabolic pathways that 

involve Aβ (reviewed by Sisodia & St George-Hyslop, 2002). Such therapeutic 

approaches include: inhibition of Aβ monomers developing into toxic oligomers, or 

enhancement of clearance and disaggregation of fibrillar aggregates from cerebral cortex 

(Kisilevsky et al., 1995; Soto et al., 1998; Fraser et al., 2001); modulation of the fate and 

toxicity of Aβ by using antibodies against Aβ (Schenk et al., 1999; Bard et al., 2000; 

Janus et al., 2000; Morgan et al., 2000) or anti-inflammatory strategy; inhibition of the 

production of Aβ, by inhibiting either β- or γ-secretase that generates Aβ from APP. β- 

and γ-secretase are two proteases that participate in APP cleavage resulting to Aβ 

generation (see details in 1.2.3 and 1.2.4). Although there have been already some highly 

potent inhibitors identified to block γ-secretase activity, they still have trouble in moving 

further on the clinical trial.  That is because γ-secretase also plays an important role in 

shedding of many other proteins, like Notch receptor (reviewed by Annaert & De 

Strooper, 1999); the inhibition of γ-secretase may induce some unrespectable side effect. 

Thus, β-secretase inhibitor is considered a better therapeutic target, because the 

phenotype of BACE1 knockout mice was much milder than γ-secretase-deficit mice (Cai 

et al., 2001; Luo et al., 2001b).  

 

1.2 Amyloid precursor protein (APP) 

Aβ proteolytically derives from its precursor protein APP, which is ubiquitously present 

in all tissues (Tanzi et al., 1987). The three major APP isoforms are APP695, APP751, 

and APP770. APP695 is the only isoform lacking a 57-residue domain homologous to the 

family of kunitz serine protease inhibitors (KPI) and is the isoform most highly expressed 

in neurons (Goedert, 1987; LeBlanc et al., 1991).  

 

1.2.1 Structure of APP 

APP is a type I transmembrane protein with an amino-terminal signal peptide, a large N-

terminal ectodomain, a transmembrane domain and a short cytoplasmic domain (Figure 3) 

(Kang et al., 1987; Dyrks et al., 1988). There are two APP homologues, namely amyloid-
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precursor like protein 1 (APLP1) and amyloid-precursor like protein 2 (APLP2). They 

share the conserved structure and several identical motifs. The intracellular domain 

exhibits the highest sequence identity between APP, APLP1 and APLP2. However, Aβ 

sequence is unique to APP.  

 

Figure 3 APP structure and Aβ sequence. 
APP structure and the cleavage sites of α-, β- and γ-secretases. β- and γ-secretase cleavages generate the Aβ 
peptide, while α-secretase and an alternative β-cleavage site (β’) occur inside the Aβ domain precluding Aβ 
production.  
 

1.2.2 Physiological functions of APP 

While the role of APP processing in AD is becoming clearer, physiological functions of 

APP are not completely elucidated (reviewed by De Strooper & Annaert, 2000). Because 

of the domain structure and the striking similarity of proteolytic processing of APP to the 

Notch receptor, a receptor function for APP has been postulated (Kang et al., 1987; 

reviewed by Annaert & De Strooper, 1999; reviewed by Selkoe & Kopan, 2003). APP 

has also been suggested to have a role in synaptic plasticity, adhesion and cell migration 

via dimerization (Qiu et al., 1995; Perez et al., 1997; Soba et al., 2005; Weyer et al., 

2011). Some other research by gene knockout animals suggested an essential function of 

APP and its homologues during early development, postnatal survival, compromised 

neuronal or muscular function (Zheng et al., 1995; Heber et al., 2000; Herms et al., 2004; 

Wang et al., 2005); and the secreted APP α-cleavage fragment (sAPPα) has been even 

reported to rescue APP knockout phenotype (Ring et al., 2007; Weyer et al., 2011), 

which raises its possible therapeutic importance. More interestingly, the ectodomain 

fragments of APP, especially sAPPα, were supposed to have the neuroprotective and 

synaptotrophic functions (Furukawa et al., 1996; Meziane et al., 1998; Stein et al., 2004; 

Thornton et al., 2006; Gralle et al., 2009); while the secreted APP β-cleavage fragment 

(sAPPβ) was supposed to bind the death receptor 6 (DR6) to induce cell death (Nikolaev 



Introduction 

19 

et al., 2009); and the intracellular domain of APP was considered to be involved in 

phosphorylation and protein-protein interaction (reviewed by Zheng & Koo, 2011).  

 

1.2.3 Proteolytic processing of APP 

APP proteolysis has recently been recognized as a special case of regulated 

intramembrane proteolysis (RIP), a process that generates intra- and/or extracellular 

fragments from transmembrane proteins involved in signal transduction (reviewed by 

Edwards et al., 2008; reviewed by Lichtenthaler et al., 2011). APP can be processed by 

two different protease activities, called α- and β-secretase (Figure 4). β-secretase is the 

aspartyl protease BACE1 (β-site APP cleaving enzyme 1). It cleaves APP at N-terminus 

of the Aβ domain to release sAPPβ and the remaining C-terminal fragment (CTF) C99 

which can be further cleaved by γ-secretase resulting in the formation of the Aβ peptide 

(Vassar et al., 1999) (Figure 3, 4). This process is called the APP amyloidogenic 

proteolytic pathway. In the alternative non-amyloidogenic pathway, APP is cleaved by α-

secretase within the Aβ domain, between the 16th (Lysine, Lys) and 17th (Leucine, Leu) 

amino acid of Aβ domain (Esch et al., 1990; Anderson et al., 1991; Wang et al., 1991) 

(Figure 3, 4). This cleavage releases the large, soluble ectodomain sAPPα into the 

medium and allows the resultant 83-residue, membrane-retained CTF C83 to be cleaved 

by γ-secretase, generating the small p3 peptide (Haass et al., 1992b). Another alternative 

cleavage performed by β-secretase takes place at the β’-cleavage site which is between α- 

and β-cleavage site (Figure 3). 



Introduction 

20 

 
Figure 4 APP proteolytic processing. 
APP can be cleaved by α-secretase releasing the sAPPα. The remaining fragment C83 can be further 
cleaved by γ-secretase to generate the small peptide p3. It can also be cleaved by β-secretase releasing 
sAPPβ. The remaining fragment C99 can be further cleaved by γ-secretase to generate the Aβ peptide.  
 

1.2.4 Secretion and transportation of APP 

The vast majority of secretory proteins share a common biosynthetic origin in the rough 

endoplasmic reticulum (ER), from where they are transported to the Golgi complex. The 

protein destined for secretion is then further processed through the Golgi apparatus and 

finally ends up in vesicles that fuse with the plasma membrane (reviewed by Halban & 

Irminger, 1994). APP also complies by such trafficking route. APP matures post-

translationally while being transported through the secretory pathway, modified by N- 

and O-glycosylation and tyrosine-sulfation while moving through the trans-Golgi 

network (TGN) to the cell surface (Weidemann et al., 1989; Oltersdorf et al., 1990). 

Immature APP (being N-glycosylated only) can be proteolytically processed in the ER, in 

the TGN, at cell surface or in the endocytic vesicles. The mature APP is degraded rapidly 

during the way where it is either transported to the cell surface via a biosynthetic pathway 

or from the cell surface via an endocytic pathway. 
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Evidence is accumulating that α-, β-, and γ-secretases localize differentially within the 

cell. α-secretase cleavage of APP appears to occur either in the late compartment of 

constitutive secretory pathway (TGN or post-Golgi compartment) or mostly at the plasma 

membrane (Sambamurti et al., 1992; De strooper et al., 1993; Kuentzel et al., 1993). 

Early research also suggested that membrane association was required for APP cleavage 

(Sisodia, 1992) as well as its internalization via the endocytic pathway (Carey et al., 

2005). On the other hand, the β-cleavage of APP seems to happen after APP endocytosis 

(Golde et al., 1992; Koo & Squazzo, 1994; Grbovie et al., 2003; reviewed by Tang, 

2009). Aβ production by cleavage of both β- and γ-secretase occurs in the endosomal 

compartment (Shoji et al., 1992; Siman et al., 1993; Schrader-Fischer & Paganetti, 1996; 

Yamazaki et al., 1996; Peraus et al., 1997; Perez et al., 1999). γ-secretase is suggested to 

work at plasma membrane (Chyung & Selkoe, 2003; Chyung et al., 2005; reviewed by 

Kaether et al., 2006a) or in early endosome (Kaether et al., 2006b), in parallel or even 

earlier than β-secretase. However, proteolytic metabolism of sAPPβ and Aβ was also 

reported to happen in trans-Golgi compartment in absence of vesicle formation under 

disease condition or in the presence of certain APP mutations (Xu et al., 1997). In vivo 

evidence proved that endocytosis is required for Aβ generation (Cirrito et al., 2008). The 

exact cleavage compartment by β-secretase is still not revealed completely. The exosomal 

organelle is considered necessary for the production and transportation of a fraction of 

the secreted APP fragments (sAPP), including sAPPα, sAPPβ or Aβ (Yu et al., 2004; 

Rajendran et al., 2006; Vingtdeux et al., 2007). 

 

Piling all the evidences together, APP can be processed in different pathways (Figure 5): 

in the constitutive secretory pathway, APP is transported towards the cell surface where it 

meets α-secretase and releases sAPPα (Figure 5 secretory pathway); the full length APP 

which is not cleaved by α-secretase can be rapidly internalized to enter the endosomal-

lysosomal pathways and can be cleaved by β- and γ-secretase (Figure 5 endocytic 

pathway) (Hare, 2010); a part of APP recycles back to the cell surface (Figure 5 recycling 

pathway) (Marquez-Sterling et al., 1997; reviewed by Small & Gandy, 2006; reviewed 

by Sannerud & Annaert, 2009), or it is degraded directly in the lysosome. Given the short 
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half-life of APP, even subtle changes in APP transportation through these various 

secretase-containing compartments may have large effects on the net steady-state levels 

of sAPP and Aβ. 

 
Figure 5 APP trafficking and ectodomain shedding. 
In the constitutive secretory pathway, APP is transported through ER and TGN towards the cell surface 
where it comes across α-secretase and releases sAPPα; the full length APP or CTFs could then rapidly enter 
the endosomal-lysosomal pathways and be cleaved by γ- and β-secretases; The rest of APP and CTFs enter 
the recycling pathway reaching the cell membrane again or is degrade directly in the lysosome.  
 

1.2.5 Secretases responsible for APP cleavage 

Several key players involved in APP proteolytic processing, such as β- and γ-secretase, 

have been precisely identified or at least had a rough idea. In contrast, the identity of α-

secretase remains unclear but it is assumed to belong to a disintegrin and 

metalloproteinase (ADAM) family (see details in 1.3).  

 

β-secretase leads to the cleavage of APP at the N-terminus of the Aβ domain in the 

amyloidogenic route. In 1999, Vassar et al. identified the aspartyl protease BACE1 to be 

β-secretase of APP. Overexpression of BACE1 increased the amount of β-secretase 

cleavage products, and antisense inhibition of BACE1 messenger RNA decreased the 

amount of sAPPβ (Vassar et al., 1999). BACE1 is a 501 amino acid long type I 

transmembrane, glycosylated aspartyl protease with an N-terminal signal peptide, a 

prodomain, a large catalytic domain, a transmembrane domain and a small cytoplasmic 
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domain (Hussain et al., 1999). This finding was subsequently confirmed by several 

research groups using different experimental approaches (Sinha et al., 1999; Yan et al., 

1999; Lin et al., 2000). BACE1 is expressed highly in brain tissue (Vassar et al., 1999), 

consistent with its role in amyloidogenic pathway. BACE1 was shown to be the unique 

protease for APP β-proteolytic processing (Cai et al., 2001; Luo et al., 2001b). 

Nevertheless, APP is not the unique substrate for BACE1, although the identification of 

other BACE1 substrate is poorly understood (reviewed by Haass, 2004). A BACE1 

homologue, BACE2, has also been characterized (Acquati et al., 2000; Solans et al., 

2000). Interestingly, although lowly expressed in the brain (Bennett et al., 2000), BACE2 

cleaves APP predominately inside the Aβ domain closer to the transmembrane domain 

than α-cleavage site. For that reason BACE2 would be rather classified as an alternative 

α-secretase. 

 

After α- or β-secretase cleavage, the remaining membrane bound CTFs of APP are cut 

within the transmembrane region by γ-secretase. The cut can be carried out at different 

positions in C99 to generate different lengths of Aβ peptides. It arises predominantly 

Aβ40, while the much more pathogenic form Aβ42 makes up only 5-10% percentage 

(Selkoe, 1999). The γ-secretase is a high molecular weight complex comprising the four 

subunits: presenilin1 (PS1) or the homologous presenilin2 (PS2), APH-1 (anterior 

pharynx defective 1), nicastrin and Pen-2 (presenilin enhancer protein 2). These four 

subunits are necessary for the activity of the complex (Francis et al., 2002) and also 

sufficient (Edbauer et al., 2003). PSs are the active catalytic subunits of γ-secretase and 

belong to the family of GxGD aspartyl proteases (De Strooper et al., 1998; Wolfe et al., 

1999; Haass & Steiner, 2002; reviewed by Wolfe, 2006). Missense mutations in the PS 

genes are the major cause of familial AD (Sherrington et al., 1995), which is 

biochemically characterized by a shift of the C-terminal cleavage site of γ-secretase, 

leading to more Aβ42 generation. 

 

1.3 Proteases involved in α-secretase cleavage of APP 

Despite that β- and γ-secretase have been identified since a decade ago, the molecular 

identity of α-secretase is still unclear, controversial and remains to be fully established. 
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Some proteases of ADAM and matrix metalloprotease (MMP) family were supposed to 

be involved in APP α-secretase cleavage. Furthermore, because α-secretase cleavage has 

the potential to prevent Aβ generation and sAPPα has even been shown to have 

neuroprotective effects (see details in 1.2.2); it is considered to be a crucial target in the 

therapeutic approach for AD treatment. 

 

1.3.1 ADAM proteases family 

The α-secretase of APP was considered to be a metalloprotease due to the fact that APP 

α-secretase cleavage could be blocked by certain metalloprotease inhibitors. TAPI-1, -2 

and 10-phenanthroline inhibits metalloproteases by removal and chelation of metal ions 

required for their catalytic activity, leaving an inactive apoenzyme (Arribas et al., 1996). 

Some further researches concerning to metalloproteases inhibition revealed that 

metalloproteases were involved in APP α-cleavage process (Buxbaum et al., 1998; Koike 

et al., 1999; Lammich et al., 1999; Skovronsky et al., 2000; Lopez-Perez et al., 2001; 

Slack et al., 2001; Kim et al., 2008). The most frequently named ones are three members 

of the ADAM family: ADAM9, 10 and 17 (see details in Table 3). 

 

1.3.1.1 Structure of ADAM proteases 

ADAMs are type I transmembrane proteins belonging to the zinc-dependent protease 

superfamily. They compromise a signal sequence, a prodomain, a large luminal domain 

containing the catalytically active metalloprotease domain and cysteine-rich domain, an 

EGF (epidermal growth factor)-like domain, a transmembrane domain and a short 

cytoplasmic domain (Figure 6) (reviewed by Seals & Courtneidge, 2003). The prodomain 

contains a conserved cysteine residue and the catalytic domain has to be coordinated with 

the zinc ions. In the trans-Golgi compartment, ADAM proteases can be activated by the 

removal of prodomain by a furin-like proprotein convertase (Lammich et al., 1999; 

Anders et al., 2001; Endres et al., 2003). In ADAM10, proprotein convertase recognition 

sequence (RKKR) is essential for activation of the zymogen, and both furin and PC7 can 

act as proprotein convertases (Anders et al., 2001). The cytoplasmic domain varies the 

most among the different ADAM proteases. It contains the motifs for protein-protein 

interactions and serves for signal transduction and cellular transport of ADAM proteases. 
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ADAM9, 10 and 17 have PXXP motifs and serine, threonine and tyrosine residues, which 

can be phosphorylated. The modifications of PXXP motifs and phosphorylation provide 

binding sites for SH3 and SH2 domain-containing proteins (Howard et al., 1999).  

 
Figure 6 ADAM protease structure. 
ADAM proteases are type I transmembrane protein with a signal sequence, a prodomain, a large luminal 
domain containing the catalytically active metalloprotease domain and cysteine-rich domain, a 
transmembrane domain and a short cytoplasmic domain. 
 

1.3.1.2 Physiological functions of ADAM proteases  

The ADAM proteases catalyze the cleavage of different type of type I transmembrane 

proteins, including cytokines and cytokine receptors, growth factors and their receptors, 

extracellular matrix proteins and adhesion proteins. Of the 21 human ADAMs identified, 

only 13 are proteolytically active. ADAMs shown to exhibit protease activity include 

ADAM9, 10, 12, 15, 17, 19, 28 and 33 (reviewed by Duffy et al., 2011). Because of the 

diversity and variety of substrates, ADAM proteases are supposed to regulate many 

different functions in the various types of cells, like membrane fusion, cell migration, and 

also early development, fertilization and cell fate determination (reviewed by Seals & 

Courtneidge, 2003). 
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1.3.1.3 ADAM9, 10 and 17 

ADAM9, 10 and 17 are the best described candidates providing APP α-secretase activity. 

Research about involvements of these three ADAM proteases in APP α-proteolytic 

process has been performed by various research group using different techniques in either 

in vitro cell lines or in vivo animal experiments. The following table summarizes the 

research about APP α-secretase candidates (Table 3). 

 

Table 3 Research summary of APP α-secretase candidates (ADAM9, 10 and 17).  

 
Cell lines and 
ADAMs manipulations 

References 

in vitro   
Cell free assay ADAM9 Roghani et al., 1999 
 ADAM10  Lammich et al., 1999 
Cell based assay   

APP-COS ADAM9 ↑ Koike et al., 1999 
HEK ADAM9 ↑ Taylor et al., 2009 
HEK/APP-HEK ADAM10 ↑ Lammich et al., 1999 
LoVo ADAM10 ↑ Lopez-Perez et al., 2001 
HEK ADAM10 ↑ Taylor et al., 2009 
APP-HEK ADAM17 ↑ Slack et al., 2001 

Overexpression of 
individual protease 

LoVo ADAM17 ↑ 
 

Lopez-Perez et al., 2001 

ADAM9 KO-MEF Weskamp et al., 2002 
COS ADAM9 ↓ Asai et al., 2003 
HEK ADAM9 ↓ Taylor et al., 2009 
ADAM10 KO-MEF Hartmann et al., 2002 
COS ADAM10 ↓ Asai et al., 2003 
SH-SY5Y ADAM10 ↓ Allinson et al., 2004 
1321N1 ADAM10 ↓ Camden et al. 2005 
U373 ADAM10 ↓ Freese et al., 2009 
HEK ADAM10 ↓ Taylor et al., 2009 
ADAM10 KO-neuron Jorissen et al., 2010 
COS ADAM17 ↓ Asai et al., 2003 
SH-SY5Y ADAM17 ↓ Allinson et al., 2004 

gene knockdown or 
knockout of individual 
protease 

1321N1 ADAM17 ↓ Camden et al. 2005 
in vivo   
overexpression ADAM10-mouse brain Postina et al., 2004 
“↑” represents gene overexpression; “↓” represents gene knockdown or knockout. 

 

Some research was performed by in vitro enzyme activity assay. The corresponding α-

cleavage product together with the exact α-cleavage site was verified between the 16th 

and 17th amino acid of Aβ domain (Lammich et al., 1999; Roghani et al., 1999). Other 

studies tried to elucidate the identity of α-secretase by candidate overexpression. 

ADAM9, 10 and 17 overexpressions in different cell lines resulted to an increase of APP 
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α-cleavage product (Koike et al., 1999; Lammich et al., 1999; Lopez-Perez et al., 2001; 

Slack et al., 2001; Hotoda et al., 2002; Postina et al., 2004). Catalytic inactive mutations 

of ADAM9 and 10 overexpressions could either inhibit the APP α-cleavage or at lease 

keep sAPPα generation at normal level (Koike et al., 1999; Lammich et al., 1999).  

 

However, since the overexpression of a protease could only up-regulate APP α-secretase 

cleavage artificially or indirectly, the physiological relevance of a candidate protease 

needs to be shown using the corresponding protease knockdown or knockout cells. In fact, 

different kinds of cells derived from ADAM9-, 10- or 17-deficient mice showed either no 

or a variable degree of reduction of APP shedding (Buxbaum et al., 1998; Hartmann et 

al., 2002; Weskamp et al., 2002; Jorissen et al., 2010). Besides, cell based gene 

disruption experiments showed that ADAM9, 10 and 17 were all involved in the APP α-

shedding. RNAi-mediated knockdown of the individual proteases in cultured cells led to 

the reduction of APP shedding to different extents (Asai et al., 2003; Allison et al., 2004; 

Camden et al., 2005; Freese et al., 2009; Taylor et al., 2009).  

 

The finding that APP shedding was never fully suppressed has led to the conclusion that 

ADAM9, 10 and 17 may contribute to α-secretase activity all together and they may 

exhibit considerable functional redundancy. However, this is in clear contrast to the fact 

that many other ADAM protease substrates are predominantly cleaved by a single 

ADAM protease, such as transforming growth factor α (TGFα), EGF, the low-affinity 

immunoglobulin E receptor CD23 and N-cadherin (Sahin et al., 2004; Reiss et al., 2005; 

Weskamp et al., 2006; Le Gall et al., 2009; reviewed by Pruessmeyer & Ludwig, 2009). 

This raises the doubt that whether all three candidates of APP -secretase provide the 

physiologically relevant α-secretase activity. 

 

Moreover, some MMPs and other ADAMs may also have to be involved in the α-

secretase activity. At least, upon overexpression of MMP2, 9, 14, 16 and ADAM8, 19, 

APP α-cleavage increased (Ahmad et al., 2006; Naus et al., 2006; Talamagas et al., 2007; 

Tanabe et al., 2007; Vaisar et al., 2009). Whether they are relevant as α-secretase at 
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endogenous level remains unclear. They were also supposed to cleave APP at other site 

different from α-cleavage site. 

 

1.3.2 Problems of APP α-secretase identification research 

Investigation of APP α-secretase has always been complicated by two major factors. One 

aspect is the fact that APP is cleaved by distinct proteases at different sites in close 

proximity (Figure 3). For example, there is a secondary β-secretase cleavage site (termed 

β’-site) within the Aβ sequence in close proximity to the α-secretase-cleavage site. 

Antibodies used in previous studies, like WO2 or 6E10, have not specifically detected 

sAPPα, but also the alternative β-secretase-cleavage product sAPPβ' (Miles et al., 2008), 

which may have confounded the study of α-secretase cleavage. The other difficulty to 

study APP shedding is that the endogenous APP is expressed at very low levels, typically 

at the limit of assay sensitivity, especially in non-neuronal cells. Indeed the major part of 

research about APP shedding was performed using APP overexpressing cell lines, which 

simplified the analysis of APP shedding behavior but in an artificial environment. The 

heterogeneous results may also be caused by the off-target effects raised up by the 

overexpression of APP. Furthermore, many studies were carried out using activators of 

APP ectodomain shedding, like protein kinase C (PKC) signaling activator phorbol ester, 

which would imply the identity of α-secretase under regulated condition (see details in 

1.4.1) but not constitutive condition. 

 

1.4 Regulation of APP α-secretase 

APP is processed in two different proteolytic pathways by α- and β-secretase (Figure 4). 

APP is a common substrate for both proteases. So theoretically upregulation of one’s 

activity would lead to the reduction of the ectodomain shedding by the other secretase. 

This is the reason why in general the regulation of sAPPα and Aβ production is thought 

to occur in an inversely coupled manner. An increase of APP α-secretase activity is 

considered a possible therapeutic approach for AD, as it could be preventive in terms of 

Aβ generation. In contrast, a reduction of the α-cleavage is assumed to increase the risk 

of AD by leading to enhanced β-secretase cleavage and Aβ levels. Understanding the 

regulatory mechanisms of both secretases and their reciprocal coupling is of main 
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importance since the modulation of their activities could be promising therapeutic 

approach for AD. 

 

1.4.1 Regulated α-secretase of APP 

α-secretase activity has two components: a constitutive part and a regulated part. Both 

pathways contribute to APP α-proteolytic process. The constitutive pathway plays its role 

under normal physiological conditions; additionally, α-secretase activity can be increased 

above the constitutive level by some stimulation, which is called the regulated pathway. 

Due to its therapeutic potential, the activation of the regulated α pathways has roused the 

interest of AD community in the last decade. Different kinds of stimuli have been 

suggested to increase the secretion of sAPPα under certain conditions. The first evidence 

about the regulated α-secretase was shown in 1992. In that report, the release of sAPP 

was stimulated by muscarinic acetylcholine receptor (mAChR) agonist (Nitsch et al., 

1992). Later, some other activators were also successfully tested, such as activation of G 

protein-coupled receptors (GPCRs) and receptor tyrosine kinases, like PKC, mitogen-

activated protein kinase (MAPK), phosphoinositid-3-kinase (PI3K), cAMP and calcium 

(reviewed by Postina, 2011). The following table summarizes some physiological stimuli 

involved in the modulation of APP α-secretase activity (Table 4). Another most 

frequently used sAPPα stimuli is phorbol-12-myristate-13-acetate (PMA) (see details in 

1.4.2). 
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Table 4 Research summary of physiological APP secretion stimuli. 

Sorts Stimuli References 

Interleukin-1 α (IL-1α) Bandyopadhyay et al., 2006 
 

Cytokines 

Interleukin-1 β (IL-1β) Dash & Moore, 1995; Chong & Lee, 1999; Gitter et 
al., 2000; Ma et al., 2005; Tachida et al., 2008; 
Kong et al., 2009 
 

EGF Slack et al., 1997; Santiago-Josefat et al., 2007 
 

Growth factors 

Insulin-like growth factor 1 
(IGF-1) 
 

Adlerz et al., 2007; Jacobsen et al., 2010 

Estrogen Manthey et al., 2001; Zhang et al., 2005; Amtul et 
al., 2010 
 

Hormones 

Insulin Solano et al., 2000; Chen et al., 2007 
 

Glutamate receptor (GluR) 
agonist 

Lee et al., 1995; Nitsch et al., 1997; Jolly-Tornetta 
et al., 1998; Marcello et al., 2008; Hoey et al., 2009 
 

Neurotransmitters 

mAChR agonist Buxbaum et al., 1992; Nitsch et al., 1992; Nitsch et 
al., 1993; Slack et al., 1995; Wolf et al., 1995; 
Caccamo et al., 2006; Cho et al., 2006; Shirey et al., 
2009; Davis et al., 2010 

 

However, for most of them it remains to be shown whether they activate α-secretase 

cleavage through ADAM9, 10, 17 or yet other metalloproteases. The identification of 

such a regulated α-secretase of APP would be helpful for AD therapy development. 

 

1.4.2 Relationship between α- and β-secretase on APP cleavage 

Evidence from early reports demonstrated that Aβ release could be modulated 

physiologically or pharmacologically by a number of agonists which increase APP α-

shedding through phospholipase C and/or PKC activation (Table 5). PKC activation by 

PMA or phorbol 12,13-dibutyrate (PDBu), or activation of neurotransmitter receptors 

linked to phospholipase C, like mAChR, increased the α-cleavage of APP in cell lines 

with endogenous or overexpressed APP or Swedish APP (K670N, M671L) (Citron et al., 

1992). As a result, sAPPα and p3 production increased apparently, while the toxic 

product Aβ decreased correspondingly (Hung et al., 1993; Jacobsen et al., 1994; Wolf et 

al., 1995; Citron et al., 1996; Buxbaum et al., 1998; Kioke et al., 1999; Skovronsky et al., 

2000; Zhu et al., 2001; Allinson et al., 2004; Kim et al., 2008; Fu et al., 2009). PMA 
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treatment in neurons from Tg2576 mouse (transgenic mice overexpressing APP Swedish 

mutation) (Hsiao et al., 1996) also produced a significant increase in the levels of sAPPα, 

which was associated with a significant decrease in the levels of soluble Aβ (Qiu et al., 

2001). Postina et al. reported that neuronal overexpression of ADAM10 in human 

APPV717I overexpressed mice increased the secretion of the neurotrophic sAPPα, reduced 

the formation of Aβ peptides and prevented their deposition in plaques (Postina et al., 

2004). Other research related to AD diagnosis or therapy implied the compensative or 

competitive position of α- and β-secretase on APP cleavage (Colciaghi et al., 2002; Yao 

et al., 2011). However, in all these research, sAPP level was hardly measured. Thus, the 

activated α-secretase seems to compete with β-secretase on APP cleavage and 

upregulation of α-secretase activity is considered a potential therapeutic application in 

AD.  

 

Conversely, PKC activation in human primary neurons was shown to not affect Aβ 

production or even increase it (LeBlanc et al., 1998; Blacker et al., 2002). Another report 

showed that Aβ and sAPPβ levels were significantly reduced after intracortical injection 

of PMA in human APP overexpressing mouse, whereas sAPPα level was unchanged 

(Savage et al., 1998). On the other hand, pharmacological down-regulation of α-secretase 

cleavage of APP led to variant results about β-cleavage changes (Skovronsky et al., 2000; 

Gandhi et al., 2004; Kim et al., 2008). Using an ADAM10 conditional knockout mice, 

Saftig and colleagues found an obvious diminished appearance of CTFα and sAPPα 

together with a paradoxical reduction in CTFβ, sAPPβ, and total Aβ peptide production 

including the amount of Aβ40 and Aβ42 (Jorissen et al., 2010). Due to these 

heterogeneous findings, the scenario about the relationship between α- and β-secretase on 

APP cleavage is still unclear. The following table summarizes the regulation of α-

secretase and the corresponding compensative and competitive effect from β-secretase on 

APP cleavage (Table 5). 
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Table 5 Research summary of relationship of α- and β-secretase on APP cleavage. 

 
  

APP shedding 
behaviors 

References 

in vivo ADAM10-/- 
mouse 

sAPPα ↓ CTFα ↓,  
sAPPβ ↓ CTFβ ↓ Aβ ↓ 
 

Jorissen et al., 2010 

TAPI 
(metalloprotease 
inhibitor) 
 

sAPPα ↓ C83 ↓,  
sAPPβ -- C89 ↑ C99 ↑ 

Skovronsky et al., 2000 

Compensation 
α-secretase 
activity down-
regulation in vitro 

TAPI sAPPα ↓ CTFα ↓,  
sAPPβ – CTFβ – Aβ -- 
 

Kim et al., 2008; Gandhi et 
al., 2004 

in vivo ADAM10 mouse sAPPα ↑ CTFα ↑,  
sAPPβ ↓ CTFβ – Aβ ↓ 
 

Postina et al., 2004 

PMA sAPPα ↑ p3 ↑ Aβ -- Dyrks, 1994; Blacker et al., 
2002; Gandhi et al., 2004 
 

PMA/PDBu sAPP ↑ p3 ↑ CTFα ↑,  
sAPPβ ↓ CTFβ ↓ Aβ ↓
  

Hung et al., 1993; Jacobsen 
et al., 1994; Citron et al., 
1996; Buxbaum et al., 1998; 
Koike et al., 1999; 
Skovronsky et al., 2000; 
Qiu et al., 2001; Zhu et al., 
2001; Allinson et al., 2004; 
Kim, 2008; Fu et al., 2009 
 

PMA/PDBu sAPP ↑, Aβ ↑ LeBlanc et al., 1998 
 

Competition  
α-secretase 
activity up-
regulation in vitro 

PMA sAPPα --,  
sAPPβ ↓ Aβ ↓ 

Savage et al., 1998 

“↓” represents reduction; “↑” represents increase; “--” represents no change. 

 

Because of the discrepancies from the literature, the complex relationship between α- and 

β-secretase is not yet totally clear. It seems to be affected by factors from various aspects, 

like cell lines, in vivo/in vitro environments, the way of regulation achieved and APP 

trafficking involvement. Therefore, this topic has to be further investigated, in order to 

draw a final conclusion. In particular, most of the previous reports were performed using 

cell lines overexpressing APP or AD related APP mutation because of the difficulty of 

endogenous APP fragments detection. It would be extremely fruitful to investigate the 

relationship of α- and β-secretase cleavage at endogenous APP expression level. On the 

other hand, the majority of the research describing the relationship of these two proteases 

was performed under the condition of activity up-regulation. Little evidence has been 

shown their compensatory relationship under the condition of proteases activity down-
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regulation. So it would provide additional evidence for the relationship between these 

two proteases under the condition of protease inactivation. 
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2 Aim of the work  

 

Alzheimer’s disease (AD), the most prevalent form of dementia, is characterized by the 

deposition of amyloid beta (Aβ) peptides in the brain. Aβ is a proteolytic product of the 

larger amyloid precursor protein (APP). There are two different proteolytic activities, 

referred to as α- and β-secretase, responsible for the cleavage of the APP ectodomain. 

Ectodomain shedding of APP by β-secretase and the subsequent cleavage of the 

remaining C-terminal fragment by γ-secretase contribute to Aβ generation; whereas 

cleavage by α-secretase occurs within the Aβ domain, releasing secreted APP α-fragment 

(sAPPα) and therefore precludes Aβ generation. Unlike β- and γ- secretase, the molecular 

identity of α-secretase is still ambiguous. Proteases belonging to a disintegrin and 

metalloproteinase (ADAM) family, especially ADAM9, 10 and 17 are the most named α-

secretase candidates. The exact identification of APP α-secretase would help to complete 

the understanding of APP processing and facilitate pharmacological intervention; and the 

potential compensatory relationship between α- and β-secretase offers therapeutic 

potential. Despite the large body of evidence showing the relationship between these two 

proteases under activity upregulation condition, few studies based on inhibition or 

knockdown have been performed. Therefore, two major questions should be addressed in 

this thesis:  

 

• Which protease represents the physiologically relevant, constitutive α-secretase of APP? 

In order to facilitate the specific detection of APP α-cleavage, new cleavage-site specific 

sAPPα antibodies should be generated. Afterwards, the APP α-secretase candidates 

ADAM9, 10, 17 and metalloprotease 14 (MMP14) should be knocked down in order to 

identify the proteases that contribute to APP α-cleavage under endogenous APP 

expression conditions. Different cell lines should be analyzed to account for the potential 

cell type-specific expression levels of the studied proteases. To analyze the proteases 

under short- and long term loss of function conditions, transient knockdowns by siRNA 

transfection as well as stable knockdowns upon viral transduction of shRNAs should be 

performed. The concentration and sequences of applied siRNAs/shRNAs should be 

optimized in order to minimize off-target effects. Different APP ectodomain fragments 
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should be analyzed to reveal the shedding contribution of α- and β-secretase. In addition, 

the identification of regulated APP α-secretase will be carried out upon PMA stimulation.  

 

• What is the relationship between α- and β-secretase in terms of APP cleavage? 

In order to address the compensative relationship between α- and β-secretase under 

physiological conditions, different cell lines, from peripheral tumor cell lines to neuron-

like cells, should be studied. The loss of function of α- or β-secretase should be achieved 

by different methods, both pharmacologically and genetically. Pharmacological inhibition 

by protease inhibitors as well as siRNA/shRNA mediated knockdowns of α- and β-

secretase should be used to monitor compensatory effects of one protease in the absence 

of the other. 
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3 Materials and methods 

 

3.1 General materials 

 

3.1.1 Equipments and consumables 

Equipments/consumables Manufacturers 

Analytical balance (200 - 0.0001 g)  Ohaus 
Autoclave (Tuttnauer 3850 EL)  Systec 
Balance (2000 - 0.01 g)  Ohaus 
Falcon tube Sarstedt 
Fridge (Santo 4 ○C)  AEG 
Freezer (-20 ○C)  Liebherr 
Freezer (-80 ○C)  Heraeus 
Micro tubes (1.5 ml, 2 ml) Sarstedt 
Milli Q plus filtration system  Millipore 
Multi-channel pipette (300 μl) Eppendorf 
pH electrode  Schott 
pH meter (Inolab pH Level 1)  WTW 
Pipettes (1 ml, 200 μl, 20 μl)  Gilson 
Pipettes (10 μl) Eppendorf 
Pipettes (Accu-Jet) Brand 
Pipette tips (1 ml, 200 μl, 20 μl, 10 μl)  Sarstedt 
Pipette tips (25 ml, 10 ml, 5 ml)  Sarstedt 
Thermomixer compact Eppendorf 
Vortex VF2 IKA labortechnik 
 

3.1.2 Reagents 

Reagents Manufacturers 

Calcium chloride (CaCl2) J.T. Baker 
Disodium hydrogen phosphate (Na2HPO4) Sigma 
Dimethyl sulfoxide (DMSO) Merck 
Ethylenediaminetetraacetic acid (EDTA) Sigma 
Ethanol Merck 
Glycerol Sigma 
Hydrogen chloride (HCl) Merck 
Magnesium chloride (MgCl2) Merck 
Potassium chloride (KCl) Merck 
Potassium dihydrogen phosphate (KH2PO4) J.T. Baker 
Sodium chloride (NaCl)  Roth 
Tris hydroxymethyl aminomethane (Tris) Biomol 
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3.1.3 Buffers 

All solutions were dissolved with Mili-Q plant deionized H2O (double-distilled water, 

ddH2O) if not specifically described, whose electric resistance was purified to › 18.2 MΩ 

at 25 ○C.  

Buffers Recipes 

10* PBS 
 

80 g NaCl 
2 g KCl 
14.4 g Na2HPO4 
2 g KH2PO4 
add ddH2O to 1 L 

 

3.2 Molecular biological techniques 

 

3.2.1 Equipments and Consumables 

Equipments/consumables Manufacturers 

Cooling centrifuge (Avanti J-20XP) Beckman Coulter 
Centrifuge biofuge Heraeus 
Electrophoresis Owl separation system 
Microwave  Alaska 
Multifuge 3  Heraeus, Thermo Fischer 
NucleoBond Xtra Midi kit  Macherey-Nagel 
NucleoSpin extract II kit Macherey-Nagel 
NucleoSpin plasmid kit  Macherey-Nagel 
Thermal cycler Bio-Rad 
Thin-walled PCR tubes  Sarstedt 
UV lamp Intas 
 

3.2.2 Reagents 

Reagents Manufacturers 

10* complete PCR buffer  Peqlab 
10* T4 DNA ligase buffer  Fermentas 
1 kb DNA ladder  Gibco 
Acetic acid Merck 
Agar  BD 
Agarose NA  Invitrogen 
Ampicillin  Sigma 
Ethidium bromide (EB)  Roth 
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Reagents Manufacturers 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) Biomol 
Orange G Sigma 
PCR Nucleotide Mix (dNTP) (10 mM) Roche 
Pwo DNA polymerase (1 U/μl)  Peqlab 
T4 DNA ligase (5 U/μl)  Fermentas 
Tryptone  BD 
Yeast extract  BD 
 

3.2.3 Buffers 

Buffers Recipes 

4* DNA sample buffer 15 ml Glycerol 
1 ml 0.5 M EDTA 
25 mg Orange G 
add ddH2O to 50 ml 
 

50* TAE 24.2 g Tris 
57.1 ml Acetic Acid 
100 ml 0.5 M EDTA (pH 8.0) 
add ddH2O to 1 L 
 

1000* Ampicillin solution 100 mg/ml ampicillin in 70% ethanol 
 

LB agar gel 
 

15 g/L agar solution is autoclaved 1.2 kPa for 20 min.  
The solution was poured into the plate and cooled down 
below 50 ○C. 
 

LB medium 1% tryptone 
0.5% yeast extract 
0.5% NaCl 
ddH2O solution pH was adjusted to pH 7.0. 
The solution was autoclaved at 1.2 kPa for 20 min. 
 

SOB medium 0.2% tryptone 
0.05% yeast extract 
0.5% NaCl 
ddH2O solution pH was adjusted to 7.0. 
 

TB buffer 10 mM HEPES buffer 
15 mM CaCl2 solution 
250 mM KCl solution 
55 mM MgCl2 solution 
ddH2O solution pH was adjusted to 6.7. 
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3.2.4 Plasmids and oligonucleotides 

The following plasmids were used in the thesis (Table 6). The table lists the names of the 

plasmids, the cDNA or shRNA, the source and the restriction endonucleases (RE) sites. 

The restriction enzymes and their specific buffers were from Fermentas or New England 

Biolabs.  

 

Table 6 Plasmids used in the thesis. 

Plasmids Vectors cDNA/shRNA RE sites sources 

P12-APP695 Peak12 APP695 HindIII/NotI Dr. S. Lichtenthaler 
P12-sAPPα Peak12 sAPPα HindIII/NotI Cloned from P12-APP695 
P12-sAPP15 Peak12 sAPP15 HindIII/NotI Cloned from P12-APP695 
P12-sAPP14 Peak12 sAPP14 HindIII/NotI Cloned from P12-APP695 
P12-sAPPβ’ Peak12 sAPPβ’ HindIII/NotI Cloned from P12-APP695 
P12-sAPPβ Peak12 sAPPβ HindIII/NotI Cloned from P12-APP695 
P12-Hygro-hAPP Peak12 hAPP695 MfeI Dr. P. Kuhn 
PLVTH-control PLVTH Control shRNA XhoI/NotI Dr. P. Kuhn 
PLVTH-ADAM10-sh6 PLVTH ADAM10-sh6 XhoI/NotI Dr. P. Kuhn 
PLVTH-ADAM10-sh9 PLVTH ADAM10-sh9 XhoI/NotI Dr. P. Kuhn 
PLKO-control PLKO Control shRNA XhoI/NotI Dr. P. Kuhn 
PLKO-ADAM10-sh7 PLKO ADAM10-sh7 XhoI/NotI Dr. P. Kuhn 
PLKO-ADAM10-sh9 PLKO ADAM10-sh9 XhoI/NotI Dr. P. Kuhn 
PLKO-BACE1-sh1 PLKO BACE1-sh1 XhoI/NotI Dr. P. Kuhn 
PLKO-BACE1-sh2 PLKO BACE1-sh2 XhoI/NotI Dr. P. Kuhn 
sPAX2 sPAX2  XhoI/NotI Dr. P. Kuhn 
pcDNA3.1-Delta.Zeo (-)-
VSV-G 

pcDNA
3.1 

VSV-G XhoI/NotI 
Dr. P. Kuhn 

 

Table 7 lists the template plasmids, the primers used in the PCR reaction, the primers 

used in plasmid sequencing and the final plasmids. Primers were purchased from 

ThermoFisher or Sigma.  

 

Table 7 Primers used in the thesis. 

Template plasmids Primer sequences 
Primer sequences 
(sequencing) 

Final plasmids 

P12-APP695 
P12-APP695-PmlI-for 
P12-sAPPα-NotI-rev 

P12-APP695-PmlI-for P12-sAPPα 

P12-APP695 
P12-APP695-PmlI-for 
P12-sAPP15-NotI-rev 

P12-APP695-PmlI-for P12-sAPP15 

P12-APP695 
P12-APP695-PmlI-for 
P12-sAPP14-NotI-rev 

P12-APP695-PmlI-for P12-sAPP14 

P12-APP695 
P12-APP695-PmlI-for 
P12-sAPPβ’-NotI-rev 

P12-APP695-PmlI-for P12-sAPPβ’ 

P12-APP695 
P12-APP695-PmlI-for 
P12-sAPPβ-NotI-rev 

P12-APP695-PmlI-for P12-sAPPβ 
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Table 8 lists the sequences of primers. The oligonucleotides used were dissolved in 

ddH2O by vortexing. The stock solution (100 mM) was stocked at -20 ○C, and a 10 mM 

solution served as working solution. 

 

Table 8 Sequences of primer used in the thesis. 

primers Sequences 

P12-APP695-PmlI-for 5’-GATCGGCCTCGTCACGTGTTCAATATGC-3’ 
P12-sAPPα-NotI-rev 5’-GATCGCGGCCGCCTATTTTTGATGATG-3’ 
P12-sAPP15-NotI-rev 5’-GATCGCGGCCGCCTATTGATGATGAACTTCATATC-3’ 
P12-sAPP14-NotI-rev 5’-GATCGCGGCCGCCTAATGATGAACTTCATATC-3’ 
P12-sAPPβ’-NotI-rev 5’-GATCGCGGCCGCCTAATATCCTGAGTCATGTCG-3’ 
P12-sAPPβ-NotI-rev 5’-GATCGCGGCCGCCTACATCTTCACTTCAGAGATC-3’ 
 

3.2.5 Methods 

 

3.2.5.1 Polymerase chain reaction (PCR) 

The PCR reaction solution was prepared according to the following recipe: 

Pwo polymerase (1 U/μl)         1 μl 

10* complete reaction buffer   5 μl 

dNTP (10 mM)                         1 μl 

Forward primer (10 mM)         4 μl  

Reverse primer (10 mM)          4 μl  

Template                              100 ng 

add ddH2O to                         50 µl 

ddH2O was used instead of template as the negative control. 

The reaction solution was prepared in thin-walled PCR tubes. Subsequently, the 

amplification of the target sequence was carried out in a PCR machine. The amplification 

was carried out for 30 cycles, each cycle consists of the following individual steps:  

1. Denature: disconnection of the deoxyribonucleic acid (DNA) duplexes for 30 s at 95 
○C;  

2. Primer hybridization: annealing of primers to the DNA single strands for 30 s (the 

annealing temperature depends on the GC temperature of primer pairs);  

3 Elongation: synthesis of the complementary strand at 72 ○C (the elongation time 

depends on the base pair number of the target duplex, approximately 750 kb/min).  
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Before the first cycle, there was a 5 min melting procedure at 95 °C. And after the 

completion of the total 30 cycles, the reaction was kept at 72 ○C for 10 min for 

stabilization. Then it was kept at 4 ○C. 

 

3.2.5.2 Agarose gel electrophoresis 

DNA fragments were separated by 1-1.5% agarose gel electrophoresis. The gels were 

prepared by agarose solution in TAE buffer and added 0.2 mg/ml EB before use. The 

comb was put into the gel until the gel was coagulated. The DNA samples were mixed 

with 4* DNA loading buffer and loaded on the gel. The 1 kb standard DNA ladder was 

used as the marker. Electrophoresis was performed at 120 V in TAE buffer for 20-40 min.  

 

3.2.5.3 DNA extraction from agarose gel 

The desired DNA fragments were carefully excised under UV light with a scalpel from 

the gel. Subsequently, the DNA was purified by the NucleoSpin extract II Kit following 

manufacturer’s instructions. The gel was first lysed with 200 μl binding buffer by 

incubating the tube at 50 ○C until the gel was melted. The gel lysis was then transferred 

into the column. The column was centrifuged at 13,000 rpm/1 min to make DNA 

combining with the silica membrane. The silica membrane was washed with 600 μl wash 

buffer (add ethanol each bottle before use) and centrifuged at 13,000 rpm/1 min to wash 

down the impurity except DNA. The silica membrane was dried with centrifugation at 

13,000 rpm/2 min. DNA was eluted from the silica membrane by 15-50 μl elution buffer 

after combination at room temperature (RT) for 1 min and centrifugation at 13,000 rpm/1 

min. 

 

3.2.5.4 Subcloning of target DNA into expression vector 

To subclone the target cDNAs into the expression vectors, the PCR fragments and the 

respective vectors were digested. Two different REs were used to ensure correct 

orientation of the cDNA into the vectors. The reaction buffers were selected according to 

http://fermentas.com/en/tools/doubledigest/?country_code=DE. The digestion reaction 

buffer was mixed at RT and then incubated at 37 ○C in a heating block for 1-3 h. 

The digestion reaction solutions were prepared according to the following recipe:  

http://fermentas.com/en/tools/doubledigest/?country_code=DE�
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PCR fragments               80 ng  

or vector                       800 ng 

10* RE reaction buffer     3 μl 

REs                                0.8 μl for each 

Add ddH2O to                 30 μl 

The target DNA or vector fragments were separated and purified by agarose gel 

electrophoresis (see 3.5.3.2) and NucleoSpin extract Kit (see 3.5.3.3). Subsequently, the 

ligation of vector and insert was performed at RT for 2 h or 16 ○C overnight. 

The ligation reaction solutions were prepared according to the following recipe: 

vector                        1 μl 

insert                         6 μl 

T4 ligase                   1 μl 

10* T4 ligase buffer 2 μl 

add ddH2O to          20 μl 

ddH2O was used instead of insert as the negative control. 

 

3.2.5.5 Preparation of competent DH5α E. coli bacterial strain  

DH5α Escherichia coli (E. coli) colonies were picked up from an agar plate under sterile 

conditions and these colonies were inoculated in 100 ml SOB medium at 37 ○C/200 rpm 

for 16 h. Subsequently, these bacterials were diluted in approximately 250 ml SOB 

medium to an optical density (OD605) of 0.1 and incubated at 18 ○C /200 rpm. After 24 h 

incubation, the bacterial culture solution reached an OD605 of 0.6-0.8 in 50 ml Falcon 

tubes and was incubated on ice for 10 min. The bacterial sediment was centrifuged at 4 
○C/3500 rpm/20 min. They were resuspended in 80 ml of cold TB buffer and incubated 

on ice for 10 min. The bacterial sediments were centrifuged down and resuspended in 20 

ml TB buffer with 7% DMSO at 4 ○C. The bacterial suspension was aliquoted and flash 

frozen in liquid nitrogen. The bacterial stock solution was kept at -80 ○C. 

 

3.2.5.6 DNA transformation 

For DNA transformation, competent E. coli DH5α cells were thawed on ice. 10 μl DNA 

and 60 μl E. coli DH5α cells were mixed and incubated on ice for 30 min. Then they 
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were incubated at 42 ○C for 2 min without shaking, followed by incubation on ice for 

another 2 min. 800 μl LB-medium was added into the mixture and incubated at 37 ○C/200 

rpm/30 min. For retransformation, 100 ml LB-medium (with selection antibiotics, 1:1000 

dilution) and E. coli DH5α cells were mixed in flasks. For transformation, E. coli DH5α 

cells were seeded onto the LB-agar plate (with selection antibiotics, 1:1000 dilution) and 

incubated at 37 ○C overnight. 

 

3.2.5.7 Plasmid DNA purification  

For DNA preparation in mini format, bacterial colonies were picked up and cultivated in 

5 ml LB-medium (with antibiotics, 1:1000 dilution) at 37 ○C for at least 6 h or overnight. 

The plasmid DNA was purified by using Nucleospin Plasmid Kit following 

manufacturer’s instruction. Bacterial cells were harvested into a tube and spinned at 8000 

rpm/4 ○C/1 min. The supernatant was discarded and cells were resuspended by 250 μl 

Buffer A1. 250 μl Buffer A2 was added and the mixture was incubated for 3 min at RT. 

Then proteins were precipitated by adding 300 μl Buffer A3. The lysate was clarified by 

centrifugation at 8000 rpm/5 min. The supernatant was loaded on the column and spinned 

at 8000 rpm/1 min to combine the DNA. The silica membrane was washed by adding 600 

μl Buffer A4 and centrifugation at 8000 rpm/1 min. DNA was eluted from the silica 

membrane by 50 μl elution buffer after combination at RT for 1 min and centrifugation at 

8000 rpm/2 min. 

 

For DNA preparation in midi format, plasmid DNA was purified by using NucleoBond 

AX500 Kit following manufacturer’s instruction. The E.coli DH5α cells were poured into 

a Falcon tube and centrifuged at 4 ○C/6000 rpm with JA-10 rotor for 20 min after 

overnight incubation. The supernatant was discarded and cells were resuspended with 8 

ml RES Buffer (+ RNase). 8 ml LYS Buffer was added and the mixture was incubated at 

RT for 3 min. Then 8 ml NEU Buffer was added to precipitate the proteins. 12 ml EQU 

buffer was used to pre-equilibrate the column. Then cell lysates were poured into the 

columns. Another 5 ml EQU buffer was added to wash off the rest DNA. 8 ml wash 

buffer was added to wash off the rest protein. Then 5 ml ELU buffer was used to wash 

down the DNA. DNA solution was harvested in a Falcon tube and 3.5 ml isopropanol 
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was added to precipitate the DNA. The mixture was centrifuged at 4 ○C/4600 rpm with 

6641 rotor for 30 min. The precipitation was washed with 1 ml 70% ethanol with 

centrifugation at 13,000 rpm/1 min. DNA was dissolved with 300 μl ddH2O. DNA 

concentrations were measured by nanometer. 

 

3.2.5.8 DNA constructs sequencing 

The sequencing of the DNA constructs was carried out by GATC Biotech AG 

http://www.gatc-biotech.com/en/home.html (Constance). The correctness of the 

sequences was checked by VectorNTI. 

 

3.3 Cell culture 

 

3.3.1 Equipments and consumables 

Equipments/consumables Manufacturers 

Biological safety cabinet  Thermo Scientific 
Bunsen burner  Heraeus 
Cell culture dish (6 cm, 10cm)  Nunc 
Cell culture flask (75 cm2) Nunc 
Cell culture plate (24-well, 12-well, 6-well) Nunc 
CO2 incubator Thermo Scientific  
Centrifuge Megafuge 40 Heraeus 
Fridge Libherr 
Hemocytometer (Neubauer)  Optik Labor 
Microscope (Wiloverts 10* 4/10/20)  Hund 
N2-Tank (Chronos)  Messer Griesheim 
Pipette tips, steril (2 ml, 5 ml, 10 ml, 25 ml)  Sarstedt 
Syringe fliter (0.45 μM) VWR International 
Water bath GFL 
 

3.3.2 Reagents 

Reagents Manufacturers 

5* siRNA buffer Dharmacon 
β-secretase inhibitor IV (C3) Calbiochem 
γ-secretase inhibitor IX (DAPT) Calbiochem 
Dulbecco’s modified eagle medium (DMEM) high glucose  Gibco 
DMEM/F12 (1:1) medium Lonza 
DMEM high glucose with pyruvat  Invitrogen 

http://www.gatc-biotech.com/en/home.html�
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Reagents Manufacturers 

Fetal bovine serum (FCS)  Gibco 
Hygromycin  Invitrogen 
Lipofectamine 2000  Invitrogen 
Lipofectamine RNAiMAX Invitrogen 
Non essential amino acids (NEAA) Invitrogen 
Opti-MEM I reduced serum medium with GlutaMAX I Invitrogen 
Penicillin/streptomycin (P/S) Gibco 
PMA Calbiochem 
Poly-L-lysine hydrobromide  Sigma 
TAPI-1  Peptides International 
Trypsin-EDTA (0.05%)  Gibco 
 

3.3.3 Cell lines 

The following cell lines were used in the thesis (Table 9). The table lists the names of the 

cell lines, the medium used to cell culture and the source of the cell lines. 

 

Table 9 Cell lines used in the thesis. 

Cells lines Medium Source 

Human embryonic 
kidney 293 cells 
(HEK293) 
 

DMEM + 10% FCS + P/S ATCC 

HEK293T low passage 
 

DMEM + 10% FCS + P/S ATCC 

Human neuroblastoma 
cells (SH-SY5Y) 
 

DMEM/F12 + 15% FCS + NEAA + P/S Dr. S. Lichtenthaler 

APP-HEK293 
 

DMEM + 10% FCS + P/S + hygromycin Dr. S. Neumann 

APP-SH-SY5Y DMEM/F12 + 15% FCS + NEAA + P/S 
+ hygromycin 

Generated from wide type SH-
SY5Y cells 

 

3.3.4 Methods 

 

3.3.4.1 Cultivation of cells 

The cell lines were cultured in 10-cm dishes or 75-cm2 flasks in an incubator at 37 ○C 

with 5% CO2. Upon reaching 70-80% confluence, the cells were washed with 3 ml sterile 

PBS and replaced with 2 ml sterile PBS-EDTA solution or typsin-EDTA solution to 
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detach the cells. The cells were resuspended with 3 ml fresh medium. Appropriate 

amount of cells were splitted to a new dish or flask with 8 ml fresh medium. 

 

3.3.4.2 Coating of cell culture dishes with poly-L-lysine 

To improve the adhesion of some cell lines (HEK293 cells especially), the cell culture 

dishes have to be coated with poly-L-lysine. The cell culture dishes were completely 

covered with sterile poly-L-lysine solution (100 μg/ml in PBS) and incubated for at least 

30 min at RT. After removing the poly-L-lysine solution, the dishes were washed twice 

with PBS and then dried. 

 

3.3.4.3 Transient gene overexpression by DNA transfection 

Transient gene overexpression was achieved by DNA transfection. The following 

procedure was used to transfect DNA into mammalian cells in a 24-well format. One day 

before transfection, 2-3*105 cells were seeded in 500 μl of growth medium without 

antibiotics so that cells would be 90-95% confluent at the time of transfection. For each 

transfection sample, transfection complex was prepared according to the following recipe: 

a. 200 μg DNA was diluted in 50 μl of Opti-MEM and mixed gently. 

b. Appropriate amount lipofectamine 2000 was diluted in 50 μl of Opti-MEM, RT/5min.  

c. After the 5 min incubation, the two solutions mentioned above were mixed gently and 

incubated for 20 min at RT. 

100 μl of complex was added to each well containing cells and medium. The cell culture 

medium was mixed gently by rocking the plate back and forth. 

Cells were incubated at 37 ○C in a CO2 incubator for 18-48 hours prior to testing for 

transgene expression. Medium may be changed after 4-6 hours. 

For other formats, see scaling up or down transfection mixture preparation (Table 10). 

 

Table 10 DNA transfection mix preparation. 

Culture vessel 
Relative 
surface area 

Volume of 
plating 
medium 

Dilution 
medium 

cDNA 
Lipofectamine 
2000 

96-well 0.2 100 μl 2 x 25 μl 0.2 μg 0.5 μl 
24-well 1 500 μl 2 x 50 μl 0.8 μg 2.0 μl 
6-well 5 2 ml 2 x 250 μl 4.0 μg 10 μl 
60 mm 10 5 ml 2 x 0.5 μl 8.0 μg 20 μl 
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3.3.4.4 Gene transient knockdown by siRNA transfection  

ADAM9, 10, 17 and MMP14 knockdowns in SH-SY5Y or HEK293 cells were achieved 

by variant amount of siGENOME or on-target plus pool siRNA transfection according to 

the protocol described below. Table 11 lists the sequences, the concentrations and the 

sources of siRNA used in the gene knockdown experiments. 

 

Table 11 siRNA used in the thesis. 

Target 
genes 

siRNA products Cell lines Concentration Sources 

HEK293 10 nM Dharmacon ADAM9 siGENOME SMARTpool 
SH-SY5Y 
 

0.1 nM Dharmacon 

HEK293 10 nM Dharmacon ADAM10 
SH-SY5Y 0.1 nM Dharmacon 

 

siGENOME SMARTpool 

Differentiated SH-SY5Y 
 

10 nM Dharmacon 

siGENOME SMARTpool HEK293 10 nM Dharmacon ADAM17 
siGENOME on-target plus SH-SY5Y 

 
0.5 nM Dharmacon 

MMP14 siGENOME SMARTpool SH-SY5Y 
 

10 nM Dharmacon 

BACE1 Qiagen pool Differentiated SH-SY5Y 10 nM Qiagen 

 

Gene transient knockdown was achieved by siRNA interference. For each well to be 

transfected, RNAi duplex-lipofectamine RNAiMAX complexes were prepared according 

to the following recipe (Table 12): siRNA was diluted in Opti-MEM Medium without 

serum and mixed gently. Lipofectamine RNAiMAX was added into diluted siRNA 

solutions and mixed gently. The mixture was then added into the wells and incubated for 

10-20 min at RT. In siRNA interference, the complexes are prepared before cells and 

medium were added. 

 

Table 12 siRNA interference transfection mix preparation. 

Culture vessel 
Relative 

surface area 

Volume of 
plating 
medium 

Dilution 
medium 

siRNA (nM) 
Liofectamine 
RNAiMAX 

96-well 0.2 100 μl 20 μl 0.1-50 0.1-0.3 μl 
48-well 0.4 200 μl 40 μl 0.1-50 0.2-0.6 μl 
24-well 1 500 μl 100 μl 0.1-50 0.5-1.5 μl 
6-well 5 2.5 ml 500 μl 0.1-50 2.5-7.5 μl 
60 mm 10 5 ml 1 ml 0.1-50 5-15 μl 
100 mm 30 10 ml 2 ml 0.1-50 15-35 μl 
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Appropriate number of cells was diluted in medium without antibiotics which gave 30-

50% confluence 24 h after plating. The cell solution was added into each well and mixed 

gently by rocking the plate back and forth. Cells were incubated for 24-72 h at 37 ○C in a 

CO2 incubator until they were ready to assay for gene knockdown. 

 

3.3.4.5 SH-SY5Y cells neuronal differentiation 

To neuronally differentiate SH-SY5Y cells, naive cells were seeded in 75 cm2-flask with 

40% cell density in DMEM/F12 + 15% FCS + NEAA + P/S medium. 24 h later, medium 

was change with 25 μM ATRA in DMEM/F12 + 3% FCS + P/S. 72 h later, cells 

differentiated into neuronal like cells. Cells were digested up with trypsin-EDTA and 

seeded out for experiments. 

 

3.3.4.6 Generation of hAPP overexpressing cell lines 

APP overexpressing SH-SY5Y and HEK293 cell lines were generated by DNA 

transfection. Before transfection, P12-Hygro-hAPP cDNA plasmid was linearized by 

single restriction enzyme digestion; linearized cDNA was transfected into cells by 

lipofectamine 2000. APP Overexpressing cells were selected by cell culture medium with 

specific antibiotics (hygromycin). Then cells were kept in culture with antibiotics, and 

very low density of cell solution was seeded into 96-well plate. There were only one or 

two cells in each well. Single cell clones were picked up and cells were spreaded in larger 

culture format. Cell lysate from each single cell clone was collected and APP expression 

level was detected to finally select the hAPP highly expressed cell lines. 

 

3.3.4.7 Generation of gene stable knockdown cell lines 

ADAM10 stable knockdown SH-SY5Y and HEK293 cells and BACE1 stable 

knockdown HEK293 cells were generated by shRNA viral transduction. The following 

shRNAs were used in the thesis (Table13). The table lists the sequences and sources of 

the shRNA. They were cloned into different vectors for viral transduction (see details in 

Table 6). 
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Table 13 shRNA used in the thesis. 

Name shRNA sequence 

Con. 5’-CCCCcaacaagatgaagagcaccaaTTCAAGAGAttggtgctcttcatcttgttgTTTTTGGAAA-3’ 

ADAM10-sh6 
5’-
CCCCaagttgcctcctcctaaaccactTTCAAGAGAgtggtttaggaggaggcaacttTTTTTGGAAA-3’ 

ADAM10-sh7 5’-CCCCgacatttcaacctacgaatttTTCAAGAGAaaattcgtaggttgaaatgtcTTTTTGGAAA-3’ 
ADAM10-sh9 5’-CCCCggacaaacttaacaacaatTTCAAGAGAattgttgttaagtttgtccTTTTTGGAAA-3’ 
BACE1-sh1 5’-CCCCggtacaaagactgcgtcttgattcaagagatcaagacgcagtctttgtaccTTTTTGGAAA-3’ 
BACE1-sh2 5’-CCCCgcgtgacagaacagagaaatcttcaagagagatttctctgttctgtcacgcTTTTTGGAAA-3’ 
 

For virus production, transfection reaction mixture was prepared according to the 

following recipe:  

For 6-well plate format (for each well):  

250 μl Opti-MEM + 6.3 μl lipofectamine 2000, RT/5 min;  

250 μl Opti-MEM + 1.3 μg transfer vector (PLVTHM, PLKO) + 0.75 μg sPAX2 + 0.45 

μg pcDNA3.1-Delta.Zeo (-)-VSV-G.  

The combination of both parts was mixed. 500 μl mixture was added into each well, 

RT/20 min.  

1.5 ml, 8*105/ml HEK293T/low passage cells were seeded in each well in Opti-MEM + 

10% FCS.  

24 h later, medium was changed by 2 ml packaging medium: DMEM High Glucose + 

Pyruvat + NEAA + 10% FCS.  

24 h later, the viral transduction was performed. Viral supernatant was filtered through 

0.45 μm filter from VWR directly into a 6-well plate with about 0.5-1*106 targeting cells. 

24 h after the viral transduction, 2 ml fresh normal medium was changed each well. Cells 

were kept into culture. Stable knockdown cells then seeded in 6-cm dishes and 

conditioned medium was collected for analysis.  

 

3.3.4.8 Cell lines freezing 

To freeze the cell lines, cells were washed after reaching 70-80% confluence with 2 ml 

sterile PBS and detached by 2 ml of PBS-EDTA (PBS with 25 M EDTA) or trypsin-

EDTA solution. Cells were resuspended with 3 ml fresh medium and centrifuged down at 

1000 rpm/5 min. Subsequently, cell pellets were resuspended in 1 ml freezing medium 

(FCS with 10% DMSO) and added into the freezing tubes. The cells were frozen at -80 
○C and transferred for long-term storage in liquid nitrogen. 
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3.3.4.9 Cells treatments with chemical compounds 

For pharmacological activation or inhibition of either α-secretase or β-secretase cleavage 

of APP, cells were treated with TAPI, PMA or C3 respectively. For HEK293 cells, cells 

were seeded in 6-well plates with 2*105/ml density, 1.5 ml/well in DMEM + 10% + P/S; 

for differentiated SHSY5Y cells, cells were seeded in 6-cm dishes with 4.5*105/ml 

density, 3 ml/dish in DMEM/F12 + 15% FCS + NEAA + P/S, followed by compounds 

treatment 24 h later. TAPI was added to the fresh cell culture medium at 50 μM 

concentration, 2 ml/dish with DMSO as the control; samples were collected 24 h later. 

PMA was added to the fresh cell culture medium at 1 μM concentration, 2 ml/dish with 

ethanol as the control; samples were collected 4 h later. C3 was added to the fresh cell 

culture medium at 2 μM concentration, 1 ml/dish with DMSO as the control for 2 h; 

medium was then changed by 2 ml fresh medium with 1 μM C3 each well; samples were 

collected 24 h later. For γ-secretase inhibition and APP CTFs detection, cells were treated 

with DAPT. Control or ADAM10 shRNA tranduced SH-SY5Y cells were seeded in 6-cm 

dishes with 3*105/ml density, 3 ml/well in DMEM/F12 + 15% FCS + P/S. Cells were 

treated with DAPT (1 μM) for 24 h, then supernatant and cell lysate were collected. 

 

3.4 Protein biochemical experiments  

 

3.4.1 Equipments and consumables 

Equipments/consumables Manufacturers 

Aβ peptides 3-plex ELISA plates MSD 
Blotter criterion Bio-Rad 
Cell Lifter Corning 
Cooling centrifuge 5417R Eppendorf 
Film processor 2000 IR  CAWO 
Heating block MR Hei-Tec Heidolph instrument 
Gel Transfer filter paper  Schleicher & Schuell 
Glass plates Bio-Rad 
Immobilon-P membrane, PVDF, 0.45 μM Millipore 
Microplate (96-well, transparent)  Nunc 
Mini-PROTEAN 3 Electrophoresis cell Bio-Rad 
Mini-PROTEAN Tetra cell Bio-Rad 
Mini Trans-Blot Transfer  Cell Bio-Rad 
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Equipments/consumables Manufacturers 

Nitrocellulose membrane (Protran)  Schleicher & Schuell 
Powerpac basic power supply Bio-Rad 
Power pac HC Bio-Rad 
PowerWave microplate spectrophotometer BioTek 
sAPPα+sAPPβ ELISA plate MSD 
Scanner scanjet 5590P HP 
Sector imager  Meso Scale Discovery 
Shaker 3015 GFL 
Shaker KM-2 Edmund Buehler 
X-ray films (SuperRX)  Fujifilm 
 

3.4.2 Reagents 

Reagents Manufacturers 

Acrylamid (Tris-Tricine gels)  Biomol 
Acrylamid solution (37.5:1 / 40 % (w/v))  Serva 
Ammonium persulfate (APS)  Roche 
BCA Assay protein quantitation Kit  Uptima, Interchim 
Bovine serum albumin (BSA)  Uptima, Interchim 
β-Mercaptoethanol (β-ME) Merck 
ECL Western blotting detection system  Amersham Biosciences 
ECL Plus Western blotting detection system Amersham Biosciences 
E. O. S. Developer AGFA 
E. O. S. Fixer AGFA 
Glycine  Biomol 
I-block  Tropix 
Isopropanol Merck 
MSD read buffer T Meso Scale Discovery (MSD) 
N-N’-Methylene-bisacrylamide (bisacrylamide) Serva 
Nonidet P-40 (NP-40) Sigma 
Protein A sepharose (PAS)  Sigma 
Protease inhibitor (PI)  Sigma 
Sodium dodecyl sulfate (SDS)  Calbiochem 
SeeBlue plus 2 pre-stained standard Invitrogen 
Skimmed milk powder (instant)  Frema 
TEMED (N,N,N',N'-Tetramethylethylendiamine)  Merck 
Tricine  Biomol 
Tween-20  Merck 
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3.4.3 Buffers 

Buffers Recipes 

10 * anode buffer 
(Tris-tricine gel) 

1 M Tris-HCl (242.2 g) pH 8.9 
add ddH2O to 1 L 
 

10 * cathode buffer 
(Tris-tricine gel) 

0.1 M Tris-HCl (121.1 g) 
0.1 M tricine (179.2 g) 
add ddH2O to 1 L 
10% SDS was added in working solution 
 

4* SDS-probe buffer 
 

4 ml 20% glycerin 
4 ml 20% SDS 
1 ml β-ME 
1.25 ml 1 M Tris pH 6.8 
10 μl 10% Bromphenol blue 
 

10* TBS 
 

24.23 g Tris 
80 g NaCl 
add H2O to 1 L,  
pH was adjusted to 7.4 
 

Acrylamid solution 
(49.5% total, 3% crosslinker) 
(Tris-Tricine gel) 

48 g acrylamide 
1.5 g bisacrylamide 
add ddH2O to 100 ml, 4 ○C store 
 

Blocking buffer (ELISA) 1% BSA in TBS-T 
 

Blocking solution 
(Western blotting) 

5% skimmed milk powder or 0.8 g I-block in PBS-T 
(PBS with 0.5% Tween20) 
 

Gel buffer 
(Tris-tricine gel) 

3 M Tris-HCl (182 g) 
dissolved in 300 ml ddH2O and adjust pH to 8.45 
0.3% SDS (1.5 g) 
add ddH2O to 500 ml, 4 ○C store 
 

Hypotonic buffer: 
 

10 nM Tris pH 7.4 
1 mM EDTA 
1 mML EGTA 
 

Low Tris buffer 0.4% SDS in ddH2O 
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Buffers Recipes 

Primary antibody solution 
(western blotting) 
 

Antibodies with appropriate concentration (see 
details in Table 16) 
0.25% BSA 
0.05% sodium azide 
in PBS-T 
 

SDS-PAGE electrophoresis buffer 
 

25 mM Tris 
0.2 M glycine 
0.1% SDS 
 

Secondary antibody solution 
(western blotting) 

Antibodies with appropriate concentration (see 
details in Table 17) 
0.25% BSA 
in PBS-T 
 

Solubilization buffer 
 

50*10-3 M Tris (pH 7.5) 
150*10-3 M NaCl 
1% NP-40 
 

STEN buffer 
 

0.05 M Tris-HCl pH 7.6 
0.15 M NaCl 
2 mM EDTA 
0.2% NP-40 
 

STEN-NaCl STEN-buffer with 175 mM NaCl 
 

STEN-SDS STEN-buffer with 0.1% SDS 
 

Transfer buffer 
 

25 mM Tris 
0.2 M glycine 
 

Upper Tris buffer 0.5 M Tris-HCl pH 6.8 
0.4% SDS in ddH2O 

 

3.4.4 Methods 

 

3.4.4.1 Cell lysate preparation 

Cells in the plate were taken out from the incubator and put on the ice. Cells were washed 

with PBS in the plate. And then PBS was carefully removed. Lysis buffer (Solubilization 

buffer:PI 1:500 mixture) was added directly into the well and the plate was incubated on 

ice for 10 min. Cell lysates were piptteted up and down several times. Then cell 
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suspension was transferred to a tube and incubated for another 10 min on ice. The lysis 

solution was centrifuged at 13,000 rpm/4 ○C/5 min. Cell lyates were stocked at -20 ○C. 

 

3.4.4.2 Membrane preparation 

For 6-well plate format, supernatants were collected and cells were washed with 1 

ml/well PBS. PBS was carefully removed and discarded. Cells were scraped up in 750 μl 

PBS to tubes (2 wells for 1 sample). 1/3 of cell suspension was taken out to make the cell 

lysate and protein concentration measurement. The rest of cell suspension was spinned 

down and the supernatant was discarded. Cells were resuspended by 800 μl hypotonic 

buffer with 1:500 PI and incubated on ice for 10 min. The lysis was pipetted up and down 

for 15 times with 1 ml syringe and 0.6 mm syringe tip. The lysis was spinned down at 

3200 rpm/4 ○C/15 min to pellet nuclei and cytoskeleton. 750 μl supernatant was 

transferred to a new tube and membranes were pelleted at 13,000 rpm/4 ○C/30 min. 

Supernatants were discarded and the pellets were resuspended with sample buffer and 

boiled at 900 rpm/95 ○C/5 min. 

 

3.4.4.3 Protein concentration measurement 

Protein lysates were measured in duplicate in a 96-well plates with 10 μl per well. BCA 

reagent B:A were 1:50 diluted and add 200 μl of the mixture into every well. The mixture 

was incubated it at 37 ○C/30 min. The determination of extinction was taken place 

photometrically at 562 nm after extrapolation of the curve. 

 

3.4.4.4 Immunoprecipitation (IP) 

Aim proteins were concentrated by immunoprecipitation (IP). For IP, 25 μl PAS solution 

was incubated with specific antibodies in 500 μl PBS at 4 ○C for 30 min. The antibodies 

used in the thesis for IP, together with their epitopes, species, dilutions and sources were 

listed in the following table (Table 14).  
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Table 14 Antibodies used for immunoprecipitation (IP) in thesis. 

Antibodies Epitopes Species Dilutions Sources 

5313 APP ectodomain mouse 1:150 Eurogentec 

6687 APP C-terminal rabbit 1:100 Eurogentec 

BAWT 8C10 sAPP　 mouse 1:10 Dr. E. Kremmer 

3552  APP ectodomain mouse 1:400 Eurogentec 

 

The mixture was centrifuged at 4 ○C/8000 rpm/1 min. The PAS pellet was then washed 

with 1 ml PBS-T (PBS with 0.5% Tween20). 500 μl sample supernatant was added into 

each tube and incubated on the shaker at 4 ○C/2 h. The mixture was centrifuged at 4 
○C/8000 rpm/1 min. The PAS pellet was then washed with 1 ml STEN-NaCl, STEN-SDS 

and STEN respectively. Sample buffer (30 μl) was then added onto the precipitation and 

boiled at 95 ○C/5 min. 

 

3.4.4.5 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins according to their molecular size were separated by a one-dimensional 

electrophoresis separation under denatured conditions. The mini-gel system of Bio-Rad 

was used For the SDS-PAGE, which has a collection gel of about 1 cm and a separation 

gel of about 7 cm. There were only gels with 15 samples with a pocket comb thickness of 

1.5 mm. Before using, the glass was cleaned by 70% ethanol and then added the 

resolving gel to a height of about 2 cm below the upper edge. Isopropanol was casted 

above. After the polymerization (about 15 min), the isopropanol was discarded and the 

separator was dried with absorbent paper, then the stacking gel was located above the 

area with a comb inserted. After the completely polymerization of electrophoresis gels 

(approximately 15-20 min), the comb was carefully removed and the gels can be moved 

to the electrophoresis chamber. The detail information about the gel preparation is listed 

in the following table (Table 15). 
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Table 15 Resolving and stacking gels preparation (for two gels). 

Resolving 

 4% 8% 10% 12% 15% 
stacking 

H2O 9.8 ml 7.8 ml 6.66 ml 6.0 ml 4.0 ml 3.25 ml 
30% Acrylamid 2.2 ml 4.2 ml 5.33 ml 6.0 ml 8.0 ml 0.65 ml 
Low Tris 4.0 ml 4.0 ml 4.0 ml 4.0 ml 4.0 ml 1.25 ml (Upper Tris) 
TEMED 30 μl 30 μl 30 μl 30 μl 30 μl 30 μl 
10% APS 60 μl 60 μl 60 μl 60 μl 60 μl 60 μl 
 

The running buffer was filled, so the pockets of the gels were rinsed several times. After 

comparing the protein concentrations, protein extracts were mixed with loading buffer, 

cooked 5 min at 95 ○C and applied on the gels. 7 μl “Blue Lake plus 2” was loaded as the 

molecular weight standard. The stacking was carried out by 90 V initially and after the 

entry of proteins into the separator, the voltage was increased to 140 V.  

 

For Tris-tricine gels, gels were prepared according to the recipe shown in Table 16. Gels 

were charged with separate cathode/anode buffer at 80 V first, and at 120 V later. 

 

Table 16 Tris-tricine gels preparation (for two gels). 

 16.5% separating gel 10% spacer gel 4% stacking gel 

Acrylamid (49.5%) 
Gelbuffer 
Water 
32% glycerol 

3.5 ml 
3.5 ml 
 
3.5 ml 

1.5 ml 
2.5 ml 
3.5 ml 

0.5 ml 
1.55 ml 
4.2 ml 

10% APS 
TEMED 

32.5 μl 
3.25 μl 

35 μl 
4 μl 

25 μl 
5 μl 

For one gel 5 ml 2.5 ml 2 ml 
 

3.4.4.6 Western-blot 

Transfer: 

After separation, proteins were transferred to a PVDF membrane or nitrocellulose 

membranes in a transfer chamber. Before the transfer, the membranes are activated by 

isopropanol incubation for 10 s. After activation, the membrane was briefly washed with 

deionized water and rinsed in transfer buffer to be equilibrated. For the transfer the Bio-

rad mini-gel-transfer system was used. The transfer took place at a constant flow of 400 

mA for 65 min at RT.  
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Transfer structure:  

• cathode plate (black) 

• porous sponge in transfer buffer 

• two layers of gel blotting paper in transfer buffer  

• SDS-polyacrylamide gel 

• PVDF membrane with isopropanol and activated in transfer buffer 

• two layers of gel blotting paper in transfer buffer 

• porous sponge with transfer buffer 

• anode plate (transparent) 

 

Blotting 

After the transfer, nonspecific protein binding sites on the PVDF membrane were 

saturated 30 min at RT in blocking solution. The membrane was then washed and 2 * 5 

min with PBS-T (PBS with 0.5% Tween20) on the shaker. Subsequently, the membrane 

was incubated with the primary antibodies for 1 h at RT or overnight at 4 ○C on the 

shaker. The primary antibodies used in the thesis, together with their epitopes, species, 

dilutions and sources are listed in the following table (Table 17).  

 

Table 17 Primary antibodies used for western blot in the thesis. 

Antibodies Epitopes Species Dilutions Sources 

ADAM9 Human ADAM9 C-terminus Rabbit 1:1000 Cell Signaling 

ADAM10 Human ADAM10 C-terminus rabbit 1:10000 Cell signaling 

ADAM17 Human ADAM17 C-terminus rabbit 1:1000 Oncogene 

MMP14 Human MMP14 C-terminus  rabbit 1:1000 Abcam 

BACE1 Human BACE1 mouse 1:2000 Dr. B. Vassar 

2C11 APP C-terminus mouse 1:10 Dr. E. Kremmer 

calnexin Calnexin rabbit 1:2000 Sigma 

β-actin β -actin mouse 1:5000 Sigma 

22C11 APP N-terminus mouse 1:200 Dr. K. Beyreuther 

WO2 Human sAPPα+sAPPβ’ mouse 1:1000 Dr. K. Beyreuther 

4B4 Human sAPPα Rat 1:10 Dr. E. Kremmer 

14D6 Human sAPPα Rat 1:10 Dr. E. Kremmer 

192wt sAPPβ Rabbit 1 μg/ml Dr. D. Schenk 

2D8 Aβ Rat 1 μg/ml Dr. E. Kremmer 

6687 APP C-terminus rabbit 1 μg/ml Dr. C. Haass 
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It was followed by a washing of the membrane for 3 * 10 min with PBS-T. The 

corresponding horseradish peroxidase (HRP)-conjugated secondary antibodies were then 

incubated for 45 min at RT on the PVDF membrane. The secondary antibodies used in 

the thesis, together with their epitopes, species, dilutions and sources are listed in the 

following table (Table 18). 

 

Table 18 Secondary antibodies used for western blot in the thesis. 

antibodies  epitopes  Species  dilutions  Source  

mouse-HRP  mouse IgG  goat 1:10000  Promega  
rabbit-HRP  rabbit IgG  goat 1:10000  Promega  
rat-HRP  rat IgG  goat 1:5000  Santa Cruz 

 

Finally, the membranes were again four times per 5 min with PBS-T buffer washed. The 

detection of antibodies coupled with the proteins were carried out and developed by using 

X-ray films. For detection of weak signals, ECL plus western blotting detection system 

was used. 

 

3.4.4.7 Enzyme-linked immunosorbent assay (ELISA) 

Aβ or sAPPβ levels from cell supernatant of some experiments were measured by Aβ or 

sAPPα+β ELISA. For Aβ detection, Aβ triplicate plate was incubated with blocking 

buffer at 4 ○C overnight on a horizontal shaker. The plate was washed with TBS-T (TBS 

with 0.5% Tween20) for three times. And then 25 μl samples were added into each well. 

On top of that, another 25 μl human Aβ 6E10 antibody (1:50 dilution in blocking buffer) 

was added. The plate was incubated at RT on a horizontal shaker for 2 h. The plate was 

washed with TBS-T for three times. 150 μl reading buffer T (1:2 dilution in H2O) was 

added into each well, being very careful to avoid bubbles and incubated for 10 min at RT. 

The signals were measured on Sector Imager. 

 

For sAPPβ detection, sAPPα+β triplicate plate was incubated with blocking buffer at 4 
○C overnight on a horizontal shaker. The plate was washed with TBS-T (TBS with 0.5% 

Tween20) for three times. And then 25 μl samples were added into each well. The plate 

was incubated at RT on a horizontal shaker for 1 h. The plate was washed with TBS-T 

and then 25 μl sAPPα+β antibody (1:50 dilution in blocking buffer) was added each well. 
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The plate was incubated at RT on a horizontal shaker for 1 h. The plate was washed with 

TBS-T for three times. 150 μl reading buffer T (1:2 dilution in H2O) was added each well, 

being very careful to avoid bubbles and incubated for 10 min at RT. The signals were 

measured on Sector Imager. 
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4 Results 

 

4.1 Antibody characterization 

Antibodies for sAPPα detection in previous work were typically WO2 and 6E10 which 

recognize the epitope between the β- and β’- cleavage site. That means those antibodies 

did not specially detect sAPPα, but also sAPPβ’. To specifically detect the APP α-

secretase cleavage product sAPPα, two new monoclonal antibodies 4B4 and 14D6 were 

generated and used in this thesis, which was against a peptide comprising amino acids 

11-16 of the Aβ sequence. 

 

To examine the detection specificity of the antibody, cDNAs of full-length APP, sAPPβ, 

sAPPβ’, sAPPα ending after amino acid 16 of Aβ, together with truncated sAPPα that 

ends at the 14th, 15th amino acid of Aβ domain were cloned. cDNAs of different APP 

fragments were transfected to human embryonic kidney 293 (HEK293) cells. Samples 

were collected and detected by different antibodies. Western blot results showed that 4B4 

antibody detected sAPPα and the sAPPα truncated by one amino acid (sAPP15) (Figure 7 

B). And indeed, it did not detect full-length APP in the cell lysate. Conditioned medium 

blotting also showed that 22C11 detected all species since it binds to the N-terminus of 

APP, WO2 detected sAPPα and β’ since the epitope was between β- and β’-site. 4B4 

antibody detected only sAPPα, and even, only the sAPPα fragments that ended longer 

than the 15th amino acid which implied that Gln (glutamine) is necessary for the antibody 

epitope recognition and it does not detect sAPPβ’.  

 

To further test antibody 4B4, whether under the conditions, which increase or decrease 

sAPPα generation, would lead to a corresponding change in the 4B4 signal was examed. 

HEK293 cells were treated with the metalloprotease inhibitor TAPI-1 to reduce APP 

shedding or with PMA to increase APP shedding (Figure 7 C). TAPI-1 inhibited almost 

completely sAPPα generation by 4B4 detectionn. In contrast, total sAPP shedding was 

not as strongly reduced by 22C11 detection, consistent with the fact that this antibody 

detects all sAPP species. PMA strongly up-regulsted total APP shedding, but the extent 
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of the increase of sAPP by 4B4 detection was much more pronounced. Antibody W02, 

which detects the combined signal of sAPPα and sAPPβ’, detected intermediate changes 

between 22C11 and 4B4. The other antibody 14D6 was also validated specific as sAPPα 

antibody (data not shown). Taken together, these experiments show that antibody 4B4 

and 14D6 specifically detect sAPPα, not any other soluble APP fragments, in contrast to 

other commonly used APP antibodies. In the following experiments, sAPPα detections 

were all accomplished by these two antibodies ensuring the specificity of sAPPα signals. 

Figure 7 
Characterization of 
newly generated 
sAPPα-specific 
antibody 4B4. 
A) The exact APP 
cleavage site of α-, β- 
and γ-secretases. β- and 
γ-secretase cleavage 
generate the Aβ peptide, 
while α-secretase α 
cleaving site and β-
secretase β’ cleaving are 
located inside the Aβ 
domain. 22C11 and 
2C11 recognize the N- 
and C-terminal of APP 
respectively. WO2 and 
6E10 recognize the 
epitope between α- and 
β’-cleavage site, which 
means they detect both 
sAPPα and sAPPβ’. 4B4 
and 14D6 recognize 11-
15th amino acid of Aβ 
domain which detect 
specifically sAPPα. 
B) Full-length APP, 
sAPPα, sAPP15, sAPP14, 
sAPPβ’ and sAPPβ were 
transfected into HEK293 
cells. Conditioned 
medium was collected to 
test different antibodies. 
Antibody 22C11 detects 

all secreted APP species, antibody W02 detects sAPPα+β’, whereas antibody 4B4 specifically detect 
sAPPα and sAPP15. 
(C) HEK293 cells were treated with TAPI-1 (50 μM, 24 h) or PMA (1 μM, 4 h). Immunoblots of 
conditioned media and cell lysates were probed with antibody 22C11 (total sAPP), W02 (sAPPα+β’) and 
the sAPPα-specific antibody 4B4. Cellular APP is present in a lower molecular weight immature form and 
a higher molecular weight mature form and was detected with 22C11. The β-actin blot serves as a loading 
control. The reduction by TAPI-1 and the increase in shedding by PMA are more pronounced when 
analysed with the α-cleavage-specific antibody 4B4, compared with the other antibodies. 
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4.2 Transient knockdown of ADAM10 in wild type cells 

suppressed sAPPα generation 

 

4.2.1 ADAM9, 10, 17 and MMP14 knockdowns in SHSY5Y cells 

To identify the physiologically relevant α-secretase, the candidate α-secretase ADAM9, 

10, 17 and MMP14 were knocked down by siRNA transfection in neuroblastoma SH-

SY5Y cells. Cell toxicity was observed obvious initially when 50 nM concentration of 

siRNA was used, especially upon ADAM17 siRNA transfection. However, the toxic 

effect was abolished when lower concentration of siRNA was used. At the low 

concentration of siRNA pools, a good knockdown efficiency (~75% - 90%) was achieved 

for ADAM9, 10, 17 and MMP14 (Figure 8 A, C). Levels of cellular APP as well as of the 

control membrane protein calnexin were not affected. Among these knockdown 

experiments, only when ADAM10 was knocked down, a reduction of sAPPα generation 

was observed (to ~10%), which was consistent with the remaining expression level of 

ADAM10. The other APP cleavage fragments were also analyzed. The total sAPP 

detected by 22C11 decreased to 40% upon ADAM10 knockdown, while the combination 

of sAPPα+β’ detected by WO2 decreased to 20%. When ADAM10 was knocked down, 

the expression levels of other ADAM proteases did not have a major change, implying 

that they did not compensate for the loss of ADAM10 (Figure 8 B). ADAM9, 17 and 

MMP14 knockdowns led to only mild changes in all APP cleavage fragments. There 

might be some reduction of sAPPα generation upon ADAM9, 17 and MMP14 siRNA 

transfection, but it was only a trend and not statistically different compared to control 

siRNA. The results indicated that the ADAM10 was the only protease that was required 

for APP α-secretase cleavage under physiological condition in SH-SY5Y cells. 
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Figure 8 Transient knockdown of 
ADAM10 suppresses α-secretase 
cleavage of endogenous APP in SH-
SY5Y cells. 
A) SH-SY5Y cells were transfected 
with siGENOME siRNA pools directed 
against the proteases ADAM9, 10 or 17 
or with control siRNA (labeled as C, A9 
KD, A10 KD or A17 KD). All three 
proteases were detected by western blot 
in membrane preparations. The mature 
form of ADAM9, 10 and 17 are 
indicated by arrows. Calnexin served as 
a loading control. Cell lysates were 
analysed for cellular APP and 
conditioned media for total sAPP 
(22C11), sAPPα+β’ (W02) and sAPPα 
(4B4). sAPPα signal was detected by 
500 μl supernatant IP with 5313 and 
blotting with 4B4. The bar charts were 
the quantification of western blot 
signals. ADAMs expression levels were 
normalized to the calnexin signal. sAPP 
fragments levels were normalized to 
cellular APP signal. (n =10, * p ‹ 0.05) 
B) Knockdown of either ADAM9, 10 or 
17 does not alter the protein levels of 
immature and mature forms of the other 
proteases. Membrane preparations of 
SH-SY5Y cells either treated with 
siRNA pools against ADAM9, 10, 17 or 
a control siRNA pool were probed for 
ADAM9, 10 and 17. As loading control 
membranes were analyzed for calnexin. 
C) SH-SY5Y cells were transfected 
with siGENOME siRNA pools directed 

against MMP14 or with control siRNA (labeled as C or MMP14 KD). MMP14 expression level was 
detected by western blot by lysate preparations. Calnexin was detected as a loading control. Cell lysates 
were analyzed for cellular APP and conditioned media for total sAPP (22C11), sAPPα+β’ (W02) and 
sAPPα (14D6). The bar charts were the quantification of western blot signals. MMP14 expression level was 
normalized to the calnexin signal. sAPP fragments levels were normalized to cellular APP signal. (n = 4, * 
p ‹ 0.05) 
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4.2.2 ADAM9, 10 and 17 knockdowns in HEK293 cells 

The same experiments were performed using HEK293 cells to further validate the 

constitutive α-secretase of APP in a second cell line. siRNA transfection showed less cell 

toxicity in HEK293 cells even at higher concentrations in comparison to SH-SY5Y cells. 

Nevertheless the results perfectly fit to what was observed in the previous cell line. 

ADAM10 knockdown led to the reduction of sAPPα signal to ~ 10%, but the other 

ADAMs did not, while MMP14 was not detectable in HEK293 cells (Figure 9). The total 

sAPP and sAPPα+β’ decreased to 60% and 40%, respectively (Figure 9). The results 

from HEK293 showed that ADAM10 is again the physiologically relevant constitutive α-

secretase of APP.  

Figure 9  
Transient knockdown of 
ADAM10 suppresses α-
secretase cleavage of 
endogenous APP in 
HEK293 cells. 
A) HEK293 cells were 
transfected with 
siGENOME siRNA pools 
directed against the 
proteases ADAM9, 10 or 
17 or with control siRNA 
(labeled as C, A9 KD, A10 
KD or A17 KD). All three 
proteases were detected by 
western blot in membrane 
preparations. The mature 
form of ADAM9, 10 and 
17 were indicated in the 
blot by arrows. Calnexin 
was detected as a loading 
control. Cell lysates were 
analyzed for cellular APP 
and conditioned media for 
total sAPP (22C11), 
sAPPα+β’ (W02) and 
sAPPα (4B4). sAPPα 
signal was detected by 500 
μl supernatant IP with 
5313 and blotting with 4B4.  
B) The bar charts were the 
quantification of western 
blot signals. ADAMs 
expression levels were 
normalized to the calnexin 

signal. sAPP fragments levels were normalized to cellular APP signal. (n =10, * p ‹ 0.05) 
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4.3 Transient knockdown of ADAM10 in APP overexpressing 

cells suppressed sAPPα generation 

 

4.3.1 ADAM10 knockdown in APP-SH-SY5Y 

Most previous studies about identification of APP α-secretase were performed using APP 

overexpressing cells due to the detection difficulty of endogenous APP. To further 

confirm that ADAM10 also the α-secretase of overexpressed APP, APP overexpressing 

cells were also used in the experiments. ADAM10 siRNA transfections were performed 

in stably APP overexpressing SH-SY5Y cells, followed by the APP shedding behavior 

analysis (Figure 10). The reduction was nearly as strong as in wild-type cells. Total sAPP, 

sAPPα+β’ and sAPPα decreased to ~40%, 35% and 30% respectively. The higher 

remaining sAPP fragments could be owing to such high expression level of APP that 

some other proteases had to participate in the APP cleavage. 

 
Figure 10 Transient knockdown of ADAM10 suppresses α-secretase cleavage of overexpressed APP 
in SH-SY5Y cells. 
APP-SH-SY5Y cells were transfected with siGENOME siRNA pools directed against ADAM10 or with 
control siRNA (labeled as C or A10 KD). ADAM10 was detected by western blot in membrane 
preparations. Calnexin was detected as a loading control. Cell lysates were analyzed for cellular APP and 
conditioned media for total sAPP (22C11), sAPPα+β’ (W02) and sAPPα (4B4). The bar charts were the 
quantification of western blotting signals. ADAM10 expression level was normalized to the calnexin signal. 
sAPP fragments levels were normalized to cellular APP signal. (n = 8, * p ‹ 0.05) 
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4.3.2 ADAM10 knockdown in APP-HEK293 cells 

ADAM10 was also knocked down in APP overexpressing HEK293 cells (Figure 11). The 

results were similar to the findings from APP-SH-SY5Y cells. ADAM10 knockdown led 

to the strong decrease of sAPPα signal to ~ 20%. However, the reduction of total sAPP 

was stronger than that of sAPPα+β’ signal. That could be due to the off-target effect from 

siRNA transfection on the APP expression vector or the promoter inside. That could also 

provide a clue for the explanation that in the previous research ADAM10 was not the 

only proteases contributed to the APP α-cleavage.  

 
Figure 11 Transient knockdown of ADAM10 suppresses α-secretase cleavage of overexpressed APP 
in HEK293 cells. 
APP-HEK293 cells were transfected with siGENOME siRNA pools directed against ADAM10 or with 
control siRNA (labeled as C or A10 KD). ADAM10 was detected by western blot in membrane 
preparations. Calnexin was detected as a loading control. Cell lysates were analyzed for cellular APP and 
conditioned media for total sAPP (22C11), sAPPα+β’ (W02) and sAPPα (4B4). The bar charts were the 
quantification of western blot signals. ADAM10 expression level was normalized to the calnexin signal. 
sAPP fragments levels were normalized to cellular APP signal. (n = 8, * p ‹ 0.05) 
 

4.4 Stable knockdown of ADAM10 in wild type cells 

suppressed sAPPα generation 

To further validate the results from the transient knockdown of ADAM10, HEK293 cells 

with a stable knockdown of ADAM10 were generated using lentiviruses expressing two 

different shRNA sequences against ADAM10 or a negative control shRNA. It provided 

the evidence that in the long time period of loss of function of ADAM10, no other 

proteases could compensate for it and play the role of APP α-secretase. Similar to the 
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results from the transient ADAM10 knockdown, sAPPα decreased when ADAM10 was 

knocked down in HEK293 cells (Figure 12). In both shRNA transduced HEK293 cells, 

total sAPP, sAPPα+β’, and sAPPα decreased to ~50%, ~40%, and ~15%; while sAPP  　

and even Aβ level did not have major change due to ADAM10 knockdown compared to 

the control. sh7 shRNA performed more potent than sh9, represented by the ADAM 

expression level together with the corresponding sAPPα signal reduction. Quantification 

from the blots fit nicely with that of results from transient ADAM10 siRNA transfection. 

The similar results were obtained from SH-SY5Y cells transduced with the same shRNAs 

(data not shown). Results from ADAM10 transient knockdown and stable knockdown 

cells demonstrated that no other α-secretase candidates could compensate for the loss of 

ADAM10 either in short time or after long time culture period. 

Figure 12  
Suppressed α-
secretase cleavage of 
endogenous APP in 
ADAM10 stable 
knockdown HEK293 
cells. 
ADAM10 stable 
knockdown HEK293 
cells were generated 
by shRNA viral 
transduction using 
two distinct shRNAs. 
In shRNA 7 and 9 
transduced HEK293 
cells (labeled as C, 
sh7 or sh9), ADAM10 
was detected by 
membrane preparation. 
Calnexin was detected 
as a loading control. 
Cell lysates were 
analyzed for cellular 
APP and conditioned 
media for total sAPP 
(22C11), sAPPα+β’ 
(WO2), sAPPα (4B4), 
sAPPβ (192wt) and 
Aβ (2D8). sAPPα 
signal was detected by 
500 μl supernatant IP 
with 5313 and blotting 

with 4B4. sAPPβ signal was detected by 500 μl supernatant IP with BAWT 8C10 and blotting with 192wt. 
Aβ signal was detected by 500 μl supernatant IP with 3552 and blotting with 2D8. The bar charts were the 
quantification of western blot signals. ADAM10 expression level was normalized to the calnexin signal. 
sAPP fragments levels were normalized to cellular APP signal. (n = 6, * p ‹ 0.05) 
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4.5 ADAM10 knockdown in neuron-like cells suppressed sAPPα 

generation 

In order to create a more neuronal like cellular condition and to verify the APP α-

secretase in such a condition, SH-SY5Y cells were treated with all-trans retinoic acid 

(ATRA) in serum-free medium for 3 d and thereby differentiated into neuronal like cells. 

The western blot results showed that ATRA treatment and SH-SY5Y differentiation led 

to a mild increase in ADAM10 level, however, was not significant, together with the full 

length APP expression level (Figure 13 A). The APP shedding behavior of differentiated 

cells was not dramatically affected; secreted APP fragments, including total sAPP, 

sAPPα+β’, sAPPα and sAPPβ, retained the similar level as the naive SH-SY5Y cells 

(Figure 13 A). To characterize shedding of APP in differentiated SH-SY5Y cells, siRNA 

transfections were performed (Figure 13 B). Upon the siRNA treatment, ADAM10 level 

in differentiated SH-SY5Y cells decreased to a very low level (to ~ 13%), together with 

the secreted APP α-cleavage fragment signals (to ~18%), similar to the results obtained in 

SH-SY5Y and HEK293 cells. Total sAPP and sAPPα+β’ signal decreased as well but not 

as strong as sAPPα. Total sAPP decreased to ~50%, like the wide type SH-SY5Y cells 

upon ADAM10 siRNA transfection, consistent with the fact that SH-SY5Y cell 

differentiation did not affect the APP cleavage pattern. It implied that in the more 

neuronal like differentiated SH-SY5Y cells, ADAM10 played the major role of APP α-

secretase as well.  
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Figure 13  
Transient knockdown of 
ADAM10 suppressed α-
secretase cleavage of 
endogenous APP in 
neuron-like 
differentiated SH-SY5Y 
cells. 
A) SH-SY5Y cells were 
treated with 25 μM 
ATRA in serum-free 
medium for 3 d to trigger 
the differentiation. 24 h 
conditioned medium was 
collected and western blot 
analysis was performed. 
ADAM10 was detected 
by membrane preparation. 
Total sAPP, sAPPα+β’ 
and sAPPα signals were 
detected by 22C11, WO2 
and 14D6 respectively. 
sAPPβ signal was 
detected by 500 μl 
supernatant IP with 
BAWT 8C10 and blotting 
by 192wt. Cellular APP 
was detected by lysate 
samples with 2C11. 
Calnexin was detected as 
a loading control. The bar 
charts were the 
quantification of western 
blot signals. ADAM10 
expression level was 
normalized to the 
calnexin signal. sAPP 
fragments levels were 
normalized to cellular 
APP signal. (n = 4, * p ‹ 
0.05) 
B) Differentiated SH-
SY5Y cells were 
transfected with 
siGENOME siRNA pools 
directed against 
ADAM10 or with control 
siRNA (labeled as C or 
A10 KD). ADAM10 was 
detected by western blot 

in membrane preparations. Calnexin was detected as a loading control. Cell lysates were analyzed for 
cellular APP and conditioned media for total sAPP (22C11), sAPPα+β’ (W02), sAPPα (14D6) and sAPPβ 
(192wt). sAPPβ signal was detected by 500 μl supernatant IP with BAWT 8C10 and blotting by 192wt. Aβ 
spices were detected by Aβ triplicate ELISA. The bar charts were the quantification of western blot signals. 
ADAM10 expression level, cellular APP levels and sAPP fragments levels were normalized to the calnexin 
signal. (n = 8, * p ‹ 0.05) 
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4.6 ADAM10 is also APP α-secretase in serum-free medium 

 

4.6.1 ADAM10 stable knockdown SH-SY5Y cells in serum-free medium 

Serum in the cell culture media provides fundamental stimuli for the physiological 

signaling pathway. Thus further experiments were performed with serum-free cell culture 

medium to exclude a potential activating effect of APP α-secretase from serum. Because 

sAPPα are lower in the absence of serum (Pandiella & Massague, 1991), sAPPα in the 

conditioned medium was concentrated by immunoprecipitation (IP) and detected by 

western blot (Figure 14). The results showed that ADAM10 knockdown still led to strong 

reduction of sAPPα to ~10%, whose ratio was consistent with the figure obtained from 

normal cell culture conditions. The absence of serum seemed to only down-regulate the 

total APP secretion, but not affect the APP shedding pattern. It did not affect the ADAMs 

expression pattern in control, ADAM10 shRNA7 and 9 transduced SH-SY5Y cells, either. 

 
Figure 14 Suppressed α-secretase cleavage of endogenous APP in ADAM10 stable knockdown SH-
SY5Y cells with serum-free medium. 
ADAM10 stable knockdown SH-SY5Y cells (sh7, sh9) were pretreated with serum-free medium for 24 h, 
and then 24 h serum-free conditioned medium was collected. ADAM10 and 17 levels were detected by 
membrane preparation. Total sAPP and sAPPα+β’ signals were detected by 22C11 and WO2 respectively. 
sAPPα signal was detected by 500 μl supernatant IP with 5313 and blotting by 14D6. Cellular APP was 
detected by lysate samples with 2C11. The bar charts were the quantification of western blot signals. 
ADAM10 and 17 expression levels were normalized to the calnexin signal. sAPP fragments levels were 
normalized to cellular APP signal. (n = 6, * p ‹ 0.05) 
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4.6.2 ADAM10 stable knockdown HEK293 cells in serum-free medium 

The same experiments were also performed in HEK293 cells with a stable knockdown of 

ADAM10 cultured with serum-free medium (Figure 15). Similar results were achieved as 

in SH-SY5Y cells. In ADAM10 stable knockdown HEK293 cells, total sAPP, sAPPα+β’ 

and sAPPα decreased, with the strongest reduction shown by sAPPα (to ~10%). Both cell 

lines demonstrated that ADAM10 was the physiological α-secretase of APP even without 

serum as a shedding trigger. 

 
Figure 15 Suppressed α-secretase cleavage of endogenous APP in ADAM10 stable knockdown 
HEK293 cells with serum-free medium. 
ADAM10 stable knockdown HEK293 cells (sh7, sh9) were pretreated with serum-free medium for 24 h, 
and then 24 h serum-free conditioned medium was collected. ADAM10 and 17 levels were detected by 
membrane preparation samples. Total sAPP and sAPPα+β’ signals were detected by 22C11 and WO2 
respectively. sAPPα signal was detected by 500 μl supernatant IP with 5313 and blotting by 14D6. Cellular 
APP was detected by lysate samples with 2C11. The bar charts were the quantification of western blot 
signals. ADAM10 and 17 expression levels were normalized to the calnexin signal. sAPP fragments levels 
were normalized to cellular APP signal. (n = 6, * p ‹ 0.05) 
 

4.7 PMA induce APP α-shedding independent of ADAM10 

PMA stimulates the cleavage of many cell surface membrane proteins by metalloprotease, 

including APP. PMA-induced shedding of APP requires ADAM17 activity, because this 

stimulation is abcent in ADAM17-deficient mouse embryonic fibroblasts (MEF) 

(Buxbaum et al., 1998). Thus, whether ADAM10 was involved in the PMA stimulation 

of APP shedding was investigated next. To test this, wild type SH-SY5Y cells were 

transiently transfected with control siRNAs or siRNAs against ADAM9, 10 or 17 and 
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then treated with or without PMA (Figure 16). As expected, in control cells, PMA 

strongly increased sAPPα, in agreement with Figure 8 C. Knockdown of ADAM17 

eliminated the PMA-induced increase in sAPPα production. However, neither ADAM10 

nor 9 knockdown affected PMA induced APP shedding. This showed that ADAM10 was 

not required for PMA induction of APP shedding and suggested that under PMA-

stimualtion conditions ADAM17 can directly cleave APP. 

 
Figure 16 PMA-induced stimulation of APP shedding is independent of ADAM10, but requires 
ADAM17. 
SH-SY5Y cells were either transfected with control siRNA pool or siRNA pools against ADAM9, 
ADAM10 and ADAM17; 2 d after transfection, cells were treated with 1 μM PMA (+) or ethanol (-) as 
solvent control for 4 h.  
(A) Conditioned media were analyzed for sAPPα (4B4), sAPPα+β’ (W02) and cell lysates were analyzed 
for cellular APP (22C11).  
(B) Knockdown efficiency was analyzed by blotting against the different proteases ADAM9, 10 and 17 in 
membrane preparations of the respective experiments. 
 

4.8 β-secretase does not compensate for α-secretase loss of 

function on APP cleavage 

To study the compensatory effect of β-secretase in response of α-secretase 

downregulation, ADAM10 was genetically knocked down by siRNA transfection or 

pharmacologically inhibited. The corresponding -secretase cleaved APP fragments were 

analyzed. 
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4.8.1 ADAM10 knockdown 

As shown in Figure 12, ADAM10 knockdown led to the dramatic reduction of sAPP 

level. The β-secretase cleavage fragment was also detected in parallel by conditioned 

medium upon immunoprecipitation (IP) concentration and 192wt antibody blotting. 

Compared to control cells, endogenous sAPPβ and Aβ levels in HEK293 cells were 

unchanged for one ADAM10 knockdown construct (sh9), whereas a mild, but not 

significant, increase was observed for the other shRNA construct (sh7) (Figure 12). 

Similar results were obtained from ADAM10 knockdown experiments in differentiated 

SH-SY5Y cells. ADAM10 siRNA transfection led to the reduction of sAPPα signal but 

no upregulation of the β-secretrase cleaved fragments (Figure 13 B). Aβ levels (Aβ40, 42) 

showed only a trend to increase, but not statistically significant. This suggested that β-

secretase did not compensate in response of α-secretase down-regulation in immortalized 

cell lines. 

 

α- and β-secretases do not only generate sAPPα and sAPPβ. In parallel, they also 

generate the C-terminal fragments C83 and C99, respectively. Both fragments are further 

processed by γ-secretase, leading to a short half-life of the fragments, which makes it 

difficult to detect them at endogenous levels. In order to stabilize the endogenous C-

terminal fragments of APP, SH-SY5Y cells were treated with the γ-secretase inhibitor 

DAPT (Figure 17). In control cells with normal -secretase activity, the α-secretase 

fragment C83 was clearly detected and was strongly reduced in the ADAM10 

knockdown cells. Out of expectation, the β-secretase-cleavage product C99 was increased 

in this condition more than 2 fold upon ADAM10 knockdown. Besides, a mild increase 

of C89 was observed, which is the C-terminal fragment arising by BACE1 at β’-cleavage 

site. The increase in C99 and C89 is not consistent with sAPPβ levels, which were 

unchanged upon ADAM10 knockdown. The possible explanation is that C99 could also 

be processed by α-secretase. As ADAM10 is knocked down, together with the inhibition 

of γ-secretase activity, C99 was accumulated. These results from HEK293, SH-SY5Y 

and differentiated SH-SY5Y cells show that the strong reduction of α-cleavage does not 
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yield a correspondingly increased cleavage by β-secretase, which means β-secretase does 

not compensate for genetically loss of function of α-secretase on APP cleavage. 

 
Figure 17 DAPT treatment in ADAM10 knockdown SHSY-5Y cells and APP CTFs analysis. 
ADAM10 stable knockdown SHSY-5Y cells (sh7, sh9) were treated with DAPT (1 μM) for 24 h and 
conditioned medium was collected. sAPPα signal was detected by 500 μl supernatant IP with 5313 and 
blotting by 4B4. sAPPβ signal was detected by 500 μl supernatant IP with BAWT 8C10 and blotting by 
192wt. APP CTFs signals were detected by 500 μl lysate IP with 6687 and blotting by 6687. C89 and C83 
are indicated by * and ** respectively. C99 signal was detected by 500 μl lysate IP with 6687 and blotting 
by 2D8. Cellular APP was detected by lysate samples with 2C11. The bar charts were the quantification of 
western blot signals. All the data were normalized to the β-actin signal. (n = 6. * p ‹ 0.05) 
 

4.8.2 TAPI treatment 

The metalloproteases inhibitor TAPI-1 is a kind of hydroxamate inhibitor which works as 

a metal chelator removing the Zn2+-ion from metalloproteases resulting in the 
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inactivation of most of the metalloprotease (Arribas et al., 1996). α-secretase at cell 

surface in absence of the metal co-factor can no longer cleave APP at α-site to release the 

soluble sAPPα. TAPI treatment in HEK293 and differentiated SH-SY5Y cells also 

reduced sAPPα generation without a change in β-secretase cleavage product (Figure 18). 

APP shedding was affected in the same pattern as observed in ADAM10 knockdown 

experiments. In HEK293 cells, total sAPP (22C11), sAPPα+β’ (WO2), and sAPPα (14D6) 

fragments decreased, to ~ 59%, 36% and 23% respectively, which was consistent with 

ADAM10 knockdown results, while sAPPβ signal remained the same compared to the 

control (Figure 18 A). TAPI treatment performed similar in differentiated SH-SY5Y cells, 

down-regulating total sAPP, sAPPα+β’ and sAPPα to ~49%, 27% and 22% respectively 

(Figure 18 B). Surprisingly, Aβ level was increased upon TAPI-1 treatment. In HEK293 

cells, all three species of Aβ were detected by ELISA, only Aβ38 increased significantly 

compared to the control (Figure 18 A), although only to ~1.4 fold. While in differentiated 

SH-SY5Y cells, only Aβ40 was detectable and it increased even to ~2-fold compared to 

the control (Figure 18 B). Cellular APP and APP maturation ratio were not affected much 

by TAPI treatment, in both cell lines, indicating that TAPI treatment only led to the α-

secretase dysfunction but did not affected APP trafficking and maturation. Taken together, 

these experiments suggest that β-secretase cleavage of APP does not have major change 

upon genetically loss of function of constitutive α-secretase. While pharmacological 

inhibition of α-secretase also does not affect sAPPβ production but has the tendency to 

increase Aβ levels, which may be because TAPI-1 also inhibited Aβ degradation 

enzymes activity. In words, the loss of function of α-secretase does not lead to a change 

of β-secretase cleavage of APP. 
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Figure 18 
TAPI treatment 
in HEK293 and 
differentiated 
SH-SY5Y cells 
and APP 
shedding 
behavior analysis. 
A) TAPI treatment 
in HEK293 cells. 
HEK293 cells 
were treated with 
50 μM TAPI in 1 
ml medium for 24 
h. DMSO was 
served as the 

control. 
Conditioned 

medium was 
collected and total 
sAPP, sAPPα+β’ 
and sAPPα signals 
were detected by 
22C11, WO2 and 
14D6 respectively. 
sAPPβ signal was 
detected by 500 μl 
supernatant IP 
with BAWT 8C10 
and blotting by 
192wt. Aβ spices 
were detected by 
Aβ triplicate 
ELISA. Cellular 
APP was detected 
by lysate samples 
with 2C11. The 
bar charts were 
the quantification 
of western blot 
signals. All the 
data were 
normalized to the 
calnexin signal. (n 
= 8, * p ‹ 0.05) 
B) TAPI treatment 
in differentiated 
SH-SY5Y cells. 
Differentiated SH-
SY5Y cells were 

treated with 50 μM TAPI in 1 ml medium for 24 h. DMSO was served as the control. Conditioned medium 
was collected and total sAPP, sAPPα+β’ and sAPPα signals were detected by 22C11, WO2 and 14D6 
respectively. sAPP β signal was detected by sAPPα+sAPPβ triplicate ELISA. Aβ40 level was detected by 
Aβ triplicate ELISA. Cellular APP was detected by lysate samples with 2C11.The bar charts were the 
quantification of western blot signals. All the data were normalized to the calnexin signal. (n= 6, * p ‹ 0.05) 
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4.9 α-secretase does not compensate for β-secretase loss of 

function on APP cleavage 

To further test a possible compensation between α- and β-secretase of cleavage APP, now 

β-secretase was reduced and an effect on α-secretase cleavage of APP was analyzed, both 

genetically and pharmacologically. 

 

4.9.1 BACE1 knockdown 

Expression of the β-secretase BACE1 was reduced by lentiviral knockdown constructs 

(sh1 and sh2) in HEK293 cells (Figure 19 A). This resulted in a strong reduction of 

sAPPβ and Aβ generation, but not in a significant increase in sAPPα generation (~ 1.2 

fold). This clearly indicates that α-secretase cleavage did not compensate for the loss of 

β-secretase activity on APP cleavage. Similar results were obtained from differentiated 

SH-SY5Y cells transiently transfected with BACE1 siRNA (Figure 19 B). BACE1 

knockdown led to a mild reduction in total sAPP and sAPPα+β’ fragments, and only a 

mild but not significant increase in the sAPPα level. In differentiated SH-SY5Y cells, Aβ 

and sAPPβ levels were detected by ELISA. Both signals decreased to lower than 5% 

compared to the control, which provided nice control evidence for the specificity of the 

ELISA detection. 
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Figure 19 BACE1 knockdown in HEK293 and differentiated SH-SY5Y cells and APP shedding 
behavior analysis. 
A) BACE1 stable knockdown HEK293 cells were generated by shRNA viral transduction. In shRNA No.1 
and No.2 transduced HEK293 cells, total sAPP and sAPPα+β’ signals were detected by 22C11 and WO2 
respectively. sAPPα signal was detected by 500 μl supernatant IP with 5313 and blotting with 4B4. sAPPβ 
signal was detected by 500 μl supernatant IP with BAWT 8C10 and blotting by 192wt. Aβ signal was 
detected by 3 ml supernatant IP with 3552 and blotting with 2D8. Cellular APP was detected by lysate 
samples with 22C11. The bar charts were the quantification of western blot signals. All the data were 
normalized to the β-actin signal. (n = 6, * p ‹ 0.05) 
B) Differentiated SH-SY5Y cells were transfected with Qiagen siRNA pools directed against BACE1 or 
with control siRNA (labeled as C or B1 KD). BACE1 was detected by western blot in membrane 
preparations. Calnexin was detected as a loading control. Cell lysates were analyzed for cellular APP and 
conditioned media for total sAPP (22C11), sAPPα+β’ (W02) and sAPPα (14D6). sAPPβ signal was 
detected by sAPPα+sAPPβ ELISA.. The bar charts were the quantification of western blot signals. All the 
data were normalized to the calnexin signal. (n = 6, * p ‹ 0.05) 
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4.9.2 C3 treatment 

The β-Secretase BACE1 is an aspartic-acid transmembrane protease which has two active 

site aspartate residues in its extracellular protein domain. β-secretase inhibitor C3 is a 

kind of statine-based BACE inhibitor which constitutes a tetrahedral, hydroxymethylene-

isosteric replacement for the scissile peptide bond, mimicking the putative reaction 

intermediate and resulting in potent inhibition of aspartic proteases (Marcinkeviciene et 

al., 2001). C3 treatment completely blocked the β-secretase activity in HEK293 cells, 

sAPPβ signal was even not detectable (Figure 20 A). Nevertheless, α-secretase cleaved 

APP derivative did not have any change upon the β-secretase inhibition (~ 96% 

compared to control). A similar result was observed in differentiated SH-SY5Y cells, too, 

where C3 treatment led to ~28% total sAPP reduction, strong decrease of sAPPβ but no 

effect on sAPPα (~ 1.1 fold compared to control) (Figure 20 B). In addition, C3 treatment 

in differentiated SH-SY5Y cells increased cellular APP maturation to ~1.5 fold. In 

conclusion, both the genetic and the pharmacological approach showed that the loss of 

function of β-secretase did not result to a compensation of α-secretase cleavage of APP. 

http://en.wikipedia.org/wiki/Protease�
http://en.wikipedia.org/wiki/Aspartate�
http://en.wikipedia.org/wiki/Extracellular�
http://en.wikipedia.org/wiki/Protein_domain�
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Figure 20 C3 treatment in HEK293 and differentiated SH-SY5Y cells and APP shedding behavior 
analysis. 
A) C3 treatment in HEK293 cells. HEK293 cells pre-treated with 2 μM C3 in 500 μl medium for 2 h, 
followed by 24 h incubation with 1 μM C3 in 1 ml medium. DMSO was served as the control. Conditioned 
medium was collected and total sAPP, sAPPα+β’ and sAPPα signals were detected by 22C11, WO2 and 
14D6 respectively. sAPPβ signal was detected by 500 μl supernatant IP with BAWT 8C10 and blotting by 
192wt. Cellular APP was detected by lysate samples with 2C11. The bar charts were the quantification of 
western blot signals. All the data were normalized to the calnexin signal. (n = 6, * p ‹ 0.05) 
B) C3 treatment in differentiated SH-SY5Y cells. Differentiated SHSY-5Y cells pre-treated with 2 μM C3 
in 500 μl medium for 2 h, followed by 24 h incubation with 1 μM C3 in 1 ml medium. DMSO was served 
as the control. Conditioned medium was collected and total sAPP, sAPPα+β’ and sAPPα signals were 
detected by 22C11, WO2 and 14D6 respectively. sAPPβ signal was detected by sAPPα+sAPPβ ELISA. 
Cellular APP was detected by lysate samples with 2C11. The bar charts were the quantification of western 
blot signals. All the data were normalized to the calnexin signal. (n = 6, * p ‹ 0.05) 
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5 Discussion 

 

A diverse range of membrane proteins undergoes proteolysis by a group of enzymes 

referred to collectively as “secretases” or “sheddases”. The cleavage generally occurs 

close to the extracellular surface of the membrane, releasing physiologically active 

protein ectodomains (Hooper et al., 1997). One of the secretases is α-secretase and it is 

considered important in AD since it cleaves APP inside the Aβ domain and could 

preclude the AD-related neuro-toxic Aβ generation (see APP details in 1.2.3). The 

identification of the α-secretase of APP and its regulation would help to better understand 

APP processing and the molecular parthenogenesis of AD.  

 

Furthermore, the α-secretase-cleaved secreted form of APP has also been considered 

neuroprotective and neurotrophic. From some early reports, sAPP or sAPPα was verified 

to have the effect to enhance the neuronal survival and neurite extension (Araki et al., 

1991; Milward et al., 1992; Small et al., 1994; Ohsawa et al., 1997; Luo et al., 2001a; 

Young-Pearse et al., 2008) and play a role in functional synaptic formation (Morimoto et 

al., 1998). Some other research demonstrated that sAPP could protect cells against toxic 

stress (Mattson et al., 1993; Schubert & Behl, 1993; Furukawa et al., 1996; Mattson et al., 

1999; Stein et al., 2004; Gralle et al., 2009). In vivo research further indicated that sAPP 

possessed the memory-enhancing effects in an AD mouse model (Meziane et al., 1998). 

One of the APP α-secretase candidates ADAM10 was also reported to be able to increase 

cortical synaptogenesis (Bell et al., 2008). That makes it more important and interesting 

to investigate the APP α-secretase in order to either understand its biological function and 

to evaluate its therapeutic potential.  

 

5.1 Identification of APP α-secretase 

The research about the identification of APP α-secretase has passed last decade but no 

homogenous results achieved. The candidates include some ADAM and MMP proteases 

(see details in Table 3). The ADAMs are a family of transmembrane proteins with 

important roles in regulating cell phenotype via their effects on cell adhesion, migration, 

proteolysis and signaling; The functional ADAM metalloproteinases are involved in 
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“ectodomain shedding” of diverse growth factors, cytokines, receptors and adhesion 

molecules (reviewed by Edwards et al., 2008). The application of some metalloprotease 

inhibitors had already indicated that ADAM9, 10 and 17 were involved in the α-cleavage 

of APP and release of secreted APP α-fragment (Arribas et al., 1996; Buxbaum et al., 

1998; Koike et al., 1999; Lammich et al., 1999; Skovronsky et al., 2000; Lopez-Perez et 

al., 2001; Slack et al., 2001; Kim et al., 2008). Cell free or cell based experiments 

indicated that ADAM9, 10 and 17 cleaved APP at the α-site between the 16th (Leu) and 

17th (Lys) amino acid of Aβ domain (Lammich et al., 1999; Roghani et al., 1999; Koike 

et al., 1999; Lopez-Perez et al., 2001; Slack et al., 2001; Hotoda et al., 2002). Gene 

inactivation experiments revealed that APP shedding reduced to 20%-60% but was never 

fully suppressed (Hartmann et al., 2002; Weskamp et al., 2002; Asai et al., 2003; Allison 

et al., 2004; Jorissen et al., 2010). Paradoxically, ADAM9, 10 or 17 knockdowns or 

knockouts showed no change in APP shedding in some other research (Buxbaum et al., 

1998; Hartmann et al., 2002; Weskamp et al., 2002). These heterogeneous results have 

led to the conclusion that ADAM9, 10 and 17 may all together contribute to α-secretase 

activity and that in the absence of one of them, the other proteases can still mediate APP 

α-secretase cleavage. 

 

As shown in the results part (see details in 4.2 - 4.6), to reveal the exact identity of APP 

α-secretase, gene knockdowns of the candidates ADAM9, 10, 17 and MMP14 were 

performed in different cell lines upon different conditions. In the following table, the 

experiments carried on about APP α-secretase identification are summarized (Table 19). 

The results show that by using the new, sAPPα specific antibodies 4B4 and 14D6 (see 

details in 4.1), only the inactivation of ADAM10 but not the other metalloproteases 

suppressed sAPPα generation completely in immortalized cell lines, neuronal like cells 

and primary cultured neurons (Kuhn et al., 2010). That means ADAM10 is the only 

physiologically relevant constitutive α-secretase of APP. 
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Table 19 Identification of constitutive α-secretase of APP. 

Cell lines siRNA transfection shRNA viral transduction 

ADAM9 KD → sAPPα --  

ADAM10 KD → sAPPα ↓ 
ADAM10 KD → sAPPα ↓ 
(in present or absent of serum) 

HEK293 

ADAM17 KD → sAPPα -- 
 

 

APP-HEK293 ADAM10 KD → sAPPα ↓ 
 

 

ADAM9 KD → sAPPα --  

ADAM10 KD →sAPPα ↓ 
ADAM10 KD → sAPPα ↓ 
(in present or absent of serum) 

ADAM17 KD → sAPPα --  

SH-SY5Y 

MMP14 KD → sAPPα -- 
 

 

APP-SH-SY5Y ADAM10 KD → sAPPα ↓ 
 

 

 

Differentiated SH-SY5Y ADAM10 KD → sAPPα ↓ 
 

 

“↓” represents reduction; “--” represents no change. 

 

5.1.1 ADAM10 is the only physiologically relevant α-secretase of APP 

The requirement of ADAM10 in APP α-cleavage was double validated by transient and 

stable knockdown cells (see details in 4.2 – 4.4). This is particularly remarkable, because 

although ADAM10 and 17 can cleave similar peptides in vitro at the same peptide bonds, 

regarding to their distinct role in biology, they appear to have quite different substrate 

specificity in vivo (Caescu et al., 2009). If compared to the other APP sheddase BACE1 

which has been demonstrated as the unique protease responsible for the APP β-site 

cleavage (Cai et al., 2001; Luo et al., 2001b), it would be reasonable to assume there is 

only one protease responsible for α-cleavage of APP. Furthermore, cytochemical 

evidence shown by in situ hybridization supported the ADAM10 but not ADAM17 as the 

authentic α-secretase of APP in human cortical neurons (Marcinkeviciene et al., 2001), 

which implied the uniquity of APP α-secretase. Results from my experiments show 

ADAM10 is the key player for APP α-cleavage. 

 

The novel antibodies 4B4 and 14D6 greatly improve the analysis of APP shedding 

because they specifically detect the α-secretase cleaved APP without contribution of any 

other APP cleavage products, such as sAPPβ or sAPPβ’ (see details in 4.1). Using these 

new antibodies, siRNAs and shRNAs against ADAM10 almost abolished the sAPPα 
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signal in SH-SY5Y and HEK293 cells which implied that ADAM10 is the only 

constitutive α-secretase in the physiological condition (see details in 4.2-4.4). ADAM9, 

17 and MMP14 knockdowns lead to hardly any change in sAPPα level, meaning these 

three proteases do not play the role of α-secretase of APP in normal condition (see 4.2.1). 

Only in HEK293 cells, the ADAM17 knockdown led to a very modest decrease in total 

sAPP, raising the possibility that in specific cell lines ADAM17 may have a modulatory 

function in sAPPα generation (see 4.2.2).  

 

In previous research, the gene inactivation could never fully eliminate the sAPPα 

generation. That could be due to two possibilities. On one hand, antibodies used 

previously also detect sAPPβ’, which is the alternative derivative from BACE1 cleavage 

but not affected by metalloproteases inactivation. The new antibodies 4B4 and 14D6 

provide accuracy and specificity for sAPPα detection, which exclude the recognition of 

any other APP ectodomain fragments. On the other hand, most of the previous research 

was performed by single siRNA or shRNA. The potential off-target effects from one 

single siRNA or relatively high siRNA concentration can not be ignored (Jackson et al., 

2003). Furthermore, I manage to use the combination of different single siRNA, to 

decrease the siRNA concentration to a very low level and to use the Dharmacon on-target 

plus siRNA to minimize the off-target effects, especially in case of the siRNA against 

ADAM17. The on-target plus siRNA is designed in seed region which is reported to be 

able to reduce miRNA-induced off-targets effects (Birmingham et al., 2006; Anderson et 

al., 2008). The abolishment of cell toxicity was achieved but no change or only a very 

mild reduction of sAPPα production was observed. The findings provide evidence that a 

physiological condition for the experiment was created, preventing as much as possible 

the artificial factors, to finally achieve the conclusion that ADAM10 is the only 

physiologically relevant α-secretase of APP. 

 

5.1.2 Other APP α-secretase candidates do not compensate for the loss 

of function of ADAM10 

The functional compensation among protein subtypes belonging to the same protein 

family seems to be important for the regulation of the homeostasis of the cell. One easy 
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example is the APP family which is supposed to play an important role in early 

development. The APP family knockout mice showed that the single knockdown of APP 

did not lead to major impairment of embryonic development since it could be 

compensated by its homologue APLP2 (Heber et al., 2000; Wang et al., 2005). ADAM10, 

as shown to be the APP α-secretase, however, seems not to be supported by other ADAM 

proteases under physiological conditions according to the experiments.  

 

The studies in HEK293 and SH-SY5Y cells demonstrated that the α-secretase candidates 

did not compensate for each other when one of them was knocked down transiently by 

siRNA transfection, in which the loss of function lasted in the time period less than 72 h 

(see details in 4.2 and 4.3). Following, stable ADAM10 knockdown cell lines were 

generated (see details in 4.4). In this condition, ADAM9 or 17 did not play the role of 

APP α-secretase in a long-term loss of function of ADAM10, either. This confirmed that 

ADAM10 is the only constitutive α-secretase of APP in physiological conditions. 

Moreover, ADAM10 expression level did not increase as the results of the loss of 

function of ADAM9 and 17, which indicated that ADAMs do not compensate for each 

other on APP α-cleavage (see 4.2.1).  

 

5.1.3 ADAM10 is involved in the constitutive α-cleavage of APP 

APP α-secretase cleavage occurs constitutively and it is mediated by ADAM10, as shown 

in this thesis. In addition, a heterogeneous group of molecules can stimulate APP α-

secretase shedding, which is referred to as regulated α-secretase cleavage (see details in 

Table 4). Actually, the serum included in the cell culture medium consists of many kinds 

of proteins and small molecules such as growth factors, hormones and cytokines. This 

combination of proteins can activate α-secretase activators (Pandiella & Massague, 1991). 

To exclude the effect from serum, ADAM10 stable knockdown cells were then cultured 

in serum-free medium (see details in 4.6). Although the total sAPP level was very low 

due to the absence of serum, ADAM10 still showed a major contribution to the α-

secretion of APP. Serum only up-regulated the base line of APP shedding but did not 

affect the function of ADAM10 as the unique α-secretase.  
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5.1.4 ADAM17 is involved in PMA-regulated α-cleavage of APP 

To further validate the findings concerning the physiological relevance of ADAM10, the 

question whether this secretase might also be involved in the inducible shedding was 

addressed. Different stimuli have been reported to activate APP α-cleavage: the PACAP 

(pituitary adenylate cyclase-activating polypeptide) peptide and PMA. The PACAP 

peptide appeared to stimulate the ADAM10 cleavage of APP (Kojro et al., 2006), 

suggesting that ADAM10 is not only the constitutive α-secretase, but also contributes to 

the regulated α-secretase activity. PMA is the most frequently used APP α-secretase 

activator (see details in Table 5). The results showed that PMA activation does not 

require ADAM10, but ADAM17, which is in agreement with a previous publication 

using ADAM17-deficient mouse fibroblast cells (MEF) cells (Buxbaum et al., 1998). 

These data suggest that ADAM10 plays the role under constitutive conditions but 

ADAM17 needs to be activated, although ADAM10 can be activated in some condition 

as well. Under normal physiological conditions, the constitutive APP α-shedding is only 

mediated by ADAM10. How do ADAM10 and 17 work under pathophysiologically 

relevant conditions would be interesting to be studied in the future. In that case, they may 

be activated in a therapeutically useful manner. 

 

5.1.5 Cell and tissue specificity of APP α-secretase 

The other problem of APP α-secretase identification is the cell or tissue specificity. At 

least in both SH-SY5Y and HEK293 cells, ADAM10 is the only constitutive α-secretase 

of APP. However, it is not always the case. It has been shown that APP α-cleavage had 

no reduction in ADAM10-/- MEF cells (Hartmann et al., 2002). Since the processing of 

AD related APP shedding happens in the brain or in neurons, further validation of 

ADAM10 α-secretase activity in neuronal like cells becomes more meaningful.  

 

SH-SY5Y cells were then differentiated into neuronal cells by all-trans retinoic acid 

(ATRA) treatment (see details in 4.5). Under these conditions, the cells develop neuronal 

like morphological phenotype but normal APP shedding behavior. ATRA treatment has 

been reported to result in the upregulation of ADAM10 expression, but only for short-

time period (Koryakina et al., 2009; Tippmann et al., 2009). The results from 
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experiments showed that ADAM10 expression levels had the tendency to be slightly 

increased. That could be due to the time window of the treatment (3 d): ADAM10 

expression level has already passed the increasing peak and is reduced to the normal level 

as the naive SH-SY5Y cells. Then siRNA transfection was performed to accomplish the 

ADAM10 knockdown. ADAM10 knockdown in neuron-like differentiated SH-SY5Y 

again confirmed that ADAM10 plays the major role of APP α-secretase. Further 

experiments were carried out using primary cultured murine neurons. ADAM9, 10 and 17 

knockdowns were achieved by shRNA viral transduction (cooperated with Dr. P. Kuhn), 

and only ADAM10 knockdown could sufficiently abolish sAPPα production (Kuhn et al., 

2010), which confirms ADAM10 as the physiological relevant α-secretase in neurons. 

 

5.2 The contribution of α-secretase cleavage of APP in cultured 

cell lines 

Although the idea that APP undergoes two different proteolytic pathways has been 

widely accepted, initially it was believed that only α-cleavage was the physiological one 

(Esch et al., 1990; Sisodia et al., 1990) and it prevented amyloidogenesis under non-

pathological conditions. However, later it was clearly known that not only α-cleavage, 

but β- and γ-secretase cleavage, including Aβ generation can also happen under 

physiological conditions (Haass et al., 1992a; Shoji et al., 1992). Indeed, Aβ peptides 

were detected in cerebrospinal fluid in healthy human beings (Seubert et al., 1992). How 

do α- and β-secretases contribute to the total APP secretion? Results from different cell 

lines suggest that they are in a stably balanced ratio. 

 

5.2.1 α- and β-secretase contribute to APP cleavage in a stable ratio 

under physiological conditions 

Summarized from siRNA and shRNA transfection experiments, total sAPP was reduced 

to ~60% in the ADAM10 knockdown HEK293 cells compared with controls (see details 

4.2.2 and 4.4). The extent of total sAPP reduction in SH-SY5Y cells by ADAM10 

knockdown was to ~ 40% (see details 4.2.1 and 4.5). On the other hand, β-secretase 

cleavage contributes about 20% to total APP secretion in the HEK293 and SH-SY5Y 
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cells according to the BACE1 knockdown manipulation (see 4.9.1). β-secretase inhibition 

led to the similar results in SH-SY5Y cells. These results suggested that α- and β-

secretases participate in APP cleavage by a stable ratio in cultured cell lines. In the 

primary cultured neurons, β-cleavage of APP contributes to over 90% of total sAPP 

which is completely different from the immortalized cell lines (Kuhn et al., 2010). The 

contributions of α- and β-secretase cleavage of APP are shown in Figure 21. 

 
Figure 21 The contributions of α- and β-secretase cleavage of APP. 
The contributions of α- and β-secretase cleavage of APP in different cell lines are shown in the bar chart. 
“α” represents α-cleavage of APP, mainly contributed by ADAM10; “β” represents β- and β’-cleavage of 
APP, mainly contributed by BACE1. There may be some other unknown proteases participating APP 
cleavage at different sites, represented in the figure as “?”. 
 

In HEK293 and SH-SY5Y cells, there is some percentage of APP shedding that is neither 

contributed by ADAM10 nor BACE1, raising up the possibility that some other unknown 

proteases participating in APP cleavage. In HEK293 cells, C3 treatment even led to a 

reduction of total sAPP to 40%. Taking away the 20% by BACE1, the rest 40% of APP 

shedding would be possibly from cleavage by some other proteases. One possibility is the 

BACE1 homologue BACE2, which can also be inhibited by β-secretase inhibitor C3. 

 

The stable ratio of contribution by α- and β-secretase on APP cleavage also confirms that 

all the experiments were carried out in a physiological condition. The fact that sAPP  　

generation suppressed upon ADAM10 knockdown indicated the participation of 

ADAM10 as the only physiological APP constitutive α-secretase. 

 

5.2.2 α-secretase processes C99 together with γ-secretase 

α-secretase cleavage is considered to occur directly after the action of α-secretase at the 

cell surface, cleaving C83 and releasing the AICD (APP intracellular domain) together 
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with the small p3 peptide. In the amyloidogenic pathway, APP is cleaved in the 

endocytosis pathway by β-secretase, and the resulting C99 is transported to the cell 

membrane to be cleaved by γ-secretase, leading to Aβ generation. However, C99 was 

found also be processed by α-secretase (see 4.8.1). When α-secretase activity was 

suppressed by shRNA mediated knockdown, C99 accumulated. Since the endogenous 

APP CTFs are cleaved by γ-secretase very quickly, the γ-secretase inhibitor DAPT was 

used to better analyze the CTFs processing. In accordance with the postulated APP 

trafficking route, the β-secretase cleavage product CTFβ could also be recycled to cell 

surface where it encounters both α- and γ-secretase. So as shown in Figure 23, C99 can 

be processed in two pathways. The first one consists of cleavage by γ-secretase leading to 

Aβ generation, the second one occurs by α-secretase, leading to C83 generation. For that 

reason, β-secretase is not the only one responsible for compensative or competitive 

relationship with α-secretase cleavage. The relationship between α- and γ-secretase 

should have been taken into account as well. However, I have to admit that the real 

contribution by α-secretase on C99 cleavage may be not as predominate as shown under 

the condition of γ-secretase inhibition. Further efforts have to be made to reveal this 

relationship under physiological conditions, without treatment of γ-secretase inhibitor. 

 

 
Figure 22 Relationship between α- and γ-secretase on C99 cleavage. 
β-secretase cleavage product C99 could also be recycled to cell surface where it encounters both α- and γ-
secretases. In case that α-secretase is activated, it cleaves not only more full length APP but also C99 
competing with γ-secretase.  
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5.3 The relationship between α- and β-secretase on APP 

cleavage 

The generation of sAPPα and sAPPβ/Aβ is generally thought to be inversely coupled. 

Multiple studies showed that an upregulation of α-secretase activity led to a reduction of 

APP β-cleavage (Hung et al., 1993; Jacobsen et al., 1994; Citron et al., 1996; Buxbaum 

et al., 1998; Koike et al., 1999; Skovronsky et al., 2000; Qiu et al., 2001; Zhu et al., 2001; 

Allinson et al., 2004; Postina et al., 2004; Kim, 2008; Fu et al., 2009) (see details in 

Table 5). On the basis of this assumption, the activation of α-secretase cleavage is 

considered a therapeutic approach in order to reduce β-secretase cleavage and therefore 

Aβ generation. However, contradictory studies about α-secretase activity regulation and 

corresponding β-cleavage behavior exist (Dyrks, 1994; Blacker et al., 2002; Gandhi et al., 

2004) (see details in Table 5). Discrepancies in different experiments may have different 

reasons. On one hand, some studies are based on mutants of APP found in familial AD 

(Hung et al., 1993; Citron et al., 1996; Qiu et al., 2001; Fu et al., 2009), whereas others 

focus on the wild type protein. And these familial AD mutants are extremely rare and not 

found in sporadic AD. On the other hand, the experimental details between the two 

proteases have to be carefully specified, such as different cell lines and the ways that the 

regulations are achieved. In order to systematically investigate the relationship between 

α- and β-secretases under physiological condition, a series of experiments were 

performed as described in results part (see details in 4.8 and 4.9). All experiments of this 

thesis were based on wild type APP. Surprisingly, no obvious compensatory effect 

between α- and β-secretase on APP cleavage in HEK293 and differentiated SH-SY5Y 

cells was observed, neither when these proteases were pharmacologically inhibited nor 

when they were genetically knocked down. The only condition where a compensatory 

change was observed was in primary cultured neurons, where ADAM10 partially 

compensated for the loss of BACE1. This experiment was carried out by my colleague Dr. 

Alessio Colombo in the lab in parallel with the work shown in this thesis. These results 

are in accordance with data shown by a recent study that reports increased sAPPα levels 

upon pharmacologic inhibition of β-secretase in human (May et al., 2011). The following 
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table summarizes APP shedding behavior changes due to activity modulation of α- and β-

secretase (Table 20). 

 

Table 20 Compensatory relationship between α- and β-secretase on APP cleavage. 

Cell lines α-secretase loss of function β-secretase loss of function 

ADAM10 KD → sAPPα ↓,  
                             sAPPβ --, Aβ -- 

BACE1 KD → sAPPβ ↓,  
                          sAPPα -- 
 

HEK293 
  

TAPI → sAPPα ↓,  
               sAPPβ --, Aβ -- 

C3 → sAPPβ ↓,  
           sAPPα -- 
 

ADAM10 KD → sAPPα ↓,  
                             sAPPβ --, Aβ -- 

BACE1 KD → sAPPβ ↓,  
                          sAPPα -- 
 

Differentiated SH-SY5Y 

TAPI → sAPPα ↓,  
               sAPPβ --, Aβ ↑ 

C3 → sAPPβ ↓,  
           sAPPα -- 
 

ADAM10 KD → sAPPα ↓,  
                          sAPPβ --, Aβ -- 

BACE1 KD → sAPPβ ↓,  
                         sAPPα ↑ 
 

 

Neurons (in cooperation with 
Dr. A. Colombo, Manuscript 
in preparation) 

TAPI → sAPPα ↓,  
              sAPPβ --, Aβ ↑ 

C3 → sAPPβ ↓,  
           sAPPα ↑ 

“↓” represents reduction; “↓” represents increase; “--” represents no change. 

 

5.3.1 The absence of a compensatory relationship between α- and β-

secretase on APP cleavage under physiological conditions 

Although it is accepted that α- and β-secretase work mutually under activation or 

overexpression condition, this theory is based on that the unique substrate recognition of 

these two proteases and the identical cleavage compartment. However, the trafficking 

route of APP and the cleavage compartment of α- and β-secretase seem to be different 

(see details in 1.2.4). The surprising lack of compensatory changes leads to the rethink of 

the working pattern of α- and β-secretase on APP cleavage. 

 

APP is transported through the TGN along the secretory pathway and finally reaches the 

plasma membrane, where α-secretase activity is found. It then enters the endocytic 

pathway, where the proteolytic processing by β-secretase takes place. Remaining full 

length APP enters a recycling pathway and is transported from the endosomal 

compartments back to the plasma membrane (see details in Figure 5). In immortalized 

cell lines, where α-secretase cleavage contributes to the majority of APP shedding (see 
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details in Figure 22), the loss of function of α-secretase is thus expected to lead to an 

increased amount of APP available for β-secretase cleavage. However, the results from 

experiments in immortalized cell lines, where ADAM10 activity was reduced by 

knockdown or TAPI treatment, did not confirm these expectations, as sAPPβ levels 

remained essentially unaltered. This could be due to the saturation of β-secretase activity 

in these cell lines. In fact, β-secretase cleavage is considered to be the rate-limiting step 

in Aβ generation, with a relatively slow turnover rate of BACE1 towards APP. 

Overexpression of PS1 does not increase Aβ generation, confirming BACE1 as the rate 

limiting enzyme of Aβ generation (Giliberto et al., 2009). In HEK293 and SH-SY5Y 

cells, the amount of endogenous APP that is routed from the cell surface to the 

endosomal/lysosomal compartment under basal conditions may already saturate BACE1 

activity, and increasing the quantity of APP molecules in this compartment after 

knockdown or inhibition of ADAM10 would therefore not enhance sAPPβ/Aβ 

production. This is in contrast to primary neurons, where BACE1 expression levels and 

hence its proteolytic activity are higher and more APP is cleaved by β-secretase, whereas 

α-secretase contributes only to a minor part of APP shedding (see details in Figure 22). 

According to this model, the loss of function of ADAM10 would lead to more APP 

available for β-secretase in primary neurons, although the expected increase of sAPPβ 

may be too minor to be observed. 

 

In the opposite case, when BACE1 activity is suppressed (see details in 4.9), the amount 

of APP that is cleaved in the endosomal compartment decreases. Therefore more APP 

enters the recycling pathway and is available for the proteolytic processing by α-secretase 

at the cell surface. In immortalized cell lines, the additional amount of APP that is 

recycled after the loss of BACE1 function is only minor and may not lead to an 

observable change in sAPPα generation. In primary neurons however, where BACE1 

represents the major sheddase of APP, the loss of function of BACE1 would lead to 

significant more APP available for recycling and subsequent processing by ADAM10. 

This could explain why the compensatory effect of α-secretase in response to BACE1 

suppression was observed in primary cultured neurons, but not in immortalized cell lines. 
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However, the major compartment where APP is cleaved by β-secretase remains 

controversial. Besides the endocytic compartment, several other locations of Aβ 

generation have been proposed. APP has been shown to be cleaved in the TGN and ER, 

particularly mutant forms of APP found in familial AD, such as APP harboring the 

Swedish mutation (Haass et al., 1995; Thinakaran & Koo, 1996; Hartmann et al., 1997; 

Xu et al., 1997). Therefore, under certain conditions, BACE1 can cleave APP already in 

the secretory pathway, thus before α-secretase. In this scenario, the loss of function of 

ADAM10 would not induce any compensatory effect, neither in immortalized cell lines 

nor in primary neurons. When BACE1 is knockdown or inhibited in primary cultured 

neurons where β-secretase takes the major job of APP cleavage, large more amount of 

APP is transported to cell membrane. The upregulation of substrate for α-secretase leads 

to the increase of sAPPα level. However, in immortalized cell lines, the loss of function 

of BACE1 may lead to the APP amount at cell membrane but only slightly. Since the 

large proportion of α-cleavage, the weak increase would not be observed.  

 

From the performed experiments, no definitive conclusion could be drawn on the absence 

of a compensatory relationship between α- and β-secretase on APP cleavage. This would 

require a precise and quantitative estimation of the turnover rate of APP by α- or β-

secretase at the plasma membrane and the endosomal compartment as well as the amount 

of full length APP that recycles back to the cell surface. In addition, the enzyme kinetics 

of both proteases has to be taken into consideration. Solid evidence has to be shown that 

β-secretase could also work in the TGN. The cellular trafficking of APP and therefore the 

access to the different secretases may differ in between immortalized cell lines and 

primary cultured neurons. Further research on APP trafficking would establish a solid 

basis for the investigation of the regulation and the compensatory relationship of APP 

secretases. 

 

5.3.2 Competitive relationship of α- and β-secretase on APP cleavage 

under pathological conditions  

Besides the compensatory relationship between α- and β-secretase on APP cleavage as 

discussed in 5.3.1, the existence of a competitive relationship between these two 
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proteases is also possible. This would implicate that upon activation or overexpression of 

one protease, APP cleavage by the other protease is diminished, as both proteases 

compete for the processing of the same substrate. Under pathological conditions, β-

secretase activity may be increased, as evidence enhanced BACE1 expression levels and 

a concordant increase in Aβ production are found in the brains of sporadic AD patients 

(Yang et al., 2003).  If the competitive relationship between α- and β-secretase holds true, 

this could in turn lead to a reduction of α-secretase activity towards APP. In fact, a 

reduction of sAPPα generation was observed when BACE1 was overexpressed in 

HEK293 cells (Kuhn et al., 2010). Reduced levels of ADAM10 are observed in platelets 

from AD patients when compared to age-matched controls, and a quantitatively similar 

decrease in sAPPα is present both in thrombin-activated platelets and CSF (Colciaghi et 

al., 2002).  

 

5.3.3 TAPI-1 treatment inhibits α-secretase activity together with Aβ-

degrading enzymes activity 

What does the discrepancy of Aβ levels from the genetically and pharmacologically 

induced loss of function of α-secretase tell us? Aβ levels increased in both cell lines when 

treated with TAPI-1, but surprisingly did not change when ADAM10 was knocked down. 

In both conditions, sAPPβ levels remained the same when compared to the control. One 

explanation for this phenomenon could be the fact that TAPI-1 is a broad spectrum 

inhibitor for metalloproteases and could therefore inhibit most of the Aβ-degrading 

enzymes. Insulin degrading enzyme (IDE) (Kurochkin & Goto, 1994; Qiu et al., 1998; 

Vekrellis et al., 2000; Farris et al., 2003; Leissring et al., 2003), endothelin converting 

enzyme (ECE) (Eckman et al., 2001; Eckman et al., 2003), angiotensin-converting 

enzyme (ACE) (Tucker et al., 2000; Hu et al., 2001) and endopeptidase (Howell et al., 

1995; Iwata et al., 2000; Iwata et al., 2001; Kanemitsu et al., 2003; Leissring et al., 2003) 

have all been reported to be involved in Aβ degradation (Wang et al., 2006) and most of 

them belong to the family of metalloproteases. Some matrix metalloproteinases, such as 

MMP2 and MMP9 were also reported to participate in the Aβ degradation (Backstrom et 

al., 1996; Yan et al., 2006; Yin et al., 2006). Therefore, TAPI-1 treatment may not only 

inhibit α-secretase activity but also inhibit one or several enzymes involved in Aβ 
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degradation. To conclude, the upregulation of Aβ levels in TAPI-1 treated cells is not due 

to the compensatory effect of increased APP cleavage by β-secretase of APP, but 

presumably because Aβ degradation is inhibited. 

 

5.4 Outlook 

The activity of α-secretase towards APP can be functionally classified as constitutive or 

regulated. ADAM10 has been verified throughout this thesis as the only physiologically 

relevant, constitutive α-secretase of APP. However, the molecular identity of the 

physiologically relevant regulated α-secretase activity remains enigmatic. And indeed 

some physiological stimuli have been reported to increase α-secretase activity (see details 

in Table 4). Although ADAM17 has been verified as the regulated α-secretase upon PMA 

stimulation, PMA is a chemically synthesized compound and is possibly unable to mimic 

the endogenous stimuli. It would be interesting to investigate on the identity of regulated 

α-secretase activity using the various described physiological stimulating factors. The 

identification of regulated α-secretase activity could be even more meaningful from a 

therapeutic perspective, as the design of α-secretase activity stimulating drugs may then 

be tailored towards the structural features of the specific protease. 

 

Interestingly, it was shown in this thesis that ADAM10, in addition to γ-secretase, 

contributes to C99 cleavage. However, due to the rapid degradation of APP CTFs by γ-

secretase, inhibitors had to be used in order to ensure the detection of these APP 

fragments. It would be fascinating to explore the contribution of α- and γ-secretase on 

C99 cleavage under physiological condition, in the absence of γ-secretase inhibitors, 

which would be an alternative way to down-regulate Aβ generation. Further research on 

C99 cleavage by ADAM10 should allow a deeper understanding of the relationship 

between α-secretase regulation and the corresponding Aβ levels.  

 

Furthermore, concerning to the recent finding that under pathological condition, not only 

β-secretase activity increases but also decrease the α-secretase activity, sAPPα would be 

also a potential AD biomarker. Development of sensitive sAPPα detection assay may 

make it easier to establish a standard biomarker screening system. Since the encoding of 
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two rare potentially disease-associated non-synonymous mutations (Kim et al., 2009), it 

would be a fascinating challenge to investigate on gene manipulation of α-secretase to 

mimic the AD-related pathological condition and corresponding β-cleavage of APP 

together with Aβ generation. 
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6 Conclusions 

 

The main goals of this thesis were to identify the physiologically relevant, constitutive α-

secretase of APP and to valuate its potential compensatory relationship with β-secretase. 

Specifically, the following results were obtained. 

 

• The newly generated sAPPα specific antibodies 4B4 and 14D6 allowed the specific 

detection of proteolytic APP fragments derived from α-secretase. The antibodies 

specifically recognized sAPPα and did not show cross reactivity with other APP 

fragments, including sAPPβ’. They provided the possibility to perform α-secretase 

research under endogenous APP expression levels, which facilitate the identification of 

α-secretase under the physiologically relevant condition. 

 

• Transient and stable knockdowns of α-secretase candidates in various wild-type 

peripheral cells identified ADAM10 as the only physiologically relevant, constitutive α-

secretase. The identity of ADAM10 as APP α-secretase was further validated in neuron-

like cells and cell lines with APP overexpression. Other α-secretase candidates were 

unable to compensate for the loss of ADAM10 activity. ADAM10 contributed to the 

constitutive α-secretase activity, while the induction of APP α-shedding by PMA 

occurred by ADAM17, but independently of ADAM10.  

 

• Detailed studies on the different secreted APP fragments under physiological conditions 

showed that α- and β-secretases contribute to APP cleavage in a stable ratio. They did not 

compensate for each other, when either one protease activity was lost, either genetically 

or inhibited pharmacologically. In addition, it was shown that both α- and γ-secretase 

participate in the cleavage of the β-secretase cleavage product C99.  

 

The identification of ADAM10 as the only physiologically relevant α-secretase of APP 

and its relationship with β-secretase finally complete the basic understanding of APP 
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proteolytic processing. This provides the possibility to evaluate ADAM10 as a drug 

target for the therapy of Alzheimer’s disease. 
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8 Abbreviations 

 

Aβ Amyloid beta peptide 

Aβ40 Aβ 40-residue form 

Aβ42 Aβ 42-residue form 

ACE Angiotensin-converting enzyme 

AChE Acetylcholinesterase 

AD Alzheimer’s disease 

ADAM A disintegrin and metalloproteinase 

AICD APP intracellular domain 

APH-1 Anterior pharynx defective 1 

APLP1 Amyloid-precursor like protein 1 

APLP2 Amyloid-precursor like protein 2 

APP Amyloid precursor protein 

APS Ammonium persulfate 

Asn (N) Asparagine 

ATRA All-trans retinoic acid 

β-ME β-Mercaptoethanol 

BACE1 β-site APP cleaving enzyme 1 

Bisacrylamide N-N’-Methylene-bisacrylamide 

BSA Bovine serum albumin 

C3 β-Secretase inhibitor IV 

CaCl2 Calcium chloride 

ChAT Choline acetyltransferase 

CTF C-terminal fragment 

DAPT γ-Secretase inhibitor IX 

ddH2O Double-distilled water 

DMEM Dulbecco’s modified eagle medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

dNTP PCR Nucleotide Mix 
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DR6 Death receptor6 

E. coli Escherichia coli 

EB Ethidium bromide 

ECE Endothelin converting enzyme 

EDTA Ethylenediaminetetraacetic acid 

EGF Epidermal growth factor 

ER Endoplasmic reticulum 

FCS Fetal bovine serum 

Gln (Q) Glutamine 

GluR Glutamate receptor 

GPCRs G protein-coupled receptors 

HCl Hydrogen chloride 

HEK293 Human embryonic kidney 293 cells 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HRP Horseradish peroxidase 

IDE Insulin degrading enzyme 

IGF-1 Insulin-like growth factors 1  

IL-1α Interleukin-1 α 

IL-1β Interleukin-1 β 

KCl Potassium chloride 

KH2PO4 Potassium dihydrogen phosphate 

KPI Kunitz serine protease inhibitors 

Leu (L) Leucine 

Lys (K) Lysine 

mAChR Muscarinic acetylcholine receptor 

MAPK Mitogen-activated protein kinase 

MEF Mouse fibroblast cells 

Met (M) Methionine 

MgCl2 Magnesium chloride 

MMP Matrix metalloprotease 

Na2HPO4 Disodium hydrogen phosphate 
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NaCl Sodium chloride 

NEAA Non essential amino acids 

NP-40 Nonidet P-40 

P/S Penicillin/streptomycin 

PACAP peptide Pituitary adenylate cyclase-activating polypeptide 

PAS Protein A sepharose 

PCR Polymerase chain reaction 

PDBu Phorbol 12,13-dibutyrate 

Pen-2 Presenilin enhancer protein 2 

PI Protease inhibitor 

PI3K Phosphoinositid-3-kinasen 

PKC Protein kinase C 

PMA Phorbol-12-myristate-13-acetate 

PS1 Presenilin1 

PS2 Presenilin2 

RE Restriction endonucleases 

RIP Regulated intramembrane proteolysis 

RT Room temperature 

SDS Sodium dodecyl sulfate 

sAPP Secreted APP fragment 

sAPPα Secreted APP α-secretase cleaved fragment 

sAPPβ Secreted APP β-secretase cleaved fragment 

SDS-PAGE SDS-polyacrylamide gel electrophoresis 

SH-SY5Y Human neuroblastoma cells 

TEMED N,N,N',N'-Tetramethylethylendiamine 

TGFα Transforming growth factor 　 

TGN Trans-Golgi network 

Tris Tris hydroxymethyl aminomethane 
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The amyloid precursor protein (APP) undergoes constitu-

tive shedding by a protease activity called a-secretase. This

is considered an important mechanism preventing the

generation of the Alzheimer’s disease amyloid-b peptide

(Ab). a-Secretase appears to be a metalloprotease of the

ADAM family, but its identity remains to be established.

Using a novel a-secretase-cleavage site-specific antibody,

we found that RNAi-mediated knockdown of ADAM10, but

surprisingly not of ADAM9 or 17, completely suppressed

APP a-secretase cleavage in different cell lines and in

primary murine neurons. Other proteases were not able

to compensate for this loss of a-cleavage. This finding was

further confirmed by mass-spectrometric detection of APP-

cleavage fragments. Surprisingly, in different cell lines,

the reduction of a-secretase cleavage was not paralleled

by a corresponding increase in the Ab-generating

b-secretase cleavage, revealing that both proteases do not

always compete for APP as a substrate. Instead, our data

suggest a novel pathway for APP processing, in which

ADAM10 can partially compete with c-secretase for the

cleavage of a C-terminal APP fragment generated by

b-secretase. We conclude that ADAM10 is the physiologi-

cally relevant, constitutive a-secretase of APP.

The EMBO Journal (2010) 29, 3020–3032. doi:10.1038/

emboj.2010.167; Published online 30 July 2010

Subject Categories: neuroscience; molecular biology of

disease

Keywords: ADAM; amyloid precursor protein; neuro-

degeneration; proteases; a-secretase

Introduction

The amyloid precursor protein (APP) is one of a large number

of membrane proteins that are proteolytically converted to

their soluble counterparts. This process is referred to as

ectodomain shedding and is an important way of regulating

the biological activity of membrane proteins (Pruessmeyer

and Ludwig, 2009; Reiss and Saftig, 2009). APP shedding

occurs constitutively by two different protease activities,

called a- and b-secretases, and leads to the secretion of

soluble APP (APPs) (Figure 1A). Both proteolytic cleavages

are central regulatory events in the generation of the amyloid-

b peptide (Ab), which has an important function in the

pathogenesis of Alzheimer’s disease (AD) (Selkoe and

Schenk, 2003; Haass, 2004). The a- and b-secretases are

assumed to compete for APP as a substrate (Selkoe and

Schenk, 2003; Postina et al, 2004), but have opposite effects

on Ab generation. The b-secretase is the aspartyl protease

BACE1 and cleaves APP at the N-terminus of the Ab domain,

thus catalysing the first step in Ab generation (Vassar et al,

1999). In contrast, a-secretase cleaves within the Ab se-

quence of APP (Esch et al, 1990), thereby precluding Ab
generation. In addition, a-secretase cleavage generates a

secreted form of APP (APPsa), which has been reported to

have neurotrophic and neuroprotective properties (Furukawa

et al, 1996; Meziane et al, 1998; Stein et al, 2004), whereas

the slightly shorter form (APPsb) generated by b-secretase

seems to have a proapoptotic function (Nikolaev et al, 2009).

An increase of APP a-secretase cleavage is considered a

therapeutic approach for AD (Fahrenholz, 2007), as it is

assumed to reduce Ab generation. However, the molecular

identity of a-secretase is controversially discussed and re-

mains to be fully established. Different metalloproteases were

suggested as potential a-secretases, because their overexpres-

sion increased APP cleavage. The most frequently named

ones are three members of the ADAM (a disintegrin and

metalloprotease) family: ADAM9, 10 and 17 (Koike et al,

1999; Lammich et al, 1999; Slack et al, 2001). However,

because the overexpression of a protease may artificially or

indirectly increase APP a-secretase cleavage, the physiologi-

cal relevance of a candidate protease needs to be shown using

the corresponding protease knockdown or knockout cells. In

fact, cells derived from ADAM9-, 10- or 17-deficient mice

showed either no or a variable degree of reduction of APP

shedding (Buxbaum et al, 1998; Hartmann et al, 2002;

Weskamp et al, 2002). Likewise, RNAi-mediated knockdown

of the individual proteases in cultured cells reduced APP

shedding to different extents (Asai et al, 2003; Allinson et al,

2004; Camden et al, 2005; Freese et al, 2009; Taylor et al,

2009). The finding that APP shedding was never fully sup-

pressed has led to the conclusion that ADAM9, 10 and 17 may

all together contribute to a-secretase activity and that in the

absence of one of them, the other proteases can still mediate

APP a-secretase cleavage. This assumption is in clear contrast
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to other ADAM protease substrates, many of which are

predominantly cleaved by a single ADAM protease, such as

transforming growth factor a, epidermal growth factor (EGF),

the low-affinity immunoglobulin E receptor CD23 and N-

cadherin (Sahin et al, 2004; Reiss et al, 2005; Weskamp

et al, 2006; Le Gall et al, 2009). One aspect that makes it

difficult to study APP a-secretase cleavage is the fact that APP

is cleaved by distinct proteases at different peptide bonds in

close proximity. For example, b-secretase has the main

cleavage site at the N-terminus of the Ab sequence, but a

secondary cleavage site (termed b0-site) within the Ab se-

quence close to the a-secretase-cleavage site (Figure 1A).

Antibodies used in previous studies have not only specifically

detected APPsa, but also the alternative b-secretase-cleavage

product APPsb0 (Figure 1A), which may have confounded the

study of a-secretase cleavage. Here, we systematically ad-

dress the identity of the physiologically relevant a-secretase.

We generated two new monoclonal antibodies specific for the

APP a-secretase-cleavage product APPsa. Using these anti-

bodies as well as mass spectrometry, we found that ADAM10,

but not ADAM9 or 17, is essential for the constitutive

a-secretase cleavage of APP.

Results

Generation of an APPsa-specific antibody

To specifically detect the APP a-secretase-cleavage product

APPsa, a new monoclonal antibody (4B4) was generated

against a peptide comprising amino acids 11–16 of the Ab
sequence (Figure 1A). The peptide had a free C-terminus,

mimicking the neoepitope generated upon a-secretase clea-

vage. Indeed, antibody 4B4 does not detect full-length APP in

the cell lysate (Figure 1B). It specifically detects APPsa end-

ing in amino acids 15 and 16 (APPs-15 and APPs-16), but

does not detect shorter APPs species, including APPsb0 and

APPsb (Figure 1B). In contrast, antibody W02 binds an

epitope between the b- and the b0-cleavage sites and corre-

spondingly detects both APPsa and APPsb0, but not APPsb.

This antibody detects a similar epitope as antibody 6E10 that

is frequently used for the detection of APPs (Miles et al,

2008). Antibody 22C11 binds to an N-terminal APP epitope

and detects all APPs species tested (Figure 1B). All antibodies

used specifically detect APP, because the antibodies do not

detect a signal in APP knockdown cells (Supplementary

Figure S1).

To further validate antibody 4B4, we tested whether con-

ditions, which increase or decrease APPsa generation, lead to

a corresponding change in the 4B4 signal. To this aim, human

embryonic kidney 293 cells (HEK293) expressing endogenous

APP were treated with the metalloprotease inhibitor TAPI-1 to

reduce APP shedding or with the phorbol ester PMA (also

known as TPA) to increase APP shedding. Both compounds

did not alter the expression of APP or actin in the cell lysate

(Figure 1C). TAPI-1 inhibited nearly completely APPsa gen-

eration (4B4 blot). In contrast, total APPs shedding was not

as strongly reduced (22C11 blot), consistent with the fact that

this antibody detects all APPs species and not only APPsa.

PMA strongly stimulated total APP shedding (22C11), but the

extent of the increase was much more pronounced when

specifically detecting APPsa (4B4). The strong increase in

APP shedding was paralleled by a reduction of the mature

APP in the cell lysate (Figure 1C, marked with x). Antibody

W02, which detects APPsaþAPPsb0, detected intermediate

changes between 22C11 and 4B4, in agreement with the

antibody detecting both APPsb0 and APPsa. In an additional
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Figure 1 Characterization of newly generated APPsa-specific anti-
bodies 4B4 and 7A6. (A) Schematic representation of APP. Indicated
are the antibodies used in this study as well as antibody 6E10
and the APP-cleavage sites (with arrow heads) at the b-, b0- and
a-secretases sites. Numbers below the sequence indicate the amino
acids of the Ab sequence. M, membrane. (B) Immunoblot of
supernatants and cell lysates of cells expressing endogenous APP
(Con) or transfected with the indicated constructs (APPwt, full-
length APP; APPs, soluble APP lacking the transmembrane and
cytoplasmic domain). Antibody 22C11 detects all secreted APP
species, antibody W02 detects APPsa and APPsb0, whereas anti-
bodies 4B4 and 7A6 specifically detect APPsa (APPs-15 and APPs-
16). (C) HEK293 cells were treated with the metalloprotease in-
hibitor TAPI-1 or the phorbol ester PMA. Immunoblots of condi-
tioned media and cell lysates were probed with antibody 22C11
(APPs total), W02 (APPsaþb0) and the APPsa-specific antibody
4B4. Cellular APP is present in a lower molecular weight immature
form (xx) and a higher molecular weight mature form (x) and was
detected with 22C11. The b-actin blot serves as a loading control.
The reduction by TAPI-1 and the increase in shedding by PMA
are more pronounced when analysed with the a-cleavage-specific
antibody 4B4, compared with the other antibodies.
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control experiment, the b-secretase BACE1 was overex-

pressed, which is expected to increase b-secretase cleavage

and to reduce a-secretase cleavage. BACE1 expression

increased total APP shedding (22C11) in agreement with

previous publications (Neumann et al, 2006; Schobel et al,

2006), but reduced as expected APPsa (4B4) (Supplementary

Figure S2). Antibody W02 was not suited to detect the

decrease in APPsa, because it also detects the alternative

b-secretase-cleavage product APPsb0, which was strongly

enhanced upon overexpression of BACE1 (Supplementary

Figure S2). Taken together, these experiments show that

antibody 4B4 specifically detects APPsa, in contrast to other

commonly used APP antibodies.

Knockdown of ADAM9, 10 and 17 in HEK293 and

SH-SY5Y cells

Next, the three-candidate a-secretases ADAM9, 10 and 17

were transiently knocked down to evaluate their contribution

to the constitutive a-secretase cleavage of endogenous APP

in HEK293 and in human neuroblastoma SH-SY5Y cells.

Compared with control-treated cells, the siRNA pools

knocked down all three proteases with an efficiency of

75–90% (Figure 2A for HEK293; Figure 2D for SH-SY5Y;

quantifications in Figure 2C and F). Levels of cellular APP

as well as of the control membrane protein calnexin were not

affected (Figure 2A and D). Knockdown of ADAM10 in

HEK293 and SH-SY5Y cells reduced total APP shedding

(22C11, normalized to cellular APP levels) to about 40%

(Figure 2A, B, D and E), similar to the use of the metallopro-

tease inhibitor TAPI-1 (Figure 1C). In contrast, APPsa (4B4)

was reduced to 10%, which corresponds to the remaining

10% of ADAM10 protease expressed in the knockdown cells.

In contrast to ADAM10, the knockdown of ADAM9 did not

significantly reduce total APPs or APPsa levels (Figure 2A,

normalized to cellular APP levels). Knockdown of ADAM17

mildly reduced total APPs and APPsa in HEK293 cells (Figure

2A and B), but had no significant effect in SH-SY5Y cells

(Figure 2C and D). The knockdown of either protease did

not affect the expression level of the other proteases

(Supplementary Figure S3). Taken together, expression of

ADAM10, but not of ADAM9 or 17, is required for APP

a-secretase cleavage. Moreover, ADAM9 and 17 did not

compensate for the loss of ADAM10.

To further validate the results from the transient knock-

down of ADAM10, HEK293 cells (Figure 3) and SH-SY5Y cells

(Figure 4) with a stable knockdown of ADAM10 were gener-

ated using lentiviruses expressing two different shRNA se-

quences against ADAM10 or a negative control shRNA. In

HEK293 cells, both ADAM10 shRNA sequences (sh7, sh9)
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cleavage of endogenous APP. (A) HEK293 cells (293) were trans-
fected with siRNA pools directed against the proteases ADAM9
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The immature protease form was not visible for ADAM9, but is
indicated with xx for ADAM10 and xxx for ADAM17, whereas the
mature active form is indicated with * (ADAM9), ** (ADAM10) and
*** (ADAM17). (E, F) Quantification of experiments in (D). Given
are mean and standard error of eight independent experiments.
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reduced ADAM10 protease levels and APPsa levels to 10–20%

of controls (Figure 3A and B; quantification in Figure 3C–F),

respectively, which is similar to the transient knockdown

experiments. Similar results were obtained for the stable

knockdown of ADAM10 in SH-SY5Y cells (Figure 4A and B).

The remaining APPsa from the SH-SY5Y cells could be

fully inhibited by addition of the metalloprotease inhibitor

TAPI-1 (Figure 4A), which is in agreement with the remaining

B10% of ADAM10 protease in the knockdown cells.

The experiments in both cell lines show that also under

stable knockdown conditions, ADAM10 is essential for APP

a-secretase cleavage.

a- and b-secretase cleavage do not compete for each

other in HEK293 and SH-SY5Y cells

Next, we analysed whether the reduction of APPsa was

paralleled by an increase in APPsb and Ab generation.

Surprisingly, however, this was not the case (Figure 3A and

B; quantification in Figure 3E and F). Compared with control

cells, endogenous APPsb and Ab levels in HEK293 cells were

unchanged for one ADAM10 knockdown construct (sh9),

whereas a mild, but not significant, increase was observed

for the other shRNA construct (sh7) (Figure 3E and F). These

results show that the strong reduction of a-cleavage does not

yield a correspondingly increased cleavage by b-secretase. To

further validate this finding, the opposite experiment was

carried out. Expression of the b-secretase BACE1 was reduced

by lentiviral knockdown constructs (sh1 and sh2). This

resulted in a strong inhibition of APPsb and Ab generation,

but not in a significant increase in APPsa generation (Figure

3G and H). Similar results were obtained for SH-SY5Y cells.

The stable knockdown of ADAM10 did not increase APPsb
levels (Figure 4C and D) and conversely, the pharmacological

inhibition of BACE1 with the specific inhibitor C3 (Stachel

et al, 2004) did not increase APPsa levels (Figure 4C and D).

Thus, we conclude that under constitutive cleavage condi-

tions, a- and b-secretases do not significantly compete for

APP as a substrate in HEK293 and SH-SY5Y cells.

Contribution of a- and b-secretase cleavage to total APP

secretion

Total APP shedding (22C11) was reduced to B40% in the

stable ADAM10 knockdown SH-SY5Y cells compared with

Cellular APP

APPsα

β-Actin

APPsβ

APPs total 

kDa

98

98

98

98

50

Con B1-sh2B1-sh1

APPsα+β′

C

E

F

G

H

D

98

4 Aβ

kDa

98

98

98

98

98

98

98

4

ConA Bsh7
kDa

98

98

98

98

98

98

98

4

Con sh9

Cellular APP

APPsα

Calnexin

APPsβ

APPs total 

APPsα+β′

ADAM10

Aβ

Con

Con sh9

sh7

rel. APPs total (22C11)

rel. APPsα+β′ (W02)

rel. Aβ (2D8)

rel. APPsβ (BAWT) 

rel. APPsα (4B4)

(%
)

(%
)

Con sh7

re
l. 

A
D

A
M

10
 (

%
)

0
20
40
60
80

100
120

Con sh9

re
l. 

A
D

A
M

10
 (

%
)

0
20
40
60
80

100
120

0
20
40
60
80

100
120
140
160

0
20
40
60
80

100
120

140

ConB1-sh1 B1-sh2

0
20
40
60
80

100
120
140
160

rel. APPs total (22C11) rel. APPsα+β′ (W02)
rel. Aβ (2D8)rel. APPsβ (BAWT) 

rel. APPsα (4B4)

Figure 3 Analysis of APP processing in HEK293 cells with a stable
ADAM10 knockdown. (A, B) HEK293 cells were infected with
lentiviral vectors carrying GFP and different shRNAs: a non-target-
ing shRNA (Con) and two different ADAM10-targeting shRNAs (sh7
and sh9). Conditioned media of these cells were analysed with
antibody 22C11 (APPs total), W02 (APPsaþb0), 4B4 (APPsa),
192wt (APPsb) or 2D8 (Ab), whereas cell lysates were analysed
for cellular APP (22C11). Membranes were analysed for ADAM10
protein. Calnexin was detected as a loading control. (C, D)
Quantification of ADAM10 knockdown from experiments in (A, B)
relative (rel.) to control. (E, F) Quantification of APP fragments in
(A, B). Given are mean and standard error of four independent
experiments. (G) HEK293 cells were lentivirally infected as in (A).
with a non-targeting shRNA (Con) or two different BACE1-targeting
shRNAs (B1-sh1, B1-sh2). APP and its processing products were
analysed as in (A). Actin was used as a loading control. (H)
Quantification of experiments in (G), carried out as in (E) and
(F). Given are mean and standard error of three independent
experiments.
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controls (Figure 4C and D). Additional inhibition of BACE1

with the specific inhibitor C3 further reduced total APP

secretion to B20%, revealing that BACE1 contributes about

20% to total APP secretion in the SH-SY5Y cells. This result

also suggests that the remaining low level (o20%) of total

APP secretion may result from proteases other than ADAM10

and BACE1. This was further confirmed by a combined

pharmacological inhibition of a- and b-secretase cleavage in

SH-SY5Y cells, which resulted in a remaining total APP

secretion of 10–15% (Figure 4E and F).
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ADAM10 truncates APP C-terminal fragments C99

and C89 to C83

a- and b-secretases not only generate APPsa and APPsb, but

also the C-terminal fragments C83 and C99, respectively. Both

fragments are further processed by g-secretase, leading to a

short half-life of the fragments, which makes it difficult to

detect them at endogenous levels. Thus, we treated SH-SY5Y

cells with the g-secretase inhibitor DAPT, which stabilizes the

endogenous C-terminal fragments of APP (Figure 5A). In

control cells, the a-secretase fragment C83 was clearly detected

(marked with ***) and was strongly reduced in the ADAM10

knockdown cells in parallel to APPsa (quantification in

Figure 5B). To our surprise, the b-secretase-cleavage product

C99 was increased more than two-fold upon ADAM10 knock-

down (marked with *). In addition, a mild increase of C89 was

observed (marked with **), which is the C-terminal fragment

arising through BACE1 at its alternative b0-cleavage site (see

Figure 1A for schematic drawing). The increase in C99 and C89

is in contrast to the APPsb levels, which were unchanged upon

ADAM10 knockdown (Figure 5B). We interpret this result in the

following way. C99 and C89 can be processed in two pathways.

The first one consists of cleavage by g-secretase leading to Ab
generation, the second one occurs by a-secretase, leading to

C83 generation. Upon ADAM10 knockdown, the latter pathway

is blocked, leading to an increase in C99 and C89 and leaving

APPsb levels unchanged.

ADAM10 is required for a-secretase cleavage in primary

neurons

APP processing occurs in all cells and tissues analysed to

date. However, in AD, APP processing is particularly relevant

in the neurons of the central nervous system. Thus, we

next investigated the contribution of ADAM9, 10 and 17 in

a-secretase cleavage in primary murine cortical E16 neurons

from C57/BL6 mice, expressing endogenous APP. Murine and

human APP differ by three amino acids within the N-terminal

half of the Ab sequence. One of these amino-acid changes is

within the peptide sequence used to generate the antibody

4B4. For this reason, we generated an additional antibody,

called 7A6, which also detects the murine APPsa, but not

APPsb and APPsb0 (Figure 1B). Using two different shRNA

sequences, the lentiviral knockdown of ADAM10 reduced

murine ADAM10 expression as well as murine APPsa to

about 10–15% of the control (Figure 6A–C). This reveals

that also in primary neurons, ADAM10 activity is required for

APP a-secretase cleavage. As a control ADAM9 and 17 were

also knocked down in the primary neurons. As both proteins

could not be detected by immunoblot in the neuronal lysates,

their expression was measured by quantitative RT–PCR

(Figure 6F). Similar to the HEK293 and SH-SY5Y cells, knock-

down of ADAM9 or 17 did not affect APP a-secretase cleavage

(Figure 6D and E). Likewise expression of ADAM10 was not

affected, as determined by both immunoblot (Figure 6D) and

Figure 4 Analysis of APP processing in SH-SY5Y cells with a stable ADAM10 knockdown. (A) SH-SY5Y cells were infected with lentiviral
vectors carrying GFP and different shRNAs: a non-targeting shRNA (Con) and two different ADAM10-targeting shRNAs (sh6 and sh9). Cells
(Con, sh6 and sh9) were either treated with DMSO as solvent control or the metalloprotease inhibitor TAPI-1. Conditioned media of these cells
were analysed with antibody 22C11 (APPs total), W02 (APPsaþb0) or 4B4 (APPsa), whereas cell lysates were analysed for cellular APP
(22C11). Compared with HEK293 cells, the mature APP form is less well visible in SH-SY5Y cells. Membranes were analysed for ADAM10
protein. Calnexin was detected as a loading control. (B) Quantification of experiments in (A). APPs total, APPsaþb0 and APPsa were
normalized to calnexin. Given are mean and standard error of four independent experiments. (C) Cells (Con, sh6 and sh9) were either treated
with DMSO as solvent control or with the b-secretase inhibitor C3. Conditioned media of these cells were analysed as in (A). Antibody 192wt
was used for the detection of APPsb. (D) Quantification of experiments in (C), carried out as in (B) relative (rel.) to control. (E) Con and sh9
SH-SY5Y cells were treated with DMSO as a control or co-treated with the metalloprotease inhibitor TAPI-1 and the b-secretase inhibitor C3.
(F) Quantification of experiments in (E), carried out as in (B). Given are mean and standard error of three independent experiments.
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Figure 5 Absence of ADAM10 reduces C83. (A) Left panels: SH-SY5Y
cells were treated (þ ) or not (�) with the g-secretase inhibitor DAPT
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only visible upon DAPT treatment. Right panels: SH-SY5Y cells stably
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treated with DAPT. Conditioned media were analysed for APPsa (4B4)
and APPsb (192wt). Cell lysates were analysed for cellular APP, all
C-terminal fragments (6687) and specifically C99 (2D8). C99 is
marked with (*), C89 with (**) and C83 with (***). (B)
Quantification of APPsa, APPsb, C83 and C99 normalized to cellular
APP relative (rel.) to control. Given are mean and standard error of
four independent experiments.
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quantitative RT–PCR (Figure 6F). Together, these results

show that both ADAM9 and 17 are not required for constitu-

tive APP a-secretase cleavage in primary neurons.

Interestingly, total APP secretion (22C11) was only mildly

reduced in the ADAM10 knockdown neurons, which is most

likely due to the fact that in primary embryonic neurons,

a-secretase cleavage contributes only to a smaller extent to

total APP secretion, compared with cell lines (Simons et al,

1996) (Figure 6A). Indeed, b-secretase expression is particu-

larly high during embryonic development and in the first 2

weeks after birth, but then drops sharply (Willem et al,

2006). In contrast to the HEK293 and SH-SY5Y cells, the

ADAM10 knockdown mildly increased APPsb generation

(1.4–2-fold) for both shRNAs tested. Ab followed a similar

trend. However, only one of the shRNA sequences (sh-I)

significantly increased Ab, whereas the other sequence (sh-

II) did not. This suggests that at least in embryonic neurons

with their high expression of b-secretase, a reduction of

ADAM10 may increase Ab levels.

Mass-spectrometric analysis of APP a-secretase-

cleavage products

The experiments above relied on the use of cleavage site-

specific antibodies for the detection of APPs and in particular

of APPsa. Next, we used mass spectrometry as an indepen-

dent method to detect APPsa and to investigate the reduction

of APPsa in ADAM10 knockdown cells. To this aim, the

following strategy was used. APP is N- and O-glycosylated

at different positions within its ectodomain, which leads to a

broadening of the peaks obtained for APPs by mass-spectro-

metric analysis, making identification of specific cleavage

sites difficult. To avoid this situation, two short peptide

tags were included into the APP ectodomain between the

most C-terminal glycosylation site and the N-terminus of the

Ab sequence (Figure 7A). One of the two peptide sequences

encodes a TEV protease-cleavage site, the other one encodes

a FLAG tag. This mutant APP construct (APP-TEV-FLAG)

was stably expressed in SH-SY5Y cells. The secreted form

of APP-TEV-FLAG was immunoprecipitated from the

conditioned medium with an anti-FLAG antibody and then

digested in vitro with TEV protease. This leads to the removal
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Figure 6 ADAM10 is essential for a-secretase cleavage of APP in
primary cortical neurons. (A) Primary cortical neurons were pre-
pared at E16 from C57/BL6 mice and infected with purified lenti-
viral particles carrying GFP and either a non-targeting control
shRNA (Con) or two distinct murine ADAM10-targeting shRNAs
(sh-I, sh-II). Four days before harvest, the medium was changed.
Media were analysed for total secreted APP (antibody 22C11),
APPsa (7A6) and APPsb (BAWT). Cell lysates were analysed for
cellular APP, ADAM10 and b-actin (loading control). Immature
ADAM10 is indicated with (*) and mature ADAM10 with (**).
Protein levels of ADAM10 were reduced by both shRNAs to about
10% of control (not shown). (B) Quantification of total secreted
APP, APPsb and APPsa, relative (rel.) to control. Ab was measured
by ELISA. Given are mean and standard error of eight independent
experiments. (C) Quantitative RT–PCR shows that ADAM10 mRNA
levels are strongly reduced, whereas levels of ADAM9 and 17 mRNA
were not affected. Given are mean and standard error of four
independent experiments. (D) Lentiviral knockdown of ADAM9
and 17 in primary neurons was carried out as in (A). (E)
Quantification of results in (D) was performed as in (B). Both
knockdowns did not affect APP processing. Given are mean and
standard error of five independent experiments. (F) Quantitative
RT–PCR shows efficient knockdown of ADAM9 and 17, whereas
ADAM10 levels were not affected. Knockdown of ADAM17 partially
reduced ADAM9 mRNA levels. Given are mean and standard error
of four independent experiments.
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of the glycosylated part of the APP ectodomain, resulting

in B5 kDa peptides having the FLAG tag at their new

N-terminus and C-terminally ending at the peptide bond,

where APP shedding occurs by the secretases (Figure 7A).

First, we verified that APP-TEV-FLAG was processed in a

manner similar to the wild-type, endogenous APP. Stable knock-

down of ADAM10 in APP-TEV-FLAG-expressing SH-SY5Y cells

reduced APP-TEV-FLAG shedding to a similar extent (Figure 7B;

quantification in Figure 7C) as observed for the endogenous,

wild-type APP in SH-SY5Y cells (compare with Figure 4). Total

APPs (22C11) was reduced to 40–50%, whereas APPsa (4B4)

was reduced to 15–30% (Figure 7C). Taken together, APP-TEV-

FLAG is processed similar to wild-type APP.

For the mass-spectrometric measurements, APP-TEV-FLAG

cells were incubated overnight. Secreted APP-TEV-FLAG was

immunoprecipitated from the conditioned medium and pro-

cessed by TEV protease. A major peak at 4695.24 Da was

identified, which corresponds to a peptide having glutamine

15 of the Ab sequence as its C-terminal amino acid (Figure 7D

and E). This is in agreement with the C-terminus of APPsa
isolated from human brain (Pasternack et al, 1992). In

addition, a less intensive peak was observed at 2348.09 Da.

This is exactly half the molecular weight of the more

prominent peak and corresponds to the same peptide, but

with a double-positive charge instead of a single-positive

charge. Importantly, upon ADAM10 knockdown, both peptide

mass peaks were nearly completely suppressed, which is

consistent with the reduction in a-secretase cleavage

observed in the immunoblots (Figure 7C). Peptides with a

C-terminus at the b- or b0-cleavage sites were not detected.

As these cleavages make up a small proportion of total

APP shedding (see C3-inhibitor treatment in Figure 4C), it

is likely that these peptides were below the detection limit in

our analysis or were not stable enough during the isolation

procedure for the mass-spectrometric analysis. When

the APP-TEV-FLAG-expressing cells were incubated for 4 h

instead of overnight, a second mass peak at 4824.43 Da

was observed (Figure 7D). This corresponds to the peptide

having amino-acid lysine 16 of the Ab sequence as its

C-terminal amino acid (Figure 7E). The heterogeneity of

one amino acid at the C-terminus is in agreement with the

finding that in vitro ADAM10 cleaves between lysine 16 and

leucine 17 (Lammich et al, 1999) and may then be followed

by an as yet unidentified carboxypeptidase cleavage,

removing lysine 16 (Esch et al, 1990). The knockdown of
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Figure 7 Mass-spectrometric analysis of APP a-secretase cleavage
in stable ADAM10 knockdown SH-SY5Y cells. (A) Schematic repre-
sentation of the APP-TEV-FLAG construct, its cleavage by a-secre-
tase and the further processing with TEV protease to generate small
peptides for mass-spectrometric analysis. M, membrane. (B) SH-
SY5Y cells stably expressing APP-TEV-FLAG were analysed by
immunoblot for APPs total (22C11), APPsa (4B4) and FLAG im-
munoreactivity in the conditioned medium and for cellular APP and
b-actin in the cell lysate. (C) Quantification of APPs total, FLAG
reactivity and APPsa of three independent experiments. Given are
mean and standard error. (D) APP-TEV-FLAG was immunoprecipi-
tated from medium after overnight (ON) or 4 h culture, digested
with TEV-protease and analysed by mass spectrometry. Medium
was used from control (Con) or ADAM10 knockdown cells (sh9).
(E) Table containing peptide sequence, charge, measured masses
(from D) and calculated masses and deviation of the measured
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ADAM10 also suppressed the generation of the longer peptide

(Figure 7D).

Taken together, the mass-spectrometric analysis—in addi-

tion to the use of the cleavage site-specific antibody 4B4—

provides a second, independent method to show that

ADAM10 is essential for a-secretase cleavage of APP.

PMA stimulates ADAM17 cleavage of APP

independently of ADAM10

The phorbol ester PMA stimulates the metalloprotease clea-

vage of many cell surface membrane proteins, including APPs

(Figure 1; Buxbaum et al, 1998). PMA-induced shedding of

APP requires ADAM17 activity, because this stimulation is

lost in mouse embryonic fibroblasts deficient in ADAM17

(Buxbaum et al, 1998). Thus, we next investigated, whether

the PMA stimulation of APP shedding also required ADAM10.

To test this, SH-SY5Y cells expressing endogenous APP were

transiently transfected with control siRNAs or siRNAs against

ADAM9, 10 or 17 and then treated with or without PMA

(Figure 8A and B). In control-transfected cells, PMA strongly

increased APPsa (4B4) (Figure 8A), in agreement with

Figure 1. knockdown of ADAM17 suppressed the PMA-in-

duced increase in APPsa production. However, when

ADAM10 or 9 were knocked down, PMA-stimulated APPsa
generation occurred as in wild-type cells (Figure 8A). This

shows that ADAM10 is not required for PMA induction of

APP shedding and suggests that under these conditions

ADAM17 can directly cleave APP.

Discussion

The a-secretase is an important proteolytic activity with the

ability to prevent Ab generation. In this study, we system-

atically evaluated the contribution of ADAM9, 10 and 17 to

a-secretase cleavage of APP. Using a new, APPsa-specific

antibody and two different cell lines as well as primary

neurons expressing endogenous APP, we found that

ADAM10, but not ADAM9 or 17, is essential for a-secretase

cleavage. The requirement for ADAM10 was further validated

by mass-spectrometric determination of APP-cleavage pro-

ducts. From this we conclude that ADAM10 is the physiolo-

gically relevant, constitutive a-secretase of APP and that

ADAM9 and 17 are not redundant for this cleavage. This is

particularly remarkable, because ADAM10 and 17 appear to

have a broad substrate specificity and can cleave similar

peptides in vitro at the same peptide bonds (Caescu et al,

2009). The clear specificity in cells suggests the existence of

additional, as yet unknown factors, which control the

protease specificity in the cellular environment.

Different metalloproteases, most notably ADAM9, 10 and

17 have previously been suggested as candidate a-secretases,

because they cleave APP-derived synthetic peptides in vitro

and because their overexpression in cells or mice increases

APP shedding (Koike et al, 1999; Lammich et al, 1999;

Roghani et al, 1999; Slack et al, 2001; Postina et al, 2004).

However, data resulting from overexpression studies do not

prove that a particular protease is the physiologically relevant

protease for a given substrate. In fact, experiments using cells

with a knockout or a knockdown of the corresponding

proteases gave less clear results about their involvement in

APP a-secretase cleavage. RNAi-mediated knockdown of

ADAM9, 10 or 17 reduced APP shedding by 20 to 60%

(Asai et al, 2003; Allinson et al, 2004; Camden et al, 2005;

Freese et al, 2009; Taylor et al, 2009). In contrast, knockout

cells deficient in ADAM9, 10 or 17 showed no change in APP

shedding (Buxbaum et al, 1998; Hartmann et al, 2002;

Weskamp et al, 2002). Only in a subset of ADAM10-deficient

fibroblasts, APP a-secretase cleavage was altered to a variable

degree (Hartmann et al, 2002). The reason for this variability

is not yet clear. Importantly, because ADAM10 knockout mice

die embryonically and ADAM17 knockout mice die perina-

tally, only embryonic fibroblasts, but not neurons, from

these animals have been analysed for APP shedding. Taken

together, the finding, that APP shedding was never fully

abolished, was taken as evidence that all three proteases

may have redundant functions with regard to APP a-secretase

cleavage. In contrast to the previous studies, we used the

novel antibody 4B4 that specifically detects the a-secretase

cleaved APP (APPsa) without a contribution of other

APP-cleavage products, such as APPsb or APPsb0. Using

this new antibody, siRNAs and shRNAs against ADAM10 or

treatment with the metalloprotease inhibitor TAPI almost

completely blocked APPsa generation in HEK293 and SH-

SY5Y cells and in primary neurons. ADAM9 and 17 were not

required for APPsa formation. Only in HEK293 cells, the

ADAM17 knockdown led to a very modest decrease in total

APP secretion, raising the possibility that in specific cell

lines ADAM17 may have a modulatory function in APPsa
generation. Our knockdown data for ADAM9 and 17

complement the previous finding that ADAM9-deficient pri-

mary hippocampal neurons and ADAM17-deficient mouse

embryonic fibroblasts do not show evidence of an altered a-

secretase cleavage compared with their corresponding wild-

type control cells (Buxbaum et al, 1998; Weskamp et al,

2002). At present, it is unclear, why additional studies using

siRNAs against ADAM9 or 17 reported a moderate reduction

of APP a-secretase cleavage. However, because those pre-

vious studies used only one siRNA per target gene or no

control siRNA or relatively high siRNA concentrations (Asai

et al, 2003; Allinson et al, 2004; Camden et al, 2005; Taylor
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Figure 8 PMA-induced stimulation of APP shedding is independent
of ADAM10, but requires ADAM17. SH-SY5Y cells were either
transfected with control siRNA pool (Con) or siRNA pools against
ADAM9 (A9), ADAM10 (A10) and ADAM17 (A17); 2 days after
transfection, cells were treated with 1mM PMA (þ ) or ethanol as
solvent control (�) for 4 h. (A) Conditioned media were analysed
for APPsa (4B4), APPsaþb0 (W02) and cell lysates were analysed
for cellular APP (22C11). (B) Knockdown efficiency was analysed
by blotting against the different proteases ADAM9, 10 and 17 in
membrane preparations of the respective experiments.
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et al, 2009), it seems possible that earlier conclusions about

ADAM9 and 17 as APP a-secretase may have been due to off-

target effects (Jackson et al, 2003), but not due to the specific

reduction of ADAM protease expression.

Interestingly, a cleavage by both ADAM10 and 17 was also

suggested for the Notch1 receptor. Proteolytic Notch cleavage

and signal transduction are required for cell differentiation

processes. Recent work established that ADAM10 is the

relevant protease for the physiological ligand-induced

Notch1 cleavage and signalling, but that under certain li-

gand-independent conditions, including disease-linked

Notch1 mutations, Notch1 cleavage can also be mediated

by ADAM17 (Cagavi Bozkulak and Weinmaster, 2009; van

Tetering et al, 2009).

APP a-secretase cleavage occurs constitutively, which

requires ADAM10, as shown in this study. In addition, a

heterogeneous group of molecules can stimulate APP

a-secretase shedding (Bandyopadhyay et al, 2007), which is

referred to as regulated a-secretase cleavage. Two stimuli

activating APP a-cleavage are the neuropeptide pituitary

adenylate cyclase-activating polypeptide (PACAP) and the

phorbol ester PMA. The PACAP peptide appears to stimulate

the ADAM10 cleavage of APP (Kojro et al, 2006), suggesting

that ADAM10 is not only the constitutive a-secretase, but also

contributes to the regulated a-secretase activity. In addition,

ADAM17 can act as regulated APP a-secretase activity, at

least upon stimulation with the phorbol ester PMA. We found

that this activation does not require ADAM10, but ADAM17,

which is in agreement with a previous publication using

ADAM17-deficient MEF cells (Buxbaum et al, 1998). Future

studies need to address whether ADAM17 cleavage of APP

also occurs under physiologically or pathophysiologically

relevant conditions other than upon treatment with the

synthetic phorbol ester PMA.

Previous studies, which will be discussed below, suggested

that a- and b-secretases compete for APP as a substrate, such

that a change in b-secretase cleavage results in the corre-

sponding opposite change in a-cleavage and vice versa. On

the basis of this assumption, an activation of a-secretase

cleavage is considered as a therapeutic approach to reduce

b-secretase cleavage and Ab generation. Although this com-

petition seems to be clearly the case for the regulated

component of the a-secretase cleavage (see below), we

show here that this is not always the case for the constitutive

a-secretase cleavage of APP. The knockdown of ADAM10 did

not significantly increase APPsb levels in HEK293 and SH-

SY5Y cells. Likewise the b-secretase inhibitor C3 blocked

APPsb generation in SH-SY5Y cells, but did not increase

APPsa levels, which is in agreement with a recent study

using a different b-secretase inhibitor in CHO cells (Kim et al,

2008). The reason for this uncoupling of a- and b-secretase

cleavage under constitutive conditions is not yet clear. The

cellular APP levels may not be rate limiting for a- and

b-secretase cleavage, such that a reduction of one cleavage

does not increase the other cleavage. Alternatively, it may

reflect that a- and b-secretase cleavage occur in different

cellular compartments (described below), such that a

reduced a-secretase cleavage would not necessarily increase

the endosomal APP levels available for b-secretase cleavage.

In contrast to the cell lines, the knockdown of ADAM10

induced a mild increase in b-secretase cleavage in the pri-

mary neurons. This effect was more pronounced for APPsb

than for Ab. The difference between the neurons and the cell

lines may result from the different b-secretase expression

levels in both cell types. Although the b-secretase BACE1 is

ubiquitously expressed, its expression is particularly high in

neurons during embryonic development (such as the E16

neurons used here) and in the first 2 weeks after birth and

then drops sharply (Willem et al, 2006). Future studies need

to address whether a knockdown of ADAM10 still increases

b-secretase cleavage in adult neurons, where BACE1 levels

are reduced. In fact, a lack of competition between constitu-

tive a- and b-secretase cleavage in the adult brain comes from

a study, where a dominant-negative ADAM10 mutant de-

creased APPsa, but did not alter APPsb levels in a transgenic

mouse brain (Postina et al, 2004).

The a-secretase cleavage predominantly occurs at the

plasma membrane (Sisodia, 1992), but also in the trans-

Golgi network (TGN), at least upon stimulation with PMA

(Skovronsky et al, 2000). In contrast, b-secretase cleavage of

wild-type APP occurs mainly in the endosome and to a lower

extent in the TGN (Koo and Squazzo, 1994; Vassar et al,

1999). Previous studies reported a competition between

a- and b-secretases for APP as a substrate. This was typically

the case when the corresponding protease was overexpressed

or when an APP mutant was used or when a-secretase

cleavage was activated above its constitutive level. Under

these conditions, a- or b-secretase cleavage mostly occurred

in a cellular compartment where the constitutive cleavage

does not take place to the same extent. For example, over-

expression of the b-secretase BACE1 strongly reduced

a-secretase cleavage (this study and Vassar et al, 1999),

presumably because overexpressed BACE1 artificially cleaves

APP in early compartments of the secretory pathway before

APP has access to a-secretase at the plasma membrane.

A second condition, where a competition between a- and

b-secretase cleavage was observed, is the Swedish mutant

form of APP (SweAPP), which is linked to a familial form of

AD. Compared with wild-type APP, the SweAPP is more

efficiently cleaved by b-secretase and is processed to more

Ab and less APPsa, presumably because the SweAPP is

already cleaved by b-secretase in the TGN before it has access

to a-secretase (Haass et al, 1995). As another example, PMA

increased APPsa and reduced APPsb and Ab in APP-trans-

fected CHO cells (Skovronsky et al, 2000). The authors

argued that PMA shifts APP a-secretase cleavage away from

the plasma membrane towards the Golgi/TGN, such that APP

is cleaved earlier in the secretory pathway and less APP is

available for b-secretase cleavage. This shows that the regu-

lated component of a-secretase (i.e. the increase of a-secre-

tase cleavage above its constitutive level) can compete

with b-secretase and consequently reduces Ab generation,

in agreement with the idea that a pharmacological activation

of a-secretase may be a therapeutic approach to AD

(Fahrenholz, 2007).

Another outcome of our study is that the ADAM10 knock-

down increased the levels of C99 in SH-SY5Y cells, although

the amount of b-secretase cleavage (measured by APPsb
levels) was unchanged. From this finding, we conclude that

C99 can principally be processed in two pathways. In the first

one, C99 is directly cleaved by g-secretase leading to Ab
generation. In the competing pathway, C99 is first cleaved

by a-secretase, leading to C83 generation, which may prevent

Ab generation. Upon ADAM10 knockdown, the latter
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pathway is blocked, leading to an increase in C99, while

leaving APPsb levels unchanged. As C99 is short-lived, we

used a g-secretase inhibitor to visualize it. The increase in

C99 upon ADAM10 knockdown is unlikely to occur to the

same extent in the absence of a g-secretase inhibitor. If that

were the case, we would expect an increase in Ab, as it is the

direct cleavage product of C99. This, however, was not the

case. From this we conclude that the direct C99 cleavage by

g-secretase is the predominant pathway for C99 processing

under normal conditions. However, when g-secretase clea-

vage is blocked, the competing pathway by a-secretase

becomes more prominent resulting in C99 turnover to C83.

A cleavage of C99 by a-secretase is consistent with a previous

study, showing that overexpressed C99 can be converted to

C83 in neurons (Cupers et al, 2001). A possible competition

between a- and g-secretases for C99—even under conditions,

where g-secretase is not inhibited—is supported by a recent

study, which detected N-terminal Ab fragments, such as

Ab1–15 and Ab1–16, that seem to result from a-secretase

cleavage of C99 (Portelius et al, 2009).

Our new antibodies, which are specific for APPsa and do

not detect APPsb0, may be helpful in the search for biomar-

kers of AD. Previous studies reported that APPsa levels are

significantly decreased in the CSF of sporadic AD patients

compared with controls, but there was not a complete

separation between both groups (Sennvik et al, 2000;

Fellgiebel et al, 2009). Potentially, the use of APPsa-specific

antibodies, such as 4B4 may help to separate AD and control

subjects more clearly. In addition, changes in APPsa levels

may help to identify individuals with mutations in ADAM10.

Mutations in the prodomain of ADAM10, which reduce

ADAM10 protease activity, have recently been genetically

linked to an increased risk for late-onset AD in seven distinct

families (Kim et al, 2009).

In summary, our study defines ADAM10 as the physiolo-

gically relevant, constitutive a-secretase for APP and will

allow to further explore the function of ADAM10 in AD.

Materials and methods

Reagents, plasmids and shRNA
The following antibodies were used: FLAG M2 (Sigma), ADAM10
(Calbiochem-422751), ADAM17 (Chemicon), ADAM17 (Oncogene),
ADAM9 (Cell Signaling), HRP-coupled anti-rabbit, anti-mouse
(DAKO), HRP-coupled anti-rat (Santa Cruz), Calnexin (Stressgen),
b-actin (Sigma), monoclonal antibody (mAb) 22C11 (anti-APP
ectodomain) and mAb W02 (against amino acids 5–8 of Ab) from
Konrad Beyreuther; polyclonal antibody (pAb) 5313 (anti-APP
ectodomain), pAb 6687 (against APP C-terminus), pAb 3552
(against Ab) and mAb 2D8 (against Ab1–16) from Christian Haass
and pAb 192Wt from Dale Schenk. Rat mAb 4B4 (IgG2a, APPsa
specific), mAb 7A6 (IgG2a, APPsa specific; detects also murine
APPsa) and rat mAb BAWT (IgG2a, APPsb specific, used for
immunoprecipitation) were generated against peptides EVHHQK-
COOH (amino acids 11–16 of Ab), YEVHHQ-COOH (amino acids
10–15 of Ab) and ISEVKM-COOH (amino acids directly preceding
the b-secretase-cleavage site), respectively (Ullrich et al, 2010). The
following reagents were used: metalloprotease inhibitor TAPI-1,
BACE inhibitor C3 and Dodecyl maltoside (DDM) from Calbiochem;
siRNA pools siGenome against ADAM9, 10 and 17 and siRNA pool
on target plus against ADAM17 and corresponding controls from
Dharmacon. Lipofectamine 2000, RNAimaxx and TEV protease
from Invitrogen. Cloning of plasmids is described in the Supple-
mentary data section. shRNA sequences are listed in Supplementary
Table 1.

Cell culture, transfections, RNAi, sample preparation,
immunoblot, Ab measurements
HEK293-Tcells were cultured in Dulbecco’s modified Eagle medium
(DMEM, Gibco) containing 10% foetal calf serum (FCS/Gibco) and
G418 (Invitrogen) to maintain the large-T antigen. SH-SY5Y cells
were cultured in F12/DMEM (Lonza) supplemented with 15% FCS
(Gibco) and non-essential amino acids (PAA). knockdown of
ADAM9, 10 and 17 in HEK293T and SH-SY5Y cells was performed
transfecting 10 nM of siGenome pool targeting ADAM9, 10, 17 and
corresponding controls or transfecting 10 nM of OnTarget plus pool
targeting ADAM17 and corresponding controls (in SH-SY5Y). One
day after transfection, medium was replaced. After overnight
incubation, conditioned medium and cell lysate (in 150 mM NaCl,
50 mM Tris pH 7.5, 1% Nonidet P-40) were collected. For detection
of ADAM9, 10, 17 and calnexin, cell membranes were prepared as
described (Sastre et al, 2001). Detection of secreted and cellular APP
was as described (Schobel et al, 2008). For precipitation of APPsb,
500ml of conditioned medium were incubated with 30 ml protein G
sepharose and 50 ml of BAWT antibody for 2 h on a rotary shaker.
APPsb was detected with 192wt antibody. For precipitation of
APPsa, 500 ml of conditioned medium were incubated with 30 ml
protein A sepharose and 3.3ml of 5313 antibody. APPsa was
detected with 4B4 antibody. Inhibition of a- and b-secretases was
performed with 50mM TAPI-1 and 1mM C3, respectively, for 24 h.
Endogenous human Ab was immunoprecipitated with antibody
3552 and detected with rat mAb 2D8 as described (Page et al, 2008).
Murine Ab40 was measured in conditioned media of murine
primary cortical neurons, which were diluted 25-fold before
analysis with an ELISA-kit (IBL, JP27720) according to the
instructions of the manufacturer.

Lentivirus production and transduction
Lentiviruses were generated by transient cotransfection of HEK293T
cells with the plasmids psPAX2, pCDNA3.1 (�)-VSV-G and as
transfer vector pLVTHMmod or pLKO2mod-EGFP-WPRE for gene
knockdown or FU-DZeo for gene overexpression using Lipofecta-
mine 2000. For transduction of cell lines, medium was replaced by
fresh antibiotic-free medium 1 day after transfection. Overnight
conditioned medium was filtered through 0.45mm sterile filters and
directly added to the target cells. After 6 h, incubation medium was
exchanged against cell type-specific growth medium of the target
cells. Lentiviral particles for infection of murine primary cortical
neurons were concentrated by one run of ultracentrifugation for 2 h
at 22 000 r.p.m. in a SW28 rotor (Beckman) of the overnight
conditioned medium 48 h after transfection. Following ultracentri-
fugation, the supernatant was removed and the viral pellet carefully
resuspended in TBS-5 (50 mM Tris, 130 mM NaCl, 10 mM KCL,
5 mM MgCl2, 5% (w/v) BSA) after a 4 h incubation period at 41C.
Lentiviral stocks were stored at �801C until use.

Preparation and lentiviral transduction of neurons
Primary neuronal cultures were obtained from the cerebral cortex of
E16 C57/BL6 mouse embryos, incubated with 200 U of papain
(Sigma Aldrich) (30 min at 341C) and subsequently mechanically
dissociated. All experimental procedures on animals were per-
formed in accordance with the European Communities Council
Directive (86/609/EEC). Neurons were plated in six-well plates
(B1.5�106 cells/well) pre-coated with 25mg/ml poly-D-lysine
(Sigma Aldrich). Plating medium was B27/neurobasal (Gibco)
supplemented with 0.5 mM glutamine, 100 U/ml penicillin and
100 mg/ml streptomycin. Neurons were infected with lentiviruses at
3 DIV. Cell lysates and supernatant were collected at 8 DIV.

Mass spectrometry of APP-cleavage sites
SH-SY5Y cells were infected with FUD-Zeo-DsRed-UAS-APP-TEV-
FLAG and FUD-Zeo-Gal4-VP16. Infected cells were subsequently
FACS sorted according to their DsRed expression to obtain a
homogenous-expressing population. Afterwards, cells were infected
with PLVTHM encoding shRNAs against ADAM10 sh7 and sh9 or a
control shRNA. Secreted APP-TEV-FLAG was immunoprecipitated
with FLAG-M2 agarose. Immunoprecipitation was followed by three
washes with STED (NaCl 150, Tris 50 mM, EDTA 2 mM, 0,5%
DDM), three washes with STE and three washes with ddH2O.
Precipitated APP-TEV-FLAG ectodomain was eluted with 40 ml
100 mM glycine pH 2.5. The eluate was subsequently neutralized
with 200ml 100 mM Tris pH 8.0 and supplemented with 0.5 mM
EDTA and 1 mM DTT and addition of 0.5ml TEV protease. Protease
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digest was incubated at 41C overnight on a rotary shaker. The digest
was diluted with 15 ml of PBS. To precipitate the digested FLAG
peptide, FLAG M2 agarose was added and incubated at 41C for 2 h
on a rotary shaker. Agarose was washed three times with PBS and
three times with ddH2O. Afterwards, peptides were eluted in a 1/20/
20 mixture of trifluoracetic acid/acetonitrile/ddH2O saturated with
a-Cyano matrix. A total of 1ml was spotted on a hydrophobic target
and measured with a Voyager DestR in linear mode. The MALDI-
TOF mass spectrometer was externally calibrated with a peptide
standard mixture (Sequazyme calibration mixture III).

Quantitative real-time PCR
Total RNA was extracted using RNeasy Mini kit (Qiagen) from
primary neurons following the manufacturer’s instructions. Con-
centrations and purities of total RNA were spectrophotometrically
assessed at 260 and 280 nm. Total RNA was reverse transcribed into
cDNA in a 20ml reaction volume, using high-capacity cDNA Reverse
Transcription kit (Applied Biosystems/ABI). Real-time PCR reaction
was carried out on a 7500 Fast Real-Time PCR machine (ABI) with
the POWER SYBRs-Green PCR Master Mix (ABI) based on a
modification of the manufacturer’s recommended protocol. Reac-
tions were performed in duplicate in 96-well plates (ABI) according
to the following protocol: pre-incubation at 951C for 10 min,
followed by 40 cycles of 15 s at 951C and 1 min at 601C. Used
primers including ADAM9, 10 and 17 and the three reference
genes Actb, GapDH and Tbp are listed in Supplementary Table 2.

Validation experiments were performed to verify the amplification
efficiency of each gene, which consistently ranged from 1.8 to 2.2.
The statistic analysis was performed by the DCt value method. The
relative expression of ADAM9, 10 and 17 was normalized to all
three reference genes.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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