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1. Zusammenfassung 

 

Einleitung:  

 

Brustkrebs ist weltweit die häufigste Krebserkrankung bei Frauen. Insgesamt hat sich 

die Prognose für die Betroffenen in den letzten 30 Jahren deutlich verbessert. Gründe 

dafür sind zum einen eine verbesserte Prävention, zum anderen neuartige 

therapeutische Möglichkeiten wie die Behandlung mit monoklonalen Antikörpern.  

Trotz dieser Fortschritte ist die Prognose für Patienten mit metastasierten Tumoren 

nach wie vor ungünstig und die Therapie der metastasierten Krebsformen immer noch 

eine Herausforderung. 

 

Die Forschung der letzten Jahre hat gezeigt, dass das Tumor umgebende Stroma eine 

entscheidende Rolle für das Tumorwachstum im Ursprungsgewebe, aber auch für die 

Metastasenbildung und das Überleben der disseminierten Tumorzellen in 

ursprungsfernen Organen spielt. 

Der Einfluss von Fettgewebe als endokrin aktives Organ auf Brustkrebs wurde in 

verschiedenen Studien untersucht. Allerdings ist bisher unklar, welche Rolle 

mesenchymale Stammzellen aus dem Fettgewebe für die Metastasierung von 

Brustkrebszellen spielen. 

In der vorliegenden Arbeit wurde der Einfluss dieser Zellen auf die Invasivität muriner 

und humaner Brustkrebszellen untersucht und versucht, molekulare therapeutische 

Ziele zu identifizieren, um den Metastasierungsprozess zu reduzieren.  

 

Methodik:  

 

Der Einfluss mesenchymaler Stammzellen auf Brustkrebszellen wurde mit Hilfe von  

Proliferations-, Invasions-Assays und zweidimensionalen direkten Kokulturen 

untersucht. Mediatoren, die für diese Interaktion eine Rolle spielen könnten, wurden 

mit ELISA, Zymographie, Immunohistochemie und RT-PCR identifiziert. Um die 



Zusammenfassung	
   	
  5	
  

Relevanz des gefundenen Signalmoleküls für die Invasion zu evaluieren, wurde ein 

neutralisierender Antikörper eingesetzt. 

 

Ergebnisse:  

 

Humane Brustkrebszellen induzieren eine de novo Sekretion des Chemokines CCL5 

(RANTES) in mesenchymalen Stammzellen und dieses steigert wiederum die Anzahl 

der invasiven Brustkrebszellen um 126%. Weitere Experimente zeigen, dass CCL5 die 

Sekretion der Matrixmetalloproteinase 9 in mesenchymalen Stammzellen steigert. 

 

Schlussfolgerung:  

 

Es konnte gezeigt werden, dass mesenchymale Stammzellen aus dem Fettgewebe 

einen signifikanten Einfluss auf die Invasivität muriner und humaner Brustkrebszellen 

haben. Das Chemokin CCL5 (RANTES) ist in diesem Zusammenhang verantwortlich 

für den proinvasiven Effekt und kann mithilfe eines neutralisierenden Antikörpers 

blockiert werden.  

Weitere Studien mit in-vivo Tumormodellen können wichtige Hinweise zur Rolle dieser 

Stammzellen in der gesamten Tumorgenese liefern. Weiterhin sollte CCL5 (RANTES) 

als therapeutisches Ziel bei Brustkrebspatienten evaluiert werden. 
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2. Summary 

 

Introduction:  

 

Breast cancer is the leading form of cancer in women worldwide. Overall the prognosis 

for those patients has improved in the last 30 years. This is due to improved prevention 

and new therapeutic approaches like monoclonal antibody treatments.  

However, the treatment of metastatic breast cancer remains challenging not only in 

breast cancer but all kinds of disseminating cancers. Therefore the prognosis for 

patients with metastases is still poor. 

 

During the last decades of cancer research it became clear that the tumor stroma plays 

a crucial role in primary tumor growth, metastatic progression, and survival of 

disseminated tumor cells in distant organs. The influence of adipose tissue as an 

endocrine organ on breast cancer has been investigated in some studies. However it is 

still elusive what role adipose tissue derived stem cells (ASCs) play in breast cancer 

metastasis. 

 

The present study investigates the effect of ASCs on the invasion of murine and 

human breast cancer cells and tries to identify candidate signaling molecules that 

might be therapeutic targets in metastatic breast cancer patients. 

 

Methods:  

 

The effect of ASCs on breast cancer cells has been studied with proliferation assays, 

invasion assays and 2-dimensional direct co-cultures. Molecules involved in this 

interaction have been measured with ELISA, Zymography, Immunohistochemistry and 

RT-PCR. To evaluate the relevance of the identified molecules, neutralizing antibody 

has been used. 
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Results: 

  

We could show that human breast cancer cells induce a de-novo secretion of CCL5 

(RANTES) in ASCs which then acts in an invasion promoting as well as paracrine 

manner on breast cancer cells (126% increase in number of invasive breast cancer 

cells).  

Furthermore we found that CCL5 might induce a higher secretion of matrix 

metalloproteinase 9 in ASCs. 

 

Conclusion:  

 

Taken together, our results indicate that adipose tissue derived stem cells promote 

breast cancer cell invasion in a CCL5 (RANTES) dependent manner. A CCL5 

neutralizing antibody could block the invasion promoting effect.  

 

Further investigation with in-vivo models is necessary to clarify the role of CCL5 in 

breast cancer progression, and in order to evaluate the potential relevance of ASCs 

and CCL5 as therapeutic targets in breast cancer patients. 
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3. Abbreviations 

 

 

AB  Antibody 

AB-Ag complex  Antibody-antigen complex 

ASCs  Adipose tissue-derived stem cells 

BSA Bovine serum albumin 

cDNA  Complementary deoxyribonucleic acid 

DAPI 4',6-diamidino-2-phenylindole 

DiI 1,1',di-octadecyl-3,3,3'3'- 

 tetramethylindocarbocyanine perchlorate 

DiO 3,3'-dioladecyloxacarbocyanine perchlorate 

DMEM/F12  Dulbecco modified Eagle's minimal essential  

 medium/F12 

DNA  Deoxyribonucleic acid 

ELISA  Enzyme-linked Immunosorbent assay 

FBS  Fetal bovine serum 

FITC  Fluorescein isothiocyanate 

GAPDH  Glycerine aldehyde-3-phosphate dehydrogenase 

GFP Green fluorescent protein 

H2O  Water 

hASC Human Adipose tissue-derived stem cells 

HBSS  Hankes’ balanced salt solution 

HMEC Human mammary epithelial cells 

IBC Inflammatory breast cancer 

MRI Magnetic resonance imaging 

LABC Locally advanced breast cancer 

mASC Murine adipose tissue-derived stem cells 

MEM α1  Minimal essential medium alpha modification 
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mg  Milligram(s) 

ml  Milliliter(s) 

MMP Matrix metalloproteinase 

P  Passage 

PBS  Phosphate buffered saline 

PCR  Polymerase chain reaction 

PFA Paraformaldehyde 

RANTES Regulated upon Activation, Normal T-cell  

 Expressed, and Secreted 

RNA  Ribonucleic acid 

rpm  Rotations per minute 

RT Room temperature 

RT-PCR Real-time polymerase chain reaction 

SCCM Stem cell conditioned medium 

TCM Tumor conditioned medium 

VEGF Vascular endothelial growth factor 

µg  Microgram(s) 

µl  Microliter(s) 
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4. Introduction 
 
EPIDEMIOLOGY 

Breast cancer is the most common cancer in women worldwide and represents 23% of 

all cancers. In 2002 an estimated number of 1.15 million patients were diagnosed with 

breast cancer. Furthermore breast cancer is, despite having a generally rather good 

prognosis, one of the leading causes of cancer death in women (Jemal et al., 2008; 

Parkin et al., 2005).  

Globally, the rates of breast cancer incidence vary. The highest rates are found in 

North America and northern Europe, whereas the lowest rates are observed in Asia 

and Africa. Reasons for these differences could be different genetic backgrounds as 

well as the corresponding environmental and biological circumstances that affect risk 

factors involved in facilitating the outgrowth of breast cancer (Parkin et al., 2005). 

Studies taking into consideration migration patterns consistently indicated that the 

incidence of breast cancer increases from generation to generation in migrant 

populations, thus supporting the hypothesis of societal factors influencing rates of 

breast cancer (Willett et al., 2004). 

 

Interestingly, the mortality of breast cancer has been declining constantly since 1975 

despite a significant rise of breast cancer incidence in the early 1980s, which was most 

likely due to the newly established mammography and its successful introduction as a 

diagnostic tool for screening purposes. This new technique, together with the use of 

aggressive adjuvant chemotherapies, led to the overall decrease in breast cancer 

mortality (Berry et al., 2005).  

 

However, the management of the metastatic progression in breast cancer, as well as in 

other cancer types, remains extremely challenging due to lack of knowledge about the 

cellular and molecular components of this pathological process. Therefore, the five 
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year survival rates for the more aggressive subtypes of breast cancer such as locally 

advanced and inflammatory breast cancer range according to the lymph node status 

after neoadjuvant therapy from 20% to 30% (Buzdar et al., 1995). 

RISK FACTORS 

Various risk factors have been identified as relative contributors to the increased 

incidence of breast cancer. Age and gender are among the strongest risk factors, 

followed by factors such as genetics, personal history, benign breast disease, ethnicity 

and lifestyle, hormonal, and environmental factors. These different parameters add up 

to a multifactorial and personal risk profile that needs to be evaluated individually for 

each patient. 

 

Interestingly body weight as a risk factor for breast cancer is controversially discussed 

since a high premenopausal body mass index (BMI) has been correlated with a lower 

breast cancer incidence (van den Brandt et al., 2000), whereas postmenopausal 

obesity is associated with a higher breast cancer risk (Ahn et al., 2007). In the latter 

case, adipose tissue as a converter of estrogen precursors to estrogen seems to be 

most likely explanation. However, the complex role of adipose tissue in breast cancer 

as a highly active endocrine organ remains elusive. 

SYMPTOMS 

Most patients in Western countries are diagnosed because of abnormal mammograms 

and do not show specific symptoms related to breast cancer at the time of diagnosis. 

Nevertheless, breast cancer also has a typical pathological manifestation that can be 

evaluated by means other than mammography.  

Patients with locally advanced breast cancer (LABC, 30 to 50% in medically 

underserved populations) and inflammatory breast cancer (IBC, 0.5 to 2 % of invasive 

breast cancer) especially have a characteristic clinical presentation (Ezzat et al., 1999; 

Hance et al., 2005). 
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Different visual and haptic signs can indicate the development of breast cancer. 

Palpable and in some cases visible indurations are present, along with local pain and 

an increasingly tender, firm and enlarged breast. A spontaneous clear or bloody 

discharge from the nipple is often associated with a breast lump, along with the 

retraction or indentation of the nipple or any flattening or indentation of the skin over 

the. Further examination of the skin might show a warm and thickened “peau d’orange” 

(skin of an orange) with an alteration in color from pink to redness, or a purplish hue in 

case of IBC. Signs of LABC and IBC include a fixation of the breast to the chest wall, 

fixed or matted axillary nodes, or ipsilateral satellite skin nodules (Robertson et al., 

2010). 

DISEASE PROGRESSION 

Breast cancer can arise from different cell types associated with the mammary gland 

and is therefore divided into the following molecular subtypes of breast cancer: basal-

like, luminal A, luminal B, HER2+/ER- and normal breast-like. Natural history of breast 

cancer involves the progression from ductal hyperproliferation to subsequent ductal 

carcinoma in situ (DCIS), invasive carcinoma, and finally metastatic disease.  

 

According to the angiogenic and angioinvasive properties of the tumor cells, they also 

invade lymphatic vessels and furthermore form so-called tumor emboli, which are 

responsible for both the local signs and symptoms as described above, and for the 

lethal development of distant metastases.  

 

The organs most commonly affected by breast cancer metastases are bone, liver, lung, 

and brain, in this order. Secondary organ failure finally leads to exitus. Therefore, 

patients with metastatic breast cancer disease have the worst outcome and are 

unlikely to be treated in such a way that complete remission is achieved (Greenberg et 

al., 1996). 
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DIAGNOSIS 

The leading diagnostic tool for breast cancer is mammography. Once a suspect 

radiologic correlate of breast malignancy has been detected, several diagnostic 

adjuncts to mammography are available. In order to differentiate between cystic and 

solid masses, ultrasound examination of the breast can provide important evidence.  

 

Contrast-enhanced breast magnet resonance imaging (MRI) might prove as an 

ultimately better but also more expensive diagnostic test as compared to the 

ultrasound, since it provides the clinician with more accurate diagnostic information in 

patients where mammography and ultrasound cannot give clear results. 

 

Finally, different techniques of biopsy such as surgical biopsy, fine needle aspiration 

biopsy, or core biopsy are available in order to gain more details about histologic 

composition of suspect lesions, and thus can provide important information to aid in 

designing the optimal individual treatment (Winchester et al., 2000). 

PROGNOSIS 

The overall prognosis of breast cancer is good due to well established screening 

methods, improvement in surgical intervention, and new approaches in combined 

chemotherapies.  

However, the prognosis is dependent on the presence of prognostic factors such as 

age and menopausal status, tumor stage and histologic grade, clinical response, 

hormone receptor status, and lymph node status following induction (also termed 

neoadjuvant) therapy, the latter being most important for prognostic estimations. 

 

In general, the prognosis for patients worsens according to the invasiveness of the 

breast cancer type. The study of Smart showed an average decrease in 20-year 

survival rate of nearly 30 percent when comparing In situ-breast cancer patients to 

lymph node positive invasive breast cancer patients (Smart et al., 1997). 
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TUMOR-STROMA INTERACTION IN BREAST CANCER PATHOLOGY 

In the last decades, the concept of cancer changed in a way that cells which are not 

cancer cells per se turned out to be promising targets for cancer therapy since it 

became clear that the tumor microenvironment plays a crucial role in both primary 

tumor growth and metastatic spread. Although the “seed and soil” theory had already 

been developed in 1889 by Paget (Paget, 1989), the complex interplay of cancer cells 

and stromal or circulating cells leaves many unanswered questions. 

 

The transformation from individual, polarized, structurally organized, quiescent 

epithelial cells anchored in extracellular matrix, to highly motile, matrix-digesting breast 

cancer cells capable of invading vessels, travelling with the circulation, and 

extravasating vessels at distant organ sites, is an extremely complex transformation.  

 

This malignant progression, common to all lethal cancerous diseases, becomes even 

more intriguing when considering that invasive breast cancer cells, once present in 

their main metastatic targets such as bone, liver, and lung, need to recruit and 

manipulate local cells in order to initiate remodeling of extracellular matrix, release of 

different growth factors, and neovascularization to support the colonization of other 

organs and enable the outgrowth of metastases. 

 

Another interesting approach to the cancer disease is the comparison of cancer with a 

“never healing wound” (Schafer and Werner, 2008). Recent studies outlined the 

parallels between the processes that occur during wound healing and the progression 

from a locally restricted tumor to a metastatic disease. Both require the crosstalk 

between epithelial cells and stromal cells and involve a wide variety of cytokines and 

matrix molecules. 

 

Chemokines have been characterized for their myriad of functions in inflammatory 

processes,  especially leukocyte chemotaxis and proliferation, but also hematopoiesis, 

cell-virus interactions, angiogenesis, neovascularization, and tumor metastasis 

(Allavena et al., 2008a; Homey et al., 2002; Balkwill, 2003; Challita-Eid et al., 1998). 
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The family of chemokines includes about 50 different members subdivided into groups 

according to their chemical structure. 

 

CCL5, formerly known as RANTES (Regulated on Activation, Normal T-cell Expressed 

and Secreted), belongs to the group of CC–Chemokines (Fig.1) and has become more 

and more interesting in the last ten years of breast cancer research for its strong pro-

migratory effects as well as its function as a strong chemoattractant for inflammatory 

cells to wounds or tumor sites (Wigler et al., 2002; Eissa et al., 2005; Yaal-Hahoshen 

et al., 2006; Soria and Ben-Baruch, 2008).  

 

CCL5, located on chromosome 17, is a β-chemokine and binds to three different G-

protein linked transmembrane receptors (CCR1, CCR3 and CCR5), with CCR5 being 

the main receptor.  

 

Several pathways activated by CCL5 subsequently enhance the expression of cell 

migratory effector molecules and also induce the transcription of molecules involved in 

the inflammatory signaling cascade (van Deventer et al., 2008; Ben-Baruch, 2008; 

Youngs et al., 1997; Mueller et al., 2006; Luo et al., 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

In the process of invasion and metastasis, not only the chemotactic molecules play an 

important role for tumor and stromal cell mobilization and homing, but also enzymes 

Fig. 1 Concept of chemical 
structure of CC-motif Chemokines. 
The position of the first two 
cysteines in the N-terminal part of 
the protein defines the group of 
chemokines (Ali and Lazennec, 
2007) 
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that degrade the extracellular matrix and thus might contribute to the release of 

sequestered factors that promote angiogenesis such as VEGF (Du et al., 2008; Zhao 

et al., 2008; Luo et al., 2006; Chabottaux and Noel, 2007).  

 

Furthermore, they enable tumor cells to migrate through basement membranes in the 

context of intra- and extravasation. These enzymes are mostly 

matrixmetalloproteinases (MMPs). Two well-characterized MMPs responsible for 

digesting collagen IV, a major component of the basement membrane, are MMP-9 and 

MMP-2 (Figueira et al., 2009; Sun et al., 2009; Gonzalez et al., 2008). 

 

Together with intrinsic alterations in the cancer cell comes an alteration in the tumor 

microenvironment. It has been shown that cytokines and chemokines are responsible 

for the recruitment of leukocytes to the tumor site (Mantovani et al., 2004).  

 

We hypothesized that in breast cancer, the surrounding fat tissue, which contains 

multipotent stem and progenitor cells, might be used by tumor cells to create the 

inflammatory environment that eventually facilitates the transition towards malignancy, 

specifically by orchestrating an extracellular matrix structure and milieu that enhances 

processes like leukocyte recruitment, neovascularization, tumor cell invasion, and 

intravasation. 

 

We carried out a series of candidate approach experiments in order to determine 

whether and how adipose tissue derived stem cells might be involved in the secretion 

of CCL5 and MMP-9. 
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4.1 Aim of the study 

The aim of this study was to investigate whether tissue resident stem cells from the 

adipose tissue might play a role in breast cancer metastasis. Recent studies have 

shown that the process of breast cancer metastasis is significantly influenced by the 

surrounding tumor stroma and circulating cells. In order to elucidate the role of tumor-

adjacent multipotent stem cells possibly representing early tumor response cells, we 

performed a series of experiments as shown in the flow chart of experiments (Fig. 5).  

The main focus of this study was to evaluate the significance of human adipose tissue 

derived stem cells (hASCs) on breast cancer cell invasion and to identify mediators 

involved in the interaction of hASCs and breast cancer cells. 

 

Therefore, we defined the following questions in the indicated order: 

 

1) What is the effect of hASCs on breast cancer cell invasion in vitro? 

 

2) What role does the chemokine CCL5 (RANTES) play in this context? 

 

3) Is the matrixmetalloproteinase 9 (MMP-9) involved? 

 

In addition, we wanted to elucidate whether there is a direct link between the de novo 

secretion of CCL5 and the upregulation of MMP-9. 
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5. Materials and Methods 
5.1 Materials	
  

5.1.1 Animals 

Balb/c mice, 6-8 weeks Ingeneron, Houston, TX, USA 

5.1.2 Cells 
 

Cell line/ cell type Abbreviation Transfection Source 

Human Adipose tissue 
derived stem cells 

hASC -- Established from patients 
undergoing elective liposuctions 

Murine adipose tissue 
derived stem cells 

mASC -- Established from subcutaneous and 
kidney capsule fat of Balb/c mice 

Murine breast cancer 
cells 4T1 

4T1 -- ATCC, Manassas, VA, USA 

GFP-labeled murine 
breast cancer cell line 
4T1 

GFP-4T1 EGFP ATCC, Manassas, VA, USA 

Human breast cancer 
cell line MDA MB 231 

MDA MB 231 -- ATCC, Manassas, VA, USA 

GFP-labeled human 
breast cancer cell line 
MDA MB 231 

GFP-MDA 
MB 231 

EGFP ATCC, Manassas, VA, USA 

Human breast cancer 
cell line MCF-7 

MCF-7 -- Oesterreich Lab, Baylor College of 
Medicine, Houston, TX, USA 

Human embryonic 
fibroblast WI-38 

WI-38 -- Hung Lab, MDACC, Houston, TX, 
USA 

Immortalized Human 
mammary epithelial 
cells 

HMEC Immortalized 
with 
Telomerase 
and SV40 
large T- 
antigen 

Weinberg Lab, Whitehead Institute, 
Boston, MA, USA 

Table 1 Cell types 
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5.1.3 Tissue Culture 

α-MEM Mediatech Inc, Herndon, VA, USA 

RPMI   Mediatech Inc, Herndon, VA, USA 

L-15 Leibovitz  HyClone Lab., Inc., l South Logan, UT, USA 

DMEM  Mediatech Inc, Herndon, VA, USA 

Fetal bovine serum Atlanta biologicals, Lawrenceville, GA, USA 

Penicillin/Streptomycin Mediatech Inc, Herndon, VA, USA 

L-Glutamin Mediatech Inc, Herndon, VA, USA 

Trypsin-EDTA Sigma, St. Louis, MO, USA 

Hanks’ balanced salt solution (1X) Mediatech Inc, Herndon, VA, USA 

Dulbecco’s Phosphate-buffered saline (1X) Sigma, St. Louis, MO, USA 

Liberase Blendzyme 3 Roche Diagnostics, Indianapolis, IN, USA 

Culture flasks T25, T75, T175 Greiner Bio-One, Monroe, NC, USA 

Centrifuge tubes 15ml, 50ml Greiner Bio-One, Monroe, NC, USA 

6-well plate Greiner Bio-One, Monroe, NC, USA 

	
  

5.1.4 Cell staining 

Paraformaldehyde (Fixation) Sigma, St. Louis, MO, USA 

DiI Invitrogen Corporation, Carlsbad, CA, USA 

DIO Invitrogen Corporation, Carlsbad, CA, USA 

DAPI Invitrogen Corporation, Carlsbad, CA, USA 

Goat-serum Sigma, St. Louis, MO, USA 
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5.1.5 Antibodies 

Anti-human RANTES Antibody R&D Systems, Inc., Minneapolis, MN, USA 

Normal Goat IgG Control Antibody R&D Systems, Inc., Minneapolis, MN, USA 

Rabbit anti-human CCR-5 Antibody Abcam Inc., Cambridge, MA, USA 

Goat anti-rabbit IgG (H+L) Invitrogen Corporation, Carlsbad, CA, USA 

	
  

5.1.6 Assays and Kits 

Invasion Chambers BD Biosciences, Bedford, MA, USA 

Quantikine ELISA CCL5, TNFα  R&D Systems Inc., Minneapolis, MN, USA 

Interleukin-6 (human) EIA Kit Assay Designs, Ann Arbor, MI, USA 

SYBR-Green Master Mix Applied Biosystems, Foster City, CA, USA 

RNAqueous®-Micro Kit Applied Biosystems, Foster City, CA, USA 

iScript cDNA Synthesis Kit Bio-Rad Laboratories, Hercules, CA, USA 

	
  

5.1.7 Antibiotics 

 Puromycin Sigma, St. Louis, MO, USA 

	
  

5.1.8 Zymography 

Zymogram (Gelatin) Gel Invitrogen Corporation, Carlsbad, CA, USA 

Prestained Protein ladder Invitrogen Corporation, Carlsbad, CA, USA 

Renaturing buffer Invitrogen Corporation, Carlsbad, CA, USA 
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Developing buffer Invitrogen Corporation, Carlsbad, CA, USA 

	
  

5.1.9 Real-Time PCR 

Primer Sigma, St. Louis, MO, USA 

DNAse/RNAse free water Invitrogen Corporation, Carlsbad, CA, USA 

BlueJuice gel loading buffer Invitrogen Corporation, Carlsbad, CA, USA 

Agarose gel (UltraPure) Invitrogen Corporation, Carlsbad, CA, USA 

	
  

5.1.10 Plasmid 

plox/EW-iRES-EGFP Tronolab, Lausanne, CH 

	
  

5.1.11 Chemicals 
	
  

Ethanol Sigma, St. Louis, MO, USA 

DMSO Sigma, St. Louis, MO, USA 

Trypan Blue Sigma, St. Louis, MO, USA 

Bovine Serum Albumin (BSA) Sigma, St. Louis, MO, USA 

Antibody Diluent Invitrogen Corporation, Carlsbad, CA, USA 

Ethidium bromide Sigma, St. Louis, MO, USA 

Recombinant human CCL5  Sigma, St. Louis, MO, USA 

Polybrene Infection/ Transfection Reagent Millipore, Billerica, MA, USA 

Coomassie Blue Sigma, St. Louis, MO, USA 
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5.1.12 Equipment 

Centrifuge, Model 5682 Forma Scientific Inc., Marietta, OH, USA 

Steri-Cult Incubator Forma Scientific Inc., Marietta, OH, USA 

ChemiImager (Zymography) Alpha Innotech Corp., San Leandro, CA, USA 

Digital camera Canon, Lake Success, NY, USA 

Hemacytometer Hausser Scientific, Horsham, PA, USA 

Axiovert 25 (microscope) Zeiss, Thornwood, NY, USA 

Axiovert S100 (Fluorescence microscope) Zeiss, Thornwood, NY, USA 

 

Cool SNAP cf (Camera) Photometrics, Tucson, AZ, USA 

µ-Quant (Plate-Reader) Bio-Tek Instr. Inc., Highland Park, VT, USA 

i-Cycler (RT-PCR) Bio-Rad Laboratories, Hercules, CA, USA 

x-cell Sure Lock (Zymography) Invitrogen Corporation, Carlsbad, CA, USA 

FACSVantage SE cell sorter Becton–Dickinson, Franklin Lakes, NJ, USA 

	
  

5.1.13 Software 

NIS-elements BR Nikon Instruments Inc., Melville, NY, USA 

ImageJ http://rsb.info.nih.gov/ij/ 

SPSS (Version 16) SPSS Science, Chicago, IL, USA 
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5.2 Cell biology methods 
 
5.2.1 Isolation and culture of adipose tissue derived stem cells 

(ASCs) 
 
5.2.1.1 murine ASCs 

Murine adipose tissue derived stem cells were obtained from Balb/c mice (InGeneron, 

Inc.) following the guidelines of Veterinary Medicine & Surgery of the MD Anderson 

Cancer Center. The procedures were carried out at InGeneron Inc., Houston, TX. For 

primary culture of murine adipose tissue derived stem cells regular α-MEM 

supplemented with 20% FBS, penicillin (100 U/ml), 100 µg/ml streptomycin and 0.3 

mg/ml L-Glutamin. 

PROTOCOL 

Each mouse was sacrificed by carbon dioxide inhalation. After performing a 

longitudinal cut from the umbilical area to the ventral neck, skin was further dissected 

without disturbing the muscular fascia. Subcutaneous fat was scratched off, collected 

in a sterile petri-dish, humidified with PBS and put on ice until digestion. The fat tissue 

was furthermore harvested from the renal capsules after opening the abdominal cavity. 

The collected fat mass was weighed and minced with a razor blade to less than 1 mm3 

pieces in a petri dish. Samples were processed from this step on as described above 

for human adipose tissue.  
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5.2.1.2 human ASCs 

Adipose tissue was obtained from patients undergoing elective liposuction (Fig 2). After 

isolation, cells were grown in regular α-MEM supplemented with 20% FBS, penicillin 

(100 U/ml), 100 µg/ml streptomycin and 0.3 mg/ml L-Glutamin. 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

 

PROTOCOL 

After its weight was recorded, the fat tissue was washed with sterile Phosphate 

buffered saline (PBS) and subsequently minced thoroughly into pieces of less than 1 

mm3. The minced tissue was incubated with Dulbecco’s Phosphate-buffered saline (10 

ml per gram fat) containing two units Blendzyme 3 per gram fat for 30 minutes at 37 °C 

on a shaker at 50 rpm. Thereafter the suspension was disaggregated by pipetting it 

through a 25 ml serological glass pipette 10 times under sterile conditions. The 

incubation procedure was repeated for 10 minutes followed by pipetting. After a total 

digestion time of approximately 30 minutes the processed tissue was transferred into 

50 ml plastic tube, followed by centrifugation at 1500 rpm for 10 minutes and 3 washing 

Fig.	
  2	
  a)	
  Human	
  fat	
  obtained	
  during	
  surgical	
  liposuction	
  and	
  processed	
  for	
  isolation	
  of	
  ASCs.	
  b)	
  Human	
  fat	
  
tissue	
  after	
  digestion,	
  filtration	
  and	
  centrifugation	
  steps.	
  The	
  pellet	
  contains	
  the	
  target	
  cells	
  which	
  were	
  
subsequently	
  cultured	
  in	
  T75-­‐Flasks	
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steps with phosphate buffered saline (PBS). The cell pellet was resuspended in PBS 

and subsequently filtered through a 100 µm vacuum filtration system. The filtered cell 

suspension was then centrifuged at 1500 rpm for 10 minutes followed by two washing 

steps with PBS. The pelleted cells were resuspended in growth medium consisting of 

alpha  modification of Eagle’s medium (α-MEM), 20 % fetal bovine serum (FBS), 2 mM 

L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin. Plastic adherent adipose 

tissue derived stem cells (ASCs) were grown in cell culture flasks (Fig. 3) at 37 °C in a 

humidified atmosphere containing 5 % CO2. Daily washings removed red blood cells 

and non-attached cells. Three to five days later, ASCs were plated in tissue culture 

flask at a density of 1,000 cells/cm2. 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

 
 
 
 
 
 

Fig.	
  3	
  Human	
  adipose	
  
tissue	
  derived	
  stem	
  cells	
  
in	
  culture.	
  Phase	
  contrast	
  
picture	
  of	
  hASCs	
  at	
  
passage	
  3,	
  brightfield	
  and	
  
10x	
  magnification	
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5.2.2 Cell freezing and thawing 

To maintain a stock of each cell line, 106 cells/freezing vial were stored in a liquid 

nitrogen tank. 

PROTOCOL 

Cells to be stored were trypsinized, counted and centrifuged at 1400 rpm for 5 minutes. 

The cell pellet was then resuspended in freezing medium (FBS containing 10% 

DMSO).  1 ml of freezing medium and 106 cells was pipetted into freezing vials and 

stored for 24h at -70oC.  After 24h at -70oC freezing vials were transferred to the liquid 

nitrogen tank. 

To thaw cells, the specific cell-culture medium had been preheated in a T75 flask in the 

incubator. The freezing vial was warmed to 37oC after being removed from the nitrogen 

tank and complete content was transferred into 37oC warm medium of T75 flask. 

Medium was changed 24h after thawing procedure. 

5.2.3 Labeling of cells 
 
5.2.3.1 GFP-labeling  

To clearly identify the counted cells on the lower surface of invasion assay 

membranes, cells were either labeled with green fluorescent protein (GFP), DiI or DiO. 

Nuclei were stained with DAPI. 

PROTOCOL (GFP-LABELING) 

MDA MB 231 cells or 4T1 cells respectively grown in bulk (in T75 flasks) for 2 weeks 

were detached by trypsin-EDTA treatment and replated in 6-well plates at a density of 5 

x 104 cells in 2 ml of α-MEM (MDA MB 231) or RPMI (4T1) per well. Transductions with 
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a plox/EW-iRES-EGFP lentivirus were carried out in the presence of 8 µg of Polybrene 

per ml. After incubation at 37°C for 24 h, the transduction medium was replaced with 

fresh α- MEM (RPMI respectively). The cells were kept for 3 more weeks with medium 

changes at weekly intervals before FACS analyses were done. After 3 weeks GFP-

positive cells were analyzed and sorted using FACSVantage SE cell sorter. GFP-

positive cells were sub cultured in α-MEM/RPMI (both 10% FBS) until used for invasion 

assays. 

5.2.3.3 DiI, DiO and DAPI staining 

 

PROTOCOL (DII)  

Cells that were 80% confluent in a T25 flask were incubated at 37oC in 5% CO2 with 

3ml of their regular Culture-Medium, containing 15 µl of DiI (Dilution of DiI 1/200) for 

1h. In the next step cells were washed 2x with PBS, before regular medium was added 

for a 5 minutes incubation time. This step was repeated and cells were then harvested 

and seeded for the following experiment. 

PROTOCOL (DIO) 

The procedure applied was analogue to the one described for DiI-Staining. 21µl of DiO 

stock solution were diluted in 3 ml of corresponding culture medium. 

 

PROTOCOL (DAPI) 

Cells were fixed with 4% PFA (Volume was adapted to experimental setting) for 10 

minutes at room temperature. After rinsing 2x with PBS cells were exposed to a 1/1000 

diluted DAPI solution (1µl of DAPI stock solution in 1 ml of PBS) for 15 min at room 

temperature protected from light. Cells were rinsed again and pictures were taken. 
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5.2.3.3 Immunostaining 

The cells subject to immunostaining were seeded in a density of 3 to 5 x 104 in 12-well 

plates. The staining procedure was carried out according to the following protocol: 

1. Washing of cells twice with PBS. 
2. Adding of 4 % paraformaldehyde for 10 min at RT. 
3. Washing of cells twice with PBS. 
4. Adding of serum blocking solution (10% goat serum), incubation at RT for 10 

minutes 
5. Adding of primary antibody (dilution 1:100 in antibody diluent), incubation at  

37 oC for 1 hour, or incubation overnight at 4 oC 
6. Washing of cells twice with PBS. 

	
  

The following steps were carried out in the dark. 

	
  
7. Adding of secondary antibody (dilution 1:1000 in antibody diluent); incubate at 

37 oC in moist chamber for 40 minutes 
8. Washing of cells twice with PBS. 
9. Adding of DAPI  (Dilution of 1:1000 in PBS), incubation at RT for 15 mins 
10. Washing of cells twice with PBS. 

	
  

Cells were viewed under the fluorescent microscope and pictures were taken at a 

10/20 fold magnification. 

5.2.4 Conditioning of medium 

Media of hASCs or MDA MB 231 were conditioned to elucidate whether humoral 

factors secreted by the cells would induce CCL5 secretion in other cell lines. 
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PROTOCOL 

Cells were seeded in 6-well plates at a confluence of 40-50% in 5% FBS containing 

medium. After 48h the medium was harvested, centrifuged at 1500 rpm for 5 minutes. 

The supernatant was passed through  a Millipore sterile 50 mL filtration system with a 

0.45-µm polyvinylidene difluoride membrane. Conditioned medium was stored at -20oC 

until used for ELISA or Proliferation Assay. Conditioned medium from MDA MB 231 

cells (Tumor-conditioned medium, TCM) or from hASCs (stem cell conditioned 

medium, SCCM) was also used to stimulate other cell lines for 48h before stored at -

20oC and analyzed with ELISA. 

5.2.5 Proliferation Assay 

To see whether the milieu created by hASCs provides a proliferation friendly 

environment for MDA MB 231 cells a proliferation assay was conducted by 

documenting viable cell numbers over four days in the control group and the treatment 

group respectively. 

PROTOCOL 

104 MDA MB 231 cells were seeded in 6-well plates in 2 ml of MEM (10% FBS). After 

24h medium was exchanged to MEM (5% FBS) in the control group and to stem cell 

conditioned medium (conditioning time 48h) in the treatment group. Cell number and 

viability was assessed after day 1, day 2, day 3 and day 4 with Trypan Blue exclusion 

test. 
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5.2.6 Direct co-culture Assay 

Breast cancer cells (MDA MB 231/MCF-7) were given the possibility to interact directly 

with stromal (hASCs/WI-38) or epithelial cells (HMECs). The supernatant of direct co-

cultures was used for chemokine/interleukin analysis by ELISA. 

PROTOCOL 

After washing cells with PBS they were digested with Trypsine and counted. Breast 

cancer cells and stromal/epithelial cells were always seeded at a ratio of 1:2 

(BCC:stromal/epithelial cell).  When seeded in a  6-well plate the absolute seeding 

number for Breast cancer cells was 5x104 and for stromal/epithelial cells 105 per well. 

5.2.7 Invasion Assay 

In order to assess the ability of cells to invade extracellular matrix, Boyden Chamber 

Invasion assays were used. The membranes of the inserts were covered with Matrigel 

(main components being laminin and collagen IV) and thus represent a valuable tool to 

evaluate invasion in vitro which can be correlated to metastatic behavior of tumor cells 

in vivo. 

PROTOCOL 

The chemoinvasion assay was performed using Boyden chambers with filter inserts 

(pore size, 8 µm) coated with Matrigel in 24-well dishes (BD Biosciences Bedford, MA) 

according to the manufactures instructions. Before performing the invasion assay, cells 

were mixed together in 5% FBS containing MEM when seeded in co-culture. 

Approximately, 3 x 104 cells or 6 x 104 cells respectively were placed in 600µl of 5% 

FBS containing MEM in the upper chamber, and 750µl  of the same medium containing 

10% FBS was placed in the lower chamber. The plates were incubated for 48 h at 370C 
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in 5% CO2. Cells on the upper side of the filters were removed with cotton-tipped 

swabs, and the filters were rinsed with PBS. Cells on the lower side of the filters were 

examined and counted under a microscope. Fluorescent cell signal of GFP/DiI/DAPI-

labeled 4T1 or MDA MB 231 cells was counted in five randomly chosen view fields at a 

10x magnification of every insert (Fig 4).  

 

 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

5.2.8 CCL5 treatment  

Breast cancer cells (MDA MB 231) and hASCs were stimulated with human 

recombinant CCL5 in different concentrations to see whether CCL5 induces a higher 

expression of MMP-2 /MMP-9 both on mRNA and active protease level. 

 

 

Fig.	
  4	
  	
  a)	
  Insert	
  and	
  24-­‐well	
  plate	
  containing	
  medium	
  as	
  used	
  for	
  invasion	
  assays.	
  b)	
  Schematic	
  
illustration	
  of	
  invasion	
  assay	
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PROTOCOL 

Cells were grown in 6-well plates to 70-80% confluence.  When the experiment was 

started, medium was changed to 5% MEM containing 1ng/ml, 5ng/ml, 10ng/ml, 

20ng/ml and 100ng/ml of recombinant human CCL5. Cells were incubated at 37oC, 5% 

CO2 and 95% humidity for 1h, 2h and 48h. At the end of the treatment, medium was 

harvested, centrifuged at 1500 rpm for 5 minutes and supernatant-aliquots stored at -

20oC until used. Cells in each well were counted (Trypan Blue) and either disposed or 

used for RNA extraction. 

5.3 Molecular biology methods 
 
5.3.1 ELISA 
 

Enzyme-linked Immunosorbent assay is a common and widely used technique 

designed for detecting and quantitating substances such as peptides, proteins, 

antibodies, antigens and hormones. 

The plate surface is coated with an antibody (capture antibody) which specifically binds 

to one particular type of protein. After adding the sample to the plate, the proteins of 

interest adhere to the antibody-coated surface. In the next step, detection antibody 

specific to the protein of interest is added to all wells. The detection antibody binds to 

the capture antibody-linked proteins; any unbound detection antibodies are removed by 

a subsequent washing step. Thereafter, a secondary enzyme-conjugated antibody is 

added which recognizes the detection antibody. In the final step, a substrate is added 

and converted by the antibodylinked enzyme to a detectable form. In order to quantify 

the sample proteins, the generation of a standard curve with known protein 

concentration is required which is typically a serial dilution of the protein. Protein 

concentration of CCL5/IL-6/TNFα in the supernatant of cell cultures was achieved by 

ELISA according to the manufacturer’s protocol. 
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5.3.2 RNA extraction 
 

In order to evaluate the mRNA levels of different genes of interest under different 

conditions, RNA was extracted from cells, transcribed into cDNA stored at -200C and 

subsequently used for real-time PCR analysis.  

PROTOCOL 

Total RNA was extracted from hASCs and MDA MB 231 after CCL5 treatment for 1h, 

2h, and 4h using RNAqueous kit (Applied Biosystems) according to the manufacturer’s 

instructions. The final concentration of RNA was determined with a spectrometer at 

wavelengths of 260 nm and 280 nm.  

The RNA was then used right away for subsequent reverse transcription into 

complementary DNA (cDNA) or stored at -80oC. 

5.3.3 cDNA synthesis 

The extracted total RNA was reverse transcribed into cDNA using iScript cDNA 

Synthesis Kit according to the manufacturer’s instructions. The added amount of RNA 

was standardized between samples to the concentration of 1 µg/µl. 

	
  

Component	
   Total	
  volume:	
  20	
  µl	
  

RNA	
   x	
  µl	
  

Reaction	
  mix	
   4	
  µl	
  

Reverse	
  transcriptase	
   1	
  µl	
  

RNA	
   y	
  µl	
  

 

x	
  =	
  volume	
  of	
  RNA	
  that	
  equals	
  1	
  µg	
  after	
  
measuring	
  conc.	
  with	
  spectrometer	
  
y	
  =	
  volume	
  of	
  water	
  	
  
to	
  add	
  reaction	
  volume	
  up	
  to	
  20	
  µl	
  

Table 2 cDNA reaction mix 
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PROTOCOL 

The complete reaction mix was incubated using following cycles with the iCycler 

(BioRad): 5 minutes at 25oC, 30 minutes at 42oC, 5 minutes at 85oC, and kept at 4oC 

until stored at -20oC and subsequently used for real-time PCR. 

5.3.4 Real time PCR 

Detection of gene transcripts in MDA MB 231 and hASCs was determined by qRT-

PCR (quantitative real time polymerase cheain reaction). All samples were prepared 

and quantified as described above. mRNA expression level was determined with RT-

PCR using SYBRGreen assay according to manufacturer’s instructions. 12.5 µl of the 

assay reaction mix, 1 µl of each primer (Table 2) and 1 µl of cDNA were mixed with 

water to a total volume of 25 µl and placed into BioRad PCR cycler. For relative 

quantification,  

glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH) served as reference and data 

were analyzed according to Pfaffl method.  

The sequences (5’-3’) for the primers were the following: 

	
   GAPDH-forward  5’- GAA GGT GAA GGT CGG AGT C -3’ 

 GAPDH-reverse  5’- GAA AGA TGG TGA TGG GAT TTC -3’ 

 MMP-2-forward  5’- TGGCGATGGATACCCCTTT -3’ 

 MMP-2-reverse  5’- TTCTCCCAAGGTCCATAGCTCAT -3’ 

 MMP-9-forward  5’- CCTGGGCAGATTCCAAACCT -3’ 

 MMP9-reverse  5’- GCAAGTCTTCCGAGTAGTTTTGGAT -3’ 

 CCR-5-forward  5′-CAAAAAGAAGGTCTTCATTACACC-3′  

 CCR-5-reverse  5′-CCTGTGCCTCTTCTTCTCATTTCG-3′ 
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5.3.5 Zymography 

In order to detect catalytically active MMP-9 and MMP-2 respectively zymography was 

performed with supernatants of cell cultures. 

 

PROTOCOL 

 

MMP-9 and MMP-2 activity was determined using a 10% zymogram (gelatin) precast 

gel (Invitrogen cat no. EC6175). Preparation of cell lines was conducted by seeding the 

appropriate amount of cells (50 000) into each respective well of a 6-well plate. Cells 

were cultured at 37oC (5% CO2 atmosphere) until 80% confluency. Upon confluence 

media was changed to serum-free media and cells were cultured for an additional 48 

hours. After 48 hours conditioned media was collected and mixed with equal volumes 

of 2X SDS (15 µl conditioned media: 15 µl 2X SDS). (Note: Preparation of conditioned 

media was not heated or reduced for detection of MMP-9 activity using zymography). 

The electrical running apparatus was then prepared containing the 10% zymogram 

(gelatin) pre-cats gel and 1X running buffer (12g Tris, 57.6g Glycine, 10% SDS, 4l 

distilled water). Samples were then loaded accordingly (15 µl Invitrogen pre-stained 

protein ladder-cat no. 10748010) into the 10% zymogram (Gelatin) pre-cat gel and 

allowed to run at room temperature at 125V for 1.5 hours. After electrophoresis the 

zymogram gel was removed and incubated (30 minutes with gentle agitation) at room 

temperature in a zymogram renaturing buffer (1:9 with deionized water). Upon 

incubation, the renaturing buffer was decanted and further incubated at room 

temperature in 1X developing buffer (1:9 with deionized water) for 30 minutes. After 30 

minutes the developing buffer was then decanted and replaced with fresh developing 

buffer. After equilibration with fresh developing buffer the zymogram gel was allowed to 

incubate overnight at 37oC. After overnight incubation the developing buffer was 

decanted and replaced with coomassie staining solution (25% MeOH, 10% Acetic Acid, 

and 0.1% Coomassie Brillant Blue-dissolved in water before adding) for two hours at 

room temperature. Upon staining the zymogram gel was destained (10% Acetic acid, 

15% MeOH) at room temperature using gentle agitation. Once destained the 



Materials	
  and	
  Methods	
   	
  36	
  

zymogram gel was photographed (ChemiImager 5500) to determine the areas of 

protease activity (clear bands). 

5.4 Statistical analysis 

Data are presented as means ± standard deviation (SD). Analysis was performed 

using the Statistical Program for Social Science (SPSS) for Windows (SPSS Inc., 

Chicago, IL, USA).  A level of p ≤ 0.05 was considered to be statistically significant. 

5.5 Flow chart of experiments 
	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

The experimental outline to address the questions standing in the focus of this work is 

shown in Figure 5.  

Fig.	
  5	
  Flowchart	
  of	
  experiments	
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6. Results 
 
6.1  Proliferation of MDA MB 231 cells in stem cell 

conditioned medium (SCCM) 

As a starting point to investigate the interaction of adipose tissue derived stem cells 

and breast cancer cells the effect of soluble factors secreted by hASCs on the 

proliferation of the human breast cancer cell line MDA MB 231 was studied. Therefore 

5% FBS containing cell culture medium (α-MEM) of human ASCs was conditioned for 

48h and MDA MB 231 cells were exposed to the conditioned medium to evaluate their 

growth rate in this environment in order approach the question whether and how 

hASCs interact with MDA MB 231 cells. 

104 cells/well of MDA MB 231 cells were seeded in a set of 6-well plates and exposed 

either to stem cell conditioned medium (SCCM) or to regular 5% FBS containing α-

MEM as a control. 

The factors secreted by the hASCs had no negative impact on the growth rate of the 

MDA MB 231 cells. Notably a higher proliferation rate could be observed in the group 

with SCCM compared to the control group with regular growth medium on day four 

(Fig. 6). 
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6.2 ASCs increase invasiveness of breast cancer 
cells 

To characterize the effect that mesenchymal stem cells derived from the adipose tissue 

exert on the invasive behavior of breast cancer cells invasion assays were performed. 

One murine breast cancer cell line (4T1) and two human breast cancer cell lines (MCF-

7 and MDA MB 231) differing in their invasive behavior (MCF-7 cells tend to be less 

invasive than MDA MB 231 cells) were seeded alone or together with ASCs on 

matrigel coated membranes imitating extracellular matrix. The matrigel on the chamber 

Fig. 6 Stem cell conditioned medium enhances proliferation of MDA MB 231. 
MDA MB 231 cells were grown in 6-well plates. The SCCM group was 
exposed to stem cell conditioned medium (hASCs). The control was exposed 
to regular growth medium containing 10 % FBS. The SCCM group shows a 
higher proliferation at day 4. * P < 0.05, n.s. not significant. 
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membranes mainly contains Laminin (56%), Collagen IV (31%) and Entactin (8%). 

Therefore cells attempting to migrate through this membrane have to secrete 

extracellular matrix digesting enzymes like Matrixmetalloproteinase 2 (MMP-2) and 

MMP-9 besides of being stimulated to migrate. 

Following a gradient from 5% FBS containing medium (upper chamber) to 10% FBS 

containing medium (lower chamber) the cells had to degrade the matrigel to invade 

towards the lower surface of the membrane.  Initially a roughly doubling of invasive 

murine breast cancer cells could be detected. To see whether the observed effect in 

the context of murine cells interacting with murine adipose-tissue derived stem cells 

also applies for human cells a series of invasion assays was performed to elucidate the 

effect of hASCs on MCF-7 and MDA MB 231 cells. In parallel invasion assays were 

carried out with 24h, 36h and 48h incubation time. It turned out that an incubation time 

of 48h for the murine cell lines and 36h for the human cell lines represented the ideal 

time frame to evaluate the difference in number of invasive cells. The ratio between 

seeded breast cancer cells and additional cell line (hASCs, WI-38 or HMECs) was kept 

at 1:2 for all experiments. 

	
  

6.2.1 mASCs and 4T1 

3x104 GFP-labeled 4T1 cells and 6x104 non-labeled mASC (Passage 2-4) were seeded 

on the upper surface of a matrigel coated membrane to evaluate the number of 

invasive cells without any further conditions. After 48h the non invasive cells were 

scrubbed off the upper surface by using a moistened q-tip. The remaining cells were 

counted under the microscope in five randomly chosen view fields at a 10x 

magnification. With the overlay of the brightfield image and the GFP-Signal it could be 

confirmed that the GFP-Signal clearly correlates with the cells and is not an artifact of 

the membrane (Fig. 7). 
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To evaluate the effect of mASCs (6x104) on 4T1 (3x104) invasion the two different cell 

lines were co-seeded on the same membrane. After removing again the non-invasive 

cells only the GFP-Signal was counted in five view fields (Fig.8). Co-seeding lead to an 

increase of 137 % of invasive 4T1 cells (27.6 ± 6.98 as compared to 11.6 ± 5.12 per 

view field). 

 

 

Fig.7 Murine adipose tissue derived stem cells promote GFP-4T1 breast cancer cell 
invasion. Pictures a,d,g show the matrigel coated membrane with the indicated cells 
seeded on the surface after 48h incubation time before scrubbing off the non-invasive 
cells. a) 6 x 104 mASCs, d) 3 x 104 GFP-labeled 4T1, g) 3 x 104 GFP-labeled 4T1 
coseeded with 6 x 104 mASCs. Pictures b,e,h show the membranes after removing all 
non-invasive cells. b) mASCs, e) GFP-4T1, h) GFP-4T1 with mASCs. Pictures c,f,i show 
the GFP-Signals of invasive GFP-labeled 4T1 cells. 

. 
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6.2.2 hASCs and MCF-7 

5x104 DiI-labeled MCF-7 cells alone and 5x104 DiI-labeled MCF-7 cells together with 

105 hASCs (Passage 2-4) were seeded on the Matrigel surfaces. After removing all 

non-invasive cells the nuclei of all invasive cells on the lower surface of the 

membranes were counterstained with DAPI. 

Since MCF-7 is a less invasive breast cancer cell line and tends to grow in an epithelial 

cell like manner it was not possible to clearly identify single cells. Therefore, the visual 

impression of an increase in invasive number of MCF-7 cells could not be quantified as 

for the 4T1 and MDA MB 231 cells. 

Fig.8 Coseeding of GFP-4T1 and mASCs resulted in 2.38 fold higher number of 
invasive GFP-4T1 cells as compared to seeding 4T1 cells alone.  Results are 
expressed as the mean ± SD. *P < 0.005 
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Interestingly, the staining of the nuclei with DAPI revealed that a lot more cells were 

invasive than the DiI (MCF-7) staining showed alone (Fig. 9) indicating that hASCs 

have a strong invasive capacity.  

	
  

 
 
 
 
 
 
 
7.2.3 hASCs and MDA MB 231 

 

 

With the MDA MB 231 human breast cancer cell line we chose one of the most 

invasive and metastatic cell lines that have been established. Therefore these cells  

represent a powerful source to study mechanisms of invasion in vitro and in vivo. 

MDA MB 231 alone (3x104/insert) or MDA MB 231 (3x104/insert) together with hASCs 

(6x104/insert) were seeded on the matrigel surfaces. Furthermore, two more non-

tumorigenic  cell lines were coseeded with MDA MB 231 cells to elucidate whether the 

observed effect is indeed due to hASCs or simply a result of a higher seeding density. 

The human embryonic lung fibroblast cell line WI-38 has been used as control for the 

mesenchymal cell type and the immortalized human mammary epithelial cell line 

HMEC has been used as control for the epithelial cell type (Fig.10). 

Remarkably the increase in invasive breast cancer cells could be only observed when 

MDA MB 231 cells were given the possibility to interact with hASCs (105 ± 16.97 as 

Fig.9 hASCs promote invasion of MCF-7. Coseeding of MCF-7 along with hASCs resulted in 
more DiI labeled MCF-7 colonies on the lower surface of invasion chambers. a,b,c,d show 
different stainings and overlay of MCF-7 cells alone. e,f,g,h show different stainings of MCF-
7 coseeded with hASCs. The dye is indicated above each column. 
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compared to 46.4 ± 21.54). Whereas there was no increase in invasive MDA MB 231 

cells when seeded together with WI-38 or HMEC cells (Fig. 11). 

 

 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

 

 

 

 

 

 

 

Fig.10 Human adipose 
tissue derived stem cells 
promote invasion of MDA 
MB 231.  

a) Brightfield image of MDA 
MB 231  (35 x 103 cells) 
seeded on matrigel of 
invasion chamber.  

b) Phase contrast image of 
matrigel after scrubbing the 
upper surface with a cotton 
swab to remove all non-
invasive cells.  

c) GFP signal of invaded 
MDA MB 231 cells.  

d) Overlay of b) and c).  

e) Green signal shows 
invaded GFP-MDA MB 231 
when coseeded with 
hASCs.  

f) Green signal shows 
invaded GFP-MDA MB 231 
when Co-Cultured with 
hASCs in the presence of 
neutralizing CCL5-antibody 
(3µg/ml).  

g) Green signal shows 
invaded GFP-MDA MB 231 
when coseeded with WI-38 
cells.  

h) Green signal shows 
invaded GFP-MDA MB 231 
when coseeded with 
HMECs.  

The seeding ratio was 
always 1:2 (GFP-MDA MB 
231 : hASCs/WI-
38/HMEC). 
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To exclude that the alteration of invasive behavior is associated with the cell staining 

procedures the invasion assays for the MDA MB 231 series was carried out with GFP-

labeled MDA MB 231 cells as well as with DiI-labeled MDA MB 231 cells. The invasion 

promoting effect of hASCs on MDA MB 231 cells could be observed in a similar pattern 

in both conditions. 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

 

 
 
6.3  MDA MB 231 induce de-novo secretion of 

CCL5 (RANTES) in hASCs 

In order to identify potential mediators of the interaction between breast cancer cells 

and ASCs the chemokine CCL5 (RANTES) has been measured with ELISA as a 

candidate mediator that has been shown to be involved in breast cancer metastasis. 

Fig.11 Coseeding of GFP-MDA MB 231 and hASCs resulted in 2.26 fold higher number 
of invasive GFP-MDA MB 231 cells as compared to seeding GFP-MDA MB 231 cells 
alone. The CCL5 neutralizing antibody blocked the invasion promoting effect of hASCs. 
WI-38 and HMECs did not show the invasion promoting effect as compared to hASCs. 
Quantitative data of invaded GFP-MDA MB 231 cells per view field is shown as mean ± 
SD. * P<0.005, n.s. not significant. 
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Therefore breast cancer cells, ASCs or control cell lines have been seeded in systems 

of direct co-cultures in 6-well plates as shown below. 

 

 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

 

Figure 12 shows a direct co-culture of MDA MB 231 cells and hASCs (Passage 4). 

Both cell lines were labeled either with DiI (red, MDA MB 231) or DiO (green, hASCs) 

respectively prior to seeding cells. Before taking the pictures all cells were 

counterstained with DAPI (blue, nuclei). In the lower row starting from the left the 

brightfield picture, overlay of DAPI, DiI and DiO and the overlay of all is shown. The 

MDA MB 231 showed a regular distribution between the hASCs without building 

colonies of cancer cells. 

 

 

 

 

Fig.12 Direct Co-Culture of MDA MB 231 and hASCs. 5 x 104 DiI-MDA MB 231 (red) cells 
were seeded together with 105 hASCs (Passage 4, green) in 6-well plates. After 48h 
incubation direct Co-Cultures were fixed and nuclei were stained with DAPI (blue) before 
taking pictures. 
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Figure 13 shows a direct co-culture of MCF-7 cells and hASCs (Passage 4). Both cell 

lines were labeled as described above for the co-culture of MDA MB 231 and hASCs. 

In the lower row starting from the left the brightfield picture, overlay of DAPI, DiI and 

DiO and the overlay of all is shown. The MCF-7 formed round shaped islands of cancer 

cell colonies without penetrating the hASCs. The hASCs organized themselves around 

those islands. 

Interestingly these two human breast cancer cell lines seem to differ not only in their in 

vitro invasion capacity but also in their way of organizing in a direct co-culture with 

hASCs. The MDA MB 231 cells deriving from the more invasive cell line as compared 

to the MCF-7 cell line showed a more equal distribution of individual breast cancer cells 

between the hASCs. Whereas the MCF-7 cells did not leave their source colony and 

thus formed growing islands of monolayer breast cancer cells surrounded by hASCs 

indicating that signaling between these cell lines affects the growth pattern of hASCs in 

a specific way according to their invasive capacity. 

Fig.13 Direct Co-Culture of MCF-7 and hASCs. 5 x 104 DiI-MCF-7 (red) cells were seeded 
together with 105 hASCs (Passage 4, green) in 6-well plates. After 48h incubation direct Co-
Cultures were fixed and nuclei were stained with DAPI (blue) before taking pictures. 
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6.3.1 CCL5 is produced in direct co-culture of hASCs and 
breast cancer cells 

The concentration of CCL5 was measured in the supernatants of cell culture by 

harvesting the medium, centrifuging it at 1,500 rpm for 5 min and the supernatant was 

passed through a Millipore sterile 50 mL filtration system with a  0.45-µm polyvinylidene 

difluoride membrane. 

CCL5 could only be detected in the supernatants of the direct co-culture, whereas 

MDA MB 231 alone and hASCs alone did not produce any CCL5, highlighting this 

chemokine as potential target for further investigation (Fig.14a). By measuring the 

timepoints of 12h, 24h, 36h, 48h, 60h and 72h the kinetics of the chemokine showed a 

plateau starting between the 60h and the 72h timepoints (Fig. 15a). 

Furthermore there was no CCL5 detectable by exposing the MDA MB 231 cells to 

direct WI-38 contact (Fig. 15b). Interestingly CCL5 could be measured in the cell 

culture of HMEC and in the Co-Culture of HMEC together with MDA MB 231 (data not 

shown). 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Fig.14 a) CCL5 is produced by hASCs when exposed to tumor conditioned medium (MDA MB 
231) or in direct Co-Culture with MDA MB 231. All conditions were analyzed with ELISA after 
48h incubation.  b) CCL5 is produced by MCF-7 cells and not significantly more in direct Co-
Culture with hASCs. All columns without error bars indicate that no CCL5 was detectable with 
ELISA. 
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When measuring the supernatants of MCF-7 cultures a baseline level of CCL5 was 

secreted by MCF-7 cells. In contrast to the direct Co-Culture of MDA MB 231 with 

hASCs no induction of CCL5 secretion could be observed in the MCF-7/hASCs – direct 

co-cultures (Fig. 14b). 

From this point on we focused on the interaction of MDA MB 231 cells and hASCs 

since only in this context CCL5 was induced in hASCs in such a dramatic manner. 

6.3.2 Humoral MDA MB 231 derived factors induce CCL5 
secretion in hASCs 

To answer the question which cell line would be responsible for the CCL5 secretion the 

conditioned media of both hASCs and MDA MB 231 cells were used to stimulate the 

counterpart respectively (Fig. 16). 

 

 

Fig.15  a) Secretion kinetics of CCL5 in direct Co-Culture of MDA MB 231 and 
hASCs. b) hASCs exposed to tumor conditioned medium (MDA MB 231) was used as 
a control for this ELISA. Heat denaturation of TCM (MDA MB 231) eliminated the 
humoral factors secreted by MDA MB 231 cells to stimulate hASCs. CCL5 was not 
detectable in supernatants of WI-38 cell culture and direct Co-Culture of MDA MB 231 
and WI-38 cells. 
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CL5 was markedly high produced only by hASCs (Fig. 14a) after exposing them to  

tumor conditioned medium (TCM) while the MDA MB 231 cells did not secrete any 

CCL5 after being incubated with stem cell conditioned medium (SCCM). 

In order to see whether the humoral factors secreted by MDA MB 231 cells were 

proteins by nature, the TCM had been heat denatured before being used for hASCs 

stimulation. In this case there was no CCL5 measurable any more (Fig 15b). 

6.4 The CCL5-receptor CCR5 is expressed by 
both hASCs and MDA MB 231 

The main receptor for CCL5 is CCR5 and has been shown to play a pivotal role in the 

interaction of breast cancer cells and bone-marrow derived mesenchymal stem cells. 

Fig.16 Scheme of cross conditioning. Green (TCM) and yellow (SCCM) arrows indicate 
transfer of tumor conditioned medium (TCM) and stem cell conditioned medium (SCCM) to 
the according cell line as indicated. Red circles mark secretion of CCL5. 

	
  



Results	
   	
  50	
  

Therefore the expression of CCR5 (hASCs, MDA MB 231) as well as the exposure of 

the receptor on the cell surface has been investigated with RT-PCR and 

Immunohistochemistry (Fig. 17 and Fig. 18) respectively. 

 

 

 

 

 

 

 

 

 

 

 

RT-PCR for CCR5 was performed by using GAPDH as reference gene. The mRNA 

expression levels of the two cell lines relative to GAPDH for the CCL5 (RANTES) 

receptor CCR5 were calculated as shown below. The mRNA expression of CCR5 in 

MDA MB 231 was 40.09 fold higher as compared to hASCs in Passage 4. The relative 

expression was calculated according to the formula below. 

1) Expression (∆CT) = CT(target gene) - CT(reference gene) 

2) relative Expression = 2-∆∆CT[∆CT(MDA MB 231) - ∆CT(hASCs)] 

Figure 17 and 18 show DAPI staining for the nuclei, the red signal shows CCR5 on the 

cell surface and the overlay shows the association of receptor and nuclei staining for 

MDA MB 231 and hASCs as indicated. 

Interestingly both the cancer cell line MDA MB 231 and the hASCs showed a regular 

pattern of CCR5 on the cell surface. This shows that CCL5 has the possibility to bind to 

its main receptor on MDA MB 231 cells and hASCs. Following this insight the role of 

CCL5 in the context of enhanced invasion in the interaction of MDA MB 231 cells and 

hASCs needed to be clarified. 

Fig.17 Immunostaining (MDA MB 231) for CCR5.  
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6.5 CCL5 is necessary to promote invasion of 
MDA MB 231 

With CCL5 being secreted by hASCs only after being stimulated by humoral tumor 

derived factors the question arose whether CCL5 is involved in the promotion of MDA 

MB 231 invasion. Therefore the invasion assays have been repeated with additionally 

incubating the cells in the coseeding with a neutralizing CCL5 antibody. 

These invasion assays showed that adding the CCL5 antibody blocked the invasion 

enhancing effect of hASCs on MDA MB 231 (Fig. 10f). To exclude the possibility that 

random binding of the antibody was responsible for reducing MDA MB 231 invasion the 

control IgG antibody has been incubated during the invasion assays as well and did not 

show any alteration in MDA MB 231 invasive behavior. 

 

Fig.18 mRNA 
expression of 
CCR5 in MDA 
MB 231 and 
hASCs and 
Immunostainin
g (hASCs) for 
CCR5. 
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6.6 MMP-9 is a candidate protease contributing 
to higher invasion of MDA MB 231 

To further characterize the consequences of hASCs interacting with MDA MB 231 cells 

several zymographies have been carried out. Zymography is a valuable method to 

evaluate the production of certain enzymes and at the same time to see their 

enzymatic activity. In this case two candidate proteases have been looked at, 

Matrixmetalloproteinase-2 (MMP-2/Gelatinase A) and Matrixmetalloproteinase-9 

(MMP-9/Gelatinase B). 

 
6.6.1 MMP-9 activity is upregulated in direct co-culture of 

hASCs and MDA MB 231 

The settings for measuring the MMP-9/MMP-2 activity were the same as described 

above. MDA MB 231 (5 x 104 cells/well) and hASCs (105 cells/well) were seeded alone 

or together in direct co-culture (ratio of MDA MB 231 to hASCs was as before 1:2). The 

supernatants containing active MMP-2/MMP-9 were harvested as mentioned before 

and either directly used directly for zymography or stored at -20 oC until use. 

 

 

 

 

 

 

 

 

 

Fig.19 MMP-9 activity in 
MDA MB 231 and 
hASCs Co-Culture. 
MMP-9 activity was 
analyzed with a pre-cast 
(Gelatin) Zymogram gel. 
Lanes show clear bands 
of MMP-9 activity. 

	
  



Results	
   	
  53	
  

Notably after 36 and 48 hours there was a significant increase of active MMP-9 in the 

supernatants of the direct co-culture (Fig. 19). MMP-2 did not show any change in 

activity when MDA MB 231 cells were interacting with hASCs. The differences between 

bands of active Enzyme activity were confirmed by measuring the average density with 

the Software Image J. 

 

	
  

	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 20 Quantitative data of MMP-9 activity. The correlating bands of the zymography 
gel are displayed above each column. *P< 0.05 compared to hASCs cultured alone at 
48 hours. 
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6.6.2  CCL5 does not increase MMP-9 Activity in MDA MB 231 
but in hASCs 

With CCL5 and MMP-9 being upregulated in the supernatants of MDA MB 231 and 

hASCs co-cultures we wanted to answer the question whether MMP-9 might be a 

downstream effector molecule of CCL5. Since we already found that MMP-9 and MMP-

2 are higher expressed on the RNA level of MDA MB 231 after being stimulated for 2h 

with human recombinant CCL5 in a pilot experiment (data not shown) we wanted to 

confirm this observation on the level of enzyme activity by zymography (Fig. 21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the direct co-culture of MDA MB 231 and ASCs the highest activity of MMP-9 was 

detected between 36h and 48h. To determine the role of CCL5 in this context MDA MB 

231 were stimulated with CCL5 for 48h and the activity of MMP-9 and MMP-2 in the 

supernatants was analyzed by zymography. 

Fig.21 MMP-9 and MMP-2 activity of 
MDA MB 231 and hASCs after 
stimulation with recombinant human 
CCL5. Concentrations of CCL5 were 
applied as indicated above each 
condition. 
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The activity of neither MMP-2 nor MMP-9 was markedly altered in the treated MDA M 

231 cells as compared to the control group. However the activity of MMP-9 seemed to 

be lower in the 1ng/ml group (average density 96.37 ± 6.384 as compared to 144.809 ± 

24.603 in the control group). 

Interestingly the zymography of hASCs  stimulated with CCL5 also showed a lower 

average density in the 1ng/ml group (107.941 ± 16.224 as compared to 120.972 ± 

24.814 in the control group) but a higher average density in the 100 ng/ml group 

(146.147 ± 36.882 as compared to 120.972 ± 24.814 in the control group). 

6.7 Summary of Results 

Taken together the results can be summarized as the following: 

1) Adipose tissue derived stem cells (ASCs) promote breast cancer cell 

invasion in vitro 

2) Humoral tumor derived factors stimulate ASCs to produce CCL5 (RANTES) 

3) CCL5 plays a pivotal role in promoting breast cancer cell invasion in vitro 

4) MMP-9 is up regulated in the direct co-culture of breast cancer cells and 

ASCs 

5) CCL5 enhances MMP-9 activity in ASCs but not in MDA MB 231 breast 

cancer cells 
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7. Discussion 
	
  

The aim of this study was to clarify how adipose tissue derived stem cells (ASCs) as 

part of the breast cancer microenvironment might be involved in breast cancer 

metastasis. Furthermore, we sought to identify potential molecular targets in this 

interaction that could lead to the development of tumor microenvironment specific 

therapies in breast cancer. 

 

Evidence has been growing over the last decades that the tumor microenvironment is 

significantly involved in tumor progression on all stages, from primary tumor growth to 

development of distant metastases (Albini and Sporn, 2007; Elenbaas and Weinberg, 

2001; Witz, 2008). In this context, cancer associated fibroblasts (CAF), myofibroblasts, 

tumor associated macrophages (TAM), monocytes, as well as bone marrow derived 

progenitor and stem cells have been studied extensively and described in various 

aspects (Olumi et al., 1999; Jeon et al., 2008; Allavena et al., 2008b; Kaplan et al., 

2006). 

 

Furthermore, a variety of bone marrow derived cells have been shown to be involved in 

tumor growth through providing cellular components for neoangiogenesis, supporting 

the vascularization that is necessary for a tumor to grow beyond a certain size (Du et 

al., 2008). The group of Karnoub has investigated specifically the interaction of bone 

marrow derived stem cells and breast cancer cells in primary tumor growth as well as 

the rate of lung metastases in a murine breast cancer model (Karnoub et al., 2007). 

 

Interestingly the role of adipose tissue derived stem cells (ASCs) has not been 

addressed in the context of breast cancer microenvironment and metastasis. With the 

growing evidence for alteration of the tumor microenvironment resembling 

inflammatory processes, we hypothesized that ASCs might represent an important 

source of early multipotent response cells being manipulated by breast cancer cells, 

and thus contribute to creating a reactive environment, for example, by either 
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producing chemoattractant factors that subsequently recruit inflammatory cells or by 

secreting factors that act in a paracrine fashion on breast cancer cells or the 

surrounding microenvironment. 

 

In order to investigate the interaction of ASCs and breast cancer cells, we started to 

evaluate the effect of stem cell conditioned medium on breast cancer cell proliferation 

by exposing human breast cancer MDA MB 231 cells to stem cell conditioned medium 

(SCCM) and compared their growth rate to MDA MB 231 cells in regular growth 

medium.  

 

Similar experiments with various cancer types have been done by other groups (Zhu et 

al., 2009; Ohlsson et al., 2003; Ramasamy et al., 2007) and show an inhibition of 

cancer cell proliferation. However, in these cases, irradiated stem cells, virally 

transfected stem cells, or much higher tumor cell-stem cell ratios had been used for the 

experiments, which might have altered the outcome of these studies.  

 

In contrast to these findings, we (Muehlberg et al., 2009) and other groups (Karnoub et 

al., 2007; Mishra et al., 2008) showed that co-injection of breast cancer cells and 

mesenchymal stem cells from the bone marrow or tissue resident stem cells derived 

from the adipose tissue enhanced tumor growth tremendously in nude mice models. 

The proliferation experiment of the present study confirmed these in vivo observations 

in such a way that we could detect a higher number of MDA MB 231 cells after being 

exposed to SCCM over four days. The first significant difference in cell number was 

observed on day four.  

Furthermore, this experiment was important towards ruling out the possibility that 

proliferation differences within the first 48 hours would affect the final results of the 

invasion assays. 

 

To study the effect of a direct co-culture of ASCs and breast cancer cells on the 

invasive capacity of the tumor cells, several invasion assays have been carried out. We 

chose the murine breast cancer cell line 4T1 and the two human breast cancer cell 

lines MCF-7 and MDA MB 231 that have been characterized for different invasive 
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capacities. In both the 4T1 and the MDA MB 231 co-culture, we could observe an 

increase in invasive cancer cells of 137% and 126% respectively.  

Since the MCF-7 cell line did grow into a colony, we were not able to quantify the visual 

impression of an increased number of invasive tumor cells. However the increase of 

invasive MCF-7 cells when co-seeded with ASCs seemed not to be as dramatic as 

compared to 4T1 and MDA MB 231 cells.  

 

This might imply that the invasion-promoting effect of ASCs becomes more important 

according to the initial invasiveness of the breast cancer cells, although we could not 

confirm this hypothesis due to difficulties in quantification of invasive MCF-7 cells. 

These results are in line with the in vivo studies that have been done by the laboratory 

of Karnoub (Karnoub et al., 2007). 

 

According to the observations described above we focused on MDA MB 231 cells for 

further investigation. Our question was how the ASCs could possibly enhance the 

invasive behavior of breast cancer cells. 

 

In a candidate approach we measured the chemokine CCL5 (RANTES) in the 

supernatants of ASCs, MDA MB 231, and direct co-cultures in a ratio of stem cells to 

tumor cells of 1:2.  

 

Remarkably, a high concentration of CCL5 could only be detected in the direct co-

culture of MDA MB 231 cells with hASCs and was not detectable at all in the 

supernatants of the corresponding single cultures.  

Through further experiments, we concluded by ELISA that humoral tumor derived 

factors secreted by MDA MB 231 cells induce a de novo secretion of CCL5 by ASCs. 

According to different studies (Altman et al., 1997; Azenshtein et al., 2002), epithelial 

cells, immunocompetent cells and tumor cells either constitutionally express CCL5 or 

are stimulated by tumor necrosis factor α (TNFα) and consequently express CCL5 

(Robinson et al., 2002; Balkwill, 2004).  

However, the TNFα level that we measured in the supernatants of MDA MB 231 tissue 

cultures was very low, and experiments where we incubated the supernatants of MDA 
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MB 231 cells with neutralizing antibodies against TNFα before exposing ASCs to the 

tumor conditioned medium did not result in a decrease in CCL5 secretion by ASCs.  

We concluded that either other factors are responsible in this context for the induction 

of CCL5, or the complex interplay between several factors is causing the secretion of 

CCL5.  

Possible ways to identify these mediators are to use shRNA treated MDA MB 231, thus 

knocking down different genes encoding possible mediators, or by screening the 

supernatants of MDA MB 231 cells for active proteins and subsequently characterizing 

those. The group of Glod (Lin et al., 2008b) used an interesting experimental approach 

including mass spectrometry to identify factors secreted by MDA MB 231 cells 

responsible for the chemoattraction of mesenchymal stem cells from the bone marrow 

(MSCs).  

Cyclophilin B and hepatoma-derived growth factor were the two proteins characterized 

for their promigratory effect on MSCs. It would be interesting to see whether these 

factors are also involved in the stimulation of ASCs. 

 

After having identified CCL5 as a de novo secreted chemokine in the interaction of 

ASCs and breast cancer cells, we asked whether CCL5 might be involved in promoting 

the invasion of MDA MB 231 cells. We therefore incubated the direct co-cultures of 

ASCs and MDA MB 231 cells with a neutralizing antibody against CCL5.  

We found that blocking CCL5 completely abolished the invasion-promoting effect of 

ASCs but did not inhibit the intrinsic invasion capacities of MDA MB 231. These in vitro 

findings support the importance of CCL5 for MDA MB 231 metastasis as shown by the 

group of Karnoub (Karnoub et al., 2007). We confirmed with a control IgG antibody that 

only specific blocking of CCL5 was responsible for this observation.  

Interestingly the study of Karnoub et al. (Karnoub et al., 2007) showed in a mouse 

model that systemic application of a neutralizing CCL5 antibody significantly inhibited 

the metastatic spread from the primary tumor site.  

 

Trastuzumab and bevacizumab, two monoclonal antibodies targeting HER-2 and 

VEGF respectively, are already in use in the context of managing metastatic disease in 

breast cancer patients. Women with widespread disease involving multiple 
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symptomatic sites especially seem to be better served with an initial systemic 

treatment. However, only five to ten percent of patients with MBC survive five or more 

years. Clinical trials evaluating the benefit of early breast cancer stage patients treated 

with trastuzumab did not show a clear benefit (Mackey et al., 2009).  

Therefore, new molecular targets such as chemokines might help in finding optimal 

combination therapies that finally lead to better control of metastatic dissemination in 

breast cancer patients.  

 

We asked whether MMP-9 might be involved in the interaction of ASCs and MDA MB 

231 cells, and subsequently conducted experiments to measure MMP-9 activity in the 

supernatants of direct ASC - MDA MB 231 co-cultures at different time points and 

found that MMP-9 is upregulated in a time-dependent manner (Fig. 18). 

 

However, it was still not clear which of the two cells or if maybe both were secreting 

MMP-9. It has been shown that MMP-9 is regulated by various factors such as IGF, 

TNFα, TGFβ (Mira et al., 1999; Hagemann et al., 2004) and other factors like the 

chemokine CCL5 (Okita et al., 2005; Chabot et al., 2006), in some cases dependent on 

the Smad-, Ras-, and PI3-kinase-signaling pathway (Stuelten et al., 2005).  

We first wanted to see whether CCL5 is possibly involved in upregulating MMP-9 or 

MMP-2 in either the MDA MB 231 or the ASCs, and therefore checked for the 

expression of the major CCL5 receptor CCR5. 

 

In order to see whether MDA MB 231 cells or ASCs express the main CCL5 receptor 

CCR5, we used RT-PCR and. Interestingly, we found that the expression of CCR5 in 

MDA MB 231 cells was 40.9-fold higher than normal, according to our RT-PCR results. 

The immunostaining revealed that CCR5 was detectable in a more homogenous 

pattern on the cell surfaces of the MDA MB 231 cells as compared to the ASCs, but a 

clear signal was stably detectable in both cell lines, and the no-primary controls were 

negative in all cases.  
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It has been well established that breast cancer cells express CCR5 (Manes et al., 

2003; Zlotnik, 2006), but regarding ASCs we found controversial statements about the 

expression of CCR5 in  mesenchymal stem cells.  

 

The group of Kroeze (Kroeze et al., 2009) found by flow cytometry that mesenchymal 

stem cells from adipose tissue do not express CCR5, whereas the group of Ji (Ji et al., 

2004) showed by PCR, flow cytometry, and immunostaining that CCR5 was expressed 

on rat mesenchymal stem cells derived from the bone marrow, which is in direct 

contradiction to the work of the group of Karnoub (Karnoub et al., 2007) claiming that 

bone marrow derived stem cells did not express CCR5.  

Hence we concluded that surface expression of certain receptors might differ according 

to the origin, passage, and culture conditions of the cell type or applied methodology.  

 

Since the expression of CCR5 on human adipose tissue derived stem cells showed in 

our experiments to be consistently expressed in both RT-PCR and immunostaining, we 

hypothesized that CCL5 might also act in an autocrine fashion on ASCs. 

 

Therefore, we conducted experiments where we stimulated MDA MB 231 cells and 

ASCs for over 48 hours with human recombinant CCL5 at different concentrations 

(Fig.20) and measured the activity of MMP-9 and MMP-2 in the supernatants with 

zymography.  

We found that both cell lines showed slight MMP-9 and strong MMP-2 activity. 

Interestingly, we could only detect an elevated level of MMP-9 activity in the 

supernatants of ASCs when stimulated with CCL5 at a concentration of 100ng/ml, but 

not in MDA MB 231 cells.  

Accordingly we hypothesized that CCL5 is possibly involved in the upregulation of 

MMP-9 in mesenchymal stem cells derived from the adipose tissue. These results 

support the idea that CCL5 plays a role in upregulating MMP-9 in immature dendritic 

cells and T-cells (Chabot et al., 2006; Okita et al., 2005).  
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Further investigation is necessary to clarify the relative importance of CCL-5 induced 

MMP-9 secretion as compared to migration enhancing effects of CCL5. A schematic 

overview of the results of this study is shown in Fig. 22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It would be interesting now to see whether MDA MB 231 cells also secrete factors that 

attract and mobilize adipose tissue derived stem cells. This seems to be very likely 

according to the findings of the group of Lin (Lin et al., 2008a) and Dwyer (Dwyer et al., 

2007), which showed that bone marrow derived stem cells (BMSC) home to tumor 

sites and described scenarios of BMSC as carriers of therapeutic drugs, astested in 

some in vivo tumor models (Picinich et al., 2007). Nevertheless BMSCs are not as 

easy accessible as ASCs. and the tumor homing capacity of ASCs has been 

investigated by the group of Lamfers (Lamfers et al., 2009; Kucerova et al., 2007), who  

Fig. 22 Schematic overview of aspects in the context of MDA MB 231 breast cancer cells 
(blue) interacting with human adipose tissue derived stem cells (yellow). Red circles 
represent secreted CCL5 (RANTES). 
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showed that ASCs might be an alternative for bone marrow derived stem cells as anti-

cancer drug delivery vehicles. 

 

Taken together, the results of this study suggest that CCL5 might represent an 

interesting target for breast cancer treatment, especially for highly metastatic breast 

cancer subtypes.  

Although bone marrow derived stem cells have been characterized in several studies 

according to their interaction with tumor cells, the study of (Tomiyama et al., 2008) 

indicates that despite a common origin from the mesenchymal germinal sheet,  this 

does not necessarily mean that stem cells from the adipose tissue share complete 

functional identity with bone marrow-derived stem cells.  

Interestingly ASCs also seem to differ in their ability to promote angiogenic recovery 

and were subsequently found to differ in their tube formation and 

matrixmetalloproteinase expressing profile (Kim et al., 2007) in such a way that blood 

flow recovery in a hindlimb ischemia model of nude mice was stronger when ASCs 

were applied.  

Furthermore, we hypothesize that the role of tissue resident stem cells needs to be 

reconsidered for developing a more complete concept of breast cancer pathogenesis 

that includes the role of the huge variety of cells composing the tumor stroma, which 

crucially contributes to reorganizing the tumor microenvironment, creating the 

inflammatory or desmoplastic stroma which permits tumor growth over small sizes and 

finally enables tumor cells to metastasize.  

 

Despite the growing evidence for a metastasis promoting function of CCL5, the exact 

role of CCL5 in breast cancer still remains elusive since the group of Jayasinghe 

(Jayasinghe et al., 2008) has shown that tumor derived CCL5 does not affect tumor 

growth and metastasis by using interference RNA to inhibit CCL5 translation in the 

highly metastatic murine breast cancer cell line 4T1 and by overexpressing CCL5 in a 

less metastatic murine breast cancer cell line 168.  

Despite the methodological problems that come along with this approach and the 

intrinsic difference between metastasis and tumorgrowth subclones, this study 

supports the significance of host derived CCL5 in the context of breast cancer 



Discussion	
   	
  64	
  

progression. To prove this conclusion, CCL5 knockout mouse might provide important 

insights.  

 

To summarize the present study, we identified CCL5 (RANTES) as a potential 

mediator in the interaction of human adipose tissue derived stem cells and breast 

cancer cells in tumor cell invasion and characterized its effect on 

Matrixmetalloproteinase 9 activity, and conclude that CCL5 or its receptor CCR5 might 

represent potential targets for mammary cancer progression, especially in highly 

invasive cases. 

 

Cancer remains one of the most complex and challenging diseases in human beings, 

not only because of the myriad of potential mechanisms that lead to the malignant 

transformation on the cellular level, but also because of the enormous involvement of 

local and systemic factors that differ in every human individual. Finding therapies for 

cancer requires the investigation of each single parameter in this multistep process in 

order to define targets that can be focused on and thus promise a cure, longer lifetime, 

or at least an increase in quality of life for patients suffering from cancer 

7.1 Summary of discussion 

Breast cancer is the cancer with the highest incidence among women. Although tumor 

evolution and progression has been well studied in the past decades on the cellular 

level of cancer cells, the interaction of breast cancer cells with surrounding non-

tumorigenic tissue still leaves many questions unanswered. 

Immunomodulatory cells like macrophages, monocytes, and T-cells, as well as other 

bone marrow derived cells, have been characterized in many aspects of their 

involvement in breast cancer development and metastasis. Nevertheless, the specific 

role of tissue resident stem cells has not been investigated yet. 

It has been shown that the tumor microenvironment not only provides the cellular and 

extracellular material for primary tumor growth, but also plays a pivotal role in tumor 

metastasis. 
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Therefore, we sought to elucidate whether and how adipose tissue derived stem cells 

might contribute to breast cancer cell invasion, and which mediators could be involved. 

After observing that adipose tissue derived stem cells enhance tumor invasion in vitro 

by roughly doubling the amount of invasive cells, we could identify CCL5 (RANTES) as 

an important mediator in this process. 

Interestingly we found that human breast cancer cells MDA MB 231 induce a de novo 

secretion of CCL5 by secreted factors, which are still to be identified. 

Furthermore, we found that Matrixmetalloproteinase 9 is upregulated in the context of 

breast cancer cells, interacting directly with adipose tissue derived stem cells. We also 

showed that hASCs produce more active MMP-9 when being stimulated with CCL5. 

We conclude that adipose tissue derived stem cells might represent an important factor 

in breast cancer metastasis for microenvironment-targeted therapies. 
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12. Addendum 
 
12.1. Figures 

Figure 1  (p.15) Chemical structure of CCL5  

Figure 2  (p. 24) a) Liposuction 

   b) Human fat tissue after digestion 

Figure 3  (p. 25) Human adipose tissue derived stem cells in culture 

Figure 4  (p. 31) a) Insert and 24-well plate  

 b) Schematic illustration of invasion assay 

Figure 5  (p. 36) Flowchart of experiments 

Figure 6  (p. 38) Proliferation Assay 

Figure 7  (p. 40) Invasion Assay 4T1 

Figure 8  (p. 41) Graph Invasion Assay 4T1 

Figure 9  (p. 42) Invasion Assay MCF-7 

Figure 10  (p. 43) Invasion Assay MDA MB 231 

Figure 11  (p. 44) Graph Invasion Assay MDA MB 231 

Figure 12  (p. 45) Direct co-culture of MDA MB 231 and hASCs 

Figure 13  (p. 46) Direct co-culture of MCF-7 and hASCs 

Figure 14  (p. 47) a) Graph CCL5 in MDA MB 231 and  

  hASCs co-culture  

   b) Graph CCL5 in MCF-7 and hASCs co-culture 

Figure 15  (p. 48) a) Graph CCL5 kinetics MDA MB 231 and

 hASCs co-culture  

   b) CCL5 Control ELISA 

Figure 16  (p. 49) Scheme of cross conditioning 

Figure 17  (p. 50) Immunostaining (MDA MB 231) for CCR5.  

Figure 18  (p. 51)  Graph mRNA expression of CCR5 in MDA MB 231  

   and hASCs and Immunostaining (hASCs) for CCR5 
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Figure 19  (p. 52) MMP-9 activity in MDA MB 231 and hASCs  

  co-culture 

Figure 20  (p. 53) Graph MMP-9 activity in MDA MB 231 and  

  hASCs co-culture 

Figure 21  (p. 54) MMP-9 and MMP-2 activity of MDA MB 231 and  

  hASCs after stimulation with recombinant human  

  CCL5 

Figure 22  (p. 62) Schematic overview results 

 
12.2. Tables 

Table 1 (p. 18) Cell types 

Table 2 (p. 33) cDNA reaction mix 

 


