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Abbreviations 

 

The following is a list of the most commonly used abbreviations. Additional 

abbreviations used are defined in the text at the appropriate place. 

 

Amino acid A Alanine 

Amino acid K Lysine 

AMV avian myeloblastosis virus 

APS ammonium persulfate    

Att attachment site 

BCA bicinchoninic acid 

Bp base pairs 

BrdU bromodeoxyuridine 

BSA bovine serum albumin 

cDNA complementary DNA 

CFU-F colony forming units-fibroblast 

DEPC diethylpyrocarbonate 

D-MEM Dulbecco's modified Eagle medium 

DMSO dimethyl sulfoxide 

Dn dominant negative 

DNA deoxyribonucleic acid 

DNAse deoxyribonuclease 

dNTP deoxyribonucleotide triphosphate 

DTT dithiothreitol 

dyt medium (2x YT) double-strength yeast extract/tryptone 

E. coli Escherichia coli 

ECL enhanced chemiluminescence 

ECM extracellular matrix 

EDTA ethylenediamine tetraacetic acid 

EGFP/ eGFP enhanced green fluorescent protein 
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ELISA Enzyme-Linked ImmunoSorbent Assay 

EtBr ethidium bromide 

FACS fluorescent-activated cell sorting 

FADD Fas Associated protein with Death Domain 

FBS fetal bovine serum 

FCS fetal calf serum 

GAPDH glyceraldehyde3-phosphate dehydrogenase 

HIV human immunodeficiency virus 

hMSC human mesenchymal stem cells 

HRP horseradish peroxidase 

ICD intracellular domain 

Ig immunoglobulin 

IKK inhibitor κB Kinase 

IKK2/ IKKβ inhibitor κB Kinase beta 

Kb kilo base pairs 

LTR long terminal repeat 

MAPC multipotent adult progenitor cells 

MCS multiple cloning site 

MEM minimum essential medium 

MIAMI marrow-isolated adult multilineage 

inducible cells 

MSC mesenchymal stem cells 

NEAA non-essential amino acid 

NF-κB Nuclear factor-κB 

NLS nuclear localizing sequence 

P plasmid 

p.A. pro analysis 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PVDF polyvinylidene fluoride 
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RHD Rel-homology domain 

RIPA radioimmunoprecipitation 

RNA ribonucleic acid 

RNAse ribonuclease 

RRE rev-responsive element 

RS recycling stem cells 

RSV respiratory syncytial virus 

RT room temperature 

RT-PCR reverse transcription-PCR 

SDS sodium dodecyl sulfate 

SIN self-inactivating 

SODD silencer of death domain 

SV 40 simian virus 

TAE Tris-Acetate-EDTA 

TAK1 TGF-β-activated protein 1 

Taq Thermus aquaticus 

TE Tris-EDTA 

TEMED N,N,N',N'-Tetramethylethylenediamine 

TNF tumor necrosis factor 

TNF-R TNF receptor 

TRADD TNF receptor-associated death domain 

protein 

TRAF TNF receptor-associated factor 

Tris trishydroxymethylaminomethane 

UV ultraviolet light 

VCAM vascular cell adhesion molecule 

VSV-G vesicular stomatitis virus glycoprotein G 
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System of Units 

 

Symbol Units 

da Dalton 

G gram(s) / force of gravity 

H hour(s) 

L liter(s) 

min minute(s) 

rpm rounds per minute 

S second(s) 

TU transducing units 

U unit(s) 

V Volt 
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1 Introduction 

 

 

1.1 Mesenchymal stem cells 

 

 

1.1.1 Introduction 

 

About 40 years ago Friedenstein et al. first described stromal cells in the bone marrow 

that were spindle shaped and proliferated to form colonies (Friedenstein, Piatetzky et al. 

1966). In that assay system, stromal cells were referred to as colony-forming unit-

fibroblasts (CFU-F). These cells attached to plastic and were able to differentiate under 

defined in vitro conditions into multiple cell types (Friedenstein, Chailakhjan et al. 1970). 

Later on these cells, obtained from postnatal bone marrow, were called mesenchymal 

stem cells, or marrow stromal cells and more recently, multipotent mesenchymal stromal 

cells, all designated by the acronym MSC. 

Mesenchymal stem cells (MSCs) have generated a great deal of excitement and promise 

as a potential source of cells for cell-based therapeutic strategies, primarily owing to their 

intrinsic ability to self-renew and differentiate into functional cell types that constitute the 

tissue in which they exist.  

Despite diverse and growing information concerning MSCs and their use in cell-based 

strategies, the mechanisms that govern MSC self-renewal, proliferation and tissue 

migration are not well understood and remain an active area of investigation. Therefore, 

research efforts focused on identifying factors that regulate and control MSC cell fate 

decisions are crucial to promote a greater understanding of the molecular, biological and 

physiological characteristics of this potentially highly useful stem cell type (Figure 1). 
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Figure 1. Human mesenchymal stem cells (MSC) are spindle shaped, fibroblast-like cells. Original 

magnification × 100, light microscopy, scale bar represents 100 μm. 

 

 

1.1.2 A definition of MSCs 

 

Due to the lack of a single definitive marker and knowledge regarding the anatomical 

location and distribution of MSCs in vivo, their definition has relied primarily on 

retrospective assays. Since the early work of Castro-Malaspina et al. (Castro-Malaspina, 

Gay et al. 1980), many researchers have employed different methods to isolate MSCs, in 

both serum and serum-deprived conditions, and have developed novel approaches to 

isolate purified populations of MSCs. These advances have furthered our understanding 

of MSC biology but have also created differences in terminology and read-out measures 

(i.e., based on morphology, phenotype, gene expression, and combinations thereof) for 

describing the adherent-capable cells derived from many adult tissue sources displaying 

fibroblast-like morphology (Caplan 1991; Bianco and Gehron Robey 2000; Shi, Gronthos 

et al. 2002). There is still a lack of consensus on the hierarchy intrinsic to the MSC 

compartment (Beyer Nardi and da Silva Meirelles 2006), reflected by the use of terms 
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such as multipotent adult progenitor cells (MAPCs) (Reyes, Lund et al. 2001), marrow-

isolated adult multilineage inducible (MIAMI) (D'Ippolito, Diabira et al. 2004) and 

recycling stem cells (RS-1, RS-2) (Colter, Class et al. 2000; Colter, Sekiya et al. 2001). 

Although none of these terms can accurately account for both the developmental origin 

and differentiation capacity of these cells, the term “mesenchymal stem cell” (MSC) is 

currently the most often employed broad umbrella designation. However, both this and 

the other named cell types depend, for their definition, on the adherence of a population 

of harvested cells to a tissue culture substrate, and therefore none can represent the actual 

progenitors existant in adult human marrow.  

Despite these attendant limitations, the International Society for Cellular Therapy (ISCT) 

has provided the following minimum criteria for defining MSCs (Dominici, Le Blanc et 

al. 2006) as follows: 

(1) Plastic-adherent under standard culture conditions. 

(2) Express CD105, CD73 and CD90 and lack expression of CD45, CD34, CD14 or 

CD11b, CD79 or CD19 and HLA-DR. 

(3) Must differentiate into osteoblasts, adipocytes and chondroblasts in vitro. 

 

 

1.1.3 The mesenchymal stem cell niche  

 

The exact localization of MSCs in vivo remains poorly understood. Mesenchymal stem 

cells have been conventionally isolated from bone marrow in humans (Digirolamo, 

Stokes et al. 1999; Pittenger, Mackay et al. 1999). Within the marrow, MSCs comprise 

0.001–0.1% of the total population of nucleated cells.  

Despite the fact that bone marrow is considered a well-accepted source of MSCs, MSCs 

have been isolated from other tissue sources, including  periosteum (Nakahara, Goldberg 

et al. 1991; Mason, Grande et al. 1998), trabecular bone (Noth, Osyczka et al. 2002), 

muscle (Asakura, Komaki et al. 2001), adipose tissue (Zuk, Zhu et al. 2001), synovial 

tissue (De Bari, Dell'Accio et al. 2001), dermis (Young, Steele et al. 2001), lung 

(Sabatini, Petecchia et al. 2005), adult peripheral blood (Zvaifler, Marinova-Mutafchieva 
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et al. 2000), and cord blood (Erices, Conget et al. 2000; Kern, Eichler et al. 2006), 

suggesting that the MSC niche may not be restricted to just bone marrow. Recent data 

demonstrate that the MSC compartment is more widely distributed than previously 

thought and that MSCs are resident in vessel walls (da Silva Meirelles, Chagastelles et al. 

2006). These findings reveal that MSCs are diversely distributed in vivo, and as a result 

may occupy a ubiquitous stem cell niche. 

 

 

1.1.4 Key characteristics of MSCs 

1.1.4.1 Surface markers  

 

Considerable progress has been made towards characterizing the cell surface antigenic 

profile of human bone marrow-derived MSC populations using fluorescence activated 

cell sorting (FACS) and magnetic bead sorting techniques. To date, however, a single 

marker that definitively delineates the in vivo MSCs has yet to be identified, due to the 

lack of consensus from diverse documentations of the MSC phenotype (Gronthos, Graves 

et al. 1994; Pittenger, Mackay et al. 1999; Minguell, Erices et al. 2001; Tocci and Forte 

2003). However, analyses using a combination of monoclonal antibodies raised against 

surface markers of in vitro-derived MSCs (e.g., STRO-1, SH2, SH3, SH4) have shown 

some promise toward immuno-phenotyping these cells (Haynesworth, Baber et al. 1992; 

Gronthos, Graves et al. 1994). On the other hand, the fact that MSCs share common 

features with endothelial, epithelial and muscle cells and present a highly variable profile 

of cell surface antigens (Simmons and Torok-Storb 1991; Jiang, Jahagirdar et al. 2002; 

Vogel, Grunebach et al. 2003) makes it a daunting task to identify a universal single 

marker for MSCs. Despite this controversy of what defines a ‘mesenchymal stem cell’, 

there is general agreement that MSCs lack typical hematopoietic antigens, namely, CD45, 

CD34 and CD14 (Pittenger, Mackay et al. 1999). 
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1.1.4.2 Self-renewal potential 

 

One of the defining characteristics of stem cells is their self-renewal potential, the ability 

to generate identical copies of themselves through mitotic division over extended time 

periods (even the entire lifetime of an organism). The absolute self-renewal potential of 

MSCs remains an open question, due in large part to the different methods employed to 

derive populations of MSCs and the varying approaches used to evaluate their self-

renewal capacity. As a population, bone marrow derived MSCs have been demonstrated 

to have a significant but highly variable self-renewal potential during in vitro serial 

propagation (Bruder, Jaiswal et al. 1997; Colter, Class et al. 2000). Several reports have 

strongly suggested that MSCs and isolated MSC clones are heterogeneous with respect to 

their self-renewal capacity (Colter, Class et al. 2000; Bianco, Riminucci et al. 2001). 

 

 

1.1.4.3 Multilineage differentiation potential 

 

An important feature about MSCs is their multilineage differentiation potential. Under 

defined inductive conditions, MSCs are able to acquire characteristics of cells derived 

from embryonic mesoderm. The multilineage differentiation potential of MSC 

populations has been extensively studied in vitro. These studies demonstrate that 

populations of bone marrow derived MSCs have the capacity to develop into terminally 

differentiated mesenchymal phenotypes both in vitro and in vivo, including bone (Aubin, 

Liu et al. 1995; Bruder, Kurth et al. 1998; Aslan, Zilberman et al. 2006), cartilage 

(Wakitani, Goto et al. 1994; Kadiyala, Young et al. 1997), tendon (Young, Butler et al. 

1998; Awad, Butler et al. 1999), muscle (Galmiche, Koteliansky et al. 1993; Ferrari, 

Cusella-De Angelis et al. 1998; Kadivar, Khatami et al. 2006), adipose tissue (Rogers, 

Young et al. 1995), and hematopoietic-supporting stroma (Cheng, Qasba et al. 2000; Koc 

and Lazarus 2001). Their vast differentiation potential is further expanded, as they have 

thus far demonstrated the ability to transdifferentiate into neural cells (Kopen, Prockop et 

al. 1999; Sanchez-Ramos, Song et al. 2000), endothelial cells (Reyes, Lund et al. 2001), 
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skin cells (Deng, Han et al. 2005), pancreatic islet beta-cells (Chen, Jiang et al. 2004) and 

hepatocytes (Kang, Zang et al. 2005; Sato, Araki et al. 2005). This capacity to 

differentiate into mesodermal, ectodermal and endodermal cell lineages characterizes 

MSCs as pluripotent cells. However, as many studies suggest, MSCs are heterogeneous 

with respect to their developmental potential (Kuznetsov, Krebsbach et al. 1997; 

Majumdar, Thiede et al. 1998; Pittenger, Mackay et al. 1999; Muraglia, Cancedda et al. 

2000). 

 

 

1.1.5 Role and Function of Mesenchymal Stem Cells  

 

The complete in vivo role of the MSCs remains to be elucidated; however, various 

studies suggest that they are likely to play essential roles in supporting hematopoiesis, 

tissue repair and maintenance within the human body. More recently, MSCs have been 

recognized as having extensive immunomodulatory properties (Di Nicola, Carlo-Stella et 

al. 2002; Krampera, Glennie et al. 2003). Given the great potential of these cells and our 

lack of a complete understanding of that potential, they make excellent subjects of 

investigation for the current state of tissue repair science. 

 

 

1.1.6 The potential of MSCs in cell and gene therapy 

 

Over the past two decades, the ability to transfer genes into stem cells has raised hopes 

towards the feasibility of using gene therapy-based approaches to provide long-term 

therapeutic impacts (Bianco and Robey 2001; Vollweiler, Zielske et al. 2003). There is 

mounting evidence that these cells will ultimately be useful as vehicles for cell and gene 

therapies, especially in the field of tissue engineering. The ultimate goal is to use MSCs 

in various forms of therapy, as well as tools to understand the mechanisms leading to 

repair and regeneration of damaged or diseased tissues and organs. This approach has 

provided a lot of promise in the treatment of bone disorders as well as vascular diseases. 
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The long lifespan and homing ability of MSCs are attractive assets in the context of gene 

therapy strategies directed against infectious diseases and metastatic tumours. The use of 

MSCs in different therapeutic strategies either as immunosuppressive agents or as 

vehicles to express therapeutic proteins acting against autoimmune processes have been 

reviewed by Jorgensen et al. (Jorgensen, Djouad et al. 2003). There is emerging evidence 

that MSCs deploy a very powerful array of mechanisms that allow their escape from host 

allogeneic responses. In vitro and in vivo observations suggest that MSCs may be 

potentially used to induce tolerance into allogeneic or xenogeneic hosts, allowing them to 

facilitate unrelated HSC transplantation, minimise graft-versus-host disease and prevent 

rejection for organ transplantation. 

Genetically manipulated MSCs may have direct applications to impact diseases in a 

variety of cell types in elaborate microenvironments and in different tissues in situ. The 

ability to genetically modify MSCs provides a means for durable expression of 

therapeutic genes for the lifetime of the patient for a wide range of diseases. MSCs can be 

engineered to secrete a variety of different proteins in vitro and in vivo that could 

potentially treat a variety of serum protein deficiencies and other genetic or acquired 

diseases, including bone, cartilage and bone marrow disorders, or even cancer. 

Improvements in gene delivery into HSCs have provided clues towards crucial 

improvements required to enhance therapeutic efficacy of MSCs for a variety of different 

diseases. A better understanding of the molecular mechanisms directing the proliferation, 

differentiation and tissue migration of MSCs will eventually allow to properly manipulate 

MSCs both ex vivo and in vivo to allow the regeneration of complex tissues and organs. 

 

 

1.2 Lentiviral Vectors for Gene Delivery into Cells 

1.2.1 Introduction 

 

Retroviral vectors have been used for delivery of genetic material into cells for over 20 

years, with the first reports dating back to the early 1980s (Wei, Gibson et al. 1981). The 

interest and use of lentiviral vectors came of age in 1996 when it was shown that human 
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immunodeficiency virus type 1-based vectors were capable of transducing nondividing 

cells (Naldini, Blomer et al. 1996), thus overcoming one of the important limitations of 

conventional retroviral vectors (Miller, Adam et al. 1990; Roe, Reynolds et al. 1993). The 

following properties make them suitable for gene therapy approaches (Trono 2000): (i) 

Lentiviral vectors have a large insert capacity (8–10 kb); (ii) they efficiently transduce 

not only dividing but also non-dividing cells; (iii) lentiviruses elicit minimal if any 

inflammatory response that can compromise the viability of the transduced cells; and (iv) 

they integrate genes into the chromosome of the target cells, leading to stable long-term 

expression. 

 

 

1.2.2 Lentiviruses 

 

The lentivirus family comprises complex retroviruses with the conventional three open 

reading frames of all retroviruses – gag, pol and env encoding the capsid proteins, the 

viral enzymes and the envelope glycoproteins, respectively (Lever, Strappe et al. 2004). 

In addition, they have a varying complement of regulatory and accessory genes, such as 

tat and rev, with which they control their own gene expression, allowing temporal 

separation into early and late phases, and with which they manipulate the host cell both 

for virus production and for virus entry and integration of their genetic material into the 

cell genome as the provirus (Figure 2). Lentiviruses infect vertebrates, particularly 

primates and domestic animals. They generally cause a slowly progressive disease (lenti 

= slow) or, in the case of primate viruses in their natural host, apparently no disease at all. 

The best studied example for a lentivirus is the human immunodeficiency virus (HIV) 

(Figure 2b). 
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Figure 2. a. Diagram of open reading frame of HIV-1, a typical lentivirus. b. Diagram of mature HIV 

virion particle with proteins and RNA. 

 

 

1.2.3 General concept of the design of lentiviral vectors 

 

Lentiviral vectors are derivatives of HIV-1 lentiviruses that have been engineered to carry 

a foreign gene of interest into a target cell. The vectors are engineered to be replication-

defective, being able to complete only a single round of the lentiviral replication cycle. 

Because of the way replication-defective lentiviral vectors are designed, virus particles 

containing vector genomes can be produced and can be used to infect target cells. The 

vector genome then undergoes reverse transcription and integration into the cell’s 

genome, where it can express the foreign gene of interest, but is unable to be replicated 
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an additional time and spread to other cells; the vectors can undergo only a single round 

of replication.  

Building a replication-defective vector from the parental lentivirus necessitates separating 

the cis- and trans-acting sequences of the viral genome. In a practical sense, this entails 

removal of the trans-acting gag, pol, and env genes from the virus (and replacing them 

with a foreign gene of interest), leaving on the genome only those cis-acting regions that 

are recognized by viral and cellular proteins during the various stages of the viral 

replication cycle-reverse transcription, integration, transcription, encapsidation. 

 

 

1.2.4 Production of lentiviral vectors 

 

Lentivectors are generated using a “split-component” production system, the overall 

objective being to make each component less and less complete in function, to the point 

where infectious viral particles can only be produced in the packaging cell and not from 

the final vector preparation. Typically, producer cell lines are transfected with (i) the 

transfer vector plasmid, containing the gene of interest, lentiviral LTRs for host cell 

integration and the Rev-responsive element (RRE) for most efficient vector production; 

(ii) a plasmid encoding the gag and pol viral structural genes, in order to supply reverse 

transcriptase and integration functions for the therapeutic vector particles; and (iii) 

“packaging” plasmids encoding envelope proteins for the viral particles and Rev protein. 

None of the starter plasmids are, by themselves, capable of functioning as autonomous 

lentiviruses. In addition, most accessory genes of lentiviruses (env, vif, vpr, vpu, and nef) 

have been removed during the process without any negative effect on vector recovery 

yield (Zufferey, Nagy et al. 1997; Dull, Zufferey et al. 1998). Only the transfer vector 

contains the packaging signal and thus, in theory, infectious particles should contain only 

the envisaged gene of interest. 

The ViraPower Lentiviral Expression System of Invitrogen was used to create the 

replication-incompetent HIV-1-based lentiviruses that were used in this thesis (Figure 3). 
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Figure 3. The diagram above describes the general steps required to express the gene of interest 

using the ViraPower Lentiviral Expression System of Invitrogen. This system was used to create the 

replication-incompetent HIV-1-based lentiviruses that were used in this thesis. (Source: Invitrogen 

Manual) 
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1.2.5 The components of the lentivector production system 

1.2.5.1 Transfer Vector 

 

The vector itself is the only genetic material transferred to the target cells. Transfer vector 

genomes contain all the cis-active sequences needed for packaging (ψ), reverse 

transcription (primer binding site, LTRs), integration (attL and attR integration sites) and 

transcription (5’-LTR with internal heterologous promoter), as well as the transgene of 

interest.  

The U3 region of the 5’-LTR, which drives the expression of the primary transcripts in 

producer cells, has been replaced by other heterologous promoting sequences in order to 

drive a tat-independent primary transcription. Specifically, a constitutive promoter (RSV 

promoter) has been placed upstream of the 5′ LTR in the pLenti expression vector to 

offset the requirement for tat in the efficient production of viral RNA (Dull, Zufferey et 

al. 1998).  

In addition, the U3 region of the 3’-LTR has also been deleted. The U3 region contains 

the viral enhancer and promoter, and the 3' copy is the template used to generate both 

LTR's of the integrated provirus. Thus, transduction of vector deleted in the 3' U3 results 

in the transcriptional inactivation of both LTR's. Vectors that carry an almost complete 

deletion in the U3 region of the HIV 3' LTR are called self-inactivating vectors (Miyoshi, 

Blomer et al. 1998; Zufferey, Dull et al. 1998). Self-inactivating (known as SIN) 

lentivectors can productively infect and integrate into target cell populations, but 

generation of proviral transcripts is blocked. Hence, SIN vectors are a sensible 

precaution. A self-inactivating vector diminishes the concern for oncogenesis by 

promoter insertion, and it alleviates significantly the risk of vector mobilization and 

recombination with the wild-type virus, minimizing thus the risk of emergence of 

replication competent recombinants (RCR). Furthermore, the use of SIN vectors might 

also avoid gene silencing, because it was postulated that active viral promoter sequence 

might attract the host silencing machinery to the integrated provirus (Pfeifer 2004). 

A special feature of lentiviral vectors is the incorporation of a Rev-responsive element 

(RRE) that enhances the production of unspliced vector RNA in the packaging cells. 
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Thus, even complex transgenes containing introns and splicing signals can be 

incorporated into lentiviral vectors (Dull, Zufferey et al. 1998). 

The pLenti6/V5-DEST vector (Figure 4) of Invitrogen is the destination vector used in 

this thesis for high-level expression of the genes of interest in MSCs using Invitrogen’s 

ViraPower Lentiviral Expression System. 

 
Figure 4. The map above shows the elements of the pLenti6/V5-DEST vector. The Rous Sarcoma 

Virus (RSV) enhancer/promoter allows Tat-independent production of viral mRNA. The HIV-1 

truncated 5' LTR permits viral packaging and reverse transcription of the viral mRNA. The 5' splice 

donor and 3' acceptors enhance the biosafety of the vector by facilitating removal of the ψ packaging 

sequence and RRE such that expression of the gene of interest in the transduced host cell is no longer 

Rev dependent. The HIV-1 psi (ψ) packaging signal allows viral packaging. The HIV-1 Rev response 

element (RRE) permits Rev-dependent nuclear export of unspliced viral mRNA. The CMV promoter 
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permits high-level, constitutive expression of the gene of interest. The attR1 and attR2 sites are 

bacteriophage-derived DNA recombination sequences that permit recombinational cloning of the 

gene of interest from a Gateway entry clone. The Chloramphenicol resistance gene (CmR) allows 

counterscreening of the plasmid. The ccdB gene permits negative selection of the plasmid. The V5 

epitope allows detection of the recombinant fusion protein by Anti-V5 antibodies. The SV40 early 

promoter and origin allows high-level expression of the selection marker and episomal replication in 

cells expressing the SV40 large T antigen. The EM7 promoter is a synthetic prokaryotic promoter for 

expression of the selection marker in E. coli. The blasticidin resistance gene permits selection of 

stably transduced mammalian cell lines. The ΔU3/HIV-1 truncated 3′ LTR allows viral packaging 

but self-inactivates the 5′ LTR for biosafety purposes. The element also contains a polyadenylation 

signal for transcription termination and polyadenylation of mRNA in transduced cells. The SV40 

polyadenylation signal allows transcription termination and polyadenylation of mRNA. The bla 

promoter allows expression of the ampicillin resistance gene. The ampicillin resistance gene (β-

lactamase) allows selection of the plasmid in E. coli. Finally, the pUC origin permits high-copy 

replication and maintenance in E. coli. (Source: Invitrogen Manual). 

 

1.2.5.2 The lentiviral packaging system 

 

In order to express viral proteins for trans-complementation of a replication-defective 

vector, cells are transiently cotransfected with the vector DNA construct and plasmids 

expressing vector and protein-coding constructs (but not containing cis-acting sequences 

necessary for propagation), also termed as “packaging plasmids”. 

The latest (“third”) generation packaging system comprises only three of the nine genes 

of HIV-1: gag, coding for the virion main structural proteins; pol, responsible for the 

retrovirus-specific enzymes; and rev, which encodes a post-transcriptional regulator 

necessary for efficient gag and pol expression (Dull, Zufferey et al. 1998). The parental 

virus cannot be reconstituted from such an extensively deleted packaging system since 

some 60% of its genome has been completely eliminated (Zufferey, Nagy et al. 1997; 

Trono 1998). 

Finally, in lentiviral packaging constructs, the lentivirus’ native envelope is typically 

replaced with a helper plasmid expressing heterologous envelope glycoproteins. This 

process, termed pseudotyping, can greatly modify the cell and host range tropism of the 
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vector (Sanders 2002). The vesicular stomatitis virus glycoprotein (VSV-G) has been 

extensively used to this end (McClure, Marsh et al. 1988; Akkina, Walton et al. 1996). 

The tactic of pseudotyping has been widely adopted and has the additional benefits of 

producing a particle that was much more stable than the native virus (Burns, Friedmann 

et al. 1993; Hopkins 1993). These vectors are capable of ultracentrifugal concentration 

and survive freezing and thawing. Pseudotyping with VSV has also broadened the 

tropism of the vectors since VSV-G appears to be pantropic. An obvious additional 

benefit is in reducing the amount of essential lentiviral genetic sequence, thus enhancing 

safety by reducing the risk of recombinational reconstruction of a wild-type lentivirus 

(Lever, Strappe et al. 2004). 

The ViraPower Packaging Mix of Invitrogen is the packaging system used in this thesis 

for the creation of lentiviruses. It contains an optimized mixture of the three packaging 

plasmids, pLP1 (Figure 5), pLP2 (Figure 6), and pLP/VSVG (Figure 7). These plasmids 

supply the helper functions as well as structural and replication proteins in trans required 

to produce the lentivirus. 
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Figure 5. The figure above shows the features of the pLP1 vector. Note that the gag and pol genes are 

initially expressed as a gag/pol fusion protein, which is then self-cleaved by the viral protease into 

individual Gag and Pol polyproteins. The human cytomegalovirus (CMV)promoter permits high-

level expression of the HIV-1 gag and pol genes in mammalian cells. The human β-globin intron 

enhances expression of the gag and pol genes in mammalian cells. The HIV-1 gag coding sequence 

encodes the viral core proteins required for forming the structure of the lentivirus. The HIV-1 pol 

coding sequence encodes the viral replication enzymes required for replication and integration of the 

lentivirus. The HIV-1 Rev response element (RRE) permits Rev-dependent expression of the gag and 

pol genes. The Human β-globin polyadenylation signal Allows efficient transcription termination and 

polyadenylation of mRNA. The pUC origin of replication (ori) permits high-copy replication and 

maintenance in E. coli. Finally, the ampicillin resistance gene allows selection of the plasmid in E. 

coli. (Source: Invitrogen Manual). 
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Figure 6. The figure above shows the features of the pLP2 vector. The RSV enhancer/promoter 

permits high-level expression of the rev gene. The HIV-1 Rev ORF encodes the Rev protein that 

interacts with the RRE on pLP1 to induce Gag and Pol expression and on the pLenti6/V5 expression 

vector to promote the nuclear export of the unspliced viral RNA for packaging into viral particles. 

The HIV-1 LTR polyadenylation signal allows efficient transcription termination and 

polyadenylation of mRNA. The ampicillin resistance gene allows selection of the plasmid in E. coli. 

The pUC origin of replication (ori) permits high-copy replication and maintenance in E. coli. 

(Source: Invitrogen Manual). 
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Figure 7. The figure above shows the features of the pLP/VSVG vector. The human CMV promoter 

Permits high-level expression of the VSV-G gene in mammalian cells. The human β-globin intron 

enhances expression of the VSV-G gene in mammalian cells. The VSV G glycoprotein (VSV-G) 

encodes the envelope G glycoprotein from Vesicular Stomatitis Virus to allow production of a 

pseudotyped retrovirus with a broad host range. The human β-globin polyadenylation signal allows 

efficient transcription termination and polyadenylation of mRNA. The pUC origin of replication (ori) 

permits high-copy replication and maintenance in E. coli. Finally, the ampicillin resistance gene 

allows selection of the plasmid in E. coli. (Source: Invitrogen Manual). 
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1.2.5.3 Packaging cells 

 

The vast majority of the lentiviral vectors are currently made by transient transfection of 

the vector and packaging plasmids into human embryonic kidney (HEK 293FT) cells 

(Pfeifer 2004). Studies have demonstrated maximal virus production in human 293 cells 

expressing SV40 large T antigen, making the 293FT Cell Line a particularly suitable host 

for generating lentiviral constructs (Naldini, Blomer et al. 1996). 

 

 

1.2.6 Transgene delivery into mesenchymal stem cells using 

lentivirus-based vectors 

 

Recent results from several labs have indicated that HIV-1-based vectors are very 

efficient at delivering and expressing transgenes into MSCs (Totsugawa, Kobayashi et al. 

2002; Zhang, La Russa et al. 2002; Davis, Humeau et al. 2004; Lee, Kohn et al. 2004; 

Zhang, La Russa et al. 2004). A single round of transduction using unconcentrated HIV-

1-based lentiviral vectors can lead to the efficient transduction of human MSCs and 

sustained transgene expression for up to at least 5 months (Zhang, La Russa et al. 2002). 

An advantage of lentiviral vectors over vectors based on oncogenic retroviruses is that 

they are capable of transducing non-dividing cells (Reiser, Harmison et al. 1996; 

Mochizuki, Schwartz et al. 1998). This is important given the fact that a relatively large 

subset (20%) of MSCs has been described to be quiescent (Conget and Minguell 1999). 

Studies have shown that lentivirus-transduced MSCs retain their in vitro ability to 

differentiate into adipocytes, osteocytes and chondrocytes as well as into myocyte- and 

astrocyte-like cells, suggesting that HIV-1-derived lentiviral vectors can efficiently 

transduce MSCs without inhibiting their differentiation potential (Zhang, La Russa et al. 

2002; Anjos-Afonso, Siapati et al. 2004). 

All in all, lentiviral vectors are proving to be versatile and effective agents for the 

delivery and sustained expression of a transgene into MSCs, so far without detectable 

immunological or pathological consequences attributed to the vector. 
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1.3 The Nuclear Factor-κB 

1.3.1 Introduction 

 

NF-κB is a transcription factor (DNA-binding protein) that plays a key role in a wide 

variety of cellular processes such as innate and adaptive immunity, cellular proliferation, 

apoptosis and development. It stands out as an exceptionally important factor due to its 

pleiotropic effects, the inducible and expression patterns, its unique regulatory 

mechanisms, large number of activating signaling pathways and number of genes that it 

controls and is therefore a topic of intense investigation in numerous laboratories. NF-κB 

was first identified as a factor regulating the expression of κ light chains in mouse B 

lymphocytes in 1986 (Sen and Baltimore 1986), but has subsequently been identified in 

most cell types and is found in species as far back as insects. 

 

 

 

1.3.2 NF-κB proteins 

 

NF-κB is not a single protein but a family of dimeric transcription factors composed of 

members of the Rel family with five closely related DNA binding proteins: RelA (p65), 

RelB, c-Rel, NF-κB1/p50 and NF-κB2/p52 (Figure 8). All five NF-kB members share a 

highly conserved 300-amino-acid-long N-terminal Rel homology domain (RHD). The 

RHD contains a nuclear localization sequence (NLS) that determines dimerization, 

nuclear localization and binding to kB elements in the promoter and enhancer regions of 

target genes. NF-κB/Rel proteins can exist as homo- or heterodimers. By far the 

commonest member of the NF-κB family is p50:p65 heterodimer that is often used 

synonymously for NF-κB, but various combinations are possible. 
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Figure 8. Schematic representation of the NF-κB family of proteins. The number of amino acids in 

each protein is indicated on the right. There are five nuclear factor (NF)-κB family members, RelA 

(p65), RelB, c-Rel, p50/p105 (NF-κB1) and p52/p100 (NF-κB2). p50 and p52 are derived from the 

longer precursor proteins p105 and p100, respectively. Presumed sites of cleavage for p100 (amino 

acid 447) and p105 (amino acid 433) are shown. Phosphorylation and ubiquitination sites on p100 

and p105 proteins are indicated. All NF-κB family members contain an N-terminal Rel-homology 

domain (RHD), that mediates DNA binding and dimerization and contains the nuclear-localization 

domain. The Rel subfamily, RelA, RelB and c-Rel, contain unrelated C-terminal transcriptional 

activation domains (TADs). TA1 and TA2 are subdomains of the RelA transactivation domain. 

(RHD) Rel homology domain; (TAD) transactivation domain; (LZ) leucine zipper domain; (GRR) 

glycine-rich region. 

 

NF-κB is normally held in the cytoplasm in an inactive form bound to an inhibitory 

protein, IκB, of which several types are recognized. The IκB family contains seven 

known mammalian members, IκBα, IκBβ, IκBγ, IκBε, Bcl-3 and the precursor Rel 

proteins p100 and p105 (Figure 9) (Ghosh, May et al. 1998; Jacobs and Harrison 1998; 
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Cramer and Muller 1999; Croy, Bergqvist et al. 2004). IκB molecules are characterized 

by the presence of multiple ankyrin repeats, which are protein-protein interaction 

domains that interact with NF-κB via the RHD (Cramer, Larson et al. 1997; Chen, Huang 

et al. 1998; Malek, Huang et al. 2003). The IκB proteins bind to the RHD region of NF-

κB protein and interfere with the NLS function to prevent NF-κB translocation into 

nucleus, thereby maintaining NF-κB in an inactive state (Jacobs and Harrison 1998; 

Johnson, Van Antwerp et al. 1999; Prigent, Barlat et al. 2000; Croy, Bergqvist et al. 

2004).  

 
Figure 9. Schematic representation of the inhibitor of NF-κB (IκB) family. The number of amino 

acids in each protein is indicated on the right. The IκB family consists of IκBα, IκBβ, IκBε, IκBγ and 

BCL-3. Like p105 and p100, the IκB proteins contain ankyrin-repeat motifs in their C termini. 
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1.3.3 Overview of the NF-κB pathway 

 

There are several distinct NF-κB-activation pathways. The most frequently observed is 

the canonical, or classical, pathway , which is induced in response to a large variety of 

stimuli including the pro-inflammatory cytokines tumour necrosis factor-α (TNF-α) and 

interleukin-1 (IL-1), mitogens, microbial components and DNA damage (Figure 10) 

(Pahl 1999). These stimuli lead to activation of a specific IκB kinase (IKK), a 

multiprotein complex with a high molecular weight of approximately 700–900 kDa. Once 

activated, IKK phosphorylates specific serines within the IκB proteins, triggering their 

ubiquitination by an ubiquitin ligase complex containing the β-transducin repeat-

containing protein (β-TrCP) (Karin and Ben-Neriah 2000).The IκB is then degraded by 

the 26S proteasome, thus allowing the release, modification and translocation of NF-κB 

dimers into the nucleus to induce gene expression. The resulting free NF-κB interacts 

with a specific DNA motif (5´-GGGPuNNPyPyCC-3´, where Pu is purine, Py is 

pyrimidine and N is any nucleotide) and activates or represses a large collection of target 

genes. In the alternative pathway (or non-canonical), IKKα, one catalytic subunit of IKK 

is activated and phosphorylates p100, leading to its processing by the proteasome 

(Bonizzi and Karin 2004). Thus, IKK is required for activation of both canonical and 

non-canonical NF-κB signaling pathways. 
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Figure 10. Overview of the canonical NF-κB pathway. In its inactive form, NF-κB is sequestered in 

the cytoplasm, bound by members of the IκB family of inhibitor proteins. The various stimuli that 

activate NF-κB cause phosphorylation of IκB, which is followed by its ubiquitination and subsequent 

degradation. This results in the exposure of the nuclear localization signals (NLS) on NF-κB subunits 

and the subsequent translocation of the molecule to the nucleus. In the nucleus, NF-κB binds with a 

consensus sequence of various genes and thus activates their transcription. Tumor necrosis factor 

(TNF) is the best-studied activator of NF-κB. 

 

1.3.4 Structure and function of the IKK complex 

 

As described above, the common feature of all pathways leading to the activation of NF-

κB is the activation of one of the IκB kinases. Consequently, this is the most important 

regulatory step in determining the NF-κB response to a given stimulus. 
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The IKK complex consists of three core subunits, the catalytic subunits IKKα and IKKβ 

(also known as IKK1 and IKK2) and several copies of a regulatory subunit called the NF-

κB essential modifier (NEMO, also known as IKKγ) (Figure 11) (Karin and Ben-Neriah 

2000). IKKα and IKKβ are serine/threonine kinases that are characterized by the presence 

of an N-terminal kinase domain, a C-terminal helix–loop–helix (HLH) domain, and a 

leucine zipper domain. They are capable of phosphorylating multiple members of the IκB 

family at multiple sites. NEMO is a 48-kDa protein that is not related to IKKα and IKKβ 

and contains a C-terminal zinc finger-like domain, a leucine zipper, and N-terminal and 

C-terminal coiled-coil domains (Rothwarf and Karin 1999). 

 
Figure 11. Schematic representation of the IKK family of proteins. The number of amino acids in 

each protein is indicated on the right. The three core subunits of the IκB kinase (IKK) complex are 

shown: the catalytic subunits IKKα (also known as IKK1) and IKKβ (also known as IKK2) and the 

regulatory subunit called the NF-κB essential modifier (NEMO, also known as IKKγ). The principal 

structural motifs of each protein are shown, together with amino-acid numbers corresponding to the 

human proteins. (TAD) transactivation domain; (LZ) leucine zipper domain on IKKα/β; (GRR) 
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glycine-rich region; (HLH) helix–loop–helix domain; (Z) zinc finger domain; (CC1/2)coiled-coil 

domains; (NBD) NEMO-binding domain; (α) α -helical domain. 

IKKα and IKKβ share 52% overall sequence identity and 65% identity in their catalytic 

domains (Mercurio, Zhu et al. 1997; Woronicz, Gao et al. 1997; Zandi, Rothwarf et al. 

1997). They can form homo- and heterodimers via their leucine zipper motifs. Once 

IKKα and IKKβ dimerize, they can associate with IKKγ through a short interaction motif 

located at the very C terminus of either catalytic subunit (May, D'Acquisto et al. 2000; 

Hu, Baud et al. 2001). The association of IKKα and IKKβ dimers (usually IKKα and 

IKKβ heterodimers) with IKKγ results in formation of a large complex, composed of 

IKKα:IKKβ heterodimers held together via dimeric interactions between two IKKγ 

molecules (Miller and Zandi 2001). Activation of this large IKK holocomplex by all 

proinflammatory and innate immune stimuli depends on phosphorylation of either the 

IKKα or IKKβ catalytic subunits at two conserved serines located within their activation 

loops (Ling, Cao et al. 1998; Delhase, Hayakawa et al. 1999).  

Although both IKKα and IKKβ are capable of phosphorylating IκBα at Ser 32 and Ser 

36, and IκBβ at Ser 19 and Ser 23, IKKα is less efficient and cannot replace IKKβ in 

knockout studies (DiDonato, Hayakawa et al. 1997; Mercurio, Zhu et al. 1997; Regnier, 

Song et al. 1997). Genetic experiments have shown that IKKβ is the predominant IκB 

kinase in the canonical pathway (Bonizzi and Karin 2004; Pasparakis, Luedde et al. 

2006). 

 

 

1.3.5 TNF-α: a model NF-κB stimulus 

 

Among the major signaling pathways targeting IKK is the one used by a major pro-

inflammatory cytokine, known as tumor necrosis factor (TNF-α). Its anticancer activity 

was first described more than a century ago. However, it wasn’t until 1984 that human 

TNF-α was purified and its encoding cDNA was cloned and expressed. The subsequent 

availability of recombinant TNF led to a rapid cataloging of TNF-α’s pleiotropic 
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activities. In addition to triggering apoptosis of certain tumor cells, TNF mediates the 

inflammatory response and regulates immune function.  

TNF-α is a homotrimer of 157 amino acid subunits primarily produced by activated 

macrophages. TNF signals through two distinct cell surface receptors, TNF-R1 and TNF-

R2. Multiple experimental approaches have revealed that TNF-R1 initiates the majority 

of TNF-α’s biological activities. The binding of TNF-α to TNF-R1 triggers a series of 

intracellular events that ultimately result in the activation of NF-κB. 

The initial step in TNF-α signaling involves the binding of the TNF-α trimer to the 

extracellular domain of TNF-R1 and the release of the inhibitory protein silencer of death 

domains (SODD) from TNF-R1’s intracellular domain (ICD) (Figure 12). The resulting 

aggregated TNF-R1 ICD is recognized by the adaptor protein TNF-α receptor–associated 

death domain (TRADD), which recruits additional adaptor proteins receptor-interacting 

protein (known as RIP), TNF-R–associated factor 2 (TRAF2), and Fas-associated death 

domain (FADD). Each of them plays a specific role in IKK activation, RIP being able to 

directly interact with NEMO and to recruit IKK, whereas TRAF2 activates the TAK1 

complex that in turn induces IKKα/IKKβ phosphorylation (Hsu, Shu et al. 1996; Devin, 

Cook et al. 2000; Zhang, Kovalenko et al. 2000). 
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Figure 12. TNF signal transduction pathway. Engagement of TNF with its cognate receptor TNF-R1 

results in the release of SODD and formation of a receptor-proximal complex containing the 

important adaptor proteins TRADD, TRAF2, RIP, and FADD. These adaptor proteins in turn 

recruit additional key pathway-specific enzymes (for example IKKβ) to the TNF-R1 complex, where 

they become activated and initiate downstream events leading to NF-κB activation. 

Several studies have established that IKKβ is essential for NF-κB activation by TNF-α, 

while IKKα plays only a minor role in TNF-α-induced activation of NF-κB (Karin and 

Ben-Neriah 2000; Chen, Chou et al. 2001; Baxter, Came et al. 2006). 

 

 

1.3.6 Inhibition of NF-κB activation using dnIKKβ 

 

Since phosphorylation of IκB proteins by the IKK complex is a key step in NF-κB 

activation, IKK has been a prime target for the development of NF-κB signaling 
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inhibitors. IKK activation can be efficiently blocked by gene-based inhibitors. 

Specifically, a dominant-negative form of IKKβ (dnIKKβ or dnIKK2), which is capable 

of blocking activation of NF-κB, has been created through substitution of a single lysine 

(K) codon present at position 44 with an alanine (A) codon within the predicted ATP-

binding site (Figure 13) (Mercurio, Zhu et al. 1997; Woronicz, Gao et al. 1997; Zandi, 

Rothwarf et al. 1997). The resulting mutant is defective in binding ATP and therefore 

catalytically inactive. Since IKKβ (IKK2) is the predominant IκB kinase in the canonical 

pathway as already described above, stable overexpression of dnIKKβ can selectively 

block activation of NF-κB induced by TNF-α. 

 
Figure 13. Sequence of the wild-type IKK-2 gene, compared to the sequence of the highly specific and 

effective dominant negative IKK-2 mutant, bearing a replacement of Lysine in position 44 with 

Alanine (K44A). 

DnIKKβ and dnIKK2 are both valid terms and describe essentially the same protein, but 

to avoid confusion we will use the term dnIKK2 throughout the rest of this thesis. The 

cDNA of the dominant-negative mutant (K44A) of IKK2 (dnIKK2) used in this thesis 

was generously provided by Tularik Inc. (San Francisco, USA). 

 

 

1.3.7 The biological function of NF-κB 

 

Activated NF-κB controls the expression of many genes, including those encoding 

inflammatory cytokines, chemokines, immune receptors, and cell surface adhesion 

molecules and is required for many fundamental cellular activities (Karin and Ben-Neriah 
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2000; Ghosh and Karin 2002). NF-κB proteins play an important role in innate immunity 

(Senftleben, Li et al. 2001), stress responses (Pahl 1999), cell proliferation (Rayet and 

Gelinas 1999), survival (Wu, Lee et al. 1996; Sonenshein 1997), developement and 

differentiation (Franzoso, Carlson et al. 1997; Gerondakis, Grossmann et al. 1999; 

Silverman and Maniatis 2001). Moreover, there is growing evidence implicating roles for 

NF-κB in inflammatory diseases and human cancer (Karin, Lawrence et al. 2006). 

The exact role of the NF-κB transcription factor in MSCs is largely unknown though. 

Further biochemical and genetic studies are required to identify its biological function in 

this field. The further understanding of the NF-κB-dependent processes in MSCs might 

also provide an opportunity for the development of treatments for controlling 

inflammation and cancers. 
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2 Aims of the thesis 

 

The main focus of this thesis was to investigate the role of NF-κB in TNF-α-mediated 

migration and proliferation of human MSCs in vitro. The project consisted of the 

following parts: 

 

1. Cloning the dnIKK2 gene that inhibits TNF-α-mediated NF-κB activation into an 

appropriate entry vector. 

2. Cloning a gene (EGFP) that encodes a green fluorescent protein into an appropriate 

entry vector, that will serve as a control in order to demonstrate an effective lentiviral 

transduction of cells and to investigate whether the transduction by itself has any effects 

on hMSCs. 

3. Creating two different types of lentiviruses that contain each one of these vectors. 

4. Tranduction of hMSC cells with the created lentiviruses. 

5. Documenting the overexpression of dnIKK2 at RNA and protein level in the cells 

transduced with the dnIKK2 lentivector. 

6. Documenting the effective inhibition of function of NF-κB in the cells transduced with 

the dnIKK2 lentivector through immunohistochemistry. 

7. Observing and comparing the migration and proliferation potential of hMSCs 

transduced with dnIKK2 and those transduced with EGFP after stimulation with TNF-α, 

using invasion and proliferation assays in vitro. 

8. Searching for differences in expression of downstream targets of NF-κB in cells 

transduced with dnIKK2 and EGFP with the help of RT-PCR, which could potentially 

explain the effect of dnIKK2 on the migration and proliferation of hMSCs.
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3 Materials 

 

 

3.1 Laboratory Equipment 

 

- 80°C freezer, type 6485 GFL, Burgwedel 

Analytical balance, type	770 Kern, Balingen 

Analytical balance, type A 120 S  Sartotius, Göttingen 

Autoclave, type Varioklav 300  H+P Labortechnik, Oberschleißheim 

Cell	culture centrifuge, type Universal 16R Hettich-Zentrifugen, Tuttlingen 

Cell	culture	incubator,	type	1G150 Jouan, Unterhaching 

Cell culture microscope, type Diavert Leitz, Wetzlar 

Cooling centrifuge, type BR4 with fixed 

angle rotor AB 2.14 

Jouan, Unterhaching 

Cooling centrifuge, type Megafuge 1.0R  Heraeus, Hanau 

Electrophoresis chambers, horizontal type Owl Scientific, MA, USA 

Electrophoresis chambers, vertical type Bio-Rad, Mannheim 

Electrophoresis power supply, type E 802 Consort, Turnhout, Belgium 

Electrophoresis power supply, type EV 232 Consort, Turnhout, Belgium 

ELISA reader, type MRX Dynex,	Denkendorf 

Flow cytometer, type FACSCalibur BD Biosciences, San Jose, CA, USA 

Gel photo imager Pharmacia, Freiburg 

Incubator, type BE 40 Memmert, Schwabach 

Magnetic	stirrer,	type	RCT IKA, Staufen 

Microscope, type Axiovert S100 Carl Zeiss, Berlin 

Microwave	oven,	type	HZ	86	B	000 Siemens,	Munich 

Multilabel microtiter plate reader CBM, Copenhagen, DN 

Neubauer	cell	counting	chamber Paul	Marienfeld,	Lauda‐Königshofen 

Nitrogen tank, type Locator JR Linde, Wiesbaden 
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PCR Thermal Cycler, type PTC-200 MJ Research, MA, USA 

pH-meter, type	inoLab	Level	1 WTW, Weilheim 

Pipette, type multichannel  Eppendorf, Hamburg 

Pipette, type Pipetus-akku Hirschmann Laborgeräte, Eberstadt 

Pipettes 10, 20, 200, 1000 µl Gilson, WI, USA 

Schott Duran glassware Schott Duran, Mainz 

Shaker Rotamax 120 Heidolph Instruments, Schwabach 

Shaking incubator Infors, Bottmingen, CH 

Sonicator, type Branson sonifier Branson Ultrasonics, Danbury, CT, USA 

Spectrophotometer, type Biophotometer Eppendorf, Hamburg 

Sterile hood, type HeraSafe Heraeus Instruments, Hanau 

Tabletop centrifuge, type 5415D Eppendorf, Hamburg 

Tabletop centrifuge, type Biofuge Pico Heraeus, Hanau 

Tabletop centrifuge, type GMC-360 BMG Labtech, Offenburg 

Thermo block, type HLC BT 130-2 Scientific Plastics, KS, USA 

UV transilluminator, 302 nm Vilber Lourmat, Marne-la-Vallee, France 

Vacuum concentrator, type Jouan RC1010 Jouan, Unterhaching 

Vacuum pump IBS Integra Biosciences 

Vortexer, type Genie-2 Scientific Industries, NY, USA 

Vortexer, type REAX 1R Heidolph, Schwabach 

Water bath, type 1012 Gesellschaft für Labortechnik, Burgwedel 

X-ray film cassette Amersham,	Little	Chalfont,	UK 

 

 

3.2 Consumables 

 

Cell	 culture	 flasks	 25	 cm2,	 75	 cm2,	 225	

cm2, 

Nunc,	Wiesbaden 

Cell culture plates 6-, 24-, 96-well Nunc, Wiesbaden 

Cell scraper Sarstedt, Nümbrecht 
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Falcon tubes 15 ml, 50 ml Sarstedt, Nümbrecht 

Freezing	vials,	1.8	ml Nunc,	Wiesbaden 

Laboratory film, type Parafilm M American Can Company, CO, USA 

PCR tubes, 0.2 ml Biozym, Oddendorf 

Photometer cuvettes, type Uvette Original Eppendorf, Hamburg 

Pipette tips 10, 20, 200, 300 µl  Gilson, WI, USA 

Pipette tips 1000µl Sarstedt, Nümbrecht 

Plastic syringes, type BD Discardit II Becton Dickins, Basel, CH 

Polycarbonate membrane 8 µm pore filters Costar, Pleasanta, CA, USA 

Polystyrene	Petri	dishes,	d	=	94	mm Greiner,	Solingen 

PVDF-membrane Roche, Oldenburg 

Reaction tubes, 1.5 ml, 2 ml Sarstedt, Nümbrecht 

Scalpels, No. 11 Feather Safety Razor, Osaka, Japan 

Serological pipettes 2, 5, 10, 25 ml Sarstedt, Nümbrecht 

Syringe Filters, type Millex GP 0.22, 0.45  

μm 

Millipore, Eschborn 

Transwell invasion chambers, 24-well Costar, Pleasanta, CA, USA 

 

 

3.3 Chemicals 

 

Chemicals used in this thesis were ordered at “A.C.S” or “p.A.” purity grade. All 

standard solutions, buffers, and media were prepared according to Sambrook et al. 

(Sambrook J. 2001). 

Media for cultivating bacteria were sterilized by autoclaving for 20 minutes at 15 psi 

(1.05 kg/cm2), all other solutions were sterile filtered. Thermo labile components such as 

antibiotics were sterile filtered and added to the media after autoclaving and cooling to 

50°C.  

 

Acrylamide, 40 % Appligene, Heidelberg 
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Agarose, Seakem LE Cambrex, NJ, USA 

Ammonium peroxydisulfate (APS) Serva, Heidelberg 

Ampicillin sodium salt Sigma,	Deisenhofen 

AMV First-Strand cDNA Synthesis Kit Invitrogen, Karlsruhe 

Aqua ad iniectabilia Braun, Melsungen 

Bacto Agar Becton Dickins, Basel, CH 

Bacto‐Tryptone Becton Dickins, Basel, CH 

Bacto‐Yeast	extract Becton Dickins, Basel, CH 

BCA protein assay Kit Pierce	Biotechnology,	Rockford,	IL,	USA

BigDye terminator RR mix Applied	Biosystems,	Weiterstadt	

Blasticidin Invitrogen, Karlsruhe

Bovine serum albumin (BSA) Sigma,	Deisenhofen 

BrdU-Kit, colorimetric type Roche,	Mannheim 

Bromophenol Blue Sigma,	Deisenhofen	

Chloramphenicol Sigma,	Deisenhofen 

Coomassie Brilliant Blue R-250 Pierce	Biotechnology,	Rockford,	IL,	USA 

Crystal violet Sigma,	Deisenhofen 

Diff Quik Stain Kit Dade Diagnostika, Munich 

Dimethyl sulfoxide (DMSO) Merck, Darmstadt 

Dithiothreitol (DTT) Merck, Darmstadt

DNA Ladder 1 kb GeneRuler Fermentas, St. Leon-Rot 

DNA Ladder 100 bp  Invitrogen, Karlsruhe 

DNA Ladders	No.	V,	VII,	VIII Roche,	Mannheim 

dNTP Mix Roche,	Mannheim 

ECL Western Blotting Kit Amersham,	Little	Chalfont,	UK	

EDTA Merck, Darmstadt 

Ethanol, absolute Merck, Darmstadt 

Ethidium bromide Merck, Darmstadt 

Extracellular Matrix (ECM) Becton Dickins, Basel, CH	

Fetal Bovine Serum (FBS) Invitrogen, Karlsruhe

Fetal Calf Serum (FCS) Gibco, Karlsruhe 
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Gateway LR Clonase Enzyme Mix Invitrogen, Karlsruhe 

Gel Loading Buffer, type 6x loading Dye Fermentas, St. Leon-Rot 

Gel Loading Buffer, type blue juice 10x Invitrogen, Karlsruhe 

Geneticin Invitrogen, Karlsruhe 

Glycerol Merck, Darmstadt 

Glycine Sigma,	Deisenhofen

Glycine sodium salt Sigma,	Deisenhofen	

Isopropanol Merck, Darmstadt 

Kanamycin sulfate Sigma,	Deisenhofen 

L-Glutamine Invitrogen, Karlsruhe

Lipofectamin 2000 Invitrogen, Karlsruhe 

Medium, type Alpha-Mem Gibco, Karlsruhe 

Medium, type DMEM Gibco, Karlsruhe 

Medium, type MSCGM BulletKit Cambrex, NJ, USA 

Medium, type OptiMEM I Gibco, Karlsruhe 

Medium, type SOC Invitrogen, Karlsruhe 

Methanol Merck, Darmstadt

Penicillin/Streptomycin solution Gibco, Karlsruhe 

Phosphate buffered saline (PBS) PAA Laboratories, Linz, Austria 

Protease Inhibitor tablet Complete, Mini Roche,	Mannheim 

Protein Standard SeeBlue Plus2 Pre-stained Invitrogen, Karlsruhe 

QIAEX II Gel Extraction Kit Qiagen,	Hilden 

Qiagen Plasmid Maxi Kit Qiagen,	Hilden 

Qiagen Plasmid Midi Kit Qiagen,	Hilden 

Qiagen Plasmid Mini Kit Qiagen,	Hilden 

Qiagen RNeasy Mini Kit Qiagen,	Hilden 

QIAquick	Gel	Extraction	Kit Qiagen,	Hilden 

Quick Ligation Kit New England Biolabs, Frankfurt 

Restriction endonuclease buffers 1,2,3,4 New England Biolabs 

Restriction endonucleases type II New England Biolabs 

SDS Ultrapure Roth, Karlsruhe 
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Sodium acetate Sigma,	Deisenhofen 

Sodium chloride Merck, Darmstadt 

Sodium deoxycholate salt Sigma,	Deisenhofen 

Sodium fluoride Sigma,	Deisenhofen	

Sulfuric acid Roth, Karlsruhe 

TEMED Sigma,	Deisenhofen	

TNF-α  Biomol, Hamburg 

Tris-Base Sigma,	Deisenhofen	

Tris-HCl Sigma,	Deisenhofen	

Triton X-100 Sigma,	Deisenhofen 

Trypan Blue Stain Invitrogen, Karlsruhe 

Trypsin-EDTA Gibco, Karlsruhe 

Tween 20 Merck, Darmstadt

ViraPower Lentiviral Expression System Invitrogen, Karlsruhe 

β-Mercaptoethanol  Sigma,	Deisenhofen 

 

 

 

3.4 Stock solutions, media and frequently used buffers 

 

 

Culture medium of E. coli strains 

 

dyt (2x YT) Per liter: 

16 g Tryptone 

10 g Yeast extract 

5 g Sodium Chloride 
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DNA Gel electrophoresis  

 

TAE (1x) Tris acetate EDTA 

40 mM Tris-acetate 

1mM EDTA 

 

 

Protein Extraction 

 

RIPA-Buffer RadioImmuno Precipitation Assay Buffer 

0.1 % (w/v) SDS 

1 % (w/v) Na-DOC sodium deoxycholate 

1 % (w/v) Triton X-100 

50 mM Tris-HCl (pH 8.0) 

150 mM NaCl 

10 mM EDTA (pH 8.0) 

20 mM NaF 

¼ tablet of Protease Inhibitor per 2.5 ml 

RIPA-Buffer 

 

 

SDS-PAGE 

 

Acrylamide stock solution 30 % 75 % (v/v) Acrylamide 40% in H20 

APS 10% 10 % (w/v) Ammonium persulfate in H20 

Laemmli Buffer 225 mM Tris-HCl pH 6.8 

20 % (w/v) SDS 

0.05 % (w/v) Bromphenol blue 

50 % (v/v) Glycerol 

250 mM Dithiothreitol (DTT) 

SDS running electrophoresis buffer (10x) 250 mM Tris-Base pH 8.3 
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1.92 M Glycine 

1 % (w/v) SDS 

Tris Buffer (1x) for SDS Separating Buffer 1 M Tris-Base, pH 8.8 

Tris Buffer (1x) for SDS Stacking Buffer 1 M Tris-Base, pH 6.8 

 

 

Western Blot 

 

Blotting buffer (10x) 250 mM Tris-Base pH 8.3 

1.92 M Glycine 

Blotting buffer (1x) 10 % (v/v) 10x Blotting buffer 

20% (v/v) Methanol 

 

 

Immunodetection 

 

Blocking solution 5% skim milk powder in Wash Buffer 

Tris HCl pH 7.4 1 M Tris-Base, pH 7.4 

Wash buffer (TBS-Tween 20) 1% (v/v) 1 M Tris HCl pH 7.4 

150 mM NaCl 

0,05 % (v/v) Tween 20  

 

 

Stripping 

 

Stripping buffer 62.5 mM Tris-HCl pH 6.7 

100 mM 2-Mercaptoethanol 

2 % (w/v) SDS 

Wash buffer (TBS-Tween 20) 1% (v/v) 1 M Tris HCl pH 7.4 

150 mM NaCl 

0,05 % (v/v) Tween 20 
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Coomassie Staining 

 

Isopropanol fixing solution 10 % (v/v) Acetic acid 

25 % (v/v) Isopropanol 

Coomassie Blue staining  7 % (v/v) Acetic acid 

40 % (v/v) Methanol 

0.025 % (w/v) Coomassie brilliant blue R-

250 

Destaining solution 7 % (v/v) Acetic acid 

40 % (v/v) Methanol 

 

 

 

3.5 Antibodies 

 

 

3.5.1 Primary antibodies 

 

Antibody Source Supplier 

Anti-NF-κB (p65) Rabbit Santa Cruz Biotechnology, CA, USA 

Anti-IKKα/β (H-470) Rabbit Santa Cruz Biotechnology, CA, USA 

Anti-GAPDH Mouse Biotrend, Cologne 
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3.5.2 Secondary antibodies 

 

Antibody Source Supplier 

Anti-rabbit IgG, HRP conjugated Goat Acris Antibodies, Hiddenhausen 

Anti-mouse IgM, HRP conjugated Goat Santa Cruz Biotechnology, CA, USA 

Anti-rabbit IgG, rhodamine red 

fluorochrome conjugated 

Goat Santa Cruz Biotechnology, CA, USA 

 

 

 

3.6 Escherichia coli strains 

 

Competent cells have been prepared by a patented modification of the procedure of 

Hanahan (Hanahan 1983). The E. coli strains used in this study are presented below. 

 

 

 

One SHOT TOP10 Chemically Competent E. coli (Invitrogen, Karlsruhe) 

 

Genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 

araD139 Δ(araleu)7697 galU galK rpsL (StrR) endA1 nupG 

Description: TOP10 E. coli cells are ideal for high-efficiency cloning and plasmid 

propagation and allow stable replication of high-copy number 

plasmids. 

 

 

RapidTrans TAM1 Chemically Competent E. coli (Active Motif, Carlsbad CA, USA) 

 

Genotype: mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 

araΔ139 (ara-leu)7697 galU galK rpsL endA1 nupG 
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Description: RapidTrans TAM1 cells are high-efficiency competent E. coli that 

allow stable replication of high-copy number plasmids. 

 

 

Library Efficiency DH5α Competent E. coli (Invitrogen, Karlsruhe) 

 

Genotype: F- φ80lacZΔM15 Δ(�lacZYA-argF)U169 recA1 endA1 hsdR17(rk
-, 

mk
+) phoA supE44 thi-1 gyrA96 relA1 λ- 

Description: These cells are suitable for efficient transformation of large plasmids. 

 

 

 

 

 

 

LIBRARY EFFICIENCY DB3.1 Competent E. coli (Invitrogen, Karlsruhe) 

 

Genotype: F- gyrA462 endA1 Δ (sr1-recA) mcrB mrr hsdS20(rB-, mB-) supE44 

ara-14 galK2 lacY1 proA2 rpsL20(SmR) xyl-5 λ- leu mtl1 

Description: These cells contain the gyrA462 allele which renders the strain 

resistant to the toxic effects of the ccdB gene. They can be used for 

propagating plasmids containing the ccdB gene such as Gateway 

System vectors of Invitrogen. 

 

 

One Shot Stbl3 Chemically Competent E. coli (Invitrogen, Karlsruhe) 

 

Genotyp: F– mcrB mrr hsdS20(rB
–, mB

–) recA13 supE44 ara-14 galK2 lacY1 

proA2 rpsL20(StrR) xyl-5 λ– leu mtl-1 

Description: The Stbl3 E. coli strain is designed for cloning direct repeats found in 

lentiviral expression vectors. Unlike TOP10 E. coli, these cells reduce 
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the frequency of unwanted homologous recombinations of long 

terminal repeats (LTRs) found in ViraPower Lentiviral and other 

retroviral vectors. 

 

 

 

3.7 Eukaryotic cell lines 

 

hMSC 

 

Cell type: Human mesenchymal stem cell line 

Obtained from: Cambrex, NJ, USA 

Source: Harvested and cultured from normal human bone marrow. 

Description: Cells are positive for CD105, CD166, CD29, and CD44. Cells test 

negative for CD14, CD34 and CD45. 

 

 

293FT 

 

Cell type: Genetically modified human embryonal kidney cell line 

Obtained from: Invitrogen, Karlsruhe 

Source: Derived from the 293F primary embryonal human kidney cell line 

Description: The 293FT strain is	 a	 particularly suitable host for generating 

lentiviral constructs. It stably expresses the SV40 large T antigen 

from the pCMVSPORT6TAg.neo plasmid. Studies have 

demonstrated maximal virus production in human 293 cells 

expressing SV40 large T antigen (Naldini, Blomer et al. 1996). 
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3.8 Plasmid vectors 

 

pRK5 IKK-β C-Flag,  Length 4.7 kb (Tularik Inc., South San Francisco, CA, U.S.A ) 

 

The pRK5-IKKβ (K44A)-C-FLAG plasmid was constructed by John Woronicz and was 

kindly provided to us by Dr. David V. Goeddel. It consists of the pRK5-C-FLAG vector 

containing the IKKβ cDNA encoding amino acids 1–755 with an alanine substitution of 

the conserved lysine residue at position 44 (K44A). pRK5-IKKβ (K44A)-C-FLAG 

encodes a dominant-negative mutant of IKKβ kinase (Regnier, Song et al. 1997; 

Woronicz, Gao et al. 1997; Zandi, Rothwarf et al. 1997). 

 

 

pBC SK (+) vector, Length 3.4 kb (Stratagene, La Jolla, CA, USA)  

 

The pBC SK (+) vector is a cloning vector designed to simplify commonly used cloning 

and sequencing procedures. The pBC SK+ phagemid (plasmid with a phage origin) 

carries a chloramphenicol-resistant gene. 

The pBC SK + vector was used as an intermediate vector for the cloning reactions, due to 

the versatile and convenient multiple cloning site (MCS) it contains. 

 

 

pEGFP-N3 vector, Length  4.7 kb (Clontech, Heidelberg) 

 

pEGFP-N3 encodes a red-shifted variant of wild-type GFP (Prasher, Eckenrode et al. 

1992) which has been optimized for brighter fluorescence and higher expression in 

mammalian cells. (Excitation maximum = 488 nm; emission maximum = 507 nm.) 

pEGFP-N3 encodes the GFPmut1 variant (Cormack, Valdivia et al. 1996) which contains 

the double-amino-acid substitution of Phe-64 to Leu and Ser-65 to Thr. The coding 

sequence of the EGFP gene contains more than 190 silent base changes which correspond 

to human codon-usage preferences. Sequences flanking EGFP have been converted to a 
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Kozak consensus translation initiation site (Kozak 1987) to further increase the 

translation efficiency in eukaryotic cells. 

 

 

pENTR 11 vector,  Length 2.7 kb  (Invitrogen, Karlsruhe) 

 

The pENTR11 vector allows restriction cloning of a gene of interest into a vector for 

entry into the Gateway System available from Invitrogen.  

 

The vector contains the rrnB T1 and T2 transcription termination sequences to prevent 

basal expression of the cloned gene in E. coli, thereby reducing possible toxicity (Orosz, 

Boros et al. 1991) .The attL1 and attL2 sites in the vector allow site-specific 

recombination of the entry clone with a Gateway destination vector (Landy 1989). A 

Kozak consensus sequence allows efficient translation initiation in eukaryotic systems 

(Kozak 1987). The ccdB gene located between the two attL sites makes a negative 

selection of expression clones possible. A Kanamycin resistance gene also allows 

selection of the plasmid in E. coli. Finally, the vector contains a pUC origin of replication 

that allows high-copy number replication and growth in E. coli.  

 

In order to propagate and maintain the pENTR11 vector, DB3.1 Competent Cells have to 

be used for transformation, since this particular E. coli strain is resistant to ccdB effects 

and can support the propagation of plasmids containing the ccdB gene. The cloned gene 

of interest however must replace the ccdB gene located between the two attL sites. 

 

 

pLenti6/V5-DEST Gateway Vector, Length 8.7 kb (Invitrogen, Karlsruhe) 

 

The pLenti6/V5-DEST vector is a destination vector adapted for use with the Gateway 

Technology of Invitrogen, and is designed to allow high-level expression of recombinant 

fusion proteins in mammalian cells using Invitrogen’s ViraPower Lentiviral Expression 

System.  
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The vector contains the human CMV immediate early promoter to allow high-level, 

constitutive expression of the gene of interest in mammalian cells (Boshart, Weber et al. 

1985; Nelson, Reynolds-Kohler et al. 1987; Andersson, Davis et al. 1989)  and two 

recombination sites, attR1 and attR2, downstream of the CMV promoter for 

recombinational cloning of the gene of interest from an entry clone. It also contains a 

Rous Sarcoma Virus (RSV) enhancer/ promoter for Tat-independent production of viral 

mRNA in the producer cell line (Dull, Zufferey et al. 1998) and a modified HIV-1 5′ and 

3′ Long Terminal Repeats (LTR) for viral packaging and reverse transcription of the viral 

mRNA (Dull, Zufferey et al. 1998) .The U3 region of the 3′ LTR is deleted (ΔU3) and 

facilitates self-inactivation of the 5′ LTR after transduction to enhance the biosafety of 

the vector (Dull, Zufferey et al. 1998). The vector contains additionally a HIV-1 psi (Ψ) 

packaging sequence for viral packaging, a HIV Rev response element (RRE) for Rev-

dependent nuclear export of unspliced viral mRNA (Malim, Hauber et al. 1989; Kjems, 

Brown et al. 1991). A chloramphenicol resistance gene (CmR) located between the two 

attR sites allows counterscreening. The ccdB gene located between the attR sites allows 

negative selection, and the C-terminal V5 epitope makes detection of the recombinant 

protein of interest possible (Southern, Young et al. 1991).  

A Blasticidin resistance gene (Takeuchi, Hirayama et al. 1958; Yamaguchi, Yamamoto et 

al. 1965) makes selection in E. coli and mammalian cells possible. Resistance to 

Blasticidin is conferred by expression of either one of two Blasticidin S deaminase genes: 

bsd from Aspergillus terreus (Kimura, Takatsuki et al. 1994) or bsr from Bacillus cereus 

(Izumi, Miyazawa et al. 1991) .These deaminases convert Blasticidin S to a non-toxic 

deaminohydroxyderivative (Izumi, Miyazawa et al. 1991). 

Finally, the vector contains an Ampicillin resistance gene and a pUC origin for selection 

and high-copy replication of the plasmid in E. coli respectively.  

Stbl3 E. coli is recommended for transformation of this vector, as this strain is 

particularly well-suited for use in cloning unstable DNA such as lentiviral DNA 

containing direct repeats. Transformants containing unwanted recombinants are generally 

not obtained when this strain is used for transformation. 
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3.9 Oligonucleotides 

 

3.9.1 RT- PCR primers 

 

For PCR reactions, sense and antisense oligonucleotide primers for GAPDH (Takahashi, 

Higashino et al. 2003), EGFP (Liu, Dovzhenko et al. 2004), β1 integrin (Lin, Yeh et al. 

2005), αV integrin (Lin, Yeh et al. 2005), VCAM-1 (Gregory, Singh et al. 2003) were 

used as described previously. Primers for IKK2 and CD 44 were designed using Clone 

Manager 7 (Scientific and Educational Software). Primer sequences are listed below. 

 

Gene name Sequence Annealing 

temperature (° C) 

Product 

size (bp) 

GAPDH Forward: 5'-CAACTACATGGTTTACATGTTC-3 

Reverse: 5'-GCCAGTGGACTCCACGAC-3’ 
50 181 

EGFP Forward: 5'-CAAGCTGACCCTGAAGTTCATCTGC-3' 

Reverse: 5'-CACGCTGCCGTCCTCGATGTTGTGG-3' 
55 409 

IKK2 Forward: 5´-AAGTGCGGCAGAAGAGTGAG-3 

Reverse: 5´-ACTGAGTGGCAGGCTTATCG-3´ 
48 407 

β1 integrin Forward: 5´-ATGAATGAAATGAGGAGGATTACTTCG-3´ 

Reverse: 5´-AAAACACCAGCAGCCGTGTAAC -3 
48 322 

αV integrin Forward: 5´-GGAGCACATTTAGTTGAGGTAT -3´ 

Reverse: 5´-ACTGTTGCTAGGTGGTAAAACT -3´ 
48 274 

VCAM-1 Forward: 5´-AATCCACGTGGAGATCTACT -3´ 

Reverse: 5´-TTCTCAAAACTCACAGGGCT-3´ 
50 282 

CD 44 Forward: 5`-GCCAAACACCCAAAGAAGAC-3´ 

Reverse: 5´-TCCACCTGTGACATCATTCC-3´ 
55 392 

 

 

All oligonucleotides were purchased from Invitrogen. 
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3.9.2 Sequencing primers 

 

All sequencing primers used in this thesis were designed with Clone Manager 7.0 and 

purchased from Invitrogen. 

 

3.10  Data processing 

 

Analysis of sequencing results was performed with the freeware Chromas v 1.45  

Clone manager 7.0 (Scientific and Educational Software) was used for various cloning 

procedures and for designing plasmid vectors. 

Axiovision 40 LE 4.4.0.0 (Carl Zeiss Vision) was used for processing of the microscopic 

images. 

FACS data were acquired and analyzed using Cell QuestTM software (Becton-Dickinson 

Biosciences, San Jose, CA, USA). 

Microsoft Excel 2003 was used for statistical analyses and graphics.



  Methods 
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4 METHODS 

4.1 Microbiological Methods 

4.1.1 Cultivation of E. coli  

 

Bacterial strains carrying plasmids or genes with antibiotic selection marker were 

cultured in liquid or on solid medium containing the selective agent. Stock solutions of 

antibiotics were sterilised by filtration and aliquots stored at -20°C. Antibiotics were 

added to freshly autoclaved medium (cooled to below 50°C). Stock and working 

concentrations of the antibiotics are shown in the following table (Sambrook J. 2001). 

 

Antibiotic 

 

         Stock solution 

Concentration                            Storage 

Working concentration 

                             Dilution   

Ampicillin 50 mg/ml in water                       -20°C 50 μg/ml                 1/1000 

Chloramphenicol 34 mg/ ml in ethanol                   -20°C 170 μg/ml               1/200 

Kanamycin 10 mg/ml in water                       -20°C 50 μg/ml                 1/200 

 

 

 

4.1.2 Agar plates 

 

E.coli strains can be streaked and stored on dyt plates containing 1.5% agar and the 

appropriate antibiotic. With a flamed and cooled wire loop, an inoculum of bacteria was 

streaked on top of a fresh agar plate and incubated upside down at 37°C for 12-14 h until 

colonies developed. The plates were stored for up to 1 month at 4°C. 
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4.1.3 Liquid cultures 

 

Bacterial liquid cultures were grown for plasmid preparations. Cultures were prepared by 

inoculating a single colony from a freshly streaked selective plate into 4-6 ml (Mini-

Prep), or 50 ml (Midi-Prep), or 150 ml (Maxi-Prep) of 2x YT medium containing the 

appropriate antibiotic. The culture was grown overnight (12-16 h) at 37°C with vigorous 

shaking (225 rpm). Cells were harvested by centrifugation at 5000 x g for 20 min, and 

following the cell pellet was treated as indicated in the appropriate plasmid purification 

protocols. 

 

4.1.4 Glycerol stocks 

 

E. coli strains can be stored for many years at -70°C in 15% glycerol. 0.15 ml glycerol 

was added to a 2 ml screw-cap freezing vial and sterilised by autoclaving. 0.85 ml of the 

E. coli culture was added to the vial of pre-sterilized glycerol and vortexed to ensure even 

mixing of the bacterial culture and the glycerol. Samples were frozen in liquid nitrogen 

and stored at -80°C. 

 

4.2 Molecular biological methods 

4.2.1 Transformation of chemically competent cells 

 

Competent cells were removed from the -80°C freezer and thawn on wet ice. 1 to 5 μl of 

the DNA (10 pg to 100 ng), or 2 μl of the ligation reaction were added to the 50 μl 

suspension of competent cells, moving the pipette gently through the cells while 

dispensing. Cells were incubated for 30 min on ice and heat-shocked for 45 sec in a 42°C 

water bath afterwards. Then, cells were placed on ice for 2 min, and 0.9 ml of room 

temperature S.O.C medium was added. The culture was incubated for 1 h at 37°C with 

shaking (225 rpm). Using a sterile spreader, 10-100 μl of this suspension were plated on 

pre-warmed 2x YT medium plates containing the appropriate antibiotic. Plates were 
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allowed to completely absorb any excess media and were subsequently incubated 

overnight upside-down at 37°C. 

 

 

4.2.2 Isolation of plasmid DNA 

 

Purification of plasmids from E.coli overnight cultures containing the appropriate 

antibiotics were routinely performed using the Plasmid Mini Kit for analytical purposes 

and the Plasmid Midi or Maxi Kit for preparative purposes, according to the 

manufacturer’s protocol. 

The plasmid purification protocol is based on a modified alkaline lysis procedure 

(Birnboim and Doly 1979; Le Gouill, Parent et al. 1994), followed by binding of plasmid 

DNA to an anion-exchange resin under appropriate low-salt and pH conditions. RNA, 

proteins, dyes, and low-molecular weight impurities were removed by a medium-salt 

wash. Plasmid DNA was eluted in a high-salt buffer and then concentrated and desalted 

by isopropanol precipitation. The precipitated DNA was subsequently washed with 70 % 

ethanol. Plasmids for transfection of eukaryotic cells were purified under endotoxin free 

conditions. Plasmid DNA was finally eluted in H2O or TE buffer and stored at -20°C. 

 

 

4.2.3 Ethanol precipitation of DNA 

 

Extraction and a cleaning of DNA after enzymatic reactions was achieved with ethanol 

precipitation. DNA from dilute, aqueous solutions can be precipitated by the addition of 

monovalent cations and ethanol. 0.1 volume of 3 M sodium acetate (pH 5.2) and 2.5 

volumes of ice-cold 100% ethanol were added to the nucleic acid solution, mixed, and 

incubated at -20°C at least for 30 minutes. Following centrifugation for 30 min at 

12,000x g, 4°C, the supernatant was carefully discarded. The pellet was washed once 

with 70% ethanol to remove remaining salt and centrifuged for additional 10 min at 
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12,000 x g, 4°C. The DNA or RNA precipitate was briefly air dried and dissolved in 

sterile H2O (RNase-free) or TE buffer. 

 

 

4.2.4 Quantification of nucleic acids 

 

Determination of DNA or RNA concentration was done by spectrophotometry at 260 nm. 

Nucleic acids absorb UV light of 260 to 280 nm wavelength, with a maximum at 260 nm. 

The reading at 260 nm allows calculation of the concentration of nucleic acid in the 

sample. The absorbance of 1 unit at 260 nm (A260) corresponds approximately to 50 

μg/ml for double-stranded DNA and 40 μg/ml for RNA. The ratio between the readings 

at 260 nm and 280 nm provides an estimate for the purity of the nucleic acid. Pure 

preparations of DNA and RNA have ratios of 1.8 and 2.0, respectively (Manchester 1995; 

Wilfinger, Mackey et al. 1997). All DNA and RNA solutions used in the experiments of 

this thesis had a ratio between 1.8 and 2.0. 

 

 

4.2.5 Gelelectrophoretic analysis of nucleic acids 

 

Analysis of RT-PCR products, restriction enzyme digest, minipreparations of plasmid 

DNA, or enzymatic modifications of DNA was done with the use of agarose gel 

electrophoresis. 

Gel electrophoresis allows separation and identification of nucleic acids based on charge 

migration. Migration of nucleic acid molecules in an electric field is determined by size 

and conformation, allowing nucleic fragments of different sizes to be separated. Agarose 

gel analysis is the most commonly used method for analyzing DNA fragments between 

0.1 and 25 kb. The concentration of agarose (usually 0.7-1.5%) used for the gel depends 

primarily on the size of the DNA fragments to be analyzed. 
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Ethidium bromide was included in the gel matrix to enable fluorescent visualisation of 

the DNA fragments under UV light. Agarose gels were submerged in electrophoresis 

buffer in a horizontal electrophoresis apparatus. 

 

 

4.2.6 Separation of DNA on agarose gels 

 

The amount of agarose depending on the concentration required was added to the 

appropriate volume of 1 x TAE buffer in a bottle and heated in a microwave until the 

agarose dissolved. Reduced volume of liquid was made up to the original volume with 

distilled water to ensure correct agarose and buffer concentrations. The cooled agarose 

(55-60°C) was mixed with ethidium bromide to a final concentration of 0.5 μg/ml and 

poured onto the horizontal gel tray to a thickness of 3-5 mm. A comb was inserted into 

the gel immediately after pouring the gel, and the gel was left to set for 20 min. 

Following, the comb was removed and the tank containing the gel was filled with 1 x 

TAE buffer. For DNA sample preparation, 1 volume of 6 x DNA loading buffer was 

mixed with 5 volumes of DNA solution, the samples were applied to the wells of the gel 

and a molecular-weight marker was included to enable analysis of DNA fragment sizes in 

the samples. Electrodes were connected so that the DNA would migrate towards the 

anode. The gel was run at 5-7 V/cm until the dyes have migrated an appropriate distance. 

An appropriate molecular DNA marker was applied on a separate lane in the same gel, in 

order to determine weight and size of the DNA sample. 

Ethidium bromide–DNA complexes display increased fluorescence compared to the dye 

in solution. Illumination of a stained gel under UV light (302 nm) allowed bands of DNA 

to be visualised against a background of unbound dye. The visualised DNA fragments 

were subsequently documented photographically. 

 

 

 

 



 

  65   

4.2.7 Purification of DNA fragments from agarose gel 

 

DNA fragments were purified after agarose gel electrophoresis using the QIAquick Gel 

Extraction Kit, according to manufacturer's instructions. This procedure allows DNA 

fragments separated electrophoretically to be purified from salts or unincorporated 

nucleotides prior to cloning or other procedures. Purification of DNA fragments with the 

QIAquick Gel Extraction Kit is based on adsorption of DNA to a silica-gel membrane in 

the presence of high salt, while contaminants pass through the column. The adsorption of 

nucleic acids to silica-gel surfaces occurs only in the presence of a high concentration of 

chaotropic salts, which modify the structure of water (Vogelstein and Gillespie 1979). 

Impurities are efficiently washed away, and the pure DNA is eluted with Tris buffer or 

water.  

Following electrophoresis, the DNA bands to be isolated were visualised under UV light, 

excised from the agarose gel with a sterile, sharp scalpel and extracted according to the 

manufacturer's instructions. 

 

 

4.3 Analysis and modification of DNA 

4.3.1 Fragmentation of DNA with restriction enzymes 

 

Restriction enzymes were discovered about 30 years ago during investigations into the 

phenomenon of host-specific restriction and modification of bacterial viruses (Arber 

1965; Smith and Wilcox 1970; Danna and Nathans 1971). These enzymes were found to 

cleave DNA at specific sites, generating discrete, gene-size fragments. It is generally 

accepted that their role in nature is to protect bacteria from infections by viruses. 

Restriction endonucleases recognize short, specific, and most commonly palindromic 

base sequences in DNA, which are characteristic for each enzyme. Once a restriction 

enzyme recognizes its specific DNA sequence, the phosphodiester bond is hydrolyzed 

whereby the DNA fragment is cleaved at this particular position. Depending on the 
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restriction endonuclease, this enzymatic reaction generates blunt end or cohesive end 

termini. The enzymatic activity is indicated in units (u), whereupon 1 u corresponds to 

the amount of enzyme needed for the digestion of 1 microgram DNA in one hour. It is 

recommended that the volumetric content of the enzyme does not exceed 10% of the final 

volume, since glycerin is a major component of the enzyme solution and inhibits the 

enzymatic activity if its concentration is higher than 5%. Moreover, if restriction 

endonucleases are used under extreme non-standard conditions (such as high 

enzyme/DNA ratio, long incubation time, incorrect buffer condition, presence of 

contaminants), they might be capable of cleaving sequences, which are similar but not 

identical to their defined recognition sequence, a phenomenon termed "star activity". The 

restriction reactions in this thesis were conducted under the conditions specified for each 

enzyme. After the appropriate incubation time, completeness of the enzymatic restrictions 

was confirmed with agarose gel electrophoresis. 

 

 

4.3.2 Ligation of DNA fragments 

 

The formation of a phosphodiester bond between juxtaposed 5' phosphate and 3' hydroxyl 

termini of DNA is catalyzed by DNA ligases. The enzymatic reaction takes place only in 

the presence of sufficient ATP, and a free 5' phosphate group. Ligation reactions in this 

study were performed with the Quick Ligation Kit, which enables ligation of cohesive 

end or blunt end DNA fragments in 5 minutes at room temperature (25°C). For each 

reaction, 50 ng of vector were combined with a 3-fold molar excess of insert. The volume 

of the solution was adjusted to 10 μl with sterile water.10 μl of 2x Quick Ligation Buffer 

were added, and the solution was briefly mixed. Finally, 2 U of recombinant Quick T4 

DNA Ligase were added and the sample was incubated at room temperature (25°C) for 5 

minutes. 
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4.3.3 Recombinational cloning 

 

The Gateway LR Clonase Enzyme Mix of Invitrogen was used to catalyze the in vitro 

recombination between an entry clone (containing a gene of interest flanked by attL sites) 

and a destination vector (containing attR sites) to generate an expression clone. 

Recombinational cloning is based on site-specific recombination reactions of the λ 

bacteriophage in E. coli during lysogenization (Landy 1989). Proteins encoded by λ 

phage and E. coli mediate the integrative and excisive recombination reactions of λ 

phage. These recombination reactions, performed in vitro, are the basis of the Gateway 

cloning technology. The attB (attL) sites are specifically recognized by the recombination 

proteins that constitute the clonase enzyme mix cocktails. These proteins cut to the left 

and to the right of the gene in the entry clone and ligate it into the destination vector, 

creating a new expression clone (Figure 14). There is a counterselection against 

destination vectors without the gene of interest since they carry the ccdB gene, which is 

lethal to most E. coli strains (Bernard and Couturier 1992; Miki, Park et al. 1992). Thus, 

selection for ampicillin resistance chooses for E. coli cells that carry the desired product, 

which usually comprise 70-90% of the colonies.  
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Figure 14. The Gateway LR Cloning Reaction. An entry vector, containing a gene flanked by 

recombination sites, recombines with a destination vector to yield an expression vector and a by-

product plasmid. The result is that a gene sequence in the entry vector is transferred into an 

expression vector, donated by the destination vector. Only plasmids without the ccdB gene that are 

also ampicillin (ApR) resistant will yield colonies. 

For each reaction, 100-300 ng of the entry clone and 300 ng of the destination vector 

were mixed with 4 μl 5x LR Clonase Reaction Buffer and then TE buffer, pH 8.0 was 

added to each sample to a final volume of 16 μl. LR Clonase enzyme mix was thawn on 

wet ice for about 2 minutes, briefly vortexed and 4 μl of the enzyme mix were added to 

each reaction. The reactions were incubated at 25°C for 60 minutes. 2 μl of the Proteinase 

K were afterwards added to each sample to terminate the reaction. Samples were then 

vortexed briefly and then incubated at 37°C for 10 minutes. Finally, 1 μl of each LR 

reaction was transformed into 50 μl of Library Efficiency DH5α competent E.coli cells. 
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4.3.4 Sequencing of DNA 

 

DNA sequencing is the process of determining the nucleotide order of a given DNA 

fragment. Currently, most DNA sequencing is based on the chain termination method 

developed by Frederick Sanger (Sanger, Nicklen et al. 1977). This technique uses 

sequence-specific termination of a DNA synthesis reaction using modified nucleotide 

substrates. The method takes part in two steps. A labelling-reaction is first performed in 

order to produce a labelled source sample, followed by a termination-reaction where the 

synthesis of the fragments produced in the first reaction is ended. Nowadays, labelling of 

the sequence reaction is done with fluorescent coloring. This is accomplished by labelling 

each of the dideoxynucleotide chain-terminators with a separate fluorescent dye, which 

fluoresces at a different wavelength.  

Sequencing of plasmid DNA was performed using the BigDye Terminator Cycle 

Sequencing kit. For the sequencing reaction, 300 ng of PCR-amplified DNA, 3.2 pmol of 

either the forward or the reverse primer, and 4 μl of BigDye Terminator RR mix were 

mixed and adjusted to a final volume of 20 μl by adding distilled water. The reaction was 

run for 30 cycles of 15 s at 94°C, 10 s at 50°C, and 2 min at 60°C. Sequence analysis was 

carried out with an ABI Prism 3730 automated sequencer by Sequiserve Sequencing 

Company (Vaterstetten). 

 

 

4.4 RNA analysis  

4.4.1 Isolation of RNA from cultured eukaryotic cells 

 

RNA was purified from cultured eukaryotic cells using the RNeasy Kit of Qiagen. The 

RNeasy procedure combines the selective binding properties of a silica-based membrane 

with the speed of microspin technology. A specialized high-salt buffer system allows up 

to 100 μg of RNA longer than 200 bases to bind to the RNeasy silica membrane. 

Biological samples are first lysed and homogenized in the presence of a highly 
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denaturing guanidine-thiocyanate–containing buffer, which immediately inactivates 

RNases to ensure purification of intact RNA. Ethanol is added to provide appropriate 

binding conditions, and the sample is then applied to an RNeasy Mini spin column, where 

the total RNA binds to the membrane and contaminants are efficiently washed away. 

High-quality RNA is then eluted in RNase-free water. 

Total RNA was isolated from cell cultures according to the manufacturer’s suggestions. 

RNA was dissolved in 60 μl RNase-free H2O, and the samples were stored at -20°C. 

 

4.4.2 RT-PCR 

 

Sensitive methods for the detection and analysis of rare mRNA transcripts or other RNAs 

present in low abundance are an important aspect of most cell/ molecular biology studies. 

RNA cannot serve as a template for PCR, so it must first be reverse transcribed into 

cDNA (e.g. with reverse transcriptase from avian myeloblastosis virus). RT-PCR is a 

combined technique in which reverse transcription (RT) is coupled with PCR 

amplification of the resulting cDNA (D'Alessio and Gerard 1988). 

 

4.4.2.1 Reverse transcription 

 

First strand synthesis was done with the cloned AMV first-strand cDNA Synthesis Kit of 

Invitrogen using 500 ng RNA and random-hexamer primers according to the 

manufacturer’s instructions. The synthetized cDNA was either used immediately for PCR 

reactions, or stored at -20°C. 

 

4.4.2.2 PCR amplification 

 

Polymerase chain reaction (PCR) is an in vitro method for enzymatically synthesizing 

defined sequences of DNA. The reaction uses two oligonucleotide primers that hybridise 

to opposite strands and flank the target DNA sequence that is to be amplified. The 



 

  71   

elongation of the primers is catalyzed by a heat-stable DNA polymerase (such as Taq 

DNA polymerase). A repetitive series of cycles involving template denaturation, primer 

annealing and extension of the annealed primers by the polymerase results in exponential 

accumulation of a specific DNA fragment. The ends of the fragment are defined by the 5' 

ends of the primers. Prerequisites for successful PCR include the design of optimal 

primer pairs, the use of appropriate primer concentrations, and optimisation of the PCR 

conditions.  

Routinely, the PCR reaction was performed in a total volume of 20 μl, using the Taq 

DNA Polymerase of Invitrogen. All cDNA samples used for PCR reaction were first 

diluted 1:10 with DEPC water, to avoid the PCR inhibitory effects of the reverse 

trascriptase components (Sellner, Coelen et al. 1992; Fehlmann, Krapf et al. 1993; Liss 

2002). Transcript levels were normalized using a house keeping gene (GAPDH) as the 

internal control. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the 

most commonly used housekeeping genes used in comparisons of gene expression data. 

The assumption was made, that expression of the gene remained constant in the cells 

under investigation. PCR cycle number was optimized for each reaction to avoid reaching 

saturation. PCR amplification for GAPDH, EGFP, IKK2, β1 integrin, αV integrin, 

VCAM-1 and CD44 was performed at 35, 30, 30, 25, 30, 35, and 30 cycles respectively. 

 

 

4.5 Protein Biochemistry 

4.5.1 Protein precipitation 

 

Protein extraction was performed by lysing the cells in radio-immunoprecipitation 

(RIPA) buffer. The RIPA buffer is a reliable cell lysis buffer that enables efficient cell 

lysis and protein solubilization while avoiding protein degradation and interference with 

the proteins' immunoreactivity and biological activity. It is furthermore compatible with 

the BCA Protein Assay. 

Cells were first trypsinized and then collected by low-speed centrifugation at 500 rpm for 

5 min at room temperature. The supernatant was carefully removed. The pellet was 
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washed with PBS and recollected by centrifugation at 500 rpm for 5 min at room 

temperature. The supernatant was carefully removed and cells were lysed by adding ice-

cold RIPA buffer containing a mixture of protease inhibitors (Protease inhibitor tablet 

Complete, Mini, EDTA-free). After incubation on ice for 30 min cells were disrupted by 

sonication (2 x 2 sec) and incubated on ice for additional 30 minutes. The insoluble cell 

debris was removed by centrifugation at 10.000 x g for 10 min at 4°C. The cell lysate was 

stored at -70°C until assayed. 

 

 

4.5.2 Determination of protein concentration 

 

For the determination of the protein concentration in samples the Pierce BCA Protein 

assay kit was used. The assay is a detergent-compatible formulation based on 

bicinchoninic acid (BCA) for the colorimetric detection and quantitation of total protein. 

This method combines the well-known reduction of Cu+2 to Cu+1 by protein in an alkaline 

medium (the biuret reaction) with the highly sensitive and selective colorimetric 

detection of the cuprous cation (Cu+1) using a unique reagent containing BCA. The 

purple-colored reaction product of this assay is formed by the chelation of two molecules 

of BCA with one cuprous ion. This water-soluble complex exhibits a strong absorbance 

at 562 nm that is nearly linear with increasing protein concentrations over a broad 

working range (20-2,000 μg/ml). 

After the assay was set up in a 96-well plate according to the manual of the manufacturer, 

the assay was automatically measured in a multilabel plate reader at 562 nm wavelength. 

 

 

 

 

4.5.3 SDS-Polyacrylamide gel electrophoresis 
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In SDS-polyacrylamide gel electrophoresis (SDS-PAGE) proteins are separated largely 

on the basis of polypeptide length. The solution of proteins to be analyzed is first mixed 

with SDS, an anionic detergent which denatures secondary and non–disulfide–linked 

tertiary structures and applies a negative charge to each protein in proportion to its mass. 

The denatured proteins are subsequently applied to one end of a layer of polyacrylamide 

gel submerged in a suitable buffer. An electric current is applied across the gel, causing 

the negatively-charged proteins to migrate across the gel. Depending on their size, each 

protein will move differently through the gel matrix. After a set amount of time the 

proteins will have differentially migrated based on their size. 

Protein separation was performed using a "discontinuous" buffer system (Laemmli 1970). 

In this system, two sequential gels are actually used. The top gel, called the stacking gel, 

is slightly acidic (pH 6.8) and has a lower acrylamide concentration to make a porous gel. 

Under these conditions the proteins separate poorly, but form thin, sharply defined bands. 

The lower gel, called the separating, or resolving gel, is more basic (pH 8.8) and has a 

higher polyacrylamide content, which causes the gel to have narrower channels or pores. 

As a protein -concentrated into a sharp band by the stacking gel- travels through the 

separating gel, the narrower pores of the resolving gel have a sieving effect, allowing 

smaller proteins to travel more easily and hence rapidly than larger proteins. 

The protein samples (10 µg) were separated on 10 % SDS-PAGE gel using the BioRad 

MiniProtean II gel chamber system. Electrophoresis was performed for 2-3 hours under a 

constant current of 50mA. 

 

 

Reagents Stacking gel 10 % Separating gel 

30% Acrylamide mix 415 μl 1.65 ml 

10% SDS 25 μl 50 μl 

1 M Tris (pH 6.8) 315 μl - 

1 M Tris (pH 8.8) - 1.875 ml 

10% APS 25 μl 50 μl 

TEMED 2.5 μl 2 μl 

H20 1.72 ml 1.375 ml 
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4.5.4 Coomassie blue staining of proteins in polyacrylamide gels 

 

Colloidal Coomassie staining is one of the most sensitive staining protocols. Due to its 

colloidal properties the dye binds with high specificity to proteins and only minimal to 

the gel matrix. This allows visualisation of proteins separated by SDS-PAGE with 

sensitivity as high as 30ng of protein.  

Immediately after completion of electrophoresis, gels were incubated in the fixing 

solution for 15 min with gentle agitation. The fixing solution was then removed and the 

Coomassie staining solution was added. The dish was covered and boiled for 30 seconds 

in a microwave oven. After that, it was left at room temperature for 20 minutes with 

gentle agitation. The Coomassie solution was then removed and destaining solution was 

added. The dish was covered again, boiled for 30 seconds and then shaken moderately at 

room temperature for 20 minutes. The destaining solution was removed and the gels were 

washed with distilled water. After completion of staining, gels can be stored in water at 

4°C for a few days. 

 

4.5.5 Western Blot  

4.5.5.1 Electroblotting of proteins onto a PVDF membrane 

 

Once a protein of interest has been separated by SDS-PAGE, the pure protein can be 

transferred to a PVDF membrane for immunodetection (Matsudaira 1987). 

Proteins were transferred onto the PVDF membrane using the BioRad Mini Trans-Blot 

system at a constant voltage of 100V for 1.5 h. The vertical chamber was filled with 1x 

Blotting Buffer. 
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4.5.5.2 Immunoblot analysis 

 

Unspecific protein binding sites on the PVDF membrane with the transferred proteins 

were blocked with blocking solution. After blocking with 5% skim milk solution for 1.5 

hours, the blocking solution was discarded and the membrane was washed two times with 

wash buffer for 5 minutes and directly incubated with 1:1000 diluted primary antibody 

for IKKα/β (H-470) or 1:5000 diluted primary antibody for GAPDH for 1.5 h at RT, with 

gentle agitation on a platform shaker. To remove non-specific bound primary antibodies, 

the membrane was washed 4 times with wash buffer for 7 minutes and then incubated 

with the horseradish peroxidise-conjugated secondary antibodies for 45 minutes at RT. 

1:10000 diluted goat anti-rabbit IgG for detection of IKK or 1:5000 diluted goat anti-

mouse IgM for detection of GAPDH were used. To completely remove surplus secondary 

antibodies, the membrane was washed with wash buffer 4 times for 7 minutes. The signal 

detection was carried out with the enzymatically catalyzed chemiluminescence (ECL) 

reaction. 

Once the secondary antibody was coupled to horseradisch peroxidase (HRP), the washed 

membrane was immersed with ECL reaction solution for 5 minutes. Then, the membrane 

was briefly and gently dried with a paper towel, placed into a sealable clear plastic bag 

and exposed to an x-ray film in an x-ray cassette. After a suitable incubation time, the 

film was developed with a Kodak x-ray developer. 

 

 

4.5.5.3 Stripping of bound antibodies 

 

The complete removal of primary and secondary antibodies from the membrane is 

possible. The membranes may be stripped of bound antibodies and reprobed several 

times. 

The membrane was incubated in stripping buffer at 50 °C for 30 minutes with occasional 

agitation and afterwards washed two times with wash buffer for 10 minutes at RT with 

moderate shaking, using large volumes of wash buffer. Membranes may be incubated 
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with ECL Plus detection reagents and exposed to film to ensure complete removal of 

antibodies. 

 

 

4.6 Methods of cell biology 

4.6.1 Cultivation of mammalian cells 

 

All cell lines were incubated at 37 °C in humified cell culture incubators with 5% CO2. 

Additionally all used materials, solutions and media were sterilized for cell culture work 

and the work was performed under sterile cell culture hoods. 

 

4.6.1.1 Human mesenchymal stem cells 

 

Human mesenchymal cells (hMSCs) were purchased from three different donors and 

were first examined for morphology and adipogenic, chondrogenic and osteogenic 

differentiation potential. Cells were cultured according to manufactures protocol in 

complete growth medium (MSCGM hMSC Medium Bullet Kit) and were grown at a 

confluency of up to 70 %. For all further transduction, proliferation and invasion 

experiments, cells between 5-9th passage were used. 

 

 

4.6.1.2 293FT Cells  

 

The 293FT Cell Line is a derivative of the 293F Cell Line, which stably and 

constitutively expresses the SV40 large T antigen from pCMVSPORT6TAg.neo to 

facilitate optimal lentivirus production (Naldini, Blomer et al. 1996). 

The 293FT Cell line was purchased from Invitrogen and was handled as potentially 

biohazardous material under Biosafety Level 2.  
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Cells were cultured according to manufacturer’s protocol in D-MEM with 10% fetal 

bovine serum (FBS), 0.1 mM MEM Non-Essential Amino Acids (NEAA), 6 mM L-

glutamine, 1 mM MEM Sodium Pyruvate, 1% Penicillin-Streptomycin to prevent 

bacterial contamination and Geneticin at a concentration of 500 μg/ml. Cells were not 

alowed to overgrow before passaging and were 80 % confluent on the day of transfection. 

Additionaly, 2 h before each transfection, the medium was replaced with 10 ml fresh 

DMEM 

 

 

4.6.1.3 Passaging cells 

 

Cells were splitted routinely twice a weak. Cells were harvested by trypsinisation.  

For trypsinisation, the medium was removed from the flask and cells were washed 

carefully with 5 ml PBS to remove residual medium. 2ml of prewarmed Trypsin solution 

were added to the flask (75 cm2) and incubated at 37°C until cells had detached (3-5 

minutes). Trypsinisation was blocked by adding 2 ml of medium. Following, cells were 

centrifuged at 500 rcf for 5 min at room temperature and resuspended in an appropriate 

volume of prewarmed growth medium containing serum.  

 

 

4.6.1.4 Cell freezing and thawing 

 

The cells were trypsinised first and then resuspended in freezing medium. 1 ml of the cell 

suspension (approximately 1-2 x 106 adherent cells) was transferred into each freezing 

vial. Freezing vials were placed into a Cryo freezing container (Nalgene) and stored in a -

80°C freezer overnight. This allowed freezing of the cells at a rate of 1°C/min. The 

following day vials were transferred to a liquid nitrogen chamber. For cell thawing, a vial 

of frozen cells was removed from liquid nitrogen and placed in a 37°C water bath until 

thawed. To remove DMSO from the freezing medium, the cell suspension was pipetted 
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into a centrifuge tube containing prewarmed medium, and centrifuged at 500 rcf for 5 

min at room temperature. The supernatant was discarded, cells were resuspended in fresh 

growth medium and transferred to the cell culture flask. Cells were incubated overnight 

under their usual growth conditions, and the medium was replaced the next day. 

 

 

4.6.2 Immunofluorescence 

 

HMSCs grown on glass slides were fixed with 100% methanol at -20°C for 8 minutes, 

washed 3 times with PBS and blocked with 1% BSA for 1 hour at room temperature. The 

cells were incubated with primary antibody for NF-κB (p65) in a dilution of 1:250 for 45 

minutes, which was uncovered with secondary antibody conjugated to rhodamin red 

fluorochrome in a dilution of 1:100. Photomicrographs were taken with axiocam MR 

(Zeiss, Jena, Germany) on Axioskope 2 (Zeiss, Jena, Germany). 

 

 

4.6.3 FACS 

 

Analysis for eGFP transgene expression in hMSCs was performed by flow cytometry. 

Briefly, after trypsinization hMSCs were collected by centrifugation at 500 x g for 5 

minutes at 20°C and resuspended in PBS + 1% FBS. The analyses were performed on a 

flow cytometer equipped with a 488-nm argon laser. Forward and side scatter was used to 

establish a collecting gate through which dead cells and debris were excluded. Non 

specific fluorescence was determined using untransduced hMSCs. Samples were run on 

the “medium” flow rate setting, until 15000 events had been counted. Data were acquired 

and analyzed using Cell QuestTM software. 

 

4.6.4 Cell invasion assay 
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The invasive capacity of hMSCs was analyzed using Costar Transwell invasion chambers 

(24-well) as previously described (Neth, Ciccarella et al. 2006). Polycarbonate membrane 

filters with a pore size of 8 µm and a diameter of 6.5 mm were coated with 10 µg of 

human extracellular matrix (ECM). The filters were dried and prior to the experiment 

reconstituted with serum-free medium. The lower compartment of the invasion chamber 

was filled with 600 µl of DMEM. Then the coated filter inserts were placed into the wells 

forming the upper compartment. HMSCs (5 x 103) were suspended in 200 µl of serum-

free medium and seeded into the upper compartment of the invasion chamber. Each 

invasion experiment was performed in triplicate. The invasion chambers were incubated 

for different time intervals at 37°C in a humidified air atmosphere with 5% CO2. After 

incubation, cells and ECM on the top surfaces of the filters were wiped off with cotton 

swabs. Cells that had migrated into the lower compartment and attached to the lower 

surface of the filter were counted after staining with Diff Quick. Cell viability was 

assessed with trypan blue staining. The invasion rate was calculated from the ratio of the 

number of cells recovered from the lower compartment to the total number of cells 

loaded in the upper compartment. 

 

 

4.6.5 BrdU proliferation assay 

 

The assay was performed according to the manufacturer’s instructions. Briefly, hMSCs 

(untransduced or transduced with EGFP and dnIKK2) were seeded on 96-well dishes in a 

density of 3000 cells/well. The cells were grown in complete culture medium which was 

changed after 12 h with complete media, supplemented with 10 µM BrdU for 

unstimulated controls or 10 ng/ml of TNF-α and 10 µM BrdU for stimulated cells. BrdU 

incorporation was measured after 24 h using a multilabel plate reader at 450 nm and a 

reference wavelength of 690 nm. BrdU uptake was then calculated as percentage of the 

EGFP unstimulated control hMSCs. 
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4.6.6 TNF-α stimulation of cells 

 

Treatment of cells with TNF-α was done using concentrations and stimulation times as 

previously described (Nagasaki, Ishimura et al. 1999; Wolf, Schulz et al. 2002; Sakon, 

Xue et al. 2003; Cohen, Meisser et al. 2006). 

For RNA and protein analysis, cells were pretreated with 50 ng/ml of TNF-α for 4 hours. 

Treating the cells with 10 ng/ml of TNF-α for 24 hours showed the same results in these 

experiments. 

For cell invasion and proliferation assays, cells were preincubated with 50 ng/ml of TNF-

α for 48 hours hours and 10 ng/ml of TNF-α for 24 hours respectively. 

For immunohistochemistry, cells were pretreated with 50 ng/ml of TNF-α for 30 minutes. 

 

 

4.7 Production of lentiviral vectors by transient transfection of 

293FT cells 

4.7.1 Production of lentiviral VSV-G pseudotyped vectors 

 

The ViraPower Lentiviral Expression System of Invitrogen was used to create the 

replication-incompetent HIV-1-based lentiviruses that were used to deliver and express 

the dnIKK2 and EGFP genes in human mesenchymal stem cells. The lentiviruses 

produced with this system were generated at a Biosafety Level 2 (BL-2) laboratory and 

all published BL-2 guidelines were strictly followed, with proper waste decontamination. 

Generally, during this lentiviral production procedure, 293FT cells are cotransfected with 

the pLenti vector containing the gene of interest and the ViraPower Packaging Mix. The 

ViraPower Packaging Mix contains an optimized mixture of the three packaging 

plasmids, pLP1, pLP2, and pLP/VSVG. These plasmids supply the helper functions as 

well as structural and replication proteins in trans required to produce the lentivirus. For 

the transfection step of 293FT cells, Lipofectamine 2000 is also needed. Lipofectamine 

2000 reagent is a proprietary, cationic lipid-based formulation suitable for the 
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transfection of nucleic acids into eukaryotic cells. After cotransfection the viral 

supernatant is harvested and the titer is determined. 

Lentiviral stocks were harvested according to the manufacturer’s instructions: On the day 

of transfection, 293FT cells were trypsinized and resuspended at a density of 1.2 x 106 

cells/ ml in Opti-MEM Medium containing 10 % FBS. Antibiotics were not added to this 

medium. For each transfection sample DNA-Lipofectamine 2000 complexes were 

prepared as follows: In a sterile 14 ml polystyrol tube, 36 μg of the ViraPower Packaging 

Mix and 12 μg of pLenti expression plasmid DNA were diluted in 1.5 ml of Opti-MEM® 

I Medium without serum and gently mixed. In a separate sterile 14 ml tube, 144 μl 

Lipofectamine 2000 in 6 ml of Opti-MEM I Medium without serum, gently mixed and 

incubated for 5 minutes at room temperature. After the 5 minute incubation, the diluted 

DNA was combined with the diluted Lipofectamine 2000, gently mixed and incubated 

for 20 minutes at room temperature to allow the DNA-Lipofectamine 2000 complexes to 

form. The DNA-Lipofectamine 2000 complexes were then added dropwise to a T-225 

tissue culture flask containing 20 ml Opti-MEM I Medium containing serum. Antibiotics 

were not included in this medium. Afterwards, 20 ml of the 293 FT cell suspension (24 x 

10 6 cells) were also added to the flask containing medium and DNA-Lipofectamine 

2000 complexes and mixed gently by rocking the flask back and forth. Cells were 

incubated at 37°C in a humidified 5% CO2 incubator for 6 hours. After the 6 h incubation 

period, the medium containing the DNA-Lipofectamine 2000 complexes was removed 

and replaced with 21 ml of complete growth medium without geneticin. At 48 hours 

posttransfection the virus-containing supernatants were harvested by removing medium 

into to a 15 ml sterile, capped, conical tube. Supernatants were centrifuged at 3000 rpm 

for 15 minutes at 4°C to pellet debris and the supernatad was collected and filtered 

through a sterile 0.45 μm filter. Viral supernatants were pipetted into cryovials in 1 ml 

aliquots and stored at -80°C. 

 

 

4.7.2 Titration of the lentiviral stock in hMSCs 
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Before proceeding to transduction and expression experiments, the titer of lentiviral 

stocks was determined. This procedure is necessary in order to control the number of 

integrated copies of the lentivirus and generate reproducible expression results. These 

experiments took place in Biosafety Level 2 (BL-2) laboratory and all published BL-2 

guidelines were strictly followed, with proper waste decontamination. To determine the 

titer of the lentiviral stock using hMSCs, the following procedure was performed. 

The day before transduction, cells were trypsinized, counted and plated in a 6-well plate 

such that they would be 30-50% confluent at the time of transduction. Cells were 

incubated at 37°C overnight in a humidified 5% CO2 incubator. On the day of 

transduction, the lentiviral stock was thawed and 10-fold serial dilutions ranging from  

10-2 to 10-6 were prepared. For each dilution, the lentiviral stock was diluted into 

complete culture medium to a final volume of 1 ml. The culture medium was then 

removed from the cells. Each dilution was mixed gently by inversion and added to one 

well of cells, the total volume being 1 ml. Polybrene was added to each well to a final 

concentration of 6 μg/ml. The plate was gently swirled to mix. The cells were 

subsequently incubated at 37°C overnight in a humidified 5% CO2 incubator. The 

following day, the media containing virus were removed and replaced with 2 ml of 

complete culture medium. The cells were again incubated at 37°C overnight in a 

humidified 5% CO2 incubator. The following day, the medium was removed and replaced 

with complete culture medium containing Blasticidin (10 μg/ml) to select for stably 

transduced cells. The medium was replaced with fresh medium containing antibiotic 

every 3-4 days. After 10-12 days of selection, discrete antibiotic-resistant colonies were 

seen in one or more of the dilution wells. The medium was removed and the cells were 

washed twice with PBS. 1 ml of crystal violet solution was added and cells were 

incubated for 10 minutes at room temperature. The crystal violet stain was removed and 

cells were washed with PBS twice. Finally, the blue-stained colonies were counted and 

the titer of the lentiviral stock was determined. The viral titer was approximately 1 x 105 

TU/ml for each lentiviral stock. 
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4.7.3 Transduction of target cells 

 

Routinely, 5 x 105 hMSCs were transduced in a T-75 flask by adding 2.47 x 105 TU viral 

supernatant (2.5 ml) in 5 ml complete growth medium in the presence of 10 μg/ml 

Polybrene. The cells were incubated at 37°C in a humidified 5% CO2 incubator overnight 

with the virus. One day after transduction, the medium was replaced by fresh, non-viral 

medium. Blasticidine selection (10 µg/ ml) was started on the second day after 

transduction and it was carried out for additional 7 days.
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5 Results 

5.1 Construction of lentiviral vectors containing the dnIKK2 and 

eGFP genes 

 

Two different lentiviral vectors were constructed, the one carrying the dnIKK2 gene and 

the other, which served as a control, carrying the EGFP gene. 

 

 

5.1.1 Cloning the dnIKK2 gene into the lentiviral backbone 

 

The cDNA of the dominant-negative mutant (K44A) IKK2 (dnIKK2) encoding for amino 

acid 1-755 and 100 bp of the 5´ untranslated region was cloned into the SmaI and NotI 

site of the pBC SK (+) phagemid vector. The dnIKK2 fragment was then subcloned into 

the entry vector pENTR11 using KpnI and NotI. Subsequently, the insert was transferred 

into the pLenti6/V5-DEST vector by homologous recombination with Gateway LR 

Clonase. The pLenti6/V5-DEST-dnIKK2 plasmid clone used for lentiviral production 

was verified by sequencing (Figure 15a).  

 

 

5.1.2 Cloning the eGFP gene into the lentiviral backbone 

 

The cDNA encoding enhanced green fluorescent protein (EGFP) was cloned in a similar 

fashion into an entry pENTR11 vector using KpnI and NotI and thereafter transferred 

into the pLenti6/V5-DEST vector by homologous recombination with Gateway LR 

Clonase in order to be used for the production of a control virus (Figure 15b). 
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Figure 15. The dnIKK2 and EGFP lentiviral backbones. a. The diagram above shows the dnIKK2 

gene cloned into the pLenti6/V5-DEST vector. b. The EGFP gene was cloned into the same sites of 

the Lenti6/V5-DEST vector. The Rous Sarcoma Virus (RSV) enhancer/promoter allows Tat-

independent production of viral mRNA. The HIV-1 truncated 5' LTR permits viral packaging and 

reverse transcription of the viral mRNA. The 5' splice donor and 3' acceptors enhance the biosafety 

of the vector by facilitating removal of the ψ packaging sequence and RRE such that expression of 

the gene of interest in the transduced host cell is no longer Rev dependent. The HIV-1 psi (ψ) 

packaging signal allows viral packaging. The HIV-1 Rev response element (RRE) permits Rev-

dependent nuclear export of unspliced viral mRNA. The CMV promoter permits high-level, 

constitutive expression of dnIKK2. The SV40 early promoter and origin allows high-level expression 

of the selection marker and episomal replication in cells expressing the SV40 large T antigen. The 

EM7 promoter is a synthetic prokaryotic promoter for expression of the selection marker in E. coli. 

The Blasticidin (Bla) resistance gene permits selection of stably transduced mesenchymal stem cells. 

The ΔU3 truncated 3′ LTR allows viral packaging but self-inactivates the 5′ LTR for biosafety 

purposes. 

 

5.2 Generation of lentiviruses expressing eGFP and dnIKK2 and 

lentiviral transduction of hMSCs 

 

Lentiviruses were generated expressing either dnIKK2 or EGFP as already described and 

hMSCs were transduced with the lentiviral constructs and selected for blasticidine 

resistance. 

In order to orientate for the efficiency of lentiviral gene transfer in hMSCs, we 

transduced the cells with EGFP lentivirus. We achieved a transduction efficiency of 77 % 

in hMSCs, as determined by FACS analysis and when viral titer of 2.47 x 105 TU/ml was 

applied. Furthermore the selection of these cells by 10 µg/ml blasticidine for 7 days 

ψ RRE Pcmv EGFP  PSV40 EM7 Bla ∆U3/3’LTRPRSV/5’ LTR ψ RRE Pcmv EGFP  PSV40 EM7 Bla ∆U3/3’LTRPRSV/5’ LTR 

ψ RRE Pcmv dnIKK2  PSV40 EM7 Bla ∆U3/3’LTRPRSV/5’ LTR ψ RRE Pcmv dnIKK2  PSV40 EM7 Bla ∆U3/3’LTRPRSV/5’ LTR 

a

b
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significantly increased the percentage of transgene expressing cells. FACS analysis 

showed up to 97% EGFP-positive hMSCs after such selection. Therefore, using lentivirus 

with titer of 2.47 x 105 TU/ml followed by blasticidine selection is sufficient to achieve 

gene expression in almost all hMSCs (Figure 16).  

 
Figure 16. The efficiency of lentiviral transduction with and without blasticidin selection. EGFP-

expressing controls showed a strong fluorescent signal in almost all cells, with no morphologic 

changes after blasticidin selection. A transduction efficiency of 77 % was achieved in hMSCs without 

blasticidin selection as determined by FACS analysis (standard deviation 6.47 %). FACS analysis 

showed up to 97 % EGFP-positive hMSCs after such selection (standard deviation 0.20 %). 

 

 

5.3 DnIKK2 overexpression in mesenchymal stem cells 

transduced with the dnIKK2 virus  

 

The overexpression of dnIKK2 was verified at RNA and protein level. Semi-quantitative 

RT-PCR was performed with primers which can not discriminate between IKK2 and its 



 

  87   

mutant form (dnIKK2). HMSCs transducted with the dnIKK2 virus showed clearly 

stronger signal for IKK2 when compared to EGFP-expressing controls and these changes 

were also confirmed at protein level (Figure 17). 

 
Figure 17. Stable expression of the dnIKK2. Stable expression of the dnIKK2 was verified by PCR 

(a) and Western blot (b). cDNA and protein samples for RT-PCR and western blot, respectively, 

were normalized using a housekeeping gene (GAPDH) as the internal control. Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) is one of the most commonly used housekeeping genes used in 

comparisons of gene expression data.  

 

 

5.4 Inhibition of function of NF-κB documented through 

immunohistochemistry 

 

First, we tested for the presence of active NF-κB in hMSCs. We performed 

immunohistochemistry for p65, a major component of the NF-κB complex and we 

detected its strong expression in the cytoplasm of hMSCs. Furthermore, NF-κB (p65) 

translocated into the nucleoplasm of hMSC controls upon stimulation with 50 ng/ml 

TNF-α for 30 minutes. Finally, we evaluated whether overexpression of the dnIKK2 

could block the nuclear translocation of the NF-κB after TNF-α stimulation. As expected, 

we observed sustained localization of NF-κB (p65) into the cytoplasm of hMSCs 
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overexpressing dnIKK2, regardless of stimulation with TNF-α, providing further 

evidence that dnIKK2 effectively blocks translocation of NF-κB into the nucleus (Figure 

18).  

 
Figure 18. NF-κB (p65) immunohistochemistry on hMSCs. NF-κB (p65) was primarily located within 

the cytoplasm of unstimulated EGFP- and dnIKK2-transduced hMSCs (a, c). TNF-α stimulation 

resulted in nuclear translocation of the NF-κB (p65) complex in EGFP-transduced control (b). 

Nuclear translocation of the NF-κB complex was effectively blocked by overexpression of dnIKK2 

(d). 

 

5.5 The effect of dnIKK2 on TNF-α-induced hMSC migration 

 

We performed cell invasion assays with EGFP- and dnIKK2-hMSCs in transwell 

chambers. Additionally to the complete growth, we used media 50 ng/ml TNF-α as 
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chemoattractant. Determination of hMSC migration rates after 48 hour-incubation period 

revealed TNF-α-assosiated-, highly increased- cell trafficking. Stimulation of EGFP-

transduced hMSCs with TNF-α led to a 28.9-fold increase in cell invasion (p<0.00001), 

suggesting that TNF-α is an important migratory stimulus for hMSCs. Overexpression of 

the dnIKK2 caused a significant 43.1% reduction of hMSC invasion (p<0.0001), 

suggesting that the NF-κB signal transduction pathway and IKK2 are involved in hMSCs 

migration in response to TNF-α (Figure 19).  

 
Figure 19. Transwell invasion assay of lentivirally-transduced hMSCs. EGFP-transduced hMSCs 

show low invasion rate during standard conditions (0.27%). Stimulation with 50 ng/ml TNF-α caused 

a 28.9-fold increase of EGFP-transduced hMSCs invasion (*p<0.00001), whereas overexpression of 

the dominant-negative mutant of IKK2 caused a significant 43.1% reduction of hMSC migration 

(**p<0.0001). 
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5.6 The effect of dnIKK2 on TNF-α-induced hMSC proliferation 

 

It has been reported that additionally to migration, TNF-α promotes cell proliferation via 

the NF-κB signal transduction pathway (Widera, Mikenberg et al. 2006). We could show 

that stimulation of EGFP-transduced hMSCs with 10 ng/ml TNF-α caused a 58 % 

increase in cell proliferation (p<0.00005). Overexpression of dnIKK2 revealed a 28 % 

reduction of hMSC proliferation (p<0.0001) without stimulation, suggesting a role of 

IKK2 in hMSC proliferation under basal conditions. Most likely, this effect is triggered 

by the TNF-α contained in the serum supplement of the growth culture medium. 

Furthermore, when additional TNF-α was added during the culture of dnIKK2-hMSCs no 

increase in the proliferation was observed. Thus, our results suggest that the positive 

effect of TNF-α on hMSC proliferation is primarily mediated via the NF-κB signal 

transduction pathway and IKK2 (Figure 20).  
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Figure 20. BrdU proliferation assay of lentivirally-transduced hMSCs. Stimulation of EGFP-

transduced hMSCs with 10 ng/ml TNF-α caused a highly significant increase in hMSC proliferation 

in vitro (*p<0.00005 vs. unstimulated control). Overexpression of dn-IKK-2 revealed a significant 

28% reduction of proliferation under standard conditions (**p<0.0001 vs. unstimulated control) and 

the stimulating effect of TNF-α was completely blocked in these cells (***p<0.0001). 

 

5.7 Analysis of plausible downstream target genes of NF-κB 

 

It is known, that once NF-κB localizes in the nucleus, gene transcription is activated. 

Therefore, we checked if upon TNF-α stimulation the gene expression of known NF-κB 

target genes, such as VCAM-1 and other hMSC-migration-related genes as β1- and αv-

integrins and CD44 are upregulated in hMSCs.  

RT-PCR data demonstrated upregulation of VCAM-1 and CD44 in both EGFP- and 

dnIKK2-transduced hMSCs, whereas the abundant β1- and αv-integrins did not undergo 
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visible changes when cells were stimulated with TNF-α (Figure 21). Interestingly, 

dnIKK2 did not have an inhibitory effect in the expression of VCAM-1 and CD44. 

 
Figure 21. RT-PCR results of plausible downstream targets. Stimulation of EGFP- and dnIKK2-

transduced hMSCs with 10 ng/ml TNF-α for 4 hours revealed a strong upregulation of CD44 and 

VCAM-1, whereas the level of the abundant β1- and αv-integrins remained unchanged. 
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6 Discussion 

 

Our data give conclusive evidence that bone marrow-derived hMSCs can migrate along a 

TNF-α gradient and transverse human reconstituted basement membranes. This effect is 

partly blocked by the overexpression of a dnIKK2. To our knowledge, this is the first 

report that hMSCs invasion and migration through human extracellular matrix is at least 

in part mediated through the activation of IKK2, a key regulatory enzyme of the NF-κB 

signal transduction pathway, after stimulation with TNF-α.  

The cytokine TNF-α, which is known to activate the NF-κB pathway, shows increased 

plasma levels in various human models of tissue injury (Jiang, Tian et al. 1997; Fahim, 

Halim et al. 2004) and plays an important role in tissue repair (Gerstenfeld, Cho et al. 

2003). Cytokines like TNF-α are not only secreted from macrophages and inflammatory 

cells, but also released from cells of mesenchymal origin (Kon, Cho et al. 2001). TNF-α 

may recruit hMSCs early in the course of tissue injury. During the initial step of 

extravasasion TNF-α increases adhesion of hMSCs to endothelial cells (Ruster, Gottig et 

al. 2006). But currently it is unknown if TNF-α acts systemically to mobilize hMSCs or 

attract these cells locally within the injured tissue.  

So far, the precise molecular mechanisms of hMSC migration and invasion are largely 

unknown. Neth et al. has recently shown that the Wnt pathway plays a critical role in 

regulating hMSC migration and invasion (Neth, Ciccarella et al. 2006). C-Jun N-terminal 

kinase plays a role in PDGF-induced migration of adipose tissue-derived hMSCs (Kang, 

Jeon et al. 2005). Others have shown that blocking the activation of NF-κB by TNF-α 

inhibits fibroblast migration and invasion. In immune and cancer cells TNF-α regulates 

the NF-κB pathway by activation of IKK2 (Karin, Yamamoto et al. 2004). Here, we have 

shown for the first time that IKK2 is crucial for NF-κB activation in hMSCs after TNF-α 

stimulation and blocking IKK2 leads to a decreased invasion of hMSC.  

In spite of many important proceedings on the field of mesenchymal stem cells migration 

the target genes which orchestrate homing of MCSs are also still largely unknown. 

Particularly, it is unknown which NF-κB target genes are responsible for TNF-induced 

hMSC migration. Ries et al. have shown that TNF-α induces the expression of MMP-9 in 
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hMSCs (Ries, Egea et al. 2007). In vascular smooth muscle cells MMP-9 expression is 

regulated by TNF-α via the NF-κB activation. We found that CD44, β1 integrin and 

VCAM-1 are upregulated in hMSCs after TNF-α stimulation. CD44 has been found to be 

important for hMSC migration into the extracellular matrix (Zhu, Mitsuhashi et al. 2006). 

In other cells of mesenchymal origin such as fibroblast β1 integrin and VCAM-1 increase 

migration. Identification of molecular pathways directing hMSC migration might be 

crucial for improved therapeutic intervention in several diseases and therefore they have 

to be further investigated. Additionally to the invasion, our results clearly show that  

hMSC proliferation is also increased by TNF-α stimulation and can be effectively 

blocked by overexpression of a dnIKK2. In accordance to our data, in adult neuronal 

stem cells TNF-α has been shown to strongly increase proliferation by activation of IKK-

2 and the canonical NF-κB pathway (Widera, Mikenberg et al. 2006). In intestinal 

myofibrobasts, TNF-α stimulation resulted in increased proliferation via activation of the 

TNF receptor 2 (Theiss, Simmons et al. 2005). In a recent study, convincing genetic 

evidence has been presented for a cell type-restricted requirement for NF-κB in the 

control of proliferation (Mehrhof, Schmidt-Ullrich et al. 2005). Thus, the role of NF-κB 

in proliferation has to be investigated separately for each cell type. For example, in some 

cell types NF-κB controls proliferation through transcriptional regulation of cyclin D1 

and delayed progression into G1 cell cycle (Guttridge, Albanese et al. 1999). Moreover, 

IKK-2 knockout promotes migration and proliferation of mouse embryo fibroblast cells 

(Chen, Lu et al. 2006). These findings, however, do not necessarily reflect the function of 

NF-κB in hMSCs. Therefore the precise mechanism by which NF-κB controls hMSC 

proliferation needs to be still elucidated. 

In conclusion, we report here that hMSCs increase invasion and proliferation in response 

to TNF-α via IKK2 activation in vitro. To our knowledge, this is the first comprehensive 

report on the involvement of the NF-κB pathway in hMSC migration. Furthermore, this is 

also the first report showing that TNF has a significant effect on hMSC proliferation in 

vitro, and that this effect is mediated through IKK-2 and NF-κB pathway activation. 

Harnessing the migratory and proliferation potential of hMSCs by modulating the NF-κB 

pathway may be a powerful tool to enhance MSC engraftment after transplantation, 



 

  95   

increase their ability to correct inherent disorders of different tissues, or facilitate tissue 

repair in vivo. 
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7 Summary 

 

 

Mesenchymal stem cells (MSCs) can contribute to tissue repair by actively migrating to 

sites of tissue injury. However, the cellular and molecular mechanisms of MSC 

recruitment are largely unknown. The NF-κB pathway plays a pivotal role in regulating 

genes that influence cell migration, cell differentiation, inflammation and proliferation. 

One of the major cytokines released at sites of injury is TNF-α, which is known to be a 

key regulator of the NF-κB pathway. Therefore, we hypothesized that TNF-α may lead to 

MSC migration and proliferation by activation of the NF-κB pathway.  

Intriguingly, NF-κB (p65) and IκB kinase 2 (IKK2) are expressed in human MSCs 

(hMSCs), which we documented with immunohistochemistry and PCR respectively. 

Furthermore, stimulation of hMSCs with TNF-α caused a NF-κB (p65) translocation 

from cytoplasm to nucleoplasm and upregulation of target genes. Blocking the NF-κB 

pathway by overexpressing a dominant-negative mutant of IKK2 (dnIKK2) in hMSC, 

using highly efficient lentiviral gene transfer, effectively inhibited the nuclear 

translocation of NF-κB (p65). Moreover, TNF-α strongly augmented the migration of 

hMSCs through human extracellular matrix but its effect was significantly blocked by dn-

IKK-2. Additionally, using BrdU assay we showed that inhibition of NF-κB (p65) 

pathway had a significant effect on the basal proliferation rate of hMSCs. TNF-α 

stimulated the proliferation of hMSCs, whereas the overexpression of dnIKK2 lead to 

diminished cell growth. 

The precise understanding of the role of NF-κB in hMSC proliferation and migration 

could have vast clinical applications in a wide spectrum of diseases, including the leading 

causes of death in the western world, namely cardiovascular disease and cancer (Dai, 

Moniri et al. 2011; Ding, Shyu et al. 2011). A recent study investigating the potential of 

hMSC’s in cardiac therapeutics demonstrated that activation of NF-κB by pre-treatment 

of MSC’s with TNF-α increased the rate of engraftment of hMSC’s into myocardial 

tissue and improved recovery of cardiac function after myocardial infarction (Kim, Park 

et al. 2009). Recently, in the field of cancer research, a biologic process that allows 
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conversion of epithelial-differentiated cells into cells that resemble mesenchymal stem 

cells has been described (Kalluri and Weinberg 2009; Thiery, Acloque et al. 2009).  

Studies indicate that this process, termed as epithelial-to-mesenchymal transition, plays 

an important role in the development and progression of cancer, specifically in the 

dissemination of cancer cells and formation of metastases, but also in the resistance to 

apoptosis and chemotherapy (Chaffer and Weinberg 2011). NF-κB has been shown to be 

a key player in this process in several cancer types (Huber, Azoitei et al. 2004; Huber, 

Beug et al. 2004; Maier, Schmidt-Strassburger et al. 2010). This finding is of potential 

therapeutic interest, as shown by a recent study of an orally active pharmacological 

inhibitor of IKK2, which not only reversed the epithelial-to-mesenchymal transition in 

murine mammary carcinoma cells, but also suppressed metastatic activity of these cells 

from orthotopic sites (Huber, Maier et al. 2010).  

In conclusion, components of NF-κB pathway (p65, IKK2) are expressed in hMSCs. It is 

known that NF-κB pathway is regulated by TNF-α through activation of IKK-2. Here, we 

provide evidence that this signal transduction pathway is also implicated in TNF-α-

mediated migration and proliferation of hMSCs. Therefore, our results support the idea 

that hMSC recruitment to sites of tissue injury may at least in part be regulated by NF-κB 

signal transduction pathway. 
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8 Zusammenfassung 

 

Mesenchymale Stammzellen (MSCs) können zur Gewebsreparatur beitragen, indem sie 

aktiv an Orte mit Gewebsverletzung wandern. Die zellulären und molekularen 

Mechanismen der MSC Rekrutierung sind jedoch größtenteils unbekannt. Der NF-κB 

Signalweg spielt eine zentrale Rolle bei der Regulation von Genen die Zellmigration, 

Zelldifferenzierung, Inflammation und Zellproliferation beeinflussen. Eines der 

wichtigen Zytokine, das aus verletzten Geweben freigesetzt wird, ist TNF-α. TNF-α ist 

ein wichtiger Regulator des NF-κB Signaltransduktionsweges. Unsere Hypothese war, 

dass TNF-α die Invasion und Proliferation von MSCs durch die Aktivierung des NF-κB 

Signalweges beeinflussen kann. NF-κB und IKK2 werden in humanen MSCs exprimiert, 

was wir mittels Immunohistochemie und PCR bestätigten. Die TNF-α Stimulation von 

hMSCs führte zur Translokation von NF-κB vom Zytoplasma in den Kern und zu einer 

Hochregulierung der Genexpression von NF-κB Zielgenen. Die Blockierung des NF-κB 

Signalwegs durch eine dominant-negative Mutante von IKK2 (dnIKK2) mittels 

lentiviraler Transduktion behinderte die Translokation von NF-κB in den Kern der 

hMSCs. TNF-α löste noch eine verstärkte Invasion von hMSCs durch extrazelluläre 

humane Matrix aus, dieser Effekt wurde aber signifikant durch dnIKK2 blockiert. 

Darüber hinaus konnten wir in BrdU Proliferationsversuchen zeigen, dass die Inhibierung 

des NF-κB Signalwegs einen signifikanten Effekt auf die basale Proliferationsrate von 

hMSCs hat. TNF-α stimulierte die Proliferation von hMSC Zellen, während die 

Überexpression von dnIKK2 das Zellwachstum blockierte. 

Zusammenfassend kann gesagt werden, dass NF-κB Komponente in hMSCs exprimiert 

werden. Es ist bekannt, dass der TNF-α-induzierte NF-κB Signalweg hauptsächlich über 

IKK2 reguliert wird. Wir haben gezeigt, dass dieser Signalweg auch in TNF-α-induzierter 

hMSC Invasion und Proliferation involviert ist. Unsere Ergebnisse lassen deshalb 

vermuten, dass die Rekrutierung von hMSC an Ort mit Gewebsverletzung teilweise durch 

den NF-κB Signalweg reguliert sein könnte. 
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