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Zusammenfassung
Die vorliegende Dissertation befasst sich mit verschiedenen Aspekten und Tech-
niken zur Konstruktion von String-Modellen. In diesem Kontext ist es nötig die
Topologie von Calabi-Yau Mannigfaltigkeiten zu verstehen, da diese ausschlag-
gebend für die Nullmodenstruktur des entsprechenden Differenzialoperators und
damit für das Teilchenspektrum der kompaktifizierten Niederenergietheorie ist.
Für diejenigen Calabi-Yau Räume, die als Unterräume torischer Varietäten de-
finiert werden, sind alle topologischen Größen in der Kohomololgie von Linien-
bündeln über der entsprechenden torischen Varietät verschlüsselt. Aus diesem
Grund umfasst ein Teil dieser Dissertation die Entwicklung eines effizienten Al-
gorithmus’ für ihre Berechnung. Nach der mathematischen Vorbereitung wid-
men wir uns der Herleitung und dem Beweis des auf diese Weise entstandenen
mathematischen Theorems. Wir untersuchen zudem eine Verallgemeinerung auf
Räume, die durch das Herausteilen einer Zn-Symmetrie konstruiert werden. An-
schließend demonstrieren wir die zahlreichen Anwendungen dieser Methoden zur
Konstruktion von String-Modellen. Außerdem finden wir einen Zusammenhang
zwischen Kohomologiegruppen von Linienbündeln und getwisteten Sektoren von
Landau-Ginzburg Modellen.

Als nächstes nutzen wir die entwickelten Methoden um so genannte Zielraum
Dualitäten zwischen heterotischen Modellen zu untersuchen. Diese Modelle weisen
eine asymmetrische (0, 2)-Weltflächensupersymmetrie auf und können über ge-
eichte lineare Sigma-Modelle formuliert werden, in welchen sie eine Phasenstruk-
tur ausbilden. Es lässt sich nun zeigen, dass die Phasenräume verschiedener
physikalischer Modelle durch nicht-geometrische Phasen miteinander verbunden
sind, was eine hochgradig nicht-triviale Dualität der entsprechenden Geometrien
implizieren könnte. Unser Beitrag ist nun die Untersuchung der hierdurch ver-
bundenen und daher potentiell dualen Modelle. Wir entwickeln ein Verfahren,
welches die Konstruktion aller dualer Modelle zu einem beliebigen (0,2) Modell
erlaubt und finden Evidenz dafür, dass es sich hierbei um eine echte Dualität
und nicht bloß um einen Übergang verschiedener physikalischer Modelle ineinan-
der handelt. In diesem Kontext untersuchen wir verschiedenste Szenarien, u.A.
Modelle mit den Eichgruppen E6, SO(10) und SU(5), sowie mit Kompakti-
fizierungsräumen der Kodimension eins und zwei. In einer Untersuchung der
Stringlandschaft werden dazu über 80.000 Räume auf diese Dualität untersucht.
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Chapter 1
Introduction

We are living in exciting times for particle physics. The large hadron collider
(LHC) at CERN in Geneva has been running for a while now and has reconfirmed
almost every detail we know about the standard model of particle physics (SM) at
energy scales beyond those tested in the past. Still one quite important question
which remained unanswered within the SM is the existence of the Higgs Boson
whose detection is top priority of the experiment and might be answered soon. At
the moment, both experiments, ATLAS as well as CMS, find signals that might
have been caused by the Higgs particle but are yet to be validated. The SM
describes the three particle interactions, i.e. electromagnetic, weak and strong
interaction via quantum field theories with (non-)Abelian gauge symmetries [8–
10] and is based on the full gauge group SU(3) × SU(2) × U(1). It successfully
describes the first two of these interactions in a combined framework, called
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electroweak interaction, with gauge group SU(2)× U(1) containing the leptons,
i.e. electrons, muons, taus and their neutrinos. On the other hand, the quarks
align into multiplets of SU(3) color symmetry. Based on these concepts, in the
past various SM predictions have been confirmed by experiments.

Potential issues and extensions of the standard model

Though the SM is very successful in many ways there are also quite some prob-
lems as well as open questions coming with it.

Quantum gravity. The first and most important issue of the SM is that though
it describes three of the fundamental interactions, it lacks the description of grav-
ity within this framework. The attempt to include gravity on the same footing
as other interactions leads to a non-renormalizable theory. Hence, if one wants
to get a sensible theory, unifying all the four interactions, one has to come up
with a different approach.

Dark matter and energy. Cosmological observations as the orbital velocities
of stars inside galaxies lead to contradictions with the theory and in order to
overcome these one has to introduce a new kind of matter and energy that is not
visible to us. It is, hence, called dark matter and dark energy and they make
up 74 % and 22% of the overall amount respectively while the visible part of the
universe covers less than 5 %. The SM has no explanation for both dark matter
and dark energy.

Cosmological constant. Einsteins equations allow for an extra term that is pro-
portional to the metric. Its coefficient is called the cosmological constant, whose
value basically describes the energy of the vacuum and the prediction by the SM
differs from measurements by 120 orders of magnitude [11]. This does not imply
that the value is small since the universe contains a fair amount of dark energy
as we stated above. The mismatch in the value of that constant, however, is one
of the biggest puzzles in theoretical physics.

Grand unification. The SM is no unified theory of strong and electroweak
interactions. In order to unify them one has to introduce a gauge group that
contains the SM group as a subgroup and whose full symmetry is broken at low
energies. Such theories are referred to as grand unified theories (GUTs) and may
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come with an SU(5) [12] or SO(10) [13] gauge group.1

Parameters. Another issue is that there is some sort of arbitrariness in the SM
since there are around twenty independent parameters that describe the Fermion
masses, the mixing angles, the gauge couplings as well as the Higgs mass and the
Higgs self-coupling. These parameters cannot be predicted by the SM but have to
be measured and put into the theory by hand. Furthermore, the original version
of the SM predicted the neutrinos to be massless. The measurement of neutrino
oscillations requires a modification of the SM that contains massive neutrinos.
Also, their masses as well as mixing angles enter as free parameters that cannot
be predicted.

Open questions. There are a couple more question that are not answered by
the SM itself, for instance, why are there three generations of Fermions, why are
we living in four dimensions, why is the low-energy gauge group SU(3)×SU(2)×
U(1), why is there a confinement of the quarks in hadrons and why is the weak
force so much stronger than gravity (hierarchy problem), just to name some.

Supersymmetry

One possible extension of the SM is the introduction of a symmetry that relates
Bosons and Fermions, so-called supersymmetry (SUSY) (see e.g. [14–16]). It was
shown by Coleman and Mandula [17] that under certain mild conditions on the
S-matrix of a quantum field theory there is no way to produce any theory with
a symmetry group different from the direct product of the Lorentz group and
the internal gauge group. This is the first thing that SUSY is able to bypass
via introducing a set of Grassman odd generators forming the generalized version
of a Lie algebra called super algebra. SUSY relates Bosons with Fermions that
are transforming in the same group representation and since the SM does not
provide any such multiplet, all the SM fields in a supersymmetric SM will obtain
a superpartner. Here to each Boson is added a new Fermion and to each Fermion
a new Boson. The most studied supersymmetric extension of the SM is called
the minimal supersymmetric standard model (MSSM) [18] that realizes N = 1

1In Georgi-Glashows model [12] the GUT group SU(5) is used to accommodate the SM gauge
group SU(3) × SU(2) × U(1). In this model the quarks and leptons are arranged in the
representations 5̄ ⊕ 10 ⊕ 1 of SU(5). Nevertheless at least this particular model has been
excluded since it predicts a decay of the proton that could be disproved by experiments.
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SUSY. It contains a vector multiplet that accommodates the SM gauge fields as
well as their superpartners, called gauginos and a chiral multiplet that contains
all the Fermions, i.e. quarks and leptons along with their superpartners called
squarks and sleptons, as well as the Higgs and its superpartners, the Higgsinos.
Moreover, if SUSY is present at high energies, it has to be broken at some energy
above the observed scales, otherwise the particles supersymmetric to the SM par-
ticles would have the same mass as the SM particles and we would have observed
them by now. SUSY breaking allows them to be heavier at low energies. The
MSSM has several nice features:

Hierarchy problem. If the SUSY braking scale is in the TeV range which means
that the superpartners of the SM are not significantly heavier than the Higgs,
one can see that the Higgs mass is not only corrected by Bosonic loop diagrams,
but also by Fermionic loop diagrams with the opposite sign. This could explain
why the Higgs mass is so much lighter than the Planck mass and is a possible
solution of the aforementioned hierarchy problem.

Gauge coupling unification. A second nice feature of the MSSM is that, assum-
ing again the SUSY breaking scale is near the TeV scale, the three gauge coupling
constants are unified at high energies [19] while they miss without SUSY.

Dark matter. The third issue that can be resolved by such a scenario is the
description of dark matter. The lightest superparticle of the MSSM is stable and
massive, assuming R-parity is conserved. If it is furthermore neither strongly nor
electromagnetically interacting, it can provide a candidate for dark matter.

Although the MSSM seems to solve a lot of problems, one major drawback of
such a theory is that the space of free parameters increases to about one hundred
and the question arises where the values of these parameters have their origin.
One should also mention that recently an extensive search for SUSY particles was
performed at the LHC and so far no evidence for their existence has been found.
But even though some parts of the parameter space of MSSMs have been scanned,
there is still room left and so far the MSSM is not yet excluded. However, even
if low-energy SUSY is not realized by nature, many nice properties still hold for
high-energy SUSY. What cannot be addressed in this scenario, though, is the
solution of the hierarchy problem without fine tuning.

Besides the MSSM, there are also other possible extensions with SUSY and the
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most canonical one right after the MSSM is the NMSSM (next to MSSM). Here
additional chiral superfields appearing as singlets are present [20–23].

In theories with non-Abelian symmetries, promoting them to local symmetries
i.e. gauge symmetries provides interaction terms. So it seems reasonable also to
turn on local SUSY. This implies diffeomorphism invariance which allows for the
inclusion of a spin two field to the theory. Every quantum theory of gravity has
to contain such a field that represents the exchange particle of the gravitational
interaction and is referred to as the graviton. In a supersymmetric framework it
is possible to include the graviton along with its Fermionic superpartners called
gravitini which carry spin 3/2 in a supermultiplet. Such a supersymmmetric
graviational theory is called supergravity (SUGRA) and can be seen as low-energy
effective field theory of some UV completed theory.

String theory

Every quantum field theory including the SM contains a very fundamental as-
sumption. Namely they consider the smallest object to be zero-dimensional,
hence a point. Assuming instead the fundamental object to be one-dimensional,
i.e. a string, yields a new kind of theory, called string theory. Consequently in
string theory the one-dimensional world line of the point particle will be replaced
by a two-dimensional surface, called the worldsheet. Going from point to string is
of course compatible with our observations as long as the string is small enough.
If this is the case it cannot be distinguished from a point particle and in fact,
besides the argument of simplicity, there is no reason to favor the “point assump-
tion” over the “string assumption”. One might be worried about the fact that this
change destroys locality but it turns out that this even results in the advantage
that particular Feynman diagrams remain finite. Some relevant features of string
theory for us are the following:

String theory naturally carries the graviton, the spin two quantum of the grav-
itational interaction, furthermore can be reduced to general relativity in a low-
energy limit and therefore describes a quantum theory of gravity. The amazing
thing is that the only requirement to obtain general relativity is the seemingly
completely unrelated invariance of the world sheet under conformal, i.e. angle
preserving, transformations.

SUSY is not only natural but even crucial to a string theory that shall admit for



1. Introduction 18

Bosons as well as for Fermions. The former ones are called Bosonic string theories
while the latter are referred to as superstring theories. Hence superstring theories
can provide all the nice features of supersymmetic theories and furthermore, allow
for a derivation of the low-energy parameters for a given string vacuum.2 Then
the only remaining free input parameter of the theory is the length of the string
or equivalently its tension. Consequently since string theory combines SUSY
and gravity it provides a UV completion of low-energy SUGRA. Furthermore,
in general there appear conformal anomalies on the worldsheet and in order to
cancel them one has to impose a certain dimension of our space time which means
that string theory predicts its own dimensionality.

Nevertheless one should mention that so far no consistent version of a string
theory that completely reproduces all the features of the SM is known and there-
fore is yet to be found. Here, even though there are no conceptual problems,
there are technical diïňČculties that so far obstructed the construction of such
a model. One of the major challenges is to avoid the appearance of additional
massless fields, called moduli, that are not observed by experiments.

As already mentioned, a Bosonic string theory is not suited to describe nature
since it will only allow for space time Bosons. Moreover it also predicts tachyonic
states, violating causality. In such a scenario we would find the critical dimension
of the string to be 26. Superstring theories on the other hand do allow for space
time Fermions and M. Green and J. Schwarz [24] could show that if one chooses
the critical space time dimension to be ten, there are no quantum anomalies and
one can get rid of all the tachyons [25]. Furthermore, there is at first sight not
a unique way to implement a superstring and one can see that there are five
different ways to do so. These five string theories are called type I, type IIA, type
IIB, heterotic SO(32) and heterotic E8 × E8 that finally turn out to be related
via string dualities and therefore are basically five different viewpoints of the
same thing [26]. They all differ in some way, for instance in the type II theories

2We will see below how the string vacuum can be identified with a geometric space of very
special properties. In the early years it was hoped that there might be a unique choice for
such a space but in the last years it turned out that this choice is far from unique. There is a
large number of geometries to choose from and one might reason that the choice of the space
is no better than the choice of the parameters. On the other hand the set of geometries is
at least discrete and probably even finite. Furthermore, all the parameters arising from it
have a very nice geometrical meaning which is also an esthetical improvement and moreover
there might still be some reason behind the particular choice and maybe even a mechanism
exists that singles out the right one.
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we have open strings as well as closed strings. Here the open strings end on
higher dimensional objects referred to as D-branes and they describe the gauge
interactions of the theory whereas the closed strings give rise to the gravitational
interactions. On the other hand heterotic string theories only contain closed
strings and the gauge fields arise due to the presence of a so-called gauge bundle
that comes along with the ten dimensional space time. Such a gauge bundle is
basically like a vector bundle, i.e. a construction that attaches a vector space
to every point in space time and the gauge fields here arise as the so-called
connection of the gauge bundle which roughly speaking tells us how to connect
the attached spaces at nearby points. Furthermore, there is an eleven-dimensional
theory called M-theory that also can be connected to the five superstring theories
whereas itself does not have strings as fundamental objects but two-dimensional
membranes. It can moreover be considered to be the limit of type IIA where the
string coupling is large. Then using string dualities all five string theories can
be recovered starting from M-theory and, hence, it is a more general framework
that reduces to string theory in certain limits.

GUTs in string theory

From now on we will be concerned mostly with heterotic string theories in which
the aforementioned GUTs arise quite naturally. One of the advantages of E8×E8

heterotic string theories is that they naturally come with an exceptional gauge
group that can be broken down to some GUT group E6, SO(10) or SU(5) in the
four-dimensional theory. This broken gauge group can then be used to reproduce
the SM at some lower scale and in contrast to the model of Georgi-Glashow, which
was ruled out, the SU(5) model in this context may still be realized by nature.
In fact MSSM-like models have been constructed explicitly within the context of
heterotic strings [27–34], in the type II setting using intersecting D-branes (for a
review see [35]) as well as in various other scenarios [36–48].

One advantage comparing with the plain MSSM is that in principle all the infor-
mation of the model, e.g. the parameters of a string-based model may be obtained
for instance by the geometry of the extra dimension which for the heterotic case
works as follows: We already mentioned the critical dimension of the heterotic
string to be ten and if we consider this ten-dimensional space time to split into a
direct product of four-dimensional Minkowski space with a six-dimensional space
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R3,1 ×M, we have to choose these six extra dimensions small, in order to meet
the experimental observation of a four-dimensional universe. This procedure is
referred to as compactification. Sure enough the size ofM has to be chosen below
the length scale observed in experiments. Considering wave equations on a ten-
dimensional space R3,1×M one can see that e.g. massless ten-dimensional fields
will give rise to additional massive and massless fields in four dimensions corre-
sponding to those with momentum components in the compact directions. Their
masses usually scale with the inverse “radius” of the compact manifold. Hence,
in the limit whereM is small these masses become too large to be detected and
only the massless modes will survive. The former ones are called Kaluza-Klein
modes after T. Kaluza and O. Klein who first considered such a compactification
scenario almost a hundred years ago, where they tried to unify electromagnetism
and general relativity by introducing a compact fifth dimension. The number of
zero modes we obtain from a given compact geometry at the end depends on the
topology of that manifold.

In the heterotic setting we can find these zero modes as follows. As long as the
string length is much smaller than the size of the internal compactification space,
we can give an effective description of string theory in terms of ten-dimensional
SUGRA which is also called heterotic SUGRA. Here the internal dimensions of
the heterotic string form indeed a smooth manifold M together with a gauge
bundle and it is possible to derive the properties of the four-dimensional theory
such as the GUT group, the spectrum, Yukawa couplings etc. only from the
topology of the six-dimensional manifold. In particular the chiral spectrum can
be derived by computing the zero modes of the Dirac operator. Only these zero
modes will survive the Kaluza-Klein compactification process and in fact one can
state a relation between such zero modes and certain cycles of the compact space.
For instance a torus has two different one-dimensional cycles corresponding to the
two circles that span the torus. The set of independent cycles is referred to as
homology of the manifold whereas its dual version is called the cohomology and
contains differential forms. Hence, the task of finding the surviving zero modes
will be equivalent to finding particular differential forms defined onM which are
completely determined by its topology. So at the end in order to understand the
physics of the models we build we will not be able to avoid the investigation of
the topological data ofM. In fact we will find some topological constraints that
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we can impose more easily than others. For instance preserving SUSY requires a
compactification space that allows for a nowhere vanishing covariantly constant
spinor. This property is known to mathematicians that called such spaces Calabi-
Yau spaces after E. Calabi and S.T. Yau. Studying Calabi-Yau spaces in detail
is, hence, crucial to model building in string theory.

String model building with toric geometry

Usually Calabi-Yau manifolds are quite abstract and it is very hard to obtain
any information about them. But there is one mathematical framework in which
Calabi-Yaus are accessible and this is where they are realized as sub-spaces of
so-called toric varieties. Pedagogical introductions for physicists can be found
e.g. in [49,50] and more advanced ones in [51–53]. In this setting the requirement
ofM to be Calabi-Yau is rather easy to meet but the phenomenological require-
ment to give the right number of generations, for instance, is highly non-trivial
and needs explicit calculations. A realistic model will need quite a variety of
particular phenomenological properties. These are realized as topological prop-
erties of the corresponding geometry and have subtle connections. Thus changing
the geometry in favor of some of the requirements might also change others and
one has to choose the geometry such that all the requirements are fulfilled si-
multaneously. In other words, it is quite involved to engineer such a model from
scratch. Therefore many attempts are to take a given set of geometries and scan
them for the right configuration or at least to learn more about the problems
that come with the process [32–34, 54–64]. Howsoever one might approach the
matter of model building, at the end there is no way to get around the task of
calculating topological quantities of the compactification space. If we work with
toric varieties one can see that these topological quantities are all encoded in the
topology of holomorphic vector bundles of rank one, i.e. holomorphic line bundles
which are spaces constructed by attaching a complex space C to each base point.
Hence, the task one is left with is the calculation of cohomology groups of line
bundles which basically represent the topological structure of the line bundles.

So we will need efficient ways to calculate line bundle cohomology in order to
handle the physics behind these models. For the case that the Calabi-Yau space is
given as a transverse intersection of hypersurfaces in products of projective spaces,
which are the very simplest set of toric varieties, there exist index formulæ. Thus
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there is no need to calculate the line bundle cohomology precisely since one can
take the shortcut via the corresponding index. Even though this opens a variety
of possibilities to build string models, these spaces are still fairly constraint and do
not carry all the subtle structure of generic toric varieties. Hence, certain features
that are present for the generic case will never be present in those more simple
cases and at the end we might not be able to find the correct compactification
space within this set of geometries. For these reasons it is necessary to go beyond
the most elementary set of products of projective spaces which raises the task of
calculating line bundle cohomology properly.

Content of this thesis

This brings us to the actual research content of this thesis. The unavoidable task
of calculating line bundle cohomology on toric varieties requires efficient tools
since it has to be performed possibly hundreds of times for single models. There
are a lot of tools around to calculate various things within the framework of toric
geometry [65–72] but so far no sufficiently efficient algorithm existed which is
why we started working on this. We proposed a conjecture along with a Wolfram
Mathematica implementation of such an algorithm [1] which was later on proven
by our group [2] and independently by the UPenn math department [73]. Later we
also provided an even faster C++ implementation of the algorithm which we called
cohomCalg and in addition a Wolfram Mathematica interface that also contains
the routines to obtain the cohomology of higher-rank vector bundles restricted to
the intersection of hypersurfaces in the toric variety, named cohomCalg Koszul ex-
tension. The full package including a very explicit manual is available online [7].
Furthermore, we investigated generalizations of this algorithm to equivariant co-
homology [3, 4] that makes it possible to consider a further discrete action on
the base manifold which in string theory are called orbifolds [74–77]. There we
also investigated the relation of line bundle cohomology to the different con-
tributions of the formula of Batyrev [78]. This formula makes use of a purely
combinatorial approach to calculate the Hodge numbers of a Calabi-Yau space
and relates certain line bundle cohomology groups to the so-called twisted sector
of the corresponding Landau-Ginzburg orbifold theories. These sectors are spe-
cial to orbifold constructions and arise due to the identification via the discrete
action. Finally the algorithm also found its application in the investigation of

http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
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so-called target space dualities that relate different heterotic GUT models with
one another. This shed light on many different aspects of the duality and it was
tested in the scan of a large landscape of models [5,6] where cohomCalg had to be
used tens of millions of times.

Outline

The content of this thesis is organized as follows:

Chapter 2: We will first introduce some basics on the heterotic string and
model building in that context. We will see how the physical spectrum is related
to the geometry of the internal dimensions and provide the requisites needed in
chapter 9 . Furthermore, we will see that this motivates the need to study the
insights to the theory of toric varieties and line bundles.

Chapter 3: In this chapter we will give a very basic introduction to toric va-
rieties that were motivated by chapter 2. Here toric varieties will be built up as
generalizations of projective spaces and we will try to give an intuition in addition
to the abstract definitions. Especially we will focus on the computational side of
it and try to provide the reader with everything that is needed for model building
in string theory. Furthermore, we also explain the concepts of divisors and line
bundles on toric varieties.

Chapter 4: Next we are going to introduce the notion of cohomology and in
particular the cohomology of line bundles. The whole chapter is devoted to the
task of deriving and proving the algorithm for the calculation of line bundle coho-
mology, finally stated in theorem 4.6.1. It will therefore cover the content of [1,2]
and will also comment on [7].

Chapter 5: One nice feature of the algorithm is that it provides explicit rep-
resentatives of the cohomology groups. Therefore it is possible to see how a
discrete action affects these representatives. The explicit procedure to obtain
the equivariant cohomology of such a discrete action is explained in this chapter.
We conclude with a conjecture which is based on the observation comparing our
results with the Lefschetz theorem which is an index theorem for such equivari-
ant cohomologies. It can be found in its original version among other things in [3].

http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
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Chapter 6: Since we are also interested in the cohomology of line bundles that
live on a subvariety of a toric variety, e.g. a Calabi-Yau manifold, we have to
understand how one can get these cohomology groups from calculations on the
ambient space. The way to do it is well known and makes use of the Koszul
resolution. We will show how one can break this down to a set of short exact se-
quences that allow us to perform the calculations. Several examples are provided
in order to demonstrate the techniques to those that are not familiar with them
and may be skipped by the experienced reader. The extended implementation
cohomCalg Koszul extension [7] is making excessive use of these methods.

Chapter 7: The next step is to use holomorphic line bundles (rank one) and to
build up vector bundles of higher-rank (rank three, four or five). It turns out that
also for this matter one can employ short exact sequences to boil the calculation
of vector bundle-valued cohomology down to the case of line bundle cohomology.
The monad vector bundles mentioned in chapter 2 that are used to find the chiral
spectrum of a heterotic model are introduced and all the techniques that are cru-
cial to the physical analysis in chapter 9 are described and demonstrated. Again
cohomCalg Koszul extension [7] is making use precisely of these methods and it is
worth to have a look at it before using the program blindly.

Chapter 8: This chapter is a little bit off the scope of the rest of the the-
sis. There are formulæ from Batyrev and Borisov [78, 79] that allow one to use
a purely combinatorial approach to the calculation of the Hodge numbers of
Calabi-Yau manifolds realized as subvarieties in toric varieties. They provided a
formula to calculate the so-called stringy Hodge numbers defined on potentially
singular Calabi-Yau spaces that are basically coinciding with the Hodge numbers
of a smooth crepant resolution in case that it exists. Using our algorithm we
found that actually particular contributions to these numbers can be traced back
to certain cohomology groups of line bundles on the ambient space [3]. In cases
where a Landau-Ginzburg phase exists, these contributions correspond to states
in the twisted sector and, hence, we can assign to the cohomological degree a
particular physical meaning. Furthermore, we extend these ideas to codimension
two cases and as a byproduct also provide an explicit combinatorial formula for
Hodge numbers of a Calabi-Yau four-fold that may become useful in the F-theory
setting.

http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
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Chapter 9: Finally in the last chapter we apply our algorithm to construct
heterotic models. In particular we investigate target space dualities of het-
erotic models with (0, 2) worldsheet SUSY. The fast computational abilities of
cohomCalg Koszul extension allowed us to calculate many explicit examples and,
hence, to give an explicit description of the construction of these models. In
particular we focused on heterotic models where the holomorphic vector bundle
is given by a deformation of the tangent bundle which is a rank three bundle [5].
We furthermore explain how one can employ conifold transitions to relate the
base manifolds of the initial model to the base manifolds of the dual models. We
also show how chains of dual models can be produced and provide data of a scan
of a large landscape of models. This indeed provides strong evidence for the con-
jecture that target space duality is indeed a duality of the full string models. The
more general situations of E6, SO(10) and SU(5) GUTs where the holomorphic
vector bundle is no longer a deformation of the tangent bundle [6] are considered,
too.

http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/




Chapter 2
Heterotic String Compactifications

We have pointed out in the introduction that there are different types of string
theories. For example, the Bosonic string which is forced to be defined in a 26-
dimensional space time, due to anomaly cancellation conditions. On the other
hand, consistency of string theories with space time supersymmetry such as the
type IIA/IIB and type I require in a ten-dimensional environment. Both Bosonic
as well as superstring theories involve independent left and right movers in the
mode expansion of the closed string.
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An idea that seems on first sight a little counter intuitive is to combine these
two concepts to a so-called heterotic model firstly introduced by Gross et al.
[80, 81]. This hybrid model merges left-moving modes of the Bosonic string and
the right-moving modes of the superstring into one single theory. While the type
II string theories have N = 2 supersymmetry in ten dimensions, the heterotic
string theory only preserves N = 1 SUSY in ten dimensions. As in the type
II setting, anomalies arise and they have to be canceled out which, as one can
show, enforces the gauge group to be either SO(32) or E8 × E8. The standard
model gauge group SU(3) × SU(2) × U(1) can be embedded into E8 and hence
heterotic string theories provide a natural environment for GUT model building.
The other E8 can be considered invisible and this way does not influence the
observable physics.

In string theory we usually have two different viewpoints of the same scenario
in hand, the spacetime description and the worldsheet description of the string.
The space time description is valid once the string scale is small compared to the
size of the compactification space. If this assumption is not valid anymore, string
effects apply and the geometric description may no longer be appropriate. In the
following we will give a quick review for both, the spacetime and the worldsheet
perspective of the heterotic string.

In both descriptions we will see how all the mathematical concepts, we are
going to introduce in chapters 3 to 8, will beautifully arise and hence motivate
the need to explore mathematical techniques in order to calculate quantities for
real-world physics. Here the cross-fertilization between mathematics and physics
manifests itself. In fact some of the mathematical concepts were motivated and
even properly formulated because of the underlying physics and on the other
hand the physicists made also extensive use of mathematics to understand the
physics better. Taking advantage of these two perspectives is precisely what we
did for the investigation of target space dualities as described in chapter 9.

2.1 Spacetime description of the heterotic string

For the spacetime description of the heterotic string we assume that all length
scales defining our internal dimensions are large compared to the string length.
Due to this assumption we don’t have to deal with string effects and hence our
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string theory is effectively simply described by a field theory which is given by ten-
dimensional SUGRA coupled to Yang-Mills theory. The massless string spectrum
is then governed by an effective action

S =

∫
d10x

(−G)1/2

κ2e2Φ

(
R + 4|∂Φ|2 − 1

2
|H3|2 −

α′

4

{
tr
(
|F2|2

)
− tr

(
|R2|2

)})
+ Fermions

(2.1)
which can be derived calculating for instance on-shell scattering amplitudes and
contains the following fields:

Dilaton Φ , 10d metric G , B-field B2 , gauge field A , (2.2)

and defined from those furthermore contains the three form flux H3, the Riemann
two-form R2, the Ricci scalar R and the gauge field strength F2, corresponding
to the gauge fields A. Furthermore the three-form H3 can be written in terms of
the B-field as

H3 = dB2 +
α′

4
(CSω − CSA) , (2.3)

where CSω and CSA are the Lorentz and theYang-Mills Chern-Simons forms of
spin and gauge connection ω and A respectively. They are given in terms of their
connections in such a way that they obey the Bianchi identity:

dH3 =
α′

4
(tr {R ∧R} − tr {F ∧ F}) . (2.4)

As one can see from (2.1), the gauge fields in the action are suppressed and come
only into play at higher order in the string coupling. There are also Fermions in
the above action (2.1), namely a gravitino Ψ a dilatino λ and a gaugino χ. All
the fields in the (2.1) accommodate a SUGRA multiplet and a vector multiplet
where the fields G ,B2 , Φ, Ψ, λ belong to the SUGRA multiplet while the
A, χ belong to the vector multiplet and transform in the adjoint representation
of the gauge group E8 ×E8 or SO(32). In order to preserve supersymmetry, the
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variation of these Fermions have to vanish, i.e.

δΨC =

(
∂C +

(
1

4
ωABC −

1

8
HAB

C

)
ΓAB

)
ε = 0 ,

δλ = − 1

2
√

2

(
∂AΓAΦ− 1

12
HABCΓABC

)
ε = 0 ,

δχ = −1

4
FABΓABε = 0 .

(2.5)

It turns out that in order to find solutions to the equations of motion of (2.1)
which do actually preserve N = 1 space time supersymmetry and furthermore
d = 4 Poincare invariance, it is sufficient to solve the system of equations (2.5).
Doing that we still need to satisfy the Bianchi identity given in (2.4) but after
taking this into account we are done.

We are actually only interested in compactifications where globally no fluxes
are present which means that in all our equations above we can formally put
H3 = 0. We also assume that our ten-dimensional space time splits into a flat
four-dimensional one and a six-dimensional manifold

M10 = R1,3 ×M . (2.6)

Then the first SUSY variation in (2.5) simplifies to(
∂C +

1

4
ωABCΓAB

)
ε =: ∇Mε = 0 (2.7)

and reflects the fact that the spinor ε has to be covariantly constant on the
internal six-dimensional manifold M that constraints the manifold to be a so-
called Calabi-Yau manifold which we will introduce later in definition 6.2.1. The
existence of such a spinor immediately forces the tangent bundle of the manifold
M to have SU(3) structure and it is also referred to as Killing spinor. Notice
that the spinor ε lives in SO(1, 9) which is broken to SO(1, 3)×SO(6) for a space
of the form (2.6) and its six-dimensional part has right and left chiral pieces that
transform under SO(6) ∼= SU(4) as 4 and 4̄ respectively. Since the spinor of the
space M gets rotated by elements of the holonomy group H, we need to make
sure that the 4 decomposition under H contains singlets. Otherwise we could
not meet condition (2.7). This can be accomplished if we choose the holonomy
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group H to be SU(3). Then we get the decomposition

4SU(4) = 3SU(3) + 1SU(3) (2.8)

and we can guarantee the existence of exactly one spinor satisfying (2.7).

After making sure that the gravitino variation is satisfied we still have to deal
with the SUSY variations for the dilatino and the gaugino. The one for the
dilatino is actually not to hard to accomplish. Since our flux H3 is already
formally put to zero, it suffices to just put the dilaton to a constant and we are
done. However solving the equation for the gaugino in (2.5) we have to work
harder. On first sight one might think that we could simply put F2 to zero
but this would contradict the Bianchi identity (2.4). This can be seen once we
integrate on both sides over a four cycle, which gives zero on the left hand side:

0 =

∫
tr (R ∧R)−

∫
tr (F ∧ F )

⇔ c2 (TM) = c2 (V) ,

(2.9)

where V is the vector bundle corresponding to the gauge connection. Since one
can show that the second chern class of a Calabi-Yau manifold cannot vanish, it is
clear that we cannot simply put F2 to zero without violating (2.4). Furthermore
we can constrain this non-vanishing field strength by the SUSY variation for the
gaugino. This results into the constraints

Fij = Fīj̄ = 0 (2.10)

Fij̄ g
ij̄ = 0 . (2.11)

The first two equations (2.10) simply state that the bundle we choose has to be
a holomorphic vector bundle and is actually not too hard to satisfy. The third
equation (2.11) is called the specialized Hermitian Yang-Mills equation and it is
much less trivial to solve for this equation. Our internal manifoldM has to be
a Calabi-Yau manifold and up to now there is not even one single Calabi-Yau
known, where one can explicitly write down the Hermitian metric, even though its
unique existence was proven in Yau’s theorem [82] as stated in definition 6.2.1.
Luckily there also is a similar theorem that proves the existence of a solution
to the Hermitian Yang-Mills equations. It is due to Donaldson, Uhlenbeck and
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Yau [83,84] and states the following:

Theorem 2.1.1 (Donaldson-Uhlenbeck-Yau Theorem). For a holomorphic vec-
tor bundle V there exists a solution to the hermition Yang-Mills equation

Fij̄ g
ij̄ = 0 , (2.12)

iff V is µ-stable. This means that the slope of every subsheaf F ⊂ V is strictly
smaller than the slope of V itself:

µ(F) :=
1

rkF

∫
M
J ∧ J ∧ c1(F) < µ(V) . (2.13)

For V , since its first Chern class vanishes, the slope of every subsheaf has
actually to be negative. Since we cannot put F2 to zero we have to come up with
another choice and the simplest one is

V = TM . (2.14)

This is called the standard embedding, it is automatically stable and the gauge
connection is identified with the spin connection. Nevertheless we will see in the
next section that the standard embedding is rather constraint for the purpose of
model building because the structure group of the tangent bundle is always equal
to SU(3) and hence the resulting four-dimensional gauge group will always be
E6. In order to construct theories different GUT groups as gauge groups we have
to consider more generic vector bundles.

2.2 The massless spectrum

In this section we want to see how the massless spectrum of a heterotic Calabi-
Yau compactification arises in the supergravity approximation. The ingredients
that will be necessary to do so are topological and we can say quite a lot about
spectra etc. without the explicite knowledge of the Ricci flat metric that lives
on the Calabi-Yau. As we saw in the last section, if we want to obtain N =

1 supersymmetry in four dimensions, we have to compactify on a Calabi-Yau
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manifoldM coming with a holomorphic and stable vector bundle V

V →M . (2.15)

In the following we will restritct ourselves to the case where in the ten-dimensional
theory we have an E8×E8 gauge symmetry rather than an SO(32). Furhtermore
one E8 can always be hidden and we will only consider the remaining non-hidden
E8. Compactifying this 10d theory on a Calabi-Yau will result in a 4d theory in
which the visible E8 will be broken by the structure group

H = SU(3), SU(4) or SU(5) (2.16)

of the holomorphic vector bundle V . The unbroken gauge group is then given by
the commutant G of H in E8 which yields

G = E6, SO(10) or SU(5) (2.17)

for the gauge group respectively. The case of the standard embedding is here
quite a specific one. Since our manifold has SU(3) holonomy, the tangent bundles
structure group is forced to be SU(3) and hence the four-dimensional GUT group
to be E6. The more general cases of SO(10) and SU(5) GUT groups coming from
higher rank vector bundles were first explored by [85–87]. The breakdown of E8

into G and H can nicely be read off from the corresponding Dynkin diagram as
show in figure 2.1. If we build a physical model this way, eventually we want
to calculate its physical quantities. For instance we would like to know what
kind of Fermionic fields will appear in the four-dimensional low-energy theory.
The relevant Fermionic fields arise then in the decomposition of the gaugiono
vector supermultiplet that comes from the breakdown of the E8 gauge group via
the structure group H. The relevant representation of E8 here is the 248 which
decomposes according to table 2.1. In the large volume limit the only part that
will survive the Kaluza-Klein compactification process are the massless modes of
the Dirac operator onM. In [85] it was described how to obtain these massless
modes simply by calculating certain bundle-valued cohomology groups. The idea
is the following: We have to find the massless modes of the Dirac operator. On
a complex Kähler manifold we can decompose it with respect to the complex
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(a) The Dynkin diagram of E8. (b) The Dynkin diagrams of the broken gauge
groups E6 × SU(3), SO(10) × SU(4) and
SU(5)× SU(5) respectively.

Figure 2.1.: Breakdown of the gauge group E8 via “breaking” of its Dynkin diagram
into an SU(n) part and its commutant.

# zero modes in Zero mode are counted by h1
M(•) of the following bundles:

reps of H ×G 1 V V∗ Λ2V Λ2V∗ End(V)

E8

↓
248
↓

SU(3)× E6 (1,78)⊕ (3,27)⊕ (3,27) ⊕ (18,1)

SU(4)× SO(10) (1,45)⊕ (4,16)⊕ (4,16)⊕ (6,10) ⊕ (15,1)

SU(5)× SU(5) (1,24)⊕ (5,10)⊕ (5,10)⊕ (10,5)⊕ (10,5) ⊕ (24,1)

Table 2.1.: Matter zero modes in representations of the GUT group.

structure as
γiDi = γkDk + γk̄Dk̄ , (2.18)

where D is the covariant derivative with respect to the Hermitian metric of the
Kähler manifold. One can now show that spinors do in fact correspond to (0, q)-
forms of the Calabi-Yau manifold, meaning forms that are made of a wedge prod-
uct of q purely anti-holomorphic one-forms ∼ dz̄k̄. Furthermore, the differential d
that acts on forms can be decomposed into a holomorphic and anti-holomorphic
part

d = ∂ + ∂ (2.19)

either as we will explain in a little more detail in chapter 4. Furthermore one
can show that acting on spinors with γk̄Dk̄ corresponds to acting on (0, q)-forms
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with ∂̄ and acting with γkDk corresponds to acting with ∂̄∗ which is the adjoint
operator to ∂̄ and for the compact case given by

∂̄∗ = − ∗ ∂ ∗ . (2.20)

A (0, q)-form η that represents a zero mode of the Dirac operator must hence
obey

∂̄η = 0 and ∂̄∗η = 0 (2.21)

and is called harmonic. If we introduce an equivalence relation in the space of
(0, q)-forms that identifies all forms that differ only by a form that is given as the
derivative of a (0, q − 1)-form η′, i.e.

η ∼ η + ∂̄η′ ⇒ [η] = [η + ∂̄η′] , (2.22)

one can show that in every equivalence class is exactly one harmonic form. There-
fore Counting harmonic forms and hence zero modes of the Dirac operator cor-
responds to counting equivalence classes of (0, q) forms. The set of all such
equivalence classes is called a cohomology group in particular the ones we just
described, i.e. the “pure” (0, q)-forms are taking values in the structure sheaf OM
ofM1 and its qth cohomology group is denoted by

Hq(M;OM) or Hq
M(OM) . (2.23)

Similarly we can also have the (0, q)-forms to take values not only in the structure
sheaf but rather in some higher rank vector bundle V and calculate the zero modes
of the Dirac operator of these forms which will differ from the former ones. We
will call the set of harmonic functions due to the arguments above the qth vector
bundle-valued cohomology groups and denote them by

Hq(M;V) or Hq
M(V) . (2.24)

As it turns out the zero modes of the broken four-dimensional gauge group with
respect to different representations can then all be found as vector bundle-valued

1OM is basically the set of the nowhere vanishing holomorphic functions that play the role of
the coefficients of the (0, q)-form.
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cohomology groups where each representation is determined belongs to a specific
bundle. For the chiral spectrum, e.g. in case of bundles with SU(3) structure, the
massless modes that correspond to the Fermionic components of chiral superfields
of the four-dimensional theory transform in the 27 and 27 of E6 respectively and
their number can be obtained by the dimensions of the vector bundle-valued
cohomology groups V and V∗:

n27 = h1(M;V) and n27 = h1(M;V∗) . (2.25)

Which bundle-valued cohomology contains which zero modes can for all possible
cases can be read of from table 2.1. As one can see, there are also gauge singlets
that correspond to one-forms with values in endomorphism bundle, i.e. they live
in H1(M;End(V)) and are counted by

h1(M;End(V)) . (2.26)

These singlets are basically the infinitesimal deformations of the holomorphic
vector bundle and will potentially be moduli of the theory. Besides those there
are also the infinitesimal deformations of the Calabi-Yau base manifold which are
counted by the Hodge numbers, i.e. by the tangent and cotangent bundle-valued
cohomology groups:

h2,1
M = h1(M;TM) and h1,1

M = h1(M;T ∗M) . (2.27)

Here the Hodge number h2,1
M counts the possible deformations of the complex

structure and h1,1
M counts all possible Kähler deformations. For the standard

embedding, (2.25) and (2.27) obviously agree, i.e. the zero modes in the chiral
multiplets in the 27 and 27 correspond to the number of complex structure and
Kähler deformations respectively which is really only happening for the standard
embedding.

2.3 Worldsheet description of the heterotic string & GLSMs
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2.3.1 The non-linear sigma model:

The description of a perturbative heterotic string compactification is given by
a non-linear sigma model (NLSM) that lives in two dimensions and maps the
worldsheet to the ten-dimensional target space geometry. The maps

XN : Σ→M× R1,3 , N = 0, ..., 9 (2.28)

are the embedding of the worldsheet in the target spaceM. Furthermore there
are Fermions ψN and γA which are right and left-handed worldsheet Fermions
respectively. Here the ΨN couple to the pullback of the tangent bundle TM of the
target spaceM and the γA couple to the pullback of the vector bundle V of the
target space M. The number of left and right handed supersymmetries can be
chosen independently but in order to obtain N = 1 space time supersymmetry we
need at least two right handed but no left handed ones. We denote such left-right
handed worldsheet supersymmetry by (0, 2). The action of such a sigma model
is given in terms of the metric and the B-field as

S =
1

4πα′

∫
d2z

(
(GMN(X) +BMN(X)) ∂zX

M∂z̄X
N 1

2

+GMN(X)ψM∇zψ
N + ...

1

2

) (2.29)

Since G and B are rather non-trivial functions in the worldsheet embedding X,
this action is fairly non-linear and in fact it is quite hard to deal with NLSMs
directly and the only way to get the spectrum is in the large volume limit we
described above. Furthermore we need our NLSM to be a conformal field theory.
Consequently in order to preserve (0, 2) world-sheet super symmetry plus the
condition that all diffeomorphism anomalies vanish, namely the model is modular
invariant, can the be seen as the following (topological) conditions on the target
space

c1(M) = 0 , c1(V) = 0 mod 2 , ch(M) = ch(F) (2.30)

which are compatible with the conditions derived in the SUGRA picture. For
the specific choice of the tangent bundle for V one can see that now ten of the
left-handed Fermions γA transform in the same way as the right-handed ΨN and
hence the worldsheet supersymmetry has enhanced to (2, 2).
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2.3.2 The gauged linear sigma model

Another way to construct super conformal field theories is using a two-dimensional
abelian gauge theory, called the gauged linear sigma model (GLSM) and was first
introduced by Witten in [88]. Let us briefly review a couple of important aspects
thereof. For a more thorough introduction we refer to the original literature [88]
and extensions [89] or to review articles, e.g. [90,91]. The idea is basically to in-
troduce a two-dimensional abelian gauge theory that is chosen in such a way that
it can be traced down to an infra red fixed point, via the renormalization group
flow, which has to be conformal. This conformal fixed point will then give us for
instance an NLSM that has a Calabi-Yau manifold equipped with a holomorphic
vector bundle as target space right in the way we described above. The quantities
that do not change under the renormalization group flow can be used to study
properties of the NLSM making use of the much easier GLSM. Furthermore the
GLSM provides even more general prospects since, depending on the choice of pa-
rameters, it will provide scenarios where the target space, i.e. the classical vacuum
of the GLSM, cannot be interpreted as a smooth manifold but rather by some
singular configuration which might be even only one single point. This means
that these parameters give rise to a cone structure which is not unique. The way
how to choose this cone structure can then be identified with possible triangu-
lations of a lattice polytope and the different triangulations are called phases of
the GLSM [89]. This has a mathematical interpretation as we will see in 3.3 and
the triangulations containing the maximal number of cones can be interpreted
by smooth geometries. Therefore at low energies, these phases will correspond
to NLSMs with a smooth target space geometry and phases corresponding to
non-maximal triangulations may correspond to non-geometric Landau-Ginzburg
orbifolds or some other more peculiar theories like hybrid models.

More concretely, let us first list the fields in the GLSM equipped with (0, 2)

supersymmetry, using superspace coordinates (z, z̄, θ+, θ−). We will have r dif-
ferent U(1) gauge symmetries, labeled by α = 1, ..., r. Then there are two sets of
chiral superfields:

Xi with i = 1, . . . , n and Pl with l = 1, . . . , np . (2.31)
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In superspace coordinates we can decompose them as

Xi = xi + θ+ψi + θ+θ̄+∂z̄xi , (2.32)

Pl = pl + θ+πl + θ+θ̄+∂z̄pl . (2.33)

Here xi, pl are the Bosonic components of Xi, Pl and the ψi+, πi+ denote their
Fermionic super partners. Furthermore they are charged under the U(1)r gauge
group by

Q
(α)
i and −M (α)

l , (2.34)

respectively. Chirality here simply means that the fields obey

D̄+Xi = 0 = D̄+Pl . (2.35)

We assume that we can choose Q(α)
i ≥ 0 as well asM (α)

l and that for each i, there
exist at least one r such that Q(α)

i > 0. Furthermore we have two additional
Fermi superfields

Λa with a = 1, . . . , nΛ and Γj with j = 1, . . . , c (2.36)

that have similar super space expression as (2.32) where the first components are
then Fermions λa and γj respectively. They are also charged under the U(1)r

gauge symmetry with charges

N (α)
a and − S(α)

j (2.37)

respectively. We also assume that the charges N (α)
a and S

(α)
j satisfy the same

(semi-)positivity constraints as the Q(α)
i and M (α)

l . For the case (2, 2) worldsheet
supersymmetry, (2.34) and (2.37) agree and the (0.2) chiral and Fermi superfields
(2.32) and (2.36) combine to form (2, 2) chiral superfields. In the following we
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will specify such a GLSM by writing all the above data in a table of the form

xi Γj

Q
(1)
1 Q

(1)
2 . . . Q

(1)
n

Q
(2)
1 Q

(2)
2 . . . Q

(2)
n

...
...

...
...

Q
(r)
1 Q

(r)
2 . . . Q

(r)
n

−S(1)
1 −S(1)

2 . . . −S(1)
c

−S(2)
1 −S(2)

2 . . . −S(2)
c

...
...

...
...

−S(r)
1 −S(r)

2 . . . −S(r)
c

(2.38)

Λa pl

N
(1)
1 N

(1)
2 . . . N

(1)
nΛ

N
(2)
1 N

(2)
2 . . . N

(2)
nΛ

...
...

...
...

N
(r)
1 N

(r)
2 . . . N

(r)
nΛ

−M (1)
1 −M (1)

2 . . . −M (1)
np

−M (2)
1 −M (2)

2 . . . −M (2)
np

...
...

...
...

−M (r)
1 −M (r)

2 . . . −M (r)
np

. (2.39)

The index α = 1, . . . , r may be suppressed at some points throughout the re-
mainder but will always be there. In the subsequent sections also the notation

VN1,...,NnΛ
[M1, . . . ,Mnp ] −→ PQ1,...,Qn [S1, . . . , Sc] (2.40)

may be used for such a configuration for reasons that will become clear in the
following. Anomaly cancellation of the two-dimensional GLSM requires the fol-
lowing set of quadratic and linear constraints to be satisfied

nΛ∑
a=1

N (α)
a =

np∑
l=1

M
(α)
l ,

n∑
i=1

Q
(α)
i =

c∑
j=1

S
(α)
j ,

np∑
l=1

M
(α)
l M

(β)
l −

nΛ∑
a=1

N (α)
a N (β)

a =
c∑
j=1

S
(α)
j S

(β)
j −

n∑
i=1

Q
(α)
i Q

(β)
i ,

(2.41)

for all α, β = 1, . . . , r which corresponds to (2.30).
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2.3.3 The superpotential

The action of the GLSM contains generically a non-trivial superpotential for the
chiral and Fermi super fields which has to be invariant under the U(1)r gauge
transformations and its most general form is

S =

∫
d2zdθ

[∑
j

Γj Gj(Xi) +
∑
l,a

Pl Λ
a Fa

l(Xi)

]
, (2.42)

where the sub- and superscripts i, j, l, as well as a take values as above and Gj

and Fal are (quasi-)homogeneous polynomials whose multi-degree is fixed by the
requirement of gauge invariance of S. The multi-degrees of the polynomials Gj

and Fal are given by

Gj

S1 S2 . . . Sc

Fa
l

M1 −N1 M1 −N2 . . . M1 −NnΛ

M2 −N1 M2 −N2 . . . M2 −NnΛ

...
...

...
...

Mnp −N1 Mnp −N2 . . . Mnp −NnΛ

. (2.43)

For the right-moving Fermions we can derive the following set of Yukawa cou-
plings from the superpotential (2.42):

∑
i,j

γjψi
∂Gj

∂xi
. (2.44)

This way we obtain a mass for a linear combination of the ψi’s if the derivatives
of the hypersurface satisfy a transversality constraint which can be written as

∑
j

cj
∂Gj

∂xi
(x1, ..., xn) = 0 ∀i and for some ~c 6= ~0

if and only if x1 = ... = xn = 0 .

(2.45)

If (2.45) was not true we could not guarantee that every linear combination
appearing in (2.44) is really present and it would not be clear whether or not
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the corresponding ψ does obtain a mass indeed. Furthermore the superpotential
(2.42) induces couplings for the left-moving Fermions λa of the Fermi superfields
Λa

Lmass =
∑
a,l

πl λ
aFa

l (2.46)

which means that a linear combination of the λa receives a mass by pairing up
with one Fermionic component πl of the chiral superfield Pl. Again this is only
guaranteed if we also put transversality constraints upon the Fal in the sense that
they do not vanish simultaneously∑

l

clFa
l (x1, ..., xn) = 0 ∀a and for some ~c 6= ~0

if and only if x1 = ... = xn = 0 .

(2.47)

We will see below that depending on the choice of the Fayet-Iliopoulos parameters,
the set of xi might be constraint in order to minimize the Bosonic potential which
we are about to introduce. In this case the conditions (2.45) and (2.47) might
be relaxed a little since the set of xi may be restricted to form a Calabi-Yau
manifoldM given by a constraint in some higher dimensional ambient space. In
such a case all the Gj are forced to vanish and define these constraints. Moreover
since each πl pairs up with a linear combination of the λa, the massless remaining
combinations of the left-moving fermions λa couple to the kernel of the map F
that connects the two spaces of Fermions. Adding the inclusion map we can this
way connect three spaces of Fermions in a way such that each map maps Fermions
to the kernel of the next one:

V ι−→ {λa} ⊗Fa
l

−→ {πl} , (2.48)

V := kerFa
l . (2.49)

This is not the end of story and once we have a look at the superpotential (2.42)
again we can recognize that we are still free to choose an additional gauge sym-
metry that acts only on the Fermi superfields and leaves the Bosonic chiral su-
perfields unchanged. To define it we introduce nF new Σi Fermi superfields that
are not chiral, along with the same number of chiral Fermi superfields Ωi that
are neutrally charged under the U(1)r gauge group and define the new gauge
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Figure 2.2.: Pictorial illustration of the massless Fermions (massless in orange, massive
in blue). The horizontal axes display the spaces of Fermions and the vertical one their
dimension. On the left hand side the situation of only one kind of mass term is drawn
(2.48) and on the right and side the additional Fermionic gaugings are included and V
appears as a quotient space (2.53).

transformations as

Γj −→ Γj + 2E0
i
jΩi , Λa −→ Λa + 2Ei

a(Xi)Ω
i , Σi −→ Σi + Ωi , (2.50)

for some constants E0
i
j. This is only true once we impose that also∑

j

E0
i
jGj +

∑
a

Ei
aFa

l = 0 , ∀i = 1, ..., nF . (2.51)

Furthermore, the Σi give rise to an extra contribution to the scalar potential
which does not play any role for our analysis. The Fermionic components σi of
Σi can now also provide mass terms for the λa via couplings

Lmass =
∑
i,a

σiλ
aEi

a . (2.52)

Hence via this construction the remaining massless left-moving Fermions are those
that are in the kernel of F and hence obtain no mass from (2.46), but at the same
time do not receive a mass term from (2.52) which means that they do not lie in
the image of the map E. Hence as we obtain the massless Fermions as a quotient
space of {λa}:

{σi} ⊗E
i
a−→ {λa} ⊗Fa

l

−→ {πl} , (2.53)

V :=
kerFa

l

imEi
a

. (2.54)

A pictorial way of seeing the difference between (2.48) and (2.53) is given in figure
2.2.
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2.3.4 The scalar potential

For the scalar components of the chiral superfields Xi and Pl we have two kind
of potentials. An F-term potential and a D-term potential where the latter one
will contain as many parameters as U(1) gaugings are present. The F-term scalar
potential reads

VF =
c∑
j=1

∣∣∣Gj(xi)
∣∣∣2 +

nλ∑
a=1

∣∣∣ np∑
l=1

pl Fa
l(xi)

∣∣∣2 , (2.55)

where xi and pl are the Bosonic complex scalars of the corresponding chiral
superfields. 2 Introducing the Fayet-Iliopoulos parameter ξ(α) ∈ R for each U(1)

the D-term potential can be written as

VD =
r∑

α=1

( n∑
i=1

Q
(α)
i |xi|2 −

np∑
l=1

M
(α)
l |pl|

2 − ξ(α)

)2

, (2.56)

In order to find the classical vacuum we hence have to minimize these two po-
tentials i.e.

VF = VD = 0 (2.57)

which in particular implies that

Gj(x1, ..., xn) = 0 ∀j ,∑
l

pl Fa
l(x1, ..., xn) = 0 ∀a ,

n∑
i=1

Q
(α)
i |xi|2 −

np∑
l=1

M
(α)
l |pl|

2 − ξ(α) = 0 ∀α ,

(2.58)

where the second condition can always rewritten using (2.47) as

{
p1, ..., pnp

}
= {0, ..., 0} or {x1, ..., xn} = {0, ..., 0} . (2.59)

2Here we would in principle get another scalar contribution due to the additional Fermionic
gaugings. But the values of the additional scalar fields coming with such a term are forced
to be zero everywhere but at the boundary between phases and since we are only working
inside proper phases we will simply not write that term explicitly.
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2.3.5 Geometric interpretation

For a concrete choice of charges one can now determine the classical vacua of
the F-term and D-term potential. It turns out that the structure of this vacuum
depends crucially on the Fayet-Iliopoulos parameters. In fact the Rr parametrized
by them splits into cones, also called phases, whose boundaries separate different
vacuum configurations.

There are certain choices of FI parameters that are particularly interesting and
that is for instance where all of them are positive (supposing all the xi have only
positive charges and the pl have only negative charges). In this case we need
some of the xi not to vanish in order to cancel the ξ(α) and minimize the D-term
potential. In order to minimize the F-term, too, the Gj have to vanish and since
the Fal are due to (2.47) not allowed to vanish we need the pl to be all zero.
Hence the D-term vanishing constraints the set of Bosonic fields xi to obey

PΣ :=

{
{x1, ..., xn} |

∑n
i=1Q

(α)
i |xi|2 = ξ(α)

U(1)r
∀α

}
(2.60)

and the F-term constraints the set of these xi further to

M = {{x1, ..., xn} | {x1, ..., xn} ∈ PΣ and Gj(x1, ..., xn) = 0 ∀j} . (2.61)

The space PΣ is also called a symplectic quotient and the space M defines a
subspace of PΣ. In this case M will describe a smooth manifold. Furthermore
one can show that the Fermions σ, λ, π do correspond to sections of line bundles
that live on that manifold. We will denote them corresponding to their U(1)

charges as
OM , OM(Na) , OM(Ml) .

Furthermore the space of massless Fermions we derived above in (2.48) and (2.53)
corresponds to a non-trivial subspace of the direct sum of line bundles that cor-
respond to the λ′as i.e.

V ⊂
nΛ⊕
a=1

OM(Na) . (2.62)

This will then be a vector bundle3 and the term non-trivial above means that
3Actually it is also possible the V is not entirely smooth and hence no longer a vector bundle
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this vector bundle is no longer a direct sum of line bundles. More precisely, the
vector bundle will be given by

0→ V ι−→
nΛ⊕
a=1

OM(Na)
⊗Fal−→

np⊕
l=1

OM(Ml)→ 0 , (2.63)

as V = kerFa
l or from

0→ O⊕nFM
⊗Eia−→

nΛ⊕
a=1

OM(Na)
⊗Fal−→

np⊕
l=1

OM(Ml)→ 0 , (2.64)

as V = kerFal

imEia
. Since V is given by this quotient one can conclude that V defines

a vector bundle of rank

rk(V) = #λ′s−#π′s−#σ′s = nΛ − np − nF

overM.
The construction of a vector bundle this way is well known to mathematicians

and referred to as themonad construction and we will discuss it in a mathematical
framework in 7.4.1.

Example 2.3.1 (One single U(1) action). Let us briefly discuss the phases of the
GLSM for the most simple choice of a single U(1) and np = 1. In this case there
is only a single Fayet-Iliopoulos parameter and one only obtains two different
phases:

For ξ > 0 the D-term condition VD = 0 i.e.

n∑
i=1

Qi|xi|2 −M |p|2 − ξ = 0 (2.65)

implies that not all xi are allowed to vanish simultaneously. Thus not all Fa
do vanish due to the transversality condition (2.47) and hence vanishing of the
F-term potential VF = 0 i.e.

∑
j

∣∣∣Gj(xi)
∣∣∣2 +

∑
a

∣∣∣pFa(xi)∣∣∣2 = 0 (2.66)

but a so-called coherent sheaf. On the other hand in all the cases we consider this will not
be the case.
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implies Gj(xi) = 0 and p = 0. Thus in this phase one gets a (0, 2) non-linear
sigma-model on a complete intersection of hyper surfaces that belong to the con-
straining equations {Gj = 0} in an ambient space that is given by the symplectic
quotient

PQ1,...,Qn :=

{∑n
i=1Qi|xi|2 = ξ

U(1)

}
. (2.67)

which is a geometric space where the coordinates are given by the Bosonic fields
xi. In fact one can show that this symplectic quotient is equivalent to different
construction that is given by a holomorphic quotient. Such holomorphic quotients
are well known in mathematics and referred to as toric varieties. Many tools
to calculate topological quantities of such spaces are known and they are quite
convenient to work with. This particular example would correspond to a so-
called weighted projective space which is a straight forward generalization of a
complex projective space. Furthermore the Gj represent (quasi-)homogeneous
polynomials that describe the subvarieties

Sj = {(x1, ..., xn) ∈ PQ1,...,Qn | Gj = 0} (2.68)

which describe, due the transversality constraint (2.45), a complete intersection
of hypersurfaces in the ambient space (2.67)

PQ1,...,Qn [S1, . . . , Sc] :=
c⋂
j=1

Sj (2.69)

as the target space. In general, the constraints (2.41), guarantee that the complete
intersection defines a threefold with vanishing first Chern class which in our case
can be stated by

c1(TM) =
c∑
j=1

Sj −
n∑
i=1

Qi = 0 (2.70)

and it means that our space M is a Calabi-Yau manifold. In addition the vec-
tor bundle V is implied to have SU(n) structure group (if it is stable) and the
quadratic constraint

M2 −
nΛ∑
a=1

N2
a =

c∑
j=1

S2
j −

n∑
i=1

Q2
i , (2.71)
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implies the integrated Bianchi-identify

c2(V) = c2(TM) (2.72)

which for more involved cases applies to each geometric phase. Depending on the
the number nΛ and on the polynomials Fa we will obtain either the monad

0→ V ι−→
nΛ⊕
a=1

OM(Na)
⊗Fa−→ OM(M)→ 0 , (2.73)

or the monad

0→ O⊕nFM
⊗Eia−→

nΛ⊕
a=1

OM(Na)
⊗Fa−→ OM(M)→ 0 . (2.74)

The vector bundle of our model will therefore be either given as the ker (Fa) or
as ker (Fa)/ im (Ei

a).
The second phase arises for ξ < 0. In this case the D-term potential already

implies that 〈p〉 6= 0. Then the F-term potential forces all the Fa to vanish
simultaneously which is according to (2.47) equivalent to the vanishing of all the
xi. Hence this phase is non-geometric since the classical vacuum is given by a
single point obtained from the vev of p. Then, the low-energy physics is described
by a Landau-Ginzburg (LG) orbifold with a superpotential

W(Xi,Λ
a,Γj) =

∑
j

ΓjGj(Xi) +
∑
a

ΛaFa(Xi). (2.75)

Methods have been developed to deal with such (0, 2) LG-models [92, 93], which
means in particular the generalization of the BRST methods for the computation
of the massless spectrum from (2, 2) LG orbifolds to the (0, 2) case.

Remark. It was first observed in [94] that in this superpotential the constraints
Gj and Fa appear on equal footing, so that in particular an exchange of them
does not change the Landau-Ginzburg model as long as all anomaly cancellation
conditions are satisfied. In [95] this duality was further investigated showing that
this exchange is still possible after resolving the generically singular base manifold
(see [96] for another kind of (0, 2) duality). It is precisely this duality we have
studied and we will present our analysis in chapter 9.
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In order to be able to analyze GLSM’s in their geometric phase it is easier,
as already mentioned, to work with the corresponding holomorphic quotients i.e.
with toric varieties. A lot is known about them and the next chapters will give
techniques to calculate topological quantities thereof. In order to get evidence
for a duality it is in particular important to be able to calculate the massless
spectrum of the compactification. As argued above the massless fermions will
be describing sections in a vector bundle and the way to identify such sections
is by calculating cohomology groups. As it turns out at the end we will always
be forced to calculate line bundle cohomology which is the reason why we put
our effort in developing an algorithm that is able to calculate them fast and
a fair part of the following chapters will be devoted to deriving this algorithm
as well as the ways to apply it to scenarios we just described, before we turn
back to the underlying physics and investigate target space dualities of heterotic
compactifications.





Chapter 3
Toric Geometry

Toric varieties are a very accessible set of algebraic varieties with the outstand-
ing property that they are completely defined in terms of combinatorial informa-
tion. In particular also their topological properties are encoded in combinatorics
and a lot of these quantities that are usually not calculable for generic algebraic
varieties become quite easy to access. Nevertheless, even though all these quan-
tities can be calculated in principle, one can still reach calculable limits once one
turns to higher-dimensional complicated cases. In order to push these limits as
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far as possible it is important to have algorithms of high efficiency in hand. Also
vanishing theorems help to avoid unnecessary lengthy calculations. In this chap-
ter we will introduce all the basics on toric geometry required in the remainder
of this manuscript.

3.1 Physical motivation: Gauged linear sigma models and

flux compactifications

Before we start diving deep into the formal mathematics of toric varieties let
us first give a little motivation where toric varieties arise in string theory. The
most prominent appearance of toric varieties is the one we just explained in
chapter 2 in the context of heterotic string theory where they arise as vacuum
configuration of the GLSM introduced by Witten in [88]. This two-dimensional
field theory is chosen in such a way that there exists an infrared conformal fixed
point where it describes the worldsheet of a string, propagating in some geometric
or non-geometric background. The vacuum configurations in the geometric case
are given by a symplectic quotient which can be shown to coincide with the
holomorphic quotient defining toric geometries. Due to that equivalence it is
very important to understand the mathematical concepts of toric geometry very
well if one wants to work with such theories. Moreover also in the context of
type II superstring theories toric varieties can become important once fluxes are
introduced in order to stabilize the moduli of the theory. Here complex spaces
with an SU(3) structure are required and toric varieties provide a convenient
class of such spaces (see e.g. [97] and references thereof).

3.2 From projective spaces to toric varieties

In this section we want to introduce the notion of a toric variety in a way one
can quickly work with. We will motivate the definition by going through three
different examples. We only introduce and use what we actually need later on
and therefore the definitions are mathematically not fully rigorous. For a more
detailed and very careful introduction to the topic we refer the reader to the book
of Cox, Little and Schenck [53].
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(a) The complex projective space P1. All the
points of the different lines through the origin
are identified with one another. The origin
itself is excluded.

(b) The weighted projective space P1,2. All
points of different parabola through the ori-
gin are identified with one another. The
origin is excluded.

Figure 3.1.: Two examples of a toric variety both having only one C∗-action.

3.2.1 Complex projective spaces

Let us start off with a very simple toric variety namely the complex projective
space. Consider n copies of C as a starting point. The idea of a complex projective
space, denoted by CPd or Pd is to consider a set of equivalence classes inside Cn

where for the projective spaces we always have p = n−1. The equivalence relation
identifies all complex straight lines through the origin in this space. For instance
consider a point x ∈ Cn as an element of Pd, then an arbitrary multiple of this
point by a non-zero constant λ 6= 0 corresponds to one and the same element of
Pd. Hence the equivalence relation ∼ is defined by

(x1, ..., xn) ∼ (λx1, ..., λxn) ∀ λ ∈ C∗ := C\{0} . (3.1)

So really all points on a straight line are identified by one another with one
exception, the origin. Since all these lines intersect at the origin we have to
exclude it. Otherwise we would identify all points in our space with the origin and
we would never obtain anything non-trivial. For the case n = 2 we can actually
visualize the space P1 as shown in figure 3.1a . The action that multiplies every
coordinate of a point with a non-zero constant complex number is called a C∗-
action for obvious reasons. Since algebraic geometers refer to C∗ as an algebraic
torus it is also called a torus action. When physicists talk to each other, this
action can also take the role of an abelian gauge group acting on some two-
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dimensional field theory as was explained in chapter 2 and may therefore also be
called the U(1) action. Taking everything we just said into account we can quote
the proper definition of Pd.

Definition 3.2.1 (Complex Projective Space). A complex projective space Pd is
defined as the quotient space

Pd =
Cn − {0}

C∗
, (3.2)

where the C∗-action is defined via the equivalence relation ∼:

(x1, ..., xn) ∼ (λ1 x1, ..., λ
1 xn) ∀ λ ∈ C∗ = C\{0} . (3.3)

A point in Pd can be written by (x1 : ... : xn) (sometimes also simply denoted as
(x1, ..., xn), keeping (3.3) in mind) where x1, ..., xn are then called the homoge-
neous coordinates of Pd.

3.2.2 Weighted projective spaces

After defining the complex projective spaces it is quite straight forward to define
more general spaces having a C∗-action different from the one of a complex pro-
jective space. The picture is more or less the same with just one difference. As
we have identified straight lines through the origin to define a complex projective
space, the spaces we are considering now are defined by identifying point sets
that correspond to, not necessarily linear, polynomials through the origin. This
means that we identify points with one another that are related by multiplying
every component with the same constant but a different power of this constant,
i.e.

(x1, ..., xn) ∼ (λQ1x1, ..., λ
Qnxn) ∀ λ ∈ C∗ , (3.4)

where the Qi are arbitrary numbers in Z that are called weights. Hence such a
space is called a weighted projective space. For different choices of Qi’s we obtain
different weighted projective spaces. One simple example for the one-dimensional
case is given where Q1 = 1 and Q2 = 2. Then the identification reads for the
point (1, 1)

(1, 1) ∼ (λ, λ2) ∀ λ ∈ C∗ . (3.5)
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This point set is a complex parabola in C2 and similarly for every starting point
different from (1, 1) we get a differently shaped parabola which is drawn in figure
3.1b. The formal definition is very much like the one for the complex projective
space:

Definition 3.2.2 (Weighted Projective Space). A weighted projective space, de-
noted by PQ1,...,Qn for Qi ∈ Z ∀ 1 ≤ i ≤ n is defined as the quotient space

Pd =
Cn − {0}

C∗
, (3.6)

where the C∗-action is defined via the equivalence relation ∼:

(x1, ..., xn) ∼ (λQ1x1, ..., λ
Qnxn) ∀ λ ∈ C∗ . (3.7)

Now we have already a large number of toric varieties that we can construct
using definitions 3.2.1 and 3.2.2. So far we only motivated the construction and
visualized their definition. We have not shown any relation to algebraic vari-
eties or smooth manifolds here. In fact one can show that these are algebraic
varieties and furthermore that the complex projective spaces are even smooth al-
gebraic varieties and hence they are algebraic manifolds. The weighted projective
spaces on the other hand can be shown to be singular spaces and hence are not
represented by some smooth manifold. Nevertheless they might contain smooth
subvarieties as we will see in section 6. Also, we may perform a blowup of points
in the weighted projective space in order to resolve singularities.

3.2.3 Toric varieties

The step to a toric variety is not very big now and simply given by an introduction
of various C∗-actions inside the same space Cn. An example for a one-dimensional
toric variety in C3 is given by the C∗-actions in the rows of the matrix

(Qα
i) =

 1 1 0

0 2 1

 (3.8)
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Figure 3.2.: The one dimensional toric variety corresponding to the charge matrix
in equation (3.8). Since r = 2, points on sheets, i.e. complex two-dimensional spaces
are identified with one another. Here the exceptional set which has to be removed
corresponds to the union of the two horizontal axes.

which gives the following two equivalence relations:

(x1, x2, x3) = (λx1, λx2, x3), ∀ λ ∈ C∗ , (3.9)

(x1, x2, x3) = (x1, µ
2x2, µx3) , ∀ µ ∈ C∗ . (3.10)

Plugging in any values for x1, x2 and x3 one can see that these equations just
parametrize complex two-dimensional surfaces that span inside C3 and are built
out of two kinds of curves. The curves that correspond to the first row of the
matrix (3.8) intersect the horizontal plane at the axis where x1 and x2 equal to
zero which is the x3 axis. Similarly intersect the curves that belong to the second
row of (3.8) the horizontal plane at the x1 axis. This scenario is plotted in figure
3.2 where the horizontal axes are x1 and x3. Since all the points on these complex
surfaces are identified with one another we have to exclude the sets where they
intersect in order to get something non-trivial. This set, which is here given by
the x1 and the x3 axis is called the exceptional set. It is closely related to the
so-called Stanley-Reisner ideal which will be defined in a second. Let us first
quote the general definition of a toric variety which is analog to the one of the
projective and weighted projective space:
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Definition 3.2.3 (Toric Variety). Let d, r ∈ N and n = d+ r. A d dimensional
toric variety PΣ is defined as the quotient space

PΣ =
Cn − Z
(C∗)r

, (3.11)

where Z is the exceptional set. The (C∗)r actions correspond to the equivalence
relations that are given by a matrix (Qα

i) which is defined according to

(x1, ..., xn) ∼ (λQ
α

1x1, ..., λ
Qαnxn) ∀ α = 1, ..., r , ∀ λ ∈ C∗ , (3.12)

which identifies points on r-dimensional subspaces in Cn.

Remark. The exceptional set is a crucial part of the toric variety that encodes
a lot of information on its topology. It basically tells us which combination
of homogeneous coordinates are not allowed to vanish simultaneously. In the
framework of the GLSM this task corresponds to minimizing the Bosonic potential
which was done by solving equations (2.58). The exceptional set is here given by
the solution of equation three in (2.58) and this relation between toric varieties
and the classical vacuum of a two-dimensional field theory helps many physicists
to loose their fear of these spaces.

What we specifically usually need is the quite closely related notion of the
following.

Definition 3.2.4 (Stanley-Reisner Ideal). Let Z be the exceptional set of a toric
variety PΣ. The Stanley-Reisner ideal IΣ is the minimal ideal containing square-
free monomials corresponding to the different subsets of the exceptional set:

IΣ := 〈 xτ | {xτ = 0} ⊂ Z〉 , (3.13)

where we defined τ := {i1, ..., ik} along with

xτ :=
k∏
j=1

xij and xτ := {xi1 , ..., xik} (3.14)

Example 3.2.1. For the complex projective space and the weighted projective
space we had only to remove the origin. So the exceptional set Z has only this
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one defining subset:

Z = {(x1, x2, ..., xn) ∈ Cn | (x1, x2, ..., xn) = (0, 0, ..., 0)} . (3.15)

Therefore we get a Stanley-Reisner Ideal which contains only one monomial:

IΣ = 〈x1 · x2 · ... · xn〉 . (3.16)

Example 3.2.2. As a second example let us consider the toric variety defined
by the matrix in (3.8) above. As we saw, we had to remove the x1 and the x3

axes. Therefore the exceptional set of this example is

Z = {(x1, x2, x3) ∈ C3 : (x2, x3) = (0, 0) or (x1, x2) = (0, 0)} , (3.17)

and from that we obtain the Stanley-Reisner ideal which has two elements:

IΣ = 〈x2 · x3, x1 · x2〉 . (3.18)

As one can imagine, these sets might get very complicated to derive once
we choose a matrix Q that does not look as nice as the one in (3.8) and at
some point it is impossible to simply read off the exceptional set and hence the
Stanley-Reisner ideal. But there is a very convenient way to calculate these sets
systematically in terms of d dimensional polytopes which we are going to explain
in the next section.

Remark. We have not said anything about smoothness of a generic toric variety
so far. While we know that the projective spaces are always smooth and the
weighted projective spaces are always singular, for a generic toric variety it is
a priory not clear. There are smooth ones that are in particular no products of
complex projective spaces and there are also singular ones which are not products
of weighted projective spaces. How one can check for smoothness of a toric variety
in a combinatorial way will also be content of the next section.
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3.3 Lattice polytopes and fans

After we learned in the last section what the idea of a toric variety is and already
saw a few fairly simple examples, we want now to turn to methods and techniques
that allow us to handle more complicated toric varieties. In fact we want to
have an explicit description of a method to calculate the Stanley-Reisner ideal
and hence also the exceptional set for in principle arbitrarily complicated toric
varieties.

3.3.1 Toric varieties from lattice polytopes

In order to achieve that we will introduce a very useful description of the com-
binatorial data of the toric variety as an n dimensional lattice polytope. The
identification is as follows: Consider a d dimensional toric variety given by defi-
nition 3.2.3. Now consider a d dimensional lattice

M := Zd (3.19)

and define a set of vectors in this lattice as follows:{
w ∈M :

n∑
i=1

Qα
iwi = 0

}
. (3.20)

This is nothing else but the kernel of the matrix Q that defines our toric variety.
This set of vectors in the latticeM can be interpreted as an d dimensional lattice
polytope as follows: The set of vertices denoted by ∆◦ is given by the rows of the
transposed kernel of the matrix Q

∆◦ := ker(Q) . (3.21)

Since ∆◦ is just the kernel of the Q-matrix, the dimension of the polytope can
always be identified with the complex dimension of the toric variety. In fact in
order to obtain information about the topology we usually need both the polytope
∆◦ and the matrix Q. In the literature usually the polytope is the data provided
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and from that we can also obtain the matrix Q as the kernel of ∆◦:

Q = ker(∆◦T)T (3.22)

and in fact to define it this way round is a bit more general since it may happen,
e.g. for non-compact toric varieties, that there is a polytope defining the toric
variety in a slightly different way as we did above that does not give rise to a
matrix Q. But in all cases we consider this will always be possible.

Example 3.3.1. Let us consider as an easy example the two-dimensional space
P2 living as a quotient in C3 hence having one equivalence relation. It is is given
by the quotient (3.2.3) where Q is given by

Q = (1, 1, 1) . (3.23)

Therefore we find the transposed kernel to be

∆◦ = ker {(1, 1, 1)} =


−1 −1

0 1

1 0

 . (3.24)

Hence we got three vertices for the corresponding polytope,

v1 = (1, 0), v2 = (0, 1), v3 = (−1,−1) . (3.25)

They are plotted in figure 3.3a. In quite the same way one could construct the
polytope of a weighted projective space e. g. P1,1,2 by simply moving the vertex
(−1,−1) to (−1,−2). This scenario is shown in figure 3.4 and as one can observe
that there is now one point, namely the point (0,−1) that actually lies inside the
polytope without being a vertex of it. We will see later on that precisely that is
what causes the toric variety to be singular.

3.3.2 Cones and fans

So far we only considered examples where the toric variety is uniquely described
by the matrix Q or equivalently the polytope ∆◦. It turns out that this is actu-
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(a) Vertices as vectors that sum to zero (b) Vertices of the lattice polytope

Figure 3.3.: The toric diagram of P2; the vertex in the center of the image marks the
origin (0, 0). The sum of all three vectors with coefficients 1 is zero. Hence we have the
1-weighted projective space P1,1,1 ≡ P2.

(a) Vertices as vectors that sum to zero (b) Vertices of the lattice polytope

Figure 3.4.: The toric diagram of P122; the vertex in the center of the image marks
the origin (0, 0). The sum of all three vectors with coefficients 1, 2 and 2 respectively is
zero. The lattice point in 3.3b that lies inside the polytope corresponds to a singularity
of the space.
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ally not quite enough in general. As we defined the toric variety in (3.2.3), we
explained how the equivalence relation ∼ can be defined in terms of the matrix
Q. At that time we always supposed that we know how the exceptional set looks
like and in the simple examples we considered, it was always possible to just
write it down uniquely. In fact this choice is in general not at all unique and
one might have even hundreds equally valid ways to choose this set. Every such
choice will then stand for an a priory topologically distinct toric variety. In this
subsection we want to see how we can systematically derive all possible choices of
this exceptional set and also how we can compute certain topological properties
from it.

Definition 3.3.1 (Cone). We define a (strongly convex rational polyhedral) cone
σ to be a set spanned by a finite number of vectors v1, ..., vk like

σ =

{
k∑
i=1

aivi : ai ≥ 0

}
, (3.26)

with the property that σ ∩ (−σ) = 0. Hence the apex of each such cone is
always the origin. A cone is called simplicial if its dimension equals the number
of generating vectors, i.e. k = dim(σ).

Definition 3.3.2 (Fan). A fan Σ is a collection of cones such that for every two
cones σi, σj ∈ Σ, the intersection σi ∩ σj is also a cone which is itself an element
of Σ. By Σ(k) we denote the subset of all k-dimensional cones in Σ.

We have seen in the last subsection that we can define a polytope representing
information of the toric variety by taking the kernel of the Q-matrix. Therefore
every vertex of the polytope is associated to one homogeneous coordinate of the
variety. In figure 3.5 we can see, exemplary for P2, that such a polytope gives
rise to a fan where the origin is the apex, the vectors to the vertices span the
one-dimensional cones and combinations of two vectors span the maximal cones
which are in this case the three two-dimensional cones. The idea is now that
the different regions of the fan tell us where on the toric variety we are located
in terms of which coordinates may or may not vanish in that particular region.
Every maximal cone corresponds then to an affine toric variety which is simply a
topologically trivial one and can be described by one single patch Ui i.e. by one
single copy of C2 in case of P2. In practice these are the regions where some of
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Figure 3.5.: The fan of P2. There are three two-dimensional cones σi, three one-
dimensional cones σij and one zero-dimensional cone, the origin.

the homogeneous coordinates of the variety are allowed to take any value and the
remaining ones are not allowed to vanish according to the following rule:

A coordinate xi is not allowed to vanish on the subset PΣ|Uσ of the toric
variety belonging to the cone σ ∈ Σ, if the one-dimensional cone vi,
corresponding to xi, is not a generator of σ.

A fan therefore provides instructions on how these affine toric varieties are to
be glued together consistently. Here the lower-dimensional cones encode along
which loci the affine toric varieties are glued together and the resulting topology
may then no longer be trivial, i.e. the resulting toric variety may no longer be an
affine one. Since the information of which homogeneous coordinates are allowed
to vanish on the loci corresponding to the cones is completely determined by this
construction, the problem of finding the exceptional set is just the problem of
finding a fan for a given polytope. Those vectors that do not span any cone of
the fan correspond to coordinates that are never allowed to vanish simultaneously
on PΣ: {

x ∈ CN : (xi1 , ..., xik) = (0, ..., 0)
}
⊂ Z

⇔ {vi1 , ..., vik ∈ Σ(1)} do not span a cone in Σ ,
(3.27)
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were vik is the one dimensional cone associated to the homogeneous coordinate
xik of PΣ.

Example 3.3.2. Let us come back to our example of P2 to see how it explicitly
works. As shown in figure 3.5 we have three cones of dimension two, three cones
of dimension one and the origin as zero dimensional cone. The open cover of P2

corresponding to the maximal cones is then given by

U1 :=
{

(x1, x2, x3) ∈ P2 | x1 6= 0
}
, with local coords.

(
x2

x1

,
x3

x1

)
∈ C2 ,

U2 :=
{

(x1, x2, x3) ∈ P2 | x2 6= 0
}
, with local coords.

(
x1

x2

,
x3

x2

)
∈ C2 ,

U3 :=
{

(x1, x2, x3) ∈ P2 | x3 6= 0
}
, with local coords.

(
x1

x3

,
x2

x3

)
∈ C2 ,

where Ui corresponds to the maximal cone σi. According to the fan given in figure
3.5, these patches are glued together along loci

Uij := Ui ∩ Uj =
{

(x1, x2, x3) ∈ P2 | xi 6= 0, xj 6= 0
}

(3.28)

which correspond to the one-dimensional cones σij and furthermore connected
via the one zero-dimensional cone σ123 that corresponds to the intersection of all
three patches

U123 := U1 ∩ U2 ∩ U3 =
{

(x1, x2, x3) ∈ P2 | x1 6= 0, x2 6= 0, x2 6= 0
}
. (3.29)

So we can see that we always find patches where any combination of homogeneous
coordinates are allowed to vanish simultaneously with the only exception of the
case where they all vanish at at the same time.

Definition 3.3.3 (Stanley-Reisner ideal revisited). Using these notions we can
define the Stanley-Reisner ideal as

IΣ =

〈
m∏
j=1

xij | 〈vi1 , ..., vim〉 /∈ Σ

〉
. (3.30)
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We furthermore define the irrelevant ideal which we will need later on as

BΣ =

〈
m∏

j 6=ik,
k=1,...,m

xj | 〈vi1 , ..., vim〉 ∈ Σ

〉
, (3.31)

to be generated by monomials that correspond to complements of cones.

Definition 3.3.4 (Triangulation). Let ∆◦ be an d-dimensional lattice polytope.
A triangulation of ∆◦ is a partition of this polytope into maximal-dimensional
cones that form a fan. A maximal triangulation T of ∆◦ is a triangulation such
that no other triangulation T ′ of ∆◦ has more maximal cones than T .

Each maximal triangulation T of a polytope ∆◦ gives therefore rise to a toric
variety and since the maximal cones are glued together differently in two different
maximal triangulations of the same polytope, they will give rise to different topo-
logical spaces. Tools to calculate the triangulations that belong to a polytope as
well as its Stanley-Reisner ideal are for instance [65], [66] and a nice interface to
both [71]. For model building in string-theory we will be faced with toric varieties
of at least three dimensions and the techniques even though straightforward get
very tedious and it is in fact not possible to avoid tools like these.

3.4 Line bundles and divisors

In this last section of the toric geometry chapter we want to introduce the notion
of coherent sheaves as well as line bundles, divisors and their relation to each
other. All these objects are closely related to the topology of the ambient toric
variety and can be used as tools to calculate such topological quantities. How
this can be done explicitly will be dedicated to later chapters.

Definition 3.4.1 (Holomorphic line bundles and sheaves). A rank one vector
bundle L over a toric variety PΣ that has holomorphic transition functions is
called a holomorphic line bundle1. A section or global section of a line bundle
is defined to be a map that maps every base point to a fiber of the line bundle

1Throughout the remainder we might drop the adjective holomorphic from time to time, but
those line bundles are always understood to be holomorphic.
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which is isomorphic to C:

s : PΣ −→ L, (3.32)

s(x) ∈ Lx ∼= C. (3.33)

This means every point x ∈ PΣ takes a value in some complex line over the base.
Therefore such a section can be represented by a polynomial in the homogeneous
coordinates:

s(x) =
∑

a1,...,an

Aa1,...,anx
a1
1 · · · · · xann , (3.34)

with some coefficients Aa1,...,aN ∈ C. Since the homogeneous coordinates are only
defined up to r different U(1)-actions given by Q, we can rewrite (3.34) as

s(x) =
∑

a1,...,an

Aa1,...,anλ
a1·Q1

α · · · λan·Qnαxa1
1 · · · · · xan1

n , ∀λ ∈ C . (3.35)

So if we want this map to be a well defined section in a rank one bundle, we
cannot allow arbitrary terms in (3.35) but we have to restrict to those such that
the sum of the U(1) charges of the coordinates always gives a unique number
Qα

deg for every α, i.e. the following coefficients have to vanish:

Aa1,...,an = 0 if λa1·Q1
α+···+an·Qnα 6= λQ

α
deg for some α . (3.36)

A polynomial that satisfies (3.36) for all r U(1)-charges Qα
deg is called homoge-

neous and the r numbers Qα
deg are called the multi degree of the homogeneous

polynomial.
In contrast to a vector bundle that attaches a vector space to each base point,

there is the related concept of a so-called sheaf that attaches a group to each
open set of the base space instead. In fact for the precise definition one has
of course to put some restrictions on this to make sure that it behaves fine by
intersecting open sets etc. but we will not state these formal definitions here since
we will not need them. The important point for us is that the set of sections in a
vector bundle that are defined on the open cover of PΣ define a sheaf. Therefore
in the remainder if we talk about sheaves we always mean the sheaf of sections
associated to the corresponding vector bundle.

Remark. The set of homogeneous polynomials form a vector space and in chapter
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4 we will see that the dimension of this vector space is a topological quantity
referred to as cohomology of the line bundle. Here we will see that besides the
homogeneous polynomials, also so-called homogeneous Laurent polynomials will
become important. These differ from the homogeneous polynomials only by the
fact that the terms are no longer monomials but quotients of monomials. So the
homogeneous multi degree may besides positive numbers and zero also contain
negative numbers. So there may also appear cases where no global sections can
be written down at all and only Laurent polynomials will determine the topology
of the line bundle.

Definition 3.4.2. As we saw in 3.4.1, the sections of a line bundle have to have
a certain multi degree Qα

deg. This multi degree is also called the first Chern
class and one can show that in smooth cases it identifies line bundles that are
isomorphic to each other. Hence from now on we will often simply refer to a line
bundle L over PΣ with first Chern class Qα

deg as

L =: OPΣ
(Qα

deg) .

Definition 3.4.3 (Toric and effective divisors, Picard group). Since we defined
line bundles over toric varieties we would now like to define the closely related
concept of divisors in PΣ. A divisor 2 on a toric variety defined as the formal sum
of irreducible codimension one subvarieties, i.e.

D =
n∑
i=1

aiDi , ai ∈ Z , where (3.37)

Di := {x ∈ PΣ | xi = 0} . (3.38)

The subvarieties Di are called toric divisor. Since a divisor is a sum of codi-
mension one subvarieties it should be possible to obtain it (maybe patch wise)
by one single equation in the homogenous coordinates that is put to zero. This
seems similar than defining the sections of a line bundle where we also needed
C-valued functions to define them. It turns out that there is actually precise
correspondence of line bundles and divisors and we can use either language to

2In the remainder we will mostly be dealing with smooth manifolds and hence we will not use
the distinction between so- called Weyl and Cartier divisors since they are the same is such
a setting.
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describe these objects. The homogeneous multi degree of the equation that we
use to define the divisor is then of course given by the first Chern class of the
corresponding line bundle.

Due to our linear relations between the coordinates we can see that equation
that defines the divisor in (3.37) is not always unique and that we might get a
linear equivalence between some of them. As one might guess it turns out that the
number of independent divisors, also called the Picard group, is just given by the
number of U(1) charges defining the toric ambient variety. Therefore the divisor
will only depend on r different constants defining the formal sum of subvarieties.
If all these constants are larger or equal to zero, we call the divisor effective.



Chapter 4
Cohomology of Line Bundles

In the last section we have introduced divisors and line bundles and argued
why they are basically the same. In this chapter we want to present one of the
main results we accomplished. Since line bundles and divisors naturally appear
at various places in string theory it is quite important to better understand the
topology of these objects. For this purpose we have to calculate their cohomology.
This task is in principle possible but it can take a lot of time doing by hand.
Furthermore the so far known ways to compute them via plain Čech complexes
take into account all open sets of the corresponding base space and can, hence,
become very lengthy. Especially for our purposes that involve calculating a large
number of them one needs more efficient ways as well as vanishing theorems to
keep the time efforts manageable. That is exactly the goal of this chapter.
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4.1 Physical motivation: Heterotic GUTs, line bundles

on D7 branes and type IIB/F-theory instantons

Line bundles can be used to calculate many topological quantities of toric vari-
eties. They can also be used to obtain the topological structure of vector bundles
over such spaces or subspaces and are therefore very useful for heterotic string
model building as we saw in chapter 2. For chapter 9, scans of large sets of geome-
tries were performed and needed an efficient way to calculate the basic ingredient
of these topologies, i.e. the line bundle cohomology. But also in type II string
theory line bundles find their application since they are carried by D7-branes.
The cohomology of these line bundles is crucial to the construction, see for in-
stance the review [35] for more details. Furthermore in the type IIB setting and
also its non-perturbative version, F-theory, instantons are present and manifest
themselves as zero modes of certain line bundles that live on three- and four-folds
respectively [98,99].

4.2 Cohomology: The idea

Let us first of all talk about the idea behind the word cohomology and try to
develop an intuition for what it stands.

4.2.1 De Rham cohomology

In the probably most intuitive case, the topology we would like to investigate is
determined by the cotangent bundle T ∗M and hence determines the “shape” i.e.
the topology of a base manifold M itself. Here calculating cohomology groups
means that we consider differential forms of a certain degree p which are nothing
but sections in the pth exterior power of the cotangent bundle

p∧
i=1

T ∗M =: Ωp(M) . (4.1)
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Then we look at those forms that are closed with respect to the differential

d :=
∑
k

dxk ∧
∂

∂xk
(4.2)

but not exact, i.e. are not the derivative of another form. For a p-form ωp for
instance this would mean that

dωp = 0 and @ (p− 1)-form ωp−1 s.t. dωp−1 = ωp . (4.3)

This set of forms is called the pth de Rham cohomology group ofM and we will
denote it by Hp

dR(M).

How does this set of differential forms tell us anything about the topology of
the bundle? In order to get an idea why this is indeed the case, we consider an
example.

Example 4.2.1. LetM be the two-torus T 2 and (θ, φ) be local coordinates that
parametrize the two circles, θ, φ ∈ [0, ..., 2π). In order to specify its topology let us
derive its cohomology. Since its real dimension is two, we can at most write down
an anti symmetric tensor with two indices. Hence we have at most two-forms on
this space. Let us start with H0

dR(T 2). We are looking for smooth functions ω0

with vanishing differential. Since there are no differential forms with negative
degree, every closed function is non-exact, therefore lie in the cohomology and
must satisfy

dω0 =
∂ω0

∂θ
dθ +

∂ω0

∂φ
dφ = 0 . (4.4)

This can only be the case if ω0 is a constant in R and hence the dimension of the
0th de Rham cohomology is simply the number of connected components of the
manifold which is in our case one:

dimR(H0
dR(T 2)) =: h0(T 2) = 1 . (4.5)

For H1
dR(T 2) we have to find all closed non-exact one-forms. The most general

one-form is given by

ω1 = f dθ + g dφ ∈ Ω1(T 2) f, g ∈ C∞(T 2) . (4.6)
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The requirement of closeness of ω1

dω1 =
∂f

∂θ
dφ ∧ dθ +

∂g

∂φ
dθ ∧ dφ = 0 (4.7)

forces the coefficient functions to be either constants or to satisfy

∂f

∂θ
=
∂g

∂φ
. (4.8)

In fact one can show that the second possibility represents either an exact one-
form, or it differs from the case where f = f0 ∈ R and g = g0 ∈ R by an overall
constant. Furthermore dθ and dφ are non-exact, because θ and φ are multi-valued
due to the fact that they parameterize the two circles of the torus. Hence we can
write an arbitrary one-form in H1

dR(T 2) as

ω1 = f0 dθ + g0 dφ ∈ H1
dR(T 2) (f0, g0) ∈ R2 (4.9)

which spans a vectorspace with real dimension h1
dR(T 2) = 2. In a similar way we

can find that the dimension of H2
dR(T 2) is again one. The dimensions of the de

Rham cohomology groups are also referred to as Betti numbers.

This example already demonstrates that the cohomology groups that can be
counted by sections into certain bundles give information about the topology
and hence the shape of the underlying space. Let us now define the de Rham
cohomology in a little more rigorous way. To do that we need a couple of other
definitions

Definition 4.2.1 (Complex, exact sequence, cohomology). We define a complex
to be a sequence of vector bundlesA,B,C,D..., connected via maps f1, f2, f3, f4...,

· · · −→ A
f1−→ B

f2−→ C
f3−→ D

f4−→ · · · (4.10)

in a way such that

im (fi) ⊂ ker (fi+1) ,∀i ⇔ fi ◦ fi+1 = 0 . (4.11)

If the image of one map is always precisely equal to the kernel of the following
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(a) A long exact sequence. Only the image of
the previous map is mapped to zero

(b) A non-exact complex. The yellow (light
gray) part is the cohomology, i.e. the part of the
kernel that lies not in the image of the previous
map.

Figure 4.1.: Pictorial representation of a long exact sequence and a long complex
with cohomology. On the horizontal line the spaces are shown whereas the vertical
direction indicates the dimension of the space. The connecting between two spaces in
the sequence indicates the image of the map. The fact that fi ◦ fi+1 = 0 can be seen
nicely.

map, i.e.
im (fi) = ker (fi+1)∀i , (4.12)

we say the complex is exact. A pictorial way to imagine complexes can be found
in figure 4.1. For non-exact complexes, we define the failure of the complex to
be exact as the cohomology of the complex at that specific position. For instance
the cohomology of the complex (4.10) at position B is given by

ker (f2)

im (f1)
. (4.13)

As it turns out everything that we ever call cohomology is cohomology in this
sense. This means that we will always have some complex that contains the
cohomology as the measure of the failure of this complex to be an exact sequence.

Definition 4.2.2 (De Rham Complex). As an example we take the de Rham
cohomology. It is quite straight forward to see what kind of complex it comes
from. It is called the de Rham complex and is given as

· · · −→ Ω0 (M)
d−→ Ω1 (M)

d−→ Ω2 (M)
d−→ Ω3 (M)

d−→ · · · . (4.14)

Since we know that the differential d satisfies d2 = 0, this is indeed a complex
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where the cohomology is the de Rham cohomology

H i
dR(M) =

ker (d)

im (d)
, (4.15)

where the d here is the corresponding mapping d : Ωi −→ Ωi+1.

4.2.2 Dolbeault cohomology

The concept of de Rham cohomology is valid for all smooth manifolds. Never-
theless sometimes we do have some more structure on our manifold that allows
us to derive a more refined version of de Rham cohomology. Especially when we
have a complex manifold which means that we have a complex structure that tell
us how complex conjugation has to be performed and ultimately every patch in
our open cover can be represented locally as C. It follows that the differential
d defined in (4.2) now decomposes with respect to the complex structure of the
complex manifold as

d = ∂ + ∂ :=
∑
i

dzi ∧
∂

∂zi
+
∑
i

dzi ∧
∂

∂zi
(4.16)

Hence we can assign now two indices (p, q) to differential forms where the first
denotes the ∂-degree and the second the ∂-degree.

Definition 4.2.3 (Dolbeault complex/cohomology, Hodge diamond). Making
use of this idea, we can treat both operators ∂ and ∂ separately to define co-
homology. This means we have p-forms that can be ∂-closed but not ∂-exact
along with differential forms that may be ∂-closed but not ∂-exact. This splits
the aforementioned de Rham cohomology into two subsets which actually have
no overlap. The two Dolbeault complexes are then given by with

· · · −→ Ω0,q (M)
∂−→ Ω1,q (M)

∂−→ Ω2,q (M)
∂−→ Ω3,q (M)

∂−→ · · · ,

· · · −→ Ωp,0 (M)
∂−→ Ωp,1 (M)

∂−→ Ωp,2 (M)
∂−→ Ωp,3 (M)

∂−→ · · ·
(4.17)

and the corresponding cohomology groupsHp,q(M) are given by the cohomologies
of these complexes. Comparing to the de Rham cohomology we will find that
the splitting of the differential forms into complex conjugate parts also applies
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for the cohomology and hence

Hk
dR(M) =

⊕
p+q=k

Hp,q(M) . (4.18)

Sometimes people arrange the Dolbeault cohomology groups in a table which is
called the Hodge diamond

H0,0
M = H0

M

H1,0
M ⊕ H0,1

M = H1
M

H2,0
M ⊕ H1,1

M ⊕ H0,2
M = H2

M
...

...

Hd,d−2
M ⊕ Hd−1,d−1

M ⊕ Hd−2,d
M = H2d−2

M

Hd,d−1
M ⊕ Hd−1,d

M = H2d−1
M

Hd,d
M = H2d

M

, (4.19)

where we used the notation

Hp,q
M := Hp,q(M) and Hk

M := Hk
dR(M) . (4.20)

4.3 Sheaf cohomology

After we have seen the quite instructive examples of de Rham and Dolbeault
cohomology we want to come now to the very generic concept of sheaf cohomology
and especially the cohomology of line bundles.

4.3.1 Čech cohomology

The most generic way to perform cohomology computations is that of Čech co-
homology. It is formulated without any fancy objects such as differential forms
etc. and is only making use of the open cover

{Ui|i = 1, ..., n} = U (4.21)
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of the topological space PΣ and a sheaf L on it. Let Γ(U ;L) be the set of sections
in L|U where U ⊂ U .

Definition 4.3.1 (Čech cochain, compelx and cohomology). A sheaf is com-
pletely determined by a set of sections, called global sections, and by the set
of possible sections that can be defined on subsheaves of the original sheaf, we
may call them local sections in the remainder. The cohomology of a sheaf tells
us then which particular sections of the sheaf can be associated to topologically
non-trivial pieces of the total space. In order to see whether or not a particular
section gives rise to such a non-trivial region of the space, we have to calculate
the so-called Čhech cochain complex to each potential section of the sheaf. The
cochains contain the information about all the possible ways to define that par-
ticular global or local section of the sheaf. Furthermore, each cochain comes with
a degree which gives information about the open sets on which the section in
question is defined on. Doing this for all sections, the plain definition of the pth

cochain can be stated as follows:

Čp(U ;L) :=
⊕

i0<...<ip

Γ(L|Ui1...ip ) , (4.22)

where L|Ui1...ip := L|Ui1∩...∩Uip . This means we consider a subsheaf L|Ui1...ip over
some subset of the toric variety which is given by the intersection of p different
“maximal” open sets Ui1 ∩ ... ∩ Uip , where the term maximal indicates that these
open sets are, in our cases, corresponding to the maximal cones in the fan as
introduced in chapter 3. Then the pth cochain contains all local sections that
are defined over subsets of “depth” p. The (p+ 1)th cochain will therefore always
contain a subset of the pth cochain and we can hence map the pth to the (p+ 1)th

cochain by restricting to that subset

dp : Čp −→ Čp+1 (4.23)

which fulfills the property
dp ◦ dp+1 = 0 . (4.24)

Therefore connecting all cochains this way we arrive at a complex called the Čech
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cochain complex or simply Čech complex

Č•(U ;L) : 0 −→ Č0(U ;L)
d0

−→Č1(U ;L)
d1

−→Č2(U ;L)
d2

−→... . (4.25)

Now we can see which of these open sets that the section in question is defined
on, is in fact topologically non-trivial by calculating the cohomology of the Čech
complex (4.25) at position p, as described in section 4.2, which is then called the
pth Čech cohomology group and is given by

Hp(U ;L) :=
ker(dp)
im(dp−1)

. (4.26)

There is one very important theorem that we will use all the time in the
following chapters. In order to state that theorem we have to introduce one
specific property of the Čech cochains.

Theorem 4.3.1 (Či(·) preserves exactness). The operation Či(·) that maps a
sheaf to its Čech complex has the nice property that it preserves exactness of a
sequence of sheaves. This means that if

0 −→ R G
↪−→ L

R
−� T −→ 0 (4.27)

is an exact sequence and hence im (G) = ker (R), then their pth cochains also
form a short exact sequence and the following diagram commutes:

...

��

...

��

...

��

0 // Čp(U ;R)

dp
��

� � G // Čp(U ;L) R // //

dp
��

Čp(U ; T ) //

dp
��

0

0 // Čp+1(U ;R)

��

� � G // Čp+1(U ;L)

��

R // // Čp+1(U ; T ) //

��

0

...
...

...

. (4.28)

With this theorem in hand we can state the following:

Theorem 4.3.2 (Long exact sequences from short ones). As above consider an
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exact sequence of sheaves

0 −→ R G
↪−→ L

R
−� T −→ 0 . (4.29)

From theorem 4.3.1 we can derive a long exact sequence in cohomology of these
three sheaves as

0 // H0(U ;R)) G0
// H0(U ;L) R0

// H0(U ; T )
δ0

// H1(U ;R) G1
// H1(U ;L) R1

// H1(U ; T )
δ1

// H2(U ;R) G2
// H2(U ;L) R2

// H2(U ; T ) δ
2

// . . .

. (4.30)

Here the maps Gp and Rp are induced by the corresponding ones in (4.29).

Construction of the coboundary maps. The only thing we have to do is to con-
truct the maps δp that connect the rows in (4.30). These maps

δp : Hp(U ; T ) −→ Hp+1(U ;R) (4.31)

are usually referred to as connecting homomorphism or coboundary maps. They
are constructed in the following way. Take an element [t] ∈ H i(U ; T ) whose class
has a representative in Čp(U ; T ). Since R in (4.28) is surjective, we can find an
element in s ∈ Čp(U ;L) such that R(s) = t. We can then map this element
s to an element dps ∈ Čp+1(U ;L). Due to the fact that t is an element in the
cohomology, it is mapped to zero by dp and due to commutativity of the diagram
(4.28) we have

R(dps) = 0 . (4.32)

Since also the (p + 1)th row of (4.28) is exact, dps must be an element of the
image of G in this sequence. Furthermore again due to exactness G is injective
and hence dps is uniquely associated to an element r′ in Čp+1(U ;R) which also
belongs to a class [r] of the corresponding cohomology group. This finalizes the
map δp and we have a long exact sequence of cohomology groups indeed. In fact
to be precise we would have to show that the coboundary maps that we just
defined are actually independent of the choice s ∈ R−1(t) which can be done
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similarly.

4.3.2 The toric Čech complex

What we now want is to explicitly calculate the cohomology of a line bundle in
a toric variety. To do that we want to make use of the Čech complex. Let PΣ

be a toric variety with fan Σ. We consider the open cover that is given by the
maximal cones σi ∈ Σ:

U ‘ = {Uσi|i = 1, ...,m} . (4.33)

We will use this open cover to calculate the Čech cohomology of a line bundle
corresponding to a formal sum of the toric divisors Di = {xi = 0} ⊂ PΣ :

D =
n∑
i=1

aiDi , ai ∈ Z . (4.34)

To determine the Čech complex for the sheaf OPΣ
(D) we have to count (local)

sections living on some intersection of elements of the open cover. Since the
set of sections on an open set U of this open cover is equivalent to the zeroth
cohomology group on that open set (they are global sections of the corresponding
subsheaf)

Γ(U ;OPΣ
(D)) = H0(U ;OPΣ

(D)) , (4.35)

we have the following identity for the pth Čech cochain with respect to U :

Čp(U ;OPΣ
(D)) =

⊕
i0<...<ip

H0(Uσi0 ...σip ;OPΣ
(D)) . (4.36)

Hence we have to successively count sections for all possible intersections of ele-
ments of U . But these contributions are just counted by holomorphic functions in
the homogeneous coordinates which is roughly speaking the reason why there is
actually a grading of the space of sections and hence a grading of cohomology. It
is not only a grading of the cohomology but also one of the Čech cochains them-
selves. This grading is now precisely coming from the M -lattice we introduced in
3.3.1 but we have to generate a little different objects than simply the polytope
we considered there. Each lattice point m ∈M is associated to a specific Laurent
monomial which represents a section in the sheaf as we will see below. For every
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such Laurent monomial we can derive Čech cochains Čp(U ;OPΣ
(D))m and hence

a cochain complex

Č•m(U ;L) : 0 −→ Č0
m(U ;L)

d0
m−→Č1

m(U ;L)
d1
m−→Č2

m(U ;L)
d2
m−→... . (4.37)

Since the differential d• defined before arose from the restriction map it is clear
that it respects the grading of the cochain complex and hence gives rise to a
differential d•m of the graded complex. Therefore one can determine the graded
cohomology which can be summed up to the full cohomology of the toric variety

Hp(PΣ;O(D)) =
⊕
m∈M

Hp
m(PΣ;O(D)) . (4.38)

Due to the fact that the cohomology groups are of finite dimension, it is clear
that only a finite number of lattice points in M can contribute. Furthermore
since it would be quite a pain to calculate the Čech complex and its cohomology
for each lattice point we are going to divide the lattice M into certain regions,
called chambers in which each point gives rise to the same Čech complex and
cohomology. We denote these chambers by C• where the • stands for a string of
plus and minus signs, one for each coordinate. A chamber that has a “+” at the
ith position and a “−” at the jth is defined as

C...+...−... := {m ∈M |..., 〈m, vi〉 ≥ −ai, ..., 〈m, vj〉 < −aj, ...} , (4.39)

where the ai are the coefficients of the divisor given in (4.34). So each sign stands
for a certain half-space that includes the hyperplane 〈m, vi〉 = −ai in case of a
plus sign, and excludes it in case of a minus sign. The chamber is then given by
the intersection of all half-spaces that come from the signs in the subscript of C•.
As one can see from the definition (4.39), some of the chambers that correspond
to certain sign strings may be empty for a specific choice of signs. Therefore the
chamber decomposition of a sheaf OPΣ

(D) certainly depends on the coefficients
ai in D.

As mentioned earlier, each lattice point m corresponds to a Laurent monomial
which may define certain sections in a sheaf OPΣ

(D) restricted to an intersection
of open sets of U , i.e. global or local ones. We can actually write down the
corresponding Laurent monomial in terms of the homogeneous coordinates. For
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simplicity let us first of all consider the sheaf OPΣ
(0) where all hyperplanes li in

the lattice go through the origin. Here the origin itself stands for the Laurent
monomial

n∏
i=1

x0
i = 1 . (4.40)

Now we can move away from the origin in some direction. The exponent of a
specific coordinate at such a point is then simply given by the inner product of
the point with the corresponding vertex vector

Laurent monomial(m) := LM(m) =
n∏
i=1

x
〈m,vi〉
i . (4.41)

Twisting the sheaf to OPΣ
(D) results then in shifting the hyperplanes li. Still the

hyperplane li that belongs to a coordinate xi contains all the lattice points where
the corresponding Laurent monomial has xi only with exponent 0. Now moving
the hyperplane away from the origin would result in increasing or decreasing the
power of xi at a fixed lattice point. The distance to the hyperplane, so to say,
represents the power. Hence we get the following identification

LM(m) :=
n∏
i=1

x
ai+〈m,vi〉
i . (4.42)

From this one can see that the sequence of signs that correspond to a chamber
tells us which coordinates are elements of the enumerator, namely those that have
a plus sign and which are in the denominator, namely those that have a minus
sign. For instance the Laurent monomials of the chamber C...+...−... from above
would correspond to a set of Laurent monomials of the form

LM(mξ) =
T (..., xi, ...)

... · xj · ... ·W (..., xj, ...)
, mξ ∈ C...+...−... . (4.43)

Notice that we keep the sign of the power of each homogeneous coordinate
as long as we stay in a chamber since a sign flip only happens by crossing the
hyperplanes li. On the other hand, whether a Laurent monomial can at all
define a section on some subsheaf L|Ui1,...,ip certainly depends on the poles the
Laurent monomial carries and whether these poles are compatible with the open
set Ui1,...,ip . If so, it may give rise to a section but does not have to. Since the
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pole structure in one and the same chamber is the same for all lattice points, it is
reasonable that every point gives rise to the same Čech complex and hence to the
same cohomological contribution. Dimensionally we obtain the full cohomology
of the sheaf by summing over all chambers and weight each chamber contribution
by the number of lattice points therein:

hi(PΣ;O(D)) =
∑

chambers Cξ

#points(Cξ) · himξ(PΣ;O(D)) , (4.44)

where {Cξ} is the set of all chambers, i.e. LMs and mξ is some lattice point in
chamber Cξ.

Example 4.3.1. Before we move on to the actual calculation of Čech cohomology,
let us first consider an example. Let PΣ be the projective space P2 again. The
three vectors vi are given by

v1 = (1, 0), v2 = (0, 1), v3 = (−1,−1) . (4.45)

Let us consider the sheaf that corresponds to the divisor

D = 0 ·D1 + 0 ·D2 + 4 ·D3 , (4.46)

which means that (a1, a2, a3) = (0, 0, 4). Here in two dimensions, the hyperplanes
are lines and the lines l1 and l2 run through the origin in (0, 1) and (1, 0) direction
respectively while l3 is parallel to the line through (1,−1) and the origin. Now we
can perform the chamber decomposition of this sheaf in seven different chambers
which is shown in figure 4.2a. As one can see there is only one chamber with a
finite number of lattice points. We can also write down all the Laurent monomials
as

LM(m) := x
〈m,(1,0)〉
1 · x〈m,(0,1)〉

2 · x4+〈m,(−1,−1)〉
1 (4.47)

which you can look up in figure 4.2b. So the cohomology of this divisor can at
most depend on these monomials.

Now we are ready to turn to the calculation of the cohomology of a sheaf.
Everything we are interested in is actually the factor hpmξ that belongs to each
chamber. As one will see, in most cases this factor is either zero or one and calcu-
lation of the full sheaf cohomology is nothing but counting Laurent monomials.
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(a) Chamber decomposition of OP2(4). The
chamber C+++ contains 15 points.

(b) Chamber decomposition of OP2(−7). The
chamber C−−− contains 15 points.

Figure 4.2.: The two chamber decompositions (4.39) of OP2(4) and OP2(−7). Every
dividing line denotes power zero of the corresponding coordinate and moving towards
“-” or “+” means to decrease or increase its power respectively.

But there are also subtle examples where this factor is greater than one.

Theorem 4.3.3. The Laurent monomial LM(mξ) and hence every LM of lattice
points of the chamber Cξ provides a section in the sheaf OPΣ

(D) over Uσ :=

Uσi1 ...σip , if for all one-dimensional cones ρi ∈ σ it holds that

〈mξ, vi〉 ≥ −ai, where vi is the vector that belongs to ρi . (4.48)

This is basically the condition we mentioned earlier that the degree and the pole
structure of the Laurent monomial is compatible with the sheaf and the open set
respectively. With this rule in hand we have everything we need to calculate the
Čech cochain complex. We write down the chamber decomposition for the sheaf
OPΣ

(D) in question, derive the Čech cochain complex for a representative of each
chamber, derive the cohomology via the differentials and sum up all contributions
in the end.

Example 4.3.2. Let us get back to the complex projective space P2 and see
how we can derive the cochain complex explicitly. We already did the chamber
decomposition in example 4.3.1 so let us stick with this example. Actually there
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is only one chamber that has a finite number of points so it is enough to derive
the Čech cochain complex for this chamber because the result hast to be finite.
First of all we have the open cover

U = {U1, U2, U3} (4.49)

corresponding to σ1, σ2, σ3. So intersecting two an three of them leaves us with
the following set of open sets:

{U1, U2, U3, U12, U13, U23, U123} . (4.50)

corresponding to the fan of P2. If we consider a lattice point m in C+++. This
corresponds to the case where all homogeneous coordinates are in the enumerator
so there is no chance that this Laurent monomial has a pole anywhere. Therefore
Laurent monomials of this kind define sections on every single set in (4.50).
Hence the Čech cochains have all maximal dimension and hence we can count
the dimension of the cochain complex simply from the corresponding number of
cones in the fan. We have three two-dimensional cones three one-dimensional
cones and one zero-dimensional cone and hence obtain

0 −→ č0
m = 3

d0
m−→ č1

m = 3
d1
m−→ č2

m = 1 −→ 0 , čim := dim
[
Či
m(U ;O(4))

]
.

(4.51)
To avoid writing the same things over and over again we will in the remainder
often just write down only the dimensions of the space and suppress everything
else which would be here

0 −→ 3 −→ 3 −→ 1 −→ 0 . (4.52)

Before we move on to calculate the cohomology we need another theorem.

Theorem 4.3.4 (Serre duality). Let PΣ be a toric variety. For the cohomology
of a sheaf OPΣ

(D) the following isomorphism holds:

Hp(PΣ;OPΣ
(D)) ' Hn−p(PΣ;OPΣ

(K −D)) , (4.53)

where K = −
∑n

i=1Qi.
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Example 4.3.3. Now let us do the last step and determined the cohomology
for one chamber from example 4.3.1. The cochain complex was given in (4.51).
In order to obtain the cohomology, we would in principle have to calculate the
maps of (4.51) and see what the quotient of the kernel by the image is. Usually
we are only interested in the dimension of the cohomology groups and therefore
we can make use of the fact that (4.51) is a complex in order to determine this
dimension without actually writing down the maps. But here there is no unique
solution if we only argue with dimensions. So here there would be no way around
calculating the maps but there is a trick to avoid calculating the explicit maps in
this case which is using Serre duality 4.3.4. The Serre dual to the sheaf OP2(4)

is given using the formula in 4.3.4 and reads

OP2(−1− 1− 1− 4) = OP2(−7) . (4.54)

If we perform a chamber decomposition with respect to this sheaf, we we notice
that there is only one chamber that is bounded containing 15 lattice points, too.
This chamber is C−−− which makes it easier to calculate the cohomology. Since
these Laurent monomials have all the coordinates in the denominator, we can
only use it to define a section on a patch that prevents each single coordinate
to vanish. Since Ui is the patch where xi 6= 0, the only patch that satisfies this
requirement is the patch U123. Hence the cochain complex here reads

0 −→ 0 −→ 0 −→ 1 −→ 0 . (4.55)

The full space Č2(U ;O(−7)) is mapped to zero by d2
m and since d1

m had no image,
all of it is in the cohomology. So we find

dim
[
Č2(U ;O(−7))

]
= h2(P2;OP2(−7))

Serre
= h0(P2;OP2(4)) (4.56)

This is only the contribution from one Laurent monomial and in fact we have the
following 15 monomials in C+++ that all contribute in the same way:

{LM(m)|m ∈ C+++} = { x4
1, x

3
1x

1
2, x

2
1x

2
2, x1x

3
2, x

4
3, x

3
1x3, x

2
1x2x3, x1x

2
2x3,

x3
2x3, x

2
1x

2
3, x1x2x

2
3, x

2
2x

2
3, x1x

3
3, x2x

3
3, x

4
3

}
.

(4.57)
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The final result is hence

dim
[
H•(P2;O(4))

]
=
(
h0, h1, h2

)
= (15, 0, 0) (4.58)

As we could see it was rather easy to calculate the cohomology of the sheaf
for P2. Even calculating the maps would not have been such a big challenge.
But as one moves to more complicated examples it happens quite soon that the
dimension of the Čech cochains becomes very large and hence the mappings may
become quite complicated. Here we avoided calculating the maps completely via
considering the Serre dual sheaf but also this becomes impossible fairly soon and
one can not only use these dimensional arguments anymore. At that point one
is forced to take the maps into account which slows down the computation a lot.

That is one of the reasons why it is worth to look for a different and better
algorithm to calculate cohomologies of sheaves and that is what we will present
in the remainder of this chapter. The algorithm we propose will allow us to
work with much more complicated spaces and still to argue dimensionally only.
We achieved this by replacing the presented Čech cochain complex by a certain
simplex and will show that certain combinatorial numbers we will calculate corre-
spond to the dimension of the cohomology. This way we exclude a lot of “trivial”
sections (cochains) that would usually contribute to the Čech complex, from the
very beginning and we will go around the task of explicitly calculating mappings,
which takes an lot more time, for a much longer time than one could in ordinary
Čech cohomology. This is the reason at the end, what makes the algorithm so
fast and hence powerful.

4.4 Sheaf-module correspondence

In order to make use of algebraic concepts, we have to reformulate the computa-
tion of sheaf cohomology on the variety PΣ in terms of module theory of the Cox
coordinate ring S. In fact in the last sections of this chapter we have already
made use of the correspondence between sheaves and modules by making use of
the explicit representatives of global and local sections. There we used them in
order to get an intuition for sheaf-cohomology. In fact this correspondence can
be made rigorous and we will use it extensively in the remainder.
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The sheaf-module correspondence enables us to construct quasicoherent sheaves
on PΣ from any module M over S that is graded by the class group1 Cl(PΣ) ∼=
Zn−d. For the details of the construction, see e.g. §5.3 of [53]. Since we deal with
line bundles, the only important observation is that the coordinate ring S itself
is Cl(PΣ)-graded, i.e. it has a decomposition

S =
⊕

D∈Cl(PΣ)

SD , SD · SD′ ⊂ SD+D′ (4.59)

and that the graded pieces SD are naturally isomorphic to the sections of twisted
line bundles, namely

SD ∼= Γ(PΣ,OPΣ
(D)) . (4.60)

This means that the shift S(D) of S defined by the grading S(D)D′ = SD+D′

gives rise to the line bundle OPΣ
(D) and therefore sheaf cohomology should also

be computable from S(D). As it turns out, the algebraic equivalent of sheaf
cohomology on a toric variety is so-called local cohomology with support on the
irrelevant ideal. The reason for this lies in the fact that the map from modules to
sheaves is not injective, since starting with S-modulesM that fulfill (BΣ)lM = 0

for l � 0 leads to trivial sheaves. Taking global sections on the sheaf side
therefore in a certain way corresponds to looking at elements with support on the
irrelevant ideal on the module side. Local cohomology is then defined completely
analogous to sheaf cohomology as the right-derived functor of the operation of
taking supports.

For the remainder we will mostly use the finer grading of the Cox coordinate
ring S, namely the Zn-grading that is given by degxi = ei ∈ Zn. The connection
to the class group grading is given by the map

Q : Zn −→ Cl(X) ∼= Zn−d , ei 7→ Q · ei , (4.61)

where the Q denotes the matrix that defines the C∗-action of the toric variety
PΣ.

Definition 4.4.1 (J-torsin submodule, local cohomology). We now introduce the
necessary notions and then state the relevant special case of theorem 9.5.7 in [53].

1Note that we always identify Picard group and class group of PΣ, since in the smooth case
all Weil divisors are already Cartier.
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For an S-module M and an ideal J ⊂ S one defines the J-torsion submodule or
submodule supported on J by

ΓJ(M) = {y ∈M | J ly = 0 for some l ∈ N } . (4.62)

The ith local cohomology module of M with support on J is then defined to be
the module H i

J(M) obtained from any injective resolution

0→ I0 → I1 → · · · (4.63)

of M by taking the ith cohomology of the subcomplex

0→ ΓJ(I0)→ ΓJ(I1)→ · · · . (4.64)

In particular, if M is graded by Cl(PΣ), then also ΓJ(M) and all H i
J(M) will

inherit this grading.

Theorem 4.4.1 (Line bundle cohomology from local cohomology). The precise
connection between line bundle cohomology and local cohomology is then given by2

H i(PΣ,OPΣ
(D)) ∼= H i+1

BΣ
(S)D for i ≥ 1 ,D ∈ Cl(PΣ) . (4.65)

Furthermore, there is an exact sequence

0→ H0
BΣ

(S)D → SD → H0(PΣ,OPΣ
(D))→ H1

BΣ
(S)D → 0 , (4.66)

which is necessary to determine the 0th rank of sheaf cohomology. Because of
(4.60) and H0(PΣ,OPΣ

(D)) = Γ(PΣ,OPΣ
(D)), the middle map is an isomorphism.

Furthermore H0
BΣ

(S) = 0, since S has no zero divisors and so in the special case
of line bundles we get

H i(PΣ,OPΣ
(D)) ∼= H i+1

BΣ
(S)D for i ≥ 0 ,D ∈ Cl(PΣ) . (4.67)

The grading of the Cox ring, mentioned earlier, is also inherited by the local

2The shift in the rank comes from a shift between the ordinary and the local Čech complex,
see also theorem 9.5.7 in [53].
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cohomology modules, we may write eq. (4.67) as

H i(PΣ,OPΣ
(D)) =

⊕
u∈Zn
Q·u=D

H i+1
BΣ

(S)u (4.68)

for any D ∈ Cl(PΣ). So the procedure would be to try and compute all Zn-graded
pieces of local cohomology and at the end determine sheaf cohomology of OPΣ

(D)

by summing up the contributions fulfilling Q ·u = D, which is a matrix equation
over the integers solvable by standard techniques using Ehrhart polynomials.
In fact, this is nothing but the Laurent monomial counting procedure of our
algorithm, but we will state this later in a more precise form.

4.5 Commutative algebra

Before we go on and present the algorithm we have to introduce some definitions
and notions from commutative algebra in order to be able to formulate and prove
it. The reader who is not interested in the mathematical background and the
proof of the algorithm may actually skip these sections and move on to section
4.7 right away. There are detailed instructions on how to use the algorithm
explicitly, containing also a lot of examples and in fact no knowledge of section
4.5 and 4.6 is necessary to understand and use the procedure.

Definition 4.5.1 (Simplicial complex, faces). A simplicial complex Σ over a
set of vertices {v1, ..., vn} is defined as a collection of subsets Σ = {σ1, ..., σC}
such that every combination of vertices {vi1 , ..., vij} which spans a subset of an
arbitrary element σi ∈ Σ is itself again an element of the simplicial complex i.e.

∀i s.t. σi ∈ Σ and
{
vi1 , ..., vij

}
⊂ σi ⇒

{
vi1 , ..., vij

}
∈ Σ . (4.69)

For simplicity we will denote a vertex set
{
vi1 , ..., vij

}
by {i1, ..., ij} and further-

more define
[m] := {1, ...,m} . (4.70)

The elements of Σ are called faces or simplices and their dimension is defined by
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Figure 4.3.: The simplicial complex from example 4.5.1. It contains faces of every
dimension and has maximum dimension three.

the number of elements they contain decreased by one:

dim(σ) := |σ| − 1 := #elements(σ)− 1 . (4.71)

We also define the dimension of a simplicial complex and the dimension of the
empty simplicial complex, i.e. the void complex, respectively as

dim(Σ) := max({dim(σ) : σ ∈ Σ}) ,

dim(Σ) := −∞ for Σ = {} .
(4.72)

Notice the difference between the dimension of the empty set ∅ as an element of
a simplicial complex which is

dim(∅) := −1 for ∅ ∈ Σ ⇒ dim Σ = −1 , for Σ = {∅} (4.73)

and the dimension of the void complex containing no elements at all as in (4.72).

Example 4.5.1. An example for a simplicial complex of dimension three is shown
in figure 4.3.
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Example 4.5.2. Another example comes from the projective space P2 we con-
sidered in 3.2.3 and whose polytope read

v1 = (−1,−1), v2 = (0, 1), v3 = (1, 0) . (4.74)

This is the vertex set for the simplicial complex and the set of subsets is given by
those faces that are the bases of the cones in the fan. Here we had three kinds of
cones:

1 zero-dim cone σ123 ! −1-dimensional face ,

3 one-dim cones σij ! zero-dimensional faces (vertices) ,

3 two-dim cones σi ! one-dimensional faces (edges) .

(4.75)

Since we considered the cones over faces belonging to a fan it is clear that the
face that corresponds to a particular cone has one dimension less than that cone.
The simplicial complex is given by

Σ = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}} . (4.76)

Where the ith vertex i of the complex corresponds to the ith vertex vi of the
polytope. Since it is clear from the definition that all subsets of a given set
of simplices are included in a complex, we may suppress writing down all faces
besides the maximal ones in the remainder. Here we may simply write

Σ = {{1, 2}, {1, 3}, {2, 3}} . (4.77)

In fact one can derive a simplical complex as in example 4.5.2 for an arbitrary
toric variety. Due to the correspondence of simplicial complexes and fans defining
toric varieties, we can also give a meaning to the notions of Stanley-Reisner ideal
and the irrelevant ideal for simplicial complexes from the ones we defined for toric
varieties. In the remainder we will continue denoting the simplicial complex with
the same letter Σ as the fan. It should be clear from the context which one we
are referring to.

Definition 4.5.2 (Stanley-Reisner and irrelevant ideal). Let Σ be a simplicial
complex over the vertex set [n] and let S = C[x1, ..., xn] be the corresponding
polynomial ring over C. For some subset τ ∈ [n] we denote the square-free
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monomial in S by
xτ :=

∏
i∈τ

xi . (4.78)

Now we define the Stanley-Reisner ideal of a simplicial complex Σ to be

IΣ := 〈xτ |τ /∈ Σ〉 . (4.79)

Hence the generators of the Stanley-Reisner ideal are precisely made of (a minimal
set of) monomials containing variables that do not span any particular simplex
which agrees with definition 3.2.4.

An object, quite closely related to the Stanley-Reisner ideal just defined is
the so-called irrelevant ideal. While we defined the SR ideal to be generated
by monomial that correspond to “non-faces” of the corresponding simplex or
equivalently to non-cones of the corresponding fan, the irrelevant BΣ ideal is
defined as the ideal generated by monomials that correspond to complements of
faces or cones:

BΣ :=
〈
xσ | σ ∈ Σ

〉
, where σ := [n]\σ . (4.80)

Definition 4.5.3 (Alexander duality). The ideals that are generated by single
coordinates are called monomial prime ideals which we define by

mτ := 〈xi|i ∈ τ ⊂ [n]〉 . (4.81)

In fact the SR ideal and the irrelevant ideal of a simplex Σ contain the same
information in the sense that there exists a duality transformation that relates
both. This duality transformation is called Alexander duality and is defined for
arbitrary monomial ideals

I = 〈xρ1 , ...,xρm〉 (4.82)

by

I∗ :=
m⋂
j=1

mρj . (4.83)

One can now show that

I∗Σ = BΣ and B∗Σ = IΣ (4.84)
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i.e. it is indeed a duality and furthermore

IΣ := 〈xτ |τ /∈ Σ〉 =
⋂
σ∈Σ

mσ and BΣ :=
〈
xσ | σ ∈ Σ

〉
=
⋂
τ /∈Σ

mτ . (4.85)

Furthermore since SR and irrelevant ideal are on equal footing, there is a simpli-
cial complex Σ∗ such that their roles interchange, i.e.

IΣ∗ = I∗Σ = Bσ and BΣ∗ = B∗Σ = IΣ (4.86)

We call Σ∗ the Alexander dual simplicial complex of Σ and it is given by the
complements of non-faces of the original simplex:

Σ∗ = {τ | τ /∈ Σ} . (4.87)

Example 4.5.3 (The projective space P2). Let us consider a couple of examples
to see how it goes. First we start with the example of P2 where we know that
the SR ideal is given by

IΣ = 〈x1x2x3〉 . (4.88)

Furthermore following definition (4.80), the irrelevant ideal of P2 is now given by:

BΣ = 〈xρ | ρ ∈ Σ〉

= 〈x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3〉

= 〈x1, x2, x3〉 .

(4.89)

Here we saw that actually the only cones we have to consider are the maximal
ones since all the non-maximal ones will give generators that are producing sub
ideals and hence do not influence the ideal at all. This is always the case. Here
we can already see that SR and irrelevant ideal are dual objects, but let us check
explicitly that Alexander duality holds indeed which is actually trivial for the
case where we have only one SR generator. From (4.85), for the SR ideal we get

I∗Σ = m{1,2,3} = 〈x1, x2, x3〉 = BΣ (4.90)
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and furthermore for the irrelevant ideal

B∗Σ = 〈x1〉 ∩ 〈x2〉 ∩ 〈x3〉 = 〈x1x2x3〉 = IΣ (4.91)

which confirms Alexander duality (4.85) for this case. The Alexander dual sim-
plex is given by the empty set Σ∗ = {∅} which makes sense once we interpret
〈x1, x2, x3〉 as an SR ideal.

Example 4.5.4 (The del Pezzo surface dP2). In the above example we could not
see the effect of performing the Alexander dual very good since the projective
spaces are somewhat simple examples of toric varieties. So let us take a look at
the less simple example of dP2 that we have mentioned in chapter 3 already. Its
fan was shown in 4.4a and its SR ideal can be read off as

IΣ = 〈x1x3, x1x4, x2x3, x2x5, x4x5〉 . (4.92)

Our fan or simplex in this case is the collection of maximal cones:

Σ = {{1, 2}, {2, 4}, {4, 3}, {3, 5}, {5, 1}} (4.93)

The irrelevant ideal can be computed from (4.80) for dP2 as:

BΣ =
〈
xσ | σ ∈ Σ

〉
= 〈x3x4x5, x1x3x5, x1x2x5, x1x2x4, x2x3x4〉 . (4.94)

Now the Alexander dual of the SR ideal can be calculated by (4.85) to be

I∗Σ =m{1,3} ∩m{1,4} ∩m{2,3} ∩m{2,5}∩,m{4,5}

= 〈x1, x3〉 ∩ 〈x1, x4〉 ∩ 〈x2, x3〉 ∩ 〈x2, x5〉 ∩ 〈x4, x5〉

= 〈x1x2x4, x1x2x5, x1x3x5, x1x3x2x4, x3x4x2, x3x4x5〉

= 〈x1x2x4, x1x2x5, x1x3x5, x3x4x2, x3x4x〉 = BΣ

(4.95)

and the Alexander dual of the irrelevant ideal, also from (4.85), as

B∗Σ =m{3,4,5} ∩m{1,3,5} ∩m{1,2,5} ∩m{1,2,4}∩,m{2,3,4}

= 〈x3, x4, x5〉 ∩ 〈x1, x3, x5〉 ∩ 〈x1, x2, x5〉 ∩ 〈x1, x2, x4〉 ∩ 〈x2, x3, x4〉

= 〈x3x1, x3x2, x4x1, x4x5, x5x2〉 = IΣ .

(4.96)
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Hence Alexander duality also holds in this case.

Definition 4.5.4 (Reduced (co)chain complex and (co)homology). Let Σ be a
simplicial complex on [n]. For each i ≥ −1 denote by Fi the set of i-dimensional
faces as defined in 4.5.1, i.e. subsets σ ⊆ [n] of cardinality i + 1, and let CFi be
the complex vector space whose basis elements eσ correspond to all σ ∈ Fi, i.e.
CFi = 0 for i < −1 or i ≥ n. The reduced chain complex of Σ is the complex

C̃•(Σ) : 0←− CF−1
∂0←− CF0

∂1←− · · · ∂n−1←− CFn−1 ←− 0 . (4.97)

Here the boundary maps ∂i are defined by setting sign(j, σ) = (−1)r−1 when j is
the rth element of σ ⊆ [n] written in increasing order, and

∂i(eσ) =
∑
j∈σ

sign(j, σ)eσ\{j} . (4.98)

One has ∂i ◦ ∂i+1 = 0 and therefore defines the ith reduced homology of Σ (with
coefficients in C) as

H̃i(Σ) =
ker(∂i)

im(∂i+1)
. (4.99)

Taking the vector space dual of the chain complex (and the transpose of all maps)
one gets the reduced cochain complex of Σ as C̃•(Σ) = (C̃•(Σ))∗ with coboundary
maps ∂i = ∂∗i :

C̃•(Σ) : 0 −→ CF−1∗ ∂0

−→ CF0∗ ∂1

−→ · · · ∂
n−1

−→ CFn−1∗ −→ 0 . (4.100)

One similarly defines the ith reduced cohomology of Σ as

H̃ i(Σ) =
ker(∂i+1)

im(∂i)
. (4.101)

Since we have coefficients in C, there is a canonical isomorphism

H̃ i(Σ) ∼= H̃i(Σ)∗ (4.102)

and thus an equality of their dimensions

dimC H̃
i(Σ) = dimC H̃i(Σ) . (4.103)
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(a) Vertices as vectors that sum to zero (b) Simplex of the fan of dP2

Figure 4.4.: The toric diagram of dP2; the vertex in the center of the image marks the
origin (0, 0). From 4.4a we can already read off the cones in the maximal triangulation
of dP2

Example 4.5.5 (Reduced (co)chain complex of dP2). Let us consider the exam-
ple of the del Pezzo surface dP2. It is given by a blowup of P2 in two points. Its
vertices are given as the following vectors

v1 = (1, 0) , v2 = (0, 1) , v3 = (−1,−1) , v4 = (−1, 0) , v5 = (0,−1) (4.104)

and are shown in figure 4.4b. We want to see how the reduced (co)chain complex
works out for the simplical complex that corresponds to its fan. From figure 4.4
we can read off the maximal cones to be

Σ = {{1, 2}, {2, 4}, {4, 3}, {3, 5}, {5, 1}} . (4.105)

So we can see from 4.4b that we have five one-dimensional faces, five zero dimen-
sional faces and as always the empty set as face of dimension minus one. Hence
(4.97) becomes

0←− C ∂0←− C5 ∂1←− C5 ←− 0 . (4.106)

The base vector corresponding to the one-dimensional face {1, 2} ∈ Σ, for in-
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stance, is then mapped by the boundary map ∂1 as

∂1(e{1,2}) = −e{1} + e{2} , (4.107)

where {1} and {2} are vertices of Σ. From (4.105) we can see that there is exactly
one element in the kernel of ∂1 which is given by

ker (∂1) = e{1,2} + e{2,4} + e{4,3} + e{3,5} + e{5,1} . (4.108)

Since ∂2 = 0 we can see that this kernel is already in the reduced homology of
the complex. On the other hand, clearly the full four-dimensional image of ∂1 is
mapped to zero by ∂0, e.g.

∂0

(
∂1(e{1,2})

)
= ∂0

(
−e{1} + e{2}

)
= −e{} + e{} = 0 (4.109)

and there is only one linearly independent vector left that is mapped to e{} (one
can choose any linear combination that is not antisymmetric in the ei). So there
is no more room for homology and we find

H̃1(Σ) = C and H̃ i(Σ) = 0 , for i 6= 1 . (4.110)

Definition 4.5.5 ((Minimal) free resolution). We still need some more definitions
and terminology. Let Vi , 0 ≤ i ≤ ` be a collection of free S-modules, where free
simply means that they are a direct sum of shifted Cox rings i.e.

Vi = ⊕qiS(−aqi) (4.111)

with all aqi ∈ Zn and S(a) denoting the degree shift of S by a. A sequence

F• : 0←− V0
φ1←− V1 ←− · · · ←− V`−1

φ`←− V` ←− 0 (4.112)

of free modules with maps fulfilling

φi ◦ φi+1 = 0 (4.113)

is called a complex like we defined for vector spaces before. Such a complex is
called Zn-graded if each homomorphism is of degree 0, i.e. for a homomorphism φi
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all elements ri ∈ Vi one has deg ri = degφi(ri) in Zn. The length of the complex
F• equals ` if V0 6= 0 and V` 6= 0.

A complex F• is called a free resolution of an S-module M if F• is acyclic
which simply means that it is exact everywhere except in homological degree 0

and there, the homology reproduces the S-module i.e.

M = H0(F•) = V0/ im(φ1). (4.114)

There is a theorem from David Hilbert, called Hilbert’s syzygy theorem, which
says that every S-module has a free resolution with length at most n. Since we
will only look at modules M of the form I or S/I, where I is a monomial ideal of
S, e.g. the SR ideal, we always get free resolutions that are naturally Zn-graded.

Define a partial order on Zn by letting a ≺ b if the components fulfill ai ≤ bi

for all i ∈ [n]. To state when a free resolution is minimal, we need to have a look
at the maps between the free modules in the resolution. Since the free modules
are basically given by Laurent monomials monomials, the map also have to be
given by matrices of such a kind. Consider the map φ as⊕

q

S(−aq)
φ←−
⊕
p

S(−ap) , (4.115)

between two free S-modules. A monomial matrix consists of entries λqp ∈ C
arranged in columns labeled by the source degrees ap and rows labeled by the
target degrees aq and whose entry λqp is zero unless ap � aq in the partial order
of Zn. The map φ will then send the basis vector 1ap of S(−ap) to the element
λqpx

ap−aq · 1aq in S(−aq). The condition ap � aq then just guarantees that
xap−aq ∈ S and the image of φ makes sense.

Such a monomial matrix is called minimal if λqp = 0 whenever ap = aq. Sim-
ilarly, a free resolution of some module M is called a minimal free resolution if
all the maps in the resolution can be represented by minimal monomial matrices.
This means that if we compare some free resolution to a minimal free resolution
we would see that the ranks of the free modules Vi in the latter are all simul-
taneously minimized compared to the former. In particular, any free resolution
of M contains the minimal resolution, which is unique up to isomorphisms, as a
subcomplex.
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Definition 4.5.6 ((Full) Taylor resolution). As an example of a free resolution,
take a monomial ideal I = 〈m1, . . . ,mt〉 in S and write mτ = lcm{mj | j ∈ τ} for
any τ ⊆ [t]. Furthermore, set aτ = deg(mτ ) ∈ Zn. The full Taylor resolution of
I is based on the reduced chain complex

T•(t) := C̃•(Σ[t]) : 0←− CF−1
∂0←− CF0

∂1←− · · · ∂t−1←− CFt ←− 0 . (4.116)

of the full simplex Σ[t] consisting of all subsets of [t]. In contrast to those simplexes
we considered so far, here we have only one maximal face consisting of all t
elements in the monomial ideal.

We can now define the full Taylor resolution by replacing every vector space
CFj in T•(t) by the free module of the form ⊕τ∈FjS(−aτ ) and puts the boundary
maps ∂j into a sequence of monomial matrices M(∂j) with source and target
labels aτ corresponding to faces τ ∈ Σ[t] and entries λτ,τ\{k} = sign(k, τ) equal to
the sign factors from eq. (4.98). One arrives at an acyclic complex of the form

FT• : 0←− S
M(∂0)←−

⊕
τ∈F0

S(−aτ )
M(∂1)←− · · · M(∂t−1)←− S(−a[t])←− 0 , (4.117)

whose 0th homology equals S/I, so this is a free resolution of S/I of length t. For
applications, we will use this to derive the full Taylor resolution of S/IΣ where
IΣ is the SR ideal of the toric variety corresponding to Σ and hence to get it, we
only need the full power set of the simplex corresponding to the SR ideal.

Remark. Unfortunately, the Taylor resolution is almost never minimal. More
precisely, one can show that the Taylor resolution is minimal if and only if for all
faces σ ∈ Σ[t] and all elements i ∈ σ, the monomials mσ and mσ\{i} are different.3

Example 4.5.6 (Taylor resolution of dP2). Coming back to our example of the
del Pezzo surface, we notice that its SR ideal (4.92) contains five elements and
hence describes a simplex containing all subsets of [5]. Hence the reduced chain
complex of this simplex is given by

0←− C1 ←− C5 ←− C10 ←− C10 ←− C5 ←− C1 ←− 0 . (4.118)

3For example, the Taylor resolution of the Stanley-Reisner ring of PΣ = dP3 is not minimal,
since the subset {m1,m2,m3} = {x1x2, x1x3, x2x3} is among the generators of its Stanley-
Reisner ideal, cf. the examples in [1].
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And reading of the degrees from table 4.1 we find the full Taylor resolution to

vertices of the coords GLSM charges divisor class
polyhedron / fan Q1 Q2 Q3

ν1 = ( 1, 0 ) x1 1 0 1 H + Y

ν2 = ( 0, 1 ) x2 1 1 0 H +X

ν3 = (−1, −1 ) x3 1 0 0 H

ν4 = (−1, 0 ) x4 0 0 1 Y

ν5 = ( 0, −1 ) x5 0 1 0 X

IΣ = 〈x1x3, x1x4, x2x3, x2x5, x4x5〉 .

Table 4.1.: Toric data for the del Pezzo-2 surface

be

0←− FT−1 ←− FT0 ←− FT1 ←− FT2 ←− FT3 ←− FT4 ,←− 0 (4.119)

where

FT−1 = S

FT0 = S


2

0

1

⊕ S


2

1

0

⊕ S


1

0

2

⊕ S


1

2

0

⊕ S


0

1

1



FT1 = S


3

1

1

⊕ S


2

0

2

⊕ S


3

2

1

⊕ S


2

1

2

⊕ S


3

1

2

⊕

S


2

2

0

⊕ S


2

2

1

⊕ S


2

2

2

⊕ S


1

1

2

⊕ S


1

2

1



FT2 = S


3

1

2

⊕ S


3

2

1

⊕ S


3

2

2


⊕5

⊕ S


2

1

2

⊕ S


2

2

1

⊕ S


2

2

2



FT3 = S


3

2

2


⊕5

FT4 = S


3

2

2



(4.120)

Definition 4.5.7 (Betti numbers). Basically all information about the minimal
free resolution of an S-module can be encoded in a collection of integer numbers.
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If we take the complex F• from (4.112) to be a minimal free resolution of an
S-module M and write the Vi as

Vi =
⊕
a∈Zn

S(−a)βi,a , (4.121)

then the βi,a(M) is called the ith Betti number of M in degree a.

Betti numbers can also be characterized more categorically in terms of the Tor-
functor4. For two S-modulesM and N one can describe the modules TorSi (M,N)

by applying the functor __ ⊗SN to a free resolution of M and taking homology
of the resulting complex. Since all relevant notions have a generalization to
the Zn-graded setting, also the Tor-modules can be given a natural Zn-grading.
Intuitively speaking, the Betti numbers of M then describe what survives when
tensoring any free resolution with C and taking homology:

βi,a(M) = dimC
(
TorSi (M,C)a

)
. (4.122)

Note that the tensor product over S of a shifted free module S(−a) with the
ground field C ∼= S/m is equal to a copy of the ground field in degree a ∈ Zn:

S(−a)⊗S C ∼= C(−a) (4.123)

This means that one has an easy description of the degree a piece of a tensored
resolution F• ⊗S C. All copies of S(−a) for some a ∈ Zn that were present in
the resolution become one-dimensional vector spaces C(−a) and since all maps
between source and target degrees with ap 6= aq become zero, one can restrict to
degree a by just looking at the subcomplex of F• ⊗S C made up of the spaces
C(−a). These considerations will play a role in the proof of our theorem later.

Definition 4.5.8 (Link, restriction). For any σ ⊆ [n] the link of σ inside the
simplicial complex Σ is the simplicial complex given by

linkΣ(σ) = {τ ∈ Σ | τ ∪ σ ∈ Σ and τ ∩ σ = ∅} . (4.124)

Furthermore for each σ ⊆ [n] define the restriction of a simplicial complex Σ to

4See [100] for more details on these categorical issues.
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(a) In yellow a zero dimensional face σ of the
simplex.

(b) In yellow the link (σ) which consists of
six two-dimensional faces and their subfaces.

Figure 4.5.: An example of the link of a zero-dimensional face in a simplex Σ of
dimension two.

σ by
Σ|σ = {τ ∈ Σ | τ ⊆ σ} . (4.125)

As an illustration for the link have a look at 4.5

The Betti numbers of a monomial ideal IΣ ⊆ S may be calculated in dif-
ferent ways. One possibility is to take the (co)homology of certain simplicial
subcomplexes of the associated complex Σ (resp. the Alexander dual Σ∗). This
is described by the Hochster formulæ:

Theorem 4.5.1 (Hochster formulæ). For σ ⊆ [n] write σ̃ ∈ Zn for the (square-
free) degree with components σ̃i = 1 if i ∈ σ and σ̃i = 0 otherwise. Since the
meaning can always be inferred from the context, we subsequently omit the tilde
and write σ also for the element in Zn. Treating IΣ and S/IΣ as (graded) S-
modules, their Betti numbers lie only in squarefree degrees σ and can be calculated
by the Hochster formula

βi−1,σ(IΣ) = βi,σ(S/IΣ) = dimC H̃
|σ|−i−1(Σ|σ) . (4.126)

There is also a description of these Betti numbers in terms of the Alexander dual
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complex Σ∗.Then the dual Hochster formula states that

βi,σ(IΣ) = βi+1,σ(S/IΣ) = dimC H̃i−1(linkΣ∗(σ)) . (4.127)

Because of eq. (4.103), in all of these formulæ simplicial homology may be treated
for cohomology when computing Betti numbers.

4.6 Cohomology of line bundles: The algorithm

Let us get one step further towards the connection to cohomology and let us state
the relation between the Betti numbers we introduced in definition 4.5.7 in the
last section and local cohomology from section 4.4. For details we refer to the
original paper [101]. For a vector a ∈ Zn let us define the negative entries in that
vector by

neg(a) := {i ∈ [n] | ai < 0} ⊂ [n] . (4.128)

We have motivated quite early in this chapter why Lautent monomials can be
used to measure cohomology. Furthermore we found it quite intuitive that degree
to which these LMs contribute only depended on the corresponding local patches
on which they could be defined and hence only depended on the coordinates that
were in the enumerator of the LMs. So it is in fact not so surprising to find the
graded parts of local cohomology of S with support on the irrelevant ideal of
some toric variety to be only depending on the negative entries in their degree5.
This means that for a, b ∈ Zn with matching neg, neg(a) = neg(b) the graded
parts of the local cohomology match, too:

H i
BΣ

(S)a ∼= H i
BΣ

(S)b . (4.129)

Hence all relevant graded parts are given by the faces σ of the simplex [n] an
hence

H i
BΣ

(S) =
⊕
σ⊂[n]

H i
BΣ

(S)−σ (4.130)

5In the fine grading we are using, every entry in the grading corresponds to a homogeneous
coordinate and thinking of Laurent monomials, the negative entries just tell us which of
them are inverted.
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As we have seen in section 4.4 these graded pieces of local cohomology can be use
to obtain sheaf cohomology, which is where we want to arrive after all. Making
use of Alexander duality allows us now to obtain a relation between these graded
pieces of local cohomology and the Betti numbers of S/IΣ which will change the
task of calculating sheaf cohomology basically to the one of finding all these Betti
numbers. From [101] it follows that

H i
BΣ

(S)−σ ∼= TorS|σ|−i+1(S/IΣ,C)σ , (4.131)

and application of (4.122) then gives

dimC
(
H i
BΣ

(S)−σ
)

= β|σ|−i+1,σ(S/IΣ) . (4.132)

Inserting this into (4.68), we finally get a closed formula for the line bundle
cohomology hiPΣ

(D) := dimCH
i(PΣ,OPΣ

(D)) in terms the Betti numbers as

hiPΣ
(OPΣ

(D)) =
∑
u∈Z

Q·u=D

dimC H
i+1
BΣ

(S)− neg(u) =
∑
σ⊆[n]

|(D, σ)| · β|σ|−i,σ(S/IΣ) .

(4.133)
Here |(D, σ)| counts the number of elements in the set

(D, σ) = {u ∈ Zn |Q · u = D , neg(u) = σ} , (4.134)

where Q is the matrix that defines the C∗-action of the toric variety PΣ. Since u

can be interpreted as a Laurent monomial by

LM(u) =
n∏
i=1

xuii , (4.135)

the set (D, σ) simply corresponds to the collection of all such Laurent monomials
that are of the degree D and hence boils down to counting lattice points in some
polytope.

Remark. To catch up with the notation of subsection 4.3.2, what we call σ here
corresponds precisely to what we denoted by {Cξ} and called chamber back there.
Furthermore what we denoted by (D, σ) above is nothing but the number of lattice
points in the corresponding chamber.
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Now we have almost everything collected and put at the right place to state
the algorithm of calculating line bundle cohomology which we first conjectured
in [1]. Due to (4.133) we already know how to obtain line bundle cohomology
from certain Betti numbers and the theorem we derived gives a very efficient
method to calculate these Betti numbers. When the conjecture was formulated
we did not know about the right terminology and referred to the Betti numbers
as “remnant” or “secondary” cohomology. Here also a vanishing of many Betti
numbers is implied and therefore, we divide our theorem into two parts, where
the first part refers to the possible restriction to degrees in the power set of the
Stanley-Reisner ideal by a vanishing of Betti numbers while the second gives a
mathematically precise way to compute the sequences that determine the Betti
numbers. But before we can state it we need one more definition.

Definition 4.6.1 (Simplicial subcomplex). Let PΣ be a complete simplicial smooth
normal toric variety and

IΣ = 〈m1, ...,mt〉 (4.136)

be its Stanley-Reisner ideal. Let us furthermore denote

P(IΣ) := {aτ | τ ∈ [t]} (4.137)

to be the “square-free power-set” of SR ideal generators according to the definition
of aτ in 4.5.6. Also Recall from definition 4.5.6 that the full Taylor resolution
FT• of S/IΣ is based on the Taylor complex T•(t) which is just the reduced chain
complex of the full simplex ∆[t]. For some σ ⊆ [n] define the (relative) simplicial
subcomplex

Γσ = {τ ∈ [t] | aτ = σ} (4.138)

of the full simplex ∆[t]. One can define maps between the sets Fj(Γσ) of j-
dimensional faces of this subcomplex similar to (4.98) by

φj : Fj(Γ
σ) −→ Fj−1(Γσ) , eτ 7→

∑
k∈τ

sign(k, τ)eτ\{k} , (4.139)

where eτ\{k} = 0 if τ \ {k} /∈ Γσ and sign(k, τ) = (−1)s−1 when k is the sth

element of τ ⊆ [t] written in increasing order. Since this is just the restriction
of the boundary maps in T•(t), it is easy to see that this yields a well-defined
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complex C̃•(Γσ) with associated (reduced relative) homology H̃•(Γσ).

Now we are ready to state the theorem:

Theorem 4.6.1 (Cohomology of Line Bundles). Let PΣ be a toric variety as
above and IΣ its Stanley-Reisner Ideal. Let us furthermore consider a divisor
D ∈ Cl(PΣ) and set hiPΣ

(D) := dim (H i(PΣ,OPΣ
(D))).

1. ∀ σ ⊂ [n] where σ /∈ P(IΣ) the associated Betti numbers vanish, i.e.

βj,σ(S/IΣ) = 0 ∀j ≥ 0 . (4.140)

Therefore the full contribution reduces to

hiPΣ
(D) =

∑
σ∈P(IΣ)

|(D, σ)| β|σ|−i,σ(S/IΣ) . (4.141)

2. The remaining Betti numbers β|σ|−i,σ(S/IΣ) can be calculated from the de-
gree σ part of the full Taylor resolution. In terms of the relative subcomplex
introduced above, we obtain

βj,σ(S/IΣ) = dim H̃j−1 (Γσ) . (4.142)

Proof of the theorem: To get the desired Betti numbers, we can tensor the Taylor
resolution of S/IΣ with C ∼= S/m, extract the degree τ part and take homology,
see (4.122). As we have described around (4.123), the tensored resolution will just
be made up of vector spaces C(−a) of degree a at the locations of S(−a) in the
original resolution. Considering the maps of the tensored resolution, note that
all entries λτ,ρ with aτ 6= aρ become zero, since they correspond to multiplication
by xaρ−aτ = 0 in S/m. So we can easily extract graded parts. In particular, since
we started with a Taylor complex, the restriction of the tensored resolution to its
degree τ part will consist of all occurrences of C(−aτ ) with aτ = σ and therefore
be equivalent to the (relative) complex Γσ with maps as in (4.139), i.e.

(
FT• ⊗S C

)
σ
∼= C̃•−1(Γσ) . (4.143)

The shift by one in the homological degree on the right hand side comes from
the fact that the empty set in the Taylor complex lies in homological degree −1
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while the corresponding free module S in the full Taylor resolution of (4.117) lies
in homological degree 0. To get TorSr (S/IΣ,C)τ , we still have to take homology,
yielding

TorSr (S/IΣ,C)τ ∼= H̃r−1(Γσ) , (4.144)

which finally implies eq. (4.142) by taking dimensions. If τ /∈ P(IΣ), the complex
Γσ is void and therefore has zero homology. This implies that the respective Betti
numbers vanish and the expression for hiPΣ

(D) then follows from eq. (4.133).

4.7 Explicit computations

In this section we want to give a quick overview of the steps that has to be
performed to calculate the cohomology of line bundles on a toric variety avoiding
the more involved Čech complex and by making use of the restricted Taylor
resolution. One can read this part without any knowledge about the last section.

4.7.1 Compactified instructions

The more or less lengthy derivation of the theorem 4.6.1 in last section is at
the end not crucial for the actual computation and it is possible to state the
instructions without understanding the full theory behind.

The setup

In the following we are to calculate the cohomology for the line bundle OPΣ
(D)

defined over the ambient toric variety PΣ with homogeneous coordinates xi , i =

1, ..., n that carry the homogeneous multi-degree Qi
α. Denote the Stanley-Reisner

ideal of PΣ by
IΣ = 〈S1, ...,SL〉 , (4.145)

where each Si corresponds to one generator of the ideal and hence is given by
a square free monomial of homogeneous coordinates. This is all we need to
determine the desired cohomology groups

H• (PΣ;OPΣ
(D)) . (4.146)
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For the following, define for some τ = {i1, ..., im} ⊂ {1, ..., n} := [n]

xτ := {xi1 , ..., xim} (4.147)

to be the set of coordinates belonging to the index set τ and

xτ := xi1 · ... · xim (4.148)

the corresponding monomial, as defined earlier.

Determine the full contribution to cohomology

Cohomology of line bundles is basically determined by holomorphic sections in
sub-line bundles of that line bundle. Such a (local) section, say s can be writ-
ten by a Laurent monomial, i.e. a fraction of two monomials depending on the
homogeneous coordinates of the ambient space:

s =
T
(
x[n]\τ

)
W (xτ )

. (4.149)

The homogeneous degree of this section has to be equal to the first Chern class
of the line bundle according to the definition in chapter 3, namely

||s|| = ||T || − ||W || = D. (4.150)

Then every such section gives its contribution (possibly zero) to the full line
bundle cohomology which means that we have

hi(PΣ;OPΣ
(D)) =

∑
||s||=D

his(PΣ;OPΣ
(D)) . (4.151)

As we have already seen in 4.3.2 these numbers are not all independent and only
depend on the pole structure of the LM which we called chamber there. Hence
we can simplify this to

hi(PΣ;OPΣ
(D)) =

∑
xτ

#(LMDxτ )h
i
xτ (PΣ;OPΣ

(D)) , (4.152)
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where #(LMDxτ ) is the number of LMs that have the coordinates xτ in the de-
nominator and whose degree is equal to D. This is precisely what we called the
chamber decomposition in 4.3.2 and as we already saw there, the hard bit is to
calculate the hixτ .

Determine the cohomological part

To determine the value hixτ for all τ we can use a complex that is not given by the
Čech complex as we did in 4.3.2. It provides the combinatorial Betti numbers
that are given by the dimension of the homology of that complex, called the
restricted Taylor resolution. Then the Betti numbers determine hixτ as we will
state in the following. Let

IΣ =: 〈xτ1 , ...,xτL〉 and ∆IΣ := {xτ1 , ...,xτL} (4.153)

which means that ∆IΣ simply contains the sets of coordinates that correspond to
the monomials of the SR ideal. We can now take the power set of this set

P(∆IΣ) =
L⋃
k=0

Pk(∆IΣ) , (4.154)

where Pk denotes the subset of the power set that corresponds to the disjoint
union oft k elements:

xτ ∈ Pk(∆IΣ)⇔ xρ = xτm1
∪ ... ∪ xτmk . (4.155)

By disjoint we simply mean that xτ may appear more than once in Pk if there
are multiple ways to unite k elements resulting in xτ Theorem 4.6.1 states then
that

hixτ 6= 0 only if xτ ∈ P(∆IΣ) (4.156)

and we can drop all terms in (4.152) where this is not the case which is already
quite a simplification. In order to calculate the remaining ones, we build a com-
plex of vector spaces for xτ according to

C• : 0
d0←− C#xτ∈P0(∆IΣ

) d1←− C#xτ∈P1(∆IΣ
) d2←− ... , (4.157)
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i.e. where the ith space in the complex has dimension equal to the number of
possible ways to obtain xτ from a union of elements in ∆Σ. The Betti numbers
βj,τ can then be extracted from the homology of this complex as

βτ,j = Hj(T •) =
ker(di)

im(di+1)
. (4.158)

Finally the hixτ can be related to the Betti numbers via

hixτ = β|τ |−i,τ . (4.159)

Hence, we have collected everything that is needed to determine the full line
bundle cohomology according to equation (4.152).

4.7.2 Examples

Example 4.7.1 (Čech cohomology for P2). As the first example let us consider
the complex projective space P2 which we examined in section 4.3. First of all
let us determine all LMs that might give any contribution at all. As a reminder
the Stanley-Reisner Ideal of P2 is given by just one generator, namely

IΣ = 〈x1x2x3〉 ⇒ ∆IΣ = {x1,2,3} . (4.160)

So generating the power set of these generators is rather trivial and given by

P (∆IΣ) = {P0,P1} = {∅,x1,2,3} . (4.161)

Here we can already see that there are only two local sections that might con-
tribute to any cohomology namely according to (4.161)

1

1
and

1

x1x2x3

. (4.162)

It is also clear that the corresponding complexes that will determine the coho-
mology contribution have to be trivial since each element in the power set (4.161)
appears exactly once. This determines the Betti numbers of these LMs uniquely
by the homology of the sequences shown in table 4.2. Identifying
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LM : 0←− T 0 ←− T 1 ←− 0 ,

1 : 0←− 1 ←− 0 ←− 0 ,

1

x1x2x3

: 0←− 0 ←− 1 ←− 0 .

Table 4.2.: Sequences corresponding to the two contributing LMs of P2

β0,∅ = h0−0
∅ and β1,{1,2,3} = h3−1

x{1,2,3}
= h2

x{1,2,3}
, (4.163)

we can summarize the contributions of general Laurent monomials to the coho-
mology of an arbitrary line bundle as follows:

Cotribution to Laurent monomial

H0(P2;OP2(k)) : T (x1, x2, x3) ,

H1(P2;OP2(k)) : 0 ,

H2(P2;OP2(k)) :
1

x1x2x3 ·W (x1, x2, x3)
,

(4.164)

where T and W are monomials of degree k and k + 3 respectively. If we want to
calculate for instance OP2(−4) we see that only the second LM 1

x1x2x3
will give a

contribution since it is the only way to produce a negative degree. Hence we find

H•(P2;OP2(−4)) = (0, 0,

〈
1

x2
1x2x3

,
1

x1x2
2x3

,
1

x1x2x2
3

〉
)

h•(P2;OP2(−4)) = (0, 0, 3) .

(4.165)

Example 4.7.2 (del Pezzo-1 surface). As an example not as trivial as the pro-
jective space, we have a look at a complete generic line bundle over dP1 which
has the toric data given in table 4.3. Forming the power set according to its
Stanley-Reisner ideal,

P (∆IΣ) = {P0,P1,P2} = {∅, x1,3, x2,4, x1,2,3,4} , (4.166)

we can see that as before, every element appears again precisely once which gives
again only trivial sequences as shown in table 4.4 whose non-vanishing Betti
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vertices of the coords GLSM charges divisor class
polyhedron / fan Q1 Q2

ν1 = ( 1, 0 ) x1 1 0 H

ν2 = ( 0, 1 ) x2 1 1 H +X

ν3 = (−1, −1 ) x3 1 0 H

ν4 = ( 0, −1 ) x4 0 1 X

intersection form: HX −X2

IΣ(dP1) = 〈x1x3, x2x4〉 = 〈S1,S2〉

Table 4.3.: Toric data for the del Pezzo-1 surface

LM: 0←− T 0 ←− T 1 ←− T 2 ←− 0 ,

1 : 0←− 1 ←− 0 ←− 0 ←− 0 ,

1

x1x3

: 0←− 0 ←− 1 ←− 0 ←− 0 ,

1

x2x4

: 0←− 0 ←− 1 ←− 0 ←− 0 ,

1

x1x2x3x4

: 0←− 0 ←− 0 ←− 1 ←− 0 .

Table 4.4.: Sequences corresponding to the contributing LMs of dP1

numbers are all equal to one. For the cohomology this translates to

β0,∅ = h0
∅ , β1,{1,3} = h1

x{1,3}
, β1,{2,4} = h1

x{2,4}
, β2,{1,2,3,4} = h2

x{1,2,3,4}

(4.167)
which directly yields the following possible contributions to cohomology for an
arbitrary line bundle O(D) = O(m,n) is given by the divisor D = mH + nX.

H0(dP1;O(m,n)) : T (x1, x2, x3, x4) ,

H1(dP1;O(m,n)) :
T (x2, x4)

x3x1 ·W (x1, x3)
,

T (x1, x3)

x2x4 ·W (x2, x4)
,

H2(dP1;O(m,n)) :
1

x1x2x3x4 ·W (x1, x2, x3, x4)
.

(4.168)

Note that the rational functions representing the top cohomology class always
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involve the denominator monomial
∏
xi of all homogeneous coordinates xi ∈ H,

which is basically Serre duality manifest in “monomial” form, since the canonical
class K = −

∑
Di is the negative sum of all coordinate divisor classes.

In order to get the dimensions of all cohomology groups, one only has to read off
the charges of the coordinates from the table to get the degrees of the respective
polynomials, equate them to the degrees (m,n) of the line bundle and do the
remaining combinatorics, i.e. count all possible exponents. Writing hi(m,n) for
the dimension ofH i(dP1;O(m,n)) and ‖xi‖ for the multi-degree of the coordinate
xi in the polynomials T and W these steps can be schematically described as
follows:

• Contributions to h0(m,n) from all combinations of exponents with

deg T (x1, x2, x3, x4) = (‖x3‖+ ‖x1‖+ ‖x2‖ , ‖x2‖+ ‖x4‖)
!

= (m,n) .

(4.169)
This gives the two different non-zero cases

1. 0 ≤ m ≤ n: h0(m,n) =
(
m+2

2

)
.

2. 0 ≤ n ≤ m: h0(m,n) =
(
m+2

2

)
− 1

2
(m− n)(m− n+ 1) .

• The degrees of the LMs contributing to h1(m,n) can be evaluated as

deg
T (x2, x4)

x3x1 ·W (x1, x3)
= (‖x2‖ − 2− ‖x3‖ − ‖x1‖ , ‖x2‖+ ‖x4‖) ,

deg
T (x1, x3)

x2x4 ·W (x2, x4)
= (‖x3‖+ ‖x1‖ − 1− ‖x2‖ , −2− ‖x2‖ − ‖x4‖) .

(4.170)
Equating the right hand sides to (m,n), this yields the cases

1. n ≥ 0 ∧ n ≥ m+ 2: h1(m,n) = 1
2
(n−m)(n−m− 1) .

2. n ≤ −2 ∧ n ≤ m− 1: h1(m,n) = 1
2
(m− n)(m− n+ 1) .

• Contributions to h2(m,n) come from a LM with degree

deg
1

x1x2x3x4 ·W (x1, x2, x3, x4)

= (−3− ‖x3‖ − ‖x1‖ − ‖x2‖ , −2− ‖x2‖ − ‖x4‖) .
(4.171)

Setting this equal to (m,n) we get
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1. n ≤ m+ 1 ≤ 0: h2(m,n) =
(−m−1

2

)
.

2. 0 ≥ n ≥ m+ 1: h2(m,n) =
(−m−1

2

)
− 1

2
(n−m)(n−m− 1) .

It is easy to check that Serre duality 4.3.4 holds. Since the canonical divisor is
given by the negative sum over all toric divisors of dP1

K = −
∑
ρ∈Σ(1)

Dρ , (4.172)

we get K = −3H − 2X from the table of dP1. Serre duality can then be written
as

H i(dP1;O(m,n)) ∼= H2−i(dP1;O(K)⊗O(m,n)∨)

∼= H2−i(dP1;O(−m− 3,−n− 2)) .
(4.173)

And indeed, the computed dimensions obviously satisfy the identity

hi(m,n) = h2−i(−m− 3,−n− 2) . (4.174)

In this case the computation could still be performed just with pencil and pa-
per but clearly for more involved higher dimensional cases a computer code is
necessary. As we have explained in 4.3 is there is a correspondence of Laurent
monomials and lattice points 4.42 and counting them is really reduced to counting
points inside particular polytopes.

Example 4.7.3 (del Pezzo-3 surface). Let us take two steps further and look at
dP3, the del Pezzo-3 surface coming from three consecutive blowups of P2. This
is the first example we considered, for which the simplexes that determine the
cohomology contributions really matter and give rise to cohomology groups of
dimension two that belong to one single LM. Its toric data are given in table 4.5.
First of all, the elements of the Stanley-Reisner ideal are no longer disjoint. The
powerset

P(∆IΣ) = {P0,P1,P2,P3,P4,P5,P6,P7,P8,P9} (4.175)

and we don’t want to write down all the Pi explicitly since they contain many
elements. Let us rather consider a specific element and calculate its cohomological
contribution. The element x{1,2,3} ∈ P for instance is not a unique element in the
powerset but can rather be obtained in four different ways from elements of ∆IΣ ,
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vertices of the coords GLSM charges divisor class
polyhedron / fan Q1 Q2 Q3 Q4

ν1 = (−1, −1 ) x1 1 0 0 1 H + Z

ν2 = ( 1, 0 ) x2 1 0 1 0 H + Y

ν3 = ( 0, 1 ) x3 1 1 0 0 H +X

ν4 = ( 0, −1 ) x4 0 1 0 0 X

ν5 = (−1, 0 ) x5 0 0 1 0 Y

ν6 = ( 1, 1 ) x6 0 0 0 1 Z

intersection form: HX +HY +HZ − 2H2 −X2 − Y 2 − Z2

IΣ(dP3) = 〈x1x2, x1x3, x1x6, x2x3, x2x5, x3x4, x4x5, x4x6, x5x6〉

Table 4.5.: Toric data for the del Pezzo-3 surface.

LM: 0←− T 1 ←− T 2 ←− T 3 ←− 0 ,

1

x1x2x3

0←− 0 ←− 3 ←− 1 ←− 0 .

Table 4.6.: Sequences corresponding to a particular LM of dP3

i.e.
x{1,2,3} = x{1,2} ∪ x{1,3} ∈ P2 ,

x{1,2,3} = x{1,2} ∪ x{2,3} ∈ P2 ,

x{1,2,3} = x{1,3} ∪ x{2,3} ∈ P2 ,

x{1,2,3} = x{1,2} ∪ x{1,3} ∪ x{2,3} ∈ P3 .

(4.176)

This determines the induced complex which can be found in 4.6 and since it is a
complex it has to have a two-dimensional homology group at position two which
due to shift between the cohomology and the Betti numbers results in

2 = β2,x1,2,3 = h|{1,2,3}|−2
x1,2,3

= h1
x1,2,3

. (4.177)

Hence, we will find two cochains that will be in the first cohomology group of
the corresponding Čech cochain complex. So for the LM 1

x1x2x3
we get a two

dimensional space which contributes for instance to the line bundle cohomology
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OdP3(−3,−1,−1,−1)

dim
[
H1

x1,2,3
(dP3;OdP3(−3,−1,−1,−1))

]
= 2 . (4.178)

In terms of cochains this roughly means that the local section 1
x1x2x3

can be
defined in two different non-trivial ways that both lie in the cohomology of the
Čech cochain complex. In more subtle examples which means in examples with
extraordinary Stanley-Reisner ideals we could also find that even cases appear
where one single LM contributes a space of dimension three to the cohomology.



Chapter 5
Equivariant Cohomology

Toric varieties as we introduced them in chapter 3 sometimes allow for a dis-
crete group action, e.g. a Zn-action, in addition to the C∗-actions. In chapter
4 we have shown how to derive the cohomology of line bundles defined on the
toric variety. Since taking a finite quotient of the toric variety is usually reflected
in a discrete coordinate transformation, we want to generalize our theorem 4.6.1
to this new setting. Since we could provide for a representation of the cohomol-
ogy of line bundles in terms of Laurent monomials (LMs), our attempt and our
conjecture will be that one can calculate the cohomology of line bundle over the
quotient space, i.e. the equivariant cohomology, by simply performing the dis-
crete action on the corresponding LMs. We claim that only the invariant LMs
under this discrete action will give rise to a contribution in cohomology of the line
bundle over the quotient space. The non-invariant parts will simply be projected
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out. We will develop and test this conjecture using index theorems involving the
holomorphic Euler character and its graded pieces, so-called Lefschetz numbers,
where the grading is introduced by the discrete actions. Starting with discrete
Z2-actions we will work our way up to a finite G-action over a toric variety.

A particularly subtle point in these considerations will be the case where the
LM contributes to cohomology with a two- or three-dimensional space. One has
to distinguish whether this space is itself divided into invariant and non-invariant
pieces or whether it contributes consistently to one of them. As we will see, the
latter one seem to be the case which leads to a conjecture on the computation of
these equivariant cohomologies.

5.1 Physical motivation: Orientifolds in type IIA/B and

heterotic orbifolds

In order to reduce N = 2 space-time supersymmetry of a type IIA/B superstring
theory on Calabi-Yau three-folds1 down to N = 1, one needs to consider so-
called orientifolds which are Z2 quotients. Often, only the ingredients invariant
under this symmetry survive the subsequent orientifold projection, such that the
theory actually lives on the quotient space. For matter zero modes, using the
usual splitting into the eigenvalues of this Z2-action, it is necessary to consider
the invariant and anti-invariant parts of the corresponding cohomology groups.

A second important application of equivariant cohomology is found in orbifold
constructions, i.e. more general Zn-quotients, often performed in heterotic string
compactifications. Since in naive Calabi-Yau compactifications quantities like the
Euler characteristic are directly tied to physical properties like e.g. the number
of matter generations, orbifold constructions are often used to build spaces with
suitable topological numbers. Usually one finds an abundance of “plain” spaces
with huge topological invariants, whereas the phenomenologically interesting ar-
eas of the topological moduli space are sparsely populated. Orbifolds can greatly
help in this aspect. For example, letting Z5 act freely on the quintic Calabi-Yau
three-fold shows χ(P4[5]/Z5) = 1

5
χ(P4[5]).

1In fact we have not yet introduced Calabi-Yau spaces but will do so in chapter 6, where we
will show that they are easily constructed as submanifolds of toric varieties
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5.2 Topological invariants for Z2 involutions

A very useful tool in complex geometry is the Riemann-Roch-Hirzebruch theorem.
Given a holomorphic vector bundle V on some complex manifold X of dimension
n, it allows to compute the Euler characteristic of this bundle via its Chern
character and the Todd class of the base manifold, i.e.

χ(X ;V) :=
n∑
i=0

(−1)i dimH i(X ;V )
RRH
=

∫
X

ch(V) Td(X ), (5.1)

where ch(V) refers to the Chern character of V , a polynomial expression of the
Chern classes

ch(V) = dim(V) + c1(V) +
c1(V)2 − c2(V)

2

+
c1(V)3 − 3c1(V)c2(V) + 3c3(V)

6
+ . . . ,

(5.2)

satisfying ch(V ⊕W) = ch(V) + ch(W) as well as ch(V ⊗W) = ch(V) ch(W) and
Td(X ) = Td(TX ) is the Todd class of the base space’s tangent bundle, which can
for a holomorphic vector bundle also be represented by a Chern class polynomial

Td(V) = 1 +
1

2
c1(V) +

1

12

(
c1(V)2 + c2(V)

)
+ . . . . (5.3)

Note that for line bundles the Chern character simplifies to the simple Taylor
expansion

ch(L) = ec1(L) =
∑
k

c1(L)k

k!
= 1 + c1(L) +

c1(L)2

2
+ . . . (5.4)

that naturally truncates at the dimension of the base space, leaving only a finite
number of non-zero terms in the sum.

Naturally, one would like to extend the index formula (5.1) in some way to
settings subject to a symmetry action on the base space, e.g. the Z2 space-time
involution Ωσ of a typical orientifold operation. The vector bundle V must be
compatible with the Z2 action σ of the orientifold involution, i.e. we require the
induced mapping σ∗ to fulfill π ◦ σ∗ = σ where π : V −→ X is the bundle’s
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projection mapping. Then σ induces the splitting

H i(X ;V) = H i
+(X ;V)⊕H i

−(X ;V) (5.5)

of the cohomology groups. Following a general theorem, the Euler characteristic
of the orientifold’s “downstairs” quotient space X/σ, i.e. the invariant part of the
splitting, can be expressed as

χ(X/σ; Ṽ) = χ+(X ;V) =
d∑
i=0

(−1)ihi+(X ;V) =
χe(X ;V) + χσ(X ;V)

2
, (5.6)

where χe and χσ are Euler characteristica associated to the two group elements
of Z2 = {e, σ}. Here Ṽ corresponds to the bundle V on the quotient space
X/σ. Since e is the unit element, χe actually corresponds to the ordinary Euler
characteristic

χe(X ;V) = χ(X ;V) :=
d∑
i=0

(−1)ihi(X ;V)

=
d∑
i=0

(−1)i
(

dimH i
+(X ;V) + dimH i

−(X ;V)
)
,

(5.7)

and from the splitting on the right hand side of this equation one directly obtains

χσ(X ;V) =
d∑
i=0

(−1)i
(

dimH i
+(X ;V)− dimH i

−(X ;V)
)
, (5.8)

which gives us a sort of measure for the dimensional asymmetry of the splitting.
This quantity is called the holomorphic Lefschetz number and is related to the
fixpoint set of σ, i.e. to the so-called O-planes in an orientifold setting. The simple
split of the cohomology groups also allows to provide the Euler characteristic of
the anti-invariant part. From (5.7) and (5.8) it follows

χ−(X ;V) =
d∑
i=0

(−1)ihi−(X ;V) =
χe(X ;V)− χσ(X ;V)

2
(5.9)

in obvious similarity to (5.6). Both χ+(X ;V) and χ−(X ;V) are used as highly
nontrivial checks for the computations carried out in the next section.
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Analogous to the Riemann-Roch-Hirzebruch theorem (5.1) the holomorphic
Lefschetz theorem and the Atiyah-Bott theorem allow to compute the Lefschetz
number via an index formula

χσ(X ;V) =

∫
Xσ

chσ(V)
Td(TXσ)

chσ
(
Λ−1(N̄Xσ)

) , (5.10)

which, as mentioned before, only depends on the fixpoint set of the involution σ.
In this expression the Λ−1(N̄Xσ) refers to the formal alternating sum of the exte-
rior powers of the complex conjugate normal bundle of the orientifold involution
fixpoint set X σ ⊂ X , i.e.

Λ−1(N̄Xσ) :=
d∑
i=0

(−1)iΛi(N̄Xσ) . (5.11)

In order to define the equivariant Chern character chσ(V), the vector bundle V is
first decomposed into a direct sum of σ∗-eigenbundles, i.e. bundles Vk which are
either invariant or anti-invariant under the induced σ∗-action.

One of the main simplifications for Z2-involutions derives from the fact that
the induced action on the normal bundle is simply

σ∗(NXσ) = −NXσ . (5.12)

For the vector bundle V one first decomposes it into a direct sum of eigenbundles
V = V1 ⊕ · · · ⊕ Vm with eigenvalues ρk = ±1 and then defines

chσ(V) :=
m∑
k=1

ρk ch(Vk) . (5.13)

Some further information on these definitions can be found in the appendix of
[99] and references therein. It should be noted that the holomorphic Lefschetz
theorem can be regarded as a special case of the Atiyah-Singer fixed point theorem
and the index formula is also referred to as the Atiyah-Bott theorem, see §17
of [102].
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5.3 An algorithm conjecture for Z2-equivariance

The algorithm for the computation of line bundle cohomologies on toric varieties
which we introduced in chapter 4 provides actual representatives for the cohomol-
ogy group generators in the form of local sections, i.e. Laurent Monomials (LMs),
i.e. rational functions with a single monomial in the numerator and denominator,
as long as only trivial multiplicities for the individual LMs are involved. Consider
for example the complex projective space P3 and the “sign flip” involution

σ : (x1, x2, x3, x4) 7→ (−x1, x2, x3, x4) (5.14)

on the homogeneous coordinates of the base, which due to the projective equiv-
alences is equivalent to the involution

τ : (x1, x2, x3, x4) 7→ (x1,−x2,−x3,−x4) . (5.15)

The fixpoint set of this involution therefore consist of two components: The
divisor {x1 = 0} ∼= P2 and the isolated fixpoint (1, 0, 0, 0). Due to the simplicity
of the Stanley-Reisner ideal

IΣ(P3) = 〈x1x2x3x4〉 , (5.16)

the contributing LMs for the computation of h∗(P3;O(k)) are of a particularly
simple form:

for k ≥ 0:
{
xa1x

b
2x

c
3x

d
4 : a+ b+ c+ d = k

}
,

for k ≤ −4:
{

1

xa+1
1 xb+1

2 xc+1
3 xd+1

4

: a+ b+ c+ d = −k − 4

}
.

(5.17)

In order to identify the overall sign each rationom picks up, one can simply apply
the involution σ to it. However, consider for example the bundle O(−5) and the
corresponding sign under the involutions σ and τ :

1

x2
1x2x3x4︸ ︷︷ ︸
σ→+
τ→−

,
1

x1x2
2x3x4︸ ︷︷ ︸
σ→−
τ→+

,
1

x1x2x2
3x4︸ ︷︷ ︸

σ→−
τ→+

,
1

x1x2x3x2
4︸ ︷︷ ︸

σ→−
τ→+

 
σ : (1+, 3−)

τ : (3+, 1−)
(5.18)
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There is obviously a mismatch in the counting of signs between the two equivalent
involutions of the base, which can be seen in almost all bundles O(k).

Ultimately, this is due to the naive application of the base involutions to the
representatives of the bundle cohomology. In mathematical terms, one needs to
uplift the Z2-action on the base to an Z2-action on the bundle L = O(k), which
is called an equivariant structure and makes the diagram

L φσ //

π ����

L
π����

P3 σ // P3

(5.19)

commutative. More precisely, for a generic group G, each element g ∈ G induces
a mapping g : X −→ X on the base geometry and has a corresponding uplift
φg : L −→ L compatible with the bundle structure. This uplift defines an
equivariant structure, if it preserves the group structure, i.e. if φg ◦φh = φgh such
that the mapping is a group homomorphism.

The apparent inconsistency of (5.18) therefore stems from the false assumption
that the equivalent involutions σ and τ in the base geometry give rise to equivalent
equivariant structures φσ and φτ on the bundle O(k). For such a setting it is
therefore important to specify the equivariant structure, i.e. the uplift of the base
involution to the bundle, as well.

A second non-trivial aspect in the computation of equivariant cohomology
comes from the non-trivial multiplicities appearing for some denominator mono-
mials of our algorithm. One could question, if the invariant and anti-invariant
monomial contributions with non-trivial multiplicities might nevertheless con-
tribute unconventionally to the invariant and anti-invariant cohomology groups.
As a highly non-trivial check for this issue, we consider the non-standard del Pezzo-
5 surface, which has a toric description similar to dP1, dP2 and dP3. The relevant
toric data is summarized in table 5.1. Due to the high number of 20 Stanley-
Reisner ideal generators, this example yields 200 potentially contributing mono-
mial denominators, where 56 of these have multiplicity 2 and two have multiplic-
ity 3. Now, consider the involution

σ : x1 7→ −x1 (5.20)
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vertices of the coords GLSM charges divisor class
polyhedron / fan Qm Qn Qp Qq Qr Qs

v1 = (−1, −1 ) x1 1 0 0 1 0 0 H

v2 = ( 1, 0 ) x2 1 0 1 0 1 0
v3 = ( 0, 1 ) x3 1 1 0 0 0 0
v4 = ( 0, −1 ) x4 0 1 0 0 1 0 Ea

v5 = (−1, 0 ) x5 0 0 1 0 0 0 Eb

v6 = ( 1, 1 ) x6 0 0 0 1 0 0 Ec

v7 = (−1, 1 ) x7 0 0 0 0 1 1 Ed

v8 = ( 1, −1 ) x8 0 0 0 0 0 1 Ee

Id̃P5
= HEa +HEb −H2 − E2

e − 2E2
a − 2E2

b + EaEe + EbEd − E2
d − E2

c

SR(d̃P5) = 〈x1x2, x1x3, x1x6, x1x7, x1x8, x2x3, x2x4,

x2x5, x2x7, x3x4, x3x5, x3x8, x4x5, x4x6,

x4x7, x5x6, x5x8, x6x7, x6x8, x7x8〉

Table 5.1.: Toric data for the non-generic d̃P5 surface, which arises via two additional
blowups from the standard dP3 and differs from the standard dP5 = P5[2, 2].

which is equivalent to 64 different “sign flips” due to the projective equivalences.
The fixpoint set in the base can be determined to be

X σ := FPσ(d̃P5) = {x1 = 0} ∪ {x6 = 0} ∪ {x7 = 0} ∪ {x8 = 0} , (5.21)

giving four non-intersecting P1s inside the d̃P5. For the equivariant structure
we use the canonical uplift of (5.20). Via a proper computation of (5.10) the
resulting Lefschetz number is

χσ(d̃P5;O(m, . . . , s)) =

(
1

4
+
−m+ n+ p

2

)
+ (−1)n

(
1

4
+
m− q

2

)
+ (−1)m+n+r

(
1

4
+
n+ p− r

2

)
+ (−1)m+n+r+s

(
1

4
+
r − s

2

) (5.22)

which allows to check whether a multiplicity-3 local section like 1
x1x6x7x8

or 1
x2x3x4x5
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entirely contributes to the invariant or anti-invariant cohomology. Likewise, we
checked an abundance of other examples. The empirical data therefore leads us
to pose the following:

Conjecture 5.3.1 (Z2-equivariant cohomology computation). Let PΣ be a toric
variety and OPΣ

(D) some line bundle over PΣ. Let furthermore σ : PΣ −→ PΣ

be a Z2 involution acting on the base which induces an equivariant structure on
the line bundle OPΣ

(D). The cohomology of OPΣ
(D) decomposes according to

theorem 4.6.1 into a direct sum of spaces that arise according to its contributing
Laurent monomials:

Contributing LMs = {s1, ..., sN}

⇒ H•(PΣ;OPΣ
(D)) =

N⊕
k=1

H•sk(PΣ;OPΣ
(D)) .

(5.23)

The equivariant cohomology groups are then given by the direct sum of contribut-
ing spaces that correspond to Laurent monomials that are themselves invariant
under the Z2 involution, i.e. if we put the sk in (5.23) in order such that the first
k̃ are invariant and the last N − k̃ are anti-invariant by applying the involution
on the homogeneous coordinates in the LM, we find

H•(PΣ;OPΣ
(D)) =H•+(PΣ;OPΣ

(D))⊕H•−(PΣ;OPΣ
(D)) , where

H•+(PΣ;OPΣ
(D)) =

k̃⊕
k=1

H•sk(PΣ;OPΣ
(D)) and

H•−(PΣ;OPΣ
(D)) =

N⊕
k=k̃

H•sk(PΣ;OPΣ
(D))

(5.24)

The simplicity of this (conjectured) algorithm to compute Z2-equivariant co-
homologies ultimately stems from the fact that one can basically use the same
involution mapping specified for the coordinates of the base toric variety directly
on the LMs that represent the cohomology group—provided the used uplift of
this mapping in the form of the equivariant structure has been specified appro-
priately. While we were writing up our results which we published in [3], the
same conjecture was also posed and developed in the appendix of [103], where
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the authors focused on the computation of the Lefschetz numbers—whose com-
putation can become somewhat involved due to the equivariant Chern characters
in (5.10)—and also considered the standard examples P1, P2, dP1 and dP3 in
detail. In the context of orientifolds we refer to their nice presentation of the
Z2-equivariant material.

5.4 Invariants for finite group actions

The mathematical background presented in section 5.2 can be applied to more
involved finite group actions. However, some of the aspects loose their specific
clarity that the special case of the two-element group Z2 offers. Given a finite
group

G = {g1, g2, . . . , gm} (5.25)

of m elements acting holomorphically on X , the relation (5.6) between the Euler
characteristic of the orbifold space X/G and the sum of the different Lefschetz
numbers generalizes to

χ(X/G;V) =
1

m

∑
g∈G

χg(X ;V) =
d∑
i=0

(−1)ihiinv(X ;V) . (5.26)

The index formula for the individual Lefschetz numbers (5.10) remains unchanged,
but has to be computed separately for the individual fixpoint sets of each group
element. In the decomposition of the vector bundle V into g∗-eigenbundles more
general eigenvalues ρk ∈ C can now arise. The computation of those eigenvalues
rests on the group action on the conjugated normal bundle N̄X g of each compo-
nent of the fixpoint set. Due to the decomposition

TX |X g = TX g ⊕NX g (5.27)

of the ambient space tangent bundle, the g-action on NX g is given by a proper
decomposition of the differential mapping

dgp : TpX −→ TgpX (5.28)
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over a fixpoint p = gp ∈ X g. In order to obtain the Lefschetz numbers, this then
allows for the computation of the action’s eigenvalues on N̄X g and the evaluation
of the integral in (5.10).

5.5 Some explicit examples for finite group equivariance

Example 5.5.1 (Example: P2/Z3). As an example for a generalization of the
conjecture 5.3 for Z2 involutions, we consider the line bundle0 cohomology over
the orbifold space P2/Z3. Here the group action of Z3 = {e, g1, g2} on P2 is
defined by the generator

g1 : (x1, x2, x3) 7→ (αx1, α
2x2, x3) for α :=

3
√

1 = e
2πi
3 . (5.29)

Due to the projective relations between the homogeneous coordinates xi the map-
ping is equivalent to

g′1 : (x1, x2, x3) 7→ (x1, αx2, α
2x3) and

g′′1 : (x1, x2, x3) 7→ (α2x1, x2, αx3),
(5.30)

i.e. g1 ∼ g′1 ∼ g′′1 describe the same involution on the base space. Considering the
Stanley-Reisner ideal IΣ(P2) = 〈x1x2x3〉 this action therefore has three fixpoints

P1 = (0, 0, 1), P ′1 = (1, 0, 0), P ′′1 = (0, 1, 0) (5.31)

in P2. The second group element’s involution is given by the square

g2 := g2
1 : (x1, x2, x3) 7→ (α2x1, αx2, x3)

g′2 : (x1, x2, x3) 7→ (x1, α
2x2, αx3)

g′′2 : (x1, x2, x3) 7→ (αx1, x2, α
2x3)

(5.32)

leading to the same three fixpoints P2 = P1, P ′2 = P ′1 and P ′′2 = P ′′1 . Since
for both non-trivial group elements the fixpoint sets consist of three components
of maximal codimension which means the they the fixpoints are isolated, this
example is particularly simple.

In order to determine the (conjugated) normal bundle’s eigenspace decompo-
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sition under the induced Z3-action, we utilize that for fixpoints the general split
(5.27) leads to the direct identification (NX g)p ∼= TpX , i.e. it suffices to compute
the eigenvalues of the differentials (5.28) at the fixpoints. For the first fixpoint
P1 ∈ U3 = {x3 6= 0} ⊂ P2 we use the local chart given by

φ3 : U3

∼=−→ C2

(x1, x2, x3) 7→
(
x1

x3

,
x2

x3

)
. (5.33)

The involution mapping g1 within this chart then takes the form

f 3
1 := φ3 ◦ g1 ◦ φ−1

3 : C2 −→ C2

(x, y) 7→ (αx, α2y),
(5.34)

and the differential mapping at φ3(P1) = (0, 0) ∈ C2 is then easily computed to

d(f 3
1 )P1 =

 ∂f3
1,x

∂x

∂f3
1,x

∂y

∂f3
1,y

∂x

∂f3
1,y

∂y


P1

=
(α 0

0 α2

)
(5.35)

Via det
(
d(f 3

1 )P1−λ11
)

= (α−λ)(α2−λ) = 0 this leads to the eigenvalues λ1 = α

and λ2 = α2, such that the action on the 2dC conjugated normal bundle induces
the split into Z3-irreducible representations

N̄P1
∼= N̄ ᾱ

P1
⊕ N̄ ᾱ2

P1
∼= N̄α

P1
⊕ N̄α2

P1
(5.36)

on the fixpoint P1. The analogous computation yields the same result for all
three fixpoints of both g and g2. Since dimX g = dimX g2

= 0 the expansion of
the equivariant Chern character reduces to

chg(Λ−1N̄P1) = chg(O − N̄P1 + Λ2N̄P1)

= dimO − (α dim N̄α
P1

+ α2 dim N̄α2

P1
) + α · α2 dim Λ2N̄P1

= 1− (α + α2) + α3 = 1− (−1) + 1 = 3.

(5.37)

Using Td(X g) = 1 and chg(L) = %g(L;P ) ∈ C∗ for each fixpoint component, it
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follows

χg(P2;L) =

[∫
P1

+

∫
P ′1

+

∫
P ′′1

]
chg(L)

Td(X g)

chg(Λ−1N̄X g)

=
%g(L;P1) + %g(L;P ′1) + %g(L;P ′′1 )

3
,

χg
2

(P2;L) =
%g2(L;P1) + %g2(L;P ′1) + %g2(L;P ′′1 )

3
.

(5.38)

It remains to compute the eigenvalues %g(L;P ) that originate in the equivari-
ant Chern character chg(O(k)) of the line bundle, i.e. we need to determine the
irreducible representation of O(k) under the Z3-action. Using the so-called pro-
cess of homogenization (see section 5.4 of [53]) the divisor D = kH that defines
the bundle O(D) can be represented by a monomial

QP2(kH) = xa1x
b
2x

k−a−b
3 , (5.39)

where a, b, k ∈ Z. Whereas the strict definition of those monomials utilizes an
inner product between certain lattice points related to the fan of P2 and the
lattice points of the divisor D, the above form of such monomials can be easily
read of from the GLSM charges, see (5.50) and (5.56) in the later examples. One
can interpret the space of global sections of O(kH) as generated by monomials of
the form xa1x

b
2x

c
3 where a+ b+ c = k, i.e. we can effectively use the monomial as

a representation of the bundle. This representation bears a striking resemblance
to our rationoms, cf. (5.17). The idea is then to apply the different (equivalent)
base involutions g1, g

′
1, g
′′
1 associated to the fixpoints P1, P

′
1, P

′′
1 on this monomial

and determine the value picked up relative to the involution that we choose
for the equivariant structure, i.e. the involution g1 in this example. The choice
of the equivariant structure for the bundle is therefore reflected in the bundle
representation eigenvalues %g(L;P ). For our example we therefore have

value of equivariant structure︷ ︸︸ ︷
αa+2bQ  %g(O(k);P1) = 1

Q = xa1x
b
2x

k−a−b
3

g1 22

g′′1
,,

g′1 // α−kαa+2bQ  %g(O(k);P ′1) = α−k

αkαa+2bQ  %g(O(k);P ′′1 ) = αk

(5.40)
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and an analogous result for g2, leading to the final expressions

χg
(
P2;O(k)

)
= χg

2(P2;O(k)
)

=
1 + αk + α−k

3
=

1 k ∈ 3Z

0 otherwise
. (5.41)

Together with the ordinary Euler characteristic of O(k) on P2

χ(P2;O(k)) = 1 +
k(k + 3)

2
(5.42)

we therefore obtain the orientifold Euler characteristic

χ
(
P2/Z3;O(k)

)
=
χ+ χg + χg

2

3

=
6 + 3k(k + 3) + 4(1 + αk + α−k)

18
,

(5.43)

which completes the computation on the well-established and proven mathemat-
ical side.

The idea is now to simply apply the involution mapping to the LMs of our
counting algorithm and count the remaining invariant LMs. Recall from sec-
tion 5.3 that this already implies a choice of the equivariant Z3-structure on
the bundle, where we will use the non-primed involution mapping g1. Con-
sider for example the bundle O(−6) on P2. From (5.43) we expect to find
χ(P2/Z3;O(−6)) = 4. The relevant LMs and their respective phases picked
up from the involution are

1

x4
1x2x3︸ ︷︷ ︸
g1→1

,
1

x1x4
2x3︸ ︷︷ ︸

g1→1

,
1

x1x2x4
3︸ ︷︷ ︸

g1→1

,
1

x3
1x

2
2x3︸ ︷︷ ︸

g1→α

,
1

x3
1x2x2

3︸ ︷︷ ︸
g1→α2

,

1

x2
1x

3
2x3︸ ︷︷ ︸

g1→α2

,
1

x1x3
2x

2
3︸ ︷︷ ︸

g1→α

,
1

x2
1x2x3

3︸ ︷︷ ︸
g1→α

,
1

x1x2
2x

3
3︸ ︷︷ ︸

g1→α2

,
1

x2
1x

2
2x

2
3︸ ︷︷ ︸

g1→1

,

︸ ︷︷ ︸
h2(P2;O(−6)) = (4inv, 3α, 3α2)

(5.44)

yielding h•inv(P2;O(−6)) = (0, 0, 4) and therefore the expected result for the Euler
characteristic of the orbifold space P2/Z3. Note that due to g2 = g2

1 one only has
to evaluate the effect of the generators to identify the invariant rationoms. This
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vertices of the coords GLSM charges divisor class
polyhedron / fan Qm Qn

v1 = (−1, −1 ) x1 1 0 H

v2 = ( 1, 0 ) x2 1 0 H

v3 = ( 0, 1 ) x3 1 1 H +X

v4 = ( 0, −1 ) x4 0 1 X

intersection form: HX −X2

SR(dP1) = 〈x1x2, x3x4〉

Table 5.2.: Toric data for the del Pezzo-1 surface

agreement has been checked for a wide range of bundles O(k) on P2/Z3.

Example 5.5.2 (Example: dP1/Z3). Next we consider a blowup of P2, i.e. the
del Pezzo-1 surface. The involution (5.29) basically remains unchanged, acting
now on the four homogeneous coordinates of dP1 as

g : (x1, x2, x3, x4) 7→ (αx1, α
2x2, x3, x4) for α :=

3
√

1 = e
2πi
3 . (5.45)

Following from the projective equivalences listed in table 5.2, we can identify the
four fixpoints of the action:

P1 = (1, 0, 0, 1), P2 = (0, 1, 0, 1), P3 = (0, 1, 1, 0), P4 = (1, 0, 1, 0). (5.46)

By using local charts around those fixpoints like in (5.33), the tangent space map-
ping eigenvalues reveal the following representations for the conjugated normal
bundles:

N̄P1 = N̄α
P1
⊕ N̄α2

P1
, N̄P2 = N̄α

P2
⊕ N̄α2

P2
, N̄P3 = (N̄α

P3
)2, N̄P4 = (N̄α2

P4
)2. (5.47)

Compared to the three P2 fixpoints of the analogous Z3-action, whose represen-
tations were all of the type N̄α

P ⊕ N̄α2

P , the additional blowup of dP1 seems to
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split up the contribution of one of three P2 fixpoints. This can be seen by

chg
(
(N̄α

P )2
)∣∣
P

= 1− α · 2 + α2 = (1− α)2

chg
(
(N̄α2

P )2
)∣∣
P

= 1− α2 · 2 + α4 = (1− α2)2
(5.48)

and noting that the sum of both these contributions adds up to

1

(1− α)2
+

1

(1− α2)2
=

1

3
, (5.49)

i.e. precisely the contribution that each P2 fixpoint added to the Lefschetz num-
bers in the previous example. The global sections of the bundle O(m,n) over dP1

can be represented by monomials of the form

QdP1(mH + nX) = xa1x
b
2x

m−a−b
3 xn−m+a+b

4 , (5.50)

and relative to the involution g from (5.45) (that we choose for the equivariant
structure) this gives the relative signs, fixpoints and normal bundle representation
splittings

P1 = (1, 0, 0, 1) N̄P1 = N̄α
P1
⊕ N̄α2

P1

1
3

α−m

P2 = (0, 1, 0, 1) N̄P2 = N̄α
P2
⊕ N̄α2

P2

1
3

αm

P3 = (0, 1, 1, 0) N̄P3 = (N̄α
P3

)2 1
(1−α)2 αm−n

P4 = (1, 0, 1, 0) N̄P4 = (N̄α2

P4
)2 1

(1−α2)2 α−(m−n)

(5.51)

From the standard Riemann-Roch-Hirzebruch formula (5.1) one can compute the
ordinary Euler characteristic

χ(dP1;O(m,n)) = 1 +m+mn+
1

2
n(1− n) (5.52)

and from the fixpoint data listed in (5.51) the Lefschetz number of the generator
g can be evaluated as

χg(dP1;O(m,n)) =
α−m + αm

3
+

αm−n

(1− α)2
+

α−(m−n)

(1− α2)2
. (5.53)

Note that this Lefschetz number is not an integer for generic values of m,n ∈
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vertices of the coords GLSM charges divisor class
polyhedron / fan Qm Qn Qp Qq

v1 = (−1, −1 ) x1 1 0 0 1 H + Z

v2 = ( 1, 0 ) x2 1 0 1 0 H + Y

v3 = ( 0, 1 ) x3 1 1 0 0 H +X

v4 = ( 0, −1 ) x4 0 1 0 0 X

v5 = (−1, 0 ) x5 0 0 1 0 Y

v6 = ( 1, 1 ) x6 0 0 0 1 Z

intersection form: HX +HY +HZ − 2H2 −X2 − Y 2 − Z2

SR(dP3) = 〈x1x2, x1x3, x1x6, x2x3, x2x5, x3x4, x4x5, x4x6, x5x6〉

Table 5.3.: Toric data for the del Pezzo-3 surface.

Z. However, since for the Z3 group the direct identification (5.7) of the single
Lefschetz number χg with dimensions of cohomology groups is no longer given,
this does not pose a problem. One can show that the Lefschetz number for the
second non-unit group element g2 ∈ Z3 can be obtained from replacing α → α2

in formula (5.53). Ultimately, we therefore arrive at the Euler characteristic

χ(dP1/Z3;O(m,n)) =
χ+ χg + χg

2

3

=
1

3

[
1 +m+mn+

n(1− n)

2
+

2(α−m + αm)

3
+

2αm−n

(1− α)2
+

2α−(m−n)

(1− α2)2

] (5.54)

for the orbifold space obtained from the Z3-action on the single blowup of P2.
Turning to the counting of g-invariant LMs from our algorithm as in (5.44), we
find once again perfect agreement with the Euler characteristic derived from the
Lefschetz theorem above.

Example 5.5.3 (Example: dP3/Z3). The natural extension to the previous ex-
ample is to blowup the dP1 twice further, giving us the dP3 surface with the toric
data in table 5.3. Once again we employ the same extension of the action (5.29)
on the base. However, in order to simplify the subsequent computation, this time
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we choose a different equivariant structure, which is induced via

g : (x1, . . . , x6) 7→ (x1, αx2, x3, αx4, x5, x6)

∼ (αx1, α
2x3, x3, x4, x5, x6).

for α :=
3
√

1 = e
2πi
3 . (5.55)

The Z3-action on dP3 reveals six fixpoints which can be related to the “splitting”
of each of the three 1

3
-fixpoint contributions from the original P2 computation.

Computing the induced normal bundle representation and relative signs via

QdP3(mH + nX + pY + qZ) = xa1x
b
2x

m−a−b
3 xn−m+a+b

4 xp−b5 xq−a6 (5.56)

is completely analogous, albeit quite laborious, to the previous cases and yields
the following fixpoint data:

P1 = (1, 0, 1, 0, 1, 1) N̄P1 = (N̄α2

P1
)2 1

(1−α2)2 1 ,

P2 = (0, 1, 1, 1, 0, 1) N̄P2 = (N̄α2

P2
)2 1

(1−α2)2 αm−n+p ,

P3 = (1, 1, 0, 1, 1, 0) N̄P3 = (N̄α2

P3
)2 1

(1−α2)2 αq−m−n ,

P4 = (0, 1, 1, 0, 1, 1) N̄P4 = (N̄α
P4

)2 1
(1−α)2 αn−m ,

P5 = (1, 0, 1, 1, 1, 0) N̄P5 = (N̄α
P5

)2 1
(1−α)2 αm−n−q ,

P6 = (1, 1, 0, 1, 0, 1) N̄P6 = (N̄α
P6

)2 1
(1−α)2 α−n−p .

(5.57)

Employing once again the well-known Riemann-Roch-Hirzebruch formula, the
Euler characteristic of dP3 turns out to be

χ(dP3,O(m,n, p, q)) = 1−m2 +mn+mp+mq

+
n(1− n) + p(1− p) + q(1− q)

2

(5.58)

and from the fixpoint data in (5.58) we can compute the Lefschetz number

χg(dP3;O(m,n, p, q)) =
1 + αm−n+p + αq−m−n

(1− α2)2

+
αn−m + αm−n−q + α−n−p

(1− α)2
.

(5.59)

Again, this number will not be an integer for a generic choice of the bundle divisor
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D = mH + nX + pY + qZ. The second Lefschetz number χg2 can be obtained
by replacing α → α2 in formula (5.59), such that the average of the three terms
gives us the Euler characteristic of the orbifold space dP3/Z3:

χ(dP3/Z3;O(m,n, p, q)) = 1−m2 +mn+mp+mq

+
n(1− n) + p(1− p) + q(1− q)

2
+

1

3

+
αm−n + αn+p + αm−n+p + α−m+n+q + α−m−n+q

(1− α2)2

+
α−m+n + α−n−p + α−m+n−p + αm−n−q + αm+n−q

(1− α)2
.

(5.60)

By comparison to the LM counting of our algorithm, we find once again perfect
agreement. In addition to simply providing a more complicated example, the dP3

LM counting also involves non-trivial multiplicity factors 2. Consider for example
the line bundle O(−5,−1,−1,−1), which has six monomials each contributing
with multiplicity factor 2. Applying the involution (5.55) (that was chosen for
the equivariant structure and therefore directly acts on the LMs) we observe the
following:

2×

(
x2

4

x1x2x3
3︸ ︷︷ ︸

g→α

,
x4x5

x1x2
2x

2
3︸ ︷︷ ︸

g→α2

,
x2

5

x1x3
2x3︸ ︷︷ ︸

g→1

,
x4x6

x2
1x2x2

3︸ ︷︷ ︸
g→1

,
x5x6

x2
1x

2
2x3︸ ︷︷ ︸

g→α

,
x2

6

x3
1x2x3︸ ︷︷ ︸
g→α2

)
︸ ︷︷ ︸

h1(dP3;O(−5,−1,−1,−1)) = (4inv, 4α, 4α2)

(5.61)

Plugging the bundle charges into (5.60) yields

χ(dP3/Z3;O(−5,−1,−1,−1)) = −4, (5.62)

once again in agreement with the result obtained from the counting of invariant
LMs. Similar to the observation made for Z2-equivariant situations we there-
fore find the same “canonical” behavior of such LMs, i.e. an invariant LM with
multiplicity 2 simply contributes twice to the counting of invariant LMs.
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5.6 Generalized equivariant algorithm conjecture

The steps involved in the computation of the Lefschetz character in the P2 ex-
ample are completely analogous on Pn−1 with the group Zn and the base space
generator involution

g : xi 7→ αixi with α :=
p
√

1 = e
2πi
p . (5.63)

We have successfully checked this for various values of n and bundles O(k). To-
gether with the empirical evidence gathered from the presented and various other
examples, we therefore arrive at the following hypothesis which generalizes the
conjecture from section 5.6:

Conjecture 5.6.1 (G-equivariant cohomology calculation of finite groups:). Let
PΣ be a toric variety and OPΣ

(D) some line bundle over PΣ. Consider furthermore
the generator involutions on the base σ1, . . . , σr : X −→ X which allow for an
equivariant structure on the line bundle OPΣ

(D). The cohomology of OPΣ
(D)

decomposes according to theorem 4.6.1 into a direct sum of spaces that arise
according to its contributing Laurent monomials:

Contributing LMs = {s1, ..., sN}

⇒ H•(PΣ;OPΣ
(D)) =

N⊕
k=1

H•sk(PΣ;OPΣ
(D)) .

(5.64)

The equivariant cohomology groups are then given by the direct sum of contribut-
ing spaces that correspond to Laurent monomials that are themselves invariant
under the generators of G and those that are not, i.e. if we put the sk in (5.64)
in order such that the first k̃ are invariant and the last N − k̃ are non-invariant
after applying all generators of G on the homogeneous coordinates in the LMs,
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we find

H•(PΣ;OPΣ
(D)) =H•inv(PΣ;OPΣ

(D))⊕H•non-inv(PΣ;OPΣ
(D)) ,

H•(PΣ/G;OPΣ/G(D)) =H•inv(PΣ;OPΣ
(D)) =

k̃⊕
k=1

H•sk(PΣ;OPΣ
(D)),

H•non-inv(PΣ;OPΣ
(D)) =

N⊕
k=k̃

H•sk(PΣ;OPΣ
(D))

(5.65)

At this point we would like to emphasize the tremendous computational power
of this conjecture. Already for the dP3 example which is still a rather sim-
ple surface, we see that the computations necessary to just determine the Euler
characteristic (much less than the cohomology groups themselves) from the estab-
lished mathematics is quite enduring, whereas this computation for reasonably
low values of the bundle charges can be done via pen and paper in a couple of
minutes. As before the efficiency and ease-of-usage this conjecture provides ul-
timately rests on the direct applicability of the involution mappings defined on
the coordinates of the base on the LMs representing the cohomology.





Chapter 6
Subvarieties and Calabi-Yau Manifolds

Toric varieties are really convenient to handle as we have seen and we could
write down many nice formulæ to calculate several of their topological quantities.
Nevertheless, we will see in the remainder of this section that it is also quite
important to carry our machinery over to subvarieties. Luckily we can usually get
these from well-understood calculations that are performed on the toric variety
itself. So in this section we will introduce all the methods necessary in order to
obtain properties of the subvariety from those of the ambient toric variety.
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6.1 Physical motivation: Calabi-Yau compactifications,

D-branes and GUT divisors in F-theory

The motivation to introduce all the mathematics in this chapter lies in the con-
struction of heterotic string models as we described in chapter 2. There we saw
the need for a very specific kind of geometric space to obtain sensible compacti-
fications of such theories. Such spaces are called Calabi-Yau manifolds and have
a couple of equivalent definitions which we will introduce in the beginning of the
next section. One can show that toric varieties are not suited as compactification
spaces since they are either Calabi-Yau or compact but never both and we need
both for the purpose of compactification. Hence we need to consider subvarieties
of toric varieties. Not only in the heterotic setting but also in type II string the-
ories subvarieties of toric spaces will arise naturally. For instance D-branes that
live on a Calabi-Yau space can be described as subvarieties of the Calabi-Yau
and hence as higher codimensional subvarieties of the toric variety in our setup.
Another example is the GUT divisor and the matter curve in F-theory arising as
codimension two and three subvarieties of a Calabi-Yau four-fold respectively.

6.2 Calabi-Yau spaces

Definition 6.2.1 (Calabi-Yau). Let M be a complex dM-dimensional Kähler
manifold. M is called Calabi-Yau, iff

M has vanishing first Chern class: c1(M) := c1(TM) = 0 .

Yau⇔ The Kähler metric has SU(3) holonomy and with respect to this metricM
is Ricci flat, i.e. the Ricci tensor vanishes: Ric(M) = 0 .

⇔ M admits for a holomorphic nowhere vanishing covariantly constant spinor.

Here the equivalence between the first and the second definition is highly non-
trivial and was conjectured by Calabi in 1957 [104] before it was proven twenty
years later by Yau [82]. For heterotic string theory in particular the first of
these equivalent statements will arise as condition on the so-called target space
of the corresponding non-linear sigma model (more about this in chapter 2).
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Therefore this is the property of Calabi-Yau spaces we will be using throughout
the remainder.

We have seen a lot about explicit calculations on toric varieties and we want to
have a Calabi-Yau space for string compactifications. Hence it would be a great
thing to use toric varieties that have the Calabi-Yau property. But there is a
problem here which we state in following theorem.

Theorem 6.2.1. A toric variety can only be Calabi-Yau if it is non-compact.

So we have actually no chance to build compact toric varieties that have the
Calabi-Yau property. But in order to compactify the space time in which the
heterotic string lives, we need such a Calabi-Yau to be compact. Are chapters 3
and 4 actually useless for string theorists? Well, luckily they are not. Although
it is not possible to realize a compact Calabi-Yau manifold as a toric variety, it
is still possible to realize it as a subvariety of a toric variety. More specifically
one can obtain it for instance as a hypersurface inside a toric variety by imposing
a constraint in form of an equation. One can also introduce more than one
constraint and if one does it in a way such that the corresponding hypersurfaces
intersect each other orthogonally then one obtains a proper subvariety with a
unique dimension. Such subvarieties are then called complete intersections. In
terms of homogeneous degrees of these hypersurfaces on can reformulate the
Calabi-Yau condition in the following way:

Theorem 6.2.2. Let PΣ be a toric variety with coordinates x1, ..., xn with degrees
Q1

α, ..., Qn
α. Let furthermore G1, ..., Gc be homogeneous polynomials in PΣ. The

complete intersection S of the corresponding subvarieties

S = {G1 = 0} ∩ ... ∩ {Gc = 0} (6.1)

has vanishing first Chern class if and only if the homogeneous degrees of the
hypersurfaces sum up to sum of the homogeneous degrees of the coordinates of
PΣ, i.e.

S is Calabi-Yau ⇔ ||G1||α + ...+ ||Gc||α = Q1
α + ...+Qn

α ∀α . (6.2)

Example 6.2.1. The easiest and most studied example of such a Calabi-Yau
manifold is given for the simple projective space P4. Here for five coordinate we
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have Q1 = 1. Hence in order to define a hypersurface that is Calabi-Yau we need
a polynomial of homogeneous degree five and for instance

G = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 (6.3)

already does the trick1. Since we have a polynomial of degree five, the space
M := {G = 0} is usually referred to as the Quintic.

In the following we will describe how we can derive the topological quantities
introduced in the chapters 3 and 4 now for subvarieties that are given by the
intersection of the vanishing sets of any homogeneous polynomials. Here we will
not make use of the Calabi-Yau property and the methods will apply generally.

6.3 Line bundles and their cohomology

In chapter 4 we have introduced our algorithm that allows to calculate the co-
homology of line bundles in a very efficient way. Since we have control over this
part we would like to see how we can get the cohomology of arbitrary line bundles
that live on a subvariety. In fact all the information about it is encoded in the
cohomology of line bundles over the ambient toric variety and hence these are
roughly all the ingredients one needs.

6.3.1 The Koszul sequence for hypersurfaces

Consider an irreducible hypersurface S ⊂ PΣ given by some homogeneous poly-
nomial G(x1, ..., xn), i.e.

S := {(x1, ..., xn) ∈ PΣ | G(x1, ..., xn) = 0} . (6.4)

For the remainder we will use S as a place holder for the actual subvariety as in
(6.4) but at the same time as a place holder for the homogeneous degree of the
corresponding polynomial, i.e. we also define S := ||G||. It should be clear from
the context when we are referring to the homogeneous degree and when to the
actual subvariety.

1You may of course choose a different polynomial. The only restriction here is that is gives
rise to a smooth subvariety.
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To see how we can relate the cohomology of a line bundle on such a subvariety
S to the one on the ambient space PΣ, we have to make use of the fact that the
divisor that corresponds to the codimension one subvariety S gives also rise to a
line bundle OPΣ

(S), as explained in 3.4. There we saw that global sections s of
such a line bundle are elements in the zeroth cohomology group

s ∈ H0(PΣ;O(S)) (6.5)

which are simply given by monomials in the homogeneous coordinates of PΣ

that have a multi-degree corresponding to the multi-degree of defining equation
{G = 0} of the divisor S, i.e.

||G|| = ||s|| . (6.6)

Similarly, the elements of higher cohomology groups are given by Laurent-monomials
with the right degree. Hence G can be considered as a map from one line bundle
to a different one, which in the simplest case reads

OPΣ

G−→OPΣ
(S) , (6.7)

mapping the structure sheaf OPΣ
of PΣ to the line bundle that corresponds to S.

One can also perform the dual version of this and map the dual line bundle of
OPΣ

(S) to the structure sheaf:

OPΣ
(−S)

G
↪−→OPΣ

. (6.8)

The nice thing, already indicated by the arrow, is now that this is actually an
injective map. Furthermore the restriction map R restricts from the structure
sheaf of PΣ to the structure sheaf OS ⊂ OPΣ

of S and it is therefore surjective.
So we have built a sequence of line bundles that is short and exact:

0 −→ OPΣ
(−S)

G
↪−→OPΣ

R
−�OS −→ 0 . (6.9)

That it is exact, i.e. G ◦R = 0 is clear since we first map an element of OPΣ
(−S)

basically by multiplication of G to an element of OPΣ
and then put G to zero
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with the restriction map R:

(G ◦R)(s) = R(G · s) = G · s|G=0 = 0, for some section s of OPΣ
(−S) . (6.10)

In order to relate an arbitrary line bundle on the hyper surface, say OS(D) with
line bundles on the ambient space we simply tensor the sequence (6.9) with it:

0 −→ OPΣ
(−S)⊗OPΣ

(D)
G
↪−→OPΣ

⊗OPΣ
(D)

R
−�OS ⊗OPΣ

(D) −→ 0 (6.11)

which gives us the following short exact sequence:

0 −→ OPΣ
(−S +D)

G
↪−→OPΣ

(D)
R
−�OS(D) −→ 0 . (6.12)

This is called the Koszul sequence for an arbitrary line bundle on the hyper
surface S. Since it is exact and also short, due to theorem 4.3.2 there also exists
a corresponding long exact sequence in cohomology:

0 // H0(PΣ;OPΣ
(−S +D)) // H0(PΣ;OPΣ

(D)) // H0(D;OS(D))

// H1(PΣ;OPΣ
(−S +D)) // H1(PΣ;OPΣ

(D)) // H1(D;OS(D))

// H2(PΣ;OPΣ
(−S +D)) // H2(PΣ;OPΣ

(D)) // H2(D;OS(D)) // . . .

.

(6.13)

The maps G and R in the short sequence are of course essential for the mappings
in this sequence and in particular they induce mappings between the first and
second column as well as the second and the third column respectively, i.e.

H i(PΣ;OPΣ
(S +D))

Gi−→H i(PΣ;OPΣ
(D))

Ri−→H i(S;OS(D)) . (6.14)

This is in fact the easier part if one wants to do the honest computation of the
cohomology groups and it is a little more involved to figure out the coboundary
maps 2

H i(D;OD)
δi−→H i+1(PΣ;OPΣ

(−S +D)) . (6.15)

In practice in order to calculate the cohomology groups H i(S;OS(D)) one

2See [105] for a full mathematical account on the Koszul complex, in particular the mappings.
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would need to compute the image of Ri which is equal to the complement of the
image of Gi in H i(PΣ;OPΣ

(D)) and then add a space that is isomorphic to the
image of δ in H i+1(PΣ;OPΣ

(−S +D)) which is itself equal to the kernel of Gi+1

by exactness:

H i(S;OS(D)) ∼= im(Ri)⊕ im(δi) = im(Ri)⊕ ker(Gi+1) (6.16)

Example 6.3.1. Let me at this point state a couple of examples to make the
ideas more assessable. We begin with a rather trivial one which still gives an idea
how it works. Choose the ambient space as P2 as we did in subsection 4.7.2 and
furthermore choose the hypersurface from a homogeneous degree one polynomial:

S =
{

(x1, x2, x3) ∈ P2 | G = x1 + x2 + x3 = 0
}
. (6.17)

We will now show how to calculate the cohomology of the line bundle OS(3). In
order to do that we have to employ the Koszul sequence (6.31) which we find in
this case to have the form

0 −→ OP2(2)
G
↪−→OP2(3)

R
↪−→OS(3) −→ 0 , (6.18)

which gives the corresponding long exact sequence in cohomology (6.13) and looks
as

· · · −→ H i(P2;OP2(2))
G
↪−→H i(P2;OP2(3))

R
↪−→H i(S;OS(3)) −→ · · · , (6.19)

where the induced maps G and R between the ith cohomology groups are then
just given by

G(si2) =(x1 + x2 + x3) · si2 , si2 ∈ H i
P2(2) , (6.20)

R(si3) =

 0, if si3 = (x1 + x2 + x3) · si2
si3, otherwise

, si3 ∈ H i
P2(3) . (6.21)

Here one can see explicitly how the image of G gets mapped to the kernel of R.
Having in mind the computation of line bundle cohomology of P2 in example 4.7.1
we know that actually H i

P2(a) is zero for all a, i > 0 and we only get contributions
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for i = 0 and hence these vector spaces are just generated by monomials,

H0
P2(2) =

〈
x2

1, x1x2, x
2
2, x1x3, x2x3, x

2
3

〉
, (6.22)

H0
P2(3) =

〈
x3

1, x
2
1x2, x1x

2
2, x

3
2, x

2
1x3, x1x

2
3, x

3
3, x

2
2x3, x2x

2
3, x1x2x3

〉
=: 〈e1, e2, e3, e4, e5, e6, e7, e8, e9, e10〉 (6.23)

and have therefore dimension 6 and 10 respectively. Because of the vanishing
of all higher-dimensional cohomologies, it is pretty easy to obtain the desired
cohomology group since it is given by the image of R which is isomorphic to the
quotient of H0

P2(OS(3)) by the image of G:

H0
S(OS(3)) =im(R) = H0

P2(3)|G=x1+x2+x3=0 (6.24)

= 〈e1, e2, e3, e4, e5, e6, e7, e8, e9, e10〉 |G=0 (6.25)

=
〈e1, e2, e3, e4, e5, e6, e7, e8, e9, e10〉
〈e1,2,5, e2,3,10, e3,4,8, e5,6,10, e8,9,10, e6,7,9〉

, (6.26)

where we use the notation ei,j,k := ei + ej + ek to denote the image vectors of the
base vectors of H0

P2(2) under G, for instance

G(x2
1) = x2 · (x1 + x2 + x3) = e1 + e2 + e5 = e1,2,5 . (6.27)

So the task of deriving H0
S(OS(3)) has basically reduced to the task of taking a

quotient vector space and hence to find a set of vectors that complete the image
of G to form a base of H0

P2(OS(3)). In our example here the first four base vectors
already do the job and hence we obtain

H0
S(OS(3)) = 〈e1, e2, e3, e4〉 =

〈
x3

1, x
2
1x2, x1x

2
2, x

3
2

〉
. (6.28)

Remark. In this example we showed very detailed how to do the calculation prop-
erly. In practice one will not always need the actual base vectors of the desired
cohomology class but one may simply be interested in the dimension of it. If so,
one will not always be faced with the task of deriving all the maps and kernels
explicitly but may use the exactness of the sequence to predict the dimension.
In Example 6.3.1 for instance if we were only interested in the dimension we
could have used the that the dimension of a quotient space dimA/B is simply
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dimA−dimB which would have given us h0
S(OS(3)) = 4 without calculating the

image of G.

6.3.2 The Koszul sequence for complete intersections

Everything we explained in 6.3.1 can now also be extended to the situation where
subvariety S, we consider, is not only a hupersurface but a complete intersection
of hypersurfaces:

S =
c⋂
j=1

Sj , where Sj := {(x1, ..., xn) ∈ PΣ | Gj(x1, ..., xn) = 0} . (6.29)

This means that we have c hypersurfaces that intersect transversely inside the
toric ambient space PΣ. Therefore the dimension dS of S will be the dimension d of
PΣ minus the codimension c of S. The generalization of the plain Koszul sequence
(6.9) is then derived by successively application of (6.9) for each hypersurface Si.
As we had for codimension one a sequence of 2+1 sheaves we will now have one
additional sheaf for each additional codimension. Doing this procedure carefully
one finds

0 −→ OPΣ

(
−

c∑
j=1

Sj
)

//
⊕

j1<...<jc−1

OPΣ

(
−

c−1∑
k=1

Sjk
)

//
⊕

j1<...<jc−2

OPΣ

(
−

c−2∑
k=1

Sjk
)

// . . . //
⊕
j1<j2

OPΣ
(−Sj1 − Sj2)

//
⊕
j

OPΣ
(−Sj) // OPΣ

// OS −→ 0

(6.30)

Note that given Λ1
⊕

i1
OPΣ

(−Si1) =
⊕

i1
OPΣ

(−Si1) all line bundles prior in the
sequence chain can be interpreted as higher exterior powers. Twisting the whole
sequence by OPΣ

(D) leads to

0 −→ OPΣ

(
−

c∑
j=1

Sj +D
)

// . . . //
⊕
j1<j2

OPΣ
(−Sj1 − Sj2 +D)

//
⊕
j1

OPΣ
(−Sj1 +D) // OPΣ

(D) // OS(D) −→ 0 .

(6.31)
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The maps between the sheaves are basically the Gj that have to be applied to
each direct summand properly. The last map is as before the restriction to the
subvariety. In contrast to the situation with a simple hypersurface, we are not
finished yet, since the sequence (6.31) is not a short exact one and hence does
not give rise to a long exact sequence in cohomology. But one can easily see that
an exact sequence of length c+ 2 yields c short exact sequences:

0 −→ A1

g1
↪−→A2

g2−→A3
g3−→A4

g4−→· · · gc−1−→Ac
gc−→Ac+1

gc+1

−�Ac+2 −→ 0 (6.32)

can be decomposed to

0 −→ A1

g1
↪−→A2

g2−�im(g2) −→ 0, (6.33)

0 −→ im(g2)
ι

↪−→A3

g3−�im(g3) −→ 0, (6.34)
... (6.35)

0 −→ im(gc−1)
ι

↪−→Ac+1

gc+1

−�Ac+2 −→ 0 , (6.36)

where ι denotes the inclusion map. For the case of the Koszul sequence by using
several auxiliary sheaves Ik which represent the image of the corresponding map,
we find the following c short exact sequences:

0 −→ OPΣ

(
−

c∑
j=1

Sj +D
)
↪−→

⊕
j1<...<jc−1

OPΣ

(
−

c−1∑
k=1

Sjk +D
)
−� I1 −→ 0 ,

0 −→ I1 ↪−→
⊕

j1<...<jc−2

OPΣ

(
−

c−2∑
k=1

Sjk +D
)
−� I2 −→ 0 ,

...

0 −→ Ic−2 ↪−→
⊕
j

OPΣ
(−Si +D) −� Ic−1 −→ 0 ,

0 −→ Ic−1 ↪−→OPΣ
(D) −� OS(D) −→ 0 .

(6.37)
These are the ones we are actually going to use in explicit calculations. This
means that in order to derive the dimensions of the cohomology groups of OS(D)

we first have to write down all the required long exact sequences and derive the
cohomologies of c− 1 auxiliary sheaves.
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Example 6.3.2. For instance, for a complete intersection S of two hypersurfaces
S1 and S2, the splitting of the generalized Koszul sequence (6.37) is given by

0 −→ OPΣ
(−S1 − S2 +D)

(G1,G2)
↪−→ OPΣ

(−S1 +D)⊕OPΣ
(−S2 +D)

(
G2
G1

)
−� I1 −→ 0

0 −→ I1
ι

↪−→ OPΣ
(D)

R
−� OS(D) −→ 0

(6.38)

and hence calculated in two steps.





Chapter 7
Vector Bundle-Valued Cohomology

So far we have learned a lot about calculating the cohomology of line bundles
for a large class of spaces. We have seen how to calculate them on toric varieties
and subvarieties thereof and also how to obtain the equivariant cohomology of
line bundles on toric varieties that allow for an additional discrete group action.

In this chapter we want to see how we can make use of these concepts in order
to calculate the cohomology of higher-rank vector bundles. Starting with the
tangent bundle of the toric variety will lead us to the methods to obtain also the
tangent bundle cohomology of subvarieties. This is already enough to determine
the full Hodge-diamond of a Calabi-Yau three-fold and will be extended to more
generic holomorphic vector bundles that may even be easier to work with than
the tangent bundle. One can construct such vector bundles conveniently via the
so-called monad construction or by extension. Following the tangent bundle-
valued cohomology we will also point out how to obtain the cohomology of vector
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bundles that are given by tensor products of the initial bundle. In this context
Λ2V and V ⊗ V will be of particular interest.

7.1 Physical motivation: Heterotic GUTs, moduli spaces

of heterotic and type IIA/B theories

In chapter 2 we saw that we need a Calabi-Yau three-fold for heterotic string com-
pactifications and furthermore that another essential ingredient is a holomorphic
vector bundle of rank three, four or five. Of course one can always choose the
tangent bundle as a rank three bundle but one can also choose the vector bundle
completely independent from the tangent bundle which will give more freedom on
the model building side, see chapter 2 for more details. There we saw that from
a rank three, four and five vector bundle we can obtain a GUT with gauge group
E6, SO(10) and SU(5) respectively and the latter two are phenomenologically
more interesting than the E6 case. In all cases the spectrum of our theory will
crucially depend on the holomorphic vector bundle. But also for type II models
that live on Calabi-Yaus we can employ the methods of this chapter since the
number of moduli of such a theory is determined by the two independent Hodge
numbers of the Calabi-Yau. These Hodge numbers are nothing but the dimen-
sion of the first and the second tangent bundle-valued cohomology groups of the
Calabi -Yau.

7.2 Bundle-valued cohomology

In section 4.2 we have introduced the idea of de Rham cohomology for smooth
manifolds as well as the concept of Dolbeault cohomology for complex manifolds.
In fact there is a nice relation between Dolbeault cohomology and the plain Čech
cohomology of holomorphic vector bundles. As we have seen in (4.18), the space
of differential forms with respect to d is split into a direct sum of forms arising
from the splitting of d into a holomorphic and an anti-holomorphic part ∂, ∂̄:

Hk
dR(M) =

⊕
p+q=k

Hp,q(M) .
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One can now show that the (p, q)th Dolbeault cohomology group is nothing else
but the qth Čech cohomology group of the vector bundle of the pth exterior power
of the cotangent bundle:

Hp,q(M) = Hq(M; Ω0,p
M) . (7.1)

This statement is not constrained to exterior powers of the cotangent bundle but
can be applied to arbitrary holomorphic vector bundles V . This means that for
anti-holomorphic differential forms that take values in the holomorphic vector
bundle V , we can extend the Dolbeault operator ∂̄ to act on such forms and
hence obtain a complex

0 −→ V ∂̄−→ V ⊗ Ω0,1 (M)
∂̄−→ V ⊗ Ω0,2 (M)

∂̄−→ V ⊗ Ω0,3 (M)
∂̄−→ · · · (7.2)

whose cohomology equals the Čech cohomology of the holomorphic vector bundle,
i.e.

Hq(M;V) =
ker(∂̄)

im(∂̄)
, where

∂̄ : V ⊗ Ω0,q (M) −→ V ⊗ Ω0,q+1 (M) .

(7.3)

This way we can think of the qth Čech cohomology group of a bundle V simply
as the V-valued ∂̄-closed anti-holomorphic differential forms that are at the same
time not ∂̄-exact.

Example 7.2.1 (Hodge diamond of a three-fold). As a nice application we can
now express the Hodge diamond (4.19) of a smooth manifoldM simply in terms
of the Čech cohomology of exterior powers of the cotangent bundle according to
(7.1) which for a three-dimensional manifold reads as shown in table 7.1 which
reduce due to complex conjugation and Poincare duality to the one shown in table
7.2. Therefore for a three-fold it is sufficient to calculate the Čech cohomology
of the structure sheaf as well as the first and second cohomology groups of the
tangent bundle. If we are dealing with a Calabi-Yau manifold we can simplify
this even further and have to calculate only two independent cohomology groups
as shown in table 7.3.

As we will see below the calculation of Čech cohomology of a holomorphic
vector bundle can in many cases be reduced to the calculation of line bundle
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H0(M;O)

H0(M;T ∗M) H1(M;O)

H0(M; Λ2T ∗M) H1(M;T ∗M) H2(M;O)

H0(M; Λ3T ∗M) H1(M; Λ2T ∗M) H2(M;T ∗M) H3(M;O)

H1(M; Λ3T ∗M) H2(M; Λ2T ∗M) H3(M;T ∗M)

H2(M; Λ3T ∗M) H3(M; Λ2T ∗M)

H3(M; Λ3T ∗M)

(7.4)

Table 7.1.: General Hodge diamond of a three-fold

H0(M;O)

H1(M;O) H1(M;O)

H2(M;O) H1(M;T ∗M) H2(M;O)

H3(M;O) H2(M;T ∗M) H2(M;T ∗M) H3(M;O)

H2(M;O) H1(M;T ∗M) H2(M;O)

H1(M;O) H1(M;O)

H0(M;O)

.

Table 7.2.: Poincare duality applied to a general Hodge diamond of a three-fold

1

0 0

0 H1(M;T ∗M) 0

1 H2(M;T ∗M) H2(M;T ∗M) 1

0 H1(M;T ∗M) 0

0 0

1

.

Table 7.3.: General Hodge diamond of a Calabi-Yau three-fold
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cohomology of various line bundles and therefore we can apply theorem 4.6.1 for
this purpose, too.

7.3 Tangent bundle-valued cohomology

Let us begin basic with a very natural vector bundle of the toric ambient variety
PΣ, i.e. its tangent bundle TPΣ

. Let Di be the toric divisor {xi = 0} associated
to each homogeneous coordinate xi of PΣ. Then there is a short exact sequence

0 −→ O⊕rPΣ

⊗Qixi
↪−→

n⊕
i=1

OPΣ
(Di) −� TPΣ

−→ 0 , O⊕rPΣ
:=

r⊕
k=1

OPΣ
(7.5)

where r denotes the number of linear equivalence relations defining the toric
variety as before. One can show that (7.5) can be used to define the tangent
bundle of PΣ as the following quotient space

TPΣ
=

⊕n
i=1OPΣ

(Di)
im(Qixi)

. (7.6)

Furthermore, due to exactness, (7.5) provides us with a long exact sequence in
cohomology using theorem 4.3.2

0 // H0(PΣ;OPΣ
)⊕r //

n⊕
k=1

H0(PΣ;OPΣ
(Dk)) // H0(PΣ;TPΣ

)

// H1(PΣ;OPΣ
)⊕r //

n⊕
k=1

H1(PΣ;OPΣ
(Dk)) // H1(PΣ;TPΣ

)

// H2(PΣ;OPΣ
)⊕r //

n⊕
k=1

H2(PΣ;OPΣ
(Dk)) // H2(PΣ;TPΣ

) // . . .

(7.7)
which allows by computingH i(PΣ;OPΣ

) as well asH i(PΣ;OPΣ
(Dk)) the derivation

of H i(PΣ;TPΣ
). The map ⊗Qixi in (7.5) generalizes canonically to a map in (7.7).

For the cotangent bundle the story is just as easy. The only thing we have to do
is dualizing (7.5) which gives

0 −→ T ∗PΣ

∼= Ω1
PΣ
↪−→

n⊕
k=1

OPΣ
(−Dk) −� O⊕rPΣ

−→ 0 , (7.8)
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where exactness is valid also in the dual sequence and one may derive the induced
long exact sequence in order to calculate H i(PΣ;T ∗PΣ

).

7.3.1 Hypersurfaces

So far we only know how to derive the (co)tangent bundle-valued cohomology
groups of the toric ambient space. The situation becomes a little bit more involved
if we are interested in the (co)tangent bundle of a hypersurface inside some toric
variety. Let S denote the divisor class of a hypersurface S = {x ∈ PΣ | G = 0}.
Then the tangent bundle of the subvariety S can be derived as the measure of
non-exactness of the sequence

0 −→ O⊕rS
⊗Qixi
↪−→

n⊕
i=1

OS(Di)
⊗ ∂G
∂xi−� OS(S) −→ 0, (7.9)

i.e. with respect to the mappings we have

TS =
ker( ∂G

∂xi
)

im(Qixi)
(7.10)

which defines a quotient bundle of
⊕n

k=1OS(Dk). What we ultimately want is
the cohomology of the tangent bundle an hence we need to split this non-exact
sequence into short exact sequences. Such a split is always possible once one
starts with a short complex and can be derived as pictorially shown in figure 7.1.
In this case here we denote the quotient that defines the auxiliary sheaf by ES
and hence obtain

0 −→ O⊕rS
⊗xi
↪−→

n⊕
k=1

OS(Dk)
R
−� ES −→ 0 ,

0 −→ TS
ι

↪−→ ES
⊗ ∂G
∂xi−� OS(S) −→ 0 ,

(7.11)

where R is the restriction map toQixi = 0. These are now exact, i.e. we effectively
represent the definition of the hypersurface’s tangent bundle by a split into two
exact sequences. The auxiliary sheaf ES in (7.11) is just given as the quotient

ES :=

⊕n
i=1OS(Di)
im(Qixi)

. (7.12)
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(a) Short complex with cohomology in the middle given as the quotient
of the kernel of g by the image of f .

(b) Split of the short complex into two short exact sequences. The cohomology of the
complex in figure 7.1a is now the first space in the second exact sequence.

Figure 7.1.: Split of a complex with cohomology into two exact sequences.

From another perspective the sheaf ES can be identified with the restriction of the
tangent bundle sheaf of the ambient space PΣ, i.e. one may treat ES like TPΣ

|S .

Thus, following the by now established method of using the exactness of the
induced long exact cohomology sequences we first may determine the sheaf co-
homology H i(S; ES) from the first sequence and then run through the second
sequence to determine H i(S;TS). It is also necessary to compute the restrictions
of OPΣ

(Di) to S which is accomplished via tensoring the Koszul sequence (6.9)
with the line bundle OPΣ

(Di), i.e.

0 −→ OPΣ
(Di)⊗OPΣ

(−S)︸ ︷︷ ︸
OPΣ

(Di−S)

↪−→ OPΣ
(Di)⊗OPΣ︸ ︷︷ ︸
OPΣ

(Di)

−� OPΣ
(Di)⊗OS︸ ︷︷ ︸
OS(Di)

−→ 0.

(7.13)
which allows for the computation of the corresponding cohomology groups. In
the same way we have to determine the cohomology groups of OS(S) which gives
us everything to obtain the desired cohomology groups H i(S;TS).

We have seen in (7.2.1) that the Hodge numbers of a Calabi-Yau three-foldM
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can be obtained from the cotangent bundle-valued cohomology groups as

h1,1
M = h1(M;T ∗M) h1,2

M = h2(M;T ∗M) . (7.14)

To get the cotangent bundle-valued cohomology groups of any subvariety S we
just have to dualize all the short exact sequences we just used. This yields the
four sequences

0 −→ E∗S ↪−→
n⊕
i=1

OS(−Di) −� O⊕rS −→ 0 ,

0 −→ OS(−S) ↪−→ E∗S −� T ∗S
∼= Ω1

S −→ 0 ,

0 −→ OPΣ
(Di − S) ↪−→ OPΣ

(Di) −� OS(Di) −→ 0 ,

0 −→ OPΣ
↪−→ OPΣ

(Di) −� OS(Di) −→ 0

(7.15)

which we have to run through to get the cotangent bundle-valued cohomology
groups.

Remark. In fact the cohomology of the tangent bundle and the cotangent bundle
are related via

H i(S;TS) = HdS−i(S;T ∗S) . (7.16)

Hence it suffices to calculate either one or the other and the other will be given
immediately .

Example 7.3.1 (Hodge diamond of the octic hypersurface in P4
11222 ). To exem-

plify the discussed methods, we compute the Hodge diamond of the embedded
Calabi-Yau hypersurfaceM := P4

11222[8]. Since the weighted projective ambient
space P4

11222 has a Z2-singularity and our methods only apply for smooth spaces,
we first perform a toric blow up to get the toric data of the smooth ambient space
PΣ as shown in Table 7.4. We will look at the Calabi-Yau hypersurface M in

PΣ given by a polynomial of homogeneous degree M = (8, 4) and compute its
Hodge diamond. Inserting the data into the first two sequences of (7.15), we get

0 −→ E∗M ↪−→ OM(−1, 0)⊕2 ⊕OM(−2,−1)⊕3 ⊕OM(0,−1) −� O⊕2
M −→ 0

0 −→ OM(−8,−4) ↪−→ E∗M −� T ∗M
∼= Ω1

M −→ 0.

(7.17)
To make use of these, it is necessary to determine the cohomology of OM(−1, 0),
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vertices of the coords GLSM charges divisor class
polyhedron / fan Q1 Q2

v1 = (−1, −2, −2, −2 ) x1 1 0 H

v2 = ( 1, 0, 0, 0 ) x2 1 0 H

v3 = ( 0, 1, 0, 0 ) x3 2 1 2H +X

v4 = ( 0, 0, 1, 0 ) x4 2 1 2H +X

v5 = ( 0, 0, 0, 1 ) x5 2 1 2H +X

v6 = ( 0, −1, −1, −1 ) x6 0 1 X

conditions: 8 4

SR(PΣ) = 〈x1x2, x3x4x5x6〉
Σ(PΣ) =

〈
[2 3 4 5], [1 3 4 5], [2 3 4 6], [2 4 5 6],

[2 3 5 6], [1 3 4 6], [1 4 5 6], [1 3 5 6]
〉

Table 7.4.: The torically blown-up weighted projective space P4
11222 to its smooth

version PΣ with embedded Calabi-Yau hypersurface given by the divisor 8H + 4X with
charges (8, 4).

OM(−2,−1), OM(0,−1), OM and OM(−8,−4), which is done using the Koszul
sequence (6.12). For example, to get OM(−1, 0), one takes the short exact se-
quence

0 −→ OPΣ
(−9,−4) ↪−→ OPΣ

(−1, 0) −� OM(−1, 0) −→ 0 (7.18)

and then looks at the long exact sequence in cohomology. Therefore, it is sufficient
to know the cohomology of the ambient space line bundles OPΣ

(D) with divisor
charges

D ∈
{

(−9,−4), (−1, 0), (−10,−5), (−2,−1),

(−8,−5), (0,−1), (−8,−4), (0, 0), (−16, 8)
}
,

(7.19)

for which our algorithm yields the cohomology group dimensions

h•(PΣ;OPΣ
(−9,−4)) = (0, 0, 0, 0, 2), h•(PΣ;OPΣ

(−1, 0)) = (0, 0, 0, 0, 0) ,

h•(PΣ;OPΣ
(−10,−5)) = (0, 0, 0, 0, 6), h•(PΣ;OPΣ

(−2,−1)) = (0, 0, 0, 0, 0) ,

h•(PΣ;OPΣ
(−8,−5)) = (0, 0, 0, 3, 1), h•(PΣ;OPΣ

(0,−1)) = (0, 0, 0, 0, 0) ,
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h•(PΣ;OPΣ
(−8,−4)) = (0, 0, 0, 0, 1), h•(PΣ;OPΣ

(0, 0)) = (1, 0, 0, 0, 0) ,

h•(PΣ;OPΣ
(−16,−8)) = (0, 0, 0, 0, 105). (7.20)

Note already this extra contribution h3(PΣ;OPΣ
(−8,−5)) = 3 which we will dis-

cuss in a moment. Without the explicit knowledge about the generic hypersurface
equation G = 0 we can obtain the dimensions of the cohomology groups of these
line bundles overM

h•(M;OM(−1, 0)) = (0, 0, 0, 2), h•(M;OM(−2,−1)) = (0, 0, 0, 6),

h•(M;OM(0,−1)) = (0, 0, 3, 1), h•(M;OM(0, 0)) = (1, 0, 0, 1),

h•(M;OM(−8,−4)) = (0, 0, 0, 104). (7.21)

Likewise, we use those dimensions to determine the cohomology of the auxiliary
bundle E∗M from the first sequence of (7.17), yielding

h•(M; E∗M) = (0, 2, 3, 21). (7.22)

In order to compute the cohomology of Ω1
M from the second and final sequence

in (7.17) some small additional input is required. Using (7.21) and (7.22), the
induced long exact sequence takes the form

0 // R0 = 0 // 0 // H0(M; Ω1
M)

// 0 // R2 // H1(M; Ω1
M)

// 0 // R3 // H2(M; Ω1
M)

// R104 // R21 // H3(M; Ω1
M) // 0.

(7.23)

Whereas H0(M; Ω1
M) = 0 and H1(M; Ω1

M) = R2 follow immediately from the
sequence, the remaining two cohomology groups seem to be ambiguous. However,
one should keep in mind that via the symmetries in the Hodge diamond it follows
that

H3(M; Ω1
M) ∼= H0,2(M) ∼= H2(M;OM) = 0 . (7.24)
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The remaining part of the sequence therefore reads

0 −→ R3 ↪−→ H2(M; Ω1
M) −→ R104 −� R21 −→ 0 , (7.25)

such that via 3 − dimH2(M; Ω1
M) + 104 − 21 = 0 as required for exactness we

can determine the result
h•(Ω1

M) = (0, 2, 86, 0). (7.26)

This ultimately gives us the Hodge diamond

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

=

1 b0 = 1

0 0 b1 = 0

0 2 0 b2 = 2

1 86 86 1 b3 = 174

0 2 0 b4 = 2

0 0 b5 = 0

1 b6 = 1

(7.27)

for the octic Calabi-Yau three-fold hypersurface P4
11222[8]. In prospect of chapter

8 we introduce1 the numbers hp,qi which refer to the contribution from the ith line
bundle cohomology group H i(PΣ;OPΣ

(m,n)) to the Hodge number hp,q:

hi(PΣ;OPΣ
(m,n))  hp,qi . (7.28)

It is clear from (7.23) that H2,1(M) = H2(M; Ω1
M) receives two different kinds

of contributions, h2,1
4 (M) = 83 coming from elements in H4(PΣ,OPΣ

(m,n)) and
h2,1

3 (M) = 3 from elements in H3(PΣ,OPΣ
(m,n))2 As we will see in chapter 8,

these contributions are also related to the non-geometric contributions in the
Batyrev formula.

1In order to avoid any confusion, note that the hp,qi here are entirely unrelated to the multi-
plicity factors hi(Q) of chapter 4.

2Let us mention that this split can also be seen in the corresponding Gepner and Landau-
Ginzburg orbifold models, where precisely 3 massless matter states come from so-called
twisted sectors and the remaining 83 from the untwisted sector.



7. Vector Bundle-Valued Cohomology 162

7.3.2 Complete intersection subvarieties

In the last subsection we described a method to calculate the dimensions of
the tangent bundle-valued cohomology groups as well as the Hodge numbers for
three-dimensional hypersurfaces. Now we want to generalize these methods to
the case where the subvariety does not arise as a hypersurface of a toric variety,
but rather as a complete intersection of several hypersurfaces. Conceptually it
is not much of a difference and we proceed in the same way as for the case of a
single hypersurface.

Let {S1, . . . ,Sc} be a set of hypersurfaces in a toric variety PΣ such that their
complete intersection subvariety is of codimension c and denoted by S. The
tangent bundle of S is then, in analogy to (7.9), given by the cohomology of the
complex

0 −→ O⊕rS
⊗Qixi
↪−→

S⊕
i=1

OS(Di)
∂Gj
∂xi−�

c⊕
j=1

OS(Sj) −→ 0 , (7.29)

where as before the Di denote the toric divisors for the respective coordinates.
As before we can perform a splitting of this complex into the two exact sequences

0 −→ O⊕rS ↪−→
n⊕
i=1

OS(Di) −� ES −→ 0 , ]

0 −→ TS ↪−→ ES −�
l⊕

j=1

OS(Sj) −→ 0 .

(7.30)

The dual version for the cotangent bundle reads

0 −→ E∗S ↪−→
n⊕
k=1

OS(−Dk) −� O⊕rS −→ 0 ,

0 −→
l⊕

i=1

OS(−Si) ↪−→ E∗S −� Ω1
S −→ 0

(7.31)

which of course for c = 1 precisely reproduces the hypersurface result (7.11).

Remark. The generalization of codimension one to arbitrary codimensional sub-
varieties seems to be fairly easy since the only thing we have to do is to calculate
one more line bundle in (7.31) or (7.29) for each hypersurface. Conceptually
this really is the only difference but technically this is a huge difference. While



163 7.3. Tangent bundle-valued cohomology

for the hypersurface we could employ the short Koszul sequence (6.12) for every
line bundle we want to obtain, for the case of an intersection of more than one
hypersurface we have to use the long Koszul sequence (6.31) which produces one
more short exact sequence for each additional hypersurface and is also technically
harder to resolve. The higher the codimension the more involved the calculation
and in fact a computer implementation of these calculations are quite early un-
avoidable.

Example 7.3.2 (Hodge diamond of the double quartic in P5
111122). Let us now

see how the methods for a complete intersection Calabi-Yau work in detail for the
case of two intersecting hypersurfaces, by examining the specific case of M :=

P5
111122[4, 4] living in the weighted projective ambient space PΣ := P5

111122. The
corresponding toric data is given in table 7.5. For this example the sequences

vertices of the coords GLSM charges divisor class
polyhedron / fan Q1

v1 = (−1, −1, −1, −2, −2 ) x1 1 H

v2 = ( 1, 0, 0, 0, 0 ) x2 1 H

v3 = ( 0, 1, 0, 0, 0 ) x3 1 H

v4 = ( 0, 0, 1, 0, 0 ) x4 1 H

v5 = ( 0, 0, 0, 1, 0 ) x5 2 2H

v6 = ( 0, 0, 0, 0, 1 ) x6 2 2H

conditions: 4
4

intersection form: 1
4
H5

SR(PΣ) = 〈x1x2x3x4x5x6〉

Table 7.5.: Toric data for the complete intersection Calabi-Yau threefold M :=
P5

111122[4, 4] living in the ambient space PΣ := P5
111122.

(7.31) reduce to

0 −→ E∗M ↪−→ OM(−1)⊕4 ⊕OM(−2)⊕2 −� OM −→ 0 ,

0 −→ OM(−4)⊕OM(−4) ↪−→ E∗M −� ΩM −→ 0
(7.32)

and hence we need to determine the cohomologies of the line bundles OM(−1),
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OM(−2), OM, OM(−4) over the complete intersection Calabi-Yau. This can be
done by employing equations (6.38) which give us the four pairs of sequences, one
pair for each line bundle

0 −→ OPΣ
(−9) ↪−→ OPΣ

(−5)⊕2 −� Ia −→ 0 ,

0 −→ Ia ↪−→ OPΣ
(−1) −� OM(−1) −→ 0 ,

(7.33)

0 −→ OPΣ
(−10) ↪−→ OPΣ

(−6)⊕2 −� Ib −→ 0 ,

0 −→ Ib ↪−→ OPΣ
(−2) −� OM(−2) −→ 0 ,

(7.34)

0 −→ OPΣ
(−8) ↪−→ OPΣ

(−4)⊕2 −� Ic −→ 0 ,

0 −→ Ic ↪−→ OPΣ
−� OM −→ 0 ,

(7.35)

0 −→ OPΣ
(−12) ↪−→ OPΣ

(−8)⊕2 −� Id −→ 0 ,

0 −→ Id ↪−→ OPΣ
(−4) −� OM(−4) −→ 0 .

(7.36)

Deriving the corresponding long exact sequences of the cohomology groups allows
us to determine for each pair first the dimensions of the cohomologies of the
auxiliary sheaf and then in the second step the one for the line bundle itself. For
some of the line bundles in (7.33)-(7.36) all cohomology groups vanish. For those
where this is not the case we find

h•(PΣ;OPΣ
(−9)) = (0, 0, 0, 0, 0, 4) , h•(PΣ;OPΣ

(−10)) = (0, 0, 0, 0, 0, 12) ,

h•(PΣ;OPΣ
(−8)) = (0, 0, 0, 0, 0, 1) , h•(PΣ;OPΣ

(−12)) = (0, 0, 0, 0, 0, 58) ,

h•(PΣ;OPΣ
) = (1, 0, 0, 0, 0, 0) , (7.37)

from which follows the cohomology of the auxiliary sheaves where this is not the
case we find

h•(PΣ; Ia) = (0, 0, 0, 0, 4, 0) , h•(PΣ; Ib) = (0, 0, 0, 0, 12, 0) ,

h•(PΣ; Ic) = (0, 0, 0, 0, 1, 0) , h•(PΣ; Id) = (0, 0, 0, 0, 56, 0) . (7.38)
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Taking this into account one can use the second sequences from (7.33)-(7.34) to
read off

h•(M;OM(−1)) = (0, 0, 0, 4) , h•(M;OM(−2)) = (0, 0, 0, 12) ,

h•(M;OM) = (1, 0, 0, 1) , h•(M;OM(−4)) = (0, 0, 0, 56) , (7.39)

where h•(M;OM) already presents the expected first row of the Hodge diamond.
Now we can proceed in the same way as we did in the last subsection and plug
this into the first equation of (7.32) to get

h•(M; E∗M) = (0, 1, 0, 39) . (7.40)

We insert this result together with h•(M;OM(−4)) from equations (7.39) into the
second equation in (7.32). In order to derive a unique result from the long exact
sequence, we have to use the fact that the complete intersection is Calabi-Yau
which implies that h0(M; Ω1

M) = 0 and find

h•(M; Ω1
M) = (0, 1, 73, 0) (7.41)

Since this is the second row of the Hodge diamond we are looking for and since
M is Calabi-Yau, we can write down the full Hodge diamond as

1 b0 = 1

0 0 b1 = 0

0 1 0 b2 = 1

1 73 73 1 b3 = 148

0 1 0 b4 = 1

0 0 b5 = 0

1 b6 = 1

. (7.42)

Note again that by no means we are using any properties special to this geometry,
i.e. the described procedure is completely algorithmic and can be analogously
applied to any other setting as long as enough zeros appear in the cohomologies to
make use of exactness. All the laborious and somewhat confusing steps involved in
this computation can be easily carried out with our programm cohomCalg Koszul

extension [7] which automates precisely the steps outlined above. In the next

http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
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section we will give an explicit example where the mapping actually cannot be
avoided.

7.4 Vector bundle-valued cohomology

In this section we will generalize the methods reviewed in the last section to
more general vector bundles that can be constructed via the so-called monad
construction or extensions. These methods actually allow for an algorithmic im-
plementation of the determination of most of the topological data which is again
based on the algorithm we presented in theorem 4.6.1. We also wrote the imple-
mentation for this and made the available in the just mentioned cohomCalg Koszul

extension [7].

7.4.1 The monad construction

Exact monad

We begin with the easiest monad which describes in fact a holomorphic vector
bundle V which is in some way even simpler than the (co)tangent bundle. When
we defined the (co)tangent bundle we made use of the Euler sequence (7.9). Here
we had to split it into two parts where the first one was basically the tangent
bundle of the ambient space restricted to the subvariety (7.30). The idea of an
exact monad is to use precisely use this kind of short exact sequence to define a
different vector bundle than the tangent bundle. Therefore the line bundles that
appear in such a monad will in general have nothing to do with the ones that
appear in the Euler sequence. Most generally for such a case we can define the
vector bundle by

0 −→ V ι
↪−→

nΛ⊕
a=1

OS(Na)
⊗Fal−�

np⊕
l=1

OS(Ml) −→ 0 (7.43)

where Fal is a matrix containing polynomials of the right multi-degree, i.e.

||Fal|| = Na −Ml , (7.44)

http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
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and ι is the inclusion map. Hence this definition of the bundle V can also be read
as

V := ker (Fa
l) . (7.45)

Such a vector bundle will obtain a rank corresponding to the number of line
bundles involved in (7.43)

rk(V) = nΛ − np . (7.46)

The choice of the subscripts here are due to the physical interpretation of these
numbers and will become clear in chapter 2. Dualizing this sequence gives us the
dual version V∗ of V and it is rather a matter of convention which one is called
the dual bundle and which the original. In our convention V∗ is determined by
the sequence

0 −→
np⊕
l=1

OS(Ml)
⊗Fal
↪−→

nΛ⊕
a=1

OS(Na)
R
−� V∗ −→ 0 , (7.47)

with the restriction map R which defines the dual bundle by

V∗ := imR =

⊕nΛ

a=1OS(Na)

im (Fal)
. (7.48)

For the tangent bundle the mappings in the monad were given as multiplication
by the coordinate as well as by the derivatives of the hypersurfaces. Here we are
basically free to choose the maps Fal that are part of the definition of the bundle.
Neglecting necessities related to the smoothness of the bundle for the moment,
the only condition on these maps is (7.44) and we are free to choose them as we
please.

Example 7.4.1 (A positive monad over the quintic). Let us state a fairly easy
example especially to see why the maps become crucial for honest calculations of
vector bundle-valued cohomology groups. The example is taken from a scan that
was performed by the authors of [62, 106]. The Calabi-Yau base manifold is the
generic quintic hypersurface in P4

M =

x ∈ P4 | G =
∑

{ij |
∑
ij=5}

Ai1,i2,i3,i4,i5x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 = 0

 . (7.49)
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and the bundle is defined via the short exact sequence

0 −→ V ι
↪−→ O⊕6

M (1)
⊗Fal−� OM(2)⊕3 −→ 0 , (7.50)

wherein the mapping Fal is an 3× 6 matrix that has identical components

Fa
l = x1 + x2 + x3 + x4 + x5 , ∀ai = 1, ...3 and l = 1, ..., 6 . (7.51)

Since (7.50) is a short exact sequence of sheaves, we can write down a long exact
sequence in cohomology 4.3.2. Using the methods from section 6.3.1, we find that

H i(M;OM(1)) = H i(M;OM(2)) = 0, ∀i 6= 0 (7.52)

and the long exact sequence reduces to

0 // H0(M;V) ι // H0(M;OM(1))⊕6 Fal // H0(M;OM(2))⊕3

δ

// H1(M;V) // 0 // 0

// H2(M;V) // 0 // 0

// H3(M;V) // 0 // 0 // . . .

.

(7.53)
Obviously we find

H2(M;V) = H3(M;V) = 0 (7.54)

and are left with the task of determining the kernel of Fal which will be identical
with H0(M;V) and then the image of the coboundary map δ which will give us
H1(M;V). Since

H0(M;OM(1)) = 〈x1, x2, x3, x4, x5〉 and (7.55)

H0(M;OM(2)) = 〈xixj | i, j = 1, ..., 5〉 (7.56)

which means that these spaces contain really all sections, there is no way for the
map Fa

l to send any generator of (7.55) to zero and hence its kernel is simply
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the zero element
ker (Fa

l) = H0(M;V) = 0 . (7.57)

The remaining space H1(M;V) must therefore be isomorphic to the complement
of the image of Fal. Since

h0(M;OM(1)) = 30 and h0(M;OM(2)) = 45 , (7.58)

we finally find
h1(M;V) = 15 (7.59)

and hence
h•(M;V) = (0, 15, 0, 0) . (7.60)

Non-exact monad

Similarly to the above exact monad we can now go ahead and simply use a
non-exact complex in order to define a holomorphic vector bundle:

0 −→
nF⊕
i=1

OS(Li)
⊗Eia−−−→

nΛ⊕
a=1

OS(Na)
⊗Fal−−−→

np⊕
l=1

OS(Ml) −→ 0 . (7.61)

Analogously to the Euler sequence (7.29), the vector bundle V is then given by
the cohomology of this sequence i.e.

V =
ker(Fal)
im(Eia)

(7.62)

and hence the rank reduces by the number of vector bundles in the first direct
sum in (7.61) and is given by

rk(V) = nΛ − np − nF . (7.63)

In contrast to the Euler sequence, we are in principle free to choose the line
bundles Li, Na, Ml in (7.61) arbitrarily. Furthermore we are free to choose the
mappings in (7.61) as we like as long as they have the right degree, i.e.

||Eia|| = ||Na|| − ||Li|| and ||Fal|| = ||Ml|| − ||Na|| (7.64)
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and make sure that the vector bundle is smooth. The split into two exact se-
quences is analogous to the Euler sequence:

0 −→
nF⊕
i=1

OS(Li) ↪−→
nΛ⊕
a=1

OS(Na) −� ES −→ 0 ,

0 −→ V ↪−→ ES −�
np⊕
l=1

OS(Ml) −→ 0 .

(7.65)

7.4.2 Cohomology of Λ2V-, Λ2V∗

In order to compute the Hodge diamond for higher-dimensional spaces, we need
higher exterior powers of the cotangent sheaf, i.e. we require Ωp

PΣ
for p > 1, since

the cotangent bundle is in these cases not only of rank three but of higher rank.
In chapter 2 we will furthermore see that for heterotic models on Calabi-Yau
three-folds equipped with higher rank vector bundle the higher exterior power
ΛkV will become important since they contain information about the spectrum
that cannot be obtained by the plain V bundle-valued cohomology.

Exact monad

Let us begin with the easier case of an exact monad and to get the idea how it
works, consider the following exact sequence

0 −→ A ↪−→ B −� C −→ 0 (7.66)

of vector bundles or sheaves. Then all four of the sequences in table 7.6 are short
and exact as well: This basically yields two ways to compute Λ2A, Λ2B and Λ2C

using the two split short exact sequences

0 −→ Λ2A ↪−→ Q1 −� A⊗ C −→ 0 ,

0 −→ Q1 ↪−→ Λ2B −� Λ2C −→ 0
(7.67)

or the second pair

0 −→ Λ2A ↪−→ Λ2B −� Q2 −→ 0 ,

0 −→ A⊗ C ↪−→ Q2 −� Λ2C −→ 0 .
(7.68)
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0

��

0

��
0 // Λ2A �

� // Q1
// //

� _

��

A⊗ C //
� _

��

0

0 // Λ2A �
� // Λ2B

����

// // Q2
//

����

0

Λ2C

��

Λ2C

��
0 0

.

Table 7.6.: Sequences to determine Λ2A,Λ2B and Λ2C

If we know everything but A, the remaining bundle A ⊗ C can be obtained by
tensoring the exact sequence 7.66 by C:

0 −→ A⊗ C ↪−→ B ⊗ C −� C ⊗ C −→ 0 (7.69)

which has to be taken into account for both ways of the calculation (7.67) and
(7.67).

This general approach can now be applied to the exact monad sequence (7.43),
such that A = V , B =

⊕nΛ

a=1OS(Na) and C =
⊕np

l=1OS(Ml) are used. The
necessary sequences (7.67), (7.68) and (7.69) become

0 −→ Λ2V
::::

↪−→ Q1 −� V ⊗
np⊕
l=1

OS(Ml) −→ 0 ,

0 −→ Q1
::

↪−→
⊕
a1<a2

OS(Na1 +Na2) −�
⊕
l1<l2

OS(Ml1 +Ml2) −→ 0 ,

0 −→ V ⊗
np⊕
l=1

OS(Ml)

::::::::::::::::

↪−→
⊕
a,l

OS(Na +Ml) −�
⊕
l1,l2

OS(Ml1 +Ml2) −→ 0 ,

(7.70)

where we made use of the fact that for line bundles Lk the following holds:

OS(L1)⊗OS(L2) = OS(L1 + L2) and (7.71)
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Λ2

(
m⊕
k=1

OS(Lk)

)
=
⊕
k1<k2

OS(Lk1 + Lk1) . (7.72)

In (7.70) we have furthermore introduced the curly underline in order to indicate
that this is the bundle whose cohomology we want to determine via this specific
sequence. Since from here many sequences will arise, this way we want to keep
track of which bundle cohomology groups we already determined and which not.

Now (7.70) provides everything to obtain the cohomology of Λ2V . Everything
we have to do is to derive the long exact sequences of the latter two short exact
sequences, then determine the cohomology of Q2 as well as the tensor product
that appears in the last sequence and plug the results into the long exact sequence
corresponding to the first sequence in (7.70). The maps in these sequences are
canonically constructed from the maps Fal in the monad (7.43).

Non-exact monad

For the non-exact monad the calculation works similar but we will have to do the
procedure described in last paragraph twice, since we do have two exact sequences
(7.65) from the one non-exact complex (7.61). Applying table 7.6 to the second
sequence of (7.65) we find

0 −→ Λ2V
::::

↪−→ Q1 −� V ⊗
np⊕
l=1

OS(Ml) −→ 0 ,

0 −→ Q1
::

↪−→ Λ2ES −�
⊕
l1<l2

OS(Ml1 +Ml2) −→ 0 ,

0 −→ V ⊗
np⊕
l=1

OS(Ml)

::::::::::::::::

↪−→
⊕
a,l

OS(Na +Ml) −�
⊕
l1,l2

OS(Ml1 +Ml2) −→ 0 ,

(7.73)

and in order to get the auxiliary sheaf Q1 we need to figure out what Λ2ES is.
This we can do by applying table 7.6 to the first sequence of (7.65) resulting in
the following three sequences to determine

0 −→
nΛ⊕
a=1

OS(Na)⊗ ES ↪−→ Q2 −� Λ2ES
:::::

−→ 0 ,
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0 −→
⊕
a1<a2

OS(Na1 +Na2) ↪−→
⊕
l1<l2

OS(Ml1 +Ml2) −� Q2
::
−→ 0 ,

0 −→
⊕
i,a

OS(Li +Na) ↪−→
⊕
a1,a2

OS(Na1 +Na2) −�
nΛ⊕
a=1

OS(Na)⊗ ES
:::::::::::::::::

−→ 0 .

(7.74)

Also here the mappings can be derived canonically from mappings Fal as well
as Eia in the original monad (7.61) by keeping track of them while performing
the tensor products. Obviously we are faced with a lot of sequences for the
determination of Λ2V since not only the six sequences in (7.73) and (7.74) appear
but one additional for each hypersurface and line bundle in these sequences will
also arise due to the Koszul sequence (6.31). Also these calculations can be done
algorithmically and as long as the mappings do not have to be computed explicitly
our program cohomCalg Koszul extension will also provide the computations.

7.4.3 Cohomology of the endomorphism bundle of V

Lets us now come to our last bundle whose cohomology we would like to de-
termine. This is the one which involves most the steps and sequences. In fact
even for simple examples it is a pain to perform the calculations by hand and we
highly recommend to use our program cohomCalg Koszul extension. Even though
it will not be able to perform the computation for all possible scenarios yet, it
will provide a big help and in fact in most the examples one only hast to compute
one specific map by hand and the rest is done by the computer.

In heterotic compactifications one often needs to count the number of bundle
deformations of a bundle that lives on a Calabi-Yau manifold given as a subman-
ifold of a toric variety. These are counted by the dimension of endomorphism
bundle-valued cohomology groups. Specifically we need the dimension of

H1 (S; End(V)) =: H1
S (End(V)) . (7.75)

It is possible to relate this to the computation of cohomology groups with values
in the tensor product of the bundle with its dual, i.e.

h1
S (End(V)) = h1

S (V ⊗ V∗) . (7.76)

http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
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To obtain a formula for this kind of bundle we can simply employ the corre-
sponding monad sequence (7.43) or (7.61). Since we are usually calculating only
the dimension of the cohomology, it comes in handy to put constraints to some
dimensions that will help to obtain a unique result purely from exactness consid-
erations and ignoring the actual mappings. Namely, if we know that the bundle
is actually stable, we can put

h0
S(V ⊗ V∗) = h

dim(S)
S (V ⊗ V∗) = 1 (7.77)

and in addition one can use that

h1
S(V ⊗ V∗) = h

dim(S)−1
S (V ⊗ V∗) . (7.78)

Exact monad

As before let us start with the simpler case of the exact monad (7.43). To obtain
the cohomology of V ⊗ V∗ we have to take the tensor product of the dual exact
monad (7.47) with V from the left. This will then give us two new bundles whose
cohomology we have to determine, namely

V ⊗
nΛ⊕
a=1

OS(−Na) and V ⊗
np⊕
l=1

OS(−Ml) . (7.79)

To obtain these we can simply tensor (7.43) separately with each of the direct
sums of line bundles as in (7.79). In total we will therefore be left with the
following three sequences:

0 −→ V ⊗
np⊕
l=1

OS(−Ml) ↪−→ V ⊗
nΛ⊕
a=1

OS(−Na) −� V ⊗ V∗::::::
−→ 0 ,

0 −→ V ⊗
np⊕
l=1

OS(−Ml)

::::::::::::::::

↪−→
⊕
a,l

OS(Na −Ml) −�
⊕
l1,l2

OS(Ml1 −Ml2) −→ 0 ,

0 −→ V ⊗
nΛ⊕
a=1

OS(−Na)

:::::::::::::::::

↪−→
⊕
a1,a2

OS(Na1 −Na2) −�
⊕
l,a

OS(Ml −Na) −→ 0 , (7.80)

with the maps induced by the maps in the sequences (7.43) and (7.47).
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Non-exact monad

Tensoring the dual sequence to the second sequence of (7.65) with V will give

0 −→ V ⊗
np⊕
l=1

OS(−Ml) ↪−→ V ⊗ E∗S −� V ⊗ V∗:::::::
−→ 0 . (7.81)

and tensoring the dualized first sequence of (7.65) with V results in

0 −→ V ⊗ E∗S
:::::::

↪−→ V ⊗
nΛ⊕
a=1

OS(−Na) −� V ⊗
nF⊕
i=1

OS(−Li) −→ 0 , (7.82)

So what is left to do is do resolve the remaining missing bundles

V ⊗
np⊕
l=1

OS(−Ml) , V ⊗
nΛ⊕
a=1

OS(−Na) , V ⊗
nF⊕
i=1

OS(−Li) . (7.83)

For each of these products we will need another two sequences that arise by
tensoring the corresponding sums of line bundles with both sequences in (7.65):

0 −→
⊕
i,l

OS(Li −Ml) ↪−→
⊕
a,l

OS(Na −Ml) −� ES ⊗
np⊕
l=1

OS(−Ml)

:::::::::::::::::

−→ 0 ,

0 −→ V ⊗
np⊕
l=1

OS(−Ml)

:::::::::::::::::

↪−→ ES ⊗
np⊕
l=1

OS(−Ml) −�
⊕
l1,l2

OS(Ml1 −Ml2) −→ 0 .

(7.84)

0 −→
⊕
i,a

OS(Li −Na) ↪−→
⊕
a1,a2

OS(Na1 −Na2) −� ES ⊗
nΛ⊕
a=1

OS(−Na)

:::::::::::::::::

−→ 0 ,

0 −→ V ⊗
nΛ⊕
a=1

OS(−Na)

:::::::::::::::::

↪−→ ES ⊗
nΛ⊕
a=1

OS(−Na) −�
⊕
l,a

OS(Ml −Na) −→ 0 .

(7.85)

0 −→
⊕
i1,i2

OS(Li1 − Li2) ↪−→
⊕
a,i

OS(Na − Li) −� ES ⊗
nF⊕
i=1

OS(−Ml)

:::::::::::::::::

−→ 0 ,

0 −→ V ⊗
nF⊕
i=1

OS(−Li)
::::::::::::::::

↪−→ ES ⊗
nF⊕
i=1

OS(−Li) −�
⊕
l,i

OS(Ml − Li) −→ 0 .

(7.86)
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Chapter 8
Purely Combinatorial Approach to

Cohomology

Up to now we have seen various methods to obtain the cohomology of topolog-
ical spaces such as manifolds or vector bundles. In all cases, the task eventually
boiled down to calculating the cohomology of some complex, of cochains for ex-
ample. We have also seen besides that there was always the combinatorial task of
counting Laurent monomials and in many cases this was even the main part since
we could obtain the cohomology of the corresponding complex just by making
use of exactness and without the explicit calculation of the maps. In fact purely
combinatorial approaches to calculate cohomologies via lattice polytopes already
exist. The first description of the Hodge numbers of a Calabi-Yau hypersurface
in this fashion due to Batyrev [78] was followed by the generalization to complete
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intersections in higher-dimensional ambient spaces by Batyrev and Borisov [107].
Recently, there were also attempts to calculate bundle deformations of the tan-
gent bundle of a Calabi-Yau three-fold in such a way [108,109]. In this chapter we
want to show ways to relate the ingredients of such calculations to cohomology
groups of line bundles of the corresponding ambient space which may allow a
deeper insight to the combinatorial formulæ.

8.1 Lattice polytopes and Calabi-Yau hypersurfaces

As explained in detail in chapter 3, the geometry of a toric variety can be de-
scribed by its fan which itself is defined as a triangulation of a given reflexive
polytope, where lattice polytope is called reflexive, if its polar polytope is a lat-
tice polytope, as well. Let ∆◦ be such a polytope, then its polar polytope ∆ is
defined as

∆ :=
{
m ∈ Zd : 〈n,m〉 ≥ −1 ∀n ∈ ∆◦

}
. (8.1)

While the vertices of the reflexive polytope ∆◦ of a given toric variety PΣ represent
the homogeneous coordinates as well as the equivalence relations between them,
the lattice points of the polar polytope ∆ represent a Calabi-Yau hypersurface
M in PΣ. This hypersurface is defined by an equation G = 0, where G is a sum
of monomials induced from the lattice points m of ∆. The term corresponding
to a fixed m is then proportional to∏

ρ∈∆◦

z〈m,ρ〉+1
ρ . (8.2)

The polytope ∆ is also called the Newton polytope ofM. On the other hand we
can consider the vertices of ∆ to be the defining data of some other toric variety
and its polar polytope ∆◦ to be the Calabi-Yau hypersurface of ∆. In this way
we are able to relate two apparently completely different Calabi-Yau varieties
with each other. For such Calabi-Yau hypersurfaces this relation is called mirror
symmetry, see [110] for an exhaustive treatment. Since G is made out of terms
from (8.2) with different coefficients and due to the fact that G describes the
Calabi-Yau manifold, it is clear that the complex structure deformations are very
much depending on ∆. On the other hand, vertices in the polytope ∆◦ correspond
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to homogeneous coordinates xk and can therefore define the toric divisors

Dk := {x ∈ PΣ | xk = 0} (8.3)

which will also define divisors on the Calabi-Yau. Hence it seems reasonable that
∆◦ strongly influences the number of Kähler moduli.

The mirror symmetry conjecture, while it follows trivially from conformal field
theory point of view, is geometrically highly non-trivial and states that for ev-
ery Calabi-Yau threefold M with Hodge numbers (h2,1(M), h1,1(M)) there ex-
ists a mirror three-fold M̂ with exchanged Hodge numbers h2,1(M̂) = h1,1(M)

and h1,1(M̂) = h2,1(M). Thus, mirror symmetry exchanges complex structure
deformations of M with the Kähler deformations of M̂ and vice versa. Mirror
symmetry for hypersurfacses in d-dimensional toric varieties has the precise math-
ematical meaning of a simple exchange of the role of the two polytopes ∆ and
∆◦. This is reflected in a nice way in the well-known combinatorial formula for
the Hodge numbers of a Calabi-Yau hypersurface, first derived by Batytev [78]:

h1,1(M) = l(∆◦)− d− 1−
∑

dim(y)=0

l∗(y∨) +
∑

dim(y)=1

l∗(y) · l∗(y∨), (8.4)

hd−2,1(M) = l(∆)− d− 1−
∑

dim(y◦)=0

l∗(y∨◦ ) +
∑

dim(y◦)=1

l∗(y◦) · l(y∨◦ ). (8.5)

Here y and y◦ are faces of ∆ and ∆◦, respectively, l is the number of points of
a face and l∗ is the number of interior points of a face. The dual face of an r

dimensional face y ⊂ ∆ is a (d− r − 1)-dimensional face y∨ ⊂ ∆◦ defined by

y∨ := {n ∈ ∆◦ : 〈n,m〉 = −1 ∀ m ∈ y} . (8.6)

From the two equations (8.4) and (8.5) it is clear that the Calabi-Yau hypersur-
facesM∆ andM∆◦ associated to the polytopes ∆ and ∆◦ have mirror symmetric
Hodge numbers. Formula (8.4) counts the Kähler deformations of a given Calabi-
Yau variety while the complex structure deformations are counted by equation
(8.5). The first terms in those equations correspond to toric and polynomial
deformations while the last term, where faces and dual faces get mixed up, cor-
responds to non-toric, i.e. non-polynomial deformations, respectively.
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8.1.1 The Batyrev formulæ in terms of line bundle cohomology

As we have seen explicitly in subsection 7.3.1, it is also possible to obtain the
Hodge numbers by making use of the Euler sequence (7.7) and the Koszul com-
plex (6.31). Therefore the contributions to equations (8.4) and (8.5) have their
origin in the cohomology of line bundles on the ambient space. The observation
for three dimensional hypersurfaces is that all contributions to the polynomial
deformations in the Batyrev formula arise from global sections of line bundles
on the ambient space, namely from h0

PΣ
(·) for some divisor. In contrast, the

non-polynomial deformations of the complex structure, which can also be associ-
ated with the twisted sector of the corresponding Gepner model, arise as h1

PΣ
(·)

contributions.

In summary, we have observed the following identification of the various com-
binatorial contributions in the Batyrev formula with line bundle cohomologies:

h2,1
0 (M) = l(∆)− d− 1−

∑
dim(y◦)=0

l∗(y∨◦ ) ,

h2,1
1 (M) =

∑
dim(y◦)=1

l∗(y◦) · l(y∨◦ ) ,
(8.7)

where we used the notation hp,qi introduced in (7.28). For the hypersurface case
we could not find any example where the second or any higher cohomology con-
tributed to this particular Hodge number. This seems to fit the intuition of
cohomology, since h1 contributions represent cochains that are basically sections,
defined on patches with dimension dim(PΣ − 1). So they can still be global sec-
tions on the subvariety if the subvariety is of codimension one. Similarly we
would expect contributions hp,qi for higher i if we consider subvarieties of higher
dimension.

For a K3 surface embedded in P3 the situation is a little different. Since it has
only dimension 2, the tangent bundle cohomology ends of course with h2

M(TM).
Usually the h0

PΣ
(·) and h1

PΣ
(·) contributions “flow” in the complex structure defor-

mations and the higher ones like hn−1
PΣ

(·) and hnPΣ
(·) to the Kähler deformations.

Since the K3 has only a single non-trivial Hodge number that is not on the edge
of the Hodge diamond, both sides contribute to it and we can see a split of this
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Hodge number h1,1
K3 = 20 into 19 + 1. We also know that for this K3 there is

a split of the 20 deformations into 19 algebraic ones which would correspond to
those coming from the h0

PΣ
(·) and 1 non-algebraic one associated to the h2

PΣ
(·)

contributions.
One can easily check this with the cohomCalg Koszul extension [7] by using

the “Verbose5” option and following the contributions through the long exact
sequences.

8.2 Cayley polytopes and CICYs

The next step is to extend the above formula to a formula for a complete inter-
section Calabi-Yau (CICY1) in a five-dimensional toric variety. This was done
by Batyrev and Borisov shortly after the hypersurface case [107]. We will now
describe how to do that, following [111].

8.2.1 Nef partitions and their Cayley polytopes

As before we start with a reflexive polytope ∆◦, which is this time describing a
five-dimensional toric variety PΣ. Consider now a partition of all vertices in ∆◦

into disjoint subsets Vi and define the polytopes following from those vertices as

∆◦i := Conv(Vi, 0) for i = 1, . . . , c, (8.8)

where Conv(·) denotes the convex hull of a vertex set. Such a partition is called
a nef (numerically effective) partition, if the Minkowski sum of all ∆◦i forms a
reflexive polytope. As a reminder, theMinkowski sum of two vertex sets is defined
by

∆◦1 + ∆◦2 := Conv({v + v′ : v ∈ ∆◦1, v
′ ∈ ∆◦2}) . (8.9)

It is easy to see that one can associate a complete intersection Calabi-Yau variety
to such a partition. It is the intersection of c hypersurfaces, where each hyper-

1Some authors refer to CICY when they mean the complete intersection Calabi-Yaus inside
products of projective spaces. I do not understand why they use this notation in particular
since the name does not suggest any relation to such a particular ambient space and since
there is not really a different shorthand for complete intersections in arbitrary ambient
spaces we will still use this one and hope not to confuse the reader with it.

http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
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surface Si corresponds to a sum of divisors Di,k = {xk = 0}. Here each xk is the
homogeneous coordinate that belongs to the vertex vk ∈ ∆◦i :

Si =
∑
k∈K

Di,k , where K = {k ∈ N such that vk ∈ ∆◦i } . (8.10)

So one might assume that one treats those “subpolytopes” in the same fashion
as in the hypersurface case, but this is not quite right. Instead of dealing with
the polytope that describes the toric ambient space, it is necessary to construct a
different kind of polytope that respects the nef partition explicitly. This polytope
is called the Cayley polytope and is defined by

P ∗ := Conv(∆◦1 × e1, . . . ,∆
◦
c × ec). (8.11)

Here e1, . . . , ec is the canonical basis of Zc and hence the Cayley polytope is a
d+ c dimensional polytope, requiring a somewhat more sophisticated treatment
compared to the aforementioned cases. For instance, it is not possible to compute
a well-defined polar polytope anymore, and we need a different way to find a dual
polytope for the Cayley polytope. It goes as follows: We consider the cone that
supports the Cayley polytope, called the Cayley cone C∗, and calculate its dual
cone C via

C :=
{
n ∈ Rd × Rc : 〈m,n〉 ≥ 0, ∀m ∈ C∗

}
. (8.12)

One can see that the dual Cayley cone C also supports a polytope called the
dual Cayley polytope. If we take slices of this one by successively putting the ith

coordinate in {xd+1, . . . , xd+i, . . . , xd+c} to one and all the others in this set to
zero for i = 1, . . . , c, we get polytopes ∇i whose Minkowski sum corresponds to
the polar polytope ∆ of our original polytope ∆◦, namely

∆ = ∇1 + · · ·+∇c. (8.13)

On the other hand, the convex hull ∇ = Conv({∇i, i = 1, . . . , c}) also represents
a reflexive polytope that is polar to the Minkowski sum of the dual nef partition,
i.e. ∇◦ = ∆◦1 + . . .+ ∆◦c which gives rise to a complete intersection Calabi-Yau in
the toric variety corresponding to this polytope. In summary, we therefore have
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the following relation between ∆◦ and ∇:

∆◦ = Conv({∆◦i , i = 1, . . . , c}), ∇ = Conv({∇i, i = 1, . . . , c}),

∆ = ∇1 + . . .+∇c, ∇◦ = ∆◦1 + . . .+ ∆◦c ,

P ∗∆◦ = P∇ , P ∗∇ = P∆◦ .

(8.14)

So we need two different polytopes in order to find the two dual complete inter-
section Calabi-Yau manifolds. One of them is the complete intersection of hyper-
surfaces corresponding to vertex sets ∆◦i that intersect in the toric variety built
from ∆◦, the other one is a complete intersection of hypersurfaces corresponding
to vertex sets ∇i that intersect in the toric variety built from ∇. Clearly for the
hypersurface case we find that ∇ = ∆ and ∇◦ = ∆◦ which reduces everything to
the setting of section 8.1.

8.2.2 Example: P5
112233

Vertices of ∆◦

v1 = (−1, −2, −2, −3, −3 )
v2 = ( 1, 0, 0, 0, 0 )
v3 = ( 0, 1, 0, 0, 0 )
v4 = ( 0, 0, 1, 0, 0 )
v5 = ( 0, 0, 0, 1, 0 )
v6 = ( 0, 0, 0, 0, 1 )

(a) Lattice polytope of P5
112233

Vertices of ∆

w1 = (−1, −1, −1, −1, −1 )
w2 = ( 3, −1, −1, −1, −1 )
w3 = (−1, 3, −1, −1, −1 )
w4 = (−1, −1, 5, −1, −1 )
w5 = (−1, −1, −1, 5, −1 )
w6 = (−1, −1, −1, −1, 11 )

(b) Polar polytope

Table 8.1.: Lattice polytope ∆◦ for the weighted projective space P5
112233 and its polar

polytope ∆.

Let us consider a specific example to illustrate what we learned so far. Let PΣ

be the five-dimensional weighted projective space P5
112233, which is described by

the polytope ∆◦P5
112233

from table 8.1a. Consider a partition of ∆◦ into the subsets
∆◦1 = Conv({v1, v2, v4} , 0) and ∆◦2 = Conv({v3, v5, v6} , 0). One can show that
∆◦1 + ∆◦2 is a reflexive polytope and hence this partition is indeed a nef partition.
Using (8.11) we can calculate P ∗∆◦ , see table 8.2a, and by employing (8.14) the
dual Cayley polytope P∆◦ given in table 8.2b follows. From P∆◦ it is quite easy to
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read off ∇ and its nef partition {∇1,∇2} and we can confirm that the Minkowski
sum

∇1 +∇2 (8.15)

of this partition indeed equals the polar polytope of ∆◦ in table 8.1b.

Vertices of P ∗∆◦

ṽ1 = (−1, −2, −2, −3, −3, 1, 0 )

ṽ2 = ( 1, 0, 0, 0, 0, 1, 0 )

ṽ3 = ( 0, 1, 0, 0, 0, 0, 1 )

ṽ4 = ( 0, 0, 1, 0, 0, 1, 0 )

ṽ5 = ( 0, 0, 0, 1, 0, 0, 1 )

ṽ6 = ( 0, 0, 0, 0, 1, 0, 1 )

ṽ7 = ( 0, 0, 0, 0, 0, 1, 0 )

ṽ8 = ( 0, 0, 0, 0, 0, 0, 1 )

(a) The Cayley polytope

Vertices of P∆◦

w̃1 = ( 0, −1, 0, −1, −1, 1, 0 )

w̃2 = ( 2, −1, 0, −1, −1, 1, 0 )

w̃3 = ( 0, 1, 0, −1, −1, 1, 0 )

w̃4 = ( 0, −1, 3, −1, −1, 1, 0 )

w̃5 = ( 0, −1, 0, 2, −1, 1, 0 )

w̃6 = ( 0, −1, 0, −1, 5, 1, 0 )

w̃7 = (−1, 0, −1, 0, 0, 0, 1 )

w̃8 = ( 1, 0, −1, 0, 0, 0, 1 )

w̃9 = (−1, 2, −1, 0, 0, 0, 1 )

w̃10 = (−1, 0, 2, 0, 0, 0, 1 )

w̃11 = (−1, 0, −1, 3, 0, 0, 1 )

w̃12 = (−1, 0, −1, 0, 6, 0, 1 )

(b) The dual Cayley polytope

Table 8.2.: The Cayley polytope and the dual Cayley polytope corresponding to the nef
partition ∆◦1 = Conv({v1, v2, v4} , 0) and ∆◦2 = Conv({v3, v5, v6} , 0) of P5

112233 as well
as to the dual nef partition ∇1 and ∇2 coming from {w̃1, . . . , w̃6} and {w̃7, . . . , w̃12},
respectively. The nef partition of the dual Cayley polytope can easily be read off from
the last two columns.

8.2.3 The stringy E-function

The generalization of equations (8.4) and (8.5) to complete intersections will be
a formula that counts faces in the Cayley and the dual Cayley polytope instead
of the original one and its polar. The formula itself will also become a bit more
complicated compared to the one for hypersurfaces.

In [107] Batyrev and Borisov introduced a generating function for the so-called
stringy Hodge numbers of a CICY corresponding to the introduced Cayley cone
above. These stringy Hodge numbers are equal to the usual Hodge numbers in
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case that a crepant resolution of the generically singular Calabi-Yau exists. They
are given as coefficients of the stringy E-function, namely

Est(S;u, v) =
∑
p,q

(−1)p+qhp,qst (S) upvq. (8.16)

The generalization to arbitrary Gorenstein polytopes was done by Batyrev and
Nill in [112]. There it was conjectured that the stringy E-function is actually a
polynomial in u, v which was proven recently by Nill and Schepers in [113]. In
terms of the dual Cayley polytope, the stringy E-function can be expanded as

E(u, v) =
1

(uv)c

∑
∅≤x≤y≤P

(−1)1+dimxu1+dim ySx

(u
v

)
Sy∨(uv)B[x,y](u

−1, v). (8.17)

Here we sum over faces of P . These form an (Eulerian) partially ordered set
(poset) where the partial ordering is given by

x ≤ y ⇔ x is a face of y (8.18)

and denote the poset of all faces of P by P . Furthermore we define

[x, y] := {z ∈ P : x ≤ z ≤ y} as well as

y∨C := {n ∈ C : 〈m,n〉 = 0, ∀m ∈ C∗}
(8.19)

to be the dual face of a face yC in C. Since there is a relation between faces in C
and C∗ we also get such a correspondence for faces in the supporting polytopes
P and P ∗. The dual face to y in P is denoted by y∨ in P ∗.

For some k-dimensional face F , the polynomial SF(t) is defined by

SF(t) := (1− t)k+1

∞∑
i=0

l(kF) ti . (8.20)

For the last missing piece, let P ′ be some subposet of P with minimal element
0̂, maximal element 1̂ and dim(1̂) = k − 1. The Batyrev-Borisov polynomials
BP ′(u, v) are defined recursively in terms of the polynomials HP ′(t) and GP ′(t).
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We set HP ′(t) = GP ′(t) = 1 if k = 0 and for k > 0 we define

HP ′(t) :=
∑

0̂<x<1̂

(t− 1)dim(x)G[x,1̂](t),

GP ′(t) := τ< k
2
(1− t)HP ′(t),

(8.21)

where τ< k
2
is the truncation operator defined by its action on sums

τ< k
2

∞∑
i=0

ait
i :=

∑
0≤i< k

2

ait
i. (8.22)

The Batyrev-Borisov polynomials start also with BP ′(u, v) = 1 for k = 0 and can
be read off from the following formula for k > 0:∑

0̂<x<1̂

B[0̂,x](u, v)uk−dim(x)+1G[x,1̂](u
−1v) := GP ′(uv) . (8.23)

8.2.4 Closed form expressions for h1,1 and hd−3,1 of a CICY

The above formula (8.17) might be elegant but is not at all easy to work with.
Using some simplifying relations for the polynomials above, stated for instance
in [107] or alternatively in [111] propositions 2.2 and 2.4, one can deduce the
formulæ (8.4) and (8.5) from (8.17) (see Theorem 3.1 in [111]). Similarly in the
same paper Doran and Novoseltsev deduced an explicit closed form expression
for the Hodge numbers of Calabi-Yau varieties realized as a complete intersection
of two hypersurfaces in a five-dimensional toric variety.

To present their result, we first recall that the nef partition is called indecom-
posable, if no subset of {∆◦i , i = 1, . . . , c} exists whose Minkowski sum is reflexive,
namely if we are not dealing with a product of Calabi-Yau manifolds. If this is
the case, the combinatorial formula for the Hodge numbers is given as follows:

h1,1(S) = l(P ∗)− 7

−
∑

dim(y)=0

l∗(2y∨) +
∑

dim(y)=1

l∗(y∨)

+
∑

dim(y)=1

l∗(y) · l∗(2y∨)−
∑

dim(y)=2

l∗(2y) · l∗(y∨)
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−
∑

dim(x)=2
dim(y)=3
x<y

l∗(x) · l∗(y∨) +
∑

dim(y)=3

l∗(2y) · l∗(y∨). (8.24)

By taking all dual polytopes and faces we obtain of course the second Hodge
number as

h2,1(S) = l(P )− 7−
∑

dim(y∗)=0

l∗(2y∨∗ ) +
∑

dim(y∗)=1

l∗(y∨∗ )

+
∑

dim(y∗)=1

l∗(y∗) · l∗(2y∨∗ )−
∑

dim(y∗)=2

l∗(2y∗) · l∗(y∨∗ )

−
∑

dim(x∗)=2
dim(y∗)=3
x∗<y∗

l∗(x∗) · l∗(y∨∗ ) +
∑

dim(y∗)=3

l∗(2y∗) · l∗(y∨∗ ). (8.25)

Here x, y and x∗, y∗ are faces of P and P∗, respectively. Having a close look at the
proof of formulæ (8.24) and (8.25), one realizes that it is not too hard to generalize
it to the case of two complete intersections in a six-dimensional ambient space,
yielding a Calabi-Yau four-fold. Due to recent interest in such four-folds in the
context of F-theory we deduced a closed form expression for such cases at least
for the Hodge numbers h1,1 and h3,1 via the dual computation. The result is in
the most generic form and no simplifications have been taken into account. For
a Calabi-Yau four-fold S we find h1,1(S) along with its mirror dual h3,1(S):

h1,1(S) = l(P ∗)− 8−
∑

dim(y)=0

[l∗(2y∨)− 7l∗(y∨)]

+
∑

dim(y)=1

l∗(y∨)−
∑

dim(y)=2

[k(y)− 3] · l∗(y∨)

+
∑

dim(y)=1

l∗(y) · [l∗(2y)− 6 · l∗(y∨)]−
∑

dim(x)=1
dim(y)=2
x<y

l∗(x) · l∗(y∨)

−
∑

dim(x)=2
dim(y)=3
x<y

l∗(x) · l∗(y∨) +
∑

dim(y)=3

l∗(y∨) · [l∗(2y)− 4l∗(y)] , (8.26)

h3,1(S) = l(P )− 8−
∑

dim(y∗)=0

[l∗(2y∨∗ )− 7l∗(y∨∗ )]
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+
∑

dim(y∗)=1

l∗(y∨∗ )−
∑

dim(y∗)=2

[k(y∗)− 3] · l∗(y∨∗ )

+
∑

dim(y∗)=1

l∗(y∗) · [l∗(2y∗)− 6 · l∗(y∨∗ )]−
∑

dim(x∗)=1
dim(y∗)=2
x∗<y∗

l∗(x∗) · l∗(y∨∗ )

−
∑

dim(x∗)=2
dim(y∗)=3
x∗<y∗

l∗(x∗) · l∗(y∨∗ ) +
∑

dim(y∗)=3

l∗(y∨∗ ) · [l∗(2y∗)− 4l∗(y∗)] . (8.27)

Here k(y) denotes the number of vertices of the face y. It is quite nice to have
such an explicit formula at hand but one has also to admit that the actual calcu-
lation is not that easy to perform and may take some time. Our implementation
in Macaulay2 using the Polyhedra package [114] needed at least ten minutes to
produce the numbers. Using cohomCalg 9 [7] we were able to obtain the same
results along with the remaining two Hodge numbers much faster for varieties
where h1,1(S) is not too large.

8.2.5 Correspondence to line bundle cohomologies of CICY

The question now is, whether also for these CICYs one can identify terms in the
generalized Bartyrev formulæ with line bundle cohomology classes of the ambient
five-fold respectively six-fold.

Let us here restrict to the case of a CICY in an ambient five-fold, i.e. the
formulæ (8.24) and (8.25). Indeed, we observed that, if we calculate those Hodge
numbers via exact sequences and therefore via line bundle cohomologies of the
ambient toric variety — using cohomCalg [7] as described in 7.3.2 — we find that
the relation between the terms in the combinatorial formula for the h1,1(S) and
the line bundle cohomologies applies according to table 8.3. Here hp,qi (S) are
defined as in section 7.3.2 equation (7.28). Similarly, we find the relations for
h2,1(S) Hodge number as in table 8.4. For h2,1(S), as in (8.5), we note that terms
where no mixing of faces and dual faces takes place correspond to global sections
in line bundles whereas terms where such a mixing does happen correspond to
higher cohomology classes of line bundles of PΣ. In (8.25) for one hypersurface
we got at most h1

PΣ
(·) contributions, where now in case of two hypersurfaces we

found at most h2
PΣ

(·) contributions to the complex structure moduli which meet
what we expected.

http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
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h1,1
5 (S) = l(P ∗)− 7 ,

h1,1
4 (S) = −

∑
dim(y)=0

l∗(2y∨) +
∑

dim(y)=1

l∗(y∨),

h1,1
3 (S) =

∑
dim(y)=1

l∗(y) · l∗(2y∨)−
∑

dim(y)=2

l∗(2y) · l∗(y∨),

h1,1
2 (S) = −

∑
dim(x)=2
dim(y)=3
x<y

l∗(x) · l∗(y∨) +
∑

dim(y)=3

l∗(2y) · l∗(y∨)

Table 8.3.: Relation between the terms in the combinatorial formula for h1,1(S) and
line bundle cohomologies.

h2,1
0 (S) = l(P )− 7−

∑
dim(y∗)=0

l∗(2y∨∗ ) +
∑

dim(y∗)=1

l∗(y∨∗ )

h2,1
1 (S) =

∑
dim(y∗)=1

l∗(y∗) · l∗(2y∨∗ )−
∑

dim(y∗)=2

l∗(2y∗) · l∗(y∨∗ )

h2,1
2 (S) = −

∑
dim(x∗)=2
dim(y∗)=3
x∗<y∗

l∗(x∗) · l∗(y∨∗ ) +
∑

dim(y∗)=3

l∗(2y∗) · l∗(y∨∗ )

Table 8.4.: Relation between the terms in the combinatorial formula for h2,1(S) and
line bundle cohomologies.
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Since the computations get quite involved, we have not yet identified the anal-
ogous correspondence for the case of a CICY in a toric six-fold, i.e. eq. (8.26) and
(8.27), but have no doubt that it exists and takes a similar form.



Chapter 9
Target Space Dualities in the String

Landscape

Dualities play a crucial role in string theory. The first investigation of su-
perstring theories led to not only one but in fact to five different theories that
all seemed to be independently consistent. To realize that these seemingly dif-
ferent frameworks are actually descriptions of the same thing, one has to use
dualities that explain their relation. In particular the more generic framework
of eleven-dimensional M-theory is connected to this web of dualities. Recently
the twelve-dimensional theory, so-called F-theory, that can be considered as the
non-perturbative limit of type IIB was studied extensively and especially the du-
ality between heterotic string theories and F-theory arise geometrically in a very
beautiful way.
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The main focus of this chapter lies on a duality between different heterotic
string compactifications that is referred to as target space duality. It was first
observed and discussed in [94] and further in [95,115] for heterotic string models
whose phase space, which we introduced in chapter 2, contains a phase that is
non-classically described by a Landau-Ginzburg orbifold. For such a configuration
certain homogeneous polynomials were found to appear on equal footing. Since
these polynomials have a geometric interpretation in the corresponding geometric
phase of the same GLSM, i.e. they define the complex structure and the bundle
structure, it is rather a matter of notation whether one describes one or the other.
What appears to look trivial in the LG phase corresponds to a highly non-trivial
duality of geometries. To be concrete, a given configuration (M,V) whereM is
a smooth Calabi-Yau three-fold and V is a stable holomorphic vector bundle will
then have a finite number different equivalent descriptions

(M,V)! (M1,V1)! (M2,V2)! ...! (Mm,Vm) . (9.1)

Each duality in (9.1) corresponds to the exchange of a certain number of complex
structure parameters with bundle parameters, and the number finite m will be
the maximal number of possibilities of a consistent exchange. Generalizations of
these ideas were first suggested in [116, 117] where scenarios with singular dual
configurations were considered. In order to resolve these singularities a blowup
of the dual model was performed, increasing the number of Kähler parameters by
one. It was shown there that in this specific example one could still find evidence
for the fact that the smooth dual model is dual to the original by checking that
the dimension of the full moduli space was still preserved even though in the dual
model the Kähler moduli increased in number. So in some sense it is similar to
a different kind of geometric duality referred to as mirror symmetry where an
exchange of Kähler parameters and complex structure parameters takes place.
The difference is though that for mirror symmetry it is only possible to find one
mirror partner to a given manifold with precisely all of the complex structure
parameters and Kähler parameters exchanged.

In the following we will investigate such target space dualities and further
generalizations thereof. In particular we will give a concrete procedure for the
construction of such models and will explicitly give examples for various cases
where the dimension of the Kähler moduli space grows up to seven. Furthermore



193 9.1. The setup and assumptions

many scenarios are tested and described in full detail for models with vector
bundles of rank three, four and five. Finally we will present a scan over more
than 80,000 models and describe which cases provide evidence for the duality
and in which cases the conjecture seems to fail. For the latter we also present an
explanation for why they fail to meet the requirement of a duality.

9.1 The setup and assumptions

The starting point is a configuration for a heterotic model given by (M,V), where
M is given as a complete intersection of c hypersurfaces in a toric variety PΣ:

M =
c⋂
j=1

Sj , Sj = {Gj(xi) = 0} ⊂ PΣ =: PΣ[S1, ...,Sc] . (9.2)

The holomorphic vector bundles V we will consider are all coming from the fol-
lowing kind of monad:

0→ O⊕nFM
⊗Eia−→

nΛ⊕
a=1

OM(Na)
⊗Fal−→

np⊕
l=1

OM(Ml)→ 0 , (9.3)

where V is given by

V =
ker (F )

im (E)
, rk(V) = nΛ − np − nF . (9.4)

The case where nF is zero is also allowed and corresponds to the case where the
monad is exact

0→ V −→
nΛ⊕
a=1

OM(Na)
⊗Fal−→

np⊕
l=1

OM(Ml)→ 0 , (9.5)

and we have
V = ker (F ) , rk(V) = nΛ − np . (9.6)

We always require the model (M,V) to have a proper smooth baseM as well as
a well defined smooth vector bundle V . Furthermore the model we start with is
always required to be physically sensible meaning that all conditions implied by
anomaly cancellations etc. meaning that (2.41) is fully satisfied by (M,V).
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To check whether the potentially dual model (M̃, Ṽ), whose construction we
will illustrate in a second, is indeed a dual description of the initial configuration
(M,V) a set of topological quantities should match. In our analysis we will
always check for two specific conditions:

1. Matching spectrum: According to table 2.1 the following has to be satisfied:

H1(M; ΛmV) = H1(M̃; ΛmṼ) , ∀m = 1, ..., rkV − 1 (9.7)

for a rank n bundle. We will in particular check this relation for m = 1 and
m = n−1. In fact we can identifyH1(M; ΛrkV−1V) withH3−1(M; ΛrkV−(rkV−1)V)

and for stable bundles this corresponds in comparing

H•(M;V) = H•(M̃; Ṽ) . (9.8)

2. Matching moduli space dimension: In many cases this can be checked by
counting the two Hodge numbers as well as the number of infinitesimal de-
formations of the vector bundle. We will compare the sum of these numbers
on both sides:

h1,1
M + h2,1

M + h1
M(End(V)) = h1,1

M̃
+ h2,1

M̃
+ h1

M̃(End(Ṽ)) . (9.9)

In order to check for these necessary conditions (9.8) and (9.9), for any potentially
dual model, we will use the techniques introduced in chapter 7 and furthermore,
for simplicity, assume the following statements without testing:

• First of all we assume any dual model (M̃, Ṽ) to have a smooth base as well
as a smooth vector bundle. If this is not the case the methods we employ
would not give the correct results.

• Secondly we assume stability of the vector bundle V . For generic monad
bundles this is in general difficult to check. It implies

h0
M̃(Ṽ) = 0 , h3

M(Ṽ) = 0 ,

h0
M̃(Ṽ ⊗ Ṽ∗) = 1 , h3

M̃(Ṽ ⊗ Ṽ∗) = 1 .
(9.10)

• The computation of hiM(End(V)), explained in 7.4.3, involves a map, for
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which we assume that it is surjective. This map ϕ appears as the second
map in the exact sequence

0 −→ H0
(
E∗M̃ ⊗

np⊕
l=1

OM̃(Ml)
)
−→ H0

( nΛ⊕
a=1

np⊕
l=1

OM̃(Ml −Na)
)

ϕ
−� H0

( c⊕
j=1

OM̃(Mj)
⊕rṼ
)
−→ · · ·

(9.11)

which arises as an intermediate step in the long exact sequences in coho-
mology, after writing V ⊗ V∗ via short exact sequences which was derived
in its dual version in (7.84). We actually checked for quite a few examples
that this holds, but do not have a proof that generically this is the case.

Remark. Finally, a comment on the (0, 2) moduli space. The number of first order
deformations (9.9) is not necessarily equal to the true dimension dim(D(M,V))

of the total moduli space of the theory, as there can be obstructions. Mathe-
matically, this means that there can be complex structure deformations, under
which the bundle cannot be kept holomorphic1. Physically, this is described by
the tree-level four-dimensional superpotential

W =

∫
M

Ω3 ∧ CSA (9.12)

where Ω3 denotes the holomorphic (3, 0) form on the Calabi-Yau and CSA =

tr(A∧ dA− 2i
3
A∧A∧A) the Chern-Simons form of the SU(n) gauge connection

A. The flat directions of the scalar potential induced by W define the true
moduli space of the configuration (M,V). A non-renormalization theorem states
that, beyond this leading order contribution, there can only be non-perturbative
corrections from world-sheet instantons. For more information on this important
issue, we refer to the literature [119–124].

Unfortunately, the superpotential is hard to compute for a concrete (0, 2) model
(M,V). However, we know that at least the independent complex coefficients in
the holomorphic sections Gj and Fal, i.e. the polynomial deformations, keep the
vector bundle holomorphic.

1As explained in the physical context for instance in [118], this is captured by the so-called
Atiyah-class.
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9.2 Explicit construction of dual (0, 2) models

In this section we further generalize the analysis of (0, 2) target space dualities
presented in [94,95,116,117] and propose a general procedure that can be used to
generate dual models from almost any monad over a complete intersection Calabi-
Yau base space, not necessarily endowed with a Landau-Ginzburg phase. In
particular, one can show that performing this procedure, the anomaly cancellation
conditions remain satisfied for the dual models.

9.2.1 Outline of the generic construction of dual models

Before we show how to construct dual (0, 2) models explicitly, let us outline the
generic procedure. As already mentioned, we will start with a smooth (0, 2) model
(M,V) for which all anomaly cancellation conditions (2.41) are satisfied. Using
the existence of non-geometric phases, where some of the Bosonic fields pl receive
a vev, we perform an exchange of some of the Fermi superfields and the corre-
sponding polynomials. The resulting new GLSM is claimed to be target space
dual to the initial one. A necessary condition is that the massless charged mat-
ter spectrum and the generic number of massless gauge singlets D(M,V) should
be identical, i.e. (9.8) and (9.9) has to be satisfied (neglecting issues concerning
obstructions). More concretely, we follow the procedure:

The procedure:

1. Construct the GLSM phases of a smooth (0, 2) model (M,V).

2. Go to a phase where one of the pl, say p1, is not allowed to vanish and
hence obtains a vev 〈p1〉.

3. Perform a rescaling of k Fermi superfields by the constant vev 〈p1〉 and
exchange the role of some Λa and Γj

Λ̃ai :=
Γji

〈p1〉
, Γ̃ji := 〈p1〉Λai , ∀i = 1, ..., k ,

with
∑

i ||Gji || =
∑

i ||Fai1|| for anomaly cancellation.
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4. Move to a region in the bundle moduli space where the Λai only appear in
terms with P1 for all i. This means that we choose the coefficients in the
bundle defining polynomials Fal such that

Fai
l = 0 , ∀ l 6= 1, i = 1, ..., k .

5. Leave the non-geometric phase and define the Fermi superfields of the new
GLSM such that each term in the superpotential is U(1)r gauge invariant.
This means

||Λ̃ai || = ||Γji|| − ||P1|| and ||Γ̃ji|| = ||Λai ||+ ||P1|| .

6. Returning to a generic point in moduli space defines a new dual (0, 2) GLSM
which in a geometric phase corresponds to a different Calabi-Yau/vector
bundle configuration (M̃, Ṽ).

9.2.2 Explicit procedure

Let us now be more explicit and show how this procedure works in detail. For
presentational purpose, we will restrict ourselves to the choice k = 2. This is
also the case used in performing the (0, 2) landscape analysis to be reported on
in section 9.3.

Consider a holomorphic vector bundle V , obtained from a monad over a base
Calabi-Yau manifoldM as in (9.5) or (9.3) which we denoted as

VN1,...,NnΛ
[M1, ...,Mnp ] −→ PQ1,...,Qn [S1, ..., Sc] . (9.13)

It is also assumed that the anomaly cancellation conditions (2.41) are satisfied.
We now require that for one specific Ml0 there exist two Naj ’s such that N (α)

aj <

M
(α)
l0

. Let us choose, without loss of generality, l0 = 1 and rearrange theN ′s in the
monad such that they are the first two. Thus the corresponding superpotential
(2.42) has the form

W =
c∑
j=1

ΓjGj +
2∑

a=1

P1ΛaFa
1 +

nΛ∑
a=3

P1ΛaFa
1 +

np∑
l=2

nΛ∑
a=1

Pl Λ
aFa

l . (9.14)
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For the case np = 1, i.e. a monad VN1,...,NnΛ
[M1], the last term would be absent

and the GLSM features a Landau-Ginzburg phase in which p1 carries a vacuum
expectation value. For the case np = 2, i.e. VN1,...,NnΛ

[M1,M2], with only a single
U(1) gauge symmetry, even though there is no Landau-Ginzburg phase anymore,
one may still find a phase in which p1 and p2 cannot vanish simultaneously.
This describes a Landau-Ginzburg model fibered over a P1, parametrized by the
homogeneous coordinates (p1, p2). Thus, p1 and p2 are not allowed to vanish
simultaneously.

Hence, for these two simple cases, one can explicitly identify a phase, in which
not all vevs 〈pl〉 do vanish. Our dual model generating algorithm starts on a
sublocus where a specific vev 〈p1〉 6= 0. This is all we need to perform the desired
change of variables. However, since this is a tedious analysis, for the automated
landscape study in section 9.3, we did not check for the existence of such a phase
for each individual case, but proceeded under the assumption that it exists.

Considering (9.14) and comparing the first sum with the second one, one real-
izes that they only differ by the additional chiral superfield P1. If one now goes
into the aforementioned phase, where p1 obtains a vev, the effective superpoten-
tial becomes

W =
c∑
j=1

ΓjGj +
2∑

a=1

〈p1〉ΛaFa
1 +

nΛ∑
a=3

〈p1〉ΛaFa
1 +

np∑
l=2

nΛ∑
a=1

Pl Λ
aFa

l . (9.15)

Now, we want to perform an exchange of two of the Fermi superfields appearing
in the first and the second term (9.15). Without loss of generality we choose
these two pairs to be Γ1, Γ2 and Λ1, Λ2. For this purpose, we first need to move
to a region in the bundle moduli space, where the sections Fal satisfy

F1
l = F2

l = 0 ∀ l 6= 1 . (9.16)

This guarantees that the superpotential takes the restricted form

W =
c∑
j=1

ΓjGj + 〈p1〉Λ1F1
1 + 〈p1〉Λ2F2

1 + terms indep
of Γj, Λ1,Λ2

. (9.17)

Now the superfields Γj and Λ1, Λ2 appear on an equal footing and hence do
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the homogeneous functions Gj, F1
1 and F2

1. Thus, in this non-geometric phase,
their distinctive geometric origin as hypersurface constraints Gj and sections F1

1

defining the bundle is completely lost.
Not every such exchange of Γ1, Γ2 and Λ1, Λ2 leads to a fully fledged new

(0, 2) GLSM, after moving away from this special locus in moduli space. For a
GLSM the anomaly cancellation conditions (2.41) have to be satisfied. In the
following we will describe two different scenarios. The first one corresponds to a
consistent exchange of F ’s and G’s where

||G1||+ ||p1|| 6= 0 and ||G2||+ ||p1|| 6= 0 , (9.18)

while in the second scenario we will have the situation where

||G1||+ ||p1|| = 0 and ||G2||+ ||p1|| 6= 0 . (9.19)

The latter naively leads to Fermi superfields of vanishing charge. We will see that
this is not really the case, but that instead for the dual model the number of U(1)

gauge symmetries gets increased. Thus, in the geometric phase the dimension of
the Kähler moduli space increases. We will find that the Fermi superfield is
actually charged under this additional U(1) gauge group.

Dual models with equal number of U(1) actions.

If we want to consistently exchange F ’s and G’s, we have to make sure that the
linear anomaly cancellation condition remains satisfied. For the exchange of two
of them, say

F1
1, F2

1 ! G1, G2 , (9.20)

this requires the following relation of their homogeneous multi-degrees:

||F1
1||+ ||F2

1|| = ||G1||+ ||G2|| ⇒ 2M1 −N1 −N2 = S1 + S2 . (9.21)

As long as ||G1||, ||G2|| both are not equal to M1, we can perform this exchange
without any problem. If there is a phase where p1 is not allowed to vanish, we
can write the effective superpotential at low energies by integrating out p1 and
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moving to the corresponding region in moduli space as seen in (9.17). To make
the exchange of the homogeneous polynomials manifest, we have to absorb this
vev by a rescaling of some of the fields. We obtain the new configuration as

W = Γ̃1G̃1 + Γ̃2G̃2 +
c∑
j=3

ΓjGj+

〈p1〉 Λ̃1F̃1
1 + 〈p1〉 Λ̃2F̃2

1 +

nΛ∑
a=3

〈p1〉ΛaFa
1 +

np∑
l=2

nΛ∑
a=3

Pl Λ
aFa

l ,

(9.22)

where we performed rescalings

Γ̃1 := 〈p1〉Λ1, Γ̃2 := 〈p1〉Λ2, Λ̃1 :=
Γ1

〈p1〉
, Λ̃2 :=

Γ2

〈p1〉
,

G̃1 := F1
1, G̃2 := F2

1, F̃1
1 := G1, F̃2

1 := G2 .

(9.23)

This superpotential (9.22) is identical to the initial one, but arises from a com-
pletely different GLSM. At this point we can see that it was essential to move to
a specific region of the moduli space, as the rescaling (9.23) would not have been
consistent, if there were terms like Λ1F1

2. Since the homogeneous polynomial F1
2

might not have the same multi-degree as F1
1, the rescaling (9.23) would give rise

to a term in the superpotential which is not gauge invariant. The new charges
and degrees of the superfields in the GLSM read

VÑ1,Ñ2,N3,...,NnΛ
[M1,M2, ...,Mnp ] −→ PQ1,...,Qn [S̃1, S̃2, S3, ..., Sc] , (9.24)

with

Ñ1 := M1 − S1, Ñ2 := M2 − S2, S̃1 := ||F1
1||, S̃2 := ||F2

1|| . (9.25)

We prove in appendix A.1 that this (0, 2) GLSM fulfills all anomaly cancellation
conditions and hence defines a genuine new model. In particular, for the new
model one can consider generic points in the moduli space and perform its own
phase analysis, i.e. consider the total complexified Kähler moduli space. This also
includes the large volume limits of potential geometric phases. There, it describes
now topologically distinct Calabi-Yau manifolds equipped with different vector
bundles over them.
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We were calculating various examples of this kind and found that the following
intriguing relation holds in over 90% of them2:

h•M(V) = h•M̃(Ṽ)

h1,1
M + h2,1

M + h1
M(End(V)) = h1,1

M̃
+ h2,1

M̃
+ h1

M̃(End(Ṽ)) .
(9.26)

This means that, at least on a dimensional basis, the chiral spectra as well as the
number of massless singlets of the two (0, 2) models, (M,V) and (M̃, Ṽ), agree.
From the rescalings (9.23), it is clear that the moduli space of (M,V) is related
to the moduli space of (M̃, Ṽ) by an exchange of complex structure and bundle
moduli. The Kähler moduli space was rather untouched.

In the following we will describe a way to construct dual (0, 2) models in which
the Picard group of the ambient space becomes larger so that also the Kähler
moduli spaces are non-trivially involved in the duality.

Dual models with an additional U(1) action.

Let us start again with the monad of the model (9.3) and pick two specific maps
Fa

l, e.g. F1
1 and F2

1, belonging to M1. Now choose one of the hypersurfaces
defining our base, say S1 such that we can find positive degrees B(α) for all α
satisfying the multi-degree equation

B = ||F1
1||+ ||F2

1|| − S1 . (9.27)

We can now introduce a new coordinate y1 with multi-degree B and also a new
hypersurface GB described by a homogeneous polynomial of multi-degree B. This
means we simply introduce a new Fermi superfield along with a new chiral su-
perfield that have opposite charges. Doing that at the same time does not cause
any changes to our model (M,V) and we can express it as

VN1,...,NnΛ
[M1, ...,Mnp ] −→ PQ1,...,Qn,B[S1, ..., Sc, B] . (9.28)

2In going through the various Koszul sequences arising for determining the bundle deforma-
tions, we were assuming the surjectivity of the map ϕ in (9.11). Moreover, we were also
blindly assuming that the new bundle Ṽ is µ-stable over the new base manifold M̃ (9.10).
We expect that a mismatch merely indicates that for this specific example one of these
assumptions is violated.



9. Target Space Dualities in the String Landscape 202

In case that S1 6= M1 and B 6= M1 we can proceed in the same way as in the
paragraph above and redefine fields as described there. Thus, we arrive at the
following configuration:

VÑ1,Ñ2,N3,...,NnΛ
[M1,M2, ...,Mnp ] −→ PQ1,...,Qn,B[S̃1, S2, ..., Sc, B̃] , (9.29)

where

Ñ1 := M1 − S1, Ñ2 := M2 −B, S̃1 := ||F1
1||, B̃ := ||F2

1|| . (9.30)

The only new issue is that, as we have introduced a new coordinate y1 with
multi-degree B, we might get new singularities in the dual model (M̃, Ṽ). These
need to be resolved before performing calculations in the large volume limit. In
addition, after the resolution of the base, we also have to resolve the bundle
without spoiling the anomaly cancellation conditions. How this can be done has
been explained in [115].

Applying this procedure for instance to the tangent bundle, i.e. V = TM, we
encounter the situation that

S1 = M1 (or equivalently B = M1) . (9.31)

Now performing the same steps as in the last paragraph, we arrive at the following
configuration:

VÑ1,Ñ2,N3,...,NnΛ
[M1,M2, ...,Mnp ] −→ PQ1,...,Qn,B[S̃1, S2, ..., Sc, B̃] , (9.32)

where

Ñ1 := M1 − S1 = ~0 , Ñ2 := M2 −B , S̃1 := ||F1
1|| , B̃ := ||F2

1|| . (9.33)

Thus, in the new model we find the Fermi superfield Λ̃1 := Γ1

〈p1〉 to be uncharged
under all of our U(1) symmetries3.

To proceed, we introduce an additional U(1) gauge symmetry under which the

3It was argued in [95] that one can employ one of the nF additional Fermionic gauge sym-
metries given in (7.61) in order to gauge it away. This works fine for their example but it
cannot be used for our case, where the newly introduced field is them self uncharged under
all U(1)’s.
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former uncharged Fermi superfield carries a non-vanishing charge. We do that
by a formal blow-up of a P1 with coordinates y1, y2 so that the charges of the
resulting GLSM read

x1 ... xn y1 y2 Γ1 ... Γc ΓB

0 . . . 0 1 1 0 ... 0 −1

Q1 . . . Qn B 0 −S1 ... −Sc −B
,

Λ1 Λ1 . . . ΛnΛ p1 p2 ... pnp

0 0 . . . 0 −1 0 . . . 0
N1 N2 . . . NnΛ

−M1 −M2 ... −Mnp

.

This configuration is equivalent to the initial one. Just eliminate the coordinate
y1 via the constraint GB = y1 = 0 and use the additional U(1) gauge symmetry
and the corresponding D-term constraint to fix y2 to a real constant. Then the
geometry reduces to PQ1,...,Qn [S1, S2, ..., Sc] × pt. So the new configuration also
satisfies the anomaly cancellation conditions.

Applying the exchange of G’s and F ’s as in (9.32) and (9.33), the former un-
charged Fermi superfield in the dual configuration now carries a non-zero charge
under the new U(1). This is what we wanted to achieve and in particular allows
us to systematically generate dual models of the heterotic (M, TM) models. The
data of the GLSM of the dual configuration are listed in table 9.1 , for which it is
proven in appendix A.1 that they still satisfy all anomaly cancellation conditions
(2.41):

x1 . . . xd y1 y2 Γ̃1 Γ2 ... Γc Γ̃B

0 . . . 0 1 1 −1 0 . . . 0 −1

Q1 . . . Qd B 0 −(M1 −N1) −S2 . . . −Sc −(M1 −N2)

,

Λ̃1 Λ̃2 . . . ΛnΛ p1 p2 . . . pnp

1 0 . . . 0 −1 0 . . . 0

0 M2 −B . . . NnΛ −M1 −M2 . . . −Mnp

.

Table 9.1.: Charges and degrees of all fields and homogeneous polynomials in the dual
model (S̃, Ṽ )



9. Target Space Dualities in the String Landscape 204

9.2.3 Instructive example

Let us present a comparably simple example. Consider the (0, 2) model

V1,1,1,1,2,2,2[3, 4, 3] −→ P1,1,1,1,2,2,2[3, 4, 3] , (9.34)

where the vector bundle is some deformation of the tangent bundle of the Calabi-
Yau manifold M. Since this configuration is singular, we have to resolve it by
introducing a new coordinate. After some reordering of the bundle data, this
yields the following smooth configuration:

xi Γj

0 0 0 0 1 1 1 1

1 1 1 1 2 2 2 0

−1 −2 −1

−3 −4 −3

, (9.35)

Λa pl

0 1 1 1 0 0 0 1

1 2 2 2 1 1 1 0

−1 −2 −1

−3 −4 −3

. (9.36)

We now compute the number of chiral matter zero modes as well as the number
of massless singlets

h•M(V ) = (0, 68, 2, 0) ,

h1,1
M + h2,1

M + h1
M(End(V)) = 2 + 68 + 140 = 210 .

(9.37)

Now we can use the procedure from last section. First we introduce a new field
y1 which is not charged under the U(1)’s we have so far, and introduce a new
hypersurface which is also neutral. We formally get the following set of data

xi Γj

0 0 0 0 1 1 1 1 0

1 1 1 1 2 2 2 0 0

−1 −2 −1 −0

−3 −4 −3 −0

. (9.38)
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Λa pl

0 1 1 1 0 0 0 1

1 2 2 2 1 1 1 0

−1 −2 −1

−3 −4 −3

. (9.39)

Notice that the homogeneous functions F3
2 and F4

2 are both of the same multi-
degree,

||F3
2|| = ||F4

2|| = −||p2|| − ||Λ3|| = −||p2|| − ||Λ4|| =

2− 1

4− 2

 =

1

2

 (9.40)

and hence we can exchange the new hypersurface as well as G2 with these two,
satisfying

||F3
2||+ ||F4

2|| =

 1

2

+

 1

2

 =

 2

4

+

 0

0

 = S2 +B . (9.41)

From the last section, we know how to exchange these functions and how to
redefine the Λ’s and Γ’s in order to obtain a sensible new monad. Namely we
perform the rescalings

Γ̃2 := 〈p2〉Λ3, Γ̃B := 〈p2〉Λ4, Λ̃3 :=
Γ2

〈p1〉
, Λ̃4 :=

ΓB

〈p2〉
,

G̃2 := F3
2, G̃B := F4

2, F̃3
2 := G2, F̃4

2 := GB ,

(9.42)

yielding the effective superpotential

W = Γ̃2G̃2 + Γ̃BG̃B +
∑
j=1,3

ΓjGj+

〈p2〉 Λ̃3F̃3
2 + 〈p2〉 Λ̃4F̃4

2 +
∑
l=1,3

∑
a6=3,4

PlΛ
aFa

l .
(9.43)

The new charges of the constructed model read

||Γ̃2|| =

 −1

−2

 , ||Γ̃B|| =

 −1

−2

 , ||Λ̃3|| =

 0

0

 , ||Λ̃4|| =

 2

4

 ,

(9.44)
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||G̃2|| =

 1

2

 , ||G̃B|| =

 1

2

 , |̃|F3
2|| =

 2

4

 , ||F̃4
2|| =

 0

0

 .

(9.45)

We realize that one of the new Λ’s is uncharged under both U(1)’s. Thus, we
introduce a new U(1) along with a new coordinate in the base, which gives all
new fields a charge. Doing that in the way explained above and going back to a
generic point in moduli space, we arrive at the GLSM

xi Γj

0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 1 1 1 0 0

1 1 1 1 2 2 2 0 0 0

−0 −1 −0 −1

−1 −1 −1 −1

−3 −2 −3 −2

, (9.46)

Λa pl

0 0 1 0 0 0 0 0

0 1 0 2 0 0 0 1

1 2 0 4 1 1 1 0

−0 −1 −0

−1 −2 −1

−3 −4 −3

. (9.47)

As was generically shown, this configuration satisfies the conditions (2.41) and
we obtain the following topological data:

h•M̃(Ṽ) = (0, 68, 2, 0) ,

h1,1

M̃
+ h2,1

M̃
+ h1

M̃(End(Ṽ)) = 3 + 51 + 156 = 210 .
(9.48)

Comparison to the data (9.37) tells us that the number of chiral zero modes did
not change and, even though the individual Hodge numbers changed, the total
number of first order deformations stayed the same.

This was just one possible choice of a pair of F ’s and G’s, but actually not
the only one. We could for instance exchange a different pair, which involves a
redefinition of Λ1 and Λ2 rather than Λ3 and Λ4. In this case we finally obtain
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the GLSM

xi Γj

0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 1 1 1 0 0

1 1 1 1 2 2 2 0 0 0

−1 −0 −0 −1

−1 −2 −1 −0

−2 −4 −3 −1

, (9.49)

Λa pl

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 1

0 3 2 2 1 1 1 0

−1 −0 −0

−1 −2 −1

−3 −4 −3

(9.50)

and find for the massless spectrum

h•M̂(V̂) = (0, 68, 2, 0) ,

h1,1

M̂
+ h2,1

M̂
+ h1

M̂(End(V̂)) = 3 + 63 + 144 = 210 .
(9.51)

9.2.4 The dual base via a conifold transition

The methods described in section 9.2.2 are applicable to almost any (0, 2) GLSM.
Starting with a model that admits a (2, 2) locus, namely a heterotic model with
standard embedding, we have seen that in the dual (0, 2) model one has to in-
troduce a new P1. This results in a base Calabi-Yau manifold M̃ whose Kähler
moduli space has a higher dimension than the original one forM.

The question now is, what the geometric relation between the two Calabi-Yau
manifoldsM and M̃ is. As already observed for a specific example in [116,117],
M̃ seems to be connected toM via a conifold transition. Let us explain this for
our more generic situation in more detail.

Standard embedding:

Let us first consider a Calabi-Yau manifoldM with a holomorphic vector bundle
V which is a deformation of the tangent bundle TM. As before, let G1, . . . , Gc

be the intersecting hypersurfaces and x1, ..., xn the homogeneous coordinates of
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the ambient space. Let us pick an arbitrary hypersurface, say G1, and move to
a specific region in the complex structure moduli space where we can write this
surface as a combination of polynomials of lower degree:

G1 = x1 F1
1 − x2 F2

1 = 0 , (9.52)

where ||Fij|| = ||Gj||− ||xi||. At this point in complex structure moduli space the
manifold develops a conifold singularity. It is well known that it can be resolved
via a small resolution [125]. This is described by introducing two new coordinates,
y1 and y2, parameterizing a P1 satisfying the two hypersurface constraints

G̃1 := y1 x1 + y2 F2
1 = 0 ,

G̃B := y1 x2 + y2 F1
1 = 0

(9.53)

which can be written as4

M ·

 y1

y2

 = 0 , M :=

 x1 F2
1

x2 F1
1

 . (9.54)

Since y1 and y2 are not allowed to vanish simultaneously, the conifold (9.52)
is recovered from det(M) = 0. This is the locus to which the resolved space
degenerates in the limit of vanishing size of the P1. The procedure of deformation
and small resolution can be seen pictorially in figure 9.1. For the degrees of the
two new hypersurfaces one obtains

||G̃1|| =

 1

||G1|| − ||x2||

 =

 1

||F2
1||

 , (9.55)

||G̃B|| =

 1

||G1|| − ||x1||

 =

 1

||F1
1||

 . (9.56)

For the (0, 2) model, where V is a deformation of the tangent bundle TM, the
degree of the F1

1, F2
1 in (9.52) is equal to the degree of the Fal in the monad

(7.61). Therefore the conifold transition is equivalent to the transformation of

4In the literature, often the resolution M →MT is considered.
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Figure 9.1.: Pictorial illustration of the conifold transition via a deformation on the one
side and a small resolution on the other side. This corresponds basically to the scenario,
where the CY hypersurface is given by the quintic polynomial G = (

∑5
i=1 x

5
i ) − 5 · c ·

x1x2x3x4x5 in P4. If we deform this polynomial such that c = 1, this submanifold
becomes singular and can locally be described as a cone over the base S2 × S3 [125].

the base described in 9.2.2. Thus, for the target space dual pair

(M,V)! (M̃, Ṽ) , (9.57)

where V a deformation of TM, the two base manifoldsM and M̃ are connected via
a conifold transition. In contrast to the conifold transition for type II superstrings,
i.e. for (2, 2) models, here Ṽ 6= TM̃. Moreover, we are not claiming that there is
a physically smooth transition between the two configurations. On the contrary,
our point is that the two (0, 2) models are isomorphic descriptions of the same
stringy geometry.

As an example from [125], consider the Calabi-Yau manifold given by the com-
plete intersection of two surfaces of degree 4 and 2 in P5, i.e.M = P5[4, 2]. Here
we have

h•M(TM) = (0, 89, 1, 0)

h1,1
M + h2,1

M + h1
M(End(TM)) = 1 + 89 + 190 = 280 .

(9.58)

It has been shown in [125] that via a conifold transition, this manifold is connected
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to the new Calabi-Yau M̃ defined as

xi Γj

0 0 0 0 0 0 1 1

1 1 1 1 1 1 0 0

−0 −1 −1

−4 −1 −1

,

which has Hodge numbers (h2,1

M̃
, h1,1

M̃
) = (86, 2) and h1

M̃
(End(TM̃)) = 188 bundle

moduli which gives a total number of 276 massless singlets for the corresponding
(2, 2) model. In our situation, the dual vector bundle is different and given by

Λa pl

0 0 0 0 1 0

1 1 1 1 0 2

−0 −1

−4 −2

.

We compute

h•M̃(Ṽ) = (0, 89, 1, 0) ,

h1,1

M̃
+ h2,1

M̃
+ h1

M̃(End(Ṽ)) = 2 + 86 + 192 = 280
(9.59)

so that the number of complex structure moduli decreased by three, whereas the
number of bundle and Kähler moduli increased by two and one, respectively.

Generic case:

Turning now to the case of a non-standard embedding, the story changes only
slightly. If we can find a point in the complex structure and bundle moduli space
such that two of the F ’s actually appear in one and the same G as5

G1 = U1 F1
1 − U2 F2

1 = 0 , (9.60)

where the Ui are homogeneous polynomials such that

||Ui|| = S1 −M1 +Ni, for i = 1, 2 . (9.61)

5This will always happen as long as the degree of the F ’s are less or equal to the degree of
the G.
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As before, (9.60) defines a conifold singularity, which can be resolved by blowing
up P1s over the nodal points. This is described by introducing two new coordi-
nates y1, y2 parameterizing the P1 and the two hypersurfaces

G̃1 := y1 U1 + y2 F2
1 = 0 ,

G̃B := y1 U2 + y2 F1
1 = 0

(9.62)

which can also be written as

M ·

 y1

y2

 = 0 , M :=

 U1 F2
1

U2 F1
1

 . (9.63)

The new degrees of the new coordinates and constraints are given as

||y2|| =

 1

~0

 , ||y1|| =

 1

||F1
1||+ ||F2

1|| − S1

 ,

||G̃1|| =

 1

||F2
1||

 , ||G̃B|| =

 1

||F1
1||

 .

(9.64)

This is precisely what we obtained for the dual Calabi-Yau manifold M̃ in sub-
section 9.2.2. Therefore, also for this more generic case the two base manifolds
are connected by a conifold transition.

9.2.5 Chains of dual models

As we have explained in the beginning of this section, the proposed construction
of potentially dual models is pretty independent of the choice of the monad,
unless the data is chosen so badly, that no exchange satisfying (9.21) is possible.
Therefore, one is free to iterate the procedure to produce dual (0, 2) models, until
one arrives at a monad already obtained before. Depending on the initial GLSM
data of (M0,V0), this can lead to quite a number of dual configurations (Mi,Vi),
i = 1, . . . ,m. In all cases investigated the number m is finite.

To show one example we choose a product of projective spaces, where the
hypersurfaces have multi-degrees containing only 1’s or 0’s. The starting point is
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given by the (2, 2) model

xi −Γj Λa −pl

P2

P2

P4

0 0 1 1 1

1 1 1 0 0

1 1 1 1 1

0 0 0 0 0 0 1 0 1 0 1

0 1 0 1 0 1 0 0 0 0 0

1 0 1 0 1 0 0 1 0 1 0

0 0 1 1 1

1 1 1 0 0

1 1 1 1 1

,

where the first column is meant to be P2 × P2 × P4. The topological data of this
configuration is given by

h•M(V) = (0, 44, 3, 0) ,

h1,1
M + h2,1

M + h1
M(End(V)) = 3 + 44 + 48 = 95 .

(9.65)

For this example we can apply the procedure five times until we do not obtain
anything new anymore. All these new monads are topologically different and all
have the same chiral spectrum as the initial one:

Nr. h1
M(V) h2

M(V) h1,1
M h2,1

M h1
M(End(V)) D(M,V)

1 44 3 4 42 49 95

2 44 3 5 40 50 95

3 44 3 6 38 51 95

4 44 3 7 36 52 95

The defining data can be derived to be

Model 0:

P2

P2

P4

0 0 1 1 1

1 1 1 0 0

1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1 0 0 0

1 1 1 1 1 0 0 0 0 0 0

0 0 1 1 1

1 1 1 0 0

1 1 1 1 1
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Model 1:

P1

P2

P2

P4

1 0 0 0 0 1

0 0 1 1 1 0

1 1 1 0 0 0

0 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1 0 0 0

0 1 1 1 1 1 0 0 0 0 0

1 0 0 0 0

0 0 1 1 1

1 1 1 0 0

1 1 1 1 1

Model 2:

P1

P1

P2

P2

P4

0 1 0 0 0 0 1

1 0 0 0 0 1 0

0 0 1 1 1 0 0

1 1 1 0 0 0 0

0 0 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1 0 0 0

0 0 1 1 1 1 1 0 0 0 0

0 1 0 0 0

1 0 0 0 0

0 0 1 1 1

1 1 1 0 0

1 1 1 1 1

Model 3:

P1

P1

P1

P2

P2

P4

0 0 0 1 0 0 0 1

0 1 0 0 0 0 1 0

1 0 0 0 0 1 0 0

0 0 1 1 1 0 0 0

1 1 1 0 0 0 0 0

0 0 1 0 1 1 1 1

0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1 0 0 0

0 0 1 0 1 1 1 0 0 1 0

0 0 0 1 0

0 1 0 0 0

1 0 0 0 0

0 0 1 1 1

1 1 1 0 0

1 1 1 1 1
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Model 4:

P1

P1

P1

P1

P2

P2

P4

0 0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0

0 1 0 0 0 0 1 0 0

1 0 0 0 0 1 0 0 0

0 0 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0 0

0 0 1 0 0 1 1 1 1

0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1 0 0 0

0 0 1 0 0 1 1 0 0 1 1

0 0 0 0 1

0 0 0 1 0

0 1 0 0 0

1 0 0 0 0

0 0 1 1 1

1 1 1 0 0

1 1 1 1 1

9.2.6 Honest (0, 2) models with structure group SU(n)

In subsections 9.2.3 and 9.2.5 we gave different examples for target space dual
configurations. Nevertheless we only considered examples where the starting
point was an SU(3) model derived as deformation of the tangent bundle. We
now want to consider more generic examples of the duality, namely “honest”
(0, 2) models that are not given by the deformation of the tangent bundle. Each
type of structure group SU(3), SU(4) and SU(5) will be covered separately. In
contrast to what we showed before, here we want to give different examples that
do arise from an exact monad introduced in (7.43)

0→ V ι−→
nΛ⊕
a=1

OM(Na)
⊗Fal−→

np⊕
l=1

OM(Ml)→ 0 ,

and hence are given by the kernel of the map Fal

V = ker
(
Fa

l
)
. (9.66)

The way to generate the dual models of such a monad remains the same.

Example 9.2.1 (Example for an SU(3)-model). We start with an SU(3) example
which consists of a holomorphic vector bundle over a codimension two complete
intersection Calabi-Yau space. In this example here we are not dealing with
a (0, 2) model which is a deformation of the tangent bundle but a completely
independent monad. Furthermore we will see that the base will not transform
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via a conifold transition. Rather in the beginning the ambient variety will remain
untouched and only a different set of hypersurfaces will be chosen, also resulting
in a topology change of the base. Finally through the exchange of those specific
hypersurfaces we will see that in fact the ambient space topology will be changed
after all. The model data is given by

xi Γj

0 0 0 1 1 1 1

1 1 1 2 2 2 0

−2 −2

−4 −5

Λa pl

1 0 0 2

0 1 1 6

−3

−8

. (9.67)

Employing our implementation cohomCalg Koszul extension [7] for this matter we
find

h•M(V) = (0, 120, 0, 0) ,

h1,1
M + h2,1

M + h1
M(End(V)) = 2 + 68 + 322 = 392 .

(9.68)

In order to see our freedom of consistently exchanging hypersurface equations
with bundle maps in the monad as described in the last section we explicitly
write down the multi-degrees of the corresponding generic homogeneous func-
tions. Using that

||Fal|| = −||pl|| − ||Λa|| , (9.69)

for the only choice l = 1 they read

||G1|| =

2

4

 , ||G2|| =

2

5

 , (9.70)

||F1
1|| =

2

8

 , ||F2
1|| =

3

7

 , ||F3
1|| =

3

7

 , ||F4
1|| =

1

2

 . (9.71)

Here we can already see that the sum of the degrees of the two hypersurfaces
equals the sum of the degree of the third and the fourth F . From the last section,
we know how to exchange these functions and how to redefine the Λ’s and Γ’s in

http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
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order to obtain a sensible new monad. Namely we perform the rescalings

Γ̃1 := 〈p1〉Λ3, Γ̃B := 〈p1〉Λ4, Λ̃3 :=
Γ1

〈p1〉
, Λ̃4 :=

ΓB

〈p1〉
,

G̃1 := F3
1, G̃2 := F4

1, F̃3
1 := G1, F̃4

1 := G2 ,

(9.72)

yielding the effective superpotential

W = Γ̃1G̃1 + Γ̃2G̃2 + 〈p1〉
(

Λ̃3F̃3
1 + Λ̃4F̃4

1 + Λ1F1
1 + Λ2F2

1
)
. (9.73)

The new charges of the constructed model read

||Γ̃1|| =

 −3

−7

 , ||Γ̃2|| =

 −1

−2

 , ||Λ̃3|| =

 1

4

 , ||Λ̃4|| =

 1

3

 ,

||G̃1|| =

 3

7

 , ||G̃2|| =

 1

2

 , ||F̃3
1|| =

 2

4

 , ||F̃4
1|| =

 2

5


(9.74)

and hence going back to the geometric phase we obtain the new base with a
new vector bundle. We notice that the new configuration can be rewritten in
a slightly simpler way. The new hypersurface G̃2 has precisely the same degree
as the divisor {x4 = 0} and therefore the corresponding constraining equation to
the ambient space simply removes this coordinate from the configuration and we
obtain

xi Γj

0 0 0 1 1 1

1 1 1 2 2 0

−3

−7

Λa pl

1 0 1 1

0 1 4 3

−3

−8

. (9.75)

As was generically shown, this configuration still satisfies the conditions (2.41)
and we obtain the following topological data:

h•M̃(Ṽ) = (0, 120, 0, 0) ,

h1,1

M̃
+ h2,1

M̃
+ h1

M̃(End(Ṽ)) = 2 + 95 + 295 = 392 .
(9.76)

If we compare this with the result we obtained in (9.68), we see that the number of
chiral zero modes did not change and the total number of first order deformations
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stayed the same even though the Hodge number h2,1 changed drastically.

Let us once more put some emphasis on the fact that we started up with a base
manifold that was of codimension two and due to the exchange ended up with a
simpler space given by a codimension one Calabi-Yau manifold. Similarly, as we
will see in the next example this can also happen the other way round resulting
in an increase of the codimension. Also the number of C∗ actions can change
which will be shown in the following examples, too.

Example 9.2.2 (An example for an SU(4)-model). Next we present an example
of a dual pair of heterotic (0, 2) models that give rise to gauge group SO(10) in
four dimensions and hence are equipped with a rank 4 vector bundle. The model
is again not a deformation of the tangent bundle. The base is the complete
intersection of a generic quartic and homogeneous degree hypersurface two inside
P5. The defining data can be read off in the following table:

xi Γj

P5 −2 −4

Λa pl

1 1 1 1 1 1 1 −3 −2 −2
. (9.77)

Clearly this model is anomaly free, i.e. it satisfies (2.41) and one can also show
that the vector bundle is also stable6. It is sometimes also referred to as a positive
monad, since all line bundles involved have positive degree. It has the following
topological data:

h•M̃(Ṽ) = (0, 48, 0, 0) ,

h1,1

M̃
+ h2,1

M̃
+ h1

M̃(End(Ṽ)) = 1 + 89 + 159 = 249 .
(9.78)

Before we move on, we introduce a new coordinate along with a new hypersurface
to the model. Doing that at the same time does not change the model at all. In
order to perform the exchange of polynomials F and G, we have to go to a certain
region of the moduli space, exchange them and go back to the generic region in
the dual configuration. The resulting base manifold can then be obtained as the

6By Hoppe’s criterion for the initial bundle in this and the next example, to prove stability it
suffices to show that h0(M; ΛkV) = 0 ∀k < rkV and is relatively straight forward in these
cases.



9. Target Space Dualities in the String Landscape 218

conifold transition of the initial base space. The full model is given by

xi Γj

P1

P5

−1 0 −1

−1 −4 −1

Λa pl

0 0 0 1 0 0 0

1 1 1 0 2 1 1

0 −1 0

−3 −2 −2

, (9.79)

and its topology satisfies the necessary duality check of coinciding spectrum and
moduli space dimensions:

h•M̃(Ṽ) = (0, 48, 0, 0) ,

h1,1

M̃
+ h2,1

M̃
+ h1

M̃(End(Ṽ)) = 2 + 86 + 161 = 249 .
(9.80)

Example 9.2.3 (An example for an SU(5)-model). Finally let us quickly state a
different bundle over the same base from example 9.2.2. We modify it such that
it has no longer SU(4) but rather SU(5) structure. It is given by

xi Γj

P5 −2 −4

Λa pl

1 1 1 1 1 1 1 1 −3 −3 −2
. (9.81)

Since we have still three chiral fields pl but eight Fermi fields Λa, we end up
with a rank five vector bundle and hence yielding an SU(5) gauge group in the
four-dimensional theory. The spectrum and the dimension of the moduli space
for this model can be calculated as

h•M̃(Ṽ) = (0, 72, 0, 0) ,

h1,1

M̃
+ h2,1

M̃
+ h1

M̃(End(Ṽ)) = 1 + 89 + 288 = 378 .
(9.82)

The dual base is again given by the same conifold transition as in the last para-
graph. Altogether we get

xi Γj

P1

P5

−1 0 −1

−1 −4 −1

Λa pl

0 0 0 0 0 0 1 0

1 1 1 1 1 1 0 2

0 0 −1

−3 −3 −2

. (9.83)



219 9.3. Landscape studies

Calculating the topological data,

h•M̃(Ṽ) = (0, 72, 0, 0) ,

h1,1

M̃
+ h2,1

M̃
+ h1

M̃(End(Ṽ)) = 2 + 86 + 290 = 378
(9.84)

we can verify that the necessary condition for a duality also holds and hence the
conjecture extends to SU(5) bundles as well.

9.3 Landscape studies

So far, we have verified the proposed general target space duality between (0, 2)

GLSMs only for a couple of examples. In fact, invoking a fast computer im-
plementation, we have actually performed a large scale landscape study of this
target space duality. We generated ten-thousands of candidate dual models and
then computed the massless particle spectra, i.e. the number of chiral matter
fields and the number of massless gauge singlets D(M,V). Let us report on our
findings.

9.3.1 The scanning algorithm

The algorithm to generate dual (0, 2) GLSMs enabled us to perform a scan over
many different models. While one performs the duality transformation it might
happen that new singularities arise and in general it may be hard to resolve them
properly. For that reason, we only considered those cases where almost no new
singularities appeared. Our scanning algorithm looks as described in table 9.2
starting with step 1. We ran through two different lists (mentioned in step 1).
The first one contained Calabi-Yau manifolds defined via single hypersurfaces in
toric varieties. We took the ambient spaces out of the list from [126] available on
the website of Maximilian Kreuzer [127] and the second list contains codimension
two complete intersections in weighed projective spaces which is part of the list
presented in [128] and available at [129]. To resolve the ambient spaces and also
to generate the set of nef partitions to obtain the codimension two Calabi-Yaus,
we used PALP [70]. For the remaining steps several packages as TOPCOM [65]
Schubert [66] and of course cohomCalg Koszul extension [7] along with some Math-
ematica routines were employed. For the interplay of TOPCOM and Schubert

http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
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Step 1:
Go to next
model in

list
//

Step 2:
Triangulize
polytope

via
TOPCOM

//

Step 3:
Generate
SR ideal,
inters.
numbers

via
Schubert

//

Step 4:
Calculate

line
bundles

from Euler
and

monad
complex

��
Step 7:
Calculate

all
h1
M(End(V))

OO

Step 6:
Generate
GLSM
data of
next con-
figuration

if possible

OO

if not
oo

Step 5:
Compare∑3
i=1(−)ihi

to holom.
χ

agree
oo don’t

agree
//

Delete
configura-

tion

Table 9.2.: The scanning algorithm that we use to go through all models that has been
tested for the target space duality. It starts with step 1.

we use the (not published) Toric Triangulizer [71].

9.3.2 Hypersurfaces in toric varieties

Our first scan ran over the list of hypersurfaces in toric varieties [127] where we
considered all toric varieties with 7, 8 and 9 lattice points which make altogether
1, 085. Starting from this geometry, we performed all first duals to each of those
models in the way described in 9.2.2 where we always introduced exactly one new
hypersurface. Hence the dual models of each hypersurface Calabi-Yau are here
codimension two complete intersections in toric varieties. Since already many of
the duals are obtained by only performing the duality procedure once, we did not
perform duals of duals as shown in 9.2.5. In figure 9.2 we displayed all models
with full agreement of the chiral spectrum and the sum of complex structure,
Kähler and bundle deformations, i.e. D(M,V). Some details on the full analysis
are shown in table 9.3.

9.3.3 CICY of two hypersurfaces

As a second scan we took a list of codimension two complete intersections in
weighted projective spaces as a start, rather than just single hypersurfaces. This
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(a) Hypersurface models part 1
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Figure 9.2.: Plot of the topological data of hypersurfaces in toric varieties and their
codimension two duals with full agreement. Each line corresponds to one class of dual
models. Different colored overlapping lines correspond to different classes.
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Different
classes

Possibly
smooth
models

Classes
without
duals

Models
with

matching
spectrum

Models
with full
agreement

Computed
(different)
line bundle
cohom.

1,085 4,507 42 4,144
(100%)

1509
(94.6%)

(1,481,539)
3,069,067

Table 9.3.: Some data on the landscape study: Starting point are hypersurfaces in toric
varieties that are given by the polytopes with at most 9 lattice points. The percent
numbers in the parentheses in column 4 and 5 only cover models where these numbers
could actually be calculated. In column 5, by “full agreement” we mean that the chiral
spectrum of dual models as well as the sum of complex structure, Kähler and bundle
deformations agree.

list can be found online at [129]. For our scan we simply ran through the first
2, 780 ambient spaces and chose the 16, 029 possible nef partitions as starting
points. All these nef partitions correspond to topologically distinct Calabi-Yau
manifolds that are complete intersections of two hypersurfaces in the correspond-
ing weighted projective space. All dual models are codimension three complete
intersections in toric varieties. In figures 9.3 and 9.4 we have displayed all the
models where a full agreement of deformations and chiral spectrum was found.
In table 9.4 we provide the summary of some details on the full scan.

Different
classes

Possibly
smooth
models

Classes
without
duals

Models
with

matching
spectrum

Models
with full
agreement

Computed
(different)
line bundle
cohom.

16,961 79,204 718 64,332
(85 %)

20,336
(91%)

(38,807,002)
109,228,732

Table 9.4.: Some data on landscape study. Starting point are codimension two com-
plete intersections in weighted projective spaces.

9.3.4 The mismatch

While we were performing the scan over the landscape, we found that the duality
holds in most the cases, but not in all of them. In two different ways it actually
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Figure 9.3.: Plot of the topological data of codimension two complete intersections in
weighted projective spaces and their codimension three duals. Each line corresponds
to one class of dual models. Different colored overlapping lines correspond to different
classes.
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Figure 9.4.: Plot of the topological data of codimension two complete intersections in
weighted projective spaces and their codimension three duals. Each line corresponds
to one class of dual models. Different colored overlapping lines correspond to different
classes.
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happened to fail i.e. either such that the chiral spectrum did not match or that
that the sum of total deformations of the Calabi-Yau and the bundle did not
match. The chiral spectrum can fail to match for the following reasons:

• The Calabi-Yau manifold is not smooth and still contains singularities7.
In addition, the monad might not define a smooth vector bundle, but for
instance merely a coherent sheaf with non-constant rank (see e.g. [115,117]
for a correct treatment of such configurations).

• During the scan we did not explicitly check whether the model we started
with actually admits a phase that allows for the redefinition of the corre-
sponding fields. So it might happen that such a phase did not exist to begin
with which would forbid the exchange of specific F ’s and G’s.

The mismatch of D(M,V) 6= D(M̃, Ṽ) could of course be traced back to the
same reasons, but could also be happening since we assumed the bundle to be
stable and furthermore the map ϕ in (9.11) to be surjective.

Example 9.3.1 (Failing Example). Let us present a simple example where a
mismatch occurs. Consider the following configuration with standard embedding:

xi Γj

−1 0 0 1 1 1

1 1 1 0 0 0

−2

−3

.

One possible dual model of this configuration can be obtained as

xi Γj

0 0 0 0 0 0 1 1

−1 0 0 1 1 1 0 0

1 1 1 0 0 0 3 0

−1 −1

−1 −1

−3 −3

Λa pl

0 0 0 1 0 0

−1 0 0 0 2 1

1 1 1 0 0 0

−1

−2

−3

.

7The check of the holomorphic Euler characteristic for line bundles over the Calabi-Yau is
only a necessary condition for smoothness.
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For the initial model (M,V) we calculate the following data

h•S(V ) = (0, 86, 2, 0) ,

h1,1
S + h2,1

S + h1
S(End(V )) = 2 + 86 + 184 = 272 ,

whereas for the dual model we find

h•
S̃
(Ṽ ) = (0, 86, 2, 0) ,

h1,1

S̃
+ h2,1

S̃
+ h1

S̃
(End(Ṽ )) = 3 + 78 + 195 = 276 ,

We observe that there is a mismatch of 4 for D(M,V), but at the present state
it is hard to determine the precise origin of this mismatch.



Chapter 10
Conclusions and Outlook

In this dissertation we have formulated and proven a mathematical theorem for
the computation of line bundle cohomology. Furthermore a generalization of this
algorithm to Zn quotients of toric varieties was proposed. We have discovered
a relation of cohomology groups of line bundles with terms in the combinato-
rial Batyrev formulæ which allow an identification of these cohomologies with
twisted sectors of Landau-Ginzburg models. We furthermore found new explicit
formulæ for the Hodge numbers of Calabi-Yau four-folds. Making use of the
implementation of the algorithm, we investigated target space dualities. Here
we proposed a method to construct dual models from arbitrary (0, 2) models.
We explained the transition that the base space performs and provided evidence
for the fact that this is indeed a duality of the full string model. In particular,
such evidence was provided for models with various gauge groups as well as base
spaces with codimension one or two. Furthermore we studied the duality for a
large landscape of heterotic models.

10.1 Cohomology of line bundles

Results

We have successfully developed a new algorithm to calculate the cohomology of
line bundles over arbitrary toric varieties. What was already known by mathe-
maticians is that Laurent monomials contribute to the cohomology with a cer-
tain factor that can be obtained from the cohomology of the corresponding Čech
cochain complex. To avoid the lengthy computation of these cohomology groups
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we introduced a different sequence that is derive from the Taylor resolution of the
full simplex that belongs to the Stanley-Reisner ideal, restricted to the degree of
the Laurent monomial in question. Then we can obtain the Betti numbers from
the reduced homology of that new complex which is in practice much faster than
calculating Čech cohomology. Finally using Alexander duality one can show the
relation to local cohomology with support on the irrelevant which is known to
determine the desired sheaf cohomology groups. In fact one would maybe not
see right away that this is indeed a faster way to compute line bundle cohomol-
ogy. Here the crucial point is that we are mostly only interested in the actual
dimension of these cohomologies and that this new algorithm allows us to avoid
calculating the maps in the corresponding complexes for basically all relevant
cases. In fact in literally millions of calculations that have been done during the
last two years we did not need to calculate these maps even once. Using the con-
ventional method via the Čech complex would require this already for the very
simplest examples.

Outlook

We also provided an efficient and conveniently accessible implementation of the
algorithm along with its applications to the calculation of topological data of line
bundles over subvarieties. Also the cohomology of holomorphic vector bundles
can be addressed with the cohomCalg Koszul extension which is available online [7].
There are very many things that can be done using this algorithm and the package
and we will not even try to list them all. Actually we are working on models with
poly-instanton corrections right now [130] where we make use of the algorithm a
lot. But in the end most of the outlook and future work is of course up to those
that decide to use the algorithm for their projects.

http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
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10.2 Equivariant cohomology

Results

Since the algorithm provides explicit Laurent monomials in terms of the homo-
geneous coordinates, we investigated the cohomology of line bundles of a space
that has an additional discrete action which then splits into invariant and non-
invariant parts. Here we calculated various examples using the Lefschetz index
theorem to compare these equivariant cohomology groups that result from ap-
plying the discrete action to the Laurent monomials that represent it and could
formulate a conjecture that goes beyond the original algorithm.

Outlook

The above results suggest various further investigations. So far the conjecture
on equivariant cohomologies only applies to the cohomology of the toric ambient
space. Since in many aspects of string theory e.g. in orientifold settings we
actually work with hypersurfaces it would be interesting how the representation
looks in these subvarieties explicitly. Though it seems reasonable that nothing
changes on invariant subvarieties it is not quite clear what happens on an arbitrary
hypersurface or complete intersection of hypersurfaces, e.g. divisors of the Calabi-
Yau.

10.3 Combinatorial cohomology

Results

We identified the contribution of the ambient space line bundle cohomology
groups to the Hodge numbers of a Calabi-Yau three-fold of codimension one and
two with certain terms in the combinatorial formulæ from Batyrev and Borisov.
Here we found that the terms that involve lattice points of the polytope and the
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dual polytope of the toric variety could be seen as contributions from cohomol-
ogy of higher order. For the hypersurface case these represent twisted states in
the Laudau-Ginzburg phase of the Calabi-Yau. Also a combinatorial formula for
Hodge numbers of a codimension two CY four-fold were derived and presented.

Outlook

It is quite surprising that one can actually derive a relation between the terms
in the combinatorial formulæ and the line bundle cohomology degree. A nice
feature of these formulæ is that they make mirror symmetry manifest. Since for
the heterotic string the Hodge numbers are the moduli of the theory it would
be interesting to know if a combinatorial formula also exists for the total moduli
space namely the one that also takes the bundle moduli into account. In fact such
a formula has been derived for the case where the holomorphic vector bundle is
a deformation of the tangent bundle [108]. It would therefore be rewarding to
see whether one can also identify certain terms of that formula with line bundle
cohomologies. One could then maybe even go a step further and derive a more
generic combinatorial formula for more general holomorphic vector bundles by
deriving the combinatorial contributions from the corresponding pieces in the
long exact sequences of the calculation. If that was possible one might be able to
find a way to relate a holomorphic vector bundle to its (0, 2) mirror.

10.4 Targe space dualities

Results

We have proposed a method to construct dual models from almost any given (0, 2)

heterotic model that generically have the same massless spectra. This procedure
should basically work with all possible structure groups SU(3), SU(4), SU(5)

for the gauge bundle and preserves certainly all anomaly cancellation conditions.
For the special case that Fermi superfields become uncharged in the dual model,
it was suggested to perform an additional blowup of a P1. Furthermore it was
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pointed out that in these cases the duality transformation of the base could be
understood as a conifold transition.

Moreover some further aspects of target space duality were studied. For in-
stance the successive application of the duality resulting in chains of dual models
and the explicit check of the duality for models with E6, SO(10) and SU(5)

gauge group. These models correspond to Calabi-Yau manifolds endowed with
a holomorphic vector bundle which cannot be obtained via a deformation of the
tangent bundle.

To provide evidence for our proposal, a large number of examples were investi-
gated where the initial models were hypersurfaces in toric varieties and codimen-
sion two complete intersections in weighted projective spaces. For both types the
initial configuration was the Calabi-Yau manifold equipped with a deformation of
its tangent bundle carrying an SU(3) structure group. A great number of models
agreed in all instances and otherwise an interpretation of the mismatch of the
bundle deformations and an explanation of the mismatch of the chiral spectrum
was suggested.

Outlook

A couple of aspects suggest further investigation: Since it was not checked explic-
itly whether the bundle of a dual configuration is indeed stable, it would be very
useful to find a way or a requirement for the proposed procedure that ensures
stability of the dual bundle.

We argued that deformations of the complex structure and of the bundle are
unobstructed if they come from global section of line bundles on the Calabi-
Yau manifold. A mathematically rigorous treatment of these obstructions was
recently presented in [118] and it would be interesting whether potential target
space dual models also have the same number of unobstructed deformations.

Because a large number of 83,711 models was analyzed, we are confident that
a fair ratio really defines “healthy” configurations. Nevertheless, due to the fact
that only necessary but not sufficient consistency checks were made in order
to detect singularities of the generated spaces, a closer analysis of the specific
configurations would be necessary in order to ensure that the base as well as
the bundle are indeed smooth. The list of different Hodge numbers that we
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generated contained several yet discovered combinations of (h2,1, h1,1) and the
explicit analysis of these spaces is a worthwhile thing to do.

For elliptically fibered Calabi-Yau three-folds with vector bundles defined via
the spectral cover construction, it is known that a higher dimensional framework,
namely F-theory on Calabi-Yau four-folds exists, in which the complex structure
and bundle deformations are unified. In fact, considering a Calabi-Yau four-fold
admitting two different K3-fibrations would also imply a duality between two
seemingly different heterotic (0, 2) models. In this respect, it is an interesting
question whether also in the present case of (0, 2) GLSMs a unified description
exists, where the duality is manifest.

Having only tested single examples for the scenario where the model is not a
deformation of the tangent bundle and therefore comes generically with SU(n)

structure for n = 3, 4, 5 it remains to perform a similar larger scan for such mod-
els as well. In this respect, further checks would be possible, i.e. a matching of
zero modes that live in h1

M(Λ2V) and h1
M(Λ2V∗). However our attempts up to

now faced a couple of obstacles. Namely it is first of all not easy to solve (2.41)
in general for a given base geometry. The second problem is that for a given
configuration, one has to check that the bundle is not singular and that it is
furthermore stable which is quite challenging. On the other hand, if one could
come up with an idea to generate all stable bundles over a given base geometry
systematically, it would be no problem to check (2.41) for those models. This
was already done for a subset of all bundles over specific base spaces [62] and one
way to prove bundle stability in an up to some point systematic way for arbitrary
base spaces was suggested in [56] and [58] are a hopeful starting point to allow
us to overcome this challenge.

Maybe at some point one will be able to identify the right Calabi-Yau space
with the right holomorphic vector bundle resulting in a heterotic grand unified
theory that describe the physics we observe. But until then:

No GUTs no glory ...



AppendixA
Anomaly Cancellation

A.1 Anomaly cancellation for target space dualities

In this appendix, we show that the dual configuration (M̃, Ṽ) satisfy the anomaly
cancellation conditions (2.41), if they were satisfied by the initial one (M,V). For
this purpose, let us start with a general configuration

VN1,...,NnΛ
[M1, ...,Mnp ] −→ PQ1,...,Qd [S1, ..., Sc] .

that satisfies the combinatorial relations (2.41):

nΛ∑
a=1

N (α)
a =

np∑
l=1

M
(α)
l ,

d∑
i=1

Q
(α)
i =

c∑
j=1

S
(α)
j

np∑
l=1

M
(α)
l M

(β)
l −

nΛ∑
a=1

N (α)
a N (β)

a =
c∑
j=1

S
(α)
j S

(β)
j −

d∑
i=1

Q
(α)
i Q

(β)
i ,

for all α, β = 1, . . . , r. We want to to show that this implies that the dual
configuration,

VÑ1,Ñ2,N3,...,NnΛ
[M1,M2, ...,Mnp ] −→ PQ1,...,Qd,B[S̃1, S3, ..., Sc, B̃] ,
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with charges given in table 9.1, still satisfies these relations. The new fields that
changed comparing to the initial model read

y1 y2 Γ̃1 Γ̃B F̃1
1 F̃2

1 Λ̃1 Λ̃2 p1

1 1 −1 −1 0 1 1 0 −1

B 0 −(M1 −N1) −(M1 −N2) S1 B M1 − S1 M1 −B −M1

.

Since y1 was chosen in a way that

B + S1 = ||F1
1||+ ||F2

1|| = 2M1 −N1 −N2 (A.1)

we get

||F̃2
1|| =

 1

2M1 −N1 −N2 − S1

 ,

||Λ̃2|| =

 1

−M1 +N1 +N2 + S1

 .

(A.2)

Linear relations:

Let us refer to the U(1) charges that belong to the blown up P1 as new U(1)

charges. The Calabi-Yau condition, i.e. the second equation in (2.41) for the
dual model is clear for the new U(1) charges. For the other U(1)’s it reads

d∑
i=1

Q
(α)
i +B(α) =

c∑
j=2

S
(α)
j + (M

(α)
1 −N (α)

1 )

+ (M
(α)
1 −N (α)

2 )

⇔
d∑
i=1

Q
(α)
i + 2M

(α)
1 −N (α)

1 −N (α)
2 − S(α)

1 =
c∑
j=2

S
(α)
j + 2M

(α)
1 −N (α)

1 −N (α)
2

⇔
d∑
i=1

Q
(α)
i + 2M

(α)
1 −N (α)

1 −N (α)
2 =

c∑
j=1

S
(α)
j + 2M

(α)
1 −N (α)

1 −N (α)
2
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⇔
d∑
i=1

Q
(α)
i =

c∑
j=1

S
(α)
j �

The second linear relation is also satisfied:

nΛ∑
a=3

N (α)
a + (M1 − S1) + (−M1 +N1 +N2 + S1) =

np∑
l=1

M
(α)
l

nΛ∑
a=1

N (α)
a =

np∑
l=1

M
(α)
l �

Quadratic relations:

Now lets have a look at the quadratic relations in (2.41). There are three different
cases. The first where only the new U(1) charges are involved, the second where
old and new charges get mixed and the third where only the old charges are
considered. Lets start with the first, which is obvious since only few changes
were made:

12 + 12 − ((−1)2 + (−1)2) = 12 − (−1)2 ⇔ 0 = 0 �

For the second one we find:

(M1 −N1) + (M1 −N2)− (B − 0) = M1 − ((M1 − S1) + 0)

⇔ 2M1 −B = N1 +N2 + S1

⇔ 2M1 − 2M1 +N1 +N2 + S1 = N1 +N2 + S1

⇔ N1 +N2 + S1 = N1 +N2 + S1 �

The last only involves the old U(1) charges:

np∑
l=1

M
(α)
l M

(β)
l −

nΛ∑
a=3

N (α)
a N (β)

a − Ñ
(α)
1 Ñ

(β)
1 − Ñ (α)

2 Ñ
(β)
2

=
c∑
j=2

S
(α)
j S

(β)
j + S̃

(α)
1 S̃

(β)
1 + S̃

(α)
2 S̃

(β)
2 −

d∑
i=1

Q
(α)
i Q

(β)
i −B(α)B(β) − 0
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⇔
2∑

a=1

N (α)
a N (β)

a − Ñ
(α)
1 Ñ

(β)
1 − Ñ (α)

2 Ñ
(β)
2

= −S(α)
1 S

(β)
1 + S̃

(α)
1 S̃

(β)
1 + S̃

(α)
2 S̃

(β)
2 −B(α)B(β)

⇔
2∑

a=1

N (α)
a N (β)

a − (M
(α)
1 − S(α)

1 )(M
(β)
1 − S(β)

1 )

−(M
(α)
1 −B(α))(M

(β)
1 −B(β)) (A.3)

= −S(α)
1 S

(β)
1 + (M

(α)
1 −N (α)

1 )(M
(β)
1 −N (β)

1 )

+ (M
(α)
1 −N (α)

2 )(M
(β)
1 −N (β)

2 )−B(α)B(β) , (A.4)

where we used the initial quadratic relations from (2.41) in the first step. As an
intermediate step, lets evaluate the third and fourth term of the right hand side
of

−(M
(α)
1 −B(α))(M

(β)
1 −B(β)) =

−M (α)
1 M

(β)
1 −B(α)B(β) +M

(α)
1 B(β) +B(α)M

(β)
1

(A.5)

which reads

M
(α)
1 B(β) = 2M

(α)
1 M

(β)
1 −M (α)

1 N
(β)
1 −M (α)

1 N
(β)
2 −M (α)

1 S
(β)
1 ,

M
(β)
1 B(α) = 2M

(β)
1 M

(α)
1 −M (β)

1 N
(α)
1 −M (β)

1 N
(α)
2 −M (β)

1 S
(α)
1

and hence it folllows

M
(α)
1 B(β) +M

(β)
1 B(α) =M

(α)
1 M

(β)
1

+ (M
(α)
1 −N (α)

1 )(M
(β)
1 −N (β)

1 )−N (α)
1 N

(β)
1

+ (M
(α)
1 −N (α)

2 )(M
(β)
1 −N (β)

2 )−N (α)
2 N

(β)
2

+ (M
(α)
1 − S(α)

1 )(M
(β)
1 − S(β)

1 )− S(α)
1 S

(β)
1 .

(A.6)

Pluggin (A.6) back into (A.5) and (A.5) back into (A.4), we get

2∑
a=1

N (α)
a N (β)

a − (M
(α)
1 − S(α)

1 )(M
(β)
1 − S(β)

1 ) +M
(α)
1 M

(β)
1 −M (α)

1 M
(β)
1

−B(α)B(β) + (M
(α)
1 −N (α)

1 )(M
(β)
1 −N (β)

1 )−N (α)
1 N

(β)
1

+ (M
(α)
1 −N (α)

2 )(M
(β)
1 −N (β)

2 )−N (α)
2 N

(β)
2

+ (M
(α)
1 − S(α)

1 )(M
(β)
1 − S(β)

1 )− S(α)
1 S

(β)
1
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= − S(α)
1 S

(β)
1 + (M

(α)
1 −N (α)

1 )(M
(β)
1 −N (β)

1 )

+ (M
(α)
1 −N (α)

2 )(M
(β)
1 −N (β)

2 )−B(α)B(β) ,

⇔ 0 = 0 � .

Since we did not assume that M1 = S1, the whole calculation is valid for both
cases described in 9.2.2. In fact, it can be shown that one can exchange an arbi-
trary number of G’s with F ’s, as long as at most one uncharged Fermi superfield
appears.





Notation

General:

• The toric ambient space: PΣ

• Dimension of PΣ: d

• Number of coordinates in PΣ: n

• General subvariety: S

• Codimension of S: c

• Dimension of the subvariety: dS

• Calabi-Yau Manifold: M

• Dimension of Calabi-Yau Manifold: dM

• Vector bundle: V

• Number of divisors in monad left:nF

• Number of divisors in monad middle: nΛ

• Number of divisors in monad right: np

• U(1) charge of a field in the GLSM: || · ||

• Homogeneous degree of (Laurent-)Polynomials: : || · ||

Indices:

• Coodinates in PΣ: i

• Hypersufaces: j
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• Monad middle divisors: a

• Monad right: l

• Monad left: k or i

• For anything else: m, k

• U(1)-charge indices: α, β

• Coordinates of the space time: N = 0, ..., 9

Abbreviation:

• LM: Laurent monomial

• SR: Stanley-Reisner

• GLSM: Gauged linear sigma model

• NLSM: Non-linear sigma model

• GUT: Grand unified theory

• LG: Landau-Ginzburg

• vev: Vacuum expectation value

• FI: Fayet-Iliopoulos

• SM: Standard model

• SUSY: Supersymmetry

• MSSM: Minimal supersymmetric standard model

• NMSSSM: Next to minimal supersymmetric standard model
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