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Summary

With the growing amount of data handled by Internet-enabled mobile devices, the task
of preventing software from leaking confidential information is becoming increasingly
important. At the same time, mobile applications are typically executed on different
devices whose users have varying requirements for the privacy of their data. Users
should be able to define their personal information security settings, and they should
get a reliable assurance that the installed software respects these settings.

Language-based information flow security focuses on the analysis of programs to
determine information flows among accessed data resources of different security levels,
and to verify and formally certify that these flows follow a given policy. In the mobile
code scenario, however, both the dynamic aspect of the security environment and the
fact that mobile software is distributed as bytecode pose a challenge for existing static
analysis approaches.

This thesis presents a language-based mechanism to certify information flow secu-
rity in the presence of dynamic environments. An object-oriented high-level language
as well as a bytecode language are equipped with facilities to inspect user-defined
information flow security settings at runtime. This way, the software developer can
create privacy-aware programs that can adapt their behaviour to arbitrary security
environments, a property that is formalized as “universal noninterference”.

This property is statically verified by an information flow type system that uses
restrictive forms of dependent types to judge abstractly on the concrete security policy
that is effective at runtime. To verify compiled bytecode programs, a low-level version
of the type system is presented that works on an intermediate code representation
in which the original program structure is partially restored. Rigorous soundness
proofs and a type-preserving compilation enable the generation of certified bytecode
programs in the style of proof-carrying code.

To show the practical feasibility of the approach, the system is implemented and
demonstrated on a concrete application scenario, where personal data are sent from a
mobile device to a server on the Internet.

i





Zusammenfassung

Da internetfähige mobile Geräte eine zunehmende Menge an Daten verarbeiten, wird
die Frage, wie die Veröffentlichung vertraulicher Informationen durch Software ver-
hindert werden kann, immer wichtiger. Gleichzeitig werden mobile Applikationen
typischerweise auf vielen unterschiedlichen Geräten ausgeführt, deren Benutzer ver-
schiedene Anforderungen an die Vertraulichkeit ihrer Daten haben. Anwender sollten
daher die Möglichkeit haben, ihre persönlichen Informationssicherheits-Einstellungen
selbst zu setzen, und sie sollten eine zuverlässige Zusicherung bekommen, dass die
installierte Software diese Einstellungen respektiert.

Das Gebiet der programmiersprachen-basierten Informationsflusssicherheit be-
schäftigt sich mit der Analyse von Programmen in Bezug auf Informationsflüsse zwi-
schen Datenquellen mit verschiedenen Sicherheitsstufen, und mit der Verifikation
und formellen Zertifizierung, dass diese Flüsse einer gegebenen Sicherheitspolitik
entsprechen. Wenn es um mobilen Code geht, stellen aber sowohl der dynamische
Charakter der Sicherheitsumgebung wie auch die Tatsache, dass mobile Software als
Bytecode verteilt wird, eine Herausforderung für existierende statische Analyseansätze
dar.

Diese Dissertation stellt einen programmiersprachen-basierten Mechanismus vor,
um Informationsflusssicherheit in dynamischen Umgebungen zu zertifizieren. Eine ob-
jektorientierte Hochsprache und eine Bytecodesprache werden dazu mit der Möglich-
keit erweitert, benutzerdefinierte Informationsfluss-Sicherheitseinstellungen zur Lauf-
zeit zu untersuchen. Auf diese Weise kann der Softwareentwickler privatsphären-
unterstützende Programme schreiben, die ihr Verhalten beliebigen Sicherheitsumge-
bungen anpassen können, eine Eigenschaft, die als “universelle Nichtinterferenz” for-
malisiert wird.

Diese Eigenschaft wird statisch durch ein Informationsfluss-Typsystem überprüft,
das eine eingeschränkte Form von abhängigen Typen benutzt, um abstrakt über die
konkrete, zur Laufzeit gültige Sicherheitspolitik zu urteilen. Um übersetzte Bytecode-
Programme zu verifizieren, wird eine Low-Level-Version des Typsystems vorgestellt,
welches auf einer Zwischendarstellung des Codes arbeitet, in der die ursprüngliche
Programmstruktur teilweise wiederhergestellt worden ist. Ausführliche Korrektheitsbe-
weise und eine typerhaltende Übersetzung machen die Erzeugung von zertifizierten
Bytecodeprogrammen im Stil von Proof-Carrying Code möglich.
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Summary

Um die praktische Durchführbarkeit des Ansatzes zu zeigen, wird das System imple-
mentiert und anhand eines konkreten Anwendungsszenarios demonstriert, in dem
persönliche Daten von einem mobilen Gerät zu einem Server im Internet gesendet
werden.
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1
Introduction

Modern software systems manage and process an increasing amount of personal
information. At the same time, the goal to keep this data confidential becomes more
and more important. Smartphones in particular have recently become a significant
application scenario: they typically carry a lot of personal information, they allow the
installation of many additional applications that may access the stored information,
and at the same time they provide a connection to the Internet. The task to prevent
applications from publishing private information or leaking it to untrusted destinations
is thus more relevant than ever.

Classically, the integrity and confidentiality of data is guaranteed by implemen-
tations based on access control mechanisms [Fen73; BL73; FLR77; SEL09]. They are
intuitive to use for standard application scenarios, well-understood by security ex-
perts, and can be enforced strictly. The problem, however, is that they cannot enforce
restrictions on the propagation of information, which is highly important in practice.
For example, a smartphone application may legitimately need access to both personal
data and the Internet. With access control, one may narrow down the set of accessed
objects, define precise read and write permissions, or change these permissions during
a program execution. Even so, all these measures can give at most an approximate ap-
proach to the goal of preventing information leakage, while causing complex security
policies for even simple information flow requirements. For the normal smartphone
user, as a result, the question of protecting data confidentiality while an application is
running usually falls back to determining the trustworthiness of the application. Thus,
the advantages of easy usability and reliable security guarantees are subverted when
access control-based mechanisms are used to regulate the propagation of information.
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1. Introduction

PUBLIC

PRIVATE x: PUBLIC

y: PRIVATE

x := y mod 2;

x := 0;
if (y mod 2) = 1 then x := 1;

Figure 1.1: Simple information flow policy, and examples for insecure code

For these reasons, information flow security mechanisms have been proposed. Just
as in access control, one considers data objects of a system, such as variables, files, or
sockets, and assigns a security domain to each of them, such as PUBLIC and PRIVATE.
However, instead of preventing access to data of specific domains altogether, the flow of
information in a piece of software is analysed and verified against a given information
flow policy, which defines the allowed flows among objects of these domains. For
example, a flow policy may define that data may flow freely within the PUBLIC domain,
or within the PRIVATE domain, or from PUBLIC to PRIVATE, but not from PRIVATE to
PUBLIC, thereby preventing a leak of private information. A graphical representation of
this policy is shown on the left of Figure 1.1; reflexive flow edges are left implicit.

The program property of adherence to an information flow policy has been se-
mantically characterized as noninterference, a concept introduced by Goguen and
Meseguer [GM82]. The property states that those parts of the program output that are
visible to an observer must not depend on input parameters that are invisible to the
same observer. To put it differently, private inputs must not affect the computation
of public outputs. A noninterferent program thus transfers information among data
objects in a manner that respects the flow policy. In the following, such programs are
also simply called secure, as this thesis exclusively focuses on noninterference.

The first definitions of noninterference have been given for systems that are mod-
elled as automata with multiple security levels, building directly on the access control
model by Bell and LaPadula [BL73]. More recently, language-based formalizations of
noninterference have been presented that consider programs on the level of code, and
formalize the property in terms of the program semantics.

As examples for insecure programs, consider the two short WHILE language pro-
grams on the right in the figure above. The data objects are the program variables x and
y , where we assume that x is assigned the security level PUBLIC, and y is assigned the
level PRIVATE. According to the example policy on the left of the figure, no information
may be transferred from the private variable y to the public variable x. The program on
top thus clearly violates the policy, as the final value of the public variable x depends
on the secret initial value of y , even if only the one-bit information about the parity of
y is leaked. The problematic information leakage is directly caused by assigning secret
data to a public variable. The program on the bottom is also insecure: Although there
is no direct flow from y to x, information is leaked via a control flow structure; here,
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1.1 Application Scenario

a public variable depends on the value of a conditional expression involving private
data. (In fact, the program is semantically equivalent to the first one.)

Classic noninterference is an end-to-end property that only gives requirements on
the inputs and outputs of a program; any violations of the policy that occur temporarily
during the execution of a program are not considered. The property is also termination-
insensitive: it only talks about terminating programs, such that covert leaks of private
information via the termination behaviour are excluded from the security examination.

To verify the security of information flows in software, Denning and Denning [DD77]
have developed a static program analysis that can automatically check a given program
for noninterference. More recently, Volpano, Smith, and Irvine [VSI96] have presented
an information flow type system, and also formulated a proof of correctness for their
analysis, which states that all typable programs are noninterferent. As with all correct
program analyses, however, the information flow type system is not complete — that
is, there are always secure programs that are rejected by the type system.

Since then, the popular baseline security notion of noninterference has been the
basis of a larger research field. Over time, many formalizations of information flow
security properties have been developed. The software system may be given as a transi-
tion system, or as code of a programming language; the flow policy may be formalized
as a transitive order, or it may require that information passes security domains one
after another intransitively; the security property may additionally include covert in-
formation leaks introduced by indirect channels such as execution time, heap space
consumption, termination behaviour, and others; the property may be extended to
data in program states reached during the execution, or to programs that do not ter-
minate; and the security policy may be static or may change in certain situations, in
particular by allowing the declassification of data. Likewise, different analysis tech-
niques to check whether a program transfers data between those objects in a manner
that respects the policy have been developed. A further explanation of these general
categories and an overview of different approaches in the field of language-based
information flow security can be found in survey papers [SM03; SS05].

Let us now consider a concrete application scenario, in which smartphone users are
to be provided with privacy guarantees for software that operates on their personal
data. The scenario provides a number of challenges that are, as it turns out, not easily
addressable by existing techniques.

1.1 Application Scenario

A typical smartphone user stores various personal information on the mobile device,
such as e-mails, calendars, contacts, or photos. A smartphone also allows the installa-
tion of additional software (apps), that can be downloaded from centralized distribu-
tion platforms (app stores), such as those provided by Google or Apple. Downloadable
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1. Introduction

software generally has access to data stored on the phone, and can communicate with
Internet services. However, different users have different personal data stored on their
devices, and the availability of external resources may vary. Also, users typically have
different priorities with respect to the confidentiality of their data.

Consider, as a concrete use case, two users Dave and Sue, both having a smartphone
with personal information, which we assume to be just a set of files for the sake of
simplicity. Moreover, the phone also has access to external resources, such as data
stored on some specific server, or simply “the Internet” in general. Both users wish to
install an application that synchronizes local files with an online cloud storage service.
The application thus has legitimate access to both local data and the Internet.

While Sue has a lot of files on her phone and would like to define intricate privacy
settings on them, Dave just manages a few files and does not care about information
flow security at all. Initially, the application copies files from the phone to the cloud
service. During this process, Dave is content with backing up all the files, whereas Sue
considers the cloud service as “somewhat public” and is therefore reluctant to send
data there that she finds highly confidential. Also, she wants a guarantee that her data
is not sent to any other place on the Internet.

In this application scenario, the users have the ability to classify their data and
their view on the world (e.g. the Internet) by confidentiality levels, and to specify a
flow policy that describes which flows among these security levels are allowed. The
classification and the policy form the security environment; it may vary among users,
and may be changed from time to time by the user.

To express her security intention, Sue thus assigns the security domains LOW, MED,
and HIGH to her files to indicate their confidentiality level, where LOW stands for
the most public classification, and HIGH represents the most private classification.
She treats the cloud server as MED, and all other Internet connections as LOW. Her
flow policy says that data must not flow from a higher to a lower security level. Dave,
in contrast, assigns the same confidentiality level (security domain) DEF to all data
resources, and defines a trivial flow policy that allows any flows within the domain DEF.

The goal is to ensure that when the software is executed on either Dave’s or Sue’s
smartphone, it does not leak contents of files with a certain security level to servers that
are marked as less confidential by the respective user. In other words, the application
should always comply with the user-defined security environment at execution time,
whatever it looks like at the given moment. In case the application needs to perform
an action not endorsed by the security policy, the application detects this situation at
runtime and presents an error message, or provides other options to circumvent the
problematic action; the synchronization application could for example simply skip
files whose contents shall not be copied.

The software is also able to synchronize files with storage devices on the local net-
work. When Sue has a trusted local server with the security domain HIGH, the software
should be able additionally to backup all her files to that server, including files marked
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1.2 Challenges

HIGH. Note that it is not possible to enforce precisely the desired security property with
access control mechanisms: we do not want to prevent access to HIGH security files,
but rather control the propagation of their contents to different destinations.

Both users should get a guarantee that the installed software always adheres to their
respective security environments. They should be able to modify any aspect of their
security settings without the need to download or verify the software again.

The guarantee is obtained by a formal analysis of the program code. However, the
executable code is not checked on the phone directly, for two reasons. First, the com-
putational capabilities of a device may be too limited to perform a complex software
analysis without sacrificing performance. Second, many contemporary mobile distri-
bution platforms have an interest in being able to verify the submitted apps before
distributing them to the end user in the first place; today, the Apple app store, for ex-
ample, already performs extensive verifications of submitted applications for various
other security properties and functionality aspects.

In the scenario, distribution platform maintainers are equipped with an automatic
information flow analysis tool that verifies that the cloud synchronization application
respects arbitrary user-defined security policies. The tool should generate a formal
proof certificate that is provided with the software download. The phone’s operating
system is equipped with a small trusted checker that only needs to verify the cer-
tificate. This gives both Dave and Sue a reliable assurance that the software may be
safely installed and, when executed, always complies with their respective security
environments.

1.2 Challenges

For information-flow–secure mobile software, a number of challenges come together.

• Different users have different personal data stored on their devices, and the
availability of additional resources such as online services may vary. Users should
be able to define their own security environments (information flow policies and
security domains).

• The software developer does not simply want to make assumptions about the
execution environment, which would render programs potentially insecure or
useless on devices that do not meet these assumptions. Instead, she desires a sim-
ple method to create programs that respect arbitrary user-defined environments,
and can thus be safely executed on any of the respective devices.

• The user would like to get a reliable security guarantee, therefore the execution
model and the noninterference property have to be rigorously formalized and
verified. As mobile software is deployed in an unstructured bytecode form, the
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1. Introduction

verification algorithm and the guarantee should be given for the low-level code,
too.

• It should not be required to perform the analysis on the device where the code is
executed. The analysis should be automatic and produce a proof certificate that
can be easily verified by the mobile device, following the proof-carrying code
(PCC) paradigm [Nec97].

In spite of the rich amount of previous work in the field of information flow security,
I argue that none of them covers all these challenges exhaustively. In the following, I
present a summary of approaches that are most relevant to the application scenario; a
more in-depth account on related work is presented in Chapter 7.

The information flow type system by Volpano, Smith, and Irvine [VSI96] provides
a sound analysis for a simple imperative WHILE language, but the information flow
policy and the security levels of the variables are fixed. Banerjee and Naumann [BN05]
extended this system to object-oriented languages with heaps, but also consider static
security environments.

The Jif language [Mye99], a superset of Java, includes language facilities to model
dynamic security environments, and to write programs that can adapt their behaviour
to the security environment. A type system verifies that such programs act securely for
any given environment. Although there is not yet a soundness result for the entire type
system of Jif, the specific aspect of verifying programs that inspect dynamic security
environments has been formalized by Lantian Zheng and Andrew Myers in a type
system for a functional language called λDSec [ZM07]. However, neither Jif nor λDSec

include the verification or certification of unstructured bytecode programs.
In the imperative language RTI [BWW08] and the functional language of the Par-

alocks framework [BS10], data are associated with roles (sets of users), which may be
updated and queried programmatically to ensure that data flow securely. However,
the focus of these works lies on the static tracking of updates to a previously known
security environment. Also, these languages include rather substantial extensions to a
standard syntax and semantics to account for role or locks management, and do not
treat bytecode programs either.

The type-based analysis of information flows in unstructured bytecode program
has been explored in the MOBIUS project [Bar+06]. In particular, Barthe et al. have
developed a system for a certified compilation of an object-oriented language to
bytecode that preserves security types [BPR07; BR05; BRN06]. A similar approach, with
a somewhat different treatment of control dependence regions, has been developed
by Medel, Compagnoni, and Bonelli [MCB05]. All these systems do not treat security
environments that may vary between executions.

Relational bytecode correlations [Ber10] is a calculus to prove generalized noninter-
ference properties that can be instantiated to a number of concrete security policies.
The derived judgement essentially encodes for which security environments a given
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1.3 Main Approach

program is information-flow–secure. In contrast to the requirements of the application
scenario, it is not possible to write programs that can adapt their behaviour to the
security environment. Also, the programmer lacks an analysis tool for the source code,
as the calculus is defined only for the bytecode level.

As the security environment depends on the place of program execution, it seems
natural to consider a dynamic form of enforcing the policy, for example by using a run-
time monitor that detects malicious flows. Unfortunately, noninterference properties
in general cannot be exhaustively covered in a purely dynamic fashion. The reason is
that an indirect flow of information may occur already by not performing an action;
an example provides the second program in Figure 1.1 on page 2, where information
leaks even in the case that the “then” branch is not executed. Nevertheless, hybrid
approaches have been developed, either by combining the runtime monitoring with a
static analysis [SST07], or by first transforming the program into a form that is suitable
for runtime monitoring [Vac+04]. As these partly-dynamic techniques deviate from the
classic type-based analysis approach, they have not been followed here.

For the information flow analysis presented in this thesis, I build on many of these
previous works, and extend and combine existing approaches to tackle all the chal-
lenges that arise in dynamic security environments.

1.3 Main Approach

The main idea presented in the thesis is the separation of the static code analysis from
different instances of concrete security policies. Figure 1.2 on the next page outlines
the overall approach. I extend a standard Java-like language with constructs to inspect
the security environment at runtime. The developer can thus create privacy-aware
programs that can adapt their behaviour to the security environment. A type-based
analysis verifies that the code respects any particular security environment, a property
called universal noninterference. The analysis uses an abstract environment model
which represents arbitrary flow policies and security domains of the objects. The
program is compiled to a privacy-aware bytecode program and submitted to the app
store maintainer, who uses a bytecode analysis tool to verify similarly the universal
noninterference property for the bytecode program, using the same abstract model
of the security environment. If the verification is successful, the program is certified
and distributed to the users. On each particular smartphone, after the certificate has
been checked, the program can be executed with the confidence that it observes the
effective security environment.

This thesis shows that privacy-aware software provides a basis for a flexible and
reliable information flow analysis for mobile code which can address the challenges
resulting from diverse and changing environments, unstructured bytecode, and limits
imposed by computational capabilities.
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Figure 1.2: Outline of the approach
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1.4 Privacy-Aware Programs

To concentrate on the security foundations of the approach, I deliberately focus on
the sound formalization of the languages and the analysis techniques, leaving out more
practice-oriented aspects such as the efficiency of the analysis, the authenticated com-
munication between the involved parties, or the development of a security library to
support the development of privacy-aware code. Moreover, to simplify the separation
of abstract and concrete security environments, universal noninterference is defined
as a generalization of standard end-to-end termination-insensitive noninterference for
a transitive flow policy; other, more expressive definitions of security such as notions
of declassification are not considered.

In the following, I concretize the approach depicted in this section by giving an
overview of the language extension that enables privacy-aware programs, and of the
static analysis framework to verify universal noninterference.

1.4 Privacy-Aware Programs

The core idea I propose in this thesis is the introduction of language support for
querying or reflecting the domains of objects and the flow policy, such that potentially
insecure operations can be guarded with an appropriate flow test. By inspecting the
security environment, the programmer can write applications in a way such that they
can be safely executed in any security environment.

For this purpose, I provide a standard Java-like object-oriented language called
DSD (for “Dynamic Security Domains”). It features a light-weight extension in form
of security domains as first-class values and a flow operator to test valid flows with
respect to the effective security policy.

The language features a very restricted form of dependent types for objects: each
object has a special field fδ that contains a security domain value. In class type decla-
rations, the field fδ can be used as the symbolic security domain of other fields of the
same class. This enables the modelling of data resources on the client in the language
via a security API with dynamic domains.

An example of such an API is given by the pseudo-code in Figure 1.3 on the following
page. The interface System provides facilities to access files on the client, and to open
connections to servers. Both data resources are handled abstractly with the Buffer
interface, which provides read and write operations. The interface is annotated with
security domains. In particular, it features a special field fδ, whose value encodes the
runtime security domain of the buffer contents. Therefore, the read operation returns
a string of the domain fδ, that is, of the security domain that the concrete buffer has
at runtime. Likewise, the write method accepts only strings that have the fδ domain.
(More precisely, the passed strings must be shown to be exactly as or less confidential
than fδ.)

9



1. Introduction

interface System {
method openFile(name: String⊥) : Buffer⊥;
method openConn(url: String⊥) : Buffer⊥;
...

}

interface Buffer {
field fδ : Domain⊥;
method read() : String fδ;
method write(s: String fδ) : void;

}

Figure 1.3: Security API

method sendFile(sys: System , name: String) : void {
file := sys.openFile(name);
srv := sys.openConn ("http :// cloud.example.com");
if (file.fδ v srv.fδ) then

srv.write(file.read ());
else

showErrorMessage ();
}

Figure 1.4: Example program

Assume that the client has defined two security domains, LOW and HIGH, with a
policy that permits flows from LOW to HIGH, but not vice versa. The user-defined confi-
dentiality levels of the existing data resources on the client can be modelled by creating
file and server buffers with the fδ field set to the respecting security domain. For exam-
ple, if the user assigns the domain LOW to the file “notes.txt”, then openFile("notes.txt")

would return a Buffer object with the value of fδ set to LOW.

Now consider a (simplified) application with the method sendFile shown in Fig-
ure 1.4 that opens a file specified by the argument name and sends it to the server
“http://cloud.example.com”. The method uses the methods of the System class to
obtain handles to the file and the server connection buffer. As transferring data from
the file to the server induces a flow of information, the write statement is guarded by a
test whether the domain of the file (stored in file.fδ) is lower or equal to the domain
of the server (stored in srv.fδ) with respect to the effective security policy. If this is not
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1.5 The Verification Framework

the case, the method may do something else; here, it presents an error message to the
user.

However we label the file or server objects by means of the fδ fields, the method is
thus secure for any domains the objects might have, because the critical method call
srv.write is only executed if the induced flow is permitted in the client environment.

In fact, the sendFile method is secure for any particular flow policy defined by the
user, as the v operator is interpreted dynamically with respect to the policy that is in
effect at runtime. This includes Sue’s policy with a distinct third security domain called
MED, and Dave’s trivial policy that contains only one security level DEF. In summary,
the method sendFile is secure for all security environments — that is, it is universally
noninterferent.

1.5 The Verification Framework

To verify universal noninterference, I present a type-based analysis framework with the
corresponding soundness proofs. A schematic overview is given in Figure 1.5 on the
following page, where solid arrows represent operations, and dashed arrows represent
implications shown by formal proofs.

For the high-level DSD language, I develop a type system given in the style of Volpano,
Smith, and Irvine [VSI96] and Banerjee and Naumann [BN05]. As the domains are
not statically available, the analysis is performed by collecting symbolic information
about the domain fields and variables. For instance, the expression file.fδvsrv.fδ
evaluates to true in the “then” branch of the sendFile method. The system aims to
derive as much as possible from such information by employing a technique similar
to Hoare logic [Hoa69], and verifies that the flow tests in the program are sufficient. A
soundness proof shows that a well-typed program is indeed universally noninterferent,
and thus acts securely in any particular client environment.

In the same way, a JVM-like bytecode language is extended with dynamic security
domains. To facilitate the soundness proof, the type system is not given for the byte-
code language directly. Instead, the code is translated into a stackless intermediate
representation (IR) – a partially disassembled version of the program – and the type
system and soundness result is given for the IR language. It is shown that the transla-
tion to IR preserves the semantics of the program, hence the noninterference property
shown for IR code also holds for the original bytecode.

The high-level type system provides an analysis that can detect information flow
violations already on the source code level, whereas a low-level type derivation can
be used as a formal certificate for the deployed bytecode. To connect the high-level
and the bytecode language, I define a formal compilation function, and show that
the compilation preserves the typability relation: if the original high-level program is
well-typed, then the compiled bytecode program is well-typed, too (or more precisely,
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DSD program
with flow checks

DSD type derivation

type check

bytecode program
with flow checkscompile

IR version of
bytecode program

translate

IR type derivation

type check

DSD program is
universally noninterferent

soundness
IR program is

universally noninterferent

soundness

bytecode program is
universally noninterferent

semantic correspondence
between BC and IR

typability
is preserved

Figure 1.5: Overview of the verification framework

its IR version). Thus, if the software developer got a positive result from the source code
type checker, then she can be sure that the program will be accepted by the bytecode
analysis performed by the application distribution platform maintainer.

The rigorous formalization of the soundness proof establishes a reliable security
guarantee for the end user. Additionally, it also enables the separation of the byte-
code analysis from the execution of the program using the proof-carrying code tech-
nique [Nec97], which has been shown to be a practical way to shift the task of providing
the proof to the code producer (here the app store), such that the code consumer (the
smartphone) only needs to verify the proof. Once a static analysis has been performed
by the distribution platform maintainer, the program can be certified, and the proof of
noninterference can be distributed along with the code. On the device, the system only
needs to verify that the certificate is correct. In the framework, the proof certificate is
simply the type derivation, and the proof verifier is a type checker. As the soundness
result shows that typability implies universal noninterference, it follows that the infor-
mation flow property guaranteed by the type derivation is compatible with the flow
policy set by the user on the client device.
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1.6 Synopsis

The thesis proceeds as follows. Chapter 2 presents the high-level language DSD, and
defines the universal noninterference property. In Chapter 3, the type system is pre-
sented, the concept of labels is introduced, and a soundness result is given. Chapter 4
presents the bytecode language and a corresponding universal noninterference prop-
erty, and shows how DSD code is compiled to bytecode. The proof system for the byte-
code level is more complicated due to the unstructured nature of bytecode; therefore,
Chapter 5 introduces an intermediate representation IR, presents a transformation
from bytecode that preserves the semantics, and gives an IR type system that proves
noninterference for the corresponding bytecode. Also, it is shown that the bytecode
compilation preserves the typability relation. Chapter 6 presents algorithmic versions
of the type system, and provides details on the implementation of the verification
framework. An overview of related work in the field is given in Chapter 7 before the
thesis concludes with a discussion and an outlook. The formal proofs of correctness
are given in Appendices A to D.
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2
Universal Noninterference for a Java-Like

Language

As outlined in the introduction, I present an object-oriented, imperative, Java-like high-
level language called DSD (for “Dynamic Security Domains”). The language enables
the creation of universally noninterferent programs that can be safely executed in
arbitrary security environments at runtime. This chapter defines the language and its
semantics, introduces the security types used in the language, and formally defines
the universal noninterference property.

2.1 The DSD Language

The DSD language is based on and extends a proper subset of the Java language.
This design decision aims to reach a middle ground between different languages: A
functional core language such as Featherweight Java [IPW99] or variants of it [HJ06;
BGH10] is conceptually further away from the imperative Java language, making it
harder to transfer the DSD-specific extensions later to the full Java language. On the
other hand, taking the full Java language right from the start would distract from the
information flow security ideas presented here.

DSD extends the subset of Java with security domain values and operators. The
design goal was to extend a well-known existing language as little as possible. Only
a few extensions to the syntax and the semantics are required. This, again, makes it
easier to extend the actual Java language later with dynamic security domains.
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2.1.1 Syntax

The syntax of DSD relies on several disjoint sets of identifiers and corresponding
meta-variables:

numbers: n ∈ N

variables: x ∈ Var
fields: f ∈ Fld

classes: C ∈ Cls
methods: m ∈ Mtd

The syntax is split into expressions and statements; expressions do not have side-
effects.

e ∈ Exp ::= n | x | e. f | e op e | > | ⊥ | e te | e ve
S ∈ Stmt ::= S ; S | if e then S else S | while e do S |

skip | x :=e | e. f :=e | x :=new C (e) | x :=e.m(e)

DSD statements form an imperative WHILE language with objects and integers,
extended with a few additional expressions to refer to security domains. The syntax
does not depend on the concrete security domains and the policy, which are under-
stood to be given by the environment in which the program is executed. Instead, the
programmer can use the constants > and ⊥ refer to the top and bottom element of
the security policy, t for the least upper bound of two security domains, and v for the
domain order. (The security policy is modelled as a lattice over security domains, as
will be explained in Section 2.1.2 on page 18.)

The language may include arbitrary side-effect free operators, such as +, ∗, =, <,
etc. From an information flow point of view, there are no differences among these
operations, hence they are treated in the syntax uniformly as e op e.

The notation e represents an ordered sequence of argument expressions for the
called method m. In the following, I generally use the notation x for a sequence of
items x. The set of sequences over elements of X is denoted as X ∗. The power set (set
of all subsets) of X is written P (X ).

DSD programs To abstract away from a concrete class declaration syntax, we assume
a DSD program to be given as follows:

Definition 2.1 A DSD program PDSD is a tuple (≺,fields,methods,margs,mbody) where

• ≺∈P (Cls×Cls) is the subclass relation.

• fields : Cls → Fld∗ and methods : Cls → Mtd∗ assign to each class the identifiers of
the fields and methods they contain.
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2.1 The DSD Language

• margs : Mtd → Var∗ is a function that describes the names of the formal arguments
of each method m.

• mbody : Mtd * Stmt is a partial function that assigns an implementation to
method identifiers.

DSD is a language with nominal subtyping: D ≺C means D is an immediate subclass
of C . I write ¹ for the reflexive and transitive hull of ≺. The functions fields and methods
describe the list of member fields and methods for each class C . The function margs
gives the formal arguments of the method. A method implementation mbody gives
for a method identifier its implementation, which is a DSD statement that forms the
method’s body. Any method that is not assigned a statement is assumed to be an
external method (see below). I make the simplifying assumption that a method cannot
be overridden in subclasses. As a consequence, all method calls in the language are
essentially static. Also, by design, the sequence of formal arguments for each method
identifier is fixed. Also, the signatures (method types) used later are fixed for each
method identifier — in other words, I do not consider the full subclass system of Java.
With all these simplifications, one can later define a type system that does not include
class information at all; in other words, the class information is completely optional
for the information flow domains covered here.

To prevent inconsistencies, a number of well-formedness conditions are imposed
on the relations and functions:

• The relation ≺ is well-formed if it is a tree successor relation; multiple inheritance
is not allowed.

• For all classes C , the first field in the list of fields fields(C ) must be fδ. This field
will be available as the type of other fields.

• For all methods m, the first formal argument variable in the list of local variables
margs(C ) must be xδ. This variable can be used as the type of other variables.

• Classes inherit fields and methods from their superclasses: For all classes C and D
such that D ¹C , it must be fields(C ) ⊆ fields(D) and methods(C ) ⊆methods(D).

• For all methods m, the only variables that may occur freely in the body of the
method must be the ones from margs(m), or the special variable this that holds
the object reference, or the special variable ret that holds the return value.

In the following, I assume a fixed DSD program PDSD whose components are all
well-formed.
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2. Universal Noninterference for a Java-Like Language

External methods The function mbody does not need to specify an implementation
for each method. It is also possible to define external methods, which are methods
whose semantics is provided directly. This is useful for methods that cannot be im-
plemented in the DSD language, and thus provides a flexible interface to other parts
of the software system. The security API shown in the introduction (see Figure 1.3 on
page 10), for example, contains methods that could be implemented externally. These
methods also have to be equipped with type signatures, though these signatures are
trusted by the type system, as the implementation of external methods is not known.

Remarks on extending the program model A more realistic model of Java programs
could be easily added: Overriding of methods can be treated by assigning different
implementations depending on the class. To this end, dynamic class information needs
to be included in the mbody function. This also enables two methods of unrelated
classes to have the same name. The language semantics needs to be extended with
dynamic method calls, such that at the site of the call, the actual class of an object
is retrieved to determine which implementation is to be called. All implementations
would need to be typable according to the given method type. To model the full Java
subclass system, one could additionally allow the use of improved method types for
subclass implementations, which requires the use of class types in the type system.

2.1.2 Security Policy and Domain Lattice

The information flow policy on the client is specified by a domain lattice, which is a
join semi-lattice:

domain lattice: ¦ = (Dom¦,≤¦,∨¦,k¦
>,k¦

⊥)

The set Dom¦ is the set of security domains defined on the client, ranged over by
the meta-variable k. The ≤¦ relation is a partial order on Dom¦, which means it is
transitive, reflexive, and antisymmetric. Given two security domains k1,k2 ∈ Dom¦,
the order k1 ≤¦ k2 expresses that information may flow from k1 to k2. The ∨¦ operator
computes the least upper bound of two domains — that is, k1∨¦k2 is the lowest domain
that is at least as confidential as both k1 and k2. Finally k¦

>,k¦
⊥ ∈ Dom¦ are the bounds

of the lattice and specify the top-most and bottom-most domain, respectively.
For example, Sue’s security policy, shown in the lower left of Figure 1.2 on page 8 in

the introduction, would be modelled as a lattice ¦ with

Dom¦ = {LOW, MED, HIGH}
k¦
> = HIGH

k¦
⊥ = LOW

≤¦ = {(LOW, LOW), (LOW, MED), (LOW, HIGH),
(MED, MED), (MED, HIGH), (HIGH, HIGH)}

and a corresponding least upper bound operator ∨¦.
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2.1 The DSD Language

numbers: n ∈ N

domains: k ∈ Dom¦

references: r ∈ Loc
values: v ∈ Val =N∪Dom¦∪Loc∪ {null}

states: σ ∈ State = Store×Heap
stores: s ∈ Store = Var *Val
heaps: h ∈ Heap = Loc*Obj

objects: (C ,F ) ∈ Obj = Cls× (Fld*Val)

Figure 2.1: State model of DSD

2.1.3 Semantics

I use a mostly standard object-oriented semantics for DSD programs, with program
states that consist of a local variable store and a heap (memory) containing the objects.

The main extensions are the security domain values and operators specified by the
execution-dependent domain lattice ¦. The semantics of abstract domain expressions
in the DSD language is defined with respect to this lattice.

Program states Figure 2.1 shows the definition of program states. N is the set of
natural numbers. Dom¦ is the set of security domains as defined by the domain lattice
¦. Loc is an infinite set of arbitrary references (also called memory locations in the
following). Val is the set of values, which consist of numbers, domains, references, and
the special null constant. All other sets are finite sets of abstract identifiers.

A program state is a pair consisting of a store and a heap. A store maps local variables
to values, whereas a heap maps locations to objects. An object contains its dynamic
class information, and a mapping from its fields to values.

A state σ= (s,h) is well-formed if the following conditions hold:

1. Every reference r that is the value of a field or a variable is in dom(h).

2. Every object contains the fields defined by the program syntax: for all objects
(C ,F ) on the heap h, dom(F ) = fields(C ).

3. The variable store contains the domain variable xδ, that is, xδ ∈ dom(s).

Notational conventions To simplify the presentation, I use the following notation
for extensions and updates of states and heaps: h ∪ [r 7→ o] extends the function h by a
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new mapping from r to o; it is undefined if r ∈ dom(h). s[x 7→ v] updates s such that
s(x) = v ; it is undefined if x 6∈ dom(s). Moreover, I define a shorthand notation for field
accesses that ignores the class information of the object: for an object o = (C ,F ) ∈ Obj,
I write o( f ) for F ( f ), and o[ f 7→ v] for (C ,F [ f 7→ v]). Also, I use a point-wise extension
of pair mappings to sequences: [x 7→ v] is the function that maps each xi to vi ; it is
undefined if they do not have the same length.

Expression and statement semantics For expressions, the denotational semantics
JeK¦σ defines the value an expression e in the program stateσ given the domain lattice ¦.
The semantics is defined as shown in Figure 2.2 on the next page. The semantics of
domain-related expressions (shown on the right in the figure) depends on a given
domain lattice ¦, which models the effective security policy at runtime. For example,
the semantics of the t operator in the language is defined in terms of the ∨¦ operator.

For statements, a big-step operational semantics σ1
S−→¦σ2 expresses that if a state-

ment S is executed in state σ1 with the security policy given as the domain lattice ¦,
then execution terminates in state σ2. The big-step relation is defined inductively by
the rules shown in Figure 2.3 on the facing page.

Except for object creation and method invocation, the semantic is completely stan-
dard. In the absence of boolean values, branching statements test for integer values
being zero or not.

The construct x :=new C (e) creates an object of class C , and initializes its fields
fields(C ) with the values provided by the expressions e. Because the first field of an
object is always fδ, the first argument of the constructor must evaluate to a domain,
with which fδ is initialized.

For method calls, a new local store is created for the execution of the method, where
local variables are bound to the value of the actual arguments, and the special variable
this is bound to the reference to the object itself. A special return variable ret is used
in order to avoid special syntax and semantics for passing a return value back to the
caller. It is initialized with a default value defval, which we assume to be defined as null
here.1 Apart from margs(m), this and ret, there are no other local variables in a method
m, although they could be easily added to the semantics. For the actual execution of
the method body, I define a shorthand notation:

(s1,h1)
m=⇒¦ (s2,h2) if and only if (s1,h1)

mbody(m)−−−−−−−→¦ (s2,h2).

Note that the semantics of statements is undefined for certain initial states, for ex-
ample if the conditional statement branches over a domain value, or if a null reference
is dereferenced. Operationally, the execution is simply assumed to get stuck at these
points.

1In a language with data type information such as Integer or Domain, in contrast, defval could stand
for the default value of the data type of ret of the respective method.
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JnK¦s,h = n

JxK¦s,h = s(x)

Je. f K¦s,h = h(JeK¦s,h)( f )

Je1 op e2K¦s,h = Je1K¦s,h op Je2K¦s,h

J>K¦s,h = k¦
>

J⊥K¦s,h = k¦
⊥

Je1 te2K¦s,h = Je1K¦s,h ∨¦ Je2K¦s,h

Je1 ve2K¦s,h =
{

1 if Je1K¦s,h ≤¦ Je2K¦s,h

0 else

Figure 2.2: Semantics of expressions

SKIP

σ1
skip−−−→¦σ1

SEQ
σ1

S1−−→¦σ2 σ2
S2−−→¦σ3

σ1
S1 ; S2−−−−→¦σ3

IF-T
JeK¦σ1

> 0 σ1
S1−−→¦σ2

σ1
if e then S1 else S2−−−−−−−−−−−−→¦σ2

IF-F
JeK¦σ1

= 0 σ1
S2−−→¦σ2

σ1
if e then S1 else S2−−−−−−−−−−−−→¦σ2

WHILE-T

JeK¦σ1
> 0 σ1

S−→¦σ2

σ2
while e do S−−−−−−−−→¦σ3

σ1
while e do S−−−−−−−−→¦σ3

WHILE-F
JeK¦σ1

= 0

σ1
while e do S−−−−−−−−→¦σ1

ASSIGN
s2 = s1[x 7→ JeK¦s1,h1

]

(s1,h1)
x :=e−−−−→¦ (s2,h1)

PUTFIELD
Je1K¦s1,h1

= r h1(r )[ f 7→ Je2K¦s1,h1
] = o h2 = h1[r 7→ o]

(s1,h1)
e1. f :=e2−−−−−−→¦ (s1,h2)

NEW
r 6∈ dom(h1) h2 = h1 ∪ [r 7→ (C , [fields(C ) 7→ JeK¦s1,h1

])] s2 = s1[x 7→ r ]

(s1,h1)
x :=new C (e)−−−−−−−−−→¦ (s2,h2)

CALL

JeK¦s1,h1
= r

s′1 = [this 7→ r ]∪ [margs(m) 7→ JeK¦s1,h1
]∪ [ret 7→ defval]

(s′1,h1)
m=⇒¦ (s′2,h2) s2 = s1[x 7→ s′2(ret)]

(s1,h1)
x :=e.m(e)−−−−−−−→¦ (s2,h2)

Figure 2.3: Semantics of statements
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≺ = ;
fields(Buffer) = [ fδ]

methods(Buffer) = [read,write]
margs(read) = [xδ]

margs(write) = [xδ,s]

fields(Main) = [ fδ]
methods(Main) = [sendFile]

margs(sendFile) = [xδ,file,
srv,tmp]

mbody(sendFile) = if file. fδ v srv. fδ then
tmp :=file.read(file. fδ);
ret :=srv.write(file. fδ,tmp)

else
ret :=0;

Figure 2.4: The example formalized as a DSD program

2.2 An Example Program

This section shows how the example program from the introduction chapter (see
Figures 1.3 and 1.4 on page 10) is formally defined as a DSD program. I only specify the
syntax here; the specification of the type information and a possible type derivation
for the example program are given in the next chapter.

Let us assume that the method sendFile is part of a class called Main. To point out
the essential aspects, I make some simplifications to the original example program. I
omit the System class, and assume that the file and srv objects are already passed
initialized to the sendFile method. Thus, the arguments sys and name for sendFile
are not needed. Also, if the label test fails, this is communicated via the ret variable.

In the DSD language, the example program can be defined as a quintuple of the
form PDSD = (≺,fields,methods,margs,mbody), where the components are defined as
shown in Figure 2.4. Only sendFile is implemented; the methods read and write are
external — that is, we assume a given semantics for them.

Due to restrictions in the DSD syntax, the implementation looks a bit different here:

• Each class contains an fδ field, and each method has an xδ argument.

• Method calls cannot be used as expressions, thus we need to store the result of
read in a temporary variable tmp first before passing it to write. As DSD does
not allow the declaration of local variables in the method body, tmp has to be
an argument of the method sendFile. It is a “dummy” argument, since any
information passed in tmp to the method is ignored. Also, changes to tmp (and
all other local variables apart from ret) have no effect on the caller.
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Finally, the methods read and write are called with the expected domain of the read
data. This is required due to restrictions in the type system, and shall be discussed in
Section 3.6 on page 48, where a type derivation for the example program is presented.

2.3 Universal Noninterference

I now show how the security types for variables and fields can make use of dynamic
security domains. Based on this, I define universal noninterference for DSD programs,
which expresses information flow security for arbitrary security environments.

2.3.1 Type Environments

As I want to concentrate on information flow aspects in the type system, I only consider
the confidentiality of values in the program, and ignore their data types completely.
The type system does not prevent access to fields that do not exist, or the assignment of
a string to an integer, or similar errors, because they are orthogonal to information flow
security. It is safe to consider only programs that are well-typed with respect to data
types: Should the execution get stuck because of a data type mismatch, the program
would still be secure according to the termination-insensitive noninterference property
presented later.

Type environments assign symbolic security domains to variables and fields:

Γ : Var * {>,⊥, xδ}

Φ : Fld → {>,⊥, fδ}

A variable typing Γ associates a symbolic security domain to each local variable of
the active method body. The meaning of the symbolic domain depends on the given
variable store and the lattice. The types > or ⊥ refer abstractly to the top-most and
bottom-most domain of Dom¦, that is, k¦

> and k¦
⊥, respectively. A variable typed with

the special symbol xδ has the domain that is stored in the variable xδ at runtime. A
variable typing Γ is well-formed if xδ ∈ dom(Γ) and Γ(xδ) =⊥.

A field typing Φ associates a type with each field. Again, the field types > and ⊥ refer
abstractly to k¦

> and k¦
⊥. A field typed with fδ has the domain that is stored in the field

fδ of the same object. In contrast to the variable typing that only applies to the local
variables in a specific variable store, the field typing Φ is a total function that defines
the types globally for all fields, including fδ. A field typingΦ is well-formed ifΦ( fδ) =⊥.
From now on, I assume a fixed well-formed field typing Φ and leave it implicit.

Note that the well-formedness conditions require that the symbolically referenced
domain variable xδ and domain field fδ themselves get the type ⊥. Other types for
Γ(xδ) and Φ( fδ) shall be discussed later.
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Remarks on extending the type information A type is assigned to each field iden-
tifier, independent of the class it occurs in. In other words, if two objects that are
unrelated in the class hierarchy both contain a field named f , then both fields get
the same security type. As mentioned in the remarks for the DSD syntax, a more real-
istic extension is to have Φ define a type per field per class. This involves additional
well-formedness conditions to soundly handle subtyping and inheritance, and also
requires the tracking of class information in the type system. Going even further, one
could also distinguish “get” and “set” types for each field. All this can be achieved by
refining class types in the standard Java type system with the security types presented
here. Examples for refinement type systems for Java-like languages can be found in our
previous work on region and string type systems [BGH10; GHL11]. To keep the type
system simple, I refrain from including class information here.

2.3.2 Type Interpretation

The meaning of types depends on the concrete program state, and the effective domain
lattice ¦. More precisely, types of variables and of fields are interpreted with respect to
given stores s and field valuations F , respectively:

〈>〉¦s = k¦
>

〈⊥〉¦s = k¦
⊥

〈xδ〉¦s = s(xδ)

〈>〉¦F = k¦
>

〈⊥〉¦F = k¦
⊥〈

fδ
〉¦

F = F ( fδ)

The interpretation is well-defined for well-formed states, as every store includes xδ
and every object has a field fδ. As xδ and fδ may contain arbitrary domains k from
the domain lattice Dom¦, it is thus possible to assign these arbitrary security domains
to variables and fields by using xδ or fδ as the symbolic type. Variables and fields can
thus be given a dynamic security domain. Note that dynamic security domains are
completely encapsulated, as the field type fδ refers to the value of the fδ field in the
same object, and the variable xδ refers to the value of the xδ variable in the same local
variable store.

The definition of type interpretations provides the basis for the visibility of variables
and fields in a domain lattice ¦ at a security domain k.

Definition 2.2 Let ¦ be a domain lattice, and let k ∈ Dom¦ be a security domain.
If 〈Γ(x)〉¦s ≤¦ k, the variable x of the store s is visible at k in ¦. Similarly, if

〈
Φ( f )

〉¦
F ≤¦ k,

the field f of the field valuation F is visible at k in ¦.

In other words, a variable or field is visible at k in ¦ if its dynamic security domain is
lower than or equal to k with respect to ¦. As the lattice ¦ models the security policy, this
means that information may flow from that field or variable to the security domain k.
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2.3.3 Equivalence of States

In preparation for the definition of noninterference, I now define when two states are
equivalent with respect to a domain lattice ¦ and a security domain k ∈ Dom¦.

Indistinguishable values To capture related allocations of different fresh locations
in two parallel runs, equivalence is parametrized by a partial bijection β, following the
approach by Banerjee and Naumann [BN05]. Informally, two states are equivalent if
the following holds. Locations in public variables must be related by the bijection, and
objects with β-related locations must be indistinguishable, which means that locations
in their public fields must again be related by the bijection.

As such, a partial bijection is a special form of a heap typing [Pie02], a standard
technique used only in the soundness formulation to separate the well-typedness
definitions of locations from the actual heap, thereby avoiding the need for a co-
inductive definition for well-typed heaps in the presence of cyclic structures. Partial
bijections differ in that they “type” pairs of locations, but only the public ones.

Formally, I use partial bijections β,γ ⊆ Loc×Loc, and write β(r ) = r ′ for (r,r ′) ∈ β.
Indistinguishable values v ∼β v ′ are defined as follows:

n ∼β n k ∼β k null ∼β null

β(r ) = r ′

r ∼β r ′

Two locations r,r ′ are indistinguishable if β(r ) = r ′. Two domains, numbers, or null
values are indistinguishable if they are equal.

Equivalent program states For k ∈ Dom, two stores are ¦,k-equivalent with respect
to a variable typing Γ and a bijection β if all variables of the store that are visible at k in
¦ contain β-indistinguishable values in both stores:

`¦ s ∼Γ,k
β

s′ ⇐⇒ ∀x ∈ dom(Γ). 〈Γ(x)〉¦s ≤¦ k ∧ 〈Γ(x)〉¦s′ ≤¦ k ⇒ s(x) ∼β s′(x)

Two heaps are ¦,k-equivalent if β only relates objects from the heaps, and all objects
related by the bijection β are ¦,k-equivalent. Two objects are ¦,k-equivalent if they are
of the same class and if all fields of the class visible at k in ¦ containβ-indistinguishable
values in both objects.

`¦ h ∼k
β h′ ⇐⇒ dom(β) ⊆ dom(h)∧ rng(β) ⊆ dom(h′)∧

∀r ∈ dom(β). `¦ h(r ) ∼k
β h(β(r ))

`¦ (C ,F ) ∼k
β (C ′,F ′) ⇐⇒ C =C ′ ∧ ∀ f ∈ fields(C ).〈

Φ( f )
〉¦

F ≤¦ k ∧ 〈
Φ( f )

〉¦
F ′ ≤¦ k ⇒ F ( f ) ∼β F ′( f )
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2. Universal Noninterference for a Java-Like Language

The bijection β thus links the visible references to objects: all references in visible
variables and fields must be related by β, and all objects whose references are related
by β must contain indistinguishable values in their visible fields.

Finally, ¦,k-equivalence is extended to program states:

`¦ (s,h) ∼Γ,k
β

(s′,h′) ⇐⇒ `¦ s ∼Γ,k
β

s′ ∧ `¦ h ∼k
β h′

Since Γ(xδ) =⊥, the variable xδ is always visible in two β-equivalent related stores s
and s′, regardless of the domain k. By definition, it follows s(xδ) ∼β s′(xδ), and as xδ
contains a domain, the indistinguishability relation by definition stands for equality:
s(xδ) = s′(xδ). From this, it follows that for each variable x, the interpretation of its
type Γ(x) is the same in both stores: it is either k¦

>, or k¦
⊥, or s(xδ) = s′(xδ). Likewise, we

have defined Φ( fδ) =⊥, and thus get with a similar argument that all fields of related
objects are either visible in both heaps, or invisible in both heaps. This observation is
formalized by the following lemma.

Lemma 2.3 Let Γ be a type environment, ¦ be a domain lattice, k ∈ Dom¦ be a domain,
and β be a bijection.

• If `¦ s ∼Γ,k
β

s′, then for all x ∈ dom(Γ), 〈Γ(x)〉¦s = 〈Γ(x)〉¦s′ .

• If `¦ h ∼k
β

h′ and β(r ) = r ′, then for all f ∈ dom(h(r )),
〈
Φ( f )

〉¦
h(r ) =

〈
Φ( f )

〉¦
h′(r ′).

This lemma is just a special case of a more fundamental property called meta-label
monotonicity discussed in Chapter 3.

Properties of the state equivalence relation Because of the parametrization with a
partial bijection, state equivalence is not an equivalence relation. However, reflexivity,
symmetry and transitivity hold by choosing the appropriate bijections; these properties
are extensively used in the soundness proofs.

1. Reflexivity: `¦ (s,h) ∼Γ,k
id(h) (s,h), where id(h) = {(r,r ) | r ∈ dom(h)} is the identity

relation on locations in h.

2. Symmetry: `¦ σ∼Γ,k
β

σ′ implies `¦ σ′ ∼Γ,k
β−1 σ, where β−1 is the inverse relation —

that is, β−1 = {(r ′,r ) | (r,r ′) ∈β}.

3. Transitivity: `¦ σ∼Γ,k
β

σ′ and `¦ σ′ ∼Γ,k
β′ σ′′ implies `¦ σ∼Γ,k

β◦β′ σ
′′, where β◦β′ =

{(r,r ′′) | (r,r ′) ∈β ∧ (r ′,r ′′) ∈β′} is the composition of two bijections.
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2.3 Universal Noninterference

Example: • domain lattice ¦ with LOW ≤¦ MED ≤¦ HIGH

• bijection β= {(r17,r28)}

s

xδ 7→ MED

ret 7→ 1234

this 7→ r17

∼β

∼β

s′

xδ 7→ MED

ret 7→ 5555

this 7→ r28

Γ

xδ 7→⊥
ret 7→>

this 7→ xδ

〈Γ(·)〉¦s = 〈Γ(·)〉¦s′

xδ 7→ LOW

ret 7→ HIGH

this 7→ MED

=⇒ `¦ s ∼Γ,MED

β
s′

h

r17 7→
Buffer

fδ 7→ HIGH

cont 7→ "a"

info 7→ r19

r19 7→
Info

· · ·

∼β
=

h′

r28 7→
Buffer

fδ 7→ HIGH

cont 7→ "b"

info 7→ null

Φ

fδ 7→⊥
cont 7→ fδ

info 7→>

〈Φ(·)〉¦h(r17) =
〈Φ(·)〉¦h′(r28)

fδ 7→ LOW

cont 7→ HIGH

info 7→ HIGH

=⇒ `¦ h ∼MED
β

h′

Figure 2.5: Examples for ¦, MED-equivalent stores and heaps
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Example Figure 2.5 on the preceding page shows an example for ¦,k-equivalent
stores and heaps, where ¦ models Sue’s policy as shown on page 18, and with k = MED.
For the bijection, we assume β = {(r17,r28)}; the type environments Γ and Φ are as
shown in the figure.

The upper part displays two equivalent stores s and s′. The variables that are visible
at MED in ¦ are marked in grey. As ⊥ evaluates to the bottom-most domain in the lattice
(i.e., LOW), the ⊥-typed variable xδ is visible at MED in ¦. Likewise, the interpretation
of the xδ type is the value of xδ in both states, that is, MED. Therefore, the xδ-typed
variable this is visible at MED in ¦. Since the values of all visible variables are related
by β, we have by definition `¦ s ∼Γ,MED

β
s′.

In the lower part of the figure, two heaps h and h′ are shown. We have the equivalence
`¦ h ∼MED

β
h′ for the following reasons. All β-related objects (in this case, the objects at

h(r17) and h′(r28)) are of the same class, and all their fields that are visible at MED in ¦
have β-related values. In this case, this only applies to fδ, which is marked in grey. As
the interpretation of the types of the other fields is not lower than MED in ¦, there is
no requirement on their values. Also, heaps may include objects not related by β, as
illustrated by h(r19) in the figure. Moreover, we get by definition from the store and
heap equivalences that `¦ (s,h) ∼Γ,MED

β
(s′,h′).

2.3.4 Universal Noninterference

Using the definition of state equivalence, I now define information flow security for a
method body as a termination-insensitive noninterference property.

Definition 2.4 Let PDSD be a DSD program. A method m is universally noninterferent
with respect to a variable typing Γ if for all domain lattices ¦, for all security domains
k ∈ Dom¦, for all states σ1,σ2,σ′

1,σ′
2 and for all partial bijections β, if

• `¦ σ1 ∼Γ,k
β

σ′
1 and

• σ1
m=⇒¦ σ2 and

• σ′
1

m=⇒¦ σ′
2,

then there exists a partial bijection γ⊇β such that

• `¦ σ2 ∼Γ,k
γ σ′

2

All objects reachable by visible variables and fields must be related before and after
the execution. The extended bijection γ captures the possibility that new locations may
have been allocated and related in both executions. The property actually states a little
more: all objects that are related before the execution stay related after the execution,
even if they are not reachable by visible variables or fields.
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2.3 Universal Noninterference

To show universal noninterference, one may need to make certain assumptions
about the values of the domain fields and variables that occur in the program states.
For this purpose, I will now parametrize the preceding definition with certain state
predicates Q and Q ′ that hold before and after the execution. The notation σ |=¦ Q
means σ satisfies Q given the domain lattice ¦. These predicates and the satisfiability
relation shall be instantiated in the next section.

Definition 2.5 Let PDSD be a DSD program. A method m is (Q,Q ′)-universally nonin-
terferent with respect to a variable typing Γ if for all domain lattices ¦, for all security
domains k ∈ Dom¦, for all states σ1,σ2,σ′

1,σ′
2 and for all partial bijections β, if

• σ1 |=¦ Q and σ′
1 |=¦ Q and

• `¦ σ1 ∼Γ,k
β

σ′
1 and

• σ1
m=⇒¦ σ2 and

• σ′
1

m=⇒¦ σ′
2,

then there exists a partial bijection γ⊇β such that

• `¦ σ2 ∼Γ,k
γ σ′

2 and

• σ2 |=¦ Q ′ and σ′
2 |=¦ Q ′.

The difference to the preceding definition is that a noninterferent behaviour is
only required for initial states that satisfy Q, and additionally the final states must
then satisfy Q ′. If ? is the universal state predicate with σ |=¦ ? for all states σ, then
Definition 2.4 exactly defines (?,?)-universal noninterference.

The main contributions of the universal noninterference property are the universal
quantification of both the lattice ¦ and the dynamic security domains that occur as do-
main values in the program states. To the best of my knowledge, such a generalization
has not been given before.
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3
High-Level Type System

The high-level type system is a static analysis which verifies that a given DSD program
is universally noninterferent. As the domain lattice that describes effective runtime
security policy is not known statically, the type system for the DSD language uses
symbolic security domains to reason abstractly over concrete domains in the lattice.

In this chapter, I define the types of the type system as a restricted set of expressions,
and explore the meaning and implications of this mild form of dependent types. After-
wards, I present the typing rules for DSD programs, and give a soundness theorem that
states that well-typed programs are universally noninterferent. The chapter concludes
with a demonstration of a type derivation for the introductory example program.

3.1 Labels: Symbolic Security Domains

The type environments allow the use of domain variables xδ and domain fields fδ
as security types. Since their values are not known statically, any references to xδ
and fδ can only appear symbolically in the types of DSD expressions. While a classic
information flow type system assigns to each expression a concrete domain k ∈ Dom,
the DSD type system instead assigns symbolic security domains which I call labels. In
the following, I formalize the set of labels, and define an abstract order on them.
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3. High-Level Type System

3.1.1 Access Paths

To make the type system tractable, references to fδ fields in the labels are permitted in
a normalized form only, denoted by access path expressions:

π ::= x |π. f

Access path expressions are a subset of expressions as defined in the DSD syntax. The
paths exclude pointer operations or other arbitrary expressions that denote memory
locations.1

3.1.2 Labels

Building on the definition of access paths, one can now define the set of labels that are
used as types in the type system. Labels are a subset of expressions:

Lab 3 ` ::=⊥ |> |π. fδ | xδ | `1 t`2

The symbols > and ⊥ refer to the top-most and bottom-most domain of the effective
security policy, that is, to k¦

> and k¦
⊥. The label π. fδ refers to the fδ field of the object

reachable by an access path π = x. f1. f2. . . . . fn , whereas xδ refers to the xδ variable.
Finally, we define the symbolic least upper bound (join) of two labels `1 t`2, as the
values of the labels are not known statically.

The type system assigns to each expression a label. For example, if Γ(y) = xδ and
Γ(z) =>, the expression y + z is assigned the label xδt>. This is in contrast to classic
information flow type systems, where the security domains of variables are statically
known, such that the least upper bound can be directly computed in the type system.

Here, instead, a label is itself a special expression. When applied to the expression
evaluation function J·K¦σ in a given program state σ and lattice ¦, it evaluates to a
security domain from Dom¦. This defines the meaning of labels: If an expression e is
typed with a label `, then e depends in a program state σ only on data that is visible at
J`K¦σ in ¦. As labels are special expressions, DSD features a strictly constrained form of
dependent types.

3.1.3 Types as Labels

The variable and field types defined by Γ andΦ can be used as labels in the type system
as follows:

• The possible variable types >, ⊥, and xδ are all valid labels, and can be used as
labels.

1Admittedly, the DSD language does not include such expressions anyway, so that access paths may
as well be made explicit in the syntax of the language. As they are merely needed for the analysis,
however, I opted to keep the original syntax flexible for future enhancements.
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• The possible field types >, ⊥, and fδ are not all valid labels, as fδ lacks an access
path. One can turn a field type into a valid label by employing a qualified field
type Φπ( f ), which is defined as follows:

Φπ( f ) =


> if Φ( f ) =>
⊥ if Φ( f ) =⊥
π. fδ if Φ( f ) = fδ

There is a correspondence between the type and label evaluation functions.

Lemma 3.1 Let (s,h) be a state, and ¦ be a domain lattice. It holds JΓ(x)K¦(s,h) = 〈Γ(x)〉¦s
and, if JπK¦(s,h) = (C ,F ), then JΦπ( f )K¦(s,h) =

〈
Φ( f )

〉¦
F .

PROOF This follows directly from the definitions of the evaluation functions for types
and for labels, and from the definition of Φπ( f ). �

3.2 Ordering Labels

Classic information flow type systems with static domains contain a number of side
conditions k1 ≤¦ k2 which require that information may flow from the domain k1 to
the domain k2 according to the security policy defined by a fixed lattice ¦. The type
system presented here, in contrast, has no static information about the values of labels
at runtime. It is nevertheless possible to define an abstract order on labels, based on
the information from label test conditionals in the program, and by exploiting the
lattice structure of the domain lattice ¦.

3.2.1 Information from Label Test Conditionals

Consider a conditional statement of the form if `1 v`2 then S1 else S2. For the sub-
statement S1 in the then branch, we can assume that an information flow from J`1K¦σ
to J`2K¦σ is permitted by the lattice ¦; otherwise, the branch is not taken during the
execution. The typing judgements for statements are therefore parametrized over a set
Q ⊆ Lab×Lab containing label pairs. A pair (`1,`2) ∈Q expresses the assumption that
a flow from `1 to `2 is allowed.

The set Q thus stores abstract information about fδ fields and xδ variables at a point
of execution. Since Q gives requirements for suitable program states, I also call it the
constraint set. (Constraint sets are the state predicates that were used in Definition 2.5
on page 29.)

Definition 3.2 A program state σ satisfies a constraint set Q in a domain lattice ¦,
written σ |=¦ Q, if for all pairs (`1,`2) ∈Q it holds J`1K¦σ ≤¦ J`2K¦σ.
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3.2.2 Information from Lattice Properties

Labels evaluate to domains from Dom¦, which are ordered as a lattice. For example,
it can be inferred that data may always flow from an expression labelled with ⊥ to an
expression labelled with xδt y. fδ for any variable y , as the evaluation of ⊥ is always
the lowest element in Dom¦.

One can thus order labels by computing the lattice closure of Q. This is done syntac-
tically by the rules in Figure 3.1 on the next page, which define an order and an equality
judgement on labels. A judgement of the form `1 vQ `2 states that information may
flow from `1 to `2, while `1 ≡Q `2 states that the two labels, though possibly syntacti-
cally different, must refer to the same security domain. Thus, they abstractly describe
the operator ≤¦ and equality for the domain set Dom¦.

The first row of rules translates the label pair information from Q into a partial order
that is reflexive, transitive, and antisymmetric. The second row of rules describes how
the order relates to least upper bounds, exploiting basic lattice properties: every label
is equal or larger than the lowest element ⊥ and equal or smaller than the highest
element >. A least upper bound (join) of two labels is larger than each of the two labels.
Also, the least upper bound operation is monotone with respect to the order. The third
row of rules mirrors idempotence, commutativity, and associativity of the join operator.
Finally, the last two rules link label equality back to the order.

The following theorem states that the rules for label order and equality are sound
with respect to their interpretation in satisfying program states.

Theorem 3.3 Given a constraint set Q, two labels `1 and `2 and a state σ satisfying Q.

1. If `1 vQ `2, then J`1K¦σ ≤¦ J`2K¦σ.

2. If `1 ≡Q `2, then J`1K¦σ = J`2K¦σ.

PROOF By induction over the derivation of the label order and equality. �

3.2.3 Constraint Sets as Program Predicates

In the type system, constraint sets are regarded as simple predicates over program
states. I now define a syntactic implication relation for constraint sets, and show that
this implication is indeed sound with respect to constraint set satisfiability.

Definition 3.4 A constraint set Q implies another set Q ′, written Q ⇒ Q ′, if and only if
∀(`1,`2) ∈Q ′. `1 vQ `2.

Lemma 3.5 If σ |=¦ Q and Q ⇒ Q ′, then σ |=¦ Q ′.

PROOF The lemma follows directly from the definitions. �
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3.2 Ordering Labels

(`1,`2) ∈Q

`1 vQ `2 `vQ `

`1 vQ `2 `2 vQ `3

`1 vQ `3

`1 vQ `2 `2 vQ `1

`1 ≡Q `2

⊥vQ ` `vQ > `vQ `t`′
`1 vQ `3 `2 vQ `4

`1 t`2 vQ `3 t`4

`≡Q `t` `1 t`2 ≡Q `2 t`1 `1 t (`2 t`3) ≡Q (`1 t`2)t`3

`1 ≡Q `2

`1 vQ `2

`1 ≡Q `2

`2 vQ `1

Figure 3.1: Rules for label order and label equality with respect to a constraint set Q

3.2.4 Remarks on the Lattice Structure of Labels

The proof of Theorem 3.3 on the facing page justifies the soundness of the label order
rules with respect to the domain lattice. While this is sufficient to show the correctness
of the type system, I will now elaborate on the relation between the statically inferred
label order, the denotational semantics of labels and the domain lattice ¦ in order to
clarify what is actually described by a constraint set Q.

We observe that
LQ = (Lab,vQ ,t,>,⊥)

forms a bounded join-semilattice over the set of labels, where labels related by ≡Q

denote the same point in the lattice. This is the case because vQ is a partial order (it
is reflexive, transitive, and antisymmetric), > and ⊥ are the top and bottom element
of Lab, and for any two label classes `1 and `2, there exists a unique join (least upper
bound), namely the label `1 t`2, which is indeed larger than both `1 and `2 with
respect to vQ . 2 Note that there are labels, such as `1t`2 and `2t`1, which are distinct
elements in Lab but equal with respect to the lattice order; this does not contradict the
definition of a lattice.

The evaluation function J·K¦σ is a homomorphism that embeds the label lattice LQ

into the domain lattice ¦, because it adheres to the definition of a lattice homo-
morphism: the evaluation function preserves least upper bounds (by definition of

2As arbitrary sets of labels can be joined together, including the empty set which yields ⊥ and Lab which
yields >, it is even a complete join semi-lattice.

35



3. High-Level Type System

⊥

y. fδ xδ . . .

>

z. fδy. fδtxδ
Q

HIGH

MED

LOW

label lattice LQ

J·K¦σ

domain lattice ¦

Figure 3.2: Example for embedding label lattice into domain lattice

J`1 t`2K¦σ), the greatest and least element (by definition of J>K¦σ and J⊥K¦σ), as well as
the order (by the soundness property stated in Theorem 3.3). The interpretation of the
label lattice LQ is thus a sublattice of ¦.

Figure 3.2 illustrates the embedding, when one takes as an example the constraint
set Q = {(xδ, z. fδ)} and Sue’s domain lattice ¦ as presented in Section 2.1.2 on page 18.
The label lattice over Q, LQ , is partly shown on the left, with the arrows corresponding
to the order vQ (not all transitive edges are shown). For any state σ such that σ |=¦ Q,
the label evaluation function J·K¦σ assigns to each label a domain from Dom¦ on the
right such that the order is preserved. The dotted lines in the diagram represent the
evaluation in an assumed example state σ that satisfies Q. In particular, the thick edge
from xδ to z. fδ, induced by the constraint set Q, corresponds to an edge in the domain
lattice (from LOW to MED).

A constraint set Q spans a label lattice LQ . Via the satisfiability relation σ |=¦ Q, the
set Q describes those program statesσ for which LQ can be embedded into the domain
lattice ¦ by J·K¦σ. From a different perspective, if one fixes the state σ, then Q can as well
be interpreted as a description of those domain lattices ¦ whose structure includes the
pairwise domain positionings which are abstractly described by label pairs in Q.

Therefore, the set Q and thus the entire label lattice LQ collect information about
both the state σ (namely the values of domain variables and fields) and the structure
of the domain lattice ¦ which describes the effective security policy.
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T-VAL
c ∈ {n,>,⊥}

Γ` c : ⊥ T-VAR
Γ` x : Γ(x)

T-GETF
Γ` π : `

Γ` π. f : Φπ( f )t`

T-OP

◦ ∈ {op,t,v}
Γ` e1 : `1 Γ` e2 : `2

Γ` e1 ◦e2 : `1 t`2

Figure 3.3: Expression type system

3.3 Typing Expressions, and Meta-Label Monotonicity

This section presents the information flow type system for the DSD language, and
provides a soundness theorem.

3.3.1 Typing Expressions

The typing judgement Γ` e : ` assigns to an expression e a label `, given a variable
type environment Γ. The typing rules are shown in Figure 3.3. They correspond to the
ones by Banerjee and Naumann [BN05], but with labels instead of security domains.
The rule T-VAL assigns to values (constants) the bottom-most label ⊥, because they
never depend on any private information. For variables, the rule T-VAR looks up the
type of the variable in the environment Γ and simply treats it as a label. To compute the
label of the field access, the rule T-GETF needs to turn the field type into a label; this is
done using the qualified field type Φπ defined earlier in this chapter. Additionally, the
rule takes the label of the reference π into account, because the act of dereferencing
leaks information about the reference itself. The T-OP rule, finally, is used to assign a
label to an operator expression. The label of an operation is the least upper bound of
the labels of the operands.

As labels are just a specific form of expressions, the expression typing rules are also
used to assign a label to a label: T-VAL assigns a label to the constant labels > and ⊥,
T-VAR is used to type the label xδ, T-GETF can also type accesses to fδ fields, and T-OP

is used to type the label operations `1 t`2 and `1 v`2.

3.3.2 Meta-Label Monotonicity

Universal noninterference is defined in terms of related program states that corre-
spond on the values of visible variables and fields. In the presence of dynamic security
domains, however, this visibility may depend on other variables and fields, which again
may or may not be visible.
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Without further mechanisms, a dependent typing scheme for information security
types, such as the one presented here, causes a problem for the definition of equiva-
lence of two program states. It may happen that a variable x (or a field f ) is visible in
one state, but invisible in the other state, such that it is not clear whether the value of x
(or f ) in both states should be required to be β-related or not.

An obvious approach is to just compare the values in those cases where x (or f ) is
visible in both states. If the visibility is different in the two states, the variable (or field)
is effectively treated as invisible in both states. However, I argue that this simplified
interpretation of dependent security types contradicts the intuition that they are meant
to express. I illustrate this by two cases that use more flexible typing schemes than the
ones presented so far.

First, let us look at a Buffer object with an fδ-typed field contents, and let us
assume that the fδ field has the type >. If we take a simple 2-point lattice ¦ with the
domains LOW and HIGH and assume the value of fδ is LOW, we have a paradoxical
situation: according to the value of fδ, the contents field is public — that is, some
LOW observer can see the contents field. However, because fδ is itself typed >, which
is interpreted as HIGH, its value should remain secret. Just by being able to see the
contents field, the observer can deduce that fδ must contain the value LOW. In other
words, the very fact that something is public cannot reasonably be a secret.

As a second case, let us now assume instead thatΦ( fδ) = fδ, which means fδ contains
its very own security domain and thus defines its own visibility. What does this mean? If
the value of fδ is LOW, then a LOW observer may see that it is LOW, but if it is HIGH, then
a LOW observer may not see its contents; though it is (again) easy to deduce that fδ
must be HIGH in this case. Here, the circular dependency causes the domain field to
leak its own contents.

For these reasons, I have introduced the restrictions Γ(xδ) =⊥ and Φ( fδ) =⊥, which
excludes both circularities and public types expressed by secret type variables. With
these restrictions, the semantic problem disappears: as I have shown in Lemma 2.3
on page 26, in two ¦,k-equivalent states, each variable or field is either visible in both
states, or invisible in both states.

The problems that arise with flexible typing schemes for variables and fields are
mirrored when one uses typing rules that assign expressions as security types to other
expressions. This is the case here: the judgement Γ ` e : ` states that the security
domain of e is the evaluation of the expression `. Thus, we can use the same rules to
derive Γ` ` : `′ such that the meta-label `′ describes the security level of `. Without
further care, it may happen that ` contains the information that e is public, but this
information itself is not public (as indicated by `′). Furthermore, a judgement may
label a label with itself, causing a possible leak as described above.

To prevent these phenomena, a system that assigns security labels not only to
expressions, but in particular to security labels themselves should be monotone and
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well-founded. I will now define these properties precisely, and show that the expression
typing rules have these properties.

Definition 3.6 Let f : Exp 7→ Lab be a labelling function.

• The function is monotone if for all expressions e, f ( f (e)) v; f (e).

• The function is well-founded if for all expressions e, there exists an n ∈N such
that for all m ≥ n, f m(e) ≡; ⊥.3

The expression typing judgement, as defined by rules in Figure 3.3 on page 37,
indeed has these properties intrinsically when it is interpreted as a labelling function:

Lemma 3.7 Let labelofΓ be a labelling function such that for all DSD expressions e,
labelofΓ(e) = `⇐⇒ Γ ` e : `. For any well-formed type environment Γ, the function
labelofΓ is both monotone and well-founded.

The proof of this lemma can be found in Appendix A. The main implication that
arises from this syntactic characterization is that in two ¦,k-equivalent states, a label `
assigned to an expression e always evaluates in both states to domains below k or not
below k, which means that e is either visible or not visible in both states.

3.4 Typing Statements

In this section, I present and explain the typing rules for DSD statements, and define
what it means for a program to be well-typed.

3.4.1 Syntactic Definitions

The typing rules for DSD statements rely on a number of syntactic definitions.

Subexpressions The functions vars(e) and flds(e) collect all variable and field identi-
fiers that occur syntactically in an expression e:

vars(c) = ; flds(c) = ;
vars(x) = {x} flds(x) = ;

vars(e. f ) = vars(e) flds(e. f ) = flds(e)∪ { f }
vars(e1 ◦e2) = vars(e1)∪vars(e2) flds(e1 ◦e2) = flds(e1)∪flds(e2)

where c ::=> |⊥ | n and ◦ ∈ {op,t,v}

3The notation f m (e) means f applied m times to e — that is, f 0(e) = e and f n+1(e) = f n ( f (e)).
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The definition is lifted to constraint sets:

vars(Q) = ⋃
(`1,`2)∈Q

vars(`1)∪vars(`2) flds(Q) = ⋃
(`1,`2)∈Q

flds(`1)∪flds(`2)

I write x ∈ ` and x ∈Q for x ∈ vars(`) and x ∈ vars(Q), respectively. Likewise, I write
f ∈ ` and f ∈Q for f ∈ flds(`) and f ∈ flds(Q). Most often, this is used to express that
an identifier does not appear within a label or a constraint set, by using side conditions
like x 6∈ ` or f 6∈Q.

Substitutions Two forms of substitutions are defined:

• The term `[πnew /πol d ] describes the label ` where all syntactic occurrences of
the access path πol d are replaced by the access path πnew .

• The term `[`′/`′′] replaces every occurrence of the label `′′ (as a subexpression)
in ` with `′.

The substitutions in labels are point-wise lifted to substitutions in constraint sets Q
by applying the substitution to each label in Q. Similarly, a substitution can be applied
to a function that returns labels.

Q[u/v] = {(`[u/v],`′[u/v]) | (`,`′) ∈Q}

f [u/v] =λt . f (t )[u/v]

Sequences In the typing rules, I write x.i for the i -th element of the sequence x,
where the first element has the index 1. The length of a sequence x is written |x|. To
construct a sequence, I use the ML style notations [a,b,c] and a :: x. The term ε denotes
the empty sequence. I also write X , a to denote the set X ∪ {a}.

Point-wise extensions to sequences In the typing rules, judgements are lifted point-
wise to sequences. More precisely,

• `vQ `′ if and only if |`| = |`′| and for all i ∈ {1, . . . , |`|}, `.i vQ `′.i .

• Similarly, Γ` e : ` if and only if |e| = |`| and for all i ∈ {1, . . . , |e|}, Γ` e.i : `.i .

3.4.2 The Typing Rules

For statements, the system defines a typing judgement Γ, pc ` {Q} S {Q ′}, which
means that the program is (Q,Q ′)-universally noninterferent with respect to the vari-
able typing Γ. Furthermore, pc ∈ Lab is a program counter label whose meaning shall
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T-WEAK

Γ, pc ` {Q0} S {Q ′
0}

Q ⇒ Q0 Q ′
0 ⇒ Q ′

Γ, pc ` {Q} S {Q ′}
T-SKIP

Γ, pc ` {Q} skip {Q}

T-SEQ

Γ, pc ` {Q} S1 {Q ′}
Γ, pc ` {Q ′} S2 {Q ′′}

Γ, pc ` {Q} S1 ; S2 {Q ′′}
T-WHILE

Γ` e : `
Γ, pc t` ` {Q} S {Q}

Γ, pc ` {Q} while e do S {Q}

T-IF

Γ` e : `
Γ, pc t` ` {Q} S1 {Q ′}
Γ, pc t` ` {Q} S2 {Q ′}

Γ, pc ` {Q} if e then S1 else S2 {Q ′}

T-IFLABEL

Γ` `1 v`2 : `
Γ, pc t` ` {Q, (`1,`2)} S1 {Q ′}

Γ, pc t` ` {Q} S2 {Q ′}

Γ, pc ` {Q} if `1 v`2 then S1 else S2 {Q ′}

T-ASSIGN

Γ` e : ` `tpc vQ ′ Γ(x)
x 6= xδ x 6∈ pc

Γ, pc ` {Q[e/x]∪Q ′} x :=e {Q}

T-PUTF

Γ` π : `1 Γ` e : `2 `1 t`2 tpc vQ ′ Φπ( f )
f 6= fδ f 6∈ pc f 6∈Q[e/π. f ]

Γ, pc ` {Q[e/π. f ]∪Q ′} π. f :=e {Q}

T-NEW

Γ` e : ` fields(C ) = f Φ∗ =Φx [e.1/x. fδ]

`vQ ′ Φ∗( f ) pc vQ ′ Γ(x) x 6∈ pc x 6= xδ x 6∈Q[e/x. f ]

Γ, pc ` {Q[e/x. f ]∪Q ′} x :=new C (e) {Q}

T-CALL

msig(m) = [Γm , pcm ,Qm ,Q ′
m] margs(m) = x

Γ` π : `r Γ` e : ` Γ∗ = Γm[e.1/xδ]

`r vQ ′ Γ∗(this) `vQ ′ Γ∗(x) pc vQ ′ pcm[e/x][π/this]
Γ∗(ret)tpc vQ Γ(x) x 6∈ pc,Q ∀ f . f 6= fδ ⇒ f 6∈ pc,Q x 6= xδ

Γ, pc ` {Qm[e/x][π/this]∪Q ′∪Q} x :=π.m(e) {Q ′
m[x/ret]∪Q}

Figure 3.4: Type system for DSD statements
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be explained below. The rules for statement typing are shown in Figure 3.4 on the pre-
ceding page. In the following, the constraint set Q is called the precondition, whereas
the constraint set Q ′ is called the postcondition.

Classic information flow type systems contain order requirements for concrete
domains. For example, an assignment x := y is typable if (among others) the domain of
y is lower than or equal to the domain of x with respect to the domain order. These
requirements are usually specified as side conditions that follow directly from the fixed
domain lattice. In contrast, the DSD type system specifies these order requirements
at the level of labels; in the typing rules, these label order requirements appear as
predicates in the precondition Q.

The sets Q and Q ′ are derived in a similar fashion as predicates are derived in Hoare
logic [Hoa69]. The rules for the constraint sets are mostly syntax-directed and are
suitable for backward reasoning to compute the weakest liberal precondition. The
difference to Hoare logic is that constraint sets contain only label order requirements
`1 v`2 instead of arbitrary formulae.

The control flow structure of a program may cause indirect information leaks of
branching conditions. When different execution paths can be taken, the observable
effect of each branch unveils information about the condition on which the execu-
tion branched. An information flow analysis has to make sure that if the branching
condition is to be kept confidential, the observable effects of all execution branches
should be identical. In DSD, an observable effect is the change of a visible variable or
field. The type system by Volpano et al. [VSI96] and many other type systems that verify
end-to-end noninterference properties approach this requirement by conservatively
ensuring that subbranches do not have any observable effects at all. To this end, all
written variables and fields in a branch must be more confidential than the labels of
all enclosing branching conditions, which are stored in the program counter label pc.
Here, I follow this standard: the labels of the branching conditions are collected in the
pc label, and all written variables and fields must be at least confidential as this pc
label.

The type system makes sure that xδ and fδ are immutable. The xδ variable can only
be initialized with a passed argument at a method call, and an fδ field can only be
initialized when an object is created.

Each rule is now described in detail:

T-WEAK: This rule, also called the weakening or subsumption rule, derives a stronger
precondition and a weaker postcondition, using the syntactic constraint set
implication as defined in the previous chapter.

T-SKIP, T-SEQ, T-WHILE, and T-IF: These rules resemble those in the type system by
Volpano et al., where the constraint sets are defined as in Hoare logic: the con-
straint set remains unchanged for skip operations; in a sequence, the postcondi-
tion of the first statement must be the precondition of the following statement;
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for while loops, the constraint set must be invariant; and for conditionals, the
subbranches must have the same pre- and postconditions. As explained above,
the label of a conditional expression in an if or while statement is added to the
pc label of the subprogram in order to prevent indirect flows of information.

T-IFLABEL: The rule for label tests behaves exactly like the T-IF rule, with one differ-
ence: we can assume the tested label flow as a new label order information in
the precondition of the then branch.

T-ASSIGN: The rule for variable assignments regards an assignment secure if there
is a precondition Q ′ from which one can derive that the label of the assigned
expression (`) and the lower bound on the store side effects (pc) are both lower
than the label of the updated variable (Γ(x)).

The set Q is used for Hoare-like backward reasoning to be able to make assertions
about the value of x after the assignment: whatever is known about x after the
execution of the assignment should hold for e before the assignment; thus,
the first part of the precondition is Q[e/x]. The other part (the set Q ′) is used
independently for all side conditions that are required to make the statement
typable. The reason for separating Q[e/x] and Q ′ is that the conditions in Q ′ may
depend on the value of x before the assignment takes place. Nevertheless, the
sets Q[e/x] and Q ′ do not need to be disjoint. Moreover, the entire precondition
of the rule can be derived in classic Hoare logic by combining the rules for
assignment and for consequence of the logic.

In the T-ASSIGN rule and all other rules for assignments, it is not allowed to
update a variable or field if it is mentioned anywhere in the pc, because the pc
label must stay invariant. Also, it is not possible to update xδ or fδ.

T-PUTF: The rule for updating fields shares the concepts of the rule for variable as-
signments. It must be checked whether information may flow from the assigned
expression e to the field f , and whether the label pc is a lower bound of the label
of the affected field.

The object reference must be an access path π. If a field update statement ref-
erences an object by an expression that is not an access path, the typing rule
cannot be applied, thus the program is untypable.

The reference π may be accessible and observable by another reference, such
that the field update may indirectly reveal information about the reference
π itself; thus there is a flow from π to the field, which has to be verified too.
Again, we use a dedicated constraint set Q ′ in the precondition to derive all
the required flows, namely that the label of the reference (`1), the label of the
assigned expression (`2), and the pc label are all lower than or equal to the label
of the updated field expressed by the qualified field type Φπ( f ).
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When updating a field, one also has to prevent aliasing issues. While the set
Q[e/π. f ] ensures that postconditions about π. f can be derived if the respec-
tive information is present for e in the precondition, the same field f could be
mentioned in Q[e/π. f ] via a different access path, such that changing the field
f might invalidate that information. To prevent this situation, the rule conser-
vatively disallows any appearance of f in the precondition Q[e/π. f ], therefore
eliminating any information about the field f of any object, including the object
whose field is updated by the statement.

T-NEW: The premises of this rule take into account that an object creation can be seen
as a sequence of assignments:

x := (new object);

x.( f .1) :=e.1;

x.( f .2) :=e.2;

x.( f .3) :=e.3;

. . .

where f = fields(C ). Similar to the rule for field updates, everything that holds
for x.( f .i ) in the postcondition also holds for e.i in the precondition.

Similar to field updates, there is the precondition that the labels of the expres-
sions are lower than the types of the field. A field type fδ is interpreted as the
label x. fδ. Since x. fδ is the first field of the object, it is initialized with the first
argument e.1, hence a corresponding substitution takes place in the definition
of the labelling function Φ∗.

If the field initializations were ordinary field updates, one would additionally
need to check for each field f that a flow from the pc label and from the reference
x to Φ∗( f ), is allowed. The first flow, however, is subsumed by the condition
pc vQ ′ Γ(x), and the second check is not needed because the object cannot be
aliased by another reference with a lower label, as it is new. Another difference to
ordinary field updates is that one does not need to require that the fields do not
occur in the precondition or in the pc label, because the object is fresh and the
field updates do not have an effect on the evaluation of the precondition and pc .

Finally, the assignment to x is treated in a similar fashion as variable assignments
in the T-ASSIGN rule, with the same prerequisites. Here, however, the assigned
value is the fresh object and can be seen as public: although the choice of the
memory location is non-deterministic, no secret data leaks from the location
itself. Thus, the assigned expression new C (e) can be considered as having the
label ⊥, and the flow requirement from the expression to x can be omitted.
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Also, as new C (e) is not a valid access path, there is no substitution, hence no
information about x may exist in the precondition Q[e/x. f ].

T-CALL: The rule for method calls relies on a given method signature

msig(m) = [Γm , pcm ,Qm ,Q ′
m]

where Γm specifies the types of the local variables of m, pcm is the lower bound
on side effects that occur in m, and Qm and Q ′

m are the pre- and post-conditions
of the method execution, respectively. Signatures are explained in detail below.

The typing rule treats the initialization of the variables of the called methods as
a sequence of assignments, where x =margs(m):

this :=π;

x.1 :=e.1;

x.2 :=e.2;

x.3 :=e.3;

. . .

Just as in the T-ASSIGN rule, it is checked whether the passed arguments and
the object reference have labels lower than the formal types declared in Γm . To
this end, one transforms the types in Γm . The type xδ is replaced by the first
argument e.1, because it is the value with which the variable xδ is initialized. The
other possible variable types in Γm (> and ⊥) are just treated as labels. Thus, Γ∗

assigns to each variable of the method an “outside label” that has a meaning at
the level of the method caller.

Just as with field update statements, the object reference must be an access
path π. The rule checks that the label of the object reference π is lower than the
outside label of this, and that the labels of the passed expressions have labels
lower than the outside labels of the formal arguments x, all with respect to the set
Q ′ in the precondition of the call. In contrast to ordinary variable assignments,
one does not need to take the pc label into account, because the variables
assigned in the called method m are local to that method and not visible from
the caller’s side.

The precondition of the rule also includes the outside view of the method’s pre-
condition Qm , which means local variables of the called method m are replaced
with the parameter expressions of the call. Likewise, if the variable ret in the
method’s postcondition Q ′

m (the only variable that may occur there) is replaced
with x, one gets the outside view of Q ′

m , which is in the postcondition of the call.
Also, method calls cannot be used to update xδ.
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As with other assignment rules, it is required that x is not in pc . Since the method
may have any effect on the heap, one cannot allow any field f to occur syntacti-
cally in pc either, because changing a field may change the evaluation of pc.

One may use a constraint set Q in the pre- and in the post-condition provided
that its evaluation does not change during the method call, similar to a frame rule
in separation logic [Rey02]. “Separation” is broadly enforced by requiring that no
item that can possibly be updated (i.e., the variable x or any field that is not fδ)
occurs syntactically in Q. The set Q is not only used to preserve information
outside of the method call, but also to verify the actual assignment to x: The
outside label of the return variable ret as well as the pc of the caller must be
lower than the type of the assigned variable x with respect to Q.

3.4.3 Method Signatures and Well-Typed Programs

As mentioned above, the type system depends on a given typing information for
methods in form of method signatures, which are quadruples of the form

msig(m) = [Γ, pc,Q,Q ′]

such that each typing judgement provides the type for the respective method body. It
intuitively means: In method m, the local variables shall have the types assigned by Γ.
Also, if Q holds when the method m is called, Q ′ holds on its return. Finally, no data
below pc are updated during the execution of the method.

A method signature is well-formed if the following conditions hold:

• The variable type environment Γmust be well-formed, and it must specify a type
for all local variables including this and ret: dom(Γ) =margs(m)∪ {this,ret}.

• The pc label should originate from a monotone and well-founded labelling
function — that is, there needs to exist an expression e such that Γ` e : pc.

• The pre- and post-conditions may only refer to local variables of the method in
a restricted way: vars(Q) ⊆margs(m)∪ {this}, and vars(Q ′) ⊆ {ret}. It is not useful
to include ret in Q, as the variable is always initialized with the defval constant.
Likewise, information about variables other than ret are not useful in Q ′, as these
variables are not returned.

The following definition connects the signature of a method to the type derivations
of its implementation.

Definition 3.8 Let PDSD be a DSD program, and let m be a method with a well-formed
signature msig(m) = [Γ, pc,Q,Q ′]. The method m is well-typed if the typing judgement
Γ, pc ` {Q} mbody(m) {Q ′} can be derived. A DSD program PDSD is well-typed if all its
methods are well-typed.
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A method signature has to be provided for all methods of the program, including ex-
ternal methods. As no DSD implementation is specified for external methods, external
methods are automatically considered well-typed, which means that the signatures of
those methods are trusted by the type system.

3.5 Soundness Results

Before I come to the main theorem, I adjust the preceding definitions of universal
noninterference from Section 2.3.4 to the method signatures.

Definition 3.9 A method m with msig(m) = [Γ, pc,Q,Q ′] is called universally noninter-
ferent with respect to its signature if it is (Q,Q ′)-universally noninterferent with respect
to Γ. A program PDSD is universally noninterferent if each (non-external) method is
universally noninterferent with respect to its respective signature.

The following is the main soundness theorem.

Theorem 3.10 If PDSD is a well-typed DSD program, then it is universally noninterfer-
ent.

The theorem is proved by induction over the operational semantics. The full proof
can be found in Appendix A; here, I give a number of lemmas that also follow from the
type derivation. First, if the pc label is invariant, and if Q holds before the execution of
statement S, then Q ′ holds afterwards:

Lemma 3.11 Let Γ, pc ` {Q} S {Q ′} and σ1
S−→¦σ2, and let all methods be well-typed.

1. JpcK¦σ1
= JpcK¦σ2

.

2. If σ1 |=¦ Q, then σ2 |=¦ Q ′.

Next, a pc label that is below k in ¦ ensures that no variables or fields that are visible
at k in ¦ are written, thereby preventing indirect flows.

Lemma 3.12 Let PDSD be a well-typed program. Suppose Γ, pc ` {Q} S {Q ′} and

(s1,h1)
S−→¦ (s2,h2) and (s1,h1) |=¦ Q. Let id= {(r,r ) | r ∈ dom(h1)∩dom(h2)}.

If

• JpcK¦s1,h1
6≤¦ k,

then

1. `¦ s1 ∼Γ,k
id s2, and

2. `¦ h1 ∼k
id h2.
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The expression typing judgement can be interpreted as a visibility judgement for
expressions, which extends the visibility definition for variables and fields from Sec-
tion 2.3.2 on page 24.

Definition 3.13 An expression is visible at k in ¦ and a stateσ if Γ` e : ` and J`K¦σ ≤¦ k.

That is, an expression is visible at k if its label evaluates to a domain at or below k.
The soundness statement then says that an expression e that is visible at k in ¦ and two
¦,k-equivalent program states evaluates to indistinguishable values, so that e does not
depend on data that is not visible at k.

Theorem 3.14 If Γ` e : `, then for all states σ and σ′ and all partial bijections β such
that `¦ σ∼Γ,k

β
σ′, if J`K¦σ ≤¦ k and J`K¦σ′ ≤¦ k, then JeK¦σ ∼β JeK¦σ′ .

The most important result that follows from monotonicity and well-foundedness is
that an expression is always either visible in two states, or invisible in two equivalent
states:

Theorem 3.15 If Γ` e : `, then for all states σ and σ′, for all partial bijections β and
for all domains k such that `¦ σ∼Γ,k

β
σ′, J`K¦σ ≤¦ k if and only if J`K¦σ′ ≤¦ k.

Using the expression typing soundness theorem 3.14, one can even show that if
J`K¦σ ≤¦ k, then J`K¦σ = J`K¦σ′ . A specialization of this theorem is Lemma 2.3 on page 26,
which stated a similar result for types of variables and fields.

Note that the requirements on the pc label in the well-formedness conditions for
signatures in the previous section are directly related to Theorem 3.15. The require-
ments are needed to ensure that the pc label evaluates to a domain at or below k in
both states or in none of the two states.

3.6 Typing the Example Program

In the final section of the chapter, I illustrate an application of the type system to the
example program defined in Figure 2.4 on page 22. I define the type environments for
the example program, and show why the body of the sendFile method indeed has
a type derivation in these environments. For better clarity, I write (`1 v`2) instead of
(`1,`2) for a label pair in a constraint set Q to underline that it is a label flow predicate.

Figure 3.5 on the facing page defines the types of the fields and the signatures of
the methods that occur in the program. In fact, the only field identifier in the program
is fδ. The method signatures are a bit more complicated than those presented in
the introduction. The read method of the Buffer class returns a value that has the
dynamic domain of the buffer, stored in the fδ field of the object. It is, however, not
possible to annotate the return variable ret of the read method with this. fδ, because
this is not a valid variable type. Instead, the ret variable gets the type xδ. The method

48



3.6 Typing the Example Program

Φ( fδ) = ⊥
msig(read) = [ Γ= {xδ 7→⊥, this 7→⊥,ret 7→ xδ}, pc =⊥,

Q = {this. fδvxδ}, Q ′ =; ]
msig(write) = [ Γ= {xδ 7→⊥, s 7→ xδ, this 7→⊥,ret 7→⊥}, pc =⊥,

Q = {xδv this. fδ}, Q ′ =; ]
msig(sendFile) = [ Γ= {xδ 7→⊥,file 7→⊥,srv 7→⊥,tmp 7→ xδ,

this 7→⊥,ret 7→⊥}, pc =⊥,
Q = {xδvfile. fδ,file. fδvxδ}, Q ′ =; ]

Figure 3.5: Type environments for the example program

expects the caller to provide this xδ domain, and gives the precondition in Q that data
must be allowed to flow from this. fδ (the domain of the buffer) to xδ (the provided
domain of the return variable). In an analogous way, the write method expects the
caller to provide the domain of the argument s in the argument xδ. Since s is written
into the buffer, there is the precondition that xδ must be lower than the domain of
the buffer object, that is, this. fδ. In the signature of the sendFile method, finally,
the variable tmp gets the type xδ. The variable tmp is supposed to hold the contents
read from the file. Thus, there are constraints that the type of tmp (xδ) is equal to the
dynamic domain of file object (file. fδ).

Let Qm be the precondition of the sendFile method as specified by its signature,
and the statement S be the then branch of the method body, that is, the sequential
composition of the two method calls. The body of the sendFile method is well-typed,
because we can give a type derivation as follows:

T-OP

T-GETF

T-VAR
Γ(file) =⊥
Γ` file : ⊥

······· Φfile( fδ) =⊥
Γ` file. fδ : ⊥t⊥ T-GETF

T-VAR
Γ(srv) =⊥
Γ` srv : ⊥

······· Φsrv( fδ) =⊥
Γ` srv. fδ : ⊥t⊥

Γ` file. fδvsrv. fδ : ⊥t⊥t⊥t⊥

T-IFLABEL
Γ,⊥ ` {Qm , (file. fδvsrv. fδ)} S {;}

T-WEAK

T-ASSIGN
Γ(ret) =⊥ Γ` 0 : ⊥
Γ,⊥ ` {;} ret :=0 {;}

Γ,⊥ ` {Qm} ret :=0 {;}

Γ,⊥ ` {Qm} if file. fδvsrv. fδ then S else ret :=0 {;}
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In the following, let Q be the precondition of the statement S, that is, Q = {file. fδv
srv. fδ,file. fδv xδ, xδvfile. fδ}. To show the typing judgement for S, we need to
give a judgement for each of the two method calls:

T-WEAK

T-SEQ

Γ,⊥ ` {Q} tmp :=file.read(file. fδ) {Q}
Γ,⊥ ` {Q} ret :=srv.write(file. fδ,tmp) {Q}

Γ,⊥ ` {Q}
tmp :=file.read(file. fδ);
ret :=srv.write(file. fδ,tmp)

{Q}

Γ,⊥ ` {Q} S {;}

The first method call can be typed by instantiating the rule T-CALL appropriately:

T-WEAK

T-CALL

Γ` file : ⊥ Γ` file. fδ : ⊥
Qm[file. fδ/xδ][file/this] = {file. fδvfile. fδ}

Q ′
m[tmp/ret] =; ⊥v; Γ∗(this) =⊥

⊥v; Γ∗(xδ) =⊥ ⊥v; pcm[file. fδ/xδ][file/this] =⊥
Γ∗(ret)t⊥= Γm(ret)[file. fδ/xδ]t⊥= file. fδ vQ Γ(tmp) = xδ

tmp 6∈ ⊥,Q ∀ f . f 6= fδ ⇒ f 6∈ ⊥,Q tmp 6= xδ

Γ,⊥ ` {(file. fδvfile. fδ)∪;∪Q} tmp :=file.read(file. fδ) {;∪Q}

Γ,⊥ ` {Q} tmp :=file.read(file. fδ) {Q}

The typing rule for the second method call is very similar and thus not given here. Its
most important aspect is that the precondition induced by the signature of the write
method, Qm[file. fδ/xδ][srv/this] = {file. fδvsrv. fδ}, is indeed implied by Q. This
is the point where the collected flow information from the label test statement is used.
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Universal Noninterference for a JVM-Like

Language

Typically, mobile code is distributed in some bytecode format that is interpreted on
the device. To examine policy-aware mobile software realistically, it is therefore neces-
sary to examine a bytecode language that features the runtime inspection of security
domains and policies.

For this purpose, this chapter defines the syntax and semantics of a bytecode version
of the DSD language. I present a compiler that compiles high-level DSD programs to
bytecode programs, and define the universal noninterference property for bytecode
programs. The type-based analysis of the security property is then presented in the
next chapter.

4.1 The DSD Bytecode Language

Just as the high-level DSD language is similar to a subset of Java, the presented custom
bytecode language is similar to a subset of JVM code. This section presents the syntax
and semantics of the bytecode language, and defines the compilation from high-level
programs to bytecode programs.

51



4. Universal Noninterference for a JVM-Like Language

4.1.1 Syntax

Bytecode programs are sequences of unstructured instructions that operate on a store
(variable valuation), a heap, and an operand stack. The syntax of bytecode instructions
is defined as follows:

numbers: n ∈ N

variables: x ∈ Var
fields: f ∈ Fld

classes: C ∈ Cls
methods: m ∈ Mtd

instruction addresses: i , j ∈ Adr

constants: c ::= > |⊥ | n
binary operators: op ::= op | t | v

instruction syntax: InstrBC 3 B ::= nop | push c | pop | prim op |
load x | store x |
newC | putf f | getf f | callm |
bnz i | jmp i | cpush j | cjmp j

The instruction set consists of basic instructions for stack, heap, and store manipula-
tions; method calls; as well as conditional and unconditional jumps to other addresses.
The two pseudo-instructions cpush j and cjmp j have the same semantics as nop and
jmp j , respectively; they are used only for the analysis to indicate control dependence
regions, and will be described later.

Definition 4.1 A DSD bytecode program PBC is a tuple

(≺,fields,methods,margs,BC ,mentry,mexit)

where

• ≺∈P (Cls×Cls) is the subclass relation.

• fields : Cls → Fld∗ and methods : Cls → Mtd∗ assign to each class the identifiers of
the fields and methods they contain.

• margs : Mtd → Var∗ is a function that describes the names of the formal arguments
of each method m.

• BC : Mtd×Adr * InstrBC assigns to methods and instruction addresses a bytecode
instruction, thereby specifying the method implementations.

• mentry,mexit : Mtd → Adr specify the entry point and the exit point of a method.
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4.1 The DSD Bytecode Language

A bytecode program thus consists of a number of method bodies (implementations)
specified by BC (m, i ), which maps instruction addresses to instructions. I sometimes
assume the function to be in curried style, and write BC (m) to refer to all instructions
that belong to a specific method. To simplify reasoning, each method has its own
instruction address space, and may in principle have an arbitrary program layout. The
entry point is indicated by mentry(m). To simplify the semantics, the language does
not have a special “return” instruction. Instead, just like in the high-level language,
there is a special variable ret that holds the return value of a method. The method
terminates whenever the execution reaches the (unique) instruction address mexit(m);
therefore, jmpmexit(m) simulates a return instruction. The return value of a method is
the value of the ret variable at that point.

A bytecode program is well-formed if the following conditions hold:

• All variables that occur free in any bytecode instruction BC (m, i ) of a method m
are in margs(m)∪ {this,ret}.

• For all methods m ∈ Mtd, mexit(m) 6∈ dom(BC (m)), that is, there is no instruction
at the exit point.

• The other components ≺, fields, methods, and margs have the same meaning
and the same well-formedness requirements as defined for (high-level) DSD
programs.

In the following, we assume a fixed bytecode program PBC whose components are
all well-formed.

4.1.2 Semantics

The bytecode language relies on the same kinds of values and identifiers as the high-
level language. A bytecode state σBC is a triple (s,h,ρ) consisting of a store s and a
heap h (defined just as for the high-level DSD language), as well as an operand stack
ρ, which is a sequence or stack of values. Figure 4.1 on the next page shows a formal
definition of the state model.

The operational semantics is defined by a mostly small-step transition relation

(m, i1, s1,h1,ρ1)
B−→¦ (m, i2, s2,h2,ρ2)

which means that given a domain lattice ¦ and starting from state (s1,h1,ρ1) at instruc-
tion address (m, i1), the instruction B leads to the instruction address (m, i2) and the
new state (s2,h2,ρ2). The quintuple (m, i , s,h,ρ) consisting of a method, an instruction
address, and a bytecode state is also called a bytecode configuration. While the relation
is defined for arbitrary instructions B, it will be linked to the instruction BC (m, i ) below.
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4. Universal Noninterference for a JVM-Like Language

numbers: n ∈ N

domains: k ∈ Dom¦

memory locations: r ∈ Loc
values: v ∈ Val =N∪Dom¦∪Loc∪ {null}

state: σBC ∈ StateBC : Store×Heap×Stack
store: s ∈ Store : Var → Val
heap: h ∈ Heap : Loc* (Cls× (Fld*Val))

operand stack: ρ ∈ Stack : Val∗

Figure 4.1: Bytecode program state

The operational bytecode semantics is defined according to the rules in Figure 4.2
on the facing page. Except for jump instructions, all instructions increase the instruc-
tion address by 1. The instructions nop and cpush j have no effect on the state. The
instruction push c pushes a constant value onto the operand stack, where constants c
are interpreted state-independently as follows:

J>K¦ = k¦
> J⊥K¦ = k¦

⊥ JnK¦ = n

The instruction pop removes the top element from the stack, while prim op removes
the top two values from the stack, performs the operation op on them, and puts the
result back onto the stack. load x puts the contents of variable x onto the stack, while
store x stores the top element of the stack into x and removes it from the stack. bnz j
removes the top element v and branches to address j in case v is not zero. jmp j and
cjmp j always jump to j . The instructions getf f and putf f read and update the
field of an object, respectively, where the object reference is popped from the stack.
The instruction newC creates a new object in the heap, initializes the field with values
removed from the stack, and pushes the reference to the new object onto the stack.
Finally, the callm instruction invokes a method m. As in the high-level language, the
constant defval= null specifies a default value for the return variable ret.

The rule for method calls relies on a big-step execution of the method. More formally,
there is a big-step execution

(m, i0, s0,h0,ρ0) ==⇒
BC

¦ (m, ik , sk ,hk ,ρk )

if and only if there is a (possibly empty) sequence of small execution steps such that

(m, i0, s0,h0,ρ0)
BC (m,i0)−−−−−−−→¦ (m, i1, s1,h1,ρ1)

BC (m,i1)−−−−−−−→¦ . . .
BC (m,ik−1)−−−−−−−−→¦ (m, ik , sk ,hk ,ρk ).
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4.1 The DSD Bytecode Language

B = nop

(m, i , s,h,ρ)
B−→¦ (m, i +1, s,h,ρ)

B = push c

(m, i , s,h,ρ)
B−→¦ (m, i +1, s,h,JcK¦ :: ρ)

B = pop

(m, i , s,h, v :: ρ)
B−→¦ (m, i +1, s,h,ρ)

B = prim op

(m, i , s,h, v2 :: v1 :: ρ)
B−→¦ (m, i +1, s,h, (v1 op v2) :: ρ)

B = load x

(m, i , s,h,ρ)
B−→¦ (m, i +1, s,h, s(x) :: ρ)

B = store x

(m, i , s,h, v :: ρ)
B−→¦ (m, i +1, s[x 7→ v],h,ρ)

B = bnz j v = 0

(m, i , s,h, v :: ρ)
B−→¦ (m, i +1, s,h,ρ)

B = bnz j v 6= 0

(m, i , s,h, v :: ρ)
B−→¦ (m, j , s,h,ρ)

B ∈ {jmp j ,cjmp j }

(m, i , s,h,ρ)
B−→¦ (m, j , s,h,ρ)

B = cpush j

(m, i , s,h,ρ)
B−→¦ (m, i +1, s,h,ρ)

B = putf f h′ = h[r 7→ h(r )[ f 7→ v]]

(m, i , s,h, v :: r :: ρ)
B−→¦ (m, i +1, s,h′,ρ)

B = getf f

(m, i , s,h,r :: ρ)
B−→¦ (m, i +1, s,h,h(r )( f ) :: ρ)

B = newC r 6∈ dom(h)
h′ = h ∪ [r 7→ (C , [fields(C ) 7→ v])]

(m, i , s,h, v :: ρ)
B−→¦ (m, i +1, s,h′,r :: ρ)

B = callm′

s′ = [this 7→ r ]∪ [margs(m′) 7→ v]∪ [ret 7→ defval]

(s′,h)
m′
==⇒

BC

¦ (s′′,h′)

(m, i , s,h, v :: r :: ρ)
B−→¦ (m, i +1, s,h′, s′′(ret) :: ρ)

Figure 4.2: Mostly small-step semantics for bytecode
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The following notation is a shorthand for the execution of entire method bodies:

(s1,h1)
m==⇒

BC

¦ (s2,h2) ⇐⇒∃ρ. (m,mentry(m), s1,h1,ε) ==⇒
BC

¦ (m,mexit(m), s2,h2,ρ)

Thus, methods are called with an empty operand stack, and the shape of the stack
at the return point is unconstrained. Note that the transition essentially works on
high-level program states (store-heap pairs).

I write (m, i1)
B7−→ (m, i2) if there are stores, heaps, and stacks, and a lattice domain ¦

such that (m, i1, s1,h1,ρ1)
B−→¦ (m, i2, s2,h2,ρ2). The set of successors of an instruction

is defined as succ(m, i ) = { j | (m, i )
B7−→ (m, j )}. Jump targets of a method are those

instruction addresses that can be reached by a conditional or unconditional jump
instruction.

Definition 4.2 (Jump targets) The set of jump targets within a method m of a bytecode
program BC , written jmpTgtBC

m , is defined as:

jmpTgtBC
m = { j | ∃i . BC (m, i ) ∈ {jmp j ,bnz j ,cjmp j }}

The operational semantics is mostly small-step, because method calls are defined
with respect to the big-step execution of the method body, which in turn is defined in
terms of small steps. The execution gets stuck if a successor instruction is not defined
in BC (m). This does not affect the security property, as universal noninterference is
termination-insensitive.

4.2 Compilation to Bytecode

I define a compilation function compile(PDSD) that compiles a high-level DSD program
PDSD to the corresponding bytecode program PBC as follows:

compile(≺,fields,methods,margs,mbody) =
(≺,fields,methods,margs,BC ,mentry,mexit)

such that for all methods m ∈ dom(mbody),

mentry(m) = 0
(BC (m),mexit(m)) = compilestmt(m,mbody(m),0)

In other words, every high-level method body mbody(m) is transformed into the
corresponding list of instructions, such that each method body starts at address 0. The
argument list margs(m) for each method, as well as the structural information ≺, fields,
and methods, are unchanged from the high-level program.
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Statement compilation Statements of the high-level DSD language are compiled to
bytecode sequences using a function

(BC , i1) = compilestmt(m,S, i0)

as defined in Figure 4.3 on the next page. It takes a statement S with an address i0,
and returns a bytecode program BC (mappings of addresses to instructions) as well
as an address i1, such that BC contains the compiled instructions corresponding to
the statement, starting from i0 and up to (but excluding) i1. The function proceeds
recursively on substatements.

For the compilation of conditionals, the aforementioned pseudo-instructions are
inserted. A conditional statement is compiled to a sequence of bytecode instructions
that starts with an instruction cpush i1 +1. Here, i1 + 1 is the first address that fol-
lows the compiled sequence – that is, the confluence point that the two branches
eventually reach. At the end of each branch, there is an instruction cjmp i1 +1 that
causes a jump to this confluence point. The pseudo-instructions thus mark where
the entire conditional statement starts in the bytecode, and where the subbranches
end. Though having no special meaning in the semantics, this information is required
by the type system to correctly determine the extent of control dependence regions
where an indirect flow of information may occur, such that the pc label can be con-
strained accordingly. This approach follows the work by Medel, Compagnoni, and
Bonelli [MCB05]; see Section 5.4 on page 75 in this section for a detailed motivation for
the use of these pseudo-instructions.

The compilation of a loop statement while e do S corresponds to the compilation
of an (imaginary) conditional statement if e then (do S while e) else skip, with the
pseudo-instructions inserted as described above for conditionals. The reason for this
unusual form lies in the type system: a more direct compilation of while e do S would
not be typable. The compilation presented here produces a somewhat larger bytecode
program, but in a way such that the execution time is not affected.

Expression compilation The compilation function compilestmt(m,S, i0) relies on an-
other function to compile expressions,

(BC , i1) = compileexp(m,e, i0)

as defined in Figure 4.4 on page 59. The expression compilation function returns a
bytecode program BC with instructions starting at i0, and ending at i1. The instructions
compute the value of the expression e, such that the value can be found on top of
the stack after the execution of the instructions. For method calls, the function is
extended point-wise to sequences compileexp(m,e, i0), such that every expression in e
is compiled in the reverse order in which values are removed from the operand stack
in the small-step semantics for method calls.
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compilestmt(m,skip, i ) =
[], i

compilestmt(m,S1 ; S2, i )
let BC1, i1 = compilestmt(m,S1, i ) in
let BC2, i2 = compilestmt(m,S2, i1) in
BC1 ∪BC2, i2

compilestmt(m, x :=e, i ) =
let BC , i ′ = compileexp(m,e, i ) in
BC ∪ [(m, i ′) 7→ store x], i ′+1

compilestmt(m,er . f :=e, i ) =
let BCr , ir = compileexp(m,er , i ) in
let BC , i ′ = compileexp(m,e, ir ) in
BCr ∪BC ∪ [(m, i ′) 7→ putf f ], i ′+1

compilestmt(m, x :=new C (e), i ) =
let BC , i ′ = compileexp(m,e, i ) in
[(m, i ′) 7→ newC ]∪ [(m, i ′+1) 7→ store x], i +2

compilestmt(m, x :=er .m(e), i ) =
let BCr , ir = compileexp(m,er , i ) in
let BC , i ′ = compileexp(m,e, ir ) in
BCr ∪BC ∪ [(m, i ′) 7→ callm]∪ [(m, i ′+1) 7→ store x], i ′+2

compilestmt(m, if e then S1 else S2, i ) =
let BC , i ′ = compileexp(m,e, i +1) in
let BC2, i2 = compilestmt(m,S2, i ′+1) in
let BC1, i1 = compilestmt(m,S1, i2 +1) in
[(m, i ) 7→ cpush i1 +1]∪BC ∪ [(m, i ′) 7→ bnz i2 +1]∪
BC2 ∪ [(m, i2) 7→ cjmp i1 +1]∪
BC1 ∪ [(m, i1) 7→ cjmp i1 +1], i1 +1

compilestmt(m,while e do S, i ) =
let BC1, i1 = compileexp(m,e, i +1) in
let BC , i ′ = compilestmt(m,S, i1 +2) in
let BC2, i2 = compileexp(m,e, i ′) in
[(m, i ) 7→ cpush i2 +2]∪BC1 ∪ [(m, i1) 7→ bnz i1 +2]∪
[(m, i1 +1) 7→ cjmp i2 +2]∪
BC ∪BC2 ∪ [(m, i2) 7→ bnz i1 +2]∪ [(m, i2 +1) 7→ cjmp i2 +2], i2 +2

Figure 4.3: Compilation of statements
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compileexp(m,c, i ) = [(m, i ) 7→ push c], i +1

compileexp(m, x, i ) = [(m, i ) 7→ load x], i +1

compileexp(m,e. f , i ) = let BC , i ′ = compileexp(m,e, i ) in
BC ∪ [(m, i ′) 7→ getf f ], i ′+1

compileexp(m,e1 op e2, i ) = let BC1, i1 = compileexp(m,e1, i ) in
let BC2, i2 = compileexp(m,e2, i1) in
BC1 ∪BC2 ∪ [(m, i2) 7→ prim op], i2 +1

Figure 4.4: Compilation of expressions

Finally, we observe two properties of the bytecode compilation. First, expressions
and statements always compile to contiguous bytecode instruction sequences. Also,
compiled expressions do not contain any jump targets, whereas compiled statements
contain only jump targets within their compiled bytecode sequence, or at the address
immediately following the sequence.

Proposition 4.3 Compiled expressions and statements have the following properties:

• If (BC , i1) = compileexp(m,e, i0), then dom(BC (m)) = [i0, i1[ and jmpTgtBC
m =;.

• If (BC , i1) = compilestmt(m,S, i0), then dom(BC (m)) = [i0, i1[, and
jmpTgtBC

m ⊆ [i0, i1].

PROOF By induction on the structure of e or S. This follows directly from the definition
of compileexp(m,e, i ) or compilestmt(m,S, i ). �

Compilation of the example program The example program, which I have defined
as a DSD program PDSD = (≺,fields,methods,margs,mbody) in Section 2.2 on page 22,
is compiled into a bytecode program

PBC = (≺,fields,methods,margs,BC ,mentry,mexit)

where most of the program structure is retained. The only method that has been given a
DSD implementation, sendFile, is compiled to a corresponding bytecode implemen-
tation such that mentry(sendFile) = 0, mexit(sendFile) = 22, and BC (sendFile)
is defined as shown in Figure 4.5 on the next page. In the figure, the highlighted re-
gions show how particular expressions and statements correspond to sequences of
instructions in the compilation. Note that there is no instruction at the exit point of
the method (address 22).
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mbody(sendFile) = S =

if file. fδ v srv. fδ then

tmp :=file.read(file. fδ);
ret :=srv.write(file. fδ,tmp)

else
ret :=0

compilestmt(sendFile,S,0) =

i BC (sendFile, i )

0 cpush 22
1 load file

2 getf fδ
3 load srv

4 getf fδ
5 primv
6 bnz 10
7 push 0
8 store ret

9 cjmp 22
10 load file

11 load file

12 getf fδ
13 call read

14 store data

15 load srv

16 load file

17 getf fδ
18 load data

19 call write

20 store ret
21 cjmp 22

Figure 4.5: Compilation of the sendFile method of the example program
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4.3 Universal Noninterference

In this section, I formally define universal noninterference for bytecode programs.
For each method m, I assume there is a given method signature

msig(m) = [Γ, pc,Q,Q ′]

exactly as defined in the high-level language. In particular, we retain the definitions for
type environments Γ andΦ, for access paths π, for labels pc,` ∈ Lab, and for constraint
sets Q. As before, we assume the field typing Φ to be fixed.

I reuse the state satisfiability relation σ |=¦ Q as well as store, heap, and (high-level)
state equivalences

`¦ s ∼Γ,k
β

s′ and `¦ h ∼k
β h′ and `¦ (s,h) ∼Γ,k

β
(s′,h′)

defined as in the high-level language (see Section 2.3 on page 23).
As noted before, the operand stack is neither passed to methods nor returned, and

thus folded away in the big-step transition for method body executions. Due to this
fact and thanks to the close relationship between high-level and bytecode program
states, universal noninterference for bytecode programs can be formulated identically
to universal noninterference for high-level programs. The only difference is that I now
refer to the bytecode program execution, of course.

Definition 4.4 Let PBC be a bytecode program. A method m is universally noninterfer-
ent with respect to its signature msig(m) = [Γ, pc,Q1,Q2] if for all domain lattices ¦, for
all domains k ∈ Dom¦, for all store-heap pairs σ1,σ2,σ′

1,σ′
2 and for all bijections β such

that

• σ1 |=¦ Q1 and σ′
1 |=¦ Q1,

• `¦ σ1 ∼Γ,k
β

σ′
1,

• σ1
m==⇒

BC

¦ σ2 and σ′
1

m==⇒
BC

¦ σ′
2,

there exists a bijection β′ ⊇β such that

• σ2 |=¦ Q2 and σ′
2 |=¦ Q2, and

• `¦ σ2 ∼Γ,k
β′ σ′

2.

A bytecode program PBC is universally noninterferent if all its methods are universally
noninterferent with respect to their signatures.
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5
Low-Level Type System

In this chapter, I present an analysis for the compiled low-level code. However, I do not
give a type system for bytecode programs directly. As already mentioned in Section 1.5
on page 11, I first transform the bytecode program to an intermediate representation
(IR) that does not require an operand stack, but instead relies on additional temporary
variables. The transformation is a partial decompilation which disassembles stack-
manipulating instructions back into high-level expressions.

I then define universal noninterference for IR programs, and provide a type sys-
tem along with a soundness proof. Thanks to the translation to IR code, the proof is
relatively short, because it can rely on existing soundness results from the high-level
language for decompiled expressions. Also, the intermediate representation makes
reasoning on information flow properties much easier.

Another proof shows that the translation to the intermediate representation pre-
serves the semantics of the bytecode. It follows that whenever a bytecode program can
be translated to an IR program that is typable, then the original bytecode program is
universally noninterferent. This approach of indirectly showing bytecode properties by
using a stackless intermediate representation builds on the work by Demange, Jensen,
and Pichardie [DJP10].

An important aspect of the approach is that the parallels between the high-level
language and the intermediate representation are only exploited to simplify the low-
level analysis and the corresponding correctness proofs. There is no dependency on the
result of the high-level program analysis, and almost no requirement for the specific
compiler that is used by the programmer.
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This suits the application scenario outlined in the introduction: The verification of
the source code by the software developer is independent of the verification of the
bytecode by the app store provider. The software developer may switch to a different
high-level code analysis or to a different compiler at any time without affecting the
ability of the distribution platform maintainer to verify the bytecode program. Also,
there are no requirements for the format of the submitted bytecode code, as the
translation to IR code happens only within the bytecode analysis.

Nevertheless, I give a type preservation result for the specific DSD compiler pre-
sented in the previous chapter. It shows that all bytecode programs produced by the
compiler can be transformed into an IR program, such that if the original high-level
program was typable with the high-level type system, then the corresponding IR pro-
gram is typable with the IR type system. This gives the programmer the confidence
that typable DSD programs will always be compiled to bytecode programs that are
universally noninterferent. Note, however, that neither the type preservation result nor
the specific compiler are required to certify bytecode for universal noninterference.

The Grail intermediate language [BMS03] serves a similar purpose as the interme-
diate representation: it is used to transfer results from a high-level resource analysis
to simplify the analysis of low-level code. In contrast to the presented approach, how-
ever, the compiler of the Grail framework generates the Grail code directly from the
high-level language, and additionally translates the high-level proof to a proof for the
corresponding Grail code. To make this approach work in the application scenario
presented here, one has to make considerable changes to existing code distribution
environments and the execution platform.

5.1 Intermediate Representation

The intermediate language is located conceptually between the high-level DSD lan-
guage and the bytecode language. While the language is – like bytecode – an un-
structured language with instructions that are executed in a small-step fashion, the
instructions may become rather complex and resemble high-level DSD statements.
Consequently, the syntax and semantics of the IR language are a mixture of the high-
level and bytecode syntax and semantics presented in the preceding chapters.

5.1.1 Syntax

Apart from ordinary program variables from a set Var, IR programs may also contain
temporary variables t from a set TVar that is disjoint from Var. These temporary vari-
ables are used to store the results of computations that would be put as values on the
stack on the bytecode level.
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5.1 Intermediate Representation

The syntax of IR instructions is defined as follows:

temporary variables: t ∈ TVar
variables: x ∈ Var∪TVar

fields: f ∈ Fld
classes: C ∈ Cls

methods: m ∈ Mtd
instruction addresses: i , j ∈ Adr

instruction syntax: InstrIR 3 I ::= if e j | jmp j | cpush j | cjmp j | block a
assignments: Assn 3 a ::= x :=e | e. f :=e | x :=new C (e) | x :=e.m(e)
expressions: Exp 3 e ::= (as defined in the high-level language)

The instruction set consists of:

• blocks, which are sequences of assignment statements, similar to those from the
high-level language;

• conditional and unconditional jumps, similar to those on the bytecode level, but
with the conditional expression restored; and

• pseudo-instructions that indicate control dependence regions, with the same
meaning as on the bytecode level.

The set of IR instructions is much smaller than the bytecode instruction set; most
functionality is provided by the assignment block instruction block a. An occurrence
of x in assignments a and high-level expressions e may refer to either an ordinary
variable or a temporary variable.

IR programs are defined very similarly to bytecode programs.

Definition 5.1 An IR program PIR is a tuple

(≺,fields,methods,margs,tvars, IR,mentry,mexit)

where

• ≺∈P (Cls×Cls) is the subclass relation.

• fields : Cls → Fld∗ and methods : Cls → Mtd∗ assign to each class the identifiers of
the fields and methods they contain.

• margs : Mtd → Var∗ is a function that describes the names of the formal arguments
of each method m.
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5. Low-Level Type System

• tvars : Mtd → TVar∗ specifies for each method the temporary variables that may
occur in the body of the method.

• IR : Mtd×Adr * InstrIR assigns to methods and instruction addresses an IR in-
struction, thereby specifying the method implementations.

• mentry,mexit : Mtd → Adr specify the entry point and the exit point of methods.

The difference to bytecode programs is that IR method bodies contain IR instruc-
tions, of course, and that IR methods may also contain temporary variables specified
by tvars. Apart from that, the meaning and well-formedness requirements are the same
as for bytecode programs. In the following, let us assume a given fixed IR program PIR

whose components are all well-formed.

5.1.2 Semantics

An IR state σIR is a triple (s, st ,h) where h is a heap, and s and st are two variable stores,
one for ordinary and one for temporary variables. The definition of stores, heaps, and
values are exactly as for bytecode and high-level programs.

values: v ∈ Val : (as before)
state: σIR ∈ StateIR : Store×TStore×Heap
store: s ∈ Store : Var → Val

temporary store: st ∈ TStore : TVar → Val
heap: h ∈ Heap : Loc* (Cls× (Fld*Val))

Note that s ∪ st always forms a valid store, because TVar is disjoint from Var. For the
same reason, it is always possible to split a combined store s ∪ st back into s and st . All
expressions e that occur in statements are evaluated using an evaluation function that
is defined in terms of the high-level expression evaluation:

JeK¦s,st ,h = JeK¦s∪st ,h

In the following, I define five mutually recursive transition relations, listed in the
following table:

small-step transition for IR instructions: (m, i , s, st ,h)
I−→¦ (m, i ′, s′, s′t ,h′)

big-step transition for IR instructions: (m, i , s, st ,h) =⇒
IR

¦ (m, i ′, s′, s′t ,h′)

big-step transition for IR methods: (s,h)
m=⇒
IR

¦ (s′,h′)

small-step transition for IR assignments: (s, st ,h)
a−→¦ (s′, s′t ,h′)

big-step transition for IR assignments: (s, st ,h)
a=⇒¦ (s′, s′t ,h′)

66



5.1 Intermediate Representation

I = if e j JeK¦s,st ,h = 0

(m, i , s, st ,h)
I−→¦ (m, i +1, s, st ,h)

I = if e j JeK¦s,st ,h 6= 0

(m, i , s, st ,h)
I−→¦ (m, j , s, st ,h)

I ∈ {jmp j ,cjmp j }

(m, i , s, st ,h)
I−→¦ (m, j , s, st ,h)

I = cpush j

(m, i , s, st ,h)
I−→¦ (m, i +1, s, st ,h)

I = block a (s, st ,h)
a=⇒¦(s′, s′t ,h)

(m, i , s, st ,h)
I−→¦ (m, i +1, s′, s′t ,h′)

Figure 5.1: Mostly small-step semantics for IR instructions

S = a ∈ {x :=e,e. f :=e, x :=new C (e)}

(s ∪ st ,h)
S−→¦ (s′∪ s′t ,h′)

(s, st ,h)
a−→¦(s′, s′t ,h′)

a = x :=e.m(e) JeK¦s,st ,h = r JeK¦s,st ,h = v
sm = [this 7→ r ]∪ [margs(m) 7→ v]∪ [ret 7→ defval]

(sm ,h)
m=⇒
IR

¦ (s′m ,h′) s′∪ s′t = (s ∪ st )[x 7→ s′m(ret)]

(s, st ,h)
a−→¦(s′, s′t ,h′)

Figure 5.2: Semantics for IR assignments
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5. Low-Level Type System

The rules in Figure 5.1 on the preceding page define a (mostly) small-step operational
semantics for single IR instructions

(m, i , s, st ,h)
I−→¦ (m, i ′, s′, s′t ,h′)

which means that given a domain lattice ¦ and starting from state (s, st ,h) at instruction
address (m, i ), the instruction I leads to instruction address (m, i ′) and new state
(s′, s′t ,h′). A special relation for assignment blocks is defined below.

While the relation is defined for arbitrary instructions I, it is linked to the instruction
IR[m, i ] via a big-step transition, which is defined similar to the bytecode big-step
semantics:

(m, i 0, s0, s0
t ,h0) =⇒

IR

¦ (m, i k , sk , sk
t ,hk )

if and only if there is a (possibly empty) sequence of small execution steps such that

(m, i 0, s0, s0
t ,h0)

IR[m,i 0]−−−−−−→¦ (m, i 1, s1, s1
t ,h1)

IR[m,i 1]−−−−−−→¦ . . .
IR[m,i k−1]−−−−−−−→¦ (m, i k , sk , sk

t ,hk ).
I use the following notation is a shorthand for the execution of entire method bodies:

(s,h)
m=⇒
IR

¦ (s′,h′) if and only if

∃st . (m,mentry(m), s, [tvars(m) 7→ defval],h) =⇒
IR

¦ (m,mexit(m), s′, st ,h′)

The small-step rule for assignment blocks relies on a transition

(s0, s0
t ,h0)

a=⇒¦(sk , sk
t ,hk )

that executes the assignments in a in order — that is, there must exist a sequence of

execution steps (s0, s0
t ,h0)

a.1−−→¦(s1, s1
t ,h1)

a.2−−→¦ . . .
a.k−−−→¦(sk , sk

t ,hk ) such that |a| = k.

For each individual assignment, in turn, a transition (s, st ,h)
a−→¦(s′, s′t ,h′) is used,

defined by the rules in Figure 5.2 on the previous page. IR assignments have exactly
the semantics as assignment statements in the DSD language; in fact, I directly use
the operational semantics of DSD for variable updates, field updates, and object cre-
ation assignments. The only difference is that IR method calls initialize all temporary
variables of a method with the default value defval, and use

Following the notation for bytecode execution successors, I write (m, i )
I7−→ (m, i ′) if

there are stores, temporary stores, and heaps such that (m, i , s, st ,h)
I−→¦ (m, i ′, s′, s′t ,h′).

The set of successors of an instruction is defined as succ(m, i ) = {i ′ | (m, i )
I7−→ (m, i ′)}.

5.2 Universal Noninterference

This section defines universal noninterference for IR programs, which is very similar
to the preceding definitions for bytecode and for high-level programs.
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5.2 Universal Noninterference

Type Environments and Method Signatures For the IR language, variable type en-
vironments Γ and the fixed field type environment Φ are defined exactly as for the
bytecode and the high-level languages. For the intermediate representation, however,
there is another variable typing Γt for temporary variables:

temporary variable typing: Γt : TVar * {>,⊥, xδ}

I assume that the types of the temporary variables in each method are given by a
temporary variable typing Γt that belongs to the method. This type environment,
however, is only used for method-internal type derivations. As no data is passed via
temporary variables at method calls, Γt is not included in the signature of a method.

Instead, I assume each method m has a well-formed signature

msig(m) = [Γ, pc,Q,Q ′]

that is defined exactly as in the high-level language and bytecode languages. In partic-
ular, labels pc,` ∈ Lab and constraint sets Q are defined as before. Moreover, I reuse
the state satisfiability relation σ |=¦ Q as well as store and heap equivalences:

`¦ s ∼Γ,k
β

s′ and `¦ h ∼k
β h′ and `¦ (s,h) ∼Γ,k

β
(s′,h′).

Universal Noninterference As noted above, no data is passed in temporary variables
to methods, hence the stores st can be folded away in the big-step transition for method
body executions. Thanks to the close correspondence of the definitions and notations
across the languages, the definition of universal noninterference for IR programs is
identical to the one for bytecode and high-level programs; the only difference is that it
refers to IR method executions.

Definition 5.2 A method m is universally noninterferent with respect to its signature
msig(m) = [Γ, pc,Q1,Q2] if for all domain lattices ¦, for all domains k ∈ Dom¦, for all
store-heap pairs σ1,σ2,σ′

1,σ′
2 and for all bijections β such that

• σ1 |=¦ Q1 and σ′
1 |=¦ Q1,

• `¦ σ1 ∼Γ,k
β

σ′
1,

• σ1
m=⇒
IR

¦ σ2 and σ′
1

m=⇒
IR

¦ σ′
2,

there exists a bijection β′ ⊇β such that

• σ2 |=¦ Q2 and σ′
2 |=¦ Q2, and

• `¦ σ2 ∼Γ,k
β′ σ′

2

An IR program PIR is universally noninterferent if all its methods are universally nonin-
terferent with respect to their signatures.
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5. Low-Level Type System

5.3 Transforming Bytecode to the Intermediate
Representation

The translation from bytecode to the intermediate representation is essentially a sim-
plified version of the algorithm presented by Demange, Jensen, and Pichardie [DJP10].
Their algorithm considers general JVM bytecode, and is generic in the program prop-
erty that shall be shown. Since I adapt the approach specifically for the DSD verification
framework, a number simplifications can be made:

• Neither error states nor the order of errors are treated — noninterference is
defined on successful executions only.

• There is no return instruction, hence we do not need to consider special return
states.

• One does not have to consider event traces, therefore there are no IR pseudo-
instructions that write such a trace.

• There are no constructor methods. The allocation and initialization of objects
are both performed by a single instruction. Therefore, we do not need to handle
uninitialized objects and the order of their initialization with care.

• The original transformation by Demange et al. may create, for a single bytecode
instruction, a sequence of IR assignment instructions, which then all have to
be linked back to the same original instruction for the proof. The IR language,
in contrast, has these assignment sequences built into the IR syntax as single
block a instructions.

• Only special bytecode programs are considered by the translation: the operand
stack must be empty during a jump.

The last condition may appear to be a major restriction; however, the DSD compiler
produces only such bytecode. In fact, empty-stack requirements have been given for
previous bytecode verification techniques [Ler02], as it has been noticed that current
Java compilers rarely take advantage of elaborate uses of stacks and local variables.
Nevertheless, the extended version of the paper by Demange et al. shows how to deal
with arbitrary bytecode, which requires a proper extension of the concepts presented
here. Besides these simplifications, I also need to consider the pseudo-instructions
cjmp j and cpush j in the translation, which are not present in JVM bytecode.

5.3.1 The Bytecode Transformation Algorithm

The transformation operates on four levels: single bytecode instructions, multiple
bytecode instructions, method bodies, and full bytecode programs. I will now present
the parts in this order.
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5.3 Transforming Bytecode to the Intermediate Representation

bytecode input stack IR output stack conditions

nop as block ε as
push c as block ε c :: as
pop e :: as block ε as
prim op e2 :: e1 :: as block ε (e1 op e2) :: as
load x as block ε x :: as
getf x e :: as block ε e. f :: as
newC e :: as block [t 0

i :=new C (e)] t 0
i :: as t 0

i 6∈ as

bnz j e :: as if e j as
jmp j as jmp j as
cpush j as cpush j as
cjmp j as cjmp j as

store x e :: as block [t 0
i :=x ; x :=e] as[t 0

i /x] t 0
i 6∈ as

putf f e ′ :: e :: as block [ti :=as ; e. f :=e ′] ti ti 6∈ as
callm e :: e :: as block [ti :=as ; t 0

i :=e.m(e)] t 0
i :: ti t 0

i , ti 6∈ as

Table 5.1: BC2IRinstr: Transformation of a single bytecode instruction

Algorithm 1 BC2IRrng(BC ,m,I)

for all i ∈ sort(I ) do
if i ∈ jmpTgtBC

m then
ASin[m, i ] :=ε

end if
(ASout[m, i ], IR[m, i ]) :=BC2IRinstr(i ,BC (m, i ),ASin[m, i ])

if ASout[m, i ] 6= ε and ∃ j ∈ succ(m, i )∩ jmpTgtBC
m then

fail
end if
if i +1 ∈ succ(m, i ) then

ASin[m, i +1] :=ASout[m, i ]
end if

end for
return IR

Algorithm 2 BC2IRmtd(BC ,m)
ASin[m,mentry(m)] :=ε
BC2IRrng(BC ,m,domBC (m))
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5. Low-Level Type System

Transformation of single bytecode instructions The transformation is based on
abstract stacks, which are stacks of high-level expressions from Exp:

abstract stack: as ∈ Exp∗

Table 5.1 on the preceding page defines the function BC2IRinstr which takes a byte-
code address, a bytecode instruction and an abstract input stack, and produces an
IR instruction and an abstract output stack. The function reconstructs the high-level
expressions from operand-stack manipulating bytecode instructions. The bytecode
instructions store x, putf f , newC , and callm are translated to assignments blocks,
where the result of the operation is immediately written to a temporary variable. There
is a one-to-one correspondence between the BC instructions and the IR instructions.

The function assumes for each method m and for each instruction address i the
existence of arbitrarily many temporary variables t 0

i , t 1
i , t 2

i , . . . that are available for

the instruction IR[m, i ]. This way, each temporary variable t k
i is assigned at exactly

one point in the IR program, namely at address i . The side conditions require that
an assigned temporary variable t k

i must not have occurred in the input stack of the
instruction at address i .

Special care has to be taken for instructions that possibly invalidate the contents of
the abstract stack. For store x operations, the contents of the variable x is first stored
in a temporary variable t 0

i before x is overwritten. In the output stack, all occurrences
of x are replaced by t 0

i , which holds the saved old value of x. For putf f and callm,
the entire abstract input stack as is saved in a sequence of temporary variables ti , and
this sequence is then the output stack.

Transformation of multiple instructions Ranges of bytecode instructions are trans-
formed with BC2IRrng(BC ,m, I ), shown as Algorithm 1 on the previous page. The
function traverses a set of instruction addresses I sorted in ascending order, and writes
the compiled instructions into the array IR[m, i ]. At the same time, it defines the arrays
ASin[m, i ] (input stack for instruction i ) and ASout[m, i ] (output stack for instruction i ).
The function BC2IRrng(BC ,m, I ) relies on BC2IRinstr, and chains the abstract stacks,
such that the output stack of an instruction becomes the input stack of its immediate
successor. Additionally, it ensures that the abstract input stacks at jump targets are
empty, and fails if a jump instruction produces an output stack that is not empty.

Note that it cannot happen that a side condition of BC2IRinstr fails when used within
BC2IRrng. This would only be possible if any of the variables t k

i occurs in the input stack

ASin[m, i ], but no instruction preceding the one at address i generates the variable t k
i .

Transformation of method bodies The function BC2IRmtd(BC ,m), shown as Algo-
rithm 2 on the preceding page, transforms methods by setting the input stack of the
entry point to ε, and then using BC2IRrng for the method body.
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Transformation of bytecode programs Finally, the full program translation function
BC2IR(PBC) = PIR is defined as

BC2IR(≺,fields,methods,margs,BC ,mentry,mexit) =
(≺,fields,methods,margs,tvars, IR,mentry,mexit)

such that for all methods m ∈ dom(BC ),

IR(m) = BC2IRmtd(BC ,m)
tvars(m) = {t | t occurs in IR(m)}

In particular, all method bodies are translated using the algorithm BC2IRmtd.

Properties of the algorithm We observe that a translated IR program covers the same
range of instructions addresses as the original bytecode program; that the abstract
stack is empty at jump targets; and that abstract stacks are passed through instructions.

Proposition 5.3 Let IR =BC2IRrng(BC ,m, [i0, i1[). Then dom(IR) = [i0, i1[.

PROOF By definition of BC2IRrng. �

Proposition 5.4 For all i ∈ jmpTgtBC
m ,ASin[m, i ] = ε. Also, ASin[m,mentry(m)] = ε.

PROOF By definition of the BC2IR algorithm. �

Proposition 5.5 If (m, i )
IR[m,i ]7−−−−−→ (m, i ′), then ASout[m, i ] = ASin[m, i ′].

PROOF If i ′ ∈ jmpTgtBC
m , then i ′ ∈ succ(m, i )∩ jmpTgtBC

m . As the algorithm did not fail,
it must be ASout[[,m], i ] = ε by definition of BC2IR. With Proposition 5.4, we have
ASin[m, i ′] = ε= ASout[m, i ].

If i ′ 6∈ jmpTgtBC
m , then since i ′ ∈ succ(m, i ), it must be i ′ = i + 1 by definition of

jmpTgtBC
m and by definition of IR semantics. With i +1 ∈ succ(m, i ) and i ′ = i +1 6∈

jmpTgtBC
m , we get ASin[m, i ′] = ASout[m, i ] by definition of BC2IR. �

5.3.2 Translation of the Example Program

Our example program in bytecode form, as presented at the end of Section 4.2 on
page 56, is translated to an IR program

PIR = (≺,fields,methods,margs,tvars, IR,mentry,mexit)

such that ≺, fields, methods, margs, mentry, and mexit are as in the bytecode program.
The only method that needs to be translated to the bytecode program is sendFile. Ta-
ble 5.3.2 shows the method in bytecode form and the corresponding IR form, including
the abstract input and output stacks for each instruction. Note how the IR instructions
are a partial reconstruction of the original high-level method body from Section 2.2 on
page 22. The translation also defines tvars(sendFile) = [t 0

8 , t 0
13, t 0

14, t 0
19, t 0

20], because
these are the temporary variables that occur in IR(sendFile).
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5.3.3 Semantics Preservation

The transformation algorithm preserves the semantics: if a bytecode method execution
starting in an initial store s and heap h results in a final store s′ and final heap h′ (with
an empty operand stack), then the execution of the corresponding IR method in the
same initial store s and heap h results in the same final store s′ and heap h′ (with a
default temporary variable store).

Theorem 5.6 Let PBC be a bytecode program, and PIR be an IR program such that
PIR =BC2IR(PBC). Let m be a method, ¦ be a domain lattice, s, s′ be stores, and h,h′ be
heaps. If

(s,h)
m==⇒

BC

¦ (s′,h′)

then

(s,h)
m=⇒
IR

¦ (s′,h′)

The full proof of this theorem is given in Appendix B. It relies on the correctness of
the BC2IRinstr function: if the input stack as describes the initial operand stack, then
the output stack as′ describes the final operand stack of the execution of the bytecode
instruction:

Proposition 5.7 Suppose (m, i , s,h,ρ)
B−→¦ (m, i ′, s′,h′,ρ′). Let st be a temporary vari-

able store, and as, as′ be abstract stacks and I be an IR instruction such that

JasK¦s,st ,h = ρ and BC2IRinstr(i , B, as) = (I, as′).

Then there exists a temporary variable store s′t such that (m, i , s, st ,h)
I−→¦ (m, i ′, s′, s′t ,h′)

and

Jas′K¦s′,s′t ,h′ = ρ′.

5.4 The IR Type System

This section presents an information flow type system for the intermediate language.
With the translation from bytecode and the semantics preservation result, one obtains
a technique to prove noninterference property for bytecode programs.

The type system follows the spirit of the system for the (high-level) DSD language.
In fact, as IR code contains some constructs of DSD, the type system reuses high-level
DSD typing judgements for these constructs. Moreover, we shall see later that the
compilation to bytecode and the translation to IR code are type preserving — that is, if
the original DSD program is typable, then the corresponding IR program is typable,
too.
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5. Low-Level Type System

The IR type system follows the small-step semantics of the IR language. For example,

if there is an instruction I such that (m, i )
I7−→ (m, i ′), then it assigns to i a precondition Q

and an initial label pc , and to i ′ a postcondition Q ′ and a final label pc ′ that hold before
and after the execution of the instruction, respectively. A program is well-typed if it is
possible to assign to each address a unique typing information in this way.

5.4.1 The Purpose of the Pseudo-Instructions

A common problem for information flow type systems for unstructured code is that
the instructions on which a subbranch ranges are not obvious from the syntax. This
information, however, is needed to update the pc label in order to prevent indirect
leaks. While it is easy to “raise” the pc label at a branching point, an expressive type
system also needs to safely “lower” the pc label back to the previous level at the
corresponding confluence point, which is the first instruction address that all execution
paths that start at the branching point eventually reach.

A common approach is to provide the structural information in form of externally
computed control dependence regions, an approach taken for the bytecode type system
by Barthe et al [BBR04]. The type system then uses this precomputed information for
the manipulation of the pc label. The authors point out that the information may be
easily provided by a compiler, because it has access to the control flow structure from
the program’s high-level syntax. The problem, however, is that this delegation to exter-
nal computation mechanisms introduces a new structure which must be trusted or
verified: the computed regions must satisfy a set of safe over-approximation properties
to ensure that they indeed describe the subbranches.

To simplify the proofs, I therefore follow the approach by Medel, Compagnoni, and
Bonelli [MCB05] by using pseudo-instructions that indicate the start and the end of a
subbranch. These instructions need to be available in the IR code. In contrast to control
dependence regions, they are directly verified by the type system itself. Furthermore,
a bytecode compiler can be easily extended to additionally produce these pseudo-
instructions. Alternatively, if arbitrary bytecode without pseudo-instructions shall be
analysed, one may compute control dependence regions and use this information to
determine the points where the pseudo-instructions should be inserted.

5.4.2 Confluence Point Stacks

The typing judgement maintains confluence point stacks, which contain information
before and after each instruction. These are stacks of pairs of program addresses and
labels:

∆ ∈ (Adr×Lab)∗

The top element on the stack indicates the address of the confluence point where
the current subbranch ends, and the pc label which shall be restored at that point. The
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5.4 The IR Type System

element below the top indicates the address and the pc label of confluence point of
the subbranch surrounding the current one, and so on. The stacks are manipulated by
the IR pseudo-instructions cpush j and cjmp j in the following fashion:

• cpush j pushes the address j and the current pc label on the stack ∆ in the type
system. In the semantics, the instruction has no effect.

• cjmp j pops the address j and the label pc from the stack ∆, jumps to j , and
restores the label pc. In the semantics, cjmp j jumps to the address j .

The compiler translates a high-level conditional statement if e then S1 else S2 as
follows: first, a cpush j instruction is generated, where j is the address of the first
instruction that follows the compiled statement (and also the confluence point). Then,
the actual statement is compiled, such that the final instruction of both compiled
branches S1 and S2 is cjmp j . This causes the execution to jump to j . In the type
system, the cpush j instruction causes the initial pc label and j to be pushed on
the stack. At the branching instruction, the pc label is possibly raised to a different
label pc ′. At the final cjmp j instructions, the type system restores the original pc label
from the stack.

5.4.3 The Type System

In the following, let us fix a method m. I define a typing judgement

Γ,Γt ` i , pc,∆,Q
I−→ i ′, pc ′,∆′,Q ′

which means that with instruction I, it is possible to get from program point i to i ′ such
that if pc,∆,Q is valid in the initial state, then pc ′,∆′,Q ′ is valid in the final state. (I will
give the exact notion of validity later.) The judgement is defined by the rules shown in
Figure 5.3 on the following page.

The type system relies on the judgement Γ∪Γt ` e : ` from the high-level type sys-
tem, where the type environments for ordinary and temporary variables are combined.
Also, I use on `vQ `′ as defined as in the high-level type system.

Assignment blocks are typed with another judgement

Γ,Γt ,∆, pc ` {Q} a {Q ′}

as given by the rules in Figure 5.4 on the next page. Assignment blocks are typed just
like sequential compositions of statements in the high-level type system. The typing
rules for individual assignments make use of the corresponding high-level typing rules,
with the variable type environments combined: Γ∪Γt , pc ` {Q} a {Q ′}. As in the
high-level type system, I require that the object reference expressions for field updates
and method calls are access paths π. The only extension to the original typing rules,
apart from taking Γt into account, is that assigned variables and fields may not occur
in ∆ (in addition to not occurring in the pc label).
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5. Low-Level Type System

Γ,Γt ` i , pc,∆,Q0
I−→ i ′, pc ′,∆′,Q ′

0
Q ⇒ Q0 Q ′

0 ⇒ Q ′

Γ,Γt ` i , pc,∆,Q
I−→ i ′, pc ′,∆′,Q ′

I = if e j Γ∪Γt ` e : ` i ′ ∈ {i +1, j }

Γ,Γt ` i , pc,∆,Q
I−→ i ′, pc t`,∆,Q

I = if e j Γ∪Γt ` e : ` e = `1 v`2

Γ,Γt ` i , pc,∆,Q
I−→ j , pc t`,∆,Q ∪ {`1 v`2}

I = jmp j

Γ,Γt ` i , pc,∆,Q
I−→ j , pc,∆,Q

I = cpush j

Γ,Γt ` i , pc,∆,Q
I−→ i +1, pc, ( j , pc) ::∆,Q

I = cjmp j

Γ,Γt ` i , pc, ( j , pc ′) ::∆,Q
I−→ j , pc ′,∆,Q

I = block a Γ,Γt ,∆, pc ` {Q} a {Q ′}

Γ,Γt ` i , pc,∆,Q
I−→ i +1, pc,∆,Q ′

Figure 5.3: IR type system

Γ,Γt ,∆, pc ` {Q} ε {Q}

Γ,Γt ,∆, pc ` {Q} a {Q ′}
Γ,Γt ,∆, pc ` {Q ′} as {Q ′′}

Γ,Γt ,∆, pc ` {Q} a :: as {Q ′′}

a ∈ {x :=e, x :=new C (e)}
x 6∈∆

Γ∪Γt , pc ` {Q} a {Q ′}

Γ,Γt ,∆, pc ` {Q} a {Q ′}

a =π. f :=e
f 6∈∆

Γ∪Γt , pc ` {Q} a {Q ′}

Γ,Γt ,∆, pc ` {Q} a {Q ′}

a = x :=π.m(e)
x 6∈∆

f 6= fδ ⇒ f 6∈∆
Γ∪Γt , pc ` {Q} a {Q ′}

Γ,Γt ,∆, pc ` {Q} a {Q ′}

Figure 5.4: Typing rules for assignment blocks
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5.4.4 Well-Typed Programs

A type mapping Λ for a method m associates each instruction address i ∈ dom(IR(m))
with a program counter label pc , a confluence point stack ∆, and a constraint set Q. To
access the components of Λ(i ), I also write Λpc (i ), Λ∆(i ), and ΛQ (i ) in the following.
We are interested in type mappings that are well-formed with respect to the small-step
typing rules:

Definition 5.8 A type mapping Λ is derivable for a method body IR(m) and type envi-

ronments Γ and Γt , if for all i , i ′ ∈ dom(IR(m)), whenever (m, i )
I7−→ (m, i ′), then i , i ′ ∈

dom(Λ) and Γ,Γt ` i ,Λpc (i ),Λ∆(i ),ΛQ (i )
I−→ i ′,Λpc (i ′),Λ∆(i ′),ΛQ (i ′).

An IR method is well-typed if the method signature msig(m) can be extended by a
type environment Γt such that a type mapping Λ can be derived for its instructions,
where the type information for mentry(m) and mexit(m) matches the one given by the
signature.

Definition 5.9 A method m is well-typed with respect to a signature

msig(m) = [Γ, pc,Q,Q ′]

if there exists a type environment Γt and a type mapping Λ such that

1. Λ is derivable for IR(m), Γ and Γt , and

2. Λ(mentry(m)) = (pc,ε,Q), and

3. Λ(mexit(m)) = (pc,ε,Q ′).

An IR program PIR is well-typed if all its methods are well-typed.

5.4.5 Soundness

The following theorem states the main soundness result for IR programs.

Theorem 5.10 If an IR program PIR is well-typed, then it is universally noninterferent.

The proof of the theorem can be found in Appendix C. With the semantics preser-
vation result, we immediately get a soundness result for the underlying bytecode
program.

Theorem 5.11 Let PBC be a bytecode program. Let PIR be an IR program such that
PIR =BC2IR(PBC) and PIR is well-typed. Then PBC is universally noninterferent.

PROOF Let m be a method such that msig(m) = [Γ, pc,Q,Q ′]. Let (s1,h1), (s2,h2),
(s′1,h′

1), (s′2,h′
2) be store-heap pairs, β be bijection, ¦ be a domain lattice, and k ∈ Dom¦

be a domain. Furthermore, let
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5. Low-Level Type System

• (s1,h1) |=¦ Q and (s′1,h′
1) |=¦ Q, and

• `¦ (s1,h1) ∼Γ,k
β

(s′1,h′
1), and

• (s1,h1)
m==⇒

BC

¦ (s2,h2) and (s′1,h′
1)

m==⇒
BC

¦ (s′2,h′
2).

Applying the semantics preservation result (Theorem 5.6 on page 75) to both ex-

ecutions, we know there are corresponding IR executions (s1,h1)
m=⇒
IR

¦ (s2,h2) and

(s′1,h′
1)

m=⇒
IR

¦ (s′2,h′
2). As PIR is well-typed, we can apply the soundness theorem 5.10 on

the previous page and get that m is universally noninterferent; that is, there exists a
bijection β′ ⊇β such that

• (s2,h2) |=¦ Q ′ and (s′2,h′
2) |=¦ Q ′ and

• `¦ (s2,h2) ∼Γ,k
β′ (s′2,h′

2).

It follows by definition that the bytecode version of m is universally noninterfer-
ent. As this can be shown for each method, the entire program PBC is universally
noninterferent. �

5.5 Type Preservation Result

It can be shown that the compilation of a high-level DSD program to the bytecode
level and the subsequent transformation to an IR program preserves the types. That is,
if PDSD is a well-typed DSD program with respect to the high-level type system, then
BC2IR(compile(PDSD)) exists and is well-typed with respect to the IR type system.

Theorem 5.12 Let PDSD be well-typed with respect to given method signatures. Then
BC2IR(compile(PDSD)) exists and is well-typed with respect to these signatures.

The complete proof of this theorem can be found in Appendix D on page 147; here, I
only outline the basic ideas.

The proof is split into two parts. First, one shows that the compiled and translated
program BC2IR(compile(PDSD)) indeed exists, and has the following properties: stacks
are empty between translated statements, and high-level expressions e are completely
recovered by the BC2IR algorithm in the abstract stacks.

Lemma 5.13 If (BC , i1) = compileexp(m,e, i0) and ASin[m, i0] = as, then

1. IR =BC2IRrng(BC ,m, [i0, i1[) exists, and

2. ASin[m, i1] = e :: as.
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5.6 Putting It All Together

If (BC , i1) = compilestmt(m,S, i0), and ASin[m, i0] = ε, then

1. IR =BC2IRrng(BC ,m, [i0, i1[) exists, and

2. ASin[m, i1] = ε.

The main lemma of the second part of the proof shows that for every high-level
typing judgement, there is a corresponding IR type mapping.

Lemma 5.14 Let (BC , i1) = compilestmt(m,S, i0), and IR =BC2IRrng(BC ,m, [i0, i1[. Let
∆ be a confluence point stack that does not contain any variable or field modified by S.
If Γ, pc ` {Q} S {Q ′}, then there exists a temporary variable type environment Γt and a
type mapping Λ derivable for IR, Γ, and Γt such that

1. Λ(i0) = (pc,∆,Q), and

2. Λ(i1) = (pc,∆,Q ′).

The main type preservation theorem follows as a corollary by unfolding the defini-
tions of well-typedness.

5.6 Putting It All Together

I have now presented almost all parts that constitute the DSD verification framework.
Figure 5.5 on the next page is a repetition of the overview diagram from the introduction
(see page 12), with all parts annotated with the numbers of the sections where I have
presented the respective definitions (boxes in the figure), algorithms (solid arrows), or
theorems (dotted arrows).

For the actual implementation, there are still two parts missing — namely the type
check algorithms that fully automatically determine whether a given high-level or
IR program is well-typed. So far, I have only declaratively described what constitutes a
valid type derivation, leaving open the task of finding such derivations.

In the next chapter, I therefore show how to transform the presented type systems
into a type check algorithm, before I present the implementation of the verification
framework.
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DSD program
with flow checks (2.1)

DSD type derivation
(3.1–3.4)

type check
(6.1–6.2)

bytecode program
with flow checks (4.1)compile

(4.2)

IR version of
bytecode program (5.1)

translate (5.3)

IR type derivation
(5.4)

type check (6.3)

DSD program is
universally noninterferent (2.3)

soundness
(3.5)

IR program is
universally noninterferent (5.2)

soundness (5.4)

bytecode program is
universally noninterferent (4.3)

semantic correspondence
between BC and IR (5.3)

typability
is preserved

(5.5)

Figure 5.5: The verfication framework, and the corresponding sections
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6
Automatic Type Inference and

Implementation

The type systems presented in the preceding chapters declaratively describe which
typing judgements are valid. For an actual implementation, I have not yet explained
how to automatically determine whether a given program has a valid typing judge-
ment. This chapter presents an automatic type inference for high-level DSD and for IR
programs, and presents several aspects of the implementation I have developed.

The task that usually constitutes a type inference – determining the types of expres-
sions – is comparatively easy. Moreover, as all method signatures have to be provided
by the programmer, the type inference for DSD is a purely intra-procedural mecha-
nism. The main difficulties lie in solving the label order side conditions (Section 6.1),
in computing the pre- and post-conditions for each statement (Section 6.2), and, for
IR code, in finding a suitable, consistent type mapping (Section 6.3). These aspects
come together in the prototypical implementation of the entire framework, described
in Section 6.4.

6.1 Solving Label Order Conditions

The type systems for the high-level DSD language and the intermediate representation
contain numerous side conditions on the order of labels. Therefore, any implemen-
tation of an automatic type inference repeatedly has to solve side conditions on the
order of labels. More precisely, given a constraint set Q and two labels `1 and `2, the
algorithm has to decide whether `1 vQ `2 can be derived or not.
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`vQ ` ⊥vQ ` `vQ > `vQ `t`′

(`1,`2) ∈Q

`1 vQ `2

`1 vQ `3 `2 vQ `4

`1 t`2 vQ `3 t`4

`1 vQ `2 `2 vQ `3

`1 vQ `3

`≡Q `t` `1 t`2 ≡Q `2 t`1 `1 t (`2 t`3) ≡Q (`1 t`2)t`3

`1 ≡Q `2

`1 vQ `2

`1 ≡Q `2

`2 vQ `1

`1 vQ `2 `2 vQ `1

`1 ≡Q `2

Figure 6.1: Rules for label order equality (repeated)

The solution is not obvious from the rules for label order and label equalities defined
in Section 3.2 on page 33. For reference, they are presented here again in Figure 6.1.
It is difficult to follow the rules in a bottom-up fashion to determine whether a given
label order is justified, because the rules are not syntax-directed: for one thing, it is
not always clear which rule to apply; for another thing, the instantiations may be not
unique, for example when the correct label `2 has to be chosen in the transitivity rule.
On the other hand, one cannot generate all possible label order pairs from a given set
Q and check whether the given flow is contained, because the first four rules generate
an infinite set of such pairs for arbitrary syntactic labels ` ∈ Lab.

Fortunately, many of the rules are in fact independent of the constraint set Q. For
example, the first four rules describe basic lattice properties, and the label equality
rules in the third row describe the properties of the least upper bound operator t.
The rules which do depend on Q, in contrast, can be used to generate a hull of Q that
remains finite. The solution is thus to split the inference into two parts.

To simplify the algorithm, all labels that occur during the inference are first trans-
formed into a normalized, canonical form. For this, I take the algebraic definition of a
complete semi-lattice, which is given by the following equations:

`1 t`2 = `2 t`1 (commutativity)
(`1 t`2)t`3 = `1 t (`2 t`3) (associativity)

`t` = ` (idempotence)
`t⊥ = ` (neutral element)
`t> = > (top element)

The label normalization algorithm essentially understands these rules as left-to-
right rewrite rules. Each label is treated as a list of operator-free atomic labels that are
connected by the least upper bound operator t. A label is normalized by ordering all its
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atomic labels with respect to some fixed and previously defined order on atomic labels,
by removing duplicate atomic labels, by removing the atomic label ⊥, by removing all
other atomic labels if the entire label contains >, and by structuring the least upper
bound list right-associatively.

The following rule expresses the correspondence between the algebraic definition
of a lattice to its definition as a partially ordered set:

`1 t`2 = `2

`1 vB `2

It can be shown that the defined relations are derivable in the original system.

Lemma 6.1 The relations = and vB are sound with respect to the label equality and
label order relation over an empty constraint set:

1. `1 vB `2 ⇒ `1 v; `2 and

2. `1 = `2 ⇒ `1 ≡; `2.

It turns out that two labels are equal with respect to ≡; if they are structurally
equal. Also, the rule above conveniently links the label normalization algorithm to
the inference of arbitrary tautologies, that is, label order judgements over an empty
constraint set.

PROOF The second implication follows from the definitions. All equalities shown above
can be derived as label equalities ≡; in the original rules. This fact can be used in the
first implication: we get `1 t`2 ≡; `2, thus we can derive `1 t`2 v; `2. Together with
`1 v; `1 t`2, we get by the transitivity rule `1 v; `2. �

I define another relation vH
Q using the rules that do depend on Q. They only generate

order information for labels that are in Q. In the algorithm, all labels generated by the
rules are immediately normalized. This way, the number of derived vH judgements
is always finite, and can be used in the implementation to precompute a closure or
“hull”.

(`1,`2) ∈Q

`1 vH
Q `2

`1 vH
Q `3 `2 vH

Q `4

`1 t`2 vH
Q `3 t`4

`1 vH
Q `2 `2 vB `′2 `′2 vH

Q `3

`1 vH
Q `3

Finally, the relation vA
Q is defined in terms of vH

Q and vB to determine whether a
given flow follows from a constraint set Q:

`1 vB `2

`1 vA
Q `2

`1 vB `2 `2 vH
Q `3 `3 vB `4

`1 vA
Q `4
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I use this relation in the algorithmic definition of constraint set implication:

Q ⇒A Q ′ if and only if ∀(`1,`2) ∈Q. `1 vA
Q `2

The algorithmic relation vA
Q and the algorithmic constraint set implication are

correct with respect to the label order relation vQ , and the original constraint set
implication. This is formalized in the following lemma.

Lemma 6.2 The algorithmic label order and the algorithmic constraint set implication
are correct with respect to their original definitions, that is,

1. If `1 vA
Q `2 then `1 vQ `2.

2. If Q ⇒A Q ′ then Q ⇒ Q ′.

PROOF For the first implication, it is easy to see that all the rules above can be derived
from the original rules, if one takes into account Lemma 6.1. The second implica-
tion follows from the first one and the definition of the original and the algorithmic
constraint set implication. �

6.2 Algorithmic Version of the High-Level Type System

The goal of the implementation is to automatically determine whether a given DSD
program is well-typed. For this, a type derivation for each method body that fits the
method signature has to be found. A common practice for the type inference algorithm
is to present the type system in an algorithmic form, from which a type inference
algorithm can be directly “read off”. The advantage is that the correctness of the rules
of the algorithmic type system (and thus of the inference algorithm) is easy to justify
— one only needs to show that the algorithmic rules are derivable in the original type
system.

In fact, the separation of the typability specification from the inference is one of
the strong points of type systems. This way, implementation aspects such as internal
representations and efficiency considerations can be factored out, such that the pre-
sentation of the analysis can be modularized, and the proofs of correctness and other
properties can be simplified.

Algorithmic type system The algorithmic version of the high-level type system is
syntax-directed and derives statements of the form

Γ, pc `A {Q} S {Q ′}.

The algorithmic typing rules are shown in Figure 6.2 on the facing page. For better
clarity, I write (`1v`2) instead of (`1,`2) for a label pair in a constraint set Q to underline
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6.2 Algorithmic Version of the High-Level Type System

TA-SKIP
Γ, pc `A {Q} skip {Q}

TA-SEQ
Γ, pc `A {Q ′} S2 {Q} Γ, pc `A {Q ′′} S1 {Q ′}

Γ, pc `A {Q ′′} S1 ; S2 {Q}

TA-WHILE1
Γ` e : ` Γ, pc t` `A {Q ′} S {Q} Q ⇒A Q ′

Γ, pc `A {Q} while e do S {Q}

TA-WHILE2

Γ` e : ` Γ, pc t` `A {Q ′} S {Q} Q 6⇒A Q ′

Γ, pc `A {Q ′′} while e do S {Q ∪Q ′}

Γ, pc `A {Q ′′} while e do S {Q}

TA-IF
Γ` e : ` Γ, pc t` `A {Q1} S1 {Q} Γ, pc t` `A {Q2} S2 {Q}

Γ, pc `A {Q1 ∪Q2} if e then S1 else S2 {Q}

TA-IFLABEL
Γ` `1 v`2 : ` Γ, pc t` `A {Q1} S1 {Q} Γ, pc t` `A {Q2} S2 {Q}

Γ, pc `A {(Q1\(`1 v`2))∪Q2} if `1 v`2 then S1 else S2 {Q}

TA-ASSIGN
Γ` e : ` x 6∈ pc x 6= xδ

Γ, pc `A {Q[e/x], (`tpc vΓ(x))} x :=e {Q}

TA-PUTF
Γ` π : `1 Γ` e : `2 f 6∈ pc f 6= fδ f 6∈Q[e/π. f ]

Γ, pc `A {Q[e/π. f ], (`1 t`2 tpc vΦπ( f ))} π. f :=e {Q}

TA-NEW

Γ` e : `

fields(C ) = f Φ∗ =Φx [e.1/x. fδ] x 6∈ pc x 6= xδ x 6∈Q[e/x. f ]

Γ, pc `A {Q[e/x. f ], (`vΦ∗( f )), (pc vΓ(x))} x :=new C (e) {Q}

TA-CALL

msig(m) = [Γm , pcm ,Qm ,Q ′
m]

margs(m) = x Γ` π : `r Γ` e : ` Γ∗ = Γm[e.1/xδ]

Q ′ = {`r vΓ∗(this), `vΓ∗(x), pc vpcm[e/x][π/this]}
Q ′′ = (Q\Q ′

m[x/ret]) ∪ (Γ∗(ret)tpc vΓ(x))
x 6∈ pc,Q ′′ ∀ f . f 6= fδ ⇒ f 6∈ pc,Q ′′ x 6= xδ

Γ, pc `A {Qm[e/x][π/this]∪Q ′∪Q ′′} x :=π.m(e) {Q}

Figure 6.2: Algorithmic version of the high-level type system
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that it is a label flow predicate. There are a number of differences from the original
system:

• The weakening rule is built into the system where it is needed. In particular, at
control flow branching points, the union of the different preconditions is taken
as the overall precondition.

• There are two rules for while, TA-WHILE1 and TA-WHILE2 which together com-
pute a least fixed point of the preconditions. Depending on whether Q ⇒A Q ′,
only one of the two rules fires.

• The side conditions needed for assignments are directly added to the precondi-
tion set.

• In the rule TA-IFLABEL for label tests “removes” the label test from the precondi-
tion of the first branch. This is defined syntactically as

Q\Q ′ =Q \ {(`1,`2) ∈Q | `′1 vA
Q ′ `

′
2}

and will be explained later.

• Likewise, the rule TA-CALL “removes” all information from the postcondition
that does not follow from the postcondition of the called method.

Note that the algorithmic type system uses the normal typing rules for expressions
to judgements of the form Γ ` e : `, because they are already in a syntax-directed
form.

Inference algorithm The rules suggest an algorithm A that computes constraint sets
in a backwards fashion, similar to the computation of weakest (liberal) preconditions
in predicate transformer semantics [Dij75], which can be seen as an algorithmic refor-
mulation of Hoare logic. Given a type environment, a program counter label, a DSD
statement, and a postcondition, the algorithm returns the matching precondition:

A(Γ, pc,S,Qpost ) =Qpr e

such that
Γ, pc `A {Qpr e } S {Qpost }

can be derived. The premises are processed from left to right. Each statement typing
relation in a premise corresponds to the application of the algorithm to the respective
subgoal. A syntactic side condition like x 6∈ pc is considered as an assertion in the
algorithm; the algorithm fails if the condition cannot be satisfied. An expression typing
relation Γ` e : ` corresponds to a subalgorithm that computes the label of the expres-
sion e, exploiting the fact that the expression typing rules are syntax-directed. Finally,
the entire algorithm checks that all methods are well-typed — that is, for all methods m
such that msig(m) = [Γ, pc,Q,Q ′], it checks that Q ⇒A A(Γ, pc,mbody(m),Q ′).
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Soundness The algorithmic typing rules are sound with respect to the original typing
rules presented in Section 3.4 on page 39, so that whenever Γ, pc `A {Q} S {Q ′} can
be derived in the system presented here, then Γ, pc ` {Q} S {Q ′} can also be derived
from the original system.

Lemma 6.3 If Γ, pc `A {Q} S {Q ′}, then Γ, pc ` {Q} S {Q ′}.

PROOF The lemma is shown inductively over the structure of Γ, pc `A {Q} S {Q ′}.
Instead of the full proof, I describe the general proof pattern for each form of S.

As the judgements are syntax-directed, one can determine the algorithmic rule
used for S and read off the premises. We get Γ, pc ` {Q} S {Q ′} by applying the
corresponding rule of the original type system, but first, the premises have to be put
into the appropriate form. There are three kinds of premises in the original system:

1. Statement typing judgements: we observe that we already have the correspond-
ing algorithmic typing judgements, thus we can apply the lemma inductively. In
most cases, the subsumption rule T-WEAK is then applied to the result to weaken
the precondition appropriately.

2. For label order requirements of the form `1 vQ ′ `2, we can directly assume Q ′

to be the set of label order preconditions given in the algorithmic typing rule,
which are identical to the required flows.

3. All other premises are already present in the rule for the algorithmic type system.
For the algorithmic constraint set implication in TA-WHILE1, the original form
follows from Lemma 6.2 on page 86.

The only (minor) difficulty is caused by the syntactic “removal” of flow information
from a constraint set used in TA-IFLABEL and TA-CALL. By definition, however, it can
be shown that Q\Q ′∪Q ′ ⇒A Q.

To get the premise for S1 in T-IFLABEL in the correct form, we can thus trans-
form its precondition Q1 using T-WEAK with the fact Q1\(`1 v`2)∪Q2 ∪ (`1 v`2) ⇒A

Q1\(`1 v`2)∪ (`1 v`2) ⇒A Q1. Likewise, T-CALL gives us Q ′′∪Qm[x/ret] as the post-
condition of the entire call. With two applications of T-WEAK, this can be transformed
to Q using the fact Q ′′∪Qm[x/ret] = (Q\Q ′

m[x/ret])∪(Γ∗(ret)tpcvΓ(x))∪Qm[x/ret] ⇒
Q\Qm[x/ret]∪Qm[x/ret] ⇒A Q. �

Remarks on the relation to the weakest precondition calculus By means of the con-
straint set preconditions defined in the rules TA-IF and TA-IFLABEL, I will now explain
how the algorithmic rules relate to predicate transformer semantics [Dij75], and de-
scribe the limits of the expressivity of constraint sets. The weakest precondition of a
conditional statement is computed as follows:

w p(if e then S1 else S2,R) = (e → w p(S1,R)) ∧ (¬e → w p(S2,R))
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Constraint sets represent only conjunctive and positive label order predicates. Other
types of expressions e, as well as negations and implications cannot be expressed in a
constraint set. Therefore, the algorithmic type system infers a stronger precondition
as follows. Let us treat Q as a postcondition in the calculus, and say that Q1 corre-
sponds to w p(S1,Q), and Q2 corresponds to w p(S2,Q). The union of two constraint
sets corresponds to a logical conjunction of predicates. The precondition of ordinary
conditionals implies the one computed by the weakest precondition calculus:

Q1 ∪Q2 ' w p(S1,Q) ∧ w p(S2,Q)
⇒ (e → w p(S1,Q)) ∧ (¬e → w p(S2,Q))
= w p(if e then S1 else S2,Q)

For the label test rule, the algorithmic type system can derive a better (i.e., weaker)
precondition. Let Q1 = {q1, q2, . . .}, such that each qi is a flow expression `v`′, and
let I = {1, . . . , |Q1|}. As a predicate, Q1 thus corresponds to

∧
i∈I qi . We have previously

defined Q1\(`1 v`2) =Q1 \ {(`,`′) ∈Q1 | `v{`1v`2} `
′}. As a predicate, this corresponds

to
Q1 \ {(`,`′) ∈Q1 | `v{`1v`2} `

′} ' ∧
i∈I {qi | ¬((`1 v`2) → qi )}

= ∧
i∈I ¬((`1 v`2) → qi ) → qi

= ∧
i∈I ((`1 v`2) ∧ ¬qi ) → qi

= ∧
i∈I ((`1 v`2) → qi )

= (`1 v`2) →∧
i∈I qi

= (`1 v`2) → w p(S1,Q)

The precondition of label test statements is thus strictly stronger than the one derivable
in the weakest precondition calculus:

Q1\(`1 v`2)∪Q2 ' (`1 v`2 → w p(S1,R)) ∧ w p(S2,R)
⇒ (`1 v`2 → w p(S1,R)) ∧ (¬(`1 v`2) → w p(S2,R))
= w p(if `1 v`2 then S1 else S2,R)

6.3 Type Inference for the Intermediate Representation

The type system for the intermediate representation is turned into two sets of algorith-
mic typing rules for all instructions. The first set defines an algorithm that computes all
pc and ∆ type annotations in a “forward” fashion; the second set uses this information
to compute constraint sets Q in a “backward” way.

More precisely, the algorithm verifies the well-typedness of a method m by finding
a suitable type mapping according to the requirements of the well-typedness Defini-
tion 5.9 on page 79. Let m be a method such that msig(m) = (Γ, pc,Q,Q ′).
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1. A control flow graph of the method is computed, such that two instructions i

and i ′ are linked whenever (m, i )
I7−→ (m, i ′).

2. Starting from the initial node mentry(m), the type information pc , and an empty
∆ stack, the information pc and ∆ is computed recursively for all nodes. This
information can be directly derived according to the typing rules in Section 5.4
on page 75.

3. Starting from the final node mexit(m) and the postcondition Q ′, the precondi-
tion information is recursively computed for all nodes. For the nontrivial cases
(assignment sequences and conditionals), the precondition is computed in the
same way as in the algorithmic high-level type system in Figure 6.2 on page 87.
This second phase relies on the information derived in the first phase.

4. It is checked that at the address mexit(m), the derived pc label is equal to the
pc label declared in the signature, and that ∆ is empty. Likewise, the derived
precondition for the address mentry(m) must be implied by the set Q declared
in the signature.

If the algorithm can derive a type mapping for each method, then the IR program is
well-typed.

6.4 Implementation

I have developed a prototype implementation of the verification framework. The
implementation is a single program called dsdtool, consisting of 4822 lines of OCaml
code. The sources can be downloaded from my homepage [Gra11]. The tool combines
all of the languages and type systems presented in this thesis, and processes a given
DSD program in the following stages:

DSD Source Code Representation and Parser I have invented a concrete syntax for
DSD programs, which resembles actual Java programs with class declarations
and other syntactic structure (explained below). The parser reads the program
from a file, and transforms it into a DSD program specification PDSD as defined in
Section 2.1 on page 15, checking all well-formedness conditions. I have generated
the DSD parser with the ocfg parser generator, which is part of the fjavac

project, a Java compiler by Stephen Tse and Steve Zdancewic [TZ06] written in
OCaml.

DSD Type Inference After a program has been transformed into a DSD program spec-
ification, it is type checked as described earlier in this chapter (see Section 6.2 on
page 86). The type checking phase essentially annotates the abstract syntax tree
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with type information. If the type checking fails, the tool prints an informative
error message.

DSD Program Interpreter For testing purposes, a simple interpreter is implemented
to execute DSD programs. The interpreter expects an entry-point method with
the name main, which is executed on an empty heap using default values for
the program arguments. The return value of the main method is shown as the
output value of the program.

Bytecode Compiler This step is a direct implementation of the compile(PDSD) func-
tion presented in Section 4.2 on page 56, which compiles the DSD program into
a bytecode program PBC.

Bytecode Interpreter Another interpreter is used to run the bytecode program, with
the main method as the entry point. Again, the return value of the main method
is output.

Translation to Intermediate Representation The BC2IR algorithm to translate the
bytecode program to IR code is implemented as presented in Section 5.3 on
page 70.

IR Type Inference The IR program is type checked as presented above in Section 6.3
on page 90. The algorithm prints an error message if type checking fails. However,
this does not happen for IR programs derived from DSD high-level programs
due to the type preservation result (see Section 5.5 on page 80).

IR Interpreter For testing purposes, yet another interpreter is used to execute the
IR program. As shown by the semantics preservation result in Section 5.3.3
on page 75, the execution always leads to the exact same return value as the
bytecode execution.

The implementation is meant to be a proof of concept, and shows that it is indeed
feasible to perform a verification as described in this thesis. With a functional language
like OCaml, I was able to implement the languages, the interpreters, and the type infer-
ences very closely according to the language definitions, semantics, and algorithmic
typing rules, respectively.

One of the design goals of the software was code readability. I have not taken any
particular care in terms of optimizing the code for efficiency and speed. However,
performance is not an issue for the small example programs with which I have tested
the tool, each of them consisting of less than 100 lines of DSD code.
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class Buffer {
fdelta : BOT;
contents : FDELTA ;

[ this. fdelta ~> xdelta ] // precondition
(BOT) // pc label
BOT read( xdelta : BOT) : XDELTA { // types of this , arguments , ret

ret := this. contents ; // sample implementation
}
[ ] // postcondition

[ xdelta ~> this. fdelta ]
(BOT)
BOT write( xdelta : BOT , s: XDELTA ) : BOT {

this. contents := s;
ret := 0;

}
[ ]

}

class Main {
fdelta : BOT;

[ xdelta ~> file.fdelta , file. fdelta ~> xdelta ]
(BOT)
BOT sendFile ( xdelta : BOT , file: BOT , srv: BOT , tmp: XDELTA ) : BOT {

if (file. fdelta ~> srv. fdelta ) then {
tmp := file.read(file. fdelta );
ret := srv.write(file.fdelta , tmp );

}
else {

ret := 0;
}

}
[ ]

[ ]
(BOT) // sample initialization of buffer objects
BOT initAndSend ( xdelta : BOT , f: BOT , s: BOT) : BOT {

f := new Buffer (TOP , 42);
s := new Buffer (BOT , 1234);
ret := this. sendFile (TOP , f, s, 0);
ret := s. contents ;

}
[ ]

[ ]
(BOT) // entry point
BOT main( xdelta : BOT) : BOT {

ret := new Main(BOT );
ret := ret. initAndSend (BOT , 0, 0);

}
[ ]

}

Figure 6.3: Example program in textual representation
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Concrete syntax The concrete syntax of DSD loosely follows well-known conventions
from C, C++, and Java, such as comments starting with ’//’, and execution blocks en-
closed in curly braces { and }. A program contains a list of class declarations, and each
class declaration contains a list of field and method declarations. The code contains
DSD-specific type annotations, namely method signatures (including pre- and post-
conditions) and field types. As mentioned above, the dsdtool translates the program
into a program specification PDSD. Therefore, despite the richer structural information
that is possible in the concrete syntax, the tool makes sure that, for example, two fields
in different classes with the same name are declared with the same field type.

Figure 6.3 shows how the example program from Section 2.2 on page 22 looks in the
concrete syntax. Note how mbody(sendFile) can be written directly in the concrete
syntax (the operator ~> is the textual representation of the v operator). In the example
program, I have actually specified a bit more to make the program executable. The
buffer operations are implemented using a simple contents field. Also, there is a
sample environment that is explicitly created: a file buffer initialized with contents 42
of dynamic domain >, and a server buffer initialized with contents 1234 of dynamic
domain ⊥.

As > and ⊥ evaluate to HIGH and LOW in Sue’s domain lattice from the introduction,
a flow from the file to the server is not allowed. Consequently, the label test sendFile
fails in this configuration, and the server contents is not overwritten. In contrast, >
and ⊥ both evaluate to DEF in Dave’s domain lattice, thus the flow is allowed and the
server contents is overwritten with 42. The contents field of the server is simply handed
back to the main method and returned as the ret value, which is output by the DSD
interpreter of the dsdtool. Thus, depending on the security environment, the program
has the result 42 or 1234.

Usage The tool is simply run by providing the name of the DSD (high-level) source
file as an argument. Alternatively, there is a small graphical front-end in Java, shown in
Figure 6.4 on the facing page. The front-end enables an easier testing of programs. It
lets the programmer edit a DSD program (upper part of the window), which is sent to
dsdtool by pressing the “Analyze” button. For a better overview, the different parts
of the output, representing the compilation and verification stages, are presented in
different tabs.

94



6.4 Implementation

Figure 6.4: Screenshot of the dsdtool graphical frontend
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7
Related Work

As mentioned in the introduction, the presented verification framework for universal
noninterference is based on a number of previous works in the research field. In this
chapter, I present and compare related language-based approaches, and explain to
what extend they have influenced the DSD framework. I concentrate on those works
that are most relevant to the thesis; a more complete and general overview of the field
of language-based information flow security can be found in a survey paper [SM03].

7.1 Static Language-Based Information Flow Analysis

First static program analyses for secure information flow have been developed by Den-
ning and Denning [DD77] and by Andrews and Reitman [AR80] for simple imperative
WHILE languages. They classify program variables according to their security level,
and automatically verify whether a given program does not leak information from
higher to lower security levels.

However, it was not until the mid-1990s when the field saw a major increase in
interest. A main reason was the information flow type system by Volpano, Smith, and
Irvine [VSI96], who not only gave a natural type-based view on the Denning-style
analysis, but also connected it to an extensional security property that was defined in
terms of the semantics of a standard imperative WHILE language. More precisely, a
program P is considered secure if

∀s, s′, t , t ′. s,P ⇓ s′ ∧ t ,P ⇓ t ′ ∧ s =L t ⇒ s′ =L t ′
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where s, s′, t , t ′ are program states, the =L relation denotes the equality on all “low”
variables, and s,P ⇓ t stands for the execution of the program. This definition is a
natural extension of the Strong Dependency property developed by Cohen [Coh77].
The work by Volpano et al. led to a large number of other type-based approaches.

Type-based analyses Numerous works examined ways to extend the type system to
other, more expressive languages. Banerjee and Naumann [BN05] presented an infor-
mation flow type system for object-oriented languages with heaps, and parametrized
the equivalence relation in the security property with bijections to account for different
allocations of objects in the two executions of the program, an approach I have reused
in this thesis.

A number of functional languages have been extended with mechanisms for secure
information flows. The most prominent examples are the SLam calculus [HR98], which
extends a typed λ-calculus, and CoreML2 [PS02], which provides information flow
inference for a core ML language. The latter work evolved into a complete implemen-
tation called Flow Caml [Sim03], an extension of the Objective Caml language with a
type system tracing information flow.

Due to incompleteness, there are always secure programs that are not typable.
To increase the precision of the analysis and thus reduce the number of such “false
negatives”, Hunt and Sands have presented a flow-sensitive version of the Volpano-
Smith type system [HS06; HS11], where the analysis follows the program flow, and
updates the security type (classification) of a variable when it is assigned with data of a
different security type. For example, when a “high” variable is assigned a “low” value,
then the variable is considered “low” after the update, which permits the verification
of a larger range of programs.

Due to aliasing, the flow-sensitive approach does not easily transfer to types of
fields used in object-oriented languages. In order to safely update a field type at a field
assignment, one would need to make sure that the field type information is updated for
all references to that object, and for no other references. Statically tracking references
to an object requires some form of pointer analysis techniques, for example a region
type system [BGH10]. Since such pointer analyses are only indirectly related to secure
information flows, the type system presented here is flow-insensitive.

Program logics for secure information flows Program logics are in general more
precise than type systems. A special challenge for the logic-based verification of non-
interference is that it is formulated as a 2-safety property: the property talks about
two executions of the program, which does not fit existing verification techniques that
usually verify 1-safety properties.

Several relational logics have been developed that can relate the two initial and
the two final states of both executions. Those include a relational logic for WHILE
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languages [Ben04], for languages with heaps [Yan07], and for languages with ob-
jects [ABB06]. In comparison to type systems, the relations directly express equalities
between related program states, thus the analyses do not necessarily depend on a
given security lattice.

Alternatively, noninterference has been reformulated as a program property called
self-composition [BDR04], which is based on a single execution of the program P ;P ′,
where P ′ is a modification of P that operates on copies of the original variables. The idea
has been refined by Terauchi and Aiken [TA05], such that program modifications only
have to be applied to subprograms of P , which greatly simplifies the verification for au-
tomatic analyses. The self-composition approach has been embedded into a dynamic
logic for Java programs [DHS05] as well as into a VDM-style program logic [BH07].

An existing program logic can also increase the precision of a type system. Indeed,
the pre- and post-predicates for constraint sets used in the type systems of this thesis
are based on classic (unary) program logics: the axiomatic definition of constraint sets
a derived from Hoare logic [Hoa69], while their algorithmic inference is a simplified
form of the weakest precondition calculus [Dij75].

7.2 Static Analysis of Privacy-Aware Software

All the above works assume a fixed assignment of security levels to variables, fields, or
other data objects, as well as a given information flow policy. The static analyses are
then presented with respect to the previously defined levels and policies.

Prior to this thesis, several approaches have been proposed to account for dynamic
security environments, and privacy-aware software. Among the most notable works
is Jif (“Java with Information Flow”) by Andrew Myers [Mye99]. The Jif language is
a superset of Java, where Java objects and variables can be annotated with “labels”,
which are an extended version of security levels. The Jif project includes an extensive
information flow type system, and a fully implemented type inference. To date, Jif
constitutes the most comprehensive implementation of an information-flow–secure
language.

Similar to DSD, the Jif language includes a runtime representation of labels and
the security policy which can be queried by a conditional, as shown by the following
example from the Jif reference manual [Cho+06]:

if (L1 <= L2) { ... } else { ... }

The typing rule for such an if-label conditional resembles the corresponding label test
rule in the DSD type system.

The development of the Jif language is steered by actual software examples, that is,
the researchers aim to incorporate high-level information flow requirements into the
language and the type system. On the other hand, less focus is put on the semantic
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formalization of the security property that the type system is intended to verify. Conse-
quently, there is no proof of correctness for the type system yet, although it should be
added that the typing rules look reasonable and no obviously unintuitive behaviour
has been found so far.

While there exists no soundness proof for the entire type system, the specific frag-
ment of dynamic security labels and runtime inspections has been formalized by
Lantian Zheng and Andrew Myers in a functional language called λDSec [ZM07]. The
language features security labels as first-class values. Dependent pair and function
types can be used to type arbitrary data and function arguments with a security label
value. The authors give a precise security notion, and provide a soundness result for
their type-based analysis.

The λDSec language strongly influenced the development of DSD. Indeed, DSD
extends standard information flow concepts in object-oriented languages towards
dynamic domains as featured in λDSec. A number of additional features such as higher-
order functions and heaps make λDSec even more expressive than my language.

I have not fully followed the Jif and λDSec approaches in this thesis for two reasons:
first, I wanted to formalize a soundness result for a Java-like language. As there does
not exist a formal connection between the functional language λDSec to the Java-like
language Jif, the soundness results for λDSec cannot be readily applied to Jif. Second,
and more important, the translation to bytecode has neither been examined for Jif
nor λDSec, and it would be very hard to do so. The Jif compiler is implemented by a
transformation of Jif code to plain Java source code. This code may include calls to the
Jif runtime library to handle dynamic flow checks, runtime representations of security
labels, and others. The Java code is in turn compiled to JVM bytecode by a standard
Java compiler. It is difficult to precisely pinpoint the end-to-end guarantee of compiled
code, that is, the exact effect of the two compilers and the runtime system on the
user-specified security policy.

Bandhakavi, Winsborough, and Winslett have developed the imperative language
RTI [BWW08], which stands for Role-based Trust management for Information flow. In
the RTI language, data are statically associated with roles (sets of principals), which
may be queried at runtime to ensure that data flow securely. More recently, Broberg and
Sands have proposed Paralocks [BS10], a mechanism where the security roles of data
may depend on the state of parametrized flow locks, which are boolean values that are
part of the program state. They have presented a functional language with a construct
to inspect these locks at runtime. Both works include a type-based information flow
analysis, with rules for the role or lock inspection that are similar to the T-IFLABEL rule
of DSD.

Nevertheless, there are a number of conceptional differences to the DSD approach.
Roles in RTI and locks in Paralocks allow for more expressive security policies. However,
they cannot be passed around in the language; instead, RTI and Paralocks extend
a standard language with special language syntax and semantics for role and lock
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operations, respectively. In contrast, DSD is a rather modest extension to a standard
object-oriented language, with security domains as first-class values. This also enables
a straight-forward translation to a standard bytecode language. Most important, how-
ever, is that the notion of “dynamic” security environments in Paralocks and RTI differs
from this thesis: there, the focus lies on security environments that can be updated
dynamically at runtime, possibly causing a declassification of data. (Indeed, the major
purpose of roles is to provide a controlled way of declassification simply by adding a
principal to a specific role.) The type system is defined with respect to a given initial
policy and a set of principals, and then statically tracks and approximates the runtime
changes to the security environment. In contrast, a DSD program is executed with
respect to a security environment that is fixed for each particular execution; the type
system analyses the program abstractly and gives a proof that the program is secure
for any environment (domain values and policies) that may occur.

Finally, our own previous works [Gra08; GB09] have laid the foundations for a type-
based analysis of privacy-aware programs. While most of the high-level DSD language
has already been present in these papers, there has not been a proper parametrization
of the security policy in the definition of noninterference, and the verification of DSD
bytecode programs has only been outlined.

In summary, all the presented approaches tackle aspects of dynamic information
flow security in expressive and sophisticated ways. However, they are in my opinion
not directly applicable to the mobile code scenario, as they are all defined on the source
code level only, and there is no translation given for an analysis on a lower level. Indeed,
many of these works require a domain-specific language or larger extensions to the
syntax, which makes it harder to build on existing techniques for the compilation to
JVM-like bytecode and the subsequent information flow analysis for bytecode.

7.3 Bytecode Information Flow Analysis

A first information flow type system for an unstructured bytecode language has been
presented by Kobayashi and Shirane [KS02]. They applied ideas from the field of Typed
Assembly Languages [Mor+99] to information flow security. Bytecode languages are
usually defined using a small-step semantics, hence the type system assigns typing
information to each instruction address. Semantically, noninterference is defined
in terms of a bisimulation: two bytecode executions continually need to reach low-
equivalent program states at corresponding instruction addresses. (This is in contrast
to the Volpano-Smith system, where the typing judgements and their interpretations
refer to entire program statements.)

Following Kobayashi and Shirane, a number of similar approaches have been de-
veloped which handle more advanced language features. In particular, the MOBIUS
project [Bar+06] has examined the type-based certification of bytecode for information
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flows, as presented in the works by Gilles Barthe et al. [BPR07; BR05]. Additionally, the
authors have presented a compilation from a fragment of Java that preserves security
types [BRN06]. This research had a large influence on the bytecode language and the
type-preserving compilation presented in this thesis.

To handle indirect information flows with the pc level correctly, these type systems
rely on a computation of control dependence regions [Bal93] to determine the parts
of the code that are governed by a conditional branching instruction. The soundness
result for the type system relies on the correctness of the computed control dependence
regions, expressed in form of safe over-approximation properties. In contrast, the typed
assembly language SIF by Medel, Compagnoni, and Bonelli [MCB05] includes pseudo-
instructions that are used as control dependence markers. Here, the correctness of
these region markers can be directly checked by the type system. My low-level type
system uses this latter approach with small modifications.

Beyond type systems, relational program logics for bytecode programs have been
used to analyse information flow security in a more precise manner. An example are
Lennart Beringer’s Relational Shape Descriptions [Ber10], which provide an expressive
way to describe correspondences between two related program states, such that fine-
grained noninterference properties can be expressed. Additionally, the proof rules
place no restrictions on the control flow structure of the program.

In the MOBIUS project, information flow type systems and logics have been ex-
pressed in a generic bytecode logic, such that one can build on a general framework for
proof-carrying code (PCC) [Nec97]. In this thesis, I have followed the PCC paradigm,
although the proof certificates are much simpler and require a larger trusted comput-
ing base: the certificates are just the type derivations, and the code consumer must
trust the correctness of the soundness proof and the type checker.

In the presence of symbolic expressions in the analysis, such as used for the con-
straint sets here, it becomes rather cumbersome to define a type system on the byte-
code level. For this reason, I have chosen a simplified version of the approach by
Demange, Jensen, and Pichardie [DJP10] where a bytecode language is “disassem-
bled” into an intermediate representation, which, among others, eases the symbolic
reasoning required for DSD.

To my knowledge, this thesis presents the first definition of a privacy-aware bytecode
language that contains constructs for inspecting the security environment. Further-
more, it is the first application of the stackless intermediate representation by Demange
et al. to verify information flow security properties of bytecode programs.
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7.4 Other Previous Work

In the remainder of this chapter, I give an overview of research that is in some way
related to the DSD approach, but which differs in a fundamental way such that I have
not pursued them in this thesis.

Runtime enforcement of information flow policies Instead of statically showing
that a program respects any security environment in which it is eventually executed,
one could also aim to ensure this behaviour directly at runtime, a technique also
sometimes called “taint checking”. As explained in the introduction, it is not possible
to safely detect all violations against a security policy at runtime given an arbitrary
program, because an indirect flow of information may occur when a control flow path
is taken in which a certain action is not performed.

To address this problem, hybrid techniques have been proposed, where a program
is first statically verified by a light-weight analysis which ensures that the program is in
a form suitable for dynamic monitoring. In the functional language λdeps+ [SST07], all
values are explicitly paired with their security domains, such that an external monitor
program may throw invalid flow exceptions as required. Another intriguing attempt is
to modify the bytecode prior to execution in a way that even indirect flows are always
detected by a purely dynamic monitoring mechanism. This approach is taken by the
RIFLE framework [Vac+04].

A runtime monitor requires larger changes to the execution environment, and also
needs to be included into the static security guarantee given by the code producer.
Apart from the runtime overhead that arises from constantly checking information
flows, a formal security guarantee also needs to include the correctness of the monitor.

Concurrent programs Concurrently-running programs that operate on the same
shared data at runtime are an entire challenge on its own for information flow analysis.
The problem is that compositionality cannot be preserved in general: the parallel
execution of two secure programs may cause insecure information flows. The problem
has been addressed in various ways; usually, the amount of parallelism is restricted in
some form, for example by assuming certain scheduler properties, or by employing a
specific synchronization mechanism (see e.g. [MS01; MSS11; SS00]). In any case, an
information flow analysis for concurrent programs requires a more detailed execution
model to talk about program configurations that may occur during the execution of
the program. In contrast, it is sufficient for the verification of universal noninterference
to define DSD in terms of a simple big-step semantics.

Termination-sensitivity and timing leaks The notion of universal noninterference
defined in this thesis is termination-insensitive, as it only considers executions that
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terminate eventually. This implies that programs that loop forever are trivially secure
according to the definition. However, the termination behaviour itself is a covert
channel that could depend on secret data and thus leak information, which could be
exploited by running the program repeatedly [Ask+08]. More generally, termination
leaks can be seen as a special case of timing leaks, where the observable execution
time of a program or a subroutine depends on confidential data.

A definition of noninterference that is based on a bisimulation relation between the
two executions can be used to verify that the termination or timing behaviour is the
same in both states. As such bisimulations are standard for the analysis of concurrent
programs, many of the works mentioned above [MS01; SS00] also provide an analysis
of termination-sensitive or timing-based noninterference.

In general, a bisimulation-based security definition restricts the number of secure
programs in contrast to an end-to-end property, since programs need to behave ob-
servationally equivalent during the entire execution, at least at specific control points.
The advantage is not only that covert information leaks caused by timing or termina-
tion can be detected, but also that infinite execution traces can be analysed, so that
programs that are meant to run forever can be certified for noninterference.

Declassification An important advancement of the definition of noninterference is
declassification, which originates from the observation that the classic security notion
is too restricted for practical purposes. In certain situations, it should be allowed to
“violate” the information flow policy in a controlled fashion. One typical example is a
password input prompt, which at minimum reveals whether an input string is equal
to the (secret) password, thus leaking one bit of information about the secret. To
express that this declassification of private information is acceptable in this specific
example, a more relaxed security definition is required. This is a challenging quest,
because declassification exceptions should be easy to define, but they should not be too
permissive. As a result, a large number of works on declassification has been published.
The approaches have been broadly classified according to the circumstances under
which declassification is permitted [MS04; SS05]: among others, it may depend on the
kind of information (“what”), the execution point (“where”), or the authority of a user
(“who”). Examples for these three dimensions can be found in the type-based analyses
[LZ05], [AB05], and [MSZ04], respectively, and there are many more approaches that
account for multiple dimensions (e.g. [BNR07; MR07]).

Note that in most cases, a declassification policy cannot be defined as an end-to-
end property, but instead requires some program execution model to precisely talk
about situations at runtime when declassification is acceptable. Such a model may
already be present when concurrent programs are to be verified, thus the analysis of
declassification and of concurrency may benefit from each other.
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Fine-grained label models Jif, RTI, and Paralocks all feature a policy model with
complex labels that are more expressive than the simple domain lattices of DSD. Apart
from the increased expressivity, each principal may define the information flow policy
for the data he or she owns. This is in contrast to DSD policy lattices, which are meant
to be defined by some administrator, for example, the owner of a smartphone. As
long as the policy is fixed for each execution, however, I argue that this difference
does not fundamentally affect the semantics of the ensured security property. In fact,
DSD lattices can be easily expressed in these other label models, and the order on
the fine-grained labels can be compiled into a (possibly exponentially large) lattice of
simple security domains.

Data flow analysis and other language-based techniques Several works build on ex-
isting data and control flow analysis techniques. For example, abstract noninterference
is a technique based on abstract interpretation [GM04] and relies on a PER model
of secure information flow [SS01]. Similarly, data flow analysis has been applied to
bytecode to detect dependencies between private data and public variables [GS05;
Bia+07].

Another approach is an information flow analysis based on program dependence
graphs (PDGs) and appropriate slicing techniques [HS09; HPR88] to precisely deter-
mine the dependencies between variables, values, and control flows. This increased
precision has a number of advantages, for example, the flow of information can be
followed path-sensitively. A common criticism of PDGs is the problematic scalability
to larger programs.

Analyses not based on programming languages All the mentioned works so far are
defined on a programming language level. Beyond that, there are numerous other
works in which information flow properties are defined on a more abstract level. In
fact, noninterference was first examined for systems given as automata [GM82; Rus92].
Other examples include the MAKS toolkit which enables the specification of a large
number of noninterference properties for event systems [Man03], a security process
algebra [FG01], or an extension of UML to define information flow properties [Jür02].

Unfortunately, there seems to be a certain gap between these abstract specifications
of information flow security on the one side, and the corresponding semantic property
on the programming language level on the other side. It requires a lot of (often manual,
application-specific) work to formally define a refinement that preserves the security
property. Nevertheless, it would be interesting to see how existing approaches can be
used for the specification of mobile code with dynamic security domains.
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Preserving the confidentiality of personal information is a highly desirable function
of modern smartphones. In particular, third-party applications may become a risk of
information leakage, be it due to malicious developers or simple programming errors.
With the rising amount of personal data stored on smartphones on the one hand and
smartphone applications on the other hand, the importance of a formal information
flow analysis is greater than ever.

As argued in the introduction, the typical application scenario of mobile software
that is executed on many different devices poses a number of challenges: the security
environment is user-defined, both the code producer and the consumer want a reliable
security assertion, and the software is distributed as bytecode. None of the existing
analyses cover all these aspects.

In this thesis, I have addressed these challenges by a novel verification framework.
I have shown that a moderate extension of standard object-oriented high-level and
bytecode languages enables privacy-aware software that can be executed safely in
arbitrary security environments. I have explained how this universal noninterference
property can be formally and statically verified by type systems for both high-level and
low-level code. Finally, the prototypical implementation demonstrates the practical
suitability of this approach.

This work thus presents an important step to the vision of downloadable mobile
software that is certified for information flow security, and that is thus guaranteed
to respect the security environment defined by the user. Throughout the thesis, I
concentrated on the verification foundations and assumed several simplifications
to convey the key ideas. Turn the vision into reality, two lines of future work can be
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identified: first, how to embed the approach into real-life software architectures and
development frameworks, and second, how to improve the analysis and extend the
notion of universal noninterference to make it more usable for realistic requirements.
In the remainder of this chapter, I therefore give an outlook on these two aspects.

8.1 The DSD Approach in the Real World

The presented verification framework touches various aspects of software development
and distribution processes, thus there are a number of opportunities to integrate the
work presented in this thesis into real-life frameworks.

Extending real programming languages To reduce complexity and avoid issues that
are orthogonal to universal noninterference, the languages presented here are simpli-
fied theoretical toy languages. They cover only the core of full-featured languages like
Java, C#, JVM or MSIL. However, as I opted for object-oriented, imperative languages
instead of a core language with functional objects like Featherweight Java, the DSD
language provides a strict subset of Java or C#. Thus, DSD directly proposes how to
equip these languages with facilities to write universally noninterferent code.

As the required DSD-specific extensions are rather modest, they could alternatively
be provided as a standardized library that implements the runtime representation of
labels and the label test statement. This should also ease the transformation of legacy
code to make it certifiable for flexible information flow requirements.

Software engineering with dynamic domains The encapsulation of data and secu-
rity domains supports a modular software design. In the introductory example, the
caller of the sendFile method does not need to deal with security-related aspects of
sending the file’s contents, at least not if an error recovery mechanism for the else

case is implemented. Alternatively, it is possible to specify security requirements for
subparts of a program by using constraint set annotations in method signatures. I
believe that this makes it possible to specify privacy-aware software on a more abstract
level, for example by extending the UMLsec approach [Jür02] with dynamic security
domains and policies.

Integration into existing development and distribution architectures The DSD-
specific extensions should be integrated into existing mobile software development
and distribution frameworks. For example, the high-level information flow type system
can be run alongside the usual data type system in the programmer’s integrated devel-
opment environment. The maintainers of mobile app distribution platforms, such as
the Android or iOS app store, usually have a suite of verification tools that they apply
to submitted applications anyway; this suite could be extended by the fully automatic
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DSD bytecode verifier. Note that both type-based analyses are then to be performed
with respect to the standardized DSD library.

Already today, mobile software is equipped with a list of access rights and other
security-relevant demands which the software needs to run properly. The user has to
grant these rights to download and install the software. This mechanism can be seen as
a certification: it is guaranteed that the program will not perform other critical actions
that do not occur in the list. This mechanism could be extended to certificates that
state universal noninterference.

Alternatively, existing runtime security mechanisms could be leveraged to include
information flow requests. Currently, for example, the mobile operating system may
request an access permission from the user at runtime when the application tries to
access some resource. Likewise, the label test conditionals could be implemented by
generating a request whether a certain information flow should be granted by the user.

8.2 Towards a More Flexible Framework

In this section, I outline how the core verification framework could be improved to
make it suitable for more application scenarios. This includes combinations with some
related work described in the preceding chapter.

Improved analysis precision Several of the approaches that aim at a type-based
analysis with an increased precision could be adapted to the DSD type system. For
example, one could include a flow-sensitive analysis [HS06; HS11]. A different approach
is to obtain a more exact heap representation by integrating concepts of alias or region
type systems, or even from separation logic [TT97; BGH10; Rey02]. Another idea is
to replace the Hoare-style pre- and postconditions by VDM-style assertions that can
relate the states before and after an execution [BH07].

For an easier integration into an existing security model of an operating system that
is based on user accounts, principals-based labels like the ones used in Jif, RTI or Par-
alocks [Cho+06; BWW08; BS10] could be used. Another way is to enhance information
flow control in DSD with access control mechanisms [BN05].

More general type dependencies One could extend the DSD type environments
to enable additional forms of security types that depend on domain values. As a
straight-forward extension, one could allow multiple domain fields within a class, and
multiple domain variables within a variable environment, which can all be used in the
respective type environments. Another possibility is to allow the type Γ(x) = fδ in the
method signatures, which refers to the fδ field of the object whose method is called, as
illustrated by the introductory security API in Figure 1.3 on page 10.
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The more flexible typing schemes are allowed, however, the more complicated
becomes the definition of state equivalence. For example, if security types may refer
to arbitrary domain fields and variables, such as a field whose type is the value of
an fδ field of a different object, the object equivalence relation cannot be defined on a
local per-object basis anymore. Moreover, it becomes harder to ensure that the typing
rules are monotone and well-founded. For these reasons, I have refrained from these
extensions to the type dependencies.

Updating xδ and fδ The type system prevents updates to xδ variables and fδ fields.
It should be noted, however, an assignment xδ :=` is fine as long as the contents of
xδ before the assignment is lower than the domain it is updated with, that is, the
evaluation of `. The same applies to the fδ field of an object. For example, a public
Buffer object that has the domain LOW in its fδ field could be reclassified at runtime
to become confidential, simply by setting its fδ field to the domain HIGH. Since the
confidentiality level of data is increased, the program stays universally noninterferent.
The type system can check this “upwards” assignment by imposing condition of the
form xδ vQ ` for such updates.

Erasure and declassification in DSD Updating domain fields and variables also en-
ables other security-related operations. For example, information in a Buffer object
can be erased by overwriting the contents field with a harmless value and then setting
fδ to LOW. This scenario is secure, but not typable with the presented type system.

Setting fδ to a lower value without overwriting the contents field amounts to a de-
classification of data. Indeed, the explicit change of security types in form of overwriting
fδ fields resembles the manipulation of flow locks in the paralocks approach [BS10]
(albeit with less syntactic overhead). It should thus be interesting to integrating their
semantic security formalization based on increasing attacker knowledge to find an
appropriate weakening of universal noninterference.

Security polymorphism The universal noninterference property states that a pro-
gram is noninterferent for any values the domain variables xδ and domain fields fδ
have, and for any security policy. It would be interesting to explore other techniques
beyond DSD to express and verify that a program is secure for a larger number of
security environments.

Interestingly, flow-sensitive systems [HS06; Ber10] can be used for this purpose: they
can infer fine-grained dependencies between input and output values, for example,
that the final value of variable y depends on the initial value of variable x. Thus, the
program is secure (at least for variable y) for any concrete security environment that
assigns x a lower security domain than y .
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In general, there are different ways to use generalized types for information flow
security for multiple security environments: DSD and Jif allow a program to adapt its
behaviour according to the required type, while flow-sensitive systems take a standard
program and determine the set of concrete types that can be assigned to it. This
observation supports the idea that there is a connection to the different manifestations
of classic data type polymorphism.

Types derived by flow-sensitive systems loosely correspond to parametric poly-
morphism: They express data dependencies and thus provide a schema that can be
instantiated to concrete security level types, similar to parametric polymorphism,
where universally quantified type schemata can be instantiated to concrete data types.

Privacy-aware programs, in contrast, can execute different code for different se-
curity environments, such that the effective policy can always be respected. There
is a connection to inheritance polymorphism in object-oriented languages, where
dynamic method dispatch can be used to always choose that method implementation
which respects the invariants of the respective dynamic class. The explicit label check
construct in DSD and Jif, however, seem to correspond most closely to intensional
polymorphism with type introspection [HM95], where the type of some data can be
inspected at runtime using a special typecase construct. The static analysis of the
construct can use the refined type information for each case, just as my type system
used the information about the inspected flow in the constraint set of the then branch.

Due to these parallels, it seems a promising approach to elaborate the works in the
field of data type polymorphism, and examine to what extend they can be applied to
type-based information flow analysis. This could provide a starting point to certify
programs for a much wider range of user-defined security settings, including Dave’s
and Sue’s.
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A
Correctness Proof for the High-Level Type

System

This appendix contains the complete soundness proof for the high-level type system. It
is split into two parts: in the first part, the correctness of labels assigned by expression
typing judgements is shown. The second part shows that typable statements are uni-
versally noninterferent; the main correctness theorem for well-typed programs follows
as a corollary.

Unless otherwise noted, the identifiers and indices used in the proofs directly refer
the respective identifiers and indices used in the operational semantics and the typing
rules. Moreover, we simplify notation and ignore the class information of objects. That
is, given a heap h and a location r , h(r ) shall refer directly to the field valuation.

A.1 Expression Typing Soundness

The following lemma states that the expression typing rules are sound, that is, if they
assign to an expression a label whose evaluations in two equivalent states are visible,
then the expression evaluates to indistinguishable values in both states.

Lemma A.1 If Γ ` e : `, then for all states σ = (s,h) and σ′ = (s′,h′), for all partial
bijections β, for all domain lattices ¦ and all domains k ∈ Dom¦ such that `¦ σ∼Γ,k

β
σ′,

if J`K¦σ ≤¦ k and J`K¦σ′ ≤¦ k, then JeK¦σ ∼β JeK¦σ′ .

PROOF By induction over e.
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• e = n or e => or e =⊥. Then e is a constant and JeK¦σ ∼β JeK¦σ′ holds.

• e = x. Then `= Γ(x). With Lemma 3.1 on page 33, we have 〈Γ(x)〉¦s = JΓ(x)K¦σ ≤¦ k,
thus by definition s(x) ∼β s′(x), hence JxK¦σ ∼β JxK¦σ′ .

• e = π. f . Γ ` π : `π and ` =Φπ( f )t`π. Since J`K¦σ ≤¦ k and J`K¦σ′ ≤¦ k, we get
J`πK¦σ ≤¦ k and J`πK¦σ′ ≤¦ k and by induction JπK¦σ ∼β JπK¦σ′ . We define r = JπK¦σ
and r ′ = JπK¦σ′ . From r ∼β r ′ follows `¦ h(r ) ∼k

β
h′(r ′). With Lemma 3.1 on

page 33, we know
〈
Φ( f )

〉¦
r = JΦπ( f )K¦σ, which is lower than k since J`K¦σ ≤¦ k.

With the definition of object equivalence, we have h(r )( f ) ∼β h′(r ′)( f ) and thus
Jπ. f K¦σ ∼β Jπ. f K¦σ′ .

• e = e1 ◦ e2. We have Γ` e1 : `1 and Γ` e2 : `2 and `= `1 t`2. Since J`K¦σ ≤¦ k
and J`K¦σ′ ≤¦ k, the same holds for the sublabels `1 and `2. Therefore, we can
apply the lemma inductively, and get Je1K¦σ ∼β Je1K¦σ′ and Je2K¦σ ∼β Je2K¦σ′ . Since
the language does not feature any pointer operations, we have indeed equalities,
and thus get Je1 ◦e2K¦σ = Je1 ◦e2K¦σ′ , hence JeK¦σ ∼β JeK¦σ′ . �

We now show that the labelling function labelofΓ is monotone and well-founded.

Lemma A.2 If Γ` e : ` and Γ` ` : `′, then `′ v; `.

PROOF By induction over e.

• e = n or e ∈ {>,⊥}. Then `=⊥, hence `′ =⊥. The label order ⊥v; ` follows by
definition.

• e = x. Then ` = Γ(x) ∈ {xδ,>,⊥}, thus `′ ∈ {Γ(xδ),⊥,⊥} = {⊥}. The label order
⊥v; ` follows by definition.

• e =π. f . Then `= labelofΓ(π. f ) =Φπ( f )t labelofΓ(π). It follows

`′ = labelofΓ(Φπ( f )t labelofΓ(π)) = labelofΓ(Φπ( f ))t labelofΓ(labelofΓ(π)).

Since π is a subexpression of e, we can apply the lemma inductively and get
labelofΓ(labelofΓ(π)) v; labelofΓ(π). (*)

We now make a case distinction on Φπ( f ):

– If Φπ( f ) ∈ {⊥,>}, then labelofΓ(Φπ( f )) =⊥.

– If Φπ( f ) =π. fδ, then labelofΓ(Φπ( f )) =⊥t labelofΓ(π).

It follows labelofΓ(Φπ( f )) v; labelofΓ(π). Together with (*), we get `′ v; `.

• e = e1 ◦e2. Then `= `1 t`2 and `′ = `′1 t`′2. By induction `′1 v; `1 and `′2 v; `2,
we get `′ v; `. �
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Lemma A.3 For all expressions e ∈ Exp, there exists an n ∈N such that for all m ≥ n,
labelofm

Γ (e) ≡; ⊥.

PROOF By induction over e. It suffices to show that there exists a number n ∈N such
that labelofn

Γ(e) ≡; ⊥, because all subsequent applications of labelofΓ do not change
the label, due to Γ` ⊥ : ⊥.

• e = n or e ∈ {>,⊥}. Then n = 1, because labelofΓ(e) =⊥.

• e = x: Then n=2, since labelofΓ(x) ∈ {xδ,⊥,>} and labelofΓ(labelofΓ(x)) =⊥.

• e =π. f : By induction, there exist n′ ∈N such that for all m ≥ n′, labelofm
Γ (π) ≡; ⊥.

Let n = n′+1. Then

labelofn
Γ(π. f ) ≡; labelofn′

Γ (labelofΓ(π. f ))

≡; labelofn′
Γ (Φπ( f )t labelofΓ(π))

≡; labelofn′
Γ (Φπ( f ))t labelofΓ(labelofn′

Γ (π))

≡; labelofn′
Γ (Φ( f )[π. fδ/ fδ])t⊥ (by induction)

≡; labelofn′
Γ (Φ( f )[π. fδ/ fδ])

We now make a case distinction over Φ( f ).

– Φ( f ) ∈ {⊥,>}. ThenΦπ( f ) ∈ {>,⊥}, hence by definition labelofn′
Γ (Φ( f )) ≡; ⊥

(because n′ > 1).

– Φ( f ) = fδ. Then

labelofn′
Γ (Φ( f )[π. fδ/ fδ]) ≡; labelofn′

Γ (π. fδ)

≡; labelofn′−1
Γ (labelofΓ(π. fδ))

≡; labelofn′−1
Γ (Φπ( fδ)t labelofΓ(π))

≡; labelofn′−1
Γ (⊥t labelofΓ(π))

≡; labelofn′
Γ (π)

≡; ⊥ (by induction).

• e1 op e2. Then there exist n1,n2 such that by induction labelofni
Γ (ei ) ≡; ⊥ for

i ∈ {1,2}. Let n =max(n1,n2). Then labelofn
Γ(e1 op e2) ≡; ⊥. �

For the soundness proofs of statement typing rules, we need a corollary that follows
directly from meta-label monotonicity (Lemma A.2), well-foundedness (Lemma A.3),
and soundness of expressions (Lemma A.1).

Corollary A.4 If Γ` e : `, then for all statesσ andσ′ and all partial bijections β, for all
domain lattices ¦ and all domains k ∈ Dom¦ such that `¦ σ∼Γ,k

β
σ′, J`K¦σ ≤¦ k implies

J`K¦σ = J`K¦σ′ .
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PROOF By contradiction. Suppose J`K¦σ 6= J`K¦σ′ . Then by definition J`K¦σ 6∼β J`K¦σ′ . (*)
Let Γ ` ` : `′, i.e. labelofΓ(`) = `′. We get with Lemma A.2 that `′ v; `. Since

σ |=¦ ;, we get with the label order soundness theorem 3.3 that J`′K¦σ ≤¦ J`K¦σ ≤¦ k. By
Lemma A.1 and with (*), it must be J`′K¦σ′ 6≤¦ k. We thus get J`′K¦σ 6= J`′K¦σ′ . We can repeat
this argument arbitrarily often and get that for all n, Jlabelofn

Γ(`)K¦σ′ 6≤¦ k. However, this
contradicts Lemma A.3, which says there is some n such that labelofn

Γ(`) = ⊥, i.e.
Jlabelofn

Γ(`)K¦σ′ = k¦
> ≤¦ k. �

A.2 Statement Typing Soundness

We first show properties for single statement executions.

Lemma A.5 Let σ,σ′ be program states, and let ¦ be a domain lattice. Let σ
S−→¦σ′ and

Γ, pc ` {Q} S {Q ′}, and let all methods be well-typed with respect to their signatures.
Then:

1. JpcK¦σ = JpcK¦σ′

2. if σ |=¦ Q, then σ′ |=¦ Q ′.

PROOF We show the two parts separately.

1. By induction over the operational semantics. For T-SKIP, T-IF, T-WHILE, and
sequence statements, the induction hypothesis is used. For all assignment state-
ments, the premises x 6∈ pc and f 6∈ pc ensure that the program counter label
is not changed. For T-CALL, we apply the induction hypothesis on the method
body.

2. We observe that with the given interpretation (satisfiability) of constraint sets,
Q are unary state predicates where ∪ works as a conjunction and ⇒ is indeed
an implication (see Lemma 3.5 on page 34). It is easy to see that the pre- and
post-sets can be derived in Hoare logic using the consequence rule appropriately.
We only examine one case closer:

• For the T-CALL rule, the induction hypothesis can be applied, because it
can be shown that if σ satisfies Qm[e/margs(m)][π/this] (where Qm is the
required constraint set of the method), then the initial state

([this 7→ r ]∪ [margs(m) 7→ JeK¦s1,h1
]∪ [ret 7→ defval],h)

of the method satisfies Qm . From the induction hypothesis and from well-
typedness we get that the final state of the method satisfies the ensured
constraint set Q ′

m , and it is easy to see that Q ′
m[x/ret] holds in σ′ (the final
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state of the method call), because the ret variable is assigned to x, and Q ′
m

does not contain any other variable by the well-formedness requirement of
method signatures. Additionally, we know that σ satisifes a set Q that does
not contain x or any field f other than fδ. Since fδ cannot be overwritten,
the final state of the method σ′ also satisifes Q. �

In the following, the notation id in `¦ (s,h) ∼Γ,k
id (s′,h′) refers to a partial bijection

id= {(r,r ) | r ∈ dom(h)∩dom(h′)}, i.e., the identity relation ranging over the locations on
which both heaps are defined. (Usually, h′ is a post-heap and thus a proper extension
of h, the pre-heap, so the identity is defined on the locations that already existed in h.)
The following lemma states that no data at a domain below or disjoint from the value
of pc is written.

Lemma A.6 Let σ1 = (s1,h1) and σ2 = (s2,h2) be program states, and let ¦ be a domain

lattice. Let Γ, pc ` {Q} S {Q ′} and (s1,h1)
S−→¦ (s2,h2). Let σ1 |=¦ Q, and let all methods

be well-typed with respect to their signature. Then:

• If JpcK¦s1,h1
6≤¦ k, then `¦ s1 ∼Γ,k

id s2 and `¦ h1 ∼k
id h2.

PROOF By induction over the derivation of the operational semantics.
Without loss of generality, we assume Γ, pc ` {Q} S {Q ′} has not been derived by

the subsumption rule. If it has, then there is a judgement Γ, pc ` {Q0} S {Q ′
0} that has

not been derived by the subsumption rule. Since Q ⇒ Q0, σ1 also satisifies Q0, and we
can show the theorem on that judgement.

Since all other rules are syntax-directed, we can identify them by the statement S,
and make a case distinction on S:

• skip. The desired equalities `¦ s1 ∼Γ,k
id s1 and `¦ h1 ∼k

id h1 follow by definition.

• S1 ; S2. Then we have σ1
S1−−→¦σ2 and σ2

S2−−→¦σ3 from the operational seman-
tics and Γ, pc ` {Q} S1 {Q ′} and Γ, pc ` {Q ′} S2 {Q ′′} from the type rules.
Store equivalence: By induction and since by Lemma A.5 the pc labels have not
changed and Q ′ holds in σ2, we get `¦ s1 ∼Γ,k

id s2 and `¦ s2 ∼Γ,k
id s3. Transitivity of

equivalence results in `¦ s1 ∼Γ,k
id s3. Heap equivalence is shown in a very similar

way.

• if e then S1 else S2.

Since JpcK¦σ1
6≤¦ k, we know Jpc t`K¦σ1

6≤¦ k for any label `. Let Si be the sub-
statement S1 or S2 depending on the value of JeK¦σ1

. Then by induction on Si ,

`¦ σ1 ∼Γ,k
id σ2.
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• if `1 v`2 then S1 else S2.

This case is identical to the case if e then S1 else S2, but we additionally have to
show that σ1 |=¦ Q,`1 v`2 if the then branch is taken, but this follows from the
operational semantics.

• while e do S.

If JpcK¦σ1
6≤¦ k, we know Jpc t`K¦σ1

6≤¦ k for any label `.

– Case JeK¦σ1
= 0: `¦ s1 ∼Γ,k

id s1 (or `¦ h1 ∼k
id h1) holds trivially.

– Case JeK¦σ1
6= 0: We have σ1

S−→¦σ2 and Γ, pc t` ` {Q} S {Q}, hence by

induction `¦ σ1 ∼Γ,k
id σ2. Also, we have σ2

while e do S−−−−−−−−→¦σ3 and the original
Γ, pc ` {Q} while e do S {Q}. Again by induction and with Lemma A.5,
`¦ σ2 ∼Γ,k

id σ3. Transitivity gives `¦ σ1 ∼Γ,k
id σ3.

• x :=e. Store equivalence: We get s2 = s1[x 7→ JeK¦s1,h1
]. Since `tpc vQ Γ(x) and

σ1 satisfies Q, we get JΓ(x)K¦σ1
6≤¦ k. The variable x cannot be xδ, hence we get

by the definition of store equivalence `¦ s1 ∼Γ,k
id s2. Heap equivalence is trivial,

since `¦ h1 ∼k
id h1.

• π. f :=e. Let ` f =Φπ( f ). Since pc vQ ` f , we know
q
` f

y¦
σ1

6≤¦ k. By the definition

of heap equivalence and since no fδ field is written, it follows `¦ h1 ∼k
id h2. Store

equivalence is trivial, since `¦ s1 ∼Γ,k
id s1.

• x :=new C (e).

As for store equivalence, we have an assignment of the variable x, hence we
can use the same argument as for the ordinary assign rule. Heap equivalence is
trivial, as the heap has not been changed for all a ∈ dom(h1)∩dom(h2), so we get
`¦ h1 ∼k

id h2.

• x :=π.m(e).

As for store equivalence, we have an assignment of the variable x, hence we
can use the same argument as for the ordinary assign rule. Other than that, no
variables are changed in the caller’s store.

All that is left to show is heap equivalence. Since pc vQ ′ pcm[e/margs(m)][π/this]
and σ1 satisfies Q ′, we know JpcmK¦σ̂1

6≤¦ k, where σ̂1 is the method’s initial state.
Since the method m is well-typed, we have Γm , pcm ` {Qm} mbody(m) {Q ′

m}.
Hence we can apply the lemma inductively and get `¦ h1 ∼k

id h2. �

The following is the main soundness theorem.
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Theorem A.7 If Γ, pc ` {Q} S {Q ′} and all methods are well-typed with respect to their
signatures, then for all states σ1,σ2,σ′

1,σ′
2 such that σ1 and σ′

1 satisfy Q, for all partial
bijections β, for all domain lattices ¦ and for all domains k ∈ Dom¦,

`¦ σ1 ∼Γ,k
β

σ′
1 ∧ σ1

S−→¦σ2 ∧ σ′
1

S−→¦σ′
2 ⇒ `¦ σ2 ∼Γ,k

γ σ′
2

for some partial bijection γ⊇β.

PROOF By induction over the derivation of the operational semantics.
Without loss of generality, we assume Γ, pc ` {Q} S {Q ′} has not been derived by

the subsumption rule. If it has, then there is a judgement Γ, pc ` {Q0} S {Q ′
0} that has

not been derived by the subsumption rule. Since Q ⇒ Q0, σ1 also satisifies Q0, and we
can show the theorem with that judgement.

Since all other rules are syntax-directed, we can identify them by the statement S,
and make a case distinction on S:

• skip.

From the assumption it follows `¦ σ1 ∼Γ,k
β

σ′
1.

• S1 ; S2.

Then we haveσ1
S1−−→¦σ2 andσ2

S2−−→¦σ3 as well asσ′
1

S1−−→¦σ′
2 andσ′

2
S2−−→¦σ′

3 from
the operational semantics and Γ, pc ` {Q} S1 {Q ′} and Γ, pc ` {Q ′} S2 {Q ′′}
from the type rules. By induction, we get `¦ σ2 ∼Γ,k

β
σ′

2. From Lemma A.5, we

know σ2 and σ′
2 satisfy Q ′. Again by induction, we get `¦ σ3 ∼Γ,k

β
σ′

3.

• if e then S1 else S2.

We have Γ` e : `. We make a case distinction on the evaluation of `:

– Let J`K¦σ1
6≤¦ k. With Corollary A.4 on page 115, we get J`K¦σ′

1
6≤¦ k. There-

fore, Jpc t`K¦σ1
6≤¦ k and Jpc t`K¦σ′

1
6≤¦ k. We can thus infer by Lemma A.6

on page 117 that `¦ σ1 ∼Γ,k
id σ2 and `¦ σ′

1 ∼Γ,k
id σ′

2. By definition of the

equivalence relations, we get `¦ σ2 ∼Γ,k
β

σ′
2.

– Let J`K¦σ1
≤¦ k. Then by Lemma A.1 on page 113, we have JeK¦σ1

∼β JeK¦σ′
1
,

and even JeK¦σ1
= JeK¦σ′

1
, because one cannot branch over a memory location.

Therefore, the same branch Si is taken in both executions. σ1
Si−−→¦σ2 and

σ′
1

Si−−→¦σ′
2 and Γ, pc t` ` {Q} Si {Q ′} imply by induction `¦ s2 ∼Γ,k

β
s′2.

• if `1 v`2 then S1 else S2.

The same arguments can be used as for the case if e then S1 else S2; however,
the induction hypothesis is only applicable if we show that σ1 or σ2 satisfy the
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extended constraint set Q,`1v`2 when the then branch is taken, but this follows
from the operational semantics.

• while e do S.

This case is similar to the case for T-IF. We get Γ` e : `. With Corollary A.4 on
page 115, we know that if ` evaluates to a domain that is not below or equal to k,
it also does so in the other state. Hence pc t` evaluates to a domain that is not
below or equal to k in both states, and with Lemma A.6 on page 117, each final
state is id-equivalent to its corresponding initial state, and thus the final states
are β-equivalent.

Let therefore J`K¦σ1
≤¦ k. Then with Lemma A.1 on page 113 JeK¦σ1

= JeK¦σ′
1
.

– Case JeK¦σ1
= JeK¦σ′

1
= 0: We have to show `¦ σ1 ∼Γ,k

β
σ′

1, which follows from
the assumption.

– Case JeK¦σ1
= JeK¦σ′

1
6= 0: In this case, we have σ1

S−→ ¦σ2 and σ′
1

S−→ ¦σ′
2

and Γ, pc t` ` {Q} S {Q}, hence by induction `¦ σ2 ∼Γ,k
β

σ′
2. Also, we

have σ2
while e do S−−−−−−−−→¦σ3 and σ′

2
while e do S−−−−−−−−→¦σ′

3 and the original judgement
Γ, pc ` {Q} while e do S {Q}. Also, we know from Lemma A.5 on page 116
that σ2 and σ′

2 satisfy Q, and the pc did not change. By induction, `¦

σ3 ∼Γ,k
β

σ′
3.

• x :=e.

Since the heaps do not change, they remain β-equivalent. We show store equiva-
lence as follows: Let x∗ be a variable such that 〈Γ(x∗)〉¦s2

≤¦ k. We need to show
s2(x∗) ∼β s′2(x∗).

It is easy to see that 〈Γ(x∗)〉¦s1
= 〈Γ(x∗)〉¦s2

, because xδ cannot be updated. There-
fore 〈Γ(x∗)〉¦s1

≤¦ k, and thus s1(x∗) ∼β s′1(x∗) by store equivalence.

Let x∗ 6= x. Then the variable is unchanged, therefore we have s2(x∗) = s1(x∗)
and s1(x∗) ∼β s′1(x∗) and s′1(x∗) = s′2(x∗). If x∗ = x, then with pc t`vQ Γ(x), we
get J`K¦σ1

≤¦ k, and with Lemma A.1 on page 113, JeK¦σ1
∼β JeK¦σ′

1
, which implies

s2(x) ∼β s′2(x).

• π. f :=e.

As the stores are not changed, they remain β-equivalent. We show heap equiva-
lence as follows: Let (r,r ′) ∈β be a pair of β-related locations. Then by definition
`¦ h2(r ) ∼k

β
h′

2(r ′).

– If JπK¦σ1
6= r and JπK¦σ′

1
6= r ′, then the objects are not changed, hence we get

trivially `¦ h2(r ) ∼k
β

h′
2(r ′).
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– Let JπK¦σ = r . Let f ∗ ∈ dom(h2(r )) be a field. In this case, we show that if〈
Φ( f ∗)

〉¦
h2(r ) ≤¦ k, then `¦ h2(r ) ∼k

β
h′

2(r ′).

Very similar to the argument for variable assignment above, we observe that〈
Φ( f ∗)

〉¦
h1(r ) =

〈
Φ( f ∗)

〉¦
h2(r ), because the fδ field is not updated. It follows〈

Φ( f ∗)
〉¦

h1(r ) ≤¦ k and thus h1(r )( f ∗) ∼β h′
1(r ′)( f ∗).

Let f ∗ 6= f . Since f ∗ is not changed, we get h2(r )( f ∗) ∼β h′
2(r ′)( f ∗).

Let f ∗ = f . With Lemma 3.1 on page 33, JΦπ( f )K¦σ1
= 〈

Φ( f )
〉¦

h1(r ) ≤¦ k.

With `1 t`2 vQ Φ
π( f ), we get that J`1K¦σ1

≤¦ k and J`2K¦σ1
≤¦ k, hence

with Lemma A.1, JeK¦σ1
∼β JeK¦σ′

1
and JπK¦σ1

∼β JπK¦σ′
1
. Since β is a bijection

and r ∼β r ′, JπK¦σ′
1
= r ′. We get h2(r )( f ) = h2(JπK¦σ1

)( f ) = JeK¦σ1
∼β JeK¦σ′

1
=

h′
2(JπK¦σ′

1
) = h′

2(r ′)( f ).

– JπK¦σ′
1
= r ′ can be shown in a similar fashion.

• x :=new C (e).

Let r and r ′ be the fresh locations for the new object in h1 and h′
1. We define

a partial bijection γ = β∪ {(r,r ′)} ⊇ β. For store equivalence, it holds a similar
argument as for the ordinary variable assignment rule; for the assigned variable,
we have s2(x) = r ∼γ r ′ = s′2(x), thus `¦ s2 ∼Γ,k

γ s′2.

Let f = fields(C ). We have h2(r ) = (C ,F ) and h′
2(r ′) = (C ,F ′), where the field

valuations are F = [ f 7→ JeK¦σ1
] and F ′ = [ f 7→ JeK¦σ′

1
]. We know that `¦ h2 ∼k

β
h′

2,

since the heaps are unchanged on all locations except for r and r ′. All we need
to show is that `¦ h2(r ) ∼k

β
h′

2(r ′). This is true if for all f ∈ fields(C ) such that〈
Φ( f )

〉¦
F ≤¦ k, we get F ( f ) ∼β F ′( f ).

Thus, let f be a field with
〈
Φ( f )

〉¦
F ≤¦ k. Let e be the element from the list e that

initializes the field f , i.e., F ( f ) = JeK¦σ1
and F ′( f ) = JeK¦σ′

1
. Let Γ ` e : `. With

Corollary A.4 on page 115, we have J`K¦σ1
= J`K¦σ′

1
.

From the premises of the typing rule, we know `vQ ′ Φ( f )[e.1/ fδ]. Since σ1 sat-
isfies Q ′, we get with Lemma 3.3 on page 34 that J`K¦σ1

≤¦ JΦ( f )K¦σ1
[e.1/ fδ] =〈

Φ( f )
〉¦

F ≤¦ k. Hence, J`K¦σ1
= J`K¦σ′

1
≤¦ k, so we get with Lemma A.1 on page 113

that JeK¦σ1
∼β JeK¦σ′

1
, thus we have shown F ( f ) ∼β F ′( f ). It follows `¦ h2(r ) ∼k

β

h′
2(r ), hence `¦ h2(r ) ∼k

γ h′
2(r ) and thus `¦ h2 ∼k

γ h′
2.

• x :=π.m(e).

Let Γm be the type environment for the method, and ŝ1 and ŝ′1 be the initial stores
of the called methods build from the arguments. To apply the lemma inductively,
we need to show that the initial states of the method are β-equivalent. Since
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the heaps are passed without change, we only need to show equivalence for the
stores, i.e., `¦ ŝ1 ∼Γm ,k

β
ŝ′1.

Let xi be a formal method parameter from the sequence margs(m), and let
e be the expression with which xi is initialized, and let Γ ` e : `. We ob-
serve JΓm(xi )K¦(ŝ1,h1) = Γm(xi )[Je.1K¦σ1

/xδ] = JΓ∗(xi )K¦σ1
. With the premises, we get

`vQ ′ Γ∗(xi ). Since σ1 |=¦ Q ′, we get with Theorem 3.3 on page 34 that J`K¦σ1
≤¦

JΓ∗(xi )K¦σ1
. Furthermore, we get with Corollary A.4 that J`K¦σ1

= J`K¦σ′
1
. Thus,

if JΓm(xi )K¦(ŝ1,h1) = JΓ∗(xi )K¦σ1
≤¦ k, then also J`K¦σ1

= J`K¦σ′
1
≤¦ k. We get with

Lemma A.1 that JeK¦σ1
∼β JeK¦σ′

1
, hence ŝ1(xi ) ∼β ŝ′1(xi ).

A similar argument holds for the this variable and the `r label. Since the return
value is initialized with the same value, ŝ1(ret) ∼β ŝ′1(ret) holds trivially. Therefore,

`¦ ŝ1 ∼Γm ,k
β

ŝ′1.

With the argument of Lemma A.5, the new states also satisfy the new constraint
sets. Therefore, we can apply the lemma inductively, and get for the final states
of the method call that they are γ-equivalent for some γ⊇β with respect to Γm :
`¦ ŝ2 ∼Γm ,k

γ ŝ2
′ and `¦ h2 ∼k

γ h′
2.

As the heaps are directly passed back to the caller, we get γ-equivalence of the
final heaps immediately. We still need to show `¦ s2 ∼Γ,k

γ s′2.

For the assignment of the variable x, we need to show that if 〈Γ(x)〉¦s2
≤¦ k, then

s2(x) ∼γ s′2(x).

We observe 〈Γm(ret)〉¦
(̂s2)

= JΓm(ret)K¦(ŝ2,h2) = Γm(ret)[Je.1K¦σ1
/xδ] = JΓ∗(ret)K¦σ1

=
JΓ∗(ret)K¦σ1

. From the premises, we have Γ∗(ret) vQ Γ(x). As shown in Lemma A.5,
the final state σ1 satisfies Q. Thus we get immediately JΓ∗(ret)K¦σ1

≤¦ JΓ(x)K¦σ1
=

〈Γ(x)〉¦s1
. We also know 〈Γ(x)〉¦s1

= 〈Γ(x)〉¦s2
, because s2(xδ) = s1(xδ) (the variable

xδ cannot be changed).

Putting it all together, we have that from 〈Γ(x)〉¦s2
≤¦ k follows 〈Γ(x)〉¦s1

≤¦ k and

thus JΓ∗(ret)K¦σ1
≤¦ k, so 〈Γm(ret)〉¦

(̂s2)
≤¦ k. Since `¦ ŝ2 ∼Γm ,k

γ ŝ2
′, it follows by

definition ŝ2(ret) ∼γ ŝ′2(ret), therefore s2(x) ∼γ s′2(x), thus `¦ s2 ∼Γ,k
γ s′2.

The actual main soundness theorem is a corollary of the theorem above:

Corollary A.8 If PDSD is a well-typed DSD program, then it is universally noninterferent.

PROOF Since every method is well-typed with respect to its signature, we can ap-
ply Theorem A.7 on page 119. Together with the fact that the final states satisfy Q
(Lemma A.5 on page 116), we get that every method is (Q,Q ′)-universally noninterfer-
ent. By definition, the entire program PDSD is universally noninterferent. �
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B
Proof of the Semantics Preservation Result

This appendix contains the complete proof that the translation of bytecode programs
to the intermediate representation with the BC2IR algorithm preserves the semantics
of the program.

B.1 Call Depth Annotations

For the proof, the operational semantics of bytecode and IR programs is redefined to
include call depth information, which indicates the maximum size of the call stack
during an execution, that is, the maximum number of times the method call rule has
been used at the leaves of the semantics derivation tree. This is a standard technique
often used in proofs for program executions.

B.1.1 Bytecode Call Depth

We define the relation (m, i , s,h,ρ)
B−→¦

n (m, i ′, s′,h′,ρ′), which means the maximal call
depth of this single step is n. This is done as follows: all simple instructions have call
depth 0. Method calls increase the call depth:

B = callm′

s′ = [this 7→ r ]∪ [margs(m′) 7→ v]∪ [ret 7→ defval]

(s′,h)
m′
==⇒

BC

¦
n (s′′,h′)

(m, i , s,h, v :: r :: ρ)
B−→¦

n+1 (m, i +1, s,h′, s′′(ret) :: ρ)
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The rule for method calls relies on a big-step execution of the method. More formally,
a big-step execution relation is defined as follows:

(m, i , s,h,ρ) ==⇒
BC

¦
n (m, i , s,h,ρ)

(m, i , s,h,ρ)
BC (m,i )−−−−−−→¦

n1
(m, i ′, s′,h′,ρ′)

(m, i ′, s′,h′,ρ′) ==⇒
BC

¦
n2

(m, i ′′, s′′,h′′,ρ′′)

n =max(n1,n2)

(m, i , s,h,ρ) ==⇒
BC

¦
n (m, i ′′, s′′,h′′,ρ′′)

The following notation is a shorthand for the execution of entire method bodies:

(s,h)
m==⇒

BC

¦
n (s′,h′) ⇐⇒∃ρ. (m,mentry(m), s,h,ε) ==⇒

BC

¦
n (m,mexit(m), s′,h′,ρ)

There is always a way to annotate an existing big-step bytecode execution with
approriate call depths:

Theorem B.1 For all states (s,h) and (s′,h′),

(s,h)
m==⇒

BC

¦ (s′,h′) ⇐⇒∃n ∈N. (s,h)
m==⇒

BC

¦
n (s′,h′)

PROOF By the definition of unannotated and annotated semantics. �

It follows that everything that is shown in this appendix for annotated bytecode
executions also hold for unannotated executions as defined in Chapter 4.

B.1.2 IR Call Depth

The transitions of the IR instruction semantics are likewise extended with a call depth

n. For small-step IR instructions, there is a transition (m, i , s, st ,h)
I−→¦

n (m, i ′, s′, s′t ,h′),
such that all instructions have a call depth of 0, with the exception of assignment
blocks:

I = block a (s, st ,h)
a=⇒¦

n(s′, s′t ,h)

(m, i , s, st ,h)
I−→¦

n (m, i +1, s′, s′t ,h′)
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The semantics of assignment blocks is annotated as follows:

S = a ∈ {x :=e,e. f :=e, x :=new C (e)}

(s ∪ st ,h)
S−→¦ (s′∪ s′t ,h′)

(s, st ,h)
a−→¦

0(s′, s′t ,h′)

a = x :=e.m(e)
s0 = [this 7→ JeK¦s,st ,h]∪ [margs(m) 7→ JeK¦s,st ,h]∪ [ret 7→ defval]

(s0,h)
m=⇒
IR

¦
n (s1,h′)

(s′∪ s′t ) = (s ∪ st )[x 7→ s1(ret)]

(s, st ,h)
a−→¦

n+1(s′, s′t ,h′)

(s, st ,h)
ε=⇒¦

0(s, st ,h)

(s, st ,h)
a−→¦

n1
(s′, s′t ,h′)

(s′, s′t ,h′)
as==⇒¦

n2
(s′′, s′′t ,h′′)

n =max(n1,n2)

(s, st ,h)
a::as===⇒¦

n(s′′, s′′t ,h′′)

The big-step relation is annotated as follows:

(m, i , s, st ,h) =⇒
IR

¦
n (m, i , s, st ,h)

(m, i , s, st ,h)
IR[m,i ]−−−−−→¦

n1
(m, i ′, s′, s′t ,h′)

(m, i ′, s′, s′t ,h′) =⇒
IR

¦
n2

(m, i ′′, s′′, s′′t ,h′′)

n =max(n1,n2)

(m, i , s,h,ρ) =⇒
IR

¦
n (m, i ′′, s′′, s′′t ,h′′)

The big-step relation for entire method bodies has the following definition:

(s,h)
m=⇒
IR

¦
n (s′,h′) if and only if

∃st . (m,mentry(m), s,h, [tvars(m) 7→ defval]) =⇒
IR

¦
n (m,mexit(m), s′, st ,h′)

Again, there is always a way to annotate an existing big-step IR execution with
approriate call depths:

Theorem B.2 For all states (s,h) and (s′,h′),

(s,h)
m=⇒
IR

¦ (s′,h′) ⇐⇒∃n ∈N. (s,h)
m=⇒
IR

¦
n (s′,h′)

PROOF By the definition of unannotated and annotated semantics. �

It follows that everything that is shown in this appendix for annotated bytecode
executions also hold for unannotated executions as defined in Section 5.1.
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B.2 Proof of Semantics Preservation

First, we show that a single call-free IR step simulates a single call-free bytecode step,
where the abstract stacks from the BC2IRinstr algorithm describe the operand stacks in
the bytecode semantics.

Proposition B.3 Suppose we have the transition (m, i , s,h,ρ)
B−→¦

0 (m, i ′, s′,h′,ρ′). Let
st be a temporary variable store, and as, as′ be abstract stacks and I be an IR instruction
such that

JasK¦s,st ,h = ρ and BC2IRinstr(i , B, as) = (I, as′).

Then there exists a temporary variable store s′t such that (m, i , s, st ,h)
I−→¦

0 (m, i ′, s′, s′t ,h′)
and

Jas′K¦s′,s′t ,h′ = ρ′.

PROOF By case distinction of the bytecode instruction B.

• B = nop. Then I = block ε, and as′ = as. By bytecode and IR semantics, we get
s′ = s and h′ = h and ρ′ = ρ and s′t = st , hence the proposition follows from the
assumptions.

• B = push c. Then I = block ε and as′ = c :: as by definition of BC2IRinstr. We

have the bytecode transition (m, i , s,h,ρ)
B−→¦

0 (m, i + 1, s,h,JcK¦ :: ρ) and the

IR transition (m, i , s, st ,h)
I−→¦

0 (m, i + 1, s, st ,h). Since JasK¦s,st ,h = ρ, it follows
Jas′K¦s,st ,h = Jc :: asK¦s,st ,h = JcK¦s,st ,h :: JasK¦s,st ,h = JcK¦ :: ρ = ρ′.

• B = pop. Then I = block ε and as = e :: as′. Stores and heaps remain unchanged
in both the bytecode and IR transitions. We only need to show Jas′K¦s,st ,h = ρ′,
but this follows from Je :: as′K¦s,st ,h = v :: ρ′, where v is the top-most value on the
initial stack.

• B = prim op. Then I = block ε and as = e2 :: e1 :: e and as′ = (e1ope2) :: e for some

e. We have (m, i , s,h, v2 :: v1 :: v)
B−→¦

0 (m, i +1, s,h, (v1 op v2 :: v)) for some v , and

(m, i , s, st ,h)
I−→¦

0 (m, i + 1, s, st ,h). With the assumption, we have v = JeK¦s,st ,h
and v1 = Je1K¦s,st ,h and v2 = Je2K¦s,st ,h , hence v1 op v2 = Je1 op e2K¦s,st ,h . Therefore,
Jas′K¦s,st ,h = ρ.

• B = load x. Since x appears in the bytecode, it cannot be a temporary variable,
but rather x ∈ dom(s). We have I = block ε and as′ = x :: as. The transitions are
(m, i , s,h,ρ)

B−→¦
0 (m, i + 1, s,h, s(x) :: ρ) and (m, i , s, st ,h)

I−→¦
0 (m, i + 1, s, st ,h).

Thus we have Jas′K¦s,st ,h = JxK¦s,st ,h :: JasK¦s,st ,h = s(x) :: ρ.
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B.2 Proof of Semantics Preservation

• B = store x. Since x appears in the bytecode, it cannot be a temporary variable,
but rather x ∈ dom(s). We have v :: ρ = Je :: asK¦s,st ,h , hence v = JeK¦s,st ,h . We define

s[x 7→ v] = s[x 7→ JeK¦s,st ,h] = s′. Then (m, i , s,h, v :: ρ)
B−→¦

0 (m, i +1, s′,h,ρ).

By definition, BC2IRinstr(i , B,e :: as) = (block [x :=e], as[t 0
i /x]). We get the IR

transition (m, i , s, st ,h)
I−→¦

0 (m, i +1, s′, s′t ,h), where s′t = st [t 0
i 7→ s(x)]. In other

words, the IR step results in the same store s′, and the heap h is unchanged. We
still have to show that

q
as[t 0

i /x]
y¦

s′,s′t ,h
= ρ. Because of the side condition t 0

i 6∈ as,

we get
q

as[t 0
i /x]

y¦
s′,s′t ,h

= q
as[t 0

i /x]
y¦

s[x 7→v],st [t 0
i 7→s(x)],h

= Jas[s(x)/x]K¦s[x 7→v],st ,h =
JasK¦s,st ,h = ρ.

• B = bnz j . Let ρ = v :: v . There are two cases, depending on the value v on
top of the stack. We only treat the jump case here, i.e., where v 6= 0. We have

the bytecode transition (m, i , s,h, v :: v)
B−→¦

0 (m, j , s,h, v). Also, by definition
BC2IRinstr(i , B,e :: e) = (if e j ,e) and as′ = e. As Je :: eK¦s,st ,h = JasK¦s,st ,h = v :: v ,

we get JeK¦s,st ,h = v 6= 0. Therefore, the IR step is (m, i , s, st ,h)
I−→¦

0 (m, j , s, st ,h).
Stores and heaps remain unchanged, and ρ′ = v = JeK¦s,st ,h = Jas′K¦s,st ,h .

• B = jmp j . Then BC2IRinstr(i , B, as) = (jmp j , as). We have the two transitions

(m, i , s,h,ρ)
B−→¦

0 (m, j , s,h,ρ) and (m, i , s, st ,h)
I−→¦

0 (m, j , s, st ,h). Stores, heaps,
and stacks remain unchanged.

• B = cpush j . This case is the same as for B = nop, since the IR semantics of
cpush j is the same as for block ε.

• B = cjmp j . This case is the same as for B = jmp j , since the IR semantics of
cjmp j is the sam as for jmp j .

• B = new C . Let r be fresh in h, and h′ = h ∪ [r 7→ (C , [fields(C ) 7→ v])]. We have
the bytecode transition (m, i , s,h, v :: ρ)

B−→¦
0 (m, i +1, s,h′,r :: ρ). Also, by defi-

nition BC2IRinstr = (i , B,e :: as) = (block [t 0
i :=new C (e)], t 0

i :: as). Since we can
use the same memory location r in the IR semantics, we get the IR transition

(m, i , s, st ,h)
I−→¦

0 (m, i +1, s, s′t ,h′), where s′t = st [t 0
i 7→ r ]. That is, both resulting

heaps are the same, and the store s remains unchanged. Since t 0
i 6∈ as by the side

condition, we get Jas′K¦s,s′t ,h′ =
q

t 0
i

y¦
s,s′t ,h′ :: JasK¦s,st ,h = r :: ρ = ρ′.

• B = getf f . We have BC2IRinstr(i , B,e :: e) = (block ε,e. f :: e). Thus, we have

the bytecode transition (m, i , s,h,r :: ρ)
B−→¦

0 (m, i +1, s,h,h(r )( f ) :: ρ) and the

IR transition (m, i , s, st ,h)
I−→¦

0 (m, i + 1, s, st ,h). Stores and heaps remain un-
changed. By assumption JasK¦s,st ,h = Je :: eK¦s,st ,h = r :: ρ, thus JeK¦s,st ,h = r . It fol-
lows Jas′K¦s,st ,h = Je. f :: eK¦s,st ,h = h(JeK¦s,st ,h)( f ) :: ρ = h(r )( f ) :: ρ = ρ′.
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B. Proof of the Semantics Preservation Result

• B = putf f . We have the transition (m, i , s,h, v :: r :: v)
B−→¦

0 (m, i + 1, s,h′, v),
where h′ = h[r 7→ h(r )[ f 7→ v]]. The input stack is as = e ′ :: e :: e, such that
JasK¦s,st ,h = Je ′ :: e :: eK¦s,st ,h = v :: r :: v .

By definition BC2IRinstr(i , B, as) = (block [ti :=e,e. f :=e ′], ti ). When we execute
the IR instruction, we get exactly the heap h′. Since JeK¦s,st ,h = v and ti 6∈ e by the

side condition, we get the IR transition (m, i , s, st ,h)
I−→¦

0 (m, i +1, s, s′t ,h′), where
s′t = st [ti 7→ v]. Finally, we have Jas′K¦s,s′t ,h′ = Jti K

¦
s,s′t ,h′ = v = ρ′. �

To show the semantic preservation for big-step transitions, we now consider a fixed
IR program that has been created by the BC2IR algorithm, i.e., PIR =BC2IR(PBC), along
with the arrays ASin[m, i ] and ASout[m, i ]. We first show a result for call-free big-step
transitions.

Proposition B.4 Suppose we have (m, i , s,h,ρ) ==⇒
BC

¦
0 (m, i ′, s′,h′,ρ′). Let st be a tempo-

rary variable store such that ρ = JASin[m, i ]K¦s,st ,h . Then there exists a store s′t such that
(m, i , s, st ,h) =⇒

IR
¦
0 (m, i ′, s′, s′t ,h′) and ρ′ = JASin[m, i ′]K¦s′,s′t ,h′ .

PROOF By induction on the number of execution steps, i.e., the definition of big-step
semantics.

• If zero steps are taken, i.e., (m, i , s,h,ρ) ==⇒
BC

¦
0 (m, i , s,h,ρ), then we can derive

(m, i , s, st ,h) =⇒
IR

¦
0 (m, i , s, st ,h). Since i ′ = i , we get the desired properties from

the assumptions.

• Suppose more than zero steps have been taken, that is, we have the small-step

transition (m, i , s,h,ρ)
IR[m,i ]−−−−−→¦

0 (m, i ′′, s′′,h′′,ρ′′) and the big-step transition
(m, i ′′, s′′,h′′,ρ′′) ==⇒

BC

¦
0 (m, i ′, s′,h′,ρ′). Since PIR = BC2IR(PBC), we get by defi-

nition of the algorithm BC2IRinstr(i ,BC (m, i ),ASin[m, i ]) = (IR[m, i ],ASout[m, i ]).

With Proposition B.3, we immediately get (m, i , s, st ,h)
IR[m,i ]−−−−−→¦

0 (m, i ′′, s′′, s′′t ,h′′)

and ρ′′ = JASout[m, i ]K¦s′′,s′′t ,h′′ . Since (m, i )
IR[m,i ]7−−−−−→ (m, i ′′), we get with Propo-

sition 5.5 on page 73 ASout[m, i ] = ASin[m, i ′′], hence ρ′ = JASin[m, i ′′]K¦s′′,s′′t ,h′′ .
Therefore, we can apply this theorem inductively, and get the transition relation
(m, i ′′, s′′, s′′t ,h′′) =⇒

IR
¦
0 (m, i ′, s′, s′t ,h′) and ρ = JASin[m, i ′]K¦s′,s′t ,h′ . Also, by defini-

tion of IR big-step semantics, we get (m, i , s, st ,h) =⇒
IR

¦
0 (m, i ′, s′, s′t ,h′). �

The following proposition applies to arbitrary big-step transitions.

Proposition B.5 Suppose we have (m, i , s,h,ρ) ==⇒
BC

¦
n (m, i ′, s′,h′,ρ′). Let st be a tempo-

rary variable store such that ρ = JASin[m, i ]K¦s,st ,h . Then there exists a store s′t such that
(m, i , s, st ,h) =⇒

IR
¦
n (m, i ′, s′, s′t ,h′) and ρ′ = JASin[m, i ′]K¦s′,s′t ,h′ .
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We call the previous proposition P (m,n), and prove it by strong induction on n. For
this, we need the following auxiliary proposition.

Proposition B.6 Let n ≥ 0, and suppose P (m,k) holds for all methods m and all call

depths k < n. Suppose (m, i , s,h,ρ)
BC (m,i )−−−−−−→¦

n (m, i ′, s′,h′,ρ′). Let st be a store such that

ρ = JASin[m, i ]K¦s,st ,h . Then there is an s′t such that (m, i , s, st ,h)
IR[m,i ]−−−−−→¦

n (m, i ′, s′, s′t ,h′)
and ρ′ = JASin[m, i ′]K¦s′,s′t ,h′ .

PROOF If n = 0, we can directly apply Proposition B.3 and get the desired properties. As-
sume n > 0. By construction of the bytecode semantics, it follows BC (m, i ) = callm′.

We have (m, i , s,h, v :: r :: v ′) B−→¦
n (m, i +1, s,h′, s′′(ret) :: v ′) and the method exe-

cution (s′,h)
m′
==⇒

BC

¦
n−1 (s′′,h′), where s′ = [this 7→ r ]∪ [margs(m′) 7→ v]∪ [ret 7→ defval].

By definition of big-step method executions, this means there exists ρ′′ such that
(m′,mentry(m′), s′,h,ε) ==⇒

BC

¦
n−1 (m′,mexit(m′), s′′,h′,ρ′′). From Proposition 5.4 on

page 73, we know ASin[m′,mentry(m)] = ε. Therefore, we apply P (m′,n −1), and get
that there is a store s′′t such that

(mentry(m′), i , s, [tvars(m′) 7→ defval],h) =⇒
IR

¦
n−1 (m′,mexit(m′), s′′, s′′t ,h′)

which means by definition (s′,h)
m′
=⇒

IR
¦
n−1 (s′′,h′). (*)

At the same time, we have IR[m, i ] = block [ti :=e ′; t 0
i :=e.m′(e)] and the stacks

ASin[m, i ] = (e :: e :: e ′) and ASin[m, i +1] = ti . With the assumption, we know thatq
e :: e :: e ′

y¦
s,st ,h = v :: r :: v ′.

For the execution of the block, we get with IR semantics and result (*) the transition

(m, i , s, st ,h)
IR[m,i ]−−−−−→¦

n (m, i +1, s, s′t ,h′), where s′t = [ti 7→
q

e ′
y¦

s,st ,h]∪ [t 0
i 7→ s′′(ret)]. All

that is left to show is that JASin[m, i +1]K¦s,s′t ,h′ =
q

t 0
i :: ti

y¦
s,s′t ,h′ = s′′(ret) :: v ′ = ρ′. But

this follows from
q

t 0
i

y¦
s,s′t ,h′ = s′′(ret) and

r
t 0

i

z¦
s,s′t ,h′

= q
e ′

y¦
s,st ,h = v ′. �

PROOF (OF PROPOSITION B.5) By induction on the length of the execution c.

• If zero steps are taken, we have (m, i , s,h,ρ) ==⇒
BC

¦
n (m, i , s,h,ρ). For any st , we

can derive (m, i , s, st ,h) =⇒
IR

¦
n (m, i , s, st ,h) and get the desired properties directly

from the assumptions.

• If c > 0 steps are taken, then suppose this proposition P (m,n) holds for all c ′ < c .
By definition of big-step semantics, we have

(m, i , s,h,ρ)
BC (m,i )−−−−−−→¦

n1
(m, i ′′, s′′,h′′,ρ′′) ==⇒

BC

¦
n2

(m, i ′, s′,h′,ρ′)
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B. Proof of the Semantics Preservation Result

where n1 ≤ n and n2 ≤ n. We can apply Proposition B.6 to the first step and the
induction hypothesis P (m,n) to the remaining execution, because it contains
less execution steps. It follows

(m, i , s, st ,h)
IR[m,i ]−−−−−→¦

n1
(m, i ′′, s′′, s′′t ,h′′) =⇒

IR

¦
n2

(m, i ′, s′, s′t ,h′)

for some s′t , s′′t , such that JASin[m, i ′′]K¦s′′,s′′t ,h′′ = ρ′′ and JASin[m, i ′]K¦s′,s′t ,h′ = ρ′.
Putting the executions together, we get (m, i , s, st ,h) =⇒

IR
¦
n (m, i ′, s′, s′t ,h′). �

Theorem B.7 Let PBC be a bytecode program, and PIR be an IR program such that
PIR =BC2IR(PBC). Let m be a method, s, s′ be stores, and h,h′ be heaps, and n be a call
depth. If

(s,h)
m==⇒

BC

¦
n (s′,h′)

then
(s,h)

m=⇒
IR

¦
n (s′,h′)

PROOF By definition of (s,h)
m==⇒

BC

¦
n (s′,h′) semantics, we know there is a stack ρ such

that (m,mentry(m), s,h,ε) ==⇒
BC

¦
n (m,mexit(m), s′,h′,ρ). Let st = [tvars(m) 7→ defval].

With Proposition 5.4 on page 73, we have ASin[m,mentry(m)] = ε, therefore we know
that JASin[m,mentry(m)]K¦s,st ,h = ε. We can apply Proposition B.5 and get that there is
some temporary state s′t such that (m,mentry(m), s, st ,h) =⇒

IR
¦
n (m,mexit(m), s′, s′t ,h′),

which by definition means (s,h)
m=⇒
IR

¦
n (s′,h′). �
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C
Correctness Proof for the IR Type System

This appendix contains the complete soundness proof for the type system of the
intermediate representation. In the following, the meta-variable ω is used for IR state
triples (s, st ,h).

C.1 Properties of Single Executions

In this section, we first show how assignments in the IR language are related to as-
signments in the high-level DSD language. Then we define equivalence relations for
confluence point stacks and for IR configurations. Finally, we show that a program does
not change “low” variables and fields under a “high” pc label, and other properties
that apply to single executions of well-typed IR instructions.

C.1.1 Connection to the High-Level Language

We extend some high-level definitions to IR program states:

constraint set satisfiability: (s, st ,h) |=¦ Q ⇐⇒ (s ∪ st ,h) |=¦ Q
expression evaluation: JeK¦s,st ,h = JeK¦s∪st ,h

We formalize the similarity between assignment blocks and the respective high-level
sequential compositions. We define an auxiliary function makestmt that combines a
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sequence of assignment statements into a valid high-level statement (either a nested
sequential composition or skip):

makestmt(a) =


skip if a = ε
a if a = a

a ; makestmt(ar ) if a = a :: ar

Then for call-free assignment blocks, the IR semantics corresponds directly to the
high-level semantics.

Lemma C.1 Let block a be an assignment block IR instruction. If the small-step IR

transition (m, i , s, st ,h)
block a−−−−−−→¦

0 (m, i +1, s′, s′t ,h′) can be derived, then high-level big-

step transition (s ∪ st ,h)
makestmt(a)−−−−−−−−−→¦ (s′∪ s′t ,h′) can be derived.

PROOF Follows directly from the definition of
a=⇒¦

0. �

The correspondence of the IR typing for assignment blocks and the high-level typing
judgement is formalized by the following lemma.

Lemma C.2 Let I = block a be an assignment block instruction. If the IR typing judge-

ment Γ,Γt ` i , pc,∆,Q
I−→ i +1, pc,∆,Q ′ can be derived, then high-level typing judge-

ment Γ∪Γt , pc ` {Q} makestmt(a) {Q ′} can be derived.

PROOF Follows directly from the definition of Γ,Γt ,∆, pc ` {Q} a {Q ′}. �

Finally, we show that the evaluation of pc and ∆ remains unchanged during the
execution of assignment blocks.

Lemma C.3 Let I = block a. If we can derive the transition (m, i ,ω)
I−→¦

n (m, i +1,ω′)
and the typing judgmenet Γ,Γt ` i , pc,∆,Q

I−→ i +1, pc,∆,Q ′, then JpcK¦ω = JpcK¦ω′

and J∆K¦ω = J∆K¦ω′ .

PROOF This follows from the definition of the typing rules. They require that the
variables or fields that can possibly change do not occur syntactically in ∆ or pc. �

C.1.2 Equivalences

We define the following equivalence relation for IR program states, which naturally
extends the definition of DSD program states:

`¦ (s, st ,h) ∼Γ,Γt ,k
β

(s′, s′t ,h′) ⇐⇒`¦ s ∼Γ,k
β

s′ ∧ `¦ st ∼Γt ,k
β

s′t ∧ `¦ h ∼k
β h′
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We also give a definition for confluence point stack equivalences: we require that
there exists a common “low” prefix such that the program points and evaluated labels
in this “low” prefix are equal, the labels evaluate to some domain that is less or equal
to k, and in the remaining “high” parts of the stacks, the labels evaluate to a domain
that is neither less nor equal to k.

Definition C.4 Let ω1,ω2 be IR states, and ¦ be a domain lattice, and k ∈ Dom¦. Two
evaluated confluence point stacks J∆1K¦ω1

= i1,k1 and J∆2K¦ω2
= i2,k2 are ¦,k-equivalent,

written

`¦ J∆1K¦ω1

k∼ J∆2K¦ω2

if there exists a prefix index p such that

• 0 ≤ p ≤min(|k1|, |k2|),

• ∀ j ∈ 1, . . . , p. k1. j = k2. j ≤¦ k ∧ i1. j = i2. j ,

• ∀ j ∈ {p +1, . . . , |k1|}. k1. j 6≤¦ k, and

• ∀ j ∈ {p +1, . . . , |k2|}. k2. j 6≤¦ k.

Definition C.5 (Equivalent IR configurations) Let ¦ be a domain lattice, and let k be
a domain with k ∈ Dom¦. Two IR configurations are ¦,k-equivalent, written

Γ,Γt ` (m, i1,ω1) : pc1,∆1,Q1 ≈¦
k,β (m, i2,ω2) : pc2,∆2,Q2

if and only if:

• `¦ ω1 ∼Γ,Γt ,k
β

ω2,

• ω1 |=¦ Q1 and ω2 |=¦ Q2,

• `¦ J∆1K¦ω1

k∼ J∆2K¦ω2
, and

• either Jpc1K¦ω1
= Jpc2K¦ω2

≤¦ k and i1 = i2, or Jpc1K¦ω1
6≤¦ k and Jpc2K¦ω2

6≤¦ k

Lemma C.6 All equivalence relations defined in this section are reflexive, transitive, and
symmetric.

PROOF Follows by definition of the equivalences. �
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C.1.3 Properties of single executions

Then we show in two lemmas that for a single execution of a small step,

• if the pre-state satisfies Q, then the post-state satisfies Q ′,

• if the step is executed under a “high” pc, then the states are indistinguishable,

• there is an invariant on∆: it contains ascending pc labels, and if there is a bottom
element, it does not change during the execution, and if the final pc is “high”,
the stack does not change its “low” prefix.

Using these lemmas, we then show that the satisfiability of constraint sets Q and the
indistinguishability of states under a high pc remain invariant for single executions of
an arbitrary chain of steps.

Lemma C.7 Let Γ,Γt ` i , pc,∆,Q
I−→ i ′, pc ′,∆′,Q ′ and (m, i ,ω)

I−→¦
0 (m, i ′,ω′).

If ω |=¦ Q, then ω′ |=¦ Q ′.

PROOF By induction over the type derivation.

• If the typing judgement has been derived by the weakening rule, we have the

judgement Γ,Γt ` i , pc,∆,Q0
I−→ i ′, pc ′,∆′,Q ′

0 with Q ⇒ Q0 and Q ′
0 ⇒ Q ′.

Since ω |=¦ Q, we get with Lemma 3.5 on page 34 that ω |=¦ Q0. Hence we can
apply the theorem inductively and get ω′ |=¦ Q ′

0, and hence with lemma ω |=¦ Q ′.

• I = if e j .

We have (m, i ,ω)
I−→¦

0 (m, i ′,ω). We invert the rule for the instruction and make a
case distinction over the shape of the postcondition:

– If Q ′ =Q, then ω |=¦ Q ′ follows trivially.

– If Q ′ =Q ∪ {`1v`2}, then e = `1v`2. Also, i ′ = j , thus (m, i ,ω)
I−→¦

0 (m, j ,ω),
thus J`1 v`2K¦ω 6= 0. Therefore, J`1K¦ω ≤¦ J`2K¦ω, and with ω |=¦ Q, we get
ω |=¦ Q ∪ {`1 v`2}.

• I = block a.

Let S = makestmt(a). We get (s ∪ st ,h)
S−→ ¦ (s′∪ s′t ,h′) with Lemma C.1, and

Γ∪Γt , pc ` {Q} P {Q ′} with Lemma C.2. With Lemma A.5 on page 116, we
get (s′∪ s′t ,h′) |=¦ Q ′, hence ω′ |=¦ Q ′.

• I ∈ {jmp j ,cjmp j ,cpush j }.

Then ω′ =ω and Q =Q ′, hence ω′ |=¦ Q ′ follows trivially from the assumptions.�
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Lemma C.8 Let Γ,Γt ` i , pc,∆,Q
I−→ i ′, pc ′,∆′,Q ′ and (m, i ,ω)

I−→¦
0 (m, i ′,ω′).

If ω |=¦ Q and JpcK¦ω 6≤¦ k, then `¦ ω∼Γ,Γt ,k
id ω′.

PROOF By induction over the type derivation.

• If the typing judgement has been derived by the weakening rule, we have the

judgement Γ,Γt ` i , pc,∆,Q0
I−→ i ′, pc ′,∆′,Q ′

0 with Q ⇒ Q0. Since ω |=¦ Q, we
get with Lemma 3.5 on page 34 that ω |=¦ Q0. Hence we can apply the theorem
inductively and get `¦ ω∼Γ,Γt ,k

id ω′.

• I = block a.

Let P = makestmt(a). We get (s ∪ st ,h)
P−→ ¦ (s′∪ s′t ,h′) with Lemma C.1 and

Γ∪Γt , pc ` {Q} P {Q ′} with Lemma C.2.

With Lemma A.6 on page 117 (high-level soundness under high pc), we can
conclude `¦ (s ∪ st ,h) ∼Γ∪Γt ,k

id (s′∪ s′t ,h′), hence `¦ ω∼Γ,Γt ,k
id ω′.

• I ∈ {jmp j ,cjmp j ,if e j ,cpush j }.

Then (m, i ,ω)
I−→¦

0 (m, i ′,ω′) with ω′ = ω for some i ′, so `¦ ω ∼Γ,Γt ,k
id ω′ follows

trivially. �

Confluence point stacks reflect the high-level control flow structure (condition-
als and loops) at a specific point in an IR program. More precisely, they indicate the
addresses where the structures end, and the corresponding pc labels that are to be
restored at these addresses. The innermost structure is on top of the stack, the outer-
most structure is at the bottom. Therefore, the row of pc labels on the stack is always
in ascending order, if we start to count from the bottom (right-most) element. (The
rationale is that ∆ is a stack that “grows” to the left. In contrast, if ∆ was regarded as a
sequence of pc labels, a more natural description of the order would be descending.)

Definition C.9 A stack of domains is ascending if its domains are sorted in ascending
order with respect to ≤¦ from bottom (right-most) to top. More precisely, k is ascending if
and only if

• k is empty or contains only one element, or

• k = k1 :: k2 :: ks and k2 ≤¦ k1 and k2 :: ks is ascending.

In the following, we write ∆pc to refer only to the stack of pc labels in a confluence
point stack, thereby projecting away the program points. Also, bottom(x) refers to the
right-most (last, bottom) element of the stack or sequence x.

Lemma C.10 Let Γ,Γt ` i , pc,∆,Q
I−→ i ′, pc ′,∆′,Q ′ and (m, i ,ω)

I−→¦
n (m, i ′,ω′).

If Jpc ::∆pcK¦ω is ascending, then
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1.
q

pc ′ ::∆′
pc

y¦
ω′ is ascending, and

2. bottom(Jpc ::∆pcK¦ω) ≤¦ bottom(
q

pc ′ ::∆′
pc

y¦
ω′), and

3. if Jpc ′K¦ω′ 6≤¦ k, then `¦ J∆K¦ω
k∼ J∆′K¦ω′ .

PROOF By induction over the type derivation.

• If the typing judgement has been derived by the weakening rule, we get by rule

inversion Γ,Γt ` i , pc,∆,Q0
I−→ i ′, pc ′,∆′,Q ′

0, hence we can inductively apply
this lemma and get the desired properties.

• I = if e j .

We have ∆′ =∆ and ω′ =ω and JpcK¦ω ≤¦ JpcK¦ω∨¦ J`K¦ω = Jpc t`K¦ω = Jpc ′K¦ω′ .

1. With the assumptions, we get
q

(pc t`) ::∆′
pc

y¦
ω′ is ascending.

2. If ∆ is not empty, we get the assumption trivially, since ∆′ =∆ and ω′ =ω.
Otherwise, we can conclude that bottom(Jpc ::∆pcK¦ω) = JpcK¦ω ≤¦ Jpc ′K¦ω′ =
bottom(

q
pc ′ ::∆′

pc

y¦
ω′ .

3. This holds trivially, since ∆′ =∆ and ω=ω′.

• I = jmp j .

We have ∆′ =∆ and ω′ =ω and pc ′ = pc, therefore the stack stays in ascending
order, the bottom element does not change, and the pre-stack is ¦,k-equivalent
to the post-stack.

• I = cpush j .

We have ω′ =ω and pc ′ = pc.

1. Since Jpc ::∆pcK¦ω is ascending, Jpc :: pc ::∆pcK¦ω′ is ascending.

2. We have bottom(Jpc ::∆pcK¦ω) = bottom(Jpc :: pc ::∆pcK¦ω).

3. If JpcK¦ω 6≤¦ k, we get by definition of ¦,k-equivalence `¦ J∆K¦ω
k∼ Jpc ::∆K¦ω.

• I = cjmp j .

We have ω′ =ω.

1. Since Jpc :: pc ′ ::∆K¦ω is ascending, Jpc ′ ::∆pcK¦ω is ascending.

2. We have bottom(Jpc :: pc ′ ::∆pcK¦ω) = bottom(Jpc ′ ::∆pcK¦ω).

3. If Jpc ′K¦ω 6≤¦ k, then by definition of ¦,k-equivalence `¦ Jpc ′ ::∆K¦ω
k∼ J∆K¦ω.
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• I = block a.

We have ∆′ =∆, and pc ′ = pc . From Lemma C.3, it follows that J∆K¦ω = J∆K¦ω′ and
JpcK¦ω = JpcK¦ω′ , therefore we get the required propositions trivially. �

Theorem C.11 Let ¦ be a domain lattice, and let k ∈ Dom¦ be a domain. Given an
IR program PIR that is well-typed. Let m be a method with a signature msig(m) =
[Γ, pcm ,Qm ,Q ′

m]. Suppose that i , i ′ ∈ dom(IR(m)) are addresses in m, such that Λ(i ) =
(pc,∆,Q) and Λ(i ′) = (pc ′,∆′,Q ′). If

• (m, i ,ω) =⇒
IR

¦
n (m, i ′,ω′),

• ω |=¦ Q,

• Jpc ::∆pcK¦ω is ascending and bottom(Jpc ::∆pcK¦ω) 6≤¦ k,

then there exists a type environment Γt such that

• ω′ |=¦ Q ′, and

• `¦ ω∼Γ,Γt ,k
id ω′.

We call this theorem P (m,n), and prove it by strong induction on n. For this, we
need the following auxiliary lemma.

Lemma C.12 Let Γ,Γt ` i , pc,∆,Q
I−→ i ′, pc ′,∆′,Q ′ and (m, i ,ω)

I−→¦
n (m, i ′,ω′). Fur-

thermore, let P (m, p) for all p < n. Let ¦ be a domain lattice, and let k ∈ Dom¦.
If ω |=¦ Q and JpcK¦ω 6≤¦ k, then ω′ |=¦ Q ′, and `¦ ω∼Γ,Γt ,k

id ω′.

PROOF By case distinction over n.

• Let n = 0. Then we can apply Lemma C.7, and get ω′ |=¦ Q ′, and Lemma C.8 and
get `¦ ω∼Γ,Γt ,k

id ω′.

• Let n 6= 0. Then I = block a. For all a ∈ a, if ω
a−→¦

0ω
′, we get ω′ |=¦ Q ′ and

`¦ ω ∼Γ,Γt ,k
id ω′. If ω

a−→¦
nω

′ and n 6= 0, then it must be a = x :=e.m(e). With a
similar argument as in Lemma A.6 on page 117 for high-level method calls and
using P (m,n −1) and the fact that pcm for the called method must be invisible
at k in ¦, we get ω′ |=¦ Q ′, and `¦ ω∼Γ,Γt ,k

id ω′. �
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PROOF (OF THEOREM C.11) Since pc :: ∆pc is ascending and the bottom element is
not ¦,k-visible, we get JpcK¦ω 6≤¦ k. As the method is well-typed, we know by definition
that there exists a type environment Γt such that a type mapping Λ is derivable for Γ
from msig(m) and that Γt , that is, there are suitable small-step typing judgements for

each successor relation (m, i )
I7−→ (m, i ′).

We proceed by induction on n and the number of execution steps c.

• If c = 0, then zero steps have been taken, i.e. i = i ′. We have ω′ =ω, and get the
desired propositions directly from the assumptions and by reflexivity of the state
equivalence relation.

• If c > 0, then (m, i ,ω)
I−→¦

n1
(m, i ′′,ω′′) =⇒

IR
¦
n2

(m, i ′,ω′) and n1 ≤ n and n2 ≤ n. Let

Λ(i ′′) = (pc ′′,∆′′,Q ′′).

– If n = 0, then n1 = 0 and n2 = 0. Hence we get with Lemmas C.7 and C.8
that ω′′ |=¦ Q ′′ and `¦ ω∼Γ,Γt ,k

id ω′′.

– Let n > 0, and P (m, p) for all p < n. Hence we can apply Lemma C.12 and
get ω′′ |=¦ Q ′′ and `¦ ω∼Γ,Γt ,k

id ω′′. �

By Lemma C.10,
q

pc ′ ::∆′
pc

y¦
ω′ is ascending, and bottom(

q
pc ′ ::∆′

pc

y¦
ω′) 6≤¦ k.

The remaining execution (m, i ′′,ω′′) =⇒
IR

¦
n2

(m, i ′,ω′) is shorter, hence we can

apply the theorem inductively on it and get ω′ |=¦ Q ′ and `¦ ω′′ ∼Γ,Γt ,k
id ω′. By

transitivity of the state equivalence relation we finally get `¦ ω∼Γ,Γt ,k
id ω′.

C.2 Small-Step and Big-Step Universal Noninterference

In this section, we first show universal noninterference for a single IR execution step on
the left side. Then we use this result to show the soundness for entire method bodies.

C.2.1 Small-step noninterference

This subsection presents two auxiliary lemmas for two executions.
The first lemma states that there is a “strong low-bisimulation”: Whenever one can

make one step in the left execution, one can make one step in the right execution,
such that when the initial states were equivalent and had a low pc, then the final
configurations are equivalent.

The second lemma states that there is a “weak high-bisimulation”: Whenever one
can make one step in the left execution, one can make zero or more steps in the right
execution, such that when the initial states were equivalent and had a high pc, then
the final configurations are equivalent. (The main part of the lemma has already been
shown in the previous section.)

138



C.2 Small-Step and Big-Step Universal Noninterference

Lemma C.13 (Small-step noninterference under low pc) Given a program PIR that is
well-typed, and a method m with a signature msig(m) = [Γ, pcm ,Qm ,Q ′

m]. Let Γt be
the temporary variable type environment for which m is well-typed. Let ¦ be a domain
lattice, and k ∈ Dom¦ be a domain. For v ∈ {1,2}, suppose (pcv ,∆v ,Qv ) = Λ(iv ) and
(pc ′v ,∆′

v ,Q ′
v ) =Λ(i ′v ). If

• (m, i1,ω1)
I−→¦

0 (m, i ′1,ω′
1) and (m, i2,ω2)

I−→¦
0 (m, i ′2,ω′

2), and

• Jpc1K¦ω1
= Jpc2K¦ω2

≤¦ k, and

• Γ,Γt ` (m, i1,ω1) : pc1,∆1,Q1 ≈¦
k,β (m, i2,ω2) : pc2,∆2,Q2,

then there exists a partial bijection β′ ⊇β such that

• Γ,Γt ` (m, i ′1,ω′
1) : pc ′1,∆′

1,Q ′
1 ≈¦

k,β′ (m, i ′2,ω′
2) : pc ′2,∆′

2,Q ′
2.

PROOF We get by definition of configuration equivalence that i1 = i2, i.e., we consider
the same instruction for both executions. This program point will be called i , and we
denote the initial types as Λ(i ) = (pc,∆,Q).

1. With Lemma C.7, we get ω′
1 |=¦ Q ′

1 and ω′
2 |=¦ Q ′

2.

2. We show that there is a bijection β′ ⊇β such that `¦ ω′
1 ∼Γ,Γt ,k

β′ ω′
2.

• Let I = block a. Then i ′1 = i ′2, and thus Q ′
1 =Q ′

2 =Q ′. Let S = makestmt(a).

We get (s1 ∪ st1,h1)
S−→¦ (s′1 ∪ s′t1,h′

1) and (s1 ∪ st1,h1)
S−→¦ (s′1 ∪ s′t1,h′

1) with
Lemma C.1 and Γ∪Γt , pc ` {Q} S {Q ′} with Lemma C.2. With Theorem A.7
on page 119, we get that there is a bijection β′ ⊇β such that `¦ ω′

1 ∼Γ,Γt ,k
β′

ω′
2.

• If I 6= block a, thenω′
1 =ω1 andω′

2 =ω2. Let β′ =β. From the assumptions,

it follows `¦ ω′
1 ∼Γ,Γt ,k

β′ ω′
2.

3. Now we show that `¦ J∆K¦ω′
1

k∼ J∆K¦ω′
2
.

• Let I = block a. We have ∆′ =∆. By Lemma C.3, we have for v ∈ {1,2} that

J∆K¦ωv
= J∆K¦ω′

v
, hence `¦ J∆K¦ω′

v

k∼ J∆K¦ω′
v
.

• Let I = cpush j . We have ω′
1 =ω1 and ω′

2 =ω2, hence with the assumptions

we get `¦ J( j , pc) ::∆K¦ω′
1

k∼ J( j , pc) ::∆K¦ω′
2
.

• Let I = cjmp j . We have ω′
1 =ω1 and ω′

2 =ω2. From the stack equivalence

`¦ J( j , pc) ::∆K¦ω1

k∼ J( j , pc) ::∆K¦ω2
, we can conclude `¦ J∆K¦ω′

1

k∼ J∆K¦ω′
2
.

• Let I ∈ {if e j ,jmp j }. We have ω′
1 =ω1 and ω′

2 =ω2 and ∆′ =∆, hence with
the assumptions we get the desired confluence stack equivalence.
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4. Finally, we show that either Jpc ′1K
¦
ω′

1
= Jpc ′2K

¦
ω′

2
≤¦ k and i ′1 = i ′2, or Jpc ′1K

¦
ω′

1
6≤¦ k

and Jpc ′2K
¦
ω′

2
6≤¦ k.

• Let I = if e j . We have ω′
1 = ω1 and ω′

2 = ω2. We have Γ∪Γt ` e : `.
By Corollary A.4 on page 115, we know that either J`K¦ω1

= J`K¦ω2
≤¦ k, or

J`K¦ω1
6≤¦ k and J`K¦ω2

6≤¦ k.

– If J`K¦ω1
= J`K¦ω2

≤¦ k, we get with Lemma A.1 on page 113 that the
expression evaluates to the same value: JeK¦ω1

= JeK¦ω2
. Therefore, the

same branch is taken in both steps, and we get i ′1 = i ′2. Also, we get
Jpc t`K¦ω′

1
= Jpc t`K¦ω′

2
≤¦ k.

– If J`K¦ω1
6≤¦ k and J`K¦ω2

6≤¦ k, then Jpc t`K¦ω′
1
6≤¦ k and Jpc t`K¦ω′

2
6≤¦ k.

• Let I = cjmp j . Then i ′1 = i ′2 = j . By assumption, we have the stack equiva-

lence `¦ J( j , pc ′) ::∆K¦ω1

k∼ J( j , pc ′) ::∆K¦ω2
, so we get by definition of conflu-

ence stack equivalence that either Jpc ′1K
¦
ω′

1
= Jpc ′2K

¦
ω′

2
≤¦ k, or Jpc ′1K

¦
ω′

1
6≤¦ k

and Jpc ′2K
¦
ω′

2
6≤¦ k.

• Let I = block a. Then i ′1 = i ′2. With Lemma C.3, we get for v ∈ {1,2} that
JpcK¦ωv

= JpcK¦ω′
v
, hence JpcK¦ω′

1
= JpcK¦ω′

2
≤¦ k.

• Let I ∈ {jmp j ,cpush j }. Then i ′1 = i ′2 and pc ′1 = pc ′2 = pc and ω′
1 =ω1 and

ω′
2 =ω2. Therefore, Jpc ′1K

¦
ω′

1
= Jpc ′2K

¦
ω′

2
≤¦ k and i ′1 = i ′2.

From points (1)-(4) above, it follows there exists a partial bijection β′ ⊇β such that
Γ,Γt ` (m, i ′1,ω′

1) : pc ′1,∆′
1,Q ′

1 ≈¦
k,β′ (m, i ′2,ω′

2) : pc ′2,∆′
2,Q ′

2. �

Lemma C.14 (Small-step noninterference under high pc) Given a program PIR that
is well-typed, and a method m with a signature msig(m) = [Γ, pcm ,Qm ,Q ′

m]. Let Γt be
the temporary variable typing for which m is well-typed. Let ¦ be a domain lattice, and
k ∈ Dom¦. For v ∈ {1,2}, suppose (pcv ,∆v ,Qv ) =Λ(iv ) and (pc ′v ,∆′

v ,Q ′
v ) =Λ(i ′v ). If

• (m, i1,ω1)
I−→¦

n1
(m, i ′1,ω′

1),

• Jpc1K¦ω1
6≤¦ k and Jpc2K¦ω2

6≤¦ k ,

• Γ,Γt ` (m, i1,ω1) : pc1,∆1,Q1 ≈¦
k,β (m, i2,ω2) : pc2,∆2,Q2,

then either (m, i2,ω2) diverges, or there exists a state (m, i ′2,ω′
2), a call depth n2 and

β′ ⊇β such that

• (m, i2,ω2) =⇒
IR

¦
n2

(m, i ′2,ω′
2), and

• Γ` (m, i1,ω′
1) : pc ′1,∆′

1,Q ′
1 ≈¦

k,β′ (m, i2,ω′
2) : pc ′2,∆′

2,Q ′
2.
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PROOF By induction over the execution of the second program.

• If Jpc ′1K
¦
ω′

1
6≤¦ k, we choose (i ′2,ω′

2) = (i2,ω2) and β′ =β, i.e., zero execution steps.

From the assumptions, we have ω′
2 |=¦ Q ′

2. By Lemma C.12, we know ω′
1 |=¦ Q ′

1

and `¦ ω1 ∼Γ,Γt ,k
id ω′

1. Since Jpc ′1K
¦
ω′

1
6≤¦ k, we can conclude with Lemma C.10

that `¦ J∆′
1K

¦
ω′

1

k∼ J∆1K¦ω1
. By transitivity, `¦ J∆′

1K
¦
ω′

1

k∼ J∆′
2K

¦
ω′

2
and `¦ ω′

1 ∼Γ,Γt ,k
β′ ω′

2.

Therefore, the configuration equivalence relation holds.

• If Jpc ′1K
¦
ω′

1
≤¦ k, then it must be I = cjmp i ′1:

– If I = if e j , then with Jpc1K¦ω1
6≤¦ k, we get Jpc ′1K

¦
ω′

1
= Jpc1 t`K¦ω′

1
6≤¦ k.

– If I = block a, then with Lemma C.3, we have Jpc1K¦ω1
= Jpc ′1K

¦
ω′

1
6≤¦ k.

– If I ∈ {cpush j ,jmp j }, we have pc1 = pc ′1 and ω′
1 =ω1, hence Jpc ′1K

¦
ω′

1
6≤¦ k.

We thus have ∆1 = (i ′1, pc ′1) ::∆′
1, and ω′

1 =ω1. We now execute the second pro-
gram, starting at (i2,ω2). Assuming that it does not diverge, we now show that
execution eventually reaches the confluence point i ′1.

First, we assume i2 =mexit(m), i.e., we cannot make a single step. By design ofΛ,
∆2 =Λ∆(mexit(m)) = ε, and ∆1 = (i ′1, pc ′1) ::∆′

1. As Jpc ′1K
¦
ω1

≤¦ k, this contradicts

the assumption `¦ J∆1K¦ω1

k∼ J∆2K¦ω2
. So it must be i2 6=mexit(m).

Let (m, i2,ω2)
I2−→¦

n2
(m, i ′2,ω′

2) for some n2. It follows (m, i2,ω2) =⇒
IR

¦
n2

(m, i ′2,ω′
2).

– If Jpc ′2K
¦
ω′

2
6≤¦ k, then with the same arguments as above, we get

Γ,Γt ` (m, i2,ω2) : pc2,∆2,Q2 ≈¦
k,id (m, i ′2,ω′

2) : pc ′2,∆′
2,Q ′

2.

Therefore, with the original configuration equivalence and by transitivity,

Γ,Γt ` (m, i1,ω1) : pc1,∆1,Q1 ≈¦
k,β (m, i ′2,ω′

2) : pc ′2,∆′
2,Q ′

2.

We can then apply the theorem inductively to the initial state (i1,ω1) and
(i ′2,ω′

2), since the execution path of the second program is now shorter.

– If Jpc ′2K
¦
ω′

2
≤¦ k, we get with the same argument as above that I2 = cjmp i ′2.

We thus have ω′
2 =ω2 and ∆2 = (i ′2, pc ′2) ::∆′

2. As

`¦ J(i ′1, pc ′1) ::∆1K
¦
ω′

1

k∼ J(i ′2, pc ′2) ::∆2K
¦
ω′

2
,

we get by definition of confluence point stack equivalence that i ′1 = i ′2.
Since we have a unique mapping of types to program points, ∆′

2 = ∆′
1

and pc ′2 = pc ′1 and Q ′
2 = Q ′

1. For configuration equivalence, it remains
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to be shown that the final states are equivalent. We choose β′ = β. With
Jpc1K¦ω1

6≤¦ k and Jpc2K¦ω2
6≤¦ k, we get by Lemma C.12 that `¦ ω1 ∼Γ,Γt ,k

id ω′
1

and `¦ ω2 ∼Γ,Γt ,k
id ω′

2, and with the assumption and transitivity of state

equivalence we get `¦ ω′
1 ∼Γ,Γt ,k

β
ω′

2. �

C.2.2 Universal Noninterference

The universal noninterference theorem applies the two lemmas from the previous
section repeatedly to get a noninterference result for the execution of entire methods
(or other pairs of execution chains that start at the same program points).

Theorem C.15 Given a program PIR that is well-typed, and a method m with a signa-
ture msig(m) = [Γ, pcm ,Qm ,Q ′

m]. Let Γt be the temporary variable type environment for
which m is well-typed. Let iret =mexit(m). Let ¦ be a domain lattice, and k ∈ Dom¦. For
v ∈ {1,2}, let (pcv ,∆v ,Qv ) =Λ(iv ), and let (pcret ,∆ret ,Qret) =Λ(iret). Then if

• (m, i1,ω1) =⇒
IR

¦
n1

(m, iret ,ωret1) and

• (m, i2,ω2) =⇒
IR

¦
n2

(m, iret ,ωret2) and

• Γ,Γt ` (m, i1,ω1) : pc1,∆1,Q1 ≈¦
k,β (m, i2,ω2) : pc2,∆2,Q2

then there exists a partial bijection βret ⊇β such that

• Γ,Γt ` (m, iret ,ωret1) : pcret ,∆ret ,Qret ≈¦
k,βret

(m, iret ,ωret2) : pcret ,∆ret ,Qret .

We call this previous theorem P (m,n1,n2), and prove it by strong induction on n1

and n2. For this, we need an auxiliary lemma.

Lemma C.16 Given a program PIR that is well-typed, and a method m with a signature
msig(m) = [Γ, pcm ,Qm ,Q ′

m]. Let Γt be the temporary variable type environment for
which m is well-typed. Let ¦ be a domain lattice, and k ∈ Dom¦ be a domain. For
v ∈ {1,2}, let (pcv ,∆v ,Qv ) =Λ(iv ) and (pc ′v ,∆′

v ,Q ′
v ) =Λ(i ′v ). Suppose P (m, p1, p2) holds

for all p1 < n1 and p2 < n2. If

• (m, i1,ω1)
I1−→¦

n1
(m, i ′1,ω′

1) and (m, i2,ω2)
I2−→¦

n2
(m, i ′2,ω′

2),

• Jpc1K¦ω1
= Jpc2K¦ω2

≤¦ k,

• Γ,Γt ` (m, i1,ω1) : pc1,∆1,Q1 ≈¦
k,β (m, i2,ω2) : pc2,∆2,Q2,

then there exists a partial bijection β′ ⊇β such that

• Γ,Γt ` (m, i ′1,ω′
1) : pc ′1,∆′

1,Q ′
1 ≈¦

k,β′ (m, i ′2,ω′
2) : pc ′2,∆′

2,Q ′
2.
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PROOF As Jpc1K¦ω1
= Jpc2K¦ω2

≤¦ k, we get by definition of configuration equivalence
that i1 = i2. This also means that I1 = I2 = I.

If n1 = n2 = 0, then we can directly apply Lemma C.13. Let n1 > 0, without loss of
generality. (The case n2 > 0 is similar.) Then I = block a, and a contains a method call.
Hence it must be n2 6= 0. Using the same argument as in the proof of Lemma C.12, we
only need to show the lemma for method calls. We use the same argument as for the
proof of Theorem A.7 on page 119 (high-level program execution soundness), relying
on well-typedness of PIR and the fact that we can use P (m,n1 −1,n2 −1). �

PROOF (OF THEOREM C.15) If i1 = i2 = iret , then the theorem follows trivially. Let
therefore be i1 6= iret or i2 6= iret . By definition of configuration equivalence, we know
either Jpc1K¦ω1

= Jpc2K¦ω2
≤¦ k, or Jpc1K¦ω1

6≤¦ k and Jpc2K¦ω2
6≤¦ k.

• Let Jpc1K¦ω1
= Jpc2K¦ω2

≤¦ k. Then i1 = i2, and thus i1 6= iret and i2 6= iret . Hence
we can make a step in both executions, that is,

(m, i1,ω1)
I1−→¦

n′
1

(m, i ′1,ω′
1) =⇒

IR

¦
n′′

1
(m, iret ,ωret1)

and
(m, i2,ω2)

I2−→¦
n′

2
(m, i ′2,ω′

2) =⇒
IR

¦
n′′

2
(m, iret ,ωret2)

We proceed by induction over both n1 and n2.

– If n1 = n2 = 0, then by definition of big-step semantics, n′
1 < n1 = 0 and

n′
2 ≤ n2 = 0. Hence we can apply Lemma C.13 and get that there exists a

bijection β′ ⊇β such that

Γ,Γt ` (m, i ′1,ω′
1) : pc ′1,∆′

1,Q ′
1 ≈¦

k,β′ (m, i ′2,ω′
2) : pc ′2,∆′

2,Q ′
2.

– Assume P (m, p1, p2) for all p1 < n1 and p2 < n2. Since n′
1 ≤ n1 and n′

2 ≤ n2,
we have P (m, p1, p2) for all p1 < n′

1 and p2 < n′
2. We can apply Lemma C.16

to the first steps, and get that there exists a bijection β′ ⊇β such that

Γ,Γt ` (m, i ′1,ω′
1) : pc ′1,∆′

1,Q ′
1 ≈¦

k,β′ (m, i ′2,ω′
2) : pc ′2,∆′

2,Q ′
2.

Since the remaining execution is now shorter, we can apply the theorem induc-
tively, and get by transitivity of configuration equivalence that there is some
βret ⊇β the final configurations are equivalent.

• Let Jpc1K¦ω1
6≤¦ k and Jpc2K¦ω2

6≤¦ k. Let i1 6= iret without loss of generality. (If
i2 6= iret , then we can swap the two configurations and apply the theorem, as
configuration equivalence is symmetric modulo inverse bijections.)
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C. Correctness Proof for the IR Type System

We then have

(m, i1,ω1)
I1−→¦

n′
1

(m, i ′1,ω′
1) =⇒

IR

¦
n′′

1
(m, iret ,ωret1).

Since (m, i2,ω2) does not diverge, we get with Lemma C.14 that there is some

(m, i ′2,ω′
2) such that (m, i2,ω2)

I2−→¦
n2

(m, i ′2,ω′
2) and

Γ,Γt ` (m, i ′1,ω′
1) :Λ(i ′1) ≈¦

k,β′ (m, i ′2,ω′
2) :Λ(i ′2).

Also, since program execution is deterministic, (m, i ′2,ω′
2) =⇒

IR
¦
n′′

2
(m, iret ,ωret2).

Since the executions are now shorter, we can apply the theorem inductively, and
get by transitivity that there is some βret ⊇β such that the final configurations
are equivalent. �

Lemma C.17 Let PIR be a well-typed IR program, and m be a method. Then m is uni-
versally noninterferent.

PROOF Let msig(m) = [Γ, pc,Q,Q ′].
Let k be a domain, and (s1,h1), (s2,h2) be states such that

• `¦ (s1,h1) ∼Γ,k
β

(s2,h2), and

• (s1,h1)
m=⇒
IR

¦
n1

(s′1,h′
1), and

• (s2,h2)
m=⇒
IR

¦
n2

(s′2,h′
2), and

• (s1,h1) |=¦ Q and (s2,h2) |=¦ Q.

We need to show that there exists a partial bijection β′ ⊇β such that

• `¦ (s′1,h′
1) ∼Γ,k

β′ (s′2,h′
2), and

• (s′1,h′
1) |=¦ Q ′ and (s′2,h′

2) |=¦ Q ′.

We define i0 = mentry(m) and iret = mexit(m) and st = [tvars(m) 7→ defval]. By def-
inition of method execution, we have (m, i0, s1, st ,h1) =⇒

IR
¦
n1

(m, iret , s′1, st1,h′
1) and

(m, i0, s2, st ,h2) =⇒
IR

¦
n2

(m, iret , s′2, st2,h′
2).

Since the program is well-typed, there exists a type environment Γt , and a type
mapping Λ which is derivable for IR(m) for Γ and Γt , such that Λ(i0) = (pc,ε,Q)
and Λ(iret) = (pc,ε,Q ′). We have trivially `¦ st ∼Γt ,k

β
st . Let ω1 = (s1, st ,h1) and ω2 =

(s2, st ,h2) and ω′
1 = (s′1, st1,h′

1) and ω′
2 = (s′2, st2,h′

2). We get `¦ ω1 ∼Γ,Γt ,k
β

ω2.
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C.2 Small-Step and Big-Step Universal Noninterference

Since the method signature is well-formed, we know that there exists an expression
e such that Γ` e : pc. From Corollary A.4, it follows that either JpcK¦ω1

= JpcK¦ω2
≤¦ k,

or JpcK¦ω1
6≤¦ k and JpcK¦ω2

6≤¦ k. With all the preceding facts, we can conclude by
definition

Γ,Γt ` (i1,ω1) : pc1,ε,Q ≈¦
k,β (i2,ω2) : pc2,ε,Q

and can thus apply Theorem C.15, which gives us that there exists a bijection β′ ⊇β
such that Γ,Γt ` (iret ,ω′

1) : pc,ε,Q ′ ≈¦
k,β′ (iret ,ω′

2) : pc,ε,Q ′. By definition, it follows that

`¦ ω′
1 ∼Γ,Γt ,k

β′ ω′
2, thus `¦ (s′1,h′

1) ∼Γ,k
β′ (s2,h′

2). Also, from the configuration equivalence

it follows ω′
1 |=¦ Q ′ and ω′

2 |=¦ Q ′. Since msig(m) is well-formed, Q and Q ′ do not
contain any variables from TVar, so (s′1,h′

1) |=¦ Q ′ and (s′2,h′
2) |=¦ Q ′.

This means the method m is universally noninterferent. �

Corollary C.18 If PIR is a well-typed IR program, then it is universally noninterferent.

PROOF The corollary follows immediately from Lemma C.17 and definition of univer-
sally noninterferent IR programs.
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D
Type-Preserving Compilation

In this appendix, we show that if PDSD is a well-typed DSD program with respect to
the high-level type system, then BC2IR(compile(PDSD)) exists and is well-typed with
respect to the IR type system.

The proof consists of two parts:

1. We show that BC2IR(compile(PDSD)) indeed exists, and has the following proper-
ties: stacks are empty between compiled statements, and high-level expressions
are completely recovered by the BC2IR algorithm.

2. Then we show that there exists a valid type mappingΛ for BC2IR(compile(PDSD)),
i.e., the program is well-typed.

D.1 Properties of the IR Program

Proposition D.1 Let (BC , i1) = compileexp(m,e, i0) and ASin[m, i0] = as. Then

1. IR =BC2IRrng(BC ,m, [i0, i1[) exists, and

2. ∀i ∈ [i0, i1[. IR[m, i ] = block ε, and

3. ASin[m, i1] = e :: as.

PROOF First, we observe that by Proposition 5.3 on page 73, dom(BC (m)) = [i0, i1[,
and jmpTgtBC

m =;. Therefore, BC2IRrng(BC ,m, [i0, i1[) cannot fail, hence IR exists.
We continue by induction over the structure of the expression e.
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D. Type-Preserving Compilation

• e = c. Then (BC , i1) = ([(m, i0) 7→ push c], i0 +1). By definition of the algorithm,
BC2IRinstr(i0,push c,ASin[m, i0]) = (block ε,c :: as) = (IR[m, i0],ASin[m, i1]).

• e = x. Then (BC , i1) = ([(m, i0) 7→ load x], i0 +1). By definition of the algorithm,
BC2IRinstr(i0,load x,ASin[m, i0]) = (block ε, x :: as) = (IR[m, i0],ASin[m, i1]).

• e = e. f . We have (BC ′, i ′) = compileexp(m,e, i0) and BC = BC ′∪[(m, i ′) 7→ getf f ]
and i1 = i ′+1. By induction, we get ASin[m, i ′] = e :: as, and IR[m, i ] = block ε

for all i ∈ [i0, i ′[. We have BC2IRinstr(i ′,getf f ,e :: as) = (block ε,e. f :: as) =
(IR[m, i ′],ASin[m, i1]). Thus, IR[m, i ] = block ε for all i ∈ [i0, i1[.

• e = e1 op e2. By definition of the compilation, (BC ′, i ′) = compileexp(m,e1, i0) and
(BC ′′, i ′′) = compileexp(m,e2, i ′) and BC = BC ′∪BC ′′∪ [(m, i ′′) 7→ prim op] and
i1 = i ′′+1. Applying the proposition inductively twice, we get ASin[m, i ′] = e1 :: as
and ASin[m, i ′′] = e2 :: e1 :: as and IR[m, i ] = block ε for all i ∈ [i0, i ′′[. We have

BC2IRinstr(i ′′,prim op,e2 :: e1 :: as) = (block ε, (e1 op e2) :: as)
= (IR[m, i ′′],ASin[m, i1]).

Thus, IR[m, i ] = block ε for all i ∈ [i0, i1[. �

Proposition D.2 Let (BC , i1) = compilestmt(m,S, i0), and ASin[m, i0] = ε. Then

1. IR =BC2IRrng(BC ,m, [i0, i1[) exists, and

2. ASin[m, i1] = ε.

PROOF By induction over the structure of S.
Suppose S = skip. Then BC is empty, and i1 = i0. Hence IR trivially exists, and

ASin[m, i1] = ASin[m, i0] = ε.
All other cases for S are explained by Tables D.1 to D.7, respectively. For reference,

the tables present the layout of the compiled bytecode program BC as defined by the
compilation function. Moreover, they show how the corresponding IR instructions
and abstract stacks look like, thereby proving that IR indeed exists, and that the final
abstract state is ε.

For each instruction address i , the tables list the compiled bytecode instruction(s)
starting at i , then initial abstract stack ASin[m, i ], the corresponding IR instruction(s)
starting at i , and the resulting abstract stack ASin[m, i+], where i+ is the first address
of the following block (indicated by the next line).

Each row corresponds to an instruction sequence starting at a specific address i .
The symbols in the “remarks” column show how to obtain the IR instruction(s) and
abstract stacks:
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D.1 Properties of the IR Program

i BC (m, i to i+−1) ASin[m, i ] IR[m, i to i+−1] ASin[m, i+] remarks

i0 [compileexp(m,e, i0)] ε [sequence of [e] (Init),
block ε] (Expr)

...

i ′ store x [e] block [x :=e] ε (Instr)

i1 . . . ε (Result)

Table D.1: Proof for x :=e

i BC (m, i to i+−1) ASin[m, i ] IR[m, i to i+−1] ASin[m, i+] remarks

i0 [compileexp(m,er , i0)] ε [sequence of [er ] (Init),
block ε] (Expr)

...

i ′ [compileexp(m,e, i ′)] [er ] [sequence of ] [e :: er ] (Expr)
block ε]

...

i ′′ putf f [e :: er ] block [er . f :=e] ε (Instr)

i1 . . . ε (Result)

Table D.2: Proof for S = er . f :=e

i BC (m, i to i+−1) ASin[m, i ] IR[m, i to i+−1] ASin[m, i+] remarks

i0 [compileexp(m,e, i0)] ε [sequence of [e] (Init),
block ε] (Expr)

i ′ newC [e] block [t 0
i ′ ] (Instr)

[t 0
i ′ :=new C (e)]

i ′+1 store x [t 0
i ′ ] block [x := t 0

i ′ ] ε (Instr)

i1 . . . ε (Result)

Table D.3: Proof for S = x :=new C (e)
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D. Type-Preserving Compilation

i BC (m, i to i+−1) ASin[m, i ] IR[m, i to i+−1] ASin[m, i+] remarks

i0 [compileexp(m,er , i0)] ε [sequence of [er ] (Init),
block ε] (Expr)

...

i ′ [compileexp(m,e, i ′)] [er ] [sequence of [e :: er ] (Expr)
block ε]

...

i ′′ callm′ [e :: er ] block [t 0
i ′′ ] (Instr)

[t 0
i ′′ :=er .m′(e)]

i ′′+1 store x [t 0
i ′′ ] block [x := t 0

i ′′ ] ε (Instr)

i1 . . . ε (Result)

Table D.4: Proof for S = x :=er .m(e)

ASi n ASi n

i BC (m, i to i+−1) [m, i ] IR[m, i to i+−1] [m, i+] remarks

i0 cpush i1 ε cpush i1 ε (Init),
(Instr)

i0 +1 [compileexp(m,e, i0 +1)] ε [sequence of [e] (Expr)
block ε]

...

i ′ bnz i ′′+1 [e] if e i ′′+1 ε (Instr),
(Jump)

i ′+1 [compilestmt(m,S2, i ′+1)] ε [BC2IRrng ε (Ind)
(BC ,m, [i ′+1, i ′′[)]

...

i ′′ cjmp i1 ε cjmp i1 ε (Instr),
(Jump)

i ′′+1 [compilestmt(m,S2, i ′′+1)] ε [BC2IRrng ε (Ind)
(BC ,m, [i ′′+1, i ′′′[)]

...

i ′′′ cjmp i1 ε cjmp i1 ε (Instr),
(Jump)

i1 . . . ε (Result)

Table D.5: Proof for S = if e then S1 else S2
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D.1 Properties of the IR Program

i BC (m, i to i+−1) ASin[m, i ] IR[m, i to i+−1] ASin[m, i+] remarks

i0 [compilestmt(m,S1, i0)] ε [BC2IRrng ε (Init),
(BC ,m, [i0, i ′[)] (Ind)

...

i ′ [compilestmt(m,S2, i ′)] ε [BC2IRrng ε (Ind)
(BC ,m, [i ′, i1[)]

...

i1 . . . ε (Result)

Table D.6: Proof for S = S1 ; S2

ASi n ASi n

i BC (m, i to i+−1) [m, i ] IR[m, i to i+−1] [m, i+] remarks

i0 cpush i1 ε cpush i1 ε (Init),
(Instr)

i0 +1 [compileexp(m,e, i0 +1)] ε [sequence of [e] (Expr)
block ε]

...

i ′ bnz i ′+2 [e] if e i ′+2 ε (Instr),
(Jump)

i ′+1 cjmp i1 ε cjmp i1 ε (Instr),
(Jump)

i ′+2 [compilestmt(m,S, i ′+2)] ε [BC2IRrng ε (Ind)
(BC ,m, [i ′+2, i ′′[)]

...

i ′′ [compileexp(m,e, i ′′)] ε [sequence of [e] (Expr)
block ε]

...

i ′′′ bnz i ′+2 [e] if e i ′+2 ε (Instr),
(Jump)

i ′′′+1 cjmp i1 ε cjmp i1 ε (Instr),
(Jump)

i1 . . . ε (Result)

Table D.7: Proof for S = while e do S
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(Init) We have ASin[m, i0] = ε by assumption.

(Instr) This line contains a single bytecode instruction, hence we can simply apply the
definition of BC2IRrng(BC ,m, [i ]). In all cases, we do not need to rescue abstract
stack values in temporary variables, since the bottom of the abstract stack, i.e.,
the part that does not contain instruction-relevant values, is empty. Also, since
i+ = i +1 in these cases, we get ASin[m, i+] = ASin[m, i +1] = ASout[m, i ].

(Jump) In this case, there is a j ∈ succ(m, i )∩ jmpTgtBC
m , but ASin[m, j ] = ε, so the

compilation to IR does not fail.

(Expr) This line contains compiled expression block, thus we apply Proposition D.1.

(Ind) This line contains a block of a compiled substatement, and ASin[m, i ] = ε. There-
fore, we can apply this proposition inductively.

(Result) This line shows ASin[m, i1] = ε.

From Proposition 4.3 on page 59, we get that no jumps occur within compiled
subexpressions. Hence the lines marked with (Jump) are the only instructions where
jumps do occur, and we have shown that the abstract stacks at the jumps are empty.
Therefore, BC2IRrng(BC , [i0, i1[) does not fail, so the compiled IR program exists. �

D.2 Type Derivation for the IR Program

This final section shows that for every type derivation for the high-level DSD program,
there exists a corresponding type derivation for the corresponding IR program. “Core-
sponding” means that there exists an IR type mapping for each method that matches
its method signature for a (fixed) variable type environment Γt .

Proposition D.3 Let (BC , i1) = compileexp(m,e, i0), and IR = BC2IRrng(BC ,m, [i0, i1[).
Let msig(m) = [Γ, pcm ,Qm

0 ,Qm
1 ]. Let Γt be an arbitrary type environment for temporary

variables, and let pc,∆,Q be any pc label, confluence point stack, and constraint set.
Then there exists a type mappingΛ derivable for IR and Γ,Γt such thatΛ(i0) = (pc,∆,Q)
and Λ(i1) = (pc,∆,Q).

PROOF By Proposition D.1, we know IR[m, i ] = block ε; therefore, we get the type

derivations Γ,Γt ` i , pc,∆,Q
I−→ i +1, pc,∆,Q for all i ∈ [i0, i1[. This means we can

derive a type mapping Λ such that (Λ(i0) =Λ(i0 +1) =Λ(i0 +2) = . . . =Λ(i1). �

In the proof for compiled statements, we extend the definitions from Section 3.4.1 on
page 39 with the set of all identifiers that occur in an expression: ids(e) = vars(e)∪flds(e).
This definition is lifted to confluence point stacks ids(∆), which refers to all fields and
all variables that occur syntactically in the pc labels on the ∆ stack.
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D.2 Type Derivation for the IR Program

Proposition D.4 Let PDSD be a high-level DSD program, with given signatures for the
methods. Let m be a method, and S be a high-level statement that occurs in the method
body. Let (BC , i1) = compilestmt(m,S, i0). Suppose this compiled program is translated to
IR code, such that ASin[m, i0] = ε and IR =BC2IRrng(BC ,m, [i0, i1[). Suppose msig(m) =
[Γ, pcm ,Qm

0 ,Qm
1 ] and Γ, pc ` {Q0} S {Q1}. Let ∆ be an arbitrary confluence point stack,

such that ids(∆) ⊆ ids(pc). Then there exists a type environmentΓt and a type mappingΛ
derivable for IR and Γ,Γt such that Λ(i0) = (pc,∆,Q0) and Λ(i1) = (pc,∆,Q1).

PROOF By induction over the type deriviation. If Γ, pc ` {Q0} S {Q1} has been derived
by the subsumption rule T-WEAK, then we get by rule inversion that there is some
other typing judgement Γ, pc ` {Q ′

0} S {Q ′
1} with Q0 ⇒ Q ′

0 and Q ′
1 ⇒ Q1. We can

apply the proposition inductively and get a type mapping derivable for I R and Γ,Γt . By
definition, there must exist a number of small-step IR typing rules for each instruction,
such that we can apply the weakening rule of the IR type system to get the desired pre-
and postconditions, which again means that there is a derivable type mapping Λ for
Q0 and Q1.

In the following, suppose Γ, pc ` {Q0} S {Q1} has not been derived by the subsump-
tion rule. We proceed by case distinction over S.

• S1 ; S2: The IR type derivation is shown in Table D.8 on the next page. We can di-
rectly apply this proposition inductively to both substatements, and get suitable
type mappings Λ1,Λ2 and environments Γt1,Γt2 for each of the substatements.
Since the IR parts that correspond to the statements do not overlap, and since
the temporary variables used in both parts are disjoint thanks to the notation,
we can combine them and get the desired type mapping Λ and environment Γt .

• x :=e: Let Q0 =Q ∪Q ′[e/x] and Q1 =Q ′. The IR type derivation is shown in Ta-
ble D.9 on the following page. We set Γt (t 0

i ′) = Γ(x). This is well-defined, because
t 0

i ′ only appears at this compiled IR fragment in the entire IR program. Since t 0
i ′

is a temporary variable, it cannot occur in pc, and thus, with ids(∆) ⊆ ids(pc), it
also cannot occur in pc . We can use these facts and the premises of the T-ASSIGN

rule to type the IR block of assignments. Note that the substitution of t 0
i ′ with

x can be ignored, since t 0
i ′ could have occurred neither in the high-level data

structures Q ′ =Q1 nor in e, since it is a temporary variable.

• er . f :=e: Let Q0 =Q ∪Q ′[e/er . f ] and Q1 =Q ′. The IR type derivation is shown in
Table D.10 on the next page. Since the abstract input stack at the field assignment
is empty, there is no need to save it in temporary variables ti ′′ . The field update
block can be typed directly by using the premises of T-PUTFIELD. Also, since
f 6∈ pc and ids(∆) ⊆ ids(pc), we get f 6∈∆.
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i Λ(i ) IR[m, i to i+−1] Λ(succ(m, i )) i+ remarks

i0 (pc,∆,Q0) [BC2IRrng(BC ,m, [i0, i ′[)] (pc,∆,Q ′) i ′ by induction
...

i ′ (pc,∆,Q ′) [BC2IRrng(BC ,m, [i ′, i1[)] (pc,∆,Q1) i1 by induction
...

i1 (pc,∆,Q1)

Table D.8: Proof for S = S1 ; S2

i Λ(i ) IR[m, i to i+−1] Λ(succ(m, i )) i+ remarks

i0 (pc,∆,Q∪ [sequence of (pc,∆,Q∪ i ′ Proposition D.3
Q ′[e/x]) block ε] Q ′[e/x][x/t 0

i ′ ]) and with t 0
i ′ 6∈Q ′,e

...

i ′ (pc,∆,Q∪ block (pc,∆,Q ′) i1 by premises of T-ASSIGN

Q ′[e/x][x/t 0
i ′ ]) [t 0

i ′ :=x ; x :=e] and Γt (t 0
i ′ ) = Γ(x) and

x, t 0
i ′ 6∈∆, pc and t 0

i ′ 6= xδ

i1 (pc,∆,Q ′)

Table D.9: Proof for x :=e

i Λ(i ) IR[m, i to i+−1] Λ(succ(m, i )) i+ remarks

i0 (pc,∆,Q∪ [sequence of (pc,∆,Q∪ i ′ Proposition D.3
Q ′[e/er . f ]) block ε] Q ′[e/er . f ])

...

i ′ (pc,∆,Q∪ [sequence of (pc,∆,Q∪ i ′′ Proposition D.3
Q ′[e/er . f ]) block ε] Q ′[e/er . f ])

...

i ′′ (pc,∆,Q∪ block (pc,∆,Q ′) i1 by premises of T-PUTFIELD

Q ′[e/er . f ]) [er . f :=e] and with f 6∈∆
i1 (pc,∆,Q ′)

Table D.10: Proof for S = er . f :=e
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• x :=er .m(e): Let Q0 and Q1 be the pre- and postcondition sets as defined in the
high-level T-CALL rule. We define Γt (t 0

i ′′) = Γ(x). This is well-defined, because t 0
i ′′

only appears at this compiled IR fragment in the entire IR program. Table D.11
on the following page shows the IR type derivation. As t 0

i ′′ is a temporary variable,
ti ′′ 6∈ pc,∆. From the premises of the T-CALL rule, we get the label order infor-
mation Γ∗(ret)tpc t`r vQ1 Γ(x), hence Γ∗(ret)tpc t`r vQ1 (Γ∪Γt )(t 0

i ′′). Note
that the postconditions of the two assignments are chained, such that we get the
desired overall postcondition Q1.

• x :=new C (e): Let Q0 =Q∪Q ′[e/x. f ] and Q1 =Q. The IR type derivation is shown
in Table D.11 on the next page. We define Γt (t 0

i0
) = Γ(x). This is well-defined, be-

cause t 0
i0

only appears at this compiled IR fragment in the entire IR program.

Since t 0
i0

is a temporary variable, we have t 0
i0
6∈Q, pc,∆. By rule inversion, we have

pc vQ Γ(x), hence pc vQ Γt (t 0
i0

). With these facts and the premises of T-NEW,
we can type the IR object creation instruction. For the second assignment, we
use pc vQ Γ(x). Also, note that the substitutions that occur in the preconditions
of the assignments are chained, such that we get the desired overall precondi-
tion Q0.

• if e then S1 else S2: We have Q0 =Q and Q1 =Q ′. Table D.13 on page 157 shows
the type derivation. Essentially, we use Proposition D.3 for expressions, and this
proposition inductively for substatements. To apply the proposition inductively,
we also need to show that the set of identifiers in the new ∆ stack is smaller
than the one of the pc label, but this follows from the premises. For the same
reasons as described for sequential compositions, the resulting type mappings
and temporary variable type environments can be combined together with the
information shown in the table to obtain the desired mapping Λ and environ-
ment Γt .

The case for label test conditionals is not shown in a table, but it is very similar,
because the constraint sets are updated in the same way for the then branch in
the high-level and IR typing rules.

• while e do S: We have Q0 =Q1 =Q. See Table D.14 on page 158 for the IR type
derivation. Essentially, we use Proposition D.3 for expressions, and this propo-
sition inductively for substatements. To apply the proposition inductively, we
also need to show that the set of identifiers in the new ∆ stack is smaller than
the one of the pc label, but this follows from the premises. We get a suitable
type environment Γt . The type mapping that we get for the compiled part that
corresponds to S can be extended with the information shown in the table to get
the desired type mapping Λ. �
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i Λ(i ) IR[m, i to i+−1] Λ(succ(m, i )) i+ remarks

i0 (pc,∆,Q0) [sequence of (pc,∆,Q0) i ′ Proposition D.3
block ε]

...

i ′ (pc,∆,Q0) [sequence of (pc,∆,Q0) i ′′ Proposition D.3
block ε]

...

i ′′ (pc,∆,Q0) block (pc,∆,Q∪ i ′′ by premises of T-CALL

[t 0
i ′′ :=er .m′(e)] Q ′

m[t 0
i ′′/ret]) +1 and with t 0

i ′′ 6∈ pc,∆,Q
and t 0

i ′′ 6= xδ

i ′′ (pc,∆,Q∪ block [x := t 0
i ′′ ] (pc,∆,Q∪ i1 by premises of T-ASSIGN

+1 Q ′
m[t 0

i ′′/ret]) Q ′
m[x/ret]) and with x 6∈∆

i1 (pc,∆,Q∪
Q ′

m[x/ret])

Table D.11: Proof for S = x :=er .m(e)

i Λ(i ) IR[m, i to i+−1] Λ(succ(m, i )) i+ remarks

i0 (pc,∆,Q∪ block (pc,∆,Q∪ i0 by premises of T-NEW

Q ′[e/x. f ] [t 0
i0

:=new C (e)] Q ′[t 0
i0

/x] +1 and t 0
i0

6∈ Q, pc,∆ and

t 0
i0
6= xδ and pc vQ Γt (t 0

i0
)

i0 (pc,∆,Q∪ block [x := t 0
i0

] (pc,∆,Q) i1 by premises of T-ASSIGN,

+1 Q ′[t 0
i0

/x] and Γt (t 0
i0

) = Γ(x) and

t 0
i0
6∈∆, pc and pc vQ Γ(x)

i1 (pc,∆,Q)

Table D.12: Proof for S = x :=new C (e)
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D.2 Type Derivation for the IR Program

Proposition D.5 Let PDSD be a well-typed DSD program, and m be a method with
msig(m) = [Γ, pc,Q,Q ′]. Let PBC = compile(PDSD). Then PIR =BC2IRmtd(PBC,m) exists,
and there exists a type environment Γt such that the method m of the compiled program
PIR is well-typed with respect to this method signature.

PROOF Since PDSD is well-typed, we get by definition that Γ, pc ` {Q} mbody(m) {Q ′}.
By definition PBC = (≺,fields,methods,margs,BC ,mentry,mexit) where

(BC (m),mexit(m)) = compilestmt(m,mbody(m),mentry(m))

By Proposition 4.3 on page 59, we know dom(BC (m)) = [mentry(m),mexit(m)[. By
definition of the algorithm BC2IRmtd(PBC,m), we have ASin[m,mentry(m)] = ε, and
also IR(m) =BC2IRrng(BC ,m, [mentry(m),mexit(m)[). With Proposition D.2, we know
IR(m) exists. Let ∆= ε. With Proposition D.4, we know there is a type environment Γt

and a type mappingΛ derivable for IR(m) and Γ,Γt such thatΛ(mentry(m)) = (pc,ε,Q)
and Λ(mexit(m)) = (pc,ε,Q ′). But this means that m is well-typed with respect to
signature msig(m) = [Γ, pc,Q,Q ′]. �

Theorem D.6 Let PDSD be well-typed with respect to given method signatures. Then
BC2IR(compile(PDSD)) exists and is well-typed with respect to these signatures.

PROOF Let PBC = compile(PDSD). We get with Proposition D.5 that for all methods m,
IR(m) =BC2IRmtd(PBC,m) exists, hence PIR =BC2IR(PDSD) exists by definition of the
algorithm BC2IR.

With the same proposition, we get that for all methods m with signature msig(m) =
[Γ, pc,Q,Q ′], the fragment BC2IR(compile(PDSD)) is well-typed with respect to this
signature. By definition, the entire program PIR is thus well-typed. �
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