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Abstract

Effects of dependencies are an important component of risk management in an aggre-
gate setting, for example, when different risk types or business lines are to be modeled
jointly. Classical approaches to portfolio theory rely on the notion of linear correla-
tion and thus on the ellipticity of the underlying distribution—a requirement which is
typically not fulfilled in a risk management context.
For each of market, credit and operational risks, this thesis examines situations where
linear correlation reaches its limits and may lead to an underestimation of or coun-
terintuitive effects on aggregate risk. Copulas and tail dependence coefficients are
considered, estimated and analyzed as alternatives to correlation. These measures are
able to detect extremal dependence structures otherwise neglected. However, due to re-
strictions by sample sizes and asymptotic considerations, there is no “one–size–fits–all”
approach to measuring dependencies among extremes. Instead, this thesis suggests a
joint consideration of parametric and nonparametric methods in order to gain a picture
of aggregate risk as comprehensive as possible.

Zusammenfassung

Abhängigkeitseffekte stellen einen wichtigen Baustein eines aggregierten Risikomanage-
ment–Prozesses dar, z. B., wenn unterschiedliche Risikotypen oder Geschäftsbereiche
gemeinsam modelliert werden. Die klassischen Ansätze der Portfoliotheorie beruhen auf
der Idee der linearen Korrelation und damit auf der Elliptizität der zugrunde liegenden
Verteilung—eine Voraussetzung, welche typischerweise im Risikomanagement–Kontext
nicht erfüllt ist.
Für Markt–, Kredit– und operationelle Risiken betrachtet die vorliegende Arbeit je-
weils Situationen, in welchen die lineare Korrelation an ihre Grenzen stößt und zu
einer Unterschätzung von oder kontraintuitiven Effekten auf das Gesamtrisiko führen
kann. Copulas und Tail Dependence–Koeffizienten werden als Alternativen zur Korre-
lation betrachtet, geschätzt und analysiert. Diese Maße sind in der Lage, anderenfalls
unberücksichtigte Abhängigkeitsstrukturen in den Extrembereichen zu erfassen. Auf-
grund der Restriktionen durch Stichprobengrößen und asymptotische Betrachtungen
ergibt sich jedoch kein allgemein bester Ansatz zur Messung von Abhängigkeiten zwis-
chen Extremen. Vielmehr schlägt die vorliegende Arbeit eine gemeinsame Betrachtung
parametrischer und nichtparametrischer Methoden vor, um ein möglichst umfassendes
Bild des Gesamtrisikos zu erhalten.
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Chapter 1

Introduction

Risk measurement is a central component of the risk management process. It aims
at quantifying the exposure towards different types of risk, such as market, credit,
liquidity or operational risks. Typically, an institution will hold a portfolio of risks,
that is, it will be exposed to more than only one risk type. Similarly, considering one
risk type, it will typically consist of a portfolio of exposures, such as single stocks,
credit counterparties or technical devices. In these cases, dependencies are a crucial
element of risk quantification: The risk of a portfolio consists of the individual risks and
their relationships. Within one risk type, dependencies are typically driven by common
factors, such as market conditions for financial risks or an institution’s business policy
for operational risks. Similarly, on an enterprise level, the different risk types are
linked, for example, by the general economic environment. It is therefore of paramount
importance to consider dependencies during the risk quantification process. Over the
years, many of these linkages have gained relevance due to increasing globalization
as well as a higher complexity of derivative and structured products. In view of this
development, Enterprise Risk Management (ERM)1 has recently gained attention. It
constitutes a holistic approach to risk management, taking portfolio effects explicitly
into account by modeling the aggregate loss distribution on an enterprise level.

The most popular methods of introducing dependencies are based on linear correla-
tion, leading to elegant, closed–form solutions for quantiles and expected values of the
loss distribution. In portfolio theory, the approach of Markowitz (1952), the CAPM
of Sharpe (1964), Lintner (1965) and Mossin (1966) and the Arbitrage Pricing The-
ory (APT, Ross, 1976) are based on correlation. In the risk–management framework,
the central credit risk model of Merton (1974) as well as the industry models derived
from it assume a Gaussian dependence structure. In fact, this assumption of multi-
variate normality—or, more generally, ellipticity of the joint distribution—is necessary

1For an overview of ERM, see, for example, Enterprise Risk Management Committee (2003).

1



2 CHAPTER 1. INTRODUCTION

in order for linear correlation to be a meaningful measure of dependence. However,
very often the distributions of returns (or losses), from which risk–capital estimates
are derived, are far from elliptic. The consequences of such a misspecification depend
on the true underlying multivariate structure. For example, in the presence of tail
dependence, the Gaussian assumption underestimates the probability of joint extreme
movements and will therefore lead to an unrealistically low risk–capital estimate. This
may even endanger the existence of an institution in case of occurrence of such extreme
movements.

In an ERM framework, aggregation of risks plays an important role. In general, two
different roads can be taken. Firstly, in a “bottom–up” approach, individual risk
types—or elements of a portfolio within one risk type—may be modeled separately. In
the sequel, the resulting risk–capital estimates need to be aggregated, which is most
easily done by summation of capital figures. This strategy implicitly assumes a joint
occurrence of the adverse movements on which individual capital estimation is based.
A second approach, taking a “bird’s eye view” perspective, models individual risks
jointly. In contrast to the first method, dependencies are explicitly taken into account
when constructing the probability distribution of aggregate losses. Risk–capital esti-
mates are then derived directly from the aggregate distribution and do not need to
be further aggregated. A comparison of these different strategies leads to non–trivial
questions. Firstly, the role of dependencies in the “bird’s eye view” approach is not
always clear, in the sense that stronger dependencies will imply a higher risk–capital
estimate. Secondly, and contrary to intuition as well, the sum of risk–capital estimates
may not be a “worst–case–scenario” in the sense that it constitutes an upper bound to
the second approach.

In the classical portfolio theory of Markowitz (1952), diversification occurs if the in-
dividual components of a portfolio are less than perfectly positively correlated. In
this case, the risk of the portfolio is less than the sum of the individual risks, as they
partially offset each other. The sum of individual risks thus constitutes a worst–case–
scenario. This is why one intuitively expects the “bottom–up” approach of ERM to
be more conservative than an aggregate loss modeling, and its result to provide an
upper bound to aggregate risk. However, this notion again depends crucially on the
assumption of elliptical distributions. In fact, the risk resulting from a joint modeling
may exceed the sum of the single risk estimates. In cases where risks reinforce each
other ore there are no clear–cut distinctions between risks, this may not be unrealistic.
Both is true, for example, for market and credit risks during financial crises.

This thesis aims at assessing dependency structures as well as their effects on risk–
capital for market, credit and operational risks. Linear correlation and Value–at–Risk,
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two concepts relying on the ellipticity of the underlying distributions, are critically
analyzed with respect to their appropriateness as well as the consequences of their use.

Chapter 2 lays the theoretical ground for subsequent analyses. Different dependency
concepts and measures are introduced, emphasizing copulas and tail dependence due to
their importance for risk management. The problem of measuring risk for non–elliptical
distributions with non–subadditive risk measures—such as Value–at–Risk—as well as
general ”worst–case” bounds on the latter are stated. This chapter draws largely on
the classical textbooks of Joe (1997) and Nelsen (1999) as well as McNeil et al. (2005).
It contributes to existing research by suggesting an additional criterion for copula
goodness–of–fit testing based on nonparametric estimators of extremal dependence.

In Chapter 3, the well–known effect of correlation breakdown or contagion (Longin
and Solnik, 2001) for market risks is analyzed. While most existing studies consider
changing correlations among different countries, we assess exceedance correlations and
the ability of copulas to capture their shape among different asset classes such as stocks,
gold and commodities. The sample used includes data from the financial crisis and thus
gives an account on changes of relationships among different asset classes during the
recent turbulent times.

When assessing credit risk, one often faces the need to simulate defaults of highly–
rated counterparties. In Chapter 4, it is shown that the “bottom–up” approach to
portfolio credit risk modeling may imply counterintuitive effects of correlation: A higher
correlation among binary occurrence indicators may imply a decrease in the number
of event occurrences. In contrast to the well–known superadditivity problem of Value–
at–Risk, this effect has been pointed out recently by Mittnik and Yener (2009) in an
operational–risk setting.

Operational risk is, due to its heterogeneity, typically modeled separately for several
event–type and business–line combinations. In order to derive an aggregate estimate
of risk, the two different approaches to risk aggregation may be applied in this context.
As pointed out, for example, by Embrechts et al. (2002), the lack of subadditivity
of Value–at–Risk may imply an increase in risk–capital when changing from a simple
summation approach to an explicit modeling of dependencies. Due to the scarcity of
operational risk data, it remains to be analyzed whether this effect may be relevant
in real–world application. Drawing on a database of operational losses, Chapter 5
contributes by showing that in some cases, risk capital may increase by up to 30%.
Furthermore, it is shown that this increase is partially due to simulation. The use
of bounds on Value–at–Risk dating back to Makarov (1981) is suggested in order to
disentangle computational and superadditivity effects. Chapter 6 concludes.



Chapter 2

Dependence

In the risk management framework, one generally expects dependencies to have a
negative effect on returns—or, correspondingly, a positive influence on aggregate losses.
That is, we intuitively expect losses of a portfolio to be higher if the components are
positively related. Contagion effects such as those of financial crises are generally
assumed to have an impact on diversification, implying that neglecting dependencies
will lead to an underestimation of risk. In order to analyze such effects, we first need
to have a clear notion of dependence.

Two random variables X1, X2 with marginals F1 and F2 are known to be independent
if their joint distribution is given by

F (x1, x2) = F1(x1)F2(x2) . (2.1)

In principle, the concept of dependence covers all relationships for which Equation
(2.1) does not hold. In risk management applications, one is typically concerned about
positive dependence, as it may lead to a clustering of losses and thus largely determines
the upper tail of the aggregate loss distribution. A very general idea of positive depen-
dence can be summed up by saying that large (small) values of one random variable
X1 tend to occur jointly with large (small) values of a second random variable X2. In
order to detect such behavior, one can compare the joint distribution of X1 and X2 to
the distribution resulting under the assumption of independence.

2.1 Concepts of Positive Dependence

In the following, if not stated otherwise, we consider the so–called Fréchet class of
distributions, that is, the set of joint distribution functions with the same marginals
F1, F2 (Fréchet, 1951). The distribution defined in (2.1) belongs to this class.

Furthermore, we largely restrict attention to positive dependence; the reasoning behind
this is the focus of risk management on extreme (portfolio) losses which are typically

4



2.1. CONCEPTS OF POSITIVE DEPENDENCE 5

due to parallel movements of the prices of portfolio components. Still, in the two–
dimensional setting, concepts of negative dependence can be obtained from simply
reversing positive dependence (Lehmann, 1966; Joag-Dev and Proschan, 1983).

Probability integral and quantile transforms will repeatedly appear when working with
dependencies; they form the basis for copula modeling and random variable simulation.
We therefore state the following proposition, a proof of which can be found, for example,
in Feller (1971).

Proposition 1. Let X be a random variable with distribution function F and F−1

denote its quantile function:

F−1(α) = inf{x|F (x) ≥ α} , α ∈ (0, 1) . (2.2)

Then

1. for any standard–uniformly distributed U ∼ Unif(0, 1), F−1(U) ∼ F ,

2. if F is continuous, the random variable F (X) is standard–uniformly distributed:

F (X) ∼ Unif(0, 1).

The notion of “dependence” canbe cast into restrictions on joint and marginal distri-
butions functions in various ways. A detailed account on dependence concepts and
orderings can be found in Shaked and Shanthikumar (2006).

Positive Quadrant Dependence (PQD)

A natural and intuitive way to capture positive dependence is to compare the bivariate
distribution to the one resulting from independence (Equation (2.1)). This leads to
the notion of positive quadrant dependence (Lehmann, 1966). For a random vector
(X1, X2) with joint distribution function F and margins F1, F2, PQD is defined as

Pr[X1 ≤ x1, X2 ≤ x2] ≥ Pr[X1 ≤ x1] Pr[X2 ≤ x2] . (2.3)

This is equivalent to

Pr[X1 > x1, X2 > x2] ≥ Pr[X1 > x1] Pr[X2 > x2] . (2.4)

in the bivariate case.1 Therefore, X1 amd X2 are PQD if the probability that they
are both small (or both large) is as least as high as under independence. If we

1In general, for dimensions d > 2 the relationships corresponding to (2.3) and (2.4) are not equiv-

alent. Therefore, one obtains two distinct concepts—positive upper orthant dependence (PUOD) and

positive lower orthant dependence (PLOD)—when generalizing PQD to higher dimensions.
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consider a second bivariate random vector (Y1, Y2) with distribution function G and
identical marginals, (X1, X2) is smaller than (Y1, Y2) in the PQD order—expressed as
(X1, X2) ≤PQD (Y1, Y2)—if

F (x1, x2) ≤ G(x1, x2) for all x1 and x2 . (2.5)

The covariances may be written as (Höffding, 1940)

Cov[X1, X2] =
∫ ∞

−∞

∫ ∞

−∞
(F (x1, x2) − F1(x1)F2(x2)) dx1dx2 ,

Cov[Y1, Y2] =
∫ ∞

−∞

∫ ∞

−∞
(G(x1, x2) − F1(x1)F2(x2)) dx1dx2 , (2.6)

and as the variances of the marginals in the Fréchet class are equal (Var[Xi] = Var[Yi],
i = 1, 2), it follows directly that PQD has implications for linear correlation, ρ:

(X1, X2) ≤PQD (Y1, Y2) ⇒ Cov[X1, X2] ≤ Cov[Y1, Y2] ⇒ ρX1,X2
≤ ρY1,Y2

. (2.7)

Kimeldorf and Sampson (1987) name seven conditions on the Fréchet class of distri-
butions which should be fulfilled in order to consider the underlying random variables
to be positively dependent. In fact, their first condition is precisely the requirement of
positive quadrant dependence.

Supermodular Dependence (SMD)

A function φ : Rn → R is supermodular if

φ(x) + φ(y) ≤ φ(x ∧ y) + φ(x ∨ y) , (2.8)

with componentwise maximum (minimum) operator ∧ (∨). We say that (X1, X2) is
smaller than (Y1, Y2) in the supermodular order ((X1, X2) ≤SM (Y1, Y2)) if

E[φ(X1, X2)] ≤ E[φ(Y1, Y2)] for all supermodular φ : R2 → R . (2.9)

If we restrict attention to the bivariate case, SMD boils down do PQD: For d = 2, as
considered, for example, by Tchen (1980),

(X1, X2) ≤SMD (Y1, Y2) ⇔ (X1, X2) ≤PQD (Y1, Y2) , (2.10)

However, PQD does not necessarily follow from SMD in the general multivariate case.
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Tail Monotonicity: Left–tail Decreasing (LTD), Right–tail Increasing (RTI)

Dividing Equation (2.3) by Pr[X1 ≤ x1], we see that PQD can alternatively be written
as

Pr[X2 ≤ x2|X1 ≤ x1] ≥ Pr[X2 ≤ x2] . (2.11)

If we express the right hand side as conditional probability,

Pr[X2 ≤ x2|X1 ≤ x1] ≥ Pr[X2 ≤ x2|X1 ≤ ∞] , (2.12)

we can directly see the relationship to a stronger condition: Two random variables X1,
X2 are left–tail decreasing if

Pr[X2 ≤ x2|X1 ≤ x1] ≥ Pr[X2 ≤ x2|X1 ≤ x′
1] for all x1 ≤ x′

1 and x2 . (2.13)

In other words, Pr[X2 ≤ x2|X1 ≤ x1] is non–increasing in x1. Accordingly, X1 and X2

are right–tail increasing if

Pr[X2 ≤ x2|X1 > x1] ≥ Pr[X2 ≤ x2|X1 > x′
1] for all x1 ≤ x′

1 and x2 , (2.14)

which means that Pr[X2 ≤ x2|X1 > x1] is non–decreasing in x1. The dependence con-
cepts LTD and RTI can be traced back to Lehmann (1966).

Positive Regression Dependence (PRD)

Two random variables X1, X2 are positive regression dependent (sometimes also called
stochastically increasing) if

Pr[X2 ≤ x2|X1 = x1] ≥ Pr[X2 ≤ x2|X1 = x′
1] for all x1 ≤ x′

1 and x2 . (2.15)

This property dates back to Tukey (1958) and can alternatively be expressed by saying
that Pr[X2 ≤ x2|X1 = x1] is non–increasing in x1.

Positive Association (PA)

Two random variables X1, X2 are associated (Esary et al., 1967) if

Cov[f(X1, X2), g(X1, X2)] ≥ 0 (2.16)

for all pairs of functions f and g which are non–decreasing in each argument. This con-
cept is particularly relevant in reliability theory (Barlow and Proschan, 1981), where
joint failures of technical devices are the objects of interest.
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Comonotonicity and Countermonotonicity

Two random variables are comonotonic if there exists a random variable Z and increas-
ing functions f1, f2 such that

(X1, X2)
d
= (f1(Z), f2(Z)) . (2.17)

From the probability integral transform, it follows that condition (2.17) can alterna-
tively be written as

(X1, X2)
d
= (F−1

1 (U), F−1
2 (U)) (2.18)

with U ∼ Unif(0, 1). Comonotonicity can be considered the strongest concept of posi-
tive dependence, as the realization of Xi is entirely determined by Xj, i, j = 1, 2, i 6= j.
The joint distribution of comonotonic random variables is given by

F (x1, x2) = min(F1(x1), F2(x2)) . (2.19)

If (X1,−X2) are comonotonic, we obtain perfect negative dependence, which is known
as countermonotonicity. In this case,

(X1, X2)
d
= (g1(Z), g2(Z)) , (2.20)

where one of the functions gi, i = 1, 2 is increasing and the other one is decreasing.
Alternatively, a countermonotonic random vector is given by

(X1, X2)
d
= (F−1

1 (U), F−1
2 (1 − U)) . (2.21)

The joint distribution function for two countermonotonic random variables can be
written as

F (x1, x2) = max(F1(x1) + F2(x2) − 1, 0) . (2.22)

While it is no problem to extend the concept of comonotonicity to d > 2 dimensions,
the same is not true for countermonotonicity.

Tail Dependence (TD)

Tail dependence, in contrast to the notions of dependence presented so far, is an asymp-
totic property. It was introduced by Sibuya (1960); other early accounts on this con-
cept of dependence include Geffroy (1958/59), Tiago de Oliveira (1962/63) and Mardia
(1964). Tail dependence may be present in the upper or lower tail of a distribution (or
both). Two random variables are upper–tail dependent if

lim
t→1−

Pr
[
X1 > F−1(t)|X2 > F−1(t)

]
> 0 . (2.23)
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Correspondingly, they are lower–tail dependent if

lim
t→0+

Pr
[
X1 < F−1(t)|X2 < F−1(t)

]
> 0 . (2.24)

Loosely speaking, tail dependence implies a positive probability of one variable being
extreme given that another variable is extreme is positive.

Relationships among Dependence Concepts

Several relationships among these different dependence concepts can be established.

Assuming (Y1, Y2) in (2.7) to be independently distributed (G(x1, x2) = F1(x1)F2(x2)),
one obtains the following implications of PQD:

PQD ⇒ Cov[X1, X2] > 0 ⇒ ρX1,X2
> 0 , (2.25)

which equally hold for SMD in the bivariate case. Furthermore, as LTD implies that
Equation (2.11) holds (and RTI can be similarly shown to imply (2.4)), LTD and RTI
imply PQD. The reverse does, however, not hold.

Lehmann (1966) shows that the implications

PRD ⇒ LTD ⇒ PQD

hold. Similarly, Esary et al. (1967) point out that PQD also follows from PRD via
association:

PRD ⇒ PA ⇒ PQD ,

and Esary and Proschan (1972) add that PRD leads to PA via LTD and/or RTI (Joe,
1997, see also). Finally, it can be shown that comonotonicity implies PQD as well
(Embrechts et al., 2002):

Comonotonicity ⇒ PA ⇒ PQD .

Obviously, PQD is a rather general dependence concept, unifying several different no-
tions of dependency. At the same time, as can be seen from the implications among
dependence concepts, it is weaker than many other concepts. We will use the con-
cept of PQD in the assessment of bounds on the Value–at–Risk in Chapter 5; it may
be assumed to be caused any of the other concepts implying PQD, if deemed more
appropriate.
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2.2 Dependence Measures

The preceding section contained different concepts of positive dependence. The natural
next step is to specify a measure of dependency, capturing the amount of dependence
in terms of a real number. In this section, the result will always be a scalar value (also
called index); in other words, the dependence structure of a given bivariate distribution
will be boiled down to one single value. It is intuitively clear that such an approach may
miss important features of a dependence structure and is, naturally, less flexible and
informative than a function describing the dependence structure. The latter approach,
leading to the concept of copulas, will be the topic of Section 2.3 due to its importance.
There, the relationships between copulas and the “simpler” measures presented here
will be explored.

Rényi (1959) lists seven properties that a measure of dependence should ideally have.
This collection was modified and amended by Lancaster (1982) and Schweizer and
Wolff (1981). Our main goal is to point out the deficiencies of linear correlation, as
well as the advantages of alternative measures. We therefore follow Embrechts et al.
(2002) in keeping the list (see Table 2.1) as short as possible and restricting attention
to four central requirements.

(1) Symmetry: κ(X1, X2) = κ(X2, X1)

(2) Normalization: −1 ≤ κ(X1, X2) ≤ 1

(3) Comonotonicity ⇔ κ(X1, X2) = 1

Countermonotonicity ⇔ κ(X1, X2) = −1

(4) For a strictly monotonic transformation T : R → R,

κ(T (X1), X2) =





κ(X1, X2) for T increasing,
−κ(X1, X2) for T decreasing.

Table 2.1: Desirable Properties of a Dependence Measure κ.

Property (1) implies that no direction of causality is modeled. The second property,
setting up upper and lower bounds for κ(·, ·), is sometimes modified. For example,
Lancaster (1982) requires that 0 ≤ κ(X1, X2) ≤ 1, thus neglecting negative relation-
ships. Condition (3) requires that the upper (lower) bound is reached only in the case
of comonotonicity (countermonotonicity)—the dependence concept which may be con-
sidered the strongest one, as it implies that one variable is a deterministic function of
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the other. Property (4) implies that the value assigned to a given dependence structure
is not changed by a strictly monotonic transformation of a marginal distribution.

2.2.1 Linear Correlation

Linear (or Pearson) correlation is given by

Corr[X1, X2] = ρX1,X2
=

Cov[X1, X2]

σX1
σX2

. (2.26)

Equation 2.26 directly shows several of the potential problems which may arise from
using correlation. Obviously, it is not defined if the variance σ2

Xi
, i = 1, 2, tends to

infinity. This is a relevant restriction for financial data, as we may observe very heavy–
tailed return distributions. Furthermore, linear correlation does not only depend on
the covariance, but also on the marginal distributions, and may thus be affected by
changes in the latter. Figure 2.1 shows a simple example of a bivariate distribution
with Cov[X1, X2] = 0.5 and σX1

= 1.
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Figure 2.1: Linear Correlation with Changing Standard Deviation

This example illustrates that changes in correlation may be caused by changes in the
marginal distributions. This requires caution with respect to interpretations of changes
in correlation. For example, in the market risk framework, it is a common perception
that correlations increase in times of crises. However, this may, according to Equation
2.26, be due to two reasons: The dependence may have increased, or the variability
of returns may have increased (or both). In general, linear correlation is not invariant
under nonlinear transformations of the margins.

Further problems arising from the concept of correlation can be summed up in the
following theorem.
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Theorem 1. (Höffding, 1940; Fréchet, 1951) Let X1, X2 be random variables with

marginals F1, F2 and unspecified dependence structure. Assume that 0 < σX1
, σX2

< ∞.

Then

1. the set of all possible correlations is a closed interval [ρmin, ρmax], and ρmin < 0 <

ρmax holds;

2. the correlation ρ = ρmin is attained if and only is X1 and X2 are countermono-

tonic, and ρ = ρmax if and only is X1 and X2 are comonotonic;

3. ρmin = −1 if and only is X1 and −X2 are of the same type; ρmax = 1 if and only

is X1 and X2 are of the same type.2

The second part of this theorem—the proof of which can be found, for example, in
McNeil et al. (2005)—may again be seen intuitively by writing the correlation between
X1 and X2 as

Cov[X1, X2] =
∫ ∞

−∞

∫ ∞

−∞
{F (x1, x2) − F1(x1)F2(x2)} dxdy . (2.27)

For given marginals, the maximum correlation corresponds to the maximum covari-
ance; which is, according to Equation (2.27), attained if F (x1, x2) − F1(x1)F2(x2)

is maximal. This is equivalent to saying that X1 and X2 need to be comonotonic,
that is, F (x1, x2) = min(F1(x1), F2(x2)). Correspondingly, the minimum correlation
is obtained if F (x1, x2) − F1(x1)F2(x2) is minimal, which is fulfilled if F (x1, x2) =

max(F1(x1) + F2(x2) − 1, 0)—in other words, countermonotonicity—holds. The third

part of the theorem implies that a comonotonic (countermonotonic) relationship be-
tween random variables which are not of the same type (that is, their relationship
is nonlinear) is characterized by a correlation ρmax < 1 (ρmin > −1). One example
can be constructed from two lognormal distributions: Assuming that X1 ∼ LN(0, 1)

and X2 ∼ LN(0, σ2
X2

), a closed interval [ρmin, ρmax] can be constructed such that both
bounds converge towards zero as σX2

increases; see, for example, Embrechts et al.
(2002). Another example is given by the Farlie–Gumbel–Morgenstern distribution

F (x1, x2) = F1(x1)F2(x2) [1 + α(1 − F1(x1))(1 − F2(x2))] (2.28)

with α ∈ [−1, 1] (Farlie, 1960; Gumbel, 1960; Morgenstern, 1956). As shown by Schu-
cany et al. (1978), this distribution implies a correlation coefficient within the range
(−1/3, 1/3).

2Two random variables V and W are of the same type if there exist constants a > 0 and b ∈ R
such that V

d
= aW + b.



2.2. DEPENDENCE MEASURES 13

We can therefore conclude that requirements (3) and (4) of the list in Table 2.1 are
not satisfied by linear correlation.

Such examples can be carried forward to show that there may exist situations char-
acterized by perfect dependence and low (or even zero) correlation. Figure 2.2 shows
two comonotonic relationships: In the left part, X2 = exp(X1), and in the right part,
X2 = X2

1 , with X1 ∼ N(0, 1). Based on 100,000 bivariate observations, estimation of
the linear correlation coefficient leads to ρ̂ = 0.7569 and ρ̂ = 0.0098.

X2 = exp(X1) X2 = X2
1

ρ̂X1,X2
= 0.7569 ρ̂X1,X2

= 0.0098
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Figure 2.2: Comonotonicity and Linear Correlation

The (theoretical) correlation for X2 = X2
1 in this setup is equal to zero. This is easily

seen by noting that the covariance is given by Cov[X1, X2] = E[X3
1 ] − E[X1] E[X2],

and that the third moment for the standard normal distribution is equal to zero.

These cases illustrate the common and probably most important warning with respect
to misinterpretations of correlation: While independence implies a correlation of zero,
the reverse does not hold. There are concepts of dependence which correlation cannot
capture, as was seen in Section 2.1. This weakness of correlation may be particularly
dangerous in a risk management framework, where extreme observations are the focus
of analyses. This is illustrated by Figure 2.3, showing two bivariate distributions with
a correlation of ρX1,X2

= 0. Although this value is identical, the joint behavior is obvi-
ously different: The scatter plot to the right implies more joint “extreme” observations,
that is, observations beyond the 99% quantile of a standard normal random variable
for both x1 and x2. The reason for this clustering of extreme is a nonzero upper tail
dependence in the right plot (λU = 0.1326) implied by a Student–t copula (see Section
2.3) and zero upper tail dependence in the distribution plotted to the left.
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Left: 10,000 draws from multivariate normal distribution with ρ = 0; right: 10,000

draws from Student–t copula with ρ = 0 and ν = 5, using standard normal margins.

Red line refers to Φ−1(0.99).

Figure 2.3: Correlation vs. Tail Dependence

Those joint extreme observations are the ones which one would like to take into account
in a model of losses, for example, of a portfolio, as they will largely drive the tail of the
distribution of aggregate losses. Neglecting a clustering as in Figure 2.3 by restricting
attention to linear correlation may therefore lead to a dramatic underestimation of
potential losses.

Correlation and Elliptical Distributions

Correlation is the natural measure of dependency for elliptical distributions, of which
the multivariate normal distribution is the most popular representative. However,
other elliptical distributions have been applied in finance and risk management; see,
for example, Blattberg and Gonedes (1974) and Rachev and Mittnik (2000) for the
Student–t and α–stable distributions.

Elliptical distributions are based on the notion of spherical distributions (Fang et al.,
1990). A random vector X = (X1, . . . , Xd)′ has a spherical distribution if

UX
d
= X (2.29)

for every orthogonal map U ∈ Rd×d. This implies that spherical distributions do not
change under rotation, as is shown in the left part of Figure 2.4. It contains contour
plots of the multivariate normal distribution N2(0, I). Spherical distributions can be
seen as a generalization of the multivariate normal and only represent uncorrelated
random variables. However, aside from the multivariate normal distribution, this does
not imply independence. Spherical distributions can alternatively defined in terms of
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their characteristic function, which is given by

E
[
eit′X

]
= φ(t′t) = φ(t21 + · · · + t2d) (2.30)

and called the characteristic generator. With spherical distribution of X (written as
X ∼ Sd(φ)), Y has an elliptical distribution (written as Y ∼ Ed(µ,Σ, φ)) if

Y
d
= µ + AX, (2.31)

where A ∈ Rd×d and µ ∈ Rd. Due to this affine transformation, the contours are given
by ellipsoids as shown in the right part of Figure 2.4.3 The characteristic function of
Y is now given by

E
[
eit′Y

]
= E[exp(it′(µ + AX))]

= exp(it′µ)E[exp(i(A′t)′X)]

= exp(it′µ)φ(t′Σt) , (2.32)

where the last line follows due to the spherical distribution of X and Σ = AA′. The
characteristic function of Y −µ is thus given by φ(t′Σt). In the case where the second
moments are finite, it is always possible to find a representation such that Σ = Cov[Y ].

X ∼ N2(0, I) X ∼ N2(µ,Σ)
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Figure 2.4: Spherical and Elliptical Distributions

From (2.31), it can be directly seen that the multivariate normal distribution Nd(µ,Σ)

belong to the class of elliptical distributions. As is the case with the multivariate nor-
mal, linear combinations of elliptical random variables are also elliptical with identical
generator φ. For Y ∼ Ed(µ,Σ, φ), Kendall’s τ (see Section 2.2.2) is given by

τ(X1, X2) =
2

π
arcsin

(
ρXi,Xj

)
, (2.33)

3In the one–dimensional case d = 1, the class of elliptical distributions coincides with the class of

symmetric distributions.
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which allows estimation of linear correlation via the more robust rank correlation esti-
mate (Lindskog, 2000).

In the linear world of elliptical distributions, correlation is a natural measure of depen-
dency.4 This is due to the fact that elliptical distributions are uniquely determined by
their means, covariances, and characteristic generators.

2.2.2 Concordance Measures

Intuitively, concordance refers to a notion of dependence among random variables which
implies that large values of one random variable tend to occur jointly with large val-
ues of the other random variable. That is, a pair of random variables (x1, x2)i and
(x1, x2)j are concordant if x1,i < x1,j and x2,i < x2,j ; correspondingly, discordance is
characterized by x1,i < x1,j and x2,i > x2,j or x1,i > x1,j and x2,i < x2,j . This implies
that two random variables are concordant if (x1,i −x1,j)(x2,i −x2,j) > 0 and discordant
if (x1,i − x1,j)(x2,i − x2,j) < 0.

Considering a random vector X = (X1, X2)
′ and an independent copy X ′ = (X ′

1, X
′
2),

Kendall’s τ is defined as

τ(X1, X2) = Pr[(X1 −X ′
1)(X2 −X ′

2) > 0] − Pr[(X1 −X ′
1)(X2 −X ′

2) < 0] (2.34)

= E[ sign((X1 −X ′
1)(X2 −X ′

2))] ,

where the second line follows directly from the definition of the expected value of a
discrete random variable. With another independent copy X ′′ = (X ′′

1 , X
′′
2 ), Spearman’s

ρS is given by

ρS = 3 (Pr[(X1 −X ′
1)(X2 −X ′′

2 ) > 0] − Pr[(X1 −X ′
1)(X2 −X ′′

2 ) < 0]) . (2.35)

The nature of rank correlations can be illustrated considering a bivariate distribution
F (x1, x2) with marginals F1(x1) and F2(x2). Assume that we divide the range into four
quadrants using thresholds t1 and t2, as illustrated in Figure 2.5. The probabilities of
the quadrants are given by

p11 = F (t1, t2) , p12 = F1(t1) − p11 ,

p21 = F2(t2) − p11 , p22 = 1 − p11 − p12 − p21 .

Denoting by pi+ a probability summed over random variable j, j = 1, 2, we obtain

τ =
p22 − p2+p+2√

p2+(1 − p2+)
√
p+2(1 − p+2)

, (2.36)

4For other dependence measures in elliptical distributions, see, for example, Hult and Lindskog

(2002).
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Figure 2.5: Illustration: Concordance and Discordance

which shows that τ is the correlation of ranks (expressed as probabilities).

In contrast to linear correlation, τ and ρS are therefore invariant under strictly increas-
ing transformations of the margins. Furthermore, τ = 1 and ρS = 1 (τ = −1 and
ρS = −1) if random variables X1 and X2 are comonotonic (countermonotonic), so that
rank correlations fulfill all properties listed in Table 2.1.
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Left: 10,000 draws from multivariate normal distribution with ρ = 0.7071; right:

10,000 draws from Student–t copula with ρ = 0.7071 and ν = 5, using standard

normal margins.

Figure 2.6: Rank correlation vs. tail dependence.

However, as rank correlations are scalar values, they are—just as linear correlations—
unable to convey information about the structure of the joint distribution. For example,
the bivariate distributions shown in Figure 2.6 have the same value of Kendall’s τ (τ =

0.5) although the behavior in the tails is obviously different due to tail (in)dependence.

For other measures of association, such as Gini’s γ and Blomqvist’s β, see Nelsen
(1999).
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2.2.3 Tail Dependence

Tail dependence, as introduced in Equations (2.23) and (2.24), refers to probabilities of
joint exceedances of extremes. The natural measure for this asymptotic type of depen-
dence is given by the limits of such exceedance probabilities. Defining the generalized
inverse of a distribution function F as

F−1(u) = inf{x ∈ R|F (x) ≥ u} , (2.37)

the lower tail dependence coefficient is given by

λL = lim
t→0+

Pr[F1(X1) ≤ t|F2(X2) ≤ t] . (2.38)

Correspondingly, the upper tail dependence coefficient is defined as

λU = lim
t→1−

Pr[F1(X1) > t|F2(X2) > t] . (2.39)

Tail dependence coefficients are measures of joint extremes and thus concentrate on
the distributional area most important to risk management. Typically, either upper or
lower tail dependence is in the focus, depending on whether returns or loss distributions
are analyzed. Upper and lower tail dependence coefficients may differ, that is, the
behavior of joint positive and extremes may be asymmetric.

As tail dependence and its implications are central to the empirical analyses and their
interpretations, it will be discussed in more detail in the context of copulas.

2.3 Copulas

Copulas can be viewed as an alternative to the dependence measures presented so
far. Instead of boiling down dependency into one single number, copulas are functions
which contain the structure of a joint distribution. Detailed accounts on the theory of
copulas can be found in Nelsen (1999) and Joe (1997).

Formally, a copula can be defined as follows.

Definition 1. A copula is a function C of d variables on the unit d–cube [0, 1]d with

the following properties.

1. The range of C is the unit interval [0, 1].

2. C(u) is equal to zero for all u in [0, 1]d for which at least one coordinate is equal

to zero.

3. C(u) = uj if all coordinates of u are equal to one except uj.
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4. C is d–increasing in the sense that for every a ≤ b in [0, 1]d, the volume assigned

by C to the d–box [a, b] = [a1] × · · · [ad, bd] is nonnegative.

The probably most important theorem in the theory of copulas is Sklar’s Theorem.
In the following, R̄n denotes the extended real line [−∞,∞], and Ran F refers to the
range of the distribution function F .

Theorem 2. (Sklar, 1959) Let F be a d–dimensional distribution function with margins

F1, . . . , Fn. Then there exists a copula C such that for all x in R̄d,

F (x1, . . . , xd) = C (F1(x1), . . . , Fn(xd)) . (2.40)

If F1, . . . , Fd are all continuous, C is unique; otherwise it is uniquely determined on

Ran F1 × · · · × Ran Fd. Conversely, if C is a copula and F1, . . . , Fd are distribution

functions, then the function F is a d–dimensional distribution function with margins

F1, . . . , Fd.

Summing up, a copula is a multivariate distribution function with univariate margins
being uniformly distributed between zero and one. It couples univariate distribution
functions (which are known to be uniformly distributed according to the probability–
integral transform), and its outcome forms the joint distribution function of the under-
lying variables. In general, copulas can be defined for dimensions d > 2; however, we
restrict attention to the bivariate case. Furthermore, we assume the distribution func-
tions of the random variables under consideration to be continuous.5 Sklar’s Theorem,
which illustrates how a copula “couples” univariate margins to their joint distribution
function, can alternatively be written as

C = F
(
F−1

1 (u1), F
−1
2 (u2)

)
, (2.41)

where U1, U2 ∼ Unif(0, 1) and the inverses F−1
1 , F−1

2 are assumed to exist.

An attractive property of copulas consists of their invariance towards strictly increasing
transformations of the marginals F1(x1), F2(x2). This is due to the fact that, just like
rank correlations, copulas are based on the ranks of random variables. In fact, rank
correlations only depend on the copula of the underlying data. For Kendall’s τ , this
can be shown taking into account that for continuous random vectors X and X ′,

Pr[(X1 −X ′
1)(X2 −X ′

2) > 0] + Pr[(X1 −X ′
1)(X2 −X ′

2) < 0] = 1 . (2.42)

5In principle, copulas can still be worked with in the discrete case; however, non–continuous margins

pose special challenges. This topic is treated, for example, by Marshall (1996) and Genest and

Nešlehová (2007).
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Equation (2.34) can thus be rewritten as

τ(X1, X2) = 2Pr[(X1 −X ′
1)(X2 −X ′

2) > 0] − 1

= 4Pr[X1 < X ′
1, X2 < X ′

2] − 1

= 4
∫ ∞

−∞

∫ ∞

−∞
F (x1, x2)dF (x1, x2) − 1

= 4
∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2) − 1 ,

where the second line follows from the fact that the pairs are independent. This result
implies that a value for τ automatically follows from a given copula C(·, ·).

Any copula is bounded from below and above. These lower and upper bounds, Cℓ(u1, u2)

and Cu(u1, u2), correspond to the cases of countermonotonicity and comonotonicity.
They date back to Fréchet (1951) and Höffding (1940) and are therefore known as
Frechet–Höffding bounds:

max(u1 + u2 − 1, 0)︸ ︷︷ ︸
Cℓ(u1,u2)

≤ C(u1, u2) ≤ min(u1, u2)︸ ︷︷ ︸
Cu(u1,u2)

. (2.43)

Another so–called fundamental copula is given by the independence copula

CI(u1, u2) = u1u2 , (2.44)

whose contour plots and surfaces are shown in Figure 2.7 jointly with those of Cℓ and
Cu.

Copulas may equally be applied to survival functions F̄ (x) = Pr[X > x] = 1 − F (x).
Using the joint survival function

F̄ (x1, x2) = Pr[X1 > x1, X2 > x2] = 1 − F1(x1) − F2(x2) + F (x1, x2) , (2.45)

one obtains a relationship as in Equation (2.40):

F̄ (x1, x2) = C̄
(
F̄1(x1), F̄2(x2)

)
, (2.46)

where
C̄(u1, u2) = u1 + u2 − 1 + C(1 − u1, 1 − u2) (2.47)

is the survival copula of X and Y .6

6The survival copula must not be confused with the joint survival probability

C∗(u1, u2) = Pr[U1 > u1, U2 > u2] = 1 − u1 − u2 + C(u1, u2) ,

corresponding to F̄ (·, ·) from Equation (2.45).
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Countermonotonicity: Independence: Comonotonicity:
Cℓ(u) = max(u1 + u2 − 1, 0) CI = u1u2 Cu(u) = min(u1, u2)
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Figure 2.7: Fundamental Copulas

The density of a copula is given by

c(u1, u2) =
∂C(u1, u2)

∂u1∂u2
. (2.48)

For survival copulas, the relationship

c̃(u1, u2) = c(1 − u1, 1 − u2) (2.49)

illustrates the fact that they are mirror images of C(u1, u2). An illustration of this will
be given below.

Elliptical Copulas

Elliptical copulas are copulas of elliptical distributions. The two most famous members
of this class are the Gaussian and the Student–t copula. The former is given by

CGa(u1, u2) = Φρ(Φ−1(u1),Φ
−1(u2))

=
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1 − ρ2
exp

(
2ρz1z2 − z2

1 − z2
2

2(1 − ρ2)

)
dz1dz2 ,(2.50)

where Φρ denotes the cumulative distribution function of the bivariate normal dis-
tribution with correlation ρ. As shown by Roncalli (2002), this can be alternatively
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expressed as

CGa(u1, u2) =
∫ u1

0
Φ

(
Φ−1(u2) − ρΦ−1(v)√

1 − ρ2

)
dv . (2.51)

If two variables X1, X2 are each normally distributed, and their dependence structure
is given by a Gaussian copula with correlation ρ, then their multivariate distribution
is normal with correlation ρ. However, if the marginals are not normally distributed,
then the resulting bivariate distribution is not a multivariate normal. For illustration
purposes, Figure 2.8 compares the joint distributions resulting from the same Gaussian
copula with linear correlation, but different (standard normal vs. Student–t) margins.
Obviously, the resulting distributions are very different, the one on the right being
neither multivariate normal nor multivariate t. Its margins are heavy–tailed, but its
joint distribution does not exhibit any tail dependence. This demonstrates the copula’s
ability of splitting a multivariate distribution into the marginal components and the
dependence structure.

X1, X2 ∼ N(0, 1) X1, X2 ∼ t7
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Figure 2.8: Gaussian Copula (ρ = 0.5), Normal vs. Student–t margins

Accordingly, the Student–t copula

Ct = tρ,ν(t−1
ν (u1), t

−1
ν (u2)) (2.52)

is based on tρ,ν , the bivariate cdf of the Student–t distribution with ν degrees of free-
dom and correlation ρ. Here, t−1

ν denotes the inverse of the (univariate) Student–t
distribution with ν degrees of freedom. As ν increases, the tail dependence of the
bivariate distribution decreases, and the copula converges to the Gaussian copula.

As there are no closed–form expressions for these two copulas, the Gaussian and
Student-t copulas are sometimes also called implicit copulas.
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Archimedean Copulas

Archimedean copulas date back to Schweizer and Sklar (1961) and Ling (1965).7 They
are particularly popular due to their tractability and the large number of different fam-
ilies of copulas contained in this class. Additionally, they are able to model asymmetric
tail dependence structures. All Archimedean copulas can be written as

C(u1, u2) = φ[−1](φ(u1), φ(u2)) , (2.53)

where φ(t) : I → R̄
+ is the continuous, decreasing and convex generator of the copula,

satisfying φ(1) = 0 and with pseudo–inverse

φ[−1](u) =




φ−1(u) for 0 ≤ u ≤ φ(0) ,

0 for φ(0) ≤ u ≤ +∞ .
(2.54)

If φ(0) = +∞, the generator is additionally called strict, and its pseudo–inverse corre-
sponds to the usual inverse.8

Dependence, as measured by rank correlation or tail dependence, can be directly related
to the copula’s generator. As shown by Genest and MacKay (1986), Kendall’s τ for
Archimedean copulas can be written as

τ = 4
∫

I

φ(u)

φ′(u)
du+ 1 . (2.55)

The coefficients of upper and lower tail dependence are given by (Joe, 1997)

λU = 2 − 2 lim
s→0+

φ′(2s)

φ′(2s)
(2.56)

and

λL = 2 lim
s→+∞

φ′(2s)

φ′(s)
. (2.57)

In our empirical applications, we focus on the two most commonly used families of
Archimedean copulas. The Gumbel copula9 (Gumbel, 1960)—or, due to Hougaard
(1986), Gumbel–Hougaard copula—is given by

CGu(u1, u2) = exp
(
− [(− ln u1)

α + (− ln u2)
α]1/α

)
, α ∈ [1,∞) . (2.58)

7Archimedean copulas found first applications in the actuarial field, see Cook and Johnson (1981),

Duchateau and Janssen (2008) and Oakes (1982) as well as Frees and Valdez (1999) for an overview.
8If this inverse is completely monotone, the corresponding Archimedean copula represent PQD.
9The Gumbel copula is a bivariate extreme value copula; see Section 2.3.2 and, for example, Segers

(2004) and Balkema and Embrechts (2007).
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For α = 1, it reduces to the independence copula CI = u1u2, and for α → ∞, it
reaches the upper Fréchet bound. The same is true for the limits of the parameter of
the Clayton copula (Clayton, 1978)

CCl(u1, u2) =
(
u−α

1 + u−α
2 − 1

)−1/α
, α ∈ [−1,∞)\{0} . (2.59)

Additionally, for the Clayton copula the lower Fréchet bound is reached if α = −1 .

Figure 2.9 illustrates the copulas used in our analyses. The first and second column
contain surface and contour plots of the copulas’ densities; the third column juxtaposes
10,000 random draws from the corresponding copula. In all cases, Kendall’s τ is taken
to be τ = 0.6, and the marginals are assumed to be standard–normally distributed. In
contrast to the Gaussian and Student–t copulas’ symmetry, the Gumbel and Clayton
copulas imply asymmetric dependence structures. The Clayton survival copula, as
mirror image of the Clayton, shows upper instead of lower tail dependence and can
therefore be used as alternative to the Gumbel in order to model positive upper but
absence of lower tail dependence. The Gumbel survival copula, which is not depicted,
leads to lower tail dependence, accordingly.

Summing up, Tables 2.2 and 2.3 list Kendall’s τ and tail dependence coefficients for
the copulas used in our analyses.

Copula Kendall’s τ

Gaussian τ = 2
π

arcsin(ρ)

Student–t τ = 2
π

arcsin(ρ)

Gumbel (Survival) τ = α−1
α

Clayton (Survival) τ = α
2+α

Table 2.2: Copulas and Kendall’s τ

Copulas have been criticized for pretending to deliver easy solutions to many difficult
statistical problems without fulfilling this promise. This general worry is expressed,
for example, by Mikosch (2006); for a criticism of the Gaussian copula in the context
of the financial crisis see Salmon (2009). However, underestimation of risk, or, more
generally, failure to model a given multivariate distribution must not attributed to the
concept of copulas per se. Copulas are useful abstract instruments to be handled with
care. For example. a multivariate distribution with substantial tail dependence will
not be adequately represented by a Gaussian copula—but the implied underestimation
of risk–capital is due to the incorrect use of copulas.
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Gaussian Copula, ρ = 0.809
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Student–t Copula, ρ = 0.809, ν = 5
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Gumbel Copula, α = 2.5
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Clayton Copula, α = 1.2
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Clayton Survival Copula, α = 1.2
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Figure 2.9: Copula Densities and Scatterplots, τ = 0.6
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Copula λL λU

Gaussian 0 0

Student–t 2tν+1

(
−
√

(ν+1)(1−ρ)
(1+ρ)

)
2tν+1

(
−
√

(ν+1)(1−ρ)
(1+ρ)

)

Gumbel 0 2 − 21/α

Gumbel Survival 2 − 21/α 0

Clayton 2−1/α 0

Clayton Survival 0 2−1/α

Table 2.3: Copulas and Tail Dependence Coefficients

2.3.1 Copula Estimation

Given observations from a multivariate sample, one faces the task of estimating its
copula. In principle, this can be done nonparametrically, using the empirical copula
of Deheuvels (1981). Denote the sample’s order statistics by {x(t)

1 , x
(t)
2 } and the cor-

responding rank statistics by {R(t)
1 , R

(t)
2 }. The empirical copula is defined—in analogy

to the univariate empirical distribution function—as

Ĉ
(
t1
T
,
t2
T

)
=

1

T

T∑

t=1

I(−∞,t1]

(
R

(t)
1

)
I(−∞,t2]

(
R

(t)
2

)
, t1 = 0, . . . , T, t2 = 0, . . . , T ,

(2.60)
where

IA(x) =





1 if x ∈ A
0 if x /∈ A

(2.61)

denotes the indicator function. The empirical copula is thus given by the number of
pairs (x1, x2) in the sample such that x1 ≤ x

(t1)
1 and x2 ≤ x

(t2)
2 , divided by the total

sample size. It can be shown that the empirical copula converges to the true underlying
copula (Deheuvels, 1979, 1981).

Although Ĉ
(

t1

T
, t2

T

)
represents the data’s dependence structure, estimation of depen-

dence via rank correlations or tail dependence coefficients is, in general, not easily
obtained. However, as pointed out by Joe (1997), sample versions of several depen-
dence measures can be obtained from the empirical copula. Just like in the univariate
case, the empirical copula can be smoothed via kernel techniques; see, for example,
Fermanian and Scaillet (2003).

A second approach towards copula estimation, as suggested by Genest and MacKay
(1986), relies on the relationships among copulas and dependence measures established
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above. For example, we may estimate Kendall’s τ from the sample and infer the corre-
sponding copula parameter using Table 2.2. However, it is not clear which parametric
copula to choose, and this is why this approach is only useful when having determined
the appropriate copula in a first step. Furthermore, the estimation results depend en-
tirely on a (scalar) coefficient and are obtained neglecting useful dependence structures
among the data.

Due to these limitations, we exclusively focus on estimation via Maximum Likelihood.

Maximum Likelihood: IFM

From the copula density in Equation (2.48), it follows that the joint density of X1 and
X2 can be written as

f(x1, x2) = c(F1(x1), F2(x2))f1(x1)f2(x2) .

This shows that inference for the joint distribution involves an identification of the
marginal distributions, but also the specification of the copula function to be used.
The Log–likelihood function

L(θ) =
T∑

t=1

ln c(F1(x1,t), F2(x2,t)) +
T∑

t=1

f1(x1,t) +
T∑

t=1

f2(x2, t) ,

where θ contains the parameters from the univariate distribution and the copula, needs
then to be maximized with respect to θ, leading to the exact ML estimator θ̂ML. This
can prove to be computationally intensive, especially in dimensions d > 2.

Therefore, the so–called Inference Functions for Margins, or IFM method, was pro-
posed by Joe and Xu (1996). It divides estimation into two steps: First, the margins’
parameters θm = (θ1, θ2) are estimated as

θ̂m = argmax
θm

(
T∑

t=1

f1(x1,t; θ1) +
T∑

t=1

f2(x2,t; θ2)

)
.

In a second step, the copula parameter θc is estimated, given θm:

θ̂c = argmax
θc

T∑

t=1

ln c(F1(x1,t), F2(x2,t); θc, θ̂m)

The IFM estimator is, accordingly,

θ̂IFM = (θ̂m, θ̂c) .

While for the Gaussian copula with correlation ρ and normally distributed univari-
ate margins θ̂IFM = θ̂ML, this equivalence does not hold in general. Nevertheless, Joe
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(1997) points out that the IFM method is computationally simpler and highly efficient,
compared to exact ML estimation.

Maximum Likelihood: CML

A semiparametric method is the so–called Canonical Maximum Likelihood, or CML
estimation. The underlying idea is that a misspecification of marginals in the exact
ML and IFM methods makes the estimators lose their consistency. In cases where one
is purely interested in assessing the dependenc structure, it might thus be preferable
not to restrict the marginal behavior. Therefore, the first step of the IFM method
is replaced by the calculation of the empirical distribution functions F̂ (x) and Ĝ(y).10

The copula parameter θc is then estimated via Maximum Likelihood and obtained from

θ̂CML = argmax
θc

T∑

t=1

ln c(F̂1(x1,t), F̂2(x2,t); θc)

Genest et al. (1995) show that under suitable regularity conditions, θ̂CML is consistent,
and the quantity T−1/2(θ̂CML − θc) is asymptotically normal. However, this method
suffers from a loss of efficiency, see Genest and Rivest (1993).
If the margins are unknown—as is typically the case for empirical analyses—the CML
method outperforms exact ML and IFM in terms of mean–squared errors.

This method, which we choose for our empirical applications, represents an appropriate
compromise between a fully parametric and a completely nonparametric approach.

2.3.2 Tail Dependence Revisited

We have already seen the relationship between the tail dependence coefficient and the
parameters of different copulas in Table 2.3. In fact, the tail dependence coefficient as
expressed in Equation (2.39) can alternatively be written in terms of the copula of X1

and X2:

λU = lim
t→1−

Pr[F1(X1) > t|F2(X2) > t] = lim
t→1−

Pr[F (X) > t,G(Y ) > t]

Pr[G(Y ) > t]
. (2.62)

Using the probability transform, we write

λU = lim
t→1−

Pr[U1 > t, U2 > t]

Pr[U2 > t]

= lim
t→1−

1 − FU1
(t) − FU2

(t) + Pr[U2 ≤ t, U1 ≤ t]

1 − FU2
(t)

,

10Genest et al. (1995) recommend to replace the empirical distribution function F̂ by F̂T , which

is T/(T − 1) times F̂ , in order to avoid problems caused by the marginal cdfs tending to one (as

c(1, 1) = 0). This modification will be used in our empirical analyses.



2.3. COPULAS 29

where FUi
, i = 1, 2, denotes the distribution function of Ui. But as this is a uniform

distribution, Ui ∼ Unif(0, 1), which implies that F (u) = u, this can be written as

λU = lim
t→1−

1 − 2t+ C(t, t)

1 − t
= lim

t→1−

(
2 − 1 − C(t, t)

1 − t

)
. (2.63)

Defining s = 1 − t, this implies that λU is the lower tail dependence coefficient of the
survival copula C̄(s, s). Similarly, it can be shown that for the lower tail dependence
coefficient,

λL = lim
t→0+

C(t, t)

t
. (2.64)

These representations confirm that the tail dependence coefficient is determined by the
copula of X and Y and is also invariant under strictly increasing transformations of
the margins.

Multivariate Extreme Value Theory

The tail dependence coefficient considers the probability of joint exceedances of high
thresholds. This probability is boiled down into one single number and could, there-
fore, be criticized just as correlations which do not convey much information about
the structure of dependence. An improvement can be achieved in the context of mul-
tivariate extreme value theory, which additionally implies a relationship between such
extremal dependence structures and the tail dependence coefficient.

In univariate extreme value theory, we know that the distribution of exceedances of a
high threshold converges to a Generalized Pareto distribution (GPD), implying that the
maxima of blocks converge to a Generalized Extreme Value (GEV) distribution (Em-
brechts et al., 2007). Multivariate extreme value theory (see, for example, Galambos,
1987) aims at finding such domain–of–attraction properties for joint distributions—or
copulas—of random variables.

Considering m blocks of length n, their maxima are given by

MX1,n = max(x1,, . . . , x1,n) , MX2,n = max(x2,, . . . , x2,n) , (2.65)

and we write M n = (MX1,n,MX2,n). The focus of multivariate extreme value theory
is on the joint asymptotic behavior of these maxima. That is, one is interested in
conditions on the original distribution of X = (X1, X2) under which

Pr[Mn ≤ anx + bn] = F n(anx + bn)
n→∞−→ G(x) (2.66)
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holds. In this case, G(·) is a multivariate extreme value distribution (MEVD) and F is
in the domain of attraction of G, written as F ∈ MDA(G). This setup is identical to the
univariate case; however, in the multivariate framework there is no finite–dimensional
family covering the entire class of such distributions. In order to keep notation simple
and exclude univariate aspects, the marginals are typically standardized using univari-
ate Fréchet distributions.

If a limit distribution G exists, its marginals follow univariate extreme value distribu-
tions G1(x1) and G2(x2). The copula of G(x) is thus unique, owing to the continuity
of the marginals. From Sklar’s theorem, the multivariate extreme value distribution
can be written as

G(x) = Ce(G1(x1), G2(x2)) (2.67)

where Ce(·, ·) denotes an extreme value copula. In this case, the copula C of F is in
the domain of attraction of an extreme value copula, C ∈ CDA(Ce), where

Ce(u
t) = Ct(u) . (2.68)

Any copula for which relationship (2.68) holds is an extreme value copula.11

Under some weak regularity conditions, the multivariate extreme value distribution
can be written as

G(x) = exp(−V (x1, x2)) (2.69)

with

V (x1, x2) =
∫ 1

0
max

(
ω

x1

,
1 − ω

x2

)
2dH(ω) , ω ∈ [0, 1] , (2.70)

where H is a distribution function on [0, 1] satisfying
∫ 1

0
ωdH(ω)

1

2
. (2.71)

Alternatively, one can use the fact that

∫ 1

0
max

(
ω

x1
,
1 − ω

x2

)
H(dω) =

(
1

x
+

1

y
A

(
x

x+ y

))
, (2.72)

where
A(ν) =

∫ 1

0
max(ω(1 − ν), (1 − ω)ν)H(dω) (2.73)

11For example, the independence copula as well as the comonotonicity and the Gumbel copula

belong to this class.
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with
max(ν, 1 − ν) ≤ A(ν) ≤ 1 (2.74)

is convex on [0, 1] and known as Pickands’ dependence function (Pickands, 1981).

Extreme value copulas can be expressed in terms of Pickand’s dependence function: a
copula C is an extreme–value copula if and only if it can be written as

C(u1, u2) = exp

{
(ln(u1) + ln(u2))A

(
ln(u1)

ln(u1) + ln(u2)

)}
. (2.75)

By inserting into Equation (2.75), we see that the bounds in equation (2.74) correspond
to two fundamental copulas: A(ν) = 1 implies independence (C(u1, u2) = u1u2), and
A(ν) = max(ν, 1 − ν) leads to comonotonicity (C(u1, u2) = min(u1, u2)).

If C ∈ CDA, the upper tail dependence coefficient of Ce is identical to that of C.
Furthermore, it is related to Pickand’s dependence function via λU = 2(1 − A(1/2))

(McNeil et al., 2005). This implies that one can—under the assumption of a multivari-
ate extreme distribution—infer Pickand’s dependence function and thus the extreme
value copula from λU .
One important representative of bivariate extreme–value copulas is the Gumbel copula.
In fact, Archimedean copulas for which C ∈ CDA holds are in the domain of attrac-
tion of the Gumbel copula. This makes the Gumbel copula a natural candidate for
tail dependence estimation when considering Archimedean copulas (see, for example,
Capéraà and Fougères, 2000; Genest and Rivest, 1989).

Multivariate extreme value theory has lead to considerations of copulas for the tails
related to bivariate extreme value copulas—just as exceedances of random variables
can be used in the context of univariate Extreme Value Theory. For example, Juri
and Wüthrich (2002) define a so–called upper tail copula, corresponding to the lower
threshold copula of McNeil et al. (2005).

Asymptotic versus Quantile Dependence

The tail dependence coefficient from Equation (2.63) is defined as the limit for t → 1,
that is, it provides information with regard to asymptotic dependence. Standard multi-
variate extreme value theory methods as presented above are based on distributions for
which either λU > 0 (asymptotic dependence) or independence of the entire distribu-
tion (implying λU = 0) holds. Such methods are, thus, not able to model distributions
which are asymptotically independent but show extremal dependence for t < 1. This
is a relevant limitation because empirical analyses often lead to λU = 0, in which case
an analysis of dependence at lower quantiles is still desirable. The multivariate normal
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distribution with ρ < 1 is an example of an asymptotically independent distribution
showing such quantile dependence (Galambos, 1987; Embrechts et al., 2002). Methods
for this case have been developed by Coles and Tawn (1994), Ledford and Tawn (1996),
Ledford and Tawn (1997), Bruun and Tawn (1998) and Bortot and Tawn (1998).

It is, therefore, desirable to consider a measure of extremal dependence for levels t < 1.
One reason for this is the possibility of dependence for t < 1 while we observe asymp-
totic independence; additionally, such a measure will be helpful for empirical analyses,
as these can only consider exceedance probabilities for t < 1. This latter point will
be discussed in more detail in the context of nonparametric tail dependence estimation.

Rewriting Equation (2.63) as

λU = lim
t→1−

(
2 − 1 − C(t, t)

1 − t

)
= lim

t→1−

λU(t) , (2.76)

we obtain a quantity λU(t) which can, in principle, convey information about extremal
dependence at t < 1. As pointed out by Coles et al. (1999), the limit in Equation
(2.76) can alternatively be expressed as

λU = lim
t→1−

(
2 − ln(C(t, t))

ln(t)

)
= lim

t→1−

χ(t) =: χ , (2.77)

which provides us with a second quantity, χ(t), which may be used as quantile–
dependent measure of extremal dependence. Its sign depends on whether the variables
under consideration are positively or negatively associated at quantile t.

In the case of asymptotic independence (λU = χ = 0), Coles et al. (1999) suggest a
measure whose limit conveys information about the strength of extremal dependence.
They define

χ̄ = lim
t→1−

=
2 ln (Pr[U1 > t])

ln(Pr[U1 > t, U2 > t])
− 1 = lim

t→1−

2 ln(1 − t)

ln(C∗(t, t))
− 1 = lim

t→1−

χ̄(t) (2.78)

where C∗(t, t) = Pr[U1 > t, U2 > t]. If the random variables are tail dependent, χ̄ = 1

must hold; in general, −1 ≤ χ̄ ≤ 1. We therefore have obtained a second measure
which can convey information about the presence of asymptotic dependence. Fur-
thermore, in the case of tail independence, χ̄ provides a measure increasing with the
strength of extremal dependence for t < 1. For example, a Gaussian copula with ρ < 1

implies λU = χ = 0; however, χ̄ = ρ (Galambos, 1987). Table 2.4 summarizes the
implications of the two asymptotic measures. For λU = 0, there is asymptotic (tail)
independence, irrespective of the value of χ̄.12 However, asymptotic dependence re-
quires not only that λU > 0, but also that χ̄ = 1. Still, for the case of asymptotic

12In particular, is is possible that χ̄ = 1 for asymptotic independence.
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Asymptotic Independence Asymptotic Dependence

λU = χ 0 (0,1]
χ̄ [-1,1] 1

Table 2.4: Asymptotic (In)Dependence

(tail) independence, the value of χ̄ is not meaningless; but rather than considering the
limit t → 1, it refers to lower confidence levels. Those values of t are the relevant
confidence regions in empirical applications, and the lower t, the higher the number
of observations on which nonparametric estimates of quantile dependence can be based.
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Figure 2.10: Quantities λU(t), χ(t) and χ̄(t) for the Countermonotonicity copula.

In order to illustrate the behavior of λU(t), χ(t) and χ̄(t) for different levels of t, we
consider some examples. For the Fréchet upper bound, all three quantities λU , χ and
χ̄ are equal to one for all levels of t and thus for any quantile considered. This implies
perfect tail dependence as well as perfect dependence at all levels of t, corresponding
to the notion of comonotonicity. Similarly, the independence copula leads to λU =

χ = χ̄ = 0 for all t. However, the countermonotonicity copula exhibits the patterns
shown in Figure 2.10. We see that its behavior changes at t = 0.5, which is due to
the maximum expression taken in the calculation of Cu. The upper tail dependence
estimators λU and χ converge towards zero: Although (negative) dependence is perfect,
it cannot be captured due to its structure. However, χ̄ = −1 hints at perfect negative
association.

Figure 2.11 shows examples for different Archimedean and elliptical copulas as well as
different levels of t and values of the dependence parameter. For the Gaussian copula,
we see that λU(t) and χ̄(t) increase with t; by definition, their limits for t → 0 coincide.
Except for a correlation of ρ = 1, this limit equals zero due to tail independence. Cor-
respondingly, χ̄ equals one only for perfect positive correlation. These graphs illustrate
that for ρ < 1, there is extremal dependence at t < 1, but tail independence.
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Gaussian Copula
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Student–t Copula
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Gumbel Copula
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Clayton Copula
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Figure 2.11: Quantities λU(t), χ(t) and χ̄(t) for Parametric Copulas
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For the Student–t copula, the differences to the Gaussian are more pronounced, the
lower the degrees–of–freedom parameter, ν. Here, χ̄ converges to one in all cases, cor-
responding to tail dependence. As can be seen from λU and χ, the tail dependence is
the higher, the lower ν.
Similarly, we confirm upper tail dependence for the Gumbel copula13, the strength of
which can be assessed from λU and χ; in contrast to this, the Clayton copula does not
exhibit upper tail dependence.

Estimation of Tail Dependence

Assuming that the underlying copula is in the domain of attraction of an extreme
value copula, relationships from multivariate extreme value theory may be used in
order to derive tail dependence estimates. For example, Frahm et al. (2005) suggest
the following estimator of λU , which is motivated by Capéraà et al. (1997):

λ̂CFG
U = 2 − 2 exp

[
1

n

n∑

i=1

ln
{√

ln(u−1
1,i ) ln(u−1

2,i )/ ln
(
(max(u1,i, u2,i)

2)−1
)}]

. (2.79)

Furthermore, the relationships between Kendall’s τ and the upper tail dependence co-
efficient as given by tables 2.2 and 2.3 may be used to infer estimates for λU . However,
we are interested in a purely nonparametric estimation of tail dependence, in order to
gain insights independent of and additional to parametric copula inference.

The quantities λU(t), χ(t) and χ̄(t) can be used for estimation of tail dependence.
Inserting the empirical copula from Equation (2.60), this can be achieved without any
parametric assumption with respect to the underlying copula. The estimators thereby
obtained are

λ̂U(t) = 2 − ln Ĉn (t, t)

ln (t)
, (2.80a)

χ̂(t) = 2 − 1 − Ĉn (t, t)

1 − t
, (2.80b)

̂̄χ(t) =
2 ln(1 − t)

ln
(
Ĉ∗

n(t, t)
) − 1 . (2.80c)

We analyze the effects of different sample sizes on estimation results in a small simu-
lation study. That is, for each of four copulas with given parameter value, we generate
nobs observations. We then estimate tail dependence via Equations (2.80a) to (2.80c).
This is done 100 times for each level of t. Figure 2.12 shows the resulting means as

13In fact, χ(t) is constant in t for all bivariate extreme value distributions.
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well as the 5% and 95% quantiles of these estimates. For easier comparison, the cor-
responding true extremal dependence functions λU(t), χ(t) and χ̄(t) are included as
colored lines.

Gaussian copula, ρ = 0.5 Student-t copula, ρ = 0.5, ν = 5
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Means (solid), 5% and 95% quantiles (dashed) of 100 estimates of λU (t), χ(t) and

χ̄(t). The colored lines refer to the underlying true quantities.

Figure 2.12: Nonparametric Tail Dependence Estimation
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We see that based on nobs = 500 observations, the shapes of the extremal dependence
functions are captured satisfactorily. Most importantly, in case of tail dependence,
λ̂U(t) and χ̂(t) are close to λU and ̂̄χ(t) approaches one for high levels of t. It is, thus,
possible to infer tail dependence. However, this is not the case for smaller sample
sizes. In fact, the differences between true and estimated quantities increase with t,
as a higher t implies fewer observations on which the estimation can be based. But
this means that estimation is particularly difficult in the most important area of the
distribution. For example, considering the Gumbel copula with α = 5 (implying an
substantial upper tail dependence of λU = 0.8513), an estimation based on nobs = 50

observations could well lead to the conclusion of asymptotic independence, as all three
estimators decrease towards zero near t = 1. This is a general problem which has to
be faced when estimating exceedance probabilities and cannot be circumvented.

Tail dependence is typically estimated on either one or two of the quantities λU(t),
χt and χ̄(t). For example, Frahm et al. (2005) compare the behavior of λU(t) and
χ(t), while Dupuis and Jones (2006) consider χ(t) and χ̄(t). We argue that it is not
necessary to take a decision as to which estimator is the best; rather, the behavior of
all three quantities should be examined. If the underlying distribution is characterized
by tail dependence, both λU(t) and χ(t) should converge towards one, so that assessing
both estimators may give more insight with respect to the question of (absence of) tail
dependence than when only considering one quantity. Similarly, ̂̄χ should be checked
to converge towards one if tail dependence is inferred from a sample. Furthermore, as
can be seen from Figure 2.11, different parametric copulas imply different shapes of
the extremal dependence functions; this fact will be used in the context of assessing
the goodness–of–fit of parametric copulas.

2.3.3 Goodness of Fit

Once the parameters of different copulas have been estimated, the question of how to
compare their fit to the observed data has to be answered. A first approach consists
of purely graphical methods.

Example 2.1. In the goodness–of–fit analyses presented in the remainder of this chap-

ter, we will use two scenarios which differ in the strength of (tail) dependence. Both

will use data simulated under the assumption of a Gumbel copula, in order to assess

the effects of asymmetric, nonlinear dependence.

1. Moderate Dependence. Here, we choose an upper tail dependence coefficient

of λU = 0.2. This implies that the parameter of the Gumbel copula is equal to

α = 1.179, and a (Kendall) rank correlation of τ = 0.1518.
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2. Strong Dependence. Setting λU = 0.8 leads to α = 3.802 and τ = 0.737.
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Figure 2.13: The graphical approach to copula goodness–of–fit testing: n = 1,000.

Figure 2.13 shows contour plots of the empirical copula against the contours of the

copulas fitted via Maximum Likelihood. We observe that the latter are closer in the

case of moderate dependence, which makes perfectly sense since one of the main dis-

tinguishing dependence structures—tail dependence—is only weak. In contrast to this,

for strong dependence, the differences among the shapes given some level of C(·, ·) are

clearly visible. This is remarkably true for the Clayton survival copula, which is—due

to its implication of absence of higher and presence of lower tail dependence—far from

the empirical copula. We thus observe an effect which will be encountered several times

in the following: The stronger the dependence, the better the discrimination among

copulas. Figure 2.13 was based on n = 1,000 bivariate realizations. A realistic sample

size in risk management applications will be typically lower, reducing the usefulness

of such graphical (and, in general, all goodness–of–fit) methods. In Figure 2.14, the

empirical copula is characterized by kinks. The shapes of the contours—and, thus, the

distance of the theoretical contours to the empirical ones—are thus largely driven by

single observations.

As a different means towards evaluation of copula goodness–of–fit, information criteria
such as the Akaike (AIC) and Bayesian (BIC) may be employed. With q estimated
parameters and sample size T , these are given by

AIC = −2 ln(ℓ(θ)) + 2q

BIC = −2 ln(ℓ(θ)) + q ln(T ) , (2.81)

where ℓ(θ) denotes the maximized log–likelihood. One chooses that model which yields
the lowest value for AIC and/or BIC. However, these information criteria do not give
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Figure 2.14: The graphical approach to copula goodness–of–fit testing: n = 100.

any hint with respect to the size and power of the decision rule; therefore, goodness–
of–fit tests are preferred.

Typically, the hypotheses we wish to test are

H0 : C ∈ C = {Cθ; θ ∈ Θ} vs. H1 : C /∈ C = {Cθ; θ ∈ Θ} (2.82)

That is, we have in fact a composite hypothesis which contains the copula family as
well as its parameter value.
If we are able to express the hypotheses in terms of a univariate random variable,
usual goodness–of–fit tests such as the Cramér–van–Mises (CvM, see, for example,
Pearson and Stephens, 1962), Kolmogorov–Smirnov (KS, Kolmogorov, 1933; Smirnov,
1939) or the Anderson–Darling (AD, Anderson and Darling, 1952) test. Generally
speaking, they are based on the distance between the empirical distribution (F̂ (x))
and the theoretical one (F (x)). The CvM statistic is given by

CvM = n
∫ 1

0
(F̂ (x) − F (x))2dF (x) . (2.83)

The KS statistic is obtained from

KS = max
x

(
|F̂ (x) − F (x)|

)
, (2.84)

and the AD test can be written as

AD = max
x

|F̂ (x) − F (x)|√
F (x)(1 − F (x))

. (2.85)

The AD test statistic puts more emphasis on and is thus more accurate in the tails of
F̂ (x) and F (x). Correspondingly, the KS test is more sensitive towards changes in the
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center of the distribution. Additionally, the AD test is characterized by a high power
against various alternatives (D’Agostino and Stephens, 1986).

All three statistics can thus be expressed as continuous functionals of the empirical
process

√
n
(
F̂ (x) − F (x)

)
, (2.86)

where F (x), and thus the asymptotic distribution of the test statistic, depends on
the–typically unknown–parameter θ. In other words, whenever we do not know all
parameters, we may not resort to their theoretical distributions.

In the following, we first present three prominent types of goodness–of–fit tests for
copulas. The first one is an adaptation of the well–known univariate χ2 test to multi-
variate settings. Through the calculation of the test statistic, the multivariate problem
is transformed to a univariate one. Similarly, the tests outlined in Sections 2.3.3.2 and
2.3.3.3 are based on differences between empirical and theoretical univariate quanti-
ties. They are reviewed—among a variety of others—and compared by Berg (2009),
whose results lead to the choice of tests considered here. They will be discussed in the
corresponding sections. Finally, Section 2.3.3.4 suggests a new criterion for the choice
among different copula families which is inspired by nonparametric tail dependence
estimation.

2.3.3.1 χ2 Tests

A goodness–of–fit test for copulas based on the χ2 distribution is used by Genest and
Rivest (1993) and Hu (2006) in order to assess the fit of different copula models. A
more detailed account on this approach can be found in Dobric and Schmid (2005); the
latter paper modifies the hypothesis to be tested such that only the family of copula
is formulated as null hypothesis.14

In a first step, the sample space is divided into classes, in order to be able to build a
contingency table used for testing. For example, Dobric and Schmid (2005) partition
the unit square into r × s rectangles of equal area 1/(rs), while Genest and Rivest
(1993) and Hu (2006) construct the (upper) boundaries for a sample of size n and
k2 classes (in other words, r = s = k) as the order statistics at position n ∗ j/k,
j = 1, . . . , k.15 Whatever the choice for the construction of the bounds, its result are
Bij cells partitioning the sample space. Given an estimate θ̂ for the copula parameter,

14The parameter value of the copula is then chosen such that the χ2 test statistic is minimized.
15The setup of Genest and Rivest (1993) and Hu (2006) leads to an equal number of observations

per row and column, that is, equal marginal frequencies.
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one can then calculate the theoretical joint probability of cell Bij

pij(θ̂) = Pr
[
X ∈ Bij |θ̂

]
. (2.87)

Denoting the number of observations in cell Bij by Nij, the test statistic is given by

χ2(θ̂) =
r∑

i=1

s∑

j=1

(
Nij − npij(θ̂)

)2

npij(θ̂)
(2.88)

and follows a χ2 distribution with df = (r − 1)(s− 1) − d degrees of freedom, where d
denotes the number of parameters estimated.16

Example 2.2. We draw bivariate realizations from the Gumbel copula, the parameter

value depending on the scenario used. For simplicity, the margins are assumed to be

standard normal. In order to apply the χ2 test, we have to construct a contingency table.

As in Genest and Rivest (1993) and Hu (2006), we choose k = 7 cells, whose boundaries

are given by the order statistics at position n ∗ j/k = 1000 ∗ j/7 for j = 1, . . . , 6. For

the cells constructed in this way, we evaluate the number of observations they contain.

1. Moderate Dependence. Table 2.5 shows the contingency table of these n =

1,000 bivariate observations.

X2

X1

29 29 19 18 20 16 12

23 21 27 20 19 14 19

20 24 21 20 22 23 13

19 23 21 22 16 23 18

18 20 20 25 22 19 19

20 13 18 24 27 23 18

14 13 17 13 17 25 44

Table 2.5: χ2 Test: Number of Observations, λU = 0.2

As is to be expected for a positive dependence setup, the frequencies along the

main diagonal tend to be higher than those in the other cells. However, the

distribution of the n = 1,000 observations across cells appears quite even. The

p–values obtained from this setup are shown Table 2.6. We see that none of the

null hypotheses can be rejected at any reasonable confidence level.

16Intuitively, the number of rows and columns has to be reduced due to the fact that the last row

(column) is given and cannot be chosen freely.
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Copula Ga t Gu GuS Cl ClS

n = 1,000 0.8028 0.9448 0.9899 0.4198 0.1242 0.9717

n = 500 0.3599 0.3888 0.5534 0.1292 0.0445 0.6086

Table 2.6: χ2 Test: p–values, λU = 0.2.

It has to be kept in mind that this situation, which leaves us without any clear–cut

hint at the most appropriate copula, was created based on n = 1,000 observations,

which is a very comfortable situation in a risk–management framework. We can

easily construct examples where the highest p–value belongs to a copula other than

that used for generating the data: The second row of Table 2.6, which is based

on the same parameter values as before, but a sample size of n = 500, leads to a

decision in favor of the Clayton survival copula.

2. Strong Dependence.

The distribution of observations across the k2 = 49 cells shows now clearly the

tendency of clustering along the main diagonal. However, this clearer dependence

pattern creates a new problem in conducting the test.

X2

X1

98 31 11 2 1 0 0

30 57 36 14 4 2 0

11 40 50 29 11 1 1

4 11 34 50 31 10 2

0 4 9 39 61 30 0

0 0 3 7 33 73 27

0 0 0 1 2 27 113

Table 2.7: χ2 Test: Number of Observations, λU = 0.8

As can be seen from Table 2.7, the clustering of observations leads to several (bold-

face) cells containing only few (≤ 4) or no observations. The common remedy to

this problem consists of pooling together cells until all of them contain at least 5

observations. Obviously, this pooling can be done in different ways; we arbitrarily

choose among these possibilities. That is, we create four “new” cells by pooling

cells according to their colors; for example, one new cell sums up observations of

B14, B15 and B25. Next, we pool the neighboring new cells, so that we obtain only
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2 new cells—one below, one above the main diagonal. Finally, we also unite these

two, so that we use only one new cell. Table 2.8 contains the p–values thereby

obtained (we exclude those copulas for which the p–values are zero for all pooling

schemes); the second row corresponds to the case where pooling is neglected and

all original cells are used. We see that without any pooling, the p–values of the

Number of pooled cells

0 1 2 4

Gaussian 0.0000 0.2417 0.2933 0.1694

Student–t 0.2720 0.2415 0.2221 0.2449

Gumbel 0.3091 0.8164 0.8679 0.8985

Table 2.8: χ2 Test: p–values, λU = 0.8

Student-t and the Gumbel copula are close, while all other null copulas can be

rejected at any confidence level. However, if we start pooling, using only one new

cell, the Gaussian copula cannot be rejected any longer, while the Student–t and

Gumbel p–values differ considerably. For more granular pooling schemes, results

clearly hint at the Gumbel copula.

As is to be expected, this test performs better, the stronger the dependence among
the data. However, such a dependence structure may call for a pooling of cells, which,
in turn, has a influence on testing. This latter phenomenon can be reproduced for
different simulation setups: Depending on the classification and pooling scheme chosen,
the choice among null copulas may differ. Therefore, this sort of goodness–of–fit test
contains a subjective element.

2.3.3.2 Tests Based on the Rosenblatt Transform

A class of goodness–of–fit tests for copulas relies on the transform of Rosenblatt (1952).
Given a random vector X = (X1, . . . , Xd) with absolutely continuous joint distribution
function FX and margins Fi(xi), it is given by

T (x1) = Pr[X1 ≤ x1] = F1(x1)

T (x2) = Pr[X2 ≤ x2|X1 = x1] = F2|1(x2|x1)

· · · · · ·
T (xd) = Pr[Xd ≤ xd|X1 = x1, . . . , Xd−1 = xd−1] = Fd|1,...,d−1(xd|x1, . . . , xd−1) .(2.89)

The random variables obtained from this transformation, Zi = Ti(xi), are uniformly
and independently distributed on [0, 1]d.
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This idea can be used to test for the goodness–of–fit of parametric copulas by expressing
the transformation in terms of (conditional) copulas. Denoting by Ci(u1, . . . , ud) the
joint i–marginal distribution of U , that is,

Ci(u1, . . . , ui) = C(u1, . . . , ui, 1, . . . , 1) , (2.90)

the conditional distribution of Ui given U1, . . . , Ui−1 is given by

Ci(ui|u1, . . . , ui−1) =
∂i−1Ci(u1, . . . , ui)/∂u1 · · ·ui−1

∂i−1Ci−1(u1, . . . , ui)/∂u1 · · ·ui−1
(2.91)

for i = 2, . . . , d. The transformed random variables obtained from (2.89) can thus
alternatively be expressed as

Zi = Ci(Fi(xi)|F1(x1), . . . , Fi−1(xi−1)) . (2.92)

If Ci(·) represents the (“true”)underlying (conditional) copula of X, we should, ac-
cordingly, find that Zi

iid∼ Unif(0, 1). Applying the probability–integral transformation,
we may then use any distribution for testing. Typically, one applies the inverse of
the standard normal distribution, so that Φ−1(zi), which must be standard normally
distributed if Ci is correctly representing the data’s dependency structure. A test
statistic can then be derived from S =

∑d
i=1(Φ−1(zi))

2, which accordingly follows a
χ2

d distribution. For the two–dimensional case, to which we are restricting attention,
the strategy of goodness–of–fit testing via the Rosenblatt transform thus boils down
to testing whether

S(x1, x2) =
[
Φ−1(F1(x1))

]2
+
[
Φ−1(C2(F2(x2)|F1(x1)))

]2
(2.93)

follows a χ2
2 distribution, where the empirical distribution functions are inserted for

Fi(xi), and C2(·, ·) is evaluated from Equation (2.91). This latter quantity can easily be
computed for Archimedean copulas. For the implicit Gaussian and Student–t copulas,
one may use the fact that the conditional copula can be expressed as (see, for example,
Cherubini et al., 2004)

CGa
2 (u2|u1) = Φ

(
Φ−1(u2) − ρΦ−1(u1)√

1 − ρ2

)
(2.94)

and

Ct
2(u2|u1) = tν+1

(√
ν + 1

ν + t−1
ν (u1)2

t−1
ν (u2) − ρ t−1

ν (u1)√
1 − ρ2

)
, (2.95)

where t−1
ν (·) refers to the cumulative distribution function of the Student–t distribution

with ν degrees of freedom.

This approach to goodness–of–fit testing was first applied in a risk management frame-
work by Berkowitz (2001), followed by Breymann et al. (2003) and Malevergne and
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Sornette (2003); the latter considering only the null hypothesis of a Gaussian copula.
However, it is not as straightforward as it may seem at first sight. Firstly, observations
are transformed via their empirical distribution functions; this use of ranks introduces
dependence, and thus Zi is only close to iid. This has been pointed out, for example, by
Dobric and Schmid (2007). Secondly, the calculation of S involves estimated parameter
values, on which the distribution of test statistics depend (see, for example, Babu and
Rao, 2004; Genest and Rémillard, 2008). The use of estimated parameter values and
standard critical values can thus only be justified—at most—asymptotically. To tackle
this issue, p–values for such a goodness–of–fit test need to be obtained via bootstrap-
ping (Efron and Tibshirani, 1986).17 The procedure is sketched in Table 2.9.

1. Calculate empirical cdf of x1 = (x11, . . . , x1n)′,x2 = (x21, . . . , x2n)′

2. Estimate parameters θ

3. Using ui = F̂i(xi) from 1. and θ̂ from 2., calculate S and the corresponding
Anderson–Darling test statistic AD

4. Parametric Bootstrap: Repeat B times the following steps.

• Generate a sample of size n from the null hypothesis copula, x1
0,x2

0,
using the estimated parameter value θ̂

• Calculate empirical cdf of x1
0,x2

0

• Estimate parameters θ0

• Calculate S0 and corresponding Anderson–Darling test statistic AD0
b

5. Calculate the approximate p–value from p̂ = 1/(B + 1)
∑B

b=1 IAD0
b
>AD

Table 2.9: GoF testing Based on the Rosenblatt Transform.

This approach to goodness–of–fit testing for copulas has been generalized by Berg and
Bakken (2005). They consider a more general version of Equation 2.93, that is, the
quantity

S̃ =
d∑

i=1

Γ(zi,α) (2.96)

17This need for a bootstrap is neglected by Breymann et al. (2003), but taken into account by

Malevergne and Sornette (2003).
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for some weighting function Γ with weight parameters α. Using γ(zi; α) = Φ−1(zi)
2

as in Breymann et al. (2003) thus represents a special case. Berg and Bakken (2005)
show their modification to be consistent. But this comes at a cost: Unlike the case
of Equation (2.93), the distribution of Ŝ is unknown and must be determined via a
double bootstrap procedure.

Replacing the AD statistic with the more general continuous functional of the empirical
process (2.86), the parametric bootstrap of Step 4 fits into the bootstrap procedure
suggested and described by Stute et al. (1993) and Henze (1996) in the univariate case
and extended towards multivariate setups by Genest and Rémillard (2008). The latter
authors prove that this procedure yields a valid approximation to the null distribution.

Example 2.3. We again apply the test to artificial datasets consisting of bivariate

observations from a Gumbel copula. The corresponding boxplots are shown in Figure

2.15. First, we use n = 1,000 observations and a copula parameter α = 3.8. The

number of replications in the bootstrap is set to B = 10,000.18 Repeating 25 times, we

obtain 25 different p-values for each null hypothesis copula.

While for the Gaussian, Gumbel Survival, Clayton and Clayton survival copulas, the

interquartile range is clearly below p = 0.1, this is not true for the Student–t copula. It

thus seems that the test cannot distinguish between symmetric and asymmetric depen-

dence structures satisfactorily.

If we reduce the upper tail dependence to λU = 0.2 (α = 1.179), the results change

substantially. This is shown in the middle of Figure 2.15, where none of the null

hypothesis copulas can be rejected any more and the interquartile ranges are much

wider than in the case of strong dependence. Similarly, reducing the sample to only

n = 100 observations (right part of Figure 2.15) leads to results where only one copula

(the Clayton) can be rejected at a confidence level below 10%.

We conclude that this type of copula goodness–of–fit test may be useful for large sam-
ples and in cases of substantial dependence; however, it may fail to detect asymmetries
and its power may be weak in other situations. These findings agree with those of Berg
(2009), who finds the Rosenblatt–based tests to perform poorly for a large variety of
copulas.

18This number of replications corresponds to the settings of Malevergne and Sornette (2003) and

Berg (2009) who find it to be sufficient in order to obtain reliable results.
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Figure 2.15: Simulation of p–values Based on the Rosenblatt Transform

2.3.3.3 Tests Based on the Empirical Copula

In the following, we present two tests which are found to perform especially well in a
variety of setups by Berg (2009).19 Both are based on the distance between the empir-
ical and the null copula.

The Genest and Rémillard (2008) approach (A2)

This approach to goodness–of–fit testing reduces the dimensionality via Deheuvel’s em-
pirical copula from Equation (2.60), calculated from the empirical distribution func-
tions. That is, in the two–dimensional setting,

Ĉ(u1, u2) =
1

n+ 1

n∑

j=1

I(−∞,u1]

(
F̂ (x1)

)
I(−∞,u2]

(
F̂ (x2)

)
. (2.97)

Comparing this quantity to the theoretical copula C can be done, for example, via a
Cramér–van–Mises test (Genest et al., 2009):

CvMA2
= n

∫

[0,1]d

(
Ĉ(u) − C(u)

)2
dĈ(u) =

n∑

i=1

(
Ĉ(u) − C(u)

)2
. (2.98)

Example 2.4. Considering the same setup as before, we see that the test performs

clearly better than the one based on the Rosenblatt transform in the case of strong

dependency and a large sample. That is, for all null hypotheses except the Gumbel, the

p–values are virtually zero in all cases. Reducing the dependence (λU = 0.2) or the

sample size (n = 100) leads to an increase in p–values; only for those copulas which

imply absence of upper and presence of lower tail dependence (the Gumbel survival and

Clayton copula), they remain zero.

19Adopting from Berg (2009), we call these two approaches A2 and A4.
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Figure 2.16: Simulation of p–values, Approach A2

The Genest and Rivest (1993) approach (A4)

Another approach is based on the distribution function of the copula,

K(v) = Pr[C(u) ≤ v] . (2.99)

It can be estimated by the empirical distribution function of the empirical copula, that
is,

K̂(v) =
1

n+ 1

n∑

j=1

I[0,v]

(
Ĉ(u)

)
. (2.100)

Kendall’s process, which was introduced by Genest and Rivest (1993), is then given by
the empirical process

α(v) =
√
n
(
K̂(v) −K(v)

)
. (2.101)

Its name derives from the fact that it is closely related to Kendall’s τ .20 For an
Archimedean copula with generator φ(t), this distribution function of V = C(u1, u2)

can be written as

K(v) = v − λ(v) with λ(v) =
φ(v)

φ′(v)
. (2.102)

If φ/(u1)/(φ(u1) + φ(u2)) ∼ Unif(0, 1) and independent of V , (2.102) implies that the
underlying copula is Archimedean; see Genest and Rivest (1993) for a proof. Therefore,
and as the relationship from Equation (2.102) can be solved for the copula’s generator
φ, estimation of K(v) amounts to an estimation of the copula in an Archimedean
setting. Comparing the empirical estimate (2.100) to its theoretical counterpart thus
yields a valid approach for testing the goodness of fit. This can be done graphically, as

20That is, Kendall’s τ is an affine transformation of the mean of the distribution function K(·).
This relationship can be exploited for choosing among different Archimedean copula alternatives in a

method–of–moments–style approach; see Genest and Rivest (1993).
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demonstrated by Genest and Rivest (1993), or with one of the available test statistics.
However, as we are not exclusively considering Archimedean copulas, and as Kn(v) can
not always be expressed in closed form, we have to use a double–bootstrap procedure
in order to obtain an approximation to Kendall’s process under the null hypothesis
copula.21 Again, we use a Cramér–van–Mises test statistic:

CvMA4
= n

∫

[0,1]d

(
K̂(v) −K(v)

)2
dK̂(u) =

n∑

i=1

(
K̂(u) −K

θ̂
(u)

)2
. (2.103)

Example 2.5. Within the setup discussed before, results for the case of strong depen-

dence and n = 1,000 again look very promising, as is seen in the left part of Figure

2.17.
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Figure 2.17: Simulation of p–values, Approach A4

However, we observe again a substantial change of results in cases of only moderate

dependence (middle) or a small sample (right). Here, the p–values for the Gumbel

survival copula, implying exactly the opposite dependence structure, may even be near

20%. Only the Clayton copula hypothesis can be rejected.

2.3.3.4 Copula Goodness–of–Fit Based on Quantile Dependence

A goodness–of–fit criterion which has, to our knowledge, not been suggested so far
links the nonparametric estimators of tail dependence to parametric copulas. As seen
in Section 2.3.2, three different quantities—λU , χ and χ̄—can be used in order to
assess quantile and tail dependence. Furthermore, different parametric copulas imply
different shapes of these functions depending on the confidence level, t (see Figure
2.11). If we estimate λU , χ and χ̄ via Equations (2.80a) to (2.80c), we should find that
the distance between estimates and theoretical quantities—given some estimate of the
copula parameters—should be minimal for the “true” copula. This very basic idea

21Conditions for weak convergence of Kendall’s process can be found in Barbe et al. (1996).
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may serve as a criterion for assessing the goodness of fit of several parametric copulas:
Given their parameter estimates, we need to compare the shapes obtained for λ̂U(t),
χ̂(t) and ̂̄χ(t) to those implied by the parametric copulas, for different levels of t. This
can be done visually; alternatively, we can use some distance measure.

Example 2.6. We again draw n = 1,000 bivariate realizations from a Gumbel copula

with parameter α = 3.8. We estimate λU , χ and χ̄ for a range of values of t ∈ (0, 1),

as well as the parameters of our candidate copulas via Maximum Likelihood. The

resulting graph of empirical and theoretical extremal dependence functions is shown in

Figure 2.18.
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Figure 2.18: Empirical vs. Theoretical Extremal Dependence.

As expected, the empirically estimated functions are closest to the theoretical ones cor-

responding to a Gumbel copula with parameter α̂ = 3.8143. Therefore, a purely visual

inspection clearly hints at the Gumbel copula. In order to additionally measure the

distance between the functions, we define the criterion

d =
m∑

j=1

(
λ̂U(tj) − λU(tj)

)2
+

m∑

j=1

(χ̂(tj) − χ(tj))
2 +

m∑

j=1

(
̂̄χ(tj) − χ̄(tj)

)2
, (2.104)

consisting of the sum of squared distances between nonparametric and theoretical quan-

tities. Running simulation and estimation 25 times, we obtain boxplots of the sums of

squared distances. These are shown in Figure 2.19. We see that the Gaussian copula

leads to distances very close to those of the (“true”) Gumbel copula. This can be con-

firmed by inspection of Figure 2.18, where the extremal dependence functions implied by

the Gaussian copula are closest to those of the Gumbel copula. However, the Student–t

implied distances are substantially higher than those of the Gumbel, so that—different

from the approaches presented so far—the Student–t can be easily distinguished from

the Gumbel copula. For moderate dependence, the Gumbel criterion remains the small-

est; for a small sample, the Gaussian copula implies the smallest value. However,

the ordering of the copulas seems to be less affected by effects of small samples and

moderate dependence than the goodness–of–fit approaches presented so far.
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Figure 2.19: Simulation of a New Goodness–of–Fit Criterion.

We conclude that nonparametric measures of extremal dependence can, in principle,
be used to assess the goodness of fit of parametric copulas. This follows directly from
visual inspection of Figure 2.18. A simple distance measure may help to find the
parametric copula implying extremal behavior closest to the one empirically observed
and nonparametrically estimated. A formal test remains to be developed and shown to
yield valid results under various setups concerning null copulas and parameter values.

2.4 Measuring Dependent Risks

2.4.1 Risk Measures

One of the steps in the risk–management process is the measurement of risk. A quantifi-
cation of existing risks is necessary in order to be able to establish limits, for example,
for credit lines, or to set up capital buffers against potential adverse movements leading
to large losses. We will mainly be concerned with the latter issue, that is, estimating
risk capital for a given loss (or return) distribution. Other approaches to risk quantifi-
cation which are not based on loss distributions, such as scenario–based measures, will
not be considered here.

Using a distribution of past losses allows a consideration of aggregate loss across risk
types and on an enterprise–wide perspective, because losses are a universal concept in
all risk types. In this way, we can merge losses from, say, a portfolio of credit counter-
parties, with a portfolio of stocks to obtain an aggregate loss distribution. However, it
has to be kept in mind that approaches relying purely on historical losses are, by their
very nature, not able to predict movements beyond those observed in the past.22

22Using a popular illustration, one can say that such an approach amounts to driving a car while

looking in the rear–view mirror.
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Value–at–Risk (VaR)

The Value–at–Risk (VaR) at confidence level α of a distribution of losses, L, is given
by

VaRα = inf{ℓ ∈ R : Pr[L > ℓ] ≤ 1 − α} = inf{ℓ ∈ R : FL(ℓ) ≥ α} , (2.105)

which is the α–quantile of the loss distribution. It thus denotes the maximum loss which
will not be exceeded with a probability of at least α%. VaR is the most commonly
used risk–measure due to its simplicity and the easiness with which its concept can be
grasped. However, VaR suffers from drawbacks that should be known when applying
it in order to derive risk–capital estimates. Firstly, it is not able to convey information
about the distributional properties of those (1 − α)% of losses exceeding it. This
is illustrated in Figure 2.20, which shows two different loss histograms. Up to and
including VaR0.95, they are identical; however, observed losses are higher beyond this
point for the distribution on the right. An exceedance of VaR will thus tend to lead to
higher losses and thus to a higher risk, which cannot be captured by VaR.
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Figure 2.20: Value–at–Risk and extreme losses.

Another drawback of VaR is its non–coherence. Artzner et al. (1999) set up a set of
requirements for a risk measure, δ(L). Those measures meeting all criteria are called
“coherent” by Artzner et al. (1999). One of the properties a meaningful risk measure
should have is the subadditivity property

δ

(
n∑

i=1

Li

)
≤

n∑

i=1

δi . (2.106)

A joint modeling of losses from distinct categories such as risk types or geographical
locations, should thus not lead to an increase in risk as compared to summing up the
single risk estimates. This property is, in general, not fulfilled by VaR; this drawback
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will be discussed in more detail below.

A second risk measure, which has gained popularity recently, is given by the Expected
Shortfall (ES)

ESα = E[L|L ≥ VaRα] . (2.107)

This risk measure focuses on the tail of the loss distribution beyond VaRα and, there-
fore, contains more information than the latter. Figure 2.21 illustrates this advantage
of ES. Additionally, ES is a coherent risk measure in the sense of Artzner et al. (1999):
It fulfills the subadditivity property (2.106) independently of the loss distribution’s
nature.
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Figure 2.21: Value–at–Risk, Expected Shortfall and extreme losses.

Before the rise of VaR during the 90ies, variance was a very popular risk measure.
For example, the pathbreaking approach to portfolio theory of Markowitz (1952) relies
on variance. However, it is a symmetric measure covering the entire range of the
distribution which may be a clear disadvantage in cases where tails are the focus
of analyses and/or loss distributions are asymmetric. Furthermore, the existence of
variances are not guaranteed for financial data due to the typical fat–tailedness of
return (or loss) distributions. There exist other risk measures, such as Lower and Upper
Partial Moments (Fishburn, 1977; Bawa, 1975, 1978) or Maximal Drawdown (Chekhlov
et al., 2005). As these are less common than VaR and ES in the risk–management
framework, we only consider the latter two when assessing effects of dependencies on
risk capital.

2.4.2 Risk Aggregation and Dependence

Very often, there is a need to consider aggregate risk. For example, a company might
desire to obtain one risk–capital estimate for all of market, credit, operational and other
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risks, or there might be the need to aggregate over several separate models for one risk
type, for example, at different geographical locations. In these cases, some sort of risk
aggregation has to take place. In general, two different approaches may be used to
obtain a risk–capital estimate δ(L) for aggregate losses L =

∑n
i=1 Li over i partitions.

Firstly, risk might be modeled separately within each of the i = 1, . . . , n subcategories;
in this case, n risk–capital estimates δ(Li) will be the result. In a second step, these
quantities have to be aggregated, which typically boils down to a summing–up of the
single estimates. Secondly, the subcategories might be modeled jointly, so that one
considers only one loss distribution, F (L). In this case, risk–capital follows directly
from the aggregate loss distribution.

There is no general answer to the question of which approach is preferable, or which
one will lead to higher risk–capital estimates. Subadditivity, as required by Artzner
et al. (1999) and introduced in Equation (2.106), implies that the first (“bottom–up”)
approach constitutes an upper bound for the results from the second (“bird’s eye”)
approach: In the bivariate case, subadditivity implies that

δ (L1 + L2) ≤ δ(L1) + δ(L2) . (2.108)

As pointed out by Artzner et al. (1999), this is intuitively appealing in the sense that
“...a merger does not create extra risk”. This might be debatable in a context where
a merger leads to higher systematic risks through concentration, for example, towards
industry effects, weather conditions or the political environment. However, in a di-
versification sense similar to classical portfolio analysis, requirement (2.108) appears
realistic.

While property (2.108) is always fulfilled for ES, this is not in general true for VaR, but
only for special cases. If the underlying distribution of losses, L, is elliptical, VaR is
subadditive for confidence levels α ∈ [0.5, 1) (see Theorem 6.8 of McNeil et al., 2005).
Moreover, it can be shown that for comonotonic risks,

VaRco
α (Li + Lj) = VaRα(Li) + VaRα(Lj) (2.109)

holds, so that VaR is additive in this special case. In the popular elliptical—and, thus,
also in the Gaussian—world, comonotonicity translates into perfect positive correla-
tion due to linearity. Therefore, once again, elliptical distributions lead to intuitively
appealing and analytically tractable results.23 This intuition may, however, be very

23One can therefore argue that VaR is a very useful risk measure for elliptical distributions. This

shows that VaR per se is not a useless “model”, as was often stated in the context of the recent

financial crisis.



2.4. MEASURING DEPENDENT RISKS 55

misleading outside the world of elliptical distributions. In fact, for non–elliptical dis-
tributions, it may happen that

VaRα(L1 + L2) > VaRα(L1) + VaRα(L2) , (2.110)

the reason being the well–known lack of subadditivity of the VaR measure. This has
been pointed out, for example, by Embrechts et al. (2002). As shown by Embrechts
et al. (2009), a superadditive VaR may result, for example, from fat–tailed marginal
distributions or restrictions of the joint distribution to the positive quadrant.

2.4.3 Bounds on Aggregate Risk

As comonotonicity does not always represent an upper bound on the VaR of the dis-
tribution of aggregate losses, one may ask whether such bounds exist at all. If they
do, worst–case–scenarios for VaR can be constructed independently of the nature of
the underlying distributions. This is a well–known issue—also known as the Fréchet
Problem—attributed to Kolmogorov and first treated by Makarov (1981). It was taken
up by Frank et al. (1987) and recently by Embrechts et al. (2003) and Embrechts and
Puccetti (2010).

In a generalized context, one typically considers random variables X1, . . . , Xd with
marginal distribution functions F1, . . . , Fd and a function Ψ : Rd → R of these d differ-
ent types of risk. In our application, Ψ(x1, . . . , xd) =

∑d
i1
xi, and d = 2. Furthermore,

we denote by Ψx1,...,xd−1
the function with variables x1 to xd−1 held fixed, and by Ψ∧(u)

the generalized right–continuous inverse of Ψ(·).

In order to state these bounds, three functions need to be defined. The supremal
convolution of the d marginal variables is given by

τC,Ψ(F1, . . . , Fd)(s) = sup
x1,...,xd−1∈R

C ( F1(x1), . . . ,Fd−1(xd−1),

Fd(Ψ∧
x1,...,xd−1

(s))
)
. (2.111)

Correspondingly, the infimal convolution is obtained from

ρC,Ψ(F1, . . . , Fd)(s) = inf
x1,...,xd−1∈R

C ( F1(x1), . . . ,Fd−1(xd−1),

Fd(Ψ∧
x1,...,xd−1

(s))
)
, (2.112)

and finally, the σ–convolution is defined as

σC,Ψ(F1, . . . , Fd)(s) =
∫

{Ψ≤s}
dC (F1(x1), . . . , Fd(xd)) . (2.113)
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If X1, . . . , Xd have marginal distribution functions F1, . . . , Fd and copula C, the σ–
convolution equals the distribution function of Ψ(X1, . . . , Xd), FΨ(X1,...,Xd).

The crucial point in deriving universal bounds on VaR are the Fréchet–Höffding bounds
given in Equation (2.43). As these always hold, they imply bounds on VaR which are
always satisfied. If the dependence structure as given by the copula can further be
restricted, the bounds on VaR will, correspondingly, become narrower. In general, one
has to assume that the copula C of X1, . . . , Xn satisfies C ≥ C0 and Cd ≤ Cd

1 , where
Cd is the dual of the copula C, i.e., Cd(u1, u2) = u1 + u2 − C(u1, u2).

Under this assumption, the following inequality holds:

τC,Ψ(F1, . . . , Fd)(s) ≤ σC,Ψ(F1, . . . , Fd)(s) ≤ ρC,Ψ(F1, . . . , Fd)(s) . (2.114)

The supremal and infimal convolutions thus represent lower and upper bounds to the
distribution of Ψ(X1, . . . , Xd). Fixing a confidence level α, these bounds can be ex-
pressed in terms of quantiles, i.e.,

ρC,Ψ(F1, . . . , Fd)−1(s) ≤ VaRα(Ψ(X1, . . . , Xd)) ≤ τC,Ψ(F1, . . . , Fd)−1(s) . (2.115)

The computational problem connected to Equation (2.116) consist of the unbound-
edness of the set Rn−1 over which infima and suprema have to be taken.24 Making
use of the duality principle of Frank and Schweizer (1979), the bounds (2.116) can
be stated in an alternative way which allows their computation. That is, denoting
ρC,Ψ(F1, . . . , Fd)−1(s) by F−1

max(α) and τC,Ψ(F1, . . . , Fd)−1(s) by F−1
min(α), one can write

F−1
min(α) = inf

C0(u1,...,ud)=α
Ψ
(
F−1

1 (u1), . . . , F
−1
d (ud)

)
, (2.116)

F−1
max(α) = sup

Cd
1

(u1,...,ud)=α

Ψ
(
F−1

1 (u1), . . . , F
−1
n (ud)

)
. (2.117)

For the two–dimensional case, to which we are restricting attention, C ≥ C0 implies
that Cd ≤ Cd

0 , so that we can take C0 = C1. The more restrictive the assumptions on
the copula bounds, the tighter the bounds on VaR will be.

The resulting bounds will be used in Chapter 5 in order to derive worst–case scenarios
for VaR.

24The computational aspects of the Fréchet problem are treated in detail by Williamson and Downs

(1990).



Chapter 3

Quantifying Market Risk

3.1 The Market Risk Challenge

3.1.1 Univariate Stylized Facts

Financial time series have certain patterns in common. There is a long list of such
“stylized facts” which apply to almost any price or return series. As we are interested
in modeling the dependence structure of returns there is, at first sight, no reason to
consider these peculiarities of the marginal distributions. However, there are at least
two properties which have a direct implication for dependency modeling.

Firstly, one typically detects non–normality of financial return distributions. That
is, they assign a larger probability to extremes than the normal distribution (fat–
tailedness), and their tails decay according to a power law.
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Figure 3.1: Histogram of Monthly Returns on the MSCI World Index, 1970–2010.
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Figure 3.1 shows a histogram of monthly returns on the MSCI World Index between
February 1970 and October 2010; the normal distribution estimated from these data
is superimposed as red line. We see that extreme return values such as -17% are
not adequatly captured by the normal distribution. This fat–tailedness, jointly with
the fact that the empirical distribution is more peaked in the center, is known as
leptokurtosis. This stylized fact has important implications for risk management, as it
implies that under the assumption of the normal distribution the risk of losses may be
severely underestimated. Apart from this univariate argument, the deviation from the
normal also casts doubt on the multivariate normal as an appropriate distribution for
joint return movements. As we will see later on, this problem of underestimating risk
by using the normal distribution also transfers to the multivariate framework.
Besides their fat–tailedness, (univariate) financial returns tend to be asymmetric (Aït-
Sahalia and Brandt, 2001)—a property that the normal distribution cannot capture
either.

A second typical (univariate) property of financial return series refers to their dynamic
behavior and is known as volatility clustering. Figure 3.2, containing the time series of
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Figure 3.2: Time Series of Monthly Returns on the MSCI World Index, 1970–2010.

returns on the MSCI World Index, illustrates that periods of large (positive or negative)
returns tend to be followed by periods with large (negative or positive) returns—the
same holding for periods with only small movements in prices. This serial dependency
in volatilities, which is known as GARCH effect, is best seen when comparing the
relatively tranquil period between 2004 and 2007 to the extreme movements observed
afterwards during the financial crisis.

There exists a vast literature on models extending the basic GARCH model of Bollerslev
(1986); for a comparison of 330 different volatility models, see Hansen and Lunde
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(2005). An overview and in–depth discussion of stylized facts as well as modeling
under non–Gaussian distributions can be found in Jondeau et al. (2006).

3.1.2 Correlation Breakdown

Diversification in the classical mean–variance model of Markowitz (1952) is illustrated
in Figure 3.3 for a simple, bivariate setting. Considering two assets characterized by
expected returns µi and standard deviations σi, i = 1, 2, the expected return of a
portfolio of these two assets, each one with weight xi, is given by

µp = x1µ1 + x2µ2 . (3.1)

The portfolio’s standard deviation is accordingly given by

σp =
√
x2

1σ
2
1 + x2

2σ
2
2 + 2xix2σ1σ2ρ , (3.2)

where ρ denotes the correlation between the two assets’ returns. Figure 3.3 shows the
resulting combinations of portfolio expected return and risk (the latter being measured
by standard deviation) for different values of ρ.

Obviously, for a perfect positive correlation, the possible portfolios represent linear
combinations in the (σp, µp)–space. In other words, no diversification can be achieved.
For lower levels of correlation, we see that the diversification benefit increases; that is,
for a given level of expected portfolio return, the portfolio standard deviation decreases.
This very basic idea suggests an investment in assets characterized by low correlations
in order to reduce risk as much as possible. Such a low correlation may, for example,
be due to different geographical locations (Levy and Sarnat, 1970; Solnik, 1974) or
different asset classes such as gold and stocks (Chua et al., 1990).

However, an adoption of this simple approach may bear the risk of overestimation of
the diversification effect. Firstly, it is well–known that return series of financial data
tend to exhibit fat tails. These cannot be captured by the mean–variance approach,
which relies exclusively on the first two moments and thus on the normal distribution.
From a multivariate viewpoint, nonlinear dependence patterns such as tail dependence
may render linear correlation a dangerous measure. Secondly, even if returns were
normally distributed, one could suspect correlations not to remain constant over time.
Intuitively, we expect that through times of crises, when common economic factors
and herding drive returns to a large extent, correlations among the components of a
portfolio increase. In fact, this so–called correlation breakdown or contagion effect is
typically found in the data and has become a common idea both among practitioners
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Figure 3.3: Diversification in a Two–Asset Portfolio.

and academics.1

There exists a strand of literature which deals with the question of how correlations
among assets change in turbulent times. Earlier work divided the sample into dis-
tinct periods and tested for equality of the correlation matrices in these subsamples.
For example, analyzing international diversification, Kaplanis (1988) finds evidence for
stability of the correlation matrix over (predefined) subperiods; see also Ratner (1992)
and the references therein. On the other hand, Koch and Koch (1991) and King et al.
(1994), among others, find evidence for an increase in correlation among national mar-
kets over time, which is typically argued to be caused by increasing globalization and
integration of markets.2

In order to identify correlation breakdown, it is necessary to distinguish between un-
conditional and conditional correlation. The correlation breakdown—or contagion—
hypothesis refers to changes in linkages among markets; it thus concerns unconditional
correlations. Assessing such changes is inherently difficult, as the consideration of a
(sub)sample from the underlying distribution always induces a sort of conditioning on
market observables. In general, changes in correlation across different samples can be
due to two effects. Firstly, it might be that expected returns and variances change over
time, while the underlying dependency structure remains constant; in this case, one
would observe a spurious relationship between correlation and volatility. Secondly, the

1At the time of writing, there is no common definition of correlation breakdown; see, for example,

Dornbusch et al. (2001) for a review.
2For further—partially conflicting—studies on the question of the stability of correlations among

international indices, see, for example, Panton et al. (1976), Hilliard (1979), Watson (1980) and

Maldonado and Saunders (1981). Recently, Ronn et al. (2009) have found evidence for correlation

breakdown on stock markets.
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dependence structure itself may vary. In both cases, one observes changes in conditional
correlations, while only the latter reasoning corresponds to differences in unconditional
correlations and thus to the notion of correlation breakdown.

In order to disentangle these effects, one could try and capture volatility dynamics;
remaining changes in conditional correlation would then hint at the presence of cor-
relation breakdown. This is done by Longin and Solnik (1995), who find evidence for
changing conditional correlations beyond the GARCH model.3 Using monthly excess
returns for seven countries between 1960 and 1990, they find that correlations tend to
increase over time, are higher in cases of large shocks, and are linked to interest rates.
Karolyi and Stulz (1996) confirm the effect of large shocks, but do not find sufficient
evidence for the role of macroeconomic announcements, industry effects or interest rate
shocks.

However, when using conditional correlations as indicators for correlation breakdown,
care has to be taken as soon as variances are affected by conditioning. In fact, as first
pointed out by Boyer et al. (1999), considering subsamples obtained via conditioning
may lead to changing correlations even if the sample is generated from a common
distribution with constant parameters. In order to illustrate this, we give an example
based on the ideas of Boyer et al. (1999).

Example 3.1. We draw 10,000 data points from a bivariate normal distribution with

(unconditional) correlation coefficients ρ = 0.1, 0.3, 0.5, 0.8. The conditional corre-

lation between X1 and X2 is then estimated from subsamples: We select those data

points for which x1 is either below the α/2–quantile or above the 1 − α/2 quantile,

using α = (0.01, 0.05, 0.1, 0.15, 0.2, . . . , 0.5. For example, taking α = 0.1 means condi-

tioning on x1 being either below the 5% quantile or above the 95% quantile.

The resulting conditional correlations are shown in Figure 3.4 for different values of

the unconditional correlation. For the 50% quantile, the conditional correlation boils

down to the unconditional one, as X1 can only be below or above the median. How-

ever, decreasing α—that is, diminishing the conditioning tail area of X1—leads to an

increase in conditional correlation.

The relationship between unconditional and conditional correlation depends on un-
conditional and conditional variances. As is shown by Boyer et al. (1999), for two
normally distributed random variables with unconditional correlation ρ the correlation

3Ang and Bekaert (2002) and Ang and Chen (2002) confirm that (symmetric as well as asymmetric)

multivariate GARCH models cannot fully capture changes in conditional correlations.
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Figure 3.4: Conditional Correlations for the Multivariate Normal: Two–Sided Con-
ditioning

conditional on occurrence of event A is given by

ρA = ρ

(
ρ2 + (1 − ρ2)

Var[X1]

Var[X1|A]

)−1/2

. (3.3)

For the two–sided conditioning illustrated in Figure 3.4,

Var[X|A] ≥ Var[X] , (3.4)

simply because observations in the tails are spread more widely. The difference be-
tween unconditional and conditional variance is the higher, the smaller α; accordingly,
equality corresponds to the case α = 0.5. This relationship implies, via Equation (3.3),
that ρA ≥ ρ, which is exactly what we observe in Figure 3.4. In general, the conditional
correlation between X1 and X2 is larger (smaller) than the unconditional correlation if
the conditional variance of X1 given A is larger (smaller) than the unconditional vari-
ance. Boyer et al. (1999) also consider one–sided tail conditioning as well as a direct
conditioning on volatilities; obviously, Equation (3.3) also holds in these cases, so that
conditional correlations differ from their unconditional counterparts.

Example 3.2. To illustrate the effect of conditioning via variances, we draw 100,000

bivariate data points (Xi, Yi), i = 1, . . . , 100,000, from a multivariate normal distribu-

tion with unconditional correlation ρ = 0.4 and build groups of 100 observations each.

For each of these groups, we calculate the sample variance. Conditional correlations

are evaluated from a subsample containing those groups for which the variance of X1

exceeds a certain threshold. Figure 3.5 shows the resulting conditional correlations for

different values of thresholds.

We see that conditional correlations increase as the minimum variance increases,

although the underlying distribution is identical with a constant correlation.
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Figure 3.5: Conditional Correlations for the Multivariate Normal: Conditioning via
Variances

The mere fact of observing changing correlations over subsamples obtained via condi-
tioning does, therefore, not have to be caused by correlation breakdown. Rather, the
changing correlation may be a result of the selection bias induced by consideration of
subsamples. Loretan and English (2000) generalize the result of Boyer et al. (1999)
to the case where one random variable is an affine function of the other. Forbes and
Rigobon (2002) suggest a bias correction adjusting for the effect of heteroscedasticity;
analyzing stock market returns in Hong Kong and the Philippines during 1997, they find
evidence for correlation breakdown in conditional correlations which basically vanishes
after bias correction. This finding questions the existence of a correlation breakdown
effect and leads the authors to conclude that there is “no contagion, only interdepen-
dence”, the latter referring to cross–market linkages which may be strong, but are
constant over time.

Although changes in the level of correlation among subsamples per se can not be used
to infer a correlation breakdown, the form of the change can hint at the appropriate-
ness of constant unconditional correlation and the underlying normality assumption.
Conditioning on exceedance of VaR, Campbell et al. (2002) follow this idea by com-
paring empirical and theoretical quantile–based correlations. Longin and Solnik (2001)
introduce the notion of exceedance correlation. For two random variables X1, X2, this
quantity is given by

ρ(θ) =





Corr[x1, x2|x1 < θ, x2 < θ] for θ ≤ 0

Corr[x1, x2|x1 > θ, x2 > θ] for θ ≥ 0
. (3.5)

In other words, correlation is calculated conditional on the joint exceedance of a thresh-
old θ. This is illustrated in Figure 3.6, where the shaded region is the range of ob-
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servations used for calculating ρ(θ). In contrast to Example 3.1, conditioning now
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Figure 3.6: Exceedance Correlation: Illustration

affects both random variables; furthermore, it is a one–sided concept in that the signs
of returns are relevant. The latter point makes exceedance correlations a useful tool
for studying asymmetries in dependence; that is, it allows to compare the dependency
structures in the tails of the distribution. However, observing differences in ρ(θ) for
different values of θ does, again, not imply a change in the underlying distributional
properties, as can be seen from Figure 3.1. It shows the behavior of exceedance cor-
relation for the multivariate normal distribution with different values of ρ. We see
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Figure 3.7: Exceedance Correlations for the Multivariate Normal

that, under the normal distribution, exceedance correlations decrease, the further one
moves into the tail. This result is at first counter-intuitive, even more when consid-
ering the increasing conditional correlations of Example 3.1: In fact, we would expect
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exceedance correlation to increase with the size of return. However, exceedance corre-
lation is closely linked to the concept of tail dependence, and the multivariate normal
distribution is asymptotically independent for −1 < ρ < 1. Therefore, exceedance
correlations must decrease.

Rather than concluding a correlation breakdown effect from the observation of chang-
ing correlation estimates, one can therefore compare exceedance correlation behavior
under the multivariate normal distribution to the empirical one and thereby assess
whether the two are in line. This has been done, for example, by Longin and Solnik
(2001), who find that (exceedance) correlations among international equity index re-
turns increase in bear, but decrease in bull markets, so that the multivariate normal
distribution is appropriate for positive, but not for negative price movements. This
asymmetry, in turn, implies that volatility alone cannot be the driving force of correla-
tion changes. Furthermore, Corsetti et al. (2005) argue that the conclusion of absence
of contagion drawn by Boyer et al. (1999) and Forbes and Rigobon (2002) is obtained
from the restriction of the variances’ effects on returns to the common factor, neglect-
ing country–specific variance effects and leading to biased estimation of conditional
correlation.

The failure of the multivariate normal distribution to capture asymmetric dependence
structures has been addressed in different ways. For example, multivariate GARCH
models allowing for asymmetries (see, for example, Ang and Chen, 2002) or regime–
switching models (Ang and Bekaert, 2002) have been applied in order to explain cor-
relation breakdown. However, as is shown by Garcia and Tsafack (2009), multivariate
GARCH and regime–switching models with Gaussian innovations cannot reproduce
asymptotic asymmetries in dependencies; the asymmetries produced vanish asymp-
totically. We therefore take a different road in the following, questioning the appro-
priateness of correlation as dependence measure in the context of joint bear market
movements. Instead, we aim at modeling tail dependence via copulas.4 That is, we
aim at estimating dependencies among extremes without letting our results be affected
by the marginal distributions; furthermore, we want to be able to assess exceedances of
extremes which may not be part of the underlying sample. This is only possible with
an asymptotic concept such as tail dependence.

4This view has been approached, for example, by Patton (2004) or Hu (2006).
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3.2 Correlation Breakdown Across Asset Classes

The correlation breakdown effect has been mostly studied in the context of international
diversification. Early studies like those of Grubel (1968) and Agmon (1972) had—based
on analyses of correlation coefficients among stock market indices—suggested such an
investment strategy. Furthermore, crises such as the Mexican in 1994 or the “Asian
Flu” starting in 1997 have been found to propagate quickly via international markets
to other countries, which also catalyzed the analysis of changing dependence structures
among national markets during turbulent times. Therefore, the conceptual problems
of correlation breakdwon, their implications as well as empirical evidence have mostly
been assessed across in the framework of international portfolio choice.

However, the diversification argument applies equally well when considering different
asset classes. For example, one would suspect that in times of turbulences at stock
markets, gold provides protection against large portfolio losses due to the correlation
among stocks and gold. We, therefore, aim at assessing the dependency structure
among three different indices with respect to correlation breakdown.

3.2.1 The Data

We consider monthly rates of return of three different indices between February 1970
and October 2010. The stock market is represented via the MSCI Total Return World
Index, which measures the market performance in terms of prices and dividends, of
about 1,500 stocks from 24 countries (excluding emerging markets). We include com-
modities via the S&P GSCI Commodity Total Return Index, which measures the re-
turns accrued from investing in currently 24 fully-collateralized nearby commodity
futures from the energy, industrial and precious metals, agriculture and livestock sec-
tors. Gold is a third asset class promising substantial diversification benefits; its price
per ounce is given by the Gold Bullion LBM U$/Troy Ounce Index.

Figure 3.8 shows the three indices over the time horizon considered in our analyses.
Looking at their behavior, we detect several instances where opposite price movements
might have provided protection against large portfolio losses. For example, commodi-
ties experienced a substantial decrease between January 1997 and April 1999, while
stocks continued to increase—besides a small decline—until May 2000. Similarly, while
large losses both in stocks and commodities can be observed during the recent financial
crisis starting in 2008, the gold price exhibits only a minor decrease. These different
asset classes thus suggest themselves to risk–averse investors for the purpose of diver-
sification.
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Figure 3.8: Normalized Rates of the Considered Asset Classes

3.2.2 Correlation

The most obvious attempt at modeling possible diversification benefits consists of es-
timating unconditional correlations. For the (raw) return series shown in Figure 3.9,
the resulting linear correlation coefficient is shown in the first column of Table 3.1.
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Figure 3.9: Returns of the Considered Asset Classes



68 CHAPTER 3. QUANTIFYING MARKET RISK

We find the lowest correlation—and thus the highest potential for diversification—
between stocks and gold. However, the correlation between stocks and commodities
is only slightly higher. The strongest link is found between commodities and gold,
which is not surprising, since gold is one of the commodities included in the S&P GSCI
index. The second and third column of Table 3.1 contains estimates for Kendall’s τ
and Spearman’s ρS. Rank correlation estimates differ in values, but not in the relative
ordering with respect to the riskiness of asset class combinations.

Pair ρ τ ρS

Stocks and Commodities 0.1722 0.0946 0.1360

Stocks and Gold 0.1101 0.0553 0.0834

Commodities and Gold 0.2725 0.1562 0.2274

Table 3.1: Unconditional Correlation Estimates

However, correlations among asset classes may vary substantially, depending on the
subsample chosen. As an illustration, Figure 3.10 shows linear correlations obtained
from a one–year rolling window; that is, the first value (01/71) is calculated from re-
turns between February 1970 and January 1971, the last one (10/10) is based on returns
between November 2009 and October 2010. For all three asset class combinations, we
observe large variations in correlation.

One finds periods in which correlation is clearly negative, as is the case for stocks and
commodities in January 1976. At the same time, and more dangerously, there are
periods which are characterized by large positive correlations. For example, between
January 1980 and September 1981—thus, in the aftermath of the second oil crisis—
all asset class combinations show a high positive correlation. Looking at Figure 3.9,
we confirm that this period is one of high variability in returns. Similar effects are
observed, for example, for the correlation between stocks and commodities after the
bursting of the dotcom bubble in 2000, as well as during the recent financial crisis
starting in the fourth quarter of 2008. In other words, we find evidence for correlation
breakdown: During the turbulent times when diversification is most needed, it fails to
protect against large portfolio losses. Using an unconditional correlation estimate as
those of Table 3.1 may therefore be too optimistic.

Another hint at the appropriateness of a constant correlation capturing the entire de-
pendency structured is given by the exceedance correlations. These are shown in Figure
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Figure 3.10: Linear Correlations, 12–Month Rolling Window.

3.11, where the empirical exceedance correlations are compared to those implied by the
multivariate normal distribution. Here and in the following, we consider GARCH(1,1)
filtered returns in order to circumvent effects of volatility clustering on the analyses of
dependence structures. Therefore, the range of returns—and, thus, exceedance levels θ
in Figure 3.11— is smaller than in the unfiltered case. As soon as there are less than ten
joint observations below θ (or above it, for θ > 0), we stop decreasing (or increasing)
θ in order to avoid exceedance correlation estimates to be driven by single observations.
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Figure 3.11: Empirical (Dashed) and Multivariate–Normal (Solid) Exceedance Cor-
relations.
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For all three asset class combinations, we find asymmetric exceedance correlation struc-
tures. That is, for negative θ—adverse price movements—conditional correlations tend
to be higher than for positive returns. For example, given that the (GARCH–filtered)
returns of stocks and commodities are both below 0.5%, their correlation is higher
than 0.4. This value, when compared to an unconditional correlation coefficient of
ρ = 0.1722 as reported in Table 3.1, illustrates once more the possible dangers of ne-
glecting asymmetric correlation structures. However, we do not find such clear–cut
relations as earlier studies did. For example, Longin and Solnik (2001) find exceedance
correlations to increase in bear, but not in bull market. For our data, exceedance cor-
relations for θ < 0 increase only in two of three cases. Furthermore, we cannot find
clear directions of changes for bull markets (θ > 0). The pair coming closest to the
exceedance correlations observed by Longin and Solnik (2001) consists of stocks and
commodities.

The solid lines in Figure 3.11 are the exceedance correlations implied by a multivari-
ate normal distribution fitted to the data. The deficits of the multivariate normal
become apparent in two aspects: Firstly, the multivariate normal is not able to cap-
ture the asymmetries in correlation structures; secondly, and related to this, the level
of exceedance correlation is underestimated by the multivariate normal. In fact, the
implied exceedance correlations are at best as high as the empirical ones for θ > 0, but
do not come close to those for negative returns.

We conclude that going from an unconditional to a conditional correlation cannot save
the assumption of multivariate normality. For the multivariate normal, (theoretical)
exceedance correlations are not constant, so that the mere fact of observing changes
in correlation does not imply the rejection of this distribution; rather, the structure of
these changes for returns is so different from that of the multivariate normal that we
have to seriously doubt the appropriateness of the latter distribution.

3.2.3 Copula Fitting

We fit several copulas to the filtered return series. In order to do so, we use the
empirical distribution functions of the margins in order to avoid effects of misspecified
margins on the parameter estimates. Table 3.2 shows the results. The first column
contains the estimates; for example, the correlation coefficient of the Gaussian copula is
equal to ρ̂ = 0.1306 for stocks and commodities. Comparing the correlation parameter
estimates of the Gaussian copula to the Pearson correlation coefficients of Table 3.1, we
see that the relative ordering of asset combinations is the same. However, the values
obtained from the Gaussian copula are lower than their counterparts, which can—at
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least partially—explained by the fact that Table 3.1 is based on unfiltered returns and
therefore may be influenced by GARCH effects.

Θ̂ λ̂L λ̂U AIC BIC p–value A2 p–value A4

Stocks and Commodities

Ga 0.1306 — — -6.0567 4.3280 0.7002 0.6875

t 8.0460 0.0442 0.0442 -11.5171 -1.1324 0.8993 0.5498

Gu 1.0739 — 0.0931 -3.3615 7.0232 0.1804 0.5357

GuS 1.0998 0.1219 — -13.3075 -2.9228 0.9059 0.9305

Cl 0.1965 0.0294 — -11.7214 -1.3367 0.7737 0.9994

ClS 0.0906 — 0.0005 -0.5572 9.8275 0.0177 0.2300

Stocks and Gold

Ga 0.0829 — — -1.2248 9.1599 0.6688 0.7843

t 35.9166 0.0000 0.0000 -1.4704 8.9144 0.8373 0.9860

Gu 1.0453 — 0.0592 -0.4839 9.9008 0.5652 0.9171

GuS 1.0502 0.0651 — -2.2842 8.1005 0.6311 0.9923

Cl 0.0923 0.0005 — -1.3470 9.0377 0.5204 0.9891

ClS 0.0730 — 0.0001 0.0783 10.4631 0.3738 0.7129

Commodities and Gold

Ga 0.2348 — — -24.6139 -14.2292 0.7892 0.9116

t 14.1987 0.0158 0.0158 -26.4730 -16.0883 0.9273 0.9431

Gu 1.1430 — 0.1661 -18.9034 -8.5187 0.0500 0.4639

GuS 1.1683 0.1901 — -27.7348 -17.3501 0.8582 0.9917

Cl 0.2972 0.0971 — -23.7156 -13.3308 0.3227 0.8207

ClS 0.2365 — 0.0533 -15.3145 -4.9298 0.0058 0.0222

Table 3.2: Copula Estimation Results

The second and third columns of Table 3.2 contain the lower and upper tail depen-
dence coefficients implied by the parameter values of the first column. For example,
the Student–t copula for stocks and gold has a high number of degrees of freedom
(ν̂ ≈ 36), meaning that it is in fact very close to the Gaussian copula and shows negli-
gible tail dependence. Although the lower tail dependence coefficients thereby obtained
are moderate, the AIC and BIC values in the next two columns favor those copulas
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which capture lower tail dependence, thus hinting at the presence of it. For all three
combinations, the Gumbel survival copula is the preferred one. The second– and third–
best fit is obtained from the Student-t and Clayton copulas; only the ordering of these
two changes. At this stage, we therefore conclude that the joint distributions of the
returns show lower tail dependence, although its value is mostly moderate (λ̂L < 0.2

in all cases). The highest tail dependence is found between stocks and commodities.
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Figure 3.12: Contour Plots of Empirical and Fitted Copulas

Figure 3.12 shows level curves of the empirical and fitted copulas. As is to be expected,
those copulas allowing for (lower) tail dependence (Gumbel survival and Clayton) lead
to a higher probability of joint exceedance—in absolute terms—than those who don’t
(for example, the Gaussian) for some given F1(x1), F2(x2). Put differently, if we as-
sume some given level of Pr[X1 ≤ x1, X2 ≤ x2] = C(F1(x1), F2(x2)), the corresponding
x1 and x2 will be lower for those copulas who model tail dependence.

The fact that copulas with asymmetric dependence structures and tail dependence fit
better than the Gaussian copula becomes evident when revisiting exceedance correla-
tions. Figure 3.13 shows the empirical exceedance correlations as seen in Figure 3.11
jointly with the exceedance correlations implied by the fitted copulas. The latter are
obtained from simulated returns, using B = 100,000 replications and inversion of the
empirical distribution functions. For readability reasons, we exclude those two copulas
implying presence of upper and absence of lower tail dependence (Gumbel and Clayton
survival), as their implied dependence structures are far from the empirical ones.5

5As the survival copula is the “mirror image” of the respective copula, the exceedance correlations

of the two excluded candidate copulas correspond—in a qualitative sense—to the mirror image of

their counterparts. That is, exceedance correlation is higher for positive returns.
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Figure 3.13: Empirical and Fitted Exceedance Correlations

As Figure 3.13 is obtained from simulations involving the empirical distribution, the
exceedance correlations of the Gaussian copula are not perfectly symmetric. However,
the deficits discussed with respect to the multivariate normal distribution apply here
again: The asymmetric empirical structure cannot be captured, and correlations for
negative values of θ are underestimated. The Student–t copula is able to overcome
the latter point, as it captures tail dependence. Its implied exceedance correlations
are therefore higher than those of the Gaussian copula, the difference between the
two decreasing in the value of ν). That is, for stocks and commodities, where we
obtained the lowest number of degrees of freedom, the difference between Gaussian
and Student–t exceedance correlations is highest. However, the symmetry restriction
is equally present under the Student–t copula: The fact that both positive and nega-
tive returns are required to be represented may lead to an overestimation of downside
and an underestimation of upside diversification potentials. For example, for stocks
and commodities, the Student–t implied exceedance correlations are mainly below the
empirical ones for θ < 0 and higher than empirical correlation for θ > 0. This is over-
come by the use of Archimedean copulas. As they allow the tail dependence coefficient
to differ between the upper and lower tail, the exceedance correlations are closer to
the empirical ones for θ < 0. Overall, the results from Table 3.2 are confirmed: The
Gumbel survival copula leads to the exceedance correlation structure which fits the
data best. This is the same copula as used by Patton (2004) for capturing asymmetric
dependencies.6

The copula approach, however, goes beyond what can be seen from exceedance cor-
relations. In fact, just as linear correlation, exceedance correlations are affected by
changes of the marginal distributions; this is not true for copulas and the implied tail

6Patton (2004) calls the Gumbel survival copula the “Rotated Gumbel”.
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dependence coefficients. Furthermore, the estimated tail dependence coefficients tell
us something about asymptotic joint behavior of returns, which cannot be captured by
exceedance correlations. At the same, we have shown that our copula approach can
reproduce the exceedance correlation patterns typically observed.

3.2.4 Risk and Variations in Dependence Structures

In contrast to other risk types such as credit or operational risk, market risk is typically
evaluated in terms of days. This is due to the fact that the instruments bearing market
risks are typically constantly traded, their prices possibly showing a volatile behavior
over relatively short time intervals.

We saw in Figure 3.10 that correlations may vary substantially over subsamples. We
further found in Section 3.2.2 that the multivariate normal cannot explain this effect,
but that copulas are able to capture changes and asymmetries in conditional correla-
tions. One could therefore argue that failure of the multivariate normal (and, thus,
correlation) is due to the fact that the underlying joint distribution involves a copula
different from the Gaussian. However, it is not clear why this “true” copula should
remain constant. Instead, its parameters and implied dependence structure may vary
over time as well. Using the most popular correlation breakdown explanation in the
context of copulas, we could suspect that lower tail dependence increases in turbulent
times.7

In order to assess the variability of copula parameters and its implications on risk
assessment, we consider subsamples of return series. Specifically, we use an rolling–
window approach with window length w = 72 (corresponding to six years of data).
This window length is chosen in order to balance a trade–off: If the subsample is too
short, parameter estimates and implied dependence condiments are based on too few
observations and very volatile. On the other hand, a very long subsample will dampen
effects of extremes.

Starting with the subsample covering returns between Februay 1970 and January 1976,
we estimate copula parameters and the multivariate normal distribution to the data in
the subsample. We then calculate VaR0.01 and compare it to the loss of the following
period (starting in February 1976).

7This does, again, not exhaust the range of possible explanation. In fact, we could also suspect that

correlations are regime–dependent, so that we have no longer one unconditional correlation, but rather

several ones. See Haas et al. (2009) for a juxtaposition of (constant) copulas to a regime–switching

model.
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Stocks and Commodities. Figure 3.14 shows the variability of results. It shows
the evolution of Pearson’s correlation coefficient, the parameter estimate α̂ of the Gum-
bel survival copula as well as the implied lower tail dependence coefficient over time.
Turbulences which follow extreme return movements enter the estimation subsample
only gradually and therefore reveal their full correlation–breakdown potential with a
time lag.
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Figure 3.14: Time–Variation in Dependency, Stocks and Commodities.

This is, for example, seen in the rise in correlation only starting in 1980, when losses
during the second oil crises enter the subsample. The maximum correlation is then
reached in 1986, that is, one entire window length after. We observe a striking sim-
ilarity between the three quantities. However, there is a difference in extremes: The
increase in tail dependency may be sharper than that of correlation. This is seen,
for example, in the periods 1984/195 and 1997/1998, where we observe a peak in tail
dependence which is more pronounced than under correlation. This different behavior
illustrates the danger of neglecting tail dependence: Although the dynamics of corre-
lation and tail dependence are very similar, the increase in dependence in periods of
extreme returns is underestimated by the multivariate normal distribution.

As these are the periods where diversification is needed the most, restricting attention
to linear correlation may be misleading despite the similarity of changes in tail de-
pendence and correlation. This is illustrated in Figure 3.15, which shows the VaR0.01

obtained from both distributional assumptions together with returns for a portfolio
equally divided between stocks and commodities.
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The differences between the quantities is highest in those periods of extreme returns,
for example, during the periods mentioned above. That is, around 1984/195 and
1997/1998, the VaR0.01 under the Gumbel survival copula is clearly higher—in absolute
value—than the one under the multivariate normal assumption, while the two estimated
quantities are basically equal in other periods. The risk of underestimating potential
losses in periods of turbulence is, therefore, lower when using a copula allowing for
lower tail dependence.
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Figure 3.15: Portfolio Return, Stocks and Commodities.

Stocks and Gold. The patterns described above can similarly be found if we consider
a portfolio equally divided between stocks and gold.

Large portfolio losses, such as observed for October 1987 or August 1998, lead to a
much higher increase in VaR0.01 under the Gumbel survival copula, hinting again at
the relevance of lower tail dependence. For example, after the portfolio loss of October
1987, VaR0.01 is around −2%; for the multivariate normal, it remains around −1.5%.
However, we observe a new pattern for this portfolio: The order of riskiness is reversed
between June 2002 and May 2008; during this period, the VaR.01 under multivariate
normality is lower than under the Gumbel survival copula.

Looking at the evolution of dependency measures in Figure 3.16, we see that this is
caused by an increase in correlation which is (relatively) higher than that in lower tail
dependence. Looking at Figure 3.17 reveals that this period is characterized by large
positive returns and few portfolio losses; as soon as a large portfolio loss occurs (which
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Figure 3.16: Time–Variation in Dependency, Stocks and Gold.
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Figure 3.17: Portfolio Return, Stocks and Gold.

is the case in October 2008 with the Lehman bankruptcy), the Gumbel survival VaR
is again more conservative than the multivariate normal one.

Commodities and Gold. The returns of an equally–weighted portfolio containing
commodities and gold are shown in Figure 3.19.

Again, we find periods, such as between 1977 and 1980, where the VaR.01 is higher—in
absolute terms—under multivariate normality. Figure 3.18 shows that these months
are characterized by positive dependence; for example, between 1977 and 1980, linear
correlation varies between 0.4 and 0.2, and the upper tail dependence coefficient ranges
from 0.15 to .25. Going back to Figure 3.9 and comparing the returns of commodi-
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Figure 3.18: Time–Variation in Dependency, Commodities and Gold.
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Figure 3.19: Portfolio Return, Commodities and Gold.

ties and gold until 1980, we see that the large movements are positive. For example,
monthly returns were higher than 20% for commodities and up to almost 40% for
gold around the first oil crisis. In other words, the correlation detected in the first
subsamples comes from positive comovements of prices. As the normal distribution
is symmetric, such large positive returns imply just the same (exceedance, or condi-
tional) correlation as negative returns of the same size; the multivariate normal cannot
distinguish between gains and losses when it comes to conditional correlations. On
the contrary, the Gumbel survival copula implies lower tail dependence, but absence
of upper tail dependence; therefore, the large positive movements as observed in the
first subsamples have a smaller effect on VaR as negative movements of the same size
would have. This is confirmed by the correlation and lower tail dependence coeffi-
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cients around 1986—that is, in the periods where the second oil crisis its biggest effect.
While the correlation coefficients around 1977 and 1986 are both around 0.4, the lower
tail dependence coefficient is much higher in the oil crisis periods (λ̂L ≈ 0.24 versus
λ̂L ≈ 0.38). Correspondingly, the VaR.01 under the Gumbel survival copula is visibly
lower than the multivariate normal one.

We conclude that the asymmetry in the Gumbel survival copula has an effect of down–
weighting dependencies among positive returns, while capturing the lower tail depen-
dence during crises. If the primary goal of dependency modeling is an adequate as-
sessment of downside risk, it is thus preferable to the symmetric multivariate Gaussian.

The rolling–window approach to copula estimation provides us with an impression of
changes in dependency structures over time. However, it cannot provide us with a
prediction of crises, as these changes are not modeled explicitly. This can be achieved,
for example, using regime–switching models where the copula differs between regimes
(Balyeat and Muthuswamy, 2009) or time–series analyses of copula parameters (Dias
and Embrechts, 2004).

The basic problem underlying diversification analyses in bear markets relates to the
natural rareness of extreme events. The number of observations on which estimates
are based will thus, typically, be small.

3.3 Chapter Summary

The findings on asymmetric dependence structures among different asset classes may
have significant effects on portfolio decisions; this is especially the case for risk–averse
investors. The usual variance–covariance approach, relying on the multivariate normal
distribution, will typically overestimate diversification benefits in bear markets.

It is well–known that conditional correlations among return series vary. Although
this fact, per se, does not rule out a Gaussian dependence structure, the form of
such exceedance correlations conditional on returns being above or below a threshold
do not correspond to the multivariate normal distribution. This may be explained by
assuming that the underlying (Gaussian) dependence structure changes itself over time
and is, therefore, regime–dependent. We have taken a different view and fitted several
copulas allowing for dependence structures other than the Gaussian. We find that an
asymmetric dependence structure of returns which can be reproduced by Archimedean
copulas; furthermore, we find evidence for tail dependence in the lower tail of the return
distributions.
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An approach to risk management which exclusively focuses on linear correlation is not
able to detect such nonlinear, asymmetric structures and may therefore overestimate
diversification benefits in times of crises substantially.

Exceedance correlations are a useful tool in order to determine the potential under-
estimation of downside risk. Comparing empirically observed exceedance correlations
to those implied by the theoretical model should always be part of an assessment of
dependencies. However, in contrast to copulas, exceedance correlations are affected
by the marginal distributions and are not able to tell us anything about dependencies
among exceedances of unobserved extremes. Therefore, judging the appropriateness of
a dependency model by exclusively trying to reproduce exceedance correlation patterns
might be misleading.
In order to take investment decisions as prudent as possible, these should thus also be
based on copulas allowing for lower–tail dependence.

We find that dependence structures vary across the asset class combinations considered.
In general, one should not rely on only dependency concept. The Gaussian copula, for
example, may be useful to model return movements in certain areas of the distribution;
(asymmetric) copulas may then support analyses in the tails. But even such mixtures
of copulas do not represent a one–size–fits–all approach. For example, Gao and Zhou
(2010)—using daily prices of internationally traded securities—recently find evidence
that some market may exhibit tail dependence, while others don’t.



Chapter 4

Quantifying Credit Risk

4.1 The Credit Risk Challenge

Credit Risk is defined as the risk of losses resulting from the failure of a counterparty
to fulfill its contractual obligations. Unlike market risk, which results from movements
in market prices and related quantities, credit risk can result from an overdue repay-
ment on a loan or bond, due to a counterparty having liquidity problems or even going
bankrupt as happened, for example, to Enron or WorldCom.

Credit risk is typically decomposed into three components, each of which needs to be
modeled. Firstly, the probability of default needs to be quantified. Secondly, the loss
occurring in the case of a default (Loss Given Default, LGD) is an important ingredient
to the loss distribution. Finally, the credit exposure reflects the market value of the
claim and, thus, involves both market and credit risk.

However, this classical partitioning of credit risk neglects the issue of dependence mod-
eling. In fact, default probabilities, LGD and recovery rates can be used on a granular
level to monitor and assess credit risks exposure by exposure (that is, counterparty
by counterparty). However, in cases of credit portfolios, such an approach may ignore
relationships among defaults within the portfolio which are able to drive the tail of an
aggregate loss distribution to a large extent. Just as in the market risk framework,
the question of diversification effects has to be answered. Credit counterparties are
typically prone to common influences, which should be explicitly modeled in order to
obtain a picture as realistic as possible.

A special challenge within this setup consists of so–called low default portfolios. Our
aim is therefore to assess effects of different dependency models on aggregate risk
within the framework of highly–rated counterparties. Here, defaults are rare events,

81
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which makes risk–capital estimation a difficult task. Firstly, without observations of
defaults, it is not clear how to obtain an estimate of the probability of default. We
do not treat this problem explicitly, and implicitly assume that such default rates are
given, for example, from rating agencies. Secondly, simulation of rare events poses a
computational challenge in itself.

After introducing the basic concepts of portfolio credit risk, we introduce the latent–
variable model based on the multivariate normal distribution, which constitutes the
most popular approach to inducing dependence among defaults. We then go on to
consider alternative setups to dependency modeling. In a simulation study, we assess
the effects of dependencies—and the differences among models—on defaults, and sub-
sequently, on risk–capital estimates. The issue of reducing the computational burden
in rare–event simulation is tackled by proposing an alternative method based on quasi–
random sequences.

Portfolio Credit Risk

We define the credit loss of a portfolio of counterparties i = 1, . . . n as

L =
n∑

i=1

YiEi(1 − fi) (4.1)

where Yi ∼ Ber(πi) is the default indicator for counterparty i: Yi = 1 (Yi = 0) implies
default (no default). Its moments are given by E[Yi] = πi and Var[Yi] = πi(1 − πi).
Independently of any assumption of dependencies among obligors, the expected credit
loss is given by

E[L] =
n∑

i=1

πiEi(1 − fi) .

If we consider two counterparties, i = 1, 2, we can write down the correlation between
default indicators as

Corr[Y1, Y2] = ρ1,2 =
Cov[Y1, Y2]√

Var[Y1] Var[Y2]
=

Pr[Y1 = 1, Y2 = 1] − π1π2√
π1(1 − π1)π2(1 − π2)

. (4.2)

This implies that the joint default probability can be written as

Pr[Y1 = 1, Y2 = 1] = π1π2 + ρ1,2

√
π1(1 − π1)π2(1 − π2) , (4.3)

and conditional probabilities are given by

Pr[Yi = 1|Yj = 1] = πi +
ρ1,2

πj

√
π1(1 − π1)π2(1 − π2) , i, j = 1, 2 , i 6= j . (4.4)
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Counterparty 2

Default No Default

Counterparty 1
Default 0.012 0.038 0.05

No Default 0.0380 0.9120 0.95

0.05 0.95 1

Table 4.1: Contingency Table for ρ1,2 = 0.2

Example 4.1. If we assume that π1 = π2 = 0.05, E1 = E2 = 100 and ρ1,2 = 0.2, we

obtain the following contingency table of default probabilities:

Changing to a higher correlation of ρ1,2 = 0.7, we obtain Table 4.2. Using these tables

and (squared) exposures, we an calculate the moments of the aggregate loss distribution.

Counterparty 2

Default No Default

Counterparty 1
Default 0.0358 0.0143 0.05

No Default 0.0143 0.9358 0.95

0.05 0.95 1

Table 4.2: Contingency Table for ρ1,2 = 0.7

While the expected loss equals E[L] = 10 in both cases, the variance of the portfolio loss

Var[L] is influenced by correlation. In the case of ρ1,2 = 0.2, we obtain E[L2] = 1,240

and thus Var[L] = 1,240 − 100 = 1,140, and for ρ1,2 = 0.7 we have E[L2] = 1,715 and

thus Var[L] = 1,718 − 100 = 1,618.

This example illustrates the fact that in general a higher correlation among loss indica-
tors leads to a higher dispersion of losses. This is why we expect risk–capital estimates
to increase with correlation, a perception which will be analyzed in a simulation study.
It remains to specify how correlation among the binary default indicators can be in-
duced in an elegant way.

Latent–Variable Models for Credit Portfolios

The idea common to all latent–variable specifications is that there exists a second layer
of—possibly observable—latent variables which drive the discrete counting process for
the observed loss occurrences. Formally, a latent–variable model (LVM) can be defined
as follows, cf. McNeil et al. (2005).
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Definition 2. (Latent–variable Model) Let X = (X1, . . . , Xn)′ be a random vector and

D ∈ R
n×m a deterministic matrix with elements dij. Suppose that

Si = j ⇔ dij < Xi < di,j+1 , i ∈ {1, . . . , n}, j ∈ {0, . . . , m},

where di0 = −∞, di,m+1 = ∞. Then, (X,D) is a latent–variable model for the state

vector S = (S1, . . . , Sm)′, where Xi are the latent variables and dij the thresholds of the

LVM.

We connect this setup to the binary default indicators by assuming that

Yi = 1 ⇔ Si = 0 and Yi = 0 ⇔ Si > 0 , (4.5)

to indicate the “occurrence” and “non–occurrence” of a default event, i.e., we only
distinguish between these two states. The probability of occurrence for process i, πi,
is now defined by

πi = Pr[Yi = 1] = Pr[Xi ≤ di1] ;

a default thus occurs if the continuous, latent variable Xi falls below threshold di1.

This binary choice model is known as a structural model of default and basically com-
patible with common industry credit risk models based on the Merton (1974) approach,
such as the KMV model. In these models, the latent variable is interpreted as the value
of the obligor’s assets. If their value falls below the so–called default boundary, the
obligor defaults. This threshold can be expressed as π–quantile of the distribution of
Xi: For normally distributed latent variables, the unconditional default probability is
given by π = Φ(di1).

In this framework, dependencies can be elegantly introduced by assuming that the
obligors’ asset values depend on a common factor Ψ, representing the state of the
economy. Adding an idiosyncratic component of asset values, εi, one can write

Xi =
√
ρXΨ +

√
1 − ρXεi . (4.6)

The conditional default probability

p(ψ) = Pr[Xi ≤ di1|Ψ = ψ]

depends on asset value given a realization of the common factor. From Equation (4.6),
it follows that

Xi|Ψ = ψ ∼ N(
√
ρXΨ, (1 − ρX)) . (4.7)
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The realization of the common factor thus shifts the asset value distribution. Alterna-
tively, effects of the common factor can be illustrated in terms of the distribution of
standardized asset values

εi =
Xi − √

ρXΨ√
1 − ρX

∼ N(0, 1) . (4.8)

Here, different values of the common factor lead to different default thresholds, which
can be written in terms of the conditional default probability from Equation (4.8) as

Φ−1(p(ψ)) =
di − √

ρXΨ√
1 − ρX

(4.9)

in the case of a normally distributed factor Ψ. The effect of changes in the com-
mon factor can, thus, be seen either as shifts in the (conditional) distribution of asset
values—with fixed default probability π—or as changes in the default threshold, p(ψ)

for the standardized, fixed asset value distribution. This is illustrated in Figure 4.1,
which shows the effect of a change in Ψ. On the left, conditional distributions of the
asset value Xi are shown for different values of Ψ. As the default threshold—assuming
an unconditional default probability of π=0.05—remains fixed, the shift to the right
implied by an increase in Ψ leads to a lower conditional default probability, given by
the area to the left of Φ−1(0.05). In terms of the standardized asset value distribution,
which is shown on the right, an increase in Ψ shifts the default thresholds to the left.
Obviously, the results in terms of conditional default probabilities are identical.

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

Xi

f
(X

i
)

 

 
ψ = 0
ψ = 1
ψ = 2

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

εi

f
(ε

i
)

 

 
ψ = 0
ψ = 1
ψ = 2

Figure 4.1: Effect of the Common Factor Ψ

The effect of asset correlation, ρX , on the conditional default probability depends on
the value of the common factor as well. Figure 4.2 illustrates this. As can be seen
from Equation 4.7, the sign of ψ determines the direction of the shift in the asset value
distribution: An increase in correlation shifts the conditional asset value distribution
to the right (left) for positive (negative) ψ. At the same time, correlation changes
affect the variance of the distribution: The higher latent correlation, the narrower the
distribution.
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Figure 4.2: Effect of Correlation on the Asset Value Distribution

This is also illustrated in Figure 4.3 which shows conditional default probabilities for
different values of ρ, depending on the common factor. Obviously, without knowledge
of ψ it is not clear if an increase in correlation will lead to an increase or a decrease in
the conditional default probability.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ψ

p
(ψ

)

 

 
ρX = 0.1
ρX = 0.3
ρX = 0.5

Figure 4.3: Effect of Correlation on the Conditional Default Probability

In contrast to the unobserved asset correlation ρX , one can observe the correlation
among default indicators Yi. This correlation is given by (see, e.g. McNeil et al., 2005,
p. 344)

ρY =
Cov[Yi, Yj]√

Var[Yi] · Var[Yj]
=

E[YiYj] − πiπj√
πi(1 − πi)πj(1 − πj)

, (4.10)

From (4.10) it follows that observed correlations depend on marginal occurrence prob-
abilities, πi and πj, and on latent correlation, ρX , the latter entering via E[YiYj].
Relationship (4.10) has been studied in detail by Gersbach and Lipponer (2003) and
Foulcher et al. (2005) and is illustrated in Figure 4.4 for different values of πi = πj = π,
assuming a normal distribution of asset values as before.
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Figure 4.4: Latent versus Observed Correlation

Figure 4.4 illustrates that observed correlation, ρY , is always lower than latent corre-
lation, ρX , reaching its maximum value

ρmax
Y =

2

π
arcsin ρX (4.11)

at π = 0.5 (see Gersbach and Lipponer, 2003). In fact, for low default probabilities such
as π = 0.05%, a strong latent correlation may lead to a low observed correlation. In
other words, latent correlation may need to be very strong in order to obtain substantial
correlation among default indicators.

4.2 Estimating Risk Capital for Correlated, Rare

Events

We want to assess the effects of correlated, rare credit defaults on portfolio risk as
measured by VaR and ES. Additionally, we want to leave the setup of multivariate
normality and assess the behavior of risk capital estimates in cases where the distribu-
tion of latent variables is non–normal. In order to elegantly solve this task, the latent
variable model should be restated as Bernoulli mixture model.

Mixture models can arise when distributional parameters do not remain constant. A
formal definition of a special mixture model in the spirit of McNeil et al. (2005) is as
follows.

Definition 3. (Bernoulli Mixture Model) Let Y = (Y1, . . . , Yn)′ be a random vector in

{0, 1}n and Ψ = (Ψ1, . . . ,Ψp)
′, p < n, be a factor vector. Then, Y follows a Bernoulli

mixture model with factor vector Ψ if there exist functions pi : Rp → [0, 1] such that

conditional on Ψ the elements of Y are independent Bernoulli random variables with

Pr[Yi = 1|Ψ = ψ] = pi(ψ).
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To keep the setup simple, we examine only exchangeable mixture models, where con-
ditional probabilities of event occurrence are identical, i.e., pi(ψ) = p(ψ). Defining the
new random variable Q = p(Ψ), the observed correlation between indicator variables
can then be obtained from

ρY =
π2 − π2

π − π2
,

where π = E[Q] and πk = E
[
Qk
]
, the latter resulting from conditional independence.1

In fact, LVMs and Bernoulli mixture models can be viewed as two different representa-
tions of the same underlying mechanism. The following lemma from Frey and McNeil
(2003) states the condition for such an equivalence.

Lemma 1. Let (X,D) be an LVM with n-dimensional random vector X. If X has

a p-dimensional conditional independence structure with conditioning variable Ψ, the

default indicators Yi = IXi≤di1
follow a Bernoulli mixture model with conditional event

probabilities pi(ψ) = Pr[Xi ≤ di1|Ψ = ψ].

In order to generalize the factor model .. and be able to modify distributional assump-
tions, we restate it as

Xi =
√
WZi , (4.12a)

Zi =
√
ρXΨ +

√
1 − ρXεi , (4.12b)

where W is a scalar random variable independent of Z, so that Xi is a normal–variance
mixture. Via the model (4.12), we obtain a conditional independence structure for X,
which allows us to proceed using the equivalent mixture model representation.

Below, we do not only want to analyze the effect of correlation on risk–capital estimates
for rare events, but also to assess consequences in terms of model risk, i.e., the use of a
model which does not accurately describe the processes in place. Therefore, we compare
the impact of different distributional assumptions that are frequently adopted in the
credit–risk framework. To do this systematically, we calibrate the mixture models with
the help of latent and observed correlations. The simplest and most common LVM,
serving here as benchmark model, assumes multivariate normal latent variables. In this
case, the distribution of Xi in (4.12a) corresponds to that of Zi, implying that W = 1.

1Due to conditional independence, one obtains

πk = Pr[Y1 = 1, . . . , Yk = 1] = E[E[Y1 · · ·Yk|Q]] = E[E[Y1|Q] · · · E[Yk|Q]] = E
[
Qk
]
.
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Standardizing Xi and inserting the threshold expression di = Φ−1(π), one obtains the
conditional default probability

p(ψ) = Pr[Xi ≤ di|Ψ = ψ] = Φ

(
Φ−1(π) − √

ρXψ√
1 − ρX

)
. (4.13)

In order to assess model risk, we adapt modifications suggested and analyzed in the
context of credit portfolios (cf. Frey and McNeil, 2002, 2003). The first generalization
of our benchmark model allows for tail dependence and a fat–tailed multivariate dis-
tribution for the latent variables by assuming a multivariate Student-t distribution. In
this case, ρX = 0 means that the latent variables are uncorrelated, but they are no
longer independent. The degree–of–freedom parameter of the t distribution, ν, adds
flexibility and allows to control the degree of fat–tailedness of the latent variables. The
setup given in (4.12) remains valid, but for Xi to have a Student-t distribution with ν

degrees of freedom, the normally distributed random variable Zi has to be multiplied
by an inverse–gamma distributed random variable; i.e., W ∼ InvGam(ν/2, ν/2). The
resulting conditional occurrence–probability is

p(ψ) = Pr[Xi ≤ di|Ψ = ψ] = Φ

(
t−1
ν (π)W−1/2 − √

ρXψ√
1 − ρX

)
, (4.14)

where t−1
ν (·) denotes the inverse of the t distribution with ν degrees of freedom.

Leaving the framework defined by (4.12), two additional modifications are considered.
First, we assume a Beta distribution for the mixing variable. It is a natural exten-
sion, because the interval [0, 1] is the domain, and therefore allows us to interpret
the mixing variable as conditional probability. Moreover, it leads to an analytically
tractable model. We therefore consider a mixing variable p(ψ) = Q ∼ Beta(a, b). As
the moments of a Beta distribution can be directly calculated from the distributional
parameters, a and b, we can easily derive unconditional occurrence–probabilities2,

πk =
β(a+ k, b)

β(a, b)
=

k−1∏

j=0

a+ j

a+ b+ j
, (4.15)

and the observed correlation

ρY =
1

a + b+ 1
.

2Here, we are making use of the representation of the Beta function, β(a, b) =
∫

1

0
ta−1(1 − t)b−1dt,

in terms of the Gamma function, Γ(α) =
∫

∞

0
tα−1e−tdt, which is

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

Equation (4.15) then follows from the general recursion Γ(α+ 1) = αΓ(α).
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Below, these relationships are used for model calibration.

Finally, we also consider an Archimedean copula

C(u1, . . . , ud) = φ−1(φ(u1) + . . .+ φ(ud))

for the latent variables, where φ (the “generator”) refers to the the inverse of the
Laplace transform of cumulative distribution function G on R. This choice of copula,
as pointed out by Frey and McNeil (2003), is mainly motivated by its simplicity for
calibration and simulation. Furthermore, Archimedean copulas allow—in contrast to
the Gaussian copula—for tail dependence, the exact form of which depends on the form
of the generator. To simulate latent variables with an Archimedean copula, we assume
a factor, Ψ, and a sequence of uniform random variables, U1, . . . , Ud, conditionally
independent given Ψ, with

Pr[Ui ≤ u|Ψ = ψ] = exp(−ψφ(u)) , u ∈ [0, 1] .

Conditional default probabilities can be calculated from

Q = p(ψ) = Pr[Ui ≤ π|Ψ = ψ] = exp(−ψφ(π)) .

In the special case of a Clayton copula, the generator takes the form φ(t) = t−θ − 1

and Ψ needs to be gamma distributed, i.e., Φ ∼ Ga(1/θ, 1). The resulting copula is
characterized by lower tail dependence.3 With this, we obtain the bivariate default
probability

π2 = φ−1(φ(π) + φ(π)) = (2π−θ − 1)−1/θ , θ > 0 , (4.16)

which is used for calibration to the benchmark model.

4.3 Simulation

4.3.1 Simulation Setups

In order to obtain risk–capital estimates, the loss distribution, FL, needs to be derived.
As this function is not available in closed form, we construct its empirical distribution
function

F̂L(l) =
1

B

B∑

b=1

I[0,l](lb) (4.17)

3We thus impose tail dependence in that part of the latent variables’ distribution which is relevant

for loss event occurrences. The coefficient of lower tail dependence for the Clayton copula is given by

λL = 2−1/θ, while for the upper tail, λU = 0 holds.
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via Monte–Carlo simulation, where lb refers to the loss from replication b and B repli-
cations are used altogether. The resulting VaR1−α value, based on these B replications,
is then given by

VaR1−α = F̂−1
L (1 − α) ,

and that for ES1−α by

ES1−α =
1

B

B∑

b=1

lb I[VaR,∞](lb) .

In the benchmark model, risk capital estimates are generated as follows:

1. Set values for the observed default probabilities π and latent correlations ρX

2. Simulate a (standard normally distributed) factor realization, ψ, and calculate
the conditional occurrence–probability p(ψ) from (4.13)

3. Conduct n Bernoulli trials, using p(ψ) as success probability, and sum up the
number of event occurrences

4. Repeat these steps B times and calculate VaR and ES for the resulting empirical
distribution.

For the distributional specifications considered, this procedure has to be modified ac-
cordingly. In order to draw from a Student-t distribution for the latent variables, we
fix π and ρX to the same values as in the benchmark model. At the same time, we are
free to set a value for the degrees–of–freedom parameter ν, a smaller value implying
fatter tails for the distribution of the latent variables. In addition to drawing a factor
realization from Ψ ∼ N(0, 1), we also draw from W ∼ InvGam(ν/2, ν/2) and calculate
the conditional occurrence–probability p(ψ) from (4.14), which is then again used for
Bernoulli trials in order to simulate loss event occurrences.

In case of a beta mixing distribution, we calculate the bivariate default probability, π2,
implied by π and ρX in the benchmark model.4 Parameters a and b of the beta distribu-
tion can then be derived from π and π2 via (4.15). Drawing from the Beta distribution
with parameters a and b, we directly obtain the conditional occurrence–probability,
p(ψ), which is then used to conduct n Bernoulli trials. Again, the procedure is re-
peated B times, and values for VaR and ES are derived.

In case of a Clayton copula of latent variables, we first need to determine the value
of parameter θ implied by the benchmark–model values of π and ρX . In order to do

4π2 denotes the value of the cumulative distribution function of a bivariate normal distribution

with correlation ρX at
(
Φ−1(π),Φ−1(π)

)
.
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so, we again calculate the corresponding π2 and derive θ from π and π2 using (4.16).
We then draw factor realizations from Ψ ∼ Gam(1/θ, 1) which are used to obtain
conditional default probabilities p(ψ). Given these, we again conduct n Bernoulli trials
and replicate B times in order to derive values for VaR and ES.

4.3.2 Simulation of Rare Events: Quasi–Random Numbers

The general problem which we are facing in our application is the computation of the
expected value

θ = E[h(l)] =
∫ ∞

−∞
h(l)dFL . (4.18)

For example, to estimate the exceedance probability Pr[L > α], from which VaRalpha

can be derived, one would set h(l) = I(a,∞)(l); if we wish to estimate Expected Shortfall,
θ = E[L|L ≥ VaR], the function h(l) is of the form

h(l) = l I[VaR,∞)(l) . (4.19)

The estimation of the integral in equation (4.18) is performed via the approximation

θ ≈
∫ ∞

−∞
h(l)dF̂L , (4.20)

where F̂L refers to an empirically estimated distribution function of L. This quantity
is the output of simulations. In the ordinary MC setup, F̂L from equation (4.20) refers
to the empirical distribution function

F̂MC
L (l) =

1

B

B∑

b=1

I[0,l](l
MC
b ) , (4.21)

where lMC
b is drawn from the appropriate distribution function.

The distinguishing feature of this basic approach is the pseudo–randomness of real-
izations lMC

b . Assuming for simplicity that we only face one (invertible) distribution
function F available in closed form, lMC

b is obtained from

lMC
b = F−1(uMC

b ) , (4.22)

using the probability–integral transform, where Ub ∼ Unif(0, 1). However, in our ap-
plication FL is not available in closed form. therefore, simulations are rather based
on individual event occurrences yi, which are summed up in order to obtain the total
loss of replication b, lb =

∑n
i=1 yi. Nevertheless, using the inverse of the Bernoulli dis-

tribution function, the probability integral transform and all arguments which follow
equally apply to simulation of yi, i = 1, . . . , n. The Monte–Carlo estimate

θ̂MC
n =

1

B

B∑

b=1

h(lMC
b ) (4.23)
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is based on B independent, FL–distributed samples l1, . . . , lB and amounts to an av-
eraging over the B pseudo–random realizations. From the Glivenko–Cantelli Theorem
(see, e.g., Laha and Rohatgi, 1979, Remark 2.5.1), we know that F̂MC(l) → F (l) uni-
formly in l as B → ∞. Using the Extendend Helly–Bray Theorem (see, e.g., Laha and
Rohatgi, 1979, Theorem 3.1.4), we conclude that

θ̂MC
n

B→∞−→ θ ; (4.24)

for h is a bounded, real valued function on R.
From Theorem 1.1. of Niederreiter (1992) we know that if h is second–power integrable,
then, for any B ≥ 1,

∫ ∞

−∞
· · ·

∫ ∞

−∞

(
1

B

B∑

b=1

h(lMC
b ) − E[h]

)2

dFL(l1) · · · dFL(lB) =
σ2(h)

B
, (4.25)

where h refers to the variance of the integrand

σ2(h) =
∫ ∞

−∞
(h− E[h])2 dFL . (4.26)

As (4.25) gives us the mean–square error of the MC approximation, we conclude that
the error in (4.23) is on average σ(h)/

√
B and thus of order O(B−1/2).5 The remarkable

advantage of MC simulation consists of the fact that this bound does not depend on
the dimension d of the integrand—which is equal to d = 1 in our application—as would
be the case for a multidimensional integration rule for (4.18).

Nevertheless, we know from (4.24) that we obtain a probabilistic bound, such that
the accuracy of the MC approximation is not guaranteed. Furthermore, the error
bound is valid for any square–integrable h, and no additional gain in accuracy can be
obtained from further regularity of the integrand. Apart from these drawbacks, for
equation (4.25) to hold, true random independent samples are required, which cannot
be generated in reality. Besides, even if l1, . . . , lB were based on a random sample, this
would allow for clumping effects due to the independence of the B elements.

When estimating θ via Monte–Carlo, problems arise in case of rare events.6 For exam-
ple, in order to reliably simulate losses beyond VaRα with high α, many observations
are needed. One thus faces either a high mean–square error of the MC approximation

5In general, if f, g are two functions defined on some subset of R, f(x) ∈ O(g(x)) as x → ∞ if and

only if there exists a positive real number c and a real number x0 such that

|f(x)| ≤ c|g(x)| for x > x0 ; (4.27)

see, e.g., Cormen et al. (2001).
6A detailed account on rare event simulation can be found, for example, in Rubino and Tuffin

(2009).
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or a substantial computational effort. Variance reduction techniques such as Impor-
tance Sampling7 aim at achieving a lower mean–square error of the MC approximation,
σ2(h)/B, by reducing the integrand’s variance σ2(h). Quasi–random sequences pursue
a different strategy. They increase accuracy by generating points which are too evenly
distributed to be random.

The simulation of losses via quasi–random sequences is also based on the approximation
(4.20) and can thus be written as

θ̂QMC
n =

1

B

B∑

b=1

h(lQMC
b ) . (4.28)

The difference to the MC estimate (4.23) is the way in which the realizations lb are
obtained. While they are pseudo–random in the ordinary MC setup, they are now
based on quasi–random sequences; that is,

lQMC
b = F−1(uQMC

b ) , (4.29)

where ub is a deterministic sequence on the unit interval characterized by its low dis-
crepancy.

Uniformity, Discrepancy and Variation

The approximation

θ = E[h] =
∫ ∞

−∞
h(l)dFL ≈ 1

B

B∑

i=1

h(F−1(uQMC
b )) , (4.30)

which is the basis for the simulation procedures described above, performs best if the
points u1, . . . , uB are uniformly distributed over the unit interval. This can easily be
seen from the fact that in the case of such a uniform distribution,

lim
B→∞

1

B

B∑

b=1

h(ub) =
∫ ∞

−∞
h(u)dFL (4.31)

holds. In other words, the closer the empirical distribution function of u1, . . . , uB to the
uniform, the smaller the approximation error in (4.20). This observation is the intuitive
motivation for quasi–random sequences. Clearly, only finite sequences (B < ∞) can
be used, so that the approximation error in (4.30) cannot completely be eliminated.
However, the (deviation from the) desired uniformity can be used to rank sequences
with respect to the approximation errors they induce.
As the dimensionality of the integrand, d, plays an important role in the discussion

7An overview of variance reduction techniques is given by Glasserman (2004).
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of quasi–random sequences, we will consider the general case d ≥ 1 in the following,
although in our concrete case, d = 1 holds. Define a set J ∈ [0, 1)d and a sequence
u1, . . . ,uB ∈ [0, 1)d. The discrepancy as a measure of deviation from uniformity can
be written as

D(u1, . . . ,uB; J) = sup
J∈E

∣∣∣∣∣
1

B

B∑

b=1

IJ(ub) − λd(J)

∣∣∣∣∣ (4.32)

where E refers to the collection of all subsets of (0, 1]d and λd(J) is the d–dimensional
Lebesgue measure, assigning a volume to J . Therefore, minimizing discrepancy means
that for all subsets E the fraction of points inside them are as close as possible to the
subsets’ volumes. Depending on the definition of these subsets, different kinds of dis-
crepancy measures are obtained. If E in equation (4.32) is restricted to subrectangles
of [0, 1)d which are of the form

∏d
j=1[vj , wj) with 0 ≤ vj < wj ≤ 1, one obtains the or-

dinary (or extreme) discrepancy, DB; if it contains only subrectangles with one corner
of zero, i.e., of the form

∏d
j=1[0, vj), the resulting measure is called the star discrepancy

D∗
B.

The discrepancy measure refers to the (quasi–random) points serving as inputs to
the integrand h(lb) = h(F−1(ub)). To obtain an upper bound for the approximation
error, we additionally need to consider the variation of the integrand itself. For a
multidimensional concept of total variation of a function h on J , let ∆(h, J) denote
function values of h at the vertices of J with opposite signs at adjacent vertices. The
variation in the sense of Vitali is then defined as

V (d)(h) = sup
P

∑

J∈P

∆(h, J) , (4.33)

where P ranges over all partitions of the unit hypercube into subintervals of the form
of J . If the integrand h is smooth on [0, 1)d, the more convenient representation

V (d)(h) =
∫

[0,1)d

∣∣∣∣∣
∂dh

∂u1 · · ·∂ud

∣∣∣∣∣ du1 · · · dud (4.34)

is obtained. This leads to the variation in the sense of Hardy and Krause which is
given by

V (h) =
d∑

k=1

∑

1≤i1<...<ik≤d

V (k)(h; i1, . . . , ik) . (4.35)

For more details on variation, see, e.g., Owen (2005).
If h has bounded variation V (h) on [0, 1)d, i.e., V (h) is finite, then, for any u1, . . . ,uB ∈
[0, 1)d we obtain the Koksma–Hlawka inequality (Koksma, 1942/43; Hlawka, 1961))

∣∣∣∣∣
1

B

B∑

b=1

h(ub) −
∫

[0,1)d
h(u)du

∣∣∣∣∣ ≤ V (h)D∗
B(u1, . . . ,uB; J) . (4.36)
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This inequality gives us an upper bound for the approximation error and implies that
sequences characterized by a small star discrepancy D∗

B guarantee a small error in
the QMC integration. It is similar to (4.25) in that it relates the error magnitude to
a product of one term depending on properties of the integrand h and a second one
depending on properties of the sequence. However, in contrast to the ordinary Monte
Carlo case, (4.36) gives us an absolute bound.
In contrast to this “worst case” error, Wozniakowski (1991) analyzes the average inte-
gration error in (4.30) and shows that it is equal to an alternative discrepancy measure
based on the L2 norm; see also Albrecher et al. (2003). In fact, Morokoff and Caflisch
(1994) argue that the Koksma–Hlawka inequality is a vast overestimate at least for
“half–differentiable” functions (whose Hölder exponent is sufficiently close to 1/2).

For the sequence we apply in our analyses, and quasi–random sequences in general, it
can be shown that

D∗
B ∈ O

(
(ln(B))d

B

)
; (4.37)

see Chapter 3 of Niederreiter (1992) and Meijer (1968) for the exact expression of the
upper bound. This is a substantial improvement on the probabilistic ordinary Monte
Carlo error. In fact, as Niederreiter (1978) shows, the star discrepancy of a pseudo–
random sequence satisfies

D∗
B ∈ O



(

ln(ln(B))

B

)1/2

 (4.38)

which is in line with the probabilistic error bound of order O(B)−1/2. The quasi–
random sequence covers the unit hypercube more uniformly and thus promises a faster
convergence. This is illustrated in Figure 4.5, which clearly shows the clustering oc-
curring in the case of pseudo–random numbers.

Nevertheless, quasi–random sequences outperform pseudo–random ones only beyond
a certain number of elements B, this threshold increasing with dimensionality d. As
Sarkar and Prasad (1987) argue, this is due to the fact that for small B, the effect
of (ln(B))d in (4.37) dominates, while for large B, it becomes insignificant and the
discrepancy decreases as B−1. In other words, and as Caflisch et al. (1997) put it, the
powers of ln(B) do not become negligible at any computationally possible sample size.8

Summing up, when considering the integration of a function h with bounded variation
V (h), the Koksma–Hlawka inequality guides us to look for sequences with the small-

8However, for certain high–dimensional integrands, QMC methods still outperform MC for realistic

sample sizes. Caflisch et al. (1997) explain this based on the concpet of effective dimension of the

integrand, which is still low in these cases.
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(i) Pseudo–random sequence (ii) Quasi–random sequence
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Figure 4.5: 2–dimensional Projections: Pseudo– versus Quasi–Random Sequence,
B = 5, 000

est possible star discrepancy D∗
B. This is equivalent to searching for sequences whose

empirical distribution function is as close as possible to the uniform distribution. Such
sequences can then outperform ordinary MC in terms of the order of magnitude of the
approximation error bound.

The Van der Corput and Halton Sequences

Among the deterministic quasi–random sequences, those that have attracted most at-
tention rely on the base-p expansion. Given a base p ≥ 2, any integer k > 0 can be
written as

k =
J(k)∑

j=0

aj(k)pj = (aJ(k) · · ·a0)p (4.39)

with aj ∈ {0, 1, . . . , p− 1}. The radical inverse function in base p

ψp(k) =
J(k)∑

j=0

aj(k)

pj+1
= (.a0 . . . aJ(k))p (4.40)

consists of a symmetric reflection of the expansion around the decimal point and there-
fore leads to a mapping of k to a point in [0, 1). The base-p Van der Corput sequence
is then given by the sequence ψp(0), ψp(1), ψp(2), . . ..

Example 4.2. Taking p = 3 as base, we can express k = 7 as

k = 7 = (21)3 = 2 · 31 + 1 · 30 , (4.41)

and therefore

ψ3(7) = (.12)3 =
1

31
+

2

32
= 0.5556 .
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In the same way, we can, for example, obtain the unique base–3 expansions

k = 17 = (122)3 → ψ3(17) = (.221)3 = 0.9259 ,

k = 70 = (2121)3 → ψ3(70) = (.1212)3 = 0.6173 .

The Halton Sequence (Halton, 1960) is the first analysis and simplest construction of
a low–discrepancy sequence for an arbitrary dimension d. Its coordinates follow Van
der Corput sequences in distinct bases. That is, if p1, . . . , pd are relatively prime9,

sk = (ψp1
(k), . . . , ψpd

(k)), k = 0, 1, 2, . . . (4.42)

is a Halton sequence in dimension d. The point k = 0 is theoretically contained in the
sequence but will be omitted in the following due to the fact that for a distribution
function F , F−1(ψp(0)) = F−1(0) = −∞, which would cause the integrand h to be
unbounded and thus lead to an inapplicability of the Koksma–Hlawka inequality.10

Therefore, in our application, k coincides with the index referring to the number of
replications, b = 1, . . . , B, when using the Halton sequence for QMC simulation.
The fact that this construction leads to a higher uniformity than, for example, a grid
construction, is illustrated in Figure 4.6, which shows the first ten elements of the
one–dimensional Halton sequence with base p = 3, highlighting by arrows the elements
newly added in each step b = 1, 2, . . . , 10. In general, the numbers lie in circles of p
increasing terms and are separated by 1/p within each of these circles.11 Once a grid
of 1/pm has been completed, the next circle starts filling a grid at the level 1/pm+1. In
this way, numbers are inserted in a maximally balanced way.

On the search for a uniformly distributed sequence one would, at a first glance, suggest
a simple grid over the unit interval. Figure 4.6 clarifies why such a grid is neverthe-
less inferior to low–discrepancy sequences: If the function h is nearly separable in its
arguments, the values at the Bd grid points contain nearly the same information as

9Two integers are relatively prime if they share no common positive factors (divisors) except 1.

Using the notation (m,n) to denote the greatest common divisor, two integers m and n are relatively

prime if (m,n) = 1. Relatively prime integers are sometimes also called strangers or coprime and are

denoted m⊥n. Two distinct primes p and q are always relatively prime, (p, q) = 1, as are any positive

integer powers of distinct primes p and q, (pm, qn) = 1.
10Owen (2006) argues that Halton sequences avoid regions around corners of the unit cube, so that

the error bound may even hold without this restriction.

Another potential violation of the Koksma–Hlawka inequality in our application might be caused by

the presence of the indicator function within the integrand h. For this specific problem, Jin and

Zhang (2006) suggest a smoothing via Fourier Transforms, which can theoretically lead to a faster

convergence of quasi–Monte Carlo methods. As our simulation results clearly favor the use of quasi–

random sequences, we have not pursued this topic further yet.
11As we leave out ψ3(0), the first circle in Figure 4.6 consists only of two elements.
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Figure 4.6: 1–dimensional Halton Sequence sk = ψ3(k), k = 1, . . . , 10

only Bd points would. Furthermore, large intervals within [0, 1] are left empty, and the
total number of points B has to be determined in advance. If the need for a refinement
should emerge later, the grid can only be changed by increasing the number of points
by a factor 2d, which leads to a discrepancy of size O(1).
Therefore, at least for small and moderate dimensions, quasi–random sequences com-
bine the advantages of random sequences—points can be added incrementally—and
those of a grid, avoiding a clumping of points.12

(i) k = 1, . . . , 10 (ii k = 1, . . . , 21
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Figure 4.7: 1–dimensional Halton Sequence sk = ψ11(k)

The difficulties which may arise when using Halton sequences for integrands of high
12In applications which require an estimation of the approximation error, these deterministic se-

quences can additionally be randomized; see Owen (1995) for a survey on this topic.
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dimensionality stem from the fact that a Halton sequence in dimension d requires d
relatively prime numbers. A high dimensionality thus implies that high prime numbers
have to be used. The effect of this is illustrated in Figure 4.7. It shows the one–
dimensional Halton sequence with base p = 11 for B = 10 and B = 21. Here, the
successive “filling” of the unit interval described above obviously leads to a clustering
of points if the length of the sequence is not either chosen to contain exactly p − 1 or
a very large number of points. For example, using only b = 5 elements, all generated
points lie within the lower half of the unit interval.
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Figure 4.8: 2–dimensional Projection: Halton Sequence (ψ101(k),ψ103(k))

As an extreme, but not yet unrealistic example of the effect this non–uniformity for
higher dimensions can have, Figure 4.8 shows the bivariate projection of the two–
dimensional Halton sequence with bases p1 = 101, p2 = 103 and B = 10, 000 points.
Here, the points only cover a subspace of [0, 1]2 and therefore lead to a high dis-
crepancy. This property of Halton sequences suggests that their usefulness decreases
with increasing dimension of the integration problem. For high dimension, modifica-
tions such as the leaped Halton sequence or the Reverse–Radix algorithm of Kocis and
Whiten (1997) may mitigate these effects.
Our application requires a maximum of three relatively prime numbers. This is far be-
low the dimensionalities deemed to be problematic; for example, Morokoff and Caflisch
(1995) find that among the commonly used quasi–random sequences the Halton gives
best results as long as d ≤ 6. Therefore we stick to this sequence as the simplest, most
intuitive one, although others, such as the sequences of Faure (1982), Sobol (1967) or
Niederreiter (1992) could equally be used in our framework.

The use of quasi–random sequences reduces the computational burden immensely. The
results are qualitatively identical to those obtained from a standard Monte–Carlo ap-
proach. The presentation of results in the following section is based on ordinary Monte–
Carlo procedures, in order to demonstrate the effect of the number of replications on
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risk–capital estimates.

4.3.3 Simulation Results

For each of the models discussed above we simulate defaults and estimate risk capital
for different levels of latent correlation, ρX . In doing this, we use the multivariate
normal LVM as benchmark model to which we calibrate the other models. Risk will
be measured by the VaR and ES of the distribution of the number of losses within the
portfolio.13

In a first simulation study, we assume n = 1, 000 loss processes, to match the setup
of the study in Frey and McNeil (2001). Specifying B = 100, 000 replications, we
observe for all models a counterintuitive behavior of the VaR values when default
probabilities are low (π ≤ 0.01): Starting from perfect correlation, VaR values increase
as correlations decrease. We consider confidence levels between 95% and 99.9% and find
that this effect is more pronounced for lower confidence levels, i.e., when decreasing
ρX , we observe it first for VaR0.95, then for VaR0.99, and only for very low default
probabilities (π ≤ 0.0001), VaR0.999 is also affected. An illustration of this phenomenon
is given in Figure 4.9, which plots the 99% VaR (on a logarithmic scale) as a function
of the level of latent correlation and default probability, π.
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Figure 4.9: Simulated VaR0.99 figures from a Bernoulli mixture model with multivari-
ate normal latent variables, π ∈ [1.0e-003, 0.01]

For π = 0.01, VaR behaves as expected: It increases in ρX over the entire range of
latent correlations. However, for lower levels of π, such as π = 0.005, VaR decreases

13This amounts to assuming a fixed exposure and thus a concentration on default risk.
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with increasing correlation above a certain threshold of ρX ; the lower π, the lower
this threshold value. This effect is the more pronounced, the fatter the tails of the
distribution of latent variables. This is shown in Figure 4.10, where an intermediate
occurrence–probability of π = 0.001 is held fixed. For ν = 100, VaR grows as the
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Figure 4.10: Simulated VaR0.99: Bernoulli Mixture Model, Multivariate t–distributed
Latent Variables, π = 0.001, ν ∈ [4, 100]

latent correlation increases to ρX ≈ 0.5 and decreases for higher levels. The lower ν,
the broader the range of ρX for which this peculiar behavior occurs. For ν = 4, VaR
values decrease over the entire range of latent correlations, ρX .
For ES, using 100, 000 replications, we obtain ambiguous results. Figure 4.11 shows a
behavior which corresponds to intuition, i.e., ES increases with correlation. However,
setting a different seed in the simulation can result in ES–increases as correlation de-
creases when the default probability is very low (π ≤ 1.0e-005).

The results presented so far are based on 100,000 replications. In order to assess the
uncertainty in risk capital estimates, we modify the simulation setup and calculate sev-
eral risk capital estimates for each combination of ρX and π, increasing the number of
replications up to B = 10, 000, 000. In order to avoid predominance of risk capital esti-
mates of zero, we now set the number of loss processes to n = 100, 000 and concentrate
on a confidence level of 99.9%.14 Due to the substantial computational burden of this
task, we hold the default probability fixed at π = 1.0e-005. To assess convergence and

14The results from our simulation study can be reproduced for other combinations of confidence

levels and default probabilities; as described, the counterintuitive behavior of VaR also occurs for

lower confidence levels.
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Figure 4.11: Simulated ES0.99: Bernoulli Mixture Model, Multivariate Normal Latent
Variables, π ∈ [1.0e-003, 0.01]

reliability of risk capital estimates, we conduct 250 simulations for each ρX . Figures
4.12 to 4.16 compare boxplots of these 250 risk capital estimates, where we replace the
median by the mean over the 250 estimates for assessing convergence.

Figure 4.12 confirms the findings of our first simulations: Above a certain level of latent
correlation (ρX ≈ 0.5), VaR estimates may increase with decreasing latent correlation.
The dispersion of the 250 risk capital figures is the highest for medium levels of corre-
lation. As was to be expected, it decreases with an increasing number of replications;
however, VaR still increases with decreasing correlations in the upper region of ρX . In
view of these observations, we conclude that this counterintuitive behavior is not due to
convergence issues and cannot be eliminated by increasing the number of replications.
It appears that B = 1, 000, 000 replications are sufficient to obtain reliable VaR figures.
Therefore, we restrict our attention to this value of B when analyzing VaR behavior
in the following.

Figure 4.13 shows the ES figures resulting from the very same simulations. It becomes
evident that the risk–capital estimates may, just like in the VaR case, rise with de-
creasing correlations; but in the case of ES figures, this is not true for their mean.
Therefore, increasing the number of replications to Bmax = 10, 000, 000 substantially
reduces the occurrence frequency of ES–increases caused by correlation declines. The
restriction to Bmax is due to computational limitations.

The results from the previous study regarding the fat–tailedness of the latent variables’
distribution are confirmed by Figure 4.14. Just as before, VaR figures decrease in ρX
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Figure 4.12: Mean–boxplots of VaR0.999: Bernoulli Mixture Model, Multivariate Nor-
mal Latent Variables, π = 1.0e-005

over the entire range of latent correlations. In addition, we observe that the disper-
sion of the ES–values is much higher than in the case of normally distributed latent
variables, implying that ES–increases caused by correlation declines can be observed
more often. Figures 4.15 and 4.16 confirm the previous findings for the Beta mixing
distribution and the Clayton copula of latent variables.

4.4 Interpretation of Results

The simulation study described in the previous section is conducted in order to find out
whether a general rule for the effects of (less than perfect) correlation between opera-
tional loss processes can be found. We introduce dependence through latent variables
and assume that the losses are modeled jointly before estimating risk capital, i.e., we
do not assess subadditivity properties.
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Figure 4.13: Mean–boxplots of ES0.999: Bernoulli Mixture Model, Multivariate Nor-
mal Latent Variables, π = 1.0e-005
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Figure 4.14: Mean–boxplots of VaR0.999 and ES0.999: Bernoulli Mixture Model, Mul-
tivariate t–distributed Latent Variables, ν = 4, π = 1.0e-005
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Figure 4.15: Mean–boxplots of VaR0.999 and ES0.999: Bernoulli Mixture Model, Beta
Mixing Distribution, π = 1.0e-005
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Figure 4.16: Mean–boxplots of VaR0.999 and ES0.999: Bernoulli Mixture Model with
Clayton Copula, π = 1.0e-005

Surprisingly, we find that for all distributional assumptions considered, risk capital
estimates do not necessarily decrease when departing from the assumption of perfect
positive correlation. This counterintuitive effect is observed for low default probabili-
ties, i.e., for rare events (π ≤ 0.01), and only above a certain value of ρX , this threshold
decreasing with increasing tail dependence of the latent variables’ distribution. There-
fore, the effect is of practical relevance only for certain “extreme” situations, which can
be summarized as risk capital estimation at a very high confidence level of very rare,
but (possibly tail–)dependent event occurrences.

The explanation for the unexpected behavior of risk capital estimates with respect to
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different correlation assumptions is illustrated in Figure 4.17. It shows 10, 000 draws
from a bivariate normal distribution for two different correlation assumptions. The solid
line represents the thresholds implied by the default probability of π = 0.01. In the
upper plot, where the latent correlation is set to ρX = 0.1, this threshold leads to four
joint “occurrences” (in the southwestern quadrant) and 9,798 joint “non–occurrences”.
In the lower plot with correlation ρX = 0.9, the concentration on extremes leads
to 94 joint “occurrences” and 9,854 joint “non–occurrences”. As it turns out, high
correlation not only leads to more events, but also to more joint “non–events”. It is
this phenomenon which moves Value–at–Risk towards zero as correlation levels rise.
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Figure 4.17: Scatterplots of Bivariate Normal Distributions

In our simulation study, we keep the setup as simple as possible. That is, we as-
sume exchangeable latent variables and base risk capital estimates on constant latent
correlations and default probabilities. In reality, these assumptions will not be met:
Default probabilities change over time, e.g., due to changes in the economic environ-
ment. A dynamical consideration could therefore provide more insight on the practical
implications of our findings.

4.5 Chapter Summary

In the case of low–default portfolios, as, foe example, in the case of highly–rated coun-
terparties or very short–term exposures, there is a need to simulate rare events in order
to obtain a risk–capital estimate.

Our results show that it is very important to assess the impact of correlations within
the chosen modeling framework. In the case of rare events, simulated values for risk
measures, such as Value–at–Risk and Expected Shortfall, can increase as the level of
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underlying asset correlation decreases. This is, at first sight, counterintuitive, as we
would expect a higher correlation among asset values to imply more joint defaults.
This is, indeed, the case; however, a higher correlation implies, at the same time, more
joint “non–defaults”. These zero–observations are able to outweigh the changes in the
upper tail of the distribution.

The parameter ranges for which this phenomenon occurs may seem to hold only for
few realistic portfolios. However, it has to be kept in mind that the strong correlations
which we induced hold on the layer of latent variables and may translate into a much
smaller observed correlation, according to Relationship (4.10). Furthermore, in case of
highly–rated counterparties, default probabilities may be very small.

Whereas for Expected Shortfall this effect can be circumvented by choosing an appro-
priate design of the Monte-Carlo setup, this is, unfortunately, not so for the widely used
Value–at–Risk, which systematically declines above certain levels of latent correlations.
The extent to which this arises depends on the observed occurrence probabilities, the
confidence level and the fat–tailedness of the distribution of the latent variables.
If the clustering of realizations at zero (“joint non–occurrences”) is not in line with
the true risk–generation mechanisms, risk capital may be severely underestimated. In
this case, other statistical concepts of dependency should be considered for risk–capital
calculation.



Chapter 5

Quantifying Operational Risk

5.1 The Operational Risk Challenge

The Basel Committee (Basel Committee on Banking Supervision, 2006) defines oper-
ational risk as “the risk of loss resulting from inadequate or failed internal processes,

people and systems or from external events”. The broad range of loss events—including
events such as bookkeeping errors, computer breakdowns, and terrorist attacks—calls
for the separate modeling of seven event types and eight business lines. That is, in the
standard Loss Distribution Approach (LDA), which is the most common approach to
estimating operational–risk capital, a bank will have i = 7×8 = 56 (possibly different)
models for operational losses, L. This is sketched in Table 5.1.

Business Lines

Corporate Finance . . . Retail Brokerage

E
v

e
n

t
T

y
p

e
s

Internal Fraud L1 . . . L8

...
...

. . .
...

Execution, Delivery & L49 . . . L56

Process Management

Table 5.1: The Business–Line/Event–Type Matrix

In the LDA, the losses of cell i are decomposed as

Li =
Ni∑

n=1

Xi,n . (5.1)

109
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where Ni refers to the number of loss events and Xi,n to the loss amounts for each event.
As both components are themselves random, closed–form expressions for the compound
distribution of Li are available only for few parametric distributions. Typically, on has
to resort to Monte Carlo simulation, the algorithm of Panjer (1981), the method of
Heckman and Meyers (1983) or Fast Fourier Transforms (see, e.g., Robertson, 1992)
in order to obtain the distribution of losses, Li. A detailed account on this and other
problems related to estimating risk capital for operational risk can be found in Panjer
(2006).

Eventually, analyses have to condense into one single number, representing the aggre-
gate operational–risk capital over all event types and business lines. This final quantity
which one is interested in can be written as

VaR.999(L) = VaR.999

(
56∑

i=1

Li

)
. (5.2)

Obviously, risk–capital estimates resulting from Equation (5.2) will be affected by
dependencies among cells i and j. In other words, deriving risk capital along the lines
of (5.2) requires an explicit modeling of dependencies.
In contrast to this, Basel II prescribes to calculate total risk capital (TRC) as

TRC =
56∑

i=1

VaR.999(Li) ; (5.3)

only under certain qualifying conditions, banks may explicitly model dependencies. A
natural question is thus: How will such an explicit modeling of dependencies, that is, a
movement from Equation (5.3) to (5.2), affect risk–capital estimates? Put differently,
can one be sure that working along the lines of Equation (5.2) will save regulatory
capital? The answer to this is of paramount importance for assessing the conservative-
ness and the banks’ incentives towards a more realistic modeling created by the Basel
Committee.
VaR is a subadditive risk measure in the case of elliptical distributions, so that the
standard Basel II calculation according to Equation (5.3) provides an upper bound
and thus a worst–case scenario for aggregate risk. This illustrates why the idea of
explicitly modeling dependencies according to (5.2) is very appealing: One intuitively
expects a reduction in total risk–capital estimates. However, loss distributions are
typically far from elliptical in the operational risk context. Banks may, thus, not be
“rewarded” for a more realistic dependency modeling by a decrease in risk capital. We
aim at assessing such diversification effects based on different measures of dependence.

A calculation of a minimum capital requirement according to (5.2) is influenced by
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dependencies among frequencies, N , and severities, X. The Standard LDA1 makes the
following central assumptions:

1. N and X1, . . . , XN are independent,

2. X1, . . . , XN is a set of independent random variables,

3. X1, . . . , XN follow the same marginal distribution.

From this it follows that to include dependencies in the Standard LDA, only a correla-
tion between frequencies can be considered without running into conceptual problems.
Still, assuming correlated frequencies will translate into a correlation among aggregate
losses, Li. Frachot et al. (2004) derive that

Corr[L1, L2] ≤ Corr[N1, N2] , (5.4)

and the difference between the two will be the higher, the higher the severities of
loss events (due a domination of severity independence over frequency dependence).
Thus, even for highly correlated frequencies, aggregate losses may exhibit only small
correlations.

Copulas can, in principle, be applied to the continuous severity distributions as well as
to the discrete counting variables; in the latter case, they are not necessarily unique.
Analyses and applications of copulas to the numbers of events can be found, for ex-
ample, in Pfeifer and Nešlehová (2004) and Chavez-Demoulin et al. (2006). In the
following, we do not distinguish between the source of dependence; rather, we aim at
directly capturing the dependence structure among aggregate losses, Li and Lj .

As mentioned by Chavez-Demoulin et al. (2006), the lack of reliable operational loss
data has impeded research on a possible reduction of the calculated risk capital by ex-
plicitly considering dependencies. Analyses often concentrate on modeling the marginal
distributions only. The few studies based on real–world data which treat this depen-
dence issue, such as Chapelle et al. (2004) or Aue and Kalkbrener (2006), find that the
prescribed assumption of perfect correlation indeed leads to an overestimation of risk
capital. Using mixture models, Reshetar (2008) concludes that the prescribed assump-
tion of perfect correlation indeed leads to an overestimation of risk capital. Cope and
Antonini (2008/2009), analyzing data from the ORX data base, consider estimation
of correlations as well as tail dependence; they find only slight evidence of tail depen-
dence. While they find diversification benefits for high quantiles, this effect is found to
be potentially reversed for lower confidence levels.

1The Standard LDA without consideration of dependencies is described and analyzed in detailed,

by Frachot et al. (2001) and Frachot et al. (2003).
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5.2 Estimation and Effects of Dependencies

Drawing on real–world operational risk data from the DIPO database2, our aim is to
assess the relevance of the potential superadditivity of VaR. The quantity we thus
consider is

D =
VaR.999(Li + Lj) − (VaR.999(Li) + VaR.999(Lj))

(VaR.999(Li) + VaR.999(Lj))
(5.5)

as measure of diversification; positive values imply that an explicit modeling of depen-
dencies leads to an increase in risk–capital estimates compared to the simple summing–
up of VaRs.

5.2.1 Modeling Dependencies

The first and most obvious attempt at capturing the dependence structure among ag-
gregate losses consists of estimating linear correlation. The results are presented in
Table 5.2. The upper part of the matrix contains correlation estimates using the full
sample, while the lower part restricts attention to 2/3 of the data.

Without considering the effect different samples may have on estimation (i.e., stick-
ing to the upper part of Table 5.2), we observe that correlation may vary substan-
tially, depending on the event types considered. For example, event type combination
2/5 (External Fraud/Damage to Physical Assets) exhibits a quite small correlation,
while combination 3/4 (Employment Practices & Workplace Safety/Clients, Products
& Business Practices) is characterized by a substantial correlation of ρ = 0.528. This
first finding tells us to differentiate between event types when drawing conclusions
about dependence structures in operational risk data.

As they represent the range of possible dependence structures, we will continue to re-
strict attention to event type combinations 2/5 and 3/4 in the following. However, this
does not imply that the conclusions thereby obtained are genuine to these combina-
tions; they rather represent a spectrum of different behavior which may occur.

Next, we consider the change in correlation estimates resulting from a reduction of
the sample, i.e., we compare the upper and lower parts of Table 5.2. We observe
that correlation estimates are unstable, which is a well–known deficiency of linear
correlation. This is illustrated in Figure 5.1, which shows scatter plots of aggregate
losses for both event type combinations and sample sized. For example, the reduction
of correlation observed for event type combination 2/5 corresponds to two extreme
observations (marked by circles) which drop out of the sample in the course of sample

2http://www.dipo-operationalrisk.it
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ET 1 ET 2 ET 3 ET 4 ET 5 ET 6 ET 7

ET 1 1 0.045 0.221 0.046 0.010 0.085 0.223

ET 2 0.062 1 0.162 0.161 0.026 -0.066 0.052

ET 3 0.126 0.283 1 0.528 0.295 0.182 0.443

ET 4 -0.028 0.242 0.588 1 0.143 0.063 0.201

ET 5 -0.012 -0.114 0.290 0.177 1 -0.046 -0.050

ET 6 0.030 -0.039 0.151 0.012 -0.053 1 0.065

ET 7 0.155 0.063 0.365 0.202 -0.104 0.045 1

Upper part: 01/03–12/07, lower part: 01/03–04/06

Table 5.2: Estimated Linear Correlation Coefficients

reduction. Similarly, the drop in correlation for event type combination 3/4 coincides
with the elimination of an extreme observation.

ℓ2

ℓ 5

ℓ2

ℓ 5

ℓ3

ℓ 4

ℓ3

ℓ 4

01/03–12/07 01/03–04/06

Top: event type combination 2/5; bottom: event type combination 3/4.

Left: full sample; right: 2/3 of sample.

Figure 5.1: Scatterplots of Aggregate Losses
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ET 1 ET 2 ET 3 ET 4 ET 5 ET 6 ET 7

ET 1 1 0.135 0.248 0.214 0.142 0.105 0.190

ET 2 0.097 1 0.148 0.211 0.005 -0.024 0.111

ET 3 0.064 0.192 1 0.510 0.260 0.207 0.183

ET 4 0.049 0.218 0.451 1 0.307 0.313 0.072

ET 5 0.046 -0.005 0.162 0.356 1 0.052 -0.033

ET 6 0.041 0.097 0.151 0.280 0.051 1 0.172

ET 7 0.133 0.082 0.090 -0.044 -0.139 0.139 1

Upper part: 01/03–12/07, lower part: 01/03–04/06

Table 5.3: Estimated Kendall Rank Correlation Coefficients

ET 1 ET 2 ET 3 ET 4 ET 5 ET 6 ET 7

ET 1 1 0.197 0.343 0.312 0.223 0.152 0.293

ET 2 0.157 1 0.202 0.293 0.001 -0.029 0.153

ET 3 0.057 0.276 1 0.695 0.385 0.320 0.257

ET 4 0.071 0.301 0.633 1 0.433 0.451 0.109

ET 5 0.096 -0.002 0.258 0.494 1 0.079 -0.043

ET 6 0.062 0.146 0.236 0.411 0.088 1 0.272

ET 7 0.191 0.112 0.125 -0.045 -0.202 0.226 1

Upper part: 01/03–12/07, lower part: 01/03–04/06

Table 5.4: Estimated Spearman Rank Correlation Coefficients

Knowing that correlation may lead to very volatile results, an obvious alternative is
thus given by rank correlations. However, as is revealed by Tables 5.3 and 5.4, it is not
only the loss magnitudes which change when reducing the sample size, but also their
ranks, so that the estimated values of Kendall’s τ and Spearman’s ρ are unstable as
well.
Furthermore, just as Pearson’s correlation, rank correlation boil down dependencies
into one single number and are thus not sufficiently flexible. We thus conclude that,
for our purposes, linear correlation as well as rank correlation is an inappropriate mea-
sure of dependence.
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Copulas

In order to analyze effects of different dependency structures on VaR, we fit several
copulas via the IFM method to the data on an event–type level.

We do not estimate any parametric marginal distributions, but rather use the empirical
cdf as inputs to the likelihood function.3 The rationale behind this procedure is that
we do not want to impose restrictions which could have an influence on the estimation
results for the dependence structure.

Θ̂ λ̂U ℓ AIC BIC
p–value p–value

dA2 A4

01/03–12/07

Ga -0.015 0.000 -0.005 1.989 8.178 0.640 0.619 0.545
t 3.86 0.095 -0.945 0.110 6.299 0.798 0.606 0.804
Gu 1.015 0.020 -0.016 1.969 8.157 0.790 0.769 0.690
GuSu 1.000 0.000 0.000 2.000 8.189 0.697 0.743 0.599
Cl 0.023 0.000 -0.009 1.982 8.171 0.792 0.775 0.642
ClS 0.002 0.000 -0.000 2.000 8.189 0.692 0.628 0.604

01/03–04/06

Ga -0.014 0.000 -0.003 1.994 8.183 0.7053 0.599 1.342
t 7.51 0.027 -0.092 1.817 8.005 0.7592 0.645 1.446
Gu 1.00 0.000 0.000 2.001 8.189 0.6254 0.613 1.449
GuS 1.01 0.000 -0.001 1.998 8.187 0.6943 0.670 1.476
Cl 0.081 0.000 -0.068 1.864 8.053 0.8581 0.849 1.901
ClS 0.000 0.000 0.000 2.000 8.189 0.6583 0.648 1.436

Table 5.5: Maximum–Likelihood Estimation Results for Different Parametric Copu-
las, Event Type Combination 2/5.

The estimation results for event type combination 2/5 can be found in Table 5.5.
While the upper part shows estimations results from the full sample, the lower part is
again based on 2/3 of the sample. The first column contains the parameter estimates
obtained by the semiparametric maximum likelihood procedure. For example, using a
Gaussian copula, the estimated correlation is ρ̂ = −0.015 in the full sample, changing
to ρ̂ = −0.014 in the smaller sample. This is a stronger and, above all, a more stable
correlation estimate than the Pearson one. The second column contains the upper tail

3Again, we use the rescaled version of Genest et al. (1995).
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dependence coefficient which is implied by the estimation results; it is derived using the
relationships from Table 2.3. Among the three copulas being able to capture upper tail
dependence, only the Student-t leads to considerable tail dependence; for the Gumbel
and even more for the Clayton survival, we find only negligible tail dependence.
The remaining columns aim at assessing the goodness of fit. Both AIC and BIC
point at the Student-t copula in the full as well as in the small sample. However,
while this result is clear–cut in the full sample, the AIC and BIC values are quite
close in the small sample. The next two columns present the p–values from the two
goodness–of–fit tests found to perform considerably well by Berg (2009): The A2 test
of Genest and Rémillard (2008) and the A4 test which can be found, for example,
in Genest et al. (2006).4 However, none of the p–values derived from a bootstrap
procedure allows the rejection of a copula. The last column contains the sum of squared
distances between empirical and theoretically implied extremal dependence functions
as presented in Section 2.3.3.4. The values are close, with exception of the Student–
t copula for the full and the Clayton copula for the small sample. Due to the small
differences in results, we do not take any decision as to which copula should be preferred
based on this criterion here.

Table 5.6 shows the corresponding results for event type combination 3/4. Here, we
do find evidence for tail dependence: AIC and BIC choose for both samples a copula
leading to substantial tail dependence (in the full sample, the Student–t with λ̂ = 0.40,
in the small sample the Gumbel copula with λ̂ = 0.56). The preferred copula now
depends on the sample; furthemore, the values of the information criteria are quite
close. With exception of the Clayton survival copula in the full sample, a rejection of
any copula based on goodness–of–fit tests is also not possible here.

An illustration of the fit of the different copulas is provided by Figure 5.2, which shows
contour plots of the empirical and the fitted copulas. The left part is based on the full
sample, while the right part considers only 2/3 of it. We see that while for event type
combination 2/5 (upper part), all parametric copula contours are close, they vary for
event type combination 3/4 (lower part). This corresponds to the fact that all fitted
copulas exhibit absence of tail dependence for combination 2/5, while those allowing
for it lead to substantial tail dependence for combination 3/4.

The general challenge of parametric copula estimation in small samples is illustrated by
the kinks of the empirical copulas, caused by single observations. We see that reducing
the sample leads to noticeable differences in the empirical copula, so that stability
remains an issue.

4We use the same numbers of replications as Berg (2009), that is, 10,000 replications for the

parametric bootstrap and an additional number of 2,500 replications in the double bootstrap.
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Θ̂ λ̂U ℓ AIC BIC
p–value p–value

dA2 A4

01/03–12/07

Ga 0.719 0.000 -19.489 -36.977 -30.789 0.912 0.920 2.745
t 6.618 0.402 -19.971 -37.941 -31.752 0.961 0.935 3.319
Gu 1.954 0.574 -18.386 -34.772 -28.583 0.285 0.499 3.945
GuS 1.986 0.000 -19.443 -36.885 -30.696 0.859 0.828 5.667
Cl 1.522 0.000 -17.065 -32.129 -25.940 0.103 0.228 3.442
ClS 1.398 0.609 -15.15 -28.300 -22.111 0.010 0.048 8.859

01/03–04/06

Ga 0.682 0.000 -10.593 -19.1864 -12.998 0.8452 0.9071 4.574
t 5.865 0.390 -11.023 -20.0453 -13.857 0.9181 0.8362 5.245
Gu 1.910 0.562 -11.315 -20.6297 -14.441 0.6134 0.7293 5.618
GuS 1.795 0.000 -9.630 -17.2595 -11.071 0.5594 0.8561 4.594
Cl 1.193 0.000 -8.341 -14.6819 -8.493 0.0909 0.3117 4.590
ClS 1.494 0.629 -10.017 -18.0344 -11.846 0.1978 0.3357 8.205

Table 5.6: Maximum–Likelihood Estimation Results for Different Parametric Copu-
las, Event Type Combination 3/4.

Nonparametric Tail Dependence

Figures 5.3 and 5.4 show the results of nonparametric estimation. For event type com-
bination 2/5, we do not find any evidence of tail dependence nor quantile dependence:
The estimators of λU , λ̂U(t) and χ̂(t) do not converge to a positive level as t increases.
At the same time, ̂̄χ(t) is close to zero over the entire range of t, so that quantile
dependence does not seem to be an issue either. For event type combination 3/4, the
results are different. Although λ̂U(t) and χ̂(t) drop towards zero for t > 0.75, ̂̄χ(t) is
clearly positive over a wide range of t, hinting at quantile dependence.

In Figures 5.3 and 5.4, the theoretically implied extremal dependence functions derived
from Maximum Likelihood estimation are compared to the nonparametric estimates.
We see that for event type combination 2/5, they are very close, and a decision towards
a parametric copula cannot be taken based on their shapes. In contrast to this, for
event type combination 3/4 the Clayton copula implies extremal dependence functions
closest to the empirically observed ones.

A general remark has to be made with respect to high levels of t. The higher t, the less
data points are used for estimation. That is, as we move towards the levels of t which
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Figure 5.2: Contour Plots of Empirical and Fitted Copulas

are relevant for detecting tail dependence, our estimation results become less and less
reliable. Inferring absence of tail dependence from values of λ̂U(t) and χ̂(t) for t ≥ 0.9,
which are based on very few data points, might therefore be a misleading strategy.

Instead, we advocate the joint use of all available information from the different ap-
proaches to dependency modeling presented. The results from the parametric copula
fitting, suggesting a tendency towards tail dependence for event type combination 3/4
but absence of it for combination 2/5, can be recovered using nonparametric methods.
We again find different patterns for the two combinations, confirming that there is
no one–size–fits–all statement about dependency structures in losses from operational
risk.
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Figure 5.3: Nonparametric and Implied Extremal Dependence, Event Type Combi-
nation 2/5
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Figure 5.4: Nonparametric and Implied Extremal Dependence, Event Type Combi-
nation 3/4
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5.2.2 Effects on Risk Capital

Range of Risk–Capital Estimates

Under the standard LDA approach, banks will sum up their single risk–capital esti-
mates according to Equation (5.3). The question which we aim at answering is: Will
a more realistic dependency modeling lead to a decrease in aggregate risk capital, or
are the loss distributions’ properties such that superadditivity of Value–at–Risk may
become relevant?

To this end, we estimate 250 VaR99.9 figures per dependency model and event type
combination, using different numbers of replications. For each event type combination,
we use the copula parameter values obtained from Maximum Likelihood estimation.
In order to be able to simulate losses without distorting results by the use of differ-
ent marginal distributions, a lognormal distribution is fitted to each aggregate loss
distributions and used to derive risk–capital estimates via simulation.

The quantity we eventually consider is

VaR.999(Li + Lj) − (VaR.999(Li) + VaR.999(Lj))

(VaR.999(Li) + VaR.999(Lj))
. (5.6)

That is, we evaluate the percentage difference in risk capital achieved by an explicit
modeling of dependencies. A positive value of this quantity will thus imply that risk–
capital estimates increase as compared to the Basel II standard approach. For the
dependence scenarios used as alternatives to the comonotonicity assumption, we con-
sider two extreme cases: Firstly, we assume the Gaussian copula for all event type
combinations; secondly, we use a “worst–case” copula, i.e., that copula yielding the
highest tail dependence coefficient for the respective event type combination.

Figure 5.5 shows results using the Gaussian copula. For Brc = 10,000 replications, the
differences among event type combinations can already be detected. For combination
2/5, which was characterized by a negative correlation estimate, risk–capital estimates
always decrease, and a reduction in risk–capital of up to almost 30% is possible. How-
ever, for combination 3/4, a use of the Gaussian copula may lead to an increase in
risk capital, caused by the correlation estimate of about ρ̂ ≈ 0.7. Here, it may occur
that the risk–capital estimate is almost 30% higher than the Basel standard calcula-
tion. Still, the interquartile range is entirely below zero, so that one would observe a
decrease in most cases.

Increasing the number of replications leads to a narrowing of the boxplots, and thus
to less drastic changes in risk–capital estimates. For Brc = 50,000 replications, the
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possible range for combination 2/5 lies between −19% and −25%; for Brc = 100,000,
this range becomes even smaller. Considering event type combination 3/4, we see
that, correspondingly, the higher the number of replications, the smaller the number
of increases in risk–capital estimates. Using Brc = 100,000 replications, the maximum
increase in risk–capitel is +3%.
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Figure 5.5: Range of Risk–Capital Estimates: Gaussian Copula

Figure 5.6 shows the result for the worst–case copula, which is the Student–t (implying
a tail dependence coefficient of λU = 0.095) for combination 2/5 and the Clayton
survival (λU = 0.629) for combination 3/4. The difference in the copula choice as
compared to Figure 5.7 leads to an upward shift of the boxplots: The presence of
tail dependence leads to more cases of risk–capital increases. For the case of low tail
dependence (2/5), however, risk–capital decreases for all numbers of replications used;
for the case of high tail dependence (3/4), increases in risk–capital may be up to 6% for
Brc = 100,000 replications. Now, even for Brc = 100,000 replications, the interquartile
range for combination 3/5 includes zero.

Obviously, there are two different effects which may cause increases in risk–capital es-
timates. Firstly, the superadditivity property of VaR may be the reason; secondly, the
computational setup, that is, the number of replications in the Monte Carlo simulation
has an influence on estimates. It is therefore desirable to be able to disentangle these
two effects.
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Figure 5.6: Range of Risk–Capital Estimates: Worst–Case Copula

Bounds on Risk–Capital Estimates

In the following, we analyze bounds on risk–capital estimates derived under different
assumptions with respect to the copula. As described in Section 2.4.3, such bounds
are tighter, the more restrictive the assumptions on the copula bounds. We consider
three different cases of increasing restrictiveness:

1. C0 = C1 = Cℓ : We do not use any restriction on the dependence structure and
thus use the lower Fréchet bound, Cℓ.

2. C0 = C1 = uiuj : We assume that C ≥ uiuj, that is, we have positive quadrant
dependence (PQD).

3. C0 = C
θ̂i,j

CS , Ĉ1 = C
θ̂i,j

C : We take the Clayton Survival copula as lower bound,
using the parameter values estimated for the DIPO data. For the survival cop-
ula of C1, we accordingly assume the Clayton copula with respective parameter
values.

Figures 5.7 and 5.8 show once again the boxplots as presented in the previous section,
but now the theoretical bounds on risk–capital changes are included. We observe the
increasing tightness of the bounds caused by stronger dependence assumptions. For
Brc = 10,000, a large part of the boxplots exceeds the theoretical bounds; as the num-
ber of replications increases, the larger the part of estimates lying inside them. For
event type combination 3/4 and Brc = 100,000 replications, only the most restrictive
bounds are exceeded by capital estimates.

These bounds may, therefore, be used for smaller numbers of replications in order to
detect whether a change in risk–capital is caused by the distributional properties or
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by computational issue. However, for none of the two event type combinations do the
bounds lie entirely above or below zero, so that we cannot say whether an increase or
decrease is theoretically impossible.
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−30

−15

0

15

30

2/5 3/4
Event Type Combination

R
el

.
D

iff
.

(%
)

 

 
C0 = CL

C0 = CI

C0 = CCS , Ĉ1 = CC
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Figure 5.7: Bounds on Risk Capital: Gaussian Copula
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−30

−15

0

15

30

2/5 3/4
Event Type Combination

R
el

.
D

iff
.

(%
)

 

 
C0 = CL

C0 = CI

C0 = CCS , Ĉ1 = CC

Figure 5.8: Bounds on Risk Capital: Worst–Case Copula
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5.3 Chapter Summary

It is known that diversification effects depend—among other factors—on the presence
and nature of dependence among the underlying variables. For operational risk, the
question whether an explicit modeling of dependencies may lower regulatory capital
charges has not been answered yet, which is mainly due to data scarcity. Based on
real–world data, we assess dependence using different measures and estimation proce-
dures, as well as their effects on risk–capital estimates.

We find that the change from a Gaussian copula to one implying substantial tail de-
pendence may in fact lead to an upward shift of risk–capital; thus, the question of
whether VaR will increase or decrease crucially depends on the presence of extremal
(tail/quantile) dependence and the ellipticity of the multivariate distribution. We ob-
tain different results for different event–type combinations, so that a general answer
as to whether there exists tail dependence or not should not be given. Therefore, the
estimation of extremal dependence for the data at hand is of paramount importance
for an assessment of the relevance of this effect. Neglecting this dependency concept
and restricting oneself to linear correlation estimation may lead to a substantial un-
derestimation of risk.

On the other hand, inference is complicated by the small sample sizes one typically
has to deal with in operational risk settings. That is, copula estimation and goodness–
of–fit methods as well as nonparametric methods are to be taken with care; and we
recommend to jointly consider these different methods of inference in order to derive
a consistent, complete picture of dependencies.



Chapter 6

Summary and Conclusions

Effects of dependencies are a crucial element to risk quantification in an aggregate
setting, for example, when several risk types or different lines of business need to be
considered jointly. Diversification among the components of a portfolio has become
a standard notion, and it is common wisdom to avoid putting all one’s eggs into one
basket. However, such ideas are inherently linked to elliptical distributions. For those,
linear correlation is a meaningful measure of dependence, and the popular VaR risk
measure can be shown to be subadditive, so that the sum of single risks provides a
worst–case scenario.

However, risk management typically has to deal with non–elliptical distributions. Each
of the risk types poses specific challenges to risk quantification under consideration of
dependencies. We have considered three cases of such special challenges, where stan-
dard methods may prove to be misleading or should at least be questioned. For market
risks, besides the well–known univariate stylized facts, correlations are known to in-
crease in times of large negative movements. These empirically observed conditional
correlations cannot be united with the assumption of a constant Gaussian dependency
structure; this in turn implies that portfolio selection based on elliptical distributions
may lead to an overestimation of diversification benefits in times of crises.

Credit risks prove to be especially difficult to quantify in situations of low default
probabilities, that is, for highly rated counterparties or very short–term exposures. A
quantification of default risk needs to be based on simulation—proving to be a chal-
lenge in itself due to the substantial computational burden connected to rare–event
simulation. We suggest to solve this technical problem by relying on quasi–random se-
quences. In the frame of a simulation study, we have shown that—without any adding
up of risk capital estimates—linear correlation may have very counterintuitive results
on portfolio risk. That is, an increase in latent (asset) correlations of the components
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of the portfolio can lead to a decrease in risk, as measured by the VaR of the aggregate
loss distribution. This effect is due to the increase in joint “non–defaults” caused by a
higher correlation and should be taken into account when simulating rare events.

For operational risks, the challenges to quantification are manifold due to the scarcity
of data, the high confidence level required by the Basel Committee and the dimension-
ality of the problem, among other factors. Based on real–world data, we have shown
that the well–known lack of subadditivity of the VaR risk measure may in fact become
relevant. This was shown under the assumption of a “worst–case” copula, that is,
we chose the highest tail dependence obtained from estimation. At the same time, a
part of potential increases are merely due to computational issues, so that theoretical
bounds on VaR may help to assess whether a certain change in risk capital is realistic.

For all these cases, the necessary first step of analyses was the estimation of the de-
pendency structure. Linear correlation was shown to neglect nonlinear effects and
joint extremes, and should therefore always be handled with care and joined by other
measures of dependency. The concepts of copulas and tail dependence may be used
for flexibly analyzing dependencies in the tails of loss distributions. However, both
approaches—which are, in fact, linked to each other—suffer from substantial limita-
tions in practical use. Distinguishing between different copulas may be difficult in small
samples and for moderate levels of dependence. As for nonparametric estimation of
tail dependence, the size of the sample used for estimation decreases as one moves into
the tails of the distributions. In other words, estimation of extremal dependence is
most difficult when it is needed the most.

As these issues cannot be simply resolved given a certain dependence structure and
sample size, they must be taken into account. This can be done by considering as
many measures of dependence and goodness–of–fit tests as possible. In this spirit,
we have suggested a path for a new criterion for the goodness–of–fit of parametric
copulas. This criterion is based on a comparison of nonparametric tail dependence
estimators and parametric copulas. It provides an additional instrument for assessing
the goodness–of–fit of copulas. We do, however, not recommend to rely on this (or any
other) criterion exclusively, but to gain a picture as comprehensive as possible through
different estimators of dependence.
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