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Summary

Summary

Sponges are abundant and species-rich in Antarctic waters, and play important

roles in the benthic ecosystems of the continent. The taxonomy of Antarctic

sponges is, to some extent, well established, yet the phylogenetic relationships

of this fauna remain unknown. Here, the first contributions to the knowledge

of the evolution of Antarctic sponges are presented. A molecular phylogeny

for the common Antarctic shelf glass sponge genus Rossella is provided. Based

on nuclear and mitochondrial markers, it is shown that many of the species

described for the genus, which usually are morphologically poorly defined and

difficult to differentiate, likely, represent a single species (Rossella racovitzae) or

a species complex.

The deep Southern Ocean has yielded numerous, most likely new, species of

the demosponge Familiy Cladorhizidae. Cladohizidae groups sponges largely

known by their carnivorous habit, which is usually accompanied by the lack, or

strong modification, of the sponge aquiferous system and by a distinct stipitate

body shape. Cladorhizids are also important for the broader understanding of

the phylogenetic relationships of the Order Poecilosclerida. In this study, the

debated phylogenetic position of the genus Abyssocladia is clarified using recent

collections of cladorhizid sponges and a (remarkable) new species of the genus

Phelloderma (Phellodermidae) from the Southern Ocean, and partial sequences
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of the (nuclear) 28S rDNA and of the (mitochondrial) COI. The results show that

Abyssocladia is a cladorhizid sponge and that Cladorhizidae is monophyletic, the

consequences of these results for the prevalent interpretation of the evolution of

poecilosclerid sponges are also discussed.

The diversity of Antarctic sponges occurring on the shelf has been compared

to that of tropical and subtropical ecosystems. Less is known about the sponge

communities inhabiting the deeper waters of the Southern Ocean. The lack

of information on deep benthic habitats, mainly due to the fact that sampling

remote ecosystem such as Antarctica or the deep sea is expensive and technically

difficult, hampers the determination of the number of species that inhabit the

vast area of the deep Southern Ocean. In this work, estimation methods are used

to predict lower bounds for the number of deep sea sponge species occurring

in the Weddell Sea, Western Antarctica, and to show that the deep sea can be as

rich as the shelf and that the total number of sponge species in Antarctica could

be more than previously considered.

Finally, a middle throughput DNA barcoding workflow for processing sponges

was established and the performance of this analytical pipeline was analyzed

based on a large collection (∼8300 specimens) of sponges from Australia avail-

able for DNA barcoding. The barcoding workflow was also used to provide a

comprehensive DNA-barcode database for the Ross Sea comprising ∼50 species
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Summary

of demosponges and covering ∼80% of the sponge species characteristic for

this area. The generated barcode database was used to provide evidence for a

long history of in situ evolution in Antarctic sponges, which is congruent with

previous biogeographic hypotheses suggesting an ancient origin for Antarctic

sponges.
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Introduction

Introduction

Porifera, and poriferan systematics

Phylum Porifera comprises a group of non-bilaterian, filter-feeding, sessile meta-

zoans roughly characterized by the presence of a single layer of flagellated cells

(choanocytes) that pump water through the sponge body, and a skeleton com-

posed of calcitic or siliceous spicules (Hooper et al., 2002). In terms of diversity,

∼8,300 valid sponge species have been described from aquatic ecosystems dis-

tributed around the world, and ranging from rivers and lakes to coral reefs and

abyssal plains (van Soest et al., 2011). Sponges are important ecosystem mem-

bers with diverse functional roles as bioeroders, substrate stabilizers, settlement

substrate for other sessile organisms, and refuge providers for a number of

macro-invertebrate species (Bell, 2008). As filter-feeders, mainly specialized in

ultra- and pico-plankton predation but also capable of dissolved organic matter

uptake, sponges contribute to carbon cycling in shallow and deep water envi-

ronments (Bell, 2008). Additional contributions to the bentho-pelagic coupling

include the sponges’ participation in silicon (mainly as silicon sinks; Gatti, 2002)

and nitrogen (usually through bacterial-mediated nitrification/denitrification

processes; Schläppy et al., 2010) cycling.

Porifera is regarded as monophlyletic and is currently subdivided into four

Classes, namely Calcarea, Demospongiae, Hexactinellida, and Homoscleromor-
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pha (Hooper et al., 2011; Philippe et al., 2009). Molecular phylogenetic studies

have corroborated to a good extent the morphology-based classification of Hex-

actinellida (Dohrmann et al., 2008) and Homoscleromorpha (Gazave et al., 2010).

In contrast, the lower-level systematics of Demospongiae and Calcarea remains

unsettled (Dohrmann et al., 2006; Erpenbeck and Wörheide, 2007). Within these

classes most nominal orders, and in some instances families and genera, have

been shown to be non-monophyletic, artificial entities by molecular system-

atic studies (McCormack et al., 2002; Erpenbeck et al., 2006; Erpenbeck and

Wörheide, 2007; Cardenas et al., 2011; Morrow et al., 2011). To some extent,

the striking discrepancy observed between the morphological classification of

demosponges and calcareous sponges and molecular phylogenetic hypotheses

of both groups is not surprising considering the general dearth of informative

characters available in sponges for systematic research, the potentially subjective

interpretation of the available characters, and the strong homology assumptions

necessary to build upon a reduced character set the classification of Porifera.

Molecular phylogenetics has provided sponge systematics with a powerful

tool for the study of the evolutionary history of Phylum Porifera. The rapid ac-

cess to informative character sets capable of resolving different depths of the tree

of life has also revolutionized sponge systematics. More recently, the advent of

DNA-barcoding —the use of standard DNA markers for species identification—

2



Introduction

has allowed the integration of molecular markers in (alpha) taxonomic and eco-

logical research (Wörheide and Erpenbeck, 2007; Wörheide et al., 2008). Thanks

to these innovations, a more robust classification system for sponges is currently

being developed and sponge taxonomy is evolving into a space of collaborative

research involving classical morphologists and molecular systematicians.

Antarctica and Antarctic sponges

Antarctica, the southernmost continent in the planet, harbors diverse commu-

nities of benthic invertebrates often dominated by sponges (McClintock et al.,

2005; Gutt, 2007). These animals can occur in high abundances and can reach

remarkable biomasses accounting for up to 95% of the benthic biomass at some

shelf stations (Barthel, 1992a, b). Poriferans provide structure to the sea-floor

positively influencing the diversity and composition of Antarctic benthic com-

munities and, likely, facilitating recruitment of other sessile organisms (Barthel,

1992b; Gutt and Schickan, 1998). Additionally, it has been shown that sponges

serve as refuge for potentially high numbers of marine organisms including

juvenile stages of many fish and diverse invertebrate taxa (Kunzmann, 1996;

Barthel, 1997). Antarctica is also well known for its glass sponges, mainly of

the genera Rossella and Anoxycalyx, which can reach large sizes and play key

roles in the functioning of the shelf and slope benthic ecosystems. Interestingly,

the diversity of Antarctic sponge associations is comparable to that found in

3



tropical and temperate realms. In this regard, the Antarctic shelf alone is known

to harbor ∼350 demosponge species, many of them endemic to the continent‘s

waters (McClintock et al., 2005). Mainly due to the high species-level endemism,

Antarctic sponges have been proposed to represent a faunistic component dis-

tinct from that of neighboring marine provinces (Sara et al., 1992). Another

striking characteristic of Antarctic sponges is the alleged circumpolar and, in

some cases, eurybathic distribution of many species (Sara et al., 1992; Janussen

and Tendal, 2007).

Among the causes of Antarctica‘s faunistic distinctiveness, the continent‘s

long geological history and relatively high isolation seem to occupy a prepon-

derant explanatory role (Sara et al., 1992; Linse et al., 2006). Antarctica separated

from Gondwana ∼180 million years ago (MYA) and became progressively iso-

lated as neighboring land masses (e.g. Australia, South America) moved away

during the Mesozoic and Cenozoic (Brandt et al., 2007a). During the early

Oligocene, ∼30 MYA, Antarctica was already effectively isolated. By then, the

opening of the Drake Passage to deep water circulation triggered the onsetting

of the Antarctic Circumpolar Current (ACC), a wind driven current that flows

West to East around Antarctica (Lawver and Gahagan, 2003). In parallel, the

continent‘s continued migration to the South affected Antarctica‘s climate mak-

ing it generally colder and further contributing to its relatively high isolation

4
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(Lawver and Gahagan, 2003). Indeed, northward flowing cold water masses

generated in Antarctica form the Antarctic Convergence when they mix with

warmer subtropical waters and provide a natural, hydrographic boundary that

delimits the continent (Janussen and Tendal, 2007). Additionally, the ACC flow

prevents warm waters generated near the equator from reaching Antarctica‘s

shores contributing to preserve the continent’s ice sheets (Lawver and Gahagan,

2003).

It is interesting to note that most of the knowledge pertaining Antarctic

benthic assemblages, sponges inclusive, comes from the study of the continent‘s

shelf and slope communities. In steep contrast, the deep-sea is still largely under-

represented in terms of collections and knowledge derived thereof (Brandt et

al., 2007a; Brandt et al., 2007b; Brandt and Ebbe, 2009). For instance, the species

richness of the deeper waters layers remains largely speculative. It is also re-

markable that despite the relatively rich body of information concerning the

taxonomy of Antarctic sponges, most of the species reported for the continent‘s

waters have not been included in any phylogenetic study, molecular or mor-

phological. A recent review on the status of the Census of Antarctic Marine

Life (CAML) concluded that only about 2% of all sponge species reported for

Antarctica had sequence information deposited in any of the international DNA

sequence repositories (Grant and Linse, 2009; Grant et al., 2011). The general
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lack of molecular information on Antarctic sponges, and the need for having

a robust source of independent information that can be used to test many hy-

potheses regarding the evolution of this important group of Antarctic organisms

largely motivated the development of the present work, which main objective is

to further contribute to the understanding of the evolution of Antarctic sponges

through the study of the molecular systematics of selected sponge groups. I also

aimed to provide an estimation of the number of sponge species found in the

deep waters of the Weddell Sea that can be used as a guide for future studies.

Finally, a workflow for sponge barcoding was developed and used to estab-

lish a comprehensive DNA barcode database for Antarctic shelf sponges. The

resulting database was used to test hypotheses concerning the causes of their

diversity and to assess the potential of DNA-barcoding for the identification of

Antarctic sponges.

Rossella, complex taxonomic history of a common Antarctic glass
sponge

Sponges of the genus Rossella are, perhaps, among the most common and abun-

dant poriferan species collected in Antarctica (Barthel, 1992a). Their ecological

significance has been the focus of a number of scientific contributions, and their

importance as key-stone species in Antarctic benthic communities has been

established and repeatedly acknowledged by several authors (Barthel, 1992b;
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Kunzmann, 1996; Barthel, 1997; Janussen et al., 2004; Gutt, 2007; Janussen and

Reiswig, 2009). Despite this, the taxonomy and systematics of Rossella remains

largely unsettled due to the ever changing number of species recognized for the

genus. The World Porifera Database (WPD; van Soest et al. 2011), an authori-

tative online resource on the taxonomy and nomenclature of Phylum Porifera,

lists ∼20 valid Rossella species. Yet, different authors in the last century have

considered this number to vary between 2 and 7, reducing most of the∼20 names

listed in the WPD to synonyms of other species within the genus (Burton 1925;

Koltun 1976; Barthel and Tendall 1994). The somewhat extreme synonymization

rate observed in Rossella is, most certainly, the product of a shift away from the

extremely typological taxonomic system used by nineteenth century natural-

ists to include in the species descriptions, for instance, notions of intraspecific

variability in diagnostic features. The resulting classification schemes available

for Rossella remain largely authoritative and in need of additional test, prefer-

ably based on independent character sets not used by previous authors to erect

the species under consideration. In Chapter 1, one such a test is provided us-

ing mitochondrial and nuclear molecular markers to independently assess the

infra-generic classification of the genus Rossella. The question on the number

of Rossella species is addressed by noting that species, better said specimens

assigned to a given species, should form monophyletic units in a phylogeny.
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This application of the phylogenetic species concept allowed to formulate clear

predictions about the shape of the phylogenetic tree of the genus Rossella, and

to formally test these predictions.

On the phylogeny of carnivorous sponges —a word from the
South

Carnivorous sponges are a diverse assemblage of deep-sea species currently clas-

sified, on grounds of their chelae —microscleres with a central shaft and terminal

alae, exclusively present in poecilosclerid sponges—, in at least three families

of Order Poecilosclerida (Vacelet, 2007). Among these families, Cladorhizidae

is of special importance due to the high diversity of chelae shapes and types

found in the family (Hajdu and Vacelet, 2002). Cladorhizid sponges represents

a challenge for the classification of Poecilosclerida, heavily influenced by the

assumption that chelae microscleres can be accurately used as predictors of the

phylogenetic relationships among this sponge group (Hajdu et al., 1994; Hajdu

and van Soest, 1996; van Soest, 2002). Within this chelae-based framework,

Cladorhizidae share no clear synapomorphy and has been proposed to be poly-

phyletic (Hajdu and Vacelet, 2002). Yet, the classification of Poecilosclerida

could be wrong (Vacelet, 2007). In Chapter 2, the first reconstruction of the

phylogeny of the Family Cladorhizidae is presented, and the position of the

genus Abyssocladia is used as an experimentum crucis for poecilosclerid classifi-
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cation. Abyssocladia has been included in two different families, Cladorhizidae

and Phellodermidae, in the suborders Mycalina and Myxillina, respectively,

and the debate concerning its phylogenetic position represents a schism among

sponge taxonomists regarding the relative weight chelae microscleres should

have in the classification of Poecilosclerida (van Soest and Hajdu, 2002; Vacelet,

2006). We aim to provide an independent test for the different taxonomic po-

sitions of Abyssocladia proposed in the last 10 years using several new species

of Cladorhizidae and one new species of the, so far, monotypic genus Phello-

derma (Phellodermidae) collected in the Southern Ocean. This study represents a

somewhat fortunate case-in-point in which specimens collected in Antarctic wa-

ters serve the purpose of clarifying the phylogeny of Abyssocladia, Phelloderma,

Cladorhizidae, and of Poecilosclerida as a whole.

Grasping the unknown, sponge species richness prediction in
the Deep Weddell Sea

The number of species inhabiting Antarctic deep waters will, most likely, remain

unknown for the years to come. The abyssal plains that surrounds the continent

are simply to vast to be thoroughly sampled (Brandt et al., 2007a), and the

apparent high levels of patchiness shown by sponge assemblages make the entire

enterprise even more difficult (Gutt and Starmans, 2003). Despite the inherent

problems of deep-sea sampling, new collections mainly from expeditions to the
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Weddell Sea during the last 10 years can provide a useful source of information

that can be used to estimate the number of species that inhabits deep Antarctic

waters (Colwell and Coddington, 1994; Gotelli and Colwell, 2001). In chapter

3, we use the most complete dataset available to date on Antarctic deep sea

sponges and resort to simulation to provide lower-bounds for the number of

species expected to be found in the deep Weddell Sea.

Sponge barcoding and community barcoding the Antarctic shelf
sponges

The Antarctic benthos harbors rich sponge assemblages which diversity is

thought to be comparable to that of tropical and subtropical ecosystems (Mc-

Clintock et al., 2005). Interestingly, or better said worryingly, only a handful

of Antarctic sponge species have sequence data publicly available (Grant and

Linse, 2009). DNA-barcoding, the use of standard molecular markers as species

identifiers (Hebert et al., 2003), can be a useful tool for the study of Antarc-

tic benthic ecosystems allowing the rapid assessment of the diversity of a wide

range of invertebrate phyla, inclusive sponges, commonly found in the Antarctic

marine realm. DNA-barcodes can be used to study the phylogenetic diversity

(sensu Lewis and Lewis, 2005) of a given ecosystem and to compare it with

other ecosystems avoiding the nomeclatural noise that can be associated with

groups of difficult taxonomy and systematics such as sponges. Finally, the
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establishment of a barcode database for Antarctic sponges represents a first

step towards thorough tests of different hypothesis, such as the circumpolar or

eurybathic distribution of many species, put forward by previous authors. In

Chapter 4, the results of the development of a laboratory workflow for barcoding

sponges in general are summaryzed, and in Chapter 5 the first comprehensive

DNA-barcoding campaign directed at Antarctic sponges is presented. The re-

sulting dataset is used to provide insights into the diversity patterns of Antarctic

sponges comparing the phylodiversity of the Antarctic shelf and other tropical

and subtropical ecosystems, and to unravel patterns of molecular evolution

among Antarctic sponges.
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Abstract

Hexactinellida (glass sponges) are abundant and important components of
Antarctic benthic communities. However, the relationships and systematics
in the common genus Rossella Carter, 1872 (Lyssacinosida: Rossellidae) are un-
clear and in need of revision. The species content of this genus has changed
dramatically over the years depending on the criteria used by the taxonomic au-
thority consulted. Rossella was formerly regarded as a putatively monophyletic
group with bipolar distribution. However, molecular phylogenetic analyses
have shown that Rossella is diphyletic, with Rossella sensu stricto restricted to the
Southern Ocean, where it shows a circum-antarctic and subantarctic distribution.
Herein, we provide a molecular phylogenetic analysis of the genus Rossella s.s.,
based on mitochondrial (16S rDNA and COI) and nuclear (28S rDNA) markers.
We corroborate the monophyly of the Southern Ocean component of Rossella and
provide evidence supporting the existence of only two Rossella species, namely
Rossella antarctica Carter, 1872 and Rossella racovitzae Topsent, 1901, in accordance
with a previous interpretation of the genus.

1.1 Introduction

Glass sponges (class Hexactinellida) are key components of Antarctic suspension feeder

communities (Arnaud et al., 1998; Gutt, 2007). Antarctic hexactinellids, particularly the

genus Rossella, can reach remarkable size, biomass and abundance (Barthel and Tendal,

1994; Janussen and Tendal, 2007; McClintock et al., 2005). At some localities, Rossella

spp. dominate the seascape, increase the spatial heterogeneity of the seafloor (Fig.

1.1) (Gutt and Starmans, 1998; Janussen and Reiswig, 2009; Starmans et al., 1999),

structure benthic communities (Barthel, 1992a,b), and locally play a major role in silicon

cycling (Gatti, 2002). Large Rossella specimens can harbour a diverse community of

invertebrates and juvenile stages of many other organisms, and serve as substratum for

various taxa of other sessile invertebrates (epibionts) (Barthel, 1997; Gutt and Schickan,

1998; Kunzmann, 1996).
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Chapter 1. Molecular phylogeny of Southern Ocean Rossella

From a morphological perspective, Rossella is clearly defined by the presence of caly-

cocomes (Fig. 1.1) among the microsclere component, the main diagnostic character of

the genus (Tabachnick, 2002). Molecular phylogenetic analyses of the class Hexactinel-

lida have shown, however, that Rossella as currently defined is diphyletic (Dohrmann

et al., 2008, 2009). In these studies, the southern ocean (SO) Rossella species (hereafter

Rossella sensu stricto) formed a clade unrelated to specimens collected off Ireland and

attributed to Rossella nodastrella, the only North Atlantic species described for the genus

(Van Soest et al., 2007).

In contrast to the relatively stable genus-level systematics, intra-generic relation-

ships remain unclear and most Rossella s.s. species still require a revised and clear

delineation. As a result, the number of species recognized for the genus has varied

in the past, ranging from 2 to 21 species depending on the taxonomic authority (e.g.

Barthel and Tendal, 1994; Koltun, 1976; see also van Soest, et al. 2011). The great

variation of the number of recognized species is, to some extent, not surprising. With

the sole exception of Rossella antarctica, all remaining species lack clear morphological

apomorphies (cf. Barthel and Tendal, 1994), or their diagnostic characters are weak

(e.g. external morphology, shape and size of dermal megascleres). In addition, the ma-

jority of characters used for species delimitation in the genus are continuous, making

differences between species mainly “of grade” and subject to diverse interpretations.

Calycocome sizes, for instance, tend to overlap between species, as does the size of other

taxonomically important spicules (Barthel and Tendal, 1994). External body shape is

variable even within species (Tabachnick, 2002). Finally, the lack of appropriate sam-
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1.1. Introduction

Figure 1.1: Seafloor dominated by Rossella spp. in the Weddell Sea, Antarctica (latitude: -
70.8717, longitude: -10.5233; depth=254m); Photo: Gutt, J. and Starmans, A. (2004): Sea-bed
photographs (benthos) along ROV profile PS56/127-1. doi:10.1594/PANGAEA.198695. Inset:
calycocome of Rossella antarctica; Photo: C. Göcke.

pling has, to some extent, hampered the systematic evaluation of the variability of the

main characters used for distinguishing different species.

Clarifying the systematics of Rossella is an important task of potential benefit to other

areas of Antarctic research. Rossella species are structurally important in Antarctica (see

above), and their distribution, as that of many other Antarctic sponges, is thought to be

circum-antarctic (Janussen and Reiswig, 2009; Sara et al., 1992). The role that different

Rossella species play in structuring Antarctic communities, as well as whether some or

all species are, indeed, a circumpolar cohesive unit, strongly depends upon the clear
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Chapter 1. Molecular phylogeny of Southern Ocean Rossella

delineation of those species. Here, we provide a phylogenetic analysis of the genus

Rossella based on mitochondrial (16S rDNA, COI) and nuclear (28S rDNA) markers and

including 7 of the 8 species currently recognized as valid (sensu Barthel and Tendall,

1994). We aim to further corroborate the monophyly of Rossella s.s. (i.e., apart from

’Rossella nodastrella’) and to test different morphology-based taxonomic arrangements

that have been proposed for the genus throughout its taxonomic history. Finally, we

discuss future work necessary to reconcile the current morphology-based classification

of Rossella s.s. with the molecular phylogeny and to further clarify the evolution of this

important SO taxon.

1.2 Materials and Methods

Specimens (see Suppl. Materials for details) were collected by trawling during the

German ANDEEP (2006/2007) and ANT XXIV/2-SYSTCO Expedition (2007/2008) to the

Weddell Sea (West Antarctica), photographed and fixed in 96% ethanol. Sponges were

determined to species level using standard procedures (e.g. Janussen et al., 2004) and

pertinent literature. We adopted the Rossella-concept of Barthel and Tendal (1994) as

an operational taxonomy for the identification of Antarctic specimens. Barthel and

Tendal (1994) already considered the synonymy of the ∼19 Rossella species listed in

the World Porifera Database (van Soest, et al. 2011) reducing the number of Antarctic

Rossella species to only 7, namely R. antarctica, Rossella fibulata Schulze & Kirkpatrick,

1910, Rossella levis (Kirkpatrick, 1907), Rossella nuda Topsent, 1901, Rossella racovitzae,

Rossella vanhoeffeni Schulze & Kirkpatrick, 1910 and Rossella villosa Burton, 1929. Two
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1.2. Materials and Methods

of the specimens analysed were labeled as conferre because diagnostic characteristics

of more than one Rossella species were found to coexist in them. For instance, R. cf.

vanhoeffeni showed calycocomes with S-shaped rays (characteristic of R. vanhoeffeni) and

large middle pieces (as in R. racovitzae), and R. cf. fibulata had the species’ character-

istic heterodiactins in low abundances coexisting together with spicules typical of R.

racovitzae. In these two cases, even though the assignment to R. vanhoeffeni or R. fibulata,

respectively, appears pertinent we have preferred to act conservatively, assigning both

specimens as conferre, in light of the observed character mixture that occur in them. De-

tailed descriptions of all specimens will be published elsewhere (Göcke and Janussen,

pers. comm.).

DNA was extracted from small pieces of tissue with the NucleoSpin DNA tissue

extraction kit (Macherey-Nagel) following the manufacturer‘s protocol. Three different

molecular markers i.e. partial 28S rDNA (∼1.2kb), partial 16S rDNA (∼0.5kb), and the

standard barcoding (Folmer et al. 1994) fragment of COI (∼0.6kb) were amplified using

12.5 µl reaction volumes of GoTaq (Promega) supplemented with BSA. Three-step PCR

protocols, including an initial denaturation step of 94◦C 3min, 35 to 40 cycles of 94◦C 30s,

50− 40◦C 30s, 72◦C 60s, and a final extension of 5min at 72◦C were used for all markers

(see Table 1.1 for details on the annealing temperature for each primer). For 28S rDNA

and COI we designed Rossella-specific primers (Table 1.1) to avoid co-amplification of

non-target organisms; 16S rDNA primers were as in Dohrmann et al. 2008. PCR prod-

ucts were cleaned by standard ammonium acetate-ethanol precipitation or ExoSap-IT

(Affymetrix) enzymatic PCR clean-up and sequenced in both directions using the same
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Chapter 1. Molecular phylogeny of Southern Ocean Rossella

Table 1.1: Primers and annealing temperatures used for amplification of 28S rDNA and COI.

Name Sequence Annealing Reverse primer
5’->3’ Temperature name and source

Hexa28SInt4 CTCAGCTTTTCARGGGGTC 50◦C NL4F
Nichols (2005)

RossellaCOI_F1 ATATCGGYACATTATACC 40◦C dgHCO2189
Folmer et al. (1994)

primers used for PCR and the BigDye Terminator 3.1 chemistry (Applied Biosystems).

Sequencing reactions were precipitated with sodium acetate-ethanol and subsequently

analyzed on an ABI 3700 Genetic Analyzer at the Sequencing Service of the Department

of Biology, LMU München. Trace files were assembled in CodonCode Aligner (Codon-

Code Corporation); hexactinellid origin of all obtained sequences was verified using

NCBI BLAST (Johnson et al., 2008). Sequences are deposited at EMBL under accession

numbers HE80191 to HE80223.

1.2.1 Outgroup choice and sequence alignment

New sequences were manually aligned in SeaView 4 (Gouy et al., 2010) to published

alignments (Dohrmann et al., 2011). However, we restricted the taxon set to representa-

tives of the families Leucopsacidae and Rossellidae, as well as Clathrochone clathroclada

(Lyssacinosida incertae sedis). Leucopsacidae and C. clathroclada have been shown to

be successive sister groups to Rossellidae (Dohrmann et al. 2011), and were therefore

used as outgroups. Alignments were concatenated into a supermatrix and ambiguously

19



1.2. Materials and Methods

alignable regions removed. The final alignment was ∼1.2 kb long and is available at

OpenData LMU (http://dx.doi.org/10.5282/ubm/data.42).

1.2.2 Phylogenetic analysis

Using the concatenated alignment, we inferred both Maximum likelihood (ML) and

Bayesian phylogenetic hypotheses with RAxML 7.2.8 (Stamatakis, 2006) and PHASE 2.0

(http://www.bioinf.manchester.ac.uk/resources/phase/), respectively. The GTR

model of nucleotide substitution (Tavaré, 1986) was used for 16S rRNA, COI as well as

for 28S rRNA single-stranded regions (loops). Among-site rate variation was modelled

using a discrete approximation of a gamma distribution with 4 categories (+G; Yang,

1994, 1996). For the stem regions (paired sites) of the 28S rRNA we used the S16

and S7A models of sequence evolution (Savill et al., 2001) for the ML analysis. We

searched for the ML tree using 20 independent tree-search replicates and assessed branch

support with 1000 bootstrap pseudo-replicates (Felsenstein, 1985), using the “rapid

bootstrap” algorithm described by Stamatakis et al. (2008). In the Bayesian analysis,

two independent Markov Chain Monte Carlo (MCMC) chains were run for 10,000,000

generations after a burn-in of 250,000 generations, sampling every 100 generations.

Model specifications for the Bayesian analysis were the same as for the ML analysis

(i.e. GTR+G for 16SrDNA and COI); however we only used the S7A model for the 28S

rRNA stem regions because is was difficult to achieve chain convergence using the S16

model. Branches were considered well supported if the posterior probability was >0.95

in the Bayesian analysis and the bootstrap frequency was >70 (Hillis and Bull, 1993).
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Chapter 1. Molecular phylogeny of Southern Ocean Rossella

1.2.3 Partition addition bootstrap and alternative lineage at-
tachment analysis

To assess the influence of the individual partitions or combinations thereof on the ML

topology inferred from the concatenated data matrix (i.e. the total evidence ML tree), we

performed ML bootstrap analyses (1000 pseudoreplicates) for each individual marker

and for all combinations of two markers using RAxML 7.2.8. For all these analyses, we

used the same model settings as in the total evidence analysis for the corresponding

partition (e.g. GTR+G for 16S rDNA and S16 for 28S rDNA stems). After each analysis,

we determined the partition-specific bootstrap support (sensu Struck et al., 2006) for the

branches present in the total evidence tree using consensus from the phyutility package

(Smith and Dunn, 2008).

We also assessed alternative branching positions of different Rossella species using

linmove from the phyutility package. In brief, linmove screens a set of phylogenetic

trees and reports the frequency with which alternative placements of a branch occur in

that set. The analysis facilitates the visualization of alternative branching positions of

a lineage showing low bootstrap support values, which allows to determine whether

poorly supported branches have only a few attachment points occurring with high

frequency or branch off at several multiple positions with low frequency.

1.2.4 Testing hypotheses of relationships within Rossella

Different taxonomic arrangements proposed for Rossella s.s. can be translated into

specific phylogenetic hypotheses and evaluated with available statistical tests (e.g.,
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Goldman et al., 2000; Huelsenbeck, 1997; Huelsenbeck and Crandall, 1997; Whelan

et al., 2001). We evaluated the status of six taxonomically unstable Rossella species,

namely Rossella fibulata Schulze & Kirkpatrick, 1910, Rossella levis (Kirkpatrick, 1907),

Rossella nuda Topsent, 1901, Rossella racovitzae and Rossella cf. vanhoeffeni Schulze &

Kirkpatrick, 1910. These species have been repeatedly lumped together and segregated

again. Specifically, Koltun (1976) united them (together with Rossella villosa Burton,

1929, not included here) in a broadly defined R. racovitzae (hereafter R. racovitzae sensu

lato), leaving only two valid Rossella species (i.e. R. antarctica and R. racovitzae s.l.).

In contrast, the commonly accepted taxonomic arrangement proposed by Barthel and

Tendal (1994) considers all the above listed species valid.

We used the parametric likelihood-ratio test of monophyly (hereafter pLRTm) pro-

posed by Huelsenbeck et al., (1996) to test whether different phylogenetic hypotheses

constraining one or all of the above ’species’ (see Table 1.2 and Suppl. Materials for

details) to be monophyletic were not significantly worse than the unconstrained ML

tree. Because the pLRTm has been shown to be too liberal when the substitution model

cannot be accurately specified (Buckley, 2002; Emerson et al., 2001; Huelsenbeck et al.,

1996), we also used the approximately unbiased (AU) test of Shimodaira (2002) to cor-

roborate the results obtained using the parametric bootstrap approach. We considered

a phylogenetic hypothesis to be significantly worse from the ML tree when both the AU

test and the pLRTm rejected their respective null hypothesis.

We used the AU test implemented in CONSEL (Shimodaira and Hasegawa, 2001)

with site-wise log-likelihood values obtained from RAxML 7.2.8, to test six different
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Chapter 1. Molecular phylogeny of Southern Ocean Rossella

monophyly hypotheses against the ML phylogeny. For the pLRTm, different computer

programs were used to simulate data matrices under the null hypothesis (i.e. mono-

phyly of a given species) and analyze them enforcing or not enforcing a given mono-

phyly constraint. For simulation, we first estimated a constrained ML tree with RAxML

7.2.8 and used it as a backbone to estimate model parameters and branch lengths with

optimizer from the PHASE 2.0 package. This step was necessary to produce model and

tree files in the format required by PHASE 2.0‘s simulate program. Using simulate, we

simulated 1000 alignments for each monophyly constraint (see Suppl. Materials). Each

simulated alignment had the same number of nucleotides per partition as the original

(empirical) data set. For all simulations, we used the GTR+G model for 16S rDNA, COI,

and 28S rRNA loops, and the S16 model for 28S rDNA stems; the model parameters

specific to a given monophyly hypothesis were derived from the corresponding con-

strained ML tree. One constrained and one unconstrained ML tree were then estimated

with RAxML 7.2.8 from each alignment simulated under the null hypothesis, and the

difference between the log-likelihood values of the two trees was used to build the null

distribution for the corresponding monophyly test (Huelsenbeck et al., 1996; Goldman

et al., 2000). In all of the above tests, specimens determined to genus-level only (i.e. as

Rossella sp.) were not used in the constraints.

1.3 Results

We recovered a phylogenetic tree congruent with published analyses of the class Hex-

actinellida (Dohrmann et al., 2008, 2009, 2011). Bayesian and ML analyses recovered
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1.3. Results

generally similar trees, but the Bayesian phylogeny did not include a clade of R. fibu-

lata+R. racovitzae, which was present in the ML phylogeny with moderate support. Both

independent MCMC runs of the Bayesian analysis converged to the same consensus

topology. The ML topology was not sensitive to model choice for the 28S rDNA stem

sites, as analyses using S7A and S16 resulted in the same phylogeny.

Our phylogenetic analyses (Fig. 1.2) recovered a well supported clade comprising

all SO Rossella spp. (i.e. Rossella s.s.) which nested deeply within the family Rossellidae.

Rossella nodastrella, the only ’Rossella’ species described from the northern hemisphere,

was not included within Rossella s.s., but formed a clade together with Aulossaccus and

Acanthascus as previously reported (Dohrmann et al., 2008, 2009). Rossella antarctica

specimens formed a highly supported clade in both Bayesian and ML analyses. Spec-

imens belonging to other morphologically defined Rossella s.s. species formed a large

clade hereafter named Rossella racovitzae sensu lato. Within this clade, other morpho-

logically defined Rossella s.s. species were not recovered as monophyletic, but were

polyphyletic in both the ML and Bayesian tree. Support values within R. racovitzae

s.l. were generally low (<50%), with only some branches showing moderate (50–70 %)

bootstrap support in the ML analysis. In contrast, the Bayesian analysis assigned high

posterior probabilities (PP >0.95) to most branches within R. racovitzae s.l.

1.3.1 Partition addition bootstrap analysis and lineage move-
ment

Bootstrap values assigned to the branches of the total evidence ML tree varied between

different partitions or combinations thereof (Fig. 1.2). In general, bootstrap support
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Figure 1.2: Phylogenetic relationships (cladogram) of Southern Ocean Rossella. The tree corre-
sponds to the total evidence maximum likelihood topology. The vertices of the stars above the
branches show the bootstrap value obtained for a given branch when using a single partition or
a combination of partitions (see inset). The centers of the stars show, on the left, the bootstrap
value of the maximum likelihood total evidence analysis, and on the right, the posterior prob-
ability obtained for the branch in the Bayesian analysis. Dark gray bars on the right annotate
the family Rossellidae (R) and Leucopsacidae (L); Clathrochone is currently incertae sedis in
Lyssacinosida. Within Rossellidae, Rossella sensu stricto is indicated with a black bar and Rossella
racovitzae sensu lato highlighted in ligth gray. Information about other specimens included in
the analysis can be found in Dohrmann et al. (2008, 2009). Both topologies, ML and Bayesian,
as well as partition specific trees with branch-lengths and support values are provided in the
Suppl. Materials.
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increased when more data were added to the analysis. However, there was conflict

between partitions in some specific cases. For instance, the R. antarctica clade was

not supported by 16S rDNA sequences alone but received high bootstrap support

from the COI partition. When the two markers were combined, bootstrap support

was only moderate (50–70%) in contrast to the high support (>70%) assigned to this

clade in the total evidence analysis. Within R. racovitzae s.l. support was low when

single partitions or combinations of two partitions were used for the analysis, and was

only moderate in the total evidence phylogeny. Lineage movement analysis revealed

that morphospecies included in R. racovitzae s.l. were not monophyletic in any of the

bootstrap pseudo-replicates, invariably forming clades with specimens belonging to

different morphospecies.

1.3.2 Hypothesis testing

All five alternative (constrained) phylogenetic hypothesis explored in this study using

the pLRTm where found to be significantly worse (p < 0.001) than the unconstrained ML

tree (Table 1.2). The decay in the likelihood values of the constrained ML phylogenies

was highly related to the number of constraints. Trees constrained to make single

species monophyletic (i.e. R. fibulata or R. nuda or R. racovitzae s.s.) showed higher

log likelihood values than trees constrained to make all species monophyletic (i.e. R.

fibulata and R. nuda and R. racovitzae s.s.). The tree showing the lowest log likelihood

value enforced the monophyly of R. levis + R. cf. vanhoeffeni in addition to all single

species constraints. R. levis and R. cf. vanhoeffeni have a “great deal of overlap” in
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Chapter 1. Molecular phylogeny of Southern Ocean Rossella

morphological traits (cf. Barthel and Tendal, 1994), thus there is an expectation of close

relationship between them.

The AU test also rejected all alternative hypotheses tested against the uncostrained

ML tree, corroborating the results from the pLRTm. Moreover, the AU test results were

insensitive to model selection, leading to identical conclusions when either the S16 or

the S7A model was applied to 28S rDNA stems.

Table 1.2: Constrained phylogenetic hypotheses tested using the pLRTm and AU-tests. δ=2(best
unconstrained log likelihood - best constrained log likelihood), where best constrained log
likelihood refers to the log likelihood of the ML tree found under the constraint to be tested.
δmin and δmax correspond to the minimum and maximum δvalues obtained from the parametric
bootstrap simulation.

Monophyly Best pLRTm AU-test
constraint log likelihood δ(minδ −maxδ)

No constraint -6073.8647 N.A. N.A

R. fibulata -6094.4883 p < 0.001 p = 0.003
41.25 (-6.56–17.10)

R. nuda -6118.8902 p < 0.001 p = 0.038
90.05 (-5.13–18.89)

R. racovitzae -6089.0588 p < 0.001 p = 0.001
30.39 (-1.77–18.10)

R. fibulata+R. nuda -6146.8112 p < 0.001 p = 0.001
+R.racovitzae 145.89 (-1.09–38.86)

R. fibulata+R. nuda -6153.1090 p < 0.001 p = 0.001
+R. racovitzae+R. levis 158.49 (-0.84–32.49)
+R. vanhoeffeni
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1.4. Discussion

1.4 Discussion

The last 50 years of taxonomic history have seen Rossella s.s. expanding from two

species, R. antarctica and R. racovitzae (Rossella-concept of Koltun, 1976), to eight species

(Rossella-concept of Barthel and Tendal, 1994). All six species resurrected by Barthel

and Tendal (1994) were included in a broad and ’highly polymorphic’ R. racovitzae by

Koltun (1976). Here, we have sequenced two mitochondrial markers and one nuclear

marker in an attempt to clarify the systematics of Rossella using an independent set of

characters not used by previous authors. Our results corroborated the existence of a

monophyletic SO Rossella component unrelated to the N Atlantic R. nodastrella —which

still requires generic reallocation—as reported previously (Dohrmann et al., 2008, 2009).

The SO Rossella included two main clades corresponding to Koltun’s Rossella species:

a well supported R. antarctica clade was recovered as sister to a moderately supported

group of specimens assigned to various nominal species and here referred to as R.

racovitzae sensu lato. The taxonomy of the species included within R. racovitzae s.l. is

not straightforward as many characters used for species delimitation inside this clade

overlap or are prone to authoritative (subjective) interpretation (Table 1.3). In contrast,

R. antarctica can be readily identified and can be clearly distinguished from all other

Rossella s.s. species based on morphology. Congruent with the morphological evidence,

the analysis of COI sequences revealed clear diagnostic characters for R. antarctica with

respect to R. racovitzae s.l. (Fig. 1.3); in contrast, no diagnostic characters were found

for all other Rossella species in the standard barcoding partition.

28



Chapter 1. Molecular phylogeny of Southern Ocean Rossella
Ta

bl
e

1.
3:

Se
le

ct
ed

m
or

ph
ol

og
ic

al
ch

ar
ac

te
rs

us
ed

fo
r

th
e

ta
xo

no
m

y
of

th
e

SO
R

os
se

lla
af

te
r

Ba
rt

he
la

nd
Te

nd
al

(1
99

4)
.

R
os

se
ll

a
C

ha
ra

ct
er

an
ta

rc
ti

ca
fib

ul
at

a
le

vi
s

nu
da

ra
co

vi
tz

ae
va

nh
oe
ff

en
i

vi
ll

os
a

M
ax

.h
ei

gh
t(

cm
)

30
80

30
75

20
30

30

M
ax

.d
ia

m
et

er
(c

m
)

15
70

33
30

10
26

16

C
on

ul
es

0=
ab

se
nt

1
0,

1
1

0,
1

1
0,

1
0,

1
1=

pr
es

en
t

Pr
ot

ru
di

ng
su

rf
ac

e
sp

ic
ul

es
0=

di
ac

ti
ne

0,
1

0
0

0
?(

1)
0

0
1=

pe
nt

ac
ti

ne

D
er

m
al

sp
ic

ul
es

0=
pe

nt
ac

ti
ne

0
0

0
0,

1
0,

1
0,

1
?

1=
he

xa
ct

in
e

A
tr

ia
ls

pi
cu

le
s

0=
pe

nt
ac

ti
ne

1
0,

1
0

1
1

1
?

1=
he

xa
ct

in
e

Ba
sa

l
sp

ic
ul

e
tu

ft
0=

ab
se

nt
0,

1
1

1
1

1
1

1
1=

pr
es

en
t

C
al

yc
oc

om
e

di
am

et
er

(µ
l)

70
-1

00
16

4-
35

0
13

0-
23

0
>

25
0

20
0-

40
0

24
0-

38
0

18
5-

26
0

C
al

yc
oc

om
e

pr
im

ar
y

ra
y

le
ng

th
(µ

l)
12

-1
5

16
8-

12
15

?
14

?

C
al

yc
oc

om
e

ce
nt

er
pi

ec
e

si
ze

(µ
l)

2-
4

10
-2

5
6-

12
25

?
<

14
?

29



1.4. Discussion
R

ossella nuda

R
ossella racovitzae (T.A

.)
R

ossella racovitzae

R
ossella cf. fibulata

R
ossella racovitzae

R
ossella nuda

R
ossella cf. vanhoeffeni

R
ossella sp.

R
ossella nuda

R
ossella levis

R
ossella racovitzae

R
ossella fibulata

R
ossella antarctica

R
ossella antarctica

R
ossellinae n. gen

B
athydorus spinosus

B
athydorus n. sp.

C
raterom

orpha m
eyeri

R
ossella nodastrella

A
ulossaccus m

itsukurii

A
canthascus daw

soni

C
aulophacus valdiviae

C
aulophacus w

eddelli

C
aulophacus arcticus

Lophocalyx profundum
C

aulophacella tenuisLeucopsacus sp.

O
opsacas m

inuta

C
lathrochone clathrocla

da

0.2

G
A
C
C
G
A
C
T
G
A

.
.
.
.
.
.
.
.
.
C

.
.
.
.
.
.
.
.
.
C

.
.
.
.
.
.
.
.
.
C

.
.
.
.
.
.
.
.
.
C

.
.
.
.
.
.
.
.
.
C

.
.
.
.
.
.
.
.
.
C

.
.
.
.
.
.
.
.
.
A

.
.
.
.
.
.
.
.
.
C

.
.
.
.
.
.
.
.
.
C

.
.
.
.
.
.
.
.
.
C

.
.
.
.
.
.
.
.
.
C

T
G
T
A
A
T
T
C
T
T

.
.
.
.
.
.
.
.
.
.

1
2

3
3

3
3

4
5

5
6

6
2

0
6

7
8

6
4

8
0

4
4

0
8

1
3

2
2

7
5

Figure
1.3:

M
axim

um
likelihood

phylogram
of

Southern
O

cean
R

ossella
based

on
the

total
evidence

data
m

atrix.
For

the
bootstrap

values
of

the
nodes

see
Figure

1.
H

ighlighted
are

the
tw

o
m

ain
R

ossella
s.s.

clades
obtained

w
ith

their
corresponding

C
O

I
diagnostic

characters:consensus
sequence

on
top

ofthe
alignm

ent,positions
identicalto

the
consensus

represented
w

ith
dots.Scale

bar,expected
num

ber
ofsubstitutions

per
site.

30



Chapter 1. Molecular phylogeny of Southern Ocean Rossella

The analysis of the alternative branching positions of specimens included within R.

racovitzae s.l. revealed that specimens morphologically assigned to the same nominal

species were not monophyletic in any bootstrap tree of the total evidence ML analysis.

Despite the fact that the low bootstrap values inside R. racovitzae s.l. hindered a positive

interpretation of the intra-clade structure in the total evidence ML tree, our analysis

strongly supports the rejection of most Rossella s.s. species (sensu Barthel and Tendal,

1994). This interpretation is also favoured by the results of the pLRTm and AU tests of

monophyly applied to phylogenetic hypotheses constrained to group different Rossella

species.

It is important to note that the high posterior probability values assigned to the

branches within R. racovitzae s.l. in the Bayesian phylogeny should be interpreted

with caution in light of the generally low ML bootstrap support values. Bayesian

posterior probabilities can be too liberal (e.g., Douady, 2003; Suzuki et al., 2002); thus,

the high posterior probability values observed inside R. racovitzae s.l. could be an over-

estimation. On the other hand, both ML and Bayesian analyses assigned congruent

support values to clades within R. racovitzae s.l., indicating that a certain degree of intra-

clade structure can be detected. Whether certain morpho- or ecotypes can be associated

to these clades, or whether the internal subdivision of R. racovitzae s.l. represents an

instance of incipient speciation deserves to be further investigated using more variable

markers.

In conjunction with the absence of clear apomorphic characters for most currently

valid Rossella s.s. species, our results indicate that their inclusion into a broadly defined
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1.4. Discussion

R. racovitzae is justified. This entails that this ’species complex’ is responsible for a bigger

biomass and abundance apportionment among the Antarctic epibenthic megafauna

than previously thought, making its ecological significance even larger than already

acknowledged (Gutt and Starmans, 1998).

The broad morphological variation in both external and spicule morphology found

in R. racovitzae s.l. is, to some extent, not surprising. High homoplasy levels in both

macro- and micro-spiculation have been repeatedly demonstrated for several sponge

taxa (Cardenas et al., 2011; Dohrmann et al., 2006; Erpenbeck et al., 2006). Whether

specific morphological variations within R. racovitzae s.l. result from plasticity or are as-

sociated to specific genotypes needs to be further clarified using more variable markers

and increased specimen sampling. According to morphological characters, R. racovitzae

s.l. can be subdivided into several groups, which could be retained as subspecies to

facilitate future studies of the causes of the observed morphological cohesiveness, and

provide a finer resolution for ecological studies (see Lopes et al., 2011). The taxonomic

rearrangement of Rossella awaits the revision of both type and recent material, and is out

of the scope of the present contribution. Ongoing efforts to provide a formal revision

of Rossella will be published elsewhere (Göcke and Janussen, pers. comm.), we hope

that the results of our molecular analyses will serve as a guide for future efforts in this

respect.

Finally, from a biogeographic perspective, the circum-Antarctic cohesiveness of

both R. antarctica and R. racovitzae s.l. remains to be tested. In this study, the only

specimen from east Antarctica (collected in Terra Adelie) included in the analysis was
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Chapter 1. Molecular phylogeny of Southern Ocean Rossella

deeply nested in a clade composed of specimens from the Weddell Sea. However,

any conclusion about the biogeography of Rossella in the SO derived from our current

dataset seems premature given the restricted geographic coverage of our sample.

1.5 Conclusion

We have obtained a phylogeny of Southern Ocean (SO) Rossella species corroborating

their monophyly and showing the existence of two clades corresponding to R. antarctica

and a broadly defined R. racovitzae, in accordance with Koltun’s (1976) interpretation.

Future taxonomic work will be required to reconcile the morphology-based classification

of SO Rossella species with our molecular results. Furthermore, sampling and the use

of highly variable molecular markers would allow the assessment of open questions,

in particular the circumpolar distribution of SO Rossella and the causes of the high

morphological diversity within R. racovitzae s.l.
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Chapter 2. Morphological diversification in carnivorous sponges

Abstract

The taxonomic placement of Abyssocladia Lévi, 1964 (Poecilosclerida) is contro-
versial, having been assigned at various times to 3 different families (Mycalidae
and Cladorhizidae, and Phellodermidae) in 2 different suborders (Mycalina and
Myxillina, respectively), since its inception in 1964. It shares the lack of an
aquiferous system and general body-plan with the carnivorous sponge family
Cladorhizidae (Mycalina), yet also has chelae microscleres almost identical to
those in Phelloderma Ridley and Dendy, 1886 (Phellodermidae, Myxillina). The
ongoing debate on the position of Abyssocladia ultimately reduces to a discus-
sion on the use of chelae microscleres as evolutionary proxies in Poecilosclerida.
Here, we infer the phylogenetic relationships of the genera Phelloderma and
Abyssocladia using two independent molecular markers (28S rDNA and COI),
showing that Abyssocladia is not closely related to Phelloderma and belongs in
Cladorhizidae. We suggest that despite their complexity, chelae can evolve in-
dependently in different poecilosclerid lineages and as such might be potentially
misleading as indicator of the phylogenetic history of the group.

2.1 Introduction

Within the species-rich demosponge Order Poecilosclerida Topsent, 1928, members of

the Family Cladorhizidae Dendy, 1922 are well-known for their carnivorous feeding

(Vacelet and Boury-Esnault, 1995). Carnivorous sponges passively prey on small crus-

taceans and other micro-invertebrates, and have a body-plan that is atypical for sponges

because it lacks an aquiferous system, or if present, have one which is highly modified

and not used for filter-feeding. This remarkable trait, in association with its appar-

ent high species richness (∼116 spp in 7 genera in Cladorhizidae; including Cercicladia

australis Rios, Kelly and Vacelet, in press), has made cladorhizid sponges the subject

of special attention among sponge biologists (Riesgo et al., 2007; Vacelet and Duport,

2004), especially with regard to their taxonomy (Ise and Vacelet, 2010; Lehnert et al.,

2006; Lehnert et al., 2005; Vacelet, 2008; Vacelet et al., 2009).
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2.1. Introduction

From a systematic perspective, Cladorhizidae is also a problematic taxon within

Poecilosclerida as it lacks any “strong” synapomorphy. Its high diversity of chelae

—microscleres with alae at each end of a central shaft (Fig. 2.1 Boury-Esnault and

Rützler, 1997)— is at odds with the current classification of poecilosclerid sponges.

This classification is largely influenced by the assumption that chelae are homologous

in that group and can be used to reconstruct phylogenetic relationships due to their

morphological complexity and selective neutrality (Hajdu et al., 1994; Hajdu and van

Soest, 1996; Vacelet, 2007; van Soest, 2002). A number of likely evolutionary innovations

that have been used to diagnose cladorhizids and could potentially represent “strong”

synapomorphies (e.g. carnivory, the absence or major modification of the aquifer-

ous system, a stipitate symmetrical body-shape, a special arrangement of megascleres

and/or microscleres, and the presence of sigmancistra among this last spicule type), have

been questioned because taxa in other poecilosclerid families (e.g. Esperiopsis koltuni

Ereskovsky and Willenz, 2007 in Esperiopsidae Hentschel, 1923; species of Euchelipluma

Topsent, 1909 in Guitarridae Dendy, 1924) also exhibit these characters rendering them

either homoplasious or symplesiomorphic (Ereskovsky and Willenz, 2007; Hajdu and

Vacelet, 2002). This interpretation, however, relies principally on the assumed “cor-

rectness” of the currently accepted taxonomic classification of the order Poecilosclerida,

which has not been supported by independent evidence, e.g., in any molecular phy-

logeny published to date (Erpenbeck and Wörheide, 2007).

Vacelet (2007) first recognised the important position of cladorhizid sponges within

poecilosclerid systematics; he suggested that the diversity of microscleres in carnivorous
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Chapter 2. Morphological diversification in carnivorous sponges

Figure 2.1: Chelae microscleres present in representatives of the order Poecilosclerida. From left
to right: palmate chelae of Clathria australiensis, arcuate chelae of Hamigera dendyi and anchorate
chelae of Crella incrustans. S=shaft, A=alae. Images not at scale. Electron microscope photos: J.
N. A. Hooper.

sponges could have resulted from its convergent evolution. Cladorhizidae is the only

poecilosclerid family that possesses all basic forms of chelae (palmate, anchorate, arcu-

ate; Fig. 2.1). The diversity of chelae within the groups means that Cladorhizidae can fit

the definition of several poecilosclerid families in the sub-orders Mycalina Hajdu, van

Soest & Hooper, 1994 and Myxillina Hajdu, van Soest & Hooper, 1994 suggesting that

the subordinal classification of Poecilosclerida requires closer scrutiny (as suggested by

Erpenbeck and Wörheide, 2007).

Abyssocladia provides an exemplary case-in-point to test the “puzzling” problem

cladorhizid microscleres represent within the current poecilosclerid classification. The

position of Abyssocladia has been controversial, van Soest and Hajdu (2002) included

Abyssocladia within the genus Phelloderma Ridley & Dendy, 1886 based on the “similar

37



2.2. Materials and Methods

and peculiar shape of their isochelae”, changing thereby its sub-ordinal assignment from

the Mycalina to the Myxillina. Abyssocladia was, however, relocated in Cladorhizidae

by Vacelet (2006) who considered the shape of a single spicule insufficient to justify

the (sub-ordinal) transfer. From an evolutionary perspective, testing the phylogenetic

position of Abyssocladia, whether in Cladorhizidae (Mycalina) (with which it shares the

lack of an aquiferous system, a stipitate symmetric body and a carnivorous habit), or in

Phellodermidae (Myxillina) (as indicated by the shape of its arcuate chelae), is not a triv-

ial matter. There are important implications for the validity of established or traditional

morphological characters (e.g. chelae microscleres) long used for the classification of

poecilosclerid sponges. If chelae are not good indicators of the evolutionary history of

the order, any interpretations of its evolution based on this character will be inaccurate.

Here, we present a phylogenetic analysis of the genera Abyssocladia and Phello-

derma and clarify their relative position within the order Poecilosclerida. We sequenced

two independent molecular markers (i.e. 28S rDNA and COI) for all non-monotypic

cladorhizid genera and a new species of Phelloderma collected in the Southern Ocean, and

assess alternative hypotheses on the position of Abyssocladia advanced by researches us-

ing morphological observations. We provide initial insights into the evolution of chelae

within Cladorhizidae and discuss implications for the systematics of Poecilosclerida.

2.2 Materials and Methods

We obtained genomic DNA from new species of the genus Phelloderma and of the

family Cladorhizidae collected in Antarctica during the German ANT XXIV/2-SYSTCO
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Chapter 2. Morphological diversification in carnivorous sponges

Expedition (2007/2008) and the New Zealand‘s BioRoss (2004) expedition, and also

from one specimen of Asbestopluma hypogea Vacelet & Boury-Esnault, 1996 collected by

Jean Vacelet off Marseille (Table 2.1), using the DNeasy Blood & Tissue kit (Qiagen)

according to the manufacturer’s protocol. After extraction, the D13-E13 domains of

the 28S rDNA and the standard barcoding (Folmer) fragment of the mitochondrial

cytochrome oxidase 1 gene regions were amplified using primers NL4F and NL4R

(Nichols, 2005) and dgLCO1490 and dgHCO2198 (Meyer et al., 2005) respectively. PCR

products were either sequenced directly after ExoSAP-IT (Affimetrix) clean-up or cloned

using the TOPO TA Cloning kit (Invitrogen). Positive colonies (at least 8) were picked

and boiled in 10µl HPLC grade water for 5 minutes to release the DNA; DNA was then

amplified using T3/T7 primers. PCR products of the expected size were excised from

a 1.5% agarose gel and sequenced in both directions using the T3/T7 primers and the

BigDye Terminator version 3.1 chemistry (Applied Biosystems). Sequencing reactions

were precipitated using standard ethanol-sodium acetate precipitation and analyzed on

an ABI 3700 Genetic Analyzer at the Genomic Sequencing Unit of the Department of

Biology, LMU München. The resulting chromatograms were visualized and assembled

in CodonCode Aligner (Codon Code Corporation). Poriferan origin of all sequences

was determined using NCBI BLAST (Johnson et al., 2008). Sequences are deposited at

the EMBL (Table 2.1).
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2.2. Materials and Methods

2.2.1 Phylogenetic analyses

New sequences were manually aligned to existing demosponge (structurally annotated)

28S rDNA and (Folmer) COI (for details see http://www.spongegenetrees.org/ Er-

penbeck et al., 2007; Erpenbeck et al., 2004; Erpenbeck et al., 2008) data matrices. In

addition, both datasets were supplemented with poecilosclerid sequences generated for

the Sponge Barcoding Project (Table 2.1; http://www.spongebarcoding.orgWörheide

and Erpenbeck, 2007). Phylogenetic analyses were performed on each data matrix

separately. For COI, the computer programs RAxML 7.2.8 (Stamatakis, 2006) and Mr-

Bayes 3.1.2 (Ronquist, 2003) were used to infer a bootstrapped (1000 fast bootstrap

pseudoreplicates Stamatakis et al., 2008) Maximum Likelihood (ML) and a Bayesian

phylogenetic tree respectively. The GTR model of sequence evolution (Tavaré, 1986)

was used in both analyses, and among-site rate variation was modeled using a discrete

Gamma with 4 rate categories (Yang, 1994). The GTR model is the only DNA model

available in RAxML, we used this same model for the Bayesian analysis to facilitate com-

parisons between ML and Bayesian phylogenies and because over-parameterization,

normally, does not negatively affect Bayesian phylogenetic inference (Huelsenbeck and

Rannala, 2004). For the Bayesian analysis, two independent runs with one cold and 5

heated Metropolis Coupled Monte-Carlo Markov Chain (MCMCMC) chains each were

set to sample trees every 500 generations for a total of 10,000,000 generations using

the default prior and temperature settings available in MrBayes 3.1.2. After comple-

tion, 25% of the samples were discarded as burn-in and a 50% majority-rule consensus

tree was calculated. Chain convergence was assessed using AWTY (Wilgenbusch et
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Chapter 2. Morphological diversification in carnivorous sponges

al. 2004). With the 28S rDNA dataset, we inferred a bootstrapped (1000 fast pseudo-

replicates) ML and a Bayesian phylogeny with the programs RAxML 7.2.8 and PHASE

2.0 (http://www.bioinf.manchester.ac.uk/resources/phase/), respectively. For the

analysis of this dataset, we used the second most general structural model available (i.e.

S7A see Savill et al., 2001) in PHASE for helices (paired-sites) and the GTR+GAMMA

model for the unpaired sites of the RNA molecule. Structural annotation of the 28S

rDNA dataset was done following (Erpenbeck et al., 2007; Erpenbeck et al., 2004). For the

Bayesian analysis, two independent PHASE 2.0 Monte-Carlo Markov Chain (MCMC)

runs were set to sample every 500 generations for a total of 10,000,000 generations; prior

to each run, 500,000 generations were discarded as burn-in. In order to evaluate the

probability of alternative topological arrangements for Abyssocladia and Phelloderma as

well as other groupings proposed in the taxonomic literature, trees sampled during the

COI Bayesian analyses were imported into PAUP*4.0 (Swofford, 2003) and filtered using

constraints corresponding to the different morphology-based hypotheses. In a Bayesian

context, the posterior probability of a bipartition is the frequency with which the bipar-

tition occurs in the trees sampled from the posterior distribution during MCMC (Lewis,

2001).

2.3 Results

2.3.1 COI phylogeny

The inferred COI Bayesian phylogeny (Suppl. Materials) supported the monophyly of

chelae-bearing poecilosclerids, and, from this order, the exclusion of several genera that
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do not bear chelae, such as Rhabderemia Topsent, 1890 (Rhabderemiidae, Microcionina)

and the desmacellid genera Biemna Gray, 1867 and Neofibularia Hechtel, 1965 (Mycalina).

In contrast, the ML phylogeny (Suppl. Materials) inferred a polyphyletic chelae-bearing

Poecilosclerida with representatives of the genera Crambe Vosmaer, 1880 and Monanchora

Carter, 1883 forming a poorly supported clade with sequences attributed to species of

Niphates Duchassaing & Michelotti, 1864 (Haplosclerida) and Scopalina Schmidt, 1862

(Halichondrida).

In general, both COI phylogenies (Fig. 2.2) showed at least some level of dis-

agreement with the current classification of poecilosclerid sponges (sensu Hooper and

van Soest, 2002), with most suborders —Suborder Latrunculina Kelly & Samaai, 2002

was not included in the present analysis— not recovered as monophyletic in either

ML or Bayesian trees. Suborder Myxillina was polyphyletic in all trees sampled in

the Bayesian MCMCMC, comprising four independent clades. Relationships among

chelae-bearing Microcionina Hajdu, van Soest & Hooper, 1994 were unresolved in the

Bayesian consensus tree but the monophyly of these taxa received low posterior proba-

bility (p = 0.2061). Within Mycalina, Mycalidae Lundbeck, 1905 and Cladorhizidae were

not related to members of Podospongiidae de Laubenfels, 1936, which was polyphyletic.

Abyssocladia was not closely related to Phelloderma (Myxillina) but was included within

Cladorhizidae, which formed the sister clade of Mycalidae (with high support in both

the ML and Bayesian trees). A topology consistent with the monophyly of Abyssocladia

+ Phelloderma was not found among the trees (N = 15001) sampled during the arbitrarily

chosen chain one of the MCMCMC of the Bayesian analysis.
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0.78/-

1/-

1/55

0.99/-

0.78/-

Cladorhiza gelida
Cladorhiza sp. nov.
Chondrocladia sp. nov.
Abyssocladia sp. nov.
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0.71/56 Mycale mirabilis SBP#572
Mycale mirabilis SBP#646
Mycale mirabilis SBP#645
Mycale mirabilis SBP#731

0.7/80
Mycale laxissima EF519650
Mycale laxissima EF519651
Mycale laxissima EF519649

0.51/53

0.63/54

0.98/67 Clathria abietina SBP#738
Clathria abietina SBP#745
Clathria cervicornis SBP#741
Clathria abietina SBP#756
Clathria oxeota EF519605_6
Clathria schoenus EF519607
Clathria cancellaria SBP#1022
Clathria reinwardti SBP#643
Clathria kylista SBP#739
Clathria conectens SBP#742
Clathria kylista SBP#1023
Clathria kylista SBP#641
Clathria conectens SBP#743
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0.68/60 Iotrochota baculifera SBP#647
Iotrochota coccinea SBP#701
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Iotrochota birotulata AY561963
Iotrochota birotulata EF519633t6
Iotrochota birotulata EU237486
Iotrochota acerata SBP#571
Negombata magnifica AM076981
Paracornulum dubium SBP#570
Paracornulum sp. SBP#579
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Tedania klausi DQ133902
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Tedania ignis DQ133904
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0.94/58 Lissodendoryx sigmata EF519643
Lissodendoryx sp. SBP#653
Lissodendoryx sp. EF519640_2_4
Lissodendoryx sp. EF519641
Lissodendoryx sp. EF519639
Lissodendoryx isodictyalis EF519638
Mycale fibrexilis AJ843890
Holopsamma helwigi EF519627
Holopsamma helwigi EF519628
Diacarnus spinipoculum AY561975

0.92/97

0.99/65 Monanchora sp. SBP#682
Monanchora clathrata SBP#688
Monanchora clathrata SBP#723
Monanchora sp. SBP#736
Monanchora clathrata SBP#1027
Crambe crambe ht1 AF526297
Crambe crambe ht2 AF526298
Monanchora arbuscula EF519645t8

1/61

0.87/64 Hippospongia lachne EU237484
Vaceletia sp. EU237489
Ircinia strobilina NC013662
Chelonaplysilla erecta EF519582
Igernella notabilis EU237485
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Figure 2.2: Phylogenetic hypothesis of chelae-bearing poecilosclerid sponges based on partial
COI sequences. The topology is based on the results of the Bayesian analysis. Support values
(posterior probability/bootstrap proportion) above branches. Vertical bars indicate sub-ordinal
membership: Myc=Mycalina, Mic=Microcionina, Myx=Myxillina. Highlighted in light gray
genera belonging to the families Cladorhizidae and Phellodermidae. The genera Abyssocladia
and Phelloderma are in bold face. SBP# refer to the Sponge Barcoding Project reference numbers,
accession numbers follow the Sponge Gene Tree Server formats. The complete ML and Bayesian
phylogenetic trees with support values and branch-lengths are provided as Supplementary
Materials.
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2.3.2 28S rDNA analysis

Despite the lesser number of Poecilosclerida samples which were available for the 28

rDNA analysis, the results from this analysis corroborated those from the COI analysis

(Fig. 2.3). Poecilosclerid genera lacking chelae (i.e. Rhabderemia and Neofibularia in the

present dataset) were not recovered as being related to chelae-bearing genera in either

the ML or Bayesian phylogenies (Suppl. Materials). Chelae-bearing taxa belonging to

different suborders formed clades that contradicted the currently hypothesized subordi-

nal classification of Poecilosclerida. For example, Coelocarteria Burton, 1934 (Mycalina)

was not related to Cladorhizidae+Mycale, but rather to representatives of Clathria (Mi-

crocionina). Regarding the phylogeny of Abyssocladia and Phelloderma, these two genera

were not indicated as closely related in the 28S rDNA ML or Bayesian phylogenetic

trees. In accordance with the COI results, Abyssocladia was included within the family

Cladorhizidae which, together with Mycale, formed a highly supported clade. Phello-

derma, in contrast, was related to representatives of Lissodendoryx, Crella, and Phorbas

Duchassaing & Michelotti, 1864 (Myxillina); all these genera formed a highly supported

monophylum.

2.4 Discussion

The current classification of poecilosclerid sponges is based principally on the assump-

tion that chelae microscleres reflect the phylogenetic history (cf. van Soest, 2002).

Nevertheless, chelae morphology can be homoplasic and their presence/absence has

been demonstrate to be environmentally plastic in at least one poecilosclerid genus (see
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Figure 2.3: Phylogenetic hypothesis of chelae-bearing poecilosclerid sponges inferred from
structurally annotated partial 28S rDNA sequences. The topology is based on the results
of the Bayesian analysis. Support values (posterior probability/bootstrap proportion) above
branches. Vertical bars indicate sub-ordinal membership: Myc=Mycalina, Mic=Microcionina,
Myx=Myxillina. Highlighted in light gray genera belonging to the families Cladorhizidae and
Phellodermidae. The genera Abyssocladia and Phelloderma are in bold face. SBP# refer to the
Sponge Barcoding Project reference numbers, accession numbers follow the Sponge Gene Tree
Server formats. Genbank sequences of doubtful taxonomic affiliation are annotated with a
question mark (?). The complete ML and Bayesian phylogenetic trees with support values and
branch-lengths are provided as Supplementary Materials.

47



2.4. Discussion

Maldonado et al., 1999). The alternative taxonomic positions proposed for Abyssocla-

dia (see Introduction and Vacelet, 2006; van Soest & Hajdu, 2002), represent an almost

perfect case-study on the use, the mis-use, and the value of chelae for systematics of

Poecilosclerida. Based on the morphology of chelae, Abyssocladia belongs in Phello-

dermidae. However, the lack of an aquiferous system, the overall body-shape, and

the spicule complement and skeletal organization suggest affinities of the genus to

Cladorhizidae.

Here we have shown that Phelloderma and Abyssocladia are not closely related, and

that Abyssocladia belongs in Cladorhizidae. This family was recovered as monophyletic,

with high bootstrap support and posterior probability in our analysis of COI. In the

28S rRNA ML and Bayesian phylogenies Cladorhizidae received low bootstrap support

and posterior probabilities. It is worth noting, however, that the uncertainty regarding

the monophyly of Cladorhizidae in these analyses was caused by the unstable position

of Mycale in the Bayesian phylogeny and its inclusion within Cladorhizidae in the

ML analysis, and was not caused by the exclusion of any cladorhizid genera from

the family. With respect to the relationships between Abyssocladia and Phelloderma, a

topology compatible with an Abyssocladia + Phelloderma clade was not sampled during

the Bayesian MCMCMC analysis of COI or 28S rRNA sequences, indicating that the

posterior probability of a tree including this clade is negligible in comparison with

that of the optimal and near-optimal trees —in other words, the hypothesized clade

is artificial. This should not be surprising since these genera differ greatly in their

body-shape; Abyssocladia is stalked with a spherical or disc-shaped body (Vacelet, 2006)

48



Chapter 2. Morphological diversification in carnivorous sponges

while Phelloderma is subglobular with a cork-like cortex, papillae, and a general skeletal

organization resembling Family Suberitidae (Ridley and Dendy, 1886; van Soest and

Hajdu, 2002). Regarding the relationships of Cladorhizidae, this family was shown as

sister to Mycalidae as noted above, however this sister group relationship should be

treated with caution pending a more complete taxonomic sampling within ’Mycalina’.

From an evolutionary perspective, our results indicate that a diverse complement

of chelae have been independently acquired in the cladorhizid lineage (Fig. 2.4). His-

torically, chelae have been interpreted as being selectively neutral (see Hajdu et al.,

1994). This alleged neutrality has led to their use as a taxonomic indicator for the

classification of the Poecilosclerida. However, due to their functional role in the cap-

ture of prey (Vacelet and Duport, 2004), it is likely that cladorhizid chelae are acted

upon by strong selective pressures. Thus, it is probable that the carnivorous habit of

cladorhizid sponges has led to the diversity of chelae forms observed among modern

representatives of this family (see Introduction and Price et al., 2010 for an example).

More speculatively, innovations in chelae morphology within cladorhizid genera might

have had an impact on the speciation rates within the family, as judged by its relatively

high species richness (see Introduction) and species-specific chelae morphologies. At

present, testing this hypothesis is not possible due to the sparse intra-genus sampling

available. A more thorough sampling of the family and of other carnivorous sponges

currently classified in different poecilosclerid families (Esperiopsidae and Guitarridae)

will be required to establish a correlation (if any) between carnivory, chelae diversity

and speciation rates in Cladorhizidae, and carnivorous sponges in general.
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2.4. Discussion

Figure 2.4: Distribution of basic chelae types in different poecilosclerid clades found in the
Bayesian COI gene tree (50% majority rule). Chelae type, from left to right: Palmate, Arcuate and
Anchorate. The specific chelae form in a given clade can vary within the general morphotype.
The chelae forms illustrated are only for schematic purposes. Chelae are not at scale. Support
values are shown for branches with posterior probabilities less than 0.95. SBP# refer to the
Sponge Barcoding Project reference numbers, accession numbers follow the Sponge Gene Tree
Server formats
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Our findings have broader implications on the systematics of Poecilosclerida beyond

those of only Abyssocladia and Phelloderma. The use of chelae microscleres in the classifi-

cation of Poecilosclerida must be made with caution, and the relative importance of this

character must be weighted against other sources of evidence. Also, hypotheses about

the evolution of chelae microscleres within Poecilosclerida deserve to be reevaluated.

We found genera bearing anchorate chelae (e.g. Monanchora and Crambe) branching off

as a sister to all other chelae-bearing poecilosclerids indicating that palmate chelae are

derived with respect to anchorate forms. This is in contradiction with the prevailing

interpretation of the polarity of chelae transformation series (Fig. 2.4). Future studies on

the molecular phylogeny of poecilosclerid sponges are still necessary to further clarify

the evolutionary history of chelae microscleres.

2.5 Conclusion

We have presented a phylogeny of the genera Abyssocladia and Phelloderma using in-

dependent molecular datasets, clarified their relative position within the order Poe-

cilosclerida and evaluated hypotheses concerning their morphological characters. Our

molecular data support the proposal of Vacelet (2006) that Abyssocladia is a cladorhizid,

and that this family is monophyletic and related to Mycale (suborder Mycalina). Con-

versely, Phelloderma formed a clade with sponges now classified in the suborder Myx-

illina, and as such, Phelloderma and Abyssocladia are only distantly related, contrary

to previous morphological hypotheses based on chelae morphologies (van Soest and

Hajdu, 2002). This result implies the independent acquisition of a diverse chelae com-
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plement in Cladorhizidae, likely resulting from an evolutionary diversification related

to the carnivorous habit of cladorhizid sponges. These findings have significant impli-

cations for the systematics of the Poecilosclerida, as foreseen by Vacelet (2006), and in

particular the alleged taxonomic importance of chelae morphotypes for higher taxon-

omy. The present analyses have provided only a small contribution to a re-evaluation

of Poecilosclerida using two independent molecular markers, but highlights the signif-

icance and growing potential of molecular-based approaches to reciprocally illuminate

morphological evidence and to better resolve the evolutionary history of Poecilosclerida

—the most diverse order of Demospongiae Porifera.
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Chapter 3. Antarctic sponge richness prediction

Abstract

Sponges are key components of Antarctic benthic communities. Several authors
have pointed out their role providing habitat and refuge to many marine organ-
isms, and sponge species richness in the Antarctic shelf matches that of tropical
ecosystems. However, in contrast to the shelf, deep-sea Antarctic communities
have been less studied and only sparsely sampled. Expert-based estimations
on the number of sponge species inhabiting the deep (>600m) Antarctic waters
have yielded mixed results. Herein, we present the first semi-quantitative esti-
mation of the sponge species richness inhabiting deep Antarctic (Weddell Sea)
waters. We use non-parametric extrapolation methods and a large number of
deep-sea samples collected during the German AnDeepI-III and Systco expedi-
tions. We show that the sponge fauna inhabiting the deep Antarctic waters is
rich, matching the self in sponge species depending on the degree of patchiness
used for the extrapolation.

3.1 Introduction

Sponges (Porifera) are ecologically important components of Antarctic benthic commu-

nities. On the Antarctic shelf, sponges can locally dominate the seafloor contributing

with up to 96% of the benthic biomass at some stations (Barthel, 1992a). Big glass

sponges of the genera Rossella and Anoxycalyx have been shown to play important roles

in the bentho-pelagic coupling (Gatti, 2002), and to provide refuge and habitat to numer-

ous marine invertebrates (Barthel, 1997; Kunzmann, 1996; Gutt and Schickan, 1998). In

terms of species richness the Antarctic shelf is comparable to tropical ecosystems (Mc-

Clintock et al., 2005), and the level of endemism among Antarctic sponges is high:

∼50% of the species described from Antarctica are restricted to the continent’s waters

(Barthel, 1992a; Sara et al., 1992). In contrast to the shelf, little is known about the diver-

sity of Antarctic deeper (>600m) sponge assemblages which have been only sparsely

sampled (Brandt and Ebbe, 2009; Brandt et al., 2007b; Janussen et al., 2004; Janussen
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and Tendal, 2007). Expert-based estimations on the number of siliceous sponge species

inhabiting deep Antarctic waters have yielded contrasting results (~30 spp. McClintock

et al., 2005; ~150spp. Brandt et al., 2007a), leaving the total number of sponge species

undetermined.

The determination of the species richness of a given area constitutes the first step

towards an in-depth understanding of any biotic community. Yet, species richness is

difficult to measure because the number of species recorded for a given community

is expected to increase as the number of individuals sampled from that community

increases (Gotelli and Colwell, 2001). In theory, if enough samples are taken from

a community, the number of species accumulated over all samples (i.e. the species

accumulation curve or collector‘s curve) is expected to reach an asymptote (Colwell

and Coddington, 1994). However, reaching an asymptotic species accumulation curve

is often not possible, especially in diverse communities. In addition, extensive sampling

may be difficult in isolated areas, or the costs of taking even a small number of samples

from some communities (like the deep sea) can be prohibitive. In these cases, the species

richness of the community can only be approximated using a number of methods

that allow for the estimation of species richness from samples through extrapolation.

These methods provide lower bound species richness values for communities where the

current species accumulation curve shows no clear asymptote (Chao and Shen, 2004;

Colwell and Coddington, 1994).

Here, we use non-parametric extrapolation methods to estimate the number of

siliceous sponge species inhabiting deep Antarctic (>600m, Weddell Sea) waters. We use
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a large number of semi-quantitative samples collected during the German ANDEEPI-

III (2006/2007) and ANTXXIV/2-SYSTCO (2007/2008) expeditions to the Weddell Sea,

West Antarctica, and covering a depth range between -480 and -5330 m. We aim

to independently corroborate previous expert-based predictions and offer base-line

estimates that can help guiding future research and sampling of Antarctic deep-sea

communities in light of the threats posed by climate change and human activities to

these precious ecosystems.

3.2 Materials and Methods

3.2.1 Sampling and species determination

Samples were obtained during the German ANDEEPI-III (2006/2007) and ANTXXIV/2-

SYSTCO (2007/2008) expeditions to the Weddell Sea (West Antarctica) by Agassiz trawl-

ing or an epibenthic sledge, and in a few cases also box corer and a multicorer. Spec-

imens from sponge-containing stations (N=54) were preliminary sorted and identified

on board, and fixed in Ethanol 95% for final taxonomic identification at Senckenberg

Museum, Frankfurt. The number of individuals collected by species at each station was

also documented on board. All sponges and their preparations are deposited at the

Senckenberg Research Institution and Nature Museum, Frankfurt.

3.2.2 Richness estimation, the role of patchiness and sufficient
sampling the Antarctic deep

After taxonomic determination, a species per station matrix was constructed and an-

alyzed using the program EstimateS (Version 8.2, R. K. Colwell, http://purl.oclc.
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org/estimates). Species richness was estimated using the Chao1, Chao2, ACE, ICE,

First Order Jackknife (Jack1), Second Order Jackknife (Jack2) and Bootstrap (Boot) non-

parametric estimators (for details on the estimators see Chazdon et al., 1998; Colwell

and Coddington, 1994). We analyzed three datasets corresponding to the classes De-

mospongiae and Hexactinellida together (i.e. Siliceous sponges), and to each class

separately. For each dataset we assessed the role of patchiness in the predicted species

richness values using the “shuffling” option available in EstimateS (Chazdon et al.,

1998). We used patchiness values (A) of 0, 0.25, 0.5, 0.75. For all simulations we ran 500

permutations; running 1000 permutations on selected cases yielded similar results (not

shown). We consistently obtained CV values >0.50 for the abundance and incidence

distributions, therefore we used the classic formulas for both estimators as suggested

by the EstimateS manual. Finally, we estimated the number of samples necessary to

detect 100% and 75% of the species predicted by the Chao2 estimator using the method

described in Chao et al. (2009).

3.3 Results

3.3.1 Demospongiae

Demosponge predicted asymptotic species richness values using the un-shuffled dataset

ranged between 94 and 158 species depending on the estimator used (Fig. 3.1). Figure

3.2 shows the predicted asymptotic species richness values under different patchiness

settings. After shuffling, when no patchiness was assumed, the number of predicted

species by each estimator dropped with respect to the un-shuffled predicted richness
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and varied between 91 (Boot) and 144 (ICE). At intermediate patchiness levels (A=0.50)

the number of species predicted by each estimator approached the un-shuffled pre-

dicted richness levels, and at high patchiness (A=0.75) the number of species predicted

almost duplicated the values predicted under no patchiness conditions. In general, the

ICE was the most liberal estimator in all simulations except when patchiness was set at

A=0.25, under this condition the first order jacknife predicted more species (135) than all

other estimators. The bootstrap estimator (Boot) was the most conservative estimator

under all conditions used for simulation. Abundance-based estimators yielded lower

richness values and, asymptotically, were less sensitive to variation in patchiness than

occurrence-based estimators; Chao1 and ACE were (asymptotically) insensitive to vari-

ations in patchiness (Fig. 3.2). A complete inventory of deep-sea demosponges would

require 382 new samples; 30 new samples would yield 75% of the predicted species.

3.3.2 Hexactinellida

The predicted asymptotic species richness of glass-sponges (Hexactinellida) ranged

between 32 and 47 species (Fig. 3.1). Assuming no patchiness, asymptotic richness

values ranged between 30 and 40 species and when a high patchiness level (A=0.75)

was used, the simulation resulted in 33 to 136 species predicted by the estimators (Fig.

3.2). For hexactinellids, the second order jackknife gave the most liberal estimation for

the un-shuffled data matrix and for all patchiness values except A=0.50 when it ranked

second in the asymptotic number of species predicted. The behavior of the estimators

was variable, the asymptotic number of species predicted by most estimators was
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Chapter 3. Antarctic sponge richness prediction

Figure 3.2: Effect of patchiness on the asymptotic species richness values obtained using different
richness estimators. The straight, and dashed and pointed lines correspond to the species
richness value obtained for the un-shuffled data matrices, and two and three times this value
respectively.
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lower for A=0.25 than for A=0; at A≥0.50, asymptotic species richness were higher

than estimations using lower patchiness levels. As for demosponges, at intermediate

patchiness (A=0.5) the number of predicted species was similar to the results of the

un-shuffled dataset. When high levels of patchiness were assumed, all incidence-based

estimators predicted 1.5 to 3 times more species than their immediate simulation with

lower patchiness —Jack2 predicted 40 species under A=0.5 and 64 species under A=0.75,

and Chao2 yielded 34 species under A=0.5 and 136 species when A=0.75 (Fig. 3.2). A

total of 178 new samples are necessary to achieve a complete hexactinellid inventory,

and 13 new samples will be needed to detect 75% of the predicted species.

3.3.3 All Siliceous Sponges

The accumulation curve for each simulation using all siliceous sponges are shown in Fig.

3.1. The predicted number of siliceous sponge species inhabiting Antarctic deep waters

ranged between 125 and 203 species. The predicted values are higher than published

expert-based estimations for Antarctic deep sea (~150 spp. Brandt et al., 2007a). Similar

to the results of the demoponge and hexactinellid datasets, simulations assuming no

patchiness (A=0) predicted less species than the un-shuffled dataset. Species richness

values, similar to those obtained without shuffling were obtained when patchiness levels

were low (A=0.25). If high patchiness (A=0.75) is assumed, predicted species richness

ranges between 130 and 328. In general, ICE resulted in higher asymptotic species

richness estimates while Boot consistently yielded the lowest values. The asymptotic

species richness values obtained for the complete dataset under any given patchiness
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value were congruent with those obtained by adding up the richness estimates obtained

for demosponges and hexactinellids separately under the same simulation conditions.

A total of 450 samples are still needed to collect all predicted siliceous sponge species.

If only 75% of the predicted species is aimed 32 new samples are required.

3.4 Discussion

The Antarctic shelf sponge fauna is known to be rich (Barthel, 1992a; Sara et al., 1992).

According to our results, the same case applies to deeper poriferan assemblages with

~200 species predicted to occur deeper than ~600m. Depending on the level of patch-

iness assumed, predicted deep-sea siliceous sponge richness varied between 174 and

328 species. Interestingly, the estimation results based on the un-shuffled matrix, which

should reflect the spatial distribution of the species sampled, yielded values similar to

those obtained using low levels of patchiness (A=0.25). This results are in accordance

with the observation that sponge communities in Antarctica occur in patches (Gutt

and Starmans, 2003). Moreover, globally low levels of patchiness are expected because

sponges in the Antarctic shelf display a wide range of aggregation patterns with patchy

species coexisting with species showing a more random distribution pattern (Gutt and

Starmans, 2003). The results of the un-shuffled data matrix imply that estimates assum-

ing A=0 are likely over-conservative. On the other hand, if high patchiness is assumed

(A=0.75), the number of deep-sea species approaches the number of sponges species

currently reported for Antarctica (352; McClintock et al., 2005) potentially duplicating

poriferan richness in the region —a likely scenario.
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Sponges are major scaffolding elements in the Antarctic shelf, harboring rich inver-

tebrate communities (e.g. one single specimen of Rossella racovitzae from the Ross Sea

shelf was found to have 5 brittle star species after only a superficial assessment) and

providing refuge for juveniles and larvae of many marine organisms (Barthel, 1997;

Kunzmann, 1996). It has been proposed that diversity in the Antarctic shelf can be lo-

cally driven by sponges: large hexactinellids can turn soft-bottoms into suitable settling

surfaces for other sessile invertebrates (Barthel, 1992b). The significance of an elevated

sponge species richness in Antarctic deep-waters for invertebrate richness in general

remains a matter of speculation and deserves to be further investigated. Are sponge

dominated communities in the Antarctic deep-sea more diverse than communities de-

void of poriferans? Are sponge assemblages ’deep-sea oases’ in an otherwise hostile

environment for most mega-benthic invertebrates? At present, we can only put forward

these questions, and point out that testing the potential key-role of deep-sea sponges in

Antarctica and the Southern ocean in general remains to be done.

We have shown the use of extrapolation-based methods for the estimation of species

richness in regions that are technically difficult to sample. Extrapolation methods can

be reliable complements to exploration programs and provide guidelines for future

sampling efforts. For instance, 32 new samples are expected to result in a coverage of

75% of all siliceous sponges species predicted to occur in the deep waters of the Weddell

Sea. Depending on a number of conditions, approximately 10 deep-sea trawling stations

can be done in a (successful) cruise to the Southern Ocean, and not all deployments yield

sponges. It should be clear that a long-term research program would be necessary to
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successfully collect enough deep-sea samples to further improve the knowledge on the

rich sponge fauna inhabiting Antarctic waters. Finally, reports in other invertebrate

groups show that Antarctic deep-sea communities can be as rich or even richer than

those of shallower environments (Brandt et al., 2004). Our estimations are in agreement

with this pattern, providing further support to the hypothesis that the cold Southern

Ocean is a diversity hot-spot.
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Chapter 4. A sponge barcoding workflow

Abstract

Background: Phylum Porifera includes ∼8,300 valid species distributed world-
wide in aquatic ecosystems ranging from fresh-water bodies to coastal environ-
ments and deep-sea. The taxonomy and systematics of sponges is complicated,
and morphological identification can be time consuming. DNA barcoding can
provide sponge biologists with a simple and rapid method for the identifi-
cation of samples of unknown taxonomic membership. The Sponge Barcoding
Project (http://www.spongebarcoding.org), the first initiative to barcode a non-
bilaterian metazoan phylum, aims to provide a comprehensive DNA barcode
database for the Phylum Porifera.

Methodology/Principal Findings: ∼7,500 sponge specimens have been extracted,
and amplification of the standard COI barcoding fragment has been attempted
for approximately 3,300 museum samples with ∼25% mean amplification suc-
cess. Based on this comprehensive sampling, we present the first report on the
workflow and progress of the sponge barcoding project, and discuss some com-
mon pitfalls inherent to the barcoding of sponges.

Conclusion: A DNA-barcoding workflow capable of processing potentially large
sponge collections has been developed and is routinely used for the Sponge
Barcoding Project with success. Sponge specific problems such as the frequent
co-amplification of non-target organisms have been detected and potential so-
lutions are currently under development.

4.1 Introduction

Sponges (Phylum Porifera), are diverse, sessile, benthic metazoans, occurring in marine

and fresh-water ecosystems worldwide. In marine habitats, from coral reefs to abyssal

plains, sponges play important roles in biogeochemical cycling (Gatti, 2002) and in the

spatial structuring of the seafloor (Gutt, 2007); sponges also participate in complex bi-

otic interactions with diverse taxa (for a review see Bell, 2008). According to the World

Porifera Database (van Soest et al., 2011), more than 8000 species are considered valid,

with most belonging to the Class Demospongiae. From a taxonomic and systematic
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point of view, Phylum Porifera is challenging because of the general paucity of char-

acters useful for taxonomic and phylogenetic inference among sponges (Erpenbeck et

al., 2006a). Furthermore, the relatively simple sponge body-plan and the ecological

plasticity or evolutionary lability of the few characters available for identification make

sponge taxonomy a field where uncertainty is commonplace (Cardenas et al., 2011;

Dohrmann et al., 2006)

In recent years, DNA barcoding has been proposed as an aid to increase the speed of

sponge identification (Wörheide and Erpenbeck 2007). The Sponge Barcoding Project

(http://www.spongebarcoding.org; Wörheide et al., 2008) represents the first barcod-

ing effort targeting non-bilaterian metazoans. The project aims to provide the most

comprehensive repository of sponge barcodes, and to associate these barcodes with

morphological annotations of the barcoded species. For this purpose a large number of

specimens, including samples deposited in museum collections, needs to be processed

(i.e. extracted, PCR-ed and sequenced) in a time- and cost-efficient manner. Further-

more, a number of difficulties intrinsic to working with sponges needs to be overcome.

Barcoding sponges can be problematic due to the potentially large number of non-

target macro- and microorganisms found in association with sponges (Erpenbeck et al.,

2002). These organisms can get co-extracted, and either co-amplified or preferentially

amplified during PCR causing sequences to be difficult to read or to belong to non-

target organisms. Moreover, for defense purposes, sponges produce potent bioactive

compounds that can inhibit enzymatic reactions such as PCR (Chelossi et al., 2004).

Thus, a number of obstacles not usually found in other invertebrate groups need to be
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4.2. Results

Figure 4.2: Yield and quality assessment of the DNA extracted using a modified Ivanova et al
2006 extraction protocol. Upper figure: DNA quality assessment and PCR success of 48 samples.
+ = PCR product obtained, - = no PCR product was obtained and o = negative (no-DNA) control.
Lowere figure: Box-whisker plot of the DNA yield of 12 96-well plates. The dotted grey line
represents a yield of 50ng/uL. Highlighted in grey two plates extracted using the Ivanova et al.’s
original method.

tackled for successful sponge barcoding. Here, we summarize the results of an ana-

lytical pipeline established to barcode sponges and provide an overview of the current

state-of-the-art on sponge barcoding that can serve other colleagues working on this

challenging field.

4.2 Results

4.2.1 DNA yields

We obtained DNA extracts of 96 families in all three classes of Porifera (Fig. 4.1).

The average DNA yield was 89±114 ng/uL (N=156), and the mean DNA concentration
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of individual extraction plates ranged between 14±6 ng/uL and 191±117 ng/uL (Fig.

4.2). Within-plate variation in DNA concentration values was high, and concentration

differences of up to two orders of magnitude were detected within single extraction

plates. Agarose gel electrophoresis revealed that the purification method was capable

of recovering high-molecular weight DNA, however variability was also high among

samples (N=184) within plates. There was no apparent relationship between DNA

quality, interpreted here as the presence of DNA of high molecular weight in the extracts,

or DNA concentration and PCR success in 48 samples analyzed (Fig. 4.2).

4.2.2 PCR and sequencing success

Levels of COI amplification success ranged between 0% and 55% among 35 96-well

plates analyzed (3,360 specimens). Mean amplification success was 27±17%, which is

roughly equivalent to 26 positive samples per 96-well plate. When taxonomic groups

(families) were analyzed (N=73) PCR success rates covered the entire 0%–100% range,

however we noted that many taxa with extreme high success rates (e.g. 100%) were

represented by only few specimens (Fig. 4.3). If the analysis is restricted to families

with more than 30 processed specimens (N=28), PCR success levels ranged between

0% and ~50%. Among this group, the families Dysideidae, Plakinidae, Spongiidae and

Thorectidae had PCR success rates that ranged between 0% and 2% while the PCR

success rates for the remaining families (N=24) ranged between 10% and ~50%. PCR

success rates were not independent from taxonomic membership (χ2
N=2580,d f=24 = 178.90,

p < 0.001). This result holds before and after the exclusion of families with extremely
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Figure 4.3: Amplification success rates of the standard barcoding COI partition in different
sponge families. Grey and black colours represents failed and positive reactions, respectively.
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low (0%–2%, see above) PCR success rates. The effect of sample age within a given

family, however, cannot be excluded as family mean age was related to PCR success in

23 families analyzed (r=-0.449, N=26, p=0.03; Fig. 4). The analysis of all extracted and

amplified samples, independent of taxonomic membership, revealed that PCR success

rates tend not to decrease significantly with sample age (r=-0.11, N=19,p=0.64) but

remained ranging between ~14% and ~45% in samples of 5-23 years old (Fig. 4.4).

With regard to sequencing sucess, 40% of the sequences obtained corresponded to

non-target organisms. Among these sequences, a considerable proportion belonged

to bacterial strains likely to have been co-extracted with the sponge DNA. Despite

the contaminant being co-amplified or preferentially amplified, DNA of sponge origin

was present in the extracts (Table 4.1). Contrary to PCR success rates, sequencing

success rates, defined as the proportion of sequences of sponge origin obtained for a

given sponge family or plate, was independent from the taxonomic assignment of the

sequenced sample (G − testN=66,d f=33 = 32.50, p=0.49; Fig. 4.5).

4.3 Discussion

We have presented a first assessment on the progress and technical aspects of the Sponge

Barcoding Project. At present, two laboratory workers are capable of processing 576

samples (i.e. 6 96-well plates) a week using the analytical pipeline set for the project.

In our experience, subsampling the sponge tissues for extraction is the limiting step

in terms of the time needed to process a plate. Subsampling sponge tissue is a time

consuming process and it is important that care is taken with this step to ensure that
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Table 4.1: COI and 28S rDNA sequences obtained from 5 arbitrarily chosen samples correspond-
ing to mixtures of DNA extracted from sponge tissues.

Sample ID COI BLAST results 28S rDNA BLAST results
Myxillidae Cnidaria Porifera
cf. Hemigelius bidens Bacteria Porifera
Myxilla mariana Bacteria Porifera
Polymastia invaginata Bacteria Porifera
Rossella racovitzae Bacteria Porifera
Porifera undetermined Bacteria Porifera

surface contaminants are minimized and that tissues are prepared in small pieces to

facilitate the extraction work-flow. After tissue has been subsampled, DNA extraction

is completed within hours depending on the worker’s experience. This means that

DNA extraction, PCR, gel documentation and sequencing for 192 samples (i.e. two

96-well plates) can be done within two working days by one laboratory employee. This

modest capacity allows a medium throughput facility to easily barcode large number of

samples within short time. Moreover, because the DNA extraction yields are generally

high —although this depends greatly on the tissue sample— the barcoding pipeline

indirectly results in the establishment of a DNA-bank which can be further used for

different purposes.

With respect to PCR success rates the values reported here correspond with pub-

lished PCR success rates for archival moth specimens when Taq polymerase was used

(i.e. ~50% for 2-year old specimens Hajibabaei et al., 2005). We did not observed a

general drop in PCR success rates with age, however restricting the analysis to certain

families (see Results) revealed a clear relation between PCR success rates and mean
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Figure 4.5: Sequencing success rates per sponge family. Grey and black colours represents
sequences corresponding to non-target organisms and poriferans, respectively.
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sample age. We have observed that the extraction protocol works particularly well with

fresh tissue or with recently collected and properly fixed samples, however for poorly

preserved material the method tend to give poor results. This should not be a surprise

and is not a problem specific to the protocol, as commercial options also fail in this

situation (pers. obs.). However, we have consistently observed low 260/230 absorbance

ratios in our extractions. Low 260/230 have been related to the co-elution of thiocyanate

salts (Ivanova et al. 2008); these strong protein denaturants could act synergistically

with low-quality DNA to cause PCR failure in these cases.

In the case of samples yielding DNA of moderate to high quality, and for some

taxonomic groups a family-specific effect cannot be ruled out as the cause of PCR failure.

Our results revealed that PCR success and family membership are not independent.

Although this result can be potentially confounded by the effect of sample age on

PCR performance and by taxonomic collection bias during certain years, some families

show contrasting PCR success rates despite their similar mean ages. For instance,

the families Halichondriidae and Isodictyidae with approximately equal mean sample

age (i.e. 20±24 and 22±26 years respectively) and sampling effort (N=45) had PCR

success rates of 53% and 35%, respectively. This result suggests that a complex relation

between sample age and taxonomic membership can affect the performance of the

barcoding pipeline. The presence of secondary metabolites that could inhibit the PCR

reaction is possible in sponges (see Erpenbeck and van Soest 2007), and family or

genus specific mismatches in the priming site cannot be discarded. Further, it may be

that morphological factors (which are correlated to taxon membership), such as tissue
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density or perfusion rates, could influence the rate and quality of specimen fixation

and therefore affect the preservation of DNA. We have observed that despite tissue

subsampling has been standardized, it is particularly difficult to obtain homogeneous

DNA concentrations within most DNA extraction plates. High intra-plate variation

in DNA concentration hampers the high-throughput downstream processing of the

samples, because samples that likely need to be diluted co-exist with low concentration

samples that, likely, will not amplify after dilution. Increasing the volume of the buffer

used in the digestion and binding steps of the DNA extraction protocol has helped

to reduce intra-plate variability to some extent, but this remains problematic for the

high-throughput barcoding of sponges.

Co-amplification or preferential amplification of non-target organisms represents a

major obstacle for DNA barcoding (see also Siddall et al., 2009). We obtained non-target

organisms in 40% of the sequenced samples which imply almost a duplication in the

relative cost of a single sponge barcode. This problem is hard to solve because the

complete isolation of contaminating tissues from sponge tissue is usually not possible,

and because the phylogenetic origin of the “contaminants” can be diverse. More-

over, cloning is only possible in selected cases as this technique is not compatible with

medium- or high-throughput sample processing. Here, we have demonstrated that a

sponge DNA extract is actually a complex DNA mixture and can be better thought-of

as a sponge’s meta-genome. We have detected “contaminant” sequences belonging to

bacteria, cnidarians, bryozoans, molluscs, ascidians, algae and poriferans themselves.

Future work on the design of better primer sets or primer mixtures for sponges based on
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an increased taxonomic sampling should help to improve the efficiency and selectivity

of COI barcoding for Porifera.

Table 4.2: Modification to the genomic DNA protocol of Ivanova et al. 2006 used for
sponge barcoding.

Protocol step Ivanova et al. 2006 This study
Digestion 50 µl Lysis mix1 200µl Lysis mix
Binding 100 µl Binding mix2 400 µl Binding mix
First washing step 180 µl Protein wash buffer3 200 µl Protein wash buffer
Second washing step 750 µl Wash buffer4 750 µl Wash buffer
Elution 60 µl H2O 50-100 µl H2O
1 Lysis mix: 100mM NaCl, 50mM Tris-HCl pH 8.0, 10mM EDTA pH 8.0, 0.5% SDS, Proteinase K 10% v/v.
2 Binding buffer: 6M GuSCN, 20mM EDTA pH 8.0, 10 mM Tris-HCl pH 6.4, Triton X-100 4% v/v. The Binding

mix is a 50% v/v solution of Binding Buffer in ethanol 96%.
3 Protein wash buffer is a 30% v/v solution of Binding Buffer in ethanol 96%.
4 Wash buffer: 50mM NaCl, 10mM Tris-HCl pH 7.4, 0.5mM EDTA pH 8.0, ethanol 60%.

4.4 Materials and Methods

4.4.1 DNA Extraction

A number of high-throughput methods for DNA extraction have been published (e.g.

Boom et al., 1999; Boom et al., 1990). For the Sponge Barcoding Project, we looked for

a centrifugation-based method available for 96-well plates. We selected the method

proposed by Ivanova et al., 2006 for the Barcoding of Life, which is based on the

selective binding of DNA molecules to a fibre-glass membrane in the presence of high

concentrations of Guanidinium Thiocyanate. We optimized the published protocol (see

Table 4.2) to increase the amount of tissue digested and the final DNA concentration

(ng/uL). Using this modification, we have extracted a total ~7,400 sponge samples,

mainly deposited at the Queensland Museum, Brisbane Australia, covering all poriferan

classes and demosponges orders (see below). In order to evaluate the yields obtained,
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the DNA concentration (ng/uL) of 12 randomly picked extracts per plate was determined

using a Nanodrop 1000 spectrophotometer. In total, 14 plates were quantified.

4.4.2 Amplification and sequencing success of the standard bar-
coding fragment

The Sponge Barcoding Project focuses initially on sequencing the standard barcoding

partition, located at the 5’ end of the mitochondrial cytochrome oxydase subunit 1

(Folmer et al., 1994; Hebert et al., 2003), to comply with the current convention for

metazoan barcoding (but see Erpenbeck et al., 2006b). We have used degenerate primers

(Meyer et al., 2005), and reactions supplemented with BSA. The amplification program

used was a standard three-step PCR with an initial denaturation step of 3 minutes at

94◦C followed by 35-40 cycles of 30 seconds at 94◦C, 30 seconds at 40◦C and 1 minute

at 72◦C, and a final extension step of 5 minutes at 72◦C. PCR products were visualized

on a 1% agarose gel electrophoresis, and each reaction was categorized as “positive”

or “negative”. For sequencing, the same PCR primers were used after a standard

ammonium acetate-ethanol clean-up (Sambrook et al., 1989). Reads were assembled

and annotated as “contamination” or “sponge” according to the results obtained from

BLAST (Johnson et al., 2008). For selected extracts tagged as “contamination”, we

amplified ca. 1.2kb of the nuclear 28S rDNA using primers NL4F+NL4R (Nichols,

2005), which tend to preferentially amplify poriferan DNA, to test for presence of

sponge DNA in the extract. The annotated PCR and sequencing results were used to

detect potential associations between PCR and sequencing success rates and taxonomic

affiliation and year of collection.
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Abstract

Background: The ∼350 demosponge species that have been described from the
benthic communities inhabiting the Antarctic shelf represent a faunistic compo-
nent distinct from that of neighbor regions. Sponges provide structure to the
Antarctic benthos and refuge to other invertebrates, and can be dominant at cer-
tain localities. Despite their importance DNA barcodes from Antartic sponges
are scarce.

Methodology/Principal Findings: We sequenced the standard barcoding COI region
for a comprehensive sample of sponges collected during the National Institute
of Water and Atmosphere’s BioRoss and IPY field campaigns to the Ross Sea,
and produced DNA-barcodes for ∼50 demosponge species covering ∼60% of
the species collected and ∼80% of the characteristic species present in the com-
munities occurring on the Ross Sea shelf. Antarctic sponge communities are
phylogenetically diverse matching the phylo-diversity of sponge communities
in the Lusitanic and Mediterranean marine provinces in the Warm Temperate
Northwest Atlantic. Additionally, DNA-barcoding revealed levels of in situ
molecular evolution comparable to those present among Caribbean sponges.
DNA-barcoding using the Segregating Sites Algorithm correctly assigned ∼54%
of the barcoded species.

Conclusion/Significance: A barcode library for Antarctic sponges was assembled
and used to advance the systematic and evolutionary research of Antarctic
sponges. We provide insights on the evolutionary forces shaping Antarctic’s
diverse sponge communities, and a barcode library against which future se-
quence data from other areas of Antarctica or depth strata can be compared, or
sponge collections can be sorted to speed up the taxonomic identification and
ecological research.

5.1 Introduction

Sponges are a conspicuous and, in some cases, dominant members of the rich inverte-

brate communities that inhabit the Antarctic shelf (Gutt and Starmans, 1998; Gutt, 2007).

Large poriferans are key structural components of the Antarctic benthos, reaching high

abundances and biomasses (Barthel, 1992a), serving as structural frameworks for other

filter feeders, and providing refuge for the juvenile and adult stages of numerous organ-
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isms (Barthel, 1992b, 1997; Gutt and Schickan, 1998; Schiaparelli et al., 2003). In terms of

species richness, Antarctic sponge assemblages are comparable to those found in tropi-

cal ecosystems (McClintock et al., 2005). In addition, the ∼350 sponge species reported

for the Antarctic shelf constitute a distinct faunistic complex characterized by its high

species-level endemism and generic cosmopolitanism, and by the alleged circumpolar

distribution of most species (Sara et al., 1992). Of the ∼350 sponge species identified

from NIWA collections, 4 species have been recorded from Chatham Rise in southeast-

ern New Zealand waters (Suberites caminatus Ridley & Dendy, 1886; Craniella sagitta

(Lendenfeld, 1907), Rossella antarctica Carter, 1872, and Tentorium papillatum). Polymastia

invaginata Kirkpatrick, 1908 has also been recorded from the Macquarie Ridge south of

New Zealand.

The high endemicity levels observed among Antarctic sponges have been hypoth-

esized to be the result of the continent‘s long geological history and relatively high

geographic isolation (Sara et al., 1992). Antarctica separated from Gondwana ∼140 mil-

lion years ago and became progressively isolated from other land masses (Brandt et al.,

2007). By the end of the Eocene, the opening of the Drake Passage broke Antarctica‘s last

connection with South America and triggered the onset of the Antarctic Circumpolar

Current (ACC) (Lawver and Gahagan, 2003). Climate change and the development

of the ACC during the Oligocene (Lawver and Gahagan, 2003) further isolated the

Antarctic biota, likely promoting speciation in the marine realm. In situ diversification

in Antarctica has been documented for a number of marine invertebrates (Held, 2000;

Held and Wagele, 2005; Linse et al., 2007; Brandão et al., 2010; O‘loughlin et al., 2010),
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and is likely in sponges which typically produce short-living planktonic larvae.

Notwithstanding their importance, Antarctic sponges have been largely neglected

from molecular phylogenetic or DNA-barcoding studies of the phylum Porifera, due in

part to the harshness of the environment and difficult of access for collection. Grant et

al. (2009) found that only 2% of all sponge species reported for Antarctica had sequence

data, and to date only a handful of studies have dealt with the molecular systematics

of selected Southern ocean poriferans (see Chapters 1 and 2). The lack of Antarctic

sponge sequences limits the evaluation of hypotheses regarding their macro-ecology

and evolutionary history, DNA-barcoding (Hebert et al., 2003) can be used to rapidly

sequence a representative set of Antarctic sponges. Here, we use a community-based

approach (sensu Kress et al., 2009) to barcode the shelf and slope sponge associations

occurring in the Ross Sea, Antarctica. Our barcode dataset provide first insights into the

evolutionary processes that led to Antarctica‘s high sponge diversity and endemism,

and reveal areas of taxonomic uncertainty in need of further research.

5.2 Results

5.2.1 Ross Sea sponge assemblages and depth stratification

Cluster analysis resulted in five groups of stations (cut height = 0.95), four of which

were also present in the NMDS results (Fig. 5.1). These clusters were clearly related

to the start trawling depth, and a generalized additive model (normal link) fitting

this variable explained ∼70% of the total deviance. In general terms, the main three

clusters found corresponded to upper (Cluster 3; Depth=264±98m), middle (Cluster
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Figure 5.1: Cluster and Non-metric Multidimensional Scaling (NMDS) analyses (Jaccard dis-
tance) of the Ross Sea shelf and slope sponge communities. Depth (meters) contours in the
NMDS were fitted using generalized additive models (normal link). Cluster groups at a
height=0.95 are highlighted in gray in the cluster analysis and annotated in the NMDS plot.
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Table 5.1: Characteristic species (in bold face) per station cluster. Characteristic species are those
present in >25% of a cluster‘s member stations. Species for which a barcode was successfully
sequenced are annotated.

Cluster

Species 1 2 3 Barcoded

Acanthorhabdus fragilis 0.37 0.34 . YES
Anoxycalyx ijima 0.25 . . NO
Artemisina jovis 0.37 . . YES
Artemisina plumosa . . 0.7 YES
Cinachyra antarctica . 0.26 . YES
Cinachyra barbata 0.25 . . YES
Cinachyra vertex 0.62 . 0.4 YES
Clathria pauper . . 0.3 YES
Craniella microsigma 0.50 . 0.3 YES
Craniella sagitta . 0.43 . YES
Desmacidon maeandrina . . 0.6 NO
Gellius pilosus . . 0.3 YES
Homaxinella n.sp.1 0.37 0.30 . YES
Inflatella belli . 0.30 . NO
Iophon spatulatum . 0.34 . YES
Isodictya cactoides . . 0.3 YES
Isodictya erinacea . 0.26 0.5 YES
Latrunculia biformis . 0.34 . YES
Mycale acerata . 0.30 0.3 NO
Phorbas glaberrimus 0.25 0.26 . YES
Rossella antarctica 0.25 0.56 . NO
Rossella fibulata . 0.30 . NO
Rossella nuda . . 0.3 NO
Rossella podogrosa 0.25 . 0.3 NO
Rossella racovitzae . 0.39 . NO
Rossella villosa 0.25 . . NO
Sphaerotylus capitatus . . 0.3 NO
Stylocordyla borealis . . 0.3 YES
Suberites caminatus . 0.43 . YES
Suberites papillatus 0.25 . . YES
Tedania massa . . 0.4 YES
Tedania oxeata . 0.30 0.4 YES

continues in the next page. . .

86



Chapter 5. Ross Sea community sponge barcoding

. . . comes from last page.

Tentorium papillatum2 . 0.56 . NO
Tetilla leptoderma . 0.26 . NO
1 Rossella fibulata, Rossella nuda, Rossella podogrosa and Rossella villosa,

are likely synonimous (or subspecies) of Rossella racovitzae and were
therefore not considered characteristic species of any cluster.

2 Suberites caminatus, Suberites papillatus and Tentorium papillatum are,
likely, synonimous. This will make them present in Cluster 1 and 2,
and therefore not characteristic of any cluster.

1; Depth=443±302), and lower (Cluster 2; Depth=654±301) shelf sponge assemblages.

The fourth and fifth clusters grouped, each, two stations that shared only one species

and showed no relation with depth. The characteristic species for the shelf assemblages

(i.e. Clusters 1-3) are shown in Table 5.1.

5.2.2 Phylogeny and phylogenetic diversity of Antarctic sponges

Antarctic sponges nested within several nominal demosponge orders, namely: Hadrom-

erida, Halichondrida, Haplosclerida, Poecilosclerida and Spirophorida (Fig. 5.2). The

families Polymastidae and Suberitidae, currently in Hadromerida, did not formed a

monophylum. Polymastidae included two main clades corresponding to the genera

Polymastia and Tentorium (referred in the figures and tables as ’Suberites’). Interestingly,

one Genbank sequence attributed to Polymastia was sister to a specimen of ’Suberites

caminatus’ from the Ross Sea, and a sequence belonging to a specimen classified as

Sphaerotylus antarcticus sampled in the Ross Sea was included within a clade corre-

sponding to sequences of Polymastia isidis from this same area. Within the family

Suberitidae, all specimens of Homaxinella n. sp. 1 formed a highly supported clade

that included a specimen classified as Iophon spatulatus (Poeciloclerida). This clade was
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related with high support to two Antarctic species of the genus Plicatellopsis, which did

not formed a monophylum in the ML tree. The genus Pseudosuberites and specimens

of Stylocordyla borealis (Stylocordilidae) were included in Suberitidae. In the Order

Halichondrida, Ross Sea specimens of Bubaris n. sp. 1 (Bubaridae) formed a highly

supported monophylum sister to a clade that included, with high support, a GenBank

sequence attributed to Dyctionella and a Ross Sea specimen identified as Tentorium n. sp.

1. Antarctic marine haplosclerids were distributed in four clades which included (1) the

species Haliclona bilamellata and one specimen of Calix arcuarius, (2) Petrosia fistulata and

Haliclona altera together with a specimen determined as cf. ’Suberites caminatus’, (3) a

second group of C. arcuarius specimens and Haliclona implexiformis, and (4) a clade com-

posed of Haliclona dancoi, P. fistulata, Gellius pilosus and Isodyctia erinacea, a poecilosclerid

sponge. Members of Spirophorida, specifically species of Cinachyra and Craniella, from

the Ross Sea formed a highly supported clade. The genus Craniella was not mono-

phyletic but its species were split in two clades. Finally, the order Poecilosclerida was

not monophyletic. Species of the families Desmacellidae and Rhabderemidae were

not related to chelae-bearing poecilosclerids, which formed a monophylum. Among

Antarctic poecilosclerids, Kirkpatrickia variolosa was sister to species of Plocamionida.

Phorbas glaberrimus was not related to other species of Phorbas available in Genbank

but to Fibulia cribiporosa from the Ross Sea, and Lissodendoryx flabellata was not related

to other species of the genus included in the phylogenetic analysis. Species of Iophon

formed a highly supported clade with Acanthorhabdus fragilis and Isodictya erinacea, this

last species was not related to Isodictya cactoides which was included in a clade with
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species of Iotrochota. All specimens of Clathria pauper formed a highly supported mono-

phylum that was not related to other members of the genus Clathria. Within this genus,

the Antarctic species of Artemisina formed a clade and were not related to Artemisina

melana from Genbank. The genus Tedania was monophyletic, with Tedania oxeata more

closely related to Tedania ignis+Tedania klausi than to other Antarctic species (i.e. Tedania

trirhaphis and Tedania massa). Antarctic Myxilla formed a highly supported clade sister to

a specimen identified as Gellius n. sp. 1 from the Ross Sea. Finally, the genus Tsitsikamma

and the Antarctic species of Latrunculia formed a highly supported monophylum.

The rarified inclusive phylogenetic diversity for seven sampled MPs is shown in

Figure 5.3. The NBS was the least diverse MP sampled while the TNWA showed the

highest PDI values. The Continental High Antarctic (CHA) MP, represented here by

the Ross Sea barcoded sponges, had intermediate PDI values comparable to the L and

MS provinces. Interestingly, the amount of phylogenetic diversity attributable to in situ

evolution (Fig. 5.3) within an area was maximal for the CHA and the TNWA, where

PDE accounted for ∼35% of the PDI of both areas. PDE was minimal for NBS and NES

(11% and 17% respectively) and reached intermediate values (17-27%) for the L, MS and

WTNWA.

5.2.3 DNA-barcoding assignment power

The SSA correctly assigned∼54% of the species in the Ross Sea shelf sample. Among the

remaining species, ∼47% were found to be either potential misidentifications or groups

of specimens which taxonomy deserves to be revised (see Discussion) and 53% can be
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attributed to the incompleteness of the candidate species database. Figure 5.4 shows

the standardized assignment risk resulting from the leave-one-out cross validation SSA

trials. In general, the assignment risk using the standard COI barcoding fragment

remained low to moderate within families or orders and increased between them. In

the case of specimens for which only one sequence was available, SSA was able to assign

the queries to related genera in the same family (e.g. Cinachyra as Craniella, Iophon as

Acantorhabdus, and Plicatellopsis as Homaxinella) or clade (e.g. Fibulia as Phorbas and vice

versa)(Table 5.2).
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Figure 5.4: Classification accuracy, measured as standardized assignment risk, of the Segregating
Sites Algorithm for Antarctic sponges
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Table 5.2: Minimum risk species assignment obtained in the leave-one-out SSA trials. Correctly
assigned species are in bold face. If a query had two minimum risk assignments, the candidate
species are separated by |.

Query Species Minimum Risk Assignment
Acanthorhabdus fragilis Acanthorhabdus fragilis
Artemisina jovis Artemisina jovis
Artemisina plumosa Artemisina plumosa
Artemisina tubulosa Artemisina plumosa | Artemisina jovis
Asbestopluma obae Artemisina plumosa | Artemisina jovis
Biemna n. sp. 2 Petrosia fistulata
Bubaris n. sp. 1 Bubaris n. sp. 1
Calyx arcuarius Haliclona bilamellata
cf. Suberites caminatus Haliclona altera
Cinachyra antarctica Cinachyra barbata
Cinachyra barbata Cinachyra monticularis | Cinachyra vertex
Cinachyra monticularis Craniella sagitta
Cinachyra vertex Craniella sagitta
Clathria pauper Clathria pauper
Craniella microsigma Craniella sagitta
Craniella sagitta Craniella microsigma
Eurypon miniaceum Iophon n. sp. 1
Fibulia cribiporosa Phorbas glaberrima
Gellius n. sp. 1 Myxilla n. sp. 1
Gellius pilosus Haliclona dancoi
Haliclona altera cf. Suberites caminatus
Haliclona bilamellata Haliclona bilamellata
Haliclona dancoi Gellius pilosus
Homaxinella balfourensis Stylocordyla borealis
Homaxinella n. sp. 1 Homaxinella n. sp. 1
Inflatella coelosphaeroides Suberites topsenti
Iophon n. sp. 1 Acanthorhabdus fragilis
Iophon spatulatus Iophon n. sp. 1
Isodictya cactoides Iophon n. sp. 1
Isodictya erinacea Iophon n. sp. 1
Kirkpatrickia variolosa Kirkpatrickia variolosa
Latrunculia biformis Latrunculia brevis
Latrunculia brevis Latrunculia biformis
Lissodendoryx flabellata Iophon n. sp. 1

continues in the next page. . .
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. . . comes from last page.
Myxilla mollis Myxilla n. sp. 1
Myxilla n. sp. 1 Myxilla mollis
Petrosia fistulata Haliclona dancoi
Phorbas glaberrima Fibulia cribiporosa
Plicatellopsis fragilis Homaxinella n. sp. 1
Polymastia invaginata Polymastia invaginata
Polymastia isidis Polymastia isidis
Pseudosuberites antarcticus Pseudosuberites hyalinus
Pseudosuberites hyalinus Pseudosuberites antarcticus
Pseudosuberites nudus Pseudosuberites nudus
Sphaerotylus antarcticus Polymastia isidis
Stylocordyla borealis Stylocordyla borealis
Suberites caminatus Suberites papilatus
Suberites papilatus Suberites papilatus
Suberites topsenti Inflatella coelosphaeroides
Tedania massa Tedania trirhaphis
Tedania oxeata Tedania oxeata
Tedania trirhaphis Tedania trirhaphis
Tentorium n. sp. 1 Bubaris n. sp. 1

5.3 Discussion

We have presented the results of the first DNA-barcoding campaign directed towards se-

quencing a comprehensive sample of sponges collected in the Ross Sea, Antarctica. Ross

Sea sponges were found to be part of three distinct shelf assemblages that were highly

correlated with their depth of occurrence. These assemblages are, likely, variations of

(Gutt, 2007) broadly defined Suspension feeders community (SFC), which occur around

Antarctica from ∼30m down to the shelf break. The existence of distinct, identifiable,

sponge assemblages within the SFC showing a strong relationship with bathymetry

indicates that Antarctic SFCs might be more heterogeneous than previously thought.

Clear bathymetric distribution patterns have been also documented for hexactinellids
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inhabiting the slope and abyssal realms of the Weddell Sea (Gocke and Janussen, 2011),

and appear to be also present in Antarctic shelf demosponges.

In terms of the coverage reached by our barcoding campaign, 81% (N = 21) of the

characteristic demosponge species (N = 26) of the three shelf assemblages found were

successfully barcoded (Table 5.1), and 32 additional (non-characteristic) species were

sequenced to account for 60% of the demosponge species collected during NIWA‘s

BioRoss and IPY expeditions. In this respect, DNA-barcoding was successful in rapidly

gathering information about Antarctic sponge communities that can be used for phy-

logenetic inference (Fig. 5.2) and phylo-diversity comparisons (Fig. 5.3), or for sorting

large collections and complement taxonomic work. For instance, the inferred COI gene-

tree (Fig. 5.2) clearly pointed potential misidentifications as well as specimens in need of

deeper taxonomic examination, such as a specimen labelled S. antarcticus which formed

a monophyletic clade with specimens of P. isidis and, consequently, had no sphaerotyles

diagnostic of Sphaerotylus species (Boury-Esnault, 2002). Similarly, a specimen identified

as cf. ’S. caminatus’ was included in a clade together with H. altera and P. fistulata and,

consistently, had no tylostyles among its spicule complement but oxeas. Also within

Haplosclerida, the COI ML phylogeny revealed a rather diverse, highly supported clade

joining I. erinacea, G. pilosus, H. dancoi and P. fistulata together. In this clade, the specimen

of I. erinacea had no chelae but sigma microscleres in agreement with the description of

Gellius (Desqueyroux-Faundez and Valentine, 2002a), and P. fistulata had sigmas despite

being described as lacking microscleres (Desqueyroux-Faundez and Valentine, 2002b).

It is interesting to note that Burton (1929) (cited in Desqueyroux-Faundez and Valen-
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tine, 2002b) considered P. fistulata a juvenile of H. dancoi because of their morphological

similarity, thus it is likely that these species are confused on a regular basis. In contrast

to the examples above, all the barcoded specimens of C. arcuarius had toxas and oxeas in

accordance with the species description (Desqueyroux-Faundez and Valentine, 2002b).

The oxeas of these specimens were somewhat different, being either stout or more del-

icate, and pointing to the need of further taxonomic work on these specimens. Two

more cases worth noting, are the exclusion of C. pauper from Clathria suggested by de

Laubenfels (1936) and the inclusion of Suberites (Laxosuberella) topsenti in Poecilosclerida

foreseen by MK who annotated this species as “related to Semisuberites” because its

“tylostyles are mycalostyles”, both hypotheses are here corroborated. Table 5.3 sum-

marizes the potential misidentifications or contaminations detected during the analysis

of the barcode dataset.

Sponge taxonomy and nomenclature are complicated and can easily obfuscate the

study of diversity patterns among sponges. It has been suggested that the diversity of

Antarctica‘s sponge communities is comparable to that of tropical ecosystems (McClin-

tock et al., 2005). The analysis of the phylogenetic diversity of the Ross Sea collection

revealed PDI values comparable to those observed in subtropical MPs (i.e. L and MS)

and higher than those of some MPs in tropical realms (e.g. NBS). This is remarkable

given that the Ross Sea represents only one of the six Marine Ecoregions of the World

(MEOW) grouped within the Continental High Antarctic MP, whereas the Lusitanic

and Mediterranean Sea MPs include three and seven MEOWs each. Thus, it is very

likely that the inclusion of a more comprehensive sample of sponges from other ME-
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OWs within the Continental High Antarctic MP will results in Antarctic PDI values

comparable to those of tropical MPs (e.g. TNWA).

The high PDE/PDI ratio observed for the Ross Sea sample implies that a high propor-

tion of substitution changes in the standard COI barcoding fragment can be attributed

to in situ (within the Southern Ocean) evolutionary change (Lewis and Lewis, 2005).

This pattern of evolution can be the result of Antarctica‘s long age and high isolation

(Sara et al., 1992; Lawver and Gahagan, 2003), especially considering that the rates of

evolution of Antarctic organisms are expected to be generally low (Held, 2001; Clarke,

2008). It also favors, albeit indirectly, the hypothesis of an ancient (Gondwanan) origin

followed by in situ diversification of Antarctic sponges. Our COI gene-tree included

some Antarctic exclusive clades (Fig. 5.2) in Haplosclerida and Hadromerida as ex-

pected under a model of in situ diversification, however other groups (e.g. Tedania in

Poecilosclerida or Polymastia in Hadromerida) revealed that more complex historical

processes likely played a role in shaping Antarctic demosponge diversity patterns. A

more extensive species sample, ideally covering various localities in Antarctica as well

as neighboring regions, would be necessary to evaluate the biogeographic significance

of the evolutionary pattern here detected (i.e. high in situ evolutionary change).

DNA-barcoding can be used to sort and classify new collections from a particular ge-

ographic region provided that there is a reliable candidate species database available for

this task. Here, using the standard barcoding (COI) fragment and the SSA we were able

to correctly identified ∼54% of the sampled species. Considering that DNA-barcoding

can be easily done for many taxonomic groups simultaneously by technical staff trained
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in general molecular biology techniques, this method has the potential for reducing a

taxonomist‘s work load allowing specialists to focus only on specimens not accurately

classified through barcoding. These specimens can either be species absent from the

original candidate species database or groups with a complex taxonomy in need of de-

tailed revisionary work. Additionally, DNA-barcoding can be used in conjunction with

traditional morphological studies to simultaneously provide access to genotypic and

phenotypic data for a (potentially) large number of specimens, promoting integrative

taxonomic research and cross validation between both identification approaches. A

more heretical alternative would be to use DNA-barcodes without considering nomen-

clature for ecological or evolutionary research. We have done this with success for the

analysis of sponge phylo-diversity, and there is no reason why the same approach can-

not be used for the study of other aspects of ecology or organismic biology in sponges

or other organisms.

5.4 Materials and Methods

5.4.1 Sample collection and characterization of the Ross Sea
sponge assemblages

Sponges were collected mainly by dredging during the National Institute of Water

and Atmosphere‘s (NIWA) BioRoss (2004) and IPY (2008) expeditions to the Ross Sea,

Antarctica. Sponges were sorted and frozen on board, and latter transferred to and

stored in 70% ethanol. They were taxonomically determined and accessioned into

NIWA‘s Invertebrate Collection (NIC), Wellington, New Zealand. The identified collec-
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tions were used to build a species by station presence-absence matrix. This matrix only

included stations with at least 5 sponge species. We used the presence-absence matrix

in cluster analysis (average linkage) and Non-metric multidimentional scaling (NMDS)

using the Jaccard distance in both analyses. Station clusters were determined at a cutoff

height of 0.95, and the characteristic species set for each cluster was determined using

a constancy table; a species was considered characteristic if it was present in at least,

25% of the stations grouped in a cluster and was absent (or occurred in less than 25%

of the stations) from other clusters. Furthermore, using the NMDS results, we assessed

the relationship between depth and faunistic composition of the sampled stations using

Generalized Additive Models with a normal link.

5.4.2 Molecular methods

Genomic DNA was extracted from pieces of pre-frozen, 70% ethanol-preserved sponge

tissue using a modified (Ivanova et al., 2006) extraction protocol (see Chapter 4).

The standard barcoding fragment was initially amplified using primers dgLCO1490

and dgHCO2198 (Meyer et al., 2005), however, using this primer set we mainly ob-

tained sequences from non-target organisms, especially bacteria. In order to reduce

the amplification of non-target organisms a new forward primer (SpongeCOI-F1: 5’-

ACATTTTGCTGCCGGTCAGATAGGDACWGCNTTTA-3’), supplemented with an

M13 tail (in bold face), was designed to specifically exclude bacteria. Using this new

primer we exclusively amplified sponge DNA. We used a standard three-step PCR

consisting of an initial denaturation step of 94◦C for 3 minutes, 35-40 cycles consisting
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each of a denaturation step of 94◦C for 30 seconds, an annealing step of 40◦C for 30

seconds and an extension step of 72◦C for 1 minute, and, finally, a last extension step

of 72◦C for 5 minutes. For samples that proved difficult to amplify samples we used a

semi-nested approach in which a first, short PCR reaction (15-20 cycles; PCR program as

above) using the primers dgLCO1490 and dgHCO2198 was re-amplified using primers

SpongeCOI-F1+dgHCO2198 (35-40 cycles; PCR program as above). Negative controls

were used for both DNA extractions and PCR reactions to monitor potential contami-

nations. If the semi-nested PCR approach was used, the negative control from the first

PCR was also re-amplified. PCR products were excised from a 1.5% agarose gel (TAE)

and purified using a modified freeze-squeeze method. Sequencing was carried out in

both directions using primer M13-20F and dgHCO2198 and the Big Dye Terminator ver-

sion 3.1 (Applied Biosystems) chemistry. Sequencing reactions were cleaned-up using

a standard ethanol-ammonium acetate precipitation following the BigDye Terminator

3.1 manual protocol and analyzed on an ABI 3730 Genetic Analyzer at the Sequencing

Service of the Department of Biology, LMU München. Trace files were assembled in

CodonCode Aligner (CodonCode Corporation) and the sponge origin of the sequences

was confirmed using BLAST. Sequences will be deposited at EMBL upon submission

for stand-alone publication1.

1The final taxonomic assignment of the specimens is currently being revised (M. Kelly) based
on the results of this Chapter. In order to avoid later corrections to the deposited sequences the
submission to EMBL has been delayed.
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5.4.3 Phylogenetic methods and phylogenetic diversity

Newly obtained COI sequences and sponge COI sequences available at the NCBI Gen-

bank (Query = Porifera AND COI; Query date: 16 Sept. 2011) were aligned in Seaview

(Gouy et al., 2010) using the Muscle algorithm (v3.8.31 Edgar, 2004) with default settings.

The resulting alignment (available at http://dx.doi.org/10.5282/ubm/data.48 as a

mase file) was used to infer a bootstrapped Maximum Likelihood (ML) tree (1000 fast

pseudo-replicates Stamatakis et al., 2008) using RAxML 7.2.8 (Stamatakis, 2006). We

used the GTR model of sequence evolution and accounted for among-site rate variation

using a discrete gamma distribution with 4 categories. Bayesian phylogenetic analyses

were done under the same model settings as above but were not used further because

the estimation of branch-lengths in a Bayesian context is problematic (Brown et al.,

2010), and most of our analyses (see below) use the branch-lengths of the COI gene-tree.

The ML topology was used to estimate inclusive and exclusive phylogenetic diver-

sity (denoted PDI and PDE, respectively Lewis and Lewis, 2005) for the Ross Sea shelf

sponge samples and for several Marine Provinces (MPs; sensu Spalding et al., 2007) that

have been extensively sampled for molecular studies (e.g. Erpenbeck et al., 2007). We

annotated each species in the ML tree as present/absent in the Northern European Seas

(NES), the Lusitanian (L), the Mediterranean Sea (MS), and the Warm Temperate North-

west Atlantic (WTNWA) MPs in the Temperate Northern Atlantic Marine Realm, and

the Tropical Northwest Atlantic and North Brazil Shelf MPs in the Tropical Atlantic Ma-

rine Realm. Species lists for these MPs were obtained from the World Porifera Database.

Direct PDI comparisons between MPs are difficult due to the distinct sampling efforts
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historically allocated to them. We resorted to rarefaction (Sanders, 1968) to make com-

parisons between MPs with different sampling efforts possible. In brief, if N leaves on

the ML tree are known to occur in a given MP, we subsampled k = 1, . . . ,N leaves and

estimated the PDI of the taxon set k. Because there are n!
k!(n−k)! ways to sample k taxa

from a set of N taxa, we used Monte Carlo sampling to approximate the phylogenetic

diversity for any given k < N (Simberloff, 1972). For a fixed number of pseudoreplicates,

k terminals were randomly chosen and the complement set k′ was pruned from the ML

tree. The inclusive phylogenetic diversity of the sample k (PDI,k) was determined as

the difference between the total length of the ML tree and the length of the k′-pruned

tree. The rarified phylogenetic diversity values were used for inter-MP comparisons.

In addition, for all MPs we estimated the PDE
PDI

ratio for the total sample of taxa available

for a given MP (i.e. N).

5.4.4 DNA-barcoding

In order to assess the assignment power of the COI barcode in the case of Antarctic

sponge species, we used leave-one-out cross-validation and the Segregating Sites Al-

gorithm (SSA; Lou and Golding, 2010). The SSA uses a Bayesian approach to assign

sequences of unknown taxonomic affiliation to a set of sequences of known taxonomic

origin. Each COI sequence obtained from Ross Sea sponges was used as a query against

a dataset consisting of the remaining sequences, and the assignment risk of the query to

each species in the candidate species dataset was determined. A species assignment was

considered correct if the minimum risk candidate species matched the queried species
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or, in the case of species for which only one sequence was available, if the minimum

risk candidate species matched the genus of the query species. To facilitate compar-

isons, after each leave-one-out trial the assignment risk (R) of the query sequence, i,

to each sequence, j, in the dataset (Ri, j) was range standardized using the formula

Rs
i, j =

(Ri, jmin(R))
(max(R)+min(R)) .
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The taxonomy of the important glass sponge genus Rossella was clarified using two

different monophyly tests in conjunction with a thorough topological analysis. The most

appropriate taxonomy for the Southern Ocean Rossella, likely, contains only two species,

implying that a single species or species complex is responsible for a considerable

proportion of the biomass produced by the Antarctic megabenthos, highlighting the

need for a better understanding on the causes of the somewhat striking morphological

variation observed within Rossella racovitzae, and pointing to the need of revising and

further testing the classification of this species complex.

Based on its morphology, Abyssocladia has been related to the Family Cladorhizidae

and to the genus Phelloderma (Phellodermidae), depending on expert criterion and on

contrasting interpretations of the morphological evolution in poecilosclerid sponges.

Here, using two independent molecular markers to test both hypotheses the affinities of

Abyssocladia with Cladorhizidae, and the monophyly of this family were corroborated.

The monophyly of Cladorhizidae provides evidence for the independent evolution

of chelae microscleres, long thought to accurately reflect the evolutionary history of

poecilosclerid sponges and used as the basis for the classification of this Order. The

homoplasic evolution of chelae suggests that the taxonomy of Poecilosclerida deserves

to be revised based on molecular and morphological evidences.

The deep waters of Antarctica are difficult to sample, and the number of species

that occur in the vast abyssal plains of the Southern Ocean remain unknown. In this
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study, lower bounds for the number of sponge species occurring in the waters of the

Weddell Sea, Western Antarctica, are provided. These results are dependent on the

spatial distribution of the taxa involved in the extrapolation procedure increasing the

number of predicted species as assumed the level of patchiness in the spatial distribution

of the sampled taxa increased. In addition, the results of the species richness prediction

provide guidelines for future sampling and highlight the need of dedicated research

programs to achieve the levels of sampling required to have a complete list of taxa

occurring in deep Southern Ocean habitats.

DNA barcoding, the use of standard DNA markers for species identification, can

provide a reliable system for the rapid assessment of the molecular phylogenetic di-

versity of biological communities world wide. Here, an analytical workflow for the

processing of sponges for DNA barcoding was established and used for the barcoding

of Antarctic sponges communities inhabiting the shelf and slope of the Ross Sea. The

barcoding campaign serve to demonstrate that Ross Sea sponge assemblages are as

diverse as their counterparts in temperate ecosystems and that in situ evolution has

accounted for a high number of mutation steps in Antarctic lineages. These results

suggest that the high diversity of sponges in Antarctica are the product of a long history

of isolation in the continent‘s waters, and serve as a clear case-study on the use of DNA

barcoding for integrative taxonomic research among poriferans.
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Precious coral and rock sponge gardens on the deep aphotic
fore-reef of Osprey Reef (Coral Sea, Australia)

In December 2009, the Deep Down Under Expedition
(www.deepdownunder.de) explored the deep fore-reef slopes of the
Queensland Plateau’s western reefs in the Coral Sea to a depth of
850 m. Due to its rich biodiversity and heritage value, the Coral Sea
was declared a Conservation Zone (Coral Sea Conservation Zone,
CSCZ) by the Australian Government in May 2009. However, while
the uniqueness and importance of Coral Sea shallow-water reefs have
been recognized, knowledge of sub-photic benthic communities is
deficient (see also Bongaerts et al. 2011). An inspection-class
remotely operated vehicle (ROV ‘Cherokee’, Marum, Bremen) was
deployed at Osprey (13!50S 146!32E) and Bougainville (15!29S
147!05E) Reefs to explore deep aphotic benthic communities. For
the first time in tropical eastern Australia, gardens of precious corals
(Corallium sp.; Fig. 1) as well as rock sponges (‘Lithistida’) and
cold-water corals (Madrepora sp.) (Fig. 2) were discovered on the
walls of Osprey Reef near North Horn, in depths of 265 and 375 m,
respectively. Several new species of glass sponges that have reef-
building potential were also recently described from deep Osprey
Reef (Dohrmann et al. 2011). The discovery of these previously

unknown and unique communities
on the deep Coral Sea fore-reefs
underpins the importance of the
CSCZ as an exceptional biodiversity
resource that warrants continued
protection, scientific exploration and
documentation.
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J. Reitner

Courant Research Center Geobiology, Georg-August-Universität Göttingen, Göttingen, Germany

Fig. 1 Garden of precious corals (Corallium sp.) at North Horn (Osprey Reef, 265 m
depth). Size of colonies about 30 cm (centre foreground). Photo: Marum

Fig. 2 Garden of rock sponges (‘Lithistida’, the dirty round ‘balls’), red ophiuroids, a crinoid and cold-water corals
(Madrepora sp., left and right side of image) at North Horn (Osprey Reef, 375 m depth). Photo: Marum

123

Received: 26 May 2011 / Accepted: 6 July 2011 / Published online: 31 July 2011
" Springer-Verlag 2011

Coral Reefs (2011) 30:901
DOI 10.1007/s00338-011-0802-y

Reef sites
Author's personal copy



ERRATUM

Erratum to: Precious coral and rock sponge gardens on the deep
aphotic fore-reef of Osprey Reef (Coral Sea, Australia)

G. Wörheide • S. Vargas • C. Lüter •

J. Reitner

! Springer-Verlag 2011

Erratum to: Coral Reefs (2011)
DOI 10.1007/s00338-011-0802-y

During the course of video/still image analysis, some pic-

tures unfortunately appear to have been mixed up. The
coral colonies shown in Fig. 1 have not been sampled, and

their identity is not confirmed. However, numerous

Corallium sp. colonies were found at the same site in
greater depth (602–627 m), as shown in Fig. S1 (attached),

and their identity was confirmed by DNA barcoding. We

would like to emphasize that the main message of our Reef
Site article, the first discovery of precious corals on the

aphotic reef slope of Osprey Reef, is still unchanged. We

thank Rob Beaman (JCU) for pointing this out to us and
Sarah Adolf (LMU) for assistance with DNA barcoding.

The online version of the original article can be found under
doi:10.1007/s00338-011-0802-y.

G. Wörheide (&) ! S. Vargas
Department für Geo- und Umweltwissenschaften &
GeoBio-Center, Ludwig-Maximilians-Universität München,
Richard-Wagner-Str. 10, 80333 Munich, Germany
e-mail: woerheide@lmu.de

C. Lüter
Museum für Naturkunde, Leibniz-Institiut für Evolutions- und
Biodiversitätsforschung an der Humboldt-Universität zu Berlin,
Berlin, Germany

J. Reitner
Courant Research Center Geobiology, Georg-August-Universität
Göttingen, Göttingen, Germany

Fig. S1 Corallium sp. in 627 m depth at Osprey Reef (Coral Sea)
(reddish colony in the center, horizontal size approx. 40 cm)
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Abstract.—Reconciliation of paleontological and molecular phylogenetic evidence holds 1 

great promise for a better understanding of the temporal succession of cladogenesis and 2 

character evolution, especially for taxa with a fragmentary fossil record and uncertain 3 

classification. In zoology, studies of this kind have largely been restricted to Bilateria. 4 

Hexactinellids (glass sponges) readily lend themselves to test such an approach for early-5 

branching (non-bilaterian) animals: they have a long and rich fossil record, but for certain 6 

taxa paleontological evidence is still scarce or ambiguous. Furthermore, there is a lack of 7 

consensus for taxonomic interpretations, and discrepancies exist between neontological and 8 

paleontological classification systems. Using conservative fossil calibration constraints and 9 

the largest molecular phylogenetic dataset assembled for this group, we infer divergence 10 

times of crown-group Hexactinellida in a Bayesian relaxed molecular clock framework. With 11 

some notable exceptions, our results are largely congruent with interpretations of the 12 

hexactinellid fossil record, but also indicate long periods of undocumented evolution for 13 

several groups. This study illustrates the potential of an integrated molecular/paleobiological 14 

approach to reconstructing the evolution of challenging groups of organisms. 15 
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 1 

Introduction 2 

The fossil record provides the only tangible evidence of the temporal distribution of 3 

taxa, but it is well appreciated that these data are often incomplete. Furthermore, taxonomic 4 

interpretation of fossils can be difficult when key characters are not preserved, leaving much 5 

room for speculation. Molecular sequences provide an independent source of data that can be 6 

brought to bear on evolutionary questions. However, in order to use these data to elucidate the 7 

timing of evolutionary events by estimating dates of clade divergence, external information, 8 

typically taken from the fossil record, is required. Therefore, synthesizing paleontological and 9 

molecular data for a more holistic understanding of evolutionary history is both one of the 10 

most promising and challenging lines of modern paleobiological research (Brochu et al. 2004; 11 

Magallón 2004; Donoghue and Benton 2007; Peterson et al. 2007). However, taxa vary 12 

greatly in their suitability for such integrated analyses. 13 

For diverse groups with still no appreciable fossil record, e.g. Platyhelminthes or 14 

Placozoa, analyses integrating paleontological data will probably never be possible. The 15 

evolution of other important groups for which there are only scattered fossil occurrences, 16 

usually as partly isolated Lagerstätten, e.g., Nematoda or Medusozoa, may also be 17 

prohibitively difficult to address with synthetic analyses combining fossil and molecular data 18 

because first fossil occurrences of subclades are not likely to correspond closely to their 19 

evolutionary origin (Cartwright and Collins 2007). A further difficulty is posed for groups 20 

that have a relatively rich fossil record, but whose phylogenetic histories are difficult to 21 

reconstruct with morphological data due to paucity of informative characters and high levels 22 

of homoplasy. Sponges (Porifera) are perhaps the most notorious example of such a taxon 23 

(see Hooper and van Soest 2002). Molecular systematics has greatly contributed to resolve 24 

relationships of extant sponges (Erpenbeck and Wörheide 2007), but has also generally 25 

indicated that traditional sponge classification and taxonomy is based on characters that do 26 
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not accurately reflect evolutionary history. Since morphology-based classification is already 1 

difficult for extant taxa, it is even more problematic for fossil sponges. Paleontologists 2 

naturally have to rely on morphological characters for taxonomic assignment, and the task is 3 

made more difficult because the poriferan fossil record is biased towards groups with fused or 4 

articulated skeletons, leaving substantial gaps for taxa that more readily disintegrate after 5 

death (Pisera 2006). This difficult situation, however, is less severe in the glass sponges 6 

(Hexactinellida), which have recently been shown to have an evolutionary history, as 7 

elucidated by molecular sequence data, that is largely consistent with the distribution of 8 

morphological features across its traditional taxa (Dohrmann et al. 2008, 2009). However, the 9 

fossil record presently provides incomplete or ambiguous evidence regarding the origin and 10 

evolution of extant hexactinellid subtaxa (see next section). Furthermore, the poor 11 

concordance between paleontological and neontological systematics greatly complicates 12 

matters (Krautter 2002; Reiswig 2006).   13 

Here we use glass sponges to illustrate how a molecular paleobiological approach 14 

(Peterson et al. 2007) can enhance our understanding of the evolution of such "problematic" 15 

animal groups. We estimate divergence times of crown-group Hexactinellida from the largest 16 

molecular phylogenetic dataset assembled to date for this class of sponges (Dohrmann et al. 17 

2011b), using a relaxed molecular clock approach (see e.g. Welch and Bromham 2005; Yang 18 

2006 for reviews) and fossil-based age constraints for calibration. We then compare the dated 19 

phylogeny with the fossil record and discuss implications of congruencies and discrepancies 20 

between the two sources of evidence, thereby coming to an enhanced appreciation of 21 

hexactinellid evolution. 22 

 23 

Fossil Record and Systematics of Glass Sponges.—Hexactinellids were important 24 

components of deep- and at times also shallower-water benthic ecosystems throughout the 25 

Phanerozoic, often associated with reef communities (e.g. Finks 1960; Mehl 1992; Brunton 26 
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and Dixon 1994; Leinfelder et al. 1994; Krautter et al. 2001; Carrera and Botting 2008). Their 1 

rich fossil record (see Krautter 2002; Pisera 2006) dates back to the late Neoproterozoic 2 

(Steiner et al. 1993; Gehling and Rigby 1996; Brasier et al. 1997). The two extant subclasses, 3 

Hexasterophora and Amphidiscophora, whose monophyly is strongly supported by both 4 

morphological and molecular data (Mehl 1992; Dohrmann et al. 2008), appear in the early 5 

Paleozoic, as indicated by isolated microscleres (Mostler 1986). Since the oldest hexasters 6 

(the defining autapomorphy of Hexasterophora) are known from the lowermost Ordovician, 7 

the hexasterophoran and amphidiscophoran stem-lineages must have already evolved during 8 

the Cambrian (Mostler 1986; Mehl, 1996). However, given that the earliest (late Ediacaran 9 

and early Cambrian) bodily preserved hexactinellid fossils (e.g. Steiner et al. 1993; Gehling 10 

and Rigby 1996; Brasier et al. 1997; Wu et al. 2005; Xiao et al. 2005) bear no resemblance to 11 

any specific extant subtaxon, it is likely that they represent stem-group members, implying 12 

that the origin of the crown-group (i.e., the split between the two subclasses), does not predate 13 

the Ediacaran/Cambrian boundary. Thus, while the origin of Hexactinellida from a common 14 

ancestor with demosponges certainly occurred in Precambrian times, their crown-group likely 15 

evolved rapidly as part of the Cambrian radiation (cf. Zhang and Pratt 1994; Reitner and Mehl  16 

1995; Xiao et al. 2005; see also Erwin 2011). 17 

Following a high Paleozoic diversity, most groups dominant in that Era had disappeared 18 

by the end of the Permian (Mostler 1990; Mehl 1996; Mehl-Janussen 1999; Krautter 2002). 19 

Because the taxonomically important microscleres are rarely preserved in situ (but see e.g. 20 

Kling and Reif 1969; Rigby et al. 2007 for notable exceptions), and Paleozoic skeletal 21 

architectures differ greatly from Mesozoic and modern forms (Mehl and Mostler 1993; Mehl 22 

1996), relationships of these taxa to extant hexactinellids remain largely elusive. Thus, fossils 23 

assigned to modern families are mostly confined to the Mesozoic-Cenozoic. The fossil record 24 

of Amphidiscophora is poor (Mehl 1992, 1996), and the earliest crown-group member (family 25 

Hyalonematidae) was described from the Late Cretaceous (Mehl and Hauschke 1995). 26 
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Likewise, there is no conclusive evidence for Paleozoic Lyssacinosida, a hexasterophoran 1 

order characterized by largely unfused (lyssacine) skeletons (Mehl 1992, 1996). Although 2 

most Paleozoic glass sponges are lyssacine, assignment of early Paleozoic or even late 3 

Neoproterozoic fossils, solely based on this single character, to the Lyssacinosida (e.g. 4 

Krautter 2002) is highly questionable because this type of skeletal organization also 5 

characterizes Amphidiscophora and is therefore likely plesiomorphic (Mehl 1992). The 6 

modern families of Lyssacinosida (Rossellidae, Euplectellidae, Leucopsacidae) are definitely 7 

present by the Late Cretaceous (Salomon 1990; Brückner and Janussen 2005; Brückner 8 

2006), but due to their limited fossilization potential the earlier history of Lyssacinosida 9 

remains obscure.  10 

The earliest unambiguous evidence for crown-group Hexasterophora is the occurrence 11 

of dictyonal frameworks – rigid skeletons produced by fusion of hexactine megascleres – in 12 

the Late Devonian (e.g. Rigby et al. 1981, 2001; Rigby 1986; Mehl and Mostler 1993; Mehl 13 

1996). These structures are diagnostic for the "Hexactinosida", a hexasterophoran order that 14 

underwent major radiations during the Mesozoic (Mehl 1992; Mehl and Mostler 1993; Pisera 15 

1999) and is still abundant and diverse today (see Hooper and van Soest 2002; Leys et al. 16 

2007). Curiously, dictyonal skeletons are not documented from the Carboniferous, Permian, 17 

and Early Triassic (Pisera and Bodzioch 1991; Mehl and Mostler 1993; Mehl 1996), which is 18 

hypothesized to be a preservational artefact (Mehl 1996; Rigby et al. 2001). Although 19 

molecular data (Dohrmann et al. 2008, 2009) suggest that the "Hexactinosida" are 20 

paraphyletic with respect to Lyssacinosida, the majority of hexactinosidans form a highly 21 

supported clade, the Sceptrulophora (Mehl 1992; Dohrmann et al. 2011a), which is the sister 22 

group of the remaining hexasterophorans (Dohrmann et al. 2008, 2009). This taxon is 23 

characterized by the possession of sceptrules, a scepter-like spicule type that occurs in various 24 

forms, mostly scopules or clavules (cf. Dohrmann et al. 2011a). In contrast, sceptrules are 25 

lacking in the Dactylocalycidae, which were resolved as the sister group of Lyssacinosida in 26 
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molecular studies (Dohrmann et al. 2009, 2011b). Spicule fragments interpreted as sceptrules 1 

have been reported from late Cambrian and Ordovician strata (e.g. Bengtson 1986; Webby 2 

and Trotter 1993; Dong and Knoll 1996; Kozur et al. 1996; Zhang and Pratt 2000). However, 3 

their poor preservation and the next appearance of sceptrules in the Triassic (Donofrio 1991; 4 

Krainer and Mostler 1991) raise doubts about the homology of the Paleozoic and Mesozoic-5 

Recent forms. 6 

Another important hexasterophoran taxon is the Lychniscosida, species-poor in today’s 7 

oceans (Reiswig 2002a), but once highly diverse and reef-building. Lychniscosidans appeared 8 

in the Middle Jurassic (Pisera and Bodzioch 1991; Mehl 1992; Mehl and Mostler 1993; Pisera 9 

1999) and also have dictyonal skeletons. However, their skeletons probably evolved 10 

convergently since they are built from lantern-like hexactins rather than simple hexactins 11 

(Mehl 1992). Lychniscosidans have not been sampled yet for molecular systematics, so the 12 

hypothesis that this taxon is nested within Lyssacinosida (Mehl 1992) remains to be tested. 13 

In general, hexactinellid diversity gradually declined after a Late Cretaceous peak, 14 

which might be related to restrictions of shelf habitats (Mehl 1992) and/or changes in ocean 15 

chemistry (Maldonado et al. 1999).  16 

  17 

Methods 18 

  19 

We based our study on a DNA sequence data set (~4600 bp) consisting of concatenated 20 

nuclear 18S and partial 28S ribosomal DNA (rDNA), partial mitochondrial 16S rDNA and 21 

partial mitochondrial cytochrome oxidase subunit I (COI) from 50 hexactinellid species. For 22 

details on the molecular methods and phylogenetic analysis of this data set see Dohrmann et 23 

al. (2011b). In brief, we applied independent substitution models to COI, 16S, 18S single-24 

stranded regions (loops), 28S loops, and 18S+28S double-stranded regions (stems), including 25 

an RNA model to account for coevolution of paired sites for the latter (cf. Savill et al. 2001). 26 
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This analysis was conducted in a maximum likelihood (ML) framework using the software 1 

RAxML (Stamatakis 2006).  2 

For calibration, we constrained the ages of eight internal nodes and the root node, using 3 

nine minimum and one maximum constraints in total, as detailed below. Analyses without 4 

data, i.e. sampling only from the prior distribution, showed that the prior mean divergence 5 

times of the internal nodes significantly differed from the posterior estimates (results not 6 

shown), confirming that this calibration set was suitable, allowing the data to dominate the 7 

results. The calibrations used are as follows (see also Fig. 1; stratigraphy follows Gradstein et 8 

al. [2004] throughout this paper):  9 

 10 

- For the age of the root (= origin of crown-group Hexactinellida, or the 11 

Amphidiscophora/Hexasterophora-split) we used a minimum of 488 Ma (million years ago) 12 

(early Tremadocian: first hexasters [Mostler 1986]). Although the fossil record generally only 13 

provides minimum ages for taxa, at least one maximum age constraint is required to produce 14 

meaningful results from relaxed molecular clock analyses (see Warnock et al. 2011). 15 

Therefore, we also used a maximum of 542 Ma (Ediacaran/Cambrian-boundary) for the root 16 

age (see Introduction for justification). In preliminary analyses (results not shown) we also 17 

applied soft bounds (Yang and Rannala 2006) in order to relax this assumption. However, this 18 

still resulted in a Cambrian estimate for the root age while producing younger ages for many 19 

internal nodes. The reason for this is probably that all minimum constraints were also relaxed 20 

since PhyloBayes currently does not support application of soft bounds only to specific nodes 21 

or only to maximum constraints. As we have very little doubt about the validity of our 22 

minimum constraints, we therefore considered it more appropriate to use hard bounds for the 23 

final analysis.      24 

 25 
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- The age of crown-group Sceptrulophora was constrained to be at least 237 Ma, 1 

according to the earliest unambiguous finds of sceptrules in the Middle Triassic (lower 2 

Ladinian) (Krainer and Mostler 1991). Although the Late Devonian dictyonal frameworks 3 

(see Introduction) were assigned to extant sceptrulophoran families by Rigby et al. (2001), 4 

this interpretation has to be viewed with caution (see Results and Discussion). Instead, these 5 

fossils might represent stem-group Sceptrulophora, so we did not use them to calibrate this 6 

node. 7 

 8 

- Aphrocallistidae, Farreidae, and Tretodictyidae (all Sceptrulophora), as well as 9 

Hyalonematidae (Amphidiscophora) are known with certainty from fossils that clearly exhibit 10 

crown-group morphology from the Late Cretaceous Campanian stage (see, e.g. Schrammen 11 

[1912] for the sceptrulophoran families, and Mehl and Hauschke [1995] for Hyalonematidae). 12 

Thus, we assigned minimum ages of 83.5 Ma (base of the Campanian) to the crown-nodes of 13 

these clades. However, in case of the Tretodictyidae we assigned the constraint to the node 14 

that separates Hexactinella carolinensis and Tretodictyum tubulosum, since the third included 15 

species, Psilocalyx wilsoni, exhibits a rather peculiar morphology (Reiswig 2002b; Reiswig 16 

and Kelly 2011; Dohrmann et al. 2011a) that differs from the Late Cretaceous fossils, which 17 

more closely resemble the other two genera (in fact, some of these fossils were actually 18 

assigned to Hexactinella or Tretodictyum, although this is rather speculative due to non-19 

preservation of microscleres). 20 

 21 

- Crown-group members of the lyssacinosidan families Rossellidae and Leucopsacidae 22 

are known from bodily preserved fossils since the Late Cretaceous Coniacian stage (Brückner 23 

and Janussen 2005; Brückner 2006), and the earliest unambiguous crown-euplectellid was 24 

described from the Cenomanian (Salomon 1990). Although several of these fossils were 25 

assigned to extant genera that are included in our molecular data set, the lack of microscleres 26 
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renders these interpretations somewhat speculative (Brückner 2006). Thus, we assigned 1 

minimum ages of 89.3 Ma (Rossellidae, Leucopsacidae) and 99.6 Ma (Euplectellidae) to the 2 

crown-nodes of these families in order to test if those generic assignments were consistent 3 

with the molecular age estimates. 4 

 5 

Using these constraints, branch lengths of the ML tree topology (Fig. 1) were re-6 

estimated from the sequence data in units of absolute time, employing the Bayesian Markov 7 

chain Monte Carlo (BMCMC) framework provided by the PhyloBayes (v. 3.2f) package 8 

(Lartillot et al. 2009). Since the models used to infer the tree topology are not implemented in 9 

PhyloBayes, we used the CAT model (Lartillot and Philippe 2004) with GTR exchange rates 10 

(CAT-GTR), as the manual recommends for nucleotide data. Among-site rate variation was 11 

modelled with the Dirichlet process of Huelsenbeck and Suchard (2007), and among-lineage 12 

rate variation was accounted for by employing a log-normal autocorrelated relaxed molecular 13 

clock model (see Lepage et al. 2007 for details and justification). We ran two chains 14 

simultaneously (sampling every 1000th point) and checked for convergence using the 15 

tracecomp application of the PhyloBayes package. Chains were stopped when minimum 16 

effective sizes/maximum discrepancies of model parameters had achieved values >100/<0.1, 17 

as recommended in the manual. Node age summary statistics were then extracted with 18 

readdiv, discarding the first 25% of sampled points as burn-in. Additionally, node ages were 19 

extracted from each tree in the post burn-in sample using ETE v. 2.1 (Huerta-Cepas et al. 20 

2010; script available in Supplementary Material); the posterior distribution of the node ages 21 

was then plotted in R (http://www.r-project.org/) and used to evaluate alternative hypotheses 22 

concerning the systematic position of a number of hexactinellid fossils of ambiguous 23 

taxonomic affinities. In brief, the assignment of a fossil to a clade on the chronogram 24 

constrains the age that fossil can have in order to be congruent with the chronogram. Thus, for 25 

every fossil assigned to a clade on the chronogram it is possible to evaluate whether the 26 
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fossil's age lies within the 95% credibility interval (CrI) of the node's estimated age and reject 1 

the assignment when the fossil's age does not fall into this interval. 2 

 3 

Results and Discussion 4 

 5 

The BMCMC analyses took several weeks to reach convergence, and the two runs 6 

produced very similar results. We base our discussion on the chronogram shown in Fig. 2, 7 

which is derived from the arbitrarily chosen "chain 1". The means, standard errors, and 95% 8 

CrIs of age estimates derived from both chains are summarized in Supplementary Table S1. 9 

For selected nodes discussed below, we also show histograms of the posterior distributions of 10 

estimated ages (Figs. 3-7).  11 

The root age estimate of ~518 Ma (Cambrian Series 2) is consistent with the notion of a 12 

strong mid-Cambrian radiation of Hexactinellida (Mehl 1996; Krautter 2002). However, one 13 

has to bear in mind that we constricted the root age a priori to the Cambrian (see Methods), 14 

so the influence of the prior on this estimate might be strong (sampling only from the prior 15 

distribution gave a mean of ~516 Ma [results not shown]). Therefore, a more precise estimate 16 

of the age of crown-group Hexactinellida might require further study.  17 

The overall distribution of nodes (i.e., cladogenetic events or splits) through time in our 18 

chronogram is broadly consistent with paleontological views on Phanerozoic hexactinellid 19 

diversification (see Introduction): a "deep" Paleozoic radiation (13 splits) followed by a peak 20 

Mesozoic diversification (29 splits) and a marked Cenozoic decline (only 7 splits, which are 21 

confined to two families). Age estimates for the origin of most families' crown-groups are 22 

considerably older than unambiguous fossil evidence suggests (gray areas in Fig. 2); however, 23 

the estimated age ranges in many cases are consistent with more contentious assignment of 24 

older fossils to the respective families, as discussed in more detail below.  25 
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One striking result of our analysis is the huge difference in the estimated ages of the 1 

crown groups of the two subclasses: while the Hexasterophora already radiated some 40 2 

million years (myr) after the origin of their stem lineage, the Amphidiscophora crown 3 

radiation was delayed until the Late Triassic, suggesting the extinction of deeply branching 4 

amphidiscophoran lineages. In contrast, our results suggest an Early Ordovician origin of 5 

crown-group Hexasterophora, in good congruence with the first appearance of hexasters in 6 

the fossil record (Mostler 1986; Mehl 1996). Intriguingly, paleontological data indicate that 7 

major transitions in siliceous sponge morphology and ecology occurred during that time, 8 

including colonization of nearshore siliciclastic settings by hexactinellids (Carrera and 9 

Botting 2008). Thus, our estimate suggests that the early crown-group diversification of 10 

Hexasterophora might have been connected to these events. 11 

Because Sceptrulophora is the sister group to all other Hexasterophora, the crown-group 12 

origin of this subclass coincides with the origin of total-group Sceptrulophora. Although the 13 

mean age estimate of ~476 Ma (Floian; upper Early Ordovician) post-dates Paibian (late 14 

Cambrian) and Tremadocian (lower Early Ordovician) fragmentary microfossils interpreted 15 

as scopules (Dong and Knoll 1996; Kozur et al. 1996), these stages lie within the 95% CrI 16 

(Fig. 3, Table S1). Thus, we cannot reject the hypothesis that these spicules really came from 17 

early stem-group sceptrulophorans. In contrast, our results clearly reject an alleged early 18 

Paleozoic occurrence of clavules (e.g. Bengtson 1986; Webby and Trotter 1993; Dong and 19 

Knoll 1996; Kozur et al. 1996; Zhang and Pratt 2000): these spicules are restricted to the 20 

Farreidae (see Dohrmann et al. 2011a), and our results suggest a late Paleozoic origin of this 21 

clade (~343 Ma at most; Fig. 4, Table S1). Thus, we suggest that at least the Paleozoic 22 

"clavules", which are in fact morphologically rather different from those of extant Farreidae, 23 

represent either different spicule types such as anchorate basalia, or are convergently evolved 24 

spicules unrelated to the modern forms ("paraclavules"). 25 
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Our mean estimate of the age of crown-group Sceptrulophora (377 Ma; Frasnian) 1 

almost perfectly matches the age of the oldest known dictyonal frameworks (~380 Ma; Rigby 2 

et al. 2001), suggesting that their world-wide appearance in Late Devonian strata was the 3 

result of extensive radiations that gave rise to the modern sceptrulophoran lineages. Although 4 

assignment of some of these fossils to the Euretidae (Rigby et al. 2001) is incompatible with 5 

our mean estimate of ~350 Ma (Early Mississippian) for the origin of the lineage leading to 6 

Euretidae n. gen., their age lies within the standard error bounds for that node (Table S1). 7 

However, since monophyly of Euretidae is questionable from a morphological point of view 8 

and currently not resolved by molecular data (see Dohrmann et al. 2011a), one should be 9 

cautious to "shoe-horn" fossils of simple dictyonal skeletons into that family. According to 10 

our results, extensive cladogenesis within Sceptrulophora also occurred during the 11 

Carboniferous and Permian, which is intriguing because neither dictyonal skeletons nor 12 

sceptrules are documented from these periods (Mehl 1996). Thus, our results suggest that the 13 

early radiation of crown-Sceptrulophora continued in habitats that were either cryptic (Mehl 14 

1996) or are simply not preserved due to a bias towards terrestrial sedimentary outcrops from 15 

the late Paleozoic (Smith and McGowan 2007).  16 

Crown-Tretodictyidae are estimated to date back to the Early Mississippian (~351 Ma), 17 

which is considerably older than the first unambiguous records of this family from the Late 18 

Cretaceous. This result might suggest that the monospecific genus Psilocalyx belongs to a 19 

very ancient lineage of Tretodictyidae. However, no fossil record of this genus is known, and 20 

inclusion of additional tretodictyid genera, which might break up the long branch leading to 21 

Psilocalyx in the molecular phylogeny, will be required to further test this hypothesis. In 22 

contrast, the split between Hexactinella and Tretodictyum, which we used for calibration (see 23 

Methods), is estimated to be only ~17 myr older (Albian; late Early Cretaceous) than those 24 

fossils (e.g. Schrammen 1912). This is inconsistent with assignment of putative tretodictyids 25 

from the Early (Mostler 1990) and Middle (Mehl and Fürsich 1997) Jurassic to these genera, 26 
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rather suggesting a stem-lineage membership of the Hexactinella + Tretodictyum clade (Fig. 1 

5). In contrast to the Tretodictyidae, the crown-groups of Farreidae and Aphrocallistidae are 2 

estimated to have originated much later, in the Early Cretaceous, although their stem-lineages 3 

already separated in the mid-Permian. Farreoid skeletons and clavules were reported already 4 

from the Middle Triassic (Donofrio 1991; Krainer and Mostler 1991; Mehl and Mostler 5 

1993), so our results suggest that these autapomorphies (see Dohrmann et al. 2011a) evolved 6 

very early in the farreid stem-lineage. Other than that it is unclear at present which pre-7 

Cretaceous fossil taxa might be good candidates for stem-group Farreidae and 8 

Aphrocallistidae. 9 

Speculations about Ordovician stem-group Rossellidae (Botting 2004) are clearly 10 

incompatible with our chronogram, since we estimated an early Permian origin for this 11 

lineage (Late Devonian at most; Fig. 6, Table S1). Instead, according to our results the 12 

sponges described by Botting (2004) fall on the lineage leading to a late Silurian (~420 Ma)  13 

Dactylocalycidae/Lyssacinosida split (assuming they are indeed hexasterophorans). Since 14 

these fossils show a lyssacine skeletal organization, this supports the hypothesis that dictyonal 15 

frameworks of Dactylocalycidae are not homologous to those of Sceptrulophora but evolved 16 

independently from a lyssacine condition. However, the CrIs for this node include the age of 17 

Botting's (2004) fossils (Fig. 6, Table S1), so we cannot completely rule out that they were 18 

stem-group Lyssacinosida. The inferred Silurian age of Lyssacinosida also further 19 

discourages classification of older lyssacine hexactinellids in this order (see Introduction).  20 

According to our estimate, Euplectellidae diverged from its sister lineage by the Middle 21 

Devonian (~390 Ma), followed by crown-group radiation around the Carboniferous/Permian 22 

boundary (~300 Ma). This is much older than, and therefore consistent with, assignment of 23 

Early Triassic (Rigby and Gosney 1983) and Early Jurassic (du Dresnay et al. 1978) fossils to 24 

the Euplectellidae, although these interpretations have been questioned (Pisera and Bodzioch 25 

1991). Our results are also consistent with assignment of Early Jurassic isolated spicules to 26 
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the recent families of Lyssacinosida (Mostler 1989, 1990), although the claim that extant 1 

genera were already present at that time should be viewed with caution. Mostler (1989, 1990) 2 

lists the following: Aulosaccus, Caulophacus, Crateromorpha, Rossella (Rossellidae), 3 

Leucopsacus (Leucopsacidae), and Bolosoma (Euplectellidae). Among these, only Bolosoma 4 

and Leucopsacus could have been present in the early Jurassic with reasonable certainty if our 5 

results are accurate (Fig. 7, Table S1). In contrast, although the upper bounds of the CrIs for 6 

the stem nodes of Caulophacus, Crateromorpha, and Rossella reach back to ~200 Ma, the 7 

rossellid genera are estimated to be younger (Fig. 7, Table S1). However, even in case of 8 

Bolosoma, increased taxon sampling might break up the long branch leading to the single 9 

species sampled here and therefore lead to much younger estimates. Nonetheless, the 10 

hypothesis that the spicules reported by Mostler came from crown-group members of the 11 

extant lyssacinosidan families is corroborated by our study.  12 

Finally, although the classification of several Coniacian (Late Cretaceous) fossils from 13 

Denmark (Brückner and Janussen 2005; Brückner 2006) in extant genera is somewhat 14 

tentative due to non-preservation of microscleres (Brückner 2006), our results are consistent 15 

with assignments to Rossella (Rossellidae), Regadrella, Docosaccus, and Acoelocalyx 16 

(Euplectellidae). Interestingly, Rossellidae is the only hexasterophoran family that shows 17 

post-Cretaceous cladogenesis in our chronogram. This might indicate that large parts of the 18 

diversity of this most speciose hexactinellid family are the product of relatively recent 19 

radiations, in contrast to other taxa. However, increased taxon sampling among the remaining 20 

families might reveal a more homogenous pattern of diversification across the Hexactinellida.  21 

 22 

Conclusions 23 

 24 

By integrating molecular and fossil data, we further illuminated the evolutionary history 25 

of Hexactinellida, a group of non-bilaterian animals that significantly contributed to benthic 26 
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communities, including reefs, throughout the Phanerozoic. While our results corroborate 1 

some attempts by paleontologists to classify hexactinellid fossils, especially from the 2 

Mesozoic record, within recent taxa, in other cases we could reject some rather speculative 3 

hypotheses of systematic affinities using probability distributions of molecular node age 4 

estimates for the respective clades. This demonstrates how molecular chronograms can help 5 

narrowing down the possibilities in face of ambiguously interpretable fossils, which is 6 

particularly relevant in studies of taxonomically difficult groups (see also Waggoner and 7 

Collins 2004; Peterson et al. 2008). On the other hand, our dated phylogeny revealed 8 

extensive periods of missing fossil records for many clades, thereby providing a framework 9 

for more targeted efforts by paleontologists to recover older fossils of the respective taxa. We 10 

hope this work will stimulate future paleobiological research and re-evaluation of the 11 

hexactinellid fossil record, and also encourage researchers working on other non-bilaterian 12 

animal groups to apply molecular paleobiological approaches.  13 
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Table S1. Means, standard errors (SE), and lower (Inf95) and upper (Sup95) bounds of 95% 6 

Bayesian credibility intervals for estimated node ages from both PhyloBayes chains (1, 2). 7 

Node numbers correspond to those indicated in Fig. 2.   8 

Node Mean1 Mean2 SE1 SE2 Inf95_1 Inf95_2 Sup95_1 Sup95_2

0 517.58 518.65 15.09 14.92 489.57 491.13 541.26 541.37

1 475.72 476.55 21.71 21.78 429.33 433.59 515.93 518.60

2 420.09 421.15 27.13 26.21 362.25 365.04 469.78 469.53

3 389.60 389.05 31.40 28.70 322.33 330.63 449.06 444.05

4 322.60 324.97 33.05 31.48 255.80 264.30 385.68 388.33

5 294.69 295.60 32.85 30.74 235.44 233.48 363.27 357.93

6 218.24 218.69 32.25 31.01 154.15 158.78 283.58 278.04

7 170.62 173.14 32.02 31.65 108.17 115.17 230.99 242.40

8 153.80 156.53 31.68 31.92 94.45 98.17 219.02 228.71

9 144.66 146.92 31.10 31.30 86.50 87.84 213.37 216.97

10 125.70 125.83 32.40 31.87 67.67 69.76 194.83 202.70

11 40.79 38.85 20.38 20.51 13.12 11.86 92.11 92.13

12 27.33 26.84 14.99 15.69 8.24 8.17 66.87 70.70

13 28.52 30.36 13.91 16.35 11.32 10.84 65.15 77.33

14 130.18 132.94 32.95 32.43 71.74 75.94 198.54 199.76

15 59.20 60.91 24.37 26.07 20.01 22.50 118.13 121.34

16 196.05 195.30 32.66 32.56 135.16 132.57 265.61 257.12

17 132.14 132.90 31.64 31.11 75.44 72.96 199.14 194.79
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18 35.03 35.15 19.60 20.39 9.24 9.55 86.77 90.62

19 13.86 13.59 10.43 10.23 2.69 2.72 45.52 42.37

20 112.01 110.79 31.93 31.04 55.44 53.98 184.49 175.28

21 164.03 161.78 38.71 38.06 98.27 95.24 251.37 239.28

22 300.20 299.51 37.37 34.75 222.46 230.44 372.53 366.87

23 272.83 270.3 39.42 36.61 189.83 202.08 349.37 342.43

24 191.40 185.47 40.35 37.66 104.72 113.74 268.03 264.43

25 160.27 153.44 40.80 38.61 85.26 75.78 244.60 239.01

26 124.36 118.07 38.20 36.39 52.00 52.67 207.29 202.49

27 77.96 73.36 35.76 33.74 22.71 20.03 160.29 162.06

28 89.48 83.32 39.13 37.48 25.50 24.51 176.26 169.00

29 248.05 245.60 41.05 39.31 157.33 169.87 323.41 317.36

30 91.00 88.53 36.54 35.73 28.44 30.01 173.38 167.53

31 216.77 214.60 45.94 44.45 124.68 128.55 310.15 306.12

32 376.97 376.83 33.36 33.57 309.93 310.01 446.59 444.56

33 349.55 350.05 35.17 35.04 282.72 286.23 418.08 422.58

34 324.14 324.05 34.66 34.73 263.80 255.62 393.56 399.77

35 274.39 274.03 32.50 31.19 216.90 218.36 342.47 342.93

36 140.56 139.73 35.73 33.16 87.79 89.61 222.62 216.91

37 93.80 93.29 30.42 29.21 47.89 49.08 168.01 155.55

38 123.61 121.64 35.11 32.99 71.99 69.86 206.27 191.75

39 131.03 127.38 32.25 30.94 87.08 84.82 210.17 201.71

40 77.62 74.67 28.93 28.21 35.53 35.32 143.08 144.38

41 106.50 102.59 31.76 30.02 59.53 58.72 177.12 168.83

42 350.89 351.15 33.56 34.33 287.98 283.24 419.52 426.28

43 100.92 100.09 15.10 15.02 84.22 83.89 142.93 140.24

44 217.75 215.65 48.14 45.16 135.74 137.02 320.91 316.02

45 124.13 122.51 34.88 32.57 85.01 84.75 212.08 202.14
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46 45.42 44.63 28.60 26.11 11.78 10.91 126.17 109.41

47 104.36 103.38 48.35 49.20 33.34 29.86 231.21 219.40

48 68.35 67.36 37.20 38.21 17.65 16.94 158.43 173.20

 1 

Fig. 1. Maximum likelihood molecular phylogeny of Hexactinellida, based on combined 2 

rRNA and COI genes (Dohrmann et al. 2011b). Clade support values are bootstrap 3 

proportions; scale bar indicates expected number of substitutions per site. Black dots indicate 4 

calibration nodes; ages in million years ago (Ma). See text for explanation and references. 5 

 6 

Fig. 2. Time-calibrated molecular phylogeny of Hexactinellida plotted on stratigraphic chart. 7 

Calibration nodes indicated by black dots (see Fig. 1). Numbers on the right side of nodes are 8 

mean age estimates in million years ago (Ma); bold numbers on the left correspond to the 9 

node numbers in Table S1 (first column). Gray areas illustrate the implied temporal extent of 10 

missing fossil records for the crown-groups of the hexactinellid families (where "missing" 11 

refers to the absence of undisputed fossils; see text). Ordov., Ordovician; Sil., Silurian; Pg., 12 

Paleogene; Ng., Neogene. 13 

 14 

Fig. 3. Frequency distribution for the posterior node age estimate of total-group 15 

Sceptrulophora (= crown-group Hexasterophora). Dashed lines = mean and 95% Bayesian 16 

credibility interval (CrI), dotted lines = standard error (SE). The shaded area indicates the 17 

time window from which putative Paleozoic scopules have been reported. See text for further 18 

explanation. 19 

 20 

Fig. 4. Frequency distribution for the posterior node age estimate of total-group Farreidae. 21 

Dashed lines = mean and 95% CrI, dotted lines = SE. The shaded area indicates the time 22 
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window from which putative Paleozoic clavules have been reported. See text for further 1 

explanation. 2 

 3 

Fig. 5. Frequency distribution for the stem (light gray histogram) and crown (dark gray 4 

histogram) posterior node age estimates of the Hexactinella + Tretodictyum - clade 5 

(Tretodictyidae). Dashed lines = mean and 95% CrI, dotted lines = SE. The shaded area 6 

indicates the time window from which putative Jurassic members of this clade have been 7 

reported; the star on the time line indicates the calibration constraint (≥83.5 Ma). See text for 8 

further explanation. 9 

 10 

Fig. 6. Frequency distribution for the posterior node age estimates of total-group 11 

Lyssacinosida (dark gray histogram) and total-group Rossellidae (light gray histogram). 12 

Dashed lines = mean and 95% CrI, dotted lines = SE. The shaded area indicates the 13 

approximate age of putative Ordovician stem-group rossellids. See text for further 14 

explanation. 15 

 16 

Fig. 7. Frequency distribution for the posterior node age estimates of several lyssacinosid 17 

genera. Dashed lines = mean and 95% CrI, dotted lines = SE. The shaded area indicates the 18 

approximate age of Early Jurassic isolated microscleres attributed to these taxa. See text for 19 

further explanation. *"Rossella s.s." refers to the Southern Ocean members of this genus; the 20 

North Atlantic Rossella nodastrella groups with Aulosaccus mitsukurii in the molecular 21 

phylogeny (node 15) and should be removed from Rossella in future revisions of this taxon 22 

(see Dohrmann et al. 2008).   23 

 24 
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Suppl. Materials Chapter 2

Supplementary materials for Chapter 1

Collection details of sequenced specimens

Species Expedition/Station/ Coordinates Depth
Voucher number (Latitude;Longitude) (meters)

Rossella racovitzae Systco/48-1/SMF11729 70◦ 23.94’ S; 8◦ 19.14’ W 602.1
Rossella cf. fibulata Systco/48-1/SMF11733 70◦ 23.94’ S; 8◦ 19.14’ W 602.1
Rossella cf. vanhoeffeni Systco/48-1/SMF11736 70◦ 23.94’ S; 8◦ 19.14’ W 602.1
Rossella nuda Systco/48-1/SMF11715 70◦ 23.94’ S; 8◦ 19.14’ W 602.1
Rossella levis Systco/48-1/SMF11728 70◦ 23.94’ S; 8◦ 19.14’ W 602.1
Rossella fibulata Systco/48-1/SMF11732 70◦ 23.94’ S; 8◦ 19.14’ W 602.1
Rossella antarctica Systco/48-1/SMF11734 70◦ 23.94’ S; 8◦ 19.14’ W 602.1
Rossella antarctica Systco/48-1/SMF11735 70◦ 23.94’ S; 8◦ 19.14’ W 602.1
Rossella racovitzae ANTXIII-8/697-1/SMF11731 63◦ 15.38’ S; 59◦ 3.94’ W 143.7
Rossella nuda ANTXIII-8/700-4/SMF11730 65◦ 56.08’ S; 60◦ 20.28’ W 211.1
Rossella racovitzae STN54AEV393GD4075 (SVR68) ?

(Terra Adelie) ?

Tree files
Best ML trees (in nexus format) for the monophyly constraints inferred with RAxML
7.2.8 and used for the pLRTm and AU-Test, and the ML and Bayesian topologies with
support values and branch lenghts, and partition specific ML trees are available as an
electronic appendix at http://dx.doi.org/10.5282/ubm/data.48

Supplementary materials for Chapter 2

Tree files
A nexus file with the Supplemetary trees is available at http://dx.doi.org/10.5282/
ubm/data.48.
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Supplementary materials for Chapter 4

Number of samples extracted per taxonomic groups. These data
was used to construct the word-cloud presented as figure 1 in the
text

Taxonomic group Number of samples extracted
(Calcarea) 1
(Lyssacinosida incertae sedis) 1
Acanthochaetetidae 15
Acarnidae 49
Agelasidae 41
Alectonidae 12
Ancorinidae 547
Aphrocallistidae 3
Aplysinellidae 95
Aplysinidae 23
Astroscleridae 35
Axinellidae 566
Baeriidae 1
Callyspongiidae 177
Calthropellidae 9
Chalinidae 93
Chondrillidae 5
Chondropsidae 84
Cladorhizidae 6
Clathrinidae 10
Clionaidae 230
Coelosphaeridae 55
Corallistidae 30
Crambeidae 20
Crellidae 62
Darwinellidae 107
Dendoricellidae 2
Desmacellidae 62
Desmacididae 15
Desmanthidae 13
Dictyodendrillidae 14
Dictyonellidae 411
Dysideidae 509
Esperiopsidae 42
Euretidae 11
Farreidae 39

continues in the next page. . .
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. . . comes from last page. . .
Geodiidae 99
Grantiidae 6
Guitarridae 3
Halichondriidae 126
Halisarcidae 12
Hamacanthidae 1
Hemiasterellidae 6
Heteropiidae 2
Heteroxyidae 116
Hyalonematidae 19
Hymedesmiidae 35
Ianthellidae 315
Iotrochotidae 83
Irciniidae 81
Isodictyidae 58
Isoraphiniidae 2
Jenkinidae 1
Latrunculiidae 17
Lelapiidae 2
Leucaltidae 12
Leucettidae 236
Levinellidae 23
Macandrewiidae 1
Metaniidae 7
Microcionidae 760
Minchinellidae 5
Mycalidae 126
Myxillidae 7
Niphatidae 139
Pachastrellidae 15
Petrosiidae 328
Pheronematidae 6
Phloeodictyidae 85
Phymatellidae 19
Placospongiidae 6
Plakinidae 63
Pleromidae 12
Podospongiidae 53
Polymastiidae 13
Pseudoceratinidae 35
Raspailiidae 384
Rhabderemiidae 8
Rossellidae 12
continues in the next page. . .
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. . . comes from last page. . .
Scleritodermidae 19
Siphoniidae 1
Soleneiscidae 22
Spirastrellidae 13
Spongiidae 384
Spongillidae 20
Suberitidae 71
Sycettidae 37
Tedaniidae 77
Tethyidae 30
Tetillidae 198
Theonellidae 4
Thorectidae 707
Timeidae 1
Trachycladidae 16
unassigned 2
unidentified 257
Verticillititiidae 16
Total Result 8610
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Chapter 1. Nuclear and mitochondrial markers support two
species of Rossella (Hexactinellida: Lyssacinosida, Rossellidae)
in the Southern Ocean
Sergio Vargas designed the study, generated the sequences for the species of Rossella,
performed the analyses and wrote the manuscript. Martin Dohrman participated in
the study design, provided DNA alignments for the study, and helped editing the
manuscript. Christian Göcke identified the specimens of Rossella used for the study.
Dorte Janussen collected and identified the specimens of Rossella used for the study,
and participated in the initial study design. Gert Wörheide participated in the design
of the study. All authors contributed to draft versions of the manuscript and approved
the final version of the manuscript.

Chapter 2. Chelae clash: molecular phylogeny of Abyssocla-
dia (Cladorhizidae: Poecilosclerida) and Phelloderma (Phello-
dermidae: Poecilosclerida) suggests a diversification of chelae
microscleres in cladorhizid sponges
Sergio Vargas designed the study, generated the sequences, performed the analyses
and wrote the manuscript. Dirk Erpenbeck provided DNA alignments for the study.
Kathryn Hall and John Hooper provided samples and identified specimens used for
the study. Dorte Janussen collected and identified the specimens of Cladorhizidae and
Phellodermidae that served as the basis for the study and participated in the initial study
design. Gert Wörheide participated in the design of the study. All authors contributed
to draft versions of the manuscript and approved the final version of the manuscript.

Chapter 3. Counting in the abyss: sponge species richness esti-
mation in deep Antarctic waters
Sergio Vargas designed the study, performed the analyses and wrote the manuscript.
Christian Göcke identified the specimens and generated the dataset used for richness
estimation. Dorte Janussen collected and identified the specimens used to build the
dataset herein analysed. Gert Wörheide participated in the design of the study. All
authors contributed to draft versions of the manuscript and approved the final version
of the manuscript.

Chapter 4. Barcoding sponges: an overview based on compre-
hensive sampling
Sergio Vargas implemented the DNA extraction protocol and tested and modified it
as reported here, designed the study, generated part of the sequences, performed the
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Author contributions

analyses and wrote the manuscript. Astrid Schuster collaborated during the implemen-
tation and test of the extraction protocol, provided data on DNA concentration, and
participated in the generation of DNA barcodes for the Queensland Museum collection.
Katharina Sacher, Gabrielle Büttner, Simone Schätzle and Benjamin Läuchli generated
data used for the analyses. Kathryn Hall and John Hooper provided samples and iden-
tified specimens used for the study. Dirk Erpenbeck contributed to the implementation
of the barcoding workflow, and to the design of the study. Gert Wörheide participated
in the design of the barcoding workflow and in the study. All authors contributed to
draft versions of the manuscript and approved the final version of the manuscript.

Chapter 5. Diversity in cold hot-spot: DNA-barcoding reveals
patterns of evolution among Antarctic sponges
Sergio Vargas designed the study, generated the sequences, performed the analyses
and wrote the manuscript. Michelle Kelly taxonomically identified the material and
provided information on the systematics of the sponges, Kareen Schnabel collected
part of the material and helped during subsampling of the collection. David Bowden
collected part of the material and took part in the organization of the cruises. Gert
Wörheide participated in the design of the study. All authors contributed to draft
versions of the manuscript and approved the final version of the manuscript.
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