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Zusammenfassung

Zellen sind die fundamentalen Einheiten aus denen alle Lebewesen aufgebaut sind. Will man
verstehen wie grundlegende Aspekte des Lebens auf elementarer Ebene organisiert sind, liegt
es also nahe zunächst einzelne Zellen zu untersuchen. Moderne Mikroskopietechniken machen
es möglich sowohl subzelluläre Abläufe als auch kollektives Verhalten vieler Mikroben zu un-
tersuchen. In diesem mikroskopischen Regime kommt Fluktuationen eine enorme Bedeutung
zu. Da dieses Rauschen eine inhärente Eigenschaft solcher Systeme ist, hat das Leben ro-
buste Systeme entwickelt, welche trotz großer Schwankungen sehr effektiv arbeiten. Nicht
nur das: die Fluktuationen werden teilweise sogar ausgenutzt um vorteilhafte Funktionen zu
verwirklichen. Bei der Modellierung in diesem Forschungsbereich helfen Konzepte aus der sta-
tistischer Mechanik und der Analyse stochastischer Prozesse weiter, welche die Fluktuationen
beschreiben können.

Grob gliedert sich diese Arbeit in zwei Teile, in denen auch in die Hintergründe, Konzepte
und die Literatur zu den entsprechenden Themenkomplexen eingeführt wird.

Der erste Teil setzt sich mit der Modellierung intrazellulärer Prozesse auseinander, für die
molekulares Rauschen bedeutsam ist. Dazu werden zwei Veröffentlichungen, die aus Kollabo-
rationen mit experimentellen Biophysikern erwachsen sind, diskutiert:

Im Rahmen von gentherapeutischen Behandlungen wird externes Erbmaterial an Zellen verab-
reicht um fehlerhaftes Verhalten zu beheben. Um diesen Prozess zu charakterisieren, wurden
Plasmide, welche Fluorophore kodieren, mittels zweier chemischer Transfektionsmethoden
in eukaryotische Zellen eingebracht. Die Verteilung der Expressionsniveaus lässt sich durch
mehrere stark stochastische Schritte während der Transfektion und nachgeschaltete, quasi-
deterministische Expression erklären.

Die zweite Kollaboration beschäftigt sich mit dem Umschaltverhalten zwischen verschiedenen
Phänotypen in Bakterien. Im hier untersuchten Fall wird das Auftreten von “Kompetenz” in
B. subtilis betrachtet. Diese Fähigkeit, genetisches Material aus dem extrazellulären Medium
aufzunehmen, ist durch ein Netzwerk wechselwirkender Gene stark reguliert. Während sich
die verschiedenen Phänotypen auf stabile Fixpunkte in nicht-linearer Differentialgleichungen
zurückführen lassen, wird das Umschalten zwischen den Phänotypen durch Fluktuationen in
der kleinen Anzahl von mRNA-Molekülen ausgelöst.

Der zweite Teil der Arbeit geht auf kollektives, stochastisches Wachstum vieler Zellen in einer
expandierenden Kolonie ein. Im dazugehörigen Manuskript wird ein theoretisches Modell mit
Methoden der statistischen Mechanik analysiert.

Das Wachstums mikrobieller Kolonien wird als Modellsystem für Kolonisationsprozesse ge-
sehen. Inspiriert durch Experimente wird ein stochastischer Oberflächenwachstums-Prozess,
beschrieben durch ein verallgemeinertes Eden-Modell, analysiert. Das Modell berücksichtigt
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explizit Selektion zwischen zwei Stämmen, irreversible Mutationen sowie die Rauheit der
voranschreitenden Front der Kolonie. Der asymmetrische Charakter der Mutationen bringt
einen absorbierenden Zustand mit sich, in dem sich nur mehr der Mutantenstamm an der
Front befindet. Dadurch verbindet das Modell zwei interessante Teilgebiete aus der statis-
tischen Mechanik des Nicht-Gleichgewichts: Phasenübergänge zu absorbierenden Zuständen
und dynamische Oberflächenaufrauhung. Wie für diese Prozesse üblich, lassen sich in der Nähe
des Phasenübergangs kritische Exponenten definieren, die das Divergenzverhalten physikali-
scher Observablen beschreiben und eine Einteilung in Universalitätsklassen ermöglichen. Es
stellt sich heraus, dass die Kopplung von Oberflächen- und Populationsdynamik qualitative
Veränderungen mit sich bringt, sodass sich das Modell keiner bisher bekannten Universa-
litätsklasse zuordnen lässt.



Abstract

Cells are the fundamental units of which all life forms are composed. To understand the
elementary organization of life, it is therefore meaningful to start the investigation on the
single cell level. Modern microscopy permits the examination of both subcellular processes
and collective microbial behavior. In this microscopic regime, fluctuations are of eminent
importance. As this noise is an inherent property of such systems, life evolved robust systems,
which work effectively in spite of severe fluctuations. Moreover, life also makes use of these
fluctuations for its benefit. For modeling purposes in this field of research, concepts from
statistical mechanics and from the analysis of stochastic processes can be applied to account
for the fluctuations.

This work is roughly divided into two parts, which also address the background, concepts and
literature of the corresponding topics.

The first part is concerned with the modeling of intracellular processes, for which noise is im-
portant. In this context two publications, which arose from collaborations with experimental
biophysicists, are discussed:

In gene therapy external genetic material is injected into cells to remedy deficient behavior.
To characterize this process, fluorophore encoding plasmids were administered to eukaryotic
cells by means of two chemical transfection methods. The distribution of expression levels
is explained by several strongly stochastic steps during transfection and subsequent quasi-
deterministic gene expression.

The second collaboration addresses the switching kinetics between different phenotypes in
bacteria. In the case at hand, the emergence of “competence” in B. subtilis is studied. This
ability (to take up genetic material from the extracellular medium) is strongly regulated by a
network of interacting genes. While the different phenotypes are associated with stable fixed
points of non-linear differential equations, switching between phenotypes relies on fluctuations
in the small number of mRNA molecules.

The second part of this work elaborates on collective, stochastic growth of many cells in an
expanding colony. The corresponding manuscript analyzes a theoretical model with methods
from statistical mechanics.

Microbial colony growth is sometimes seen as a model system for range expansion or colo-
nization processes. Inspired by experiments, a stochastic surface growth process, in the form
of a generalized Eden model, is set up and analyzed. The model explicitly takes into account
selection between two strains, irreversible mutations, and the roughness of the propagating
colony front. The asymmetric character of mutations implies the existence of an absorbing
state, where only the mutant strain is at the front of the expanding population. Hence,
the model combines two interesting branches of non-equilibrium statistical mechanics: phase
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transitions to absorbing states and dynamic surface roughening. As usual for these processes,
one can define critical exponents, which describe the divergence of observables near the phase
transition, and admit organization of models into universality classes. It turns out that the
coupling between roughening dynamics and population dynamics induces qualitative different
behavior. As a consequence, the model cannot be assigned to any universality class currently
known.
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1 Introduction

1.1 Biological Systems and the Physical Approach

Why is it that more and more physicists, and to a lesser degree mathematicians, are getting
involved in the general research field of life sciences? The answer to this is probably two-fold:
it can be related to recent developments in these sciences and to how their subject, biology
in the widest sense, is organized on a fundamental level.

1.1.1 Quantitative Data

Research in many disciplines such as neuroscience, microbiology, genomics, ecology, develop-
mental and evolutionary biology, and so on, is becoming more and more quantitative, thanks
to better microscopes, miniaturization and automatization of experimental setups. Where in
the past biologists had been able to state that there is a correlation between quantities of
interest, while neither the causality nor the mechanisms of interaction were accessible, nowa-
days high precision, real-time measurements of the relevant quantities are often possible, at
least in principle. This brings about an enormous amount of data, which needs to be analyzed
and interpreted. To the traditional biologist, this is quite a challenge, since his/her educa-
tion would usually more focus on a multitudes of (more or less independent) facts. Modern,
quantitative biologists, more educated in general principles and their connections, are well
capable of handling this data, but physicists have had to deal with complicated data since a
long time. This gives physicist a head start in handling complicated biological data, as it does
in analyzing data from other fields, e.g., the financial markets, where the field of econophysics
prospers.

1.1.2 Biological Systems are Complex Systems

Economy and biology have other things in common: everything is basically connected to
everything else, at least indirectly. In both economics and biology, the dynamics are driven,
by the flow of money and energy, respectively, and are therefore non-equilibrium in nature.
Typically, systems exhibit behavior which emerges from the collective dynamics of the con-
stituents, which are usually very many interacting entities which mainly obey simple rules.
Fluctuations are omnipresent, stock courses and biological data are inherently stochastic.
Small causes can trigger large scale events with possibly catastrophic consequences.

All of these are hallmarks of complex systems. Again, this is an advantage for a physicist,
especially one with experience in the fields of non-linear dynamics, stochastic processes and
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statistical mechanics. In these fields complex systems, which show such characteristic behav-
ior, are commonplace. Experience with this kind of intricate problems helps to determine
which aspects of a system are relevant and which aspects can, without oversimplification, be
neglected to make an analysis feasible.

1.2 Fluctuations in Biological Systems

Biological data is often noisy, sometimes as a result of unavoidable inaccuracy in the measuring
process, but often because the measured quantities are inherently distinguished by strong
fluctuations. Copy numbers of biomolecules in bacteria are a prominent example [1, 2]. Copy
numbers are usually of order 10–100, but occasionally even of order 1. In this number range
the discreteness of integer numbers can have marked impact on the dynamics, as can be seen
for example in burst-like expression of proteins [3, 4, 5].

To a physicist, fluctuations are very common: on the most fundamental level they arise from
the principles of quantum dynamics, which also imply that due to the uncertainty principle,
time and place of a reaction between two molecules are as unpredictable as the time when a
specific radioactive atom decays. But even if nature was deterministic, it would be virtually
impossible to measure the positions and momenta of all atoms and molecules in any given
sample of biological matter with a sufficient accuracy for Laplace’s demon to predict the
dynamics over any significant period of time. Consequently, already on a fundamental level,
fluctuations and randomness are unavoidable features of biological systems.

More importantly, thermal fluctuations have significant impact on living systems, since ther-
mal energies are often comparable to energy scales in cellular processes. Thermal fluctuations
are also the origin of Brownian motion, or diffusion, which is the most widespread transport
mechanism on short length scales. This has first been analytically described by physicists like
Einstein, Langevin and Smoluchowski [6, 7, 8, 9].

Often in biology this stochasticity is further coupled to non-linear processes and hence fluc-
tuations may be enhanced to an extent where non-stochastic descriptions turn out to be flat
wrong. An impressive example of this is found in autocatalytic reactions [10].

Stochastic modeling of biological processes has the potential to give answers to fundamental
questions, as is evident for example in the seminal work of Luria (a biologist) and Delbrück (a
theoretical physicist), which showed that mutations in bacteria appear by chance and not in
response to an environmental stimulus [11]. This was a strong argument in favor of Darwinian
evolution as opposed to the theory put forward by Lamarck.

1.3 Biological Systems in Space

1.3.1 Biological Relevant Length Scales

Classical research fields for a traditional physicist are atomic physics and physical chemistry,
which investigates how molecules are formed from the atoms under the influence of quantum
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mechanical interactions. Right at this molecular scale biology starts. Every living cell is
composed of a myriad of different molecules which build up a living whole, which constantly
converts energy to drive all necessary processes. Many subsystems on this scale are composed
of identical units: membranes are composed of phospholipids, filaments of monomers and so
on. Statistical mechanics is well suited to address such systems, e.g., length regulation of
filaments [12], the organization of the genetic material in the nucleus [13], or the interactions
between genes in gene regulatory networks and the expression of genes [14, 15, 16, 17, 18].
On the length scale of the cell, spatial aspects become more and more important, and many
problems can be addressed by non-linear partial differential equations — for example, orga-
nization of cell polarity and cell division [19]. At a broader scale, one might be interested
in the interaction of cells, be it in tissue growth and morphogenesis [20] or in the growth
dynamics of microbial colonies composed of different phenotypes [21]. On yet larger scales
one might study the interaction between species, and how populations interact and organize
spatially in their environment. This is part of the fields of ecology and population dynamics
and happens on very large length scales, many times the size of the individuals which compose
the population.

1.3.2 Spatial Dimension of Biological Systems

Depending on the problem at hand, it might be important to take spatial aspects into account.
Reaction kinetics in a single cell are often well described by a zero-dimensional model, as
diffusion is very fast and such small volumes can therefore be considered well-mixed. However,
if the spatial structure is important itself (as for the organization of the cytoskeleton) one,
of course, has to take at least the linear extension of a single filament into account. In the
context of population dynamics, especially for the problem of cooperation, it is known that
the organization in groups, e.g., mediated through spatial distance in two dimensions, has
massive impact on the dynamics and often changes the outcome qualitatively [22]. In some
problems, such as the Min oscillations which appear in E. coli cell division, it turns out that
even though all reactions happen on the 2d membrane, the properties of the extension and
topology of the 3d cytosol may have qualitative impact on the performance of the system [19].

The fact that a spatial setting changes the properties of a system in a fundamental way
is well-known from many areas of physics. In statistical mechanics the paradigmatic Ising
model exemplifies this: While in a 1d setting the Ising model has no phase transition, a phase
transition is found in two and more dimensions. Though it is not trivial to describe the phase
behavior in two and three dimensions analytically, in more than four dimensions one finds
that it is well-described by a mean-field theory, which ignores the spatial correlations.

1.3.3 Non-linearities in Stochastic Spatial Systems

To model biological systems which are explicitly spatial, one often works with stochastic
partial differential equations. In this work we shortly introduce three important examples
of such equations, the Fisher-Kolmogorov equation (5.1), a coarse-grained field equation for
directed percolation (6.17), and the Kardar-Parisi-Zhang equation (6.39). The Kardar-Parisi-
Zhang equation differs from the others in the non-linear term and it is conceivable that its
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solutions are therefore quite distinct from the other equations. The coarse-grained description
of directed percolation is only distinct from the stochastic version of the Fisher-Kolmogorov
equation in the shape of the noise term, but still their solutions differ widely.

This is characteristic for non-linear processes, where short wavelength excitations, which are
created by the noise, couple into the longer wavelength modes as a result of the non-linearity.
Hence, it is not only the deterministic parts of the equations which are of importance, but
also the characteristics of the noise.

1.4 Scope of this Work

This work is split up into two parts, one addressing intracellular processes, the other collective
growth of heterogeneous microbial cultures.

In the first part we follow the most important steps that led to an understanding of molec-
ular biology and in parallel introduce central concepts of this ever growing discipline along
with observation techniques (Chapter 2). In this context we also discuss the importance of
fluctuations in more detail, and introduce some concepts relevant for modeling biomolecular
systems. These include non-linear differential equations, which describe reaction networks
and the master equation, and related concepts, which takes care of randomness resulting
from stochastic reactions and discrete molecular copy numbers.

We then turn towards more specific problems and start with an experiment involving arti-
ficial gene transfer followed by gene expression, where small number fluctuations lead to a
heterogeneity across the members of a cellular population (Chapter 3).

In Chapter 4 we discuss an experiment which reveals how bacteria are able to use fluctuations
and non-linear feedback to improve their chances in the struggle to survive. Here, stochastic
switching between distinct phenotypes in an isogenic population is described on the single
cell level.

The second part of this work does not analyze experiments. However, it has been inspired
by experimental work on the growth of bacterial cultures which has been carried out by the
author. We first discuss the spread of populations on large scales, and then concentrate on
setups with microbial organisms, which are easier to observe (Chapter 5).

In Chapter 6 we introduce two classes of processes from non-equilibrium statistical mechanics:
(i) models that undergo phase transitions to absorbing states and (ii) kinetic surface rough-
ening models. Both exhibit properties that can also be found in range expansion experiments
carried out with microbial populations. A model that couples these two classes of processes
is introduced and analyzed. It is found that the coupling alters the characteristic properties
of the individual processes qualitatively.



Part I

Gene Expression and Regulation in
Single Cells





2 Molecular Biology and its Modeling

All forms of autonomous life that we know of are composed of cells. From unicellular or-
ganisms like most bacteria, archaea, and many eukaryotes to multicellular life forms, all rely
on this basic building block of life. The adjective “basic”, however, should not be mistaken
as a synonym for simple: Even the single-celled bacterium Escherichia coli, the workhorse
of microbiological research since decades, is far from understood in all its ever extending
complexity. Clearly, all evolved mechanisms serve the ultimate aim to better adapt to the
environment, thereby enhancing reproduction success and outcompeting competitors. How
this is biologically implemented, however, is far from clear. To unravel how molecular con-
stituents are physically organized to process matter, (free) energy and information to live,
grow and reproduce is a formidable task from the viewpoint of both biology and physics.

In this chapter we will shortly review some of the important insights in the machinery of the
single cell, that have been made during the last century. As knowledge in this subdiscipline of
biology is not only stunningly vast and detailed on many levels, but also growing exponentially
fast, the here introduced aspects will only cover areas needed to understand the research
articles contained in Chapters 3 and 4. To the interested reader the compendium “Molecular
Biology of the Cell” by Alberts et al. [23] and the references therein are recommended, on
which, beside the given references, the biological parts of the following introduction heavily
draw.

2.1 Storage and Flow of Information — A Primer to the Genetic
Code and Gene Expression

Roughly half of the dry weight of a cell is made up of proteins, each of which is comprised of
one or more polypeptide chains of variable length. Proteins are the ubiquitous workers of the
cell, which actually do most of the numerous tasks a cell performs: Metabolizing nutrients,
sensing chemical gradients and other stimuli, propelling the cell through the extracellular
medium, the majority of enzymatic activity, to name but a few. Proteins were recognized as
a distinct class of biomolecules as early as the 18th century and scientifically studied already
in the first half of the 19th [24]. Nonetheless, how proteins received their remarkable range
of properties, remained obscure until the role of another biomolecule, the macromolecular
nucleic acid DNA (deoxyribonucleic acid), was clarified in the 20th century.

Though DNA had been isolated in the late 19th century [25], and its chemical constituents had
been specified in the early 20th [26], its eminent role as the carrier of hereditary information
only became clear by the middle of the century. Schrödinger picked up the ideas of the
modern evolutionary synthesis [27] when he theorized about a “crystalline” carrier of genetic
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information [28], on which Mendel’s laws, known since the famous experiments and thorough
bookkeeping of Mendel [29], and Darwin’s evolution [30], could work. Further Beadle and
Tatum had stated the “one gene — one enzyme” hypothesis, which connected the Mendelian
genes to proteins [31]. More importantly, a number of ingenious experiments shed light
on the physical counterparts of the Mendelian genes and made clear that DNA was the
relevant ingredient that gave a virus1 its virulence, and not its protein content [32, 33].
Further the double-strandedness of DNA, which, through base-pairing, allows for duplication
of information, while providing chemical stability needed for storage, was hinted at by the
result that pyrimidine bases (cytosine and thymine) and purine bases (adenine and guanine)
are found in equal parts in the DNA [34].

In 1953, X-ray diffraction patterns of DNA by Franklin et al. [35] and Wilkins et al. [36],
enabled Watson and Crick to reveal the double helix structure of the DNA [37, 38]. After
the physical manifestation of genes had conclusively been identified as nucleic acids, Crick set
out to incorporate proteins into the picture by publishing the “sequence hypothesis” and the
“central dogma of molecular biology”2 [40], both of which we will now briefly discuss.

2.1.1 The Genetic Code

The sequence hypothesis simply states that there is a decisive mapping between the one-
dimensional sequence of bases on the DNA and the equally one-dimensional sequence (when
ignoring folding, disulfide bonds and other subsequent modifications) of amino acids in pro-
teins. The exact mapping was not known by then, but by inducing frameshift mutations of
variable length it was soon figured out that three consecutive nucleotides, called a codon,
correspond to one amino acid3 [42]. The remaining task of deciphering the exact mapping
(cf. Table 2.1) started with single-nucleotide polymers which were found to produce single-
amino-acid poly-peptides [43, 44, 45, 46] and continued by the complete deciphering of the
genetic code by use of more complicated artificial nucleotide templates [47, 48].

2.1.2 The Flow of Information

Cricks other proposition, the central dogma of molecular biology, which he detailed further
in 1970 [49], expressed that information flows from nucleic acids to polypeptides, but not the
other way around, out of proteins and into nucleic acids. By then the intermediary role of

1In some viruses the genetic information is stored in RNA instead of DNA. The important point though is
that nucleic acids and not proteins inherit “the message”.

2In his autobiography “What Mad Pursuit” [39] Crick later pointed out:

I called this idea the central dogma, ... As it turned out, the use of the word dogma caused
almost more trouble than it was worth. ... Many years later Jacques Monod pointed out to me
that I did not appear to understand the correct use of the word dogma, which is a belief that
cannot be doubted.

3The first to hypothesize about this 3:1 relationship between the four nucleic acids and twenty amino acids
was the theoretical physicist and cosmologist George Gamow [41]. Though his tentative mapping was
easily proofed wrong, his simple mathematical reasoning for a minimal codon length of three base pairs
(42 < 20 < 43) turned out to be right.
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Table 2.1: The genetic code. A codon, i.e. three nucleic acids, contained in the DNA/RNA corresponds
to an amino acid, the building block from which any protein is composed. Nucleic acids are
given in bold, capital, and single letters (U: uracil, T: thymine, C: cytosine, A: adenine, G:
guanine); where the DNA contains a T the mRNA transcript has a U at the corresponding
position. Amino acids are denoted by common three letters abbreviations. Translation
usually starts at the first ATG-RNA codon while it is terminated at codons denoted by
“Stop”.

1st position 2nd position 3rd position
T/U C A G

T/U

Phe Ser Tyr Cys T/U
Phe Ser Tyr Cys C
Leu Ser Stop Stop A
Leu Ser Stop Trp G

C

Leu Pro His Arg T/U
Leu Pro His Arg C
Leu Pro His Arg A
Leu Pro His Arg G

A

Ile Thr Asn Ser T/U
Ile Thr Asn Ser C
Ile Thr Lys Arg A

Met (or Start) Thr Lys Arg G

G

Val Ala Asp Gly T/U
Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G

RNA (ribonucleic acid), in the form of messenger RNA (mRNA), had been elucidated, and it
stood equal to DNA and proteins as a prime carrier of information. In more detail the central
dogma classified all possible channels of information flow between the key players, DNA, RNA,
and proteins, into three classes: general, special, and unknown, cf. Table 2.2. While one can

Table 2.2: The central dogma of molecular biology. Information flow between DNA, RNA and proteins
can be categorized with respect to its prevalence in biology.

general special unknown

DNA → DNA RNA → DNA proteins → DNA

DNA → RNA RNA → RNA proteins → RNA

RNA → proteins DNA → proteins proteins → proteins

argue about the exact definition of information flow and about overlaps between the three
classes, the general notion is still at the heart of modern molecular biology. Gene expression
from DNA, which is transcribed by polymerases to RNA, which in turn is translated by
ribosomes to proteins, is one prominent example of information flow of the general class.
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That gene expression is still an important topic today, can bee seen upon flicking through
any recent issue of a journal concerned with cell biology. The other well known example is
the replication of DNA during reproduction, and, less well-know, in the course of horizontal
gene transfer (see Chapter 3). The manuscripts introduced in Chapters 3 and 4 discuss and
analyze experimental settings in which both horizontal gene transfer and gene expression are
of importance.

2.1.3 Complications

With the genetic code and the machinery of gene expression clarified, the sequence of amino
acids produced in translation is straightforward. It is now common knowledge, that this
linear chain of amino acids is not the functional form of a protein inside a cell. Instead, the
protein folds up into a three-dimensional shape: Already during translation first domains
form through interactions between neighboring amino acids along the polypeptide backbone.
As translation is completed these subunits find their relative positions through electrostatic,
especially hydrophobic, interactions and the creation of disulfide and hydrogen bonds or other
chemical reactions. This process is often supported by specialized proteins called chaperones.
In many cases the folded amino acid chains then ensemble into protein complexes, which in
concert perform a given cellular task.

Though vivid, the strict division between nucleic acids as information storage and proteins
as cellular tool kit, is, while usually accurate, not true in general — there are contradictions
to the dogma. Especially the notion of nucleic acids as the sole source for information had to
be reconsidered in the light of epigenetics4 [51], and, to a lesser extend, prions [52].

Furthermore, without the enzymes polymerase and ribosome no gene expression would be
possible, though their blueprint is encoded in DNA as well. This leads to a paradoxical
statement: no proteins without DNA, no DNA without proteins. An escape route to this
chicken or egg dilemma may be the hermaphroditic character of the RNA, which can both
store information and act as an enzyme or regulator. This is the hypothesis of an “RNA
world” which may have existed before today’s DNA-protein-based biosphere [53]. In this
scenario, RNA molecules catalyze their own reproduction. While the notion of an RNA
world still leaves the question of how it came into existence unanswered, it is well conceivable
that from it the less simple, but more stable DNA-protein world has emerged, which then
outperformed its predecessor.

The flow of information is formally restricted to end up in proteins, if neglecting special cases
like prions. However, already epigenetic mechanisms in many cases work through proteins
which modify the extend to which genes are expressed. This establishes a feedback, which
acts on a time scales of a few reproduction times. Furthermore, regulation of gene expression
through proteins is ubiquitous and works down to much shorter times. The concept of gene
regulation is of so eminent importance that we will discuss it in greater detail below.

4Here, the term “epigenetics” is understood as heritable information that is not encoded in the DNA se-
quence. A contrasting meaning of epigenetics exists in developmental biology, where the term refers to the
establishment of the phenotype of a cell from an omnipotent stem cell [50].
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2.2 Gene Regulation

It is remarkable what a wide range of organisms exists in the biosphere. In all of them
information storage and gene expression work essentially through the mechanisms introduced
in the previous section. The beauty of these concepts lies in the mechanistic simplicity of the
genetic code and of the mechanisms of protein production.

With that said, it comes as a little bit of a shock, that so-called higher, or more complicated
organisms do not necessarily have a bigger genome, or number of genes, to carry all that sub-
stantial information. However, there is a reassuring analogy to brain size and intelligence: not
the animal with the biggest brain is the most intelligent, but rather the cerebral performance
is to a large part dependent on the connections between the brain’s neurons. Similarly, not
the total length of the genome or the total number of genes is solely relevant, but also the
interconnections between the genes do matter a lot.

2.2.1 The lac Operon - Transcription Regulation

The research in gene regulation started with the lac operon, which is a segment in the genome
of E. coli, which was studied by Monod and Jacob [54]. They found out how the microbe
adapts its metabolism if its most common food source, glucose, is replaced by lactose5. The
key realization was, that under this nutrient condition, a specific protein (the lac repres-
sor) which inhibits the polymerase from binding to the DNA, detaches from the DNA. Now
polymerase can attach to this site and transcription of genes can begin. This is facilitated
by another protein (the catabolite activator protein), which attaches nearby and enhances
binding of polymerase. The transcription of three genes is initiated, followed by expression
of the corresponding proteins, which make consumption of lactose possible. Thus, Jacob and
Monod where abel to categorize different regions in the DNA sequence: “structural genes”,
which encode proteins necessary for lactose digestion, and “regulatory genes”, like the pro-
moter (where the polymerase binds), the sites of the described regulation (the operator), and
the terminator (where transcription stops). Together they form the lac operon.

The regulation principles of the lac operon can be extended to many other operons hosting
other genes, and are probably present, to some extend, in all forms of life6. It turns out,
that many different proteins act as activators or repressors, often on a number of operons
including their own. This can create non-trivial, extended gene regulatory networks, which
perform tasks similar to engineered electronic circuits, including feedback, signal integration
and signal processing [55].

5Of course, other factors are also involved in the regulation of the lac operon, but, for the sake of simplicity,
we focus on the most dominant ones.

6Or, as Monod reportedly put it,

What is true for E. coli is true for an elephant, only more so.
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2.2.2 Other Regulation Mechanisms

Transcription regulation is by far not the only way through which expression of different
proteins is coupled; regulatory mechanisms exist on every conceivable level and display an
enormous variability. Some of them are:

• Transcription initiation, which can not only work through transcription factors, but also
through alternations at other parts of the apparatus necessary for the polymerase to
start transcription.

• Post-transcriptional modification, which occurs only in eukaryotes, includes, e.g., splic-
ing of mRNA and addition of a poly(A) tail to it. The latter influences export from the
nucleus, translation and degradation of mRNA.

• Translation regulation, which refers to binding of proteins or RNA to an mRNA template
or the ribosome, which results in regulations of translation efficiency.

• RNA interference, where small RNA molecules, called siRNAs enhance the degradation
of other single stranded RNAs through formation of double-stranded RNA, which are
rapidly degraded.

• Epigenetics, where proteins organize the arrangement of the chromatin structure in the
nucleus. This mechanism has been argued to be important for cell differentiation in
multicellular organisms.

2.2.3 Some Important Examples of Regulation

The multitude of regulatory mechanisms lets cells adapt to changes in their environment with
unparalleled versatility, manifest in such prominent examples as the heat shock reaction [56],
chemotaxis [57], and quorum sensing [58]. Astonishingly, by means of the same regulatory
modules in different combination, complex processes can robustly be implemented, e.g., cir-
cadian rhythms [59] and the cell cycle.

Generally, regulatory networks may constitute bi-, or multistable, excitable or more compli-
cated dynamical systems in the space of gene expression levels. This implies that even though
organisms may have identical genes, i.e., are clonal or have the same genotype, they can still
be very different with respect to the proteins being produced, resulting in different physical
appearance and features, also known as phenotype. An example for phenotypic regulation
will be discussed in Chapter 4. In multicellular organisms similar mechanisms lead to cellular
differentiation during development and morphogenesis, thus creating all kinds of tissue of the
organism [60, 61].
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2.3 Observation on the Single Cell Level — Fluctuations in
Biological Systems

2.3.1 Diffusion and Fluctuations in Chemical Reactions

Most of the important discoveries discussed so far in this chapter, and many more historic
results, have been found through measurements on large numbers of cells or viruses. This
sampling of a whole population gives robust results, when interested in the mean behavior
of biological systems. However, biological systems are prone to fluctuations, they live in
an environment very different to the one we experience. At the relevant length scales (∼
µm), friction dominates over inertia and the medium is effectively of very high viscosity [62].
Furthermore thermal fluctuations (∼ kBT ) are prevalent since the typical energy scales are
of similar magnitude (∼ pN · nm).

While of importance to biology, these effects are observed in any mesoscopic system. The
most prominent example is diffusion, also known as Brownian motion. This jittery movement,
which small pieces of matter perform in a liquid or gas, can easily be observed under a
microscope, and even by bare eye. Also first mentioned (and interpreted quite correctly) by
Lucretius more than two millennia ago [63], it took great minds like Einstein [6], Langevin [7]
and Smoluchowski [8] to work out the theoretical details of this seemingly simple problem in
the 20th century. While many aspects of diffusion have been clarified since then, it continues
to be a field of active research to the present day especially in the context of biological
physics [9].

Diffusive movement is even more relevant for molecules, resulting in random encounters be-
tween reactive components. Consequently it is neither possible to predict which molecules
will react next, nor when and where7. In the large volumes used in chemical laboratories
the discreteness of chemical reactions is averaged out through the large number of reactions
happening almost simultaneously. Under these conditions descriptions in terms of concentra-
tions suffice, which neglect fluctuations. This is not the case if copy numbers of molecules
are small. Delbrück demonstrated this as one of the first, by analyzing a system exhibiting
autocatalytic reactions [10], where averages alone were not sufficient any more. Instead prob-
abilistic descriptions are necessary to capture the essential features. This is the result of small
number fluctuations being amplified through the autocatalytic reaction.

2.3.2 Single Cell vs. Population-Wide Studies

In single cells volumes are small (∼ 10−15–10−12l) and instead of concentrations one has
to turn to number of molecules; in a bacterium the number of molecules of a given kind is

7Erwin Schrödinger phrased this as [28]:

[. . . ] when a chemist handles a very complicated molecule in vitro he is always faced with an
enormous number of like molecules. To them his laws apply. He might tell you, for example, that
one minute after he has started some particular reaction half of the molecules will have reacted,
and after a second minute three-quarters of them will have done so. But whether a particular
molecule, supposing you could follow its course, will be among those which have reacted or among
those which are still untouched, he could not predict. That is a matter of pure chance.
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often of order 1 (e.g. for the DNA) to 1000 (e.g. for many proteins). Here, randomness in the
reactions, known as “intrinsic noise” [64] can be of eminent importance, as was demonstrated,
e.g., in a seminal work by Arkin et al. [65]. They showed that fluctuations can determine
whether a host cell is rapidly exploited and killed by a virus, or instead used as a carrier of
the viral DNA for an extended period of time.

Work like this emphasizes the need to observe cells not only on a population wide level;
much more information is hidden in the cell-to-cell variability [1, 3]. During the last decades
experimental setups were refined to go down to observations of single cells, and lately even
to the single molecules in them. It increasingly becomes clear that fluctuations should not
be seen as an inevitable vexation, but are instead necessary and useful ingredients to cellular
function, or functional noise [66]. Many single-cell observation techniques, which are used to
elucidate the impact of fluctuations, rely heavily on the use of fluorescent marker proteins,
which can be expressed in vivo.

2.3.3 Fluorescent Proteins — Reporters of Gene Expression

The most prominent example of this class is the “green fluorescent protein” (GFP), naturally
produced in the jellyfish Aequorea victoria, which emits green light after excitation with blue
or ultraviolet light. Thirty years after identification of the protein [67], it was first expressed
endogenously in model organisms [68], where its potential as a reporter for gene expression
was readily recognized. With the availability of derivatives (produced through mutations
in the corresponding DNA sequence) with different color [69, 70] and enhanced fluorescence
properties [71], it became possible to monitor different cellular processes simultaneously in real
time and in vivo. The spectacular properties of GFP and its derivatives are a direct result
of its folding into an exceptional three dimensional shape, during which the chromophore
forms by spontaneous oxidation at a specific position along the amino acid sequence [69, 70].
Fluorescent proteins can be used to study a variety of biological systems, since it is possible
to construct DNA where expression is under the control of a promoter corresponding to an
altogether different protein. This way, the expression patterns of any given protein can in
principle be observed. Furthermore, it is possible to express fusion proteins, made from the
fluorescent protein and any other protein. If the other protein is located at a specific organelle
or specific position of the cell, then so will be the fluorescence.

2.4 Mathematical Treatment

In the last section we already discussed the importance of incorporating the discreteness
of molecule copy numbers and stochasticity when modeling single cell processes. Before
considering the effects of these complications we will shortly discuss the case where they can
be neglected.
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2.4.1 Averaged Description by Differential Equations

If copy numbers are large and reactions fast compared to consecutive observations, and the
volume where the reactions happen can be considered well-mixed so that spatial aspects can
be neglected, the change of concentrations can be inferred directly from chemical equations.
These typically have the form

reactants
rate−−→ products . (2.1)

As reactants can take part in different reactions and products might themselves be reactants
of different reactions one often has to consider a set of chemical reactions. The change in the
concentration ci, of a given molecular species i, can then be written as a differential equation,

ċi = fi(c1, c2, . . .) . (2.2)

The reaction term fi on the-right hand side is usually composed of a sum of terms, each
of which corresponds to a reaction of type (2.1), in which the number of chemical species
i changes. Since the number of reacting molecules taking part in reactions is often larger
than one, or the reaction rates depend on concentrations, reaction terms are non-linear in all
but the simplest cases. The non-linearities often render analytical derivation of the temporal
evolution of concentrations impossible, but they generate interesting behavior which can
be analyzed by methods of non-linear dynamics [72, 73], with many examples in biological
modeling [74]. They are also the main reason for the richness of modules encountered in gene
regulatory networks (as discussed in Section 2.2), where the reactive molecules are interacting
genes, mRNAs and proteins.

To reduce the number of coupled equations one often assumes that some reactions, which are
fast compared to all others, are in chemical equilibrium, known as adiabatic approximation.
This is especially useful for intermediary bound complexes, as in the case of the famous
Michaelis-Menten reaction, for substrate-enzyme-complexes.

2.4.2 Stochastic Description by the Master Equation

When the typical number of molecules becomes small, fluctuations in chemical reactions are
so important that a description in terms of concentration is not meaningful anymore and one
has to resort to a stochastic description [75, 76].

If states are discrete, as for molecular numbers, the master equation8 is the most basic and
general description. Instead of concentrations we now have to consider probabilities p(s) of
finding the system in state vector or simply state s = (X1, X2, . . .), where Xi is the random
number of molecules (or complexes) of species i. The master equation is actually a set
of differential equations which describe the temporal change of probabilities of all possible
states:

ṗ(s) =
∑
s′

ws′→sp(s
′)−

∑
s′

ws→s′p(s) (2.3)

8Due to its importance in the context of chemical reactions it is often termed the chemical master equation.
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Here ws′→s is the transition rate for the system to go from state s′ to state s. As there typically
is a vast number of coupled equations, the master equation is exactly solvable only in the
simplest cases. In these cases the set of equations is mostly transformed into a (usually non-
linear) partial-differential equation by use of generating functions [77]. The partial-differential
equation then has to be solved and subsequently back-transformed, where the last step is the
hardest and can often only be achieved through some approximation.

2.4.3 Gillespie’s Stochastic Algorithm

Before we consider some analytical approximations to the master equation, we discuss its
direct numerical solution through Monte Carlo simulations. The idea here is that instead of
solving the master equation numerically by discretization in time, one simulates an ensemble
of possible realizations of the system under consideration. The most common approach to
this is the stochastic first reaction method or simply Gillespie algorithm [78, 79]. A specific
realization is given by the sequence of reactions that alter the state of the system and the
corresponding times of each reaction, both of which are sequences of random numbers. All
processes we consider here are Markov processes, which means that though random, the
evolution of the system under consideration only depends on its current state. To simulate a
realization it is therefore necessary to infer the probability distributions of time and type of
the next reaction depending on which state the system is in.

The total rate λ(s) at with the system leaves its state s, is given by the sum over all transition
rates out to this state:

λ(s) =
∑
s′

ws→s′ (2.4)

It is easy to show that the distribution p(τ) of waiting times τ until the next reaction,
disregarding which one, is given by

p(τ) = λe−λτ . (2.5)

Which of all possible reactions happens next is a matter of chance. However, the probability
p(s → s′), for the reaction that takes the system front state s to state s′, is given by the
ration of the respective reaction rate to the total reaction rate:

p(s→ s′) =
ws→s′

λ(s)
(2.6)

With the probability distributions (2.5) and (2.6) derived, the algorithm is straightforward:

1. Set values for the rates ws→s′ and the initial state s of the system at time t = 0.

2. Calculate λ(s) according to (2.4)

3. Determine type s→ s′ and time τ of next reaction according to the probability distri-
butions (2.6) and (2.5).

4. Set the system to its new state s′ and update time t→ t+ τ .
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5. Return to step 2.

The above procedure is repeated sufficiently often to sample a representative proportion of
all possible realization of the process under consideration. All quantities of interest can then
be derived for any time t and up to any desired accuracy, only limited by available computing
time.

2.4.4 Analytical Approximations of the Master Equation

While simulations can, in principle, be employed to analyze arbitrary complex systems, they
rarely grant access to the more general mechanism, which are encoded in the underlying
organization of biochemical reaction networks. To elucidate these evolved design principles,
one often simplifies the system under consideration as far as possible, without changing it
qualitatively, and then tries to approximatively solve the master equation analytically.

A very common approach is the expansion of the master equation to derive a Fokker-Planck
equation [75, 80], which is a second order partial differential equation in probability space, of
the general form

ṗ(s) = −∇A(s)p(s) +
1

2
∇2B(s)p(s) , (2.7)

where ∇ is the nabla operator in the space of molecular copy numbers Xi and A(s) and B(s)
are state dependent drift vector and diffusion coefficient matrix, respectively. The first term
is usually associated with the well-mixed mean field differential equations (2.2), while the
second term describes the influence of stochastic fluctuations. The Fokker-Planck equation
can then be tackled with the analytical tools of calculus of partial differential equations.

To obtain a Fokker-Planck equation there exist at least two different methods, which are
distinct with respect to the quantity in which the expansion is performed. In what is known as
the Kramers-Moyal expansion [75, 80], one assumes that the change in molecular copy number
∆Xi in any reaction is much smaller than the number of molecules Xi present. Therefore,
one can perform a continuum limit and expand both the rates and the probabilities in the
master equation. To obtain a Fokker-Planck equation one then neglects all terms containing
derivatives of order three or higher. Alternatively, for the van-Kampen-expansion [76], one
argues that the system size is large and one can therefore perform a systematic expansion
in the inverse system size. Similar to perturbation theory one receives a hierarchical set of
Fokker-Planck equations, which can then be solved consecutively. Though more complicated,
the van-Kampen-expansion has the advantage that it can systematically treat processes where
the system size is not fixed.

The Fokker-Planck equation (2.7), is in many cases equivalent to the Langevin equation,
another partial differential equation, which treats fluctuations in a different way. It still has
a drift term closely related to the the mean field differential equations (2.2), but models the
fluctuations as a additional random field. It has the general form

ṡ = A(s) +
√

B(s)η(s, t) (2.8a)
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where η(s, t) is Gaussian white noise,

〈η(s, t)〉 = 0 , (2.8b)

〈η(s, t)η(s′, t′)〉 = δ(s− s′)δ(t− t′) . (2.8c)

Here δ(s − s′) is shorthand for
∏
i δ(Xi −X ′i). To go from a Fokker-Planck equation to the

corresponding Langevin equation, one usually diagonalizes the diffusion coefficient matrix
B(s), which enables computation of the square root.

There exist several other approaches to the problem of solving the master equation, and a
number of methods to further treat the derived Langevin and/or Fokker-Planck equations.
However, these techniques are more involved, and their use very much depends on the problem
at hand. Since they are not relevant to this work, the reader is referred to one of the standard
text books [75, 76].



3 Artificial Gene Transfer and Transgene
Expression

As a cell divides, its genetic information is duplicated and passed on to both daughter cells.
Sometimes, during DNA duplication, errors happen (a major source of mutations) which alter
the genetic information. Though changed, the genes are closely related to that of the previous
generation, so that it is in principle possible to set up a “family tree”, which illustrates the
descent and degree of relatedness of genes. Such a family tree can also be derived for sexual
species, since any specific gene can be linked directly to either father or mother, though the
situation is more involved as meiosis and recombination mix up the parental genomes. By
tracking back where a gene originated, it is possible to set up real family trees. This even
facilities the reconstruction of interconnections between species, i.e. the phylogeny or “tree
of life”. However, as usually in biology, if one takes a closer look, things turn out not to be
quite so simple.

3.1 Horizontal Gene Transfer

Not all genetic information is passed on by means of cellular division, but instead horizontal
gene transfer between two contemporaries is possible [81]. Astonishingly, this occasionally
even happens between individuals of completely different species [82, 83].

3.1.1 Modes of Horizontal Gene Transfer

One may distinguish between different modes of horizontal gene transfer, though definitions
sometimes overlap:

• Conjugation is the direct transfer of genetic material between two bacteria through
direct contact of the cell membranes. Conjugation is the bacterial equivalent of sex and
seen as the main reason for the spread of resistance against antibiotic agents and other
traits between different strains of bacteria [84].

• Transformation is the uptake of free exogenous DNA by bacteria from the extracellular
environment, first described by Griffith [85]. This may be induced artificially, but is
a natural property of some bacteria, which are then called competent. In Chapter 4
we address switching to the competent phenotype of B. subtilis, which is capable of
transformation, in more detail.
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• Transduction works through bacteriophages, which are viruses with bacterial hosts [86].
Upon infection the viral genome is either expressed excessively and new viral particles
are released as the bacterium is lysed (i.e. the bacterium bursts open) or the virus’
genome is integrated into the bacterium’s and (possibly) expressed much later, which
is called lysogeny. The latter may result in horizontal gene transfer, since neither inte-
gration into the genome nor packing of the viral DNA into the new viral particles are
error-free. Thus, genes may travel from bacterium to bacterium by means of a viral
vector (a vector is a vehicle which transports genetic material). Less often viruses also
transport genetic material between different species.

• Transfection, in distinction to the other modes of transfer, is the artificial and delib-
erate transfer of nucleic acids into cells. Mostly it refers to non-viral transfer of genetic
material into eukaryotic cells. Transfection is an important tool of molecular biology to
clarify intracellular processes. A wealth of different methods has been developed during
the past decades, and we will discuss them in greater detail in the next section.

The natural occurrence of horizontal gene transfer posts some problems to phylogenetics, the
study of relatedness between species. It implies that species that may have separated a long
time ago, and consequently have very different genomes, may still share some very similar
genes, which have been horizontally transferred more recently. It is in general not a simple
task to infer which genes have been inherited in a direct line from ancestors and which have
been “shared”, by the above mechanisms, between contemporaries at some intermediary time.

3.1.2 The Endosymbiont Theory

Besides the horizontal transfer of just a part of the genetic content, as discussed above, it
is also possible that two individuals “join” their genomes by forming a new organism: The
widely accepted endosymbiont theory [87, 88], which conjectures that some organelles (usually
mitochondria and plastids) of modern eukaryotes have in fact in the far past been independent
bacteria, which have been engulfed through phagocytosis by an eukaryotic ancestor. This led
to a symbiotic relation between host and endosymbiont, in the course of which specific cellular
functions were reallocated through exchange of genetic material. This introduces yet another
level of complication in resolving a complete tree of life, but is well beyond the scope of this
work and is mentioned here mainly for completeness and to demonstrate on the extraordinary
paths nature takes.

3.2 Transfection

While we have just seen that horizontal gene transfer may happen through different natural
mechanisms, the one best suitable for laboratory research is the artificial variant, transfection,
which is achieved in various ways.
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3.2.1 Transfection Methods

Methods of artificial horizontal gene transfer can be roughly distinguished by the way entry
to the cytosol is achieved. Uptake either relies on the chemical properties of the used vector,
or on other physical effects. Some non-chemical methods are:

• Gene electrotransfer or electroporation: A transient voltage potential is applied to the
cell membrane, which opens pores through which genetic material can enter the cell [89].

• Sonoporation: Acoustic waves, most often at ultrasonic frequencies, are used to partially
rupture the cell membrane [90].

• Optical transfection: A short, focussed, and intense laser pulse is used to burn a hole
into the membrane of a single cell [91].

• Impalefection: Cells are pressed to surfaces covered with sub-micrometer sized needles
or fibers to which plasmids are attached. As a result of the mechanical pressure the
cells are pierced and the genetic material enters [92].

• Microinjection: A micropipette is used to inject the genetic material into an individual
cell [93].

• Biolistic particle delivery, also known as gene gun: Metal particles are covered with
genetic material and then shot into the cell [94].

• Magnetofection: Magnetic nanoparticles are covered with genetic material. A magnetic
field is applied to bring particles and cells into contact and facilitate cellular uptake [95].

Chemical methods rely on the interaction of complexes, composed of DNA and other chemical
compounds, with the cell wall:

• Calcium phosphate: Through a precipitation reaction fine grains of calcium phosphate
are formed which bind DNA to their surface. These complexes are brought into contact
with cells and taken up by processes which are not fully resolved so far [96].

• Lipofection: Liposomes are artificial spherical structures composed from (usually cationic)
phospholipid bilayers (i.e. liposomes are vesicles). As cell membranes are also composed
of lipid bilayers, liposomes can fuse with them and thereby deliver genetic material,
contained in their interior, to the cytosol [97].

• Cationic polymers: Positively charged polymers and negatively charged nucleic acids
form complexes, which are taken up by cells via endocytosis [98].

After uptake of the genetic material to the cytosol, the next step is the import of the plasmids
into the nucleus. In many cases one finds correlations of import probability with the cell cycle,
since during mitosis the nuclear envelope breaks down, which facilitates uptake [99, 100, 101].
Therefore, transfection is more efficient if cell cycle and administration of genetic material to
the cells are properly timed.
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3.2.2 Applications of Transfection

Transfection experiments are used to investigate in the mechanisms of gene transfer and
expression, but also increasingly for specific applications. Two important fields are medical
use in the form of gene therapy and genetic alteration of organisms to fabricate chemical
compounds or food sources, create enhanced materials, or even process information, known
as genetic engineering.

Genetic Engineering

After the mechanisms of gene expression and regulation had been elucidated (cf. Chapter 2),
the mechanistic way in which they work made human alterations of cellular functions conceiv-
able. In the 1970s both bacterial [102, 103] and eukaryotic [104] organisms were first altered
by genetical engineering, using techniques of artificial horizontal gene transfer. Since then
genetic engineering has been applied in various fields [105]. Prominent examples include:

• Transgenic expression of proteins for medical use, such as insulin, human growth hor-
mone and antibiotics.

• Providing crops with resistance to herbicides to increase yield in agriculture.

• Enabling microorganisms to produce larger quantities of biofuel from a wider range of
biological crude materials.

One of the younger subdisciplines of genetic engineering, synthetic biology, goes one step
further by assembling the genetic material to be introduced from scratch, instead of simply
using an intact segment of genetic material from an existing species. The first examples for
this were simple motives of artificial gene regulatory networks, like the repressilator [106] or
the toggle switch [107]. Since then this technique attracted more and more attention due to
the diverse applications of the approach [108]. At its extreme, synthetic biology is used to
create “new” organisms by assembly of a complete genome and subsequent injection in a cell
deprived of its own genome [109, 110].

The moral and ethical implications of genetic engineering are a matter of social and political
debate and will (hopefully) be as long as there is progress in this field. From the viewpoint
of science we stand at the beginning of an epoch, which will probably change production,
agriculture, engineering and medicine in a similar fashion as chemical engineering did from
the beginning of the 20th century onwards.

Gene Therapy

Some human diseases stem from absence, under- or overexpression or other malfunctions of
certain genes. In these cases one does not want to add or change the genetic functionality
by adding non-human genes, but instead aims to restore the function to what is considered
healthy. If this is done by bringing genetic material into the cells, one speaks of gene therapy.
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All transfection methods described above, alongside with viral and hybrid approaches, are
being used in the growing field of gene therapy. Here, the aim is to ameliorate a disease
by either inserting useful genes, silencing or switching off of harmful genes, or altering the
expression of malfunctioning genes. The aforementioned techniques all have their advantages
and disadvantages, and it is important to compare the effectiveness of treatment, relative
to each other. To this end single-cell experiments can be performed, which compare the
percentage of successfully transfected cells. Moreover, it is not only important if whether or
not a gene in question has successfully been transfected to a given cell, but also at which
gene copy number: As in more traditional therapeutic approaches, one does want to treat a
as great as possible percentage of all cells, while not overdosing too many.

3.2.3 Stochasticity in Transfection

On a subcellular level, the processes involved in transfection are very complicated [111, 112,
113, 114]. The genetic material, mostly in form of DNA rings known as plasmids, has to
be brought in contact with the cell membrane, pass it, possibly escape from an endosome,
advance to the nucleus, enter the nucleus, and finally be expressed by the cellular machinery.1

Each of these steps is composed of a number of substeps itself and each may be of more or
less importance for successful transfection, depending on the method used.

All of these steps are chemical reactions, during which the concentration of surviving plasmids
is strongly diluted. For this reason usually only a fraction of all cells in a culture is successfully
transfected. This is of course the result of the inherent strong fluctuations in all processes
involving small numbers of molecules (cf. Section 2.3). These fluctuations also lead to a
distribution of gene copy numbers in the subset of cells that have been transfected and show
transgenic expression. Consequently, the level of proteins expressed from the plasmids shows
a wide distribution across the cell population. The variability is composed from the influence
of both variance in gene copy number and stochasticity in gene expression. By analyzing
models of transfection and subsequent expression it is possible to infer information about the
efficiency and mechanisms of transfection from the distribution of expressed proteins.

In the manuscript entitled “Predictive Modeling of Non-Viral Gene Transfer” by G. Schwake,
S. Youssef, J.-T. Kuhr, S. Gude, M. P. David, E. Mendoza, E. Frey, and J. O. Rädler single-
cell gene expression data, after transfection by means of lipofection and cationic polymers,
is analyzed. The distribution of expressed proteins is mainly determined by the gene copy
number distribution and thus carries the signature of the stochastic processes relevant during
transfection.

1It should be noted that it is also possible to transfect RNA or proteins, in which case uptake to the nucleus
is of no importance.
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ABSTRACT: In non-viral gene delivery, the variance of
transgenic expression stems from the low number of plas-
mids successfully transferred. Here, we experimentally
determine Lipofectamine- and PEI-mediated exogenous
gene expression distributions from single cell time-lapse
analysis. Broad Poisson-like distributions of steady state
expression are observed for both transfection agents, when
used with synchronized cell lines. At the same time, co-
transfection analysis with YFP- and CFP-coding plasmids
shows that multiple plasmids are simultaneously expressed,
suggesting that plasmids are delivered in correlated units
(complexes). We present a mathematical model of transfec-
tion, where a stochastic, two-step process is assumed, with
the first being the low-probability entry step of complexes
into the nucleus, followed by the subsequent release and
activation of a small number of plasmids from a delivered
complex. This conceptually simple model consistently pre-
dicts the observed fraction of transfected cells, the cotrans-
fection ratio and the expression level distribution. It yields
the number of efficient plasmids per complex and elucidates
the origin of the associated noise, consequently providing a
platform for evaluating and improving non-viral vectors.

Biotechnol. Bioeng. 2010;105: 805–813.

� 2009 Wiley Periodicals, Inc.
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Introduction

Non-viral gene delivery systems have evolved over the last
decade into widely used vectors for exogenous DNA delivery
to eukaryotic cells. Synthetic cationic lipids and polymers, in
particular, are used in molecular biology for transgene
expression, and are being further refined for use in DNA-
based therapies (Ferber, 2001; Patil et al., 2005; Roth and
Sundaram, 2004). Despite considerable progress in the
efficiency and characterization of vectors, important aspects
of the delivery pathway and transfer kinetics remain poorly
understood, including how artificial vectors are taken up,
transported to the nucleus, and how these factors collectively
influence the expression characteristics of a cell population.
Current understanding from intracellular studies of
transgene delivery includes the following steps: DNA–
vector complex uptake via the endosomal pathway, followed
by endosomal escape and cytoplasmic transport, nuclear
entry, vector unpacking and transcription initiation (de
Bruin et al., 2007; Kircheis et al., 2001; Lechardeur et al.,
2005; Roth and Sundaram, 2004; Safinya, 2001; Suh et al.,
2003). These processes are accompanied by a huge loss of
material and temporal delays. It is therefore not surprising
that transfected cells in a culture respond very hetero-
geneously over time, notably in terms of the expression
onset time (ton) and the maximum expression levels
attained. It is generally accepted that the expression behavior
of a single transfected cell is stochastic, yet cell culture
averaged expression levels are reliable indicators of gene
transfer efficiency.

Flow cytometry is commonly used to measure fluores-
cence distributions over a population at a rate of up to
10,000 cells/second (Longo and Hasty, 2006). High-
content single cell assays, in contrast, are particularly
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suitable for investigating the dynamics and heterogeneity
of clonal cell populations, since individual cells can
be followed with a high temporal resolution. In addition,
quantitative image analysis has been successfully improved
to reliably convert fluorescence intensities into copies of
molecules, hence paving the path to follow ‘‘gene expression
by numbers’’ (Rosenfeld et al., 2005).

In this article, we analyze gene expression following non-
viral gene delivery, with focus on the variance of expression
levels. The expression of genes exhibits all-or-nothing
characteristics (Hume, 2000) and additional stochasticity
exists in transcriptional regulation (McAdams and Arkin,
1999; Rao et al., 2002). Elowitz et al. (2002) have analyzed
noise in bacterial gene expression and elucidated the
distinction between extrinsic and intrinsic noise, that is, the
contribution of fluctuations in cellular components
and inherent stochasticity of the biochemical processes
during gene expression. The extrinsic variance of gene
expression within a clonal population of eukaryotic cells has
been investigated in the light of stochastic theories
(Blake et al., 2003; McAdams and Arkin, 1997; Raser and
O’Shea, 2004; Volfson et al., 2006). It was only recently that
attempts were made to generate models for transgene
expression following non-viral gene delivery (Dinh et al.,
2007; Varga et al., 2000, 2001; Zhou et al., 2007).
Computational modeling might greatly enhance our under-
standing of gene transfer and aid in elucidating the nature of
the underlying transport barriers. Many of the issues
regarding cell entry and intracellular transport are shared
with attempts tomodel viral infection (Douglas, 2008; Varga
et al., 2005).

In this article, we used quantitative single cell time-lapse
microscopy combined with mathematical modeling to
analyze the variability in transgene expression (Fig. 1).
From the synthetic delivery agents currently being evaluated
for therapeutic use, we chose polyethyleneimine (PEI)
(Boussif et al., 1995) and the commercial Lipofectamine
2000, as cationic polymer and lipid model systems,
respectively. Both synthetic vectors are able to condense
plasmid DNA into DNA-nano particles, denoted as cationic
lipid (cationic polymer)–DNA complexes or just ‘‘com-
plexes.’’ Distributions of the expression onset times and
expression steady state levels were evaluated for both
vectors.

Data are well described by a stochastic delivery model,
which is based on the assumption that in a decisive step,
only a small number of complexes enter the nucleus
through a stochastic process. Out of these complexes, only a
fraction of the plasmid load is expressed (Fig. 1). The
theoretical model is further corroborated by a cotransfection
analysis, that is, the case of the simultaneous transfection
using two distinguishable plasmids encoding for CFP and
YFP. It is shown that this model consistently describes the
fraction of transfected cells and the observed expression
level distribution. As a consequence the effective size of a
stochastically delivered unit of plasmids (complex) can be
determined.

Materials and Methods

Cell Culture

A human bronchial epithelial cell line (BEAS-2B, ATCC)
was grown in Earle’s MEM supplemented with 10% FBS
at 378C in a humidified atmosphere, 5% CO2 level.
Transfection was performed on both non-synchronized
and synchronized cultures. A thymidine kinase double-
block was performed to synchronize cells.

Transfection

BEAS-2B cells were grown to 80% confluence from an initial
seeding density of 1� 105 cells/well in six-well plates 24 h
before transfection. Cells were washed and the medium is
replaced with 1mL OptiMEM/well immediately before
transfection. Optimized transfection procedures were
performed using either 2% (v/v) LipofectamineTM2000/
OptiMEM or PEI (N/P¼ 8)/HBS; 1mg of pEGFP-N1 or
pd2EGFP-N1, is used for transfecting each batch of cells.
The transfection medium was prepared either by adding the
Lipofectamine or the PEI solution to the plasmid solution.
After the transfection media were allowed to stand for
20min the cells were incubated with 200mL/well
Lipofectamine or PEI transfection medium for 3 h at
378C, 5% CO2 level. After 3 h of incubation the medium was
removed, and cells were washed with PBS. Cells were
reincubated with Leibovitz’s L-15 Medium with 10% FBS
prior to EGFP expression monitoring.

Cotransfection

Cotransfection was performed with two kinds of pre-
parations containing the same molar amount per
plasmid. For one preparation, ECFP/Lipofectamine,
EYFP/Lipofectamine, ECFP/PEI and EYFP/PEI were
complexed separately. For the other, a mixture of ECFP
and EYFP hetero-complexes were complexed with
Lipofectamine or PEI. Transfection using either the
hetero-complexes (pre-mixed) or a mixture of homo-
complexes (post-mixed) was performed as previously
described. Cells were reincubated in growth medium and
CFP and YFP expression was monitored by fluorescence
microscopy after 24 h.

Data Acquisition and Quantitative Image Analysis

Images were taken at 10� magnification, with a constant
exposure time of 1 s, at 10min intervals for at least 30 h post-
transfection. Fluorescence images are consolidated into
single image sequence files. Negative control images were
taken to assess lamp threshold values and autofluorescence,
and were subtracted from corresponding image sequence
files to eliminate autofluorescence effects. To capture cell
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fluorescence over the entire sequence, regions of interest
(ROIs) were manually defined around each cell (Fig. 2).
Changes in total gray measurements in individual ROIs were
determined for each time point.

Results

Time Lapse Microscopy and Single Cell
EGFP Expression

A cell line of lung epithelium cells was transfected with a
plasmid encoding for the green fluorescent protein (EGFP).
Transfection protocols for PEI- and Lipofectamine-
mediated delivery followed standard procedures and
are described in detail in the Supplementary Online
Information. We denote the time of the gene vector
administration to the cell culture as t¼ 0 h. Transfection
medium was removed and cell growth medium added at
t¼ 3 h. Single-cell EGFP expression was monitored by
automatically taking sequences of fluorescence micrographs
from 25 view fields at 10-min intervals. Figure 2a shows a
representative sequence from a Lipofectamine transfection
experiment, with the initial bright field image, as well as the
EGFP fluorescence at t¼ 4, 8, and 12 h post-transfection.
These images demonstrate heterogeneity in both the

expression onset times and levels of exogenous gene
expression. It is observed that the number of fluorescent
cells increases with time; at the late stage (�30 h), the ratio of
fluorescent to non-fluorescent cells is about 23% and 30%
for PEI- and Lipofectamine-mediated transfection, respec-
tively. A total of 500–1,500 cells were monitored in parallel
within one time-lapse experiment. Individual time courses
of the total fluorescence per cell were evaluated by image
processing from data stacks as shown in Figure 2b and
described in the Supplementary Online Information.
Figure 2c shows a series of representative time traces
from one transfection experiment, illustrating the signi-
ficant variance in both the expression onset time and EGFP
expression level. The typical sigmoidal shape of the
time courses is well described by the phenomenological
function

IðtÞ ¼ Imax

2
1þ tanh

t � t1=2

trise

� �� �
(1)

which allows the determination of the maximal fluorescence
plateau value (Imax) the time of half-maximum (t1/2) and the
characteristic rise time, trise. The fluorescence intensities
were converted into molecular units using EGFP standard
beads for calibration (see Supplementary Online Informa-
tion). In the remainder of the text we will give the
fluorescence intensity Imax in units of EGFP numbers G.
Equation (1) proved to be robust for automated data
analysis, facilitating the accumulation of statistics for a large
number of individual cells. In order to determine the time
points of expression onset, ton, we use t1/2–trise as an
approximation due to the lack of a well-defined point of
onset as shown in Figure 2d. Since the timing of gene
expression is expected to be dependent on the cell cycle, we
investigated the distribution of ton for synchronized and
non-synchronized cells. To this end, cells were arrested at
the G1/S-Phase transition using a thymidine kinase double-
block (Merrill, 1998).

Distribution of Expression Onset Times

Figure 3 summarizes the measured distribution functions of
ton and Imax for GFP expression after transfection of non-
synchronized and synchronized cultures with PEI- and
Lipofectamine-based complexes respectively. Expression
onset times range from 5 and 25 h for both PEI- and
Lipofectamine, indicating the existence of a time window
during which plasmids are successfully transcribed in the
nucleus. The distribution for Lipofectamine clearly peaks at
an earlier time (�8 h) compared to PEI (�16 h). On cell
cycle synchronization, the distribution of onset times
sharpen and become peaked at about t¼ 15 h for both
PEI and Lipofectamine. Bright field images reveal that most
synchronized cells divide 12 h after transfection. This is
consistent with the fact that transfection was carried out in
mid-S-phase, 3 h after release from the thymidine kinase

Figure 1. Experimental setup for single cell transfection experiments (upper

part) and key elements of the theoretical model (lower part). EGFP-encoding plasmids

and cationic agents form complexes, which are administered to eukaryotic cell

cultures. Automated single cell microscopy yields statistics on phenotypic expression

of EGFP. For the delivery of plasmids to the nucleus, stochastic effects are important,

while the following expression of fluorescent proteins can be described in a

deterministic fashion.
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double-block. This shows that plasmid activation occurs
about 3 h after the M-phase. Furthermore, since cell cycle
synchronization suppresses expression at earlier times, there
is evidence that the delivery process depends on the cell cycle
dependent breakdown of the nuclear membrane. This is
consistent with previous studies claiming that mitosis
enhances transgene nuclear translocation in cationic lipid
gene delivery (Brunner et al., 2000; Mortimer et al., 1999;
Tseng et al., 1999). We also find that synchronization leads
to a twofold higher steady state expression for PEI-mediated
(from 2.6� 106 to 4.3� 106 average EGFP molecules per
cell) and Lipofectamine-mediated (from 2.9� 106 to
5.1� 106 average EGFP molecules per cell) transfection,
consistent with earlier observations on ensemble averaged
data (Brunner et al., 2000).

Modeling Steady State Gene Expression

In order to analyze the distribution of expression steady
states, we introduce a mathematical model that describes
EGFP expression after transfer and nuclear translocation
of complexes containing exogenous EGFP plasmids.
Stochasticity due to nuclear translocation of the plasmid
complexes and the intra-nuclear activation will give rise to a
probability distribution P(X) for X successfully expressed
plasmids (see Fig. 4a). In the first stage of analysis,
we describe the expression of EGFP from a single activated
plasmid in a linear deterministic model and neglect any

cell–cell variability. Based on the biochemical reactions
describing transcription, translation and maturation as
shown in Figure 4b we denote the ensuing rate equations.
Here, R denotes the number of RNA molecules, U the
number of unfolded polypeptide chains, and G the number
of folded EGFP proteins:

_R ¼ sAX � dRR (2)

_U ¼ spR� ðkM þ dUÞU (3)

_G ¼ kMU � dGG (4)

sA, sP, and kM denote the rate constants for transcription,
translation and EGFP maturation, dR, dU, and dG denote the
degradation constants of each product, respectively. The
degradation rates of folded (dG) and unfolded protein (dU)
are assumed to be equal, since the same proteases are
involved (Leveau and Lindow, 2001). A plasmid degradation
term was omitted, since its occurrence is predicted to be
negligible within the time frame considered (Subramanian
and Srienc, 1996). Literature values for the individual kinetic
rates are summarized in Table I. Equations (2)–(4) can be
solved analytically. For the steady state value, a linear
relation

Imax ¼ Gðt ! 1Þ ¼ kMsPsA
dGdRðkM þ dGÞ

X (5)

Figure 2. Acquisition of single cell time series. a: Microscopy view fields from a Lipofectamine transfection experiment. The first frame is a bright field (BF) control image.

Fluorescence image sequences are taken automatically at 10-min intervals for at least 30 h. b: Definition of regions of interest (ROIs), total gray value measurement and conversion

to the number of EGFP molecules. c: Representative time-courses of EGFP expression in individual cells following PEI-transfection. The population average (red) is plotted to

demonstrate its linear increase in contrast to the sigmoidal shape of the individual traces. d: Characteristic parameters of expression are obtained by fitting the heuristic function 1

(red) to the recorded fluorescence time course (black). The time of expression onset, ton, is calculated from the time of half-maximal expression t1/2 and the slope at that point.

808 Biotechnology and Bioengineering, Vol. 105, No. 4, March 1, 2010



between the expression level Imax¼ [GFP] and the number
of expressed plasmids X¼ [plasmids] is obtained:

½GFP� ¼ kexp½plasmids� (6)

Here kexp denotes an effective expression factor, corre-
sponding to the number of proteins expressed per transcribed
plasmid in the steady state. With the values given in Table I,
we find kexp� 4� 106 molecules/plasmid, which compared
to the experimental number of molecules (1–15� 106),
results in the remarkable finding that the number of
plasmids X is of order 1. This implies that most of the

variance in expression level originates from stochastic
variations in the small number of plasmids, such that the
distribution of GFP expression is determined by the
distribution of successfully delivered plasmids, P(G)� P(X).

To further substantiate this conclusion, we designed
an experiment where the expression factor kexp is
deliberately modified through the use of destabilized
EGFP. It has a 14-fold higher degradation rate (ddesG)
due to an additional amino acid sequence (PEST), which
makes it more susceptible to proteolysis (Kain, 1999).
Figure 3e and f display the shift in the steady state
distribution of Imax, shown in a logarithmic scale. As
predicted above, the shape of the distribution function is
almost unchanged for both PEI- and Lipofectamine-
mediated transfection. In addition, the peak positions
shifted by a factor 12.5, which is close to the value 14.3
predicted from Equation (5).

Modeling Transfection Noise

Unlike in chromosomal DNA, which contains a fixed
number of genes, the transfection experiments discussed
here result in the delivery of a variable number of genes per
vector. We model gene delivery as a two-step stochastic
process as shown in Figure 4a. As we will argue in the
following, a two-step model is the simplest model that is in
accordance with the experimental data. The model consists
of (i) the nuclear translocation with probability m of
complexes containing an average of m plasmids and (ii)
intra-nuclear activation of plasmids, with probability q.
Whereas the probability q subsumes all phenomena
promoting or interfering with transcription such as DNA
methylation or complexation. We assume that the first
process, the delivery of complexes to the nucleus, is rare and
statistically independent, yielding a Poisson distribution for
the number of delivered complexes C:

PðCÞ ¼ mC

C!
e�m (7)

characterized by its mean value m. Secondly, the indepen-
dent activation of a plasmid in the nucleus is described
by a Bernoulli process with success probability q. The
concatenation of both processes results in an expression for
P(X) which retains the characteristics of a Poissonian.
Mathematical details of its derivation can be found in the
Supplementary Data. Figure 5 shows the calculated
distribution of activated plasmids, P(X) (red bars), to the
measured experimental protein distribution, Pexp(G) (green
bars). In addition a theoretical protein distribution is shown
as black lines. Ptheo(G) is obtained from P(X) by additionally
accounting for noise in gene expression, where we have used
a relative magnitude of 0.3 for post-transfectional noise
from the literature (see Supplementary Data). Note that the
x-axis of the distributions P(G) is rescaled by the factor kexp
according to Equation (6). The agreement between

Figure 3. EGFP expression statistics for PEI- and Lipofectamine-mediated

transfection. Distributions of expression onset times ton (a and b) and maximal

expression values Imax (c and d), for PEI-mediated (red) and Lipofectamine-mediated

(dashed black) transfection depict strong variability within the cell cultures. The total

number of expressing cells was 23% out of 560 for PEI and 30% out of 502 in the case of

Lipofectamine. b and d: Thymidine kinase-synchronized cultures with 40% out of 1981

and 30% out of 1797 cells expressing EGFP for PEI and Lipofectamine, respectively. For

synchronized cells, expression onset time distributions coincide for Lipofectamine and

PEI, indicating that transfection is more likely to happen in specific phases of the cell

cycle. Distributions for Imax (given in units of EGFP molecules) cannot be explained by

post-transfectional sources of fluctuations alone. e and f: Effect of the altered

expression rates on the distribution of maximal expression levels Imax. Distributions

for d2EGFP (gray) and EGFP (red) transfected with Lipofectamine (e) or PEI (f) are

shown. d2EGFP, which has a higher degradation rate, exhibits a systematic shift of the

Imax distribution compared to EGFP, independent of the vector used. Besides this shift,

a change in the number of proteins per active plasmid, kexp, preserves the shape of the

distribution. This suggests that the shape is determined during plasmid delivery prior to

expression.
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experiment and model is remarkable considering that there
is only one free parameter in the fit. This is due to the fact
that two additional experimental constraints have to be met.
These are the measured fraction of transfected cells, TR,
defined as the percentage of cells expressing one or more
plasmids, and the average number of GFPmolecules per cell,
hGi, determined by calibration. The parameters m and mq
are fixed by these constraints. The remaining unknown is
the expression factor, kexp, which is determined by the fit
shown in Figure 5. We obtain kexp� 1� 106, meff� 3, and
m� 0.3–0.5.

The red curve in Figure 5 represents the distribution of
successfully expressed plasmids. This distribution, which is
directly related to the number of expressed GFP protein
though Equation (6), has a well defined mean value given by

h½plasmids�i ¼ mmq (8)

The transfection ratio, TR, is related to this mean plasmid
number. It depends on the average number of complexes

delivered m and the effective probability ~q that from any
given complex at least one plasmid is transcribed (we
present a complete derivation of these quantities in the
Supplementary Data).

TRðm;m; qÞ ¼ 1� expf � m~qg (9)

For the data shown in Figure 6, TR is of order 20%.

Cotransfection and Correlated Delivery

One important ingredient of our model is the delivery of
DNA in units or complexes and the subsequent correlated
coexpression of multiple plasmid copies. This assumption is
closely related to the question of whether DNA-complexes
fully dissociate before nuclear entry or complexes enter the
nucleus as a whole. To elucidate this issue, we studied
cotransfection of two distinguishable plasmids (CFP and
YFP) and analyzed the outcome of transfection using pre-
mixed and post-mixed complexes. Pre-mixed complexes

Figure 4. Theoretical model for transfection and gene expression. a: Our model of plasmid delivery consists of several stochastic components. The number of complexes

C delivered per cell is Poisson-distributed, with mean m. Each complex carries a random number of plasmids, described by a Poisson distribution with mean m. Finally, each plasmid

has an activation probability q, resulting in a Binomial distribution of active plasmids X out of the total number of delivered plasmids. With this approach, the overall distribution, P(X),

of actively expressing plasmids can be derived. b: Deterministic model of EGFP expression including transcription (sA), translation (sP) and protein maturation (kM). mRNA (R),

unfolded proteins (U) and GFP (G) are degraded with rates dR, dU and dG, respectively. Solving the corresponding rate equations, the steady state distribution of fluorescent proteins,

P(G), can be related to that of active plasmids, P(X).

Table I. Literature values for the kinetic rates of the linear gene expression model

Rate Best estimate in h�1 Literature values in h�1 References

sA (transcription) 180 145–240 Hume (2000)

sP (translation) 100 60–180 Molecular Biology of the Cell 3rd Edition (1995)

kM (fluorophore maturation) 1.0 0.96–1.28 Sniegowski et al. (2005)

dM (mRNA degradation) 0.10 <0.14 Sacchetti et al. (2001)

dP (protein degradation) 0.035 0.03–0.04 Sacchetti et al. (2001)

ddesG (destabilized protein degradation) 0.5 0.5 BD Biosciences Clontech
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contain both CFP- and YFP-plasmids in a single complex,
whereas post-mixed complexes contain either CFP- or YFP-
plasmids (for clarity see Fig. 6a and b). The steady-state
CFP/YFP expression was analyzed at 24 h post-transfection
for approximately 15,000 cells. We define the cotransfection
ratio, r, as the number of cells expressing both CFP and YFP
divided by the number of cells expressing either CFP or YFP.
We find that the cotransfection ratio increases from 12.9%
for post-mixed complexes to 21.9% for premixed com-
plexes. The significant difference could not be explained, if
complexes were completely dissolved in the cytosol and
delivery of plasmids was independent from the complexes.
The two-step delivery model, however, naturally explains
the discrepancy between pre-mixed and post-mixed com-
plexes. Based on our model, an analytical expression for the
cotransfection ratio can be derived (see Supplementary
Data) which predicts correctly the measured cotransfection

ratios, if the same parameters are used as determined from
the EGFP distribution function.

Discussion

We have measured the distribution of expression onset
times and steady-state expression levels derived from single
cell fluorescence time courses. Distributions of onset times
of PEI and Lipofectamine collapse on a single curve for
synchronized cell cultures, suggesting a universal cell cycle-
dependent gene delivery mechanism. Synchronized cells
exhibit a broad Poissonian distribution in expression levels
and cotransfection experiments reveal correlations in the
delivery probability for plasmids contained in one complex.

Invoking Occam’s razor, we analyzed the findings in
terms of an idealized minimalist model of gene transfection,
which describes gene delivery as a two-step stochastic
process. Yet our model proves to have considerable
predictive power by relating measurable quantities such
as the overall transfection efficiency, the cotransfection
probability and the shape of the gene expression distribution
with each other. Thus, the model allows the derivation of the
expression factor, the number of activated plasmids per
complex and the average number of delivered complexes
from the measured single cell transfection statistics. The
model also elucidates the origin of expression variance,
separating the noise due to small number fluctuations of
complexes, which is inherent to the delivery process and
extrinsic sources of noise due to cell–cell variability.

In our gene expression model, we refer to complexes as
units of coherently delivered plasmids. Those indirectly
inferred complexes are consistent with but not necessarily
identical to the complexes described in many physico-
chemical studies of PEI and lipofectamine mediated
transfection. Cationic-lipid complexes are known to form
multi-lamellar aggregates that contain a large number of
plasmids (Lasic et al., 1997; Rädler et al., 1997; Zabner
et al., 1995). Following endocytotic uptake and release,
the complexes slowly dissociate in a stepwise, unwrapping
mechanism (Kamiya et al., 2002; Lin et al., 2003). PEI
complexes are torroids or rods with a typical hydrodynamic
radius of 100 nm (Boussif et al., 1995; DeRouchey et al.,
2005), which have been seen to be actively transported inside
cells (de Bruin et al., 2007) and to accumulate in the
periphery of the nucleus (Suh et al., 2003). Both scenarios
describe a situation where numerous small complexes have
equal chances of entering the nucleus during the course of
mitosis, which is consistent with our model assumptions.
Microscopy studies have argued favorably for complexes
being at least not fully dissolved at the final delivery stage
(Lin et al., 2003; Tseng et al., 1999). However, single nuclear
entry events have not been documented explicitly. The
probability of transgene expression in the nucleus again
depends on the nature of the transfection agent. Pollard et al.
(1998) reported that cationic lipids, but not PEI prevent
gene expression when complexes are directly injected in the

Figure 5. Comparison of single-cell data with the theoretical model. The the-

oretical EGFP distribution (black) is intimately connected with the underlying distribu-

tion of expressing plasmids (red). To facilitate comparison, the protein distribution has

been scaled down by the average number of proteins per active plasmid in steady

state, kexp. a and b: For synchronized cultures the measured protein distribution

(green) is fitted very well by our theoretical model (black). The fit for PEI transfection

(a) yields an average number of delivered complexes, m¼ 0.53, and an average

number of activated plasmids per complex, meff¼ 3.2. In the case of Lipofectamine

(b), we find m¼ 0.37 and meff ¼ 3.2.
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nucleus. Such findings can only be consolidated with our
model, if the delivered complexes transform during the
course of the delivery, rather than being the same physical
complexes as originally prepared under in vitro conditions.
Within the context of our model we restrict ourselves to a
narrowed meaning of ‘‘complexes’’ as units of plasmids that
are co-delivered. In this framework, we determine the
average number of successfully delivered complexes and
the effective number of activated plasmids per complex from
the analysis of single cell statistics. It will be interesting to
corroborate the physical fate and the expression outcome of
single complexes by high resolution studies in single cells (de
Bruin et al., 2007).

The method to use transfection assays based on
automated high-throughput microscopy combined with
image processing might evolve into a routine tool for the
assessment of transfection efficiency. In contrast to ensemble
averaged fluorescence or luminescence data, single cell
assays yield precise distribution functions and single cell
expression dynamics, which allow a more detailed compar-
ison to theoretical models. As shown here, the analysis of
steady state expression levels provides access to the
probability of successful plasmid delivery (P(X)) and yields
an absolute number for the expression factor (kexp). In
forthcoming work we will discuss in more detail the
distribution of expression onset times and the expression
dynamics. We expect that our particular mathematical
model can be adapted to a wider class of transfection agents
and different types of cells. Their distinct transfection ratios,
rate constants and numbers of effective complexes will
become even more meaningful in the context of

comparative theoretical modeling. A combined experi-
mental and modeling approach will hence help to identify
rate-limiting barriers to gene transfer and will result in
improved data comparability, making it a versatile tool in
the continuous evaluation and improvement of existing
synthetic vectors.
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Probability distribution of active plasmids per cell 

The probability P(X) of finding X plasmids expressed in a given cell can be computed from a 

convolution of all underlying stochastic processes that occur prior to transcription initiation. 

Supposing X plasmids have been activated, then n ≥ X plasmids first had to be delivered to the 

nucleus, with a probability q for each plasmid to be expressed. This results in a binomial 

distribution with sample size n and parameter q: 

 .       [S1] 

Two relevant stochastic processes determine the number of delivered plasmids n, namely, the 

number of complexes C that arrive in the nucleus, and the number of plasmids in a given 

complex. We assume Poisson distributions for both, with means µ and m, respectively. 

Summing over all possibilities, we get the distribution 

       [S2] 

for n. Here we have used that the convolution of C Poisson distributions, each with mean m, is 

again a Poissonian with mean C·m. 

Considering the previous two equations the overall probability of having X active plasmids is 

.  [S3] 



By interchanging the order of summation, shifting summation indices and using the 

normalization condition of the Poisson distribution, this can be rewritten as 

.       [S4] 

Summing from X = 1 to infinity yields the transfection probability 

      [S5] 

which corresponds to Eq. 9 of the main text. 

 

Cotransfection Probabilities 

We are interested in the number of cells that are either monochromatic, dichromatic or not 

fluorescent at all. To compute the probabilities for each, a sum over all possible plasmid 

numbers X has to be evaluated, with each term in the sum weighted with the probability of 

activation of zero, one, or two species, depending on the case being considered. If there are i 

plasmids of one color in the nucleus, the probability that none are activated is (1-q)i, while the 

probability that at least one is activated is 1-(1-q)i 

The two cotransfection experiment setups were explained in the Material and Methods 

section. For uni-colored complexes (post-mixing), the total number of complexes can be 

subdivided into complexes of either color, yielding a binomial term in the complex number. 

Thus, for example, the probability of having non-fluorescent cells (not (CFP OR YFP)) is 

given by 

.[S6] 

In the case of dual-colored complexes (pre-mixing), the total number of plasmids is binomial 

distributed between YFP and GFP, such that the probability of finding, for example, 

dichromatic cells (CFP AND YFP) is given by: 



. [S7] 

Similar expressions can be set up for all other cases. These can be algebraically simplified 

with the results given in Table SI.  

From these expressions, it is easy to compute the cotransfection ratio, 

.  [S8] 

Figure S1 is a representative result for the cotransfection ratio, r as a function of the 

transfection ratio, TR, for pre- and post-mixed complexes. Our model predicts that 

cotransfection is enhanced in pre-mixed complexes, and that the probability of cotransfection 

approaches 1 as TR approaches 100%. This is consistent with experimental results. The result 

shown in Figure S1 is particularly relevant in experiments, since one relies on cotransfection 

for the simultaneous delivery of two different plasmids. 

 

Distribution of Proteins 

The protein number distribution P(G) inherently carries the signature of the associated 

plasmid distribution P(X). Ignoring intrinsic and extrinsic noise in gene expression the mean 

number of proteins can simply be computed from the distribution of plasmids Eq. S4 and the 

expression factor: 

        [S9] 

The mean protein number  can be obtained from single cell statistics. Additional relations 

are found between the parameters in Eq. S9 by evaluating how the percentage of non-

fluorescent cells, p0 depends on them. p0 is identical to the percentage of cells with no 

activated plasmids in Eq. S4 or 1- TR, where TR is the transfection ratio. 

.      [S10] 

Eliminating  µ from Eqs. S9 and S10, and with rearrangements, one finds 



.          [S11] 

where  and . Solving Eq. S11 for w gives the Lambert W-function. 

Hence, 

       [S12] 

which only depends on measurable quantities and kexp. Fitting the expression factor as the 

only free parameter, µ and meff can be determined from single cell data. Consequently, the 

distribution of active plasmids is set by Eq. S4. The distribution of proteins then follows by 

stretching the distribution of plasmids according to Eq. 6. As argued in the main text, theory 

predicts discrete protein distributions, with peaks spaced by kexp. Of course, there are 

additional noise sources like all post-transfectional fluctuations and limited measurement 

accuracy. To compare theory with experiment, we replaced the peaks of the discrete protein 

distribution by Gaussians with the same area and a standard deviation of 0.3 of each peak’s 

position to approximate extrinsic noise. Figure 5 shows the complex, plasmid and protein 

distributions for a set of single cell data obtained from this theory. A full list of parameters for 

all four data sets is given in Table SII. 

 
 



Figure S1 (Schwake et al.) 
 

 
 
 
 

Figure S1. Theoretical prediction for the probability of cotransfection, r, as a function of the 

transfection ratio, t, in terms of percent cells transfected. The stochastic model of complex 

delivery predicts a strong discrepancy between pre-mixed and post-mixed (uni-colored) 

complexes. The analytic solution is given in the supporting information. Shown are 

parametric plots with µ varying between 0 and infinity, while meff = 3.2 is held constant. 
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Table SI. Probabilities of finding non-fluorescent, monochromatic, and dichromatic cells for 

pre-mixing (hetero-complex) and post-mixing (homo-complex) cotransfection.  

 

 

 

 
Table SII (Schwake et al.) 
 
data p0  kexp meff µ  
Synchronized cells, Lipofectamine 0.70 1.55⋅106 1.3⋅106 3.21 0.37 4.0 
Asynchronous cells, Lipofectamine 0.70 8.72⋅105 0.8⋅106 2.89 0.38 3.6 
Synchronized cells, PEI 0.60 1.71⋅106 1.0⋅106 3.22 0.53 4.3 
Asynchronous cells, PEI 0.77 6.06⋅105 0.7⋅106 3.18 0.27 3.8 
 

Table SII. Parameters of the theoretical protein distribution as inferred from single cell data. 

The number of non-fluorescent cells, p0, and the mean number of proteins, , have been 

determined experimentally. Fitting the expression factor kexp, to give optimal agreement 

between theory and experiment, the mean number of delivered plasmids, µ, and the mean 

number of activated plasmids per complex, meff = m⋅q, are set by theory. From these 

parameters, the plasmid distribution, P(X), is determined by Eq. S4.  is the mean 

number of expressing plasmids per fluorescent cell.  

 



S2 Supplementary online information to Materials and Methods 

Materials. Earle’s MEM (Gibco, Catalog no. 41090-028), FBS (Invitrogen, Catalog no. 

10106-185), Leibovitz’s L-15 Medium (Gibco, Catalog no. 21083-027), 

LipofectamineTM2000 (Invitrogen, Catalog no. 11668-027) and OptiMEM (Gibco, Catalog 

no. 51985-026) were purchased from Invitrogen. 6-well culture plates (Falcon, Catalog 

no.353046) and thymidine (Catalog no. 6060-5) were purchased from VWR International 

GmbH. Linear PEI (25 kDa, Catalog no. 23966) was purchased from Polysciences, Europe 

GmbH, Eppelheim.  

All plasmids were obtained from BD Biosciences: the pEGFP-N1 plasmid (Catalog no. 6085-

1) consists of the transcriptional regulatory domain of cytomegalo virus (CMV) preceding the 

EGFP sequence; the pd2EGFP-N1 plasmid (Catalog no. 6009-1), derived from EGFP, 

contains a PEST amino acid sequence that targets the protein for degradation and results in 

rapid protein turnover; the pECFP-N1 plasmid (Catalog no. 6900-1) and the pEYFP-C1 

plasmid (Catalog no. 6005-1), both derived from EGFP, encodes cyan and yellow fluorescent 

variants, respectively.  

BD Living Colors EGFP Calibration Beads (Catalog no. 632394) were purchased from BD 

Biosciences. Sterile PBS and HEPES buffered saline (HBS) were prepared in-house. Trypsin-

EDTA (Catalog no. Z-26-M) was purchased from c.c.pro GmbH. 

 

Cell culture. A human bronchial epithelial cell line (BEAS-2B, ATCC) was grown in Earle’s 

MEM supplemented with 10% FBS at 37°C in a humidified atmosphere, 5% CO2 level. Cells 

were maintained at 85% confluence. Transfection was performed on both non-synchronized 

and synchronized cultures. A thymidine kinase double-block was performed to synchronize 

cells (Merrill 1998). Briefly, cells were cultured in synchronization medium (growth medium 

with 2mM thymidine) for 18 hours. Initial release was facilitated by an eight-hour incubation 

in regular growth medium. A second block was performed by incubating cells in 



synchronization medium for another 17 hours, which was followed by a three-hour incubation 

in regular growth medium to allow mid-S-Phase transfection.  

 

Transfection optimization. Culture and transfection conditions were optimized at different 

levels. Different media on which the cells could grow were initially screened for 

autofluorescence and CO2 independence. Leibovitz’s L-15 Medium was found to be ideal for 

growing cells with minimal autofluorescence levels. Transfection was optimized by varying 

the LipofectamineTM2000:DNA and PEI:DNA ratios. Relative efficiencies were determined 

by Fluorolog Fluorescence Spectrofluorometer (Data not shown). Highest transfection 

efficiencies were obtained when 2µl of LipofectamineTM2000 or a Nitrogen:Phosphate ratio 

(N:P) = 8 of PEI:DNA was used with 1µg of DNA. EGFP expression stability was 

determined using time-course experiments; expression without photobleaching was found to 

be stable for at least four hours. 

 

Transfection. BEAS-2B cells were grown to 80% confluence from an initial seeding density 

of 1 x 105 cells/well in six-well plates at 37°C, 5% CO2 level 24 hours before transfection. 

Cells were washed and the medium is replaced with 1 ml OptiMEM/well immediately before 

transfection. Optimized transfection procedures were performed using either 

LipofectamineTM2000 or PEI; 1 µg of pEGFP-N1 or pd2EGFP-N1, corresponding to 4⋅1011 

plasmids, is used for transfecting each batch of cells. For Lipofectamine-mediated 

transfection, separate 100 µl preparations of 1% w/v pEGFP-N1/OptiMEM or pd2EGFP-

N1/OptiMEM and 2% v/v LipofectamineTM2000/OptiMEM were made at ambient 

temperature and allowed to stand for five minutes. The Lipofectamine transfection medium 

was prepared by adding the Lipofectamine solution to the plasmid solution. For PEI-mediated 

transfection, separate 100µl preparations of 1% w/v pEGFP-N1/HBS or pd2EGFP-N1/HBS 

and PEI (N:P = 8)/HBS were made and the solutions were combined by adding the PEI 



solution to the DNA solution. Transfection media were allowed to stand for an additional 20 

minutes at ambient temperature to facilitate complex formation. Cells were incubated with 

200 µl/well Lipofectamine or PEI transfection medium for 3 hours at 37°C, 5% CO2 level. 

Negative controls were transfected with non-EGFP containing plasmids using the same 

delivery systems. After 3 hours of incubation the medium was removed, and cells were 

washed with PBS. Cells were reincubated with Leibovitz’s L-15 Medium with 10% FBS prior 

to EGFP expression monitoring. 

 

Cotransfection. For the cotransfection experiments, we choose ECFP and EYFP plasmids on 

account of their similarities in terms of size (4731bp vs. 4733bp), promoter (early promoter of 

CMV), DNA replication origin (SV40) and translational efficiency (Kozak consensus 

translation initiation site). These plasmids only differ in the position of the MCS-site (C-

terminal in ECFP, N-terminal in EYFP), apart from the fluorescence gene that they express, 

which are necessarily different to distinguish ECFP- from EYFP-expressing cells. 

Cotransfection was performed with two kinds of preparations containing the same molar 

amount per plasmid. For one preparation, ECFP/Lipofectamine, EYFP/Lipofectamine, 

ECFP/PEI and EYFP/PEI were complexed separately. For the other, a mixture of ECFP and 

EYFP hetero-complexeswere complexed with Lipofectamine or PEI. Transfection using 

either the hetero-complexes (pre-mixed) or a mixture of homo-complexes (post-mixed) were 

performed as previously described. Cells were reincubated in growth medium and CFP and 

YFP expression was monitored by fluorescence microscopy after 24 hours. 

 

Instrumentation. EGFP expression was monitored using a motorized inverted microscope 

(Axiovert100M, Zeiss) equipped with a temparature-controlled mounting frame for the 

microscope stage. SimplePCI (Compix) was used for all microscope controls. A mercury light 

source (HB 100) was used for illumination, and a reflector slider with three different filter 



blocks was used for detection. EGFP and d2EGFP were detected with filter set 41024 

(Chroma Technology Corp., BP450-490, FT510, LP510-565), EYFP with F41-028 (AHF 

analysentechnik AG, BP500/20, FT515, BP535/30) and ECFP with F31-044 (AHF 

analysentechnik AG, BP436/20, FT455, BP480/40). An illumination shutter control was used 

to prevent bleaching. 

 

Data acquisition and quantitative image analysis. Images were taken at 10× magnification, 

with a constant exposure time of 1s, at 10 minute-intervals for at least 30 hours post-

transfection. Automated scanning and image capture for 25 view fields within a predefined 

20mm diameter was programmed using the AIC module of SimplePCI. Briefly, the procedure 

captures individual brightfield images of the 25 view fields, then proceeds with a 30 hour loop 

where fluorescence images of each view field are taken at 10 minute intervals. At the end of 

the loop, brightfield images of the 25 view fields are taken again. Fluorescence images are 

consolidated into single image sequence files per view field. Negative control images were 

taken to assess lamp threshold values and autofluorescence, and were subtracted from 

corresponding image sequence files in SimplePCI to eliminate autofluorescence effects. To 

capture cell fluorescence over the entire sequence, regions of interest (ROIs) were manually 

defined around each cell in SimplePCI (Fig. 2). Changes in total gray measurements in 

individual ROIs were determined for each time point considered using a built-in function of 

SimplePCI.  

 

EGFP quantification. EGFP is a Phe64Leu/Ser65Thr mutant of the Auquorea victoria 

protein, GFP (Heim et al. 1995). It exhibits an intense emission spectrum, higher 

photostability, and a half life of > 24 hours in mammalian cells (Bi et al. 2002); (Cotlet et al. 

2001); (Tsien 1998). The accurate determination of the total number of EGFP molecules 

expressed in each cell is impeded by experimental limitations, notably bleaching and 



autofluorescence. We optimized culture, microscope and image acquisition settings to 

maximize the dynamic range while minimizing the effects of bleaching and autofluorescence. 

Our calibration procedure involved the use of an EGFP standard originally designed for flow 

cytometry. We used the microbead population coated with 1.16⋅105 EGFP molecules. For 

each transfection experiment, 50µl Bead4 of the EGFP-Calibration Kit was suspended in 1ml 

HBS in one well of a six-well plate. Fluorescence images of the beads were taken under the 

same conditions as the transfected cells. For each experiment, total gray values were obtained 

for at least 80 beads and an equal number of background regions adjacent to each bead. The 

average background corrected total gray value is obtained and used for converting intensity 

values to molecules of equivalent soluble fluorochrome (MESF) units. In our experiments, 

average calibration factors typically do not exceed a deviation of 11.2%. Calibrations between 

different assays have higher deviations due to illumination variations. Consequently, the 

calibration factor and the number of expressed EGFP molecules that we report are not 

absolute as a result of inherent and non-quantifiable differences in the quantum efficiencies of 

the EGFP chromophores inside the cells and the beads. However, relative intensity levels and 

the intensity distribution functions that are discussed in the paper are unaffected by the 

absolute calibration. 
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4 Phenotypic Switching

Not all individuals of a species are the same. For example there may be variation in size,
shape or other aspects of appearance or in behavioral features. Often, the reason for this
are differences in the genetic information, that is, the genotype. With different genetic in-
formation comes a different protein expression pattern, as detailed in Section 2.1.2, which
results in different characteristics, all of which together are called the phenotype. However,
even two bacteria which have been created by (asexual) cell division from a single ancestor,
and therefore share an identical genome, may have different physical properties and hence
different phenotypes.

Of course, the inherent fluctuations in the molecular numbers cause small and transient het-
erogeneity across a clonal cell population. However, phenotypic traits differ qualitatively from
these microscopic fluctuations, as they are substantial and stable for longer periods of time.
This is a consequence of the underlying genetic regulations, as shortly addressed in Section
2.2.3. At the end of this chapter we will consider a specific example: Competence regulation
in Bacillus subtilis and in particular how individual cells switch from a non-competent to a
competent phenotype.

4.1 The Competent Phenotype of Bacillus subtilis

The soil-dwelling bacterium Bacillus subtilis is widespread in nature and a model organ-
ism for laboratory experiments. It was first described by Ehrenberg in 1835 [115] and has
since then been extensively studied, especially to elucidate gene regulation, cell cycle events
like chromosomal replication, and phenotypic differentiation like sporulation and competence
development [116].

Differentiation of clonal populations of B. subtilis is most apparent upon stressing the cells
by deprivation of nutrients. Under these conditions cells first enter a highly motile state, as
necessary for the search of new food sources. If this fails, a fraction of the cells becomes com-
petent for the transformation of exogenous DNA, which constitutes an example of horizontal
gene transfer, cf. Section 3.1. Competence requires the costly production of a DNA-uptake
machinery and further proteins, which are responsible for incorporating newly acquired DNA
into the bacterial genetic material. Competence has probably evolved to acquire useful abili-
ties, like the digestion of a wider array of nutrient sources, and thereby survive in the stressful
environment. It is obviously a costly investment, not only due to the metabolic costs, but
also due to the possibilities of incorporating harmful genes or misplacement of incorporated
gene sequences. Therefore, it immediately makes sense, that not all cells become competent,
but that competence development is instead strongly regulated, with respect to both when
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cells may become competent and how probable this is. As a last resort cells which do not
become competent can form spores and thereby ride out the lean times in a dormant state.

4.2 The Advantage of Multiple Phenotypes

During the lifetime of an organism it might move between different environments, or the
environment might change due to some external factor. To ensure survival in the everlasting
struggle for resources, it appears necessary to adapt to a given environment as fast as possible
by changing to some optimal (with respect to the present condition) phenotype. Astonish-
ingly, even for constant external conditions, clonal populations of microorganisms tend to
show phenotypic heterogeneity. From an evolutionary standpoint this seems strange: Under
favorable conditions microbes grow exponentially and a population where all individuals have
the optimally reproducing phenotype would quickly outgrow a population exhibiting pheno-
typic heterogeneity. Why put part of the population in a state in which reproduction is not
optimal? Possible solutions to this seeming paradox are the costs (in terms of resources and
time) of switching between phenotypes and possible risks of being in a phenotypic state which
is not adapted to the environment at all. The idea is that evolution has optimized not every
single organisms, but the species as a whole, with respect to a changing environment [117].
While under one condition one phenotype may thrive, it may be severely hampered upon an
environmental change and even may perish. Therefore, phenotypic diversity can be seen as a
strategy to minimize risk, also known as bet-hedging.

4.3 Stochastic Switching

4.3.1 Auto-feedback: Phenotype-encoding through Non-linear Reaction
Networks

Many bacterial systems show phenotypic variability [118]. Often these systems can be modeled
by rate equations that have more than one steady state solution. An early example is a genetic
control system where a gene’s protein induces stronger expression of the gene itself [119]. This
is known as an auto-feedback loop, a very simple and widespread mechanism which relies on
the non-linearity of the activating feedback. The dynamics can be described by coupled
differential equations:

Ṁ =
βM

1 + (Q/P )n
− δMM , (4.1a)

Ṗ = βPM − δPP (4.1b)

Here M is the concentration of the mRNA, while P is the concentration of the corresponding
protein. Auto-feedback is ensured through steplike activation of transcription with coopera-
tively n, half-maximal activation at P = Q and maximal transcription rate βM . Translation
is linear in mRNA concentration at rate βP , while δM and δK are degradation rates of mRNA
and proteins, respectively. Usually, equations (4.1) have three fixed points, one unstable and
two stable ones (with low and high protein concentration, respectively). The stable fixed
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points can be associated with different phenotypes, which are characterized by the concen-
tration of protein P .

4.3.2 Switching Mediated by Stochasticity in Gene Expression

While in reality one rarely has such a simple system, one may still take this as a paradigm.
It explains how different phenotypes can be encoded. Still, another ingredient is necessary to
explain how a homogeneous population may split up into different subpopulations: intrinsic
fluctuations. When taking small number fluctuations (see Chapter 2.3) into account, it is
possible that protein numbers in a given individual fluctuate from one stable fixed point
across the unstable fixed point into the basin of attraction of the other stable fixed point.
This is easily shown by stochastic simulations (cf. Section 2.4.3), but may also be argued for
analytically in the case of the auto-feedback loop and other simple network motifs [4].

Obviously switching from one expression pattern to another requires sufficiently strong fluc-
tuations. This is can be achieved by feed-forward cascades. Here, one molecular species or
compound triggers the enhanced production of another molecular species. If the former is
subject to large relative fluctuations in the number of molecules, these are passed on to the
latter, which may then display large fluctuations in its absolute number of molecules, known
as bursts. Examples include eukaryotic genes under strong transcriptional control, which
exhibit slow transitions between active and inactive states [120]. For bacteria the mRNA
number is often very small and thus protein production is burst-like [5], which makes the
explicit modeling of mRNA necessary to understand phenotypic switching [121].

Often, phenotypic switching needs to be fast to adapt to rapid changes of a stressful envi-
ronment. At the same time switching might be risky, as the environment might change back,
leaving the cell badly adapted. Under these conditions, the fraction of the population which
actually switches, needs to be tightly controlled. A good bet-hedging strategy is to control
the number of switching individuals by transiently enhancing noise through the mechanisms
mentioned above. This mode of control of stochastic switching between phenotypes is termed
a switching window [122].

In the manuscript entitled “Kinetics of Genetic Switching into the State of Bacterial Compe-
tence” by M. Leisner, J.-T. Kuhr, J. O. Rädler, E. Frey, and B. Maier, single cell time-lapse
data of B. subtilis bacteria, switching to the competent phenotype, is explained by a non-
linear, stochastic model. Quantitative agreement between theory and experiment is found
for both the switching probability and the switching time. The consequences of a knock-out
mutation are linked to a bifurcation in the fixed points of differential equations describing the
underlying non-linear reaction network.
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ABSTRACT Nonlinear amplification of gene expression of master regulators is essential for cellular differentiation. Here we
investigated determinants that control the kinetics of the genetic switching process from the vegetative state (B-state) to the
competent state (K-state) of Bacillus subtilis, explicitly including the switching window which controls the probability for compe-
tence initiation in a cell population. For individual cells, we found that after initiation of switching, the levels of the master regulator
[ComK](t) increased with sigmoid shape and saturation occurred at two distinct levels of [ComK]. We analyzed the switching
kinetics into the state with highest [ComK] and found saturation after a switching period of length 1.4 5 0.3 h. The duration of
the switching period was robust against variations in the gene regulatory network of the master regulator, whereas the saturation
levels showed large variations between individual isogenic cells. We developed a nonlinear dynamics model, taking into account
low-number stochastic effects. The model quantitatively describes the probability and timescale of switching at the single cell
level and explains why the ComK level in the K-state is highly sensitive to extrinsic parameter variations. Furthermore, the model
predicts a transition from stochastic to deterministic switching at increased production rates of ComK in agreement with
experimental data.

INTRODUCTION

Populations of genetically identical cells often maintain

a diversity of phenotypes, characterized by different patterns

of gene expression. This is usually triggered by stochastic

fluctuations, which are amplified by the underlying gene

regulatory networks (1–4). The benefits of such non-geno-

type-derived heterogeneity lie in the enhanced adaptability

to environmental changes of the population as a whole (5–8).

To analyze phenotypic heterogeneity it is necessary to

monitor gene expression in individual cells (9). Real-time

kinetics of gene expression have been extensively measured

in individual cells to characterize noise in gene expression

(10–14), multistability (1,5,15,16), oscillations (16–19),

and timing of gene activities (20), but the determinants for

genetic switching kinetics are not well characterized so far.

Competence development in Bacillus subtilis is one

example in which a genetic switch determines cell fate. At

low cell density, a homogeneous cell population undergoes

exponential growth, but at high cell density (stationary

growth phase), the cell population becomes heterogeneous

in its phenotype, with a well-defined fraction of 15%

expressing genes that code for a strong DNA import machine

and recombination proteins (21). These cells are called

competent for DNA transformation and they express the

master regulator comK at high level (22–24). In this study,

the state in which comK expression levels are high is

denoted the K-state. The entry into the K-state is switchlike

(25,26). The positive feedback loop in the genetic control

circuit is important for the establishment of the competent

phenotype in Bacillus subtilis (27,28). In noncompetent

cells, the positive autoregulatory loop is not activated and

comK expression is low (B-state). During exponential

growth, ComK is kept at a basal level through degradation

by the MecA/ClpC/ClpP protease complex, and by transcrip-

tional repressors including Rok, AbrB, and CodY (Fig. 1).

Due to a quorum-sensing mechanism, the concentration of

ComS (an inhibitor of MecA/ClpC/ClpP) rises with

increasing cell density. Work by Maamar et al. (29) revealed

that at T0 (i.e., at the entry into stationary phase, Tx¼x h after

transition point) the average number of mRNA coding for

ComK per cell is of order 1. In this regime, small number

fluctuations are, relative to the mean, of paramount impor-

tance. This is especially noteworthy since the reaction

kinetics of ComK is highly nonlinear. Experiments and

simulation have shown that the fraction of cells that switch

into the K-state is determined by the magnitude of intrinsic

fluctuations in comK expression (16,29). The second impor-

tant determinant of the fraction of cells in the K-state is the

length of a switching window in which basal comK expres-

sion rate is enhanced, which facilitates switching (30). Under

conditions in which nutrient concentrations are constantly

low, cycles of competence initiation and decay have been

observed in real-time experiments in individual cells and

a mathematical model described the system as an excitable

regulatory circuit (15,16). Escape from the K-state has

been attributed to negative feedback between ComK and

the inhibitor of ComK proteolysis, ComS. Theoretical

models of the competence decision system can be divided

into two different categories, by the description of the system

as excitable (15,16,31) as opposed to bistable (5,27–29,32).Submitted May 9, 2008, and accepted for publication October 15, 2008.
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Here we investigated the switching kinetics of individual

cells of Bacillus subtilis both experimentally and theoreti-

cally. We quantified the expression rate of the promoter of

comK in real-time and mimicked increasing cell density

with individual cells by continuously adjusting the growth

medium. Using this method, we investigated the variability

in the length of switching period, switching kinetics, and

accumulated comK expression against varying external

conditions due to growth phase and against genetic modifica-

tion of the competence circuit. We developed a mathematical

model predicting bistability during cell growth that retrieved

the length of the switching period and the fraction of compe-

tent cells. The model explains why the saturation level of the

K-state is highly sensitive to external fluctuations as

observed in the experiments. Transition to deterministic

switching, i.e., independence of fluctuations, as found for

a mutant strain with increased transcription rates, is neatly

explained by loss of the B-state in the stationary phase.

MATERIALS AND METHODS

Materials and strains

All B. subtilis strains used were derived from strain BD630 and are described

in Table S1 in Supporting Material. Bacillus strains were grown in liquid

competence medium (33) supplemented with glucose (0.5%), L-histidine,

L-leucine, L-methionine (50 mg/ml), and chloramphenicol, kanamycin

(5 mg/ml), or spectinomycin (100 mg/ml) at 37�C. Competent cells were

prepared as described previously (33). BM101 was created by transforma-

tion of genomic DNA of BD2711 into BD2955 ((28,41) (Table S1)).

Microscopy

Cells were taken at T0 5 1 h (where T0 is the transition from the exponential to

the stationary growth phase, Tx ¼ x h after the transition point), permitted to

attach to a polystyrene-coated cover slide and mounted onto a flow chamber.

An image was acquired every 15 min. To confirm that the conditions under the

microscope were equal to the conditions in an Erlenmeyer flask, the medium

was exchanged directly after every exposure for the supernatant of a parallel

culture grown in an Erlenmeyer flask (shaken at 300 rpm, at 37 �C).

Microscopy was performed with a Axiovert 200 M microscope (Carl

Zeiss, Jena, Germany) equipped with a digital camera (Andor, Belfast,

UK), and an EC Plan-Neofluar 100�/1.30 oil immersion objective (Zeiss).

Andor software was used for image acquisition. Stability of absolute fluores-

cence values was verified using a microscope image intensity calibration kit

(Focal-Check fluorescence microscope test slide #3, F 36914; Molecular

Probes, Eugene, OR). Homogeneity of illumination was tested using fluores-

cent slides and the maximum deviation was <5%.

Analysis

To analyze the ComK protein levels in single cells, we used strains contain-

ing a gfp-comK reporter construct standing under the control of the promoter

of comK (PcomK) in addition to the original copy of the comK gene. As the

green fluorescent protein (GFP) molecule is not likely to be a substrate for

MecA/ClpC/ClpP proteolysis, the concentration of GFP controlled by PcomK

is not a direct measure of ComK. However, the expression rates, i.e., the

production rate of ComK and GFP, are expected to be similar, as the

complete native promoter of comK including all native signals for comK

expression is present. We analyzed ComK expression in single cells as the

fluorescence intensity (FI) represented by the mean shaded value (measured

in arbitrary fluorescence units (FU)).

Images were processed using ImageJ software (National Institutes of

Health, Bethesda, MD). The image background was corrected using a rolling

ball algorithm with a radius of 50. An intensity threshold tool was used to

delimit the boundaries of the cells in the bright-field image (Fig. 2 a). The

areas encircled by the boundaries were then selected as a region of interest

using the ImageJ wand tool. These regions of interest were then applied to

the fluorescence images and the mean shaded value of each cell was obtained

using the ImageJ measurement tool.

The autofluorescence level of noncompetent BD630 was FIauto T�2 ¼
23 5 1 FU, and the width of the Gaussian fit was FIauto T�2 ¼ 9.2 5

1 FU. We verified recently that the autofluorescence level did not shift until

the basal fluorescence level reached its maximum (30). Since the time delay

between the expression of the GFP reporter and the onset of fluorescence is

5 min (30), but switching into the K-state occurred on a significantly longer

FIGURE 1 Core of the competence

circuit. Arrows denote upregulation,

blunt ends denote downregulation.
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timescale, we did not correct our data for GFP-folding. In addition, no signif-

icant GFP degradation could be found on the relevant timescale of 3 h (30).

We defined the switching threshold differently as in previous work with

fixed cells (30). Instead of defining the threshold from the histogram of fluores-

cence intensity, we defined the switching time as the point where the intensity

increased sharply in the FI(t) plot (Fig. 2 a). This led to slightly lower values for

the threshold but the fraction of competent cells was not affected (Fig. S4).

RESULTS

The basal comK expression rate increases
within the whole cell population

We quantified the expression of the master regulator comK in

individual cells by measuring the fluorescence intensity of

GFP fused to the promoter of comK (Fig. 2) (see Materials

and Methods). To stimulate growth-phase-dependent devel-

opment of cells on the microscope and to supply the cells

with oxygen, we exchanged the medium in the flow chamber

with medium from a cell culture growing under standard

competence conditions every 15 min. We quantified the

expression from the comK promoter by measuring the

average fluorescence intensity FI of individual cells

(Fig. 2 a). In agreement with previous experiments, we found

that in our real-time experiments 15% of the cells switched

into the K-state (Fig. S4). Initiation of switching was defined

as a sharp increase in fluorescence intensity, which was fol-

lowed by a sigmoidal increase in fluorescence intensity as a

FIGURE 2 Time course of PcomK-gfp expression in individual cells. (a) Time-lapse of a switching cell and corresponding plot of fluorescence intensity FI

as a function of time. (Green contour) Outline of the cell. Scale bar 1 mm. (b) Time course of fluorescence intensity of cells remaining in the B-state. Red

line indicates the average fluorescence intensity of cells remaining in the B-state. (c) Time course of fluorescence intensity of cells switching into the K-state.

Red line indicates the average fluorescence intensity of cells still in the B-state before switching.
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function of time. Before entry into the stationary phase at T0,

basal expression of comK increased significantly in all cells

between T�0.75 and T�0.5 (Fig. 2, b and c). The basal level of

comK expression was indistinguishable for cells that later

triggered the switch and cells that remained in the B-state,

indicating that no preselection had taken place as yet.

A fraction of cells switches into a state
with intermediate comK expression

The saturation levels showed a large variation between indi-

vidual cells with two distinct peaks of saturation fluorescence

intensity (Figs. 2 c and 3 a). An intermediate peak was distrib-

uted at ~200 FU, i.e., at a level between the basal fluorescence

level at 50 FU (B-state) and high fluorescence level (K-state)

at 1300 FU. We did not observe switching between the inter-

mediate fluorescence mode and the K-state. Furthermore, we

found no correlation between saturation fluorescence inten-

sity and basal fluorescence, daughter cells after cell division,

or cell length (data not shown). The intermediate fluorescence

peak disappeared in the rok-strain (Fig. S5) in which the

major repressor of comK transcription, Rok, was knocked-

out. Since the characterization of functionality and molecular

determinants for switching into the intermediate fluorescence

mode is subject to future experiments, we decided to analyze

the kinetics of switching into the K-state in the following, i.e.,

we concentrated on cells that obtained saturation fluorescence

values exceeding 300 FU.

The length of the switching period of individual
cells is well defined and independent of growth
phase

To quantify the switching kinetics, we normalized the indi-

vidual switching curves to their saturation level and shifted

the T-axis to overlay all curves at half-maximum expression

level at t1/2 (Fig. 3 b). To investigate whether the switching

kinetics were dependent on growth phase, we sampled

switching curves between T�0.25 and T2.5. The overlay

showed very little variation, indicating that the duration of

the switching period is well defined and independent of

growth phase (data not shown). The expression rate exr
was defined as the first derivative with respect to time of

the fluorescence intensity, FI (Fig. 3 c). Please note that

the cells did not grow during z1 h after the onset of switch-

ing (M. Leisner, K. Stingl, and B. Maier, unpublished data),

and therefore we did not correct the expression rate for cell

length. However, we attribute the negative expression rate

at T � t1/2 > 1 h to cell growth, since GFP fluorescence

was stable within several hours (Materials and Methods).

We defined the length of the switching period r as the

time during which exr exceeded 0.1exrmax. The average

period for switching into the K-state was r ¼ 1.4 5 0.3 h,

with a standard deviation of 0.3 h (Fig. S7 a). To address

the question whether the length of the switching period

was well defined in individual cells, we plotted the switching

period r as a function of growth phase T and found no signif-

icant variation (Fig. S7 b).

FIGURE 3 Switching characteristics of wild-type (wt) cells. (a) Distribu-

tion of maximum fluorescence intensity in the wild-type (BD2711). (b) The

fluorescence intensity in 28 individual cells was normalized to the cumula-

tive expression (maximum fluorescence intensity). The time axis was shifted

to t1/2, where cells had half-maximum fluorescence intensity. (Solid line)

Averaged fluorescence intensity; (shaded lines) individual cells. (c) Expres-

sion rates exr of wt (shaded), rok-strain (dotted), and ComS (solid) overpro-

ducing strain. Expression rates were obtained by multiplication of the

normalized values with the average maximum value of 28–50 cells.
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With increasing ComS concentration, the probability for

proteolysis of ComK by the MecA/ClpC/ClpP complex

decreases, leading to increased ComK levels. We investi-

gated whether the levels of ComS influenced the kinetics

of switching using a ComS overproducing strain comSþþ.

Although the fraction of switching cells increased from

15% to 85%, the switching kinetics of the individual bacteria

did not alter significantly as compared to the wild-type

(Fig. S6). In particular, the expression rate exr was compa-

rable to the wild-type (Fig. 3 c).

A two-variable model elucidates
the switching process

Nonlinear dynamics together with fluctuations can lead to

bimodal protein distributions (34). Here we analyze a fully

stochastic model for competence development. It incorpo-

rates production and degradation of both ComK proteins

(K) and corresponding mRNA molecules (M). Mathemati-

cally the model is captured by a Master equation; a formal

description of the model in terms of transition rates is given

in the Supporting Material. Since analytical solutions are not

feasible, we analyze the model by employing stochastic

simulations (see below).

To give a frame of reference for the dynamics of compe-

tence development, and to explain the emergence of distinct

phenotypes, it is instructive to analyze the equations:

vK

vt
¼ bkM� dKK

qk þ S þ K
� d0K; (1)

vM

vt
¼ am þ bm

1 þ ðpk=KfÞgK
� dmM: (2)

While these equations disregard stochastic effects (see

further below), they are easily discussed by a nonlinear

dynamics analysis.

The first term in Eq. 1 represents translation of K, which

happens with rate bK for each M. The second term describes

degradation of K according to Michaelis-Menten kinetics.

For very high K this happens at a maximal rate dK, and

half-maximal degradation of K is found where K ¼ S þ qK.

S corresponds to the number of ComS (S) proteins which

compete with ComK for degradation by the MecA/ClpC/

ClpP protease complex (see Supporting Material). Repre-

senting the effect of quorum sensing, S(t) communicates

the cell density which rises sigmoidal with time to the indi-

vidual cell. In our model, S(t) takes the role of an externally

determined control function (Fig. S1). The third term covers

linear degradation of ComK with rate d0 << dK, which must

always be present owing to nonspecific degradation/denatur-

ation of ComK. This term is important only for large K and

ensures that K cannot rise arbitrarily, as is biologically neces-

sary. In Eq. 2, aM is the basal transcription rate in absence

of K. The next term describes autocatalytic feedback of

ComK: Two ComK dimers bind cooperatively to the

comK-promoter (35,36), thereby strongly activating tran-

scription. Assuming dimer formation and dissociation as

well as promoter binding and unbinding are fast enough to

equilibrate, autocatalytic transcription can be modeled by a

Hill function, with maximal (for large K) transcription rate

bM, half-maximal concentration pK, and cooperativity gK.

The value Kf, appearing in the denominator, is the number

of free ComK, i.e., not bound to the MecA/ClpC/ClpP

protease complex (see Supporting Material). Finally, degra-

dation of mRNA is proportional to M and the rate dM. For

further details on the model and its parameters, see Table S2.

Using nonlinear dynamics analysis (37) and literature data

to set parameters, we investigated whether our two variable

model (Eqs. 1 and 2) could reproduce the switching

behavior. For low numbers of ComS we find only one stable

fixed point corresponding to the vegetative state (K z 100,

M z 1) (Fig. 4 a). As S rises, a saddle-node bifurcation

appears, creating a further stable fixed point with higher K

and M values and an intermediate unstable fixed point.

This, in principle, allows cells to stochastically switch to

the state with higher K and M. However, due to the high acti-

vation threshold, this is highly unlikely. At S ~ 1500, the

lower stable and the unstable fixed point almost meet in

another bifurcation. The lower stable fixed point (now

shifted to K z 200, M z 1) corresponds to the B-state.

The intermediate unstable fixed point at K z 600, M z 3

is very close to the B-state (Fig. 4 b). Under these conditions,

intrinsic noise is strong enough to carry some cells across the

switching threshold. A sample path in phase space is given in

Fig. S2, illustrating escape from B-state and passing of

threshold. Cells that cross the threshold evolve toward the

upper stable fixed point (K-state, K z 7000, M z 10),

i.e., bacteria switch into the K-state. Back-transitions from

the K-state into the B-state are highly improbable, because

in the K-state, fluctuations are too small compared to the

distance between the K-state and the threshold to revert

switching.

Noise-driven switching requires vicinity to region
with quantitatively different dynamics

The above scheme describes the evolution for a standard

wild-type cell as it evolves from the low cell density expo-

nential growth phase to the high cell density stationary

phase. In that sense, it can be considered as averaged descrip-

tion, while for single cells reaction rates may vary, which is

usually termed extrinsic noise (13). This can have major

influence on the single cell dynamics to the point of loss of

stochastic switching. To explore the consequences of varia-

tion in the rates we performed a stability analysis by exam-

ining the topology of nullclines and fixed points of the

model. If the topology changes, one expects to find qualita-

tively different dynamics to that described above. Fixed

points of the dynamics may emerge or disappear in bifurca-

tions, changing the switching behavior significantly. Since
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the expression rates are experimentally accessible, we show

the stability diagram (a cut through the parameter space) for

variation in the basal transcription rate aM and the transcrip-

tion rate with feedback bM (Fig. 4 c). Similar stability

diagrams can be drawn for any pair of parameters.

A general result for bistable systems exhibiting stochasti-

cally induced switching is that they are located close to lines

that separate regions with different topology. This is neces-

sary, since only then are random fluctuations frequent and

wide enough to enable a trajectory (an individual cell in

our case) to cross the threshold with a sufficiently high prob-

ability. It follows that the switching probability per unit time

is sensitive to the distance to the line of separation. This

feature is likely to be present in systems similar to ours (38).

Effects of perturbing the promoter activity
of comK on initiation probability, switching
kinetics, and saturation levels

The stability diagram (Fig. 4 c) predicts the loss of bistability

at increased transcription rates of comK. Previous experi-

ments using a rok-strain showed that the rok-strain has a

twofold increased basal expression (29,30,39). We further

measured that the maximum expression rate during switch-

ing increased ~1.5-fold (Fig. 3 c). We therefore analyzed

how the dynamics of the model qualitatively changes when

aM and bM vary strongly. For the rok-strain, one would

expect aM / 2 aM and (aM þ bM) / 1.5 (aM þ bM). In

this regime, as the stationary phase is reached (S ~ 1500),

the system has lost its lower and intermediate fixed point,

corresponding to B-state and threshold. This means achieve-

ment of competence is independent of fluctuations and is

initiated in all cells. In this altered reaction network a transi-

tion from a bistable system with stochastic switching to

a monostable, deterministic system occurs.

Experimental data showed indeed that 99 5 3% of all

cells reach high FI for the rok-strain (30). We further inves-

tigated experimentally whether deletion of the major

repressor protein of comK transcription, Rok, affected

switching characteristics (Fig. S5). The sigmoidal shape of

[ComK](t) and the switching period of r ¼ 1.4 h were not

altered, while the maximum expression rate and the cumula-

tive expression increased by a factor of ~1.5 as compared to

the wild-type strain (Fig. 3 c and Fig. S5 a).

Extrinsic noise determines the saturation value
of individual cells in the K-state

The observed spread in saturation levels (Figs. 2 c and 3 a) is

explained by extrinsic noise, which is present in any cell

population. This does not alter the behavior of the population

as a whole but affects every individual bacterium differently.

FIGURE 4 Nonlinear dynamics model. (a and b) Bifurcation analysis.

Nullclines of Eqs. 1 and 2. (a) S¼0. (b) S¼1500 are plotted (solid, dM/

dt¼0; shaded, dK/dt¼0). (c) A stability diagram, aM versus bM is plotted,

monostable (ms) and bistable (bs) regions with only upper (uf) or only lower

(lf) are indicated. Parameter combinations of the model for the wild-type (wt)

and rok-strain (rok) are indicated.
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Besides altering dynamics of a few cells qualitatively (as dis-

cussed above), the value of K at the upper fixed point is

highly sensitive to these fluctuations. This results from the

fact that the nullclines in Fig. 4 b are close to parallel at

the upper fixed point. Variations in the model’s parameters

thus shift the K-state to higher or lower values of K.

We quantified the effect of variation of the parameters on

the saturation value of ComK. Computing the relative

change of K at the upper fixed point due to a relative change

in a given parameter yields the sensitivity (see Supporting

Material). We find that variation in the overall degradation

rates dM and (dK þ d0) alter the fixed point’s position by

the same magnitudes, but opposite sign as the overall

production rates (aM þ bM) and bK. By comparison, the

half-maximal degradation of ComK, qK, has a minor effect

on the fixed point’s position, while variations in the other

parameters can be neglected (see Table S2).

Stochastic simulations with well-motivated
parameters fortify predictive character
of the model

Quantitative data, obtained by stochastic simulations (40),

corroborated the predictive value of the model (Fig. 5 and

Fig. S2). As found in earlier experiments of the whole bacterial

population (30), single cell time-lapse microscopy revealed a

transient increase in comK transcription aM before T0 (Fig. 2,

b and c), which we introduced in our simulations (Fig. S1).

Extrinsic noise was introduced in the stochastic simula-

tions by choosing model parameters from a Gaussian with

a standard deviation of 5% about their mean for each realiza-

tion (see Supporting Material for details). Theses variations

in the model parameters can change number and positions

of fixed points. The former can be addressed analytically

by stability analysis (see above, Fig. 4 c), the latter by

computation of sensitivities, as was done for the position

of the upper stable fixed point (Table S2).

Before entry into stationary phase, i.e., at values of S �
1500, cells showed fluctuations about the vegetative state,

but no escape was possible. Approximately 14.7% of all cells

entered the K-state, showing saturation in ComK level within

r¼ 1.2 h, in accordance with experimental findings of ~15%

competent cells and a length of the switching period of

r ~1.4 h. Further, we find a wide spread in saturation levels

and expression curves very much like those recorded in the

experiment (Fig. 2 c), indicating that extrinsic noise is an

important determinant of ComK levels.

These findings show that an effective two-component

model with well-motivated parameters is not only sufficient

to explain switching dynamics qualitatively but also returns

quantitative data in excellent agreement with the experiment.

DISCUSSION

Competence development in B. subtilis provides an inter-

esting regulatory network to study the kinetics of genetic

switching between different phenotypes. We developed an

experimental approach and a stochastic nonlinear dynamics

model to quantify the switching behavior of individual cells

of B. subtilis into the K-state in response to quorum sensing.

Both experiment and theory reveal that the switching period

is a robust property of the genetic switch whereas the satura-

tion levels show strong variability most likely due to external

fluctuations.

Rise in basal expression from the comK promoter
does not select cells for switching

In agreement with previous studies that concentrated on cell

populations, we found that the basal expression rate of

FIGURE 5 Stochastic simulations. (a) 100 realizations of the stochastic

simulation of the model are shown. (b) Time courses of cells that entered

the K-state were normalized to the maximal value. The time axis was shifted

to t1/2, where cells had half-maximal K values; compare to Fig. 3 b.
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ComK increased before entry into stationary phase (30).

Increased expression rate of comK may be explained by

decreasing expression of the repressor AbrB and by deacti-

vation of the GTP-dependent repressor function of CodY.

Using real-time experiments with individual cells, we were

able to distinguish the rise in basal expression rate between

cells that switched eventually after entry into the stationary

phase and cells that did not switch before the switching

window closed. The magnitude of increase was similar in

cells that remained in the B-state and cells that switched

into the K-state. This result indicates that the sharp rise in

the expression rate of the comK promoter upon switching

is not a result of predetermination in the B-state. Interest-

ingly, in the simulations, switching of individual cells could

not be predicted from the corresponding timecourses before

switching. While different cells must have different switch-

ing probabilities (due to extrinsic noise), the ones which

actually switch are picked randomly by fluctuations in the

number of molecules. This observation is in agreement

with the finding that noise in transcription from the comK
promoter was mainly intrinsic, i.e., that the transcription

probability from two copies of PcomK is uncorrelated (29).

Is the competence system multimodal?

We found that the maximum levels of ComK in the wild-

type strain were highly variable with two distinct levels.

This observation is reminiscent of a previous result reported

by Maamar and Dubnau (28) showing the existence of two

subpopulations with an intermediate and a high ComK-

expressing class of cells. Since their setup only allowed for

snapshots in time for a whole-cell population, they could

not resolve whether the cells expressing comK at interme-

diate levels had already reached their maximum. Using

single cell time-lapse microscopy, we showed that indeed

the intermediate fraction has already reached their maximum

ComK concentration.

Multimodality in the distribution of ComK of cells in the

K-state hints toward further distinguishable phenotypes.

There are two possible sources for multimodal expression:

stochastic bursting or a deterministic mechanism due to addi-

tional regulation circuits. Transcriptional bursts mediated by

slow promoter dynamics could lead to different protein

levels. Then, however, typical times for binding/unbinding

of transcription factors would need to be on the order of

several hours, as no transitions between the two levels are

evident. This is unlikely, as for prokaryotes it is known

that promoter dynamics are usually very fast. Translational

bursts might also lead to multimodality if mRNA dynamics

are much slower than protein dynamics. In that case, one

would expect to find multiple peaks in the protein distribu-

tion which are equidistant to each other. Again, the timescale

of mRNA dynamics would need to be on the order of hours

to explain the absence of transitions between the distribu-

tion’s modes. Since these two stochastic explanations seem

unlikely we suppose that a deterministic mechanism due to

additional regulatory circuits is responsible for the observed

multimodality. The circuit could couple into the dynamics

of the comK promoter, thereby altering the maximal

transcription rate (aM þ bM) by a significant amount. This

assumption would be consistent with the observation that

the intermediate peak is not present in the rok-strain, where

transcription rates are elevated. A more thorough under-

standing of the observed multimodality has to await further

experimental investigations.

A minimal model can describe the time course
of switching in individual cells

Here we presented a plausible two-component model incor-

porating well-known processes, intrinsic and extrinsic noise.

All parameters are taken directly from literature or within

biological meaningful ranges, and quantitative results

remarkably match those of the experimental system. Our

model covers the development of competence on the single

cell level which we also recorded experimentally. To include

escape from competence, extended models with further inter-

actions and more molecular species are necessary. Since the

mechanisms of escape from competence are as yet sketchy

and extended models tend to be less descriptive, we decided

to focus on competence onset and clarify it in detail. Of

special significance is the accordance in the timescale for

reaching the K-state, as well as in the fraction of cells attain-

ing competence. A discussion of the system gives straight

explanations of probabilistic and deterministic switching in

different B. subtilis strains.

For the wild-type, we identify the low-number mRNA

fluctuations about the mean value 1, together with a large

burst factor, as the outstanding source of fluctuations in the

vegetative state. While in exponential phase our model

predicts monostability (thereby forbidding switching), in

stationary phase, switching initiation is facilitated due to

the vicinity of B-state and threshold. Values of ComK satu-

rate in K-state, whose position is highly sensitive to extrinsic

noise, explaining broad distributions in saturation levels.

We see the minimal number of species and reaction

parameters as an advantage of our model as compared to

others (16,29). It grants an intuitive understanding of the

key properties of competence decision: the interplay of

low-number fluctuations and nonlinear dynamics.

Bistable versus excitable models

We focused on the time interval of transition from exponen-

tial to stationary phase. Similar to independent research

(5,27–29,32), we find that a model featuring bistability is

well fit to explain experiments performed in that temporal

regime. Studies characterizing the competence system as

excitable (15,16,31) focus on longer time intervals later in

stationary phase. They find that an indirect inhibition of

comS expression by ComK acts as a further feedback loop,

rendering the system excitable in a region of parameter
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space. These two different approaches appear to be contra-

dictory at first sight only: The models address experiments

using different strains and growth conditions. In particular,

these differences led to different length scales of the switch-

ing period, to different fractions of competent cells and

length of cell cycle. Another highly important difference is

that Suel et al. (16) observed initiation and decay of compe-

tence over a timescale of days without actively changing the

medium. The effect of quorum sensing and nutrient limita-

tion (that is known to initiate competence development

during entry into the stationary growth phase) is not explic-

itly involved in these studies, although change in cell

concentration under microscope conditions may have an

effect on the probability of switching initiation. In our exper-

iments, we explicitly included the effect of cell density by

continuously adjusting the medium thus simulating quorum

sensing.

At the transition from exponential to stationary phase, the

environment of a single cell, which couples into its dynamics

by quorum sensing, is not in equilibrium yet. This constantly

pushes the system away from steady state dynamics so that

slow processes (like indirect feedback) are of less impor-

tance. Furthermore, model parameters are influenced by

the overall state of the cell, so that the relative importance

of network components might change over time. These vari-

ations in parameters can also carry excitable systems into

regions of mono- or bistability (15,31). If indirect feedback

is bypassed cells are no longer excitable (15). From an evolu-

tionary point of view a system that initially reacts fast and in

a bistable manner to stressful conditions and then transits to

an excitable mode is meaningful: A fast response enhances

fitness, but only cells that can exit competence and reproduce

can make use of that advantage. If a first wave of transient

competent cells does not succeed in producing a beneficial

phenotype, there are always other individuals entering and

leaving the competent state.

All models identify noise as a necessary ingredient of the

competence decision network of B. subtilis, supporting the

idea of functional noise. Noise is needed to leave the vicinity

of a stable fixed and cross a threshold, which either leads to an

excursion in phase space or to the approach of another stable

fixed point. The origin of these fluctuations can be manifold

but were analyzed by Schultz et al. (31) in a systematic

way. There it was found that fluctuations in binding to the

protease complex can be neglected which we accounted for

by adiabatic elimination of this fast reaction. In previous theo-

retical studies (31,32), fluctuations in the mRNA were

ignored. However, since transcript numbers per cell are

extremely low, and promoter dynamics are usually assumed

to be fast in prokaryotes (4) we regard the finite number effect

of mRNA and the consequential translational bursting as the

main source of noise (1,4). Quantitative switching times

cannot be determined reliably if noise in mRNA levels is

neglected (38). If promoter dynamics are slow, the corre-

sponding fluctuations will leave their mark in the downstream

mRNA, which amounts to large fluctuations in mRNA. Here

we showed that extremely low mRNA numbers coupled to

transcriptional bursting suffice to trigger crossing of threshold

and onset of competence in a stochastic manner.

The duration of the switching period
is intrinsically defined and robust toward
variations of the regulation circuit

We studied the switching kinetics of individual cells, depen-

dent on growth phase. Switching was accomplished after

a period of r ¼ 1.4 h in individual cells. One explanation

could be that dependent on growth phase an external signal

accumulated in the surrounding medium. However we

found, that overlaying switching curves between T0 and T4

did not reveal large variation, indicating the expression rate

and switching period did not depend on growth phase. We

therefore conclude that in the K-state expression of comK
and degradation of the protein equilibrate to a new steady

state, without further extracellular regulation. Furthermore,

we found that neither overproduction of the proteolysis

inhibitor ComS nor knockout of the repressor for comK tran-

scription had an effect on the length of the switching period,

indicating that the period is a robust property of the system.

Transition from stochastic to deterministic
switching at increased promoter activity

In the rok-strain, B-state and threshold are nonexistent in

stationary phase and render the system monostable, forcing

individuals into the K-state in a deterministic manner. Smits

et al. (27,39) and Maamar et al. (28) showed bistable

behavior in their rok-strain. Since we found deterministic

switching with different rok-strains both in real-time and in

bulk experiments, we attribute the difference to our more

rigorous quantification of fluorescence levels to determine

the threshold between cells in the B-state and cells in the

K-state. Furthermore, the close proximity to the stability

transition (Fig. 4 c) could explain that slightly different

growth conditions may have a strong effect on the stability

of the system.

CONCLUSION

Our combined experimental and theoretical approach

showed that the length of the switching period from the

B-state to the K-state of Bacillus subtilis is robust against

variations of regulation circuit of the master regulator for

competence and against the growth phase. Switching charac-

teristics of B. subtilis can be understood by a well-defined

two-component mathematical model that couples nonlinear

dynamics to probabilistic effects. The model quantitatively

retrieves the fraction of competent cells and the switching

period and predicts a transition from stochastic to determin-

istic genetic switching at increased basal transcription rate.
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Experiments verified this prediction. Furthermore, the model

explains the large fluctuations between individual cells in

comK expression in the K-state. We hypothesize that the

expression of late competence proteins may be induced

once a threshold concentration of ComK is reached and

that therefore the cell does not require tight control over

the saturation level of ComK.
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Supplemental Text 
Stochastic model and simulations  

If molecular fluctuations are neglected, initial conditions determine the dynamics of the model and 

each cell develops towards one of the stable fixed points. Since numbers of M and K are low initially, a 

deterministic numerical simulation would end up with 0% cells in the K-state. To explain the 

heterogeneity of a cell culture molecular fluctuations are thus of prime importance. 

To evaluate our model including stochastic fluctuations we implemented Gillespie’s stochastic 

algorithm (14). All possible reactions and the corresponding transition rates are given in Supplemental 

Table 3. 

To render our model more realistic, we further allowed parameter values to vary to incorporate cell-to-

cell variability (size, variable number of cellular machinery, etc.), i.e. we introduced extrinsic noise. 

For each realization of the simulation every parameter was chosen out of a Gaussian distribution about 

its mean with a standard deviation of 5% of its mean, and then held constant for that run (γK was not 

varied, since its value is set by the topology of the model). The magnitude of variation in the 

parameters was chosen to lie in a realistic range, since no quantitative data on this subject could be 

obtained. The qualitative and quantitative influence of extrinsic noise can be investigated by stability 

and sensitivity analysis, respectively (see below). In each run the evolution of an individual cell was 

simulated for 6 hours. 

The influence of the cell population as a whole is incorporated via S(t). Information on cell density and 

nutrient supply is integrated in this function by quorum sensing. For simplicity we assumed that there is 

a linear relation between cell density (which rises sigmoidal with time) and S(t). Thus a sigmoidal 

function as given by a Hill-function is appropriate. We empirically chose 
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as shown in Supplemental Fig. 1. Realizations of our simulations are shown as ComK vs. time in Fig. 

5a,b and in M-K phase space in Supplemental Fig. 2. In the former, one can see that saturation is 

achieved for most cells and that a band of saturation values is found, similarly to that of Fig. 2c. 

We evaluated 1000 simulations and found that in 14.7% of all runs the K-state was reached, 

reproducing the known literature value. The K-state was defined as K > 900 at the end of the 

simulation period. 

We also extracted the switching periods for our simulations. To this purpose we normalized the 
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timecourses of all cells that entered K-state to their maximal value and then shifted the time axis to 

overlay them at half maximal time (Fig. 5c). The temporal derivative of the mean of these curves was, 

in analogy with the experimental data, taken to obtain the switching rate. The switching period was 

defined as the time interval, where this rate was at least 0.1 of its maximal value. We found a mean 

switching period of 1.2h, in good accordance with experiment. 

 

Motivation of reaction rates  

Rates of the distinct chemical processes, as given in the terms of equations (1) and (2) of the main text 

are either well motivated from literature or generic representations of the molecular processes. 

Michaelis-Menten degradation of ComK is the primary mechanism which keeps protein numbers low 

in the vegetative state. Linear degradation, which is not catalyzed by protease complexes, is much 

slower (5), but establishes an equilibrium between degradation and production of ComK at high levels. 

Recent studies have postulated an inhibition of the comS promoter by high ComK concentrations on 

long timescales (6-8). This would lead to S becoming a function of not only t but also of K. Taylor 

expansion of this function S(K,t) in K then recovers to first order linear degradation. 

Autocatalytic feedback in comK transcription is modeled by a Hill-function which is the generic 

function if formation of oligomers and promoter binding/unbinding are fast. It is known that four 

ComK proteins can bind to the comK promoter cooperatively (9), which gives γK = 4. 

The small basal transcription rate is attributed to comK promoter leaking (10). The two linear terms for 

ComK production and mRNA degradation are the generic choices for these elementary processes. For 

parameter values of the model see Supplemental Table 2. 

 

Rise of ComS facilitates activation of auto-feedback in two distinct manners.  

Degradation of ComK follows Michaelis-Menten kinetics, catalyzed by the MecA/ClpC/ClpP protease 

complex (D). The reaction scheme is  

fff DKDDK
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1

][
λλ

λ
→↔+

−

 (2) 

where Kf, Df, and [KD] refer to free ComK, free protease complex, and ComK bound to the protease 

complex, respectively. Reactions λ1 and λ-1 are fast in comparison with the actual degradation λ2. 

Cells respond to high density by increasing ComS concentration which couples into the competence 

decision network ((9), (Fig. 1)). ComS is a small peptide that is degraded by the MecA/ClpC/ClpP 

protease complex (11). Protease complexes are thus partially occupied by ComS and degradation of 

ComK is slowed down. Furthermore Kf is increased in the presence of S and thus more K is available 
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for dimer formation and binding to the comK promoter, which has a prominent effect near the lower 

fixed point and threshold (Supplemental Fig. 3). Since degradation of ComS and ComK happens 

through the same processes (9) we assume identical rates, 

fff DSDDS
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Neither absolute affinities of ComK nor ComS towards the protease complex nor total ComS numbers 

are known. But since we are interested in the dynamics of K, only the number of protease complexes 

currently occupied by S is of importance. In this sense S is understood as an effective ComS number 

which gives, when assuming identical affinities towards the protease complex as for ComK, the right 

number of occupied MecA/ClpC/ClpP binding sites. 

By the law of mass action one finds 
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which appears in eqn. (2) of the main text. Here particle conservation, i.e. K = Kf + [KD], S = Sf + 

[SD], and D = Df + [KD] + [SD], was used. 

S as a function of time was set empirically as an external control parameter (see above). 

 

Parameters of the model 

Our model includes ten parameters (Supplemental Table 2) and the external control functions S(t) and 

αM(t) (Supplemental Figure 1). All parameters were chosen consistently with results of earlier studies. 

δK, D and βK/δM, could be obtained directly from literature. Further constraints were M ≈ 1 in the 

vegetative state in stationary phase (12), a switching threshold of a few hundred ComK proteins and a 

saturation value of 104-105 proteins in the K-state (5). 

In earlier studies (3) we found that basal expression increases about an hour before entrance to 

stationary phase and that after a 'switching-window' the percentage of competent cells stay constant. 

We incorporated that into the model by reducing αM by a factor of r outside of that window in all 

simulations. r = 0.5 was chosen small enough so that switching was very rare for the reduced basal 

transcription rate r·αM (Supplemental Figure 1).  

The rates of the degradation reaction λ1, λ-1, and λ2 have not been addressed experimentally. However, 

this is not a drawback to the model, since λ2 is incorporated in δK (Michaelis-Menten theory). λ1 and λ-1 

appeared explicitly in Kf(K,S) and since both rates are fast, only their ratio is of interest. Varying λ1/λ-1 

has only minor influence on the model dynamics. 
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Sensitivity and Stability 

The broad distribution of saturation levels was attributed to variability in the parameters of the model, 

known as extrinsic noise (13). To quantify its influence on the saturation value of ComK one can define 

the sensitivity Σ(μ) with respect to a given parameter μ as the relative change ΔK/K* of the upper fixed 

point K*(μ) due to a relative change Δμ/μ in that parameter (Supplemental Table 2). An analytical 

expression is given by 
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as follows by Taylor expansion up to linear order of the fixed point’s position. 

If parameters of the model are varied strongly the qualitative features of stationary states can change 

(bifurcation). This may for example be the case for non-wild type strains, for which the competence 

circuit (Fig. 1) is altered. Numerically we can compute the number and kind of fixed points of our 

model and thereby analyze its possible dynamics. An example is given in Fig. 4b, which also explains 

deterministic switching for the rok- strain. Note that the wild type parameters have to be set close to the 

bifurcation in which the lower stable and the instable fixed point annihilate to admit stochastically 

induced crossing of threshold. 
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Supplementary Tables 
 
Strain Genotype Source  

BD 630 his leu met - 

BD 2955 his leu met rok- (spca), (1) 

BD 2711 his leu met comK-gfp (CBLb, cata) (2) 

BM 101 his leu met rok- (spca), comK-gfp (CBLb, cata) this study 

BM 77 his leu met comK-gfp (CBLb, cata), multicopy comS (kana) (3) 

BM 2528 his leu met, multicopy comS (kana) (4) 

 

Supplemental Tab. 1. B. subtilis strains used in this study.  
a kan, cat and spc stand for resistance to kanamycin, chloramphenicol and spectinomycin respectively. 
b Inserted by Campell like integration. 
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Parameter Significance Mean value Motivation/ Explanation Sensitivity of upper 
fixed point Σ 

βK Translation rate per 
mRNA 

1 1/s burst factor: βK/ δM ≈ 50; 
(12) 

3.31 

δK Maximal Michaelis-
Menten degradation rate 
of K 

11.3 1/s ≈ 11.5 1/s; (5) Fig. 1A 
therein 

-2.98 

δ0 Linear degradation rate of 
K 

 1.5·10-4 1/s Ration of saturation of rok- 
and wild type 

-0.34 

qK (K+S) at half-maximal 
enzymatic degradation 

400 <9000; (5) Fig. 1A therein; 
sets position of fixed points 

0.14 

αM Minimal transcription rate 0.025 1/s M ≈ 1 before switching; (12) 0.39 

βM Maximal additional 
transcription rate by 
feedback 

0.19 1/s position of upper fixed 
points/ saturation 

2.93 

pK Half-maximal feedback 600 position of switching 
threshold 

negligible 

γK Cooperativity/Hill 
Coefficient 

4 four K proteins bind to the 
promoter cooperatively (9) 

negligible 

δM Degradation rate per 
mRNA 

0.022 1/s burst factor: βK/δM ≈ 50 and 
M ≈ 1 before switching; (12) 

-3.31 

D Number of protease 
complexes 

700 (5) negligible 

λ1/λ-1 Equilibrium constant of 
degradation reaction 

1 variation of this parameter 
are of minor influence only 

negligible 

 
Supplemental Tab. 2. Parameters of the model. Besides the constraints given in the column 

motivation/explanation, parameters were chosen to be in line with our experimental findings.
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Description Reaction Transition rate 

protein production 1+→ KK  MKβ  

protein degradation 1−→ KK  
K

KSq
K

K

K
0δ

δ
−

++
 

mRNA production 1+→ MM  
)/(1 fK

M
M

Kp K+
+ γ

βα  

mRNA degradation 1−→ MM  MMδ  

 
Supplemental Tab. 3. Reactions of the stochastic model. Processes and their corresponding transition 
rates are given. Note that the rates depend on the number of K and M. These transition rates are used in 
the stochastic simulations. 
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Supplementary Figure Captions 
 

Supplemental Fig. 1. Empirically set development of the number of ComS molecules S(t) used for the 

simulations and of the basal transcription rate αM(t). The latter gives rise to a window of opportunity. 

 

Supplemental Fig. 2. Fluctuations in vegetative state and crossing of switching threshold. The lower 

left part of Figures 4a,b of the main text are shown. For a typical realization (black line) switching 

occurs after a long period of fluctuations about the lower fixed point. Note that only discrete molecule 

numbers are taken, which can be seen very well for the number of mRNAs. Nullclines (Blue: dM/dt = 

0; red: dK/dt = 0) are plotted for S = 0 (dotted lines) and S = 1500 (straight lines). 

 

Supplemental Fig. 3. Influence of [ComS] on the fraction of free ComK. ComS binds competitively to 

the MecA/ClpC/ClpP protease complex, thereby increasing the amount of free ComK (KF), see eqn. (4) 

of Supplemental text. Dashed line: S = 0, straight line: S = 1500. Near the lower stable and unstable 

fixed points (K ≈ 200 and K ≈ 600, respectively) this has an important effect on free ComK 

concentration. 

 

Supplemental Fig. 4. Comparison of switching kinetics between bulk and single cell measurements to 

confirm equal development under microscopic conditions and in liquid culture. Fraction of cells in the 

K-state. Black: cells grown in Erlenmeyer flask, grey: cells grown on a microscope slide. a) wt, b) rok-. 

Black and grey lines: best fit to a sigmoidal function. 

 

Supplemental Fig. 5. Switching kinetics of individual rok- cells (BM101). a) Time course of 

fluorescence intensity of cells switching into the K-state. b) The fluorescence of 50 individual cells was 

normalized to the cumulative expression (maximum fluorescence intensity). The time axis was shifted 

by τ1/2, where cells had half maximum fluorescence intensity. 

 

Supplemental Fig. 6. Switching kinetics of individual ComS overproducing cells (BM77). a) Time 

course of fluorescence intensity of cells switching into the K-state. b) The fluorescence of 50 individual 

cells was normalized to the cumulative expression (maximum fluorescence intensity). The time axis 

was shifted by τ 1/2, where cells had half maximum fluorescence intensity. 

 

Supplemental Fig. 7. Switching period is independent of growth phase. a) Histogram of switching 
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period ρ. Red line: best fit to a Gaussian function with <ρ> = 1.44 ± 0.02 and a width of 0.33 ± 0.02. b) 

Switching period ρ as a function of growth phase T. 
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Part II

Growth of Microbial Colonies as a
Stochastic Non-Equilibrium Process





5 Range Expansion and Microbial Colony
Growth

Often in biology, species are restricted to some kind of territory. This might be an island for
example or a region with given climatic or other environmental conditions, necessary for the
species’ prosperity. However, the spatial restriction may be overcome if the species enters an,
as yet unoccupied, territory (like another island), if environmental conditions change (say, as
a result of climate change), or if the species acquires a new property (e.g. through mutation)
which lets it withstand a wider range of environmental conditions. In this case, the species
under consideration can extend its territory, i.e., undergo a range expansion. Of course, this
is a complicated process, which depends on the properties of the species as well as on that
of the environment. We will therefore have a short look at some macroscopic examples of
range expansion, before we consider more controllable microbial experiments, which aim to
take into account the central aspects of this fascinating process.

5.1 Macroscopic Range Expansions

5.1.1 Homo sapiens

A common theory for the early dispersal of humans purports that modern humans, originating
from Africa, where our species evolved to its present form, have spread across all continents
of the Earth [123, 124, 125]. About 120000 to 60000 years ago members of Homo sapiens
crossed the Red Sea and started to settle on the Arabic Peninsula and in the Near East. From
there waves of expansions spread to (i) India and South East and South Asia and further to
Australia roughly 25–70 thousand years ago1 (ii) Europe about 40 thousand years ago. 10–20
thousand years ago, at the end of the Last Glacial Maximum the rest of Eurasia was settled
and humans crossed the still existing, ice-free Bering land bridge to the Americas. From
there the whole American continent was successively populated. This is an example of a
range expansions in our own species’ history.

5.1.2 Invasive Species

Scenarios like the human colonization of the continents must also have happened for other
species over and over again and on different scales since life first appeared. These range

1A recent study finds evidence that the ancestors of the Aboriginals have indeed left from Africa and entered
Australia in an independent early migration wave [126].
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expansions still happen today and actually are very frequent as a result of human travel
and globalization effects. Introduced species, which have been brought to a new habitat by
humans (by accident or intentionally) often have an adverse impact on the ecosystem in the
newly occupied habitat and may threaten biodiversity, since natural enemies (predators or
herbivores) are rare, prey is unused to the new species, and native, endemic species may
be outcompeted in some way. In this case one speaks of an invasive species [127]. Humans
intentionally brought a huge number of non-native species to new habitats, for various reasons,
including agriculture, forestry, livestock breeding, hunting, or even for aesthetic and nostalgic
reasons or as pets. Prominent examples of purposely introduced and now invasive species
include [128]:

• The Eastern grey squirrel was first brought from America to the parks in the United
Kingdom in the late 19th century. They spread very fast and have by now far outnum-
bered the native red squirrel.

• Cane toads are originally form South and Central America, and were introduced to
control pests of local crops on various islands. While they did do much harm there,
they were in the 1930s introduced to Australia, to reduce a native beetle. This did
not work particularly well, but instead the toads reproduced wildly, outcompeting local
competitors, and simultaneously colonizing the continent from the northeast.

• Sailors and colonists brought European rabbits to many places as a cheap, fast repro-
ducing source of food and fur. In Australia this had devastating consequences as many
plant species served as food sources to the rabbits and were decimated to the point of
extinction. This brought along erosion and other ecological problems.

• About one hundred European Starlings where set free in New York City in 1890, as a
first step in the attempt to bring all birds mentioned in Shakespeare’s works to North
America. The starling expanded rapidly and reached California by 1955, and heavily
competes for nest sites with endemic species. The European Starling was also intro-
duced to (between others) Australia to control pests, where it had mayor impact on the
environment and promotes spreading of introduced plant’s seeds.

While one could continue this list to include many pet animals and more plants, other major
invasion are by species which have by chance travelled along with humans, e.g., the zebra
mussel in the ballast water of ships from Europe to North America. Like in Europe the zebra
mussel colonizes lakes, rivers and channels [129].

There are also examples where the introduction of new species led to a benefit, at least to
humans [130]. Further, humans try, with some success, to reintroduce extirpated, i.e. locally
extinct, species (e.g. wolves) to their former territory. Sadly, these are rare cases compared
to introductions with a detrimental impact.

5.1.3 Climate Change

One essential part of the environment a species or population senses are the climatic condi-
tions. Species often react to climatic changes by migration, where the best known example
is seasonal migration, e.g., by birds. On much longer, global timescales, the climate changes



5.2 Growth of Microbial Colonies in the Microlab 83

with ice ages and warm periods, and this has undoubtedly led to range shifts for all kinds of
animals and plants.

However, as an effect of anthropogenic global warming, the marked effect of climate change
on the migration of many species can be observed one shorter timescales. While the human
impact on world climate might have started millennia ago [131], and might have influenced
animal migration since then, present data [132] is virtually indisputable: Species move to
colder regions, be it towards the poles or to higher altitudes in mountainous regions [133, 134].

5.1.4 The Founder Effect

A very effective way to follow range expansions, as those introduced above, is by genetic
analysis. By taking genetic samples from a population at different times and places, one
can deduce the degree of relationship between individuals.2 In particular, from the number
of different genes, it is possible to assess the time when the last common ancestor of a
specific gene lived. A descriptive example is the historic human range expansion discussed
in Section 5.1.1: One finds that genetic diversity in the native human populations decreases
with the distance from Africa (e.g. along the coastlines of the Indian and Pacific Oceans and
going from north to south in the Americas) [135, 136].

This is the result of sampling from a small population, also known as genetic drift [137], which
happens during range expansions: Usually only a small group of individuals is at the very
front of the population, thus constituting a population bottleneck. These individuals typically
are the ancestors of following generations contributing to the expansion. Sampling from them
proceeds in the fashion of a Fisher-Wright process [137, 138], which in this spatial setting
is known as the founder effect [139]. As the number or individuals is small, fluctuations
are relevant during sampling, and genetic diversity can be lost by chance. Some of the
descendants, which only carry part of the genetic diversity, will constitute the next group
that continues the range expansion, which in turn leads to what is called the serial founder
effect [135, 136].

5.2 Growth of Microbial Colonies in the Microlab

In macroscopic range expansions many different aspects influence the dynamics: geography,
vegetation, climatic conditions, competition and cooperation between individuals, interactions
between species, and mobility. Moreover typical timescales are decades to millennia, and
typical distances can reach up to several hundreds of kilometers. To find generic properties, it
is therefore necessary to reduce the complexity and scale, by finding small and (comparatively)
simple model systems. During the last years growing microbial colonies have been used to
mimic range expansions, though similar systems have been studied in their own right for
decades [140, 141, 142, 143, 144].

2Complications which arise due to the possibility of horizontal gene transfer are briefly discussed in Chapter 3.
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5.2.1 Single Species Colonies

Most commonly, microbial colony growth is studied on an agar substrate in a Petri dish.
The morphology of the created colonies is subject to many different influences, with mobility
being one of prime importance. For mobile microorganisms the resulting patterns are often
of stunning beauty and show a wide range of complicated patterns [140, 141, 142, 143, 144]
which, however, do not resemble that of typical macroscopic range expansions. We will
therefore focus on the growth of non-motile microbial cells, which mainly spread through
reproduction and a resulting pushing force at the front.

Colony Morphology for Non-motile Microorganisms

In this case, depending on the species, the softness of the substrate (controlled by agar con-
centration), the concentration of nutrients, and other properties, the morphology of a colony
still varies substantially. Research is usually confined to a few model organisms like E. coli
or B. subtilis. Even under constant conditions, colony growth is an organized non-trivial 3d
process, with spatiotemporal change in phenotype composition [145] and cell density [146],
mediated through self-organization and hierarchical patterning [144]. However, there are two
main and distinct morphologies depending on nutrient and agar concentration: compact and
branched [147, 148].

The branched morphology is encountered if nutrients are limited, since then only those parts
of the colony keep growing which are both advancing into new territory and are not too
close to other parts of the colony [149, 142, 143, 147]. The most successful model for these
conditions is the diffusion-limited-aggregation model [150, 151], which explicitly takes the
scarce nutrients into account.

Rough Fronts of Compact Colonies

While the branched morphology displays enormous complexity [142, 143], compact colonies,
which evolve in nutrient-rich settings resemble coarse-grained range expansions much closer.
In this setting, colonies seem to expand in a much smoother manner as compared to branched
morphologies, at least at a macroscopic level. While there is growth in the vertical direction
it is usually limited to ∼10–100 cell layers [140], and the colony mostly grows horizontally at
the interface between occupied and unoccupied territory, known as the growth front. Micro-
scopically, growth cannot be completely smooth, since on the length scale of the individual
there must exist protrusions and indentations, as a result of the inherent stochasticity in
reproduction. Growth is perpendicular to the local orientation of the expanding front and
therefore protrusions also grow laterally with time. This leads to the creation of ever longer
ranged fluctuations in the position of the colony’s front, an effect known as kinetic surface
roughening [152].

Theoretical aspects and modeling of surface roughness will be discussed in Section 6.3, where
we will also have a look at the Eden model [153, 152] a surface growth model for compact
bacterial colonies. Experimental studies involving bacteria [154] found unusually rough fronts,
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while recent experiments with eukaryotes [155] displayed characteristic Eden roughening.
Though roughening in itself is a rather theoretical field of research, it can heavily influence the
outcome of microbial range expansions where there is competition between different strains,
since there is a strong coupling between population dynamics at the front and the front’s
roughness properties.

5.2.2 Heterogeneous Populations

One of the central questions with respect to range expansions is the influence of the spatial
settings and the founder effect on the composition of a population composed of different
strains, which cannot be captured by continuous well-mixed approaches, see Section 5.3. In
this context the relative importance of selection between different phenotypes and genetic drift
at the expanding front is central: Are fluctuations strong enough that a selective advantage
no longer ensures survival? For well-mixed systems it is known that for small population sizes
selective advantage is of less importance as compared to genetic drift [156, 157].

Single-Species Sectors

In spatial microbial experiments, phenotypes which have much larger growth rates than their
competitors form lateral expanding sectors [158, 140, 142, 159, 160], since growth of protrusion
also proceeds perpendicular to the primary direction of the range expansion. These sectors
take over linear fronts deterministically, while for circular colonies slower growing phenotypes
may prevail. Interestingly, even in the neutral case sectors establish and coarsen at the
expanding front, as phenotypes locally fixate at the front, which is the result of the founder
effect [161, 162, 160]. An important finding of these works is that boundaries between distinct
sectors fluctuate in a super-diffusive manner, which results from the front’s roughness, which is
on all length and times scales imprinted in the meandering of the sector boundaries. This can
be explained by the scaling between lateral and longitudinal extensions of surface undulations
and the typical timescale on which such undulations decay [163, 161]. The general idea is
sketched in a descriptive way in Figure 5.1.

Mutations and Selection during Colony Growth

On large scales selection will always dominate over fluctuations, but what if mutations are
present, which constantly create sectors of mutants on the microscopic length scale? If mu-
tations and selection alter the composition of the front in the same direction (i.e. towards a
higher portion of a given strain) it is clear that the result is an accelerated dominance of the
faster growing strain. This can, for example, be seen from Figure 6.6 which shows experiments
which have been carried out, by the author of this work, in the laboratory of the soft con-
densed matter group at the chair of Prof. J. O. Rädler at the Ludwig-Maximilians-Universität
in Munich.

More interesting than the case where mutations and selection act in concert, is the situation
where they are antagonists. For the well-mixed case, Eigen argued that there must be an



86 5. Range Expansion and Microbial Colony Growth

Figure 5.1: Influence of surface roughness on the sector boundaries between domains of different bac-
terial phenotypes during colony growth. Let the lowest bold line be the front of a growing
bacterial colony at time t1, which is composed of alternating sectors of neutral (same
growth rate) strains A and B. The other two bold black lines show the most probable
front position (or the average front position) at later times t2 and t3, where short length
fluctuations of the front have decayed. The dashed black lines are the most probable (av-
erage) trajectories of the boundaries between sectors. As one can see the shape of sectors
is strongly influenced by the roughness of the front, since sector boundaries always move
perpendicular to the local orientation of the front.

Figure 5.2: Experiments on microbial colony growth under the influence of mutation and selection.
Center: Fluorescently labeled E. coli bacteria have been inoculated in a strip (left) or
circular (right) geometry and then let grow for 48 hours. Left and right: Overlays of
fluorescent and bright field microscopic images reveal details of colony growth. Mutation-
like events result in loss of fluorescence, enhanced growth rate and formation of laterally
expanding sectors of non-fluorescent bacteria.



5.3 Modeling Approaches Different from Surface Growth 87

error threshold, a critical mutation rate, where selection is not sufficiently strong any more
to withstand the large number of newly arising mutations [164, 160]. If this is the case, then
the mutants will overtake the population very fast and the wild-type will be wiped out even
though it has a higher reproduction rate. This collective phenomenon of many independently
arising mutations acting in concert can also be found in spatial settings. One example where
this happens at an expanding rough front is the model introduced in the manuscript at the
end of the next chapter. There, the error threshold, which from a physicist’s point of view
is a phase transition, is examined in detail and it is found that the front’s roughness has a
severe impact on the resulting patterns of mutant and wild-type sectors. To understand the
approach of said manuscript, we introduce the key concepts and properties of phase transitions
to absorbing states and of dynamic surface roughening in Chapter 6.

5.3 Modeling Approaches Different from Surface Growth

With respect to both macroscopic and microscopic range expansions a number of interesting
questions may be asked (and hopefully answered). What is the speed of the population front,
and how does it depend on birth and migration rates and other properties of the individuals
from which the population is composed. How important are fluctuations and how do they
influence the evolution of the population? How is the diversity of a population shaped under
the influence of genetic drift, selection and mutations and how does it change over time?
What patterns do evolve in the case of a non-homogeneous population? To answer these
questions one needs models that describe the spatial growth of the population and make the
measurable quantities accessible and comparable.

Besides surface growth models (see Chapter 6) there exist other approaches to model range
expansion and bacterial colony growth, which we will now shortly discuss.

5.3.1 The Fisher-Kolmogorov Equation

In the simplest case, where local populations are large and one considers a coarse enough
scale, the change in population density ρ(x, t) during range expansion is often modeled by
the Fisher-Kolmogorov equation,

ρ̇(x, t) = rρ(1− ρ/K) +D∇2ρ . (5.1)

This equation describes locally logistic growth with a growth rate at low concentrations r and
a carrying capacity K through the first term, and spatial diffusion with diffusion constant
D, through the second term, which leads to spatial expansion [74]. The Fisher-Kolmogorov
equation is a non-linear reaction-diffusion equation which was set up to model the spread
of a gene through a population [165]. One can show that in 1d it has traveling waves,
ρ(x, t) = f(x±ct), as asymptotic solutions, with wave speed c ∼

√
rD, when initialized with a

concentration which is not zero everywhere [166]. Due to this intuitive 1d result, equation (5.1)
has mainly been used to model the spread of species along rivers, coastlines, boundaries of
distinct ecosystems, and other linear habitats in the context of range expansions [167]. In
higher dimensions one has the additional problem of curvature of the front, which prohibits the
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derivation of many analytic results, while comparison with data is still possible by numerical
solution. Further, there exist a variety of extensions of the Fisher-Kolmogorov equation,
which widen its range of applications by taking into account more details of the process
under consideration [74, 167].

The Fisher-Kolmogorov equation implies that the population is well described by a continuous
function and fluctuations can be completely neglected. This implies that neither the founder
effect nor surface roughness nor possible consequences of the two are accessible by analyzing
equation (5.1). To make things worse, equation (5.1) predicts regions of arbitrarily low density
in the wake of the population wave, and at some point the discrete nature of individuals must
be observable. These leading individuals are of prime importance as they are the ones which
“pull” the population wave and determine the future of the expanding population, since they
are the very few founders which have occupied new territory. To incorporate fluctuations
one can add a noise term proportional to

√
ρ(1− ρ)η(x, t), where η is Gaussian white noise,

to equation (5.1). Calculations show strong deviations [168, 169], especially with respect to
the speed of wave propagation, from the non-stochastic, continuous solutions. The results of
stochastic calculations agree with simulations of the stepping stone model [170], which is a
discrete (in space, time and density) and stochastic model, which in the continuum limit is
analogous to the Fisher-Kolmogorov equation.

5.3.2 Simulations of Microbial Colony Growth

While analytical approaches are important to understand mechanisms, when it comes to
competition between several species or mutations in the course of range expansions (see
e.g. [162, 171]), simulations, often generalizations of the stepping stone model [170], are an
essential tool.

One of the most important result is that due to genetic drift, and the resulting founder effect,
selectively disadvantaged competitors may stay much longer on the front than expected from
well-mixed scenarios. If the reduced fitness is the result of a mutation, then the descendants
of the original mutant (i.e. the mutant strain) can “surf” the expanding population wave [172,
173, 174, 175]. Simulations like this can, of course, be conducted for any geometry, and have
even been applied to the European landmass to model human range expansion [176].

Simulations have also been employed to investigate in the growth and organization of biofilms
[177, 178, 179], where many different species interact to build up growing aggregates which
exhibit complex morphologies and intricate interspecies interactions. In this context especially
the problem of cooperation has attracted much attention [180, 181, 182]. A common finding
for biofilm evolution is that local interactions lead to the emergence of global changes in
composition and structure.



6 Absorbing State Phase Transitions and
Surface Growth Roughening

Statistical mechanics aims to explain the macroscopic properties of a system from the spec-
ifications and interactions of its microscopic constituents. It is especially successful in doing
so for systems in equilibrium. Due to this success, many non-equilibrium approaches follow
the track laid out for equilibrium problems as far as possible and it turns out that there are
many similarities and analogies to be found. For this reason, we here shortly discuss the
basic phenomenology for second order equilibrium phase transitions, using the Ising model as
an example. After addressing critical exponents, the idea of universality classes, and scaling
(and also finite size scaling) we try to generalize to one particular class of non-equilibrium
systems, which undergo transitions to absorbing states. As an example we introduce directed
percolation (DP), as it is very descriptive and makes it easy to see both similarities and differ-
ences to equilibrium models. A more extended discussion of the equilibrium theory is found
in any textbook on statistical mechanics, e.g., [183, 184, 185], while articulate references in
the context of non-equilibrium phase transitions are, e.g., [186, 187].

We then turn to another class of non-equilibrium processes, known as surface growth models,
which do not undergo phase transitions, but nonetheless exhibit critical behavior, self-affine
properties and scaling and can therefore be sorted into universality classes. An excellent
introduction to surface growth is the book by Barábasi and Stanley [152].

6.1 Equilibrium Phase Transitions

6.1.1 The Framework of Statistical Mechanics

For systems in equilibrium there exists a formalism to derive macroscopic variables of interest
(e.g. response functions) which is, at least in principle, straightforward. The formalism rests
on the assertion that in equilibrium one can assign each possible micro state s of the system
under consideration a probability p(s) to be the one which is presently realized. In the
case of the canonical ensemble it is the Boltzmann factor exp(−βH(s)), which assigns each
state its relative statistical weight according to the ration of its internal energy, given by the
Hamiltonian H(s), to the typical thermal energy β−1 = kBT of the system, where kB is the
Boltzmann constant and T is the temperature. The sum of the statistical weights of all states
is the partition sum

Z =
∑
{s}

exp(−βH(s)) (6.1)
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which contains all information about a (canonical) ensemble of systems and from which all
quantities of interest can, in principle, be derived. The tough part of the formalism is to carry
out the sum, especially if the system’s constituents are interacting and their number N goes
to infinity, which is the thermodynamic limit. Typically, the number of possible states grows
like a power law in N , and thus the computation of the partition sum becomes increasingly
cumbersome.

6.1.2 The Ising Model

As an example of the approach discussed above we consider the Ising model, a paradigm of
equilibrium statistical mechanics. It is a toy model for a ferromagnet1, composed of magnetic
spins σ on a lattice in a magnetic field h. The spins can take two discrete states and are,
in the simplest case, all equal and interact only with nearest neighbors, with a parameter J
which gives the strength of the interaction. In this case the Hamiltonian reads

H(s) = −J
2

∑
〈i,j〉

σiσj − h
∑
i

σi , (6.2)

where the state s is the sequence of states the different spins take s = {. . . , σi−1, σi, σi+1, . . .}
and the square brackets denote nearest neighbors.

Phase Transition and Critical Exponents

While the Ising model is, in the thermodynamic limit N →∞, analytically solvable in one and
two dimensions, the three dimensional case is only accessible by approximative approaches
like the renormalization group (see, e.g. [188]). Importantly, at zero external field h, in two
and more dimensions one finds a second-order phase transition at a critical temperature Tc,
below which the system has a non-zero spontaneous magnetization m = 〈σ〉, in contrast to
T > Tc where the magnetization is strictly zero. One calls T the control parameter and m
the order parameter. Approaching Tc from below, the magnetization goes to zero as

m ∼ ∆β (6.3)

where ∆ := Tc − T is the distance to the phase transition. Repose functions, like the heat
capacity C and the magnetic susceptibility χ, describe the change of macroscopic observables
upon infinitesimal alterations of the control parameter. Response functions usually diverge
like power laws near continuous phase transitions, like that of the Ising model:

C ∼ |∆|−α , (6.4)

χ ∼ |∆|−γ . (6.5)

This is the result of the overwhelming importance of fluctuations at the transition itself,
vividly reflected in the likewise diverging correlation length

ξ ∼ |∆|−ν . (6.6)

1A ferromagnet is a material which, for no external magnetic field, has a phase transition at the Curie tem-
perature TC . Below TC the ferromagnet has a finite magnetization m, above TC one recovers paramagnetic
behavior with m = 0. The Ising model was devised to study this phase behavior.
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The correlation length can for example be observed as connected clusters of spins in the same
state. At the transition these clusters reach arbitrary large extensions.

The phase transition is characterized by its critical exponents β, α, γ, and ν. There exist
further observables with different critical exponents, which we will not discuss here. Interest-
ingly, all critical exponents are related to each other by a number of scaling laws, so that any
set of two of them determines all others.

Though the Ising model appears to be but a caricature of a real ferromagnet, its solutions
nonetheless predict the numerical values of critical exponents found for experimental ferro-
magnetic systems at the phase transition/Curie temperature. What is more, the very same
critical exponents have been found for systems, which are, from a microscopical viewpoint,
completely different, e.g., near the critical point of a liquid/vapor mixture.

6.1.3 The Scaling Hypothesis and Universality Classes

Universality Classes

How does this uncanny similarity of seemingly unrelated systems arise? It turns out that
near the phase transition all microscopic differences between the systems are qualitatively
irrelevant. The reason for this is the importance of long-ranged fluctuations, whose effect by
far exceeds that of the microscopic interactions: At the phase transition a system’s properties
are dominated by the diverging length scale, while the microscopic details are summed up in
a numerical factor.

Though microscopic details are irrelevant for the critical exponents, not all systems which
can undergo continuous phase transitions exhibit the same critical exponents. Systems with
identical exponents have the same “kind” of long-range fluctuations. The kind is determined
by the dimensionality of the system, the symmetries of the system and furthermore by the
number of components a suitable order parameter of the system has. Systems that share
these properties also share the same critical exponents and are said to be part of the same
universality class.

The Scaling Hypothesis

As a phase transition is approached and the typical length scale of fluctuations diverges,
fluctuations of smaller extensions are not suppressed. Instead we have fluctuations of all
possible extensions nested into each other, down to the microscopic scale of the system’s
constituents. This can already be observed by just looking at a visualization of an Ising
model at criticality, where connected spin clusters of any size are present — with a lower
cutoff at the distance between two neighboring spins and an upper cutoff at the extension of
the system under consideration.

Zooming in, we find that a magnified part of the system has the same statistical properties
as the full system, if we stay away from the cutoffs. This is to say, that even though a
part of the the system looks different, it has the same statistical properties and is, in this



92 6. Absorbing State Phase Transitions and Surface Growth Roughening

sense, indistinguishable from another realization of the full system, a property which is called
statistical self-similarity.

More generally, for a non-critical, but infinite extended system (i.e. L→∞, where L ∼ N1/d

is the linear extension and d is the dimension of the system) at finite distance ∆ from the
phase transition, there exists a finite correlation length ξ according to (6.6). Upon changing
the distance to the phase transition according to

∆→ c∆ , (6.7)

with c positive, the correlation length changes as predicted by (6.6):

ξ → c−νξ . (6.8)

If, say we move away from the phase transient, c > 1, the correlation length is decreased. We
can, however, recover the numerical value of our original correlation length ξ by decreasing
length units according to

x→ c−νx . (6.9)

Summarizing, for an infinite system, when simultaneously changing ∆ and the unit length x,
as stated in equations (6.7) and (6.9), the new system is indistinguishable from the original
one, as long as ξ is not comparable to the microscopic length scale. The magnetization m and
response functions also change according to (6.3)–(6.5). To recover the numerical values, one
has to rescale the units in which they are measured similarly to (6.9), but with their respective
critical exponents. Thus, rescaling all units properly, we can map systems at different distance
to criticality onto each other. This is known as the scaling hypothesis.

Finite Size Scaling

All real-world systems have a finite extension, which means that the typical length scale ξ
cannot really diverge in experimental setups. Nonetheless, critical behavior is found close to
the critical point ∆ = 0, and it is still possible to map systems at different ∆ onto each other,
if the finite extension is taken into account.

In finite systems, L < ∞, the correlation length has a strict upper bound, ξ ≤ L, and
consequently ξ(∆, L) now depends on both ∆ and L, and so do all other observables. Luckily,
we can still assume that for large ∆ the finiteness of the system is not reflected in ξ, as
fluctuations of the system’s size are overwhelmingly rare, while for ∆→ 0 fluctuations spread
through the whole system. We may compare the expected infinite-system correlation length
ξ∞ according to (6.6), which can be considered as the natural length scale of the system, with
the system size L, to distinguish between the asymptotic regimes. Taking y := L/∆−ν , we
have

ξ(∆, L) ∼

{
∆−ν y � 1 ,

L y � 1 .
(6.10)

When in the regime y � 1, upon changing ∆ and rescaling length units as in (6.7) and (6.9),
we expect to recover the original natural correlation length ξ∞, but have the problem that in
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the new length units the system size L has a different value, and therefore y is altered. The
solution of course is to also resize the system,

L→ c−νL , (6.11)

and thus keep y unchanged. Summarizing, all systems where the ration L/∆−ν is identical are
indistinguishable (again keeping away from the microscopic length scale), and the correlation
length behaves as

ξ(∆, L) = ∆−νf
(
L/∆−ν

)
, (6.12)

where we recover the asymptotics through

f(y) ∼

{
1 y � 1 ,

y y � 1 .
(6.13)

f is known as a scaling function or scaling form, and is identical for all models from the
same universality class. The procedure by which one reduces the functional dependency of
an observable from two variables, ∆ and L, to a single variable y = L/∆−ν , as just done,
is known as finite size scaling, and relies on the fact that near the phase transition one can
convert length to distance from criticality and vice versa. For more complicated models, which
depend on more than two variables, one can perform this method analogously and thereby
reduce the number of variables by one.

6.2 Phase Transitions to Absorbing States

Sometimes there is no way back. In ecology, if all representatives of a species have died, the
species has become extinct and will usually not come back into existence. Similarly, a forest
fire, if extinguished for good, does not flare up again. If a mouse is trapped in a (perfect)
mousetrap, it cannot get out any more. All these are examples of absorbing states, which can
be entered, but not left.

Processes which can end up in absorbing states can undergo phase transitions to absorbing
states [186, 187] and are of interest in statistical physics because they are generic examples
of non-equilibrium processes. To elaborate this notion, we will discuss directed percolation, a
representative of this class of models, which is often considered to be of similar importance
for absorbing state phase transitions, as the Ising model is for equilibrium phase transitions.
Directed percolation is a dynamical version of isotropic percolation [189], a geometric model,
where each site or bond of a lattice is occupied with possibility p and empty otherwise.2 In
isotropic percolation, above a critical probability pc, there exists an infinite cluster of adjacent
occupied sites, and near pc many quantities of interest, like the typical cluster size, exhibit
critical behavior as discussed in Section 6.1.

2In a sense, isotropic site percolation resembles the statistical mechanics model of a paramagnet, where the
temperature and external magnetic field determine the fraction of spins pointing upwards. Identifying the
magnetization m with the occupation probability p, the two models map to each other. However, the
geometric properties of percolation are much harder to derive than the thermodynamic properties of the
paramagnet.
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6.2.1 Directed percolation

In directed percolation (DP), one thinks of open or closed bonds/sites on a d+ 1 dimensional
lattice. Bonds/sites are open with probability p and closed otherwise. Under the influence
of gravity, a liquid may flow from an open bond/site to a lower neighboring open bond/site.
Consequently, the clusters of sites/bonds filled with the liquid are different from that of
occupied sites in isotropic percolation, since a preferential, time-like direction (in which gravity
works) was introduced. Thus, one has d spatial directions and one temporal direction and
one speaks of a d+ 1 dimensional process. Figure 6.1 depicts one possible realization starting
with a single seed initial condition on a 1+1d square lattice.

Figure 6.1: An example of a directed percolation process starting on a 1+1 dimensional square lattice
with single seed initial condition. Open and closed bonds are denoted by solid and dotted
lines, respectively. Time points downwards, and thus only next-neighbors below occupied
sites (full circles) are being occupied in the next time step, while others stay empty (open
circles).

In infinite systems (L → ∞), one finds that DP undergoes a phase transition at a critical
probability pc, below which occupied sites always die out after some time and one enters
an absorbing state with no occupied sites. One takes p as the control parameter of the
system. In distinction to isotropic percolation, there is a qualitative difference between the
time-like preferential growth direction and space-like directions perpendicular to it: instead
of just a single correlation length (i.e. typical isotropic extension of domains) ξ, one finds
two distinct correlation lengths, ξ‖ and ξ⊥, parallel and perpendicular to the preferential
direction, respectively. They can, between others, be identified with the typical extensions of
clusters of non-occupied sites, when above pc. Typically, one considers two different initial
conditions: (i) a fully occupied lattice or (ii) a single occupied site in an otherwise empty
lattice. Observables of interest are different depending on the initial condition. For (i) the
mean density ρ of occupied sites is of major importance, while for (ii) one usually asks for
the probability Ps that there are any occupied sites left and for the mean number of occupied
sites N .

In the simplest case, the lattice under consideration is a tilted (1 + 1)-dimensional square
lattice and update is parallel (as depicted in Figure 6.1). For this case it is easy to see, that
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directed percolation can also be considered a reaction-diffusion process on a 1d lattice, where
particles A may jump (diffuse) to adjacent sites and may undergo different reactions (see also
Figure 6.2):

A −→ 2A (reproduction/auto-catalysis) (6.14)

2A −→ A (coalescence) (6.15)

A −→ ∅ (death/degradation) (6.16)

At a coarse-grained level we may capture this behavior in a stochastic partial differential

Figure 6.2: Directed percolation can be interpreted as a reaction-diffusion process, made up from
microscopic hopping and reaction events. Time points downwards; open and closed bonds
are denoted by solid and dotted lines, respectively; occupied and empty sites are depicted
as full and open circles, respectively.

equation for the density of particles ρ:

ρ̇(x, t) = τρ(x, t)− gρ(x, t)2 +D∇2ρ(x, t) + κ
√
ρ η(x, t) (6.17)

Here, the first term, proportional to ρ, corresponds to reproduction and death, and the sign
of the parameter τ depends on which reaction is dominant. The second term, proportional
to ρ2, incorporates coalescent events, while the third term results from diffusion of particles.
The last term models fluctuations, which are characteristic for the process. They vanish
where there are no particles, i.e. for ρ = 0. The square root dependence is a result of coarse-
graining, since by the central limit theorem, the independent microscopic fluctuations add up
to macroscopic Gaussian fluctuations with a standard deviation proportional to the square
root of the mean. Consequently, η(r, t) is white Gaussian noise,

〈η(x, t)〉 = 0 , (6.18)

〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t− t′) . (6.19)

The parameters τ , g, D, and κ appearing in (6.17) are unknown functions of p, with the
restriction that all but τ are strictly positive. It is clear that for τ(pc) = 0 and τ(p < pc) < 0,
since below τ = 0 there exists no steady-state solution of (6.17) with finite ρ. Equation (6.17)
is non-linear, which prohibits an exact solution. Actually, there could be higher order non-
linear terms in (6.17), but one can show by renormalization group techniques, that their
influence on long-ranged excitations of the system is negligible and, hence, near the phase
transitions only the quadratic term is relevant.

6.2.2 Differences to Equilibrium Systems

One might think that DP is not so different from the Ising model, both being two-state lattice
gas models. In stark contrast to the Ising model however, it is impossible to assign an energy
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to any but the absorbing state of DP.3 Therefore, it is impossible to compute a partition sum
for DP. To understand why the receipt described in Section 6.1 breaks down, it is important
to understand the idea of statistical equilibrium: the flow of probability js→s′ from one micro
state s into another one s′ is equal to the flow js′→s in the opposite direction. The probabilities
p(s) and p(s′) equilibrate at such levels, that they just balance the transition rates w between
the states

js→s′ ≡ ws→s′p(s) = ws′→sp(s
′) ≡ js′→s . (6.20)

This statement is equivalent to equilibrium and known as detailed balance. Closely related
is the idea of ergodicity, which is the notion that for a system in equilibrium, measuring an
observable for a sufficiently long time is equivalent to measuring it at a specific moment in a
very large number (i.e. a statistical ensemble) of systems.

What happens to these ideas if we look at a process with an absorbing state like DP? The
absorbing state can certainly be entered, so there is a flow of probability into it, but as the
name suggests, there is no equivalent flow in the opposite direction, which violates detailed
balance.4 When considering ergodicity the problem worsens, since any single system will
eventually always enter the absorbing state, as a result of fluctuations (even though they
might be very rare). That particular system is not representative for an ensemble of systems
anymore, and ergodicity is broken.

From these arguments it is clear, that it is impossible to compute a meaningful partition sum
as in (6.1), which carries information about the system. Thus, there is no direct analogue of
free energy or response functions. In general it is still possible to evaluate the probability to
find a given realization of a process from the microscopic rules, but this becomes unbearable
cumbersome for large system and long times, which are necessary conditions to analyze phase
transitions. As a result, exact analytical treatment is not feasible and one has to content
oneself with approximative approaches, like renormalization group techniques [188], which
are challenging in their own right.

6.2.3 Critical Exponents, Universality and Scaling

Even though the standard tools of equilibrium statistical mechanics fail when describing non-
equilibrium phase transitions, both classes still bear some striking similarities. Especially one
can organize absorbing phase transitions into universality classes according to their critical
behavior.

Different models which exhibit phase transitions to absorbing states can be analyzed by using
the same, or very similar defined, observables. For sake of clarity we will continue using
DP as an example, even though the following statements hold for general absorbing state
phase transitions. As prime observables one usually chooses the density ρ (starting from

3The energy of the absorbing state would be minus infinity, which is not particularly helpful.
4One might argue that there is no problem with detailed balance, and that the absorbing state is the equilib-

rium state, where all flows are identical zero. This interpretation is equivalent to the tenor of the previous
footnote, since any state with an energy of minus infinity is, of course, never left. The argument becomes
elusive, however, if there are two or more absorbing states with no flow between them, since, in equilibrium,
the relative probability in ending up in either should be related to the difference in their respective energies.
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a fully occupied lattice), the survival probability (starting from a single seed) Ps, and the
two correlation lengths ξ‖ and ξ⊥ to characterize the system. They are useful as they are
easily interpreted graphically and approach steady-state values after initial transients for large
enough lattices. At the phase transition they exhibit critical behavior. With the distance to
criticality, ∆ := p− pc, they vary as

ρ ∼

{
∆β ∆ > 0 ,

0 ∆ < 0 ,
(6.21)

Ps ∼

{
∆β′

∆ > 0 ,

0 ∆ < 0 ,
(6.22)

ξ‖ ∼ |∆|−ν‖ , (6.23)

ξ⊥ ∼ |∆|−ν⊥ . (6.24)

One sees that both ρ and Ps fulfill the properties of order parameters. While the corresponding
critical exponents are different for general cases of phase transition to absorbing states, they
coincide in the special case of DP, β = β′, due to the so-called rapidity-reversal symmetry of
DP [190].

As for equilibrium phase transitions, it is possible to organize absorbing state phase transitions
into universality classes, according to their set of four, in general independent, exponents
defined through equations (6.21)–(6.24). Again, the classes are distinguished by symmetries
and dimensionality of the model and on properties of the order parameter, but not by the
microscopic details, since again, near the transition, long-range behavior dominates. One
important finding is that a wide variety of models falls into the DP universality class, which
is therefore considered very robust. Nonetheless, there exist a number of other known classes,
see, e.g., [186, 187].

6.3 Surface Growth

Not all non-equilibrium models necessarily undergo phase transitions, but many still have
interesting properties. In this section we consider surface growth models [152, 191], which in-
herently display critical behavior, in the sense that typical length scales of surface fluctuations
grow without bounds if not put to a stop by a finite system size.

Growth processes are widespread in nature: Water soaking through a paper towel, fire burning
down a dry cornfield, a bacterial colony growing and expanding on a surface (as introduced
in Section 5.2), atoms being deposited on a substrate surface by molecular beam epitaxy. All
these examples have in common that there is a surface which grows into an “empty” region
as time progresses. This surface may seem smooth, even flat, from far away, but on smaller
length scales it has an irregular, rough shape. This would not seem very remarkable if these
surface fluctuations were only present at the level of microscopic constituents of which the
“growing medium” is composed. However, the typical extension of fluctuations grows in time
and subsequently ever larger segments of the surface display fluctuations of the same kind,
meaning they are self-affine in a statistical sense. Intuitively self-affinity means that enlarging
part of a system, but stretching by different (appropriate) factors in the different directions,
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one receives a new system with statistically identical properties.5 Statistical mechanics aims
to study models that are as simple as possible, but still exhibit these characteristic features.

6.3.1 Linear Models

Temporal Increase of the Width: Random Deposition

The simplest model, random deposition, considers an L × |N| square lattice, where the L
direction is usually considered as horizontal (and subject to periodic boundary conditions);
thus, there are L half-infinite columns. The lowest site of each column is initially occupied by
a particle, and in each time step a random column is chosen (equally distributed), where a
new particle is added and falls down to the lowest unoccupied site; for an example see Figure
6.3. The number of deposited particles N is therefore proportional to time and so is the

Figure 6.3: A realization of random deposition on a lattice with linear extension L = 12. Particles are
added to a random column and fall down until they are just above an occupied site, where
they stick. A present configuration is shown in black; in the next step a single particle
will be added to one of the gray sites with equal probability.

average height of the interface,

h̄(t) :=
1

L

L∑
i=1

h(i, t) = N(t)/L , (6.25)

where h(i, t) is the vertical position of the highest occupied lattice site in column i at time t.
The roughness of the surface is quantified by the width

w(L, t) :=

(
1

L

L∑
i=1

[
h(i, t)− h̄(t)

]2) 1
2

, (6.26)

5If the factors are identical for all directions one has a self-similar or fractal system.
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which is easily interpreted as the standard deviation of the height about its mean. For random
deposition, all columns are independent of each other, and it is easy to show that the number
of particles in each column (i.e. its height), is binomial distributed. This implies that the
standard deviation of the height grows like the square root of the mean height. Thus, the
ensemble averaged6 width grows as

w ∼ tβ (6.27)

where β = 1/2 is the growth exponent of random deposition.7 It turns out that the interface
generated by random deposition is not self-affine, since height fluctuations all have the same
order of magnitude, and do not scale with the considered length scale. This results from the
lack of correlation between the columns.

Saturation of the Width: Surface Relaxation

The independence of neighboring columns in random deposition seems rather unnatural as it
permits steep steps of arbitrary size to build up along the front. To remedy this, one considers
random deposition with surface relaxation. In contrast to the previous example, particles may
move to neighboring columns, if these have a lower height, and continue to do so until they
reach a locale minimum. This smoothens the surface immensely, as evident from a reduced
roughness exponent, β = 1/4. More importantly, the width does not grow without bounds,
but instead saturates to a finite value wsat(L) := w(L, t → ∞). For different lattice sizes L
one finds

wsat(L) ∼ Lα , (6.28)

where α = 1/2 is the roughness exponent for random deposition with surface relaxation.
Height fluctuations of all magnitudes lower than wsat are also present on shorter horizontal
length scales, and the system is now self-affine. Between the two regimes (given by equa-
tions (6.27) and (6.28)) lies a crossover, which appears as the system “feels” its finite size.
This should be the case where tβ ∼ Lα, which gives us the crossover time

t× ∼ Lα/β , (6.29)

where α/β is called the dynamical exponent of the growth model, as it interrelates the time-
dependent and the size-dependent regime. The set of critical exponents {α, β} characterizes a
given universality class of surface growth models, which have symmetries and dimensionality
in common. For random deposition with surface relaxation we have α/β = 2.

Scaling

The crossover to saturation appears at the time when typical horizontal extensions ξ(t) of
the height fluctuations, which grow like tβ/α, reach the system size L, where they necessarily

6From here on we will always assume ensemble averaged observables if not stated otherwise.
7The growth exponent β should not be confused with the critical exponent of the order parameter in the

context of phase transitions (as introduced in Sections 6.1 and 6.2), which is denoted by the same symbol.
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saturate. After this time all sites are correlated with each other, which means that no section
of the front can lag behind arbitrarily far (or run away, for that matter). As in the context
of finite size scaling (see Section 6.1.3), different systems can be related to each other by
comparing ξ and L or similarly t and t×:

w = tβŵ(t/t×) , (6.30)

where ŵ(y) is a universal scaling form which recovers the asymptotic regimes,

ŵ(y) ∼

{
1 y � 1 ,

y−β y � 1 .
(6.31)

This scaling behavior is known as the Family-Vicsek scaling relation [192].

Coarse Graining — Stochastic Continuum Equations

The correlations between different columns render an exact analytical solution of the lattice
model infeasible. However, we can coarse-grain the model, using its symmetry properties.
We want to obtain a stochastic differential equation of the general form

ḣ(x, t) = F (h, x, t) + η(x, t) , (6.32)

where η(x, t) are stochastic fluctuations modeled as Gaussian white noise,

〈η(x, t)〉 = 0 , (6.33)

〈η(x, t)η(x′, t′)〉 = 2Dδ(x− x′)δ(t− t′) , (6.34)

and D gives the noise amplitude. The explicit form of F depends on the symmetries, which
tell us under which transformations equation (6.32) is invariant. Ballistic deposition with
surface relaxation8 is expected to be invariant under:

• translation in time; t → t′ = t + t0, x → x, h → h: The growth rules do not depend
explicitly on time, but only implicitly through h(x, t). All terms which explicitly depend
on t are therefore prohibited, while terms depending on h(x, t) or on temporal derivatives
of h are allowed.

• translation in space; t→ t, x→ x′ = x+ x0, h→ h: All horizontal positions/columns
are equal, growth rules do not depend explicitly on x, therefore F does not contain
terms which depend explicitly on x, but spatial derivatives are allowed.

• translation in height; t→ t, x→ x, h→ h+h0: Growth rules do not depend explicitly
on the height of the interface. Consequently, no explicit dependence of F on h is allowed.
Derivatives are possible.

• inversion about the vertical direction (in higher dimensions this generalizes to rotation);
t → t, x → x′ = −x, h → h: Left and right are equal, there is no sidewards drift of
particles. This rules out terms with an uneven number of spatial derivatives, e.g., ∇nh
and (∇h)n with n uneven.

8Surface relaxation breaks symmetry under inversion of time, which is still present for ballistic deposition
alone.



6.3 Surface Growth 101

• inversion about the horizontal direction (up/down symmetry for h); t→ t, x→ x, h→
−h: protrusions and indentations of the surface relax and build up in an identical fash-
ion, which is a typical equilibrium property (as found, e.g., for a polymer or membrane
in a heat bath). This forbids, e.g., all terms proportional to (∇h)n, where n is even,
since these terms do not change sign under the transformation.

The above analysis allows terms proportional to (∇2nh)(∇h)2m. We are interested in scaling
properties on large scales (x → ∞) and after transients have decayed (t → ∞). In this
limit derivatives of higher order are negligible, compared to lower order ones with the same
symmetry properties, as can be argued for with scaling arguments or shown by renormalization
group techniques.

We are left with the two terms of lowest order for F in equation (6.32), which are a constant,
v, and a term proportional to ∇2h. v corresponds to a mean growth velocity, and can be
taken care of by considering a co-moving reference frame, h → h + vt. This leaves us with
the Edwards-Wilkinson (EW) equation

ḣ(x, t) = ν∇2h+ η(x, t) , (6.35)

where ν is a parameter, which corresponds to the strength of “surface tension”. From the
Edwards-Wilkinson equation one can infer the exponents α = 1/2 and β = 1/4 by scaling
arguments, or since it is linear, through Fourier transformation.

6.3.2 Non-linear Models

Though the EW equation describes a universality class of surface models which have self-affine
interfaces it is not very realistic. In fact, the examples introduced to motivate surface growth
processes at the beginning of this section all differ, in that they grow perpendicular to the
local orientation of the surface.

Ballistic Deposition

An extension of random deposition, called ballistic deposition incorporates growth normal to
the surface by introducing sticky particles. These fall down a column until they encounter
a particle at the site exactly below or left or right of them, in which case they stick. This
generates sidewards growth and lateral correlations of the surface above a bulk containing
many holes and overhangs. An example is given in Figure 6.4. For ballistic deposition one
finds a different set of exponents (α = 1/2, β = 1/3), since the sidewards growth breaks the
up/down symmetry, which indicates that there might be additional relevant terms that have
to be added to the EW equation (6.35). Before we elaborate this idea, we will take a look at
another growth model, which is more relevant to this work and has the same set of exponents
as ballistic deposition and is, therefore, member of the same universality class.

The Eden Model

The microscopic rules and appearance of the Eden model [153], which was devised to mimic
the growth of bacterial colonies, are quite different from the models introduced so far in this
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Figure 6.4: A realization of ballistic deposition on a lattice with linear extension L = 12. Particles
are added to a random column and fall down until they encounter an occupied site below
or to the right or left of them, in which case they stick. The possibility of sticking to a
particle at a neighboring column introduces growth which is locally perpendicular to the
surface. A present configuration is shown in black; in the next step a single particle will
be added to one of the gray sites with equal probability.

section. Here an empty side, adjacent to an occupied site is chosen at random and a new
particle is placed there. In this case the bulk is compact and covered by a thin layer with
holes, which are rapidly filled. An example is given in Figure 6.5. There exist three versions of
the Eden model, which differ in the relative probabilities with which a given possible growth
site is chosen [193]:

• Version A: All empty sites with at least one next-neighboring occupied site have the
same probability, choose one at random.

• Version B: Choose a connection/bond between an occupied and an empty site at random,
with equal probability. Add a particle at the empty site.

• Version C: Choose any occupied site at the surface (i.e. next-neighboring to an empty
site) at random with equal probability. Then choose randomly and with equal proba-
bility one of its empty next-nearest neighbors and add a particle there.

The difference in the update rules mainly influences how fast holes and overhangs are filled
and also has some influence on the amplitude of the width of the front. The scaling behavior
is the same for all three versions, when ignoring transients and the strength of finite size
effects. Version C, which focusses on the particles which are already there, shows best scaling
and is also closest to biology, where the particles are proliferating microbes. Interestingly,
experiments with prokaryotes [154], found exponents different from those of the Eden model
(α = 1/2, β = 1/3), while a recent study with eukaryotic cells [155] is in excellent agreement
with these values. The origin of this qualitative difference remains a challenging problem at
the border between microbiology and statistical physics.
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Figure 6.5: A realization of the Eden model on a lattice with linear extension L = 12. Particles are
added to a random site with a next-neighboring occupied site. A present configuration is
shown in black; in the next step a single particle will be added to one of the gray sites.
The relative probabilities to choose a given growth site depend on the version of the Eden
model (see main text). As for ballistic deposition growth is normal to the local surface.

The Kardar-Parisi-Zhang Equation

Though very different in detail, both ballistic deposition and the Eden model are members of
the same universality class, which they share with a number of other models, e.g., solid-on-
solid models. Due to normal growth they have a growth exponent α = 1/3 in distinction to
representatives of the EW universality class. The reason for this is that growth normal to the
surfaces induces lateral growth of protrusions of the interface. This breaks symmetry under

Figure 6.6: Growth normal to the local surface leads to an additional growth term proportional to
dh ∼ (∇h)2.

inversion about the horizontal direction, and therefore requires a different coarse-grained
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growth equation. From Figure 6.6 we infer

dh =
[
(vdt)2 + (vdt∇h)2

]1/2
+O(dt2) (6.36)

= vdt
[
1 + (∇h)2

]1/2
+O(dt2) (6.37)

=
[
v +

v

2
(∇h)2

]
dt+O

(
dt2, (∇h)4

)
. (6.38)

If the inclination of the surface is not too large9, ∇h � 1, this means we can incorporate
growth normal to the surface by adding a term proportional to (∇h)2 to the Edward-Wilkinson
equation (6.35). This yields the famous Kardar-Parisi-Zhang (KPZ) equation [194]:

ḣ(x, t) = ν∇2h+
λ

2
(∇h)2 + η(x, t) . (6.39)

The additional non-linear term in the equation is evidence for the non-equilibrium nature of
the KPZ equation, as, e.g., the average height is no longer conserved in contrast to the EW
equation (6.35). The non-linear term also prohibits analytical solution of the KPZ equation,
and analysis is thus restricted to renormalization group techniques. In 1d one finds the
exponents as measured in simulations of lattice models, α = 1/2 and β = 1/3, which can also
be argued for by more qualitative arguments.

There exists an extensive literature devoted to the study of the KPZ equation and its solutions
as well as many extensions, see, e.g., [195, 152, 191]. Since this is not in the focus of the present
work, we will not discuss it here. Instead we will examine some properties of multi-species
Eden models.

6.4 Multi-Species Eden Models: Coupling of Bulk and Surface
Dynamics

In Section 5.2.2 we shortly discussed the growth of microbial colonies composed of multiple
strains or species. In such settings new interesting questions arise, which can be addressed
by multi-species growth models.

6.4.1 Super-diffusion of Sector Boundaries

The surface roughness which is inherent to growth models like the Eden model has conse-
quences when instead of just one there are two or more distinct kinds of particles. A two-
species generalization of the Eden model [163], exemplifies coarsening of single-species domain
at the surface. Coarsening happens as boundaries between the domains annihilate as they
meet. The speed at which the number of domains decreased, in the case of equally fast repro-
ducing species, can be explained by a super-diffusive meandering of the domain boundaries.
This is the result of locally normal growth of the rough surface, which is imprinted in the

9This is always the case on large enough length scales, if the roughness exponent α is smaller than unity,
since then the typical slope of the coarse grained surface decreases when zooming out.
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trajectories of the domain boundaries, as has been discussed in Section 5.2.2 (see Figure 5.1).
Experiments with fluorescently labeled bacteria corroborate these results [161].

This finding of strong, surface induced, boundary fluctuations becomes more important if a
neutral two-species Eden model, which is started with different initial conditions, is consid-
ered [196]. It turns out that the scaling of the boundaries’ trajectories is strongly dependent
on the curvature of the front and can reach from sub-diffusive up to ballistic behavior. While
one may argue that such initial conditions only have a transient influence on the dynamics,
this must not be true for the non-neutral case, where domain boundaries may be correlated
with local curvature.

6.4.2 Surface-Bulk-Coupling under the Influence of Selection and Mutations

Some studies of non-Eden growth models have found that surface roughness and domain
dynamics influence each other [197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208].
One of them [208], finds a phase transition to an absorbing state, which belongs to the
DP universality class. However there is only limited literature on Eden models with multiple
species [209, 160] besides that mentioned above, and, as it appears, none involving mutations.

In the manuscript “Range Expansion with Mutation: Dynamical Phase Transition in a Two-
Species Eden model”, by J.-T. Kuhr, M. Leisner, and E. Frey we introduce a two-species Eden
model incorporating selection and unidirectional mutation. The irreversibility of mutations
creates an absorbing state, where only mutants are at the front, while selection increases the
surface roughness and entails correlations between domain boundaries and curvature of the
surface. This interplay of roughness and domain dynamics alters properties of both the phase
transition and of dynamic surface roughening, as manifest in critical exponents different from
the expected DP and KPZ universality classes, respectively.
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While the evolutionary dynamics leads to coalescence of both wild-type and
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1. Introduction

The spatial structure strongly influences the dynamics of evolving biological systems and often
gives rise to qualitatively different outcomes as compared to well-mixed populations [1, 2].
Over the last few years, microbiological experiments have progressively been used to shed
light on the dynamics of spatially extended systems [3–9], and have spurred theoretical
investigations [10–16]. Since microbial colonies typically grow from some initial seed, a
particularly interesting question to ask is: how are both a colony’s morphology and its internal
composition shaped by the growth rates of the different strains it is composed of and by
the interactions between these strains. Already the simplest scenario, the spreading of two
selectively neutral strains or species shows intriguing phenomena, which makes the evolutionary
outcome quite distinct from well-mixed populations [17–22]. Experimental investigations of
expanding Escherichia coli and Saccharomyces cerevisiae colonies containing two fluorescently
labeled but selectively neutral strains have shown that the population differentiates along the
growing front and thereby segregates into well-defined domains [18, 22]. This is caused by
demographic fluctuations: since mainly cells at the leading front of the growing colony access
nutrients and reproduce, the effective population size is small and neutral dynamics leads to
local fixation of strains and thereby generates sectoring of the population [22].

In general, however, microbial communities are heterogeneous and composed of multiple
strains, which may have different growth rates or show other kinds of distinct phenotypic
features; cf e.g. [16, 23–28]. One well-known phenomenon, which is the focus of this paper,
is bursts of new sectors of mutants during the growth of bacterial colonies [3, 22, 29–31].
In a growing bacterial colony, which initially consists of one phenotype (the wild-type) only,
mutations of this strain may appear during the reproduction of individuals. If these mutations
happen at the leading front and are beneficial, i.e. if the mutant strain has a larger growth
rate than the wild-type strain, mutant regions along the front not only advance faster but
also expand laterally. Consequently, mutant sectors take over ever larger parts of the front
in a quasi-deterministic fashion [22, 32, 33]. While deleterious mutations are, for the same
reason, handicapped by selection, they may still form large clusters along the front if they
appear frequently enough. In this case mutant sectors are no longer spatially separated, but may
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coalesce. At a critical mutation probability, the mutants’ selective disadvantage is effectively
balanced and mutants may take over the front [22]. If back-mutations are prohibited, the front
remains trapped in an all-mutant state. In the language of non-equilibrium statistical mechanics,
the critical mutation rate marks a phase transition between an active state, for which the front
is composed of wild-types and mutants, and an absorbing homogeneous state, composed of
mutants only [34–37].

What makes this absorbing state phase transition in a growing bacterial colony interesting
is the intricate interplay between the morphology of the growing front and the evolutionary
dynamics of the colony. Depending, among others, on the particular type of bacterial strain,
nutrient concentration and softness of the agar surface, bacterial colonies exhibit a kaleidoscope
of possible morphologies [3, 4, 6, 30, 38–40]. The Eden model [41] has been devised to describe
the growth of bacterial cultures with a compact morphology on which we focus in this work.
A hallmark of this model is the generation of rough fronts with characteristic features closely
resembling recent experimental observations [42]. The roughness of the front directly affects the
trajectory of interfaces between domains of different strains [32]: the undulations of the front are
imprinted in the meandering of the domain boundaries on all length scales, as has recently also
been observed experimentally [18, 22]. This surface-induced meandering speeds up coalescence
of clusters, i.e. the roughness of the propagating front strongly affects the temporal evolution
of the population’s composition. This suggests that front roughening is highly relevant for
the nature of the phase transition from a heterogeneous to a homogeneous population at the
expanding front.

It is precisely this issue that we would like to address in this paper. To this end we
study bacterial range expansion using a two-species Eden model, which incorporates surface
roughness, selection and irreversible mutations. We intend to gain deeper insight into the
interplay of these key features of the dynamics and their relative importance for the transition
to the absorbing state. While our findings are mainly of general importance for a broader
class of multi-species growth models, we also expect that real-world range expansions of
bacterial colonies are subject to this coupling and carry its signature in the evolving patterns. In
the remainder of the introduction, we give a concise overview of previous work on surface
roughness and absorbing state phase transitions as relevant for this work. A more in-depth
discussion and comparison with the results of our work is given in the final section.

Both, discrete numbers and roughness of the expanding front are intrinsic to surface
growth models [43–45], which mimic the stochastic advance of particles into empty space.
One particular growth model, the Eden model [41] (of which there are three, slightly different,
variants [46]) has been devised to describe the growth of bacterial cultures. Mesoscopically
its evolution is captured by the Kardar–Parisi–Zhang (KPZ) equation [47]. The KPZ equation
constitutes a robust universality class which incorporates many surface growth models, like
e.g. ballistic deposition and solid-on-solid models. There have been a number of generalizations
to multi-species growth models [32, 48–60], notably one of the Eden model that incorporates
selection [32]. The coupled influence of mutations and selection on kinetic surface roughening,
which is one of the topics of this work, has not been analyzed in detail so far. Even
when neglecting roughness, multi-species propagation is not treated easily in more than one
dimension. The reason for this is the intricate interplay of creation, annihilation and merging of
clusters, which contain only one kind of individual, at the leading front of the colony.

In the case of irreversible mutations, both analytical results and numerical simulations
for range expansion with flat fronts (neglecting surface roughness) predict a transition to an
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all-mutant absorbing state, which emerges even for deleterious mutations at a critical mutation
probability [22]. For such models with flat fronts [22], the dynamics closely resembles that of
a contact process [61]. As a consequence, it belongs to a broader class of absorbing state phase
transitions whose main representative is directed percolation (DP) [62], a dynamic version of
percolation [63]. The DP universality class of phase transitions to absorbing states has been
found to display enormous robustness with respect to alterations of the microscopic update rules
and is considered a paradigm of non-equilibrium statistical physics [34–37]. How roughness of
the front may influence phase transitions to absorbing states has, to the best of our knowledge,
not been addressed previously.

This paper is organized as follows. In section 2, we introduce a two-species growth process
on a 2d lattice to analyze the general properties of range expansion of asexually reproducing
microorganisms. It explicitly includes irreversible mutations from wild-types to mutants and
selection between the two strains. The evolving system’s morphology intimately depends on
the antagonistic effects of new mutant domains being created at the front and others losing
contact with it. For abundant, deleterious mutations a phase transition to an absorbing state
exists, which changes both the evolutionary dynamics and the surface roughening behavior of
the system qualitatively. We discuss the properties of both surface and bulk morphology and
map out the phase diagram in section 3. The system’s critical behavior near the transition is
affected by the front’s roughness, since the temporal evolution of the system is restricted to
the growing front. This alters the critical properties of the absorbing state phase transition.
In section 4.1 we determine its critical exponents, which are different from those of the DP
class (which is most often found for flat systems [34–37]). In addition, the different birth rates
of the two strains induce an enhanced width of the front near the phase transition. Close to
the transition the roughness exponent of our model is severely enhanced compared to that of
the Eden model [43–45]. In addition to KPZ behavior we identify and characterize a critical
roughening regime in section 4.2. We conclude with a discussion of our results and a comparison
to related models which study the coupling between surface roughening and domain dynamics.

2. The Eden model with mutations

Range expansion into hitherto unoccupied territory proceeds in a non-homogeneous manner on
the length scale of individuals. Along the leading front local protrusions emerge randomly and
subsequently expand, thereby creating a rough front and an overall forward movement. The
main features of this growth process are well captured by the classical Eden model, which was
developed to mimic the growth of microbial colonies [41, 44, 45]. While some multi-species
extensions of the Eden model have been analyzed [32, 48–50], surface growth experiments with
competing microorganisms have been performed only recently [18, 22]. They reveal intriguing,
nontrivial patterns if the population is comprised of distinguishable sub-populations. Mutations
and selection can alter the growth dynamics by giving some individuals a growth advantage or
by introducing qualitatively different organisms.

In this work, we employ a lattice gas model to analyze the influence of mutations and
selection on range expansion at rough, fluctuating fronts. We model microbial range expansion
with mutations as a cellular automaton on a 2d semi-infinite square lattice of extensions L × ∞

with periodic boundary conditions in the transverse direction (see figure 1).
At a given time t , each site (i, j), with i ∈ {1, . . . , L} and j ∈ N, is either empty or occupied

with an individual, which in turn can be either a wild-type or a mutant. We identify empty
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Figure 1. The Eden model with mutations. An initially line-shaped bacterial
colony of length L , consisting of only wild-types, shown in dark gray (red),
grows into an empty half-space. Wild-types reproduce at rate 1, given that they
have a vacant nearest-neighboring lattice site. Individual offsprings are either
wild-types or mutants (light gray) with probabilities 1 − p and p, respectively.
Mutants reproduce like wild-types but at birth rate b. Back-mutations are
prohibited. In the L-direction (transverse) periodic boundary conditions apply.

sites, wild-types and mutants with state variables s = 0, s = 1 and s = −1, respectively. The
state of the system at a given time is, therefore, specified by the set of occupation numbers
si, j ∈ {−1, 0, 1}. The system evolves as individuals reproduce: empty sites with s = 0 can
change their state if an individual on a nearest-neighboring site reproduces. We assume that
individuals do not die and hence any site with s = ±1 remains in its state indefinitely.

To implement random-sequential update of a configuration, we apply a simplified version
of Gillespie’s stochastic algorithm [64]. Only individuals at the front, defined as the set of
occupied sites with at least one empty nearest-neighbor site, can reproduce. Of these, an
individual is randomly, but proportional to its birth rate, chosen to reproduce: mutants reproduce
with relative birth rate b > 0, while the birth rate of wild-types is 1 and thereby sets the
timescale. Let Nwt and Nmut denote the number of wild-types and mutants with free neighbors,
respectively. The overall birth rate of the population (at which production events happen) is
given by btot := (Nwt + bNmut). To account for different birth rates, each wild-type individual
with an empty neighbor is chosen to reproduce with probability 1/btot, while each mutant
individual with an empty neighbor is chosen with probability b/btot. The new individual is
placed on a random empty nearest-neighbor site of the individual which has been chosen to
reproduce. During wild-type reproduction, a mutation may happen with probability p. Thus,
if the reproducing individual is wild-type (s = 1), the offspring is a wild-type with probability
1 − p and a mutant with probability p. If the reproducing individual is a mutant (s = −1), the
offspring is necessarily also a mutant. Note that by these rules back-mutations and multiple
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mutations are prohibited and that all mutants are identical and reproduce with the same birth
rate b. Assuming exponentially distributed reproduction times, the expectation time until the
next reproduction event is b−1

tot . Hence, we update time by t → t + b−1
tot whenever an individual

reproduces. Since, after some initial transient period, the average front position moves at
constant velocity, one may take the longitudinal coordinate j as a proxy for time t .

The model, as described above, is a generalization of version C of the Eden model as
introduced by Jullien and Botet [46]. It is the biologically most realistic version, as it focuses on
occupied sites, i.e. individuals, rather than on empty sites (version A) or bonds between adjacent
occupied and empty sites (version B). In the limit of vanishing mutation rate our model reduces
to the model of Saito and Müller-Krumbhaar [32]. While we consider the case of a homogeneous
initial front with uni-directional mutations, they analyzed the temporal evolution of an initially
heterogeneous front in the absence of mutations; see section 5 for more details. If not stated
otherwise, we use a line of wild-type particles as the initial condition, i.e. si, j = δ j,1. Since
diffusion is not included in the model, surface configurations become frozen in the bulk, as
observed for patterns in range expansion experiments [18].

3. Phenomenology and phase diagram

3.1. Phenomenology

We now turn to a phenomenological description of the morphology of the evolving colony, as
obtained from stochastic simulations; a representative realization of the range expansion process
is shown in figure 2(a). Starting from an initial line of wild-types the growth front moves forward
and, as a result of the stochastic individual birth processes, some parts of the front expand more
rapidly than others. This leads to front roughening which first appears on length scales of the
lattice constant, but as time progresses, the typical size of protrusions and indentations of the
front grows both longitudinally and laterally.

As the range expansion proceeds, mutation events occur where a wild-type individual
gives birth to a mutant, whose direct descendants create a new mutant sector growing between
two wild-type domains. Mutant and wild-type domains are separated by domain boundaries.
Since the reproduction rates of mutant and wild-type individuals differ in general, the boundary
between their respective growth sectors performs a biased random motion. While for beneficial
mutations, with b > 1, sectors consisting of mutants broaden on average, they have a tendency
to decrease in size for deleterious mutations where b < 1. Fluctuations in the trajectory of the
boundary arise mainly for two reasons: on short length scales, they are due to the intrinsic
stochasticity of the birth events. On larger scales, roughening of the front drives a super-diffusive
meandering of the sector boundaries [18, 32, 48]: as the population locally always expands
normal to the front, the roughness of the front is imposed on the trajectories of the sector
boundaries.

While the domain boundaries move transversely through the system, they may encounter
other boundaries, resulting in mutual annihilation and an ensuing merging of domains. There are
two distinct types of coalescence events of domain boundaries; cf figure 2(a): either boundaries
of different mutant clusters meet such that they merge and form a larger mutant cluster, or
two boundaries of the same cluster meet, in which case a mutant cluster loses contact with
the growing front and is trapped by wild-types. Note that boundaries are always created and
annihilated pairwise, and regions of wild-types and mutants alternate at the front.
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Figure 2. Phenomenology of the model. (a) Morphology. Wild-types are shown
in dark gray (red); mutants in light gray. During range expansion mutants are
created (examples indicated by crosses, ×), which in turn reproduce and thereby
create mutant clusters. The lateral boundaries (an example is given by the
dashed black line) of mutant clusters are created pairwise and perform biased,
super-diffusive random walks. Mutant clusters are either outgrown by the wild-
types (examples indicated by circles, ◦) or merge with other clusters (examples
marked with diamonds, ♦), forming even bigger mutant clusters. In both cases
a pair of boundaries annihilates. In the bulk, the presence of mutant clusters is
discernible as a density of wild-type sites ρ( j) < 1 at longitudinal position j .
Mutant clusters in the bulk are characterized by their typical longitudinal and
transverse extensions, which are identified with the correlation lengths ξ‖ and
ξ⊥, respectively. The surface roughness of the population front is characterized
by the width w, defined as the standard deviation of the front position. For
this realization on a lattice of length L = 128, we used birth rate b = 0.9 and
mutation probability p = 0.016. (b) Averaged observables. By averaging over
many independent realizations of the growth process, fluctuation effects are
suppressed and mean observables can be defined. Shown here is the mean density
〈ρ( j)〉 as a function of longitudinal position j , averaged over 500 realizations for
the parameters used in (a). For large j , the density of wild-type sites settles to
a stationary value ρs, as the creation and annihilation of mutant clusters (and
boundaries) at the front equilibrate.

The relative frequency of events creating and annihilating sector boundaries determines
the ultimate fate of the expanding front. In wild-type dominated regions of the front, mutation
events enhance phenotypic heterogeneity and create new boundaries. At the same time,
merging of mutant clusters creates homogeneous mutant regions. If the selective advantage of
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wild-types is too small to trap mutant clusters, coalescence events promote the growth of mutant
clusters, leading to more uniform front populations. Since we do not allow for back-mutations,
the expanding front may end up in an absorbing state where it is completely taken over by
mutants. For a finite system, this will eventually always happen even for deleterious mutations.
The main question to ask then is: how does the corresponding fixation time scale with the system
size L?

Inspecting figure 2 one can discern several morphological features of the expanding
population, which we discuss phenomenologically now and analyze quantitatively in the
following sections. We discriminate properties of the front and of the bulk of the population.
An important bulk observable is the density of wild-type sites,

ρ( j) :=
1

L

∑
i

δsi, j ,1, (1)

at longitudinal position j . As indicated in figure 2(b), the ensemble averaged density decays,
for L → ∞, towards some stationary value ρs, which serves as an order parameter. A value of
ρs = 0 corresponds to the absorbing state where all individuals at the front are mutants. Any
finite value indicates phenotypic heterogeneity with both mutants and wild-types present at the
front of the expanding population. Mutant clusters are, in general, anisotropic and one has to
distinguish between their extension parallel and perpendicular to the preferred direction of the
range expansion: the corresponding longitudinal and transverse correlation lengths are denoted
by ξ‖ and ξ⊥, respectively. The front of the population is characterized by its average speed and
its roughness. A good measure for the latter is the width w, defined as the standard deviation of
the front’s position,

w(L , t) :=

(
1

L

L∑
i=1

[
h(i, t) − h̄(t)

]2

)1/2

, (2a)

from its average value,

h̄(t) :=
1

L

L∑
i=1

h(i, t). (2b)

Here h(i, t) is the local position of the front, defined as the largest j for which si, j 6= 0.

3.2. Phase behavior: active and inactive phases

The morphology of the expanding population, as discussed above, depends on the values of the
mutation probability p and the relative reproduction rate b of the mutant individuals; cf figure 3.
One can clearly identify two distinct phases: in what we call the active phase the population
front is composed of both wild-types and mutants in a heterogeneous mixture. Here mutants
are continuously created by mutation events and the ensuing mutant sectors are subsequently
lost again by a coalescence process where sector boundaries meet and the domain of mutants
loses contact with the front. This typically happens in a parameter regime where mutations are
deleterious and rare. In contrast, if mutations become more frequent and/or their reproduction
rate becomes larger, mutant clusters have a significant probability to merge and/or to sweep
through the system and thereby completely take over the population front. This is termed the
inactive phase since the absorbing state, with only mutants at the front, cannot be left anymore.
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Figure 3. Parameter study of the Eden model with mutations. Typical realizations
of the model in a finite system (L = 128) are shown for time t = 100 and
various combinations of mutation rates p and relative birth rates b. Wild-types
are shown in dark gray (red), mutants in light gray, and empty sites in black.
For beneficial mutations (cf panels (D), (H) and (L)) mutant clusters expand
quasi-deterministically. Together with panels (B), (C) and (G) these are examples
for the inactive phase. Here the wild-type is lost in the bulk and the absorbing
state, with only mutants at the front, is reached very fast, as mutants merge into
extended clusters. As opposed to this, the active phase (cf panels (E), (I) and (J))
is characterized by long lasting heterogeneous fronts with both mutants and wild-
types present. Here, the average spatial distance between distinct mutation events
is larger than the extension of the created mutant clusters, which repeatedly
lose contact to the front. A non-equilibrium phase transition separates the two
phases, where low relative birth rates b and high mutation probabilities p balance
and rich self-affine patterns evolve (cf panels (A), (F) and (K)). Going from
panel (J) to panel (B) at constant birth rate b = 0.5, the system changes from
a heterogeneous front of wild-types and mutants to a homogeneous all-mutant
front. The transition is characterized by diverging length scales (mutant clusters),
vanishing wild-type density and enhanced width of the population front, as
discussed in the main text.

For all beneficial mutations, where b > 1, we are well in the inactive phase, independent
of the probability p at which mutations appear. Here, a sector created from a single mutation
has a finite opening angle and hence grows laterally on average, as observed in experiments
[3, 22]. Therefore, already a single mutant can sweep through the population and take over
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the population front, as the boundaries of the respective growth sector have, on average, a
transverse velocity directed outwards [22, 32, 33]. This fixation process is further accelerated
by the merging of neighboring mutant sectors; cf figure 3, panel (L).

For deleterious mutations, where b < 1, there is an antagonism between merging of
different mutant clusters, creating large mutant domains, and closing of individual mutant
clusters, leading to an enlarged fraction of wild-types at the front. Since mutations go from
wild-type to mutant only, phenotypic heterogeneity is maintained as long as there are some
wild-type individuals left at the front.

An isolated sector of mutants can survive only for a finite time interval due to stochastic
effects. These enable mutants to ‘surf’ population waves in expanding populations [19, 65–67]:
if mutations appear at the front of an expanding population they have a twofold advantage
compared to mutations in spatially homogeneous settings. Firstly, the front can be seen as a
perpetual population bottleneck, where demographic fluctuations are enhanced, which in turn
reduces the effect of selection. Secondly, the offspring of mutations at the front can spread into
unoccupied territory, where there is less competition. By this ‘founder effect’ mutants form
clusters at the front that can reach much higher frequencies and evade extinction much longer
than would be expected in spatially homogeneous settings. However, in the long run an isolated
sector tends to lose contact with the front as it is outgrown by the wild-type as a result of the
lower birth rate of mutant individuals; cf panels (E), (I) and (J) of figure 3. The phenomenology
changes qualitatively when mutation events become more frequent. Then, nearby mutant sectors
can merge and thereby counteract the loss of mutant sectors by the coalescence of sector
boundaries [22]; cf panels (B), (C) and (G) of figure 3. The founder effect promotes the growth
of individual mutations, but persistence of mutants is guaranteed by the merging of domains.
As a consequence of this antagonism, one expects a phase boundary pc(b) between the passive
and the active phase. Hallatschek and Nelson [22] considered mutations appearing at a flat front
and found that for deleterious mutations there exists a critical mutation rate where mutants take
over. We here consolidate this interesting finding and incorporate the roughness of the front. We
analyze in detail the properties of the transition from a heterogeneous to an all mutant front in
section 4.

3.3. Phase diagram

Since our model explicitly excludes back-mutations, the absorbing state, for which the wild-type
strain has lost contact with the population front and only mutant individuals are present, cannot
be left. For finite systems, L < ∞, this absorbing state is eventually always reached, as even
for deleterious mutations mutant clusters of arbitrary size can appear through rare fluctuations.
As noted above, the key quantity to analyze is the average time for this to happen as a function
of mutation probability p, relative birth rate b and system size L . This mean fixation time
tf(p, b, L) is defined as the mean time t when the number of wild-type individuals with empty
neighbors, Nwt, becomes zero for the first time.

The mean fixation time generally diverges with growing system size, L → ∞. The results
from our stochastic simulations, shown in figure 4, allow us to distinguish three generic cases:
(i) for large mutation probability p or beneficial mutations b > 1, we find that tf ∼ ln L . This is
the same result as for well-mixed populations [68, 69]. We take this asymptotic law as a hallmark
for the inactive phase. Note that for isolated beneficial mutations (neglecting the merging of
mutant clusters), one finds that the extinction time scales linearly in the system size [22]. Hence,
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Figure 4. Fixation times tf as a function of the system size L . (a) The fixation
time tf is the mean time until the absorbing state, where only mutants are at
the expanding front, is reached. Asymptotically the fixation time grows with
the system size L . Three cases, as discussed in the text and figure 3, can be
distinguished: fast fixation, tf ∼ ln L , exponentially slow fixation, tf ∼ exp cL ,
and the marginal case tf ∼ L z, where z = 1.05 ± 0.05 (black dash line). Shown
here are fixation times for b = 0.5, but for different birth rates the discrimination
of three distinct regimes holds. For comparability, fixation times have been
normalized by t∗ := tf(L = 8). (b) The same data as in (a), but rescaled with
system size L and distance to the phase transition 1, according to finite size
scaling as detailed in section 4.1. All data collapse onto a master curve as can
be inferred from the semi-logarithmic plot. The inset is a double logarithmic
plot of the same data, which depicts the characteristic scaling above and below
criticality, tf = L zτ±(L/1−ν⊥). As a guide to the eye, we have included best
fits (black lines) to these functions given by τ +(x) = 3.8 exp(10.5x)/(1 + x) and
τ−(x) = 0.26 ln(1 + 10.5x)/x .

the logarithmic law arises from the merging events. (ii) In the active phase we have tf ∼ exp(cL),
with some constant c. (iii) The phase boundary pc(b) between the active and the inactive phase
is characterized by power law behavior of the mean extinction time: tf ∼ L z with a dynamical
exponent z. This signature is well known from previous studies of phase transitions to absorbing
states [36, 37] (see section 4). From our numerical data we estimate z = 1.05 ± 0.05.

Since the phase transition from the active phase to the inactive phase is accompanied
by a qualitative change in the L dependence of the mean fixation time tf from logarithmic to
exponential behavior, we may use it to map out the phase diagram; see figure 5.

We find a phase transition line pc(b), which ends at the points (b, p) = (0, p∗) and
(b, p) = (1, 0). For b = 0 mutants do not reproduce at all and each mutant is created by a
reproducing wild-type individual in an independent event with probability p. For low p the
clusters have a typical size of one site and are obstacles around which the wild-types grow.
For larger p more extended clusters are formed by mutation events that happen on neighboring
sites. For the wild-types this corresponds to an Eden process on a site percolation network,
where wild-type individuals are identified with occupied sites (present with probability 1 − p)
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Figure 5. Phase diagram of the Eden process with mutations. The transition from
the inactive phase (fast fixation, light gray) to the active phase (exponentially
slow fixation, dark gray (red)) is a non-equilibrium phase transition (solid black
line). Simulations can be categorized by the slope in a double-logarithmic tF

versus L plot for L � 1: plus signs (+ , blue) denote inactive phase behavior with
slope <1; crosses (×, black) denote active phase behavior with slope >1. Along
the gray dotted line b = 1 mutations are neutral. The point (p = 0, b = 1) (black
open circle) is not part of the transition line, as for p = 0 no mutants can appear
and we recover the original Eden model. The phase transition line terminates on
the axis b = 0, at critical mutation probability p∗ (full black circle). This point
corresponds to the critical density of isotropic site percolation; see the main text.
The mean field transition line (black dashed line), given by equation (4), is in
excellent agreement with our numerical results. To characterize the properties of
the phase transition we explore how physical observables depend on the distance
to the phase transition 1 := pc − p. To this end, simulations were carried out for
b = 0.5 (without loss of generality), indicated by a black dotted box, for which
we found pc = 0.159 ± 0.001.

and mutant individuals with empty sites (present with probability p). Thus (b, p) = (0, p∗) is a
multi-critical point of the transition line, below which the wild-type strain, for L → ∞, keeps
growing on the infinite percolating cluster. This implies that p∗

= 1 − pisp
c ≈ 0.407, where pisp

c
is the percolation threshold of isotropic site percolation on a 2d square lattice [63].

For non-vanishing birth rates, b > 0, a newly formed mutant cluster can grow to some
significant size. As a result clusters originating from more distant mutation events can merge
before losing contact with the front. The phase transition line marks the set of mutation rates
pc(b), where, for a given birth rate of mutants b, the typical spatial distance between two
mutation events becomes comparable to the typical extension of individual mutant clusters.
Thus, as we move to larger and larger birth rates, the critical mutation probability pc declines.

For b → 1, mutations become neutral, that is, the selection pressure vanishes and the
random motion of sector boundaries is not biased anymore. Individual clusters can grow
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unlimited by fluctuations, and consequently the smallest number of mutations suffices for the
population to be in the inactive phase. If p = 0 no mutants are created and we recover the
classical one-species Eden model composed of growing wild-types [41]. Thus, at (b, p) = (1, 0)

the front is composed of only wild-type individuals and the absorbing state is never reached. Our
numerical data suggest that pc approaches this point in a cusp-like singularity.

For b > 1 mutations are beneficial, which means mutations and selection are not
antagonists anymore, and hence a phase transition is absent. Here, the mutants take over the
system quasi-deterministically for all finite values of p.

To rationalize our findings for the phase diagram we consider a phenomenological mean
field theory for the dynamics of the density of the wild-type strain at the front of the expanding
population, n = Nwt/(Nwt + Nmut). On average, wild-type individuals are lost by mutation at a
rate p, and gained or lost through natural selection depending on the relative growth rates of
the wild-type and mutant individuals. The effect of natural selection is proportional to n(1 − n),
which vanishes if the front is composed of one strain only. This leads to the following rate
equation:

ṅ = −pn + s(b)n(1 − n), (3)

where s(b) is an effective selection strength. The functional form of s(b) can be determined
phenomenologically: the rate equation (3) has the fixed points n1 = 0 and n2 = 1 − p/s(b).
In the active phase, n1 = 0 is unstable, while n2 is stable. At the phase transition the two
fixed points merge and interchange their stability in a transcritical bifurcation. Solving n1 = n2

gives the mean field transition line pmf
c (b) = s(b). For b → 0 the problem reduces to isotropic

percolation and hence s(0) = p∗. Certainly the selection coefficient s(b) has to vanish if mutants
reproduce as fast as wild-types, s(1) = 0, which gives us the other end of the transition line.
Close to it the transition line can be approximated by a power law, pmf

c (b → 1) ∼ (1 − b)µ,
reflecting the cusp singularity we found in the simulations. The simplest ansatz for the mean
field transition line, which fulfills these constraints, is

pmf
c (b) = s(b) = p∗(1 − b)µ. (4)

A fit to our numerical derived phase transition line gives µ = 1.41 ± 0.03. The
phenomenological mean-field transition line, depicted in figure 5, is in very good agreement
with our numerical results.

4. Critical behavior

In this section, we investigate in depth the properties of the absorbing state phase transition
from the active into the inactive phase. Without loss of generality we focus on a fixed value for
the birth rate of mutants, b = 0.5, for which we found the critical mutation probability to be
pc(b = 0.5) = 0.159 ± 0.001. The qualitative behavior of all observables stays the same along
the transition line. Close to the special points b = 0 and b = 1 crossover effects become more
pronounced, which we do not examine here.

4.1. Bulk properties

We first address bulk properties of the system, i.e. observables measured sufficiently far away
from the rough growth front. Since we are dealing with a phase transition to an absorbing state,
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we expect to find four independent critical exponents [34–37]. A common choice of observables
is: the stationary density ρs := ρ( j → ∞) of active sites (wild-types); the survival probability
Ps (survival, in this context, means the wild-type having contact with the growth front) of a
single active site (wild-type) in a front of inactive sites (mutants); the longitudinal correlation
length ξ‖, and the transverse correlation length ξ⊥. For L → ∞, all these observables diverge
like power laws in the control parameter 1 := pc − p in the vicinity of the phase transition. The
respective critical exponents are defined through

ρs ∼ 1β for 1> 0, (5a)

Ps ∼ 1β ′

for 1> 0, (5b)

ξ‖ ∼ |1|
−ν‖ , (5c)

ξ⊥ ∼ |1|
−ν⊥ . (5d)

The above observables are understood as ensemble averages. The stationary density ρs and the
survival probability Ps are 0 in the inactive phase, 1 < 0, since in this case any heterogeneous
composition of the front is unstable.

For finite systems, L < ∞, both the stationary density ρs and the survival probability Ps

are identical to 0 for the inactive and the active phase. Although it may be extremely rare, it is
always possible—even in the active phase—that large enough mutant clusters appear and finally
lead to a front consisting of mutants only, which is the absorbing state. Hence, ρs and Ps are not
particularly useful observables for L < ∞, and one instead has to examine the time-dependent
density ρ(1, t, L) and survival probability P(1, t, L), and also time-dependent correlation
lengths ξ‖(1, t, L) and ξ⊥(1, t, L).

We measured the critical exponents, defined in equations (5a)–(5d), using different
methods. Starting with a line of wild-types in the active phase we let the system evolve,
disregarding realizations where the absorbing state was reached. This allows us to use stationary
observables, instead of more involved dynamical ones. From each realization we extracted for
each mutant cluster (i) the longitudinal extension `‖, (ii) the transverse extension `⊥ and (iii) the
number of cluster sites or mass m. In analogy to percolation theory [63], the correlation lengths
are then calculated by

ξ 2
# (1, L) =

2
∑

k mk`
2
#,k∑

k mk
, # ∈ {‖, ⊥}, (6)

where k runs over all observed clusters. The computed correlation lengths depend on both the
distance to the phase transition 1 and the system size L . However, close to the critical point all
macroscopic observables are invariant under scaling transformations of the form [34–37]

1 → c1, (7a)

x‖ → c−ν‖ x‖, (7b)

x⊥ → c−ν⊥ x⊥, (7c)

ρ → cβρ, (7d)

P → cβ ′

P. (7e)
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Figure 6. Rescaled correlation lengths from simulations started with a
line of wild-types as the initial condition for different lattice sizes.
(a) Rescaled correlation lengths from cluster-size distributions in the active
phase. Longitudinal correlation length ξ‖ (upper plot) and transverse correlation
length ξ⊥ (lower plot) have been computed from mutant cluster masses m and
cluster extensions `‖ and `⊥ (see text). Correlation lengths depend on both
L and distance to the phase transition 1. Taking ν⊥ = ν‖ = 1.6 ± 0.1 all data
collapse to master curves under rescaling. (b) Rescaled longitudinal correlation
length as found from decay of wild-type density in the inactive phase. The wild-
type density ρ decays exponentially, with a decay length proportional to the
longitudinal correlation length. Again all data collapse to a master curve for
ν⊥ = ν‖ = 1.6 ± 0.1.

where c is some positive rescaling factor. This implies for the correlation lengths the following
scaling forms:

ξ#(1, L) = Lν#/ν⊥ f#(1L1/ν⊥), (8)

where the f#(x) are universal scaling functions with the asymptotic behavior

f#(x) ∼

{
1, x � 1,

x−ν#, x � 1.
(9)

Indeed, after rescaling, our simulation data for both correlation lengths ξ#(1, L) collapse onto
master curves for all L and 1, if we take

ν⊥ = ν‖ = 1.6±0.1, (10)

see figure 6(a). Note that this means that close to the transition the longitudinal and transverse
correlation lengths show the same scaling behavior, ξ⊥ ∼ ξ‖, at least within the accuracy of our
simulations. Simply put, a fluctuation of twice the size takes twice as long to decay, which
explains that close to the phase transition fixation times are proportional to the system size,
tf ∼ L , which we found in section 3.3.

With the critical exponents ν⊥ and ν‖ at hand, rescaling of the fixation time tf(L , 1) is
easily achieved as well. Note that as a time-like observable tf scales like a longitudinal distance.
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Again employing the phenomenological scaling theory for absorbing state phase transitions,
equations (7a)–(7e), we obtain

tf(L , 1) = L zτ±(1L1/ν⊥), (11)

where z = ν‖/ν⊥ is the dynamical critical exponent. The overall scaling function can be split into
two distinct parts, τ + and τ−, which exhibit characteristic logarithmic and exponential behavior
for 1 > 0 and 1 < 0, respectively. Using this scaling, all data for the fixation times collapse, as
shown in figure 4(b).

In the inactive phase, the density ρ(1, j, L) decays exponentially with j and the absorbing
state, with ρ = 0, is reached fast. The decay length is proportional to ξ‖, which can easily be
found by fitting an exponential function to the measured density profile. Applying finite size
scaling, we again find data collapse for critical exponents ν⊥ = ν‖ = 1.6 ± 0.1; see figure 6(b).

Further evidence for these values of the critical exponents is obtained by calculating the
(active state) correlation functions

0‖(r) = 〈si, j si, j+r〉 − 〈si, j〉〈si, j+r〉, (12a)

0⊥(r) = 〈si, j si+r, j〉 − 〈si, j〉〈si+r, j〉, (12b)

in the bulk. Averages are with respect to all lattice indices i, j and independent realizations. The
correlation functions are expected to behave as

0#(r) ∼ r−σ# exp

(
−

r

ξ#

)
, # ∈ {‖, ⊥}, (13)

where σ# = 2β/ν#. To obtain the correlation lengths we fitted this expression to our data with
the fitting parameters ξ#. In plots of the correlation lengths, we again find good collapse of data
for ν⊥ = ν‖ = 1.6 ± 0.2 (not shown).

Next, we consider the stationary density ρs(1), which equals the fraction of wild-type
sites for large j , which is sufficiently far away from the initial line for the density to relax to its
stationary value. As shown in figure 7(a), a double-logarithmic plot asymptotically gives power
law behavior with the exponent

β = 0.50±0.02. (14)

Deviations from the asymptotic power law are well described by the finite-size scaling form

ρs(1, L) = L−β/ν⊥ g(1L1/ν⊥), (15)

where g(x) is a universal scaling function; cf figure 7(b). Two characteristic regimes can be
distinguished:

g(x) ∼

{
1, x � 1,

xβ, x � 1,
(16)

corresponding to the scaling law ρs ∼ 1β , for a given L and sufficiently far from criticality, and
the scaling law, ρs ∼ L−β/ν⊥ , for a given distance 1 from the critical point and system sizes
smaller than the transverse correlation length, L � ξ⊥.

To measure β ′, the exponent associated with the survival probability when starting from
a single seed, Ps, different initial conditions must be used. Instead of a line composed of only
wild-types, a single wild-type is placed in a line of mutants. A typical realization for these initial
conditions is shown in figure 8(a).
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Figure 7. Wild-type stationary density in the active phase. (a) Simulations for
different lattice sizes started with a line of wild-types as the initial condition in
the active phase. We find a power law with critical exponent β = 0.50 ± 0.02
that, for small 1, holds better in larger systems, a typical finite size effect.
(b) The same data as in (a) after finite size scaling. We find collapse of all data
for critical exponents β = 0.5 and ν⊥ = 1.6.
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Figure 8. Single wild-type initial condition and related observables. (a) Typical
realization for single-seed initial conditions. Wild-types are shown in dark gray
(red), mutants in light gray. By averaging over many realizations of the process
the survival probability of wild-types P( j) and the number of wild-types N ( j)
can be measured as a function of longitudinal position j . For this realization on
a lattice of length L = 128 we used birth rate b = 0.5 and mutation probability
p = 0.15. (b) Survival probability as a function of time. Simulations for different
mutation rates p started with a single wild-type site as initial condition. For pc ≈

0.159, we find a power law for Ps( j) with critical exponent β ′/ν‖ = −0.32 ± 0.2,
indicated by the dashed line. Birth rate b = 0.5 and lattice size L = 1024 are the
same for all shown data.
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Table 1. Critical exponents for the non-equilibrium phase transition to an
absorbing state of the two-species Eden model with mutations and selection.

β β ′ ν‖ ν⊥ z θ

0.50 ± 0.02 0.51 ± 0.07 1.6 ± 0.1 1.6 ± 0.1 1.05 ± 0.05 0.32 ± 0.02

From an ensemble of realizations the survival probability Ps( j) and the mean number of
wild-types N ( j), both as functions of distance j to the initial line, can be extracted. After
transients have decayed and sufficiently far away from the front (where there might exist empty
lattice sites), we find power laws for both quantities when close to the phase transition. For Ps

the exponent is given by −β ′/ν‖, while for N it is denoted by θ . Figure 8(b) shows the results
for Ps( j), from where we obtain β ′/ν‖ = −0.32 ± 0.2. Using our result for ν‖, we find

β ′
= 0.51±0.07. (17)

Similarly, from the simulation data for N ( j) we obtain

θ = 0.32±0.02. (18)

θ is related to the other critical exponents by the generalized hyperscaling relation [70] in d = 1
dimension

θ =
ν⊥ − β − β ′

ν‖

. (19)

Using our previous results for the critical exponents we find good agreement with the above
result, equation (18), within the error margin. The critical exponents for the phase transition to
an absorbing state are summarized in table 1.

For systems with infinitely many absorbing states, like ours, it is known that critical
exponents, especially those related to single seed initial conditions (in our case β ′ and θ ), can
vary significantly with the configuration away from the seed [71, 72]. The correct exponents,
which satisfy the hyperscaling relation of equation (19), are obtained if the configuration away
from the seed is a typical configuration of the absorbing state. In our case this amounts to a
rough front. To check for this dependence of the critical exponents, we initialized single wild-
type seeds at arbitrary front positions of all-mutant Eden models grown to saturation. Data
extraction works similar, but due to roughness and the non-uniqueness of the growth direction
the initial seed is not necessarily the one with the smallest j-value, which complicates the
evaluation slightly. These simulations take more time since independent saturated fronts have
to be generated for every realization, which makes it harder to obtain data with high precision.
However, we find β ′/ν‖ = −0.33 ± 0.03 and θ = 0.31 ± 0.04 (data not shown), which indicates
that our system is robust with respect to the initial configuration. We are therefore confident
that the critical exponents of the phase transition, see table 1, are indeed correct up to the given
precision.

To check if the DP universality class is recovered if roughness is neglected, we also
considered a simplified model with synchronous update rules. Here, an individual at site
(i, j) has two possible parents, at sites (i − 1, j − 1) and (i, j − 1). Depending on their states,
we define the probabilities P(si, j |si−1, j−1, si, j−1) for the type of offspring si, j , incorporating
mutations and selection: if both parents are mutants, the offspring is inevitable mutant as well;
if both parents are wild-types the offspring is wild-type if no mutation happens; if one parent is
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wild-type while the other is a mutant, the mutant reproduces with rate b/(1 + b) and the wild-
type otherwise. In the latter case a mutation can happen, resulting in a mutant offspring. All
events are summarized by the probabilities

P(1| − 1, −1) = 0, (20a)

P(1|1, −1) = P(1| − 1, 1) := p1 =
1 − p

1 + b
, (20b)

P(1|1, 1) := p2 = 1 − p, (20c)

and P(−1|., .) = 1 − P(1|., .). It is easily seen that this corresponds to the Domany–Kinzel
cellular automaton [73], with probabilities p1 and p2. Indeed, for b = 0.5 we find the critical
mutation probability for the flat model pflat

c ≈ 0.077, corresponding to p1 ≈ 0.62 and p2 ≈ 0.93.
This lies well on the transition line of the Domany–Kinzel automaton [74]. As one would
expect, the critical exponents of the flat model are those of the DP universality class (data
not shown). These conclusions are further consolidated by earlier studies for a two-species
ballistic deposition model with kinetics that allows surface growth only at sites where one type
of particles has an exposed position on top of the incidence or neighboring column [60]. These
particular growth rules imply that the surface roughness does not affect the bulk dynamics
such that it can be mapped onto a one-dimensional contact process [61], which is in the DP
universality class [34–37]. In conclusion, the interplay between surface roughening and domain
dynamics in our two-species Eden model is clearly responsible for the deviation of its critical
behavior from that of the DP universality class.

4.2. Front properties

We now turn to characterizing the front of the expanding population, i.e. the surface roughness
properties of the model. As argued in section 3.1, the presence of mutations changes the
roughening behavior of the growth front qualitatively: close to the phase transition large mutant
clusters form extended parts of the leading front and since mutants and wild-types reproduce
with different rates, the front’s roughness is strongly enhanced. In the case of detrimental
mutations, b < 1, mutant-dominated regions trail behind compared to the average front; see,
for example, figure 3, panel (F).

The width is the key observable in the analysis of kinetic surface roughening processes.
These processes can be organized into universality classes, which are characterized by
symmetry properties and the dimensionality of the process under consideration [43–45]. Each
growth model’s universality class has a unique set of two exponents: the growth exponent γ and
the roughness exponent α, defined through

w(L , t) ∼

{
tγ , t � t×,

Lα, t � t×,
(21)

with the crossover time between these two regimes scaling as t× ∼ L z̃, where z̃ = α/γ is the
dynamic roughening exponent.

In the limit of the vanishing mutation rate, p = 0, our model reduces to the Eden model,
which falls into the well-known KPZ universality class [47], with exponents γ = 1/3 and
α = 1/2. For p > 0, the time evolution of the width depends on whether the system is in the
active phase or in the inactive phase. In the inactive phase we find a transiently enhanced width
as compared to the Eden model and a subsequent return to it. We attribute this to mutants
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Figure 9. Width of the growth front as a function of time in the active phase. The
temporal evolution of the width w(t) of the growth front depends on both the
system size L and the distance to the phase transition 1. w initially grows Eden-
like, γ = 1/3 (bold dashed line). Close to the phase transition (i.e. at small 1),
we find a crossover to a growth exponent γ ′

= 0.73 ± 0.03 (bold straight line),
as a result of different growth rates of mutants and wild-types. For intermediate
times two scenarios can be distinguished, see the main text for details: (i) either
the surface width saturates at a finite length-dependent value as a result of finite
system size or (ii) mutant clusters at the front saturate at a size smaller than L .
In the latter case, Eden growth is recovered on large length and time scales. As
the width saturates we recover the Eden roughness exponent α = 1/2 but with
a p-dependent amplitude of the saturation width. In the former case, enhanced
roughening proceeds until saturation. The saturated width then scales like Lα′

,
with a different roughness exponent α′

= 0.91 ± 0.01. All data shown are for
b = 0.5, but results hold for different birth rates b as well.

outcompeting wild-types rapidly, as is typical for the inactive phase, followed by Eden growth
of the resulting mutant front (data not shown). As shortly discussed in section 3, the active
phase is characterized by a heterogeneous front. In finite systems, this is the case until a mutant
cluster covers the whole system size L , which then takes the system into the absorbing state
with subsequent return to Eden-like growth. Therefore, the roughness characteristics of the
heterogeneous front in the active phase can only be analyzed if the absorbing state has not
yet been entered. Hence, for the following analysis, realizations that reach the absorbing state
are stopped, and simulation data are used only up to this point in time.

We now discuss the different regimes and scenarios of surface roughening in the active
phase. Figure 9 displays our numerical results for a range of mutation rates and two different
system sizes. Since we start with an initial condition where the lattice only contains wild-
types, the initial surface roughening is that of a single species, i.e. Eden growth: w ∼ tγ

with γ = 1/3. As time passes, mutants are created, leading to growing mutant clusters. Their
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extension in growth direction evolves like the correlation length ξ‖(1, t, L), which initially
grows proportional to t , as follows from scaling. Since these clusters grow slower than wild-
type clusters this leads to additional surface roughening. As for small t both contributions to
roughening are independent of 1 and L , the width gets dominated by differential expansion
velocities at a crossover time t×,1 =O(1).

As a result of the ensuing strong coupling between domain dynamics and surface
roughness, the interface width then grows more rapidly than in the Eden model. We observe a
regime with an altered growth exponent γ ′

= 0.73 ± 0.03, which becomes more extended upon
approaching the phase transition to the inactive phase, 1 → 0. There are two distinct scenarios
by which this enhanced roughening regime may end: (i) either the surface width saturates at a
finite length-dependent value as a result of finite system size or (ii) mutant clusters at the front
saturate and their typical size reaches the asymptotic extension ξ∞

⊥
∼ 1−ν⊥ 6 L .2

The first case requires that one is sufficiently close to the critical point such that the
cluster size ξ⊥ does not saturate at 1−ν⊥ 6 L , but mutant clusters continue to grow during
the whole roughening process. Then, our simulations show that there is a direct crossover
from enhanced surface roughening, w ∼ tγ ′

, to saturation, w ∼ Lα′

, with a roughness exponent
α′

= 0.91 ± 0.01. The corresponding scaling form close to criticality reads

wc(L , t) = Lγ ′

ŵc(t/L z̃′

) (22)

with the dynamic critical exponent for surface roughening z̃′
= α′/γ ′

= 1.25±0.05;
cf figure 10(a). (Note that deviations from the critical scaling behavior are all due to initial
transient Eden growth: all systems were started with an initial condition of wild-type individuals
only.) A roughening exponent α′ close to unity indicates a very jagged surface. For models with
large roughness exponents, especially for super-roughening with exponents larger than 1 (see,
e.g., [75, 76]), it is known that they may exhibit anomalous scaling [77, 78], in the sense that
the roughness exponent as determined from w(L , t → ∞) may only be an effective exponent.
The actual exponent can be obtained from the structure factor or power spectrum [45, 79, 80]

S(k, t) := 〈h(k, t)h(−k, t)〉, (23)

where h(k, t) is the Fourier transform of the height fluctuations. From equation (21) it follows
that the structure factor of the Eden model scales as

S(k, t) = t (d+2α)/z̃s(kt1/z̃), (24)

with the scaling function

s(x) ∼

{
1, x � 1,

x−d−2α, x � 1.
(25)

The rescaled structure factor of our model is shown by the inset of figure 10(a). For the
trivial case p = 0, we observe data collapse as expected for the Eden model. At criticality
1 = 0 (p = 0.159), the scaling function for the power spectrum changes with time due to the
growth dynamics of mutant clusters, i.e. the time dependence of the cluster size ξ⊥(t). For
asymptotically large times, when a single mutant cluster spans the system, a broad regime
emerges with a roughness exponent α′

= 0.92 ± 0.03 corroborating our results obtained from
analyzing the interface width.

2 A third scenario where the typical lateral extension of mutant clusters reaches the extension of the system ξ⊥ ∼ L
is also possible but excluded by our sampling method.
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Figure 10. Scaling plots for surface roughening in the Eden model with mutation.
(a) Critical scaling. Rescaled width versus time at criticality (p = 0.159) for a
series of system sizes as indicated in the graph. Neglecting initial transients,
all data collapse for α′

= 0.91 ± 0.01 and z̃′
= α′/γ ′

= 1.25±0.05. Both growth
exponent γ ′ and roughening exponent α′ are markedly different from their KPZ
counterparts. The inset shows the rescaled structure factor S(k, t) for system
size L = 512. For the Eden model all data collapse, and from the black solid
line, proportional to k−2, we recover α = 1/2 from equation (25). For the
critical system, 1 = 0, we find an extended scaling regime with S ∼ k−2.85±0.05

(black dashed line) corresponding to α′
= 0.92 ± 0.03. (b) Crossover scaling.

Neglecting initial transients, data can be rescaled with respect to the intrinsic
crossover time t×,2 ∼ 1−ν‖ , where the mutant cluster extension ξ⊥ saturates at
1−ν⊥ . If the system size L is much smaller than ξ∞

⊥
, the front width grows to

saturation with the new growth exponent γ ′
= 0.73 ± 0.03 (black solid line),

whereas for ξ∞

⊥
� L the saturation width is reached after return to Eden-

like roughening with γ = 1/3 (black dashed line). Saturation, due to finite
size, happens where curves deviate from the common envelope and become
horizontal.

This clearly shows that, for 1 → 0, the Eden model with mutations and selection is no
longer in the KPZ universality class, but exhibits different asymptotic roughening behavior.
We attribute this behavior to the strong coupling between critical domain growth and surface
roughening.

Moving further away from the critical point, typical domains may saturate at their
asymptotic value 1−ν⊥ 6 L within a crossover time t×,2 ∼ 1−ν‖ . Then, on length scales larger
than ξ∞

⊥
, roughening proceeds, but slower than before, and one recovers Eden-like roughening

with w ∼ tγ . This regime is most pronounced if L � ξ∞

⊥
, and finally saturates in a constant

surface width with w ∼ Lα. The crossover between critical roughening and return to Eden
roughening is determined by a time scale inherent to the system, which only depends on the
distance to the critical point but not on the system size. We may therefore rescale time by the
crossover time, t×,2 = 1−ν‖ , and rescale width w by the corresponding value w(t×,2) = tγ ′

×,2 =

1−γ ′ν‖ , cf figure 10(b). All curves collapse to a crossover scaling function, from which they only
deviate due to finite size effects.
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5. Conclusion and outlook

A generalization of the Eden model to a two-species model, with uni-directional mutations and
selection due to different reproduction rates, has interesting properties from the viewpoints of
both dynamical phase transitions and kinetic surface roughening. We find that surface roughness
has a marked effect on the critical properties of the absorbing state phase transition. While
reference models [22], which keep the expanding front flat, exhibit DP critical behavior, the
exponents of our generalized Eden model strongly deviate from it. In turn, the mutation-
selection process in the bacterial colony induces an increased surface roughness with exponents
distinct from that of the KPZ universality class.

For our model the critical exponents of the longitudinal and transverse correlation lengths,
ν‖ and ν⊥, are identical within the error margin. As the aspect ratio ξ‖/ξ⊥ can still be different
from unity, this does not make our system isotropic. However, it indicates that there is no longer
a rigorous distinction between a time-like longitudinal and a space-like transverse direction as
for DP. To some degree, this might have been expected from the microscopic update rules of the
Eden model, which have no preferential direction of growth. Indeed, for vanishing birth rate of
mutants, the system can be mapped to isotropic percolation, and it loses any preferential growth
direction. One may also argue that front roughening in concert with locally normal growth of the
interface leads to ‘mixing’ of transversal and longitudinal directions, and thereby promotes the
same scaling behavior of both directions. It remains to be seen how this result can be obtained
from a renormalization group calculation.

The critical exponents summarized in table 1 are significantly different from those of
the DP universality class, which are observed for a broad range of systems exhibiting phase
transitions to absorbing states [34–37]. The stability of the DP universality class is reflected
in the DP hypothesis, a conjecture formulated by Janssen [81] and Grassberger [82]. It asserts
that models characterized by a positive one-component order parameter, which exhibit a phase
transition to a unique absorbing state, belong to the DP universality class, provided that
interactions are short-ranged and no additional symmetries or special kinds of disorder or
fluctuations are present [34–37]. Strictly speaking, our model is not in contradiction with the
DP hypothesis as it does not fulfill the condition of having a unique absorbing state. Instead,
there are infinitely many configurations with only mutants at the front. However, even for models
with infinitely many absorbing states one often finds DP-class universal behavior [71, 72]. What
distinguishes our model is that growth persists in the fluctuating absorbing state of an all mutant
system. Most importantly, there is interplay between surface roughness and bulk properties:
even though we analyzed bulk properties of the system, the dynamics are restricted to the front
and therefore convey imprints of the rough surface. This might also be the reason why it is
difficult to find actual experimental systems that obey DP-like behavior: any non-flat system
may carry signatures of surface roughening in the numerical values of the critical exponents of
the corresponding non-equilibrium phase transition.

The influence of surface roughness on domain boundaries, without the additional
complication of mutations, selection and of merging clusters, is a rather complex problem
on its own. The morphology of the boundary between two distinct but equally fast growing
Eden clusters has previously been analyzed by Derrida and Dickman [48]. Numerically, they
found that the dynamics of the domain boundary depends on the local curvature of the front. It
may perform a subdiffusive or superdiffusive random walk and even move ballistically. For
our model, this implies enhanced complexity, because boundaries are preferentially created
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at protrusions, where wild-types are more prone to be, while merging of domain boundaries
usually occurs at indentations of the front. Coarsening of domains in a two-species Eden model
is the focus of the work by Saito and Müller-Krumbhaar [32], who also considered differential
reproduction rates of the two species. As mutations are absent in their model, the faster growing
species outgrows the slower one exponentially fast. In the neutral case, they show that domain
boundaries exhibit super-diffusive scaling and thereby explain the domain coarsening kinetics
of their simulations. It would be interesting to find a suitable generalization of their analysis to
include the case of irreversible mutations.

There are also growth models where surface roughness and particle configuration at the
front mutually affect each other [49, 50, 56–59]. A theoretically well-studied system is vapor
deposition of binary films containing two different kinds of molecules which have a tendency
to phase separate [58, 59]. Similar to the dynamics of the two-species Eden model, there is
an interplay between surface roughening and phase ordering kinetics: the dynamics of the
domain boundaries and the surface are coupled through the growth kinetics. One main difference
between the models is that for binary films the non-equilibrium roughening process is coupled to
the coarsening dynamics of a thermodynamic model (Ising model) exhibiting detailed balance,
while in our model it is coupled to the far-from-equilibrium dynamics of an absorbing state
phase transition. In the binary film, particles of one type attach to domains containing particles
of mainly the other type. If this is interpreted as ‘mutation’, then mutations are bi-directional
and symmetric in the binary film. In addition, the growth rules differ in some important aspects.
While in our two-species Eden model, the two species have different growth rates, in binary film
growth, particle attachment at domain boundaries and within domains differs [49, 50, 56–59]. A
common finding of these studies on binary films is that phase ordering kinetics increases surface
roughness on length scales comparable to domain size; this is phenomenologically similar to our
findings but the critical exponents are quite different. The reverse coupling of surface roughness
to phase ordering kinetics is subtle and depends on the details of the kinetic growth rules. If
growth at domain boundaries is faster than within domains, the surface roughness imprints its
scaling properties on the domain boundaries [59], as in our case. Else, it appears that the domain
boundaries perform random walks or even show non-universal behavior [48, 58, 59].

The enhanced roughness, which is induced by differential front velocities, bears some
similarities to pinning models [45]. There, inhomogeneities (e.g. obstructions) of the medium
locally reduce the growth speed, similar to mutant clusters in our model. The presence of these
heterogeneities changes the scaling of the interface, since it introduces a length scale ξ⊥, up
to which one finds enhanced roughening. It is found that in the pinned phase, many pinning
models can be mapped to DP, and the roughness of the surface is dominated by the DP critical
exponents [83, 84]. In contrast to pinning models, where the disorder is quenched, the mutant
clusters in the Eden model with mutation are dynamically generated and strongly correlated
with the growth dynamics. We regard the latter as the main reason why the ensuing roughness
and growth exponents are not related to DP.

Summarizing, we here argue that for multi-species range expansion, surface roughness
and domain dynamics interfere with each other, which qualitatively changes both bulk and
front properties. If absorbing front states exist, phase transitions to absorbing states of a new
universality class are possible. More research is needed to explore the coupling between surface
roughening and evolutionary dynamics of range-expansion scenarios. It would be especially
interesting to look at systems where the reproduction rate of an individual depends on the
local composition of the front as might be the case in growing biofilms [24]. Such systems,
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where growth depends on a population’s composition, have been analyzed in the context of one-
dimensional wave propagation [85], the dilemma of cooperation in spatial settings [86], games
with cyclic dominance [87] and structured populations [88]. A discrete 2d growth model, which
incorporates these effects, would be most interesting to analyze with the methods developed in
this paper. Moreover, the universality class of our model should be tested for different lattices,
and critical exponents should be determined for higher-dimensional setups.
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[83] Buldyrev S, Barabási A L, Caserta F, Havlin S, Stanley H and Vicsek T 1992 Anomalous interface roughening

in porous media: experiment and model Phys. Rev. A 45 R8313–6
[84] Tang L-H and Leschhorn H 1992 Pinning by directed percolation Phys. Rev. A 45 R8309–12
[85] Hallatschek O 2011 Noise driven evolutionary waves PLoS Comput. Biol. 7 e1002005
[86] Nadell C D, Foster K R and Xavier J B 2010 Emergence of spatial structure in cell groups and the evolution

of cooperation PLoS Comput. Biol. 6 e1000716
[87] Rulands S, Reichenbach T and Frey E 2011 Threefold way to extinction in populations of cyclically

competing species J. Stat. Mech. L01003
[88] Cremer J, Melbinger A and Frey E Demographic fluctuations promote the evolution of cooperation

(unpublished)

New Journal of Physics 13 (2011) 113013 (http://www.njp.org/)





Bibliography

[1] H. H. McAdams and A. P. Arkin, It’s a noisy business! Genetic regulation at the
nanomolar scale, Trends Genet 15, 65 (1999).

[2] C. V. Rao, D. M. Wolf, and A. P. Arkin, Control, exploitation and tolerance of intra-
cellular noise, Nature 420, 231 (2002).

[3] H. H. McAdams and A. P. Arkin, Stochastic mechanisms in gene expression, Proc Natl
Acad Sci USA 94, 814 (1997).

[4] M. Thattai and A. van Oudenaarden, Intrinsic noise in gene regulatory networks, Proc
Natl Acad Sci USA 98, 8614 (2001).

[5] E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A. van Oudenaarden,
Regulation of noise in the expression of a single gene, Nat. Genet. 31, 69 (2002).
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bacher, and C. Plank, Magnetofection: enhancing and targeting gene delivery by mag-
netic force in vitro and in vivo, Gene Ther. 9, 102 (2002).

[96] F. Graham and van der Eb A J, A new technique for the assay of infectivity of human
adenovirus 5 DNA, Virology 52, 456 (1973).

[97] P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop,
G. M. Ringold, and M. Danielsen, Lipofection: a highly efficient, lipid-mediated DNA-
transfection procedure, Proc Natl Acad Sci USA 84, 7413 (1987).



Bibliography 141

[98] O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and
J. P. Behr, A versatile vector for gene and oligonucleotide transfer into cells in culture
and in vivo: polyethylenimine, Proc Natl Acad Sci USA 92, 7297 (1995).

[99] S. Brunner, T. Sauer, S. Carotta, M. Cotten, M. Saltik, and E. Wagner, Cell cycle
dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus, Gene
Ther. 7, 401 (2000).

[100] I. Mortimer, P. Tam, I. MacLachlan, R. W. Graham, E. G. Saravolac, and P. B. Joshi,
Cationic lipid-mediated transfection of cells in culture requires mitotic activity, Gene
Ther. 6, 403 (1999).

[101] W. C. Tseng, F. R. Haselton, and T. D. Giorgio, Mitosis enhances transgene expression
of plasmid delivered by cationic liposomes, Biochim. Biophys. Acta 1445, 53 (1999).

[102] D. A. Jackson, R. H. Symons, and P. Berg, Biochemical Method for Inserting New
Genetic Information into DNA of Simian Virus 40: Circular SV40 DNA Molecules
Containing Lambda Phage Genes and the Galactose Operon of Escherichia coli, Proc
Natl Acad Sci USA 69, 2904 (1972).

[103] S. N. Cohen and A. C. Chang, Recircularization and autonomous replication of a
sheared R-factor DNA segment in Escherichia coli transformants, Proc Natl Acad Sci
USA 70, 1293 (1973).

[104] R. Jaenisch and B. Mintz, Simian virus 40 DNA sequences in DNA of healthy adult
mice derived from preimplantation blastocysts injected with viral DNA, Proc Natl Acad
Sci USA 71, 1250 (1974).

[105] J. C. Avise, The Hope, Hype, and Reality of Genetic Engineering: Remarkable Stories
from Agriculture, Industry, Medicine, and the Environment, Oxford University Press,
USA, 2004.

[106] M. B. Elowitz and S. Leibler, A synthetic oscillatory network of transcriptional regula-
tors, Nature 403, 335 (2000).

[107] J. J. Collins, T. S. Gardner, and C. R. Cantor, Construction of a genetic toggle switch
in Escherichia coli, Nature 403, 339 (2000).

[108] E. Andrianantoandro, S. Basu, D. K. Karig, and R. Weiss, Synthetic biology: new
engineering rules for an emerging discipline, Mol Syst Biol 2, 2006.0028 (2006).

[109] D. G. Gibson et al., Complete Chemical Synthesis, Assembly, and Cloning of a My-
coplasma genitalium Genome, Science 319, 1215 (2008).

[110] D. G. Gibson et al., Creation of a Bacterial Cell Controlled by a Chemically Synthesized
Genome, Science 329, 52 (2010).

[111] C. M. Varga, T. J. Wickham, and D. A. Lauffenburger, Receptor-mediated targeting of
gene delivery vectors: insights from molecular mechanisms for improved vehicle design,
Biotechnol Bioeng 70, 593 (2000).



142 Bibliography

[112] C. M. Varga, K. Hong, and D. A. Lauffenburger, Quantitative analysis of synthetic
gene delivery vector design properties, Mol. Ther. 4, 438 (2001).

[113] C. Wiethoff and C. Middaugh, Barriers to nonviral gene delivery, J Pharm Sci 92, 203
(2003).

[114] C. Varga, N. Tedford, M. Thomas, A. Klibanov, L. Griffith, and D. Lauffenburger,
Quantitative comparison of polyethylenimine formulations and adenoviral vectors in
terms of intracellular gene delivery processes, Gene Ther. 12, 1023 (2005).

[115] C. G. Ehrenberg, Physikalische Abhandlungen der Koeniglichen Akademie der Wis-
senschaften zu Berlin aus den Jahren 1833–1835 , 145 (1835).

[116] P. Graumann, editor, Bacillus: Cellular and Molecular Biology, Caister Academic
Press, 1 edition, 2007.

[117] M. Thattai and A. van Oudenaarden, Stochastic gene expression in fluctuating envi-
ronments, Genetics 167, 523 (2004).

[118] W. K. Smits, O. P. Kuipers, and J.-W. Veening, Phenotypic variation in bacteria: the
role of feedback regulation, Nat Rev Micro 4, 259 (2006).

[119] J. S. Griffith, Mathematical Neurobiology, Academic Press Inc, 1971.

[120] J. M. Raser and E. K. O’Shea, Control of stochasticity in eukaryotic gene expression,
Science 304, 1811 (2004).

[121] M. Assaf, E. Roberts, and Z. Luthey-Schulten, Determining the Stability of Genetic
Switches: Explicitly Accounting for mRNA Noise, Phys Rev Lett 106 (2011).
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[187] G. Ódor, Universality classes in nonequilibrium lattice systems, Reviews of modern
physics 76, 663 (2004).

[188] J. L. Cardy, Scaling and renormalization in statistical physics, Cambridge Univ Pr,
1996.

[189] D. Stauffer and A. Aharony, Introduction To Percolation Theory, Taylor & Francis,
2nd edition, 1994.

[190] P. Grassberger and A. de la Torre, Reggeon field theory (Schlögl’s first model) on a
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verdient gemacht haben.

An den Judge (a.k.a. Gold Servers), Jeff Goldboom, Ary Goldman und John Goldtrain, gehen,
davon könnt ihr mal ausgehen, die dicksten Props. Für all dieses Zeuch und Kram und so,
wisst schon.

Da
”
Mens sana in corpore sano“ für mich intuitiv Sinn macht, muss ich mich bei Professor

Cabeludo und den anderen Capoeirista aus der Ballettschule bedanken. Die Gruppe ist,
davon bin ich überzeugt, etwas ganz Besonderes, in ihrer Vielfalt und ihrem Zusammenhalt,



ihrer Stärke und ihrer Ungezwungenheit. Bei Euch konnte ich alle Dinge herauslassen, die
in meinem Kopf der Fertigstellung dieser Arbeit im Weg standen — verzeiht mir, wenn ich
machmal ruppig war. In diesem Zusammenhang sei auch Foguinha für alles gedankt, was
ihrer Natur entspricht.

Auch meine Kletterpartner Birgit Reiserer und David Klingl (und einige andere) haben viel
dabei geholfen den Blick von abstrakten, verzwickten Problemen zu lösen und lieber auf den
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