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1.1. Background and aim of the study 

Since it became clear that the reason of 90% of cancer deaths is due to the development 

of metastasis1, it is important to improve nowadays available treatment options to prevent 

the metastatic process and to eliminate already existing metastasis. 

Metastatic cancer cells are highly resistant against available chemotherapeutics and sin-

gle cells are able to separate from a primary tumor and spread over the vascular system, 

the lymphatics or across body cavities throughout the body to form secondary tumors.2 

Commonly used therapies are still surgery, radiotherapy and chemotherapy.3 The aim is 

to eliminate the tumor, repress cell proliferation, induce cell death, inhibit angiogenesis 

and cell migration. Known chemotherapeutics interfere for example in the oncogenic sig-

naling pathways as antibodies, as ligand antagonists to oncogenic receptors, as inhibitors 

of small molecules like tyrosine kinases or vascular disrupting agents to prevent angio-

genesis.2  

As resistance features to new developed chemotherapeutics occur and also the drug effi-

ciency often seems to be cell specific, it is still necessary to find new potential drug targets 

including new compounds. Our goal is to test various natural compounds from plants, ma-

rine organisms, fungi and bacteria as potential new drugs or as tools to further elucidate 

cancer signaling pathways. 

One focus of our group are compounds of myxcobacteria. Today myxobacteria are used 

as a major source of microbial secondary metabolites with pharmaceutical interest.4 One 

of these compounds is the vacuolar H+-ATPase (V-ATPase)-inihibitor Archazolid B.5 V-

ATPases are described as attractive drug targets in the field of cancer in the last years.6,7 

Archazolid B seems to be highly specific and inhibits the V-ATPase activity already in the 

nanomolar range.8 

 

Thus, the aim of this study was 

1. to investigate the effects of the V-ATPase inhib itor Archazolid B on tumor 

cell growth.  

2. to elucidate the cellular signaling induced by A rchazolid B leading to cell 

migration inhibition of highly invasive cancer cell s. 



INTRODUCTION 3 
 

1.2. Natural products 

1.2.1. History and importance of natural products 

Natural compounds offer an invaluable source of potential new therapeutic agents - direct-

ly or as lead structures. The high chemical diversity and the biochemical specificity made 

the natural-product structures attractive in the field of drug discovery. There are several 

examples of natural compounds being already in therapeutical use or in clinical trials for 

infectious diseases, neurological diseases, cardiovascular and metabolic diseases, immu-

nological and oncological diseases. Anti-cancer agents were found in plants (Camptothe-

cin-Topoisomerase-inhibitor, Paclitaxel-Tubulin-antagonist), in microorganism like actino-

mycetes (Doxorubucin-DNA-intercalating drug) or myxobacteria (Epothilone D-Tubulin-

antagonist) and in marine organism like sponges (Spongistatin-Tubulin-antagonist).9 The 

fact, that many natural compounds being in various stages of clinical development under-

line the important source of natural compounds as potential new therapeutics.  

1.2.2. Myxobacteria as source of natural compounds 

The profound research of the group of Reichenbach and Hoefle opened up the field of 

myxobacteria as new producers of bioactive compounds, with complete new structures 

and unique modes of action.10 Their various functions are for example effects on the elec-

tron transport, the damage of the cytoskeleton or inhibiting nucleic acid polymerase.11 Ex-

amples for active compounds of myxcobacteria as promising anti-cancer drugs are 

Tubulysin and Epothilones, which are both described as tubulin-antagonists.9 Ixabepilone, 

a semi-synthetic analogue of Epothilone B, has been recently approved by the Food and 

Drug Administration (FDA) for the treatment of chemotherapy-resistant breast cancer.12 

The compound of our interest was Archazolid B, which is a vacuolar H+-ATPase (V-

ATPase) inhibitor originally produced by Archangium gephyra and Cystobacter violaceus. 

In the following, the function of V-ATPase and its inhibitors will be explained in detail. 
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1.3. V-ATPase as potential drug target 

1.3.1. Function and relevance 

Vacuolar (V) H+-ATPases are heteromultimeric ATP-dependent proton pumps in eukaryot-

ic cells.6,13 These pumps occur ubiquitous and regulate the pH in endomembrane sys-

tems, like endosomes, lysosomes, secretory vesicles and the Golgi apparatus. Further-

more it is reported that V-ATPases are also localized in specialized cells like osteoclasts, 

kidney intercalated cells and more important in the plasmamembrane of invasive tumor 

cells, where it acidifies the extracellular space.14 The acidic tumor microenvironment is 

favourable for the metastatic process.15 V-ATPases are involved in cellular processes like 

receptor-mediated endocytosis and membrane trafficking, the processing of proteins and 

cellular transport mechanisms.6,16 It is reported that the V-ATPase plays a crucial role in a 

number of diseases such as osteoporosis17, diabetes18, Alzheimer’s19 or Parkinson’s20, 

cardiovascular disorders21 and cancer22.  

1.3.2. Structure of the V-ATPase 

The V-ATPase has structural and functional similarities with the mitochondrial F0F1-ATP-

synthase (F-ATPase).23 One functional difference is that F-ATPase produces ATP where-

as V-ATPase uses ATP for the translocations of protons across endomembranes in eu-

karyotic cells.24 Structurally, the V-ATPase is divided into two major domains: the periph-

eral V1 domain is a complex localized to the cytoplasm and is performing the ATP hydrol-

ysis. It consists of 8 subunits (A, B, C, D, E, F, G and H) and has a total mass of 650 kDa. 

The three altering copies of subunit A and B of the V1 complex form a ring and represent 

the ATP binding side mediating its hydrolysis. The single copies of D and F represent a 

central rotational stalk and a peripheral stalk is made out of the subunits C, E, G and H. 

Both structures connect the V1 complex with the intra-membrane V0 complex. The mem-

brane-bound V0 subunit consist of the six subunits a, d, e and the proteolipids c, c’ and c’’. 

The c subunits with its isoforms form a H+-binding rotor ring. The V0 subunit, which has a 

molecular weight of 260 kDa, is therefore responsible for the transport of protons from the 

cytoplasm to the lumen or the extracellular space or when the V0 subunit is inserted in the 

plasma membrane into the extracellular fluid.25,26 Based on various models of the F-

ATPases27-29 and V-ATPases30,31 the transfer of protons across membranes is proposed 

like shown in Figure 1. Two H+-half channels are formed by the subunit a close to the c-
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ring. Through the inner half channel H+ can enter and bind to one of the c-subunits. The 

rotation of the c ring is driven by the hydrolysis of ATP and the nearly 360° rotation of the 

c-ring allows the release of H+ through the outer half of the channel.32  

                                

Stator

Rotor

H+
H+

H+

H+

 
Figure 1.1: Structure and function of the V-ATPase.  The V-ATPase consists of two main com-
plexes V1 and V0. V1 consists of 8 subunits (A-H); the intramembrane subunit V0 is composed of six 
different subunits (a, b, d and c, c’, c’’). The c subunits with its isoforms form a H+-binding rotor ring. 
One model of action would be that the central rotating shaft (subunit D, F) of the V1 complex and 
the c-ring of the V0 subunit form a rotor. ATP hydrolysis at the stator induces the rotation of the 
central shaft together with the c-ring. The subunit a of the V0 subunit provides two H+ half channels. 
When the c-ring rotates, H+ pass from the inner channel to the outer half channel and bind inter-
mediary on one of the c subunits.32 Image adapted from Fais et al.33 

1.3.3. V-ATPase inhibitors 

1.3.3.1. The plecomacrolides Bafilomycin and Concan amycin 

The first specific and highly potent discovered V-ATPase inhibitor was the plecomacrolide 

Bafilomycin34, which was originally isolated from Streptomyces griseus. Together with an-

other classical V-ATPase inihibitor Concanamycin, they were already identified and struc-

turally described in the early 1980s.35-37 So far, two independent studies showed, that 

plecomacrolides bind foremost at the V0 subunit c.38,39 In 2005, Wang et al. proposed a 

minor participation of the subunit a in the binding of plecomacrolides.40 It is likely that the 

plecomacrolides bind at the interface between subunit a and c leading to a mechanical 
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blocking of the rotation of the c-ring and therefore inhibiting the translocation of protons 

across membranes.13  

1.3.3.2. Benzolactone enamides 

This group of V-ATPase inhibitors are found in various organisms like tunicates (Lobatam-

ides), pseudomonas (Oximidines) and sponges (Salicylhalamides).13 For this group a 

clear binding site could not be distinguished, yet. Salicylhalamide seems to bind to the V0 

complex and together with Apicularen it doesn’t interfere with the plecomacrolid binding 

site.8,41 Furthermore Apicularen does not interfere with the binding site of Archazolid.42  

1.3.3.3. The novel class of macrolactones: the Arch azolids 

The Archazolids are a novel group of V-ATPase inhibitors. Höfle et al. were the first isolat-

ing Archazolid A and B from cultivated myxobacteria Archangium gephyra Ar 3548. Also 

in Cystobacter violaceus Archazolids could be found.5 Structurally they are composed of a 

macrocyclic lactone ring with a thiazole side chain.43 During competition assays with 

Concanamycin, using the radioactively labelled J-concanolide A, it could be clearly deter-

mined that Archazolid at least in part binds to the V0 subunit c of the V-ATPase.8 Further-

more, Archazolid seems to specifically and very potently (IC50 values in the nanomolar 

range) inhibit the V-ATPase when compared with purified Na+/K+-ATPases and mitochon-

drial F-ATPase.8  

In contrast to the plecomacrolides, Archazolid does not penetrate in between two c subu-

nits, more likely it binds to the membrane facing side of a single subunit c. Speculations of 

the functions therefore might be that Archazolid could act like a wedge between the subu-

nit a and the c-ring, which would avoid the rotation. A further possibility would be that 

Archazolid masks the essential glutamate and therefore inhibits the proton binding.13 
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Figure 1.2: Structure of Archazolid A and Archazoli d B . Chemical structure from Huss et al.8 

1.4. Metastatic cancer 

Nowadays, cancer is a major cause of mortality.44 The first treatment option is still the 

surgical removal of the primary tumors usually followed by radiotherapy. But for the treat-

ment of metastasis the use of chemotherapeutics is necessary.3 Even though the devel-

opment of highly effective chemotherapeutics increased during the last years, the toxic 

side effects and the development of resistance are still main problems.1 Affecting cell 

death, the metastatic process and trafficking processes like endocytosis would be key 

goals in the field of cancer research. 

1.4.1. Cell death - apoptosis 

One form of cell death is the programmed cell death, also called apoptosis. Apoptotic 

steps are important in development and tissue homeostasis; but its signaling is also 

shown to be important in many diseases such as cancer.45 Apoptosis is usually described 

with a number of morphological features, like membrane blebbing, cytoplasmatic shrink-

age, loss of phospholipids asymmetry, nuclear condensation and DNA fragmentation. 

Upon completion of apoptosis, cells break up into a series of membrane bound bodies 

called apoptotic bodies which contain normal but condensed chromatin.46 Classically, the 

events of caspase-dependent apoptosis are divided in two major pathways:  

1. The extrinsic or receptor-mediated apoptotic pathway. 

2. The intrinsic or mitochondrial apoptotic pathway  
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The extrinsic pathway is induced by an extracellular event, usually the binding of ligands 

to its receptors on the cell surface, like TNF, Fas Ligands or Trail/Apo2L. Upon induction 

of this pathway a Death Inducing Signal Complex (DISC) is formed, leading to the activa-

tion of caspase-8, which then either directly activates caspase-3, leading to cell death or 

induces the mitochondrial pathway by the cleavage of the pro-apoptotic protein Bid.47 

The intrinsic pathway is a mitochondria-dependent signaling pathway, which is regulated 

by the Bcl-2 family and the activation of caspases. The balance of anti-apoptotic members 

(Bcl-2, Bcl-XL, Ced-9, Bcl-w and Mcl-1) and pro-apoptotic members (like Bak or Bax) of 

the Bcl-2 family decides if cytochrome c is released from the mitochondria to activate 

caspases to finally induce cell death. 

                   

Apoptotic stimulus

Mitochondrial pathway

Fas, TRAIL

Death
receptor

Active
Caspase-8

Cell Death

Effector
caspases-3/-7

Active
caspase-9Apoptosome

Cyt c
Apaf-1

ATP
Pro-Caspase-9

Bcl-2
Bcl-2

Bax

tBid Bid

Extrinsic pathway Intrinsic pathway

 
Figure 1.3: The caspase-dependent apoptotic pathway s: the intrinsic and extrinsic signal-
ling.  When apoptotic cell death is induced due to internal stress response, cytosolic pro-apoptotic 
molecules like Bax oligomerize and translocate to the outer mitochondrial membrane. This initiates 
the permeabilization of the outer mitochondrial membrane, which causes the release of pro-
apoptotic molecules like cytochrome c, AIF (apoptosis-inducing factor) or SMAC (second-
mitochondria-derived activator of caspases). Cytochrome c forms together with Apaf-1 (apoptotic-
protease-activating-factor-1) and the caspase-9, the apoptosome, which can activate the down-
stream caspase-3 and this leads finally to cell death.48 If apoptosis is induced via the extrinsic 
pathway, the induction of a death receptor signal induces the activation of caspase-8, which can 
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directly activate caspase-3 or leads over the connection of the pro-apoptotic molecule tBid to the 
cell death signal via the mitochondria.47 

1.4.2. Formation of metastasis  

The formation of metastasis are described as the high point of neoplastic progression.2 

During the metastatic process, single cells separate from the primary tumor and invade in 

the surrounding tissue to enter the microvascular system of the lymph and bloodstream. 

Invasive cancer cells are resistant to apoptosis and anoikis (cell death induction when 

cells are maintained in suspension) to be able to survive in the bloodstream. They get 

translocated to distant tissues and leave the bloodstream to finally adapt to the foreign 

microenvironment and start to proliferate forming a secondary tumor. Beside the re-

sistance to apoptosis/anoikis, various survival signaling pathways are deregulated.1,49 

1.4.3. The cell migration process 

The cellular migration can be described as a process in various steps. The first step is the 

polarization of the cell including the formation of lamellipodia and filopodia. The lamel-

liopodia are highly dynamic and broad membrane protrusions of condensed F-actin and 

are assembled at the leading edge of the cell in a Rho - GTPase (Rac1) - dependent 

manner. In contrast to lamellipodia, filopodia are thin protrusions and act as tactic sensors 

to establish the directionality of the movement. By the formation of adhesion complexes 

under the leading edge, like integrins, the cell gets attached to the substratum and can 

extend and stretch the cell body in the direction of migration. To pull the rear of the cells 

forward, the actin-stress fibers contract in dependency of myosin II and the Rho - GTPase 

Rho A. Also adhesions at the rear of the cell have to be disassembled. After the contrac-

tion state this cycle starts again with the formation of the leading edge.49  
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Figure 1.4: Cell migration process.  For the forward movement, the cell polarizes due to the re-
organisation of the cytoskeleton, like the formation of lamellipodia and filopodia. Also focal adhe-
sions are formed to attach the cell to the substratum. The formation of stress fibers helps to con-
tract the cells between the focal adhesions. The assembly and disassembly of focal contacts is 
necessary for the forward movement of the cell. Image adapted from Weinberg et al.49 

1.4.4. The signaling during cell migration 

Upon chemically attraction like the binding of growth factors to its receptors, the cellular 

migration signaling is induced. The active growth factor receptor complex associates with 

the phosphoinositid-3-kinase (PI3K), which gets activated upon growth factor binding. It 

phosphorylates PtdIns-2,4-P2 to PtdIns-2,4,5-P3, which is bound to the cell membrane. By 

the binding of PtdIns-2,4,5-P3 to AKT via its hydrophobic part, AKT gets localized to the 

plasma membrane. AKT is known to be a regulator in cell survival, growth, angiogenesis 

and metabolism.50 Furthermore it plays a major role in the process of cell migration and 

recycling.51,52 AKT gets fully activated by the phosphorylation at two sites, the T308 and 
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more importantly the S473.52,53 Activated AKT as central mediator of the PI3K pathway 

has multiple downstream effectors all involved in the mentioned cellular processes.52  

The Rho-GTPases are a subgroup of the Ras superfamily of GTPases. They regulate the 

cell morphology and actin cytoskeleton and are therefore necessary during cell 

migration.54 Rho GTPases are cycled between a GTP (guanosine triphosphate) - and a 

GDP (guanosine diphosphate) - bound state. The active GTP – bound - conformation can 

be promoted by guanine - nucleotide exchange factors (GEFs) but also the activation in-

volving the recycling molecule Rab5 could be recently shown.55,56 Furthermore the GTP 

hydrolysis is performed by the GTPase - activating protein (GAP), which converts the pro-

tein in its inactive conformation. The cycle of GDP - to GTP - bound stage can be induced 

by growth factors receptor or integrin activation.57 The most characterized members of the 

Rho - GTPase family are Rac1, Rho and Cdc42. Rac1 is a main regulator to induce actin 

polymerization and the formation of lamellipodia at the cell front of migrating cells. Cdc42 

provokes the formation of filopodia, which act as tactic sensors. Whereas Rho is involved 

in the contraction of the cell and induces the formation of stress fibers.57 The regulation 

during the migration process is also visualized in more detail in the Figure below. 
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Figure 1.5: Signaling during the process of cell mi gration . PI3K gets activated by a growth 
factor stimulus and accumulates at the leading edge. The AKT-pathway and the Rho-GTPases get 
activated and further downstream signaling is induced. Localized at the leading edge, Rac1 is in-
volved in the induction of actin polymerization and lamellipodia formation. Filopodia, are especiallly 
regulated by Cdc42 and act as sensors of the extracellular environment. By disassembly of adhe-
sions and the shortening of the microtubule, Rho A is activated, which regulates the formation of 
stress fibers and cell contraction, which finally transolcates the nucleus and the cell body in the 
direction of migration. During the migration process adhesion-molecule, like integrin and cadherin 
are expressed, helping to attach the cell to the substratum. During the forward movement adhesion 
molecules as well as the Rho-GTPase Rac1 need to be recycled or degraded via endcytotic pro-
cesses. 
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1.4.5. Endocytosis 

Many years the process of endocytosis was regarded as the simple internalization of nu-

trient and membrane-associated molecules. However, nowadays knowledge describes 

endocytosis as a main regulator of cellular signaling, by which signals not only get ex-

tended but foremost increase their diversity and specificity. The signaling persists during 

the endocytotic route and the intracellular endocytotic stations attenuate the signals in 

space and time.58 Especially the recycling of receptors and re-localization at the plasma 

membrane seem to be major mechanisms in processes like cell migration, apoptosis, mi-

tosis or cell fate determination. All these processes are important players in the develop-

ment of invasive cancer.58,59 

Classically, soluble molecules like nutrients or cell-surface receptors and their bound lig-

ands get internalized via the well characterized clathrin-mediated endocytosis (CME). The 

non-clathrin-mediated endocytosis is still quite undefined. After ligand binding, adaptor 

proteins like AP-2 or ß-arrestin help to recruit the receptors close to clathrin. Clathrin pol-

ymerizes and the endocytotic pit is formed, which will be released in the cytoplasm. This 

process is regulated by the GTPase dynamin and dependent on the endocytotic regulator 

Rab5. In further steps the receptor is shuttled to early endosomes, where they continue to 

signal in an endosome-specific manner. The recycling in the endosomal system is con-

trolled by the small GTP-binding proteins Rab and Arf (ADP-ribosylation factor) families. In 

early endosomes the decision is made if the receptor will be either recycled back to the 

cell surface or will get ubiquitinated, shuttled to late endosomes and degraded in lyso-

somes.59 The endocytotic process is dependent on the acidic pH in endosomes and lyso-

somes which is mainly regulated by the V-ATPase.16 

The activation of for example the Rho GTPase Rac1 is related to the described recycling 

process. Rac1 gets activated in the early endosomes via its GTP exchange factor Tiam in 

a Rab5-dependent manner. Since Rac1 is a main regulator of the actin cytoskeleton, its 

recycling and re-localization is important for the process of cell migration.56 
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Figure 1.6: The endocytotic process . During clathrin-mediated endocytosis foremost plasma 
membrane signaling receptors such as receptor tyrosine kinases get internalized in clathrin coated 
pits. Receptors are shuttled to early endosomes where the decision of recycling or degradation of 
the receptor is made. One non-clathrin mediated endocytotic pathway, the recycling of the major 
histocompatibility complex (MHC) class I molecules is described to be recycled in an Arf6-
dependent manner. Image adapted from Scita et al.59 

 

In the following study we wanted to characterize the new V-ATPase inhibitor Archazolid B 

as potential new drug to inhibit tumor cell proliferation, to induce apoptosis and to inhibit 

tumor cell migration. Moreover we wanted to elucidate in detail the signaling leading to the 

inhibition of cell migration. 
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2.1. Materials 

2.1.1. Compounds 
Archazolid B as well as its precursor molecule were generously donated by Prof. Dr. Dirk 

Trauner (Department of Biochemistry, LMU Munich). Concanamycin A was purchased 

from Enzo Life Sciences GmbH (Lörrach, Germany) 

 

           

           Precursor                           Archazolid B                         Concanamycin A 

Figure 2.1: Chemical structures of precursor molecu le of Archazolid B synthesis, Archazolid 
B60 and Concanamycin A (Enzo Life Sciences, Lörrach, G ermany).  

2.1.2. Biochemicals, inhibitors, dyes and cell cult ure reagents 

Table 2.1: Biochemicals, inhibitors, dyes and cell culture reagents 

Reagent Producer 

Accustain® formaldehyde Sigma Adlrich, Taufkirchen, Germany 

Ac-DEVD-AFC (Caspase-3) Bachem, Bubendorf, Germany 

Ac-LETD-AFC (Caspase-8) Bachem, Bubendorf, Germany 

Bradford Reagent TM Bio-Rad, Munich, Germany 

Collagen G Biochrome AG Berlin, Germany 

Complete® Roche Diagnostics, Penzberg, Germany 

DMEM PAA Laboratories, Cölbe, Germany 

DMSO Sigma-Aldrich, Taufkirchen, Germany 

FCS gold PAN Biotech, Aidenbach, Germany 

Formaldehyde, 16% ultrapure Polysciences Europe GmbH, Eppelheim 

Glutamine Sigma-Aldrich, Taufkirchen, Germany 

Glycine Sigma-Aldrich, Taufkirchen, Germany 

JC-1 iodide Axxora, Lörrach, Germany 
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McCoy’s medium PAA Laboratories, Cölbe, Germany 

M199 Medium PAN Biotech, Aidenbach, Germany 

MatrigelTM BD Discovery Labware, Bedfort, MA, 
USA 

Na3VO4 ICN Biomedicals, Aurora, Ohio, USA 

NaF Merck, Darmstadt, Germany 

Non-essential amino acids PAA Laboratories, Cölbe, Germany 

Page Ruler TM Prestained Protein Lad-
der Fermentas, St. Leon-Rot, Germany 

Polyacrylamide Roth GmbH, Karlsruhe, Germany 

Propidium iodide Sigma-Aldrich, Taufkirchen, Germany 

PermaFluor mounting medium Beckman Coulter, Krefeld, Germany 

PMSF Sigma Aldrich, Taufkirchen, Germany 

Pyruvate Merck, Darmstadt, Germany 

Q-VD-OPh R&D Systems, Wiesbaden, Germany 

Rhodamin-phalloidin Invitrogen, Karlsruhe, Germany  

RPMI 1640 PAA Laboratories, Cölbe, Germany 

Tris-HCl Sigma-Aldrich, Taufkirchen, Germany 

Triton X-100 Merck, Darmstadt, Germany 

Table 2.2: Commonly used buffers 

PBS + Ca2+/Mg2+  
(pH 7.4) 

  PBS (pH 7.4)  

NaCl 137 mM  NaCl 132.2 mM 

KCl 2.68 mM  Na2HPO4 10.4 mM 

Na2HPO4 8.10 mM  KH2PO4 3.2 mM 

KH2PO4 1.47 mM  H2O  

MgCl2 0.25 mM    

H2O     

2.1.3. Technical equipment 

Table 2.3: Technical equipment 

Name Device Producer 

AB7300 RT-PCR Real-time PCR system Applied Biosystems, Fos-
terer City, CA, USA 

Axiovert 200 Inverted microscope Zeiss, Jena, Germany 
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Culture flasks, plates, 
dishes 

Disposable cell culture 
material 

TPP, Trasadigen, Switzer-
land 

Curix 60 Tabletop film processor Agfa. Cologne, Germany 

Custom-made climate 
chamber 

Life cell observation on 
LSM 510 Meta 

EMBLEM Heidelberg, 
Germany 

FACSCalibur Flow cytometry Becton Dickinson, Heidel-
berg, Germany 

FACSCanto II Flow cytometry Becton Dickinson, Heidel-
berg, Germany 

IBIDITM µ-slide Microscope slide Ibidi GmbH, Munich, Ger-
many 

LSM 510 Meta Confocal laser scanning 
microscope Zeiss, Jena, Germany 

Mikro 22 R Table centrifuge Hettich, Tuttlingen, Ger-
many 

Nanotrop R ND-1000 Spectrophotometer Peqlab, Wilmington, DE, 
USA 

Odyssey 2.1 Infrared Imaging System Li-Cor Biosciences, Lin-
coln, NE, USA 

SpectraFluor PlusTM Microplate multifunctional 
reader 

Tecan, Männedorf, 
Switzerland 

SunriseTM Microplate absorbance 
reader 

Tecan, Männedorf, 
Switzerland 

Transwell plates  Boyden chamber assays Corning Inc., Life Scienc-
es, Lowell, MA, USA 

VicellTM XR Cell viability analyzer Beckman Coulter, Fuller-
ton, CA, USA 

2.2. Methods 

2.2.1. Cell culture 

The human urinary bladder carcinoma cell line T24 was kindly provided by PD Dr. Barba-

ra Mayer (Klinikum Grosshadern, LMU Munich, Germany). The human pancreatic cancer 

cell line L3.6pl was obtained as a generous gift by Christine J. Bruns (Department of Sur-

gery, Klinikum Grosshadern, LMU Munich, Germany). T24 cells were maintained in 

McCoy’s medium (PAA Laboratories, Cölbe, Germany) respectively supplemented with 

10% heat-inactivated fetal calf serum (FCS) (PAA Laboratories, Cölbe, Germany), 1% 

Glutamin (Sigma-Aldrich, Taufkirchen, Germany). The L3.6pl cells were cultivated on 
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0.001% collagen G - coated culture flasks in RPMI 1640 medium (PAA Laboratories, Cöl-

be, Germany) respectively supplemented with 10% FCS, 1% pyruvate (Merck) and 1% 

non-essential amino acids (PAA Laboratories, Cölbe, Germany). Hela cells (from ATCC) 

were grown in DMEM medium supplemented with 10% South American serum (Euro-

Clone) and 1% L-glutamine. All cell lines were kept at 37ºC in a humidified 5% CO2 at-

mosphere.  

For splitting (1:10) and seeding, cells were washed once with pre-warmed PBS, which 

was removed completely with a sterile pipette. 3 ml Trypsin/EDTA (T/E) was added 

(75 cm2 flask) and cells were incubated for a few minutes at 37°C (T24: 1-2 min; 

L3.6pl/Hela: 5 min). To terminate the trypsin reaction 7 ml medium containing FCS was 

added. Further, cells were centrifuged for 5 minutes at 1,000 rpm to remove the T/E. The 

supernatant was discarded and cells were resuspended in growth medium and seeded 

into flasks or well plates. (In case of L3.6pl all plates and flasks were coated with 0.0001% 

collagen G). Cell concentration and viability was measured using the VICELLTM cell viabil-

ity analyzer (Beckman Coulter, Krefeld, Germany). 

Table 2.4: Trypsin/EDTA and collagen G composition 

Trypsin/EDTA  Collagen G  

Trypsin 0.05%  Collagen G 0.001% 

EDTA 0.20%  PBS  

PBS     

2.2.2. Freezing and thawing  

To prepare nitrogen stocks of all cell lines, cells were trypsinized and centrifuged (180 x g, 

10 min, 4°C). Cells were resuspended in freezing me dium and transferred to cryovials 

(2 x 106 cells in 1.5 ml). Cells were first frozen overnight at -20°C and then transferred to   

- 80°C. Cell stocks were either kept in -80°C or tr ansferred to nitrogen (-196°C) for long-

term storage.  

2.2.3. Flow cytometry 

This method was used to analyze cell death, mitochondrial membrane potential change or 

the determination of cell surface molecules, like epidermal growth factor receptor (EGF-

R). Measurements were done with two different FACS machines, the FACSCanto II or 

FACSCalibur (Becton Dickinson, Heidelberg, Germany). 
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Table 2.5: Facs buffer for Facs Calibur 

Sheat fluid  

NaCl 8.12 g 

KH2PO4 0.26 g 

Na2HPO4 2.35 g 

KCl 0.28 g 

Na2EDTA 0.36.g 

LiCl 0.43 g 

NaN3 10 mM 

H2O ad 1.0 l, pH 7.37 

2.2.3.1. Quantification of apoptotic cell death wit h the Nicoletti assay 

T24 or L3.6pl cells were seeded in 24 well plates (50,000 cells/well). The next day cells 

were treated with Archazolid B in various concentrations for various time periods. The 

caspase-inhibitor QVD-OPh (R&D Systems, Inc.) was added 2 hours before treatment 

with Archazolid B in a concentration of 10 µM. The propidiumiodide staining was per-

formed as described by Nicoletti et al.61 

After the treatment points, medium of each well was collected and still adherend cells 

were trypsinized with T/E. Trypsinized cells were pooled with their according medium and 

centrifuged (600 x g, 10 min, 4°C). Supernatant was  discarded and cells were once 

washed with PBS (600 x g, 10 min, 4°C). For the sta ining, cells were resuspended in 

HFS - solution containing 50 µg/ml PI and incubated overnight at 4°C followed by analysis 

via flow cytometry. Cells containing hypoploid DNA were considered as dead.  

Table 2.6: HFS solution 

HFS-solution  

Sodium citrate 0.1% 

Triton X-100 0.1% 

PBS ad 1 ml 

2.2.3.2. Cell cycle analysis 

Using the fluoresecence channel 2 (FL2, em585) the fluorescence intensity was meas-

ured in the logarithmic mode using the flow cytometry. Propidiumiodide intercalates in the 

DNA. Since iodide-fluoresecence depends on the status of cellular chromatin, the different 

cell cycle status can be distinguished. Most cells are in the G0/G1 cell cycle phase with 2n 

chromosome set, lacking the sister chromatids. Cells in the G2/M phase are in the process 
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of cell division. This means that these cells have 2n chromosome set, but furthermore the 

sister chromatides as duplicates. This sister chromatide duplication allows the differentia-

tion of the G2/M-phase to G0/G1-phase. Via flow cytometry this can be distinguished by the 

higher fluoresecence peak due to the increased amount of propidium-iodide intercalation. 

The S-phase is the synthesis-phase. In this phase cytosol is accreted and chromatids 

become duplicated. This fluoresecence peak is located between the fluoresecence peaks 

of G0/G1 and G2/M-phase. Furthermore, during apoptotic processes DNA becomes con-

densed and fragmented, generating a peak which is located left of the G0/G1 fluorese-

cence. Using the Flow cytometry analysis software FlowJo 7.6, regions for each fluorese-

cence peak according to their chromatin states (percentages of cells in the single cell cy-

cle states) were measured and set into relation of the total cell number. 

2.2.3.3. Measurement of mitochondrial potential cha nge 

T24 and L3.6pl were treated with Archazolid B for 24 hours. Cells were harvested as de-

scribed (2.2.3.1.) and washed once with 0.5% BSA/PBS. Subsequently, 5, 5’, 6, 6’-

tetraethylbenzimidazol-carbocyanine iodide (JC-1) was directly added into the vials with a 

final concentration of 1.25 µM. Then, cells were incubated for 15 minutes, 37°C. After cen-

trifugation (600 x g, 5 min, RT) samples were resuspended in 0.5% BSA/PBS and ana-

lyzed by flow cytometry using FACSCanto II (Nectin Dickinson, Heidelberg, Germany). 

The increase in green fluorescence (FITC-A channel) indicates loss of mitochondrial 

membrane potential. 

2.2.3.4. Measurement of cytochrome c release 

Cytochrome c release was performed as described in Waterhouse et al..62 Cells were 

seeded and treated with Archazolid B for 48 hours. Supernatant and trypsinized cells were 

centrifuged (600g, 4°C, 10 min) and washed once wit h ice cold PBS. Cells were permea-

bilized using the digitonin-containing buffer and incubated for 30 minutes on ice. Cells 

were centrifuged (600 x g, 4°C, 10 min) and fixed w ith 4% PFA for 20 minutes. Samples 

were washed twice with PBS and incubated with blocking buffer for 1 hour, RT. 50 µl of 

1:200 diluted cytochrome c antibody (Cell Signaling Technology, Danvers, MA, USA) was 

added and samples were incubated at gentle agitation overnight at 4°C. The next day, 

samples were washed twice with PBS and incubated with the fluoresceinisothiocyanate 

(FITC)-labeled second antibody (1:200) for 1 hour, RT. Samples were washed again with 

PBS and redissolved in 500 µl PBS. Using the FacsCalibur, the amount of cytochrome c 

in remaining in the mitochondria was measured. 
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Table 2.7: Buffer for cytochrome c release measurement 

Digitonin-containing buffer  Blocking buffer 

Na-EGTA 0.2 mM  BSA 3 % 

KCl 100 mM  Saponine 0.05 % 

Digitonin 50 µg/ml  PBS  

PBS     

2.2.3.5. Measurement of EGF-R on the cell surface 

T24 and L3.6pl were treated with Archazolid B for 24 hours. Cells were harvested as de-

scribed (2.2.3.1.) and washed twice with 0.5% BSA/PBS. The EGF-R-FITC antibody (R&D 

Systems, Wiesbaden, Germany) was diluted 1:5 in 0.5% BSA/PBS and 50 µl were added 

per sample. Samples were carefully mixed and incubated for 30 - 45 minutes at 4°C. After 

the incubation period, samples were centrifuged (600 x g, 5min, 4°C). Cell pellet was 

washed twice with 500 µl of 0.5% BSA/PBS. Finally, cell pellet was carefully resuspended 

in 200 µl of 0.5% BSA/PBS and analyzed via flow cytometry (FL-1) using the FACSCalibur 

(Becton Dickinson, Heidelberg, Germany). The mean fluoresence was calculated using 

the Cellquest Pro software of BD Bioscience. The histogram overlays were done with the 

Flow cytometry analysis software FlowJo 7.6. 

2.2.4. Cell proliferation 

1500 cells/well were seeded in 96 well plates. The next day, various concentrations of 

Archazolid B/Concanamycin A were added. After 72 hours of incubation, supernatant was 

removed and cells were stained with crystal violet for 10 minutes, RT. Carefully, wells 

were rinsed with water to remove unbound crystal violet and cells were dried. Crystal vio-

let was resolved with sodium citrat and the absorbance of crystal violet, which correlates 

with the cell number, was measured at 550 nm at the SpectraFluor PlusTM (Tecan, 

Männedorf, Austria). For statistical analysis, untreated cells were set to 100% viable cells. 

Table 2.8: Crystal violet and sodium citrat solution 

Crystal violet  Sodium citrat solution 

Crystal violet 0.5 %  Na3 citrate 0.05 M 

Methanol 20 %  Ethanol 50 % 

H2O   H2O  
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2.2.5. Clonogenic assay 

L3.6pl/T24 cells were seeded as usual and treated the next day for 24 hours with 

Archazolid B in various concentrations. After treatment, cells were trypsinized and 10,000 

L3.6pl/5,000 T24 cells were seeded in a 6-well plate. In case of transfection with siRNA-

ATP6L (V-ATPase subunit c), cells were freshly seeded after 24 hours of transfection. The 

cells were allowed to grow for 6 days. Similar to the proliferation assay, cells were stained 

with crystal violet for 10 minutes. Wells were rinsed carefully with water to remove un-

bound crystal violet. Pictures of the wells were taken and finally crystal violet was redis-

solved with sodium citrate solution to measure absorption at 550 nm in a SpectraFluor 

PlusTM (Tecan, Männedorf, Austria). For statistical analysis, untreated cells were set to 

100% viable cells.  

2.2.6. Measurement of caspase-activity 

Cells were seeded and treated for 48 hours with Archazolid B. Supernatant was discarded 

and adherend cells were washed twice with ice cold PBS. Lysis buffer was added and 

samples were frozen at -80°C overnight. The next da y, cells were harvested using a cell 

scraper and the collected lysate was centrifuged (10,000 rpm, 4°C, 10 min). Protein con-

centrations were determined using the method of Bradford et al.63 (described in the chap-

ter 2.2.15.2 Protein quantification) 

For the measurement 10 µl of each sample was pipetted into a black 96-well plate. 90 µl 

of freshly prepared substrate solution was added to each well. In case of activated caspa-

ses, the substrates were cleaved indicated by a fluorometric shift. Measurements were 

done at the time points 0 and after 5 hours using the SpectraFluor PlusTM (Tecan, Männe-

dorf, Austria). 

Table 2.9: Buffer for caspase-activity measurement 

Lysis buffer  Buffer B (pH 7.5) 

MgCl2 203.4 mg  HEPES 50 mM 

EGTA 76 mg  Sucrose  1% 

Triton X-100 200 µl  CHAPS 0.1 % 

HEPES 25 mM  H2O  

H2O up to 400 ml    
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Table 2.10: Caspase-substrate solution 

Substrate solution   

Buffer B 8 ml    

Caspase-3/-8 
substrate 

45 µl    

DTT 16 % 100 µl    

2.2.7. Gene expression profiling 

2.2.7.1. RNA Isolation 

Total RNA was isolated using the RNeasy Kit (Qiagen, Hilden, Germany) according to the 

manufacture's instruction. RNA was eluted in TE/water. RNA concentrations were deter-

mined using the NanoDrop spectrophotometer (NanoDrop Technologies, Wilmington, 

Germany). 

2.2.7.2. Reverse Transcription 

For the reverse transcription of the RNA into cDNA, 2 µg RNA were used and re-

transcribed using the high capacity cDNA Reverse Transcription Kit (Applied Biosystems, 

Foster City, CA, USA), which includes random primers. The reaction was run for 2 hours 

at 37 °C. cDNA was stored at 4°C until qRT-PCR/micr oarray was performed. 

2.2.7.3. Quantitative Real-Time PCR 

For the Quantitative Real-Time PCR the ABI 7300 RealTime PCR system with the Taq-

Man Universal PCR Mastermix (Life Technologies Corporation, Carlsbad, CA, USA) was 

used. Probe and primers for the V-ATPase subunit c (ATP6L) were supplied as mix (Life 

Technologies Corporation, Carlsbad, CA, USA). As housekeeping gene, GAPDH was 

used (forward/reverse primer, probe sequence, biomers, Ulm, Germany). For the compar-

ison of the ATP6L-expression level in T24 and MCF-10A cells the 18S rRNA (Life Tech-

nologies Corporation, Carlsbad, CA, USA). Fluorescence development was analyzed us-

ing the ABI 7300 system software. Calculation of relative mRNA was done according to 

Pfaffel64 

2.2.7.4. Polymerase-chain-reaction (PCR) 

To compare the level of V-ATPase subunit c expression in various cell lines, a PCR was 

performed using cDNA of various cell lines which are characterized by different invasive 



MATERIAL AND METHODS 25 

potential. For each reaction 2 µg of cDNA was used. The PCR Mastermix contained 

10 x Reaction buffer (Invitrogen, Darmstadt, Germany), TaqPolymerase (Invitrogen, 

Darmstadt, Germany) and the forward and reverse primer for the V-ATPase subunit c 

(ATP6L) (biomers, Ulm, Germany). Following PCR program was used. To analyze the 

result of the PCR, samples were loaded on a 2% Agarose gel.  

Tab.2.11: PCR conditions 

PCR conditions    

94°C 5 min     

     

(30 Zyklen)     

94°C 30 sec     

55°C 30 sec     

72°C 30 sec     

     

72°C  5 min     

  4°C ∞    

2.2.7.5. Microarray 

The microarray was done in collaboration with the group of Prof. Dr. Efferth, University of 

Mainz, Germany. The procedure is described briefly as followed. 

1) Probe Labeling and Illumina Sentrix BeadChip arr ay Hybridization  

The labeling of cRNA was performed based on the modified Eberwine protocol.65,66 250-

500 ng of RNA was used for the synthesis of complementary DNA (cDNA). This was fol-

lowed by an amplification/labeling step (in vitro transcription) to synthesize biotin-labeled 

cRNA according to MessageAmp II aRNA Amplification kit (Ambion, Inc., Austin, TX) and 

Biotin-16-UTP (Roche, Penzberg, Germany). The cRNA was purified using the Total Prep 

RNA Amplification Kit. To control the quality of the RNA, a RNA Nano Chip Assay and 

Agilent 2100 Bioanalyzer was used and furthermore RNA was quantified spectrophoto-

metrically using the NanoDrop. 

100 ng cRNA/µl diluted in GEX-HCB buffer (Illumina Inc.) was used to perform the hybrid-

ization at 58°C, 20 hours in a wet chamber. Spike-i n controls for low, medium and highly 

abundant RNAs were added, as well as mismatch control and biotinylation control oligo-

nucleotides. The microarrays were washed once in High Temp Wash buffer (Illumina Inc.) 

at 55°C, followed by two washing steps in E1BC buff er (Illumina Inc.) for 5 minutes, RT. In 
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between microarrays were washed with ethanol. Microarrays were blocked for 5 min in 

1% (wt/vol) Blocker Casein in phosphate buffered saline Hammarsten grade (Pierce Bio-

technology, Inc., Rockford, IL). For the development of the signals, microarrays were in-

cubated for 10 min in 2 ml of 1 µg/ml Cy3-streptavidin (Amersham Biosciences, Bucking-

hamshire, UK) solution and 1% blocking solution, followed by a last washing step in 

E1BC. Finally, the microarrays were dried and scanned.  

 

2) Scanning and data analysis  

To scan the arrays, the Beadstation array scanner was used. The setting was adjusted to 

a scaling factor of 1 and PMT settings at 430. Data extraction was done for all beads indi-

vidually, and outliers are removed when > 2.5 MAD (medium absolute deviation). All re-

maining data points were used for the calculation of the mean average signal for a given 

probe, and standard deviation for each probe was calculated, too. 

Using the quantile normalization algorithm without background subtraction, measured 

signals were normalized and differentially regulated genes are defined by calculating the 

standard deviation differences of a given probe in an one-by-one comparison of samples 

or groups. 

 

3) Microarray data analysis 
 

The expression data were analyzed using Chipster (http://chipster.csc.fi/); genes were 

filtered, which vary in expression and significance. 250-900 genes were filtered and a 

subsequent assessment of significance using empirical Bayes t-test was done. All consid-

ered genes have assigned p-values < 0.05. Filtered data was applied to Ingenuity path-

way analysis for Core analysis. Here networks and pathways influenced by drug treat-

ments were determined (http://www.ingenuity.com/).  

2.2.8. Transfection of cells with siRNA or plasmids  

2.2.8.1. Electroporation (Cell line nucleofactor ki t V) 

T24/L3.6pl cells were trypsinized and cell number was determined with the VICELLTM. For 

transfection with siRNA 1 x 106 T24 or 1.5 x 106 L3.6pl were centrifuged. Supernatant was 

discarded and cells were resuspended in 95 µl of transfection buffer. 10 µl of 20µM siRNA 

Stock (Dharmacon) was added and cell suspension was added in the kit’s cuvettes to be 

electroporized in the AMAXA machine (Program for T24: A-23; L3.6pl: C-19). 500 µl of 

culture medium with FCS was added directly to the cuvette, helping the cells to recover. 
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Depending on the experiment either all cells or equal amounts of transfected cells were 

seeded according to the assay’s protocol in normal culture medium. By Real-time PCR 

the downregulation of the V-ATPase subunit c (ATP6L) was tested. After 24 hours of 

transfection the best downregulation was achieved. Therefore experiments (Boyden 

chamber assay, Rac1 pulldown-assays) were continued after 24 hours of transfection. 

2.2.8.2. Liposome-based transfection (Fugene, Roche ) 

250,000 T24 cells were seeded in 6 well plates. After cells have attached properly, cells 

were transfected with the according plasmids (pCMV-BamHI, pCMV-ATP6L-myc, pCMV-

Rab5, pCDNA3-Rac1-HA, pGFP-Rac1-C1, 1014 pRaichu-CRIB/CFP-CRIB-YFP). A trans-

fection mix per sample was prepared containing 1-3 µg of plasmid in 100 µl sterile water. 

5 µl of Fugene (Roche, Penzberg, Germany) was added and gently mixed. After incuba-

tion (15 min, RT) transfection mix was added to the already seeded cells. After 16 hours 

of transfection the treatment with Archazolid B followed.  

2.2.9. Transmission Electron Microscopy 
T24 cells were treated with 10 nM Archazolid B for various time points (0, 5, 15, 30 hours). 

Cells were collected, centrifuged and resuspended in a fixation solution 

(2.5% glutaraldehyde in fixative buffer: 75 mM cacdylate, 75 mM NaCl, 2 mM MgCl2. 

pH 7.0). After incubation of 1 hour, cells were washed several times in fixative buffer and 

postfixed in 1 % OsO4 (diluted in fixative buffer). Finally cells were washed with aqua dest 

before dehydrated in a graded series of acetone. Finally cells were embedded in Spurr 

low-viscosity epoxyresin and polymerized at 65°C. S everal pictures were taken with a 

Zeiss EM 912 transmission electron microscope with integrated Ω–filter (in “zero-loss-

mode”). 

2.2.10. Confocal microscopy (staining, LysosomeTrac ker) 

Cells were seeded on IBIDI slides (IBIDI, Martinsried, Germany) (scratch assay: 

80,000/well; Lysosome staining: 40,000/well) one day before treatment. After treatment 

cells were fixed with 4%-paraformaldehyde, 10 minutes, RT. To permeabilize, 0.2% Tri-

ton/PBS was added for 2 minutes, RT. For blocking 0.1% Triton, 1% BSA/PBS was added 

for 10 minutes, RT. Antibodies were diluted in 0.1% Triton, 1% BSA/PBS. Cell samples 

were incubated with the primary antibodies for one hour, RT. Before the secondary anti-

body was added, cells were washed three times with PBS+ before adding the secondary 
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antibody for another hour, RT. Cells were washed three times with PBS+ and once with 

destilled water. Cell samples were covered with a coverslip using mounting medium. 

If cells shouldn’t be permeabilized (EGF-R surface staining), no Triton was used and anti-

bodies were diluted in PBS without Triton. 

For the lysosome staining 75 nM LysoTracker (Invitrogen) was added into the culture me-

dium and incubated for 30 minutes. To stain the nuclei, Hoechst was added in a final con-

centration of 0.05 µg/ml and incubated for 5 minutes. Cells were analyzed by confocal 

microscopy (Zeiss, Oberkochen, Germany) without fixation. Therefore a climate chamber 

was used (37°C, 5% CO 2).  

Table 2.12: Primary antibodies used for confocal microscopy 

Antigen Isotype Dilution Provider  

Actin goat 1:100 Santa Cruz  

Cortactin rabbit 1:100 Cell signaling  

Ductin (ATP6L) rabbit 1:100 Millipore  

EGF-R mouse 1:100 Santa Cruz  

pAkt (S473) mouse 1:200 Cell signaling  

Rab5A rabbit 1:100 Santa Cruz  

Rac1 mouse 1:100 Upstate  

Table 2.13: Secondary antibodies used for confocal microscopy 

Antigen Conjugate Dilution Provider 

Donkey-anti-goat AlexaFluor ®543 1.300 Molecular Probes 

Goat-anti rabbit AlexaFluor ®488 1:300 Molecular Probes 

Goat-anti rabbit AlexaFluor ®543 1:300 Molecular Probes 

Goat anti-mouse AlexaFluor ®633 1:300 Molecular Probes 

Phalloidin-
rhodamin 

AlexaFluor ®543 1:300 Molecular Probes 

Phalloidin-FITC FITC 1:100 Sigma-Aldrich 

2.2.11. Migration Assays  

2.2.11.1. Wound healing assay 

T24 and L3.6pl cells were seeded one day before treatment (Direct treatment: 250,000 

cells/well; pre-treatment: 100,000 cells/well). In case of the direct treatment, the 100% 
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confluent cell layer was scratched using a yellow pipette tip and directly treated with ac-

cording concentrations of Archazolid B diluted in normal culture medium. In case of the 

pre-treatment cells were treated at 70% confluence for 24 hours. After that, cells were 

scratched as decribed and normal culture medium without Archazolid B was added. The 

migration assay was run for 16 hours followed by fixation with 3% PFA, 10 minutes, RT. 

Pictures were taken at the microscope (Axiovert, Zeiss, Oberkochen, Germany). The 

analysis was done by the WimScratch software (Wimasis, Munich, Germany). 

2.2.11.2. Boyden chamber assay 

T24/L3.6pl cells were seeded as for other experiments and treated with Archazolid B at a 

confluence of 70% for 24 hours/16 hours. 100,000 cells/Boyden chamber well (for siRNA 

experiments with T24: 75,000 cells/ Boyden chamber well) were redissolved in McCoy’s 

culture medium without FCS. Boyden Chambers (Corning Inc., Life Sciences) themselves 

were coated with 0.0001% collagen G. Transwell chambers with a pore size of either 8.0 

µm for L3.6pl cells or 5 µm for T24 cells were used. The bottom of the Boyden chamber 

contained normal culture medium with 10% FCS (L3.6pl: in addition 100 ng/ml EGF). 

Cells were allowed to migrate at 37°C, 5% CO 2 (T24: 4 hours; L3.6pl: 20 hours). Cells 

were fixed and stained with crystal violet. Not-migrated cells on the top of the Boyden 

chamber were removed with a q-tip.  

Pictures of the bottom part of the chamber membrane (migrated cells) were taken using 

the microscope (Axiovert, Zeiss, Oberkochen, Germany). Counted cells were calculated in 

comparison to 10% FCS non-treated cells, which represent in this time frame 100% mi-

gration. 

Transwell

Starvation media

Cells

Growth media (10% FCS)
Porous membrane

 
Figure 2.2: Boyden chamber assay.  Cells,redissolved in starvation medium, were seeded on top 
of the Boyden chamber. Cells migrate in direction of the growth medium containing FCS. Migrated 
cells on the bottom of the porous membrane were fixed and counted. 

2.2.11.3. Chemotaxis 

For the chemotaxis assay, T24 cells were seeded in ”µ-slides Chemotaxis” (IBIDI, Mar-

tinsried, Germany). Trypsinized T24 cells were centrifuged (1000 rpm, 5 min) and redis-

solved in McCoys medium (PAA) containing 2% FCS to a final concentration of 5 x 106 
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cells per ml. Cells were seeded as described in the ‘µ-slide Chemotaxis’ protocol provided 

by the manufacturer. In case of treatment, Archazolid B was directly added during the 

seeding process. After 16 hours treatment at 37°C, 5% CO2, upper and lower reservoirs 

were filled with culture medium without FCS. To generate a FCS-gradient from 0-10%, 

culture medium with 30% FCS was filled in the upper reservoir. Chemotaxis was observed 

over 24 hours by live cell imaging. Thereby, a picture was taken every 10 minutes. Migrat-

ing cells were tracked using the manual tracking plug-in Image J (NIH, Bethesda, MD). 

Furthermore with the chemotaxis and migration tool (IBIDI) of ImageJ tracked cells could 

be further analyzed. Parameters like the accumulative and the euclidean distance, velocity 

as well as the y-forward migration index were determined. 

T24 cells

0 % FCS10 % FCS  
Figure 2.3: Chemotaxis chamber . T24 cells were seeded into the channel (1) and a FCS gradient 
1 - 10% was established to allow migration of T24 in direction of the highest FCS concentration. 
(Image adapted of chemotaxis protocol from IBIDI (Martinsried, Germany) 

2.2.12. Cell adhesion/ruffle formation 

T24 cells were treated for 24 hours with Archazolid B as described before. µ-slides (IBIDI, 

Martinsried, Germany) were coated with fibronectin (BD Biosciences, Heidelberg, Germa-

ny). 40,000 T24 cells/well were allowed to adhere for 30 minutes at 37°C. Supernatant 

was discarded and adherend cells were washed with PBS+ once to remove any unbound 

cells. In a next step, cells were fixed using 4% PFA. Pictures were taken (Axiovert, Zeiss) 

and cells were counted. Furthermore, the amount of peripheral ruffle formation was calcu-

lated relating to the total amount of adherend cells. 

In Hela cells, it is possible to distinguish between peripheral, circular dorsal ruffles and 

invadopodia. Palamidessi et al56. described that Rab5 overexpression in addition to 

hepatocyte growth factor (HGF) induce ruffle formation. We overexpressed 2 µg pCMV-

Rab5WT in Hela cells for 24 hours. In addition, transfected Hela cells were treated with 
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10 nM Archazolid B for 24 hours. Ruffle formation was induced with 10 ng/ml HFG and 

10% FCS for 5 minutes. Cells were fixed with 4% PFA and stained with phalloidin-FITC 

(Sigma-Adlrich) and Rab5 (Santa Cruz) antibody. Pictures were taken at the wide-field 

microscope (Upright Olympus AX70) and the number of ruffles in Rab5-overexpressing 

Hela cells was counted. 

2.2.13. Rac1 activation assay 

For the Rac1 Assay 250,000 T24 cells/well were seeded in 6 well plates. The next day, 

cells were treated with Archazolid B in starvation medium for 24 hours. Rac1 activation 

was induced with 100 ng/ml epidermal growth factor (EGF) for 5 minutes. Cells were har-

vested and the Rac1 assay was performed using the Rac1 pulldown kit (PIERCE). In the 

kit the downstream target of Rac1, called PAK, was used. Only active GTP-bound Rac1 

can bind to PAK. After the pulldown, samples were either frozen at -20 °C or directly load-

ed onto a 12 % gel to perform Western Blot analysis as described in 2.2.15. 

2.2.14. Internalization assay (Transferrin-/EGF-rho damine) 

T24/L3.6pl cells were seeded on µ-slides (IBIDI, Martinsried, Germany). The next day, 

cells were treated with Archazolid B for various time periods. Treated cells were starved 

for 2 hours in DMEM medium. Then, transferrin- / EGF-rhodamine was added for 

5/15 minutes, 37°C. Cells were washed once with PBS + and fixed with 4% PFA (10 min, 

RT). Samples were covered with mounting media and a coverslip and pictures were taken 

using confocal microscopy (Zeiss, Oberkochen, Germany). 

2.2.15. Western Blot 

2.2.15.1. Protein sample preparations-total cell ly sates 

For Western Blot analysis, cells were seeded in 6 well plates and treated as described. 

Supernatant and trypsinized cells were pooled and centrifuged (600 x g, 5min, 4°C). After 

washing the cell pellet with cold PBS, cells were lysed in the lysis buffer for 30 min at 4°C. 

Cellular debris was removed by centrifugation at 10,000 x g, 10 minutes, 4°C. Superna-

tants were transferred to new tubes.  
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Table 2.14: RIPA and triton protein lysis buffer 

RIPA Buffer  Triton lysis buffer 

Tris/HCl 0.79 g  Tris/HCl, pH 7.5 30 mM 

NaCl 0.87 g  NaCl 150 mM 

Nonidet NP40 1.0 ml  EDTA 2 mM 

Deoxycholic acid 0.25 g  Triton X-100 1 % 

Tris/HCl 0.10 g  Complete® 1:25 

Complete® 1:25  H2O  

PMSF 1.0 mM    

Na3VO4 1.0 mM    

NaF 1.0 mM    

H2O  up to 250ml    

Table 2.15: Sample buffer. 

5x SDS sample buffer  3 x Laemmli buffer 

Tris/HCl 3.125 M 100 µl  Tris/HCl 187.5 mM  

SDS 20% 250 µl  SDS 6 % 

Glycerol 500 µl  Glycerol 30 % 

DTT 16% 125 µl  Bromophenolblue 0.025 % 

Pyronin Y 5% 5 µl  β-Mercaptoethanol 12.5 % 

H2O   H2O  

2.2.15.2. Protein quantification   

Protein samples were quantified according to Bradford et al.63 The standard calibration 

curve was generated using samples which contain defined concentrations of BSA sus-

pended in H2O (50 µg/ml-500 µg/ml). 190 µl of the Bradford reagent (Bradford reagent 

stock was diluted 1:5 in H2O) was added to each 10 µl aliquot of the diluted protein sam-

ples (diluted 1:10 in H2O) and calibration samples in a 96-well flat bottom plate. All meas-

urements were performed in triplicates. Probes were incubated for 5 minutes and absorb-

ance was measured using the SpectraFluor PlusTM (Tecan, Männedorf, Austria). 

2.2.15.3. SDS-PAGE 

The SDS-PAGE was performed according to Laemmli et al.67. Here the Mini Protean III 

system from Bio-Rad (Munich, Germany) was used. Prior to loading the samples, the ap-

paratus was assembled as described by the producer, and the chamber was filled with 

ice-cold electrophoresis buffer. Before loading, samples were boiled at 95°C for 5 
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minutes. Equal protein amount/per sample was loaded onto the SDS-gel. 2 µl of the Fer-

mentas page rulerTM prestained protein ladder was loaded on each gel to estimate the 

molecular weights of the separated proteins. Proteins were separated in a discontinuous 

electrophoresis: Proteins were focused by running the probes through the stacking gel, 

pH 6.8 (100 V, 20 minutes) and then separated in the separating gel, pH 8.8 (200 V, 35-

45 minutes). 

Table 2.16: Electrophoresis buffer 

Electrophoresis buffer   

Tris base 3.0 g    

Glycine 14.4 g    

SDS 1.0 g    

H2O up to 1 l    

Table 2.17: Preparation of SDS-PAGE 

Stacking gel  Seperating gel 

30 % PAA solution 1.28 ml  30 % PAA solution 5.0 ml 

1.25 M Tril HCl pH 6.8 0.75 ml  1.25 M Tril HCl pH 6.8 3.75 ml 

10 % SDS 75 µl  10 % SDS 150 µl 

H2O 5.25 ml  H2O 6.1 ml 

APS 75 µl  APS 75 µl 

TEMED 20 µl  TEMED 20 l 

2.2.15.4. Tank blotting 

After separating the samples in the SDS-PAGE, proteins were transferred to a nitrocellu-

lose membrane (Hybond-ECL TM, Amersham Bioscience, Freiburg, Germany) via tank 

blotting. A blotting sandwich was prepared in a box filled with 1 x Tank Buffer as follows: 

cathode-pad, blotting paper, separating gel (from SDS-PAGE)-nitrocellulose membrane, 

blotting paper-pad-anode. Pads, papers, and the membrane were equilibrated with 

1 x Tank buffer 15 minutes prior to running the tank blot. Sandwiches were mounted on 

the Mini Trans-Blot® system (Bio-Rad, Munich, Germany), and the system was filled up 

with ice cold 1 x Tank buffer. Transfers were carried out at 4°C at 23 V overnight. 
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Table 2.18: Tank buffer 

5 x Tank buffer  1 x Tank buffer 

Tris base 15.2 g  5x Tank buffer 200 ml 

Glycine 79.2 g  Methanol 200 ml 

H2O up to 1 l  H2O up to 1 l 

2.2.15.5. Detection 

After the transfer, sandwiches were disassembled and gels were stained with coomassie 

blue (see below). Membranes were incubated in 5 % blotto for 1 hour, RT to block unspe-

cific binding reactions. After one washing step with 1x TBS-T, membranes were incubated 

with the primary antibody dilution overnight at 4°C . The next day, membranes were 

washed three times 10 min with 1x TBS-T and then incubated with the secondary anti-

body for either 1 hour (IR-dye, light protection) or 2 hours (HRP-dye) at room temperature.  

2.2.15.6.1. Detection method-LICOR 

Secondary antibodies coupled to IRDyeTM 800 and Alexa Fluor® 680 with emission max-

ima at 800 and 700 nm were used. Membranes were incubated for one hour, RT in ap-

propriate dilutions. After the incubation period, membranes were washed three times for 

10 minutes with TBS-T. Membranes were scanned and analyzed using the Odyssey im-

aging system (LICOR Biosciences, Lincoln, NE). Thus, the intensity of each protein band 

could be determined. 

2.2.15.7.2. Enhanced Chemiluminescence 

Proteins coupled to peroxidase-conjugated antibodies were detected with ECL solution. 

After incubation with the secondary antibody, membranes were washed three times for 

10 minutes with TBS-T. Then the membrane was incubated protected from light in ECL 

Plus TM Western Blotting detection reagent (Amersham Bioscience) for 1 minute, and lay-

ered between two plastic sheets. Chemiluminescence was detected by exposing the 

membranes to a X-ray film (Super RX, Fuji, Düsseldorf, Germany) for the appropriate time 

period in a darkroom. X-ray films were developed in a Curix 60 developing system (Agfa-

Gevaert AG, Cologne, Germany) 

Table 2.19: Primary antibodies for Western Blot analysis 

Antigen Isotype Dilution Provider 

Actin mouse 1:1000 Santa Cruz 

Akt (tot) rabbit 1:1000 Cell signaling 
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pAkt (S473) mouse 1:1000 Cell signaling 

Ductin (ATP6L) rabbit 1:500 Millipore 

EGF-R rabbit 1:500 Cell signaling 

pEGF-R rabbit 1:1000 Cell signaling 

ERK (tot) rabbit 1:1000 Cell signaling 

pERK mouse 1:1000 Cell signaling 

Rab5A rabbit 1:1000 Santa Cruz 

Rac1 mouse 1:1000 Upstate 

Table 2.20: Secondary antibodies for Western Blot 

Antigen Dilution Provider 

AlexaFluor ® 680 Goat anti-mouse 1:10.000 Molecular Probes 

IRDyeTM 800CW Goat anti-mouse 1:10.000 Li-COR Biosciences 

AlexaFluor ® 680 Goat-anti rabbit 1:10.000 Molecular Probes 

IRDyeTM 800CW Goat-anti rabbit 1:10.000 Invitrogen 

Goat anti-mouse IgG1: HRP 1:5000 Biozol  

Goat anti-mouse IgG2b: HRP 1:5000 Biozol 

Goat-anti rabbit IgG: HRP 1:5000 Dianova 

 

To verify a homogenous loading, polyacrylamid gels were stained for 30 minutes with 

coomassie-blue, and destained with coomassie-destaining solution. After protein detec-

tion, membranes were stained with Ponceau S (0.2% Ponceau S in 5% acetic acid) for 

5 minutes and destained with distilled water. Membrane was scanned (Canon, Krefeld, 

Germany).  

Table 2.21: Coomassie staining solutions 

Coomassie staining solution  Coomassie destaining s olution 

Coomassie blue 3.0 g  Glacial acetic acid 100 ml 

Glacial acetic acid 100 ml  Ethanol 333 ml 

Ethanol 450 ml  H2O up to 1 l 

H2O up to 1 l    

2.2.16. T24 spheroids 

T24 cells were trypsinized and counted. 40,000 cells/ml cells were seeded in 50 mg/ml 

PolyHEMA coated plates. Cells were grown in conditioned medium for 7 days before us-
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ing them for an experiment. All formed speroids were collected. To determine the cell 

number one half of the cell suspension was digested with T/E into a single cell suspen-

sion. Cell number was calculated. According to the determined cell concentration, 

5000 cells/well of the undigested spheroid suspension were seeded in PolyHEMA coated 

plates. A treatment with Archazolid B for 72 hours followed. In parallel, T24 cells were 

seeded in 2D as usual and treated for 72 hours. For the analysis, a CellTiter-Glo Lumi-

nescent Cell Viability Assay (Promega Cooperation, Madison, WI, USA) was performed.  

2.2.17. Statistical analysis 

All experiments were performed at least three times in duplicates/triplicates. Results are 

expressed as mean value ±SEM. One-way ANOVA/Dunnett’s or unpaired Students t-tests 

were performed using GraphPadPrismTM. P-values < 0.05 were considered as significant. 
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3.1. Characterisation of the V-ATPase subunit c as poten-

tial drug target 

3.1.1. Expression and localization of the V-ATPase subunit c 

In some cancer cells, subunits of the V-ATPase seem to be overexpressed7 and expres-

sion may correlate with the invasiveness of these cancer cells68.  

To proof these facts, we first compared the mRNA-level of the V-ATPase subunit c 

(ATP6L) in highly invasive urinary bladder cancer cells (T24) to the level in non-cancerous 

breast cells of epithelial origin (MCF-10A). We could show that the highly invasive cancer 

cells T24 express almost 50% more of the V-ATPase subunit c than the non-cancerous 

breast cells MCF-10A. As standard, the expression level of the 18S rRNA was used. This 

experiment was kindly performed by Lina Schneiders during her Master thesis (Figure 3.1 

A).  

Next, we were interested in comparing the levels of ATP6L in various cancer cell lines. By 

PCR we amplified the V-ATPase subunit c from the cDNA of various cell lines using 

ATP6L-specific primers. We could see that the urinary bladder cancer cell line T24 and 

the pancreatic cancer cell line L3.6pl express more ATP6L than for example the low inva-

sive liver cancer cells HepG2 (Figure 3.1 B). Since the expression level of housekeeping 

genes differ a bit between cell lines69, the shown ATP6L levels should be more considered 

as tendencies.  
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Figure 3.1: ATP6L is overexpressed in highly invasi ve cancer cell lines.  (A) A Real-time PCR 
detecting the V-ATPase subunit c (ATP6L) was performed. Bars represent the mean ± S.E.M. of 
three independent experiments performed in duplicates. (t-test, unpaired). (B) Via PCR ATP6L of 

A B 
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cDNA of various cell lines was performed. One representative experiment out of three independent 
experiments is shown. 

In the breast cancer cell line MDA-MB-231 it could be shown that the V-ATPase subunit A 

is localized in the plasma membrane.15 As we saw a high expression of the V-ATPase 

subunit c (ATP6L) in the urinary bladder cancer cell line T24, we were interested in its 

distribution during the migration. A wound healing assay with T24 cells was performed 

and cells were stained for confocal microscopy using an antibody which detects the V-

ATPase subunit c. Indeed, we see a localization of this subunit in the plasma membrane 

of polarized T24 cells (Figure 3.2). 

 

             

V-ATPase subunit c (ATP6L)

F-actin
    

Figure 3.2: The V-ATPase subunit c (ATP6L) is local ized at the leading edge of migrating T24 
cells.  A wound healing assay with T24 cells was performed and cells were stained with antibodies 
raised against ATP6L. In a Western Blot ATP6L could be detected. One representative image out 
of three independent experiments is shown. 

3.1.2. Archazolid B, a new potent inhibitor of the V-ATPase 

V-ATPases are foremost localized in membranes of acidic organelles, like lysosomes8. To 

test the functionality of Archazolid B (Arch B) as V-ATPase-inhibitor, a lysosome staining 

was performed. Acidic lysosomes were stained with a LysoTracker. If the V-ATPase is 

inhibited, the pH in the lysosomes will increase and the fluoresescence of the pH-sensitive 

LysoTracker is decreased. We compared our results with the effects of an already known 

V-ATPase inhibitor Concanamycin A (Conc A), which binds to the same subunit of the V-

ATPase8. Indeed we see for both V-ATPase inhibitors an increase of the pH in the lyso-

somes, shown by a decrease of the LysoTracker fluorescence (Figure 3.3). 

ATP6L (Ductin)

β-actin

T24
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Figure 3.3: Archazolid B inhibits the V-ATPase-acti vity in lysosomes.  Acidic lysosomes were 
stained with LysoTracker (red) and the nuclei with Hoechst (blue) after 2 hours of treatment with 
the V-ATPase inhibitors Concanamycin A (5 nM) or Archazolid B (5 nM). Representative images 
out of three independent experiments are shown. 

3.1.3. Effects of Archazolid B on gene expression 

By its increased expression and different localization in invasive cancer cells, it is as-

sumed that the V-ATPase plays a crucial role in the process of tumor development and 

metastasis.7,15,68 To elucidate the gene expression which may be affected by the inhibition 

of the V-ATPase using Archazolid B, a microarray was performed (Cooperation with Prof. 

Efferth, University of Mainz).  

The microarray showed that in general genes in the field of cell death, cell proliferation 

and cancer are affected by Archazolid B treatment (Figure 3.4). 

                                 
Figure 3.4: Archazolid B affects genes involved in cell death, cellular growth, proliferation 
and cancer. T24 cells were treated for 24 hours with Archazolid B (10 nM). mRNA was isolated 
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and after cDNA synthesis, a microarray was performed (Cooperation with the group of Prof. Dr. 
Efferth, University of Mainz, Germany) 

3.2. Antitumor effects of Archazolid B 

3.2.1. Archazolid B inhibits cell proliferation of highly invasive 

cancer cells 

In the tumor cell lines T24 and L3.6pl the effect on cell proliferation by V-ATPase inhibitors 

was tested. Using a precursor molecule of the synthesis of Archazolid B60, no effect on the 

cell proliferation could be determined in L3.6pl cancer cells. Whereas Archazolid B inhibit-

ed the cell proliferation already in picomolar ranges in both cell lines. Generally, Archazol-

id B was slightly more potent than Archazolid A or the already known V-ATPase inhibitor 

Concanamycin A (Figure 3.5). 
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cells/compound IC 50 [nM]

T24 (Arch B) 0.22

L3.6pl (Arch B) 0.06

L3.6pl (Arch A) 0.18

L3.6pl (Conc A) 0.22
 

Figure 3.5: Inactivation of the V-ATPase by inhibit ors binding to the subunit c represses 
proliferation of highly invasive cancer cells.  T24/L3.6pl cells were treated with according com-
pounds for 72 hours. A crystal violet staining followed and its absorbance was measured, which 
correlates with the cell number. Bars represent the mean ± S.E.M. of three independent experi-
ments performed in triplicates. *p < 0.05 (One Way ANOVA, Dunnett’s) 

3.2.2. Archazolid inhibits clonogenic survival 

One characteristic of chemoresistant and metastatic tumor cells is that they don’t undergo 

apoptosis upon a short-time treatment with a chemotherapeutic or that some cells are 

able to recover. In a clonogenic assay, cells are allowed to grow over an extended time 

period after a shorter treatment time of the according compound. L3.6pl cells were treated 

at high confluence with Archazolid B for 24 hours. After the treatment cells were seeded at 

very low densitiy and cultivated for another 6 days. As shown in Figure 3.6, 1 nM of 

Archazolid B reduced the clonogenic survival by approximately 60% in comparison to the 

untreated cells (Figure 3.6).  
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Figure 3.6: Archazolid B reduces clonogenic surviva l. 70% confluent L3.6pl cells were treated 
with Archazolid B for 24 hours. Cells were freshly seeded in very low confluence and cultivated for 
6 days. To analyze the clonogenic survivial, cells were stained with crystal violet and the absorb-
ance, which correlates with the number of cells, was measured. Bars represent the mean ± S.E.M. 
of three independent experiments performed in triplicates. *p < 0.05 (One Way ANOVA, Dunnett’s) 

3.2.3.  Cell death features induced by Archazolid B  

During the process of apoptosis different features can be observed, which include cell 

shrinkage, formation of apoptotic bodies, changes in size and shape of the cell and DNA 

condensation and -fragmentation.46,70  

T24 cells treated with Archazolid B for 48 hours show a characteristical morphological 

change. T24 cells shrink and look spindle-shaped. Compared to classical induced apopto-

sis, no clear formation of apoptotic bodies can be determined. However, staining with the 

vital dye Hoechst 33342 clearly indicates DNA condensation in Archazolid B treated cells 

shown here by bright Hoechst staining compared to faint staining in the control cells (Fig-

ure 3.7 B). 
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Figure 3.7: Archazolid B induces morphological chan ges and DNA condensation in T24 
cells.  (A) T24 cells were treated for 48 hours with 10 nM Archazolid B. Pictures were analyzed by 
light microscopy. (B) T24 cells were stained with the vital dye Hoechst 33342 48h after Archazolid 
B treatment. Cells were analyzed by fluorescence microscopy. 

To elucidate the effect of Archazolid B more precisely, cell sections were analyzed by 

transmission electron microscopy. T24 cells were treated with 10 nM Archazolid B for var-

ious timepoints and samples were prepared for electron microscopy. Pictures were taken 

in collaboration with Prof. Dr. Wanner, Department of Physiology, LMU Munich.  

For each timepoint, two pictures are shown in Figure 3.8. After 5 hours of Archazolid B 

treatment, small vacuoles seem to be formed in the cytoplasm. After 15 hours the nuclei 

membrane already seems to be separated. Furthermore, the determined vacuoles get 

bigger and show some content. Vaccari et al.71 described this vacuoles with content as 

multivesicular bodies (MVBs) The morphology of mitochondria and the endoplasmatic 

reticulum look relatively normal. After 30 hours, the cytoplasm is more and more filled with 

vacuoles, some with content some without.  
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Figure 3.8: Morphological changes by Archazolid B d etermined by electron microscopy.  T24 
cells were treated with 10 nM Archazolid B for various time points. Cells were embedded in paraffin 
and sections were done. Cells were further prepared for electron micorsocopy and pictures were 
taken. (Cooperation with the group of Prof. Dr. Wanner, Department of Physiology, LMU Munich). 
(N-nuclei, M-mitochondria, V-vacuoles, MVB-multivesicular bodies) 

3.2.4.  Archazolid B induces apoptosis 
To quantifiy apoptosis the amount of DNA condensation and fragmentation was measured 

via flow cytometry. Archazolid B induces apoptosis time-and dose-dependent. But inter-

estingly, the induction of apoptosis started after a quite late treatment time. After 48 hours, 

about 20-25 % of cells treated with 10 nM Archazolid B underwent apoptosis. This rate 

increased up to 50-60 % after a treatment for 72 hours (Figure 3.9). 
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Figure 3.9: Archazolid B induces dose-and time-depe ndent apoptosis. T24/L3.6pl cells were 
treated with various concentrations for 24 hours (A), 48 hours (B), 72 hours (C). Cells were perme-
abilized and stained with propidiumiodide using the method described by Nicoletti et al.61 DNA 
condensation/apoptotic cells, were quantified by flow cytometry. Bars represent the mean ± S.E.M. 
of three independent experiments performed in triplicates. *p < 0.05 (One Way ANOVA, Dunnett’s) 

3.2.5.  Effects of Archazolid B on the cell cycle  

Some chemotherapeutics induce a cell cycle arrest. The cell cycle is defined as a number 

of events during cell replication, distinguished between the interphase and the mitosis, the 

subdividing G1/G0 (single DNA content), S and G2/M (double DNA content) phases, all 

depending on the amount of DNA per cell. As shown in Figure 10, there is almost no ef-

fect on the G1/G0 or G2/M-phase in both cell lines. There is a slight increase of the amount 

of cells in the S-phase, which seems to be more obvious in the T24 cells. 
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Figure 3.10: Archazolid B doesn’t affect the cell c ycle significantly.  T24/L3.6pl cells were 
treated for 48 hours and a propidiumiodide staining using the method described by Nicoletti et al.61  
was performed. The cell cycle analysis was done with the FlowJo 7.4 program. Bars represent the 
mean ± S.E.M. of three independent experiments performed in triplicates. *p < 0.05 (One Way 
ANOVA, Dunnett’s) 

3.2.6.  Archazolid B induces apoptosis caspase-depe ndently 

The pan caspase-inhibitor Q-VD-OPh inhibits the activation of all caspases. In combina-

tion of this pan caspase-inhibitor Q-VD-OPh with Archazolid B no apoptotis could be 

measured. Therefore, Archazolid B induces apoptosis caspase-dependently.  
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Figure 3.11: Archazolid B induces caspase-dependent  apoptosis. T24/L3.6pl cells were treat-
ed with Archazolid -/+ the caspase-inhibitor Q-VD-OPh for 48 hours. Cells were permeabilized and 
stained with propidiumiodide using the method described by Nicoletti et al.61 DNA condensation 
was quantified by flow cytometry. Bars represent the mean ± S.E.M. of three independent experi-
ments performed in triplicates. *p < 0.05 (t-test, unpaired) 

To underline the results, the activity of various caspases was measured. Generally, 

caspases are separated in initiator caspases, such as caspases-8 and-9, which in turn 

promote activation of downstream caspases and effector caspases (caspases-3,-6, and-

7). Really prominent is the activation of caspase-8 upon treatment of the cells with 

Archazolid B in both cell lines, followed by a reduced Bid expression after Archazolid B 

treatment. Furthermore, we can determine caspase-3 activation (Figure 3.12). These ex-

periments were kindly performed by Isabella Stapff during her Master thesis. 
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Figure 3.12: Archazolid B induces the activation of  caspase-8 and caspase-3.  T24/L3.6pl cells 
were treated for 48 hours and caspase-8 (A) or caspase-3 (C) - activity was measured using the 
specific caspase substrate. Cleavage of the caspase-substrate can be measured as fluorimetric 
shift. Bars represent the mean ± S.E.M. of three independent experiments performed in triplicates. 
*p < 0.05 (One Way ANOVA, Dunnett’s). (B) After 48 hours Archazolid B treatment, a Western Blot 
was performed and proteins were detected using specific antibodies. One experiment out of three 
independent experiments is shown. 

On protein levels the induction of caspase-8 could also be shown. Beside that, we could 

determine the activation of the effector caspase-9 by Archazolid B, which is involved in the 

formation of the apoptosome in the intrinsic pathway. Caspase-3 is involved in cleavage of 

a variety of proteins such as poly (ADP-ribose) polymerase (PARP) a DNA repair enzyme 

which is active in presence of DNA damage. PARP cleavage is therefore an indicator for 

DNA strand breaks leading to apoptosis and it is induced by Archazolid B treatment (Fig-

ure 3.13).  
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Figure 3.13: Archazolid induces the activation of c aspase-8/-9 and the cleavage of PARP 
induced by caspase-3 in a time and dose-dependent m anner.  (A) L3.6pl cells were treated with 
10 nM Archazolid for various timepoints. (B) L3.6pl cells were treated with various concentrations 
of Archazolid B for 48 hours. Western Blot was performed and proteins were detected using specif-
ic antibodies. One experiment out of three independent experiments is shown. 

3.2.7.  Archazolid B affects the intrinsic apoptoti c pathway 

Two classical signaling pathways of caspase-dependent apoptosis can be distinguished: 

the extrinsic and the intrinsic pathway. The intrinsic pathway is mitochondria-dependent 

and regulated by the Bcl-2 family and leads to the activation of caspase family members. 

To distinguish which pathway is influenced by Archazolid B, we determined if Archazolid B 

causes a loss of the mitochondrial potential in treated cells. Indeed, we see after 24 hours 

of treatment with Archazolid B that the mitochondrial potential is affected (Figure 3.14 A).  

Furthermore, we see a downregulation of the anti-apoptotic molecule Bcl-2 after 48 hours 

of Archazolid B treatment, which is involved in the inhibition of apoptosis via the intrinsic 

pathway (Figure 3.14 B). 

Via flow cytometry we could detect cyctochrome c release from the mitochondria, which is 

a further hint that Archazolid B induces apoptosis via the intrinsic pathway (Figure 3.14 C). 

The measurement of the cytochrom c was kindly performed by Isabella Stapff during her 

Master thesis 
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Figure 3.14: Archazolid B induces loss of the mitoc hondrial potential, downregulates the 
anti-apoptotic protein Bcl-2 and induces cytochrome  c release.  (A) T24/L3.6pl cells were 
treated for 24 hours with Archazolid B. Cells were stained with JC-1 and analyzed via flow cytome-
try. One representative histogram out of three independent experiments performed in triplicates is 
shown. (B) L3.6pl cells were treated with various concentrations of Archazolid B for 48 hours. 
Western Blot of total cell lysate was performed. One experiment out of three independent experi-
ments is shown. (C) After 48 hours of treatment with Archazolid B, cytochrome c release was de-
termined via flow cytometry. Bars represent the mean ± S.E.M. of one experiment performed in 
triplicates. *p < 0.05 (One Way ANOVA, Dunnett’s) 
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3.2.8.  Effects of Archazolid B in a 3-D spheroid m odel 

Spheroids exhibit an in vitro 3D model and therefore fill a gap between the consideration 

of effects in 2D in vitro assays and in vivo assay. Grown spheroids were treated with 

Archazolid B for 72 hours. As we can show in Figure 3.15, the cell viability of T24 cells in 

2D is almost completely inhibited at nanomolar concentrations. But also the viability of the 

spheroids is clearly diminished (Figure 3.15). This experiment was kindly performed in 

cooperation with the group of Prof. Dr. Wagner, LMU Munich. 
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Figure 3.15: Archazolid B diminishes the cell viabi lity of T24 spheroids . Spheroids were 
grown for 7 days before the treatment with Archazolid B. After 72 hours of Archazolid B treatment 
cell viability was determined. Bars represent the mean ± S.E.M. of triplicates of one representative 
experiment, *p < 0.05 (One Way ANOVA, Dunnett’s). The experiment was repeated three times in 
total. 

3.2.9.  Impairment of proliferation, apoptosis and clonogenic sur-

vival by the downregulation of ATP6L 

Archazolid B binds to the V0 subunit c of the V-ATPase. To prove, that the effects on pro-

liferation, apoptosis and clonogenic survival are due to the inhibition of the V-ATPase, we 

downregulated this subunit (ATP6L) using siRNA. Surprisingly, the downregulation of 

ATP6L did not show an inhibition of cell proliferation after 72 hours, also no apoptosis is 

induced by the downregulation of ATP6L itself. However, the apoptosis rate is even in-

creased by the combination of siRNA transfection and Archazolid B treatment in T24 cells 

3D spheroids 

2D  

2D 
3D 



RESULTS 53 

(Figure 3.16). The level of ATP6L-downregulation was tested via real time PCR (see Fig-

ure 3.17). 
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Figure 3.16: Downregulation of ATP6L via siRNA does  not affect cell proliferation and apop-
tosis.  T24/L3.6pl cells were transfected with siRNA-ATP6L for 24 hours, followed by a treatment of 
Archazolid B for another 48 hours. (A) Cells were stained with crystal violet to determine cell prolif-
eration. (B) Cells were permeabilized and stained with propidiumiodide (Nicoletti et al61.) and ana-
lyzed by flow cytometry. Bars represent the mean ± S.E.M. of three independent experiments per-
formed in triplicates. *p < 0.05 (One Way ANOVA, Dunnett’s) 

But interestingly, the clonogenic survival of T24/L3.6pl cells was inhibited. After a transfec-

tion for 24 hours with siRNA, cells were seeded in very low density and cultured for 6 

days. Clearly, the longtime proliferation of the siRNA-ATP6L transfected cells was inhibit-

ed (Figure 3.17).  
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Figure 3.17: The downregulation of the V 0 subunit c of the V-ATPase (ATP6L) inhibits the 
clonogenic survival.  T24 (A) and L3.6pl (B) cells were transfected for 24 hours with siRNA. Cells 
were seeded at very low densitiy and cultured for 6 days. A staining with crystal violet followed. The 
absorbance of the crystal violet correlates with the cell number. Bars represent the mean ± S.E.M. 
of three independent experiments performed in triplicates. *p < 0.05 (t-test, unpaired) 

3.3. Antimetastatic properties of Archazolid B 

3.3.1. Effects of Archazolid B on cell migration 

3.3.1.1. Impairment of wound healing by Archazolid B 

To first test the ability of Archazolid B to inhibit the migration in T24 cells and L3.6pl cells a 

wound healing assay was performed. In this assay, direct treatments versus pre-

treatments were tested. As seen in Figure 3.18, the direct treatment with Archazolid B 

after scratching a wound into the confluent cell layer, led only for the L3.6pl cells to a sig-
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nificant inhibitory effect on cell migration (Figure 3.18 B). The T24 cells, which seem to be 

more resistant and show a higher migration potential, appear almost not affected (Figure 

3.18 A). 
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Figure 3.18: Direct Archazolid B treatment shows sl ight inhibitory effects on the wound 
healing.  The confluent cell layer of T24 (A) and L3.6pl (B) was scratched with a pipette tip. Cells 
were allowed to migrate while directly being exposed to Archazolid B treatment. Cells were fixed 
and analyzed. Bars represent the mean ± S.E.M. of three independent experiments performed in 
triplicates. *p < 0.05 (One Way ANOVA, Dunnett’s) 

Since we didn’t see a significant reduction of cell migration for the direct treatment of T24 

cells with Archazolid B, we tried to pre-treat the cells for 24 hours followed by the proce-

dure of a scratch assay. During the actual migration no additional Archazolid B was add-

ed. Since the treatment and migration time did not take longer than 40 hours, we could be 

sure that no more than 20 % of the cells undergone apoptosis (Figure 3.20). 

Indeed, the effect of Archazolid B on cell migration of T24 and L3.6pl cells was more pro-

nounced when the cells were pre-treated (Figure 3.19). 
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Figure 3.19: Pre-treatment of Archazolid B inhibits  the wound healing significantly. The 70-
80% confluent cell layer of T24 (A) and L3.6pl (B) was treated for 24 hours. The confluent cell layer 
was scratched with a pipette tip. Cells were allowed to migrate without additional treatment with 
Archazolid B. Cells were fixed and analyzed. Bars represent the mean ± S.E.M. of three independ-
ent experiments performed in triplicates. *p < 0.05 (One Way ANOVA, Dunnett’s) 

3.3.3.2. Impairment of migration by Archazolid B in  the Boyden chamber assay 

During the migration process, cancer cells have to pass different barriers. To mimic this 

barrier a migration assay using Boyden chambers was performed. In this assay cells have 

to migrate through a porous membrane in direction to FCS.  

As described in the material and methods, T24 and L3.6pl cells were pre-treated before 

seeded in collagen-coated Boyden chambers. As shown in Figure 20, a clear inhibition of 

migration started with a concentration of 1 nM Archazolid B and became even more prom-

inent with a concentration of 10 nM. The results are similar in both cell lines. During the 

assay time almost no apoptosis (for the L3.6pl cells max. 20% apoptosis) was induced 

(Figure 3.20). 
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Figure 3.20:  Archazolid B inhibits the migration of highly invas ive cancer cells. (A) T24 cells 
were pre-treated for 24 hours and allowed to migrate in Boyden chambers for 4 hours. (B) For the 
L3.6pl cells the migration inhibition looks similar. L3.6pl cells were pre-treated for 16 hours and 
allowed to migrate in Boyden chambers for 20 hours. Bars represent the mean ± S.E.M. of three 
independent experiments performed in triplicates. *p < 0.05 (One Way ANOVA, Dunnett’s) 

3.3.3.3. Effects of Archazolid B on cellular chemot axis 

To further analyze the migration process inhibited by Archazolid B, a chemotaxis assay 

was performed. Here, it can be distinguished if Archazolid B blocks cell migration via in-

hibiting cell motility per se (chemokinesis) or if the effects are caused by a loss of orienta-

tion. In a chemotaxis assay a FCS gradient is prepared and a directional migration to 10% 
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FCS is induced. Cells pre-treated with 10 nM Archazolid B were still able to move (intact 

accumulative distance), but without the right orientation in direction to FCS (reduced Eu-

clidean distance and reduced distance direction y-forward migration index) (Figure 3.21). 
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Figure 3.21:  Archazolid B inhibits the migration of highly invas ive cancer cells.  T24 were 
treated with 10 nM Archazolid B for 16 hours. A FCS-gradient was created and life cell imaging 
was performed over 24 hours. Bars represent the mean ± S.E.M. of three independent experi-
ments. *p < 0.05 (t-test, unpaired) 
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3.3.2. Effects of Archazolid B on ruffle formation and the Rho-

GTPase Rac1 

Since the migration process in T24 cells seems to be inhibited, the effect on the adhesion 

was determined. T24 cells were treated with Archazolid B for 24 hours and then freshly 

seeded on fibronectin-coated IBIDI-slides. After 30 minutes of adhesion, cells were fixed 

with paraformaldehyde. Counting the adherent cells, no significant difference could be 

determined of Archazolid B-treated cells in comparison to control cells. But the morpho-

logical change of the Archazolid B-treated cells was obvious; since control cells show a 

prominent ruffle formation at the plasma membrane, no ruffles could be seen in Archazolid 

B treated cells (Figure 3.22 A). In the ruffles usually the active Rho-GTPase Rac1 is local-

ized. After Archazolid B treatment, Rac1 is no longer localized at the plasma membrane 

during the adhesion process (Figure 3.22 B). Furthermore, during the migration process, 

no Rac1 is localized at the leading edge of T24 cells (Figure 3.22 C). In order to analyze if 

beside the localization, the activation of Rac1 itself is affected, we performed a Rac1-

pulldown assay using a downstream target (Pak) of the active Rac1 (Rac1-GTP). Indeed, 

also the Rac1 activation is inhibited by Archazolid B treatment (Figure 3.22 D). 
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Figure 3.22: Archazolid B affects ruffle formation and Rac1 localization and activation.  (A) 
T24 cells were pre-treated for 24 hours and then freshly seeded on fibronectin-coated plates. After 
30 minutes, cells were fixed with paraformaldehyde and the number of cells and ruffles were 
counted. Bars represent the mean ± S.E.M. of three independent experiments performed in dupli-
cates. *p < 0.05 (t-test, unpaired) (B) Freshly adhered T24 cells were stained for fluorescence mi-
croscopy using an antibody raised against Rac1. The cytoskeleton was stained with phalloidin-
rhodamine (C) T24 cells were treated with Archazolid B for 24 hours and a wound healing assay 
was performed. Fixed cells were stained for fluorescence microscopy using an antibody raised 
against Rac1 and Cortactin. The cytoskeleton was stained with phalloidin-rhodamine. (D) T24 cells 
were treated for 24 hours with Archazolid B in starvation medium. Rac1 activation was induced with 
the treatment of 100 ng/ml EGF. A Rac1-pulldown assay was performed followed by a Western 
Blot. Representative experiments out of three independent experiments are shown. 

3.3.3. The downregulation of ATP6L inhibits migrati on 

To elucidate if the reported effects on the migration are due to the inhibition of the V0 sub-

unit c of the V-ATPase, we downregulated this subunit (ATP6L) using siRNA and per-

formed a Boyden chamber assay. Indeed, we could see that also by the downregulation of 

the V0 subunit c of the V-ATPase (ATP6L) the migration in T24 and L3.6pl cells is inhibit-

ed. Notice, that after 24 hours of transfection with siRNA (starting point of the Boyden 

chamber assay), no apoptosis was induced by siRNA (Figure 3.23).  
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Figure 3.23: The migration of T24 (A) and L3.6pl (B ) cells is inhibited by the downregulation 
of the Archazolid B binding site, the V-ATPase subu nit c, by siRNA.  Cells were transfected 
with siRNA for 24 hours, followed by a Boyden chamber assay. As a control, real-time PCR was 
performed. Furthermore, a cytotoxic effect induced by the siRNA-transfection was excluded by 
performing propidium iodide staining (Nicoletti et al61.) 24 hours after transfection (starting point of 
the Boyden chamber assay). Bars represent the mean ± S.E.M. of three independent experiments 
performed in duplicates. *p < 0.05 (t-test, unpaired). 
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3.3.4. The downregulation of ATP6L inhibits localiz ation and acti-

vation of Rac1 

The described effects on the Rho-GTPase Rac1 could also be determined by downregula-

tion of the V0 subunit c of the V-ATPase (ATP6L). Generally, adhesion and the amount of 

ruffle formation were already decreased in cells transfected with control siRNA. But com-

pared with the siRNA-ATP6L transfected cells, a decrease of ruffle formation could be 

determined. Furthermore in a scratch assay we could show, that ATP6L and Rac1 are not 

localized at the leading edge anymore. Also, the activation of Rac1 is affected by the 

downregulation of the V0 subunit c of the V-ATPase (Figure 3.24). 
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Figure 3.24: Downregulation of ATP6L affects Rac1 l ocalization and activation (A) T24 cells 
were transfected 24 hours with siRNA-ATP6L and freshly seeded. Phase-contrast pictures were 
taken and cells were counted. Bars represent the mean ± S.E.M. of three independent experiments 
performed in duplicates. *p < 0.05 (t-test, unpaired). (B) T24 cells were transfected for 24 hours 
with siRNA-ATP6L followed by a wound healing assay and fluorescent staining with antibodies 
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raised against ATP6L and Rac1 and the dye phalloidin-rhodamine. (C) A Rac1 pulldown assay 
(PIERCE) was performed 24 hours after transfection with siRNA-ATP6L. Downregulation of ATP6L 
via siRNA was proved for each single experiment by real-time PCR. Representative experiments of 
three independent experiments are shown. 

3.3.5. Archazolid B increases EGF-R expression on t he cell sur-

face  

Beside the Rho-GTPases, growth factor receptors play a crucial role in the migration pro-

cess. With growth factor recpetors, cells can detect the direction of nutrition and get there-

fore polarized. We measured the amount of epidermal growth factor receptor (EGF-R) on 

the cell surface. We could detect an increase of EGF-R on the cell surface after a treat-

ment of 10 nM Archazolid B for 24 hours. Furthermore the total amount of protein did not 

change (Figure 3.30 A/B). Since this was quite surprising we were interested in the distri-

bution of EGF-R on the cell surface. During migration, more EGF-R should be localized at 

the leading edge. In not-permeabilized cells we saw that the distribution of EGF-R 

changed after Archazolid B treatment. In control cells, a big amount of EGF-R seems to 

be localized at the leading edge. In Archazolid B-treated cells in contrast, EGF-R seems 

to be localized all over the cell surface and no longer at the leading edge (Figure 3.30 C). 

But the EGF-R seems to be still active, shown here by its phosphorylation at Tyr1068 

(Figure 3.31 D). 
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Figure 3.30: Archazolid B increases EGF-R expressio n on the cell surface and changes its 
localization.  (A) T24 cells were treated for 24 hours with Archazolid B. Using an EGF-R-FITC anti-
body, surface EGF-R was labeled and its amount was measured via flow cytometry. Bars represent 
the mean ± S.E.M. of three independent experiments performed in triplicates. *p < 0.05 (One Way 
ANOVA, Dunnett’s). (B) A Western blot of total cell lysate was performed (C.1) Cells were treated 
for 24 hours with Archazolid B, scratched and after 5 hours of migration, fixed and stained for EGF-
R without permeabilization (shown here by negative actin-staining). (C.2) As control T24 samples 
were permeabilized and stained with an antibody raised against actin. (D) T24 cells were treated 
for 24 hours with Archazolid B. After starvation period, EGF (100ng/ml) was added for various 
timepoints to induce EGF-R phosphorylation. A Western blot was performed. 

3.3.6. Archazolid B affects EGFR signaling 

Classical signaling pathways affected during the migration process are: the PI3K/AKT 

signaling pathways and the mitogen-activated protein kinases (MAPK) extracellular-

signal-regulated kinases (ERK 1/2) pathway. 

The extracellular signal-regulated kinases 1 and 2 (ERK 1/2) are the most prominent 

members of the family of mitogen-activated protein kinases (MAPK). MAPKs influence cell 

proliferation, differentiation, survival, apoptosis and development.72 Interestingly, the 

phosphorylation of ERK 1/2 was increased by a pre-incubation with Archazolid B (Figure 

3.31 A). 
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AKT is a kinase important in various cellular processes like apoptosis, survival, cell growth 

and proliferation.73 Since we induced the Rac1 activation with epidermal growth factor 

(EGF), we tested if the phosphorylation of AKT at Ser473, which is induced by EGF, can 

be inhibited by pre-treatment of Archazolid B. Performed was a time-course of EGF-

treatment. We can see that the phosphorylation and therefore full activation of AKT is in-

hibited by Archazolid B pre-treatment (Figure 3.31 A). Furthermore, during migration, the 

binding of a growth factor activates PI3K, which induces PtdIns-2,4,5-P3 production. By 

the binding of AKT to PtdIns-2,4,5-P3 it is localized at the plasma membrane. In Figure 

3.31 B it is shown that that Archazolid B treatment inhibits the localization of AKT at the 

plasma membrane during the migration process (Figure 3.31 B). 
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Figure 3.31: Archazolid B treatment reduces EGF-ind uced activation and localization of AKT 
but increases phosphorylation of ERK.  (A) T24 cells were treated for 24 hours with 10 nM 
Archazolid B. Cells were starved for 2 hours and 100ng/ml EGF was added for various time peri-
ods. Finally, a Western blot was performed. One representative experiment out of three independ-
ent experiments is shown. (B) T24 cells were treated for 24 hours and a wound healing assay was 
performed. A staining for fluorescence microscopy was performed using antibodies raised against 
pAKT-S473. The actin-cytoskeleton was stained with phalloidin-rhodamine. One representative 
experiment out of three independent experiments is shown. 
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3.3.7. Archazolid B affects the internalization pro cess 

3.3.7.1. Effects on internalization after short tim e treatment 

In the literature it could be reported that V-ATPase inhibition leads to defects in the cellu-

lar trafficking and recycling processes.16,74,75 Most of the effects induced by Archazolid B 

were determined after a longtime treatment. Baravalle et al. could show that Bafilomy-

cin A1 inhibits the recycling and degradation of dextran already after 1 hour treatment.75 To 

prove that this known phenomenon can be achieved with Archazolid B as well, we treated 

T24 cells with Archazolid B for 1 hour and allowed dextran-rhodamine to internalize for 10 

minutes. Cells were fixed and analyzed via confocal microscopy. Indeed, we can show 

that also Archazolid B inhibits the transfer of dextran from early to late endosomes already 

after this short-time treatment (Figure 3.27). 
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Figure 3.27: Archazolid B affects dextran uptake af ter short-time treatment.  T24 cells were 
starved for 2 hours. After 1 hour, 10 nM Archazolid B was added. After Archazolid B treatment, 
dextran-rhodamine was added for 10 minutes. Finally cells were fixed and analyzed via confocal 
microscopy. Representative images out of three independent experiments are shown. 

3.3.7.2. Effects of Archazolid B on internalization  after longtime treatment 

Furthermore, Baravalle et al. reported that they don’t see an effect of 1 hour Bafilomy-

cin A1 treatment on the transferrin-uptake.75 With Archazolid B we also don’t see effects 
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on the transferrin uptake after shorttime treatments. But treating the cells for longer times, 

like 20 hours or 24 hours clearly evokes an inhibition of transferrin uptake. Since no acid 

wash was carried out, which removes extracellular bound transferrin to its receptor, we 

can see, that transferrin-rhodamine binds to its receptor but the uptake is inhibited (Figure 

3.28). 
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Figure 3.28: Archazolid B inhibits the uptake of tr ansferrin-rhodamin after longtime treat-
ment. T24 (A) and L3.6pl (B) cells were treated for various times with 10 nM Archazolid B. Trans-
ferrin-rhodamine was added for 10 minutes and cells were fixed with paraformaldehyde and ana-
lyzed via confocal microscopy. Representative images out of three independent experiments are 
shown. 

The epidermal-growth factor receptor (EGF-R) is also described to get internalized upon 

ligand binding. After a 24 hour treatment with Archazolid B, the internalization of EGF-R is 

clearly reduced, shown by a reduced uptake of EGF-rhodamine (5 minutes EGF-

rhodamine exposure). But after a longer exposure to EGF-rhodamine (15 minutes), some 

internalization is still possible (Figure 3.29). 
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Figure 3.29: Archazolid B delays the uptake of EGF- rhodamine after longtime treatment. T24 
cells were treated for 24 hours with 10 nM Archazolid B. EGF-rhodamine was added for 5 or 15 
minutes and cells were fixed with paraformaldehyde and analyzed wide-field-microscopy. Repre-
sentative pictures out of three independent experiments are shown. 

3.3.8. Rab5-induced Rac1 activation is inhibited by  Archazolid B 

Palamidessi et al. reported that for the activation of the Rho GTPase Rac1 also the recy-

cling molecule Rab5 is responsible.56 Since we saw that Archazolid B inhibits the localiza-

tion and activation of Rac1 and furthermore saw that the classical recycling pathways 

seems to be affected, we were wondering if Archazolid B influences Rab5-induced Rac1 

activation. Firstly, we were testing if the ruffle formation in Rab5WT overexpressing cells 

is also inhibited upon Archazolid B treatment. Furthermore, we distinguished between the 

formation of peripheral ruffles, which are linked to the migration process and the formation 

of circular dorsal ruffles (internalization) as well to invadopodia (secretion/invasion). In-

deed, we see that peripheral circular dorsal ruffle and invadopodia formation is significant-
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ly reduced in Rab5-overexpressing Hela cells after 24 hours of treatment with Archazolid 

B (Figure 3.32).  
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Figure 3.32: Archazolid B represses the formation o f peripheral, circular dorsal ruffles and 
invadopodia in Rab5WT overexpressing Hela cells . Hela cells were transfected with Rab5WT 
and treated with Archazolid 10 nM for 24 hours. Ruffle formation was induced with 10% FCS and 
10 ng/ml HGF for 5 minutes. Samples were stained for fluorescence microscopy with phalloidin-
FITC and an antibody raised against Rab5. Number of ruffles in Rab5-overexpressing cells were 
counted. (PR=Peripheral ruffles; IP=Invadopodia; CDR=Circular dorsal ruffles) Bars represent the 
mean ± S.E.M. of three independent experiments performed in triplicates. *p < 0.05 (t-test, un-
paired). 
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Furthermore, we could verify that also in T24 cells Rab5WT-overexpression can activate 

Rac1 (Figure 3.33 A). This Rab5-induced Rac1 activation is inhibited after 24 hours of 

Archazolid B treatment (Figure 3.33 B). Via confocal microscopy we saw that even if Rab5 

is overexpressed, Rac1 is not anymore localized at the plasma membrane of T24 cells 

after Archazolid B treatment (Figure 33 C) 
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Figure 3.33:  Rab5-induced Rac1 acitvation is inhibited by Archaz olid B.  (A) T24 cells were 
transfected with pcMV-Rab5. 24 hours later a Rac1-Pulldown assay (PIERCE) was performed. (B) 
T24 cells were transfected with pcMV-Rab5. After 16 hours of transfection, T24 cells were treated 
with Archazolid for another 24 hours. Finally, a Rac1 pulldown assay was performed (PIERCE). (C) 
T24 cells were transfected with Rab5WT and treated with Archazolid B for 24 hours followed by a 
staining for confocal microscopy with antibodies raised against Rab5 and Rac1. Representative 
images out of three independent experiments are shown. 

3.3.9. Endosomal localization of the Rho-GTPase Rac 1 

By Rab5WT overexpression we induced the enlargement of early endosomes. To verifiy 

this enlarged endosomes as early endosomes a staining with the early endosome anti-

gen 1 (EEA1) was performed. Beside the Rab5WT overexpression Rac1-GFP was over-

expressed. Transfected Rac1-GFP is localized in the enlarged early endosomes of control 

cells (Figure 3.34 A). Upon treatment with Archazolid B, we determined less precise en-

dosome structures with according Rac1-GFP positive ring structures. This would suggest 

that upon Archazolid B treatment Rac1 doesn’t localize in Rab5 positive early endosomes 

(Figure 3.34 B). 
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Figure 3.34: Rac1-GFP is less localized in Rab5-ind uced enlarged endosomes.  Rab5WT was 
overexpressed in Hela cells followed by a treatment with 10 nM Archazolid B for 24 hours. Cells 
were fixed with 4 % PFA and a fluorescence staining using antibodies raised against early endo-
some antigen 1 (EEA1) (A) or Rab5 (B). Samples were analyzed via confocal microscopy. Repre-
sentative images out of three independent experiments are shown. 

To elucidate if the Rac1, which might be still localized in endosomes after Archazolid B 

treatment, is still active, we transfected Hela cells in addition to Rab5 and Rac1-GFP with 

a fluorescently tagged Rac1 interactive binding motive (CRIB-YFP plasmid). This con-

struct acts as a biosensor of Rac1 activation since it can only associate with GTP-loaded 

Rac1. In control cells the biosensor is recruited to the Rab5 induced enlarged endosomes, 

indicating active Rac1. In Archazolid B treated cells none of the Rac1 binding motive 

(CRIB-YFP plasmid) is localized in the enlarged endosomes, therefore no active Rac1 is 

localized in Archazolid B treated Hela cells (Figure 3.35). 

B 



RESULTS 73 

     

Arch B 10 nM

R
ac

-C
R

IB

control

R
ab

5

Arch B 10 nM

 

Figure 3.35: No active Rac1 is localized in Rab5-in duced enlarged endosomes.  Rab5WT, 
Rac1-HA and CRIB-YFP was overexpressed in Hela cells followed by a treatment with 10 nM 
Archazolid B for 24 hours. Cells were fixed with 4 % PFA and a fluorescence staining using an 
antibody raised Rab5. Samples were analyzed via confocal microscopy. Representative images 
out of three independent experiments are shown. 

. 



 

 

 

 

 

 

 

4 DISCUSSION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DISCUSSION 75 

4.1. Cancer and treatment strategies 

The development of metastasis and the occurence of resistance to nowadays available 

anti-cancer therapeutics are the main problems in cancer therapy. Current strategies are 

focused on the selective affecting of deregulated molecular pathways in cancer cells. But 

there are evidences that also cell processes leading to the abnormal metabolism in cancer 

cells may be attractive to attack. Because cancer cells show an increased glycolysis, re-

sulting in high lactic acid production and proton accumulation, a new strategy could be to 

inhibit proton pumps and transporters, which would affect tumor cell survival.33,76 

In our study, we show that the V-ATPase inhibitor Archazolid B, which inhibits proton 

translocation, indicates highly potent characteristics as new potential anticancer agent. 

Our goal was to characterize Archazolid B concering its anti-proliferative effects, its poten-

tial to induce apoptosis and its mechanism leading to cell migration inhibition. Since blad-

der cancer77 and pancreatic cancer are quite common and often show high invasive and 

aggressive characteristics, we used for our experiments the highly invasive and resistant 

urinary bladder cancer cell line T24 and the pancreatic cancer cell line L3.6pl.78 

4.2. The V-ATPase as potential drug target 

The Vacuolar-type ATPase (V-ATPase) is one of the fundamental enzymes in nature. It 

enables proton transport processes across membranes and regulates the intraorganellar, 

intra – and extracellular pH.26,32 During the last years, it got clear that malfunction of V-

ATPase is correlated with a number of diseases such as osteopetrosis, renal acidosis, 

male infertility or cancer.6 

We could show that the level of V-ATPase subunit c expression is increased in the highly 

invasive urinary bladder cancer cells T24 compared to the non-cancerous epithelial breast 

cells MCF-10A (Figure 3.1 A). Furthermore compared to the low invasive liver cancer cells 

HepG2, the highly invasive cancer cells T24 and L3.6pl show an increased level of V-

ATPase subunit c expression. (Figure 3.1 B). Additonally, the V-ATPase subunit c is local-

ized at the plasma membrane of T24 cells (Figure 3.2) and therefore the V-ATPase is 

probably responsible for the regulation of the pH not only in acidic organelles, but also in 

the extracellular space.  

Our results are undelined by other studies, where an overexpression of various subunits 

of the V-ATPase could be shown7 and their expression may correlate with the invasive-
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ness of these cancer cells68. Furthermore it could be shown that the distribution of the V-

ATPase in highly invasive cancer cells like MDA-MB-231 differs from the distribution in 

lowly invasive cancer cells like MCF-7, substantiating the hypothesis of the importance of 

an acidific microenvironment during cell migration and invasion.15,33 Due to its increased 

expression and different localization in invasive cancer cells, it is assumed that the V-

ATPase plays a crucial role in the process of tumor development and metastasis.7,15,68  

In most studies regarding the V-ATPase the well known plecomacrolide V-ATPase inhibi-

tors Bafilomycin A1 and Concanamycin A were used. During this work we wanted to fur-

ther characterize a new, very potent V-ATPase inhibitor, called Archazolid B. The 

Archazolids are a novel group of V-ATPase inhibitors. Archazolid, first isolated from the 

myxobacteria Archangium gephyra by Reichenbach and Höfle5,79, seems to specifically 

and very potently (IC50 values in the nanomolar range) inhibit the V-ATPase when com-

pared with purified Na+/K+-ATPases and mitochondrial F-ATPase. 

In our study, Archazolid B inhibits the lysosomal V-ATPase in the nanomolar range (Fig-

ure 3.3). We further discovered that Archazolid B regulates genes involved in the path-

ways of cell death, proliferation and cancer (Figure 3.4). Since we can observe high ex-

pression levels of the V-ATPase in the highly invasive cancer cells T24 and L3.6pl and we 

see that the new and potent V-ATPase inhibitor Archazolid B affects gene regulation in 

the field of cancer, we deeply assume that the V-ATPase is an interesting drug target for 

further investigations.  

4.3. The role of V-ATPase in tumor cell growth 

4.3.1. Anti-proliferative effect of Archazolid B 

Cancer cells are characterized by their abnormal growth regulation, immortality, self-

sufficient growth, evasion of apoptosis, sustained angiogenesis, invasion and 

metastasis.80,81 Beside the possible selection of tumor cells, which are able to survive in 

an unfavourable tumor microenvironment, it has been shown that the acidity also plays a 

role in resistance to chemotherapy, cell migration and proliferation.82-85  

Archazolid B inhibits the proliferation of the highly invasive cancer cells lines T24 and 

L3.6pl in picomolar concentrations (Figure 3.5). Archazolid B is even more potent than 

Archazolid A and the already known plecomacrolide V-ATPase inhibitor Concanamycin A. 

Furthermore, the inhibition of proliferation is really due to the specific macrolide structure, 
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since the precursor molecule of the Archazolid B synthesis doesn’t show any inhibitory 

effect. Really prominent is the effect of Archazolid B on the clonogenic survival. With this 

assay a chemotherapy can be mimicked.86 The highly invasive and resistant pancreatic 

cancer cells L3.6pl were not able to recover from Archazolid B treatment (Figure 3.6). This 

longtime proliferation effect could be shown for the first time as an effect of a V-ATPase 

inhibitor. 

4.3.2. Inhibition of V-ATPase as attractive method to induce apop-

tosis 

Many cancer therapies, like chemotherapy or radiotherapy, exert their antitumor effect by 

triggering apoptosis.87 Upon Archazolid B treatment apoptotic features like cell shrinkage 

and DNA condensation were determined (Figure 3.7). Measuring the amount of apoptotic 

cells, we could show that Archazolid B induces apoptosis in nanomolar concentrations. 

Interestingly, compared to other chemotherapeutics, Archazolid B induces apoptosis rela-

tively at a late stage. Even though we see morphological changes after 24 hours, apopto-

sis is measurable from 48 hours on. After 72 hours of Archazolid B treatment, about 60 % 

of the T24 and L3.6pl cells were apoptotic (Figure 3.9). In WEHI-231 cells (B lymphoma) 

the Concanamycin A-induced apoptosis was reduced by a pre-incubation with imidazole, 

a cell-permeable base. The authors suggested herewith that apoptosis is due to intracellu-

lar acidification.88 

In T24 cells we see a slight increase of the S-phase in the cell cycle analysis, which is 

similar to the determination of a less specific V-ATPase inhibitor Lejimalide.89 The authors 

suggest that the lysosomal signaling, like the release of cystein proteases like Cathepsin 

B , which is important for the activation of pro-apoptotic molecules like Bid or the inactiva-

tion of the anti-apoptotic Bcl-2 family members, might be inhibited leading to a S-phase 

arrest and induction of apoptosis.89-92  

There exist studies, describing that plecomacrolide V-ATPase inhibitors induce apoptosis 

via the intrinsic apopotic pathway. More precisely, in a human submandibular gland ductal 

cancer cell line HSG, the release of mitochondrial cytochrome c resulting in the caspase-

activation upon treatment with Concanamycin A was determined93 as well as in B-cell hy-

bridoma HS-72 caspase-3 activation was measurable.94 The involvement of V-ATPase-

inhibition in the intrinsic apoptotic pathway is underlined by a study showing that overex-

pression of Bcl-2 reduces apoptosis in WEHI-231 cells (B lymphoma) induced by 
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Concanamycin A.88 To proof if also Archazolid B treatment affects the intrinsic apoptotic 

pathway, we first checked the involvement of caspases in the induced cell death. Caspa-

ses are the main mediators to induce apoptosis. A failure in their activation is described as 

a resistance mechanism of cancer cells to apoptosis.95,96 A combination of Archazolid B 

and the Pan caspase-inhibitor QVD-OPh showed no apoptosis induction indicating that 

the apoptosis induced by Archazolid B is caspase-dependent. Capases can be activated 

via the extrinsic receptor pathway or via the mitochondrial intrinsic pathway. Besides 

caspases the Bcl-2 family members are also involved in the intrinsic apoptotic pathway 

and their interplay influences the permeability of the outer mitochondrial membrane.47 In 

addition to the downregulation of the anti-apoptotic molecule Bcl-2 upon Archazolid B 

treatment we see that: the mitochondrial membrane potential is affected, which leads later 

on to a cytochrome c release (Figure 3.14). Caspases like caspase-9, which forms to-

gether with cytochrome c and Apaf-1 the apoptosome, is activated upon Archazolid B 

treatment. Furthermore, caspase-3 is active, which finally induces cell death (Figure 3.12. 

C/3.13).  

Interestingly, we determined also a quite strong caspase-8 acitvation (Figure 3.12 A). 

Possible is that also the extrinsic pathway is involved in the Archazolid B-induced apopto-

sis. Over the cleavage of Bid, a Bcl-2 family protein with a BH3 –only domain, active 

caspase-8 activation can also induce the mitochondrial apoptotic pathway. Bid translo-

cates to the mitochondrial membrane causing cytochrome c release. Indeed, in addition to 

caspase-8 activation, we see a reduction of the pro-Bid, indicating that Archazolid B also 

induces apoptosis via the extrinsic pathway (Figure 3.12 B). 

Similar to the findings of Huss et al.8, who showed the specific binding of Archazolid B to 

the V-ATPase, we could see that Archazolid B has no effect on isolated mitochondria. 

This proves that Archazolid doesn’t bind to the mitochondrial F1F0-synthase (data not 

shown). Since the induction of apoptosis takes quite a while, we suggest that the pH sen-

sititve activation of caspases leading to apoptosis is an indirect effect due to the pH 

change in intracellular organelles and the cytosol. How the V-ATPase is precisely involved 

in the induction of apoptosis and why this induction takes quite a while, is the topic of on-

going projects. Especially the involvement of autophagy and metabolism affected by 

Archazolid B will be further elucidated. 

It is suggested that changes in extra - and intracellular pH are significantly involved in 

mechanisms of multidrug resistance, like a low uptake rate of basic drugs or the seques-

tration of drug compounds in the lysosomal vesicles.84,97,98 Furthermore an increased V-
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ATPase activity has been shown to have anti-apoptotic effects.99 Combinations of V-

ATPase inhibitors in combination with available anti-cancer drugs show increased effects 

in especially multi-drug resistant cells increasing their sensitivity.83,84  

Therefore inhibiting the V-ATPase with Archazolids alone or more reasonable in combina-

tion with available therapeutics, would be an attractive new therapeutic approach to in-

crease cancer cell sensitvity.  

4.3.3. Effects of Archazolid B on T24 spheroid grow th 

In commonly used 2D in vitro cell systems, essential cellular tissue functions are missing. 

Therefore the potential to predict the cellular responses of a real organism is limited. The 

formation of 3D spheroids therefore offers a great opportunity to get a deeper insight into 

the cellular system before starting animal studies.100 The T24 spheroids are formed out of 

anoikis-resistant cells and together with their tissue-like characteristics they can be used 

as a model of small tumors or micro-metastasis.101  

In our study the cell viability of the T24 spheroids was diminished after Archazolid B 

treatment (Figure 3.15). Since Archazolid B also affects this tissue-like model, it would be 

really interesting to test the potency of Archazolid B in in vivo tumor studies. 

4.3.4. The role of the subunit c 

Several V-ATPase inhibitors are known, like Bafilomycin, Concanamycin, benzolactine 

enamides salicylhalamides and lobotamides, which all seem to prominently bind at the c 

subunit. Also in Neurospora crassa it could be shown that mutations in the subunit c of the 

V-ATPase decreases the sensitivity of bafilomycins 20 - to 60 fold. Kubota et al.102 

showed a correlation of the V-ATPase subunit c expression and invasion potential of fi-

broblasts and human invasive lung cancer cells A549 in vitro. In another study, the subu-

nit c (ATP6L) was knocked down using DNA vector-based small interfering RNA (siRNA) 

in a human hepatocellular carcinoma cell line with highly metastatic potential (HCCLM3). 

These injected cells showed an effective growth retard and the formation of metastasis 

was suppressed.68  

In our experiments we could not see a basal effect on proliferation after 72 hours or apop-

tosis induction by downregulation of the V0 subunit c (ATP6L) (Figure 3.16). But in combi-

nation with the Archazolid B treatment, the apoptosis-rate increased in the T24 cells. With 
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the downregulation of the V0 subunit c by siRNA, we still can detect 30% of mRNA level. 

Eventually, this amount might be enough to maintain V-ATPase function for a certain time. 

In combination with Archazolid B the activity is completely inhibited and effects are more 

prominent. Similar Byun et al.103 could not determine a lysosomal pH change after 2 days 

of transfection with siRNA-ATP6L in glial cells, suggesting that ATP6L may function also 

independently of its role as part of the V-ATPase complex. But they could show that siR-

NA-ATP6L transfected cells were more sensitive to sodium nitroprusside-induced cell 

death. Moreover in former studies they showed that cell viability wasn’t reduced after siR-

NA-ATP6L transfection, but in combination with exposure to H2O2 significantly decreased 

cell viability compared to control cells.104  

But indeed, the long-time proliferation/clonogenic survival of siRNA-ATP6L transfected 

cancer cells is prominently inhibited in our studies (Figure 3.17). This effect could be even 

increased by additional low dose treatment with Archazolid B (data not shown). Downreg-

ulation of the V-ATPase subunit c indeed affects the growth of highly invasive cancer 

cells. But probably the cells are able to compensate the reduced level of physiological 

active V-ATPase for a certain time period.  

In the multidrug resistant MCF-7/ADR cells the downregulation of ATP6L by siRNA 

showed increased sensitivity to basic chemotherapeutics like doxorubicin, 5-fluorurocil 

and vincristine.105 Tumor acidity obviously plays a crucial role in cancer cell development 

and seems to be an attractive approach for new treatment options. 

But still it is also possible as suggested by Byun et al.103, that the V-ATPase subunit c 

might function independently of its role in the V-ATPase complex. This has to be further 

defined in future studies. Concerning the additional effect of Archazolid B, it is deeply as-

sumed that the increased effects are due to a complete V-ATPase inhibition-but still an 

additional off-target effect, which might be not as specific, can not be excluded until now.  

4.4. Impairment of V-ATPase in tumor cell migration  

In a study of Sennoune et al. it could be shown that highly invasive MDA-MB231 human 

breast cancer cells express V-ATPase at the plasma-membrane, whereas no plasma-

membrane V-ATPase could be detected in the poorly invasive MCF-7 cell line.15 They 

claimed that the V-ATPase has spezialized functions in cell growth, differentiation, angio-
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genesis and metastasis. With Bafilomycin and Concanamycin a reduction of invasion, 

especially of the aggressive MDA-MB231 cells, was shown.7,15  

Besides the localization of V-ATPase in the lysosomes we could also show that the V0 

subunit c of the V-ATPase is also localized at the plasma membrane of the T24 cells (Fig-

ure 3.2 and 3.3), suggesting a profound role in the migration process of these invasive 

cancer cells. Furthermore, with a pre-treatment of Archazolid B we see inhibitory effects 

on cell migration on both invasive cell lines we have used. The migration in a 2D wound 

healing assay as well as the migration through a pourous membrane in direction of growth 

media (Boyden chamber assay) is inhibited (Figure 3.19 and 3.20). As shown in a chemo-

taxis assay, especially the y-forward index is significantly reduced upon Archazolid B 

treatment (Figure 3.21). This would suggest that the proper polarization of the cells includ-

ing the proper F-actin organization is affected by Archazolid B treatment. 

4.4.1. Rac1 signaling 

Since we see the strong anti-migratory effects by Archazolid B treatment, we were inter-

eseted in the underlying molecular mechanism. There are a few studies describing that V-

ATPase may play a crucial role during migration and its inhibition results in the reduction 

of the migration potential of cancer cells7; but the precise signaling remains still undefined.  

As we suggested after the result of the chemotaxis assay, that Archazolid B might be in-

volved in the process of polarization, we were interested in the main players regulating the 

cytoskeleton: the Rho-GTPases and PI3K-pathway. 

Looking at the process of adhesion, which is a major step during migration, we couldn’t 

see a reduction of adhesion on a fibronectin matrix by Archazolid B treatment. But inter-

estingly, the cell morphology was totally changed, indicating an alteration in the actin-

cytoskeleton (Figure 3.22 A). Usually during adhesion and migration, actin condenses at 

the plasma membrane. All these actin structures are generally described as ruffles. The 

Rho GTPase Rac1 induces the polymerization of F-actin and is therefore also localized in 

these ruffles. During the adhesion, the formation of ruffles is almost completely inhibited 

by Archazolid B treatment and no Rac1 is localized at the plasma membrane (Figure 3.22 

A/B). Also during migration, the localization of Rac1 is inhibited as well as its activation is 

reduced (Figure 3.22 C/D). So far we would suggest, that the proper function of the Rho 

GTPase Rac1 is affected upon Archazolid B treatment. 



DISCUSSION 82 

Interestingly, using siRNA to downregulate the V0 subunit c of the V-ATPase, which corre-

sponds to the binding site of Archazolid B, we can determine similar effects. The migration 

of both highly invasive cancer cells is decreased after siRNA-ATP6L downregulation (Fig-

ure 3.23). Furthermore, ruffle formation, Rac1 localization and Rac1 activation is inhibited 

(Figure 3.24). This indicates that the determined effects of Archazolid B are indeed due to 

the malfunction of the V-ATPase or more precisely to the V0 subunit c. 

4.4.2. EGF-R and its downstream players 

The induction of migration is usually induced upon activation of a growth factor receptor 

by ligand binding. Herewith the cell gets oriented in direction of nutrients and therefore 

guides the actin remodeling, leading to the formation of migratory cellular protrusions.106 

After 24 hours of Archazolid B treatment we see that the EGF-R is accumulating at the 

cell surface, whereas the amount of total EGF-R seems not affected. Also, Bafilomycin A1 

was described to reduce clathrin dependent internalization of the parathyroid hormone 

related peptide receptor.107 

Moreover we see that the distribution of the EGF-R on the cell surface during migration is 

changing by Archazolid B treatment. In control cells the EGF-R is clearly localized at the 

leading edge, whereas this distribution is totally destroyed upon Archazolid B treatment 

(Figure 3.25). These results would suggest a defect of EGF-R internalization, following in 

an unorganized localization of EGF-R on the cell surface. Since growth factor receptors 

are the initial tactic guide to induce the cell polarization, we propose that Archazolid B 

influences this process leading to undirected cell migration. The influence of V-ATPase 

inhibition on recycling processes has been reported75,107 and is further discussed for 

Archazolid B below. 

Since the accumulated EGF-R seems to be still active after Archazolid B treatment (Fig-

ure 3.30 D) it is not surprising that the downstream-target ERK, involved in the MAPK 

pathway, is increased in its activation (Figure 3.31). The MAPK-pathway is also described 

as a pro-survival pathway108, which could be activated upon Archazolid B treatment as a 

possibility to overcome the cellular stress situation. 

Beside its role in cell proliferation it has been described in many studies that PI3K plays a 

major role in the migration processes.51 Upon activation of the growth receptor, PI3K be-

comes activated and induces phosphorylation of PtdIns-2,4-P2 to PtdIns-2,4,5-P3. This is 

localized at the plasma membrane and usually binds to AKT which therefore gets phos-
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phorylated and bound to the plasma membrane. We see that the phosphorylation of AKT 

as well as its localization at the plasma membrane of migrating cells is inhibited (Figure 

3.31). As known, both, Rac1 and AKT, get activated by PI3K and furthermore it is sug-

gested that the activites of Rac1 and AKT are connected and act in a positive feedback 

loop.109 Therefore, it would be interesting to test if the activity of PI3K is also diminished 

upon Archazolid B treatment and if there is a direct connection between AKT and Rac1 

activation. Attractive to look at would be for example if a combinatory treatment with 

Archazolid B and Wortmannin, a PI3K inhibitor, would increase the inhibitory effect of 

Archazolid B on Rac1 activation and cell migration. To proof a direct Rac1-AKT interac-

tion, it would be interesting if by expression of a constitutive active AKT the reduction of 

Rac1 activation by Archazolid B could be diminished.  

4.4.3. Involvement of V-ATPase in endocytosis 

Endocytosis is an important cellular mechanism for the uptake of nutrients, hormones, 

growth factors and plasma proteins.75 Therefore, it is an invaluable process involved in 

cell survial and migration. Endosomes and lysosomes, where recycling and degradation 

takes place, are acidified by V-ATPases.23 The acidic pH is important for the dissociation 

of ligands from its receptors and degradation processes.74 Increase of the pH induced by 

Bafilomycin has been shown to affect the delivery of endocytosed molecules to late endo-

somes or lysosomes. But these effects seem to vary between various cell lines.110,111 

Smiliar to Baravalle et al., who showed effects of Bafilomycin A1 on transferrin recycling 

and dextran transport75, we could see that Archazolid B affects the lysosomal degradation 

of dextran but not the transferrin receptor recycling after shorttime treatments. But upon a 

treatment with Archazolid B for 20 hours, we see an inhibition of transferrin uptake and a 

delay in EGF-internalization (Figure 3.27 and 3.28). Especially the delay in EGF-

internalization would underline the determined increase of EGF-R on the cell surface upon 

Archazolid B treatment. Moreover in the electron-microscopy pictures (Figure 3.8), more 

multivesicular-bodies (MVBs) appeared after Archazolid B treatment compared with con-

trol cells. MVBs are degradative endosomal organelles, mediating trafficking between ear-

ly and late endosomes110 or are involved in exosome formation and secretion.112 The 

MVBs were strongly enlarged and contained internal luminal vesicles (ILV) after Archazol-

id B treatment. This phenomenon appeared also in a study describing the involvement of 

V-ATPase activity in Notch-Signaling.71 Since an even more acidic pH is necessary for the 

lysosomal degradation process, it might be that due to the V-ATPase inhibition by 
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Archazolid B, the final fusion with lysosomes is not possible anymore, which leads to a 

stop in the degradative and probably also in the recycling process, resulting in the en-

largement of MVBs.  

4.4.4. The role of Rab5-recycling 

The uptake of human rhinovirus serotype 2 (HRV2) via receptor-mediated endocytosis in 

Hela cells is affected by Bafilomycin A1. Bayer et al. showed that Bafilomycin A1 arrests 

the transport of the virions in early endosomes, which made them to suggest that the 

transport of endocytosed macromolecules from early to late endosomes on Hela cells 

depends on proper endosome acidification.113 

Palamidessi et al. showed for the first time that Rac1 is localized at endosomes and its 

activation is beside the involvement of GEFs, dependent on the GTPase Rab5.56 Rab5 is 

localized in early endosomes and involved in steps of internalization and separation be-

tween degradation of recycling events.114 Since we saw effects on Rac1 localization and 

activation leading to inhibition of F-actin rearrangement during migration (Figure 3.22) as 

well as inhibitory effects on the internalization processes (Figure 3.28) we were wondering 

if Archazolid B inhibits the Rab5-induced Rac1 activation. First of all we could see that in 

Rab5-overexpressing Hela cells, the formation of all kind of ruffles, which are described to 

be regulated by Rac1, is inhibited (Figure 3.32). The peripheral ruffles forming the migra-

tory lamellipodia and the invadopodia, which are involved in the secretion of proteases in 

the invasion process57 are clearly reduced in Rab5-overexpressing cells. Also the circular 

dorsal ruffles, indicators of internalization events, like endocytosis.56,106 are almost com-

pletely inhibited. This underlines the inhibitory effect of receptor internalization by 

Archazolid B treatment described during this study.  

Moreover, we see in Rab5 induced enlarged early endosomes less Rac1 localization 

(Figure 3.34 B). In a pH-sensor study by the group of Sergio Grinstein, it is suggested that 

by cytosolic pH change, also the energy level of the submembrane is changed. Usually 

the plasmalemmal inner leaflet is highly negative charged due to the high content of poly-

phosphoinositides. PI(4,5)P2 and PI(3,4,5)P3 activated by PI3K in the migration process 

are necessary for the recruitement of polycationic proteins, such as Rac1, which contains 

a cationic motif of intermediate charge (6+), to the plasma membrane.115,116 It would be 

therefore really interesting to test if the V-ATPase inhibition via Archazolid B would 

change submembranous energy level, which then could explain the reduced localization 

and binding of the cationic tail of Rac1 at submembranous compartments. Also the re-
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duced AKT localization could be explained with this experiment which is planned to be 

done in the near future. 

Looking beside the localization also at the activation of the Rho-GTPase Rac1, we could 

show that also in our cell system (T24) Rac1 is activated upon Rab5 overexpression, 

which underlines the results of Palamidessi et al. who described this phenomenom in Hela 

cells.56 But furthermore, the really interesting result is that Archazolid B treatment reduces 

this Rab5-induced Rac1 activation (Figure 3.33 B). Underlined by confocal microscopy 

pictures (Figure 3.35), we suggest that due to the inhibition of the V-ATPase by Archazolid 

B leading to a pH increase in endosomes, the activation of Rac1 via Rab5 is diminished. 

This would therefore result in reduced localization of active Rac1 in cell protrusions result-

ing in diminished actin condensation at the cell’s front (Figure 3.33 C) and therefore no 

cell migration is possible anymore.  
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5.1. Involvement of Archazolid B treatment in tumor  cell 
growth 

V-ATPases are known to regulate intra-organell and intracellular pH, which may regulate 

cell growth and apoptosis. We show that the new V-ATPase inhibitor Archazolid B reduc-

es tumor cell growth and induces caspase-dependent apoptosis foremost over the intrin-

sic mitochondrial pathway. But still the precise regulation of apotosis induction by V-

ATPase remains to be further elucidated (Figure 5.1). As V-ATPase seems to play an 

important role in multidrug resistance, V-ATPase inhibitors highlight an attractive new 

therapeutic target in cancer therapy. Furthermore Archazolid B, as a very specific and 

potent V-ATPase inhibitor, presents a promising new therapeutic drug for cancer treat-

ment. 
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Apoptotic cell death

Caspase-8 activation Bid cleavage
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Figure 5.1: Induction of apoptosis by inhibition of  the V-ATPase with Archazolid B 

5.2. Involvement of V-ATPase inhibition by Archazol id B 
in cell migration and endocytosis 

Archazolid B inhibits tumor cell migration very potently in the nanomolar range. Several 

indices during these studies suggest a defect in cell polarization. The Rho-GTPase Rac1 

is a central regulator of actin remodeling and cell migration. By Archazolid B treatment the 

activation and localization of Rac1 is inhibited. Furthermore, defects in the internalization 

and the unorganized distribution of the EGF-R at the cell surface are additional evidences 
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for a polarization defect. Last, we could see that endocytotic Rac1 activation involving the 

endosomal GTPase Rab5 is reduced by Archazolid B treatment. It is reported that proper 

clathrin-dependent internalization of receptor tyrosin kinases like EGF-R is necessary for 

the activation of the Rho-GTPase Rac in Rab5 positive early endosomes.56 Taken togeth-

er, we conclude, that Archazolid B interferes in the initial steps of endocytosis, leading to a 

stop of recycling or degradation at early endosome processes. Therefore the re-

localization and activation of for example one key player of F-actin re-arrangement, Rac1, 

is repressed, which finally results in an inhibition of cell migration (Figure 5.2). 

For the first time a possible direct mechanism of V-ATPase inhibition leading to cell migra-

tion inhibition in highly invasive cancer cells could be herewith described. Archazolid B, as 

highly potent and specific V-ATPase inhibitor and until now quite uncharacterized, would 

offer an attractive anti-metastatic compound to inhibit the migration of highly invasive tu-

mor cells.  
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Figure 5.2: Reduction of endosomal Rac1 localizatio n and Rab5-dependent Rac1 activation 
by Archazolid B leading to repression of actin asse mbly, which results in cell migration in-
hibition.
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7.1. Abbrevations 

ANOVA Analysis of variance between groups 

Arch  Archazolid 

Arf6 ADP-ribosylation factor 6 

µM micro molar (10-6) 

APS Ammonium persulfat 

ATP Adenosin-5`-triphosphat 

Bcl-2 B-cell lymphoma 

BSA Bovine serum albumin 

cDNA Complementary Desoxyribonucleic acid 

Co Control 

Conc A Concanamycin A 

DMEM Dulbecco`s Modified Essential Medium 

DMSO Dimethylsulfoxid 

DNA Desoxyribonucleic acid 

DTT Dithiothreitol  

ECL Enhanced chemoluminescence 

EDTA Ethylendiamin-N`, N`, N`, N`-tetraessigsäure 

ER Endoplasmatic reticulum 

EtBr Ethidiumbromid 

EtOH Ethanol 

FACS Fluorescence-activated cell sorter 

FCS Fetal calf serum  

Fig Figure 

FL Fluorescence 

FSC Forward scatter 

GTP/GDP Guanosine-5’-triphosphate/-diphosphate 

h Hour(s) 

HEPES N-(2-hydroxyethyl)piperazine-N‘-(2-ethanesulfonic acid) 

HFS Hypotonic fluorochrome solution 

HRP Horeseradish peroxidase 

kDa Kilo Dalton 

l Liter 
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MAPK Mitogen-activated protein kinase 

MMP Mitochondrial membrane potential 

MeOH Methanol 

mM milli molar (10-3) 

mRNA messenger RNA 

NaAc Natriumacetat 

NaF Sodium fluorid 

NaOH Natriumhydroxid 

NEAA Non-essential amino acids 

nM Nano molar (10-9) 

nt Non-targeting 

PAA Polyacrylamid 

PAGE Polyacrylamid-Gelelectrophorese 

PARP Poly–ADP-ribose polymerase 

PBS Phosphate buffered saline 

PVDF Polyvinylidenfluorid 

Q-VD-OPh N-(2-Quinolyl)valyl-aspartyl-(2,6-difluorophenoxy 

RNA Ribonucleic acid 

RNasen Ribonuclease 

rpm rotations per minute 

RT Room temperature 

SD Standard derivation 

SDS Sodium dodecyl sulfat 

sec Second 

Ser Serine 

SSC Sideward scatter 

Tax Paclitaxel 

TBE Tris, Borat, EDTA-Puffer 

TBS-T Tris-gepufferte Kochsalzlösung mit Tween 

T/E Trypsin/EDTA 

TEMED N`, N`, N`, N`-Tetramethylethylendiamin 

TRAIL TNF-related apoptosis inducing ligand 

Tris Trishydroxymethylaminomethane 
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