
Software engineering perspectives
on physiological computing

Andreas Schroeder

Dissertation

an der Fakultät für Mathematik, Informatik und

Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Andreas Schroeder

aus Nizza

München, den 30.11.2011

Erstgutachter: Prof. Dr. Martin Wirsing

Zweitgutachter: Prof. Dr.-Ing. Stefan Jähnichen

Tag der Mündlichen Prüfung: 22.12.2011

Abstract

Physiological computing is an interesting and promising concept to widen
the communication channel between the (human) users and computers, thus
allowing an increase of software systems’ contextual awareness and rendering
software systems smarter than they are today. Using physiological inputs in
pervasive computing systems allows re-balancing the information asymmetry
between the human user and the computer system: while pervasive comput-
ing systems are well able to flood the user with information and sensory
input (such as sounds, lights, and visual animations), users only have a very
narrow input channel to computing systems; most of the time, restricted to
keyboards, mouse, touchscreens, accelerometers and GPS receivers (through
smartphone usage, e.g.). Interestingly, this information asymmetry often
forces the user to subdue to the quirks of the computing system to achieve
his goals – for example, users may have to provide information the software
system demands through a narrow, time-consuming input mode that the sys-
tem could sense implicitly from the human body. Physiological computing is
a way to circumvent these limitations; however, systematic means for devel-
oping and moulding physiological computing applications into software are
still unknown.

This thesis proposes a methodological approach to the creation of physi-
ological computing applications that makes use of component-based software
engineering. Components help imposing a clear structure on software sys-
tems in general, and can thus be used for physiological computing systems as
well. As an additional bonus, using components allow physiological comput-
ing systems to leverage reconfigurations as a means to control and adapt their
own behaviours. This adaptation can be used to adjust the behaviour both to
the human and to the available computing environment in terms of resources
and available devices – an activity that is crucial for complex physiological
computing systems. With the help of components and reconfigurations, it

iv Abstract

is possible to structure the functionality of physiological computing applica-
tions in a way that makes them manageable and extensible, thus allowing a
stepwise and systematic extension of a system’s intelligence.

Using reconfigurations entails a larger issue, however. Understanding and
fully capturing the behaviour of a system under reconfiguration is challeng-
ing, as the system may change its structure in ways that are difficult to fully
predict. Therefore, this thesis also introduces a means for formal verification
of reconfigurations based on assume-guarantee contracts. With the proposed
assume-guarantee contract framework, it is possible to prove that a given
system design (including component behaviours and reconfiguration spec-
ifications) is satisfying real-time properties expressed as assume-guarantee
contracts using a variant of real-time linear temporal logic introduced in this
thesis – metric interval temporal logic for reconfigurable systems.

Finally, this thesis embeds both the practical approach to the realisation
of physiological computing systems and formal verification of reconfigura-
tions into Scrum, a modern and agile software development methodology.
The surrounding methodological approach is intended to provide a frame for
the systematic development of physiological computing systems from first
psychological findings to a working software system with both satisfactory
functionality and software quality aspects.

By integrating practical and theoretical aspects of software engineer-
ing into a self-contained development methodology, this thesis proposes a
roadmap and guidelines for the creation of new physiological computing ap-
plications.

Zusammenfassung

Physiologisches Rechnen ist ein interessantes und vielversprechendes Konzept
zur Erweiterung des Kommunikationskanals zwischen (menschlichen) Nutzern
und Rechnern, und dadurch die Berücksichtigung des Nutzerkontexts in
Software-Systemen zu verbessern und damit Software-Systeme intelligenter
zu gestalten, als sie es heute sind. Physiologische Eingangssignale in ubiq-
uitären Rechensystemen zu verwenden, ermöglicht eine Neujustierung der
Informationsasymmetrie, die heute zwischen Menschen und Rechensystemen
existiert: Während ubiquitäre Rechensysteme sehr wohl in der Lage sind,
den Menschen mit Informationen und sensorischen Reizen zu überfluten
(z.B. durch Töne, Licht und visuelle Animationen), hat der Mensch nur
sehr begrenzte Einflussmöglichkeiten zu Rechensystemen. Meistens stehen
nur Tastaturen, die Maus, berührungsempfindliche Bildschirme, Beschleuni-
gungsmesser und GPS-Empfänger (zum Beispiel durch Mobiltelefone oder
digitale Assistenten) zur Verfügung. Diese Informationsasymmetrie zwingt
die Benutzer zur Unterwerfung unter die Usancen der Rechensysteme, um
ihre Ziele zu erreichen – zum Beispiel müssen Nutzer Daten manuell eingeben,
die auch aus Sensordaten des menschlichen Körpers auf unauffällige weise er-
hoben werden können. Physiologisches Rechnen ist eine Möglichkeit, diese
Beschränkung zu umgehen. Allerdings fehlt eine systematische Methodik für
die Entwicklung physiologischer Rechensysteme bis zu fertiger Software.

Diese Dissertation präsentiert einen methodischen Ansatz zur Entwick-
lung physiologischer Rechenanwendungen, der auf der komponentenbasierten
Softwareentwicklung aufbaut. Der komponentenbasierte Ansatz hilft im All-
gemeinen dabei, eine klare Architektur des Software-Systems zu definieren,
und kann deshalb auch für physiologische Rechensysteme angewendet wer-
den. Als zusätzlichen Vorteil erlaubt die Komponentenorientierung in phys-
iologischen Rechensystemen, Rekonfigurationen als Mittel zur Kontrolle und
Anpassung des Verhaltens von physiologischen Rechensystemen zu verwen-

vi Abstract

den. Diese Adaptionstechnik kann genutzt werden um das Verhalten von
physiologischen Rechensystemen an den Benutzer anzupassen, sowie an die
verfügbare Recheninfrastruktur im Sinne von Systemressourcen und Geräten
– eine Maßnahme, die in komplexen physiologischen Rechensystemen entschei-
dend ist . Mit Hilfe der Komponentenorientierung und von Rekonfiguratio-
nen wird es möglich, die Funktionalität von physiologischen Rechensyste-
men so zu strukturieren, dass das System wartbar und erweiterbar bleibt.
Dadurch wird eine schrittweise und systematische Erweiterung der Funk-
tionalität des Systems möglich.

Die Verwendung von Rekonfigurationen birgt allerdings Probleme. Das
Systemverhalten eines Software-Systems, das Rekonfigurationen unterworfen
ist zu verstehen und vollständig einzufangen ist herausfordernd, da das Sys-
tem seine Struktur auf schwer vorhersehbare Weise verändern kann. Aus
diesem Grund führt diese Arbeit eine Methode zur formalen Verifikation
von Rekonfigurationen auf Grundlage von Annahme-Zusicherungs-Verträgen
ein. Mit dem vorgeschlagenen Annahme-Zusicherungs-Vertragssystem ist es
möglich zu beweisen, dass ein gegebener Systementwurf (mitsamt Kompo-
nentenverhalten und Spezifikation des Rekonfigurationsverhaltens) eine als
Annahme-Zusicherungs-Vertrag spezifizierte Echtzeiteigenschaft erfüllt. Für
die Spezifikation von Echtzeiteigenschaften kann eine Variante von linearer
Temporallogik für Echtzeit verwendet werden, die in dieser Arbeit eingeführt
wird: Die metrische Intervall-Temporallogik für rekonfigurierbare Systeme.

Schließlich wird in dieser Arbeit sowohl ein praktischer Ansatz zur Real-
isierung von physiologischen Rechensystemen als auch die formale Verifika-
tion von Rekonfigurationen in Scrum eingebettet, einer modernen und agilen
Softwareentwicklungsmethodik. Der methodische Ansatz bietet einen Rah-
men für die systematische Entwicklung physiologischer Rechensysteme von
Erkenntnissen zur menschlichen Physiologie hin zu funktionierenden physi-
ologischen Softwaresystemen mit zufriedenstellenden funktionalen und qual-
itativen Eigenschaften.

Durch die Integration sowohl von praktischen wie auch theoretischen As-
pekten der Softwaretechnik in eine vollständige Entwicklungsmethodik bietet
diese Arbeit einen Fahrplan und Richtlinien für die Erstellung neuer physi-
ologischer Rechenanwendungen.

Acknowledgments

To begin with, I would like to thank Martin Wirsing; not only for his sup-
port, but also for his larger efforts in creating a working environment at the
PST chair that is open-minded, challenging, respectful and humane – it is
with high gratitude that I will cherish my memories of the PST chair. I
also thank Stefan Jähnichen for immediately and pragmatically accepting
to be my second reviewer, and taking another responsibility on top of his
tremendous workload.

Additionally, I would like to thank the whole PST group for their sup-
port and for the great team environment. Especially, I’d like to thank Philip
Mayer. Experiencing his pragmatic zeal and his focus in discussions and pair
coding sessions left a persistent mark on my career. I am also very thankful
for the countless discussions Christian Kroiß provided me with, and espe-
cially for his critical eye and refreshingly dissenting view on several topics
we discussed. Furthermore, I am thankful for the feedback that Sebastian
Bauer provided me on the formal aspects of my thesis. I’d also like to thank
Annabelle Klarl, my room mate, who provided me with valuable quick feed-
back on ideas.

A considerable part of this work was created during the REFLECT project,
and the results of my work would not have been the same without the fruitful
collaboration I experienced. From the project team, I would like to highlight
Alessandro Ragnoni and Amadeo Visconti, whose dedication, persistence and
humanity I highly admire.

Finally, I’d like to thank my family and friends for their support and
patience during the writing of my thesis. Especially, my thanks go to Ylva.
I cannot express how thankful I am for the love, confidence and vitality she
brought into my life.

viii Abstract

Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

1 Introduction 1

1.1 Approach . 3

1.2 Contributions . 6

1.3 Reflect . 8

1.4 Structure . 8

2 Background 11

2.1 Physiological computing . 11

2.2 Component-based software . 23

2.3 OSGi . 29

2.4 Component-based formal analysis 38

2.5 Software development methodology 46

2.6 Conclusion . 59

3 Component framework for application development 61

3.1 Requirements . 62

3.2 Framework concepts . 68

3.3 Implementation . 76

3.4 Related OSGi component frameworks 108

3.5 Conclusion . 132

x Table of contents

4 Specifying and verifying systems under reconfiguration 135
4.1 Assume-guarantee reasoning and reconfiguration 136
4.2 Real-time logic for reconfiguration 149
4.3 Simple framework application case study 156
4.4 Related work . 160
4.5 Conclusion . 162

5 Methodology 163
5.1 Standalone verification of reconfigurations 164
5.2 Combining formal verification and Scrum 167
5.3 Informal design modelling . 170
5.4 Reconfiguration patterns in physiological computing 175
5.5 Related work . 198
5.6 Conclusion . 201

6 Case studies 203
6.1 Automotive demonstrator case study 204
6.2 Adaptive advertising . 215
6.3 Conclusion . 222

7 Conclusion 223
7.1 Contributions . 224
7.2 Discussion . 225
7.3 Future work . 228
7.4 Final words . 229

List of Figures

1.1 Software engineering for physiological computing 4

2.1 Physiological computing – basic scheme 13

2.2 Physiological computing systems and the user 18

2.3 OSGi layers . 29

2.4 OSGi layer interactions . 30

2.5 Analyser example plug-in architecture 32

2.6 Reducing bundle dependencies 37

2.7 Monumental and agile software methodologies 48

2.8 Uncertainty of upfront and iterative planning compared 49

2.9 Scrum process . 51

2.10 Scrum burn-down chart . 53

3.1 Identified viewpoints . 62

3.2 Identified requirements structure 63

3.3 REFLECT framework component model 71

3.4 Distribution example . 74

3.5 Eclipse RCP manifest editor 79

3.6 Component lifecycle state machine 92

3.7 Data service architecture . 100

3.8 Data service data structures 101

3.9 Remoting client and server view 104

3.10 PDE declarative services editor 113

3.11 Declarative Services vs Blueprint Container 116

4.1 Contract composition example 142

4.2 Useful axiom schemata and derivation rules of reMITL . . . 153

4.3 Example reconfiguration scenario 156

xii List of figures

5.1 Standalone verification and implementation process 164
5.2 Verification and implementation artefacts 166
5.3 Delaying combination of reconfiguration verification and Scrum168
5.4 Agile combination of reconfiguration verification and Scrum . 169
5.5 System configuration diagram metamodel 171
5.6 System configuration diagram example 172
5.7 Configurations for tracking services 176
5.8 Service tracking system abstracted 180
5.9 Device tracking system as implemented 182
5.10 Configurations for switching between behaviours 187
5.11 Behaviour changing system abstraction 191

6.1 Automotive demonstrator deployed 207
6.2 Automotive demonstrator setup 208
6.3 Demonstrator user interface view, emotion loop 209
6.4 Demonstrator details view, emotion loop 209
6.5 Demonstrator raw data view, emotion loop 210
6.6 Component distribution . 211
6.7 Structure of the emotion loop 212
6.8 Adaptive advertising system interacting with viewer 215
6.9 Initial adaptive advertising architecture 216
6.10 Enhanced adaptive advertising architecture using reconfigura-

tions . 217

7.1 Software engineering for physiological computing 224

List of Tables

3.1 Software framework requirements overview 64
3.2 Requirements coverage through concepts 77
3.3 Component framework feature comparison 128

4.1 Receptivity requirements. 146

5.1 Example ECA reconfiguration rule 175
5.2 Device discovery rule . 178
5.3 Device vanishing rule . 179
5.4 Desired component and system behaviours for device tracking 179
5.5 Rule changing behaviour to the second controller 188
5.6 Rule changing behaviour to the first controller 189
5.7 Desired component and system behaviours for behaviour adap-

tation . 190

6.1 Sensing and actuation requirements of the automotive demon-
strator . 207

xiv List of tables

Chapter 1

Introduction

Today’s computing devices and infrastructure fail more and more to satisfy
the increasing expectations and needs of everyday users. Today’s computing
infrastructure is accompanying us throughout our everyday life in form of
smartphones, tablets, mobile computers, and desktop computers that allow
us to access data and processing power almost everywhere. Interestingly
however, our companions today are largely oblivious of their user, and may,
as a consequence, nag us inappropriately, or even put us in embarrassing
situations. This behaviour is a symptom of an underlying problem: the
communication bandwidth from the user to the computer is fairly limited
today [89]. The available input methods are restricted to keyboard, mouse,
touch screens, GPS and accelerometers (e.g. through worn gadgets such as
smartphones or tablets). However, none of these input method allow com-
puter to understand their user’s emotions, cognitive engagement, or physical
comfort. Physiological computing [51] is a promising concept to widen the
communication channel between the (human) users and computers, thus al-
lowing an increase of software systems’ contextual awareness of their user and
rendering software systems smarter than they are today. Using physiological
inputs in pervasive computing systems allows re-balancing the information
asymmetry between the human user and the computer system, for the benefit
of the user. Physiological computing (using physiological data as input for
on-line computing) is different from pervasive computing in both the data it
processes, and in the inferred concepts (e.g. mood, cognitive load, comfort)
that influence computing processes.

Software frameworks and methodologies for the creation of pervasive sys-
tems and intelligent systems exist, but none of the existing framework tackle

2 1. Introduction

the specific requirements that emerge from physiological computing, i.e. the
specifics of the input data, and the requirements of the entailed behaviour
adaptation of the software process. Systematic means for developing and
moulding physiological computing applications from an initial idea or con-
cept into a working software implementation are still lacking.

In this thesis, we therefore present a methodological approach to the cre-
ation of physiological computing systems based on the principle of component-
based software engineering. Here, a component is a software entity that
declares all services it requires and provides, so that the dependencies and
provisions can be managed through a framework. Software components allow
for coarse-grained management of software systems, and help to provide a
clear picture of a software’s architecture. This applies not only to physiolog-
ical computing systems, but to software systems in general as well. However,
physiological computing systems benefit specifically from a component-based
approach, as it allows to leverage reconfigurations [85] as means to control
and adapt behaviour. Reconfigurations are run-time changes in a software
system configurations, and include adding and removing components, adding
and removing links between component provisions and dependencies, as well
as changing exposed component parameters. Through reconfigurations, a
physiological computing system can adjust its behaviour both to the human
and to the available computing environment in terms of resources and avail-
able devices – an activity that is crucial for complex physiological computing
systems. With the help of components and reconfigurations, it is possible
to structure the functionality of physiological computing applications in a
way that makes them manageable, extensible, and separates meta-reasoning
logic from normal operation logic, thus allowing a stepwise and systematic
extension of a system’s intelligence.

While reconfigurations are a useful tool in the creation of adaptive be-
haviour, they also entail problems. Fully understanding and capturing the
behaviour of a system that reconfigures itself is difficult, as reconfigurations
may alter the structure of a system in ways that are challenging to predict.
Starting from an initial configuration, it may be easy to predict how the
system may be altered by a single reconfiguration. It becomes harder to pin-
point the set of potential system configurations as the system endures more
and more reconfiguration steps.

In this thesis, we propose an approach to the software engineering of
physiological computing system that is based on components and reconfigu-
rations, and allows to verify the correct behaviour of reconfigurations through

1.1 Approach 3

a formal assume-guarantee contract framework. Furthermore, we present a
component-based software framework for implementing physiological com-
puting systems, as well as case studies that give evidence on the applicability
of the component frameworks – both formal and software-based. The pro-
posed software engineering approach is comprehensive, and covers issues from
the formal verification of reconfigurations as well as their implementation
without losing track of in the intended domain of application: physiological
computing.

An introduction to the software engineering approach to physiological
computing is given in Section 1.1, before our core contributions are high-
lighted in Section 1.2. Our approach has been developed within the EU-
Project REFLECT, and the major case study of the project was realised
using the methodology presented in this thesis. We therefore present an
overview of the REFLECT project in Section 1.3. Finally, Section 1.4 gives
an outline of the structure of this thesis.

1.1 Approach

This thesis presents a comprehensive approach to the software engineering of
physiological computing systems that is intended to guide the development
from a first idea of a physiological computing system to an implementa-
tion, and help in overcoming some of the core challenges in this process.
Our approach allows to establish a formal proof of correctness for reconfig-
urable systems, and hence allows physiological computing systems to leverage
the benefits of reconfigurations without creating unmanageable system be-
haviour.

Figure 1.1 shows an overview of our approach to the software engineering
of physiological computing system. The basic course of action is to create a
system design and desired system behaviours from an initial idea (a process
that is not covered in this thesis). Using the formal verification framework
proposed, a proof of refinement between the desired system behaviours and
the system design can be established. Furthermore, the system design can
be transferred with relative ease to an implementation using the concepts
and features our component-based software framework offers. This basic
process is not progressing independently, but is operating in the context
of Scrum [107], an agile software development methodology. Physiological
computing is another a background theme of this process that makes use of

4 1. Introduction

Assume-guarantee
reasoning

Reconfiguration

Component-based
software engineering

Real-time temporal
logic

ve
ri

fy

P
h

ys
io

lo
gi

ca
l

co
m

p
u

ti
n

g

Framework

Application

OSGi

Component-
orientation

implement

Idea

A
gi

le

m
et

h
o

d
o

lo
gi

es

Reconfiguration

System
design

Expected
behaviour

Figure 1.1: Software engineering for physiological computing

several formal techniques (assume-guarantee reasoning, real-time temporal
logic, component-based software engineering, reconfigurations), and imple-
mentation techniques (component-orientation, reconfigurations, and OSGi,
as depicted in Figure 1.1).

Details and benefits of each element of our approach is given in the fol-
lowing.

1.1.1 Methodology

Physiological computing is an application domain that still features heavy
research activities. Therefore, software developers operating in this domain

1.1 Approach 5

require not only an appropriate introduction in the domain of physiological
computing, but also a guiding methodology providing a reference frame for
the realisation of physiological computing applications. In addition to a solid
methodological shell for finer-grained tools and processes, software developers
also need examples and patterns to showcase the use of tools and methods.

Our methodology provides both a shell for the formal verification frame-
work and the transition to implementation activities, as well as patterns for
the use of reconfigurations in physiological computing applications. The pre-
sented methodology is based on Scrum [107], an agile software development
methodology that is particularly suitable for new product development and
research-focused projects. Especially, we show how agile software develop-
ment can be combined with formal verification activities, as formal verifica-
tion of systems under reconfigurations is a crucial part of our approach. Fur-
thermore, we introduce two application patterns for reconfiguration in physi-
ological computing that showcase both the formal verification process and the
transition to implementation on the component-based software framework.

With the help of our methodology, we are able to combine an agile process
with formal verification activities, and provide helpful guidance for software
developers through a minimal set of rules. Furthermore, reconfiguration pat-
terns provide insights on the impact and consequences of the application of
reconfigurations as well as application examples for our formal verification
framework and the component-based software framework.

1.1.2 Implementation

Implementing physiological computing applications is an endeavour that can
benefit significantly from a software framework. Data handling, concurrent
process organisation and communication, distribution, and reconfiguration
(requiring software monitoring and software modification) are complex as-
pects that require solid consideration and implementation.

Our component-based software framework, the REFLECT framework,
provides a simple and powerful component model that focuses on developer
support, natural embedding in its host language Java, and favourable scaling
behaviour from restricted resource environments to mutlicore systems.

The REFLECT framework provides functionality for distribution, han-
dling of physiological data, and concurrency, which allows the software de-
veloper to concentrate on creating the physiological computing application
business logic, to experiment with it, and to build up an understanding on

6 1. Introduction

the peculiarities of his application along the way.

1.1.3 Formal verification

Reconfigurations are a useful tool in the creation of complex physiological
computing applications. As detailed before, however, it is difficult to keep
track of all possible system modifications, and the entailed system behaviour.
This fact makes software engineers reluctant towards using reconfigurations
for adapting the behaviour of a system, even though it would allow to el-
egantly separate meta-reasoning on the system behaviour from the system
behaviour itself. In the context of physiological computing, system behaviour
(and transitively, reconfigurations as well) are additionally dependent on the
continuous, real-time behaviour of the environment, making the application
of canonical temporal formalisms harder to apply.

In this thesis, we introduce an assume-guarantee-based contract frame-
work and an extension of metric interval temporal logic to compositions that
allows specifying the real-time behaviour of components, environments, and
reconfiguration. With its theory of composition and refinement that covers
structural modifications, the framework allows to establish refinement proofs
of systems under reconfigurations, and hence to prove that a physiological
computing system using reconfigurations behaves as expected.

1.2 Contributions

This thesis presents a comprehensive approach to the software engineering of
physiological computing application. In particular, it includes a component-
based software framework, a formal contract-based framework for the veri-
fication of systems under reconfigurations, and a software development ap-
proach that combines the two elements in an agile software development
methodology.

• The contribution in the implementation domain lies in the introduction
of a component-based software framework for physiological computing
systems. The REFLECT framework provides a carefully chosen set
of features that integrate well with its host language, Java. The RE-
FLECT framework builds on OSGi as implementation platform, and
port-based components as the underlying implementation concept. The

1.2 Contributions 7

features offered by the REFLECT framework simplify coping with re-
peatedly surfacing challenges and tasks by providing ready-to-use fa-
cilities and services.

• The contributions with respect to formal verification lies in the presen-
tation of a assume-guarantee framework with dense real-time semantics
for the verification of systems under reconfigurations. The framework
is general in the sense that it is not restricted to physiological com-
puting applications, but can be applied to any system undergoing re-
configurations and featuring real-time behaviour. Given the real-time
character of physiological computing applications and the utility of re-
configurations for those applications, our formal verification framework
constitutes a perfectly matching tool for the early analysis of physio-
logical computing system designs. The formal verification framework
offers both a contract-based dense real-time semantics framework that
allows for composition and refinement of components, as well as a syn-
tax for the specification of contracts, and a set of rules for the manual
elaboration of refinement proofs.

• Our contribution to software development methodology consists of a
proposal for combining development activities resulting from the appli-
cation of our formal verification framework, and software implementa-
tion tasks that emerge from the use of the REFLECT framework. We
propose a scheme on how both activities can be successfully combined
and managed in Scrum, an agile software development methodology.
Furthermore, we provide two application patterns for reconfigurations
that both showcases the use of reconfigurations in physiological com-
puting, and demonstrate the synergies of combining our formal verifi-
cation framework and the REFLECT framework.

Finally, we provide two extensive case studies that show the applicabil-
ity and utility of both our formal verification framework for systems under
reconfigurations, and our component-based software framework. The first
of the case studies presented it the automotive demonstrator of the RE-
FLECT project that showcases the use of the REFLECT framework for the
development of physiological computing applications. The second case study
presented demonstrates the use of our contract-based verification framework,
and is based on the adaptive advertising scenario – an advertisement that
features awareness of its audience, and reacts and responds to its viewers.

8 1. Introduction

1.3 Reflect

The presented approach to software engineering of physiological comput-
ing was developed by the author during the REFLECT project, a “Specific
Targeted Research Project” (STREP) that started January 2008 and ended
March 2011, with a project funding of 2.6 million Euro. The goal of the
REFLECT project was to research new concepts and means in software and
psychology for the creation of adaptive systems that sense the user’s pres-
ence, mood, and intentions. The envisioned systems are intended to take
into account at least three aspects defining the human condition: emotions
(e.g. annoyance or anger), cognitive engagement (e.g. boredom or overload),
and physical conditions and actions (e.g. comfort and physical workload).

The goal of the REFLECT project has been to push the frontier in phys-
iological computing along two major lines:

1. support for software engineering activities involved in the creation of
pervasive physiological computing systems through frameworks and
tools.

2. researching in the concepts for creation of a user’s state from physio-
logical data, and in means for influencing a user’s state and adapt the
environment to the user’s current context.

The contributions of this thesis stem from work revolving around the first
major line of research: creating tools and frameworks for pervasive physio-
logical computing applications. The software framework presented in this
thesis, the REFLECT framework, constituted the core framework on which
the software development activities of the REFLECT project built upon. Ad-
ditionally, the contract-based verification framework we present in this thesis
is one of the main contributions of the REFLECT project in the domain of
software engineering.

1.4 Structure

This thesis covers all contributed topics listed in Section 1.2. First how-
ever, this thesis introduces the background for each contribution in Chap-
ter 2. This chapter presents more details about physiological computing,
component-based software, assume-guarantee contract-based verification, and

1.4 Structure 9

about software development methodologies. Chapters 3, 4, and 5 detail our
main contributions: first, Chapter 3 presents the REFLECT component
framework, starting from initial requirements of the physiological comput-
ing domain, progressing by introducing its underlying concepts, and finally
presenting details of its implementation, use, and more detailed rationale
and insights of each framework feature. Next, Chapter 4 tackles the issue of
formally verifying component-based systems under reconfigurations by intro-
ducing a formal assume-guarantee contract framework that is able to handle
reconfigurations natively. Finally, Chapter 5 shows how both the REFLECT
framework and our contract-based verification framework can be combined,
and how both contributions can be applied to two recurring usage patterns
of reconfiguration.

After presenting our our main contributions, we continue with introducing
two larger case studies in Chapter 6 that demonstrate the applicability of
the REFLECT framework and our formal verification framework to larger
systems.

This thesis concludes with Chapter 7 that provides a summary of our
contributions, a review of their accomplishments, and presents possible lines
of research that emerge from our work.

10 1. Introduction

Chapter 2

Background

Before presenting the main work of this thesis, it is necessary to set the
stage and present the foundations on which this thesis builds on. Since we
present a component-based software engineering approach to the develop-
ment of physiological computing applications, this chapter starts with an
introduction to physiological computing in Section 2.1. Since we present an
component-based software framework for the implementation of physiologi-
cal computing applications as component-based software systems, we present
the underlying concepts and terms of component-orientation in Section 2.2,
as well as the platform on which our framework implementation relies on
(OSGi) in Section 2.3. A theoretical framework for contract-based verifica-
tion of real-time systems is presented next in Section 2.4; it sets the stage for
our contract-based framework for systems under reconfiguration introduced
in Chapter 4. As this thesis aims at presenting a coherent approach to the
development of physiological computing systems, we also look at software
development methodologies to find a frame in which all parts – both the the-
oretical verification approach, and the implementation approach – integrate
(Section 2.5). Finally, this chapter concludes in Section 2.6.

2.1 Physiological computing

Today’s computing systems and infrastructures are constantly failing to sat-
isfy the increasing expectations of everyday users. This inability has several
causes, one of which is the asymmetry and shortcomings of current com-
munication channels between computer systems and users [89]. While the

12 2. Background

output of computer systems features a high bandwidth (visuals, audio, even
tactile vibrations are used as output channels), the input to computers is still
fairly limited. Even though touch screens are beginning to enter everyday
use through smartphones and tablets, communication paths that are used in
human-to-human interactions through speech, facial expression and gesture
are not available in human-computer interaction. Instead, computers mostly
offer keyboard and mouse as input devices. Together with touch screens and
general forms of button-pushing, they constitute virtually the complete set of
input possibilities that modern computer systems offer. It is a very limited
input channel, still, and entails that computer systems remain unaware of
the environment, the state of the user and his goals. This unawareness is
often perceived as stubbornness and dullness. As users learn to adapt to this
behaviour of their computer, an odd phenomenon can be observed: the com-
mand chain between computer and user is virtually inverted [89, 51]. The
flexible and smart user subdues himself to the obstinate and dense computer
in order to achieve his own goal with the help of the limited machine avail-
able. Giving the computer awareness of the context and user will alleviate
the imbalance of communication between user and machine and the entailed
inversion of command. Computers that are aware of the user and the envi-
ronment can be made able to detect their own wrong-doings easier and gain
the possibility to compensate their actions. Extending the communication
bandwidth from the user to the computer also promises to offer means for
capturing motivations and goals of the user even on a subconscious level.
This would allow to foresee a user’s decision and conflicts with the current
system operation and to adjust the system operation smoothly, making in-
teraction with the computing facilities that become available in the everyday
environment of the user more enjoyable.

In the following, we first present a definition of physiological computing,
its adjacent research areas and their possible synergies (Section 2.1.1). Next,
we take a closer look at the research domains that physiological computing
encompasses, and which application scenarios are motivating each research
domain in Section 2.1.2. Section 2.1.3 sheds more light on software design
concepts for physiological computing, before Section 2.1.4 motivates the need
for a more systematic overall software engineering approach to physiologi-
cal computing. As becomes apparent through the definition of physiological
computing (Section 2.1.1), it is unwise to discuss physiological computing ap-
plications without highlighting ethical implications physiological computing
entails. Section 2.1.5 details on the ethical implications before Section 2.1.6

2.1 Physiological computing 13

Figure 2.1: Physiological computing – basic scheme

provides a brief summary.

2.1.1 Definition and origin

Physiological computing [51] is a relatively new area of research that tries
to provide more input to computing systems – namely, physiological input
– in order to alleviate the communication asymmetry that state-of-the-art
computing systems feature. It finds itself at the intersection between artifi-
cial intelligence, human-computer interaction and applied psychology. The
term of physiological computing itself is integrative since it denotes all re-
search about computing systems that measure physiological signals from the
human body in with the intent of processing it in real-time and leverage it
in on-line operation; physiological computing is defined by on-line processing

14 2. Background

of physiological data. Figure 2.1 shows the basic scheme that a physiological
computing system implements: typically using a mobile device in the prox-
imity of the user, the system captures physiological data for processing it
either locally, in its computing infrastructure, or both. Results of physiolog-
ical data processing can influence the behaviour of the system towards the
source user itself, or other users as well.

While the definition of physiological computing does not specify any kind
of computing infrastructure it should be running on, a convenient infrastruc-
ture for physiological computing are not desktop computers, but computing
infrastructures that permeate the environment and are capable of controlling
and altering parameters of the environment such as illumination, tempera-
ture, and background music, as well as providing contextual information
directly to the user. Those infrastructures also have the benefit of allowing
access to physiological parameters, as part of the infrastructure may become
wearable as gadgets or jewels, integrated in clothes and even in the human
body [15]. At the same time, a computing infrastructure that offers soft-
ware controls for a significant part of the environment promise to provide
meaningful means for improving the experience of the user.

Such computing infrastructures have partially become reality already and
will continue to invade our environment due to the continued improvements
in computer hardware performance and in device miniaturisation. Systems
that provide computing power in our everyday environment – in a similar
fashion as electric power is provided virtually everywhere today – were coined
ubiquitous computing systems about a decade ago [120, 103, 82].

A further step in ubiquitous computing research (that is also coined per-
vasive computing) is pervasive adaptation [96], which is a research branch
that was created based on the insight that ubiquitous computing faces sim-
ilar challenges as artificial intelligence research faced years ago [82]. Hence,
bringing expertise from artificial intelligence into the ubiquitous computing
research community seems to be a promising approach for accelerating re-
search progress. In the research domain of pervasive adaptation, system
adaptation to the user’s needs, habits, and emotions constitutes a key re-
search focus [96]. The convergence of pervasive adaptation and physiological
computing would allow to sense the user’s emotions and current cognitive
engagement on a more informed basis, and to adapt the environment in a
satisfactory way. The overall goal of applications that leverage both perva-
sive adaptive and physiological computing concepts would be to control and
adapt the environment of a user, and by this adaptation to influence and im-

2.1 Physiological computing 15

prove the well-being of its user. This is achieved by changing the parameters
of his environment where influencing these parameters is possible.

By the fact alone that they use physiological data, physiological comput-
ing systems share a set of major challenges. First and most obviously, there
is the on-line processing challenge that physiological input bears. The raw
physiological input data is contains noise and perturbations (also known as
artefacts) due to interfering signal sources, the user’s movement, tempera-
ture changes, or generally, influences in the environment that are unrelated
with the quantity to be measured. Also, there is no simple one-to-one map-
ping between physiological data and psychological state: a single change
in physiological data can be caused by several changes in physiological or
psychological state [51]. For example, increase in heart rate can be either ex-
plained by increased physical activity, or increased cognitive effort performed
by the measured person. Physiological data constitutes personalised data of
singular quality; processing it in computing infrastructures entails a plethora
of critical ethical issues, as discussed in Section 2.1.5. Finally, developing
physiological computing applications from a first idea to a working imple-
mentation is hard – due to the above-mentioned issues, but also because the
software design for physiological computing applications poses its own chal-
lenges: how can a software system be structured in a way that it exhibits
a satisfactory behaviour towards the user is a question that is discussed in
Section 2.1.4.

2.1.2 Research domains and applications

The term physiological computing is integrative in its nature; it includes
efforts from several streams of research such as brain-computer-interface
(BCI) [118] and affective computing [97, 98], as both research streams use
physiological data from the human body and uses the data in computing
responses, or modifying computation processes. BCI research aims at us-
ing information from the human brain to provide applications with more
contextual information. Contextual information, to be more precise, encom-
passes user’s activities and goals, where the user goals may also be commands
directed towards the BCI-enhanced application as in the case control of com-
mands towards a prosthetic hand. BCI applications are not only limited to
prosthetics, however: BCI-provided contextual information can be used to
create or enhance assisting, recreational, and diagnostics applications.

Physiological computing additionally encompasses research performed in

16 2. Background

affective computing [97, 98], which is aimed at making systems and applica-
tions aware of human emotions and competent about them. Affective com-
puting systems are envisioned not only to be aware of the user’s emotions
and desired emotional states, but as well to be well informed about means
and strategies to move the user from one state to another in a sensible and
acceptable way. In that sense, affective computing aims at making computer
systems understand emotional states of the user, and provide a role model for
emotional competences such as understanding emotions, mitigating emotions
as well as dealing with emotions.

How comes, however, that a whole research area was coined affective com-
puting? There is a very cogent reason for this, which is also exposed in an
own book by Damasio: Descartes’ Error [43] shows how logical reasoning and
emotion is deeply linked in the human’s mind; not only are decision biased
by emotions – emotions are necessary for rational thinking. Indeed, patients
that are lacking the ability of emotional reflection due to irreparable brain
injury (as the famous case of Elliot [43] shows, for example), make wrong
decisions. They continue to trust untrustworthy people, or repeatedly lose
money in financial investments in which they already lost money. In a way,
people without emotions are lacking crucial guiding heuristics helping them
to make correct rational decisions. Given that emotions have such a deep
linking with rational decision making and general importance for the single
individual, it is therefore not surprising that affective computing emerged
as an own research stream. As does BCI, affective computing promises to
enhance existing applications and to enable the creation of new applica-
tions [97]: Applications that mirror emotions in order to provide biofeedback
to the user and allow to train emotional competences are one kind of ap-
plications that can be created once emotion recognition becomes reliable
technology. Video conferencing may be enhanced with emotional channels
in order to let communication partners convey emotional cues in addition to
what is said. Self-teaching or e-learning systems may benefit greatly from
affective information. Keeping track of the emotional state of the learner,
distinguishing disengaged from engaged learning situations and providing
appropriate responses is a key factor for effective learning, and a skill good
teachers (both human and artificial) have to master. Computer games may
also benefit from affective computing to create new entertaining and chal-
lenging puzzles. In current computer games, it is of lesser importance how an
action is performed, as long as a certain outcome is achieved. With affective
computing (or, more generally, with physiological computing as well), the

2.1 Physiological computing 17

physiology of the player can be taken into account, and actions performed
may get different impact on the game world based on the emotional state
the user is currently in. An action performed in a meditative or calm state
may become more precise, or the effect of an action performed in an excited
state may have greater impact on the game world.

Not only healthy or average people can benefit from affective comput-
ing applications, however. Text to speech applications for handicapped, for
example, may be improved to create a more natural speech melody by us-
ing affective information from the writer – either at the time of the writing,
or at the time of the speech generation. Autistic people can also greatly
benefit from affective computing. Autism is characterised by difficulties in
emotional understanding; autistic people often have reduced empathy and
find it hard to produce appropriate emotional responses in social situations.
As autistic people are (as all human) avid learners, it is possible to teach
them empathy and correct emotional responses [97]. However, their lack of
basic emotional skills and capabilities to abstract from single examples of
emotional reactions to general patterns makes teaching autistic people end-
lessly repetitive, as they need to be trained and guided through uncountable
instances of example situations and correct reactions discussed; this is were
affective computing approaches may help. Using computers as learning en-
vironments that are able to assess the emotional response of the user would
feature both endless patience and competence to provide the user with a
correct assessment of his emotional response.

2.1.3 Feedback design

In theory, it would be possible to realise physiological computing systems
in two ways: as a feed-forward system (see Figure 2.2a), or as feedback
system (see Figure 2.2b, also called closed control loop). The key distinctive
factor between the two approaches are the conditions under which they can
operate. A feed forward system uses information from the environment, but
no information from the system that should be controlled; the effects of the
environment on the system are computed using a-priori knowledge about the
impact of the environment on the system, and corrective actions are made.
The effects of the environment and the corrective actions on the system under
control are never measured, as all effects are known and designed into the feed
forward system. An example for a feed forward system would be an indoor
temperature control device that doesn’t measure the indoor temperature to

18 2. Background

Workload
Physical env.
(light, music,
heat, etc.)
Perception

Physical
conditions
Task performance
Mental effort
Mood, emotions
Well-being

User

Physiological computing
system

(a) Feed forward loop

Workload
Physical environment
(light, music,
heat, etc.)
Perception

Physical conditions
Task performance
Mental effort
Mood, emotions
Well-being

User

Physiological computing
system

(b) Feedback loop

Figure 2.2: Physiological computing systems and the user

2.1 Physiological computing 19

determine the level of heating it needs to provide, but deduces it from the
external temperature and solar radiation intensity. Such a system can operate
correctly only if the effect of external temperature and solar radiation on the
internal temperature are known, and no other major factors influencing the
room temperature exist. For example, opening doors or windows would not
alter the behaviour of such a feed forward heating control system; the room
temperature would be greatly altered, but the system wouldn’t respond.

A feedback control system on the other hand does not try to observe and
measure the environment, but instead observes the controlled system, and
feeds back the distance of the current state it finds it from the target state (i.e.
the error) into the control of the system through a means that alters the state
of the system. Going back to the heating example, a feedback loop equates
to a thermostat control that opens its valve if the room temperature drops
below the desired temperature, and closes the valve if the room temperature
reaches (or surpasses) the desired level.

Looking back from the simple example to physiological computing, it
is clear that it is almost impossible to influence the well-being of a user
using a feed forward control scheme (Figure 2.2a) due to the fact that very
few is known about the influences of the environment on a user. Events,
interactions, anticipated future events may all affect the well-being of the
user, but may remain invisible or unknown to the physiological computing
system. These circumstances mandate the use of a feedback control scheme
(Figure 2.2b), as a feedback control system is able to cope with disturbances
from unknown sources and can try to make corrective actions towards the
desired state. In order to use feedback control in physiological computing,
it is necessary to infer corrective actions from measures of the human body.
In fact, physiological computing research focuses heavily on the feedback
paradigm, even to the point of not even considering and ruling out feed
forward control [51]. Physiological computing applications are thought of as
bio-cybernetic (feedback) loops [52, 111] that sense the human’s physiology,
analyses it, and reacts accordingly.

While a feed-forward physiological computing loop would need to know
how the environment affects the user, a feedback loop needs to know how
physiological input maps to the user’s state in terms of cognitive, emotional
or physical (e.g. physical exhaustion or comfort) conditions. However, the
mappings from physiology to psychological constructs that are usable in au-
tonomous systems are still not settled. Physiological computing research is
hence also preoccupied with solving issues of finding and validating mappings

20 2. Background

that can be operationalised in software [51].
The use of the terms feed-forward and feedback in physiological com-

puting is inspired by control theory, but is has no similar mathematical
foundation; the terms are used in a very loose, hand-waving fashion. In
physiological computing, it is sufficient to have means that potentially in-
fluence the observed parameters into desired directions to create a feedback
loop; for example, systems providing visualisations to the user about their
physiological conditions are already coined biofeedback systems. Such sys-
tems find application clinical treatments against migraines, and chronic pain,
as well as stress management therapy [109].

2.1.4 Systematic software engineering

The underlying vision of a successful physiological computing system needs
to be more than a simple feedback loop that tries to minimise an error value.
Such feedback loops are often perceived as simplistic, as humans – being
avid learners – rapidly understand the operational scheme of the feedback
loop and adapt to it consciously and subconsciously. Applications that are
intended to successfully monitor and adjust to humans need to operate like
a good DJ or film; they need to create an (acceptable) suspense and narra-
tive flow. Therefore, a physiological computing feedback loop needs to alter
its control regime and target values continuously; a second level of control
and adaptation beyond the basic feedback loop is needed [51]. This is one
aspect of physiological computing that suggests a systematic approach to
the design and development of software for physiological computing systems.
For this second level of adaptation, a control concept that operates on the
level of software is required. For the systematic development of this second
level of control, existing concepts of component-based reconfiguration can be
leveraged. Components allow to package behaviour and functionality into in-
teracting modules of code, while reconfigurations allow to adjust and change
the behaviour at run-time.

Another aspect that argues for a systematic approach is the need for
distribution that most physiological computing systems have. In order to
be usable and embedded in the everyday environment, the analysis, compu-
tation, and actuation logic will have to be distributed over several devices.
Actuators may also be distributed in the environment, and only accessible
remotely. At the same time, an application may need to aggregate data
from multiple distributed sources and create a more complete picture of the

2.1 Physiological computing 21

system’s physical and physiological context. From the perspective of com-
munication, distribution, and ubiquity, physiological computing can be seen
as a special variant of ubiquitous computing or pervasive computing.

Besides the algorithmic and distribution challenges, organisational chal-
lenges also arise when building physiological computing applications. Frame-
works for such applications must support different activities, namely 1) ex-
ploring and experimenting with new algorithms and new techniques, 2) test-
ing and validation of the system and its parts, and 3) rapid creation of
software artefacts.

Exploration and experimentation and testing and validation must be sup-
ported since the algorithms that will actually allow to extract knowledge
about the emotional, cognitive, and physical state of a human from basic
sensors and features are, to a large extent, still fields of active research [51].
A software design or software framework must therefore support algorithm
exchange and experimentation at low cost. Rapid creation of software arte-
facts is crucial while still being in the process of understanding the applica-
tion domain and identifying the hard problems within it. Even later, while
creating a product, being able to swiftly create the software artefacts may
turn out as crucial for reducing the product’s time to market.

2.1.5 Ethical implications

Physiological computing has potential for a deep transformational impact on
society, and hence require ethical considerations. Unfortunately, conclusive
and satisfactory answers to ethical questions raised through physiological
computing were not yet found. While Norman [89] urges researchers and
designers to focus on the empowerment of the user when creating and de-
signing things and systems, the real implications of the continued exposition
to physiological computing systems are unknown for now [51]. Nevertheless,
the vectors of endangerment that physiological computing systems feature
can be clearly identified:

• Privacy. If physiological computing becomes as non-intrusive as en-
visioned, and physiological data acquisition finds adoption in environ-
ments that are not under the control of the user (such as public and
work environments), severe privacy issues entail. Physiological com-
puting allows to access data with a completely new quality, as the
accessible data stems from the human body itself. Additionally, phys-

22 2. Background

iological data is hard to constantly manipulate,1 and will be used for
detailed and precise analysis of the user’s condition if the vision of
physiological computing becomes a reality. Although having a com-
puter constantly monitor the human body is at least questionable from
a privacy point of view, humans can accept and feel comfortable with
such situations as long as they are in full control of the system [99], or
experience a symmetry of communication, power and accountability –
a concept that is called reciprocal accountability [34].

• Autonomy. Not only privacy is at risk when introducing physiologi-
cal computing systems, but also individual autonomy [51]. The issue is
not that physiological computing systems aim to manipulate the user’s
state; a plethora of techniques and means are willfully used by people
to manipulate their emotional and cognitive states, e.g. drinking cof-
fee, listening to music, reading, watching movies, hiking and sports in
general. The danger to autonomy is given by the potential transfer of
control that computing system allow: the controller of the physiological
computing system can be separated from the individual that is experi-
encing the manipulation. Keeping the user of a physiological computing
system in control of the system he exposes himself is therefore a norm
that must be established in physiological computing [89].

• Integrity of self. Many physiological computing designs use cues that
the human body itself uses for self-assessment of its condition [51]. In-
dividuals perceive feelings and emotions through aggregation and eval-
uation of somatic markers and cues [44]. Providing another source of
self-assessment through a physiological computing system may create
a conflict with the natural self-assessment through different interpreta-
tions of available information – or, even simpler, through plain wrong
interpretation of available data. It has been argued that sustained ex-
posure to contradicting and interfering sources of self-assessment may
cause a fracture of the unitary experience of self [66], and may thereby
cause mental illnesses. However, the long term effects of constant expo-
sure to physiological computing applications are not well understood;

1Short-term manipulation of physiological data is feasible. Willfully thinking of certain
events, experiencing pain, or performing physical exercises can be used to “jam” physio-
logical sensors. However, none of the available jamming options are activities that can be
performed for a prolonged duration.

2.2 Component-based software 23

potential impact of physiological computing on mental health is an
uncharted area of research as for now [51].

2.1.6 Summary

Physiological computing is an interesting topic for research, not only from
a psychological perspective, but also from a computer science perspective.
From the practical point of view of ubiquitous computing, physiological com-
puting offers new sources of data, poses new questions and generates new
challenges, especially in the domain of privacy. From a methodological point
of view, physiological computing offers a lot of challenges as well. Especially,
the question arises how such systems can be designed and developed system-
atically. In the following, this thesis tries to address the issue of systematic
development by proposing a component-based approach (consisting both of
a software implementation framework and a formal verification framework)
embedded in an agile process to form a consistent methodology.

2.2 Component-based software

Successful physiological computing systems need to be entertaining and ver-
satile; they need to guide the user through several states, and must have a
convincing and entertaining devolution. To achieve this goal, a physiologi-
cal computing application needs to adapt its behaviour on a strategic level.
This strategic change in application behaviour can be achieved by encapsu-
lating behaviours into components and switching between them, as well as by
changing well-defined parameters of behavioural components. This approach
follows the idea of component-based reconfiguration, for which a formal the-
ory is also presented in this thesis. Here, we present the existing terminology
in the domain of component-based software engineering.

Component-based software engineering is an approach to the design and
implementation of software systems that revolves around the notion of com-
ponents. Both verification and realisation benefit from the designing and
implementing of software systems on the basis of components:

1. Verification. A component-based system design allows for a divide-
and-conquer approach to the formal verification of systems [25], as it
allows to define specifications of system parts (i.e. components) as

24 2. Background

intermediate verification goals. In a second step, the component spec-
ifications can be used to prove a global system specification, thereby
establishing the correctness of the global system.

2. Realisation. A component-based approach can be used when realis-
ing a software system. Realisation of systems often needs distribution
of work amongst several developers. Assigning responsibilities for the
realisation of system parts (i.e. components) to developer teams is
one divide-and-conquer approach to work distribution. This approach
however requires that the responsibilities of components and the com-
munication between components are well understood. Separating a
system into components with well defined responsibilities and commu-
nication can also make modifying the system easier. It requires however
the correct design of communication and encapsulation of system inter-
nals. A system is not automatically ready for change through splitting
it up into components; it requires additional careful design and correct
anticipation of points of variability.

It is important to note that the requirements for formal verification and
practical realisation to a component model diverge. While of course a com-
ponent model is deemed necessary for encapsulating behaviour in both usage
scenarios, several requirements are contradictory. For example, practical re-
alisation requires a feature-rich component model that is difficult to handle
by mathematical models. On the other side, while divide-and-conquer ap-
proaches to formal verification benefit greatly from hierarchical composition
of component systems [94], such hierarchical composition is often unnecessary
and constitutes a painfully noticeable overhead in most system implementa-
tions.

Component-based software engineering is a software engineering concept
that recently has been used as the foundation for several widespread open-
source software development frameworks. In these frameworks that build
on widespread programming languages such as Java, components are native
software entities and are at the foundation of the framework’s programming
model. The main motivations of component-based software frameworks are
twofold:

1. Providing a simple programming model that supports the software en-
gineer in defining clear responsibilities, interfaces and in enforcing sep-
aration of concerns.

2.2 Component-based software 25

2. Preventing architecture erosion when transitioning from a software de-
sign to a software implementation.

Before delving into the details of each framework and concepts, the ter-
minology that is used in the communities of component-base software frame-
works needs to be presented and explained. The terminology that is presented
in the following is based on the terminology introduced by Szyperski in [117].
Not all concepts explained here are found in Szyperski’s book, however, and
sometimes, the terminology was altered to provide a more natural description
for the component frameworks presented is this thesis.

Framework A framework defines an architectural style for object-oriented
systems by providing a set of classes constituting both a programming in-
terface and a programming model [117]. Some of the provided classes are
open for extension through the programmer; the extensions of the program-
mer are however plugged into the general architecture that the framework
provides, and by this enforce a specific programming style – often through
the restricted means of interaction it offers to the developer. Frameworks are
ubiquitous in web application development, where they define a structure
for the processing of http requests and the creation of dynamic html pages
through access to a persistent storage like a SQL database. In the context
of component-based software, the framework concept is often used to offer
a component-based programming model and means for encapsulating code
and state into components.

Provision A provision, also called service or incoming interface [117], is a
service an object offers to its environment, i.e. to other objects. A provision
in Java often consists of an interface declaring the functionality provided,
and an implementation of that interface that is made accessible to others.

Dependency If an object requires a service, this requirement is a depen-
dency to another service (also called outgoing interface [117]). A dependency
can be satisfied through an appropriate provision from another object. In
the Java context, a dependency is often defined by the need of an interface
implementation. A dependency may be declared through a class field that
needs to be assigned through calling a setter before the class can operate as
expected. In the context of web development for example, it often arises that
an http request processing class has a dependency to the database interface.

26 2. Background

This dependency needs to be satisfied before the request processing class can
process any http requests.

Component A (software) component [117] is a code entity that strictly
defines dependencies to its environments and follows all contractual rules
specified by the component framework it adheres to. Additionally, compo-
nents may specify services it provides to its environment – mostly for use by
other components. In the Java context, a component is often declared by a
class. This component class either extends a specific base class or is made to
a component through specific declarations in configuration files or code.

Connection, binding A connection is a link from a component depen-
dency to the provision of another component [117]. The connection declares
how the dependency of one component is satisfied through the provision of
another component. The terms connection and binding are used interchange-
ably in the following depending on whether the link itself is highlighted (con-
nection) or the provision and dependency (binding).

Component framework A component framework defines a programming
model revolving around the notion of encapsulation [117]. Component frame-
works typically define means of interaction between components and means
for controlling parallelism. Some component frameworks allow for hierarchi-
cal composition of components, in which a component can be created from
interconnected components. In these composite components, both the in-
ternal components and the internal connectors adhere to the rules of the
component framework. In such hierarchical component frameworks, the re-
sulting composite component can be treated as component again, making it
possible to create arbitrary deep component nestings.

Inversion of control Inversion of control [55] is a communication pattern
used in frameworks where framework client code provides control flow entry
points (such as start, stop methods) to the framework that the framework
may call. The client code itself is intended to be reactive to the framework
instead of proactive; the client code may not initiate communication with
the framework, and must instead wait to be called by the framework. This
communication pattern is also called the “Hollywood principle” based on the

2.2 Component-based software 27

well known phrase “don’t call us, we’ll call you” that precisely describes the
idea of inversion of control.

Dependency injection Dependency injection [55] describes a means of
satisfying dependencies in which the code stating a dependency does not try
to actively resolve the dependency by e.g. looking up a registry. Instead, the
dependency is resolved by an external entity that injects a provision into a
dependency. In object oriented languages, this injection process can be per-
formed in three different ways. Constructor injection denotes injection
into the constructor. In constructor injection, the dependency resolving en-
tity is also responsible for creating instances. Method injection or setter
injection denotes injection through methods or setters. It requires either
external declaration of injection methods, annotations of injection methods
or a convention on the signature and naming of injection methods. The third
injection method, field injection assigns values to fields directly in order to
inject provisions.

Configuration The configuration of a component-based software system [117]
consists of three parts: the definition of component types, component in-
stances and bindings. Component types definition are straightforward: a
component type definition declares an instantiable component type. A com-
ponent instance definition advises the component framework to create an
instance of a component type with a specific set of parameters. The defi-
nition of bindings declares how dependencies of component instances are to
be satisfied by provisions of other component instances. Note that instance
and binding definitions can be performed in very different ways: definitions
can be pre-defined by the framework, may be defined explicitly, e.g. through
listing them in a configuration file, or implicitly, i.e. by defining rules that
are applied by a rule-based engine. To discuss the different approaches to
instantiation and binding, we speak of instantiation regimes and binding
regimes.

Reconfiguration Reconfiguration [85] denotes the act of changing the con-
figuration of a component-based system at runtime. The configuration of a
component-based system is thereby understood as consisting of the currently
existing components, primitive configuration parameters that components
expose, and the connectors between components. The reconfiguration of a

28 2. Background

component-based system may therefore create or remove components from
the system, change configuration parameters of components, or change con-
nectors between components by either adding or removing connectors, or
changing source and targets of single connectors.

POJO a Plain Old Java Object [53] is a Java object (more precisely, a Java
class) that has no dependency to the framework on which it is deployed on. A
framework supporting POJOs oftentimes uses configuration files, conventions
and reflection to instantiate and invoke methods of POJOs accordingly. The
goal of POJOs is to reduce dependencies of code to frameworks, and by this
to make code reusable in different contexts.

Java Annotations [63, pp. 281] is a Java programming language feature
that allows to annotate code with meta-information. Annotations can be
added to classes, interfaces, methods, fields, method parameters, and variable
declarations. Using annotations, it is possible to have meta-information and
code residing in one location, significantly reducing maintenance efforts and
increasing refactoring robustness of systems.

Domain Specific Language (DSL) A domain specific language [57] is
a custom programming language that is purposefully restricted to a specific
application domain. This restriction allows to enrich the semantics of the
language in a way that is meaningful for the application domain, since its
semantics need not be usable for generic programming. Domain specific lan-
guages come in two styles: internal and external. External DSL resemble
classical programming language in their tool support and usage: they come
with an own syntax and semantics, compiler or interpreter; some may feature
editors with syntax highlighting and programming support. They live inde-
pendently from other programming languages. Internal DSLs on the other
hand resemble programming libraries: they reside within a host program-
ming language, and are defined by means of library code of a specific flavour.
An internal DSL defines a programming interface in terms of methods or
procedures, but takes extra efforts in providing a simple and natural inter-
face that allows to construct meaningful method chains that read just like
(domain specific) programming statements [57]. For example, an internal
domain specific language for state machines may allow to write a sentence
like from(lightOff).transition("push", call("lighton")).to(lighOn).

2.3 OSGi 29

Hardware

Operating System

D
ri

ve
rs

Se
rv

er
P

la
tf

o
rm

Java Runtime Environment

Module

Life-cycle

Service

Bundle 2 Bundle n

Native Code

...

Se
cu

ri
ty

Bundle 1

Figure 2.3: OSGi layers

The terminology of component-based software frameworks presented here
introduced both abstract concepts as well as techniques and technologies that
are found in existing Java component frameworks. In Chapter 3, we use this
terminology to present our own component framework and compare it with
others. The next section, similar to this section, introduces the terminology
and background needed for the theoretical part of this work in a more rigorous
fashion.

2.3 OSGi

The software framework that is presented in this thesis relies on the OSGi
platform. This section introduces the OSGi platform, a service-oriented mod-
ule system for the Java programming language [63]. The frameworks that
implement the platform defined in the OSGi specification [92] must provide
an environment for modularisation, service discovery, and service provision-
ing. The OSGi platform manages bundles as basic entities that provide
services.

The basic module system that OSGi provides is a solid foundation for a
component-based software development framework. As Section 3.4 discusses,
several component frameworks rely on OSGi to provide (at least) type-level

30 2. Background

B
u

n
d

le

Service

Life-cycle

Module

JRE

register
deregister

get
unget

start

stop

load class

execute

install
uninstall

manage

Figure 2.4: OSGi layer interactions

modularity. Type-level modularity thereby denotes the possibility of hiding,
exporting, and importing of types – in Java, types correspond to Java classes
– as well as means for removing and adding types.

The OSGi platform is organised in layers of functionality (cf. Figure 2.3),
each layer adding a distinct set of features on top of the existing ones. The
operating environment for the OSGi framework consists of the underlying
hardware, the operating system with the drivers installed in it, as well as the
Java runtime environment (JRE) that is installed in the operating system.
The JRE provides the Java virtual machine (JVM) on top of which the OSGi
platform resides.

The OSGi platform layers provide the following functionality.

• The security layer is an exception to the layering rule in the sense that
(a) it cross-cuts other layers and (b) it constitutes an optional layer.
The security layer adds fine-grained permission control over applica-
tions and allows for signing and verification of bundles.

• The lower-most layer, the module layer provides a module system for
the Java programming language that defines the deployment structure
and strict rules for inter-module class visibility. The module system
uses the term bundle to denote the modules managed by the OSGi
platform.

2.3 OSGi 31

• The life-cycle layer provides a life-cycle interface for bundles. It defines
bundle states, allowed state transitions and preconditions for transi-
tions. Additionally, it defines an eventing system that allows to attain
notifications of bundle state changes.

• The service layer provides simple and consistent means to bundles for
registering services (i.e. implementations of java interfaces), as well
as for discovering and using services provided by other bundles. The
service layer also provides functionality allowing to react to service
registrations (in order to e.g. register own services as other, needed
services are registered).

Figure 2.4 shows the interactions between the OSGi layers. Client code in
bundles use the service layer to register and deregister services to the OSGi
service registry. After discovering required services, bundles use the service
layer to retrieve and release the services needed (in OSGi terminology, to get
and unget services).

A bundle consists of a tightly integrated set of classes, resources and na-
tive code with a specially defined entry point, called the bundle activator.
The bundle activator allows client code to interact with the OSGi layers
in general, and with the life-cycle layer specifically. The life-cycle layer in-
vokes the bundle activator’s start and stop callback methods, while passing
a bundle context parameter allowing access to the OSGi infrastructure. In
particular, the bundle context allows to access the OSGi service registry for
service lookup and service registration.

The life-cycle layer starts and stops bundles by invoking the bundle ac-
tivator start and stop callbacks. At the same time, bundles can use the life
cycle layer to request to start, stop, or change the state of other bundles.

The life-cycle layer itself interacts with the service layer by revoking ser-
vice registrations when a bundle is stopped. At the same time, it commands
the module layer to install and uninstall bundles, making classes available
and revoking their availability to other bundles, respectively. The module
layer in turn is used by the bundle class loaders to load classes.

Finally, the bundle itself as well as the module layer (and transitively,
also all other layers) use the execution environment (JRE) to run their code.

In order to illustrate the workings and usage of OSGi, the following text
makes use of an example from the domain of physiological computing: a set of
analysis components are existing in a system, and a single monitoring service

32 2. Background

Analyser

+analysis()

AnalyserMonitorService

+getName()
+getResult()

IAnalyserMonitor

0..*

Figure 2.5: Analyser example plug-in architecture

allows to inspect the current analysis results of each analysis components.
The monitoring service hence aggregates the monitoring interfaces of several
analysis components. This example makes use of an OSGi console interface
to display the current analysis results. Basically, this design makes use a
plug-in architecture [54].

Figure 2.5 gives an overview of the plug-in architecture of the example.
The aggregating class is the AnalyserMonitorService (see listing 2.1). Note
how the implementation is thread-safe, as the console thread invoking the
_analysis() method is a different one from the OSGi service listening thread
that is used to add and remove plug-ins. The sample analyser is realised in the
Analyser class, and is shown in listing 2.3. It uses a dummy data generator
that creates pseudorandom data in an own thread. This generated data is
used as analysis output. The common plug-in interface, IAnalyserMonitor,
is shown in listing 2.2.

Listing 2.1: Aggregating service

public class AnalyserMonitorService implements CommandProvider
{

private final List<IAnalyserMonitor> fAnalysers;
private final NumberFormat fFormat;

public AnalyserMonitorService() {
fAnalysers = new CopyOnWriteArrayList<IAnalyserMonitor>();
fFormat = NumberFormat.getNumberInstance();

}

2.3 OSGi 33

public void _analysis(CommandInterpreter ci) {
ci.println("Current snapshot of analysis results");
for (IAnalyserMonitor analyser : fAnalysers) {
double value = analyser.getResult();
String name = analyser.getName();
ci.println(name + ": " + fFormat.format(value));

}
}

public String getHelp() {
StringBuffer buffer = new StringBuffer();
buffer.append("---Analysis Monitor Help---\n");
buffer.append("\tanalysis - lists the current analysis

results\n");
return buffer.toString();

}

public void addAnalyser(IAnalyserMonitor d) {
fAnalysers.add(d);

}

public void removeAnalyser(IAnalyserMonitor d) {
fAnalysers.remove(d);

}
}

Listing 2.2: IAnalyserMonitor plug-in interface

public interface IAnalyserMonitor {

/**
* Returns the current analysis result.

*
* @return the current result of the analysis process.

*/
public double getResult();

/**
* Returns the name of the analyser.

*
* @return the name of the analyser.

*/
public String getName();

}

34 2. Background

Listing 2.3: Mock analyser class

public class Analyser implements IAnalyserMonitor {

private final DataGenerator fGenerator;

private final String fName;

private double fResult;

public Analyser(String name) {
fName = name;
fGenerator = new DataGenerator(new IDoubleTarget() {
@Override
public void push(double value) throws

InterruptedException {
synchronized(Analyser.this) {
fResult = value;

}
}

});
}

public void start() {
fGenerator.start();

}

public void stop() {
fGenerator.stop();

}

@Override
public synchronized double getResult() {
return fResult;

}

@Override
public String getName() {
return fName;

}

public String toString() {
return "Analyser[" + fName + "]";

}
}

2.3 OSGi 35

Listing 2.4 shows a typical OSGi bundle activator. The source list-
ing shows how the bundle activator registers services (for the interfaces
IAnalyserMonitor and CommandProvider, where the command provider in-
terface is an OSGi interface for interacting with its runtime console), and
registers a service listener (implemented by itself) to react to appearing and
disappearing services by injecting them into and removing them from the
AnalyserMonitorService, respectively.

Listing 2.4: OSGi activator for the analyser example

public class Activator implements BundleActivator,
ServiceListener {

private BundleContext fContext;
private AnalyserMonitorService fService;
private ServiceRegistration fRegistration;

@Override
public void start(BundleContext context) throws Exception {
fContext = context;
fService = new AnalyserMonitorService();

// listen to newly registered dictionaries.
fContext.addServiceListener(this, "(objectclass="

+ IAnalyserMonitor.class.getName() + ")");

// register a new analyser.
Analyser analyser = new Analyser("Mood Valence");
analyser.start();
fContext.registerService(IAnalyserMonitor.class.getName(),

analyser,
null);

// register the console service.
fRegistration = fContext.registerService(

CommandProvider.class.getName(), fService, null);
}

@Override
public void stop(BundleContext context) throws Exception {
fRegistration.unregister();
fContext = null;
fService = null;

}

36 2. Background

public void serviceChanged(ServiceEvent ev) {
ServiceReference sr = ev.getServiceReference();
switch (ev.getType()) {
case ServiceEvent.REGISTERED: {
IAnalyserMonitor monitor = (IAnalyserMonitor) fContext

.getService(sr);
fService.addAnalyser(monitor);

}
break;
case ServiceEvent.UNREGISTERING: {
IAnalyserMonitor monitor = (IAnalyserMonitor) fContext

.getService(sr);
fService.removeAnalyser(monitor);

}
break;

}
}

}

A bundle is deployed as a Java archive file (jar) containing java classes, na-
tive code, resource files, and a manifest containing additional, OSGi-specific
manifest headers. These additional headers are used for example to declare
the bundle activator and dependencies to other bundles, among others. List-
ing 2.5 gives an example manifest file. Among other details, the bundle
activator as well as imported and exported packages are defined herein.

Listing 2.5: OSGi manifest for the analyser example

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Osgi
Bundle-SymbolicName: example.osgi
Bundle-Version: 1.0.0.qualifier
Bundle-Activator: example.osgi.Activator
Bundle-ActivationPolicy: lazy
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Import-Package: org.eclipse.osgi.framework.console;version

="1.0.0",
org.osgi.framework;version="1.3.0",
org.osgi.util.tracker;version="1.3.1"

Require-Bundle: example.datagenerator;bundle-version="1.0.0"

OSGi’s most important impacts on a system and its codebase code-base
are twofold:

2.3 OSGi 37

Provider Client

Service

dependency

use

Provider Client

Service

dependency

use

Interfaces

dependency

Figure 2.6: Reducing bundle dependencies by introducing an interface bundle

• Providing a clear module and service concept. This enables software
engineers to define the accessibility of their bundle’s java code base
package-wise, and let OSGi enforce the specified visibility constraints.
Additionally, the service concepts is largely seen as having the most
impact on the software structure and quality. However, the service con-
cepts make it necessary for software engineers to embrace the dynam-
icity of OSGi. Taking into account the possibility of services becoming
unavailable at any point forces software developers to code much more
defensively than usually done in desktop and even in server environ-
ments [92]. The bundle activator in listing 2.4 shows drastically the
overhead involved in reacting to OSGi service dynamics.

• Allowing code-swapping at runtime. OSGi allows indeed to exchange a
code base without the need to shut down the whole OSGi framework
and all bundles it hosts. Instead, the OSGi module system allows to
shut down only the affected bundles, that is to say, the bundle to ex-
change and the bundles that directly depend on it. While on a first
thought, this policy seems like requiring to shut down a large part of
a system, the number of affected bundles can be reduced significantly
if proper service-oriented bundle organisation is used, as shown in Fig-
ure 2.6, on the right.

OSGi is a solid service-oriented module platform that allows to enforce
clear separation of Java code into modules that can be swapped at runtime.
The OSGi framework introduces a module system to the Java programming
language that was missing before the introduction of the OSGi platform.
The component-based software framework that is presented in this thesis

38 2. Background

leverages the facilities OSGi provides for the creation of code separation.

2.4 Component-based formal analysis

The goal of this thesis is not only to provide an implementation framework,
but also a theoretical framework for the verification of correctness of recon-
figurations, as reconfigurations are a useful tool in physiological computing
applications, but are also hard to get right. In this section, we introduce the
terminology and background for formal analysis of component-based sys-
tems, which constitutes the basis to the verification framework for systems
undergoing reconfigurations that is introduced in Chapter 4.

For formal analysis, components [117, 81] are here considered to be black
boxes, making explicit only their communication requirements by means of
required and provided ports. The distinction between provided and required
ports is made as a need to attribute control over the port to a component.
While a component controls its provided ports, it has no control over its
required ports.

The behaviour of a single component as well as of an entire system can
be specified by assume-guarantee pairs, where the assumptions address the
system environment, and the guarantees the behaviour of the component.
Assumptions and guarantees are specified in terms of real-time temporal
logic, which is extended to support reconfigurations in Chapter 4. The use of
real-time temporal logic is motivated by the fact that physiological computing
systems are systems interacting with the real world, and these interactions
are best modelled with continuous-time specifications. Due to the decision
to use real-time linear temporal logic, we use a continuous trace semantics
as for Metric Interval Temporal Logic (MITL) as found in [8].

For the definition of the formal semantics of components and of the tem-
poral logic, the following notation is used: C = A]B means that C = A∪B
and that A and B are disjoint; Given a subset A from a domain of discourse
Ω, ¬A denotes Ω \ A.

The formal assume-guarantee framework for reconfiguration presented
here is based on work of Benveniste et al. [26]. In the following, we introduce
the necessary terminology and basic concepts introduced in [8] and [26], as
well as the basis for combining the (semantic-level) assume-guarantee frame-
work with metric interval temporal logic [8] specifications.

First of all, following the systematic approach of [121] and [21], we set

2.4 Component-based formal analysis 39

the domain of discourse by defining component signatures.

Definition 1 (Component signature). A component signature Σ consists of
two disjoint finite sets RΣ, PΣ of provided and required ports, respectively:
Σ = (RΣ, PΣ).

In the following, signature-indexed components are used to refer to the
components of signatures: RΣ denote the required ports of the signature Σ.
In a next step, the relations of subsignature and supremum on signatures can
be defined.

Definition 2 (Subsignature and signature supremum). Let Σ and Θ be
component signatures. The notion of a subsignature Σ ⊆ Θ is defined by
component-wise set inclusion.

Σ ⊆ Θ iff RΣ ⊆ RΘ and PΣ ⊆ PΘ

Given two signatures Σ and Θ, the supremum of Σ and Θ is defined by
component-wise set union.

sup(Σ,Θ) = (RΣ ∪RΘ, PΣ ∪ PΘ)

The semantics of a metric interval temporal logic formula is defined in
terms of runs. Runs are also used to represent behaviours of components
with signature Σ.

Definition 3 (Run). Let Σ be a component signature. A Σ-run is a function
ρ : R+

0 → (RΣ ∪ PΣ) which satisfies the properties of finite-variability [8]:
for all t, t′ ∈ R+

0 , there are only finitely many different states between time t
and t′:

∀t, t′ ∈ R+
0 .t < t′ =⇒ |{ρ(t′′) | t ≤ t′′ ≤ t′}| <∞.

The class of all Σ-runs is denoted by R(Σ).

Note that the definition of runs is different to that found in [8]; it can be
easily shown however that the definitions given here and the definition of [8]
are equivalent. The definition of runs specifies the ports that are activated
at time t ∈ R+

0 : all required and provided ports that are contained in ρ(t)
are active. The finite variability required in Definition 3 is necessary to avoid
Zeno’s paradox [16], and to make the logic operating on these runs decidable.
Finite variability prohibits runs that change port valuations infinitely often
in finite time.

Assertions can now be defined as sets of runs; a system can be said to
satisfy an assertion E if its behaviours M is a subset of the property E.

40 2. Background

Definition 4 (Assertion). Let Σ be a component signature. A Σ-assertion
E, in the following also denoted by E : Σ, is a set of Σ-runs: E ⊆ R(Σ).

Assertions over component signatures are used for specifying assumptions,
guarantees, and implementations. As oftentimes, assumptions, guarantees
and implementations are assertions over different signatures, there must be
a way to transform an assertion from one signature to another. For this, we
introduce the concepts of lifting and restriction. First, the lifting of runs and
assertions from a signature Σ to a signature Θ ⊇ Σ is defined.

Definition 5 (Lifting). Let Σ, Θ be component signatures such that Θ ⊇ Σ,
let ρ ∈ R(Σ) be a Σ-run. The lifting of ρ to Θ, ρ↑Θ is defined as follows.

ρ↑Θ= {ρ′ ∈ R(Θ) | ∀t ∈ R+
0 .ρ
′(t) ∩ (RΣ ∪ PΣ) = ρ(t)}

Let E : Σ be a Σ-assertion. The lifting of E to Θ, E ↑Θ, is defined as follows.

E ↑Θ=
⋃
{ρ↑Θ| ρ ∈ E}

Restriction is then defined as the inverse operation for runs and assertions
from a signature Θ ⊇ Σ to Σ.

Definition 6 (Restriction). Let Σ, Θ be component signatures such that
Θ ⊇ Σ, let ρ ∈ R(Θ) be a Θ-run. The restriction of ρ to Σ, ρ↓Σ is defined
as follows.

ρ↓Σ= {ρ′ ∈ R(Σ) | ∀t ∈ R+
0 .ρ(t) ∩ (RΣ ∪ PΣ) = ρ′(t)}

Let E : Θ be a Θ-assertion. The restirction of E to Σ, E ↓Σ is defined as
follows.

E ↓Σ=
⋃
{ρ↓Σ| ρ ∈ E}

In this abstract semantics-based framework, parallel composition of im-
plementations is straightforward, and is defined by parallel composition of
assertions.

Definition 7 (Parallel composition of assertions). Let ΣE, ΣF be component
signatures. Let E : ΣE and F : ΣF be two assertions. The composition of E
and F is defined by E‖F = E↑Σ ∩F↑Σ, where Σ = sup(ΣE,ΣF).

2.4 Component-based formal analysis 41

Note that since E‖F satisfies finite variability, it is also a Σ-assertion.2

In order to specify not only the behaviour of a component, but also as-
sumptions expressed towards its environment, assume-guarantee contracts
are used.

Definition 8 (Assume-guarantee contract). Let Σ be a component signature.
An assume-guarantee contract is a pair of assertions (A : Σ, G : Σ).

Contract satisfaction is defined by inclusion of runs – more precisely, for
an implementation M , every run in M which is in A (i.e. satisfies A) must
be in G (i.e. satisfies G).

Definition 9 (Contract satisfaction). Let M : ΣM be an implementation,
and (A : Σ, G : Σ) be an assume-guarantee contract. M satisfies (A : Σ, G :
Σ), denoted by M �c

ΣM
(A,G), if and only if Σ ⊆ ΣM and M∩A↑ΣM⊆ G↑ΣM .

The canonical form of contracts can be defined as (A↑Σ, (¬A)↑Σ ∪ G↑Σ),
over the signature Σ = sup(ΣA,ΣG). The rationale for the canonical form
is that non-circular composition of contracts is easier to define, and that an
implementation M satisfies a contract if and only if it satisfies its canonical
form.3 To simplify the presentation, it is assumed from now on that contracts
are in canonical form. (A,G) : Σ can be written instead of (A : Σ, G : Σ),
since the signatures of A and G are the same.

Now, parallel composition of contracts is defined. While parallel compo-
sition of implementations is defined by intersection, parallel composition of
contracts is more complex, as it produces a new contract whose assumptions
consists only of those assumptions that are not satisfied by any element of
the composition, and whose guarantee should consist of a combination of
the single guarantees. At the same time, parallel composition must create a
contract in canonical form, and avoid circular reasoning: if, for instance, the
first contract C assumes A and guarantees B while the second contract D as-
sumes B and guarantees A, the assumption of the composed contract should
not be the set of all runs (i.e. making no assumption on the environment),
but the complement of ¬A ∩ ¬B, i.e. ¬(¬A ∩ ¬B).

2Lifting of assertions preserves finite variability by definition, as does intersection of
assertions.

3For a discussion of circularity issues in parallel composition, see [1].

42 2. Background

Definition 10 (Parallel composition of contracts). Let C = (AC , GC) : ΣC,
D = (AD, GD) : ΣD be two contracts in canonical form with PΣC

∩ PΣD
= ∅.

The parallel composition of C and D, C‖D is defined as follows.

C‖D = ((AC ∩ AD) ∪ ¬(GC ∩GD), GC ∩GD) : Σ

Note that the composed contract is in canonical form, since ¬((AC∩AD)∪
¬(GC ∩ GD)) = ¬(AC ∩ AD) ∩ (GC ∩ GD) ⊆ (GC ∩ GD). Furthermore, it
can be directly shown that composition of implementations and contracts is
commutative and associative, as it is defined by set intersections. Note also
that the restriction over provided ports included in Definition 10 requires
that the control of provided ports is well-defined: only one component may
define the valuation of a provided port. It is therefore possible to define a
mapping from provided ports to its controlling component.

We can show now that parallel composition of implementations preserves
contract satisfaction.4

Theorem 1 (Composition preserves contract satisfaction). Let ΣM and ΣN

be component signatures, M : ΣM , N : ΣN be two implementations such that
sup(ΣM ,ΣN) ⊆ Σ. Let C = (AC , GC) : ΣM , D = (AD, GD) : ΣN be two
contracts. Then it holds that

if M �c
ΣM

C and N �c
ΣN

D then M‖N �c
Σ C‖D.

The proof of this theorem makes use of basic set arithmetic.

Proof of Theorem 1. Let (A,GC ∩ GD) = C‖D. We have to show that
M‖N ∩ A ⊆ GC ∩ GD. We know that M ∩ AC ⊆ GC , which holds iff
M ⊆ GC ∪ ¬AC . Since ¬AC ⊆ GC , it follows M ⊆ GC . Same holds for
N and (AD, GD). Hence, M ∩ N ∩ A ⊆ GC ∩ GD ∩ A, which is a subset of
GC ∩GD.

One missing piece in an assume-guarantee framework is left: the refine-
ment of contracts. When building component-based systems, it is desirable to
check whether the contract resulting from composition satisfies a global sys-
tem specification. Therefore, a refinement relation on contracts is introduced
that allows assumptions to be weakened and guarantees to be strengthened:
refinement is covariant for guarantees and contravariant for assumptions.

4Using the canonical form allows to compute an assumption even for cyclic parallel
composition, but with the cost of a possibly weaker guarantee than with the initial, non-
canonical contract.

2.4 Component-based formal analysis 43

Definition 11 (Contract refinement). Let Σ be a signature. (A′, G′) : Σ
refines (A,G) : Σ, denoted by (A,G) � (A′, G′), if A ⊆ A′ and G′ ⊆ G.

A major requirement for refinement relations is its compatibility with the
satisfaction relation for implementations, i.e. whenever an implementation
satisfies a refined contract, it satisfies the original contract.

Lemma 1 (Contract refinement preserves contract satisfaction). Let (A,G) :
Σ and (A′, G′) : Σ be contracts and M : ΣM be an implementation such that
Σ ⊆ ΣM . If M �c

Σ (A′, G′) and (A,G) � (A′, G′) then M �c
Σ (A,G).

The proof of this lemma is as follows.

Proof of Lemma 1. Let M �c
Σ (A′, G′) and (A,G) � (A′, G′). We have

to show that M �c
Σ (A,G), i.e. that M ∩ A ↑Σ⊆ G ↑Σ. We know that

M ∩ A′ ↑Σ⊆ G′ ↑Σ, and A ⊆ A′ and G′ ⊆ G, which extends to A ↑Σ⊆ A′ ↑Σ

and G′ ↑Σ⊆ G↑Σ. Therefore M ∩ A↑Σ⊆ M ∩ A′ ↑Σ⊆ G′ ↑Σ⊆ G↑Σ. It hence
holds that M �c

Σ (A,G).

So far, the difference between provided and required ports have been
mostly ignored. However, the role of ports is asymmetric in this assume-
guarantee framework [26]. While provided ports are under the control of
the providing component, a component may not control the valuations of
required ports. Therefore, implementations and contracts must be designed
such that they do not constrain port valuations illegally. To specify the re-
quirements towards contracts and implementations, the notion of receptivity
is defined first.5

Definition 12 (Receptivity). Let E : Σ be a Σ-assertion. E is Req-receptive
iff E ↓ΣReq

= R(ΣReq), where ΣReq = (RΣ, ∅). E is Prov-receptive iff E ↓ΣProv
=

R(ΣProv), where ΣProv = (∅, PΣ).

If a Σ-assertion E is Req-receptive, it does not constrain the valuations of
its required ports. If it is Prov-receptive, it does not constrain the valuations
of its provided ports, respectively.

Considering that an assume-guarantee framework is concerned with al-
lowing the decomposition of system specifications, it is clear that receptivity

5Note that in [26], required ports amount to uncontrolled ports, and provided ports
amount to controlled ports. We renamed these notions to provide a natural connection to
the rest of this thesis.

44 2. Background

requirements need to be imposed over contracts and implementations. Con-
tracts and implementations that satisfy their receptivity requirements are
called valid.

Definition 13 (Validity). Let M : Σ be an implementation. M is called
valid implementation iff M is Req-receptive. Let C = (A,G) : Σ be an
assume-guarantee contract. C is called valid contract iff A is Prov-receptive,
and G is Req-receptive.

The validity of implementations is easy to grasp: an implementation may
not constrain the valuations of its required ports, as it is deemed to have
no control over them. Of course, the specification is expected to respond to
valuations of its required ports by changing the valuations of its provided
ports. An implementation must provide a valuation of its provided ports for
any valuation of its required ports.

For assume-guarantee contracts, the rationale for its validity requirements
are more involved. It is straightforward that the guarantee of an assume-
guarantee contract must satisfy the same constraints as for implementations
– a guarantee is a loose specification of the behaviour of an implementa-
tion, and as such it may not specify any constraints on required ports. As-
sumptions are different, however, as they represent requirements towards the
component’s environment. An assumption specifies constraints towards the
environment of the component to be implemented, and hence must constrain
the allowed valuations of required ports. Conversely to guarantees and im-
plementations however, assumptions may not restrict the behaviour of the
specified component – they must focus on specifying valid environments in
which the component must operate.

Now that the assume-guarantee framework for continuous-time traces
was introduced, we continue with the syntactic level by introducing metric-
interval temporal logic (MITL) [8]. First of all, the basic time structure used
in MITL formulas, time intervals, need to be introduced.

Definition 14 (Time interval). As time domain we use the non-negative real
numbers R+

0 . A time interval is a nonempty convex subset of R+
0 that has one

of the following forms: [a, b], [a, b), [a,∞), (a, b], (a, b), (a,∞) where a < b for
a, b ∈ R+

0 .

Note that the definition of time intervals requires non-singular intervals.
In the following, some basic arithmetic operations on intervals are used. The

2.4 Component-based formal analysis 45

expression t + I, for t ∈ R+
0 , denotes the interval {t + t′ | t′ ∈ I}, and

analogously, t−I denotes the interval {t− t′ | t′ ∈ I}. Finally, the expression
I + J denotes the addition of two intervals I, J and is defined by {ti + tj |
ti ∈ I, tj ∈ J}.

Definition 15 (MITL-formulas). The set of MITL formulas over a com-
ponent signature Σ is inductively defined by

φ ::= > | p | ¬φ | φ1 ∧ φ2 | φ1UIφ2 | φ1SIφ2

where p ∈ RΣ ∪ PΣ is a port, and I is a nonsingular time interval. For
brevity, a MITL-formula φ over a signature Σ is also called a Σ-formula.

While until operator φ1UIφ2 denotes a real-time variant of the until op-
erator that requires φ2 to be true in the time interval I, the since operator
φ1SIφ2 is an operator that looks to the past, and requires that φ2 must be
true in the past and within the time interval I.

The usual abbreviations for the temporal operators “eventually” and “al-
ways” can be introduced. The defined operators 3Iφ and 2Iφ stand for
true UIφ and ¬3I¬φ, respectively. Similarly, past operators can be de-
fined with the since-operator, see e.g. [104]. Moreover, φ1 ∨ φ2 is defined by
¬(¬φ1∧¬φ2), and as usual φ1 → φ2 stands for ¬φ1∨φ2, and φ1 ↔ φ2 stands
for (φ1 → φ2) ∧ (φ2 → φ1).

The semantics of MITL-formulas is given in the form of sets of runs over
a signature. Each run provides, for every point in time, an interpretation of
the ports of the given signature.

Definition 16 (Satisfaction of MITL-formulas). A Σ-run ρ ∈ R(Σ) satisfies
a Σ-formula φ (or φ is valid in ρ), denoted by ρ �Σ φ, iff (ρ, 0) �Σ φ, where
the satisfaction relation �Σ between pairs (ρ, t), t ∈ R+

0 , and Σ-formulas φ is
inductively defined as follows:

(ρ, t) �Σ >
(ρ, t) �Σ p iff p ∈ ρ(t);
(ρ, t) �Σ ¬φ iff (ρ, t) 6�Σ φ;
(ρ, t) �Σ φ1 ∧ φ2 iff (ρ, t) �Σ φ1 and (ρ, t) �Σ φ2;
(ρ, t) �Σ φ1UIφ2 iff ∃t′ ∈ R+

0 , t
′ ∈ t+ I.(ρ, t′) �Σ φ2

and ∀t′′ ∈ R+
0 , t < t′′ < t′.(ρ, t′′) �Σ φ1;

(ρ, t) �Σ φ1SIφ2 iff ∃t′ ∈ R+
0 , t
′ ∈ t− I.(ρ, t′) �Σ φ2

and ∀t′′ ∈ R+
0 , t
′ < t′′ < t.(ρ, t′′) �Σ φ1.

46 2. Background

A Σ-formula φ is called a consequence of a set Γ of Σ-formulas, denoted by
Γ �Σ φ, if ρ �Σ φ holds for every ρ such that ρ �Σ ψ for all ψ ∈ Γ. φ is
called universally valid, denoted by �Σ φ, if ∅ �Σ φ.

Note that non-strict versions of U and S (i.e. versions allowing φ2 to be
true immediately, and not only in the future) can be defined from the versions
above just as in Schobbens et al. [104].

Given a set Γ of Σ-formulas, the semantics of Γ is defined by the set of all
runs satisfying Γ, i.e. JΓK = {ρ ∈ R(Σ) | ρ |= Γ}; if Γ = {φ}, then JφK = JΓK.

This concludes the background needed for the introduction of a formal
framework for the verification of systems undergoing reconfigurations. This
section introduced a semantic domain for assume-guarantee reasoning on
real-time specifications, and showed the existing results on the compatibility
of composition and refinement, as well as existing approaches to the specifi-
cation of components with required and provided ports. Additionally, metric
interval temporal logic was introduced as candidate syntax for the specifi-
cation of assumptions and guarantees. The connection between semantics
and syntax is established in Chapter 4, where the assume-guarantee frame-
work is also extended to allow for modelling and verifying systems under
reconfiguration.

2.5 Software development methodology

Transitioning from a vague idea of a software system to a satisfactory and
robust realisation of that idea is the underlying theme of virtually all soft-
ware engineering research. A significant part of that research is focused on
providing specific and highly focused solutions that improve single aspects
of software creation activities. In order to be effectively applicable, how-
ever, these focused solutions needs to be embedded in a working software
development methodology. In this section, we therefore discuss the software
development methodology that we intend to use as the frame for our engi-
neering approach to physiological computing: the agile software development
methodology Scrum.

2.5.1 Agile development methodologies

Scrum is a software development methodology from the set of agile method-
ologies which are difficult to characterise precisely. Their common ground is

2.5 Software development methodology 47

their focus on individuals, interaction, working software, collaboration with
customers, and embracing of environmental change, which they value more
than processes, tools, documentation, legal contracts, and plans [23]. How-
ever, it must not be assumed that agile methodologies were designed to be
a means to abolish the principle of software development methodologies and
software engineering in general; in fact, quite the contrary is true:

“The agile methodology movement is not anti-methodology; in
fact, many of us want to restore credibility to the word. We also
want to restore a balance: We embrace modelling, but not merely
to file some diagram in a dusty corporate repository. We em-
brace documentation, but not to waste reams of paper in never-
maintained and rarely-used tomes.” [58]

In a way, the agile development movement is a rupture with previous and
existing software development methodologies; at the same time, however, the
agile development methodologies are a logical consequence of the experiences
that were made with traditional methodologies.

The experiences and insights gained when applying traditional method-
ologies led to several fundamental differences between agile and heavyweight
development methodologies. These differences emerge in several aspects of
the software development philosophy; in the following, we cover two funda-
mental ones which are easily depicted: the way process rules are prescribed
and the way planning is understood and performed.

2.5.2 Process rules

Previous to the agile movement, software development methodologies tried to
provide a complete set of rules and prescriptions on how to organise a soft-
ware development process, i.e. which documents to create, when to create
them, and how to create them. This approach has been coined by Mar-
tin Fowler the monumental approach [56], because they are said to entail a
monumental and bureaucratic form of organisation. Monumental software
development methodologies often provide means for tailoring the process: by
following given guidelines; it is therefore possible to simplify and modify the
methodology and create a set of prescriptions that are a good match for the
project at hand. Agile methodologies follow a different approach to creating
a set of organisational rules for a project. Instead of trying to cover every

48 2. Background

Monumental
methodology

Project 1

Project 2

Agile
methodology

Figure 2.7: Monumental and agile software development methodology com-
pared by rule prescription

rule that may be needed for very large, distributed, or high safety require-
ments projects, they describe a minimal kernel of rules that virtually every
project will need; agile methodologies often try to provide a least common
denominator that is needed in all projects.

Figure 2.7 depicts this difference using a Venn diagram between the set
of rules prescribed by a hypothetical software development methodology of
each family and a hypothetical project. Since a hypothetical monumen-
tal approach on the left provides a comprehensive rule set, project 1 needs
to reduce the rule set provided through tailoring, but needs to invent only
few process rules necessitated by the specific project environment. The ag-
ile methodology on the right specifies only a small kernel of process rules.
Project 2 hence needs to invent more process rules to cope with the specific
project environment, and ignores only a few rules from the agile methodol-
ogy – those that are not applicable for the specific project context. In total,
Project 2 is executed with a smaller process rule set than Project 1. The
double arrows on the border line of each project rule set indicate that the
rule set may be changed during the project due to deliberate decisions, ex-
ternal forces, or process erosion that is naturally occurring if the process is
not maintained; the process rule set that is followed by a project’s team is
subjected to constant re-negotiation and change.

2.5 Software development methodology 49

Constant re-planning

Upfront planning

Figure 2.8: Uncertainty of upfront and iterative planning compared

2.5.3 Planning and controlling

Classical software development methodologies like the waterfall model [102],
Rational Unified Process (RUP) [79] and the V-Model [70] try to establish
a plan for the full software system right at the beginning of the project
development work (in RUP, the full plan is established in the elaboration
phase). The goal of the plan creation process is to create a stable project
roadmap to follow; it may be changed, but its primary purpose is to be
followed.

However, experience with software development has shown that software
development is a process involving significant amounts of disturbances and
noise [107]. When creating plans in such environments, the uncertainty in-
creases with the distance of the planning horizon. Plans for the development
of software systems that reach far in the future need a significant amount
of contingencies in order to tackle the accumulating uncertainties and still
remain meaningful. Figure 2.8 visualises this effect; brighter colours indicate
higher confidence, and darker colours higher uncertainty and lower confidence
about the project plan. With a single upfront planning activity, the end of
the plan corresponds to the end of the project (which is, arguably, an impor-
tant phase of the project), and features high degrees of uncertainty. With
constant re-planning, the uncertainty can be kept comparatively low for the
whole project duration. This is the reason why agile software development
processes formalise constant re-planning of activities.

Connected with the aspect of project planning is the aspect of project
controlling, i.e. the monitoring of the project’s adherence to the established
plan, and the general supervision of a project’s progress. The difference

50 2. Background

with regards to project controlling between classical software development
methodologies and agile methodologies in what concerns project controlling
can be discussed in terms of process control theory [107]. In process con-
trol theory, there are two fundamentally different models of process control:
defined process control, and empirical process control. The former can be
applied when the process under control is simple, well-understood and fea-
tures a very low amount of disturbances. Here, the definition of the activities
to perform and the order in which they have to be performed can be written
down upfront, and the results will be very similar each time the process is
implemented. This is very much how classical waterfall software develop-
ment methodologies promotes planning: create a plan upfront, and follow it.
Unfortunately, the defined process model is inappropriate as most software
development endeavours feature more disturbances and noise than a defined
approach can manage. For this reason, an empirical approach to software de-
velopment seems more appropriate. In an empirical control model, frequent
inspection and adaptive response are the dominant control mechanism; where
it is not possible to predict the exact reaction of the process to the set of
initial conditions and the disturbances it will experience, frequent feedback
is used to keep the process on track.

2.5.4 Scrum process development methodology

Scrum [107, 108] is an agile software development methodology that, in con-
trast to the well-known extreme programming [22] approach, puts its em-
phasis on management disciplines instead of programming disciplines. In
the following, we discuss the principles underlying Scrum, the roles, and the
meetings that are defined in Scrum.

The overall process structure of Scrum is depicted in Figure 2.9. Scrum
organises the project work into sprints of four weeks length. Each sprint
is planned separately by retrieving work items from the product backlog
and assembling them to a sprint backlog right before the sprint starts. The
product backlog itself is simply a list of work items (sorted by priority) that
need to be completed for the product to become reality. The sprint backlog is
worked on during the sprint, and daily meetings of 15 minute length are used
to provide brief status information from the team. Each sprint is committed
to creating a product increment of high-level quality; the goal of each product
increment is to be “potentially shippable” to the customer. The product
increment is inspected in the sprint review meeting and the team can gather

2.5 Software development methodology 51

Product
backlog

Sprint
backlog

Sprint

4 weeks

24 hours

Daily
Scrum

meeting

Potentially
shippable
product
increment

Sprint
planning
meeting Sprint

Review

Figure 2.9: Scrum process

feedback on the work it performed on a regular basis (i.e. every four weeks).
Once the feedback is gathered, the team is ready to plan the next sprint by
assembling to a new sprint planning meeting.

In Scrum, creating a product increment does not necessarily mean deliv-
ering (or shipping) the product increment to the customer. Nevertheless, the
total product with the latest increment can be inspected and reviewed at the
end of each sprint and serves as the planning baseline for the next sprint.

The Scrum software development methodology is organised by a set of
underlying principles that guide how process rules are to be enforced and
extended.

• Empirical management. Scrum relies on the empirical process con-
trol model, which means that constant inspection and adaptive correc-
tions are the core concepts of the methodology. It also means that the
empirical understanding should underlie each and every decision and
action performed. Scrum is also an experimental approach; teams are
encouraged to try out new ways to improve their software development
approach, and to empirically evaluate the results.

• Time-boxing. Each activity in Scrum must have a time limit – each

52 2. Background

sprint must have a deadline, and each meeting must have a maximum
allowed time. This is required for both allowing frequent feedback and
to increase focus on the task to be performed within the time-box.
When running out of time, Scrum encourages reducing the scope of
work instead of extending the deadline or the available time.

• Ownership and rights. Scrum defines clear ownership on the arte-
facts (and entailed rights) that are managed withing Scrum: the prod-
uct backlog, the sprint backlog, and the product. The ownership and
rights are used to empower the development team, and to keep the
sprint scope and product under the control of the team while the
team is working. The spirit of the ownership model is explained in
Scrum through a small parable of a chicken and a pig, in which the
chicken wants to start a restaurant named “Ham n’ Eggs”, upon which
the pig replies “No thanks. I’d be committed, but you’d only be in-
volved!” [107] In this parable, the distinction between involvement and
being committed is made clear; the distinction between “pigs” and
“chickens” is necessary to shield the team from illegitimate interven-
tion through management forces who think they are committed, but
are actually only involved.

• Transparency. The goal of Scrum is to make the software develop-
ment process clearly visible to the team. All practices that make the
team productive as well as all impeding practices are made visible in
Scrum through its feedback cycles. Planning errors, lack of focus as
well as bad engineering practices are continuously exposed and made
available for reflection and correction through daily Scrum meetings,
sprint reviews, and sprint retrospectives. For additional visibility of a
project’s current state, Scrum uses a burn-down chart that each day
sums up the remaining effort to be performed. Figure 2.10 shows an
example burn-down chart of a completed sprint. The chart shows how
the remaining efforts of the sprint evolved over time. Through this
chart, the team’s current situation in terms of past achieved effort and
remaining effort is made fully transparent to the team itself. The trans-
parency that is achieved through the burn-down chart, daily Scrum
meetings, sprint reviews, and sprint retrospectives enables the team to
take corrective actions early to keep the project on track.

• Self-organising teams. Scrum does not define how the team must be

2.5 Software development methodology 53

structured in order to work efficiently. In fact, prescribed role structures
are often hard to map to the needs of a single software development
effort. Instead, Scrum encourages the management to proceed empiri-
cally, and to encourage behaviours and structures that proved efficient
during the project itself. Conversely, behaviours and structures that
emerged and proved to impede the team’s productivity must be dis-
couraged as well. Striving for self-organising teams also means to give
control and authority to the team to self-organise around the challenges
the project offers. Management has to make careful tradeoffs between
subtle intervention and control on the one side, and handing off control
to the team so that it can discover new ways to organise work efforts.

R
em

ai
n

in
g

ef
fo

rt

Time

Sprint backlog
workload

Figure 2.10: Scrum burn-down chart

Scrum defines a set of roles that has to be assigned for the methodology
to work: team member, product owner, and Scrum master.

• Team member. The team member’s main duty is to work on the
product to work off the sprint backlog, and to create a potentially
shippable product increment. For that, the team member is responsi-
ble for assembling the sprint backlog from the product backlog made

54 2. Background

available, working on backlog items, and presenting the working result
at the end of the sprint.

• Product owner. The product owner controls the product backlog,
and prioritises the backlog items within it. He is the interface to the
stakeholders of the product. The main activities of the product owner
are a) to integrate all legitimate requirements towards the product, and
b) to prioritise the items in the product backlog to achieve maximum
business revenue. The product owner hence manages the product back-
log for the team, from which the team assembles its sprint backlog by
obeying priority and technical constraints. The product owner is also
the person the team contacts on detailed questions about the product;
the product owner should be able to answer most of those questions,
or otherwise, to organise a meeting with the person who can.

• Scrum master. The Scrum master is the coach of the team, and
monitors the adherence to established process rules. These rules will
mostly originate from Scrum, but they may be modified, and extended
to fit the current project. Secondly, the Scrum master is bound to
remove any impediments that hinders the team. Most of the time,
these impediments will be of organisational nature, which means that
the Scrum master is also committed to transform the organisation to
a more lean and productive form.

For a Scrum team to be correctly sized, it needs five to nine team members,
one product owner, and one scrum master. It is possible for a team member
to adopt the role of the product owner or scrum master. It is however very
strongly discouraged to assign the role of product owner and scrum master
to one and the same person, since the roles must exert different and often
conflicting forces on the team.

The Scrum team consists of the team members, their product owner,
and their Scrum master. the Scrum process defines a set of meetings that
guides the team through the process of sprint creation, execution, and sprint
completion. In total, Scrum defines five types of meetings.

• Sprint planning. In the Sprint planning meeting, the sprint backlog
for the next sprint is assembled from the product backlog. The team
decides on how much of product backlog can be taken into the sprint
based on estimation techniques such as e.g. planning poker [22]. At the

2.5 Software development methodology 55

end of the sprint planning meeting, a sprint backlog is assembled, and
a burn-down chart is created. The timebox is eight hours for a four
week sprint [108].

• Daily Scrum meeting. The daily Scrum meeting is a 15-minute
meeting performed by the team and for the team, primarily. It is a
brief status report meeting in which each team member reports on
the activities performed since the last meeting, the activities planned
up to the next meeting, and the impediments that the team member
experiences.

• Sprint review. The sprint review is used to provide the product
owner and stake holders with information about the current state of the
product. Also, the sprint review allows the team to gather feedback on
the work they performed, and to understand the priorities of customer
and product owner. The sprint review is performed at the end of each
sprint, with a timebox of four hours for a four week sprint [108].

• Sprint retrospective. After each sprint review, and before the next
sprint planning meeting, a sprint retrospective of three hours length
(for a four week sprint) is used to review and improve the software
development approach of the team; that is to say, the team evaluates
the practices it follows and tries to improve the way it turns product
backlog items into working software, looking for possible improvements
to the process.

• Release planning. The release planning meeting is an optional meet-
ing that can be performed to plan sprints. The purpose of the release
planning meeting is to establish a product roadmap for the team and
the rest of the organisation [108]. The release plan contains a set of
release dates that guide priorities in the product backlog as well as the
nature of the assembled sprints: sprints that are performed right before
a release date will be focused heavily on quality improvements, bug fix-
ing and cosmetic improvements of the product itself, while sprints that
follow a release will contain more risky activities and changes.

The Scrum principles, roles, meetings, and artefacts are the entities that
constitute the Scrum methodology. These entities define the structure and
rules of Scrum to a large extent, and describe how a productive and efficient

56 2. Background

working environment for the development of software systems can be set up
if applied properly.

The Scrum approach has some drawbacks and problems of its own, how-
ever. First and foremost, Scrum does not offer any software engineering
practices; it is left to the team to discover which design principles, testing
approach, and amount of documentation are appropriate, to name a few.
As stated previously, agile methodologies tend to focus on a kernel of rules,
instead of providing all possible rules, and Scrum is no exception to that
rule. Fortunately, the focus of Scrum on project organisation aspects makes
it easy to extend with engineering principles such as the Extreme Program-
ming principles [22].

Another drawback of Scrum that is often exposed is its reliance on the
integrity and capabilities of individuals. In fact, the autonomy and authority
that is given to Scrum teams requires technical qualities, honesty, manage-
ment and communication capabilities. Otherwise, the team will most prob-
ably suffer from wrong or bogus decisions that individual team members
make during the sprint planning meeting and the sprint itself. The high
transparency that Scrum provides requires openness, the ability to deal with
negative feedback, as well as sensitivity towards others. Lack of such compe-
tences will have corrosive effects on the team, as the team morale may enter
a self-reinforcing downward spiral through the fearful, blameful, and nega-
tive atmosphere that may emerge. However, thinking that a project can be
brought to success with any significant amount of unskilled people or people
with poor integrity (as some proponents are proposing [32]), is arguably naive
– or at least, it is worth posing the question if creating such environments is
morally justifiable towards the more skilled team members.

An often-mention criticism of agile development methodologies in general
and Scrum in particular is that it does not scale to big projects and big teams.
This is true to the extent that Scrum teams are limited to a maximum size
of nine developers. Scrum defines means to run several Scrum teams in
parallel [107, 80], although no consensus has been yet established on the
rule set to follow. To give a brief sketch of the principle for scaling up, the
idea is to introduce Scrum of Scrums (SoS) to coordinate several parallel
Scrums. The SoS team consists of one representative from each parallel
Scrum who meet on a regular basis to coordinate the development activities
amongst the teams and to provide status reports to each other. In this way, a
system development effort of about 80 people (9 times 9) can be coordinated
using Scrum. By applying the Scrum of Scrums principle again, the total

2.5 Software development methodology 57

development effort can be scaled up to about 700 (93), which is already a
significant increase above the initial maximum of nine developers.

2.5.5 Other software development methodologies

The first software development methodology, according to Elliot [47], was
the systems development life cycle (SDLC) postulated in the 1960’s, which
equates roughly to the waterfall model [30]. According to [114] and [14],
the first complete proposal for this software engineering approach is Winston
Royce’s paper [102], which suggests to perform activities of requirements
elicitation, design, coding, testing, and deployment sequentially for the whole
product, and to start the next activity only when the first activity has been
completed. However, the waterfall approach is no fitting approach in the
vast majority of currently existing software development environments, as
pointed out by Krutchen [79, p. 55ff].

The spiral model [31] is a refinement of the waterfall model that proposes
a more elaborate approach to planning, requirements elicitation and design
of software systems. Both the spiral model and the waterfall model con-
clude with a linear phase in which development, testing, and deployment are
performed sequentially. The spiral model is a risk-driven software develop-
ment process [14, 114] that allows teams to focus the planning, requirements
elicitation, analysis and design work on high-risk areas. It does not require
the same amount of effort for the elaboration of all requirements and all
sub-components of a software system. However, the spiral model still does
not encourage revisions and backtracking from coding and testing to earlier
phases of the project. Revisiting and refining the system design and docu-
menting requirement clarifications that did arise during later phases of the
project is not included in the methodology.

The Rational Unified Process (RUP) [79] is arguably the most well-known
process from the Unified Process family. The processes from the Unified Pro-
cess family of software development methodologies have several aspects in
common, of which the focus on iterative development is, arguably, the most
distinctive. The Unified Process extends the principle of iterative develop-
ment of the spiral model’s approach to planning, requirements elicitation
and design to the whole development process. It is therefore inspired by the
spiral model, but is not a simple “unrolling of the spiral”; it already consti-
tutes a different approach to software development altogether – namely, an
iterative one. The Unified Process identifies the development steps of the

58 2. Background

waterfall model as disciplines that need to be carried out in all iterations of
the project with different weights. For example, early iterations will see a
heavier focus on requirements and design, while the team puts much more
effort into coding (called implementation in the Unified Process) and deploy-
ment in later iterations. The Unified Process adds additional disciplines to
the ones known from the waterfall model (requirements, analysis and de-
sign, implementation, test, deployment) in order to put more emphasis on
the activities that are needed to enable the core disciplines: (1) business
modelling (understanding the structure and dynamics of the application do-
main), (2) configuration and change management (tackling the management
of produced artefacts and change requests), (3) project management (project
planning, assessment, and control, risk and resource management), and (4)
environment (creation and maintenance of necessary tooling and organisa-
tional setups). RUP defines a total of 63 artefacts that need to be created
– of course, containing running code as some of those artefacts. From that
number alone, it becomes clear that even though RUP did discontinue the
linear approach to software development that was advertised in the water-
fall model – and to some extend in the spiral model as well – it still puts a
heavy emphasis on the creation of supplementary documentation. For many
projects, especially smaller ones, the RUP software development methodol-
ogy therefore needs extensive tailoring; unfortunately, RUP tailoring is still
an activity with little provided guidance. RUP textbooks write too little
about tailoring [67] (the most content on tailoring are ten pages available
in [112, pp. 229 – 239]), and research papers on RUP tailoring provide only
limited insight and guidelines [95, 67]. Arguably, the number of project man-
agers who can systematically tailor RUP from a solid body of knowledge and
experience must therefore remain limited.

2.5.6 Conclusion

We introduced Scrum, an agile software development methodology that promises
to deliver constant feedback and the creation of a healthy and productive de-
velopment team through a set of simple underlying principles, roles, meetings,
and artefacts.

We have also briefly discussed the waterfall model and the spiral model
from a historic perspective, before looking more closely at RUP, a more re-
cent software development methodology. The waterfall and spiral model of
software development are not a good match for the development of physio-

2.6 Conclusion 59

logical computing systems, as the process model they propose do not fit well
with modern software development environments and constraints.

Looking at the drawbacks and benefits of the more modern methods,
i.e. RUP and Scrum, we conclude that the flexibility and empirical approach
of Scrum is a better match for the development of physiological computing
systems. The Rational Unified Process, with its heavy focus on documenta-
tion and comparatively extensive process, lacks the flexibility that research-
ing and developing activities in the new application domain of physiological
computing.

The Scrum process is a software development methodology that is very
well suited for risky or research-oriented software development approaches.
Furthermore, the time-boxed structure of Scrum that entails regular feedback
on the project’s progress and achievements is a crucial factor for success in
a volatile environment. Especially, periodic user tests with the developed
system are necessary in physiological computing settings, as the impact of
introducing such complex systems in the environment of the user may only
manifest when applying them in half-real settings. For these reasons, Scrum
is a perfect match for the development of physiological computing appli-
cations, and serves as the basis for the methodology that is proposed in
Chapter 5.

2.6 Conclusion

In this chapter, the foundation for the software engineering approach to the
development of physiological computing systems have been settled. The ap-
plication domain, physiological computing, was introduced and explained in
details, and the need for a more systematic approach to their development
was identified. Furthermore, we discussed the terminology that is used in
component-based software frameworks and implementations, and presented
the platform (OSGi) on which the component-based framework for physiolog-
ical computing is implemented. Chapter 3 presents the software framework
that we created on top of OSGi. As the approach to formal verification
of reconfigurations is contract-based and uses a dense time model, we also
presented the formal theory of real-time contracts, their composition, and
refinement which we extend in Chapter 4. Finally, we discussed software
engineering methodologies and identified Scrum as the methodology to as-
semble the single bits of a software engineering approach to a consistent

60 2. Background

methodology itself. Chapter 5 discusses the how our contributions can be
combined within Scrum.

Chapter 3

Component framework for
application development

Creating physiological computing systems is a challenging task that can ben-
efit from both a systematic and structured approach and a framework for
implementation. While taking a component-based or modular approach to
software creation is undeniably sensible, physiological computing applications
feature specific requirements that benefit from a modular approach, but re-
quires the addition of specific features. The addition of these specific features
require careful design and consideration of the impact on the usage patterns
and usability of the framework, as well as the impact on consistency of the
provided capabilities. The resulting component-based framework for the im-
plementation of physiological computing software systems that is presented
in this chapter is called the REFLECT framework, as it constituted the core
framework of the implementation work in the REFLECT project [110].

In order to provide true implementation support, we first need to take one
step back and think about the requirements that software engineers develop-
ing physiological computing applications have towards a software framework
(Section 3.1). These requirements may be expressed genuinely by the soft-
ware engineers, or may arise through the needs of the final users of physio-
logical computing systems. In the following requirements elicitation process,
therefore, the viewpoints of both parties, the software engineers and the fi-
nal users, need to be taken into account. Once the requirements have been
established, we elaborate on the concepts that form the basis of the frame-
work design in Section 3.2, before discussing the usage of the REFLECT
framework for implementation and the rationale behind the interface the

62 3. Component framework for application development

Viewpoints

Interactor Domain

User (U)
Application

developer (A)
Human physiology

(HP)
Pervasiveness,
adaptivity (PA)

Security
regulations

Privacy
regulations

Figure 3.1: Identified viewpoints

framework offers to its users in Section 3.3.
Section 3.4 explores other existing component-based OSGi frameworks,

compares the REFLECT framework with those, and highlights different de-
sign decisions that exist between the OSGi frameworks and the REFLECT
framework, before Section 3.5 concludes this chapter.

3.1 Requirements

Requirements elicitation needs to follow a process, as does the overall software
development. In this Section, we first describe the selected process before we
proceed with the discussion of the requirements that were found.

3.1.1 Requirements elicitation process

From the multiple existing approaches to requirements engineering, we de-
cided to use the viewpoint-based approach [115], as one of its major strengths
is the consideration of domain specific requirements, the thorough analysis
of possibly contradicting requirements by different stakeholders and appli-
cation domain aspects, and their reconciliation. The viewpoints identified
for physiological computing systems are pictured in Figure 3.1; they include
two interactors, namely the user (U) and the application developer (A). The

3.1 Requirements 63

Physiological computing systems

R 1

R 1.1

R 2

R 2.1

R 3 R 4

R 3.1 R 4.1 R 4.2R 2.2

Figure 3.2: Identified requirements structure

user is understood as the person interacting with an environment of devices
which constitute the physical manifestation of a physiological computing sys-
tem, while application developers are all persons involved in designing and
constructing software for physiological computing systems.

Beyond these interactors, four domain viewpoints were identified: perva-
sive adaptation (PA), which is the key concern for physiological computing
system, is of course one of the domain viewpoints identified. Another do-
main viewpoint is human physiology (HP), which subsumes all requirements
stemming from the use of physiological measures and constructs as well as
from the application of physiological analysis methods and theories in phys-
iological computing systems.

It must be noted that two of four identified domain viewpoints were pur-
posefully left aside, namely security and privacy concerns, as they are not
part of the research focus of this work.

Starting from the identified viewpoints, the requirements elicitation pro-
cess used the ISO/IEC 9126 software quality model [74] as input for potential
quality features that the system should exhibit. In addition, the application
domain knowledge as well as a list of sample sensors and actuators, their
quantitative properties and their intended use for the derivation of higher-
level constructs guided the requirements elicitation.

64 3. Component framework for application development

3.1.2 Identified requirements

In the process of requirement elicitation, we started with envisioning the
key features that users will expect from physiological computing systems.
Then, we investigated the domain-specific challenges and requirements that
software developers will face when creating physiological computing systems,
and the support they may demand from a software framework in order to
guide them and to simplify their task. This approach led us to the identifica-
tion of four top-level requirements, R 1 to R 4 (see Figure 3.2 and Table 3.1).

View No. Requirement
Behavioural adaptation
U, PA, HP R 1 Applications should be able to adapt their be-

haviour on a strategic level
D, PA, HP R 1.1 The framework should support modular and re-

configurable systems
A, PA, HP R 2 Applications should be context-aware
D, PA, HP R 2.1 The framework should support the creation of

context-aware applications
D, PA, HP R 2.2 The framework should support coping with

changes in the computing infrastructure
Application evolution and experimentation
A, PA R 3 Applications should be easy to extend
A, PA R 3.1 The systems should be modular for easier inte-

gration of new functionality
A, HP, PA R 4 The framework should allow for experimentation

and rapid prototyping of applications
A, HP, PA R 4.1 Experimentation with various system setups, al-

gorithms, and parameters should be supported
A, HP, PA R 4.2 Offline testing of single algorithms and compo-

nents should be facilitated through capture/re-
play support

Table 3.1: Software framework requirements overview

The requirements R 1 and R 2 are requirements that stem from the user
viewpoint. Here, we deduced requirements that the application developer
may have towards the software infrastructure to simplify the development of
applications that satisfy the user requirements (R 1.1, R 2.1, R 2.2). Re-

3.1 Requirements 65

quirements R 3 and R 4 are requirements that are genuinely expressed by
application developers. Requirement R 3, especially, is a software quality
requirement that emerges quickly in discussions when thinking about how to
create applications in a quickly evolving domain. As experimentation plays
a key role in finding working application concepts, requirement R 4 emerged
soon, also.

Behavioural adaptation

R 1 Applications should be able to adapt their behaviour on a
strategic level The quintessence of a physiological computing system is
its ability to adapt its tangible reactions (such as changes to temperature,
lighting, and music) to the user’s current physical, emotional, and cognitive
state. However, as detailed in Section 2.1.4, physiological computing appli-
cations need to be able to change their behaviour on a strategic level in order
to offer satisfactory and entertaining behaviour to their user; a system that
always reacts in the same way and does not take proactive actions can be
easily labelled as primitive, even if it isn’t.

R 1.1 The framework should support modular and reconfigurable
systems In order to allow for change of system behaviour, it is necessary to
structure the parts defining the system behaviour in a way that their mode of
operation can be altered externally through system components monitoring
and altering the system behaviour on a strategic level.

The software framework to create should support this separation of be-
haviour and meta-behaviour (i.e. monitoring behaviour and changing it), and
allow the meta-behaviour to interact easily and consistently with the system
it is controlling.

R 2 Applications should be context-aware The correct tangible be-
haviour of a physiological computing system depends heavily on the user
context for adapting their behaviour accordingly [124].

Pervasive intelligent systems tend to behave wrong when they overlook
important aspects of the user’s context. Having a good grasp on the user’s
context is especially crucial when performing noticeable and impacting adap-
tations to the user’s environment; without a correct understanding of a user’s
context, the impacts on the user’s environment must remain small and almost
unnoticeable.

66 3. Component framework for application development

Using human physiology allows to gather information about the user con-
text from a different angle, namely from the perspective of the user itself.
The physiological reaction of the user can be leveraged as hints on how the
user perceives his environment, and influence the interpretation of the facts
through the software system. This additional channel of information allows
to increase the certainty on the user context, and allows to create systems
with more positive impact on the user.

An application’s context is not only comprised of the user, however. In
pervasive systems especially, the computing, sensor, and actuator infrastruc-
ture is bound to change permanently. As the user changes from location to
location, different capabilities are found in the vicinity of the user. Context-
aware pervasive systems need to cope with these changes in the computing
infrastructure.

R 2.1 The framework should support the creation of context-aware
applications Gathering context, be it physiological or other, is the key
means for physiological computing systems to create awareness of the phys-
iological state of their users, by providing the basic data and the context for
its interpretation. It is therefore worthwhile to assess how capturing context
can be supported on the level of a software framework.

The framework needs to support software developers in gathering phys-
iological data and context data by providing data structures, programming
constructs and interfaces for the acquisition and processing of physiological
and context data.

R 2.2 The framework should support coping with changes in the
computing infrastructure How an application copes with appearing and
vanishing capabilities in the environment of a user is very application specific;
how the lack of a specific capability may be compensated is specific to each
application. However, it is still worthwhile to investigate how the develop-
ment of compensation strategies may be simplified through the framework.

Application evolution and experimentation

R 3 Applications should be easy to extend As the research in online-
processing of psycho-physiological data is still in its infancy, physiological
computing systems need means for easy extension.

3.1 Requirements 67

R 3.1 The systems should be modular for easier integration of
new functionality The framework should support a modular program-
ming and design model that makes extending existing applications feasible
and as simple as possible. As applications are bound to be revised, modified,
and enhanced, this is a major requirement geared towards the framework.

R 4 The framework should allow for experimentation and rapid
prototyping of applications As the software framework is intended to
support development efforts in a relatively new application domain, experi-
mentation plays a key role. It is hence crucial that new ideas and concepts
can be tested easily with simple mock-ups and without having to create a
whole application with tangible devices and full-fledged psycho-physiological
analysis. The middleware should therefore support means for introducing
simulated software components, sensors and actuators thus allowing experi-
mentation and rapid prototyping of applications.

R 4.1 Experimentation with various system setups, algorithms, and
parameters should be supported The process of developing an opera-
tional physiological computing system is not a straightforward one. Instead,
we foresee that developers will have to experiment with varying configura-
tions and test their applicability and efficiency in realising the desired func-
tionality. Therefore, experimenting with various prototypes, changing ap-
plication configurations, algorithms, system and algorithm parameters easily
should be enabled by the framework.

R 4.2 Offline testing of single algorithms and components should
be facilitated through capture/replay support Setting up physical
experiments is a time-consuming task. Experiment preparations such as find-
ing people willing to perform the experiments, creating experiment protocols,
and creating the necessary physical setup can have a significant impact on a
project’s time and monetary budget. It is therefore worthwhile to investigate
means to use an experiment’s data to the maximum extent – especially since
the generation of test data is not trivial for physiological inputs. For testing
algorithm steps, it may be worthwhile to capture sensory data with the goal
of replaying it to the system after the experiment. In this way, some parts
of a system can be re-tested without having to re-create a full physical ex-
perimentation setup. The software framework should provide means to the

68 3. Component framework for application development

developer to create capture and replay setups for testing parts of the system.

3.2 Framework concepts

The requirements stated above call for a consistent and well-balanced set
of concepts. In this section, the concepts of the software framework are
discussed, and how they relate to the requirements elicited above.

3.2.1 Components

Our basic approach to the elaboration of concepts for the REFLECT frame-
work is to start from component-based methodology. Taking a component-
based approach to the development of systems allows to support the satisfac-
tion of several requirements: Components provide a modular programming
model for the creation of modular, reconfigurable systems (R 1.1), and for
coping with changes in the infrastructure (R 2.2). Using a component ap-
proach also simplifies the integration of new functionality (R 3.1) by provid-
ing means for the clear structuring of software.

Providing a component approach to software development also offers ben-
efits for experimentation. It is fairly easy to replace a component from a
clearly designed system, and to replace it by a different implementation.
Therefore, a component-based approach is also in-line with the requirements
on easy experimentation with multiple system setups (R 4.1).

When imposing a programming model that is different from the underly-
ing programming language, the first question immediately arising is how to
combine or impose the new programming model on the existing programming
language. In this case, the question arising is how to embed a component
programming model in the object-oriented programming language that is
Java.

The solution for this issue was guided by the following three principles.

• Embed the component model naturally in the Java program-
ming language. We prefer this approach to creating a new language
in itself in order to allow software developers to re-use existing pro-
gramming environments, instead of creating an own environment from
scratch.

3.2 Framework concepts 69

• Try to be supportive to the software developer instead of being
restrictive. Several component models follow a restrictive approach
(e.g. FRACTAL [36], ArchJava [4], and JComp [65]) or correct-by-
construction approach (e.g. BIP [20]) in order to guarantee a specific
set of properties, and sacrifice usability in exchange. Instead, we re-
frained from being restrictive on the programmer, trusting in her know-
ing best the approach to take to realise the needed functionality.

• Provide a model that scales well from restricted ressource en-
vironments to powerful multicore systems. We therefore decide
to support user-level multithreading, as following a “one component
equals one thread” or a completely synchronous approach would not
scale well over the full range of systems. Instead, we let the developer
decide how to partition her application into threads of execution that
may span over several components. Also, the insights gained from the
early robotic programming models such as the Gat three layer archi-
tecture [59] and the Brook substumption architecture [35] show that
parallel processing capabilities are of paramount importance for the
successful creation of systems interacting directly with the real world.

The natural embedding of the component-based programming model is
mainly achieved through three major design decisions.

• Abstract Java classes are used to define component types. De-
pending on which class is extended, the created subclass is interpreted
by the model as belonging to a specific kind of component types.1

• Simple unidirectional connectors. While bidirectional or even
more complex connectors are common in theoretical component frame-
works (see e.g. [21] and [13]), the natural embedding into an object-
oriented language is challenging. Using unidirectional connectors im-
mediately leads to the separation of ports into provided and required
ports, where provided ports offers functionality, and required ports de-
clare dependency to a service interface to be offered by a provided
port. By following this model, connectors are simplified to framework-
managed object pointers.

1It is as well possible to use POJOs and Java annotations to achieve similar effects. The
difference in usability is however so minor that we decided to stay with the subclassing
approach.

70 3. Component framework for application development

• Required and provided ports defined through Java annota-
tions. Using required and provided ports also allows a clean embed-
ding of the port concept into the Java language. Provided ports can
be mapped to Java getters returning a service object that implements
the interface of the provided port. To distinguish a provided port from
a regular Java getter, it can be tagged with an Java annotation. Sim-
ilarly, a required port can be realised as tagged setter, accepting a
service object from a provided port of the correct type.

• Properties defined through Java annotations. Component prop-
erties are simple means to provide mediated access to the internal con-
figuration of a component. Using annotations, it is possible to annotate
getters and setters of primitive types to declare inspectable and mod-
ifiable properties. Using properties, components can provide access to
information about its operation, as well as access to means to tune and
change its internal mode of operation.

The resulting component metamodel is shown in Figure 3.3. Compo-
nents feature provided and required ports that are interconnected through
connectors. Each connector is linked to a provided port instance as well as
a required port instance. While the provided and required port represent
the access and injection points of the component, the instances represent the
invocations of the underlying methods: a provided port instance represents
one invocation of the annotated getter, and holds a reference to the retrieved
service object. Conversely, a required port instance represents a setter injec-
tion that was performed by the framework. Both the retrieval of the service
object and the injection are linked by a connector. In this way, it is possible
to track and manage all injections that were performed by the framework.
Figure 3.3 also shows that a component (besides having parameters) is also
associated to a Manager instance. The manager instance holds reference to
all connectors and components that are managed by a framework instance
and hence provides access to all entities the framework knows of.

Multithreading support is offered through active components. Active
components feature an own thread of execution, allowing component e.g. to
pull information from external sources (like sensors), perform computations,
monitor and control physical devices, and actively initiate communication
with other components.

While concurrency allows to create convenient solution designs, it needs
proper thread-safe code. For this, we rely on the software developer to make

3.2 Framework concepts 71

AComponent

RequiredPortInstance

ProvidedPortInstance

IRequiredPort

IProvidedPort

Parameter

Manager

Connector

1

11

1

0..*

1

0..* 1

0..* 1

0..* 1

0..*

1

0..*

1

0..*

1

Figure 3.3: REFLECT framework component model

use of the available synchronization facilities that the Java standard library
provides [62]. Since these facilities offer extensive support through a plethora
of concurrent data structures, we believe that it is not necessary for the
framework to add its own implementation on top. It is nevertheless worth-
while to provide support for proper synchronization of reconfigurations and
normal operation through a life-cycle concept that allows to halt the nor-
mal operation of components before they undergo reconfigurations (see also
Section 3.3.8).

To give an example of how the concurrent data structures available in Java
are re-used, consider the communication between active components. Clearly,
access to information provided by one component must be safely published to
the other for access. A common approach to realise safe publication between
communicating threads is to use blocking queues. For active components,
the REFLECT framework therefore relies on the same concept, making use
of the blocking queue interface and implementations provided by Java since
version 1.5. In order to safely publish data, one component provides input
queues to which other active components can safely publish data through
submitting objects to the queue.

72 3. Component framework for application development

3.2.2 Reconfiguration

Physiological computing application can benefit greatly from both a component-
based approach as well as reconfigurations for the creation of adaptive be-
haviour (R 1.1, R 2.2). With the help of reconfiguration, it is possible to
model and implement the reaction to disappearing services with relative ease,
as well as to adapt the behaviour of physiological computing applications to
environmental changes.

Software infrastructures for performing reconfigurations often introduce
abstraction layers between the actual components and the reconfiguration in-
terface, so that the components themselves are not directly reachable through
the reconfiguration interface. This often has the effect that type safety is lost,
since the reconfiguration interface becomes so generic that components, com-
ponent parameters and port types are referenced through untyped entities
such as character strings. In order to avoid the problems of untyped refer-
ences (e.g. typing and refactoring safety), we instead offer direct query and
manipulation access to components through the framework’s management
interface.

Another issue in performing reconfigurations is the coordination with the
normal flow of computation. For the REFLECT framework, we decided to
implement and rely on the concept of quiescence introduced in [78]. By
leveraging quiescence, it becomes feasible to change a system’s configuration
without having to know the exact details of the implementations of all com-
ponents. Instead, it is possible to separate the concerns of reconfiguration
and normal operation through a simple lifecycle interface between compo-
nents and reconfiguration controller.

Finally, the question on where to put reconfiguration rules naturally
emerges. Often, reconfiguration rules are put in a separate part of the frame-
work, sometimes in a control layer. As it may depend on the application at
hand which separation and structure makes the most sense (e.g. separating a
global control layer into several partitions, or bundling reconfigurations with
the affected systems), we decided to allow component containers to perform
reconfigurations based on signals emitted by any component, and let the soft-
ware developer decide how component containers featuring reconfiguration
actions should be organised.

3.2 Framework concepts 73

3.2.3 Distribution

Pervasive adaptive systems are by definition distributed (see also R 2.1);
one of their key distinguishing properties is that they consist of several
computing-enabled artefacts that blend with the physical environment of the
user. It is therefore of paramount importance for the framework to support
means for distribution; however, we do not follow the approach of seamless
distribution as propagated by many ubiquitous computing frameworks. In-
stead, we follow a seamful approach to distribution as advocated by Bell and
Dourish in [24]. In such an approach, awareness of the underlying topology
and distribution is made available to the application instead of making it
fully transparent and seamless. The benefits of this approach are that the
application can leverage this distribution awareness for making tradeoffs be-
tween load on individual nodes and network stress based on the application
load profile, instead of relying on the framework to make the right choice for
the application.

Providing a seamful approach to distribution is a deliberate design de-
cision that impacts the way applications are written. In the REFLECT
framework, the awareness level is primitive. So far, a system knows only
existing remote framework instances and their location; properties of the
network such as topology, bandwidth and jitter are not visible to the local
system.2 The REFLECT framework provides a model of all known RE-
FLECT nodes and their interconnections within a global system container.
The global system container holds the local system container representing
the local REFLECT node, as well as remote system stub components that
represent remote REFLECT nodes, their service provisions and the services
they use. The local system container references all bundle containers. Bundle
containers represent OSGi bundles that are declared as potentially contain-
ing REFLECT components. Figure 3.4 shows a simple example of the object
graph available for reflection on the system topology. In this example, three
remote REFLECT framework instances exist that are represented by the
remote system components 1, 2, and 3. The local component A that is con-
tained within a bundle container, in turn contained by the local system, uses
a service provided by remote system 1, while local component B provides a
service that is used by remote system 3.

The object graph reflects changes made to the remote systems as well as

2Adding such properties to the network representation is simple, however. They were
excluded as no necessity for them was found in the physiological computing case studies.

74 3. Component framework for application development

Global system representation

Local system representation

System 1 proxy

System 2 proxy

System 3 proxy

Bundle container

Component
A

Component
B

System 1System 1

System 2System 2

System 3System 3

Figure 3.4: Distribution example

changes in the availability of remote systems: if a remote framework instance
becomes unavailable due to a network connection loss, the remote system
will disappear from the local model within a short time frame. Similarly, as
a network connection is established between two framework instances, the
remote systems will appear in the local model of both framework instances.

Communication between remote components, i.e., components that reside
in different framework instances, is supported by the REFLECT framework
through queues. Input queues exported by one component are made available
to remote components, and every data object submitted to the local replica
of the remote input queue is serialized, transmitted, and finally submitted
to the real, remote input queue of the remote component. The decision
for restricting remote communication to queue-based communication implies
that distributing a system over several computation nodes does not alter the
concurrency structure of the system. Two active components running locally
and communicating via queues have the same concurrent behaviour as two
remote components communicating remotely via queues. Contrast this with,
for example, Java’s remote method invocation (RMI, [101]) in which the
threading behaviour is altered when the system is distributed using RMI –
the call is executed in a thread different from the caller, and the call may
be executed concurrently to arbitrary many other calls, and therefore the

3.2 Framework concepts 75

code needs to be thread-safe where it wasn’t needed before. In contrast to
the RMI approach, the queue-based multithreading approach followed in the
REFLECT framework allows for a more independent decision of deployment
from the implementation.

3.2.4 Data analysis services

Building context-awareness (R 2.1) requires a significant amount of data pro-
cessing. The software framework should therefore provide data structures
and services that simplify the creation of data processing subsystems. Fur-
thermore, the data analysis services provide a central access point for storing
and retrieving data: a data context service (DCS). Providing such a central
service for accessing and distributing data allows developers to focus on the
creation of data processing algorithms instead of working out how to access
data produced by other components. Also, the data context service facility
makes capturing and replaying of sensory data easily feasible through the
infrastructure (R 4.2).

The data processing facilities provided by the REFLECT framework are
intended to prevent software developers from creating the same data struc-
tures over and over again. In the course of the development of several case
studies, we identified that most analysis processes store a history of incoming
data to perform statistical analysis on the most recent data. This statistical
analysis is often performed either periodically or based on incoming events.

What is therefore needed are data structures that are capable of storing
recent periods of data: data windows. A data window is similar to a ring
buffer in that it is able to store a limited amount of data items. A concept
distinguishing data windows from ring buffers is that the length of the period
stored is determined in terms of time instead of being determined in terms of
item count. A data window contains timed data items, that is to say, an item
that also contains a timestamp. A data window guarantees that the difference
of the newest timestamp and the oldest timestamp always stays below a
predefined window length; if it does not, the older data items are discarded
from the data window. In addition, data windows work just like concurrent
blocking queues: they prepare the analysis components for distribution by
separating the data processing steps into a chain of independent threads of
execution. The goal of the data windows infrastructure is to make it easier
to think of analysis tasks as a sequence of independent data producing and
consuming steps.

76 3. Component framework for application development

In that sense, the separation of data analysis into several steps prepares
the software architecture of the application well for distribution. It is almost
trivial to distribute analysis steps over several machines once the structure
of the analysis steps uses data windows as inputs and outputs.

Additionally, the concept of data windows allows to define computational
operations in subclasses or decorator classes. For example, data window
subclasses containing numeric data can allow to compute statistical features
such as mean and standard deviation.

3.2.5 Management access

Run-time access to component parameters and to the configuration allows to
play with configuration parameters and systems at run-time, thus simplifying
experimentation with varying system setups (R 4.2). In fact, experimenta-
tion also requires being able to inspect the system at run-time in order to
observe the internal behaviour of the system. This in turn gives develop-
ers the opportunity to gain more insights about the system than would be
possible by observing the external behaviour only, or by relying on post-hoc
inspection of logs.

3.2.6 Requirements coverage

To wrap up, the three basic concepts of the REFLECT framework are component-
orientation, reconfiguration support, distribution services and data analysis
services. The framework itself implements these concepts in the Java pro-
gramming language and on top of the OSGi platform (see section 2.3), lever-
aging the functionality and services provided by both.

The concepts of the REFLECT framework, namely component-orientation,
reconfiguration, distribution and data analysis services, cover all require-
ments discussed in Section 3.1.2. Table 3.2 shows how each requirement is
covered through at least one concept.

3.3 Implementation

The REFLECT component framework was built with the intent to support
the creation of physiological computing applications, and was tested and ex-
tended during the implementation of several case studies (Chapter 6). In

3.3 Implementation 77

Id Short name Coverage
R 1 behaviour adaptation Entailed by satisfaction of R 1.1
R 1.1 modularity and reconfigura-

tion
Component-orientation, reconfig-
uration

R 2 Context-aware applications Entailed by satisfaction of R 2.1
and R 2.2

R 2.1 support for context-aware ap-
plications

Distribution, data analysis ser-
vices

R 2.2 support for coping with
changes

Component-orientation, reconfig-
uration

R 3 easy extension and mainte-
nance

Entailed by satisfaction of R 3.1

R 3.1 Easy integration of new func-
tionality

Component-orientation

R 4 Support for experimentation
and prototyping

Entailed by satisfaction of R 4.1
and R 4.2

R 4.1 Experimentation system se-
tups

Component-orientation, manage-
ment access

R 4.2 Offline testing Data analysis services, manage-
ment access

Table 3.2: Requirements coverage through concepts

this section, we present details of the REFLECT framework, the capabili-
ties it provides, how they interact and how they can be leveraged. This is
performed by discussing the available features and the forces that shaped
them.

3.3.1 Component type definition

Defining a component type in the REFLECT framework is easily performed
by creating a Java class that extends the type de.lmu.ifi.pst.reflect.

core.AComponent. The single-argument constructor of the AComponent class
thereby defines the identifier of the created component – component identi-
fiers must be unique within the local REFLECT node. A simple component
that does not define any behaviour or ports is shown in Listing 3.1.

78 3. Component framework for application development

Listing 3.1: Component type definition

public class SimpleComponent extends AComponent {

/**
* Default component constructor.

*
* @param identifier

*/
public SimpleComponent(String identifier) {
super(identifier);

}
}

3.3.2 Component instantiation

Components need to be instantiated in order to be part of a configuration.
To instantiate a component type, a container needs to create a component
instance in its configuration. The configuration is created as the bundle
container is instantiated. A configuration is defined in the configure()

method of the BundleContainer subclass that must be declared as activator
of a bundle (see Listing 3.2).

Listing 3.2: Bundle container definition

public class Activator extends BundleContainer {

@Override
protected void configure() {
create("simple").ofType(SimpleComponent.class);

}
}

Bundle Manifests are created by the Eclipse Plugin Development Tools
(PDT), and do not need to be created manually. The software developer
using the REFLECT framework interacts via the Manifest Editor provided
by Eclipse PDT (see Figure 3.5). The manifest file itself shows the static
code dependencies and the declaration of the bundle activator as seen in
Listing 3.3.

3.3 Implementation 79

Figure 3.5: Eclipse RCP manifest editor

Listing 3.3: Manifest declaration

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Samples
Bundle-SymbolicName: de.lmu.ifi.pst.reflect.samples
Bundle-Version: 1.0.0.qualifier
Bundle-Activator: de.lmu.ifi.pst.reflect.samples.Activator
Bundle-ActivationPolicy: lazy
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Import-Package: org.osgi.framework;version="1.3.0"
Require-Bundle: de.lmu.ifi.pst.reflect.core;bundle-version

="1.0.0"

Here again, the approach of the REFLECT framework is to rely on al-
ready existing and well-tested tools instead of providing its own. This is
especially advised since the REFLECT framework uses the OSGi platform,
and the manifest files contain information relevant to the OSGi platform
only.

80 3. Component framework for application development

3.3.3 Declaring and satisfying dependencies

Provided and required ports of components can be declared by adding getters
and setters with the Java annotations @Provided and @Required. An exam-
ple of how to declare a required and a provided port is shown in Listing 3.4.
The parameter and return types of port methods need to be interfaces, as
they may be proxied through the component framework.

Listing 3.4: Declaring required and provided ports

public class SimpleComponent extends AComponent {

private IProvidedService fProvidedService;

private IRequiredService fRequiredService;

/**
* Default component constructor.

*
* @param identifier

*/
public SimpleComponent(String identifier) {
super(identifier);

}

@Required
public void setRequiredService(IRequiredService service) {
fRequiredService = service;

}

@Provided
public IProvidedService getProvidedService() {
return fProvidedService;

}
}

How component ports are to be connected to each other is defined by
bundle containers using the configuration programming interface (Listing 3.5
shows an example use). The configuration programming interface is the inter-
face provided to the software developer and allows to define the connections
between components by means of binding rules. By using binding rules,
the software developer can define the connections in a lenient or strict way,
depending on the configuration needs of the concrete application.

3.3 Implementation 81

A binding rule defines a set of required ports to which it applies, as well
as a set of provided ports that may be used to satisfy the dependencies
given through required ports. An example of a connection rule is shown in
Listing 3.5.

A connection rule can potentially connect any required port to any pro-
vided port when their types match; the type of a provided port matches the
type of a required port if the provided port type is the same or a subtype
of the required port type. This matching rationale corresponds with the
subtype substitutability of Java.

Listing 3.5: Defining binding rules

public class Activator extends BundleContainer {

@Override
protected void configure() {
create("simple").ofType(SimpleComponent.class);

connect().ports().ofComponent("simple").toAPort(name("
provider"), ofComponent("complex"));

}
}

Offering binding rules to the programmer and system developer does allow
them to use very precise connector specifications as in rigorous component-
based approaches. At the same time, offering binding rules allow develop-
ers to implement loose, service-style binding mechanisms that pick the first
available matching port to satisfy a dependency. Binding rules also allow
to choose an arbitrary position between strict component-based connectors
and service-style binding regimes; they do not force to use a specific binding
regime, but allow to chose the most appropriate for the situation at hand.

3.3.4 Declaring and adjusting properties

Components can declare properties to allow access to their internal config-
uration, which can either be read-only or write access. Read-only access
can be used to give a monitoring component access to information about
the current operational state of the component (e.g. it can give information
about the current workload). Listing 3.6 shows how a modifiable property is
declared by a set of annotated methods: the getter getDomain and the set-
ter setDomain define the property access means, while the getDelayDomain

82 3. Component framework for application development

method is used to define the allowed domain for the delay property. By
returing range(0, 10000), the method specifies that the value of the delay
property can only be set to values within the range from zero to 10,000.

Listing 3.6: Declaring a delay properties

public class SimpleProperty extends AComponent {

private int fDelay;

public SimpleProperty(String identifier) {
super(identifier);

}

@Property
public void setDelay(int delay) {
fDelay = delay;

}

@Property
public int getDelay() {
return fDelay;

}

@PropertyDomain("delay")
public RangeDomain<Integer> getDelayDomain() {
return range(0, 10000);

}
}

Changing a property can be done either directly by accessing the com-
ponent setter as shown in Listing 3.7, which can be done by accessing the
manager, as e.g. possible during reconfigurations. Properties can be modified
through the management console as well, however, which allows to inspect
and change component parameters at run-time. An example interaction with
the SimpleProperty component on the OSGi console is shown in Listing 3.8.

Listing 3.7: Changing a delay property

SimpleProperty simple = (SimpleProperty) manager.getComponent
("simple");

int newDelay = computeAdjustedDelay(simple);
simple.setDelay(newDelay);

3.3 Implementation 83

Listing 3.8: Changing a delay property via console

osgi> rproperties simple
simple(ACTIVE, class de.lmu.ifi.pst.reflect.samples.

SimpleProperty)
[
delay=10 (int, [0..10000])

]

osgi> rsetproperty simple.delay 20
Property "delay" of component "simple" set to 20 (int)

osgi> rproperties simple
simple(ACTIVE, class de.lmu.ifi.pst.reflect.samples.

SimpleProperty)
[
delay=20 (int, [0..10000])

]

Allowing to inspect and change component properties is important in the
experimentation with component-based systems. When creating physiologi-
cal computing systems, this quick interactions with component configuration
allowed to give more confidence about the correct behaviour of the system
to the software developer and consequently to speed up the development of
the case studies.

3.3.5 Active components

Components come in different flavours, depending on whether they initiate
communications on their own, or only react to invocations through other
components. In the first case, the component is an active component, while
in the second case, it is a regular (passive) component with no own thread of
execution. The framework offers two kinds of active components: one active
component that offers full management of a single thread associated with the
component, and one that serves only as a shell for custom-provided threads
(through either the developer, libraries, or other frameworks) and declares
its active nature to the REFLECT framework.

Managed active components must subclass AManagedActiveComponent,
and therefore implement a step method. The step method is a convenience
the managed active component provides for creating (waiting) loops. Classic
thread loops usually are structured as a while-loop that check whether to

84 3. Component framework for application development

continue the loop, and perform a blocking operation waiting for input in the
loop body, and subsequently process the received input (see Listing 3.9).

Listing 3.9: Classic active loop

// check condition
while(conditionHolds()) {
try {
// blocking operation
Object item = queue.take();
// data processing
process(item);

} catch(InterruptedException ex) {
// reset interruption status.
Thread.currentThread().interrupt();
break;

}
}
// perform cleanup.
doCleanup();

The REFLECT framework has to provide windows of opportunities for
reconfigurations. In the classic loop however, there is no window for recon-
figuration that can be naturally provided. In order to address this issue, the
framework reorganises the classical processing loop as shown in Listing 3.10.
Here, the body of the loop is contained in the step method that additionally
returns whether the loop condition was true in the end, indicating whether
the step method should be executed another time. As there is often no other
condition to check besides checking whether the component thread was inter-
rupted, the if-statement can be eliminated, and the step method can simply
return true; the managed active component code takes care of checking this
condition before calling the step method. Furthermore, Listing 3.10 shows
that the programmer does not need to deal with thread interruption and
resetting the thread interruption status; this can all be handled through the
framework. For cleanup tasks, the “step-loop approach” needs an additional
callback that is invoked in the end.

Through the introduction of step-loops, the framework can perform re-
configurations outside of the loop step and cleanup methods, thus allowing to
keep reconfigurations orthogonal to the regular processing of active compo-
nents, while keeping the programming interface relatively simple and clean.

3.3 Implementation 85

Listing 3.10: Step-loop approach

protected boolean step() throws InterruptedExcpetion {
// check condition.
if(conditionHolds()) {
// blocking operation
Object item = queue.take();
// data processing
process(item);
return true;

} else {
return false;

}
}

protected void stopInternal() {
// perform cleanup.
doCleanup();

}

3.3.6 Active component synchronization

Active components are components featuring threads of execution, and hence
the communication between them needs to be properly synchronized, or at
least, data passed from one component to the other must be safely pub-
lished [62]. As the Java API provides several means for safe publication of
data, we refrain from introducing own means for structuring concurrent code
in the REFLECT framework. Developers are allowed to use any means suit-
able for their application: synchronized or concurrent collections, atomic
references, and queues are all valid approaches for what the REFLECT
framework is concerned. Still, as is discussed in Section 3.3.12 below, the
component-based distribution facilities of the REFLECT framework rely on
the use of queues for communication. Here, the queue interfaces and data
structures used are the ones provided by the Java API.

To allow for simple, thread-safe and smooth communication between ac-
tive components, it is best to use bounded queues in which one of the com-
munication partners inserts messages while the other partner retrieves them.
For communication via queues, the concepts of provided and required ports
are re-used. For communication over queues, the component owning the in-
put queue must feature a provided port allowing access to the input queue.

86 3. Component framework for application development

Conversely, the component wanting to submit a message to the input queue
of another component must feature a required port allowing to inject the
input queue of another component. The framework offers additional support
for this communication style by providing repliable messages. With repli-
able messages, it is possible to pass the result of a computation back to the
component that posted that message.

The following listings show an example of communication through bounded
queues using repliable messages. Listing 3.11 shows an example Pi computa-
tion server that provides a simple services to compute Pi up to a requested
precision on a remote machine. Listing 3.12 shows the message type that is
used: a subtype of RepliableMessage whose reply is a BigDecimal instance.
The Pi computation server is a subclass of AManagedActiveComponent and
uses its step method to process the computation queue. The computa-
tion queue itself is created by the Pi computation server and made available
through a provided port.

Listing 3.11: Pi computation server component

/**
* Component offering computation resources. Pi Computation

* requests can be submitted through its input queue, see

* {@link #getQueue()}.

*/
public class PiComputationServer

extends AManagedActiveComponent {

public final BlockingQueue<Computation> fQueue;

public PiComputationServer(String identifier) {
super(identifier);
fQueue = new ArrayBlockingQueue<Computation>(10);

}

@Provided(messageType=Computation.class)
public BlockingQueue<PiComputation> getQueue() {
return fQueue;

}

@Override
protected boolean step() throws InterruptedException {
// retrieve computation request.
PiComputation computation = fQueue.take();
// perform the computation.

3.3 Implementation 87

BigDecimal result = computePi(computation.getPrecision());
// set the result.
computation.set(result);
// continue with the next.
return true;

}
}

The Pi computation client shown in Listing 3.13 requires a Pi computa-
tion queue and submits Pi computations to it in its step method. Note that
the Pi computation client waits two seconds for the result of a computation
and decides to stop (by returning false) as soon as a computation exception
occurred or as soon as the deadline is reached. In this way, the computation
clients holds all values of π up to a precision that is computable within two
seconds by the computation server.

Listing 3.12: Pi computation message type

/**
* A computation request for computing Pi up to a specified

precision.

*/
public class PiComputation

extends RepliableMessage<BigDecimal> {

private static final long serialVersionUID = 1L;

private final int fPrecision;

public PiComputation(int precision) {
fPrecision = precision;

}

/**
* @return the precision of the requested computation

*/
public int getPrecision() {

return fPrecision;
}

}

88 3. Component framework for application development

Listing 3.13: Pi computation client component

/**
* Component using a {@link PiComputation} queue to compute Pi

.

*/
public class PiComputationClient extends

AManagedActiveComponent {

private BlockingQueue<Computation> fQueue;

private final List<BigDecimal> fResults;

private final AtomicInteger fPrecision;

public ClientComponent(String identifier) {
super(identifier);
fPrecision = new AtomicInteger(0);
fResults = synchronizedList(new ArrayList<BigDecimal>());

}

@Required(messageType=Computation.class)
public synchronized void setQueue(

BlockingQueue<Computation> queue) {
fQueue = queue;

}

private synchronized BlockingQueue<Computation> getQueue() {
return fQueue;

}

/**
* @return all computations of Pi done so far.

*/
@Provided
public List<BigDecimal> getResults() {
return unmodifiableList(fResults);

}

@Override
protected boolean step() throws InterruptedException {
// get Pi with the next higher precision.
PiComputation computePi = new PiComputation(fPrecision.

incrementAndGet());
// put computation request in the queue.
getQueue().put(computePi);

3.3 Implementation 89

try {
// wait for the result (max 2 secs), and store it.
fResults.add(computePi.get(2, SECONDS));
// continue with the next computation.
return true;

} catch (ExecutionException e) {
getLogger().warn("Exception during execution", e.

getCause());
} catch (TimeoutException e) {
// computation timed out, cancel the last computation.
computePi.cancel(true);

}
// computation failed, stop the loop.
return false;

}
}

The examples show how the communication between active components
can make use of existing synchronization data structures available in the Java
API. The approach of the REFLECT framework to the synchronization of
concurrent threads in active components is that of re-using the synchroniza-
tion facilities provided by the Java platform.

3.3.7 Event-based communication

When creating software systems in general, having an event-based, publish/-
subscribe style of communication instead of a direct point-to-point commu-
nication allows for a more loose means of communication. In event-based
communication, the responsibility for wiring is different than in point-to-
point communication. In point-to-point communication, the container of the
communicating components is deemed responsible for establishing (and re-
moving) communication links. In the event-based communication scheme,
the subscriber is responsible for the wiring, and the wiring is established by
subscribing to a specific event topic. Event topics are referred to by publish-
ers to notify their subscribers that a specific event just happened.

The REFLECT framework offers support for an event-based publish/-
subscribe style of communication by providing base classes for events, simple
event publishing and event subscription means. Distribution of events is
provided through an event bus operating in the background. The event bus
features a queue to which every event is enqueued, and a thread working off

90 3. Component framework for application development

the event queue and distributing events to their recipients.
Listing 3.14 shows a simple event class for sending notifications about

vanishing sensors. It declares a common event topic for all instances of the
event class that is used in the constructor of every event instance. Further-
more, events take an event source as parameter to guarantee that the sender
of the event is not notified even if it subscribed to the topic of the event it
sent; specifying null as event source is also valid, and entails the notification
of all topic subscribers of the event.

Listing 3.14: Example sensor removed event

public final class SensorRemovedEvent extends AEvent {

public static final String TOPIC = "sample.
SensorRemovedEvent";

private final String fSensorId;

public SensorRemovedEvent(Object src, String sensorId) {
super(src, TOPIC);
fSensorId = sensorId;

}

public String getSensorId() {
return fSensorId;

}
}

Listing 3.15 shows a very basic sensor tracker component. By invoking
the event method with a newly created SensorRemovedEvent instance in
the sensorRemoved method, a new event is submitted to the event bus for
distribution to all subscribers of the event topic.

Listing 3.15: Example sensor tracker component

public class SensorTracker extends AComponent {
public SensorTracker(String identifier) {
super(identifier);

}

private void sensorRemoved(String sensorId) {
event(new SensorRemovedEvent(this, sensorId));

}
}

3.3 Implementation 91

Subscribing to events is done by declaring a single-parameter method with
an @EventListener annotation. The annotation includes the event topic to
use for subscribing the method. As the method declares an event type as
parameter, the subscription is furthermore narrowed down to events featuring
the declared event topic and being assignable to the specified parameter type
– in the example shown in Listing 3.16, these constraints guarantee that the
method is only invoked with instances of SensorRemovedEvent.

Listing 3.16: Example sensor event receiver component

public class SensorUser extends AComponent {

public SensorUser(String identifier) {
super(identifier);

}

@EventListener(topic=SensorRemovedEvent.TOPIC)
public void eventHappened(SensorRemovedEvent event) {

// process the event.
}

}

The event-based, publish/subscribe style of communication found wide
adoption in the case studies (see also Chapter 6), which is a good argument
supporting the case for different styles of interaction and communication
amongst components. If the communication means were restricted to solely
point-to-point connections, it would have been up to the application devel-
oper to create a publish/subscribe management component that replicated
the functionality of the event bus the framework provides.

3.3.8 Component lifecycle

Components need to be put into a quiescent mode before they can be subdued
to reconfigurations. For this, it must be possible to start and stop active
components, as well as to wait for the active component to reach the quiescent
state. While this is sufficient in theory, it is advisable to introduce a more
complex lifecycle for all components. Components may want to perform some
initial computation steps as soon as they are becoming part of the system
configuration, or after all their dependencies have been satisfied. Therefore,
it is advisable to introduce activation and deactivation callbacks, as well as
initialisation callbacks. The resulting component lifecycle with initialisation

92 3. Component framework for application development

and activation callbacks as well as transitional states is shown in Figure 3.6.
The transitional states are introduced as the components may be queried for
their states during the transition from one stable state to another.

Running

Starting

Activated

InitializingUninitializing

Uninitialized

Deactivating Activating

Stopping

Initalized

initialize

start

activate

uninitalize

deactivate

stop

Figure 3.6: Component lifecycle state machine

The component lifecycle of REFLECT components is more complex than
one may initially expect, but by being so complex, it not only allows to
put active components into a quiescent state, but also allows components
to perform actions on initialisation (with no guarantee on bindings of re-
quired ports) and activation (after all required ports were bound), which is
a necessity in real-life software systems.

3.3.9 Reconfiguration support

Reconfigurations can constitute a helpful feature in the development of phys-
iological computing applications (see also Section 2.1.4). Therefore, the RE-

3.3 Implementation 93

FLECT framework offers reconfiguration support through its bundle contain-
ers. Bundle Containers can submit configuration actions to the framework.
Configuration actions get access to a configuration manager instance that
allows to query components and connectors. A configuration action’s code
can navigate from a component to all provided and required ports it contains
as well as to the connectors that are outgoing or incoming at a port.

The configuration manager allows configuration actions to query the sys-
tem configuration to retrieve existing components and connectors, and by
this also to perform the canonical changes to the configuration of a system
(as discussed in [78]):

• Create and delete components. Created components are added
to the component configuration, while connectors from and to deleted
components are removed, and components that depend on the deleted
component are made quiescent.

• Adding and removing connectors. Adding connectors means re-
trieving a service object from the providing component, and injecting
it into the requiring component. Removing connectors makes all com-
ponents that depend on the connection quiescent before removing the
connector.

Additionally, the configuration manager allows to perform the following
actions:

• Querying and changing the component lifecycle state. Com-
ponents offer methods for changing their lifecycle state. It is there-
fore possible to start, stop, activate, or deactivate a component that is
queried.

• Querying and changing component parameters. Components
can offer parameters that affect their mode of operation if changed (cf.
Figure 3.3). Obviously, once a component is queried, all component
parameters can be accessed and altered.

• Direct interaction with components. Since the REFLECT frame-
work provides a direct pointer to the component object instead of a
representation, configuration actions can interact directly with com-
ponents through classical means (i.e. method invocations) that are
directly processed by the component.

94 3. Component framework for application development

• Make component quiescent. It is sometimes necessary to manu-
ally put component in a quiescent state before setting parameters or
interacting with the component. For such situations, the configuration
manager allows to makes single components quiescent for the time the
modifications are performed.

• Schedule component for restart. Components that were stopped or
deactivated manually can be scheduled for restart after the configura-
tion action has been completed. This is a task that must be performed
in virtually every configuration action, and therefore support for this
is offered through the manager.

In order to understand how these features can be used in reconfiguration
code, it is worthwhile to look at an example. The following listings give an ex-
ample of a basic connection switching reconfiguration. First, let us introduce
the components and the configuration that should undergo reconfigurations.
Listing 3.17 shows an active component that processes an input queue by
emitting the content of the queue to the system console, while Listing 3.18
shows an active component putting messages in an output queue it is bound
to through a connector.

Listing 3.17: Example message receiver

public class Receiver extends AManagedActiveComponent {
private final BlockingQueue<String> fInput;

public Receiver(String identifier) {
super(identifier);
fInput = new ArrayBlockingQueue<String>(10);

}

@Provided(messageType = String.class)
public BlockingQueue<String> getInput() {
return fInput;

}

@Override
protected boolean step() throws InterruptedException {
String string = fInput.take();
System.out.println(getIdentifier() + ": " + string);
return true;

}
}

3.3 Implementation 95

Listing 3.18: Example message sender

public class Sender extends AManagedActiveComponent {

private BlockingQueue<String> fOutput;

private final AtomicInteger fCounter;

public Sender(String identifier) {
super(identifier);
fCounter = new AtomicInteger(0);

}

@Override
protected boolean step() throws InterruptedException {

fOutput.put("" + fCounter.incrementAndGet());
return true;

}

@Required(messageType=String.class)
public void setOutput(BlockingQueue<String> target) {

fOutput = target;
}

}

The system configuration consists of one sender and two receivers with
the sender connected to the first receiver, as shown in Listing 3.19. The
listing also shows that the bundle container starts a reconfiguration every
half second, switching from one receiver to the next. Listing 3.20 finally
shows the reconfiguration action itself. The reconfiguration action looks up
the output port of the sender component, and disconnects the connector.
Next, it looks up the input provided port of the component to connect to,
and connects both required and provided ports directly.

Listing 3.19: Example reconfiguration bundle container

public class Activator extends BundleContainer {
@Override
protected void configure() {
create("sender").ofType(Sender.class);
create("receiver 1").ofType(Receiver.class);
create("receiver 2").ofType(Receiver.class);
connect().ports().ofComponent("sender").toAPort().

ofComponent("receiver 1");
}

96 3. Component framework for application development

@Override
public void start(BundleContext context) throws Exception {
super.start(context);
Thread t = new Thread() {
public void run() {
try {
while(true) {
Thread.sleep(500);
reconfigure(new ReconnectAction("receiver 2"));
Thread.sleep(500);
reconfigure(new ReconnectAction("receiver 1"));

}
} catch(InterruptedException ex) {
// aborting the loop.

}
};

};
t.start();

}
}

Note that the reconnection action deactivates the sender component by
disconnecting the connector between sender and receiver, thereby leaving
the required port of the sender component unsatisfied. By connecting the
required port of the sender component again at the end of the configura-
tion action, the sender component is automatically checked for dependency
satisfaction, and started since its dependencies are again satisfied.

Listing 3.20: Example reconfiguration action

public class ReconnectAction extends AConfigurationAction {

private String fTarget;

public ReconnectAction(String target) {
super("to " + target);
fTarget = target;

}

@Override
protected void reconfigure(ReconfigurationReflectManager

manager) {
IRequiredPort sender = manager.getComponent("sender").

getRequiredPort("output");

3.3 Implementation 97

if(sender.getInstances().isEmpty()) {
return;

}
AConnector connector = sender.getInstances().get(0).

getConnector();
try {
connector.disconnect();

} catch (ReflectException e) {
// disconnecting failed.
return;

}
IProvidedPort receiver = manager.getComponent(fTarget).

getProvidedPort("input");
manager.connect(sender, receiver);

}
}

In the REFLECT framework, a reconfiguration action is imperative code,
in contrary to many other frameworks that offer reconfiguration support.
Often, reconfigurations need to be expressed in terms of rules or in a very
constrained declarative language [65, 37, 38]. The benefits of a rule-based or
declarative approach is that the reconfiguration is made directly amenable to
formal analysis. However, implementing reconfigurations as imperative code
makes it easier for software developers to realise reconfigurations in all details
and to decide on how to group the complexity of the process in intelligible
units of code. Even though obviously a direct formal analysis becomes very
hard, it is still possible to create abstractions of the reconfiguration code
in a declarative form and to formally verify the correct behaviour of the
abstraction. This approach is common for regular programs, and can be
applied to reconfigurations as well.

Indeed, a systematic means for the verification of correctness of reconfigu-
rations is advised, as it becomes very hard to predict the effects of the totality
of all reconfiguration rules on a running system. This is especially true if the
reconfiguration rules do not rely on component identities but rather on types
and component structure for identifying areas of change. In this scenario
especially, it becomes increasingly difficult to predict the result of repeated
applications of configuration rules on the system configuration, as the cor-
rect systematic enumeration of all possible system configurations is difficult
to perform without tooling support. For this reason, Chapter 4 introduces a
means for the formal verification of systems under reconfiguration.

98 3. Component framework for application development

3.3.10 Management console

The REFLECT framework offers a management console to the developer
that allows to interact with the system configuration at run-time. For exper-
imenting with different system configuration, the management console allows
to inspect the current system configuration (Listing 3.21 gives an example
console output for the example of Section 3.3.9), and to manipulate the cur-
rent system configuration by changing component parameters, changing a
component life-cycle state, or executing reconfigurations registered by name
to the manager.

Listing 3.21: Console output for status command

osgi> rss
GlobalSystem
[
LocalSystem
[
uuid: e1405bd5-d7b3-4c34-b1a0-87c2d7140593,
required
[
],
provided
[
]
Activator(class de.lmu.ifi.pst.reflect.sample.

reconfiguration.Activator)
[
sender(RUNNING, class de.lmu.ifi.pst.reflect.sample.

reconfiguration.Sender)
receiver 1(RUNNING, class de.lmu.ifi.pst.reflect.sample.

reconfiguration.Receiver)
receiver 2(RUNNING, class de.lmu.ifi.pst.reflect.sample.

reconfiguration.Receiver)
]
sender.output -> receiver 1.input

]
]

The REFLECT management console is realised an extension of the OSGi
console provided by the Equinox framework. A key factor that allowed for
rapid adding of new commands to the REFLECT management console was
the central manager; with a central configuration manager in place having
access to all components and connectors, as well as to the representation

3.3 Implementation 99

of the overall system topology, it became easy to create new commands as
needed.

3.3.11 Data services

In physiological computing systems, the analysis or state abstraction subsys-
tems often involve complex data processing. In these data processing sub-
systems, the need for sharing and re-use of intermediate computation results
among several analysis and decision processes often arises: the same results
are needed in more than one process further down the process chain [105].
This fact makes the configuration of component-based data processing sub-
systems very involved, as connections between all consumers and the pro-
ducer of the data need to be established. Instead, an organisation approach
inspired by the blackboard pattern [68] can reduce the configuration overhead
significantly. In the REFLECT framework, we therefore provide a data ser-
vice layer that roughly follows the blackboard pattern. The core of the data
service infrastructure is the data context service (DCS) that manages data in
a centralised and shared data storage. Through the centralised architecture,
data can be easily published and made available to multiple consumers. The
data managed by the DCS is organised in data channels. Each data channel
consists of a timed series of data stored in a data window. Figure 3.7 illus-
trates the architecture by showing the data context service with a nexus sen-
sor device creating raw skin conductance and skin temperature data, which
is queried by the FeatureExtractor component that creates from that data
the skin conductance3 and skin temperature features, which are pushed into
the respective channels.

The channels that are managed in the data context service are both data
sources and targets, and therefore implement both the ITimedDataTarget

and ITimedDataSource interfaces (see Figure 3.8). In fact, the data context
service uses data windows to store data items. Data windows implement
IDataWindow and store a list of data items sorted by time of acquisition or
creation – data items are time-stamped. Using this design, it is possible to
store a satisfactory amount of data into memory, while keeping the manage-
ment of the data structure fairly simple. Data windows are self-managed,
ordered sequences of a defined length. However, the length of data windows

3To be precise, the feature that is computed is the skin conductance level, in contrast
to the skin conductance response.

100 3. Component framework for application development

DataContextService

NexusSensor

Raw Skin Conductance

Raw Skin Temperature
FeatureExtractorout

channels

in
channels

Skin Conductance

Skin Temperature

out
channels

SongChooser

in
channels

push

push

query

query

Figure 3.7: Data service architecture

is not described in terms of data item count, but in terms of time. Hence, it
is possible to create a data window containing only the most recent five min-
utes worth of data that discards older data items as new data is appended,
similarly as a ring buffer operates. Different to ring buffers, the physical
capacity is adapted dynamically to store all received data items whose age
is below the maximum age limit.

IDataWindow also allows creating a window slice, i.e. a new data window
that references only to a part of the original data window. Slices can be cre-
ated by referencing points in time relative to both the beginning and the end
of the underlying window using positive or negative integers. Interestingly,
zero can be effectively used to reference both to the beginning and the end of
the slice depending on whether the start or the end of the slice is specified:
for specifying the start of the slice, zero and positive integers represent in-
stants of time relative to the beginning of the window, while negative integers
represent instants of time relative to the end of the underlying window. It
is not necessary to be able to reference the end of the window, as any slice
starting at the end of the data window would be empty. Conversely, when
defining the slice end, zero and negative integers can be used to reference
instants relative to the end of the data window. Again, every slice ending at
the start of the data window would be empty, which is why zero can now be
used for referencing the end of the slice instead of its start.

3.3 Implementation 101

+get() : ITimedData

ITimedDataSource

+getLast() : ITimedData
+start() : long
+end() : long
+size() : long
+slice(start, end) : IDataWindow

IDataWindow

+clear()

IModifiableDataWindow

+put(td : ITimedData)

ITimeDataTarget

AActiveComponent

+iterator() : Iterator

java.lang.Iterable

DataContextService

+doubleValue()

ITimedNumeric ArrayDataWindow

+getTimeStamp()

ITimedData

TimedBooleanTimedIntegerTimedDouble

0..*

0..*

«use»

0..*

Figure 3.8: Data service data structures

Note also that the data analysis layer also defines the ITimedNumeric

interface (see Figure 3.8) and the data types TimedDouble and TimedInteger,
as numerical data is the most common data type in physiological computing
applications. In the example shown in Figure 3.7, all data windows contain
timed double data.

The REFLECT framework offers additions to simplify the use of the data
analysis layer in general and channels in particular. Subclasses of AComponent
exist that offer annotation-based support for accessing data channels in the
data context service: AnalysisComponent, AListeningAnalysisComponent

and APeriodicAnalysisComponent. Using the @Channel annotation on cor-
rectly typed setters, it is possible to get data windows injected directly for
either querying them (as data windows) or pushing data to them (as data
targets). Listing 3.22 an example usage of the @Channel annotation as well
as the slicing that data windows provide.

The MeanDiff template method compute() is periodically called every
second, and computes the difference between the last minute’s mean and
the last five minute’s mean of the input data. On the injection of the input
window in the setInput method, a slice with the last minute of data is created
as well as a slice with the last five minutes of data. The setOutput method

102 3. Component framework for application development

with its ITimedDataTarget parameter indicates that the injected channel is
used only for putting computation results into; the compute method shows
how a new timed double item is added to the output channel each time it is
called.

Listing 3.22: Mean diff analysis component

public class MeanDiff extends APeriodicAnalysisComponent {

private IDoubleWindow fLastMinute;

private IDoubleWindow fLastFiveMinutes;

private ITimedDataTarget<TimedDouble> fOutput;

public MeanDiff(String identifier) {
super(identifier);
setIntervalTime(1, SECONDS);

}

@Channel("input")
public synchronized void setInput(IDoubleWindow window) {
fLastMinute= window.slice(-1, 0, MINUTES);
fLastFiveMinutes= window.slice(-5, 0, MINUTES);

}

@Channel("output")
public synchronized void setOutput(

ITimedDataTarget<TimedDouble> output) {
fOutput= output;

}

@Override
public void compute() throws InterruptedException {
double result =

fLastMinute.mean() - fLastFiveMinutes.mean();
fOutput.put(new TimedDouble(result, now()));

}
}

In addition to the APeriodicAnalysisComponent that was used in the ex-
ample of Listing 3.22, the framework offers a AListeningAnalysisComponent

whose compute method is called every time a new data item is inserted into
a data window that is injected into a @Channel setter that is additionally

3.3 Implementation 103

annotated with @Listen.
Listing 3.23 finally shows how channels and analysis components are cre-

ated in a bundle container configuration. The REFLECT framework of-
fers extensions to the basic rule-based configuration API (see Sections 3.3.2
and 3.3.3) by offering a loop-rule allowing to create or reference analysis com-
ponents and a map-subrule to map the local names (given in the @Channel

annotation) to channels of the data context service (given through channel
descriptors).

Listing 3.23: Analysis activator for mean diff example

public class Activator extends AnalysisContainer {

@Override
protected void configure() {
ChannelDescriptor hrv = doubleChannel("hrv", 1, HOURS, 10)

;
ChannelDescriptor meanDiff = doubleChannel("meanDiff", 10,

MINUTES, 1);

loop("meanDiff", MeanDiff.class).map("input", hrv).map("
output", meanDiff);

}
}

The data analysis layer offered a powerful and helpful frame for the cre-
ation of several case studies (see Chapter 6). Especially the channel approach
helped re-structuring the process of data analysis in single units of code that
allowed for a) independent testing and b) easy distribution. In fact, the
data analysis layer’s functionality was extended by using the REFLECT
framework’s distribution infrastructure (see Section 3.3.12) to great effects
for realising transparent remote access to data channels.

3.3.12 Distribution

Both in the general concept of physiological computing systems and in most
case studies that were created with the REFLECT framework, distributed
operation, communication and cooperation of distributed software systems
played a key role.

In the automotive case study for example (see Section 6.1.3), the final
computation setup consisted of three ultra-mobile PCs, with various sensors

104 3. Component framework for application development

Global System

Remote System: Client

ServerComponent

Local System: Server

(a) Remoting server view

Global System

Local System: Client

ClientComponent

Remote System: Server

(b) Remoting client view

Figure 3.9: Remoting client and server view

and actuators attached to them, and with three screens to show information
to the user on different levels of detail. It is therefore of paramount impor-
tance to distribute data and information across the three available computing
nodes.

The REFLECT framework therefore supports several means of distribu-
tion that are based on the awareness of the existence of remote instances
of the framework. In this sense, the distribution means provided by the
framework are not fully transparent and seamless, but require awareness of
the system topology from developers. This allows the system developer to
leverage this exact topology for performance optimisations. It is possible to
reduce the amount of data serialized, sent over the network, and deserialized
if one knows which computation nodes require the data.

The REFLECT framework stays aware of remote nodes by discovering
them either through querying a pre-defined list of IP addresses or by broad-
casting queries using the service location protocol (SLP) [64]. Once a remote
system is discovered, it is queried for the services it provides. The remote
system is represented locally as a component with its offered services as pro-
vided ports. The services remote hosts consume from local components are
represented as required ports that are bound to the respective provided ports
of the local system.

3.3 Implementation 105

Figure 3.9 shows the computation example from Section 3.3.6 as deployed
within two instances of the REFLECT framework. Figure 3.9a shows the
view of the server as one component remotely accessing the provided port
of the server: a required port of a remote system is connected to the local
server component. Figure 3.9b shows the client view: here, a remote system
provides a computation queue port, and the required port of a local client
component is connected to that remote port. Note that the distribution
structure and hence also the remote communication remains transparent for
the component developer (although not for the creator of system configu-
rations): the framework takes care of transferring the queued messages to
the remote system, as well as to transfer replies to messages back to the
initial sender. Queue-based communication is not the only means of re-
mote data transfer that the framework supports. To begin with, the event
bus was extended to transparently propagate events to all connected sys-
tems. Furthermore, data windows containing data produced and consumed
by analysis components, sensors, and TCP/UDP clients and servers can be
easily replicated through the REFLECT framework. For this, the domain
specific configuration language was extended to allow to specify the need for
local replication of remotely available data windows. The software developer
needs only to specify the name, type, and location of the remote window.
Additionally, the amount of data to be replicated locally as well as the up-
date rate can be specified, that is to say, how often data updates has to be
sent to the local data window replica. In this way, the network traffic as well
as the CPU load for data transmission can be fine-tuned. Note also that
by providing an independent window length specification, it is possible to
replicate only a subwindow, or a history of the original remote data window.

Listing 3.24 shows a snipplet from the real automotive demonstrator
configuration, and how data from the second ultra mobile PC (UMPC) is
replicated on the third UMPC to be shown graphically on the third UMPC
display.

106 3. Component framework for application development

Listing 3.24: Distributed data channel configuration

public class Activator extends ReflectContainer {

@Override
protected void configure() {

// create data context service
createDataContext();
ChannelDescriptor ST = distributedChannel("skin

temperature sensor", TimedDouble.class, 10, TimeUnit.
MINUTES,
200, UMPC.TWO);

ChannelDescriptor SC = distributedChannel("skin
conductance sensor", TimedDouble.class, 10, TimeUnit.
MINUTES,
200, UMPC.TWO);

ChannelDescriptor ppv = distributedChannel("ppv",
PPVMeasurement.class, 1, TimeUnit.MINUTES, 200, UMPC.
TWO);

// the channel descriptors can be used just as regular
descriptors.

}
}

3.3.13 Capture and replay support

In physiological computing applications, testing often means deploying the
software on a hardware testbed, and running the application with one or
several test persons, reading physiological data from the test persons, moni-
toring the output of the physiological computing system, and recording the
behaviour for further off-line investigation. The overhead that is induced by
this procedure makes quickly clear that the physiological input to the system
(as well as other inputs from the environment) is valuable. Recording system
inputs allows to perform quick off-line tests directly on developer machines
(or, more generally, developer-friendly environments such as developer-site
test environments) by replaying the recorded inputs.

Here, the design decision of having a centralised data storage for all input
data can be leveraged to great effects: since the input data is under control
of the Data Context Service, it provides a single point of access for tapping

3.3 Implementation 107

into data streams and recording them. Similarly, the Data Context Service
can be used to replay the data to the system without needing to alter the
analysis algorithms for testing purposes.

Listing 3.25: Capture and replay configuration example

public class Activator extends AnalysisContainer {

@Override
protected void configure() {
ChannelDescriptor hrv = doubleChannel("hrv", 1, HOURS, 10)

;
ChannelDescriptor meanDiff = doubleChannel("meanDiff", 10,

MINUTES, 1);

loop("meanDiff", MeanDiff.class).map("input", hrv).map("
output", meanDiff);

}
}

In the REFLECT framework, it is possible to create capture configura-
tions for recording the input data using the management console; we demon-
strate this feature using the configuration given in Listing 3.25 as the basis.
Listing 3.26 shows how a capture configuration is created that captures the
data from the hrv data window to the capture.txt file. The capture config-
uration specifies the capture file to which the data is recorded, and specifies
which channels are to be recorded to the file, and how the channel data has
to be serialized. Finally, the capturestart and capturestop commads tell
the Data Context Service to start and stop capturing data, respectively.

Listing 3.26: Capture configuration example

osgi> capturewindow hrv double
capture for data window "hrv" using converter

TimedDoubleConverter added.

osgi> capturefile "capture.txt"
capture file "capture.txt" created

osgi> capturestart
capture started

osgi> capturestop
capture stopped

108 3. Component framework for application development

Listing 3.27 shows how to configure a replay run through the management
console by similar means: the file to replay from is specified, which channels
are replayed from the file, and how the data is parsed from the file to create
data objects.

Listing 3.27: Replay configuration example

osgi> replayfile "capture.txt"
replaying from file "capture.txt"

osgi> replaywindow hrv hrv double
replay from identifier "hrv" to data window "hrv" using

converter TimedDoubleConverter added.

osgi> replaystart
replay started

osgi> replaystop
replay stopped

Note that the recording and replaying does not necessarily have to take
place on the node where the analysis components reside. Using the distribu-
tion facilities presented in Section 3.3.12, it is very well possible to replicate
data to a remote node for capturing, or replicating replayed data to the node
performing the data analysis.

In total, the capture and replay support that the REFLECT framework
provides shows the benefits of a central data management facility, and how
simple it is to provide services that alter the flow of data – by injecting
recorded data, or by forking data to a file – once the data is managed through
the framework.

3.4 Related OSGi component frameworks

The REFLECT component framework is not the only OSGi-based compo-
nent framework; others have also created component frameworks on top of
OSGi with the goal of defining a simpler programming model. As already
hinted in Section 2.3, OSGi’s biggest strength is its major weakness: the
highly dynamic service model of the OSGi platform forces the software de-
veloper to introduce a significant amount of defensive boilerplate code for
each service usage: before each usage, it must be ensured that the service

3.4 Related OSGi component frameworks 109

reference has not gone stale, and each service used must be released imme-
diately after its use.

In this section, we describe four other popular approaches that exist to
mitigate this shortcoming: The OSGi declarative services specification [91,
41], OSGi Blueprint Container (formerly known as Spring Dynamic Mod-
ules) [91, 61], iPojo [48], and Google Guice with Peaberry [119]. All four
frameworks add a simplified component and service model on top of OSGi,
and are discussed in the following.

3.4.1 OSGi Declarative Services

The OSGi Declarative Services specification [41, 91, pp. 297] is a conser-
vative, component-based extension of OSGi. Its main focus is providing a
simpler and declarative programming model to the software developer, while
at the same time leveraging declarative metadata for reducing startup time
and memory footprint of OSGi-based systems.

The basic approach that OSGi declarative services follow to attain these
goals is to introduce an external XML-based component description. This
component description specifies the dependencies and provisions of compo-
nents.

The dependency specification also includes the policy to follow if a service
that is used for dependency satisfaction disappears; components that are
able to deal with a disappearing dependency specify a dynamic dependency
policy. If the component is not able to handle disappearing services, a static
dependency policy will force the deactivation of the component as soon as
the used service is unregistered.

Furthermore, OSGi Declarative Services allow to configure immediate and
delayed components. While an immediate component is created as soon as
all its dependencies are satisfied (and all provided services are registered to
the OSGi service registry), a delayed component registers proxies for all its
provided services as soon as all its dependencies are satisfied. The component
itself is only instantiated if one of its services is actually used. By using this
technique, the instantiation of the component can be deferred. Delaying
the instantiation of the component allows to defer the creation of the bundle
class loader, which is a resource consuming process in OSGi that significantly
impacts system startup time and memory consumption. Avoiding this impact
is hence in line with the main goals of OSGi Declarative Services to reduce
startup time and memory footprint.

110 3. Component framework for application development

Listing 3.28: AnalyserMonitorService component

public class AnalyserMonitorService
implements CommandProvider {

private final List<IAnalyserMonitor> fAnalysers;
private final NumberFormat fFormat;

public AnalyserMonitorService() {
fAnalysers = new CopyOnWriteArrayList<IAnalyserMonitor>();
fFormat = NumberFormat.getNumberInstance();

}

public void _analysis(CommandInterpreter ci) {
ci.println("Current snapshot of analysis results");
for (IAnalyserMonitor analyser : fAnalysers) {
String name = analyser.getName();
double value = analyser.getResult();
ci.println(name + ": " + fFormat.format(value));

}
}

public String getHelp() {
StringBuilder buffer = new StringBuilder();
buffer.append("---Analysis Monitor Help---\n");
buffer.append("\tanalysis - lists the current analysis

results\n");
return buffer.toString();

}

public void addAnalyser(IAnalyserMonitor d) {
fAnalysers.add(d);

}

public void removeAnalyser(IAnalyserMonitor d) {
fAnalysers.remove(d);

}
}

Listing 3.28 gives an example of a declarative service component imple-
menting a monitoring command line interface by aggregating all available
analysis monitor services. The example chosen here is the same as in Sec-
tion 2.3: a monitor service following a plug-in architecture aggregates the
current analysis state of the system. The addAnalyser and removeAnalyser

3.4 Related OSGi component frameworks 111

methods are callback methods that are used to notify the component of the
binding or unbinding of the component dependency to the service. The com-
ponent, dependency and the callback methods of the AnalyserMonitorService
component are specified in the component.xml shown in listing 3.29.

Listing 3.29: Monitor service component declaration

<?xml version="1.0" encoding="UTF-8"?>
<scr:component

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
name="Command Provider for Analyser Service">
<implementation class="example.ds.AnalyserMonitorService"/>
<service>

<provide interface="org.eclipse.osgi.framework.console.
CommandProvider"/>

</service>
<reference bind="addAnalyser" cardinality="0..n"

name="Analysers" policy="dynamic"
unbind="removeAnalyser"
interface="example.ds.IAnalyserMonitor"/>

</scr:component>

The analyser monitor interface and implementation are the same as in
the initial OSGi example and were given in listings 2.2 and 2.3, respectively.
The bundle activator shown in listing 3.30 is a vastly simplified version of
the initial bundle activator (listing 2.4). It creates and registers an analyser
service, while the service component providing the console monitor service is
instantiated through the Declarative Services runtime. The service tracking
seen in Listing 2.4 is now performed by the Declarative Service runtime.

Listing 3.30: Monitor service component activator

public class Activator implements BundleActivator {

private BundleContext fContext;
private Analyser fAnalyser;

public void start(BundleContext context) throws Exception {
fContext = context;
fAnalyser = new Analyser("Mood Valence");
fAnalyser.start();
fContext.registerService(IAnalyserMonitor.class.getName(),

fAnalyser, null);
}

112 3. Component framework for application development

public void stop(BundleContext context) throws Exception {
fContext = null;
fAnalyser.stop();
fAnalyser = null;

}
}

While the OSGi Declarative Services approach clearly satisfies its goals
of providing a simpler programming model and reducing startup time and
memory footprint, it also has some drawbacks. First of all, the use of XML
for the definition of components introduces problems that are generally found
when using external configuration files:

• Type safety. Using external configuration files makes it impossible
to enforce type constraints (such as e.g. the specified type must be an
interface), and may necessitate an additional build step for checking
type constraints that are imposed on the configuration.

• Typo safety. Without proper editor support, the software developer is
uninformed about typing errors that she makes, be it due to misspelling
or wrong assumptions on her side.

• Refactoring safety. When moving types or changing the names of
types, methods or fields that are referenced in the external configu-
ration, it is imperative to also change this external configuration to
preserve the link between code and configuration.

All of these problems can be circumvented by providing tool support
through editors for the external configuration files. These editors should be
aware of the existing code base, the framework’s constraints, and should also
plug itself into the refactoring actions that can be performed on the code base.
The refactoring actions need to be extended to take external configuration
files into account on renamings of classes and packages if the configuration
is to remain consistent with the code base.

For OSGi Declarative Services, the Eclipse Plug-in Development Envi-
ronment (PDE) offers editors for service component declarations, but as of
Eclipse version 3.7, no refactoring support for service component declarations
exist, i.e., renaming of Java classes are not propagated to the component
definition XML. Changes to the component definitions must be performed

3.4 Related OSGi component frameworks 113

(a) Component view

(b) Services view

Figure 3.10: PDE declarative services editor

114 3. Component framework for application development

manually. Figure 3.10 shows the basic views of the PDE declarative services
editor for the general specification of the component (Figure 3.10a), and the
provided services and dependencies (Figure 3.10b).

Another approach followed by the Apache Felix SCR plugin [12] is to use
Java annotations for component declarations, and use an annotation proces-
sor in a pre-compile step to generate the component declaration XML. As
listing 3.31 shows, refactoring robustness is improved by using annotations,
but the Apache Felix SCR annotations library does not provide full refactor-
ing robustness: bind and unbind methods are specified as java.lang.String
values in the @Reference annotation instead of being defined through anno-
tations of the respective bind and unbind methods. The rationale behind this
design decision may be that annotating the methods directly is misleading:
The method lookup algorithm specified in the declarative services specifica-
tion [91, p. 304] can choose a different method than the one annotated, if
another method exists with the same name as the annotated method having
a higher precedence.

Listing 3.31: Analyser monitor service component with annotations

@Component
@Service
public class AnalyserMonitorService

implements CommandProvider {

@Reference(bind = "addAnalyser", unbind = "removeAnalyser",
cardinality = OPTIONAL_MULTIPLE, policy = DYNAMIC)

private final List<IAnalyserMonitor> fAnalysers;
private final NumberFormat fFormat;

public AnalyserMonitorService() {
fAnalysers = new CopyOnWriteArrayList<IAnalyserMonitor>();
fFormat = NumberFormat.getNumberInstance();

}

public void _analysis(CommandInterpreter ci) {
ci.println("Current snapshot of analysis results");
for (IAnalyserMonitor analyser : fAnalysers) {
String name = analyser.getName();
double value = analyser.getResult();
ci.println(name + ": " + fFormat.format(value));

}
}

3.4 Related OSGi component frameworks 115

public String getHelp() {
StringBuilder buffer = new StringBuilder();
buffer.append("---Analysis Monitor Help---\n");
buffer.append("\tanalysis - lists the current analysis

results\n");
return buffer.toString();

}

public void addAnalyser(IAnalyserMonitor d) {
fAnalysers.add(d);

}

public void removeAnalyser(IAnalyserMonitor d) {
fAnalysers.remove(d);

}
}

To summarise, the major issue in developing components with OSGi
Declarative Services is the managing and maintaining the consistency of
the external component definition XML files and the code base. The ex-
act amount of effort that is involved depend on the tool support available for
these tasks.

Another issue of OSGi Declarative Services is that its specification misses
to describe the synchronization requirements that OSGi Declarative Services
imposes on components. For example, it misses to provide information about
which threads access the service component’s life cycle methods. As various
on-line tutorials [18] discuss, thread-safety is a major issue in OSGi in gen-
eral. Therefore, access to injected services need to be synchronized using a
CopyOnWriteArrayList as done for the injected IAnalysisMonitor service
in listings 3.31.

Putting all criticisms aside, however, the Declarative Services specifica-
tion offers a simple component model that operates well on top of OSGi.
Other specifications, as the following OSGi Blueprint Container, feature a
significantly more complex component model.

3.4.2 OSGi Blueprint Container

The OSGi Blueprint Container specification [91, pp. 633] is another com-
pendium specification that defines a component layer on top of OSGi, but is
different from the Declarative Service model: The Declarative Service spec-

116 3. Component framework for application development

ification follows a model in which an OSGi bundle may define independent
component types that provide and depend directly on OSGi services. In
the Declarative Services component model, components are opaque entities
whose internal structure is defined solely through Java code. Blueprint Con-
tainer on the other hand allows to specify internal wirings of Java Beans
and to export only some of their interfaces as OSGi services. It offers the
possibility to define a rich internal structure of OSGi bundles with wirings
between Java Beans that are not managed as OSGi services. These different
programming models are illustrated in Figure 3.11. Figure 3.11a shows one
bundle with two Declarative Services components each interacting directly
with the OSGi service registry to retrieve and publish services. Figure 3.11b
on the right depicts one blueprint bundle that is made up of beans and wirings
that are managed by the blueprint container; only few of these beans use or
provide services to the OSGi registry.

Bundle

DS component 1

DS component 2

(a) Declarative Services

Blueprint bundle

(b) Blueprint container

Figure 3.11: Declarative Services vs. Blueprint Container

The Blueprint Container specification relies again heavily on XML, with
all the involved issues discussed in Section 3.4.1: type safety, typo safety,
and refactoring safety. However, as of 2011, there is no editor support for
the creation of blueprint definitions.

Blueprint Container focuses heavily on dependency injection and is mainly
focused on the creation and injection of Java Beans. Consequently, the largest
part of a blueprint definition XML revolves around the specification of a com-
ponent blueprint and its instantiation by creating objects and injecting them
appropriately. This focus of Blueprint Container on dependency injection is
due to its roots in the Spring project [116], which is a dependency injection

3.4 Related OSGi component frameworks 117

framework operating outside of OSGi. The Spring project focuses heavily on
server-side Java programming and therefore offers a plethora of functionality
for server-side tasks such as persistence, security, and http request processing.

Listing 3.32: Analyser monitor blueprint definition

<?xml version="1.0" encoding="UTF-8"?>
<blueprint
xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<bean id="analyser" class="example.bp.Analyser"

init-method="start" destroy-method="stop">
<argument value="Mood Valence"/>

</bean>
<bean id="analyserMonitor"

class="example.bp.AnalyserMonitorService">
<property name="analysers">
<list value-type="example.bp.IAnalyserMonitor">
<ref component-id="analyser"/>

</list>
</property>

</bean>
<service

id="analyserService"
ref="analyserMonitor"
interface="org.eclipse.osgi.framework.console.

CommandProvider"/>
</blueprint>

Listing 3.32 gives an example blueprint definition for the analyser mon-
itoring service example that is used as a running example. The blueprint
defines two Java beans and one OSGi service. As in the previous example,
the AnalyserMonitorService registers an OSGi service that allows to inspect
the current state of the system’s analysis layer by using the OSGi console
command analysis. Note that all object instances are created through the
given blueprint definition. Consequently, the bundle activator does not need
to create and register any service instances.

The blueprint.xml example shows several features of the blueprint con-
tainer specifications. The declaration of the analyser bean makes use of
the initialisation and destruction lifecycle callbacks, as well as constructor
arguments that can be specified for the construction of objects. Further-
more, the declaration of the analysers property of the analyserMonitor

bean shows how lists for injection can be constructed using blueprint con-

118 3. Component framework for application development

tainer. Note that the configuration does not query the OSGi service registry
for IAnalyserMonitor services; all analyser monitors to be plugged in must
be specified in the blueprint.xml. Note that using blueprint container,
the system can be configured differently, as shown in listing 3.33. By using a
reference-list element instead of list and by registering the mood valence
sensor as a service, the blueprint configuration makes use of OSGi services
for publishing and fetching IAnalyserMonitor instances.

Listing 3.33: Blueprint definition using OSGi services

<?xml version="1.0" encoding="UTF-8"?>
<blueprint
xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<bean id="analyser" class="example.bp.Analyser"

init-method="start" destroy-method="stop">
<argument value="Mood Valence"/>

</bean>
<service
id="moodService"
ref="analyser"
interface="example.bp.IAnalyserMonitor">

</service>
<bean id="analyserMonitor"

class="example.bp.ServiceComponent">
<property name="analysers">
<reference-list
interface="example.bp.IAnalyserMonitor"
availability="optional"/>

</property>
</bean>
<service
id="analyserService"
ref="analyserMonitor"
interface="org.eclipse.osgi.framework.console.

CommandProvider"/>
</blueprint>

An interesting concept included in the Blueprint Container specification
is the concept of damping [91, p. 696–697], which is a strategy for the
management of OSGi service dynamics. The Bluprint Container specifica-
tion requires that the extender (i.e. the bundle that takes care of expand-
ing blueprint definitions into objects) must inject service proxy objects into
beans once the respective OSGi service is available. The service proxy must

3.4 Related OSGi component frameworks 119

take care of acquiring the backing service upon invocation and release the
service as soon as the invocation is finished. By using a service proxy, the
blueprint extender is able to hide the deregistration of an OSGi service from
the managed Java Bean, thereby damping the service dynamics for the de-
pendant Bean. This constitutes an approach to the management of service
dynamics that differs radically from the concepts that the Declarative Ser-
vices specification offers. In OSGi Declarative Services, a policy is specified
with service dependencies, and the component is deactivated if a static policy
was specified and the bound service is unregistered. In Blueprint Container,
Java Beans keep their service proxy even if the bound service is unregistered,
but every call to the service is blocked for a specified amount of time (with
a default timeout of five minutes). If the specified timeout is reached, an
unchecked exception is thrown. In this way, most Java Beans are able to
work in a completely OSGi-agnostic fashion. If a Bean must react to the
unbinding of a service, however, the programmer must take care that all uses
of the respective service are surrounded by a org.osgi.service.blueprint

.container.ServiceUnavailableException try-catch block.
Blueprint Container is a specification that is different from the Declar-

ative Services specification in several aspects including default instantiation
mechanism, and handling of service dynamics. The Blueprint Container spec-
ification follows the idea that most of an application configuration should be
done in an OSGi-agnostic way, while only relying on OSGi services for de-
pendencies whose bindings may change over time.

3.4.3 iPOJO

iPOJO is a service component framework that is implemented on top of the
Apache Felix OSGi implementation, but runs on other OSGi R4.1 imple-
mentations as well such as Eclipse Equinox. The main focus of iPOJO is
to simplify the development of OSGi-based applications as far as possible
and to offer an extensible component model for experimentation with new
features.

The first goal is achieved by removing the burden for dealing with service
dynamics in a similar way as OSGi Declarative Services do. iPOJO addition-
ally uses bytecode manipulation, a powerful tool in the Java world. However,
bytecode manipulation in iPOJO is not performed at runtime. Instead, it
requires an additional build step that is sometimes difficult to incorporate in
existing building processes. Furthermore, bytecode manipulation introduces

120 3. Component framework for application development

a level of behaviour that is difficult to communicate to the uninformed soft-
ware developer, as will become apparent in the following analysis component
example.

Listing 3.34: Analyser component type definition

@Provides
@Component(name="analyser")
public class Analyser implements IAnalyserMonitor {

private final DataGenerator fGenerator;
private final String fName;
private double fResult;

public Analyser(String name) {
fName = name;
fGenerator = new DataGenerator(new IDoubleTarget() {
@Override
public void push(double value) throws

InterruptedException {
synchronized(Analyser.this) {
fResult = value;

}
}

});
}

public void start() {
fGenerator.start();

}

public void stop() {
fGenerator.stop();

}

@Override
public synchronized double getResult() {
return fResult;

}

@Override
public String getName() {
return fName;

}
}

3.4 Related OSGi component frameworks 121

Listing 3.34 shows how annotations are used in iPOJO to define the
analyser component type using the Analyser Java class. The @Provides

annotation declares that all interfaces that are implemented by the Analyser

class are registered as OSGi services.
The service component type is declared in the AnalyserMonitorService

class as shown in Listing 3.35. Note that the bind and unbind methods are
annotated with @Bind and @Unbind annotations. However, iPOJO allows
also to inject object directly to fields. iPOJO uses bytecode manipulation to
create setter methods in the class file. Furthermore, note that a concurrent
collection is used for the fAnalysers fields. This is although iPOJO manipu-
lates the bytecode of the class to inject locking and service lookup statements
to guarantee the availability of a services for the duration of a method call.
This approach is problematic: while Java code using Declarative Services or
Blueprint Container are thread-safe in all contexts, as the developer has to
implement his components in a thread-safe way, iPOJO code relies on the
framework to provide thread safety. The code is hence unsafe when executed
in other contexts or on other middlewares.

Listing 3.35: Analyser monitor service component type definition

@Provides
@Component(name="monitor")
public class AnalyserMonitorService

implements CommandProvider {

private final List<IAnalyserMonitor> fAnalysers;
private final NumberFormat fFormat;

public AnalyserMonitorService() {
fAnalysers = new CopyOnWriteArrayList<IAnalyserMonitor>();
fFormat = NumberFormat.getNumberInstance();

}

public void _analysis(CommandInterpreter ci) {
ci.println("Current snapshot of analysis results");
for (IAnalyserMonitor analyser : fAnalysers) {
double value = analyser.getResult();
String name = analyser.getName();
ci.println(name + ": " + fFormat.format(value));

}
}

122 3. Component framework for application development

public String getHelp() {
StringBuffer buffer = new StringBuffer();
buffer.append("---Analysis Monitor Help---\n");
buffer.append("\tanalysis - lists the current analysis

results\n");
return buffer.toString();

}

@Bind(aggregate=true)
public void bindAnalyser(IAnalyserMonitor d) {
fAnalysers.add(d);

}

@Unbind
public void unbindAnalyser(IAnalyserMonitor d) {
fAnalysers.remove(d);

}
}

Going back to the analyser example, the instance definitions are still
missing for a full working system. The missing declarations are provided
through a simple XML file (see listing 3.36) that references the component
types previously declared.

Listing 3.36: iPOJO component instance definitions

<ipojo>
<instance component="analyser"/>
<instance component="monitor"/>

</ipojo>

The iPOJO framework is also easily extensible through the concept of
handlers. The framework itself is built in a modular way, and several inde-
pendent concepts such as composite components and runtime manipulation
that are not discussed here are implemented as independent handlers that
are plugged into the core framework.

To summarize, the iPOJO framework offers a compact programming
model which relies on bytecode manipulation, however. The programming
model is extensible through the concept of handlers that can be added to the
framework core.

3.4 Related OSGi component frameworks 123

3.4.4 Guice and Peaberry

Peaberry is an OSGi extension of the Java-annotation-based dependency
injection framework Google Guice [119]. The goal of Peaberry is to make
OSGi services usable for dependency injection in Guice and make services
offered by a Guice module available through OSGi. Guice and Peaberry
offer their functionality through annotation processing facilities and fluent
APIs [57]. The aversion against external configuration files stems from the
drawbacks that are entailed from the use of XML configuration files in the
Spring framework [83].

The basic Guice approach revolves around a three concepts:

1. Injection. The single Java annotation @Inject annotates construc-
tors, fields or setters to mark them accessible for dependency injection
through Guice.

2. Scope. Guice provides annotations to control the number of instances
it creates. By default, Guice will create a new instance for each injec-
tion. By defining a broader validity scope, Guice can be forced to re-use
instances. The notion of scope that Guice relies on stems from the web
framework community. The use of scopes – and the term scope itself –
is dominant in web programming: object with the lifetime of a request
(e.g. transactions) or session (e.g. authentication and authorisation
information) are omnipresent in web applications.

3. Binding. Modules define injection bindings. A binding consists of
two parts, the bind part and the to part: the bind part specifies a
set of injection points and narrows it through constraints such as the
type of the injection point, the class it is defined in, and other present
annotations. The to part defines which instances are to be injected
into the injection points. By default, a new instance is created for each
injection point, but through the use of scope, re-use of injected instance
can be enforced.

Peaberry extends Guice by introducing additional bindings allowing to
use OSGi services and export objects managed by Guice as OSGi services.
Furthermore, Peaberry introduces an service export and import management
layer which allows to interact programmatically with the OSGi/Peaberry
service binding life cycle.

124 3. Component framework for application development

Listing 3.37 shows how injection points are defined with Guice. A single
@Inject annotation is added to the setAnalysers method to declare it as
injection point.

Listing 3.37: Analyser monitor service component with Guice injection

public class AnalyserMonitorService
implements CommandProvider {

private Iterable<IAnalyserMonitor> fAnalysers;
private final NumberFormat fFormat;

public AnalyserMonitorService() {
fFormat = NumberFormat.getNumberInstance();

}

public void _analysis(CommandInterpreter ci) {
ci.println("Current snapshot of analysis results");
for (IAnalyserMonitor analyser : getAnalysers()) {
double value = analyser.getResult();
String name = analyser.getName();
ci.println(name + ": " + fFormat.format(value));

}
}

public String getHelp() {
StringBuilder buffer = new StringBuilder();
buffer.append("---Analysis Monitor Help---\n");
buffer.append("\tanalysis - lists the current analysis

results\n");
return buffer.toString();

}

private synchronized Iterable<IAnalyserMonitor>
getAnalysers() {

return fAnalysers;
}

@Inject
public synchronized void

setAnalysers(Iterable<IAnalyserMonitor> analysers) {
fAnalysers = analysers;

}
}

3.4 Related OSGi component frameworks 125

The module definition in listing 3.38 shows a pure Guice binding for
IAnalyserMonitor injections to one instance of the class Analyser. This
binding is used to inject an instance in the AnalyserMonitorService class
given in listing 3.37. The second binding shows how a set of services is
referenced. It constructs an iterable object that represents the set of services
available in the registry that implement the IAnalyserMonitor interface.

Finally, the third binding specifies that AnalyserMonitorService pro-
vides an OSGi service of the type CommandProvider. The export call within
the bind method declares that the injection point is the OSGi service registry.
The method chain toProvider(service(AnalyserMonitorService.class).

export()) creates an exportable service from a ServiceComponent instance.

Listing 3.38: Peaberry-based analyser module

public class AnalyserModule extends AbstractModule {

@Override
protected void configure() {
Analyser analyser = new Analyser("Mood Valence");
analyser.start();
bind(export(IAnalyserMonitor.class)).toProvider(service(

analyser).export());

bind(iterable(IAnalyserMonitor.class)).toProvider(service(
IAnalyserMonitor.class).multiple());

bind(export(CommandProvider.class)).toProvider(service(
AnalyserMonitorService.class).export());

}
}

The activator shown in listing 3.39 kick starts the instance module cre-
ation through Guice and Peaberry. The start OSGi callback method re-
quests the member injection on itself, causing Peaberry to create an instance
of AnalyserMonitorService and Analyser, which are also automatically reg-
istered to the OSGi service registry. The stop method takes care of unregis-
tering the services as the bundle is stopped.

126 3. Component framework for application development

Listing 3.39: Peaberry-based activator

public class Activator implements BundleActivator {

@Inject
Export<IAnalyserMonitor> fMoodAnalyserHandle;

@Inject
Export<CommandProvider> fConsoleCommandHandle;

public void start(BundleContext context) throws Exception {
createInjector(osgiModule(context), new AnalyserModule())
.injectMembers(this);

}

public void stop(BundleContext context) throws Exception {
fConsoleCommandHandle.unput();
fMoodAnalyserHandle.unput();

}
}

Guice allows very precise control of injections through the bindings con-
cept and the accompanying mechanisms for narrowing the scope of bindings.
Since it does not involve any additional building steps and does not rely
on external configuration files, it integrates well into existing build processes
and leverages the power of existing IDEs such as Eclipse. Guice configuration
code is fully type safe and refactoring safe. However, embedding configura-
tion code in Java has its drawbacks too, as every change in the configuration
requires a full release cycle.

Interestingly, Peaberry follows a similar approach to Blueprint Container
when it comes to the management of service dynamics. Peaberry proxies
OSGi services before injecting them to Guice-managed Java objects simi-
larly to Blueprint Container. Although Peaberry uses the same service dy-
namic damping concept as Blueprint Container, the damping is not as strong
as the service unavailable exception is immediately thrown if the service is
unavailable at invocation time.

Altogether, Peaberry has a development path and origin that is similar
to Blueprint Container. Both frameworks stem from a pure Java dependency
injection framework, and try to extend their reach to OSGi services. Peaberry
itself seems to be in development still, but builds upon the very mature Guice
dependency injection framework.

3.4 Related OSGi component frameworks 127

3.4.5 Comparative summary

The above discussion of the four OSGi-based component frameworks Declar-
ative Services, Blueprint Container, iPOJO and Peaberry focused on the key
features of each framework. In this section, we give a comprehensive com-
parison of the four frameworks (Declarative Services, Blueprint Container,
iPOJO and Peaberry), and the REFLECT framework. The comparison op-
erates along a defined set of aspects in the following. A tabular summary of
the comparison can be found in table 3.3.

• Origin. The context in which the component framework was initially
developed. Blueprint Container and Peaberry are two frameworks that
were created on top of sophisticated dependency injection frameworks
and constitute extensions of these frameworks to OSGi. Declarative
Services, iPOJO, and the REFLECT framework, in contrast, were cre-
ated directly on top of OSGi.

• Configuration. Which languages are used to describe and instantiate
components. All other frameworks than Peaberry and the REFLECT
framework support pure XML configuration; iPOJO support configu-
ration through a mixture of XML and Java annotations. Peaberry and
the REFLECT framework are the only frameworks that do not rely on
XML for configuration.

• Service dynamics. How disappearing services are handled through
the framework and propagated to developer code. Interestingly, com-
ponent frameworks that stem from dependency injection frameworks
rely solely on damping of service dynamics (i.e. injection of proxies
that wait for the availability of the service and throw runtime excep-
tions on timeout). These frameworks motivate their approach with
the potentially high cost of re-creation of a full system configuration.
Frameworks that were build on top of OSGi define a component lifecy-
cle that allows to re-use already created components: the REFLECT
framework is one of the frameworks following a lifecycle and re-use
approach. In contrast, Peaberry and Blueprint Container allow to be
notified about vanishing service bindings, but do not provide a lifecycle
model. The client code must implement a component lifecycle on its
own every time it is needed.

128 3. Component framework for application development

D
e
cla

ra
tiv

e
S
e
rv

ice
s

B
lu

e
p
rin

t
C

o
n
ta

in
e
r

iP
O

J
O

G
u
ice

P
e
a
b

e
rry

R
E

F
L

E
C

T
fra

m
e
w

o
rk

O
rigin

O
S
G

i
S
p
rin

g
O

S
G

i
G

u
ice

O
S
G

i
C

on
fi
gu

ration
X

M
L

or
an

-
n
otation

s
X

M
L

X
M

L
or

an
-

n
otation

s
J
ava

an
d

an
-

n
otation

s
J
ava

an
d

an
-

n
otation

s
S
erv

ice
d
y
n
am

ics
D

eactiv ation
D

am
p
in

g
D

eactiv ation
or

D
am

p
in

g
D

am
p
in

g
D

eactiv ation

L
ifecy

cle
Y

es
N

o
Y

es
N

o
Y

es
W

irin
g

w
ith

ou
t

O
S
G

i
N

o
Y

es
N

o
Y

es
Y

es
In

jection
m

eth
o
d

con
stru

ctor,
p
rop

erty
m

eth
o
d
,

fi
eld

con
stru

ctor,
m

eth
o
d
,

fi
eld

m
eth

o
d

D
efau

lt
in

stan
tiation

S
in

gleton
M

u
ltip

le
in

stan
ces

S
in

gleton
M

u
ltip

le
in

stan
ces

S
in

gleton

E
x
ten

sion
s

N
o

N
o

Y
es

Y
es

N
o

T
h
read

-safet y
U

ser
U

ser
F

ram
ew

ork
U

ser
U

ser

T
ab

le
3.3:

C
om

p
on

en
t

fram
ew

ork
featu

re
com

p
arison

3.4 Related OSGi component frameworks 129

• Lifecycle. Whether the component framework define a component
lifecycle. This aspect is tightly related to the handling of service dy-
namics. Dependency injection frameworks do not specify a component
lifecycle, and have therefore little means to notify client code about
vanishing services. Instead, they rely on damping service dynamics.

• Wiring without OSGi. Whether it is possible to wire Java instances
without relying on OSGi service bindings. As expected, Blueprint Con-
tainer and Peaberry allow wirings that bypass OSGi, while Declarative
Services and iPOJO do not. Relying solely on OSGi service bindings
involves the overhead of service registration, discovery and binding
through OSGi. The REFLECT framework constitutes a remarkable
exception, as it is built upon OSGi, but allows to bypass the OSGi
service registry – which is, in fact, its default mode of wiring. The RE-
FLECT framework follows a more fine-grained wiring approach that is
closer to the wiring approach of Peaberry and Blueprint Container.

• Default instantiation. The default instantiation scheme that is de-
fined through the component framework. In this aspect, again, the split
between “OSGi-native” and “dependency injection extending” compo-
nent frameworks is apparent. Dependency injection framework create
new instances for each injection, and reducing the number of instan-
tiation is achieved by defining validity scopes for instances such as
e.g. singleton scope. In “OSGi native” frameworks (Declarative Ser-
vices, iPOJO and the REFLECT framework), the default instantiation
is singleton, and creating multiple instances involves some overhead,
such as defining and registering a component factory instead in addi-
tion to the component itself.

• Extensions. Whether the component framework can be extended. In-
terestingly, the frameworks that are included in the OSGi compendium
do not define means for extending the features and semantics of the
framework. This may be due to the complexity involved in fully spec-
ifying such extensible frameworks. iPOJO and Peaberry are both ex-
tensible, and their extension mechanisms are used for modularisation of
features and experimentation. The REFLECT framework on the other
hand does not feature means for user-level extensions to the framework
core through plug-in or other mechanisms; it was not necessary, as ex-
tensions to the functionality of the framework core could be provided

130 3. Component framework for application development

by additional components made available by default on system start,
like for example the data context service (see Section 3.3.11).

• Thread-safety. Whether the framework or the developer (i.e. the
user of the framework) is responsible for providing thread-safety. In-
terestingly, only iPOJO takes responsibility for providing a thread-safe
implementation, while all other impose own thread-safety requirements
on client code. The decision of taking the burden of thread-safety from
the developer or imposing it on her is not as easy as expected, and is
a decision that has far-reaching consequences. From an abstract point
of view, one may think that providing as much service to the devel-
oper can only lead to better client code. Looking further into the issue
reveals however that taking the responsibility for thread-safety means
that the client code is inherently unsafe, and becomes safe only through
relying on the framework. This makes the client code dependent on the
framework, which contradicts the idea of POJOs. Furthermore, tak-
ing the responsibility from the developer will make it harder for her to
understand the notions of concurrency, and to appreciate the program-
ming of concurrent systems. The approach of providing a clear model
of shared-memory concurrency, concurrency patterns and concurrency
building blocks as done in the Java concurrency library [62] seems to be
a more promising approach, as it leaves the responsibility for dealing
with concurrency and deciding on the design of concurrent behaviour
with the developer. The REFLECT framework follows a mixed ap-
proach to guaranteeing thread-safety of applications: the framework
takes care of synchronizing changes to port bindings and the component
lifecycle state without having the programmer to take care of ensuring
thread-safety. It also guarantees that ports may not change during the
execution of the step method, and during the processing of method
invocations, as components are made quiescent before reconfigurations
take place.

From the discussion of the existing component frameworks and the com-
prehensive comparison above, one can conclude the following.

• Different models for the creation of applications and systems on top
of OSGi exist, of which two can be identified: the “everything is a
service” model, and the “variation points are services” model. In the
“everything is a service” model, each dependency injection is performed

3.4 Related OSGi component frameworks 131

via an OSGi service. In contrast, the “variation points are services”
model, POJOs are instantiated, of which some can be registered as
OSGi services, and OSGi services can be injected into POJOs via ser-
vice proxies. The two models imply different approaches to service
dynamic management, the existence of a component lifecycle, and a
different default instantiation strategy. Intuitively, the “everything is
a service” model encourages the management of coarse-grained, heavy-
weight components, whereas the “variation points are services” model
encourages the management of lightweight POJOs with the framework
that are assembled to create a complex, heavyweight system. In this
dichotomy, the REFLECT framework follows the “variation points are
services”, but with the twist that the internal structure of OSGi mod-
ules can be altered through reconfigurations at runtime.

• Making a framework understandable by the less informed developers
is not easily achieved. Dependency injection, runtime reflection, ser-
vice dynamics and the involved concurrency aspects are topics that
must be clearly presented to the software developer. The component
frameworks achieve this task with varying degree of success. Arguably,
Guice and Peaberry provide the clearest introduction for software de-
velopers, as well as the most accessible means for configuration, as they
are based on Java and Annotations. The REFLECT framework follows
the same approach to configuration as Guice and Peaberry in order to
make it easier for newcomers to start developing applications with the
REFLECT framework.

• The configuration definition can be done using external configuration
files using e.g. XML, or with Java code. While XML files are harder
to maintain and demand for additional editors, changing the configu-
ration does not require recompilation. Configurations using Java code
have the inverse properties: they require recompilation for changing
the configuration, but the editor support offered by existing IDEs is
sufficient for effective management of configurations.

• Additional processing steps such as bytecode manipulation as per-
formed by iPOJO are sometimes difficult to integrate into existing
IDE building processes. These difficulties can make the adoption of
component frameworks significantly harder.

132 3. Component framework for application development

• No component framework offers control over both instantiation and
binding, while providing configuration through Java code. Control of
instantiation is only given in iPOJO, but it does not provide control
over binding as Guice does. iPOJO allows only autowiring of depen-
dencies in a service oriented way. Selection of matching services is done
via property maps and filters, whereas Guice introduces a binding rule
API which allows fine-grained control over the bindings. This is where
the REFLECT framework proposes a unique set of features: it allows
the control of both instantiation and binding, and allows to config-
ure systems through Java code. The wiring regime can be arbitrarily
defined through the rule-based wiring framework that ressembles the
approach of Guice (see Section 3.3.3).

In summary, the OSGi component framework ecosystem has developed
interesting, yet contradicting approaches to component frameworks. It is
not yet clear whether the definitive answer to the needs of developers of
OSGi-based systems is already found. Especially, it is interesting to note
that no component framework other than the REFLECT framework offers
fine-grained control over both instantiation and binding, or allows to select
a binding regime from a continuum from a service oriented binding regime
to a component-oriented binding regime.

3.5 Conclusion

This chapter introduced the REFLECT framework – a component-based
software framework for the creation of physiological computing applications.
This section also documents how the framework was developed to satisfy
high-level requirements that users have towards physiological computing ap-
plications, and requirements developers have towards a framework for physi-
ological computing applications. With the given requirements (Section 3.1),
a set of concepts were selected (Section 3.2) that together satisfy the require-
ments. A detailed discussion of the implementation (Section 3.3) then showed
how the concepts can be used, what were the forces that emerged from the
implementation of these concepts, and how they interact with each other in
the implementation. In this chapter, we have therefore shown how the imple-
mented concepts of the framework can be traced to the initial requirements,
and how the concepts relate to the framework implementation.

3.5 Conclusion 133

The REFLECT framework design revolved around three basic design de-
cisions:

• Providing a natural embedding of a component model into the Java pro-
gramming language, and therefore avoiding introducing external con-
figuration code such as XML.

• Choosing an approach to multithreading that scales from restricted
resource environments to mutlicore systems.

• Providing support for the development of physiological computing ap-
plications, especially for the implementation and testing of physiologi-
cal computing systems. This also included allowing for easy and pow-
erful implementations of reconfigurations by choosing an imperative
approach to reconfiguration.

In our opinion, the REFLECT framework was successful in satisfying the
requirements imposed on it by following the above-mentioned basic design
decisions. This opinion is supported by the case studies that were developed
using the REFLECT framework, as elaborated in Chapter 6. However, it
became also apparent that dealing with reconfigurations is not as easy one
might initially expect. This is why the next Chapter (Chapter 4) focuses on
providing a formal verification framework for systems undergoing reconfigu-
rations.

In total, the REFLECT framework encompasses a set of carefully selected
features that interact well with each other, and provide some beneficial syn-
ergy effects, as showcased by the the Data Context Service and distribution
support in Section 3.3.12. Furthermore, when comparing the REFLECT
framework with other OSGi based component frameworks, it becomes ap-
parent that the REFLECT framework offers a distinctive combination of
features and means of control that are not found in any other framework.

134 3. Component framework for application development

Chapter 4

Specifying and verifying
systems under reconfiguration

A major challenge when creating systems capable of performing autonomous
runtime reconfigurations is to guarantee that they operate correctly even
when undergoing structural changes. This is especially true in real-time
environments, where the duration of a reconfiguration or other timing aspects
may lead to unstable back-and-forth structure changes. As it happen to be,
physiological pervasive adaptive computing systems are exactly such real-
time environments.

The design of correct reconfiguration behaviour is a challenging task.
While the initial structure of a system may be easily known in the beginning,
that structure can be altered drastically once multiple reconfiguration steps
were performed, and tracking all possible chains of reconfiguration steps is
not as easy. Working towards a formal proof of correct behaviour of the
system under all possible reconfigurations is therefore worthwhile.

In this chapter, it is investigated how a formal proof can be established on
the correct realisation of a formal specification through a system undergoing
reconfigurations. For this, a component-based assume-guarantee reasoning
framework is introduced that is able to handle both reconfigurations and real-
time specifications natively. The work presented in this chapter have been
published in [106], albeit in a more condensed form; this chapter presents the
work more extensively.

Following the component-based assume-guarantee framework from Ben-
veniste et al. [26], components are considered to be black boxes, making
explicit only their communication requirements by means of required and

136 4. Specifying and verifying systems under reconfiguration

provided ports (see Section 2.4). We go beyond the framework presented
by Benveniste et al. by introducing the concept of a system configuration,
that makes the description of bindings from required ports to suitable pro-
vided ports. By changing the bindings of component ports, the system’s
behaviour can be changed. This is how reconfiguration is mapped into the
formal verification framework.

In the proposed framework, the specification of the overall system and
the single components is given by assume-guarantee contracts, where the
assumptions address the system environment, and the guarantees the out-
put produced. The conformance of a component configuration to a global
specification can be checked off-line, and invalid application designs can be
detected early. A novelty of the proposed framework compared to the assume-
guarantee framework of Benveniste et al. is that the system configuration is
taken into account in the composition of contracts; that is to say, possi-
ble changes of bindings are considered when composing a system from its
components.

The assume-guarantee framework presented in this thesis is based on a
real-time, linear time semantics that allows to specify both safety and liveness
properties. Building on the preliminaries given in Section 2.4, an extension
of the linear-time semantics (Section 4.1) and temporal logic syntax (Sec-
tion 4.2) to cover configurations and connectors is introduced. For the spec-
ification of configurations, we extend Metric Interval Temporal Logic [8] to
reMITL (Metric Interval Temporal Logic for Reconfigurable Components)
which features an additional binary predicate ∼ that allows to specify the
connection status of component ports. Section 4.3 will introduce a simple
example of the application of the framework. More complex examples can
be found in the case studies Chapter 6. Section 4.4 presents related work,
and Section 4.5 finally gives the summary of the results achieved through the
proposed formal framework.

4.1 Assume-guarantee reasoning and recon-

figuration

The basic idea of the reasoning framework is to be able to deduce whether
a composition of assume-guarantee-style component specifications under a
given reconfiguration specification can satisfy a global specification given as

4.1 Assume-guarantee reasoning and reconfiguration 137

assume-guarantee contract.
In order to create this framework, we take a look at the preliminaries

provided in Section 2.4 and perform the necessary modification for supporting
real-time reconfiguration specifications. In the following, the definitions of
signatures, states, runs, assertions and contracts as well as the operations
defined on them are re-visited and extended to account for reconfigurations.

4.1.1 Signatures, states and runs

This section introduces an abstract assume-guarantee framework that is for-
mulated on the semantic domain of runs over a given signature. Note that in
the following, we use shared variable semantics instead of message passing,
although the terminology of components and connectors may suggest other-
wise. This decision allows us to simplify the underlying semantics, and to
keep systems describable with regular (metric interval) temporal logic.

Definition 17 ((Composite) component signature). A component signature
Σ consists of two disjoint finite sets RΣ, PΣ of provided and required ports,
respectively: Σ = (RΣ, PΣ).

A composite component signature Σ = ((RExt
Σ , PExt

Σ), (RInt
Σ , P Int

Σ), (Ci
Σ,

Cd
Σ)) consists of one external and one internal component signature with

mutually disjoint port sets, and a connector signature consisting of internal
connectors Ci

Σ ⊆ RInt
Σ ×P Int

Σ and delegating connectors Cd
Σ ⊆ (RExt

Σ ×RInt
Σ)∪

(PExt
Σ × P Int

Σ).

Component signatures can obviously be embedded into composite com-
ponent signatures, e.g. for a component signature Σ, ((RΣ, PΣ), (∅, ∅), (∅, ∅))
is its corresponding composite component signature. The sets Ci

Σ and Cd
Σ

can be used to model constraints on connections resulting from e.g. type
(in-)compatibilities between ports. All port sets of signatures must be pair-
wise disjoint. A signature is either a component signature or a composite
component signature; both are commonly denoted by letters Σ and Θ.

Definition 18 (Signature functions ports and conns). Let Σ = (RΣ, PΣ)
be a component signature. The set of ports of Σ, ports(Σ) is defined as
ports(Σ) = RΣ] PΣ. The set of connectors of Σ, conns(Σ) is defined as
conns(Σ) = ∅. Let Σ = ((RExt

Σ , PExt
Σ), (RInt

Σ , P Int
Σ), (Ci

Σ, C
d
Σ)) be composite

component signature. The set of ports of Σ, ports(Σ) is defined as ports(Σ) =
RExt

Σ] PExt
Σ] RInt

Σ] P Int
Σ . The set of connectors of Σ, conns(Σ) is defined

as conns(Σ) = Ci
Σ] Cd

Σ.

138 4. Specifying and verifying systems under reconfiguration

Composite component signatures are richer in structure than simple com-
ponent signatures. It is therefore useful to define funtions that retrieve the
internal and external sub-signatures they feataure.

Definition 19 (External and internal signature). Let Σ be a composite
component signature, Σ = ((RExt

Σ , PExt
Σ), (RInt

Σ , P Int
Σ), (Ci

Σ, C
d
Σ)) be compos-

ite component signature. The external signature of Σ, ext(Σ), is defined as
ext(Σ) = (RExt

Σ , PExt
Σ). The internal signature of Σ, int(Σ), is defined as

int(Σ) = (RInt
Σ , P Int

Σ).

It is possible to define the notion of a subsignature Σ ⊆ Θ by component-
wise set inclusion, and supremum of signatures sup(Σ,Θ) by component-wise
set union.

Definition 20 (Subsignature and signature supremum). Let Σ and Θ be
component signatures. The notion of a subsignature Σ ⊆ Θ is defined by
component-wise set inclusion:

Σ ⊆ Θ iff RΣ ⊆ RΘ and PΣ ⊆ PΘ

The supremum of Σ and Θ is defined by component-wise set union:

sup(Σ,Θ) = (RΣ ∪RΘ, PΣ ∪ PΘ)

Let Σ and Θ be composite component signatures. The notion of a subsigna-
ture Σ ⊆ Θ is defined by component-wise set inclusion:

Σ ⊆ Θ iff RExt
Σ ⊆ RExt

Θ and PExt
Σ ⊆ PExt

Θ

and RInt
Σ ⊆ RInt

Θ and P Int
Σ ⊆ P Int

Θ

and Ci
Σ ⊆ Ci

Θ and Cd
Σ ⊆ Cd

Θ

The supremum of Σ and Θ, sup(Σ,Θ) is defined by component-wise set
union:

sup(Σ,Θ) = (sup(ext(Σ), ext(Θ)), sup(int(Σ), int(Θ)), Ci
Σ ∪ Ci

Θ, C
s
Σ ∪ Cs

Θ)

Since the structure of signatures is more complex than before (cf. Sec-
tion 2.4), it is worthwhile to define the notion of a Σ-state before defining
runs.

4.1 Assume-guarantee reasoning and reconfiguration 139

Definition 21 (Σ-state). Let Σ be a composite component signature or com-
ponent signature. A Σ-state σ is a subset of ports(Σ)] conns(Σ). A state
is called valid iff the following condition is satisfied: if σ is a Σ state and
(p1, p2) ∈ σ, then p1, p2 ∈ σ or p1, p2 /∈ σ. The set of all valid Σ-states is
denoted by S(Σ).

The definition of Σ-states implies (for simplicity) that ports have boolean
values, and port connectors can be present (instantiated) in σ or not; both is
expressed by element relationship. The notion of state validity implies that
connected ports are always equal in value.

Definition 22 (Σ-run). Let Σ be a signature. A Σ-run is a function ρ :
R+

0 → S(Σ) which satisfies the properties of finite-variability [8]: for all
t, t′ ∈ R+

0 , there are only finitely many different states between time t and t′:

∀t, t′ ∈ R+
0 .t < t′ =⇒ |{ρ(t′′) | t ≤ t′′ ≤ t′}| <∞.

The class of all Σ-runs is denoted by R(Σ).

The restriction to runs with finite-variability must be made in order to be
able to prove the completeness of reMITL – runs that do not satisfy finite-
variability may exhibit properties that cannot be shown using reMITL.

Using the above definition, assertions can be defined as sets of runs.

Definition 23 (Assertion). Let Σ be a signature. A Σ-assertion E, in the
following also denoted by E : Σ, is a set of Σ-runs: E ⊆ R(Σ).

Similarly as before, assertions over signatures are used for specifying as-
sumptions, guarantees, and implementations. Additionally, assembly specifi-
cations are modeled with assertions over composite component signatures.

As oftentimes, assumptions, guarantees, implementations, and assembly
specifications are assertions over different signatures, there must be a way
to transform an assertion from one signature to another. First, the lifting of
runs and assertions from a signature Σ to a signature Θ ⊇ Σ is defined.

Definition 24 (Lifting). Let Σ, Θ be component signatures such that Θ ⊇ Σ,
let ρ ∈ R(Σ) be a Σ-run. The lifting of ρ to Θ, ρ↑Θ is defined as follows.

ρ↑Θ= {ρ′ ∈ R(Θ) | ∀t ∈ R+
0 .ρ
′(t) ∩ (ports(Σ)] conns(Σ)) = ρ(t)}

Let E : Σ be a Σ-assertion. The lifting of E to Θ, E ↑Θ is defined as follows.

E ↑Θ=
⋃
{ρ↑Θ| ρ ∈ E}

140 4. Specifying and verifying systems under reconfiguration

Restriction is then defined as the inverse operation for runs and assertions
from a signature Θ ⊇ Σ to Σ.

Definition 25 (Restriction). Let Σ, Θ be component signatures such that
Θ ⊇ Σ, let ρ ∈ R(Θ) be a Θ-run. The restriction of ρ to Σ, ρ↓Σ is defined
as follows.

ρ↓Σ= {ρ′ ∈ R(Σ) | ∀t ∈ R+
0 .ρ(t) ∩ (ports(Σ)] conns(Σ)) = ρ′(t)}

Let E : Θ be a Θ-assertion. The restriction of E to Σ, E ↓Σ is defined as
follows.

E ↓Σ=
⋃
{ρ↓Σ| ρ ∈ E}

Note that restriction and lifting can be applied between assertions over
both component and composite component signatures.

For the parallel composition of components and contracts, we use inter-
connection specifications that are called assembly specification. An assembly
specification defines a dynamic evolution of the system structure, i.e. how
the connectors between ports of components change over time.

Definition 26 (Assembly specification). Let Σ be a composite component
signature. An assembly specification is a Σ-assertion that satisfies the fol-
lowing properties.

1. A required port r ∈ Rint(Σ) may be bound to at most one provided port
at a time, i.e., for all r ∈ Rint(Σ), for all ρ ∈ A and for all t ∈ R+

0 it
holds that |{p ∈ Pint(Σ) | (r, p) ∈ ρ(t)}| ≤ 1.

2. Each external provided port pext ∈ Pext(Σ) must be delegated to exactly
one internal provided port, i.e., for all pext ∈ Pext(Σ), for all ρ ∈ A and
for all t ∈ R+

0 it holds that |{pint ∈ Pint(Σ) | (pext, pint) ∈ ρ(t)}| = 1.

The constraint on the binding of required ports to provided is different to
the constraint on the delegation of external provided ports to an internal pro-
vided port: while external provided ports must be connected continuously,
required ports of internal components may be disconnected, as internal com-
ponents may remain unused in an assembly for specific periods. In these
periods, all ports of the component get disconnected, and the component
remains orphan in the assembly until it is needed.

In this abstract semantics-based framework, parallel composition of im-
plementations is straightforward. Note that parallel composition can be ap-
plied to implementations as well as assembly specifications.

4.1 Assume-guarantee reasoning and reconfiguration 141

Definition 27 (Parallel composition of assertions). Let ΣE, ΣF be com-
ponent signatures. Let E : ΣE and F : ΣF be two assertions, and Σ =
sup(ΣE,ΣF). The composition of E and F is defined by E‖F = E↑Σ ∩F↑Σ.

4.1.2 Assume-guarantee contracts

For a general theory of specification composition and refinement, using as-
sertions alone is not satisfactory. In order to support the separation between
assumptions towards the environment and specification of component be-
haviour, it is worthwhile to introduce assume-guarantee contracts for the
abstract specification of behaviour to be implemented.

Definition 28 (Assume-guarantee contract). Let Σ be a component signature
or a composite component signature. An assume-guarantee contract is a pair
of assertions (A : Σ, G : Σ).

Note that assume-guarantee contracts can be defined for both components
and composite components. For composite components, this means that as-
sumptions may specify the internal behaviour of the component, i.e. how
port interconnections and internal ports behave, and the externally visible
behaviour of the component, i.e. how the valuation of external provided ports
correspond to the valuation of external required ports. Still, contract satisfac-
tion can be defined by inclusion of runs for both components and composite
components for the simple reason that S(Σ) is defined for both.

Definition 29 (Contract satisfaction). Let M : Σ be an implementation,
and (A : ΣC , G : ΣC) be an assume-guarantee contract. Σ and ΣC are
either both component signatures or composite component signatures. The
implementation M satisfies (A : ΣC , G : ΣC), denoted by M �c

Σ (A,G), if
and only if ΣC ⊆ Σ and M ∩ A↑Σ⊆ G↑Σ.

The canonical form of contracts is defined as (A, (¬A)∪ G). The rationale
for the canonical form is still the same as before: non-circular composition
of contracts is avoided, and the canonical form is a valid replacement for a
contract as an implementation M satisfies a contract if and only if it satisfies
its canonical form. To simplify presentation, it will again be assumed from
now on that contracts are in canonical form, and write (A,G) : Σ instead of
(A : Σ, G : Σ).

Now, we define parallel composition of contracts. While parallel com-
position of contracts in the simple assume-guarantee framework presented

142 4. Specifying and verifying systems under reconfiguration

A B
a a b Required

Provided

Figure 4.1: Contract composition example

in Section 2.4 was relatively simple, parallel composition of contracts under
consideration of assembly specifications becomes more complex. It still ap-
plies that assumptions of the composition must a) consist only of assumptions
that are not satisfied mutually, b) avoid circular reasoning, and c) create con-
tracts in canonical form. Since dynamic systems are considered, the parallel
composition operator for contracts becomes ternary, taking two contracts
(C and D) and an assembly specification (A) as parameters. The assembly
specification is an assertion over a composite component signature specifying
how C and D are assembled, i.e. when connectors between component ports
are established and removed. The assembly specification is provided by the
composite component, and constitutes a blueprint in which components and
contracts are plugged in to create the complete behaviour specification of the
composite component.

Definition 30 (Parallel composition of contracts). Let ΣC and ΣD be compo-
nent signatures, let C = (AC , GC) : ΣC, D = (AD, GD) : ΣD be two assume-
guarantee contracts in canonical form, and let A : Σ be an assembly specifi-
cation over a composite component signature Σ with sup(ΣC ,ΣD) ⊆ int(Σ).
The contracts C and D are composable iff ports(ΣC) ∩ ports(ΣD) = ∅. The
composition of C and D through A, C‖AD, is defined as

C‖AD = ((AC ∩ AD ∩ A) ∪ ¬(GC ∩GD ∩ A), GC ∩GD ∩ A) : Σ.

Note that since the assembly specification A defines how and when com-
ponents are interconnected, it is necessary to include A in both guarantee
and assumption of the composed contract. Note also that the composed con-
tract is in canonical form, since ¬((AC ∩ AD ∩ A) ∪ ¬(GC ∩ GD ∩ A)) =
¬(AC ∩ AD ∩ A) ∩ (GC ∩ GD ∩ A) ⊆ (GC ∩ GD ∩ A). Furthermore, it
can be directly shown that composition of implementations and contracts is
commutative and associative, as it is defined by set intersections.

Example 1. We consider the simple system shown in Figure 4.1 consisting
of one component A having one provided port A.a, a component B having a

4.1 Assume-guarantee reasoning and reconfiguration 143

required port B.a and a provided port B.b, and a static connector binding the
port B.a to A.a. The signature of A is ΣA = (∅, {A.a}), the signature of B is
ΣB = ({B.a}, {B.b}). The component signature of the assembly specification
is Σ = ((∅, ∅), ({B.a}, {A.a,B.b}), ({(B.a,A.a)}, ∅)). The assumptions of A
and B and the static assembly specification A : Σ can be defined as follows.

AA = R(ΣA)
GA = {ρ ∈ R(ΣA) | ∀t ∈ R+

0 . A.a ∈ ρ(t)}
AB = {ρ ∈ R(ΣB) | ∀t ∈ R+

0 . B.a ∈ ρ(t)}
GB = {ρ ∈ R(ΣB) | ∀t ∈ R+

0 . B.b ∈ ρ(t)}
A = {ρ ∈ R(Σ) | ∀t ∈ R+

0 . (B.a,A.a) ∈ ρ(t)}

Now, the contract composition (AA, GA)‖A(AB, GB) = C consists of the fol-
lowing assumption AC and guarantee GC:

AC = (AA ∩ AB ∩ A) ∪ ¬(GA ∩GB ∩ A)
= (AB ∩ A) ∪ ¬(GA ∩GB ∩ A)
= (AB ∩ A) ∪ ¬(GA ∩ A) ∪ ¬GB
(i)
= R(Σ)

GC = GA ∩GB ∩ A

For step (i) note that the assembly A enforces that the ports B.a and A.a
have the same value over all runs, and hence GA ∩ A = AB ∩ A. �

In this new assume-guarantee framework, with potentially dynamic as-
sembly specifications, parallel composition of implementations still preserves
contract satisfaction.

Theorem 2 (Composition preserves contract satisfaction). Let ΣM and ΣN

be component signatures, let A : Σ be an assembly specification, M : ΣM ,
N : ΣN be two implementations with sup(ΣM ,ΣN) ⊆ int(Σ). Let C =
(AC , GC) : ΣM , D = (AD, GD) : ΣN be two composable contracts. Then it
holds that

if M �c
ΣM

C and N �c
ΣN

D then M‖N‖A �c
Σ C‖AD.

Poof of Theorem 2. Let (A,GC ∩GD ∩ A) = C‖AD. We have to show that
M‖N‖A ∩ A ⊆ GC ∩ GD ∩ A. We know that M ∩ AC ⊆ GC , which holds
iff M ⊆ GC ∪ ¬AC . Since ¬AC ⊆ GC , it follows M ⊆ GC (same holds for
N and (AD, GD)). Hence, M ∩ N ∩ A ∩ A ⊆ GC ∩ GD ∩ A ∩ A, which is a
subset of GC ∩GD ∩ A.

144 4. Specifying and verifying systems under reconfiguration

Assume-guarantee contracts, both over composite and simple component
signatures, can be refined by using the following definition of contract refine-
ment. As before, refinement is covariant for guarantees and contravariant for
assumptions: refinement allows assumptions to be weakened and guarantees
to be strengthened.

Definition 31 (Contract refinement). Let Σ be a signature. (A′, G′) : Σ
refines (A,G) : Σ, denoted by (A,G) � (A′, G′), iff A ⊆ A′ and G′ ⊆ G.

Contract refinement is compatible with contract satisfaction, i.e. when-
ever an implementation satisfies a refined contract, it also satisfies the original
contract.

Lemma 2 (Contract refinement preserves contract satisfaction). Let (A,G) :
Σ and (A′, G′) : Σ be contracts and M : ΣM be an implementation such that
Σ ⊆ ΣM . If M �c

Σ (A′, G′) and (A,G) � (A′, G′) then M �c
Σ (A,G).

The proof of Lemma 2 is the same as for Lemma 1.

Example 2. Going back to Example 1, we can investigate valid refinements
and abstractions of component B, whose assumption and guarantees were
given as follows:

AB = {ρ ∈ R(ΣB) | ∀t ∈ R+
0 . B.a ∈ ρ(t)}

GB = {ρ ∈ R(ΣB) | ∀t ∈ R+
0 . B.b ∈ ρ(t)}

Creating parameterised variants of AB and GB, we can investigate which
combinations constitute valid refinements:

AB(n) = {ρ ∈ R(ΣB) | ∀t ≤ n. B.a ∈ ρ(t)}
GB(n) = {ρ ∈ R(ΣB) | ∀t ≥ n. B.b ∈ ρ(t)}

Intuitively, the contract CB(n) = (AB(n), GB(n)) assumes B.a up to instant
n, and guarantees B.b starting from n. For the parameterised assertions,
it holds that AB(n′) ⊆ AB(n) iff n ≤ n′, and GB(n) ⊆ GB(n′) iff n ≤ n′.
Therefore, a refinement relation between contracts CB(n) exists as follows:
CB(n′) � CB(n) iff n′ ≥ n. �

4.1 Assume-guarantee reasoning and reconfiguration 145

4.1.3 Receptivity requirements

So far, we do not consider the special role of required and provided ports in
contracts and implementations. However, the distinction between required
and provided ports plays a crucial role for the engineering of component-
based systems: with the help of this distinction, a component structure de-
fines how responsibilities are assigned to individual components. Therefore,
we need to restrict the domain of discourse to sensible contracts and im-
plementations: Component implementations may control the behaviour of
its provided ports, but should not be given control over required ports. We
address this requirement with the notion of receptivity [26].

Definition 32 (Receptivity). Let E : Σ be an assertion over a component
signature Σ. E is Req-receptive iff E ↓ΣReq

= R(ΣReq), where ΣReq = (RΣ, ∅).
E is Prov-receptive iff E ↓ΣProv

= R(ΣProv), where ΣProv = (∅, PΣ). Let
E : Σ be an assertion over a composite component signature Σ. E is Req-
receptive iff E ↓ext(Σ)Req

= R(ext(Σ)Req). E is Prov-receptive iff E ↓ext(Σ)Prov
=

R(ext(Σ)Prov).

The requirements for an implementation M and for an assume-guarantee
contract are the same as in the initial assume-guarantee framework. If an
assertion E is Req-receptive, it does not constrain the valuations of its re-
quired ports. For a composite component signature Σ, receptivity is required
only w.r.t. the external signature ext(Σ).

We must also constrain assume-guarantee contracts. Just as with imple-
mentations, guarantees should make no assumptions about the valuation of
required ports. In fact, a contract with a non-Req-receptive guarantee would
forbid all Req-receptive implementations. Conversely, assumptions are not
allowed to restrict the valuation of provided ports. In this way, assumptions
can be made about the environment of a component, but not on the be-
haviour of the component. Assumptions of valid assume-guarantee contracts
must be Prov-receptive: As with Req-receptiveness, Prov-receptiveness for
composite component signatures concerns provided ports of the external sig-
nature ext(Σ) only. We say an assume-guarantee contract (A,G) : Σ is valid
iff A is Prov-receptive and G Req-receptive.

Definition 33 (Validity). Let M : Σ be an implementation. M is called
valid implementation iff M is Req-receptive. Let C = (A,G) : Σ be an
assume-guarantee contract. C is called valid contract iff A is Prov-receptive,
and G is Req-receptive.

146 4. Specifying and verifying systems under reconfiguration

Level Assertion Requirement
Implementation Implementation Req-Receptiveness

Contract
Assumption Prov-Receptiveness
Guarantee Req-Receptiveness

Assembly Assembly Specification Σ-Receptiveness for all
contained component
signatures and for the
external signature

Table 4.1: Receptivity requirements.

Additionally, we must require that assembly specifications A : ΣA do only
define the interconnections between components, and do not restrict internal
component behaviours. Therefore, we introduce the notion of Σ-receptivity
for component signatures, allowing to specify that an assembly specification
does not constrain the behaviour of the components it assembles.

Definition 34 (Σ-receptivity). A : ΣA be an assembly specification, let Σ be
a component signature such that Σ ⊆ ΣA. A is Σ-receptive iff A↓Σ= R(Σ).

Altogether, we impose receptivity requirements on implementations, con-
tracts and assembly specifications; Table 4.1 summarises these requirements.

Note that the composition of two valid assume-guarantee contracts is not
necessarily valid; in fact, if the composition is inconsistent, the contract guar-
antee resulting from composition becomes empty, which is not Req-receptive
for any signature having a non-empty set of required ports.

Example 3. In order to give an example of receptivity requirements, we go
back to Example 1, and investigate the receptiveness of the contract CB of
component C, which was given as CB = (AB, GB) by the following assertions:

AB = {ρ ∈ R(ΣB) | ∀t ∈ R+
0 . B.a ∈ ρ(t)}

GB = {ρ ∈ R(ΣB) | ∀t ∈ R+
0 . B.b ∈ ρ(t)}

In order for CB to be a valid contract, AB must be prov-receptive and GB

must be req-receptive. In order to show the prov-receptivity of AB, we must
prove that AB ↓(∅,{B.b})= R((∅, {B.b})). As the left hand side is obviously a
subset of the right, we must only show that every run ρ ∈ R((∅, {B.b})) is also

4.1 Assume-guarantee reasoning and reconfiguration 147

contained in AB ↓(∅,{B.b}). For this, let us consider a run ρ ∈ R((∅, {B.b})),
and construct the following run ρ′ over the signature ΣB:

ρ′(t) = ρ(t) ∪ {B.a} ∀t ∈ R+
0

Obviously, this run is in AB, as ∀t ∈ R+
0 . B.a ∈ ρ′(t) holds. At the same

time, ρ ∈ ρ′ ↓(∅,{B.b}) holds, as for all t ∈ R+
0 .ρ
′(t) ∩ {B.b} = ρ(t). Therefore,

ρ ∈ AB ↓(∅,{B.b}).
The Prov-receptiveness of GB can be shown conversely, and verifying the

receptiveness requirements for the assembly specification A of Example 1 is
more interesting. The assembly specification itself is given as

A = {ρ ∈ R(Σ) | ∀t ∈ R+
0 . (B.a,A.a) ∈ ρ(t)}

This assertion needs to be receptive for the signature ΣA and ΣB of compo-
nents A and B in order to ensure that it is a valid assembly specification
and does not interfere with the implementation of the components A and
B. Hence, it must be proved that A ↓ΣA

= R(ΣA) and A ↓ΣB
= R(ΣB).

Starting with ΣA, A↓ΣA
⊆ R(ΣA) is again obviously true. Left to be shown

is R(ΣA) ⊆ A ↓ΣA
. Let hence ρ ∈ R(ΣA) and ρ′ ∈ R(Σ)1 be such that

(B.a,A.a) ∈ ρ′(t) for all t ∈ R+
0 , and A.a ∈ ρ′(t) iff A.a ∈ ρ(t) for all

t ∈ R+
0 . By construction of ρ′, it holds that ρ′ ∈ A and ρ ∈ ρ′ ↓ΣA

. There-
fore, A ↓ΣA

= R(ΣA). The proof of A ↓ΣB
= R(ΣB) uses a very similar

construction and reasoning, and is therefore omitted.
Now that all shown assertions so far satisfy the receptivity requirements

imposed on them, the question arises which assertions actually violate re-
ceptivity requirements. We give two examples of assertions violating recep-
tivity requirements; first, a simple contract assertion, and then an assem-
bly specification. First, let us verify that the guarantee of B, GB = {ρ ∈
R(ΣB) | ∀t ∈ R+

0 . B.b ∈ ρ(t)} is not Prov-receptive for ΣB. We show
that R((∅, {B.b})) 6⊆ GB ↓(∅,{B.b}) by choosing ρ ∈ R((∅, {B.b})) such that
ρ(t) = ∅ for all t ∈ R+

0 . Obviously, ρ 6∈ GB ↓(∅,{B.b}), as GB ↓(∅,{B.b})= {ρb}
with ρb(t) = {B.b} for all t ∈ R+

0 .
Now, let us define a variation of A that does not satisfy ΣA-receptiveness

by requiring that A.a must always be contained in the run:

A′ = {ρ ∈ R(Σ) | ∀t ∈ R+
0 . (B.a,A.a) ∈ ρ(t) and A.a ∈ ρ(t)}

1Remember that in Example 1, Σ refers to the composite component signature of the
whole system.

148 4. Specifying and verifying systems under reconfiguration

Looking at A′ ↓ΣA
, it is clear that the run ρ ∈ R(ΣA) with ρ(t) = ∅ for

all t ∈ R+
0 is missing, as all runs in A′ contain A.a in every state, and

therefore A′ ↓ΣA
= {ρa} with ρa(t) = {A.a} for all t ∈ R+

0 . It does not satisfy
ΣA-receptiveness, as it constrains the possible behaviours of ΣA components.
Specifying such restrictions is not the intent of assembly specifications; it is
therefore mandatory to rule out assembly specifications that do restrict the
behaviour of component as invalid. �

4.1.4 Components and composite components

Now that the full assume-guarantee framework for dynamically reconfig-
urable component-based systems is in place, we can define simple compo-
nents and composite components, allowing to assemble components into a
composite structure. Furthermore, we define correctness criteria for simple
and composite components.

Definition 35 (Components). A component is a triple C = (Σ, (A,G),M)
consisting of a component signature Σ, a contract (A,G) : Σ, and an imple-
mentation M : Σ. A component is correct iff M �c

Σ (A,G).
A composite component is a tuple C = (Σ, (A,G),A, C) consisting of

a composite component signature Σ, an external contract (A,G) : ext(Σ),
an assembly specification A : Σ, and a set of components C. A composite
component is correct iff (1) all its constituents are correct, (2) all component
signatures are disjoint, (3) the internal signature int(Σ) is a superset of the
supremum of the component signatures it contains, (4) the internal contract
refines the contract of the composite component, (5) A is Σ-receptive for all
sub-component signatures and the external signature, and (6) the composition
of the implementations M is Req-receptive:

∀c ∈ C. c is correct (1)
∀c, d ∈ C. (c 6= d)⇒ ports(Σc) ∩ ports(Σd) = ∅ (2)
(supc∈Cc) ⊆ int(Σ) (3)
(A,G)↑Σ� ‖Ac∈C(Ac, Gc) (4)
A is Σ-receptive for all Σc such that c ∈ C and for ext(Σ) (5)
M = (‖c∈CMc‖A)↓ext(Σ) is Req-receptive (6)

The external view of the composite component is given by CExt = (ext(Σ),
(A,G),M), which is again a component.

4.2 Real-time logic for reconfiguration 149

Theorem 3 (Composite component external views are valid). Let C = (Σ,
(A,G),A, C) be a composite component. If C is correct, then the external
view CExt is correct.

Proof of theroem 3. Since C is correct, it follows from (1) that all c ∈ C are
correct, and hence Mc �c

Σc
(Ac, Gc). Let MInt = ‖Ac∈CMc. By Lemma 2,

it follows that MInt �c
Σ ‖Ac∈C(Ac, Gc). By (4) and Lemma 2, it follows that

MInt �c
Σ (A,G) ↑Σ. Hence, M = MInt ↓ext(Σ)�c

ext(Σ) (A,G). Furthermore, M

is Req-receptive by (6).

To verify that a composite component C satisfies its external contract,
we therefore have to verify that the external contract (A,G) is refined by the
composition of the contracts of its internal components C under the assembly
specification A.

Up to now, we introduced a semantic assume-guarantee framework. In the
next section, we discuss how contracts and their satisfaction can be verified
on the syntactic level by using real-time temporal logic.

4.2 Real-time logic for reconfiguration

In this section a real-time temporal logic is introduced for the specification
of component-based systems that are subject to reconfiguration. This logic
provides a syntax for specifying assertions, guarantees and assembly spec-
ifications in the described semantic assume-guarantee contract framework.
Our starting point is the real-time temporal logic MITL (Metric Interval
Temporal Logic) which was introduced in [8]. In general, real-time temporal
logics are not decidable [77, 84, 6, 10]. This drawback has often been tackled
by sacrificing continuous time in order to achieve decidability and hence a
feasible verification [93, 10, 11]; for a discussion on this trade-off see also
[9]. The reason for undecidability lies in punctual timing constraints as for
example in the formula 2(p→ 3=3.7q) expressing that whenever p is true, q
must hold after exactly 3.7 time units. In [8] it is shown that allowing only
relaxed versions of this formula as in 2(p→ 3(3.6,3.8)q), which expresses that
q must hold between 3.6 and 3.8 time units after p, yields the decidable logic
MITL for a continuous time model with non-singular time intervals. We
believe that removing the ability to specify punctuality properties shall not
be seen as a drawback since punctuality is hard to achieve in practice, and
also not required in general.

150 4. Specifying and verifying systems under reconfiguration

To be expressive enough for the purpose of specifying reconfigurable sys-
tems and reconfigurations in particular, we extend MITL by a binary predi-
cate∼ on port sets in order to express connectivity, i.e. given two ports p1 and
p2, p1 ∼ p2 states the existence of a connector between p1 and p2. The predi-
cate ∼ is used in two manners: either ∼ states connectivity between required
and provided ports of components by an internal connector, or it states that
a delegate connector connects an external provided (required) port with an
internal provided (required) port, respectively. The resulting logic reMITL
(Metric Interval Temporal Logic for Reconfigurable Components) is used for
specifying assertions and assembly specifications, i.e., interconnections be-
tween components and their dynamic evolution; Moreover, we introduce a
significant set of derived inference rules for use when verifying global system
properties.

In the following definition of reMITL formulas, we use the same time
intervals as defined in Section 2.4, Definition 14.

Definition 36 (reMITL-formulas). The set of reMITL-formulas over a
(simple or composite component) signature Σ is inductively defined by

φ ::= > | p | p1 ∼ p2 | ¬φ | φ1 ∧ φ2 | φ1UIφ2 | φ1SIφ2

where p ∈ ports(Σ) is a port, (p1, p2) ∈ conns(Σ) is a (delegate) connector,
and I is a non-singular time interval. For brevity, a reMITL-formula φ
over a signature Σ is also called a Σ-formula.

As before (cf. Section 2.4), the abbreviations 3Iφ, 2Iφ, φ1∨φ2, φ1 → φ2,
and φ1 ↔ φ2 are defined.

The semantics of reMITL-formulas is again given as sets of runs over
the formula signature. Each run provides, for every point in time, an inter-
pretation of the ports and the connectors of the given signature.

Definition 37 (Satisfaction of reMITL-formulas). A Σ-run ρ ∈ R(Σ) satis-
fies a Σ-formula φ (or φ is valid in ρ), denoted by ρ �Σ φ, if (ρ, 0) �Σ φ, where
the satisfaction relation �Σ between pairs (ρ, t), t ∈ R+

0 , and Σ-formulas φ is

4.2 Real-time logic for reconfiguration 151

inductively defined as follows:

(ρ, t) �Σ >
(ρ, t) �Σ p iff p ∈ ρ(t);
(ρ, t) �Σ p1 ∼ p2 iff (p1, p2) ∈ ρ(t);
(ρ, t) �Σ ¬φ iff (ρ, t) 6�Σ φ;
(ρ, t) �Σ φ1 ∧ φ2 iff (ρ, t) �Σ φ1 and (ρ, t) �Σ φ2;
(ρ, t) �Σ φ1UIφ2 iff ∃t′ ∈ R+

0 , t
′ ∈ t+ I.(ρ, t′) �Σ φ2

and ∀t′′ ∈ R+
0 , t < t′′ < t′.(ρ, t′′) �Σ φ1;

(ρ, t) �Σ φ1SIφ2 iff ∃t′ ∈ R+
0 , t
′ ∈ t− I.(ρ, t′) �Σ φ2

and ∀t′′ ∈ R+
0 , t
′ < t′′ < t.(ρ, t′′) �Σ φ1.

A Σ-formula φ is called a consequence of a set Γ of Σ-formulas, denoted by
Γ �Σ φ, if ρ �Σ φ holds for every ρ such that ρ �Σ ψ for all ψ ∈ Γ. φ is
called universally valid, denoted by �Σ φ, if ∅ �Σ φ.

Again, non-strict versions of U and S can be defined from the versions
above just as in Schobbens et al. [104].

Given a set Γ of Σ-formulas, the semantics of Γ is defined by the set of all
runs satisfying Γ, i.e. JΓK = {ρ ∈ R()Σ | ρ |= Γ}; if Γ = {φ}, then JφK = JΓK.

Lemma 3 (Semantic Equivalences). For any Σ-formulas φ and ψ, and any
set Γ of Σ-formulas it holds

1. J¬φK = R(Σ) \ JφK, and Jφ ∧ ψK = JφK ∩ JψK,

2. Γ �Σ φ→ ψ iff JΓK ∩ JφK ⊆ JψK.

Proof of Lemma 3.
First, we prove that J¬φK = ¬JφK.
Proof of J¬φK ⊆ ¬JφK: Let ρ ∈ J¬φK. By Definition 37, (ρ, 0) 6�Σ φ. There-
fore, ρ 6∈ JφK, and hence ρ ∈ ¬JφK.
Proof of J¬φK ⊇ ¬JφK: Let ρ ∈ ¬JφK. Hence, ρ 6∈ JφK. By Definition 37, it
follows that (ρ, 0) 6�Σ φ. Hence, ρ ∈ J¬φK.
Now, we prove that Jφ ∧ ψK = JφK ∩ JψK.
Proof of Jφ ∧ ψK ⊆ JφK ∩ JψK: Let ρ ∈ Jφ ∧ ψK. By Definition 37, it holds
that (ρ, 0) �Σ φ and (ρ, 0) �Σ ψ. Therefore, ρ ∈ JφK ∩ JψK.
Proof of Jφ ∧ ψK ⊇ JφK ∩ JψK: Let ρ ∈ JφK ∩ JψK. I.e., by Definition 37,
(ρ, 0) �Σ φ and (ρ, 0) �Σ ψ. Thus, (ρ, 0) �Σ φ ∧ ψ. Finally, ρ ∈ Jφ ∧ ψK.
Next, we prove that Γ �Σ φ→ ψ iff JΓK ∩ JφK ⊆ JψK holds.

152 4. Specifying and verifying systems under reconfiguration

Proof direction “⇒”: Let Γ �Σ φ → ψ, i.e. ∀ρ ∈ R(Σ).(∀γ ∈ Γ.ρ �Σ γ) ⇒
ρ �Σ φ → ψ. This is equivalent to ∀ρ ∈ JΓK.ρ �Σ φ → ψ. Let ρ ∈ JΓK.
By Definition 37, it follows that ρ 6�Σ ψ or ρ �Σ φ. Assuming that ρ �Σ ψ
therefore implies that ρ �Σ φ. Hence, JΓK ∩ JψK ⊆ JφK.
Proof direction “⇐”: Let JΓK ∩ JφK ⊆ JψK, i.e. ∀ρ ∈ JΓK ∩ JφK.ρ �Σ ψ. Let
ρ ∈ JΓK. For this ρ, it holds that ρ 6�Σ φ or ρ 6�Σ ψ. Therefore, ρ �Σ φ→ ψ.
It follows that ∀ρ ∈ R(Σ).(∀γ ∈ Γ.ρ �Σ γ) ⇒ ρ �Σ φ → ψ, and hence
Γ �Σ φ→ ψ.

With the help of Lemma 3, it is possible to specify assume-guarantee
contracts and implementations with the help of MITL formulas over the
correct signature.

Contract satisfaction can now be expressed by satisfaction of reMITL-
formulas which means that we have decidability of contract satisfaction as
long as all assertions (contract, assumption and guarantee) are given as re-
MITL-formulas. By applying Definition 29 and Lemma 3 we obtain the
following corollary.

Corollary 1 (Contract satisfaction expressed by model satisfaction). Let
φA and φB be Σ-formulas, and Γ a set of Σ-formulas. Then it holds that
Γ �Σ φA → φG if and only if JΓK �c

Σ (JφAK, JφBK).

Furthermore, contract refinement can expressed by satisfaction of re-
MITL-formulas.

Corollary 2 (Contract refinement expressed by model satisfaction). Let
φA1, φA2, φG1, and φG2 be Σ-formulas. Then it holds that (JφA2K, JφG2K) �
(JφA1K, JφG1K) if and only if �Σ (φA2 → φA1) ∧ (φG1 → φG2).

Finally, parallel composition of contracts can be computed directly on
reMITL-formulas.

Corollary 3 (Contract composition in reMITL).
Let φA1, φA2, φG1, φG2, and φA be Σ-formulas. Then it holds that (JφA1K, JφG1K)
‖JφAK(JφA2K, JφG2K) = (JφA ∨ ¬φGK, JφGK), where φA = φA1 ∧ φA2 ∧ φA and
φG = φG1 ∧ φG2 ∧ φA.

Now, we discuss soundness and completeness results for reMITL. As
shown by Schobbens et al. [104] MITL with nonsingular intervals has a sound
and complete proof system (consisting of one rule and 59 axiom schemata);
we call this proof system ΠMITL.

4.2 Real-time logic for reconfiguration 153

(1) all propositional tautologies are derivable
φ ∈ Γ

(2)
Γ `Σ φ

Γ ∪ {φ} `Σ ψ
(3)

Γ `Σ φ→ ψ

Γ `Σ ψ(4)
Γ ∪ {φ} `Σ ψ

Γ `Σ φ→ ψ Γ `Σ φ(5)
Γ `Σ ψ

Γ `Σ p ∼ q
(6)

Γ `Σ q ↔ p

Γ, φ `Σ ψ Γ,¬φ `Σ ψ(7)
Γ `Σ ψ

Γ `Σ φ1 → (φ2 → ψ)
(8)

Γ `Σ φ1 ∧ φ2 → ψ

Γ `Σ φ(9)
2IΓ `Σ 2Iφ

Γ `Σ 2Iφ(10)
Γ `Σ 3Iφ

Γ `Σ 2Iφ(11) 0 ∈ I
Γ `Σ φ

Γ `Σ 2I(φ→ ψ) Γ `Σ 3Jφ
(12) I ⊇ J

Γ `Σ 3Jψ

Γ `Σ 2Iφ Γ `Σ 2I(φ↔ ψ)
(13)

Γ `Σ 2Iψ

Γ `Σ 2Iφ Γ `Σ 2Iψ(14)
Γ `Σ 2I(φ ∧ ψ)

Γ `Σ 2Jφ(15) J ⊇ I
Γ `Σ 2Iφ

Γ `Σ 3Jφ(16) J ⊆ I
Γ `Σ 3Iφ

Γ `Σ 2I2Jφ(17)
Γ `Σ 2I+Jφ

Γ `Σ 3I3Jφ(18)
Γ `Σ 3I+Jφ

Γ `Σ 2I(φ1 ∧ φ2)
(19i) i ∈ {1, 2}

Γ `Σ 2Iφi

Γ `Σ 3Iφ Γ `Σ 2Iψ(20)
Γ `Σ 3I(φ ∧ ψ)

Γ `Σ 2I(p ∼ q)
(21)

Γ `Σ 2I(p↔ q)

Γ `Σ 2I(p ∼ q)
(22)

Γ `Σ 2I(¬p↔ ¬q)
Γ `Σ 2Iφ ∧2Jφ(23) I ∪ J convex

Γ `Σ 2I∪Jφ

Figure 4.2: Useful axiom schemata and derivation rules of reMITL

154 4. Specifying and verifying systems under reconfiguration

For the completeness proof, Schobbens et al. translate MITL formulas
into formulas of a real-time temporal logic over clocks, called EventClockTL,
and then prove the completeness of EventClockTL w.r.t. a proof system we
call ΠEvCTL. We use this result for proving the completeness of reMITL as
follows.

For any composite component signature Σ we add the following axiom
schema ConnAx of propositional formulas of the form

(p ∼ q)→ (p↔ q)

where p, q are ports of Σ to the proof systems and call these extensions
ΠΣ

reMITL and ΠΣ
reEvCTL.

Theorem 4 (Completeness of reMITL). For any composite component sig-
nature Σ the proof system ΠΣ

reMITL is a complete proof system for reMITL.

Proof of Theorem 4. For reasons of succinctness we discuss only a sketch of
the proof; in particular, all omitted definitions can be found in [104].

Obviously, the propositional axioms ConnAx are consistent with the ax-
ioms of propositional Metric Interval Temporal Logic MITL; thus the proof
system ΠΣ

reMITL is sound. For the completeness we observe that the transla-
tion of MITL into EventClockTL is the identity for propositional formulas
of the form ConnAx . Thus it suffices to show the completeness of ΠΣ

reEvCTL.
This proof is completely analogous to the completeness proof for ΠEvCTL

in [104]. It suffices to extend the notion of propositional consistency in [104]
by the clause

(p ∼ q) ∈ F implies ((p ∧ q) ∈ F or (¬p ∧ ¬q) ∈ F)

for any set F of formulas (which is contained in the closure of a formula α).
Then the model construction for α is the same as in [104].

For the soundness of ΠΣ
reMITL, it suffices to show that the axiom schemata

and additional, derived rules introduced in Figure 4.2 are sound.

Theorem 5 (Soundness of reMITL). The axiom scheme ConnAx and the
inference rules in Figure 4.2 are sound: Γ `Σ φ implies Γ �Σ φ for every
finite set of Σ-formulas Γ and every Σ-formula φ.

4.3 Simple framework application case study 155

Proof of Theorem 5. The axiom scheme ConnAx is trivially true, as it

We prove the most interesting rules, other rules are proved analogously.

Rules (1) refers to basic propositional logic and is therefore not expanded
here.

Rules (2) – (5) are straightforward to show, and are therefore omitted.

(6) : Assume Γ �Σ p ∼ q, let ρ �Σ Γ, hence ρ �Σ p ∼ q where
(p, q) ∈ conns(Σ). By definition (p, q) ∈ ρ(0). Since ρ(0) is a valid state
(see Sect. 4.1.1) we either have p, q ∈ ρ(t) or p, q /∈ ρ(t) hence ρ �Σ p↔ q.

(9) : Assume Γ �Σ φ, i.e. for all ρ ∈ R(Σ) it holds that if (ρ, 0) �Σ Γ then
(ρ, 0) �Σ φ (*). Assume (ρ, 0) �Σ 2IΓ. Let t ∈ I and assume (ρ, t) �Σ Γ.
Define ρ′(t′) = ρ(t′ + t). We know (ρ′, 0) �Σ Γ by definition of ρ′. Then by
(*) it follows that (ρ′, 0) �Σ φ, and hence (ρ, t) �Σ φ. Since t was arbitrarily
chosen from I, it follows that (ρ, 0) �Σ 2Iφ.

(10) : Assume Γ �Σ 2Iφ, let ρ �Σ Γ, hence ρ �Σ 2Iφ. Then for all t ∈ I,
(ρ, t) �Σ φ. Hence, there is t′ ∈ I such that (ρ, t′) �Σ φ.

(12) : Assume Γ �Σ 2I(φ → ψ), Γ �Σ 3Jφ, and J ⊆ I. We need to
show hat Γ �Σ 3Jψ. Let therefore ρ �Σ Γ, and hence ρ �Σ 2I(φ → ψ) and
ρ �Σ 3Jφ. We know that there is t ∈ J such that (ρ, t) �Σ φ. Since for all
t′ ∈ I it holds that (ρ, t′) �Σ φ→ ψ and J ⊆ I, we know that (ρ, t) �Σ φ→ ψ.
Using modus ponens, we get (ρ, t) �Σ ψ, and hence ρ �Σ 3Jψ.

(15) : Assume Γ �Σ 2Jφ and J ⊇ I. Let ρ �Σ Γ, hence ρ �Σ 2Jφ. It
holds that for all t ∈ t + J (ρ, t) �Σ φ. Since I ⊆ J , it follows that for all
t′ ∈ I (ρ, t′) �Σ φ. Hence, ρ �Σ 2Iφ.

(17) : Assume Γ �Σ 2I2Jφ, and let ρ �Σ Γ, hence ρ �Σ 2I2Jφ. It
follows that for all t ∈ I, t′ ∈ t + J it holds that (ρ, t′) �Σ φ, and hence for
all t′′ ∈ (I + J) it holds that (ρ, t′′) �Σ φ, which implies that ρ �Σ 2I+Jφ.

(191) : Assume Γ �Σ 2I(φ ∧ ψ), and let ρ �Σ Γ, hence ρ �Σ 2I(φ ∧ ψ).
We know that for all t ∈ I it holds that (ρ, t) �Σ φ ∧ ψ. It hence also holds
that (ρ, t) �Σ φ, and hence ρ �Σ 2Iφ.

(20) : Assume Γ �Σ 3Iφ and Γ �Σ 2Iψ, and let ρ �Σ Γ. It follows that
ρ �Σ 3Iφ and ρ �Σ 2Iψ. We know hence that (ρ, 0) �Σ 3Iφ (ρ, 0) �Σ 2Iψ.
It follows directly that for there is t ∈ I (ρ, t) �Σ φ. Since for all t′ ∈ I it
holds that (ρ, t′) �Σ ψ, it also holds for t. We get (ρ, t) �Σ φ ∧ ψ, and hence
(ρ, 0) �Σ 3I(φ ∧ ψ).

156 4. Specifying and verifying systems under reconfiguration

O P
p p

q

S
p

q

C

Figure 4.3: Example reconfiguration scenario

4.3 Simple framework application case study

We give a simple example to show how the assume-guarantee framework for
reconfigurations can be applied. The scenario consists of one specification
that simply requires a port q to be always true, and three simple components:
S, O and P . In this example, which is also shown in Figure 4.3, the “pro-
cessing component” P is providing a port P.q and guaranteeing to maintain
its truth only if its single required port, P.p is always true. P would be a
natural fit for satisfying the system specification if a component would be
available that is bound to P.q and always maintains its truth. However, in
this example, we assume that the component O can always guarantee O.p
during the operation of the system except for a bootstrap phase – in this
example here, the bootstrap phase is assumed to take four time units. In
order to guarantee P.p, the second providing component S, informally called
the “startup component”, is used to bridge this bootstrap phase. S is able
to provide S.p for exactly four time units.

We start to delve into the formal description of the system by investigating
the global system specification that requires a q to be always true. It can be
given as the following contract CG:

CG = (J>K, J2qK)

The component signature of this contract is ΣG = (∅, {q}).
The design of the system makes use of a processing component P that

guarantees q only if its required port p is always true. The signature of P is

4.3 Simple framework application case study 157

therefore ΣP = ({P.p}, {P.q}). Its contract can be specified as

CP = (J2P.pK, J2P.qK)

To satisfy the property 2P.p, we make use of the two components S
and O, where S takes care of guaranteeing p during the bootstrap phase
(four time units) and O guarantees p during the normal operation of the
system. The signature of S and O are similar, as they both provide one port:
ΣS = (∅, {S.p}), and ΣO = (∅, {O.p}). The contracts of S and O are as
follows.

CS = (J>K, J2[0,4]S.pK) CO = (J>K, J2[4,∞)O.pK)

Additionally, an assembly specification is needed that assembles the three
components in a way that the assumption ACP

is satisfied, and guarantees
2p such that the global contract holds. The composite component signature
for the composite component C that hosts AC can be defined as ΣC =
(ΣExt

C ,ΣInt
C , Ci, Cd) where ΣExt

C = (∅, {q}), ΣInt
C = ({P.p}, {P.q, S.p, O.p}),

Ci = {(P.p, S.p), (P.p,O.p}, and Cd = {(P.q, q)}. The following assembly
specification is proposed.

AC = J(2q ∼ P.q) ∧ (2[0,4]P.p ∼ S.p) ∧ (2(4,∞)P.p ∼ O.p)K

Now, we bundle the three components P , S, and O together into one com-
posite component C. The resulting composite component is given as

C = (ΣC , (AC , GC),AC , {P, S,O})

The component contract is specified as CC = (AC , GC) = (J>K, J2qK), which
is, obviously, a refinement of the specification CG. Figure 4.3 shows the
complete example scenario with the three components S, O, P boxed in the
composite component C.

Fist, let us have a look at the receptivity of the contracts CG, CS, CO, and
CP to make sure that all contracts are consistent. Considering CG, CS and
CO it is clear that the assumptions of all three contracts are Prov-receptive,
as the assumptions are J>K, i.e. the set of all runs. The guarantees of CG,
CS and CO are Req-receptive for the simple reason that the set of required
ports in the signatures of CG, CS and CO is empty. It remains to investigate
CP . The assumption of CP , J2P.pK, is Prov-receptive, as J2P.pK ↓(∅,{P.q})=
{ρ ∈ R(ΣP) | ∀t ∈ R+

0 .P.p ∈ ρ(t)} ↓(∅,{P.q})= R((∅, {P.q})). Similarly,

158 4. Specifying and verifying systems under reconfiguration

the guarantee of P , J2P.qK is Req-receptive. Obviously, J2P.qK ↓({P.p},∅)=
R(({P.p}, ∅)).

Next, it is worthwhile to investigate the S-receptivity of the assembly
specification AC . It must be shown that for each Σ ∈ {ΣS,ΣO,ΣP}, it holds
that AC ↓Σ= R(Σ). As AC = J(2q ∼ P.q)∧ (2[0,4]P.p ∼ S.p)∧ (2(4,∞)P.p ∼
O.p)K specifies only connectivity requirements, it is obvious that AC alone
does not restrict the runs of S, O, and P . Looking more closely to the
semantics, AC reduces the set of runs to those that contain specific connectors
in specific states, which – due to the restriction of valid runs – does restrict
the possible valuations of ports in each state by requiring that valuations
of connected ports must be the same. At first, the semantics of AC can
be given as AC = {ρ ∈ R(ΣC) | (∀t ∈ R+

0 (P.q, q) ∈ ρ(t)) and (∀t ≤
4 (P.p, S.p) ∈ ρ(t)) and (∀t > 4 (P.p,O.p) ∈ ρ(t))}. Now, we need to show
that restricting AC to ΣS is equal to the set R(ΣS). Since it obviously holds
that AC ↓ΣS

⊆ ΣS, it suffices to show that ΣS ⊆ AC ↓ΣS
. Let hence ρ ∈ ΣS

be a run. By the definition of restriction (Definition 25), we need to find a
run ρ′ ∈ AC such that ∀t ∈ R+

0 .ρ
′(t) ∩ S(ΣS) = ρ(t). We take the run

ρ′(t) =

{(P.p, S.p), P.p, (P.q, q)} ∪ ρ(t) if t ≤ 4 and S.p ∈ ρ(t)
{(P.p, S.p), (P.q, q)} ∪ ρ(t) if t ≤ 4 and S.p 6∈ ρ(t)
{(P.p,O.p), (P.q, q)} ∪ ρ(t) if t > 4.

Obviously, ∀t ∈ R+
0 .ρ
′(t) ∩ S(ΣS) = ρ(t), since ρ′ contains ρ in every state,

and does not add any predicates belonging to ΣS. At the same time, it holds
that ρ′ ∈ AC , since P.p is connected to S.p are connected in the time interval
[0, 4], and P.p is connected to O.p in the time interval (0,∞), and P.q is
always connected to q. Hence, AC is ΣS-receptive.

Similarly, it can be shown that AC is ΣO-receptive. In order to show that
ΣO ⊆ AC ↓ΣO

, we choose for ρ ∈ ΣO the following ρ′:

ρ′(t) =

{(P.p, S.p), (P.q, q)} ∪ ρ(t) if t ≤ 4
{(P.p,O.p), (P.q, q), P.p} ∪ ρ(t) if t > 4 and O.p ∈ ρ(t)
{(P.p,O.p), (P.q, q)} ∪ ρ(t) if t > 4 and O.p 6∈ ρ(t).

As before, it holds obviously that ∀t ∈ R+
0 .ρ
′(t)∩S(ΣO) = ρ(t). At the same

time it holds that ρ′ ∈ AC , since ρ′ satisfies the connectivity requirements of
AC .

Finally, the proof that AC is ΣP -receptive is just the same as the proofs
of ΣS- and ΣO-receptivity of AC .

4.3 Simple framework application case study 159

It remains to be shown that C is consistent, however. For this, it must
be shown that the conditions (1)-(6) specified in Definition 35 are satisfied.
We assume that P , S, O are correct, and therefor condition (1) is satisfied.
Conditions (2) and (3) are satisfied as the naming of ports and components
implies so. Condition (5) was just investigated before: AC is S-receptive.
Condition (6) is trivially true, as there is no externally visible required port.
Hence, it only remains to show condition (4): The parallel composition of
component contracts is indeed a refinement of the composite component con-
tract:

CC � CS‖ACCO‖ACCP

First, we compute the result of the parallel composition

(A,G) = CS‖ACCO‖ACCP

Using Corollary 3, this can be performed on the syntactic level. The formula
characterising the assumption resulting from the parallel composition of CS
and CO, the startup component and the operation component, is given in
the following, and immediately simplified.

(1) AC ∨ ¬(AC ∧GS ∧GO)
(2) (AC ∨ ¬AC) ∨ ¬(GS ∧GO) from (1), by rule (1) and (3)
(3) > ∨ ¬(GS ∧GO) from (2), by rule (1) and (3)
(4) > from (3), by rule (1) and (3)

While the assumption of the composition of CS and CO under AC can be sim-
plified to >, the guarantee remains the conjunction of assembly specification
and the guarantees of CS and CO:

AC ∧GS ∧GO

The composition of all three components finally yields the following assump-
tion, which is also immediately simplified:

(1) (AC ∧2P.p) ∨ ¬(AC ∧2[0,4]S.o ∧2[4,∞)O.p ∧GP)

(2) (AC ∧2P.p) ∨ ¬(AC ∧2[0,4]P.p ∧2[4,∞)P.p ∧GP)
from (1), by rule (1) and (21)

(3) (AC ∧2P.p) ∨ ¬(AC ∧2P.p ∧GP) from (2), by rule (1) and (23)

(4) (AC ∧2P.p) ∨ ¬(AC ∧2P.p) ∨ ¬GP from (3), by rule (1)

160 4. Specifying and verifying systems under reconfiguration

(5) (AC ∧2P.p) ∨ ¬(AC ∧2P.p) ∨ ¬GP from (4), by rule (1)

(6) > from (5), by rule (1)

The composition of guarantees following Corollary 3 yields directly

G = (AC ∧2P.q ∧2[0,4]S.p ∧2[4,∞)O.p)

Now that the composition is constructed, it has to be verified that the
composition is indeed a refinement. This can be done on the syntactic level
again by using Corollary 2, in which we need to show two entailments. Both
entailments are trivial: the assumption of the composite component contract
CC , >, entails the assumption of the composition, >. Similarly obvious, the
guarantee of the composite component, 2p can be shown from (AC ∧2P.q∧
2[0,4]S.p ∧2[4,∞)O.p) by applying rule (22).

Altogether, we have shown that the composite component is valid by
proving all six requirements of validity of composite components. Since the
contract of the composite component is a refinement of the initial specifi-
cation (it is indeed identical), we have shown that the composite system
undergoing reconfigurations that adhere to the assembly specification AC is
a design satisfying the specification initially imposed.

4.4 Related work

Scientific analysis and understanding of dynamically re-structuring systems
have been a field of active research in recent years; The paper of Bradbury
et al. [33] gives a decent overview of various approaches. The approaches
closest to the work presented here are from Basso et al. [19] and from Barros
et al. [17]. In the paper from Basso et al. [19], a CTL-based deduction ap-
proach to the specification and verification of Fractal component models [36]
undergoing reconfigurations. The work combines several tooling platforms
and techniques for the extraction of CTL formulas from Fractal component
models, and the creation of proofs for desired system properties. As Basso et
al. use an extension of CTL, ECTL+, it is possible to specify liveness prop-
erties of the form 23p and 32p in their framework. However, they do not
provide an assume-guarantee framework, and consider systems with discrete
time.

4.4 Related work 161

Barros et al. [17], propose a model-checking approach based on the µ-
calculus for verifying distributed Fractal component models. Again, the ap-
proach is based on an set of tools that support the creation of the needed
formal models (labelled transition systems) from Fractal component models.
By capturing reconfiguration behaviour as part of the formal model, proper-
ties of the system under reconfiguration can be expressed and verified. While
the approach Barros et al. propose in [17] is backed up by tools supporting
the individual steps required in the verification process, it does not provide
assume-guarantee reasoning, and considers systems with discrete time only.

Other approaches to specification and verification of systems under recon-
figuration include [50], offering a means for moving parts of the needed type
checking for reconfigurations from runtime to compile-time, [40] proposing a
contract-based approach to the composition and configuration of component-
based systems using a process calculus and type system. A more recent
approach is [113], presenting a formal specification of the semantics of the
Fractal component model without providing tractable means for verification
(see [33, 65] for an overview of component models supporting reconfigura-
tion). One earlier approach to the verification of dynamic software architec-
tures was Wright [5], using a mapping to classical process algebras (CSP [71]
in that case) to leverage existing deadlock analysis tools. This approach
is common in earlier work on reconfiguration; all work so far focused on
discrete-time semantics for software systems, as they were sufficient for the
specification of the systems that were considered at that time.

Assume-guarantee reasoning for distributed systems was initially intro-
duced by Misra and Chandy in [86]. Our work was inspired by [3] and [76],
both featuring a temporal logic approach to dynamic software architectures
with a binary relation for the modelling of connections. Again, our approach
differs from the works by using a continuous-time semantics. Similarly, our
work differs from the work of Hooman [72, 73] by introducing dynamic archi-
tectures instead of static ones, and by relying on decidable real-time logic.

Our contract framework is heavily inspired by the assume-guarantee con-
tract framework presented in [26], and extended in [46]. However, while De-
lahaye and Caillaud have shown in [46] how the assume-guarantee contract
framework can be extended to probabilistic contracts, we discussed here an
extension of this framework to dynamically evolving systems with real-time
constraints, by introducing a temporal logic adapted for the specification of
real-time assertions.

The work presented in this chapter is based on [106], which was extended

162 4. Specifying and verifying systems under reconfiguration

in [122], in which the authors show how the theoretical framework for verify-
ing systems under reconfiguration that is presented here can be implemented
(in a simplified version) using Real-Time Maude [90], an extension of the
rewrite-based modelling and verification language and tool Maude [42]. Real-
Time Maude also features an LTL model checker that can be used to check
basic real-time properties.

4.5 Conclusion

In this chapter, an assume-guarantee-based verification framework for recon-
figuring component-based systems was introduced. By providing refinement
and composition operations, the verification framework allows to verify the
design of a component-based system undergoing reconfigurations early in the
development process; it is possible to specify an abstract desired property in
terms of an assume-guarantee contract, and to specify a concrete component-
based design consisting of reconfiguration rules and abstract specification of
components. The more concrete design allows to divide the system into
simpler, interacting components with well-defined contracts. By using the
results of composition and refinement presented in this chapter, the frame-
work allows to verify whether the chosen design satisfies the abstract desired
property specified as assume-guarantee contract.

The framework itself consists of a semantic-level framework in which com-
position and refinement results were achieved, and a syntactic layer that al-
lows the specification of assumptions, guarantees and assembly specifications
with metric interval temporal logic (MITL). It was shown that reMITL,
the extension of MITL for reconfigurations, is sound and complete, and a
set of derived rules was presented that alleviates manual proofs of refinement
and simplification of compositions.

The approach presented here is not unique in its single elements; As
discussed in Section 4.4, formal treatments of reconfigurations exist as well
as dense real-time reasoning frameworks and assume-guarantee reasoning
frameworks. The approach presented here is, however, unique in the way it
combines all three elements to create an assume-guarantee, dense real-time
framework for the verification of reconfigurations. In that respect, it consti-
tutes a novel contribution to the domain of formal verification of software
systems.

Chapter 5

Methodology

Providing a component-based software framework (Chapter 3) and means
for the formal verification of component reconfigurations (Chapter 4) alone
does not provide clear guidance for the creation of physiological computing
applications. This chapter aims at filling the gaps by providing a software de-
velopment methodology that makes use of both the formal verification frame-
work (Chapter 4) and the component-based software infrastructure (Chap-
ter 3) and embeds them into a software development process that fits the
requirements of physiological computing applications. For this, the verifica-
tion artefacts as well as means for the informal modelling of system designs
needs to be defined.

Creating physiological computing applications is an endeavour that in-
cludes a significant amount of research efforts: experimenting with psycho-
logical concepts, available hardware sensors and actuators, and experiments
with different control strategies are all day-to-day activities. The software
development methodology needs to be adequate for such development efforts;
Scrum [107], as discussed in Section 2.5.6, is a good choice, also because its
focus lies on the organisational aspect of task management than on the de-
tails of the software creation techniques used (compare with Section 2.5.4),
which gives freedom in the definition of the latter.

In this chapter, we therefore begin with discussing how verification of
reconfigurations is performed independently from any framing methodology
in Section 5.1. Next, we proposing an approach for combining the tools in-
troduced so far with the Scrum methodology. This integration is discussed
in details in Section 5.2. In the subsequent Section 5.3, we introduce the no-
tations that are missing for the execution of the formal verification method-

164 5. Methodology

Model design

Informal design
verification

Abstraction and
formalization

Implement
components

Implement
reconfiguration rules

Formal design
verification

Figure 5.1: Standalone verification and implementation process

ology presented in Section 5.1, i.e. notations for designing component-based
systems in the style of the REFLECT framework (especially supporting re-
quired and provided ports as well as the component lifecycle), as well as
event-condition-action style reconfiguration rules.

Furthermore, we discuss how reconfigurations can be beneficially used for
the development of physiological computing applications. Section 5.4 shows
how reconfigurations can be used to respond to the volatile nature of devices
in pervasive settings as well as for the adaptation of behaviours on a strategic
level. By this, both examples of the methodology, as well as two widespread
usage patterns for reconfigurations in physiological computing systems are
presented.

Finally, we present related work in Section 5.5 before concluding this
chapter in Section 5.6.

5.1 Standalone verification of reconfigurations

First, we discuss how the process of formal verification of reconfiguration
is performed – independently from a framing methodology. Generally, the

5.1 Standalone verification of reconfigurations 165

verification and subsequent creation of structurally adaptive systems is per-
formed along the following steps (compare with Figure 5.1):

1. Design. The component design needs to be modeled based on initial
requirements (or change requests). The design consists of the following
artefacts:

(a) An informal, textual description of the desired system behaviour
that should be achieved through the design.

(b) A list of all needed component types with their ports.

(c) An informal description of the expected component behaviour.

(d) The initial component configuration, i.e. the initial component
instances and connectors.

(e) The reconfiguration rules that should be applied to the configura-
tion as an informal textual description. A scheme that can be used
and transitions nicely into temporal logic is the event-condition-
action (ECA) scheme [2].

2. Informal verification. As a filter step, the informal description and
diagrams should be verified informally to check that the design does
not contain any obvious errors. The informal verification step is a
lightweight filter step for the subsequent resource intensive formal ver-
ification, and is used to identify and single out problems early in the
design, so that the design can be improved.

3. Abstraction and formalisation. First, the global system properties
that need to be formally verified must be extracted from the informal
textual description and formulated in reMITL. Together with this ac-
tivity, the component definitions with their complex ports and data
types need to be simplified to Boolean predicates that allow to formu-
late the behaviour of the components that is relevant for the global
system properties. Once the abstraction to Boolean predicates is com-
pleted, the component signatures can be defined. Next, the informal
component behaviour is translated into assume-guarantee contracts in
reMITL. The initial component configuration and the reconfiguration
descriptions are converted into the assembly specification, again using
reMITL.

166 5. Methodology

Desired system
behavior

Component types
and ports

Component
behavior

Initial component
configuration

diagram

Reconfiguration
rules

Desired system
properties

Component
signatures

Component
contracts

Assembly
specification

Component types
and ports (code)

Component
implementation

Initial system
configuration

Reconfiguration
actions

Figure 5.2: Verification and implementation artefacts

4. Formal verification. The existence of a refinement relation between
the global system contract and the assume-guarantee contracts can be
verified by using the formal verification framework described in Chap-
ter 4.

5. Implementation. The initial, informal system design (consisting of
components, ports and types) that served as the baseline for formal ver-
ification can be used directly as the skeleton for the implementation. At
the same time, the initial configuration can be mapped directly to an
initial system assembly. Finally, the formal and informal descriptions
of component behaviour serve as specifications for the implementation
of the component code. Similarly, the informal event-condition-action
rules together with the assembly specification constitute the specifica-
tion for the reconfiguration rules to be created, as well as for the initial
system configuration.

Figure 5.2 depicts the artefacts that are created in the process together
with their interdependencies. The upper third of the figure shows the arte-
facts created in the informal design phase: the textual description of the
system behaviour and component behaviour, the set of component types and
ports, the initial configuration, and a textual description of the reconfigura-
tion rules.

5.2 Combining formal verification and Scrum 167

The middle part of Figure 5.2, depicts the artefacts that are created in the
phase of formalisation and abstraction, i.e. after the initial artefacts success-
fully passed the informal verification step. First, the component signatures
are defined by abstracting from the component port and types given by the
initial design. The signatures are crucial, as they define the alphabet for the
specification of all system properties. Using the component signatures, the
desired system behaviour can be translated into a set of global contracts, and
the component behaviours into component contracts. Similarly, the informa-
tion given by the initial configuration diagram and the reconfiguration rule
descriptions are condensed to create the assembly specification. With these
artefacts created, the formal verification step can be started to establish a
formal proof of correctness.

In the final step, the implementation (shown in the lower third part of
Figure 5.2), the code for the REFLECT framework is created: from the com-
ponent ports and types of the initial design, the code for the static structure
(i.e. the components with their portS) of the adaptive system can be created.
Similarly, the component implementation is derived from the initial compo-
nent behaviour and the formal component contracts. The initial system
configuration is created from information available in the initial component
configuration diagram and the assembly specification, and the reconfigura-
tion actions are created from the textual description of the reconfiguration
rules and from the assembly specification.

5.2 Combining formal verification and Scrum

A software development methodology for the development of physiological
computing should be agile, as the development of physiological computing
systems is often an undertaking that involves a significant amount of research
work. We propose using Scrum [107] since it is a software development
methodology that is well suited for the development of new products and
software (cf. Section 2.5.6). Scrum has its roots in the empirical process
model, and as a consequence, uses frequent inspection and adaptive feedback
as its main means of control (compare with Section 2.5.4). Scrum is a generic
software development methodology that can be used to create software, but
also for research and development activities that do not primarily focus on
software; hence, it is most suitable for the creation of physiological computing
applications.

168 5. Methodology

Model initial design

Informal design
verification

Formal design
verification

Implement components

Implement
reconfiguration rules

Sprint Planning Meeting Design verification Sprint

Abstraction and
formalization

Other tasks

Figure 5.3: Delaying combination of reconfiguration verification and Scrum

However, the formal verification and implementation work needs to be
carefully embedded in Scrum without diminishing its adaptive nature. When
integrating the verification process described in Section 5.1 in Scrum, the
question arises how the five steps defined for formal verification can be nat-
urally embedded. Overall, there are two forces that guide the integration of
the verification process into the agile methodology of Scrum:

• Early verification. The formal verification of a system structure and
its reconfiguration rules is a step that needs to be performed early;
the failure of a verification proof often entails changes in the structure
of a system that require modifications of implementation code if that
implementation code was already created.

• Staying agile. Scrum suggests to include early design discussion in the
sprint planning meeting, but not to perform any detailed design activ-
ities in that meeting. Introducing design verification steps between the
sprint planning and sprint execution causes a delay of implementation
work that commemorates the waterfall approach. Such an approach
should be avoided, as it would stall the whole development team, and
reduce the adaptation capabilities of the development teams.

5.2 Combining formal verification and Scrum 169

Model initial design

Informal design
verification

Formal design
verification

Abstraction and
formalization Implement components

Implement
reconfiguration rules

Sprint Planning Meeting Sprint

Other tasks

Figure 5.4: Agile combination of reconfiguration verification and Scrum

Figure 5.3 shows how the process would be organised if we followed solely
the force of early verification. The modelling, verification, and implementa-
tion activities would be integrated in Scrum by introducing another phase
before the start of a sprint. During the sprint planning meeting, the design
would be elaborated and informally verified, while the the formal verification
would be moved to an own phase of the project. Once the formal proof of
correctness is achieved, the sprint starts, and the component and reconfigu-
ration design is implemented along with other sprint backlog items that need
completion.

In order to prevent progress delay, it is necessary to find a compromise
between early verification and agility. Figure 5.4 shows a different approach
to the integration of reconfiguration verification in Scrum. Here, the design
verification activities are added as regular, additional sprint backlog items to
the sprint itself. This implies that the reconfiguration rules and component
behaviour implementation may start before a formal proof of correctness have
been established. However, parallel implementation and verification allows
to feed back insights gained from the implementation into the specification,
and by this to rule out problematic designs that would have been hard to
detect otherwise. Additionally, performing the formal validation of the design
within the sprint allows the team to tackle product backlog items that do not

170 5. Methodology

affect the design or component behaviour to be verified. This may include
bug fixes and development in other parts of the system, experiments with
new technologies, code cleanup and refactorings.

In the described approach, the early verification force seems to be bla-
tantly violated, but it is not; it is only subordinated to the force of staying
agile. Of course, the team should tackle the issue of component and recon-
figuration design verification early on; partial implementation of an invalid
design may lead to time-consuming changes and revisions that impede the
progress of the sprint. At the same time, the team is empowered to make the
correct trade-off between the forces of agility and early verification based on
the current project context, and other existing forces.

In total, the second embedding shown in Figure 5.4 provides a more nat-
ural and realistic embedding of the formal verification of component and re-
configuration design into a system development effort. Rather than imposing
a strict ordering on how to proceed, the development team is empowered to
decide how to intertwine the formal verification process with other activities
in the sprint for maximum benefit.

5.3 Informal design modelling

The development process described in Section 5.1 requires several models to
be created, one of these being the initial design, consisting – according to
Figure 5.2 – of the overall desired system behaviour, component behaviour,
component types and ports, the initial component configuration diagram,
and informal reconfiguration rules.

In this section, we present the notations that are missing for perform-
ing the formal verification methodology previously described; propose there-
fore propose a diagram type and meta-model for the the creation of first
informal system configurations and architectures as supported by the RE-
FLECT framework. The diagram type is primarily geared fro supporting
rapid sketching of system configurations. Additionally, we propose a no-
tational frame for describing reconfiguration rules based on the ECA rule
scheme [2].

First, we introduce a metamodel (Figure 5.5) and graphical notation
for system configurations. The metamodel (shown as UML class diagram)
defines entities for components, ports and connectors contained within a
system configuration. The metamodel includes definition and instance en-

5.3 Informal design modelling 171

-name : String

RequiredPortDefinition

-name : String
-active : Boolean

ComponentDefinition

-name : String

ParameterDefinition

-name : String

ProvidedPortDefinition

RequiredPort

ProvidedPort

-value : String

Parameter

-name : String
-state : State

Component Connector

-name : String

Configuration

unitialized
initialized

running
active

«enumeration»

State

0..*

-outgoing

0..*

-required

1

0..*

«use»

0..* 0..*

-incoming

0..*

-provided

1

0..*

0..*

0..* 0..*

0..*

1 0..*

1 0..*

1 0..*

1 0..*

Figure 5.5: System configuration diagram metamodel

tities for components, ports and parameters, indicating that components,
ports, and parameters have a specific type that is declared in code, while
their instances are managed by the software framework at runtime. Com-
ponents, ports and parameters are directly found in system configuration
diagrams, while their declarations are only referenced indirectly through
the specification of instances. The type declaration entities of the system
configuration metamodel are ComponentDefinition, ParameterDefinition,
ProvidedPortDefinition, and RequiredPortDefinition. These are the en-
tities that are mapped to component classes (cf. Section 3.3.1), parameter
accessor methods (cf. Section 3.3.4), and port accessor methods (cf. Sec-
tion 3.3.3), respectively. The instance entities, i.e. Component, Parameter,
ProvidedPort, RequiredPort, and Connector are found in system config-
urations; they are either in the initial system configuration specified in a
bundle container (cf. Section 3.3.2 and Section 3.3.3), or created through
reconfiguration actions that transform the system configuration.

The graphical notation for system configuration diagrams was already

172 5. Methodology

Receiver
queueLength=100

Sender
input

output

Initial Configuration

(a) Graphical design notation

name = "queueLength"

 : ParameterDefinition

value = "100"

 : Parameter

 : Connector

name = "Initial

Configuration"

 : Configuration

name = "Sender"

state = running

 : Component

 : RequiredPort

name = "Receiver"

state = running

 : Component

 : ProvidedPort

 : ProvidedPortDefinition : RequiredPortDefinition

active = true

name = "Receiver"

 : ComponentDefinition

active = true

name = "Sender"

 : ComponentDefinition

(b) Metamodel instance

Figure 5.6: System configuration diagram example

used throughout this work; Figure 5.6 shows both an example as a model
instance of the metamodel given in Figure 5.5, and a system configuration
diagram in its (compact) graphical notation. Both diagrams show the same
information, one using the graphical notation, and one using UML object
diagrams. For clarity, the links between the configuration and all its con-
stituents were omitted in the UML object diagram shown in Figure 5.6b.

System configuration diagrams are used to specify existing components,
component (lifecycle) states, component parameters, ports and their inter-
connections in a system state, but also define component types, ports and
interfaces implicitly through their reference in the system configuration dia-
gram. This approach is intended to support rapid sketching of system con-
figurations and architectures, as this is the approach that was found to be
the most useful in the creation of the case studies (Chapter 6). Note that
the port type (i.e. required vs. provided port) is inferred from the colouring

5.3 Informal design modelling 173

of the port: a required port is dark gray, while a provided port is left white.
The notation used for denoting active components is a round arrow as shown
on both Sender and Receiver components. The notation for component pa-
rameters is shown on the Receiver component that defines a queueLength

parameter with a current value of 100.
Component declaration names are directly inferred from the name of the

component instance; where component declaration and component should
not coincide in names, a notation following the UML can be used for sepa-
rating component name and declaration name through a colon, hence using
the scheme component name : component declaration name.

System configuration diagrams can be used to define the initial component
configuration, as well as component, parameter, and port declarations by
creating a system configuration diagram with one component per component
declaration with all its parameters as well as all its required and provided
ports. While this approach may seem overly complicated at first, it is indeed
the natural approach that emerged during the design of the case studies (see
Chapter 6) for specifying component types and their ports.

What is missing still is the specification of the global system behaviour
and component behaviour, as well as the reconfiguration rules. For the be-
haviour specifications, we propose to resort to classical UML activity dia-
grams, state machines, or just plain text, depending on the complexity of
the behaviour at hand – we did focus on researching specific behaviour nota-
tions that allowed for simpler specification of physiological computing system
behaviours. For reconfiguration rules, we also propose to resort to existing
description schemes, namely event-condition-action (ECA) [2].

With the help of ECA, reactive rules are described using the form On
event If condition Do action. The interpretation of an ECA rule is that
when the event occurs and the condition holds true at that time, the action
is executed. ECA rules allow a natural structuring of reconfiguration rules
into three compartments: an event describing when the condition of a rule
needs to be evaluated, and what reconfiguration action needs to be performed
if the condition is evaluated to be true.

The three compartments of ECA reconfiguration rules can be written
down on using the following guidelines:

• Events are best described using free text. Events will mostly be signals
emitted by one component to the container. Therefore, the emitting
component should be stated, as well as how the component generates

174 5. Methodology

the event – e.g. by repeatedly checking a resource, by reacting to an
externally generated signal, or by detecting specific conditions in the
incoming physiological data.

• Conditions can be described using free text and system configuration
diagrams where appropriate. Conditions describe the prerequisites that
must be satisfied for a reconfiguration action to be performed. The
prerequisites may concern the system configuration as well as conditions
to be evaluated on individual components.

• Actions are the more involved parts of ECA reconfiguration rules.
Reconfiguration actions need to be expressed using the basic manip-
ulation means on component-based systems, which are: component
creation and deletion, connector creation and disconnection (these are
the four listed in [78]), as well as changing component (lifecycle) state,
and changing component parameters. In addition, actions need also to
specify the components, component ports and connectors to manipu-
late. These queries are implicit in the naming of components, ports
and connectors, which is fine for a first informal specification of recon-
figuration actions. Nevertheless, these implicit queries should be kept
in mind when describing reconfiguration actions.

It is advised to also provide examples in all three compartments for il-
lustration purpose: sample event generating conditions, as well as sample
contexts in which the condition should hold, and before-after-pairs of config-
urations for reconfiguration actions. Providing such examples also simplifies
the first informal consistency checking that is performed after the creation
of the initial design.

Let us have a look at an example ECA reconfiguration rule based on the
system shown in Figure 5.6a. The reconfiguration rule shown in Table 5.1
is intended to switch the connector from the currently existing receiver to a
newly created receiver. This is supposed to happen as soon as the current
receiver sends the event that its queue has run full.

The sample ECA reconfiguration rule shows how lightweight the specifi-
cation format is; it imposes only few constraints and rules on the description
of reconfigurations. In total, system configuration diagrams, textual and/or
UML-based behaviour specifications and ECA rules can be used to describe
all the artefacts that the informal system design modelling phase needs. In
the next section, we clarify how the formal specification is obtained from

5.4 Reconfiguration patterns in physiological computing 175

Event
Receiver connected to sender.output sends queue full event

Condition
Only one receiver instance exists

Action

• Create new receiver instance
• Stop sender component
• Disconnect sender.output connector
• Connect sender.output port to new receiver.input port
• Start new receiver component
• Start sender component

Table 5.1: Example ECA reconfiguration rule

the initial design model, and how implementation skeletons can be created
from both the initial design and the formal specification. We discuss this as-
pect by presenting three patterns of use for reconfigurations in physiological
computing systems in Section 5.4.

5.4 Reconfiguration patterns in physiological

computing

In physiological computing settings, reconfigurations can be used in several
ways, of which two application areas emerge most prominently. These are
discussed in more detail in the following: device tracking (Section 5.4.1)
and adjusting the behaviour of physiological computing systems to the cur-
rent context (Section 5.4.2). We describe how these patterns make use of
the informal modelling, formal modelling and verification, and the software
framework described in Chapter 4, Chapter 3, and Section 5.1, respectively.
In each pattern description, we present schemes for each artifact described in
the development methodology (Section 5.2) in addition to a discussion of the
pattern’s intent, its forces (how they interact, compete and conflict with each
other and repeatedly create problems asking for solutions), and consequences
(both positive and negative outcomes of applying the solution proposed).

176 5. Methodology

Capability available

Capability
state: active

Device

User
state: running

capabilities

service

Device
discovery

(a) Configuration with available capabilities

Capability unavailable

Capability
state: deactivated

User
state: deactivated

capabilities

Device
discovery

(b) Configuration with unavailable capabilities

Figure 5.7: Configurations for tracking services

5.4.1 Device tracking

System configurations are a natural tool to model and track volatile devices
and services that appear and disappear. Formal verification of reconfigura-
tions can be used in these settings to verify the correct response of a software
system to all possible reconfigurations initiated through the loss or discovery
of devices, which is important as these situations typically have a large im-
pact on the capabilities of a pervasive system. In a component-based system,
both losing devices as well as losing capabilities can be modelled and achieved
by removing components from the system configuration. Conversely, adding
devices and capabilities equates to adding components to the system config-
uration.

Intent

Keeping track of volatile devices that may or may not be available in the
environment is the main intent of the device tracking pattern. It allows

5.4 Reconfiguration patterns in physiological computing 177

leveraging available devices in the application as soon as they appear.

Forces

We have identified three forces that guide the application of this pattern as
well as the further elaboration of the design and implementation.

• Robustness. The application’s goal is to remain available when parts
of the system fail.

• Leverage. The application needs to make use of devices that are
available only intermittently.

• Volatility. Quickly appearing and vanishing devices may lead to per-
ceived inconsistent behaviour of the application and increased usage
of computational resources. The stability of the environment and the
impact of the availability of devices therefore needs to be considered.

Informal modelling

Typically, the initial model of a system keeping track of devices has a com-
ponent representing the device, and capability components making use of
services the device provides. The capability component itself is providing its
services to a user component, which is a component from the application logic
making use of the provided capability. Figure 5.7 shows the scheme for both
a configuration having devices and capabilities available (Figure 5.7a), and a
configuration where the device for the capability is missing (Figure 5.7b). In
both configurations, the system must feature a device discovery component
that signals to the configuration the discovery or vanishing of devices, so that
the configuration can react accordingly. The reaction of the system to a van-
ishing device is the removal of the device component, and the deactivation
of the capability component, and all its depending components. Conversely,
once the appropriate device is found, a component for the device is created,
and a connection to the capability is created.

The corresponding ECA reconfiguration rules are shown in Table 5.2 and
Table 5.3. The rule handling the discovery of a device is straightforward:
the new device is connected to the capability and the capability is activated,
which cascades to the user component. The vanishing rule shown in Table 5.3
is slightly more involved, as it needs to check whether another device may

178 5. Methodology

Event
Device discovery sends device discovered event.

Condition
Discovered device matches capability requirements, and capability com-

ponent is not connected to another device component.
Action

• Create new device component configured from the discovery event
• Connect capability.service to device.service

• Activate capability
• Start user

Table 5.2: Device discovery rule

exist that can satisfy the need of the capability component, and connect that
device if so.

The behaviour of the components participating in this design is abstractly
defined in Table 5.4. The globally desired behaviour of the service tracking
system is described textually as follows: the capability component is always
activated and connected to an available device of the type it needs, if such a
device exists in the configuration. Obviously, the specified desired behaviour
is only a skeleton of the specification that a complete system would encom-
pass. In a complete system, more complex reconfiguration rules and other
behaviours may be required as well.

Abstraction and formalisation

The next step in the software development methodology is to abstract and
formalise the informal description into a specification in terms of reMITL
assume-guarantee contracts for the component behaviours, the global be-
haviour, and the assembly specification.

The abstraction and formalisation step produces the component signa-
tures, desired system properties, component contracts, and assembly speci-
fications. In the service tracking pattern, the abstraction step reduces the
amount of tracked devices to two devices. This reduction allows to prove
the system to be correct while still featuring significant complexity. At the
same time, all ports are reduced to Boolean-valued ports, meaning that the

5.4 Reconfiguration patterns in physiological computing 179

Event
Device discovery sends device vanished event.

Condition
None.

Action

• Delete device, and disconnect capability.service from device.

service (possibly deactivates capability and user)
• If capability is now disconnected, check whether other matching
device components exist, and if so:

– Connect capability.service to device.service

– Activate capability

– Start user

Table 5.3: Device vanishing rule

Component Behaviour
Device Provide services to the capability component. In the

case of sensing devices for example, the service means
providing access to sensor data to the capability com-
ponent.

Device discovery Notifies the system of new devices and vanishing de-
vices.

Capability Provides specific capabilities for use through the sys-
tem.

User Uses the capability.

Table 5.4: Desired component and system behaviours for device tracking

180 5. Methodology

Service tracking abstracted

capdev1

s

disc

s

dev2

s
deva1 deva2

Figure 5.8: Service tracking system abstracted

discovery components now feature one port for the availability of each device.
We now define the component signatures for a system with one capability,

one device discovery, and two devices. We omit the user component, as it
is not important for the verification of the correct behaviour of the system
behaviour. We shorten the names of the components to dev1 and dev2 for
device components, cap for the capability component and disc for the device
discovery component. The device components feature one provided port
dev1.s and dev2.s for service, while the capability component has only one
required port cap.s requiring the service. The discovery component features
two provided ports, disc.deva1 and disc.deva2 signalling the availability of
each device. Figure 5.8 shows the abstracted system with two devices, one
capability, and one discovery with one port for each device. The component
signatures can be derived directly from the figure:

Σdev1 = (∅, {dev1.s})
Σdev2 = (∅, {dev2.s})
Σcap = ({cap.s}, ∅)
Σdisc = (∅, {disc.deva1, disc.deva2})
ΣSys = ((∅, ∅),ΣInt, (C

i, ∅))
ΣInt = ({cap.s}, {dev1.s, dev2.s, disc.deva1, disc.deva2})
Ci = {(cap.s, dev1.s), (cap.s, dev2.s)}

The system signature ΣInt is the signature over which the assembly spec-
ification is defined. Note that due to the connector constraints expressed
in Ci, the required port cap.s may only be connected to the provided ports
dev1.s and dev2.s.

The desired global system behaviour can be directly formalised from Ta-

5.4 Reconfiguration patterns in physiological computing 181

ble 5.4. First however, we introduce the following abbreviations:

cap connected = cap.s ∼ dev1.s ∨ cap.s ∼ dev2.s
dev available = disc.deva1 ∨ disc.deva2

With the help of these abbreviations, the desired assume-guarantee con-
tract for the system global can be specified as (JASK, JGSK). While the as-
sumption is empty (i.e. AS = >), the desired guarantee is

GS = dev available→ 3[0,l]cap connected

Where l is a reaction limit that is specific to the concrete system under
observation.

In the service tracking pattern, no component contracts are needed in or-
der to satisfy the global system property; service tracking is an activity solely
performed by the assembly and its reconfiguration rules which are ultimately
triggered by the environment. It is impossible to establish any meaningful
assumptions or guarantees on the duration of presence of capabilities and
devices, as the discovery and vanishing of devices is fully under control of
the environment. The contracts for the components dev1, dev2, cap, and disc
are therefore (J>K, J>K).

The last piece to the puzzle, the assembly specification, can be derived
from the ECA reconfiguration rules given in Table 5.2 and Table 5.3. The
assembly specification consists of the semantics of the conjunction of four
formulas, A = disc1 ∧ disc2 ∧ van1 ∧ van2, which are defined as follows:

disc1 = disc.deva1 ∧ ¬cap connected→ 3[0,l]cap.s ∼ dev1.s

disc2 = disc.deva2 ∧ ¬cap connected→ 3[0,l]cap.s ∼ dev2.s

van1 = ¬disc.deva1 ∧ cap.s ∼ dev1.s→
[
(3[0,l]¬cap.s ∼ dev1.s)

∧(disc.deva2 → 3[0,l]cap.s ∼ dev2.s)
]

van2 = ¬disc.deva2 ∧ cap.s ∼ dev2.s→
[
(3[0,l]¬cap.s ∼ dev2.s)

∧(disc.deva1 → 3[0,l]cap.s ∼ dev1.s)
]

To prove that the desired system contract follows from the component
assembly, it suffices to show that the global system guarantee follows from
the assembly specification, which we do in the following.

First, let us assume that dev available holds, i.e. disc.deva1∨ disc.deva2.
We assume that disc.deva1 holds – the case where disc.deva2 holds can be

182 5. Methodology

Device tracking implementation

Capability
state: active

Device

User
state: running

capability

service

Device
discovery

Figure 5.9: Device tracking system as implemented

shown analogously. Furthermore, we assume that ¬cap connected holds, as
otherwise, the proof that 3[0,l]cap connected holds is already established.
Since disc.deva1∧¬cap connected holds, disc1 can be applied, and it follows
that 3[0,l]cap.s ∼ dev1.s, and hence 3[0,l](cap.s ∼ dev1.s ∨ cap.s ∼ dev2.s).

Implementation

The implementation of the device tracking pattern is very close to the initial
design discussed in Section 5.4.1; Figure 5.9 shows the static structure of
the implementation. The figure corresponds to the initially modelled con-
figuration except for the fact that the user component references only one
capability in the pattern implementation.

We do not discuss all the component code in this section, but only rel-
evant and interesting classes, which are the container (Listing 5.1), and the
reconfiguration actions for device discovery (Listing 5.2) and device vanishing
(Listing 5.3).

The container, as usual, creates all components and connects the user
port to the capability component. Additionally, the container registers itself
as a listener for device events, and triggers appropriate configuration actions.

Listing 5.1: Device tracking pattern system container

public class Container extends BundleContainer {

@Override
protected void configure() {
create("user").ofType(User.class);
create("capability").ofType(Capability.class);

5.4 Reconfiguration patterns in physiological computing 183

create("deviceDiscovery").ofType(DeviceDiscovery.class);
connect().ports().ofComponent("user");

}

@EventListener(topic = DeviceEvent.TOPIC)
public void deviceEvent(DeviceEvent evt) {

switch (evt.getType()) {
case DISCOVERED:
reconfigure(new Discover(Container.this,

evt.getName()));
break;

case VANISHED:
reconfigure(new Vanish(evt.getName()));
break;

}
}

}

The configuration actions take the responsibility for checking the condi-
tion, and performing configuration changes if the condition holds. The code
given in Listing 5.2 corresponds to the rule defined in Table 5.2 except for the
fact that we assume compatibility of device type and capability requirement;
the check whether the capability is already connected to a device service is
performed in the discovery rule, and the rule is aborted in case the check is
successful (i.e. the method returns immediately).

Listing 5.2: Device discovery reconfiguration action

public class Discover extends AConfigurationAction {

private final BundleContainer fContainer;

private final String fDevice;

public Discover(BundleContainer container, String device) {
super("Connect");
fContainer = container;
fDevice = device;

}

@Override
protected void reconfigure(ReconfigurationReflectManager

manager) {
Device device = new Device(fDevice);
manager.addComponent(fContainer, device);

184 5. Methodology

AComponent capability = manager.
getComponent("capability");

IRequiredPort capabilityPort = capability.
getRequiredPort("service");

if(capabilityPort.getCardinality() != 0)
return;

IProvidedPort devicePort = device.
getProvidedPort("service");

AActiveComponent user = (AActiveComponent) manager.
getComponent("user");

manager.connect(capabilityPort, devicePort);
capability.activate();
manager.scheduleRestart(user);

}
}

The reconfiguration rule that reacts to a vanishing device, shown in List-
ing 5.3, takes care of deleting the device from the system configuration. If
the removed device was connected to the capability component, the system
configuration is queried for another device to satisfy the capability depen-
dency.

Listing 5.3: Device vanishing reconfiguration action

public class Vanish extends AConfigurationAction {

private final String fDevice;

public Vanish(String device) {
super("Vanish");
fDevice = device;

}

@Override
protected void reconfigure(ReconfigurationReflectManager

manager) {
AComponent device = manager.getComponent(fDevice);
manager.deleteComponent(device);

AComponent capability = manager.
getComponent("capability");

IRequiredPort capabilityPort = capability.

5.4 Reconfiguration patterns in physiological computing 185

getRequiredPort("service");

if(capabilityPort.getCardinality() == 1)
return;

Device nextDevice = manager.findComponent(Device.class);
if (nextDevice == null)
return;

IProvidedPort devicePort = nextDevice.
getProvidedPort("service");

manager.connect(capabilityPort, devicePort);
capability.activate();
manager.scheduleRestart((AActiveComponent) manager.

getComponent("user"));
}

}

This concludes the discussion of the implementation of the device tracking
pattern, which corresponds to its initial design model.

The device tracking pattern is used in physiological computing applica-
tions when devices may appear and vanish arbitrarily during the operation of
the system. Since the software system has no control over the availability of
the device, however, no guarantee about the minimal availability of specific
capabilities can be made and verified. For a minimal availability guarantee, it
would be necessary to require more elaborate behaviour from the capabilities
(such as caching of requested commands), and to make stability assumptions
on the environment (i.e. that devices stay available for a minimum duration
once they become available).

Consequences

The application of the device tracking pattern has two consequences for the
design and implementation code. First, it separates the device discovery
and initialisation code from the device wrapper itself, as the logic becomes
separated over two components: the device discovery, and the device wrapper
component itself. Secondly, as the device discovery operates asynchronously
to the application logic, application of the device discovery pattern makes
synchronization of device discovery events (as well as device vanishing events)
with the main application logic necessary.

186 5. Methodology

5.4.2 Behaviour adjustment pattern

A key benefit the concept of reconfiguration offers when creating physiological
computing applications is that it allows changing the behaviour of physio-
logical computing systems. More specifically, it allows separating meta-level
monitoring, reasoning, and behaviour modification from the algorithms real-
ising the physiological computing behaviour. With the help of the reconfig-
uration concept, it is possible to let meta-behaviour and behaviour interact
with each other in a defined and meaningful way. Thinking of a physiological
computing system as a reconfigurable system may also help to identify op-
portunities for meta-level monitoring of and reasoning on the physiological
computing behaviour.

In this section, we discuss the basic pattern for adapting behaviour of
physiological computing systems by using structural reconfiguration (i.e. the
substitution of software components). We discuss the pattern by detailing
all three steps of informal modelling, abstraction and formalisation, and im-
plementation.

Intent

The intent of the pattern is to change the behaviour in new operational
contexts, and in order to do so, to separate this reasoning from the main
application logic.

Forces

The application of this pattern is mainly driven by two forces.

• Discoverability. It is of key importance that contextual changes are
reliably discoverable through the system in order to provide adequate
(i.e. consistent) user experience through the system. If the contextual
change detection is unreliable, the behaviour adaptation must remain
subtle and on the fringe of perception.

• Volatility. The speed of context changes is also important to relate
to the speed of the reconfiguration. If context changes occur in rapid
succession, it may not be feasible to adjust the behaviour through re-
configurations. Instead, the behaviour adaptation logic has to be in-
terwoven with the regular behaviour, and the context granularity has
to be decreased.

5.4 Reconfiguration patterns in physiological computing 187

Controller 1
state: running

Actuator

Monitoring

Analyser

Controller 2
state: inactive

First behaviour active

inspect

inspectinspect

analyzer

actuator

analyzer

(a) Configuration exhibiting first behaviour

Controller 1
state: inactive

Actuator

Monitoring

Analyser

Controller 2
state: running

Second behaviour active

inspect

inspectinspect

analyzer
actuator

analyzer

(b) Configuration exhibiting second be-
haviour

Figure 5.10: Configurations for switching between behaviours

Informal modelling

A physiological computing system generally consists of behaviour-determining
components, and components providing analysis information and access to
physical actuators. For the illustration of the behaviour adaptation pattern,
we have chosen three components: an analysis component, an actuator com-
ponent, and a controller component determining the behaviour of the phys-
iological computing system (cf. Figure 5.10).1 For altering its behaviour at
runtime, the system needs a second behaviour component that it can switch
to, and a monitoring component that supervises the current physiological
system behaviour, as well as the context in which the system currently op-
erates. The monitoring component emits an event to the container as soon
as the need for reconfiguration is detected. The description of the behaviour
adaptation pattern remains abstract, with the complexity of detecting the
need for changing behaviour being encapsulated in the monitoring compo-

1These three components are placeholders; in real physiological systems, the behaviour
will consist of more than one component, and the analysis and actuation may consist
of several components themselves, or be provided by one single hardware abstraction
component, or a combination of both.

188 5. Methodology

Event
Monitoring requests switch to controller 2.

Condition
Controller 1 is active.

Action

• Disconnect monitoring.inspection from controller
1.inspection
• Disconnect controller 1.actuator from actuator.actuator
• Connect monitoring.inspection to controller
2.inspection
• Connect controller 2.actuator to actuator.actuator
• Start controller 2

Table 5.5: Rule changing behaviour to the second controller

nent – although the system developers should be aware that the monitoring
logic may constitute the major challenge in realising this pattern.

In the informal modelling phase, we have to establish the initial configu-
ration diagram and settle the component and port types; Figure 5.10a shows
the initial configuration. The system thus consists of two behaviour controls
of different type, both having one provided inspection port, one required
analyser port, and one required actuator port. The analyser component
and the actuator component are both able to satisfy these required ports
by providing one port each. The inspection port of the behaviour control
component serves the monitoring component (together with the required
analyser port) as input for deciding on changing the system configuration
by emitting the reconfiguration-triggering event. The monitoring component
emits a reconfiguration event if it detects that the current control component
fails to maintain the desired behaviour, and that environmental conditions
(through the analyser component) indicate that a switch to the other control
component is advised.

The reconfiguration rules themselves are very simple, as the monitoring
component takes care of verifying whether the reconfiguration should take
place. The reconfiguration rule only needs to verify that the reconfiguration
can take place, as can be seen in Tables 5.5 and 5.6.

The behaviour that we expect from the single components must remain

5.4 Reconfiguration patterns in physiological computing 189

Event
Monitoring requests switch to controller 1.

Condition
Controller 2 is active.

Action

• Disconnect monitoring.inspection from controller 2.inspection
• Disconnect controller 2.actuator from actuator.actuator

• Connect monitoring.inspection to controller 1.inspection

• Connect controller 1.actuator to actuator.actuator

• Start controller 1

Table 5.6: Rule changing behaviour to the first controller

abstract; we can only vaguely require that the monitoring component de-
tects the need for switching between behaviours by using the data available
through its inspection and analysis ports, and that the control components
are able to establish the desired system behaviour under specific conditions
– namely, the conditions the monitoring component uses to determine a nec-
essary reconfiguration. The desired global system behaviour requires the
system to always re-establish the correct behaviour within a specific time
bound – that is to say, if the monitoring component detects that the current
control component fails to establish the correct control behaviour, the system
has a grace period for performing the reconfiguration, and re-establishing the
correct control behaviour. The behaviour descriptions for all components are
given in Table 5.7. The desired global system behaviour is very simple: we
require that the system always re-establishes the correct control behaviour
within a time bound tb.

Abstraction and formalisation

The abstraction and formalisation of the behaviour adjustment pattern mainly
consists of reducing the number of components, creating the required Boolean
ports, and introducing a formal behaviour specification for components and
reconfigurations. The actuator component is removed from the formal com-
ponent system as it is not relevant for the behaviour of reconfigurations. The
analysis component on the other hand remains in the abstracted system, as

190 5. Methodology

Component Behaviour
Monitoring Detects the need for changing the system behaviour,

and notifies the configuration.
Controller 1 Establishes the desired system behaviour under spe-

cific conditions.
Controller 2 Establishes the desired system behaviour under spe-

cific conditions.
Analyser Analyses the (physical and physiological) context and

provides the results.
Actuator Provides access to physical actuators.

Table 5.7: Desired component and system behaviours for behaviour adapta-
tion

it provides the information about which control component may be used to
establish the globally desired behaviour within a certain time bound.

For simpler specification of the component and reconfiguration behaviour,
the following abbreviations are used for components and ports:

• con1 and con2 for control components,

• mon for the monitoring components,

• an for the analyser component,

• p for the context predicate that determines whether the first or the
second controller is suited best,

• b, b1, b2 for the behaviour monitoring ports,

• s1 and s2 for the ports signalling the reconfiguration of the system to
the first controller and the second controller, respectively.

The signatures of the components are as follows (compare also with Fig-

5.4 Reconfiguration patterns in physiological computing 191

con1

mon

con2

Abstract behaviour 1
s1

b1 b2

s2

b1 b2

an

p

p

pp

b

(a) Abstraction for first behaviour

con1

mon

con2

Abstract behaviour 2
s1

b1 b2

s2

b1 b2

an

p

p

pp

b

(b) Abstraction for second behaviour

Figure 5.11: Behaviour changing system abstraction

ure 5.11):

Σcon1 = ({con1.p}, {con1.b1})
Σcon2 = ({con2.p}, {con2.b2})
Σan = (∅, {an.p})
Σmon = ({mon.b1,mon.b2,mon.p}, {mon.s1,mon.s2})
ΣSys = ((∅, {b}),ΣInt, (C

i, Cd))

ΣInt = ({con1.pcon2.p,mon.b1,mon.b2},
{con1.b1, con2.b2,mon.s1,mon.s2,mon.p})

Ci = {(con1.p, an.p), (con2.p, an.p), (mon.p, an.p)
(mon.b1, con1.b1), (mon.b2, con2.b2)}

Cd = {(b, con1.b1), (b, con2.b2)}

Note that in the abstracted version, the monitoring component continu-
ously monitors the behaviour of component 1 and component 2, which serves
the simplification of the formalisation of this pattern.

Before giving the behaviour specification of the single components and
reconfigurations, we define abbreviations for the configurations depicted in
Figure 5.11a (c1) and Figure 5.11b (c2). These are used in the assembly

192 5. Methodology

specification:

c1 = b ∼ con1.b1 ∧mon.b1 ∼ con1.b1 ∧ con2.b2 ∼ mon.b2

∧ con1.p ∼ an.p ∧ con2.p ∼ an.p ∧mon.p ∼ an.p

c2 = b ∼ con2.b2 ∧mon.b1 ∼ con1.b1 ∧ con2.b2 ∼ mon.b2

∧ con1.p ∼ an.p ∧ con2.p ∼ an.p ∧mon.p ∼ an.p

Now, we need to specify contracts for the controller 1, controller 2, mon-
itoring, and analyser components. The assumptions of all those components
are J>K, such that we can focus on the specification of the guarantees of the
components. For a start, the guarantee of the analyser component, Gan is
> as well, as we assume that the analyser component provides information
about the environment which is not under (full) control of the system.

Gcon1 = 2(con1.p→ con1.b1 ∧3Icon1.b1)

Gcon2 = 2(¬con2.p→ con2.b2 ∧3Icon2.b2)

Gmon = 2(¬mon.b1 ∧ ¬mon.p↔ mon.s2)
∧ 2(¬mon.b2 ∧mon.p↔ mon.s1)

A = 2(c1 ∨ c2) ∧2(c1 ∧mon.s2 → 2Ic2)
∧ 2(c2 ∧mon.s1 → 2Ic1)

The guarantees Gcon1 and Gcon2 as well as the assembly specification A
are parameterised by a time interval I representing the response time of the
reconfigurations, and also determines the time interval in which the desired
behaviour can be re-established. The time interval cannot include zero, but
is otherwise arbitrary.

The analyser predicate determines whether the controller provides the
desired behaviour (con1.b1 and con2.b2). In a way, an.p partitions a system
run into phases where the first controller would behave correctly (i.e. when
an.p is true), and phases where the second controller would behave correctly.
Such a partitioning is necessary in order to ensure the desired global sys-
tem guarantee. Accordingly, the monitoring component initiates a switch
from configuration 1 (Figure 5.11a) to configuration 2 (Figure 5.11b) if the
analysis component indicates that the second configuration would be more
appropriate (i.e. mon.p is false), and at the same time, the current config-
uration does not satisfy the desired property (i.e. mon.b1 is false as well).
Together with the assembly specification that guarantees a transition from

5.4 Reconfiguration patterns in physiological computing 193

configuration one to configuration two in the time interval I, it is possible for
the system to re-establish the desired behaviour, as controller 2 guarantees
to behave as desired within that same interval I.

The global desired system behaviour can be specified as the following
contract:

Csys = (J>K, J2(b ∨3Ib)K)

We carry on to show that the component guarantees in conjunction with the
assembly specification entail 23Imon.b in the following proof.

We perform a case distinction over c1: first, we assume that c1 holds.
Now, we perform a case distinction over an.p: first, we assume that an.p
holds. Since c1 holds, we know that con1.p ∼ an.p, and therefore con1.p
holds. Gcon1 then entails con1.b1, and since b ∼ con1.b1 follows from c1, b
holds. Now, we assume that ¬an.p holds. We perform a case distinction
over con1.b1. If con1.b1 holds, so does b (by using c1). If ¬con1.b1 holds, we
continue as follows: since c1 holds, mon.b1 ∼ con1.b1 and therefore ¬mon.b1

holds. Similarly, we can deduce ¬mon.p from mon.p ∼ an.p and ¬an.p.
Since Gmon states that 2(¬mon.b1∧¬mon.p↔ mon.s2), we can deduce that
mon.s2 holds. Using 2(c1 ∧ mon.s2 → 2Ic2) from A, we can derive 2Ic2.
Additionally, we know that con2.p ∼ an.p from c1, and therefore ¬con2.p
holds. From Gcon2 , we can deduce that 3Icon2.b2 holds. Together with
2Ib ∼ con2.b2 that can be deduced from 2Ic2, we can show that 3Ib holds.

Left to be shown is the case ¬c1. Since A holds, we can derive c2. This
case is proved analogously to the case c1.

Implementation

The implementation of the pattern corresponds to the initial model, although
it features some additional implementation details (such as the use of events
for communication). The system structure of the implementation is as given
in Figure 5.10. Listing 5.4 shows the component and binding creation code
that is necessary to set up the system.

Listing 5.4: Behaviour change pattern container action

public class Container extends BundleContainer {

@Override
protected void configure() {
create("controller1").ofType(Controller1.class);
create("controller2").ofType(Controller2.class);

194 5. Methodology

create("monitoring").ofType(Monitoring.class);
create("analyzer").ofType(Analyzer.class);
create("actuator").ofType(Actuator.class);

connect().ports().ofComponent("controller1");
connect().ports().ofComponent("controller2");
connect().ports().ofComponent("monitor").toAPort().

ofComponent("controller1");
connect().ports().ofComponent("monitor").toAPort().

ofComponent("analyzer");
}

@EventListener(topic=ChangeBehaviourEvent.TOPIC)
public void changeBehaviour(ChangeBehaviourEvent evt) {
if(evt.getTarget() == Behaviour.BEHAVIOUR_1)
reconfigure(new ChangeToBehaviour1());

if(evt.getTarget() == Behaviour.BEHAVIOUR_2)
reconfigure(new ChangeToBehaviour2());

}
}

The system uses two events types to request behaviour-changing recon-
figurations (ChangeBehaviourEvent), and to pass around changes in the be-
haviour that occurred (BehaviourChangedEvent). The reconfiguration re-
quests are created by the monitoring component (Listing 5.5), and consumed
by the system container to initiate the appropriate reconfigurations (List-
ing 5.4).

Listing 5.5: Behaviour supervising monitoring component

public class Monitoring extends AManagedActiveComponent {

private Behaviour fActiveBehaviour;

private IBehaviourInspection fInspect;

private IContext fContext;

public Monitoring(String identifier) {
super(identifier);
setActiveBehaviour(Behaviour.BEHAVIOUR_1);

}

public void setActiveBehaviour(Behaviour behaviour) {
fActiveBehaviour = behaviour;

5.4 Reconfiguration patterns in physiological computing 195

}

@Override
protected boolean step() throws InterruptedException {
if (!isCurrentBehaviourAdequate() &&

contextIndicatesBehaviourChange()) {
Behaviour newBehaviour = null;
if (fActiveBehaviour == Behaviour.BEHAVIOUR_1) {
newBehaviour = Behaviour.BEHAVIOUR_2;

}
else if (fActiveBehaviour == Behaviour.BEHAVIOUR_2) {
newBehaviour = Behaviour.BEHAVIOUR_1;

}
if (newBehaviour != null) {
event(new ChangeBehaviourEvent(this, newBehaviour));

}
}
Thread.sleep(100);
return true;

}

@Required
public void setInpsect(IBehaviourInspection behaviour) {

fInspect = behaviour;
}

private IBehaviourInspection getBehaviour() {
return fInspect;

}

@Required
public void setContext(IContext context) {

fContext = context;
}

private IContext getContext() {
return fContext;

}

@EventListener(topic=BehaviourChangedEvent.TOPIC)
public void configurationSet(BehaviourChangedEvent evt) {

setActiveBehaviour(evt.getBehaviour());
}

}

196 5. Methodology

In order to emit the correct behaviour change request, the monitoring
component needs to keep track of the currently active behaviour. The moni-
toring component keeps up-to-date concerning the currently active behaviour
by registering itself as a listener to behaviour change events. The behaviour
change events themselves are published by the reconfiguration rules after
successful completion.

Listing 5.6 shows the code for switching to the first behaviour. As infor-
mally described in Table 5.6, the reconfiguration rule takes care of verifying
whether the desired behaviour is already active, and continues with discon-
necting and reconnecting the behaviour inspection port and actuator ports.

Listing 5.6: Reconfiguration rule switching to first behaviour

public class ChangeToBehaviour1 extends AConfigurationAction {

public ChangeToBehaviour1() {
super(Behaviour.BEHAVIOUR_1.toString());

}

@Override
protected void reconfigure(ReconfigurationReflectManager

manager) {
AComponent controller1 = manager.
getComponent("controller1");

AComponent controller2 = manager.
getComponent("controller2");

AComponent monitor = manager.getComponent("monitoring");
AComponent actComponent = manager.
getComponent("actuator");

IProvidedPort inspect1 = controller1.
getProvidedPort("inspect");

IProvidedPort inpsect2 = controller2.
getProvidedPort("inspect");

IRequiredPort inspect = monitor.
getRequiredPort("inspect");

IRequiredPort actuator1 = controller1.
getRequiredPort("actuator");

IRequiredPort actuator2 = controller2.
getRequiredPort("actuator");

IProvidedPort actuator = actComponent.
getProvidedPort("actuator");

if(inpsect2.getCardinality() == 0)

5.4 Reconfiguration patterns in physiological computing 197

return;

inpsect2.disconnect();
actuator2.disconnect();

manager.connect(actuator1, actuator);
manager.connect(inspect, inspect1);

event(new BehaviourChangedEvent(Behaviour.BEHAVIOUR_1));
}

}

This concludes the description of the behaviour adjustment pattern. It is
one of the most promising patterns for leveraging reconfigurations in creating
physiological computing applications. In this section, we described the be-
haviour change pattern in an abstract and simplified form, showing a system
altering between two abstract behaviours consisting each of only one compo-
nent. Nevertheless, while real applications will exhibit more complexity with
respect to system structure and number of behaviours to select from, the core
of behaviour changing through reconfiguration is covered by the behaviour
adjustment pattern.

Consequences

Applying the behaviour adjustment pattern has two main consequences for
the structure of the system, namely that the application logic becomes sep-
arated along two lines. The first line separates the operational logic from
meta-reasoning logic. The operational logic remains in operational compo-
nents, while the largest part of the meta-reasoning gets extracted into mon-
itoring components serving the sole purpose of observing the behaviour of
the system and initiating corresponding corrective actions. The second line
of separation divides the operational logic required for each context into dif-
ferent components and configurations. Instead of covering all contexts in one
configuration and using only one set of operational components, it is possible
to specialise the behaviour of operational components to specific contexts,
and to tailor configurations to these contexts.

198 5. Methodology

5.5 Related work

Ramirez and Cheng [100] describe design patterns for distributed adaptive
systems, which are similar to the reconfiguration usage patterns discussed
here. They present a full set of design patterns for distributed adaptive
systems that were extracted from existing middlewares, frameworks and ap-
plications. The patterns hence provide design knowledge that is transferable
across frameworks and middlewares. Ramirez and Cheng do not focus on
providing a software development methodology encompassing formal verifi-
cation, as this thesis does. Furthermore, while each pattern includes LTL
specifications of desired behaviour, the pattern descriptions do not provide
a proof template of how the desired behaviour can be attained – in contrast
to the patterns given in this chapter.

Previous work from Zhang and Cheng [125] proposed a specification-
driven approach to the design and verification of adaptive software. The
methodology that underlies the approach consists of six sequential steps: (1)
specification of global invariants, (2) enumeration of operational contexts
requiring different system behaviours, (3) specification of local properties
for each operational context, (4) creation of a state-based model for each
operational context and verification against local properties and global in-
variants, (5) modelling of possible transitions between operational contexts,
creating transitional models and verifying that the adaptation models satisfy
global invariants, and finally (6) the creation of prototypes from the models.
While this approach is richer in terms of specification kinds, it does not pro-
vide modular means for specification – in contrast to the assume-guarantee
framework presented in Chapter 4. Furthermore, the approach of Zhang and
Cheng does not provide any guidance for embedding the six-step process into
software development methodologies.

An approach that provides guidance in terms of a software development
methodology for adaptive systems is the DiVA methodology [45], which fo-
cuses on the requirements engineering and modelling aspects of adaptive fea-
tures of software systems. The DiVA approach is primarily a model-driven,
aspect-oriented approach in which an adaptive system is captured as a base
model with adaptation models applied. The base model constitutes the least
common denominator that the system consists of throughout all adaptation
contexts, while the adaptation models represent aspects that are added in
specific contexts only. While the base model is mapped to object-oriented
code, the adaptation models are mapped to aspects that are interwoven with

5.5 Related work 199

the object-oriented code at runtime. The focus on aspect-orientation consti-
tutes one major distinction between the DiVA methodology and the approach
presented in this thesis. It can be argued that the aspect-oriented approach
may fail if the changes to the software system are so drastic that the base
model becomes virtually empty – a very extreme situation, but one that may
arise in physiological computing if all sensor and actuator devices are consid-
ered volatile, and the control logic system is only instantiated if devices are
available. One of the strongest similarities between the approach presented
in this thesis and the DiVA methodology is that both propose an iterative
and incremental approach to the development of adaptive systems. The
DiVA methodology iterates the phases of requirements engineering, adap-
tation modelling, runtime architecture modelling and deployment. In the
approach presented in this thesis, the three phases of informal modelling,
formalisation and abstraction as well as formal verification and implemen-
tation are iterated. The DiVA approach agrees with the findings in this
thesis that an iterative and incremental approach is a good match for the
construction of adaptive systems (physiological or not).

Multi-agent-system development methodologies can be seen as another,
different approach to the development of adaptive systems. In these develop-
ment approaches (for an overview, see [69]), context modelling has a limited
importance compared to the modelling of agent roles and interactions. To
shed some light on these differences, we use the Gaia methodology [123] in the
following as one representative multi-agent based methodology. In the Gaia
methodology, a software system is understood and modelled as an artificial
society of cooperating entities (agents) that can fulfil different responsibili-
ties and rights (roles) and interact with different communication partners at
different times. In this view, understanding and modelling the agent roles,
their associated capabilities and constraints, as well as the intended com-
munication structures of roles, becomes the most significant activity. Other
activities such as context understanding and modelling are only means to
this end. In contrast to the approach presented in this chapter, the focus
on roles entails a more normative and defensive view on the possible inter-
actions of entities – one in which each agent can only be made accountable
for its behaviour with respect to its current role. While creating the case
studies (cf. Chapter 6), we discovered that this view on adaptive systems
proved to be too cumbersome in the development of physiological computing
systems; while using concurrent software entities (active components) that
change their interaction patterns helps in structuring the design of physi-

200 5. Methodology

ological computing systems, the focus on potential role conflicts and role
changes of agents that multi-agent based methodologies provide seemed su-
perfluous. Instead, we found that physiological computing applications are
easier to design and understand as a set of cooperating active components
whose configuration may be altered at runtime.

The ubiquitous systems research community has also brought up a method-
ology for the creation of distributed adaptive systems that follows similar
goals as the methodology presented in this thesis, namely the MUSIC ap-
proach [60, 49], which focuses heavily on capturing the adaptation contexts
and the variability that is required in a component-based realisation to satisfy
the system requirements. For this, the MUSIC approach introduces a UML
profile for variability models – prominently capturing the necessary variabil-
ity in the system in terms of required component variants for a component
supertype using inheritance – and domain models – describing the relations
between application contexts and component QoS properties. These models
are deduced initially from informal requirements structured as application
scenarios: Scenarios are used to distill operational contexts requiring differ-
ent modes of operation. Contexts can be split up in sub-contexts to create a
hierarchy of contexts, each corresponding to a main operational mode for the
top-level contexts, and sub-modes for the sub-contexts. Contexts are used to
guide the application architecture design (consisting of a component config-
uration) as well as the adaptation rule design that amounts to the change of
a component configuration to another to accommodate a change of context.
In the MUSIC approach, the canonical UML component diagrams for system
architecture description are complemented by variability models using a spe-
cific UML profile. The variability model describes (1) available choices for
certain component types using inheritance, (2) the properties of each possi-
ble choice using UML tagged values, and optionally (3) an utility function
that is associated with each application that helps in guiding the compo-
nent selection process. The domain model helps in this process by providing
dependencies between contexts and (QoS) properties. In a next step, the
MUSIC approach uses ontology-based tools to generate code from variabil-
ity and domain model. The MUSIC approach is hence also a model-driven
approach.

In comparison with the methodology for the creation of physiological
computing applications presented in this Chapter, it is apparent that the
MUSIC approach focuses more on the early elicitation and design steps in
which the application modes and contexts are discovered than on the latter

5.6 Conclusion 201

phases in which the reconfiguration rules are designed, specified and imple-
mented. Furthermore, the MUSIC approach provides a development process
of its own instead of embedding it into a well-tested software development
methodology. The issues and forces that may emerge from a combination
of the MUSIC process with existing software development methodologies re-
main to be discovered. Also, the focus on a model-driven approach that is
featured in the MUSIC approach is a two-edged sword. While it provides
some support for the creation of adaptive systems, it constrains the devel-
opers heavily during the modelling phase and their general approach to the
creation of adaptive systems; furthermore, the overhead entailed by a model-
driven approach may not pay off in every adaptive application. Finally, the
MUSIC methodology does not provide an embedding for formal verification
of adaptive systems.

5.6 Conclusion

In this chapter, we have presented a methodology for the development of
physiological computing systems that makes use of the formal verification
framework and the component framework presented earlier (Chapter 4 and
3, respectively).

First, this chapter has shown how formal verification can be combined
with agile methodologies; more specifically, with Scrum. In particular, it
has been shown that formal verification and Scrum work well together in
the context of physiological computing system development. In fact, as it
is of paramount importance to keep physiological computing projects agile,
it is necessary to re-think and re-shape the approach to formal verification.
In particular, is is necessary to relax the constraints of early verification
(i.e. requiring that verification is performed before implementation), and to
allow for parallelisation of implementation and verification tasks. How far
the early verification force is a driving factor for the organisation of work
depends heavily on the project.

Next, we have proposed a metamodel and corresponding graphical nota-
tion for the design of component-based architectures. The proposed diagram
differs from existing UML diagram types for the design of component-based
software systems in that it a) is geared towards the component model sup-
ported by the REFLECT framework and b) specifically targets the rapid
sketching of component-based software architectures. The latter is achieved

202 5. Methodology

by supporting implicit definition of types through specification of instances.
Also, we have provided a minimalistic notational frame for capturing ECA-
style reconfiguration rules that has proved itself adequate in the examples.

The examples that are provided to demonstrate each single step of the
methodology are indeed recurring patterns: discovery of device capabilities
and changing behaviour on a strategic level are usage scenarios for reconfigu-
rations that are constantly emerging in physiological computing applications.
For these two patterns, forces, consequences, informal design, abstraction and
verification, and implementation were discussed. We have shown how the
information from informal modelling influences verification and implemen-
tation, and have provided proofs for interesting properties of both patterns
that can be modified and adjusted for specific applications of the patterns.

Finally, the discussion of related work has shown the particular strengths
of the presented approach. In comparison to the literature, our methodology
shares the same common traits, but improves the state of the art in the
context of physiological computing.

Chapter 6

Case studies

So far, this thesis has presented only relatively small application examples for
its results. This chapter therefore provides more extensive case studies that
demonstrate and discuss the consequences and benefits of the REFLECT
framework and the real-time assume-guarantee framework.

The REFLECT framework case study revolves primarily around the RE-
FLECT automotive demonstrator, which is the end-result of the REFLECT
demonstration activities. The demonstrator software runs on an automo-
tive setup provided by Ferrari S.P.A. as detailed in Section 6.1. In this case
study, we primarily discuss how the features of the REFLECT framework
were used. The REFLECT framework was developed during the REFLECT
project, a “Specific Targeted Research Project” (STREP) that started in
2008 and ended 2011.

The aim of the REFLECT project has been to push the frontier in phys-
iological computing along two major lines:

1. researching means for supporting software development activities in-
volved in the creation of physiological computing systems through soft-
ware frameworks and practical tools.

2. researching in the creation of closed loops in three themes: emotion,
cognitive engagement, and physical comfort. In each theme, the re-
search have been focused on all aspects involved in the creation of the
loop: from establishing a general psychological and physiological con-
cept of a closed loop control, down to the selection of the correct sen-
sors, actuators, and the linking of the physical hardware to a software
control system.

204 6. Case studies

This thesis presents results from the first research line; the second re-
search line, i.e. the creation of concrete physiological computing applications,
provided valuable feedback guiding the development and realisation of the
framework and tools produced.

The real-time contract-based verification framework is demonstrated by
the adaptive advertising scenario in Section 6.2 that introduces an interactive
advertisement display capable of interacting with its viewers, and providing
auto-active content as well. In this case study, the real-time contract-based
verification framework is used to prove the responsiveness of the advertis-
ing application as well as the continued animation of displayed content (see
Section 6.2 for details).

After presenting the two case studies and discussing experiences and re-
sults for each case study separately, this chapter concludes in Section 6.3.

6.1 Automotive demonstrator case study

The automotive demonstrator integrated the emotional, cognitive, and com-
fort loops into a vehicular demonstrator, and aims at applying the principles
of physiological computing to the automotive domain to the advantage of
the driver. By measuring available physiological signals from the driver, and
combining this information with information available from the car, adapting
the driver’s environment to his current context becomes feasible.

The automotive demonstrator case study was the main demonstration
activity of the REFLECT project. Therefore, the software that was created
for that demonstrator made significant use of the REFLECT framework.
More important however, the application of the REFLECT framework gave
valuable feedback on the applicability and practicability of the framework
to the creation of a larger software system over a prolonged development
effort, as the automotive demonstrator was created over a period of roughly
14 months.

6.1.1 Demonstrator concept

The automotive demonstrator is intended to show how the results of the RE-
FLECT project in the domain of physiological computing can be applied to
improve human-machine interface and ultimately provide a more pleasurable
and safer driving experience. The major goal in the creation of the demon-

6.1 Automotive demonstrator case study 205

strator was hence to enhance the driving experience through the implemen-
tation of real-time feedback loops operating on different levels of the driver’s
psychophisology, according to the three physiological research streams of the
REFLECT project (emotion, cognitive, physical comfort), and the applica-
tion domain of the demonstrator (driving). The four feedback loops that
form the automotive demonstrator are operating as follows.

The Effort loop is concerned with determining the mental workload of
the driver and adjusting the driver’s tasks accordingly. In the automotive
demonstrator, the effort loop should reduce the number of secondary tasks
the driver is asked to perform, i.e. in the automotive context, incoming mo-
bile phone calls must be suppressed, and music currently playing is faded out
to allow the driver to focus on the (currently demanding) primary task of
driving. The indicators for mental workload that were usable in the automo-
tive setting were determined to be heart rate and heart rate variability. High
mental workload translates to a slightly increased heart rate, and a decrease
in heart rate variability (i.e. the heart beats become more regular under high
mental workload) [88].

The Emotion loop is involved in managing the emotion of the driver
according to a driver-selected goal. The goal state can be selected from the
following three emotional goal states (for simplicity of the user interface):
energetic, neutral, and relaxed. The emotional loop continuously monitors
the current emotional state of the driver, and uses music from the driver’s own
music database to guide him to the desired goal state. For monitoring the
driver’s emotion, skin conductance level and skin temperature level features
were selected that must be implemented in the demonstrator. Furthermore,
the emotional loop requires the creation of a music database that stores the
song effects on the driver, and a music player that selects songs according
to the recorded song effects and the selected target mood. The concept
of emotional control through personalised music, and the filtering processes
required to detect the effects on the emotional state of the user are described
by Janssen et al. in [75].

The Comfort loop tracks the physical comfort the user is experienc-
ing, and is able to adjust the driver seat moderately to improve on the
sitting posture and stability of the driver. Physical comfort of the driver
is tracked by the pressure pattern the driver is exerting on the seat, as well
as by measuring the accelerations (longitudinal, lateral, and vertical) that
the driver is experiencing through either fast driving or driving on a rough
road [28, 27]. Improving the sitting posture is achieved by inflating or de-

206 6. Case studies

flating cushions that are available in the driver seat. Inflating the cushions
result in more stabilised sitting, while deflated cushions allow more freedom
to move. Additionally, the comfort loop monitors the driver’s alertness to
the road and should give indications of the user’s drowsiness. Drowsiness is
detected through eye blink duration, as blink durations increase significantly
with driver drowsiness [39].

The Driving loop gives feedback on the driving style currently expressed
by the driver. It deduces the driving style from monitored car telemetry data
such as lateral and longitudinal accelerations, speed, as well as actuations of
pedals, the steering wheel, and gear shifts. In order to give implicit feedback
to the driver, the driving loop should use continuous, moderately changing
“ambient” visualisations in the vicinity of the driver’s primary viewing di-
rection. Using continuous, unobtrusive visualisations allow to improve the
driver’s situational awareness once he has learned the meaning of the driving
loop feedback. The increased situational awareness is intended to allow the
driver to enhance on his driving style accordingly. In order to achieve prox-
imity to the driver’s primary viewing direction, the driving loop must use
a head-up display allowing projecting information on the car’s windscreen.
Furthermore, the driver should be given a choice to turn off the system or to
select from a set of desired enhanced situational awareness.

In the automotive demonstrator setup, we decided to refrain from using
a head-up display due to the involved costs of installation. Furthermore, we
focused on a simple version of the driving loop that is easy to demonstrate,
and therefore chose a feedback loop that tries to keep the driving style smooth
and calm by giving negative feedback on risky driving.

6.1.2 Hardware setup

The sensing and actuation requirements of the four loops that constitute
the automotive demonstrator are summarised in Table 6.1. These hardware
requirements need to be addressed with a proper physical setup; this setup is
described in this section. The physical setup shown in Figure 6.2 provides all
required sensing and actuation facilities. Figure 6.1 shows the external and
cockpit view of the Ferrari California used and the demonstrator as installed
in the car.

The physical setup of the automotive demonstrator in its core consists
of three ultra-mobile PCs (UMPCs) installed in a Ferrari California con-
nected to several sensors and actuators available in the car as shown in Fig-

6.1 Automotive demonstrator case study 207

Loop Sensing requirements Actuation requirements
Cognitive Electrocardiogram Control over phone and media

center
Emotion Skin conductance, skin tem-

perature
Sound / music output

Comfort Seat pressure, accelerations
on the driver, eye blinking

Seat cushion inflation control,
driver warnings

Driving Car telemetry Ambient visualisation

Table 6.1: Sensing and actuation requirements of the automotive demonstra-
tor

(a) External view (b) Cockpit view

Figure 6.1: Automotive demonstrator deployed

ure 6.2. The three UMPCs (1) communicate via wi-fi, and have various
sensory equipment connected via USB: UMPC number three is connected to
the car’s controller-area network bus (CAN bus) of the Ferrari California (2)
via a Kvaser USB can II (3), a CAN-bus to USB adapter. The connection
to the CAN-bus allows to read speed, longitudinal and lateral acceleration,
and steering wheel actuations (among others) from the car sensors. Further-
more, the sensory setup consists of a polar heart rate monitor (4) sending
its readings via a custom protocol to a SparkFun Polar Heart Rate Monitor
Interface (5) that in turn is connected via USB to the third UMPC, and
skin conductance and skin temperature sensors (6) linked to a Mind Me-
dia Nexus 10 device (7) that is paired via Bluetooth to the second UMPC.
Additionally, the system features a pressure map (8) that is placed on the

208 6. Case studies

driver seat (9) which also features two pairs of inflatable cushions for seat
adjustment on lateral and lumbar positions. Both the pressure map and the
seat are connected to a custom-build controller (10) that allows to read out
comfort indicators and to manipulate the seat cushions via a USB interface.
As additional sensor, the system features a Logitech C905 web camera (11)
connected to a laptop (12) running the Fraunhofer SHORETM face recogni-
tion system, and communicating via wi-fi with the three UMPCs. Finally,
the demonstrator features Logitech Z7205 loudspeakers (13) that are used to
provide a satisfactory sound experience in the car cockpit.

Figure 6.2: Automotive demonstrator setup

As the hardware setup consist of three UMPCs each offering a touch
screen interface, a solid quantity of information can be given back to the
driver and an accompanying system tester. In the automotive demonstrator,
we decided to use the UMPC that is the closest to the driver, i.e. the leftmost,
as user interface as in a final product. Figure 6.3 shows the displayed content

6.1 Automotive demonstrator case study 209

Figure 6.3: Demonstrator user interface view, emotion loop

on the first UMPC during the activation of the emotion loop. As the emotion
loop’s concept is to influence mood with music, the user interface shows three
target mood selection button on its top, a volume control on the right, and
a progress panel showing the currently playing song, as well as the next four
songs to play. The lower third of the display hosts a set of music player
controls, allowing to start, stop, and skip songs.

Figure 6.4: Demonstrator details view, emotion loop

The middle UMPC is devoted to showing the internal workings of the sys-
tem and explaining the rationale behind its actions. On the one hand, the
display shows what the currently inspected loop assumes about the driver’s

210 6. Case studies

Figure 6.5: Demonstrator raw data view, emotion loop

state in terms of effort, emotion, comfort, and driving. On the other hand,
the display also shows an explanation for its current strategy, i.e. the cur-
rently executed action, and the next planned actions. Figure 6.4 shows the
details view of the emotional loop. In the top panel labelled Strategy, the
panel shows the score of the next songs that will be played, clearly showing a
decreasing score from the immediate next song to play (which is rated best),
to the fourth next song to play (rated worst of the four, but still better than
any of the other songs). The lower panels display the currently assumed emo-
tional state in terms of emotional valence (positive or negative) and arousal
(low or high) shown on a linear scale.

The rightmost UMPC finally shows the raw data input that the physi-
ological computing system is getting from its sensors. This view is mainly
devoted to debugging the sensor connectivity and inspecting the quality of the
raw input data. With the help of the raw data view, it is possible to inspect
the quality of the physiological data analysis subsystem of the automotive
demonstrator on-line, and to build up confidence in the correct operation
of the physiological analysis. As shown in Figure 6.5, the emotional loop
raw data view displays the input skin temperature and skin conductance
data of the last ten minutes, so that e.g. the effect of signal perturbations
(also coined artefacts) on the physiological inference system that maps skin
conductance and skin temperature to emotional valence and arousal can be
reviewed on-line.

Due to the use of the three UMPC displays, the automotive demonstrator

6.1 Automotive demonstrator case study 211

UMPC2

 : DetailsDisplayComponent

 : NexusSensor

 : PolarSensor

 : EmotionLoopLogic

 : EffortLoopLogic

UMPC1

 : UserDisplayComponent

 : EmotionDisplayComponent

 : EffortDisplayComponent

 : ComfortDisplayComponent

 : DrivingDisplayComponent

UMPC3

 : InputDisplayComponent

 : CANBusSensor

 : SeatSensor

 : SeatActuator

 : ComfortLoopLogic

 : DrivingLoopLogic

 : FaceDetectionSensor

Figure 6.6: Component distribution

software system must operate robustly and distributed. In the next section,
the architecture of the automotive demonstrator software is detailed.

6.1.3 Software architecture

As detailed in the previous section, the automotive demonstrator software
system must operate in a distributed fashion due to the information dis-
played to the driver and co-driver of the car. However, the system also needs
to operate in a distributed fashion due to the limited available computing
resources the single UMPCs provide. Figure 6.6 shows a birds-eye view on
the distribution of the automotive demonstrator over the three UMPCs us-
ing a UML deployment diagram. Each UMPC contains its respective display
component that contains the user interface and features ports for commu-
nication with the business logic components. Looking at the emotion loop
specifically, the loop is distributed in the following way: The first UMPC
contains the emotion display component that contains the music player user
interface. The component plugs into the the user display component, and re-

212 6. Case studies

chooser

EmotionDetails

features mapper

database

database

SongEvaluator

evaluator

SkinFeatures

data context

features

chooser

EmotionUI

databasemapper

player

MusicPlayer
player

SongRating

data context
database

NexusProxy

data context database

DataContextService
location=“umpc2“

data context

Database

database

chooser

SongChooser

evaluator

database

features

MoodMapper

mapper

database

EmotionInput

data context

DataContextService
location=“umpc3“

data context
q

q

q q

Figure 6.7: Structure of the emotion loop

lays the user commands to the emotion loop logic component that is located
on the second UMPC. The emotion loop logic component is only a proxy for
several components that together implement the business logic of the emo-
tion loop. The second UMPC also hosts the Nexus sensor component that
reads data from the Nexus 10 device, and pushes it into the system (using
the data context service, cf. Section 3.3.11). On the third UMPC finally, the
input display component taps into the data context services to display the
skin conductance and skin temperature that the emotion loop uses as raw
physiological input data.

Figure 6.7 shows the system configuration diagram for the emotional loop
as implemented on the REFLECT framework, which we describe by roughly
following the flow of physiological data through the system. Note that in Fig-
ure 6.7, provided ports that offer an input queue as means for asynchronous
communication are additionally tagged with a “q”. We start with the Nexus-
Proxy component on the bottom left, which reads physiological data from
the Nexus 10 device, and pushes it into the data context service component
that manages the data in its data channels. The data channels are mirrored

6.1 Automotive demonstrator case study 213

to a second instance of the data context service residing on the third UMPC.
This data context service instance is used by the EmotionInput component
to display the raw physiological input data. The SkinFeatures component
is concerned with extracting the features required for extracting informa-
tion about emotional valence and arousal (i.e. relative skin conductance level
and skin temperature, averaged over one minute and normalised over a one
hour baseline). The skin features are used by the EmotionDetails component
to display the emotional valence and arousal – they are mapped to valence
and arousal by using the MoodMapper component. Additionally, the Emo-
tionDetails component needs to display the next songs to play with their
score in its Strategy panel. To achieve this, the EmotionDetails component
queries the SongChooser component that manages the list of songs to play
and their scores. The SongChooser component needs the following informa-
tion to compute the score of all songs: the current state of the user (in terms
of skin temperature and skin conductance), and the estimated change in skin
temperature and skin conductance – and transitively, in emotional state – a
given song may induce. For this, the SongChooser uses the service provided
by the SongEvaluator. The SongEvaluator rates each song by consulting a
database featuring a set of recorded songs effects. With the help of machine
learning techniques (kernel-based density estimation, see [75] for details), an
estimated song effect is condensed from the individual song effects.

The EmotionUI makes use of the SongChooser services to retrieve the
song list, and to publish new user goal states when the user decides to change
his target mood. The current song to play is submitted to the music player,
which also realises the music player command for starting, pausing, and
skipping songs.

Finally, as the last component to discuss, the SongRating component
populates the database with new song effects as songs are finished. For
this, the SongRating component listens to song start and end events emitted
by the MusicPlayer components: on song start, the SongRating component
records the current skin features, and on song end, the component computes
the difference between start and end feature values, and stores them into the
database as newly recorded song effect for use by the SongEvaluator.

6.1.4 Experience and results

The automotive demonstrator served primarily as a case study of the RE-
FLECT framework described in Chapter 3. Work on the demonstrator

214 6. Case studies

showed that the REFLECT framework was suitable for the creation of a
large, real-world prototype. Especially, the REFLECT framework proved
itself useful in the following respects:

• Simplification of assembly with service-style rules. As the number of
connectors grows significantly, a component-style, explicit connection
of ports would lead to hard to read and hard to maintain code in the
bundle container. By using service-style wildcard rules, the bundle
container code can be simplified significantly.

• Robustness vs. network failures and node shutdown. The component
life-cycle and the binding rules allow to create systems that are robust
again network failures and node shutdown with relative ease. With the
automotive demonstrator, a system that responds gracefully to single
UMPC shutdowns and re-establishes connections as soon as the re-
quired components become available.

• Capture/replay and confidence establishing inspection. The means for
system inspection that are offered by the framework’s management
console allowed to inspect and interact with the system quickly. Espe-
cially, the inspection means allowed to develop confidence in the proper
operation of the system even in the relatively new and complex setup.

• Thread confinement through event bus. A relatively surprising outcome
of the automotive demonstrator creator was that the event-based com-
munication facilities became adopted very heavily in several loops –
in the driving and comfort loop especially. By executing the loop’s
business logic in the event handling method, a thread-confined subsys-
tem was created within the loops that allowed to ignore inter-thread
synchronization issues; fortunately, the event processing latency that
is entailed by writing a majority if business code in the event handler
was tolerable for the overall system performance.

Altogether, implementing the automotive demonstrator on top of the
REEFLECT framework did show that a component-based framework-based
approach to the creation of physiological computing systems is promising for
simplifying the development efforts at hand.

6.2 Adaptive advertising 215

Figure 6.8: Adaptive advertising system interacting with viewer

6.2 Adaptive advertising

The adaptive advertising case study presented in this section showcases the
assume-guarantee framework for reconfigurable systems on a larger system.

6.2.1 Case study concept

The general idea of adaptive advertising is to adapt a displayed advertisement
to the current situation in front of it – whether there are several people just
passing by, a small group of persons watching the ad carefully, or just one
person in front of it waiting for someone else [29]. The system uses cameras
to observe the passers-by, and enables the ad to react to e.g. the number
of passers-by watching the advertisement, to discover their interest in the
advertisement by analysing their gaze direction and exposure time, or to
enable gesture-based interactions with a passer-by becoming interested in
the ad.

A simple scenario within the adaptive advertising setting is an adaptive
car advertisement, reacting to gestures of users in front of the display: By
moving around the display, pointing at items or looking at them, the viewers
influence the contents of the ad. Figure 6.8 shows an example lab installation

216 6. Case studies

Camera

Interaction Control

Render

Figure 6.9: Initial adaptive advertising architecture

of an adaptive car advertising.

In the following, we consider the application of the assume-guarantee
framework to the specification and verification of interesting system prop-
erties of adaptive advertising installations. For this, we first need to define
a desired global system property. In fact, there are two interesting global
system properties that must be satisfied. Expressed as contracts, the two
properties can be specified – at first, informally – as guarantees G1 and G2
as follows: (G1) Being an interactive ad, the system should react to a user in
front of the display. Furthermore, (G2) The content displayed must change at
least every ten seconds: an advertising campaign using a large-scale display
should not waste its capabilities by showing static content.

A first realisation of the system consists of four components (see Fig-
ure 6.9): a camera component for image acquisition, an interaction detection
component detecting gestures, a control component operating the car ad, and
a rendering component displaying the ad content. This simple realisation is
problematic, however: It cannot provide the guarantee that the displayed
content changes every ten seconds, as the car ad will remain static if no one
is interacting with it.

We therefore need to introduce a more complex behaviour. In fact, we
can apply the behaviour monitoring pattern described in Section 5.4.2. By
introducing a monitoring component observing whether someone is interact-
ing with the ad, the system can be made aware that it is about to violate
its contract. Then, a behaviour changing reconfiguration can be triggered
which alters the system such that it shows auto-active content generated by
a presentation component, e.g. an advertising movie or predefined animation
sequences (see Figure 6.10; components that are present, but disconnected
are shown in light gray). In a way, introducing a monitoring component

6.2 Adaptive advertising 217

responded

persThereIn

persThere

gesture

persThereIn
imgChange

alterContent

imgChange

responded

persThere

alterContent

signal1

signal2

persThere

signal2

alterContent

responded

gesture

signal1

gesture

alterContent

responded

persThere /
persThereIn

Person detected in the image

gesture Person makes a gesture

responded System responded to gesture imgChange Displayed image is animated

alterContent Rendered content is modified

signal1 /
signal2

Monitor emits a signal

Camera

Interaction

Monitoring 1

Monitoring 2 Presentation

Presentation

Render RenderCamera

Monitoring 2

Interaction

gesture

persThere

Control

ControlMonitoring 1

Figure 6.10: Enhanced adaptive advertising architecture using reconfigura-
tions

allows a partial solution to assume that the environment exhibits certain
features (e.g. always have someone interacting with the ad) that it does not
exhibit in the general case. Note that the second system (Figure 6.10, right)
also needs a monitoring component, as it again does not satisfy (G1): The
second system provides interactive content to its viewers, and therefore must
be changed as soon as a person is in front of the display, interacting with it.

6.2.2 Formalisation and verification

Now, we describe how the adaptive advertising case study can be specified by
reMITL-formulas and how the global system contract can be verified using
the real-time logic framework described in Chapter 4. For the formalisation

218 6. Case studies

of the adaptive advertising case study, we first define the system signature
Σsys = ((RExt, PExt), (RInt, P Int), (Ci, Cd)):

RExt = {persThereIn},

PExt = {imgChange, responded},

RInt = {Cam.persThereIn, Intr .persThere,Mon1 .gesture,Mon2 .persThere,Cont .gesture,

Rend .alterContent},

P Int = {Cam.persThere, Intr .gesture,Mon1 .signal1 ,Mon2 .signal2 ,Pres.responded ,

Pres.alterContent ,Cont .responded ,Cont .alterContent ,Rend .imgChange},

Ci = {(Mon1 .gesture, Intr .gesture), (Cont .gesture, Intr .gesture), (Intr .persThere,Cam.persThere),

(Rend .alterContent ,Cont .alterContent), (Mon2 .persThere,Cam.persThere),

(Rend .alterContent ,Pres.alterContent)},

Cd = {(persThereIn,Cam.persThereIn), (imgChange,Rend .imgChange), (responded ,Pres.responded)}

The reconfiguration rules are given by formulas where C1 is a conjunc-
tion of connection constraints defining “the system is in configuration 1”
(shown in Figure 6.10 on the left), and C2 denotes similarly “the system is
in configuration 2” (shown in Figure 6.10 on the right).

C1 = persThereIn ∼ Cam.persThereIn ∧ Intr .persThere ∼ Cam.persThere

∧Mon1 .gesture ∼ Intr .gesture ∧ Cont .gesture ∼ Intr .gesture

∧ Cont .responded ∼ responded ∧ Cont .alterContent ∼ Rend .alterContent

∧ Rend .imgChange ∼ imgChange

C2 = persThereIn ∼ Cam.persThereIn ∧ Cam.persThere ∼ Mon2 .persThere

∧ Pres.responded ∼ responded ∧ Pres.alterContent ∼ Rend .alterContent

∧ Rend .imgChange ∼ imgChange

The reconfiguration rules that we specify for the system are the following:

A = 2(C1 ∨ C2) ∧ 2(C1 ∧Mon1 .signal1 → 3[0,0.2]C2) ∧ 2(C2 ∧Mon2 .signal2 → 3[0,0.2]C1)

Next, the single components the system consists of are specified by the
following contracts (assumptions are > in each case):

GCamera = 2(Cam.persThere ↔ Cam.persThereIn)

GInteraction = 2(Intr .gesture ↔ Intr .persThere)

GControl = 2(Cont .responded ↔ Cont .gesture ∧ Cont .alterContent ↔ Cont .gesture)

GRender = 2(Rend .imgChange ↔ Rend .alterContent)

GPresentation = 2(Pres.alterContent ∧ ¬Pres.responded)

GMon1 = 2(2[0,3]¬Mon1 .gesture ↔ 3[3,3.5]Mon1 .signal1)

GMon2 = 2(2[0,0.5]Mon2 .persThere ↔ 3[0.5,0.7]Mon2 .signal2)

6.2 Adaptive advertising 219

Note that the guarantees of the monitoring components together with the
reconfiguration rules A express changes in configurations: The first config-
uration C1 (reacting to viewers) will be reconfigured in 3.7 seconds to the
second configuration C2 (showing animated content) if the scene in front of
the display stays empty for three seconds. This property can be derived
from the guarantee GMon1 together with the connection properties of C1.
Similarly, guarantee GMon2 together with A ensures that the system will be
changed within 0.9 seconds if a person is seen in front of the display for at
least 0.5 seconds.

The whole system Sys = (Σsys, (JAsysK, JGsysK), JAK, Csys) is a compos-
ite component where Csys is the set of all (correct) components the system
consists of, and (JAsysK, JGsysK) is the global system contract which can be
formulated as follows:

(Asys, Gsys) = (>, (23[0,10]imgChange) ∧ 2(2[0,0.5]persThere → 3[0,1]responded))

In order to prove that Sys is a correct composite component we must
prove the conditions (1)-(6) given in Def. 35. We assume that all compo-
nents in Csys are correct therefore condition (1) is satisfied. Conditions (2)
and (3) are trivially satisfied as we have chosen disjoint naming of compo-
nents and ports. Condition (5) is satisfied as A does not link ports of the
same component together, and makes no assumptions on the behaviour of
each single component. Finally, condition (6) can be seen as follows: The
only required port is persThereIn which is always connected to the cam-
era component Cam which in turn does not make any assumptions on the
valuation of this port. Finally, it remains to show condition (4): The in-
ferred contract guaranteed by the composition of all contracts of the single
components must be a refinement of the system contract:

(JAsysK, JGsysK)↑Σsys� ‖JAK
c∈Csys(JAcK, JGcK).

First, it can be easily shown that the parallel composition on the left hand
side yields the contract (J>K, J

∧
c∈Csys Gc ∧ AK). Then, by Cor. 2, we show

the refinement

(JAsysK, JGsysK)↑Σsys� (J>K, J
∧

c∈Csys

Gc ∧ AK)

by entailment of reMITL-formulas, i.e.

�Σsys (
∧

c∈Csys

Gc ∧ A)→ Gsys.

220 6. Case studies

For the sake of brevity, we will focus on discussing the system guarantee
2310imgChange. To prove this guarantee we have to show∧

c∈Csys

Gc ∧ A `Σsys 23[0,10]imgChange

(by soundness, cf. Thm. 5, and by rules (3) and (8)). In the following the left
hand side (the conjunction of all guarantees and A) is abbreviated by Γsys.

As a first step, we informally prove Γsys `Σsys 2(C2 → imgChange), i.e.,
we show that whenever the system is in configuration C2 also imgChange
holds: The internal component Pres guarantees that the content is con-
tinuously altered (i.e. Pres .alterContent is true), and since in C2, port
Pres .alterContent is connected to Rend .alterContent and component Rend
guarantees Rend .alterContent ↔ Rend .imgChange, imgChange is always
true because of the delegate connector between imgChange and Rend .imgChange
(in C2).

We proceed this proof by doing a case distinction on the formula

F = 2[0,3.5]C1 ∧2[0,3.5]¬Intr .gesture

which expresses that always, within the time period of 3.5 seconds, there
is no person in front of the display and additionally configuration C1 is ac-
tive. From F and its negated version ¬F (together with Γsys) we will derive
3[0,10]imgChange. We first prove Γsys, F `Σsys 3[0,10]imgChange.

(1) 2[0,3.5]Intr .gesture ∼ Mon1 .gesture from F , by rule (1) and (19i)
(2) 2[0,3.5]¬Intr .gesture ↔ ¬Mon1 .gesture from (1) by rule (22)
(3) 2[0,3.5]¬Intr .gesture from F by rule (1)
(4) 2[0,3.5]¬Mon1 .gesture from (2),(3) by rule (13)
(5) 2[0,3]¬Mon1 .gesture from (4) by rule (15)
(6) 3[3,3.5]Mon1 .signal1 from (5), GMon1 by rule (5)
(7) 3[0,3.5]Mon1 .signal1 from (6) by rule (16)
(8) 2[0,3.5]C1 from F by rule (1)
(9) 3[0,3.5](C1 ∧Mon1 .signal1) from (7),(8) by rule (20)
(10) 2[0,3.5](C1 ∧Mon1 .signal1 → 3[0,0.2]C2) from A by rule (1)
(11) 3[0,3.5]3[0,0.2]C2 from (9),(10) by rule (12)
(12) 3[0,3.7]C2 from (11) by rule (18)
(13) 2[0,3.7](C2 → imgChange) (see proof above), by rule (15)
(14) 3[0,3.7]imgChange from (12),(13) by rule (12)
(15) 3[0,10]imgChange from (14) by rule (16)

6.2 Adaptive advertising 221

For the other case, i.e. Γsys,¬F `Σsys 3[0,10]imgChange, we just in-
formally describe how 3[0,10]imgChange can be derived. Since we assume
that ¬F holds, we know ¬C1 ∨ 3[0,3.5]Intr .persThere. In case of ¬C1 it
follows by the assembly specification A that C2 is true which (as we have
shown above) immediately implies imgChange. If 3[0,3.5]Intr .gesture holds,
then it means that between 0 and 3.5 seconds, there must be Intr .gesture
true at some point. If the system, at this point, is in configuration C2

we argue the same way as before; otherwise the system is in configura-
tion C1, and in this case it is again straightforward since under configu-
ration C1, Intr .gesture is connected to imgChange. Finally, by rule (7),
we can conclude that Γsys `Σsys 3[0,10]imgChange. By rule (9), we get
Γsys `Σsys 23[0,10]imgChange, as 2Γsys is semantically the same as Γsys.

In this section, we have hence shown that the chosen component-based
design in fact satisfies the properties that we imposed in the beginning: the
system reacts promptly to viewers in front of the display, and the system
keeps showing animated content even if no viewer is interacting with it.

6.2.3 Experiences and results

In this section, we established a proof of correctness for a larger case study.
This case study has shown how the assume-guarantee framework described
in Chapter 4 can be applied to an real-world case study from the domain of
physiological computing. The results of the case study are as follows:

• Application to a larger system. The established proof of correctness
on the adaptive advertising display has shown that the the assume-
guarantee framework developed in this thesis is applicable to larger
systems.

• Insights on interactions. Establishing a proof of correctness in the
assume-guarantee framework is a demanding task, but at the same time
it allows to gain deep insights about subtle and intricate interactions of
component behaviours and reconfigurations. Using reMITL and the
accompanying framework allows for a better understanding about the
pitfalls that are involved in specified system behaviours. The insights
gained during the creation of a formal proof can be subsequently used to
improve on the quality of the implementation, and to avoid discovered
issues in the potential behaviour of the system.

222 6. Case studies

Overall, the case study has shown that the approach to the formal verifi-
cation of real-time, reconfigurable systems proposed in this thesis is a valid
and valuable approach enhancing on the state of the art on the verification
of reconfigurable systems.

6.3 Conclusion

The formal assume-guarantee framework for reconfigurable systems (first pre-
sented in Chapter 4) and the component-based software framework that is
the REFLECT framework (introduced in Chapter 3) have been applied to
two different case studies in this chapter.

The first case study, the REFLECT automotive demonstrator, shows a
real use case for the REFLECT framework and have been used to discuss
the impact of using the REFLECT framework for creating a physiological
computing application. More specifically, we have discussed the entailed sys-
tem configuration simplification, achieved increased robustness, the benefits
of having capture/replay facilities as well as a management console in place,
and the thread-confinement consequences of using (or abusing) the event
distribution facilities of the framework.

In the second case study, the adaptive advertisement system, we have
shown how the formal assume-guarantee framework for reconfigurable sys-
tems can be applied to prove that a system satisfies desired properties on a
larger system. The insights that were attained in the process of proof con-
struction helped to avoid issues in the behaviour of the implemented system.

Altogether, we have given evidence that both the REFLECT framework
and the assume-guarantee framework constitute useful and practical tools
whose use can provide advantages over creating physiological computing sys-
tems directly from scratch.

Chapter 7

Conclusion

This thesis has focused on the presentation of a comprehensive approach to
the software engineering of physiological computing applications. We have
considered the practical aspects of implementing physiological computing
applications as well as formal aspects for the verification of reconfigurations.
Furthermore, we have introduced a methodology that show how our formal
verification framework can be combined with implementation activities that
use the REFLECT framework. The complete approach, and the combination
of our contributions is shown in Figure 7.1.

Our approach addresses the verification of component-based systems un-
der reconfigurations. We have introduced a contract-based verification frame-
work that allows to verify whether a refinement between an expected be-
haviour and the initial system design exists. Furthermore, we have intro-
duced a component-based software framework that simplifies the implemen-
tation of a given physiological computing system design. Furthermore, we
have discussed how verification activities using our formal verification frame-
work should be combined with implementation activities with Scrum, and
have proposed a software development methodology for the creation of phys-
iological computing applications. Furthermore, we have introduced two re-
configuration patterns that show how both our formal verification framework
and the REFLECT framework benefit from each other in the implementation
of component-based reconfigurations.

224 7. Conclusion

Assume-guarantee
reasoning

Reconfiguration

Component-based
software engineering

Real-time temporal
logic

ve
ri

fy

P
h

ys
io

lo
gi

ca
l

co
m

p
u

ti
n

g

Framework

Application

OSGi

Component-
orientation

implement

Idea

A
gi

le

m
et

h
o

d
o

lo
gi

es

Reconfiguration

System
design

Expected
behaviour

Figure 7.1: Software engineering for physiological computing

7.1 Contributions

We have addressed implementation issues in physiological computing by pro-
viding a component-based software framework, the REFLECT framework.
We have discussed requirements of physiological computing applications, the
concepts that we used to satisfy these requirements, as well as details about
the implementation that we created, and how the implemented features per-
formed in the end.

Furthermore, we have provided solutions for verification issues that arose
from the use of reconfigurations in physiological computing applications. We
have provided a formal verification framework based on assume-guarantee

7.2 Discussion 225

contracts. The semantics of the contracts features a dense time domain that
allow for a more precise and natural specification of contracts for physiological
computing systems tht feature real-time behaviour. For the specification of
reconfigurations and contracts, we have introduced reMITL, an extension
of MITL with an operator for specifying component port connectivities.

We also investigated software development methodologies with the goal of
providing a frame for implementation activities using the REFLECT frame-
work and our formal verification framework together. We have shown how
formal verification activities should be combined with implementation activ-
ities, and discussed two reconfigurations patterns that showcase the use of
our formal verification framework as well as the REFLECT framework.

Finally, we have demonstrated that our approach is applicable to larger
systems by discussing the application of both our formal verification frame-
work as well as the REFLECT framework to a larger case study each. While
both case studies were implemented, the first case study, being the RE-
FLECT automotive demonstrator, focused on showcasing the applicability
of the REFLECT framework to a physiological computing application that
integrates four control loops (i.e. the emotional, effort, comfort, and driving
control loops). The second case study discussed the application of our formal
verification framework to the adaptive advertising case study, which repre-
sents a system that reacts to the viewers in front of it. Both case studies
showcase the successful application of our results to a larger software system.

7.2 Discussion

This thesis has covered a large variety of topics: from implementation to
formal verification and software development methodologies, which allowed
to gain insights in each topic on its own, but also in the synergies and conflicts
that emerged in each topic. In total, we present three findings which we think
are specifically worthwhile to share.

7.2.1 Genericity of software frameworks

When creating a software framework, we naturally strive towards the most
generic solutions, as our common computer science knowledge tells us that
a solution is better the more generic it is. Genericity promises reducing the
amount of duplications in code or models, as well as producing simple, clear

226 7. Conclusion

and powerful concepts. However, introducing more generic concepts means
they need to be specialised for the specific purpose that needs to be solved. In
a software framework, the specialisation of a generic programming interface
to a concrete application is mainly achieved through a setup phase preceding
the actual use of the programming interface, or specification of appropriate
parameters on programming interface calls. Needless to say, generic pro-
gramming interfaces introduce significant amounts of clutter in code using
them. This clutter can be reduced with proper use of encapsulation tech-
niques. However, it is also very well possible to introduce wrong abstractions
that do not align well with the programming effort at hand, and hence sig-
nificantly complicate software development efforts. It is therefore advisable
to be very careful when introducing new generic concepts.

That being said, it is also very well possible that a software framework is
generic without hindering software development activities, but neither help-
ing it. This would have been (almost) the case for the REFLECT framework
if we removed any data-specific features. However, the REFLECT frame-
work also shows an approach that bridges between a very generic framework
(i.e. component-based), and a specific application domain (i.e. physiological
computing). By building specific services on top of a generic framework that
allows for a relatively seamless extension of the provided infrastructure, we
were capable of offering both a generic and easy to use component framework,
and at the same time provide support specifically for physiological computing
(e.g. data context services, capture-replay support, and simple distribution
facilities).

Providing a generic framework that allows for specialised extensions hence
seems to be a feasible and promising approach for introducing powerful
generic concepts, and domain-specific services that together simplify imple-
mentation efforts.

7.2.2 Reconfigurations in the automotive demonstra-
tor case study

As the avid reader may have already noticed or suspected, the automotive
demonstrator makes no use of component reconfigurations, although all other
provided features and services of the REFLECT framework were used. Given
the fact that this thesis provides an extensive body of work specifically tar-
geted at the formal verification of reconfigurations, this may seem surprising.

7.2 Discussion 227

The explanation for this fact is very simple, however. The work within
the REFLECT project was not only to advance the state of the art with
respect to software infrastructures and computer technologies in the domain
of physiological computing, but also advance the state of the art with respect
to the physiology of emotion, cognitive effort, and physical comfort. The
created demonstrator was primarily concerned with demonstrating all results
achieved in the REFLECT project, and not only the software infrastructure.
Consequently, the logic of the loops that were created in each research stream
(emotion, cognitive effort, physical comfort) remained very simplistic, and
did not require a separation of normal operation from meta-reasoning that
can be achieved through software-level monitoring and reconfiguration. Any
addition of monitoring and reconfiguration to the automotive demonstrator
would have been artificial, and we hence refrained from superimposing the
use of reconfigurations in the automotive demonstrator.

7.2.3 Benefits of constant feedback

In the creation of the automotive demonstrator (presented in Section 6.1),
we have experienced the real value that continuous feedback offers to the
creation of a product on our own. During the conception and implementation
of first prototypes, we introduced joint installation and testing sessions in
Maranello on the deployed hardware (i.e. the three UMPCs installed in the
Ferrari California) roughly every three months for the first ten months, and
every month in the final four months. These installation and testing sessions
on the target hardware platform proved to be tremendously valuable for
understanding the real challenges of the application to create, as well as
highlighting the pressing issues that needed to be focused on. Also, the
feedback gained from the test drivers on issues in the system behaviour and
suggestions on how to improve the automotive demonstrator were valuable
for guiding the development efforts.

To give an example, the test driver hinted that lateral and longitudinal
accelerations are far more risky at high speed than at low speed. When
driving at 30 kilometers per hour, it is possible to create higher lateral and
longitudinal accelerations while still driving safe, as the car is moving slowly,
and provides the driver with a larger window of reaction. At higher speeds
such as 80 kilometers per hour, the same lateral and longitudinal accelerations
may be nearly unfeasible on existing roads, as they require much quicker
reactions and much more precise lateral and longitudinal control over the

228 7. Conclusion

car, and thus constitute a high risk driving style.

The constant installation and testing sessions – especially towards the end
of the development endeavour – had also beneficial organisational effects on
the development of the demonstrator overall: the repeated sessions helped
to raise the visibility of the efforts on the demonstrator, and allowed the
distributed development team to stay committed to the creation of the final
demonstrator. In a sense, the repeated sessions allowed the research partners
to understand that the created system was indeed real and was really to be
created. Furthermore, the documentation of the demonstrator state on each
testing session (through testing protocol documents, videos and pictures)
allowed the team to appreciate and understand the progress they made to-
wards the final automotive demonstrator that was created and successfully
presented.

7.3 Future work

Both the REFLECT framework and our formal verification framework pro-
vide grounds for future work and potentials for extensions.

Considering our formal verification framework, it would be possible to ex-
tend the semantics to make the number of existing component instances dy-
namic, following the approach of history-dependent automata [87]. History-
dependent automata introduce instance tokens in the state representation of
automata, as well as a mapping of token instances from the source state to
the target state with a state transition. A similar pooling and mapping ap-
proach may be used to keep track of live component instances, as well as to
allow to create and destroy component instances. Furthermore, it could be
worthwhile to introduce a syntax for specifying models (especially, for assem-
bly specifications) based on timed automata [7]. Timed automata may prove
to be a more natural tool for assembly specifications and the reconfigurations
they contain. Furthermore, the concept we introduced in our formal verifica-
tion framework of embedding connectors and connectivity in the semantics
of the formalism can be applied not only to dense real-time traces, but to
other formalisms as well in order to make changes in connectivity amenable
for verification.

Considering the REFLECT framework, it would be worthwhile to investi-
gate how the component, reconfiguration and data service concepts combine
with a more elaborate distribution facility that offers more sophisticated

7.4 Final words 229

knowledge about network topology, and more sophisticated (e.g. topology-
based) queries. Furthermore, it could be interesting to see how the software
monitoring aspect could be extended beyond the property-based and event-
based approaches our framework supports, and how well the new monitor-
ing approaches integrate with the framework concepts. Finally, it would be
worthwhile to investigate how the replay of captured data could be sped up
in a systematic way that would not alter the behaviour of the system - apart
from performing the operations faster. With captured runs being several
hours long, we have found that the only two viable ways are a) off-line data
analysis with mathematical simulation tools by replicating the algorithms
and behaviour in these tools, or b) using the real system and significantly
speed up the replay rate while accepting discrepancies in behaviour. Having
a systematic mean for replaying data to a system in a fast-forward logical
time while preserving the system behaviour would be a very worthwhile tool
for off-line experimentation with physiological computing systems.

7.4 Final words

This thesis has presented a software engineering approach to the creation of
physiological computing applications that is inehently component-oriented,
as we believe that component-orientation is a strong concept for the creation
of software systems. For physiological computing systems especially, we be-
lieve that separating normal operation from meta-reasoning that is enabled
through reconfigurations that change a system’s architecture offer significant
benefits. We have contributed both a component-based software framework
for the realisation of physiological computing systems, as well as a formal
framework for the verification of systems under reconfigurations. By provid-
ing a methodology, we have also provided a software development process
frame for embedding both frameworks.

230 7. Conclusion

Bibliography

[1] M. Abadi and L. Lamport. Composing Specifications. ACM Transac-
tions on Programming Languages and Systems, 15(1):73–132, 1993.

[2] Corporate Act-Net Consortium. The active database management sys-
tem manifesto: a rulebase of ADBMS features. ACM SIGMOD Record,
25:40–49, 1996.

[3] N. Aguirre and T. S. E. Maibaum. Hierarchical Temporal Specifications
of Dynamically Reconfigurable Component Based Systems. Electronic
Notes in Theoretical Computer Science, 108:69–81, 2004.

[4] J. Aldrich. Using Types to Enforce Architectural Structure. In Pro-
ceedings of the Seventh Working IEEE/IFIP Conference on Software
Architecture, pages 211–220. IEEE Computer Society, 2008.

[5] R. Allen, R. Douence, and D. Garlan. Specifying and Analyzing Dy-
namic Software Architectures. In Fundamental Approaches to Software
Engineering, volume 1382 of Lecture Notes in Computer Science, pages
21–37. Springer, 1998.

[6] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[7] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[8] R. Alur, T. Feder, and . A. Henzinger. The Benefits of Relaxing Punc-
tuality. Journal of the ACM, 43(1):116–146, 1996.

[9] R. Alur and T. A. Henzinger. Logics and Models of Real Time: A
Survey. In Real-Time: Theory in Practice, volume 600 of Lecture Notes
in Computer Science, pages 74–106. Springer, 1992.

232 BIBLIOGRAPHY

[10] R. Alur and T. A. Henzinger. Real-Time Logics: Complexity and
Expressiveness. Information and Computation, 104(1):35–77, 1993.

[11] R. Alur and T. A. Henzinger. A Really Temporal Logic. Journal of
the ACM, 41(1):181–204, 1994.

[12] Apache felix maven scr plugin. http://felix.apache.org/
site/apache-felix-maven-scr-plugin.html, 2010. visited
2011-10-21.

[13] C. Baier, M. Sirjani, F. Arbab, and J. Rutten. Modeling component
connectors in reo by constraint automata. Science of Computer Pro-
gramming, 61:75–113, 2006.

[14] H. Balzert. Lehrbuch der Softwaretechnik: Software-Management,
Software-Qualitätssicherung, Unternehmensmodellierung. Spektrum
Akademischer Verlag, 1998.

[15] W. Barfield and T. Caudell. Fundamentals of wearable computers and
augumented reality. Lawrence Erlbaum, 2000.

[16] H. Barringer, R. Kuiper, and A. Pnueli. A Really Abstract Con-
current Model and its Temporal Logic. In Proceedings of the 13th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 173–183. ACM, 1986.

[17] T. Barros, L. Henrio, and E. Madelaine. Verification of Distributed
Hierarchical Components. Electronic Notes in Theoretical Computer
Science, 160:41–55, 2006.

[18] N. Bartlett and H. Seeberger. Component Oriented Development in
OSGi with DS, Spring and iPOJO. EclipseCon 2009 Tutorial. http:
//www.eclipsecon.org/2009/sessions?id=245, 2009. vis-
ited 2011-10-21.

[19] A. Basso, A. Bolotov, A. Basukoski, V. Getov, L. Henrio, and M. Ur-
banski. Specification and Verification of Reconfiguration Protocols in
Grid Component Systems. Technical report, Institute on Programming
Model (WP3), 2006. CoreGRID Technical Report, TR-0042.

http://felix.apache.org/site/apache-felix-maven-scr-plugin.html
http://felix.apache.org/site/apache-felix-maven-scr-plugin.html
http://www.eclipsecon.org/2009/sessions?id=245
http://www.eclipsecon.org/2009/sessions?id=245

BIBLIOGRAPHY 233

[20] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time
Components in BIP. In Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods, pages 3–12.
IEEE Computer Society, 2006.

[21] H. Baumeister, F. Hacklinger, R. Hennicker, A. Knapp, and M. Wirs-
ing. A Component Model for Architectural Programming. Electronic
Notes in Theoretical Computer Science, 160:75–96, 2006.

[22] K. Beck. Extreme programming explained: embrace change. Addison-
Wesley Professional, 2000.

[23] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunning-
ham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries,
J. Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Suther-
land, and D. Thomas. Manifesto for Agile Software Development.
agilemanifesto.org, 2001. visited 2011-10-21.

[24] G. Bell and P. Dourish. Yesterday’s tomorrows: notes on ubiquitous
computing’s dominant vision. Personal and Ubiquitous Computing,
11(2):133–143, 2006.

[25] S. Bensalem, M. Bozga, J. Sifakis, and T. Nguyen. Compositional
Verification for Component-Based Systems and Application. In Pro-
ceedings of the 6th International Symposium on Automated Technology
for Verification and Analysis, pages 64–79. Springer-Verlag, 2008.

[26] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis. Multiple Viewpoint Contract-Based Specification and
Design. In F. S. Boer, M. M. Bonsangue, S. Graf, and W. Roever,
editors, Formal Methods for Components and Objects, pages 200–225.
Springer, 2008.

[27] G. M. Bertolotti, R. Lombardi A. Cristiani and, M. Stanojevic, M. Rib-
aric, and N. Tomasevic. D5.3 Third Year Report: Evaluation of
Case Studies. Technical report, Fraunhofer FIRST, 2011. http:
//reflect.pst.ifi.lmu.de/images/pdf/d5.3.pdf, visited
2011-10-21.

[28] G. M. Bertolotti, A. Cristiani, R. Lombardi, M. Ribaric, N. Tomase-
vic, and M. Stanojevic. Self-Adaptive Prototype for Seat Adaption.

agilemanifesto.org
http://reflect.pst.ifi.lmu.de/images/pdf/d5.3.pdf
http://reflect.pst.ifi.lmu.de/images/pdf/d5.3.pdf

234 BIBLIOGRAPHY

In Fourth IEEE International Conference on Self-Adaptive and Self-
Organizing Systems Workshop, pages 136–141. IEEE, 2010.

[29] G. Beyer, C. Mayer, C. Kroiß, and A. Schroeder. Person Aware Adver-
tising Displays: Emotional, Cognitive, Physical Adaptation Capabili-
ties for Contact Exploitation. In 1st Workshop on Pervasive Advertis-
ing, 2009.

[30] B. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

[31] B. Boehm. A spiral model of software development and enhancement.
ACM SIGSOFT Software Engineering Notes, 11(4):14–24, 1986.

[32] B. Boehm and R. Turner. Rebalancing Your Organization’s Agility
and Discipline. In Proceedings of the Third XP Agile Universe Confer-
ence, volume 2753 of Lecture Notes in Computer Science, pages 1–8.
Springer, 2003.

[33] J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger. A sur-
vey of self-management in dynamic software architecture specifications.
In Proceedings of the 1st ACM SIGSOFT workshop on Self-managed
systems, pages 28–33. ACM, 2004.

[34] D. Brin. The transparent society: Will technology force us to choose
between privacy and freedom? Basic Books, 1998.

[35] R. A. Brooks. Intelligence without representation. Artificial intelli-
gence, 47(1-3):139–159, 1991.

[36] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J. Stefani. The
FRACTAL component model and its support in Java: Experiences
with Auto-adaptive and Reconfigurable Systems. Software — Practice
& Experience, 36:1257–1284, September 2006.

[37] R. Bruni, A. Bucchiarone, S. Gnesi, D. Hirsch, and A. Lluch-Lafuente.
Graph-Based Design and Analysis of Dynamic Software Architectures.
In Concurrency, Graphs and Models, volume 5065 of Lecture Notes in
Computer Science, pages 37–56. Springer, 2008.

[38] R. Bruni, M. Hölzl, N. Koch, A. Lluch-Lafuente, P. Mayer, U. Monta-
nari, A. Schroeder, and M. Wirsing. A Service-Oriented UML Profile

BIBLIOGRAPHY 235

with Formal Support. In Proceedings of the 7th International Joint
Conference on Service-Oriented Computing and ServiceWave, volume
5900 of Lecture Notes in Computer Science, pages 455–469, 2009.

[39] P. P. Caffier, U. Erdmann, and P. Ullsperger. Experimental evaluation
of eye-blink parameters as a drowsiness measure. European Journal of
Applied Physiology, 89:319–325, 2003.

[40] C. Carrez, A. Fantechi, and E. Najm. Assembling components with
behavioural contracts. Annales des Télécommunications, 60(7-8):989–
1022, 2005.

[41] H. Cervantes and R. S. Hall. Automating Service Dependency Man-
agement in a Service-Oriented Component Model. In Proceedings of
the 6th ICSE Workshop on Component-Based Software Engineering:
Automated Reasoning and Prediction, 2003.

[42] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and C. L. Talcott, editors. All About Maude – A High-Performance
Logical Framework, How to Specify, Program and Verify Systems in
Rewriting Logic, volume 4350 of Lecture Notes in Computer Science.
Springer, 2007.

[43] A. Damasio. Descartes’ Error. G.P. Putnam, 1994.

[44] A. Damasio. The Feeling of What Happens: Body and Emotion in the
Making of Consciousness. Mariner Books, 2000.

[45] V. Dehlen. DiVA methodology. Technical report, SINTEF, 2010.

[46] B. Delahaye and B. Caillaud. A Model for Probabilistic Reasoning
on Assume/Guarantee Contracts. Research Report RR-6719, INRIA,
2008.

[47] G. Elliott. Global Business Information Technology: an integrated sys-
tems approach. Pearson Education, 2004.

[48] C. Escoffier, R. S. Hall, and P. Lalanda. iPOJO: an Extensible Service-
Oriented Component Framework. In IEEE International Conference
on Services Computing, pages 474 – 481. IEEE Computer Society, 2007.

236 BIBLIOGRAPHY

[49] C. Evers, A. Hoffmann, D. Saur, K. Geihs, and J. M. Leimeister.
Ableitung von Anforderungen zum Adaptionsverhalten in ubiquitären
adaptiven Anwendungen. Electronic Communications of the EASST,
37, 2011.

[50] S. Fagorzi and E. Zucca. A Calculus of Components with Dynamic
Type-Checking. Electronic Notes in Theoretical Computer Science,
182:73–90, 2007.

[51] S. H. Fairclough. Fundamentals of physiological computing. Interacting
with Computers, 21(1–2):133–145, 2009.

[52] S. H. Fairclough and L. Venables. Psychophysiological candidates for
biocybernetic control of adaptive automation. In D. de Waard, K. A.
Brookhuis, and C. M. Weikert, editors, Human Factors in Design,
pages 177–189. Shaker, 2004.

[53] M. Fowler. Pojo. http://www.martinfowler.com/bliki/
POJO.html, 2000. visited 2011-10-21.

[54] M. Fowler. Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing, 2002.

[55] M. Fowler. Inversion of control containers and the dependency injection
pattern. http://martinfowler.com/articles/injection.
html, 2004. visited 2011-10-21.

[56] M. Fowler. The New Methodology. http://martinfowler.com/
articles/newMethodology.html, 2005. visited 2011-10-21.

[57] M. Fowler. Domain-Specific Languages. Addison-Wesley Professional,
2010.

[58] M. Fowler and J. Highsmith. The agile manifesto. http://drdobbs.
com/open-source/184414755, 2001. visited 2011-10-21.

[59] E. Gat. Three-layer architectures, pages 195–210. MIT Press, 1998.

[60] K. Geihs, C. Evers, R. Reichle, M. Wagner, and M. U. Khan. De-
velopment Support for QoS-Aware Service-Adaptation in Ubiquitous
Computing Applications. In Proceedings of the 2011 ACM Symposium
on Applied Computing, pages 197–202. ACM, 2011.

http://www.martinfowler.com/bliki/POJO.html
http://www.martinfowler.com/bliki/POJO.html
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/newMethodology.html
http://drdobbs.com/open-source/184414755
http://drdobbs.com/open-source/184414755

BIBLIOGRAPHY 237

[61] Gemini Blueprint. www.eclipse.org/gemini/blueprint/. vis-
ited 2011-10-21.

[62] B. Goetz, J. Bloch, J. Bowbeer, D. Lea, D. Holmes, and T. Peierls.
Java Concurrency in Practice. Addison-Wesley Professional, 2006.

[63] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java (TM) Language
Specification. Addison-Wesley, 3 edition, 2005.

[64] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location
Protocol, Version 2. Technical report, The Internet Engineering Task
Force, 1999. RFC 2608 http://www.ietf.org/rfc/rfc2608.
txt, visited 2011-10-21.

[65] M. Hammer. How To Touch a Running System – Reconfiguration
of Stateful Components. PhD thesis, Ludwig-Maximilians Universität
München, 2009.

[66] P. A. Hancock and J. L. Szalma. The future of neuroergonomics. The-
oretical Issues in Ergonomics Science, 4(1-2):238–249, 2003.

[67] G. K. Hanssen, H. Westerheim, and F. O. Bjørnson. Tailoring RUP
to a defined project type: A case study. In F. Bomarius and S. Komi-
Sirviö, editors, Product Focused Software Process Improvement, volume
3547 of Lecture Notes in Computer Science, pages 209–228. Springer,
2005.

[68] B. Hayes-Roth. A blackboard architecture for control. Artificial Intel-
ligence, 26(3):251–321, 1985.

[69] B. Henderson-Sellers and P. Giorgini, editors. Agent-Oriented Method-
ologies. Idea Group Publishing, 2005.

[70] R. Höhn and S. Höppner. Das V-Modell XT: Grundlagen, Methodik
und Anwendungen. Springer, 2008.

[71] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

www.eclipse.org/gemini/blueprint/
http://www.ietf.org/rfc/rfc2608.txt
http://www.ietf.org/rfc/rfc2608.txt

238 BIBLIOGRAPHY

[72] J. Hooman. A compositional proof theory for real-time distributed
message passing. In Parallel Architectures and Languages Europe, Vol-
ume II: Parallel Languages, volume 259 of Lecture Notes in Computer
Science, pages 315–332. Springer, 1987.

[73] J. Hooman and J. Widom. A Temporal-Logic Based Compositional
Proof System for Real-Time Message Passing. In Parallel Architectures
and Languages Europe, Volume II: Parallel Languages, volume 366 of
Lecture Notes in Computer Science, pages 424–441. Springer, 1989.

[74] ISO/IEC 9126-1:2001 Software engineering – Product quality – Part 1:
Quality model, 2001.

[75] J. H. Janssen, E. L. van den Broek, and J. Westerink. Personalized
affective music player. In Proceedings of the IEEE 3rd International
Conference on Affective Computing and Intelligent Interaction, pages
704 – 709. IEEE, 2009.

[76] A. Knapp, G. Marczynski, M. Wirsing, and A. Zawlocki. A heteroge-
neous approach to service-oriented systems specification. In Proceedings
of the 2010 ACM Symposium on Applied Computing, pages 2477–2484.
ACM, 2010.

[77] R. Koymans. Specifying Real-Time Properties with Metric Temporal
Logic. Real-Time Systems, 2(4):255–299, 1990.

[78] J. Kramer and J. Magee. The evolving philosophers problem: Dy-
namic change management. IEEE Transactions on Software Engineer-
ing, 16(11):1293–1306, 1990.

[79] P. Kruchten. The Rational Unified Process: An Introduction. Addison
Wesley, 2 edition, 2000.

[80] C. Larman and B. Vodde. Practices for Scaling Lean & Agile De-
velopment: Large, Multisite, and Offshore Product Development with
Large-Scale Scrum. Addison-Wesley Professional, 2010.

[81] K. Lau and Z. Wang. Software Component Models. IEEE Transactions
on Software Engineering, 33(10):709–724, 2007.

BIBLIOGRAPHY 239

[82] L. Leahu, P. Sengers, and M. Mateas. Interactionist AI and the promise
of ubicomp, or, how to put your box in the world without putting the
world in your box. In Proceedings of the 10th International Conference
on Ubiquitous computing, volume 344 of ACM International Conference
Proceeding Series, pages 134–143. ACM, 2008.

[83] B. Lee. I don’t get Spring. http://blog.crazybob.org/2006/
01/i-dont-get-spring.html, 2006. visited 2011-10-21.

[84] H. R. Lewis. A Logic of Concrete Time Intervals (Extended Abstract).
In Proceedings of the Fifth Annual IEEE Symposium on Logic in Com-
puter Science, pages 380–389. IEEE Computer Society, 1990.

[85] N. Medvidovic. ADLs and dynamic architecture changes. In Joint
proceedings of the second international software architecture workshop
and international workshop on multiple perspectives in software devel-
opment, pages 24–27. ACM, 1996.

[86] J. Misra and K. M. Chandy. Proofs of Networks of Processes. IEEE
Transactions on Software Engineering, 7(4):417–426, 1981.

[87] U. Montanari and M. Pistore. An Introduction to History Depen-
dent Automata. Electronic Notes in Theoretical Computer Science,
10(0):170–188, 1998.

[88] L. J. M. Mulder. Measurement and analysis methods of heart rate
and respiration for use in applied environments. Biological Psychology,
34(2-3):205–236, 1992.

[89] D. A. Norman. The Design of Future Things. Basic Books, 2007.

[90] P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-
Time Maude. Higher-Order and Symbolic Computation, 20:161–196,
2007.

[91] OSGi Service Platform Compendium Specification. Release 4, Version
4.2, 2009.

[92] OSGi Service Platform Core Specification. Release 4, Version 4.2, 2009.

http://blog.crazybob.org/2006/01/i-dont-get-spring.html
http://blog.crazybob.org/2006/01/i-dont-get-spring.html

240 BIBLIOGRAPHY

[93] J. S. Ostroff. Composition and Refinement of Discrete Real-Time Sys-
tems. ACM Transactions on Software Engineering and Methodology,
8(1):1–48, 1999.

[94] P. Parizek and F. Plasil. Assume-guarantee verification of software
components in SOFA 2 framework. IET Software, 4(3):210–211, 2010.

[95] O. Pedreira, M. Piattini, M. R. Luaces, and N. R. Brisaboa. A sys-
tematic review of software process tailoring. ACM SIGSOFT Software
Engineering Notes, 32(3):1–6, 2007.

[96] Pervasive Adaptation - background document. ftp://ftp.cordis.
europa.eu/pub/ist/docs/fet/ie-jan07-peradapt-01.
pdf, 2006. visited 2011-10-21.

[97] R. W. Picard. Affective Computing. MIT Press, 1997.

[98] R. W. Picard. Affective computing: challenges. nternational Journal
of Human-Computer Studies, 59(1–2):55–64, 2003.

[99] R. W. Picard and J. Klein. Computers that recognise and respond to
user emotion: theoretical and practical implications. Interacting with
computers, 14(2):141–169, 2002.

[100] A. J. Ramirez and B. H. C. Cheng. Design patterns for developing
dynamically adaptive systems. In ICSE Workshop on Software Engi-
neering for Adaptive and Self-Managing Systems, pages 49–58. ACM,
2010.

[101] JavaTM Remote Method Invocation Specification. http:
//download.oracle.com/javase/7/docs/platform/rmi/
spec/rmi-title.html. visited 2011-10-21.

[102] W. W. Royce. Managing the development of large software systems:
concepts and techniques. In Proceedings of the 9th international confer-
ence on Software Engineering, pages 328–338. IEEE Computer Society
Press, 1987.

[103] M. Satyanarayanan. Pervasive Computing: Vision and Challenges.
IEEE Personal Communications, 8(4):10–17, 2002.

ftp://ftp.cordis.europa.eu/pub/ist/docs/fet/ie-jan07-peradapt-01.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/fet/ie-jan07-peradapt-01.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/fet/ie-jan07-peradapt-01.pdf
http://download.oracle.com/javase/7/docs/platform/rmi/spec/rmi-title.html
http://download.oracle.com/javase/7/docs/platform/rmi/spec/rmi-title.html
http://download.oracle.com/javase/7/docs/platform/rmi/spec/rmi-title.html

BIBLIOGRAPHY 241

[104] P. Schobbens, J. Raskin, and T. A. Henzinger. Axioms for real-time
logics. Theoretical Computer Science, 274(1-2):151–182, 2002.

[105] A. Schroeder, C. Kroiß, and T. Mair. Context Acquisition and Acting
in Pervasive Physiological Computing. In Proceedings of the 7th Inter-
national ICST Conference on Mobile and Ubiquitous Systems, 2010.

[106] Schroeder, A. and Bauer, S. S. and Wirsing, M. A contract-based
approach to adaptivity. Logic and Algebraic Programming, 80:180 –
193, 2011.

[107] K. Schwaber and M. Beedle. Agile Software Development with Scrum.
Prentice Hall, 2002.

[108] K. Schwaber and J. Sutherland. Scrum guide. http://www.scrum.
org/scrumguides/, 2011. visited 2011-10-21.

[109] M. S. Schwartz and F. Andrasik. Biofeedback: A Practitioner’s Guide.
The Guilford Press, 3 edition, 2005.

[110] N. B. Serbedzija. Reflective Computing – Naturally Artificial. In
Jeremy Pitt, editor, This Pervasive Day: The Potential and Perils
of Pervasive Computing. Imperial College Press, 2011.

[111] N. B. Serbedzija and S. H. Fairclough. Biocybernetic loop: From aware-
ness to evolution. In IEEE Congress on Evolutionary Computation,
pages 2063–2069. IEEE, 2009.

[112] A. K. Shuja and J. Krebs. IBM Rational Unified Process Reference and
Certification Guide: Solution Designer. IBM Press, 1 edition, 2008.

[113] M. Simonot and V. Aponte. A Declarative Formal Approach to Dy-
namic Reconfiguration. In Proceedings of the 1st international work-
shop on Open component ecosystems, pages 1–10. ACM, 2009.

[114] I. Sommerville. Software Engineering. Addison-Wesley, 9 edition, 2010.

[115] I. Sommerville and P. Sawyer. Viewpoints: principles, problems and
a practical approach to requirements engineering. Annals of Software
Engineering, 3:101–130, 1997.

http://www.scrum.org/scrumguides/
http://www.scrum.org/scrumguides/

242 BIBLIOGRAPHY

[116] Spring 3 reference documentation. http://
static.springsource.org/spring/docs/
3.0.x/spring-framework-reference/pdf/
spring-framework-reference.pdf, 2010. visited 2011-10-
21.

[117] C. Szyperski, D. Gruntz, and S. Murer. Component software: beyond
object-oriented programming. Addison-Wesley Professional, 2002.

[118] D. S. Tan and A. Nijholt, editors. Brain-Computer Interfaces. Ap-
plying our Minds to Human-Computer Interaction. Human–Computer
Interaction Series. Springer, 1 edition, 2010.

[119] R. Vanbrabant. Google Guice: Agile Lightweight Dependency Injection
Framework. Apress, 2008.

[120] M. Weiser. The computer for the 21st century. ACM SIGMOBILE
Mobile Computing and Communications Review, 3(3):3–11, 1999.

[121] M. Wirsing. Algebraic Specification. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B: Formal Models and
Sematics (B), pages 675–788. Elsevier and MIT Press, 1990.

[122] M. Wirsing, S. S. Bauer, and A. Schroeder. Modeling and Analyzing
Adaptive User-Centric Systems in Real-Time Maude. In Proceedings
of the First International Workshop on Rewriting Techniques for Real-
Time Systems, volume 36 of EPTCS, pages 1–25, 2010.

[123] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multi-
agent systems: The gaia methodology. ACM Transactions on Software
Engineering and Methodology, 12:317–370, 2003.

[124] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang. A survey of affect
recognition methods: audio, visual and spontaneous expressions. In
Proceedings of the 9th international conference on Multimodal inter-
faces, pages 126–133. ACM, 2007.

[125] J. Zhang and B. H. C. Cheng. Model-based development of dynamically
adaptive software. In Proceedings of the 28th international conference
on Software engineering, pages 371–380. ACM, 2006.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/pdf/spring-framework-reference.pdf
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/pdf/spring-framework-reference.pdf
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/pdf/spring-framework-reference.pdf
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/pdf/spring-framework-reference.pdf

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Approach
	Contributions
	Reflect
	Structure

	Background
	Physiological computing
	Component-based software
	OSGi
	Component-based formal analysis
	Software development methodology
	Conclusion

	Component framework for application development
	Requirements
	Framework concepts
	Implementation
	Related OSGi component frameworks
	Conclusion

	Specifying and verifying systems under reconfiguration
	Assume-guarantee reasoning and reconfiguration
	Real-time logic for reconfiguration
	Simple framework application case study
	Related work
	Conclusion

	Methodology
	Standalone verification of reconfigurations
	Combining formal verification and Scrum
	Informal design modelling
	Reconfiguration patterns in physiological computing
	Related work
	Conclusion

	Case studies
	Automotive demonstrator case study
	Adaptive advertising
	Conclusion

	Conclusion
	Contributions
	Discussion
	Future work
	Final words

