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Chapter 1

Introduction

Seeing is one of the most fundamental ways how we perceive our surround-
ings, and although the physical theory of light is well established, science
starts only now to understand the detailed neuronal principles of vision. It
is well known that the retina at the back of the eye is the central conver-
sion unit from the incoming light stimulus to neuronal activity. Namely,
this intricate neuronal network detects the visual stimulus via photorecep-
tors, processes the visual information and finally relays this information to
higher brain areas via electric action potentials (or spikes), the “language”
of the brain. Thus, the retina becomes not only an essential research system
for understanding vision, but opens the perspective of gaining fundamental
insights into neuronal coding strategies of nervous systems in general.

An important ingredient of the oculomotor strategy to acquire visual
information are fast eye movements, denoted saccades. For example, when
we look at a face, our gaze fixes a certain feature like the mouth, and then
jumps to another feature like the nose. In other words, periods of visual
“fixation” are interleaved with rapid eye movements. Even though saccades
can be attributed to the foveal organization of the (human) retina, these eye
movements are also present in animals without fovea (Land 1999). Due to
the importance of saccades, a genuine understanding of vision has to include
their role for visual information processing.

This thesis aims at elucidating the precise connection between saccades
and neuronal coding in the retina. We try to understand whether saccades
can elicit spiking responses, how these responses encode information and
whether the visual stimulus before, during or after a saccade predominantly
determines the neuronal activity. In order to answer these questions, we
perform in vitro electrophysiological recordings of the action potentials gen-
erated by retinal ganglion cells, the output neurons of the retina. Their
axons form the optic nerve, which transmits the encoded visual information
to higher brain areas.

All studies in this thesis are performed on amphibian axolotl and frog
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8 Chapter 1. Introduction

retinas since they enable long and stable recordings. In particular, amphib-
ian retinas are much less sensitive to temperature as compared to mam-
malian systems.

The experimental setup should record the population activity of retinal
ganglion cells on the level of single spikes. For that reason, we employ a
multi-electrode array (MEA), that is, a miniature 8×8 square grid of point-
shaped electrodes on a glass plate. We flat-mount the isolated retina (with-
out the optic nerve) onto the plate, which allows for simultaneous recording
from several ganglion cells. A computer monitor and a lens project a time-
varying visual stimulus directly onto the retina. This enables a systematic
study of the input-output relationship based on the information processing
in the retina. We imitate saccadic eye movements during experiments via
corresponding shifts of the visual image.

We will see how the spike latency emerges as salient feature of the neu-
ronal response following a saccade, that is, the time difference between the
saccade onset and the first elicited spike. Interestingly, spike latencies have
attracted attention in recent studies as an alternative neuronal coding strat-
egy (Gollisch and Meister 2008), which allows for faster information pro-
cessing than the commonly advertised spike rate. Along the same lines, the
neuronal response immediately following a saccade might contain the most
information about the visual stimulus (Segev et al. 2007).

We will study in detail how the latency depends on the presented (time-
dependent) stimulus. Specifically, we will compare the experimental data
to a model based on the receptive field of a retinal ganglion cell, that is,
the area of the visual field a particular ganglion cell is sensitive to. Via
theoretical calculations, we derive a simple formula for the activation of the
ganglion cell by the visual stimulus. This formula solely depends on the
center location of the receptive field. We then investigate how the presented
image relative to this location influences the spiking response. In case the
visual images before and after a saccade are the same, we study the influence
of the time-dependent trajectory of the visual image during a saccade. Thus,
our approach inherently takes the important role of saccades for vision into
account, which has often been neglected in previous studies.

So far we have considered individual ganglion cells. However, a central
topic concerning neuronal networks is the question how neurons interact to
processes information. Only the concerted activity of billions of neurons in
the human brain effect its amazing capabilities. In the retina, information
processing strongly depends on the specific connections between and among
the various cell classes.

The second part of this thesis aims at a quantification of pairwise and
higher-order interaction strengths between retinal ganglion cells. This re-
quires simultaneous recordings from several cells, which is precisely the main
feature of the MEA setup.
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For the quantification, we first follow the approach by Schneidman et al.
(2006) and test whether Ising models from statistical physics (that is, pair-
wise interactions) can reproduce the spiking pattern probabilities of a gan-
glion cell population. Ising models have been extensively studied in physics;
in their original form, they describe a regular arrangement of electronic spins
which influence their neighbors. Since we are interested in the internal wiring
of the retina, we record the spontaneous neuronal activity, in the absence of
any visual stimulus, and thus omit potential stimulus-induced correlations.
This is different from the study by Schneidman et al. (2006), who present
“natural movies” to the retina. Next, we explicitly include third-order in-
teractions into the model, and quantify the improvement for reproducing
the experimental spiking statistics. Thus, we can estimate the importance
of third-order interactions in the retina.

Outline of the thesis In chapter 2, we illustrate the laminar organization
of the various cell types in the retina, and provide an overview of research
results concerning (saccadic) eye movements and information processing in
the retina.

We explain the experimental methods of this thesis in chapter 3, in-
cluding a short introduction of the MEA (multi-electrode array) setup. In
particular, we describe the difficulties associated with extracting individual
action potentials from the recorded voltage traces.

Chapter 4 constitutes the first main results part of the present thesis,
where we investigate neuronal coding schemes in the presence of saccadic
eye movements. The last section of the chapter describes the effects of
pharmacology on information processing in the retina.

In chapter 5, we review several concepts from statistical physics and
information theory applied to neuronal networks, in order to provide the
theoretical background for the following chapter.

Finally, in chapter 6, we apply these concepts to the spontaneous spiking
activity of a neuronal population. We first test whether the Ising model
(i.e., pairwise interactions) suffices to describe the spiking statistics, and
then compare it to an extended model with explicit third-order interactions.



10 Chapter 1. Introduction



Chapter 2

Overview: Research on
Retina

This chapter reviews several aspects of the present neurobiological research
on the retina. We start with a broad introduction to the anatomy of the
eye and the retina at the back of the eyecup, then focus specifically on the
laminar organization of the various cell types in the retina and finally shift
the attention to saccadic eye movements, which are particularly important
for the present thesis.

Lens

Sclera

Optic nerve

Vitreous

Retina

Cornea

Figure 2.1: Schematic illustration of the human eye (image adapted from
Martinez-Conde et al. (2004), with permission). Light enters the eye from the
right and is projected via the lens onto the retina, which is located at the oppo-
site side of the eyecup. After several processing steps inside the retina, the retinal
ganglion cells transmit the visual information via their axons to higher brain areas.
Note that the optic nerve consists precisely of these axons.
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12 Chapter 2. Overview: Research on Retina

Figure 2.1 shows an overview of the anatomical organization of the eye,
with the retina attached to the back part of the eyecup. Note that the retina
is the first neuronal processing unit of visual information and thus part of
the brain. The optic nerve consists of the axons of the retinal ganglion cells
and transfers the visual information to higher brain areas.
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Figure 2.2: Laminar structure of the retina (image adapted from Wässle (2004),
with permission). The retina consists of several cell classes, namely: rods (1), cones
(2), horizontal cells (3), bipolar cells (4), amacrine cells (5) and retinal ganglion
cells (6). The various layers read ONL (outer nuclear layer, containing the pho-
toreceptors), OPL (outer plexiform layer), INL (inner nuclear layer containing the
bipolar and horizontal cells), IPL (inner plexiform layer), GCL (ganglion cell layer),
and NFL (optic nerve fiber layer).

Research on neuronal tissues and the retina in particular dates back to
the pioneering work by Cajal (1894). Already at the end of the 19th century,
Cajal characterized several cell types inside the retina and described its lam-
inar organization (see figure 2.2). Specifically, when light reaches the retina,
it is detected by two classes of photoreceptors, rods and cones. Broadly
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speaking, cones are responsible for color vision at bright (photopic) daylight
conditions, whereas rods can detect single photons at low (scotopic) light
levels (Wässle 2004). The photoreceptors transfer the visual information via
synapses and electric gap junctions to horizontal and bipolar cells. Retinal
ganglion cells integrate the signals from bipolar cells either directly or via
intermediate amacrine cells, which establish a lateral signal pathway in the
retina between bipolar cells and ganglion cells. The axons of the ganglion
cells comprise the optic nerve, which relays the whole visual information to
specialized brain regions.

We will provide more detailed information about the synaptic connec-
tivity between the various cell classes in the following subsection.

2.1 Information Processing in the Retina

This section reviews research results concerning the information process-
ing in the retina and the corresponding neuronal pathways involved in the
processing.

The retina cannot be regarded as the biological counterpart to a digital
camera, which faithfully records an image pixel by pixel and then passes this
information along. Instead, the neurons in the retina already process the
incoming visual information, with specialized ganglion cell subtypes trans-
mitting different features on parallel pathways (Masland 2001; Wässle 2004;
Gollisch and Meister 2010). In their seminal (and by now classical) paper,
Lettvin et al. (1959) reported this essential finding already more than half
a century ago. Namely, some ganglion cells of frogs specifically encode the
local contrast of the visual image, and others the movement of edges. Sim-
ilarly for primates, studies have found several distinct ganglion cell types
characterized by morphology, light response properties and projections to
higher brain areas (see review by Field and Chichilnisky (2007)).

Signaling pathways in the retina are distinct neuronal circuits which
transmit visual information from photoreceptors to ganglion cells (see fig-
ure 2.3). Rather counter-intuitively, photoreceptors continuously emit neu-
rotransmitters during darkness, and are hyperpolarized by light, i.e., the
membrane potential changes further to the negative. As a result, neuro-
transmitter emission decreases with increasing light intensity (ON), and
correspondingly, neurotransmitter emission increases with decreasing light
intensity (OFF). The retina has two distinct ON and OFF pathways orig-
inating at the bipolar cell level. That is, there are subclasses of bipolar
cells, denoted ON bipolar cells, which specifically receive signals from ei-
ther rods or cones and report increasing light intensity, and correspondingly
OFF bipolar cells reporting decreasing light intensity (Masland 2001). Thus,
OFF bipolars relay the incoming neurotransmitter signal, whereas ON bipo-
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Figure 2.3: Rod and cone pathways in the mammalian retina (image
source: Sharpe and Stockman (1999), with permission). Several distinct circuits
within the retina transmit the signals from the photoreceptors (rods and cones) to
the retinal ganglion cells.
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lar cells are driven by increasing illumination thanks to a sign-inverting,
metabotropic glutamate receptor. The distinction between ON and OFF
pathways is reflected in ON and OFF sublayers within the inner plexiform
layer (Masland 2001); see also figure 2.2. Thus, the dendrites of pure ON
and OFF ganglion cells stratify in the respective sublayer. Nevertheless,
there are also ON-OFF ganglion cells which receive input from both layers.
Interestingly, cone pathways in the retina are evolutionary older than rod
pathways (Masland 2001). Accordingly, several studies point to the con-
clusion that rod pathways make use of existing cone pathways (Sharpe and
Stockman 1999).

Motion detection and processing is an essential aspect of vision, for
example when a frog tries to catch a fly. It is relevant for the present
thesis since saccadic eye movements result in a corresponding shift of the
visual image on the retina. Already almost half a century ago, Barlow and
Hill (1963); Barlow et al. (1964); Barlow and Levick (1965) specifically in-
vestigated motion processing in the rabbit retina and showed that certain
ganglion cells report the motion direction. Recently, Kay et al. (2011) have
characterized intrinsically direction selective ganglion cells in mice. Studies
have even elucidated the dendritic computations effecting this direction se-
lectivity (Taylor et al. 2000). In a similar vein, Kim et al. (2008) identified
a subclass of retinal ganglion cells which selectively respond to upward mo-
tion, by combining genetic marking with physiology. In detail, the authors
use transgenic mice to mark a subtype of OFF ganglion cells with asym-
metric, systematically aligned dendritic arbors, and relate the morphologic
structure of the dendritic tree to function (detect the direction of the visual
stimulus).

In the context of saccades, Ölveczky et al. (2003) investigate how the
retina can separate object from background motion, i.e., detect moving ob-
jects behind a stationary background, which nevertheless “moves” on the
retina due to saccades. Indeed, the authors find and characterize a subset
of retinal ganglion cells – denoted “object motion sensitive” (OMS) cells –
which accomplish this task. They explain the selectivity for differential mo-
tion (object versus background) by a circuit model involving nonlinear rec-
tification (e.g., via bipolar cells (Demb et al. 2001)) and inhibitory, polyax-
onal, wide-field amacrine cells. The large receptive field of these amacrine
cells is required to suppress responses elicited by global background motion.
The model has been verified by intracellular recordings from interneurons
(Baccus et al. 2008). Interestingly, OMS ganglion cells respond strongest
at the onset of differential motion, and then gradually adapt to the motion
(Ölveczky et al. 2007).

How precisely groups of neurons interact to process information is a
largely open question in neurobiological research. With respect to motion
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processing, Berry et al. (1999) show how the population activity of reti-
nal ganglion cells can anticipate the correct position of a moving object,
correcting for the time delays in the signal transduction in the retina.

Münch et al. (2009) identify a ganglion cell type in the mouse retina
which specifically responds to approaching visual objects, which is important
for escape behaviors, for example. An interesting aspect of this study is the
concrete example of a neural pathway with reversed signal directions under
different physiological conditions.

Neuronal coding schemes are of central interest in neurobiological re-
search, and a particular topic of the present thesis (see section 4.2). For
example, the question arises whether retinal ganglion cells transmit the vi-
sual information via the “spike rate” (number of action potential per time),
or whether single spikes already contain information about a stimulus.

An important aspect is the precision and reproducibility of individual
spikes for several repeats of the same stimulus. Meister and Berry (1999)
review this topic, including models of neuronal coding. Concerning temporal
precision, Berry et al. (1997) report that the timing of single spikes can
convey much more information about their particular stimulus than the
spike count.

Warland et al. (1997) construct an artificial neural network to decode
visual information from the spike trains of biological ganglion cells. In this
study, the stimulus consists of a spatially uniform, time-varying illumination.
The authors conclude that the optimal interpretation of a ganglion cell’s ac-
tion potential depends strongly on the simultaneous activity of other nearby
cells, thus shedding light on the relevance of population codes.

Berry and Meister (1998) investigate how the refractory period influences
the precise timing of individual spikes. In detail, the authors construct a
model which predicts the first spike based on the stimulus alone, but includes
the timing of preceding spikes to take the refractory period into account.
The study is relevant for an analysis of inter-spike-intervals (ISIs) in bursts
of spikes (see also section 4.2).

Humans can detect image features which are smaller than a single pho-
toreceptor (Poggio et al. 1992). This remarkable ability is referred to as
hyper-acuity, and the question arises how the visual system accomplishes
it. One idea to answer this question stems from Ahissar and Arieli (2001),
who relate spatial to temporal coding. Specifically, the authors consider the
adjacent receptive fields of two close retinal ganglion cells, such that the
retina translates two moving black-white borders with a small spatial offset
to a temporal delay between the responses of these ganglion cells.

Gollisch and Meister (2008) show that certain ganglion cells in salaman-
der retina transmit a briefly presented visual image via the relative timing
of their first spikes (i.e., spike latencies). This will become a central aspect
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of the present thesis in chapter 4.

Modeling refers to establishing mathematical models of the spiking be-
havior of neurons, and is an important tool to elucidate and understand the
effective input-output relationship of neurons. Figure 2.4 shows the basic

Figure 2.4: Schematic illustration a simple LN (linear-nonlinear) model describing
an individual retinal ganglion cell: the visual input first passes a linear filter (in
time and space dimension), and is then then rectified by a nonlinear function, which
sets its negative input to zero.

ingredients of the widely employed LN (linear-nonlinear) model: a spatio-
temporal filter (green and blue) followed by a nonlinear rectification (red) –
hence the name “linear-nonlinear”. With further refinements, these models
describe the spiking behavior of single retinal ganglion cells quite well. The
spatial filter (blue ellipse in figure 2.4) corresponds to the receptive field of
the ganglion cell, i.e., the region of the visual field the ganglion cell is sensi-
tive to. Keat et al. (2001) add a feedback pathway to the LN model in order
to accurately predict single spikes based on the preceding visual stimulus.

To describe neuronal interactions, Pillow et al. (2008) fit a generalized
linear model (GLM) with explicit coupling filters to experimental record-
ings from monkeys, with the idea to capture neuronal correlations. Indeed,
the authors report that correlations notably contribute to the transmitted
information.

Neuronal networks determine how groups of neurons interact to process
information. Many key questions are still unsolved, in particular since par-
allel recordings from a large number of neurons are technically challenging.
One viable solution might be multi-electrode arrays, which we employ in the
present thesis (see section 3.2 and chapter 6).

Synchronous firing patterns are a central aspect of neuronal interactions.
Concerning the underlying mechanisms in the retina, firing synchrony within
40 − 100 ms might be attributable to shared photoreceptors connected to
the ganglion cells via chemical synapses, synchrony within 10 − 50 ms at-
tributable to amacrine cells which forward signals to the ganglion cells via
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electrical junctions, and very “narrow” synchrony (< 1 ms) due to electri-
cal junctions between ganglion cells (Brivanlou et al. 1998). Interestingly,
the receptive field corresponding to synchronous firing patterns of groups of
neurons is smaller than that of individual cells, according to Schnitzer and
Meister (2003). Synchrony might thus contribute to a sharper resolution of
the visual image.

Applying concepts from physics to neuronal networks dates back to the
famous Hopfield networks (Hopfield 1982) in the context of memory. More
recently, information theory has emerged as a valuable tool to quantita-
tively assess neuronal network processes. We will provide a detailed review
of several approaches in chapter 5, and apply them to our own experimen-
tal data in chapter 6. Very briefly, Schneidman et al. (2006); Tkacik et al.
(2006) and Shlens et al. (2006) investigate whether Ising models are sufficient
to capture the spiking statistics of neuronal populations (see section 5.3).
Schneidman et al. (2003a) and Puchalla et al. (2005) introduce the concept
of synergy/redundancy of (pairs of) neurons (section 5.5). Finally, Nemen-
man et al. (2002) estimate the entropy of spike pattern probabilities while
correcting for subsampling bias effects (section 5.6).

2.2 Saccades and Fixational Eye movements

Information processing by retinal ganglion cells in the presence of saccadic
eye movements is a main topic of this thesis (see chapter 4). The following
subsection provides an overview of saccades and fixational eye movements.

Figure 2.5: (Saccadic) eye movements during free examination of the photograph
for one minute, as recorded by an eye suction device (Yarbus (1967); reprinted
image from Martinez-Conde et al. (2004), with permission). Note that the viewer
mainly fixates the salient features of the image, in particular, the eyes of the face.
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Human saccadic eye movements have already been investigated more
than 40 years ago by Yarbus (1967), using an eye suction device attached
to the human eye. This effective but rather invasive method has been su-
perseded by modern optical eye tracking devices, but the biological findings
remain valid. Figure 2.5 illustrates the main aspect of saccadic eye move-
ments. Namely, the human vision jumps from one “interesting” feature to
the next. As Yarbus (1967) points out, “interesting” is based on most useful
information for the observer, and cannot simply be derived from the level
of detail.

Given the notion of rapid eye movements, we expect that the image on
the retina gets blurred during saccades (analogous to a shaky photograph),
and thus should be blocked from upstream brain areas to maintain acute
vision. Termed saccadic suppression, Burr et al. (1994) indeed report that
brain areas for motion processing are selectively suppressed. This is in
line with the fact that saccadic eye movements remain largely unnoticed
to humans; that is, we experience stable surroundings instead of a shaking
of the visual scene, which could conceivably result from these rapid eye
movements.

Fixational eye movements in humans are microscopic and unnoticed
eye movements while focusing the gaze on a visual object of interest, e.g., on
the salient features of the face in figure 2.5 (Martinez-Conde et al. 2004, 2006;
Martinez-Conde and Macknik 2007; Martinez-Conde et al. 2009). Fixation
refers to this focusing of the gaze; contrary to what the name suggests,
human eyes do not remain completely static during these fixation periods.
Fixational eye movements are a constant feature of human vision, although
we are not aware of it. Namely, they are believed to counteract neuronal
adaptation and visual perception fading due to the small shifts of the image
on the retina (Martinez-Conde et al. 2006). In more detail, fixational eye
movements consist of three main components (at least in humans): tremor,
drifts and microsaccades, as illustrated in figure 2.6. Tremor has a high-
frequency (≈ 90 Hz) and tiny amplitude (about the diameter of a single cone
in the fovea), and seems to be independent in the two eyes (Martinez-Conde
et al. 2004). As the name suggests, microsaccades are small involuntary
saccades with ≈ 25 ms duration (Ditchburn 1980).

The question whether microsaccades actually contribute to visual acu-
ity has long been debated. Ko et al. (2010) try to resolve this question
and elucidate the role of microsaccades in detail. The authors report that
microsaccades accurately move the eye to regions of interest and are dynam-
ically modulated when aligning a virtual horizontal bar. Thus, the study
indicates that the visual system employs microsaccades to increase the level
of spatial detail.

Given the importance of fixational eye movements, the question arises
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Figure 2.6: Fixational eye movements result in shifts of the image on the retina,
as illustrated by the trajectory (image adapted from Martinez-Conde et al. (2004),
with permission). The honeycomb structure shows single photoreceptors. Differ-
ent components of fixational eye movements can clearly be distinguished: high-
frequency tremor with amplitude less than a photoreceptor, drift (curved lines)
and microsaccades (straight lines).

how they are actually used by neuronal circuits in the retina and upstream
brain regions to arrive at sharper vision. To tackle this question, Pitkow
et al. (2007) and Burak et al. (2010) simulate fixational eye movements
by a random walk trajectory and construct a Markov decoder model to
discriminate between two stimuli, given the respective retinal spike trains.
To estimate human acuity experimentally, the authors ask subjects to dis-
tinguish between two tiny oriented bars, which correspond to only a few
photoreceptors on the fovea. The authors report that their model matches
the experimental acuity and show how the model could be realized by a
biological neuronal network.

Eye movements of animals are quite abundant according to the review
by Land (1999). This is particular interesting since most vertebrates lack
foveas, which necessitate saccadic eye movements in primates to assemble
high-resolution images of a scene. From an evolutionary perspective, the
author offers the explanation that animals compensate for body movements,
i.e., try to keep the gaze still during locomotion, in order to avoid motion
blur if photoreceptors respond slowly. Note that, besides actually moving
the eyes themselves, animals might alternatively move the head or the whole
body.

Werner and Himstedt (1985) specifically analyze fire salamander head
movements when fixating prey. This study is important for the present thesis
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since we work with salamanders, too (see chapter 3). Two main findings
of their study are that angular velocity and duration of head movements
depend on the turning angle, and that there exists a feedback loop during
the saccade (for example when the prey moves away), which can slightly
alter the amplitude of the head movement.

Greschner et al. (2002) use video-oculography to measure fixational eye
and head movements of turtles, and subsequently imitate the corresponding
image shifts when recording from the isolated turtle retina in vitro. Ac-
cording to their physiological measurements, the fixational eye movements
have a frequency of ≈ 5 Hz and an amplitude of ≈ 5µm on the retina. The
authors show that synchronous spiking of retinal ganglion cells contributes
to the information about stimulus features.

Roska and Werblin (2003) investigate inhibition induced by global im-
age shifts (imitating saccadic eye movements) via patch-clamp recording on
rabbits. The authors show that transient inhibition occurs within a specific
layer of the IPL (inner plexiform layer), affecting certain subtypes of retinal
ganglion cells.

Segev et al. (2007) employ archer fish as model system to investigate how
eye movements contribute to retinal coding of visual information. These fish
shoot down insects from below the water surface by squirting water at them.
The first goal of the study is the in vivo measurement of eye movements using
a search coil setup. The authors train several archer fishes to discriminate
virtual flies of different sizes, and find that archer fish eye movements consist
of saccades and fixations, where the fixation periods have a drift and tremor
component (quite similar to human eye movements). The measured saccadic
movement speed (3−6µm/ms) can serve as guideline for our visual stimula-
tion parameters. In the second part of their study, the authors record from
retinal ganglion cells in vitro using a multi-electrode setup (similar to the
present thesis, see chapter 3). They imitate eye movements via correspond-
ing shifts of the presented visual image, explicitly simulating superimposed
drift and tremor at 5 Hz with tremor amplitude ≈ 0.2◦ ' 12µm on the
retina. The authors show that the presented object size can be decoded
from the spike trains of several ganglion cells. Interestingly, most visual
information about the object size is conveyed at the beginning of a fixation
according to the study. We will compare this finding with our experimental
data in chapter 4.
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Chapter 3

Experimental Methods

This chapter explains the experimental methods employed in our studies.
The details of the theoretical models and concepts used for analyzing the
data will be given later.

Figure 3.1: Melanoid axolotl (image source: mudfooted.com)

We study amphibian retina of adult salamanders (axolotl, show in fig-
ure 3.1) and frogs (Xenopus laevis), with all data shown in chapter 4 stem-
ming from axolotl. Analysis is performed in vitro, that is, the retina is
extracted from the eye cup and then flat-mounted onto a microelectrode
array (MEA). This array consists of a glass plate with 60 electrodes on it,
arranged in a regular 8 × 8 square grid (with the 4 corner electrodes miss-
ing). Neighboring electrodes are 100µm apart, approximately corresponding
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to one third of the dendritic tree diameter of a retinal ganglion cell. The
electrodes pick up the extracellular potentials generated by the action po-
tentials of individual retinal ganglion cells and transmit the amplified signals
to a recording computer.

3.1 Retina Preparation

Animals were dark-adapted and anesthetized in an ice bath for at least
30 minutes before the actual preparation, and then decapitated prior to
enucleating the eyes. Anesthetization without drugs keeps the retina in its
natural condition as far as possible. Since salamanders and frogs are cold-
blooded, the preparation can be performed at room temperature, different
from working with mammalian retina of mouse, for example.

The retina is a soft, fragile tissue at the back part of the eye cup, with
an approximate diameter of 4 mm in salamanders. Due to the tiny dimen-
sions, we employ a microscope for preparation. A razor blade hemisects
the eye into front part (containing the lens) and back part with the retina
curled in it. Next, we use a smooth, bent glass-stick to gently separate the
retina from the pigment epithelium (PE) attached to the photoreceptors.
The PE is a black, thin cell layer between retina and eye cup mainly respon-
sible for nutrition of the photoreceptors as well as light absorption. Finally,
once extracted from the eye, we cut the retina into two halves and keep
one half for later usage. The first half is mounted onto a semipermeable
membrane and then transferred to the recording (MEA) setup. The mem-
brane slightly presses the retina onto the MEA glass plate for fixation. To
keep the retina alive as long as possible, we superfuse it with bicarbonate
Ringer’s solution containing 110 mM sodium chloride (NaCl), 2.5 mM potas-
sium chloride (KCl), 1 mM calcium chloride (CaCl2), 1.6 mM magnesium
chloride (MgCl2), 22 mM sodium bicarbonate (NaHCO3), and additionally
10 mM D-glucose for nutrition. The solution is equilibrated with carbogen
(95% O2, 5% CO2) to supply oxygen and fix the pH level at 7.3 – 7.4.

3.2 Visual Stimulation and Recording

Figure 3.2 schematically illustrates the recording setup. A computer monitor
generates the visual stimulus, and a multi-electrode array (MEA) extracel-
lularly records the simultaneous action potentials of several ganglion cells
in the retina. In the lab there were two almost identical versions of the
setup available, such that both retinas from one animal could be measured
simultaneously. This way we maximize the amount of data acquired per
time. Moreover, since the isolated retinas slowly degrade over time, instan-
taneous recordings are preferable as compared to keeping the second retina
alive during the recording timespan of the first.
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Figure 3.2: Schematic illustration of the experimental recording setup. The time-
varying visual stimulus is scaled down by a lens and projected onto the retina. A
multi-electrode array (MEA) extracellularly records the simultaneous output signals
(action potentials) of several retinal ganglion cells. These voltage traces are then
amplified and stored on the recording computer for further processing.

setup 1 setup 2

intensity per pixel [10−12 W] 0.331 0.684

pixel size on retina [µm× µm] 5.65× 5.75 6.0× 6.25

intensity per area [10−3 W/m2] 10.19 18.23

Table 3.1: Light intensities generated by the stimulus monitors and reaching the
retina, for the two experimental setups

We employ standard CRT monitors for visual stimulation, with 100 Hz
refresh rate and one pixel on the monitor approximately corresponding to
6µm on the retina. Table 3.1 shows the light intensity values for both setups,
measured with a calibrated photodiode amplifier.

The amplifier is built by MultiChannelSystems GmbH (Reutlingen, Ger-
many). Concretely, we use the MEA60-Inv-System together with a 64-
channel PCI-bus data acquisition card inside the recording computer. The
voltage traces are sampled at 25 kHz on each channel (i.e., electrode), with
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16 bit resolution. A band-pass filter passes frequencies between 300 Hz and
5 kHz. It consists of a high-pass filter with cutoff frequency 300 Hz im-
plemented in software, and a low-pass filter with cutoff frequency 5 kHz
implemented in hardware.

3.3 Spikesorting

In our context, spikesorting refers to the extraction of spike timings from
the recorded voltage traces, and the assignment of these spikes to biological
cells. As illustration, figure 3.3 shows such a voltage trace containing a
burst of spikes. The accepted view holds that the spikes originating from
an individual cell have the same stereotypic shape. Thus the shape itself
conveys no information. Consequently, only the time point of each spike
elicited by a cell has to be stored, which considerably reduces the amount
of data.

A common approach consists of detecting spikes simply by threshold
crossings. That is, whenever the voltage passes a certain value (red line in
figure 3.3), the following 2 or 3 ms are interpreted as a spike. While this is
quite straightforward to implement, a critical issue concerning extra-cellular
multi-electrode setups (contrary to the patch clamp technique, for example)
is the mapping between recording channels and biological cells. Namely,

i) a channel can receive input from more than one cell, or – conversely –

ii) several channels may pick up spike signals originating from a single
cell.

To address these problems, a spikesorting algorithm typically identifies cells
based on their spike shape, which acts as fingerprint for each cell. (This
is no contradiction to the above statement that spike shapes convey no
information within a neuronal network.) For our purposes, the “spike shape”
consists of the vector of successively sampled voltages. A mathematical
clustering algorithm sorts these vectors into various clusters (i.e., groups),
such that each cluster corresponds to a cell. This solves (i). To treat (ii),
we look for channels with (almost) coinciding spike timings, indicating a
common source. We subsume each such group of channels into a virtual
single channel. The spike shape now consists of the original voltage traces
appended one onto another.

For employ a custom software package implementing the above features
(Pouzat et al. 2002). It is built on top of IgorPro 6.0 (WaveMetrics, Inc.,
Oregon, USA).

We use this package for offline analysis of the recorded data. The spike
quality of each cell is rated on a scale from 1, 1.3, 1.7, 2, 2.3 . . . 5, with 1
denoting a very reliable cell (see e.g. figure 3.3) and 5 mostly noise. The
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quality depends on the signal to noise ratio of the voltage trace, and whether
the cell is easily distinguishable from other cells.
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Figure 3.3: Typical voltage trace of a single channel recorded by the MEA setup,
showing a burst of spikes from an individual retinal ganglion cell. Since the cell
membrane acts as capacitor, the extracellular signal is the derivate of the intra-
cellular voltage (as recorded by the patch clamp technique, for example). For this
reason, and due to the 300 Hz high-pass filter, the proportion of positive and neg-
ative extracellular voltage amplitudes is similar. The red line defines the spike
detection threshold, i.e., whenever the signal crosses this line, a spike is assigned
to one of several “clusters”. Note that the signal overshoots the threshold a sec-
ond time after each spike; these spike artifacts are filtered out by the spikesorting
algorithm.

3.4 Receptive Field Calculation

In general terms, the receptive field of a sensory neuron is the region in stim-
ulus space which influences that neuron’s response. Specifically for vision,
the receptive field of a retinal ganglion cell is an area of the visual field.
Visual cues from this area eventually reach the ganglion cell via photore-
ceptors and interneurons. Since the optical pathway of the eye maps the
visual field one to one onto the retina, receptive fields can be specified by
the corresponding area on the retina. Note that ganglion cells typically pool
input from many photoreceptors; thus, the receptive field size is much larger
than the area covered by a single photoreceptor.

We employ a white noise analysis (Chichilnisky 2001) to estimate the
receptive field of individual retinal ganglion cells. The general idea can
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Figure 3.4: Spatial (a) and temporal (b) part of a ganglion cell’s STA (spike-
triggered average) when presented with a flickering checkerboard, and Gaussian fit
of the receptive field. (White ellipse shows standard deviation.) The size of each
pixel (or tile) is 60 × 60µm2 on the retina. Color codes for intensity and should
not be confused with the fact that the actual stimulus is grayscale. The spatial and
temporal contributions to the STA have been extracted mathematically via a SVD
(singular value decomposition) of the STA. Time zero of the temporal filter is when
the corresponding spike occurs; the curve shows that the cell needs approximately
100 ms to integrate its activation.

be summarized as follows: the cell’s preferred stimulus (both in space and
time) is the (average) stimulus immediately preceding each spike, denoted
STA (spike-triggered average). Specifically, we present a flickering checker-
board to the retina, consisting of a regular chessboard-like tiling of the whole
screen. (For the purpose of this section, the tiles can be thought of as pix-
els on the retina.) Each tile is approximately 60 × 60µm2 in size (on the
retina) and has its own (grayscale) color, which is determined by generat-
ing a random number. Every ∆t = 40 ms, we update the colors of all tiles
by drawing a new set of independent numbers — hence the flickering. We
use a deterministic computer program to generate these (pseudo-)random
numbers; thus, we can easily re-generate the exact same sequence later for
offline analysis. This is necessary since we calculate the STA after offline
spikesorting. Under the assumption that the “memory” of a ganglion cell
does not exceed 800 ms, it suffices to include 800 ms/∆t time steps preceding
each spike. For a responsive ganglion cell, the STA is a short “movie clip”
in which the spatial receptive field lights up. A singular-value decomposi-
tion approximates the STA (to first order) by a product of a temporal filter
times a stationary spatial part. Figure 3.4 shows an example, including a 2D
Gaussian fit (white ellipse) of the receptive field. This Gaussian distribution
serves as reference for later analysis.

We observe that the receptive field diameter (obtained from the Gaussian
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fit standard deviation) ranges from 100µm to 400µm.

3.5 Latency Estimation

We estimate an individual cell’s latency after presenting the same stimulus
for several trials as illustrated in figure 3.5. To deal with situations where a

Figure 3.5: Calculation of the most probable latency latmax and corresponding
error ∆lat from the response of a single cell (schematic illustration). The same
stimulus is repeated several times (“trials”) for statistical analysis. The blue curve
shows the distribution of the first spike (bold) in each trial. The variance ∆lat is
obtained from the FWHM of this curve. A critical advantage of this approach is
the robustness against outliers.

cell skips spikes within a trial, we have to refrain from taking the mean value
of all first spikes within each respective trial. Instead, we calculate a latency
probability distribution (blue curve in figure 3.5) and take the maximum of
this curve. We additionally obtain an estimate of the variance in the data
from the FWHM (full width half maximum) of this curve.
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3.6 Pharmacology

The following section lists the various drugs employed in the pharmacology
experiments.

To selectively block the ON-pathway, we add 200µM of 2-amino-4-
phosphono-butyrate (APB) to the Ringer’s medium. APB is a metabotropic
glutamate receptor agonist which blocks light-induced activation of ON
bipolar cells (see also Nakajima et al. (1993); Conn and Pin (1997); Yang
(2004) and figure 2.3). Although APB acts on multiple metabotropic re-
ceptors in the retina, the selective loss of ON responses is thought to derive
from its action on the ON-bipolar dendrites.

For the purpose of blocking inhibition, we add the following cocktail
to the Ringer’s solution (table 3.2). The various concentrations are taken
from Ichinose and Lukasiewicz (2005) and Rieke (2001):

concentration name function

5µmol/` strychnine glycine receptor blocker

10µmol/` bicuculline competitive antagonist of

ionotropic GABAA receptors

150µmol/` picrotoxin non-competitive antagonist of

GABAA receptors

Table 3.2: Amounts of pharmacological substances used for blocking inhibition in
the retina

All these receptors are primarily located on the bipolar dendrites or axon
terminals, as well as on retinal ganglion cells.



Chapter 4

Neuronal Coding in the
Presence of Saccades

This chapter constitutes the first main results part of the thesis. It is con-
cerned with a detailed analysis how individual retinal ganglion cells encode
information in the context of (micro-)saccades, which we have reviewed in
section 2.2. We observe that the much smaller fixational eye movements
(e.g., Greschner et al. (2002)) with amplitudes about the diameter of a sin-
gle photoreceptor are not sufficient to reliably elicit action potentials of the
ganglion cells, at least for our visual stimulation setup. Thus, our study fo-
cuses on stimulation parameters corresponding to saccadic eye movements.

Our setting is similar to the archer fish study by Segev et al. (2007),
which imitates saccadic eye movements with angular velocity 3µm/ms on
the archer fish retina. For comparison, our study typically uses 1µm/ms
(see section 4.1). In the archer fish study, the fixation time interval is 2 s,
which is of the same order of magnitude as in our study.

Since we perform the measurements on the retina isolated from the eye,
we have to imitate eye movements by rapid shifts of the presented image
(see section 4.1 for details). These shifts are interleaved with stationary
periods (lasting about 1 s), which can be interpreted as fixations. Typically,
the rapid shifts elicit several action potentials (or spikes) after the shifts,
whereas the ganglion cells stop firing when the presented image remains
stationary. We investigate how these spike patterns depend on the presented
image before or after the shift, or on the time-dependent activation during
the shift. By varying the presented image, the activation strength changes.
We observe that this results in different spike latencies, i.e., the time interval
between beginning of the fixation and the first elicited spike.

In our study, the presented image is a rather simple black-white grat-
ing, resembling a zebra crossing. This allows us to calculate the activation
(spatial generator signal) based on the cell’s receptive field center, as will be-
come clear in section 4.3. We compare the ganglion cell’s spiking responses
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to different vertical offsets of the grating. Fitting a sine curve to the result-
ing latency data (see figure 4.13 below) enables a direct comparison with
the spatial generator signal. In first approximation, we are able to estimate
the phase of this sine curve from the relative receptive field position on the
grating (see figure 4.14).

In order to refine our model, we have designed a stimulus modality which
employs two parameter sets in alternating order between trials. For exam-
ple, we reverse the movement direction in every other trial (section 4.5)
to estimate the contribution of the image shift direction to the cell’s re-
sponse. The alternating presentation is essential to exclude any potential
adaptation effects (if we were using the same parameter set for several tri-
als). For both directions, the visual images before and after the movement
shifts are the same, so the observed response differences must be due to the
time-dependent activation during the shifts.

The case of different starting or target images (before or after an image
shift, respectively) is treated in section 4.6. Here, we focus on the relative
contribution of these images to the cell’s response. Naturally, one expects
that the retina transmits a “snapshot” of the new (target) image after each
saccade to higher brain areas. Nevertheless, since ganglion cells are mostly
sensitive to relative activation changes, the starting image should also have
some weight.

4.1 Designing a Stimulus to Imitate Saccades

As mentioned above, our basic idea consists of imitating saccadic eye and
head movements by a rapid displacement (or shift) of the presented image.
We have found that the movement time interval and amplitude cannot be
too small, otherwise they do not elicit spiking responses at all. The study
by Werner and Himstedt (1985) supports this observation. The authors
investigate the head orientation of fire salamander during prey capture and
report relatively slow movements, lasting up to 3 s.

Our detailed movement profile is shown in figure 4.1. We employ the
following parameters (unless noted otherwise): shift time interval ∆tmove =
100 ms, total stimulus period p = 2 s, and movement amplitude a = 100µm.
This leaves 900 ms for the stationary time interval. Note that the image
moves downward and then upward to the starting position, after which the
next trial starts and the stimulus is repeated.

As next step, we have to select an appropriate image for projection onto
the retina. For our study, we use a simple black-white grating (similar to
a zebra crossing) with stripe width 100µm. Thus, the spatial period of
this pattern equals 200µm. An important advantage is the constant global
illumination of the retina when the image moves, so we can assume that any
spiking elicited by the movement is due to local changes. Furthermore, we
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Figure 4.1: Imitation of (micro)saccades by rapid image shifts. Since the retina
has to remain stationary on the recording setup, we shift the presented image to
mimic eye movements. Black bars indicate movement intervals, and the blue curve
the trajectory of the retina relative to the image. In this study, the period p = 2 s,
∆tmove = 100 ms and movement amplitude a = 100µm (unless noted otherwise).

will show later (section 4.3) that the activation of a ganglion cell by this
grating pattern mostly depends on the center of the cell’s receptive field
relative to the grating, whereas the precise shape of the receptive field is
negligible for our analysis.

Figure 4.2: Rapid image shifts to imitate saccadic eye movements (see figure 4.1)
with a periodic black-white grating as spatial stimulus. The continuous red ellipses
schematically indicate the receptive field of a single ganglion cell, which has to
remain stationary on the recording setup but moves relative to the grating. The
equivalent illustration on the right shows the upward movement shift from the
perspective of the grating. In particular, the visual stimulus inside the dashed
ellipse is the same as inside the continuous one in the middle. The right side
captures the actual biologically situation where the eye moves.

Figure 4.2 shows the rapid shifts together with the black-white grating.
The red ellipses illustrate the receptive field of a single ganglion cell, which
traverses different parts of the grating due to the shifts. The current acti-
vation of the cell can be thought of as the black-white pattern inside the
ellipse. In what follows, we investigate the cell’s spiking response elicited by
this time-dependent activation.
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Figure 4.3: Vertical position on the grating defines the information which can be
gained about the stimulus. We offset the grating 10 times such that the receptive
field of an individual ganglion cell (colored ellipses) traverses different parts of the
black-white grating. The grating rapidly shifts between the continuous and dashed
version of each same-colored ellipse pair as shown in figure 4.2. After several trials,
the next global offset to the neighboring ellipse pair occurs. Comparing the cell’s
responses for different ellipse positions (i.e., phase shifts ϕ) could elucidate how the
cell encodes information.

Concretely, we want to understand how the cell’s response depends on
the vertical position on the grating, in order to investigate how the cell could
transmit spatial information. For that purpose, we repeat the stimulus in
figure 4.2 for several times and then offset the whole grating by 20µm,
such that the ganglion cell’s receptive field starts from a slightly different
position. After 10 repeats of these offsets, the cell reaches its original position
due to the periodicity of the grating. Figure 4.3 illustrates this scheme
by color-coding the receptive field position of a single ganglion cell for the
various starting positions. The labeling as “phase” ϕ will become clearer in
section 4.3, where we show that the ganglion cell’s activation by the grating
(i.e., the local brightness within the receptive field) closely matches a sine
curve, which reaches 1 in the middle of each black stripe and correspondingly
−1 in the middle of the white stripes.

As outlook, we can ask how to tackle the decoding problem, i.e., infer the
ganglion cell’s receptive field position from the measured spiking responses.

4.2 Informative Spike Response Features

In the previous section, we have provided the details of the visual stimu-
lation. Now, the apparent question arises if and how retinal ganglion cells
respond to this stimulus. Moreover, in the interest of decoding, we have to
find out which features of the spiking response contain information about
the vertical grating position.

Before investigating the experimental data, we briefly review several con-
ceivable coding schemes (Dayan and Abbott 2005), namely
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• the spike count, i.e., the number of action potentials elicited after stim-
ulus onset, within the time window of the current trial (the neurons
should not fire spontaneously, otherwise the number of spikes cannot
clearly attributed to the stimulus alone).

• the time-dependent firing rate (spikes per time) at time t after stimu-
lus onset, measured by counting the (trial-averaged) number of spikes
within a short time interval t, t + ∆t and dividing by ∆t. Defined
this way, the firing rate is equivalent to the PSTH (peristimulus time
histogram), which is just the time histogram of the spikes during stim-
ulus presentation, as the name implies. A smaller “time bin” ∆t means
higher temporal resolution, but incurs lower resolution of firing rates.

• inter-spike correlations; for example, the inter-spike interval (ISI), the
time difference between two succeeding spikes of a neuron, could carry
information. This information would be lost if regarding spikes as
independent of each other. Note that the refractory period sets a
minimum limit on the time interval between succeeding spikes.

• temporal codes, i.e., the precise timing of individual spikes (up to
millisecond precision); a prominent example is the latency, that is, the
time interval between stimulus onset and the first spike elicited by the
stimulus.

• neuronal “population codes”, e.g., the synchronous firing of two neu-
rons, or rhythmic oscillations of a neuronal population. A prominent
example are place cells in the hippocampus: the spike timings of an in-
dividual place cell relative to the phase of the population theta rhythm
(7− 12 Hz) provide information about the current location of the ani-
mal. In particular, the conveyed information cannot be extracted from
individual neurons alone but requires the population.

Historically it has been believed that the spike rate carries most or all in-
formation conveyed by a neuron. This view is supported by recordings from
stretch receptor neurons almost a century ago. In the study, the neurons
increase their firing rate as the load on the muscle increases (Adrian 1926;
Adrian and Zotterman 1926). Nevertheless, neuroscientists also have pro-
posed alternative coding strategies, as enumerated above. It seems likely
that the particular strategy employed depends on the application and type
of neuron. For our study, we will particularly investigate the role of the
spike latency for stimulus encoding.

Measured responses to the shifted grating stimulus Figure 4.4 shows
(an excerpt of) the spiking activity of two individual ganglion cells respond-
ing to the phase-shifted oscillating grating stimulus described in the previous
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Figure 4.4: Spike raster plot of two individual retinal ganglion cells presented
with the same phase-shifted oscillating grating stimulus. Each dot is a single spike,
and color encodes the phase offset ϕ as shown in figure 4.3. The time axis is the
same as illustrated in figure 4.2 with p = 2 s and ∆tmove = 100 ms. Note that the
cells’ responses set in more than 200 ms after the image shifts (black bars at the
bottom). While the general structure of the latency response is similar, the second
cell exhibits a more transient response pattern than the first. The two cells are
taken from different retinas. The dashed rectangle in the upper plot marks the
zoom-in region shown in figure 4.5 below.
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section (figure 4.2). The most remarkable feature of the spike patterns in
figure 4.4 are the different response latencies for different phases (illustrated
by the 10 different colors). That is, the first spike elicited within the first and
second half of each trial (corresponding to the upward and downward move-
ment intervals in figure 4.1) has a sinusoidal shape, when plotted against the
phase offset shown in figure 4.3. Since it is plausible that latency is a fast,
reliable information source, we will primarily focus on this coding strategy in
the further analysis. For statistical verification, we repeat several stimulus
cycles, as can be seen from the spike raster plots. By “cycle” we understand
the presentation of the 10 receptive field offsets shown in figure 4.3, that is,
each sequence of 10 colors in figure 4.4.

Additionally, note that the first cell in figure 4.4 abruptly stops firing
about 400 ms after stimulus onset, almost independently of the phase. Due
to the differences in spiking onsets, we expect the spike count to be notice-
ably different for the various phases. This observation only applies to the
first cell, whereas the second cell responds transiently to the stimulus. Nev-
ertheless, a quantitative analysis will reveal that the second cell also shows
a systematic spike count variation.
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Figure 4.5: Zoom-in of the dashed rectangle in figure 4.4 to resolve the precise
spiking patterns. Each dot is a single spike, and color encodes the receptive field
position offsets or “phases” ϕ as shown in figure 4.3. There is quite a large variability
within same-colored trials (∼ 25 ms), which is nevertheless about 6 times smaller
than the latency difference between the bright green and navy-blue color (∼ 150 ms).
Intriguingly, this number is even larger than the image shift interval of 100 ms. This
could be interpreted as a neuronal “amplification” in the time domain.

Figure 4.6a shows a quantitative version of the spike latencies and spike
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(b) Spike count

Figure 4.6: Latency and spike count of the first cell in figure 4.4, forming a
sinusoidal shape. The two curves in each subplot correspond to the first and second
half of the stimulus in figure 4.3. Latency values and error bars are determined as
illustrated in figure 3.5.



4.2. Informative Spike Response Features 39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−80

−60

−40

−20

0

20

40

60

80

upward

downward

ϕ

la
te

nc
y 

[m
s]

(a) Latency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

upward

downward

ϕ

sp
ik

e 
co

un
t
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Figure 4.7: Latency and spike count of the second cell in figure 4.4, analogous to
figure 4.6. The spike count tuning is less pronounced as compared to the first cell,
but nevertheless clearly visible.
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counts of the first cell. To correct for noise and slow time drifts of the
cell’s responses during the recording (which takes about 1 h for a stimulus
modality), we subtract the latencies within a presentation cycle from the
respective mean latency values. Specifically, we first select the fastest la-
tency response within the stimulus trials of each phase offset for the current
presentation cycle. Then, we compute the mean value of these 10 latencies
(one for each phase offset) and finally subtract the mean from these laten-
cies. We proceed analogously for the second-fastest latencies etc. Next, we
calculate histograms of the latency data (separately for each phase offset)
and employ the scheme in figure 3.5 to obtain the latency values and error
bars shown in figure 4.6a. Hence, the data points are relative latencies.

Note the symmetric reversal of the curves in figure 4.6a. For example,
the cell responds slowest to the upward movement during the spatial phase
ϕ = 0.1 (denoted as green data point), but (almost) fastest for the downward
movement during the same phase. We observe that the movement from a
white grating stripe to a black stripe leads to a short latency (presumably
since the ganglion cell is OFF-type), and conversely, the movement from
black to white to a long latency.

Figure 4.6b shows the average spike count of the first cell. As expected,
the spike count is highest when the cell responds earliest. The latency and
spike count curves are quite similar, so in this particular case, we conclude
that they serve equally well for extracting information about the phase ϕ
(see also section 4.4 below). However, note that the latency information is –
by definition – immediately available when the first spike appears, whereas
a spike count observer has to wait until the cell subsides spiking.

Figure 4.7 contains the latency and spike count of the second cell from
figure 4.4. The latency curves look remarkably similar to the first cell and
are again symmetrically reversed. (Since the two cells stem from different
recordings, we can exclude any intrinsic mutual influence.) However, the
variation in spike counts is much smaller for the second cell, which fires
between 1 and 3 spikes in each trial. Still, there’s a clearly visible tuning of
spike counts with respect to the phase ϕ; this tuning was not obvious from
the raster plot in figure 4.4. Since spike counts are integers, we speculate
that – heuristically – more information about the phase ϕ is contained in
the latency than the spike count for this particular cell. Namely, higher
brain areas receive either 1, 2 or 3 for the spike count on a single trial basis,
whereas the latency can be more fine-grained.

An alternative coding scheme mentioned in the above enumeration is the
inter-spike interval (ISI), that is, the time interval between two succeeding
spikes of a single cell. In principle, this coding scheme allows for rapid
information transmission since only two spikes are required – in contrast
to the spike count, for example, where typically many more spikes have to
be submitted. In a related study, Berry and Meister (1998) show that the
timing of individual spikes is more precise than naively expected from the
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Figure 4.8: Inter-spike interval (ISI) histogram plots of the first cell in figure 4.4,
after application of a Gaussian filter for smoothing (bin size is 0.5 ms). As above,
color encodes the receptive field position offsets or “phases” ϕ as shown in figure 4.3.
Note that the curves are slightly shifted with respect to each other, which could
provide a small contribution to information transmission.



42 Chapter 4. Neuronal Coding in the Presence of Saccades

instantaneous stimulus-based firing probability (without taking the timing
of preceding spikes into account). Figure 4.8 show ISI time histograms of the
first cell from figure 4.4, for both the upward and downward movement shifts.
Observe that all spike intervals are greater than 2 ms, as expected from the
refractory period. Although the curves corresponding to different phases
look similar, there is a small offset between the peaks of the curves, i.e., the
most likely ISI. For example, the cyan curve in 4.8a (ϕ = 2π · 0.3) reaches
its maximum at 4.5 ms, whereas the dark blue-green (ϕ = 2π · 0.7) curve’s
maximum appears 1 ms later. Note that the latter also has the shortest
latency (see figure 4.6a). Thus, the ISI could contain a small amount of
information about the stimulus. Nevertheless, the similarity of the curves
suggests that this is less information than contained in the spike latency or
spike count, so the further analysis will focus on the latter two.

Quantification of cell classes Obtaining latency tuning curves as demon-
strated above is not possible for all cells, for example, if a cell fires sponta-
neous spikes which cannot be attributed to the presented stimulus, or if the
rapid shifts do not elicit spikes for all phases.

We have performed a quantitative screening of 126 cells (which we have
selected based on spikesorting and receptive field quality), revealing that

18% exhibit this kind of latency response, i.e., these cells fire spikes
for each stimulus phase with a clearly distinguishable response onset,
and without interfering spontaneous activity;

62% exhibited an irregular or too noisy response pattern, i.e., the
variance of the first spike during identical stimulus repeats was higher
than the difference for the various phases;

14% did not respond at all, or showed uncorrelated spontaneous ac-
tivity;

6% responded to a subset of the stimulus phases only (thus, there is
no latency data available for all phases).

Concerning the last scenario, note that the spike count could serve as a
robust alternative for information transmission.

Summary Concluding, we have found hints of two potential coding schemes
from the above list (latency and spike count). Additionally, the inter-spike
interval (ISI) may also exhibit a subtle contribution, even though the ISI is
largely independent of the currently employed phase ϕ. The main difference
between our study and the one by Gollisch and Meister (2008) stems from
our explicit imitation of saccadic eye movements, whereas their study flashes
static images onto the retina.
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4.3 Activation of Receptive Fields: Mathematical
Analysis

In the previous two sections we have explained how we offset the presented
image (figure 4.3) to study the effect on the neuronal responses, and found
that the latency serves a major role in encoding the stimulus. To cast these
observations into mathematical formulas, we first have to quantify how a
ganglion cell is activated by the black-white grating which we project onto
the retina. “Activation” (or “spatial generator signal”) refers to the excita-
tion of retinal ganglion cells, i.e., the incoming light stimulus translated via
photoreceptors, horizontal cells, bipolar cells and amacrine cells into synap-
tic excitation (or inhibition). For our purposes, we substitute the intricate
retinal network by a much simpler receptive field model (see figure 3.4),
where we calculate the activation of a retinal ganglion cell from the light
intensity within the cell’s receptive field. We describe the receptive field by
a Gaussian function in two dimensions; hence the activation is the spatial
integral of the stimulus light intensity weighted by this function. The recep-
tive field’s size and (elliptical) shape corresponds to the standard deviation
of the Gaussian curve.

In the present section, we will derive the following slightly counter-
intuitive but useful result: the activation is (approximately) independent
of the detailed size and shape of the receptive field (under the assumption
that the size is of the same magnitude as the grating width). Instead, only
the center position enters the equations, yielding a sinusoidal tuning curve
of the activation. This is important because it greatly simplifies the further
analysis, allowing us to compare the phase of the activation tuning curve to
the phase of the latency curves from the previous section.

In mathematical terms, the receptive field profile is a 2D Gaussian nor-
mal distribution denoted N (µ, S), with center position µ ∈ R2 and positive
definite variance matrix S. The (stationary) stimulus light intensity f(x)
depends on the spatial variable x ∈ R2. As mentioned above, the spatial
activation (or “generator signal”) equals

G(µ, S) =

∫∫
R2

1

2π |S|1/2
e−

1
2

(x−µ)·S−1(x−µ)f(x) d2x

=

∫∫
R2

1

2π
e−

1
2
|y|2f

(
S1/2y + µ

)
d2y.

(4.1)

First, we investigate the special case where f describes a half-plane v ·x−d ≤
0, with parameters v ∈ R2 \ {0} and d ∈ R. This translates to

v ·
(
S1/2y + µ

)
− d ≤ 0 ⇔

(
S1/2v

)
︸ ︷︷ ︸

v′

·y − (d− v · µ)︸ ︷︷ ︸
d′

≤ 0.
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We weight the bright half of the plane by 1 and the dark half by −1 to
establish the mean intensity 0. Plugged into (4.1) yields (after integrating
over one dimension)

GHP(µ, S) = 2

∫ d′

|v′|

−∞

1√
2π

e−
1
2
y2 dy − 1 = erf

(
d− v · µ√
2
∣∣S1/2v

∣∣
)
. (4.2)

From this formula, we may define the effective receptive field size as σ :=∣∣S1/2v
∣∣ and the effective receptive field center position as z := v · µ.

Figure 4.9: The generator signal of a spatial grating (black-white bars) projected
onto a Gaussian receptive field profile is an infinite sum of erf error functions,
evaluated at the grating boundaries (see equation (4.3)).

Equation (4.2) allows us to calculate the generator signal by the black-
white grating stimulus, as illustrated in figure 4.9, since each (black or white)
stripe is the difference between two half-planes. For simplicity and without
loss of generality we set the grating width to 1 and assume that the white
stripes extend from d = 2n to d = 2n+ 1 (n ∈ Z). Conversely for the black
stripes, the borders are d = 2n−1 and 2n. Summation over all stripes leads
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to the generator signal

Ggrating(z, σ) =

c

∞∑
n=−∞

[
erf

(
2n+ 1− z√

2σ

)
− 2 erf

(
2n− z√

2σ

)
+ erf

(
2n− 1− z√

2σ

)]

= −2 c

∞∑
n=−∞

(−1)n erf

(
n− z√

2σ

)
(4.3)

where c is a normalization factor such that maxz |Ggrating(z, σ)| = 1. To
further analyze this infinite sum, we first write

−2 erf

(
n− z√

2σ

)
=

∫
1√
2π

4

σ
e−

(n−z)2

2σ2 dz

and interchange the order of integration and summation (which is justified
due to the exponential decay). Together with (−1)n = eiπn, we arrive at

Ggrating(z, σ) = c

∫ z

0

1√
2π

4

σ
e−

z′2
2σ2 ϑ

(
π/2− iz′/(2σ2), e−

1
2σ2

)
dz′ (4.4)

with the Jacobi theta function defined as

ϑ(u, q) :=

∞∑
n=−∞

qn
2
e2inu for all u, q ∈ C with |q| < 1.

Applying the Jacobi identity

√
−iτ e

iu2

πτ ϑ
(
u, eπiτ

)
= ϑ

(
u/τ, e−πi/τ

)
to the integrand in (4.4) leads to

4 eiπz′− 1
2

(πσ)2ϑ
(
−πz′ − i(πσ)2, e−2(πσ)2

)
= 4

∞∑
n=−∞
n odd

e−
1
2

(πnσ)2eπinz
′
.

We can now again interchange the order of summation and integration and
explicitly evaluate the integral over z′, giving

Ggrating(z, σ) = 4 c

∞∑
n=−∞
n odd

e−
1
2

(πnσ)2

iπn
eiπnz = 8 c

∞∑
n=1
n odd

e−
1
2

(πnσ)2

πn
sin(πnz).

(4.5)
That is, we have obtained the Fourier decomposition of Ggrating(z, σ). The
normalization factor c ≡ c(σ) results from plugging z = 1/2 into the above
expression:

c ≡ c(σ) = 1

/
8

∞∑
n=1
n odd

(−1)(n−1)/2 e−
1
2

(πnσ)2

πn
.
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Figure 4.10: Pronounced deviation of the exact grating generator signal (see
equations (4.3) and (4.5)) from the sine approximation (magenta) for small receptive
field size σ. This example illustrates the transition from a point-like receptive field
(σ = 0, black curve) via a small receptive field (σ = 1/10, blue) to a size similar to
the grating width (σ = 1, magenta), for which the sine approximation is valid. In
the point-size limit, the generator signal is a rectangular-shaped function, which is
1 or −1 depending on whether the receptive field point lies inside a white or black
stripe.

Figure 4.10 plots Ggrating(z, σ) for various values of σ and illustrates the
transition from σ = 0 (i.e., a point-like receptive field) to σ = 1, in which
case the generator signal seems indistinguishable from a sine curve. In other
words, we obtain

Ggrating(z, σ) ' sin(πz) for σ ≥ 1. (4.6)

Equation (4.5) rigorously proves this observation (since the Fourier coeffi-
cients decay exponentially), and thus verifies our above claim thatGgrating(z, σ)
is (almost) independent of the effective receptive field size σ, as long as σ is
larger than the grating width. Note that the quotient between two subse-
quent Fourier coefficients equals

n

n+ 2
e−2(n+1)(πσ)2 ≤ 1

3
e−(2πσ)2 � 1 for σ ≥ 1.

Thus, the first sine function sin(πz) almost exclusively contributes to the
sum.

For a quantitative error analysis of equation (4.6), we employ the L2

norm and define

serr(σ) :=

∫ 2

0
|Ggrating(z, σ)− sin (πz)|2 dz. (4.7)
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Figure 4.11: L2 approximation error of the grating generator signal by a sine
function (see equation (4.7)), dependent on the effective receptive field size σ. Note
the exponential convergence as the receptive field size reaches the grating width.
The arrow indicates the typical scale in experiments, for which the approximation
error is clearly negligible.

From (4.5) and the orthogonality properties of the sine functions sin(πnz),
we obtain

serr(σ) =

∞∑
n=1
n odd

(
8 c(σ)

e−
1
2

(πnσ)2

πn
− δn,1

)2

.

The logarithmic plot of serr(σ) in figure 4.11 nicely illustrates the expo-
nential convergence. As a remark, we can analytically calculate serr(0)
since Ggrating(z, 0) is a rectangular function (see figure 4.10), and obtain
serr(0) = −8/π + 3.

To sum this section up, we have derived an important simplification
from a modeling perspective. Namely – for our stimulus parameters – the
spatial generator signal is (to very good approximation) the sine of the
receptive field center position, without influence from the precise elliptical
shape or size of the receptive field (as long as it is not much smaller than the
grating width). Thus, regarding the spatial generator signal, we will omit
the reference to the receptive field size σ in the following sections.

The sine approximation lends itself to the notation ϕ ≡ πz, where we
interpret ϕ as the sine curve phase offset corresponding to the receptive field
position z. This identification finally justifies the labeling in figure 4.3.
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4.4 Latency and Spike Count Response versus Re-
ceptive Field Position

In the present section, we test the following hypothesis: the brightness
change between the receptive field positions before and after the image shift
mostly determines the cell’s latency and spike count response, at least for
shift amplitudes equal to the grating stripe width. In more detail, we hy-
pothesize that an OFF ganglion cell will respond fastest (i.e., with shortest
latency) for maximally decreasing brightness inside the receptive field, and
will also exhibit the largest number of spikes. Correspondingly, it will re-
spond slowest (largest latency) for maximally increasing brightness, with
the least number of spikes. The reverse model holds for ON ganglion cells,
showing the shortest latency for maximally increasing brightness. We con-
sider the case where the shift amplitude precisely equals the grating width
of 100µm. Note that this simple model does not take the temporal dynamic
during the shift into account, which we will analyze in the later sections.

Figure 4.12: Stimulus scheme to imitate (micro-)saccades by rapid shifts (black-
white trajectory), with amplitude equal to the grating stripe width. The green
ellipse represents the receptive field of an individual retinal ganglion cell. After 10
repeated trials, the whole grating relocates as indicated by the blue ellipse, and so
forth (compare with figure 4.3). The spatial generator signals of the dashed and
respective continuous ellipses are sign-inverted due to the particular shift amplitude.

Stimulation method To test our hypothesis, we repeat 10 saccadic image
shifts and then relocate the whole visual image to a slightly different position,
such that any ganglion cell sees a different brightness change at the offset
position. Figure 4.12 includes an illustration of 3 image offsets (colored
ellipses) applied after 10 trials of the upward and downward saccadic shifts.
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Expected outcome Due to the particular shift amplitude, a cell which
starts from the middle of a white stripe will reach the middle of a black
stripe and vice versa. Similarly, starting from the border between a black
and white grating stripe means that the cell will also target such a border.
In mathematical terms,

ϕtarget = ϕstart + π (mod 2π). (4.8)

In equations (4.5) and (4.6) from the last section we have shown that the
spatial generator signal is basically the sine of the receptive field position
relative to the grating. Making use of these equations and applying the
relation (4.8) to the generator signal difference (i.e., brightness change), we
obtain

∆G (ϕtarget) := Ggrating (ϕtarget)−Ggrating (ϕstart) = 2Ggrating (ϕtarget) .
(4.9)

In other words, the generator signal difference (dependent on the target
position) is the same as the generator signal at that position, up to a con-
stant prefactor. Thus, the target position precisely indicates the brightness
change. In particular, the maximal brightness decrease inside the receptive
field occurs when the cell reaches the middle of a black grating stripe. In
this case, we expect the shortest latency response for an OFF ganglion cell.
However note that equation (4.9) holds only true for shift amplitudes equal
to the grating stripe width.

Figure 4.13: Schematic illustration of the phase difference ∆ϕ between a cell’s
vertical receptive field position on the grating (colored ellipses analogous to fig-
ure 4.3) and the corresponding latency response (exemplified in figure 4.4). The
receptive fields refer to the position after the rapid image shift. Assuming that the
cell is an OFF ganglion cell, it should tend to respond earlier (i.e., with shorter
latency) when it reaches a black stripe (green and yellow ellipses) since the overall
brightness has decreased, and correspondingly later when targeting a white stripe
(magenta ellipse) since the brightness has increased.
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Via the sinusoidal latency response tuning curve (see figures 4.6a and
4.7a), we can now define the phase difference ∆ϕ between the receptive field
position and the corresponding latency response, as illustrated in figure 4.13.
Thus, according to our hypothesis, this phase difference ∆ϕ should be zero.
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Figure 4.14: Predicting the experimental latency response to the stimulus in
figure 4.12 from the phase of the receptive field position. The identity line corre-
sponds to ∆ϕ = 0 in figure 4.13. For ON and ON-OFF cells, we have incremented
the receptive field phase by π (mod 2π) to account for the reversed black-white
preference (see also figure 4.16).

Experimental results Figures 4.14 and 4.15 contain the experimental
data to test our hypothesis, namely, the receptive field position (x-axis)
predicting the phase offset of the latency/spike count tuning curve (y-axis),
for several retinal ganglion cells. Precise accordance with our hypothesis
corresponds to the dashed identity line. Note that every cell has two tun-
ing curves (upward and downward shift), yielding two data points per cell.
For ON (or ON-OFF) cells, the receptive field phase is incremented by π
(mod 2π) since the black-white preference is reversed.

We determine the phase offset ϕ of the tuning curves for each cell using
nonlinear regression (Matlab Statistics Toolbox function nlinfit). Specifi-
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Figure 4.15: Phase of receptive field position versus spike count tuning curve, for
the same cells as in figure 4.14. Adding π to the phase respects the sign inversion
of the spike count curves as compared to the latency curves, since a minimum in
the latency curve (i.e., fast response) typically results in a high spike count.

cally, ϕ and c are the coefficients of the “latency model”

ˆlat = c sin(2πx+ ϕ) (4.10)

with the “predictors” xk = k/10 for k = 0, 1, . . . 9 and the experimental
(mean subtracted) latency responses latk (as in figures 4.6 and 4.7), and
similarly for the spike count. In other words, we minimize the least squares
error

9∑
k=0

|c sin (2π k/10 + ϕ)− latk|2 .

The error bars in figures 4.14 and 4.15 show the 95% confidence interval of
ϕ, calculated by the Matlab function nlparci.

Similarly for each receptive field, we fit a two-dimensional Gaussian dis-
tribution to the STA (spike-triggered average) introduced in section 3.4.
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This yields the receptive field center µ ∈ R2, including 95% confidence in-
tervals for µ1 and µ2 (again calculated via the Matlab function nlparci).
From that, we obtain the receptive field phase

ϕrecept =
π µ2

w
(mod 2π),

where w = 100µm denotes the grating width.
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Figure 4.16: Spike scatter plot of the red (“ON-OFF”) cell from figure 4.14,
presented with a spatially uniform, alternating bright-dark stimulus, as indicated
by the black-white bar. The cell responds faster to the ON-step as compared to the
OFF-stimulus. Additionally, the variance of the latency (time difference between
stimulus onset and first spike) is much smaller for the ON-stimulus (approximately
10 ms) than for the OFF-stimulus (approximately 60 ms). This justifies treating
the cell effectively as an ON-cell in figure 4.14.

Interpreting ON-OFF cells as ON without prior knowledge requires jus-
tification: figure 4.16 shows the spike scatter plot of the single ON-OFF
cell in figure 4.14, when flashing a spatially uniform, alternating bright-dark
stimulus onto the retina in order to determine its ON/OFF preference. For
this particular cell, we observe that it responds both to the ON and OFF
step (hence the characterization as ON-OFF); nevertheless, the ON-response
sets in earlier and is more precise as compared to OFF. This justifies that
we regard the cell as an ON cell for the purpose of the present section.

Regarding our hypothesis, we clearly observe the tendency of the la-
tency tuning to follow the generator signal difference ∆G defined in (4.9).
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However, the agreement is not precise; according to figure 4.14, there is a
relatively large variation of latency tuning phases given the receptive field
position. This variation cannot solely be explained by the fitting errors of
the latency tuning or receptive field positions. Thus, we will refine our model
in the subsequent sections.

Considering the spike count, figure 4.15 shows the corresponding exper-
imental data for the same cells as in figure 4.14. Since a fast response (i.e.,
short latency) typically results in a high spike count (see figure 4.4a), the
latency and spike count tuning curves are sign-inverted; we account for this
fact in figure 4.15 by adding π (mod 2π) to the spike count tuning phase.
The spike count data resembles the latency data quite well, and indicates
that the receptive field position and the spike count tuning curves are closely
related. Thus, the values confirm our initial observation that the spike count
might also transmit information about the receptive field position on the
grating.

Discussion Concluding, the schematic figure 4.13 (for small ∆ϕ) cap-
tures the general tendency of retinal ganglion cells to respond according to
the receptive field position on the grating after the rapid movement shift.
This is plausible since the position on the grating directly translates to the
brightness change ∆G elicited by the shift via equation (4.9) (as long as
the movement shift is equal to the grating width). Thus, we can obtain
information about the position based on the latency response tuning curve.
Interestingly, this result holds true for both the latency and spike count;
nevertheless, higher brain areas can – inherently – read out the latency in-
formation earlier; in this respect, latency coding is advantageous for fast
information transmission.

We have to keep in mind, however, that movement amplitudes which are
smaller or greater than the grating width might require alternative expla-
nations of the measured responses, since (4.9) no longer holds true. We will
investigate these issues in the subsequent sections.

4.5 Dynamics of Movement Shift Leads to Tem-
poral Bias

In the present section, we investigate the effect of the temporal dynamics of
the movement shift. The idea is to refine the picture painted in the previous
section. Here, we test specifically whether the cell’s response indeed depends
only on the brightness difference between shift start and target position. We
therefore directly compare the responses to two different time-dependent
stimulus patterns during the movement shift, while the stationary visual
patterns before and after the shift are the same in both scenarios. Thus the
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response should also be the same according to the previous section. This
statement defines the null-hypothesis of the current section.

Figure 4.17: “Inverted movement direction” stimulus presentation scheme. The
green and purple arrows show the trajectory of a cell’s receptive field center relative
to the grating. The continuous red ellipses illustrate the cell’s receptive field before
the movement shift (reference position). Accordingly, the dashed ellipses show the
receptive field after movement shift (target position). After 10 repeated trials, the
whole grating is offset as illustrated in figure 4.3. The faint gray trajectory indicates
the first of these offsets.

Stimulation method The precise time course of the visual stimulus is
shown in figure 4.17. The two different time-dependent visual patterns re-
sult from the opposite movement directions, which have nevertheless the
same starting and target position on the grating (modulo periodicity). The
trajectory in the time interval [0, p] is equal to the curve in figure 4.1, imi-
tating (micro)saccades. In other words, the stimulus consists of two copies
of figure 4.1, except that the movement directions are inverted in the second
copy. This inversion on a single trial basis assures that we avoid adaptation
effects.

An essential difference from the previous section 4.4 is as follows: we
directly compare phases of latency tuning curves without actually requir-
ing the receptive field position, thus avoiding the associated uncertainty.
Nevertheless, the “inverse movement” data can also be obtained from the
previous scheme in section 4.4, except for the adaptation effects. For exam-
ple, in figure 4.3, we can compare movement shifts between the red ellipse
pair (ϕ = 0) to shifts between the yellow pair (ϕ = π). The dashed red el-
lipse “sees” exactly the same stimulus as the continuous yellow one, except
that the grating moves in the opposite direction. Indeed, pursuing this idea
leads to a plot quite similar to figure 4.18 below (data not shown).

We should emphasize that our focus is not on intrinsic direction selec-
tivity of retinal ganglion cells (as reported in mice by Kim et al. (2008)),
but on the time-dependent visual pattern resulting from the trajectory on
the grating.
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Expected outcome If the response of a retinal ganglion cell actually
depends only on the stationary visual stimulus before and after the shift,
the latency tuning curve for both green movement shifts in figure 4.17 should
be the same. In particular, the phase difference between the tuning curves
should be zero. The same holds true for the purple shifts in figure 4.17.
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Figure 4.18: Experimental data corresponding to the stimulus scheme in fig-
ure 4.17: phase differences between latency tuning curves (separately for the green
and purple arrows). The actual receptive field of the cell is not required for the
shown data. Green data points are the latency phases corresponding to shifts at
time p minus shifts at time 0 in figure 4.17, and purple at time 3p/2 minus time p/2.
Note the systematic bias of the green points above and the purple points below the
identity line, respectively.

Experimental results The experimental data is shown in figure 4.18,
where we try to answer the question whether the temporal movement dy-
namics has a major influence on the response. The experimental data points
show the phase differences between latency tuning curves corresponding to
upward and downward rapid shifts. The green data points visualize the
latency tuning phase of the second green rapid shift minus the first green
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shift (see figure 4.17), and correspondingly for the purple data points. Er-
ror bars in figure 4.18 are 95% confidence intervals as described above (see
equation (4.10)). The plot indicates that the temporal movement dynamics
has only a small role, i.e., the data points are close to the dashed identity
line at ∆ϕ = 0. Nevertheless, we observe a systematic bias of the green and
purple data points.

Figure 4.19: Heuristic explanation of the latency bias ∆t and corresponding
phase difference ∆ϕ induced by the timing of the black-white border crossing. The
figure shows the hypothetical shortest latency scenario for downward movement.
Although the starting position of the receptive field (continuous ellipse) should be
in the center of the white stripe to maximize the brightness change, the earlier
crossing of the black-white border compensates for this sub-optimality. The faint
gray trajectories show the mirror-symmetric optimal scenario for the upward shift.
In comparison, the latency tuning sine curves are offset by ∆ϕ.

Interpretation Figure 4.19 provides a hypothetical explanation of this
bias, by taking the timing of the black-white border crossing into account.
It illustrates the hypothetical shortest latency scenario for downward move-
ment shifts. The centered black sine tuning curve on the right represents the
model where a cell’s latency depends solely on the starting and target po-
sition, with shortest latency for maximal brightness decrease between start
and target (i.e., shift from center of a white stripe to the center of a black
stripe, see section 4.4). Figure 4.19 adds a bias to this model by taking
the timing of the border crossing into account. Thus, the optimal start-
ing position (continuous ellipse) eliciting the fastest response is now located
slightly below the center of the white stripe. This leads to a corresponding
phase shift of the latency tuning curve (lower gray sine curve), which we
can parametrize as sin(x+ ϕ) with a small ϕ > 0. The optimal scenario for
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upward shifts is mirror-symmetric and shown as faint gray trajectories in
figure 4.19, with corresponding latency tuning curve sin(x−ϕ). The result-
ing phase difference ∆ϕ = 2ϕ is precisely the distance of the green points
in figure 4.18 from the dashed identity line. In particular, our model repro-
duces the correct sign of the bias. The inverted movement directions of the
respective green and purple arrows in figure 4.17 explains the opposite sign
of the purple data points. We remark that the systematic bias is not visible
in figure 4.14 from the previous section, presumably due to the relatively
large uncertainty in the receptive field position.

Discussion Concluding, we have extended the conceptual model from the
previous section by a heuristic understanding (figure 4.19) how the tempo-
ral dynamic of the movement shift might contribute to the response latency
tuning. The critical idea consists of comparing two stimulus scenarios which
should lead to exactly the same response according to the simpler model,
but show small deviations in experiments. These deviations (i.e., the bias in
figure 4.18) is relatively small, so we infer that the general idea of relating
response latency to brightness changes still holds true to first approxima-
tion, but requires further refinement for a detailed prediction of the cells’
responses.

4.6 Contribution of the Visual Image Before and
After a Saccade

After each saccade, a different visual image appears on the retina under
natural conditions. The visual system has to process this image within the
fixation time window, until the next saccade occurs. However, one could
ask how the previous image (before the saccade) influences the response
to the new image, when assuming that ganglion cells are mostly sensitive
to changes in activation. In other words, do retinal ganglion cells actually
report the differential image change to higher brain regions (instead of the
new image, independent of the previous one)?

Thus, the present section aims at a detailed analysis to which degree the
pre- and post-shift images contribute to the response latency tuning curves.

Stimulation method We employ the stimulus modality illustrated in fig-
ure 4.20, presenting two different shift amplitudes (a1 and a2) in alternating
order to the retina. The stimulus is similar to figure 4.27 from the previ-
ous section 4.7, but with the decisive distinction that the dashed ellipses
now “see” different parts of the grating. This means that we directly com-
pare situations with different starting or target visual images. As before,
the different movement amplitudes a1 and a2 lead to different velocities
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Figure 4.20: Interleaved stimulus scheme presenting two different shift amplitudes
a1 and a2. The black-white curve visualizes the time-dependent trajectory induced
by the shifts, and the two arrows on the trajectory are the shifts with the same
target position on the grating (continuous ellipses).

ai/∆tmove since we fix the shift time interval ∆tmove = 100 ms. The remain-
ing parameters are p = 1s, as well as either (a1, a2) = (75µm, 125µm) or
(a1, a2) = (50µm, 150µm).

Expected outcome First, we investigate the hypothesis that the visual
image before or after the saccade solely determines the response latency, as
exemplified in figure 4.21. In the simplest case, if we assume that the cell is

Figure 4.21: Rapid image shifts targeting the same position on the grating, as
shown in figure 4.20 (for movement amplitudes (a1, a2) = (50µm, 150µm) and
grating width w = 100µm). Assuming that the receptive field position on the
grating before the shift (dashed ellipses) solely determines the response latency
tuning curve, one obtains the phase difference ∆ϕ = π (a2 − a1) /w. For the current
illustration, this gives ∆ϕ = π, and for a1 = 75µm, a2 = 125µm, we obtain
∆ϕ = π/2. On the other hand, if the target position after the shift (continuous
ellipse) solely determined the latency tuning, the phase difference ∆ϕ would be
zero.
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mostly sensitive to its activation after the shift, it should show the fastest
response when targeting the middle of a black stripe (for OFF cells); in
particular, the phase differences between the responses to the shifts in 4.21
should be zero. Conversely, under the assumption that the cell cares most
about the starting position, it should spike fastest when starting from the
middle of a white stripe.

Figure 4.22: Maximal activation difference ∆G between start and target image
after a rapid image shift, for the stimulus modality in figure 4.20. The sinusoidal
curves shows the activation G dependent on the current receptive field position on
the grating, and the green sections the traversed interval during the shift. The
movement amplitude on the left side equals a1 = 50µm, and on the right side a2 =
150µm. In this case, the corresponding phase difference between the continuous
ellipses is ∆ϕ = π/2.

Second, we investigate the hypothesis that the activation difference ∆G
between starting and target image of the saccadic shift determines the re-
sponse tuning. Figure 4.22 solves the task of maximizing this difference for
movement amplitudes (a1, a2) = (50µm, 150µm), obtaining ∆ϕ = π/2 for
the resulting phase difference. Note that the traversed green section of the
activation curve in figure 4.22 is symmetric around zero. As can be seen
from the figure, the general formula for ∆ϕ corresponding to the greatest
activation difference ∆G reads

∆ϕ =
π (a2 − a1)

2w
(4.11)

where a is the movement amplitude and w the grating stripe width. Ac-
cordingly, the other set of movement amplitudes (a1, a2) = (75µm, 125µm)
results in the phase difference ∆ϕ = π/4.

Comparing both hypothesis, we observe that the resulting phase differ-
ence ∆ϕ in figure 4.21 (receptive field position before the shift determines
the latency response) is twice as large as compared to figure 4.22, which
optimizes the activation difference.
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Experimental results Figure 4.23 shows the experimental phase differ-
ences of the latency tuning curves for shifts to the same target position
(continuous ellipses in figure 4.20). Notably, the blue dots (50µm, 150µm
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Figure 4.23: Experimental latency tuning phase differences between the two ar-
rows in figure 4.20 (movement towards the same target position), for several gan-
glion cells. Note that the systematic offset ∆ϕ > 0 (above the dashed identity line)
is more pronounced for the blue dots.

shift amplitudes) show phase differences between π/2 and π (up to one ex-
ception), whereas the yellow ones (75µm, 125µm shift amplitudes) show
phase differences between 0 and π/2. Quantitatively, the mean values con-
firm these observations:

〈∆ϕsame target〉 = 2π · (0.33± 0.1) for 50, 150µm, and (4.12)

〈∆ϕsame target〉 = 2π · (0.14± 0.06) for 75, 125µm. (4.13)

The systematic offset ∆ϕ > 0 (above the identity line) means that the target
position does not solely determine the latency; otherwise we would expect
∆ϕ = 0 according to figure 4.21.

Conversely, figure 4.24 contains the experimental data for saccadic shifts
starting from the same reference position (continuous ellipses in the illustra-
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Figure 4.24: Experimental phase differences between latency tuning curves, show-
ing the same cells as in figure 4.23, but for coinciding movement starting positions
(stimulus illustrated in figure 4.20). Again, there is a systematic positive phase
difference ∆ϕ > 0. In contrast to figure 4.23, both the blue and orange dots are
between 0 and π/2 (up to small deviations).

tion 4.20), but targeting different positions (dashed ellipses). Here, all phase
differences are between 0 and (approximately) π/2, for both amplitude sets.
Quantitatively, the mean values are

〈∆ϕsame start〉 = 2π · (0.20± 0.07) for 50, 150µm, and (4.14)

〈∆ϕsame start〉 = 2π · (0.15± 0.07) for 75, 125µm. (4.15)

Similarly to above, the systematic positive phase difference ∆ϕ > 0 means
that the starting position (before the shift) does not solely determine the
latency response.

For comparison, the hypothesis that the activation difference ∆G be-
tween starting and target image determines the latency response (see fig-
ure 4.22) predicts ∆ϕ = 2π · 0.25 for the blue dots (50µm, 150µm) in both
figures 4.23 and 4.24 (since the continuous ellipses serve as reference), which
is compatible with the experimental values of equations (4.12) and (4.14).
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Similarly, the same hypothesis predicts ∆ϕ = 2π · 0.125 for the yellow dots
(75µm, 125µm), which approximately agrees with the experimental values
of equations (4.13) and (4.15). Furthermore, the experimental data in fig-
ure 4.23 complies with the prediction of this hypothesis in the sense that the
blue values are approximately twice as large as the yellow ones; however,
the data points tend to overshoot the predicted value. In any case, we have
captured the correct sign and range of the phase difference ∆ϕ.

Interestingly, the experimental outcome in the second figure 4.24 (coin-
ciding starting position) differs from the first figure 4.23 (coinciding target
position) since the range of the blue dots matches the range of the yellow
ones in figure 4.24, but not in figure 4.23. Together with the illustration 4.21,
this observation might point to the conclusion that the starting position of
the saccadic shift is actually more important than the target. Note that the
relatively large variation in the experimental values renders a clear distinc-
tion between models difficult.

Figure 4.25: Movement shifts starting from the same position (left) or targeting
the same position (right), for two different amplitudes a1 and a2, as illustrated in
figures 4.20 and 4.21. Assuming that cell is not intrinsically direction selective,
an offset of the downward-pointing (a2-amplitude) arrow towards the blue arrow
adopts the spatio-temporal generator signal on the left side to the situation on the
right side. Additionally, we have to switch signs since the arrow directions on the
left and right side are inverted.

Finally, the following idea allows us to perform a consistency check and
test the reliability of the experimental results. Under the assumption that
the ganglion cells are not intrinsically direction selective, we can transform
the stimulus modality “movement to the same target position” to the modal-
ity “movement from the same starting position”. Concretely, figure 4.25
illustrates how to apply a phase shift offset such that the experimental data
points in figure 4.24 are supposedly mapped to the data points in figure 4.23.
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(a) x-axis: coinciding starting position (same as y-axis in figure 4.24)
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(b) x-axis: coinciding target position (same as y-axis in figure 4.23)

Figure 4.26: Testing the relation ∆ϕsame start = −∆ϕsame target + ∆ψoffset (fig-
ure 4.25) applied to the experimental data points from figures 4.23 and 4.24. The
identity line corresponds to exact agreement. Note that in (a), the average latency
tuning phase difference ∆ϕsame start is similar for both amplitude sets.
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Mathematically,

∆ϕsame start = −∆ϕsame target + ∆ψoffset, (4.16)

where ∆ψoffset quantifies the “offset” towards the blue arrow in figure 4.25.
The phase difference ∆ϕ switches its sign since the arrow directions are
inverted. In mathematical terms, the formula for the offset reads ∆ψoffset =
π (a2 − a1) /w, where ai denotes the shift amplitude and w the grating width.
In our case, we obtain π and π/2 for the two sets of amplitudes, respectively.

We find good agreement with the experimental values, as shown in fig-
ure 4.26, when applying equation (4.16) to the data points from figures 4.23
and 4.24. The dashed identity line marks precise agreement. Specifically,
subfigure 4.26a plots ∆ϕsame start from the left hand side of equation (4.16)
on the x-axis and the right hand side on the y-axis. Subfigure 4.26b is
analogous after reordering terms, with ∆ϕsame target on the x-axis. Since in-
trinsic direction selectivity would add a correction term to equation (4.16),
we have indirectly confirmed that such a selectivity seems to be negligible
for our stimulus parameters.

Discussion To summarize our findings, the activation difference ∆G cor-
rectly estimates the range and signs of the experimental latency phase dif-
ferences, but fails to explain why the blue and yellow dots in figure 4.24
coincide while differing by a factor of two in figure 4.23. However, we can
match the experimental data by weighting the relative importance of the
shift starting and target position. Namely, the about twice as large blue
phase differences (50µm, 150µm amplitude data points) in figure 4.23 point
to the conclusion that these ganglion cells are more sensitive to the starting
position (or at least the time-dependent activation close to the start of the
image shift) instead of the shift target.

4.7 Effect of the Saccadic Shift Amplitude

In the previous section 4.6, we have learned that the saccadic shift ampli-
tude seems to play an important role. This is in line with experimental
observations that salamanders actually exhibit saccades of various ampli-
tudes (Werner and Himstedt 1985). Thus, our goal in the present section is
a simple model of how this amplitude influences the latency response. We
directly compare shifts with different amplitudes, but with the same start-
ing and target position on the grating (different from the previous section).
Again, our null-hypothesis states that only the stationary visual pattern be-
fore and after the saccadic shift determines the response, independent of the
pattern during the shift.
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Figure 4.27: Stimulus presentation scheme imitating saccadic image shifts with
different movement amplitudes a1, a2. The black-white curve visualizes the time-
dependent trajectory induced by the shifts. The ellipses represent the receptive field
of a single retinal ganglion cell relative to the grating, before and after the rapid
shifts. After each 10 repeated trials, the whole grating is offset (see figure 4.3; the
faint gray trajectory indicates the first of these offsets).

Stimulation method Figure 4.27 illustrates the stimulus for investigat-
ing shift amplitudes in detail. Similar to section 4.5, we compare two stim-
ulus modalities presented in alternating order, where the visual stimulus
before and after the shift is the same for both modalities. In contrast to
section 4.5, we employ two sets of shift amplitudes, denoted a1 and a2.
The two dashed ellipses in figure 4.27 (movement target) are at the same
position on the grating modulo periodicity; thus, the stationary generator
signal difference is the same for both scenarios (between [0, p] and [p, 2p]).
In our experiments, the concrete parameters are p = 1s, ∆tmove = 100 ms as
well as either (a1, a2) = (−75µm, 125µm) or (a1, a2) = (−50µm, 150µm).
As a remark, the different amplitudes also result in different shift velocities
ai/∆tmove since we fix the movement time interval ∆tmove = 100 ms.

Expected outcome Similar to section 4.5, the spatial generator signal at
the target location minus starting location matches in both scenarios. Thus,
according to the null-hypothesis, the response should also be the same in
both cases. In particular, we expect that the latency tuning phases of the
image shifts at 3p/2 and p/2 (figure 4.27) should match, as well as the shifts
at p and 0.

Experimental results Figure 4.28 compares the phases of the resulting
response latency tuning curves, for several ganglion cells. More specifically,
∆ϕ on the y-axis of figure 4.28a shows the tuning phase of the response to
the image shift at 3p/2 (see figure 4.27) minus the response to the shift at
p/2. Correspondingly, the second figure 4.28b compares the responses to
the shifts starting at p and 0, respectively. Since the dashed ellipses are at
the same position on the grating (modulo periodicity), the only difference
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(a) movement towards continuous ellipses in figure 4.27: ∆ϕ is the
difference between latency phases of saccadic shifts at 3p/2 and p/2
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(b) movement towards dashed ellipses in figure 4.27: ∆ϕ is the
difference between latency phases of saccadic shifts at p and 0

Figure 4.28: Experimental phase differences between latency tuning curves for
the stimulus in figure 4.27. Yellow and blue colors encode two different sets of
movement amplitudes. Interestingly, all encountered phase differences are positive
(∆ϕ > 0) in (a) and negative in (b) (up to small deviations).
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between the figures (from the perspective of the ganglion cell) is the opposite
saccadic shift direction. Thus, we expect that the experimental data in both
figures should match, except that the sign of ∆ϕ should flip. Indeed, after
the sign flip the ranges of ∆ϕ are similar in both figures.

Remarkably, we observe a systematic offset ∆ϕ > 0 away from the iden-
tity line in figure 4.28a, and correspondingly ∆ϕ < 0 in figure 4.28b (up to
small deviations), with comparable ranges of values. Quantitatively, the av-
erage values combined from both figures (after the sign flip in figure 4.28b)
read

〈∆ϕlatency〉 = 2π · (0.25± 0.06) for − 50, 150µm, and (4.17)

〈∆ϕlatency〉 = 2π · (0.15± 0.11) for − 75, 125µm. (4.18)

This contradicts our null-hypothesis, according to which ∆ϕ should be zero
(since the stationary spatial generator signal at the target location minus
starting location matches for the compared saccadic shifts).

We have already noted in section 4.4 that the spike count may serve
as alternative to the latency response for providing information about the
visual stimulus. It is conceivable that the latency mostly depends on the
transient activation during the beginning of the saccadic shifts, whereas the
spike count reflects the brightness difference between starting and target
location after the shift. To study this hypothesis experimentally, figure 4.29
compares the spike count tuning curve phases, analogous to the latency tun-
ing curves. Again, the data points are significantly offset from the dashed
identity line, which means that the hypothesis (brightness change between
start and target solely determines tuning phase) does not hold true. Never-
theless, the quantification of the data (analogous to the latency, after a sign
flip in figure 4.29b)

〈∆ϕspike count〉 = 2π · (0.04± 0.14) for − 50, 150µm, and (4.19)

〈∆ϕspike count〉 = 2π · (0.09± 0.10) for − 75, 125µm (4.20)

shows that the average values are closer to zero as compared to the latency
tuning phases (4.17) and (4.18). This could indicate that the spike count
indeed reflects the brightness difference between starting and target location
more faithfully than the latency.

Interpretation To find a heuristic explanation of the encountered latency
phase differences ∆ϕ, we try to maximize a combination of the following two
measures:

i) the activation difference ∆G between start and target position, i.e.,
the brightness change between the stationary location on the grating
before and after the shift
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(a) ∆ϕ is the difference between spike count tuning phases of shifts
at 3p/2 and p/2 towards continuous ellipses in figure 4.27
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(b) ∆ϕ is the difference between spike count tuning phases of shifts
at p and 0 towards dashed ellipses in figure 4.27

Figure 4.29: Experimental phase differences between spike count tuning curves,
analogous to figure 4.28, for the stimulus illustrated in figure 4.27.
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(a) movement amplitudes (a1, a2) = (−50µm, 150µm), grating width w = 100µm and
resulting phase difference ∆ϕ = π/2

(b) movement amplitudes (a1, a2) = (−75µm, 125µm), grating width w = 100µm and
resulting phase difference ∆ϕ = π/4

Figure 4.30: Heuristic model of the observed latency tuning phase differences
∆ϕ in figure 4.28, employing the putative explanation that the overall brightness
change during the shift as well as the transient activation at the beginning of a
shift contribute to the latency. Ellipses in each subplot represent the receptive field
of a single ganglion cell relative to the grating, with rapid movement shifts starting
from the same position (continuous ellipse) and also ending up at the same position
modulo periodicity (dashed ellipses), but with different movement amplitudes. Left
side: putative scenario leading to the shortest response latency for upward motion;
right side: correspondingly for downward motion.

ii) the transient, instantaneous activation of the cell during the beginning
of the saccadic shift.

Point ii) becomes plausible by noting that the first spike is presumably
elicited by the fastest depolarizing pathway of the cell; in particular, slow
inhibitory pathways leave the latency unaffected if their efficacy sets in after
the first spike. In contrast to that, we expect that the total spike count
following the shift is actually affected by inhibitory pathways.
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Figure 4.30 tries to implement i) and ii) for both amplitude sets. Each
sine curve in the figure is the location-dependent generator signal induced
by the grating. Green subcurves denote the sections traversed during the
saccadic shifts. The left side shows the putative scenarios yielding the short-
est response latency for upward motion, and – conversely – the right side
for downward motion. Specifically in the left subfigure 4.30a, the generator
signal crosses the black-white border directly at the beginning of the shift.
Similarly, in the left subfigure 4.30b, the generator signal change ∆G be-
tween start and final position is close to the maximum and the cell crosses
the white-black border early. In the right subfigures, the generator signal
ranges from completely bright (at the shift start) to completely dark during
the time course of the shift. The resulting phase difference in subfigure 4.30a
reads ∆ϕ = π/2, which matches the experimental value in equation (4.17);
in subfigure 4.30b, we obtain ∆ϕ = π/4, which is again within the range of
the experimental value in equation (4.18).

Discussion In summary, the experimental latency and spike count phase
differences in figures 4.28 and 4.29 have invalidated the null-hypothesis that
the activation difference ∆G between starting and target position solely de-
termines the response. Nevertheless, the averages for the spike count in
equations (4.19) and (4.20) point to the conclusion that the spike count
integrates the net activation ∆G more reliably than the latency. Con-
cerning the latency response, we have constructed a heuristic model (fig-
ure 4.30) which qualitatively reproduces the experimental latency data by
taking the transient activation during the beginning of the saccadic shifts
into account. Interestingly, when applying this model to the stimulus scheme
in figure 4.20 from the previous section 4.6, we obtain precisely the same
predictions for ∆ϕ as in equation (4.11). Namely, ∆ϕ = π/2 for move-
ment amplitudes (a1, a2) = (50µm, 150µm) and ∆ϕ = π/4 for amplitudes
(a1, a2) = (75µm, 125µm), both for coinciding movement starting positions
and coinciding target positions. In particular, repeating the analysis from
section 4.6, the model complies with the average experimental values but
cannot account for the differences between figures 4.23 and 4.24. Thus our
sole hypothetical explanation remains the relative importance of the shift
starting and target position as discussed in section 4.6.
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4.8 Pharmacology Experiments

Pharmacological studies are an effective and widely used tool to investigate
the internal workings of neuronal circuits. There is a huge range of how
chemicals can influence the biochemical processes at the basis of spiking be-
havior and signal transmission of neurons; examples include completely si-
lencing neurons (e.g., tetrodotoxin blocks sodium channels), modulating the
receptors which uptake neurotransmitters, influencing the synaptic trans-
mission by binding to a neurotransmitter, or actively exciting neurons. Gen-
erally speaking, when influencing a specific neuronal subcircuit, we can es-
timate the role of this subcircuit by comparing it to the control condition
(without any drugs).

For our studies, we employ two types of pharmacological experiments:
selectively blocking the ON-bipolar pathway, and blocking inhibition. Chap-
ter 3 lists the precise concentrations of the chemicals added to the Ringer’s
solution which superflows the retina.

4.8.1 Blocking the ON Bipolar Pathway

The broadest-level (and also one of the earliest) classification of retinal gan-
glion cells partitions them into ON- and OFF-cells, depending on whether
they primarily respond to increasing or decreasing light intensity, respec-
tively. As a remark, OFF-cells are more abundant in salamanders (Burkhardt
et al. 1998). Physiologically, the retina contains parallel ON and OFF path-
ways (see figure 2.3 above), which originate at the bipolar cell level; note
that these pathways intermingle at the ganglion cell level; for example, ON
ganglion cells can receive signals from OFF bipolar cells via an AII amacrine
cell and a sign-inverting glycinergic synapse between this amacrine cell and
the bipolar cell. Moreover, the dendrites of ON-OFF ganglion cells stratify
in at least two sub-layers of the inner plexiform layer (see figure 2.2).

The detailed ON and OFF pathway dynamics are of particular interest
for our study since the respective first excitation determines the latency
response of a ganglion cell.

Experimental method For our studies, we selectively block the signal
transmission from photoreceptors to ON bipolar cells via 200µM of 2-amino-
4-phosphonobutyrate (APB) added to the Ringer’s solution (Slaughter and
Miller 1981). APB is a metabotropic glutamate receptor agonist (denoted
mGluR receptors) (Nakajima et al. 1993; Conn and Pin 1997; Yang 2004).
That is, in order to signal increasing brightness, photoreceptors stop emit-
ting the glutamate neurotransmitter at the synaptic cleft to ON bipolar cells.
APB effectively interferes with this mechanism since it continuously drives
the mGluRs receptors, thus imitating constant darkness from the point of
view of the bipolar cell.
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The visual stimulus is the same as in section 4.4 above, shown in fig-
ure 4.12. That is, we imitate saccades by rapid shifts of the grating, with
shift amplitude equal to the grating stripe width w = 100µm.

Expected outcome We discuss two scenarios: in the first, the ganglion
cell’s receptive field has a much smaller extent than the width of a grating
stripe. Then all upstream photoreceptors see a brightness increase for the
phase offset where the receptive field moves from the center of a black grating
stripe to a white stripe. However, since we have blocked the ON pathway,
these photoreceptors cannot forward the information to ON bipolar cells.
Thus we expect that the ganglion cell remains silent for this particular phase
offset, such that we cannot define a latency tuning curve. This is in line with
the study by Gollisch and Meister (2008), who report that the ON-pathway
is indeed relevant.

In the second scenario, the receptive field has at least the size of a grating
stripe. This means that the ganglion cell pools from a spatially widespread
area of bipolar cells, such that for every phase offset, at least some of these
bipolar cells see a brightness decrease. Thus the ganglion cell might respond
even if the net brightness level increases. Since our grating stripe width is
smaller than in the study by Gollisch and Meister (2008), the second scenario
might indeed prevail in our case.
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(a) ON-OFF stimulus, control condition
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(b) after blocking th ON pathway

Figure 4.31: Spike raster plot of a single retinal ganglion cell, showing the effects of
APB (right side). We employ a spatially uniform, alternating bright-dark stimulus
(as indicated by the black-white bars) to test the cell’s response to rapidly increasing
or decreasing illumination. Left plot shows the control condition, before using
pharmacology. As expected, the ON responses disappear, since APB blocks the
bipolar ON-pathway. However, note that the temporal pattern of the OFF response
changes, too. This effect re-establishes that the cell receives signals from both the
ON and OFF pathways.
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(a) spike rasters (rapid shifts), control
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(b) spike rasters, APB
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(c) latency tuning curve, control condition
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(d) latency tuning curve, APB
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(e) spike count, control condition
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(f) spike count, APB

Figure 4.32: Spike raster plots of an individual retinal ganglion cell presented
with the rapid-shifting grating stimulus, comparing the effects of APB (right side)
to the control without pharmacology (left side). The cell spikes at all phase offsets
(i.e., colors) even though the receptive field moves from a black to a white grating
stripe at some (unknown) phase offset. The overall shape of the latency and spike
count tuning curves hardly changes; only the average spike count slightly increases.
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Experimental results First, we test whether the APB treatment actu-
ally works. For that purpose, we flash a uniform, alternating bright-dark
stimulus onto the retina, as indicated by the white-black bars in figure 4.31.
The plot shows the spike response rasters of a single ganglion cell to several
hundred trials of this stimulus. We directly compare the control condition
(left side) with the effects of administering APB (right side). Clearly, the
ON-responses completely disappear, as expected. This confirms that the
APB treatment is successful.
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Figure 4.33: Phases of latency tuning curves versus receptive field position on
the grating (as in figure 4.14), after blocking the bipolar ON-pathway via APB.
Note that ganglion cells which primarily exhibited ON responses before the APB
treatment become OFF cells. The figure largely resembles the control condition
in figure 4.14. This means that the OFF pathway can suffice for the latency tun-
ing, providing (almost) the same amount of information about the receptive field
position on the grating as with the ON pathway enabled.

In the context of rapid image shifts to imitate saccadic eye movements,
the results are surprising: according to figure 4.32, the ganglion cell spikes for
all phase offsets, even though the cell “sees” a net brightness increase when
moving from a black to a white stripe for some phase offset (see figure 4.3).
This complies with the second scenario above, meaning that the ganglion
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cell likely pools from several OFF bipolar cells in a spatially extended area.
In any case, figure 4.32 shows that latency tuning curves still exist in the
presence of APB.

With this observation, we can ask whether the latency tuning phase
still provides information about the receptive field position, as we have in-
vestigated in section 4.4. Figure 4.33 tries to answers this question; it is
equivalent to figure 4.14 above, except that we have administered APB.
(Unfortunately, the sets of ganglion cells in the two plots are not identical,
since several cells exclusively respond either in the control condition or after
applying APB.) The two figures look quite similar, i.e., even after blocking
the ON pathway, the receptive field position and latency tuning are clearly
correlated.

Discussion Concluding, we have shown that the OFF pathway in the
retina suffices to generate latency and spike count tuning curves, without
any contribution from the ON pathway. Moreover, the correlation between
the receptive field position on the grating and the tuning phase remains
largely unaffected as compared to section 4.4. In particular, there are retinal
ganglion cells which fire spikes at any grating location before the saccadic
shift, even if the receptive field center moves from a black to a white grating
stripe. This is in line with the second scenario above, i.e., each ganglion cell
which exhibits such a tuning curve pools from a spatially widespread area of
bipolar cells, such that at least some of these bipolar cells see a brightness
decrease.

4.8.2 Blocking Inhibition

Neuronal inhibition is a fundamental property of neuronal circuits. For
example, the number of inhibitory synapses in the human brain is of the same
order of magnitude as the excitatory synapses. Thus, inhibitory mechanisms
could play an essential role in our context of latency coding. On the other
hand, inhibition putative delays the timing of the first spike (i.e., increases
the latency), which counteracts particularly fast information transfer. Thus,
after investigating whether the latency (and spike count) coding still work
at all, we will study the intriguing possibility that blocking inhibition might
lead to even faster responses while still carrying information.

Experimental method We employ a cocktail of strychnine, bicuculline
and picrotoxin, which act as glycine and GABAA receptor blockers. Sec-
tion 3.6 lists the precise concentrations of these drugs, which we add to the
Ringer’s solution superflowing the retina.

The visual stimulus is the same as in the previous section 4.8.1 and
illustrated in figure 4.12 above, imitating saccades by rapid shifts of the
grating.
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Expected outcome As mentioned, we expect faster latency responses
when blocking inhibition as compared to the control condition without phar-
macology. Additionally, the overall spike rate should increase.

Experimental results Figure 4.34 visualizes the effects of blocking inhi-
bition, for the same retinal ganglion cell as in figure 4.4b above. We observe
the following: first, the overall spike rate increases, as expected. Second,
the cell changes from primarily ON (4.34a) to primarily OFF (4.34b), i.e.,
the flashed dark screen now elicits many more spikes with a shorter latency.
Note that the stimulus period in 4.34b is twice as large as compared to
4.34a in order to capture the quite long-lasting responses. Quite interest-
ingly, the cell exhibits an oscillating, sustained spiking pattern to the OFF
step after blocking inhibition. The middle row of the figure contains the
spike responses to the phase-shifted oscillating grating stimulus. This par-
ticular cell shows a less pronounced latency tuning curve as compared to the
control condition, i.e., the range of latency values for different phase offsets
(colors) is reduced (4.34e and 4.34f). Heuristically, this means that the cell
conveys less information about the receptive field position. Note that 4.34c
and 4.34e are the same plots as figures 4.4b and 4.7a, respectively, which we
have re-plotted to allow for direct comparison. Quite surprisingly, the cell’s
response sets in at the same time or even later than in the control condition,
which contradicts our initial guess that the overall latency should decrease.
Summarizing, blocking inhibition seems to degrade the latency tuning of
this particular cell.

Nevertheless, there are examples of enhanced latency tuning, as demon-
strated in figure 4.35 with a different ganglion cell. The cell behaves like an
ON cell in the control condition (4.35a), but surprisingly shows a delayed,
additional OFF response after blocking inhibition (4.35b). This OFF re-
sponse drifts over time, different from the ON response. Thus, these features
presumably trace back to two different internal mechanisms. As mentioned,
the cell exhibits a much broader range of latency values after blocking inhi-
bition, which could stem from the amplified OFF pathway. Different from
what we hypothesized, the response sets in about 200 ms later than in the
control condition. Thus, under normal conditions without pharmacology,
higher brain areas can possibly process the visual information much earlier.

Figure 4.36 shows the spike counts of the same ganglion cell for the
various phase offsets. The overall number of spikes increases; additionally,
the spike counts form a clear tuning curve after blocking inhibition, similar
to the latency.

Summarizing, blocking inhibition increases the amount of information
about the receptive field position for this cell due to the clearer latency and
spike count tuning curves, but on the other hand delays the availability of
visual information in higher brain areas.
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(a) ON-OFF stimulus, control condition
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(b) after blocking inhibition
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(c) spike rasters (rapid shifts), control
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(d) spike rasters, after blocking inhibition
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(e) latency tuning curve
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(f) latency tuning, after blocking inhibition

Figure 4.34: Effects of blocking inhibition (right side) exemplified by spike raster
plots of the ganglion cell from figure 4.4b. Top row: responses to the spatially
uniform, alternating bright-dark stimulus indicated by the black-white bars. The
cell changes from primarily ON (a) to primarily OFF (b). Middle row: responses
to the phase-shifted oscillating grating stimulus. The tuning becomes seemingly less
pronounced after blocking inhibition. Bottom row: corresponding latency tuning
curves. (c) and (e) are the same plots as figures 4.4b and 4.7a, respectively.
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(a) ON-OFF stimulus, control condition
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(b) after blocking inhibition
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(d) spike rasters, after blocking inhibition
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(e) latency tuning curve
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(f) latency tuning, after blocking inhibition

Figure 4.35: Effects of inhibition blockers (right) demonstrated by a single retinal
ganglion cell (as in figure 4.34). The cell is clearly ON type by its exclusive response
to the flashed bright stimulus (a), but starts exhibiting an additional, delayed OFF
response (b) after blocking inhibition. For the phase-shifted grating stimulus, the
spike rate largely increases (as expected). Different from figure 4.34, the latency
tuning curve becomes more pronounced, and retains a sinusoidal tuning pattern.
Notably, blocking inhibition delays the latency response by ≈ 200 ms in (d).
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(a) spike counts
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(b) spike counts, after blocking inhibition

Figure 4.36: Spike count tuning curve of the retinal ganglion cell from figure 4.35,
showing the effect of blocking inhibition. As expected, the overall number of spikes
increases. Moreover, we observe a much larger range of values and a clearer tuning
curve.

For statistical quantification, figure 4.37 shows the effects of blocking
inhibition as compared to the control in figure 4.14 from section 4.4. As first
remark, the latency tuning mechanism still seems to function after blocking
inhibition, since the data points show a correlation between receptive field
position and latency tuning. On the other hand, the deviation from exact
agreement (dashed identity line) is larger than for the control. This means
that inhibition probably plays a role for the precise tuning of the responses,
as long as the receptive fields have not changed due to the pharmacology.
The results point to the conclusion that inhibition increases the precision of
the tuning curve, but is not strictly required for the tuning mechanism to
work at all.

Discussion We have no evidence that blocking inhibition leads to faster
responses, but – to the contrary – have found examples where the response
is even delayed. Interestingly, these cells show a pronounced OFF response,
which was absent before blocking inhibition. In other words, the pharma-
cology largely alters the dynamics of the retinal network, which might lead
to the observed delay of the response.

Importantly, the phase of the receptive field position on the grating re-
mains an approximate predictor of the latency tuning phase (see figure 4.37)
in the presence of inhibition blockers. We have even found an example (in
figure 4.35) where the cell’s latency tuning becomes clearer pronounced af-
ter blocking inhibition (as compared to the control condition), which might
enable easier readout in higher brain areas.
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Figure 4.37: Phases of receptive field position on the grating versus latency tun-
ing curve for the rapidly-shifted grating stimulus, showing the effects of blocking
inhibition. Refer to figure 4.14 above for the control (without pharmacology).



Chapter 5

Review: Information Theory
for Neuronal Networks

Concepts from statistical physics and information theory applied to neuronal
networks have attracted growing interest in the neuroscience community.
The present chapter is concerned with a review of these concepts.

Functional aspects of complex neuronal systems critically depend on
the delicate interplay of neurons. Capturing this interplay requires parallel
recordings of neuronal populations, as enabled with the advent of multi-
electrode arrays (see also sections 3.2 and 3.3 in chapter 3). Nowadays
it is possible to record from hundreds of individual neurons (Nicolelis and
Lebedev 2009; Fitzsimmons et al. 2009). Thus, the question arises how
to analyze, quantify and interpret the recorded data (consisting of spike
timings). In this respect, statistical physics and information theory provide
the required quantitative framework; for example, the Shannon entropy is
the canonical measure of the uncertainty of a probability distribution.

5.1 Basic Concepts: Entropy and Mutual Infor-
mation

Consider a probability distribution P (x) on a discrete set of values. Then,
the Shannon entropy is defined as

H(P ) := −
∑
x

P (x) logP (x), (5.1)

where we understand that the logarithm log is taken to base 2, and 0 log 0 :=
limp→0 p log p = 0.

Consider the following setting: X1, X2, . . . are i.i.d. (identically, inde-
pendently distributed) random variables, which serve as source for random
sequences x = (x1, x2, . . . , xn). By a compression scheme of rate R for such
a sequence we understand a mapping of x to a bit string of length nR.

81
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Shannon asked for the optimal (i.e., smallest possible) rate R of a reliable
compression scheme:

Theorem 1 (Shannon’s noiseless channel coding theorem (Shannon
and Weaver 1949; Nielsen and Chuang 2000)). Suppose {Xi} is an i.i.d.
information source with entropy rate H(X). Suppose R > H(X). Then
there exists a reliable scheme of rate R for the source. Conversely, if R <
H(X), then any compression scheme will not be reliable.

Given two probability distributions P and Q, the relative entropy or
Kullback-Leibler divergence of P to Q is defined by

HKL(P ‖ Q) :=
∑
x

P (x) log
P (x)

Q(x)
= −H(P )−

∑
x

P (x) logQ(x).

Darroch and Ratcliff (1972) denote it as “discriminatory information func-
tion” and propose an iterative algorithm to arrive at the “maximum entropy”
Boltzmann distribution (see section 5.2).

See e.g. Nielsen and Chuang (2000) for a short proof (using lnx ≤ x− 1
for x > 0) of the following

Theorem 2 (Non-negativity of the relative entropy). The relative
entropy is non-negative, HKL(P ‖ Q) ≥ 0, with equality if and only if P = Q.

Let X, Y be two random variables with joint probability distribution
P (x, y). The entropy of X conditional on knowing Y is given by the condi-
tional entropy defined as

Hcond(X|Y ) := H(X,Y )−H(Y ).

Note that from the above definition of the Shannon entropy, the joint entropy
equals

H(X,Y ) = −
∑
x,y

P (x, y) logP (x, y).

The mutual information between two random variables X and Y is de-
fined as

Im(X : Y ) := H(X) +H(Y )−H(X,Y ). (5.2)

In terms of probability distributions: denote the joint probability distribu-
tion by P (x, y) and the marginal distributions by P (x) ≡ ∑y P (x, y) and
P (y) ≡∑x P (x, y). Then, according to equation (5.2), the mutual informa-
tion equals

Im(X : Y ) =
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)
.

Note that this is precisely the Kullback-Leibler divergence between the joint
probability distribution P (x, y) and the product of the marginal distribu-
tions, P (x)P (y). In other words, the mutual information is a special form
of the Kullback-Leibler divergence.
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Figure 5.1: “Entropy Venn diagram”: illustration of the various relationships
between entropies. Adapted from Nielsen and Chuang (2000).

Figure 5.1 depicts the relations between various entropies.
In the following, we follow the discussion in Dayan and Abbott (2005)

and interpret the various information theory quantities in terms of the stim-
ulus – response framework. The random variable S captures the statistical
distribution of a collection of stimuli denoted s, and R the corresponding
response statistics.

For a fixed stimulus s, the entropy of the response distribution P (r|s)
reads

H(R|s) = −
∑
r

P (r|s) logP (r|s).

Averaging over all stimuli yields the noise entropy of the response (Dayan
and Abbott 2005), which we identify as conditional entropy (response con-
ditional on knowing the stimulus):

〈H(R|s)〉s = −
∑
r,s

P (r, s) logP (r|s)

= H(S,R)−H(S) = Hcond(R|S).

(5.3)

We can interpret the noise entropy as intrinsic response variability, which
does not originate from the changes of the stimulus (Dayan and Abbott
2005).

This leads to an alternative interpretation of the mutual information
between stimulus and response, namely, the entropy of the response decre-
mented by the noise entropy (5.3):

Im(S : R) = H(R)− 〈H(R|s)〉s . (5.4)

Since both terms are nonnegative, H(R) is an upper bound on the mutual
information (see also theorem 3 below).
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Finally, we list some relationships between the various entropies defined
above. We will need the concept of a Markov chain X1 → X2 → · · · of
random variables, defined via the requirement that Xn+1 is independent of
X1, . . . , Xn−1, given Xn (Nielsen and Chuang 2000):

P (Xn+1 = xn+1|Xn = xn, . . . , X1 = x1) = P (Xn+1 = xn+1|Xn = xn).

As an interesting remark, one can show directly via the definition that if
X → Y → Z is a Markov chain, then also Z → Y → X.

Theorem 3 (Basic properties of Shannon entropy (Nielsen and Chuang
2000)). The following relationships between the various entropies hold true:

• Hcond(Y |X) ≥ 0 and thus Im(X : Y ) ≤ H(Y ), with equality if and
only if Y is a function of X, Y = f(X).

• Subadditivity: H(X,Y ) ≤ H(X) + H(Y ) with equality if and only if
X and Y are independent random variables.

• Strong subadditivity: H(X,Y, Z) +H(Y ) ≤ H(X,Y ) +H(Y, Z), with
equality if and only if Z → Y → X forms a Markov chain.

The proof of subadditivity uses lnx ≤ x − 1 for all positive x, with
equality if and only if x = 1.

5.2 The “Maximum Entropy” Principle

A fundamental physical concept originating from thermodynamics is the
maximum entropy (“maxent”) principle first proposed by Jaynes (1957a,b).
In abstract terms, our goal is to find a statistical model for a physical quan-
tity X (i.e., the probability distribution P (x)) subject to given expectation
values f̄i of some functions f1, . . . , fK ,

f̄i
!

= 〈fi(x)〉P =
∑
x

P (x)fi(x), i = 1, . . . ,K (5.5)

and the normalization condition∑
x

P (x) = 1. (5.6)

At first sight, P is under-determined in general, i.e., there are several pos-
sible solutions to (5.5), (5.6). But there is another criterion which leads to
a unique solution. This is precisely the “maximum entropy” principle pro-
posed by Jaynes (1957a): we look for the probability distribution P which
is “maximally noncommittal with regard to missing information” given the
constraints (5.5), (5.6), i.e., which maximizes the entropy

H(P ) := −
∑
x

P (x) logP (x). (5.7)
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A short calculation leads to the well-known Boltzmann distribution

Pθ(x) =
1

Z(θ)
exp

[
−

K∑
i=1

θifi(x)

]
(5.8)

with Lagrange multipliers θi and the partition function

Z(θ) :=
∑
x

exp

[
−

K∑
i=1

θifi(x)

]
.

These Lagrange multipliers θi are chosen to solve the following concise for-
mula for the expectation values,

f̄i
!

= 〈fi(x)〉Pθ = − ∂

∂θi
lnZ(θ).

In a typical experimental setting, we repeat m trials of a stimulus, ob-
taining m samples {x1, . . . , xm}. Thus, the empirical probability distribu-
tion (i.e., the relative number of occurrences) reads

P̃ (x) :=
1

m

m∑
n=1

δx,xn .

A short calculation (Broderick et al. 2007) shows that matching the
experimental expectation values

f̄i ≡ 〈fi(x)〉P̃ =
1

m

m∑
n=1

fi(xn)

by the “maximum entropy” probability distribution results in a minimum
(over θ) of

LP̃ (θ) := − 1

m

m∑
n=1

lnPθ(xn) = 〈− lnPθ(x)〉P̃ . (5.9)

We can exchange the logarithm and the sum in the second term, yielding

LP̃ (θ) = − 1

m
lnPtotal with Ptotal :=

m∏
n=1

Pθ(xn).

As noted by Broderick et al. (2007), Ptotal equals the probability of drawing
the independent experimental samples xn given the probability distribution
Pθ.
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5.3 Ising Models of Pairwise Interactions

The following paragraph is concerned with neuronal networks and their sta-
tistical spiking patterns. We introduce the approach initiated by Schneid-
man et al. (2006); Tkacik et al. (2006) and Shlens et al. (2006), which is still
being extended and refined (Tkacik et al. 2009; Ganmor et al. 2009, 2011a,b;
Shlens et al. 2009; Roudi et al. 2009). The authors investigate whether the
spiking statistics of neuronal networks complies with Ising models from sta-
tistical mechanics and thermodynamics, which we will explain in detail.

Within a small time window (on the order of 10 ms), an individual neuron
hardly fires more than one spike (due to the refractory period). Thus, we
can capture the instantaneous spiking activity via a binary variable σi for
each neuron, such that σi = 1 indicates that neuron i fires a spike, and
likewise σi = −1 that neuron i remains silent. The spiking activity of the
full network thus corresponds to the configuration σ ≡ (σ1, . . . , σN ), where
N is the number of neurons.

Figure 5.2: Illustration of the (square lattice) Ising model. In physical terms,
each lattice site i contains an electron endowed with a “classical” spin variable σi,
which assumes two possible states ↑ or ↓. Each local magnetic field hi influences
the respective spin σi and contributes hi σi to the total energy, and each pairwise
interaction Jij adds Jij σi σj to the total energy.
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From a statistical mechanics and thermodynamics perspective, Ising
models (Ising 1924; Onsager 1944) successfully describe diverse collective
effects (like phase transitions) emerging from interacting pairs. The physi-
cal setup of this model consists of electronic spins σi arranged on a regular
lattice (see figure 5.2). In the simplest “classical” case, each spin points
either up (σi = 1) or down (σi = −1). The overall energy of the network
results from local magnetic fields hi influencing electron i, as well as inter-
actions Jij between all pairs of electrons. That is, the Hamiltonian of the
system reads

H(σ) =
∑
i

hi σi +
∑
i<j

Jij σi σj .

Assume we know the average energy E, i.e.,

〈H(σ)〉P
!

= E (5.10)

equivalent to equation (5.5) above. Then, according to the maximum en-
tropy principle (see previous section 5.2), the probability distribution P
consistent with the constraint (5.10) is the Boltzmann distribution P (σ) =
exp[−H(σ)/kBT ]/Z, where – in terms of thermodynamics – kB is the Boltz-
mann constant and T the temperature in Kelvin. Comparing with (5.8), we
identify θ := 1/kBT as Lagrange multiplier which ensures that (5.10) holds
true. Note that in the limit of zero temperature T → 0, the spins assume
the optimal configuration such that the Hamiltonian reaches its minimum
(denoted ground state energy).

From a slightly different perspective, instead of fixing the average en-
ergy, we now assume that we know the average of each spin variable, 〈σi〉,
as well as the correlations among all pairs, 〈σi σj〉 for 1 ≤ i < j ≤ N .
Then, again according to the maximum entropy principle, the Boltzmann
distribution (5.8) respecting these constraints reads

PIsing(σ1, . . . , σN ) =
1

Z
exp

∑
i

hi σi +
∑
i<j

Jij σi σj

 . (5.11)

This is precisely the Ising model to be applied to neuronal population activ-
ity. Interestingly, the probability distribution has the same form as above
for fixed energy; however, we now interpret the to-be determined parame-
ters hi and Jij as Lagrange multipliers to resolve the constraints on 〈σi〉 and
〈σi σj〉.

As central question, one asks whether the Ising model faithfully describes
the spike pattern distribution of the neuronal population, i.e., if it suffices to
take only pairwise interactions into account – a premise which would greatly
simplify the overall analysis.

Schneidman et al. (2006) answer this question to the affirmative for net-
works up to ∼40 neurons, concluding that the Ising model “captures more
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than 90% of the structure in the detailed patterns of spikes and silence in
the network”. On the other hand, according to the authors, the independent
model (each neurons fires independently of the others) fails to described the
experimentally observed spiking probabilities. We will apply the Ising model
to our own experimental spiking data in chapter 6 and investigate whether
we can confirm these results. Note that there are two issues in the study
by Schneidman et al. (2006): first, the approach cannot account for time-
dependent interactions since the model considers the instantaneous activity
only. Second, the authors show movies of natural environments, but do not
discriminate between the stimulus-induced and intrinsic correlations. Inter-
estingly, a recent study by the same research group (Ganmor et al. 2011b)
asserts that pairwise models are not sufficient any more when dealing even
larger (∼100) groups of neurons.

The computational challenge in obtaining the probability distribution
(5.11) stems from the exponential increase in the number of states σ ≡
(σ1, . . . , σN ) with N . To alleviate this difficulty, Broderick et al. (2007)
propose a “histogram Monte Carlo” algorithm to calculate the minimum
of (5.9) and thus obtain the maximum entropy distribution (5.11).

In a theoretical paper, Tkacik et al. (2010) employ a modified Ising model

P (σ1, . . . , σN |s) =
1

Z
exp

β(∑
i

(
h0
i + hi(s)

)
σi +

∑
i<j

Jij σi σj

) ,
with s describing the stimulus, and h0

i the basic, stimulus independent firing
rate. The “temperature” β encodes neural reliability (or likewise, noise).
Namely, neurons become deterministic for β → ∞ and completely noisy
for β → 0 (random firing, independent of the stimulus and interactions Jij).
Given β and the stimulus-dependent firing bias hi(s), the goal consists of op-
timizing

{
h0
i , Jij

}
to maximize the mutual information I({σi};h(s)) between

h(s) and the response {σi}. The authors report that “the optimal popula-
tion code interpolates smoothly between redundant error-correcting codes,
independent codes, and decorrelating codes, depending on the strength of
stimulus correlations and neuronal reliability.”

Finally, we remark that one may extend the construction of probability
distributions as in (5.11) to include correlations of any order k. For example,
analogous to (5.11), we obtain for k = 3

P (3) (σ1, . . . , σN ) =
1

Z
exp

∑
i

hi σi +
∑
i<j

Jij σi σj +
∑

i<j<m

Kijm σi σj σm

 .
(5.12)

In this model, all combinations of expectation values 〈σi〉, 〈σi σj〉, 〈σi σj σm〉
are assumed to be known, which then fixes the Lagrange multipliers hi,
Jij and Kijm. In this way we arrive at a hierarchy P (k), k = 1, 2, . . . , N of
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probability distributions, with P (1)(σ1, . . . , σN ) = 1
Z

∏
i exp[hi σi] describing

independent random variables, P (2) ≡ PIsing the Ising model, and P (N)

the full probability distribution of N variables (see also Schneidman et al.
(2003b)). Note that in the latter case, there are precisely

N∑
i=1

(
N

i

)
= 2N − 1 (5.13)

Lagrange multipliers, which is equal to the degrees of freedom (respecting
the normalization constraint) of an arbitrary probability distribution for
binary variables σ ≡ (σ1, . . . , σN ), as expected.

5.4 Connected Information

In what follows, we introduce the idea of “connected correlations” by Schnei-
dman et al. (2003b). Similar to the previous sections, the approach rests
on the maximum entropy principle. Here, we construct probability dis-
tributions consistent with kth order marginals of a known (experimentally
obtained) probability distribution.

In detail, consider a set of N random variables X1, . . . , XN with joint
probability distribution P (x1, . . . , xN ). Then, according to the definition (5.1)
above, the joint entropy equals

H(X1, . . . , XN ) = −
∑

x1,...,xN

P (x1, . . . , xN ) logP (x1, . . . , xN ).

Iterated application of subadditivity (see theorem 3) tells us that the
joint entropy is smaller or equal to the sum of the individual entropies,

H(X1, . . . , XN ) ≤
∑
i

H(Xi), (5.14)

with strict inequality if the random variables are correlated. In analogy to
the mutual information (5.2) between two variables, the entropy difference
between several ones is called multi-information:

Im(X1 : X2 · · ·XN ) :=
∑
i

H(Xi)−H(X1, . . . , XN )

=
∑

x1,...,xN

P (x1, . . . , xN ) log
P (x1, . . . , xN )∏

i P (xi)
(5.15)

with P (xi) the marginal probability distributions. According to (5.14), the
multi-information is nonnegative, and equal to zero precisely if the random
variables are independent.
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However, as noted by the authors Schneidman et al. (2003b), the multi-
information is not sufficient to resolve the question whether pairwise, triple,
or higher order interactions govern the random variables. For a quantitative
characterization, the authors employ the maximum entropy distribution,
denoted

P̃ (k)(x1, . . . , xN ), (5.16)

which is – by definition – consistent with all kth order marginals of the given
full distribution P (x1, . . . , xN ). For example, for N = 3 and k = 2,∑

x3

P̃ (2)(x1, x2, x3)
!

=
∑
x3

P (x1, x2, x3) ∀x1, x2 (5.17)

and equivalently for permutations of the xi. Formally, in terms of equa-
tion (5.5) above, these marginal constraints lead to a family of delta distri-
butions

fx1,x2(y1, . . . , yN ) := δx1,y1δx2,y2 ∀x1, x2

(again equivalently for permutations of the xi) with

f̄x1,x2 :=
∑
x3

P (x1, x2, x3).

Schneidman et al. (2003b) concisely write the Boltzmann distribution (5.8)
as

P̃ (2)(x1, x2, x3) =
1

Z
exp [−λ12(x1, x2)− λ23(x2, x3)− λ31(x3, x1)]

with to-be determined functions λij(xi, xj) such that (5.17) holds. We can
justify this step by combining the functions fxi,xj with the corresponding
Lagrange multipliers θxi,xj , arriving at

λij(yi, yj) :=
∑
xi,xj

θxi,xjfxi,xj (yi, yj) = θyi,yj .

That is, the λij are precisely the Lagrange multipliers θxi,xj .

Note that P̃ (1)(x1, . . . , xN ) =
∏
i P (xi), i.e., the distribution with all

variables independent. On the other hand, we recover the full, true proba-
bility distribution at the latest when k reaches N :

P̃ (N)(x1, . . . , xN ) = P (x1, . . . , xN ).

Importantly, this equality might also hold true even if k < N .
With the above definitions, Schneidman et al. (2003b) decompose the

multi-information (5.15) as

Im(X1 : X2 · · ·XN ) =

N∑
k=2

I
(k)
C (X1, . . . , XN ) (5.18)
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with the connected information of order k defined by

I
(k)
C (X1, . . . , XN ) := H

(
P̃ (k−1)(x1, . . . , xN )

)
−H

(
P̃ (k)(x1, . . . , xN )

)
.

(5.19)
Schneidman et al. (2006) employ the concept of “connected information”
to determine the maximal order k relevant in real neuronal systems, i.e.,
whether neurons are statistically independent or whether pairwise or even
triple interactions play a role. This question is a central topic in chapter 6
of the present thesis.

For the special case of binary variables xi ≡ σi ∈ {−1, 1}, the maximum
entropy distribution P̃ (k) respecting all kth order marginals is the same as
the maxent distribution for correlations up to order k (see section 5.3). In
particular for k = 2, we arrive at the Ising model, which is plausible since the
averages 〈σi〉, 〈σj〉 and 〈σi σj〉 (together with the normalization constraint)
completely determine any probability distribution in σi and σj .

5.5 Synergy, Redundancy and Independence

This section focuses on the following question: Do pairs of neurons convey in-
formation – for example, by synchronous activity – that is not present when
observing individual neurons only? This questions directly translates to an
information theoretic quantity called synergy (Schneidman et al. 2003a),
which measures the additional information in the concerted activity about
the applied stimulus. Synergy can originate from synchronous spiking, but
there are also more complex codes which can elicit synergy. On the other
end of the spectrum, it is possible that neurons provide the same, i.e., re-
dundant information (Puchalla et al. 2005). In information theory terms,
redundancy equals negative synergy.

The discussion about the interpretation of information theoretic con-
cepts applied to neuroscience is still ongoing (Latham and Nirenberg 2005),
sometimes with contradictory experimental results. For example, Nirenberg
et al. (2001) put forward the view that neurons are largely independent,
which contradicts the findings by Schneidman et al. (2006). Independent
of experimental outcomes, we focus on the theoretical concepts from infor-
mation theory which can be employed to analyze the data. We follow the
exposition by Schneidman et al. (2003a).

To cast synergy into mathematical formulas, first recall from equations (5.2)
and (5.4) that the mutual information between the stimulus S and the re-
sponse R1 and R2 of two neurons equals

Im(S : R1, R2) =
∑
s,r1,r2

P (s, r1, r2) log
P (s, r1, r2)

P (s)P (r1, r2)
. (5.20)
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The synergy of these two neurons is defined as

Syn(R1 : R2; S) := Im(S : R1, R2)− Im(S : R1)− Im(S : R2) (5.21)

(Reich et al. 2001; Schneidman et al. 2003a). It captures the information
difference between the joint response and the individual responses. We call
the pair synergistic if the joint response conveys more information about
the stimulus than the sum of the individual responses, and – conversely –
redundant if the joint response conveys less. As a simple illustration of a
completely synergistic cell pair, consider the following (binary) stimulus-
response probability distribution (with the remaining combinations of s, r1

and r2 having probability zero):

s r1 r2 P

0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

The individual neurons convey no information at all about the stimulus,
Im(S : Ri) = 0, since the conditional distribution P (ri|s) ≡ 1/2 for i = 1, 2.
That is, no matter what the stimulus, each individual neuron responds with
probability 1/2. On the other hand, we can infer with certainty that s = 0 if
both neurons exhibit the same response, and conversely s = 1 if the neurons
show different responses. Thus, the synergy turns out to be 1 bit in this
example.

At the other extreme, a cell pair is completely redundant if there is a
bijective mapping between the responses of the two neurons. Thus, we gain
no additional information about the stimulus when observing the second cell
if we know the response of the first one already.

As noted by Schneidman et al. (2003a), the synergy divided by the joint
mutual information obeys

Syn(R1 : R2; S)

Im(S : R1, R2)
∈ [−1, 1],

serving as a normalized version of the synergy.
When investigating the correlations between the two cells, we have to

distinguish between stimulus-induced correlations (for example, when the
neurons fire simultaneously since they respond to the same stimulus fea-
tures, possibly without any intrinsic connection between the neurons), and
correlations which do originate from internal wiring (denoted “noise corre-
lations”). To quantify these noise correlations, Schneidman et al. (2003a)
measure the conditional independence of the two neurons via the mutual
information for a fixed stimulus s:

Im(R1 : R2|s) =
∑
r1,r2

P (r1, r2|s) log
P (r1, r2|s)

P (r1|s)P (r2|s)
.
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This quantity excludes any correlations due to the stimulation since we resort
to a single stimulus. Taking the average over all stimuli yields

〈Im(R1 : R2|s)〉s = Hcond(R1|S) +Hcond(R2|S)−Hcond(R1, R2|S)

= Im(S : R1, R2)− Im(S : R1)− Im(S : R2) + Im(R1 : R2)

with the joint noise entropyHcond(R1, R2|S) from (5.3). Comparing with (5.21),
we arrive at the following alternative definition of synergy:

Syn(R1 : R2; S) = 〈Im(R1 : R2|s)〉s − Im(R1 : R2). (5.22)

Schneidman et al. (2003a) denote the last term, the mutual information
between the neurons Im(R1 : R2), as activity independence. Namely, it
quantifies how much the activity of one neuron conveys about the activity
of the other. As noted by the authors, both terms on the right hand side
in (5.22) are non-negative, they provide upper and lower bounds on the
synergy, respectively.

From an alternative perspective, we can imitate the situation where the
cells are recorded non-simultaneously by setting

Pshuffle(s, r1, r2) := P (s)P (r1|s)P (r2|s), (5.23)

i.e., assuming “conditional independence” (Schneidman et al. 2003a). As
noted by the authors, this is precisely the probability distribution resulting
from combining different (“shuffled”) response trials. Note that the marginal
distribution of the responses derived from (5.23) reads

Pshuffle(r1, r2) =
∑
s

P (s)P (r1|s)P (r2|s).

Plugging (5.23) into the definition of the mutual information (5.20) between
stimulus and response, we obtain

Ishuffle(S : R1, R2) :=
∑
s,r1,r2

P (s)P (r1|s)P (r2|s) log
P (r1|s)P (r2|s)∑

s′ P (s′)P (r1|s′)P (r2|s′)
.

Schneidman et al. (2003a) denote the corresponding difference between
the standard and shuffled mutual information as

∆Inoise(S : R1, R2) := Im(S : R1, R2)− Ishuffle(S : R1, R2).

It quantifies the internal, “noise”-induced correlations between the neurons.
Similarly, Schneidman et al. (2003a) argue that

∆Isignal(S : R1, R2) := Im(S : R1)+ Im(S : R2)− Ishuffle(S : R1, R2). (5.24)

“measures the effect of signal-induced correlations on the encoded informa-
tion”. The authors show that the quantity (5.24) is non-negative. Finally,
we arrive at still another definition of synergy

Syn(R1 : R2; S) = ∆Inoise(S : R1, R2)−∆Isignal(S : R1, R2), (5.25)

which follows directly from the relevant definitions.
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5.6 Entropy Estimation

The following section is centered around the approach by Wolpert and Wolf
(1995) and Nemenman et al. (2002, 2004); Nemenman (2002) to arrive at
an unbiased entropy estimation starting from a (possibly undersampled)
probability distribution. For example, imagine we investigate the spike pat-
tern probabilities of a neuronal population, aiming at the entropy of this
distribution (with the unknown probabilities denoted as q ≡ (q1, . . . , qK)).
If pattern i occurs ni times, then the simplest idea would be to plug the
value q̂i := ni/M for pattern i into the formula (5.1) of the entropy, where
M :=

∑
i ni is the total number of observations. However, this can lead to

a severe bias of the resulting entropy, if a pattern i with small probability
qi is not observed at all (ni = 0), for example. The problem typically arises
when the limited recording time of the experiments restricts the number of
observations M , and the number of possibilities K is large.

A more consistent approach comes from statistical interference, which
employs “probabilities of probability distributions”. Namely, we start with
a uniform a priori distribution on the space of probability distributions,

P prior
u (q) :=

1

Zu
δ

(
1−

K∑
i=1

qi

)
, Zu :=

∫
[0,1]K

δ

(
1−

K∑
i=1

qi

)
dKq (5.26)

(Wolpert and Wolf 1995). In other words, a priori, all probability distribu-
tions q are equally likely as long as they obey the normalization constraint∑
qi = 1. Note that the likelihood of the observations n given the probabil-

ity distribution q equals

P (n|q) =
M !∏
i ni!

∏
i

qnii (5.27)

(Wolpert and Wolf 1995). This allows us – conversely – to quantify the
probability of the distribution q given the observations n via Bayes’ rule,

P (q|n) =
P (n|q)P prior

u (q)

P (n)
, P (n) :=

∫
RK+

P (n|q)P prior
u (q) dKq.

Together with (5.26) and (5.27), the formula leads (up to a normalization fac-
tor) to the following expectation value of the entropy H(q) = −∑i qi log qi:

J(H|n) :=

∫
RK+

H(q) δ
(

1−
∑

qi

) K∏
i=1

qnii dKq. (5.28)

In order to calculate (5.28), Wolpert and Wolf (1995) first rewrite the fol-
lowing integral via a change of variables (for given functions hi) in terms of
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the convolution operator ⊗:∫
RK+

δ
(

1−
∑

qi

) K∏
i=1

hi(qi) dKq =

(
K⊗
i=1

hi

)
(τ)
∣∣∣
τ=1

.

Together with the Laplace transform, this leads to

J(1|n) ≡
∫
RK+

δ
(

1−
∑

qi

) K∏
i=1

qnii dKq =

∏K
i=1 Γ (ni + 1)

Γ (M +K)
(5.29)

(Wolpert and Wolf 1995). To obtain J(H|n), the authors make use of the
formula dn

dxna
x = ax ln(a)n to calculate

J(ln(qi)|n) =
∂

∂ni
J(1|n) = J(1|n) (ψ0 (ni + 1)− ψ0 (M +K))

where ψm are the polygamma functions defined as

ψm(z) :=
dm+1

dzm+1
ln Γ(z).

Note that J(qi ln(qi)|n) = J(ln(qi)|n + ei). Thus, the expectation value of
the entropy under the uniform prior (5.26) and for observations n reads

〈H|n〉u = J(H|n)/J(1|n) = −
K∑
i=1

ni + 1

M +K
(ψ0(ni + 2)− ψ0(M +K + 1)) .

(5.30)
With the same technique, one arrives at explicit formulas for all higher
moments 〈Hm|n〉u, and thus also for the variance of the entropy,

∆H =
(〈
H2|n

〉
u
− 〈H|n〉2u

)1/2
.

Nevertheless, as noted by the authors, even when observing no data at all
(ni = 0 for all i), we obtain the fixed expectation value

〈H|0〉u = − (ψ0(2)− ψ0(K + 1)) =

K∑
i=2

1

i
.

Nemenman et al. (2002, 2004) generalize the hitherto analysis and re-
place – as first step – the uniform prior from (5.26) by a Dirichlet family (in
the parameter β) of priors,

P prior
β (q) :=

1

Z(β)
δ

(
1−

K∑
i=1

qi

)
K∏
i=1

qβ−1
i , (5.31)
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where the δ-term again ensures proper normalization of the probability
distribution q. Note that we recover (5.26) by setting β = 1. The nor-
malization factor Z(β) is just (5.29) with the ni replaced by β − 1, i.e.,
Z(β) = Γ(β)K/Γ(Kβ).

The Dirichlet family of priors (5.31) effectively maps ni → ni + β − 1 as
compared to the above analysis for the uniform prior. Thus, the generaliza-
tion of the entropy expectation value in (5.30) reads

〈H|n〉β = −
∑
i

ni + β

M +Kβ
(ψ0(ni + β + 1)− ψ0(M +Kβ + 1)) . (5.32)

In particular, for the case of no observations (ni = 0 for all i), this reduces
to

ξK(β) := 〈H|0〉β = ψ0(Kβ + 1)− ψ0(β + 1) (5.33)

and variance

σK(β) :=
〈
(∆H)2|0

〉
β

=
β + 1

Kβ + 1
ψ1(β + 1)− ψ1(Kβ + 1)

(Nemenman et al. 2002). These formulas reveal the main issue with entropy
estimation using the Dirichlet priors. Namely, as the authors emphasize, the
variance scales like σK(β) ' 1/

√
K for fixed β and large K; in other words,

the a priori distribution of the entropy is sharply peaked. In particular,
the choice of β mostly determines the entropy in the undersampled regime
(M . K), irrespective of the observations n.

To remedy the situation, Nemenman et al. (2002, 2004) design a prior
(denoted “NSB” prior according to the initials of the authors) simply by
averaging the Dirichlet family (5.31) over β, such that all mean entropies
with respect to this prior are equally likely. Namely,

P prior
NSB (q) :=

1

ZNSB

∫ ∞
0

dξK(β)

dβ
P prior
β (q) dβ, (5.34)

with the average a priori entropy ξK(β) at fixed β given in (5.33). Bayesian
inference follows the same scheme as above, resulting in

〈Hm|n〉NSB =

∫
H(q)mP (n|q)P prior

NSB (q) dKq∫
P (n|q)P prior

NSB (q) dKq
.

Using the definition (5.34), the numerator (times the constant ZNSB) equals∫ ∞
0

∫
RK+

H(q)mP (n|q)P prior
β (q) dKq ξ′K(β) dβ

=

∫ ∞
0

ρ(β,n) 〈Hm|n〉β ξ′K(β) dβ
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with 〈Hm|n〉β for m = 1 explicitly defined in (5.32), and

ρ(β,n) :=

∫
RK+

P (n|q)P prior
β (q) dKq

=
Γ(Kβ)

Γ(M +Kβ)

K∏
i=1

Γ(ni + β)

Γ(β)
=

1

(Kβ)M

K∏
i=1

(β)ni .

(5.35)

For the last equation, we have employed the Pochhammer symbol

(x)n ≡
Γ(x+ n)

Γ(x)
= x(x+ 1) · · · (x+ n− 1).

Assembling everything, we reproduce the formula by Nemenman et al. (2002),

〈Hm|n〉NSB =

∫∞
0 ρ(β,n) 〈Hm|n〉β ξ′K(β) dβ∫∞

0 ρ(β,n)ξ′K(β) dβ
. (5.36)

The authors call ρ(β,n) in (5.35) the experimental evidence for a particular
value of β since it weights the integral over the Dirichlet expectation value
〈Hm|n〉β based on the observations n. The last equation completes the
analytic part of our NSB entropy estimation survey; in the following, we are
concerned with the numerical implementation of the algorithm.

Considering the numerical evaluation of ρ(β,n), a major difficulty stems
from the quickly growing Gamma functions. To avoid numerical over- or
underflow, we first rewrite the evidence as

ρ(β,n) = e−L(β,n) (5.37)

with

L(β,n) := −
K∑
i=1

ln Γ(ni + β) +K ln Γ(β)− ln Γ(Kβ) + ln Γ(M +Kβ)

(Nemenman 2002). Note that the log-Gamma functions ln Γ are already
built into numerical software tools like Mathematica or Matlab such that
no numerical overflow occurs (as if first evaluating the Gamma function and
then taking the logarithm). An essential observation regarding ρ(β,n) is as
follows: for any constant L0, the re-scaled version

ρ̃(β,n) := e−L(β,n)+L0 (5.38)

leads to the same entropy estimate since the scaling factor eL0 cancels in
the formula (5.36). Thus, a proper choice of L0 (close to the minimum of
L(β,n)) allows us to escape the numerical overflow problem as if evaluating
equation (5.37) directly.
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Nemenman (2002) devises a saddle point method to calculate the inte-
grals in (5.36). For that purpose, one needs the (unique) maximizer β∗ of
ρ(β,n), or – equivalently – the minimizer of L(β,n). Nemenman (2002)
derives the following equation (valid to zeroth order in 1/K):

K1

κ∗
!

= ψ0(κ∗ +M)− ψ0(κ∗), κ∗ ≡ Kβ∗. (5.39)

Here, K1 is number of possibilities (or bins) with at least one observed
occurrence, i.e., the number of i for which ni ≥ 1.

In the remainder of the current section, we share our own ideas regarding
the implementation of the NSB algorithm. While Nemenman (2002) derives
higher order corrections of (5.39) to determine β∗ as precisely as possible,
we have found (5.39) sufficient, in the sense that

L0 := L(β∗,n)

plugged into the formula (5.38) escapes numerical over- or underflow prob-
lem.

Considering the integration over β in (5.36), we employ the substitution

β →
(

ω

1− ω

)2

, ω ∈ [0, 1), (5.40)

which maps the integration domain from β ∈ [0,∞) to ω ∈ [0, 1), and has
the added benefit of broadening the support of the integrand (see figure 5.3).
The alternative approach taken by Nemenman (2002) is the canonical sub-
stitution∫ ∞

0
ρ(β,n) 〈Hm|n〉β ξ′K(β) dβ =

∫ lnK

0
ρ(β(ξ),n) 〈Hm|n〉β(ξ) dξ,

where β(ξ) is the inverse of the function ξK(β) defined in (5.33). Thus, our
approach saves the effort of actually computing this inverse.

The curves in figure 5.3 stems from a toy model with K = 9 possibilities
(or bins), observations n = (4, 2, 3, 0, 2, 4, 0, 0, 2), and thus M =

∑
ni = 17.

Using our implementation, we obtain

〈H|n〉NSB = 2.79976± 0.225 bits,

in exact agreement (8 digits) with the Matlab implementation by Nemenman
(2011). For comparison, the “naive” calculation of the entropy (plugging the
observed frequencies ni/M into the formula (5.1)) gives Hdirect = 2.5136 bits,
which is noticeable different form the NSB result.
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Figure 5.3: The substitution (5.40) maps the domain of the integrals in (5.36)
to the interval [0, 1) and broadens the integrand, thus facilitating easier numerical
integration. The underlying toy model for the shown curves consists of K = 9
possibilities (or bins) and observations n = (4, 2, 3, 0, 2, 4, 0, 0, 2). The evidence
ρ(β,n) is the rescaled version in (5.38).
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Chapter 6

Neuronal Network
Interactions

In this chapter, we apply the information theory concepts described in chap-
ter 5 to the experimental spike timings of a neuronal population. We ask
whether pairwise interactions are sufficient to describe the spiking statistics
(in a similar vein as Schneidman et al. (2006), but for spontaneous spik-
ing activity in the absence of any visual stimulus). Finding an appropriate
framework is important since it would greatly simplify the analysis of neu-
ronal networks. Namely, the number of possible spiking patterns increases
exponentially with the number of neurons N , such that the full probability
distribution is typically undersampled in experiments. Since some patterns
occur very rarely, a probability estimation based on the occurrence frequency
might be biased and not reliable (see also section 5.6). On the other hand, if
we knew that pairwise interactions suffice to capture the spiking statistics,
we would only require the experimental firing rates and pairwise correlations
to obtain a faithful spiking probability model of the full neuronal network.

Nevertheless, even if higher-order (≥ 3) interactions are weak, our anal-
ysis indicates that they might still play a role. For example, it is conceivable
that third-order interactions result from the signal transmission between two
neurons modulated by another neuron. Thus we investigate these interac-
tions in more detail in section 6.3.

We illustrate that retinal ganglion cells can indeed be correlated by a
concrete example: the curve in figure 6.1 shows the cross-correlogram of the
spontaneous spiking activity of two retinal ganglion cells in a frog retina,
in the absence of any visual stimulus. Thus all observed correlations must
stem from internal neuronal interactions. The peaks at ±4 ms (see inset)
likely result from gap junctions, i.e., direct connections of the cell membranes
allowing ions to flow from one cell to the other. Another explanation could
be a shared bipolar cell which excites both ganglion cells.

In the rest of the current chapter, we employ information theory mea-

101
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Figure 6.1: Cross-correlogram of the spontaneous spiking activity of two retinal
ganglion cells. The curve shows the histogram of the relative spike timings (bin
size 1 ms), i.e., the average spike rate of one cell relative to the spike timings of the
other cell. Inset is a close-up of the time interval between ±10 ms. Note that the
peaks are not symmetric.

sures (see chapter 5) to quantify the interaction strength of larger groups of
neurons.

6.1 Experimental and Numerical Methods

We briefly outline the experimental and numerical methods specific for the
present chapter.

Simultaneous recording of the joint neuronal activity of several gan-
glion cells is a prerequisite to capture neuronal network statistics. This is
facilitated by the multi-electrode array (MEA) setup described in section 3.2.
Recall that in our case the electrode array consists of 60 electrodes arranged
on a regular 8 × 8 square grid (with the 4 corner electrodes missing), and
100µm distance between the electrodes.

Visual stimulation should ideally be avoided completely (i.e., monitor
switched off) since we are interested in the intrinsic neuronal interactions,
not the spiking correlations induced by the visual stimulus. In other words,
the neurons should fire spontaneously (as in figure 6.1 above). Indeed, we
observe spontaneous activity in frog retinas, which we will analyze in the
present chapter. This saves us from explicitly subtracting the stimulus-
induced correlations (see equation (5.25) in section 5.5). In this respect, our
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analysis differs from the study by Schneidman et al. (2006), who presented
visual stimuli imitating natural scenes to the retina.

In axolotl, however, we observe that the retinal ganglion cells remain
silent without visual stimulation. This necessitates a visual stimulus which
elicits spikes, but at the same time introduces hardly any correlations. In our
case, we present a spatially uniform, linearly increasing brightness change
from black to white, followed by a corresponding decrease from white to
black, and then repeating in an infinite loop. In order to avoid stimulus-
induced temporal correlations, both the increase and decrease between black
and white are relatively slow (they take 1 s in our case).

Extraction of spiking patterns refers to the discretization the individ-
ual spike trains to arrive at a finite number of possible discrete patterns.
In our case, we follow the binning strategy approach by Schneidman et al.

Figure 6.2: Discretization of spike trains into binary patterns, with bin size ∆tbin

(schematic illustration). Each blue dot represents a single spike and is encoded as
1 in the corresponding binary word. In our case, the time window ∆tbin = 10 ms.

(2006), as illustrated in figure 6.2. The current neuronal network activity is
described by a binary word of length N , where N is the number of neurons.
Bit i of this pattern is 1 if ganglion cell i fires (at least) one spike within
the time window ∆tbin, and 0 if it remains silent. We set ∆tbin = 10 ms,
such that the cells’ refractory period and relatively low spiking rate typically
result in at most one spike within each time window.
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Analysis of the spiking patterns starts from the experimental prob-
ability distribution Pexp(σ1, . . . , σN ) derived from the observed number of
occurrences of each binary pattern (σ1, . . . , σN ) with σi ∈ {0, 1}. Without
bias correction (which we will treat below), the probability of each pattern
is simply its occurrence frequency. In order to reflect the notation of the
Ising model, we relabel 0→ −1 such that σi ∈ {−1, 1}.

Specifically for the Ising model, we can now use Pexp(σ1, . . . , σN ) to
calculate the experimental average values 〈σi〉exp and the correlations among
all pairs, 〈σi σj〉exp for 1 ≤ i < j ≤ N . Recall from chapter 5 that the Ising
model probability distribution (5.11),

PIsing(σ1, . . . , σN ) =
1

Z
exp

∑
i

hi σi +
∑
i<j

Jij σi σj

 ,
is precisely the maximum entropy distribution (5.8) which reproduces all
〈σi〉exp and 〈σi σj〉exp, after we have calculated the appropriate Lagrange
multipliers hi and Jij (see below). The third-order model (5.12) is analogous
but additionally includes the experimental triple correlations 〈σi σj σm〉exp.

Numeric calculation of maximum entropy probability distributions is
intricate in our case due to the large number of to-be fitted Lagrange mul-
tipliers involved. For example, for the distribution which reproduces the
experimental correlations up to order k (Ising model for k = 2), the num-
ber of Lagrange multipliers equals

∑k
i=1

(
N
i

)
(recovering equation (5.13) for

k = N). In our case (N = 10), this results in 10, 55 and 175 parameters for
k = 1, 2, 3, respectively.

We employ the iterative algorithm devised by Darroch and Ratcliff (1972)
to find the required Lagrange multipliers, both for the Ising model (sec-
tion 5.3) and the marginal distribution (section 5.4). This algorithm is
appropriate for populations of up to N = 10 neurons, and thus sufficient for
our needs. For even larger populations (N ≈ 40 neurons), the exponential
increase in the number of spike patterns (2N ) would necessitate an alter-
native approach, like Monte Carlo algorithms for example (Broderick et al.
2007).

6.2 Ising Models Fitted to Spontaneous Network
Activity

We apply the theoretical framework from section 5.3 to the simultaneous
spiking activity of retinal ganglion cells. Additional to the second-order
(Ising) model, we also fit the extended third-order model to the experimental
data.
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Figure 6.3: Maximum entropy models matching the observed correlations up to
orders 1, 2 and 3, for N = 10 cells in a frog retina. The order 2 model is precisely
the Ising model (5.11), and the order 3 model corresponds to the distribution (5.12).
(a) Each dot represents one of the 2N = 1024 binary spiking patterns, where the
x-axis shows the experimentally observed pattern probability and the y-axis the
model prediction. Note the logarithmic scale of both axes. The black identity line
corresponds to exact agreement between model and experiment. (b) Histogram
plot of the pairwise interaction coefficients Jij of the Ising model (order 2). (c),
(d) Mean values of the Lagrange multipliers hi, Jij (and Kijm) of the maximum
entropy models of order 2 and 3, respectively. The smaller networks are subsets of
the largest set with 10 cells.

Figure 6.3 illustrates the maximum entropy models which match the ob-
served correlations up to orders 1, 2 (Ising) and 3, respectively. Specifically,
figure 6.3a compares the experimental pattern probabilities Pexp(σ1, . . . , σN )
to the model predictions. Each dot represents one of the 2N binary spiking
patterns (σ1, . . . , σN ), with the experimental probability as x-value and the
model prediction as y-value. Order 1 (blue dots) means that the cells are
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assumed to be independent, which leads to significant deviations from ex-
periment, similar to what Schneidman et al. (2006) find. Namely, the blue
dots show large deviations between experimental pattern probabilities and
the model prediction.

Recall from section 5.3 the physical interpretation of the Ising model:
the hi are the local “magnetic fields” and the Jij the pairwise interactions.
The histogram in figure 6.3b shows the distribution of these interactions
Jij . We observe some “strong interaction” outsiders around 1.5. These
could result from ganglion cells which are coupled via gap junctions, for
example. Interestingly, there are both positive and negative Jij , which could
lead to “frustrated” cell triplets: three neurons (denoted A, B and C) with
strong positive interactions between A and B as well as between B and C,
but negative interactions between C and A. On the one hand, A directly
inhibits C, but on the other hand A indirectly drives C via B, such that
no obvious activity pattern exists (e.g., all cells prefer spiking or all cells
remain silent).

Figures 6.3c and 6.3d explicitly show the mean values of the Lagrange
multipliers hi, Jij (and Kijm) for the order 2 and 3 models, respectively, as
well as for networks of various sizes. Starting from the largest network with
N = 10 cells, we have successively removed one cell to arrive at the smaller
networks. The average local fields 〈hi〉 in figure 6.3c are negative, i.e., the
cells tend to remain silent. Interestingly, the average interaction strength
〈Jij〉 slightly decreases as the number of cells increases, but does not reach
zero for N = 10 cells. These observations are plausible since the typical
distance between cells grows with the network size, and in realistic physical
systems the interactions decay algebraically with distance (e.g., Coulomb
interactions) or even exponentially (due to screening effects). Unfortunately,
we do not have the exact positions and mutual distances of the ganglion cells
available and the network size is relatively small, such that we can hardly
discriminate between exponential or algebraic decay. Different from our
finding, 〈Jij〉 retains a constant positive value in the study by Schneidman
et al. (2006), and the authors conclude that the interactions play an even
larger role for larger networks. The average of the third-order interaction
coefficients Kijm in figure 6.3d is negative and has a small amplitude; we
will investigate these coefficients in more detail in the following section 6.3.

Concerning the question whether pairwise interactions suffice to describe
the population statistics, we calculate the connected information (refer to
equation (5.19) in section 5.4) between the independent model (order 1) and
the Ising model (order 2), as well as between the Ising model and the order
3 model:

I
(2)
C = H(P (1))−H(PIsing)

I
(3)
C = H(PIsing)−H(P (3)).
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Recall that the Ising model is equivalent to the maximum entropy model
reproducing all second-order marginals (since we have binary variables), and
analogously for P (1) and P (3). In our case, the independent model equals
the product of the individual marginal distributions Pi(σi),

P (1)(σ1, . . . , σN ) ≡ 1

Z
exp

[∑
i

hi σi

]
=
∏
i

Pi(σi),

since each binary probability distribution Pi(σi) is fully specified by its ex-
pectation value 〈σi〉. In particular, H(P (1)) =

∑
iH(Pi).

According to equation (5.18) from section 5.4, the quantities I
(k)
C range

between zero (complete independence) and the multi-information Im defined
in (5.15). In the current notation, Im = H(P (1))−H(P ), where P denotes
the full (experimental) probability distribution. Indeed, we obtain for the
experimental data in figure 6.3 (without any bias correction) that

Im = 0.870 bits,

I
(2)
C = 0.837 bits and thus I

(2)
C /Im = 0.96,

I
(3)
C = 0.011 bits and thus I

(3)
C /Im = 0.01.

(6.1)

In other words, the Ising model captures 96% of the “connected informa-
tion” in the network, according to the data. Thus, the pairwise interactions
(instead of triple or even higher ones) seem to play the dominant role.

To estimate the uncertainty of Im in (6.1) and correct for the bias due
to finite sampling, we make use of the NSB entropy estimation from sec-
tion 5.6. The Matlab/Octave implementation by the authors (Nemenman
2011) additionally calculates an error estimate of the entropy. Using this
software, we obtain

H(P ) = 1.322± 0.006 bits

H(P (1)) = 2.190± 0.02 bits, and thus

Im = H(P (1))−H(P ) = 0.867± 0.025 bits,

which closely matches the (uncorrected) value from (6.1). Our own Mathe-
matica implementation of the NSB algorithm precisely agrees with the above
value for H(P ) in the first 8 digits.

So far our discussion of figure 6.3 was based on ganglion cell activity
in a frog retina. For comparison, figure 6.4 shows the analogous analysis
but for the spiking activity in an axolotl retina. Remember that we em-
ploy a spatially uniform, linearly increasing/decreasing brightness change as
visual stimulus to elicit spiking activity. The averages of the interactions
Jij and Kijm in subfigures 6.4c and 6.4d qualitatively resemble the inter-
actions in figure 6.3 in the sense that their amplitude decreases with the
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Figure 6.4: Maximum entropy models matching the observed correlations up to
orders 1, 2 and 3, for N = 10 cells in an axolotl retina. This is analogous to fig-
ure 6.3, except that we employ a spatially uniform, linearly increasing or decreasing
brightness change to elicit spiking activity. (a) Binary spiking patterns, comparing
the experimental probabilities with the model prediction. (b) Histogram plot of
the pairwise interaction coefficients Jij of the Ising model (order 2), showing that
almost all Jij are non-negative. (c), (d) Mean values of the Lagrange multipliers
hi, Jij (and Kijm) of the maximum entropy models of order 2 and 3, respectively.
The amplitude of the average interactions Jij and Kijm decreases with the network
size N , similar to figure 6.3, and 〈Jij〉 even reaches zero.

network size N , and 〈Jij〉 is mostly positive whereas 〈Kijm〉 is negative with
smaller amplitude. The corresponding histogram in figure 6.4b shows sev-
eral “strong interaction” outliers Jij in the second-order model. However,
〈Jij〉 changes notably in the third-order model and reaches zero, different
from figure 6.4c. This could point to the conclusion that several positive
interaction coefficients Jij in the second -order model actually result from
higher-order interactions, which the second-order model cannot explicitly



6.3. Third-Order Interactions 109

account for. Note that individual third-order coefficients can be strong even
though the average 〈Kijm〉 is small. The connected information for the data
in figure 6.4 (analogous to equation (6.1)) equals

Im = 0.269 bits,

I
(2)
C = 0.223 bits and thus I

(2)
C /Im = 0.83,

I
(3)
C = 0.033 bits and thus I

(3)
C /Im = 0.12.

(6.2)

Interestingly, the connected information I
(3)
C between the order 3 model and

the Ising model is now much higher as compared to (6.1), which confirms
that the triple interactions Kijm become more important.

Discussion Our experimental data in figure 6.3 (frog) confirms the main
finding by Schneidman et al. (2006), namely that pairwise interactions are
largely sufficient for reproducing the network statistics. Importantly, we can
exclude any stimulus-induced correlations in frog retinas since we measure
spontaneous activity, whereas Schneidman et al. (2006) do not distinguish
between stimulus-induced and intrinsic correlations.

Based on theoretical considerations, the authors report that the interac-
tions play an increasing role with increasing network size N if the average
〈Jij〉 retains a positive constant value, which they indeed observe experi-
mentally. In contrast to that, our experimental data shows a decrease of
〈Jij〉 in figure 6.3c. A plausible explanation could be locality, i.e., pairwise
interactions are constrained to nearby cells, such that the majority of pos-
sible interactions is negligible (Jij close to zero) since the cells are too far
apart. As the percentage of these negligible interactions grows with N , the
average value decreases.

Last but not least, according to the experimental data in figure 6.4 (ax-
olotl) and equation (6.2), third-order interactions might be more important
than previously thought. This is substantiated by the speculative conjec-
ture that strong pairwise interactions Jij in the second-order model might
actually be due to higher-order interactions (compare figures 6.4c and 6.4d).

6.3 Third-Order Interactions

In what follows, we investigate the triple interaction coefficients Kijm in
more detail, which have been omitted in the study by Schneidman et al.
(2006). We have seen in equations (6.1) and (6.2) that the connected infor-

mation I
(3)
C is much smaller than I

(2)
C for the experimental data in figures 6.3

and 6.4, but might nevertheless be worth studying. A biological scenario for
a third-order interaction between three cell types in the retina might be an
amacrine cell which modulates the synaptic signaling between a bipolar cell
and a ganglion cell (Manu and Baccus 2011).
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(b) zoom-in of figure 6.4d (axolotl)
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(c) histogram for 10 cells, figure 6.3 (frog)
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(d) histogram for 10 cells, figure 6.4 (axolotl)
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Figure 6.5: Interaction coefficients of the third-order model, for the data in fig-
ures 6.3 (frog, left side) and 6.4 (axolotl, right side). Top row: average and variance
of Kijm (and Jij) for various network sizes N , showing an amplitude decrease with
growing N . Middle row: histograms of Kijm. Bottom row: histograms of Jij . Note
the different scale of the x-axis as compared to the middle row.
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Figure 6.5 illustrates the pairwise and triple interaction coefficients of
the third -order models for the experimental data in figures 6.3 (frog) and 6.4
(axolotl). We observe that the average of the coefficients Kijm is negative
and has a small amplitude, which decreases as the network size N increases.
Interestingly, there are Kijm of either sign in both retinas, according to the
histograms 6.5c and 6.5d.

Discussion In the axolotl retina, the pairwise interactions Jij of the third-
order model (figure 6.5f) are centered around zero and much weaker as com-
pared to the second order model (figure 6.4b). This is in line with our
discussion in section 6.2, namely, that the strong interaction coefficients Jij
in the second-order model actually trace back to third-order interactions
(which the second-order model cannot account for directly).

We have observed that the amplitude of 〈Kijm〉 decreases when N grows
(see figures 6.5a and 6.5b). As discussed in the previous section, a plausible
explanation could be locality. In this case, the percentage of negligible Kijm

close to zero is higher as compared to the pairwise interactions Jij , since for
triple interactions, all three cells must be close together.

Our experimental data shows that the triple interaction coefficients Kijm

are biased towards negative values, which could indicate inhibitory modu-
lations in the retina. However, given that third-order interactions actually
exist, we can only speculate about the underlying biological mechanisms.
Presumably, these should involve amacrine cells or bipolar cells since the
axons of retinal ganglion cells only reach higher brain areas, but cannot
transmit signals to any neurons in the retina.



112 Chapter 6. Neuronal Network Interactions



Chapter 7

Conclusions and Outlook

In this thesis, we have aimed at understanding how an abundant feature
of vision (saccadic eye movements) influences and translates to neuronal
coding strategies in the retina. Specifically, we have investigated the spiking
responses of individual retinal ganglion cells to a visual grating image, which
shifts due to simulated eye movements (chapter 4). Most importantly, we
have found that the latency and spike count response of some ganglion cells
forms a sinusoidal tuning curve (as illustrated in figure 4.6, for example)
dependent on the offset of the presented image (figure 4.3). This allows us
to describe the response by a single number, the tuning phase ϕ. Anal-
ogously, the activation of the cell’s receptive field by the grating stimulus
also has a sine-shaped form, according to our mathematical derivation in
section 4.3. Thus we can directly compare these phases as illustrated in fig-
ure 4.13. In other words, we have found a simple way to relate the stimulus
to the response. The experimental data indeed confirms that the receptive
field position can approximately predict the response tuning (figures 4.14
and 4.15 for the latency and spike count, respectively). In the following
three sections 4.5, 4.6 and 4.7, we have then refined this model and tried to
understand the responses in terms of the time-dependent activation of the
ganglion cells during the saccadic image shift. Finally, we have employed
pharmacology to study the effects of selectively blocking the signal trans-
mission from photoreceptors to ON bipolar cells (section 4.8.1), or blocking
inhibition in the retina (section 4.8.2).

In the second experimental part of this thesis, we have quantified the
pairwise and third-order interaction strengths in a retinal ganglion cell pop-
ulation (chapter 6). The multi-electrode array setup is well suited for this
tasks since we obtain the simultaneous spiking signals. Interestingly, we
have found that third-order interactions might be more important than pre-
viously thought (section 6.3).

In the following two sections, we briefly review the experimental findings
from chapters 4 and 6 in more detail and discuss several open questions.
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Neuronal Coding in the Presence of Saccades

We have shown in section 4.2 that saccadic image shifts can indeed elicit
neuronal spiking responses. We have compared these responses for different
offsets of the visual image, in order to find features which contain infor-
mation about the stimulus (i.e., the vertical grating position in our case).
Two salient candidates are the latency and the spike count (see figure 4.4),
which both show a sinusoidal tuning curve dependent on the image offset
(figures 4.6 and 4.7).

According to our theoretical calculations in section 4.3, the activation of
a Gaussian-shaped receptive field by a grating stimulus can be well approx-
imated by a sine function (4.6) which only depends on the center position
of the receptive field, as long as the receptive field size is at least as large
as the grating width. This allows us to associate a phase value with the re-
ceptive field position on the grating, analogous to the response tuning phase
(compare with figure 4.13). We have found that the receptive field position
can indeed approximately predict the tuning phase of the latency or spike
count response (figures 4.14 and 4.15 in section 4.4).

As next step, we have tried to narrow down the precise stimulus features
which determine the response tuning. First, we have directly compared two
stimulus scenarios which should lead to exactly the same results if the re-
sponse was dependent on the image before or after the saccadic shift only.
Thus, any experimental deviations must result from the time-dependent
stimulus during the shift. We have indeed found small deviations in exper-
iments (distance from dashed identity line in figure 4.18, section 4.5). A
heuristic explanation could be the timing of the grating border crossing by
the receptive field (see figure 4.19). Next, we have investigated the question
whether retinal ganglion cells actually report the differential image change
to higher brain regions, or the new image (independent of the previous one),
or even the previous image. The average of the experimental data points in
figures 4.23 and 4.24 of section 4.6 approximately agrees with a model (fig-
ure 4.22) maximizing the differential activation change. In any case, we can
match the data points corresponding to individual ganglion cells by weight-
ing the relative importance of the previous and new image (figure 4.21).

Next, we have specifically investigated the effect of the saccadic shift
amplitude (section 4.7). For the particular shift amplitudes, the experimen-
tal latency data (figure 4.28) shows that the activation difference between
previous and new image cannot solely account for the observed responses.
Nevertheless, taking the transient activation during the beginning of the sac-
cadic shifts into account (figure 4.30) can qualitatively explain the observed
latency tuning responses.

Using pharmacology, we have studied the effects of selectively blocking
the signal transmission from photoreceptors to ON bipolar cells via APB
(section 4.8.1), or blocking inhibition in the retina (section 4.8.2). Surpris-
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ingly, the OFF pathway in the retina suffices to generate latency and spike
count tuning curves (see for example figure 4.32). Moreover, the reliability
of the receptive field position on the grating as predictor of the response
latency tuning remains large unaffected by either blocking the ON pathway
(figure 4.33) or blocking inhibition (figure 4.37), as compared to the control
condition without pharmacology (figure 4.14).

Open questions We have seen in section 4.2 that only a subset of gan-
glion cells shows latency responses appropriate for defining a tuning curve.
So the question remains whether the noise introduced by the MEA setup
and the experimental in-vitro conditions change the apparent properties of
the other ganglion cells, whether they preferentially respond to different
stimuli, or whether they indeed employ a different code. We have investi-
gated several coding schemes in section 4.2, but our search might not have
been exhaustive. Thus one could look for a visual stimulus which particu-
larly drives these ganglion cells as a future project, or search for alternative
neuronal coding strategies. For example, we have investigated the intrinsic
interactions of ganglion cells in chapter 6, but have not yet studied how
these interactions contribute to population coding in the context of saccadic
eye movements.

On the other hand, it would be desirable to further characterize the sub-
set of ganglion cells which actually show latency tuning responses. Ideally,
these ganglion cells could be distinguished by their morphology or by genetic
tools, analogous to the study by Kay et al. (2011).

It is still open whether the latency tuning curves also exist in mammalian
retina. For this purpose, we could repeat the experiments with mouse retina
(recordings from mouse retina are indeed possible and have already been
performed with our particular experimental setup). Mammalian systems
typically operate faster then amphibian neuronal networks, so an interesting
aspect are the (latency) timescales.

We have purposely used a rather simple spatial grating stimulus such
that the overall brightness level and the spatial frequency distribution re-
main constant. In contrast to that, employing “natural stimuli” (i.e., movies
of natural scenes) complicates the analysis which stimulus features are rele-
vant for the retinal responses. Nevertheless, one eventually wants to under-
stand how the retina actually functions under “real life” conditions.

Neuronal networks

We have performed multi-electrode recordings of several retinal ganglion
cells to investigate the simultaneous network activity of a neuronal popula-
tion (chapter 6). Our analysis procedure follows the approach by Schneid-
man et al. (2006), asking whether Ising models from theoretical physics can
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reproduce the experimental spike pattern probabilities. Since we are inter-
ested in the biological wiring of the network, we deliberately try to record
the spontaneous spiking activity in the absence of any visual stimulus, to en-
sure that the observed correlations indeed stem from intrinsic interactions.
This is different from the study by Schneidman et al. (2006), who present
“natural movies” to the retina.

We have first investigated the activity in a frog retina (figure 6.3), where
our results point to the same conclusion as in the study by Schneidman
et al. (2006), namely, that the pairwise interactions captured by the Ising
model are largely sufficient to reproduce the experimental spiking statistics.
Quantitatively, the connected information (see section 5.4) between the Ising
model and the independent model is 96% of the full “multi-information”,
according to equation (6.1).

Next, we have analyzed the spiking activity in an axolotl retina (fig-
ure 6.4), arriving at a smaller value for the connected information, namely
83% of the multi-information (see equation (6.2)). To understand where the
remaining 17% come from, we start from the canonical extension of the Ising
model to a third-order model. This model additionally respects all experi-
mental triple correlations 〈σi σj σm〉, whereas the Ising model is equivalent
to the maximum entropy model reproducing the averages 〈σi〉 and pairwise
correlations 〈σi σj〉 (refer to the review in section 5.3). Indeed, the third-
order model contributes 12% to the “connected information” according to
our experimental data. Investigation of the interaction coefficients in this
model (figure 6.5) reveals that the pairwise interactions Jij become much
weaker as compared to the Ising model. As speculative explanation of this
effect, the strong interaction coefficients Jij in the Ising model might actually
stem from third-order interactions which the Ising model cannot represent
explicitly. Thus, we conclude that third- or even higher-order interactions
might actually be more important than previously thought.

Open questions We can only speculate why third-order interactions seem
to be more important in the axolotl retina than compared to the spontaneous
activity in the frog retina. This effect could either be due to the different
species, or to the fact that we have used a linearly increasing or decreasing
brightness change to elicit spiking in the axolotl retina. In any case, since we
have only analyzed two experiments so far, a clarification requires repeating
these experiments to see if the effect is indeed systematic.

Our analysis of neuronal population statistics in chapter 6 is based on
the network state at the current time window, but does not explicitly take
temporal interactions into account. Tang et al. (2008); Marre et al. (2009)
try to address this issue by explicitly including succeeding time windows into
the model, and can indeed show that the model reproduces the experimental
data better than the Ising model. Thus, a goal for the future is such an
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extension of the Ising model. Similarly, one could investigate different time
scales of interactions by employing various time bins ∆tbin (see figure 6.2).

Outlook

In chapter 4 we have chosen the visual stimulation parameters for imitating
saccadic eye movements based on the requirement that they elicit ample
spiking responses. However, we have not yet experimentally quantified sac-
cadic eye movements in vivo, which is left as project for the future. Such
a quantification could be performed by a search coil setup, which uses a
miniature contact lens with a tiny electric coil inside. The contact lens is
attached to the axolotl’s eye, similar to a contact lens for humans. When we
then position the animal into an external magnetic field, the eye movements
induce a small voltage change in the coil and thus allow us to measure eye
movement speed and amplitude.

A further refinement of our analysis in chapter 6 is a detailed investiga-
tion how the neuronal interactions depend on the physical distance between
ganglion cells. This distance could be computed approximately from the re-
ceptive field centers, analogous to the study by Ganmor et al. (2011a). Such
an analysis would simplify the interpretation in terms of physical models,
which quantitatively depend on the decay of the interaction strength with
distance. Additionally, we could use an experimental setup with more elec-
trodes in order to quantify the interactions in larger populations. Due to the
exponential grows of possible patterns with the number of neurons, this also
necessitates different numerical approaches (like Monte-Carlo simulations,
mentioned in section 6.2) to compute the maximum entropy models.

Neuronal coding strategies are a central ingredient of the inner workings
of neuronal networks, but still remain far from comprehensively understood.
The contribution of this thesis is a detailed investigation of latency and spike
count coding schemes in the context of saccadic eye movements, which are an
abundant feature of vision. In the long term, we hope that unveiling such
schemes might contribute to the operation of electronic retinal implants
(Zrenner et al. 2011; Ahuja et al. 2011), which could partially restore vision
in patients with degenerative eye conditions.
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Bence P. Ölveczky, Stephen A. Baccus, and Markus Meister. Segregation of
object and background motion in the retina. Nature, 423:401–408, 2003.

http://dx.doi.org/10.1016/j.tins.2009.05.006
http://dx.doi.org/10.1038/nn0901-877
http://dx.doi.org/10.1016/S0896-6273(00)80700-X
http://dx.doi.org/doi:10.1038/nn.2389
http://dx.doi.org/doi:10.1038/nn.2389
http://www.jbc.org/content/268/16/11868
http://www.jbc.org/content/268/16/11868
http://www.jbc.org/content/268/16/11868
http://www.jbc.org/content/268/16/11868
http://arxiv.org/abs/physics/0207009
http://arxiv.org/abs/physics/0207009
http://nsb-entropy.sourceforge.net/
http://arxiv.org/abs/physics/0108025
http://arxiv.org/abs/physics/0108025
http://dx.doi.org/10.1103/PhysRevE.69.056111
http://dx.doi.org/10.1103/PhysRevE.69.056111
http://dx.doi.org/10.1103/PhysRevE.69.056111
http://dx.doi.org/10.1038/nrn2653
http://dx.doi.org/10.1038/nrn2653
http://dx.doi.org/10.1038/35079612
http://dx.doi.org/10.1038/35079612
http://dx.doi.org/10.1038/nature01652
http://dx.doi.org/10.1038/nature01652


124 BIBLIOGRAPHY
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für allgemeine Zoologie und Physiologie der Tiere, 89:359–368, 1985.

David H. Wolpert and David R. Wolf. Estimating functions of probability
distributions from a finite set of samples. Physical Review E, 52:6841,
1995.

Xiong-Li Yang. Characterization of receptors for glutamate and GABA in
retinal neurons. Progress in Neurobiology, 73:127–150, 2004.

Alfred L. Yarbus. Eye Movements and Vision. Plenum Press, 1967.

Eberhart Zrenner, Karl Ulrich Bartz-Schmidt, Heval Benav, Dorothea
Besch, Anna Bruckmann, Veit-Peter Gabel, Florian Gekeler, Udo Grepp-
maier, Alex Harscher, Steffen Kibbel, Johannes Koch, Akos Kusnyerik,
Tobias Peters, Katarina Stingl, Helmut Sachs, Alfred Stett, Peter Szur-
man, Barbara Wilhelm, and Robert Wilke. Subretinal electronic chips
allow blind patients to read letters and combine them to words. Proceed-
ings of the Royal Society B, 278:1489–1497, 2011.

http://dx.doi.org/10.1073/pnas.1004906107
http://jn.physiology.org/content/78/5/2336
http://jn.physiology.org/content/78/5/2336
http://dx.doi.org/10.1038/nrn1497
http://dx.doi.org/10.1103/PhysRevE.52.6841
http://dx.doi.org/10.1103/PhysRevE.52.6841
http://dx.doi.org/10.1016/j.pneurobio.2004.04.002
http://dx.doi.org/10.1016/j.pneurobio.2004.04.002
http://dx.doi.org/10.1098/rspb.2010.1747
http://dx.doi.org/10.1098/rspb.2010.1747





