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Summary

Most sequence-based methods for protein structure or function prediction construct a mul-
tiple sequence alignment (MSA) of homologs as a first step. The standard search tool
to generate multiple sequence alignments is PSI-BLAST (> 25 000 citations), an extension
of BLAST to profile-sequence comparison. PSI-BLAST owes its sensitivity to its use of se-
quence profiles and to its iterative search scheme. Significant sequence hits are added to
the evolving multiple alignment from which a sequence profile is generated for the next
search iteration. HMMER3 is similar to PSI-BLAST, but uses a profile hidden Markov model
(HMM) instead of a sequence profile to represent the evolving query multiple alignment. The
gain in sensitivity over PSI-BLAST is paid by a factor 3 to 4 reduction in speed.
In my thesis work, I have developed HHblits, the first method for iterative sequence

searching based on the comparison of profile HMMs. It is faster than PSI-BLAST and HMMER3,
more sensitive, and constructs multiple alignments of significantly better quality. The
method builds on the HHsearch algorithm for pairwise comparison of profile HMMs, to
which it owes its high sensitivity and alignment quality. In parallel to HHblits, our group
developed a fast clustering method that can generate a covering set of HMMs for the entire
UniProt database in a few weeks time.
To speed up the search by a factor ∼ 2000, I developed a prefilter that is based on

a novel algorithm for profile-profile comparison designed for maximum speed. The algo-
rithm effectively reduces profile-profile alignment to profile-sequence alignment by coding
the database profiles by “column state sequences“ in which profile columns are represented
by an alphabet of 219 discretized column states. This permits a fast implementation of the
profile-profile comparison that employs the SIMD (single instruction multiple data) instruc-
tion sets available on modern CPUs. In this way, HHblits performs 16 byte operations in
parallel in a single clock cycle. Several further filtering steps reduce the amount of slow,
full-blown HMM-HMM comparisons to a fraction of < 1/1000. Our tests show that the loss
of sensitivity due to the prefilter is negligible.
On a standard SCOP20 ROC benchmark (SCOP1.73 proteins filtered to 20% maximum

sequence identity), HHblits detects twice as many true positives as PSI-BLAST and 54%
more than HMMER3 at 1% error rate in the first iteration. Two search iterations HHblits
detect significantly more true positives than five PSI-BLAST iterations. Alignment quality is
likewise improved significantly. Furthermore, we are able to make confident fold predictions
(E-value < 10−3) and build structural models for 394 Pfam domains for which no fold
prediction has been possible.
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HHblits is a robust, general-purpose protein sequence search tool that has the potential to
replace PSI-BLAST as state-of-the-art method for the generation of MSAs. Due to the high
alignment quality, HHblits alignments are able to improve secondary structure prediction
methods such as PSIPRED. Furthermore, these better alignments facilitates the function and
structure prediction for proteins for which nothing is yet known.
In the second part of this thesis we study the evolution of outer membrane β-barrels

(OMBBs). These proteins are the major class of outer membrane proteins (OMPs) from
Gram-negative bacteria, mitochondria and plastids. Their transmembrane domains consist
of 8 to 24 β-strands forming a closed, barrel-shaped β-sheet around a central pore. Despite
their obvious structural regularity, evidence for an origin by duplication or for a common
ancestry had not been found.
We use three complementary approaches to show that all OMBBs from Gram-negative

bacteria evolved from a single, ancestral ββ hairpin. First, we link almost all families
of known single-chain bacterial OMBBs with each other through transitive profile searches.
Second, we identify a clear repeat signature in the sequences of many OMBBs in which the
repeating sequence unit coincides with the structural ββ hairpin repeat. Third, we show that
the observed sequence similarity between OMBB hairpins cannot be explained by structural
or membrane constraints on their sequences. The third approach addresses a longstanding
problem in protein evolution: how to distinguish between a very remotely homologous
relationship and the opposing scenario of ”sequence convergence“. The origin of a diverse
group of proteins from a single hairpin module supports the hypothesis that, around the
time of transition from the RNA to the protein world, proteins arose by amplification and
recombination of short peptide modules that had previously evolved as cofactors of RNAs.
This research provides the basis for the identification and classification of outer membrane
β-barrels and explains the evolutionary origin of this important bacterial protein class.
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1. Motivation and overview

HHblits - Iterative HMM-based homology searches

In the last years, due to progress in high-throughput technologies more and more genomes
are being sequenced and the bioinformatic databases with protein sequences (i. e., UniProt)
grow at an ever increasing rate. Therefore, fast computational methods for analyzing and
interpreting this data are becoming very important. This holds especially for the gener-
ation of multiple sequence alignments (MSAs), which are a key intermediate step in the
sequence-based prediction of evolutionarily conserved properties, such as secondary or ter-
tiary structure, disorder, transmembrane regions, post-translational modifications, short
linear motifs, or interaction interfaces. An MSA alignes homologous protein sequences,
that means, sequences from proteins with a common evolutionary ancestor, in a way as to
place related amino acids in the same column. Conserved residues in a MSA of homologous
proteins often indicate structurally or functionally important regions, e. g., catalytic sites.
The performance of nearly all prediction methods, which use a multiple sequence align-

ment as input, depends to a large degree on the quality of this MSA. The standard search
tool to generate MSAs is PSI-BLAST (> 25 000 citations), an extension of BLAST to profile-
sequence comparison. PSI-BLAST owes its sensitivity to its use of sequence profiles and to
its iterative search scheme. Significant sequence hits are added to the evolving multiple
alignment from which a sequence profile is generated for the next search iteration.
In the main part of this thesis (part I) we present HHblits (HMM-HMM-based lightning-

fast iterative sequence search), the first iterative sequence search method based on the
pairwise comparison of Hidden Markov Models (HMMs). This method is based on the very
sensitive HMM-HMM alignment method HHsearch and extends it to enable fast, iterative
sequence searches through large HMM databases representing all the known sequence space.
Its profile-profile alignment prefilter makes HHblits faster than PSI-BLAST yet as sensitive
as HHsearch with a high alignment quality. Our method replaces PSI-BLAST in the MSA-
generation step in our protein structure prediction server HHpred, the best-scoring server
in template-based structure prediction during the last CASP9 blind structure prediction
benchmark. HHblits will be published in Nature Methods (Remmert et al., 2011).
The first chapter of this part (chapter 2) gives an introduction to remote homology

searches with the widely used scoring models and protein alignment algorithms, sequence
profiles and profile HMMs, the pairwise alignment of HMMs, and the state-of-the-art iterative
sequence search methods PSI-BLAST and HMMER3. In chapter 3, we present the workflow of
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HHblits and the methods we used to achieve a fast and sensitive sequence searching method.
This includes the fast clustering of the protein sequence database, the fast prefiltering
procedure with a column-state alphabet, various further filter steps and improvements in
the core code of HHsearch and HHblits. Chapter 4 describes various benchmarks to test
the performance of HHblits in comparison with the other iterative sequence search methods
PSI-BLAST and HMMER3. In addition, we demonstrate the utility of HHblits by predicting
new structures for Pfam families, for which no protein structure is known. In the last
chapter of this part (chapter 5) we discuss the performance and usability of our method
and give an outlook to further possible improvements to HHblits.

Evolution of outer membrane β-barrels

The second part of this thesis (part II) deals with the evolution of outer membrane β-barrel
proteins (OMBBs). These proteins are the major class of outer membrane proteins (OMPs)
from Gram-negative bacteria, mitochondria and plastids. They are composed of a closed,
barrel-shaped β-sheet. Until this work, a common ancestry for this class with a high struc-
tural regularity could not be identified. We used three complementary approaches based
on our HMM-comparison methods to show that all OMBBs from Gram-negative bacteria
descended from a single, ancestral ββ hairpin. The main part of this analysis was published
in 2010 in Molecular Biology and Evolution (Remmert et al., 2010).
Chapter 6 gives an overview about outer membrane β-barrels and the evolution of proteins

in general. The methods we used to investigate the evolution of the OMBBs are explained
in chapter 7. In chapter 8 we show the results of our three approaches. First, we could link
almost all families of known single-chain bacterial OMBBs with each other through transitive
profile searches. Second, we could identify a clear repeat signature in the sequences of many
OMBBs in which the repeating sequence unit coincides with the structural ββ hairpin repeat.
Third, we show that the observed sequence similarity between OMBB hairpins cannot be
explained by structural or membrane constraints on their sequences. The final chapter 9
discusses the analyses carried out in this study and gives an outlook for further use of these
analyses.
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HHblits - Iterative HMM-based
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2. Introduction to remote homology searches

The function of a protein depends on its 3-dimensional structure and this structure is
dependent on the amino acid sequence. But from all possible protein sequences - a protein
with 100 amino acids can have 20100 possible sequences - only a negligible fraction of them
are able to fold into a stable structure (Söding and Lupas, 2003). Hence it is very unlikely
that a new protein develops de novo from a random sequence of amino acids. Rather, protein
sequences evolve from pre-existing ancestral sequences. By recognizing similarities between
the sequence of an uncharacterized protein and sequences of already characterized proteins,
it is therefore often possible to infer the function or structure of the new protein. Two
proteins with a common ancestor are said to be homologous. In computational sequence
analysis, homology detection has become a basic procedure in areas such as protein evolution
and structure and function prediction of new proteins. Likewise, homology information is
used to explore cellular and developmental processes based on the study of homologous
proteins in simple and well studied model organisms.
The functionally or structurally important regions of proteins such as catalytic sites are

assumed to be highly conserved in homologous sequences. Alignments of protein sequences
are a way to identify such regions. These alignments are computed by the insertion of
gaps in order to place conserved and homologous residues in the same column. Alignment
methods use a scoring scheme to align the protein sequences. This scheme ideally assigns
the highest score to the true alignment. The right choice of such a scoring scheme and the
development of more sensitive schemes is important in protein sequence analysis, because
the accuracy of an alignment method often depends on the underlying scoring scheme. In
the next sections the scoring procedure of alignments is described.

2.1. Scoring models and gap penalties

The aim of comparing protein sequences is to check whether there is evidence for a common
ancestor from which they have diverged by mutation and selection. Thus, a scoring scheme
has to take into account that in nature some amino acid mutations may arise more often than
others, for example the mutation from a hydrophobic amino acid to another hydrophobic
one is more likely than to a charged amino acid. It is also commonly assumed that mutations
at different sites in the sequence occur independently. Then the score of an alignment is
computed by a sum of terms for each pair of aligned amino acids and a penalty score for each
gap. The score for a pair of aligned amino acids a and b is defined as ratio of the probability
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of a and b under a match-modelM (P (a,b|M)) and the probability of a and b under the null-
or random-model R (P (a,b|R)). In the null- or random-model R each amino acid a occurs
independently with background probability f(a) and the probability of an alignment of two
unrelated residues a and b is simply the product of their background frequencies: f(a) ·f(b).
In the match-model M two residues occur with the joint probability p(a,b) which is usually
derived from the observed numbers of amino acid substitutions in a large set of training
alignments. Such a scoring scheme can be described by the log-odds-ratio

s(a,b) = log
(
P (a,b|M)
P (a,b|R)

)
= log

(
p(a,b)
f(a)f(b)

)
(2.1)

These scores are positive for conservative substitutions, i. e., substitutions between amino
acids with similar properties, whereas non-conservative substitutions will results in a nega-
tive score because they are expected to occur less frequently in real alignments. Substitution
scores s(a,b) are arranged in substitution matrices of dimension 20× 20.
One of the first substitution matrices was the PAM (Point Accepted Mutation) matrix

published by Dayhoff et al. in 1978 (Dayhoff et al., 1978). The authors set up the PAM1
matrix based on very similar sequences. This matrix estimates what rate of substitution
would be expected for 1% accepted mutations. This matrix is then extrapolated to matrices
for more diverse sequences up to matrix PAM250, which corresponds to a sequence identity
of roughly 20%. But it showed up that these matrices can not well approximate changes
over long evolutionary time scales. To solve this problem, Henikoff and Henikoff developed
a new family of substitution matrices, the BLOSUM (BLOck SUbstitution Matrix) family in
1992 (Henikoff and Henikoff, 1992). These matrices are based on the BLOCKS database and
count substitutions in ungapped regions of alignments which have a predefined maximal
sequence similarity. So the BLOSUM50 matrix is calculated from sequences with 50% or less
sequence identity. The most widely used substitution matrix in alignment applications is
the BLOSUM62.
The other part of the alignment score is the gap penalty, a negative score for each insertion

of a gap into a sequence. There are two ways for penalizing gaps: (1) The linear gap penalty
of length g is defined as

γ(g) = −gd (2.2)

with the gap-open penalty d. (2) The affine gap penalty uses in addition to the gap-open
penalty d a gap-extension penalty e

γ(g) = −d− (g − 1)e (2.3)

Usually, the gap-extension penalty e is set to something smaller than the gap-open penalty
d to penalize one long insertion or deletion less than several small ones. This corresponds
to the observation that gaps occur preferably in consecutive stretches.
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2.2. Pairwise sequence alignment

Pairwise alignment methods try to efficiently compute an optimal alignment for a pair
of sequences x = x1 . . . xn and y = y1 . . . ym based on a given scoring scheme. In 1970,
Needleman and Wunsch developed a dynamic programming (DP) algorithm for building an
optimal global alignment (Needleman and Wunsch, 1970) which was later revised by Gotoh
to a more efficient version (Gotoh, 1982). In a global alignment, the sequences are aligned
end to end and this algorithm guarantees to find the optimal solution by using previous
calculated optimal alignments of smaller subsequences. It computes a n×mmatrix S, where
S(i,j) denotes the score of the optimal alignment between the subsequences x1 . . . xi and
y1 . . . yj . In the case of a pairwise alignment, there are three ways to extend an alignment:
(1) a pair of aligned residues, (2) a residue in sequence x aligned to a gap in sequence y, or
(3) a gap in x aligned to a residue in y (see Fig. 2.1B). This allows to recursively calculate
the best score at position (i,j) with the following formula:

S(i,j) = max


S(i− 1,j − 1) + s(xi,yj),
S(i− 1,j)− d,
S(i,j − 1)− d.

(2.4)

s(xi,yj) is the substitution score between the two amino acids xi and yj derived from a
substitution matrix such as BLOSUM62. The algorithm fills the matrix from the upper left

Figure 2.1.: (A) Example matrix for a pairwise alignment between two subsequences x1 . . . xn and
y1 . . . ym with the Needleman-Wunsch algorithm. This matrix is filled starting in the upper left
corner and repeatedly calculating the best score S(i,j) up to position (i,j) by applying the recursive
formula 2.4. The score S(i,j) of the red cell is computed from the above-left, left, or above cell
(blue). (B) The three possible ways of how an alignment can be extended up to positions (i,j).
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corner to the lower right corner by applying formula 2.4 to calculate each S(i,j) value from
the above-left, left, or above cell as shown in figure 2.1A.
After filling this matrix the value in the last cell S(n,m) is the score of the best global

alignment. To identify the alignment itself, a traceback method is used starting in the last
cell and identifying for each cell which of the three choices contributed to its value. Since
the traceback starts at S(n,m), the alignment is actually built in reverse.
In nature, there are often proteins which share one domain but differ in the rest of the

protein sequence. In this case the assumption for global alignments, that there exists a
biologically meaningful alignment between the entire sequences, fails and a local alignment
is the better choice. Local alignment methods compute an optimal alignment between two
subsequences of x and y and are usually the most sensitive method for comparing highly
diverged sequences, even if they have a common ancestor over the entire length. In 1981,
Smith and Waterman published an algorithm for local alignments (Smith and Waterman,
1981) which is closely related to the Needleman-Wunsch algorithm for global alignments.
To address the problem that an alignment can start at every position in the matrix, the
formula 2.4 is updated to allow S(i,j) to become 0 if all other options have a value less than
0:

S(i,j) = max


0,
S(i− 1,j − 1) + s(xi,yj),
S(i− 1,j)− d,
S(i,j − 1)− d.

(2.5)

Here, the score of the best alignment is given by the cell with the highest value, which is
not necessarily the cell (n,m). The traceback starts at this position and ends if one cell has
the value 0.
Both pairwise alignment methods, as described above, use the linear gap cost structure

as in equation 2.2. They can be extended to use the affine gap cost (see equation 2.3)
by calculating three instead of one matrix S(i,j). Such methods are described in detail in
(Durbin et al., 1998) whereat the general concept of dynamic programming and complexity
stay the same.
Pairwise alignments calculated by such methods can be used to detect homology between

different proteins. One can easily see that the above described Needleman-Wunsch and
Smith-Waterman algorithms have a time complexity of O(nm), the product of the lengths
of the two sequences being compared. It is obvious that methods with such a runtime can
not be used for searching current databases (e.g. the UniProt database 1 with more than 14
million sequences (04_2011)). In practice heuristic methods are used that are much faster
but miss possibly significant alignments.

1http://www.uniprot.org/

http://www.uniprot.org/
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BLAST

The most used heuristic method is BLAST (Basic Local Alignment Search Tool) (Altschul
et al., 1990) that employs a seed and extend heuristic in which first small exact matches
are found which are further extended to longer inexact ones. This algorithm starts with
generating a list of k-mers (usually k = 3 for proteins) which have a similarity bigger than
a given threshold T to some k-mer in the query sequence. Then it scans the database for
all occurrences of these k-mers and every hit (seed) is extended until the score drops a
certain distance below the best score computed so far for the seed. Finally, all hits with a
score greater than a given threshold are reported. But this method has a dilemma regarding
sensitivity and speed; a k-mer must be sensitive enough to find as many homologs as possible,
but at the same time it should give as few chance matches as possible, which in turn triggers
numerous unneeded extensions. A new version of BLAST (Altschul et al., 1997) softens this
problem by using a 2-hit strategy. In this approach extensions are generated for consecutive
matches of two short k-mers on the same diagonal within a window of 40 residues. The 2-hit
approach reduces the number of chance matches and increases the sensitivity by lowering
the similarity threshold of the 1-hit approach.

2.3. Profile alignment

Sequence-sequence comparison methods as described before work well for closely related
sequences. But they are not sensitive enough for the identification of homologous proteins
that are strongly diverged. Such homologs are important for 3D structure prediction, pro-
tein function prediction and for the analysis of protein evolution. Extending the limits of
sensitivity is therefore of great practical importance.
A great improvement in sensitivity was achieved by developing profile-sequence methods

like PSI-BLAST (see 2.5.1) in 1997 (Altschul et al., 1997). A profile is built from an alignment
of homologous sequences. Such an alignment contains more evolutionary information about
the sequence family than a single protein sequence. From the alignment with length L one
can compute the amino acid frequencies in each column and generate the profile, which is
simply a 20× L matrix recording the amino acid frequencies.
In this work, profiles are visualized as histograms, in which the bar heights are pro-

portional to the corresponding amino acid probabilities in the sequence profile and colors
indicate amino acid properties. (Figure 2.2). The power of a profile is given by the ability

Figure 2.2: In this work sequence profiles are
shown as histograms, in which the bar heights
are proportional to the corresponding amino acid
probabilities in the sequence profile. The different
amino acids are colored according to their proper-
ties (e.g. hydrophobic amino acids in green).
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to distinguish between conserved residues, which indicates functional or structural impor-
tant regions, and residues that vary a lot in the family. The algorithm for computing an
alignment between a profile and a sequence is almost completely analogous to the algorithm
for sequence-sequence alignments. The only difference is that the profile matrix is used for
the substitution score of two positions i and j and not a substitution matrix.
The next improvement in sensitivity was made possible by comparing profiles with profiles,

thus using evolutionary information on the query and the template side. Examples for early
profile-profile comparison programs are LAMA (Pietrokovski, 1996), PROF_SIM (Yona and
Levitt, 2002) and COMPASS (Sadreyev and Grishin, 2003).

2.4. HMM-HMM alignment

In 2005, Söding published a new alignment method (Söding, 2005). This method is based
on the comparison of profile HMMs (Hidden Markov Models) and it has proven to be the
most powerful method for remote homology detection in proteins. A profile HMM contains,
additionally to the amino acid frequencies given in sequence profiles, position specific prob-
abilities for insertions and deletions along the alignment. Thus, an insertion or deletion
that occurs at the same position as found in many sequences in the sequence family is less
penalized than an insertion at another position. Each column of a profile HMM contains a
match state M , a delete state D and an insert state I. In the following, we show how the
log-odds score is generalized to the case of HMM-HMM comparison and explain a method to
efficiently compute such an alignment.

2.4.1. Log-sum-of-odds score

In the case of sequence-HMM comparison, the log-odds score can be written as

SLO = log P (x1, . . . , xL|emission on path)
P (x1, . . . , xL|Null)

(2.6)

This log-odds score is a measure for how much more probable it is that a sequence is
emitted by the HMM rather than by a random null-model. The probability for the null-
model is simply the product of the amino acid background frequencies.
In the case of HMM-HMM comparison, an alignment between two profile HMMs corresponds

to a certain path through the two HMMs. The generalization of the log-odds score to such
a case is the so called log-sum-of-odds score (LSO):

SLSO = log
∑

x1,...,xL

P (x1, . . . , xL|co-emission on path)
P (x1, . . . , xL|Null)

(2.7)

The sum runs over all sequences with length L that can be emitted along the alignment
path through the HMMs. One can easily see that this log-sum-of-odds score is indeed a
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generalization of the log-odds score, because in the case of sequence-HMM comparison only
one term in the sum can contribute and equation 2.7 can be reduced to equation 2.6.
To apply standard dynamic programming algorithms (e. g., the Viterbi algorithm) in

order to find the HMM-HMM alignment with the highest log-sum-of-odds score, a similarity
measure is needed that allows to compare the amino acid distributions of two columns i
and j in the HMMs p and q. Therefore, equation 2.7 can be rewritten as

SLSO =
∑

k:XkYk=MM

Saa
(
qi(k), pj(k)

)
+ logPtr (2.8)

Xk,Yk ∈ {M,I,D} are the states in the HMMs p and q in the kth column of the pairwise
alignment of these HMMs. Ptr is the product of all transition probabilities for the path
through p and q and the column score Saa(qi, pj) is given by

Saa(qi, pj) = log
20∑
a=1

qi(a)pj(a)
f(a) (2.9)

in which qi(a) and pj(a) denotes the emission probability of amino acid a in the columns
i and j of the HMMs and f(a) id the fixed background frequency of the amino acid a. The
division by f(a) can be seen as a weighting factor increasing the weight of rare amino acids
compared to more common ones. For two similar amino acid distributions this column score
is positive, for dissimilar distributions it is negative. This is important for the computation
of local alignments.

2.4.2. Pairwise alignment of HMMs

Figure 2.3a shows a profile HMM with each column containing a match state M , a delete
state D and an insert state I. Because only match and insert states can emit amino acids,
a match state in one HMM can only be aligned with a match state (MM) or an insert
state (MI) in the other HMM. A delete state can only be aligned to a gap (DG) where
the interpretation of a gap is analogous to that of a gap in a pairwise sequence alignment,
meaning that for the column aligned to the gap there exists no column in the other HMM

that evolved from the same ancestor. Thus, five possible states, MM , MI, IM , DG and
GD, exists in an HMM-HMM alignment (shown with the allowed pair state transitions in
Fig. 2.3c).
A path with the maximal log-sum-of-odds score (equation 2.8) can be calculated with a

variant of the Viterbi algorithm that maintains five dynamical programming matrices SXY ,
one for each pair state XY ∈ {MM,MI, IM,DG,GD}. These matrices are calculated
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Figure 2.3.: (a) The alignment of a sequence to a profile HMM can be represented by a path through
the HMM (bold arrows). Each column in the HMM contains a matching state M, a delete state D
and an insert state I. (b) Alignment of two HMMs with a path through the HMMs (bold arrows)
corresponding to a sequence co-emitted by both HMMs. (c) Allowed transitions between pair states.
(Figure taken from Söding (2005))

recursively (similar to the Needleman-Wunsch algorithm) by

SMM (i,j) = Saa(qi,pj) + max



SMM (i−1,j−1) + log (qi−1(M,M) pj−1(M,M))
SMI(i−1,j−1) + log (qi−1(M,M) pj−1(I,M))
SIM (i−1,j−1) + log (qi−1(I,M) pj−1(M,M))
SDG(i−1,j−1) + log (qi−1(D,M) pj−1(M,M))
SGD(i−1,j−1) + log (qi−1(M,M) pj−1(D,M))

(2.10)

SMI(i,j) = max
{
SMM (i−1,j) + log (qi−1(M,M) pj(M,I))
SMI(i−1,j) + log (qi−1(M,M) pj(I,I))

(2.11)

SDG(i,j) = max
{
SMM (i−1,j) + log (qi−1(M,D))
SDG(i−1,j) + log (qi−1(D,D))

(2.12)

and similar for SIM (i,j) and SGD(i,j). qi(X,X ′) and pj(Y,Y ′) denote the transition
probabilities to go from stateX,Y ∈ {M,I,D} in column i or j to a stateX ′, Y ′ ∈ {M, I,D},
and SXY (i,j) is the score of the best partial alignment which ends in column i of HMM q

and column j of HMM p in state XY . Equation 2.10 shows the maximization of a global
alignment. For the calculation of a local alignment, a zero has to be added as a sixth case to
this maximization equation. The optimal alignment is constructed as usual by backtracking
from the cell with maximum score.
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2.4.3. HHsearch

The pairwise alignment of HMMs is implemented in the homology search method HHsearch.
This tool further increases its sensitivity by using additional secondary structure informa-
tion. Therefore, a secondary structure score Sss(qi,pj) based on the predicted secondary
structure and its confidence is added to the amino acid column score Saa(qi,pj) in equation
2.10.
The background frequencies of the amino acids, used by the null model, can be chosen by

the user, e. g., the background frequencies calculated from a dataset or the average frequen-
cies from the query or template HMM. It seems that the average amino acid distribution
from query and template HMM (fnull(aa) = 0.5 · (q.f(aa) + t.f(aa))) works best.
In 2001, Pei et al. have shown that in alignments of homologous sequences conserved

columns tend to occur in clusters along the sequence (Pei and Grishin, 2001). So in an
alignment of two homologous HMMs it could be expected that conserved columns also occur
in clusters. Therefore, a correlation score Scorr is added to the Viterbi score of the HMM-
HMM comparison.

Scorr = wcorr

4∑
d=1

g(d) (2.13)

g(d) is a correlation function which describes the correlation of the score Saa in column l
and in a column with a fixed sequence separation d:

g(d) =
L−d∑
l=1

SlSl+d with Sl = Saa(qi(l), pj(l)) (2.14)

The weight parameter wcorr was optimized to 0.1 on a test set of 317× 317 pairwise align-
ments.

2.5. Iterative sequence search methods

A further increase in sensitivity of remote homology detection in proteins could be reached
by the use of iterative search methods. Iterative search methods perform multiple searches
of a database. After each iteration the information of homologous sequences is incorporated
into a model for the query sequence and this model is used for re-searching the database.
The first widely used iterative searching method was PSI-BLAST (Altschul et al., 1997) (with
more than 25000 citations), which builds upon BLAST and performs a profile-sequence search
strategy. A more sensitive iterative method was recently developed in the new version 3 of
the HMMER package (Eddy, 2009) that consists of programs for HMM-sequence comparison.
In the following we give a brief introduction into these widely used iterative sequence search
methods with which we compare our new method HHblits. HHblits itself will be explained
in detail in chapter 3.
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2.5.1. PSI-BLAST

PSI-BLAST is an iterative extension of the widely used BLAST program (see 2.2) developed by
Altschul et. al in 1997 (Altschul et al., 1997). The first iteration of PSI-BLAST is identical to
a normal BLAST search. After the first iteration, all putative homologous hits, that means
all hits with an E-value below a given threshold, are added to the query sequence and a new
query profile is generated. The next search iteration is then performed with this new profile.
This scheme is given in figure 2.4 and it is repeated in all following iterations, so the query
profile is refined with new homologs after each iteration. This iterative scheme is performed
until no new sequences are found or the maximum number of iterations is reached. Thus,
by incorporating distantly homologous sequences, PSI-BLAST is able to generate a more
informative, diverse model for the query and so this method is more sensitive than BLAST

for detecting remotely homologous proteins.

2.5.2. HMMER3

HMMER3 is a software for HMM-sequence comparison (Eddy, 2009). The iterative search
method in HMMER3 is called JACKHMMER. In the first iteration, a profile HMM is build
from the query sequence using a simple scoring scheme with BLOSUM62 scores converted to
probabilities plus gap-open and gap-extend probabilities. With this profile HMM a sequence
database is searched and all hits that pass the inclusion threshold are added to the query

Figure 2.4.: Iterative homology search strategy of PSI-BLAST. In the first iteration, the profile is
derived from the mutation probabilities in the BLOSUM substitution matrix. At the beginning of
all following iterations, the profile is refined with all hits from the previous iteration that have an
E-value below a given threshold. This iteration is performed until no new sequences are found or
the maximum number of iterations is reached.
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sequence in a multiple alignment and a profile is made from these results. This new profile
is then used as input for the next search iteration against the sequence database (see figure
2.5). Iterations continue until no new sequences are found or the maximum number of
iterations is reached. The match columns are always defined by the query sequence, so the
length of the profile HMM doesn’t change in later iterations.

HMMER3 uses internally a new heuristic acceleration algorithm called MSV (Multiple
ungapped Segment Viterbi) for reducing the search time and so having a runtime only
about 3-fold slower than PSI-BLAST (Eddy, 2009). By removing insertion and deletion
states and setting the match-match transition probabilities to 1, this algorithm creates a
simplified version of its local alignment model which generates multiple ungapped local
alignment segments. A fast runtime is reached by using SSE2 instructions which allow to
parallelize simple instructions on modern processors. All high-scoring sequences in the first
filter step are then passed on to slower, more sensitive filters and finally to the full HMM-
sequence comparison of HMMER3. A further increase of speed was obtained by using the
SSE2 instructions in the all steps of the HMMER3 sequence processing pipeline including the
Forward/Backward algorithm.

Figure 2.5.: Iterative homology search strategy of HMMER3. In the first iteration, HMMER3 builds a
profile HMM from the query sequence using probabilities from the BLOSUM62 matrix and gap-open
and gap-extend probabilities. In all further iterations, a profile HMM is build from the alignment of
all matches that pass the inclusion threshold in the previous iteration. This iteration is performed
until no new sequences are found or the maximum number of iterations is reached.



3. Material and methods

HHblits is the first iterative HMM-HMM comparison method. This method gains its sensitiv-
ity by two devices. Firstly, it compares profile HMMs on the query and on the database side,
which has been shown to be much more sensitive than sequence-sequence or profile-sequence
search methods (Söding and Lupas, 2003). Secondly, it uses an iterative searching strategy
similar to PSI-BLAST and HMMER3 (see 2.5). In an iterative search, all significant hits of one
iteration are used to expand the query profile HMM with which the next search iteration is
started.
A problem for this kind of method is the prohibitively slow runtime of HMM-HMM com-

parison. Furthermore, an iterative searching method needs a database which covers the
whole protein sequence space and for HHblits we have to represent every sequence in the
database by profile HMMs. To solve this problem, we use the method kClust (Hauser and
Söding, 2011) previously developed in our group to cluster the UniProt database1 down
to 20% sequence identity (UniProt20). This reduces the number of database entries from
∼ 14.5 million sequences to ∼ 2.6 million clusters (Figure 3.1, UniProt from 29. March
2011). This clustered database is still to big for a complete HMM-HMM search and so we
prefilter the UniProt20 database in each iteration with a novel algorithm for profile-profile
comparison designed for maximum speed. The algorithm effectively reduces profile-profile
alignment to profile-sequence alignment by coding the database profiles by column state
sequences in which profile columns are represented by an alphabet of 219 discretized column
states. This column state alphabet was developed together with Andreas Biegert.
For the calculation of the profile-sequence alignment we use a fast implementation that

employs the SIMD (Single Instruction Multiple Data) instruction sets available on modern
1http://www.uniprot.org/

Figure 3.1.: Clustering the UniProt database to 20% maximum sequence identity reduces the number
of database entries from ∼ 14.5 million sequences to ∼ 2.6 million clusters.

http://www.uniprot.org/


3.1 Workflow of HHblits 16

CPUs. In this way, HHblits performs 16 byte operations in parallel in a single clock cycle.
Several further filtering steps reduce the amount of slow, full-blown HMM-HMM comparisons
to a fraction of < 1/1000.
This chapter gives a detailed overview of the fast clustering by kClust, the column state

alphabet and the fast prefiltering based on this alphabet, and several additional filter steps
which decrease the runtime of HHblits. In addition, improvements in the core code for
HHblits and HHsearch as well as a compact database packing for the HHblits databases are
described.

3.1. Workflow of HHblits

The schematic workflow of HHblits is shown in figure 3.2. In the first iteration, a query
profile HMM is built from the query sequence using context-specific pseudocounts (Biegert
and Söding, 2009). This profile HMM is firstly used for the fast prefiltering step against the
column state database of the UniProt20. The time-consuming HMM-HMM comparison is
then performed only on the best matches of this prefiltering. All profile HMMs that pass the

Figure 3.2.: Schematic workflow of HHblits. Each search iteration contains two main steps. First, a
fast profile-profile prefiltering with the column state database of the UniProt20 is performed. In the
second step, the HMM-HMM comparison is executed only against the best matches of the prefiltering
step. All HMMs that have an E-value below a threshold of 10−3 are likely to be homologous to the
query and are merged to the evolving query profile HMM, which is used as input for the next search
iteration. This scheme is repeated until no new HMMs are found or a maximum number of iterations
is reached.
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Figure 3.3.: Detailed workflow of HHblits. The prefilter starts with a column state (CS) database
and a CS-profile for the query. The different steps of the prefiltering are described in section 3.3.
A list of HMMs that pass the prefilter, sorted by their prefilter E-values, is given to the HMM-HMM
comparison part. In the Viterbi algorithm, several additional filters are applied (see section 3.4) and
the E-values and P -values of all hits are calculated (see section 3.5). Afterwards, the alignments
of the best hits are realigned by the Maximum Accuracy (MAC) algorithm (see section 3.6). If a
further iteration will be performed, the template alignments are merged to the query profile and the
scheme is repeated. DP: dynamic programming.
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inclusion E-value threshold of 10−3 in this comparison are merged with the query profile
HMM. This new profile is then used as input for the next prefiltering and search iteration.
Iterations continue until no new HMMs are found or the maximum number of iterations is
reached.
Figure 3.2 gives a more detailed workflow of the prefilter steps and the main parts of

the HMM-HMM comparison with the Viterbi algorithm and the Maximum Accuracy (MAC)
algorithm in the realign step. The single steps are described in the next sections.

3.2. Generation of HHblits databases with kClust

Essential for an iterative HMM-HMM comparison is a procedure to cluster the sequence
databases, because we cannot generate HMMs for over 14 million protein sequences in a
reasonable time, not to mention the memory usage. We use kClust, an algorithm for fast
clustering of protein sequence databases. It was initially developed in the diploma thesis of
Christian Mayer at the Max-Planck institute in Tübingen and further improved by Maria
Hauser in our group (Hauser and Söding, in preparation).
In kClust the database sequences are processed sequentially and clustered by their similar-

ity. This algorithm consists of two modules: a prefilter step (k-mer similarity scoring) and a
fast sequence alignment step (k-mer dynamic programming, kDP). At first, all database se-
quences are sorted according to their length. For each sequence the k-mer similarity scoring,
which discards sequences clearly not similar enough for one cluster, is performed with all
cluster representatives that are found so far. The kDP algorithm, which is a fast heuristic
approximating the optimal local alignments obtained by the Smith-Waterman algorithm, is
then performed on all representatives that pass the filter step. If the kDP score between
the new sequence and a representative is above a specified threshold, the new sequence be-
comes a member of the cluster of this representative. If no representative has a score above
the threshold, a new cluster is generated and the new sequence becomes a representative.
Finally, a refinement step improves the clustering to reassigning members to new clusters
if they have a greater similarity score.
The k-mer similarity scoring is a fast way to identify sequences that are clearly not

similar and where a full alignment between the query and database sequence would be too
costly. The idea of this filter is that a pair of homologous sequences with a certain sequence
identity should have more similar k-mer pairs, i. e., k-mers with an ungapped alignment
score above a threshold, than unrelated sequences. The property that similar sequences
have many similar k-mers, is used to filter out unrelated sequences without computing a
full alignment.
For the k-mer similarity scoring an index table of all exact k-mers is generated for all

database sequences. The index table stores for each k-mer a pointer to a list of database se-
quences that contain this k-mer. During the prefiltering, a list of similar k-mers is generated
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for each overlapping k-mer of the query together with the corresponding similarity scores.
Each list is then compared to the k-mers of the database sequences by exact matching with
the index table. The similarity score of the best match for each matched database sequence
is added to the overall prefiltering score for this database sequence. Finally, all database
sequences with a prefiltering score above a given threshold are passed to the kDP algorithm.
This prefilter step uses by default 6-mers.

The kDP algorithm is a fast heuristic for the Smith-Waterman local alignment algorithm
(see 2.4.2) and operates on a so-called sparse k-mer matrix (see figure 3.4), where the dots
are the k-mer matches between the sequences. The aim of the kDP algorithm is to identify
the optimal path (highest scoring) through this sparse k-mer matrix. Various tricks in
this algorithm reduce the time complexity and result in a fast runtime. Compared to the
prefilter step, the k-mer size is reduced to 4 by default to improve the sensitivity of this
algorithm. After identifying the optimal path, the regions between the matched k-mers are
explicitly computed with the original Smith-Waterman algorithm.
Maria Hauser now has improved kClust by performing a second iteration, where the pre-

viously identified clusters are further merged. For all clusters obtained in the first iteration
alignments are built with the global alignment program KALIGN (Lassmann and Sonnham-
mer, 2005), and sequence profiles and consensus sequences are generated with HHmake. The

Figure 3.4.: Sparse k-mer matrix between two proteins with a high sequence similarity. The blue
dots are the similar 4-mers of the two sequences and the red line indicated the highest scoring path
through this matrix. (Figure taken from the diploma thesis of Christian Mayer)
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sequence profiles are used as queries in the second iteration. The use of sequence profiles
as representatives would result in profile-profile alignments for the cluster comparisons that
is too slow for large-scale applications. Hence, consensus sequences are used for the cluster
representatives. The workflow of the clustering method is the same as in the first iteration.
The second iteration benefits from the additional, family-specific information provided in
the sequence profiles and consensus sequences.
For the final HHblits database, an alignment is generated for every cluster by KALIGN

and for all alignments with more than 50 sequences an HMM is created. We cannot build
HMMs for all alignments, because this would increase the HMM database size from currently
∼ 2GB to ∼ 150GB. The other HMMs will be generated on the fly in HHblits, which takes
about 10−4 seconds for alignments with less than 50 sequences. These A3M- and HMM-files
are than packed with FFINDEX (see section 3.8) into two database files. Finally, the column
state database (see section 3.3.1) needed for the HHblits prefiltering is generated from the
A3M-alignments.

3.3. Fast prefiltering of HHblits

The prefiltering in HHblits is the crucial step for achieving a runtime similar to PSI-BLAST.
It needs to be as fast as possible, because it has to be performed on more than 2.5 million
database entries. But it is also the step which could limit the sensitivity of HHblits. Hence,
it has to be sensitive enough to separate possible true homologs from non-homologous
alignments, such that only a small amount of putative homologs has to be compared by the
time-consuming HMM-HMM comparison.
In the following section, we demonstrate how we integrate profile-profile comparison based

on a specific column state alphabet in combination with fast algorithms based on the SSE2

technology in order to achieve a very fast, but sensitive prefilter.

3.3.1. Column state alphabet for sequence profile encoding

HHblits uses a very fast implementation of the Smith-Waterman algorithm in its second
prefilter to balance speed and sensitivity to pick up even very distant evolutionary relation-
ships. This algorithm is guaranteed to find an optimal local alignment using affine gap
penalties between a query and a database sequence in contrast to BLAST and PSI-BLAST,
which use heuristic prefilter themselves. The Smith-Waterman algorithm uses a matrix of
substitution scores S(xi,yj) that describes the similarity between amino acids xi in sequence
x and yj in sequence y (see 2.4.2).
In HHblits, we have more evolutionary information on the query and the database side

through the sequence profile representation. Thus, we want replace the substitution score
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S(xi,yj) by the standard profile-profile co-emission score between two profiles p and q

S (p(i,·), q(j,·)) = log
20∑
a=1

p(i,a)q(j,a)
P (a) (3.1)

p(i,a) is the frequency of amino acid a in column i of the sequence profile p and P (a) is
the background probability of a. The problem is that this equation consists of a sum over
all 20 amino acids and is therefore too slow to replace the substitution score in the HHblits
prefilter.
But we can calculate a profile-to-sequence score S (p(i,·), yj) fast. The substitution scores

can be seen as a special case of profile-to-sequence scores, where the profile is generated
from one of the sequences by using substitution matrix pseudocounts (Henikoff and Henikoff,
1996; Tatusov et al., 1994): p(i,yj) = P (yj |xi). P (yj |xi) is the conditional probability of
the amino acid yj given the amino acid xi in the sequence x. Therefore, the substitution
score S(xi,yj) used within the Smith-Waterman algorithm can be expressed as standard
profile-to-sequence score of profile column i of the query sequence profile p with residue yj
of the database sequence y:

S (p(i,·), yj) = log
(
p(i,yj)
P (yj)

)
= log

(
P (yj |xi)
P (yj)

)
= S(xi,yj) (3.2)

Thus, we can use the profile-to-sequence score without an increase in runtime. But
we have to compress all evolutionary information on the database side into one single
sequence. For that reason, we used consensus sequences of the database profiles in the first
implementation of this prefiltering. But during the reduction of a sequence profile into a
consensus sequence a lot of information is lost.
Our solution is to encode each alignment column in the database profiles by an one-letter

character from a pre-computed alphabet of column states. This alphabet was developed
together with Andreas Biegert based on his context profile library (Biegert and Söding,
2009). We tested alphabets with 62 column states (all states can be encoded by a letter
or digit) and with 219 column states (states are encoded by all printable ASCII characters
with few exceptions). For the following explanations we use the CS62 alphabet, which can
be visualized more easily, but everything works the same for the CS219 alphabet, which we
used in the end.
Each column state k ∈ {1, . . . , 62} of the CS62 alphabet is characterized by a specific

amino acid profile vector csk(·) and a representing character csk ∈ {0-9,A-Z, a-z}. Figure
3.5 shows the 62 column states with their profile vectors and one-letter codes. This alphabet
was generated by clustering a large representative set of training profile columns (see 3.3.2
for details). Every profile y in the HHblits database could now be replaced by a sequence of
column states such that yj ∈ {1, . . . , 62}. With this column state database, a new profile-
to-column-state score can be defined for a query profile p and a database column state
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Figure 3.5.: Overview of all 62 column states in the CS62 alphabet (For visualization a 62 state
alphabet is shown instead of the alphabet with 219 states, which is currently used in HHblits). Each
column state is defined by a one-letter code (colored boxes with rounded corners) and a corresponding
amino acid profile vector (histogram). The first column states are more or less pure and encode the
amino acids itself, whereas other non-pure column states contain groups of amino acids that readily
substitute each other, e.g. hydrophobic or small amino acids. Column states at the very end (x,y,z)
represent highly diverged alignment columns with slightly biased background distributions.

sequence y with profile information on both sides:

S (p(i,·), yj) = log
20∑
a=1

p(i,a)csyj (a)
P (a) (3.3)

This equation still contains a sum over all amino acids, but we can easily pre-calculate
all scores S (q(i,·),k) for i ∈ {1, . . . ,Lq}, k ∈ {1, . . . ,62}. Thus, we can perform a look-
up of pre-calculated scores S (q(i,·),k) during dynamic programming and do not have to
recalculate the alignment match scores repeatedly. This procedure is completely analogous
to the profile-to-sequence comparison with the exception of a larger alphabet size.

3.3.2. Generation of the column state alphabet

The improvement of the new profile-to-column-state score (equation 3.3) over the profile-
to-sequence score based on consensus sequences depends to a large extent on the column
state alphabet. The clustering procedure for generating this CS62 alphabet is similar to
the generation of the context profile library for CS-BLAST (Biegert and Söding, 2009) (see
supplement information of this paper for more details). As a training set we use N = 10
million profile vectors randomly sampled from NR20 alignments. These alignments are built
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by clustering the NCBI NR database2 down to 20% maximum pairwise sequence identity
and adding context-specific pseudocounts to the resulting clusters. The 10 million profile
vectors are translated to count vectors by multiplying the profile vector tn(a) by the effective
number of sequences Neffn (see appendix A.2 for details) in the alignment from which the
training profile vector was calculated: cn(a) = Neffntn(a). The N training vectors are then
clustered in order to obtain a set ofK = 62 column states which together can approximately
describe all training vectors. More precisely, we seek to determine column state profiles cs =
(cs1, . . . , csK) and their prior probabilities α = (α1, . . . , αK) that maximize the likelihood
P (c|cs, α) that each of the training profile count vectors c = (c1, . . . , cN ) was generated
by exact one column state profile. An Expectation Maximization (EM) algorithm is used
to find parameters (cs∗, α∗) which optimize the likelihood P (c|cs, α). In order to make
this problem traceable, hidden variables z = (z1, . . . ,zN ) were used, where zn ∈ {1, . . . ,K}
indicates which column state profile csk has emitted training profile count vectors cn. The
probability distribution over z can now be calculated by:

P (zn = k|c, cs, α) =
( 20∏
x=1

csk(x)cn(x)
)w

αk (3.4)

More details can be found in the supplementary information (equation 6-8) in Biegert and
Söding (2009). The main differences to the case of the context profile library are on the one
hand the number of clusters (K = 62 instead of K = 4000) and the length of the profiles (1
column instead of 13), on the other hand a hard clustering is performed where each training
profile column is generated by only one column state instead of the soft clustering in the
case of the context profile library. The hard clustering is achieved by using a high weight
w = 1000 (instead of w = 1.6), because than for each hidden variable zn, the term for one
column state k dominates all other and each training vector is assigned to exact one column
state profile. Because of this hard clustering, the CS62 alphabet is optimized in such a way
that the observed counts in an alignment column are described as well as possible by a
single column state, rather than through a mixture of column states.

3.3.3. Translation of sequence profiles in column state sequences

For using the fast profile-to-column-state score (equation 3.3) in the prefiltering, the HHblits
database (e.g. UniProt20) needs to be translated into a CS62 column state sequence
database. This process is illustrated in figure 3.6. In a first step, a sequence profile is
generated from a given sequence alignment by adding a small amount of context-specific
pseudocounts (histogram below alignment). Afterwards, each profile column is translated
into the one column state that best describes the observed counts (colored boxes with
rounded corners). More precisely, each profile column i is replaced with the CS62 letter csk

2http://www.ncbi.nlm.nih.gov/

http://www.ncbi.nlm.nih.gov/
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Figure 3.6: Translation of an align-
ment into a sequence of column
states. In a first step, a sequence
profile is generated from a given se-
quence alignment by adding a small
amount of context-specific pseudo-
counts (histogram below alignment).
Afterwards, each profile column is
translated into the one column state
that best describes the observed
counts (colored boxes with rounded
corners). Below each column state
letter its characteristic profile col-
umn is shown in order to facilitate
the comparison between the trans-
lated and the original profile column.
At the bottom there is the consen-
sus sequence generated from the se-
quence alignment. Clearly, the col-
umn state sequence represents the
given sequence alignment with all ob-
served counts very well, regardless
of highly conserved or less conserved
profile columns. The consensus se-
quence on the other hand cannot
distinguish between highly conserved
columns and more diverged columns.

which has the maximum probability to generate the observed amino acid counts c(i,a):

k = argmax
k

αk

( 20∑
a=1

csk(a)c(i,a)
)w

(3.5)

αk is the Bayesian prior probability for column state csk, determined in the process of
generating the column states alphabet (section 3.3.2). It quantifies the probability that
an alignment column is emitted by profile vector csk(·) prior to knowing that alignment
column. The counts c(i,a) of amino acid a at position i of the input alignment are modeled
with a multinomial distribution. This translation procedure is implemented into a small
binary CSTRANSLATE, which takes as input an alignment and the CS62 library and outputs
the generated CS62 column state sequence in FASTA format.
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3.3.4. SSE2

In the last years people have put a lot of effort into the speed optimization of sequence
search tools such as PSI-BLAST and HMMER3 (Chaudhary et al., 2006; Sun and Buhler,
2007; Walters et al., 2006), but most of these efforts have had little impact. The only accel-
erations that seem to work are based on implementing the code on a specialized hardware.
Such specialized hardware includes FPGAs (field-programmable gate arrays) (Derrien and
Quinton, 2007, 2010; Oliver et al., 2007; Sotiriades and Dollas, 2007; Takagi and Maruyama,
2009), VLSI ASICs (special-purpose chips), large multiprocessor clusters (Chukkapalli et al.,
2004; Rekapalli et al., 2009; Wang et al., 2003), GPUs (graphics processor units) (Horn et al.,
2005; Lican and Ya, 2010; Ligowski and Rudnicki, 2009; Ling and Benkrid, 2010; Liu et al.,
2009; Manavski and Valle, 2008; Vouzis and Sahinidis, 2011; Walters et al., 2009; Yao et al.,
2010), special processor supplementary instruction sets such as SIMD (Single Instruction,
Multiple Data) (Edgar, 2010; Farrar, 2007; Rognes, 2011; Rognes and Seeberg, 2000; Sza-
lkowski et al., 2008; Wozniak, 1997), and combinations of these hardwares (Lavenier and
Nguyen, 2010; Nguyen and Lavenier, 2009).
For prefiltering more than 2.5 million sequence alignments our algorithms must be as

fast as possible to achieve a runtime similar to PSI-BLAST, but on the other hand our
method should be applicable on a wide range of personal computers without the need of
additional hardware like FPGAs. Therefore, we compared the runtimes when using GPUs

and SSE2 (Streaming SIMD Extensions 2) instructions, because they are available on most
actual personal computers. Based on some initial tests we decided to use SSE2 which gave
us better results than GPUs.
Streaming SIMD Extensions 2 was first introduced by Intel in 2001 with the initial version

of Pentium 4 CPUs (Central Processing Unit). It is a special processor supplementary
instruction set and extends the earlier instruction sets SSE and MMX. In the meantime,
Intel has updated this instruction set to SSE3 and SSE4 with newer CPU-families. The
newest extension is called AVX (Advanced Vector Extensions) and was released this year
with the new Sandy Bridge Processor family of Intel. The supplementary instruction sets
work on special 128 bit registers on the CPU and can perform simple instructions on complete
registers. In one 128 bit register one can store 16 chars (one char is 8 bit) and because of
that the addition of two 128 bit registers performs 16 additions of chars in parallel in one
clock cycle. This parallelization leads to an enormous speed-up in our algorithms. SSE2 is
supported by all Intel CPUs since the Pentium 4 (2001) and by all AMD CPUs since the
Athlon64 (2003).

3.3.5. Fast prefilter algorithms

For obtaining a very fast and sensitive prefiltering we perform a multi-step prefiltering.
The different steps are shown in figure 3.7. First, we perform a gapless alignment algorithm
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Figure 3.7.: Different steps of the HHblits prefiltering. Firstly, a very efficient gapless alignment
score is calculated for all column state sequences in the database (2.6 million for UniProt20). Only
sequences with a score above a given threshold in this gapless alignment (∼ 10%) are transfered
to the next prefilter step. In this step a standard Smith-Waterman score is calculated and only
sequences with a prefilter E-value below the threshold Epre are passed to a last prefilter step. Again,
the number of sequences is reduced by about 90%. On the final 103 - 104 sequences a full Smith-
Waterman algorithm with backtrace is performed to identify the exact positions of the best matches.
Below each alignment the expected number of clock cycles (CC) to compute cells in the dynamic
programming matrix are given.

between the query profile and the whole column state database (in case of the UniProt20
about 2.6 million sequences). In each alignment we calculate the maximum match score of
an ungapped region in a very efficient way by using SSE2 instructions (details see below).
All database column state sequences are passed to the second filter step, if their match
score is above a given threshold T1 = 2.5 + log2(mn) bits, where m and n are the lengths
of the query profile and database sequence. This gapless alignment algorithm is sensitive
enough to filter out more than 90% of non-homologous sequences. In the second filter step,
we perform a Smith-Waterman alignment implemented with SSE2 instructions (based on
an algorithm by Farrar (2007), details see below). In order to minimize the runtime, we
again calculate only the score of the best match in this algorithm. From this bit score
S, an approximate E-value is calculated: E = NDBmn2−S , where NDB is the number of
sequences/HMMs in the database, and sequences pass if E < Epre = 1000. Again, the
number of database sequences is reduced by about 90%. On the final 103 - 104 sequences



3.3 Fast prefiltering of HHblits 27

a full Smith-Waterman algorithm with backtrace (implemented with SSE2) is performed to
identify the exact positions of the best matches. The knowledge of the exact positions is
important for further filter steps explained in section 3.4.2. These final sequences with the
exact positions of the best matches are then passed to the main HMM-HMM comparison of
HHblits.
The SSE2 instruction set gives us the opportunity to parallelize simple instructions such

as maximization or addition. To maximize the number of operations per clock cycle, the
special 128 bit registers are divided into 16 8-bit elements (unsigned chars). This results
in 16 operations in parallel in one clock cycle, but it limits the range from 0 to 255. Each
unsigned char holds the score in units of 1/4 bits plus an offset of 50, allowing to represent
a score range between -12.5 and +51.5 bits. The algorithms are programmed such that the
scores will saturate at 255 upon overflow. Since any score larger than 51 bits will pass the
filter anyway (51 bits corresponds approximately to an E-value of 0.1 for average protein
lengths), this range is sufficient for prefiltering. But in the final step we are interested in
the exact start and end positions of the best alignments and thus we need to prevent the
score from saturating. Therefore, we use for the last filter step 8 16-bit elements (unsigned
short). With these elements, we can perform only 8 operations in parallel, but we obtain a
score range of -12.5 to 16371.5 bits which avoids saturation of the score for most proteins.
Only when aligning proteins with a length above ∼ 8,000 the score could saturate. But
for these few cases the identified positions are good enough, because usually the correct
alignment should be the longest and in this case we could identify the correct alignment.
For the efficient use of SSE2 commands, it is important to have all needed data 16-byte

aligned in the memory, because then the values are read with a single aligned load instruc-
tion. We achieve this requirement by using the memalign(16,...) command to allocate
16-byte aligned memory when loading all column state sequences (translated into unsigned
chars) into the memory. Furthermore, we pre-calculate all profile-to-column-state scores
S(qi,k) (see equation 3.3) for the query profile q and all k ∈ {1, . . . ,62} and store them also
16-byte aligned.

3.3.6. Gapless local alignment with SSE2

In the first prefilter step, the maximum match score of an ungapped region between the
query profile q with length m and a database column state sequence y with length n is
searched. This can be done by filling an m×n score-matrix S with a dynamic programming
algorithm similar to the Smith-Waterman algorithm described in 2.4.2. The difference is
that we update each cell in this matrix by only looking at the above-left cell, because we
do not allow gaps. Therefore, the score in each cell S(i,j) will be the maximum of 0 (a
new alignment that starts at this position) and S(i − 1,j − 1) + s(qi,yj). s(qi,yj) is the
pre-calculated profile-to-column-state score between column i in the query profile q and the
column state letter at position j in the database sequence y. For efficiency, we do not store
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the full S matrix but use only two vectors, because for the calculation of a new column only
the scores of the previous column are needed. Based on this the algorithm can be written
with only 5 SSE2 commands in the inner loop (see algorithm 1), resulting in a performance of
16 cells in only 5 clock cycles. Here, the command _mm_subs_epu8(S, offset) for example
means, that all 16 8bit segments in register offset are subtracted from the corresponding
16 segments in register S. In addition, this subs command saturates, that means that all
results < 0 are set to 0. Finally, the maximum match score of an ungapped local alignment
between the query profile q and the column state sequence y is the maximum value within
the Smax register.

Algorithm 1 : Inner loop of the gapless alignment algorithm with SSE2 commands
for j ← 0 to lenT do

for i← 0 to lenQ do
S = _mm_adds_epu8(S, *(qji++)); // S(i,j) = S(i− 1,j − 1)

// +(s(qi,yj) + offset)
S = _mm_subs_epu8(S, offset); // S(i,j) = max(0, S(i,j)− offset)
_mm_store_si128(s_curr_it++, S); // store register S
Smax = _mm_max_epu8(Smax, S); // Smax = max(Smax, S(i,j))
S = _mm_load_si128(s_prev_it++); // load next register S

3.3.7. Smith-Waterman with SSE2

In the second prefilter step we want to achieve a higher selectivity at the same sensitiv-
ity than in the first gapless alignment algorithm. Because of that we perform a Smith-
Waterman alignment between the query profile and the database column state sequence.
We use an adjusted version of the Farrar implementation which is freely availably3 and is
faster than other SIMD implementations. In the following we give a brief description of this
algorithm and the changes and improvements we have made (for more details see Farrar
(2007)).

The basic version of the Smith-Waterman algorithm is described in 2.4.2. The Farrar
implementation uses the Gotoh improvements for affine gap penalties (Gotoh, 1982) with
three instead of one matrices. There are two matrices E and F for alignment scores ending
with a gap in the query or database sequence, respectively:

E(i,j) = max
{
E(i,j − 1)−Gext,
H(i,j − 1)−Gopen

(3.6)

F (i,j) = max
{
F (i− 1,j)−Gext,
H(i− 1,j)−Gopen

(3.7)

3http://sites.google.com/site/farrarmichael/smith-waterman

http://sites.google.com/site/farrarmichael/smith-waterman
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Gopen and Gext are the gap-open and gap-extension penalties. The alignment scores are
calculated in H(i,j):

H(i,j) = max


0,
E(i,j),
F (i,j),
H(i− 1,j − 1) + s(qi,yj)

(3.8)

s(qi,yj) is the pre-calculated profile-to-column-score between the query profile q and the
database column state sequence y.
For an efficient memory usage, the Farrar implementation uses a special memory layout for

the query profile q with lengthm. This layout is a striped access parallel to the query profile
(see figure 3.8). The query is divided into t equal length segments S = {S1, . . . ,St}, where
the length of each segment p is equal to the number of elements in one SIMD register (p = 16
in the case of unsigned chars). The number t of segments is defined as t = (m+p−1)/p and
the query segments itself are defined as Sn = q0∗t+n, q1∗t+n, . . . ,q(p−1)∗t+n where 1 ≤ n ≤ t.
If the query is not long enough to fill all segments, the segments are padded with null
entries. For example, when we have a query q with length m = 21 and p = 4 elements in
one register, then is t = (21 + 4 − 1)/4 = 24/4 = 6 and the segments have the following
layout:

S1 = q1, q7, q13, q19

S2 = q2, q8, q14, q20

S3 = q3, q9, q15, q21

S4 = q4, q10, q16, 0

S5 = q5, q11, q17, 0

S6 = q6, q12, q18, 0

When calculating the match scores H(i,j) in segment Sn in one column of the score
matrix, all needed values H(i−1,j−1) are located in segment Sn−1 of the previous column
because of this striped scheme (red arrows in figure 3.8). This reduces the number of needed
time-consuming shift-operations.
The pseudocode of the striped SW-alignment algorithm is given in algorithm 2. The

calculation of H(i,j) is dependent on the previous value on the major diagonal H(i−1,j−1).
Therefore, two buffers (HStore and HLoad) are generated to store the H values. One buffer
is used to read the previousH values and the other stores the current ones. At the beginning
of a new column, these buffers are swapped and the data can be reused. The algorithm
starts with the calculation of the number of segments into which the data is divided. In
the main loop of the algorithm over all database sequence positions j ∈ {0, . . . ,lenT − 1}
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Figure 3.8.: Memory layout for the query profile used by a standard and by the striped implemen-
tation. The segments in both layouts run parallel to the query, but the striped implementation
accesses the query in a striped pattern. Because of this striped implementation, the cells needed
for the calculation of the match scores S(i,j) = S(i − 1,j − 1) + s(qi,yj) (shown as red arrows in
this figure) in one segment are completely located in another segment of the previous row. In the
standard implementation, the cells are located in different segments and so time-consuming shift
operations have to be done.

the last H segment of the previous column is loaded and the values in this segment are
shifted to the left. This is important because the values in the first segment of each new
database column depends on the last segment of the previous column shifted to the left (see
figure 3.9A). Then the two H buffers are swapped. The inner loop iterates over all segments
in one database column. The new value H(i,j) is calculated by adding the pre-calculated
profile-to-column-state score s[i][j] to H(i − 1,j − 1), the highest score encountered so far
is saved, and the H values are adjusted with greater E or F values, if there are any. The
computation of E(i,j) is the maximum of H(i,j − 1)−Gopen and E(i,j − 1)−Gext, where
E(i,j − 1) are the values from the cells left of the current cells. In a similar way, F (i,j) is
computed with the maximum of H(i− 1,j)−Gopen and F (i− 1,j)−Gext.
One problem occurs in the first segment of each column by the calculation of the new

F values. These values depends on the cells above in the matrix and due to the striped
layout the values of the cells in the first segment of each column depends on the values of
the last segment in the same column, which are unknown yet (see figure 3.9B). Therefore,
in cases where F influence the value of H, a special F loop is performed after the inner loop
to correct these errors and to calculate the correct value of H. In the most cases, F remains
zero and this additional correction step is not necessary.
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Algorithm 2 : Pseudocode of the SW-alignment algorithm with SSE2 commands
// calculate number of segments for query profiles
// (Here we have 16 elements in SIMD register)
iter = (lenQ + 15) / 16;
// loop over database sequence
for j ← 0 to lenT do

// Load last vH segment and shift for use in next iteration
vH=pvHStore[iter-1]<< 1;
// Swap the two H buffers
swap (pvHStore, pvHLoad);
// loop over query segments
for i← 0 to iter do

// add score s(i,j) to vH
vH = vH + s[i][j];
// Update highest score encountered this far
vMaxScore = max(vMaxScore, vH);
// Adjust vH with any greater vE or vF values
vH = max(vH, vE);
vH = max(vH, vF);
// save vH values
pvHStore[j] = vH;
// Calculate new vE and vF based on gap penalties
vH = vH - vGapOpen;
vE = vE - vGapExtend;
vE = max(vE, vH);
vF = vF - vGapExtend;
vF = max(vF, vH);
// load the next h value
vH = pvHLoad[j];

// F loop to correct vH values based on possible vF influence

Figure 3.9: (A) Dependencies be-
tween the last H segment and the
first H segment of the next column.
By shifting the values in the last H
segment they are aligned with the
next segment over. (B) Dependencies
between the last F segment and the
first. The values in the last F seg-
ment are shifted to the left so the val-
ues are aligned with the next segment
over. (Figures are based on figures
from Farrar (2007))
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3.3.8. Smith-Waterman with backtrace

In the final step of the prefiltering, we again perform a Smith-Waterman algorithm based
on the Farrar implementation, but this time we also use a backtrace algorithm to identify
the exact start and end positions of the best alignments. These exact positions are needed
for an additional filter step in the HMM-HMM comparison where only the region around the
here identified alignments is activated in the dynamic programming matrix (Tube shading,
see section 3.4.2). In this Smith-Waterman algorithm we cannot allow for score saturation
and so we split the special 128 bit register for the SSE2 instructions in 8 16bit segments
(unsigned short). This reduces the number of parallel instructions from 16 to 8, but it
increases the score range to -12.5 to 16371.5 bits thus avoiding score saturation.
To perform the backtrace calculation, we need to store two n × m matrices (n is the

query length, m is the DB-sequence length). The Hmatrix stores the alignment scores of
an alignment that ends in this column (Hmatrix[i][j] = H(i,j)) and the Btmatrix saves in
a special encoding the backtrace of the calculated cells. The Btmatrix stores which term in
the maximum formulas for H(i,j), E(i,j) and F (i,j) (equations 3.8, 3.6, 3.7, respectively)
has lead to the new value, or, in other words, from which cell in the dynamic programming
matrix the new value was derived. In this special encoding, we use two half-bytes to encode
the backtrace of H and one half-byte to encode the backtrace of E and F , respectively. In
the case of H, the encoding 00 indicates that H(i,j) was generated from the calculation
H(i−1,j−1)+s(i,j), the encoding 01 means that H(i,j) was generated from E(i,j) and the
encoding 10 indicates a generation from F (i,j). For the E-matrix, an encoding of 1 means
that E(i,j) = H(i,j− 1)−Gopen and an encoding of 0 stands for E(i,j) = E(i,j− 1)−Gext.
The encoding for F is analogous to that of E.

Algorithm 3 : Pseudocode for filling the backtrace-matrix Btmatrix in the inner loop of
the Smith-Waterman algorithm by using SSE2 instructions. Shown are the important
steps for encoding the backtrace of the H-matrix, the encoding for the E- and F-matrix
has similar steps
// add score H(i,j) = H(i− 1,j − 1) + s(i,j)
// build maximum of H, E and F values:
// H = max{H,E,F}
// Set backtrace register for H-matrix
Bttmp = _mm_cmpeq_epi16(vH, vE); (1)
Bt = _mm_and_si128(Bttmp, 0x0001); (2)
Bttmp = _mm_cmpeq_epi16(vH, vF); (3)
Bttmp = _mm_and_si128(Bttmp, 0x0010); (4)
Bt = _mm_or_si128(Bt,Bttmp); (5)

// Set backtrace register for E- and F-matrix
...
// Store Bt value
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Now these new matrices Hmatrix and Btmatrix need to be integrated into the Smith-
Waterman implementation with the SSE2 instructions. The Hmatrix simply stores the H-
values which can be performed by a single store-instruction. The pseudocode for filling the
Btmatrix with the backtrace-encoding of the H-matrix is shown in algorithm 3. In the inner
loop the new H register is set by maximizing over H, E and F . Then we compare the
segments in the H and E register (line (1) in algorithm 3). This command sets all bits in
one segment of the register Bttmp to 1, if the two corresponding segments in H and E are
equal, otherwise to 0. So all bits equal 1 in one segment of Bttmp indicates that the value of
the H-value of this segment comes from the corresponding E-value. The _mm_and_si128
command (line (2)) performs a bitwise “AND” between all bits in the two registers and
sets all bits to 0 except the last half-byte of each segment, which describes this encoding.
The lines (3)-(5) perform the same for the H and F registers and store the encoding in the
second to last half-byte. In a similar way the encoding for the E- and F-matrix is generated.
After the matrices are filled by this algorithm, the maximum score in the Hmatrix is

searched and from this point a backtrace is started. The backtrace ends when the algorithm
reaches a cell with a score of 0 and the start and end positions of this alignment are saved.
To eliminate this alignment from further searches we inactive the cells in the Hmatrix around
this alignment by looping over all cells contained in the alignment and setting the cells in
the same row and column within a distance of 150 to zero. This distance is approximately
2/3 of the distance parameter for the tube shading (see section 3.4.2) to ensure that no short
domains will be missed in the HMM-HMM comparison by inactivating to much cells. Then,
a suboptimal alignment is searched by identifying the next maximum score. If the score
is also above the given threshold, a backtrace for this suboptimal alignment is performed
and the new positions are stored. This is repeated until no further suboptimal alignment
with a score above the threshold is found or until a maximum of 10 suboptimal alignments
is extracted. We use this approach instead of the Waterman-Eggert algorithm (Waterman
and Eggert, 1987) which computes suboptimal and non-overlapping alignments, because
in the Waterman-Eggert algorithm the complete dynamic programming matrix have to be
recalculated after each suboptimal alignment and this is too slow for our prefiltering.

3.4. Additional filter steps

The main part in decreasing the runtime of HHblits and so the possibility to perform an
iterative HMM-HMM comparison was achieved by the fast prefilter explained in 3.3. To
further reduce the runtime of HHblits and to reach runtimes similar to PSI-BLAST, additional
filter steps are integrated in the HMM-HMM comparison step of our method. In this section
we give a detailed overview of these additional filters: a filter for skipping further HMM-
HMM comparisons (“early stopping“) if there are no good matches in the 200 previously
aligned HMMs, a filter for reducing the search space in the dynamic programming matrix by
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only searching in a tube around the prefilter matches and a filter which prevents realigning
matches that had already been identified in a previous iteration. All these additional filters
can be separately disabled by command-line parameters, but this is not recommended as it
results in a longer runtime at an only very slightly increased sensitivity.

3.4.1. Early stopping

The early stopping filter further reduces the number of HMMs that will be compared by the
time-consuming HMM-HMM comparison. This filter is based on the assumption that the
prefilter is good in dividing the homologous and non-homologous proteins. The HMM-HMM

comparison runs over the list of prefiltered HMMs sorted by their prefilter scores. Therefore,
most of the homologous matches should be found at the beginning of this comparison.
If we identify only non-homologous matches over a long range, the probability to find a
homologous match is very low and the runtime costs for searching the remaining HMMs do
not further justify a possible gain in sensitivity for finding a few more homologous matches.
Furthermore, homologs that are missed due to the early stopping might still be found in
the following search iterations.
The scheme of this early stopping filter is shown in figure 3.10. A coarse estimate for the

probability for a match to be a true homolog is 1/(1 +E) for a Viterby E-value E. Before
starting the HMM-HMM comparison between a new database HMM and the query HMM, we
average 1/(1 + E) over the last 200 processed Viterbi alignments:

1
200

∑
k∈{last 200 matches}

1
1 + E(k) (3.9)

If this average drops below a given threshold (default is 0.01), the HMM-HMM comparison

Figure 3.10: Scheme of the early stop-
ping filter step. The HMM-HMM
comparison of HHblits runs over a
list of all HMMs that have passed
the prefilter, sorted by their prefilter
scores. Before starting the HMM-
HMM comparison of the query and
the current HMM (red box), an av-
erage over the E-values of the last
200 matches 1

200
∑200

n=1
1

1+E(n) is cal-
culated. If this average drops be-
low a given threshold, the HMM-HMM
comparison stops and discards all fur-
ther HMMs. For the first 200 HMMs
the sum is filled up with artificial
E-values of 0.
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stops and all further HMMs in the prefilter list will be discarded. For an efficient calculation,
the E-values of the last 200 matches are stored in an array and after each HMM-HMM

comparison the oldest entry in this array will be replaced with the new E-value and the
sum is updated. At the beginning, this array is initialized with artificial E-values of 0 to
guarantee that at least 200 HMMs will be compared. Note that, when performing HHblits
with more than one thread, the results between several runs could be slightly different,
because the order in which alignments are processed by different CPU-cores can change and
hence the threshold may be reached at another position in the list.

3.4.2. Tube shading

The tube shading filter reduces the search space in the dynamic programming matrix of
the HMM-HMM comparison. In this main comparison, a Viterbi alignment is calculated for
each database HMM (see section 2.4). For the Viterbi algorithm, a dynamic programming
m× n matrix (m is the query length, n is the length of the database HMM) must be filled
by running over all cells. But we already have the information from the last prefilter step
in which regions of this matrix the best matches are likely to be located according to the
profile-profile Smith-Waterman algorithm. In most cases, the final alignment is located in
the same region. Therefore, we constrain the Viterbi search to only the regions around the
prefilter matches.
The scheme of this tube shading is given in figure 3.11. At first, all cells in the dynamic

Figure 3.11.: Scheme of the tube filter step. This filter reduces the search space in the dynamic
programming matrix of the Viterbi algorithm when comparing the query and database HMM. This
is done by crossing out all cells in the matrix and activate only the cells in a tube around the
alignments identified in the last prefiltering step. There can be more than one alignment if some of
the suboptimal alignments also have a score above the prefilter threshold. The size of the tube can
be specified by a shading space parameter. The Viterbi algorithm now runs only on the activated
cells.
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programming matrix are crossed out. Then, we get the start- and end-positions of all
alignments that had a score above the threshold in the prefiltering. For each alignment
we calculate the diagonals which limit the alignment at the bottom and at the top and
add an additional shading space to these diagonals (default is 200, see blue lines in figure
3.11). These diagonals and the shading space left and right of the alignment define the
region in which the cells of the matrix are activated. For average proteins with a length
between 200 and 400 amino acids nearly the full matrix is activated. But especially for long
proteins, which result in long runtimes, the search space of this time-consuming comparison
can be reduced dramatically. A similar tube shading is used in the realign step, where all
good matches are realigned with the more accurate MAC (Maximum ACcurancy) algorithm.
Here, the activated cells in the dynamic programming matrix are defined by the previously
calculated Viterbi alignments.

3.4.3. Avoid aligning the same templates in multiple iterations

The last additional filter prevents HMMs that have been found in one iteration of HHblits with
an E-value below the inclusion threshold, to be aligned again in later iterations. Therefore,
the names of all identified matches in one iteration are stored in a list of previous hits. If the
same HMM passes the prefilter in a later iteration, it won’t be aligned again by the HMM-HMM

comparison. This reduces the runtime and it prevents the alignment from deteriorating it
in the cases of a too diverse query profile, i. e., if the database match is closely related to
the query sequence and the query profile contains the information of evolutionary more
distantly related sequences. But on the other hand the scores and therefore the E-values
of such matches that were found in previous iterations could improve by a better query
profile. For that reason, we re-score in the last iteration all matches that were identified in
the previous iterations, but we keep the first alignment.

3.5. P -value calculation with neural networks

The interpretation of the results of an HMM-HMM comparison depends strongly on the
statistics of the similarity scores. The scores are calculated during the Viterbi algorithm,
but for a meaningful interpretation of the data, measures of the confidence for homology are
needed. Most methods report E-values or P -values for all of their matches. The P -value
of a match with score S is defined as the probability to obtain a chance hit with score ≥ S
in a pairwise comparison. Therefore, the score distribution for non-homologous sequences
is needed. In the case of HHsearch and HHblits the score distribution of non-homologous
sequences follows an EVD (extreme value distribution) as shown in figure 3.12.
If such a score distribution is given, the P -value can be estimated by calculating the area

under the curve to the right of S. From this P -value P , an E-value E can be computed.
The E-value is defined as the expected number of chance hits with a score ≥ S in a search
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Figure 3.12.: (A) The score distribution of non-homologous sequences follows an EVD (extreme
value distribution). The P -value of a score S is defined as the area under the curve to the right of
this score. (B) Example of the score distribution of non-homologous sequences of an HHblits search.
The red line is the fitted EVD probability density function.

of a database with NDB sequences: E = NDBP . In HHblits we have the problem that
there are two search steps (the prefiltering and the Viterbi alignment) which are partially
correlated and influence the E-value calculation. We can easily define the E-value for the
two extreme cases: (1) If the prefiltering and Viterbi scores are perfectly correlated the
E-value can be calculated by E = NDBP . (2) If the scores are completely uncorrelated the
E-value can be calculated by E = NpreP , where Npre is the number of HMMs that pass
the prefilter. We handle the partially correlated case by introducing a empirical correlation
factor (Epre/NDB)α in the E-value formula:

E = NDBP ×
(
Epre
NDB

)α
(3.10)

Epre is the E-value-threshold of the prefilter. α is a measure for the degree of correlation
(α = 0: perfect correlation, α = 1: no correlation) and is defined as α = 0.4+0.02×(NeffT−
1)× (1− 0.1× (NeffQ − 1)). Here, NeffQ and NeffT are the numbers of effective sequences
(definition see appendix A.2) in the query and template HMMs, respectively. The three
coefficients were optimized to yield accurate E-values (see chapter 4.1.5).
The E-value is the most widely used significance measure. Also, some thresholds in

HHblits are given as E-values, e. g., the inclusion threshold with a value of 10−3 means
that by chance one non-homologous protein passes this threshold in 1000 HHblits runs. In
HHsearch and HHblits a probability for a homologous relationship is given to the user as an
additional significance measure. It includes the secondary structure score and is based on
the score distribution for non-homologs and homologs in an all-against-all comparison of
the SCOP database:

P (pos|S) = P (S|pos)P (pos)
P (S|pos)P (pos) + P (S|neg)P (neg) (3.11)

In the previous version of HHsearch, the parameters of the EVD were estimated for each
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query in an additional calculation step. Therefore, an HHsearch run was performed against
a calibration database which consists of one HMM for every fold in SCOP, hence all HMMs
in this calibration database should be unrelated. Then, the score distribution of all non-
homologous proteins was calculated by excluding the three best-scoring folds. This was
done to be sure that only non-homologous matches contributed to the score distribution.
The λ and µ parameters for this EVD were determined by Maximum Likelihood and stored
in the query HMM. These parameters was then used in the actual search for the P -value
calculation. For HHblits we must find another way to determine the parameters, because
an additional calibration search in every search iteration is too slow.
We now determine the parameters λ and µ by a machine learning approach and train two

neural networks, one for the calculation of λ and one for the calculation of µ (Sadreyev and
Grishin, 2008). A neural network can model complex relationships between the inputs and
the output. It is an interconnected network of nodes, usually arranged in three layers: the
input nodes, the hidden nodes and the output nodes. Each node has an activation function,
which generates the output of the node from the weighted input. In a learning phase, the
weights w of all edges in the network are changed to model the given training data (input
and corresponding output) with a minimal error.
In our case, we use for both parameters the same neural network topology (see figure 3.13):

4 input nodes k ∈ {1,2,3,4}, that are fully connected with 4 hidden nodes l ∈ {5,6,7,8} and
one output node o = 9. As inputs we take the length of the query and database HMM and
the diversities of these HMMs. All inputs are normalized to a value between 0 and 1 which
results in a slightly better performance of the neural network. In the hidden layer we use a
logistic function to generate the output Hl of the hidden node l:

Hl = 1
1 + exp

(
−
∑4
k=1wklIk

) (3.12)

Ik is the input value of the input node k and wkl is the weight of the edge connecting

Figure 3.13: Neural network topology for the EVD
parameter λ and µ. The network consists of
4 input nodes, 4 hidden nodes and one output
node. Inputs are the length of the query and the
database HMM and their diversities. All edges in
this network have individual weights, which were
trained with the backpropagation learning algo-
rithm.
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input node k and hidden node l. In the output layer, we simply use the sum of weighted
hidden node outputs Hl to generate the final output O:

O =
8∑
l=5

wloHl (3.13)

The update of the weights in the neural network is performed by a backpropagation
algorithm. It is a supervised learning method, which means, that for any input in the
trainings dataset the output is known. The backpropagation algorithm updates the weights
by a simple gradient descent approach, which means that it calculates the gradient of the
error of the network regarding the weights and the weights are then updated in the direction
of the negative gradient. This is repeated until the performance of the neural network is
good enough.
To generate a training set for these neural networks, we create HMMs for several combina-

tions of length and diversity and use the calibration step of the previous HHsearch version
to calculation the λ and µ parameters. For the final learning of the neural networks our
training dataset consists of more than 1 million combinations of input values and the corre-
sponding parameters. 1% of these training data is taken from this training set and used as
a validation set to check for overfitting. Overfitting can happen if you have too few training
data for the free parameters of your neural network. In this case a neural network simply
learns the input data, but could not generalize for slightly different inputs. By using an
additional validation set while learning the risk of overfitting could be minimized.
We generate these neural networks with the SNNS (Stuttgart Neural Network Simulator4),

a graphical application for generating, training and analyzing neural networks. The neural
networks for λ and µ were built in this application and trained with our training data and the
backpropagation learning algorithm. The resulting weights are extracted and implemented
in our HHblits and HHsearch code. For each comparison between a query and a database
HMM, the λ and µ parameter can now be calculated by using the weights and the activation
functions in equation 3.12 and 3.13. Using the cumulative distribution function of the EVD

(F = e−e
−(x−µ)λ) with these parameters, the P -value can now be calculated by

Pvalue(score) =
(
1− e−e−h) with h = λ · (score− µ) (3.14)

3.6. Realignment of matches by MAC algorithm

HHblits and HHsearch use by default the Viterbi algorithm for the comparison of profile
HMMs. The scores generated by the Viterbi algorithm are well suited for the calculation
of P -values (see section 3.5). But the alignment quality of the generated alignments could
sometimes be increased by the use of the maximum accuracy (MAC) algorithm, which was

4http://www.ra.cs.uni-tuebingen.de/SNNS/

http://www.ra.cs.uni-tuebingen.de/SNNS/
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first proposed by Holmes and Durbin (1998) for global HMM-to-sequence alignments. A
version adapted to the case of local HMM-HMM comparison was described by Biegert and
Söding (2008). The MAC algorithm derives an alignment from a posterior probability ma-
trix which is computed with the Forward/Backward algorithm. Based on these posterior
probabilities, a MAC alignment σ maximizes the expected number of correctly aligned pairs
of residues:

A(σ) =
∑

(i,j)∈σ
P
(
M q
i �M

p
j

)
→ max (3.15)

P
(
M q
i �M

p
j

)
is the posterior probability of match state i in HMM q to be aligned to

match state j in HMM p. For the case of local alignments a greediness parameter mact
is used that is subtracted from the posterior probabilities for every aligned pair along the
alignment path:

A(σ) =
∑

(i,j)∈σ

(
P
(
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p
j

)
−mact

)
→ max (3.16)

This local MAC alignment maximizes the sum of probabilities for each residue pair to
be correctly aligned minus a penalty (mact). With the mact parameter, the alignment
greediness can be controlled, from nearly global, long, greedy alignments (mact near 0)
to very precise and short (mact near 1). The posterior probabilities of every aligned pair
are shown as confidence values in the resulting alignments. In appendix B we demonstrate
the excellent correlation between the confidence values and the fraction of correctly aligned
pairs.
Although the alignments generated by the Viterbi and by the MAC algorithm are often

similar, there are cases where they differ completely. But unlike the Viterbi scores MAC

scores are not guaranteed to follow an EVD and therefore the Viterbi scores are better
suited for the P -value calculation. Thus, we use the Viterbi algorithm for the HMM-HMM

comparison, but afterwards we realign the best matches with the MAC algorithm and save
the new calculated alignments with the previously calculated Viterbi scores as results.

3.6.1. Consecutive merging of best alignments

This realign-procedure is parallelized for a small runtime (see section 3.7). But especially
when the query profile in HHblits consists of only one sequence, the alignment quality could
be increased by merging the information of the best matches to the query profile before
realigning further database matches. Therefore, we consecutively merge the alignments of
the first n matches (controlled by the parameter premerge) to the query profile and perform
the parallelized realignment of all other matches with this evolved query profile.
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3.7. Multi-threading support

Most of the current computers contain so called multi-core processors, which are single
computing components with two ore more independent processor cores. Today, even laptops
or desktop-computers contain dual- or quad-core processors (2 and 4 cores, respectively)
and computing nodes in compute clusters often contains even more cores. Therefore, it is
important for current software to be able to parallelize their computation on the cores to
efficiently use all available power of the central processing unit. Since the previous version
of HHsearch, the main HMM-HMM comparison and the realigning of the best matches by the
MAC-algorithm are already parallelized. For each available core a single thread is generated
and each of these threads performs the HMM-HMM comparison between the query HMM and
one database HMM. One master thread controls the loading of new data to each thread.
Here, it is important to lock the access to variables that are read and modified by several
threads, so that only one thread at a time can write into such a variable.
This parallelization by threads of the HMM-HMM comparison and the realignment step

is also used in HHblits. But for a fast runtime, the prefilter must also be parallelized on
the available cores additionally to the SSE2 parallelization. We used the OpenMP (Open
Multi-Processing) API which supports multi-platform shared memory multi-processing pro-
gramming of various programming languages such as C and C++. The API is managed by
a non-profit consortium defined by many hard- and software vendors. With OpenMP a
loop over the database sequences in the prefilter can simply be parallelized by adding the
following line before the loop:

#pragma omp parallel for schedule(static) private(score, thread_id)

With this, the loop iterations will be split up among different threads and can be executed
in parallel on the available cores. The private statement in the above code line defines
which variables should be private for each thread and do not influence the variable value
in other threads. The statement #pragma omp critical before a variable-assignment pre-
vents different threads from writing to the same variable at the same time. In summary,
the prefilter algorithm steps are parallelized on all available cores with OpenMP and on
each core they are in addition parallelized by the SSE2 instructions.

3.8. Compact database by FFINDEX

HHblits performs an HMM-HMM comparison between a query and a database HMM profile.
We therefore need to store HMMs for all database entries. In addition, if the user performs
more than one search iteration or if he is interested in the output alignment, A3M-alignment
files are needed for all entries. This means for the UniProt20 database that for a standard
HHblits run with more than one iteration we have to store over 5 million files on the disk.
This is a problem, since most filesystems cannot handle this amount of files in one directory
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and we have to split up all files in different sub-folders. In addition, the access time increases
with the number of single files in one directory. A first step to reduce this number of files
is to store HMM-files only for those alignments that consist of more than 50 sequences (see
section 3.2).
In a second step, Andreas Hauser in our group wrote a small helper tool FFINDEX. It

concatenates single files in one large database file, separated by null-characters, and creates
a so called index-file. This index-file stores for every single file contained in the large
database file its offset and length. With this information, each single file in the large one
can be accessed very fast. Using a binary search in the index-file, the access time for getting
the needed files out of the database is very fast with a guaranteed complexity of O(log(N)).
In addition, we save the disk space for the meta data for all single files. For generating
an HHblits database, a binary called FFINDEX_BUILD is provided with the HHblits package.
This binary reads all files in a directory or a list of files and generates one large database
file together with a sorted index.



4. Results

The performance of HHblits is analyzed in various approaches, which will be described in
this chapter. The first section includes benchmarks on the SCOP database that compare the
sensitivity, the alignment quality and the runtime of HHblits with the ones of the iterative
sequence search methods PSI-BLAST and HMMER3. This benchmark setup is also used
for parameter optimization on a special optimization dataset. Furthermore, the improved
quality of profiles generated by HHblits compared to those generated by buildali.pl is shown
and we compare HHblits with HHsearch. In the second section, we show that the prediction
of secondary structure with PSIPRED can be improved by using alignments generated by
HHblits.
The third section demonstrates the advantage of HHblits by predicting new structures

in Pfam families, for which until now no structure is known. For three of such cases we
give a detailed overview of our results and show how these predictions could help biologists
to elucidate the function of these proteins. Finally, we give an overview of our HHblits
webserver, which is integrated in our Bioinformatics Toolkit1 (Biegert et al., 2006).

4.1. Benchmarks

We evaluated the remote homology detection performance of HHblits and compared it to
other iterative homology detection methods, PSI-BLAST (version 2.2.24) (Altschul et al.,
1997) and HMMER3 (version 3.0 rc1) (Eddy, 2009). The benchmark dataset is derived from
SCOP 1.732 (Murzin et al., 1995), filtered to a maximum pairwise sequence identity of 20%
(SCOP20, 6616 domains). SCOP is a database of protein domains with known structure,
hierarchically ordered by class, fold, superfamily, and family (see figure 4.1). Following
a common procedure, we define all protein domains from the same fold as true positives
(TPs, homologs) and all domains from different folds as false positives (FPs, non-homologs).
Exceptions are the members of Rossman-like folds (c.2-c.5, c.27 and 28, c.30 and 31) and
the four- to eight-bladed β-propellers (b.66-b.70). Pairs from these groups of folds should
be treated as unknown.
We have to made sure that we never optimize any parameter on the proteins in the bench-

mark dataset, because ROCplot analyses are particularly prone to overtraining parameters

1http://toolkit.lmb.uni-muenchen.de/
2http://scop.mrc-lmb.cam.ac.uk/scop/

http://toolkit.lmb.uni-muenchen.de/
http://scop.mrc-lmb.cam.ac.uk/scop/
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Figure 4.1.: Hierarchical organization of the SCOP database consisting of protein domains with known
structure. The domains are hierarchically ordered from class (secondary structure composition) over
fold and superfamily down to the family level (close homologs). Domains from the same fold are
defined as true positives (red) and all pairs from different folds as false positives (blue). Exceptions
are the the members of Rossman-like folds and the four- to eight-bladed β-propellers, which should
be treated as unknown.

on the benchmark set, since the ROCplot depends on only a few tens or hundreds of high-
scoring false positives in the relevant range. Furthermore, training and test proteins must
not be too similar, since even for a maximum pairwise sequence identity of 25% between
training and test sequences, the profiles built from these sequences can be very similar. For
that purpose, we divide the SCOP20 dataset into an optimization set for parameter opti-
mization and a test set for evaluating the performance by assigning the domains of every
fifth fold in SCOP20 to the optimization set (1329 domains), the others to the test set (5287
domains). Because iterative search tools usually need large databases such as the UniProt
database to build diverse profiles or profile HMMs, all but the last search iteration are per-
formed against the UniProt database in the case of PSI-BLAST and HMMER3 and the profile
HMM UniProt20 database in the case of HHblits. The last search iteration uses a combined
database of the UniProt database and the SCOP set.
For HHblits, profile HMMs for all SCOP sequences are needed. But we could not use profile

HMMs built by several iterations of HHblits or buildali.pl, because these profiles would be
much more diverse than what is typical for UniProt20 clusters and this would lead to an
unfair advantage over the other methods. To simulate realistic searches in our benchmark,
our SCOP HMMs should represent realistic UniProt20 clusters of typical sizes. We therefore
assigned each SCOP sequence to the best matching cluster in the UniProt20 database. To
assign a SCOP sequence to a UniProt20 cluster, a BLAST search is performed with each
SCOP sequence against a consensus database of all UniProt20 clusters. If a UniProt20
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cluster match in this search has a sequence identity above 30% and a coverage with the
SCOP sequence above 90%, the SCOP sequence is added to this cluster alignment. Then, a
new HMM from the SCOP sequence and all sequences in this cluster is generated with the
match states defined by the SCOP sequence. If no UniProt20 cluster is found that fulfills
these requirements, a singleton cluster is created for the SCOP sequence.

4.1.1. Homology detection benchmark

We performed an all-against-all comparison of the test set domains with the three iterative
homology detection methods and show their performances by ROCplots (see Figure 4.2).
In a ROCplot (receiver operating characteristic plot) analysis the true and false positive
hits at different E-value thresholds are counted and the cumulative values are plotted. To
avoid a few large folds from dominating the benchmark, we weight each hit with 1/(number
of members in query SCOP fold). The fold-weighted FPs on the x-axis are shown in a
logarithmic scale to highlight the important region with low false discovery rates (FDR =
FP

FP+TP , see appendix A.3). In all search iterations, HHblits detects significantly more TPs
than PSI-BLAST and HMMER3. More precisely, HHblits detects twice as many TPs than
PSI-BLAST and 54% more TPs than HMMER3 at 1% FDR in the first iteration (Figure 4.2A).
At a 10% FDR, HHblits detects 112% more than PSI-BLAST and 68% more than HMMER3.
For an iterative search strategy the performance at this low FDRs is important, because
even a single non-homologous protein could corrupt the resulting profile. At a FDR of 10%,
even two iterations of HHblits detect significantly more true positives than PSI-BLAST with
three or even eight (data not shown) iterations and approximately the same number of TPs
than HMMER3 with 3 iterations (light dashed red line in figure 4.2C).

High-scoring false positives

We further analyzed the high-scoring false positive matches in the third iteration of the
previous benchmark to see, if we could identify a systematic error. HHblits has 90 false
positives with an E-value better than 10−3. But for many of them we could identify a
similar structure or function and it is doubtful if these are real false positives. For example,
10 of the highest-scoring false positives (the best one has an E-value of 10−33) are between
members of the SCOP families d.211.1.1 and a.118.24.1. These families are annotated as
Ankyrin and Pseudo-Ankyrin and the SCOP annotation for Pseudo-Ankyrin explains that
there are similarities in the repeat sequence and assembly with the ankyrin repeat. Another
big group of high-scoring false positives (15 matches with an E-value better than 10−3)
indicates a relationship between the SCOP families a.1.2.1 and d.58.1.5. The first family
belongs to the superfamily of alpha-helical ferredoxin and the other family is annotated
as Ferredoxin domains from multidomain proteins. The detailed annotation describes that
members of this family may be more closely related to other ferredoxins than to each other.
Further matches are between the SCOP families c.2.1.2 and c.72.3.1, the first one belongs to
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Figure 4.2: Homology detection sen-
sitivity of iterative search methods.
(A)-(C) show ROCplots for differ-
ent number of iterations (1, 2 and
3, respectively) on the SCOP20 test
set. All but the last search it-
eration are performed against the
UniProt to build a profile as input
for the last search iteration against
a combined database containing the
UniProt database and the SCOP20
dataset. TPs are defined as pairs
from the same SCOP fold, FPs as
pairs from different folds. At a false
discovery rate (FDR) of 10% HHblits
detects significantly more TPs than
the other methods, for example in
the first iteration twice as many as
PSI-BLAST and 68% more than HM-
MER3. In (C), the light red curve
shows the performance of 2 iterations
of HHblits and it demonstrates the
clear improvement to 3 iterations of
PSI-BLAST.

the large group of Rossmann-fold domains and the second one is annotated as combination
of the Rossmann-like and Ribokinase-like topologies.
The analysis of high-scoring false positive matches of the other methods shows that these

tools identify much more false positives with an E-value better than 10−3. HMMER3 has 1809
such false positives and 95 have an E-value better than 10−9. PSI-BLAST results more than
15900 false positive matches with an E-value better than 10−3, but only 32 with an E-value
better than 10−9. Some of these false positives belong to the same families mentioned
before. Many of the highest-scoring false positives in PSI-BLAST stand out, because these
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are matches between two different SCOP families located on the same protein (e. g., d1vgya2
and d1vgya1). Hence these false positive matches might be appear due to homologous over-
extension (Gonzalez and Pearson, 2010), where alignments of homologous domains extend
into neighboring non-homologous regions and unrelated information is included in the query
profile for the next iteration.

Roc5 benchmark

Figure 4.3B gives the ROC5 plot for this benchmark, which assesses how well a method
ranks the matched proteins within each search, thus E-values doesn’t need to be comparable
between searches. From the TP and FP hits at various E-value thresholds we can infer a
ROC5 score (∈ [0,1]) for each query. This score is defined as the area under the TP-versus-FP
ROC curve up to the fifth false positive hit, divided by the area under the optimal ROC curve
(see example in figure 4.3A). To assess the overall homology detection performance, we plot
the fraction of queries with ROC5 scores above a variable ROC threshold (∈ [0,1]). Again,
HHblits outperforms PSI-BLAST and HMMER3 in all search iterations. After two search
iterations, for example, HHblits achieves a ROC5 score above 0.2 for 38% of all queries,
whereas HMMER3 has 29% and PSI-BLAST only 27% of queries with a ROC5 score above 0.2.
For 20% of the queries, HHblits achieves a ROC5 score above 0.51, HMMER3 above 0.39 and
PSI-BLAST above 0.33.

4.1.2. Homology detection benchmark with multi-domain proteins

A common problem of iterative methods is homologous over-extension (Gonzalez and Pear-
son, 2010), where alignments of homologous domains extend into neighboring non-homologous
regions and unrelated information is included in the query profile for the next iterations,

Figure 4.3.: ROC5 benchmark of iterative search methods. (A) Example for the calculation of a
ROC5 score. This score is defined as the area under the TP-versus-FP ROC curve (gray hatched
area) up to the fifth false positive hit, divided by the area under the optimal ROC curve. (B) This
ROC5 plot shows the fraction of queries with an ROC5 value above the threshold on the x-axis. For
all iterations, the curve of HHblits dominates the curves of the other methods.
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Figure 4.4.: Homology detection benchmark on multi-domain proteins. True and false positives are
counted only if they cover the region of the SCOP domain in the query NR protein. (A) HHblits
detects significantly more TPs than PSI-BLAST and HMMER3 in the ROCplot, for example 67% more
TPs than PSI-BLAST and HMMER3 at 1% error rate in the first iteration. Due to the prefilter steps,
HHblits and HMMER3 detect only a small fraction of false positives and their curves end early. (B)
For all iterations in this ROC5 plot, HHblits clearly outperforms the other methods.

which will lead to high-scoring false positives in the next search iterations. To check for this
type of error, we have created a benchmark set of multi-domain proteins. This set consists
of proteins from the non-redundant (NR) database from NCBI3 that contain a SCOP domain
from our SCOP20 test set. The hit between the NR-sequence and the SCOP domain must
fulfill the following conditions: PSI-BLAST E-value better than 10−40, coverage of more
than 95%, sequence identity above 60% and the NR-sequence must contain at least 100
additional residues. Because of these additional residues the NR-sequence contains with a
high probability at least one further domain. This procedure leads to 2343 multi-domain
proteins from the NR.
We perform the same comparisons as in section 4.1.1 for all extracted multi-domain

proteins. We count TP and FP pairs only if the corresponding alignment covers the SCOP

domain in the query NR protein by at least 50 residues. The resulting ROCplot is shown in
figure 4.4A. Again, HHblits detects significantly more TPs in all search iterations compared
to PSI-BLAST and HMMER3. In detail, HHblits detects 67% more TPs than PSI-BLAST and
HMMER3 at 1% FDR in the first iteration and 77% more at 10% FDR. A similar performance
is shown in the ROC5 plot in figure 4.4B. Again, HHblits outperforms PSI-BLAST and HMMER3

in all search iterations.

4.1.3. Alignment quality

In another benchmark, we evaluated the alignment quality for the iterative homology de-
tection methods. We compared the predicted sequence alignments between SCOP domains
with a gold standard structural alignment generated by TM-ALIGN (Zhang and Skolnick,

3http://www.ncbi.nlm.nih.gov/

http://www.ncbi.nlm.nih.gov/
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2005). To create a benchmark data set, we randomly picked up to 10 domain pairs from
each family in SCOP 1.73, requiring a maximum sequence identity of 30% and a minimum
TM-SCORE of 0.6 when aligning the sequences with TM-ALIGN. The latter criterion ensures
that the proteins have a similar structure and a high-confidence structural alignment. The
resulting set consists of 5904 domain pairs from 2895 different domains. For each of these
2895 protein domains we performed 2 search iterations against the UniProt to build a
profile, and a last iteration against a database containing all proteins belonging to the
same family as the query domain. The alignment quality for those pairs with a structural
reference alignment is assessed by 2 standard performance measures: Alignment sensitiv-
ity is the fraction of structurally aligned residues pairs that are correctly predicted (pairs
correctly aligned/pairs structurally alignable). Alignment precision is defined as the frac-
tion of aligned residues pairs in the predicted alignment that are correct (pairs correctly
aligned/pairs aligned).
Figure 4.5A shows the average residue-based sensitivity and precision of the created

alignments. In HHblits a special parameter (mact) allows to choose the trade-off between
sensitivity and precision (see section 3.6). With the default value for mact (0.5), HHblits
alignments have an increased precision of 15% compared to HMMER3 at a slightly better
sensitivity, the precision and sensitivity compared to PSI-BLAST alignments could be in-
creased by 26% and 25%, respectively. The additional use of predicted secondary structure
in HHblits further increases the alignment quality (dark red curve). In all other benchmarks
we do not use predicted secondary structure, since this would be an unfair advantage to the
other methods which did not use this information. The alignment sensitivity and precision
for various sequence identity bins is given in Figure 4.5B. HHblits outperforms PSI-BLAST

and HMMER3 both in sensitivity and precision over the entire range of sequence identities,
especially for the difficult alignments with a sequence identity below 20%.

4.1.4. Runtime

An important consideration when deciding between alternative software packages such as
PSI-BLAST and HHblits is the runtime requirement of the program. Our goal was to have
a runtime similar to the widely used PSI-BLAST method, in order to have all arguments for
switching to our new method on our side. Therefore, we measured the runtimes of the three
iterative homology detection methods for various number of iterations.
The test set for this benchmark was generated by randomly picking 100 proteins from the

NCBI NR (non-redundant) database. This set has an average length of 354 residues, the
shortest sequence has 30 and the longest 2102 residues (see length distribution in appendix
A.1). For all sequences in the test set a homology search is performed against the UniProt
database with the default parameters of each program. Every run is performed without
multi-threading on a Intel Xeon X5570 processor with 2.93GHz and 24GB RAM. To reduce
the influence of the computer network, all data was initially copied to a local disk. All runs



4.1 Benchmarks 50

Figure 4.5.: Alignment quality of remote homology detection methods. (A) Average alignment
residue-based sensitivity and precision for the iterative search methods compared with a gold-
standard structural alignment generated by TM-ALIGN. HHblits generates alignments with a sig-
nificant better quality than the other detection methods and in addition, the trade-off between
sensitivity and precision can be chosen in HHblits with the mact-parameter. (B) Alignment sensitiv-
ity and precision for various sequence identity bins. HHblits outperforms PSI-BLAST and HMMER3
in both measurements, especially in the difficult alignments with a sequence identity below 20%.
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Figure 4.6.: (A) Average and (B) median runtimes of the homology detection methods for random
proteins. The runtime is computed on 100 random protein sequences from the NCBI NR database
with default parameters for each method. HHblits is slightly faster than PSI-BLAST, HMMER3 shows
a significantly longer runtime.

are repeated 3 times and the average runtime is calculated.
Figure 4.6 shows the average and median runtimes for the three homology detection

methods for 1, 2, 3, and 4 iterations, respectively. The average runtime of HHblits is slightly
better than the one of PSI-BLAST for all numbers of iterations. One has to keep in mind
that the sensitivity of 2 iterations of HHblits significantly outperforms the sensitivity of 8
PSI-BLAST iterations, so the HHblits runtime for similar results is clearly better. HMMER3

shows for all iterations a significantly longer runtime by a factor 3 to 5. In the case of
median runtimes, the differences between HHblits and PSI-BLAST are even bigger.
Additional runtime measurements are shown in figure 4.7. Here we check the influence

of the query length on the runtime ((A) - (D) for different numbers of iterations) and the
scaling of the runtime when using multi-threading on multi-core processors ((E) and (F)).
HHblits has a very good runtime for queries with a sequence length below 400 residues and
clearly outperforms PSI-BLAST in this range of query lengths ((A)-(D)). This range covers
more than 73% of all sequences (see length distributions in appendix A.1). In the range of
400 to 800 residues both methods have a similar runtime and only for proteins with a length
> 800 residues the runtime of HHblits is slightly worse than that of PSI-BLAST. HMMER3

scales in a similar way as HHblits with the query length, always by a factor 3 to 5 slower.
Figure 4.7E gives the runtimes of 2 iterations against the UniProt database when various
numbers of CPUs are used. The same results are shown in figure 4.7F, but this time, the
total CPU time is given on the y-axis. The total CPU time is calculated by multiplying the
real runtime with the number of used CPUs. PSI-BLAST scales very well with the number of
CPUs, the total CPU time is nearly the same for all number of CPUs. The scaling of HHblits
and HMMER3 is a little bit worse, especially when using more than 4 CPUs. For HHblits the
reason is that some code parts of our implementation are still single-threaded, but we are
planning to parallelize these parts (see outlook in section 5).
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Figure 4.7.: (A)-(D) Runtime dependency of the benchmarked methods on the query length for 1, 2,
3 and 4 iterations, respectively. HHblits has a very good runtime for queries with a sequence length
below 400 residues and clearly outperforms PSI-BLAST in this range of query lengths. In the range of
400 to 800 residues both methods have a similar runtime and only for proteins with a length > 800
residues the runtime of HHblits is slightly worse to that of PSI-BLAST. HMMER3 scales in a similar
way as HHblits with the query length, always by a factor 3 to 5 slower. (E)-(F) Runtime dependency
for 2 iterations on the used number of CPUs. (E) shows the real runtime, whereas (F) gives the total
CPU time of the runs. The total CPU time is defined as the real runtime times the number of CPUs.
PSI-BLAST scales very well with the number of CPUs, the total CPU time is nearly the same for all
number of CPUs. The scaling of HHblits and HMMER3 is a little bit worse, especially when using
more than 4 CPUs.
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4.1.5. Quality of E-values

Another critical aspect for homology detection methods is the reliability of the reported
P -values and E-values. The E-value of a match is an estimate of the number of chance hits
to be expected with a score better than that of the database match. It can be calculated
from the P -value, which is the probability to obtain a chance hit with score ≥ S, by the
following formula: E = NDBP × (Epre/NDB)α (for details see section 3.5). α is defined as
α = 0.4 + 0.02× (NeffT − 1)× (1− 0.1× (NeffQ− 1)). The three coefficients were optimized
by testing several combinations and choosing the best performing one.
The database for this benchmark is generated from the NCBINR (non-redundant) database

by reversing all sequences in this database and shuffling the residues in each sequence. For
the HHblits NR20 database we reverse and shuffle the alignment columns instead of the sin-
gle residues in the sequences. As query set we take 20 000 random sequences from the NR.
Because of the reversed and shuffled database there should be no homologous pairs between

Figure 4.8.: E-value quality of HHblits and PSI-BLAST. The number of chance matches in a search
with random NR proteins against a database of shuffled sequences is used to derive the observed
E-value for each reported one. The light colored curves show the results of a default search with
HHblits (red) and PSI-BLAST (blue). Both curves indicate reliable E-values, the ones of PSI-BLAST
are slightly too pessimistic by a factor of ∼ 2. The dark colored curves demonstrate the E-value
quality when starting the searches with a query alignment instead of a single query sequence. HHblits
(dark red) again produce reliable E-values, whereas the PSI-BLAST E-values (dark blue) are way too
optimistic, i. e., a reported E-value of 10−3 corresponds to an observe one of 0.6.
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any query sequence and a database sequence and so any match between two sequences corre-
sponds to a chance hit. We perform a search with each sequence in the query set and count
the number of matches at a given (reported) E-value threshold, which, together with the
size of our query set, allows us to derive the observed E-value. Figure 4.8 plots the observed
against the reported E-value of HHblits and PSI-BLAST. Desirable is a curve near the main
diagonal, which means that the reported E-values are nearly identical to the observed ones.
The curves in light colors show the results for a standard HHblits (red) or PSI-BLAST (blue)
run started with a single sequence. The reported E-values of HHblits are nearly identical
to the observed ones, only near an E-value of 10−4 the reported E-value is a little bit too
pessimistic. The observed E-values of PSI-BLAST are slightly too pessimistic by a factor of
∼ 2, i. e., an observed E-value of 10−2 corresponds to an reported E-value of 2× 10−2.
We are also interested if the E-value quality changes in later iterations when the input

is not a single sequence but a sequence alignment instead. Therefore, we generate sequence
alignments for all sequences in the query set by running 2 iterations HHblits and perform
the benchmark with these alignments as input. The results are shown as dark colored
lines in figure 4.8. The curve of HHblits (dark red) indicates again a good E-value quality,
the reported E-values are nearly identical with the observed ones. But the results of the
PSI-BLAST run (dark blue curve) show a significant difference. These E-values are way too
optimistic, i. e., a reported E-value of 10−3 corresponds to an observed one of 0.6. This
seems to be related to an internal low-complexity filter in PSI-BLAST that is deactivated
when starting with a profile instead of a sequence. If we, for example, perform 2 iterations
PSI-BLAST with a query protein that contains a low-complexity region against a database
of shuffled sequences, we get in the first iteration no results below the E-value threshold.
But in the second iteration, we get many false positive matches with good E-values due to
the low-complexity region, although the input profile still consists of only one sequence.

4.1.6. Comparison of HHblits to HHsearch

HHblits is the iterative version of the HMM-HMM comparison method HHsearch. When per-
forming only 1 search iteration of HHblits, the only difference to HHsearch is the prefiltering
of the database. In order to check the loss of sensitivity through the prefilter, we perform
an all-against-all search on SCOP profiles with HHsearch and HHblits with the same options.
The SCOP profiles were generated by buildali.pl with default options. Figure 4.9 shows the
ROCplot of this benchmark. Both methods perform very similarly, they detect the same
amount of TPs at a FDR of 1%. Only at a FDR of 10%, the sensitivity of HHsearch is slightly
better by ∼ 1.5%. But in return the runtime of HHblits is shorter by a factor of ∼ 20 on a
single CPU for this test set.
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Figure 4.9.: Performance comparison of HHblits and HHsearch. Both methods are benchmarked
with the same parameters (HHblits only 1 iteration), so the only difference is the prefilter step of
HHblits. Both methods show a very similar performance, at a FDR of 10% the sensitivity of HHsearch
is only slightly better (∼ 1.5%). But in return, the prefilter of HHblits makes sure that the runtime
is significant shorter.

4.1.7. Comparison of profiles built by HHblits or buildali.pl

Important for the performance of HMM comparison methods is the quality of the input profile
HMMs. A corrupted profile that contains information from non-homologous sequences will
lead to high-scoring false positives. An input profile with a low diversity on the other hand
may contain too little information to identify very remote homologs. Up to now, HHsearch
uses the buildali.pl script to generate the profile HMMs for the query sequence and for all
database sequences. buildali.pl performs up to 8 iterations of PSI-BLAST and in addition to
a simple PSI-BLAST search, it runs an edge-pruning algorithm to reduce the risk of corrupted
alignments by homologous over-extension. This can occur in multi-domain proteins by a
homologous match which is extended into a non-homologous region.
Here, we check the performance of HHsearch with profiles built by HHblits and by build-

ali.pl with their default parameters. We generate different sets of profile HMMs for each
sequence in our SCOP20 benchmark set. These sets consist of 1 and 3 iterations of HHblits
and of 1, 3 and 8 iterations of buildali.pl. As database we use the sets with the most diverse
profile HMMs, that means, for HHblits the set with 3 iterations and for buildali.pl the set
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with 8 iterations. We perform an HHsearch run on all generated sets with their correspond-
ing database. To check the influence of the profile HMM only on the query side, we also run
HHsearch with the HHblits profile HMMs on the query side and the buildali.pl database.
Figure 4.10 shows the HHsearch performance with the different profile HMMs. In all cases

the profiles generated by a higher number of iterations lead to a higher sensitivity at a
FDR of 10%. The profiles built by HHblits increase the sensitivity of HHsearch significantly
compared to the profiles built by buildali.pl. In more detail, HHsearch detects 45% more
TPs at a FDR of 1% when using profiles built by 3 iterations HHblits compared to them built
with 3 iterations buildali.pl, 17% more at a FDR of 10%. Further iterations of buildali.pl
(dotted blue line for 8 iterations) gives only very little impact. When using HHblits profiles
only on the query side (orange curves), the improvement of HHsearch is about the half of
the improvement when using HHblits profiles on both sides.

Figure 4.10.: HHsearch performance with different profile HMMs as input. The red curves demon-
strate the performance, when the query profiles are built with 1 (solid) or 3 (dashed) iterations of
HHblits. The database in these cases contains the 3 iteration profiles. In blue, the performance for
using buildali.pl profiles is shown. Here, the database contains the profiles from 8 iterations build-
ali.pl. For the orange curves, we use HHblits profiles on the query side, but the database contains
the profiles from 8 iterations buildali.pl. The HHsearch sensitivity is clearly increased when using
HHblits profiles.
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Using HHblits profiles for comparative modelling

The quality of the input profiles is not only important for the sensitivity of HHsearch, it is
also important for the quality of homology models generated with HHsearch and MODELLER

(Sali and Blundell, 1993). Therefore, we used our SCOP benchmark set from the alignment
quality benchmark (see section 4.1.3) with 2895 protein domains. We generate a profile set
with 8 iterations buildali.pl, and with 3 iterations HHblits with a mact of 0.5 and 0.35. On
these three test sets, we run our CASP pipeline to build homology models (Hildebrand et al.,
2009). The generated models are compared with the original structures and the TM-SCORE

(Zhang and Skolnick, 2004) is calculated for each pair. This score indicates the difference
between two structures by a score between (0,1], where 1 indicates a perfect match.
The results are given in table 4.1. The models generated with HHblits profiles outperform

the models built with buildali.pl profiles for nearly all sequence identity ranges by ∼ 1.4%.
The best models are generated when using more specific profiles created with a higher
mact-value, but the differences are rather low.

4.1.8. UniProt20 versus NR20 database

We are interested in the influence of the protein database on the performance of HHblits.
There are two widely used databases which cover the whole protein sequence space. One is
the NR (non-redundant) database from the NCBI 4 with 14 605 097 sequences in the actual
version (August 12, 2011), the other database is the UniProt (Universal Protein Resource)
database 5 with 14 423 061 sequences (March 29, 2011). The length distribution of these
databases is given in appendix A.1. The UniProt database consists of two sections, the
Swiss-Prot DB, which is manually annotated and reviewed (∼ 500 000 sequences), and
the automatically annotated TrEMBL database. We cluster both databases down to a
maximum pairwise sequence identity of ∼ 20% and generate the database files for HHblits.
Figure 4.11 shows the results for different iterations of both databases when searching with

4http://www.ncbi.nlm.nih.gov/
5http://www.uniprot.org/

Table 4.1.: Quality of structural models based on profiles generated by 8 iterations of buildali.pl and
3 iterations of HHblits. The quality is measured as TM-SCORE between the structural model and the
original structure.

Sequence ID range BUILDALI.PL HHblits mact 0.35 HHblits mact 0.5

< 10% 0.532836 0.546671 0.542546
10% - 15% 0.583984 0.592679 0.593901
15% - 20% 0.635397 0.643247 0.644214
20% - 25% 0.660866 0.669225 0.670757
25% - 30% 0.681375 0.682534 0.684878
total 0.623852 0.631827 0.632812

http://www.ncbi.nlm.nih.gov/
http://www.uniprot.org/
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Figure 4.11.: Performance of HHblits when using the cluster version NR20 of the NR database
from NCBI or the UniProt20 database. In all search runs, we perform the last iteration against a
combination of the given database and the SCOP20 test set. Both databases perform very similarly
with only a small advantage for the UniProt database.

all queries in the SCOP20 test set. In all cases, the database for the last search iteration
is combined with the SCOP20 test set to obtain true and false positive hits. Like in the
other benchmarks shown before, the true and false positive matches are weighted by the
fold-size of the query fold to avoid a few large folds from dominating the benchmark. Both
databases perform very similar for all number of search iterations. We see only a very small
increase when using the UniProt database. For the final release of HHblits we decided to
use the UniProt database as default database because of the good manual annotation of
the Swiss-Prot entries.

4.1.9. Using HMMER3-formatted databases

Some databases in the bioinformatics field are available as HMMER2- or HMMER3-formatted
databases only, without the multiple sequence alignments that gave rise to the HMMs. An
example of such a database is the CATH database6, a hierarchical domain classification of
protein structures in the PDB. HHblits can read profile HMMs in HMMER3 format, but we
also have to generate a prefilter database of column state sequences. This means that we
have to built a column state sequence from an HMMER3 profile HMM. A problem with
HMMER3 profile HMMs is that these profiles already contains pseudocounts.

6http://www.cathdb.info/

http://www.cathdb.info/
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Figure 4.12.: HHblits performance with a database based on HMMER3 profiles. (A) The column state
database for the prefilter step is built from A3M alignments (black curve) or from mixtures of the
HMMER3 profiles and the corresponding original database sequences. A factor indicates the ratio of
the HMMER3 profile to the original sequence, i. e., a factor of 1 means that the HMMER3 profile and
the original sequence are used in a ratio of 50/50 and a factor of 2 corresponds to a ratio of 66/33.
4 different factors are checked, each one time with additional pseudocounts and one time without.
The best performance is reached with a column state database generated from A3M-alignments. (B)
The performance of HHblits decreases significantly when using HMMER3 profiles on both the query
and the database side.

Figure 4.12A demonstrates the performance of HHblits with HMMER3 profile HMMs of
a SCOP25 test set. The HMMER3 profile HMMs were generated with HMMBUILD from the
SCOP25 A3M-alignments. The difference between the curves is the method how the column
state sequences are generated. The best way to generate these sequences is to use A3M-
alignments (black curve), if they are available. The other curves show the cases, where for
each database entry a temporary alignment is built from the original database sequence
and the corresponding HMMER3 profile HMM in different ratios and this alignment is used
to generate the column state sequence. A factor indicates the ratio of the HMMER3 profile
to the original sequence, i. e., a factor of 1 means that the HMMER3 profile and the original
sequence are used in a ratio of 50/50 and a factor of 2 corresponds to a ratio of 66/33. We
have checked 4 different factors (0.5, 1, 2, 1000) and for each factor, we built the column
state database in one case with additional pseudocounts, in another case without. A factor
of 1000 and no additional pseudocounts gives the best results of these cases (dark red curves).
This means that the best way is to use mainly the HMMER3 profile. Additional pseudocounts
are counterproductive, because the HMMER3 profile already contains pseudocounts.
In another benchmark we compare the performance of HHblits with HMMER3 profiles

compared to HHblits profiles. We used SCOP25 A3M alignments and generated HMMER3

profiles with HMMBUILD and HHblits profiles with HHmake. The column state database is
generated by using the A3M alignments. Figure 4.12B shows the performance of HHblits
when using different combinations of these profile sets. The use of HMMER3 profiles on
the database side leads to a significantly decreased sensitivity of HHblits. The sensitivity
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decreases by 11% at a FDR of 10%. This effect is even more drastic when using HMMER3

profiles on both the query and the database side (blue curve). Here, the sensitivity of
HHblits drops by 24% at a FDR of 10%. In summary, whenever possible HHblits formatted
HMMs should be used instead of HMMER3-formatted files.

4.1.10. Prefilter parameters

The prefiltering step in HHblits is crucial for the performance. Too strict prefiltering would
lead to a decreased sensitivity, while on the other side too lax prefiltering would increase
the runtime. As described in section 3.3, we cannot use a normal profile-profile alignment
algorithm due to its slow runtime. Here, we compare the performance of using a prefilter
based on consensus sequences and prefilters based on column state sequences. All these
prefilters have a similar runtime.
Figure 4.13 gives the results of this benchmark for 1 and 2 iterations of HHblits. The

prefilters based on column state sequences (red and green) clearly outperform the prefilter
approach based on consensus sequences. For 2 iterations there is an improvement in sensi-
tivity of more than 20% at a FDR of 10%. When increasing the number of column states
from 62 (green) to 219 (red) states, we obtain a further slight improvement.
Furthermore, we are interested in the sensitivity of our fast prefilter algorithms (see sec-

tions 3.3.5-3.3.8) without downstream HMM-HMM comparison. We perform an all-against-all

Figure 4.13.: Improvement of HHblits performance when using a column state database for prefilter-
ing. Column states improve the sensitivity of 1 and 2 iterations HHblits compared to the prefiltering
based on consensus sequences (blue). Extending the number of column states from 62 (green) to
219 (red) states gains a slightly further improvement.
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Figure 4.14.: Performance of different prefilter algorithms. The Smith-Waterman algorithm (red
curve) shows a significant improvement over the heuristic method PSI-BLAST (orange). The un-
gapped alignment approach (blue) has a poor sensitivity for the best soring FPs, but for higher
numbers of FPs it reaches the same sensitivity as the SW algorithm. The blue dot shows roughly
the point of the score threshold for the ungapped alignment filter.

benchmark on the SCOP20 optimization set with only the prefilter algorithms and create
the ROCplot shown in figure 4.14. As expected, the Smith-Waterman algorithm (red curve)
shows a significant improvement over the heuristic method PSI-BLAST (orange). The un-
gapped alignment approach (blue) has a poor sensitivity for the best scoring false positives,
but for higher numbers of FPs it reaches the same sensitivity as the SW algorithm. Because
of that, the ungapped alignment is a good choice for the first prefilter step, because it is
very fast and filters out many FPs, but it is not specific enough. This specificity comes with
the second filter step with the SW algorithm.

4.1.11. Parameter optimization

Our iterative HMM-HMM comparison method HHblits consists of various parameters which
need to be optimized for an optimal performance. In the following, we describe the choice
of some of these parameters. The optimizations are performed on the small SCOP20 opti-
mization set (1329 protein domains) that is distinct from the comprehensive test set (5287
domains) with no optimization set member sharing a common fold with any test set mem-
ber.

HHblits contains several adjustable parameters: an inclusion E-value threshold e that
defines up to which E-value matches will be merged to the query profile for the next iteration,
parameters for the pseudocount admixture (pca and pcb), and an threshold neffmax for
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skipping further iterations of HHblits when the evolved query profile HMM has a diversity
(Neff, see appendix A.2) above this threshold. These parameters are optimized on the
SCOP20 optimization set with 1329 protein domains. For a given parameter configuration,
we perform an all-against-all comparison of the protein domains and count the true positive
(TP) and false positive (FP) hits at various E-value thresholds. Based of these data a ROC5
score (∈ [0,1]) could be calculated for each query (see section 4.1.1). The mean ROC5 score
conveniently captures the homology detection performance in a single value and is therefore
used as performance index in the parameter optimization. Optimization results by mean
ROC5 scores proved to be more robust and less noisy than results obtained by optimizing
the overall sensitivity at a given FDR rate.
An optimization script tries to optimize each parameter by generating the ROC5 scores for

different parameter values. If more than one parameter corresponds to a similar property of
HHblits, the values of these parameters may influence each other, e. g., the parameters pca
and pcb for the pseudocount admixture. In such cases, the parameter values are optimized
in turns in a circular order. The optimization runs reveal that parameter settings e = 0.001,
pca = 1, pcb = 1.5, and neffmax = 10 gives the best mean ROC5 values. The default values
of the most important parameters can be found in the userguide (appendix D.6.2), a full
list can be retrieved by starting HHblits on the command line with the parameter “-h all”.
A number of parameters increases the performance of HHblits with increasing parameter

values, but on the other hand increases the runtime. Examples are all prefilter thresholds.
These parameters are optimized by finding a good balance between sensitivity and runtime.

4.1.12. Things that did not work

In some cases our ideas to improve the performance of HHblits were not successful. We tried
to replace the KALIGN alignment software, which is used to generate alignments for the
clusters of our database, with a new extension of the CLUSTAL alignment software (Higgins
and Sharp, 1988), called CLUSTAL OMEGA (Sievers et al., 2011). But this replacement gave
no performance improvement.
Another idea was to improve the alignment quality by using a higher secondary structure

score weight in the MAC realignment. The realignment is only performed for the best hits
of the Viterbi search and so we would expect mainly homologous sequences in this step.
We thought that the alignment quality of two homologous sequences could be improved by
increasing the score of aligning secondary structure elements. But also in this case we did
not see any significant improvement with respect to the default case.
Lucia Puchbauer has tried in her bachelor thesis to improve the performance of HHblits

by using network-based information in the database. The idea is that if a query protein has
many highly ranked matches to related protein domains, i. e., belonging to a single family
in SCOP, this gives support to the predicted homology of the query protein with this family
and makes it less likely that all these matches are chance hits. A few methods exists that use



4.2 Improved PSIPRED secondary structure prediction with HHblits profiles 63

the similarity among the database proteins to exploit the idea that similar matches support
each other (Melvin et al., 2009; Noble et al., 2005; Weston et al., 2006), but they have some
drawbacks, i. e., they cannot produce statistical significance estimates such as E-values. Our
implementation of this idea calculates a new network-based E-value based on a transitive
scoring algorithm and re-rank all HHblits matches by this new E-value - for more details
see the bachelor thesis of Lucia Puchbauer. But unfortunately we obtained only a slightly
increased sensitivity in HHblits and because of the needed additional precalculations of the
database this method is not included in the standard HHblits method.

4.2. Improved PSIPRED secondary structure prediction with
HHblits profiles

Multiple sequence alignments are the basis for most bioinformatic analyses of proteins,
such as the prediction of secondary structure, solvent accessibility, transmembrane regions
or protein-protein interactions. Furthermore, these multiple sequence alignments can be
used to generate a 3-dimensional structure models by homology modeling. Important for
all these predictions and analyses is the quality of the sequence alignment used.
In this section, we compare the quality of alignments generated by HHblits with alignments

built by the state-of-the-art method PSI-BLAST. As prediction method we use PSIPRED

(Jones, 1999), the most widely used tool for the prediction of secondary structure. PSIPRED

uses a two-stage neural network to predict protein secondary structure based on the profile
information from the given alignment. Even though this method is more than 10 years old,
there has been no significant improvements in the prediction of secondary structure in the
last years (Aydin et al., 2011). One possible way to improve these predictions might be
achieved by increasing the quality of the input alignments.
We benchmarked the performance of PSIPRED with different input alignments generated

Table 4.2.: Quality of secondary structure prediction with PSIPRED on different input alignments.
The best results are achieved with HHblits alignments filtered to a diversity of 7.

Input alignment SOV Q3

2 iterations PSI-BLAST 74.64% 77.31%
3 iterations PSI-BLAST (PSIPRED default) 77.52% 80.38%
1 iteration HHblits 77.87% 80.71%
2 iterations HHblits 78.31% 80.99%
3 iterations HHblits 78.12% 80.83%
HHblits diversity 4 77.42% 80.20%
HHblits diversity 5 78.26% 81.05%
HHblits diversity 6 78.51% 81.29%
HHblits diversity 7 78.62% 81.31%
HHblits diversity 8 78.49% 81.17%
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by PSI-BLAST and HHblits. The benchmark dataset is a selection of representative PDB

chains generated with PDBselect (Griep and Hobohm, 2010) 2007. It contains 3649 se-
quences ranging from 30 to 1040 amino acids. Based on this dataset, we generated different
sets of input alignments for PSIPRED: 2 and 3 iterations PSI-BLAST, the latter one is the
default case of PSIPRED, and 1, 2 and 3 iterations of HHblits. In addition, we created 5 sets
of HHblits alignments with a fixed diversity (effective number of sequences, see appendix
A.2) by filtering the HHblits alignments with the HHfilter method using the option -neff.
For all alignments, we run PSIPRED with the default parameters and calculate the SOV and
Q3 scores. The SOV (Segment OVerlap) score (defined by Rost et al. (1994)) measures
the overlap between the observed and the predicted secondary structure segments. The Q3
score gives the overall per-residue identity in the three predicted states (helix, strand, loop).
The results of this benchmark are shown in Table 4.2. Alignments built with 3 iterations

of PSI-BLAST (PSIPRED default case) achieve a SOV score of 77.52% and a Q3 score of 80.38%.
Even with alignments built with one iteration of HHblits we obtain a better performance
of PSIPRED (SOV 77.87%, Q3 80.71%) and with 2 iterations we see a clear improvement
with a SOV score of 78.31% and a Q3 score of 80.99%. The best performance can be
achieved by filtering the HHblits alignments to an effective number of sequences of 7. In
this case, the performance of PSIPRED can be increased by more than 1% up to a SOV score
of 78.62% and a Q3 score of 81.31% by simply using better input alignments. One has to
keep in mind that the neural network of PSIPRED is trained with alignments generated by
PSI-BLAST. Hence there might be further space for improvements by retraining this network
with HHblits alignments. We have integrated the prediction of secondary structure in the
perl-script ADDSS.pl. This script filters the HHblits alignments to a diversity of 7, predicts
the secondary structure with PSIPRED and writes this prediction as an annotation line into
the A3M-formatted alignment file.

4.3. Structure prediction for selected Pfam domains

Pfam is a database of protein domain families with multiple sequence alignments and HM-

MER3 profiles for each family (Sonnhammer et al., 1997). It can be used to identify possible
domains of new protein sequences. The Pfam database consists of two parts: PfamA is a
manually annotated database containing sequences from the UniProt database. For each
PfamA family there exists a seed alignment, which is a small set of representative sequences
for this family that was manually created. PfamB consists of automatically generated fam-
ilies with no annotation or literature reference. Some PfamA families are grouped together
into clans. A clan is a collection of protein families for which there is bioinformatic evidence
that they have a common evolutionary origin. Clans are built by a similarity in tertiary
structure or, in the absence of a structure, by a related function, by a significant match of
the same sequence to HMMs from different families, or by profile-profile comparisons such
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as PRC or HHsearch (Finn et al., 2006).
The actual version of Pfam (version 24.0) contains 11913 families in the PfamA database.

For nearly half of them (6785) no tertiary structure is known. If we further exclude all
families which are part of a clan with a known 3D structure, we end up with 5716 families,
for which the tertiary structure cannot be inferred by homology. The identification of
homologous structures and the generation of comparative 3D models for these families
would allow biologist to elucidate the function of these protein families.

We used HHblits and HMMER3 to scan the PDB70 database (PDB from August 24, 2010,
filtered to 70% maximum pairwise sequence identity) with these 5716 protein families and
to identify new homologies. In the case of HHblits we used the seed-alignments of the Pfam
families and created profile HMMs with 2 iterations of HHblits. These profile HMMs are then
used for the final search against the PDB70 database. For HMMER3, we used the provided
HMMER3 profiles from the Pfam FTP-server and performed a final search against the PDB70
sequence database. The results when using an E-value cutoff of 10−3 are shown in figure
4.15. HHblits is able to identify new homologies for 621 Pfam families (∼ 11%). For 227
families out of these, HMMER3 is also able to find a homolog, but for the other 394 families
(see list in appendix C) HMMER3 could not identify a homolog protein structure with an
E-value better than 10−3 and for 176 families out of these HMMER3 has no matched protein
structure up to an E-value of 10. On the other hand HMMER3 could identify homologies
for 44 Pfam families with an E-value better than 10−3 where HHblits has no matches up to
this E-value cutoff. In the following subsections we present the details of three cases where
HMMER3 has no matches and HHblits identifies a clear homology and a structural model
could be generated.

4.3.1. CTK3 - a possible new CID

The synthesis of new proteins starts with the transcription of the genomes to mRNA (mes-
senger RNA) by RNA polymerase (pol) II. Pol II contains a special C-terminal domain
(CTD) which consists of up to 52 repeats of the sequence YSPTSPS (Tyr1-Ser2-Pro3-Thr4-

Figure 4.15: Identification of new homologous
structures for Pfam families by HHblits and HM-
MER3. For 5716 families in the PfamA (version
24.0) there exists no structure information. Using
an E-value cutoff of 10−3 HHblits is able to iden-
tify a homologous structure in about 11% of these
cases. In two third of the families with HHblits
matches, HMMER3 could not find a homologous
structure. On the other hand, in a further 1%
HMMER3 detects a homology where HHblits has
no matches up to the E-value threshold.
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Ser5-Pro6-Ser7) (Corden, 1990). Ser2, Ser5, and Ser7 are dynamically phosphorylated and
dephosphorylated during the transcription cycle by special kinases. This phosphorylation
pattern controls the co-transcriptional assembly of different transcription initiation, elon-
gation and termination factors, as well as RNA processing factors. The different CTD
phosphorylation modifications can be recognized by special peptide binding domains, the
so called CTD-interacting domains (CIDs). Currently, three proteins containing a CID are
known in yeast: (1) Nrd1 preferentially binds to CTD phosphorylated at Ser5 (Vasiljeva
et al., 2008), but a strong correlation between Nrd1 and CTD phosphorylated at Ser7 was
also found (Kim et al., 2010). (2) Pcf11 and (3) Rtt103 both binds to Ser2-phosphorylated
CTDs (Kim et al., 2010; Meinhart and Cramer, 2004), but they show differences in the
affinities for different phosphorylated diheptad repeat CTD peptides (Lunde et al., 2010).
The main CTD Ser2 kinase in yeast is Ctk1 (Jones et al., 2004). This kinase is part of

the protein kinase complex CTDK-I, which is composed of three subunits of 58, 28, and
32 kDa (Hautbergue and Goguel, 2001; Sterner et al., 1995). Ctk1 is the largest subunit
of this complex and it is important in vivo for normal growth and differentiation. Ctk1
deletion results in an increase in phosphorylation of CTD Ser5 and eliminates the transient
increase in CTD Ser2 (Hautbergue and Goguel, 2001). Ctk2 is a cyclin-related protein with
homology to cyclin C. However, Ctk3 does not exhibit any similarity to other proteins. It is
an unstable protein with a relative short half-life (30min) (Hautbergue and Goguel, 2001),
which is processed through a ubiquitin-proteasome pathway. But both Ctk2 and Ctk3 are
required for Ctk1 kinase activation.

PSI-BLAST and HMMER3 are not able to identify any proteins homologous to Ctk3, but in
an HHblits search the best three matches are the other known CIDs Rtt103, Pcf11, and Nrd1
with probabilities of 98%, 94%, and 93%, respectively. The matched alignment covers the
whole CID, whereat the alignment confidence values (see section 3.6 and appendix B) for
the last helix are relative small. Figure 4.16 shows the structures of the three known CIDs
Rtt103 (PDB-ID 2L0I), Pcf11 (PDB-ID 1SZ9), Nrd1 (PDB-ID 3CLJ) and the structural
model of Ctk3. Rtt103 is shown with a Ser2 phosphorylated CTD peptide (magenta). The
Ctk3 model was generated with the MODELLER software (Sali and Blundell, 1993) based on
the alignment between Ctk3 and the known CIDs given by HHblits. It is colored according
to the posterior probabilities of each aligned column in the HHblits alignment with Rtt103
where the color indicates the alignment quality from red (highly confidence) to blue (low
confidence). We see a high conservation in the first five helices of this domain, whereas
the model of Ctk3 has a insertion between the first and the second helix with a length of
approximately 20 residues (blue dashed line). This homology on the sequence level supports
a possible CTD-interaction function of Ctk3, which would also make sense in the biological
context. The CTDK-I complex with Ctk3 must be located near the RNA pol-II CTD,
because the largest subunit of this complex phosphorylates the Ser2 in the CTD repeats.
The CTD shows a high Ser5 and Ser7 phosphorylation near the transcription start site
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Figure 4.16.: Structures of the known CTD-interacting domains (CIDs) Rtt103 (PDB-ID 2L0I),
Pcf11 (PDB-ID 1SZ9), and Nrd1 (PDB-ID 3CLJ), a structural model of Ctk3, whose structure and
function was unknown so far, and the newly solved structure of Ctk3. Rtt103 is shown with a Ser2
phosphorylated CTD peptide (magenta). The Ctk3 model is colored according to the alignment
posterior probabilities given by the HHblits matches to Rtt103 from red (highly confidence) to blue
(low confidence).

and with decreasing values of these phosphorylations towards the polyA-site the number of
Ser2 phosphorylations increase (Mayer et al., 2010). It is hence possible that the CTDK-I
complex with Ctk3 binds to CTD phosphorylated at Ser5 or Ser7 and triggers the Ser2
phosphorylations further downstream.
Based on our prediction and the model for Ctk3, the structure for Ctk3 from Saccha-

romyces Pombe was solved by Wolfgang Mühlbacher and Andreas Mayer from the Cramer
group here at the Gene Center Munich. This new structure is also given in figure 4.16. As
predicted, it shows a high similarity to the known CTD-interacting domains and represents
the fourth classical CID in yeast. At the moment, further binding studies are performed to
identify a possible target peptide for Ctk3 within the C-terminal domain.

4.3.2. PIP49 - a possible Ca2+-activated protein kinase

PIP49 (Pancreatitis Induced Protein 49) is a putative transmembrane protein which is
activated in pancreas in response to acute pancreatitis (Samir et al., 2000). In 2000, Samir
et al. computationally predicted a transmembrane helix near the N-terminus (Y31 to Y53)
and a weak relationship to the gastric inhibitory polypeptide receptor precursor (GIP-R)
using PROPSEARCH (Samir et al., 2000). A signal peptide or other homologies are not
known and neither PSI-BLAST nor HMMER3 could identify any match in the PDB database.
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Figure 4.17.: (a) Homology model of the previously unknown human PIP49/FAM69B kinase do-
main (blue) with inserted EF hand (green). In the catalytic center of the protein kinase domain
inportant conserved residues are highlighted in red and a bound ATP-molecule is shown in orange.
The conserved residues in the EF-hand, which are important for Ca2+-binding, are highlighted in
magenta. These two regions are given with more detail in (b) and (c), respectively.

We started our search with the human PIP49/FAM69B (UniProt -ID: Q5VUD6), because
the Pfam MSA is missing the N-terminal part. The 100 best HHblits matches in the PDB

database are all with protein kinases with high confidence (probability > 99%, E-value
< e−14) with HHblits. Interestingly, a tandem Ca2+-binding EF hand could be identified
(E-value 0.09), which is inserted after the small N-terminal β sheet of the kinase domain.
Although many protein kinases contain EF hands downstream of their kinase domain (Finn
et al., 2010), PIP49/FAM69B is the first case where an EF hand is inserted within the
kinase domain.
From the list of PDB matches we chose a protein kinase with bound ATP (PDB-ID: 1RDQ)

and a Ca2-bound EF hand (PDB-ID: 3C1V) as templates and used the corresponding HHblits
alignments to create a homology model with MODELLER. Figure 4.17a shows the resulting
homology model with the protein kinase domain in blue, the inserted EF hand in green,
and the modelled ATP-molecule in orange. The active center of the kinase domain with
the bound ATP-molecule is accentuated in 4.17b with the critical residues for the kinase
function highlighted in red. A high conservation of these residues can be seen in the MSA
of PIP49/FAM69B (see figure 4.18). In the histogram view of the MSA, the catalytic
center of the kinase domain is highlighted by the blue bars, and the red stars indicate the
critical residues according to Wang et al. (2006) such as the catalytic lysine at position
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Figure 4.18.: Multiple sequence alignment of human PIP49/FAM69B shown as histogram view.
Highlighted is the catalytic center of the protein kinase domain (blue bars) with the conserved im-
portant residues (red stars). The green bar indicates the EF hand, where the magenta stars identify
the important residues for the Ca2+-binding. The orange star at position 231 gives the correspond-
ing position to the gatekeeper in other kinases. Thy cyan bar shows the predicted transmembrane
helix.

116 (K116) that coordinates the α- and β-phosphates of ATP, and E297, N302 and D315
in the catalytic loop. Another important residue in the kinase domain is the so-called
gatekeeper (T321), which controls access to a pre-existing internal hydrophobic pocket at
the back of the ATP-binding site. Nearly all kinases in the human kinome have a tyrosin
or threonine residue as a gatekeeper (Wang et al., 2006). The corresponding position in
the PIP49/FAM69B MSA is indicated by the orange star at position 231 in figure 4.18
with a high probability for a tyrosin or threonine residue. Figure 4.17c shows the modelled
EF hand of PIP49/FAM69B. The EF-hand motif contains a helix-loop-helix topology, in
which the short loop region (about 12 amino acids) usually binds calcium ions. The critical
residues for the Ca2+-binding are highlighted in magenta (D182, N184, D186 and E193).
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These residues also show a high conservation in the MSA of PIP49/FAM69B (magenta stars
in figure 4.18).
Furthermore, the kinase domain is framed by two short domains with five or more highly

conserved cysteines each that are likely to form disulfide bonds (see conserved Cys-columns
in figure 4.18). We could confirm the prediction of the transmembrane α-helix near the N-
terminus (cyan bar in figure 4.18) by different transmembrane prediction methods such as
HMMTOP, MEMSAT-SVM and PHOBIUS, but a relationship to GIP-R could not be found and
is highly unlikely, since GIP-R consists of 7 transmembrane helices which would contradict
our predictions. Based on our homology models and the conservation of critical residues,
we predict that PIP49/FAM69B and FAM69A are ER membrane bound protein kinases
in the ER lumen that are activated by Ca2+ through structural rearrangement of their
EF hand. Residue conservation suggests that metazoan FAM69C will also possess protein
kinase activity.

4.3.3. The HAP complex

The HAP complex (HAT (Histone AcetylTransferases) Associated Protein) is composed of
three subunits Hap1, Hap2 and Hap3 (also named Elp4, Elp5 and Elp6, respectively) (Li
et al., 2001). These HAP proteins can be isolated as a complex of the three subunits and
as a six-subunit complex with Elongator. The Elongator is a three-subunit protein complex
containing HAT activity and has been found associated with elongating forms of RNA
polymerase II (Wittschieben et al., 1999). The role of the HAP complex is unknown. It
might allow histone acetylation only in the presence of transcribing polymerase, keep the
HAT activity of free Elongator in check, or it might modulate Elongator activity through
physical interaction.
With HHblits we could identify a homologous relationship between all three HAP proteins

and the family of RecA-like motor ATPases (probabilities of 99%, 96% and 95%, respec-
tively). Neither PSI-BLAST nor HMMER3 could identify any homologous structures. One of
the best HHblits matches in all searches is the circadian clock protein KaiC which consists of
two RecA-like domains containing shared regions including Walker A (P loop) and B motifs
involved in ATP-binding and hydrolysis. HAP1 and HAP3 are completely covered by the
alignments to RecA-like domains, HAP2 has an additional C-terminal domain with ∼ 130
amino acids. For this additional domain we couldn’t predict any homologous structure.
Figure 4.19 shows the three modeled structures of the Hap proteins and one domain

of KaiC with the Walker A and B motif highlighted in magenta and purple, respectively,
and an ATP molecule (gray) in the ATP-binding pocket. The models are created with
MODELLER based on the alignment with KaiC given by HHblits. They are colored according
to the posterior probabilities of each aligned column in the HHblits alignments where the
color indicates the alignment quality from red (highly confidence) to blue (low confidence).
Especially the model of Elp6 (Hap3) shows a high confidence in the alignment of the ATP-
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Figure 4.19.: Structure of the circadian clock protein KaiC and structural models of the three HAP-
complex proteins whose structure and function is unknown until now. All structures are shown with
a bound ATP-molecule (gray structure). In the structure of KaiC, the Walker A (P loop, magenta)
and Walker B (purple) motif are highlighted. The models are colored according to the alignment
posterior probabilities given by their HHblits matches to KaiC from red (highly confidence) to blue
(low confidence).

binding pocket with the Walker A and B motifs which might indicate an ATPase activity.
On the sequence level we see a high conservation in the Walker B motif (ΦΦΦD, of which
Φ is a hydrophobic residue) in all three HAP proteins, only in Elp4 the aspartic acid is
not well conserved. But the Walker A motif (GXXXXGK(T/S)) with the important lysine
(K) residue, which is crucial for nucleotide-binding, is not conserved in the HAP proteins.
Even though all HAP proteins show a clear homology to the RecA-like ATPases, an active
ATPase function of these proteins is uncertain.

HHblits predicts new folds for some hundred Pfam families where neither PSI-BLAST nor
HMMER3 found any relationship in the PDB database. As in the examples shown above,
homology models could be generated for many matches and first assumptions about possible
functions could be drawn. The next step would be the experimental validation of the
prediction in the laboratory by e.g. measures of ATPase activity or binding studies, as it
is done in the case of Ctk3 in cooperation with Wolfgang Mühlbacher and Andreas Mayer.
Therefore, HHblits is a powerful method to get an idea of the possible structure and function
of a new protein and to suggest validation experiments.
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4.4. Web server

We have integrated the HHblits software into the Bioinformatics Toolkit (Biegert et al., 2006),
our webserver with various bioinformatic tools. It can be accessed at http://toolkit.

lmb.uni-muenchen.de or at http://toolkit.tuebingen.mpg.de. This Toolkit provides
a user-friendly platform to work with our methods developed in-house and many of the
state-of-the-art tools that are freely available. The users can manage their submitted jobs
on a sidebar on the left that holds a status and color-coded list of all recent jobs in the
current session. By clicking on previously submitted jobs their status can be checked and
their results can be viewed. Most of the tools are interconnected, allowing job results of
one tool to be forwarded as input to others. The jobs are performed on a large compute
cluster with more than 20 compute nodes.
Figure 4.20 shows some screenshots of the HHblits method. On top, the input page

with the possibility to paste an input sequence or multiple sequence alignment is shown.
Alternatively, the user can upload a file with the input data. The most important parameters
such as the number of iterations or the used database can be choosen directly on the
input page, further parameters can be modified by pressing the “Show” link in the “more
options” section. All parameters are directly linked to online help pages which describe
the parameters and the result pages in more detail. By pressing the “Submit” button, the
input data is processed and the HHblits method is run on the compute cluster. After a
waiting screen showing log messages, the user is forwarded to the result page (bottom half
of figure 4.20). The output is organized into three sections: (1) A bar graph summarizing
the positions and color-coded significances of the database matches with more than 40%
probability. (2) A tabular hit list with probabilities, E-values, scores, and match regions
in query and templates. (3) The pairwise query-template alignments with annotation for
secondary structure (if available), consensus sequence and column-column match quality. In
addition, a profile histogram view is provided, where the pairwise query-template alignments
of the profile HMMs are depicted as histograms over the amino acid distributions in the
columns of the underlying multiple alignments. In the “Show alignment” section, the user
retrieves the generated multiple sequence alignment, can save it or forward it to start
another tool in our Toolkit with this alignment. More details of the webserver results pages
are given in the online help pages and in the userguide (see appendix D).

http://toolkit.lmb.uni-muenchen.de
http://toolkit.lmb.uni-muenchen.de
http://toolkit.tuebingen.mpg.de
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Figure 4.20.: Screenshots of the HHblits web server with the input page and the corresponding result
pages.



5. Conclusion and Outlook

Most sequence-based methods for protein structure or function prediction construct a mul-
tiple sequence alignment of homologs as a first step. The best methods for constructing
such alignments use an iterative search scheme, where significant matches are added to the
evolving multiple alignment. The standard iterative search method is PSI-BLAST, an exten-
sion of BLAST to profile-sequence comparison. An increase in sensitivity could be gained by
HMMER3 using profile HMMs on the query side, but this gain is paid by a three- to four-fold
reduction in speed.
We have developed HHblits, the first iterative sequence searching method based on the

pairwise comparison of HMMs. HHblits builds on the HHsearch algorithm for pairwise HMM-
HMM comparison, to which it owes its high sensitivity and alignment quality. We achieve a
runtime similar to PSI-BLAST by two steps: Firstly, we cluster the database, which covers the
whole sequence space, with our method kClust down to 20% maximum pairwise sequence
identity. This reduces the number of database entries in the case of the UniProt database
from over 14 million down to 2.6 million entries, which are represented as profile HMMs in
our HHblits database. Secondly, we perform different fast filter steps to reduce the amount
of time-consuming HMM-HMM comparisons to a minimum.
We must reduce the information contained in our database profile HMMs into a single se-

quence in order to apply very fast sequence comparison methods in the prefilter step. When
representing a sequence profile as a consensus sequence, a lot of information is lost, because
diverse profile columns cannot adequately be modeled by one single amino acid. We use an
approach that encodes profile columns by a special column state alphabet over 219 states.
Each column state is associated with a characteristic profile vector and because of that the
evolutionary information in diverse profile columns can be better represented. In addition
to the column state alphabet, which increases the sensitivity of the prefilter algorithms, we
use “single instruction multiple data“ (SIMD) instructions to increase the speed of our pre-
filter algorithms. With these instructions, several operations can be calculated in parallel.
Our prefilter algorithms - including a gapless alignment and a Smith-Waterman algorithm
- run on the whole database within seconds. Several further filter steps reduce the time
spent on the slow HMM-HMM comparisons to a minimum.
We demonstrate the performance of HHblits not only on different benchmark sets, but we

also show the quality in different biological cases. Most of our benchmarks were performed
on a SCOP20 dataset which is completely disjunct from the set used for the parameter op-
timization. HHblits shows a significant increase in sensitivity, i. e., it finds nearly twice as
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many true positives as PSI-BLAST and over 50% more than HMMER3 in the first iteration.
Besides the sensitivity in identifying homologs, the alignment quality is also drastically
improved. Based on a gold standard set with structural alignments HHblits has an in-
creased precision and sensitivity compared to the other methods, i. e., more than 20% in
each case compared to PSI-BLAST. The high alignment quality is also demonstrated by an in-
creased PSIPRED performance by using HHblits alignments as input compared to the default
PSI-BLAST alignments. The HHblits performance shown in these benchmarks is achieved by
a runtime slightly better than PSI-BLAST and by a factor 3-5 better than HMMER3.
On the Pfam domain database we could show that HHblits is able to make confident

(E-value < 10−3) fold predictions and to build structural models for some hundred domain
families for which no fold prediction has been possible (see list in appendix C). We demon-
strate with three example cases, how the HHblits results can be used for homology modeling
and for drawing first assumptions about possible functions of this domain family. These are
the basis for focussing the experimental investigations. Therefore, HHblits is a very good
method to get a first idea of the possible structure and function of a new protein and to
make a detailed plan of the further work in the laboratory.
In summary, we have shown that the iterative HMM-HMM comparison method HHblits has

the potential to replace the state-of-the-art methods PSI-BLAST and HMMER3 in the field
of homology searching and multiple sequence alignment generation. Our new method has
a similar runtime compared to PSI-BLAST by using a fast prefilter based on profile-profile
comparison. Furthermore, HHblits greatly improves upon PSI-BLAST and HMMER3 in terms
of sensitivity/selectivity and alignment quality. The performance of HHblits decreases when
using HMMER3 databases, the best results will be achieved by using the provided HHblits
databases (scripts for the generation of own databases are provided). HHblits is integrated in
our automatic protein structure and function prediction server HHpred, which was assessed
to be one of the best out of the 81 servers in the last (2010) blind protein structure prediction
competition CASP (Critical Assessment of Techniques for Protein Structure Prediction)1.

Outlook

HHblits is very powerful sequence searching and homology detection method and it is able
to replace PSI-BLAST with a similar runtime and a clearly better performance. We already
have some ideas to further improve the performance of HHblits.

Integrating taxnonomic information

Lorenz Maier tries in his diploma thesis to improve the performance of HHblits by the
additional use of taxonomic information. Homologous proteins share a common ancestor
and so one can expect that homologous proteins come to lie together within a taxonomic tree.

1http://predictioncenter.org/casp9/groups_analysis.cgi?type=server&tbm=on&submit=Filter

http://predictioncenter.org/casp9/groups_analysis.cgi?type=server&tbm=on&submit=Filter
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In other words, matched database sequences whose taxa are distant with respect to the taxa
in the query profile are more likely to be false positives than sequences from closely related
taxa (Abeln et al., 2007). We integrate this information by calculating a special E-value
which does not depend on the full database size but on the weighted number of sequences
below the last common ancestor of the query and the database cluster in a taxonomic tree
(for more details see diploma thesis of Lorenz Maier). It is intuitively clear that there should
be information contained in the taxonomic relationship between proteins, but we could only
slightly improve the performance of HHblits. One must say that it is difficult to design a
good benchmark to test the improvement of this taxonomy information, because usually
the performance is checked on databases such as SCOP, but these domains often comes from
well studied protein families. We expect the most improvement in cases where only very
little is known about a protein family and only very few members are sequenced by now.

Further optimization of runtime and memory requirements

We plan to further optimize the runtime and memory requirements of HHblits, especially for
using the method with multiple CPU cores. At the moment, the merging of HMMs below the
inclusion threshold with the evolving query profile HMM is only single-threaded, so this could
be optimized by parallelizing the merging procedure. Another option is to further increase
the speed of the prefilter step. A recent paper of Rognes (2011) states an increase in speed
of a factor of 2-6 of the Smith-Waterman algorithm based of SIMD instructions compared to
the Farrar approach implemented in our prefilter. This increased speed is achieved by an
inter-task parallelization, where the parallelization is carried out across multiple database
sequences. Furthermore, we are planning to optimize the reading of the needed databases
into the memory by using memory mapping, in which the operating system manages reading
data into memory from disk concurrently with program execution. The memory imprint
of the forward-backward algorithm could also be reduced by representing the current and
previous rows of the dynamic programming matrices by just two vectors instead of whole
matrices. This is primarily important when aligning extremely long sequences where the
memory requirements could achieve the dimension of gigabytes.

Optimize homology probabilities

Another idea is to optimize the homology probabilities provided by HHblits and HHsearch.
At the moment, the probability is obtained by fitting in a large benchmark set the ratio
of true positive (i.e., homologous) pairs to all pairs as a function of the total score (see
equation 3.11 in section 3.5). The new idea is to employ a neural network (NN) and use
more features than only the score such as the diversities and length of the two HMMs,
posterior probabilities or the relative entropy over aligned profile columns. The NN is then
trained to distinguish between homologs and false positives, e. g., on a SCOP dataset, and
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implemented in the C++ code. Based on this approach the probabilities should be more
meaningful for discriminating between homologous and non-related proteins.

Multi-component mixture score

A further plan is to improve the score of the HMM-HMM comparison. Up to now, the total
score is calculated by adding the profile column score and secondary structure score, if
secondary structure predictions are available, independently of each other, using constant
weights. A better way would be to combine the score from different per-residue features
in a nonlinear fashion (Söding and Remmert, 2011). CONTRalign for example models the
probability of an alignment as a conditional random field (CRF) (Do et al., 2006). But this
method has a fixed score for each combination of features and adds these scores linearly.
A further improvement is possible by formulating the score as a nonlinear function of the
sequence features as it is done in the RAPTOR servers (Peng and Xu, 2009). We are
planning to combine different scores such as profile-profile score, sequence-sequence score,
profile-sequence score, secondary structure score, and scores based of the context or tertiary
structure angles as a linear mixture with weights depending non-linearly on various inputs.
The nonlinear weight functions could be learned by neural networks with inputs which
are mostly position-dependent alignment and structure features. Possible input features
could be the diversity or the conservation in the HMMs, the residue-residue similarity, or
structural features such as a coordination number, which is the number of C-β atoms in a
sphere around the C-β atom at a given position, or the sequence conservation in a structural
neighborhood. When updating the HMM comparison score we also could check if we get a
further increase in performance when using the score generated by the Forward algorithm
instead of the score of the Viterbi algorithm.

Abstract state profile comparison

Secondary structure and solvent accessibility have two important characteristics that make
it useful for remote homology detection and alignment and hence also 3D struture prediction:
(1) The state of a residue can be predicted from local windows of sequence profiles centered
around the residue, typically of size 13 or 15 columns. (2) The states evolve slowly in time
and hence are relatively similar even between remote homologs.
The idea is to generate an alphabet of abstract states that has the two characteristics

above. This alphabet should ideally contain almost all the information from the profile
windows that obeys the two characteristics. We could then expect this alphabet to contain
secondary structure and solvent accessability information implicitly, among other informa-
tion. Hence it should be even more powerful for remote homology detection than those
two alphabets (secondary structure states and solvent accessibility states) together. For
example predicted secondary structure and solvent accessibility do not improve alignment
quality a lot since neighboring states are mostly identical. In contrast, we can expect that
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the register of an amphipathic helix or a beta strand is quite well conserved in evolution
and naturally differs between neighboring residues. By using a relatively small number of
abstract states (64 or 256) we are able to construct a substitution matrix for the abstract
states, just as for amino acids. One can thereby statistically describe the evolutionary
behaviour of these states. The main improvement to the case of comparing amino acid dis-
tributions is that these abstract states depend on a whole window in the profile, whereas the
statistical model of similarity between amino acid distributions is always column-by-column
and does not merge together information over several neighboring columns.



Part II.

Evolution of outer membrane
β-barrels



6. Introduction to the evolution of outer
membrane β-barrels

Outer membrane β-barrel proteins (OMBBs) are the major class of outer membrane proteins
(OMPs) from Gram-negative bacteria, mitochondria and plastids. They are composed of a
closed, barrel-shaped β-sheet around a central pore. Until this work, a common ancestry
for this class with a high structural regularity could not be identified. In the following chap-
ters we use three complementary approaches to show that all OMBBs from Gram-negative
bacteria evolved from a single, ancestral ββ hairpin.

6.1. Cell envelope of Gram-negative bacteria

There exists three domains of life, the bacteria, the archaea and the eucarya. Bacteria
can be separated into two groups, the Gram-positive and the Gram-negative ones. The
differences between these groups lie in the cell envelope, and it is possible to distinguish
between these groups by a special staining method, the Gram staining. Gram-positive
bacteria have a cytoplasmic membrane and a cell wall which contains up to 40 layers of
peptidoglycan. Gram-negative bacteria also have a cytoplasmic membrane, but there are
only 1-2 layers of peptidoglycan. Additionally these bacteria have an outer membrane which
separates the periplasm with the peptidoglycan from the external environment. Because of
the outer membrane these cells can not be stained with the Gram method.

The inner membrane

The inner membrane (or cytoplasmic membrane) is a lipid bilayer composed of phospho-
lipids, integral proteins and lipoproteins, which are located at the periplasmatic side of the
membrane. The integral proteins have an α-helical transmembrane domain and are mainly
appropriate for the transport of molecules. Some transport proteins need ATP (Adenosin-5’-
triphosphat) for activity such as in the case of the ABC-transporters (ATP-binging cassette).
At the inner membrane biochemical processes like the synthesis of lipid molecules and the
oxidative phosphorylation are taking place.
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Figure 6.1.: Structure of the cell envelope of Gram-negative bacteria: The cell envelope of Gram-
negative bacteria is composed of the inner membrane (IM), the periplasm and the outer membrane
(OM). The inner membrane is a lipid bilayer, which contains lipoproteins and integral membrane pro-
teins with a α-helical transmembrane domain. The outer membrane is an asymmetric lipid bilayer
composed of lipopolysaccharides (LPS) at the outside and phospholipids (PL) at the periplasmatic
side. Integral membrane proteins in the outer membrane typically have β-barrels as their transmem-
brane domain. The periplasm is the space between these two membranes where the peptidoglycan
cell wall is located. (Figure taken from (Ruiz et al., 2006))

The periplasm

The periplasm is the compartment between the two membranes and usually 12-15 nm wide.
It contains the peptidoglycan cell wall and soluble proteins like binding proteins which
guide molecules to transport proteins into the inner membrane (e.g. ABC-transporters).
Another big group of periplasmatic proteins are enzymes which are involved in degradation
of nutrients. Because of the absence of ATP all reactions in the periplasm occur without
an energy source.

The outer membrane

The outer membrane is an asymmetric lipid bilayer composed of lipopolysaccharides (LPS)
at the outer leaflet and phospholipids at the inner. LPS consists of Lipid A, a disaccharide
with bounded fatty acids, and a polysaccharide composed of a core-polysaccharide and
an O-specific polysaccharide with differing lengths. Lipid A is embedded into the outer
membrane while the rest of the LPS projects from the surface. LPS is an endotoxin and
induces a strong response from eukaryotic immune systems. The strong lateral interaction
between LPS molecules allow LPS to be highly compacted (Takeuchi and Nikaido, 1981),
and so the outer membrane acts as a barrier.
Besides integral outer membrane proteins (see 6.2) there are lipoproteins in the outer
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membrane. Additionally the outer membrane acts as an anchor for surface organelles such
as pili that have a crucial role in pathogenesis (Remaut and Waksman, 2004).

6.2. Outer membrane β-barrels

Outer membrane β-barrels (OMBBs) are the major class of outer membrane proteins (OMPs)
in Gram-negative bacteria (Koebnik et al., 2000). They also occur in the outer membranes
of mitochondria and chloroplasts (Duy et al., 2007; Paschen et al., 2003), according to the
endosymbiont theory. Only a single bacterial OMP with an α-helical topology has been
described (Wza) (Dong et al., 2006). OMBBs are functionally very diverse, ranging from
the transport of molecules to enzymatic and structural functions, and constitute major
bacterial antigens. They are synthesized in the cytoplasm and translocated across the inner
membrane by the Sec-transport mechanism. In the periplasm the N-terminal signal peptide
is cleaved by a signal peptidase and chaperones bind the unfolded OMBBs. The mechanism of
insertion into the outer membrane is still unknown. Voulhoux and Tommassen developed a
new model based on the outer membrane protein Omp85 (Voulhoux and Tommassen, 2004),
where the chaperone Skp binds in the periplasm to an OMBB and prevents the aggregation
of the unfolded protein. Then this OMBB interacts with the periplasmatic domain of Omp85,
the folding takes place with the presence of periplasmatic folding catalysts, and the protein
inserts in a channel formed by Omp85 which opens to allow the insertion of this OMP into
the outer membrane.

OMBBs consist of a closed β-sheet with 8 to 24 strands forming the central pore. Proto-
typical OMBBs are built from a single polypeptide chain and are composed of repeating ββ
hairpins with very short periplasmic loops (Fig. 6.2 left), linked by loops of variable length,
many of which are crucial for their protein’s functions. Two single H-bonded β-strands at
the N- and C-termini close the barrel. A few OMBBs from Gram-negative bacteria form
their transmembrane (TM) barrel from homotrimers (Fig. 6.2 middle), such as TolC or the
trimeric autotransporter Hia from H. influenzae. In OMBBs, the C- and N-termini of the
TM domain are located in the periplasm and the chain runs clockwise around the pore when
viewed from the outside.

Two atypical trans-membrane β-barrels (TMBBs) with known structure occur in Gram-
positive bacteria: MspA and α-hemolysin. Their barrels are very well structurally superpos-
able with the OMBBs once they are flipped by 180 degrees. The N- and C-termini of their
single ββ hairpins are outside the cell and their chains run in an anti-clockwise direction
around the central pore. MspA (Faller et al., 2004) is the main porin from mycobacteria.
Even though classified as Gram-positive, mycobacteria possess an atypical outer lipid mem-
brane (Brennan and Nikaido, 1995). α-hemolysin is a toxin from pathogenic Gram-positive
bacteria (Song et al., 1996) that lyses host cells by integrating into their plasma membranes.
MspA and α-hemolysin form their β-barrels from 8 and 7 single ββ hairpins, respectively,
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Figure 6.2.: Gallery with three examples of typical, single-chain OMBBs (left) and two multi-chain
OMBBs from Gram-negative bacteria (middle), and two atypical transmembrane β-barrels (TMBBs)
from Gram-positive bacteria. The topologies are schematically shown in the lower part. All OMBBs
from Gram-negative bacteria have their N- and C-terminus in the periplasm, whereas the termini of
the two atypical TMBBs from Gram-positive bacteria are outside the cell. Also, the peptide chains of
OMBBs wind around the central pore in a clockwise sense when viewed from outside, whereas the ββ
hairpins of the atypical TMBBs are traversed in counterclockwise direction. The structural hairpin
repeats are colored in red and blue. OM: outer membrane; PM: host cell plasma membrane. PDB
structures: OmpW (2F1C), PhoE (1PHO), BtuB (1NQE), Hia (2GR7), TolC (1EK9), α-hemolysin
(7AHL), MspA (1UUN).

protruding from their large, extracellular domains, which are necessary for oligomerization
(Fig. 6.2 right). The unusual topology of the atypical TMBBs as well as their singular
phylogenetic representation among specific groups of Gram-positive bacteria makes it un-
likely that they are related with the prototypical, single-chain OMBBs from Gram-negative
bacteria. They can thus serve as analogous reference structures.
In OMBBs, the TM β-strand residues facing outside are in contact with the membrane

and are mostly hydrophobic, those facing inside into the typically solvent-filled interior are
mostly small and hydrophilic. This imparts a relatively regular, amphipathic character to
the TM β-strands (Neuwald et al., 1995). Efforts to detect OMBBs from their sequence have
focused on this generic sequence pattern (Bagos et al., 2004; Berven et al., 2004; Bigelow
et al., 2004), but since it is not perfectly regular, total hydrophobicity is similar to cytosolic
proteins, and β-strands make up only ∼ 50% of the barrel sequence, the prediction of OMBBs
remains challenging. Also, a similarity in sequence between OMBBs from different groups is
hardly detectable. Neuwald et al. applied a Gibbs-sampling strategy to 32 OMBBs presumed
to be involved in substrate uptake, and identified a significant, 11-residue sequence pattern
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that coincided with the first β-strand of the ββ hairpin repeats (Neuwald et al., 1995). It
is unclear whether the motif resulted from the amphipathic character of the β-strands or
whether it reflects a common evolutionary origin of the porins, the major class of proteins in
their set. Recently, a monophyletic relationship was postulated for the 16-stranded bacterial
porins (Nguyen et al., 2006) as well as for the presumably 16-stranded Omp85-like proteins
(Moslavac et al., 2005). In support of the proposed common origin of OMBBs through
oligomerization and fusion of shorter modules, Arnold et al. (Arnold et al., 2007) found
that the duplicated and fused sequence of OmpX, an eight-stranded β-barrel, dimerized
into a stable, 16-stranded TM β-barrel with a single pore.

6.3. Protein evolution

One of the major transitions in evolution is marked by the end of the RNA-world, when
most enzymatic, structural, and regulatory functions of RNA were taken over by proteins
(Orgel, 2004). This transition probably coincides with the advent of small protein proto-
domains capable of folding into relatively stable, functional structures independent of their
former RNA partners. The elevated error rates of the early replication machinery would
initially have severely limited the length of single-gene mini-chromosomes (‘Eigen limit’)
(Eigen and Schuster, 1977; Jeffares et al., 1998). Therefore, many of these proto-domains
were probably formed by oligomerization from smaller peptide modules. It is plausible to
assume that later, when lowered error rates allowed for longer mini-chromosomes, the genes
of many of these peptide modules were fused together into genes encoding entire single-
chain proto-domains (Lupas et al., 2001; Söding and Lupas, 2003). These later became the
conserved cores of larger fold families, which evolved from the proto-domains by “piecemeal
growth”, i.e., by multiple additions of structural elements, and, to a lesser extent, deletions
and rearrangements (Fetrow and Godzik, 1998; McLachlan, 1972).
This scenario of the origin of proteins from ancient peptide modules was suggested based

on the observation that a number of recurring fragments exist that display similarity both in
structure and sequence (Alva et al., 2007, 2008; Coles et al., 2006; Copley et al., 2001; Fried-
berg and Godzik, 2005; Grishin, 2000, 2001; Krishna et al., 2006; Lupas et al., 2001; Shao
and Grishin, 2000; Söding and Lupas, 2003). If this scenario is true, we would expect many
domains to have formed by the amplification of a single peptide unit: Replication slippage
provides a simple mechanism for repeat amplification. Also, for symmetry-related reasons
stable protein complexes evolve more readily from identical units than from heterologous
ones (Lukatsky et al., 2007). Indeed, of the ten most populated folds, six are composed
of structural repeats (Söding and Lupas, 2003). Whether the numerous structurally repet-
itive folds evolved by amplification of an ancestral single module or whether their repeat
structure is the result of evolution converging onto similar, stably folding substructures has
been intensely investigated (Biegert and Söding, 2008; Chen et al., 1997; McLachlan, 1972,
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1987; Nagano et al., 1999; Söding et al., 2006a).
The structural similarity between proteins cannot be considered proof of common ances-

try, because structure space is relatively small with its limited number of arrangements
of secondary structure elements and many examples of structural convergence have been
described (Finkelstein and Ptitsyn, 1987; Krishna and Grishin, 2004). In practice, a homol-
ogous relationship is often accepted when the sequences are significantly similar (Doolittle,
1994; Murzin, 1998; Pearson, 1996), when both sequences and structures are sufficiently
similar (Cheng et al., 2008; Holm and Sander, 1997; Madej et al., 2007; Murzin, 1993; Rus-
sell et al., 1997), or when, in addition to sequence or structure similarity, other information
such as the co-occurrence of rare structural or functional features, functional annotations,
or sequence motifs hint at a homologous relationship (Dietmann and Holm, 2001; Gewehr
et al., 2007; Holm and Sander, 1997; Murzin, 1998; Nagano et al., 2002).
Despite the usefulness of these criteria, the degree of sequence similarity remains the

most important criterion for common ancestry in practice. However, a significant but weak
sequence similarity might be the result of constraints that similar structures impose on
their sequences. The structural similarity in turn could have evolved convergently due
to functional or biophysical constraints. Although the problem of how to distinguish be-
tween a similarity by structurally induced sequence convergence (Doolittle, 1994) and a
very remotely homologous relationship has often been noted, few studies have tackled it
directly. Theobald and Wuttke analyzed the evolutionary relationships among representa-
tives of three similar, small, all-β folds: OB-fold, SH3, and PDZ domains (Theobald and
Wuttke, 2005). They built sequence profiles for representative sequences from these folds
and calculated profile-profile similarity scores. Since the inter-fold similarity scores can
be considered as representative for relationships between analogous structures, the intra-
fold scores that significantly exceeded the inter-fold scores were interpreted as indicating
homologous relationships.
Here, we propose that the ββ hairpins of which OMBBs are composed, are homologous

to each other, presenting an extreme example of divergent evolution. We follow three ap-
proaches to investigate the evolution of OMBBs. First, we multiply link most representative
OMBBs with each other through significant sequence similarity. Second, we demonstrate that
many OMBBs possess a clear and significant repeat signature on the sequence level. Both
these approaches rely on detecting sequence similarities and could be misled by sequence
convergence. In our third approach, we carry the idea of analogous relationships as refer-
ence distribution further. Using two atypical transmembrane β-barrels from Gram-positive
bacteria as analogous reference structures, we argue that the similarities are unlikely to be
the result of sequence convergence.



7. Material and methods

7.1. Exhaustive, transitive profile searches

We employ two sequence search methods to multiply link OMBBs from known groups with
each other. The first method, HHsearch (see section 2.4.3), is based on the pairwise com-
parison of profile hidden Markov models (HMMs) and has been successfully applied by
many groups for protein function and structure predictions. The dataset is derived from
SCOP 1.731 (Murzin et al., 1995), filtered to a maximum pairwise sequence identity of 25%
(SCOP25). SCOP is a database of protein domains with known structure, hierarchically or-
dered by class, fold, superfamily, and family. We added the sequences of the OMBBs VDAC1
(Ujwal et al., 2008), FhaC (Clantin et al., 2007), and PapC (Remaut et al., 2008), which
were not yet contained in SCOP v1.73. The resulting “SCOP25+OMBB” database contains
7767 proteins, out of which 23 are single-chain OMBB sequences (Table 7.1). A profile HMM

was built for each of the SCOP25+OMBB sequences using the BUILDALI.PL script with default
parameters. The 23 representative OMBBs were compared with the SCOP25+OMBB database
using HHsearch (v1.5.0). We used default parameters but switched off the secondary struc-
ture scoring to ensure that the matches are not ranked according to a superficial similarity of
the predicted secondary structure. We then analyzed which representative OMBB sequences
were found before the first to fifth non-OMBB sequence.

The second method, HHsenser (Söding et al., 2006b), which relies on exhaustive, transitive
profile searches, starts with each of 19 representative OMBBs in SCOP25 (v1.71) (Table 7.2)
as a query. It first searches with PSI-BLAST for homologs of the query sequence. Since
the exhaustive sequence comparisons are quite CPU time-intensive, we search a reduced
database, consisting of all bacterial sequences plus environmental sequences from the NCBI,
filtered with a maximum pairwise sequence identity of 90% (“nr_bac90” and “env90”).
Significant matches with E-value< 10−3 are aligned to the query sequence and a profile
HMM is computed. Insignificant matches with E-values between 10−3 and 1.0 (the “trailing
end”) are considered as potential homologs and kept in a list for later verification. For this
purpose, an iterative PSI-BLAST search is started with the potential homolog, a profile HMM

is computed from the resulting alignment, and the HMM is compared with the evolving
profile HMM of the query sequence using HHsearch version 1.5.0 (Söding et al., 2005). If the
homologous relationship is rejected, the next potential homolog is taken from the list to

1http://scop.mrc-lmb.cam.ac.uk/scop/

http://scop.mrc-lmb.cam.ac.uk/scop/
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Table 7.1.: 23 representative single-chain OMBBs used for the direct HMM-HMM comparisons with
HHsearch. We obtained the representative sequences from the SCOP database (version 1.73, filtered
for 25% maximum pairwise sequence identity), and added the sequences of VDAC1, FhaC and PapC
that were not yet contained in SCOP v1.73. The last column gives the number of β-strands forming
the β-barrel.

PDB-ID protein name Organism β-strands

1AF6 Maltoporin Sucrose Complex (LamB) Escherichia coli 18
1FEP Ferric Enterobactin Receptor (FepA) Escherichia coli 22
1HXX Porin OmpF Escherichia coli 16
1I78 Outer Membrane Protease (Ompt) Escherichia coli 10
1K24 Outer Membrane Adhesin/Invasin (OpcA) Neisseria meningitidis 10
1KMO Outer Membrane Transporter (FecA) Escherichia coli 22
1OH2 Sucrose-specific Porin Salmonella typhimurium 18
1P4T Neisserial surface protein (NspA) Neisseria Meningitidis 8
1QD6 Outer Membrane Phospholipase A (OmpLA) Escherichia coli 12
1QJ8 Outer Membrane Protein X (OmpX) Escherichia coli 8
1QJP Outer Membrane Protein A (OmpA) Escherichia coli 8
1T16 Fatty Acid Transporter (FadL) Escherichia coli 14
1THQ Outer Membrane Enzyme (PagP) Escherichia coli 8
1TLY Bacterial nucleoside transporter (Tsx) Escherichia coli 12
1UYN Translocator Domain Of Autotransporter (Nalp) Neisseria Meningitidis 12
2FCP Ferric Hydroxamate Uptake Receptor (FhuA) Escherichia coli 22
2FGQ Porin Omp32 Comamonas acidovorans 16
2GUF Cobalamin Transporter (BtuB) Escherichia coli 22
2POR Porin Rhodobacter capsulatus 16
2QDZ Omp85/TPSB transporter family protein (FhaC) Bordetella pertussis 16
2VQI P Pilus Usher Translocation Pore (PapC) Escherichia coli 24
3EMN VDAC1 Mus musculus 19
3PRN Porin E1M Rhodopseudomonas blastica 16

start an iterative PSI-BLAST search. If the homology is confirmed, the sequences in the new
alignment are added to the evolving query sequence alignment. In addition, all sequences in
the trailing end of the last PSI-BLAST search are added to the list of potential homologs. The
exhaustive search continues until all potential homologs have been validated or rejected.
To cluster the obtained sequences in 2D, the sequence fragments returned by the HHsenser

runs were extended to full length (using the command FASTACMD from NCBI’s BLAST pack-
age) and clustered with the program CLANS (Frickey and Lupas, 2004). CLANS represents
each sequence by a point in 2D (optionally also in 3D) and moves it in this space accord-
ing to the forces exerted by all other points. These forces are calculated from the matrix
of pairwise BLAST log-E-values. Very significant E-values result in large attractive forces,
insignificant E-values give repulsive forces. In this way, after sufficient relaxation times,
similar sequences come to lie closely together. We used default CLANS parameters with an
E-value cutoff of 0.1 for the clustering procedure.
We use CLANS to generate a pooled cluster map from the resulting sequences of all 19

HHsenser runs. The false positive rate of this map (Fig. 8.3) is estimated by counting the
proteins from Gram-positive bacteria. Usually, Gram-positive bacteria do not have an outer
membrane and their proteins are likely to be false positives. The map contains 83 proteins
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Table 7.2.: 19 representative OMBBs used as starting point for transitive profile searches with
HHsenser. We obtained the sequences by filtering the sequences of all bacterial OMBBs in the SCOP
database (version 1.71) for a maximum of 25% pairwise sequence identity. The last column gives
the number of β-strands forming the β-barrel.

PDB-ID protein name Organism β-strands

1AF6 Maltoporin Sucrose Complex (LamB) Escherichia coli 18
1E54 Anion-selective porin (Omp32) Comamonas acidovorans 16
1FW3 Outer Membrane Phospholipase A (OmpLA) Escherichia coli 12
1I78 Outer Membrane Protease (Ompt) Escherichia coli 10
1K24 Outer Membrane Adhesin/Invasin (OpcA) Neisseria meningitidis 10
1KMO Outer Membrane Transporter (FecA) Escherichia coli 22
1NQE Outer Membrane Cobalamin Transporter (Btub) Escherichia coli 22
1P4T Neisserial surface protein (NspA) Neisseria Meningitidis 8
1PHO Phosphoporin (Phoe) Escherichia coli 16
1Q9F Outer membrane protein (OmpX) Escherichia coli 8
1T1L Long-Chain Fatty Acid Transporter (Fadl) Escherichia coli 14
1THQ Outer Membrane Enzyme (PagP) Escherichia coli 8
1TLY Bacterial nucleoside transporter (Tsx) Escherichia coli 12
1UYN Translocator Domain Of Autotransporter (Nalp) Neisseria Meningitidis 12
2ERV Outer Membrane Enzyme (Pagl) Pseudomonas aeruginosa 8
2F1V Outer membrane protein (OmpW) Escherichia coli 8
2GE4 Outer Membrane Protein A TM Domain (OmpA) Escherichia coli 8
2O4V Porin P (OprP) Pseudomonas aeruginosa 16
2POR Porin Rhodobacter capsulatus 16

from Gram-positive bacteria, but most of them are likely to be true OMBBs. 32 are from
Mycobacterium, a Gram-positive bacterium with an outer membrane composed of mycolic
acids at the inner leaflet and lipooligosaccharides and glycolipids at the outer leaflet. 13
are from Thermosinus carboxydivorans and 12 from Halothermothrix orenii, two firmicute
bacterial species in the genus Clostridia which are known from electron micrographs to
possess outer membranes (Cayol et al., 1994; Sokolova et al., 2004). Two other proteins, one
from Selenomonas ruminantium and one from Clostridium bifermentans, have more than
60% sequence identity to OMBBs with known structure from E. coli. 24 proteins remain
as false positives from Gram-positive bacteria. To estimate the false positive proteins from
Gram-negative bacteria, we build HMMs from the sequences of all clusters in the map
(Fig. 8.3) and searched through the SCOP database without OMBBs using HHsearch. A total
of 46 false-positive sequences from Gram-negative bacteria could be identified. All together,
the false positive rate can be estimated to be around (24 + 46)/21856 = 0.3%.

7.2. Internal repeat detection

To support our hypothesis that OMBBs evolved by amplification of ββ hairpin modules,
we employed HHrepID, a fully automated method for the de novo identification of highly
diverged protein repeats by probabilistic consistency (Biegert and Söding, 2008). To analyze
the 23 representative OMBBs in Table 7.1 for sequence repeats, we ran the BUILDALI.PL script
from the HHsearch 1.5.0 package with default parameters. HHrepID was then started with
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these multiple sequence alignments.
HHrepID converts the input alignment into a profile HMM. This query HMM is then

repeatedly aligned to itself by means of HMM-HMM comparison (Söding, 2005) in order to
detect internal sequence symmetries. The quality of predicted repeat alignments is improved
by an algorithm that maximizes the expected accuracy (MAC, see section 3.6). Furthermore,
the repeat detection algorithm makes use of the transitive nature of homology through a
novel alignment merging procedure reinforcing the consistency of suboptimal self-alignments.
This consistency reinforcement boosts the sequence signature of even highly diverged repeat
units and at the same time suppresses traces of spurious alignments.
We performed a de novo repeat analysis on the 474 clusters of putative OMBBs from the

pooled cluster map (Fig. 8.3). For this purpose, we constructed a multiple sequence align-
ment for each cluster using KALIGN2 (Lassmann and Sonnhammer, 2005), jump-started
PSI-BLAST with three iterations to add further homologs and extracted the resulting se-
quence alignment from the results using the ALIGNHITS.PL script in the HHsearch package.
HHrepID was run on these alignment.

7.3. Analysis of structural convergence

To investigate whether the observed sequence similarities among the OMBB hairpins could
be explained by convergence, we performed a combined sequence-structure analysis of the
23 OMBBs from SCOP25 (v1.73, see Table 7.1). The OMBBs were divided into overlapping
double hairpins, using the DSSP secondary structure assignment. Starts and ends were
placed at periplasmic side, starting with the first and ending with the last barrel strand.
We used double instead of single hairpins to increase the signal-to-noise ratio. For example,
the 12-stranded OMBB OmpLA has 5 double hairpins with ends at the periplasmic side. 3
of these double hairpins are colored in Figure 7.1 in red, blue and green, respectively. The
other two double hairpins are comprised by a green and a blue hairpin and by a blue and
a red hairpin, respectively.
We used TM-ALIGN (Zhang and Skolnick, 2005) to search with these double hairpins for

structurally similar fragments in six sets of protein structures: the SCOP database with
all OMBB sequences removed (SCOP folds f.4, f.5, f.6), the set of 23 OMBBs, the set of
two non-canonical OMBBs Hia and TolC, the set with two OMBBs from Gram-positives, α-
hemolysin and MspA, the set with analogous, structural similar proteins (lipocalin-like and
streptavidin-like β-barrels, SCOP IDs b.60 and b.61.1), and the set of only the C-terminal
double hairpins from OMBBs. The TM-SCORE was normalized using the length of the OMBB

double hairpins. For each matched pair, we also calculated the profile-profile similarity
score with HHsearch, but based on the fixed alignment from TM-ALIGN and with zero gap
penalties. Each pair of structure and sequence similarity scores was plotted in a scatter
plot.
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Figure 7.1: Double hairpins of the outer mem-
brane protein OmpLA with ends at the periplas-
mic side. Three out of the five possible double
hairpins are colored in red, blue and green, respec-
tively. The other two double hairpins are com-
prised by a green and a blue hairpin and by a blue
and a red hairpin, respectively.

For the plots with non-canonical OMBBs, a double hairpin must be generated for each
of the four non-canonical OMBBs. Hia and TolC consists of three chains each with four
β-strands. Here, full-length PDB chains were used. In α-hemolysin and MspA, each chain
consist of only two transmembrane β-strands. A double hairpin was generated by cutting
two single hairpins out of two neighboring chains and combining these single hairpins to
a double hairpin. By their construction, these double hairpins are very well structurally
superposable with the OMBBs when turned upside-down, as can be seen from the distribution
of structural similarity scores in Fig. 8.8B.



8. Results

8.1. Most OMBBs find each other using homology detection
methods

For remote relationships that date back to the origin of protein domains some four billion
years ago, each amino acid has mutated several times on average (Doolittle et al., 1996),
and sequence similarities have decayed to levels far below the noise threshold. Instead of
directly comparing amino acid sequences, we therefore employ a highly sensitive homology
detection method, HHsearch (see section 2.4.3), that compares profile hidden Markov models
(HMMs) with each other (Söding, 2005). Profile HMMs encode position-specific amino acid
(and gap) preferences that are conserved for much longer than amino acid identities.

The PDB database contains single-chain OMBBs from 12 families and 6 superfamilies
according to the SCOP classification (v1.73) (Murzin, 1998) with between 8 and 24 β-strands.
We show first that most of these can be linked with each other through homology searches
based on HMM-HMM comparison. The “SCOP25+OMBB” was constructed as explained in
7.3. It contains 7767 representative single-domain sequences of known structure, out of
which 23 are single-chain OMBB sequences (Table 7.1).

The 23 representative OMBBs were compared with the 7767 proteins in the SCOP25+OMBB

database using HHsearch. Fig. 8.1A shows which of the 23 OMBBs (top row) detects the other
22 OMBBs (left) with higher significance than the first non-OMBB match in the database
search. OMBBs found before the first to fifth non-OMBB match are marked in five shades of
blue. 20 out of the 23 OMBBs are multiply connected with each other through the pairwise
similarities of their HMMs. Notably, this includes the mitochondrial VDAC1. The other
three OMBBs have two (Tsx, PapC ) and a single connection (PagP ) to the rest.
Next, we asked whether a transitive homology detection method would be able to provide

significant links between the weakly connected OMBBs and the core group (Fig. 8.1B). We
started exhaustive intermediate profile searches from 19 representative OMBBs (top row,
Table 7.2) using the tool HHsenser (Söding et al., 2006b). We took all bacterial sequences
from NCBI’s non-redundant database plus the environmental sequences and filtered them
for a maximum pairwise sequence identity of 90% (“nr_bac90” and “env90”). Each of the
searches returned between a few hundred and ∼ 17,000 sequences. We checked which of the
23 representative OMBBs in the SCOP25+OMBB set (left column) was either found directly
or had a BLAST E-value of 10−5 or better with one of the returned sequences. Most of
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A B

Figure 8.1.: Representative OMBBs of known structure detect each other reliably in homology
searches. (A) Direct pairwise HMM comparisons by HHsearch: Each matrix column shows the
results of an HMM-HMM search with the query proteins in the top row (with the number of barrel
β-strands in parentheses) through the SCOP25 database (v.1.73) including VDAC1, FhaC and PapC
(PDB codes: Table 7.1). The color shade indicates how many false positive (FP) matches were de-
tected with a probability score higher than that of the database OMBB on the left, from blue (no
FPs) to light blue (4 FPs). (B) Exhaustive transitive HMM-based homology searches: Each matrix
column shows the results of an exhaustive transitive search started from the OMBB in the top row
(Table 7.2). Blue indicates which OMBBs on the left were detected in the exhaustive search or have
a BLAST E-value better than 10−5 with one of these sequences. The mitochondrial OMBB VDAC1
can not be identified here, since only bacterial and environmental sequences were searched.

the OMBBs that are linked to the others through direct HMM-HMM comparison also find
each other in transitive searches. In addition, FhaC and PapC are found in 11 and 14 of
the transitive searches, and Tsx and OmpLA are detected by two and one of the transitive
searches, respectively. Together with the direct HMM-HMM comparison, all but PagP could
be multiply linked to the main group of OMBBs.
Fig. 8.2 shows a cluster map resulting from a single HHsenser search, started with the

sequence of OmpT (red cross). The 15775 sequence fragments were extended to full length
and clustered based on the matrix of all pairwise BLAST log-P -values using the program
CLANS (Frickey and Lupas, 2004). Every point represents a sequence. They attract each
other with a strength proportional to their pairwise log-P -values, so that similar sequences
come to lie together closely. 19 out of the 23 representative OMBBs containing between 8
and 24 β-barrel strands were identified in this single search.
What is the fraction of false positive sequences in the transitive searches? Since Gram-

positive bacteria do not typically have an outer membrane, their sequences are likely to be
false positive matches in the map. The map in Fig. 8.2 contains only nine sequences from
bacteria classified as Gram-positives (Table 8.1). All of these sequences belong to species in
the genus Clostridiae which possess outer membranes (see 7.1) and are therefore likely to be
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Figure 8.2.: Cluster map of 15775 bacterial sequences found with the exhaustive transitive HHsenser
search starting from OmpT (red cross). 19 out of the 23 bona fide OMBBs were identified in this single
search with a false positive rate of only ∼ 0.03%. The highlighted clusters and OMBB structures
illustrate the diversity of OMBB groups in the map.

Table 8.1.: Proteins from Gram-positive bacteria in the OmpT cluster map. All proteins belong to
species in the genus Clostridiae, the first two of which are known to have an outer membrane (Cayol
et al., 1994; Sokolova et al., 2004)

GI Protein name Organism

121533976 TonB-dependent receptor Thermosinus carboxydivorans
121534322 TonB-dependent receptor Thermosinus carboxydivorans
121534812 TonB-dependent receptor Thermosinus carboxydivorans
121534955 surface antigin (D15) Thermosinus carboxydivorans
121534975 hypothetical protein TcarDRAFT_1330 Thermosinus carboxydivorans
89210169 S-layer-like region Halothermothrix orenii H 168
89210191 surface antigen (D15) Halothermothrix orenii H 168
89211242 hypothetical protein HoreDRAFT_0748 Halothermothrix orenii H 168
13940157 tetrachloroethylene dehalogenase Clostridium bifermentans
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true OMBBs. We broadened our search for false positives and built HMMs from the sequences
of all clusters in the map. We searched through the SCOP database using HHsearch and
looked at all significant hits to non-OMBB domains. We identified 5 false positive sequences
in a single cluster, which were included due to corrupted PSI-BLAST alignments from which
their profile HMMs were built. We therefore estimate the fraction of false positives per
search to be on the order of 5/15773 = 0.03%.
The results from the single cluster map are born out when the sequences of all 19 HHsenser

searches are pooled (Fig. 8.3A): The majority of OMBBs are found in at least half of the
HHsenser runs (Fig. 8.3B). The protein sequences in this figure are colored according to the
number of HHsenser searches which could detect the respective protein, dark blue means
detected by all 19 searches, blue to orange by some searches and brown for proteins detected
by only one search. The pie charts on the right show the fraction of proteins detected by the
specific number of searches. The upper chart refers to all 21856 proteins in the cluster map,
the lower chart only to 12015 proteins annotated as OMPs. These pie charts demonstrate
that about two thirds of all proteins and more than 75% of all known OMPs in this cluster
map can be found in more than half of all HHsenser searches.
The fraction of false positives in the pooled map can be estimated to about 0.3% (see 7.1).

Since about half of the detected sequences in the pooled cluster map belong to hypothetical
proteins, our transitive searches roughly double the number of proteins that are confidently
predicted to be OMBBs, from 12015 to 21850 proteins out of the 1,97 million proteins in
the “nr_bac90 + env90” database used (Remmert et al., 2009). Furthermore, the pooled
map is likely to be nearly complete: 55 out of 57 proteins annotated as OMBBs in E. coli
have a confident match (> 94% probability) to a cluster in the map when using HHsearch
/ HHomp (Remmert et al., 2009). It is therefore not unlikely that most or all major groups
of bacterial OMBBs have been found in one of our transitive searches. Taken together, all
of the 23 representative OMBBs, including almost all annotated OMBBs in E. coli, can be
linked with each other through direct HMM-HMM searches or through transitive homology
searches at low error rate.

8.2. Sequence repeats detected in majority of OMBBs

If OMBBs originated by amplification of a single ββ hairpin, we might still find residual
sequence similarities between the ββ repeats. We use the de novo repeat detection method
HHrepID (Biegert and Söding, 2008), which was developed in our group and generates a
profile HMM from the input sequence and looks for non-trivial, off-diagonal alignments of the
HMM with itself (see 7.2). ForN repeat units, we would ideally find 2N−1 alignments, where
each alignment corresponds to a register shift in the pairing of the repeat units. HHrepID
gains further sensitivity by iteratively refining the suboptimal alignments for maximum
consistency.
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Figure 8.3.: (A) Pooled cluster map of 21856 protein sequences found with the exhaustive transitive
HHsenser search starting from 19 OMBBs with known structure (Table 7.2). The different colors
indicate the different numbers of β-strands. (B) Most sequence clusters in our map of putative
OMBBs are reliably linked to known OMBBs by multiple HHsenser searches. This map is colored
according to the number of transitive searches detecting each protein. The pie charts on the right
show the fractions of proteins that were detected by all 19 searches (dark blue), by some of the
searches (blue to orange), down to only one search (brown). The upper chart refers to all 21856
proteins in the map, the lower chart only to the 12015 protein sequences annotated as OMPs. About
two thirds of all proteins and more than 75% of all known OMPs on the map can be found in more
than half of all transitive searches (blue to cyan).
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Figure 8.4.: 3D structures of the 14 representative OMBBs for which HHrepID detects a significant
off-diagonal alignment with P -value better than 10−2 (see Table 8.2). Predicted repeat units are
highlighted in blue and yellow. Almost all predicted repeats coincide with a structural ββ-hairpin.
Note that the conservation of sequence repeats seems to be highest near the C-terminal, in accord
with functional restraints related to membrane insertion (Robert et al., 2006).
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Table 8.2.: Sequence repeats are detected in 14 out of the 23 representative OMBBs. Repeats:
detected (excluding the single end strands) and actual number of ββ hairpins. RMSD: median of the
median RMSD of each detected repeat unit with all other detected repeats. P -value: significance for
detection of sequence repeat pattern.

Name PDB-ID Repeats RMSD P -value

FadL 1t16 6/6 3.9 6.4× 10−13

E1M 3prn 6/7 1.1 2.1× 10−11

Porin 2por 6/7 1.5 3.8× 10−10

OmpA 1qjp 3/3 2.2 1.4× 10−7

Omp32 2fgq 5/7 1.8 1.8× 10−7

OmpF 1hxx 7/7 2.3 2.3× 10−7

NspA 1p4t 3/3 1.0 4.9× 10−7

BtuB 2guf 2/10 0.9 3.5× 10−6

VDAC1 3emn 5/9 4.2 6.2× 10−6

FhuA 2fcp 5/10 2.3 6.3× 10−5

FecA 1kmo 3/10 4.7 2.3× 10−4

NalP 1uyn 5/5 1.7 6.5× 10−4

OmpX 1qj8 3/3 2.0 1.8× 10−3

FepA 1fep 4/10 2.3 2.3× 10−3

Figure 8.5: De novo repeat analysis us-
ing HHrepID on the 474 clusters of pu-
tative bacterial OMBBs from the pooled
cluster map (Fig. 8.3). We detect re-
peats with a P -value better than 10−2

in 281 (59%) clusters (green sections),
showing that internal sequence symme-
try is a general property of the majority
of bacterial OMBBs.

We performed the repeat analysis with HHrepID on the sequences of all 23 representative
OMBBs (Table 7.1). In 14 of these sequences, repeats are found with a P -value of better than
10−2 (Table 8.2 and Fig. 8.4). Almost all of the identified sequence repeat units coincide
with the structural ββ hairpins. In six cases, all ββ hairpins present are correctly identified
as repeats, in a further four cases more than half of the hairpins are detected as repeat units.
To quantify if HHrepID is able to correctly identify the structural repeats on the sequence
level, we used the program TM-SCORE (Zhang and Skolnick, 2004) to measure the RMSD

between all aligned pairs of Cα atoms. The RMSD column shows the median of the median
RMSDs of each repeat unit with all other repeat units. 11 out of the 14 OMBBs have median
RMSDs below 2.5Å, demonstrating that the repeats found in sequence are not spurious and



8.2 Sequence repeats detected in majority of OMBBs 98

A

B

Figure 8.6.: Many OMBB sequences contain a hidden repeat pattern. (A) Self-comparison dot plot of
the β-barrel domain of 8-stranded OmpA (Pautsch and Schulz, 2000) generated by HHrepID (Biegert
and Söding, 2008). (B) Dot plot of 14-stranded long-chain fatty acid transporter FadL (Berg et al.,
2004). The probability for each pair of residues to be homologous is coded in shades of gray, from
1.0 (black) via 0.5 (medium gray) to 0.0 (white). The blue and yellow colored boxes on the top and
on the left of the dot plot represent the colored segments in the 3D-structures on the right.
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coincide well with the structural repeats. The distinctness and regularity of repeat patterns
detected by HHrepID are demonstrated in the dot plots of OmpA and FadL in Fig. 8.6. In
the dot plot, the probability for each pair of residues to be homologous is coded in shades
of gray. Clearly, the identified repeats (colored blue and yellow in the OMBB structures)
coincide well with the structural ββ hairpins repeats. We also analyzed the 474 clusters of
putative bacterial OMBBs from the pooled cluster map (Fig. 8.3) and confidently predicted
repeats (P -value < 10−2) in 281 clusters (59%) (Fig. 8.5).
We note that the detected internal sequence similarities are not unique to the OMBB

metafold. We previously identified a 4-fold symmetry in many superfamilies of the (βα)8

barrel fold (Söding et al., 2006a), for example, suggesting that they, too, evolved by ampli-
fication of a shorter module. However, in lipocalins and streptavidin-like β-barrels (SCOP

IDs b.60 and b.61.1), the two groups that are structurally most similar to the 8-stranded
OMBBs, we found sequence repeats in only one of the 26 sequences from SCOP25_1.75, with
marginal significance (P -value = 0.002).

8.3. Sequence similarity not due to structural convergence

It could be argued that the significant but weak sequence similarities among bacterial OMBBs
and between their ββ hairpins are the result of structurally induced sequence convergence:
The hairpin structures could have evolved convergently as a solution to the problem of
forming stable membrane-embedded barrels and these structural and functional constraints
exerted similar, detectable constraints on their sequences. In this case, we would expect to
see a positive correlation between the structural and the sequence similarity of ββ hairpins.
To investigate this question, we manually divided all 23 single-chain bacterial OMBBs

from the SCOP25 set (v1.73, Table 7.1) into overlapping double hairpins with periplasmic N-
and C-termini (see 7.3). We used TM-ALIGN to perform structural searches with each dou-
ble hairpin through the SCOP database from which all OMBB structures had been removed.
For each matched pair, we also calculated the profile-profile similarity score using HHsearch
but based on the fixed alignment from TM-ALIGN. Each blue dot in the scatter plot in Fig-
ure 8.7 marks the structural and sequence similarity scores for a matched pair. Strikingly,
the sequence similarity is essentially independent of structural similarity for these analo-
gous matches (Pearson correlation -0.02). In other words, structurally induced sequence
convergence is not detectable.
How are matches between OMBB double hairpins distributed with respect to this reference

distribution? We compared all double hairpins from canonical OMBBs with each other,
using TM-ALIGN and HHsearch as before. The scores are shown as red dots in Figure 8.7.
Intriguingly, the distribution looks just as expected if OMBBs diverged from a common
ancestor. First, the structural similarity scores are positively correlated with sequence
similarity scores (Pearson correlation 0.31), reflecting the varying degree of divergence from
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A

B

Figure 8.7.: The sequence similarity between OMBBs cannot be explained by structurally induced
sequence convergence. (A) Perform a structural alignment between all double hairpins from single-
chain bacterial OMBBs and all other double hairpins from OMBBs (red), and between double hairpins
and all proteins in the PDB minus OMBBs (blue). (B) Profile-profile and structural similarity scores
with the same coloring as in (A).

the common ancestor. Second, the red distribution is significantly shifted to higher sequence
similarity scores with respect to the reference distribution over the whole range of structural
similarity. This invalidates structure-induced sequence convergence as cause for the elevated
sequence similarities among OMBB hairpins.
One might expect the sequence similarity to depend more strongly on functional proper-

ties than on structure. For example, the vast majority of OMBBs possess a C-terminal signal
sequence in their last β-strand, which is needed for the insertion into the outer membrane
(Robert et al., 2006). To investigate the influence of the C-terminal signal sequence on
the sequence similarities, we highlighted all cases within the red distribution in which the
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compared double hairpins both contained the last β-strand (carrying the C-terminal signal
sequence) (Fig. 8.8D). While a few of these comparisons result in sequence similarities that
are among the highest observed in Figure 8.7, most are distributed just as the other red
points. But even if other functional constraints would contribute significantly to the vertical
scattering in Figure 8.7, which is strong in comparison to the correlation of structure and
sequence similarity, the sheer number of dots in the red distribution allows us to clearly
discern this correlation among the noise.
Could the differences in the red and blue distributions be explained through the sim-

ilarities in global structural architecture among OMBB proteins? To investigate this, we
selected an improved reference set of analogous proteins from the PDB. The folds most
similar in structure to OMBBs are the lipocalin-like and streptavidin-like β-barrels (SCOP

IDs b.60 and b.61.1). Figure 8.8C shows the results of the comparison of OMBBs with all
proteins in SCOP25_1.75 from these two groups. The points lie well within the original blue
distribution (with Pearson correlation 0.04), confirming the previous result.

A B

C D

Figure 8.8.: Profile-profile and structural similarity scores between all double hairpins from single-
chain bacterial OMBBs and all other double hairpins from OMBBs (red contour plot, homolog), and
between double hairpins and all proteins in the PDB without OMBBs (blue contour plot, analog). (A-
D) Highlighted are all hits between double hairpins from single-chain OMBBs and double hairpins
from a special group of proteins: (A) multichain OMBBs (Hia and TolC), (B) non-homologous,
atypical TMBBs with a OMBB-like structure (MspA and α-hemolysin), (C) lipocalins and streptavidin-
like proteins (SCOP IDs b.60 and b.61.1, similar in structure to OMBBs), and (D) double hairpins
from OMBBs containing the last C-terminal β-strand.
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To clarify the relationship between the multi-chain OMBBs Hia and TolC and the single-
chain OMBBs, we compared their double hairpins with the double hairpins from single-chain
OMBBs. The resulting 2D score distributions in Figure 8.8A are in good agreement with the
red distribution, identifying both proteins as members of the large superfamily of canonical
OMBBs.
But could the sequence similarities between OMBBs be explained by similar constraints

through being embedded in a membrane? To address this question, we derived a better
reference score distribution using the atypical TMBBs α-hemolysin and MspA, which can
be assumed to be unrelated to the canonical, single-chain, bacterial OMBBs. Since both
these proteins possess only a single ββ hairpin in each chain, we concatenated two identical
hairpins to generate double hairpins (see 7.3). We compared these two double hairpins
with all double hairpins from canonical OMBBs in the same way as before. The resulting
distribution of sequence and structure similarity scores is shown in Figure 8.8B. Clearly, the
new reference distribution lies just about the horizontal regression line from the previous
reference distribution, confirming the previous results.
The mechanisms of membrane insertion certainly differ between the canonical OMBBs

and the atypical TMBBs. The functional requirement of membrane insertion can induce
restraints that might lead to similarities in sequence. If this was the explanation for the
observed similarities, we would expect the sequence similarity between OMBBs to be inde-
pendent of structural similarity, just as we observe for the score distributions of analogous
matches (Fig. 8.7 and Fig. 8.8B). What we find, however, is a clear correlation of sequence
with structural similarity (Fig. 8.7). The common origin and subsequent divergence of
bacterial OMBB hairpins therefore presents the most plausible explanation.



9. Discussion

In our first approach to investigate the evolutionary origin of OMBBs, we demonstrated
that 22 out of 23 OMBBs of known structure can be multiply linked to a core group at
low false positive rates, by direct comparison of their profile HMMs and by an exhaustive,
transitive, sequence search method. If the observed similarities between OMBB profile HMMs
were caused by structurally induced sequence convergence, we would expect our transitive
searches to pick up sequences of other proteins that are similar in their hydrophobicity
patterns and structures, such as lipocalins or cytosolic β-barrels. These again should be
able to detect yet other folds similar to them, and so on. In contrast to structural similarity,
homology is Boolean and transitive (Sadreyev et al., 2009) and as such is much better able
to explain the low error rates and near-completeness of our cluster maps.
In the second approach, clear repeat patterns were detected within most sequences of

bona fide OMBBs for the first time. The repeating sequence unit coincides well with the ββ
structural repeat unit. We have previously found repeat patterns in many other structurally
repetitive folds, such as (βα)8 barrels, which possess a (βα)2 repeat unit (Söding et al.,
2006a). Our results support the notion that most domains which show residual sequence
similarities between structural repeats originated through repeat amplification.
Third, we showed that the scenario of structure-induced sequence convergence cannot be

invoked to explain the observed sequence similarities. At the same structural similarity, ββ
hairpins from single-chain OMBBs are clearly more similar in sequence among themselves
than they are to hairpins from the atypical TMBBs, which are structurally very similar to
the canonical OMBBs and are subject to the same constraints from the membrane.
We found evidence for the homology of all major groups of OMBBs from Gram-negative

bacteria, including TolC, the trimeric autotransporters, and cyanobacterial OMBBs, and we
could link these with the mitochondrial OMBBs VDAC1 and Sam50. Since mitochondria
and chloroplasts descended from endosymbiotic α-proteobacteria and cyanobacteria, we
expect most or all eukaryotic OMBBs to be related to the large OMBB metafold (Alva et al.,
2008) delineated in this study. In addition, 8 proteins from the Gram-positive Clostridiae
are contained in our pooled map. This observation would nicely fit the recent hypothesis
that Gram-negative bacteria arose from an ancestral Clostridium symbiotically engulfing
an actinobacterium (Lake, 2009).
From a methodological perspective, the combined sequence and structure analysis rep-

resents an advance for protein evolutionary studies: It allows to distinguish between two
opposing scenarios, convergent and divergent evolution, and to demonstrate that structure-
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induced sequence convergence can be neglected. Furthermore, it strengthens the confidence
in the common belief that profile-profile comparison methods excel in distinguishing re-
motely homologous from structurally analogous proteins.
From an evolutionary perspective, our results demonstrate the importance of repeat ampli-

fication for the origin of protein folds. The common evolutionary origin of OMBBs therefore
also lends further credence to the hypothesis that, when proteins began to take over many
of the functions from RNA, protein domains arose by amplification and recombination from
smaller peptide modules, which originally evolved as cofactors in the RNA world (Söding
and Lupas, 2003). The ancestral OMBB ββ hairpin may well have been among this pool of
ancient peptide modules from which the first proteins were formed.



Part III.

Appendix



A. Characteristics & Definitions

A.1. Length distributions of various databases

The UniProt database from March 29, 2011 consists of 14 423 061 sequences with an average
length of 322.502 residues. The shortest sequence has a length of 2, the longest of 36 805
residues. The non-redundant (NR) database from NCBI (August 12, 2011) has 14 605 097
sequences with an average length 342.131. The shortest sequence has a length of 6, the
longest of 36 805 residues. The test set for the runtime benchmark contains 100 random
proteins from the NCBI NR database with an average length of 354.3. The shortest sequence
has a length of 30, the longest of 2102 residues. Figure A.1 and Table A.1 shows the length
distribution of these sets.

Figure A.1.: Length distribution of the UniProt database from March 29, 2011 and the NR database
from August 12, 2011.

A.2. Effective number of sequences

The effective number of sequences (Neff) at column i of a multiple alignment is calculated on
the subalignment Mi formed by all sequences with a residue in column i and by all columns
with at most 10% terminal gaps in these sequences. A terminal gap is a gap that lies either
to the left or to the right of the entire sequence. For each column j ofMi we calculate amino
acid frequencies p(j,x), using the Henikoff sequence weighting scheme. Then the number of
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Table A.1.: Length distribution of the UniProt database from March 29, 2011, the NR database
from August 12, 2011, and the random test set for the runtime benchmark

Length number of sequences
UniProt NR random NR-seqs

< 50 448 610 430 158 3
50− 100 1 465 504 1 371 763 11
100− 150 1 697 832 1 655 875 14
150− 200 1 632 375 1 593 513 6
200− 250 1 702 938 1 663 011 14
250− 300 1 407 702 1 388 825 6
300− 400 2 274 856 2 326 880 17
400− 500 1 534 458 1 573 495 12
500− 1000 1 905 776 2 134 912 11
> 1000 353 010 466 665 6

effective sequences is

Neff(i) = exp

− 1
Li

∑
j∈Mi

20∑
x=1

p(j,x) log p(j,x)

 (A.1)

Here, Li is the number of columns in Mi.

A.3. False discovery rate

The false discovery rate (FDR) is the expected proportion of false positives (FP) from all
seen hits. It is defined by:

FDR = FP

FP + TP
(A.2)

For example, if we have seen 1000 hits and 100 of them are false positives, then the
false discovery rate is 10%. For homology detection the relevant FDR range is roughly
between 0.1% and 10%, since an FDR of 10% corresponds to a marginal FDR of ∼ 50%. The
marginal FDR measures what fraction of predictions with scores between a threshold S and
some S + ∆S are correct. With other words, if a line in a benchmark plot cross the 10%
FDR line, every second new match can be expected to be an false positiv.



B. Quality of HHblits confidence values

Figure B.1.: Relationship between HHblits confidence estimates from the maximum accuracy algo-
rithm and the probability for a residue pair to be correctly aligned. The confidence values have an
excellent correlation with the fraction of correctly aligned columns, and are nearl independent of the
sequence identity between query and template sequences.



C. Pfam families with newly identified
homologous structure

Table C.1.: List of 394 Pfam families for which no homologous template is known, HMMER3 has
no match in the PDB below an E-value of < 10−3 and for which HHblits has a match in the PDB
database with E-value < 10−3. In each row, the best HHblits match is given with its E-value and
the coverage of the Pfam query. The last column specifies the HMMER3 E-value for the best match,
an ’-’ indicates that HMMER3 has no matches up to the default reporting E-value threshold of 10.

Pfam-ID HHblits HMMER
hit E-value cov(%) E-value

PF03115 3hag 2e-101 53.24 -
PF11838 2xdt 1.1e-55 99.77 1
PF09562 2oa9 1.2e-54 98.85 -
PF10991 1je5 4e-54 96.02 -
PF04412 1c96 2.6e-53 83.81 0.006
PF09863 3iv3 1.2e-50 95.77 0.0048
PF12043 3c5n 1.9e-49 98.81 0.26
PF11047 3cxb 2e-49 73.10 0.049
PF07718 1r4x 3.8e-49 86.38 0.051
PF07632 2mas 2.1e-47 95.94 -
PF08010 2b3w 4.2e-45 96.58 0.14
PF11329 3eu8 9.5e-44 98.64 0.31
PF03813 1q79 1e-43 47.19 0.017
PF05316 3bbn 3.4e-41 90.71 -
PF09520 1wte 5.9e-40 97.33 -
PF12264 1qqp 7.5e-38 90.26 0.043
PF11161 2ra9 7.2e-37 77.46 -
PF09739 3f8t 2.8e-36 70.51 -
PF10963 3fgx 4.5e-36 100.00 0.0027
PF05864 2waq 5.8e-36 87.30 0.022
PF04486 1tuw 8.2e-36 77.39 -
PF05714 1w33 1e-35 86.26 0.078
PF05428 3kq4 1e-34 92.90 0.06
PF07588 1koe 2.1e-34 95.83 0.059
PF09536 2kii 1.1e-33 95.60 -
PF03662 1qw9 1.5e-33 99.38 -
PF11443 2nvo 1.6e-33 92.88 -
PF05538 2odj 1.7e-33 95.05 -
PF07520 1yuw 2.9e-33 58.91 -
PF06124 2r41 4.1e-33 100.00 -
PF05291 2ilr 4.7e-33 60.86 0.073
PF06045 1nkg 2.3e-31 92.65 -
PF06787 2a9s 4.6e-31 99.38 -
PF10023 1z5h 8.3e-31 93.51 0.061
PF05986 3ghm 1.4e-30 100.00 -
PF05482 1tr2 4e-30 85.30 -
PF11686 1se7 1.6e-29 100.00 -
PF07307 3nf2 1.8e-29 80.95 0.027
PF07528 1px5 2e-29 94.19 0.46
PF03254 2de0 2.4e-29 74.48 0.5

Pfam-ID HHblits HMMER
hit E-value cov(%) E-value

PF07395 1lrz 5.9e-29 98.86 -
PF10287 3iln 6.3e-29 91.81 -
PF01531 2hhc 7.1e-29 92.88 0.12
PF06074 3kdr 1.8e-28 56.66 0.14
PF06128 1yyh 2e-28 99.65 0.17
PF02088 1dec 1.2e-27 100.00 0.011
PF05136 3kdr 1.2e-27 90.17 -
PF07756 2qc0 1.5e-27 97.69 -
PF04681 1z3q 1.8e-27 86.45 -
PF09865 2w7q 1.8e-27 96.79 -
PF08189 2b5b 3e-27 94.87 0.031
PF10770 2plg 5.3e-27 82.88 0.014
PF11841 3dad 6e-27 99.36 -
PF06245 1vk1 6.1e-27 52.51 0.78
PF05060 1fo8 7.7e-27 75.42 0.062
PF12243 3d9j 1.1e-26 99.27 -
PF09960 2w3z 1.6e-26 43.59 1.2
PF10962 1v9m 2.1e-26 87.63 -
PF07014 2nw8 2.3e-26 95.20 -
PF10100 3c7a 2.7e-26 92.56 0.25
PF04841 1got 7.2e-26 70.80 -
PF07608 2yzy 1e-25 96.71 -
PF07379 3ci0 1.3e-25 79.43 -
PF03687 3bry 3.2e-25 87.35 0.11
PF07592 3hot 3.6e-25 93.57 -
PF05651 2a2l 7.2e-25 82.22 0.0057
PF12260 2acx 1.1e-24 89.76 -
PF06230 1zcz 1.5e-24 69.67 -
PF05213 1vgj 3.9e-24 66.67 0.0084
PF11768 1vyh 4.8e-24 61.72 0.097
PF04551 1tx2 4.9e-24 71.68 0.07
PF05550 2wur 5.5e-24 74.40 -
PF03290 1th0 7.4e-24 53.85 1.5
PF09927 2jxp 8.9e-24 99.15 6.2
PF09807 3bs4 9.5e-24 97.60 0.087
PF06199 2k4q 1.1e-23 100.00 0.013
PF08472 1tp6 1.2e-23 84.21 -
PF08553 1got 1.7e-23 42.52 0.15
PF11340 3cz8 1.8e-23 86.14 0.17
PF09892 3na6 2.3e-23 84.54 0.091
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Table C.1 continue

Pfam-ID HHblits HMMER
hit E-value cov(%) E-value

PF09674 1kea 5.4e-23 81.06 0.012
PF05551 1a73 5.6e-23 52.24 0.91
PF08695 2ciu 7.4e-23 76.56 0.053
PF04405 2k5e 7.9e-23 98.21 0.0013
PF10179 1fnh 8.7e-23 95.62 0.66
PF02677 1wy5 9.2e-23 94.12 9.9
PF04708 3guv 1e-22 62.02 -
PF07006 2k3d 1.2e-22 66.40 -
PF10250 2hhc 1.8e-22 94.17 0.099
PF11813 3h2d 1.9e-22 71.67 -
PF08928 2fef 2.3e-22 100.00 0.029
PF09859 3itq 2.5e-22 83.73 -
PF10107 3fov 8.5e-22 48.75 0.89
PF09843 2zws 8.6e-22 73.60 -
PF08470 2vxr 1.2e-21 59.88 -
PF11017 2hcy 2.4e-21 98.75 0.061
PF04937 2bw3 2.6e-21 99.35 0.21
PF10222 1h54 2.7e-21 56.50 -
PF03336 2jig 2.9e-21 46.15 0.23
PF10677 2f1c 3.4e-21 97.85 0.48
PF06420 1h2i 3.9e-21 56.50 -
PF06674 3dtd 4.7e-21 46.13 3
PF09796 2fyu 7.8e-21 87.10 0.33
PF06951 1lwb 1e-20 50.56 -
PF06437 2fue 1.2e-20 64.90 -
PF10748 2ivw 2.2e-20 72.39 -
PF07894 1byr 2.7e-20 58.80 0.0045
PF00609 2bon 4e-20 100.00 -
PF09517 1yd6 5.6e-20 69.01 0.77
PF11039 2vzy 5.9e-20 98.01 0.11
PF03351 1d7b 9.8e-20 96.80 0.0047
PF12541 1ogo 1e-19 79.50 -
PF11680 3k44 1.2e-19 63.64 0.9
PF12439 1v7w 1.5e-19 99.55 -
PF05176 3gkn 2e-19 62.70 -
PF09810 3l0a 2.1e-19 54.39 0.011
PF10738 3lyd 2.3e-19 55.51 0.0022
PF05046 2ogh 2.7e-19 88.89 0.043
PF05342 3n6z 3.4e-19 48.98 -
PF10288 1ni5 3.4e-19 98.95 0.14
PF09778 3erv 4.4e-19 99.12 0.0024
PF04788 3bk5 5.1e-19 84.50 -
PF03214 1qg8 6.2e-19 34.00 -
PF06544 2iyg 6.3e-19 93.42 0.39
PF11854 2guf 7.5e-19 82.01 -
PF01973 2p2v 1e-18 85.88 0.0029
PF07845 1m2d 1e-18 78.95 0.012
PF08885 1ivn 1.1e-18 79.34 0.051
PF08642 1jbi 1.4e-18 85.27 3.5
PF07607 1z5h 1.4e-18 96.00 0.39
PF06241 1lnq 1.4e-18 78.16 -
PF07076 2qcp 1.4e-18 83.54 0.26
PF10365 3km5 1.5e-18 89.51 0.49
PF07959 1yp2 1.5e-18 65.83 0.38
PF10934 2ia7 1.7e-18 89.32 -
PF02411 2h3o 3.5e-18 54.78 -
PF10012 3h96 3.7e-18 80.00 0.028

Pfam-ID HHblits HMMER
hit E-value cov(%) E-value

PF07115 2ia7 4.1e-18 90.09 0.0018
PF07293 3i9v 6.3e-18 97.44 -
PF06477 2ag4 7.4e-18 97.32 -
PF06021 1sqh 1.1e-17 99.51 -
PF03018 2brj 1.2e-17 77.78 0.0043
PF04114 3k9t 1.3e-17 44.98 -
PF05565 2p2u 1.3e-17 74.84 0.016
PF07905 2ioj 1.3e-17 91.06 0.012
PF11751 3bry 1.4e-17 89.78 -
PF09565 2c1l 1.5e-17 61.20 -
PF08734 2zbc 1.8e-17 82.42 0.0045
PF11019 3mc1 3.2e-17 75.37 0.0029
PF06044 2jne 3.4e-17 18.43 -
PF04865 3h2t 5e-17 74.60 -
PF12362 2aya 5.2e-17 84.62 -
PF05991 1exn 6.8e-17 98.14 -
PF06622 1o9y 7.3e-17 24.59 -
PF08521 2kse 1.3e-16 97.95 0.05
PF08480 1ru4 1.4e-16 99.46 -
PF03302 1yy9 1.8e-16 77.92 -
PF07506 1zx4 2.1e-16 98.83 0.0047
PF01185 2fmc 5.1e-16 79.63 3.1
PF10087 2iw1 6.2e-16 95.65 0.057
PF11814 3erv 6.2e-16 90.00 0.15
PF03452 1xhb 7.3e-16 93.31 -
PF10703 2p8g 8.9e-16 30.65 0.12
PF02413 2kz6 1.2e-15 57.14 0.71
PF07327 1wqj 1.3e-15 55.14 0.35
PF11356 2ivw 1.5e-15 54.17 0.22
PF12055 1k1x 2.3e-15 58.25 -
PF09337 3nnq 5.1e-15 100.00 0.022
PF08424 3dss 5.1e-15 90.61 0.031
PF08170 3gir 8.5e-15 88.78 0.046
PF08379 3isr 1.1e-14 100.00 -
PF06805 3dwg 1.3e-14 42.70 -
PF09363 1umd 2.4e-14 72.41 -
PF10826 2fe3 2.7e-14 85.19 0.46
PF07611 3bma 3.4e-14 80.00 0.021
PF08757 3dnu 3.5e-14 58.54 -
PF07461 1tvg 4.2e-14 31.39 0.029
PF09941 1vet 7.7e-14 91.67 -
PF10141 2zxr 8.4e-14 75.13 0.11
PF09366 2pcs 9.6e-14 93.71 -
PF05272 2dhr 1e-13 64.00 1.2
PF07618 1y6u 1.2e-13 98.25 0.46
PF11824 2okx 1.3e-13 77.90 0.038
PF10483 3bs4 3.4e-13 79.18 -
PF10029 3c12 3.5e-13 81.51 0.095
PF11863 3hxl 4e-13 95.55 0.016
PF06147 3g27 4.2e-13 42.93 0.1
PF10743 1y6u 4.2e-13 70.93 0.047
PF10246 1k0r 4.3e-13 82.86 -
PF11288 3fak 5.7e-13 66.99 0.0043
PF05227 1vls 8.2e-13 97.10 0.17
PF11845 3b42 8.3e-13 59.88 2.2
PF10302 2bps 8.8e-13 34.29 0.019
PF11312 3mgg 9.4e-13 55.44 -
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Table C.1 continue

Pfam-ID HHblits HMMER
hit E-value cov(%) E-value

PF11071 1s2d 1.8e-12 99.29 0.3
PF10037 1xi4 2.3e-12 75.06 -
PF04781 1elw 2.9e-12 96.72 0.27
PF09530 2i71 4.1e-12 74.59 0.023
PF07800 3knv 4.9e-12 80.62 0.1
PF08156 3id6 6.1e-12 100.00 2.8
PF06381 3kdr 8.8e-12 95.51 0.05
PF04244 2wq7 9.2e-12 69.78 -
PF10127 3c18 1.2e-11 79.20 -
PF08130 1w9n 1.2e-11 51.79 -
PF11959 3hft 1.4e-11 84.09 0.27
PF02066 1m0j 1.5e-11 51.85 3.2
PF04986 1omh 1.6e-11 33.68 -
PF04082 2veq 1.6e-11 29.30 -
PF10138 3ibz 1.6e-11 78.49 0.14
PF06075 2b29 2.1e-11 20.55 -
PF03490 2plc 2.5e-11 72.55 -
PF01927 3ga8 2.9e-11 37.58 0.035
PF09345 1h4x 2.9e-11 84.00 0.13
PF11761 3eeq 2.9e-11 100.00 0.1
PF06881 2e31 3.4e-11 70.09 0.011
PF04492 3e6c 3.5e-11 82.00 0.02
PF06890 2p5z 4.2e-11 46.03 -
PF08303 1yj5 4.7e-11 98.82 0.011
PF03281 1px5 6.3e-11 97.49 0.12
PF08497 2yxb 1.5e-10 47.75 -
PF10030 2jyx 1.5e-10 63.83 -
PF11997 3c48 1.7e-10 99.64 -
PF02697 3fmt 1.7e-10 86.67 0.0022
PF02474 1m4i 2.1e-10 73.10 -
PF12226 3iyo 2.5e-10 43.04 -
PF10567 1l3k 2.7e-10 69.36 -
PF09826 1fwx 4.3e-10 81.37 0.014
PF03158 2xeh 5.9e-10 75.65 -
PF08371 3hsi 6.6e-10 86.42 -
PF02666 2gpr 9.4e-10 90.23 -
PF06676 2waq 1.4e-09 37.86 0.59
PF06322 3e7l 1.5e-09 67.19 0.09
PF08685 1z3u 1.9e-09 24.00 -
PF07508 2r0q 1.9e-09 56.14 -
PF09317 2z1q 2e-09 48.75 -
PF07328 2ba3 2.2e-09 27.89 -
PF10908 1zat 2.9e-09 75.70 -
PF10474 2fji 3e-09 96.58 -
PF02521 3jty 3.5e-09 57.42 -
PF08499 3g4g 3.7e-09 88.52 0.025
PF06669 3d9x 3.8e-09 97.14 -
PF11954 1ei5 4e-09 63.87 0.028
PF07202 1h3i 4.5e-09 71.98 0.22
PF12010 1j1n 5.1e-09 94.20 0.12
PF04936 3hot 7.7e-09 78.49 8.1
PF08116 1c6w 7.8e-09 87.10 0.017
PF12000 3fro 8.5e-09 69.59 -
PF11766 1n67 8.6e-09 97.18 -
PF11711 2qv7 1.2e-08 32.09 -
PF06883 1twf 1.7e-08 100.00 2
PF08074 1ofc 1.7e-08 41.07 1.3

Pfam-ID HHblits HMMER
hit E-value cov(%) E-value

PF08465 1p6x 2.1e-08 96.97 -
PF05263 2o8x 2.5e-08 48.89 0.095
PF12128 1w1w 3.2e-08 6.19 0.0075
PF09889 1lv3 3.3e-08 46.55 0.059
PF04450 1z5h 4.3e-08 86.00 0.023
PF11308 2zxq 4.5e-08 49.71 -
PF09597 2e8n 4.7e-08 98.25 2.3
PF09824 2p4w 5.3e-08 78.75 0.0017
PF10780 1s3a 5.3e-08 100.00 -
PF11658 3lxq 6.1e-08 58.70 -
PF06011 1nep 7.2e-08 22.92 -
PF04407 3dcm 8.4e-08 95.43 0.0061
PF11853 2odj 8.5e-08 69.22 0.049
PF09582 1p90 9.6e-08 50.46 -
PF07610 2qsv 1e-07 100.00 0.015
PF11325 2vw9 1.2e-07 98.85 -
PF10686 2nx2 1.2e-07 88.73 0.017
PF01439 2kak 1.3e-07 93.67 0.34
PF08737 2fau 1.3e-07 77.88 -
PF05380 1rw3 1.7e-07 86.67 -
PF07699 2hey 1.9e-07 100.00 0.0045
PF06378 1h2i 2.5e-07 80.50 6.1
PF05610 2apn 3.6e-07 89.47 0.19
PF10758 3hxl 4.1e-07 99.45 -
PF04189 1yb2 4.4e-07 77.70 -
PF09855 2k4x 5.5e-07 82.81 0.22
PF06355 1gwy 6.1e-07 76.52 -
PF05895 2fl8 6.6e-07 28.31 -
PF04917 1oqw 6.8e-07 15.71 0.0036
PF04572 2vk9 7e-07 80.00 0.087
PF10144 3b42 7.5e-07 54.29 0.061
PF08405 3i86 8.4e-07 12.01 -
PF07087 1lwb 9.7e-07 77.17 -
PF09970 2fcl 9.7e-07 77.30 -
PF06977 1npe 1e-06 89.81 0.0024
PF07429 2gek 1.1e-06 80.06 -
PF10349 2hth 1.3e-06 32.41 -
PF10116 3e20 1.3e-06 98.57 -
PF08417 3gke 1.3e-06 59.43 -
PF10711 2vxz 1.9e-06 82.65 0.014
PF12303 2wg3 2.1e-06 61.70 0.0061
PF07813 3epv 2.2e-06 88.46 0.0022
PF10373 1ya0 3.5e-06 72.60 -
PF02681 2ipb 4.2e-06 90.54 0.27
PF11897 2gj4 4.2e-06 42.86 0.008
PF10987 3h35 4.5e-06 72.65 0.1
PF07617 3ia8 4.7e-06 98.18 -
PF03345 2gk3 4.9e-06 54.17 -
PF03850 3ibs 5.2e-06 80.92 0.011
PF07919 2icn 5.3e-06 62.70 0.069
PF10781 1whg 5.3e-06 98.39 -
PF07107 3ec9 5.5e-06 69.39 0.0012
PF05782 1kxp 5.5e-06 52.22 -
PF12578 1lw3 6.2e-06 66.29 0.29
PF04377 3gkr 6.4e-06 95.35 -
PF11903 1baz 6.6e-06 47.95 -
PF12073 1pjr 6.8e-06 94.23 0.26
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Table C.1 continue

Pfam-ID HHblits HMMER
hit E-value cov(%) E-value

PF04312 1hjr 8.3e-06 76.98 0.025
PF07480 3epv 8.6e-06 94.74 0.58
PF12525 1v9n 8.7e-06 86.67 0.28
PF04413 1vgv 8.8e-06 86.34 -
PF05091 3fqi 9.4e-06 53.89 0.39
PF10367 1chc 9.7e-06 29.36 6.2
PF06353 2fph 1e-05 36.81 -
PF06239 1xi4 1e-05 65.67 -
PF08192 1hpg 1.1e-05 13.75 -
PF08579 1xi4 1.2e-05 82.50 -
PF05510 1u2c 1.3e-05 39.78 -
PF11833 1faf 1.3e-05 22.06 3.9
PF06823 2l1s 1.4e-05 80.33 -
PF09984 3b42 1.5e-05 93.29 -
PF09352 2qgp 1.6e-05 43.68 -
PF06375 2g30 1.9e-05 34.78 -
PF03406 1h6w 2.1e-05 90.70 -
PF12340 3ly5 2.1e-05 77.73 0.036
PF10952 2fbn 2.2e-05 88.03 -
PF10240 2qp2 2.2e-05 37.80 -
PF02754 3cf4 2.5e-05 80.95 0.91
PF10941 1uf3 2.5e-05 55.08 0.054
PF05689 1f00 2.5e-05 99.45 -
PF01941 2p02 2.6e-05 91.86 0.62
PF11839 1jcd 2.7e-05 39.76 -
PF06956 1xmx 2.7e-05 75.94 -
PF07585 2x55 2.8e-05 62.71 -
PF06448 1lsh 3.2e-05 39.33 -
PF10865 1ilo 3.2e-05 51.28 1
PF10505 3fqi 3.5e-05 72.90 -
PF11865 2qk1 3.9e-05 96.89 0.65
PF12222 1pgs 4e-05 69.09 0.21
PF00746 2ww8 4.1e-05 92.50 0.36
PF09759 1xqr 4.9e-05 72.63 1.2
PF11834 2dnf 5.1e-05 98.48 5.4
PF10126 3dfe 5.5e-05 92.86 0.068
PF07878 1nla 5.7e-05 92.00 -
PF07505 3c8f 7.2e-05 81.89 0.1
PF04155 1yo3 7.6e-05 72.97 -
PF10904 1j8b 7.6e-05 63.37 -
PF10706 2fcl 8.7e-05 88.51 -
PF01963 2g5g 8.9e-05 97.76 0.32
PF11336 2o4v 9.3e-05 77.48 0.014

Pfam-ID HHblits HMMER
hit E-value cov(%) E-value

PF03249 1p4t 9.4e-05 17.98 -
PF04599 1rxw 9.8e-05 65.00 -
PF01696 1pcl 0.0001 49.61 -
PF06702 1cja 0.00011 54.02 -
PF10122 2jr6 0.00013 80.39 10
PF11112 1z4h 0.00015 86.84 -
PF11849 3e0y 0.00016 94.77 -
PF06904 1lbu 0.00018 54.82 0.015
PF05918 1b3u 0.00019 60.90 0.0019
PF09854 2qgp 0.00019 23.82 0.021
PF10497 1wil 0.00025 61.76 0.71
PF07802 2k3j 0.00028 81.43 0.64
PF04305 3chh 0.00028 73.09 0.092
PF08736 2i1j 0.00028 51.06 -
PF06974 2jgp 0.0003 98.04 -
PF08288 3fro 0.0003 82.22 -
PF00242 1wz4 0.00031 7.33 -
PF09538 1vd4 0.00036 23.02 2.9
PF10673 3lub 0.00037 66.21 -
PF12215 2cqs 0.00038 63.13 -
PF11379 2cqy 0.00038 22.10 -
PF03258 2w7a 0.00045 46.67 0.094
PF10115 2kon 0.00046 76.34 -
PF08498 1wg8 0.00049 76.12 -
PF05444 3laq 0.00049 87.82 2.9
PF05869 3lkd 0.00055 81.40 0.06
PF11001 1wij 0.00058 65.61 0.0013
PF10309 3d45 0.00063 96.67 0.036
PF04049 3kae 0.00065 86.05 -
PF11006 2pxg 0.00067 87.21 1.6
PF07295 1lko 0.00068 25.85 0.096
PF10407 2ns5 0.00069 94.67 2.9
PF10165 1xm9 0.00073 77.28 -
PF08749 2plg 0.00074 92.41 -
PF04904 1rg6 0.00076 78.05 0.13
PF07409 2ia7 0.00078 63.25 0.049
PF12416 2dmh 0.00085 97.09 -
PF09576 1v54 0.00086 91.23 -
PF08004 2cob 0.00086 44.27 -
PF09415 1b67 0.00087 91.78 0.028
PF09894 1iru 0.0009 92.23 4.3
PF07855 2vfx 0.00091 95.73 0.16
PF10790 2al3 0.00095 92.11 0.019
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For bug reports, questions, or comments please contact johannes@soeding.com

HHsearch/HHblits is a software suite for detecting remote homologues of proteins and for
generating high-quality alignments for homology modeling and function prediction. HH-
search is based on the pairwise comparison of profile hidden Markov models (HMMs). HH-
blits builds on top of HHsearch and achieves almost the same sensitivity as HHsearch at up
to 1000 times the speed, by running a very fast profile-profile comparison prefilter before
the full pairwise comparison of HMMs. HHblits can be used in an iterative search mode
in combination with an HMM-encoded version of the UniProt or nr datbases. HHblits is
faster than PSI-BLAST yet it achieves much higher sensitivity and generates alignments of
much better quality.
In addition to the command line package described here, two web servers HHblits and

HHpred are available at http://toolkit.tuebingen.mpg.de and http://toolkit.lmb.

uni-muenchen.de that run the HHsearch and HHblits software and offer extended interac-
tive functionality, such as options for checking query and template alignments, histogram
views of alignments, building 3D models with MODELLER etc. In the latest CASP com-
petition (2010), a fully automated version of HHpred based on HHsearch and HHblits was
ranked best out of the 81 servers in template-based structure prediction, the category most
relevant for biological applications, while having response times of minutes instead of days as
most other servers (http://predictioncenter.org/casp9/groups_analysis.cgi?type=

server&tbm=on&submit=Filter)

http://toolkit.tuebingen.mpg.de
http://toolkit.lmb.uni-muenchen.de
http://toolkit.lmb.uni-muenchen.de
http://predictioncenter.org/casp9/groups_analysis.cgi?type=server&tbm=on&submit=Filter
http://predictioncenter.org/casp9/groups_analysis.cgi?type=server&tbm=on&submit=Filter
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D.1. Obtaining HHblits and the databases

Binaries can be downloaded for Linux x86 (32bit), Linux AMD64, and Apple PPC OS X
can be downloaded at

ftp://toolkit.lmb.uni-muenchen.de/HHblits/

In the subdirectory databases/ different databases can be downloaded:

1 NR20 (c) Remmert & Soeding, based on NR, clustered to 20 % seq. id.
2 UniProt20 (c) Remmert & Soeding, based on UniProt, clustered to 20 % seq. id.
3 pdb70 (c) Remmert & Soeding, based on PDB, updated weekly
4 scop70 (c) Remmert & Soeding, based on SCOP, updated with SCOP

All databases consists of an HMM database, an A3M database and a CS-database for
prefiltering.

D.2. Obtaining HHsearch and the databases

Binaries can be downloaded for Linux x86 (32bit), Linux AMD64, Windows x86 (now
includes multi-threading support), Apple PPC OS X, and SUN Solaris can be downloaded
at

ftp://toolkit.lmb.uni-muenchen.de/HHsearch

or

ftp://ftp.tuebingen.mpg.de/pub/protevo/HHsearch/

In the subdirectory databases/ many databases can be downloaded:

1* pdb70 (c) J. Soeding, based on PDB, updated weekly
2* scop70 (c) J. Soeding, based on SCOP, updated with SCOP
3* PfamA http://www.sanger.ac.uk/Software/Pfam/
4* SMART http://smart.embl-heidelberg.de/}, downloaded from NCBI site
5* PfamB based on ProDom, downloaded from Pfam site
6* COG http://www.ncbi.nlm.nih.gov/COG/new/
7* KOG http://www.ncbi.nlm.nih.gov/COG/new/
8* CD/NCBI http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
9 Panther http://www.pantherdb.org/, from InterPro

10 TIGRFAMs http://tigrblast.tigr.org/web-hmm/, from InterPro
11 PIRSF http://pir.georgetown.edu/pirsf/, from InterPro
12 Superfamily http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/, from InterPro
13 CATH/Gene3D http://cathwww.biochem.ucl.ac.uk/latest/, from InterPro

The eight databases marked by an asterisc can be downloaded with HMMs in HHsearch
format (*.hhm.tar files) and the multiple sequence alignments (MSAs) in A3M format
(*.a3m.tar files). The *.hhm.tar and *.a3m.tar files untar into thousands of separate files,
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so before unnzipping and untarring, first create a directory for the database. Note that
you can transform all A3M files to FASTA by using the reformat.pl script supplied with
HHsearch:

> ./reformat.pl ’*.a3m’ .fas

For the other five databases, you can download the HMM models in HMMer format as
*.hmm.tar files. The *.hmm.tar files untar into a single concatenated HMMer file. For
theses databases, unfortunately no alignments are publicly available (info to the contrary
is wellcome.)

D.3. Getting started

D.3.1. Overview of programs

hhmake Build an HMM from an input MSA in A2M, A3M, or FASTA format
hhblits Iteratively search a database of HMMs with a query sequence or MSA
hhsearch Search a database of HMMs with a query MSA or HMM
hhalign Pairwise alignment of two HMMs/MSAs, dot plots etc.
hhfilter Filter MSA by maximum sequence identity, coverage, etc.
reformat.pl Reformat one or many MSAs
addss.pl Add secondary structure information to a given MSA
create_db.pl Build HHblits HMM- and/or A3M-databases
create_cs_db.pl Build a HHblits prefilter database
buildali.pl Build a PSI-BLAST MSA from a sequence or MSA, add sec. structure
alignhits.pl Extract an MSA from a BLAST/PSI-BLAST output
hhmakemodel.pl Generate MSAs or coarse 3D models from HHsearch results file
Align.pm Perl package for local and global sequence-sequence alignment

Call a program without arguments (or with -h) to get a more detailed description of its
syntax.

D.3.2. Generate a MSA by an iterative HHblits search

The best way to generate a MSA (Multiple Sequence Alignment) is to use the HHblits
software from this package. HHblits performs an iterative HMM-HMM comparison and
has a runtime comparable to that of PSI-BLAST. This runtime is achived by a fast profile-
profile prefilter based on SSE2 instructions, which reduces the number of comparisons in
the time-consuming HMM-HMM comparison step.
HHblits needs for running the path to the two needed libraries (context_data.lib and

cs219.lib in the libs-directory of this package) and the basename of the database (e.g.
databases/uniprot20). The following database files must be present:

BASENAME.cs219 database for the prefiltering step
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BASENAME_hhm_db HMM databases

BASENAME_hhm_db.index index table for HMM databases

When performing more than 1 search iteration or if an MSA should be generated, you
also need the following databases:

BASENAME_a3m_db A3M databases

BASENAME_a3m_db.index index table for A3M databases

These default parameters for HHblits can be adapted in the configuration file .hhdefaults

in the binary directory or they have to be specified by each calling of HHblits. All default
options can be overridden on the command line.
The database scan with HHblits can be started by typing:

> ./hhblits -i query.seq -d databases/uniprot20

The complete search results, including the pairwise query-template alignments, are writ-
ten to the default output file, query.hhr. If you are interested in the MSA, you have to
add the -oa3m option:

> ./hhblits -i query.seq -d databases/uniprot20 -oa3m query.a3m

A special parameter mact can be used to choose the tradeoff between sensitivity and
precision. With a low mact-value (e.g. -mact 0.01) you get very sensitive, but not so
precise alignments, whereas a search with a high mact-value (e.g. -mact 0.9) results in
shorter, but very precise alignments. The default value of mact in HHblits is 0.5.
If everything works, you will obtain an A3M-formatted MSA in file query.a3m. For

obtaining other formats you can use the reformat.pl script, e.g. for reformatting the
MSA to CLUSTAL format type:

> ./reformat.pl a3m clu query.a3m query.clu

The next step would be to add secondary structure information to this alignment. This
can be done by using the script addss.pl (you have to fill in a few paths at the top of the
script for needed binaries):

> ./addss.pl query.a3m

Now you can generate a hidden Markov model (HMM) from this MSA:

> ./hhmake -i query.a3m
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D.3.3. Generate a MSA by buildali.pl

Another way uses the script buildali.pl from this package, but we recommend to use
the more sensitive method HHblits. buildali.pl builds an A3M alignment with iterated
PSI-BLAST. It checks after each round for each HSP (i.e. for each PSI-BLAST matched
sequence fragment) if both its ends have a sufficiently high score per column (e.g. 1/6
bits/column) with the query sequence, or rather with a ’core profile’ of sequences most
similar to the query. It prunes the HSP ends that do not have sufficient similarity, thus
largely suppressing the frequent problem of profile corruption coming from the ends of
domains, coiled coil regions, or low complexity regions. In a representative all-against-all
benchmark on SCOP20, buildali.pl was able to reduce the number of high-scoring false-
positives by a factor of approximately five, while only slightly reducing sensitivity for very
remote homologs. buildali.pl also automatically adds PSIPRED secondary structure
prediction.
To get buildali.pl to run you have to fill in a few paths at the top of the script, for

example to the BLAST directory, PSIPRED data and binaries directories etc. Some of the
same paths also have to be inserted at the top of the script alignhits.pl which is called
by buildali.pl. Finally, you need to have a non-redundant database like the nr from
NCBI filtered to 90 and 70 percent (e.g. by using the program CD-HIT from Weizhong
Lee, http://cd-hit.org/). You can call these databases nr90 and nr70, for example, and
would set the $dbbase variable to "some_path/nr". The script then adds the "90" and "70"
as needed. It will first search the nr90 until more than 50 sequences are found, whence it
will switch to the nr70. To test buildali.pl you might as well set a link from the nr to
nr90 and nr70, which means buildali.pl will search the entire nr (which is slower and a
little less sensitive). Then start buildali.pl with your sequence:

> ./buildali.pl query.seq

If everything works, you will obtain an A3M-formatted MSA in file query.a3m as a result.
(Make sure all paths are correct and your active shell is bash: ln -s /bin/bash /bin/sh.)

Now you can generate a hidden Markov model (HMM) from this MSA:

> ./hhmake -i query.a3m

D.3.4. Search with a profile HMM through a database

For searching with a profile HMM as query, you can either use HHblits or HHsearch. HHblits
uses a prefilter and performs the HMM-HMM comparison only on a small subsets of HMMs
that pass this prefilter. Therefore, HHblits has a dramatical shorter runtime by a small
decrease in sensitivity (see Figure D.1).
Using HHblits follows the same syntax as described in the previous section with an A3M-

alignment or an HMM-profile as input and a single iteration:

http://cd-hit.org/
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Figure D.1.: Benchmark of HHsearch and HHblits on a SCOP20 dataset.

> ./hhblits -i query_profile.a3m -d databases/uniprot20 -n 1

To start using HHsearch, untar a database first, e.g.

> cd scop70_1.72pre

> tar -xzvf scop70_1.72pre.hhm.tar.gz

The name scop70_1.72pre stands for ’SCOP domain database version 1.72 (pre-SCOP)
filtered to 70% maximum sequence identity’.
Then, to generate a database file by concatenating all *.hhm files type (under LINUX)

> cat *.hhm > scop70_1.72pre.hhm

Test whether hhsearch works by typing

> ./hhsearch -i d1hxn__.hhm -d scop70_1.72pre.hhm

You should see a dot printed for every twenty HMMs processed until at the end hhsearch
prints out a list with the best hits from the database. The complete search results, including
the pairwise query-template alignments, are written to the default output file, d1hxn__.hhr.
The format (HH results format, HHR) was designed to be easily parsable.
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Instead of using the hmm file you can also take the a3m file for the scan. It is automatically
converted to an HMM by HHsearch before starting the scan:

> ./hhsearch -i d1hxn__.a3m -d scop70_1.72pre.hhm

D.3.5. Building customized databases

HHblits databases

If you want to build your own database from a set of sequences, call

> ./hhblits -i <seqfile> -o /dev/null -oa3m <MSA-file>

for every sequence in your database, as described in subsection 3.2. Default paramters are
up to 2 search iterations at an E-value of 1E-3. These can be changed with the ’-n <int>’

and ’-e <float>’ options (Call hhblits without parameters for a complete list of options).
The next step is to add secondary structure prediction from PSIPRED (D. Jones, 1999)

to the MSA. This can be done by the script addss.pl (When the sequence has a SCOP
or PDB identifier as first word in its name, the script tries to add the DSSP states as well.
You need to give the path to your local pdb or dssp directory for this to work.):

> ./addss.pl <MSA-file>

Now you can use the two scripts create_cs_db.pl and create_db.pl to generate the
needed databases for HHblits. In both scripts you have to adapt some path at the beginning.
The first script create_cs_db.pl generates the column state database needed for the

prefilter step in HHblits. You can start it by typing:

> ./create_cs_db.pl -i <MSA-dir> -o databases/DB.cs219

The other script create_db.pl generates the HMM- and A3M-databases:

> ./create_db.pl -a3mdir <MSA-dir> -oa3m databases/DB_a3m_db

-ohhm databases/DB_hhm_db

A list of additional options for these scripts can be retrieved by calling the scripts without
parameters.

HHsearch databases

If you want to build your own database from a set of sequences, call

> ./hhblits -i <seqfile> -o /dev/null -oa3m <MSA-file>
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for every sequence in your database, as described in subsection 3.2. Default paramters are
up to 2 search iterations at an E-value of 1E-3. These can be changed with the ’-n <int>’

and ’-e <float>’ options (Call hhblits without parameters for a complete list of options).
The next step is to add secondary structure prediction from PSIPRED (D. Jones, 1999)

to the MSA. This can be done by the script addss.pl (When the sequence has a SCOP
or PDB identifier as first word in its name, the script tries to add the DSSP states as well.
You need to give the path to your local pdb or dssp directory for this to work.):

> ./addss.pl <MSA-file>

Then generate an HHM file for each MSA by typing

> ls | grep "\.a3m\$" | xargs hhmake -i

if your MSAs have extension a3m. You can then concatenate your individual HMMs into
your database:

> cat *.hhm > yourDB.hhm

(or, if maximum buffer size is exceeded,

> ls | grep "\.hhm\$" | xargs -i cat {} >> yourDB.hhm).

By default, the option -M first will be used. This means that exactly those columns of
the MSAs which contain a residue in the query sequence will be assigned to Match / Delete
states, the others will be assigned to Insert states. (The query sequence is the first sequence
not containing secondary structure information.) Alternatively, you may want to apply the
50%-gap rule by typing -M 50, which assigns only those columns to Insert states which
contain more than 50% gaps. The -M first option makes sense if your alignment can
best be viewed as a seed sequence plus aligned homologs to reinforce it with evolutionary
information. This is the case in the SCOP and PDB versions of our HMM databases, since
here MSAs are built around a single seed sequence (the one with known structure). On the
contrary, when your alignment represents an entire family of homologs and no sequence in
particular, it is best to use the 50% gap rule. This is the case for Pfam or SMART MSAs,
for instance. Despite its simplicity, the 50% gap rule has been shown to perform well in
practice.
When calling hhmake, you may also apply several filters, such as maximum pairwise se-

quence identity (-id <int>), minium sequence identity with query sequence (-qid <int>),
or miniumum coverage with query (-cov <int>). But beware of making your MSAs too
restrictive, as this will lower the sensitivity for remote homologs.
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D.3.6. Maximum Accuracy alignment algorithm

HHblits and HHsearch use a better alignment algorithm than the quick and standard Viterbi
method to generate the final HMM-HMM alignments. Both realign all diplayed alignments
in a second stage using the more accurate Maximum Accurracy (MAC) algorithm (Durbin,
Eddy, Krough, Mitchison: Biological sequence analysis, page 95; extension to HMM-HMM:
Biegert, Lupas, and Söding (2008) Bioinformatics. 24, 807–814.). The Viterbi algorithm
is employed for searching and ranking the matches. The realignment step is parallelized
(-cpu <int>) and typically takes a few seconds only.

Please note: Using different alignment algorithms for scoring and aligning has the dis-
advantage that the pairwise alignments that are displayed are not always very similar to
those that are used to calculate the scores! This can lead to the confusing results where
alignments of only one or a few residues length may have probabilities of 50% or more. In
such cases, run the search again with the -norealign option, which will skip the MAC-
realignment step. This will allow you to check if the Viterbi alignments are valid at all,
which they will probably not be. The length of the MAC alignments can therefore give you
additional information to decide if a match is valid. In order to avoid confusion for users of
our HHpred server, the -norealign option is the default there, whereas for you pros who
dare to use the command line package, realigning is done by default.
The posterior probability threshold is controlled with the -mact [0,1[ option. This pa-

rameter controls the alignment algorithm’s greediness. More precisely, the MAC algorithm
finds the alignment that maximizes the sum of posterior probabilites minus mact for each
aligned pair. Global alignments are generated with -mact 0, whereas -mact 0.5 will produce
quite conservative local alignments.
The -global and -local options now refer to both the Viterbi search stage as well as the

MAC realignment stage. With -global (-local), the posterior probability matrix will be
calculated for global (local) alignment. When -global is used in conjunction with -realign,
the mact parameter is automatically set to 0 in order to produce global alignments. In
other words, both following two commands will give global alignments:

> ./hhsearch -i <query> -d <db.hhm> -realign -mact 0

> ./hhsearch -i <query> -d <db.hhm> -realign -global

The first version uses local Viterbi to search and then uses MAC to realign the proteins
globally (since mact is 0) on a local posterior probability matrix. The second version uses
global Viterbi to search and then realigns globally (since mact is automatically set to 0)
on a global posterior matrix. To detect and align remote homologs, for which sometimes
only parts of the sequence are conserved, the first version is clearly better. It is also more
robust. If you expect to find globally alignable sequence homologs, the second option might
be preferable. In that case, it is recommended to run both versions and compare the results.
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D.3.7. How can I verify if a database match is homologous?

Here is a list of things to check if a database match really is at least locally homologous.

• Check probability and E-value: HHsearch can detect homologous relationships far
beyond the twilight zone, i.e. below 20% sequence identity. Sequence identity is there-
fore not an appropriate measure of relatedness anymore. The estimated probability
of the template to be (at least partly) homologous to your query sequence is the most
important criterion to decide whether a template HMM is actually homologous or just
a high-scoring chance hit. When it is larger than 95%, say, the homology is nearly
certain. Roughly speaking, one should give a hit serious consideration (i.e. check the
other points in this list) whenever (1) the hit has > 50% probability, or (2) it has
> 30% probability and is among the top three hits. The E-value is an alternative mea-
sure of statistical significance. It tells you how many chance hits with a score better
than this would be expected if the database contained only hits unrelated to the query.
At E-values below one, matches start to get marginially significant. Contrary to the
probability, when calculating the E-value HHpred does not take into account the sec-
ondary structure similarity. Therefore, the probability is a more sensitive measure
than the E-value.

• Check if homology is biologically suggestive or at least reasonable: Does the database
hit have a function you would expect also for your query? Does it come from an
organism that is likely to contain a homolog of your query protein?

• Check secondary structure similarity: If the secondary structure of query and template
is very different or you can’t see how they could fit together in 3D, then this is a reason
to distrust the hit. (Note however that if the query alignment contains only a single
sequence, the secondary structure prediction is quite unreliable and confidence values
are overestimated.)

• Check relationship among top hits: If several of the top hits are homologous to each
other, (e.g. when they are members of the same SCOP superfamily), then this will con-
siderably reduce the chances of all of them being chance hits, especially if these related
hits are themselves not very similar to each other. Searching the SCOP database is
very usefull precisely for this reason, since the SCOP family identifier (e.g. a.118.8.2)
allows to tell immediately if two templates are likely homologs.

• Check for possible conserved motifs: Most homologous pairs of alignments will have
at least one (semi-)conserved motif in common. You can identify such putative
(semi-)conserved motifs by the agglomeration of three or more well-matching columns
(marked with a ’|’ sign between the aligned HMMs) occurring within a few residues,
as well as by matching consensus sequences. Some false positive hits have decent
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scores due to a similar amino acid composition of the template. In these cases, the
alignments tend to be long and to lack conserved motifs.

• Check residues and role of conserved motifs: If you can identify possible conserved
motifs: are the corresponding conserved template residues involved in binding or
enzymatic function?

• Check query and template alignments!: A corrupted query or template alignment is
the main source of high-scoring false positives. The two most common sources of
corruption in an alignment are (1) non-homologous sequences, especially repetitive
or low-complexity sequences in the alignment, and (2) non-homologous fragments at
the ends of the aligned database sequences that are due to PSI-BLAST’s greedyness.
Check the query and template MSAs in an alignment viewer such as JalView or
ALNEDIT.

• Realign with other parameters: change the alignment parameters. Choose global
instead of local mode, for instance, if you expect your query to be globally homologous
to the putative homolog. Try to improve the probability by changing the values for
minimum coverage or minimum sequence identity. You can also run the query HMM
against other databases.

• Try to use manualPSI-BLAST iterations (use FASTA in first round if you can) to
try to find more distant homologs for your query alignment and jump-start HHsearch
with the manually enriched alignment.

• Try out other structure prediction servers!: A list of servers can be found by Battey,
J.N. et al. (2007) Automated server predictions in CASP7. Proteins 69:68-82.

• Verify predictions experimentally: The ultimate confirmation of a homologous rela-
tionship or structural model is, of course, the experimental verification of some of
its key predictions, such as testing the binding to certain ligands by binding assays,
measuring biochemical activity, or comparing the knock-out phenotype with the one
obtained when the putative functional residues are mutated.

D.4. HHsearch/HHblits output: hit list and pairwise alignments

D.4.1. Summary hit list

Do a search with the N-terminal domain of DNA polymerase beta against the SCOP do-
mains:

> ./hhsearch -i d1tv9a1.hhm -d scop.hhm -cpu 2
Search results will be written to d1tv9a1.hhr
Query file is in HHM format
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Read in HMM d1tv9a1 with 87 match states and effective number of sequences = 5.6
.................................................. 1000 HMMs searched
.................................................. 2000 HMMs searched
.................................................. 3000 HMMs searched
.................................................. 4000 HMMs searched
.................................................. 5000 HMMs searched
.................................................. 6000 HMMs searched
.................................................. 7000 HMMs searched
.................................................. 8000 HMMs searched
.................................................. 9000 HMMs searched
.................................................. 10000 HMMs searched
.................................................. 11000 HMMs searched
.................................................. 12000 HMMs searched
.......
Fitting scores with EVD (first round) ...
Fitting scores with EVD (second round) ...
Realigning 50 query-template alignments with maximum accuracy (MAC) algorithm ...
..
Query d1tv9a1 a.60.6.1 (A:5-91) DNA polymerase beta, N-terminal (8 kD)-domain {Human}
Match_columns 87
No_of_seqs 103 out of 203
Neff 5.6
Searched_HMMs 12156
Date Sat Nov 3 08:40:24 2007
Command hhsearch -i /data/hhpred/scop70_1.72pre/d1tv9a1.hhm -d scop.hhm

No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM
1 d1tv9a1 a.60.6.1 (A:5-91) DNA 100.0 4.6E-34 3.8E-38 202.8 9.4 87 1-87 1-87 (87)
2 d1jmsa1 a.60.6.1 (A:148-242) T 100.0 7.3E-29 6E-33 174.7 9.7 85 1-86 11-95 (95)
3 e2bcqa1 a.60.6.1 (A:252-327) D 99.9 1.9E-25 1.6E-29 156.2 6.9 76 7-83 1-76 (76)
4 d1mun__ a.96.1.2 (-) Catalytic 94.7 0.062 5.1E-06 28.8 7.3 56 17-73 72-129 (225)
5 d1rrqa1 a.96.1.2 (A:9-229) Cat 94.4 0.059 4.8E-06 28.9 6.7 57 16-73 69-127 (221)
6 d1keaa_ a.96.1.2 (A:) Thymine- 93.8 0.057 4.7E-06 29.0 5.6 57 17-73 75-133 (217)
7 e2bgwa1 a.60.2.98 (A:160-229) 93.3 0.06 5E-06 28.9 5.1 26 50-75 42-67 (70)
8 d2abk__ a.96.1.1 (-) Endonucle 93.0 0.13 1.1E-05 27.1 6.3 44 31-74 85-130 (211)
9 d1orna_ a.96.1.1 (A:) Endonucl 92.7 0.11 9E-06 27.5 5.6 44 31-74 86-131 (214)

10 e1x2ia1 a.60.2.98 (A:2-69) ATP 92.5 0.033 2.7E-06 30.3 2.8 27 50-76 39-65 (68)
11 d1kfta_ a.60.2.3 (A:) Excinucl 92.4 0.037 3E-06 30.0 2.9 26 50-75 31-56 (56)
12 d1vdda_ e.49.1.1 (A:) Recombin 92.1 0.036 3E-06 30.1 2.5 40 45-84 3-43 (199)
13 d1m3qa1 a.96.1.3 (A:136-325) 8 90.6 0.29 2.3E-05 25.2 5.9 51 22-73 61-123 (190)
14 d1cuk_2 a.60.2.1 (65-142) DNA 90.3 0.092 7.6E-06 27.9 3.2 38 34-71 18-62 (78)
15 e2a1jb1 a.60.2.98 (B:219-296) 90.2 0.21 1.7E-05 25.9 5.0 58 16-75 15-73 (78)
16 d1ixra1 a.60.2.1 (A:63-135) DN 90.1 0.096 7.9E-06 27.8 3.1 37 35-71 20-63 (73)
17 d1bvsa2 a.60.2.1 (A:64-134) DN 88.8 0.14 1.2E-05 26.9 3.2 37 34-70 18-61 (71)
18 d1mpga1 a.96.1.3 (A:100-282) 3 85.8 1 8.6E-05 22.2 6.2 50 23-72 71-127 (183)
19 d1dgsa1 a.60.2.2 (A:401-581) N 83.3 0.46 3.8E-05 24.1 3.5 27 51-77 137-163 (181)
20 e2a1ja1 a.60.2.98 (A:837-898) 82.8 0.55 4.5E-05 23.7 3.7 50 25-77 9-58 (62)
21 d1pu6a_ a.96.1.5 (A:) 3-Methyl 82.0 0.63 5.2E-05 23.4 3.8 23 51-73 118-140 (217)
22 d1t4ga1 a.60.4.1 (A:5-64) DNA 76.6 0.28 2.3E-05 25.3 0.6 25 50-74 29-53 (60)
23 d1b22a_ a.60.4.1 (A:) DNA repa 73.8 0.71 5.9E-05 23.1 2.1 24 50-73 40-63 (70)
24 e1wuda1 a.60.8.1 (A:530-606) H 73.4 4.3 0.00036 18.8 6.0 59 8-69 3-62 (77)
25 d1szpa1 a.60.4.1 (A:81-144) DN 68.2 1.5 0.00012 21.3 2.7 24 50-73 33-56 (64)
26 d1jiha2 e.8.1.7 (A:1-389) DNA 67.2 1.1 9.3E-05 22.0 1.9 23 55-77 302-324 (389)
27 d1pzna1 a.60.4.1 (A:35-95) DNA 67.0 1.2 0.0001 21.8 2.1 24 50-73 31-54 (61)
28 d1ngna_ a.96.1.2 (A:) Mismatch 62.3 4.9 0.00041 18.5 4.4 41 31-77 76-116 (144)
29 d1d8ba_ a.60.8.1 (A:) HRDC dom 61.9 5.3 0.00043 18.4 4.5 59 12-73 6-68 (81)
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30 d1a77_1 a.60.7.1 (209-316) Fla 53.5 3.2 0.00027 19.5 2.3 24 56-81 20-43 (108)
31 d1lb2b_ a.60.3.1 (B:) C-termin 52.9 11 0.00087 16.7 4.8 25 51-75 36-60 (72)
32 d1doqa_ a.60.3.1 (A:) C-termin 50.8 12 0.001 16.4 4.9 37 37-75 18-62 (69)
33 e2bcqa2 a.60.12.1 (A:329-385) 48.0 3.7 0.0003 19.2 1.9 34 49-86 4-37 (57)
34 d1s1hm_ i.1.1.1 (M:) 70S ribos 44.6 3 0.00025 19.7 1.0 23 53-75 16-38 (131)
35 d1rxwa1 a.60.7.1 (A:220-324) F 44.3 6.5 0.00054 17.9 2.7 25 55-81 18-42 (105)
36 d1tv9a2 a.60.12.1 (A:92-148) D 42.5 5.3 0.00044 18.3 2.0 31 51-85 5-35 (57)
37 d1t94a2 e.8.1.7 (A:75-407) DNA 41.9 5.6 0.00046 18.2 2.0 18 55-72 277-294 (333)
38 d1im4a_ e.8.1.7 (A:) DinB homo 41.3 5.8 0.00048 18.1 2.0 18 55-72 185-202 (209)
39 e1ul1x1 a.60.7.1 (X:218-357) F 40.7 6.4 0.00053 17.9 2.2 13 57-69 2

...

The summary hit list that is written to the screen shows the best hits from the database,
ordered by the probability of being a true positive (column 4: ’Prob’). The meaning of the
columns is the following:

Column 1 ’No’: Index of hit

Column 2 ’Hit’: First 30 characters of domain description (from nameline of query
sequence)

Column 3 ’Prob’: Probability of target to be a true positive For the probability of
being a true positive, the secondary structure score in column 7
is taken into account, together with the raw score in column 6
(’Score’). True positives are defined to be either globally homolo-
gous or they are at least homologous in parts, and thereby locally
similar in structure. More precisely, the latter criterion demands
that the MAXSUB score between query and hit is at least 0.1. In
almost all cases the structural similarity will we be due to a global
OR LOCAL homology between query and target.

Column 4 ’E-value’: E-value and P-value are calculated without taking the secondary
structure into account! The E-value gives the average number of
false positives (’wrong hits’) with a score better than the one for
the target when scanning the datbase. It is a measure of reliability:
E-values near to 0 signify a very reliable hit, an E-value of 10 means
about 10 wrong hits are expected to be found in the database with
a score at least this good.

Column 5 ’P-value’: The P-value is just the E-value divided by the number of sequences
in the database. It is the probability that in a PAIRWISE com-
parison a wrong hit will score at least this good.

Column 6 ’Score’: Raw score, does not include the secondary structure score
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Column 7 ’SS’: Secondary structure score This score tells how well the PSIPRED-
predicted (3-state) or actual DSSP-determined (8-state) secondary
structure sequences agree with each other. PSIPRED confidence
values are used in the scoring, low confidences getting less statis-
tical weight.

Column 8 ’Cols’: The number of aligned Match columns in the HMM-HMM align-
ment.

Columns 9,10: Range of aligned match states from query HMM

Columns 11,12: Range of aligned match states from target HMM

Column 14: Number of match states in target HMM

D.4.2. HMM-HMM pairwise alignments

The output file d1bpya1.hhr contains the same hit list plus the pairwise HMM alignments.
One example is give here:

No 4
>d1mun__ a.96.1.2 (-) Catalytic domain of MutY {Escherichia coli} SCOP: d1muya_ d1kg5a_ d1kg2a_ d1kg6a_
Probab=94.69 E-value=0.062 Score=28.83 Aligned_columns=56 Identities=25%

Q ss_dssp HHHHHHHHTTCCHHHHHHHHHHHHHHH-HCCSCCC-CHHHHHTSTTCCHHHHHHHHHHH
Q ss_pred HHHHHHHhcCCCCchHHHHHHHHHHHH-hCCCCcc-ChHHHhhCCCcChHHHHHHHHHH
Q d1tv9a1 17 ELANFEKNVSQAIHKYNAYRKAASVIA-KYPHKIK-SGAEAKKLPGVGTKIAEKIDEFL 73 (87)
Q Consensus 17 eia~~~e~~~en~~rv~AYr~Aa~~l~-~l~~~i~-~~~~l~~lpgIG~~ia~~I~Ei~ 73 (87)

++..+..-.|=. .|.+...+++..|. .+...+. +.++|.+|||||+.+|..|.-+.
T Consensus 72 ~l~~~i~~~G~~-~ka~~l~~~~~~i~~~~~g~ip~~~~eL~~LpGVG~kTA~~VL~~a 129 (225)
T d1mun__ 72 EVLHLWTGLGYY-ARARNLHKAAQQVATLHGGKFPETFEEVAALPGVGRSTAGAILSLS 129 (225)
T ss_dssp HHHHHHTTSCCT-HHHHHHHHHHHHHHHHSTTSCCCSHHHHHTSTTCCHHHHHHHHHHH
T ss_pred HHHHHHHhhhhh-HHHHHHHHHHHHHHHHcCCccccChHHHHhcCCCcHHHHHHHHHHh
Confidence 344433333332 25555666676654 4555554 46889999999999999998664

This is a typical example of local homology, detectable at both the sequence and the struc-
tural level, which is embedded in globally non-homologous structures with different overall
folds. This sequence- and structure-similar motif, called ’helix-hairpin-helix’ (HhH), makes
unspecific contacts with DNA and is described in [Doherty, Serpell, Ponting, NAR 1996].
See [Söding J and Lupas AN, Bioessays 2003] for a hypothesis relating to the pervasiveness
of recurring homologous peptide fragments.
The pairwise alignment consists of one or more blocks with the following lines:

Q ss_dssp: the query secondary structure as determined by DSSP (when available)
Q ss_pred: the query secondary structure as predicted by PSIPRED (when available)
Q scop-id: the query sequence
Q Consensus: the query alignment consensus sequence
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The predicted secondary structure states are shown in capital letters if the PSIPRED
confidence value is between 0.7 and 1.0, for lower confidence values they are given in lower-
case letters. With the option ’-ssconf’, ’ss_conf’ lines can be added to the alignments
which report the PSIPRED confidence values by numbers between 0 and 9 (as in versions
up to 1.5).
The consensus sequence uses capital letters for well conserved columns and lower case

for partially conserved columns. Unconserved columns are marked by a tilde ’ ’. Roughly
speaking, amino acids that occur with >= 60% probability (before adding pseudocounts)
are written as capital letters and amino acids that have >= 40% probability are written as
lower case letters, where gaps are included in the fraction counts. More precisely, when the
gap-corrected amino acid fraction

pi(a) ∗Neff(i)/(Neff + 1)

is above 0.6 (0.4) an upper (lower) case letter is used for amino acid a. Here, pi(a) is the
emission probability for a in column i, Neff is the effective number of sequences in the entire
multiple alignment (between 1 and 20) and Neff(i) is the effective number of sequences in
the subalignment consisting of those sequences that do not have a gap in column i. These
percentages increase approximately inversely proportionally with the fraction of gaps in the
column, hence a column with only cysteins and 50% gaps gets a lower case letter.
The line in the middle shows the column score between the query and target amino acid

distributions. It gives a valuable indication for the alignment quality.

= : column score below -1.5
- : column score between -1.5 and -0.5
. : column score between -0.5 and +0.5
+ : column score between +0.5 and +1.5
| : column score above +1.5

(A unit of column score corresponds approximately to 0.6 bits.) From the column score
line the excellent alignment around the highly conserved ’LPGIG’ motif in the turn between
two helices is evident. The alignment around the first helix by contrast scores only slightly
better than zero per residue and is therefore not very reliable.
After the template block, which consists of the following lines,

T Consensus: the target alignment consensus sequence
T scop-id: the target domain sequence
T ss_dssp: the target secondary structure as determined by DSSP (when available)
T ss_pred: the target secondary structure as predicted by PSIPRED (when available)

The last line in the block (Confidence) reports the reliability of the pairwise query-
template alignment. The confidence values are obtained from the posterior probabilities
calculated in the Forward-Backward algorithm. A value of 8 indicates a probability that
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this pair of HMM columns is correctly aligned between 0.8 and 0.8999. The Confidence

line is only displayed when the -realign option is acitive.

D.5. File formats

D.5.1. Input alignment formats

HMMs can be read by HHsearch/HHblits in its own .hhm format, as well as in HMMer
format (.hmm). Performance is not as good for HMMER-format as for hhm format, so
please use our hhm format if possible. HMMER’s hmm format can be converted to hhm
format simply with hhmake:

> ./hhmake -i test.hmm -o test.hhm

This works only for a single HMM per file, not for concatenated HMMs. A safer way to
effect the conversion is to call hhmake with the original alignment file. Note: you may add
predicted secondary structure to the hmm file with addss.pl before the conversion to hhm
format.
Multiple alignments can be read in A2M, A3M, or aligned FASTA format. (Check the

-M option for using an input format different from the default A3M). You can transform
MSAs from Clustal or Stockholm format to A3M or aligned FASTA with the reformat.pl

utility supplied in this package.
To reformat from Clustal fromat to A3M:

> ./reformat.pl test.aln test.a3m

or explicitely, if the formats can not be recognized from the extensions:

> ./reformat.pl clu a3m test.clustal test.a3m

To reformat from Stockholm to aligned FASTA:

> ./reformat.pl test.sto test.fas

Example for aligned FASTA format:
>d1a1x__ b.63.1.1 (-) p13-MTCP1 {Human (Homo sapiens)}
PPDHLWVHQEGIYRDEYQRTWVAVVEE--E--T--SF---------LR----------ARVQQIQVPLG-------DAARPSHLLTS-----QL
>gi|6678257|ref|NP_033363.1|:(7-103) T-cell lymphoma breakpoint 1 [Mus musculus]
HPNRLWIWEKHVYLDEFRRSWLPVVIK--S--N--EK---------FQ----------VILRQEDVTLG-------EAMSPSQLVPY-----EL
>gi|7305557|ref|NP_038800.1|:(8-103) T-cell leukemia/lymphoma 1B, 3 [Mus musculus]
PPRFLVCTRDDIYEDENGRQWVVAKVE--T--S--RSpygsrietcIT----------VHLQHMTTIPQ-------EPTPQQPINNN-----SL
>gi|11415028|ref|NP_068801.1|:(2-106) T-cell lymphoma-1; T-cell lymphoma-1A [Homo sapiens]
HPDRLWAWEKFVYLDEKQHAWLPLTIEikD--R--LQ---------LR----------VLLRREDVVLG-------RPMTPTQIGPS-----LL
>gi|7305561|ref|NP_038804.1|:(7-103) T-cell leukemia/lymphoma 1B, 5 [Mus musculus]
----------GIYEDEHHRVWIAVNVE--T--S--HS---------SHgnrietcvt-VHLQHMTTLPQ-------EPTPQQPINNN-----SL
>gi|7305553|ref|NP_038801.1|:(5-103) T-cell leukemia/lymphoma 1B, 1 [Mus musculus]
LPVYLVSVRLGIYEDEHHRVWIVANVE--TshS--SH---------GN----------RRRTHVTVHLW-------KLIPQQVIPFNplnydFL
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>gi|27668591|ref|XP_234504.1|:(7-103) similar to Chain A, Crystal Structure Of Murine Tcl1
-PDRLWLWEKHVYLDEFRRSWLPIVIK--S--N--GK---------FQ----------VIMRQKDVILG-------DSMTPSQLVPY-----EL
>gi|27668589|ref|XP_234503.1|:(9-91) similar to T-cell leukemia/lymphoma 1B, 5;
-PHILTLRTHGIYEDEHHRLWVVLDLQ--A--ShlSF---------SN----------RLLIYLTVYLQqgvafplESTPPSPMNLN-----GL
>gi|7305559|ref|NP_038802.1|:(8-102) T-cell leukemia/lymphoma 1B, 4 [Mus musculus]
PPCFLVCTRDDIYEDEHGRQWVAAKVE--T--S--SH---------SPycskietcvtVHLWQMTTLFQ-------EPSPDSLKTFN-----FL
>gi|7305555|ref|NP_038803.1|:(9-102) T-cell leukemia/lymphoma 1B, 2 [Mus musculus]
---------PGFYEDEHHRLWMVAKLE--T--C--SH---------SPycnkietcvtVHLWQMTRYPQ-------EPAPYNPMNYN-----FL

The sequence name and its description must be contained in a single name line begin-
ning with the > symbol and followed directly by the sequence name. The residue data
is contained in one or more lines of arbitrary length following the name line. No empty
lines should be used. In aligned FASTA the gaps are written with ’-’ and the n’th letter
of each sequence (except newlines) is understood to build the n’th column of the multiple
alignment.

The same alignment in A2M format looks like this:
>d1a1x__ b.63.1.1 (-) p13-MTCP1 {Human (Homo sapiens)}
PPDHLWVHQEGIYRDEYQRTWVAVVEE..E..T..SF.........LR..........ARVQQIQVPLG.......DAARPSHLLTS.....QL
>gi|6678257|ref|NP_033363.1|:(7-103) T-cell lymphoma breakpoint 1 [Mus musculus]
HPNRLWIWEKHVYLDEFRRSWLPVVIK..S..N..EK.........FQ..........VILRQEDVTLG.......EAMSPSQLVPY.....EL
>gi|7305557|ref|NP_038800.1|:(8-103) T-cell leukemia/lymphoma 1B, 3 [Mus musculus]
PPRFLVCTRDDIYEDENGRQWVVAKVE..T..S..RSpygsrietcIT..........VHLQHMTTIPQ.......EPTPQQPINNN.....SL
>gi|11415028|ref|NP_068801.1|:(2-106) T-cell lymphoma-1; T-cell lymphoma-1A [Homo sapiens]
HPDRLWAWEKFVYLDEKQHAWLPLTIEikD..R..LQ.........LR..........VLLRREDVVLG.......RPMTPTQIGPS.....LL
>gi|7305561|ref|NP_038804.1|:(7-103) T-cell leukemia/lymphoma 1B, 5 [Mus musculus]
----------GIYEDEHHRVWIAVNVE..T..S..HS.........SHgnrietcvt.VHLQHMTTLPQ.......EPTPQQPINNN.....SL
>gi|7305553|ref|NP_038801.1|:(5-103) T-cell leukemia/lymphoma 1B, 1 [Mus musculus]
LPVYLVSVRLGIYEDEHHRVWIVANVE..TshS..SH.........GN..........RRRTHVTVHLW.......KLIPQQVIPFNplnydFL
>gi|27668591|ref|XP_234504.1|:(7-103) similar to Chain A, Crystal Structure Of Murine Tcl1
-PDRLWLWEKHVYLDEFRRSWLPIVIK..S..N..GK.........FQ..........VIMRQKDVILG.......DSMTPSQLVPY.....EL
>gi|27668589|ref|XP_234503.1|:(9-91) similar to T-cell leukemia/lymphoma 1B, 5;
-PHILTLRTHGIYEDEHHRLWVVLDLQ..A..ShlSF.........SN..........RLLIYLTVYLQqgvafplESTPPSPMNLN.....GL
>gi|7305559|ref|NP_038802.1|:(8-102) T-cell leukemia/lymphoma 1B, 4 [Mus musculus]
PPCFLVCTRDDIYEDEHGRQWVAAKVE..T..S..SH.........SPycskietcvtVHLWQMTTLFQ.......EPSPDSLKTFN.....FL
>gi|7305555|ref|NP_038803.1|:(9-102) T-cell leukemia/lymphoma 1B, 2 [Mus musculus]
---------PGFYEDEHHRLWMVAKLE..T..C..SH.........SPycnkietcvtVHLWQMTRYPQ.......EPAPYNPMNYN.....FL

A2M format is derived from aligned FASTA format. It looks very similar, but it distin-
guishes between match/delete columns and insert columns. This information is important
to uniquely specify how an alignment is transformed into an HMM. The match/delete
columns use upper case letters for residues and the ’-’ symbol for deletions (gaps). The
insert columns use lower case letters for the inserted residues. Gaps aligned to inserted
residues are written as ’.’ Lines beginning with a hash # symbol will be treated as commen-
tary lines in HHsearch/HHblits (see below).

The same alignment in A3M:
>d1a1x__ b.63.1.1 (-) p13-MTCP1 {Human (Homo sapiens)}
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PPDHLWVHQEGIYRDEYQRTWVAVVEEETSFLRARVQQIQVPLGDAARPSHLLTSQL
>gi|6678257|ref|NP_033363.1|:(7-103) T-cell lymphoma breakpoint 1 [Mus musculus]
HPNRLWIWEKHVYLDEFRRSWLPVVIKSNEKFQVILRQEDVTLGEAMSPSQLVPYEL
>gi|7305557|ref|NP_038800.1|:(8-103) T-cell leukemia/lymphoma 1B, 3 [Mus musculus]
PPRFLVCTRDDIYEDENGRQWVVAKVETSRSpygsrietcITVHLQHMTTIPQEPTPQQPINNNSL
>gi|11415028|ref|NP_068801.1|:(2-106) T-cell lymphoma-1; T-cell lymphoma-1A [Homo sapiens]
HPDRLWAWEKFVYLDEKQHAWLPLTIEikDRLQLRVLLRREDVVLGRPMTPTQIGPSLL
>gi|7305561|ref|NP_038804.1|:(7-103) T-cell leukemia/lymphoma 1B, 5 [Mus musculus]
----------GIYEDEHHRVWIAVNVETSHSSHgnrietcvtVHLQHMTTLPQEPTPQQPINNNSL
>gi|7305553|ref|NP_038801.1|:(5-103) T-cell leukemia/lymphoma 1B, 1 [Mus musculus]
LPVYLVSVRLGIYEDEHHRVWIVANVETshSSHGNRRRTHVTVHLWKLIPQQVIPFNplnydFL
>gi|27668591|ref|XP_234504.1|:(7-103) similar to Chain A, Crystal Structure Of Murine Tcl1
-PDRLWLWEKHVYLDEFRRSWLPIVIKSNGKFQVIMRQKDVILGDSMTPSQLVPYEL
>gi|27668589|ref|XP_234503.1|:(9-91) similar to T-cell leukemia/lymphoma 1B, 5;
-PHILTLRTHGIYEDEHHRLWVVLDLQAShlSFSNRLLIYLTVYLQqgvafplESTPPSPMNLNGL
>gi|7305559|ref|NP_038802.1|:(8-102) T-cell leukemia/lymphoma 1B, 4 [Mus musculus]
PPCFLVCTRDDIYEDEHGRQWVAAKVETSSHSPycskietcvtVHLWQMTTLFQEPSPDSLKTFNFL
>gi|7305555|ref|NP_038803.1|:(9-102) T-cell leukemia/lymphoma 1B, 2 [Mus musculus]
---------PGFYEDEHHRLWMVAKLETCSHSPycnkietcvtVHLWQMTRYPQEPAPYNPMNYNFL

The A3M format is a condensed version of A2M format. It is obtained by omitting all
’.’ symbols from A2M format. Hence residues emitted by Match states of the HMM are in
upper case, residues emitted by Insert states are in lower case and deletions are written ’-’.
A3M-formatted alignments can be reformatted to other formats like FASTA or A2M with
the reformat.pl utility:

./reformat.pl test.a3m test.a2m

Lines beginning with a hash # symbol will be treated as commentary lines in HHsearch/HHblits
(see below). Please note that A3M, though very practical and space-efficient, is not a stan-
dard format, and the name A3M is our personal invention.

Secondary structure information in A3M/A2M or FASTA MSAs for HHsearch/HHblits

The alignments read in by HHblits, HHsearch or HHmake can also contain secondary struc-
ture information. This information can be included in sequences with special names, like
in this A3M file:

>ss_dssp
CCSEEEEEETTEEEETTSCEEEEEEEECSSCEEEEEECCCCCCCSCCCHHHHTTCSSCSEEEEETTTEEEETTSC
>aa_dssp
PPDHLWVHQEGIYRDEYQRTWVAVVEEETSFLRARVQQIQVPLGDAARPSHLLTSQLPLMWQLYPEERYMDNNSR
>aa_pred
PPDHLWVHQEGIYRDEYQRTWVAVVEEETSFLRARVQQIQVPLGDAARPSHLLTSQLPLMWQLYPEERYMDNNSR
>ss_pred
CCCEEEEECCCEECCCCCEEEEEEEEECCCCCCEEEEEEECCCCCCCCCCCCCCCCCCCEEEECCCCCEECCCCC
>ss_conf
987689961870104587078999970578640132153103788788777774424614787217702035631
>d1a1x__ b.63.1.1 (-) p13-MTCP1 {Human (Homo sapiens)}
PPDHLWVHQEGIYRDEYQRTWVAVVEEETSFLRARVQQIQVPLGDAARPSHLLTSQLPLMWQLYPEERYMDNNSR
>gi|6678257|ref|NP_033363.1|:(7-103) T-cell lymphoma breakpoint 1 [Mus musculus]
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HPNRLWIWEKHVYLDEFRRSWLPVVIKSNEKFQVILRQEDVTLGEAMSPSQLVPYELPLMWQLYPKDRYRSCDSM
>gi|7305557|ref|NP_038800.1|:(8-103) T-cell leukemia/lymphoma 1B, 3 [Mus musculus]
PPRFLVCTRDDIYEDENGRQWVVAKVETSRSpygsrietcITVHLQHMTTIPQEPTPQQPINNNSLPTMWRLESMNTYTGTDGT
>gi|11415028|ref|NP_068801.1|:(2-106) T-cell lymphoma-1; T-cell lymphoma-1A [Homo sapiens]
HPDRLWAWEKFVYLDEKQHAWLPLTIEikDRLQLRVLLRREDVVLGRPMTPTQIGPSLLPIMWQLYPDGRYRSSDSS

The sequence with name >ss_dssp contains the 8-state DSSP-determined secondary struc-
ture. >aa_dssp and >aa_pred contain the same residues as the query sequence (>d1a1x__

in this case). They are optional and used merely to check whether the secondary struc-
ture states have correctly been assigned to the alignment. >ss_pred contains the 3-state
secondary structure predicted by PSIPRED, and >ss_conf conains the corresponding con-
fidence values. The query sequence is the first sequence that does not start with a special
name. It is not marked explicitely.

Name lines in alignments

If you would like to create HMMs from alignments with a specified name which differ from
the name of the first sequence, you can do so by adding name lines to your FASTA, A2M,
or A3M alignment:

#PF02043 Bac_chlorC: Bacteriochlorophyll C binding protein
>ss_pred
CCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHCC
>ss_conf
9863234658887677777750019999999998878886403445886666775655576678777660667633039
>CSMA_CHLAU/1-79
ATRGWFSESSAQVAQIGDIMFQGHWQWVSNALQATAAAVDNINRNAYPGVSRSGSGEGAFSSSPSNGFRPKRIRSRFNR
>CSMA_CHLPH/2-51
NGGGVFTDILAASGRIFEVMVEGHWATVGYLFDSLGKGVSRINQNAYGNM-----------------------------
...

When creating an HMM from an A3M file with hhmake, the first word of the name line
is used as the name and file name of the HMM (PF02043 in this case). The following is an
optional description. The descriptions will appear in the hit list and alignment section of
the search results. The name lines can be arbitrarily long and there can be any number of
name/description lines included, marked by a ’#’ as the first character in the line. Note
that name lines are read by HHmake but are not a part of the standard definition of the
FASTA or A2M format.

D.5.2. HHsearch/HHblits model format (hhm-format)

HHsearch/HHblits uses a format that is similar to HMMER format. This is the example
of an hhm model file produced by HHmake:

HHsearch 1.5
NAME d1mvfd_ b.129.1.1 (D:) MazE {Escherichia coli}
FAM b.129.1.1
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FILE d1mvfd_
COM hhmake1 -i d1mvfd_.a3m -o test.hhm
DATE Wed May 14 10:41:06 2008
LENG 44 match states, 44 columns in multiple alignment
FILT 32 out of 35 sequences passed filter (-id 90 -cov 0 -qid 0 -qsc -20.00 -diff 100)
NEFF 4.0
SEQ
>ss_dssp
CBCEEETTEEEEECCHHHHHHTTCCTTCBEEEEEETTEEEEEEC
>ss_pred
CCCCCCCCCCCCCCHHHHHHHHCCCCCCEEEEEEECCEEEEEEC
>ss_conf
93233467666600578899808998986889874993798739
>Consensus
sxIxKWGNSxAvRlPaxlxxxlxlxxgdxixxxxxxxxivlxPv
>d1mvfd_ b.129.1.1 (D:) MazE {Escherichia coli}
SSVKRWGNSPAVRIPATLMQALNLNIDDEVKIDLVDGKLIIEPV
>gi|10176344|dbj|BAB07439.1|:(1-43) suppressor of ppGpp-regulated growth inhibitor [Bacillus halodurans]
TTIQKWGNSLAVRIPNHYAKHINVTQGSEIELSLgSDQTIILKP-
>gi|50120611|ref|YP_049778.1|:(3-43) suppressor of growth inhibitory protein ChpA [Erwinia carotovora]
-TVKKWGNSPAIRLSSSVMQAFDMTFNDSFDMEIRETEIALIP-
>gi|44064461|gb|EAG93225.1|:(2-42) unknown [environmental sequence]
-SVVKWGSYLAVRLPAELVLELGLKEGDEIDLVKDDGPVRVR--
>gi|31442758|gb|AAP55635.1|:(1-44) PemI-like protein [Pediococcus acidilactici]
TRLAKWGNSKAARIPSQIIKQLKLDDNQDMTITIENGSIVLTPI
>gi|44419085|gb|EAJ13619.1|:(3-43) unknown [environmental sequence]
SAIQKWGNSAAVRLPAVLLEQIDASVGSSLNADVRPDGVLLSP-
>gi|24376549|gb|AAN57947.1|:(3-44) putative cell growth regulatory protein [Streptococcus mutans UA159]
SAINKWGNSSAIRLPKQLVQELQLQTNDVLDYKVSGNKIILEKV
>gi|11344928|gb|AAG34554.1|:(1-44) MazE [Photobacterium profundum]
TQIRKIGNSLGSIIPATFIRQLELAEGAEIDVKTVDGKIVIEPI
#
NULL 3706 5728 4211 4064 4839 3729 4763 4308 4069 3323 5509 4640 4464 4937 4285 4423 3815 3783 6325 4665
HMM A C D E F G H I K L M N P Q R S T V W Y

M->M M->I M->D I->M I->I D->M D->D Neff NeffI NeffD
0 * * 0 * 0 * * * *

S 1 * * * * * * * * * * * * * * * 1012 988 * * * 1
0 * * * * * * 2817 0 0

S 2 2307 * * * * * * * * * * * * 3178 3009 2179 1546 * * * 2
0 * * * * * * 3447 0 0

V 3 * * * * * * * 917 * 3009 * * * * * * * 1530 * * 3
0 * * * * * * 3447 0 0

.

.

.
V 44 * * * * * * * 1309 * * * * * * * * * 745 * * 44

0 * * 0 * * * 2533 0 0

//

The first line (HHsearch 1.5) gives the format version, which corresponds to the HH-
search version for which this format was first introduced. Newer versions of HHsearch/HHblits
may use previous format versions. The NAME line gives the name of the HMM and an op-



D.5 File formats 133

tional description. The first 30 characters of this field are used in the summary hit list
of the search results in hhr format, the full name line is given above the query-template
alignments of the search results. The FAM line contains the family if the sequence is from
SCOP or Pfam. COM is the command that was used to generate the file. NEFF is the diversity
of the alignment, calculated as exp of the negative entropy averaged over all columns of the
alignment.
The SEQ section contains a number of aligned, representative (pseudo) sequences in A3M

format and is terminated with a line containing only a #. The first sequence represents the
DSSP secondary structure (if available, i.e. if contained in the A3M or FASTA alignment
from which the HMMmodel was built), the second and third sequences contain the predicted
secondary structure and the corresponding confidence values in the range 0–9 (if available).
The fourth sequence is the consensus annotation sequence that is shown in the pairwise
query-template alignments in the hhsearch output. The first real sequence after the pseudo
sequences is the seed or master sequence from which the alignment was built (>d1mvfd_, in
our example). If the alignment does not represent a single master sequence but an entire
family, as in the case of Pfam alignments for example, the first real sequence may be a
consensus sequence calculated for the entire alignment. This master sequence is shown in
the pairwise query-template alignments in the hhsearch output.
The next line specifies the null model frequencies, which are extracted from the selected

substitution matrix used to add pseudocounts. Each of the positive integers is equal to 1000
times the negative logarithm of the amino acid frequency (which is between 0 and 1):

−1000× log2(frequency) (D.1)

After the two annotation lines that specify the order of columns for the emission and
transition probabilities that follow, there is a line which is not currently read by HHsearch
and that lists the transition frequencies from the begin state to the first Match state, Insert
state and Delete state.
The last block contains two lines for each column of the HMM. The first line starts

with the amino acid in the master sequence at that column in the HMM and the column
number. Following are 20 positive integers representing the match state amino acid emission
frequencies (see eq. D.1). Asterisks * stand for a frequency of 0 (which would otherwise be
represented by 99999). Please note that, unlike in HMMer format, the emission frequencies
do not contain pseudo-counts in the HHsearch model format. The second line contains the
seven transition frequencies (eq. D.1) and three subalignment diversities. Neff specifies
to the local diversity, i.e. the diversity of the subalignment of all sequences containing a
residue at this particular column of the alignment. Similarly, Neff_I refers to the alignment
of all sequences containing an insert at this position, and Neff_D refers to the aligment of
all sequences having a Delete at this position. The end of the model is indicated by a line
containing only \\.
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D.6. Summary of command-line parameters

This is just a brief summary of command line parameters for the various binaries and perl
scripts as they are displayed by the programs when calling them without command line
parameters. On the help pages of our HHpred/HHblits web servers

http://toolkit.tuebingen.mpg.de or http://toolkit.lmb.uni-muenchen.de

you can find more detailed explanations about some of the input parameters (’Paramters’
section) and about how to interpret the output (’Results’ section). The FAQ section contains
valuable practical hints on topics such as how to validate marginally significant database
matches or how to avoid high-scoring false positives.

D.6.1. hhmake – build an HMM from an input MSA

Build an HMM from an input alignment in A2M, A3M, or FASTA format. or convert
between HMMER format (.hmm) and HHsearch format (.hhm). A database file is generated
by simply concatenating these HMM files.

HHmake version 1.6.1.0 (April 2011)
Build an HMM from an input alignment in A2M, A3M, or FASTA format.
or convert between HMMER format (.hmm) and HHsearch format (.hhm).
A database file is generated by simply concatenating these HMM files.
Soding, J. Protein homology detection by HMM-HMM comparison. Bioinf. 2005, 21, 951-960.
(C) Johannes Soeding (see LICENSE file)

Usage: hhmake -i file [options]
-i <file> query alignment (A2M, A3M, or FASTA), or query HMM

Output options:
-o <file> HMM file to be written to (default=<infile.hhm>)
-a <file> HMM file to be appended to
-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose
-seq <int> max. number of query/template sequences displayed (def=10)

Beware of overflows! All these sequences are stored in memory.
-cons insert consensus as main representative sequence of HMM
-name <name> use this name for HMM (default: use name of first sequence)

Filter input alignment (options can be combined):
-id [0,100] maximum pairwise sequence identity (%) (def=90)
-diff [0,inf[ filter most diverse set of sequences, keeping at least this

many sequences in each block of >50 columns (def=100)
-cov [0,100] minimum coverage with query (%) (def=0)
-qid [0,100] minimum sequence identity with query (%) (def=0)
-neff [1,inf] target diversity of alignment (default=off)
-qsc [0,100] minimum score per column with query (def=-20.0)

http://toolkit.tuebingen.mpg.de
http://toolkit.lmb.uni-muenchen.de
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Input alignment format:
-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;

’-’ = Delete; ’.’ = gaps aligned to inserts (may be omitted)
-M first use FASTA: columns with residue in 1st sequence are match states
-M [0,100] use FASTA: columns with fewer than X% gaps are match states

Other options:
-def read default options from ./.hhdefaults or <home>/.hhdefault.

Example: hhmake -i test.a3m

D.6.2. hhblits – iteratively search a database of HMMs with a query
sequence or MSA

HHblits version 2.2.13 (May 2011)
Fast homology detection method HHblits to iteratively search a HMM database
by HMM-HMM comparison.
to be published.
(C) Michael Remmert and Johannes Soeding

Usage: hhblits -i query [options]

-i <file> input query (single FASTA-sequence, A3M- or FASTA-MSA, HMM-file)

Options:
-d <base> database basename (default=/cluster/databases/hhblits/uniprot20)
-n [1,8] number of iterations (default=2)
-e [0,1] E-value cutoff for inclusion in result alignment (def=0.001)

Needed libraries
-context_data <file> context_data library (default=context_data.lib)
-cs_lib <file> cs-library (default=cs219.lib)

Input alignment format:
-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;

’-’ = Delete; ’.’ = gaps aligned to inserts (may be omitted)
-M first use FASTA: columns with residue in 1st sequence are match states
-M [0,100] use FASTA: columns with fewer than X% gaps are match states

Output options:
-o <file> write results in standard format to file (default=<infile.hhr>)
-oa3m <file> write pairwise alignments in A3M format (default=none)
-opsi <file> write pairwise alignments in PSI format (default=none)
-ohhm <file> write HHM file of the pairwise alignments (default=none)
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-oalis <base> write pairwise alignments in A3M format after each round (default=none)

HMM-HMM alignment options:
-norealign do NOT realign displayed hits with MAC algorithm (def=realign)
-mact [0,1[ posterior probability threshold for MAC re-alignment (def=0.500)

Parameter controls alignment greediness: 0:global >0.1:local
-glob/-loc use global/local Viterbi alignment for searching/ranking (def=local)

Other options:
-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose (def=2)
-cpu <int> number of CPUs to use (for shared memory SMPs) (default=1)

An extended list of options can be obtained by using ’--help all’ as parameter

Example: hhblits -i query.fas -oa3m query.a3m -n 2

D.6.3. hhsearch – search a database of HMMs with a query MSA or HMM

HHsearch version 1.6.1.0 (April 2011)
Search a database of HMMs with a query alignment or query HMM
Soding, J. Protein homology detection by HMM-HMM comparison. Bioinf. 2005, 21, 951-960.
(C) Johannes Soeding (see LICENSE file)

Usage: hhsearch -i query -d database [options]
-i <file> input query alignment (A2M, A3M, FASTA) or HMM
-d <file> HMM database of concatenated HMMs in hhm, HMMER, or A3M format,

OR, if file has extension pal, list of HMM file names, one per
line. Multiple dbs, HMMs, or pal files with -d ’<db1> <db2>...’

Output options:
-cal calibrate query HMM (write mu and lamda into hhm file)
-o <file> write results in standard format to file (default=<infile.hhr>)
-ofas <file> write pairwise alignments in FASTA (-oa2m: A2M, -oa3m: A3M) format
-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose
-seq <int> max. number of query/template sequences displayed (def=1)
-nocons don’t show consensus sequence in alignments (default=show)
-nopred don’t show predicted 2ndary structure in alignments (default=show)
-nodssp don’t show DSSP 2ndary structure in alignments (default=show)
-ssconf show confidences for predicted 2ndary structure in alignments
-aliw <int> number of columns per line in alignment list (def=80)
-p <float> minimum probability in summary and alignment list (def=20)
-E <float> maximum E-value in summary and alignment list (def=1E+06)
-Z <int> maximum number of lines in summary hit list (def=500)
-z <int> minimum number of lines in summary hit list (def=10)
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-B <int> maximum number of alignments in alignment list (def=500)
-b <int> minimum number of alignments in alignment list (def=10)

Remark: you may use ’stdin’ and ’stdout’ instead of file names

Filter input alignment (options can be combined):
-id [0,100] maximum pairwise sequence identity (%) (def=90)
-diff [0,inf[ filter most diverse set of sequences, keeping at least this

many sequences in each block of >50 columns (def=100)
-cov [0,100] minimum coverage with query (%) (def=0)
-qid [0,100] minimum sequence identity with query (%) (def=0)
-qsc [0,100] minimum score per column with query (def=-20.0)

Input alignment format:
-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;

’-’ = Delete; ’.’ = gaps aligned to inserts (may be omitted)
-M first use FASTA: columns with residue in 1st sequence are match states
-M [0,100] use FASTA: columns with fewer than X% gaps are match states

HMM-HMM alignment options:
-realign realign displayed hits with max. accuracy (MAC) algorithm
-norealign do NOT realign displayed hits with MAC algorithm (def=realign)
-mact [0,1[ posterior probability threshold for MAC re-alignment (def=0.300)

Parameter controls alignment greediness: 0:global >0.1:local
-glob/-loc use global/local alignment mode for searching/ranking (def=local)
-alt <int> show up to this many significant alternative alignments(def=2)
-excl <range> exclude query positions from the alignment, e.g. ’1-33,97-168’
-shift [-1,1] score offset (def=-0.01)
-corr [0,1] weight of term for pair correlations (def=0.10)
-ssm 0-4 0: no ss scoring

1,2: ss scoring after or during alignment [default=2]
3,4: ss scoring after or during alignment, predicted vs. predicted

-ssw [0,1] weight of ss score (def=0.11)

Other options:
-def read default options from ./.hhdefaults or <home>/.hhdefault.

Write ’hhsearch’, ’hhmake’ and/or ’hhfilter’ etc. in one line,
followed by its list of options, one per line.

-cpu <int> number of CPUs to use (for shared memory SMPs) (default=1)

An extended list of options can be obtained by using ’--help all’ as parameter

Example: hhsearch -i a.1.1.1.a3m -d scop70_1.71.hhm
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D.6.4. hhalign – Align a query MSA/HMM to a template MSA/HMMt

Align a query alignment/HMM to a template alignment/HMM by HMM-HMM alignment.
If only one alignment/HMM is given it is compared to itself and the best off-diagonal align-
ment plus all further non-overlapping alignments above significance threshold are shown.
The command also allows to sample alignments randomly, to generate png-files with dot
plots showing alignments or to print out a list of indices of aligned residue pairs.

HHalign version 1.6.1.0 (April 2011)
Align a query alignment/HMM to a template alignment/HMM by HMM-HMM alignment
If only one alignment/HMM is given it is compared to itself and the best
off-diagonal alignment plus all further non-overlapping alignments above
significance threshold are shown.
Soding, J. Protein homology detection by HMM-HMM comparison. Bioinf. 2005, 21, 951-960.
(C) Johannes Soeding (see LICENSE file)

Usage: hhalign -i query [-t template] [options]
-i <file> input query alignment (fasta/a2m/a3m) or HMM file (.hhm)
-t <file> input template alignment (fasta/a2m/a3m) or HMM file (.hhm)
-png <file> write dotplot into PNG-file (default=none)

Output options:
-o <file> write output alignment to file
-ofas <file> write alignments in FASTA, A2M (-oa2m) or A3M (-oa3m) format
-Oa3m <file> write query alignment in a3m format to file (default=none)
-Aa3m <file> append query alignment in a3m format to file (default=none)
-atab <file> write alignment as a table (with posteriors) to file (default=none)
-index <file> use given alignment to calculate Viterbi score (default=none)
-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose
-seq [1,inf[ max. number of query/template sequences displayed (def=1)
-nocons don’t show consensus sequence in alignments (default=show)
-nopred don’t show predicted 2ndary structure in alignments (default=show)
-nodssp don’t show DSSP 2ndary structure in alignments (default=show)
-ssconf show confidences for predicted 2ndary structure in alignments
-aliw int number of columns per line in alignment list (def=80)
-P <float> for self-comparison: max p-value of alignments (def=0.001
-p <float> minimum probability in summary and alignment list (def=0)
-E <float> maximum E-value in summary and alignment list (def=1E+06)
-Z <int> maximum number of lines in summary hit list (def=100)
-z <int> minimum number of lines in summary hit list (def=1)
-B <int> maximum number of alignments in alignment list (def=100)
-b <int> minimum number of alignments in alignment list (def=1)
-rank int specify rank of alignment to write with -Oa3m or -Aa3m option (def=1)

Dotplot options:
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-dthr <float> probability/score threshold for dotplot (default=0.50)
-dsca <int> if value <= 20: size of dot plot unit box in pixels

if value > 20: maximum dot plot size in pixels (default=600)
-dwin <int> average score over window [i-W..i+W] (for -norealign) (def=10)
-dali <list> show alignments with indices in <list> in dot plot

<list> = <index1> ... <indexN> or <list> = all

Filter input alignment (options can be combined):
-id [0,100] maximum pairwise sequence identity (%) (def=90)
-diff [0,inf[ filter most diverse set of sequences, keeping at least this

many sequences in each block of >50 columns (def=100)
-cov [0,100] minimum coverage with query (%) (def=0)
-qid [0,100] minimum sequence identity with query (%) (def=0)
-qsc [0,100] minimum score per column with query (def=-20.0)

Input alignment format:
-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;

’-’ = Delete; ’.’ = gaps aligned to inserts (may be omitted)
-M first use FASTA: columns with residue in 1st sequence are match states
-M [0,100] use FASTA: columns with fewer than X% gaps are match states

HMM-HMM alignment options:
-glob/-loc global or local alignment mode (def=local)
-alt <int> show up to this number of alternative alignments (def=1)
-realign realign displayed hits with max. accuracy (MAC) algorithm
-norealign do NOT realign displayed hits with MAC algorithm (def=realign)
-mact [0,1[ posterior probability threshold for MAC alignment (def=0.300)

A threshold value of 0.0 yields global alignments.
-sto <int> use global stochastic sampling algorithm to sample this many alignments
-excl <range> exclude query positions from the alignment, e.g. ’1-33,97-168’
-shift [-1,1] score offset (def=-0.010)
-corr [0,1] weight of term for pair correlations (def=0.10)
-ssm 0-4 0:no ss scoring [default=2]

1:ss scoring after alignment
2:ss scoring during alignment

-ssw [0,1] weight of ss score (def=0.11)

-def read default options from ./.hhdefaults or <home>/.hhdefault.

Example: hhalign -i T0187.a3m -t d1hz4a_.hhm -png T0187pdb.png

D.6.5. hhfilter – filter an MSA

Filter an alignment by maximum pairwise sequence identity, minimum coverage, minimum
sequence identity or score per column to the first (seed) sequence etc.
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HHfilter version 1.6.1.0 (April 2011)
Filter an alignment by maximum sequence identity of match states and minimum coverage
Soding, J. Protein homology detection by HMM-HMM comparison. Bioinf. 2005, 21, 951-960.
(C) Johannes Soeding (see LICENSE file)

Usage: hhfilter -i infile -o outfile [options]
-i <file> read input file in A3M/A2M or FASTA format
-o <file> write to output file in A3M format
-a <file> append to output file in A3M format

Options:
-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose
-id [0,100] maximum pairwise sequence identity (%) (def=90)
-diff [0,inf[ filter most diverse set of sequences, keeping at least this

many sequences in each block of >50 columns (def=0)
-cov [0,100] minimum coverage with query (%) (def=0)
-qid [0,100] minimum sequence identity with query (%) (def=0)
-qsc [0,100] minimum score per column with query (def=-20.0)
-neff [1,inf] target diversity of alignment (default=off)
-def read default options from ./.hhdefaults or <home>/.hhdefault.

Input alignment format:
-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;

’-’ = Delete; ’.’ = gaps aligned to inserts (may be omitted)
-M first use FASTA: columns with residue in 1st sequence are match states
-M [0,100] use FASTA: columns with fewer than X% gaps are match states

Example: hhfilter -id 50 -i d1mvfd_.a2m -o d1mvfd_.fil.a2m

D.6.6. reformat.pl – reformat one or many alignments

Read one or many multiple alignments in one format and write them in another format

Usage: reformat.pl [informat] [outformat] infile outfile [options]
or reformat.pl [informat] [outformat] ’fileglob’ .ext [options]

Available input formats:
fas: aligned fasta; lower and upper case equivalent, ’.’ and ’-’ equivalent
a2m: aligned fasta; inserts: lower case, matches: upper case, deletes: ’-’,

gaps aligned to inserts: ’.’
a3m: like a2m, but gaps aligned to inserts MAY be omitted
sto: Stockholm format; sequences in several blocks with sequence name at

beginning of line (hmmer output)
psi: format as read by PSI-BLAST using the -B option (like sto with -M first -r)
clu: Clustal format; sequences in several blocks with sequence name at beginning
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of line
Available output formats:

fas: aligned fasta; all gaps ’-’
a2m: aligned fasta; inserts: lower case, matches: upper case, deletes: ’-’,

gaps aligned to inserts: ’.’
a3m: like a2m, but gaps aligned to inserts are omitted
sto: Stockholm format; sequences in just one block, one line per sequence
psi: format as read by PSI-BLAST using the -B option
clu: CLUSTAL format

If no input or output format is given the file extension is interpreted as format
specification (’aln’ as ’clu’)

Options:
-v int verbose mode (0:off, 1:on)
-num add number prefix to sequence names: ’name’, ’1:name’ ’2:name’ etc
-noss remove secondary structure sequences (beginning with >ss_)
-sa do not remove solvent accessibility sequences (beginning with >sa_)
-M first make all columns with residue in first seuqence match columns

(default for output format a2m or a3m)
-M int make all columns with less than X% gaps match columns

(for output format a2m or a3m)
-r remove all lower case residues (insert states)

(AFTER -M option has been processed)
-r int remove all lower case columns with more than X% gaps
-g ’’ suppress all gaps
-g ’-’ write all gaps as ’-’
-uc write all residues in upper case (AFTER other options have been processed)
-lc write all residues in lower case (AFTER other options have been processed)
-l number of residues per line (for CLUSTAL, FASTA, A2M, A3M formats)

(default=100)
-d maximum number of characers in nameline (default=1000)

Examples: reformat.pl 1hjra.a3m 1hjra.a2m
(same as reformat.pl a3m a2m 1hjra.a3m 1hjra.a2m)
reformat.pl test.a3m test.fas -num -r 90
reformat.pl fas sto ’*.fasta’ .stockholm

D.6.7. buildali.pl – build a PSI-BLAST alignment from a sequence or MSA

Build alignment for query sequence (FASTA) or query alignment (A2M, A3M, or aligned
FASTA):

• Build profile with several interations of PSI-BLAST
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• If query alignment contains < 20 sequences and query has < 50 residues and query
can be extended by more than 10% of residues then do search with extended query
and merge alignments

• Include dssp states if available

• Include psipred secondary structure prediction

Usage: buildali.pl infile [outdir] [options]

General options:
-v <int> verbose mode (def=$v)
-u update: do not overwrite *.a3m files already existing (def=off)
-old [dir] if a file with same name is found in old database, jumpstart

PSI-BLAST with this file
-cpu <int> number of CPUs to use when calling blastpgp (default=$cpu)
-cn create alignment file <basename>.<n>.a3m after each PSI-BLAST round

Options for building alignments:
-extend force query extension: psiblast with original AND extended sequence

and merge alignments (def=off)
-n <int> maximum number of psiblast iterations (def=$maxiter)
-e <float> E-value for inclusion in PSI-BLAST profile (def=$Eult)
-id <int> maximum pairwise sequence identity in % (def=$id)
-qid <int> minimum sequence identity with query in % (def=0)
-diff <int> maximum number of maximally different sequences in output alignment

(default=off)
-cov <int> minimum coverage in % (Coverage = length of HSP / length of query)

(def=$cov)
-len <int> minimum number of residues in HSP (def=$min_hitlen)
-b <float> minimum per-residue bit score with query at ends of HSPs
-bl <float> lenient -b value used for ends of HSP where query sequence overlaps

less than 50 residues (default=0)
-bs <float> strict -b value used for ends of HSP where query sequence overlaps

more than 50 residues (default=0.167)
-p <float> only for extended search: maximum p-value of HSP IN MATCH COLUMNS

for inclusion into alignment (def=$pmax)
-core when input is multiple alignment: build a core alignment with BLAST

(don’t use the supplied input alignment
as a core alignment )

-lc filter out low complexity regions in query sequence
(only for PSI-BLAST search)

-ihs <int> run quick intermediate HMM search (HHsenser) if less than <int>
sequences found (def=off)

-noss omit secondary structure (predicted or DSSP)
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-db <basename> basename of sequence database, e.g. /cluster/databases/nr_euk
( => nr_euk90f, nr_euk70f)

Input formats:
-fas aligned FASTA input format; the first sequence (=query sequence) will

define match columns
-a3m A3M input format (default); the first sequence (=query sequence) will

(re)define match columns
-clu CLUSTAL format
-sto: Stockholm format; sequences in just one block, one line per sequence

Example: buildali.p test.a3m > ./builddb.log &
Usage: buildali.pl infile [outdir] [options]

D.6.8. addss.pl – add predicted secondary structure to an MSA or HMM

Add DSSP states (if available) and PSIPRED secondary structure prediction to a multiple
sequence alignment. Input is a multiple sequence alignment or a HMMER (multi-)model file.
Allowed input formats are A2M/FASTA (default), A3M (-a3m), CLUSTAL (-clu), STOCK-
HOLM (-sto), HMMER (-hmm). If the input file is an alignment, the output file is in A3M
with default name <basename>.a3m. If the input file is in HMMER format, the output is
the same as the input, except that records SSPRD and SSCON are added to each model
which contain predicted secondary structure and confidence values. In this case the output
file name is obligatory and must be different from the input file name. (Remark: A3M looks
misaligned but it is not. To reconvert to FASTA, type reformat.pl file.a3m file.fas.
For an explanation of the A3M format, see the HHsearch README file.

Usage: perl addss.pl <ali file> [<outfile>] [-fas|-a3m|-clu|-sto|-hmm]

D.6.9. create_db.pl – creates HHblits databases from HMMER-files,
HHM-files or A3M-files

Creates HHblits databases from HMMER-files, HHM-files or A3M-files. The recommended
way to use this script is to start with a directory of A3M-files (-a3mdir <DIR>) and let
this script generates an A3M- database (-oa3m <FILE>) and an HHM-database (-ohhm
<FILE>). If you already have HHM-models for your A3M-files, you can use them as
additional input (-hhmdir <DIR>). If you don’t need the A3M-database, you can also
start this script with an directory of HHM-files (-hhmdir <DIR>) and as output only the
HHM-database (-ohhm <FILE>).

Usage: perl create_db.pl -i <dir> [options]

Options:
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-a3mdir <dir> Input directory (directories) with A3M-files
-hhmdir <dir> Input directory (directories) with HHM- or HMMER-files

(WARNING! Using HMMER dbs could result in a decreased sensitivity!)

-oa3m <FILE> Output filename for the A3M database
(if not given, no A3M database will be build)

-ohhm <FILE> Output filename for the HHM database
(if not given, no HHM database will be build)

-a3mext Extension of A3M-files (default: a3m)
-hhmext Extension of HHM- or HMMER-files (default: hhm)

-append If the output file exists, append new files (default: overwrite)

-v [0-5] verbose mode (default: 2)

Examples:

perl create_db.pl -a3mdir /databases/scop_a3ms -oa3m /databases/scop_a3m_db
-ohhm /databases/scop_hhm_db

perl create_db.pl -a3mdir /databases/scop_a3ms -hhmdir /databases/scop_hhms
-oa3m /databases/scop_a3m_db -ohhm /databases/scop_hhm_db

perl create_db.pl -hhmdir /databases/scop_hhms -ohhm /databases/scop_hhm_db

D.6.10. create_cs_db.pl – creates HHblits prefilter database

Create a HHblits prefilter database from HMMER-files, HMM-files or A3M-files

Usage: perl create_cs_db.pl -i <dir> [options]

Options:
-i <dir> Input directory with HMMER-, HMM- or A3M-files
-o <file> Output file for the CS-database (default: <indir>.cs219)

-ext <ext> File extension, which identifies file-typ (default: a3m)
- A3M-type : a3m
- HHM-type : hhm
- HMMER-type: hmmer or hmm

-append append to CS-database (default: overwrite file, if existing)

-v [0-5] verbose mode (default: 2)
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D.6.11. alignhits.pl – extract an alignment from a BLAST/PSI-BLAST
output

Extract a multiple alignment of hits from Blast or PsiBlast output (as text file, not html)

Usage: alignhits.pl blast-file alignment-file [options]
Options for thresholds

-e e-value : maximum e-value (default=0.0001)
-qid percent : minimum sequence identity to query in % (default=0)

(seq-id = # identities in match columns / # hit residues in
match columns)

-cov coverage : minimum coverage in % (default=0)
-emin e-value : minimum e-value (default=-1)

Options for output format:
-psi : PsiBlast-readable format; inserts relative to query (=first)

sequence omitted, capitalization of residues same as
query sequence (default)

-a2m : like FASTA, but capitalization of residues same as query sequence,
deletes ’-’, gaps aligned to lower case columns ’.’

-a3m : like -a2m, but gaps aligned to inserts omitted
-ufas : unaligned fasta format (without gaps)
-fas : aligned fasta; all residues upper case, all gaps ’-’

Other options:
-v : verbose mode (default=off)
-append : append output to file (default=overwrite)
-best : extract only the best HSP per sequence (default=off)
-q file : insert a2m-formatted query sequence into output alignment;

upper/lower case determines match/insert columns
-Q file : like -q, but all query residues will be match states (upper case)
-p p-value : maximum p-value of HSP IN MATCH COLUMNS

(with query or -P alignment) (default=1)
-qsc value : minimum score per column in bits (with query or -P alignment)

(default=-10)
-b float : HSP pruning: min per-residue score in bits

(with query or -B alignment) at ends of HSPs
-bl float : lenient HSP pruning: min per-residue score in bits

(with query or -B alignment) at ends of HSPs. Used when number of
endgaps at the one end < bg (see -bg) (default=-10)

-bs float : strict HSP pruning: like -b, but used when number of endgaps >= bg
(default=-10)

-bg int : below this number of end gaps the lenient HSP pruning score is used,
: above the strict score is employed (default=30)

-P file : read alignment file (in psiblast-readable format) and calculate PSSM
to be used with option -p (only in conjunction with -q or -Q options)

-B file : read alignment file (in psiblast-readable format) and calculate PSSM
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to be used with option -b (only in conjunction with -q or -Q options)

Examples:
alignhits.pl 1enh.out 1enh.psi
alignhits.pl 1enh.out 1enh.a3m -e 1E-4 -cov 50 -s/c 1 -a2m

D.6.12. hhmakemodel.pl – generate MSAs or coarse 3D models from
HHsearch results file

From the top hits in an hhsearch output file (hhr), you can

• generate a MSA (multiple sequence alignment) containing all representative template
sequences from all selected alignments (options -fas, -a2m, -a3m, -pir)

• generate several concatenated pairwise alignments in AL format (option -al)

• generate several concatenated coarse 3D models in PDB format (option -ts)

In PIR, PDB and AL format, the pdb files are required in order to read the pdb residue
numbers and ATOM records. The PIR formatted file can be used directly as input to the
MODELLER homology modelling package.

Usage: hhmakemodel.pl [-i] file.hhr [options]

Options:
-i <file.hhr> results file from hhsearch with hit list and alignments
-fas <file.fas> write a FASTA-formatted multiple alignment to file.fas
-a2m <file.a2m> write an A2M-formatted multiple alignment to file.a2m
-a3m <file.a3m> write an A3M-formatted multiple alignment to file.a3m
-m <int> [<int> ...] pick hits with specified indices (default=’-m 1’)
-p <probability> minimum probability threshold
-e <E-value> maximum E-value threshold
-q <query_ali> use the full-length query sequence in the alignment

(not only the aligned part);
the query alignment file must be in HHM, FASTA, A2M,
or A3M format.

-N use query name from hhr filename (default: use same
name as in hhr file)

-first include only first Q or T sequence of each hit in MSA
-v verbose mode

Options when database matches in hhr file are PDB or SCOP sequences
-pir <file.pir> write a PIR-formatted multiple alignment to file.pir
-ts <file.pdb> write the PDB-formatted models based on *pairwise*

alignments into file.pdb
-al <file.al> write the AL-formatted *pairwise* alignments into file.al
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-d <pdbdirs> directories containing the pdb files (for PDB, SCOP, or DALI
sequences)

-s <int> shift the residue indices up/down by an integer
-CASP formatting for CASP (for -ts, -al options)

(default: LIVEBENCH formatting)

Options when query is compared to itself (for repeat detection)
-conj include also conjugate alignments in MSA (with query and

template exchanged)
-conjs include conjugate alignments and sort by ascending diagonal

value (i.e. i0-j0)

D.7. Changes from previous versions

(For a full history, see accompanying file CHANGES.)

D.7.1. 2.0.0 (June 2011)

• Include iterative HMM-HMM comparison method HHblits.

• Increase speed by using SSE3 instructions in some functions.

• Adding new option "-atab" for writing alignment as a table (with posteriors) to file.

• HHsearch is now able to read HMMER3 profiles (but should not be used due to a loss
of sensitivity).

D.7.2. 1.6.0 (2010)

• A new procedure for estimation of P- and E-values has been implemented that circum-
vents the need to calibrate HMMs. Calibration can still be done if desired. By default,
however, HHsearch now estimates the lamda and mu parameters of the extreme value
distribution (EVD) for each pair of query and database HMMs from the lengths of
both HMMs and the diversities of their underlying alignments. Apart from saving
the time for calibration, this procedure is more reliable and noise-resistant. This
change only applies to the default local search mode. For global searches, nothing has
changed. Note that E-values in global search mode are unreliable and that sensitivity
is reduced.
Old calibrations can still be used:
-calm 0 : use empirical query HMM calibration (old default)
-calm 1 : use empirical db HMM calibration
-calm 2 : use both query and db HMM calibration
-calm 3 : use neural network calibration (new default)
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• Previous versions of HHsearch sometimes showed non-homologous hits with high prob-
abilities by matching long stretches of secondary structure states, in particular long
helices, in the absence of any similarity in the amino acid profiles. Capping the SS
score by a linear function of the profile score now effectively suppresses these spurious
high-scoring false positives.

• The output format for the query-template alignments has slightly changed. A ’Con-
fidence’ line at the bottom of each alignment block now reports the posterior proba-
bilities for each alignment column when the -realign option is active (which it is by
default). These probabilities are calculated in the Forward-Backward algorithm that
is needed as input for the Maximium ACcuracy alignment algorithm. Also, the lines
’ss_conf’ with the confidence values for the secondary structure prediction are omit-
ted by default. (They can be displayed with option ’-showssconf’). To compensate,
secondary structure predictions with confidence values between 7 and 9 are given in
capital letters, while for the predictions with values between 0 and 6 lower-case letters
are used.

• In the hhsearch output file in the header lines before each query-database alignment,
the substitution matrix score (without gap penalties) of the query with the database
sequence is now reported in bits per column. Also, the sum of probabilities for each
pair of aligned residues from the MAC algorithm is reported here (0 if no MAC
alignment is performed).

• The buildali.pl script now uses context-specific iterative BLAST (CSI-BLAST) instead
of PSI-BLAST. This considerably increases the sensitivity of buildali.pl/HHsearch.

• Removed a bug which produced a segfault for input alignments with more than 15000
match columns. Now, the HHsearch binaries will issue a warning and will transform
only the first 15000 match columns into an HMM.

• Removed a bug in the multi-threading code that could lead to occasional hang-ups
(race condition) in situations where slow file access was impeding program execution
and inter-thread signaling was unreliable.

• Removed a memory leak and optimized memory management.

• Removed a bug in hhalign that could lead to unreasonably significant E-values and
probabilities due to calibration problems.

• HHsearch now performs realign with MAC-alignment only around Viterbi-hit.

D.7.3. 1.5.0 (August 2007)

• By default, HHsearch realigns all displayed alignments in a second stage using the
more accurate Maximum Accuracy (MAC) alignment algorithm (Durbin, Eddy, Krough,
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Mitchison: Biological sequence analysis, page 95; HMM-HMM version: J. Söding, un-
published). As before, the Viterbi algorithm is employed for searching and ranking
the matches. The realignment step is parallelized (-cpu <int>) and typically takes a
few seconds only. You can switch off the MAC realignment with the -norealign option.
The posterior probability threshold is controlled with the -mact [0,1[ option. This
parameter controls the alignment algorithm’s greediness. More precisely, the MAC
algorithm finds the alignment that maximizes the sum of posterior probabilites minus
mact for each aligned pair. Global alignments are generated with -mact 0, whereas
-mact 0.5 will produce quite conservative local alignments. Default value is -mact
0.35, which produces alignments of roughly the same length as the Viterbi algorithm.
The -global and -local (default) option now refer to both the Viterbi search stage as
well as the MAC realignment stage. With -global (-local), the posterior probability
matrix will be calculated for global (local) alignment. Note that ’-local -mact 0’ will
produce global alignments from a local posterior probability matrix (which is not at
all unreasonable).

• An amino acid compositional bias correction is now performed by default. This in-
creases the sensitivity by 25% at 0.01 errors per query and by 5% at 0.1 errors per
query. By recalibrating the Probabilities, the increased selectivity of this new version
allows to give higher probabilities for the same P-values. Also, the score offset could
be increased from -0.1 bits to 0 as a consequence.

• The algorithm that filters the set of the most diverse sequences (option -diff) has
been improved. Before, it determined the set of the N most diverse sequences. In the
case of multi-domain alignments, this could lead to severely underrepresented regions.
E.g. when the first domain is only covered by a few fairly similar sequences and the
second by hundreds of very diverse ones, most or all of the similar ones were removed.
The ’-diff N’ option now filters the most diverse set of sequences, keeping at least N
sequences in each block of >50 columns. This generally leads to a total number of
sequences that is larger than N. Speed is similar. The default is ’-diff 100’ for hhmake
and hhsearch. Speed is similar. Use -diff 0 to switch this filter off.

• The sensitivity for the -global alignment option has been significantly increased by a
more robust statistical treatment. The sensitivity in -global mode is now only 0-10%
lower than for the default -local option on a SCOP benchmark, i.e. when the query or
the templates represent single structural domains. The E-values are now more realistic,
although still not as reliable as for -local. The Probabilities were recalibrated.

• A new binary hhalign has been added. It is similar to hhsearch, but performs only
pairwise comparisons. It can produce dot plots, tables of aligned residues, and it can
sample alternative alignments stochastically. It uses the MAC algorithm by default.
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• HHsearch and hhalign can generate query-template multiple alignments in FASTA,
A2M, or A3M format with the -ofas, -oa2m, -oa3m options

• Returned error values were changed to comply with convention that 0 means no errors:

1. Finished successfully

2. Format error in input files

3. File access error

4. Out of memory

5. Syntax error on command line

6. Internal logic error (please report)

7. Internal numeric error (please report)

8. Other

• Added script buildali.pl <file> to automatically build PSI-BLAST mutliple se-
quence alignments, including predicted and DSSP secondary structure. buildali.pl

is much more robust to alignment corruption by non-homologous fragment by pruning
sequences individually from both ends as necessary (J. Söding, unpublished).

• Added script hhmakemodel.pl <file.hhr> that parses hhsearch results files and can
generate FASTA or PIR multiple alignments or build rough 3D models.

• Moved memory allocation from stack to heap to avoid segmentation faults under some
Windows systems.

• Removed a bug due to which pseudocounts where added to HMMer HMMs (which
already have their own pseudocounts added). This bug reduced sensitivity for HMMs
read in HMMer format.

• Removed a bug due to which the query-template alignments where not displayed on
some platforms when output was directed to stdout

• Removed a bug that caused occasional segfaults under SunOS when reading HMMer
files

• Added multi-threading (-cpu <int>) for Windows x86 platform

• Cleaned up output formatting of summary list for Windows x86

• Stopped support for the Alpha/DEC platform

Is anyone still interested in Mac OSX/PPC or SunOS support?
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D.8. License

The HHsearch/HHblits software package is distributed under the terms of the Attribution-
NonCommercial-3.0 license from Creative Commons (http://creativecommons.org/licenses/

by-nc/3.0/). Here is a human-readable summary.

Summary of license

You are free

• to copy, distribute, display and perform the work

• to make derivative works

under the following conditions:

• Attribution: You must give the original author credit.

• Noncommercial: You may not use this work for commercial purposes.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions, in particular the second condition restricting the use for commercial
purposes, can be waived if you get permission from the copyright holder. Your fair use and
other rights are in no way affected by the above.
For the legally binding, full text of the license, please refer to http://creativecommons.

org/licenses/by-nc/3.0/

If you would like to use this software for commercial purposes, please contact the copyright
holder at johannes@soeding.com

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
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