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1. SUMMARY 

The objective of this project was to establish a system facilitating externally controlled 

gene expression within encapsulated cells. This project may allow production of a 

potential therapeutic protein from genetically modified heterologous cells inside a 

patient’s body at the place of therapeutic relevance without rejection by the host`s 

immune system. To this aim, magnetic field-directed, nanoparticle-mediated heat 

induction of reporter gene expression in encapsulated cells was evaluated. 

In a first step, genetically modified HEK293 cells, which harboured a heat-inducible 

expression construct, were analysed with respect to inducibility in response to 

incubation at elevated temperature, revealing robust induction of reporter gene 

expression.  

A set of 13 different nanoparticle formulations was investigated with regard to critical 

parameters such as heat generation capacity in an alternating magnetic field as well 

as their general tendency to aggregate. Taking into account both parameters, two 

nanoparticle formulations were selected for further experiments. 

The co-encapsulation of cells with the two nanoparticle formulations in biologically 

inert sodium cellulose sulphate (SCS) was successfully established by modifying 

encapsulation parameters. Modified encapsulation parameters were shown to have 

no impact on microcapsule diameter and membrane thickness of the microcapsules 

as well as on pore size of the microcapsules compared to unmodified standard 

capsules. 

Encapsulated cells were characterised regarding biocompatibility of nanoparticle 

formulations as well as heat inducibility. Nanoparticle localisation in SCS capsules, 

cell viability and metabolic activity during long-term cultivation as well as proliferation 

of encapsulated cells demonstrated acceptable tolerability of magnetite 

nanoparticles. Investigation of heat inducibility of reporter gene expression in 

encapsulated cells revealed general inducibility of gene expression also in 

encapsulated cells as well as ongoing inducibility of gene expression in encapsulated 
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cells for four weeks of cultivation. Additionally, the possibility of repeated induction for 

three weeks of cultivation was demonstrated. 

Finally, the survival of encapsulated cells after magnetic field treatment was 

investigated revealing that magnetic field treatment was well tolerated by HEK293 

cells. 

Proof-of-principle for this novel cell therapy concept could be provided in vitro by 

magnetic field-directed, nanoparticle-mediated heat induction of reporter gene 

expression in encapsulated cells. Additionally, preliminary in vivo experiments 

confirmed repeated heat-inducible expression of reporter genes within encapsulated 

cells that had been implanted into mice, being indication for a general applicability for 

potential therapeutic approaches. 
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2. INTRODUCTION 

For the treatment of many diseases using cell-based therapy approaches, externally 

induced therapeutic gene expression is of great interest. In this project a strictly 

external regulation of gene expression should be achieved within encapsulated cells. 

Thereby, therapeutic protein levels can be generated in a controlled manner by 

genetically modified heterologous cells inside a patient’s body at the place of 

therapeutic relevance. 

 

Fig. 2.1.: Nanoparticle-mediated thermoregulation of gene expression within encapsulated cells 
by applying an alternating magnetic field. 

For this purpose (see Fig. 2.1.), genetically modified cells harbouring a highly 

inducible artificial heat shock promoter are co-encapsulated together with magnetite 

nanoparticles in biologically inert sodium cellulose sulphate (SCS). These capsules 

can be instilled at the site of therapeutic relevance bearing the advantage of not 

being rejected by the patient’s immune system because of immunoisolation by a 

semipermeable SCS capsule membrane. Once in situ placement of the capsules has 

been performed, an alternating magnetic field induces heat within the capsules due 

to co-encapsulated magnetite nanoparticles: This in turn switches on gene 
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expression of encapsulated cells. The proposed concept might accomplish a spatial 

and temporal regulation of therapeutic gene expression inside a patient`s body. 

 

2.1. Gene and cell-based therapy 
Recent breakthroughs in molecular medicine have made gene therapy one of the 

most rapidly advancing fields of biotechnology, with a great outlook on promising 

treatment for both inherited and acquired diseases (Somia, et al., 2000). During the 

last years and despite some disappointments, considerable progress was made, 

which culminated in the first market approval of a gene therapy product in 2003 

(reviewed in Günzburg, et al., 2004). Current strategies mainly focus on therapeutic 

genes, which are active over a wide range of expression levels. Gene therapy though 

would have the potential to interfere with biochemical or genetic pathways of the 

organism in a quantitative manner. However, for applications of transgenes encoding 

products with a narrow therapeutic range, a stringent regulation of expression is 

required. Rigorous control of transgene activity will therefore be essential for the next 

generation of gene therapy applications. Ideally, this activity should be regulated from 

the outside of the organism and has to be restricted to the target cells. (please refer 

to Czerny, et al., 2006) 

Cell therapy is considered a promising variation of this technique (Orive, et al., 2004), 

initially developed to protect transplanted heterologous cells from the host´s immune 

system (Chang, 2005). The focus of this method shifted to the transplantation of 

genetically engineered cells. Preventing cellular attacks of the immune system, 

encapsulation of cells within a permeable membrane enables continuous nutrition of 

the cells. Thereby, survival in the host can be reached over several months (Hauser, 

et al., 2004). In gene therapy approaches a stable and prolonged gene expression 

can be accomplished by using retroviral vectors (Ferry, et al., 2011). These vectors 

integrate into the host cell DNA, which might result in disruption of gene function and 

potentially cause cancer (Hacein-Bey-Abina, et al., 2003). Moreover, viral vectors in 

conventional gene therapy bear the risk of reaching germ cells, thus inheriting the 

modified genome. These risks are avoided, applying encapsulated cells for 
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therapeutic approaches. Here, clones of cells with optimal expression characteristics 

can be selected in cell culture, which is considered an ideal strategy of achieving 

reproducible expression levels in the proposed concept. (please refer to Czerny et 

al., 2006) 

 

2.2. Microencapsulation of cells 
Today, one of the most exciting fields in translational medicine is cell therapy. Cell 

therapy applying microencapsulation technology targets aspects of a variety of 

evolving scientific disciplines: molecular biology, biotechnology, biomaterials, 

immunology, tissue engineering, transplantation biology, regenerative medicine, and 

clinical research (Hernandez, et al., 2010). “Cell encapsulation is a strategy that aims 

to physically isolate a cell mass from an outside environment within the confines of a 

semipermeable membrane barrier (Orive, et al. 2003, Hunt, et al., 2010, Fig. 2.2) 

without the use of long-term therapies of modulating and/or immunosuppressive 

agents, which have potentially severe side effects (Hernandez, et al., 2010).” 

 
Fig. 2.2.: Concept of cell therapy and cell immunoisolation in microcapsules. 
(Rabanel, et al., 2009) 
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Microcapsules are almost exclusively generated as hydrogels. Hydrogels have some 

attractive properties. Hydrogels exhibit (reviewed by Hernandez, et al., 2010): 

• A highly hydrated microenvironment for encapsulated cells that can mimic 

biochemical, cellular, and physical stimuli that direct cellular processes such 

as differentiation, proliferation, and migration. 

• A soft and pliable characteristic that diminishes mechanically irritation of the 

surrounding tissue. 

• Virtually no interfacial tension with the surrounding tissues and fluids which 

diminishes cell adhesion and protein adsorption.  

• Permeability for low molecular weight molecules as nutrients, therapeutics and 

metabolic waste. 

These properties in turn result in high biocompatibility of hydrogels. 

Encapsulation technology has two major advantages: on the one hand the 

transplantation of potential therapeutic cells and tissue without the need of immune-

suppressive agents and on the other hand the potential use of cells and tissue from a 

variety of different sources such as primary cells and stem cells or genetically 

modified cells (Hernandez, et al., 2010). 

Different immunoisolation procedures have been established over the years.  

Immunoisolation procedures can be distinguished in macroencapsulation (large 

usually flat-sheet and hollow-core fibers) and microencapsulation (small spherical 

vehicles and coated tissue). Here, special attention should be drawn to 

microencapsulation because of their use in the present work. The spherical shape of 

microcapsules appears to be advantageous with respect to mass transport exhibiting 

optimal surface to volume ratio for protein and nutrient diffusion; this in turn increases 

cell viability in comparison to other immobilisation scaffolds which enforces oxygen 

and nutrient permeability (Hernandez, et al., 2010). The implantation of 

microcapsules containing cells in close proximity to the blood stream is enabled by 

their small size, which allows long-term functionality of the embedded cells due to an 

improved oxygen transfer into the capsules (Hernandez, et al., 2010). Additionally, 

microcapsules are more durable than macrocapsules and therefore more stable 

(Hernandez, et al., 2010). 
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Microcapsules can be categorised in three classes (reviewed by Hernandez, et al., 

2010):  

• matrix-core/shell microcapsules,  

• liquid-core/shell microcapsules and  

• cells-core/shell microcapsules.  

Matrix-core/shell microcapsules are produced by gelling of polymer/cell droplets in a 

gelling solution. These microcapsules are the most studied. Many improvements of 

the technique have been introduced over the years. Liquid-core/shell microcapsules 

are manufactured by dropping a cell/gelling solution in a polymer bath. Cells-

core/shell microcapsules are generated by conformal coating of cells.  

Therapeutic applications of the microencapsulation technology range from therapy of 

acquired and inherited chronic disorders such as (reviewed by Hernandez, et al., 

2010): 

• cancer, 

• diabetes mellitus, 

• bone and cartilage defects, 

• neurological disorders and 

• heart diseases. 
Here, the most often used applications of the microencapsulation technology will be 

described whereupon special attention is drawn to the application of sodium cellulose 

sulphate (SCS) microcapsules, which have been used in the presented study. 

Therefore, recent findings of the treatment of cancer and the treatment of diabetes 

mellitus using microencapsulation technology are described.  

In the treatment of pancreatic cancer a promising approach using genetically 

modified cells encapsulated in biologically inert SCS was developed years ago. 

Cytochrom P450 overexpressing encapsulated cells, instilled near the tumour region 

can be used to treat cancer by subsequently systemical injection of the prodrug 

ifosfamide, which then will be converted into a toxic compound by the genetically 

modified cells to combat tumour growth (Löhr, et al., 1998). In a pioneering study 

Löhr and colleagues could provide proof-of-principle for this therapeutic approach in 

a xenograft mouse model. The use of encapsulated genetically modified feline kidney 
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cells producing cytochrom P450 plus the multiple injection of ifosfamide reduced 

tumour growth and even resulted in a complete regression of the tumour in some 

mice (Löhr, et. al. 1998). This result could be reproduced with genetically modified 

HEK293 cells by Karle and colleagues (Karle, et al., 1998). These results initiated the 

development of a cell therapeutic product (NovaCapsR) for the treatment of 

inoperable pancreatic cancer which was produced according to GMP regulations. In 

a phase I/II clinical trial in 2000 genetically modified encapsulated HEK293 cells were 

used to treat 14 patients, which suffered from late stage pancreatic cancer (Löhr, et 

al., 2001, Löhr, et al., 2003). The findings of this study (reviewed by Salmons, et al., 

2010) showed that the application of the encapsulated cells by an angiographic route 

was safe, that the encapsulated cells were well tolerated and no evidence for 

inflammatory or immune reactions could be found and there were no major toxicities 

associated with the low dose of ifosfamide that was used (Löhr, et al., 2001, Löhr et 

al., 2003). In addition, therapeutic efficacy (reviewed by Salmons, et al., 2010) was 

indicated by tumour reduction in four patients and stable disease in ten patients; 

moreover a improvement of the median survival as well as increased 1 year survival 

rates were found compared to the control group (Löhr, et al., 2001, Löhr et al., 2003). 

There is an eminent increase in projects investigating the cell-based treatment of 

cancer applying microencapsulation technology using other encapsulation matrixes. 

Here, one approach for treating cancer is the intratumoural implantation of 

encapsulated cells producing cytokines (IL-2 and TNF-α) into a mouse fibrosarcoma 

model (Sabel, et al., 2007). Implanted encapsulated IL-2 secreting cells result in a 

delay in tumour progression and prolonged survival of animals (Cirone, et al., 2002). 

Another approach targets the inhibition of angiogenesis for cancer treatment. 

Encapsulated CHO cells implanted into the peritoneal cavity and expressing 

endostatin result in a significant inhibition of melanoma growth in mice bearing B16 

melanomas (Teng, et al., 2007). Similarly, tumour growth was suppressed to more 

than 90% 3 weeks after tumour induction resulting in a 100% survival compared to 

100% mortality in the mock-treated control group in a project where angiostatin was 

expressed by encapsulated cells in a murine model for melanoma and breast cancer 

(Circone, et al., 2003). Additionally, a new therapeutic approach in synergistic tumour 

treatment was the combination of IL-2 secreting and angiostatin secreting 
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encapsulated cells in separate microcapsules (Circone, et al., 2005). Finally, another 

very promising approach is the production of cancer vaccines and hence the delivery 

of antibodies by immune-isolated encapsulated cells for the treatment of cancer 

(Orive, et al., 2001). 

In general the most studied application of microencapsulation technology is its use 

for treating diabetes mellitus type I, but here only little has been investigated applying 

SCS microcapsules. The strategy aimed at the restoration of regulated insulin supply. 

Islets of Lagerhans from a porcine source were encapsulated in SCS and employed 

in order to substitute insulin production. With this concept Schäffellner and 

colleagues could induce glucose-dependent insulin production of HIT-T15 cells in 

nutrient solution (Schäffellner, et al., 2005). Moreover, these encapsulated islet cell 

line could be frozen and thawed again (Stiegler, et al., 2006), indicating possible 

banking of cells for future applicability in clinical trials.  

The majority of approaches to treat diabetes mellitus type I was developed using 

encapsulation polymers other than SCS. In these approaches, for example 

encapsulated porcine islets were tested in mice and monkeys; here a relieve of 

symptoms was observed (Elliott, et al., 2005). Evidence for improvement of glycemic 

control in human individuals was provided in a study of Living Cell Technologies Ltd 

with the DiabecellR device, which consists of encapsulated neonatal porcine islets. 

Hence, no porcine viral infection could be detected and moreover, it could be 

demonstrated that remaining encapsulated porcine cells were still viable explanted 

9.5 years after transplantation (Elliott, et al., 2007). PEGyation of islets in 

combination with application of low doses of cyclosporine resulted in normal blood 

glucose responsiveness and hormone synthesis for one year after transplantation in 

the rodent model (Lee, et al., 2007). A phase I/II clinical trial was started by Novocell 

in 2005 based on these results. Therefore, human islets allografts were implanted 

subcutaneously into human patients (NCT00260234 www.clinicaltrails.gov).  

 

 

http://www.clinicaltrails.gov/�
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2.3. Magnetic nanoparticles in biomedicine 
Applying nanotechnology for diagnosis, monitoring and control of biological systems 

has become more and more popular throughout the years. Being referred to as 

“nanomedicine” by the National Institute of Health, the main aim of nanomedicine is 

the research of rational delivery and targeting of pharmaceutical therapeutic and 

diagnostic agents. Devoted to manipulate structures in nanometer scale size, most of 

the used particles in nanotechnology are about 1-200 nm in diameter. Compared to 

bulk materials, the small sizes of particles can result in a dramatic change of physical 

and chemical properties. The majority of these particles is referred to as “magnetic 

nanoparticles” (MNPs), which describes the solid phases within nanometer size. In 

this case “magnetic” refers to temporarily magnetic material with the ability to 

comprise ferromagnetic, paramagnetic or superparamagnetic materials. When an 

external magnetic field is applied, ferromagnetic materials become magnetised and 

remain so for a period of time even when the magnet is removed. Paramagnetic 

materials have magnetic moments even in the absence of a magnetic field. However, 

they only exhibit magnetism when a magnetic field is applied. In the absence of an 

external magnetic field any magnetisation is being retained in those particles. In 

contrast, superparamagnetic materials only are magnetic in the presence of an 

external magnetic field. It reverts to a non-magnetic state as soon as the external 

magnet is removed. (please refer to Mostegl, 2009) 

The use of MNPs can be applied to: 

• Delivery of heterologous DNA by magnetotransfection (Plank et al., 2003, 

Plank et al. 2009) 

• Concentration and targeting of chemotherapeutics to tumour cells (Alexiou, et 

al., 2000, Alexiou, et al., 2003) 

• Heat treatment induced by MNPs through an alternating magnetic field (Ito, et 

al., 2003a/b/c, Ito, et al., 2004, Jordan, et al., 2006, Jordan, et al., 2009) 

• In vivo imaging (Selvan et al. 2007) 
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Magnetotransfection is one of the most studied application for MNPs. MNPs can be 

associated with nucleic acids, such as viral or non-viral vectors, which can be 

concentrated on respective target cells by application of a permanent magnetic field 

which results in an enhanced uptake of nucleic acids into cells (Plank, et al., 2003, 

Plank, et al. 2009). For the treatment of tumours MNPs carrying chemotherapeutics 

are often used. By the enhanced permeation and retention effect which is mediated 

by leaky vasculature and decreased lymphatic transport (Alexiou, et al., 2000, 

Alexiou, et al., 2003) MNPs can be targeted to the tumour. MNPs can be actively 

directed to tumour cells by linking ligands or molecules (such as antibodies) to their 

surfaces. One very promising approach in the use of MNPs is the employment for 

hyperthermia treatment of solid tumours (Jordan, et al., 2006, Jordan, et al., 2010). 

Injected MNP formulations can generate heat by physical induction due to application 

of an alternating magnetic field which in turn reduces tumour growth (Ito, et al., 

2003b, Jordan, et al., 2006). The use of so called quantum dots for in vivo imaging 

(Moghimi et al., 2005) is another possible application of nanoparticles. White light is 

being absorbed by quantum dots and re-emitted at a specific wavelength which can 

be tuned from blue to nearly infrared by varying size and composition of the 

respective nanoparticles. Quantum dots are taken up by cells and therefore can be 

used for live imaging as has already been shown (Selvan, et al., 2007). (please refer 

to Mostegl, 2009) 

Without additional coating MNPs show a hydrophobic surface with a large surface to 

volume ratio and a strong tendency to aggregate (Lu, et al., 2007). In order to 

improve MNP stability, an appropriate surface coating is to be applied, which allows 

iron oxide MNPs to be dispersed into homogenous ferrofluids. There are several 

groups of coating materials that can be used to modify MNP chemistry on the surface 

(Shubayev, V., et al., 2009): 

• organic polymers, such as dextrans, chitosan, polyethylene glycol, polysorbate 

and polyaniline; 

• organic surfactans, such as sodium oleate and dodecylamine; 

• inorganic metals, such as gold; 

• bioactive molecules and structures, such as liposomes, peptides and 

ligands/receptors;     (please refer to Mostegl, 2009) 



INTRODUCTION 
_________________________________________________________________________________ 

 

18 

 

Material for coating of nanoparticle surfaces are used on the one hand, as already 

mentioned, to keep nanoparticles apart from each other (Hafeli, et al., 2009), in order 

to avoid aggregation of nanoparticles dispersed in solution and on the other hand to 

functionalise nanoparticles with specific chemical or physical properties, e.g. binding 

to specific surfaces. The nanoparticle formulations used in this project are originally 

used for gene delivery by magnetotransfection. Therefore, the nanoparticles used 

here were coated with materials, which should enhance nanoparticle uptake into 

cells. 

 

2.4. Heat generation by magnetic nanoparticles 
In the presented work, MNPs should be used to generate heat within microcapsules 

by application of an alternating magnetic field. The strategy to generate heat using 

MNPs is normally applied in thermotherapy: in this application MNP-mediated 

hyperthermia is used to elevate temperature in a cancerous tissue. Tumour cells are 

more sensitive to heat compared to healthy tissue which allows selective combating 

of tumour growth (Jordan et al., 2007). By elevated temperatures, i.e. 43°C for 

approximately 30 minutes (Pankhurst, et al., 2003), tissue damage and cell death is 

induced. Additionally, hyperthermia also increases sensitivity of cancerous cells to 

ionising radiation and some cytotoxic drugs. MNP mediated hyperthermia appears to 

be most promising due to the high capability of MNPs to convert energy of an applied 

alternating magnetic field into heat. The possibility to selectively concentrate MNPs at 

the site of tumour growth by means of minimal invasive routes and the high 

transparency of the human tissue to radio-frequency magnetic fields (Bellizzi, et al., 

2010) promotes MNP application. 

For biologically applications such as thermotherapy, magnetite nanoparticles are 

often used because they appear to be minimally toxic and exhibit reduced irritation of 

healthy tissue; this is emphasised by the FDA approval of magnetite nanoparticles as 

MRI contrast agent (Häfeli, et al., 2009). 
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Magnetite (Fe3O4) belongs to the iron oxide family. It is a hard black magnetic 

mineral that is widespread in natural rocks. Maghemite (γ -Fe2O3) is a red-brown 

magnetic mineral, isostructural with magnetite but with cation vacancies. Their global 

properties are quite similar, which makes it very difficult to distinguish between them. 

Maghemite can result from the oxidation of magnetite (Gossuin,, et al, 2009). 

The magnetite particles can be either ferromagnetic or superparamagnetic at room 

temperature depending on their diameter. The critical diameter of magnetite 

becoming superparamagnetic has been calculated to be below 18.7 nm (Atsumi, et 

al., 2007). Exposed to an alternating magnetic field heat can be generated by both 

ferromagnetic and superparamagnetic particles (Mornet, et al., 2004). It has been 

reported that the hysteresis loss-induced heating needs larger size of magnetic multi-

domain (ferromagnetic) particles. Smaller particles, consisting of a single domain 

structure (superparamagnetic) are inducing heat by relaxation loss in an alternating 

magnetic field (Mornet, et al., 2004). 
 

2.5. Heat responsive promoters 
In order to directly combine hyperthermia treatment with gene or cell-based therapy, 

heat-responsive promoters were developed in the past. The action of heat responsive 

promoters is mainly based on the binding of heat shock factor 1 (HSF1) to the heat 

shock elements (HSEs) present in heat-responsive promoters facilitating heat shock 

response (described in chapter 2.7. in more detail).  

Four different types of promoters responsive to heat are known (reviewed by Walther, 

et al., 2009): 

• HSP70B promoters, 

• GADD153 promoters, 

• MDR1 promoters and 

• heat-responsive CMV promoters. 

 

The HSP70B promoter is stress-inducible. It consists of an atypical TATA-box and 3 

regulatory HSEs (Morgan, et al., 1993), which are responsible for heat 

responsiveness. This promoter was frequently used because of its low leakiness and 
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high inducibility in response to heat. The GADD153 promoter is also inducible by 

heat as well as by different other stress factors, such as reactive oxygen species, 

DNA damage and cytotoxic drugs (Luethy, et al., 1992). No defined mechanism for 

heat responsiveness has been identified so far. The MDR1 promoter revealed the 

stress-responsiveness of the MDR1 gene. Stressors like cytotoxic drugs, UV-

irradiation, arsenite or heat are capable to activate MDR1 gene expressions. In the 

proximal MDR1 promoter region HSEs exist which mediate heat responsiveness 

(Stein, et al., 1994). The promoter of the cytomegalovirus (CMV) appeared to be inert 

in response external stress. However, by a still unknown mechanism also a CMV 

promoter can be induced by elevated temperatures (Lee, et al., 1994). However, this 

promoter exhibits no HSEs. 

 

2.6. A novel promoter for gene and cell-based 
therapy 
In the last years many studies were performed to modulate gene expression for gene 

therapy applications. In this context different promoter systems were established 

responding to environmental or physiological changes like heat, metal ions, 

interferons, antibiotics and steroids. Most of these systems suffer from limitations and 

are currently unsuitable for use in clinical gene therapy (reviewed in Goverdhana, et 

al., 2005) or for use in cell therapy applications. 

To overcome these limitations, a novel generation of heat inducible promoters was 

developed in the last years. Brade and colleagues initially modified an Hsp70 

promoter by including additional HSEs for improved heat-directed gene expression in 

tumour cells. This modification resulted in a 200- to 950-fold increase in reporter 

gene expression and a 1 – 2°C decrease of threshold of activation (Brade, A., et al., 

2000). Based on this principle, recently a novel, artificial and bidirectional heat-

inducible promoter was developed (Fig. 2.3.) by Bajoghli and colleagues (Bajoghli, et 

al., 2004). The artificial bidirectional heat inducible promoter consists of two minimal 

CMV promoters in opposite directions containing eight idealised HSEs driving the 

expression of two reporter genes encoding luciferase and green fluorescent protein 
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(GFP). This promoter was initially used in a study where reporter genes were 

misexpressed during fish development (Bajoghli, et al. 2004). This artificial heat-

inducible promoter is characterised by a reduced background activity and increased 

responsiveness to heat. This promoter can be an ideal tool for biomedical 

applications. Heat shock promoters may be applied in tumour therapy by the 

combination with hyperthermia treatment and suicide gene therapy, heat-inducible 

polyplex gene therapy and hyperthermia, as well as cell-based therapy and 

hyperthermia. 

The biological regulation of this novel promoter is based on the action of the 

endogenously expressed heat shock factor 1 (HSF1) which binds HSEs and 

facilitates heat shock response. Biological regulation of the heat shock response is 

described in the next section in more detail. 

 

 

Fig. 2.3.: Heat inducible expression construct. 
The artificial bidirectional heat inducible promoter consists of two minimal CMV promoters 
oriented in opposite directions and eight idealised HSEs in between. The artificial promoter 
drives the expression of two reporter genes (Bajoghli, et al. 2004). (black triangles: minimal 
CMV promoters; pA: polyadenylation signal; GFP: gene encoding green fluorescence 
protein; g.o.i.: gene of interest) 
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2.7. Regulation of heat shock response 
The heat shock (HS) response represents an universal mechanism of protection 

against adverse environmental conditions, especially against the stressor heat. The 

HS response is one of the most evolutionarily conserved defensive mechanisms 

against acute exposure to environmental and pathological conditions (reviewed in 

Shamovsky, et al, 2008; Kubota, et al., 2009,). Although organisms have adapted to 

grow at temperatures from the freezing point of water to 113°C (Stetter, et al., 2006), 

temperatures only moderately above a certain optimum growth temperature turned 

out to be a challenging problem for survival of all living organisms (Richter, et al., 

2010). 

The biological regulation of the heat shock response is based on the action of 

endogenously expressed heat shock factors, especially HSF1 (Fig. 2.4. A 1). HSF1 is 

located in the cytoplasm as a monomer and bound to chaperones such as HSP70 or 

HSP90. The bound heat shock protein (HSP) inhibits DNA-binding activity of HSF1. 

HSF1 is released from the heat shock proteins and translocates into the nucleus (Fig. 

2.4. A 2). In this case HSF1 is still hypophosphorylated. The monomers then 

trimerise and subsequently become hyperphophorylated. The phosphorylation status 

of the trimeric HSF1 is essential for DNA binding and transcriptional activity. In the 

hyperphosphorylation of the trimeric HSF1 several protein kinases are involved such 

as MAP, JNK, protein kinase C-α, C-ζ, and GSK3-α. The phoshorylation of serine 

residues Ser230, Ser326 and Ser419 activates HSF1-mediated transcription, while 

the phoshorylation of the serine residues Ser303, Ser307, and Ser363 is associated 

with negative regulation of HSF1-mediated transcription. The HSF1-mediated 

transcription leads to an entry of HSPs into the nucleus (Fig. 2.4. A 3). Therefore, 

expression of HSPs is regulated by negative feedback, i.e. by binding of HSPs to 

HSF1 monomers (Fig. 2.4. A 4). The transcriptional activity of the HSF1 homotrimer 

is mediated by binding to HSEs (consensus sequence: 5`-NGAAN-3`) located within 

heat-reactive promoters. For strong HSF1 binding at least 5 units of HSEs are 

required. Multiple HSEs are present in promoters of hyperthermia-inducible genes, 

for example the HSP70B promoter.  
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Fig. 2.4.: Regulation of the heat shock response. 
A) HSF1 is momomeric, hypophosphorylated and bound to HSPs in the cytoplasm. (1) HSF1 
dissociates from HSPs and (2) translocates to the nucleus still hypophosphorylated. HSF1 
trimerises and becomes hyperphosphorylated. The HSF1 homotrimer binds to DNA at HSEs 
and gene transcription of HSP genes occurs. (3) HSPs are induced to enter the nucleus and 
(4) bind dissociated monomeric HSF1.  
B) HSF1 binds DNA at HSEs with the consensus sequence 5`-NGAAN-3`. For strong binding 
a minimum of 5 units is required. (HSF1: heat shock factor; HSP: heat shock protein; BS-1 to 
BS-5: binding sites).  
(Walther, et al., 2009) 
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2.8. Aim of the project 
The main aim of the project is to demonstrate proof-of-principle for nanoparticle-

mediated thermoregulation of reporter gene expression in encapsulated cells by 

applying an alternating magnetic field. 

To achieve this, the main components applied for the establishment of this concept 

should be analysed regarding their employed properties: HEK293 cells, magnetic 

nanoparticles, the encapsulation process and heat inducing technology. 

Genetically modified HEK293 cells harbouring an artificial heat-inducible expression 

construct should be investigated to determine their response to heat.  

Several nanoparticle formulations should be analysed with regard to their physical 

properties, e.g. their heat generation capacity in an alternating magnetic field as well 

as their tendency to aggregate. 

The co-encapsulation of cells with selected nanoparticles should be developed by 

optimising encapsulation parameters. Generated capsules should then be analysed 

regarding their physical properties such as size, membrane diffusion performance 

and membrane thickness. 

In a next step, the encapsulated cells should be biologically characterised. Therefore, 

heat inducibility of encapsulated cells should be proven and biocompatibility of 

selected nanoparticles with encapsulated cells should be analysed. 

The effects of magnetic field treatment on encapsulated cells should be described. 

Therefore viability, cell death (apoptosis and necrosis) as well as cell integrity in 

response to magnetic field treatment of encapsulated should be investigated. 

Magnetic field-directed, nanoparticle-mediated heat induction of the reporter gene 

expression within encapsulated cells should be analysed to provide proof-of-principle 

in vitro. The above described concept should finally be evaluated in mice to provide 

evidence of applicability in vivo. 
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3. MATERIALS AND METHODS 

3.1. Materials 

3.1.1. Chemicals and reagents 

Adenosine triphoshate (ATP)    Sigma-Aldrich 

Agarose, electrophoresis grade    Invitrogen 

AlamarBlueTM      Serotec 

Algenic acid (sodium salt)     Sigma-Aldrich 

Amphotericine B (Fungizone)    Invitrogen 

Aqua bidestillata      Mayerhofer Pharmazeutika 

Bovine serum albumin     Promega 

Calcein-AM       MoBiTec 

Calcium chloride      Merk 

Cell culture water      PAA 

Deoxyribonucleotide-triphosphates (dNTPs)  Sigma-Aldrich 

4′,6-Diamidin-2-phenylindol (DAPI)   Sigma-Aldrich 

Dimethyl-sulfoxide (DMSO)    Fluka 

Dithiothreitol (DTT)      Sigma-Aldrich 

Dulbecco`s modified Eagle`s medium (DMEM)  Invitrogen 

DPX mounting medium (dibutyl phtalate - xylene) Fluka 

Eosin        Riedl-de Haen 

Epon        Serva 

Ethanol (analysis grade)     Sigma-Aldrich 

Ethidium bromide       Sigma-Aldrich  

Ethylen-diamine-tetraacetate (EDTA)   Sigma-Aldrich 

Etoposide       Sigma-Aldrich 

ExCell 293 serum free medium    Sigma-Aldrich 

Fluorescein-isothiocyanate-dextran (40/70/250 kDa) Sigma-Aldrich 

Fluorescence mounting medium (Vectashield)  Vector Labs 

Foetal calve serum (FCS)     Invitrogen 

http://de.wikipedia.org/wiki/Dithiothreitol�
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Formaldehyde solution 37 %    Sigma-Aldrich 

Gentamycin       Invitrogen 

Glutaraldehyde 25 %     Merck 

Glycerine       Sigma-Aldrich 

Haematoxylin       Richard-Allan Scientific 

HistoGel       Richard-Allan-Scientific 

Isopropanol       Sigma-Aldrich 

Lead-citrate       Plano 

D-Luciferin (firefly, potassium salt)   Caliper Life Sciences 

D-Luciferin (firefly, sodium salt)    Sigma-Aldrich 

3-(N-Morpholino)-propane sulfonic acid buffer  

(MOPS 20 x)       Inotech 

Osmium (3 %)      Plano 

Penicillin/Streptomycin     Invitrogen 

Hydrogen-peroxide (H2O2) 30 %    Sigma-Aldrich 

Phosphate buffered saline  (PBS)   Applichem, PAA  

Poly-diallyl-dimethyl-ammonium-chloride  

(pDADMAC) 40 % 24 kDa     Kaptol Chemie 

Potassium dihydrogen phosphate   Roth 

Propidium iodide      MoBiTec 

Propylene oxide      Sigma-Aldrich  

Puromycin       Invitrogen 

Resorufin       Sigma-Aldrich 

293 SFMI serum-free medium     Invitrogen 

Sodium cellulose sulphate     Fraunhofer 

Sodium chloride      Merck 

Sodium hydrogen phosphate    Merck 

Sodium hydroxide      Merck 

Toluidinblue O      Merck 

Tris (tris(hydroxymethyl)aminomethane)   Sigma-Aldrich 

Tris-HCl        Merck  

Trypan blue        Invitrogen 

http://de.wikipedia.org/w/index.php?title=3-(N-Morpholino)-Propansulfons%C3%A4ure&action=edit&redlink=1�
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Trypsin-EDTA (0.05 %)      Invitrogen 

Uranyl acetate       Fluka 

 

3.1.2. Enzymes and Kits 

ApoTagRed (TUNEL assay)     Chemicon 

Biotase (Protease)       Biochom 

Bright Glo (luciferase assay)     Promega 

Collagenase        Worthington 

DNA free Turbo (DNaseI kit)     Ambion 

GoTaq (DNA polymerase)      Promega 

Luciferase (firefly)       Sigma-Aldrich 

Proteinase K        Millipore 

Restriction endonucleases      Promega 

 

3.1.3. Cell culture materials 

3.1.3.1. Tubes 

1.5 ml Eppendorf tube      Eppendorf 

2 ml Eppendorf tube (conical bottom)    Eppendorf 

2 ml Eppendorf tube (round bottom)    Eppendorf 

15 ml cell culture falcon tube     TPP, Sarstedt 

50 ml cell culture falcon tube     TPP, Sarstedt 

10 ml flat bottom tissue culture tubes    TPP  

 

3.1.3.2. Cell culture flask 

25 cm2 cell culture T-flask      Sarstedt 

75 cm2 cell culture T-flask      Sarstedt 

175 cm2 cell culture T-flask     Sarstedt 

300 cm2 cell culture T-flask     TPP 

Roller bottle, Cellmaster      E&K 
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3.1.3.3. Pipettes 

20 µl filter pipette tip      Eppendorf 

200 µl filter pipette tip      Eppendorf 

250 µl wide orifice pipette tip     Mandel 

1000 µl filter pipette tip      Eppendorf 

2 ml serological pipette      Sarstedt 

5 ml serological pipette      Sarstedt 

10 ml serological pipette      Sarstedt 

25 ml serological pipette      Sarstedt 

 

3.1.3.4. Multi-well-plates 

6-well plate (tissue culture treated)    TPP 

12-well plate (tissue culture treated)    TPP 

24-well plate (tissue culture treated)    TPP 

96-well plate (tissue culture treated)    TPP 

96-well plate (black, flat bottom)     Greiner 

96-well plate (white, flat bottom)     Greiner 

 

3.1.3.5 Syringes and accessories 

Syringe 50 ml       BD Biosciences 

Filter 0.2 µm        Sarstedt 

Filter 0.45 µm       Sarstedt 

Filter 5 µm        Sartorius 

 

 

 

 

 

 

 



MATERIALS AND METHODS 
_________________________________________________________________________________ 

 

29 

 

3.1.4. Laboratory devices 

Automatic embedding device     Thermo Scientific 

Cell culture incubator, 37°C     Memmert 

Cell culture incubator, 43°C     Sanyo 

Cell culture microscope, CK2     Olympus 

Centrifuge, Biofuge pico      Heraeus 

Centrifuge, 3 – 10        SIGMA 

Confocal laser scanning microscope, LSM 510   Zeiss 

Encapsulator, IE-50R      Innotech 

FACS, FACScalibur      BD Biosciences 

Fluorescence microscope, Axiovert 200 M   Zeiss 

Homogenisator, Ultraturax, T25 basic    IKA 

Incubator, 37°C        Heraeus 

Incubator, GS 18-d       Memmert 

Laminar airflow work bench      NuAire 

Luminometer , LB9507      Berthold 

Luminometer , LB953      Berthold 

Magnetic field generator, custom-made    FH Campus Vienna 

Magnetic stirrer, Combimag RCT     IKA 

Microtome, RM 2235      Leica 

Multititer-plate reader, GENios     Tecan  

Photometer, Gene Quant II     Pharmacia Biotech 

Shaker, Rocky       Fröbel 

Sonificator, Sonoplus      Bandelin 

Thermocycler, Gene Amp PCR system 9700   Applied Biosystems 

Thermomixer, compact      Eppendorf 

Transmission electron microscope, EM900   Zeiss 

Ultratome, Ultracut S      Reichert 

Viscosimeter        Bohlin 

Water bath        Grant 
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3.1.5. Nanoparticles 

13 different types of nanoparticles were kindly provided by Dr. Olga Mykhaylyk from 

the Institute of Experimental Oncology and Therapy Research at the Technical 

University in Munich. Additionally, commercially available nanoparticles from Sigma 

were used in this project. All nanoparticles were composed of a magnetite core. The 

different coatings and the crystallite mean core sizes of nanoparticles are listed 

below (Tab. 3.1.). Nanoparticles obtained from Sigma (Iron(II,III)oxide nanopowder 

98+% Cat. No. 637106-25G) were not coated. 

Tab. 3.1.: Set of employed magnetite nanoparticles.(1) 
particle coating material core size 

S1 Palmithyldextran 80 nm 

S4 Palmithyldextran 8.5 nm 

S5 Palmithyldextran 13 nm 

S7 Palmithyldextran 30.6 nm 

S8 Polyethylenimine 74.1 nm 

S11 Pluronic-127 / Ammonium bis[2-(perfluoroalkyl)ethyl] phosphate 10.6 nm 

S13 Palmityldextran / Lithium-3-[2-(perfluoroalkyl)ethylthio]propionate 4 nm 

S16 Tween-80 10 nm 

S22 Tween-60 / Lithium-3-[2-(perfluoroalkyl) ethylthio]propionate 11.7 nm 

S24 1.9-Nonanedithiol 12 nm 

S25 Chitosan 10 nm 

S26 Dihexa-decyl-phosphate 10 nm 

S34 Pluronic-127 / Lithium-3-[2-(perfluoroalkyl) ethylthio]propionate 11nm 

Sigma non-coated 30 nm 
(1) Nanoparticle coating materials and core sizes are listed. 
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3.1.6. Cells  

3.1.6.1. Cell line: HEK293 

In this project, human embryonic kidney cells (HEK293) were employed, a well 

characterized, commercially available cell line (ATCC No. CRL-1573) which have 

previously met requirements for clinical use (Löhr, et al., 2001). 

 

3.1.6.2. Single cell clone: HEK293 pSGH2lucpuro C5 

For proof of principle of the proposed concept, HEK293 cells were transfected with 

the expression construct pSGH2lucpuro C5 (PhD thesis Viktoria Ortner, Institute of 

Animal Breeding and Genetics, Vetmeduni Vienna) resulting in the generation of the 

stable cell clone HEK293 pSGH2lucpuro C5. The expression vector carries an 

artificial bidirectional heat-inducible promoter, based on the human heat shock 

promoter Hsp70. In detail, this bidirectional promoter consists of two minimal CMV 

promoters, orientated in opposite directions, coupled to eight idealised heat shock 

elements (HSEs) habouring the consensus sequence AGAAC (Bajoghli et al., 2004). 

Two reporter genes – GFP and luciferase – were driven by this artificial promoter, 

rendering their expression inducible by heat (see Appendix, section 7.4.). This cell 

clone was used in described encapsulation experiments. 

 

3.1.6.3. Cell populations: HEK293 pCMVluc and HEK293 pCMVegfp 

As a control for reporter gene expression, cell populations constitutively expressing 

luciferase or enhanced green fluorescent protein (EGFP; HEK293 pCMVluc and 

HEK293 pCMVegfp) were used. These cell populations had been generated by 

stable transfection of HEK293 cells with pCMVluc and pCMVegfp (Metzner, et al., 

2006) and were kindly provided by the Institute of Virology at the University of 

Veterinary Medicine, Vienna. 
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3.2. Methods 

3.2.1. Cell culture 

3.2.1.1. Maintenance of cells 

In this work an immortalised human embryonic kidney cell line (HEK293) was 

employed. All HEK293 cells used were cultured at 37°C, 5% CO2 and 95% relative 

humidity in an cell culture incubator. All cell manipulations and handlings were 

performed in a laminar airflow work bench (NuAire) located in a bio-safety level 2 

laboratory under aseptic conditions. The bench was sterilised by UV irradiation and 

disinfectant before and after usage. Cells originated from a continuous cell line, 

growing as monolayers. Usually they were maintained in plastic cell culture flasks 

with a modified inner surface allowing protein binding, facilitating attachment and 

proliferation of cells. 

The cells were passaged according to their growth kinetics. For this purpose, the 

spent medium was removed and the cells were washed once with phosphate-

buffered saline (PBS) solution. Afterwards the cells were submerged with trypsin 

solution (0.05% trypsin, 0.53 mM EDTA) and incubated until the cells detached from 

the bottom surface of the flask. To stop the proteolytic activity of trypsin, Dullbecco`s 

modified eagle`s medium (DMEM) supplemented with 10% foetal bovine serum 

(FBS) (i.e. normal medium: NM) was added. Then, the cells were resuspended by 

gently shaking and pipetting until a single cell suspension was generated. 20% of the 

single cell suspension was transferred to a new flask and the required amount of NM 

was added. 

 

3.2.1.2. Storage of eukaryotic cell lines 

Extended cultivation of eukaryotic cells, i.e. consecutive amplification of genomic 

DNA and subsequent cell division, leads to accumulation of replication errors. These 

mutations can alter the morphology and growth behavior (i.e. the genetic 

background) of the initial cell population. In order to circumvent this bias, aliquots of 

the generated single cell clones and cell populations were backed up at low passage 

numbers and frozen at -80°C. Subsequently, cells were excluded from further 
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experiments when they reached a passage number more than 30 and cell expansion 

was restarted from freshly thawed stocks (see 3.2.1.3.). For long-term storage, cells 

were harvested in the logarithmic growth phase and centrifuged at 260 x g (Sigma 

centrifuge 3 - 10) for 5 min. Then, the cell pellet was resuspended in freezing 

medium (DMEM + 10% FBS + 10% DMSO) and about 2 x 106 cells per ml were 

transferred into freezing vials (Sarstedt) kept on ice. The freezing vials were put into 

a pre-chilled freezing box (4°C) filled with isopropanol (Nalgene Cryo 1°C freezing 

container). The freezing container was incubated for 30 min at 4°C and afterwards 

put at -80°C. The frozen vials were shifted the next day to a storage box at -80°C. 

 

3.2.1.3. Thawing of cells 

For unfreezing, the cells were thawed rapidly by incubation in the operator’s hand 

and immediately resuspended in pre-warmed (37°C) culture medium. The cells were 

centrifuged at 260 x g for 5 min and the DMSO-containing supernatant was 

decanted. The cell pellet was then carefully resuspended in standard culture medium 

and the cells were transferred into a cell culture flask filled with additional culture 

medium and subsequently put into the incubator for cultivation. 
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3.2.2. Encapsulation 

3.2.2.1. Encapsulation apparatus und process principles 

To realise the proposed concept of this work (nanoparticle-directed induction of 

expression in encapsulated cells by application of an alternating magnetic field), 

encapsulation of cells and co-encapsulation of cells and nanoparticles was 

performed. Therefore, the encapsulation apparatus IE-50R from Inotech was applied 

(see figure 3.1.).  

The encapsulation apparatus is based on the physical principle that small beads are 

formed by vibration-induced breaking of a laminar jet of polymer solution under 

controlled conditions. Drops are collected in a gelling bath where the encapsulation 

material reacts with the gelling reagent to form capsules. 

Fig. 3.1.: Image of used encapsulation apparatus from Inotech (IE-50R). 
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“The product to be encapsulated (for instance cells and/or nanoparticles) is mixed 

with an encapsulating polymer solution (1.8 % or 1.6 % sodium cellulose sulphate) 

and the mixture is put into a syringe (Fig. 3.2. (2)). The polymer-product mixture is 

pumped into the pulsation chamber (Fig. 3.2. (3)) by a syringe pump (Fig. 3.2. (1)). 

The liquid then is passed though a precisely drilled nozzle (Fig. 3.2. (4)) and is 

separated into equal size droplets. These droplets then pass an electrical field set up 

between the nozzle and the electrode (Fig. 3.2. (5)) resulting in a surface charge. 

Electrostatic repulsion forces disperse the beads as they drop into the gelling reagent 

(1.3 % pDADMAC).  

Optimal parameters for bead formation are indicated by visualization of real-time 

bead formation in the light of a stroboscope lamp (Fig. 3.2. (8)). When optimal 

parameters are reached, a standing chain of droplets is clearly visible. Once 

established, the optimal parameters can be preset for subsequent bead production 

runs with the same encapsulating polymer-product mixture. Poorly formed beads, 

which occur at the beginning and end of production runs, are intercepted by the bead 

bypass collection cup (Fig. 3.2. (6)).  

Depending on distinct parameters, 50 – 3000 beads can be generated per second 

and are collected in a hardening solution within the provided reaction vessel (Fig. 3.2. 

(7)) and are continuously mixed by a magnetic stir bar (Fig. 3.2. (9)) to prevent bead 

clumping. At the end of the production run, the gelling solution is drained off (Fig. 3.2. 

(waste bottle)), while the beads are retained by a filtration grid (Fig. 3.2. (10)). 

Washing solutions, or other reaction solutions, are added aseptically though a sterile 

filter. The beads can be transferred to the bead collection vessel (Fig. 3.2. (11)).” 

(http://www.encap.ch/encapsulation-technology/introduction) 

The control unit of the encapsulation apparatus was used to adjust the flow rate of 

the encapsulation material (polymer/cell mixture), the oscillation frequency, the 

oscillation amplitude, the dispersion voltage, the stirrer speed and the stroboscope 

light intensity. These parameters are adjustable via control panels which are located 

at the machine`s front panel. 

After each use, the encapsulation apparatus was deconstructed and the metal pieces 

of the reactor top plate were cleaned with cell culture water. The nozzle was also 

cleaned with cell culture water, incubated in 0.5 M NaOH at least over night, cleaned 
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again with cell culture water and finally autoclaved for next use. Before every use, the 

reactor top plate was disinfected and then autoclaved. The encapsulation procedure 

was carried out under aseptic conditions within a laminar air work bench. 

 

Fig. 3.2.: Schematic representation of the encapsulation process. 
Components of the encapsulation apparatus: (1) syringe pump, (2) syringe, (3) pulsation 
chamber, (4) nozzle, (5) electrode, (6) bypass beaker, (7) reaction vessel, (8) stroboscope 
light, (9) magnetic stirrer, (10) filtration grid and (11) collection vessel.  
(http://www.encap.ch/encapsulation-technology/introduction) 
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3.2.2.2. Encapsulation with alginate 

For adjustment of encapsulation parameters alginate was used because of the lower 

costs of the starting material. 

Therefore, 2.75 % alginate solution was used as encapsulation polymer with 1.5 % 

CaCl2 as gelling reagent. The flow rate of the polymer solution, the oscillation 

frequency and the oscillation amplitude were adjusted, to obtain a standing chain of 

droplets observed in stroboscope light. Then the dispersion voltage was turned on to 

mediate a dispersion of the generated droplets. In the gelling bath the positively 

charged Ca2+ ions react with negative charges of alginate polymer droplets during 

capsule formation. Capsules were allowed to settle down and calcium buffer was 

decanted after gelling for 3 min. Subsequently, gelation was stopped by adding three 

volumes of calcium-free 1 x MOPS buffer (stock solution 20 x MOPS buffer, Inotech), 

followed by two additional washing steps for 5 min each. Finally, capsules were 

microscopically analysed with respect to size (diameters) and integrity of capsules. 

 

3.2.2.3. Encapsulation with sodium cellulose sulphate 

Sodium cellulose sulphate (SCS) / poly-diallyl dimethyl ammonium chloride 

(pDADMAC)-based encapsulation products (Fig. 3.3.) have demonstrated to  reveal 

higher long-term stability and better biocompatibility (less immunogenicity) in 

comparison to alginate/Ca2+ capsules and can be frozen and stored (Hauser, et al., 

2004). Therefore, all main experiments were performed with SCS capsules. 

The previously established standard encapsulation parameters (Hauser et al., 2004) 

for 700 µm capsules were used as a starting point for the establishment of the co-

encapsulation of cells and nanoparticles in this project. Encapsulation was performed 

with a 1.8 % SCS solution containing 0.9 % NaCl; gelation was performed using a 

1.3 % pDADMAC (MW 24 kDa) solution containing 0.9 % NaCl. 

For encapsulation of cells, cells grown 80% confluent in a T175 cell culture flask 

were trypsinised and counted by applying a Trypan Blue assay (section 3.2.5.2). 

Cells were washed twice with PBS by centrifugation with 260 x g for 5 min. 

Subsequently, the cell number of a cell / SCS mixture was adjusted to 2 x 106/ml 

viable cells by addition of SCS. For the co-encapsulation of cells and nanoparticles, 

the cell / SCS suspension was mixed with 1 % to 10 % nanoparticle dispersion in the 
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ratio of 9 parts SCS / cell suspension and 1 part nanoparticle dispersion resulting in a 

final SCS concentration of 1.6%. 

The encapsulation parameters were defined with a flow rate of 8.5 ml/min of the 

nanoparticle/cell/SCS solution, an oscillation frequency of 750 Hz, an oscillation 

amplitude of 30 % and a dispersion voltage of 1.5 kV. Generated SCS droplets were 

collected in the gelling bath, where the negative charges of the poly-anion (SCS) 

interact with the positive charges of the poly-cation (pDADMAC) to form a hydrogel.  

Immediately after gelation for 3 min, the capsules were washed with PBS once for 5 

min with three times the volume of pDADMAC. Capsules were allowed to settle down 

and a fifth of the supernatant was decanted. Subsequently, capsules were washed 

three times for 5 min using PBS four times the volume of pDADMAC and followed by 

additional three washing steps for 5 min each with cell culture medium to completely 

remove the cell toxic pDADMAC. 

Finally, capsules were microscopically analysed with regards to capsule size and 

integrity. With this procedure and a nozzle diameter of 250 µm, the resulting capsules 

exhibited a mean diameter of approximately 700 µm ± 50 µm. 

 

   
Fig. 3.3.: Chemical structure of sodium cellulose sulphate (SCS) and of poly-diallyl-
dimethyl-ammonium-chloride (pDADMAC). 
 
 
3.2.2.4. Maintenance of encapsulated cells 

Encapsulated cells were cultivated in normal medium (NM) with 20 µg/ml 

gentamycin. Approximately 15000 capsules were cultured in one T175 flask with 50 

ml of cultivation medium. Twice a week, approximately 33.3 ml of the medium was 

exchanged to get rid of the acidic, spent medium and to feed encapsulated cells with 

new nutrients. 

 

SCS pDADMAC 



MATERIALS AND METHODS 
_________________________________________________________________________________ 

 

39 

 

3.2.2.5. Freezing of encapsulated cells 

Encapsulated cells were harvested when cells filled about 50% to 80% of the capsule 

volume. An aliquot of the capsule suspension being cultivated in a cell culture flask 

was transferred into a sterile 50 ml centrifuge tube. After capsule sedimentation, the 

supernatant was removed and the volume adjusted to 40 ml with fresh medium. The 

capsules were homogenously resuspended. 0.5 ml of this suspension was 

transferred into a 6-well plate and the number of capsules (N0.5) was counted. The 

total amount of capsules was determined (N total) by the following calculation: 

  

N total = N 0.5ml x 80. 

 

The capsule number per freezing vial (Nfreeze) was defined. One freezing vial was 

dedicated to receive 1 ml freezing medium containing 200-600 capsules:  

 

200 ≤ N freeze ≤ 600 

 

The supernatant was exchanged, three times with the same amount of freezing 

medium and finally the volume of the freezing medium (NM + 10% DMSO) was 

adjusted to the total freezing volume (Vfreeze total), calculated by:  

 

V freeze total = 1ml x N total / N freeze. 

 

1 ml aliquots of the total amount of resuspended capsules (Vfreeze total) were filled into 

freezing vials. These vials were incubated at RT for 2 to 3 h. Freezing vials were 

placed into a device filled with isopropanol and pre-chilled at 4°C and the freezing 

device was put immediately to -80°C over night to cool the vials down at a rate of -

1°C per hour. Then the vials were transferred from the freezing device into a 

permanent storage box at -80°C. 
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3.2.2.6. Thawing of encapsulated cells 

Thawing medium (DMEM + 50 % FBS) and cultivation medium (NM + 20 µg/ml 

gentamycin) were prepared. Vials containing the frozen encapsulated cells were 

removed from the storage location. Frozen capsules were thawed by hand warming. 

After disinfection with an antiseptic spray, the vials were transferred to a laminar air 

flow work bench and opened under sterile conditions. At least 1 ml of the thawing 

medium was used to resuspend and transfer the capsules from the vial to the 

required vessel. If necessary, the contents of different vials were pooled. The vessel 

was incubated at standard cell culture conditions for 1 h. The capsules were washed 

twice to remove cryo-preservants by swilling and removing 90% of the supernatant 

and finally, cultivation medium was added.  

 

3.2.3. Determination of capsule properties 

3.2.3.1. Investigation of capsule membrane thickness 

To investigate capsule properties, membrane thickness of capsules manufactured 

with different percentages of SCS and additionally with and without nanoparticles 

was investigated by confocal laser scanning microscopy (CLSM). Therefore, 

calcufluor staining was performed. Calcufluor intercalates in ß-glycosidic-linked poly-

saccharose. For example, calcufluor is used to stain cellulose in the cell walls of plant 

cells or chitin/glycan in the cell wall of fungi. Calcufluor is fluorescent under UV-light 

with an excitation wavelength of 365 nm and an emission wavelength of 435 nm. 

Here, the cellulose sulphate capsule membrane was stained with calcufluor (3.3 

mg/ml in PBS) at 22°C on a thermo-mixer (Eppendorf) with 300 rpm over night. The 

next day, supernatant was decanted and capsules were washed three times with 

PBS for 5 min. Finally, membrane thickness was visualized by CLSM using a LSM 

510 microscope (Zeiss). 
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3.2.3.2. Determination of capsule pore size 

To further investigate capsule properties, molecular cut-off limits of capsules 

manufactured with different percentages of SCS and with or without nanoparticles 

was analysed. Pore size was determined as described by Fluri, et al. 2008. Capsules 

were incubated with fluorescent FITC-labeled dextrans (200 µg/ml in PBS) of 

different molecular weight – 40 kDa, 70 kDa and 250 kDa – over night. The next day, 

capsules were washed twice with PBS for 5 min. Pictures were taken by a 

fluorescence microscope (Axiovert, Zeiss) applying identical exposure times. 

 

 

3.2.4. Determination of viscosity 

For the encapsulation of cells or the co-encapsulation of cells and nanoparticles, the 

viscosity of material to be encapsulated is a critical parameter which influences in 

general encapsulation capability and more over, the size of the resulting capsules. In 

order to investigate the viscosity of polymer-cell-nanoparticle mixtures, a coaxial-

cylinder-rotation-viscosimeter was employed (Bohlin). In the coaxial-cylinder-rotation-

viscosimeter a fluid to be measured is located in the space between an inner and an 

outer cylinder. In this case a Searle-system was used in which the inner cylinder 

rotated. The fluid was sheared with a proposed speed gradient. The hinge moment 

Md, which is transferred by the decline between inner and outer cylinder, is directly 

proportional to the dynamic viscosity. The deflection is compensated by a torsion-

feather and a balanced condition is electrically notated. The viscosity can be 

calculated as shown below: 

η = τ / dv/dy = AS / Cn 

η: dynamic viscosity    A: shear deflection constant 

τ: shear stress     S: measured variable 

dv/dn: shear speed/rate    C: function of inner and outer radius 

       n: number of rotations 
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For viscosimetry, 30 ml of a given solution to be analysed was pipetted into the 

space between inner and outer cylinder. Viscosity was determined at 20 °C with an 

increasing shear rate between 1.23 s-1 and 104.72 s-1 and a variable shear stress. 

Viscosity was determined five times with continuously increasing and then 

continuously decreasing shear rates. 

 

3.2.5. Analysis of cell viability 

3.2.5.1. Determination of cell viability by analysis of metabolic activity 
(AlamarBlue assay) 
To analyse the viability of cultured and encapsulated cells an AlamarBlue assay was 

performed which displays the metabolic activity of analysed cells. In proliferating cells 

specifically the ratios of NADPH/NADP, NADH/NAD, FADH2/FAD and FMNH2/FMN 

are increasing. This metabolic activity is measured in the AlamarBlue assay. 

The substrate AlamarBlue is an oxidation-reduction (REDOX) indicator that 

undergoes a colorimetric change and yields a fluorescent signal in response to 

metabolic activity. Reduction causes a colour change of the oxidized form, resazurin 

(non-fluorescent, blue) to the reduced form, resorufin (fluorescent, red). AlamarBlue 

is taken up by the cell and is reduced by the metabolic intermediates; thus can be 

used to monitor cell proliferation by a measurable shift in colour. There are two ways 

to monitor AlamarBlue reduction: by measuring absorbance in a spectrophotometer 

or by measuring fluorescence. 

 

Method: 

Approximately 200 capsules were transferred into a 6-well plate. After medium 

exchange and capsule sedimentation, the supernatant was removed and cells were 

washed by adding fresh medium. The washing procedure was repeated a second 

time. In order not to damage encapsulated cells, 200 µl filter tips with wide openings 

were used when handling capsule suspensions. 10 capsules were pipetted in 

triplicate into a black 96-well plate. Cell culture medium was pipetted as sample blank 

in triplicate into the 96-well plate. AlamarBlueTM reagent was pipetted into all wells 

containing samples or blanks. 1.5 mM resurofin stock solution (which served as a 
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fluorescent standard, stored at -20°C) was diluted to 37.5 µM, 12.5 µM, 4.17 µM 1.39 

µM, 0.463 µM and 0.154 µM. Each standard dilution was pipetted in triplicates onto 

the 96-well plate. The 96-well plate was carefully agitated and incubated at 37°C, 5% 

CO2 saturation and 95% relative humidity for 4 h. In viable (encapsulated) cells 

resazurin is converted to resorufin. The amount of formed resorufin was analysed 

using the Tecan GeniosTM device. The resorufin standard enables calculation of the 

amount of resorufin, which is generated by cells using AlamarBlueTM as a substrate. 

 

3.2.5.2. Determination of cell viability by analysing cell membrane integrity 
(TrypanBlue assay) 
In order to analyse viability of cultured cells and of cells which should be 

encapsulated, a TrypanBlue assay was performed. In the TrypanBlue assay dead 

cells are stained blue and this can be analysed by using a light microscope. The dye 

can only enter cells via damaged or disordered membranes. Thus, based on the 

integrity of cell membranes, the TrypanBlue assay allows to distinguish between live 

and dead cells. 
 

Method: 

Cells were trypsinised. An aliquot of the cell suspension was centrifuged for 3 min at 

260 x g. The cells were resuspended in PBS. The cell suspension was mixed 

carefully to avoid inhomogeneity. A sample of the cell suspension was transferred 

into an Eppendorf tube containing TrypanBlue reagent. Then the 1:1 mixture was 

incubated for 2 min at RT. An aliquot of the mixture was transferred into a Neubauer 

cell counting chamber. Four square areas with cells were analysed by counting the 

cell number of each large square separately. Additionally, the blue stained cells of 

each square were counted. The total cell number and the number of living cells was 

finally calculated. 
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3.2.5.3. Determination of cell viability by analysing intracellular esterase 
activity and membrane integrity by co-staining with calcein and propidium 
iodide 
In order to analyse cell viability, encapsulated cells were co-stained with calcein and 

propidium iodide. Cells were then released from capsules and subsequently 

analysed by FACS. This method is utilised for simultaneous fluorescence staining of 

live and dead cells. Calcein-AM, which is a acetomethylester of calcein, is highly 

lipophilic and permeates intact cell membranes. While calcein-AM itself is not a 

fluorescent molecule, the calcein generated from calcein-AM by intracellular 

esterases emits strong green fluorescence (exitation: 490 nm, emission: 515 nm), 

which is the indicator for viable cells. In contrast, propidium iodide (PI) only stains 

dead cells. PI, a nuclei staining dye, can`t pass intact membranes of viable cells. It 

reaches the nucleus by passing through disordered areas of the membrane of dead 

cells and finally, intercalates within the DNA double helix. PI emits red fluorescence 

(excitation: 535 nm, emission: 617 nm). 

 

Method: 

Capsules to be analysed were pipetted into a 6-well plate. Medium was removed and 

capsules were washed with SFMI medium twice. This medium is a serum-free 

medium for culturing HEK293 cells. This medium resolves SCS capsules. For lysis, 

capsules were incubated in SFMI medium on a horizontally shaker (~20-30 rpm) for 

90 to 180 min in a cell culture incubator at 37°C. After 90 minutes, the progression of 

lysis was microscopically controlled and capsules were then sheared mechanically 

by pipetting up and down ten times with a 1000 µl pipette. After incubation, the 

capsules were sheared again. Depending on the density within the capsules, further 

separation of cell aggregates was required. Resolved capsules were transferred to 

an Eppendorf tube and centrifuged for 5 min with 2000 rpm. Supernatant was 

removed carefully to avoid destruction of the instable pellets. Pellets were 

resuspended in Biotase (0,0042 % protease / 0,02 % EDTA (w/v), Biochrome) or 

collagenase (0.5 mg/ml type 3, Worthington) and incubated for 10 min at 37°C on a 

thermoshaker (500 rpm). Subsequently, the process was stopped by adding two 

volumes of NM. Cells were centrifuged with 2000 rpm and washed twice with PBS. 
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For live/dead staining the single cell suspension stained with calcein and propidium 

iodide at a final concentration of 0.5 µM and 0.75 µM respectively. Cells were finally 

analysed by FACS using a FACScalibur (BD Biosciences). 

 
 

3.2.6. Magnetic field treatment  

To realise the proposed concept, encapsulated cells were treated in an alternating 

magnetic field in vitro as well as in vivo. The magnetic field treatment was performed 

by a custom-made magnetic field generator constructed and kindly provided by Prof. 

Chistian Halter and Prof. Johann Walzer from the University of Applied Sciences in 

Vienna. 

The magnetic field generating coil is driven by a current of 1 to 30 A and creates an 

alternating magnetic field with frequencies of 10 to 100 kHz and a magnetic field 

strength of up to 40000 A/m. Constituent parts are depicted in Fig. 3.3.. 

 

Constituent parts: 

• power supply unit (Fig. 3.3. A 1):: 0-120 V; type CPX 400A Dual, 60V 

20A PSU Powerflex (TTI) 

• wave form generator (Fig. 3.3. A 2): 10-100 kHz, custom-made; square 

wave signals with variable frequency between 10 -100 kHz were 

relayed by means of Timer IC 555 

• transistor full bridge (Fig. 3.3. A 3): custom-made; 5 parallel transistors 

(typ IRFP) per full bridge part; all in all 20 transistors on a cooling plate; 

cooling plate is chilled by means of two aerators 

• water-chilled coil (Fig. 3.3. A 4 and B): custom-made; isolated brass 

tubing winded on a inner diameter of approximately 25 mm, number of 

windings n = 18; chilled by distilled water 

• oscilloscope (Fig. 3.3. A 5): type MO100 (GRUNDIG Electronic) 

• frequency counter (Fig. 3.3. A 6): type M6612 counter/timer 80 

MHz/100 ms (Phillips) 
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Magnetic field treatment was performed with default settings of 27 A and 60 kHz for 

30 min. This equals to a magnetic field strength of 38000 A/m with the custom-made 

coil. 

Before every experiment, a standard 1 % nanoparticle dispersion was treated in the 

magnetic field with the described default settings and subsequent temperature 

increase was measured in the dispersion. The measured maximum temperature 

should reach 52°C ± 1.5°C after treatment. Additionally, magnetic field strength was 

measured with an exploring coil during the process, displaying a magnetic field 

strength of approximately 38000 A/m. Encapsulated cells were treated by application 

of an alternating magnetic field in vitro as well in vivo with the standard settings 27 A 

and 60 kHz for 30 min.  

For the in vitro experimentations, 140 capsules were selected and pipetted into 200 

µl of DMEM + 10 % FCS in a 2 ml Eppendorf tube with roundish bottom. The 

Eppendorf tube was placed into the middle of the coil (Fig. 3.3. B), so that the bottom 

of the tube was in the middle of the height of the coil where the magnetic field 

strength is maximal. Temperature was measured in the supernatant before and after 

treatment by a thermometer.  

In the in vivo experiments, 20 capsules were implanted into the hind limbs of mice. 

Using default settings of magnetic field treatment the hind limb was placed in the 

middle of the coil and a magnetic field was applied on implanted capsules. 

Fig. 3.4.: Custom-made magnetic field generator. 
System (A) consisting of power supply (1), wave generator (2) and transistor full bridge (3), 
coil (4), oscilloscope (5) and frequency counter (6). Enlarged image of water-chilled coil (B) 
with sample vial. 
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3.2.7. Analysis of gene expression 

3.2.7.1. Analysis of luciferase expression by luciferase assay 

Both monolayer cultures of cells as well as encapsulated cells were analysed for 

luciferase expression. 5 x 104 cells carrying the reporter construct were seeded in 6-

well plates and cultivated for two days in NM. 40 % to 80% confluent cells were 

shifted to a cell culture incubator adjusted to 43°C were they were kept for 1 h to 3 h. 

Encapsulated cells were incubated at 43°C for 45 min to 3 h or subjected to magnetic 

field treatment with 27 A and 60 kHz for 30 min. Luciferase expression was analysed 

6 h after induction. Before analysis, medium was removed and cells were incubated 

with 50 µl lysis buffer (250 mM Tris, 1% Triton X) for 20 min at RT on a shaker; 

capsules were mechanically destroyed with a pestle in 50 µl lysis buffer for 5 min, 

vortexed and shaked for 15 min at 20°C on a thermo-shaker. Before measurement, 

resolved capsules were centrifuged with 1000 x g for 30 sec. 50 µl sample volume 

was analysed by a measurement lasting for 10 sec. For analysis, 100 µl each of ATP 

and luciferin (see below) were added. Samples were analysed using a Berthold 

LB9507 luminometer. 

 

Buffers: 

ATP solution      Luciferin solution 

40 mM ATP      50 µM luciferin 

40 mM Tris pH 7.4     50 mM Tris pH 7.5 

66.6 mM MgCl2 

 

 

 

 

 
 



MATERIALS AND METHODS 
_________________________________________________________________________________ 

 

48 

 

3.2.7.2. Analysis of GFP expression by FACS 

In order to investigate induction of GFP expression, cells were subjected to heat or 

magnetic field treatment, and GFP expression was analysed by FACS 24 h after 

induction. 

For analysis of encapsulated cells, 140 capsules were pipetted into a 6-well plate. 

Medium was removed with a 1000 µl pipette. Capsules were first washed twice with 

SFMI medium. Capsules were then incubated in SFMI medium on a horizontal 

shaker (~20-30 rpm) in a cell culture incubator at 37°C. Capsules were resolved as 

described in section 3.2.5.2. According to the cell density within the capsules, 

separation of the cell aggregates was performed, also described in section 3.2.5.2.. 

Finally, cells were analysed by FACS (FACSCalibur, BD Biosciences). 

 

 

3.2.8. Electron microscopy 

Transmission electron microscopy (TEM) was applied to analyse localisation of 

nanoparticles in capsules and the impact of magnetic field treatment on the integrity 

of encapsulated cells. 

For TEM, samples were fixed with 3% glutaraldehyde for at least 2 days to crosslink 

proteins. Subsequently, samples were washed three times with Soerensen buffer (pH 

= 7.4, ingredients are listed below, note: dilution of Soerensen buffer to 0.1 M 

working concentration) for 15 min to remove the fixative. Samples were put into a 

mixture of 3 % osmium and Soerensen buffer in a ratio of 1:3 (1% osmium) for 2 h. 

Samples were again washed with Soerensen buffer. Encapsulated cells were 

dehydrated in an ascending ethanol series, i.e. in 30% ethanol for 5 min, 50% 

ethanol for 5 min, 70% ethanol for 60 min, twice in 80% ethanol 15 min each, twice in 

96% ethanol for 15 min each, and twice in 96% ethanol for 20 min each. Pure 

propylene oxide was added to the samples twice for 10 min. Propylene was sucked 

off. A mixture of propylene and resin in a ratio 1:1 was added for 60 min. 

Subsequently samples were put into a mixture of propylene and epon resin at a 

concentration ratio of 1:3 over night. The next day, samples were incubated in freshly 

prepared epon resin for 2 h. Embedding was performed in small conical tubes. 
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Samples were allowed to polymerise by incubation at 60°C for 3 days. Polymerised, 

embedded samples were cut using an ultratome (Ultracut S, Reichert) into ultra-thin 

(70 nm) sections which were fixed on a copper grid (Plano). Samples were stained 

with uranyl acetate (2% in 80% methanol) for exactly 8 min, washed three times for 

10 sec in ddH2O, incubated in lead citrate for 5.5 min and subsequently washed three 

times for 10 sec in ddH2O. 

 

Buffer: 

 Soerensen buffer 0.2 M 

 Na2HPO4 22,45g 

 KH2PO4 5,95g 

 Ad 2 l ddH2O 

 

3.2.9. Immunohistochemistry 

3.2.9.1. Preparation of paraffin-embedded samples 

To perform immunohistochemical staining for the investigation of effects of magnetic 

field treatment on cell viability and cell integrity, encapsulated cells were embedded 

in paraffin. 

Encapsulated cells were fixed in pre-chilled (4°C) 2% formalin in PBS for 1 h at RT in 

a 24-well plate. Subsequently, capsules were washed twice with PBS and transferred 

into a 1.5 ml Eppendorf tube. PBS was removed. HistoGel (Richard-Allan Scientific) 

was melted in a microwave oven and subsequently cooled down to about 37°C while 

inverting. Capsules were moulded in warm HistoGel for sedimentation. After gelling 

at 4°C samples were transferred into 70% ethanol and dehydrated over night by 

incubation in an ascending series of ethanol using an automatic device (Thermo 

Scientific). The next day, samples were casted in warm and fluid paraffin and then 

put on a cold plate for hardening. The paraffin blocks with the embedded samples 

were cut into 3 µm sections using a rotation microtome (Leica). A 37°C warm water 

bath was used to allow unfolding of sections. The section was mounted on glass 

slides and allowed to dry in an incubator at 37°C over night. 
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3.2.9.2. Hematoxylin/Eosin staining 

In order to cytologically analyse the effects magnetic field treatment paraffin-

embedded, encapsulated cells were stained with hematoxylin and eosin. 

Analysed samples were deparaffinised by incubation in xylol twice for 5 min each. 

Then samples were rehydrated by incubation in 96% ethanol twice for 5 min, 96% 

ethanol and 70% ethanol for 2 min each. Subsequently, slides were washed with 

ddH2O for 2 min and stained with hematoxylin (Richard-Allan-Scientific) for 5 min, 

washed with ddH2O for 10 min, stained with eosin (Riedl-de-Haen) for 5 min and 

washed again with ddH2O for 2 min. Samples were dehydrated by incubation in 70% 

ethanol and three times in 96% ethanol for 2 min each. Finally, samples were put in 

xylol for 5 min, subsequently mounted with DPX resin and covered with a cover slip. 

 
3.2.9.3. TUNEL assay 

TUNEL assay was performed to analyse the impact of magnetic field treatment of 

encapsulated cells on cell viability and to determine the amount of apoptotic cells.  

In the TUNEL (TdT-mediated dUTP-digoxygenin nick end labelling) assay, DNA 

strand breaks are detected by enzymatic labelling of free 3`-OH termini with modified 

nucleotides. These DNA ends are typically localised in morphologically identifiable 

nuclei and apoptotic bodies. The terminal deoxynucleotidyl transferase transfers 

digoxigenin-coupled nucleotides to free 3`-OH termini. Digoxigenin is detected by a 

fluorochome (rhodamine)-labelled antibody (ApoTagRRed In Situ, Chemicon). 

Therefore, tissue sections were deparaffinised by incubating them three times in 

xylene for 5 min. Samples were rehydrated with a descending ethanol series as 

decribed above in section 3.2.8.2. Rehydrated samples were washed in PBS for 5 

min. Proteinase K at a concentration of 20 µg/ml was directly added to the section on 

the slide and incubated for 20 min at RT. Slides were then washed twice with PBS for 

2 min. As a positive control for fragmented DNA, distinct sections were treated with 

10 U/ml DNaseI for 20 min at 37°C in a humidified chamber while other slides were 

kept in PBS. Slides were dried and equilibration buffer (ApoTagRRed In Situ, 

Chemicon) was added for at least 10 sec. Slides were incubated with working 

strength TdT-enzyme (ApoTagRRed In Situ, Chemincon) at 37°C for 1 h in a 

humidified chamber. The reaction was stopped with stop/wash buffer (ApoTagRRed 
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In Situ, Chemicon) and incubated for 10 min. Slides were washed three times for 1 

min in PBS, then dried and incubated with anti-digoxygenin conjugate (rhodamin, 

ApoTagRRed In Situ, Chemicon) in a humidified chamber in the dark. Slides were 

washed four times for 2 min in PBS. Samples were incubated in 1 µg/ml DAPI (in 

PBS) counter-stain solution for 3 min, washed in PBS, mounted with mounting 

medium (Vectashield, Vector Labs) to avoid bleaching of the fluorochrome and finally 

samples were covered with a cover slip.  

 
3.2.9.4. Caspase 3 staining 

In order to analyse the impact of magnetic field treatment on encapsulated cells, rate 

of apoptotic cells in paraffin-embedded sections was determined by 

immunohistological detection of Caspase 3. 

Samples were deparaffinised and then rehydrated as described above in section 

3.2.8.2. Samples were treated with 3% peroxidase blocking solution (40 ml methanol 

+ 10 ml 15% H2O2) for 15 min and washed 10 times with ddH2O. Antigen retrieval 

was performed by microwaving 4 x 5 min in citric acid, pH 6. Subsequently, samples 

were cooled down for 20 min at RT. Slides were put into cover-plates (Shandon) and 

washed in PBS for 5 min. Unspecific binding partners were blocked with protein 

blocking solution (1.5% goat serum in PBS) for 30 min. The primary antibody, rabbit 

anti-active-caspase 3 (R&D Systems AF835), was diluted 1:4000 in PBS and 

incubated with the sample over night at 4°C. The next day, samples were washed in 

PBS for 5 min and samples were incubated with the secondary antibody, goat anti-

rabbit antiserum (Powervision), for 30 min. Slides were washed with PBS for 5 min 

and removed from the cover-plates. Slides were developed with diaminobenzidin 

(DAB, Sigma, 1 tablet /50 ml Tris-HCl pH7.4 + 500 µl 3% H2O2) for 10 min. Samples 

were washed in ddH2O for 5 min. Staining of nuclei was performed by means of 

incubation with hematoxylin (Richard-Allan-Scientific) for 3 min. Samples were 

washed in ddH2O for 10 min and dehydrated as described previously. Slides were 

treated with xylol two times for 2 min. Slides were covered with DPX and cover slips 

were placed on top. 
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3.2.10. Animal experiments 

In vivo experiments were performed in order to determine induction of reporter gene 

expression in implanted encapsulated cells in response to heat and magnetic field 

treatment. All in vivo experiments were performed according to the regulations of the 

Austrian law governing animal experimentation (Animal experiment application at the 

Austrian Ministry for Science and Research BMWF-68.205/0213-II/10b/2009). 

 

3.2.10.1. Maintenance of mice 

Hsd. athymic Nude-Foxn1nu mice were chosen for the in vivo experiments. Mice were 

10 to 12 weeks old at the beginning of the experiment. In total, 24 mice were used, 

half female and half male. Mice were kept separately in type 2 euronorm caches. The 

mice were kept at daylight with a natural diurnal rhythm. Animals were fed with an 

autoclaved, special nutrition (V1534 R/M-H, SSNIFF) and autoclaved drinking water. 

Food and water took was provided ad libidum.  

 

3.2.10.2. Anaesthesia and euthanasia 

For the measurement of luminescence or fluorescence with the IVIS 50 bio-imaging-

system, mice were anaesthetised by inhalation of 2 to 3 % isoflurane and for 

implantation as well as for heat and magnetic field treatment the mice were 

anaesthetised by i.p. injection of 100 mg ketamine and 4 mg xylazine per kg body 

weight. Euthanasia of mice was performed by cervical dislocation. 

 

3.2.10.3. Experimental accomplishment 

Aim of the experiment was to demonstrate magnetic field and heat inducible 

luciferase as well as EGFP expression in encapsulated cells in vivo. 

Therefore, genetically modified HEK293 pSGH2lucpuro C5 cells harbouring the 

expression construct which is responsive to heat, were sterile encapsulated in 

biologically inert sodium cellulose sulphate (SCS). These encapsulated cells were 

cultivated for 3 weeks in vitro, till they were 75 % confluent. An aliquot of capsules 

(approximately 200 microcapsules) were washed three times with PBS to remove cell 

culture medium. Each 20 capsules were aspirated into an intravenous catheter by a 
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syringe. Mice were narcotised (3.2.10.3.) and subsequently, capsules were 

subcutaneously instilled into the thigh of the left hind limb without sewn closure. 

Then induction experiments started five days after administration of the 

microcapsules. Mice were magnetic field or heat treated once a week over a period 

of three weeks. Therefore, mice were narcotised (3.2.10.3.) and the hind limb was 

exposed either to a magnetic field (27 A, 60 kHz) for 30 min or placed on a heating 

plate (43°C) for 15 min. IVIS 50 (Xenogen) live bio-imaging system allowed a non-

invasive measurement and quantification of luminescent and fluorescent reporter 

gene expression. In order to determine luciferase gene expression, mice were 

narcotised (3.2.10.3.) 6 h after treatment. Using luminescence in vivo analysis, 240 

mg/kg D-Luciferin potassium salt was injected intra-peritonieally (i.p.) 15 min before 

anaesthesia and measurement. The luciferase measurement was performed by a 

measurement lasting 1 min. In order to determine EGFP gene expression, mice were 

analysed 24 h after treatment. 
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4. RESULTS 

4.1. Analysis of heat-induced expression in 
genetically modified cells 
For the presented study, i.e. analysing heat-induced reporter gene expression in 

encapsulated cells, a clone of HEK293 cells stably transfected with the respective 

expression construct was used. The selected single cell clone, HEK293 

pSGH2lucpuro C5 (Materials and Methods, section 3.1.6.2.), was supplied by the 

Institute of Animal Breeding and Genetics (University of Veterinary Medicine, 

Vienna). The expression vector (Appendix, section 7.4.) carries an artificial 

bidirectional heat inducible promoter based on the human heat shock promoter 

Hsp70. In detail, this bidirectional promoter consists of two minimal CMV promoters, 

orientated in opposite directions, coupled to eight idealised heat shock elements 

harbouring the consensus sequence 5`-AGAAC-3` (Bajoghli et al., 2004). Two 

reporter genes – GFP and luciferase – were driven by this artificial promoter, 

rendering their expression inducible by heat. 

Initial experiments performed by Viktoria Ortner had shown that expression levels of 

both genes were continuously increased when cells were incubated at elevated 

temperatures between 40°C and 43°C. Induction rates were shown to be maximal 

three log-stages, relative to promoter background activity in cells kept at 37°C. 

Analyses revealed that treatment of cells at 43°C resulted in an optimal promoter 

inducibility combined with a relatively low cell death rate (experiments performed by 

Viktoria Ortner from the Institute of Animal Breeding and Genetics, University of 

Veterinary Medicine, Vienna). 

In order to characterise the transfected cells in more detail, they were exposed to 

43°C for 1 – 3 h followed by analysis of reporter gene expression. Therefore, 5 x 104 

cells/well were cultured in a six-well-plate for two days and then incubated at 43°C for 

1 h, 2 h and 3 h. Subsequently, luciferase expression was analysed after 6 h of 

recovery by using a luciferase assay (Materials and Methods, section 3.2.7.1.), and in 
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addition, GFP expression was analysed after 24 h of recovery by quantitative FACS 

analysis (Materials and Methods, section 3.2.7. 2.). 

Measurement of expression revealed a robust induction of reporter gene expression 

in response to heat treatment. Induced luciferase expression levels were increased in 

correlation with the heat exposure time. Values depicted in figure 4.1. are relative; the 

expression levels of cells kept at 37°C were set to one as a reference. In response to 

1 h of heat treatment at 43°C, expression was shown to be 54-fold elevated, while a 

2 h incubation at the same temperature resulted in a 667-fold elevated expression. A 

maximum of 944-fold increase in luciferase expression was obtained when cells were 

incubated for 3 h at 43°C (Fig 4.1. A). 

Quantitative FACS analysis of GFP positive cells (Fig. 4.1. B) also showed induction 

of the respective reporter gene in response to elevated temperatures. GFP 

expression of cells incubated for 1 h at 43°C was found to be 1935-fold increased 

relative to the expression levels of cells kept at 37°C. Moreover, expression levels 

were found to be 4260-fold increased in response to heat treatment for 2 h at 43°C. 

However, the expression level decreased to 3068-fold when cells were incubated for 

3 h at 43°C. 

 

Fig. 4.1.: Heat inducibility of cultured HEK293 pSGH2lucpuro C5 cells. 
Cells were analysed regarding induction of reporter gene expression (luciferase, GFP) in 
response to heat treatment at 43°C for 1 h, 2 h and 3 h. (A) Luciferase measurement was 
performed using a Berthold LB9507 luminometer. (B) Quantitative FACS analysis was 
performed by using FACScalibur, BD Biosciences. All values are shown as x-fold induction 
relative to expression in cells kept at 37°C.  
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Induction of gene expression in cells by heat treatment at 43°C for 1 h was also 

shown by UV-microscopy (Fig. 4.2). By this means, cells with a strong green 

fluorescence were observed in cell cultures after 24 h of recovery (Fig. 4.2. D).  

 

Fig. 4.2.: Induction of GFP expression in HEK293 pSGH2lucpuro C5 cells. 
(A and B) Cultured cells kept at 37°C. (C and D) Cells heat-treated by incubation at 43°C for 
1 h. (D) GFP expression in response to heat treatment as analysed by UV microscopy 
(Axiovert 200M, Zeiss; magnification 100-fold, scale bar 50 µm; A, D: bright field analysis; B, 
C: UV-microscopy). 

The stably transfected cells described here were used to provide the proof-of-

principle for a magnetic nanoparticle-mediated thermoregulation of gene expression 

in encapsulated cells in response to treatment with an alternating magnetic field. To 

follow this aim, in a next step different magnetic nanoparticles were analysed with 

respect to their applicability in this concept. 
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4.2. Characterisation of magnetic nanoparticles with 
respect to physical properties, heat generation 
capacity and tendency to aggregate 
In this project magnetic nanoparticles should be used within microcapsules to 

generate heat by exposing them to an alternating magnetic field. For this specific 

application, magnetic nanoparticles which should be used had to fulfil specific 

characteristics. Besides others, the most important criteria were that these particles 

had to generate substantial heat in an alternating magnetic field and, additionally, 

that they were encapsulate-able. Therefore, a set of 14 different nanoparticles was 

analysed for the specific needs of this project. 13 of these nanoparticles were 

generated and kindly provided by Dr. Olga Mykhaylyk from the Institute of 

Experimental Oncology and Therapy Research from the Technical University in 

Munich. These nanoparticles were regularly produced for magneto-transfection 

(Plank, et al., 2003). In addition, a commercially available magnetic nanoparticle 

formulation from Sigma (product number 637106) was used. The distinct 

physiochemical characteristics of the particles used are given in table 4.1.
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Tab. 4.1.: Physicochemical characterisation of different nanoparticles.(1) 
Sample S1 S4 S5 S7 S8 S11 S13 S16 S22 S24 S25 S26 S34 Sigma 

Shell (surface 
composition) 

Palmityl-
dextran  

Palmityl-
dextran  

Palmityl-
dextran  

Palmityl-
dextran  

Polyethylen-
imine  

Pluronic-
127/FSE 

Palmityl-
dextran/ 

FSA  

Tween-
80 

Tween 
60/FSA 

1.9-
Nonandithiol 

Chitosan-
OSL 

Dihexa-
decyl 

phosphate  
Pluronic127/FSA  

Poly- 
vinyl 

pyrrolidone 
Core density 
[g/cm3] 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 - 

Mean core 
size(crystallite 
size) d (nm) 

80 8.5 13 30.6 74.1 10.6 4 10 11.7 12 10 10 11 
30 

Mean hydrated 
particle 
diameter (nm) 

215 ± 
102 55 ± 10 380 ± 

200* 
103 ± 
60* 409 ± 190* 106 ± 

40* 55 ± 11 53 ± 27  68 ± 30 1200* nd 100 ± 49 
n.d. 

Electrokinetic 
potential or x-
potential (mV)** 

Nd -15.6 ± 
1.6 

-16.3 ± 
1.6 

-16.6 ± 
1.6 + 50 ± 2 -13.3 ± 

1.6 
- 31.4 ± 

0.9 
+27.8 ± 

4 
-1.4 ± 

1.6 -14.6 ± 0.7 +21.5 ± 
0.5 -39 ± 6.3 -18.3 ± 0.2 

- 

Concentration  
[mg dry nano-
material/ml] 

7.4 19.0 18.7 25.0 23.2 24.4 17.6 33.1 34.9     
- 

Iron 
concentration 
[mg Fe/ml] 

5 10 10 15 15 10 8,9 13,9 15 10 5 5 9 
- 

Iron content (g 
Fe /g dry 
weight) 

0.675 0.526 0.534 0.601 0.646 0.41 0.507 0.42 0.43 0.5 0.52 0.44 0.21 
- 

Coating content 
(g coating 
material/g dry 
weight) 

0.07 0.27 0.26 0.17 0.11 0.43 0.30 0.42 0.41 0.31 0.28 0.39 0.71 

- 

Average core 
weight per 
particle 
(g/particle) 

1.4E-15 1.7E-18 6.0E-18 7.8E-17 1.1E-15 3.2E-18 1.7E-19 2.7E-18 4.4E-18 4.7E-18 2.7E-18 2.7E-18 3.6E-18 

- 

Average iron 
weight per 
particle (g 
Fe/particle) 

1.0E-15 1.2E-18 4.3E-18 5.7E-17 8.0E-16 2.4E-18 1.3E-19 2.0E-18 3.2E-18 3.4E-18 2.0E-18 2.0E-18 2.6E-18 

- 

Particle per unit 
iron weight 
[particle/g Fe] 

9.9E+14 8.2E+17 2.3E+17 1.8E+16 1.2E+15 4.3E+17 7.9E+18 5.1E+17 3.2E+17 2.9E+17 5.1E+17 5.1E+17 3.8E+17 
- 

Particles per 
unit volume 
[particle/µl] 

4.9E+09 8.2E+12 2.3E+12 2.7E+11 1.9E+10 4.3E+12 7.0E+13 7.0E+12 4.7E+12 2.9E+12 2.5E+12 2.5E+12 3.4E+12 
powder 

(1) According to analyses provided by the Institute of Experimental Oncology and Therapy Research, Technical University Munich. 
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For the intended application, the provided set of nanoparticles was investigated with 

regard to their capacity for heat generation. Therefore, dispersions containing 1% 

(w/v) nanoparticles in PBS were treated with an alternating magnetic field (27 A, 60 

kHz) for 30 min. Temperature was measured in the dispersions with a thermometer 

before and after treatment with the alternating magnetic field. In figure 4.3. 

temperature increases are shown in relation to the temperature increase obtained 

with PBS lacking nanoparticles. 

The custom-made S8 and S24 nanoparticles as well as the commercially available 

nanoparticles from Sigma were shown to yield the highest temperature increase (Fig. 

4.3.). According to these results, the S8, the S24 and the Sigma nanoparticles were 

further used in the following experiments. 

 

Fig. 4.3.: Heat generation capacity of a set of different magnetic nanoparticles. 
Nanoparticle dispersions (1% w/w) were subjected to an alternating magnetic field with 38 
kA/m and 60 kHz for 30 min (experiment performed by Viktoria Ortner from the Institute of 
Animal Breeding and Genetics, University of Veterinary Medicine, Vienna). 

Magnetic nanoparticles provided by Sigma consisted of 100% magnetite and are 

stabilised by polyvinylpyrrolidone. They had a diameter of 30 nm. In contrast to the 

Sigma nanoparticles, the S8 nanoparticles had a core of 100% magnetite with a 

diameter of 74.1 nm (Table 4.1.). The coating material was polyethylenimine. The 
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S24 nanoparticles also contained a core of 100% magnetite with a diameter of 12 nm 

and were coated with 1.9-nonane-dithiole. 

As already mentioned, the second important criterion was the ability of nanoparticles 

to be encapsulated. In order to investigate this characteristic, first the tendency for 

aggregation of nanoparticles S8, S24 and “Sigma” was analysed. This was important 

because high concentrations of aggregated particles would cause a blockage of the 

nozzle during the encapsulation process. All particles analysed, showed a tendency 

to aggregate. As a result of aggregation, particles could be investigated by applying a 

light microscope. Nanoparticle formulations were diluted to a concentration of 0.01% 

(w/w) and treated with ultrasound for 15 sec on dry ice. Light microscopically analysis 

was performed after 30 sec of incubation at RT. 

The analysis revealed that the S24 nanoparticles aggregate to a lower extent (Fig. 

4.4. B), when compared to S8 and Sigma nanoparticles. The S8 nanoparticles 

formed netlike structures (Fig. 4.4. A), whereas Sigma nanoparticles had already 

aggregated into large clumps with a diameter up to approximately 100 µm (Fig. 4.4. 

C). Consequently, these particles despite their high heat inducing capacity could not 

be used for co-encapsulation with HEK293 cells. 

 

Fig. 4.4.: Nanoparticle aggregation. 
Light microscopic analysis of nanoparticle aggregation was performed (magnification 400-
fold, scale bar 200 µm). Pictures show nanoparticle aggregation of A) S8 nanoparticles, B) 
S24 nanoparticles and C) Sigma nanoparticles. 
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4.3. Co-encapsulation of cells and nanoparticles 
In the following section the establishment of the co-encapsulation of nanoparticles 

and cells and the subsequent effect on the physical properties will be described. In 

the previous section (4.2.) it has been shown that the nanoparticles from Sigma are 

not encapsulateable because they formed large aggregates of up to 100 µm in size. 

Therefore, encapsulation with nanoparticles was established for S8 and S24 

nanoparticles which showed a lower aggregation tendency. 

Encapsulation parameters have been established previously for the encapsulation of 

cells (Hauser, et al., 2004) with 1.8 % sodium cellulose sulphate (SCS). For co-

encapsulation of cells and nanoparticles, the concentration was reduced to 1.6 % 

SCS because of the increased viscosity of the encapsulation material containing 

0.5% nanoparticles. Other parameters were kept constant: a flow rate of 8.5 ml/min, 

an oscillation-frequency of 730 Hz, an oscillation-amplitude of 30 % and a dispersion 

voltage of 1.5 kV were applied. This resulted in formation of microcapsules with a 

diameter of approximately 700 µm. In figure 4.5. different generated capsules are 

depicted. Capsules manufactured using a SCS concentration of 1.8 % containing 

cells (Fig. 4.5. A), whereas capsules generated using SCS concentration of 1.6 %, 

containing co-encapsulated cells and S8 (Fig. 4.5. B) or S24 (Fig. 4.5. C) magnetic 

nanoparticles shown in figure respectively. 

 
Fig. 4.5.: SCS capsules containing HEK293 pSGH2lucpuro C5 cells with and without 
nanoparticles. 
Images show 1.8% SCS capsules and 1.6 % SCS capsules. Cells only were encapsulated in 
1.8% SCS (A). Cells and 0.5% nanoparticles were encapsulated in 1.6% SCS:  (B) co-
encapsulated S8 nanoparticles and (C) co-encapsulated S24 nanoparticles. Light 
microscopic analysis was performed with an Axiovert 200M (Zeiss). Scale bar is 700 µm and 
magnification is 40-fold. 

A B C 

A B C 
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4.3.1. Characterisation of physicochemical properties of 
capsules with and without nanoparticles 
Having modified the encapsulation process according to the enhanced viscosity of 

SCS containing nanoparticles, it was investigated if the physicochemical 

characteristics of generated capsules still complied with the intended application. 

Therefore, it was investigated if the physical capsule properties differ in comparison 

to the standard capsules manufactured with 1.8 % SCS. 

The microcapsule diameter is an important parameter because it is defining the 

diffusion-limited supply of encapsulated cells with nutrients. Moreover, it is 

determining the space cells can occupy within the microcapsule and thus it is defining 

the biological power per microcapsule in terms of a cell-based therapy. 

Manufactured capsules were microscopically analysed using the microscope Axiovert 

200 M (Zeiss). Diameters were determined using the software AxioVision (Zeiss) by 

calibrating the taken picture according to the used objective and by employing the 

measurement tool. 180 diameters of capsules were defined analysing nine 

independent encapsulation experiments. The encapsulation of different combinations 

of cells and nanoparticles, namely HEK293 pSGH2lucpuro C5 cells alone, cells co-

encapsulated with S8 nanoparticles and cells co-encapsulated with S24 

nanoparticles, resulted in capsule diameters which were varying in a range between 

530 µm and 753 µm (Fig. 4.6.). The median of the frequency distribution of measured 

capsule diameters was 646 µm for capsules containing HEK293 pSGH2lucpuro C5 

only. The median of the frequency distribution of measured capsule diameters was 

620 µm for capsules containing HEK293 pSGH2lucpuro C5 and S8 nanoparticles. 

The median of the frequency distribution of measured capsule diameters was 625 µm 

for capsules harbouring HEK293 pSGH2lucpuro C5 and S24 nanoparticles (Fig. 

4.6.). The different percentages of SCS used in the distinct encapsulation processes 

appeared not to have a strong impact on capsule diameters as no significant 

difference in capsule diameters was observed comparing capsules containing cells 

and nanoparticles to 1.8 % SCS capsules containing cells only. In conclusion, co-

encapsulation of nanoparticles and following reduction of SCS concentration to 1.6% 

did not affect capsule diameters. 
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Fig. 4.6.: Capsule diameters of capsules with cells and with co-encapsulated 
nanoparticles. 
Capsule diameters of nine independent encapsulations (n = 180) determined by 
microscopical analysis and software assisted measurement (AxioVision, Zeiss). Box- and 
Whiskers-blot is depicted for diameters of encapsulated HEK293 pSGH2lucpuro C5 cells 
without nanoparticles, encapsulated HEK293 pSGH2lucpuro C5 cells with S8 nanoparticles 
and encapsulated HEK293 pSGH2lucpuro C5 cells with S24 nanoparticles. 

The calculated mean value of capsule diameters was 680 µm considering all 

performed 64 encapsulation experiments. The mean diameters defined by analysing 

20 capsules each varied in a narrow range between 605 µm and 800 µm (Fig. 4.7.). 

The 64 encapsulations were performed within a period of 2 years. This reflects the 

reproducibility of the encapsulation process regarding capsule diameters.  

In order to further analyse the influence of co-encapsulation of nanoparticles and 

reduced SCS concentration on capsule formation process, the different capsules 

were investigated with respect to their diffusion properties.  
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Fig. 4.7.: Capsule diameters. 
Experimental variance of mean capsule diameters determined by analysing diameters of 20 
capsules in each of the 64 performed encapsulations within two years. 

Diffusion properties of microcapsules are of great interest because they define the 

supply of encapsulated cells with nutrients and determine the disposal of metabolites 

as well as the dispensing of therapeutic substances into the surrounding tissue in 

terms of a cell-based therapy. 

Diffusion properties of capsule membranes were analysed using capsules with 

encapsulated nanoparticles manufactured with 1.6% SCS, a reduced concentration 

of SCS in comparison to standard 1.8 % SCS capsules. Capsule diffusion properties 

were determined by size exclusion of FITC-labelled dextrans of different molecular 

weight. FITC-dextrans of 40 kDa, 70 kDa and 250 kDa were used. Therefore, 

capsules lacking and containing S8 or S24 nanoparticles were incubated in medium 

containing different FITC-dextrans over night. The next day, capsules were washed 

twice with PBS and UV-microscopy was performed immediately using Axiovert 200 M 

(Zeiss) (Materials and Methods 3.2.3.2.). The molecular cut-off limit was between 70 

kDa and 250 kDa for all used capsules (Fig. 4.8.). In conclusion, the encapsulated 

nanoparticles S8 and S24 and a reduced concentration of 1.6% SCS did not result in  

differences regarding the molecular cut off limit of capsule membranes compared to 

standard 1.8% SCS capsules. 
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Fig. 4.8.: Analysis of size exclusion of FITC-dextrans by capsule membranes 
manufactured with different SCS concentrations. 
Determination of size exclusion of FITC-dextrans by membranes of 1.8% SCS capsules 
without nanoparticles (A1 – 6) as well as of 1.6% SCS capsules with S8 (B1 – 6) or S24 (C1 
– 6) nanoparticles. Fluorescence microscopical analysis was performed with microscope 
Axiovert 200M (Zeiss). 
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To further define capsule properties, the influence of the different concentrations of 

SCS used for encapsulation and the influence of the following co-encapsulation of 

nanoparticles was analysed by investigation of membrane thickness. Membrane 

thickness determines diffusion speed of nutrients and metabolites and hence is 

important parameter for viability of encapsulated cells.  

Membrane thickness was analysed by calcofluor staining. Calcufluor intercalates in 

ß-glycosidic-linked poly-saccharose. For example, calcufluor is used to stain 

cellulose in the cell walls of plant cells or chitin/glycan in the cell wall of fungi. 

Calcofluor has an excitation wavelength of 365 nm and an emission wavelength of 

435 nm. 

After incubating capsules in 3.3 mg/ml calcofluor in PBS for 12 h, capsules were 

washed twice with PBS and subsequently, fluorescence was analysed by 

fluorescence confocal laser scanning microscopy (CLSM) (Material and Methods 

3.2.3.1.) using a 420 nm wavelengths filter. Original images were analysed using the 

software LSM Image browser (Zeiss) and membrane thickness was determined by 

the included measurement tool.  

Analysis of the thickness of the capsule membranes revealed that the membranes 

had diameters of approximately 35 µm. 1.8 % SCS capsules had a diameter of 35.5 

µm ± 8.7 µm (Fig. 4.9. A), while 1.6 % SCS capsules containing S8 nanoparticles 

had a diameter of 35.9 µm ± 10.3 µm (Fig. 4.9. B) and 1.6% SCS capsules carrying 

S24 nanoparticles revealed a diameter of 35.2 µm ± 9.4 µm (Fig. 4.9. C).  

Encapsulation using different concentrations of SCS as well as the co-encapsulation 

of nanoparticles appeared not to have an impact on membrane thickness.  
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Fig. 4.9.: Determination of capsule membrane thickness. 
Calcofluor-stained cellulose membrane of a 1.8 % SCS capsule without nanoparticles (A), of 
a 1.6% SCS capsule with S8 nanoparticles (B), and of a 1.6% SCS capsule with S24 
nanoparticles (C) analysed by CLSM using a LSM 510 microscope (Zeiss, scale bar 30 µm) 
by λ = 405 nm. 

In the previous sections genetically modified HEK293 pSGH2lucpuro C5 cells were 

characterised regarding inducibility of gene expression in response to heat. 

Expression analysis of heat-treated cells revealed robust induction of luciferase and 

EGFP expression. Furthermore, a set of different nanoparticles was characterised 

with respect to parameters relevant in this project: their heat generation capacity in 

an alternating magnetic field and their ability to be encapsulated. According to these 

criteria, S8 and S24 nanoparticles were selected for further experiments. 

Microcapsules generated by co-encapsulation of cells and nanoparticles were 

analysed with respect to important physical capsule parameters such as size, 

diffusion properties and membrane thickness. In summary, the reduced SCS 

concentrations applied for co-encapsulation of cells and nanoparticles had no 

influence on the capsule diameters, capsule diffusion properties and membrane 

thickness, three characteristics important for viability of encapsulated cells. 

In a next step, encapsulated cells shall be investigated with regard to nanoparticle 

localisation within microcapsules, inducibility of gene expression in response to heat 

treatment and cell viability in response to heat treatment; in addition, biocompatibility 

of nanoparticles and heat inducibility of expression in encapsulated cells are being 

investigated during long-term cultivation and after multiple heat inductions. 
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4.4. Characterisation of encapsulated cells 
After the physical parameters of microcapsules were investigated, the biological 

characteristics of encapsulated cells should be analysed. In particular, localisation of 

nanoparticles within microcapsules, their biocompatibility with respect to 

encapsulated cells and heat responsive expression within encapsulated cells should 

be investigated.  

 

4.4.1. Characterisation of encapsulated cells with respect 
to nanoparticle localisation 

The nanoparticles provided for the presented work originally were made 

predominantly for gene delivery (Plank, et al. 2003 and Plank, et al. 2009). The 

selected S8 and S24 nanoparticles exhibited a magnetite core. They were either 

coated with polyethylenimine (PEI, S8, Fig. 4.10. A) or with 1.9-nonanedithiol (1.9-

NDT, S24, Fig. 4.10. B).  

               

  

Fig. 4.10.: Coating material of selected nanoparticle formulations. 
Both selected nanoparticles had a magnetite core. S8 nanoparticles were coated with 
polyethylenimine (A) and S24 nanoparticles with 1.9-nonanedithiole (B).  

PEI is usually used as a transfection reagent for gene delivery applications (Arsianti, 

et al, 2010; Rudolph, et al. 2000; Wirth, et al., 2011). It is involved in nucleic acid 

binding via interaction of its positive charges with negative charges of phosphate 

groups in the nucleic acids at physiological pH. Cellular uptake is directed by the 

interaction with negatively charged plasma membranes (Akinc, et al. 2005). 

1.9-NDT was also intended to use for gene delivery. It was reported that free thiol 

groups are essential for infectivity of viruses (Mirazimi, et al., 1999). By mimicking 

A B 
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viral particles it was speculated that free thiol groups at the surface of nanoparticles 

enhance association with cell membranes and thus enforce internalisation of 

nanoparticles. 

Because of the distinct intended use, nanoparticles in the present project were 

analysed with respect to their intra-capsular localisation. In order to analyse 

localisation of nanoparticles within generated microcapsules, capsules containing 

HEK293 pSGH2lucpuro C5 cells with or without co-encapsulated S8 and S24 

nanoparticles were analysed by transmission electron microscopy (TEM). 

Encapsulated cells with and without S8 or S24 nanoparticles were prepared for 

electron microscopy in the second week of cultivation (please refer to chapter 4.4.3. 

Fig. 4.13.). Samples were fixed with glutaraldehyde, 100 nm sections were prepared 

and contrasted with uranyl acetate and lead citrate (Material and Methods 3.2.8.).  

In capsules containing cells and S8 nanoparticles (0.5 % w/w), the nanoparticles 

were detected within the capsule membrane (Fig. 4.11. H) , inside the capsule (Fig. 

4.11. G) and also within cells (Fig. 4.11. E and F). Apparently, the S8 nanoparticles 

which were coated with PEI were spontaneously taken up into cells. In capsules 

containing HEK293 pSGH2lucpuro C5 cells and 1.9- NDT-coated S24 nanoparticles 

(0.5 % w/w), nanoparticles were detected within the capsule membrane (Fig. 4.11. L), 

within cell cytoplasm (Fig. 4.11. I, J and K) and also to a certain extent within the 

nucleus (Fig. 4.11. J). Thus, according to their intended use, S8 and S24 were both 

taken up by encapsulated cells. In the next chapter, it should be analysed if cellular 

nanoparticle uptake influences cell viability. Although, magnetite containing 

nanoparticles have been shown to be biologically tolerable (reviewed by Hafeli, et al., 

2009), the applied coating material which not only mediates cellular uptake but also 

reduces agglomeration and keeps particles dispersed (reviewed by Hafeli, et al., 

2009), might reveal cytotoxic characteristics.  
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Fig. 4.11.: Nanoparticle localisation. 
TEM analysis of SCS microcapsules containing HEK293 pSGH2lucpuro C5 cells only (A – 
D), cells co-encapsulated with S8 nanoparticles (E – H) or with S24 nanoparticles (I – L). 
Microscopy was performed using the EM900 transmission electron microscope from Zeiss 
(magnification 3000-fold and scale bar 5 µm; N = nucleus; ER = endoplasmatic reticulum; NP 
= nanoparticles; ME = membrane of capsule). 
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4.4.2. Characterisation of encapsulated cells concerning 
biocompatibility of nanoparticles 

In order to investigate the biocompatibility of this specifically coated magnetite 

nanoparticles, viability of encapsulated cells was determined by calcein-AM staining 

followed by FACS analysis. Living cells are characterised by the ubiquitous presence 

of intracellular esterase activity, which is determined by the enzymatic conversion of 

the virtually non-fluorescent calcein-AM into the intensively fluorescent calcein. 

Cells co-encapsulated with S8 and S24 nanoparticles were cultivated for four weeks. 

Encapsulated cells were prepared for analysis on day seven, on day 15, on day 21 

and on day 28 post encapsulation. Therefore, cells were released from capsules and 

viable cells were stained with calcein-AM (Materials and Methods 3.2.4.3.). 

Subsequently, FACS analysis was performed.  

In general, FACS analysis revealed 59.2 to 86.7% viable cells (Fig. 4.12.). During the 

encapsulation process cells are exposed to different stress factors affecting viability. 

This is reflected by the number of living cells determined seven days after 

encapsulation (Fig. 4.12.). Capsules with HEK293 pSGH2lucpuro C5 cells contained 

only 79.3% viable cells (Fig. 4.12., black dot, 7 days after encapsulation), whereas 

capsules with cells and S8 nanoparticles contained 80.8% viable cells (Fig. 4.12., 

gray square, 7 days after encapsulation) and the highest percentage with 86.7% of 

viable cells was found in capsules containing cells and co-encapsulated S24 

nanoparticles (Fig. 4.12., bright gray triangle, 7 days after encapsulation). On day 15 

after encapsulation, in capsules containing cells only the percentage of viable cells 

had further decreased to 64.8% (Fig. 4.12., black dot, 15 days after encapsulation) in 

comparison to capsules containing cells and S8 or S24 nanoparticles, where the 

percentages of viable cells was found to be 68.2% (Fig. 4.12., gray square, 15 days 

after encapsulation) and 67.8% (Fig. 4.12., bright gray triangle, 15 days after 

encapsulation), respectively. From here on the percentage of viable cells increased 

on day 22 post encapsulation to 79.1% viable cells in capsules with cells lacking 

nanoparticles (Fig. 4.12., black dot, 22 days after encapsulation). In capsules with co-

encapsulated S8 nanoparticles, 81.0% viable cells were detected (Fig. 4.12., gray 

square, 22 days after encapsulation) and in capsules with co-encapsulated S24 
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nanoparticles 79.1% viable cells were identified (Fig. 4.12., bright gray triangles, 22 

days after encapsulation). In contrast, on day 28 post encapsulation, the percentage 

of viable cells decreased again. Encapsulated cells lacking nanoparticles revealed 

65.7% of living cells (Fig. 4.12., black dots, 28 days after encapsulation), whereas co-

encapsulated cells with S8 nanoparticles showed 80.9% viable cells (Fig. 4.12., gray 

square, 28 days after encapsulation). In capsules containing cells and S24 

nanoparticles, 72.7% viable cells were detected (Fig. 4.12., bright gray triangles, 28 

days after encapsulation). At day 28 in all capsules cells had grown to their highest 

density, which means that due to limited space and nutrient levels cell death rates 

increased. In summary, the percentage of viable cells determined in capsules lacking 

nanoparticles was found to be similar that of capsules containing cells and co-

encapsulated nanoparticles. Thus it can be stated that co-encapsulation of 

nanoparticles did not have a negative influence on cell viability of encapsulated cells.   

 

Fig. 4.12.: Viability of encapsulated cells during long-term cultivation. 
Encapsulated cells were cultivated for four weeks. Cells were released from capsules on day 
seven, day 15, day 22, day 28 post encapsulation. Subsequently, calcein-AM staining was 
performed. Finally, fluorescent cells were analysed by quantitative FACS analysis using a 
FACScalibur (Becton Dickinson Biosciences). 

To compare the growth of encapsulated cells, encapsulated HEK293 pSGH2lucpuro 

C5 cells with or without S8 and S24 nanoparticles were cultivated for 32 days. 
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Metabolic activity was determined by AlamarBlue™ assays. Then growth curves 

were determined (Fig. 4.13). The doubling time of encapsulated HEK293 cells during 

the exponential growth phase varied between 48 h (co-encapsulated S24 

nanoparticles) and 72 h (co-encapsulated S8 nanoparticles or without nanoparticles). 

Metabolic activity increased continuously for a period of 28 days. Highest metabolic 

activities were measured in encapsulated HEK293 pSGH2lucpuro C5 cells without 

particles and in encapsulated HEK293 pSGH2lucpuro C5 cells with S8 particles. No 

statistically significant difference could be detected between growth curves of 

encapsulated HEK293 pSGH2lucpuro C5 cells lacking the particles and of 

encapsulated HEK293 pSGH2lucpuro C5 cells with S8 particles. In contrast, growth 

curve of encapsulated HEK293 pSGH2lucpuro cells with co-encapsulated S24 

particles was significantly different; encapsulated cells entered a stationary phase 

already after 13 days. 

 

 

 

 

 

 

 

 

 
Fig. 4.13.: Metabolic activity of encapsulated cells during long-term cultivation with or 
without nanoparticles. 
Encapsulated HEK293 pSGH2lucpuro C5 cells without nanoparticles (blue dots and blue 
curve) and with S8 nanoparticles (green dots and green curve) or with S24 nanoparticles 
(brown dots and brown curve) were cultivated for 32 days. Metabolic activity was determined 
by fluorometric AlamarBlue assays using multiwell formats measured by plate reader Tecan 
Genios. 

Growth of encapsulated HEK293 pSGH2lucpuro C5 cells with and without S8 or S24 

nanoparticles was microscopically documented. In the encapsulation process 2 x 106 

Reference capsules

cultivation time [d]
0 10 20 30

[R
FU

-B
LK

]

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

• HEK293 pSGH2lucpuro C5 
  capsules  
• HEK293 pSGH2lucpuro C5 
  + S8 capsules 
• HEK293 pSGH2lucpuro C5 
 + S24  capsules 
 

 



 RESULTS 
_________________________________________________________________________________ 

 

74 

 

cells/ml were used. This corresponded to a cell density of 600 cells per capsule on 

the day of encapsulation. One day after encapsulation few cells clumps are visible in 

the microcapsules (Fig. 4.14. A, B and C). As shown in figure 4.14. encapsulated 

cells with and without nanoparticles exhibited equal cell densities 14 days after 

encapsulation (Fig. 4.14. D, E and F). 28 days after encapsulation microcapsules 

were completely filled with cells (Fig. 4.14. G,H and I). This corresponded to a 

calculated cell number of 104 cells per capsule. The presence of nanoparticles in 

microcapsules appeared to result in no differences in the growth of encapsulated 

cells. Proliferation of encapsulated cells seemed not to be inhibited. 

Fig. 4.14.: Growth of encapsulated cells with or without nanoparticles. 
Encapsulated HEK293 pSGH2lucpuro C5 cells without nanoparticles (A, D, G) and with S8 
nanoparticles (B, E, H) or with S24 nanoparticles (C, F, I) were cultivated for 28 days. Growth 
of encapsulated cells was microscopically documented one day, 14 days and 28 days after 
encapsulation using microscope Axiovert 200M (Zeiss, magnification 40-fold, scale bar 700 
µm). 
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4.4.3. Characterisation of encapsulated cells with respect 
to heat inducibility  

In this project heat-mediated induction of reporter gene expression in HEK293 cells 

co-encapsulated with two different types of nanoparticles should be demonstrated by 

means of incubation in an alternating magnetic field. In a first step, induction of 

reporter gene expression in encapsulated HEK293 pSGH2lucpuro C5 cells by heat 

treatment should be investigated. 

Therefore, encapsulated cells were cultured for 21 days, which has been shown 

previously to be the optimal time point with respect to cell density and viability. The 

encapsulated cells were then heat-treated by incubation at 43°C for 1 h, 2 h and 3 h, 

respectively. Luciferase expression was measured after 6 h of recovery. Induction of 

luciferase was calculated as the ratio of luciferase expression in encapsulated cells in 

response to heat treatment compared to luciferase expression of encapsulated cells 

kept at 37°C. Expression levels of cells kept at 37°C were set to one and expression 

values were given relative to that (Fig.4.15. A). The level of luciferase expression in 

cells kept for 1 h at 43°C was found to be increased 397-fold, and up to 1586-fold in 

response to heat treatment for 2 h. A maximum of 1588-fold expression increase 

resulted from 3 h of heat treatment (Fig. 4.15. A). Thus, extending heat-treatment 

from 1 h to 2 h resulted in a further 4-fold increase of expression, whereas 3 h 

treatment in comparison to 2 h at 43°C did not further enhance luciferase expression.  

In addition to measurement of luciferase expression, EGFP expression in response 

to activation of the dual promoter was analysed. Therefore, encapsulated cells were 

incubated at 43°C for 1 h and subsequently microscopically investigated after 24 h of 

recovery. Fluorescence microscopic analysis revealed induction of EGFP expression 

in heat-treated cells within inspected microcapsules (4.15. E). No fluorescence was 

detected in encapsulated cells kept at 37°C (4.15. C). 
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Fig. 4.15.: Heat-inducible gene expression in encapsulated cells. 
(A) Encapsulated HEK293 pSGH2lucpuro C5 cells were cultivated for three weeks and then 
heat-treated by incubation for 1 h, 2 h and 3 h in a cell culture incubator adjusted to 43°C. 
Luciferase expression was analysed in cell lysates by measurement with a luminometer 
(Berthold, LB9507). X-fold activation values are given in comparison to expression levels of 
cells kept at 37°C. (D and E) The same batch of encapsulated cells was analysed regarding 
EGFP expression in response to heat treatment, i.e. incubation at 43°C for 1 h. (B and C) 
Encapsulated cells cultured at 37°C. Encapsulated cells were UV-microscopically analysed 
(C and E) using a fluorescence microscope (Axiovert, 200 M, Zeiss) Corresponding bright 
field photographs are shown in B and D. Magnification is 40-fold and scale bar is 700 µm. 

Having shown that reporter gene expression is responsive to heat treatment also in 

encapsulated cells, effects on cell viability were further investigated. Therefore, 

metabolic activity of heat treated encapsulated cells was investigated in detail.  

Encapsulated HEK293 pSGH2lucpuro C5 cells that had been cultured for 21 days 

were incubated at an elevated temperature of 43°C for 1h, 2 h and 3 h. For analysis 

of metabolic activity, an AlamarBlue assay was performed with encapsulated cells 

before, two days and four days after heat treatment.  
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Metabolic activity of encapsulated cells kept at 37°C before starting the heat 

treatment was set to 100% (Fig. 4.16.). The results demonstrated that metabolic 

activity of cells kept at 37°C was marginally changing during a period of four days. 

Two days after the heat treatment metabolic activity of encapsulated cells kept at 

37°C was found to be decreased by 20% and then stayed stable over four days. In 

detail, the metabolic activity of encapsulated cells kept at 37°C was 83% of the initial 

activity two days after heat treatment and 81% of the initial activity four days after 

heat treatment. The metabolic activity of encapsulated cells incubated at 43°C for 1 h 

was found to be 87% two days after treatment. Then metabolic activity slightly 

decreased to 85% four days after heat treatment. The metabolic activity in 

encapsulated cells treated with 43°C for 2 h decreased to 76% of the initial activity 

two days after treatment. Then the metabolic activity increased to 98% four days after 

treatment. Analysis of metabolic activity revealed that incubation at 43°C for 3 h 

resulted in a strong decrease of metabolic activity down to 45 % two days after 

treatment. Furthermore, metabolic activity was found to be further decreased to 5 % 

of the initial metabolic activity four days after treatment (Fig. 4.16.). The decreasing 

metabolic activity was most probably due to cell death in response to the extended 

heat treatment. Thus 1 h and 2 h incubation at 43°C appeared to be well tolerated by 

encapsulated cells while 3 h incubation at this elevated temperature affected cell 

viability severely. 
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Fig. 4.16.: Effect of heat treatment on metabolic activity of encapsulated cells. 
Encapsulated cells were either kept at 37°C or incubated at 43°C for 1 h, 2 h, and 3 h. 
Metabolic activity was measured by an AlamarBlue assay before, two days and four days 
after the different treatments. Assays were performed in 96-well formats and alalysed using a 
Tecan Genios fluorometer.  

In order to further determine inducibility of gene expression in encapsulated cells in 

response to heat treatment during long-term cultivation, encapsulated cells were 

cultured for four weeks and each week subjected to heat treatment followed by 

analysis of reporter gene expression. Therefore, encapsulated cells were heat-

treated by incubation at 43°C for 1 h once a week and reporter gene expression was 

analysed by luciferase assay after 6 h of recovery also once a week. Again the 

luciferase expression level of cells kept at 37°C was set to one and hence the 

increase of luciferase expression in response to heat treatment for 1 h at 43°C is 

shown relative to this as x-fold induction.  

The level of luciferase expression in encapsulated cells was decreased with an 

increasing time of cultivation (Fig. 4.17. A). Thus luciferase expression in treated cells 

was found to be 3021-fold increased in comparison to the expression levels of cells 

kept at 37°C in the first week of cultivation. In the second week, expression levels 

had already decreased to 2419-fold. Moreover, in the third week the expression 

levels of treated cells were further decreased to 408-fold and finally only an 18-fold 

induction was obtained in the fourth week of cultivation.  
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Looking at absolute measurements it was noticed that expression levels in cells kept 

at 37°C for the time of cultivation were raised above average in the last week of the 

experiment (4.17. C). This 160-fold increase of the basic level expression is most 

probably due to a stress response of the synthetic promoter resulting from hypoxia, 

because heat shock promoters can be induced by hypoxia (Taylor, et. al, 2010). Thus 

in consequence the relative induction values of heat-treated cells at this time point 

were also diminished (Fig. 4.17., A, 28 days post encapsulation). Because of this 

finding further induction experiments were performed at the end of the first week till 

the beginning of the third week of cultivation to ensure good responsiveness of 

expression of encapsulated cells upon heat treatment.  
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Fig. 4.17.: Induction of luciferase expression during long-term cultivation. 
Encapsulated HEK293 pSGH2lucpuro C5 cells were incubated at 43°C for 1 h and luciferase 
expression was analysed after 6 h of recovery in cell lysates. Subsequently, measurement 
was performed with a luminometer (Berthold, LB9507). This experiment was performed 
during long-term cultivation of encapsulated cells for four weeks. Picture (A) shows x-fold 
induction of luciferase expression in response to heat treatment. Expression levels are given 
relative to expression levels of cells kept at 37°C. Absolute measurement values are given in 
relative luminescence values (RLU) in (B) and (C). Picture (B) shows induced expression in 
response to heat treatment. Picture (C) shows basic promoter expression of encapsulated 
cells cultivated at 37°C.  

In order to investigate the possibility of repeated induction of gene expression in 

response to heat treatment, encapsulated cells were cultured and subjected to 

elevated temperatures several times. Therefore, encapsulated HEK293 

pSGH2lucpuro C5 cells were treated by incubation at 43°C for 1 h in the first week of 

cultivation. One aliquot of capsules was taken for analysis of luciferase expression 
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and subsequently cell lysates were analysed after 6 h of recovery. In the following 

two weeks, same batch of capsules were treated equally and luciferase expression 

was analysed. Another batch of capsules was heat treated for the first time in the 

second week of cultivation and subsequently treated a second time in the third week 

of cultivation. Finally the third batch of capsules was treated by incubation at an 

elevated temperature in the third week of cultivation. The luciferase expression levels 

of cells kept at 37°C were set to one and hence the increase of luciferase expression 

in response to heat treatment for 1 h at 43°C is shown relative to this as x-fold 

induction. 

In detail, a batch of encapsulated HEK293 pSGH2lucpuro C5 cells was treated by 

elevated temperature in the first week of cultivation and analysis of luciferase 

expression revealed an induction luciferase expression of 1464-fold (Fig. 4.18. dark 

blue bars). The same batch was treated with heat and analysed with respect to 

luciferase expression in the following two weeks. Luciferase expression level 

decreased to 406-fold (Fig. 4.18. dark blue bars) in response to heat treatment for the 

second time in the second week of cultivation.  Furthermore, the luciferase 

expression level further decreased to 296-fold (Fig. 4.18. dark blue bars) in response 

to heat treatment for the third time in the third week of cultivation. Another batch of 

encapsulated cells was heat treated the first time in the second week of cultivation. 

Here, the analysis of luciferase expression level in encapsulated cells revealed an 

induction of 350-fold (Fig. 4.18. bright blue bars). Furthermore, luciferase expression 

level decreased to 152-fold (Fig. 4.16. bright blue bars) in the third week of cultivation 

in response to heat treatment for the second time. The last batch of encapsulated 

cells was subjected to elevated temperature in the third week of cultivation only. The 

expression level in response was 56-fold (Fig. 4.18. brightest blue bars) only in 

response to heat treatment for the first time in the third week of cultivation. 

In summary, it can be stated that after multiple heat shock maximal luciferase 

expression decreases with increasing time of cultivation; induction at early time 

points after encapsulation results in higher expression levels compared to induction 

of longer cultivated encapsulated cells (Fig. 4.18.). 
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Fig. 4.18.: Multiple heat treatment during long-term cultivation of encapsulated cells. 
Encapsulated HEK293 pSGH2lucpuro C5 cells were incubated at 43°C for 1 h. Luciferase 
expression was analysed after 6 h of recovery in cell lysates. Subsequently, measurement 
was performed with a luminometer (Berthold, LB9507). Encapsulated cells were repeatedly 
treated with 43°C for 1 h: either encapsulated cells were heat-treated in the first week and 
additionally in the following two weeks of cultivation (dark blue bars) or encapsulated cells 
were heat-treated in the second week and in the following week of cultivation (bright blue 
bars) or they were heat treated only once in the third week of cultivation (brightest blue bars). 

To briefly sum up, with respect to localisation of nanoparticles it was shown that S8 

nanoparticles are found in the capsules membrane, within the capsule lumen and 

moreover, can be taken up by the cell into the cytoplasm. The same was 

demonstrated for the S24 nanoparticles with the exception that these were also 

found to a certain extent in the nucleus. Furthermore, co-encapsulation of 

nanoparticles appeared to have no negative influence on cell viability. The analysis of 

reporter gene expression in encapsulated cells in response to heat treatment for up 

to 2 h revealed robust promoter activity. After heat treatment for two hours and more, 

gene expression levels were no longer increased. Heat treatment for 3 h caused 

almost a complete loss of metabolic activity within four days after heat induction most 

likely due to cell death. In addition, it could be shown that the inducibility of gene 

expression within encapsulated cells was decreased with increasing time of 

cultivation. This descent was maybe due to an increased basis level activity of the 

promoter at 37°C. Increasing time of cultivation most likely leads to hypoxic 
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conditions within the microcapsule caused by an increased cell density. This hypoxic 

stress might contribute to activation of the synthetic heat shock promoter (Taylor, et 

al., 2010). Furthermore, it could be shown that after multiple heat shock maximal 

luciferase expression decreases with increasing cultivation times and induction at 

early time points of cultivation results in higher expression levels compared to 

induction of encapsulated cells cultivated for longer periods. After this detailed 

characterisation encapsulated cells, it should now be further analysed the effects of 

magnetic field treatment with respect to cell integrity and cell viability. 

 

4.5. Effects of magnetic field treatment on cell 
integrity and cell viability of encapsulated cells 
According to the present knowledge, it is assumed that similar to tumour cells which 

are particularly sensitive to heat treatment (Jordan, A., et al., 2010), heat generation 

by means of magnetic nanoparticles exposed to an alternating magnetic field has 

also negative impact on cell integrity and cell viability of co-encapsulated HEK293 

cells.  

Here, electron microscopy was performed with encapsulated cells in order to 

investigate the effects of magnetic field treatment on cell integrity. Therefore, SCS 

microcapsules containing HEK293 pSGH2lucpuro C5 cells and co-encapsulated S8 

or S24 nanoparticles were treated for 30 min in an alternating magnetic field with 60 

kHz and 38 kA/m (Materials and Methods 3.2.6.). Samples were taken before and 

five days after magnetic field treatment, prepared for electron microscopy and 

microscopically analysed (Material and Methods 3.2.8.).  

In magnetic field-treated microcapsules containing cells and S24 nanoparticles, most 

cells were found to be structurally intact and appeared to be viable five days after the 

treatment (Fig. 4.19. B). Analysis of electronemicrographs of capsules containing 

cells and S8 nanoparticles cultured five days after magnetic field treatment revealed 

areas with disrupted cells (Fig. 4.19. D, black arrows). 
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Fig. 4.19.: Effects of magnetic field treatment on integrity of encapsulated cells. 
Encapsulated HEK293 pSGH2lucpuro C5 cells with S8 or S24 nanoparticles were exposed 
to a magnetic field with 38 kA/m and 60 kHz. Electron microscopic investigation of cell 
integrity was performed before and five days after magnetic field treatment using a EM900 
transmission electron microscope (Zeiss). Picture A and B show electronmicrographs of 
encapsulated HEK293 pSGH2lucpuro C5 cells co-encapsulated with S8 nanoparticles. 
Picture C and D show electronmicrographs of encapsulated HEK293 pSGH2lucpuro C5 cells 
co-encapsulated with S24 nanoparticles.  Pictures A and C show images before magnetic 
field treatment and pictures B and D show images five days after the treatment 
(magnification 3000-fold); (N = nucleus, M = mitchondrium, arrows = disrupted cells). 

In order to further investigate effects of magnetic field treatment on nuclear integrity 

and cell viability, HEK293 cells co-encapsulated with nanoparticles were 
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histochemically analysed. Therefore, encapsulated HEK293 pSGH2lucpuro C5 cells 

with co-encapsulated S8 or S24 nanoparticles were treated by applying an 

alternating magnetic field with 60 kHz and 38 kA/m for 30 min. Samples were taken 

before magnetic field treatment and two days, five days and eight days after 

magnetic field treatment. Subsequently, samples were fixed with 2% formalin, 

embedded in paraffin and prepared for haematoxylin/eosin staining (Material and 

Methods 3.2.9).   
Analysis revealed only few aberrant nuclei (Fig. 4.20. black arrows). No increase of 

aberrant nuclei of magnetic field-treated HEK293 pSGH2lucpuro C5 cells co-

encapsulated with S8 (Fig. 4.20. A – D) or S24 nanoparticles (Fig. 4.20. E – H) could 

be detected compared to also magnetic field-treated encapsulated cell lacking the 

nanoparticles (Fig. 4.20. I – L). In samples with co-encapsulated S24 nanoparticles 

brownish aggregates of nanoparticles are visible (Fig. 4.20, G and H, red arrows). 

 

 
Fig. 4.20.: Effects of magnetic field treatment on nuclear integrity and cell viability. 
Histochemical analysis of encapsulated HEK293 pSGH2lucpuro C5 cells without (I – L) and 
with co-encapsulated S8 (A – D) and S24 (E – H) nanoparticles. Samples were taken before, 
two days, five days and eight days after incubation in an alternating magnetic field (38kA/m, 
60 kHz, 30 min). Microscopic analysis was performed by 400-fold magnification with Axiovert 
200M (Zeiss); (black arrows = aberrant nuclei, red arrows = nanoparticle agglomerations, 
scale bar 25 µm).  
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In order to further investigate viability of encapsulated cells in response to magnetic 

field treatment, levels of apoptotic cell death were determined. Heat is generated by 

applying an alternating magnetic field to capsules containing HEK293 cells and co-

encapsulated nanoparticles. At 42°C – 45°C apoptosis occurs (Dyson et al. 1986, 

Barry et al. 1990) and at temperatures above 45°C cells die by necrosis (Harmo et al. 

1990). As recently published, apoptosis in response to heat treatment results from 

two mechanisms: either a fast process in which activation of MAP-kinases is 

involved, or a slow process in which the accumulation of aggregated proteins is 

involved (Bellmann, et al., 2010). In this study, HEK293 cells were heat-treated by 

incubation at an elevated temperature of 44°C for 120 min resulting in characteristic 

deformation (crumbled and crenated) nuclei indicating cytotoxic protein aggregation 

(Bellmann, et al., 2010).   

Both pathways result in the activation of effector caspases as a late event in 

apoptosis. In the presented work, activation of the caspase 3 was investigated in 

response to magnetic field treatment. Therefore, to analyse effects on magnetic field-

treated cells, encapsulated cells with and without nanoparticles were subjected to an 

alternating magnetic field with 38 kA/m and 60 kHz for 30 min. Magnetic field-treated 

encapsulated cells were fixed by incubation in formalin and embedded in paraffin 

before, two days, five days and eight days after magnetic field treatment. Finally, 

sections of 3 µm were prepared and immunohistochenmically stained for activated 

caspase 3 using a specific monoclonal antibody. Staining was microscopically 

analysed, and the total number of cells as well as the number of caspase 3 positive 

cells was determined in three different regions of 3 µm sections (20000 µm2). 

Subsequently, the percentage of apoptotic cells was the calculated relative to total 

cell numbers. 

In encapsulated HEK293 pSGH2lucpuro C5 cells lacking nanoparticles, 20.1% of 

cells were found to be positive for activated caspase 3 before treatment, 22.6% two 

days after treatment, 24.7% five days after treatment and 30.1 % eight days after 

treatment (Fig. 4.21 A, black bars). In encapsulated HEK293 pSGH2lucpuro C5 cells 

with S8 nanoparticles, 18.9% of cells were found to be positive for activated caspase 

3 already before magnetic field treatment. Two days after magnetic field treatment, 

19.1% of cells were shown to be apoptotic, five days after treatment 23.8% were 
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apoptotic and eight days after treatment 25.7% of cells were apoptotic (Fig. 4.21 A, 

gray bars). In capsules containing HEK293 pSGH2lucpuro C5 cells and S24 

nanoparticles, 22.2% of cells were positive for activated caspase 3 before magnetic 

field treatment, 32.3 % of cells were positive for caspase 3 two days after treatment 

and 27.6% and 34% were shown to be apoptotic five days and eight days after 

magnetic field treatment (Fig. 4.21. A, dark grey bars). 

In summary, more and more cells became apoptotic with increasing time of 

cultivation. Regarding the magnetic field treatment, only the difference between 

encapsulated cells lacking nanoparticles and encapsulated cells with S24 

nanoparticles two days after treatment was statistically significant (Student`s T-test 

with p ≤ 0.05 Fig. 4.19 A). 

In figure 4.21. B – G photographs of the analysed samples stained for caspase 3 are 

given. Encapsulated HEK293 pSGH2lucpuro C5 cells stained for caspase 3 showed 

only a slight increase in cells positive for activated caspase 3 comparing staining 

before magnetic field treatment (brown cells, Fig. 4.21. B) and staining two days after 

treatment (brown cells, Fig. 4.21. C). Cells co-encapsulated with S8 nanoparticles 

showed no increase of brown cells stained for activated caspase 3 when comparing 

samples taken before magnetic field treatment (Fig. 4.21. D) and samples taken two 

days after magnetic field treatment (Fig. 4.21. E). Encapsulated cells containing S24 

nanoparticles were found to be increasingly stained for activated caspase 3 

comparing the status before magnetic field treatment (brown cells, Fig. 4.21. F) and 

the status two days after magnetic field-treatment (Fig. 4.21. G).  
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Fig. 4.21.: Apoptosis of encapsulated cells in response to magnetic field treatment. 
Apoptosis was determined in sections prepared from SCS capsules containing HEK293 
pSGH2lucpuro C5 cells co-encapsulated with S8 or S24 nanoparticles by immunohistological 
staining of activated caspase 3. Capsules containing cells only were used as a control. 
Samples were prepared before, two days, five days and eight days after their incubation in 
an alternating magnetic field with 38 kA/m and 60 kHz for 30 min. Stained cells were counted 
and percentage of apoptotic cells was calculated relative to total cell number. (A) Analysed 
percentages of apoptotic cells are depicted. (B and C) Stained for activated caspase 3 and 
microscopically analysed samples of encapsulated cells lacking nanoparticles before and two 
days after magnetic field treatment are given. Samples of cells co-encapsulated with S8 (D 
and E)  or S24 nanoparticles (F and G) and stained for caspase 3 from day zero and two 
days after magnetic field treatment are shown.   

In addition to determining the level of apoptosis by immunohistological staining of 

caspase 3, sections were analysed for the presence of fragmented DNA which is also 

an indication of late-stage apoptosis.  

Encapsulated HEK293 pSGH2lucpuro C5 cells with and without S8 or S24 

nanoparticles were subjected to a magnetic field with 38 kA/m and 60 kHz for 30 min 

(Fig. 4.22. A1 – L2). Then encapsulated cells were fixed with formalin before 

treatment, two days, five days and eight days after magnetic field treatment. 

Subsequently, encapsulated cells were embedded in paraffin and sectioned. Finally, 

TUNEL assay was performed (Materials and Methods 3.2.9.3.). 

The TUNEL assay revealed some sporadic appearing nuclei positive for fragmented 

DNA (Fig. 4.22.). With the exception of the DNaseI treated positive control (Fig. 4.20. 

M2) a very low number of nuclei were stained for fragmented DNA was found in other 
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samples (Fig. 4.22. A2 – L2) The control, which was stained omitting digoxygenin-

labelled dNTPs did not show any unspecific reactions (Fig. 4.22. N2). All pictures 

were taken with the same exposure time (2 sec) using a fluorescence microscope. 

This experiment may suffer from limitations of sensitivity of the performed TUNEL 

assay. Resulting from the low sensitivity of this assay, the number of nuclei positive 

for fragmented DNA could not be quantified.   

After the investigation of the effects of magnetic field treatment on cell integrity and 

cell viability of encapsulated cells, the regulation of reporter gene expression in 

encapsulated cells in vitro by means of magnetic field and heat treatment should be 

analysed. 
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Fig. 4.22.: Apoptosis in response to magnetic field treatment in encapsulated cells. 
Encapsulated HEK293 pSGH2lucpuro C5 cells with and without S24 and S8 nanoparticles 
were treated by incubation in an alternating magnetic field with 38 kA/m and 60 kHz for 30 
min. Encapsulated cells with and without nanoparticles were fixed at day zero (A, E and I), 
day two (B, F and J), day five (C, G and K) and day eight (D, H and L) post magnetic field 
treatment. (A1 – D2) Co-encapsulated cells and S8 nanoparticles are depicted. (E1 – H2) 
Capsules carrying cells and S24 nanoparticles. (I1 – L2) Encapsulated cells without 
nanoparticles. (M1 and M2) Encapsulated cells DNaseI-treated as a positive control for 
fragmented DNA. (N1 and N2) Encapsulated cells stained omitting digoxygenin-labelled 
dNTPs as a negative control for background reactions. Microscopic analysis was performed 
with the fluorescence microscope Axiovert, 200M (Zeiss). 
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4.6. Magnetic field-induced nanoparticle-mediated 
gene expression in encapsulated cells 
In order to proof the concept of this project – to proof the possibility of regulation of 

reporter gene expression by nanoparticle-mediated, magnetic field-directed heat 

induction – capsules containing genetically modified cells and respective magnetic 

nanoparticles were exposed to an alternating magnetic field. 

For proof-of-principle experiments S8 nanoparticles were chosen only because they 

revealed the higher temperature increase in an alternating magnetic field compared 

to S24 nanoparticles (Fig. 4.3.). S8 nanoparticles appeared to exhibit a better 

biocompatibility as compared to S24 nanoparticles (Fig. 4.13). Additionally, they 

appeared to affect cell viability to a lower extent when subjected to an alternating 

magnetic field as compared to S24 nanoparticles (Fig. 4.21.). 

Induction of luciferase expression in encapsulated HEK293 pSGH2lucpuro C5 cells 

in response to magnetic field treatment, i.e. 38 kA/m, 60 kHz and/or in response to 

heat treatment, i.e. incubation at 43°C, was analysed by luciferase assays.  

Four independent experiments were performed with SCS microcapsules containing 

HEK293 cells which harboured the heat-inducible expression construct (HEK293 

pSGH2lucpuro C5) either alone, or co-encapsulated with S8 nanoparticles (0.5 % 

w/w). As a control, HEK293 cells constitutively expressing luciferase were also 

analysed. The capsules were treated in three different ways: exposure to an 

alternating magnetic field with 38 kA/m, 60 kHz for 30 min or heat treatment by 

incubation at 43°C for 45 min or incubation at 37°C. 

The increase of reporter gene expression in response to the different treatments was 

determined relative to the expression level of cells kept at 37°C. Therefore, 

expression of cells kept at 37°C was set to one and all other expression levels were 

given relative to this (Fig. 4.23.). Heat treatment resulted in a robust induction of 

luciferase expression in encapsulated cells, in the absence as well as in the presence 

of co-encapsulated nanoparticles (Fig. 4.23. dark blue bars). By contrast, the 

magnetic field treatment led to a strong induction of luciferase expression only when 

cells had been co-encapsulated with S8 nanoparticles (Fig. 4.23. red bars). In detail, 

incubation of encapsulated cells at 43°C for 45 min resulted in a 4539-fold increase 
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of luciferase expression in cells co-encapsulated with S8 nanoparticles and in a 

4577-fold increase in cells encapsulated without nanoparticles. This finding 

demonstrated a robust heat inducibility of luciferase expression in the encapsulated 

cells. Application of an alternating magnetic field resulted in a 1758-fold increase in 

cells co-encapsulated with S8 nanoparticles. While, magnetic field treatment of 

encapsulated cells without nanoparticles only resulted in a 26-fold induction. This 

difference in the gene expression levels in encapsulated cells with and without S8 

nanoparticles is highly significant (p-value of 0.029, Mann-Whitney-Test). In contrast, 

constitutive luciferase expression of HEK293 pCMVluc cells was not influenced, 

neither by magnetic field induction nor by incubation at 43°C (Fig. 4.23.). 

 

 

Fig. 4.23.: Magnetic field-directed, nanoparticle-mediated, thermoregulation of 
luciferase expression in encapsulated cells. 
Encapsulated HEK293 pSGH2lucpuro C5 cells +/- S8 nanoparticles and HEK293 pCMVluc 
cells were either exposed to an alternating magnetic field with 38 kA/m and 60 kHz or 
incubated in a cell culture incubator at 43°C for 45 min or kept at 37°C. All luciferase 
expression values are given relative to the expression levels of cells kept at 37°C. 

These data provided evidence that luciferase expression driven by the artificial heat 

shock promoter can be regulated by nanoparticle-mediated, magnetic field-directed 

heat induction within encapsulated cells. As previously mentioned, the used artificial 
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promoter is bidirectional and regulates the expression of two reporter genes. Here 

the regulation of the second reporter gene GFP should be investigated using an 

alternating magnetic field. Therefore, also induction of expression of GFP in 

encapsulated cells in response to magnetic field and/or heat treatment was 

determined by quantitative FACS analysis.  

Again, capsules containing HEK293 pSGH2lucpuro C5 cells either alone or with co-

encapsulated S8 nanoparticles (0.5 % w/w) were used in this experiment. As 

controls, encapsulated HEK293 pCMVluc cells constitutively expressing luciferase 

and encapsulated HEK293 pCMVegfp cells constitutively expressing EGFP were 

also analysed by FACS. As described before, the capsules were treated in three 

different ways: magnetic field treatment with 38 kA/m 60 kHz for 30 min or heat 

treatment at 43°C for 45 min or incubation at 37°C. For FACS analysis the cells were 

released from the microcapsules (Materials and Methods 3.2.7.2.). 

As shown in figure 4.24., strong GFP expression was detected in cells released from 

capsules that had been incubated at 43°C for 45 min in comparison to cells kept at 

37°C.  Here, only little differences were observed when capsules containing cells and 

nanoparticles (17.69% GFP positive cells, table 4.2.) were compared to capsules 

harbouring cells only (17% GFP positive cells, table 4.2). In contrast, magnetic field 

treatment resulted in a high percentage of GFP positive cells (37.12% GFP positive 

cells, table 4.2.) in capsules containing cells and nanoparticles while encapsulated 

cells lacking nanoparticles revealed only a very low number of GFP expressing cells 

(0.40% GFP expressing cells, table 4.2.). Hence, capsules with nanoparticles 

showed a high expression of GFP in response to magnetic field treatment in contrast 

to capsules lacking nanoparticles. A high percentage of EGFP expressing cells 

(99.29% EGFP positive cells, table 4.2.) was detected in the positive control which 

consisted of constitutively EGFP expressing HEK293 cells. In contrast, no fluorescent 

(Table 4.2.) cells were detected in the negative control consisting of cells 

constitutively expressing luciferase. 
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Fig. 4.24.: Magnetic field-directed, nanoparticle-mediated, thermoregulation of GFP 
expression in encapsulated cells. 
Encapsulated cells were either incubated in an alternating magnetic field with 38 kA/m, 60 
kHz for 30 min or incubated in a cell culture incubator at 43°C for 45 min or kept at 37°C. As 
controls were used encapsulated cells constitutively expressing EGFP and luciferase. 
Flowcytometry was performed using FACScalibure BD. 

In table 4.2. raw data of the FACS analysis (percentage positive cells and mean 

fluorescence intensity (MFI)) is given. Expression levels were calculated by MFI 

multiplied with the percentage of positive cells. X-fold induction values are relative; 

the expression levels of cells kept at 37°C were set to one as a reference. Analysing 

induction levels differences were observed when capsules containing cells and 

nanoparticles (332-fold, table 4.2.) were compared to capsules harbouring cells only 

(956-fold, table 4.2). Magnetic field treatment resulted in high expression levels of 

GFP (805-fold, table 4.2.) in capsules containing cells and nanoparticles while 

encapsulated cells lacking nanoparticles revealed only a very low expression level of 

GFP (13-fold, table 4.2.). 
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Tab. 4.2: Magnetic field-directed, nanoparticle-mediated thermoregulation of GFP 
expression in encapsulated cells. (1) 

(1) Encapsulated cells +/- S8 nanoparticles were either incubated in an alternating magnetic 
field (AMF) with 38 kA/m and 60 kHz or incubated in a cell culture incubator at 43°C for 45 
min or kept at 37°C. As controls, encapsulated HEK293 pCMVluc cells constitutively 
expressing luciferase and encapsulated HEK293 pCMVegfp cells constitutively, expressing 
EGFP were also analysed. FACS analysis performed with FACScalibur BD. (MFI = mean 
fluorescence intensity) 

In summary, these data suggest that reporter gene – luciferase as well as GFP – 

expression in encapsulated cells can be switched on by nanoparticle-mediated heat 

induction using an alternating magnetic field. In an application of this concept the de 

novo production of a therapeutic protein can be switched on in encapsulated cells by 

the use of co-encapsulated nanoparticles and by applying of an alternating magnetic 

field. In the next chapter the potential application for an in vivo use was investigated 

by implanting encapsulated cells in the hind limb of mice. 

 

 

Cells 
 

treatment 
 

 number 
of positive 

cells [%] 

MFI 

MFI x 
number of 

positive 
cells [%] 

x-fold 
induction 

 
HEK292 pSGH2lucpruro C5 capsules 

37°C 0.15 67.51 10 1 

 
HEK292 pSGH2lucpruro C5 capsules 

38 kA/m, 
60 kHz 

0.40 318.07 127 13 

 
HEK292 pSGH2lucpruro C5 capsules 

43°C 17.00 569.36 9679 956 

HEK292 pSGH2lucpruro C5 + S8 
capsules 

37°C 0.27 72.01 19 1 

HEK292 pSGH2lucpruro C5 + S8 
capsules 

38 kA/m, 
60 kHz 

37.12 421.61 15650 805 

HEK292 pSGH2lucpruro C5 + S8 
capsules 

43°C 17.69 365.37 6463 332 

 
HEK293 pCMVegfp 

37°C 99.29 2359.54 234279 - 

 
HEK293 pCMVluc 

37°C 0.00 0.00 0 - 
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4.7. Heat inducible expression in encapsulated cells 
in vivo 
After the described proof-of-principle of the proposed concept in vitro, inducibility of 

the reporter gene expression in vivo should be investigated by means of heat 

treatment of encapsulated cells implanted into mice. Aim of the experiment was to 

demonstrate luciferase as well as GFP expression in encapsulated cells implanted 

into the hind limb of mice in response to magnetic field treatment or in response to an 

increase in temperature.  

In the in vivo experiment Hsd. athymic Nude-Foxn1nu mice were used. 20 

microcapsules of HEK293 pSGH2lucpuro C5 co-encapsulated with S8 nanoparticles 

(0.5% w/w) were implanted into the left hind limb. Mice were either subjected to a 

magnetic field with 38 kA/m and 60 kHz for 30 min or heat-treated by placing the leg 

on a 43°C warm heating plate for 15 min. For magnetic field treatment the left hind 

limb was placed within the coil whereas the remaining body was outside. For the 

induction experiments the mice were narcotised as described in Materials and 

Methods 3.2.10.2. Luciferase expression was measured 6 h after treatment and GFP 

expression was measured 24 h after treatment again by narcotising mice. Luciferase 

and GFP expression was visualised using a bio-imaging system IVIS 50 from 

Xenogen. For luciferase measurement 240 mg/kg D-Luciferin potassium salt was 

injected i.p. 15 min before anaesthesia and measurement. The luciferase 

measurement was performed by applying an integration time of 3 min. Fluorescence 

as a result of GFP expression was also measured. The induction experiments were 

performed once a week (Material and Methods 3.2.10.3). 

Measured luminescence values are given in table 4.3. Image data analysis was 

performed with LivingImage (Igor Pro 4.09A) software. Values were acquired by 

measuring a standardised region of interest.  Subsequently, normalised 

luminescence values were calculated by subtracting background luminescence 

values of a non-treated mouse (Table 4.3.). Moreover, relative expression levels in x-

fold induction of expression were calculated by dividing measured luminescence 

values obtained from a heat-treated mouse by measured luminescence values of a 

non-treated mouse (Table 4.3.).  
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The experiment revealed luciferase expression in response to heat treatment in two 

out of six mice. In these two mice luciferase expression was inducible once a week 

over a period of three weeks (Fig. 4.25.). In detail, the mouse E10 which had been 

exposed to 43°C for 15 min, revealed an expression level of 3.05E+05 photons/sec 

indicating heat-induced luciferase expression of implanted encapsulated cells in the 

first week of investigation. One week later, the implanted and again heat-treated 

encapsulated cells of this mouse resulted in an increase in the emitted luminescence 

to 5.41E+05 photons/sec. Another week later, the luminescence of implanted 

encapsulated cells in the mouse E10 was decreased to 3.08E+05 photons/sec (Fig. 

4.25. A and Table 4.3.). In the mouse C3 which had also been treated with 43°C for 

15 min, the implanted encapsulated cells emitted 7.37E+04 photons/sec indicating 

luciferase expression in response to heat treatment in the first week. In the second 

week of investigation, the luminescence of implanted heat-treated encapsulated cells 

was increased to 1.46E+05 photons/sec. The luminescence of the implanted and 

heat-treated encapsulated cells was further increased to 6.77E+05 photons/sec in 

the third week of investigation (Fig. 4.25. B and Table 4.3.). 

Tab. 4.3.: In vivo thermoregulation of luciferase expression in encapsulated cells 
implanted into mice. (1) 

mouse 
(id no.) 

week treatment Measured 
photons/sec 

normalized 
photons/sec 

x-fold 
induction 

E10 male 1 43°C 15 min 3.78E+05 3.05E+05 5.2 
E10 male 2 43°C 15 min 6.34E+05 5.41E+05 6.8 
E10 male 3 43°C 15 min 3.74E+05 3.08+E05 5.6 
C3 female 1 43°C 15 min 1.47E+05 7.37E+04 2.0 
C3 female 2 43°C 15 min 2.39E+05 1.46+E05 2.5 
C3 female 3 43°C 15 min 7.44E+05 6.77+E05 11.2 
C5 male 1 non treated 7.33E+04 0 1 
C5 male 2 non treated 9.31E+04 0 1 
C5 male 3 non treated 6.62E+04 0 1 

(1) Left hind limb with implanted encapsulated cells was treated with 43°C for 15 min on a 
heating plate. Luminescence data was acquired by bio-imaging system IVIS50 (Xenogen).   

Thus heat-inducible luciferase expression in encapsulated cells could be 

demonstrated in vivo. However, no GFP expression could be detected because of 

the lower sensitivity of the fluorescence measurement. Moreover, no reporter gene 

expression could be induced by applying an alternating magnetic field. This may 
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result from to fast temperature exchange with the surrounding tissue in contrast to 

the situation set for the in vitro proof-of-principle.  

Nevertheless, in summary these data provided evidence that the reporter gene 

expression in encapsulated cells can be switched on by heat in vivo. All in vivo 

experiments were performed according to the regulations of the Austrian law 

governing animal experimentation (Animal experiment application at the Austrian 

Ministry for Science and Research BMWF-68.205/0213-II/10b/2009). 

 

 

Fig. 4.25.: In vivo imaging of luciferase expression in implanted encapsulated cells. 
20 capsules containing HEK293 pSGH2lucpuro C5 cells and S8 nanoparticles were 
implanted into the left hind limb of Hsd. athymic Nude-Foxn1nu mice. Magnetic field treatment 
was performed with 38 kA/m and 60 kHz for 30 min and heat treatment was performed by 
placing the limb on a heating plate at 43°C for 15 min. Luciferase expression was measured 
6 h after recovery. Using an IVIS 50 (Xenogen) bio-imaging device, measurement of 
luciferase expression was performed once a week during a period of three weeks. Pictures in 
A and B show bio-imaging results of luciferase expression in response to heat treatment in 
two mice. Pictures in C show one of the untreated control mice. 

 untreated control 

heat-treated 15 min 43°C 

A B 

C 
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4.8. Summary of the results 
In this project genetically modified HEK293 pSGH2lucpuro C5 cells were 

characterised regarding inducibility of expression in response to heat. Expression 

analysis of heat-treated cells revealed robust induction of luciferase as well as EGFP 

expression. 
Furthermore, a set of different nanoparticles was characterised with respect to 

parameters relevant in this project: their heat generation capacity in an alternating 

magnetic field and their ability to be encapsulated. According to these criteria, S8 and 

S24 nanoparticles were selected for further experiments.  

Microcapsules generated by co-encapsulation of cells and S8 or S24 nanoparticles 

were analysed with respect to important physical capsule parameters such as size, 

diffusion properties and membrane thickness. The different SCS concentrations 

applied for co-encapsulation of cells and nanoparticles had no influence on the 

capsule diameters, capsule diffusion properties and membrane thickness, three 

characteristics important for viability of encapsulated cells.  

Furthermore, biological characteristics of encapsulated cells were analysed. 

Nanoparticle localisation with respect to encapsulated cells was investigated, taking 

the original use of the nanoparticles into considerations, which have been designed 

for magnetotransfection. Electron microscopic analysis revealed that nanoparticles 

were taken up by cells into the cytoplasm (S8 and S24 nanoparticles) and also to a 

certain extent into the nucleus (S24 nanoparticles). Encapsulated cells were further 

characterised regarding biocompatibility of nanoparticle formulations as well as heat 

inducibility. Analysis of biocompatibility revealed acceptable tolerability of 

nanoparticles. Viability of encapsulated cells is most likely more influenced by growth 

conditions within capsules. Proliferation of encapsulated cells was not affected by the 

presence of nanoparticles. However, metabolic activity of encapsulated cells was 

diminished by the presence of S24 nanoparticles during long-term cultivation. 

Investigation of heat inducibility of reporter gene expression in encapsulated cells 

revealed continuous inducibility for four weeks of cultivation as well as the possibility 

of multiple induction of expression during three weeks of cultivation. The survival of 

encapsulated cells after magnetic field treatment was investigated. The analysis 
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revealed that apoptosis in response to magnetic field treatment was transiently 

increased two days after treatment only in samples harbouring S24 nanoparticles. 

Analysis of necrosis in response to magnetic field treatment showed no increase of 

aberrant nuclei in capsules containing nanoparticles. Proof-of-principle for the 

proposed novel cell therapy concept could be provided in vitro by magnetic field-

directed, nanoparticle-mediated heat induction of reporter gene expression in 

encapsulated cells. Additionally, preliminary in vivo experiments confirmed repeated 

heat-inducible expression of encapsulated cells implanted into mice, a relevant result 

for future therapeutic approaches. 
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5. DISCUSSION 

Many acquired and inherited human diseases are mediated by absence or 

deregulation of gene products. Cell therapy offers a simple replacement strategy for 

the respective gene products. For the treatment of most diseases however, regulated 

gene expression is needed. Here, externally controlled expression levels of 

therapeutic genes would be of advantage. 

The aim of the presented study was to develop a novel cell therapy concept in which 

gene expression of encapsulated cells should be thermo-regulated by means of co-

encapsulated nanoparticles generating heat in response to an external induction, i.e. 

an alternating magnetic field. This concept should be evaluated in vitro as well as in 

vivo.   

This interdisciplinary study targets aspects of molecular biology, biotechnology and 

nanotechnology. To realise the proposed concept, the different components used 

needed to be characterised with respect to their applicability. The main components 

were:  

• genetically modified cells, 

• nanoparticles, 

• encapsulation technology, 

• inducibility of gene expression and 

• magnetic field generation. 

By characterising and further combining these components, a novel cell therapeutic 

concept can be realised enabling a cell-based therapy with spatial and temporal 

regulateable gene expression, facilitating treatment of diseases in which the amount 

and time point of expression of a therapeutic substance is critical. In the following 

section the different components and their combination will be discussed with regard 

to a potential future cell therapy approach.  

. 
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Genetically modified cells 
A heat-inducible synthetic and bidirectional promoter which had been developed 

based on the human HSP70 promoter by Bajoghli and colleagues in 2004 (Bajoghli, 

et al., 2004) was initially used in order to regulate gene expression during fish 

development. 

In the presented study, this bidirectional promoter was inserted between two reporter 

genes, GFP and luciferase, facilitating distinct analysis of gene expression. This 

construct (pSGH2lucpuro) was transfected into HEK293 cells and a stable cell clone 

was selected.  

The expression levels of luciferase and GFP in response to heat treatment were 

analysed in the cultured cell clone. Measurement of expression revealed a robust 

induction of reporter gene expression (Fig. 4.1. A). Moreover, induced luciferase 

expression levels were increased in correlation with the heat treatment. Quantitative 

FACS analysis of GFP positive cells also showed induction of the respective reporter 

gene in response to elevated temperatures (Fig. 4.1. B). Here the expression levels 

were increased from 1 h to 2 h of heat treatment and then the expression level was 

decreased in response to heat treatment for 3 h most likely due to cell death 24 h 

after induction as shown for encapsulated cells in Fig. 4.16. that heat treatment of 3 h 

decreases viability. 

In summary it can be stated that two different genes regulated from the same 

bidirectional promoter can differ in their expression kinetics because of different 

transcription and translation efficacy due to different processing, stability and 

degradation. The luciferase protein is less stable whereas the GFP protein is more 

stable and hence accumulates. 

The synthetic bidirectional promoter applied here can be used for a spatial and 

temporal regulation of potential therapeutic genes to accomplish a novel cell-based 

therapy concept: magnetic field-directed, nanoparticle-mediated thermoregulation of 

gene expression within encapsulated cells. This will be evaluated by means of 

reporter genes in vitro as well in vivo to provide evidence for a potential future cell-

based therapy approach. 
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Nanoparticles 
In order to generate heat within microcapsules by applying an alternating magnetic 

field, a set of 13 magnetite-based nanoparticles was evaluated in this study. These 

particles were analysed with respect to their heat generation capacity in an 

alternating magnetic field. According to these results (Fig. 4.3), two ferromagnetic 

particles and one superparamagnetic particle were selected for further investigations. 

S8 nanoparticles with a diameter of 74.1 nm and Sigma nanoparticles with a 

diameter of 30 nm were ferromagnetic and S24 nanoparticles with a diameter of 12 

nm were superparamagnetic. The calculated size of a single domain magnetite 

particle is 18.7 nm (Atsumi, et al, 2007). Heat is generated by both ferromagnetic and 

superparamagnetic particles in an alternating magnetic field, even though the 

physical mechanisms of heat generation are different. It has been reported that the 

hysteresis loss-induced heating depends on the larger magnetic multi-domain 

(ferromagnetic) particles while smaller (superparamagnetic) particles consisting of a 

single domain structure are inducing heat by relaxation loss (Mornet, et al., 2004). 

In figure 5.1. temperature increase of the applied set of nanoparticles subjected to an 

alternating magnetic field is depicted in correlation to their core diameter. According 

to these results particles with a core size of 50 nm would provide the maximum heat 

generation capacities. This is in accordance with the results of Ma and colleagues 

showing that the specific absorption rate (SAR) is highest in particles around 50 nm 

(Ma, et al., 2004). However, to predict the heat generation capacity of a nanoparticle 

formulation in an alternating magnetic field, also the specific surface area (SSA) of 

the particle has to be taken into account (Motoyama, et al., 2008). 

In dispersions of 1% the S8 nanoparticles exhibited a temperature increase of 

27.8°C, the S24 nanoparticles showed a temperature increase of 23°C and the 

nanoparticles from Sigma yielded a temperature increase of 28.4°C. In matters of 

their application in this concept all selected particles were sufficient to cause an 

absolute temperature increase above 43°C and therefore met requirements for heat-

induced gene expression within the generated genetically modified cells. 
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Fig. 5.1.: Heat generation capacity of a set of nanoparticles with different core sizes. 
Nanoparticle dispersions (1% w/w) in PBS were subjected to an alternating magnetic field 
with 38 kA/m and 60 kHz for 30 min and temperature increases were determined. 

 

Encapsulation technology 
By employing described HEK293 pSGH2lucpuro C5 cells and selected nanoparticle 

formulations, co-encapsulation was developed. Therefore, the three selected 

nanoparticles were analysed with respect to their aggregation tendency. The particles 

from Sigma could not be encapsulated even at low concentrations because of their 

high aggregation tendency. They formed particle-clusters up to 100 µm in size (Fig. 

4.4). Subsequently they blocked the nozzle of the used encapsulation device. In 

contrast to this, coated S8 and S24 particles could be encapsulated in concentrations 

up to 0.5% (w/w). The co-encapsulation of S8 and S24 nanoparticles and cells was 

successfully established by modifying already existing encapsulation parameters 

previously established in our laboratory (Hauser, et al., 2004). Due to higher viscosity 

of nanoparticles in SCS, encapsulation parameters were adjusted to 1.6 % SCS 

instead of 1.8 % SCS. This modification of encapsulation parameters for the co-

encapsulation of cells and nanoparticles had no impact on capsule diameter, capsule 

membrane diffusion properties, and membrane thickness of the capsules (Chapter 

4.3.1. Fig. 4.6 – Fig. 4.9.). 
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These parameters are particularly important for the potential biological application of 

such a cell-based therapy system. In implanted encapsulated cells therapeutic 

peptides and proteins are produced de novo at the site of therapeutic relevance 

without the rejection of cells by the host´s immune system. The capsule diameter is 

important since it determines the space cells can occupy within the microcapsule and 

it hence defines the biological power of implanted capsules. The addition of cells and 

nanoparticles resulted in higher viscosity of the SCS/cell/nanoparticle mixtures. 

Hence SCS concentration was reduced for the co-encapsulation of cells and 

nanoparticles. This in turn resulted in equal diameters of capsules of containing cells 

and nanoparticles compared to standard 1.8 % SCS 700 µm capsules lacking 

nanoparticles. The standard capsules have been previously shown to be effective for 

the treatment of xenograft tumours in the mouse model (Löhr, et al., 2001). In this 

therapy concept cytochrom P450 derived from encapsulated genetically modified 

cells converts Ifosfamide into a cytotoxic drug. The cytotoxic drug is reaching the 

tumour by diffusion via the capsule membrane. Here, the pore size of the hydrogel 

membrane is a critical parameter. It determines the diffusion of the therapeutic 

substance, the exclusion of the detrimental influx of host immune cells, and free 

diffusion of nutrients as well as export of metabolic waste. In alginate-based 

hydrogels the pore size of capsule membranes can vary over a huge range between 

5 to 200 nm (Schmidt, et al., 2008). However, using SCS capsules we determined 

the molecular cut-off limit between 70 kDa and 250 kDa equating a pore size of 11 to 

45 nm. No differences in FITC-dextran diffusion could be detected in the different 

capsules manufactured with different percentages of SCS as well as with and without 

S8 and S24 nanoparticles. This result indicates that therapeutic peptides and 

proteins as well as nutrients with a molecular weight up to 70 kDa can pass the 

membrane, whereas larger molecules such as antibodies (e.g. IgG = 150 kDa) might 

be excluded from entering the capsule. In order to define more precisely the upper 

limit of exclusion a better resolution would be needed.  

Moreover, the membrane thickness was demonstrated to be 35 µm irrespective of 

the SCS concentration and the co-encapsulation of S8 or S24 nanoparticles, 

meaning that diffusion speed also appears to be equally effective. 
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In general, the requirements microcapsule technology (reviewed in Rabanel, et al., 

2009) has to meet are:  

• material biocompatibility: material should be totally biocompatible, not 

influencing homeostasis of encapsulated cells and of surrounding tissue and 

not causing an immune response of the host; 

• mechanical stability: microcapsules should resist physical and osmotic stress;  

• microcapsule permeability: microcapsules should have a defined permeability 

in terms of entry and exit of molecules; 

• microcapsule membrane size: the thinner the membrane is, the faster the 

nutrients and waste can diffuse; 

• a gentle encapsulation technique: aqueous medium without no reactive 

components or organic solvents should be used; 

• durable microcapsules material: material degradation should be avoided to 

enable long-term in vivo use; 

Considered requirements were achieved by reproducible microencapsulation 

technology using biologically inert SCS as demonstrated by a successful utilisation in 

a phase I/II clinical trial in 2000 (Vienna, Austria) for the treatment of inoperable 

pancreatic cancer (reviewed by Salmons, et al., 2010). In the clinical trial 14 patients 

which suffered from pancreatic cancer were treated (Löhr, et al., 2001, Löhr, et al., 

2003). The findings of this study (reviewed by Salmons, et al., 2010) were that the 

application of the encapsulated cells by an angiographic route was safe, that the 

encapsulated cells were well tolerated and no evidence for inflammatory or immune 

reactions could be found. No major toxicities were associated with the low dose of 

ifosfamide that was used (Löhr, et al., 2001, Löhr et al., 2003). The benefit of this 

clinical trial (reviewed by Salmons, et al., 2010) was that quality of life was improved 

for most patients. Tumour reduction was seen in four patients and ten patients 

showed stable disease. Overall a 100 % improvement of the median survival time 

was found compared to the control group and 1 year survival rates were shown to be 

two times higher as documented for the treatment with the gold standard, 

gemcitabine (Löhr, et al., 2001, Löhr et al., 2003). 
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Further, the biological characterisation of the here used encapsulated cells should be 

discussed. The above described parameters – capsule diameter, membrane 

thickness and molecular cut-off limit of the capsule membrane – influence in general 

the viability of encapsulated cells. Hence, the viability of encapsulated cells during 

long-term cultivation in the presence of co-encapsulated nanoparticles was 

investigated within the current work. In figure 4.12. the viability of cells co-

encapsulated with magnetic nanoparticles is shown for the period of four weeks. 

Encapsulated cells with and without S8 and S24 nanoparticles did not differ in their 

viability. This finding is in agreement with previous studies stating that magnetite is 

minimally toxic (reviewed by Häfeli, U., et al., 2009). This is also emphasised by the 

FDA approval of magnetite particles as an MRI (magnet resonance imaging) contrast 

agent (Häfeli, U., et al, 2009). Moreover, as reported by Häfeli and colleagues 

magnetic nanoparticle concentrations of 5 mg/ml (≈ 0.5%), which were also used for 

the evaluated microcapsules, did not disturb cell proliferation of endothelial, epithelial 

and tumour cells (Häfeli, et al. 2009). During long-term cultivation, viability of 

encapsulated cells appeared to be more influenced by the capsule 

microenvironment: In the first days post encapsulation, cell viability was decreasing 

most probably because cells suffered during the encapsulation process and had to 

get used to grow in a 3D network within the microcapsule. Two weeks after 

encapsulation, cells started to recover and viability was increasing till the fourth week 

of cultivation. Then cell viability stagnated or decreased again because of the limited 

space within the microcapsule. Finally, a balance of cell death and cell division is 

established within the microcapsule. Therefore, from the obtained result may be 

concluded that co-encapsulation of magnetite nanoparticles appears to have no 

negative influence on cell viability during long-term cultivation. As shown in figure 

4.14., proliferation of encapsulated cells was not disturbed by the presence of 0.5% 

magnetic nanoparticles during a period of cultivation for four weeks, as predicted by 

Hafeli and colleagues (see above). Furthermore, metabolic activity of cells co-

encapsulated with magnetic nanoparticles S8 and S24 was analysed and growth 

curves were determined (Fig. 4.13). The doubling time of encapsulated HEK293 cells 

during exponential growth phase varied between 48 h (co-encapsulated S24 

nanoparticles) and 72 h (co-encapsulated S8 nanoparticles or without nanoparticles). 
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Encapsulated HEK293 pSGH2lucpuro C5 cells lacking the particles and 

encapsulated HEK293 pSGH2lucpuro C5 cells with S8 particles showed similar 

metabolic kinetics. In contrast to this, the curve determined with metabolic activity of 

encapsulated HEK293 pSGH2lucpuro cells with co-encapsulated S24 particles was 

different. Metabolic activity of HEK293 pSGH2lucpuro C5 cells might been influenced 

by the presence of 0.5 % S24 nanoparticles. In summary, viability and proliferation 

appeared not to be influenced by the presence of 0.5% nanoparticles. In contrast 

metabolic activity appeared to be diminished by the presence of 0.5% S24 

nanoparticles. The reason for this difference could be different tolerability towards the 

coating materials used for the different nanoparticle formulations.  

With respect to biocompatibility of nanoparticles, it was reported by Schwalbe and 

colleagues that magnetic nanoparticles are incorporated into cells by endocytosis into 

phagosomes which then eventually fuse with lysosomes for degradation (Schwalbe, 

et al., 2005). TEM analysis within the presented study revealed that in capsules 

containing cells and S8 nanoparticles, nanoparticles could be detected within the 

capsule membrane, inside the capsule, and also within cells (Fig. 4.9. E – H). In 

capsules containing cells and S24 nanoparticles, nanoparticles were detected within 

the capsule, within the capsule lumen, within the cytoplasm and also to a certain 

extent within the nucleus (Fig. 4.9. I – L). Hence S24 nanoparticles appear to have a 

stronger tendency to be taken up by cells. This is in agreement with the original 

intended use of the applied nanoparticles. Both nanoparticle formulations were 

originally designed and coated to be used for magnetotransfection. The coating 

material is either polyethylenimine (S8) or 1.9-nonanedithiol (S24). Both materials 

have been previously used to enhance uptake of nanoparticles into cells (Arsianti, et 

al, 2010; Mirazimi, et al., 1999). 
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Inducibility of gene expression 
In a next step, in order to further characterise generated encapsulated cells for 

realising the proposed concept, magnetic field-directed, nanoparticle-mediated, heat 

induction of reporter gene expression within encapsulated cells, inducibility of 

reporter gene expression in response to heat treatment in general was analysed. 

Analysis revealed that reporter gene expression was responsive to heat also in 

encapsulated cells (Fig. 4.15.). However, heat inducibility of reporter gene expression 

in encapsulated cells decreased during long-term cultivation for four weeks (Fig. 

4.13. A). This decrease in induction levels resulted from an increase in basal level 

promoter activity at 37°C which was only observed with an increasing time of 

cultivation. This effect was most likely due to generation of hypoxic conditions within 

microcapsules (Fig. 4.17. C). Heat shock promoters can be activated by hypoxia 

(Taylor, et al., 2010). Nevertheless, it was possible to repeatedly induce reporter 

gene expression within encapsulated cells in intervals of one week (Fig. 4.18). 

Induced expression levels were higher in capsules where cell had grown to low 

densities compared to capsules grown confluent with cells. In addition, also 

expression levels were higher in encapsulated cells induced at early time points. The 

reason for this effect could be that heat treatment leads to a transient inhibition of 

proliferation resulting in lower hypoxic conditions whereas encapsulated cells heat-

treated the first time in the second or third week of cultivation suffer more from 

hypoxia due to higher cell densities. Thus enforced hypoxic conditions and could 

result in an enhanced background promoter activity at 37°C. In order to circumvent 

the problem of hypoxia, encapsulated cells could be cultured for a short time and 

treated by Mitomycin C to arrest cell proliferation at low cell densities within capsules. 

Moreover, the problem of hypoxia could be avoided by generating microcapsules with 

a smaller diameter. Thereby encapsulated cells would be better supplied with oxygen 

because of the smaller diffusion distance. In terms of a cell-based therapy, multiple 

heat induction is possible at least in intervals of one week without refraction effects. 

With respect to inducible gene expression systems in SCS microcapsules, an 

antibiotic responsive gene expression, was recently published (Fluri, et al., 2008). In 

this project a mixture of genetically modified cell lines were co-encapsulated; one cell 
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line harboured a doxycycline or erythromycin responsive expression construct driving 

the expression of a bacterial gene encoding cellulase and another cell line which 

produced a potential therapeutic protein (Fluri, et al., 2008). Induction of gene 

expression by addition of the respective antibiotic resulted in SCS capsule rupture, 

which was accomplished in order to set free the therapeutic cell line (Fluri, et al., 

2008). In contrast to the here presented concept, the gene expression was switched 

on only once in order to unload the therapeutic cargo. However, to fulfil requirements 

of a potential therapeutic regime multiple inducibility of potential therapeutic gene 

expression would be of advantage. That this is possible has been demonstrated with 

the respective genetically modified encapsulated cells used here. 

Encapsulated cells could be heat treated for 1 h to 2 h without relevant decrease in 

metabolic activity during the next four days (Fig. 4.16). Heat treatment for 3 h, 

however, led to almost complete loss in metabolic activity four days after heat 

treatment. This loss was most likely due to cell death in response to heat treatment. 

Considering potential therapeutic applications, this suggests that induction durations 

up to 2 h are tolerated. 

For long-term remaining of implanted microcapsules containing cells in the human 

body a security mechanism can be employed in order to avoid uncontrolled escape of 

cells. Cells could be further genetically modified with a potential self-killing 

mechanism. Therefore, the gene for thymidin kinase from herpes simplex could be 

transferred into a therapeutic cell line. By injection of Gancyclovir or Acyclovir (Jiang, 

et al., 2011) remaining encapsulated cells could be completely eliminated from a 

human body at the end of a therapy. Despite regulate-able gene expression systems 

also constitutively expression systems could be used for such a security mechanism. 
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Magnetic field generation 
The combination of the genetically modified HEK293 cells and magnetic 

nanoparticles for encapsulation leads to establishment of microcapsules containing 

cells and nanoparticles. These microcapsules were further used in realising the 

proposed concept: nanoparticle-mediated, magnetic field-directed thermoregulation 

of gene expression within encapsulated cells.  

Within the presented work, the effect of an alternating magnetic field on cell integrity 

and cell viability within microcapsules was investigated. In magnetic field-treated 

samples, cells were shown to be intact and seem to be viable with the exception of 

capsules containing nanoparticles S8 cultured for five days after magnetic field 

treatment. Here, an increased number of areas with disrupted cells were detected 

when analysing electronmicrographs (Fig. 4.19.). In addition, necrosis and apoptosis 

in encapsulated cells in response to magnetic field treatment was analysed. The 

effect on necrosis of encapsulated cells was minor (Fig. 4.20.). It appears that 

necrosis in encapsulated cells was more dependent from extended periods of 

cultivation. The effect of apoptosis on encapsulated cells was also minor (Fig. 4.21. 

and Fig. 4.22.). Here, the quantified rate of apoptosis (20 – 30 %) in encapsulated 

cells lacking nanoparticles was increasing with the time of cultivation. The only 

significant increase in apoptosis was shown with encapsulated cells and S24 

nanoparticles as compared to standard capsules lacking the nanoparticles on day 

two after magnetic field treatment. In summary, it appears that the utilised HEK293 

cell line is a robust cell line showing little sensitivity to transiently elevated 

temperatures.  

For proof-of-principle experiments only cells co-encapsulated with S8 nanoparticles 

were selected. S8 nanoparticles exhibited higher heat generation capacity in an 

alternating magnetic field, a better tolerability as revealed by the investigation of their 

biocompatibility during long-term cultivation, and a lower effect of apoptosis on cells 

when subjected to an alternating magnetic field. 
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Proof-of-principle of the proposed concept could be provided in vitro (Fig. 4.23. and 

Fig 4.24.). It was possible to switch on reporter gene expression within encapsulated 

cells by applying an alternating magnetic field. The magnetic field treatment led to a 

strong induction of luciferase expression only when cells had been co-encapsulated 

with S8 nanoparticles. The difference in gene expression levels in encapsulated cells 

with and without S8 nanoparticles was shown to be highly significant (p-value of 

0.029, Mann-Whitney-Test). 

However, the experimental setup suffers from some limitations. The calculated 

induction rates of luciferase expression in differing experiments are highly variable 

resulting in large standard deviations. High standard deviations were observed in four 

independently performed experiments with the same parameters (Fig. 4.23.) 

indicating most likely a variability in the cell densities of the used microcapsules 

containing cells and/or nanoparticles. For proof-of-principle experiments, 

encapsulated cells cultured for two weeks post encapsulation were used. These 

encapsulated cells differ in their induction capabilities most probably due to 

increasing hypoxic conditions within the microcapsules. Hence, induction levels in the 

four independent experiments considerably differ resulting in high standard 

deviations. 

Additionally, variations in the performance of the magnetic field generator have been 

a problem, even though the temperature increase of a 1% standard nanoparticle 

dispersion was measured before every use as well as the magnetic field which was 

measured with an exploring coil. Wave generator and power amplifier were 

commercially available as pre-made units; the coil had to be constructed according to 

the required dimensions and field strength of the magnetic field. The Helmholtz coil 

was custom-made prepared and driven with frequencies up to 80 kHz and amplitudes 

up to 40 kA/m. In a final experimental version of the arrangement it would be helpful 

to have a bigger coil in which a mouse could fit in. For exact calculation of the applied 

magnetic field it would be desirable to have a symmetrically wound coil. It would be 

beneficial to have a water-cooled coil thereby avoiding direct heat transfer to the 

sample. Furthermore, it would be favourably to have a temperature adjustable water 

jacket between coil and sample vial to simulate body temperature. Several of these 
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requirements are fulfilled by an experimental high-performance magnetic field 

generator available by the company MFH Hyperthermiesystem GmbH, Berlin, 

Germany. These devices are already used in clinical trials for the treatment of solid 

tumours by magnetic fluid hyperthermia and are therefore used by the companies 

Magforce Nanotechnologies AG, Berlin, Germany and Sirtex Medical Ltd, Sydney, 

Australia. 

For the treatment of deep-seated solid tumours by nanoparticle-mediated 

thermotherapy, Bellizzi and Bucci stated that 10 mg/ml (≈ 1 %) particle 

concentrations are sufficient to reach temperatures above 43°C. Moreover, they 

calculated that 3 mg/ml (≈ 0.3 %) is sufficient when particles are distributed mono-

dispersely in moderately perfused tissues. (Bellizzi et Bucci, 2010) In the presented 

work, the capsules used contain only 5 mg/ml (≈ 0.5%) nanoparticles which were 

shown to form aggregates (Fig. 4.4). 5 mg/ml (≈ 0.5%) was the maximal encapsulate-

able concentration for magnetic nanoparticles S8 and S24. However, the parameters 

are calculated for moderately perfused tissues suggesting that the used 

concentrations are just sufficient for heat generation in vitro in a non-perfused 

sample, as shown in the result of the in vitro proof-of-principle experiments. 

Proof-of-principle for an in vivo heat-induced reporter gene expression in 

encapsulated cells could be provided in the mouse model (Fig. 4.25.). Luciferase 

expression could be multiply induced in two mice. There, expression was detected 

three times in intervals of one week in mice. However, no reporter gene expression 

could be demonstrated in response to magnetic field treatment. As already 

mentioned, for non-monodispers nanoparticles the nanoparticle concentration has to 

be at least 10 mg/ml (Bellizzi et Bucci, 2010). In conclusion, it appears that the 

maximal encapsulate-able nanoparticle concentration of 0.5% (≈ 5 mg/ml) is too low 

to generate a lasting temperature increase for induction of gene expression in 

perfused tissue by application of an alternating magnetic field. Thus the 

encapsulation process has to be further optimised to allow the encapsulation of 

higher nanoparticle concentrations. Moreover, nanoparticle formulations have to be 

further optimised to prevent their aggregation without using cell toxic reagents or 

substances disturbing the encapsulation process. 
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Conclusion and applications of the proposed cell 
therapy concept 
In summary, proof-of-principle for the novel cell therapy concept could be provided in 

vitro by magnetic field-directed nanoparticle-mediated heat induction of reporter gene 

expression in encapsulated cells. Additionally, preliminary in vivo experiments have 

demonstrated multiple heat-inducible reporter gene expression in encapsulated cells 

implanted into mice. This generally indicates applicability of this novel cell therapeutic 

concept, even though further optimisations of the modulateable concept are needed. 

In cell-based therapy the transplanted cells can basically produce all kinds of proteins 

and peptides. Both, simple replacement strategies which seek to compensate for 

gene deficiencies and also fine-tuned interference with genetic and biochemical 

pathways are potential applications for cell therapy. Examples for a not critical 

dosage is blood coagulation (Garcia-Martin, et al. 2002), whereas critical regulatory 

constraints apply to hormones and growth factors like insulin, growth hormone for 

treatment of dwarfism (Al-Hendy, et al., 1996), nerve growth factor and ciliary 

neurotrophic factor for neurological disorders (Bloch, et al. 2004) and erythropoietin 

for ß-thalasemia (Dalle, et al., 1999). Immunostimulatory proteins like interferons are 

yet another example for dose-dependent factors. Real-time regulation by the patient 

would ideally be required for the expression of the pain alleviating 

proopiomelanocortin gene (Saitho et al., 1995). (please refer to Czerny, et al., 2006) 

In this project we provide a new concept for cell-based therapy in which the 

expression of the therapeutic peptide or protein can be externally fine-tuned, 

dependent to the requirements of the therapy. 
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7. APPENDIX 

7.1. Abbreviations 

A       ampere 

AMF       alternating magnetic field 

ATP       adenosine-triphosphate 

C       celsius 

CLSM       confocal laser scanning microscope 

CMV       cytomegalovirus 

DAPI       4′,6-diamidin-2-phenylindol 

DMEM      Dulcecco`s modified eagle`s medium 

DMSO      dimethyl-sulfoxide 

dNTPs      desoxyribonucleotide-triphosphate 

DPX       dibutyl phthalate - xylene 

DTT       dithiothreitol 

EDTA       ethylene-diamine-tetra-acetate 

EGFP       enhanced green fluorescent protein 

EM       electron microscopy 

FCS       foetal calve serum 

FITC       fluorescein-isothiocyanate 

g       gram 

GSK3α      glycogen synthase kinase 3α 

h       hour 

HEK293      human embryonic kidney cells 

HS       heat shock 

HSE       heat shock element 

HSF1       heat shock factor 1 

HSP70/90      heat shock protein 70/90 

i.p.       intra-peritoneal 

JNK       c-Jun N-terminal kinase 

http://de.wikipedia.org/wiki/Dithiothreitol�
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kDa       kilodalton 

kHz       kiloherz 

luc       luciferase 

MAP       mitogen-activated protein kinase 

MHz       megaherz 

min       minute 

ml       millilitre 

µl       microlitre 

MNPs       magnetic nanoparticles 

MOPS      3-(N-Morpholino)propane sulfonic acid 

MRI       magnet resonance imaging 

1.9-NDT      1.9-nonanedithiol 

ng       nanogram 

NM       normal medium 

p       plasmid 

PBS       phosphate buffered saline 

pDADMAC  poly diallyl dimethyl ammonium 

chloride 

PEG       polyethylene glycol 

PEI       polyethylenimine 

pr       promoter 

puro       puromycin 

RT       room temperature 

SAR       specific absorbtion rate 

SCS       sodium cellulose sulphate 

Ser       serine 

SSA       specific surface area 

TEM       transmission electron microscopy 

Tris       tris(hydroxymethyl)aminomethane 

UV       ultraviolet 

V       voltage 

w/w       weight per weight 

http://de.wikipedia.org/w/index.php?title=3-(N-Morpholino)-Propansulfons%C3%A4ure&action=edit&redlink=1�
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Fig. 4.17.: Induction of luciferase expression during long-term cultivation 

Fig. 4.18.: Multiple heat treatment during long-term cultivation of encapsulated 

cells. 

Fig. 4.19.: Effects of magnetic field treatment on cell integrity. 

Fig. 4.20.: Effects of magnetic field treatment on nuclear integrity and cell viability. 

Fig. 4.21.: Apoptosis in response to magnetic field treatment in encapsulated cells. 

Fig. 4.22.: Apoptosis in response to magnetic field treatment in encapsulated cells.  
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7.4. Plasmids 
 
 
 

 
 
 
 
 
 
 
 

pSGH2lucgfppuro – heat inducible expression construct harbouring plasmid 
Legend: minCMV: minimal cytomegalovirus promoter, HSE: heat shock elements. luc: gene 
encoding firefly luciferase, GFP: gene encoding green fluorescent protein, SV40 poly A: 
Simian Virus 40 polyA signal, BGH polyA: Bovine Growth Hormone polyA signal, ampR: 
gene encoding resistance for amplicilin, ori: origin of replication, puroR: gene encoding 
resistance against puromycin, 3`UTR: 3` untranslated region 

 
pCMVegfp – control plasmid for constitutive EGFP expression 
Legend: CMV: cytomegalovirus promoter, EGFP: gene coding for enhanced green 
fluorescent protein, neoR: gene encoding resistance for neomycin, SV40 pr: Simian Virus 40 
promoter, SV40 poly A: Simian Virus 40 polyA signal, ampR: gene encoding resistance for 
ampicilin; MCS: multiple cloning site 
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7504 bps

1000

2000

3000
4000

5000

6000

7000

BGH poly A

eGFP

min CMV 
HSEsmin CMV

luc

3' UTRSV40 poly A

puroR

actin promoter

Ori

ampR

pSGH2lucgfppuro 

pCMVegfp 



  APPENDIX 
_________________________________________________________________________________ 

 

128 

 

 
pCMVluc – control plasmid for constitutive luciferase expression 

Legend: CMV: cytomegalovirus promoter, luc: gene coding for firefly luciferase, neoR: gene 
encoding resistance for neomycin, SV40 pr: Simian Virus 40 promoter, SV40 poly A: Simian 
Virus 40 polyA signal, ampR: gene encoding resistance for ampicilin, T7: T7 promoter; ori: 
origin of replication, BGH polyA: Bovine Growth Hormone polyA signal, SP6: promoter of 
phage SP6 
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7.5. Own publications 

7.5.1. Scientific paper 
 
Journal of Controlled Release (article accepted) 
 
Magnetic field-controlled gene expression of encapsulated cells 

 
Ortner V.*,1,2, Kaspar C.*,3, Halter C.1, Töllner L.3, Mykhaylyk O.4, Walzer J.1, 

Günzburg W.H.3, Dangerfield J.A.3, Hohenadl C.3, and Czerny T.1,2 

*Equal contributors; 1University of Applied Sciences, FH Campus Wien, Department 

for Applied Life Sciences, Vienna, Austria; 2Department for Biomedical Sciences, 

Institute of Animal Breeding and 3Department for Pathobiology, Institute of Virology, 

University of Veterinary Medicine, Vienna, Austria 4Department for Pathobiology, 

Institute for Experimental Oncology, Klinikum Rechts der Isar, TU Munich, Munich, 

Germany 

 

Abstract: Cell and gene therapies have an enormous range of potential applications, 

but as for most other therapies, dosing is a critical issue, which makes regulated 

gene expression a prerequisite for advanced strategies. Several inducible expression 

systems have been established, which mainly rely on small molecules as inducers, 

such as hormones or antibiotics. Here we describe a novel system for induction of 

gene expression in encapsulated cells. This involves the modification of cells to 

express potential therapeutic genes under the control of a heat inducible promoter 

and the co-encapsulation of these cells with magnetic nanoparticles. Magnetic 

nanoparticles produce heat when subjected to an alternating magnetic field, the 

elevated temperatures in the capsules then induce gene expression. In the present 

study we define the parameters of such systems and provide proof-of-principle using 

reporter gene constructs. The fine-tuned heating of nanoparticles in the magnetic 

field allows regulation of gene expression from the outside over a broad range and 

within short time. Such a system has great potential for advancement of cell and 

gene therapy approaches. 
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7.5.2. Oral presentation 
 

ÖGBM, ÖGGGT, ÖGBT, ANGT Joint Annual Meeting 2008, Graz, 22. – 

24.09.2008 

 

Thermoregulation of gene expression in encapsulated cells by magnetic field-
directed, nanoparticle-mediated heat induction 

 

Kaspar, C.1, Ortner, V.2, Günzburg, W.H.1, Kluger, C.4, Dangerfield, J.A.1, Czerny, 

T.2,3, Hohenadl, C.1 
1Department of Pathobiology, Institute of Virology and 2Institute of Animal Breeding 

and Genetics, University of Veterinary Medicine, Vienna; 3University of Applied 

Sciences, FH Campus Vienna; 4Austrianova Biotechnology GmbH, Vienna;  

AUSTRIA 

 

Abstract: For the treatment of metabolic disease using cell based therapies an 

externally controllable modulation of therapeutic gene expression is of great interest. 

In this respect we are evaluating a thermoregulatable expression system based on a 

synthetic heat shock promoter. Heat induction will be achieved by means of Fe3O4 

nanoparticles treated with an alternating magnetic field. As a test system, HEK293 

cells carrying a reporter gene construct driven by the respective promoter were 

encapsulated into sodium cellulose sulphate and analysed for heat inducible 

expression. Having successfully set up the optimum parameters for heat induction, 

cells were co-encapsulated with Fe3O4 nanoparticles and treated with a custom-made 

magnetic field generator. Preliminary analyses of reporter gene expression levels, 

cell viability, temperature limits and refraction times will be presented supporting 

proof of concept which will finally be demonstrated in a mouse model. 
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7.5.3. Poster presentations 

ÖGMBT Annual Meeting 2009, Innsbruck, 21. – 23.09.2009 

 

Magnetic nanoparticle induced gene expression in encapsulated cells 

 

Kaspar C.1 and Ortner V.2, Halter C.3, Walzer J.3, Günzburg W.H.1, Dangerfield 

J.A.1, Czerny T.2,4, Hohenadl C.1 

1Department of Pathobiology, Institute of Virology and 2Department of Biomedical 

Sciences, Institute of Animal Breeding and Genetics, University of Veterinary 

Medicine, Vienna; 3Department of Technics and 4Department of Applied Life 

Sciences, FH Campus Vienna  

 

Abstract: Microencapsulation of cells in biologically inert sodium cellulose sulphate 

allows implantation of heterologous cells, e.g. in cell-based therapy, without reaction 

of the host immune system. Combining different well established technologies, we 

here propose to regulate gene expression in encapsulated cells from outside the 

patient`s body. Firstly, HEK293 cells were genetically modified to carry a synthetic 

bidirectional heat-inducible promoter which drives the expression of two different 

reporter genes. Secondly, these cells were co-encapsulated together with Fe3O4 

nanoparticles. Finally, heat was generated within the capsules by application of an 

alternating magnetic field. We here provide a proof of concept in vitro, demonstrating 

robust induction of gene expression in magnetic field-treated samples. 
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BioNanoMed 2009, Krems, 26. – 27.01.2009 
 

Magnetic nanoparticle mediated gene expression in cell therapy 

 

Ortner V.1, Kaspar C.2, Platzer T.1, Halter C.3, Walzer J.3, Günzburg W.H.2, 

Dangerfield J.A.2, Hohenadl C.2, Czerny T.1,4, 
1Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, 

University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna; 2Department for 

Pathobiology, Institute of Virology, University of Veterinary Medicine, Veterinärplatz 

1, 1210 Vienna; 3Department of Technics, FH Campus Wien, Daumegasse 3, 1100 

Vienna; 4Department of Applied Life Sciences, FH Campus Wien, Campus Vienna 

Biocenter, Viehmarktgasse 2A, 1030 Vienna 

 

Abstract: Cell therapy provides a strategy to administer genetically modified cells to 

patients. When incorporated into cellulose sulphate microcapsules, these cells are 

protected from the host immune system and localised to the area of implantation. 

Thus even heterologous cells survive in the patient and can produce therapeutic 

substances over several months to a targeted site. 

We are developing a method to externally regulate the expression of the therapeutic 

gene inside the capsules. The basis for the project is a heat inducible promoter. Cells 

containing this promoter are encapsulated together with magnetic nanoparticles, 

which produce heat when exposed to an alternating magnetic field. After application 

of the capsules to the patient, the promoter is induced from the outside by a magnetic 

field which generates elevated temperatures in the encapsulated cells. Thus 

expression of the therapeutic genes can be regulated according to the requirements 

of the therapy. 

In order to obtain a proof-of-principle for the project a stable HEK 293 cell line was 

generated, expressing the marker genes eGFP and luciferase under the control of a 

bidirectional artificial heat shock promoter. A highly inducible cell clone was selected 

and characterised. Next, conditions for encapsulation in cellulose sulphate together 

with Fe3O4 magnetic nanoparticles were established. For application of the 

alternating magnetic field a generator with a power amplifier was built. The capsules 
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were incubated in cell culture medium in a water-cooled coil. Preliminary experiments 

gave proof-of-concept in vitro as ten-fold higher luciferase activity was measured in 

capsules containing magnetic nanoparticles compared to control capsules without 

nanoparticles. 
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Abstract: The heat shock response is the most prominent reaction of cells to stress. 

Heat shock proteins form a large group of inducible proteins, which represent major 

players in this stress response. They are regulated by heat shock promoters which 

therefore can be applied for inducible expression systems. We generated an artificial 

heat shock promoter and present here its properties. As a reference serves 

endogenous heat shock protein expression. In addition we evaluated the promoter 

for gene therapy approaches, by comparing it to the well established natural HSP70B 

promoter. As a result, our artificial heat shock promoter leads to higher reporter gene 

expression with lower background levels. These superior properties make this 

promoter an ideal tool for gene therapy or cell therapy applications. 
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