
Efficient Knowledge Extraction
from Structured Data

Bianca Wackersreuther

München 2011

Efficient Knowledge Extraction
from Structured Data

Bianca Wackersreuther

Dissertation

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Bianca Wackersreuther

aus Füssen

München, den 24.02.2011

Erstgutachter: Prof. Dr. Christian Böhm

Zweitgutachter: Prof. Dr. Thomas Seidl

Tag der mündlichen Prüfung: 15.12.2011

For my children Julius and Simon.

vi

Contents

Acknowledgments xi

Abstract xiii

Zusammenfassung xv

1 Preliminaries 1
1.1 The Classic Definition of KDD 2

1.2 Data Mining: The Core Step of Knowledge Extraction 3

1.3 Clustering: One of the Major Data Mining Tasks 4

1.4 Information Theory for Clustering 6

1.5 Boosting the Data Mining Process 8

1.6 Outline of the Thesis . 11

2 Related Work 13
2.1 Hierarchical Clustering . 13

2.1.1 Agglomerative Hierarchical Clustering 15

2.1.2 Linkage methods . 16

2.1.3 Density-based Hierarchical Clustering 17

2.1.4 Model-based Hierarchical Clustering 19

2.2 Mixed Type Attributes Data . 20

2.2.1 The k-means Algorithm for Clustering Numerical Data . . 21

2.2.2 Conceptual Clustering Algorithms for Categorical Data . . 22

viii CONTENTS

2.2.3 The k-prototypes Algorithm for Integrative Clustering . . 24

2.3 Information Theory in the Field of Clustering 24

2.4 Graph-structured Data . 27

2.4.1 Graph Dataset Mining 27

2.4.2 Large Graph Mining . 29

2.4.3 Dynamic Graph Mining 30

2.5 Boosting Data Mining . 31

2.5.1 General Processing-Graphics Processing Units 31

2.5.2 Database Management Using GPUs 33

2.5.3 Data Mining Using GPUs 34

3 Hierarchical Data Mining 35
3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 36

3.1.1 Information-theoretic Hierarchical Clustering 38

3.1.2 Experimental Evaluation 53

3.1.3 Conclusions . 62

3.2 GACH: A Genetic Algorithm for Hierarchical Clustering 63

3.2.1 The Algorithm GACH 65

3.2.2 Experimental Evaluation 73

3.2.3 Conclusions . 81

4 Integrative Data Mining 83
4.1 INTEGRATE: A Clustering Algorithm for Heterogeneous Data . . 83

4.1.1 Minimum Description Length for Integrative Clustering . 84

4.1.2 The Algorithm INTEGRATE 90

4.1.3 Experimental Evaluation 91

4.1.4 Conclusions . 96

5 Mining Skyline Objects 97
5.1 SkyDist: An Effective Similarity Measure for Skylines 97

5.1.1 SkyDist . 99

CONTENTS ix

5.1.2 Experimental Evaluation 109

5.1.3 Conclusions . 113

6 Graph Mining 115
6.1 Frequent Subgraph Mining in Brain Network Data 116

6.1.1 Performing Graph Mining on Brain Network Data 117

6.1.2 Experimental Evaluation 121

6.1.3 Conclusions . 129

6.2 Motif Discovery in Dynamic Yeast Network Data 130

6.2.1 Performing Graph Mining on Dynamic Network Data . . 130

6.2.2 Dynamic Network Construction 136

6.2.3 Evaluation of Dynamic Frequent Subgraphs 139

6.2.4 Conclusions . 145

7 Data Mining Using Graphics Processors 147
7.1 The GPU Architecture . 149

7.1.1 The Memory Model . 149

7.1.2 The Programming Model 150

7.1.3 Atomic Operations . 152

7.2 An Index Structure for the GPU 153

7.3 Performing the Similarity Join Algorithm on GPU 155

7.3.1 Similarity Join Without Index Support 156

7.3.2 An Indexed Parallel Similarity Join Algorithm on GPU . . 159

7.3.3 Experimental Evaluation 161

7.3.4 Conclusions . 165

7.4 Density-based Clustering Using GPU 167

7.4.1 Foundations of Density-based Clustering 167

7.4.2 CUDA-DClust . 169

7.4.3 Experimental Evaluation 178

7.4.4 Conclusions . 184

7.5 Partitioning Clustering on GPU 185

x Contents

7.5.1 The Sequential Procedure of k-means Clustering 185
7.5.2 CUDA-k-Means . 186
7.5.3 Experimental Evaluation 189
7.5.4 Conclusions . 191

8 Conclusions 193
8.1 Summary . 193
8.2 Outlook . 197

List of Figures 201

List of Tables 203

Bibliography 216

Acknowledgments

I would like to express my warmest gratitude to all the people who supported me
during the past four years while I have been working on this thesis. I avail myself
of the opportunity to thank them, even if I cannot mention all of their names here.

First of all, I would like to express my warmest and sincerest thanks to my
supervisor, Professor Dr. Christian Böhm. The joy he has for his research was
contagious and motivational for me, even during tough times. I warmly acknowl-
edge Professor Dr. Thomas Seidl for his immediate willingness to act as a second
referee for my thesis. I would also like to thank the other two members of my
oral defense committee, Professor Dr. Claudia Linnhoff-Popien and Professor Dr.
Rolf Hennicker, for their time and insightful questions.

This work could not have grown and matured without the discussions with
my colleagues in our research group at LMU. In particular, I would like to give
my thanks to Can Altinigneli, Jing Feng, Frank Fiedler, Katrin Haegler, Dr. Tong
He, Xiao He, Bettina Konte, Annahita Oswald, Son Mai Thai, Nikola Müller,
Dr. Claudia Plant, Michael Plavinski, Junming Shao, Peter Wackersreuther, Qinli
Yang and Andrew Zherdin for their help, support, interesting hints, constructive
and productive teamwork. My time at LMU was made enjoyable in large part due
to my colleague Annahita Oswald that became a part of my life. Last, but not least,
I had the pleasure to supervise and to work with several students who supported
my work and who have been beneficial for this thesis. In particular, I would like to
mention here Nadja Benaissa, Michael Dorn, Sebastian Goebl, Johannes Huber,
Robert Noll, Michael Plavinski, Christian Richter and Dariya Sharonova.

xii Acknowledgments

Dr. Karsten Borgwardt was an awesome teacher of mine for the field of graph
mining. It has been a unique chance for me to learn from his scientific experience
and his never-ending enthusiasm for his research.

I have appreciated the database research group of the LMU. I am grateful to
our chair secretary, Susanne Grienberger and our group’s administrative assistant
Franz Krojer who kept us organized and were always ready to help.

I was honored to be a mentee of the LMU Mentoring program. Professor Dr.
Francesca Biagini always supported my work and has been a dedicated mentor to
me.

Lastly, I would like to thank my family and my friends for all their love and
encouragement, and most of all my loving, encouraging, and patient husband Pe-
ter whose faithful support during the final stages of this thesis is so appreciated.
Thank you!

Bianca Wackersreuther
Munich, February 2011.

Abstract

Knowledge extraction from structured data aims for identifying valid, novel, po-
tentially useful, and ultimately understandable patterns in the data. The core step
of this process is the application of a data mining algorithm in order to produce an
enumeration of particular patterns and relationships in large databases. Clustering
is one of the major data mining tasks and aims at grouping the data objects into
meaningful classes (clusters) such that the similarity of objects within clusters is
maximized, and the similarity of objects from different clusters is minimized.

In this thesis, we advance the state-of-the-art data mining algorithms for analyz-
ing structured data types. We describe the development of innovative solutions
for hierarchical data mining. The EM-based hierarchical clustering method ITCH
(Information-Theoretic Cluster Hierarchies) is designed to propose solid solutions
for four different challenges. (1) to guide the hierarchical clustering algorithm to
identify only meaningful and valid clusters. (2) to represent each cluster content
in the hierarchy by an intuitive description with e.g. a probability density function.
(3) to consistently handle outliers. (4) to avoid difficult parameter settings. ITCH
is built on a hierarchical variant of the information-theoretic principle of Mini-
mum Description Length (MDL). Interpreting the hierarchical cluster structure as
a statistical model of the dataset, it can be used for effective data compression by
Huffman coding. Thus, the achievable compression rate induces a natural objec-
tive function for clustering, which automatically satisfies all four above mentioned
goals. The genetic-based hierarchical clustering algorithm GACH (Genetic Algo-
rithm for finding Cluster Hierarchies) overcomes the problem of getting stuck in

xiv Abstract

a local optimum by a beneficial combination of genetic algorithms, information
theory and model-based clustering. Besides hierarchical data mining, we also
made contributions to more complex data structures, namely objects that consist of
mixed type attributes and skyline objects. The algorithm INTEGRATE performs
integrative mining of heterogeneous data, which is one of the major challenges
in the next decade, by a unified view on numerical and categorical information in
clustering. Once more, supported by the MDL principle, INTEGRATE guaran-
tees the usability on real world data. For skyline objects we developed SkyDist,
a similarity measure for comparing different skyline objects, which is therefore a
first step towards performing data mining on this kind of data structure. Applied in
a recommender system, for example SkyDist can be used for pointing the user to
alternative car types, exhibiting a similar price/mileage behavior like in his orig-
inal query. For mining graph-structured data, we developed different approaches
that have the ability to detect patterns in static as well as in dynamic networks.
We confirmed the practical feasibility of our novel approaches on large real-world
case studies ranging from medical brain data to biological yeast networks.

In the second part of this thesis, we focused on boosting the knowledge ex-
traction process. We achieved this objective by an intelligent adoption of Graph-
ics Processing Units (GPUs). The GPUs have evolved from simple devices for
the display signal preparation into powerful coprocessors that do not only sup-
port typical computer graphics tasks but can also be used for general numeric and
symbolic computations. As major advantage, GPUs provide extreme parallelism
combined with a high bandwidth in memory transfer at low cost. In this thesis,
we propose algorithms for computationally expensive data mining tasks like simi-
larity search and different clustering paradigms which are designed for the highly
parallel environment of a GPU, called CUDA-DClust and CUDA-k-means. We
define a multi-dimensional index structure which is particularly suited to support
similarity queries under the restricted programming model of a GPU. We demon-
strate the superiority of our algorithms running on GPU over their conventional
counterparts on CPU in terms of efficiency.

Zusammenfassung

Das Ziel der Wissensgewinnung aus strukturierten Daten ist es, gültige, bislang
unbekannte, potentiell nützliche und letztendlich verständliche Muster in den Daten
aufzudecken. Zentraler Schritt dieses Prozesses ist die Anwendung eines sog.
Data Mining Algorithmus, der eine Aufzählung bestimmter Muster und Beziehun-
gen in großen Datenbanken erzeugt. Eine wichtige Aufgabe des Data Minings
stellt das sog. Clustering dar. Dabei sollen die Datenobjekte so in Gruppen
(Cluster) zusammengefasst werden, dass die Ähnlichkeit aller Objekte innerhalb
eines Clusters maximiert und die Ähnlichkeit der Objekte unterschiedlicher Clus-
ter minimiert wird.

In dieser Arbeit erweitern wir aktuelle Data Mining Algorithmen dahinge-
hend, dass damit strukturierte Datentypen untersucht werden können. Wir stellen
innovative Lösungen vor, die eine Beschreibung der Daten durch hierarchische
Strukturen erlauben. Die EM-basierte Clustering-Methode ITCH (Information-
Theoretic Cluster Hierarchies) ist darauf ausgelegt, vier wichtige Zielsetzungen zu
erfüllen. Erstens stellt sie sicher, dass der hierarchische Clustering-Algorithmus
nur aussagekräftige und gültige Cluster erkennt. Zweitens stellt sie den Inhalt
jedes Clusters der Hierarchie intuitiv dar, z.B. in Form einer Wahrscheinlichkeits-
dichtefunktion. Drittens werden Ausreißer-Objekte konsistent verarbeitet, und
viertens vermeidet sie das oft komplizierte Setzen von Parametern. ITCH baut
auf eine hierarchische Variante des informationstheoretischen Prinzips Minimum

Description Length (MDL) auf. Indem die hierarchische Clusterstruktur als statis-
tisches Modell des Datensatzes interpretiert wird, kann es wirksam zur Datenkom-

xvi Zusammenfassung

primierung im Sinne der Huffman Codierung eingesetzt werden. Daher stellt die
theoretisch erreichbare Komprimierungsrate eine natürliche Zielfunktion für das
Clustering-Problem dar, die automatisch alle vier zuvor genannten Zielsetzun-
gen erfüllt. Der genetische hierarchische Clustering-Algorithmus GACH (Genetic
Algorithm for finding Cluster Hierarchies) beseitigt das Problem, ein lediglich
lokales Optimum als endgültige Lösung zu finden, durch eine geschickte Kombi-
nation von genetischen Algorithmen, Informationstheorie und Modell-basiertem
Clustering. Neben dem hierarchischen Data Mining, widmeten wir uns auch kom-
plexeren Datenstrukturen, nämlich Objekten, die durch Attribute unterschiedlichen
Typs repräsentiert sind sowie Skyline-Objekten. Der Algorithmus INTEGRATE
setzt die integrative Analyse heterogener Daten um, was sich als eine der Haup-
taufgaben für die nächsten Jahrzehnte herausgestellt hat, indem er sowohl die nu-
merische als auch die kategorische Information für den Clustering-Prozess vere-
int berücksichtigt. Auch in diesem Fall garantiert INTEGRATE, unterstützt durch
das MDL Prinzip, den praktischen Einsatz für reelle Daten. Für Skyline-Objekte
haben wir das Ähnlichkeitsmaß SkyDist entwickelt, welches den Vergleich unter-
schiedlicher Skyline-Objekte erlaubt und damit einen ersten Schritt in Richtung
Data Mining auf dieser Art von strukturierten Daten darstellt. Eingesetzt in einer
priorisierten Suchmaschine, kann SkyDist beispielsweise dazu verwendet werden,
dem Nutzer unterschiedliche Autotypen vorzuschlagen, die entsprechend dem
in der Anfrage spezifizierten Preis/Kilometerstand Profil ähnliche Eigenschaften
aufweisen. Zur Analyse Graph-strukturierter Daten haben wir unterschiedliche
Ansätze entwickelt, die sowohl in statischen als auch in dynamischen Netzwerken
zum Auffinden von Mustern herangezogen werden können. Wir belegten die prak-
tische Anwendbarkeit unserer neuen Ansätze an großen realen Fallstudien, die von
medizinischen Gehirndaten bis hin zu biologischen Hefe-Netzwerken reichen.

Im zweiten Teil dieser Arbeit haben wir uns darauf konzentriert, den Prozess
der Wissensgewinnung zu beschleunigen. Dies haben wir dadurch erreicht, dass
wir uns den Einsatz von Grafikkarten oder auch Graphics Processing Units (GPUs)
zunutze gemacht haben. GPUs haben sich von einfachen Bausteinen für die

Zusammenfassung xvii

Grafikverarbeitung in leistungsstarke Co-Prozessoren entwickelt, die sich nicht
mehr nur für typische Grafikaufgaben eignen, sondern mittlerweile auch für all-
gemeine numerische und formale Berechnungen verwendet werden können. Der
Hauptvorteil der GPUs liegt darin, dass sie extrem starke Parallelität und gleich-
zeitig hohe Bandbreite im Speichertransfer zu niedrigen Kosten bieten. In dieser
Arbeit schlagen wir unterschiedliche Algorithmen für rechenintensive Data Min-
ing Aufgaben, wie z.B. der Ähnlichkeitssuche und unterschiedliche Clustering-
Paradigmen vor, die speziell auf die hoch parallele Arbeitsweise einer GPU aus-
gelegt sind, bezeichnet mit CUDA-DClust und CUDA-k-means. Wir definieren
eine multidimensionale Indexstruktur, die so konzipiert wurde, dass sie Ähnlich-
keitsanfragen auch unter dem eingeschränkten Programmierungsmodell der GPU
unterstützt und zeigen die Überlegenheit unserer Algorithmen auf der GPU gegen-
über ihrem Pendant in der CPU in Bezug auf Effizienz.

xviii Zusammenfassung

Chapter 1

Preliminaries

The amount of data being collected by high-throughput experimental technologies
or high-speed internet connections far exceeds the ability to reduce and analyze
data without the use of automated analysis techniques. Knowledge extraction,
often also referred to as Knowledge Discovery in Databases (KDD), is a young
sub-discipline of computer science aiming at the automatic interpretation of large
datasets. The core step of this process is the application of a data mining algo-
rithm in order to produce an enumeration of particular patterns and relationships
in large databases. Over the last decade, a wealth of research articles on new data
mining techniques has been published, and the field remains growing. Section 1.1
introduces first the main concepts of KDD. Afterwards data mining, the core step
of the KDD process, is presented in Section 1.2 and the most prominent data min-
ing methods are reviewed. Section 1.3 describes the data mining task clustering in
more detail. In the following two sections, we specify how to support the cluster-
ing process by information theory and how to accelerate the data mining process
by the idea of parallelization. Section 1.6 presents a detailed outline of this thesis.

2 1. Preliminaries

Data

Selection

Pre-

processing

Trans-

formation Data Mining

Patterns

Interpretation /

Evaluation

Knowledge

Figure 1.1: The KDD process.

1.1 The Classic Definition of KDD

The classic definition of KDD by Fayyad et al. from 1996 describes it as “the
non-trivial process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data” [32]. The KDD process, as illustrated in Fig-
ure 1.1, consist of an iterative sequence of the following steps:

1. Selection: Creating a target dataset by selecting a dataset or focusing on a
subset of variables or data samples on which discovery is to be performed.

2. Preprocessing: Performing data cleaning operations, such as removing noise
or outliers if appropriate, handling missing data fields, accounting for time-
sequence information, as well as deciding DBMS issues, such as data types,
schema and mapping of missing and unknown values.

3. Transformation: Finding useful features to represent the data depending on
the goal of the task, e.g., using dimensionality reduction or transformation
methods to reduce the number of attributes or to find invariant representa-
tions for the data.

4. Data Mining: Searching for interesting patterns in a particular representa-
tional form or a set of such representations, including classification rules
or trees, regression, clustering, sequence modeling, dependency and line
analysis. Choosing the right data mining algorithm includes selecting the
method(s) to be used to search for patterns in the data and matching a par-
ticular data mining method with the overall criteria of the KDD process.

1.2 Data Mining: The Core Step of Knowledge Extraction 3

5. Interpretation and Evaluation: Applying visualization and knowledge re-
presentation techniques to the extracted patterns, and removing redundant or
irrelevant patterns and translating the useful ones into terms understandable
by users. The user may return to previous steps of the KDD process if the
results are unsatisfactory.

1.2 Data Mining: The Core Step of Knowledge Ex-
traction

Since data mining is the core step of the KDD process, the terms KDD and Data

Mining are often used as synonyms. In [32], data mining is defined as a step in
the KDD process which consists of applying data analysis algorithms that, under
acceptable computational efficiency limitations, produce a particular enumeration
of patterns over the data.

In accordance with [44], existing data mining algorithms include the following
data mining methods. Classification and prediction, clustering, outlier analysis,
characterization and discrimination, frequent itemset and association rule mining,
and evolution analysis. Classification and prediction are called supervised data
mining tasks, because the goal is to learn a model for predicting a predefined
variable. Supervised data mining requires that class labels are given for all data
objects. The class label of an object assigns it to one of several predefined classes.
The other techniques are called unsupervised, because the user does not previ-
ously identify any of the variables to be learned. Instead, the algorithms have to
automatically identify any interesting regularities and patterns in the data. Clus-
tering means grouping the data objects into classes by maximizing the similarity
between objects of the same class and minimizing the similarity between objects
of different classes. We explain this important data mining task in detail in the fol-
lowing section. Outlier analysis deals with the identification of data objects that
cannot be grouped in a given class or cluster, since they do not correspond to the
general model of the data. Characterization and discrimination provide the sum-

4 1. Preliminaries

marization and comparison of general features of objects. Frequent itemset and
association rule mining focuses on discovering rules showing attribute value con-
ditions that occur frequently together in a given dataset. And evolution analysis
models trends in time related data that evolve.

1.3 Clustering: One of the Major Data Mining Tasks

In this thesis, we mainly focus on clustering techniques w.r.t. the special chal-
lenges posed by complex structured data. The goal of clustering is to find a natural
grouping of a dataset such that data objects assigned to a common group called
cluster are as similar as possible and objects assigned to different clusters differ as
much as possible. Consider for example the set of objects visualized in Figure 1.2.
A natural grouping would assign the objects to two different clusters blue and red.
Two outliers not fitting well to any of the clusters should be left unassigned.

Figure 1.2: Example for clustering consisting of two clusters blue and red and
two outlier objects.

Cluster analysis has been used in a large variety of fields such as astronomy,
physics, medicine, biology, archeology, geology, geography, psychology and mar-
keting. Many different research areas contributed new approaches (namely pattern
recognition, statistics, information retrieval, machine learning, bioinformatics and
data mining). In some cases, the goal of cluster analysis is a better understanding

1.3 Clustering: One of the Major Data Mining Tasks 5

Curvature

Labellum

Color

Length-Sepal(M)

C
u
rv
a
tu
re
L
a
b
el
lu
m

Feature-Transformation

feature vector

Figure 1.3: Example for feature transformation. Five features are measured and
transformed into a 5-dimensional vector space.

of the data (e.g. learning the natural structure of data which should be reflected by
a meaningful clustering). In other cases, cluster analysis is merely a first step for
different purposes such as indexing or data compression. While clustering in gen-
eral is a rather dignified problem, mainly in about the last decade new approaches
have been proposed to cope with new challenges provided by modern capabilities
of automatic data generation and acquisition in more and more applications pro-
ducing a vast amount of high dimensional data. These data need to be analyzed by
data mining methods in order to gain the full potentials from the gathered informa-
tion. However, structured data pose different challenges for clustering algorithms
that require specialized solutions. So, this area of research has been highly active
in the recent years with an abundance of proposed algorithms.

Like most data mining algorithms, the definition of clustering requires spec-
ifying some notion of similarity among objects. In most cases, the similarity is
expressed in a vector space, called the feature space. In Figure 1.2, we indicate the
similarity among objects by representing each object by a vector in 2-dimensional
space. Characterizing numerical properties (from a continuous space) are ex-
tracted from the objects, and taken together to a vector x ∈ Rd where d is the
dimensionality of the space, and the number of properties which have been ex-
tracted, respectively. For instance, Figure 1.3 shows a feature transformation

6 1. Preliminaries

where the object is a certain kind of an orchid. The phenotype of orchids can
be characterized using the lengths and widths of the two petal and the three sepal
leaves, of the form (curvature) of the labellum, and of the colors of the different
compartments. In this example, five features are measured, and each object is thus
transformed into a 5-dimensional vector space. To detect the similarity among two
data objects x and y represented as feature vectors, a metric distance function dist
is used. More specifically, let dist be one of the Lp norms, which is defined as
follows for an arbitrary p ∈ N.

dist(~x, ~y) = p

√√√√ d∑
i=1

|xi − yi|p

Usually the Euclidean distance is used, i.e. p = 2. If we have more complex data
types, we have to define a suited distance function.

For complex data objects, such as images, protein structures or text data, it is
a non-trivial task to define domain specific distance functions. In Chapter 5, we
introduce SkyDist, a similarity measure for skyline objects. Skyline objects rep-
resent a set of data objects that fit to a certain kind of query. The classic example
is a user looking for cheap hotels which are close to the beach. Typically, it is
unknown to the system how important the two conditions, distance and price,
are to the user. The skyline query returns all offers which may be of interest. This
means, the skyline does not only contain the cheapest hotel and the hotel closest
to the beach but also all hotels providing an outstanding combination of price and
distance, which makes them more attractive to the user than any other hotel in
the database. The high expressiveness of skylines aims at performing data mining
on such data structures.

1.4 Information Theory for Clustering

Most clustering approaches suffer from a common problem: To obtain a good
result, the user needs expertise about the data to select suitable parameters, e.g.

1.4 Information Theory for Clustering 7

the number of clusters, density thresholds or neighborhood sizes. In practice, the
best way to cope with this problem often is to run the algorithm several times with
different parameter settings. Thereby, suitable values for the parameters can be
learned in a trial and error fashion. But it is obvious, that this is an extremely time
consuming approach. And anyhow, it cannot guarantee that at least useful values
for the parameters are obtained.

A beneficial solution for that problem is to relate clustering to data compres-
sion. Imagine you want to transfer a dataset consisting of feature vectors via an
extremely expensive and small-banded communication channel from a sender to
a receiver. Without clustering, each coordinate needs to be fully coded by trans-
forming the numerical value into a bit string. But, if the data provides regularities,
clustering can drastically reduce communication costs. For example a model-
based clustering algorithm, like EM [27], can be applied to determine a statistical
model for the dataset, which defines more or less likely areas of the data space.
With this knowledge, the data can be compressed very effectively since only the
deviations from the model need to be encoded which requires much less bits than
the full coordinates. The model can be regarded as a codebook which allows the
receiver to de-compress the data again. Following the idea of (optimal) Huffman
coding, we assign few bits to points in areas of high probability and more bits to
areas of low probability. The interesting observation is the following: the com-
pression becomes the more effective, the better our statistical model fits to the
data.

This basic idea, often referred as the Minimum Description Length Principle
(MDL) [40] allows comparing different clustering results: Assume we have two
different clusterings A and B of the same dataset. We can state that A is better
than B if it allows compressing the dataset more effectively than B. Note that we
have to consider the overall communication costs, meaning that we have to add
the costs caused by the statistical model itself to the code length spent for the data.
Thereby we achieve a natural balance between the complexity of the model and
its fit to the data, and avoid the so-called over-fitting effect. Closely related ideas

8 1. Preliminaries

developed by different communities include the Bayesian Information Criterion
(BIC), the Aikake Information Criterion (AIC) and the Information Bottleneck
method (IB) [95].

In Chapter 3, we define a hierarchical variant of the MDL principle, called
hMDL. This novel criterion is able to assess a complete cluster hierarchy. Chap-
ter 4 proposes iMDL, a coding scheme for performing integrative data mining on
data that consist of mixed type attributes.

1.5 Boosting the Data Mining Process

It has been shown that many data mining algorithms, including clustering, have
another common problem besides the challenging parameterization. Most com-
putations are extremely time consuming, particularly if they have to deal with
large databases, which is a serious problem, as the amount of scientific data is
approximately doubling every year [92]. Typical algorithms for learning complex
statistical models from data are in quadratic or cubic complexity classes w.r.t. the
number of objects and/or the dimensionality. To make these algorithms usable in
a large and high dimensional database context is therefore an important goal.

One opportunity for boosting the data mining process is the intelligent adop-
tion of graphics processing units (GPUs). GPUs have recently evolved from sim-
ple devices for the display signal preparation into powerful coprocessors support-
ing the CPU in various ways (cf. Figure 1.4). Graphics applications such as
realistic 3D games are computationally demanding and require a large number of
complex algebraic operations for each image update. Therefore, today’s graphics
hardware contains a large number of programmable processors, which are opti-
mized to cope with this high workload in a highly parallel way. Vendors of graph-
ics hardware have anticipated that trend and developed libraries, precompilers
and application programming interfaces. Most prominently, NVIDIA’s technol-
ogy Compute Unified Device Architecture (CUDA) offers free development tools
for the C programming language in which both the host program as well as the

1.5 Boosting the Data Mining Process 9

Figure 1.4: Growth trend of NVIDIA GPU vs. CPU (Source: NVIDIA).

kernel functions are assembled in a single program [1]. The host program or so-
called main program is executed on the CPU. In contrast, the kernel functions are
executed in a massively parallel fashion on hundreds of processors on the GPU.
Analogous techniques are also offered by ATI using the brand names Close-to-
Metal, Stream SDK, and Brook-GP.

In terms of peak performance, the GPU has outperformed state-of-the-art multi-
core CPUs by a large margin. Hence, there is a great effort in many research com-
munities such as life sciences [69, 73], mechanical simulation [94], cryptographic
computing [8], machine learning [21], or even data mining [88] to use the com-
putational capabilities of GPUs even for purposes which are not at all related to
computer graphics. The corresponding research area is called General Processing-
Graphics Processing Units (GP-GPU). We focus on exploiting the computational
power of GPUs for data mining. Therefor specialized indexing methods are re-
quired because of the highly parallel but restricted programming environment. In
this thesis, we propose a multi-dimensional indexing method that is well suited
for the architecture provided by the GPU.

10 1. Preliminaries

To demonstrate that highly complex data mining tasks can be efficiently imple-
mented using novel parallel algorithms, we propose parallel versions of general
similarity search and two widespread clustering algorithms in Chapter 7. These
algorithms make use of the high computational power provided by the GPU. They
are highly parallel and exploit thus the high number of simple SIMD (Single In-
struction Multiple Data) processors of today’s graphics hardware. The paralleliza-
tion which is required for GPUs differs considerably from previous parallel algo-
rithms which have focused on shared-nothing parallel architectures prevalent in
server farms. For even further accelerations, we propose the indexed variants of
these algorithms.

1.6 Outline of the Thesis 11

1.6 Outline of the Thesis

In this thesis, we aim at discovering novel data mining algorithms for mining dif-
ferent kinds of data structures. In addition, we focus on boosting opportunities for
computationally intensive steps of the data mining process. The detailed outline
is given in the following.

In Chapter 1, we give the reader a short introduction to the broader context of this
thesis. In Chapter 2, we provide a brief overview of traditional data mining algo-
rithms on structured data and present a rather general survey on advanced cluster-
ing methods. In addition, we introduce the broad related work on techniques for
boosting the data mining process by an intelligent adoption of Graphics Process-
ing Units (GPUs).

Chapter 3 to Chapter 6 deal with advanced data mining algorithms on structured
data types. Here we focus on hierarchical data mining, the analysis of more com-
plex data types like mixed type attribute data and skyline objects, and graph min-
ing. In Chapter 3, we present the two hierarchical clustering algorithms ITCH
(Information-Theoretic Cluster Hierarchies) and GACH (Genetic Algorithm for
finding Cluster Hierarchies). ITCH, is an EM-based clustering approach to ar-
range only natural, valid, and meaningful clusters in a hierarchy guided by the
idea of data compression. GACH overcomes the common problem of getting
stuck in a local optimum by a beneficial combination of genetic algorithms, infor-
mation theory and model-based clustering. The ideas on hierarchical data mining
have already been published by the author [12]. In Chapter 4, we propose INTE-
GRATE [13], a new algorithm for performing integrative parameter-free cluster-
ing of data with mixed type attributes. Chapter 5 provides SkyDist [17], a novel
similarity measure for the comparison of different skyline objects. Chapter 6 is
dedicated to our novel approaches that have the ability to detect patterns in static as
well as in dynamic networks. We published a large case-study on static brain net-
work models [78, 99] and our work on finding frequent dynamic subgraphs [100].

12 1. Preliminaries

Chapter 7 presents our work on data mining using GPUs. Section 7.1 explains
the graphics hardware and the CUDA programming model underlying our pro-
cedures. In Section 7.2, we develop a multi-dimensional index structure for si-
milarity queries on the GPU that can be used for further accelerations of the data
mining process. Section 7.3 presents non-indexed as well as indexed algorithms
to perform the similarity join on graphics hardware. Section 7.4 and Section 7.5
are dedicated to GPU-capable algorithms for density-based and partitioning clus-
tering. The contributions on data mining using GPUs have already been published
by the author in two publications [15, 14].

Chapter 8 summarizes and discusses the major contributions of this thesis. It
includes some ideas for future directions.

Chapter 2

Related Work

To survey the large work on performing data mining of structured data, we mainly
focus on well-known clustering techniques for hierarchical data in Section 2.1 as
well as for mixed type attributes data in Section 2.2. In Section 2.3, we describe
some ideas of how to enhance the effectiveness of many data mining concepts by
information theory. In the field of graph mining, we present different algorithms
for finding interesting patterns, i.e. frequent subgraphs in one large network or in
a given set of networks (cf. Section 2.4). Finally, we conclude the related research
on acceleration opportunities for the data mining process by the use of graphics
processors.

2.1 Hierarchical Clustering

Hierarchical clustering algorithms compute a hierarchical decomposition of the
dataset instead of a unique assignment of data objects to clusters in partitioning
clustering. Given a dataset DS, the goal is to produce a hierarchy, which is vi-
sualized as a tree, called dendrogram. The nodes of the dendrogram represent
subsets of DS simulating the structure found in DS with the following properties
(cf. Figure 2.1):

14 2. Related Work

Figure 2.1: The hierarchical structure, present in the dataset on the left side, is
visualized by the dendrogram on the right side.

• The root of the dendrogram represents the whole dataset DS.

• Each leaf of the dendrogram corresponds to one data object of DS.

• The internal nodes of the dendrogram are defined as the union of their chil-
dren, i.e., each node represents a cluster containing all objects in the corre-
sponding subtree.

• Each level of the dendrogram represents a partition of the dataset into dis-
tinct clusters.

Hierarchical clustering can be subdivided into agglomerative methods, which pro-
ceed by series of fusions of data objects into clusters, and divisive methods, which
separate the data objects successively into finer clusters. Agglomerative hierar-
chical clustering algorithms follow a bottom-up strategy by merging the clusters
iteratively. They start by placing each data object in its own single cluster. Then,
the clusters are merged together into larger clusters by grouping similar data ob-
jects together until the entire dataset is encapsulated into one final root cluster.

2.1 Hierarchical Clustering 15

Most hierarchical methods belong to this category. They differ only in their defi-
nition of between-cluster similarity.

Divisive hierarchical clustering works in the opposite way - it starts with all
data objects in one root cluster and subdivides them into smaller clusters until
each cluster consists of only one single data object. Divisive methods are not
generally available, and have been rarely applied. The reason for this is mainly
computational - divisive clustering is more computationally expensive when it
comes to making decisions in dividing a cluster in two clusters given all possible
choices. While in agglomerative procedures in one step two out of maximum
n elements have to be chosen for merging, in divisive procedures fundamentally
all subsets have to be analyzed so that divisive procedures have an algorithmic
complexity of O(2n).

2.1.1 Agglomerative Hierarchical Clustering

Given a dataset DS of n objects, the basic process of agglomerative hierarchical
clustering is defined as follows:

1. Place each data object xi ∈ DS (i = 1, . . . n) in one single cluster Ci.
Create the list of initial clusters C = C1, . . . , Cn, which will build the leaves
of the resulting dendrogram.

2. Find the two clusters Ci, Cj ∈ C with the minimum distance to each other.

3. Merge the clusters Ci and Cj to create a new internal node Cij which will
be the parent of Ci and Cj in the resulting dendrogram. Remove Ci and Cj
from C.

4. Repeat step (2) and (3) until the total number of clusters in C becomes one.

In the first step of the algorithm, when each object represents its own cluster, the
distances between the clusters are defined by the chosen distance function be-
tween the objects of the dataset. However, once several objects have been linked

16 2. Related Work

together, a linkage rule is needed to determine the actual distance between two
clusters. There are numerous linkage rules that have been proposed. In the fol-
lowing, some of the most commonly used are presented.

2.1.2 Linkage methods

Let DS be a dataset, dist denotes the distance function between the data objects
of DS, and let Ci and Cj be two disjunct clusters consisting of objects of DS, i.e.
Ci, Cj ⊆ DS and Ci ∩ Cj = ∅. In the following, some of the most commonly
used linkage rules to determine the distance between two clusters are described.

Single Link

One of the most widespread approaches to agglomerative hierarchical clustering
is Single Link [72]. Single Link defines the distance distSL between any two
clusters Ci and Cj as the minimum distance between them, i.e. as the distance
between the two closest objects:

distSL(Ci, Cj) = min
xi∈Ci,xj∈Cj

{dist(xi, xj)}.

Using the Single Link method often causes the chaining phenomenon, also called
Single Link effect, which is a direct consequence of the Single Link approach
tending to build a chain of objects that connects two clusters.

Complete Link

The Complete Link method [25] is the opposite of Single Link. Complete Link
defines the distance distCL between any two clusters Ci and Cj as the maximum
distance between them:

distCL(Ci, Cj) = max
xi∈Ci,xj∈Cj

{dist(xi, xj)}.

2.1 Hierarchical Clustering 17

This method should not be used if there is a lot of noise expected to be present in
the dataset. It also produces very compact clusters. This method is useful if one is
expecting objects of the same cluster to be far apart in multi-dimensional space.
In other words, outliers are given more weight in the cluster decision.

Average Link

Average Link [98] calculates the mean distance between all possible pairs of ob-
jects belonging to the two clusters Ci and Cj . Hence, it is computationally more
expensive to compute the distance distAV G than the aforementioned methods:

distAV G(Ci, Cj) =
1

|Ci| · |Cj|
∑

xi∈Ci,xj∈Cj

{dist(xi, xj)}.

Average Link is sometimes also referred to as UPGMA (Unweighted Pair-Group
Method using Arithmetic averages). There are several other variations of this
method, e.g. Weighted Pair-Group Average, Unweighted Pair-Group Centroid,
Weighted Pair-Group Centroid, but one should understand that it is a tradeoff
between Single Link and Complete Link.

2.1.3 Density-based Hierarchical Clustering

The algorithm OPTICS (Ordering Points To Identify the Clustering Structure) [4]
avoids the Single Link effect by requiring a minimum object density per cluster,
i.e. MinPts number of objects are within a hypersphere with radius ε. The main
idea of OPTICS is to compute a complex hierarchical cluster structure, i.e. all pos-
sible clusterings with the parameter ε ranging from 0 to a given maximum value
simultaneously during a single traversal of the dataset. The resulting cluster struc-
ture is visualized by a so-called reachability plot where the objects are plotted
according to the sequence specified in the cluster ordering along the x-axis, and
for each object, its corresponding distance along the y-axis. Figure 2.2 depicts the
reachability plot based on the cluster ordering computed by OPTICS for a given

18 2. Related Work

ε1

ε2

B

B

A1 A2

A

Figure 2.2: The reachability plot computed by OPTICS for a given sample 2-
dimensional dataset.

sample 2-dimensional dataset. Valleys in this plot indicate clusters: objects hav-
ing a small reachability value are closer and thus more similar to their predecessor
objects than objects having a higher reachability value. The reachability plot gen-
erated by OPTICS can be cut at any level ε′ parallel to the x-axis. It represents
the partitioning according to the density threshold ε′. A consecutive subsequence
of objects having a smaller reachability value than ε′ belongs to the same cluster
then. Referring to the given example in Figure 2.2, a cut at the level ε1 results in
two clusters A and B. Compared to this clustering, a cut at level ε2 would yield
three clusters. The cluster A is split into two smaller clusters denoted by A1 and
A2 and cluster B decreased its size. This illustrates, how the hierarchical cluster
structure of a dataset is revealed at a glance and can be easily explored by visual
inspection.

Single Link is a special case of OPTICS (whereMinPts = 1 and a maximum
value of ε =∞). In this case, OPTICS has the same drawbacks like Single Link,
i.e. missing stability w.r.t. noise objects and the Single Link effect. OPTICS
overcomes this drawback if MinPts is set to higher values.

2.1 Hierarchical Clustering 19

2.1.4 Model-based Hierarchical Clustering

For many applications and further data mining steps, it is essential to have a model
of the data. Hence, clustering with PDFs, which goes back to the popular EM al-
gorithm [27], is a widespread approach for performing clustering. EM is a gener-
alization of the k-means algorithm, a partitioning clustering algorithm for numeri-
cal data (cf. Section 2.2.1). After a suitable initialization, EM iteratively optimizes
a mixture model of k Gaussian distributions until no further significant improve-
ment of the log-likelihood of the data can be achieved. In detail, we generate a
dataset that consists of first picking a centroid at random and then adding some
noise. If the noise is normally distributed, this procedure will result in clusters
of spherical shape. Model-based clustering assumes that the data were generated
by a model and tries to recover the original model from the data. More precisely,
the data has been generated from a finite mixture of k distributions, but that the
cluster membership of each data point is not observed. In EM, the log-likelihood
is used to calculate the model parameters θ:

L(θ) = log
n∏
i=1

P (xi|θ) =
n∑
i=1

logP (xi|θ)

Model-based clustering aims for determine the parameter θ̂ that maximizes the
log-likelihood:

L(θ̂) = max
θ
L(θ) = max

θ

n∑
i=1

logP (xi|θ)

In the case of k clusters a vector ~θ = {θ1, · · · , θk} has to be optimized:

L(~θ) =
n∑
i=1

logP (xi|~θ) =
n∑
i=1

k∑
j=1

logWj + logP (xi|θj)

,

where Wj is the weight of the cluster that represents the number of objects asso-
ciated to that cluster.

20 2. Related Work

EM can be applied to many different types of probabilistic modeling. In case
the probability density function (PDF) which is associated to a cluster C is a
multivariate Gaussian in a d-dimensional space which is defined by the parameters
µC and ΣC (where µC = (µC,1, ..., µC,d)

T is a vector from a d-dimensional space,
called the location parameter, and ΣC is a d× d covariance matrix), the definition
of P (x|θ) is as follows:

P (x|µC ,ΣC , x) =
1√

(2π)d · |ΣC |
· e−

1
2

(x−µC)T·Σ−1
C ·(x−µC).

The EM algorithm is an iterative procedure where in each iteration step the mix-
ture model of the k distributions are optimized until no further significant im-
provement of the log-likelihood of the data can be achieved. Usually, a very fast
convergence of EM is observed. However, the algorithm may get stuck in local
maximum of the log-likelihood. Moreover, the quality of the clustering result
strongly depends on an appropriate choice of k, which is a non-trivial task in most
applications.

A hierarchical extension of the EM algorithm was presented by Vasconcelos
and Lippman in 1998 [97]. The efficiency of this approach is achieved by pro-
gressing the data in a bottom-up fashion, i.e. the mixture components of a given
level are clustered to retrieve those components of the level above. This procedure
requires only knowledge of the mixture parameters, the intermediate samples do
not have to be resorted. With regards to practical applications, this algorithm leads
to computationally efficient methods for estimating density hierarchies capable of
describing data at different resolutions.

2.2 Mixed Type Attributes Data

A prominent characteristic of data mining is that it deals with very large and com-
plex datasets. These data often contain millions of objects described by various
types of attributes or variables, e.g. numerical, categorical, ratio or binary. Hence,

2.2 Mixed Type Attributes Data 21

integrative data mining algorithms have to be scalable and capable of dealing with
different types of attributes. In terms of clustering, we are interested in algo-
rithms which can efficiently cluster large datasets containing both numeric and
categorical values because such datasets are frequently encountered in data min-
ing applications. The traditional way to treat categorical attributes as numeric
does not always produce meaningful results because many categorical domains
are not ordered.

One simple idea for performing integrative clustering on heterogeneous data
is to combine k-means based methods with the k-modes algorithm. The algorithm
k-prototypes derives advantage from this combination, and is therefore one of the
first approaches towards integrative clustering.

2.2.1 The k-means Algorithm for Clustering Numerical Data

The k-means algorithm [72] is one of the mostly used partitioning non-hierarchical
clustering approach. The procedure follows a simple and easy way to group a
given datasetDS consisting of n numeric objects into a certain number of k (< n)
clusters. First, k centroids are defined, one for each cluster. Then, the algorithm
takes each point of DS and associates it to the nearest centroid, until no more
point is pending. Afterwards, the k new centroids (the mean value µ over the
coordinates of all data points belonging to the specific cluster) are recalculated,
and thus, a new association has to be determined between the points of DS and
the nearest new centroid. These two steps are performed until no more location
changes of the centroids are observed. Finally, k-means aims at minimizing an
objective function, in this case the within clusters sum of squared errors (WCSS).

WCSS =
k∑
j=1

n∑
i=1

(dist(xi,j, µj))
2,

where dist(xi,j, µj) is a chosen distance function between a data point xi,j and the
centroid µj of cluster Cj , is an indicator of the distance of the n data points from
their respective cluster centers.

22 2. Related Work

The main advantage of k-means is its efficiency. It can be proven that convergence
is reached in O(n) iterations. However, this method has four major drawbacks:
First, the number of clusters k has to be specified in advance, second, the clus-
ter compactness measure WCSS and thus the clustering result is very sensitive to
noise and outliers. In addition, k-means implicitly assumes a Gaussian data dis-
tribution, and is thus restricted to detect spherically compact clusters. The major
drawback lies in its limited practicability to numeric data.

2.2.2 Conceptual Clustering Algorithms for Categorical Data

In principle the formulation of the WCSS in Section 2.2.1 is also valid for cate-
gorical and mixed type objects. The reason why the k-means algorithm cannot
cluster categorical objects is that the calculation of the mean value is not defined
for categorical data. These limitations can be removed by the following modifica-
tions:

• Use a simple matching distance function for categorical objects.

• Replace means as cluster representatives by modes.

• Use a frequency-based method to find the modes.

A Distance Function for Categorical Objects

Let x, y be two categorical objects described by m categorical attributes. The dis-
tance function between these two objects can be defined by the total mismatches
of the corresponding attribute categories of the two objects. The smaller the num-
ber of mismatches is, the more similar x and y. This measure is often referred to
as simple matching [56]. Formally this distance function is defined as follows:

distSimple(x, y) =
m∑
i=1

δ(xi, yi), where δ(xi, yi) =

0, if xi = yi,

1, if xi 6= yi.

2.2 Mixed Type Attributes Data 23

Modes as Cluster Representatives

Consider a set of n categorical objects X described by categorical attributes,
A1, A2, · · · , Am. The mode of this set is an array q = [q1, q2, · · · qm] of length
m that minimizes the following formula:

D(X, q) =
n∑
i=1

distSimple(Xi, q)

Calculation of the Modes

Let nck,i be the number of objects having the k-th category ck,i in attribute Ai,
and let p(Ai = ck,i|X) be the relative frequency of category ck,i in X . Then the
function D(X, q) is minimized if and only if p(Ai = qi|X) ≥ p(Ai = ck,i|X) for
qi 6= ck,i for all i ∈ {1, · · · ,m}[48].

This theorem defines a way to find the mode q from a given set of categorical
objects X , and therefore it is important because it allows the k-means paradigm
to be used to cluster categorical data.

The Algorithm k-modes

Conceptual clustering algorithms, like k-modes [49] implement the idea of clus-
tering categorical data by using distSimple as distance function and by means of
the aforementioned modifications of k-means clustering. The procedure of the
algorithm k-modes can be summarized as follows:

1. Select k initial modes, one for each cluster.

2. Allocate an object to the cluster whose mode is the nearest to it according
to the distance function distSimple; update the mode of the cluster after each
allocation according to the theorem presented in Section 2.2.2.

3. After all objects have been allocated to clusters, retest the distance of objects
against the current modes. If an object is found such that its nearest mode

24 2. Related Work

belongs to another cluster rather than its current one, reallocate the object
to that cluster and update the modes of both clusters.

4. Repeat step (3) until no object has changed clusters after a full cycle test of
the whole dataset.

Like the k-means algorithm, the k-modes algorithm also produces locally optimal
solutions that are dependent on the initial modes and the order of objects in the
dataset. Its efficiency relies on good search strategies. For data mining problems,
which often involve many concepts and very large object spaces, the concepts
based search methods can become a potential handicap for these algorithms to
deal with extremely large datasets.

2.2.3 The k-prototypes Algorithm for Integrative Clustering

One of the first algorithms for integrative clustering is k-prototypes [47]. The dis-
tance between two mixed type objects x and y, which are described bym attributes
An1 , A

n
2 , · · · , Anp , Acp+1, A

c
p+2, · · · , Acm is measured by the following formula:

distMixed =

p∑
i=1

(xi − yi)2 + γ
m∑

i=p+1

δ(xi, yi).

The first term is the squared Euclidean distance measure on the p numeric at-
tributes Ani and the second term is the simple matching distance function on the
m−p categorical attributes Aci . The weight γ is used to avoid favoring either type
of attribute. The influence of this parameter in the clustering process is discussed
in the publication by Huang [47].

2.3 Information Theory in the Field of Clustering

Many clustering algorithms suffer from the problem that they require a difficult
parameter setting. Hence, several advanced clustering approaches directly focus

2.3 Information Theory in the Field of Clustering 25

on parameter-free partitioning clustering and are based on the Akaike Information
Criterion (AIC), the Bayesian Information Criterion (BIC) and Minimum Descrip-
tion Length (MDL) [40]. For these methods, the data itself is the only source of
knowledge. Information theoretic arguments are applied for model selection dur-
ing clustering, and these approaches involve a lossless compression of the data.

The work of Still and Bialek [91] provides important theoretical background by
using information-theoretic arguments to relate the maximum number of clusters
that can be detected by partitioning clustering with the size of the dataset. The
algorithm X-Means [81] combines the k-means paradigm with BIC for parameter-
free clustering. X-Means involves an efficient top-down splitting algorithm where
intermediate results are obtained by bisecting k-means and are evaluated with
BIC. However, only spherically Gaussian clusters can be detected. The algorithm
G-means (Gaussian means) introduced in [43] has been designed for parameter-
free correlation clustering. G-means follows a similar algorithmic paradigm as
X-Means with top-down splitting and the application of bisecting k-means upon
each split. However, the criterion to decide whether a cluster should be split up
into two is based on a statistical test for Gaussianity. Splitting continues until
the clusters are Gaussian, which implies of course, that non-Gaussian clusters can
still not be detected. The algorithm PG-means (Projected Gaussian means) by
Feng and Hamerly [33] is similar to G-means but learns models with increasing
k with the EM algorithm. In each iteration, various 1-dimensional projections of
the data and the model are tested for Gaussianity. Experiments demonstrate that
PG-means is less prone to over-fitting than G-means.

It turns out that the underlying clustering algorithm and the choice of the sim-
ilarity measure are already some kind of parameterization which implicitly comes
with specific assumptions. The commonly used Euclidean distance e.g. assumes
Gaussian data. In addition, the algorithms discussed so far are very sensitive w.r.t.
noise objects or outliers. These problems are addressed by the recently proposed
algorithm RIC (Robust Information-theoretic Clustering) by Böhm et al. [10].
This algorithm can be applied for post-processing an arbitrary imperfect initial

26 2. Related Work

pdfLapl(μ=3.5 σ=1)(x)

5 % 4.3 Bit

pdfGauss(μ=3.5 σ=1)(y)

x

Figure 2.3: Coding scheme for cluster objects of the RIC algorithm. In addition
to the data, type and parameters of the PDF need to be coded for each cluster.

clustering. It is based on MDL and introduces a coding scheme especially suit-
able for clustering together with algorithms for purifying the initial clusters from
noise. In a first step, RIC removes noise objects from the initial clusters, and then
merges clusters if this allows for more effective data compression. The algorithm
operates with arbitrary data distributions, taken from a fixed set of PDFs.

The coding scheme for a data point p of a cluster C is illustrated in Figure 2.3.
Here, we have a Laplacian distribution for the x-coordinate and a Gaussian dis-
tribution for the y-coordinate. Both distributions are assumed with µ = 3.5 and
σ = 1. We need to assign code patterns to the coordinate values such that co-
ordinate values with a high probability (such as 3 < x < 4) are assigned short
patterns, and coordinate values with a low probability (such as y = 12 to give

2.4 Graph-structured Data 27

a more extreme example) are assigned longer patterns. Provided that a coordi-
nate is really distributed according to the assumed distribution function, Huffman
codes optimize the overall compression of the dataset. Huffman codes associate
a bit string of length l = log2(1/p(pi)) to each coordinate pi, where p(pi) is the
probability of the (discretized) coordinate value.

The algorithm OCI (Outlier-robust Clustering using Independent Components) [11]
provides parameter-free clustering of noisy data and allows detecting non-Gaussian
clusters with non-orthogonal major directions. Technically this is achieved by
defining a very general cluster notion based on the Exponential Power Distribution
(EPD) and by integrating Independent Component Analysis (ICA) into clustering.
The EPD includes a wide range of symmetric distribution functions, e.g. Gaus-
sian, Laplacian and uniform distributions and an infinite number of hybrid types in
between by an additional shape parameter. Beyond correlations detected by Prin-
cipal Component Analysis (PCA), which correspond to correlation clusters with
orthogonal major directions, ICA allows to detect general statistical dependencies
in the data.

2.4 Graph-structured Data

In this section, we review the previous work on finding patterns in graph data and
focus on three problems. First, frequent subgraphs across a dataset of graphs. Sec-
ond, frequent subgraphs within one single large graph. Third, frequent subgraphs
in dynamic graph data.

2.4.1 Graph Dataset Mining

The graph dataset mining approaches can be broadly divided into two classes,
apriori-based and pattern-growth based. AGM (Apriori-based Graph Mining) [52]
determines subgraphs s in a dataset DS of labeled graphs that occur in at least t
percentage of all graphs (also called transactions) in DS. AGM uses a canonical

28 2. Related Work

X

YZ

Xb
a

a b

v0

v1

v2 v3

X

YZ

Xb
a

a b

v0

v1

X

YZ

Xb
a

a b

v0

v1

backward extension forward extension

v2 v3 v2 v3

Figure 2.4: Illustration of the rightmost extension used in gSpan.

representation of subgraphs in order to reduce runtime costs for subgraph isomor-
phism checking.

Similar to AGM, FSG (Frequent SubGraph Discovery) [61] uses a canonical
labeling based on the adjacency matrix. Canonical labeling, candidate generation
and evaluation are sped up in FSG using graph invariants and the Transaction
ID principle, which stores the ID of transactions a subgraph appeared in. This
speed-up is paid for by reducing the class of subgraphs discovered to connected
subgraphs, i.e. subgraphs where a path exists between all pairs of nodes.

The most well-known member of the class of pattern-growth algorithms, gSpan
(graph-based Substructure pattern mining) [107], discovers frequent substructures
efficiently without candidate generation. It is built on depth first search (DFS) tree.
Given a graph S with nodes N and edges E, and a DFS tree TR, we call the start-
ing node in TR, v0, the root, and the last visited node, vn, the rightmost node. The
straight path from v0 to vn is called the rightmost path. Figure 2.4 shows an exam-
ple. The red edges form a DFS tree. The nodes are discovered in the order v0, v1,
v2, v3. The node v3 is the rightmost node. The rightmost path is v0 → v1 → v3.

The new method, called rightmost extension, restricts the extension of new
edges in a graph as follows: Given a graph S and a DFS tree TR, a new edge e
can be added between the rightmost node and other nodes on the rightmost path
(backward extension) or it can introduce a new node and connect it to nodes on the

2.4 Graph-structured Data 29

rightmost path (forward extension). If we want to extend the graph in Figure 2.4,
the backward extension candidate can be (v3, v0). The forward extension candi-
dates can be edges extending from v3, v1 or v0 with a new node inserted. Since
there could be multiple DFS trees for one graph, gSpan establishes a set of rules to
select one of them as representative so that the backward and forward extensions
will only take place on one DFS tree.

Overall, new edges are only added to the nodes along the rightmost path. With
this restricted extension, gSpan reduces the generation of the same graphs, and
defines a canonical form of S. However, it still guarantees the completeness of
enumerating all frequent subgraphs.

2.4.2 Large Graph Mining

Unlike graph dataset mining, large graph mining intends to find subgraphs that
have at least t embeddings in one large graph. Note that any large graph min-
ing algorithm can be applied to the graph dataset mining problem as well, simply
by concatenation of all single graphs from a dataset into one large graph. Of
course, subgraphs that include nodes from distinct single graphs must be pruned
during pattern search. The reverse, applying graph dataset mining algorithms to
large graphs, is not directly possible. GREW [63] and SUBDUE [23] are greedy
heuristic approaches for frequent graph mining that deal speed for completeness
of the solution. GREW iteratively joins frequent pairs of nodes (i.e. edges) into
one supernode and determines disjoint embeddings of connected subgraphs by a
maximal independent set algorithm. GREW maintains the location of the em-
beddings of the previously identified frequent subgraphs by rewriting the input
graph, and therefore it is also applicable on very large graph datasets. This con-
cept of edge contraction and graph rewriting is basically similar to that used by
other heuristic algorithms, e.g. SUBDUE. However, GREW substantially extends
this idea in multiple ways: First, it allows the concurrent contraction of different
edge types, and second, GREW employs a set of heuristics in order to find longer
and denser frequent patterns. Hence, this algorithm is enabled to simultaneously

30 2. Related Work

discover multiple patterns and to find longer patterns in fewer iterations. Finally,
GREW uses a representation of the rewritten graph that retains all the information
present in the original graph, and thus it precisely identifies whether or not there
is an embedding of a particular subgraph. This result guarantees a lower bound
on the frequency of each discovered pattern. SUBDUE tries to minimize the min-
imum description length (MDL) of a graph by compressing frequent subgraphs.
Frequent subgraphs are replaced by one single node and the MDL of the remain-
ing graph is then determined. Those subgraphs whose compression minimizes the
MDL are considered frequent patterns in the input graph. The candidate graphs
are generated starting from single nodes to subgraphs with several nodes, using a
computationally constrained beam search.

Similarly, vSIGRAM and hSIGRAM [62] find subgraphs that are frequently
embedded within a large sparse graph, using “horizontal” breadth-first search and
“vertical” depth-first search, respectively. They employ efficient algorithms for
candidate generation and candidate evaluation that exploit the sparseness of the
graph.

While most of the techniques mentioned before often use some sort of heuris-
tic search strategy that repeatedly compresses the graph to find frequent sub-
graphs, methods based on sampling subgraphs to estimate their frequency are pre-
dominant in application domains, like bioinformatics [55, 102]. Another strategy
is to exhaustively enumerate all subgraphs. This has the advantage that one can
then compute exact rather than approximate frequencies, but for large graphs, it is
only feasible for subgraphs with a limited number k of nodes, typically k ∈ {3, 4}.

2.4.3 Dynamic Graph Mining

While the evolution of graphs over time has been addressed before, the corre-
sponding studies predominantly dealt with topics such as densification and shrink-
ing diameters of real-world graphs over time [65]. Only a few papers [18, 29, 64]
define terminology for mining dynamic networks, but to the best of our knowledge
no paper presents an efficient algorithm for detecting frequent subgraphs within

2.5 Boosting Data Mining 31

dynamic graphs so far.

2.5 Boosting Data Mining

In this section, we survey the related research in general purpose computations
using Graphics Processing Units (GPUs) with particular focus on database man-
agement and data mining.

Figure 2.5: The NVIDIA GeForce 8800 GTX graphics processor (Source:
NVIDIA).

2.5.1 General Processing-Graphics Processing Units

Theoretically, GPUs are capable of performing any computation that can be trans-
formed to the model of parallelism and that allow for the specific architecture of
the GPU. This model has been exploited for multiple research areas. One scien-
tific publication on computations from the field of life sciences has been published
by Manavski and Valle [73]. The authors propose an extremely fast solution of the
Smith-Waterman algorithm, a procedure for searching for similarities in protein

32 2. Related Work

and DNA databases, running on GPU and implemented in the CUDA program-
ming environment. This algorithm launches a great number of parallel threads
simultaneously to fully exploit the huge computational power of the GPU. It pur-
sues the strategy that each GPU thread computes the whole alignment of the query
sequence with one database sequence. All threads are grouped in a grid of blocks
when running on the graphics card. In order to make the most efficient use of
the GPU resources the computing time of all threads in the same grid must be as
near as possible. For this reason, the sequences of the database are pre-ordered
w.r.t. their length. Hence, all adjacent threads align the query sequence with two
database queries having the nearest possible sizes.

Another widespread application area that uses the processing power of the
GPU is mechanical simulation. One example is the work by Tascora et al. [94],
that presents a novel method for solving large cone complementarity problems by
means of a fixed-point iteration algorithm, in the context of simulating the fric-
tional contact dynamics of large systems of rigid bodies. The proposed algorithm
is well suited for running on parallel platforms that support the single instruction
multiple data (SIMD) computational paradigm, which is ideally suited for han-
dling problems with contacts in excess of hundreds of thousand.

To demonstrate the nearly boundless possibilities of performing computations
on the GPU, we introduce one more example, namely cryptographic comput-
ing [8]. In this paper, the authors present a record-breaking performance for the
Elliptic Curve Method (ECM) of integer factorization. This approach uses the par-
allelism of the GPU to handle several curves for a given auxiliary integer, which
can thus be stored in the shared memory of a multiprocessor. All processors in
one multiprocessor follow the same series of instructions which is a scalar multi-
plication on the respective curve modulo the same parameterm and with the same
scalar s. The authors achieve an extreme speedup that results of extra hardware
using the novel ECM implementation.

2.5 Boosting Data Mining 33

2.5.2 Database Management Using GPUs

Some research papers propose techniques to speed up relational database oper-
ations on GPU. Two recent papers [67, 16] address the topic of similarity join
in feature space which determines all pairs of objects from two different sets R
and S fulfilling a certain join predicate. The most common join predicate is the
εSJ -join which determines all pairs of objects having a distance of less than a
predefined threshold εSJ . The authors of [67] propose an algorithm based on the
concept of space filling curves, e.g. the z-order, for pruning the search space, run-
ning on an NVIDIA GeForce 8800 GTX using the CUDA toolkit. The z-order
of a set of objects can be determined very efficiently on GPU by highly paral-
lelized sorting. Their algorithm operates on a set of z-lists of different granularity
for efficient pruning. However, since all dimensions are treated equally, perfor-
mance degrades in higher dimensions. An approach that overcomes that kind of
problem is presented in [16]. Here, the authors parallelize the baseline technique
underlying any join operation with an arbitrary join predicate, namely the nested
loop join (NLJ), a powerful database primitive that can be used to support many
applications including data mining.

Govindaraju et al. [38, 39] demonstrate that important building blocks for
query processing in databases, e.g. sorting, conjunctive selections, aggregations,
and semi-linear queries can be significantly speed up by the use of GPUs. Their
algorithm GPUTeraSort uses the GPU as a co-processor to sort databases with bil-
lions of records. GPUTeraSort is general and can handle long records with wide
keys. This hybrid sorting architecture offloads compute- and memory-intensive
tasks to the GPU to achieve higher I/O performance and better main memory
performance. A bitonic sorting network is mapped to GPU rasterization oper-
ations and uses the GPUs programmable hardware and high bandwidth memory
interface. This novel data representation improves GPU cache efficiency and min-
imizes data transfers between the CPU and the GPU.

34 2. Related Work

2.5.3 Data Mining Using GPUs

Finally, we survey some recent approaches for data mining using the GPU. In [20]
a parallelized clustering approach for graphics hardware is presented. This algo-
rithm extends the basic idea of k-means clustering by calculating the distances
from a single input centroid to all objects at one time that can be done simulta-
neously in hardware. Thus the authors are able to exploit the high computational
power and pipeline of GPUs, especially for core operations, like distance com-
putations and comparisons. An additional efficient method that is designed to
execute clustering on data streams confirms a wide practical field of clustering on
GPU.

The algorithm k-means was also parallelized by Shalom et al. [87]. In their
implementation multi-pass rendering and multi shader program constants are used.
This is done by minimizing the use of GPU shader constants, which leads to
a significant improvement of the performance as well as to a reduction of the
data transactions between the CPU and the GPU. Handling data transfers between
the necessary textures within the GPU is much more efficient than using shader
constants. This is mainly due to the high memory bandwidth available in the
GPU pipeline. Since all the steps of the k-means algorithm are able to be imple-
mented in the GPU, the transferring of data back to the CPU during the iterations
is avoided. The programmable capabilities of the GPU have been thus exploited
to efficiently implement k-means clustering in the GPU.

Another approach implemented hierarchical agglomerative clustering based
on complete linkage and the single linkage methods for the use in GPU [88]. The
computations of distances and centroids, as well as the update operation of the
similarity matrix is performed in parallel on the Graphics processor. To process
the complete similarity matrix, n × n/2 threads are needed, as this refers to the
size of the matrix for a dataset consisting of n data objects. Compared to the
conventional CPU implementation, this approach achieves a speedup factor of
about 15 to 90.

Chapter 3

Hierarchical Data Mining

Since dendrograms and similar hierarchical representations provide extremely
useful insights into the structure of a dataset, hierarchical clustering has become
very popular in various scientific disciplines, such as molecular biology, medicine,
or economy. However, well-known hierarchical clustering algorithms often either
fail to detect the true clusters that are present in a dataset, or they identify invalid
clusters, which are not existing in the dataset. These problems are particularly
dominant in the presence of noise and outliers.

In Section 3.1, we propose ITCH, a novel EM-like clustering method that
is built on a hierarchical variant of the information-theoretic principle of Mini-
mum Description Length (MDL). The genetic-based clustering algorithm GACH,
presented in Section 3.2 solves the complex hierarchical clustering problem by a
beneficial combination of genetic algorithms, information theory and model-based
clustering.

36 3. Hierarchical Data Mining

3.1 ITCH: An EM-based Hierarchical Clustering Al-
gorithm

Many hierarchical clustering problems result in the questions “How can we de-
cide if a given representation is really natural, valid, and therefore meaningful?”
and “How can we enforce a hierarchical clustering algorithm to identify only the
meaningful cluster structure?”

Information Theory for Clustering. We give the answer to these questions by
relating the hierarchical clustering problem to that of information theory and data
compression. Imagine you want to transfer the dataset via an extremely expensive
and small-banded communication channel. Then you can interpret the hierarchy
as a statistical model of the dataset, which defines more or less likely areas of
the data space. This knowledge can be used for an efficient compression of the
dataset. Following the idea of (optimal) Huffman coding, we assign few bits to
points in areas of high probability and more bits to areas of low probability. The
interesting observation is the following: the compression becomes the more ef-
fective, the better our statistical model fits to the data. This so-called Minimum

Description Length (MDL) principle has recently received increasing attention in
the context of partitioning (i.e. non-hierarchical) clustering methods. Note that it
can not only be used to assess and compare the quality of the clusters found by dif-
ferent algorithms and/or varying parameter settings. Rather, we use this concept
as an objective function to implement clustering algorithms directly using simple
but efficient optimization heuristics.

We extend the idea of MDL to the hierarchical case and develop hMDL for
hierarchical cluster structures. Whereas previous MDL approaches can only eval-
uate the result of partitioning clustering methods, hMDL is able to assess a com-
plete cluster hierarchy. Moreover, it can be used in combination with an optimiza-
tion heuristic to determine exactly that cluster hierarchy, which optimizes the data
compression according to our hMDL criterion.

3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 37

Figure 3.1: ITCH gives the hierarchical representation of a complex dataset con-
sisting of three clusters, where each cluster contains three subclusters. Outliers
are placed on different hierarchy levels and represented by the symbol ∆ in the
corresponding color. Besides the hierarchical structure, ITCH provides a model
of each cluster content in form of a Gaussian PDF.

Challenges and Contributions. With an assessment condition for cluster hier-
archies, we develop a complete hierarchical clustering approach on top of the
idea of hMDL. This proposed algorithm ITCH (Information-Theoretic Cluster
Hierarchies) yields numerous advantages, out of which we demonstrate the fol-
lowing four:

1. All single clusters as well as their hierarchical arrangement are guaranteed
to be meaningful. Nodes only are placed in the cluster hierarchy if they im-
prove the data compression. This is achieved by optimizing the hMDL cri-
terion. Moreover, a maximal consistency with partitioning clustering meth-
ods is obtained.

2. Each cluster is represented by an intuitive description of its content in
form of a Gaussian probability density function (PDF). Figure 3.1 presents
an example of a 3-stage hierarchy. The output of conventional methods is
often just the (hierarchical) cluster structure and the assignment of points.

38 3. Hierarchical Data Mining

3. ITCH has a consistent outlier-handling. Outliers are assigned to the root
of the cluster hierarchy or to an appropriate inner node, depending on the
degree of outlierness. For example, in Figures 3.1 the outlier w.r.t. the
three red clusters at the bottom level is assigned to the parent cluster in the
hierarchy, marked by a red triangle.

4. ITCH is fully automatic as no difficult parameter settings are necessary.

3.1.1 Information-theoretic Hierarchical Clustering

The clustering problem is highly related to that of data compression: The detected
cluster structure can be interpreted as a PDF fΘ(x) where Θ = {θ1, θ2, ...} is a
set of parameters, and the PDF can be used for an efficient compression of the
dataset. It is well-known that the compression by Huffman coding is optimal
if the data distribution really corresponds to fΘ(x). Huffman coding represents
every point x by a number of bits which is equal to the negative binary logarithm
of the PDF:

Cdata(x) = − log2(fΘ(x)).

The better the point set corresponds to fΘ(x), the smaller the coding costsCdata(x)

are. Hence, Cdata(x) can be used as the objective function in an optimization al-
gorithm. However, in data compression, Θ serves as a code book which is required
to decode the compressed dataset again. Therefore, we need to complement the
compressed dataset with a coding of this code book, the parameter set Θ. When,
for instance, a Gaussian Mixture Model (GMM) is applied, Θ corresponds to the
weights, the mean vectors and the variances of the single Gaussian functions in the
GMM. Considering Θ in the coding costs is also important for the clustering prob-
lem, because neglecting it leads to overfitting. For partitioning (non-hierarchical)
clustering structures, several approaches have been proposed for the coding of
Θ [81, 90]. These approaches differ from each other because there is no un-
ambiguous and natural choice for a distribution function, which can be used for

3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 39

the Huffman coding of Θ, and different assumptions lead to different objective
functions. In case of the hierarchical cluster structure in ITCH, a very natural
distribution function for Θ exists: With the only exception of the root node, every
node in the hierarchy has a parent node. This parent node is associated with a PDF
which can naturally be used as a code book for the mean vector (and indirectly
also for the variances) of the child node. The coding costs of the root node, how-
ever, are not important, because every valid hierarchy has exactly one root node
with a constant number of parameters, and therefore, the coding costs of the root
node are always constant.

Hierarchical Cluster Structure

In this Section, we formally introduce the notion of a hierarchical cluster structure
(HCS). A HCS contains clusters {A,B, ...} each of which is represented by a
Gaussian distribution function. These clusters are arranged in a tree:

Definition 1 (Hierarchical Cluster Structure)

(1) A Hierarchical Cluster Structure HCS is a tree T = (N , E) consisting of a

set of nodes N = {A,B, ...} and a set of directed edges E = {e1, e2, ...} where

A is a parent of B (B is a child of A) iff (A,B) ∈ E . Every node C ∈ N is

associated with a weight WC and a Gaussian PDF defined by the parameters µC
and ΣC such that the sum of the weights equals one:∑

C∈N

WC = 1.

(2) If a path from A to B exists in T (or A = B) we call A an ancestor of B (B a

descendant of A) and write B v A.

(3) The level lC of a node C is the height of the descendant subtree. If C is a leaf,

then C has level lC = 0. The root has the highest level (length of the longest path

to a leaf).

40 3. Hierarchical Data Mining

The PDF which is associated with a cluster C is a multivariate Gaussian in a d-
dimensional data space which is defined by the parameters µC and ΣC (where
µC = (µC,1, ..., µC,d)

T is a vector from a d-dimensional space, called the location
parameter, and ΣC is a d× d covariance matrix) by the following formula:

N(µC ,ΣC , x) =
1√

(2π)d · |ΣC |
· e−

1
2

(x−µC)T·Σ−1
C ·(x−µC).

For simplicity we restrict ΣC = diag(σ2
C,1, ..., σ

2
C,d) to be diagonal such that the

multivariate Gaussian can also be expressed by the following product:

N(µC ,ΣC , x) =
∏

1≤i≤d

N(µC,i, σ
2
C,i, xi)

=
∏

1≤i≤d

1√
2πσ2

C,i

· e
− (xi−µi)

2

2σ2
C,i .

Since we require the sum of all weights in a hierarchical cluster structure HCS to
be 1, a HCS always defines a function whose integral is ≤ 1. Therefore, the HCS
can be interpreted as a complex, multimodal, and multivariate PDF, defined by the
mixture of the Gaussians of the HCS T = (N , E):

fT (x) = max
C∈N
{WCN(µC ,ΣC , x)}with

∫
Rd
fT (x)dx ≤ 1.

If the Gaussians of the HCS do not overlap much, then the integral becomes close
to 1.

The operations, described in Section 3.1.1, assign each point x ∈ DB to
a cluster of the HCS T = (N , E). We distinguish between the direct and the
indirect association. A point is directly associated with that cluster C ∈ N the
probability density of which is maximal at the position of x, and we write C =

Cl(x) and also x ∈ C, with:

3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 41

Level 2

Level 1

Level 0

0.20.2

0.5 0.1 0.1

0.1 0.1

0.7

Figure 3.2: Hierarchical cut T ′ of the HCS T at level 1. All weights are placed
inside the corresponding nodes.

Cl(x) = arg max
C∈N
{WC ·N(µC ,ΣC , x)} .

As we have already stated in the introduction, one of the main motivations of
our hierarchical, information-theoretic clustering method ITCH is to represent a
sequence of clustering structures which range from a very coarse (unimodal) view
to the data distribution to a very detailed (multimodal) one, and that all these
views are meaningful and represent an individual complex PDF. The ability to cut
a cluster hierarchy at a given level L is obtained by the following definition:

Definition 2 (Hierarchical Cut) A HCS T ′ = (N ′, E ′) is a hierarchical cut of a

HCS T = (N , E) at level L, if the following properties hold:

(1) N ′ = {A ∈ N|lA ≥ L},
(2) E ′ = {(A,B) ∈ E|lA > lB ≥ L},
(3) For each A ∈ N ′ the following properties hold:

W ′
A =

{
WA if lA > L∑

B∈N ,BvAWB otherwise,

where WC and W ′
C is the weight of node C in T and T ′, respectively.

42 3. Hierarchical Data Mining

(4) Analogously, for the direct association of points to clusters the following prop-

erty holds: Let x be associated with Cluster B in T , i.e. Cl(x) = B. Then in T ′,
x is associated with:

Cl′(x) =

{
B if lB ≥ L

A|B v A ∧ lA = L otherwise.

Here, the weights of the pruned nodes are automatically added to the leaf nodes
of the new cluster structure, which used to be the ancestors of the pruned nodes.
Therefore, the sum of all weights is maintained (and still equals 1), and the ob-
tained tree is again a HCS according to Definition 1. The same holds for the
point-to-cluster assignments. Figure 3.2 presents an illustrative example of the
hierarchical cut.

Generalization of the MDL Principle

Now we explain how the MDL principle can be generalized for hierarchical clus-
tering and develop the new objective function hMDL. Following the traditional
MDL principle, we compress the data points according to their negative log like-
lihood corresponding to the PDF which is given by the cluster hierarchy. In ad-
dition, we penalize the model complexity by adding the code length of the HCS
parameters to the negative log likelihood of the data. The better the PDFs of child
nodes fit into the PDFs of the parent, the less the coding costs will be. Therefore,
the overall coding costs corresponds to the natural, intuitive notion of a good hier-
archical representation of data by distribution functions. The discrete assignment
of points to clusters allows us to determine the coding costs of the points cluster-
wise and dimensionwise, as explained in the following: The coding costs of the
points associated with the clusters C ∈ N of the HCS T = (N , E) corresponds
to:

Cdata = − log2

∏
x∈DB

max
C∈N

{
WC

∏
1≤j≤d

N(µC,j, σ
2
C,j, xj)

}
.

3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 43

Since every point x is associated with that cluster C in the hierarchy which has
maximum probability density, we can rearrange the terms of the above formula
and combine the costs of all points that are in the same cluster:

= −
∑
x∈DB

log2

(
WCl(x)

∏
1≤j≤d

N(µCl(x),j, σ
2
Cl(x),j, xj)

)
= −

((∑
C∈N

nWC log2WC

)
+

(∑
x∈DB;

∑
1≤j≤d

log2N(µCl(x),j, σ
2
Cl(x),j, xj)

))
= −

∑
C∈N

(
nWC log2WC +

∑
x∈C;

∑
1≤j≤d

log2N(µC,j, σ
2
C,j, xj)

)
,

where WCl(x) is the weight of the cluster in the hierarchy which has maximum
probability density for the point x. The ability to model the coding costs of
each cluster separately allows us now, to focus on a single cluster, and even on
a single dimension of a single cluster. A common interpretation of the term
−nWC log2WC , which actually comes from the weight a single Gaussian con-
tributes to the GMM, is a Huffman coding of the cluster ID. We assume that every
point carries the information which cluster it belongs to, and a cluster with many
points gets a shortly coded cluster ID. These costs are referred to the ID cost of a
cluster C.

Consider two clusters, A and B, where B v A. We now want to derive
the coding scheme for the cluster B and its associated points. Several points are
associated with B, where the overall weight of assignment sums up to WB. When
coding the parameters of the associated PDF of B, i.e. µB, and σB, we have
to consider two aspects: (1) The precision both parameters should be coded to
minimize the overall description length depends on WB, as well as on σB. For
instance, if only few points are associated with cluster B and/or the variance σB
is very large, then it is not necessary to know the position of µB very precisely
and vice versa. (2) The knowledge of the PDF of cluster A can can be exploited
for the coding of µB, because for likely positions (according to the PDF of A) we

44 3. Hierarchical Data Mining

mB

mB

~

(a) Exact coding of the location parameter
µB . µ̃B of the coding Gaussian function fits
exactly to µB of the data distribution.

mB

mB

~

(b) Inexact coding of the location parameter
µB by some regular quantization grid.

mB

(c) Different Gaussians w.r.t. different grid
positions.

(d) Complete interval of all possible values
for the recovered location parameter µB w.r.t.
to the PDF of the predecessor cluster A.

Figure 3.3: Optimization of coding scheme for the location parameter.

3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 45

can assign fewer bits. Basically, model selection criteria, such as the Bayesian
Information Criterion (BIC) or the Aikake Information Criterion (AIC) already
address the first aspect, but not the hierarchical aspect. To make this thesis self
contained, we consider both aspects. In contrast to BIC, which uses the natural
logarithm, we use the binary logarithm to represent the code length in bits. For
simplicity, we assume that our PDF is univariate and the only parameter is its mean
value µB. We neglect σB by assuming e.g. some fixed value for all clusters. We
drop these assumptions at the end of this section. When the true PDF of cluster B
is coded inexactly by some parameter µ̃B, the coding costs for each point x (which
truly belongs to the distribution N(µB, σ

2
B, x)) in B is increased compared to the

exact coding of µB, which would result in cex bits per point:

cex =

∫ +∞

−∞
− log2(N(µB, σ

2
B, x)) ·N(µB, σ

2
B, x) dx = log2(σB

√
2π · e).

If µ̃B instead of µB is applied for compression, we obtain:

c(µ̃B, µB) =

∫ +∞

−∞
− log2(N(µ̃B, σ

2
B, x)) ·N(µB, σ

2
B, x)dx.

The difference is visualized in Figure 3.3(a) and 3.3(b) respectively: In 3.3(a) µ̃B
of the coding PDF, depicted by the Gaussian function, fits exactly to µB of the data
distribution, represented by the histogram. This causes minimum code lengths for
the compressed points but also a considerable effort for the coding of µB. In
Figure 3.3(b) µB is coded by some regular quantization grid. Thereby, the costs
for the cluster points slightly increase, but the costs for the location parameter
decreases. The difference between µ̃B and µB depends on the bit resolution and on
the position of the quantization grid. One example is depicted in Figure 3.3(b) by
five vertical lines, the Gaussian curve is centered by the vertical line closest to µB.
We derive lower and upper limits of µ̃B ∈ [µB−1/2b...µB+1/2b] from the number
of bits b, spent for coding µ̃B. The real difference between µB and µ̃B depends
again on the grid position. Not to prefer clusters that are incidentally aligned with

46 3. Hierarchical Data Mining

the grid cells, we average over all possible positions of the discretization grid.
Figure 3.3(c) presents five different examples of the infinitely many Gaussians
that could be recovered w.r.t. different grid positions. Note that all positions
inside the given interval have equal probability. Hence, the average coding costs
for every possible position of µ̃B can be expressed by the following integral:

cappx(b) = 2b−1

∫ µB+1/2b

µB−1/2b
c(µ̃B, µB) dµ̃B

=
1

2
log2(π · e · σ2

B) +
1

2
+

log2 e
6 · σ2

B

· 4−b.

Coding all n ·WB coordinates of the cluster points as well as the parameter µB
(neglecting the ID cost) requires then the following number of bits:

Cappx(B) = cappx(b) · n ·WB + b.

The optimal number bopt of bits is determined by setting the derivation of the
above term to zero.

d
db
Cappx(B) = 1− 4−b · n ·WB

3 · σ2
B

= 0 =⇒ bopt =
1

2
log2(

n ·WB

3 · σ2
B

).

The unique solution to this equation corresponds to a minimum, as inserting bopt
into the second derivative

d2

db2
Cappx(B) =

4−b · n ·WB · log2(4)

3 · σ2
B

leads to a positive value.

3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 47

Utilization of the Hierarchical Relationship. We do not want to code the (inex-
act) position of µB without the prior knowledge of the PDF associated with cluster
A. Without this knowledge, we would have to select a suitable range of values and
code µB at the determined precision b assuming e.g. a uniform distribution inside
this range. In contrast, µB is a value taken from the distribution function of clus-
ter A. Hence, the number of bits used for coding of µB corresponds to the overall
density around the imprecise interval defined by µB, i.e.

chMDL(µB) = − log2

∫ µB+1/2b

µB−1/2b
N(µA, σ

2
A, x) dx.

Figure 3.3(d) visualizes the complete interval of all possible values for the recov-
ered mean value (marked in red) and illustrates the PDF of the clusterA, which
is the predecessor of cluster B. µ̃B can be coded by determining the whole area
under the PDF of A where µ̃B could be. The area actually corresponds to a prob-
ability value. The negative logarithm of this probability represents the required
code length for µB. The costs for coding all points of cluster B and µB then
corresponds to

cappx(b) · n ·WB + chMDL(µB).

Note, that it is also possible to optimize b directly by setting the derivative of this
formula to zero. However, this is impossible in an analytic way, and the difference
to the optimum which is obtained by minimizing Cappx(B) is negligible. In
addition, if the parent A of B is not the root of the hierarchy, µB causes some own
ID cost. In this case, µB is a sample from the complex distribution function of
the hierarchical cut (cf. Definition 2), which prunes the complete level of B and
all levels below. Hence, the weight of these levels is added to the new leaf nodes
(after cutting), and the ID costs of µB correspond to:

− log2 (
∑
XvA

WX).

48 3. Hierarchical Data Mining

A similar analysis can be done for the second parameter of the distribution func-
tion, σB. Since it is not straightforward to select a suitable distribution function for
the Huffman coding of variances, one can apply a simple trick: Instead of coding
σB, we code yB = µB±v ·σB, where v is a constant close to zero. Then, yB is also
a sample from the distribution function N(µA, σ

2
A, x) and can be coded similar to

µB. Therefore, chMDL(σB) = chMDL(µB), and we write chMDL(param) for
the coding costs per parameter instead. In general, if the PDF, which is associated
with a cluster has r parameters, then the optimal number of bits can be obtained
by the formula:

bopt =
1

2
log2(

n ·WB

3 · r · σ2
B

).

And the overall coding costs are:

ChMDL(B) = cappx(b) · n ·WB + r · chMDL(param)

Until now, only the tradeoff between coding costs of points and the parameters
of the assigned cluster are taken into account. If we go above the lowest level
of the cluster hierarchy, we have to trade between coding costs of parameters at
a lower level and coding costs of the parameters at the next higher level. This
can be done in a similar way as before: Let bB be the precision, which has already
been determined for the representation of µB and σB, the parameters for clusterB,
which is a subcluster of A. However, this is the minimum coding costs assuming
that µA and σA have been stored at maximum precision, and that µB and σB

are also given. Now, we assume that µB is an arbitrary point selected from the
distribution function N(µA, σ

2
A, x) and determine an expectation for the cost:

∫ +∞

−∞
− log2

∫ µB+1/2bB

µB−1/2bB
N(µA, σ

2
A, x)dx N(µA, σ

2
A, µB)dµB.

Finally, we assume that µA is also coded inexactly by its own grid with resolution
bA. Then the expected costs are:

3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 49

2bA−1

∫ µA+1/2bA

µA−1/2bA

∫ +∞

−∞

(
− log2

∫ µB+1/2bB

µB−1/2bB
N(y, σ2

A, x) dx

)
·

·N(µA, σ
2
A, µB) dµB dy.

Since it is analytically impossible to determine the optimal value of bA, we can
easily get an approximation of the optimum by simply treating µB and σB like
the points which are directly associated with the cluster A. The only difference is
the following. While the above integral considers that the PDF varies inside the
interval [µB − 1/2bB , µB + 1/2bB] and determines the average costs in this inter-
val, treating the parameters as points only considers the PDF value at one fixed
position. This difference is negligible provided that σB < σA, which makes sense
as child clusters should usually be much smaller (in terms of σ) than their parent
cluster.

Coding Costs for a Cluster. Summarizing, the coding costs for a cluster can
be obtained as follows: (1) Determine the optimal resolution parameter for each
dimension according to the formula:

bopt =
1

2
log2(

n ·WB + r · #ChildNodes(B)

3 · r · σ2
B

).

(2) Determine the coding costs for the data points and the parameters according
to:

ChMDL(B) = cappx(b) · n ·WB + r · chMDL(param)

(3) Add the costs obtained in step (2) to the ID costs of the points (−nWB log2(WB))

and of the parameters (− log2(
∑

XvAWX)). Whereas the costs determined in (2)
are individual in each dimension the costs in (3) occur only once per stored point
or parameter set of a cluster.

50 3. Hierarchical Data Mining

Coding Costs for the HCS. The coding costs for all clusters sum up to the overall
coding costs of the hierarchy where we define constant ID costs for the parameters
of the root:

hMDL =
∑
C∈N

(
ChMDL(C)− nWC log2(WC)− log2(

∑
Xvparent of C

WX)

)
·

Obtaining and Optimizing the HCS

We optimize our objective function in an EM-like clustering algorithm ITCH. Re-
assignment of objects and re-estimation of the parameters of the cluster hierarchy
are done interchangeably until convergence. Starting from a suitable initialization,
ITCH periodically modifies the hierarchy.

Initialization of the HCS. Clustering algorithms that follow the EM-scheme have
to be suitable initialized before starting with the actual iterations of E- and M-step.
An established method is to initialize with the result of a k-means [72] clustering.
This is typically repeated several times with different seeds and the result with
best mean squared overall deviation from the cluster centers is taken. Following
this idea, ITCH uses an initialization hierarchy determined by a bisecting k-means
algorithm taking the hMDL value of the HCS as a stopping criterion for parti-
tioning. First, a root node that contains all points is created. Then this root node
is partitioned into two subclusters by applying k-means with k = 2. This is done
recursively until the hMDL of the binary hierarchy does not improve anymore
within three steps. This ensures not to get stuck in a local minimum. Finally,
after the best hierarchy is selected, µC and ΣC are determined for each node C
according to Section 3.1.1, and equal weights are assigned to the nodes, to ensure
that clusters compete likewise for the data points.

3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 51

E-step and M-step. Whenever an object is associated directly to a cluster C then
it is also indirectly associated with every ancestor of C. Nevertheless, points can
also be directly associated not only to leaf nodes but also to inner nodes of the
cluster structure. For instance, if a point Pi is an outlier w.r.t. any of the clusters at
the bottom level of the hierarchy, then Pi has to be associated with an inner node
or even the root. As established in Section 3.1.1, the clusters at all levels of the
hierarchy compete for the data points. A point x is directly associated with that
Cluster C ∈ N the probability density function of which is maximal:

Cl(x) = arg max
C∈N
{WC ·N(µC ,ΣC , x)} .

In the E-step of our hierarchical clustering algorithm, the direct association Cl(x)

for every object x is updated. Whereas, in the E-step only the direct association is
used in the M-step which updates the location and scale parameters of all clusters
we use both the direct and indirect association. The motivation is the following:
The distribution function of every node in the cluster hierarchy should always
represent the whole dataset in this branch of the tree, and the root node should even
represent the complete dataset. Therefore, for the location and scale parameters,
all directly and indirectly associated objects are considered, as in the following
formulas:

µC =

∑
B∈N ,BvC

(∑
x∈B x

)∑
B∈N ,BvC |B|

, σ2
C,j =

∑
B∈N ,BvC

(∑
x∈B(xj − µC,j)2

)∑
B∈N ,BvC |B|

ΣC = diag(σ2
C,1, ..., σ

2
C,d).

In contrast, the weight WC of each cluster should reflect the strength of the in-
dividual Gaussian in the overall mixture of the HCS and sum up to 1 in order to
define a valid PDF with an integral over the complete data space of 1. Therefore,
we use the direct associations for calculating the cluster weight with WC = |C|.

52 3. Hierarchical Data Mining

C

(a) Detail of the initial state of
a given hierarchy.

(b) Hierarchy after
deleting cluster C.

C´

(c) Hierarchy after
collapsing cluster C
with its child nodes.

Figure 3.4: Restructure operations of ITCH.

Rearrangement of the HCS. The binary hierarchy that results from the initializa-
tion, does not limit our generality. ITCH is flexible enough to convert the initial
cluster structure into a general one. Given a binary hierarchy, which is deeper
than any n-ary hierarchy with n > 2, ITCH aims in flattening the hierarchy as far
as the rearrangement improves the hMDL criterion. Therefore we trade off the
two operations delete or collapse a node to eliminate clusters that do not pay off
any more. Figure 3.4 visualizes the operations for an extract of a given HCS. By
deleting a cluster C, the child nodes of C become child nodes of the parent of C
(cf. Figure 3.4(b)). By collapsing C, all of its child nodes are merged into a new
cluster C ′ (including C), and therefore all of their child nodes become child nodes
of C ′ (cf. Figure 3.4(c)). Afterwards all points are redistributed, and E- and M-
step are performed alternately until convergence. ITCH rearranges the structure
in an iterative way. In each iteration we tentatively delete/collapse each node in
the hierarchy and perform E- and M-steps. Then first, the node and the operation
that improves the hMDL criterion best is selected and second, the corresponding
local neighborhood (parent, child and sibling nodes) is processed.

3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 53

3.1.2 Experimental Evaluation

Since ITCH is a hybrid approach combining the benefits of hierarchical and model-
based clustering, we compare to algorithms of both classes to demonstrate the
effectiveness of ITCH. We selected Single Link (SL) [53] which probably is the
most common approach to hierarchical clustering. As especially on noisy data,
SL suffers from the so-called Single Link effect, we additionally compare to OP-
TICS [4], a more outlier-robust hierarchical clustering algorithm, with a standard
parameterization of MinPts = 6 and epsilon = 0.9. Furthermore, we com-
pare to RIC [10], an outlier-robust and parameter-free state-of-the-art algorithm
to model-based clustering. ITCH is implemented in Java. SL was provided by
Matlab and OPTICS was provided by WEKA [42]. For RIC we used the original
implementations by the authors.

For each dataset, the clustering results were assessed against a ground-truth
classification. To compare the clustering results produced by different approaches,
we chose measures that comprise fix bounds. More precisely, we selected the
following recently proposed information-theoretic methods [77]: the Normal-
ized Mutual Information (NMI), the Adjusted Mutual Information (AMI), and
the Expected Mutual Information (EMI). These three information-theoretic mea-
sures are based on the general mutual information (MI) of two given clusterings
C = {C1, · · · , Cl} and C ′ = {C1, · · · , Ck} of a dataset DS and a contingency
table M = [mij]

i=1,··· ,l
j=1,··· ,k, where each entry denotes the number of common ob-

jects of both clusterings. Hence, MI is a symmetric measure that quantifies the
information that the two clusterings C and C ′ share. Formally it is defined as
follows:

MI(C,C ′) =
l∑

i=1

k∑
j=1

p(i, j) log
p(i, j)

p(i)p(j)
,

where p(i, j) denotes the probability that a point belongs to cluster Ci ∈ C and
cluster C ′j ∈ C ′. The NMI then is a normalized version of the MI, by a division
by the maximum value of the index. It takes a value of 1 if two clusterings are

54 3. Hierarchical Data Mining

identical and 0 if the two clusterings are independent. The AMI is based on the
EMI, and is corrected for randomness. It takes a value of 1 if the two clusterings
are identical and 0 if the mutual information between the two clusterings equals
its expected value. The EMI defines the average mutual information between all
pairs of clusterings that have the same number of clusters and objects in each
cluster as in the two given clusters C and C ′. Also the EMI take the value of 1 if
the resulting clustering corresponds exactly to the ground-truth classification, and
0 if both clusterings are totally independent.

Furthermore, we chose the well-known Precision (Prec) and Recall (Rec) from
information retrieval. The Precision of a cluster can be seen as a measure of
exactness and is defined as the fraction of the clustered datapoints that are labeled
by the true class label (named true positives) devided by all data points of the
specific cluster. The Recall is a measure of completeness. It is defined as the
proportion of the true positives against all data points that are labeled by the class
label of the specific cluster.

Finally, we use the measure proposed by DOM et al. [30], referred to as DOM
in the following, that corresponds to the number of bits required to encode the
class labels when the cluster labels are known. If the number of clusters is equal
in both clusterings C and C ′, DOM is equal to the mutual information. In cases,
where the number of clusters is different, it computes the reduction in number of
bits that would be required to encode the class labels. Hence, small DOM values
refer to good clusterings.

Synthetic Data

Experiments onDS1 demonstrate the superiority of ITCH on hierarchical datasets.
DS1 comprises about 3,500 2-dimensional points that form a hierarchy of 12 clus-
ters with outliers at different levels of the hierarchy. Seven Gaussian clusters are
located at the bottom level (cf. Figure 3.5(a)). Experiments on DS2 indicate
the limitations of existing approaches to form meaningful clusters in extremely
noisy non-hierarchical data. DS2 is composed of two Gaussian clusters with

3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 55

1,650 points each, overlapping in the marginal area without any global outliers
(cf. Figure 3.5(b)).

2 clusters with
local noise

2 local outliers

2 clusters with
local noise

3 clusters with
local noise

(a) Plotted DS1. (b) Plotted DS2.

Figure 3.5: The synthetic datasetDS1 forms a hierarchy including local noise with
different degrees of outlierness. DS2 consists of two highly overlapping clusters.
It comprises no outliers.

Experimental Evaluation on DS1. As clusters can be recognized as valleys in
the reachability plot illustrated in Figure 3.6(a), OPTICS yields a satisfactory so-
lution resulting in good validity values (cf. Table 3.1) w.r.t. a cut through the
hierarchy at a maximum reachability distance of 0.02. But one has to notice that
it is hard to spot the outliers since high distance peaks can also be caused by the
usual jumps. Also, the SL-hierarchy (cf. Figure 3.6(b)) represents the true hierar-
chy quite well. The reason for that is that DS1 comprises a hierarchy that can be
recognized by agglomerative clustering algorithms relatively easy. However, the
DOM value of 0.2142 reflects that the clustering information of the outlier objects
causes slightly more coding costs, as the red cluster on the right side suffers from
a slight Single Link effect. All values shown in Table 3.1 refer to a cut through
the dendrogram at a cutoff value of 10, resulting in seven disjoint clusters.

In order to apply RIC to the hierarchical dataset, we preprocessed DS1 with SL
and applied RIC (k = 18) as postprocessing step in each level of the hierarchy.

56 3. Hierarchical Data Mining

Cut w.r.t. reachability
distance = 0.02

2 clusters
with local

noise

2 clusters
with local

noise

3 clusters with
local noise

(a) OPTICS on DS1.

Cutoff value = 10

(b) SL on DS1.

2 + 2 clusters with local noise

3 clusters with local noise

local noise

Root cluster

(c) The result of ITCH on DS1 comprises the hierarchical cluster structure and the PDF of each
cluster content.

Figure 3.6: Competitive evaluation of ITCH on the synthetic dataset DS1.

Table 3.1 shows the validation of the corresponding clustering result. Even RIC
fails to successfully filter out all outliers. More precisely, it assigns points that ob-
viously are local outliers misleadingly to clusters. Also a majority of the outliers
are incorrectly identified as cluster points. Hence, RIC performs worst on the hier-
archical dataset DS1 concerning the quantitative analysis presented in Table 3.1.
Only ITCH detects the true cluster hierarchy including outliers fully automati-
cally, and provides meaningful models on the data for each level of the hierarchy
(cf. Figure 3.6(c)).

3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 57

Table 3.1: Performance of ITCH on DS1.

ITCH RIC OPTICS SL
NMI 0.9895 0.8665 0.9585 0.9555
AMI 0.9894 0.8453 0.9461 0.9632
EMI 0.0001 0.0001 0.0001 0.0001
PREC 0.9958 0.8589 0.9654 0.9903
REC 0.9956 0.8883 0.9719 0.9601
DOM 0.1334 0.4279 0.2167 0.2142

Experimental Evaluation on DS2. RIC merges the two Gaussian clusters into
only one cluster which results in a bad cluster quality (cf. Table 3.2). Also with
OPTICS and SL, it is impossible to detect the true structure of DS2 (cf. Fig-
ures 3.7(a) and 3.7(b)). OPTICS assigns the points in an almost arbitrary order.
Even when increasing the parameter for the minimum object density per cluster
to a large value, OPTICS fails in detecting two clusters. SL miscarries due to
the massive Single Link effect. The hierarchies generated by OPTICS and SL are
overly complex but do not capture any cluster structure. Hence, it has to be as-
sumed that all data points are assigned to one single cluster. Only ITCH discovers
a meaningful result without requiring any input parameters. All clusters that do
not pay off w.r.t. hMDL criterion are pruned and therefore, only two Gaussian
clusters remain in the resulting flat hierarchy which are described by the corre-
sponding PDF (cf. Figure 3.7(c)). Since DS2 does not contain any outliers, ITCH
assigns all points to clusters that are located at the bottom level. ITCH performs
best w.r.t. all validity measures shown in Table 3.2.

Real World Data

Finally, we show the practical application of ITCH on real datasets available at
the UCI Machine Learning repository 1.

1http://archive.ics.uci.edu/ml/datasets

58 3. Hierarchical Data Mining

(a) OPTICS on DS2. (b) SL on DS2.

2 Gaussian clusters without noise

(c) Resulting cluster structure of ITCH on DS2 including the PDF of each cluster content.

Figure 3.7: Competitive evaluation of ITCH on the synthetic dataset DS2.

Glass Data. The Glass Identification dataset comprises nine numerical attributes
representing different glass properties. 214 instances are labeled according to
seven different glass types that form a hierarchy as presented in Figure 3.8(a).
ITCH perfectly separates window glass from non window glass. The four sub-
clusters of window glass are very similar. Hence, ITCH arranges them at the
same level. Some outliers are directly assigned to window glass. In contrast to
ITCH, neither SL nor OPTICS separates window glass from non window glass

Table 3.2: Performance of ITCH on DS2.

ITCH RIC OPTICS SL
NMI 0.9586 0.0000 0.0000 0.0000
AMI 0.9586 0.0000 0.0000 0.0000
EMI 0.3466 0.3466 0.3466 0.3466
PREC 0.9949 0.2521 0.2521 0.2521
REC 0.9948 0.5021 0.5021 0.5021
DOM 0.0332 0.6956 0.6956 0.6956

3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 59

29

headlamps

9

tableware

13

containers

0

vehicle

76

building

17

vehicle

70

building

float processed non float processed

window glass non window glass

glass types

(a) Hierarchy, including ground-truth classification in the original dataset.

Cut w.r.t. reachability
distance = 0.25

1 cluster with 2
subclusters

1 large cluster

1 small
cluster

subclusters

(b) OPTICS on Glass.

Cutoff value = 1.6

(c) SL on Glass.

93% headlamps

7 % containers

46% containers

37 % tableware

17% headlamps

42% building n.f.p.

39 % building f.p.

19% vehicle f.p.

100%

building f.p.

71% building n.f.p.

29 % building f.p.

66% building n.f.p.

17 % building f.p.

17% vehicle f.p.

(d) Resulting cluster structure of ITCH on Glass.

Figure 3.8: Competitive evaluation of ITCH on the real-world Glass dataset.

60 3. Hierarchical Data Mining

perfectly. In the dendrogram one large cluster and one medium size cluster is vis-
ible, whereas OPTICS determines two clusters of different size and one cluster
with two nested subclusters. RIC, applied at the bottom level of the SL result
comprises only two clusters without any separation between window glass or non

window glass. Table 3.3 summarizes the quantitative analysis of this dataset. For
OPTICS the results refer to the partitioning clustering with a maximum reachabil-
ity distance of 0.25. The SL results indicate the results for a cutoff value of 1.6.

Table 3.3: Performance of ITCH on the real-world Glass dataset.

ITCH RIC OPTICS SL
NMI 0.3390 0.1221 0.4029 0.4110
AMI 0.3222 0.0804 0.3092 0.3085
EMI 0.0018 0.0010 0.0017 0.0012
PREC 0.5350 0.1710 0.4739 0.3812
REC 0.3551 0.1822 0.4626 0.4393
DOM 1.4805 1.5872 1.2980 1.5010

Cancer Data. The high-dimensional Breast Cancer Wisconsin dataset contains
569 instances each describing 30 different characteristics of the cell nuclei, where
each instance is either labeled by benign (blue) or malignant (red). OPTICS and
SL both fail to detect a clear cluster structure in this dataset. OPTICS finds one
large cluster and one very small cluster that could also be interpreted as noise
(cf. Figures 3.9(a)). In the dendrogram of SL, shown in Figure 3.9(b), one large
and many small clusters are visible. The quantitative evaluation represented in
Table 3.4 refer to a cutoff value of 60.
We applied RIC on top of a k-means clustering with k = 15. As stated by the au-
thors we chose k large enough compared to the number of classes. However, RIC
also fails and results in three mixed clusters. ITCH almost perfectly separates the
benign from the malignant objects which are then split into different subclusters
(cf. Figure 3.9(c)). This precise structure is penalized by the validity measures
summarized in Table 3.4. However, this result is consistent with previous findings

3.1 ITCH: An EM-based Hierarchical Clustering Algorithm 61

Cut w.r.t. reachability
distance = 0.35

1 small
cluster1 large cluster

(a) OPTICS on Cancer.

Cutoff value = 60

(b) SL on Cancer.

100%

malignant

53% malignant

47% benign

95% malignant

5% benign

100%

benign

100%

benign

98% benign

2% malignant 98% benign

2% malignant

98% benign

2% malignant

98% benign

2% malignant

100%

benign

89% malignant

11% benign

(c) Resulting cluster structure of ITCH on Cancer.

Figure 3.9: Competitive evaluation of ITCH on the real-world Cancer dataset.
The coloring corresponds to the majority class.

as the two classes exhibit a degree of overlap with each other [80].

Stability of ITCH

As stated in Section 3.1.1, ITCH is initialized with the results of a k-means clus-
tering with different seeds. Since we do not want to rely on single results we ad-
ditionally tested the stability of ITCH over 20 runs for each dataset. Figure 3.10
shows the variance of the hMDL value in percent depending on the mean value.
The result of ITCH is highly stable within DS1, DS2 having only a variance of
0.03% and 0.12%, respectively. Also in the real world datasets the result of ITCH
shows only little variance.

62 3. Hierarchical Data Mining

Table 3.4: Performance of ITCH on the real-world Cancer dataset.

ITCH RIC OPTICS SL
NMI 0.3821 0.4594 0.2835 0.3097
AMI 0.2044 0.3612 0.2518 0.2127
EMI 0.0004 0.0003 0.0003 0.0006
PREC 0.9574 0.9846 0.8033 0.8884
REC 0.2830 0.6608 0.7575 0.6626
DOM 0.2635 0.3022 0.4752 0.4771

45150

45160

D
L

va
lu

e

45120

45130

45140

m
ea

n
hM

D

(a) DS1

32010

32030

32050

D
L

va
lu

e

31950

31970

31990

32010

m
ea

n
hM

D

(b) DS2

-3500

-3400

-3300

D
L

va
lu

e
-3800

-3700

-3600

3500

m
ea

n
hM

D

(c) Glass

-10700

-10500

-10300

D
L

va
lu

e

-11300

-11100

-10900

10700

m
ea

n
hM

D

(d) Cancer

Figure 3.10: Stability of the ITCH results, determined over 20 runs for each
dataset.

3.1.3 Conclusions

We have introduced a new hierarchical clustering method to arrange only natu-
ral, valid, and meaningful clusters in a hierarchical structure – ITCH. ITCH is
based on an objective function for clustering that was guided by the information-
theoretic idea of data compression. We have shown that without difficult param-
eter settings ITCH finds the real cluster hierarchy effectively, and that it provides
accurate and intuitive interpretable information in a wide variety of domains, even
in the presence of local and global outliers that correspond to inner nodes of the
resulting hierarchy.

3.2 GACH: A Genetic Algorithm for Hierarchical Clustering 63

3.2 GACH: A Genetic Algorithm for Hierarchical
Clustering

Many EM-based algorithms, including ITCH, suffer from the problem that they
often get stuck in a local optimum. One solution that overcomes that problem is
the application of genetic algorithms (GAs). A GA is a stochastic optimization
technique based on the mechanism of natural selection and genetics, originally
proposed by [45]. The general idea behind a GA is that the candidate solutions to
an optimization problem (called individuals) are often encoded as binary strings
(called chromosomes). A collection of these chromosomes forms a population.
The evolution initially starts from a random population that represents different
individuals in the search space. In each generation, the fitness of every individual
is evaluated, and multiple individuals are then selected from the current population
based on Darwin’s principle “Surviving of the fittest”. These individuals build
the mating pool for the next generation. The new population is then formed by
the application of recombination operations like crossover and mutation. A GA
commonly terminates when either a maximum number of generations has been
produced, or a satisfactory fitness level has been reached for the population. A
survey of GAs along with the programming structure used can be found in [34].

GAs have been successfully applied to a variety of challenging optimiza-
tion problems, like image processing, neural networks and machine learning,
etc. [79, 104, 6]. Solving the NP-hard clustering problem makes GA therefore
a natural choice such as in [60, 26, 74, 86, 70, 82]. Our motivation for using
GAs for hierarchical clustering is visualized in Figure 3.11. The clustering re-
search community focuses on clustering methods where the grouped objects are
described by an intuitive model of the data [28] or clustering methods that are
particularly insensitive to outliers [31]. Moreover, several approaches have also
been addressing the question, how to avoid difficult parameter settings such as the
number of clusters, e.g. [81, 43, 10, 11, 12]. Most of them meet this question by
relating the clustering problem with the idea of data compression.

64 3. Hierarchical Data Mining

Global

outlier

Intuitive description for each cluster

GACH
Search space

Figure 3.11: The search space of the solutions for the hierarchical clustering prob-
lem is exponentially large. Genetic algorithms help to determine the global op-
timum. GACH is a genetic algorithm for finding the most meaningful cluster
hierarchy. Outliers are assigned to appropriate inner nodes. Each cluster content
is described by an intuitive description in form of a PDF.

Here we present a novel genetic algorithm for finding cluster hierarchies, called
GACH. We use an information-theoretic fitness function to effectively cluster data
into meaningful hierarchical structures without requiring the number of clusters
as an input parameter. Our major contributions are:

• Fitness: The fitness of different chromosomes is optimized using the same
MDL-based optimization technique as used for ITCH.

• No difficult parameter-setting: Besides the parameters that are specific for
a genetic algorithm, GACH requires no expertise about the data (e.g. the
number of clusters).

• Flexibility: By the use of a GA-based stochastic search GACH thoroughly
explores the search space and is therefore flexible enough to find the correct
hierarchical cluster structure and is not sensitive to the initialization.

• Outlier-handling: Outliers are assigned to the root of the cluster hierarchy
or to an appropriate inner node, depending on the degree of outlierness.

• Model description: The content of each cluster is described by a PDF.

3.2 GACH: A Genetic Algorithm for Hierarchical Clustering 65

3.2.1 The Algorithm GACH

In this section we describe the basic components of a genetic algorithm (GA) and
introduce necessary modifications to use a GA on cluster hierarchies. Finally, we
present GACH as an algorithmic combination of all this components.

Chromosomal Representation of Cluster Hierarchies

Each chromosome specifies one solution to a defined problem. For GACH, a
chromosome is the encoding of a hierarchical cluster structure (HCS), which has
to address the three following features:

• Storage of k clusters, where k is an arbitrary number of clusters.

• Representation of the hierarchical relationship between clusters.

• Encoding of the cluster representatives, i.e. the parameters of the underlying
PDF. For GACH we represent each cluster by a Gaussian PDF. Note that our
model can be extended to a variety of other PDFs, e.g. uniform or Laplacian.

Therefore, a chromosomal representation of a HCS is defined as follows:

Definition 3 (Chromosomal HCS)
(1) A chromosomal HCS HCSChrom is a dynamic list storing k cluster objects.

(2) Each cluster C holds references to its parent cluster and to its subclusters.

Besides that, there is a level attribute which facilitates the interpretation of the

HCS.

(3) The parameters of the underlying Gaussian PDF of cluster C, the mean value

µC and σC , are modeled as additional parameters of the cluster object C.

(4) Each cluster C is associated with a weight WC , where
∑k−1

i=0 WCi = 1.

The underlying PDF of a cluster C is a multivariate Gaussian in a d-dimensional
data space which is defined by the parameters µC and σC (where µC and σC are

66 3. Hierarchical Data Mining

vectors from a d-dimensional space) by the following formula:

N(µC , σC , x) =
∏

1≤i≤d

1√
2πσ2

C,i

· e
−

(xi−µC,i)
2

2σ2
C,i

GACH assigns each point x ∈ DB directly to that cluster C ∈ HCSChrom the
probability density of which is maximal at the position of x:

C(x) = arg max
C∈HCSChrom

{WC ·N(µC , σC , x)} .

Initialization of GACH

In a GA, the initial set of a population consists of a randomly generated set of
individuals. Therefore, GACH selects a random number of clusters k̃ for each
structure HCSChrom in a first step. Then a simple k-means algorithm [72] divides
the dataset into k̃ clusters representing the leafs of the initial hierarchy. Finally,
these clusters are combined by one additional root cluster. Hence, the initialization
process results in a 2-level hierarchy that consists of k̃ + 1 nodes. Each cluster C
is described by random parameters and is associated to a weight WC = 1

k
.

Reproduction

In order to generate the next population, GACH uses several genetic operators that
are particularly defined for the hierarchical clustering problem. As our algorithm
is initialized by a flat hierarchy generated by a partitioning clustering procedure,
GACH needs mutating oparators that add nodes to the hierachy. However, only
adding new nodes would not leed to sufficient results because parameters like µ,
σ and the cluster weight are chosen randomly. Therefore, we need a further op-
erator which demotes given nodes to different hierarchy levels. Additionally, the
central goal of a genetic algorithm is an efficient eradication of the search space.
Hence, we need for each mutation operator also the inverse procedure to avoid to

3.2 GACH: A Genetic Algorithm for Hierarchical Clustering 67

get stuck in only a local optimum. Finally, we use the mutations add, delete,
demote and promote, and the GA-specific operator crossover.

The operator add adds direct subclusters to an arbitrary cluster C of the hierarchy
with an add rate padd (normally pdel = padd). The number of added subclusters is
bounded by an upper limit valuemaxnew. Figure 3.12(a) illustrates an example for
the application of the add operator to a HCS. One subcluster (marked in dark blue
color) is added to the red cluster. Since the cluster content of a added subcluster
Cadd is covered by the cluster content ofC, we calculate random parameters based
on µC and σC . In particular, we add a random factor r to both parameters, where
r is a vector from a d-dimensional space: µCadd = µC + r σCadd = σC + r.

The operator delete deletes a specific cluster C (except the root) with a dele-
tion rate pdel from the HCS. This results in structure HCS′ that does not contain
the cluster C anymore. (cf. Figure 3.12(b)). Here, the cluster C is marked by dark
blue color. The level of each direct and indirect subcluster of C (marked in red)
is decreased by 1. The former parent node of C, the root node in our example,
becomes the parent node of all direct subclusters of C.

The motivation behind the demote operator is the following. Assume a dataset
consisting of three clusters C1, C2 and C3, where C1 holds a large number of ob-
jects, clusters C2 and C3 are smaller ones but they are locally close to each other.
Then one could create a HCS with one root node and C1, C2 and C3 as direct
subclusters (cf. Figure 3.12(c)) which provides only a very coarse view of the
dataset. But, if we combine the two smaller clusters (marked in dark blue) and
demote them with a demote rate pdem to a lower level with a common parent clus-
ter (marked in dark red), we are able to get a more precise description of our data.
The parameters of the inserted cluster are obtained by the average of the param-
eters of the combined clusters. Note that demoting only one cluster is consistent
with the add operator. Hence, we apply demote on at least two clusters.

68 3. Hierarchical Data Mining

add()

Level 2

Level 1

Level 0

(a) add one node do the hierarchy.

delete() Level 2

Level 1

Level 0

(b) delete one node of the hierarchy.

demote()

Level 2

Level 1

Level 0

(c) demote two nodes to a lower level.

Level 3

Level 2

Level 1

Level 0

promote()

(d) promote one node to a higher level.

Figure 3.12: Summarization of the mutation operators used for GACH.

3.2 GACH: A Genetic Algorithm for Hierarchical Clustering 69

The promote operator lifts a cluster C from a lower level to the level right above
with a promotion rate ppro, if and only if C is at least two levels underneath the
root cluster. Consequently all subclusters of C are lifted accordingly. In Fig-
ure 3.12(d) the dark blue cluster is promoted from level 1 to level 0. Hence also
the red subcluster is lifted one level. The parent of the parent node of the dark
blue cluster (here the root node) becomes the parent node of C in the resulting
hierarchy HCS′, together with the correct rearrangement of all subclusters.

The operator crossover exchanges information among two different structures.
In general the information of two different chromosomes is combined in order
to obtain a new individual with superior quality. GACH performs a crossover
between two selected hierarchies HCS1 and HCS2 with a crossover rate pco as
follows:

1. Remove a selected subtree, denoted by T1, entirely from HCS1.

2. Remove a selected subtree, denoted by T2, entirely from HCS2.

3. Select a random node in HCS1 and insert T2.

4. Select a random node in HCS2 and insert T1.

Figure 3.13(a) illustrates this procedure exemplarily for two selected hierarchies.
The subtrees T1 and T2 are removed from the red and the blue HCS respectively. T1

is then inserted into the blue HCS as subtree of the dark blue node. Analogously
T2 is inserted as subtree of the dark red cluster in the red HCS. Figure 3.13(b)
describes the same procedure w.r.t. a chromosomal representation of both hierar-
chies. For simplicity, only the pointers to the parent cluster are considered. The
recalculation of the parameters µC and σC of each cluster C is performed analo-
gously to ITCH (cf. Section 3.1.1).

70 3. Hierarchical Data Mining

crossover

C0

C6

C5

C4

C3

C2

C1

C0

C1

C2 C3 C4

C5

C0

C1 C3

C2

C4

C5

C6

C0

C5

C1

C2
C3 C4

(a) Hierarchical representation.

C0
0 0 w0

C1
1 1 w1

C2
2 2 w2

C3
3 3 w3

C4
4 4 w4

C6
6 6 w6

C5
5 5 w5

C0
0 0 w0

C1
1 1 w1

C2
2 2 w2

C3
3 3 w3

C4
4 4 w4

C5

5 5 w5

c
r
o
s
s
o
v
e
r

(b) Chromosomal representation.

Figure 3.13: The crossover operator for two selected hierarchies. The subtree
T1 of the red hierarchy is exchanged with the subtree T2 of the blue hierarchy,
visualized by a hierarchical (3.13(a)) and a chromosomal representation (3.13(b)).

3.2 GACH: A Genetic Algorithm for Hierarchical Clustering 71

Fitness Function

Following Darwin‘s principle “Survival of the fittest” naturally only individuals
with highest fitness can survive and those that are weaker become extinct. A
GA adopts this aspect of evolution by the use of a fitness function. GACH uses
the hMDL criterion formalized in Section 3.1 which evaluates the fitness of a
chromosomal HCS by relating the clustering problem to that of data compression
by Huffman Coding. The authors define the coding scheme for a cluster hierarchy
as follows:

hMDLHCS =
∑

C∈HCS

(
cost(C)− nWC log2(WC)− log2(

∑
xvparent of C

Wx)

)

The coding cost for each cluster C ∈ HCS is determined separately and summed
up to the overall coding cost of the complete HCS. Points that are directly as-
signed to the cluster C together with the parameters µC and σC of the underlying
Gaussian PDF are coded by cost(C). The point to cluster assignment is coded by
the so-called ID cost of each data point x ∈ C and is given by −nWC log2(WC)

where WC is the weight of cluster C and n the number of points. The binary
logarithm is used to represent the code length in bits. Clusters with higher weight
are coded by a short code pattern whereas longer code patterns are assigned for
smaller clusters with lower weight. The ID costs for the parameters are formal-
ized by− log2(

∑
xvparent of C Wx) whereas constant ID costs are defined for the

parameters of the root node. The better the statistical model (the HCS) fits to the
data, the higher the compression rate, and thus the lower the coding costs. Using
this coding scheme as fitness function ensures the selection of that chromosome
HCSChrom that fits best to the data.

72 3. Hierarchical Data Mining

Selection

The selection function chooses the best individuals out of a given set of individ-
uals to form the offspring population w.r.t. their fitness. For GACH we use the
well-known weighted roulette wheel strategy [76]. Imagine that each HCSChrom
represents a number on a roulette wheel, where the amount of numbers refers to
the size of the population. In addition, we assign a weight to each number on the
roulette wheel, depending on the fitness of the underlying chromosome, i.e. the
better the fitness of a chromosome, the higher its weight on the roulette wheel,
i.e. the higher the chance to get selected for the offspring population. Note that
there is the chance that one chromosome is selected multiple times. GACH forms
a new population that has as much individuals as the previous population.

Algorithmic Description

Now we are putting the pieces together to define the algorithmic procedure of
GACH, summarized in Algorithm 1. First, an initial population is built. This pop-
ulation is evaluated according to the hMDL-based fitness function which means
that GACH determines the coding cost for each cluster hierarchy of the popula-
tion. In order to optimize the point to cluster assignment of each HCS and to
provide an additional model of the data, we apply a hierarchical EM algorithm
on each cluster structure, as suggested for ITCH. That does not imply the typical
problems of EM-based methods, as the model selection is performed by the idea
of GA. EM is only used to provide an additional feature in this case.

The population resulting from the initialization undergoes several mutation
and crossover operations within popmax number of generations in an iterative
way. In each iteration the next population is selected according to the weighted
roulette wheel strategy and experiences various reproduction procedures. Each
operation is processed with a certain probability which is extensively evaluated in
Section 3.2.2. After optimizing the point to cluster assignment, GACH determines
the fitness of each HCSChrom. The algorithm terminates if a specified maximum

3.2 GACH: A Genetic Algorithm for Hierarchical Clustering 73

number of new populations popmax is reached. The experiments show that the
HCS can be optimized even with a small number of generations.

Algorithm 1 GACH
1: countpop ← 0
2: initialize population(countpop)
3: evaluate population(countpop)
4: while (countpop ≤ popmax) do
5: countpop ← countpop + 1
6: select population(countpop) from population(countpop − 1)
7: reproduce population(countpop)
8: evaluate population(countpop)
9: end while

3.2.2 Experimental Evaluation

Now we demonstrate that the genetic parameters (mutation rate, crossover rate and
population size) do not affect the effectiveness of GACH in a major way. Nev-
ertheless, we provide a suitable parameterization that enables the user to receive
good results independent of the used dataset. Based on this, we compared the
performance of GACH to several representatives of various clustering paradigms
on synthetic and real world data. We selected the most widespread approach to
hierarchical clustering Single Link (SL) [53], the more outlier-robust hierarchical
clustering algorithm OPTICS [4] (requiring MinPts and ε), with optimal pa-
rameters w.r.t. accuracy. Furthermore, we chose RIC [10], an outlier-robust and
information-theoretic clusterer, and finally ITCH, introduced in Section 3.1, that
suffers from the problem that the result only represents a local optimum in some
cases. As ITCH depends on its initialization, we used the best out of ten runs in
this case.

74 3. Hierarchical Data Mining

Evaluation of Genetic Parameters

We applied GACH on two different datasets to evaluate the mutation and crossover
rates and the impact of the population size on the quality of the results w.r.t. the
fitness function, introduced in Section 3.2.1. One dataset consists of 1,360 (2d)-
data points that form a true hierarchy of six clusters. The second dataset covers
850 (2d)-data points that are grouped in two flat clusters. For each experiment,
we present the mean hMDL value and the corresponding standard deviation over
ten runs. GACH turned out to be very robust and determines very good clustering
results (Prec > 90%, Rec > 90%) independent of the parameterizations.

3.2 GACH: A Genetic Algorithm for Hierarchical Clustering 75

Different Mutation Rates. We evaluated different mutation rates ranging from
0.01 to 0.05 on two different population sizes and a fixed crossover rate of 0.15. As
a mutation is performed by one of the four operations delete, add, demote
or promote the mutation rate is the sum of pdel, padd, pdem and ppro (cf. Sec-
tion 3.2.1). As demote and promote turned out to be essential for the quality
of the clustering results pdem and ppro are typically parameterized by a multiple of
pdel or padd due to the fact that the correct number of clusters is determined very
fast by the hMDL-based fitness function. However, finding the best HCS for a
given number of clusters is much more challenging. Figures 3.14(a) and 3.14(b)
demonstrate that the mutation rate has no outstanding effect on the clustering re-
sult, neither on a hierarchical nor on a flat dataset. Higher mutation rates result in
higher runtimes (3,388 ms for a mutation rate of 0.05 vs. 1,641 ms for a mutation
rate of 0.01 on a hierarchical dataset, population size = 5). However, a higher
mutation rate provides more flexibility. Hence, we achieved slightly better results
with a mutation rate of 0.05 (hMDL = 10, 520) compared to a mutation rate of
0.01 (hMDL = 10, 542).

Different Crossover Rates. We compared different crossover rates pco ranging
from 0.05 to 0.25 in combination with a mutation rate of 0.05 on two different
population sizes. Figures 3.14(c) and 3.14(d) show that the performance of GACH
is almost stable w.r.t. the different parameterizations of pco. Especially on a flat
dataset a higher pco has no impact on the clustering result. GACH achieved a
nearly optimal hMDL value in almost every run, even for relatively small pop-
ulation sizes. Higher pco values enable GACH to examine the search space more
effectively as the crossover between two strong individuals produces an even fitter
individual. Therefore, we need fewer generations to find good clustering results,
e.g. the result of GACH on the hierarchical dataset using five individuals was de-
termined after 75 generations (1993 ms per generation) with pco = 0.05, and after
61 generations (2,553 ms per generation) with pco = 0.25.

76 3. Hierarchical Data Mining

10600

10650

10700

M
D

L
va

lu
e

population size: 5 chromosomes
population size: 20 chromosomes

10500

10550

0,01 0,02 0,03 0,04 0,05m
ea

n
hM

mutation rate

(a) H: mutation rate

7540

7560

7580

7600

M
D

L
va

lu
e

population size: 5 chromosomes
population size: 20 chromosomes

7500

7520

0,01 0,02 0,03 0,04 0,05m
ea

n
hM

mutation rate

(b) F: mutation rate
population size: 5 chromosomes
population size: 20 chromosomes

10700ue

population size: 20 chromosomes

10650

L
va

l

10600

M
D

L

10550

an
 h

M

10500
0,05 0,10 0,15 0,20 0,25m

ea

0,05 0,10 0,15 0,20 0,25

crossover rate

(c) H: crossover rate

population size: 5 chromosomes
population size: 20 chromosomes

7600ue

population size: 20 chromosomes

7560

7580
L

va
l

7540

7560
M

D
L

7520

an
 h

M

7500
0,05 0,10 0,15 0,20 0,25m

ea

0,05 0,10 0,15 0,20 0,25

crossover rate

(d) F: crossover rate

10700ue

10650

L
va

l

10600

M
D

L

10550

an
 h

M

10500
5 10 15 20 25m

ea

5 10 15 20 25

population size

(e) H: population size

7600ue

7560

7580

L
va

l

7540

7560

M
D

L

7520

an
 h

M

7500
5 10 15 20 25m

ea

5 10 15 20 25

population size

(f) F: population size

Figure 3.14: Mean fitness of resulting clusterings on (H)ierarchical and (F)lat
datasets w.r.t. the genetic parameters mutation rate, crossover rate and population
size.

3.2 GACH: A Genetic Algorithm for Hierarchical Clustering 77

Different Population Sizes. We tested the impact of the population size on the
quality of the clustering result. We used populations that cover 5, 10, 15, 20 and
25 hierarchical cluster structures in combination with a mutation rate of 0.05 and
a crossover rate of 0.15. Figures 3.14(e) and 3.14(f) show again the mean hMDL

value over ten runs for each population size on two different datasets. Especially
the plot of the hierarchical dataset demonstrates that a higher population size tends
to produce better results, which can be explained by the fact that a higher popula-
tion size provides more variation opportunities whereby a global optimum can be
reached easier. However, a large number of chromosomes cause a considerable
amount of runtime. One generation using five chromosomes took 2462 ms on av-
erage, the computation of a generation on 25 chromosomes took 9,229 ms. Hence
we use a population size consisting of ten cluster structures in combination with a
mutation rate of 0.05 and pco = 0.15 in the following experiments.

Competitive Performance of GACH

For these experiments we use two different synthetic datasets DS1 and DS2. DS1

is composed of 987 (2d)-data points that form a hierarchy of six clusters sur-
rounded by local and global noise (cf. Figure 3.15(a)). DS2 consists of 1,950
(2d)-data points that are grouped in three flat strongly overlapping clusters (cf.
Figure 3.15(b)). For each dataset, the clustering results were assessed against a
ground-truth classification and evaluated the results w.r.t. six different validity
measures: the recently proposed information-theoretic methods [77] Normalized
Mutual Information (NMI), Adjusted Mutual Information (AMI) and Expected
Mutual Information (EMI). All these measures have a maximum value of 1 (which
refers to a perfect clustering) and a minimum value of 0. Furthermore, we chose
the well-known Precision (Prec) and Recall (Rec) and the DOM [30] value that
reflects the coding costs to encode the class labels when the cluster labels are
known, i.e. low DOM values represent good clustering results.

78 3. Hierarchical Data Mining

Evaluation w.r.t. Dataset D1. These experiments demonstrate that GACH per-
forms at least as good as the parameter dependent approach OPTICS (MinPts =

6, ε = 0.9) and ITCH, while being much more accurate than RIC and SL. The
reachability plot of OPTICS is provided in Figure 3.15(c), the SL dendrogram is
shown in Figure 3.15(e). Although DS1 seems to be an easy to cluster dataset, SL
and RIC fail in assigning the local and global outliers to the correct cluster. Both,
GACH and ITCH were able to determine the right cluster structure. However,
GACH outperformed ITCH w.r.t. accuracy, as GACH results in a different points
to clusters assignment. Therefore, GACH shows the best performance on DS1

concerning the information-theoretic measures NMI, AMI and EMI. 94% of all
data points are assigned to the true cluster and 95% of the cluster contents were
detected correctly by GACH. Finally, this result can be coded most efficiently as
stated by the low DOM value of 0.4193. This evaluation is summarized in Ta-
ble 3.5.

Table 3.5: Performance of GACH on DS1.

GACH ITCH RIC OPTICS SL
NMI 0.9346 0.9265 0.8673 0.9045 0.9110
AMI 0.9159 0.8999 0.7678 0.8662 0.8997
EMI 0.0004 0.0004 0.0004 0.0004 0.0002
PREC 0.9404 0.9222 0.6438 0.8626 0.9555
REC 0.9514 0.9422 0.7720 0.9200 0.9169
DOM 0.4193 0.4454 0.6638 0.4960 0.4765

Evaluation w.r.t. Dataset D2. Neither OPTICS nor SL were able to detect the
true cluster structure of DS2. Both fail because of a massive Single Link effect
and therefore the reachability plot provided by OPTICS (cf. Figure 3.15(d)) and
the dendrogram produced by SL (cf. Figure 3.15(f)) do not uncover any cluster
structure which leads to a clustering where all objects belong to one single clus-
ter. RIC determines only one single cluster. ITCH separates the two red Gaus-
sian clusters but fails in assigning the data points generated by the blue cluster

3.2 GACH: A Genetic Algorithm for Hierarchical Clustering 79

2 clusters with
local noise

2 clusters with

global noise

local noise 2 clusters with
local noise

(a) Plotted DS1. (b) Plotted DS2.

Cut w.r.t. reachability
distance = 0.07

2 clusters
with local

noise

2 clusters
with local

noise

2 clusters
with local

noise

(c) OPTICS on DS1. (d) OPTICS on DS2.

Cutoff value = 0.9

(e) SL on DS1. (f) SL on DS2.

Figure 3.15: Competitive evaluation of GACH on two different synthetic datasets.
DS1 forms a hierarchy including local and global noise, DS2 is a flat dataset of
three overlapping clusters.

80 3. Hierarchical Data Mining

correctly. Hence, GACH turned out to be the only algorithm that handles this
datasets with strongly overlapping clusters successfully. It shows the best values
w.r.t. information-theoretic criterions, while being very accurate. Its result causes
only a coding cost of 0.3325 compared to more than 0.9 for almost all other ap-
proaches. This is summarized in Table 3.6.

Table 3.6: Performance of GACH on DS2.

GACH ITCH RIC OPTICS SL
NMI 0.6698 0.6316 0.0000 0.0000 0.0000
AMI 0.5877 0.4030 0.0000 0.0000 0.0000
EMI 0.1476 0.2256 0.2379 0.2379 0.2379
PREC 0.9184 0.8227 0.2130 0.2130 0.2130
REC 0.9226 0.8913 0.4615 0.4615 0.4615
DOM 0.3325 0.4226 0.9184 0.9184 0.9184

Application of GACH on Real World Data

We tested the practical application of GACH on the Wine dataset, available at
UCI2. This dataset contains 178 (13-d)-data objects resulting from a chemical
analysis of wines grown in the same region in Italy but derived from three different
cultivars. The dataset provides a ground-truth classification that structures the data
into one root node covering the whole dataset and three subclusters defining the
three cultivars. GACH determined this structure resulting in high validity values.

The competitors did not even find the right number of clusters. OPTICS, for
example detects two clusters (cf. Figure 3.16(a)) and RIC even merges all data
points in only one single cluster. The hierarchy of SL covers four disjoint clusters
w.r.t. a cutoff value of 40. These results demonstrate that GACH finds a global
optimum w.r.t. accuracy in real world data and is therefore applicable in many
domains.

2http://archive.ics.uci.edu/ml/datasets/Wine

3.2 GACH: A Genetic Algorithm for Hierarchical Clustering 81

Cut w.r.t. reachability
distance = 0.5

1 large cluster 1 smaller cluster

(a) OPTICS on Wine.

Cutoff value = 40

(b) SL on Wine.

Figure 3.16: Competitive evaluation of GACH on the real-world Wine dataset.

Table 3.7: Performance of GACH on the real-world Wine dataset.

GACH ITCH RIC OPTICS SL
NMI 0.7886 0.7615 0.0000 0.5079 0.3852
AMI 0.7813 0.6912 0.0000 0.4817 0.3485
EMI 0.0013 0.0014 0.0000 0.0013 0.0018
PREC 0.9401 0.9737 0.1591 0.7466 0.5309
REC 0.9326 0.8596 0.3989 0.6966 0.5337
DOM 0.3631 0.3285 1.1405 0.6853 1.0740

3.2.3 Conclusions

We proposed a genetic algorithm for finding cluster hierarchies, called GACH.
GACH combines the benefits of genetic algorithms, information theory and model-
based clustering. As GACH uses a MDL-based fitness function, it can be easily
applied to real world applications without requiring any expertise about the data.
Due to the fact that GACH integrates an EM-like strategy, the content of all clus-
ters is described by an intuitive description. Outliers are assigned to appropriate
inner nodes.

82 3. Hierarchical Data Mining

Chapter 4

Integrative Data Mining

Integrative mining of heterogeneous data is one of the grand challenges for data
mining in the next decade. Recently, the need for integrative data mining tech-
niques has been emphasized in panel discussions, e.g. at KDD 2006 [83], in work-
shops [109], and in position papers [108, 59]. Integrative data mining is among
the top ten challenging problems in data mining identified in [108]. Moreover it
is essential for solving many of the other top 10 challenges, including data mining
in social networks and data mining for biological and environmental problems.

4.1 INTEGRATE: A Clustering Algorithm for Het-
erogeneous Data

We address the question of how to find a natural clustering of data with mixed
type attributes. In everyday life, huge amounts of such data are collected, for
example from credit assessments. The collected data include numerical attributes,
such as credit amount and age, as well as categorical attributes, such as personal
status and the purpose of the credit. A cluster analysis of credit assessment data
is interesting, e.g., for target marketing. We could give numerous more examples
for data with mixed type attributes from various applications including medical,

84 4. Integrative Data Mining

bioinformatics and web usage. However, finding a natural clustering of such data
is a non-trivial task. We identified two major problems:

• Problem 1: Much previous knowledge required.

• Problem 2: No adequate support of mixed type attributes.

To cope with these two major problems, we propose INTEGRATE, a parameter-
free technique for integrative clustering of data with mixed type attributes. The
major benefits of our approach can be summarized as follows:

1. Natural balance of numerical and categorical information in clustering sup-
ported by information theory;

2. Parameter-free clustering;

3. Making most effective usage of numerical as well as categorical informa-
tion;

4. Scalability to large datasets.

4.1.1 Minimum Description Length for Integrative Clustering

Notations. In the following we are considering a datasetDS with n objects. Each
object x is represented by d attributes. Attributes are denoted by capital letters and
can be either numerical features or categorical variables with two or more values.
For a categorical attribute A, we denote a possible value of A by a. The result of
our algorithm is a disjoint partitioning of DS into k clusters C1, · · · , Ck.

Likelihood and Data Compression. One of the most challenging problems in
clustering data with mixed type attributes is selecting a suitable distance function,
or unifying clustering results obtained on the different representations of the data.
Often, the weighting between the different attribute types needs to be specified by

4.1 INTEGRATE: A Clustering Algorithm for Heterogeneous Data 85

parameter settings, cf. Section 2.2. The minimum description length (MDL) prin-
ciple provides an attractive theoretical foundation for parameter-free integrative
clustering avoiding this problem. Recently, the MDL-principle and related ideas
have been successfully applied to avoid crucial parameter settings in clustering
vector data. For hierarchical data mining we contributed hMDL (cf. Section 3.1),
but to the best of our knowledge MDL has not been applied to integrative cluster-
ing so far. Also for heterogeneous data, it is very beneficial to regard clustering as
a data compression problem, naturally balancing the influence of categorical and
numerical attributes.

Coding Categorical Data

To give a simple example, assume we need to transfer 1,000 1-dimensional cate-
gorical data objects. Each object is represented by a categorical attribute A with
two possible values {red, blue}. It can be shown that the code length to transfer
this data is lower bounded by the entropy of the attribute A. Thus, the coding
costs CC of attribute A are provided by:

CC(A) = −
∑
a∈A

p(a) · log2 p(a).

Here, a denotes each possible value or outcome of the categorical attribute. By the
application of the binary logarithm we obtain the code length in bits. If we have
no additional knowledge on the data we have to assume that the probabilities for
red and blue are both 0.5. With this assumption, we need one bit to encode each
data object and the communication costs would be 1,000 bits. Clustering, how-
ever, provides high-level knowledge on the data which allows for a much more
effective way to reduce the communication costs. Even if the probabilities for the
different outcomes of the categorical attributes are approximately equal consider-
ing the whole dataset, often different clusters with non-uniform probabilities can
be found.

86 4. Integrative Data Mining

10

8

6

44

2

0 x-2 -1 0 1 2 3 4 5-3-4

Figure 4.1: Top: Example dataset with two numerical and one categorical attribute
with the outcomes red and blue. Bottom: Cost curves assuming two clusters:
Considering the numerical information only (green), integrating numerical and
categorical information (red, blue). For each outcome and each cluster, we have a
unique cost curve. Intersection points mark the resulting cluster borders.

As an example, refer to the data displayed in Figure 4.1. The data is represented
by two numerical attributes that will be taken into account in the next paragraph,
and one categorical attribute. The categorical attribute has two possible values,
red and blue, which are visualized by the corresponding colors. Considering all
data, the probabilities for red and blue are both 0.5. However, it is evident that
the outcomes red and blue are not uniformly distributed in all areas of the data
space. Rather, we have two clusters, one mainly hosts the red objects, and the
other the blue ones. In fact, the data has been generated such that in the cluster
displayed on the left, we have 88% of blue objects and 12% of red objects. For
the cluster on the right, the ratio has been selected reciprocally. This clustering
drastically reduces the entropy and therefore the coding costs of the categorical
attribute to CC(A) = 0.53 bits per data object, which corresponds to the entropy
of A in both clusters. However, we would need to transfer the clustering result

4.1 INTEGRATE: A Clustering Algorithm for Heterogeneous Data 87

itself, including the cluster identifiers to the receiver. Before discussing how to
encode the clustering result, we will consider how to encode numerical data.

Coding Numerical Data

If our dataset contains an additional numerical attribute B we can also use the
relationship between likelihood and data compressibility to reduce the communi-
cation costs. To specify the probability of each data object considering attribute
B, we assign a probability density function (PDF) to B. Here, we apply a Gaus-
sian PDF for each numerical attribute. However, let us note that our ideas can
be straightforwardly extended to other types PDF, e.g. Laplacian or Generalized
Gaussian. Thus, the probability density function of a numerical attribute B is
provided by:

p(b) =
1

σ
√

2π
exp

(
−(b− µB)2

2σ2
B

)
.

If the data distribution of attribute B is Gaussian with mean µB and standard de-
viation σB, we minimize the communication costs of the data by a coding scheme
which assigns short bit strings to objects with coordinate values that are in the
area of high probability and longer bit strings to objects with lower probability
according to the idea of Huffman-Coding. Let us note that we do not consider
how to actually construct such code. Rather, we are interested in the code length
as a measure for clustering quality. The coding costs of attribute B are provided
by:

CC(B) = −
∫
p(b) log2 p(b)db.

Again, if we have no knowledge on the data, we would have to assume that each
attribute is represented by a single Gaussian with mean and standard deviation
determined from all data objects. As discussed for categorical data, clustering
can often drastically reduce the communication costs. Most importantly, relat-
ing clustering to data compression allows us a unified view on data with mixed

88 4. Integrative Data Mining

type attributes. Consider again the data displayed in Figure 4.1. In addition to
the categorical attribute we now consider the numerical x-coordinate, denoted by
X . To facilitate presentation, we ignore the y-coordinate which is processed anal-
ogously. The two green curves at the bottom represent the coding costs of the
two clusters considering X . For both curves, the cost minimum coincides with
the mean of the Gaussian which generated the data. The cluster on the right has
been generated with slightly larger variance, resulting in slightly higher coding
costs. The intersection of both cost curves represents the border between the two
clusters provided by X , indicated by a green vertical line. In addition, for each
cluster and each outcome of the categorical attribute, we have included a cost
curve (displayed in the corresponding colors). Again, the intersection points mark
the cluster borders provided by the categorical attribute. Consider, e.g., the red
vertical line. Red objects with a value in X beyond that point are assigned to the
cluster on the right. Thus, in the area between the red and the blue vertical line,
the categorical value is the key information for clustering. Note that all borders
are not fixed but optimized during the run of our algorithm.

A Coding Scheme for Integrative Clustering

As mentioned, in addition to the coding costs for categorical and numerical at-
tributes of the data objects, we need to elaborate a coding scheme describing the
clustering result itself. The additional coding costs for encoding the clustering
result can be classified into two categories: the parameter costs required to spec-
ify the cluster model and the id-costs required to specify the cluster-id for each
object, i.e. the information to which cluster the object belongs.

For the parameter costs, we focus on the set of objects belonging to a single
cluster C. To specify the cluster model, we need for each categorical attribute A
to encode the probability of each value or outcome a. For a categorical attribute
with |A| possible values, we need to encode |A|−1 probabilities since the remain-
ing probability is implicitly specified. For each numerical attribute B we need to
encode the parameters µB and σB of the PDF. Following a central result from the

4.1 INTEGRATE: A Clustering Algorithm for Heterogeneous Data 89

theory of MDL [90], the parameter costs to model the |C| objects of the cluster
can be approximated by p/2 · log2 |C|, where p denotes the number of parame-
ters. The parameter costs depends logarithmically on the number of objects in the
cluster. The considerations behind this are that for clusters with few objects, the
parameters do not need to be coded with very high precision. To summarize, the
parameter costs for a cluster C are provided by:

PC(C) =
1

2
· ((
∑
Acat

|A| − 1) + |Bnum| · 2)) · log2 |C|.

HereAcat stands for all categorical attributes andBnum for all numerical attributes
in the data. Besides the parameter costs, we need to encode the information to
which of the k clusters each object belongs. Also for the id-costs, we apply the
principle of Huffman coding which implies that we assign shorter bitstrings to the
larger clusters. Thus, the id-costs IDC of a cluster C are provided by:

IDC(C) = log2

n

|C|
.

Putting it all together, we are now ready to define iMDL, our information-theoretic
optimization goal for integrative clustering.

iMDL =
∑
C

(
∑
A

|C| · CC(A)) + PC(C) + IDC(C).

For all clusters C we sum up the coding costs for all numerical and categorical
attributes A. We have to add the parameter costs and the id-costs of the cluster to
the aforementioned coding costs, denoted by PC(C) and IDC(C), respectively.
Finally, we sum up these three terms, coding costs, parameter costs and id-costs
for all k clusters.

90 4. Integrative Data Mining

4.1.2 The Algorithm INTEGRATE

Now we present the highly effective k-means based algorithm INTEGRATE for
clustering mixed type attributes that is based on the MDL-based criterion iMDL,
defined in Section 4.1.1. INTEGRATE is designed to find the optimal clustering
of a dataset DS, where each object x comprises both numerical and categorical
attributes by optimizing the overall compression rate. First, INTEGRATE builds
an initial partitioning of k clusters. Each cluster is represented by a Gaussian PDF
in each numerical dimension B with µB and σB, and a probability for each value
of the categorical attributes. All objects are then assigned to the k clusters by min-
imizing the overall coding costs iMDL. In the next step, the parameters of each
cluster are recalculated according to the assigned objects. That implies µ and σ
in each numerical dimension and the probabilities for each value of the categori-
cal attributes, respectively. After initialization the following steps are performed
repeatedly until convergence. First, the costs for coding the actual cluster parti-
tion are determined. Second, the assignment of objects to clusters is performed
in order to decrease the iMDL value. Third, the new parameters of each cluster
are recalculated. INTEGRATE terminates if no further changes of cluster assign-
ments occur. Finally, we receive the optimal clustering for DS represented by k
clusters according to minimum coding costs.

Initialization

The effectiveness of an algorithm often heavily depends on the quality of the ini-
tialization, as it is the case that many algorithms can get stuck in a local optimum.
Hence, we propose an initialization scheme to avoid this effect. We have to find
initial cluster representatives that correspond best to the final representatives. An
established method for partitioning methods is to initialize with randomly chosen
objects of DS. We adopt this idea and take the µ of the numerical attributes of
k randomly chosen objects as cluster representatives. During initialization, we
set σ = 1.0 in each numerical dimension. The probabilities of the values for the

4.1 INTEGRATE: A Clustering Algorithm for Heterogeneous Data 91

categorical attributes are set to 1
|a| . Then a random set of 1

z
n objects is selected,

where n is the size of DS and z = 10 turned out to give satisfying results. Finally,
we chose the clustering result that minimizes iMDL best, within m initialization
runs. Typically m = 100 runs suffice for an effective result. As only a fraction of
DS is used for the initialization procedure, our method is not only effective but
also very efficient.

Automatically Selecting the Number of Clusters k

Now we propose a further improvement of the effectiveness of INTEGRATE.
Using iMDL for mixed type data we can avoid the parameter k. As an optimal
clustering that represents the underlying data structure best has minimum coding
costs, iMDL can also be used to detect the number of clusters. For this purpose,
INTEGRATE uses iMDL no longer exclusively as selection criterion for finding
the correct object to cluster assignment. Rather we now estimate the coding costs
for each k where k is selected in a range of 1 ≤ k ≤ n. For efficiency reasons
INTEGRATE performs this iteration step on a z% sample of DS. The global
minimum of this cost function gives the optimal k and thus the optimal number of
clusters.

4.1.3 Experimental Evaluation

Since INTEGRATE is a hybrid approach combining the benefits of clustering nu-
meric and categorical attributes, we compare to algorithms of both categories
and algorithms that can also handle mixed type attributes. In particular, we se-
lected the popular k-means algorithm [72], the widely used method k-modes [49],
the k-means-based method by Ahmad and Dey [3] denoted by KMM and k-
prototypes [47]. For k-means and k-modes the numerical and categorical at-
tributes were ignored, respectively. For evaluation we used the validity measure
by [30] referred to as DOM in the following (smaller values indicate a better clus-
ter quality), which has the advantage that it allows for clusterings with different

92 4. Integrative Data Mining

numbers of clusters and integrates the class labels as “ground truth”. In each ex-
periment, we report the average performance of all clustering algorithms over ten
runs.

Synthetic Data

If not specified otherwise, the artificial datasets include three Gaussian clusters
with each object having two numerical and one categorical attribute. To validate
the results we added a class label to each object which was not used for clustering.

Varying Ratio of Categorical Attribute Values. We generated 3-dimensional
synthetic datasets with 1,500 points including two numerical and one two-valued
categorical attribute. We varied the ratio for each categorical attribute value from
0% to 100% clusterwise in each dataset. Without need for difficult parameter set-
ting our proposed method performs best in all cases (cf. Figure 4.2(a)). Even in
the case of equally (50%) distributed values, where the categorical attribute gives
no information for separating the objects, the cluster quality of INTEGRATE is
best compared to all other methods. As k-means does not take the categorical
attributes into account the performance is relatively constant.

Varying Variance of Clusters. This experiment aims at comparing the perfor-
mance of the different methods on datasets with varying variances. In particular,
we generated synthetic datasets each comprising 1,500 points including two nu-
merical and one two-valued categorical attribute that form three Gaussian clusters
with a variance ranging from 0.5 to 2.0. Figure 4.2(b) shows that INTEGRATE
outperforms all competitors in all cases, in which each case reflects different de-
gree of overlap of the three clusters. Even at a variance of 2.0 where the numeri-
cal attributes carry nearly no cluster information our proposed method shows best
cluster quality. In this case the categorical attributes are used to separate the clus-
ters. On the contrary, k-modes performs worst as it can only use the categorical
attribute as single source for clustering.

4.1 INTEGRATE: A Clustering Algorithm for Heterogeneous Data 93

0 6
0.8
1.0

va
lu

e

k-modes k-means k-prototypes KMM INTEGRATE

0.0
0.2
0.4
0.6

0% 20% 40% 60% 80% 100%

D
O

M
 v

ratio of α

(a) Ratio of categorical attributes.

0 6
0.8
1.0

va
lu

e

k-modes k-means k-prototypes KMM INTEGRATE

0.0
0.2
0.4
0.6

0.5 1.0 1.5 2.0

D
O

M
 v

σ

(b) Variance of clusters.

0 6
0.8
1.0

va
lu

e

k-modes k-means k-prototypes KMM INTEGRATE

0.0
0.2
0.4
0.6

0% 20% 40% 60% 80% 100%

D
O

M
 v

clustersize ratio

(c) Varying clustersize.

0 6
0.8
1.0

va
lu

e
k-modes k-means k-prototypes KMM INTEGRATE

0.0
0.2
0.4
0.6

0 5 10 15 20

D
O

M
 v

numerical dimensions

(d) Numerical dimensions.

0 6
0.8
1.0

va
lu

e

k-modes k-means k-prototypes KMM INTEGRATE

0.0
0.2
0.4
0.6

0 5 10 15 20

D
O

M
 v

categorical dimensions

(e) Categorical dimensions.

0 6
0.8
1.0

va
lu

e

k-modes k-means k-prototypes KMM INTEGRATE

0.0
0.2
0.4
0.6

0 2 4 6 8 10

D
O

M
 v

noise dimensions

(f) Noise dimensions.

Figure 4.2: Mean DOM value of resulting clusterings on synthetic data w.r.t. vary-
ing ratio of categorical attribute values, variances of clusters and clustersizes, and
different numbers of numerical, categorical and noise dimensions.

94 4. Integrative Data Mining

Varying Clustersize. In order to test the performance of the different methods
on datasets with unbalanced clustersize we generated three Gaussian clusters with
different variance and varied the ratio of number of points per cluster from 0% to
100% in five steps. It is obvious from Figure 4.2(c) that INTEGRATE separates
the three clusters best even with highly unbalanced cluster sizes. Only in the case
of two very small clusters and one big cluster k-modes shows a slightly better
cluster validity.

Varying Number of Numerical Dimensions. In this experiment we leave the
number of categorical attributes to a constant value and successively add numer-
ical dimensions to each object that are generated with a variance of σ=1.8. IN-
TEGRATE shows best performance in all cases (cf. Figure 4.2(d)). All methods
show a slight increase in cluster quality when varying the numerical dimensional-
ity, except k-modes that performs constantly as it does not consider the numerical
attributes.

Varying Number of Categorical Dimensions. For each object we added three-
valued categorical attributes where we set the probability of the first value to 0.6

and the probability of the two remaining values to 0.2, respectively. Figure 4.2(e)
illustrates that our proposed method outperforms the other methods and even k-
modes by magnitudes which is a well-known method for clustering categorical
data. Whereas KMM shows a heavy decrease in clustering quality in the case
of two and four additional categorical attributes, our method performs relatively
constant. Taking the numerical attributes not into account the cluster validity of
k-means remains constant.

Noise Dimensions. Figure 4.2(f) illustrates the performance of the different meth-
ods on noisy data. It is obvious that INTEGRATE outperforms all compared meth-
ods when adding non-clustered noise dimensions to the data. k-means shows a

4.1 INTEGRATE: A Clustering Algorithm for Heterogeneous Data 95

Table 4.1: Performance of INTEGRATE on real-world datasets.

INTEGRATE k-MEANS k-MODES KMM k-PROTOTYPES

HEART µ 1.23 1.33 1.26 1.24 1.33
DISEASE σ 0.02 0.01 0.03 0.02 0.00
CREDIT µ 0.61 0.66 0.70 0.63 0.66
APPROVAL σ 0.03 0.00 0.00 0.09 0.00

highly increase in the DOM values. Even in the case of nine noise dimensions
INTEGRATE leads to the best clustering result.

Real Data

Finally, we show the practical application of INTEGRATE on real world data,
available at the UCI repository1. We chose two different datasets with mixed
numerical and categorical attributes. An additional class attribute allows for an
evaluation of the results. Table 4.1 reports the µ and σ of the DOM value of all
methods within ten runs. For all compared methods we set k to the number of
suggested classes.

Heart Disease. The Heart-Disease dataset comprises 303 instances with six nu-
merical and eight categorical attributes each labeled to an integer value between 0
and 4 which refers to the presence of heart disease. Without any prior knowledge
on the dataset we obtained best cluster validity of 1.23 with INTEGRATE. KMM
performed slightly worse. However, the runtime of INTEGRATE is 0.1 seconds
compared to KMM which took 2.8 seconds to return the result.

Credit Approval. The Credit Approval dataset contains results of credit card
applications. It has 690 instances, each being described by six numerical and nine
categorical attributes and classified to the two classes ‘yes’ or ‘no’. With a mean
DOM value of 0.61 INTEGRATE separated the objects best into two clusters in
only 0.1 seconds without any need for setting input parameters.

1http://archive.ics.uci.edu/ml/

96 4. Integrative Data Mining

Finding the optimal k

By means of the dataset illustrated in Figure 4.3(a), we highlight the benefit of
INTEGRATE for finding the correct number of clusters. The dataset comprises
six Gaussian clusters, where each object has two numerical and one categorical at-
tribute with two different values that are marked in “red” and “blue”. Figure 4.3(b)
shows the iMDL value of the data model for different values of k. The cost func-
tion has its global minimum, which refers to the optimal number of clusters, at
k = 6. In the range of 1 ≤ k ≤ 4 the plotted function shows an intense de-
crease in the coding costs and for k > 6 a slight increase of the coding costs as
in these cases the data does not optimally fit into the model and therefore causes
high costs. Note, that there is a local minimum at k = 4, which would also refer
to a meaningful number of clusters.

(a) The dataset. (b) iMDL for 1 ≤ k ≤ 30.

Figure 4.3: Coding costs for different k according to a dataset of six clusters.

4.1.4 Conclusions

We addressed integrative clustering of data covering both numerical and cate-
gorical attributes. In addition, we gave in a solution to avoid difficult parameter
settings, guided by the idea of data compression. On top of that concept, we have
proposed INTEGRATE, an information-theoretic integrative clustering method,
that allows for a natural weighting of numerical and categorical information. In
addition, INTEGRATE is fully automatic and shows high efficiency and is there-
fore scalable to large datasets.

Chapter 5

Mining Skyline Objects

Skyline queries are an important area of current database research, and have
gained increasing interest in recent years [19, 93, 58]. Most papers focus on effi-
cient algorithms for the construction of a single skyline which is the answer of a
user’s query. We extend the idea of skylines in such a way that multiple skylines
are treated as objects for data exploration and data mining.

5.1 SkyDist: An Effective Similarity Measure for
Skylines

One of the most prominent applications of the skyline operator is to support com-
plex decisions. As an example consider an online marketplace for used cars,
where the user wants to find out offers which optimize more than one property
of the car such as p (price) and m (mileage), with an unknown weighting of the
single conditions. The result of such a query has to contain all offers which may
be of interest: not only the cheapest offer and that with lowest mileage but also
all offers providing an outstanding combination of p and m. This concept is illus-
trated in Figure 5.1(a) which displays a set of database objects representing all car
offers (lets say for an Audi A3 1.6) described by the attributes p and m. However,

98 5. Mining Skyline Objects

G

m

p

Skyline of
Audi A3 1.6 A

(a) Database objects and
their skyline.

BMW 7 3.0

Audi A8 3.3

Ford Focus 1.6

Audi A3 1.6

p

m

(b) Skylines of different
car models.

(c) A 3-dimensional skyline.

Figure 5.1: Motivating examples for performing data mining on skylines.

not all of these offers are equally attractive to the user. For instance, offer A has
both a lower price and a lower mileage than G and many other offers. Therefore,
we say that A dominates G (in symbols A ≺ G), because A is better than G w.r.t.
any possible weighting of the criteria price and mileage. The skyline contains
all objects which are not dominated by any other object in the database. In Fig-
ure 5.1(a), the skyline objects exhibiting an outstanding combination of price and
mileage are highlighted in red.

For the used car market, the skyline of each car model has a particular mean-
ing: Many arbitrarily bad offers may be present in the database but only the offers
in (or close to) the skyline have a high potential to find a customer. The skyline
of the offers marks to some degree the fair value of a car for each mileage in the
market. Therefore, the skyline characterizes a car model (or higher-order objects
of other applications) in a highly expressive way.

This high expressiveness leads us to the idea of treating the skylines them-
selves as objects with the corresponding similarity measure, called SkyDist. Fig-
ure 5.1(b) illustrates the skylines of four different car models derived from an
online automotive market. Car models which exhibit similar skylines (like Audi
A3 1.6 and Ford Focus 1.6) may be considered as similar: A recommender system
might find out that the Focus is a perfect alternative to the Audi A3. The different
car models may be subject to clustering, classification, outlier detection, or other
supervised or unsupervised data mining tasks, using a similarity measure which is

5.1 SkyDist: An Effective Similarity Measure for Skylines 99

built upon the skyline.
Since the different 2-dimensional skylines in Figure 5.1(b) look like well-known
structures (like time series or trajectories), we may gain the impression that ap-
propriate techniques could be helpful for the definition of the skyline similarity.
However, when taking a closer look at a skyline in a 3- or higher dimensional data
space as shown in Figure 5.1(c) with the attributes p (price), m (mileage), and a
(age), it becomes obvious that this is not sufficient. Unfortunately, there exists
no natural dimension which can be used for ordering the skyline objects. There-
fore, our solution is based on a different concept, namely the symmetric volume
difference of the two skylines to be compared.

5.1.1 SkyDist

At the beginning of this section we define the essential concepts underlying Sky-
Dist in general. Then we motivate the idea behind assigning SkyDist for 2-
dimensional skylines and conclude with a generalization according d-dimensional
skylines, where d ≥ 2.

Theoretical Background

Consider a set of database objects, each of which is already associated with an
individual skyline. For instance, each car type is associated with the skyline of
the offers posted in a used car market. An effective distance measure for a pair of
skyline objects should be useful in the sense that the characteristic properties of
the skyline concept are suitably reflected. Whenever two skylines are similar in
an intuitive sense, then SkyDist should yield a small value. In order to define such
a reasonable distance measure, we recall here the central concept of the classical
skyline operator, the dominance relation which can be built on the preferences on
attributes D1, . . . ,Dd in a d-dimensional numeric space D.

Definition 4 (Dominance) For two data points u and v, u dominates v, denoted

by u ≺ v, if the following two conditions hold:

100 5. Mining Skyline Objects

∀ dimensions Di∈{1,...,d}: u.Di ≤ v.Di
∃ dimension Dj∈{1,...,d}: u.Dj < v.Dj .

Definition 5 (Skyline Point / Skyline) Given a set of data points DS, a data

point u is a skyline point if there exists no other data point v ∈ DS such that

v dominates u. The skyline on DS is set of size s containing all skyline points.

Two skylines are obviously equal when they consist of identical points. Intu-
itively, one can say that two skylines are similar, whenever they consist of similar
points. But in addition, two skylines may also be considered similar if they dom-
inate approximately the same points in the data space. This can be grasped in a
simple and efficient way by requiring that the one of the two skylines should not
change much whenever the points of the other skyline are inserted into the first
one and vice versa. This leads us to the idea to base SkyDist on the set-theoretic
difference among the parts of the data space which are dominated by the two
skylines. For a more formal view let us define the terms dominance region and
non-dominance region of a skyline.

Definition 6 (Dominance Region of a Skyline Point) Given a skyline point

xi∈{1,...,s} of a skyline X = {x1, . . . , xs}. The dominance region of xi, denoted

by DOMxi , is the data space, where every data point u ∈ DOMxi complies the

condition xi ≺ u.

Definition 7 (Dominance Region of a Skyline) Given the set of all skyline points

of a skyline X . The dominance region of the skyline X , denoted by DOMX , is

defined over the union of the dominance regions of all skyline points xi∈{1,...,s}.

Figure 5.2 illustrates this notion for two given skylines X and Y . The green and
blue areas show the dominance regions of skylines X and Y , respectively.

Definition 8 (Non-Dominance Region of a Skyline) Given a numeric spaceD =

(D1, . . . ,Dd) and the dominance regionDOMX of a skylineX . The non-dominance
region of X , denoted by DOMX , is D \ DOMX .

5.1 SkyDist: An Effective Similarity Measure for Skylines 101

1.0

1.0

D1

D2

x2

x4

y4

y3 y2

y1

y5

x3

x1

Bounding

Skyline

Point

Figure 5.2: Dominance regions of two skylines X and Y .

The basic idea behind SkyDist is to determine the data space that is represented by
all possible data points that are located in the dominance region of one skyline and,
at the same time, the non-dominance region of the other skyline. More formally
we can say that SkyDist is the symmetric volume difference between two skylines
which can be specified by the following equation.

SkyDist(X, Y) = Vol((DOMX \ DOMY) ∪ (DOMY \ DOMX))

In order to determine the value of the distance of two skylines X and Y based on
the concept described above, we have to limit the corresponding regions in each
dimension. Therefore, we introduce the notion of a bounding skyline point.

Definition 9 (Bounding Skyline Point) Given a skyline X in a d-dimensional

numeric space D = (D1, . . . ,Dd), where xi ∈ [0, 1]. The bounding skyline point
of skyline X in dimension i, denoted by xBoundi , is defined as follows.

102 5. Mining Skyline Objects

x2

y5

y3 y2

1.0

1.0

y4

y1

x4
x3

x1

D1

D2

Figure 5.3: SkyDist in 2-dimensional space.

xBoundi .Dj =

1, if j = i

0, otherwise

The bounding skyline points for two 2-dimensional skyline objects X and Y are
marked in Figure 5.2 in red color. We remark that this concept is also applicable
if the domain of one or more dimensions is not bounded. In this case the affected
dimensions are bounded by the highest value that occurs in either skyline object
X or Y in the according dimension. The coordinates of the remaining skyline
points are then scaled respectively.

SkyDist by Monte-Carlo Sampling

First we want to give an approximation of the distance of two skylines by a Monte-
Carlo Sampling approach (MCSkyDist). SkyDist is approximated by randomly
sampling points and computing the ratio between samples that fall into the region
defined by Equation to compute SkyDist and the ones that do not. Let us consider
Figure 5.3. The region marked in red illustrates the region underlying SkyDist of

5.1 SkyDist: An Effective Similarity Measure for Skylines 103

two Skylines X and Y . This region is the dominance region of skyline X and si-
multaneously the non-dominance region of skyline Y , thus the distance of skyline
X to Y . A user defined number of points is randomly sampled and the amount
of samples that fall into the SkyDist region is determined. The ratio between the
samples located in the SkyDist region and the ones that do not give an approxima-
tion of the distance of the two skylines. We use this technique in our experiments
as a baseline for comparing a more sophisticated approach.

SkyDist for 2-Dimensional Skylines

Now we describe how to compute the exact distance of two skylines X and Y in
2-dimensional space. Let the skyline points of both skylines X and Y be ordered
by one dimension, e.g. D2. Note that the dominance region of a skyline X is
composed by the dominance regions of all of its skyline points. For the compu-
tation of SkyDist, we consider only the dominance regions that are exclusive for
each skyline point. Meaning that when we look at a particular skyline point xi, we
assign the dominance region of xi and discard all dominance regions of skyline
points xj , where xj.D2 > xi.D2. In the 2-dimensional space, nine different cases
can occur during the computation of SkyDist according to X and another skyline
object Y (cf. Figure 5.4). Note that some cases are symmetric and can thus be
treated in a similar way.

• Case 1: xi.D1 > yj.D1 ∧ xi.D2 > yj.D2 ∧ xi+1.D2 ≤ yj+1.D2

• Case 2: xi.D1 ≤ yj.D1 ∧ xi.D2 < yj.D2 ∧ xi+1.D2 ≥ yj+1.D2

• Case 3: yj.D2 ≤ xi.D2 < yj+1.D2 ∨ xi.D2 ≤ yj.D2 < xi+1.D2

– Case 3.1: yj.D2 ≤ xi.D2 < yj+1.D2 ∧ xi.D1 ≤ yj.D1

– Case 3.2: yj.D2 ≤ xi.D2 < yj+1.D2 ∧ xi.D1 > yj.D1

– Case 3.3: xi.D2 ≤ yj.D2 < xi+1.D2 ∧ xi.D1 ≤ yj.D1

– Case 3.4: xi.D2 ≤ yj.D2 < xi+1.D2 ∧ xi.D1 > yj.D1

104 5. Mining Skyline Objects

• Case 4: xi.D1 > yj.D1 ∧ xi.D2 < yj.D2 ∧ xi+1.D2 ≥ yj+1.D2

• Case 5: xi.D1 ≤ yj.D1 ∧ xi.D2 > yj.D2 ∧ xi+1.D2 ≤ yj+1.D2

• Case 6: xi+1.D2 ≤ yj.D2 ∨ xi.D2 ≥ yj+1.D2

xiyj

(a) Case 1.

xi

yj

(b) Case 2.

xi
yj

xi
yj

xi

yj
xi

yj

(c) Case 3.

xi

yj

(d) Case 4.

yj

xi

(e) Case 5.

xi

yj

(f) Case 6.

Figure 5.4: Different cases that occur during the computation of SkyDist in 2-
dimensional space.

The following formula computes the corresponding volume of the region referring
to SkyDist of two skyline objects X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Both
skylines include their bounding skyline points.

5.1 SkyDist: An Effective Similarity Measure for Skylines 105

SkyDist(X, Y) =

= Vol
(n−1∑
i=1

m−1∑
j=1

|1− xi.D1| · |(1− xi.D2)− (1− xi+1.D2)|−

−

|1− xi.D1| · |(1− xi.D2)− (1− xi+1.D2)|, if case 1

|1− yj.D1| · |(1− yj.D2)− (1− yj+1.D2)|, if case 2

|1− yj.D1| · |(1− xi.D2)− (1− yj+1.D2)|, if case 3.1

|1− xi.D1| · |(1− xi.D2)− (1− yj+1.D2)|, if case 3.2

|1− yj.D1| · |(1− yj.D2)− (1− xi+1.D2)|, if case 3.3

|1− xi.D1| · |(1− yj.D2)− (1− xi+1.D2)|, if case 3.4

|1− xi.D1| · |(1− yj+1.D2)− (1− yj.D2)|, if case 4

|1− yj.D1| · |(1− xi+1.D2)− (1− xi.D2)|, if case 5

0, if case 6

+

+
m−1∑
j=1

n−1∑
i=1

|1− yj.D1| · |(1− yj.D2)− (1− yj+1.D2)|−

−

|1− yj.D1| · |(1− yj.D2)− (1− yj+1.D2)|, if case 1

|1− xi.D1| · |(1− xi.D2)− (1− xi+1.D2)|, if case 2

|1− xi.D1| · |(1− yj.D2)− (1− xi+1.D2)|, if case 3.1

|1− yj.D1| · |(1− yj.D2)− (1− xi+1.D2)|, if case 3.2

|1− xi.D1| · |(1− xi.D2)− (1− yj+1.D2)|, if case 3.3

|1− yi.D1| · |(1− xi.D2)− (1− yj+1.D2)|, if case 3.4

|1− yj.D1| · |(1− xi+1.D2)− (1− xi.D2)|, if case 4

|1− xi.D1| · |(1− yj+1.D2)− (1− yj.D2)|, if case 5

0, if case 6
)

106 5. Mining Skyline Objects

Figure 5.3 illustrates the computation of SkyDist according skyline objects X and
Y (cf. Figure 5.2). The calculation is implemented via a sweep-line algorithm.
Therefore we refer to SLSkyDist in the following. This sort of algorithms use a
conceptual sweep-line to assess the distance of the two skylines. For this purpose
we store the skyline points of both skylines X and Y in a heap structure, called
event point schedule (EPS), ordered by one of the two dimensions (e.g. D2) as-
cending. The idea behind the sweep-line algorithm is to imagine that a line is
swept across the plane, stopping at every point that is stored in the EPS. In our
example, the sweep line moves along the axis of D2.

X1

X2

X3

X4

X1
X2

X3

X4

D3

D1
D2

A

B

C

D E

Figure 5.5: A sequence of 2-dimensional skylines, forming a 3-dimensional sky-
line.

A Plane-Sweep Approach for the High-dimensional Case

The idea behind algorithms following the plane-sweep paradigm, which originates
from the field of computational geometry, is to imagine that a line (often a vertical
line) is swept or moved across the plane, stopping at some points. The general
approach of these algorithms then is to transform a d-dimensional problem into
a sequence of problems of dimensionality (d − 1), which are then solved recur-

5.1 SkyDist: An Effective Similarity Measure for Skylines 107

sively until the dimensionality is small enough to apply an explicit solution (in
our case d = 2). For skyline-based problems the plane-sweep paradigm is often
very adequate because we can consider a d-dimensional skyline as a sequence of
skylines with dimensionality (d − 1), as can be seen from Figure 5.5: Here, we
use D3 (in decreasing order) as the ordering dimension and build a sequence of
2-dimensional skylines (each in the D1/D2-plane). We first describe how a single
skyline is processed according to the plane-sweep paradigm (assuming no partic-
ular computational task to be applied while traversing), and then we demonstrate,
how two skylines can be traversed simultaneously in order to compute their Sky-
Dist.

Traversal. Plane-sweep algorithms basically use two different data structures.
First, the event point schedule (EPS) contains all points, ordered by the last co-
ordinate (decreasingly). Second, in each stop of the sweeping plane, we want to
obtain a valid skyline in the space spanned by the remaining coordinates. This
sub-skyline is stored in the sweep-plane status (SPS). In Figure 5.5, this refers to
the four sub-skylines X1, ..., X4. More precisely, in each stop of the sweep plane,
this (d−1)-dimensional sub-skyline is updated by (1) projecting the current point
of the EPS into the (d − 1)-dimensional space, (2) inserting the projected point
into the skyline in the SPS, (3) deleting those points from the skyline in the SPS
which are dominated by the new point in the (d − 1)-dimensional space, and (4)
calling the traversal-algorithm recursively for the obtained (d − 1)-dimensional
skyline. In our example, the EPS has the order (A,B,C,D,E). We start with an
empty SPS, and at the first stopping point, the D1/D2-projection of A is inserted
into the SPS to obtain X1. No point is dominated. Hence, we call the traversal
algorithm for the obtained 2-dimensional skyline (A). At the next stop, the pro-
jection of B is inserted. Since the projection of B dominates the projection of A
(in our figure this fact is symbolized by the canceled-out copy of A), X2 contains
only point B. After the recursive call, in the next stop, the projection of C is in-
serted which does not dominate object B in the skyline, and, therefore, the next

108 5. Mining Skyline Objects

skyline X3 = (B,C). Finally, D and E are inserted into the skyline in the SPS
(which can be done in one single stop of the sweep-plane or in two separate stops
in any arbitrary order), to obtain X4 = (D,C,E), since B is dominated by D in
the (d− 1)-dimensional projection.

Simultaneous Traversal for SkyDist. The computation of SkyDist(X, Y) re-
quires a simultaneous traversal of the two skylines X and Y to be compared. That
means that the EPS contains the points of both X and Y , simultaneously ordered
by the last coordinate. Each of the stops of the sweep-plane corresponds either
to a point of X or a point of Y , and the corresponding sub-skyline in the SPS
must be updated accordingly, as defined in the last paragraph by (1) projecting the
point, (2) inserting the point in the corresponding sub-skyline for either Xi or Yi,
(3) canceling out the dominated points of the sub-skyline, and finally making the
recursive call for (d− 1).

Having developed this algorithmic template, we can easily obtain SkyDist(X, Y),
because each stop of the sweep-plane defines a disklet, the thickness of which is
given by the difference between the last and the current event point (taking only
the coordinate which is used to order the EPS). This thickness must be multiplied
with the (d − 1)-dimensional volume which is returned by the recursive call that
computes SkyDist of the (d − 1)-dimensional sub-skylines Xi and Yi. All vol-
umes of all disklets of the obtained sub-skylines have to be added. This works no
matter whether current and the previous event points belong to the same or differ-
ent skylines. Also in the case of tie situations where both skylines have identical
values in the ordering coordinates or where some points in the same skyline have
identical values, our algorithm works correctly. In this case, some disklets with
thickness 0 are added to the overall volume, and, therefore, the order in which the
corresponding sub-skylines are updated, does not change anything.

5.1 SkyDist: An Effective Similarity Measure for Skylines 109

Table 5.1: Runtime analysis for SLSkyDist and MCSkyDist.

DATA # SKYLINE # SKYLINE

POINTS POINTS POINTS SLSKYDIST MCSKYDIST

OF X OF Y

2D 10 4 3 15 ms 47 ms
100 5 6 16 ms 47 ms

1000 9 5 15 ms 63 ms
10000 7 12 15 ms 78 ms

3D 10 5 5 31 ms 62 ms
100 18 16 47 ms 109 ms

1000 29 19 63 ms 125 ms
10000 68 39 78 ms 266 ms

4D 10 5 8 47 ms 78 ms
100 25 36 172 ms 141 ms

1000 80 61 203 ms 297 ms

5.1.2 Experimental Evaluation

We evaluated SkyDist on synthetic and real world data. SkyDist turned out to
be highly effective and efficient. Hence, data mining on skylines provides novel
insights in various application domains. For skyline construction, the approach
of [19] is applied.

Stability and Efficiency

To evaluate the stability of the baseline approach MCSkyDist, we generated syn-
thetic data covering 1,000 uniformly distributed 2-dimensional data objects and
varied the sample rate in a range of 1 to 50,000 and quantify the accuracy of Sky-
Dist in each run. These experiments indicate that the accuracy of MCSkyDist is
very robust w.r.t. the number of samples. Its results achieve a constant value even
with a small sample rate. Actually with 1,000 samples the same result as using
SLSkyDist can be achieved.

Furthermore, we generated skylines for datasets with varying number of points
and dimensionality. As in most real world applications, we are interested in the

110 5. Mining Skyline Objects

skyline w.r.t. only a few selected dimensions, we focus on skylines up to di-
mensionality d = 4 here. The results are summarized in Table 5.1. In the 2-
dimensional case the runtime of SkyDist remains constant even with increasing
dataset size. This is due to the fact, the number of skyline points remains rela-
tively constant even though the size increases. It has been shown in [68] that for
independent distributed data the number of skyline objects is O(log2 n). Also in
the 3- and 4-dimensional case it is evident that considering the skyline points in-
stead of all data points is very efficient. It takes 78 and 266 ms for SLSkyDist and
MCSkyDist (sample rate: 1,000) respectively to return the result for two skylines
X and Y each determined out of 10,000 data points. MCSkyDist and SLSkyDist
both scale linear with increasing dimensionality. SLSkyDist outperforms MC-
SkyDist by a factor of two which confirms the efficacy and scalability of an exact
computation of SkyDist even for large datasets with more than two dimensions.

Clustering Skylines of Real World Data

To demonstrate the potential of SkyDist for data mining, we demonstrate that in-
teresting reasonable knowledge can be obtained by clustering skylines with Sky-
Dist. In particular, we focus on two case studies from different applications and
we supply three different clustering algorithms (PAM [56], Single Link (SL) [72]
and DBSCAN [31]) with SkyDist.

Case Study 1: Automotive Market. The data used in this experiment is obtained
from the online automotive market place1. The resulting dataset comprises in to-
tal 1,519 used cars constructed in the year 2000. Thus, each data point represents
a specific offer of a used car which are labeled to one of three classes compact,
medium-sized and luxury, respectively. This information allows for an evaluation
of the results. Each car model is represented by one 2-dimensional skyline using
the attributes mileage and price. Hence each skyline point represents a specific
offer that provides an outstanding combination of these attributes, and therefore it

1http://www.autoscout24.de

5.1 SkyDist: An Effective Similarity Measure for Skylines 111

0

5000

10000

15000

20000

0 100000 200000 300000 400000

pr
ic

e
(E

ur
o)

mileage (km)

Audi A8 3.3
BMW 7 3.0

BMW 316
MB C180

Audi A3 1.6
Toyota Avensis 1.6
Honda Accord 1.8

VW Golf 3 1.6
Opel Astra 1.6
Ford Focus 1.6

Figure 5.6: Clustering of car models represented by their skyline.

is interesting for the user. PAM, DBSCAN and SL combined with SkyDist create
an identical clustering result (cf. Figure 5.6) using the following parameterization:
PAM (k = 3), DBSCAN (ε = 10, MinPts = 2) and the SL dendrogram with
a vertical cut at maxDistance = 90. All algorithms produce 100% class-pure
clusters w.r.t. the labeling provided by the online market place. As expected the
Audi A8 and BMW 7 of class luxury are clustered together in the blue cluster
with a very low distance. Also the Mercedes Benz C180 (MB C180) and the Audi
A3 belong to a common cluster (marked in red) and show a larger distance to the
Toyota Avensis or the Honda Accord. These two car models are clustered together
in the green cluster, whose members usually have a cheaper price. The clustering
result with SkyDist is very informative for a user interested in outstanding combi-
nations of mileage and price but not fixed on a specific car model. By clustering,
groups of models with similar skylines become evident.

SkyDist vs. Conventional Metrics. Conventional metrics can in principle be ap-
plied for clustering skylines. For this purpose we represent each car model as a
vector by calculating the average of the skyline points of the respective car model

112 5. Mining Skyline Objects

d
is

ta
n
ce

20

40

60

80

100

(a) SkyDist.

20

40

60

80

100

d
is

ta
n
ce

(b) Euclidean.

d
is

ta
n
ce

20

40

60

80

100

(c) Manhattan.

d
is

ta
n
ce

20

40

60

80

100

(d) Cosine.

Figure 5.7: SL dendrogram using SkyDist in comparison to conventional metrics.

in each dimension. Then we cluster the resulting vectors with SL using the Eu-
clidean, Manhattan and Cosine distance. In contrast to clustering skylines using
SkyDist (cf. Figure 5.7(a)), Figures 5.7(b), 5.7(c) and 5.7(d) demonstrates that no
clear clusters are identifiable in the dendrogram and the result is not very com-
prehensible. In Figure 5.7(b) and 5.7(c) it can easily be seen that Euclidean and
Manhattan distance lead to similar results. Both show the so called Single Link
effect, where no clear clusters can be identified. Using the Cosine distance avoids
this effect but does not produce meaningful clusters either. Precisely, the luxury
car model BMW 7 has minimum distance to the Opel Astra of class compact but
has an unexpected high distance to the luxury Audi A8. Furthermore the Honda

5.1 SkyDist: An Effective Similarity Measure for Skylines 113

Accord is treated as an outlier. When comparing the results produced by using
the conventional metrics to the clusterings using SkyDist it becomes evident, that
SkyDist outperforms the other metrics and is much better suited for skylines com-
parison.

Case Study 2: Performance Statistics of Basketball Players. The NBA game-
by-game technical statistics are available online2. We focus on the years 1991
to 2005. To facilitate demonstration and interpretation, we select players who
have played at minimum 500 games and are noted for their skills and got vari-
ous awards. The players are labeled with the three different basketball positions
guard (G), forward (F) and center (C). The individual performance skyline of
each player represents the number of assists and points. We cluster the skylines
using SkyDist. SL with a vertical cut of the dendrogram at maxDistance = 96

and DBSCAN (ε = 4, MinPts = 2) result in the same clustering. Figure 5.8(b)
shows that the players cluster very well in three clusters that refer to the labels
G, F and C. With PAM (k = 3) (cf. Figure 5.8(a)) only Steve Nash (G) clusters
into the red forward cluster. This can be explained by the fact, that this player has
performance statistics as a player in the position forward concerning number of
points and assists.

5.1.3 Conclusions

With SkyDist, we presented one of the first approaches for data mining on skyline
objects. Inspired by the success of the skyline operator for multi-criteria decision
making, we demonstrated that the skyline of a dataset is a very useful representa-
tion capturing the most interesting characteristics. Hence, data mining on skylines
is very promising for knowledge discovery. We presented a baseline approach to
compute SkyDist that approximates the distance and an exact sweep-line based
computation. SkyDist can easily be integrated into many data mining techniques.
Real world case studies on clustering skylines demonstrated that data mining on

2http://www.NBA.com

114 5. Mining Skyline Objects

0

10

20

30

40

50

60

70

0 10 20

po

in
ts

asissts

M. Jordan (G)
K. Bryant (G)
G. Payton (G)

S. Nash (G)
D. Nowitzki (F)

T. Duncan (F)
K. Malone (F)
C. Barkley (F)
K. Garnett (F)

P. Pierce (F)
C. Webber (F)
B. Wallace (C)
M. Camby (C)

D. Mutombo (C)
A. Mourning (C)

(a) PAM.

0

10

20

30

40

50

60

70

0 10 20

po

in
ts

asissts

M. Jordan (G)
K. Bryant (G)
G. Payton (G)

S. Nash (G)
D. Nowitzki (F)

T. Duncan (F)
K. Malone (F)
C. Barkley (F)
K. Garnett (F)

P. Pierce (F)
C. Webber (F)
B. Wallace (C)
M. Camby (C)

D. Mutombo (C)
A. Mourning (C)

(b) SL, DBSCAN.

Figure 5.8: Clustering of NBA Players represented as skylines.

skylines enabled by SkyDist yields interesting novel knowledge. Moreover, Sky-
Dist is efficient and thus scalable to large datasets.

Chapter 6

Graph Mining

Graphs or networks are very general data structures. This is interesting for two
reasons: First, from a system-wide perspective, a graph represents a system and
the interactions between its components. Second, from a component-centered
point of view, a graph describes all relationships that link this object to the rest of
the system. Hence, graphs and networks provide advantages in multiple applica-
tion domains.

The influence of chemical compounds on physiological processes, e.g. tox-
icity, or effectiveness as a drug and features of molecular structures are studied
in the fields of chemoinformatics [36] and bioinformatics. Furthermore a high
number of structured data comprises graph models of molecular structures, from
RNA to proteins [7], and of networks, which include protein-protein interaction
networks [106], metabolic networks [54], regulatory networks [24], and phyloge-
netic networks [51]. Another important source of graph structured data is social
network analysis [101]. Here, nodes represent individuals and edges stand for
interactions between them. Psychologists often want to study the complex social
dynamics between humans, and medical scientist want to uncover the spreading
behaviour of a virus. Industry aims for analyzing these networks for marketing
purposes, as detecting influential individuals, often referred to as ‘key-players’
or ‘trend-setters’, is relevant for marketing, as companies could then focus their

116 6. Graph Mining

advertising efforts on persons known to influence the behavior of a larger group
of people. A further application area for graph models is the internet which is a
network and hence a graph itself. HTML documents are the nodes, and hyperlinks
connect these nodes. In fact, Google exploits the Internet structure in its famous
PageRank algorithm [71] for ranking websites.

In this chapter, we first address the question of finding patterns in brain net-
works of patients with medical dysfunctions in Section 6.1. In Section 6.2, we
perform frequent subgraph discovery in dynamic biological networks.

6.1 Frequent Subgraph Mining in Brain Network
Data

Understanding the mechanisms that govern neural processes in the brain is an im-
portant topic for medical studies. Recently the emergence of an increasing number
of clinical diagnostics enable a global analysis of complex processes and therefore
allow a better understanding of numerous diseases. We focus on the mechanisms
in the brain that are associated with somatoform pain disorder. Somatization dis-
orders constitute a large, clinically important health care problem that urgently
needs deeper insight [103].

Earlier studies have revealed that different subunits within the human brain
interact among each other, when particular stimuli are transmitted to the brain.
Hence the different components form a network. From an algorithmic point of
view, interacting subunits act as specific subgraphs within the network. From a
medical perspective, it is interesting to ask to which degree interactions of subunits
are correlated with medical disorders.

We study the question whether brain compartments of patients with somato-
form pain disorder form subgraphs that differ from brain compartments of subjects
that do not suffer from this disease. For this purpose, we analyze task-fMRI scans
(a special form of neuroimaging) of the brain of ten subjects, six patients with so-
matoform pain disorder and four healthy controls that attended the study of [41].

6.1 Frequent Subgraph Mining in Brain Network Data 117

In this study both groups underwent alternate phases of non-pain and pain stimuli
during the fMRI scanning. We construct a brain co-activation network for each
subject where each node represents a voxel in the fMRI image. Voxels are grouped
together in 90 so-called regions of interest (ROIs) using the template of [96]. We
apply two approaches, the efficient heuristic approach GREW [63] and the ex-
haustive sampling technique FANMOD [102] to uncover frequent subgraphs in
each of these networks. While a heuristic approach allows for finding subgraphs
of arbitrary size, an exhaustive sampling algorithm can be applied to find all fre-
quent subgraphs, but in this case we are limited in the size of the subgraphs. Both
algorithms are designed to operate on one large graph and to find patterns cor-
responding to connected subgraphs that have a large number of vertex-disjoint
embeddings. We demonstrate that patients with somatoform disorder show acti-
vation patterns in the brain that are different from those of healthy subjects.

6.1.1 Performing Graph Mining on Brain Network Data

Basics of Graph Theory

We start with a brief summary of necessary definitions from the field of graph
mining.

Definition 10 (Labeled Graph / Network) A labeled graph is represented by a

4-tuple G = (V,E, L, l), where V is a set of vertices (i.e. nodes), E ⊆ V × V is

a set of edges, L is a set of labels, and l : V ∪ E → L is a mapping that assigns

labels to vertices V and edges E. If labels are not of decisive importance, we

will use the short definition of a graph G = (V,E). In the following we also use

network as a synonym for graph.

Definition 11 (Subgraph) LetG1 = (V1, E1, L1, l1) andG2 = (V2, E2, L2, l2) be

labeled graphs. G1 is a subgraph of G2 (G1 v G2) if the following conditions

hold: V1 ⊆ V2, E1 ⊆ E2, L1 ⊆ L2, ∀x ∈ V1 ∪ E1 : l1(x) = l2(x). If G1 is a

subgraph of G2, then G2 contains G1.

118 6. Graph Mining

Definition 12 (Isomorphism) Two graphs are isomorphic if there exists a bijec-

tion f between the nodes of two graphs G1 = (V1, E1) and G2 = (V2, E2) such

that (v1a, v1b) ∈ E1 iff (v2a, v2b) ∈ E2 where v2a = f(v1a) and v2b = f(v1b). If

G1 is isomorphic to G2, we will refer to (v1a, v1b) and (v2a, v2b) as corresponding
edges in the following.

Note that we do not consider the labeling in this definition, as we are interested in
isomorphic graphs that potentially show a diverse labeling in Chapter 6.2.

The problem to decide whether two graphs are isomorphic, i.e. the so-called
graph isomorphism problem, is not yet known to be NP-complete or in P. Given
two graphsG1 = (V1, E1) andG2 = (V2, E2), the subgraph isomorphism problem

consists in finding a subgraph of G2 that is isomorphic to G1. This problem is
known to be NP-complete [35].

Definition 13 (Embedding) If graph G1 is isomorphic to a subgraph S of graph

G2, then S is referred to as an embedding of G1 in G2.

Definition 14 (Frequent Subgraph / Motif) A graphG1 is a frequent subgraph
of graph G2 if G2 contains at least t embeddings of G1, where t is a user-set fre-

quency threshold parameter. Such a frequent subgraph is often called a motif.

Definition 15 (Union Graph) Given a sequence of n graphsGseq = {G1, · · · , Gn}
with Gi = (Vi, Ei) and Vi = V1 for all 1 ≤ i ≤ n. Then the union graph
UG(Gseq) of Gseq is defined as UG(Gseq) = (VUG, EUG, `), EUG = ∪1≤i≤nEi.

The definition of the labeling function ` can be chosen in accordance with the

application specific requirements.

An example for the transformation of a time series of graphs into a union graph is
depicted in Figure 6.1. Note that the union of all edges of the time series is the set
of edges of the union graph.

6.1 Frequent Subgraph Mining in Brain Network Data 119

Figure 6.1: Transformation from a time series of three labeled graphs (red and
blue) into the corresponding union graph.

Construction of Brain Co-Activation Networks Out of fMRI Time Series

As we are interested in topological patterns that are characteristic for patients
with somatoform pain disorder, we perform graph mining on brain co-activation
networks. Each detected motif represents interacting regions of the brain.
In order to receive such network models, fMRI time series data can be transformed
in the following manner. We define the voxels of the fMRI image data as the ver-
tex set. The measured value of a voxel indicates the degree of blood circulation
in the particular brain region. The darker the voxel, the more blood is present in
the compartment, thus the higher the activation is. Edges between two vertices v1

and v2 stand for a similar level of activation of the two corresponding voxels. We
distinguish two categories of activation levels for each voxel v at each time point
i, denoted by vi. a(i) stands for its activation level at time point i. We determine
an activity–score for each voxel v by comparing the median activation level of v
across the time series with a(i) in order to assign activation categories.

activity–score(vi) =
a(i)−medianj∈{1,..,n}a(j)

mediank∈{1,..,n}|(a(k)−medianj∈{1,..,n}a(j)|

We use a median-based activity–score rather than a mean-based as we want to de-
tect unusually high activation levels. In contrast to a mean-based activity–score
a median-based activity–score is more robust w.r.t. these extremes and better
suited for detecting them, as validated in initial experiments (not shown here).
The resulting activation levels high and not significant can then be formalized as
follows:

120 6. Graph Mining

• high activation:
a(i) is significantly higher than the median activation level of v.
(activity–score(v(i)) ≥ 7.0)

• no significant activation:
a(i) is not significantly higher than the median activation level of v.
(activation–score(v(i)) < 7.0).

Edges between vertices v1 and v2 are assigned if v1 and v2 both show high activa-
tion. Finally, we perform frequent subgraph mining on the resulting union graph
that is formed by the given time series according Definition 15.

Performing Frequent Subgraph Mining on Brain Co-Activation Networks

In order to find frequent subgraphs in our network, we have to group our nodes
and assign each group a labeling. A meaningful labeling of nodes when con-
sidering brain networks is a mapping of the nodes to their corresponding brain
compartments. Hence, subgraphs in those networks represent a complex of brain
compartments that show a similar activation profile. We remove edges between
nodes that share the same label, as a correlated degree of activation within one
region is trivial, and we are interested in similar activity of different regions.

Then we apply two large graph mining algorithms for finding subgraphs in
our labeled graphs. First, we employ the heuristic approach GREW [63], as the
runtime effort for exhaustive enumeration grows exponentially in the size of the
subgraphs. This enables us to find frequent subgraphs in a large graph rather
than to restrict ourselves to small frequent subgraphs, as described in Section 2.4.
Nevertheless, as we want to avoid missing out on embeddings of subgraphs that
consist of a small number of vertices (up to six), we also employ the exhaustive
enumeration strategy FANMOD by [102].

6.1 Frequent Subgraph Mining in Brain Network Data 121

Evaluation of Detected Frequent Subgraphs

To find subgraphs that are characteristic for a certain disease, we have to analyze
the subgraphs according to their appearance. Therefore we want to detect sub-
graphs that occur in patients but not in the control group and vice versa. Another
class of subgraphs that might be interesting are subgraphs that occur in all subjects
that attend a certain study.

A further aspect that should be considered is the label distribution across sub-
graphs, as voxels that belong to larger ROIs of a particular subject s have a higher
probability to appear in a motif than a label that covers a small number of nodes.
Hence, we have to define the normalized frequency of a node label l, denoted by
freqnorm(l).

freqnorm(l) =
∑
s∈S

freqm∈{1,...,n}(l) ·#Embeddings(m|s)
freqBackground(l|s)

,

where S denotes the set of all subjects and freqm∈{1,...,n} stands for the number
of occurrences of label l in a motif m. This number has to be multiplied by the
number of isomorphic subgraphs of m found in a subject s, its embeddings found
in s. The freqBackground(l|s) describes the number of occurrences of label l w.r.t.
all vertices of the network that refers to subject s. In our case this is equivalent to
the size of a ROI. Finally, we sum up over all subjects given in the dataset.

6.1.2 Experimental Evaluation

The experimental section is organized as follows. First, we summarize the con-
struction of the network models, including a detailed description of the used
dataset and the labeling scheme for the vertices of the networks. Then we per-
form motif discovery using the heuristic algorithm GREW [63] to allow for find-
ing subgraphs of arbitrary size. As an evaluation of these results indicates that a
multitude of the subgraphs found by GREW consist of only a small number of
vertices, we go a step further and additionally apply the exhaustive sampling tech-

122 6. Graph Mining

nique FANMOD by [102] on the network models. Finally, we compare the results
of both algorithms and give representative subgraphs for the group of subjects that
suffer from the somatoform pain disorder and typical subgraphs for the group of
healthy controls.

Construction of the Brain Network Models

We created networks for ten subjects that attended the studies of [41]. The result-
ing networks comprise 66 to 440 nodes with 90 different classes of node labels
and 358 to 13,548 edges. In addition, the network models indicate different num-
ber of edge types. These refer to the concatenation of the labels of the adjacent
nodes. All edges are undirected because in our specific application, where both
adjacent voxels have to show high activation to be connected by an edge, a direc-
tion makes no sense. The exact statistics of each subject are depicted in Table 6.1.

Table 6.1: Statistics of the brain network models for each subject.

SUBJECT # VERTICES # LABELS # EDGES # EDGE # SUBGRAPHS

TYPES BY GREW
PAT 1 102 31 453 91 38
PAT 2 185 32 1,961 84 706
PAT 3 241 35 3,506 90 505
PAT 4 263 46 5,152 293 752
PAT 5 313 46 10,977 372 4,154
PAT 6 440 58 13,548 475 4,256
CONT 1 66 10 358 15 15
CONT 2 99 33 407 111 32
CONT 3 109 18 1,093 13 133
CONT 4 202 35 2,045 133 236

Time Series Datasets. We used fMRI time series data (1.5 T MR scanner) of 6
female somatoform patients and four healthy controls. Standard data preprocess-
ing including realignment, correction for motion artifacts and normalization to

6.1 Frequent Subgraph Mining in Brain Network Data 123

standard space have been performed using SPM21. In addition, to remove global
effects the voxel time series have been corrected regressing out the global mean,
as suggested in [85].

Vertex Labels. We labeled each node in the network by regional parcellation of
the voxels into 90 brain regions using the template of Tzourio-Mazoyer et al. [96].

Finding Frequent Subgraphs with GREW

To allow for finding subgraphs of arbitrary size, we searched for topological sub-
graphs using GREW with a frequency threshold of t = 5. In these experiments,
we searched for subgraphs with a minimum number of one edge. The total number
of different subgraphs found in the ten networks is depicted in the last column of
Table 6.1. Altogether we found 10,530 different subgraphs in somatoform patients
and healthy controls. 10,173 different subgraphs were detected among patients,
413 within the group of healthy subjects, where some of these subgraphs were
also found among the patients and vice versa.

For validation we divided the subjects into three classes. Class (1) contains
only the somatoform patients, class (2) consists of the controls exclusively and
class (3) composes the union of class (1) and (2). Figure 6.2 shows typical rep-
resentatives of each class. The two frequent subgraphs on the left occur in 57%
of the patients but in no healthy subject. The middle motif arises in 50% of the
healthy controls but in no patient. The upper motif on the right-hand side was
found in 50% of the control group and in 14% of the patients, the lower motif in
25% of the control group and in 43% of the patient group. Most of the typical
representatives of both groups comprise only a small number of vertices.

The largest subgraph (highest number of vertices and edges) of class (1) was
found in subject ‘Pat 5’. It consists of 28 vertices and 29 edges, five different brain
compartments are involved in this motif. This motif has in total 34 instances in

1http://www.fil.ion.ucl.ac.uk/spm/

124 6. Graph Mining

Frontal_Mid_R

Frontal_Mid_Orb_R

Frontal_Sup_L

Frontal_Mid_L

(a) Patients only.

Lingual_R

Fusiform_R

(b) Healthy controls only.

Temporal_Pole_Sup_R

Insula_L

Temporal_Inf_L

Fusiform_L

(c) Patients and Healthy controls.

Figure 6.2: Typical representatives of subgraphs found in the groups of somato-
form patients, healthy controls and the group of all subjects, respectively.

this subject. The largest subgraphs in class (2) were detected in subject ‘Cont 3’.
We found two subgraphs that comprise twelve nodes with two different labels and
17 edges. An example of the largest subgraphs found among the patients and the
two largest subgraphs of the controls are shown in Figure 6.3. Note that no motif
occurs in all subjects.

Evaluation of ROIs. We determined the frequencies of the ROIs in patients
and controls. Figure 6.4(a) illustrates the results for the 15 most frequent ROIs
w.r.t. the patient group, and Figure 6.4(b) for the group of healthy controls, re-
spectively. Within the subgraphs found in the patient group, Caudate R is the

6.1 Frequent Subgraph Mining in Brain Network Data 125

Frontal_Inf_

Tri_R

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_Mid_L

Frontal_

Mid_R

Frontal_Inf_

Tri_L

Frontal_

Mid_R

Frontal_

Mid_R

Frontal_

Mid_R

Frontal_Inf_

Tri_L

Frontal_Inf_

Tri_L

Frontal_Inf_

Tri_L

Frontal_Inf_

Tri_R

Frontal_Inf_

Tri_R

Frontal_Inf_

Tri_R

Frontal_Inf_

Tri_R

Frontal_Inf_

Tri_R

Frontal_Inf_

Tri_R

Frontal_Inf_

Tri_R

(a) Patients.

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Frontal_Mid_Orb_R

Frontal_Mid_Orb_R

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Temporal_Inf_L

Frontal_Mid_Orb_R

Frontal_Mid_Orb_R

Frontal_Mid_Orb_R

Frontal_Mid_Orb_R

Frontal_Mid_Orb_R

Frontal_Mid_Orb_R

(b) Healthy controls.

Figure 6.3: Largest subgraphs found in the groups of somatoform patients and
healthy controls.

126 6. Graph Mining

most frequent ROI (freqnorm = 6.43%). The most frequent ROI w.r.t. the
subgraphs of the control group is Frontal Mid Orb R (freqnorm = 22.04%).
ROIs that show a small frequency are summarized by the label Miscellaneous.
Our results are consistent with a previous study [41]. They report different ac-
tivation pattern in the regions Insula L (Patients: freqnorm = 5.29% Controls:
freqnorm = 1.95%) and Frontal Mid Orb R (Patients: freqnorm = 3.38% Con-
trols: freqnorm = 22.04%), the key-player in the group of healthy controls. Our
results of different activation of the parahippocampal cortex in patients and con-
trols (not depicted in Figure 6.4) supports a recent study that suggests that pa-
tients with posttraumatic stress disorder showed also an altered activation pattern
in the parahippocampal cortex in comparison to healthy controls when subjected
to painful heat stimuli [37]. In addition, we found that patients show increased ac-
tivation in Rolandic Oper L, Caudate R and Rectus R whereas the control group
is activated in the regions Temporal Inf L, Heschl R and Lingual R to a higher
degree. Also, the olfactory region shows alterations in the activation of patients
and controls. Whereas Olfactory R occurs to a much higher degree in subgraphs
found in patients, subgraphs found in the networks of controls are labeled more
often with Olfactory L.

Finding Frequent Subgraphs with FANMOD

The public disposable FANMOD tool2, implementing the exhaustive sampling
algorithm by [102], is restricted to networks with a maximum number of 16 dif-
ferent vertex labels. Hence, we map the original network data to a modified ver-
sion where only the 15 most frequent ROIs are kept. The remaining vertices are
labeled by Miscellaneous. This labeling scheme refers to the ROI distribution
among subgraphs detected by GREW as shown in Figure 6.4. As edges of the
type Miscellaneous–Miscellaneous occur disproportional frequent within the net-
work, and would therefore tamper with the real frequencies of the results, we
ignored that kind of interaction.

2http://theinf1.informatik.uni-jena.de/motifs/

6.1 Frequent Subgraph Mining in Brain Network Data 127

Caudate_R
Rectus_R
Insula_L
Occipital_Mid_L
Temporal_Sup_R
Rolandic_Oper_L
Frontal_Sup_Medial_L
Putamen_L
Thalamus_L
Frontal_Mid_L
Frontal_Mid_Orb_R
Olfactory_R
Rectus_L
Frontal_Sup_Orb_R

(a) Patients.

Frontal_Mid_Orb_R
Temporal_Inf_L
Lingual_R
Paracentral_Lobule_R
Calcarine_L
Postcentral_R
Olfactory_L
Caudate_L
Temporal_Sup_L
Fusiform_R
Precuneus_R
Temporal_Pole_Sup_R
Frontal_Mid_L
Frontal_Mid_Orb_L

(b) Healthy controls.

Figure 6.4: Frequencies of ROIs in subgraphs of patients and controls, respec-
tively.

128 6. Graph Mining

Table 6.2: Subgraphs detected by FANMOD for different number of vertices com-
pared to the number of subgraphs found by GREW, respectively. For some motif
sizes, FANMOD is not applicable as the runtime effort for exhaustive enumeration
grows exponentially in the size of the subgraphs.

SUBJECT k = 3 k = 4 k = 5 k = 6 3 ≤ k ≤ 6 # SUBGRAPHS

BY GREW
PAT 1 9 13 28 42 92 4
PAT 2 42 121 288 - 451 406
PAT 3 5 6 7 8 26 4
PAT 4 22 91 374 - 487 56
PAT 5 139 509 - - 648 988
PAT 6 431 3,292 - - 3,723 1,861
CONT 1 6 10 16 22 54 34
CONT 2 18 32 51 78 179 56
CONT 3 9 26 - - 35 161
CONT 4 137 565 2,399 - 3,101 472

We searched for subgraphs, consisting of up to six vertices and used a sample
rate of 100,000 to estimate the number of subgraphs which is the default param-
eterization, as recommended by the authors. Table 6.2 illustrates the number of
subgraphs that comprise 3 ≤ k ≤ 6 vertices for each subject. We compared
these results by applying GREW (t = 5) to the same modified networks. The
last column of Table 6.2 demonstrates that for small subgraph sizes an exhaustive
method provides significant more information about the graph structure. Note
that the total number of detected subgraphs by FANMOD with a limited number
of vertices exceeds the total number of subgraphs found by GREW with arbitrary
size in most cases. However, an exhaustive method is only applicable for finding
subgraphs that consist of a small number of vertices.

6.1 Frequent Subgraph Mining in Brain Network Data 129

6.1.3 Conclusions

In this work, we have applied GREW, a heuristic approach for finding frequent
subgraphs in one large network and the algorithm FANMOD, an exhaustive sam-
pling method for frequent subgraph discovery. We executed both algorithms on
union graph models resulting from time series data of six somatoform patients and
four healthy controls. The detected subgraphs represent groups of brain compart-
ments that covary in their activity during the process of pain stimulation. We eval-
uated the appearance of subgraphs for both groups. Our results let us suspect that
somatoform brain disorder is caused by an additional pathogeneous activity, not
by a missing physiological activity. So far we care about the topology of the net-
work, but ignore the temporal order of these interactions. When studying network
topology, it is important to bear in mind that the network models currently avail-
able are simplified models of the systems that govern cellular processes. While
these processes are dynamic, the models we consider so far are all static.

In the next Section, we extend this idea to perform real dynamic graph mining
on biological yeast network data.

130 6. Graph Mining

6.2 Motif Discovery in Dynamic Yeast Network Data

The majority of recent subgraph mining approaches have focused on character-
izing the topology of static networks. But to model real-world systems, often a
temporal component has to be taken into account, as interactions between objects
here usually occur for a certain period of time only. Therefore, a realistic model
has to consider that edges will be inserted and/or deleted over time. The resulting
data structure is called a dynamic graph.

These dynamic graphs occur in many real-world applications. In Biology, a
wide-spread approach is to model interacting proteins as networks, where each
vertex corresponds to a protein and two vertices are connected by an edge if the
corresponding proteins can bind. In addition, further technologies allow biologists
to measure the distribution of protein interactions at different time points. Hence,
associating a time series for each protein provides interesting insights into the
dynamically changing system. In social networks like Facebook, people contact
each other at specific time points and form various complex relationships.

Our new approach for frequent subgraph discovery, provided in this section,
performs data mining on such dynamic graphs in an on-top fashion, i.e. we search
a set of frequent static subgraphs for frequent dynamic patterns. Existing subgraph
mining algorithms on static graphs can be easily integrated into our framework to
make them handle dynamic graphs. The search for dynamic patterns is based on
the idea of suffix trees.

6.2.1 Performing Graph Mining on Dynamic Network Data

Now we provide the essential definitions from dynamic graph theory necessary to
follow our argumentation, based on the definitions of classic graph theory, pre-
sented in Section 6.1.1.

Basics of Dynamic Graph Theory

First, we give the formal definition of a time series of graphs.

6.2 Motif Discovery in Dynamic Yeast Network Data 131

a c c d

a

a d

bb

εaε

b bεbacε

εad

cdb

Figure 6.5: Transformation of a time series of graphs into a dynamic graph. The
three graphs on the left represent a time series of graphs with edge insertions
and edge deletions over time. The graph on the right is a dynamic graph that
summarizes all information represented by the time series.

Definition 16 (Time Series of Graphs) Given a sequenceGts of n graphs {G1, . . . ,

Gn} with Gi = (Vi, Ei, Li, li) for 1 ≤ i ≤ n. We define Gts to be a time series
of graphs if V1 = Vi for all 1 ≤ i ≤ n. Gi is the i-th state of Gts and Ai is the

adjacency matrix of the i-th state. In every state i, li : Vi∪Ei → Li assigns labels

to nodes and edges.

Note that li is not necessarily the same for all 1 ≤ i ≤ n. This means that an
edge (or even a node) might change its label in consecutive time steps of the time
series. Such a time series of graphs can be transformed into a dynamic graph as
follows:

Definition 17 (Dynamic Graph) Given a time series of graphs Gts of n graphs.

Then the dynamic graphDG(Gts) ofGts is defined asDG(Gts) = (VDG, EDG, `),

where VDG = Vi for all 1 ≤ i ≤ n and EDG = ∪ni=1Ei. The mapping ` : EDG →
L ∪ ε maps each edge e in EDG to a string `(e) of length n, referred to as the

edge existence string of e. Let us denote the i-th character of `(e) as `(e(i)).

`(e(i)) = ε if e does not exist in state i of Gts. If e does exist in state i of Gts, then

`(e(i)) = li(e).

Hence, a dynamic graph is a union graph (cf. Definition 15) over a time series of
graphs in combination with the corresponding existence string. An example for
such a transformation is depicted in Figure 6.5.

132 6. Graph Mining

To extend frequent subgraph discovery to dynamic networks, we have to define
two types of frequent subgraphs:

Definition 18 (Static Frequent Subgraph) A subgraph GSts that has more than

t embeddings in a dynamic graph DG(Gts) is called a static frequent subgraph.

In other terms, static frequent subgraphs in a dynamic graph are subgraphs that are
topologically frequent in the summary graph. Hence, edge existence strings play
no role when looking for static frequent subgraphs. The static frequent subgraphs
in a dynamic graph are defined in exactly the same manner as frequent subgraphs
on one single network. A dynamic pattern D is a static frequent subgraph S

such that in more than u embeddings of S, edge insertions, deletions and label
changes occur in the same temporal order. As we want to study cases where these
insertions and deletions happen in a subsection of the complete time series only,
we now have to make use of the existence strings of the edges.

Definition 19 (Common Substring) For two strings s1 and s2 of length |s1| and

|s2|, sub(s1, i, j) = sub(s2, i, j) means that the substrings from the i-th to the j-th

character in s1 and s2 are identical, where 1 ≤ i ≤ j ≤ min(|s1|, |s2|). This

identical substring is called a common substring of s1 and s2.

Definition 20 (Common Dynamic Pattern) Let S be a static frequent subgraph

in dynamic graph DG, and let S1 = (VS1 , ES1) and S2 = (VS2 , ES2) be two

embeddings of S in DG. As S1 and S2 are isomorphic, there must be a bijection

f between ES1 and ES2 . Then S1 and S2 share a common dynamic pattern from

position i to j if for all pairs of edges (e1, e2) from ES1 × ES2 where e2 = f(e1)

the following equality holds: sub(`(e1), i, j) = sub(`(e2), i, j), i.e. the existence

strings of corresponding edges are identical from position i to position j.

If enough embeddings of the same static frequent subgraph share the same com-
mon dynamic pattern, then this static frequent subgraph contains a dynamic fre-
quent subgraph. Note, that common dynamic patterns consider edge labels, whereas
static frequent subgraphs ignore the labeling.

6.2 Motif Discovery in Dynamic Yeast Network Data 133

Definition 21 (Dynamic Frequent Subgraph) Let S be a static frequent sub-

graph with u embeddings {S1, . . . , Su} in a dynamic graph DG. Let t be a user-

defined frequency threshold. If at least t embeddings of S share the same common

dynamic pattern, then the topology of S and the common dynamic pattern repre-

sent a dynamic frequent subgraph.

For instance, in our real-world case study presented in this section, a dynamic
frequent subgraph describes a set of groups of proteins that show similar patterns
of co-expression during a certain interval of a time series.

Dynamic Graph Mining

After defining frequent subgraphs in dynamic networks, we now present an effi-
cient algorithmic solution on how to compute them. Our framework is based on
the idea of suffix trees. Dynamic frequent subgraph discovery can be performed
in an on-top fashion in two steps. First, we employ one of the state-of-the-art
algorithms for finding frequent subgraphs in the union graph of a time series of
graphs (cf. Section 2.4). Second, we search the resulting static frequent subgraphs
for frequent dynamic patterns. Figure 6.6 visualizes an example for frequent sub-
graph discovery in a dynamic network.

Matrix Representation of Embeddings. To discover dynamic patterns we pro-
cess the results of a static frequent subgraph mining algorithm (see Figure 6.6(a)).
Key to our efficient scheme is to represent each embedding of a frequent static
subgraph by the set of existence strings of its edges. Hence, for each of the s
embeddings of a static frequent subgraph S with m edges, we obtain a set of m
existence strings. We represent these sets of strings for one embedding Si of S
as an m × n matrix, M(Si), where each row corresponds to one edge, and each
column to one time point in the time series (see Figure 6.6(b)).

Canonical Edge Order. To compare the matrices M(S1) and M(S2) of two
different embeddings S1 and S2 of the same subgraph S efficiently, we have to

134 6. Graph Mining

bac

εac

ccε cεb

εcε aεb

(a) Two
Embeddings.

edge ε a c

edge c ε b

edge c c ε

concatenation <1:εcc> <2:aεc> <3:cbε>

edge b a c

edge a ε b

edge ε c ε

concatenation <1:baε> <2:aεc> <3:cbε>

time point 1 2 3

(b) Matrix representation.

edge ε a c

edge c ε b

edge c c ε

concatenation <1:εcc> <2:aεc> <3:cbε>

edge b a c

edge a ε b

edge ε c ε

concatenation <1:baε> <2:aεc> <3:cbε>

time point 1 2 3

(c) Common substring.

cε

ac

εb

(d) Dynamic pattern.

Figure 6.6: Two embeddings (6.6(a)) of the same static frequent subgraph and
their common dynamic pattern depicted as dynamic graph (6.6(d)). The two em-
beddings are shown with their matrix and string representation each (6.6(b)). In
time step 2 and 3, edge insertions and deletions occur simultaneously in both em-
beddings. This is the common substring (6.6(c)) that refers to the dynamic pattern.

6.2 Motif Discovery in Dynamic Yeast Network Data 135

define a canonical ordering of edges for all embeddings of S. gSpan [107] orders
the edges in each embedding of a frequent subgraph according to a Depth First
Search on the vertices (cf. Section 2.4.1). In this manner, we can sort the rows of
all matrices representing embeddings of the same subgraph such that correspond-
ing edges are represented by the same row in each of these matrices.

String Representation of Embeddings. Using this canonical form of the ma-
trices dynamic frequent subgraph discovery is equivalent to detecting identical
blocks of columns. Therefore we transform each matrix into a string representa-
tion by treating each column in the matrix as one symbol which is just the con-
catenation of all entries in this column. We obtain s strings, each describing one
embedding, which have a common substring if the embeddings show identical
dynamic behavior over a certain period of time (see Figure 6.6(c)).

Frequent Common Substring Discovery. A classic result from the field of
string algorithms [50] helps us to discover these common substrings extremely
efficiently: detecting all longest substrings in a set of s strings is possible in linear
runtime, by reading all strings exactly once by employing a suffix tree to store all
substrings from a set of strings. A simple breadth-first search in the tree then pro-
vides all frequent common substrings. Obviously, each of these frequent common
substrings corresponds to one dynamic pattern (see Figure 6.6(d)). To guarantee
that all embeddings of a dynamic pattern start at the same time point of the time
series, we include a time stamp into our matrix representation of each embedding,
by adding an extra row to the matrix, which numbers the time steps from 1 to n,
where n is the number of time steps in the time series. We then include these time
stamps into the string representation of our matrix.

136 6. Graph Mining

6.2.2 Dynamic Network Construction

In this section, we confirm the practical feasibility of our framework for finding
frequent subgraphs in dynamic networks on the basis of a large case study on
real-world biological data. We describe in detail how to construct the dynamic
network models by a combination of interaction data and a time series dataset.

Protein-Protein-Interaction Datasets. We created a dynamic network by inte-
grating protein-protein-interaction (PPI) data from yeast and a time series of yeast
gene expression levels. We obtained the yeast PPI network data from the database
DIP (Database of Interacting Proteins) [106, released on January 6, 2008], con-
taining all pairs of interacting proteins identified in the yeast organism S. cere-

visiae. This dataset consists of 4,923 proteins, which are the original set of nodes
in our dynamic graph and 18,324 interactions representing edges between the
nodes.

Vertex Labels. In order to assign labels to all nodes of the network, we mapped
the proteins to their corresponding protein-coding open reading frames (ORFs),
via information provided by the SGD (Saccharomyces Genome Database) [46]
from DIP. Finally, we determined the ‘molecular function’ associated with this
ORF in the Gene Ontology (GO) hierarchy at depth two [5]. As GO terms are or-
ganized in directed acyclic graphs, and each term can be traced to different depths,
it can occur that multiple GO annotations can be assigned to one single ORF at a
given depth. As current methods for frequent subgraph mining and enumeration
require a unique label, we retained all ORFs with a non-ambiguous GO labeling
at depth two. The twelve remaining GO functional classes were then used as node
labels for the remaining proteins.

Time Series Datasets. Next we used a cell cycle time series of yeast gene ex-
pression levels by [22], available from the ExpressDB collection of yeast RNA
Expression Datasets [2]. The dataset consists of 6,601 time series of 17 measure-

6.2 Motif Discovery in Dynamic Yeast Network Data 137

ments for 6,259 ORFs, of which 6,045 ORFs can be mapped to one unique time
series. 3,607 ORFS are both present in our GO-labeled yeast PPI network and in
the gene expression dataset. The corresponding proteins are the final set of nodes
in our dynamic graph, other nodes and their adjacent edges from the original graph
were skipped. The final network comprises 3,607 nodes, twelve different classes
of node labels, 7,395 edges per time step, and 17 time steps.

Edge Existence Strings. Each edge in our dynamic network was assigned an
edge existence string (cf. Definition 17) of length 17 according to the following
rules: We distinguish three basic categories of gene expression levels for each
gene g at each time point i. We refer to its expression level at time point i as g(i).
Categories are assigned by comparing the median expression level of g across the
time series with the z–scoremedian of g(i):

z–scoremedian(g(i)) =
g(i)−medianj∈{1,..,n}g(j)√

1
n

∑
(g(k)−medianj∈{1,..,n}g(j))2

This results in three different expression levels:

• High:
g(i) is significantly higher than the median expression level of g, i.e.
z–scoremedian(g(i)) ≥ 2. That indicates that g supports important steps of
the examined biological process, or regulates small subunits.

• Medium:
g(i) does not significantly differ from the median expression level of g, i.e.
-2< z–scoremedian(g(i))< 2. That means that g does not play an important
role in the examined biological process.

• Low:
g(i) is significantly lower than the median expression level of g, i.e.
z–scoremedian(g(i)) ≤ -2. That argues for a repression functionality of g in
the examined biological process.

138 6. Graph Mining

For each edge e in our dynamic graph, we compared the expression profiles of
its adjacent genes g1 and g2 to generate the edge existence string according to the
following rules:

• `(e(i)) = ’H’ if g1(i) and g2(i) both show a high gene expression level.

• `(e(i)) = ’M’ if g1(i) and g2(i) both show a medium gene expression level.

• `(e(i)) = ’L’ if g1(i) and g2(i) both show a low gene expression level.

For pairs of genes g1 and g2 that show different gene expresson levels, we addi-
tionally introduce the character ’N’. In this manner, we generated edge existence
strings from the alphabet Σ = {H,L, M,N} for pairs of interacting genes in the
yeast PPI network.

Enumerating all Static Frequent Subgraphs

In order to compute exact frequencies for static frequent sugraphs, we exhaus-
tively enumerated all frequent subgraphs of our dynamic network. This step was
performed using the FANMOD tool3. As our dynamic network is a large graph,
we have to limit ourselves to subgraphs covering three or four vertices as previ-
ous studies [105], but this allows us to guarantee that we are not missing out on
dynamic frequent subgraphs.

3http://theinf1.informatik.uni-jena.de/motifs/

6.2 Motif Discovery in Dynamic Yeast Network Data 139

6.2.3 Evaluation of Dynamic Frequent Subgraphs

Now we describe how to evaluate the detected motifs according significance and
the evolutionary conservation rate among different species.

Significance of Dynamic Frequent Subgraphs

To assess the significance of a static frequent subgraph with frequency t, we use
p-values for each static frequent subgraph according to [102]. The p-value repre-
sents the probability of this static frequent subgraph occurring at least t times in
a random graph with identical degree distribution. We only retain those static fre-
quent subgraphs whose p-value is below the significance level of α = 0.025. We
also assess the significance of the common dynamic string pattern σ of a dynamic
frequent subgraph D which occurs in u out of t embeddings of the static frequent
subgraph S in terms of a p-value. For this purpose, we compute the probability
p of σ to occur in an embedding of S by chance. Let M = M(i, j)l′×n′ be the
matrix representation of σ, where each row corresponds to one edge (existence
string) and each column to one time step. We then define the probability of σ
occurring by chance as

pσ =
l′∏
i=1

n′∏
j=1

pi(M(i, j)),

where pi is the background probability of the character represented by M(i, j)

occurring in the i-th edge of S. In other terms, the random model assumes that
the existence strings of the embeddings of S were randomly generated. Under
this model, the probability of σ appearing u times (denoted |σ| = u) in the t
embeddings of S then follows a binomial distribution:

P (|σ| = u) =

(
t

u

)
puσ(1− pσ)t−u,

and the p-value of the common dynamic pattern σ can be computed straightfor-
wardly:

140 6. Graph Mining

p-value(|σ| = u) = P (|σ| ≥ u)

We deem common dynamic patterns significant, if their p-value is below 0.025.
Dynamic frequent subgraphs are considered significant if their associated static
frequent subgraph is significant and if its common dynamic pattern is significant
as well. We only retained those dynamic frequent subgraphs that occur in at least
50% of the embeddings of the corresponding static frequent subgraph.

Evolutionary Conservation Rate: A Quality Criterion for Dynamic Frequent
Subgraphs

The evolutionary conservation rate is known to be a good quality criterion in
biology. Following previous biological analysis [89], we deem dynamic fre-
quent subgraphs the more conserved, the more proteins that participate in embed-
dings of this subgraph have identifiable orthologs in other organisms. We analyse
the conservation rate of yeast proteins by searching for orthologs (i.e. homolo-
gous sequences that were separated by a speciation event) in each of five other
higher eukaryotic organisms for which information is available in the InParanoid
database [84]: 644 of the 3,607 proteins in our dynamic network turned out to
be conserved across all five species. Hence the probability of observing a con-
served protein by uniform random sampling from the PPI network is 0.1785, of
observing a set of three conserved proteins is 0.0057, and of observing a set of
four conserved proteins is 0.0010.

Conservation Rate among Static and Dynamic Frequent Subgraphs

Our static frequent subgraph discovery results in 367 subgraphs with three nodes
and within these 515 dynamic patterns that were both frequent and significant. We
found 2,302 proteins to be members of at least one static frequent subgraph, out of
which 577 are conserved across species (conservation rate 0.2507). Hence the rate
of conservation among proteins that are part of static frequent subgraphs is signif-

6.2 Motif Discovery in Dynamic Yeast Network Data 141

icantly higher than among proteins that are sampled randomly from our dynamic
network (Binomial distribution B(t = 2, 302; p = 0.1785); p-value < 0.0001).
1,787 proteins are members of at least one dynamic frequent subgraph, including
477 conserved proteins (conservation rate 0.2669). Hence the rate of conserva-
tion among proteins that are part of dynamic patterns is significantly higher than
among proteins that are sampled randomly from our dynamic network (Binomial
distribution B(t = 1, 787; p = 0.1785); p-value < 0.0001). 515 proteins are
members of at least one static frequent subgraph, but of none of the dynamic pat-
terns (100 of these are conserved, conservation rate 0.1942). While the rates of
conservation among proteins from static and dynamic frequent subgraphs are not
significantly different (two-sample t-test for unequal variances, p = 0.2392), we
observed that proteins that participate in static and dynamic frequent subgraphs
are significantly stronger conserved than those that are members of static, but not

of dynamic static subgraphs (two-sample t-test for unequal variances, p = 0.004).

Table 6.3: Evaluation w.r.t. conservation rate of static and dynamic frequent sub-
graphs with three and four nodes.

k = 3 k = 4

STAT. DYN. STAT. STAT. DYN. STAT.
ONLY ONLY

FREQUENT

SUBGRAPHS 367 515 3,293 2,111

PROTEINS 2,302 1,787 515 2,403 1,770 633
CONSERVED

PROTEINS 577 477 100 591 470 121
CONSERVATION

RATE 0.2507 0.2669 0.1942 0.2459 0.2655 0.1912

We discovered 3,293 static frequent subgraphs of size k = 4. Within these
subgraphs we found 2,111 dynamic patterns that were both frequent and signifi-
cant. 2,403 proteins are members of at least one static frequent subgraph, out of

142 6. Graph Mining

which 591 are conserved (conservation rate 0.2459). Consistent with our results
on frequent subgraphs with three nodes the rate of conservation among proteins
that are part of static frequent subgraphs is significantly higher than among pro-
teins that are sampled randomly from our dynamic network (Binomial distribution
B(t = 2, 403; p = 0.1785); p-value < 0.0001). 1,770 proteins are members of
at least one dynamic pattern, including 470 conserved proteins (conservation rate
0.2655). Analogously to the frequent subgraphs with three nodes the rate of con-
servation among proteins that are part of dynamic patterns is significantly higher
than among proteins that are sampled randomly from our dynamic network (Bi-
nomial distribution B(t = 1, 770; p = 0.1785); p-value < 0.0001). 633 proteins
are members of at least one static frequent subgraph, but of none of the dynamic
patterns (121 of these are conserved, conservation rate 0.1912). While the rates
of conservation among proteins from static and dynamic frequent subgraphs with
four nodes are not significantly different (two-sample t-test for unequal variances,
p = 0.1525), we observed that proteins that participate in static and dynamic
frequent subgraphs are significantly stronger conserved than those that are mem-
bers of static, but not of dynamic ones (two-sample t-test for unequal variances,
p = 0.001). Therefore the significance of the conservation rate of frequent sub-
graphs with four nodes is even higher than for subgraphs with three nodes. Ta-
ble 6.3 summarizes the results of these experiments.

Conservation of Dynamic Frequent Subgraphs across GO Classes

We also checked whether proteins that are part of static and dynamic subgraphs
show different levels of conservation depending on their molecular function as
defined by GO. As can be seen from Figure 6.7, conservation rates vary widely
among different functional classes, both for background conservation rate, and
among dynamic and static frequent subgraphs. The figure shows the conserva-
tion rates for proteins that are participating in frequent subgraphs with three and
four nodes w.r.t. twelve different classes of protein functions. For each func-
tion the general conservation rate of proteins among this class is depicted. The

6.2 Motif Discovery in Dynamic Yeast Network Data 143

20

30

40

50

tio
n

ra
te

 (%
) all proteins

proteins in static motifs
proteins in static and dynamic motifs
proteins in static but not dynamic motifs

0

10

co
ns

er
va

t

(a) k = 3.

10

20

30

tio
n

ra
te

 (%
) all proteins

proteins in static motifs
proteins in static and dynamic motifs
proteins in static but not dynamic motifs

0

10

co
ns

er
va

t

(b) k = 4.

Figure 6.7: Evaluation w.r.t. protein function of frequent subgraphs with three and
four nodes.

second, third and fourth bars of the histogram stand for the conservation rate of
proteins involved in static frequent subgraphs, in dynamic patterns (therefore also
in static frequent subgraphs) and the conservation rate of proteins that play a role
in static frequent subgraphs only. It can be seen that frequent subgraphs with three
and four nodes both show differences in their conservation rate depending on the
protein functions. For example, proteins with structural molecule activity or pro-
teins regulating transcription participating only in static frequent subgraphs are
highly conserved in subgraphs with three nodes exclusively. Proteins that have
metallochaperone activity or regulate translation or chaperones are not conserved,
neither in static nor in dynamic patterns.

Selected Frequent Subgraphs

The most frequent and significant (p < 0.0001) subgraph with three nodes (cf.
Figure 6.8(a)) has 4,060 embeddings. Two proteins share the same biological
function catalytic activity, whereas the third is a transporter protein. Transporter
proteins catalyze the transfer of a substance from one side of a membrane to the
other. Within these 4,060 embeddings we detect 1,728 dynamic patterns com-
prising two time points. Figure 6.8(b) shows a significant (p < 0.0001) subgraph

144 6. Graph Mining

Catalytic Activity

Catalytic Activity

Transporter Activity

M M

M M

(a) Highest number of embeddings (k = 3).

Motor Activity

Enzyme Regulator

Activity

Binding

M M M M N N M M N M M M M M M N

M M M M M M M M N M M M M M M N

(b) Longest dynamic pattern (k = 3).

Binding

Binding

Catalytic Activity

M M

M M
Catalytic Activity

M M

(c) Highest number of embeddings (k = 4).

Binding

Transporter Activity

N M M ...

Transcription

Regulator Activity

Activity

Enzyme Regulator

ActivityL M M ...

N M M ...

L M M M ...

(d) Longest dynamic pattern (k = 4).

Figure 6.8: Selected frequent subgraphs that consist of three or four nodes.

with three embeddings, but in two of them we detect a dynamic pattern that has
identical behavior of co-expression over a period of 16 out of 17 time points. The
corresponding interacting proteins are organized under binding, enzyme regulator

activity and motor activity term of GO, respectively. This static frequent subgraph
has quite few embeddings, but includes the longest dynamic pattern within static
frequent subgraphs of size k = 3.

The most frequent subgraph of size k = 4 has 18,056 embeddings, illustrated
in Figure 6.8(c). Two proteins show catalysis properties whereas the other two are
binding proteins. 8,511 out of these embeddings have dynamic patterns compris-
ing two time points. In Figure 6.8(d) the most significant (p < 0.0001) subgraph
has three embeddings, whereof two have a dynamic pattern over a time period of

6.2 Motif Discovery in Dynamic Yeast Network Data 145

15 time steps. In the first time step both the binding protein and the transportation
protein show very low expression levels.

6.2.4 Conclusions

We have presented a framework for frequent dynamic subgraph discovery in dy-
namic graphs. We have shown how to efficiently compute these patterns using
suffix trees. Furthermore, we have described how to combine frequent subgraph
mining algorithms with our dynamic framework and we have applied our frame-
work on a large real-world case study to handle dynamic graphs. Dynamic graph
mining is a technique that can be used in many fields of applications. Finding dy-
namic patterns in PPI maps promises to reveal interesting insights into biological
processes.

146 6. Graph Mining

Chapter 7

Data Mining Using Graphics
Processors

In recent years, Graphics Processing Units (GPUs) have evolved from simple
devices for the display signal preparation into powerful coprocessors supporting
the CPU in various ways. Graphics applications such as realistic 3D games are
computationally demanding and require a large number of complex algebraic op-
erations for each update of the display image. Therefore, today’s graphics hard-
ware contains a large number of programmable processors which are optimized
to cope with this high workload of vector, matrix, and symbolic computations in
a highly parallel way. In terms of peak performance, the graphics hardware has
outperformed state-of-the-art multi-core CPUs by a large margin.

We focus on exploiting the computational power of GPUs for data mining. It
has been shown that many data mining algorithms, including clustering can be
supported by a powerful database primitive: The similarity join [9]. This oper-
ator yields as result all pairs of objects in the database having a distance of less
than some predefined threshold εSJ . To show that also the more complex basic
operations of similarity search and data mining can be supported by novel parallel
algorithms specially designed for the GPU, we present in Section 7.3 two algo-
rithms for the similarity join, one being a nested block loop join, and one being an

148 7. Data Mining Using Graphics Processors

indexed loop join. Therefor specialized indexing methods are required because of
the highly parallel but restricted programming environment (cf. Section 7.1). In
Section 7.2, we propose such an indexing method.

Finally, to demonstrate that highly complex data mining tasks can be effi-
ciently implemented using novel parallel algorithms, we propose parallel versions
of two widespread clustering algorithms in Sections 7.4 and 7.5. The first algo-
rithm CUDA-DClust combines the high computational power and the multiple ad-
vantages provided by the density-based clustering algorithm DBSCAN [31]. This
approach is highly parallel and exploits thus the high number of simple SIMD
(Single Instruction Multiple Data) processors of today’s graphics hardware. The
parallelization which is required for GPUs differs considerably from previous
parallel algorithms which have focused on shared-nothing parallel architectures
prevalent in server farms. For even further acceleration, we also propose the al-
gorithm CUDA-DClust*, the indexed variant of CUDA-DClust. In addition, we
introduce a parallel version of k-means clustering [72] which follows an algorith-
mic paradigm that is very different from density-based clustering. We demonstrate
the superiority of our approaches over the corresponding sequential algorithms on
CPU.

All algorithms for the GPU have been implemented using NVIDIA’s tech-
nology Compute Unified Device Architecture (CUDA) [1]. Vendors of graphics
hardware have recently anticipated the trend towards general purpose computing
on GPU and developed libraries, pre-compilers and application programming in-
terfaces to support GP-GPU applications. CUDA offers a programming interface
for the C programming language in which both the host program as well as the
kernel functions are assembled in a single program [1]. The host program is the
main program, executed on the CPU. In contrast, the so-called kernel functions

are executed in a massively parallel fashion on the (hundreds of) processors in
the GPU. An analogous technique is also offered by ATI using the brand names
Close-to-Metal, Stream SDK, and Brook-GP.

7.1 The GPU Architecture 149

Figure 7.1: Architecture of a GPU.

7.1 The GPU Architecture

From the hardware perspective, a GPU consists of a number of multiprocessors,
each of which consists of a set of simple processors which operate in a SIMD
fashion, i.e. all processors of one multiprocessor execute in a synchronized way
the same arithmetic or logic operation at the same time, potentially operating on
different data. For instance, a GPU of the newest generation GT200 (e.g. on the
graphics card GeForce GTX280) has 30 multiprocessors, each consisting of eight
SIMD-processors, summarizing to a total amount of 240 processors inside one
GPU. The computational power sums up to a peak performance of 933 GFLOP/s.

7.1.1 The Memory Model

Apart from some memory units with special purpose in the context of graphics
processing (e.g. texture memory), we have three important types of memory, as
visualized in Figure 7.1. The shared memory (SM) is a memory unit with fast
access (at the speed of register access, i.e. no delay). The shared memory is
shared among all processors of a multiprocessor. It can be used for local variables
but also to exchange information between threads on different processors of the
same multiprocessor. It cannot be used for information which is shared among
threads on different multiprocessors. The shared memory is fast but very limited
in capacity (16 KBytes per multiprocessor).

150 7. Data Mining Using Graphics Processors

The second kind of memory is the so-called device memory (DM), which is the ac-
tual video RAM of the graphics card (also used for frame buffers etc.). The device
memory is physically located on the graphics card (but not inside the GPU), is sig-
nificantly larger than shared memory (typically up to some hundreds of MBytes),
but also significantly slower. In particular, memory accesses to device memory
cause a typical latency delay of 400-600 clock cycles (on G200-GPU, correspond-
ing to 300-500ns). The bandwidth for transferring data between device memory
and GPU (141.7 GB/s on G200) is higher than that of CPU and main memory
(about 10 GB/s on current CPUs). The device memory can be used to share in-
formation between threads on different multiprocessors. If some threads schedule
memory accesses from contiguous addresses, these accesses can be coalesced,
i.e. taken together to improve the access speed. A typical cooperation pattern
for device memory and shared memory is to copy the required information from
device memory to shared memory simultaneously from different threads (if pos-
sible, considering coalesced accesses), then to let each thread compute the result
on shared memory, and finally, to copy the result back to device memory.

The third kind of memory considered here is the main memory which is not
part of the graphics card. The GPU has no access to the address space of the CPU.
The CPU can only write to or read from device memory using specialized API
functions. In this case, the data packets have to be transferred via the Front Side
Bus and the PCI-Express Bus. The bandwidth of these bus systems is strictly
limited, and therefore, these special transfer operations are considerably more
expensive than direct accesses of the GPU to device memory or direct accesses
of the CPU to main memory.

7.1.2 The Programming Model

The basis of the programming model of GPUs are lightweight processes which are
easy to create and to synchronize, called threads. In contrast to CPU processes,
the generation and termination of GPU threads as well as context switches be-
tween different threads do not cause any considerable overhead either. In typical

7.1 The GPU Architecture 151

applications, thousands or even millions of threads are created, for instance one
thread per pixel in gaming applications. It is recommended to create much more
threads than the number of available SIMD-processors because context switches
are also used to hide the latency delay of memory accesses: Particularly an access
to the device memory may cause a latency delay of 400-600 clock cycles, and
during that time, a multiprocessor may continue its work with other threads.

The CUDA programming library [1] contains API functions to create a large
number of threads on GPU, each of which executes a function called kernel func-

tion. These functions (executed in parallel on the GPU) as well as the host pro-

gram (executed sequentially on the CPU) are defined in an extended syntax of
the C programming language. The kernel functions are restricted in functionality
(e.g. no recursion). On GPUs the threads do not even have an individual instruc-
tion pointer, but this is rather shared by several threads. For this purpose, threads
are grouped into so-called warps (typically 32 threads per warp). One warp is pro-
cessed simultaneously on the eight processors of a single multiprocessor (SIMD)
using 4-fold pipelining (totalling in 32 threads executed fully synchronously). If
not all threads in a warp follow the same execution path, they are executed in a
serialized way. The number of SIMD-processors per multiprocessor as well as
the concept of 4-fold pipelining is constant on all current CUDA-capable GPUs.
Multiple warps are grouped into thread groups (TG). It is recommended [1] to use
multiples of 64 threads per thread group. The different warps in a thread group
(as well as different warps of different thread groups) are executed independently.
The threads in one thread group use the same shared memory and may thus com-
municate and share data via the shared memory. The threads in one group can be
synchronized, i.e. all threads wait until all warps of the same group have reached
that point of execution. The latency delay of the device memory can be hidden by
scheduling other warps of the same or a different thread group whenever one warp
waits for an access to device memory. To allow switching between warps of dif-
ferent thread groups on a multiprocessor, it is recommended that each thread uses
only a small fraction of the shared memory and registers of the multiprocessor [1].

152 7. Data Mining Using Graphics Processors

7.1.3 Atomic Operations

In order to synchronize parallel processes and to ensure the correctness of parallel
algorithms, CUDA offers atomic operations such as increment, decrement, or ex-
change (to name just those out of the large collection, which will be needed by our
algorithms). Most of the atomic operations work on integer data types in device
memory. However, the latest CUDA versions even allow atomic operations in
shared memory. If, for instance, some parallel processes share a list as a common
resource with concurrent reading and writing from/to the list, it may be necessary
to (atomically) increment a counter for the number of list entries (which is in most
cases also used as the pointer to the first free list element). Here, atomicity implies
the following two requirements:

If two or more threads increment the list counter, then (1) the value counter
after all concurrent increments must be equivalent to the value before plus the
number of concurrent increment operations. And, (2), each of the concurrent
threads must obtain a separate result of the increment operation which indicates
the index of the empty list element to which the thread can write its information.
Hence, most atomic operations return a result after their execution.

For instance, the operation atomicInc has two parameters, the address of
the counter to be incremented, and an optional threshold value which must not be
exceeded by the operation. The operation works as follows: The counter value at
the address is read, and incremented (provided that the threshold is not exceeded).
The operation atomicDec works in the inverse way. It also commands two pa-
rameters, the address of the counter to be decremented, and an threshold value
that must not be went below. atomicDec reads the counter value at the address,
and decrements that value if it is unequal to zero and larger than the given thresh-
old. Finally, the old value of the counter (before incrementing/decrementing) is
returned to the kernel method which invoked atomicInc/atomicDec. If two
or more threads (of the same or different thread groups) call some atomic oper-
ations simultaneously, their result is that of an arbitrary sequentialization of the
concurrent operations.

7.2 An Index Structure for the GPU 153

The operation atomicCas works in an analogous way. It performs a Compare-
and-Swap operation. It has three parameters, an address, a compare value and a
swap value. If the value at the address equals the compare value, the value at the
address is replaced by the swap value. In every case, the old value at the address
(before swapping) is returned to the invoking kernel method.

7.2 An Index Structure for the GPU

Many data mining algorithms for problems like classification, regression, cluster-
ing, and outlier detection use similarity queries as a building block. In many cases,
these similarity queries even represent the largest part of the computational effort
of the data mining tasks. Hence, efficiency is of high importance here. Similarity
queries are defined as follows: Given is a database DS = {x1, · · ·xn} ⊆ Rd of a
number n of vectors from a d-dimensional space, and a query object q ∈ Rd. We
distinguish between two different kinds of similarity queries, the range queries
and the nearest neighbor-queries:

Definition 22 (Range Query) Let εSJ ∈ R+
0 be a threshold value. The result of

the range query is the set of the following objects:

NεSJ (q) = {x ∈ DS : ||x− q|| ≤ εSJ},

where ||x−q|| is an arbitrary distance function between two feature vectors x and

q, e.g. the Euclidean distance.

Definition 23 (Nearest Neighbor Query) The result of a nearest neighbor query
is the set:

NN(q) = {x ∈ DS : ∀x′ ∈ DS : ||x− q|| ≤ ||x′ − q||}.

Definition 23 can also be generalized for the case of the k-nearest neighbor query
(NNk(q)), where a number k of nearest neighbors of the query object q is re-

154 7. Data Mining Using Graphics Processors

Points

Figure 7.2: Index structure for GPU.

trieved.

The performance of similarity queries can be significantly improved if a multi-
dimensional index structure supports the similarity search. Our index structure
needs to be traversed in parallel for many search objects using the kernel function.
Since kernel functions do not allow any recursion, and as they need to have small
storage overhead by local variables etc., the index structure must be kept very sim-
ple as well. To achieve a good compromise between simplicity and selectivity of
the index, we propose a data partitioning method with a constant number of direc-
tory levels. The first level partitions the dataset DS according to the first dimen-
sion of the data space, the second level according to the second dimension, and
so on. Therefore, before starting the actual data mining method, some transfor-
mation technique should be applied which guarantees a high selectivity in the first
dimensions (e.g. Principal Component Analysis, Fast Fourier Transform, Discrete
Wavelet Transform, etc.). Figure 7.2 shows a simple, 2-dimensional example of
a 2-level directory (plus the root node which is considered as level-0), similar to
[57, 66]. The fanout of each node is eight. In our experiments in Sections 7.3.3
and 7.4.3, we used a 3-level directory with fanout 16.

Before starting the actual data mining task, our simple index structure must
be constructed in a bottom-up way by fractionated sorting of the data: First, the
dataset is sorted according to the first dimension, and partitioned into the specified

7.3 Performing the Similarity Join Algorithm on GPU 155

number of quantile partitions. Then, each of the partitions is sorted individually
according to the second dimension, and so on. The boundaries are stored using
simple arrays which can be easily accessed in the subsequent kernel functions. In
principle, this index construction can already be done on GPU, because efficient
sorting methods for GPU have been proposed [38]. Since bottom up index con-
struction is typically not very costly compared to the data mining algorithm, our
method performs this preprocessing step on CPU.

When transferring the dataset from the main memory into the device memory in
the initialization step of the data mining method, our new method has addition-
ally to transfer the directory (i.e. the arrays in which the coordinates of the page
boundaries are stored). Compared to the complete dataset, the directory is always
small.

The most important change in the kernel functions in our data mining methods
regards the determination of the εSJ -neighborhood of some given seed object q,
which is done by exploiting SIMD-parallelism inside a multiprocessor. In the
non-indexed version, this is done by a set of threads (inside a thread group) each
of which iterates over a different part of the (complete) dataset. In the indexed
version, one of the threads iterates in a set of nested loops (one loop for each level
of the directory) over those nodes of the index structure which represent regions
of the data space which are intersected by the neighborhood-sphere of NεSJ (q).
In the innermost loop, we have one set of points (corresponding to a data page of
the index structure) which is processed by exploiting the SIMD-parallelism, like
in the non-indexed version.

7.3 Performing the Similarity Join Algorithm on GPU

The similarity join is a basic operation of a database system designed for sim-
ilarity search and data mining on feature vectors. In such applications, we are
given a database DS of objects which are associated with a vector from a multi-
dimensional space, the feature space. The similarity join determines pairs of ob-
jects which are similar to each other. The most widespread form is the εSJ -join

156 7. Data Mining Using Graphics Processors

which determines those pairs from DS ×DS which have a Euclidean distance of
no more than a user-defined radius εSJ :

Definition 24 (Similarity Join) Let DS ⊆ Rd be a set of feature vectors of a d-

dimensional vector space and εSJ ∈ R+
0 be a threshold. Then the similarity join

is the following set of pairs:

SimJoin(DS, εSJ) = {(x, x′) ∈ (DS ×DS) : ||x− x′|| ≤ εSJ}

If x and x′ are elements of the same set, the join is a similarity self-join. Most
algorithms including the method proposed in this thesis can also be generalized to
the more general case of non-self-joins in a straightforward way. Algorithms for
a similarity join with nearest neighbor predicates have also been proposed.

The similarity join is a powerful building block for similarity search and data
mining. It has been shown that important data mining methods such as clustering
and classification can be based on the similarity join. Using a similarity join
instead of single similarity queries can accelerate data mining algorithms by a
high factor [9].

7.3.1 Similarity Join Without Index Support

The baseline technique to process any join operation with an arbitrary join predi-
cate is the nested loop join (NLJ) which performs two nested loops, each enumer-
ating all points of the dataset. For each pair of points, the distance is calculated
and compared to εSJ . The pseudocode of the sequential version of NLJ is given
in Algorithm 2.

It is easily possible to parallelize the NLJ, e.g. by creating an individual thread
for each iteration of the outer loop. The kernel function then contains the inner
loop, the distance calculation and the comparison. During the complete run of the
kernel function, the current point of the outer loop is constant, and we call this
point the query point q of the thread, because the thread operates like a similarity

7.3 Performing the Similarity Join Algorithm on GPU 157

Algorithm 2 Sequential algorithm for the nested loop join.
algorithm sequentialNLJ(dataset DS)
for all q ∈ DS do

for all x ∈ DS do
if dist(x, q) ≤ εSJ then

report (x, q) as a result pair or do some further processing on (x, q)
end if

end for
end for

query, in which all database points with a distance of no more than εSJ from q are
searched. The query point q is always held in a register of the processor.

Our GPU allows a truly parallel execution of a number m of incarnations of
the outer loop, where m is the total number of Arithmetic Logic Units (ALU) of
all multiprocessors (i.e. the warp size 32 times the number of multiprocessors).
Moreover, all the different warps are processed in a quasi-parallel fashion, which
allows to operate on one warp of threads (which is ready-to-run) while another
warp is blocked due to the latency delay of a device memory access of one of its
threads.

The threads are grouped into thread group, which share the shared memory.
In our case, the shared memory is particularly used to physically store for each
thread group the current point x of the inner loop. Therefore, a kernel function
first copies the current point x from the device memory into the shared memory,
and then determines the distance of x to the query point q. The threads of the
same warp are running perfectly simultaneously, i.e. if these threads are copying
the same point from device memory to shared memory, this needs to be done
only once (but all threads of the warp have to wait until this relatively costly copy
operation is performed). However, a thread group may (and should) consist of
multiple warps. To ensure that the copy operation is only performed once per
thread group, it is necessary to synchronize the threads of the thread group before
and after the copy operation using the API function synchronize(). This API
function blocks all threads in the same thread group until all other threads (of

158 7. Data Mining Using Graphics Processors

other warps) have reached the same point of execution. The pseudocode for this
algorithm is presented in Algorithm 3.

Algorithm 3 Parallel algorithm for the nested loop join on GPU.
algorithm GPUsimpleNLJ(dataset DS) // host program executed on CPU
deviceMem float DS ′[][] := DS[][]; // allocate memory in DM DS
threads := n; // number of points in DS
tpg := 64; // threads per group
startThreads(simpleNLJKernel, threads, tpg); // one thread per point
waitForThreadsToFinish();

kernel simpleNLJKernel(int threadID)
register float q[] := DS ′[threadID][]; // copy q from DM into the register

// and use it as query point q
// index is determined by threadID

for i := 0 to n− 1 do
synchronizeThreadGroup();
shared float x[] := DS ′[i][]; // copy x from DM to SM
synchronizeThreadGroup(); // all threads of TG can work with x
if dist(x, q) ≤ εSJ then

report (x, q) as a result pair using synchronized writing
or do some further processing on (x, q) directly in kernel

end if
end for

7.3 Performing the Similarity Join Algorithm on GPU 159

7.3.2 An Indexed Parallel Similarity Join Algorithm on GPU

If the dataset does not fit into device memory, a simple partitioning strategy can be
applied. It must be ensured that the potential join partners of an object are within
the same partition as the object itself. Therefore, overlapping partitions of size
2× εSJ can be created.

The performance of the NLJ can be significantly improved if an index structure
is available as proposed in Section 7.2. On sequential processing architectures, the
indexed NLJ leaves the outer loop unchanged. The inner loop is replaced by an
index-based search retrieving candidates that may be join partners of the current
object of the outer loop. The effort of finding these candidates and refining them
is often orders of magnitude smaller compared to the non-indexed NLJ. When
parallelizing the indexed NLJ for the GPU, we follow the same paradigm as in
the last section, to create an individual thread for each point of the outer loop. It
is beneficial for the performance, if points having a small distance to each other
are collected in the same warp and thread group, because for those points, similar
paths in the index structure are relevant.

After index construction, we have not only a directory in which the points are
organized in a way that facilitates search. Moreover, the points are now clustered
in the array, i.e. points which have neighboring addresses are also likely to be
close together in the data space (at least when projecting on the first few dimen-
sions). Both effects are exploited by our join algorithm displayed in Algorithm 4.

Instead of performing an outer loop like in a sequential indexed NLJ, our al-
gorithm now generates a large number of threads: One thread for each iteration of
the outer loop (i.e. for each query point q). Since the points in the array are clus-
tered, the corresponding query points are close to each other, and the join partners
of all query points in a thread group are likely to reside in the same branches of
the index as well. Our kernel method now iterates over three loops, each loop for
one index level, and determines for each partition if the point is inside the partition
or, at least no more distant to its boundary than εSJ . The corresponding subnode
is accessed if the corresponding partition is able to contain join partners of the

160 7. Data Mining Using Graphics Processors

Algorithm 4 Algorithm for the similarity join on GPU with index support.
algorithm GPUIndexedJoin(dataset DS)
deviceMem index idx := indexAndSort(DS); // changes ordering of points
threads := n;
tpg := 64;
groups := threads/tpg;
for i := 1 to groups do

deviceMem float blockbounds[i][] := calcBlockBounds(DS, index);
end for
deviceMem float DS ′[][] := DS[][];
startThreads(indexedJoinKernel, threads, tpg); // one per point
waitForThreadsToFinish();

kernel indexedJoinKernel(int threadID, int blockID)
register float q[] := DS ′[threadID][]; // copy q from DM into register
shared float myblockbounds[] := blockbounds[blockID][];
for xi := 0 to indexsize.x do

if indexPageIntersectsBoundsD1(idx, myblockbounds, xi) then
for yi := 0 to indexsize.y do

if indexPageIntersectsBoundsD2(idx, myblockbounds, xi, yi)
then

for zi := 0 to indexsize.z do
if indexPageIntersectsBoundsD3(idx, myblockbounds,
xi, yi, zi) then

for w := 0 to indexPageSize do
synchronizeThreadGroup();
shared float p[] :=
getPointFromIndexPage(idx,DS ′, xi, yi, zi, w);
synchronizeThreadGroup();
if dist(p, q) ≤ εSJ then

report (p, q) as a result pair using synchronized writing
end if

end for
end if

end for
end if

end for
end if

end for

7.3 Performing the Similarity Join Algorithm on GPU 161

current point of the thread. When considering the warps which operate in a fully
synchronized way, a node is accessed, whenever at least one of the query points
of the warps is close enough to (or inside) the corresponding partition. For both
methods, indexed and non-indexed nested loop join on GPU, we need to address
the question how the resulting pairs are processed. Often, for example to support
density-based clustering (cf. Section 7.4), it is sufficient to return a counter with
the number of join partners. If the application requires to report the pairs them-
selves, this is easily possible by a buffer in device memory which can be copied
to CPU after the termination of all kernel threads. The result pairs must be written
into this buffer in a synchronized way to avoid that two threads write simultane-
ously to the same buffer area. The CUDA API provides atomic operations (such
as atomic increment of a buffer pointer) to guarantee this kind of synchronized
writing. Buffer overflows are also handled by our similarity join methods. If the
buffer is full, all threads terminate and the work is resumed after the buffer is
emptied by CPU.

7.3.3 Experimental Evaluation

We performed various experiments on synthetic datasets. The implementation for
all variants is written in C and all experiments are performed on a workstation
with Intel Core 2 Duo CPU E4500 2.2 GHz and 2 GB RAM which is supplied
with a Gainward NVIDIA GeForce GTX280 GPU (240 SIMD-processors) with
1GB GDDR3 SDRAM. The performance of the similarity join on the GPU, is
validated by the comparison of four different variants for executing the similarity
join:

1. NLJ on CPU

2. NLJ on CPU with index support (as described in Section 7.2)

3. NLJ on GPU

4. NLJ on GPU with index support (as described in Section 7.2)

162 7. Data Mining Using Graphics Processors

For each version we determine the speedup factor by the ratio of CPU runtime
and GPU runtime. For this purpose we generated three 8-dimensional synthetic
datasets of various sizes (up to ten million (m) points) with different data distri-
butions, as summarized in Table 7.1. Dataset DS1 contains uniformly distributed
data. DS2 consists of five Gaussian clusters which are randomly distributed in
feature space. Similar to DS2, DS3 is also composed of five Gaussian clusters,
but the clusters are linearly correlated. The threshold εSJ was selected to obtain
a join result where each point was combined with one or two join partners on
average.

Table 7.1: Synthetic datasets used for the evaluation of the similarity join on GPU.

SIZE DATA DISTRIBUTION

DS1 3m - 10m points uniform distribution
DS2 250k - 1m points normal distribution, Gaussian clusters
DS3 250k - 1m points normal distribution, Gaussian clusters

Evaluation of the Dataset Sizes

Figures 7.3(a) to 7.3(f) display the runtime in seconds and the corresponding
speedup factors of NLJ on CPU with/without index support and NLJ on the GPU
with/without index support in logarithmic scale for all three datasets DS1, DS2

and DS3. The time needed for data transfer from CPU to GPU and back as well
as the (negligible) index construction time has been included. The tests on dataset
DS1 were performed with εSJ = 0.125, and εSJ = 0.588 on DS2 and DS3 re-
spectively.

NLJ on the GPU with index support performs best in all experiments, inde-
pendent of the data distribution or size of the dataset. Note that, due to massive
parallelization, NLJ on the GPU without index support outperforms CPU without
index by a large factor. For example on DS3 (1m points of normal distributed
data with Gaussian clusters) we achieve a speedup factor of approximately 120,
shown in Figure 7.3(f). The GPU algorithm with index support outperforms the

7.3 Performing the Similarity Join Algorithm on GPU 163

10000

1000000

se
c)

CPU CPU indexed GPU GPU indexed

1

100

2 4 6 8 10 12

tim
e

(s

size (m)

(a) Runtime on dataset DS1.

70
90

110
130
150

up
 fa

ct
or

without index with index

10
30
50
70

2 4 6 8 10 12

sp
ee

du

size (m)

(b) Speedup on dataset DS1.

100
1000

10000
100000

ec
)

CPU CPU indexed GPU GPU indexed

0
1

10
100

200 400 600 800 1000

tim
e

(s
e

size (k)

(c) Runtime on dataset DS2.

70
90

110
130
150

up
 fa

ct
or

without index with index

10
30
50
70

200 400 600 800 1000

sp
ee

du

size (k)

(d) Speedup on dataset DS2.

100
1000

10000
100000

ec
)

CPU CPU indexed GPU GPU indexed

0
1

10
100

200 400 600 800 1000

tim
e

(s
e

size (k)

(e) Runtime on dataset DS3.

70
90

110
130
150

up
 fa

ct
or

without index with index

10
30
50
70

200 400 600 800 1000

sp
ee

du

size (k)

(f) Speedup on dataset DS3.

Figure 7.3: Evaluation of the NLJ on CPU and GPU with and without index
support w.r.t. the size of different datasets.

164 7. Data Mining Using Graphics Processors

corresponding CPU algorithm (with index) by a factor of 25 on dataset DS2 (cf.
Figure 7.3(d)). Remark that for example the overall improvement of the indexed
GPU algorithm on dataset DS2 over the non-indexed CPU version is more than
6,000. Hence, these results demonstrate the potential of boosting performance
of database operations with designing specialized index structures and algorithms
for the GPU.

Evaluation of the Parameter εSJ

In these experiments we test the impact of the parameter εSJ on the performance
of NLJ on the GPU with index support and use the indexed implementation of
NLJ on CPU as benchmark. All tests are performed on dataset DS2 with a fixed
size of 500k data points. The parameter εSJ is evaluated in a range from 0.125 to
0.333.
Figure 7.4(a) shows that the runtime of NLJ on the GPU with index support in-
creases for larger εSJ values. However, the GPU version outperforms the CPU
implementation by a large factor (cf. Figure 7.4(a)), that is proportional to the
value of εSJ . In this evaluation the speedup ranges from 20 for εSJ0.125 to almost
60 for εSJ = 0.333.

10

100

1000

ec
)

CPU indexed GPU indexed

0

1

10

0,10tim
e

(s
e

εSJ

0.10 0.15 0.20 0.30 0.35

(a) Runtime on dataset DS2.

45
60
75

up
 fa

ct
or

0
15
30

0,10

sp
ee

du

εSJ
0.10 0.15 0.20 0.30 0.35

(b) Speedup on dataset DS2.

Figure 7.4: Evaluation of the NLJ on CPU and GPU with and without index
support w.r.t. εSJ .

7.3 Performing the Similarity Join Algorithm on GPU 165

Evaluation of the Dimensionality

These experiments provide an evaluation w.r.t. the dimensionality of the data.
As in the experiments for the evaluation of the parameter εSJ , we use again the
indexed implementations both on CPU and GPU and perform all tests on dataset
DS2 with a fixed number of 500k data objects. The dimensionality is evaluated in
a range from eight to 32. In addition, we performed these experiments with two
different settings, namely εSJ = 0.588 and εSJ = 1.429.

Figure 7.5 illustrates that NLJ on the GPU outperforms the benchmark method
on CPU by factors of about 20 for εSJ = 0.588 to approximately 70 for εSJ =

1.429. This order of magnitude is relatively independent of the data dimension-
ality. As in our implementation the dimensionality is already known at compile
time, optimization techniques of the compiler have an impact on the performance
of the CPU version as can be seen especially in Figure 7.5(c). However the dimen-
sionality also affects the implementation on the GPU, because higher dimensional
data come along with a higher demand of shared memory. This overhead affects
the number of threads that can be executed in parallel on the GPU.

7.3.4 Conclusions

In this section, we have addressed the question, how similarity join algorithms can
be efficiently executed on the GPU. We have proposed an index structure which
is particularly suited to be held in the Device Memory of the GPU and which can
be accessed by kernel functions of the GPU in an efficient way. Since graphics
processors correspond to a highly parallel architecture consisting of up to some
hundreds of single programmable processors, we have also shown how similarity
join algorithms can be parallelized. We have proposed two efficient similarity join
algorithms, one based on the nested loop join and the other based on the indexed
nested loop join. Both algorithms are particularly dedicated for GPU processing
and outperform the sequential algorithms by a large factor.

166 7. Data Mining Using Graphics Processors

100

1000

ec
)

CPU indexed GPU indexed

1

10

5 10 15 20 25 30 35

tim
e

(s
e

dimensionality

(a) Runtime on dataset DS2 (εSJ = 0.588).

60
80

100

up
 fa

ct
or

0
20
40

5 10 15 20 25 30 35

sp
ee

du
dimensionality

(b) Speedup on dataset DS2 (εSJ = 0.588).

100

1000

ec
)

CPU indexed GPU indexed

1

10

5 10 15 20 25 30 35

tim
e

(s
e

dimensionality

(c) Runtime on dataset DS2 εSJ = 1.429.

60
80

100

up
 fa

ct
or

0
20
40

5 10 15 20 25 30 35

sp
ee

du

dimensionality

(d) Speedup on dataset DS2 εSJ = 1.429.

Figure 7.5: Evaluation of the NLJ on CPU and GPU with and without index
support w.r.t. the dimensionality.

7.4 Density-based Clustering Using GPU 167

7.4 Density-based Clustering Using GPU

In this section, we describe the algorithm CUDA-DClust – a parallel variant of
density-based clustering for the execution on GPUs. First, we introduce the clas-
sic definitions of density-based clustering, based on the famous algorithm DB-
SCAN [31]. And afterwards, we describe our ideas behind CUDA-DClust in
detail.

7.4.1 Foundations of Density-based Clustering

The idea of density-based clustering is that clusters are areas of high point density,
separated by areas of significantly lower point density that can be formalized using
two parameters, called ε ∈ R+ and MinPts ∈ N+. The central notion is the core

object. A data object P is called a core object of a cluster, if at least MinPts

objects (including P itself) are in its ε-neighborhood denoted by Nε(P), which
corresponds to a sphere of radius ε. Formally:

Definition 25 (Core Object) Let DS be a set of n objects from Rd, ε ∈ R+ and

MinPts ∈ N+. An object P ∈ DS is a core object, iff

|Nε(P)| ≥ MinPts, where Nε(P) = {Q ∈ DS : ||P −Q|| ≤ ε}.

Two objects may be assigned to a common cluster. In density-based clustering this
is formalized by the notions direct density reachability and density connectedness.

Definition 26 (Direct Density Reachability) Let P,Q ∈ DS. Q is directly den-
sity reachable from P (in symbols: P CQ) iff

1. P is a core object in DS, and

2. Q ∈ Nε(P).

If P and Q are both core objects, then P C Q is equivalent with P B Q. The
density connectedness is the transitive and symmetric closure of the direct density
reachability:

168 7. Data Mining Using Graphics Processors

Definition 27 (Density Connectedness) Two objects P and Q are density con-
nected (in symbols: P ./ Q) iff there is a sequence of core objects (P1, ..., Pm) of

arbitrary length m such that

P B P1 B ...C Pm CQ.

In density-based clustering, a cluster is defined as a maximal set of density con-
nected objects:

Definition 28 (Density-based Cluster) A subset c ⊆ DS is a density-based clus-
ter iff the following two conditions hold:

1. Density connectedness: ∀P,Q ∈ C : P ./ Q.

2. Maximality: ∀P ∈ C, ∀Q ∈ DS \ C : ¬P ./ Q.

The algorithm DBSCAN [31] implements the cluster notion of Definition 28 us-
ing a data structure called seed list SL containing a set of seed objects for cluster
expansion. More precisely, the algorithm proceeds as follows:

1. Mark all objects as unprocessed.

2. Consider arbitrary unprocessed object P ∈ DS.

3. If P is core object, assign new cluster-ID C, and do step (4) for all
elements Q ∈ Nε(P), which do not yet have a cluster-ID:

4. (a) mark element Q with cluster-ID C and
(b) insert object Q into seed list SL.

5. While SL not ∅ repeat step (6) for all elements P ′ ∈ S:

6. If P ′ is core object, do step (7) for all elements Q ∈ Nε(P
′),

which do not yet have any cluster-ID:

7.4 Density-based Clustering Using GPU 169

7. (a) mark element Q with cluster-ID C and
(b) insert object Q into seed list SL.

8. If DS still contains unprocessed objects, do step (2).

Since every object of the database is considered only once in Step (2) or (6) exclu-
sively, we have a complexity, which is n times the complexity of Nε(P) (which
is linear in the number of objects n if there is no index structure, and sublinear or
even O(log(n)) in the presence of a multi-dimensional index structure).

7.4.2 CUDA-DClust

Now we extend the concept of density-based clustering for special parallel envi-
ronment provided by the GPU.

Chains: The Main Idea of Parallelization

Since in density-based clustering there is a complex relationship between the data
objects and an unknown number of clusters, where two objects share a common
cluster whenever they are (directly or indirectly) connected by an unknown num-
ber of core objects, it is not possible to define a straightforward parallelization
e.g. by assigning an individual thread to each data object, cluster, or dimension.
Instead, our approach CUDA-DClust is based on a new concept especially intro-
duced to allow for massive parallelism in density-based clustering, called chain.
A chain is a set of data objects belonging to a common density-based cluster,
formally:

Definition 29 (Density-based Chain) A subsetC ⊆ DS is a density-based chain
iff the following condition holds:

∀P,Q ∈ C : P ./ Q.

170 7. Data Mining Using Graphics Processors

Note that a cluster may be composed of several chains but each chain belongs to
one single cluster only. In contrast to Definition 28, we do not require maximality.
Using the concept of chains, we basically perform the task of cluster expansion,
i.e. the transitive closure computation of the relation of direct density reachability.
Thus, a chain can be considered as a tentative cluster with a tentative cluster-ID
(which we call chain-ID). The idea is, instead of sequentially performing one

single cluster expansion like, for instance, in DBSCAN, we start many different
cluster expansions at the same time via different chains from different starting
points. Of course CUDA-DClust has to register every collision between two or
more chains carefully. A collision means that CUDA-DClust has to notice that
two chains actually participate in the same cluster. A detailed description of our
collision handling is presented in the following.

We now introduce a concept for book-keeping all information that is essen-
tial for collision handling, called collision matrix. A collision matrix CM is an
upper triangular boolean matrix of size (p × p), where p is the number of chains
that are expanded simultaneously. If a collision of chains i and j is detected, we
set CMi,j := true if i < j and CMj,i := true otherwise. Since CM is small,
we later run a sequential algorithm to determine transitive collisions. Finally, a
valid cluster-ID is assigned to each chain and is distributed to the points in a par-
allel fashion on GPU. Figure 7.6(a) illustrates parallelism based on the concept of
chains. Here, three density-based chains are processed in different thread groups
and may, therefore, be computed in a parallel fashion on different MPs of the
GPU. Each MP is responsible for the expansion of one chain. The seed point
to be expanded is loaded into the shared memory in order to have it efficiently
accessible for every thread in this thread group.

Besides the approach of chains, we introduce a second, but equally important
idea of parallelization. Whenever a point S is considered for determining its core
object property and for marking its neighbors as potential new seed points, all
points in Nε(S) must be determined. Therefor, a number of threads is generated
in order to process many potential neighbors Pi of S simultaneously. Note that,

7.4 Density-based Clustering Using GPU 171

(a) Parallelism at the level of multiprocessors (chains).

MP2

(b) Parallelism exemplarily of SIMD-
processor MP2.

Figure 7.6: Two different ideas of parallelization.

as already mentioned in Section 7.1, the generation of a high number of threads
in CUDA does not cause any considerable overhead. In contrast, it is of high
importance to generate a high number of potentially parallel threads in order to
keep the processors in a GPU busy, even in the frequent case of delays due to
memory latency. Figure 7.6(b) shows the intra-MP parallelism, exemplarily for
MP2 of the example illustrated in Figure 7.6(a). All possible mating partners
Qi of the seed point, which have to be tested whether or not they are in Nε(P)

are processed by different SIMD-processors in MP2. Hence, the coordinates are
loaded in the corresponding registers of the SIMD-processors, and each of them
computes one distance function between P and Qi simultaneously. Summarizing,
we achieve a high degree of intra-MP and inter-MP parallelism by having one
thread group for each in parallel executed chain and one thread for each potential
partner point of the current seed point of a chain.

172 7. Data Mining Using Graphics Processors

In CUDA, multiples of 32 threads must be grouped into thread groups. As indi-
cated in Section 7.1, threads of the same group are potentially executed in a fully
synchronous way in the same MP, may exchange information through the shared
memory, and all threads of the same thread group can be synchronized when all
threads wait until all other threads of the same thread group have reached the
same point of execution. Therefore, it is obviously beneficial to collect all threads
belonging to the same chain into one thread group.

The Cluster Expansion Kernel

The cluster expansion kernel is the main kernel method of CUDA-DClust. It
performs the actual work, i.e. the determination of the core point property and
the transitive expansion of the clusters. We generate a high number of threads, all
executing the cluster expansion kernel. Some other kernel methods for supportive
and cleaning tasks will be described in short later.

Consider the pseudocode presented in Algorithm 5a. Each thread group, gen-
erated by the cluster expansion kernel starts with the ID of the seed point P that
is going to be processed. Its main tasks are, determine the neighbor-points, assert
the core object property of P , mark the neighbors as chain members, and record
potential collisions in CM . A thread group starts by reading the coordinates of
P into the shared memory, and determining the minimum bounding rectangle
MBRε(P) of Nε(P) allowing d-fold parallelism, where d is the dimension of the
data space. Then the threads are synchronized and a loop encounters all points
Q ∈ PointSet from DS and considers them as potential neighbors in Nε(P). This
is done by all threads in the thread group allowing a maximum degree of intra-
group parallelism. Therefore, this loop starts with the point with index thread-ID,
and in each iteration, exactly the number of threads per thread group is added to
the index of the considered point Q. The further processing of Q by the proce-
dure processObject depends on the core object property of P as clusters are
expanded from core objects only. However, at an early stage it may be unclear if
P is a core object. In any case, the distance δ between P and Q is determined. If

7.4 Density-based Clustering Using GPU 173

Algorithm 5a The cluster expansion kernel.
// some global information available on DM:
float pointSet [n][d];
int pointState [n]; // initialized with UNPROCESSED

// it will contain the ChainID/ClusterID of the object
// but also special values like NOISE

float ε;
int minPts;
int threadGroupSize, numChains, maxSeedLength;
int seedList [numChains][maxSeedLength];
int seedLength [numChains];
boolean collisionMatrix[numChains][numChains]; // initialized with FALSE

kernel clusterExpansionKernel(int threadGroupId, int threadID)
chainID ≡ threadGroupID;
mySeedList [] ≡ seedList [chainID][];
mySeedLength ≡ seedLength [chainID];
shared int neighborBuffer [minPts];
shared int neighborCount = 0;

mySeedLength := mySeedLength− 1;
shared int seedPointID := mySeedList[mySeedLength];
shared float P [] := pointSet [seedPointID][]; // copy from DM
synchronizeThreads();
for i := threadID to n− 1 step threadGroupSize do
processObject(i);

end for
synchronizeThreads();
if neighborCount ≥ minPts then

pointState[seedPointID] := chainID;
for i := 0 to minPts− 1 do
markAsCandidate(neighborBuffer[i]); // reconsider neighbors

// in quarantine buffer
end for

else
pointState[seedPointID] := NOISE;

end if

174 7. Data Mining Using Graphics Processors

Algorithm 5b Procedure used by the cluster expansion kernel.
procedure processObject(int i)
register float Q [] := pointSet[i][];
register float δ :=Distance(P,Q);
if δ ≤ ε then

register int h = atomicInc(neighborCount);
if h ≥ minPts then
markAsCandidate(i);

else
neighborBuffer[h] := i; // P not yet confirmed as core object,

// put Q in quarantine buffer
end if

end if

Algorithm 5c Procedure used by the cluster expansion kernel.
procedure markAsCandidate(int i)
register int oldState = atomicCAS(pointState[i],UNPROCESSED,chainID);
if oldState = UNPROCESSED then

register int h := atomicInc(mySeedLength, maxSeedLength);
if h < maxSeedLength then

seedlist[h] := i;
end if

else
if oldState 6= NOISE ∧ oldState 6= chainID then

if oldState < i then
collisionMatrix[oldState][i] := true; // collision!

else
collisionMatrix[i][oldState] := true;

end if
end if

end if

7.4 Density-based Clustering Using GPU 175

Figure 7.7: A collision of two chains.

δ exceeds ε nothing needs to be done. Otherwise, we have to distinguish: If P is
already confirmed to be a core object, then we can immediately mark Q as a chain
member, but have to perform further operations, described in the next paragraph.
Otherwise, we increment (cf. Section 7.1.3) the counter neighborCount, which is
individual to P atomically and take Q into a temporary list called neighborBuffer

with at most MinPts entries. We can say, that Q is taken under quarantine until
the core status of P is really known. Whenever we mark an object as a chain
member, we have to perform the following actions: Check if the object is already
a member of the same or a different chain. In the first case, nothing needs to be
done. Otherwise we have a collision of two chains. That means, we have to note
that the two chain-IDs actually belong to the same cluster-ID. Figure 7.7 shows a
typical situation of such a scenario. Note that three situations are possible: First,
the point Q was originally marked by the blue chain in the middle and later the
red chain recognized the collision, or vice versa. The third option is, that the blue
and the red chain tried to mark the collision object simultaneously. To cope with
that case, we need atomic operations again. To label the neighbor points we use
atomicCAS (compare-and-swap, cf. Section 7.1.3). This operation checks if a
certain value is stored at the corresponding address. If the object had the status
UNPROCESSED then atomicCAS replaces the old label by the current chain-ID
and CUDA-DClust tries to include Q in the seed list of our chain. Otherwise, the
label remains and the old value is returned to the kernel. Hence, we can decide
unambiguously whether there was a collision or not.

176 7. Data Mining Using Graphics Processors

Management of the Seed List

The seed list SL is the central data structure of density-based clustering. Its pur-
pose is to provide a waiting queue for those objects, which are directly density
reachable from any object that has already been confirmed to be a core object of
the current cluster, also named candidates. The core object property of the can-
didates in the queue will be checked later, and a confirmed core object P will be
replaced by those objects, which are directly density reachable from P . SL is a
very simple data structure: An unpriorized queue for a set of objects with the only
operations of storing and fetching an arbitrary object. In sequential density-based
clustering algorithms such as DBSCAN or OPTICS, only one seed list must be
maintained. In contrast, CUDA-DClust simultaneously performs cluster expan-
sions of a moderately high number of chains, and, therefore, multiple seed lists
must be managed, which potentially causes space problems. The index number
of the actual seed list that is used by a thread group can be determined from its
TG-ID (which simultaneously serves as Chain-ID). To facilitate the readability of
the code, at the beginning of the kernel ClusterExpansion, these simplifications
are introduced by equivalence associations using the symbol ≡. These are only
meant as shortcuts, and no copying of data is needed.

For the insertion of objects into SL the operation atomicInc (for incre-
ment) has to be used because some candidates may be simultaneously inserted
by different threads of the same thread group. The space in each seed list in the
device memory is limited by a parameter (maxSeedLength). In our experiments,
we used 1,024 points per seed list. In case of a list overflow, new points are only
marked by the current chain-ID but not inserted into the seed list. We use two
different counters to keep track of the number of discarded candidates. Using a
special kernel method, called SeedRefill Kernel we can search for candidates that
have been discarded.

7.4 Density-based Clustering Using GPU 177

Load Balancing

Since a number of seeds is expanded simultaneously and a number of chains is
processed in parallel, it naturally happens that one of the chains is completed be-
fore the others. In this case, we start a new chain from an unprocessed object.
If no such object is available, we split a chain, i.e. one of the objects from SL

of a randomly selected chain is removed and we start a new chain with that can-
didate. Thereby, an almost constant number of threads working in the system is
guaranteed, all with approximately the same workload.

The Main Program for CPU

Apart from initialization, the main program consist merely of a loop starting three
different kernel methods on the GPU, until no more unprocessed data objects exist
any more:

1. Transfer the dataset from main memory to device memory;

2. Create NumChains new chains from randomly selected points of DS;

3. StartKernel (ClusterExpansion);

4. Transfer the states of the chains from device memory to main memory;

5. If necessary, StartKernel (NewSeeds);

6. If necessary, StartKernel (SeedRefill);

7. If unprocessed objects exist, continue with step (3);

8. Transfer the result (cluster-IDs) from device memory to main memory.

178 7. Data Mining Using Graphics Processors

CUDA-DClust* - The Indexed Version of CUDA-DClust

The performance of CUDA-DClust can be significantly improved by the multi-
dimensional index structure presented in Section 7.2, supporting the search of
points in the ε-neighborhood of some object P ∈ Nε(P). To receive the indexed
version of CUDA-DClust named CUDA-DClust*, our index structure must be
constructed in a bottom-up way by fractionated sorting of the data DS before
starting the actual clustering method. When transferring DS from the main mem-
ory into the device memory in the initialization step of CUDA-DClust, CUDA-
DClust* has to transfer the directory additionally. Compared to the size of DS,
the directory is always small. The most important change in our cluster expansion
kernel regards the determination of Nε(P) of some given seed object P , which
is done by exploiting SIMD-parallelism inside a MP. In CUDA-DClust, this was
done by a set of threads inside a thread group, each of which iterated over a dif-
ferent part of DS. In CUDA-DClust*, one of the threads iterates in a set of nested
loops over those nodes of the index structure, which represent regions of DS that
intersect Nε(P). In the innermost loop, we have one set of points correspond-
ing to a data page of the index structure, which is processed by exploiting the
SIMD-parallelism, like in CUDA-DClust.

7.4.3 Experimental Evaluation

To evaluate the performance of density-based clustering on GPU, we execute dif-
ferent experiments. First, we evaluate CUDA-DClust vs. DBSCAN without index
support and CUDA-DClust* vs. DBSCAN with index support w.r.t. the size of
the datasets. Second, we analyze the impact of the parameters MinPts and ε.
Finally, we perform an evaluation w.r.t. the data dimensionality. All test data
are synthetic feature vectors containing 20 randomly generated Gaussian clusters.
Unless otherwise mentioned, the algorithms are parameterized with ε = 0.05 and
MinPts = 4. These parameters are used in an analogous way like the correspon-
dent parameters of the sequential DBSCAN algorithm. The time needed for index

7.4 Density-based Clustering Using GPU 179

construction is not included in these experiments, but evaluated separately. A de-
tailed presentation of the complete runtime profile of CUDA-DClust is given in the
rear part of this Section. The implementation for all variants is written in C++ and
all experiments are performed on a workstation with Intel Core 2 Duo CPU E4500
2.2 GHz and 2 GB RAM, which is supplied with a Gainward NVIDIA GeForce
GTX280 GPU (240 SIMD-processors) with 1GB GDDR3 SDRAM. As a bench-
mark we apply a single-threaded implementation of DBSCAN on the CPU, that
uses the same index structure as CUDA-DClust for all experiments with index
support.

CUDA-DClust vs. DBSCAN

Figure 7.8 displays the runtime in seconds of CUDA-DClust compared to the
DBSCAN implementation on the CPU without index support for various data
sizes in logarithmic scale and the corresponding speedup factor. Due to massive
parallelization, CUDA-DClust outperforms CPU without index by a large factor
that is even growing with the number of points n. The speedup ranges from ten
for 30k points up to 15 for 1m points. Note that the calculation on GPU takes 40
minutes, compared to nine hours on CPU.

1000
10000

100000

se
c)

CPU GPU

1
10

100

0 250 500 750 1000

tim
e

(s

size (k)

(a) Runtime.

10

15

20

up
 fa

ct
or

0

5

10

0 250 500 750 1000

sp
ee

du

size (k)

(b) Speedup.

Figure 7.8: Evaluation of density-based clustering on GPU without index support
w.r.t. the size.

180 7. Data Mining Using Graphics Processors

CUDA-DClust* vs. Indexed DBSCAN

The following experiments are performed with index support as introduced in
Section 7.2. The runtime of CUDA-DClust* and the indexed version of DBSCAN
on CPU and speedup are presented in Figure 7.9. CUDA-DClust* outperforms the
benchmark again by a large factor, that is proportional to the size of the dataset.
In this evaluations the speedup ranges from 3.5 for 30k points to almost 15 for
2m points. A guaranteed speedup factor of at least ten is obtained by datasets
consisting of more than 250k points.

1000
10000

100000

se
c)

CPU GPU

1
10

100

0 500 1000 1500 2000

tim
e

(s

size (k)

(a) Runtime.

10

15

20

up
 fa

ct
or

0

5

10

0 500 1000 1500 2000

sp
ee

du

size (k)

(b) Speedup.

Figure 7.9: Evaluation of density-based clustering on GPU with index support
w.r.t. the size.

Impact of the Parameter MinPts

In these experiments we test the impact of the parameter MinPts on the perfor-
mance of CUDA-DClust* against the indexed version of DBSCAN on CPU. We
use a synthetic dataset with a fixed number of about 260k 8-dimensional points
and choose ε = 0.05. The parameter MinPts is evaluated in a range from 4 to
2,048. Figure 7.10 shows that the runtime of CUDA-DClust* increases for larger
MinPts values. For 4 ≤ MinPts ≤ 512 the speedup factor remains relatively
stable between ten and five. Then the speedup decreases significantly. However

7.4 Density-based Clustering Using GPU 181

CUDA-DClust* outperforms the implementation on CPU even for largeMinPts-
values by a factor of two. The speedup decline can be explained by a closer look
at the implementation details of CUDA-DClust* (cf. Section 7.4.2). It can be seen
that the first MinPts − 1 found neighbors have to be buffered, because they can
not be marked before it is guaranteed that the seed point is also a core point. As all
threads that are executed in parallel have to share the limited shared memory, less
threads can be executed in parallel if a high number of points have to be buffered
in addition.

1

10

100

1000

10000

100000

0 500 1000 1500 2000 2500

ti
m

e
(s

ec
)

MinPts

CPU GPU

(a) Runtime.

0

5

10

15

20

0 500 1000 1500 2000 2500

sp
ee

d
u

p
 f

a
ct

o
r

MinPts

(b) Speedup.

Figure 7.10: Evaluation of CUDA-DClust* w.r.t. MinPts.

Impact of the Parameter ε

We also evaluated the impact of the second DBSCAN parameter ε on CUDA-
DClust* using a synthetic dataset consisting of 260k 8-dimensional points and
fixedMinPts = 4. We test the impact of ε for values that range from 0.02 to 0.10
and present the results in Figure 7.11. Evidently, the impact of ε is negligible, as
the range of the corresponding speedup factor is almost stable between nine and
ten.

182 7. Data Mining Using Graphics Processors

100
1000

10000
100000

se
c)

CPU GPU

1
10

100

0,00

tim
e

(

ε
0.00 0.02 0.04 0.06 0.08 0.10

(a) Runtime.

10

15

20

p
fa

ct
or

0

5

10

0,00

sp
ee

du
p

ε
0.00 0.02 0.04 0.06 0.08 0.10

(b) Speedup.

Figure 7.11: Evaluation of CUDA-DClust* w.r.t. ε.

Evaluation of the Dimensionality

Here, we provide an evaluation w.r.t. the dimensionality of the data, ranging from
4 to 64. Again, we use our algorithm CUDA-DClust* and perform all tests on the
synthetic dataset consisting of 260k 8-dimensional points clustered with default
parameter-settings for ε and MinPts. Figure 7.12 illustrates that CUDA-DClust*
outperforms the benchmark by factors of about seven to twelve depending on the
dimensionality of the data. In our DBSCAN implementation the dimensionality is
already known at compile time. Hence, optimization techniques of the compiler
have an impact on the performance of the CPU version. Obviously, also the size
of the data structures for the seed points in the GPU implementation is affected
by the dimensionality and hence influences the performance of CUDA-DClust*,
as the data structures are stored in the shared memory. This overhead affects the
number of threads that can be executed in parallel on the GPU.

Evaluation of the Index Construction

All experiments do not include the time that is needed for constructing the index
structure (described in Section 7.2) so far. Table 7.2 displays the time needed to
construct the index, the runtime of CUDA-DClust and relates these two terms to

7.4 Density-based Clustering Using GPU 183

1000
10000

100000

se
c)

CPU GPU

1
10

100

0 10 20 30 40 50 60

tim
e

(s

dimensionality

(a) Runtime.

10

15

20

up
 fa

ct
or

0

5

10

0 10 20 30 40 50 60

sp
ee

du

dimensionality

(b) Speedup.

Figure 7.12: Evaluation of CUDA-DClust* w.r.t. the dimensionality.

each other for various sizes and dimensions of synthetic datasets. All experiments
indicate that the time for building the index structure is negligible and indepen-
dent of the parameter-setting by a fraction of lower than 5%. Further analysis
demonstrate that larger datasets show an even smaller value of lower than 2%.

Table 7.2: Evaluation of the Index Construction for CUDA-DClust*.

n DIM INDEX GPU INDEX / GPU
65k 8 0.1 s 2.2 s 4.5 %

130k 8 0.2 s 5.8 s 3.4 %
260k 8 0.4 s 16.5 s 2.4 %
260k 16 0.6 s 38.6 s 1.6 %
260k 32 1.0 s 45.9 s 2.2 %
260k 64 1.8 s 111.6 s 1.6 %
520k 8 0.8 s 52.1 s 1.5 %
1m 8 1.7 s 182.4 s 0.9 %
2m 8 3.6 s 681.8 s 0.5 %

184 7. Data Mining Using Graphics Processors

Runtime Profiling

In this section, we present a detailed runtime profile of CUDA-DClust* concern-
ing different parts of the algorithm that is evaluated on two different synthetic
datasets. The corresponding charts are depicted in Figure 7.13. The left diagram
illustrates the distribution of the execution time of the program parts cluster expan-
sion kernel, new seeds kernel, collision matrix and seed refill kernel on a dataset
consisting of 520k 8-dimensional points and the right diagram for 4m points, re-
spectively. Thus the bulk of performance is executed by the cluster expansion
kernel. The auxiliary program parts and computations on CPU only consume a
small fraction of the complete runtime as desired. Remark that the CPU is not re-
served during the execution of the cluster expansion kernel, that requires the main
part of the computation. Hence, the CPU can process multiple other jobs while
the algorithm is executed by the cluster expansion kernel. In all experiments the
time needed to divide the clustering process and the time to integrate the result for
both algorithms CUDA-DClust and CUDA-DClust* is negligible.

cluster expansion kernel

new seeds kernel

cluster expansion kernel

new seeds kernel

collision matrix

seed refill kernel

cluster expansion kernel

new seeds kernel

collision matrix

seed refill kernel

Figure 7.13: Runtime profile of CUDA-DClust* for two different datasets.

7.4.4 Conclusions

We proposed CUDA-DClust, a novel algorithm for very efficient density-based
clustering supported by the computing power of the GPU. This architecture al-
lows for extreme parallelization at very low cost. CUDA-DClust combines sev-
eral concepts to exploit the special characteristics of the GPU for clustering, as

7.5 Partitioning Clustering on GPU 185

parallel cluster expansion supported by the concept of chains, parallel nearest
neighbor search that can even be accelerated by the use of a hierarchical index
structure, and effective load balancing among the microprocessors. Our experi-
ments demonstrate that CUDA-DClust outperforms the algorithm DBSCAN on
CPU by an order of magnitude and yields an equally accurate clustering. The im-
pressive results can even be increased by the use of an appropriate index structure,
which yields to our second proposed algorithm CUDA-DClust*.

7.5 Partitioning Clustering on GPU

Finally, we describe the idea of performing a second paradigm of clustering,
namely partitioning k-means clustering, on GPU.

7.5.1 The Sequential Procedure of k-means Clustering

A well-established partitioning clustering method is the k-means clustering al-
gorithm [72]. k-means requires a metric distance function in vector space. In
addition, the user has to specify the number of desired clusters k as an input pa-
rameter. Usually k-means starts with an arbitrary partitioning of the objects into k
clusters. After this initialization, the algorithm iteratively performs the following
two steps until convergence: (1) Update centers: For each cluster, compute the
mean vector of its assigned objects. (2). Re-assign objects: Assign each object to
its closest center. The algorithm converges as soon as no object changes its cluster
assignment during two subsequent iterations.

Figure 7.14 illustrates an example run of k-means for k = 3 clusters. Fig-
ure 7.14(a) shows the situation after random initialization. In the next step, every
data point is associated with the closest cluster center (cf. Figure 7.14(b)). The
resulting partitions represent the Voronoi cells generated by the centers. In the
following step of the algorithm, the center of each of the k clusters is updated, as
shown in Figure 7.14(d). Finally, assignment and update steps are repeated until
convergence.

186 7. Data Mining Using Graphics Processors

In most cases, fast convergence can be observed. The optimization function of
k-means is well defined. The algorithm minimizes the sum of squared distances
of the objects to their cluster centers. However, k-means is only guaranteed to
converge towards a local minimum of the objective function. The quality of the
result strongly depends on the initialization. Finding that clustering with k clus-
ters minimizing the objective function actually is a NP-hard problem, for details
see e.g. [75]. In practice, it is therefore recommended to run the algorithm sev-
eral times with different random initializations and keep the best result. For large
datasets, however, often only a very limited number of trials is feasible. Paralleliz-
ing k-means in GPU allows for a more comprehensive exploration of the search
space of all potential clusterings and thus provides the potential to obtain a good
and reliable clustering even for very large datasets.

(a) Initialization. (b) Assignment. (c) Recalculation. (d) Termination.

Figure 7.14: Sequential partitioning clustering by the k-means algorithm.

7.5.2 CUDA-k-Means

In k-means, most computing power is spent in step (2) of the algorithm, i.e. re-
assignment which involves distance computation and comparison. The number of
distance computations and comparisons in k-means is O(k · i ·n), where i denotes
the number of iterations and n is the number of data points.

7.5 Partitioning Clustering on GPU 187

The CUDA-k-MeansKernel

In k-means, the cluster assignment of each data point is determined by comparing
the distances between the point and each cluster center. This work is performed
in parallel by the CUDA-k-meansKernel. The idea is, instead of (sequentially)
performing cluster assignment of one single data point, many different cluster as-
signments are started simultaneously. In detail, one single thread per data point is
generated, all executing the CUDA-k-meansKernel. Every thread which is gen-
erated from the CUDA-k-meansKernel (cf. in Algorithm 6) starts with the ID of
a data point x that is going to be processed. Its main tasks are, to determine the
distance to the next center and the ID of the corresponding cluster.

A thread starts by reading the coordinates of the data point x into the register.
The distance of x to its closest center is initialized by∞ and the assigned cluster
is therefore set to null. Then a loop encounters all c1, c2, . . . , ck centers and
considers them as potential clusters for x. This is done by all threads in the same
thread group allowing a maximum degree of intra-group parallelism. Finally, the
cluster whose center has the minimum distance to the data point x is reported
together with the corresponding distance value using synchronized writing.

The Main Program for CPU

Apart from initialization and data transfer from main memory to device memory,
the main program consists of a loop starting the CUDA-k-meansKernel on GPU
until the clustering converges. After the parallel operations are completed by all
threads of the group, the following steps are executed in each cycle of the loop:

1. Copy distance of processed point x to the nearest center from device into
main memory.

2. Copy cluster, x is assigned to, from device memory into main memory.

3. Update centers.

4. Copy updated centers to device memory.

188 7. Data Mining Using Graphics Processors

Algorithm 6 Parallel algorithm for k-means on GPU.
algorithm CudaKMeans(datasetDS, int k) // host program executed on CPU
deviceMem float DS ′[][] := DS[][]; // allocate memory in DM for DS
threads := n; // number of points in DS
tpg := 64; // threads per group
deviceMem float Centroids[][] := initCentroids(); // allocate memory in DM

// for the initial centroids
double actCosts :=∞; // initial costs of clustering

repeat
prevCost := actCost;
startThreads(CudaKMeansKernel, threads, tpg); // one thread per point
waitForThreadsToFinish();
float minDist := minDistances[threadID]; // copy distance to nearest

// centroid from DM into MM
float cluster := clusters[threadID]; // copy assigned cluster

// from DM into MM
double actCosts := calculateCosts(); // update costs of clustering
deviceMem float Centroids[][] := calculateCentroids();

// copy updated centroids to DM
until |actCost− prevCost| < threshold

kernel CudaKMeansKernel(int threadID)
register float x[] := DS ′[threadID][]; // copy x from DM into register
float minDist :=∞; // distance of x to the next centroid
int cluster := null; // ID of the next centroid (cluster)
for i := 1 to k do

register float c[] := Centroids[i][] // copy actual centroid
// from DM into register

double dist := distance(x,c);
if dist < minDist then
minDist := dist;
cluster := i;

end if
end for
report(minDist, cluster); // report assigned cluster and distance

// using synchronized writing

7.5 Partitioning Clustering on GPU 189

7.5.3 Experimental Evaluation

To analyze the efficiency of k-means clustering on GPU, we present experiments
w.r.t. different dataset sizes, number of clusters and dimensionality of the data.
As benchmark we apply a single-threaded implementation of k-means on CPU to
determine the speedup of the implementation of k-means on GPU. As the number
of iterations may vary in each run of the experiments, all results are normalized
by a number of 50 iterations both on GPU and CPU implementation of k-means.
All experiments are performed on synthetic datasets as described in detail in each
of the following settings.

Evaluation of the Dataset Sizes

For these experiments we created 8-dimensional synthetic datasets of different
sizes, ranging from 32k to 2m data points. The datasets consist of different
numbers of random clusters, generated like DS1, specified in Table 7.1. Fig-
ure 7.15(a) displays the runtime in seconds in logarithmic scale and the corre-
sponding speedup factors of CUDA-k-means and the benchmark method on CPU
for different number of data points. The time needed for data transfer from CPU
to GPU and back has been included. The corresponding speedup factors are given
in Figure 7.15(b). Once again, these experiments support the evidence that the
performance of data mining approaches on GPU outperform classic CPU ver-
sions by significant factors. Whereas a speedup of approximately 10 to 100 can
be achieved for relatively small number of clusters (data objects), we obtain a
speedup of about 1000 for 256 clusters, that is even increasing with the number of
data objects.

Evaluation of the Number of Clusters

We performed several experiments to validate CUDA-k-means w.r.t. the number
of clusters k. Figure 7.15(c) shows the runtime in seconds of CUDA-k-means
compared with the implementation of k-means on CPU on 8-dimensional syn-

190 7. Data Mining Using Graphics Processors

1000
10000

c)

CPU (32 clusters) CPU (64 clusters) CPU (256 clusters)

GPU (32 clusters) GPU (64 clusters) GPU (256 clusters)

1
10

100

0 500 1000 1500 2000

tim
e

(s
ec

size (k)

(a) Runtime for different dataset sizes.

750
1000

fa
ct

or

32 clusters 64 clusters 256 clusters

0
250
500

0 500 1000 1500 2000

sp
ee

du
p

size (k)

(b) Speedup for different dataset sizes.

100
1000

10000

c)

CPU (32k points) CPU (500k points) CPU (2m points)

GPU (32k points) GPU (500k points) GPU (2m points)

0
1

10
100

0 50 100 150 200 250tim
e

(s
ec

k

(c) Runtime for different number of clusters.

750
1000

fa
ct

or

32 points 500k points 2m points

0
250
500

0 50 100 150 200 250

sp
ee

du
p

k

(d) Speedup for different number of clusters.

100
1000

10000

ec
)

CPU GPU

0
1

10

0 50 100 150 200 250tim
e

(s
e

dimensionality

(e) Runtime for different dimensionalities.

500
750

1000

p
fa

ct
or

0
250
500

0 50 100 150 200 250

sp
ee

du
p

dimensionality

(f) Speedup for different dimensionalities.

Figure 7.15: Evaluation of k-means clustering on CPU and GPU w.r.t. the size of
different datasets, the number of clusters, and different dimensionalities.

7.5 Partitioning Clustering on GPU 191

thetic datasets that contain different number of clusters, ranging from 32 to 256,
again together with the corresponding speedup factors in Figure 7.15(d).

The experimental evaluation of k on a dataset that consists of 32k points re-
sults in a maximum performance benefit of more than 800 compared to the bench-
mark implementation. For 2m points the speedup ranges from nearly 100 up to
even more than 1,000 for a dataset that comprises 256 clusters. In this case the
calculation on the GPU takes approximately five seconds, compared to almost
three hours on CPU. Therefore, we determine that due to massive parallelization,
CUDA-k-means outperforms the CPU implementation by large factors, that are
even growing with k and the number of data objects n.

Evaluation of the Dimensionality

These experiments provide an evaluation w.r.t. the dimensionality of the data. We
perform all tests on synthetic data consisting of 16k data objects. The dimension-
ality of the test datasets vary in a range from 4 to 256. Figure 7.15(f) illustrates that
CUDA-k-means outperforms the benchmark method k-means on CPU by factors
of 230 for 128-dimensional data to almost 500 for 8-dimensional data. On GPU
and CPU, the dimensionality affects possible compiler optimization techniques,
like loop unrolling as already shown in the experiments for the evaluation of the
similarity join on the GPU (cf. Section 7.3.3).

7.5.4 Conclusions

We demonstrated how Graphics processing Units (GPU) can effectively support
highly complex data mining tasks. In particular, we focused on the iterative al-
gorithm k-means and proposed algorithms illustrating how to effectively support
clustering on GPU. Our proposed algorithm is accustomed to the special environ-
ment of the GPU which is most importantly characterized by extreme parallelism
at low cost. Our experimental evaluation emphasizes the potential of the GPU for
high-performance data mining.

192 7. Data Mining Using Graphics Processors

Chapter 8

Conclusions

The rapidly increasing amount of data stored in databases requires effective and
efficient data mining methods to gain new information contained in the collected
data. Clustering is one of the primary data mining tasks and aims at detecting
subgroups of similar data objects. This thesis contributes to the fields of min-
ing structured datatypes and proposes opportunities for boosting the data mining
process by the intelligent adoption of Graphics Processing Units (GPUs). In Sec-
tion 8.1, a detailed summary of our contributions is given. This thesis is concluded
by some potential ideas for future work in Section 8.2.

8.1 Summary

Many data contain some kind of hierarchical relationship. That means that data
mining approaches can reveal the information present in this data w.r.t. different
levels. Hierarchical clustering has therefore become very popular in various sci-
entific domains, such as molecular biology, medicine or economy. In this thesis,
we contributed two novel hierarchical clustering algorithms – ITCH (Information-
theoretic Cluster Hierarchies) and GACH (Genetic Algorithm for Finding Clus-
ter Hierarchies). ITCH is a hierarchical information-theoretic clustering method
that has the following advantages: It uses a Gaussian probability density function

194 8. Conclusions

(PDF) as representative for each cluster. This is returned as the result of the clus-
tering method but also consequently used as an optimization criterion during the
algorithm. Furthermore, each node in the hierarchy represents a meaningful clus-
ter. This is achieved by an adaptation of the Minimum Description Length (MDL)
principle for the hierarchical case. Outliers are flexibly handled by assigning them
to higher levels of the cluster hierarchy. Outliers which are completely dissimilar
to all objects in the database may be assigned to the root of the hierarchy; other
points which are outliers to a lesser degree and just do not fit to any very spe-
cific cluster at a very detailed view may be assigned to intermediate layers of the
hierarchy. Finally, ITCH is effective, efficient and fully automatic, i.e. difficult
and critical parameter settings are avoided. The second hierarchical clustering
algorithm, presented in this thesis, is called GACH. GACH is a genetic-based al-
gorithm which combines the benefits of genetic algorithms, information theory
and model-based clustering being an efficient and accurate hierarchical clustering
technique. It uses a MDL-based fitness function. Hence, it can be easily applied
to real world applications without requiring any background knowledge by the
user about the data, like e.g. the real number of clusters. Due to the fact that
GACH integrates an EM-like strategy, the content of all clusters is described by
an intuitive description in form of a PDF. As ITCH, GACH assigns outliers to
appropriate inner nodes of the hierarchy, depending on their degree of outlierness.
Our experimental evaluation demonstrate that GACH outperforms a multitude of
other clustering approaches in terms of accuracy. In fact, we have obtained better
results concerning different quality measures.

Besides hierarchical data mining, the analysis of data that are composed of
attributes concerning different domains has turned out to be among the top 10
challenging problems in data mining. This thesis contributes a novel integrative
clustering algorithm that addresses the question how to find a good partitioning of
data that have both numerical and categorical attributes. Most of the existing clus-
tering approaches require prior knowledge on the data that specifies the number
of clusters or defines the weighting of the numerical and categorical information.

8.1 Summary 195

Here, we gave a solution to avoid difficult parameter settings in integrative clus-
tering which was guided by the information-theoretic idea of data compression.
For this purpose, we defined iMDL, an alternative for the classic MDL princi-
ple. The data partitioning can be used for efficient coding, and the achievable
compression rate thus defines an objective function for the integrative clustering
problem. On top of the idea of data compression we have proposed INTEGRATE,
an information-theoretic integrative clustering method which is a k-means based
approach for mixed type data that fulfills the following requirements. First, based
on the MDL principle, INTEGRATE allows for a natural weighting of numeri-
cal and categorical information. Second, there is no need for difficult parameter
settings which makes INTEGRATE fully automatic. Third, being the result of an
optimization process maximizing the achievable data compression, INTEGRATE
uses the numerical and categorical information most effectively. And finally, it
shows high efficiency and is therefore scalable to large datasets.

Performing data mining on complex data that can not be easily described by
feature vectors was another challenging problem during this work. However, in-
spired by the success of the skyline operator for multi-criteria decision making,
we demonstrated that the skyline of a dataset is a very useful representation cap-
turing the most interesting characteristics. And therefore, data mining on skylines
is very promising for knowledge discovery. With SkyDist, a similarity measure
for comparing different skylines, we proposed the first approach to data mining on
skyline objects. We presented a baseline Monte-Carlo Sampling approach, called
MCSkyDist that approximates the distance and an exact sweep-line based compu-
tation, named SLSkyDist. We showed, that SkyDist can easily be integrated into
many data mining techniques. Real world case studies on clustering skylines that
represent interesting offers of an automotive market or that describe the perfor-
mance profile of basketball players, demonstrated that data mining on skylines,
enabled by SkyDist, yields interesting novel knowledge.

Finally, we presented different contributions to the field of graph mining.
Among the aforementioned data structures, graphs or networks are the most gen-

196 8. Conclusions

eral ones, as almost every relationship can be modeled by graphs. In particular,
we worked on a large real case study on brain networks of patients with somato-
form pain disorder. The brain network models were constructed out of fMRI scan
time series (a special form of neuroimaging) of six somatoform patients and four
healthy controls. Each edge inside the network represents a significant degree of
co-activation between different brain regions. On these network models, we have
applied the heuristic frequent subgraph algorithm GREW and FANMOD, an ex-
haustive sampling method for frequent subgraph discovery. The resulting patterns
represent groups of brain compartments that covary in their activity during the
process of pain stimulation. We evaluated the appearance of frequent subgraphs
for the group of patients and the healthy controls, respectively. Our results let us
suspect that somatoform pain disorder is caused by an additional pathogeneous
activity, not by a missing physiological activity. So far we have cared about the
topology of the network, but ignore the temporal order of these interactions. To
take this aspect into account, we defined an approach for dynamic graph mining
and applied it on biological yeast networks. To achieve real dynamic networks,
we co-integrated gene expression and protein interaction data from the organism
S.cerevisiae. The information about the presence of an edge at a particular time
step is modeled by so-called existence strings. We have defined an efficient algo-
rithm for frequent dynamic subgraph discovery in an on-top fashion, meaning that
we search a set of frequent static subgraphs for dynamic patterns. To provide the
enumeration of static patterns, existing subgraph mining algorithms can be eas-
ily integrated into our framework. The dynamic patterns are efficiently computed
using the idea of suffix trees. The resulting patterns represent groups of proteins
that occur frequently within a protein interaction network and in which pairs of
proteins are co-regulated in the same temporal order.

In the second part of this thesis, we contributed to the efficiency aspect of data
mining algorithms. Many computations are extremely time consuming, especially
in the presence of large databases. We presented solutions by the help of graphics
processors that can effectively support highly complex data mining tasks. In par-

8.2 Outlook 197

ticular, we demonstrated how to boost the clustering process and presented ideas
for accelerating the similarity search. We selected two well-known clustering
algorithms, the density-based algorithm DBSCAN and the iterative partitioning
algorithm k-means and proposed approaches illustrating how to effectively sup-
port clustering on GPU. Our proposed algorithms are accustomed to the special
environment of the GPU which is most importantly characterized by extreme par-
allelism at low cost. In addition, we proposed a parallel version of the similarity
join and an index structure for efficient similarity search. Going beyond the pri-
mary scope of this idea, these building blocks are applicable to support a wide
range of data mining tasks, including outlier detection, association rule mining
and classification. Our extensive experimental evaluation emphasizes the poten-
tial of the GPU for high-performance data mining.

8.2 Outlook

At the end of this thesis, the potentials of the proposed methods for future research
are emphasized.

• While much work has been done in identifying cluster structures that are de-
scribed by Gaussian Mixture Models, the field of detecting structures that
form relationships of PDFs of arbitrary type is almost unexplored. Extend-
ing the coding scheme for Gaussian PDFs to mixture models of the Expo-
nential Power Distribution type would therefore be a next step.

• Our algorithms ITCH and GACH for information-theoretic mining of clus-
ter hierarchies are based on a hierarchical extension of the MDL principle.
For simplicity the coding scheme is restricted to the diagonal covariance
matrix. In order to apply our algorithms on arbitrary oriented clusters, we
plan to integrate the coding of the complete covariance matrix w.r.t. hierar-
chical cluster relationships.

198 8. Conclusions

• For GACH, we used the heuristic approach of genetic algorithms. Another
promising probabilistic heuristic concept would be simulated annealing. In
each step of the simulated annealing process, the current solution for the
hierarchical clustering problem is replaced by a random solution. The new
solution may then be accepted with a probability that depends both on the
difference between the corresponding hMDL value and also on a global
parameter T (called the temperature), that is gradually decreased during the
process.

• Another interesting idea would be to amplify the field of integrative data
mining. While our proposed algorithm INTEGRATE is designed to handle
data that consists of numerical and categorical attributes, one might also
be interested in incorporating data types like e.g. graph-structures. Using
a variety of different information for the data mining process yields to a
maximum of knowledge extraction. For example, a clustering method that
combines categorical and graph-structured data can be used highly effective
for mining social network data.

• For high efficient data mining, future research could be guided in the fol-
lowing directions: Besides similarity search and clustering there is a high
number of data mining processes that are often hard to apply on large real-
world data. Therefore, it would be beneficial to develop further algorithms
to support more specialized data mining tasks on GPU, including for exam-
ple subspace and correlation clustering and medical image processing.

List of Figures

1.1 The KDD process. 2
1.2 Example for clustering. 4
1.3 Example for feature transformation. 5
1.4 Growth trend of NVIDIA GPU vs. CPU. 9

2.1 A dendrogram for a given sample dataset. 14
2.2 A reachability plot for a given sample dataset. 18
2.3 Coding scheme for parameter-free clustering. 26
2.4 Illustration of the rightmost extension used in gSpan. 28
2.5 The NVIDIA GeForce 8800 GTX graphics processor. 31

3.1 Contributions of the EM-based clustering method ITCH. 37
3.2 Illustrative example of the hierarchical cut. 41
3.3 Optimization of coding scheme for the location parameter. 44
3.4 Restructure operations of ITCH. 52
3.5 Synthetic datasets for the evaluation of ITCH. 55
3.6 Competitive evaluation of ITCH on a synthetic hierarchical dataset. 56
3.7 Competitive evaluation of ITCH on a synthetic flat dataset. 58
3.8 Competitive evaluation of ITCH on the real-world Glass dataset. . 59
3.9 Competitive evaluation of ITCH on the real-world Cancer dataset. 61
3.10 Stability of ITCH. 62
3.11 Motivation behind GACH. 64
3.12 Summarization of the mutation operators used for GACH. 68

200 LIST OF FIGURES

3.13 The crossover operator used for GACH. 70
3.14 Evaluation of the genetic parameters of GACH. 76
3.15 Competitive evaluation of GACH on different synthetic datasets. . 79
3.16 Competitive evaluation of GACH on the real-world Wine dataset. . 81

4.1 Running example for the algorithm INTEGRATE. 86
4.2 Evaluation of INTEGRATE on synthetic data. 93
4.3 Coding costs for different k values. 96

5.1 Motivating examples for performing data mining on skylines. . . . 98
5.2 Dominance regions of two skylines X and Y 101
5.3 SkyDist in 2-dimensional space. 102
5.4 Computation of SkyDist in 2-dimensional space. 104
5.5 Structure of a 3-dimensional skyline. 106
5.6 Clustering of car models represented by their skyline. 111
5.7 SkyDist in comparison to conventional metrics. 112
5.8 Clustering of NBA Players represented as skylines. 114

6.1 Transformation from a graph time series into the union graph. . . 119
6.2 Typical representatives of subgraphs found in brain network data. . 124
6.3 Largest subgraphs found in brain network data. 125
6.4 Evaluation of ROIs in the brain networks. 127
6.5 Transformation from a graph time series into the dynamic graph. . 131
6.6 Dynamic graph mining procedure. 134
6.7 Evaluation w.r.t. protein function in biological dynamic networks. 143
6.8 Selected frequent subgraphs that consist of three or four nodes. . . 144

7.1 Architecture of a GPU. 149
7.2 Index structure for GPU. 154
7.3 Evaluation of NLJ on CPU and GPU w.r.t. different dataset sizes. . 163
7.4 Evaluation of NLJ on CPU and GPU w.r.t. different εSJ values. . . 164

List of Figures 201

7.5 Evaluation of NLJ on CPU and GPU w.r.t. the dimensionality. . . 166
7.6 Two different ideas of parallelization for CUDA-DClust. 171
7.7 A collision of two chains. 175
7.8 Evaluation of CUDA-DClust without index support. 179
7.9 Evaluation of CUDA-DClust* with index support. 180
7.10 Evaluation of CUDA-DClust* w.r.t. MinPts. 181
7.11 Evaluation of CUDA-DClust* w.r.t. ε. 182
7.12 Evaluation of CUDA-DClust* w.r.t. the dimensionality. 183
7.13 Runtime profile of CUDA-DClust* for two different datasets. . . . 184
7.14 Sequential partitioning clustering by the k-means algorithm. . . . 186
7.15 Evaluation of CUDA-k-means. 190

202 List of Figures

List of Tables

3.1 Performance of ITCH on a synthetic hierarchical dataset. 57
3.2 Performance of ITCH on a synthetic flat dataset. 58
3.3 Performance of ITCH on the real-world Glass dataset. 60
3.4 Performance of ITCH on the real-world Cancer dataset. 62
3.5 Performance of GACH on a synthetic flat dataset. 78
3.6 Performance of GACH on a synthetic flat dataset. 80
3.7 Performance of GACH on the real-world Wine dataset. 81

4.1 Performance of INTEGRATE on real-world datasets. 95

5.1 Runtime analysis for SLSkyDist and MCSkyDist. 109

6.1 Statistics of the brain network models for each subject. 122
6.2 Subgraphs found in brain network data. 128
6.3 Evaluation of subgraphs found in biological dynamic network data. 141

7.1 Datasets for the evaluation of the similarity join on GPU. 162
7.2 Evaluation of the Index Construction for CUDA-DClust*. 183

204 List of Tables

Bibliography

[1] NVIDIA CUDA Compute Unified Device Architecture - Programming

Guide, 2007.

[2] J. Aach, W. Rindone, and G. M. Church. Systematic Management and
Analysis of Yeast Gene Expression Data. Genome Res., 10:431–445, Feb
2000.

[3] A. Ahmad and L. Dey. A K-mean Clustering Algorithm for Mixed Numeric
and Categorical Data. Data Knowl. Eng., 63(2):503–527, 2007.

[4] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Order-
ing Points To Identify the Clustering Structure. In SIGMOD Conference,
pages 49–60, 1999.

[5] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,
A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill,
L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson,
M. Ringwald, G. M. Rubin, and G. Sherlock. Gene Ontology: Tool for
the Unification of Biology. The Gene Ontology Consortium. Nat Genet.,
25:25–29, 2000.

[6] T. Bäck, editor. Proceedings of the 7th International Conference on Genetic

Algorithms, East Lansing, MI, USA, July 19-23, 1997. Morgan Kaufmann,
1997.

206 BIBLIOGRAPHY

[7] H. M. Berman, J. D. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weis-
sig, I. N. Shindyalov, and P. E. Bourne. The Protein Data Bank. Nucleic

Acids Research, 28(1):235–242, 2000.

[8] D. J. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange, and B.-Y. Yang. ECM
on Graphics Cards. In EUROCRYPT, pages 483–501, 2009.

[9] C. Böhm, B. Braunmüller, M. M. Breunig, and H.-P. Kriegel. High Perfor-
mance Clustering Based on the Similarity Join. In CIKM, pages 298–305,
2000.

[10] C. Böhm, C. Faloutsos, J.-Y. Pan, and C. Plant. Robust Information-
theoretic Clustering. In KDD, pages 65–75, 2006.

[11] C. Böhm, C. Faloutsos, and C. Plant. Outlier-robust Clustering using Inde-
pendent Components. In SIGMOD Conference, pages 185–198, 2008.

[12] C. Böhm, F. Fiedler, A. Oswald, C. Plant, B. Wackersreuther, and
P. Wackersreuther. ITCH: Information-Theoretic Cluster Hierarchies. In
ECML/PKDD (1), pages 151–167, 2010.

[13] C. Böhm, S. Goebl, A. Oswald, C. Plant, M. Plavinski, and B. Wacker-
sreuther. Integrative Parameter-Free Clustering of Data with Mixed Type
Attributes. In PAKDD (1), pages 38–47, 2010.

[14] C. Böhm, R. Noll, C. Plant, and B. Wackersreuther. Density-based Clus-
tering using Graphics Processors. In CIKM, pages 661–670, 2009.

[15] C. Böhm, R. Noll, C. Plant, B. Wackersreuther, and A. Zherdin. Data
Mining Using Graphics Processing Units. T. Large-Scale Data- and

Knowledge-Centered Systems, 1:63–90, 2009.

[16] C. Böhm, R. Noll, C. Plant, and A. Zherdin. Indexsupported Similarity Join
on Graphics Processors. In BTW, pages 57–66, 2009.

BIBLIOGRAPHY 207

[17] C. Böhm, A. Oswald, C. Plant, M. Plavinski, and B. Wackersreuther. Sky-
Dist: Data Mining on Skyline Objects. In PAKDD (1), pages 461–470,
2010.

[18] K. M. Borgwardt, H.-P. Kriegel, and P. Wackersreuther. Pattern Mining in
Frequent Dynamic Subgraphs. In ICDM, pages 818–822, 2006.

[19] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline Operator. In
ICDE, pages 421–430, 2001.

[20] F. Cao, A. K. H. Tung, and A. Zhou. Scalable Clustering Using Graphics
Processors. In WAIM, pages 372–384, 2006.

[21] B. C. Catanzaro, N. Sundaram, and K. Keutzer. Fast Support Vector Ma-
chine Training and Classification on Graphics Processors. In ICML, pages
104–111, 2008.

[22] R. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Conway, L. Wodicka,
T. Wolfsberg, A. Gabrielian, D. Landsman, D. Lockhart, and R. Davis. A
Genome-wide Transcriptional Analysis of the Mitotic Cell Cycle. Mol.

Cell, 2:65–73, Jul 1998.

[23] D. J. Cook and L. B. Holder. Substructure Discovery Using Minimum
Description Length and Background Knowledge. JAIR, 1:231–255, 1994.

[24] E. H. Davidson, J. P. Rast, P. Oliveri, A. Ransick, C. Calestani, C.-H. Yuh,
T. Minokawa, G. Amore, V. Hinman, C. Arenas-Mena, O. Otim, C. T.
Brown, C. B. Livi, P. Y. Lee, R. Revilla, A. G. Rust, Z. Pan, M. J. Schilstra,
P. J. C. Clarke, M. I. Arnone, L. Rowen, R. A. Cameron, D. R. McClay,
L. Hood, and H. Bolouri. A Genomic Regulatory Network for Develop-
ment. Science, 295(5560):1669–1678, 2002.

[25] D. Defays. An Efficient Algorithm for a Complete Link Method. Comput.

J., 20(4):364–366, 1977.

208 BIBLIOGRAPHY

[26] A. Demiriz, K. P. Bennett, and M. J. Embrechts. Semi-supervised Cluster-
ing using Genetic Algorithms. Artificial neural networks in engineering,
pages 809–814, 1999.

[27] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm. In J Roy Stat Soc, number 39,
pages 1–31, 1977.

[28] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical

Society. Series B (Methodological), 39(1):1–38, 1977.

[29] P. K. Desikan and J. Srivastava. Mining Temporally Changing Web Usage
Graphs. In WebKDD, pages 1–17, 2004.

[30] B. Dom. An Information-theoretic External Cluster-Validity Measure. In
UAI, pages 137–145, 2002.

[31] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise. In KDD,
pages 226–231, 1996.

[32] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge Discovery
and Data Mining: Towards a Unifying Framework. In KDD, pages 82–88,
1996.

[33] Y. Feng and G. Hamerly. PG-means: Learning the Number of Clusters in
Data. In NIPS, pages 393–400, 2006.

[34] J. R. Filho, C. Alippi, and P. Treleaven. Genetic Algorithm Programming
Environments. IEEE Computer, 27:28–43, 1994.

[35] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman, 1979.

BIBLIOGRAPHY 209

[36] J. Gasteiger and T. Engel. Chemoinformatics: A Textbook. Wiley-VCH,
2003.

[37] E. Geuze, H. Westenberg, A. Jochims, C. de Kloet, M. Bohus, E. Vermet-
ten, and C. Schmahl. Altered Pain Processing in Veterans with Posttrau-
matic Stress Disorder. Arch. Gen. Psychiatry, 64:76–85, Jan 2007.

[38] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUTeraSort:
High Performance Graphics Co-processor Sorting for Large Database Man-
agement. In SIGMOD Conference, pages 325–336, 2006.

[39] N. K. Govindaraju, B. Lloyd, W. Wang, M. C. Lin, and D. Manocha. Fast
Computation of Database Operations using Graphics Processors. In SIG-

MOD Conference, pages 215–226, 2004.

[40] P. Grünwald. A Tutorial Introduction to the Minimum Description Length
Principle. CoRR, math.ST/0406077, 2004.

[41] H. Gündel, M. Valet, C. Sorg, D. Huber, C. Zimmer, T. Sprenger, and T. R.
Tölle. Altered Cerebral Response to Noxious Heat Stimulation in Patients
with Somatoform Pain Disorder. Pain, 137(2):413–421, July 2008.

[42] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten. The WEKA Data Mining Software: An Update. SIGKDD Explo-

rations, 11(1):10–18, 2009.

[43] G. Hamerly and C. Elkan. Learning the K in K-means. In NIPS, 2003.

[44] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2000.

[45] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introduc-

tory Analysis with Applications to Biology, Control, and Artificial Intelli-

gence. MIT Press, 1992.

210 BIBLIOGRAPHY

[46] E. L. Hong, R. Balakrishnan, Q. Dong, K. R. Christie, J. Park, G. Binkley,
M. C. Costanzo, S. S. Dwight, S. R. Engel, D. G. Fisk, J. E. Hirschman,
B. C. Hitz, C. J. Krieger, M. S. Livstone, S. R. Miyasato, R. S. Nash,
R. Oughtred, M. S. Skrzypek, S. Weng, E. D. Wong, K. K. Zhu, K. Dolin-
ski, D. Botstein, and J. M. Cherry. Gene Ontology Annotations at SGD:
New Data Sources and Annotation Methods. Nucleic Acids Research,
36(Database-Issue):577–581, 2008.

[47] Z. Huang. Clustering Large Data Sets with Mixed Numeric and Categorical
Values. In In The First Pacific-Asia Conference on Knowledge Discovery

and Data Mining, pages 21–34, 1997.

[48] Z. Huang. Extensions to the k-Means Algorithm for Clustering Large Data
Sets with Categorical Values. Data Min. Knowl. Discov., 2(3):283–304,
1998.

[49] Z. Huang and M. K. Ng. A Note on K-modes Clustering. J. Classification,
20(2):257–261, 2003.

[50] L. C. K. Hui. Color Set Size Problem with Application to String Matching.
In CPM, pages 230–243, 1992.

[51] D. H. Huson and D. Bryant. Application of Phylogenetic Networks in Evo-
lutionary Studies. Mol Biol Evol, 23(2):254–267, 2006.

[52] A. Inokuchi, T. Washio, and H. Motoda. Complete Mining of Frequent
Patterns from Graphs: Mining Graph Data. Machine Learning, 50(3):321–
354, 2003.

[53] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall,
1988.

[54] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The
KEGG Resource for Deciphering the Genome. Nucleic Acids Research,
32(Database-Issue):277–280, 2004.

BIBLIOGRAPHY 211

[55] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algo-
rithm for estimating subgraph concentrations and detecting network motifs.

[56] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction

to Cluster Analysis. John Wiley, 1990.

[57] M. Kitsuregawa, L. Harada, and M. Takagi. Join Strategies on KD-Tree
Indexed Relations. In ICDE, pages 85–93, 1989.

[58] D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky: An
Online Algorithm for Skyline Queries. In VLDB, pages 275–286, 2002.

[59] H.-P. Kriegel, K. M. Borgwardt, P. Kröger, A. Pryakhin, M. Schubert, and
A. Zimek. Future Trends in Data Mining. Data Min. Knowl. Discov.,
15(1):87–97, 2007.

[60] K. Krishna and M. N. Murty. Genetic K-means Algorithm. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part B, 29(3):433–439, 1999.

[61] M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In ICDM,
pages 313–320, 2001.

[62] M. Kuramochi and G. Karypis. Finding Frequent Patterns in a Large Sparse
Graph. In SDM, 2004.

[63] M. Kuramochi and G. Karypis. GREW-A Scalable Frequent Subgraph Dis-
covery Algorithm. In ICDM, pages 439–442, 2004.

[64] M. Lahiri and T. Y. Berger-Wolf. Structure Prediction in Temporal Net-
works using Frequent Subgraphs. In CIDM, pages 35–42, 2007.

[65] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over Time: Den-
sification Laws, Shrinking Diameters and Possible Explanations. In KDD,
pages 177–187, 2005.

212 BIBLIOGRAPHY

[66] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A Simple and
Efficient Algorithm for R-Tree Packing. In ICDE, pages 497–506, 1997.

[67] M. D. Lieberman, J. Sankaranarayanan, and H. Samet. A Fast Similarity
Join Algorithm Using Graphics Processing Units. In ICDE, pages 1111–
1120, 2008.

[68] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the Sky: Efficient Skyline
Computation over Sliding Windows. In ICDE, pages 502–513, 2005.

[69] W. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig. Molecular Dynamics
Simulations on Commodity GPUs with CUDA. In HiPC, pages 185–196,
2007.

[70] L. A. N. Lorena and J. C. Furtado. Constructive Genetic Algorithm for
Clustering Problems. Evolutionary Computation, 9(3):309–328, 2001.

[71] N. Ma, J. Guan, and Y. Zhao. Bringing PageRank to the Citation Analysis.
Inf. Process. Manage., 44(2):800–810, 2008.

[72] J. B. Macqueen. Some Methods of Classification and Analysis of Multi-
variate Observations. In Proceedings of the Fifth Berkeley Symposium on

Mathematical Statistics and Probability, pages 281–297, 1967.

[73] S. Manavski and G. Valle. CUDA Compatible GPU Cards as Efficient
Hardware Accelerators for Smith-Waterman Sequence Alignment. BMC

Bioinformatics, 9(S-2), 2008.

[74] U. Maulik and S. Bandyopadhyay. Genetic Algorithm-based Clustering
Technique. Pattern Recognition, 33(9):1455–1465, 2000.

[75] M. Meila. The Uniqueness of a Good Optimum for K-means. In ICML,
pages 625–632, 2006.

[76] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-

grams (3rd ed.). Springer, 1996.

BIBLIOGRAPHY 213

[77] X. V. Nguyen, J. Epps, and J. Bailey. Information Theoretic Measures for
Clusterings Comparison: Is a Correction for Chance Necessary? In ICML,
page 135, 2009.

[78] A. Oswald and B. Wackersreuther. Motif Discovery in Brain Networks
of Patients with Somatoform Pain Disorder. In DEXA Workshops, pages
328–332, 2009.

[79] S. K. Pal, D. Bhandari, and M. K. Kundu. Genetic Algorithms for Optimal
Image Enhancement. Pattern Recogn. Lett., 15(3):261–271, 1994.

[80] S. Pantazi, Y. Kagolovsky, and J. R. Moehr. Cluster Analysis of Wisconsin
Breast Cancer Dataset Using Self-Organizing Maps, 2002.

[81] D. Pelleg and A. W. Moore. X-means: Extending K-means with Efficient
Estimation of the Number of Clusters. In ICML, pages 727–734, 2000.

[82] F. Pernkopf and D. Bouchaffra. Genetic-based EM Algorithm for Learn-
ing Gaussian Mixture Models. IEEE Trans. Pattern Anal. Mach. Intell.,
27(8):1344–1348, 2005.

[83] G. Piatetsky-Shapiro, R. Grossman, C. Djeraba, R. Feldman, L. Getoor,
and M. J. Zaki. Is there a Grand Challenge or X-prize for Data Mining? In
KDD, pages 954–956, 2006.

[84] M. Remm, C. E. V. Storm, and E. L. L. Sonnhammer. Automatic Clustering
of Orthologs and In-paralogs from Pairwise Species Comparisons. J. Mol.

Biol., 314:1041–1052, Oct 2001.

[85] G. E. Sarty. Computing Brain Activity Maps from fMRI Time-Series Images.
Cambridge University Press, 2007.

[86] P. Scheunders. A Genetic c-Means Clustering Algorithm Applied to Color
Image Quantization. Pattern Recognition, 30(6):859–866, 1997.

214 BIBLIOGRAPHY

[87] S. A. A. Shalom, M. Dash, and M. Tue. Efficient K-Means Clustering
Using Accelerated Graphics Processors. In DaWaK, pages 166–175, 2008.

[88] S. A. A. Shalom, M. Dash, and M. Tue. An Approach for Fast Hierarchi-
cal Agglomerative Clustering Using Graphics Processors with CUDA. In
PAKDD (2), pages 35–42, 2010.

[89] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network Motifs in
the Transcriptional Regulation Network of Escherichia Coli. Nat Genet.,
31(1):64–68, May 2002.

[90] T. P. Speed. Review of ’Stochastic Complexity in Statistical Inquiry’ (Ris-
sanen, J.; 1989). IEEE Transactions on Information Theory, 37(6):1739–,
1991.

[91] S. Still and W. Bialek. How Many Clusters? An Information-theoretic
Perspective. Neural Computation, 16(12):2483–2506, 2004.

[92] A. Szalay and J. Gray. 2020 Computing: Science in an Exponential World.
Nature, 440:413–414, 2006.

[93] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient Progressive Skyline Compu-
tation. In VLDB, pages 301–310, 2001.

[94] A. Tasora, D. Negrut, and M. Anitescu. Large-scale Parallel Multi-body
Dynamics with Frictional Contact on the Graphical Processing Unit. Proc.

of Inst. Mech. Eng. Journal of Multi-body Dynamics, 222(4):315–326.

[95] N. Tishby, F. C. Pereira, and W. Bialek. The Information Bottleneck
Method. CoRR, physics/0004057, 2000.

[96] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard,
N. Delcroix, B. Mazoyer, and M. Joliot. Automated Anatomical Label-
ing of Activations in SPM using a Macroscopic Anatomical Parcellation of

BIBLIOGRAPHY 215

the MNI MRI Single-subject Brain. NeuroImage, 1(15):273–289, January
2002.

[97] N. Vasconcelos and A. Lippman. Learning Mixture Hierarchies. In NIPS,
pages 606–612, 1998.

[98] E. M. Voorhees. Implementing Agglomerative Hierarchic Clustering Algo-
rithms for Use in Document Retrieval. Inf. Process. Manage., 22(6):465–
476, 1986.

[99] B. Wackersreuther, A. Oswald, P. Wackersreuther, J. Shao, and K. M. Borg-
wardt. Graph Mining on Brain Co-Activation Networks. Database Tech-

nology for Life Sciences and Medicine, World Scientific, 2010.

[100] B. Wackersreuther, P. Wackersreuther, A. Oswald, C. Böhm, and K. M.
Borgwardt. Frequent Subgraph Discovery in Dynamic Networks. In MLG,
2010.

[101] S. Wasserman and K. Faust. Social Network Analysis. Methods and Appli-

cations. Cambridge University Press, 1994.

[102] S. Wernicke. Efficient Detection of Network Motifs. IEEE/ACM Trans.

Comput. Biology Bioinform., 3(4):347–359, 2006.

[103] S. Wessely, C. Nimnuan, and M. Sharpe. Functional Somatic Syndromes:
One or Many? Lancet, 354:936–939, September 1999.

[104] L. D. Whitley, T. Starkweather, and C. Bogart. Genetic Algorithms and
Neural Networks: Optimizing Connections and Connectivity. Parallel

Computing, 14(3):347–361, 1990.

[105] S. Wuchty, Z. N. Oltvai, and A. L. Barabasi. Evolutionary Conservation of
Motif Constituents in the Yeast Protein Interaction Network. Nat Genet.,
35(2):176–179, Oct 2003.

216 BIBLIOGRAPHY

[106] I. Xenarios, D. W. Rice, L. Salwı́nski, M. K. Baron, E. M. Marcotte, and
D. Eisenberg. DIP: the Database of Interacting Proteins. Nucleic Acids

Research, 28(1):289–291, 2000.

[107] X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining. In
ICDM, pages 721–724, 2002.

[108] Q. Yang and X. Wu. 10 Challenging Problems in Data Mining Research.
International Journal of Information Technology and Decision Making,
5(4):597–604, 2006.

[109] X. Zhu, R. Jin, Y. Breitbart, and G. Agrawal. MMIS07, 08: Mining
Multiple Information Sources Workshop Report. SIGKDD Explorations,
10(2):61–65, 2008.

