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1 Summary 

Dendritic cells (DCs) play a key role in the initiation of adaptive immune responses and the 

maintenance of self-tolerance. Due to their therapeutic potential, understanding the mecha-

nisms that guide DC differentiation and effector functions is important. DC differentiation and 

activation depends on transcription factor control of stage-specific gene expression. The re-

cent identification of posttranscriptional control of gene expression by microRNAs (miRNAs) 

has added another layer of gene regulation that might be important in DC biology. 

We analyzed the miRNA expression profiles of different DC subsets and identified several 

miRNAs differentially expressed between plasmacytoid DCs (pDCs) and conventional DCs 

(cDCs). In terms of miRNA expression, pDCs were more closely related to CD4
+
 T cells than 

to cDCs. We also observed that pDCs and cDCs preferentially expressed miRNAs associated 

with lymphoid or myeloid lineage differentiation, respectively. By knocking down miR-221 

or miR-222 during in vitro DC differentiation, we obtained a higher pDC frequency. While 

p27
kip1

 and c-kit are confirmed miR-221/222 targets, we additionally identified the pDC cell 

fate regulator E2-2 as a potential miR-221/222 target. Thus, our analysis points to a role for 

miRNAs in directing and stabilizing pDC and cDC cell fate decisions.  

To assess the general influence of miRNAs on DCs, we generated mice with a DC-specific 

conditional knockout of the key miRNA-producing enzyme Dicer. Dicer-deficient mice dis-

played no alterations in short-lived spleen and lymph node DCs. However, long-lived epider-

mal DCs, known as Langerhans cells (LCs), showed increased turnover and apoptosis rates, 

leading to their progressive loss. Upon stimulation, Dicer-deficient LCs were able to properly 

upregulate the surface molecules MHC class I and CCR7, but not MHC class II, CD40 and 

CD86. In consequence, they were incapable of stimulating CD4
+
 T cell proliferation.  

The work presented in this thesis indicates a role for miRNAs in DC regulation not covered 

by transcription factors. Having demonstrated a role for miRNAs in DC lineage fate deci-

sions, as well as in LC homeostasis, maturation and function, we conclude that miRNAs regu-

late various aspects of DC biology and thereby contribute to the control of adaptive immune 

responses.
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2 Zusammenfassung 

Dendritische Zellen (dendritic cells, DCs) haben eine zentrale Funktion sowohl bei der 

Initiierung von adaptiven Immunantworten als auch bei der Aufrechterhaltung der Selbst-

Toleranz. Aufgrund ihres therapeutischen Potentials ist es wichtig die Mechanismen zu 

verstehen, die die Differenzierung und Effektorfunktionen von DCs steuern. Die DC-

Differenzierung und -Aktivierung ist von Transkriptionsfaktoren abhängig, die die 

phasenspezifische Genexpression kontrollieren. Die kürzlich entdeckte posttranskriptionelle 

Kontrolle der Genexpression durch microRNAs (miRNAs) stellt eine weitere Ebene der 

Genregulation dar, die in der DC-Biologie von Bedeutung sein könnte. 

Im Rahmen dieser Arbeit wurden miRNA-Expressionsmuster von verschiedenen DC-

Subpopulationen analysiert und differentiell exprimierte miRNAs in plasmazytoiden DCs 

(pDCs) und konventionellen DCs (cDCs) identifiziert. pDCs und cDCs exprimierten 

vorrangig miRNAs, die mit lymphoider bzw. myeloider Zelldifferenzierung assoziiert 

werden. Die Inhibierung von miR-221 und miR-222 während der in vitro DC-Differenzierung 

resultierte in einer erhöhten pDC-Frequenz. Dafür verantwortlich sein könnte neben den 

nachgewiesenen miR-221/222-Zielen p27
kip1

 und c-kit auch der von uns als potentielles Ziel 

identifizierte Regulator E2-2, der für die pDC-Differenzierung essentiell ist. Somit weist 

unsere Analyse auf eine Funktion von miRNAs bei der Determinierung und Stabilisierung 

von pDC- und cDC-Zellidentitäten hin. 

Um den generellen Einfluss von miRNAs auf DCs zu untersuchen, wurden Mäuse mit einem 

DC-spezifischen konditionellen Knockout des für die miRNA-Generierung wichtigen Enzyms 

Dicer erzeugt. Dicer-defiziente Mäuse wiesen keine Veränderungen der kurzlebigen Milz- 

und Lymphknoten-DCs auf. Die langlebigen epidermalen DCs, bekannt als Langerhans Zellen 

(LCs), zeigten jedoch eine erhöhte Erneuerungs- und Apoptose-Rate, was zu ihrem 

progressivem Verlust führte. Zudem konnten stimulierte Dicer-defiziente LCs zwar die 

Oberflächenmoleküle MHC Klasse I und CCR7 korrekt hochregulieren, nicht jedoch MHC 

Klasse II, CD40 und CD86. Infolgedessen zeigten sich LCs ineffizient in der Stimulation von 

CD4
+
 T Zellen. 

Die hier vorgestellten Ergebnisse weisen auf eine Rolle von miRNAs in der DC-Regulation 

hin, die nicht von Transkriptionsfaktoren gedeckt wird. Die gezeigte Bedeutung von miRNAs 

in der Determinierung der DC-Zellidentität, sowie in der Homöostase, Reifung und Funktion 



ZUSAMMENFASSUNG 

3 

von LCs, lässt den Schluss zu, dass miRNAs diverse Aspekte der DC-Biologie regulieren und 

dadurch zur Kontrolle von adaptiven Immunantworten beitragen. 
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3 Aims of the thesis 

As Dendritic cells (DCs) are key modulators of adaptive immune responses, tight regulation 

of their development and function is important. The principle aim of this work was to eluci-

date whether and how miRNAs contribute to DC regulation. 

The differentiation of functionally different DC subsets is known to depend on transcription 

factors. We sought to assess whether miRNAs also contribute to DC differentiation by analyz-

ing miRNA expression patterns in DC subsets. Following the identification of differentially 

expressed miRNAs, we aimed to manipulate the expression of these miRNAs and analyze the 

cellular outcomes with regard to potential miRNA target genes. 

In parallel, we wanted to analyze the general impact of miRNAs on DC development and 

function. To that end, we designed a transgenic mouse model with a DC-specific deletion of 

the key miRNA-generating enzyme Dicer. Using this model, in which a lack of functional 

miRNAs in DCs was expected, we aimed to analyze the influence of miRNAs on DC homeo-

stasis, maturation and function. 
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4 Introduction 

4.1 Dendritic cells 

Both the innate and adaptive immune systems are vital for maintaining health. Dendritic cells 

(DCs) are bone marrow (BM)-derived cells that hold a unique function at the interface of both 

arms of immunity. Widely distributed in the body, they are specialized in the recognition and 

uptake of pathogens, the activation of natural killer (NK) cells, the processing and presenta-

tion of antigens and consequently in the induction of adaptive immune responses via B and T 

cells (reviewed in Steinman and Idoyaga, 2010).  

A general model of DC function is the ‘Langerhans cell paradigm’, named after a DC subset 

found in the skin (reviewed in Wilson and Villadangos, 2004). According to this model, DCs 

reside in an immature state in peripheral tissues, where they scan their environment for ‘dan-

ger signals’. In this resting state they express various receptors for pathogen recognition. Up-

on pathogen encounter, signaling through these receptors activates the DCs, initiating their 

migration to the draining lymph nodes (LNs). During this process DCs develop a mature phe-

notype, which allows them to present antigens captured in the periphery and to stimulate pro-

liferation of antigen-specific T cells.  

Alongside the induction of adaptive immune responses, a second major DC function is the 

prevention of autoimmunity. Immature DCs loaded with self-antigens in the absence of acti-

vating stimuli induce apoptosis or anergy in autoreactive T cells (reviewed in Reis e Sousa, 

2006). Mature DCs can also contribute to the establishment of self-tolerance by promoting the 

expansion of regulatory T cells (Oldenhove et al., 2003). Thus, depending on the signals from 

their microenvironment, DCs can either elicit immunogenic or tolerogenic responses (re-

viewed in Villadangos and Schnorrer, 2007). 

Since their first description in 1973 by Steinman and Cohn (Steinman and Cohn, 1973), 

knowledge about DC biology has increased considerably, as methods became available to 

generate large numbers of DCs in vitro (Inaba et al., 1992; Maraskovsky et al., 1996). It has 

become clear that the archetypical DC life cycle described in the Langerhans cell paradigm 

does not adequately depict the complex real situation (reviewed in Villadangos and Heath, 

2005). Studies in the recent decades have revealed that DCs are a heterogenous group of cells 
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with differences in anatomical location, life cycle, surface markers and function (reviewed in 

Heath and Carbone, 2009; Coquerelle and Moser, 2010; Guilliams et al., 2010). 

4.1.1 DC subsets 

Presumably due to the existence of differing pathogens, routes of infection and immune es-

cape mechanisms, multiple subsets of DCs have evolved. However, DCs from all subsets 

share some common features, e.g., they all constitutively express the integrin CD11c. Moreo-

ver, upon maturation, they all upregulate major histocompatibility complex (MHC) II mole-

cules on their surfaces and exhibit a characteristic dendritic morphology (reviewed in Naik, 

2008; Steinman and Idoyaga, 2010). 

In the past, various DC classification systems have been employed, for example immature 

versus mature DCs, resident versus migratory DCs, or lymphoid tissue versus non-lymphoid 

tissue DCs (reviewed in Steinman and Idoyaga, 2010). More recently, DCs have been rather 

subdivided into two major categories based on their function: classical (also known as con-

ventional) DCs (cDCs), a category which itself comprises many subsets, and plasmacytoid 

DCs (pDCs). Both will be described in more detail in sections 4.1.1.1 and 4.1.1.3, respective-

ly. New studies have revealed that even in the skin several specialized DC subsets exist 

(Bursch et al., 2007; Henri et al., 2009). However, these are likely to be correlates of DC sub-

sets in other tissues (Edelson et al., 2010). In consequence, Guilliams and colleagues have 

proposed a simplified DC classification system, based on functional similarities of DC subsets 

in lymphoid and non-lymphoid tissues. This model suggests that there are at least five types 

of DCs: two distinct types of cDCs, Langerhans cells (LCs), pDCs and monocyte-derived 

inflammatory DCs (Fig. 1) (reviewed in Guilliams et al., 2010). For reasons of clarity, this 

work will describe only mouse but not human DC subsets in the following sections. 
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Figure 1: Phenotype and function of mouse DC subsets.  

Mouse DCs can be grouped into five broad subsets irrespective of their primary anatomical location. The 

phenotype used to identify these subsets is specified and their proposed functional specialization indicat-

ed. Abbr.: ROI, radical oxygen intermediates; NOI, nitric oxygen intermediates. Modified from Guilliams 

et al., 2010. 

4.1.1.1 CD11b
+
-like and CD8α

+
-like cDCs 

In the spleen, cDCs can be subdivided on the basis of CD8α
 
expression into CD8α

-
CD11b

+

and CD8α
+
 CD11b

-
 DCs. The CD8α

- 
DCs are specialized in presentation of exogenous anti-

gen via MHC II, whereas CD8α
+
 DCs are specialized in presentation of endogenous self or 

viral antigens via MHC I (reviewed in Merad and Manz, 2009; Pooley et al., 2001). Remarka-

bly, CD8α
+
 DCs are also able to present exogenous antigen via MHC I, a process known as 

‘cross-presentation’ (den Haan et al., 2000). In the LNs, in addition to these two splenic sub-

sets, tissue-derived migratory DCs are also found (reviewed in Randolph et al., 2008). Epi-

dermal LCs and dermal DCs (dDCs), for example, continuously enter the skin-draining LNs. 

Two types of migratory DCs have been linked to LN-resident DCs based on developmental 

and functional studies: langerin
-
CD11b

+
 dDCs seem to be related to CD8α

-
CD11b

+
DCs (del 

Rio et al., 2007), whereas langerin
+
CD103

+
 dDCs share some characteristics with CD8α

+
 

DCs, particularly their cross-presentation ability (Edelson et al., 2010).  

Thus, several cDC subsets appear highly related and therefore several authors have suggested 

to regroup them into the major CD11b
+
-like and CD8α

+
-like cDC subsets, whose main func-

tion is the priming of antigen-specific helper CD4
+
 T cells and cytotoxic CD8

+
 T cells, respec-

tively (Fig. 1) (reviewed in Guilliams et al., 2010; Heath and Carbone, 2009).  
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4.1.1.2 Langerhans cells 

DCs were initially discovered in 1868 by Paul Langerhans, who described dendritical cells in 

the human skin, which subsequently were named after him. However, he assumed that they 

were nerve cells (Langerhans, 1868). Over 100 years later, it was recognized that Langerhans 

cells are leukocytes and represent the DC population of the epidermis (Schuler and Steinman, 

1985). LCs form a dense network in the skin and also occur in various mucosal tissues, where 

they build a first immunological barrier against pathogens that breach body surfaces (re-

viewed in Iwasaki, 2007). Their characteristic feature are ‘tennis racket’-shaped Birbeck 

granules, which can be visualized by electron microscopy. These unique granules are induced 

by langerin, a C-type lectin receptor that is expressed at high levels in LCs (Kissenpfennig et 

al., 2005). The exact role of Birbeck granules is not known, but their component langerin pre-

sumably functions as an antiviral receptor (reviewed in van der Vlist and Geijtenbeek, 2010), 

for example for HIV-1 (de Witte et al., 2007). In addition, binding to a variety of pathogenic 

cell surface carbohydrates has been observed (Feinberg et al., 2011). Expression of langerin is 

not unique to LCs, as several groups have shown that a langerin-positive DC population also 

exists in the dermis (Bursch et al., 2007; Ginhoux et al., 2007; Poulin et al., 2007). Additional-

ly, some LN-resident CD8α
+
 DCs express langerin (Douillard et al., 2005; Flacher et al., 

2008).  

LCs differ from other DCs in multiple respects: (i) LC development is independent of FMS-

like tyrosine kinase 3 ligand (Flt3L) (section 4.1.2) (ii) 10 days after birth the epidermal LC 

network is established due to an ‘explosive’ proliferation of LC precursors during the first 

week (Chorro et al., 2009) (iii) LCs are maintained by self-renewal or by local precursors in 

the absence of inflammation (Merad et al., 2002) (iv) LCs are replaced by circulating mono-

cytes under inflammatory conditions (Ginhoux et al., 2006) (v) LC turnover is slow, with an 

estimated half-life of several weeks (Vishwanath et al., 2006) and (vi) LCs are radioresistant 

(Collin et al., 2006). 

Recent studies using LC-deficient mice challenged the classical LC paradigm (reviewed in 

Kaplan et al., 2008). There have been conflicting results concerning the precise function of 

LCs, as many earlier studies on skin DCs did not distinguish between the langerin
+
 LCs and 

the in 2007 discovered langerin
+
 dDCs (Bursch et al., 2007). Novel in vivo findings suggest 

that LCs cannot cross-present antigen, whereas langerin
+
 dDCs can (Bedoui et al., 2009). By 

measuring contact hypersensitivity (CHS) responses to topically applied haptens, it now has 
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become clear that LCs can actively suppress immune responses through the production of IL-

10 (Igyarto et al., 2009). Therefore, LCs appear to have an immunoregulatory role and might 

function to suppress responses against commensal microorganisms (reviewed in Kaplan, 

2010). 

4.1.1.3 pDCs 

While pDCs and cDCs share common progenitors (section 4.1.2), pDCs possess distinct mo-

lecular features resembling those of lymphocytes. pDCs are also called natural interferon-

producing cells, as they produce massive amounts of type I interferons (IFN-α and -β) in re-

sponse to viruses (reviewed in Liu, 2005). As a consequence, natural killer (NK) cells are ac-

tivated to destroy virus-infected cells (Krug et al., 2004). Thus, pDCs are functionally special-

ized in antiviral defense. Pathogen-detection is mediated by pDC expression of the endosomal 

nucleic acid-sensing Toll-like receptors (TLRs) TLR7 and TLR9, which bind to single-

stranded RNA or unmethylated CpG-containing DNA, respectively (reviewed in Colonna et 

al., 2004). TLR signaling is required to induce pDC activation and upregulation of MHC II 

and costimulatory molecules on the pDC surface, which allows them to efficiently present and 

cross-present antigen (reviewed in Villadangos and Young, 2008). In contrast to cDCs, pDCs 

continue to synthesize peptide-MHC II complexes after activation, and thus the repertoire of 

viral antigens presented by cDCs and pDCs is thought to be largely non-overlapping (Young 

et al., 2008). While pDCs exhibit a secretory lymphocyte-like morphology in the steady-state, 

they gain a more dendritic cell-like shape with cytoplasmic protrusions upon maturation (re-

viewed in Soumelis and Liu, 2006). Besides their morphology, pDCs share some transcription 

factors with lymphocytes, such as E family proteins, which are important in lymphopoiesis. 

The continuous expression of the E protein E2-2 in pDCs has recently been shown to be criti-

cal for the maintenance of the pDC lineage fate, as deletion of E2-2 in mature pDCs causes 

spontaneous differentiation into cDC-like cells (Cisse et al., 2008; Ghosh et al., 2010). Thus, 

the pDC lineage exhibits some plasticity, and the relationship of pDCs to cDCs is controver-

sial (reviewed in Reizis, 2010).  

4.1.1.4 Inflammatory DCs 

Monocytes are the precursors of macrophages as well as of different subsets of DCs. They are 

rapidly recruited to sites of infection in response to inflammation. In the presence of granulo-

cyte macrophage colony-stimulating factor (GM-CSF), monocytes can differentiate into 
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CD11c
+
MHC II

+
 DCs (Randolph et al., 1999), that fulfill a crucial role in T cell priming (re-

viewed in Dominguez and Ardavin, 2010). Similarly, TiP (TNF/iNOS (inducible nitric oxide 

synthase)-producing) DCs are generated from monocytes upon infection with certain patho-

gens, e.g., Listeria monocytogenes (Serbina et al., 2003). Due to their capacity to produce 

high amounts of microbicidal TNF and iNOS, TiP DCs play a role in the clearance of bacteri-

al infections (reviewed in Dominguez and Ardavin, 2010). Thus, depending on the kind of 

infection or inflammation, monocytes can differentiate into distinct monocyte-derived in-

flammatory DCs (reviewed in Shortman and Naik, 2006). This plasticity prompted Hume to 

doubt whether DCs and macrophages are actually different cell types (Hume, 2008). 

4.1.2 DC development 

DC lineage and terminal differentiation are controlled by the interplay of specific cytokines 

and transcription factors. Moreover, DC differentiation is critically influenced by miRNAs 

(microRNAs) (Publication I/section 7.1). DCs as well as all other leukocytes develop from 

BM-derived hematopoietic stem cells (Fig. 2). Lymphoid and myeloid lineages diverge early 

in hematopoiesis. While a common lymphoid progenitor (CLP) can differentiate into T, B and 

NK cells, a common myeloid progenitor (CMP) gives rise to monocytes, macrophages, granu-

locytes, megakaryocytes, erythrocytes and DCs (Akashi et al., 2000). Via CMP-derived mac-

rophage-DC progenitors (MDPs), common DC progenitors (CDPs) can develop in a Flt3-

dependent manner. These CDPs are of the phenotype Lin
-
CD115

+
Flt3

+
ckit

lo
 and can produce 

cDCs as well as pDCs. Downstream of CDPs are the migratory pre-DCs (Lin
-
CD11c

+
MHC II

-

SIRPα
lo

Flt3
+
), which leave the BM and after a short period of circulation in the blood give 

rise to lymphoid and non-lymphoid tissue DCs (reviewed in Liu and Nussenzweig, 2010). 

LCs are an exception to this model, as they are maintained via self-renewal and/or specialized 

precursor cells in the skin (section 4.1.1.2). 
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Figure 2: DC origin and differentiation.  

Abbr.: cDC, conventional DC; CDP, common DC progenitor; Flt3L, FMS-like tyrosine kinase 3 ligand; 

M-CSF, macrophage colony-stimulating factor; MDP, macrophage-DC progenitor; Mono, monocyte; 

MP, myeloid progenitor; pDC, plasmacytoid DC; TiP-DC, TNF/iNOS-producing DC. Modified from Liu 

and Nussenzweig, 2010. 

4.1.2.1 Cytokines 

There are four major cytokines critically involved in DC development: GM-CSF, M-CSF, 

Flt3L and TGF-β1 (reviewed in Merad and Manz, 2009). In vivo DC homeostasis is mainly 

dependent on the concerted action of GM-CSF and Flt3L. While in the absence of GM-CSF 

cDC numbers are reduced, absence of Flt3L affects both cDC and pDC numbers, in accord-

ance with the respective cytokine receptor expression profiles (Kingston et al., 2009). Inverse-

ly, injection of Flt3L leads to expansion of both pDCs and cDCs (Maraskovsky et al., 1996). 

Macrophage colony-stimulating factor (M-CSF), which is a key cytokine for macrophage 

development (Dai et al., 2002), also has been found to increase pDC and cDC numbers 

(Fancke et al., 2008). In contrast to most DC subsets, LCs develop independently of Flt3L 

(section 4.1.1.2). Instead, LC development requires M-CSF and autocrine transforming 

growth factor-β1 (TGF-β1) (Kaplan et al., 2007). 

The differential effects of various cytokines have also been demonstrated in in vitro BM cul-

tures, and can be exploited to generate different kinds of DCs in large amounts. Flt3L drives 

the differentiation of cultured BM progenitor cells into pDCs and cDCs, while GM-CSF-

supplemented cultures produce DCs resembling monocyte-derived inflammatory DCs (Gilliet 

et al., 2002; Xu et al., 2007). 
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4.1.2.2 Transcription factors 

Binding of cytokines to their cognate cellular receptors results in downstream signaling and 

the activation of transcription factors. On the one hand, global DC development requires tran-

scription factors that are expressed at early stages of hematopoiesis, such as PU.1, Gfi1 and 

Ikaros (reviewed in Watowich and Liu, 2010; Wu and Liu, 2007). In deletion models, their 

absence impaired the development of cDCs as well as pDCs. On the other hand, there are 

transcription factors whose absence affects particular DC subsets only and therefore are 

thought to control the branching of DC precursors into distinct populations. Batf3 (basic leu-

cine zipper transcription factor, ATF-like 3), for example, belongs to the latter category, as 

Batf3
-/-

 mice specifically lack CD8α
+
 DCs in spleen and LNs (Hildner et al., 2008), as well as 

dermal CD103
+
 DCs (Edelson et al., 2010). Another example is E2-2, whose expression is 

restricted to pDCs, and which is important for pDC subset differentiation. E2-2 directly in-

duces the expression of pDC-specific genes, such as interferon regulatory factor 7 (IRF7), 

which is the master regulator of IFN expression, and TLR7 and TLR9 (Cisse et al., 2008). In 

addition to reinforcing lineage commitment, E2-2 inhibits critical determinants of the alterna-

tive cDC fate, such as Id2 (inhibitor of DNA binding 2). Inversely, Id2 expression in cDCs 

inhibits E2-2 function, suggesting that these two factors play antagonistic roles in cell fate 

decisions (reviewed in Reizis et al., 2010). Table 1 summarizes the effects of several tran-

scription factors in DC development. 

Table 1: Transcription factor effects on in vivo DC homeostasis. From Merad and Manz, 2009. 
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4.1.3 DC activation and maturation 

DCs in non-lymphoid tissues are in an immature state, in which they sample their environ-

ment via phagocytosis, macropinocytosis and receptor-mediated endocytosis. They are 

equipped with a variety of pattern-recognition receptors (PRRs), such as C-type lectin recep-

tors (e.g., langerin and DC-SIGN) and TLRs. TLRs are a major group of receptors recognizing 

pathogen-associated molecular patterns (PAMPs), which comprise lipids, lipoproteins, pro-

teins and nucleic acids, derived from various pathogens including bacteria, viruses, parasites 

and fungi (reviewed in Kawai and Akira, 2010). In response to receptor binding, DCs upregu-

late CCR7 and migrate to the draining LNs, which brings them into contact with T cells. Dur-

ing their migration, DCs undergo a process termed maturation, a key feature of DC biology, 

which is induced by the activation of transcription factors such as nuclear factor-κB (NF-κB) 

or activating protein-1 (AP-1) (reviewed in Kawai and Akira, 2006). Maturation involves the 

upregulation of several surface markers, most importantly MHC II and the costimulatory 

molecules CD80, CD86 and CD40 (reviewed in Reis e Sousa, 2006). Stabilization of peptide-

loaded MHC II molecules on the surface of activated DCs is responsible for an enhanced an-

tigen presentation capacity (reviewed in van Niel et al., 2008). DC activation also leads to 

increased survival and thus to prolonged antigen presentation in the LNs through a modula-

tion of anti-apoptotic Bcl-2/Bcl-xL and pro-apoptotic Bax/Bak molecules (Chen et al., 

2007a). Moreover, depending on the microorganism that has led to activation, DCs start to 

express a specific cytokine profile, which in turn polarizes naïve T cells towards T helper (TH) 

1/TH2/ TH17 or regulatory T cell (Treg) differentiation (reviewed in O'Shea and Paul, 2010). 

4.1.4 Antigen presentation and T cell activation  

DCs continually present antigen. Antigen presentation via MHC I or II requires the degrada-

tion of proteins into peptides. Peptides derived from exogenous proteins are typically loaded 

onto MHC II molecules and presented to helper CD4
+
 T cells, while endogenous peptides are 

normally presented via the MHC I pathway to cytotoxic CD8
+
 T cells. A unique feature of 

CD8α
+
-like DCs is the delivery of exogenous antigens to the MHC I pathway, known as 

cross-presentation (reviewed in Villadangos and Schnorrer, 2007). This mechanism is thought 

to be important in immunity to viruses and other intracellular pathogens. However, cross-

presentation in the absence of inflammatory stimuli leads to peripheral tolerance, a mecha-

nism known as ‘cross-tolerance’, which is important to prevent autoimmune disease 

(Luckashenak et al., 2008). The DC maturation status (‘mature’ is defined here as ‘expressing 
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high levels of MHCII and costimulatory molecules’) can determine whether DCs have an 

immunogenic or tolerogenic function. Classically, mature DCs were considered to be immu-

nogenic, whereas immature DCs were thought to have a tolerogenic function. However, it has 

become clear that tolerogenic DCs can also be phenotypically mature. The varying DC effec-

tor functions can be explained by their delivery of a ‘signal 3’ that determines T cell fates 

(reviewed in Reis e Sousa, 2006). Thus, besides ‘signal 1’ (engagement of the T cell receptor 

(TCR) with an appropriate MHC-peptide complex) and ‘signal 2’ (costimulatory signal deliv-

ered by binding of CD80 or CD86 to CD28), a third polarizing signal is necessary to direct T 

cell differentiation into the different subsets of effector T cells. For example, ‘signal 3’ might 

be interleukin (IL)-12, which promotes TH1 or cytotoxic T cell (CTL) differentiation, or a 

Notch ligand to drive TH2 differentiation. The concurrent presence of IL-6 and TGF-β1 leads 

to the differentiation of TH17 cells. However, TGF-β1 only induces Treg differentiation (re-

viewed in Coquerelle and Moser, 2010). An overview of different DC effector functions is 

given in Fig. 3. 

 

Figure 3: DC effector functions.  

Immature DCs can differentiate into multiple types of DCs with different effector functions. Depending 

on the signals that are delivered from the DCs to the naïve T cells, T cells are polarized towards a distinct 

T cell fate, such as TH1, TH2, TH17, Treg or CTL. Abbr.: TH, T helper cell, Treg, regulatory T cell; CTL, cy-

totoxic T lymphocyte. From Reis e Sousa, 2006. 
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4.1.5 DCs in clinical therapy 

In clinical settings, DCs might represent a powerful tool to strengthen the body´s defense 

mechanisms against infectious diseases and tumors, but also to suppress unwanted autoim-

mune responses or allergies. A central issue in immune modulation is the identification of the 

pathways and factors that induce DC-mediated immunity versus tolerance, i.e. the factors 

guiding TH and Treg cell differentiation. For this purpose, better descriptions of the functional 

properties of different DC subsets are desirable. A major obstacle so far is the transfer of find-

ings made in mouse models to the human system, as the present knowledge about human DCs 

is mostly derived from in vitro differentiated blood monocytes. However, it has been shown 

that certain gene signatures are evolutionarily conserved between corresponding human and 

mouse DC subsets (Robbins et al., 2008). For example, the transcription factor E2-2 plays a 

key role in both mouse and human pDC differentiation. A significant similarity in gene ex-

pression has also been revealed between mouse CD8α
+
 DCs and human BDCA3

+
 DCs, sug-

gesting that human BDCA3
+
 DCs have a similar cross-presentation function as mouse CD8α

+
 

DCs (Crozat et al., 2010). Indeed, it has been shown that BDCA3
+
 DCs induce CTL responses 

and therefore are currently considered to be the most relevant target for DC-based therapy 

(Jongbloed et al., 2010). To date, only limited success has been achieved in cancer patients 

undergoing DC-based immunotherapy, which might be due to the patients’ advanced disease 

states as well as the conditioning regimens in previous cancer therapies (reviewed in Tacken 

et al., 2007). An additional obstacle that has to be overcome is the immunosuppressive envi-

ronment that is often built by established tumors, making efficient T cell activation by DCs 

difficult (reviewed in Melief, 2008). There are two major approaches to use DCs as adjuvants 

in vaccination strategies: ‘DC vaccination’ and ‘in vivo DC targeting’. Both approaches are 

safe, well tolerated and present very few side effects (reviewed in Tacken et al., 2007). 

4.1.5.1 DC vaccination 

In DC vaccination strategies, ex vivo antigen-loaded DCs are adoptively transferred to patients 

with the aim of inducing immunity (reviewed in Schuler, 2010). DCs are generated from 

monocytes or CD34
+
 precursors isolated from patient blood, and mature DCs are obtained by 

culturing the DCs with a cytokine mixture. Antigens that are loaded may be peptides or de-

rived from tumor cell lysates. Another possibility is to transfect the cells with messenger RNA 

(mRNA) encoding for the desired peptide. The major advantage of the DC vaccination meth-

od, as compared to in vivo DC targeting (section 4.1.5.2), is that the DC type and maturation 
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status can be controlled in order to ensure optimal immunogenicity. However, a tailor-made 

procedure for each individual is required, making it an expensive approach. Mostly, these 

immunization strategies have yielded very occasional success, e.g. in the treatment of mela-

noma (Palucka et al., 2006). Only recently, for the first time, a phase III clinical trial has pro-

vided evidence that DC vaccination has a real benefit to cancer patients. Improved overall 

survival has been observed in men with advanced prostate cancer, who were treated with au-

tologous DCs that had been cultured with a fusion protein composed of GM-CSF and a tu-

mor-specific antigen (Higano et al., 2009). DC vaccines have also yielded promising results in 

HIV therapy (Lu et al., 2004). After vaccination with HIV-1-pulsed autologous DCs, HIV-

specific CD4
+
 and CD8

+
 T cells were induced and viral load was significantly decreased for at 

least 1 year.  

4.1.5.2 In vivo DC targeting 

Loading of DCs with antigens in vivo is another promising therapeutic approach (reviewed in 

Tacken et al., 2007). In contrast to ex vivo loading, large-scale production of vaccines is pos-

sible due to the MHC haplotype independent strategy, making it less cost-intensive and avail-

able to a large number of patients. Moreover, it provides the opportunity to deliver antigens 

within the natural environment to endogenous DC subsets. Distinct subsets can be targeted by 

the choice of specific antibodies directed against defined receptors on the DC surface. Injec-

tion of antibody-antigen conjugates can induce tolerance in mouse models, therefore a suita-

ble maturation stimulus needs to be co-delivered to induce immunity (reviewed in Caminschi 

et al., 2009). According to Aarntzen et al., approaches targeting C-type lectin receptors 

(CLRs) are most likely to enter the clinic in the near future (Aarntzen et al., 2008). The man-

nose-receptor, CD205 (also known as DEC205) and DC-SIGN, which all are CLRs implicat-

ed in receptor-mediated endocytosis, are a major focus of targeting studies. However, these 

receptors differ in their expression patterns, their signaling pathways and the requirement for 

adjuvants to induce effective responses (reviewed in Tacken et al., 2007). So far, there is evi-

dence that anti-CD205 fusion antibodies are superior in eliciting cross-presentation and thus 

CTL responses in humans, as compared to anti-mannose receptor or anti-DC-SIGN fusion 

antibodies (Bozzacco et al., 2007). However, novel promising antibodies have been generated 

that more selectively target mouse CD8α
+
 DCs and potentially the human equivalent. Anti-

langerin and anti-Clec9A (also known as DNGR-1) have been recently shown to induce CD8
+ 

T cell responses in vitro comparable to anti-CD205 (Idoyaga et al., 2011). Furthermore, deliv-



INTRODUCTION 

17 

ery of antigens to Clec9A induced enhanced antibody responses, as well as enhanced T cell 

proliferative responses, even in the absence of additional adjuvants (Caminschi et al., 2008). 

Targeting of Clec9A, together with an adjuvant, has successfully cured mice of a transplanta-

ble tumor (Sancho et al., 2008). These results indicate that the choice of the target receptor is 

critical due to its influence on the induction of adaptive responses. 

4.1.5.3 Novel strategies in DC-based tumortherapy 

Although some promising results have been achieved with DC-based immunotherapy espe-

cially in mouse models, so far this method cannot cure established cancer in humans. Howev-

er, in concerted action with the beneficial effects of existing chemotherapy on DCs (e.g., en-

hanced DC activation, cross-presentation of tumor-associated antigens from apoptotic tumor 

cells), novel DC-based therapies provide attractive perspectives (reviewed in Melief, 2008). 

Moreover, functional conditioning of DCs may lead to the generation of more successful DC 

vaccines. 

Attempts to optimize DC vaccines are currently concentrated on the enhancement of DC im-

munogenicity. A mature DC phenotype with high expression levels of costimulatory mole-

cules, moreover the production of IL-12 but no production of immunosuppressive cytokines 

such as IL-10, is desirable. To this end, DCs transfected with mRNAs coding for advanta-

geous molecules such as CD70, CD40L or a constantly active TLR4 have been tested 

(Bonehill et al., 2009). However, with regard to the immunosuppressive tumor environment, 

DC vaccination efficacy may be more effectively enhanced by targeting the negative arm of 

DC immune regulation. Therefore, the knockdown of the immunosuppressive cytokines IL-10 

and TGF-β1 or inhibitory molecules such as SOCS1 (suppressor of cytokine signaling 1) by 

small interfering RNAs (siRNAs) appears to be a promising strategy (Huang et al., 2011). 

The development of novel strategies to improve DC immunogenicity may also benefit from 

increasing knowledge of the role of microRNAs (miRNAs) in immune regulation. A detailed 

description of miRNA biology and function follows in sections 4.2 and 4.3. Holmstrøm et al. 

have suggested that miRNAs can be used as biomarkers to distinguish between immature and 

mature DCs, similar to costimulatory molecules. Levels of selected miRNAs in DCs might 

even correlate with DC immunogenicity and therefore allow to assess the quality of DC vac-

cines (Holmstrøm et al., 2010). Moreover, as miRNAs are involved in regulating DC matura-

tion and function (Publication II and Ceppi et al., 2009; Dunand-Sauthier et al., 2011; Jurkin 
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et al., 2010; Lu et al., 2011; Rodriguez et al., 2007), miRNAs possibly represent targets that 

may be exploited in DC vaccination strategies.  

4.2 miRNAs 

miRNAs are a class of endogenous small non-coding RNAs that function by regulating gene 

expression posttranscriptionally. First described in 1993, the lin-4 miRNA was initially be-

lieved to be a unique example of a so far unknown regulatory mechanism in Caenorhabditis 

elegans (Lee et al., 1993). Processed from a short hairpin precursor, lin-4 mediates regulation 

of a specific mRNA through partial base pairing with its 3’ untranslated region (UTR). Then, 

in 2000, another small RNA was detected in C. elegans, let-7, which, similarly to lin-4, con-

trolled the production of a protein involved in developmental timing (Reinhart et al., 2000). 

The finding that the let-7 sequence was perfectly conserved across many organisms, together 

with the discovery of the RNA interference (RNAi) mechanism in plants, led to the insight 

that miRNAs are an evolutionarily ancient class of regulatory molecules with broad biological 

functions (reviewed in Ambros, 2008). Today, hundreds of miRNAs, many of them evolu-

tionarily conserved across species, have been identified in mammals. The database miR-

BASE, for example, currently lists more than thousand human miRNAs (miRBASE release 

16, http://www.mirbase.org/). Confirming the crucial role of miRNAs in animal development, 

Bernstein et al. have demonstrated that constitutional miRNA-deficiency in mice is lethal at 

an early embryonic stage (Bernstein et al., 2003). When Landgraf et al. conducted a large-

scale miRNA expression profiling, they could show that distinct cell types express unique 

miRNA profiles, with changing patterns during cellular differentiation and malignant trans-

formation (Landgraf et al., 2007). Consistently, Lu et al. have demonstrated that tumors can 

be classified based on their miRNA profiles, which reflect the developmental lineage and dif-

ferentiation state (Lu et al., 2005). Moreover, many studies have demonstrated a direct link 

between miRNA dysregulation and the development of various diseases including cancers 

(reviewed in Stefani and Slack, 2008). 

4.2.1 miRNA biogenesis and target recognition 

Production of miRNAs proceeds via multiple processing steps (Fig. 4) (reviewed in 

Filipowicz et al., 2008; Krol et al., 2010). miRNAs can be encoded within intergenic regions 

or introns. After transcription by RNA polymerase II, the resulting long primary miRNA is 
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processed by the enzymes Drosha and DGCR8 in the nucleus into a ∼70 nt long pre-miRNA. 

Upon export into the cytoplasm by Exportin 5, the loop structure of the pre-miRNA is cleaved 

by the RNase III enzyme Dicer and its cofactor TRBP, to yield the double-stranded ∼22 nt 

mature miRNA. Next, one of the strands (called the guide strand) is preferentially loaded into 

the RISC (RNA-induced silencing complex) and stably associated with Argonaute proteins, 

whereas the other strand (called the miRNA* passenger strand) is degraded. The mature 

miRNA then serves as a guide to direct the RISC to target mRNAs bearing complementary 

sequences in the 3’UTR. miRNA binding to the target mRNAs results in destabilization of the 

targets and thus silences gene expression. 

 

Figure 4: General model of miRNA biogenesis.  

The production of mature miRNAs is dependent on pre-miRNA cleavage by Dicer. Modified from Kai 

and Pasquinelli, 2010. 

Each miRNA may control the expression of hundreds of target genes (reviewed in Bartel, 

2009). As pairing of miRNAs to mRNAs is mostly imperfect, target gene predictions are not 

straightforward. However, several target prediction programs have been developed, for exam-

ple TargetScan (program accessible at http://www.targetscan.org/), which we have used for 

our analyses. Existing programs have a high degree of overlap, with the major rule being that 

there must be perfect and contiguous base pairing between the the miRNA and the mRNA at 

nucleotides 2-8 of the miRNA, a region which is called the miRNA ‘seed’ (reviewed in 

Bartel, 2009). 
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4.2.2 Regulation of miRNA expression 

miRNA accumulation in the cell is dependent on the rates of miRNA transcription, processing 

and decay (reviewed in Kai and Pasquinelli, 2010). miRNAs are differentially expressed in 

different cell types. In a similar manner to protein coding genes, differential regulation of 

miRNAs is controlled by epigenetic mechanisms and transcription factors (reviewed in Davis 

and Hata, 2009). But not only is the expression of specific miRNAs subject to regulation, 

their stability also seems to be controlled. miRNAs are generally considered to be rather sta-

ble molecules, with half-lives ranging from hours to days (reviewed in Kai and Pasquinelli, 

2010) and an average half-life of ∼5 days (Gantier et al., 2011). However, several mechanisms 

exist that affect their half-lives, including cis-acting modifications (for example 3’ adenyla-

tion (Katoh et al., 2009)) and trans-acting enzymes (for example exonucleases (Chatterjee and 

Grosshans, 2009)). In addition, overall miRNA levels are regulated by the availability of par-

ticular enzymes, such as Dicer (Wiesen and Tomasi, 2009). Expression of Dicer is inhibited 

by cellular stresses, as well as interferons, and thus miRNA levels are also regulated by dis-

ease states. 

4.2.3 miRNA regulation of gene expression 

Given that more than 60 % of all human protein coding genes are predicted to contain miRNA 

binding sites in their 3’UTR, there must be some evolutionary pressure to maintain miRNA 

regulation (Friedman et al., 2008). Also, many mRNAs have multiple miRNA binding sites, 

such that different coexpressed miRNAs may regulate target genes coordinately or synergisti-

cally (Krek et al., 2005; Xu et al., 2010). Even though each miRNA has the potential to re-

press the expression of hundreds of genes, the degree of repression of an individual mRNA 

appears to be relatively modest. Recent studies investigating the influence of miRNAs on pro-

tein output suggest that miRNAs typically do not change the levels of individual proteins 

more than 2-fold, and changes rarely exceed 4-fold (Baek et al., 2008; Selbach et al., 2008).  

Although classically miRNAs were thought to act rather by ‘translational repression’, affect-

ing only protein levels while leaving mRNA levels unchanged, than by ‘mRNA destabiliza-

tion’, this view now is challenged. Comparisons of data from mRNA arrays and from riboso-

mal profiling, which measures total protein synthesis, indicate that the predominant reason for 

reduced protein output is destabilization of target mRNAs (Guo et al., 2010). 
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The observed subtle changes in protein concentration imply that, rather than inducing dra-

matic changes, miRNAs fine-tune gene expression. However, the effect of many miRNAs or 

miRNA clusters targeting components of the same pathway can efficiently modulate cellular 

functions. For example, the cluster miR-144/451 tunes the expression of many genes that al-

low terminal erythrocyte differentiation (Rasmussen et al., 2010). Another example is miR-

181a, which targets different phosphatases and thereby tunes T cell sensitivity (section 4.3.2). 

Moreover, slight changes in protein concentrations might also have profound physiological 

effects, as seen in apoptosis, where the ratio of pro- and anti-apoptotic molecules determines 

the cell fate (Chen et al., 2007a). Importantly, in contrast to regulation by transcription fac-

tors, miRNAs are capable of inducing rapid changes in gene expression programs, which is of 

particular importance when responding to environmental cues (reviewed in Davis and Hata, 

2009). 

4.3 miRNAs in the immune system 

Due to the rapid evolvability of miRNAs and target sites, miRNA gene control seems to be 

perfectly qualified to adapt to ever changing host-pathogen interactions (reviewed in Xiao and 

Rajewsky, 2009). In a very short time of research, it has become clear that miRNAs are highly 

involved in the regulation of immune pathways, with more than 100 miRNAs being expressed 

in cells of the adaptive and innate immune system (reviewed in O'Connell et al., 2010b). In 

particular, miRNAs target genes involved in signaling, e.g., transcription factors (Fig. 5) 

(Asirvatham et al., 2008), and thus act as fine-tuners of immune responses (reviewed in 

Lodish et al., 2008). In line with their fundamental role in the immune system, dysregulation 

or loss of certain miRNAs can severely compromise immune functions or cause disorders like 

autoimmunity or cancer (reviewed in Xiao and Rajewsky, 2009). 
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Figure 5: Cellular distribution of miRNA targets in immune pathways.  

Percentages indicated refer to the number of genes in each location that are predicted to be miRNA tar-

gets. From Asirvatham et al., 2008. 

4.3.1 miRNA regulation of hematopoietic stem cell differentiation 

Throughout the hematopoietic differentiation process, selective gene silencing by miRNAs 

might be essential to promote lineage commitment, as the following examples indicate. Chen 

et al. provided early evidence that miRNA expression in hematopoietic cells is regulated and 

modulates lineage commitment. Specifically, they show that ectopic expression of miR-181 

directs hematopoietic stem or progenitor (lineage
-
) cells towards the B cell lineage (Chen, 

2004). Also miR-223 plays a role in lineage differentiation processes. It acts as a molecular 

switch during granulopoiesis by targeting the transcription factors Mef2c (important for mye-

loid progenitor differentiation) and E2F1 (a key regulator of cell cycle progression), and thus 

regulates granulocyte differentiation versus myeloid cell proliferation (Johnnidis et al., 2008; 

Pulikkan et al., 2010). The clustered miRNAs miR-221 and miR-222 are important in eryth-

ropoiesis. Downregulation of miR-221/222 during erythropoiesis relieves repression of their 

target, the stem cell factor receptor c-kit, and presumably in this way promotes the expansion 

of early erythroblasts (Felli, 2005). 

4.3.2 miRNA regulation of lymphocyte development and function 

Among miRNAs expressed by hematopoietic cells, miR-155 has emerged as a miRNA with 

major impact in T and B lymphocyte biology. miR-155 is highly expressed upon activation of 

B cells, T cells, macrophages and DCs, suggesting a positive role in mediating inflammatory 
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responses (reviewed in Baltimore et al., 2008). Consistently, responses to pathogens or im-

munization were impaired in miR-155 knockout (ko) mice (Rodriguez et al., 2007; Thai et al., 

2007). This was, at least in part, due to increased expression of the transcription factor c-maf, 

which leads to TH2 polarization and enhanced production of TH2 cytokines. Germinal center 

responses also were affected in miR-155 deficient mice, and B cells failed to produce high-

affinity IgG1 antibodies. This defect was related to dysregulation of PU.1, a confirmed target 

of miR-155 (Vigorito et al., 2007). Confirming the role of miR-155 in inflammation, it has 

been shown that miR-155 ko mice are resistant to experimental autoimmune encephalitis 

(EAE), possibly due to reduced TH17 cell formation (O'Connell et al., 2010a).  

Levels of miR-181a are dynamically regulated during thymocyte development, with the 

highest levels being found in immature thymocytes (Li et al., 2007; Neilson et al., 2007). As 

miR-181a downregulates several phosphatases (e.g., SHP-2) involved in TCR signaling, the 

high miR-181a levels present in immature thymocytes can reduce the signaling threshold and 

thereby increase T cell sensitivity. Thus, miR-181a acts as a ‘rheostat’, which intrinsically 

regulates antigen sensitivity, to allow for differential responsiveness to TCR ligation during 

thymic selection and in the mature state (Li et al., 2007).  

Various mouse models with a conditional Dicer ko in T and B cells have demonstrated the 

overall requirement for Dicer-dependent miRNAs for normal immune function (reviewed in 

O'Connell et al., 2010b). In the models studied, Dicer was deleted at different times during 

cellular development, depending on the promoter used to drive Dicer excision, and therefore 

results cannot be compared. However, some similarities can be noticed. Defective homeo-

stastis or increased apoptosis in the absence of Dicer has been observed in NKT cells (Fedeli 

et al., 2009; Zhou et al., 2009b), in Treg cells (Cobb et al., 2006; Zhou et al., 2008), in 

CD4
+
CD8

+
 αβ T cell progenitors (Cobb, 2005), as well as in B cells, where the pro-apoptotic 

molecule Bim was found upregulated due to absence of the miR-17∼92 cluster (Koralov et al., 

2008). Besides regulating apoptosis, miRNAs are also likely to participate in lymphocyte lin-

eage fate decisions, as in miRNA-deficient CD4
+
 T cells TH1/ TH2 differentiation is defective 

(Muljo, 2005) and miRNA-deficient Treg cells loose their suppressive activity (Zhou et al., 

2008). 
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4.3.3 miRNA regulation of innate inflammatory responses 

TLR triggering in macrophages and DCs results in activation of a downstream signaling cas-

cade, the end result of which is mobilization of transcription factors such as activator protein-

1 (AP-1) and NF-κB, which induce expression of pro-inflammatory cytokines and chemo-

kines (reviewed in Akira et al., 2006). Tight regulation of TLR signaling is critical to avoid 

excessive inflammation. Taganov et al. have proposed a model in which miRNAs play a role 

in the resolution phase of inflammatory processes. They have shown that in human monocytic 

cells several miRNAs (i.e. miR-146a, -132 and -155) are upregulated by NF-κB in response to 

lipopolysaccharide (LPS)-induced TLR4 triggering. In turn, miR-146a targets IL-1R-

associated kinase 1 (IRAK1) and TNFR-associated factor 6 (TRAF6), which are both im-

portant molecules involved in NF-κB activation (Taganov, 2006). Thus, miR-146a acts in a 

negative feedback loop to dampen pro-inflammatory responses.  

As mentioned above and in section 4.3.2, expression of miR-155 is also strongly induced up-

on activation in macrophages and DCs. Overall evidence suggests a more pro-inflammatory 

than inhibitory role for miR-155 in the priming of adaptive immune responses, although its 

role in inflammatory responses is not yet entirely clear (reviewed in O'Neill et al., 2011). On 

the one hand, miR-155 has been shown to promote pro-inflammatory responses by inhibition 

of Src homology 2 domain-containing inositol-5’-phosphatase 1 (SHIP1) and SOCS1 

(O'Connell et al., 2009; Wang et al., 2010). Furthermore, DCs appear to require miR-155 for 

efficient T cell priming (Rodriguez et al., 2007). On the other hand, downregulation of the 

pro-inflammatory cytokine IL-1 and components of the IL-1 signaling pathway by miR-155 

has been observed (Ceppi et al., 2009).  

An anti-inflammatory role has been suggested for miR-21, which is induced in macrophages 

treated with LPS, the consequence of which is enhanced IL-10 production, as well as inhibi-

tion of miR-155 expression (McCoy et al., 2010; Sheedy et al., 2009).  

These findings led to the integrated view of sequential induction of different miRNAs upon 

TLR activation to regulate the inflammatory response (reviewed in O'Neill et al., 2011). Thus, 

it has been suggested that first inflammation is promoted (mainly by miR-155), then in a 

feedback loop TLR signaling is negatively regulated (mainly by miR-146a) and finally an 

anti-inflammatory response is mediated by miR-21.  
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4.3.4 miRNAs in hematopoietic malignancies 

miRNAs are often encoded at fragile sites or in genomic regions associated with cancer (Calin 

et al., 2004). Given the crucial role of miRNAs in proliferation and differentiation of 

hematopoietic cells, it is not surprising that dysregulation of miRNAs is found in some 

immune cell-based cancers. As described before (sections 4.3.1 and 4.3.2), some miRNAs are 

involved in regulation of cell cycle progression, while others are involved in regulation of 

apoptosis through targeting either pro- or anti-apoptotic molecules. The cluster miR-17∼92, 

also known as oncomiR-1, carries out pleiotropic functions during both normal development 

and tumorigenesis. The cluster, which comprises six miRNAs (miR-17, -18a, -19a, -19b, -20a 

and -92), has been reported to be highly expressed in various human cancers, including 

lymphomas and leukemias (reviewed in Mendell, 2008). Transgenic mice that overexpress 

miR-17∼92 in lymphocytes developed a lymphoproliferative disease due to increased 

lymphocyte proliferation and showed less activation-induced cell death. This was most likely 

caused by miR-17∼92-induced repression of the tumor suppressor PTEN as well as of the pro-

apoptotic protein Bim (Xiao et al., 2008).  

Similarly to miR-17∼92, miR-155 can act as an oncogene. Overexpression of miR-155 has 

been detected in diverse tumor samples, for example in the bone marrow of patients with 

acute myeloid leukemia (Garzon et al., 2008). Furthermore, confirming the oncogenic func-

tion of this miRNA, mice overexpressing miR-155 developed leukemia or, depending on the 

system used, a myeloproliferative disorder (Costinean et al., 2006; O'Connell et al., 2008).  

Also miR-15a and miR-16 have been associated with cancer. They inhibit the pro-survival 

protein bcl-2 and are therefore thought to function as pro-apoptotic molecules. Their loss has 

frequently been observed in chronic lymphocytic leukemia (Calin et al., 2002).  

In conclusion, increasing data indicate that particular miRNAs can function as oncogenes or 

tumor suppressors. Therefore, their dysregulation can contribute to tumor development, im-

plying that therapeutic targeting of miRNAs might represent a reasonable and potent strategy 

in cancer treatment (reviewed in Garzon et al., 2010). 
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a b s t r a c t

microRNAs have emerged as a novel layer of regulation of cellular development and function, including
cells of the immune system. microRNA expression profiles and function of several microRNAs have been
elucidated in granulocyte macrophage colony-stimulating factor derived dendritic cells (GM-CSF DC). In
this study we determined the microRNA expression profile from plasmacytoid DC (pDC) and conventional
DC (cDC) generated in murine FMS-related tyrosine kinase 3 ligand (Flt3L) bone marrow culture. We
observed distinct miRNA expression signatures in these two different DC subsets and found that pDC
were closer related to CD4+ T cells than to cDC. Expression of a selected subset of microRNAs was also
compared between cDC and GM-CSF DC. Furthermore, we show that inhibition of two differentially
expressed microRNAs, miR-221 and miR-222, during differentiation resulted in skewed pDC/cDC ratios.
Among the confirmed or potential targets for miR-221 and miR-222 are c-Kit, p27kip1 and E2-2. While c-
Kit is expressed by DC progenitors and p27kip1 is a cell cycle regulator, E2-2 does transcriptionally regulate
pDC development. Our data demonstrate that microRNAs can influence Flt3-driven DC differentiation.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A novel layer of gene regulation that has a profound influ-
ence on cell differentiation and function has become visible with
the discovery of non-coding RNA molecules of an average of 22
nucleotides (nt) length, so-called microRNAs (miRNAs3) (Bushati
and Cohen, 2007). miRNAs act in a post-transcriptional fashion,
binding to the 3′-untranslated region (3′-UTR) of messenger RNA
(mRNA) in a sequence-specific manner, resulting in mRNA degra-
dation or inhibition of translation (Filipowicz et al., 2008). miRNAs
also regulate many aspects of the immune system. Distinct miRNA
expression profiles of immunological cell types or differentiation
states have been determined (Landgraf et al., 2007; Monticelli et
al., 2005; Neilson et al., 2007; Wu et al., 2007) and miRNAs are
involved in regulation of several innate and acquired immunolog-
ical processes (Lindsay, 2008). Dendritic cells (DC) are cells from
hematopoietic origin that are located in tissue and lymphoid organs
and are specialized in antigen presentation (Shortman and Liu,
2002). DC differentiate from a recently identified precursor into

∗ Corresponding author. Tel.: +49 89 218075674; fax: +49 89 21809975674.
E-mail address: tbrocker@med.uni-muenchen.de (T. Brocker).

1 Present address: Crucell Holland BV, Leiden, The Netherlands.
2 These authors contributed equally.
3 Abbreviations: miR, miRNA, microRNA; DC, dendritic cell; pDC, plasmacytoid

dendritic cell; cDC, conventional dendritic cell; BM, bone marrow; SCF, stem cell
factor.

a heterogeneous population of cells that exhibit a degree of spe-
cialization in the immunological functions they perform (Naik et
al., 2005; Onai et al., 2007; Reis e Sousa, 2006; Shortman and Naik,
2007). In steady-state conditions, two major subsets of DC can be
distinguished based on expression of defined surface markers, con-
ventional DC (cDC) and plasmacytoid DC (pDC). These DC subtypes
can be generated in vitro from murine bone marrow cultures sup-
plemented with the cytokine FMS-related tyrosine kinase 3 ligand
(Flt3L) and resemble the in vivo pDC and cDC phenotype relatively
well (Brasel et al., 2000; Brawand et al., 2002; Gilliet et al., 2002;
Naik et al., 2005, 2007). The cytokine granulocyte macrophage
colony-stimulating factor (GM-CSF) is also able to induce DC dif-
ferentiation from bone marrow progenitors (GM-CSF DC). These
cultures yield a homogenous DC population that bears some sim-
ilarity with Flt3L-derived cDC based on cell surface markers, but
differs in function (Weigel et al., 2002; Xu et al., 2007) and is
thought to be generated from different precursors under inflam-
matory conditions in vivo (Naik et al., 2007; Shortman and Naik,
2007). miRNA expression profiles of GM-CSF DC under steady-state
and inflammatory conditions have been determined (Landgraf et
al., 2007) and functional roles, such as pathogen binding and CD4+

T cell proliferation capacity, have been assigned to some miRNAs
in GM-CSF-derived DC (Martinez-Nunez et al., 2009; Rodriguez et
al., 2007). In addition, miR-21 and miR-34a have been shown to
regulate GM-CSF-driven DC differentiation (Hashimi et al., 2009).

The miRNA expression levels of different Flt3L-derived DC sub-
sets have not been established yet. In this study, we analyzed the

0161-5890/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.molimm.2010.07.007
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miRNA expression profile from pDC and cDC populations using
miRNA microarrays and the expression pattern of selected miR-
NAs was compared between cDC and GM-CSF DC using quantitative
real-time PCR. A subset of differentially expressed miRNAs was
identified. Two highly related miRNAs, miR-221 and miR-222, that
were overexpressed in cDC were studied into more detail. Kit,
which is expressed by DC progenitors (Naik et al., 2007; Onai
et al., 2007), is an experimentally verified target for these miR-
NAs. In addition, E2-2 (tcf4), a master transcriptional regulator of
pDC development (Cisse et al., 2008) contains hypothetical target
sequences for miR-221 and miR-222. Inhibition of these miRNAs
during DC in vitro Flt3L-mediated differentiation revealed a shift
from cDC to pDC development.

2. Materials and methods

2.1. Mice

C57BL/6J mice were bred and maintained in a conventional facil-
ity at the Institute of Immunology (Munich, Germany) and used
according to protocols approved by the local animal ethics com-
mittee.

2.2. Dendritic cell cultures

Dendritic cells were generated from bone marrow (BM) in the
presence of Flt3L as described (Brasel et al., 2000), with some modi-
fications. BM was extracted from femur and tibiae and erythrocytes
lysed (R&D kit). Cells were cultured at 1 × 106 cells/ml in DC tissue
culture medium (DC-TCM: RPMI, 10% FCS, Pen-Strep) in the pres-
ence of 20 ng/ml recombinant murine Flt3L (R&D) and 50 ng/ml
recombinant murine stem cell factor (SCF) (Peprotech). At day 4,
cells were collected, reseeded at 1 × 106 cells/ml in the presence of
recombinant murine Flt3L. At day 8, an equal volume of DC-TCM
supplemented with Flt3L was added and cells were harvested at
day 10. To obtain GM-CSF DC, BM cells were grown in DC-TCM
supplemented with 3% supernatant of the X-63-GM-CSF cell line
(Stockinger et al., 1996) following the protocol described by Lutz et
al. (1999).

2.3. Transfection of miRNA inhibitors

BM cultures containing SCF and Flt3L were started as described
above. At day 2, cells were harvested and replated at 4 × 105 in 6-
well plates. Pre-designed (based on miRBase v8.1 sequences) and
FITC-labeled miRCURY LNA miRNA knockdown probes (Exiqon)
against mmu-miR-221 (5′-aaacccagcagacaatgtagct-3′), mmu-miR-
222 (5′-gagacccagtagccagatgtagct-3′) and a control sequence
(5′-gtgtaacacgtctatacgccca-3′; bearing no sequence homology to
any known miRNA or mRNA in mouse), were mixed with Lipo-
fectamine RNAiMAX (Invitrogen) according to manufacturer’s
instructions and added to cells to a final concentration of 250 nM.
Twenty-four hours later, the FITC-positive cells were enriched by
FACS-sorting and recultured with Flt3L. Cells were harvested at day
7 to determine the total numbers of DC and subset frequency by
FACS.

2.4. Flow cytometry

Anti-Fc�RII/III antibody was included in all stainings to reduce
non-specific antibody binding. To sort pDC and cDC from Flt3L-
derived DC cultures, cells were stained with DAPI, 120G8-FITC
anti-CD11c-FITC, anti-B220-PE and anti-CD11b-APC. The DC sub-
set frequency after transfection of miR-221 and miR-222 inhibitors
was analyzed with a staining panel consisting of DAPI, anti-
B220-PE, anti-CD11c-PE-Cy5.5 and CD11b-APC-Cy7. All antibodies

were purchased from eBioscience or BD Biosciences unless oth-
erwise mentioned. For all experiment events were acquired
on FACSCanto2 or FACSAria flow cytometers (BD Biosciences).
Flow cytometric data was analyzed using FlowJo software
(Treestar).

2.5. Magnetic bead-mediated cell sorting

To separate DC subsets, pDC were first enriched using magnetic
bead isolation based on anti-CD11b staining (Miltenyi Biotec MACS
system), according to manufacturer’s instructions. CD4+ T cells
were isolated from spleen and lymph nodes from naïve C57BL/6J
mice using a negative selection kit (Miltenyi Biotec) following the
manufacturer’s protocol. Purity of CD4+ T cells was around 95% of
alive cells, as determined by flow cytometry.

2.6. RT-PCR

To quantify gene expression of selected genes in different
DC populations, total RNA was extracted using the RNeasy kit
(Qiagen), following manufacturer’s instructions. RNA was reverse
transcribed using SuperScript III First-Strand Synthesis System
using random hexamers (Invitrogen). Quantitative PCR reactions
were run in a Lightcycler PCR machine (Roche) using the LightCy-
cler FastStart DNA MasterPLUS SYBR Green I kit (Roche) according
to manufacturer’s instructions. Primer sequences were obtained
from Primerbank (Wang and Seed, 2003) and are available upon
request. Expression levels were normalized to ubiquitin c and rel-
ative expression calculated using the ��CT method.

For quantitative real-time RT-PCR of mature miRNAs, total
RNA including the low molecular weight fraction was isolated
using the miRNeasy kit according to manufacturer’s instruc-
tions (Qiagen). Gene-specific reverse transcription was performed
for each miRNA using the Taqman MicroRNA Reverse Tran-
scription kit and gene-specific primers (Applied Biosystems)
following the manufacturer’s protocol. qPCR reactions were run
in a Lightcycler PCR machine (Roche) using Lightcycler Taq-
man Master kit (Roche) in combination with miRNA-specific
Taqman miRNA assays (Applied Biosystems) according to manu-
facturer’s instructions. miR-223 expression was determined with
a primer/probe set based on miRBase 8.1 miR-223 sequence.
Expression levels were normalized to small RNAs snoRNA202
or RNU19, and relative expression calculated using the ��CT
method.

2.7. miRNA arrays

Total RNA, including the fraction of small RNA that contains
miRNAs, was isolated from samples using the miRNeasy kit (Qia-
gen). Analysis of RNA integrity, labeling and hybridization of the
samples was outsourced to Exiqon (Vedbaek, Denmark). Briefly,
the quality of the total RNA was verified by an Agilent 2100 Bio-
analyzer profile. A mixture of equal amounts of total RNA from
all samples was used as reference sample. 2 �g total RNA from
sample and reference pool were labeled with Hy3 and Hy5 fluo-
rescent dye respectively, using the miRCURY LNA Array labeling
kit (Exiqon, Denmark). The Hy3-labeled samples and a Hy5-labeled
reference pool sample were mixed pair-wise and hybridized to the
mercury LNA array version 8.1 (Exiqon) which contains capture
probes targeting all miRNAs from all organisms annotated in miR-
Base version 8.1 (Griffiths-Jones et al., 2008). MiRNA annotation
was updated in terms of changes in nomenclature and removal of
obsolete miRNAs to reflect changes between miRBase version 8.1
and version 12.0. Synthetic miRNAs hybridizing to complemen-
tary oligos on the arrays were spiked-in to control for labeling
and hybridization as well as data normalization procedures. The
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hybridization was performed using a Tecan HS4800 hybridization
station (Tecan, Austria) and the slides were scanned by a ScanArray
4000 XL scanner (PackardBiochip Technologies, USA). Image analy-
sis was carried out using the ImaGene 6.1.0 software (BioDiscovery,
Inc., USA).

2.8. miRNA arrays data analysis

Micro array data were analyzed using the Bioconductor open-
source bioinformatics software project (Gentleman et al., 2004).
Briefly, image analysis output files were loaded into the software
package ‘limma’ (Smyth, 2004). Both imperfect spots, empty spots
and probes reported to be underperforming (Exiqon, personal com-
munication) were excluded from further analysis. Background was
subtracted using the ‘normexp’ algorithm, followed by global loess
normalization. Array quality control was performed using the soft-
ware package ‘ArrayQualityMetrics’. For unsupervised hierarchical
clustering, the median log(Hy3/Hy5) ratios of replicate spots per
miRNA were calculated for every sample and standard deviation
across samples was computed. The expression data from the 50
miRNAs exhibiting the highest standard deviation across samples
were used to generate dendrograms, using Pearson’s correlation
and complete linkage analysis to compute the distance matrix.
Significance of clustering was analyzed with the Pvclust pack-
age (Suzuki and Shimodaira, 2006). To detect genes differentially
expressed between pDC and cDC, a linear model was fitted for every
gene across arrays and gene expression differences were quantified
using a moderated t-test statistic, which is based on an empirical
Bayes approach (Smyth, 2004). p-Values were adjusted for multi-
ple testing using Benjamini–Hochberg’s method as incorporated in
the software.

2.9. Statistical analysis

Statistical differences between the experimental groups were
determined by Student’s two-tailed t-test. Probabilities < 0.05 were
considered to be significant.

3. Results

3.1. Purification and characterization of bone marrow-derived
DC subsets

To obtain sufficient numbers of pDC and cDC to be able to ana-
lyze miRNA expression, we resorted to in vitro culturing of murine
bone marrow cells in the presence of Flt3L. Populations were sepa-
rated by FACS based on staining of CD11c, B220 antigen and CD11b
(Fig. 1A). CD11c+B220+CD11blow pDC identified with this staining
also expressed 120G8, another pDC-discriminatory marker, con-
firming their pDC identity (Asselin-Paturel et al., 2003). In addition,
the phenotype of sorted cell populations was verified by quantita-
tive PCR for genes known to be differentially expressed between DC
subsets (Naik et al., 2005). Expression of Siglech, Ccr9, Tcf4 and Ly6c
was reduced or absent in cDC, while the cDC-specific TLR3 receptor
was predominantly expressed in cDC, demonstrating that pure DC
populations were obtained (Fig. 1B).

3.2. miRNA expression profiling of DC subsets

To determine the miRNA expression profile from DC subsets,
RNA from sorted pDC and cDC populations was hybridized to
miRNA microarrays. miRNA expression levels from peripheral CD4+

T cells were also analyzed, as the miRNA expression pattern from
this cell population is relatively well known in comparison to other
hematopoietic cell types (Cobb et al., 2006; Monticelli et al., 2005;
Muljo et al., 2005; Neilson et al., 2007). In concordance with reports
from the literature, several miRNAs were found to be upregulated in
T cells, in particular miR-150 (Cobb et al., 2006; Liston et al., 2008;
Monticelli et al., 2005; Muljo et al., 2005) and miR-15b (Neilson
et al., 2007; Zhou et al., 2008) (Fig. 2A). The relationship between
the different cell lineages was further analyzed using hierarchi-
cal clustering of the relative miRNA expression levels. A distance
matrix was calculated using Pearson correlation and multiscale
bootstrapping was used to assess the significance of the clusters
found. All biological replicates clustered together as expected, but
it was found that pDC are closer related to CD4+ T cells than to cDC
(Fig. 2B).

Fig. 1. Purification and characterization of bone marrow-derived DC. Bone marrow cells were differentiated towards DC in the presence of Flt3L and SCF. (A) DC cultures
were stained with indicated cell surface markers and sorted into pDC (CD11c+, B220+, CD11bint/120G8+) and cDC (CD11c+, B220−/int, CD11b+/120G8−) subpopulations based
on gates specified on plots. (B) Quantitative gene expression levels of representative genes from sorted cDC and pDC populations (n = 3–6 per group). Results are expressed
in arbitrary units as mean ± SEM. *: p < 0.05; ND: not detected.
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Fig. 2. miRNA expression profile from DC subsets and CD4+ T cells. (A) False-color plot representing relative expression of miRNAs from 3 cDC samples (cDC1–3), 2 pDC samples
(pDC1–2) and 2 CD4+ T cell samples (T1–2). One pDC sample was a pool from 5 independent FACS sorts. The color scale shown at the top illustrates the relative expression level
of the indicated miRNA across all samples: red denotes an expression below the mean and green denotes an expression higher than the mean. (B) Relationship of cell types
as determined by Pearson correlation of miRNA expression profiles. Values at branch points denote multiscale bootstrapping significance percentages. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Next, we concentrated on differences in miRNA expression
between DC subsets. Differential expressed miRNAs were identified
using linear modeling analysis in combination with empirical Bayes
smoothing of the t-test statistic, which has been shown to be able
to detect small differences in expression levels when a small num-
ber of arrays is used (Smyth, 2004). Table 1 contains the 25 miRNAs
most significantly differentially expressed between cDC and pDC,
ordered by the cDC/pDC expression ratio. Many miRNAs that are
upregulated in cDC have also been identified in small RNA cloning
studies of in vitro GM-CSF-supplemented DC cultures (Landgraf et
al., 2007), in particular miR-21, miR-22 and miR-223, implying an
overlap between these DC subsets in terms of miRNA expression.
miR-223 has also been identified in cDNA libraries obtained from
NOD-derived CD11c-positive dendritic cells (Fukao et al., 2007).
Another interesting observation is the simultaneous overexpres-
sion of miR-23a, -27a and -24 in cDC, which are known to be
transcribed as a single transcript (Lee et al., 2004).

3.3. miR-221 and miR-222 influence DC subset development

To determine whether changes in expression levels of partic-
ular miRNAs had functional consequences for DC development,
we inhibited the function of two miRNAs, miR-221 and -222, dur-

ing Flt3L-mediated DC differentiation. miR-222 was chosen from
the list of differentially regulated targets for the finding that Kit
mRNA is a confirmed target (Felli et al., 2005; Poliseno et al.,
2006). Kit, encoding c-Kit protein, is expressed by a recently iden-
tified DC precursor capable of generating pDC and cDC (Naik et al.,
2007; Onai et al., 2007). miR-221 was included due to its sequence
homology to miR-222, with an identical seed region (nucleotides
2–7, Fig. 3A), and was also strongly expressed in cDC. According
to the target prediction program TargetScan (Lewis et al., 2005)
(www.targetscan.org), both, miR-221 and miR-222 hypothetically
target tcf4, the gene encoding E2-2 transcription factor, which is a
master regulator for pDC development (Cisse et al., 2008). Quan-
titative RT-PCR confirmed the differential expression of miR-221
and miR-222 in between DC subsets (Fig. 3B). To specifically inhibit
miR-221 and -222 function, bone marrow cells differentiated to
DC in the presence of Flt3L were transfected with FITC-labeled
antisense oligos complementary to mature miR-221 and -222.
Twenty-four hours later, FITC-positive cells were enriched by FAC
sorting (average of 14.65% FITC+, 10.34–18.96 95% CI pre-sort, aver-
age of 73.69% FITC+, 68.81–78.56 95% CI post-sort; Fig. 3C) and
re-cultured in the presence of Flt3L for 5 days. At day 7, the yield
and subset development of the DC culture was analyzed. FITC sig-
nal could not be detected at this point (data not shown), and we
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Table 1
Differential microRNA expression between cDC and pDCa.

Name p-Value cDC/pDC expression ratio

mmu-miR-21 6.28−10 7.28
mmu-miR-720 9.96−10 5.65
mmu-miR-342-3p 1.91−08 3.94
mmu-miR-296-5p 1.01−03 3.80
mmu-miR-223 6.28−10 3.15
mmu-miR-22 6.99−06 3.07
mmu-miR-146a 9.63−08 2.98
mmu-miR-222 1.31−05 2.53
mmu-miR-23a 6.99−06 1.94
mmu-miR-27a 2.23−04 1.83
mmu-miR-24 4.85−04 1.77
mmu-miR-221 8.14−04 1.71
mmu-miR-23b 1.27−03 1.67
mmu-miR-29a 2.23−04 0.68
mmu-let-7i 8.14−04 0.61
mmu-let-7a 1.95−04 0.59
mmu-miR-103 2.02−07 0.51
mmu-let-7g 4.38−04 0.50
mmu-miR-20a 3.42−04 0.46
mmu-miR-191 6.92−06 0.45
mmu-miR-18a 1.66−05 0.42
mmu-miR-107 2.99−08 0.40
mmu-miR-15b 5.87−06 0.38
mmu-miR-106a 3.02−04 0.36
mmu-miR-19b 6.69−04 0.33

a cDC and pDC show differential expression of miRNAs as determined by miRNA
microarray. Total RNA from 3 cDC samples and 2 pDC samples (pDC samples pooled
from 5 independent FACS sorts each) was subjected to miRNA analysis; for the exact
array procedure and analysis see Section 2. The table lists the 25 most significantly
(Benjamini–Hochberg’s adjusted p-value) differentially expressed miRNAs, ordered
by the cDC/pDC expression ratio.

did not detect differences in frequencies of alive or CD11c-positive
cells (data not shown). However, when miR-221 and-222 were
inhibited early in DC development a consistent decrease in cDC
frequency accompanied by a small increase in pDC frequency could
be observed compared to cells transfected with a control antisense
oligo, resulting in an increase in pDC/cDC frequency ratio (Fig. 3D).
These findings suggest that both miR-221 and miR-222 might reg-
ulate development and lineage fates of DC.

3.4. Comparison of miRNA expression profile in cDC and GM-CSF
DC

Both Flt3L and GM-CSF induced differentiation of bone marrow
progenitors result in DC populations in vitro. To analyze the rela-
tionship between these cDC populations developed under different
cytokine stimuli at the miRNA level, we quantified expression of
several miRNAs based on the previously determined expression
profile and published results (Landgraf et al., 2007). Several miRNAs
are equally expressed in DC populations derived from both culture
systems, including miR-223 which expression is restricted to the
myeloid compartment of the murine hematopoietic system (Fukao
et al., 2007; Landgraf et al., 2007). Another subset of quantified miR-
NAs was higher expressed in cDC compared to GM-CSF DC, among
them miR-221 and miR-222. The increased expression of these two
miRNAs in cDC in comparison to both pDC and GM-CSF DC might
indicate an unique role of these miRNAs in cDC differentiation or
function. miR-146b was the single miRNA we identified that exhib-
ited increased expression in GM-CSF DC, in concordance with its
suggested role of providing negative feedback under inflammatory
conditions (Taganov et al., 2006) (Fig. 4).

4. Discussion

The DC population can be further subdivided into subpopula-
tions, with a large distinction between pDC and cDC subsets based

Fig. 3. miR-221 and miR-222 influence DC subset development. (A) miR-221 and
miR-222 sequence alignment. (B) miR-221 and miR-222 transcript levels deter-
mined by quantitative RT-PCR from sorted cDC (n = 4) and pDC (n = 6) subset samples.
Results are expressed in arbitrary units as mean ± SEM. *: p < 0.05. (C) FACS enrich-
ment of bone marrow cells transfected with FITC-labeled miRNA inhibitors. The
percentages of cells in each gate among DAPI− cells are indicated. (D) B220 and
CD11b expression of DC cultures of bone marrow cells transfected with indicated
miRNA inhibitors (knockdown; KD). Plots shown are gated on alive, CD11c+ cells and
representative for one out of three independent experiments. The graph depicts the
ratio of pDC (B220+, CD11bint) to cDC (B220−/int, CD11b+) frequencies in cultures
transfected with indicated miRNA inhibitors in the three independent experiments
shown.

on several properties such as hematopoietic origin, life cycle and
functional properties (Shortman and Liu, 2002; Shortman and Naik,
2007). The cDC subset can be further subdivided in two populations
based on the presence or absence of the cell surface marker CD8�
(Shortman and Naik, 2007). In this study we resorted to the use
of a Flt3L-based in vitro cell culturing system to obtain sufficient
numbers of pDC and cDC to be able to perform microarray-based
analysis of miRNA expression. CD8� is not expressed by cDC in
Flt3L-based culturing systems, but a functionally and phenotypi-
cally equivalent population can be identified by expression of CD24
and CD11b (Naik et al., 2005). To obtain the cDC population we
gated on CD11bhi cells, which are the in vitro counterparts of CD8�-
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Fig. 4. Relative expression levels of miRNAs in cDC and GM-CSF DC. Bone marrow cells were cultured in the presence of Flt3L or GM-CSF. RNA was isolated from FACS sorted
cDC populations (n = 4) and GM-CSF DC (n = 2). miRNA transcript levels were determined by quantitative RT-PCR. Results are expressed in arbitrary units as mean ± SEM.

negative cDC (Naik et al., 2005), although this sorted population
also contained the in vitro CD8�+ cDC equivalents, as it is the only
DC population to express TLR3 (Edwards et al., 2003). It would
therefore be of interest to further purify the cDC subpopulation
on the basis of CD24 marker expression to be able to determine the
miRNA expression pattern of cDC subpopulations.

miRNA expression profiling of pDC, cDC and CD4+ T cells
revealed that pDC and CD4+ T cells cluster together in terms of
miRNA expression pattern. This is in contrast to a large study com-
paring gene expression profiles of several DC subsets in conjunction
with other cell types of immunological origin, which found that DC
subsets cluster together and are distinct from CD4+ T cells (Robbins
et al., 2008). It remains to be determined whether this difference
in lineage relationships observed reflects a true biological differ-
ence between gene expression and miRNA expression or represents
an artifact due to expression profiling of a restricted number of
miRNAs. Nevertheless, expression by pDC of genes having well
defined function in lymphocyte populations is in support of our
miRNA expression data, as pDC express the Rag gene and contain
IgH D-J rearrangements (Corcoran et al., 2003; Pelayo et al., 2005;
Shigematsu et al., 2004). It would also be of interest to compare
the miRNA expression profile of naïve B cells to pDC, as pDC also
express many B cell lineage related genes (Pelayo et al., 2005). It
must also be noted that the pDC lineage is not a homogenous pop-
ulation by itself, as only a subset of pDC with distinct functional
properties exhibit expression of Rag (Corcoran et al., 2003; Pelayo
et al., 2005). Subdividing these pDC populations on the basis of Rag
expression might therefore results in segregation of pDC miRNA
expression profiles.

miR-21 is the most significantly differentially expressed miRNA
between cDC and pDC. It is also highly expressed in GM-CSF DC, as
shown in this study and Hashimi et al. (2009) and Landgraf et al.
(2007). A recent study identified miR-21 to be involved in human
monocyte-derived DC differentiation. miR-21 expression during
monocyte differentiation in the presence of GM-CSF decreases lev-
els of WNT1 which inhibits DC differentiation (Hashimi et al., 2009).
Whether miR-21 also promotes Flt3L-derived cDC development is
currently being studied. The strong expression of miR-21 in the
cDC subset might also be a consequence of signal transducer and
activator of transcription-3 (STAT3) expression, as two highly con-
served binding sites for STAT3 have recently been identified in the
region upstream of the miR-21 transcription start site, responsible
for STAT3-mediated miR-21 expression (Loffler et al., 2007). STAT3
is required for Flt3L-mediated differentiation from hematopoietic

stem cells into both pDC and cDC subsets (Esashi et al., 2008;
Laouar et al., 2003), so STAT3-driven miR-21 expression cannot
solely account for the difference in miR-21 levels between pDC and
cDC.

We focused on the function of miR-221 and miR-222 in DC sub-
set development as Kit, encoding for c-Kit protein, is expressed on
a recently identified DC progenitor (Naik et al., 2007; Onai et al.,
2007). We could not detect any difference in c-Kit levels on mature
DC subsets by flow cytometry after inhibition of these miRNAs (data
not shown), but the small but consistent decrease of the number
of cDC and increase of pDC does suggest that these miRs influence
DC subset differentiation. Another experimentally verified target
for these miRNAs is p27kip1, a cell cycle inhibitor that is suppressed
in some human cell cancer lines by miR-221-222 resulting in con-
tinuous proliferation (le Sage et al., 2007). Recently, the murine
ortholog of p27kip1 was also found to be a target of the miR-221-222
cluster (Mayoral et al., 2009). In mast cells, overexpression of this
miRNA cluster leads to cell cycle arrest and perturbed morphology
(Mayoral et al., 2009). As cDC also express p27kip1 (data not shown),
the reported higher proliferation rate of cDC relative to pDC might
therefore be a consequence of miR-221-222-mediated repression
of p27kip1 in the cDC subset. A third potential target for miR-221
and miR-222 is Tcf4, encoding E2-2, the master transcription factor
for pDC (Cisse et al., 2008). This factor is preferentially expressed
in pDC (Cisse et al., 2008 and Fig. 1B). In E2-2-deficient mice pDC
development stops at an immature precursor stage leading to com-
plete lack of mature B220+CD11b− pDC (Cisse et al., 2008). Given
the fact that our TargetScan analysis identified this key molecule for
pDCs as potential target for the above-mentioned miRs, a release
of E2-2 suppression could explain why pDC ratios increase in anti-
miR-221 or -222 treated cultures. In addition, cDC express high
levels of miR-221 and miR-222 (Fig. 3B), which might lead to a
decrease of E2-2 expression beyond levels of detection (Fig. 1B).
However, in order to unambiguously identify the target(s) of miR-
221 and miR-222 responsible for pDC/cDC development, specific
miR-deficient mice will have to be generated.

Analysis of relationship between different DC subset based
on gene expression patterns has shown that GM-CSF DC cluster
together with monocytes and macrophages and are distinct from
cDC and pDC (Robbins et al., 2008). However, despite the myeloid
gene signature, some cDC-specific genes were strongly expressed in
GM-CSF DC. Comparison of miRNA expression patterns using quan-
titative PCR of the cDC population present in Flt3L-bone marrow
cultures with DC obtained after differentiation in the presence of
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GM-CSF revealed that some miRNAs are similarly expressed in both
DC subsets, including miR-223. This miRNA has been shown to be
specifically expressed in the myeloid compartment of the murine
hematopoietic system (Chen et al., 2004) and was also found to be
highly expressed in GM-CSF DC (Hashimi et al., 2009; Landgraf et
al., 2007). As it is lower expressed in pDC, miR-223 might there-
fore play a role in reinforcing phenotypic characteristics shared
between cDC and GM-CSF DC. It would be of interest to analyze
the phenotypes of these DC subsets from bone marrow of miR-223
deficient animals (Johnnidis et al., 2008). Interestingly, among the
miRNAs differentially expressed between cDC and GM-CSF DC we
identified contrasting differential expression of miR-146a and miR-
146b. Both miRNAs target the mRNAs of the signaling molecules
TRAF6 and IRAK1 and are postulated to constitute a negative feed-
back loop to fine-tune TLR signaling pathways after TLR ligand
stimulation (Taganov et al., 2006). We found a higher expression of
miR-146b but a lower expression of miR-146a in GM-CSF DC com-
pared to cDC. This suggests a miR-146b-mediated decrease in TLR
signaling sensitivity in GM-CSF DC, which might be explained by
the pro-inflammatory nature of GM-CSF. The discrepancy between
expression profiles of these two miR-146 family members needs
further investigation.

In the present study we have analyzed miRNA expression pro-
files of different DC populations, identifying subsets of differentially
expressed miRNAs. We also demonstrated that modulation of miR-
221 and miR-222 expression influences DC subset differentiation.
These findings warrant further investigation into the role of miR-
NAs in DC differentiation and function and might ultimately lead
to new ways to modulate DC differentiation and function for ther-
apeutic purposes.
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Dendritic cells (DCs) are central for the induction of T cell immunity and tolerance. Fundamental for DCs to control the immune

system is their differentiation from precursors into various DC subsets with distinct functions and locations in lymphoid organs and

tissues. In contrast to the differentiation of epidermal Langerhans cells (LCs) and their seeding into the epidermis, LC maturation,

turnover, and MHC class II Ag presentation capacities are strictly dependent on the presence of Dicer, which generates mature

microRNAs (miRNAs). Absence of miRNAs caused a strongly disturbed steady-state homeostasis of LCs by increasing their turn-

over and apoptosis rate, leading to progressive ablation of LCs with age. The failure to maintain LCs populating the epidermis was

accompanied by a proapoptotic gene expression signature. Dicer-deficient LCs showed largely increased cell sizes and reduced

expression levels of the C-type lectin receptor Langerin, resulting in the lack of Birbeck granules. In addition, LCs failed to properly

upregulate MHC class II, CD40, and CD86 surface molecules upon stimulation, which are critical hallmarks of functional DC

maturation. This resulted in inefficient induction of CD4 T cell proliferation, whereas Dicer-deficient LCs could properly stimulate

CD8 T cells. Taken together, Dicer-dependent generation of miRNAs affects homeostasis and function of epidermal LCs. The

Journal of Immunology, 2010, 185: 400–409.

D
endritic cells (DCs) are specialized for uptake, processing,
and presentation of Ag and, as a consequence, do control
tolerance and immunity (1). DCs develop from hemato-

poietic precursors into a heterogeneous population of subsets,
which are distinct in their locations, phenotypes, and functions (2–
4). In the absence of inflammation, twomajor subsets of DCs can be
distinguished, conventional (cDCs) and plasmacytoid DCs (pDCs).
In addition to these blood-derived cDCs and pDCs, tissue-derived
migratory DCs can be found in lymph nodes. In skin-draining
lymph nodes (sLNs), this group of migratory DCs mainly consists
of Langerin-expressing epidermal Langerhans cells (LCs) as well
as Langerin+ and Langerin2 dermal DCs cells that migrated from
the skin (5–7).
The complexity of different DC subtypes and their relative

functions was elucidated only recently. Their central role in the
maintenance of immune homeostasis was demonstrated, for ex-
ample, by constitutive ablation of DCs in vivo, which resulted

in spontaneous fatal autoimmunity (8). In addition, induction of
T cell immunity also depends on DCs (9). A division of labor can
be observed for certain tissue-derived DCs, such as LCs, which
may induce potent T cell immunity either directly (10) or indi-
rectly by transporting Ag from skin to lymph nodes for transfer to
CD8a+ resident DCs. The latter then cross-present the transferred
Ag from skin-derived viral infections to CD8 T cells (11). In
contrast, CD82 DCs preferentially prime CD4 T cells via MHC
class II presentation (12). Moreover, DCs mediate peripheral T cell
tolerance by deleting self-reactive CD8 T cells, which otherwise
could induce autoimmune reactions (13). Despite this striking com-
plexity of different phenotypes and functions, DCs seem to differ-
entiate from common precursors by largely unknown mechanisms.
Cytokines, particularly flt3, and transcription factors have been
shown to contribute to this process (4, 14, 15).
A novel control mechanism of immune homeostasis has become

evident with the discovery of microRNAs (miRNAs), which are
noncoding RNAmolecules of an average of 21–22 nt in length (16).
miRNAs bind to the 39 untranslated region of mRNAs, resulting in
inhibition of translation or degradation of mRNA, thereby pro-
viding mechanisms for posttranscriptional regulation of gene ex-
pression. A key enzyme in the miRNA biogenesis pathway is the
endonuclease Dicer, which generates 22-nt mature miRNAs.
Therefore, the deficiency for the gene encoding Dicer, dicer1, abol-
ishes generation of miRNAs and their regulatory functions.
It has been shown that a large number of specific miRNAs are

involved in immunological processes, with major roles for miR-
150 and miR-155 in lymphocyte differentiation and function (17,
18). Furthermore, several miRNAs have been identified that are
involved in human monocyte differentiation to DCs in vitro (19–
21). Dicer has also been specifically deleted in several immuno-
logical cell lineages, such as T cells (22–24), regulatory T cells
(25–27), or B cells (28), with drastic consequences for develop-
ment and functions of the relevant cells. In contrast, nothing is
known about the role of Dicer in DCs in vivo. In this report, we
analyzed development and function of Dicer-deficient DCs. Upon
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conditional deletion of dicer1 in CD11c+ DCs, we could not detect

an effect of Dicer deficiency on short-lived resident DC subtypes
in spleen and lymph nodes. However, the dense LC network in the
epidermis could not be maintained in the absence of Dicer. In
addition, LCs displayed a defect in maturation and Ag presenta-
tion. These data identify Dicer-generated miRNAs as key regula-
tors of LC homeostasis and function.

Materials and Methods
Mice

To generate mice deficient in mature miRNAs in DCs, previously described
Dicerflx/flx mice (29) on a mixed C57BL/6 background were crossed with
CD11c-Cre mice (30) (CD11c-Cre-Dicerfl/fl). For tracking Cre expression,
CD11c-Cre-Dicerfl/fl mice were bred to ROSA26-tdRFP mice (CD11c-Cre-
tdRFP-Dicerfl/fl) (31). OT-I and OT-II mice (expressing a transgenic TCR
specific for OVA257–264/MHC H-2Kb or OVA323–339/MHC H-2Ab, re-
spectively) were originally obtained from The Jackson Laboratory (Bar
Harbor, ME). Mice were bred and maintained in a conventional facility
at the Institute of Immunology (Munich, Germany) and used according to
protocols approved by the local animal ethics committee.

Gene expression analysis

To analyze recombination of dicer1 alleles in sorted CD11c+ splenocytes,
genomic DNA was extracted using a commercial kit according to the
manufacturer’s instructions (Qiagen, Hilden, Germany) and genotyping
PCR was performed as described (29). To quantify mRNA expression
levels, RNAwas isolated from sorted red fluorescent protein (RFP)+ spleen
DCs using a RNeasy Mini Kit (Qiagen) or from isolated LCs using
a RNAqueous-Micro Kit (Ambion, Darmstadt, Germany). cDNAwas gen-
erated with SuperScript III First-Strand Synthesis System using random
primers (Invitrogen, Darmstadt, Germany). Quantitative PCR reactions
were run in a CFX96 PCR machine (Bio-Rad, Munich, Germany) using
the LightCycler TaqMan Master Kit (Roche, Mannheim, Germany) and
gene-specific primers (Applied Biosystems, Darmstadt, Germany) accord-
ing to the manufacturer’s instructions. Expression levels were normalized
to ubiquitin c, and relative expression was calculated using the ∆∆CT

method. For quantitative real-time RT-PCR of miRNAs, total RNA includ-
ing the low m.w. fraction was isolated from RFP+ spleen DCs or LCs using
a miRNeasy Kit (Qiagen) or a RNAqueous-Micro Kit (Ambion) modified
for recovery of small RNAs according to manufacturer´s instructions.
Gene-specific reverse transcription was performed for each miRNA using
the TaqMan MicroRNA Reverse Transcription Kit and gene-specific pri-
mers (Applied Biosystems) following the manufacturer’s protocol. Quan-
titative PCR (qPCR) reactions were run in a CFX96 PCR machine (Bio-
Rad) using a LightCycler TaqMan Master Kit (Roche) according to the
manufacturer’s instructions. Expression levels were normalized to RNU19,
and relative expression was calculated using the ∆∆CT method.

Flow cytometry and cell purification

The mAbs used were FITC-, PE-, allophycocyanin-, PECy5.5-, Alexa Fluor
647-, or PerCP-conjugated anti-mouse I-Ab, H-2Kb, CD49b, F4/80, CD11c,
PDCA-1, Langerin, CD24, CD40, CD45, CD86, CCR7, and epithelial cell
adhesion molecule (EpCAM) (eBioscience, Frankfurt, Germany and BD
Biosciences, Heidelberg, Germany). H-2Kb/HSV-glycoprotein B (gB)498–
505 tetramers were purchased from ProImmune (Oxford, U.K.). Single-cell
suspensions of lymphoid organs were obtained by Liberase CI (0.42 mg/ml;
Roche) and DNaseI (0.2 mg/ml; Roche) treatment. Fc block (anti-
FcgRII/III Ab) was included in every staining. To separate epidermal and
dermal sheets, mouse ears were split into dorsal and ventral parts and
incubated for 60 min at 37˚C in PBS containing 0.5% trypsin and 5 mM
EDTA (5). Epidermal sheets were subsequently incubated for 2.5 h in
collagenase 4 (1.5 mg/ml; Worthington, Lakewood, NJ), whereas dermal
sheets were further processed using an enzyme mixture as described by
Bursch et al. (6). Intracellular staining against Langerin was performed
with the BD Cytofix/Cytoperm reagents (BD Biosciences) according to
the manufacturer’s protocol. To analyze LC maturation, epidermal sheets
were incubated for 48 h at 37˚C on complete RPMI media and emigrated
cells were analyzed by flow cytometry. To obtain OT-I and OT-II T cells, cell
suspensions of spleens and lymph nodes of TCR transgenic mice were pre-
pared. OT-I and OT-II T cells were purified using a CD8+ or CD4+ T cell
Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany), respectively,
following the manufacturer’s protocol. For all of the experiments, data were
acquired on FACSCanto2 or sorted on FACSAria flow cytometers (BD

Biosciences) to 88–98% purity after gating out dead cells. Flow cytometric
data were analyzed using FlowJo software (Tree Star, Ashland, OR).

Western blotting

Approximately 0.5 3 106 CD11c+ sorted splenocytes were lysed in buffer
containing 1% Nonidet P-40 and protease inhibitors and loaded onto a 4–
15% gradient gel (Bio-Rad). To detect Dicer protein on Western blots,
Dicer 1416 (a kind gift from the D. Livingston laboratory, Dana Farber
Cancer Institute, Boston, MA) was used. To control for cell loading, blots
were subsequently stained with anti–b-actin Ab (Sigma-Aldrich, Munich,
Germany). Bound primary Abs were detected with appropriate peroxidase-
conjugated secondary Abs (Dako, Hamburg, Germany and Amersham
Biosciences, Freiburg, Germany), and signal intensities were quantified
with ImageJ software (National Institutes of Health, Bethesda, MD).

In vivo cytotoxic T cell assay

Erythrocyte-depleted C57BL/6 splenocytes were pulsed with 2 mg/ml HSV-
gB498–505 peptide (SSIEFARL) for 2 h at 37˚C and subsequently labeled
with 1.67 mM CFSE (CFSEhi population). Unpulsed control cells were
labeled with 0.07 mM CFSE (CFSElow population). A total of 5 3 106

cells of each CFSE-labeled cell cohort were mixed and injected i.v.
Twenty-four hours later, mice were sacrificed and spleens were analyzed
by flow cytometry.

ELISA

For the detection of HSV-specific Abs in the serum, ELISAwas performed
as described (32), using peroxidase-labeled second-step Abs specific for
mouse total IgG or IgG2a.

Immunofluorescence

Mouse ears were mechanically split into dorsal and ventral halves and
incubated in 0.5 M ammonium thiocyanate (Sigma-Aldrich) for 20 min at
37˚C to allow for separation of epidermal sheets from the dermis. After
fixation in acetone for 5 min at room temperature, sheets were blocked in
PBS containing 0.25% BSA and 10% mouse serum and stained with
biotin-conjugated anti–I-A/I-E, followed by Alexa Fluor 555-conjugated
streptavidin (Invitrogen). Sheets were then mounted in Fluoromount
(Southern Biotechnology Associates, Birmingham, AL) and analyzed on
an BX41TF-5 microscope equipped with a F-View II Digital camera and
CELL-BND-F software (Olympus, Hamburg, Germany).

Electron microscopy

Ear tips were fixed in a solution of 3.5% glutaraldehyde or 2.5% glutar-
aldehyde and 2% formaldehyde, freshly prepared from paraformaldehyde,
in 0.1M sodium cacodylate-HCl buffer (pH 7.3). The tissue specimens were
cut in small blocks of 1–2 mm in length and, after thorough washing in the
buffer, postfixed in 2% OsO4 in 0.1 M sodium cacodylate-HCl buffer,
dehydrated in ethanol, and embedded in Araldite (Ted Pella, Redding, CA).
Thin sections were stained with lead citrate and uranyl acetate and examined
in a CM10 electron microscope (Philips, Eindhoven, The Netherlands) at
80 kV. To determine the occurrence of Birbeck granules, LCs were investi-
gated in three blocks from each animal of the two groups. A total of 100 LCs
in the Dicerwt/wt mice and of 60 LCs in Dicer∆/∆ mice were examined.

Contact hypersensitivity response

To induce ear swelling, mice were sensitized with either 25 ml 0.3% 2,4-
dinitro-1-fluorobenzene (DNFB) or 50 ml 0.5% Oxazolone (both Sigma-
Aldrich) in acetone/olive oil (4:1) on the shaved abdomen and on day 5
challenged with 5 ml 0.15% DNFB or 10 ml 0.25% Oxazolone in
acetone/olive oil (4:1), respectively, on both sides of one ear. Swelling
was measured by comparing ear thickness before and 24 h after challenge
using a micrometer (Mitutoyo, Eisenach, Germany).

Migration assay

Mouse ears were mechanically split into ventral and dorsal halves, and the
dorsal halves were floated dermal side down on complete RPMI media
containing 0.1 mg/ml CCL21 (R&D Systems, Wiesbaden-Nordenstadt,
Germany). Ear halves were cultured for 3 d at 37˚C, and after 24, 48,
and 72 h, migratory DCs were collected and halves were transferred to
fresh culture media. Collected cells were pooled and stored at 4˚C until
analysis on day 3 via flow cytometry.

Ag presentation assay

Epidermal sheets were prepared as described and incubated with 0.25
mg/ml OVA protein (Sigma-Aldrich) overnight. Migrated cells and sheets
were washed and incubated further in fresh medium. At day 2 of culture,
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migrated cells were collected, and light-density LCs were enriched using
OptiPrep (Axis-Shield, Oslo, Norway) in a density gradient centrifugation.
Equal numbers of LCs were seeded into the wells of a round-bottom 96-
well plate and cocultured with 2.5 3 104 CFSE-labeled OT-I or OT-II
T cells in complete RPMI medium containing GM-CSF. T cell prolifera-
tion was analyzed by flow cytometry after 60–65 h of culture.

BrdU and TUNEL labeling

Mice were injected with 1 mg BrdU i.p. and kept on 0.8 mg/ml BrdU-
supplemented water for 7 d. Epidermal cell suspensions were stained for
surface markers and BrdU incorporation using the BrdU Flow Kit (BD Bio-
sciences) following the manufacturer’s protocol. For apoptosis detection by
TUNEL assay (In Situ Cell Death Detection Kit; Roche), epidermal cell
suspensions were stained for surface markers. Cells were fixed, permeabi-
lized, and enzymatically labeled with fluorescein–dUTP according to the
manufacturer’s instructions. The percentage of LCs that incorporated
BrdU or dUTP, respectively, was determined by flow cytometry.

Statistical analysis

Data were analyzed using the unpaired, two-tailed Student t test. A p value
,0.05 was considered to be significant. For analysis of fluorescence in-
tensities, the median fluorescence intensity was calculated.

Results
Characterization of Dicer-deficient DCs

To study the role of Dicer and miRNAs in DCs, we crossed mice
containing loxP-flanked dicer1 alleles (floxed; Dicerfl/fl) (29) with
CD11c-Cre transgenic mice expressing Cre in CD11c+ DCs (30).
The resulting CD11c-Cre-Dicerfl/fl (DicerD/D) mice did not exhibit
any obvious abnormalities, were viable and fertile, and were born at
the expected Mendelian ratio (data not shown). We first determined
whether the dicer1 alleles were effectively excised from the DC
genome and analyzed expression of Dicer transcripts and protein
from sorted CD11c+ spleen DCs. PCR on genomic DNA from
FACS-sorted CD11c+ splenocytes showed that the loxP-flanked
alleles (fl/fl) were efficiently recombined in Cre-positive cells
(∆/∆) (Fig. 1A). This deletion led to disappearance of Dicer mRNA
(Fig. 1B). qPCR analysis of the deletion of Dicer mRNA indicated
99.9% efficiency of deletion. Consequently, also Dicer protein was
present only at minimal amounts, as detected by Western blot (Fig.
1C). However, qPCR quantification of some mature miRNAs,
which are known to be expressed in DCs (33; data not shown),
revealed only modestly reduced miRNA levels in Dicer-deficient

FIGURE 1. Dicer deletion and reduction of miRNA levels do not affect splenic DC populations in CD11c-Cre-Dicerfl/fl mice. A, Genotyping PCR on

FACS-sorted CD11c+ splenocytes isolated from CD11c-Cre-Dicerfl/fl and Dicerfl/fl mice. Presence of floxed dicer alleles and Cre recombinase in the sorted

cells is indicated above the gel image. Primer pairs and amplification strategy to discriminate floxed alleles from recombined alleles (∆/∆) are depicted

below the gel image. Bold arrows denote loxP recombination sites; small arrows denote PCR primers. B, qPCR quantification of Dicer mRNA levels in

FACS-sorted RFP+ spleen DCs from control (Dicerwt/wt) and conditionally deleted Dicer (Dicer∆/∆) animals that were bred to ROSA26-tdRFP reporter

mice. Expression levels were normalized to ubiquitin c reference gene levels. Error bars denote SEM (n = 4). C, Detection of Dicer protein by Western

blotting of cell lysates from FACS-sorted CD11c+ splenocytes from control (Dicerwt/wt) and conditional deleted Dicer (Dicer∆/∆) animals. As a loading

control, actin was detected. Relative signal intensities were quantified by normalizing Dicer to actin staining intensities. D, Analysis of miRNA levels in

RFP+ spleen DCs from Dicerwt/wt and Dicer∆/∆ animals by qPCR. miRNA expression levels were normalized to RNU19 reference gene levels. Error bars

denote SEM (n = 4). E, FACS analysis of DC populations in spleens obtained from Dicerwt/wt and Dicer∆/∆ mice. Percentages of cells that fall into each gate

(mean 6 SEM, n = 5–6) are indicated. All of the populations depicted were gated on live cells; NK cells and macrophages were gated out by staining with

CD49b and F4/80, respectively. Data were combined from two independent experiments with similar results.
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DCs (Fig. 1D). For example, miR-223 and miR-320 were ∼2-fold
reduced in DCs from DicerD/D mice, whereas we could not detect
reduced expression of miR-10a. Consequently, the frequencies and
total cell counts of splenic cDCs (CD11chighMHC II+) and pDCs
(CD11cintPCDA-1+) were not significantly different between both
mouse strains (Fig. 1E), and these cells showed normal surface
expression of typical surface markers (data not shown). Further
characterization of cDC subsets showed that also the frequencies
of CD8a+ and CD8a2 DCs were not significantly altered (data
not shown). The numbers of other leukocyte cell populations
from spleens, such as T and B cells, NK cells, macrophages,
thymocytes, and immature as well as mature neutrophils, were
also similar between DicerD/D and CD11c-Cre control (Dicerwt/wt)
mice (Supplemental Fig. 1). To test if this apparent normality of DC
phenotype and differentiation was eventually accompanied by
functional defects, we infected mice i.v. with HSV. However,
DicerD/D mice mounted normal HSV-gB–specific cytotoxic T
cell responses as detected with the respective MHC multimers
(Fig. 2A). These CD8+ HSV-gB–specific CTLs were functionally
indistinguishable from those found in wild-type mice as revealed

by in vivo cytotoxic assays (Fig. 2B). In addition, DicerD/D mice
generated identical HSV-specific Ab responses as compared with
wild-type control animals (Fig. 2C). Because DCs are necessary
for the induction of antiviral T cell and B cell responses, these
findings suggest that DCs from DicerD/Dmice are not functionally
defective.

CD11c-mediated Dicer ablation results in reduction of specific
DC subsets

To further assess the phenotype of DCs in the absence of Dicer, we
performed flow cytometric analysis of DC subsets in lymph nodes.
We could not detect differences in cDCs of mesenteric lymph nodes
(Fig. 3A). The cDC population in sLNs can be further subdivided
into blood-derived, resident DCs (CD11chighMHC II+) and migra-
tory DCs (CD11cintMHC IIhigh) consisting of epidermal LCs and
dermal DCs immigrating from skin. This migratory DC subgroup
from skin was significantly decreased in DicerD/D mice (Fig. 3A).
To differentiate the various DC populations from skin, we per-
formed further characterization by flow cytometry. Using mAbs
specific for MHC class II, Langerin, and EpCAM, we differenti-
ated between LCs and Langerin+ or Langerin2 dermal DCs. As
shown in Fig. 3B, we found a 12-fold reduction of MHC II+Lan-
gerin+ LCs in the epidermis of CD11c-specific DicerD/D animals
(p = 0.0032). Consequently, also the transmigrating LCs found in
underlying dermal regions were nearly undetectable (Fig. 3B, der-
mis). In contrast, the other twomain dermal DC subpopulations, the
Langerin+ and Langerin2 dermal DCs, which are both EpCAM2,
were present at normal frequencies (Fig. 3B).
To ensure that the few LCs found in the epidermis of DicerD/D

mice were actually expressing Cre and would not be cells escaping
the loxP rearrangement due to lack of Cre expression, we analyzed
the LCs from epidermal sheets of CD11c-Cre-tdRFP-Dicerfl/fl

mice. Despite significantly lower numbers of LCs in the
epidermis of CD11c-Cre-tdRFP-Dicerfl/fl mice as compared with
those found in CD11c-Cre-tdRFP-Dicerwt/wt littermates, the per-
centages of RFP+ LCs were nearly identical (Fig. 3C) and there-
fore indicative for Cre expression. As a consequence, only back-
ground levels of Dicer mRNA could be detected by qPCR in
sorted LCs from Dicer∆/∆ mice (Fig. 3D). This indicated that the
few LCs found in DicerD/D mice actually deleted dicer1 with a de-
letion efficacy of 99.1%. Also, the analysis of miRNA-223 indi-
cated a deletion efficacy of 93.2% for this miRNA in LCs (Fig.
3D). The Dicer-deficient remaining LCs showed ∼30% enlarged
cell sizes as indicated by an increased forward scatter signal dur-
ing flow cytometry (Fig. 3E; p = 0.0002). Steady-state surface
expression levels of other typical LC markers, such as MHC class
II and CD24 (Fig. 3C), and CD11c, CD40, CD86, and CCR7
(see below, Fig. 6B) were unaltered as compared with those of
Dicerwt/wt mice. However, Dicer-deficient LCs expressed only half
the amount of Langerin as compared with that of their wild-type
counterparts (Fig. 3E; p = 0.0057) as well as substantially de-
creased levels of TGF-bRII (Fig. 3E).

Dicer-deficient Langerhans cells do not develop Birbeck
granules and are lost with age

This selective loss of LCs from the skin was also confirmed by
histological analysis of epidermal sheets (Fig. 4A). In 8- to 9-wk-old
mice, Dicer∆/∆ LCs were distributed sparsely but equally in the
epidermis. Quantification of LCs revealed ∼12-fold reduction of
Dicer∆/∆LCs (Fig. 4C), similarly to our observations by flow cytom-
etry (Fig. 3B). The morphology of the remaining Dicer∆/∆ LCs was
different, because they occupied a larger area and had longer den-
drites (Fig. 4A). It remains to be seen whether this change of cell
shape is directly correlated to the loss of dicer1 expression or

FIGURE 2. CD11c-Cre-Dicerfl/fl mice do not exhibit impaired immunity

to systemic viral infection. At day 0, Dicerwt/wt (n = 5) and Dicer∆/∆ (n = 5)

mice were infected systemically with HSV-1 strain KOS (i.v. 13 105 PFU).

Control mice (n = 5) received PBS i.v.A, The frequency of HSV-gB–specific

CD8 T cells in peripheral blood at day 10 postinfection was determined by

staining with gB498–505–MHC tetramer complexes. Peripheral blood cells

were acquired by flow cytometry and gated on CD8+ lymphocytes. FACS

plots are representative for a sample from each group. Numbers denote

frequency of H-2Kb/gB498–505–positive cells as percentage of CD8+

T cells 6 SEM. B, On day 25 postinfection, mice were subjected to an

in vivo cytotoxic T cell assay. A mixture of HSV-gB–SSIEFARL peptide-

loaded target cells (CFSEhigh) and control cells (CFSElow) was injected i.v.,

and the specific lysis was analyzed by flow cytometry 24 h later. A repre-

sentative plot from each group is shown. Numbers denote frequency of cells

in each gate as a percentage of the total CFSE-labeled population. C, On

days 6 and 23, sera were analyzed for HSV-specific total IgG and IgG2a Abs

using ELISA. Error bars denote SEM.
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a consequence of decreased LC density. In contrast, no differences
in other leukocyte populations of the skin, such as dendritic epider-
mal T cells (CD45+TCRgd+), could be detected (data not shown).
The loss of LCs was increasing with age, because young DicerD/D

mice at the age of 10 d still contained normal numbers of LCs (Fig.
4B, 4C). This was not due to lack of Cre expression in the animals,
because 10-d-old CD11c-Cre-tdRFP-Dicerfl/fl mice had already
uniformly RFP+ LCs in the skin (data not shown). In contrast,
with increasing age, their LC numbers decreased drastically, and
at 6 mo of age hardly any LCs could be found (Fig. 4B, DicerD/D, 6
mo). The extremely few LCs in old mice were mostly clustered in
“patches” (Fig. 4B, DicerD/D, 6 mo). In the epidermis of 18-mo-old
animals, only extremely fewLCs could be found, among them some
LCs with giant extremities (Fig. 4B, bottom panel).
To further analyze LCs, we performed electron microscopy

studies. LCs were distinguished from keratinocytes in thin sections
by the presence ofBirbeck granules and the absence of thick bundles

of intermediate keratin filaments and desmosomes (Fig. 4D). Al-
though the frequency of LCswas not studied quantitativelywith this
method, these cells were clearly less frequently present in the epi-
dermis of Dicer∆/∆ mice as compared with control Dicerwt/wt ani-
mals, confirming our analysis by flow cytometry (Fig. 3B) and
histology (Fig. 4A, 4B). Whereas Birbeck granules were present in
87% of randomly sectioned LCs in the Dicerwt/wt mice, they were
observed in only ∼7% of the LCs examined in the Dicer∆/∆ mice.
Taken together, ablation of Dicer led to a progressive loss of LCs in
the epidermis with time, with some remaining cells that showed
altered morphology, lower expression levels of Langerin (Fig. 3E),
and lack of Birbeck granules (Fig. 4D).

Dicer-deficient Langerhans cells have a proapoptotic gene
expression signature

Given the pivotal function of Dicer in miRNA biogenesis, we
expected that absence of Dicer in LCs would result in profound

FIGURE 3. CD11c-mediated deletion of Dicer results in the absence of specific DC populations in peripheral lymphoid organs and in the skin. A, FACS

analysis of DC populations in mesenteric lymph nodes and sLNs obtained from control Dicerwt/wt and Dicer∆/∆ mice. Percentages of cells that fall into each

gate are indicated (mean 6 SEM, n = 5–6). All of the populations depicted were gated on live cells; NK cells and macrophages were gated out by staining

with CD49b and F4/80, respectively. Combined data from two independent experiments with similar results are shown (pp , 0.05). B, FACS analysis of

single-cell suspensions from epidermis and dermis obtained from Dicerwt/wt and Dicer∆/∆ animals. Epidermal and dermal cell populations shown are gated

on CD45+ cells or, for analysis of dermal cell populations based on Langerin and EpCAM, on CD45+MHC II+ cells. Numbers on plots indicate cells in each

gate as a percentage of CD452 cells (mean6 SEM; n = 4). C, FACS analysis of CD45+-gated epidermal cells derived from Dicerwt/wt and Dicer∆/∆ animals.

Percentages of RFP+ LCs are indicated (mean 6 SEM; n = 3). D, qPCR analysis of Dicer mRNA and miR-223 miRNA levels in FACS-sorted LCs pooled

from 3 Dicerwt/wt or 14 Dicer∆/∆ animals. Values indicated represent relative expression levels in LCs from Dicer∆/∆ and Dicerwt/wt animals. Expression was

normalized to ubiquitin c (Dicer) or RNU19 (miR-223). E, CD45+MHC II+Langerin+ LCs from Dicerwt/wt and Dicer∆/∆ animals were assessed for their size

by forward scatter measurement (top panel) and their Langerin (middle panel) and TGFbRII (bottom panel) expression levels by FACS staining.

Representative histogram overlays of Dicerwt/wt (gray) and Dicer∆/∆ (open) LC measurements are shown. Graphs indicate mean 6 SEM (n = 3). Data

are representative of at least three independent experiments. ppp , 0.01; pppp , 0.001.
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changes in gene expression profiles. To determine whether in-
dividual genes or gene sets were differentially expressed between
Dicer-deficient and wild-type LCs, we purified LCs from epidermal
layers of the skin and analyzed gene expression using microarrays.
Due to the extremely low numbers of LCs in Dicer-deficient ani-
mals, we had to include amplification steps before analysis. How-
ever, we could not detect individual genes that were differentially
expressed with statistical significance (data not shown). Gene set
enrichment analysis using Gene Ontology (GO) biological process
terms identifies overrepresentation of genes belonging to a given
functional GO term in an ordered list of genes. Differences in bi-
ological processes between DicerD/D LCs and wild-type LCs can
be revealed this way, and we therefore analyzed the differentially
expressed gene list for enrichment of genes belonging to biolog-
ical process GO terms. The amount of overrepresentation is as-
sessed with a statistical score. Two enriched GO terms, “induction
of apoptosis by intracellular signals” (GO.ID: 0008629; p =
0.0145) and “regulation of caspase activity” (GO.ID: 0043281;
p = 0.0111) contain proapoptotic genes. Also the proapoptotic
gene bcl2l11 (encoding for Bim), belonging to the enriched GO
category “postembryonic organ development” (GO.ID: 0048569;
p = 0.0064), is differentially regulated in DicerD/D LCs. Verifica-
tion of differential gene expression by qPCR on mRNA samples
from LCs proved to be very difficult due to the extremely low
numbers of DicerD/D LCs in the skin. Nevertheless, pooling the
few DicerD/D LCs from the skin of dozens of mice allowed the

isolation of sufficient amounts of mRNA for the verification of
a few genes (Fig. 5A). This analysis showed that the expression of
dicer1 in the purified DicerD/D LCs was reduced to .99% as
compared with Dicer-sufficient LCs and served as a quality con-
trol (Fig. 5A). Furthermore, genes predicted by the GO term anal-
ysis, such as myc and bcl2l11 (bim), were indeed expressed differ-
entially in DicerD/D LCs (Fig. 5A). The absence of Dicer reduced
the expression of Myc transcripts ∼17-fold in LCs, whereas the
expression levels of Bim increased 5.3-fold (Fig. 5A). Altogether,
these data suggest that Dicer-deficient LCs might be engaged in
active apoptosis.
To test this hypothesis, we performed in vivo BrdU labeling

and TUNEL assays to determine turnover and cell death of LCs.
During the 7-d period of BrdU labeling, ∼13% of wild-type LCs
did incorporate BrdU (Fig. 5B). This rate of BrdU incorporation
indicates the total turnover time for wild-type LCs to be ∼53.8 d
and confirms previous publications that estimated 53–78 d as turn-
over time of LCs in absence of inflammation (reviewed in Ref.
34). In marked contrast, 36% of Dicer-deficient LCs incorporated
BrdU (Fig. 5B), indicating a nearly three times faster turnover of
only 19.4 d. TUNEL assay revealed an ∼7-fold increased rate of
apoptosis in DicerD/D LCs as compared with that in Dicer-sufficient
LCs (Fig. 5B). Therefore, ablation of Dicer leads to modulation of
gene expression involved in apoptosis of LCs. This enhanced the
turnover and increased the apoptosis rate, resulting in progressive
loss of DicerD/D LCs. From these results, we conclude that miRNAs

FIGURE 4. Progressive loss and altered mor-

phology of LCs in the absence of Dicer. A and B,

Immunofluorescence analysis using Alexa Fluor

555-labelledMHC II–mAb of epidermal sheets from

(A, originalmagnification340) 9-wk-old or (B, orig-

inal magnification 320) 10-d-, 6-, or 18-mo-old

Dicerwt/wt and Dicer∆/∆ animals are shown. The skin

of 6-mo-old and older mice barely contained LCs.

The rare areas containing LCs were chosen for dis-

play (10 d and 6 mo, scale bar, 100mm; 18 mo, scale

bar, 50 mm). C, Quantification of LCs in epidermal

sheets at the indicated age. The graph shows the

mean of at least five fields counted from at least

twomice per genotype (pppp, 0.0001).D, Electron

microscopy images of the epidermis from Dicerwt/wt

and Dicer∆/∆ animals show LCs surrounded by kerati-

nocytes with bundles of keratin filaments (asterisks).

The arrows point at three Birbeck granules, two of

which are enlarged in the insets (original magnifi-

cation 36500; insets, 339000). Note the absence

of Birbeck granules in the LCs of the Dicer∆/∆

mouse. Scale bars, 1 mm; inset scale bar, 0.1 mm.
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regulate key cellular events, such as proliferation and survival of
LCs in the steady state.

Dicer-deficient Langerhans cells are migratory but display
differential capacities to activate CD8+ versus CD4+ T cells

To analyze if DicerD/D LCs displayed functional deficiencies be-
fore they undergo apoptosis, we next assessed the LC migratory
capacity, a hallmark of LC biology. To this end, ear explants were
cultured in medium containing the chemokine CCL21, and we
analyzed by FACS cells migrating out of the explants. As shown in
Fig. 6A, numbers of migratory epidermal LCs from DicerD/D mice
are strongly reduced compared with those from controls. This
reduction highly correlated with the reduced number of LCs in the
skin of DicerD/D mice in steady-state conditions (Fig. 3B), imply-
ing that the Dicer-deficient LCs can be mobilized comparable to
wild-type LCs upon a chemotactic stimulus. Culture of epidermal
sheets is known to induce maturation of LCs, and a concomitant
modulation of typical maturation markers on the surface of LCs
can be observed (35). Consequently, wild-type LCs upregulated
surface expression of MHC class I and class II molecules, CCR7,
CD40, and CD86 upon exit of the epidermis (Fig. 6B). In marked
contrast, Dicer-deficient LCs were unable to upregulate these mol-
ecules to the same extent (Fig. 6B), except for MHC class I and
CCR7, which were modulated normally (Fig. 6B). Upregulation of
CCR7, the chemokine receptor for CCL21, allowed DicerD/D LCs
to migrate out of the epidermal layers of the skin (Fig. 6A). Func-
tional consequences of this maturation deficiency were observed
in Ag presentation assays with T cells. When LCs were incubated
with OVA protein overnight and cocultured with OVA-specific
CD8+ OT-I or CD4+ OT-II T cells, Dicerwt/wt LCs efficiently in-
duced proliferation of OT-II cells, as measured by dilution of the
CFSE dye (Fig. 6C). In contrast, DicerD/D LCs could induce only
a 2- to 3-fold lower percentage of divided T cells in these assays
(Fig. 6C). Although Ag presentation via MHC class II was se-
verely inhibited in absence of Dicer, we could not detect differ-
ences in priming of CD8+ OT-I T cells. These findings indicate
that the uptake of exogenous protein Ag and its consecutive cross-
presentation via MHC class I was not affected by Dicer deficiency
(Fig. 6C) and are consistent with the intact upregulation of MHC
class I by DicerD/D LCs (Fig. 6B). Taken together, these data show
that Dicer regulates the phenotypical and functional maturation of

LCs and that absence of Dicer renders LCs defective to activate
MHC class II-restricted CD4+ T cells.
A commonmethod to test for cutaneous immune responses is the

topical application of hapten Ag to the skin to induce contact
hypersensitivity (CHS). It is thought that LCs play a central role in
this skin-mediated immunity, although recent findings with a differ-
ent LC ablation model generated controversial data (reviewed in
Ref. 36). To test the function of Dicer∆/∆ LCs in vivo, we sensi-
tized and challenged the mice with DNFB. The Dicer∆/∆ mice used
for these tests were older than 9 wk and had already considerably
lower numbers of LCs in their epidermis as compared with those
in wild-type mice (Fig. 4C). Nevertheless, the measured ear swell-
ing was similar in both groups (Fig. 6D). This might in part be due
to the fact that DNFB can also be transported to the lymph nodes
by dermal DCs, and therefore this test seems not to address spe-
cifically the function of LCs, as previously suggested (37). We
therefore performed CHS with the hapten Oxazolone at a low dose
previously described to selectively target LCs (38). However, also
in this setting, no difference between Dicer∆/∆ mice and Dicerwt/wt

mice could be observed (Fig. 6D). Taken together, our data sug-
gest that Dicer controls LC maturation and Ag presentation via
MHC class II, but this deficiency does not directly cause deficient
skin immunity as tested with CHS.

Discussion
In this study, we have shown that loss of Dicer leads to progressive
ablation of LCs in the epidermis of the skin. As indicated by the
almost complete absence of miR-223, the CD11c promoter-driven
expression of Cre recombinase resulted in efficient disruption of
dicer1 in these cells. Dicer-deficient LCs showed lack of Birbeck
granules, normally a typical attribute of LCs, furthermore, a dis-
turbed expression of surface molecules and reduced Ag presenta-
tion capacities to CD4+ T cells, increased turnover, reduced half-
lives, and increased rates of apoptosis.
A complexmolecular network of signal transducers, transcription

factors, and miRNAs is emerging controlling proliferation and apo-
ptosis (39, 40). One of the best-studied miRNA families in this
regard is the miR-17-92 cluster. Two studies identified Bim as
a target for miRNAs of the miR-17-92 cluster and showed elevated
levels of Bim protein in its absence (28, 41). Dicer-deficient LCs in
our study expressed nearly 6-fold elevated mRNA levels of the

FIGURE 5. Dicer-deficient LCs display an apoptotic expression signature and increased turnover. A, qPCR analysis of genes predicted to be differentially

regulated by microarray analysis. FACS-sorted LCs were pooled from 3 Dicerwt/wt or 14 Dicer∆/∆ animals. Values indicate ratios of Dicer∆/∆/Dicerwt/wt gene

expression levels. Expression was normalized to ubiquitin c reference gene levels. B, CD45+MHC II+ LCs in single-cell suspensions from epidermis of 7 d

BrdU-fed mice were analyzed by flow cytometry for BrdU incorporation (left panels). TUNEL-staining of LCs is shown (right panels). Graphs indicate the

mean 6 SEM (n = 3–4). pp , 0.05; ppp , 0.005.
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proapoptotic Bim, indicating a potential involvement of this apo-
ptosis pathway also in the disappearance of DicerD/D LCs. One
possibility for the lack of effect on spleen DC populations after
dicer1 deletion could be the appearance of DCs that escaped de-
letion of the dicer1 alleles. However, in very young mice also,
DicerD/D LCs were present in the epidermis in normal numbers
but decreased to almost complete absence with increasing age of
the mice. This is in contrast to a previous report describing skin-
repopulating LCs that escaped Cre-mediated deletion of TGFb1
and TGFbRII alleles (42), but such a phenomenon certainly
depends on the type of promoter driving the Cre transgene.
However, although.90% of LCs do already express Cre and are

RFP+ at the age of 10 d, the initial seeding of the epidermis with

LCs in DicerD/D mice is normal. We therefore assume that at this
time point Dicer has been inactivated recently, but effects are not
yet visible. Similarly, .90% of DCs in spleen and lymph nodes
were RFP+ in CD11c-Cre-tdRFP-Dicerfl/fl mice (data not shown),
and Dicer mRNA was undetectable in these cells, but they devel-
oped and functioned normally. The presence of substantial amounts
of miRNAs at nearly undetectable levels of Dicer protein in spleen
DCs could have several possible reasons. First, miRNAs can even-
tually be generated in the absence of Dicer. However, this seems
unlikely because other enzymes could not replace Dicer function-
ally in ubiquitously Dicer-deficient mice, which are not viable (43).
Also, Dicer is necessary to generate mature miRNAs in T cells,
and its function was not redundant (24). Second, the highly reduced

FIGURE 6. Dicer deficiency compromises maturation and function of LCs. A, DCs migrating out of ear explants from Dicerwt/wt and Dicer∆/∆ animals in

the presence of CCL21 were analyzed by FACS. Percentages of migrated Langerin+CD1032 LCs are displayed (mean 6 SEM, n = 6; combined results

from two independent experiments are shown). B, Epidermal sheets from Dicerwt/wt and Dicer∆/∆ animals were digested to release LCs immediately (day 0)

or cultured for two more days (day 2). Expression of surface markers on CD45+Langerin+ LCs was assessed using FACS. Shown are histogram overlays of

Dicerwt/wt (gray) and Dicer∆/∆ (open) LC staining intensities. Results are representative of two experiments (n = 2–6). C, Epidermal skin explants were

cultured overnight in medium containing 0.25 mg/ml OVA protein and after washing further cultured until day 2. Emigrated LCs were enriched, and equal

numbers of LCs were cocultured with CFSE-labeled OT-I or OT-II T cells. T cell proliferation was assessed by flow cytometry after 60–65 h. One

representative experiment out of two independent experiments with a similar outcome is shown (OT-II, n = 6; OT-I, n = 3–4). Dashed line, control without

LCs. The graph shows the percentage of T cells having proliferated with graded doses of LCs. D, Dicerwt/wt and Dicer∆/∆ animals were sensitized with

hapten (0.3% DNFB or 0.5% Oxazolone) on their backs. Five days later, ear swelling was elicited by challenging the mice with the same hapten on both

sides of one ear. After 24 h, ear swelling was measured as the difference between ear thickness prior to and after challenge. Points represent individual mice

(n = 6–7). N.D., not detectable.
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amounts of Dicer protein in spleen DCs are sufficient to generate

mature miRNAs. Although it seems unlikely, we cannot generally

rule out this possibility. Third, the half-life of miRNAs is too long

and does not decrease beyond critical levels during the life span of

Dicer∆/∆ spleen DCs. A delay between the disappearance of Dicer

protein and mature miRNAs might be considered as a reason for an

absent phenotype in spleen and lymph node DCs as well as normal

initial LC development. A recent study also described such a delay

after Cre-mediated Dicer deletion early in embryogenesis. Careful

examination of residual miRNA expression in affected tissues sug-

gests a 3–10 d delay between elimination of Dicer and depletion of

specific miRNAs (44). The mechanisms influencing miRNA sta-

bility are not yet fully understood, although multiple factors in-

cluding cis- and trans-acting modifications and proteins regulating

their half-lives have been discovered (45). Generally, miRNAs are

considered to be stable molecules, with half-lives ranging from

hours to days. Certain miRNAs, such as miRNA-208, have a

half-life of .12 d (46). In contrast, BrdU studies determined the

half-life of DCs in mesenteric lymph nodes and spleen to be 1.5–3

d and of DCs in cutaneous lymph nodes as 7–9 d (47, 48). Tissue-

derived lymph node DCs had a half-life of 5–7 d as determined in

parabiosis studies (49). It is therefore possible that the half-life of at

least some mature miRNAs might be longer as compared with the

half-life of spleen DCs. Therefore, DicerD/D DCs of spleen and

lymph nodes may contain functional miRNAs despite efficient de-

letion of Dicer. We detected a ,50% decrease for some selected

miRNAs, which could indicate that only a part of the spleen DC

miRNA content might be due to de novo synthesis, whereas a large

part could be residual molecules.
LCs gain cell size, and it is possible that this is due to the decrease

of LC population density, leaving more “space” or “niches” avail-

able for each individual remaining LC. In DicerD/D LCs, we could

identify differential regulation ofmyc, which, when overexpressed,

increases cell size during all stages of B cell differentiation (50).

However, the loss of Dicer instead caused a strongly decreased

expression of myc in LCs, and it is hardly conceivable that such

a loss of expression may lead to the observed increased cell size of

DicerD/D LCs. Myc is also an important member of the cellular

proliferation regulatory network and is part of a well-studied feed-

back loop involving the miR-17-92 cluster miRNAs and the critical

cell cycle regulator E2F (39). Recently, other miRNAs have also

been discovered that target Myc (51, 52). Both up- as well as down-

regulation of myc expression are linked to apoptosis, depending on

the experimental system used (53, 54). Thus, the decreased levels of

Myc mRNA in DicerD/D LCs might also contribute to apoptosis.

Also, the observed loss of TGFbRII expression might contribute to

LC disappearance, because TGFbRII-deficient LCs are lost from

epidermis (42). Although TGFbRII expression did not disappear

completely in DicerD/D LCs, the observed lower expression levels

could be sufficient to cause survival disadvantages.
We found that CHS is not altered in DicerD/D mice. Currently,

the role of LCs in skin immunity is controversially discussed.

With gene-targeted mice where LCs can be ablated by the use of

diphtheria toxin, it was found that CHS responses were either

reduced in one model (37) or completely unaffected (55) by LC

ablation in a second model. With a constitutive LC ablation mod-

el, it was even found that CHS was increased, suggesting a regu-

latory function for LCs (56). Therefore, it is still unclear which

roles LCs play in skin immunity (34). We used Dicer∆/∆ mice that

were older than 9 wk in our CHS assays. We could show that at

this age the absence of Dicer had caused already a severe loss of

LCs, with nearly no LCs left in the skin. Therefore, our results

indicate that either the few remaining DicerD/D LCs were sufficient

to elicit hypersensitivity or, as suggested in other models (55), that
LCs play no obvious role in CHS.
Our finding that Dicer-deficient LCs fail to upregulate matura-

tion markers is in line with other reports showing implications for
miRNAs at certain developmental stages (17). MiR-155, which is
upregulated in human monocyte-derived DCs in response to LPS
(19, 21), has been shown to play a role in DC maturation. How-
ever, miR-155–deficient DCs do not fail to upregulate maturation
markers (18); therefore, other miRNAs lacking in DicerD/D LCs
are likely to be involved in the maturation process. Thus, the re-
duced Ag presentation capacity observed in DicerD/D LCs might
be a consequence of miRNA-dependent regulation of DC activa-
tion. The fact that only MHC class II-mediated presentation is
inhibited, but not MHC class I cross-presentation, indicates that
uptake of protein Ag might not be affected by loss of Dicer.
Currently, we do not know which genes are targets of miRNA reg-
ulation in this context nor if the deficiency to upregulate MHC
class II can be overcome by further signals, such as anti-CD40 or
microbial stimuli. This issue is subject to further studies.
WealsoattemptedtoidentifywhetherspecificmiRNAscontributed

to the observed phenotype in Dicer-deficient LCs via correlation of
Dicer-dependentgeneexpressionchangeswithoccurrenceofspecific
miRNAseedmotifs in the 39 untranslated region of affected genes, as
has been reported forDicer-deficientB cells (28).However, using the
recently developed Sylamer software (57), we did not identify a spe-
cific miRNA responsible for the gene expression changes between
wild-type and DicerD/D LCs. The fact that reduced levels of many
miRNAs affect simultaneously the expression of many genes, com-
pounded by secondary effects of genes influencing each other’s ex-
pression, might account for the failure to identify specific miRNAs.
Specific deletion of individual miRNAs or miRNA clusters in LCs is
required to gain more insight into the role of individual miRNAs in
these processes.
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Figure S1. CD11c-Cre-mediated deletion of Dicer has no effect on non-DC leukocyte 

populations. FACS analysis of B cells, T cells, NK cells, macrophages and 

neutrophils in the spleen (A) and T cells in the thymus (B). Percentages of cells that 
 

fall into each gate (mean ± SEM, n=6) are indicated. All populations depicted were 

gated on live cells; for analysis of neutrophils F4/80
-
 cells were gated.   
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7 Discussion 

Cells undergoing developmental transformation or terminal differentiation dramatically alter 

their mRNA profile. Such changes in cellular identity are predominantly driven by transcrip-

tion factors. However, the interaction of transcription factors with miRNAs, which, according 

to Kosik et al., can ‘canalize’ gene expression by operating in feedback or feedforward loops, 

may ultimately stabilize or promote the new cellular identity (reviewed in Kosik, 2010).  

DCs require transcription factors to guide their differentiation from hematopoietic precursors 

via various intermediates into the different DC subsets (reviewed in Zenke and Hieronymus, 

2006). When immature DCs in the steady-state encounter pathogens, it is vital that they can 

quickly respond to the threat by becoming mature, in order to initiate protective adaptive im-

mune responses. Research in the past few years has shown that transition states, such as de-

velopment and terminal differentiation, are cellular conditions in which miRNAs are typically 

involved. This has been well documented for other immune cells, in particular for T and B 

lymphocytes. For example, the survival of lymphocyte progenitors relies on the expression of 

miR-17∼92, while their terminal differentiation in response to activating signals is regulated 

by miR-155 (reviewed in O'Connell et al., 2010b).  

Given the various cell types and subsets thereof that arise from hematopoietic stem cells, it is 

conceivable that transcription factor-controlled DC lineage and subset fate decisions may be 

reinforced by miRNAs. As DCs need to respond to and integrate environmental signals rapid-

ly, the concept of miRNA control of the maturation process appears reasonable. Here, we pro-

vide evidence that both DC differentiation and maturation is critically dependent on miRNA 

regulation. 

7.1 miRNAs regulate DC differentiation 

We analyzed the miRNA expression profiles in different DC subsets (Publication I) and 

identified several miRNAs that were differentially expressed in Flt3L BM-derived cDCs and 

pDCs. Moreover, some selected miRNAs were differently expressed in inflammatory DCs, 

which were generated in GM-CSF BM cultures, as compared to Flt3L cDCs. We have further 

demonstrated that miRNAs can influence DC lineage fate decisions, as knockdown of miR-
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221 or miR-222 during DC differentiation altered the ratio of pDCs/cDCs towards a higher 

pDC frequency in vitro. 

For our miRNA analysis we used cDCs and pDCs generated in Flt3L BM cultures as they can 

be generated in large numbers and closely resemble their in vivo counterparts. They share 

properties such as surface marker expression (apart from CD4 and CD8 expression), TLR and 

chemokine receptor expression, cytokine production upon stimulation and, importantly, tran-

scription factor expression and dependence for differentiation (Naik et al., 2005). Given these 

similarities, we assume that miRNAs regulate differentiation and function of in vivo and in 

vitro generated DCs analogously. 

An increasing number of reports indicate that miRNAs play a role in the differentiation of 

DCs, with certain miRNAs being identified as having have key roles in either DC lineage 

differentiation or DC subset differentiation, many of which are represented in our miRNA 

array data. 

7.1.1 miRNAs regulate DC lineage and subset differentiation by targeting Notch/Wnt 

signaling 

As described in section 4.1.2, CDPs develop from MDPs in the BM and split then into pDC 

and cDC lineages. Notch signaling appears to direct the differentiation from MDPs into CDPs 

(Ohishi, 2001). Cooperative action between the Notch and the downstream Wnt signaling 

pathway is thought to be required for steering CDPs into cDC direction. In contrast, directing 

CDPs towards pDC differentiation requires Notch signaling, but may be blocked by Wnt sig-

naling (Zhou et al., 2009a). Thus, Wnt signaling might determine the direction of DC differ-

entiation (reviewed in Cheng et al., 2010).  

In our study, we found that miR-21 was ∼7-fold more highly expressed in cDCs than in pDCs, 

and was similarly highly expressed in cDCs and GM-CSF DCs (Publication I, Table 1 and 

Fig. 4). Interestingly, Hashimi et al. showed a requirement for miR-21-induced repression of 

the Notch ligand Jagged-1 in the terminal differentiation of human monocyte-derived DCs 

(Hashimi et al., 2009). pDCs, however, do not express Jagged-1, but express Notch ligands of 

the Delta-like (Dll) family instead (Kassner et al., 2010). Remarkably, Dll-1 is predicted by 

TargetScan5.1 to contain binding sites for several miRNAs, miR-15b, miR-103 and miR-107, 

all of which are overrepresented in pDCs compared to cDCs (unpublished observation and 

Publication I, Table 1). Thus, in order to allow for differentiation of DC subsets, miR-21 ex-
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pression might be relevant for cDC differentiation, while, analogously, miR-15b, miR-103 

and miR-107 expression might be relevant for pDC differentiation. The different requirements 

are possibly reflected in the respective cDC and pDC miRNA expression patterns. Besides 

miR-21, Hashimi et al. also found miR-34a to be important for DC differentiation from mon-

ocytes. miR-34a acts through targeting of Wnt-1 (Hashimi et al., 2009), which is believed to 

be downstream of Notch (reviewed in Cheng et al., 2010). However, we did not observe dif-

ferential expression of miR-34a between pDCs and cDCs, suggesting that miR-34a-mediated 

blocking of Wnt-1 is generally important for DC lineage differentiation, but not for DC subset 

specification. Nevertheless, more miRNAs directing DC lineage differentiation by targeting 

the Notch and Wnt pathways might be identified. Supporting this notion, the Notch signaling 

pathway has been shown to be a major target of miRNA regulation in Drosophila (Lai et al., 

2005) and there is evidence of miRNA targeting of a Notch ligand in mice and humans (Ivey 

et al., 2008). 

7.1.2 miRNAs influence DC subset differentiation by controlling the expression of 

transcription factors 

Evidence for miRNA regulation of DC differentiation comes from a recent study by Lu et al., 

who profiled miRNA expression in human monocytes, immature monocyte-derived GM-CSF 

DCs and mature monocyte-derived GM-CSF DCs (Lu et al., 2011). They found miR-221 to 

be upregulated in immature DCs, which was followed by downregulation of miR-221 expres-

sion upon DC maturation. In addition, they provide evidence that the cell cycle inhibitor 

p27
kip1

 is a target of miR-221 and needs to be suppressed during DC differentiation to prevent 

apoptosis. This suggests a role for miR-221 during DC development, while DC maturation 

does not seem to depend on miR-221 expression. Together with our finding that the clustered 

miRNAs miR-221 and miR-222 were more strongly expressed in cDCs than in pDCs (Publi-

cation I, Table 1 and Fig. 1B), these results indicate that miR-221 and miR-222 have a func-

tion in promoting cDC and GM-CSF DC differentiation, but may be irrelevant for differentia-

tion into pDCs. Indeed, miR-221 action might even have an inhibitory effect on pDC 

differentiation, as we have shown that knockdown of miR-221 or miR-222 positively regu-

lates pDC differentiation (Publication I, Fig. 3D). 

Whether the upregulation of a single target gene accounts for the increased pDC/cDC ratio in 

the miR-221/222 knockdown DC cultures, or whether the targeting of multiple genes leads to 

the observed phenotype, remains to be tested. However, we have detected three miR-221/222 
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candidates that are likely to influence pDC versus cDC differentiation: the cell cycle inhibitor 

p27
kip1

, the cytokine receptor c-kit, and the transcription factor E2-2. 

(i) The cell cycle inhibitor p27
kip1

 is a confirmed target of miR-221/222 and its function in 

cDC differentiation has been validated (Lu et al., 2011). We observed similar expression lev-

els of p27
kip1

 in Flt3L pDCs and cDCs (unpublished observations). Derepression of p27
kip1

 by 

knockdown of miR-221/222 in Flt3L DC cultures might stall cDC precursor proliferation 

while not affecting pDC precursors, thus leading to a higher pDC/cDC ratio.  

(ii) Kit, encoding for the stem cell factor receptor c-kit, is expressed on a common pDC and 

cDC precursor (Naik et al., 2007; Onai et al., 2007) and has been identified as a target of miR-

221/222 in hematopoietic stem cells as well as in endothelial cells (Felli, 2005; Poliseno et al., 

2006). Signaling via c-kit is known to promote proliferation and differentiation of hematopoi-

etic stem cells (Kent et al., 2008). Enhanced signaling via c-kit might promote pDC precursor 

differentiation more strongly than cDC precursor differentiation. However, Fujita et al. have 

shown that an activating mutation in the c-kit signaling domain causes a decrease in the 

pDC/cDC ratio (Fujita et al., 2011). Thus, the influence of increased c-kit expression on pDC 

and cDC differentiation remains unclear.  

(iii) When we probed TargetScan for potential miR-221/222 target genes, tcf4, encoding for 

E2-2, was one of the revealed potential targets. Interestingly, E2-2 is known as the master 

transcription factor for pDC lineage specification, controlling the pDC-specific gene expres-

sion program (Cisse et al., 2008; Ghosh et al., 2010). E2-2 is highly expressed in splenic 

pDCs but not in splenic cDCs (Cisse et al., 2008). Our analysis of E2-2 expression in in vitro 

generated pDCs and cDCs shows a similar preferential expression in pDCs (Publication I, 

Fig. 1B). An increased pDC frequency would be the expected consequence of released E2-2 

repression by miR-221/222 knockdown, and exactly this was observed in our study (Publica-

tion I, Fig. 3D). Inversely, it has been shown that deletion of E2-2 in pDCs results in the ac-

quisition of a cDC phenotype displaying cDC properties (Ghosh et al., 2010). 

Thus, while it is not yet clear which mechanism causes the skewed pDC/cDC ratios in miR-

221/222 knockdown DC cultures, it seems unlikely that the exclusive regulation of one gene 

accounts for the observed shift. Rather, as is typical for miRNAs, a transcriptional network 

that is coordinately influenced by miR-221/222 expression is likely to determine DC lineage 

specification. 
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pDC versus cDC lineage specification is not only regulated by the pDC transcription factor 

E2-2, but also by the E2-2 antagonist Id2. Id2 overexpression inhibits pDC differentiation 

(Spits et al., 2000), whereas Id2-deficient mice have increased pDC numbers and reduced 

numbers of CD8α
+
 DCs and LCs (Table 1 and Hacker et al., 2003). Although the antagonistic 

actions of E2-2 and Id2 probably play a dominant role in DC lineage commitment, it might be 

that, in accordance with a hypothesis by Wu et al. (Wu et al., 2009), miRNAs act to reduce 

transcriptional ‘noise’ and thus stabilize transcription factor-induced commitment, or tune the 

transcription factor expression profile and thus shift differentiation towards either pDC or 

cDC direction. The latter is likely to have occurred in our knockdown studies, where we see a 

shifted lineage commitment.  

We have hypothesized that high miR-221/222 expression in cDCs stabilizes the cDC cell fate 

by suppressing E2-2. Conversely, could there be miRNAs that reinforce pDC lineage com-

mitment? Using TargetScan, we analyzed whether Id2 contains miRNA binding sites and 

found that miR-19a and -19b are predicted to target Id2. Indeed, miR-19b is amongst the most 

differentially expressed miRNAs between cDCs and pDCs (Publication I, Table 1), and its 

expression is 3-fold higher in pDCs than in cDCs. Thus, miR-19b might function to control 

Id2 expression in pDC. Whether miR-221/222 and miR-19b represent a pair of antagonistic 

cell fate regulators that act on CDPs before lineage bifurcation, similar to the regulatory role 

that has been suggested for Id2 and E2-2 (reviewed in Reizis et al., 2010), is an intriguing 

question currently being studied. 

Interestingly, our array data demonstrate that several members of the miR-17∼92 and the ho-

mologous miR-106a∼363 cluster are more highly expressed in pDCs than in cDCs. miR-19b, 

-18a and -20a belong to this set of clusters, as well as miR-106a (Publication I, Table 1). The 

miR-17∼92 cluster has emerged as a critical regulator of cellular development (Mendell, 

2008), and has been implicated in the suppression of TGF-β signaling in tumors (Petrocca et 

al., 2008). Notably, Felker et al. have recently demonstrated that TGF-β1 functions as a criti-

cal factor at the bifurcation of pDC versus cDC differentiation and specifically drives cDC 

subset specification by inducing Id2 (Felker et al., 2010). Therefore it would be interesting to 

analyze whether pDC differentiation requires enhanced expression of miR-17∼92 to suppress 

TGF-β signaling. Furthermore, it has been shown that miR-17∼92 miRNAs are highly ex-

pressed especially in lymphocyte progenitors (Xiao et al., 2008). The similarity between 

miRNAs expressed in pDC and lymphocytes is not restricted to the expression of miR-17∼92 
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miRNAs. Our cluster analysis based on cDC, pDC and CD4
+
 T cell miRNA expression pat-

terns clearly shows that pDCs and T cells are more closely related than pDCs and cDCs in 

terms of miRNA expression (Publication I, Fig. 2B). It has been suggested that expression of 

E2-2 in the steady-state is responsible for the expression of key transcription factors in pDCs, 

such as Spib and Irf7, and imparts pDCs with lymphocyte-like features (section 4.1.1.3). 

Whether the miRNA expression pattern in pDCs is also determined by E2-2 expression is not 

yet known. As activated pDCs undergo cell fate conversion to cDCs (Liou et al., 2008), and 

this is accompanied by a several-fold reduction of E2-2 expression, it would be interesting to 

analyze the miRNA profile of activated converted pDCs and compare it with the profile of 

activated cDCs and lymphocytes, to see whether there is an adaptation of the miRNA patterns 

in activated pDCs and cDCs.  

Some other miRNAs are noteworthy in respect to DC subset differentiation: the cluster miR-

23a/24/27a and miR-223. We have revealed that miR-23a, -24, -27a and miR-223 are 2- and 

3-fold more highly expressed in cDCs than in pDCs, respectively, while being similarly high-

ly expressed in cDCs and GM-CSF DCs (Publication I, Table 1). It has been shown recently 

that the transcription factor PU.1 induces transcription of the clustered miRNAs miR-23a, -24, 

and -27a (Kong et al., 2010). Expression of miR-223 might also be driven by PU.1 (Fukao et 

al., 2007). PU.1 controls DC differentiation by inducing the expressing of Flt3 and GM-CSF 

receptors on hematopoietic progenitors (Carotta et al., 2010; Zhang et al., 1996). While being 

highly expressed on CDPs and cDCs, PU.1 is downregulated at the onset of pDC differentia-

tion (Carotta et al., 2010). Downregulation of PU.1 would therefore be expected to lead to 

reduced levels of miR-23a, -24, and -27a upon pDC differentiation, and indeed this was ob-

served in our data. Downregulation of PU.1 and in consequence miR-23a/24/27a might be 

required to stabilize the lymphoid-like gene expression in pDCs. This assumption is under-

scored by a report by Kong et al., who have demonstrated for miR-23a/24/27a suppression of 

lymphopoiesis, but positive regulation of myelopoiesis (Kong et al., 2010). miR-223, which is 

a hematopoietic lineage-specific miRNA, has also been implicated in promoting myeloid lin-

eage development (Johnnidis et al., 2008). Thus, our data suggest that miRNAs involved in 

myeloid versus lymphoid lineage fate decisions also function at the cDC versus pDC lineage 

bifurcation. This is in support of the notion that pDCs actively regulate lineage-specific gene 

expression programs to “antagonize the ‘default’ cDC cell fate” (Ghosh et al., 2010).  

Our miRNA expression analysis also indicates that cDCs express more miR-146a than pDCs. 

miR-146a is known to dampen inflammatory responses by acting in a negative feedback loop 
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on TLR and NF-κB signaling (section 4.3.3). Jurkin et al. have reported differential expres-

sion of miR-146a in human in vitro generated myeloid DC subsets, and in particular demon-

strated ∼6-fold increased miR-146a expression levels in LCs as compared to GM-CSF DCs, 

which was driven by elevated levels of PU.1 in LCs (Jurkin et al., 2010). They concluded that 

constitutively high levels of miR-146a might prevent inappropriate LC activation by com-

mensal bacteria. Translated to our findings, this might indicate a higher activation threshold in 

cDCs and, inversely, an increased susceptibility to activating signals in pDCs. To our 

knowledge, this has not yet been demonstrated. However, Rettig et al. have shown that mono-

cytes have a higher activation threshold than pDCs (Rettig et al., 2010). Whether GM-CSF 

DCs have a similar miR-146-regulated threshold as cDCs is not yet clear. Our analysis 

showed higher expression of miR-146b but lower expression of miR-146a in GM-CSF DCs 

than in cDCs, and vice versa (Publication I, Fig. 4). Differential induction of these miRNA 

isoforms is probably pathway-dependent, and the induction of miR-146b is known to be NF-

κB-independent (Perry et al., 2009), which could provide an explanation for the pro-

inflammatory nature of GM-CSF DCs. Thus, miR-146 might be another example of a miRNA 

having a ‘rheostat’ function, similar to that reported for miR-181a, which sets the threshold in 

T cell priming (Li et al., 2007). 

 

Figure 6: Possible miRNA regulation mechanisms directing or stabilizing cDC and pDC subset 

fates.  

Differentially expressed miRNAs between cDCs and pDCs may regulate DC differentiation and activa-

tion by targeting indicated molecules. For details see text. Verified miRNA targets are indicated in bold. 

miRNAs regulating Wnt/Notch ligands are framed. +/- Notch/Wnt, Notch/Wnt signaling re-

quired/inhibitory. 
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Taken together, the analysis of our data demonstrates that, although transcription factors are 

probably the dominant players in determining DC lineage or subset commitment, miRNAs 

may be critically involved in cell fate decisions by modulating the expression of transcription 

factors. Moreover, as pDCs and cDCs overexpress miRNAs that seemingly oppose the 

respective alternative cell fates, miRNAs might serve to stabilize cell fate decisions. Although 

mostly speculative, the plethora of plausible mechanisms we have presented here 

(summarized in Fig. 6) suggests that there is a substantial contribution of miRNAs in cell fate 

decisions. 

7.2 miRNAs regulate DC survival and function 

By crossing Dicer
fl/fl 

mice with CD11c-Cre mice, we sought to generate Dicer
Δ/Δ

 mice that 

specifically lack miRNAs in DCs (Publication II). Due to our assumption that deletion of 

Dicer would lead to a complete loss of mature miRNAs in DCs and hence to perturbed DC 

development, we expected the mice to have a compromised immune system, resulting for 

example in an autoimmune disease or a myeloid proliferative disorder, as has been observed 

in DC-deficient mice (Birnberg et al., 2008; Ohnmacht et al., 2009). However, this was not 

the case. Despite the absence of Dicer protein in splenic cDCs, we observed only slightly re-

duced miRNA levels in splenic and LN cDCs (Publication II, Fig. 1C and D), which is likely 

due to a several day delay between the loss of Dicer and the disappearance of miRNAs 

(Soukup et al., 2009). The average miRNA half-life has recently been reported to be ∼5 days 

(Gantier et al., 2011). As DCs (excluding the LC subset) are short-lived cells, we suppose that 

this delay exceeds the DC life-span, and in consequence DC development is not affected 

(Publication II, Fig. 1E). Moreover, our Dicer
Δ/Δ

 mice are immunocompetent and develop 

normal T and B cell responses (Publication II, Fig. 2), indicating that DCs are functionally 

intact. In contrast, it has been shown that the development of Dicer-deficient T and B cells is 

impaired (Koralov et al., 2008; Muljo, 2005), but T and B cells are thought to have a half-life 

of several weeks (Forster and Rajewsky, 1990; von Boehmer and Hafen, 1993), and therefore 

are more likely to completely lose miRNAs after Dicer ablation. Strikingly, however, we have 

demonstrated that LCs, which similarly to T and B cells have a half-life of several weeks in 

wild type mice, are severely affected in Dicer
Δ/Δ

 mice (Publication II, Fig. 3D). We observed 

defective homeostasis of miRNA-deficient LCs resulting from increased turnover and apopto-

sis (Publication II, Fig. 5B), disturbed expression of surface receptors (Publication II, 

Fig. 3E), and, importantly, an inability to completely undergo the maturation process, which 



DISCUSSION 

 55 

becomes apparent in the imperfect upregulation of costimulatory and MHC II molecules 

(Publication II, Fig. 6B). Presumably this defective maturation causes an inability to efficient-

ly prime CD4
+
 T cells (Publication II, Fig. 6C). Thus, miRNAs are not only important for the 

survival of LCs, but also for their hallmark function, the efficient antigen presentation and 

costimulation of T cells, that leads to the induction of adaptive responses. 

7.2.1 miRNAs regulate DC turnover and apoptosis 

With the exception of LCs, which live up to several weeks (section 4.1.1.2), DCs are short-

lived cells with a half-half of several days (reviewed in Merad and Manz, 2009). Chen et al. 

have demonstrated that the ratio between pro- and anti-apoptotic molecules controls induction 

of apoptosis and consequently DC lifespan (Chen et al., 2007a). Regulation of DC lifespan is 

thought to be important to maintain tolerance, as experimentally prolonged DC survival leads 

to the onset of autoimmunity (Chen, 2006). 

We have shown that the epidermal LC network forms properly in young Dicer
Δ/Δ

 mice, but 

that LCs are then progressively lost from the epidermis, leading to their almost complete 

absence at the age of several months (Publication II, Fig. 4B and C). Chorro et al. have 

demonstrated that LCs seed the epidermis before birth and start to express CD11c around d0 

to d2 after birth. LCs then undergo massive proliferation, which is completed after the first 

week of life (Chorro et al., 2009). With respect to our conditional knockout mice this means 

that Dicer
Δ/Δ 

LCs start to lose Dicer protein shortly after birth, when CD11c is expressed. At 

this time, with their existing pool of miRNAs, LCs are able to proliferate and establish the LC 

network, which we could see in 10 day old mice (Publication II, Fig. 4B). However, LCs are 

not able to maintain the production of mature miRNAs due to ablation of Dicer, ultimately 

leading to loss of LCs. We observed an ∼7-fold increased apoptosis rate in Dicer
Δ/Δ 

LCs 

(Publication II, Fig. 5B), which is very likely to account for their loss. In support of this, we 

found a pro-apoptotic gene expression signature in Dicer
Δ/Δ 

LCs and verified the upregulation 

of the pro-apoptotic molecule Bim in Dicer
Δ/Δ 

LCs (Publication II, Fig. 5A and text). 

Moreover, Dicer
Δ/Δ 

LCs display an increased turnover (Publication II, Fig. 5B), which 

possibly accelerates their loss by diluting residual miRNA molecules. Thus, miRNA-

deficiency in LCs causes perturbed cell cycle and apoptosis regulation.  

There is substantial evidence that miRNAs regulate apoptosis (sections 4.3.3 and 4.3.4). Asir-

vatham et al. have analyzed which genes with roles in the immune system are heavily targeted 
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by miRNAs, and identified ‘hubs’, genes with 8 or more miRNA target sites in their 3’UTR 

(Asirvatham et al., 2008). There are also three hubs amongst the apoptosis-regulating genes. 

The gene bcl2l11, encoding for the pro-apoptotic Bim, is one of these hubs. The other identi-

fied hubs are the pro-apoptotic gene dedd and the anti-apoptotic gene bcl2. Our microarray 

data show, although not statistically significant due to small replicate numbers, that the pro-

apoptotic Bim and Dedd mRNAs are consistently increased in Dicer
Δ/Δ 

compared to Dicer
wt/wt 

LCs (∼6- and ∼5-fold, respectively); unfortunately, the data do not allow assessment of bcl2 

expression, as bcl2 mRNA levels are not consistently up- or downregulated (microarray data 

published in the ArrayExpress databank under accession number E-MEXP-2387). Neverthe-

less, lack of miRNA regulation seems to cause a disbalance of pro- and anti-apoptotic mole-

cules in Dicer
Δ/Δ

 LCs, leading to the induction of apoptosis. In support of our findings, a simi-

lar observation has been made in Dicer-deficient B cells. Due to increased Bim levels the 

development of Dicer-deficient B cells was blocked (Koralov et al., 2008). Increased Bim 

levels were shown to result from lack of miRNAs of the related clusters miR-17∼92, miR-

106a∼363 and miR-106b∼25. Importantly, a role for Bim has also been shown in the regula-

tion of apoptosis in DCs (Chen et al., 2007b), indicating that our findings are relevant to DC 

biology. Thus, miRNA-regulation of Bim can have a substantial influence on the survival of 

immune cells, and upregulation of Bim in miRNA-deficient Dicer
Δ/Δ

 LCs very likely triggers 

apoptosis.  

The increased turnover we observed in LCs (Publication II, Fig. 5B) is presumably due to 

dysregulation of genes involved in cell cycle regulation. Jurkin et al. have compared miRNA 

expression profiles of in vitro generated human LCs and GM-CSF DCs (Jurkin et al., 2010). 

Their data reveal that miRNAs of the miR-17∼92 and related clusters miR-106a∼363 and 

miR-106b∼25 are more strongly expressed in LCs than in GM-CSF DCs. Our gene expression 

analysis shows that several genes that are involved in cell cycle regulation and are known 

targets of the above mentioned miRNAs, are upregulated in Dicer
Δ/Δ

 LCs. We detected upreg-

ulation of Rbl2 (∼3-fold), E2F1 (∼3-fold) and PTEN (∼4-fold) transcripts, all of which pro-

mote cell cycle progression. This implies a role for miR-17∼92 and related miRNAs in the 

regulation of LC turnover. 

The phenotype of miRNA-deficient immature LCs is characterized by increased proliferation 

and apoptosis (Publication II), both of which are cellular processes frequently targeted by 

miRNAs and, specifically, by miRNAs of the miR-17∼92 and related clusters (reviewed in 
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Xiao and Rajewsky, 2009). Together with the finding that miR-17∼92 and related clusters are 

strongly expressed in LCs (Jurkin et al., 2010), this leads to the assumption that the three clus-

ters (miR-17∼92, miR-106a∼363 and miR-106b∼25) play a major role in LC homeostasis and 

might be responsible for the slow turnover and long lifespan of LCs. 

7.2.2 miRNAs fine-tune DC maturation and function 

The ability of DCs to induce adaptive immune responses is dependent on their maturation 

state. DC maturation comprises a variety of processes, such as increased surface expression of 

MHC I and II, downregulation of antigen uptake and processing, upregulation of the costimu-

latory molecules CD40, CD80 and CD86, surface expression of chemokine receptors, and 

secretion of chemokines and cytokines (reviewed in Banchereau et al., 2000). As described in 

section 4.1.4, activated DCs deliver three signals to optimally tune T cells responses to the 

specific type of stimulus. A first indication that miRNAs play a role in T cell priming was 

provided by Rodriguez et al., who showed that miR-155-deficient DCs fail to efficiently in-

duce T cell proliferation (Rodriguez et al., 2007). 

7.2.2.1 miRNAs regulate DC antigen presentation 

We have analyzed whether a global lack of miRNAs affects the phenotype and function of 

LCs. In steady-state Dicer
Δ/Δ

 LCs, we observed normal surface expression of many typical LC 

markers, including CD11c, CD24, MHC II, CD40 and CD80 (Publication II, Fig. 6B and data 

not shown). In contrast, expression of the receptors TGF-βRII and langerin was slightly re-

duced (Publication II, Fig. 3E). Logically, a reduction of surface TGF-βRII or langerin cannot 

be directly linked to loss of miRNA suppression. However, genes of the TGF-β pathway are 

frequent targets of miRNAs (Asirvatham et al., 2008) and thus TGF-βRII expression might be 

indirectly controlled by miRNAs. As a lack of TGF-β signaling in LCs is accompanied by 

spontaneous LC maturation (Kel et al., 2010), and we do not see this in Dicer
Δ/Δ

 mice, we 

assume that reduced amounts of surface TGF-βRII do not severely affect LC function. It 

might be possible, however, that reduced TGF-β signaling accounts for reduced expression of 

langerin, as langerin expression in in vitro DC cultures has been shown to depend on supple-

mentation with TGF-β (Valladeau et al., 2002). Whether the reduced level of langerin expres-

sion, which also accounts for the absence of Birbeck granules, represents a disadvantage for 

Dicer
Δ/Δ

 mice in anti-viral defense (section 4.1.1.2), has not yet been analyzed. 
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Intriguingly, we uncovered a failure to upregulate certain surface markers in ex vivo activated 

Dicer
Δ/Δ

 LCs. While CCR7 was properly upregulated to allow for LC migration, and also 

MHC I surface expression was induced normally, the maturation markers MHC II, CD40 and 

CD86 were not fully upregulated (Publication II, Fig. 6B). As the maturation defect was re-

stricted to certain molecules, we can conclude that there is no global block of, for example, 

transcription or translation, but a defect in specific pathways that are under miRNA control. A 

defect in the surface transportation of these molecules, however, cannot be excluded. Im-

portantly, this defect hindered Dicer
Δ/Δ

 LCs to prime naïve T cells. In particular, Dicer
Δ/Δ

 LCs 

were capable of inducing CD8
+
 T cell proliferation, but they failed to induce CD4

+
 T cell pro-

liferation (Publication II, Fig. 6C). The fact that protein-derived peptides could be cross-

presented via MHC I, but could not be efficiently presented via MHC II, indicates that antigen 

uptake is not compromised in Dicer
Δ/Δ

 LCs. However, as several key signaling molecules are 

verified miRNA targets (reviewed in O'Neill et al., 2011), we assume that components and 

regulators of the various TLR and IL-1 signaling pathways, which lead to transcription factor 

activation and DC maturation, are dysregulated in the absence of miRNAs.  

Our data show that only antigen presentation via MHC II, and not via MHC I, is affected by 

loss of miRNAs. MHC I and MHC II presentation pathways differ significantly (reviewed in 

Vyas et al., 2008). They are differentially regulated, require different enzymes for protein deg-

radation and involve different endosomal compartments. Notably, MHC I is expressed on all 

nucleated cells, while MHC II expression is mostly restricted to APCs. As different cell types 

display different miRNA expression patterns, miRNA-regulation of MHC I-regulating genes 

seems unlikely. In contrast, innate immune cells, including DCs, in which a set of miRNAs 

such as miR-155, miR-146 and miR-21 are ubiquitously expressed (reviewed in O'Neill et al., 

2011), might have adapted the 3’UTRs of genes involved in MHC II presentation to allow for 

miRNA regulation. Thus, miRNA regulation of the MHC II pathway may have evolved par-

ticularly in APCs to add another layer of control in order to optimize adaptive immune re-

sponses. 

miRNA control of MHC II antigen presentation is conceivable due to the complexity of this 

process. Many steps are involved, such as protein degradation, peptide loading onto MHC II 

complexes and the delivery of peptide-MHC II complexes to the surface (reviewed in van 

Niel et al., 2008). The gene encoding MHC II itself does not contain miRNA target sites, but 

target sites were found in several genes that regulate MHC II expression (Asirvatham et al., 

2008). Due to technical constraints when working with LCs, we performed several experi-
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ments with Dicer
Δ/Δ

 BM-derived DCs. In this way we found reduced mRNA levels of the 

MHC II master regulator CIITA and similarly reduced MHC II mRNA levels in Dicer
Δ/Δ

 DCs 

compared to Dicer
wt/wt

 DCs (Table 2). Therefore, reduced transcription of MHC II might at 

least partially account for reduced surface MHC II levels in Dicer
Δ/Δ

 LCs. Reduced CIITA 

levels may be explained by derepression of a CIITA inhibitor, such as Smad3 (Dong et al., 

2001), which indeed seems to contain miRNA binding sites (Asirvatham et al., 2008). Anoth-

er plausible mechanism involves the ubiquitin ligase MARCH1. Upon DC maturation, MHC 

II is stabilized at the surface, which is the result of downregulation of MARCH1 (De Gassart 

et al., 2008). We have speculated that loss of miRNAs in Dicer
Δ/Δ

 LCs leads to unblocking of 

MARCH1, which TargetScan predicts to have a binding site for miR-9. Supporting this no-

tion, MARCH1 is strongly upregulated in LPS-stimulated Dicer
Δ/Δ

 DCs (Table 2). miR-9 has 

been shown to be upregulated upon maturation of macrophages and neutrophils (Bazzoni et 

al., 2009). However, we could not confirm upregulation of miR-9 in mature DCs (Table 2), 

but a miRNA-independent posttranscriptional regulation of MARCH1 has been suggested 

(Jabbour et al., 2009) and might play a role here. Nevertheless, miR-9 might function in mye-

loid cells other than DCs to stabilize surface MHC II by downregulating MARCH1. Apart 

from the failure in surface upregulation of MHC II molecules, we also observed a failure in 

the upregulation of CD40 and CD86 in Dicer
Δ/Δ

 LCs, suggesting that miRNA-deficiency gen-

erally affects the LC maturation process by interfering with multiple signaling pathways.  

7.2.2.2 miR-146a and miR-155 are key miRNAs in DC maturation 

Two particular miRNAs have emerged as key modulators of DC maturation: miR-146a and 

miR-155. Both are highly upregulated upon TLR signaling in a NF-κB-dependent manner 

(reviewed in O'Neill et al., 2011). In view of very recent findings (Dunand-Sauthier et al., 

2011; Lu et al., 2011), the maturation defect of Dicer
Δ/Δ

 LCs appears to be at least partially 

due to the absence of miR-155. Initially, Rodriguez et al. demonstrated indirectly that miR-

155 plays a role for DC function, as miR-155-deficient DCs failed to efficiently active T cells 

(Rodriguez et al., 2007). This finding was confirmed by another group (Dunand-Sauthier et 

al., 2011). However, regarding the question as to whether miR-155 is required for upregula-

tion of MHC II and costimulatory molecules, there have been contradictory findings. Rodri-

guez et al. found ‘similar’ levels of MHC II and CD86 in activated miR-155-deficient DCs. 

However, in their data, miR-155-deficient DCs appear to have lower levels of MHC II and 

CD86, although these differences may not be statistically significant (Rodriguez et al., 2007). 
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Data from Dunand-Sauthier et al. support the notion that miR-155 is important for upregula-

tion of the markers MHC II, CD40 and CD86 (Dunand-Sauthier et al., 2011). In striking con-

trast, Lu et al. found that miR-155-deficiency does not account for reduced expression of 

MHC II or costimulatory molecules (Lu et al., 2011). The three different groups drew their 

conclusions from comparable experiments with LPS-stimulated BM-derived GM-CSF DCs. 

We have performed similar experiments with Dicer
Δ/Δ

 BM-derived DCs, which mostly indi-

cated reduced upregulation of MHC II, CD40 and CD86 compared to Dicer
wt/wt

 DCs (un-

published observations), in line with results from Rodriguez et al. and Dunand-Sauthier et al.  

miR-155 is believed to enhance pro-inflammatory responses as there are several negative 

regulators of inflammatory responses amongst the known targets of miR-155 (reviewed in 

O'Neill et al., 2011). For example the phosphatase SHIP1, which negatively regulates TLR 

signaling (An et al., 2005), has been shown to be a target of miR-155 (O'Connell et al., 2009). 

Another miR-155 target that is likely to be involved in DC maturation was identified by Lu et 

al., who showed that miR-155-deficiency leads to derepression of SOCS1, an inhibitor of 

Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and 

probably thereby causes reduced IL-12p70 cytokine production in mature DCs (Lu et al., 

2011). miR-155-mediated silencing of c-fos is another verified mechanism which, when 

abrogated, impairs DC maturation and IL-12 production (Dunand-Sauthier et al., 2011). Thus, 

it may be that Dicer
Δ/Δ

 LCs, which cannot upregulate miR-155, are inefficient in activating T 

cells because they do not provide sufficient amounts of IL-12. IL-12, which can deliver a 

‘signal 3’ to T cells, plays an important role in TH1 differentiation and CTL function (section 

4.1.4). However, it cannot be excluded that miR-155, besides its pro-inflammatory function, 

also has anti-inflammatory effects, as miR-155 targeting of TAB2, a component of the 

TLR/IL-1 signaling pathway, has been observed (Ceppi et al., 2009). Although the impact of 

miR-155 on MHC II and costimulatory molecules is not yet completely defined, overall the 

existing data suggest that upregulation of miR-155 upon DC activation is necessary to silence 

genes that would otherwise interfere with signaling pathways which lead to DC maturation 

and IL-12 production. Thus, miR-155-deficiency, as well as Dicer-deficiency, appears to 

inhibit complete DC maturation and thus the DCs’ T cell priming function.  

To date there is no description of DCs lacking miR-146. However, it is known that NF-κB 

induces miR-146a in response to TLR signaling in macrophages (section 4.3.3). In turn, miR-

146a functions in a negative feedback loop and silences the TLR signaling components 

IRAK1, IRAK2 and TRAF6 to prevent excessive inflammation. Interestingly, LCs constitu-
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tively express higher levels of miR-146a than other DC subsets, which corresponds with low-

er NF-κB activation (Jurkin et al., 2010). Inversely, silencing of miR-146a in LCs has been 

shown to cause enhanced NF-κB activation. NF-κB levels, however, are not only regulated 

indirectly by for example miR-146a, but also directly, as NF-κB1 transcripts contain a bind-

ing site for miR-9 (Bazzoni et al., 2009), such that higher NF-κB1 levels would be expected 

in Dicer
Δ/Δ

 LCs. Indeed, in LPS-stimulated Dicer
Δ/Δ

 DCs we have observed higher NF-κB1 

transcript levels than in Dicer
wt/wt

 DCs (Table 2). Nevertheless, whether a lack of miR-146a 

and miR-9 actually influences NF-κB activation is still unclear. We speculate that it is pre-

dominantly the lack of miR-155, which is the miRNA most strongly upregulated upon DC 

stimulation (Lu et al., 2011), that determines the phenotype of Dicer
Δ/Δ

 LCs, by increasing 

levels of inhibitory molecules. Other possible effects of global miRNA-deficiency, for exam-

ple higher NF-κB activation caused by lack of miR-146a and miR-9, may be masked or sup-

pressed by the dominant action of genes having a miR-155 signature. Gene expression profil-

ing performed with stimulated LCs and subsequent analysis of miRNA signatures (as 

performed in (Koralov et al., 2008)) would possibly reveal the miRNAs, whose absence con-

tributes most to the maturation defect. 
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Table 2: Expression profile of selected mRNAs and miRNAs in Dicer
wt/wt

 and Dicer
Δ/Δ

 BM-derived 

DCs during LPS-induced activation 

  
  

t0 t2 t20 

MHC I 
Dicer

wt/wt
 100% 177% 315% 

Dicer
Δ/Δ

 76% 120% 370% 

MHC II 
Dicer

wt/wt
 100% 158% 63% 

Dicer
Δ/Δ

 51% 90% 21% 

CIITA 
Dicer

wt/wt
 100% 184% 135% 

Dicer
Δ/Δ

 43% 83% 42% 

MARCH1 
Dicer

wt/wt
 100% 96% 114% 

Dicer
Δ/Δ

 180% 138% 711% 

NF-κκB1 
Dicer

wt/wt
 100% 284% 150% 

Dicer
Δ/Δ

 83% 472% 220% 

miR-9 
Dicer

wt/wt
 100% 88% 54% 

Dicer
Δ/Δ

 13% 9% 9% 

miR-155 
Dicer

wt/wt
 100% 109% 306% 

Dicer
Δ/Δ

 13% 20% 49% 

FACS sorted CD11c
+
 BM-derived DCs either non-stimulated (t0), or stimulated with 100 ng/ml LPS for 2 

h (t2) or 20 h (t20) were analyzed for indicated mRNA and miRNA expression levels by RT-PCR as de-

scribed in Publication I. Values indicate the mean expression of two independent samples and are ex-

pressed as percentage of non-stimulated Dicer
wt/wt 

levels. 

Asirvatham et al. have reported that proteins involved in signal transduction are the primary 

targets of miRNAs (Fig. 5 and Asirvatham et al., 2008). Therefore it can be assumed that 

global miRNA-deficiency causes a considerable perturbation of signaling pathways, which we 

have proven in Dicer
Δ/Δ

 LCs and GM-CSF DCs. We have demonstrated a failure of DCs to 

properly integrate environmental signals in the absence of miRNAs, which becomes evident 

in the incomplete upregulation of surface MHC II and costimulatory molecules. Thus, 

miRNAs are crucial for fine-tuning the DC maturation process and consequently control the 

induction of appropriate T cell responses.  

7.3 Outlook – Implications for immunotherapy 

DCs are powerful regulators of the immune system and therefore are considered as attractive 

tools for immunotherapy of cancer or autoimmune diseases (section 4.1.5). However, DC-

based immunotherapy has only achieved limited success so far (Huang et al., 2011), making 

new approaches desirable. In cancer treatment, for example, DCs with enhanced immunogen-

icity would be required to overcome an immunosuppressive tumor environment. Therefore, 

strategies to selectively manipulate DCs towards an optimized function are under considera-

tion. The idea not to only modulate the expression level of a single protein, but to manipulate 

multiple proteins in order to enhance DC efficacy, is appealing. miRNAs have become a re-
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search focus as potential therapeutic agents, as a single miRNA can target a large number of 

genes or gene regulatory networks that are often dysregulated in cancer, such as apoptosis, 

cell cycle or genomic stability (reviewed in Garzon et al., 2010). 

Our studies were the first to show that miRNAs can critically influence phenotypic DC matu-

ration (Publication II). Moreover, we have shown that miRNAs can alter DC functionality, 

which has been demonstrated by others as well (Ceppi et al., 2009; Dunand-Sauthier et al., 

2011; Jurkin et al., 2010; Lu et al., 2011; Rodriguez et al., 2007). These existing data suggest 

that it may be possible to boost DC immunogenicity by increasing DC levels of pro-

inflammatory miRNAs and/or decreasing the levels of anti-inflammatory miRNAs. This strat-

egy to enhance DC immunogenicity could be exploited, for example, in DC-based tumor vac-

cines using ex vivo antigen-loaded DCs (section 4.1.5.1). Furthermore, the identification and 

modulation of miRNAs that help to tune the DC cytokine profiles towards a TH1 or TH2 pro-

file could lead to more successful treatment of, for example, cancer or allergic diseases (re-

viewed in Steinman and Banchereau, 2007).  

miR-155 represents an interesting miRNA for DC manipulation, as it plays a major role in 

fine-tuning the DC maturation process (reviewed in O'Neill et al., 2011). Ectopic expression 

of miR-155 in DCs used as vaccines might prevent the DCs from becoming tolerogenic in an 

immunosuppressive tumor environment. IL-10 is one of the tumor-secreted factors that has a 

crucial role in inhibiting successful DC-based immunotherapy (reviewed in Huang et al., 

2011). Notably, IL-10 has been shown to inhibit miR-155 induction (McCoy et al., 2010) and 

is known to render DCs tolerogenic by inducing their expression of anti-inflammatory SOCS 

molecules. By targeting SOCS1 (Lu et al., 2011), artificially boosted miR-155 action in DCs 

might put a break on the negative feedback loop resulting from IL-10 signaling, and enhance 

expression of MHC II and costimulatory molecules, as well as IL-12 production (section 

7.2.2.2).  

However, translation of miRNA in vitro studies to in vivo applications is difficult and appears 

even more complicated in light of a recent report by Mao et al. (Mao et al., 2011). They 

showed that ectopic miR-155 expression in in vivo LCs inhibits T cell responses, which is 

contradictory to previous in vitro findings indicating a pro-inflammatory role for miR-155. 

Their results need careful interpretation however, as they used a biolistic approach which can 

target other cells in addition to LCs.  
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The hitherto existing research on miRNA involvement in DC maturation indicates that speci-

fying the function of individual miRNAs in vitro and in vivo would be worthwhile to gain a 

better understanding of the contribution of individual miRNAs to DC maturation. Based on 

these prospective results it might be possible to exploit the function of particular miRNAs 

that, for example, silence signaling pathways interfering with DC maturation, in order to 

boost current DC-based therapeutics.  
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