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1. Introduction 

 

1.1. The medulloblastoma 

Medulloblastoma is a primitive neuroectodermal tumour (PNET) arising in the 

posteria fossa (Kleihues and Sobin, 2000). It is the most frequent malignant 

brain tumor in childhood and accounts for approximately 20 percent of all 

primary tumors of the central nervous system in children and adolescents 

(Gjerris et al., 1998). The overall incidence rate is about 4.5 cases per million 

child years in the United Kingdom (Alston et al., 2003; Thorne et al., 1994) with 

similar incidence rates in other countries (Gjerris et al., 1998). The highest 

incidence is found in children between five and nine years of age (Alston et al., 

2003). Being a tumor of the posterior fossa, medulloblastoma often presents 

with ataxia and ophthalmologic signs and with symptoms of increased 

intracranial pressure, for example headaches and vomiting (Alston et al., 2003). 

Although centralized and evidence based treatment protocols have significantly 

improved the outcome of patients, still up to 30% of the children succumb to 

their disease within 5 years (Gilbertson, 2004). Currently, optimal treatment of 

medulloblastoma is a combination of maximal surgical resection, radiation 

therapy of both the tumor site and the craniospinal axis, and systemic 

chemotherapy (Taylor et al., 2003; Tarbell et al., 1991; Hughes et al., 1988; 

Evans et al., 1990; Kortmann et al., 2000; Tait et al., 1990). Major issues that 

challenge patients and physicians are the strong tendency of this cancer to 

metastasize along the cerebrospinal axis together with the fact that specific 

treatment options based on a tumor’s molecular background are still lacking. As 

a consequence, the necessarily aggressive treatment can lead to severe side 

effects including neurocognitive impairment, hearing loss, endocrine 

abnormalities and secondary cancers (Ris et al., 2001;  Rademaker-Lakhai et 

al., 2006; Packer et al., 2006; Laughton et al., 2008; Xu et al., 2004). In this 

context, it was essential to find that many familial and sporadic 

medulloblastomas are caused by a constitutive activation of either the Sonic 

hedgehog (Shh) or the Wnt/beta-catenin signaling pathway, and researchers 

are now trying to establish well-tolerated drugs that may inhibit these pathways 

(Crawford et al., 2007; Scales and de Sauvage, 2009). Apart from these two 

well-defined groups of medulloblastomas, more recent studies identified 
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additional groups that are distinguishable by array-based expression analysis 

(Kool et al., 2008; Cho et al.2011; Northcott et al. 2011, Figure 1).  

 

  

 
 

Figure 1 (Kool  et al., 2008): Kool and colleagues analyzed expression data of 62 

medulloblastoma samples and identified 5 distinct clusters of medulloblastomas, 

indicated  as A, B, C, D, and E. Schematic overview from Kool et al. 2008 with 

molecular, genetic, and clinical characteristics. 

 

 

Nevertheless, the diagnosis of medulloblastomas is still established according 

to the WHO (World Health Organization) criteria for the classification of central 

nervous system tumors, and these criteria are solely based on standard 

histology and immunohistochemistry (Louis et al., 2007). Interestingly, the 

desmoplastic and the rare extensively nodular variant of medulloblastomas, 

which typically show tumor nodules surrounded by very cell-dense areas 

containing reticulin fibers, largely overlap with tumors that are molecularly 

characterized by constitutive Shh signaling. All other molecular subgroups of 

medulloblastomas are mainly covered by histologically classic 
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medulloblastomas (Kool et al., 2008; Northcott et al. 2011, see Figure 1). 

Medulloblastomas of all groups display a neuronal protein expression signature 

and they are believed to arise from neuronal precursor cells. It is still unclear 

whether different subtypes of medulloblastomas may arise from different 

precursor populations, and indeed, recent advances have now proven in vivo 

that brainstem precursors may give rise to Wnt-associated medulloblastomas 

(Gibson et al. 2010), whereas granule neuron precursors are susceptible to 

develop Shh-associated medulloblastomas (Schüller et al., 2008). The 

mechanisms that control proliferation, differentiation and migration of these 

precursors have therefore been of particular interest to cancer researches, and 

the understanding of these mechanisms is considered crucial for the 

development of novel treatment strategies.  

 

 

1.2. The transcription factor BARHL1 

 

One of the transcription factors that regulate both the survival and the migration 

of cerebellar granule neuron precursors is the homeobox gene Barhl1 (Li et al., 

2004). Barhl1 is a mammalian homolog of the Drosophila BarH1 and BarH2 

genes, which encode homeodomain proteins that are primarily expressed in 

migrating neurons settling in specific domains within the diencephalon, 

rhombencephalon and spinal cord (Bulfone et al., 2000). Loss of Barhl1 function 

causes attenuated cerebellar foliation, defective radial migration and impaired 

survival of cerebellar granule neurons (Li et al., 2004). Interestingly, BARHL1 

was also identified to be expressed in medulloblastomas (Yokota et al., 1996), 

but its functional significance for tumor development and progression has not 

yet been investigated.  

 

 

1.3. Aim of this study 

 

The aim of this study is to define the role of BARHL1 in medulloblastoma. 

Several intentions are pursued: (1) BARHL1 expression levels in cerebella and 

in medulloblastomas of mice and humans are determined. (2) A mouse model 

for Shh-induced medulloblastoma is used to examine the function of Barhl1 in 
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vivo. (3) The prognostic significance of BARHL1 expression levels in human 

and murine medulloblastomas is investigated by evaluating the overall survival 

of mice and humans. 
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2. Material and Methods 
 
 
2.1. Patients and tumor samples  

 

A total of 44 surgical tumor samples from patients with medulloblastoma were 

analyzed. Patients included 25 males and 19 females. They were treated in the 

University Hospitals of Munich, Göttingen, Bremen, Hannover and Münster (all 

Germany). The majority of patients were enrolled in the German Society of 

Pediatric Hematology and Oncology multicenter treatment studies for pediatric 

malignant brain tumors (HIT). The average age was 11.0 years, and the median 

age was 7.0 years, ranging from 0.6 to 39.7 years. The follow up in survivors 

ranged from 1.1 to 145.2 months with an average of 55.8 months and a median 

of 46.0 months. 13 patients succumbed to their disease, and 31 were alive as of 

September 1, 2010. The study included 29 medulloblastomas of classic 

histology, 11 medulloblastomas of desmoplastic histology and 4 

medulloblastomas with extensive nodularity. An overview on clinical data and 

histology is given in Table 1. Tumor diagnosis was established by standard 

light-microscopic evaluation of H&E sections and silver stains. Diagnoses were 

made independently by at least two neuropathologists based on the criteria of 

the latest WHO brain tumor classification (Louis et al., 2007). For gene copy 

number analysis, tumor tissues obtained from six glioblastoma multiforme were 

included as controls. Autopsy material of normal cerebella was obtained from 

patients, who gave their informed consent. Patient age ranged between 18 and 

67 years for the adult cerebella and between 22 weeks of gestation and 6 

months for the developing cerebella. None of these patients died from a central 

nervous system disorder or showed neuropathological abnormalities on 

histological examination. All tissue samples were either immediately fixed in 

formaldehyde and embedded in paraffin or snap frozen and stored at -80°C until 

use. 
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Table 1: Summary of tumor pathology and clinical data in ex amined 

medulloblastoma cases. NED: no evidence of disease. DOD: death of disease. 

 

Sample 
number 

MB subtype Sex 
Age 

[years] 
Follow up 
[months] 

State 

Relative 
BARHL1 
mRNA 

expression 

1 classic f 0.6 12.7 DOD 37.87 
2 classic m 2.4 21.0 DOD 23.13 
3 classic f 3.6 21.1 DOD 5.48 
4 classic f 3.7 5.4 NED 133.63 
5 classic f 3.8 47.1 NED 9.02 
6 classic m 4.1 35.4 NED 0.01 
7 classic m 4.9 75.7 DOD 16.69 
8 classic m 5.4 135.6 NED 47.93 
9 classic f 5.5 28.3 DOD 26.14 
10 classic m 5.5 137.5 NED 60.78 
11 classic m 5.9 1.1 NED 44.54 
12 classic f 6.1 145.2 NED 1.92 
13 classic m 6.2 22.2 DOD 2.96 
14 classic m 6.7 33.4 NED 366.14 
15 classic m 7.0 113.2 NED 2.07 
16 classic m 7.0 142.8 NED 2.08 
17 classic m 7.9 24.1 DOD 0.52 
18 classic m 8.5 36.5 DOD 26.54 
19 classic m 8.8 8.8 NED 367.04 
20 classic m 9.3 50.3 NED 56.40 
21 classic m 9.9 79 NED 0.49 
22 classic m 10.6 23.7 NED 1.07 
23 classic m 16.5 18.3 NED 1.07 
24 classic m 22.3 35.3 NED 2.68 
25 classic f 23.6 80.8 NED 54.73 
26 classic f 25.5 133.7 NED 86.59 
27 classic f 29.3 19.5 NED 5.84 
28 classic m 37.5 4.8 DOD 35.06 
29 classic m 39.7 24.4 DOD 2.15 
30 desmoplastic f 1.6 66.9 NED 2.92 
31 desmoplastic f 2.2 128.0 NED 62.27 
32 desmoplastic m 2.5 7.0 DOD 0.08 
33 desmoplastic m 7.5 14.2 DOD 3.56 
34 desmoplastic m 10.0 101.4 NED 78.99 
35 desmoplastic f 14.3 62.7 DOD 778.79 
36 desmoplastic m 22.8 47.3 NED 8.26 
37 desmoplastic f 25.5 75.5 NED 0.46 
38 desmoplastic f 26.5 46.0 NED 54.33 
39 desmoplastic f 30.5 46.4 NED 4.72 
40 desmoplastic f 30.7 17.7 NED 12.91 
41 extensively nodular f 0.7 107.3 NED 0.15 
42 extensively nodular f 2.2 175.6 NED 3.27 
43 extensively nodular m 2.7 5.6 NED 1.97 
44 extensively nodular f 2.9 78.4 NED 0.18 
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2.2. Transgenic mice 

 

Barhl1-/- mice 

Barhl1-/- mice have been obtained from Dr. Shengguo Li and Prof. Dr. Mengqing 

Xiang (University of Medicine and Dentistry of New Jersey). To knock out 

Barhl1, the three Barhl1-coding exons were replaced with lacZ marker DNA and 

a PGK-Neo cassette flanked by two loxP sites (Li et al., 2002, see Figure 2). 

Primers for wild type Barhl1 were: Barhl1 WT Fw, 5’- 

GCTGAGTCCACGCTCAGAGAGCAG -3’; Barhl1 WT Rv, 5’- 

CTCAGAGTCTGATGAAGCGCTGCTG -3’ (Li et al., 2002). Barhl1 knockout 

was detected with the following primers: Barhl1 Fw, 5’- 

CCCATTCCTCCTGACACTC -3’; LacZ Rv, 5’- GACAGTATCGGCCT-CAGGAA 

-3’ (see Figure 2).  
 

 

Figure 2:  Schematic structure of the Barhl1 knockout allele generated by Li and 

colleagues. The three Barhl1-coding exons were replaced with lacZ marker DNA and a 

PGK-Neo cassette flanked by two loxP sites (grey boxes). The red bars represent the 

primers to detect the Barhl1 wild type genotype, the blue bars represent the primers to 

detect the Barhl1 knockout genotype. 

 

 

Math1-cre mice 

Math1-cre transgenic mice carry the bacteriophage P1 cre recombinase under 

control of a 1.4-kb upstream Math1 enhancer element (Heine and Rowitch, 

2009; Schüller et al., 2007; Matei et al., 2005). As a consequence, cre is 

produced specifically in cerebellar granule cell precursor cells (Schüller et al., 
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2007). Internal cre primers were used to detect the Math1-cre allele: cre Fw, 5′- 

TCCGGGCTGCCACGACCAA -3′; cre Rv 5′- GGCGCGGCAACACCATTTT -3′ 

(Heine and Rowitch, 2009).  

 

SmoM2Fl/Fl (Gt(ROSA)26Sortm1(Smo/EYFP)Amc/J mice 

SmoM2Fl/Fl (Gt(ROSA)26Sortm1(Smo/EYFP)Amc/J (Mao et al., 2006) mice were 

obtained from Jackson Laboratory (Bar Harbour, ME, USA). In these mice, a 

floxed neo/4xpA-SmoM2-YFP cassette was inserted into pROSA26PA (Srinivas 

et al., 2001; Mao et al., 2006, see Figure 3). SmoM2 itself contains a point 

mutation, defined as W539L, which leads to constitutive activation of 

Smoothened and consequently to a permanent activation of the Sonic 

hedgehog pathway (Xie et al., 1998). Primers used to detect SmoM2 and the 

wild type allele were as follows: SmoM2 Fw, 5’- AAGTTCATCTGCACCACCG -

3’; SmoM2 Rv, 5’- TCCTTGAAGAAGATGGTGCG -3’; Smo WT Fw, 5’- 

GGAGCGGGAGAAATGGATATG -3’; Smo WT Rv, 5’- 

CGTGATCTGCAACTCCAGTC -3’ (Jeong et al., 2004; Soriano, 1999). 
 

 
Figure 3: (A) Schematic structure of the SmoM2Fl/Fl (Gt(ROSA)26Sortm1(Smo/EYFP)Amc/J 

mouse model created by Mao and colleagues. A fused gene composed of SmoM2 and 

yellow fluorescent protein (YFP) was targeted into the Rosa26 locus.  Upstream, a 

polyadenylation stop sequence cassette (4x pA) was inserted to prevent expression of 

the mutant Smoothened. (B) If cre recombinase is present, the LoxP-flanked 

polyadenylation stop sequence is removed and the mutant Smoothened will be 

expressed leading to autonomous activation of the Sonic hedgehog pathway. 
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Barhl1-/- mice, Math1-cre mice and SmoM2Fl/Fl (Gt(ROSA)26Sortm1(Smo/EYFP)Amc/J 

mice were crossed to produce Math1-cre:SmoM2Fl/+, Barhl1+/-Math1-

cre:SmoM2Fl/+ and Barhl1-/-Math1-cre:SmoM2Fl/+ mice. To exclude influences of 

the genetic background, the mice were crossed in a manner that all examined 

genotypes (Math1-cre:SmoM2Fl/+, Barhl1+/-Math1-cre:SmoM2Fl/+ and Barhl1-/-

Math1-cre:SmoM2Fl/+ mice) were produced in one litter. Figure 4 shows a 

schematic overview of breeding. Genotyping for all mice was done by PCR 

analysis using genomic DNA from mouse tail biopsies. Each tail biopsy was 

lysed  for 2 hours at 55°C using 300 µl lysis buffe r (containing 100 mM Tris pH 

8.5, 5 mM EDTA pH 8.0, 0.2% SDS (filtered) and 200 mM NaCl) and 10 µl of 

Proteinase K. 300 µl of Phenol:Chloroform:Isoamyl Alcohol (25:24:1, v/v; 

Invitrogen) was added and the sample was mixed for 5 minutes. Centrifugation 

at room temperature was done for 15 minutes with 13000 x g. The top layer was 

extracted (about 200 µl) and 50 µl of 3 M sodium acetate (pH 5.2) and 1 ml of 

cold 95% ethanol were added. After mixing, centrifugation was done at 4°C for 

10 minutes with 13000 x g. The liquid was discarded and the remaining pellet 

was washed with 800 µl 70% ethanol. After another centrifugation at 4°C for 10 

minutes with 13000 x g all liquid was removed and the pellet containing the 

DNA was dissolved in 100 µl DEPC water and stored at 4°C. Tumor-prone mice 

carrying both the Math1-cre and the SmoM2 allele (see Figure 4) were 

monitored twice daily for signs of neurological symptoms or general weakness.  
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Figure 4:  Principles of breeding 

 

 

2.3. DNA and RNA extraction, Real-time RT-PCR 

 

For DNA and RNA extraction paraffin-embedded tissues containing at least 

90% tumor material, as confirmed by H&E sections, were used. For snap-frozen 

tissues instantaneous sections were performed to assure a tumor fraction of at 

least 90%. DNA for real-time RT-PCR analysis was extracted from formalin-

fixed paraffin-embedded tissues using the QIAamp DNA FFPE Tissue Kit 

(Qiagen). Total RNA was extracted from snap-frozen tissues using TRIzol® 

reagent (Invitrogen). 20 - 30 10 µm slices of snap-frozen tissue were carefully 
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mixed with 750 µl Trizol and incubated at room temperature for 5 minutes. 150 

µl chloroform was added and the composite was mixed and incubated at room 

temperature for 3 minutes. Centrifugation was done at 4°C for 15 minutes with 

14000 x g. The top layer containing RNA and chloroform was extracted (about 

300 µl) and 375 µl isopropanol were added to precipitate the RNA. After mixing, 

centrifugation was done at 4°C for 10 minutes with 14000 x g. The liquid was 

discarded and the pellet was washed with 750 µl 75% ethanol. Another 

centrifugation was done at 4°C for 5 minutes with 7 500 x g. The ethanol was 

removed and the remaining RNA was dissolved in 24 µl DEPC water and stored 

at -80°C. Total RNA from paraffin-embedded tissues was obtained using the 

RNeasy FFPE Kit (Qiagen). Total RNA was treated with RNase-Free DNase 

(Promega). Therefore, 8 µl RNA (in DEPC water), 1 µl RQ1 RNase-Free DNase 

10x Reaction Buffer and 1 u/µg RNA of RQ1 RNase-Free DNase were mixed 

and incubated at 37°C for 30 minutes. Then, 1 µl of  DNase Stop solution was 

added to terminate the reaction. The mixture was incubated at 65°C for 10 

minutes to inactivate the DNase. Superscript II reverse transcriptase 

(Invitrogen) was used to run reverse transcription for human samples. Up to 4 

µg total RNA in up to 8 µl was used for the reaction. For each reaction 0.5 µl 

Oligo (dT)15 primers and 0.5 µl random hexamers (50 ng/µl) were mixed and 

added to the RNA. 1 µl of 10 mM dNTP mix was added. If less than 8 µl of RNA 

were used, the composite was filled to 10 µl with DEPC-treated water. The 

sample was incubated at 65°C for 5 minutes and then  cooled on ice for at least 

1 minute. 9 µl of reaction mixture (containing 2 µl 10X RT buffer, 4 µl 25 mM 

MgCl2, 2µl 0.1 M DTT and 1 µl RNaseOUT Recombinant Ribonuclease Inhibitor 

(all Invitrogen)) were added to each sample, the composite was mixed carefully 

and incubated at 25°C for 2 minutes. 1 µl (50 units ) of Superscript II reverse 

transcriptase (Invitrogen) were added to each sample. The mixture was 

incubated at 25°C for 5 minutes, at 42°C for 50 min utes and at 70°C for 15 

minutes. The samples were stored on ice. After adding 1 µl of RNase H 

(Invitrogen), the sample was incubated at 37°C for 20 minutes. Reverse 

transcription of mouse samples was performed using random hexamers and 

Transcriptor High Fidelity Reverse Transcriptase (Roche). Up to 4 µg total RNA 

were mixed with 1 µl anchored-oligo(dT)18 Primers (50 pmol/µl) and 1 µl 

Random Hexamer Primers (600 pmol/µl) and PCR-grade water was added to fill 

the sample volume to 11.4µl. The template-primer mixture was denaturated by 
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incubating for 10 minutes at 65°C. For each reactio n, 8.6 µl of RT mix 

(containing 4 µl 5x Transcriptor High Fideltiy Reverse Transcriptase Reaction 

Buffer, 0.5 µl Protector RNase Inhibitor 40 u/µl, 2 µl Deoxynucleotide Mix (10 

mM), 1 µl DTT and 1.1 µl Transcriptor High Fidelity Reverse Transcriptase (all 

Roche)) was added and the reagents were mixed carefully. The sample was 

incubated at 50°C for 30 minutes, at 85°C for 5 min utes and then placed on ice. 

For real-time quantitative reverse transcriptase (RT)–PCR, the LightCycler®480 

system (Roche), with 96 multiwell-plates, and the SYBR Green detection format 

was used. SYBR Green I is a DNA double-strand-specific dye that can be 

detected by its fluorescence when binding to the amplified PCR products. For 

each reaction, 5 µl of LightCycler®480 SYBR Green I Master Mix (containing 

FastStart Taq DNA Polymerase and DNA double-strand-specific SYBR Green I 

dye (Roche)), 1 µl of forward (Fw) Primer and 1 µl of reverse (Rv) Primer were 

added to 3 µl of cDNA. After incubation at 95°C for  5 minutes, 45 PCR Cycles 

were performed: 95°C for 10 seconds (Denaturation),  57-60°C for 10 seconds 

(Annealing according to Primers) and 72°C for 15 se conds (Elongation). After 

each Elongation step fluorescence of SYBR Green I was detected (real-time 

PCR). Relative quantification was done by normalizing the target gene with a 

housekeeper gene. Different reaction rounds were normalized by using a 

calibrator, a positive sample that was measured in every round. Beta-2-

microglobulin was used as a housekeeper, as it proved to be highly consistently 

expressed in medulloblastoma cells (data not shown). All analyses were done in 

triplicates. Primers were designed using the Primer3 software.  

Sequences of Primers are shown in table 2. 
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Table 2:  Primers used for real-time RT-PCR 

 

 

Primer name 
 

Sequence 
 

B2M (cDNA) Fw 
 

5’-TGTCTTTCAGCAAGGACTGG-3’ 

B2M (cDNA) Rv 5’-GATGCTGCTTACATGTAT CG-3’ 

BARHL1 (cDNA) Fw 5’-GAGCGGCAGAAGTACCTGAG-3’ 

BARHL1 (cDNA) Rv 5’-AGAAATAAGGCGACGGGAAC-3’ 

B2M (gDNA) Fw 5’-CAGTAAAGGAGTGGGGGATG-3’ 

B2M (gDNA) Rv 5’-TTGTGTTGAGGCAGGAAAAA-3’ 

BARHL1 (gDNA) Fw 5’-TTCCATTTTCATCCCATCGT-3’ 

BARHL1 (gDNA) Rv 5’- TCTTCCCTTTCCCTTCCTTC-3’ 

B2m Fw 5’-CCTGGTCTTTCTGGTGCTTG-3’ 

B2m Rv 5’-TATGTTCGG CTTCCCATTCT-3’ 

Barhl1 Fw 5’-CGCTCAACCTCACCGACA-3’ 

Barhl1 Rv 5’-AGAAATAAGGCGACGGGAAC-3’ 

 

 

For each set of primers postamplification melting curves were analyzed with the 

LightCycler®480 software, and agarose gel electrophoresis was performed to 

verify the presence of a single amplification product. Efficiency correction for 

each set of primers was done by creating a standard curve. Measured 

efficiencies are shown in table 3.   

 

Table 3:  Primer efficiencies for real-time RT-PCR 

 

 

Primer name 
 

Efficiency 
 

Annealing temperature 
 

B2M (cDNA) Primers 
 

2.119 
 

58°C 

BARHL1 (cDNA) Primers 2.002 60°C 

B2M (gDNA) Primers 2.007 57°C 

BARHL1 (gDNA) Primers 2.067 57°C 

B2m Primers 2.025 60°C 

Barhl1 Primers 1.919 60°C 
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The calibrator normalized relative ratio was calculated the following way: 

 

NR = E T 
[CpT (C) – CpT (S)] x EH

 [CpH (S) – CpH (C)] 

 

The abbreviation NR represents the normalized ratio, E stands for efficiency, T 

for target gene, H for housekeeper gene, C stands for calibrator, S for sample, 

and CpT and CpH are abbreviations for the cycle number at target and 

housekeeper detection threshold (crossing point), respectively. 

 

 

2.4. Histology, in situ hybridization and immunohis tochemistry 

 

For hematoxylin and eosin (H&E) stainings and for immunohistochemical 

procedures, brain and tumor tissue was fixed in 4% paraformaldehyde/PBS 

overnight at 4°C. Tissue for frozen sections was eq uilibrated in 20% 

glucose/PBS (pH 7.4) and embedded in OCT. 12 µm parasagittal sections were 

prepared on Superfrost plus slides (Fisher). Tissue for paraffin wax-embedded 

sections was dehydrated, embedded and sectioned at 5 µm according to 

standard protocols. Overall morphology was assessed by staining with H&E. All 

photomicrographs including those from immunohistochemical experiments were 

taken digitally using an Olympus Bx50 microscope in combination with the Color 

view Soft imaging system and Cell software (Olympus). In situ hybridization 

(ISH) was performed on frozen sections. RNA probe was synthesized by mixing 

13 µl DEPC treated water, 1 µl linearized template (1 µg/µl), 2 µl 10x 

transcription buffer (Roche), 2 µl DIG Label Mix (Roche) and 2 µl RNA 

polymerase (Roche, 20 u/µl). The composite was incubated at 37°C for 2 hours. 

0.5 µl of 0.5 M EDTA (pH 8), 100 µl DEPC-H2O, 10 µl 8 M LiCl, and 300 µl 

ethanol were added and the sample was incubated at -20°C for 2 hours. 

Centrifugation was done for 15 minutes at 13000 x g. The pellet was washed 

with 1 ml 70% DEPC ethanol. Another centrifugation was done for 10 minutes 

with 13000 x g. The fluid was removed and the pellet was resuspended at 37°C 

in 50 µl DEPC treated water. 1 µl RNA probe was mixed with 100 µl 

hybridization buffer (100 ml containing  50 ml Formamide (50%), 25 ml 20x SSC 

pH 4.5, 1 ml yeast tRNA (10 mg/ml), 10 mg Heparin (100 µg/ml), 1 ml 100x 

Denhardt’s, 100 µl Tween 20, 100 mg CHAPS (0.1%), 1 ml 0.5 M EDTA (5 mM) 
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and 22 ml DEPC-H2O). Brain sections were washed with DEPC-PBS (1 ml 

DEPC in 1 l PBS), fixed with 4% PFA in PBS at room temperature for 15 

minutes and treated with 10 µg/ml proteinase K/PBS at room temperature for 10 

minutes. Brain sections were hybridized overnight with labeled RNA probes at 

65ºC, washed twice in 0.2x SSC pH 4.5, 0.1% Tween 20 at 65°C, washed twice 

in MBST buffer, pH 7.5, containing 100 mM maleic acid, 150 mM NaCl2, 2 mM 

levamisole and 0.1% Tween 20, blocked in MBST with 2% BM blocking agent 

(Roche) and 20% lamb serum, and incubated with alkaline phosphatase labeled 

anti-DIG antibodies (Roche, 1:2500 in 2% serum) for 2 hours. Sections were 

washed and color was visualized using BM purple (Roche). 

Immunohistochemistry was performed on frozen or formalin-fixed, paraffin-

embedded, rehydrated, 4 µm thick sections using the avidin–biotin–peroxidase 

complex (ABC) method on an automated system (BenchMark, Ventana). 

Primary antibodies against Synaptophysin (DAKO, 1:100), MAP2 (Sigma, 

1:40000), Cre (Covance, 1:1500), BARHL1 (Chemicon, 1:200), NeuN 

(Chemicon, 1:300), Zic (gift from Dr. R. Segal, 1:3000), OLIG2 (Chemicon, 

1:1000), Sox2 (Chemicon, 1:1000) and phosphorylated Histone H3 (Cell 

signaling, 1:200) were diluted in phosphate-buffered saline (PBS) and applied 

on sections for 30 minutes at 42°C. Cell nuclei wer e visualized by hematoxylin.  

 

 

2.5. Western blot analysis 

 

Proteins were extracted from frozen tumor samples. Lysis was performed on ice 

for 30 minutes in 500 µl of ice-cold lysis buffer containing 50 mmol/L Tris-HCl 

(pH 8), 120 mmol/L NaCl, 0.5% Nonidet P-40, 1 mmol/L phenylmethyl sulfonyl 

fluoride (Sigma), 100 U/ml aprotinin (Calbiochem), and 0.1 mol/L NaF. Debris 

was removed by centrifugation for 20 minutes at 12,000 x g and at 4°C. 

Proteins were separated by electrophoresis on 4 to 12% Bis-Tris gels (Nu-

PAGE, Invitrogen) and blotted onto nitrocellulose. To document equal loading of 

the gels, Ponceau staining of the membranes was performed. Blocking was 

performed with 10% nonfat dry milk (Bio-Rad, München, Germany) in Tris-

buffered saline containing 0.05% Tween 20 and 20% horse serum for 2 hours at 

room temperature. Filters were incubated with a Cleaved Caspase-3 (Asp175, 

Cell Signaling Technology) and a β-actin antibody (clone AC-15, Sigma) as 
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internal control according to the instructions of the manufacturers (Hartmann et 

al., 2005). Binding of the primary antibody was detected by a secondary 

antibody labeled with horseradish peroxidise (Amersham). The filters were 

developed using enhanced chemiluminescence detection reagents (Amersham, 

Buckinghamshire, UK).  

 

 

2.6. Statistical analysis 

 

All obtained results were analyzed using the Prism4 software (Graph Pad). 

Survival of patients and mice was analyzed using Kaplan-Meier survival curves 

and the Log-rank test was used to examine the significance of results. P-values 

<0.05 were considered significant. The unpaired t-test was applied to compare 

the means of two groups with assumed Gaussian distribution and equal 

variances. If variances were not equal, as confined by the F-test, or Gaussian 

distribution was not expected, the non parametric Mann-Whitney test for 

unpaired data was used to compare the medians of two groups. To compare 

protein expression patterns of Math1-cre:SmoM2Fl/+, Barhl1+/-Math1-

cre:SmoM2Fl/+ and Barhl1-/-Math1-cre:SmoM2Fl/+ mice, at least 3 animals were 

examined in each group and at least 500 tumor cells were counted in each 

animal. For pHH3 analysis 1000 tumor cells were counted. The respective 

histograms illustrate the mean with standard errors (error bars). Correlation of 

two paired data sets was done with Pearson correlation for Gaussian 

distributions or else with nonparametric Spearman correlation, with r as 

correlation coefficient. 
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3. Results 

 

3.1. BARHL1 expression in human medulloblastomas 

 

Barhl1 was found to have essential roles for cerebellar granule neuron 

precursors and for the overall development of the cerebellum (Li et al., 2004). 

Medulloblastomas derive, at least in part, from these precursor cells, and 

therefore, the purpose was to investigate whether human medulloblastomas 

express BARHL1 and how this would functionally be involved in tumorigenesis. 

In a first step, BARHL1 expression in a series of 19 normal tissues and 17 

different types of cancer was investigated. Serial analysis of gene expression 

(SAGE) analysis revealed that BARHL1 was highly expressed in the cerebellum 

and even stronger in the medulloblastoma, but only weakly in other types of 

brain cancer. Several types of normal tissues and tumors outside the central 

nervous system did not show any significant expression of BARHL1 (Figure 5). 

 

 

 
Figure 5: Expression of BARHL1 in different tissues indicating specificity of high 

expression in cerebellar tissue and medulloblastoma. Serial analysis of gene 

expression data for BARHL1 (SAGE tag: AGCCCGTGAC) is based on data extracted 

from the Cancer Genome Anatomy project (CGAP) as well as the Genomics institute of 

the Novartis Research Foundation (GNF) SymAtlas and was obtained from 

http://www.genecards.org/index.shtml. Filled diamonds=insignificant expression after 

thresholding and normalization. Empty diamonds=no data. 
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Next, real-time reverse transcriptase (RT)–PCR was used to confirm and 

extend the expression pattern of BARHL1 in human cerebellum and in 

medulloblastoma. As demonstrated in Figure 6, expression of BARHL1 was 

about 30-fold higher in the developing cerebellum (n=6) as compared to 

samples of adult cerebellum (n=8, p<0.001). Surgically removed 

medulloblastoma tissue samples (n=44) were characterized by a more 

heterogeneous expression pattern with many cases showing strong BARHL1 

expression (p=0.003, Figure 6). The median was 7.05 (range, 0.01-778.79) as 

compared to the median of adult cerebellum samples which was set 1 (Figure 6, 

Table 1).  

 

 
Figure 6:  Real-time RT-PCR of adult cerebella (n=8), developing cerebella (n=6) and 

human medulloblastoma tissue samples (n=44). BARHL1 expression was normalized 

to Beta-2-microglobulin (B2M) expression. BARHL1 expression was significantly 

upregulated in developing cerebella and in medulloblastomas as compared to adult 

cerebella (p<0.001 and p=0.003 respectively). Mean of expression in adult cerebella 

was set 1; dotted lines show mean±3*SD of expression in adult cerebella; solid lines 

represent median of each group. Two asterisks: p≤0.01, three asterisks: p≤0.001. 

 

 

Patient’s age and levels of BARHL1 expression did not show any significant 

correlation (r=0.127, p=0.411, Figure 7).  
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Figure 7: Relative BARHL1 expression and age distribution of medulloblastoma 

patients. BARHL1 overexpression was found in patients between 0.6 and 39.7 years of 

age. BARHL1 expression and age did not show any significant correlation (r=0.127, 

p=0.411). 
 

 

The series included 29 classic medulloblastomas and 11 desmoplastic 

medulloblastomas, but no significant difference with regard to the expression of 

BARHL1 in these two histological subtypes could be observed (p=0.952, Figure 

8).  

 
Figure 8:  Real-time RT-PCR analysis of BARHL1 expression in desmoplastic (n=11) 

and classic (n=29) medulloblastomas. BARHL1 overexpression (defined as >mean 

expression of normal adult cerebellum+3*SD, see dotted line) was found in both 

histological subtypes without statistically significant differences (p=0.952). Solid lines: 

median in each group. CI: confidence interval, n.s.: not significant. 
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To confirm the RNA expression data, immunohistochemistry on snap-frozen 

tissues expressing high or low levels of BARHL1 was performed. 

Medulloblastoma samples that were shown to highly express BARHL1 via real-

time RT-PCR and that were attributed to the high BARHL1 group (see Figure 

15), exhibited a strong nuclear staining for the transcription factor BARHL1, 

whereas medulloblastoma samples belonging to the low BARHL1 group (see 

Figure 15) did not or barely stain for BARHL1 (Figure 9 A and B).  

 

 

 

 
Figure 9: Immunohistochemistry for BARHL1. (A) Absence of staining for BARHL1 in 

medulloblastoma samples exhibiting low levels of BARHL1 mRNA. (B) Arrows point at 

strong nuclear staining of medulloblastoma cells in medulloblastoma samples that were 

shown to highly express BARHL1. Scale bar is 50 µm. 

 

 

Finally, quantitative real-time RT-PCR on genomic DNA from medulloblastoma 

samples (n=32) was used to exclude that genomic amplifications were the 

reason for BARHL1 overexpression on the mRNA level (Figure 10).  

A B 

BARHL1  BARHL1  
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Figure 10: Relative BARHL1 gene copy number in human medulloblastoma. Real-time 

PCR analysis was used to quantfiy the BARHL1 gene copy number in human 

medulloblastoma samples. Results were normalized to the B2M gene. The mean of 

relative BARHL1 gene copy number in adult cerebella was set 1. Amplification was 

defined as BARHL1 gene copy number > 5*mean of BARHL1 gene copy number in 

cerebellar tissue (see dotted line). None of the examined samples were amplified. CB, 

cerebellum; GBM, glioblastoma; MB, medulloblastoma.  

 

 

3.2. Barhl1 expression in Shh-induced mouse medulloblastoma an d its 

cerebellar precursor cells 

 

In order to further investigate the functional role of Barhl1 in tumor development, 

Math1-cre:SmoM2Fl/+ mice as a mouse model for Sonic hedgehog-associated 

medulloblastomas were used (Schüller et al., 2008). To characterize Barhl1 

expression during development and in Sonic hedgehog-driven mouse 

medulloblastomas, in situ hybridizations for Barhl1 on WT and Math1-

cre:SmoM2Fl/+ mice were performed. At postnatal day 7 (P7) Barhl1 was 

strongly expressed in cerebellar granule neurons (Figure 11A). Granule neuron 

precursors were labeled intensely throughout the external granule cell layer of 

the entire cerebellum, but Barhl1 expression was discontinuous in mature 

granule neurons of the internal granule cell layer (IGL). Barhl1 expression in the 

IGL was seen in cerebellar lobes II-V and X and to some extent in lobe VI, while 
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it was absent in lobes VII, VIII and IX (Figure 11A). In medulloblastomas from 

Math1-cre:SmoM2Fl/+ mice, Barhl1 expression was strongly present in the tumor 

tissue, and a weaker expression was seen in granule neurons of the internal 

granule cell layer (Figure 11B). To confirm these findings, real-time RT-PCR 

was used to quantify Barhl1 expression (Figure 11C). In agreement with the in 

situ experiments, Barhl1 expression levels were about 10 times higher during 

cerebellar development (P7) in comparison to adult cerebellum (P30), and high 

expression was found in medulloblastomas from Math1-cre:SmoM2Fl/+ mice. 
 

 

 
Figure 11: Barhl1 is strongly expressed in the granule cell lineage and in tumors from 

Math1-cre:SmoM2Fl/+ mice. (A) Sagittal sections from P7 wild type mice display strong 

expression of Barhl1 in cerebellar granule neurons. While granule neuron precursors 

are labeled throughout the EGL of the entire cerebellum, Barhl1 expression in mature 

granule neurons of the IGL is restricted to lobes II-V and X (see high power image with 

asterisk indicating Barhl1-negative granule neurons). (B) Sagittal cerebellar sections 

from Math1-cre:SmoM2Fl/+ mice. Top left: H&E staining of a characteristic 

medulloblastoma in a Math1-cre:SmoM2Fl/+ mouse. Top right: In situ hybridization for 

Barhl1 in the cerebellum of a Math1Cre:SmoM2Fl/+ mouse with strong expression in 

tumor tissue (lower left) and weak expression in IGL tissue (lower right). (C) Relative 

quantification of Barhl1 expression using real-time RT-PCR with results normalized to 

B2m. Barhl1 expression levels were significantly higher in cerebella on P7 and in 

medulloblastomas from Math1-cre:SmoM2Fl/+ (MS) mice as compared to adult 

cerebella (P30, p=0.002 and p=0.05 respectively). EGL, External granule cell layer; 

IGL, Internal granule cell layer; MB, Medulloblastoma. One asterisk: p≤0.05, two 

asterisks: p≤0.01. Scale bar is 1 mm and 100 µm for A, 1.5 mm for the H&E stain, 200 

µm for the Barhl1 low power and 50 µm for the Barhl1 high power images in B. 
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3.3. Barhl1 in vivo 

 

3.3.1. Deletion of Barhl1 in mouse medulloblastoma 

 

In order to investigate the functional role of Barhl1 for the development and 

progression of medulloblastoma, Barhl1+/-Math1-cre:SmoM2Fl/+ and Barhl1-/-

Math1-cre:SmoM2Fl/+ mice were generated. Similar to the previously described 

Math1-cre:SmoM2Fl/+ mice (Schüller et al., 2007), all generated Barhl1+/-Math1-

cre:SmoM2Fl/+ and Barhl1-/-Math1-cre:SmoM2Fl/+ mice developed 

medulloblastomas. As seen by H&E staining, all three genotypes displayed a 

similar morphology with tumors composed of small round blue tumor cells in 

high density (Figure 12A). While Barhl1 expression was strongly present in 

Math1-cre:SmoM2Fl/+ mice, Barhl1 levels were significantly decreased in 

Barhl1+/-Math1-cre:SmoM2Fl/+ mice (p=0.029) and were not detectable in  

Barhl1-/-Math1-cre:SmoM2Fl/+ mice (Figure 12B). To elucidate whether Barhl1 

expression in medulloblastoma has an impact on the survival of the mice, 

Kaplan-Meier curves of Math1-cre:SmoM2Fl/+ mice (n=51), Barhl1+/-Math1-

cre:SmoM2Fl/+ mice (n=46) and Barhl1-/-Math1-cre:SmoM2Fl/+ mice (n=12, 

Figure 12C) were established. Deletion of Barhl1 resulted in a significantly 

decreased survival of Barhl1+/-Math1-cre:SmoM2Fl/+ and Barhl1-/-Math1-

cre:SmoM2Fl/+ mice in comparison to Math1-cre:SmoM2Fl/+ mice (p=0.003 and 

p=0.002, respectively).  
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Figure 12:  Deletion of Barhl1 in Math1-cre:SmoM2Fl/+ mice. (A)  H&E staining of 

sagittal sections from medulloblastoma showed a similar morphology in Math1-

cre:SmoM2Fl/+, Barhl1+/-Math1-cre:SmoM2Fl/+ and Barhl1-/-Math1-cre:SmoM2Fl/+ mice. 

High magnifications revealed small round blue tumor cells in high density. (B) Barhl1 

expression was analyzed using real-time RT-PCR. Target gene level was normalized 

to B2m mRNA. Barhl1 levels were significantly decreased in Barhl1+/-Math1-

cre:SmoM2Fl/+ (B+/-MS) mice compared to Math1-cre:SmoM2Fl/+ (MS) mice (p=0.029) 

and were not detectable in Barhl1-/-Math1-cre:SmoM2Fl/+ (B-/-MS) mice. Hashmark 

indicates no detectable Barhl1 expression. Asterisk: p≤0.05 (C) Survival curves for 

Math1-cre:SmoM2Fl/+ (MS) mice (n=51), Barhl1+/-Math1-cre:SmoM2Fl/+ mice (Barhl1+/-

MS, n=46) and Barhl1-/-Math1-cre:SmoM2Fl/+ mice (Barhl1-/-MS n=12). Deletion of 

Barhl1 resulted in a significantly decreased survival of Barhl1+/-Math1-cre:SmoM2Fl/+ 

mice and Barhl1-/-Math1-cre:SmoM2Fl/+ mice in comparison to Math1-cre:SmoM2Fl/+ 

mice (p=0.003 and p=0.002 respectively). Scale bar is 1 mm for low power images and 

50 µm for high power images. 
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3.3.2. Immunohistochemical characterization of mous e medulloblastoma 

 

To find out why Barhl1 deletion resulted in a worse prognosis, Math1-

cre:SmoM2Fl/+, Barhl1+/-Math1-cre:SmoM2Fl/+ and Barhl1-/-Math1-cre:SmoM2Fl/+ 

mice were further analyzed by immunohistochemistry. As expected, Cre 

recombinase expression was strong in all three genotypes with a large majority 

of tumor cells being stained (Figure 14). NeuN, a marker for neuronal 

differentiation, is expressed in mature granule neurons of the internal granule 

cell layer (Weyer and Schilling, 2003), but also in medulloblastoma (Eberhart et 

al., 2001). Interestingly, Math1-cre:SmoM2Fl/+-derived medulloblastoma cells 

exhibited a strong expression of NeuN, but significantly fewer NeuN-positive 

cells were detectable in tumors from Barhl1+/-Math1-cre:SmoM2Fl/+ (p=0.004) 

and Barhl1-/-Math1-cre:SmoM2Fl/+ mice (p=0.012, Figure 13A). Similarly, 

expression of Zic, a marker for granule neuron differentiation and 

medulloblastoma (Yokota et al., 1996) was significantly reduced in Barhl1+/-

Math1-cre:SmoM2Fl/+ (p=0.034) and Barhl1-/-Math1-cre:SmoM2Fl/+ mice 

(p=0.016, Figure 13A). While Olig2 and Sox2, both of which label multipotent 

precursors (Schüller et al., 2008; Sutter et al. 2010), were found to be similarly 

expressed in all three genotypes (Figure 14), Synaptophysin and MAP2, as 

additional markers for neuronal differentiation, appeared to be more weakly 

expressed in Barhl1+/-Math1-cre:SmoM2Fl/+ and Barhl1-/-Math1-cre:SmoM2Fl/+ 

mice than in Math1-cre:SmoM2Fl/+ mice (Figure 14). In contrast, the percentage 

of phosphorylated Histone H3 (pHH3) positive tumor cells was significantly 

increased in Barhl1-/-Math1-cre:SmoM2Fl/+ mice in comparison to Barhl1+/-

Math1-cre:SmoM2Fl/+ mice (p=0.019) and Math1-cre:SmoM2fl/+ mice (p=0.012). 

Likewise, Barhl1+/-Math1-cre:SmoM2Fl/+ mice showed an elevated fraction of 

pHH3-positive tumor cells when compared to Math1-cre:SmoM2Fl/+ mice 

(p=0.045). Furthermore, Western Blot analysis showed that protein levels of 

cleaved caspase-3, a marker for apoptosis, were significantly reduced in  

Barhl1-/-Math1-cre:SmoM2Fl/+ mice when compared to Math1-cre:SmoM2Fl/+ 

mice (p=0.036, Figure 13B), and this may indicate some pro-apoptotic effect in 

medulloblastoma. Hence, medulloblastomas from Barhl1+/-Math1-cre:SmoM2Fl/+ 

and Barhl1-/-Math1-cre:SmoM2Fl/+ mice were characterized by a significantly 

decreased differentiation of tumor cells.  
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Figure 13: Immunohistochemical characterization of mouse medulloblastoma. 

(A) Immunostaining for NeuN, Zic and phosphorylated Histone H3 (pHH3). Scale bar is 

1mm for low power images and 50µm for high power images. Immunostaining for 

NeuN: Arrows point at strongly stained mature granule neurons in the internal granule 

cell layer (IGL). Strong NeuN expression was also found in tumor cells from Math1-

cre:SmoM2Fl/+ mice, but only marginal expression was seen in tumors from Barhl1+/-

Math1-cre:SmoM2Fl/+ and Barhl1-/-Math1-cre:SmoM2Fl/+ mice. The percentage of NeuN 

positive tumor cells was significantly reduced in Barhl1+/-Math1-cre:SmoM2Fl/+ (B+/-MS) 

mice (p=0.012) and Barhl1-/-Math1-cre:SmoM2Fl/+ (B-/-MS) mice (p=0.004) in 

comparison to Math1-cre:SmoM2Fl/+ (MS) mice. Immunostaining for Zic: The 

percentage of Zic positive tumor cells was significantly reduced in B+/-MS mice 

(p=0.034) and B-/-MS mice (p=0.016) compared to MS mice. Immunostaining for pHH3: 

The percentage of pHH3-positive tumor cells was significantly increased in B-/-MS mice 

in comparison to B+/-MS mice (p=0.019) and MS mice (p=0.012). B+/-MS mice showed 

increased pHH3-positive tumor cells when compared to MS mice (p=0.045).              
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(B) Western Blot for cleaved caspase-3. Protein levels of cleaved caspase-3 were 

significantly reduced in Barhl1-/-Math1-cre:SmoM2Fl/+ mice in comparison to Math1-

cre:SmoM2Fl/+ mice (p=0.036).  One asterisk: p≤0.05, two asterisks: p≤0.01. 

 

 

 
Figure 14:  Immunhistochemical characterization of mouse medulloblastoma. Strong 

Synaptophysin expression was found in tumor cells from Math1-cre:SmoM2Fl/+ mice, 

but only weak expression was seen in tumors from Barhl1+/- Math1-cre:SmoM2Fl/+ and  

Barhl1-/- Math1-cre:SmoM2Fl/+ mice. MAP2 displayed a similar pattern with robust 

staining in Math1-cre:SmoM2Fl/+ mice and weak staining in Barhl1+/- Math1-
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cre:SmoM2Fl/+ and  Barhl1-/- Math1-cre: SmoM2Fl/+ mice. Cre recombinase expression 

was strong in all three genotypes with the large majority of tumor cells being stained. 

Expression of Math1-cre, Olig2 and Sox2 was similar in all tumor genotypes. 

Differentiated cells of the normal cerebellum exhibited strong NSE staining, but all 

medulloblastomas (MB) were NSE negative. Scale bar is 50 µm for all images. 

 

 

3.4. BARHL1 expression in human medulloblastomas an d patients’ 

survival 

 

Having observed an important impact of Barhl1 on the differentiation and 

prognosis of murine medulloblastoma, the next intention was to analyze the 

survival of patients with respect to BARHL1 expression in human 

medulloblastoma. When separating the patients into two groups by using the 

median of relative BARHL1 expression in medulloblastoma, statistically 

significant differences in survival were not seen (data not shown). However, the 

13 patients exhibiting the highest relative BARHL1 expression values (high 

BARHL1) were found to have a significantly better prognosis than the rest of the 

group (low BARHL1, n=31, p=0.049, Figure 15). In particular, after 5 years of 

follow-up, none of the high BARHL1 cases had died, whereas the survival rate 

of patients with low BARHL1 medulloblastomas was only 0.59 (Figure 15).  
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.  

Figure 15: Kaplan Meier analysis of patients with medulloblastoma that express high 

or low levels of BARHL1. The 13 patients exhibiting the highest relative BARHL1 

expression values (high BARHL1) were compared to the rest of the group (low 

BARHL1, n=31). High levels of BARHL1 were significantly correlated with a better 

prognosis (p=0.049). 

 

 

To validate the prognostic value of BARHL1 expression in a different set of 

medulloblastoma cases, the microarray expression data from an Amsterdam 

series of medulloblastoma patients were re-analyzed (Kool et al., 2008) and 

Kaplan Meier curves with respect to BARHL1 expression were established. To 

apply a similar threshold for BARHL1 expression, at first an expression cut-off 

at third quartile was used to divide the Amsterdam series in high and low 

BARHL1 cases. However, the 13 high BARHL1 cases only tended to have a 

better survival than the low BARHL1 cases, but statistical significance was not 

reached (n=36, p=0.357, Figure 16A).  Nevertheless, a significantly prolonged 

overall survival was found after splitting the series into 41 patients with high 

BARHL1 expression and 8 patients with low BARHL1 expression (p<0.001, 

Figure 16B).  
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Figure 16:  BARHL1 expression and survival in a different set of medulloblastoma 

cases (Kool et al., 2008). (A) Applying a similar threshold than in our patient group 

(expression cut-off at third quartile) shows a trend for favorable survival in the high 

BARHL1 group (n=13) when compared to the rest of the group (low BARHL1, n=36, 

p=0.357). (B) A significantly prolonged overall survival was found in the 41 patients 

showing high BARHL1 expression levels when compared to the remaining patients 

(low BARHL1, p<0.001). 

 

 

To see whether BARHL1 also correlated with differentiation markers in human 

medulloblastoma, again the microarray expression data of 62 medulloblastoma 

samples from the Amsterdam series were re-analyzed. Expression levels of 

NEUN and ZIC1 were significantly increased in the 50 medulloblastoma cases 

expressing BARHL1 when compared to the 12 medulloblastoma samples with 

no detectable BARHL1 expression (p=0.001 and p=0.021 respectively, see 

Figure 17A, B). Moreover, MAP2 expression levels were found to be 

significantly correlated with BARHL1 expression levels (p<0.001, data not 

shown). These findings suggest that the effects of BARHL1 were similar in 

mouse and human medulloblastoma, with loss or reduced BARHL1 expression 

being associated with decreased differentiation of the tumor cells and a worse 

prognosis of mice and patients.  
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Figure 17:  (A, B)  Expression of differentiation markers with respect to BARHL1 

expression in the set of medulloblastoma cases from Kool et al. 2008. Expression 

levels of NEUN and ZIC1 were significantly increased in the 50 medulloblastoma cases 

expressing BARHL1 when compared to the 12 medulloblastoma samples with no 

detectable BARHL1 expression (p=0.001 and p=0.021 respectively). One asterisk: 

p≤0.05, two asterisks: p≤0.01. 
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4. Discussion 

 

Barhl1 is known to play a key role in cerebellar development having influence 

on migration and survival of granule neuron precursors (Li et al., 2004). I 

observed that Barhl1 expression was maintained in mature granule neurons of 

several anterior lobes of the cerebellum as well as in lobe X (Figure 11A). While 

expression of Barhl1 in mature granule neurons per se was confirmed by lacZ 

expression in Barhl1-/- mice (Li et al., 2004), the regional specificity of Barhl1 

expression in the cerebellum has not yet been functionally analyzed. 

Interestingly, this expression pattern correlates well with the expression of Gli1 

and En1 transcription factors, both of which are known to have crucial functions 

during cerebellar development (Millen et al., 1995; Corrales et al., 2004). While 

it is tempting to speculate on the functional role of Barhl1 itself with respect to 

anteroposterior pattering, it appears possible that Barhl1 functions in 

cooperation with the above mentioned genes.  

I further report that Barhl1 is expressed in medulloblastoma arising in Math1-

cre:SmoM2Fl/+ mice as well as in the majority of human medulloblastoma 

samples. Interestingly, loss of Barhl1 in Math1-cre:SmoM2Fl/+ derived 

medulloblastomas resulted in a down-regulation of neuronal differentiation 

markers, whereas mitotic activity of these cells was increased (Figure 13). 

Hence, apart from its role during normal cerebellar development, Barhl1 might 

play important roles for cell differentiation in medulloblastoma. Moreover, 

deletion of Barhl1 in Math1-cre:SmoM2Fl/+ mice led to a significantly decreased 

survival of these mice. Similarly, patients with low BARHL1 expression had a 

significantly worse prognosis and died earlier. The observation that loss of 

Barhl1 causes migration deficits in neurons of Barhl1 null mice (Li et al., 2004), 

extenuates the possibility that unfavorable survival of patients with 

medulloblastoma with low levels of Barhl1 expression might be due to 

enhanced migration or infiltration of medulloblastoma cells. I therefore suggest 

that the underlying mechanisms leading to a worse prognosis of patients and 

mice carrying tumors with low or no BARHL1 expression are mainly decreased 

differentiation and increased proliferation of medulloblastoma cells.  

A recent study found medulloblastoma to comprise 5 distinct molecular variants 

(Kool et al., 2008). Besides the SHH-associated tumors, the WNT group and 

three other, not yet well characterized groups have been described. While the 
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used mouse model highlights the role of Barhl1 in Shh-associated 

medulloblastomas, the functional impact of Barhl1 on tumors belonging to other 

molecular subgroups appears hard to investigate, mainly due to the lack of 

appropriate mouse models. Interestingly enough, of the 13 medulloblastoma 

samples exhibiting the highest BARHL1 expression values in our own series, 4 

samples showed a desmoplastic histology which is often associated with SHH-

associated medulloblastomas and one case carried a CTNNB1 mutation, a 

criterion for the WNT-associated variant (Kool et al., 2008). However, both 

desmoplastic histology and CTNNB1 mutations were also found in tumors with 

low BARHL1 expression. In line with this, expression of BARHL1 was similar in 

desmoplastic and in classic medulloblastomas (Figure 1C), suggesting an 

important role of Barhl1 for several, if not all medulloblastoma subtypes and 

indicating that the mechanisms revealed by Barhl1 loss in Math1-cre:SmoM2Fl/+ 

mice might be applied to all medulloblastoma subtypes.  

Barhl1 belongs to a family of homeodomain transcription factors which also 

includes the homologue Barhl2. Although these proteins are known to display 

distinct expression patterns in the nervous system, yet overlapping expression 

was found in granule neuron precursors of the cerebellum (Bulfone et al., 2000; 

Li et al., 2002; Mo et al., 2004). Moreover, Barhl1 and Barhl2 can transactivate 

the Barhl1 promoter (Chellappa et al., 2008). This could not only point towards 

a close interaction between Barhl1 and Barhl2 in granule neuron precursors but 

also to some compensating mechanisms in a Barhl1-null situation. However, I 

did not find any upregulation of Barhl2 expression in medulloblastomas from 

Barhl1+/-Math1-cre:SmoM2Fl/+ and Barhl1-/-Math1-cre:SmoM2Fl/+ mice. Neither 

was Barhl2 upregulated in Barhl1-/- and Barhl1+/- mice. Therefore, the function of 

Barhl2 in medulloblastoma pathology and normal granule cell development 

seems to be distinct from Barhl1 functions and effects of Barhl1 loss were 

neither mediated, nor extenuated by Barhl2. A statistically significant difference 

in survival with respect to BARHL1 expression was found in our group of 44 

patients. However, re-analysis of the microarray expression data from the 

Amsterdam series of medulloblastoma patients (Kool et al., 2008) did not 

confirm these results when using the same cutoff for BARHL1 expression as a 

prognostic indicator. This reinforces the fact that molecular markers relying on 

percentile rankings are not suitable for human clinical trials. Although BARHL1 

seems biologically important in medulloblastomas, its prognostic value still has 
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to be defined, ideally prospectively in a large homogenously treated cohort of 

patients. 

Similar to Barhl1, several other genes are known to be associated with a 

favorable prognosis in medulloblastoma (Pomeroy et al., 2002). Among them, 

TRKC, the receptor for Neurotrophin-3 (NT-3), is well described (Segal et al., 

1994). Interestingly, its ligand, Nt-3, was suggested to be a major downstream 

gene of Barhl1 during cerebellar development (Li et al., 2004). Further 

understanding of the molecular interactions of BARHL1 and its partners will be 

promising to find specific therapeutic strategies for medulloblastoma treatment 

in the future. 
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5. Summary 

 

5.1. Summary 

 

Medulloblastoma is the most common malignant brain tumor in childhood, and 

development of targeted therapies is highly desired. While the molecular 

mechanisms of malignant transformation are not fully understood, it is known 

that medulloblastoma may arise from cerebellar granule neuron precursors. The 

homeodomain transcription factor Barhl1 is known to regulate migration and 

survival of granule cell precursors, but its functional role in medulloblastoma is 

unknown. It is shown here that expression of BARHL1 is significantly 

upregulated during human cerebellar development and in human 

medulloblastoma samples as compared to normal adult cerebellum. High levels 

of Barhl1 expression were detected in medulloblastomas of Math1-

cre:SmoM2Fl/+ mice, an established mouse model for Sonic hedgehog-

associated medulloblastomas. To investigate Barhl1 function in vivo during 

tumor development, Barhl1-/-Math1-cre:SmoM2Fl/+ and Barhl1+/-Math1-

cre:SmoM2Fl/+ mice were generated. Interestingly, tumors that developed in 

these mice displayed increased mitotic activity and decreased neuronal 

differentiation. Moreover, survival of these mice was significantly decreased. 

Similarly, low expression of BARHL1 in human medulloblastoma cases was 

associated with a less favorable prognosis for the patients. These results 

suggest that expression of Barhl1 decelerates tumor growth both in human and 

murine medulloblastoma and should be further investigated with respect to 

potential implications for individualized therapeutic strategies. 
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5.2. Zusammenfassung 

 

Das Medulloblastom ist der häufigste maligne Hirntumor des Kindesalters, und 

die Entwicklung von zielgerichteten, nebenwirkungsarmen Therapiestrategien 

hat oberste Priorität. Die molekularen Mechanismen der malignen 

Transformation dieses Tumors sind noch nicht bis ins Letzte verstanden, jedoch 

ist bekannt, dass Medulloblastome von Körnerzellvorläufern abstammen 

können.  Barhl1 ist einer der Transkriptionsfaktoren, die das Überleben und die 

Migration von Körnerzellvorläufern steuern, jedoch ist die Funktion, die Barhl1 

im Medulloblastom hat, noch unbekannt. Diese Arbeit zeigt, dass die 

Expression von  BARHL1 während der Entwicklungsphase des menschlichen 

Kleinhirns und in humanen Medulloblastomen im Vergleich zu Kleinhirnen von 

Erwachsenen signifikant hochreguliert ist. Hohe Barhl1 Expressionslevel 

wurden zudem in Medulloblastomen von Math1-cre:SmoM2Fl/+ Mäusen 

gefunden, welche ein bewährtes Mausmodel für Sonic hedgehog-assoziierte 

Medulloblastome darstellen, die von cerebellären Körnerzellvorläufern 

abstammen. Um die Funktion von Barhl1 in vivo während der Entwicklung und 

des Wachstums von Medulloblastomen zu untersuchen, wurden Barhl1-/- 

Math1-cre:SmoM2Fl/+ und Barhl1+/-Math1-cre:SmoM2Fl/+ Mäuse generiert. 

Interessanterweise zeigten Tumoren, die in diesen Mäusen entstanden, eine 

vermehrte mitotische Aktivität und eine verminderte neuronale Differenzierung. 

Zudem war das Überleben dieser Mäuse im Vergleich zu dem von Math1-

cre:SmoM2Fl/+ Mäusen signifikant verkürzt. Im Einklang mit diesen Ergebnissen 

zeigten Patienten, deren Medulloblastom eine niedrige BARHL1 Expression 

aufwies, eine schlechtere Prognose als Patienten, deren Tumoren eine höhere 

BARHL1 Expression aufwiesen. Diese Ergebnisse deuten darauf hin, dass die 

Expression von Barhl1 das Tumorwachstum in murinen und humanen 

Medulloblastomen verlangsamt. Deswegen sollte BARHL1 im Hinblick auf 

potentielle Anwendungen für individualisierte therapeutische Strategien weiter 

untersucht werden.  
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