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CP47   Chlorophyll binding protein 47 
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CtpA   Carboxyl-terminal processing protease A 
CYP   Cyclophilin 
cyt   Cytochrome 
D     Dark 
Da    Dalton 
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DNA    Deoxyribonucleic acid 
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HCF   High chlorophyll fluorescence 
HEPES    4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
HL   High light 
HPLC   High performance liquid chromatography 
IgG    Immunoglobulin G 
k     Kilo 
LB    Left T-DNA border 
LEF    Linear electron flow 
Ler   Arabidopsis ecotype Landsberg erecta 
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Summary 

Photosynthetic light reactions rely on the proper function of multisubunit protein 

complexes that reside in the thylakoid membrane. In plants, the biogenesis of 

these complexes needs the stoichiometric synthesis and sequential integration of 

chloroplast- and nucleus-encoded proteins into the thylakoid membrane of the 

chloroplast. Thus, the assembly processes require additional auxiliary and 

regulatory factors to assist this complex, multistep process. Due to the limited 

coding capacity of the chloroplast genome, the biogenesis and assembly is 

mainly regulated by nucleus-encoded proteins. Several of them have already 

been identified in recent years, but there is still a repertoire of assembly and 

maintenance factors that has to be determined. Here we show that a novel 

transmembrane protein, named PAM68, which is located in thylakoids of 

photoautotrophic organisms, plays a critical role in the biogenesis of photosystem 

II (PSII) in Arabidopsis. Mutant plants with the PAM68 gene interrupted by T-DNA 

insertion show stunted growth and pale green leaves. Analyses of leaf chlorophyll 

fluorescence, pigment composition and amounts of photosynthetic proteins 

suggest that pam68 mutant plants have a defect in PSII biogenesis. Protein 

labelling assays indicate a decrease in the synthesis rate of the PSII core protein 

D1 resulting in reduced amounts of assembled complexes. These results, 

together with the analysis of polysome association with psbA mRNA, provide 

evidence that PAM68 is necessary either for the stability of the D1 nascent chain 

or for its co-translational integration into the thylakoid membrane. In flowering 

plants a homologue of PAM68 exists, PAM68HL, which is crucial for the activity 

of the NAD(P)H-dehydrogenase (NDH) complex. Interruption of the PAM68HL 

gene does not result in any visible phenotype. However, biochemical analyses 

reveal defects in the NDH complex, as the PSI/NDH supercomplex is absent. 

This deficiency is confirmed by spectroscopic measurements. A double mutation 

of PAM68 and its homologue does not lead to an additive phenotype. Taken 

together, these results exclude that PAM68 and PAM68HL have redundant 

functions.  
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Zusammenfassung 

Die Elektronentransportkette der Photosynthese setzt sich aus verschiedenen 

Proteinkomplexen, welche sich in der Thylakoidmembran der Chloroplasten 

befinden, zusammen. Deren einwandfreie Funktionsweise ist abhängig von einer 

akkuraten Assemblierung der einzelnen Untereinheiten, die zum einen Teil in den 

Chloroplasten und zum anderen Teil im Zellkern kodiert werden. Die Biogenese 

der Proteinkomplexe ist komplex und vielschichtig und erfordert daher zusätzliche 

Hilfs- und Regulationsfaktoren. Aufgrund der begrenzten Kodierungskapazität 

des Chloroplastengenoms werden die Biogenese und Assemblierung vor allem 

durch kernkodierte Proteine reguliert. Einige davon wurden bereits in den letzten 

Jahren entdeckt, aber es existiert immer noch eine Vielzahl an Faktoren für die 

Assemblierung und Aufrechterhaltung, die identifiziert werden müssen. Hier 

stellen wir ein neues Transmembranprotein vor, PAM68 genannt, das in den 

Thylakoiden von photoautotrophen Organismen lokalisiert ist und eine 

entscheidende Rolle bei der Biogenese von Photosystem II (PSII) in Arabidopsis 

spielt. Mutierte Pflanzen mit einer T-DNA Insertion im PAM68-Gen sind im 

Wachstum gehemmt und besitzen blass-grüne Blätter. Messungen der 

Chlorophyll-Fluoreszenz, Pigmentzusammensetzung und der Expression 

photosynthetischer Proteine in der pam68-Mutante deuten auf einen Defekt in der 

PSII-Biogenese hin. Versuche mit markierten Proteinen zeigen eine verminderte 

Syntheserate des PSII-Kernproteins D1, was zu einer Reduktion der 

assemblierten Komplexe führt. Diese Ergebnisse liefern den Hinweis, dass 

PAM68 entweder an der Stabilisierung des naszierenden D1-Proteins oder an 

dessen ko-translationeller Integration in die Thylakoidmembran beteiligt ist. 

Darauf deutet auch die untersuchte Assoziation von der psbA-mRNA mit 

Polysomen hin. In Blütenpflanzen existiert ein homologes Protein, PAM68HL, 

welches wichtig für die Aktivität des NAD(P)H-Dehydrogenase-Komplexes ist. Ein 

Ausschalten des PAM68HL Gens resultiert nicht in einem sichtbaren Phänotyp. 

Allerdings deuten biochemische Untersuchungen auf einen Defekt im NDH-

Komplex hin, da der PSI/NDH-Superkomplex nicht vorhanden ist. 

Spektroskopische Analysen bestätigen diese Defizienz. Da eine Doppelmutation 

von PAM68 und dem Homolog nicht zu einem verstärkten Phänotypen führt, 

kann eine redundante Funktion von PAM68 und PAM68HL ausgeschlossen 

werden. 
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1) Introduction 

 

1.1) Photosynthesis in Flowering Plants 

Photosynthesis is the most important energy source for life on earth. Oxygenic 

photosynthesis occurs in plants, algae, and cyanobacteria. In plants and green 

algae the photosynthetic apparatus is located in the chloroplast (Fig. 1.1) This 

complex double-membrane organelle has evolved from a cyanobacterial ancestor 

that was taken up by a primitive eukaryotic cell through endosymbiosis (Margulis, 

1971). During evolution, the vast majority of the chloroplast genes were 

transferred to the nucleus of the host cell (Kleine et al., 2009). Therefore, these 

proteins have to be imported into the chloroplast as they are encoded in the 

nuclear genome. For proteins that are localised to the thylakoid membrane, 

further internal transport pathways are required (for review see Soll and Schleiff, 

2004; Schünemann, 2007).  

The thylakoid membrane is composed of three structurally distinct domains: the 

planar appressed membranes of the grana, the non-appressed stroma lamellae, 

and the highly curved, non-appressed margins of the grana (Dekker and 

Boekema, 2005; Anderson, 2006). This heterogeneity has an important impact on 

the localisation of proteins needed for the light-dependent reactions of 

photosynthesis. The photosynthetic apparatus consists of four multisubunit-

complexes (Fig. 1.2): the two photosystems (PSII and PSI), the cytochrome b6f-

complex and the ATP-synthase. PSII and its associated light-harvesting complex 

are preferentially located in the stacked grana regions, while the cytochrome b6f-

Fig. 1.1: Schematic picture of the chloroplast of flowering plants. 
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complex, PSI and the ATP-synthase are found in the margins of the grana as well 

as in stroma thylakoids (Mullineaux, 2005). These complexes are required for the 

electron transfer chain, which drives photosynthesis. Light excitation of PSII leads 

to the release of electrons from P680, the primary donor of PSII, which are 

captured by the first electron acceptor QA. Electrons are then transferred to the 

cytochrome b6f-complex via the plastoquinone pool (PQ-pool) and further on to 

PSI via plastocyanin (PC). In the PSI complex a second light excitation takes 

place, and the electrons are transferred with the help of several components to 

the electron carrier protein ferredoxin (Fd), which is used to reduce NADP. In total 

this process leads to the oxidation of water to molecular oxygen and the reduction 

of NADP+ to NADPH. The electron flow through this transport chain additionally 

leads to the translocation of protons into the thylakoid lumen. The energy stored 

in the resulting proton gradient is converted by the ATP-synthase to ATP.  

 

1.2) Photosystem II: Biogenesis and Assembly 

Photosystem II (PSII) is a pigment-protein complex embedded in the thylakoid 

membrane of cyanobacteria and chloroplasts that drives the electron transfer 

from water to plastoquinone. In flowering plants, PSII consists of more than 20 

Fig. 1.2: The thylakoid membrane of the chloroplast. 

The four multi-subunit complexes of the photosynthetic apparatus: Photosystem II (PSII), 
cytochrome b6f-complex, photosystem I and the ATP synthase. Electron transfer: electrons 
(white arrows), H+ (black arrows). 
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subunits (Nelson and Yocum, 2006). The reaction centre core of this 

photosystem, consisting of the D1 and D2 protein, the  and subunit of 

cytochrome b559 and the PsbI and PsbW proteins, performs the primary charge 

separation. Oxygen-evolving PSII complexes additionally contain the intrinsic 

chlorophyll a (Chl a) binding proteins CP47 and 

CP43, as well as the extrinsic, lumenal proteins 

of the oxygen-evolving complex (OEC; PsbO, 

PsbP, PsbQ) that bind the manganese cluster 

(Mn cluster), and some additional low molecular 

weight subunits (Shi and Schröder, 2004). The 

D1 and D2 heterodimer binds all the 

intermediate redox components of PSII required 

for the electron transfer from the Mn cluster to 

the plastoquinone pool (Chl a P680, pheophytin, non-heme Fe2+, quinones; Nanba 

and Satoh, 1987). The molecular mechanism underlying the biogenesis and 

assembly of PSII is not fully understood, although our knowledge of the structure 

and function of PSII has greatly advanced in recent years. It has been 

demonstrated that at least three different processes can be distinguished in the 

formation of PSII complexes, depending on the developmental stage of the 

plastid (Baena-González and Aro, 2002): i) early biogenesis of thylakoid 

membranes during the transition from etioplasts to chloroplasts, ii) de novo 

biogenesis of PSII centres in light, iii) repair of light-induced damage to PSII. 

During each of these PSII formation processes, the sequential synthesis of PSII 

proteins and a stepwise assembly is indispensable. Hence, these procedures 

probably share common regulatory steps, although they clearly differ from each 

other in many aspects. 

 
1.2.1) Early Biogenesis of PSII 

The early biogenesis starts already in etiolated seedlings in the dark. In the 

precursor of the chloroplast, the etioplast, several PSII subunits are already 

synthesised and assembled into pre-thylakoid membranes. This is the case for 

cyt b559 (Ohashi et al., 1992; Müller and Eichacker, 1999), PsbH (Hird et al., 

1991), the OEC proteins (Gamble and Mullet, 1989) and D2 (Müller and 

Eichacker, 1999). These proteins can be synthesised independently of light, 

Fig. 1.3: PSII reaction centre. 
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whereas other components require the recruitment of cofactors like chlorophyll for 

proper folding and insertion into the membrane. Only upon illumination, the Chl 

precursor protochlorophyllide is converted into Chl a (von Wettstein et al., 1995), 

and the synthesis of such chlorophyll-binding proteins (CP43, CP47 and D1) can 

take place (Eichacker et al., 1990; Kim et al., 1994). As every step in the early 

biogenesis of PSII is strictly regulated, also these Chl-binding proteins 

accumulate in a coordinated manner (Jensen et al., 1986; de Vitry et al., 1989; 

Yu and Vermaas, 1990). First, CP47 is inserted into the pre-complex consisting of 

D2 and cyt b559. Afterwards, or probably concomitantly with CP47, D1 is 

cotranslationally assembled and processed at its C-terminus. This step precedes 

the assembly of the CP43 protein (Zhang et al., 2000). Afterwards, the Mn cluster 

can be ligated followed by a subsequent photo-activation of the OEC (Bowyer et 

al., 1992). For the low molecular weight proteins (LMW) that are stoichiometric 

components of PSII, such strict formation steps have not been found to-date. 

They are supposed to be integrated at different stages of the PSII assembly 

process (Hager et al., 2002; Suorsa et al., 2004; Rokka et al., 2005). The final 

establishment of a functional PSII requires then dimerisation of PSII monomers 

and the association of LHCII trimers. 

Beside the order of synthesis, also the integration of photosynthetic proteins into 

the thylakoid membrane is strictly coordinated, although not all proteins use the 

same mechanism of insertion. D1 is cotranslationally translocated to the 

membrane with the cpSRP54 particle (chloroplast signal recognition particle; 

Schünemann et al., 1998; Nilsson and van Wijk, 2002). Several chloroplast-

encoded thylakoid membrane proteins probably use the same pathway. cpSRP54 

is also involved in the cpSRP targeting pathway of nucleus-encoded proteins, 

which seems to be limited to the integration of light harvesting Chl a/b binding 

proteins into the thylakoid membrane (LHCPs; Schünemann, 2004; Tzvetkova-

Chevolleau et al., 2007). For this, it has to form a complex with cpSRP43. 

Additionally to the cpSRP-pathway, three other routes for nucleus-encoded 

subunits have been described until now (cpTat, cpSec, and the spontaneous 

integration pathway; Schünemann, 2007). The latter is the only process that 

functions without the assistance of other proteins or energy (Jarvis and Robinson, 

2004).  
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1.2.2) De Novo Biogenesis of PSII in Light 

The process of de novo biogenesis of PSII is difficult to tackle directly, and often 

for the studies on biogenesis of PSII complexes in light various PSII mutants 

have been utilised. Depletion of main PSII core subunits in cyanobacteria or 

plants resulted in a disruption of the whole complex and in the disappearance of 

other central subunits (Baena-González and Aro, 2002). This is the case for the 

reaction centre components cyt b559, D1, D2, and CP47 (Pakrasi et al., 1990, 

Suorsa et al., 2001; Erickson et al., 1986; Vermaas, 1988; de Vitry et al., 1989; 

Jensen et al., 1986; Nilsson et al., 1990). The following depletion of additional 

PSII core proteins after mutating one RC-component has different reasons. In 

cyanobacteria, the amount of close assembly partners is regulated proteolytically 

leading to an accelerated degradation (Yu and Vermaas, 1990). Chloroplasts of 

green algae and plants exhibit another control of protein synthesis, namely a tight 

control of translation. This phenomenon, called CES (“control by epistasy of 

synthesis”) is well-characterised for the cyt b6f-complex, where the synthesis of 

cytochrome f is repressed in the absence of other subunits of the cyt b6f-complex 

in Chlamydomonas (Wollman et al., 1999; Choquet et al., 1998). Studies with 

PSII mutants on the other hand showed that D2 is indispensable for synthesis of 

D1 (de Vitry et al., 1999) and the absence of cyt b559 leads to repression of D1, 

D2, CP47, and CP43 (Morais et al., 1998). This dependence of synthesis is 

reinforced by the presence of the PSII-subunits cyt b559 and D2 already at early 

phases of chloroplast development as mentioned above. Also in the de novo 

synthesis of PSII proteins in leaves of mature plants, these two subunits seem to 

be the first ones integrated into the thylakoid membrane. An observed interaction 

of D2 with D1 translation intermediates (Zhang et al., 1999) gives further support 

to this stepwise synthesis of proteins.  

The order of the next assembly steps seems to be the same as for the early 

biogenesis of PSII. After insertion of the reaction centre D1, and the processing of 

its C-terminus (Oelmüller et al., 1996), CP43 can be integrated into the complex. 

This step is assisted by the “LOW PSII ACCUMULATION 2” (LPA2) protein, 

which was suggested to form a complex with Albino3 (Alb3), a component of the 

integration machinery of thylakoid proteins (Ma et al., 2007). After that, the Mn 

cluster (Bowyer et al., 1992) and other cofactors can attach, followed by the 

association of the OEC proteins and LMW-proteins, dimerisation of the whole 
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complex and binding of the light-harvesting apparatus. However, the difference 

between early and de novo biogenesis lies in the regulation of the PSII subunits 

when one of them is missing. Although mature chloroplasts of Chlamydomonas 

D1-less mutants failed to accumulate D2 or cyt b559 (Morais et al., 1998), both 

proteins were synthesised in etioplasts before the onset of illumination. Thus, 

early chloroplast development is regulated by both the developmental step and 

light information (Gamble and Mullet, 1989).  

 

1.2.3) Repair-Cycle of PSII 

As a result of the strong oxidative chemistry of water splitting, organisms that 

perform oxygenic photosynthesis are subject to the production of reactive oxygen 

species (ROS) or other radicals, which are destructive to proteins and pigments 

(Barber and Andersson, 1992; Niyogi, 1998; Nishiyama et al., 2006). This 

photodamage occurs under all light intensities (Krause and Weis, 1991; Prasil et 

al., 1992; Aro et al., 1993). Under normal light conditions, photosynthetic 

organisms are able to overcome 

photodamage by a rapid and efficient repair 

of the damaged proteins. The main target 

of this light-induced photoinhibition is the 

PSII-complex and specifically the D1 

protein (Mattoo et al., 1984; Prasil et al., 

1992; Aro et al., 1993). As a consequence, 

the PSII core is subjected to a multi-step 

repair cycle, thereby maintaining the 

function of the photosynthetic light 

reactions (Baeno-Gonzalez and Aro, 2002; 

Aro et al., 1993). According to current 

knowledge, PSII is the most dynamically 

regulated part of the light reactions in the 

thylakoid membrane (Tikkanen et al., 

2008). However, after light-induced 

damage of PSII core proteins, the corresponding complex must exit the grana 

stacks and migrate to the stroma lamellae, where the ribosomes have access. In 

the stroma thylakoids the PSII complex has to be partially disassembled, 

Fig. 1.4: Model for degradation of D1 
during repair from photoinhibition.  

The transmembrane helices of D1 are 
marked A to E. Adapted from Kapri-
Pardes et al., 2007. 
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depending on the extent of damage. After migration of the damaged PSII 

proteins, degradation takes place. This process must be tightly coordinated with 

the synthesis of new subunits and their incorporation into the PSII complex. 

There has been much effort to identify the proteases involved in D1 protein 

degradation. It has been demonstrated that the primary cleavage of the damaged 

D1 protein occurs on the stromal loop connecting the membrane-spanning 

helices D and E (Greenberg et al., 1987) by the Deg2 protease (Haußühl et al., 

2001; Fig. 1.4). Simultaneously, a newly synthesised functional copy replaces the 

damaged D1 protein. Further degradation of D1 is conducted by an integral 

membrane metalloendopeptidase, FtsH (Lindahl et al., 2000). Both proteases are 

also involved in the degradation of the damaged D2 and PsbH proteins. Another 

protease has been identified, the Deg1 protease, which is located in the thylakoid 

lumen (Kapri-Pardes et al., 2007). It was suggested that Deg1 cleaves the D1 

protein in the lumenal loop connecting the transmembrane helices C and D. The 

lumenal immunophilin TLP18.3 (thylakoid lumen protein of 18.3 kDa) is not 

directly involved in the degradation of damaged D1 but seems to facilitate this 

process (Sirpiö et al., 2007).  

After a new D1 copy has been inserted a reconstitution of the PSII-complex takes 

place (binding of cofactors, integration of disassembled subunits) and the 

complex re-migrates to the grana stacks of the thylakoid membrane (Tikkanen et 

al., 2008).  

 

1.3) Synthesis and Integration of the PSII Reaction Centre 

Protein D1 

The mature D1 protein has five transmembrane domains (see also Fig. 1.4) with 

its N-terminus on the stromal side of the thylakoids. The D1 protein is encoded by 

the plastid psbA gene and translated on thylakoid membrane-bound ribosomes 

(Zhang and Aro, 2002). The psbA transcript is remarkably stable in chloroplasts 

with a half-life between 10 and 40 hours (Mullet and Klein, 1987). In chloroplasts 

of flowering plants, the main regulatory step for the regulation of the amount of 

D1 protein is the translation initiation of psbA mRNAs leading to only minor 

fluctuations in psbA transcripts. In cyanobacteria, on the other hand, the 

regulation occurs at the level of transcription initiation (Golden et al., 1986; 



1) Introduction 
 

 - 16 -

Mohamed and Jansson, 1989). However, a light-induced increase in the 

ATP/ADP ratio and the generation of reducing compounds were proposed to 

induce the association of ribosomes with the psbA mRNA and a subsequent 

initiation of translation in flowering plants. The HCF173 (high chlorophyll 

fluorescence 173) protein is essential for this initiation. In an Arabidopsis mutant 

lacking this protein, the synthesis of D1 was drastically decreased (Schult et al., 

2007). This nucleus-encoded factor is thought to be either involved in basic 

aspects of D1 synthesis or to be part of the regulatory apparatus adjusting psbA 

mRNA translation.  

Like initiation of translation, the elongation of D1 is also dependent on light, as no 

full length D1 was found in etioplasts in the dark (Klein and Mullet, 1987; Klein et 

al., 1988). Only upon illumination and concomitantly with pigment biosynthesis, 

accumulation of the full length D1 starts, without considerable increase of psbA 

mRNA in polysomes (Mullet et al., 1990; Kim et al., 1994). During the elongation 

of the D1 protein, ribosomes pause at specific sites (Kim et al., 1991; Zhang et 

al., 1999). This distinct pausing in mature chloroplasts is thought to be important 

for the binding of Chl a to D1 intermediates, thereby allowing the stabilisation of 

full length D1 directly upon release from ribosomes (Kim et al., 1994). A nucleus-

encoded auxiliary factor that is essential for the binding of Chl a to the D1 protein 

was described (HCF136; Meurer et al., 1998; Plücken et al., 2002). In the 

absence of HCF136, precursor-D1 (pD1) is synthesised but the assembly of 

stable PSII RC complexes is blocked and the D1 is degraded (Plücken et al., 

2002). Mutant seedlings were unable to grow on soil and were not able to 

produce any flowers when grown on sucrose-complemented medium (Meurer et 

al., 1998). Besides stabilisation mechanisms, the elongation of psbA mRNA is 

also dependent on optimal photosynthetic electron transport, particularly on the 

production of reducing compounds by PSI (probably thioredoxin but this is still 

under debate; Kuroda et al., 1996; Zhang et al., 2000), and on the maintenance 

of a proton gradient across the thylakoid membrane (Mühlbauer and Eichacker, 

1998). Additionally, the availability of assembly partners in the thylakoid 

membrane is essential for the translation of D1 (CES process) as already 

described above.  

However, the synthesised D1 protein has to be inserted into the thylakoid 

membrane. It was shown that the new D1 protein is assembled cotranslationally 
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into the existing PSII complex composed of at least D2 and cyt b559 (- and ß-

subunit; Zhang et al., 1999). The chloroplast signal recognition particle cpSRP54 

 
(Nilsson et al., 1999) is the first interactor of the ribosome nascent D1 chain 

complex and targets it to the thylakoid membrane (Fig. 1.5; depicted from Zhang 

and Aro, 2002). Afterwards, the D1 protein elongation and membrane insertion 

occur concomitantly. The insertion of the elongating D1 protein into the thylakoid 

membrane is likely to involve a cpSecY/E translocon channel, as shown by cross-

linking and immunoprecipitation experiments (Zhang et al., 2001). Additionally, 

Fig. 1.5: Co- and posttranslational steps of D1 synthesis (Zhang and Aro, 2002). 
I) Targeting of nascent D1 by cpSRP54; II) Insertion into cpSecY channel; III) and IV) Lateral 
exit of nascent D1 from cpSecY and interaction with other proteins; V) Termination and C-
terminal processing; VI) Posttranslational association of CP43 into PSII. 
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the integration process is supposed to require also the Alb3 protein, because the 

homologue in Chlamydomonas, Alb3.1, has been found to interact with D1 and to 

assist its assembly into PSII (Ossenbühl et al., 2004). Pasch and co-workers 

(2005) could confirm this interaction with the Arabidopsis homologue using the 

yeast split-ubiquitin system. In those protein-protein interaction studies, Alb3 was 

also able to bind D2, CP43, and the PSI reaction centre protein PsaA. Another 

protein involved in the assembly of D1 into the PSII complex is the “LOW PSII 

ACCUMULATION 1” (LPA1; Peng et al., 2006). The protein interacts specifically 

with D1 as shown in split-ubiquitin studies and is required for efficient PSII 

assembly, probably through direct interaction with D1. During integration into the 

thylakoid membrane, the proper folding of D1 is important for subsequent 

assembly of other subunits. This folding process is guided by the lumenal 

immunophilin CYP38 (Sirpiö et al., 2008).  

After proper insertion of D1 into the thylakoid membrane, C-terminal processing 

of the pD1 protein by the lumenal CtpA protease is essential for the formation of 

functional PSII complexes (Bowyer et al., 1992; Oelmüller et al., 1996). This 

process probably precedes the assembly of the CP43 protein (Zhang et al., 

2000), although it was also assumed that association of CP43 may accelerate the 

C-terminal processing of D1 (Zhang and Aro, 2002). However, only after both 

steps the ligation of the Mn cluster and the oxygen evolving complex to the 

lumenal side of PSII is possible. 

 

1.4) Pulse Amplitude Modulation (PAM) 

Besides the auxiliary proteins like LPA1 or HCF136, there are many more 

nucleus-encoded proteins with a possible role in the biogenesis, assembly or 

repair of photosystem II. Moreover, each stage of PSII assembly appears to be 

assisted by one or more proteins. Thus, there are several other components, 

which still have to be described to resolve the whole complexity of PSII assembly.  

One instrument for the detection of additional auxiliary proteins that might be 

involved in PSII assembly is the Pulse Amplitude Modulation fluorometer (PAM; 

Schreiber et al., 1986). It has been designed to quantify fluorescence and can 

thus been used to identify mutants with defects in photosynthesis. The functional 

state of PSII can easily be monitored by this non-invasive chlorophyll 

fluorescence measurement (Krause and Weis, 1991). The underlying principle is 
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quite simple. Light energy absorbed by photosynthetic pigments is used for 

photochemistry (charge separation fuelling electron transport), re-emitted by 

chlorophyll as fluorescence, or released as a consequence of thermal dissipation. 

In more detail, each quantum yield of light absorbed by a chlorophyll molecule 

raises an electron from the ground state to an excited state (Fracheboud, Y.; 

www.zealquest.com/upload/article/Using Chlorophyll Fluorescence to Study 

Photosynthesis.pdf). Upon de-excitation from a Chl a molecule from excited state 

1 to ground state, a small proportion (3-5% in vivo) of excitation energy is 

dissipated as red fluorescence. This chlorophyll fluorescence is complementary 

to photochemistry and heat dissipation, which are alternative pathways of de-

excitation in photosynthetic organisms. In general, when heat dissipation and 

photochemistry are low, the fluorescence yield is high. Therefore, changes in the 

fluorescence yield are a good indicator for changes in photochemical efficiency 

and heat dissipation.  

Maximum fluorescence can be measured under conditions, when heat dissipation 

is negligible. For this, a very strong saturation light pulse (8000 µmol m-2 s-1; 1 

sec) is applied on dark-adapted plants and fluorescence raises from the ground 

state value (F0) to its maximum value, Fm. Under this condition, the first electron 

acceptor of PSII (QA) is fully reduced and the maximum quantum efficiency of 

PSII primary photochemistry can be calculated (FV/Fm = (Fm-F0)/Fm). In healthy 

leaves, this value is always close to 0.8, independently of the plant species 

studied. If this value is reduced, parts of PSII reaction centres are probably 

damaged (= process of photoinhibition), which is often observed in plants under 

stress conditions, or with reductions in the amount of PSII. For the calculation of 

light induced changes in photochemistry and heat dissipation, a second 

saturating light pulse must be applied.  

 

1.5) Aims of Thesis 

During the past few years considerable progress has been made in resolving the 

three-dimensional structures of the thylakoid-embedded protein complexes (PSII, 

cyt b6f, PSI, ATP-synthase). Currently, resolutions at 2-4 Å are possible (Zouni et 

al., 2001; Kamiya and Shen, 2003; Stroebel et al., 2003; Loll et al., 2005; Amunts 

et al., 2007). Besides structural studies, an emphasis has been put also on the 

identification of molecular chaperones and other auxiliary proteins involved in the 
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biogenesis and sustenance of the photosynthetic complexes (for review see Mulo 

et al., 2008). Auxiliary proteins are challenging targets for research as most of 

them are low in abundance or expressed only transiently, e.g. under certain 

growth conditions or in a particular growth phase (Klimmek et al., 2006; 

Nowaczyk et al., 2006). Due to the limited coding capacity of the chloroplast 

genome, these factors are mainly nucleus-encoded proteins (Goldschmidt-

Clermont, 1998; Barkan and Goldschmidt-Clermont, 2000; Rochaix, 2001; 

Leister, 2003). With the help of the PAM system, an extensive screen for 

additional auxiliary factors was realised (Varotto et al., 2000). It was used for the 

detection of mutated plants that showed a reduced photosynthetic performance. 

In this screen, a promising candidate for a PSII-mutant was identified, the pam68-

mutant (photosynthesis affected mutant).  
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2) Materials and Methods 

 

2.1) Materials 

2.1.1) Chemicals 

All chemicals were purchased from Sigma-Aldrich (Munich, Germany), Roth 

(Karlsruhe, Germany), Applichem (Darmstadt, Germany), Merck (Darmstadt, 

Germany), Serva (Heidelberg, Germany) and Duchefa (Haarlem, Netherlands), 

except where stated otherwise. All chemicals were analytical grade. 

 

2.1.2) Antibiotics 

Antibiotics were provided by Roth (Karlsruhe, Germany), Duchefa (Haarlem, 

Netherlands) and by Sigma-Aldrich (Munich, Germany). 

 
 E. coli Agrobacterium Plant 
Ampicillin 100 µg/ml 100 µg/ml - 
Carbenicillin 50 µg/ml 50 µg/ml - 
Rifampicin - 100 µg/ml - 
Gentamycin - 25 µg/ml - 
Hygromycin - - 15 µg/ml 

 Table 2.1: Antibiotics used for selection experiments in different organisms. 

 

2.1.3) Kits and Enzymes 

Enzymes used for cloning were obtained from New England Biolabs (Frankfurt, 

Germany), Roche (Penzberg, Germany), Fermentas (St. Leon-Rot, Germany) 

and Qiagen (Hildesheim, Germany). Those enzymes employed for the synthesis 

of cDNA were purchased from Invitrogen (Karlsruhe, Germany). For DNA 

purifications kits from Qiagen (Hildesheim, Germany) were used. Western-

detection was carried out with the Enhanced Chemiluminescence Kit (ECL; 

Pierce, Rockford, USA).  
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2.1.3.1) Kits 

NucleoBond Xtra Midi Macherey-Nagel GmbH & Co. KG, Düren 
NucleoSpin Plasmid Macherey-Nagel GmbH & Co. KG, Düren 
QIAquick PCR Purification Kit Qiagen, Hilden 
pGEM-T and pGEM-T Easy 
Vector Systems 

Promega Corporation, Madison (USA) 

Pierce ECL Western Blotting 
Substrate 

Perbio Science Deutschland GmbH, 
Bonn 

Table 2.2: Kits used for DNA-isolation/purification, cloning, and western detection. 

 
2.1.3.2) Enzymes 

Taq DNA Polymerase Qiagen, Hildesheim 
PhusionTM High-Fidelity DNA 
Polymerase 

New England Biolabs GmbH, Frankfurt 
am Main 

Antarctic Phosphatase New England Biolabs GmbH, Frankfurt 
am Main 

SuperScript® III Reverse 
Transcriptase 

Invitrogen, Karlsruhe 

DNA Polymerase I, Large (Klenow) 
Fragment 

New England Biolabs GmbH, Frankfurt 
am Main 

Table 2.3: Enzymes used for cloning, cDNA synthesis, and production of probes for Northern 

analyses. 

 
2.1.4) Membranes 

Nitrocellulose and PVDF membranes used for Western Blot analyses were 

acquired from Millipore (Eschborn, Germany) and positively charged Nylon 

membranes used for Northern Blot analyses from Roche (Penzberg, Germany). 

 

2.1.5) Antibodies 

Peptide synthesis, generation of antibodies in rabbits and their monospecific 

purification was performed by Biogenes (Berlin, Germany) for the PAM68 

(CSDEDDDDEDEDD-amide) and PAM68HL-Protein (CSRTSEDPGRPD-amide). 

The used peptides are localised upstream of the first transmembrane domain of 

both proteins and downstream of the predicted cTP after utilisation of a 

hydrophobicity plot (for details see Chapter 3.3.5). Commercially available 

primary antibodies against photosynthetic polypeptides were purchased from 

Agrisera. 
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Protein Immunogen Supplier 

D1 Whole protein Prof. Dr. J. Soll (Department of 
Botany, LMU, Munich) 

D2 C-terminal Agrisera (Vänas, Sweden) 

CP47 n.d. Agrisera (Vänas, Sweden) 

CP43 aa 257-450 of A. thaliana Agrisera (Vänas, Sweden) 

PsbE KLH-conjugated synthetic peptide of 
A. thaliana 

Agrisera (Vänas, Sweden) 

PsbO N-terminal peptide from A. thaliana 
PsbO1 

Agrisera (Vänas, Sweden) 

LHCII 
(Lhcb2) 

BSA-conjugated synthetic peptide 
from angiosperms and gymnosperms 

Agrisera (Vänas, Sweden) 

PsaF n.d. Prof. Dr. H.V. Scheller (Department 
of Plant Biology and Biotechnology, 

Copenhagen, Denmark) 

PsaH n.d. Prof. Dr. H.V. Scheller (Department 
of Plant Biology and Biotechnology, 

Copenhagen, Denmark) 

PsaL KLH-conjugated synthetic peptide 
from A. thaliana 

Agrisera (Vänas, Sweden) 

Lhca3 Synthetic peptide from A. thaliana Agrisera (Vänas, Sweden) 

Cyt f GST fusion to cyt f from 
Chlamydomonas reinhardtii 

Agrisera (Vänas, Sweden) 

CF1-/ß n.d. Prof. Dr. A. Barkan (Institute of 
Molecular Biology, Wisconsin, 

USA) 

CF1- n.d. PD Dr. J. Meurer (Department of 
Botany, LMU, Munich) 

FNR n.d. Prof. Dr. H.V. Scheller (Department 
of Plant Biology and Biotechnology, 

Copenhagen, Denmark) 

Actin Purified A. thaliana actin protein Dianova (Hamburg, Germany) 

Rabbit Horseradish peroxidase-conjugated 
donkey antibody to rabbit 

GE-Healthcare (Munich, Germany) 

Chicken Peroxidase antibody produced in 
rabbit 

Sigma-Aldrich (Munich, Germany) 

Mouse Horseradish peroxidase-conjugated 
donkey antibody to mouse 

GE-Healthcare (Munich, Germany) 

Table 2.4: Antibodies used for immunoblot-analyses. 
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2.2) Methods 

2.2.1) Plant Material and Growth Conditions 

Arabidopsis thaliana (Arabidopsis) seeds were stratified for 2 days at 2-5°C in the 

dark to break dormancy and then sown out on potting soil (Stender AG, A210). 

Plants were grown in a growth chamber illuminated with a 16 h-light (20°C) / 8 h-

dark (15°C) cycle with a PFD of 120 µmol photons m-2s-1 (GL, growing light) or 

under controlled greenhouse conditions (PFD 70-90 µmol photons m-2s-1, 16 h 

light / 8 h dark cycles). The fertilizer Wuxal Super (8% N, 8% P2O5, 6% K2O; 

MANNA, Deutschland) was used according to the manufacturer’s instructions.  

The insertion mutant lines carried either T-DNA or Dissociation (Ds) element 

insertions and were identified by searching the insertion flanking database 

SIGNAL (http://signal.salk.edu/cgi-bin/tdna express). The pam68-1 mutant 

(GABI_152D07) derives from the GABI-KAT collection (Li et al., 2003), the 

pam68-2 (SALK_044323) and pam68hl (SALK_143426) from the SALK T-DNA 

collection (http://signal.salk.edu/; Alonso et al., 2003) with all three of them in the 

Columbia-0 (Col-0) background. The lpa1 mutant (CSHL_ET6851) originates 

from the Cold Spring Harbor Laboratory and carries a Dissociation (Ds) element 

insertion in the Landsberg erecta (Ler) background (Martienssen, 1998). Unless 

stated elsewhere, full-grown rosette leaves of 4 weeks old plants were used for 

all biochemical and physiological measurements. 

 

2.2.2) Nucleic Acid Analyses 
2.2.2.1) DNA Analysis 

Arabidopsis DNA was isolated by disruption of leaf material frozen in liquid 

nitrogen with metal beads and addition of isolation buffer (200 mM Tris/HCl (pH 

7.5), 250 mM NaCl, 25 mM EDTA, 0.5% SDS). DNA in the supernatant was 

precipitated by addition of 0.8 volumes of isopropanol and centrifugation at 

16,000 x g at room temperature (RT) for 20 min. For PCR amplifications of DNA 

templates 0.5 mM oligonucleotide primers, 0.2 mM dNTPs and 2.5 U Taq 

polymerase were used. The polymerase used was either Qiagen Taq polymerase 

for mutant screenings or Phusion® High-Fidelity DNA-polymerase for cloning. 

The insertion flanking sites were identified by sequencing after PCR-

amplifications using a combination of gene- and insertion-specific primers. T-DNA 

primer specific for the T-DNA transformation vector pROK2 (SALK-collection; Fig. 
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6.1) was LBa1; for the vector pAC161 (GABI-KAT collection; Fig. 6.2) LBgk1; for 

the enhancer trap (ET) transposable Ds element (CSHL collection) Ds3-4 (Table 

2.5). Primers specific for confirmation of the knock-out alleles pam68-1 and 

pam68-2 were At4g19100-503F, At4g19100-1386R and At4g19100-1598R, for 

pam68hl At5g52780-6F and At5g52780-579R, for lpa1 At1g02910-654F and 

At1g02910-1521R. 
 

Oligonucleotides Sequence 5´->3´ 
At4g19100-503F (P1) GGCTTCTGTACCATGTTCCTT 
At4g19100-478s (P2) TCCTCCTAAGAAAACCAAGAAG 
At4g19100-901R (P5) TCTCTAAGCGGTTAATGCAAGT 
At4g19100-1261R (P6) ACACCAGCTAAAGCCGTACC 
At4g19100-1386R (P7) CTATCTCTTGTCTGAGGAATTC 
At4g19100-1598R (P9) GCGTGTGTGAAATTTGGTTTGC 
At5g52780-6F (P1) CATTAGAAGAAGAAATAGAAATGAG 
At5g52780-101F (P2) CACAATCCAAAAACCCTATATCC 
At5g52780-463R (P4) GAGTCCAAAAAGAGAGTTAGTC 
At5g52780-579R (P6) AGCCAGCTTAAAAGTTTTTATGAG 
At1g02910-654F GTGAAAGATGCTCTTGTTCAGT 
At1g02910-1521R GCTGCACAAGTTCAACAACGC 
LBa1 (P10) TGGTTCACGTAGTGGGCCATCG 
LbGK1 (P11) CCCATTTGGACGTGAATGTAGACAC 
Ds3-4 CCGTCCCGCAAGTTAAATATG 
PAM68-TKTL-c1F 
(including the sequence 
of the T7 promoter) 

ACCTAGTAATACGACTCACTATAGGGCG 
AGCCGCCATGGCTTCTGTACCATGTTCC 

PAM68-TKTL-c624R TTGACTCTATCTCTTGTCTGAGGAATTC 
PAM68-RFP-F CGCCATGGCTTCTGTACCATGTTCC 

PAM68-RFP-R CGCCATGGCACCTCCTCTCTTGTCTGAGG
AATTCCA 

Table 2.5: Oligonucleotides employed for identification of gene insertion lines and cloning. 

 

2.2.2.2) RNA Analysis 

For RNA analysis, total leaf RNA was extracted from fresh tissue using the 

phenol-containing TRIzol reagent (Invitrogen, Karlsruhe) and chloroform. RNA 

was precipitated from the aqueous phase with isopropanol and 0.8 M sodium 

citrate/1.2 M NaCl and centrifugation at 12,000 x g at 4°C. Reverse transcriptase-

mediated PCRs (RT-PCR) were carried out by synthesising first-strand cDNA 
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using the SuperScriptTM Reverse Transcriptase and dT oligomers, followed by 

PCR with specific primers for PAM68 (pam68-1: P1/P6 -> upstream of insertion, 

pam68-2: P1/P5 -> upstream of insertion; P1/P7 across both insertions; for 

sequences see Table 2.5). ACTIN1 served as a control (see Table 2.6). 

Northern analyses were performed under stringent conditions, according to 

Sambrook et al. (1989). Normally, 10 µg of total cellular RNA was used. RNA was 

denatured through incubation with formaldehyde, electrophoretically separated in 

2% agarose gels in MEN buffer (20 mM MOPS, 5 mM Na-acetate, 1 mM EDTA) 

and transferred onto a positively charged nylon membrane (Roche, Penzberg) in 

20x SSC buffer (3M NaCl, 0.3 M Na-citrate (pH 7)). RNA was fixed to the 

membrane by UV radiation. 

Probes complementary to nuclear and chloroplast genes were used for the 

hybridisations. Table 2.6 lists the genes analysed and the primers used to amplify 

the probes. Primers specific for PAM68 (P1 and P6) are listed in Table 2.5. All 

probes were cDNA fragments labelled with 33P-dCTP. Hybridisations were 

performed overnight in hybridisation buffer (0.25 M NaH2PO4/Na2HPO4 (pH 7), 

7% SDS, 100 µg/ml herring sperm ssDNA) at 65°C. Prehybridisations were 

carried out in the same buffer for at least four hours. After hybridisation, filters 

were washed twice with washing buffer 1 (0.1% SDS, 0.3 M NaCl, 20 mM 

NaH2PO4/Na2HPO4 (pH 7), 2 mM EDTA) at 65°C and once with washing buffer 2 

(5 mM NaH2PO4, 1 mM EDTA, 0.2% SDS) at room temperature. For exposure, 

filters were sealed in plastic bags. Signals were analysed and quantified by using 

a phosphoimager (Typhoon TRIO Variable Mode Imager; Amersham Biosiences) 

and the program IMAGE QUANT (version 5.2). 

 
Genes Forward primer (5´->3´) Reverse primer (5´->3´) 
ACTIN1 TGCGACAATGGAACTGGAATG GGATAGCATGTGGAAGTGCATACC 

psbA TCCGGTGCCATTATTCCTAC CTTCTTCTTGCCCGAATCTG 

psbB CGGGTCTTTGGAGTTACGAA TCCAGCAACAACAAAAGCTG 

psbD CCGCTGCAGTTTCTACTCCT CGGCTTGAGTTGGGTTAAAA 

LHCB3 GACAGAGTGAAGTACTTAGGA AGCCAAACATCGAGAACATAGC 

ATPD GCAGCATCAAGCTACGCGAT CCAAGTTCAAGCTGAGAAGCA 

rbcL CGTTGGAGAGACCGTTTCTT CAAAGCCCAAAGTTGACTCC 

Table 2.6: Oligonucleotides employed for Northern probe generation. 
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2.2.2.3) Analysis of mRNAs Associated With Polysomes 

Polysomes were isolated as described by Barkan (1988) with some modifications. 

Frozen leaf tissue (200 mg) was ground with mortar and pestle in liquid nitrogen 

and thawed in polysome extraction buffer (Jackson and Larkins, 1976) 

supplemented with 100 mM 2-mercaptoethanol, 2% Triton X-100, 100 µg/ml 

chloramphenicol, 25 µg/ml cycloheximide, and 0.5 mg/ml heparin. Subsequently, 

the microsomal membranes were filtered through a syringe supplemented with 

glass wool, and the flow-through was solubilised with 1% Triton X-100 and 0.5% 

sodium deoxycholate. The solubilised material was layered onto 15% to 55% 

continuous sucrose gradients and centrifuged in a Beckman LE-80K 

ultracentrifuge (SW 60 Ti rotor) at 243,000 x g for 65 min at 4°C. The sucrose 

gradient was fractionated into 11 fractions and 20 mM EDTA and 0.5% SDS were 

added. The mRNA associated with polysomes was then extracted with 

phenol/chloroform/isoamyl alcohol (25:24:1) followed by precipitation at room 

temperature with 95% ethanol. All samples were then subjected to Northern 

analyses. 

 

2.2.3) Transformation of Bacteria and Plants (Arabidopsis thaliana) 

2.2.3.1) Bacterial Strains 

The E. coli strain used was DH5α (Bethesda Res. Lab., 1986; Taylor et al., 

1993). The bacteria were propagated in LB medium or on LB-agar plates at 37°C 

as desribed in Sambrook et al. (1989). The Agrobacterium strain used was 

Agrobacterium tumefaciens GV3101, which carries a gentamycin resistance on 

the Ti plasmid (pMP90RK; Koncz et al., 1990). Agrobacteria were grown at 28°C 

in YEB medium supplemented with 100 µg/ml rifampicin and 25 µg/ml 

gentamycin. 

 

2.2.3.2) Agrobacterium Binary Vectors 

For complementation of the pam68-2 mutant, plants were transformed with 

35S::PAM68/pH2GW7 (for vector map of pH2GW7 see Fig. 6.3; Karimi et al., 

2002), which carries the complete PAM68 coding region downstream of a 35S 

promoter. For selection of transfected plants, the vector carries a hygromycin 

resistance gene (HygR). 
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2.2.3.3) Agrobacterium-Mediated Transformation of A. thaliana 

Arabidopsis mutant plants were transformed by dipping developing floral tissues 

as reported (Clough and Bent, 1998). Budding plants were dipped for 10 s in an 

Agrobacterium tumefaciens suspension containing 2.5% sucrose and the 

surfactant Silwet L-77 (0.02%). Sucrose and surfactant are critical to the success 

of the floral dip method. After dipping, plants were covered with clear plastic for 

two days to sustain high humidity levels, which facilitates transformation. 

Subsequently, the plants were transferred to the greenhouse and grown to full 

maturity until seeds could be harvested. For selection of positive transformants, 

seed were sterilised with 15% Na-hypochlorite supplemented with 2% HCl and 

sown out on sterile media containing 15 µg/ml hygromycin. 

 

2.2.4) Biochemical Analyses 
2.2.4.1) Antibody Production 

Antibodies against epitopes of PAM68 and PAM68HL were produced in rabbits. 

Epitope synthesis, injection into rabbits, collection of serum and subsequent 

monospecific purification of IgGs was carried out by Biogenes (Berlin, Germany). 

The epitopes ranging in size from 10 to 11 amino acids were designed in such 

way that they were specific for the respective proteins (fasta search: 

www.arabidopsis.org/cgi-bin/fasta/nph-TAIRfasta.pl) and covered a hydrophilic 

stretch of amino acids with high antigenicity. For analysis of hydrophility the 

hydrophobicity plot of Marc N. Offman was employed 

(http://www.bmm.icnet.uk/~offman01/hydro.html). The amino acid sequences of 

the epitopes in one letter code were DEDDDDEDEDD for PAM68 and 

RTSEKPGRPD for PAM68HL. 

 

2.2.4.2) SDS-PAGE 

Identical amounts of proteins equivalent to 2-5 µg of chlorophylls calculated as 

described in Porra et al. (2002) were solubilised in SDS loading buffer (50 mM 

Tris/HCl (pH 6.8), 4% w/v SDS, 12% v/v glycerol, 50 mM DTT, 0.01% 

bromophenol blue), loaded and separated by SDS-PAGE (12%-16% acrylamide) 

as described by Schägger and von Jagow (1987). After an overnight run at 30 

mA per gel (150 mm x 180 mm x 15 mm separating gel; anode buffer: 0.2 M 

Tris/HCl (pH 8.9), cathode buffer: 0.1 M Tris, 0.1 M Tricine, 0.1% SDS), gels were 
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either stained with silver or Coomassie Brilliant Blue to visualise proteins 

according to standard protocols. Alternatively, specific proteins were detected 

using the method of immunoblot analysis. 

 

2.2.4.3) Immunoblot Analysis 

Proteins separated by native or SDS-PAGE were transferred to polyvinylidene 

difluoride (PVDF) membranes according to Towbin et al. (1979) by a semi-dry 

blotting system using a current corresponding to 1 mA cm-2 in transfer buffer (96 

mM glycine, 10 mM Tris, 10% (v/v) methanol). Filters were blocked in TTBS 

buffer (10 mM Tris/HCl (pH 8), 150 mM NaCl, 0.1% Tween-20) with 5% milk 

powder. Hybridisation with antibodies was performed in TTBS with 3% milk 

powder. Primary antibodies were incubated for 2 h at RT or overnight at 4°C, 

secondary antibodies for 1 h at RT. Washing steps after antibody-incubation were 

performed in TTBS. Signals were detected using the Enhanced 

Chemiluminescence Western Blotting Kit (Pierce, Rockford, USA). 

 

2.2.4.4) Total Protein Isolation 

Leaves were disrupted in the presence of liquid nitrogen and total proteins were 

isolated by adding extraction buffer (100 mM Tris/HCl (pH 8.0), 50 mM EDTA (pH 

8.0), 0.25 M NaCl, and 1 mM DTT, 0.7% (w/v) SDS) and incubation at 65°C for 

10 min. After centrifugation at 10,000 x g for 10 min, the chlorophyll concentration 

of the supernatant was determined as described in Porra et al. (2002) and total 

proteins according to 5 µg of chlorophyll were precipitated with 100% acetone, 

resuspended in protein loading dye (0.5 M urea, 2% SDS, 7% glycerol, 55 mM 

Tris/HCl (pH 6.8), 4% 2-mercaptoethanol) and loaded onto a SDS gel. 

 

2.2.4.5) Preparation of Thylakoid Membranes 

Leaves from 4-week-old plants were harvested in the middle of the light period. 

Leaf material was homogenised in ice-cold buffer containing 0.5% milk powder, 

0.4 M sorbitol and 0.1 M Tricine/KOH (pH 7.8), the resulting homogenate was 

filtered through nylon mesh and centrifuged at 4°C, 6000 x g for 5 min. 

Subsequently, chloroplasts were broken in 25 mM HEPES/KOH (pH 7.8), 10 mM 

EDTA (pH 8.0) and thylakoids were collected by centrifugation at 10,000 x g for 

10 min and either resuspended in a buffer containing 50% glycerol, 10 mM 
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HEPES/KOH (pH 7.5), 1 mM EDTA (pH 8.0) for longer storage or directly 

resuspended in protein loading dye. 

 

2.2.4.6) Blue Native and Second Dimension Gels 

Leaves from 4- to 5-week-old plants were harvested and thylakoids were 

prepared as already described (Bassi et al., 1985). For the native PAGE analysis, 

protein amounts equivalent to 60 µg of chlorophyll for WT and 30 µg for pam68-2 

were washed twice with 20 mM HEPES/KOH (pH 7.8), 10 mM EDTA (pH 8.0), 

and subsequently solubilised in 750 mM ε-aminocaproic acid, 50 mM Bis-Tris/HCl 

(pH 7.0), 5 mM EDTA (pH 7.0), 50 mM NaCl for 20 min with 1.25% (w/v) n-

dodecyl-ß-D-maltoside (ß-DM) on ice. Solubilised protein complexes were 

separated from unsolubilised by centrifugation for 20 min at 16,000 x g, 4°C. The 

supernatant was supplemented with 5% (w/v) Coomassie Brilliant Blue G250 in 

750 mM aminocaproic acid, and loaded onto gradient-polyacrylamide gels (4-

12% acrylamide). One–dimensional BN-PAGE and two-dimensional BN/SDS-

PAGE were carried out as described by Schägger and von Jagow (1991). 

 

2.2.4.7) In vitro Import in Pea Chloroplasts  

The coding region for PAM68 was amplified by PCR (using the primers PAM68-

TKTL-c1F and PAM68-TKTL-c624R; for sequences see Table 2.5). The 

constructs were verified by DNA sequencing (http://www.genetik.biologie.uni-

muenchen.de/sequencing). mRNA was obtained by transcription with T7-RNA 

polymerase according to manufacturer’s instructions (Fermentas, St. Leon-Rot, 

Germany) and used for translation in wheat germ (Wheat Germ Extract System, 

Promega, Madison, USA) in the presence of [35S]methionine at 30°C for 1 h. The 

translation mixture was centrifuged at 50,000 x g for 1 h at 4°C prior to import 

experiments.  

Intact chloroplasts were isolated from 10-day-old pea leaves (Pisum sativum, var. 

Golf) and purified through Percoll density gradients as described (Waegemann 

and Soll, 1991). Import assays were performed with chloroplasts equivalent to 20 

µg of chlorophyll in 100 µl of import buffer (10 mM methionine, 10 mM cysteine, 

20 mM potassium gluconate, 10 mM NaHCO3, 330 mM sorbitol, 50 mM 

HEPES/KOH (pH 7.6), 5 mM MgCl; Nada and Soll, 2004). The amount of 

translation product never exceeded 10% of the total reaction volume. The import 
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was carried out at 25°C for 30 min. Chloroplasts were subsequently re-purified 

over a 40% Percoll cushion in import buffer. The chloroplasts were washed twice 

(30 mM sorbitol, 50 mM HEPES (pH 7.6), 0.5 mM CaCl2) and subjected to SDS-

PAGE. For thermolysin treatment, chloroplasts were washed in 330 mM sorbitol, 

50 mM HEPES (pH 7.6), 0.5 mM CaCl2 
and incubated with 20 µg/ml thermolysin 

(Calbiochem, Darmstadt, Germany) for 20 min on ice. The reaction was stopped 

by addition of EDTA (pH 8) to a final concentration of 5 mM and chloroplasts 

were washed once again.  

To obtain the membrane fraction, chloroplasts were hypotonically lysed in 50 mM 

HEPES/KOH (pH 7.6) and membranes were collected after centrifugation at 

10,000 g for 10 min at 4°C. Treatment with 6 M urea was carried out in 50 mM 

HEPES/KOH (pH 7.6) for 15 min at 25°C (Nada and Soll, 2004). Solubilised 

proteins were separated from the insoluble fraction after centrifugation at 10,000 

x g for 10 min at 4°C. Radiolabelled proteins were separated by SDS-PAGE and 

detected with the Typhoon phosphoimager. 

 
2.2.4.8) In vivo Labelling With 35S-Methionine 

For the radioactive labelling of chloroplast proteins according to Pesaresi et al. 

(2001), leaves of 4-week-old Arabidopsis plants grown in the climate chamber (16 

h/8 h light/dark cycle with a PFD of 120 µmol photons m-2s-1) were preincubated 

with 20 µg/ml cycloheximide (in a buffer containing 1 mM KH2PO4 (pH 6.3), 0.1% 

Tween-20) to block the synthesis of nuclear-encoded proteins followed by a 

vacuum-infiltration in a syringe containing 1 mCi of [35S] L-methionine/cysteine in 

5 ml of 1 mM KH2PO4 (pH 6.3), 0.1% Tween-20 and illuminated with 20 µmol 

photons m-2s-1. 

Afterwards, thylakoid membranes were isolated according to chapter 2.2.4.5. 

Thylakoids were loaded onto a SDS-PAGE gel, which was either dried or 

subjected to a semi-dry blotting transfer according to Towbin et al. (1979). 

Signals were quantified by using the Typhoon phosphoimager and the program 

IMAGE QUANT (version 5.2). 
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2.2.4.9) Lincomycin-Treatment With Intact Leaves 

Intact Arabidopsis leaves of 4-week-old plants were incubated in 1 mM KH2PO4 

(pH 6.3) and 0.1% Tween-20 containing 100 µg/ml lincomycin, to block synthesis 

of chloroplast-encoded proteins, and illuminated for various times under growth 

light conditions (120 µmol photons m-2s-1). After this treatment, the thylakoid 

membranes were isolated (see section 2.2.4.5), and the contents of proteins were 

determined through immunoblot analysis. 

 

2.2.5) Pigment Analysis 

Pigment content was analysed by reverse-phase HPLC as described previously 

by Färber et al. (1997). For pigment extraction, leaf discs were weighted, frozen 

in liquid nitrogen and pestled in microcentrifuge tubes in the presence of acetone. 

After a short centrifugation, pigment extracts were either used directly for HPLC 

analysis or stored for up to 2 days at -20°C (the pigment analysis was performed 

in collaboration with Prof. Peter Jahns, Düsseldorf, Germany). 

 

2.2.6) In silico Analyses  

For the analysis of gene models and their coverage by full-length mRNAs or 

ESTs, the NCBI (www.ncbi.nlm.nih.gov), MIPS 

(http://mips.gsf.de/proj/thal/db/index.html), and TAIR (www.arabidopsis.org) 

databases were used. To identify orthologues, the protein sequences were 

blasted against the translated nucleotide database using NCBI tblastn 

(www.ncbi.nlm.nih.gov/blast/Blast.cgi). For the confirmation of Chlamydomonas 

reinhardtii, cyanobacterial and poplar homologues, the JGI Chlamy v2.0.58 Blast 

(http://genome.jgi-psf.org/Chlre4/Chlre4.home.html), the Cyanobase similarity 

search (http://genome.kazusa.or.jp/cyanobase) and the JGI Populus trichocarpa 

v2.0.58 (http://genome.jgi-psf.org/Poptr1_1/Poptr1_1.home.html) online programs 

were applied. 

Digital Northerns were performed by using the Genevestigator site 

(www.genevestigator.com; Zimmermann et al., 2004). Amino acid sequences 

were aligned using the CLUSTAL-W program (www.ebi.ac.uk/clustalw/; Chenna 

et al., 2003) and alignments were shaded according to sequence similarity using 

the Boxshade server 3.21 (www.ch.embnet.org/software/BOX_form.html). 

Sequence identities and similarities were calculated using NCBI Blast 2 
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sequences (Tatusova and Madden, 1999). A phylogram was built using the 

programs PHYLIP version 3.67, Protmlk (PHYLogeny Inference Package; 

http://evolution.genetics.washington.edu/phylip.html) and PhyloDraw version 0.8 

(http://pearl.cs.pusan.ac.kr/phylodraw/).  

Co-regulated gene relationships in Arabidopsis were estimated by using the 

ATTED-II program (version 5.2; Obayashi et al., 2009; www.atted.jp/).  

Predictions of chloroplast targeting were performed with the following algorithms: 

TargetP (version 1.1; http://www.cbs.dtu.dk/services/TargetP/; Emanuelsson et 

al., 2000), ChloroP (version 1.1; http://www.cbs.dtu.dk/services/ChloroP/; 

Emanuelsson et al., 1999), MitoProt (http://ihg2.helmholtz-

muenchen.de/ihg/mitoprot.html; Claros and Vincens, 1996), Predotar 

(http://urgi.versailles.inra.fr/predotar/predotar.html; Small et al., 2004), PSORT 

(http://psort.ims.u-tokyo.ac.jp/form.html), iPSORT (http://hc.ims.u-

tokyo.ac.jp/iPSORT/; Bannai et al., 2002), WolfPSORT (http://wolfpsort.org/ ; 

Horton et al., 2007), BaCelLo (http://gpcr.biocomp.unibo.it/bacello/; Pierleoni et 

al., 2006), and PCLR v. 0.9 (http://www.andrewschein.com/pclr/ ; Schein et al., 

2001). Protein molecular weights were calculated using Protparam 

(http://www.expasy.org/ tools/protparam.html) and transmembrane domains were 

predicted using the TMHMM Server v. 2.0 (www.cbs.dtu.dk/services/ TMHMM-

2.0).  

 
2.2.7) Intracellular Localisation of dsRED Fusions 

The red fluorescent protein from the reef coral Discosoma (dsRED) (Jach et al., 

2001) was used as a reporter to determine the intracellular localisation of PAM68 

in transient gene expression assays. The coding regions of the PAM68 gene 

were amplified using primers PAM68-RFP-F/PAM68-RFP-R (see Table 2.5), and 

cloned upstream of the dsRed sequence using the NcoI restriction enzyme. 

Sterile cotyledons of 2 week-old plants (ecotype ColGl-1) were cut into small 

pieces and incubated for 16 h at 24°C in the dark in a protoplasting solution (10 

mM MES, 20 mM CaCl2, 0.5 M mannitol (pH 5.8), 0.1 g/ml macerozyme 

(Duchefa), 0.1 g/ml cellulase (Duchefa) followed by the isolation of protoplasts as 

described in Dovzhenko et al. (2003). Plasmid DNA (40 µg) was introduced into 

protoplasts by PEG transfection as previously described (Koop et al., 1996). 

Microscopy analysis (with Fluorescence Axio Imager microscope in ApoTome 

mode (Zeiss)) was conducted after 16 h of incubation at 23°C in the dark. 
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Fluorescence was excited with the X-Cite Series 120 fluorescence lamp (EXFO) 

and images were collected in the 565–620 nm (dsRED fluorescence) and 670–

750 nm (chlorophyll autofluorescence) ranges. 

 

2.2.8) Determination of Photosynthetic Parameters Using the PAM 
Fluorometer 

In vivo Chl a fluorescence of single leaves was measured using either the Pulse 

Amplitude Modulation 101/103 (PAM 101/103) as already described in Varotto et 

al. (2000) or the Dual-PAM-100 Fluorometer (Walz, Effeltrich, Germany). Plants 

were dark adapted for 20 min and minimal fluorescence (F0) was measured. 

Then pulses (0.8 s) of white light (5000 µmol photons m-2s-1) were used to 

determine the maximum fluorescence (Fm) and the ratio (Fm – F0) / Fm = Fv / Fm 

(maximum quantum yield of PSII) was calculated. A 10 min illumination with 

actinic light of varying intensities was supplied to drive electron transport between 

PSII and PSI. Then firstly steady state fluorescence (Fm) and then by a further 

saturation pulse (0.8 s, 5000 µmol photons m-2 s-1) Fm’ were determined and the 

effective quantum yield of PSII (Yield) was calculated as (Fm’- Fs) / Fm’. 

Additionally the photosynthetic parameters qP (photo-chemical quenching (Fm’ – 

Fs) / (Fm’ – F0)) and NPQ (non-photochemical quenching (Fm - Fm’)/ Fm’) were 

determined. 

 

2.2.9) Split-Ubiquitin Assay 

For split ubiquitin assay, the coding sequence of the mature PAM68 and 

PAM68HL protein (without predicted cTP) were cloned in pAMBV4 (Fig. 6.4) 

encoding the Cub fragment and used as bait in interaction studies. The reporter 

in this plasmid consists of the LexA-DNA-binding domain and the VP16-activation 

domain. The prey proteins were generated by cloning the coding sequences of 

mature proteins into pADSL-Nx (Fig. 6.4), which encodes the Nub fragment. This 

vector also encodes a hemagglutinin-epitope tag. The full-length genes of LPA1, 

LPA2, HCF136 and PsbB were obtained by polymerase chain reaction (PCR) 

amplification from total cDNA (for a list of primers, refer to Table 2.7). Both 

vectors originally derived from Dualsystems Biotech AG (Zürich, Switzerland). 
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Interaction studies were performed in the lab of Prof. Danja Schünemann 

(Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum; Pasch et al., 

2005). 
 

Construct Forward Primer Reverse Primer 

PAM68-Cub CGTCTAGACAAAAATGGATA
AAACGAAGATCAAG 

CGCCATGGATTCTCTTGTCT
GAGGAATTCCA 

PAM68HL-
Cub 

CGCCATGGAAAAATGACCT
CTGAAAAACCCG 

CGCCATGGATTTGGTCCTC
TTTCCACATCTC 

Nub-LPA1 ATGGATCCGATGCTCTTGTT
CAGTTTGA 

GCGAATTCGCTCATCTTTCT
AACTTGCTGAGA 

Nub-LPA2 CGCCCGGGTATCAAAGAAT
TCAAGCTCTTCC 

ATCTCGAGTCACTCTTGACC
CTTCATTTTC 

Nub-HCF136 ATCCCGGGTAGATGAACAG
TTATCCGAATG 

ATCTCGAGTCAGCCAACAT
ATCGGAGCAA 

Nub-PsbB ATCCCGGGTAGGTTTGCCT
TGGTATCGTGT 

ATCTCGAGTCAGACTGCTT
GTCGTTTTGTA 

Table 2.7: Primer list for split-ubiquitin. 

List of primers (5´ -> 3´ orientation) used for cloning bait (PAM68, PAM68HL) and prey (LPA1, 
LPA2, HCF136, psbB) sequences for the split-ubiquitin assay. Restriction sites are underlined. 
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3) Results 

 

3.1) Characterisation of PAM68 

The following work is based on a screen for photosynthetic affected mutants 

(PAM-mutants). The screen was carried out via Chl a fluorescence 

measurements (Maxwell and Johnson, 2000). This non-invasive tool was used to 

identify T-DNA insertion lines that showed an altered yield of fluorescence, a 

good indicator for diminished photosynthetic capacity. The plants used for the 

experiment derived from the GABI-Kat collection (German plant genomics 

research program; (Li et al., 2003)). The aim of the GABI-Kat project was to build 

a large T-DNA mutagenised Arabidopsis thaliana (Arabidopsis) population with 

sequence-indexed insertion sites. The positions of these sites were located with 

the help of flanking sequence tags as described in Li et al. (2003). 

A mutation in the Arabidopsis gene encoding the PAM68 protein (Photosynthesis 

Affected Mutant 68, At4g19100) led to a remarkable reduction in the FV/FM ratio 

(0.37 in the mutant vs 0.84 in the wild-type), which represents the maximum 

efficiency of PSII photochemistry. Hence, the pam68-1 mutant was classified as a 

putative PSII-mutant and characterised in this work. Additionally, the homologue 

of PAM68 in Arabidopsis, PAM68HL (At5g52780), is part of this work. 

 

3.2) Confirmation of Knock-Out Lines 

3.2.1) Deletion of PAM68 Results in Stunted Growth 

The gene structure and the resulting protein structure of PAM68 (AT4G19100) 

are illustrated in Figure 3.1A. The gene of 907 bp consists of two exons (57 and 

588 bp) and one intron (262 bp). The protein has a predicted chloroplastid transit 

peptide (cTP; for detail see chapter 3.3) and two transmembrane domains (TMD; 

TMHMM Server v. 2.0). For PAM68 two knockout alleles were used, pam68-1 

and pam68-2. Both of them carry the insertion in the second exon of the gene 

(pam68-1 848 bp, pam68-2 499 bp downstream of the ATG). The SALK line was 

found by searching T-DNA insertion flanking databases. To verify T-DNA 

insertions primer combinations specific for PAM68 and the relative T-DNA border 

(LB, left border) were used (for detailed primer list see chapter 2.2.2.1). PCR-

analysis of genomic DNA demonstrated that the gene is disrupted by the T-DNA 
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in both lines (Fig. 3.1B). The T-DNA insertion of pam68-1 carries two left borders, 

one at each end of the T-DNA. For pam68-2 only one left border exists 

downstream of the T-DNA. In the latter one no transcript was detectable in an 

RT-PCR experiment indicating that the T-DNA insertion has disrupted the 

expression of the PAM68 gene (Fig. 3.1C). In pam68-1, a truncated version of 

PAM68 is expressed (part upstream of the T-DNA insertion). Nevertheless, for 

both lines no transcript was detectable in Northern analyses Fig. 3.1D). Both 

mutant alleles showed the same stunted growth phenotype with pale green 

Fig. 3.1: Genetic characterisation of PAM68 mutants. 
A) Schematic diagram of PAM68 gene and the corresponding protein. Gene: Exons (grey 
boxes) and introns (white line) are indicated. The positions of the T-DNA insertions 
corresponding to pam68-1 and pam68-2 are shown. ATG = start codon, TAG = stop codon, 
LB = left border of T-DNA. Protein: Chloroplast targeting sequence (cTP) and transmembrane 
domains (TMD) are indicated. N = N-terminus, C = C-terminus. B) Verification of T-DNA 
insertions. Positions of primers used are depicted in A). pAC161 = vector used for 
mutagenesis of pam68-1 (GABI-KAT line); pROK2 = vector used for mutagenesis of pam68-2 
(SALK line). C) RT-PCR analysis of PAM68 gene expression. D) Northern analysis of Pam68 
transcript. 

A 

B C D 



3) Results 
 

 - 38 -

leaves (Fig. 3.2A). For comparison of the development, growth kinetics was 

carried out. The leaf area of wild-type and mutant plants was measured over a 

time period of 25 days starting with the day of germination (Fig. 3.2B). 4 weeks 

after germination the size of the mutant plant leaves was about 20% of wild-type. 

Anyway, the mutants can germinate and perform the whole life cycle on soil, also 

in the greenhouse, and are able to produce fertile seeds.  

To confirm the knock-out also on protein level, total proteins and thylakoid 

proteins of pam68-2 mutant and WT plants were isolated and subjected to 

Western analysis using monospecific epitope antibodies raised against PAM68 

(see chapter 3.2.5). The protein could be detected in thylakoid fractions from WT 

at the predicted size of ~20 kDa, but not in the mutant (see diploma thesis of 

Renate Kreller).  

 

Fig. 3.2: Growing phenotypes of WT, pam68-1 and pam68-2. 
A) 4-week-old plants grown in the growth chamber under a 16 h/ 8 h dark/light regime and a 
PFD of 120 µmol photons m-2s-1 (GL). B) Growth kinetics of WT (Columbia-0, Col-0) and 
pam68-2. Values are averages ± SE of five replicate experiments. 

B 

A 
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3.2.2) pam68hl Exhibits No Growth Phenotype  

The homologue of PAM68 exhibits only one exon (507 bp). The gene structure 

and the resulting protein structure are shown in Figure 3.3A. The corresponding 

protein has also two TMDs (TMHMM Server v. 2.0) and a cTP. PCR analyses of 

genomic DNA from wild-type and mutant plants suggested a disruption of the 

PAM68HL gene by the T-DNA (Fig. 3.3B). Sequencing of the mutant allele 

showed that the T-DNA insertion led to the generation of a new stop codon 

resulting in a truncated gene of 469 bp instead of 507 bp. This truncated version 

was expressed at wild-type level as shown in Figure 3.3C. Immunoblot analyses 

of total proteins and thylakoid proteins of pam68hl mutant and WT plants using 

monospecific epitope antibodies raised against PAM68HL confirmed the full 

knock-out of PAM68 on protein level (see diploma thesis of Renate Kreller). In 

Fig. 3.3: Genetic characterisation of PAM68HL mutant. 
A) Schematic diagram of PAM68HL gene and corresponding protein. Gene: Exon (grey box) 
is indicated. The position of the T-DNA insertion corresponding to pam68hl is shown. ATG = 
start codon, TAG = stop codon, LB = left border of T-DNA. Protein: Chloroplast targeting 
sequence (cTP) and transmembrane domains (TMD) are indicated. N = N-terminus, C = C-
terminus. B) Verification of T-DNA insertion. Positions of primers used are shown in A). 
pROK2 = vector used for mutagenesis of pam68hl (SALK line). C) RT-PCR analysis of 
PAM68HL gene expression upstream of the T-DNA insertion. 
 

B 

A 

C 



3) Results 
 

 - 40 -

wild-type preparations the protein showed the predicted size of ~17 kDa, and was 

also detectable in the thylakoid fraction, suggesting a thylakoid membrane 

localisation. The mutant plants displayed no phenotype compared to wild-type 

(see section 3.2.4). 

 

3.2.3) Complementation of pam68-2 Rescues the Growth Phenotype 

To demonstrate that the phenotype of pam68-2 was attributable to the mutation 

of the PAM68 gene, we conducted complementation experiments with the 

pam68-2 mutant as background, using the 645 bp full-length coding sequence 

driven by a single Cauliflower Mosaic Virus 35S promoter. Positive transformants 

were selected by hygromycin resistance (35S::PAM68; Fig. 3.4A) and successful 

complementation was confirmed by PCR, immunoblot-analyses (see Fig. 3.14D) 

and PAM-measurements (see Fig. 3.12). In the PCR-analysis of complemented 

plants with primers covering the whole PAM68 gene two bands came up (Fig. 

3.4B). The lower band reflected the introduced coding sequence without intron 

(645 bp), the upper one represented the gene including the intron (907 bp). 

The transformed plants displayed wild-type-like growth, thus confirming that 

growth defects in pam68-2 resulted from mutation of the PAM68 gene. 

Immunoblot-analyses with the peptide-antibody against PAM68 demonstrated 

Fig. 3.4: Complementation of pam68-2. 
A) 4-week-old plants growing under GL conditions in the climate chamber. The coding 
sequence of PAM68 was ligated into the plant expression vector pH2GW7 (Invitrogen) under 
the control of a single Cauliflower Mosaic Virus 35S promoter (35S::PAM68) and the construct 
was used to transform flowers of pam68-2 mutant plants by the floral dip method (Clough and 
Bent, 1998). B) PCR-analysis with genomic DNA of wild-type and complemented plants. 
Position of primers is depicted in Fig. 3.4A.  

B A 
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that the 35S::PAM68 line is an overexpressor of PAM68 protein (see diploma 

thesis of Renate Kreller). 

 

3.2.4) Double Mutation Does Not Result in an Additional Phenotype 

The double mutant pam68-2/pam68hl was created crossing homozygous pam68-

2 and pam68hl plants with pam68-2 as female plant. The F2 generation was then 

screened by PCR for homozygous double mutants. The double mutant exhibited 

exactly the same growing phenotype as pam68-2 (Fig. 3.5). 

 
 
3.2.5) Production of Peptide Antibodies 

As mentioned above, PAM68 and PAM68HL are predicted to have to 

transmembrane domains. Therefore peptide antibodies against epitopes of the 

proteins should be created for hydrophilic parts. For analysis of hydrophility the 

hydrophobicity plot of Marc N. Offman was employed (Fig. 3.6). The protein 

sequences were applied without predicted cTPs. For both proteins, the longest 

hydrophilic stretches were localised upstream of the first TMD. The amino acid 

sequences of the epitopes used for antibody production were DEDDDDEDEDD 

for PAM68 and RTSEKPGRPD for PAM68HL in one letter code. Both antibodies 

were used for the verification of the knock-out lines of PAM68 and PAM68HL 

(see diploma thesis of Renate Kreller). 

 

 

 

 

Fig. 3.5: Phenotypes of WT, pam68-2, pam68hl, and pam68-
2/pam68hl plants. 

4-week-old plants growing under GL conditions in the climate 
chamber. pam68hl was crossed in the background of pam68-2. 
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3.3) PAM68 Encodes a Thylakoid Membrane Protein of 

Cyanobacterial Origin 

Even though database searches failed to detect any sequence motives or 

domains that could shed some light on the function of PAM68, a blast of PAM68 

protein against the translated nucleotide database of NCBI (tblastn; Chapter 

2.2.6) showed a strong conservation in the proteome of all photosynthetic 

organisms (Fig. 3.7), especially in the C-terminus. For detailed analysis of the 

identity and similarity between PAM68 and its orthologues, protein sequences 

were aligned using Blast2sequences (NCBI; Chapter 2.2.6). Thereby, the 

sequences of Arabidopsis, Ricinus, Populus, Vitis and Maize were aligned 

without predicted cTP. The highest homology to PAM68 was found in Ricinus, 

Fig. 3.6: Hydrophobicity plot 1.0 by Marc Offman 

The chosen hydrophilic stretch for the peptide synthesis is marked in red rectangles; TMD = 
transmembrane domain. http://www.bmm.icnet.uk/~offman01/. 
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Fig. 3.7: Protein sequence alignment of PAM68. 
The protein sequence of PAM68 was compared with related sequences from Arabidopsis 
thaliana (At5g52780), Ricinus communis (R.communis-1: GI:255557684, R.communis-2: 
GI:255545165), Vitis vinifera (V.vinifera-1: GI:225466098, V.vinifera-2: GI:225464603), 
Populus trichocarpa (P.trichocarpa-1: GI:224138363, P.trichocarpa-2: GI:224079761), Zea 
mays (Z.mays-1: GI:226491093, Z.mays-2: GI:226491403), Physcomitrella patens subsp. 
patens (GI:168061716), Chlamydomonas reinhardtii (GI:159464826), Ostreococcus 
lucimarinus (GI:144576265), Synechocystis sp. PCC 6803 (sll0933), Synechococcus sp. PCC 
7002 (SYNPCC7002_A1824). These sequences were aligned using ClustalW and BoxShade. 
The sequences for flowering plants were analysed without predicted cTPs (Arabidopsis, 
Ricinus, Vitis, Populus, maize). Conserved amino acids are highlighted by black boxes, 
whereas grey ones indicate closely related amino acids. The two predicted transmembrane 
domains of PAM68 are marked by purple bars; conserved amino acids are marked by 
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wine and poplar. The homologue in Arabidopsis (PAM68HL) exhibited 38% 

identity and 58% similarity to PAM68. In all analysed flowering plants, two 

homologues could be found (in Populus trichocarpa, Vitis vinifera, Zea mays, and 

Ricinus communis). One of them showed always much more homology to either 

PAM68 (Ricinus-1: 75%/90%, Vitis-1: 71%/83%, Populus-1: 70%/86%, Maize-1: 

71%/80 identity/similarity) or PAM68HL (Ricinus-2: 52%/75, Vitis-2: 58%/83%, 

Populus-2: 41%/68%, Maize-2: 49%/66% identity/similarity). This suggests a 

duplication event during evolution probably after endosymbiosis. The 

orthologue in Physcomitrella showed more similarity to PAM68 than to PAM68HL 

(77% and 59%, respectively). An unrooted phylogram, created from all 

sequences (flowering plants without cTP), except Physcomitrella, is shown in 

Fig. 3.8: Unrooted phylogram of PAM68 and its orthologues. 

The phylogram was built out of the sequences of PAM68 and its orthologues using the 
programs PHYLIP version 3.67 and PhyloDraw version 0.8 (see section 2.2.6). The 
presumable duplication event is marked by a blue circle. 
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Figure 3.8. The orthologues of the green algae Chlamydomonas reinhardtii and 

Ostreococcus lucimarinus are also more closely related to PAM68 (41% and 48% 

identity, respectively) than to PAM68HL (36% and 37% identity, respectively), 

assuming a duplication event during evolution.  

Bioinformatic analyses predicted a chloroplast targeting peptide (cTP) of 35 

amino acids for PAM68 resulting in a mature protein with a calculated molecular 

weight of ~20 kDa (Table 3.1). For PAM68HL some algorithms predicted a cTP 

with a length of 54 amino acids leading to a mature protein of ~17 kDa. The 

localisation for PAM68 was determined by two in vitro import experiments. First, 

the whole coding sequence of PAM68 was fused to the red-fluorescent protein 

(RFP; Jach et al., 2001) and transfected into Arabidopsis protoplasts. 

Comparison of the position of signals from the RFP fusion and from chlorophyll 

autofluorescence confirmed the chloroplast localisation of PAM68 (Fig. 3.9A). 

Second, radiolabelled PAM68 protein could be imported into pea chloroplasts 

(Fig. 3.9B). The translation product of PAM68 (TL), which represented the 

precursor of PAM68, appeared at the predicted size of about 24 kDa. After import 

into the chloroplast, the cTP was cleaved off and the mature protein ran at a 

height of ~20 kDa. Treatment with thermolysin led to the degradation of the 

precursor but not of the mature protein. As thermolysin is only able to destroy 

polypeptides that reside outside or on the surface of the chloroplast, this analysis 

demonstrates that PAM68 is effectively transported into the chloroplast. The 

appearance of two bands after import may be due to posttranslational 

modifications of the protein once it has been imported into the chloroplast. 

Further bioinformatics analyses of PAM68 and PAM68HL indicated two 

transmembrane domains in the C-terminal part of both proteins (depicted in Fig. 

3.1 and 3.3; TMHMM Server v. 2.0). Recent proteomics approaches gave also a 

hint for the localisation of PAM68 and PAM68HL as both were found in thylakoid 

Table 3.1: Prediction of chloroplast targeting peptides. 

A combination of programs predicting N-terminal chloroplast or mitochondrial transit peptides 
(see chapter 2.2.6) was used to predict targeting of PAM68 and PAM68HL. 
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membrane preparations (Zybailov et al., 2008; PAM68HL also Peltier et al., 

2004).  

 

 

3.4) Expression Analyses of PAM68 and PAM68HL 

3.4.1) Expression Profile of PAM68 is Comparable to psbA 

Expression analyses of PAM68 and PAM68HL with Genevestigator 

(www.genevestigator.com; Zimmermann et al., 2004) showed that the genes are 

expressed in every green tissue at every developmental stage of the plant (data 

not shown). The Gene Chronologer tool of Genevestigator was used to compare 

the transcription of both genes at different growth stages with the expression 

pattern of photosynthetic genes like psbA or psbD (Fig.3.10). The PAM68 

expression profile shows nearly the same cycle during development as the psbA 

gene with the highest expression after 28 days of germination, suggesting a 

possible co-regulation with photosynthetic components. The transcription rate of 

PAM68HL on the other side is kept quite constant during development. 

Fig. 3.9: Localisation of PAM68. 
A) Fluorescence micrographs of A. thaliana protoplasts transfected with a C-terminal fusion of 
dsRED to the complete PAM68 protein. The pictures are presented in false colour with RFP 
fluorescence (RFP) shown in red and chlorophyll autofluorescence (Chl) in green; Dic = 
differential interference contrast microscopy. B) Import of PAM68 in pea chloroplasts. After 
import chloroplasts were treated with thermolysin for 20 min. TL = translation product. 
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3.4.2) PAM68 and PAM68HL are Co-Expressed With Photosynthetic Genes 

Genes involved in related biological pathways are often expressed cooperatively, 

and thus information on their co-expression is useful for the understanding of 

biological systems. The freely available program ATTED-II provides co-regulated 

gene relationships in Arabidopsis thaliana for functional identification or for 

studies of regulatory relationships (http://atted.jp; Obayashi et al., 2009). This tool 

was used to get further insight into the function of PAM68 and PAM68HL. 

Interestingly, both are co-expressed with genes known to be involved in PSII 

biogenesis (Fig. 3.11): the Deg-proteases cleave the D1 protein after damage, 

LPA1, LPA2 and CYP38 are important for the assembly of PSII, and the STN8 

kinase phosphorylates PSII core proteins. Both showed also co-expression with 

proteins localised in the thylakoid lumen and with proteins that are either part of 

the NAD(P)H dehydrogenase (NDH) complex (CRR7; Kamruzzaman et al., 2006) 

or are important for its activity (CRR1; Shimizu and Shikanai, 2007), expression 

(SIG4; Favory et al., 2005) or assembly (CRR6; Munshi et al., 2006).  Altogether, 

the results of this co-expression analysis support the idea of an involvement of 

PAM68 and PAM68HL in photosynthetic processes. 

Abb. 3.10: Gene expression during development of the plant. 
Expression analysis of PAM68, PAM68HL, psbA, and psbD with the Gene Chronologer tool of 
Genevestigator (www.genevestigator.com) during the development of Arabidopsis plants. The 
age of the plants at the different time points is 5, 13, 17, 20, 24, 28, 35, 44, and 50 days, 
respectively. 
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3.5) Photosynthetic Parameters and Leaf Pigments of pam68-2 

3.5.1) Spectroscopic Analyses Indicate a Defect in PSII 

Chlorophyll fluorescence induction experiments were carried out in vivo on single 

leaves of 4-week-old plants using the pulse amplitude modulated fluorometer 

Dual-PAM 100 (measurements were done as already described for the Pulse 

Amplitude Modulation 101/103 by Varotto et al. (2000)). The chlorophyll 

fluorescence in the pam68 mutants transiently was below the original F0 levels 

when illuminated by actinic light (Fig. 3.12A). This suggests either that a non-

photochemical quenching process would transiently develop before being 

dissipated within 3 to 4 min, or that the electrons leave the plastoquinone pool 

faster as they enter it. This could be due to problems on the donor side of the 

Fig. 3.11: Co-expression analysis of PAM68 and PAM68HL. 

Analysis was carried out with the ATTED-II database (version 5.2). Data source: publicly 
available microarray data (58 experiments, 1388 slides) collected by AtGenExpress; 
coexpression measure: mutual rank based on weighted Pearson´s correlation coefficients. 
Marked in yellow are PSII biogenesis factors, marked in blue are proteins that are concerned 
with the NDH-complex. 
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electron transfer chain (PSII) concomitantly with no alterations on the acceptor 

side (PSI). For the determination of the maximum fluorescence in the dark (FM) 

and after illumination (FM’), saturating pulses of white light (5000 µmol m-2 s-1, 800 

ms) were applied. After 10 min of illumination with actinic light (53 µmol m-2 s-1) 

the effective quantum yield (Yield) and the photochemical quenching parameter 

1-qP could be defined.  

The maximum quantum yield of PSII ((FM – F0)/FM = FV/FM) can be calculated 

from the maximal fluorescence in the dark with all PSII reaction centres (RC) 

closed (FM) and the minimal level of fluorescence of dark-adapted plants with all 

PSII RCs open (F0). This parameter was remarkable decreased in both pam68-

mutant alleles (0.33 in the mutants vs. 0.82 in the wild-type; Fig. 3.12A and B). 

Also the effective quantum yield of PSII (Yield; FM´-FS/ FM´) showed a strong 

reduction in the mutants (0.13 and 0.12 vs 0.61). The parameter 1-qP, which 

reflects the redox state of the QA electron acceptor of PSII, was higher in both 

mutant alleles (0.55 and 0.56 for the mutants, 0.21 for WT). This result indicates 

a more reduced plastoquinone pool in the mutant, a response likely due to a 

deficiency of photosynthetic electron transport. The electron transfer rate (ETR; 

calculated from the yield) confirmed this assumption, as it was strongly reduced 

in the mutants. The coefficient for non-photochemical quenching NPQ, a 

reflection of the plant’s ability to dissipate excess light energy as heat, was found 

to be similar in mutant and wild-type plants. Taken together, the chlorophyll 

fluorescence analyses suggest that the deletion of PAM68 affects PSII function. 

The homologue of PAM68 however, which has no growth phenotype, behaved as 

wild-type in all measurements. 

To further investigate the effect of the pam68 mutant background on 

photosynthetic parameters, we additionally measured complemented plants of 

pam68-2 (35S::PAM68) and double mutants generated by crossing of pam68-2 

and pam68hl (pam68-2/pam68hl). As shown in Figure 3.12 the overexpressor of 

PAM68 behaved like wild-type, whereas the double mutants showed exactly the 

same phenotype as the single mutants pam68-1 and pam68-2. These results 

together with the growth phenotype led us analysing the pam68-2 mutant in more 

detail concerning the apparent PSII-phenotype. 
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Fig. 3.12: Fluorescence measurements with the Dual-PAM. 
A) Chlorophyll fluorescence induction kinetics of WT, pam68-1, pam68-2, pam68hlpam68-
2/pam68hl and pam68-2 transformants complemented with the coding sequence of PAM68 
(35S::PAM68). Measurements were applied to 4-week-old plants using the Dual-PAM 100 
after 20 min of dark-adaptation. Saturating pulses were indicated by flashes. B) 
Photosynthetic parameters FV/FM = (FM - F0) / FM: maximum quantum efficiency of PSII 
photochemistry; Yield = (FM´ – FS) / FM´ effective quantum yield of PSII; ETR = Yield * PPFD: 
electron transport rate; qP = (FM – FM´) / (FM – F0´); 1-qP = coefficient of photochemical 
quenching; NPQ = (FM - FM´) / FM´: non-photochemical quenching. PPFD: photosynthetic 
photon flux density. 

A 

B 



3) Results 
 

 - 51 -

3.5.2) Pigment Measurements Suggest Reduction of Reaction Centres 

Because of the pale green leaves of the pam68-2 mutant plants, a quantitative 

analysis of leaf pigments was carried out by HPLC (see chapter 2.2.5). As 

expected, the mutant contained only 65% of wild-type chlorophyll (Chl a+b) level 

(Fig. 3.13). This reduction was not the same for both chlorophylls, as the ratio of 

Chl a/b was altered for the benefit of Chl b. This indicates a reduction in the Chl a 

binding reaction centres.  

 
In addition to the chlorophylls, various carotenoids are distributed among the 

photosynthetic complexes. They are involved in light harvesting, maintaining of 

the structure, and functionality of the photosynthetic complexes, as they quench 

Chl triplet states, scavenge ROS, and dissipate excess energy (Demmig-Adams 

et al., 1996; Niyogi et al., 1998). Lutein and ß-carotene are carotenoids that can 

be found in the inner and outer antenna, the LHC-complexes and in the reaction 

centres of the two photosystems. Both were below wild-type level, with the 

stronger reduction in ß-carotene (69% and 49%, respectively). This result, 

together with the reduction in the Chl a level, is in line with the observation of 

defects in PSII, as the proteins D1, D2, CP47 and CP43 bind the photosynthetic 

pigments Chl a and ß-carotene.  

The increased contents of the carotenoid pigments violaxanthin and 

antheraxanthin, which are involved in the photoprotecting xanthophyll cycle 

(Niyogi, 1999), lead to the assumption that mutant plants suffer from light stress. 

Fig. 3.13: Leaf pigment level of light-adapted WT and mutant plants. 
Leaf pigments extracted from pam68-2 and wild-type plants were determined by HPLC and 
reported in nmol/g leaf fresh weight. Mean values ± SD are shown. a Relative values for the 
mutant genotype are percentages based on leaf fresh weight. 
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This is due to the conversion of violaxanthin to zeaxanthin via the intermediate 

antheraxanthin during light stress conditions (Jahns et al., 2009).  

 

3.6) RNA and Protein Composition in pam68-2 

3.6.1) PSII Proteins are Diminished  

To investigate structural changes of thylakoid proteins from WT and mutant 

(pam68-2; this allele will be used in all following experiments), photosynthetic 

complexes were solubilised using dodecyl-ß-D-maltopyranoside (ß-DM) and 

separated by blue native (BN) PAGE. First-dimensional separation led to six 

major bands (Fig. 3.14A), representing PSII-supercomplexes (band I), dimeric 

PSII (II), monomeric PSII (III), monomeric PSII minus CP43 (IV), trimeric LHCII 

(V) and monomeric LHCII (VI). Here, first differences became apparent, as there 

was a reduction of all visible complexes except LHCII in the mutant. The 

supercomplexes of PSII were even not detectable. A second-dimensional SDS-

PAGE gel following the BN gel revealed more details in individual protein 

components of the PSII-complexes of WT and mutant. In general, all complexes 

of PSII were reduced. An overlay of Coomassie-stained second dimensions of 

WT (shown in blue) and mutant thylakoid proteins (shown in red) showed that 

LHCII and ATP-synthase (ATPase) were not altered in pam68-2 (Fig. 3.14B). By 

contrast, the PSII dimer fraction was strongly reduced in the mutant (D1/D2, 

CP47, and CP43). To investigate the steady-state levels of PSII subunits affected 

by the mutation, total proteins of wild-type and pam68-2 plants of equal protein-

concentrations were isolated and analysed by immunoblotting using a collection 

of antisera raised against individual PSII polypeptides and representative proteins 

of other photosynthetic membrane complexes. Our results showed that the PSII 

polypeptides were strongly reduced, whereas other complexes were only slightly 

affected or remained present in WT amounts. In more detail, levels of the plastid-

encoded PSII core subunits D1, D2, CP47 and CP43 were reduced to ~12, 15, 

24, and 14% of wild-type levels, respectively (Fig. 3.14C). The nuclear-encoded 

PsbO protein, which is a subunit of the OEC, and the LHCII complex were slightly 

decreased (~90% and 87%, respectively). Subunits of the PSI and Cyt b6f 

complex accumulated at similar levels of around 80% (PSI-F 
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Fig. 3.14: Protein composition of thylakoid membranes. 

Total protein obtained from identical amounts (fresh weight) of light-adapted wild-type (Col-0) 
and pam68-2 leaves were separated by BN-PAGE (A) followed by a 2D SDS-PAGE (B) or 
directly by SDS-PAGE (C). A) BN gel analysis. I = PSII-supercomplex, II = PSII-dimer/PSI-
monomer, III = PSII-monomer (with CP43), IV = PSII-monomer (without CP43), V = LHCII-
trimer, VI = LHCII-monomer. B) Overlay of second dimension stained with Coomassie G250 
of wildtype (blue) and mutant (red). C) Decreasing levels of wild-type proteins were loaded as 
indicated (100 = 100% etc.). The numbers on the right side of the panels shows the relative 
amount of protein in the mutant compared with the wild-type and normalised against ACTIN. 
D) Immunoblot-analyses of thylakoid proteins from WT, mutant and complemented plants with 
antibodies against the PSII-core proteins D1 and D2; ACTIN served as loading control.  

D 

C 

A B 
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81%, PSI-H 85%, Cyt f 79%). For LHCI, ATP-synthase (CF1-/) and FNR 

(ferredoxin-NADP+-oxidoreductase) no alterations on protein-level could be 

detected. The complementation of pam68-2 was able to rescue the PSII-

phenotype on protein level (Fig. 3.14D). The transgenic plants accumulated wild-

type levels of the PSII core proteins D1 and D2. 

To confirm and quantify differences in the composition of PSII complexes, 

immunoblot analyses were applied to examine the specific components (Fig. 

3.15). The distribution of the PSII core proteins D1 and CP43 showed lack of PSII 

supercomplexes. However, both proteins accumulated in the PSII monomer 

fraction and in the dimer fraction. Hence, PSII monomers and dimers seem to be 

assembled in the mutant but in less extent. The distribution of PSI (PSI-L), ATP-

synthase (CF1-/ß) and LHCII (Lhcb2) appeared as in wild-type. These results 

provide additional evidence that the mutant has a defect in PSII. 

 
 

3.6.2) Transcription of Plastid-Encoded Genes is Not Altered  

The levels and patterns of the plastome-encoded PSII transcripts were 

investigated by RNA gel blot hybridisation (psbA, psbB, and psbD). 

Representative nuclear-encoded genes for components of other thylakoid 

membrane complexes were included in this analysis (LHCB3 for LHCII, ATPD for 

ATP-synthase, rbcL = large subunit of Rubisco). The experiments revealed that 

Fig. 3.15: Immunodetection of thylakoid proteins separated by 2D gel electrophoresis. 

Second dimensions from Fig. 3.14 were subjected to immunoblot analysis. Bands I to V are 
corresponding to Fig. 3.7A.  
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both, the amount and the sizes of all analysed transcripts, were not significantly 

altered in the mutant (Fig. 3.16A). Only psbB transcripts seemed to accumulate in 

higher amounts compared to wild-type. The reduced accumulation of PSII 

subunits is therefore not caused by an impaired or decreased transcription rate or 

by missing processing of a transcript encoding one of these structural PSII 

proteins, but must be due to a translational or posttranslational defect. Also the 

association of psbA mRNA with polysomes showed the same pattern in mutant 

and WT (Fig. 3.16B). 

 
 
 
 

 
 

Fig. 3.16: Steady state mRNA levels and association with polysomes. 

A) RNA gel blot hybridisation with total RNA from leaves of 4-week-old wild-type and pam68-2 
plants. 25S rRNA was detected by ethidium bromide (EtBr) staining. B) Association of the 
psbA transcript with polysomes in the pam68-2 mutant. Whole-cell extracts were fractionated 
in linear 15 to 55% sucrose gradients by ultracentrifugation. Gradients were divided into 11 
fractions, and equal proportions of each fraction were analysed. Upper panels: RNA gel blots 
of polysome gradient fractions were hybridised with a probe that detects psbA. Lower panels: 
Staining of the RNA gel blots with methylene blue to visualise distribution of 25S rRNAs. 
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3.7) Synthesis and Stability of Thylakoid Proteins in pam68-2 

3.7.1) The Stability of PSII Proteins is Barely Affected 

To monitor the stability of assembled photosynthetic proteins, the synthesis of 

plastid-encoded proteins was blocked with lincomycin under growing light 

conditions and protein signals were quantified by immunoblot-analyses. The PSII 

core proteins CP47 and PSII-E (-subunit of cyt b559), together with the tested 

proteins from other photosynthetic complexes, showed no differences in their 

stability in all genotypes tested over a time period of 8 hours (Fig. 3.17). By 

contrast, the PSII core proteins D1, D2, and CP43 displayed increased 

degradation rates in pam68-2 (71%, 75%, and 51%, respectively) and lpa1 (82%, 

Fig. 3.17: Stability of photosynthetic proteins. 

Intact leaves were incubated with lincomycin under growing light for 8 h. Every two hours, 
samples were assayed by immunoblot-analyses of total protein extracts. The percentages of 
protein levels are shown below the respective panels. They were calculated by comparison 
with amounts found in corresponding samples taken at time 0 and normalised against 
ACTIN. 
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69%, and 70%, respectively) compared with wild-type (98%, 86%, and 101%, 

respectively) and overexpressor of PAM68 (96%, 83%, and 96%, respectively). 

But the degradation rate after 8 h of lincomycin treatment was only 10-25% 

higher as in the wild-type control, suggesting that the proteins are quite stable 

once they have been assembled into complexes. For more detailed analysis 

however, this experiment has to be repeated with leaves incubated in lincomycin 

and DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) as DCMU blocks the 

electron transfer from QA to QB, thus leading to a net oxidation of the PQ pool. 

 
3.7.2) Synthesis of PSII Core Proteins is Diminished  

The de novo synthesis and assembly of thylakoid membrane protein complexes 

was investigated in intact mutant and wild-type leaves by pulse-labelling 

experiments with [35S]methionine/cysteine. To monitor synthesis of the plastid 

encoded PSII core proteins, cytosolic translation was blocked with cycloheximide. 

Under the used conditions (1 h, 60 µmol photons m-2 s-1), the most prominent 

Fig. 3.18: Synthesis of PSII-D1 and D2. 

WT and mutant plants were grown on MS-media supplemented with 1,5% sucrose under 
growing light conditions. Radioactive [35S]-methione/cysteine was incorporated into intact 
leaves for 1 h at a light intensity of 60 µmol photons m-2s-1. Afterwards thylakoid proteins were 
isolated and loaded on a SDS-gel. A) Coomassie stain and autoradiogram of the SDS-gel. 
CF1-/ß = subunit  and ß of thylakoid ATP-synthase B) Immunoblot-analyses with the 
isolated thylakoid proteins. Same amounts were loaded on a second SDS-gel and subjected 
to semi-dry blot analysis. 

B A 
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bands on the autoradiogram were the D1 and D2 protein of PSII (Fig. 3.18A). For 

both a weaker incorporation of radioactivity could be detected with a stronger 

reduction for the D1 protein. The rates of synthesis of the PSII RC subunits CP43 

and CP47, and the chloroplast ATP-synthase (CF1-/ß) remained unchanged in 

the mutant. For comparison of the synthesis rate with steady-state levels of PSII-

proteins, the samples were subjected to immunoblot-analyses (Fig. 3.18B) with 

antibodies against D1, D2 and LHCII. Here it became evident that while steady-

state levels were 10% in the mutant, newly synthesised protein was about 25%.  

To investigate the possibility that PAM68 is involved in the assembly of PSII-

complexes, we performed a two-dimensional BN/SDS-PAGE with radiolabelled 

Fig. 3.19: Synthesis of PSII-complexes. 
Autoradiograms after in vivo [35S]methionine pulse labelling of wild-type (upper panel) and 
pam68-2 (lower panel) thylakoid proteins for 1.5 h followed by a 2D BN/SDS-PAGE. PSII-SC 
= PSII-supercomplexes, PSII-D = PSII-dimers, PSII-M = PSII-monomers with CP43, PSII-M 
(w/o CP43) = PSII-monomers without CP43.  
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thylakoid proteins. For LPA1, known to be involved in the assembly of PSII, Peng 

et al. (2006) could show, that a great amount of the de novo synthesised 

thylakoid proteins was not assembled into higher molecular complexes in the 

respective mutant. Therefore they concluded that the assembly of the PSII-

complexes is disturbed in the mutant. In contrast to lpa1, pam68-2 did not show 

accumulation of free proteins (Fig. 3.19). The PSII RC proteins D1, D2, CP47, 

and CP43 were only present in PSII monomers in the mutant. PSII dimers or 

supercomplexes were not detectable. These results suggest that the assembly of 

PSII monomers is not disturbed in pam68-2, as there is no accumulation of 

unassembled proteins. But the dimerisation of PSII-monomers is diminished. 

To further elucidate the question, whether PAM68 is a PSII assembly factor or 

exhibits a function in upstream processes, in vivo pulse labelling experiments 

were repeated with lpa1 as control. To ensure that the newly synthesised PSII-

proteins, especially the D1-protein, were not degraded in the mutants during the 

experiment, the pulse-labelling was performed under very low light conditions of 

20 µmol photons m-2 s-1 for 20 min. The most prominent band consisted of PSII 

RC proteins D1 and D2. These two proteins were strongly reduced in both 

Fig. 3.20: Pulse labelling of lpa1 and pam68-2. 

Intact leaves were pulse-labelled with 
[35S]methionine/cysteine for 20 min with light 
intensities of 20 µmol photons m-2 s-1. Synthesis of 
nucleus-encoded proteins was blocked by addition 
of cycloheximide. Thylakoid proteins were isolated 
and subjected to SDS-PAGE analysis. pD1 = 
precursor of D1. 
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mutants. Still, concerning D1 and D2 synthesis, lpa1 and pam68-2 clearly 

differed. While lpa1 showed a pattern similar to WT except for a strong decrease 

in D1 synthesis (as reported earlier by Peng et al., 2006), newly synthesised 

D1/D2 migrated higher in pam68-2 background. This can be interpreted in two 

ways: (i) accumulation of pD1 occurs, or (ii) only synthesis of D1 but not of D2 is 

decreased. 

 

3.8) PAM68 Interacts With PSII Core Proteins in vitro 

For a function in PSII assembly, PAM68 needs to interact with one of the 

hydrophobic core subunits of PSII. To test this possibility, the interaction of 

PAM68 with the subunits of the PSII core in vivo in yeast using a split-ubiquitin 

system designed to assess interactions of membrane proteins was examined 

(Pasch et al., 2005). The system is based on the possibility to divide ubiquitin into 

two parts, an N-terminal half (NubI) and a C-terminal half (Cub). When allowed to 

interact, the two parts spontaneously reassemble to reconstitute ubiquitin. For the 

interaction assay, the wild-type NubI was mutated (creating NubG), which shows 

a lower affinity to Cub. Thus, the two parts have to be brought into close proximity 

by two interacting test proteins to assemble ubiquitin.  

A prey construct plasmid, in which the Cub moiety was fused to the C-terminus of 

PAM68 was prepared and co-transformed into yeast with the respective fusion 

protein NubG-X. The resulting transformants were analysed for growth on plates 

Fig. 3.21: Interaction partners of PAM68. 
Growth of yeast cells expressing PAM68-Cub-TF with different NubG-fusion proteins. Yeast 
cells containing the indicated combinations of PAM68 and the prey proteins were spotted onto 
medium lacking Leu and Trp (-LT) or onto medium lacking also His (-LTH) and grown for three 
days at 30°C). Positive control: Alg5-NubI construct (fusion of the yeast ER protein Alg5 with 
wild-type Nub); negative control: Alg5-NubG construct (fusion of Alg5 with the mutated Nub). 
Nub = N-terminal half of ubiquitin, Cub = C-terminal half of ubiquitin. Danja Schünemann, 
Bochum 
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lacking leucine and tryptophane (-LT) or leucine, tryptophane and histidine (-

LTH). As shown in Figure 3.21, coexpression of PAM68 with the core proteins of 

PSII (D1, D2, CP47 and CP43) resulted in growth on (-LTH)-plates. With the 

tested subunits of other photosynthetic complexes like the PSI core proteins 

PsaA and PsaB, the ATP-synthase subunits AtpA and AtpI, the ferredoxin-

NADP+-oxidoreductase (FNR) or ferredoxin (Fd), no interaction could be 

observed. Interestingly, also for the PSII assembly factors LPA1, LPA2 and 

HCF136 a positive result appeared, suggesting that PAM68 may be involved in 

the biogenesis of PSII, probably acting in one cascade with these three proteins. 

LPA1 was supposed to be involved in the assembly of D1 into the PSII 

precomplex. When PAM68 also binds to this protein in planta, it is possibly part of 

the integration machinery. However, an interaction with SecY, the translocase of 

this pathway, was not detectable. For the homologue of PAM68, PAM68HL, no 

interactions partners came up in this experiment (data not shown). 

 

3.9) Growth Phenotype of pam68-2 is Due to Oxidative Stress 

The pam68-2 mutant showed severe defects in accumulating components of PSII 

accompanied by lower photosynthetic activity. Thus, the stunted phenotype of 

mutant plants could be due to secondary effects of the mutation resulting from 

insufficient energy needed for normal nutrition. To distinguish between primary 

defects due to lack of PAM68 and secondary effects caused by a deficiency in 

the products of photosynthesis, wild-type and mutant plants were supplied with 

0.5 % sucrose as a carbon source to support normal growth development. The 

PSII assembly mutant lpa1 showed a comparable growth phenotype on soil (Fig. 

3.22A) and served as a control. For the lpa1 mutant, ecotype Landsberg erecta 

(Ler) was used as wild-type control, which is the background of the mutation. 

Figure 3.22B displays the phenotype of mutant and wild-type plants grown for 25 

days on MS-media (supplemented with 0.5% sucrose) under long day conditions 

(LD; 16 h light / 8 h dark, GL). Under the different light intensities tested the 

mutant plants exhibited always stunted growth and pale green leaves on both MS 

media and soil. But the difference between WT and mutant concerning the size of 

the leaves varied. Under low light (20 µmol photons m-2 s-1) the leaf area of 

pam68-2 was ~50% of WT (Col-0), whereas under light conditions of 150 µmol 

photons m-2 s-1 this value was about 30%. The same was true for lpa1 in 
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comparison to its WT background (Ler). These results suggest oxidative stress 

for both mutant plants already under growing light conditions, as the decrease in 

size could also be observed under 110 µmol photons m-2 s-1. However, with a 

higher concentration of sucrose in the media, it may be possible to rescue the 

phenotype completely, at least under low light.  

 
 

 

Fig. 3.22: Effect of sucrose treatment on wild-type, pam68-2 and lpa1 plants. 
A) Wild-type (Col-0) and mutant plants germinated directly on soil and grown for 1 month 
under a 16 h photoperiod (LD) and 120 µmol photons m-2 s-1. B) 25-day-old plants germinated 
and grown under LD conditions on MS media containing 0.5 % sucrose under different light 
intensities. Col-0 = ecotype Columbia-0, background of pam68-2; Ler = ecotype Landsberg 
erecta, background of lpa1. 

B 

A 
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4) Discussion 

 

4.1) PAM68/PAM68HL: Two Arabidopsis Proteins of 

Cyanobacterial Origin  

The biogenesis and assembly of the photosynthetic complexes is a multistep 

process. It has to be strongly coordinated, as both nucleus- and chloroplast-

encoded proteins have to be synthesised and assembled into functional 

complexes in the right stoichiometry. Additionally, ligation of various cofactors 

occurs at different steps of the assembly process. Thus, this process is likely to 

require auxiliary and regulatory factors. Since the discovery of the first nucleus-

encoded auxiliary factor for PSII biogenesis, HCF136 (Meurer et al., 1998), much 

effort was made to identify more components. As the coding capacity of the 

chloroplast genome is limited, it was suggested that the biogenesis and assembly 

of PSII is mainly regulated by nucleus-encoded proteins (Goldschmidt-Clermont, 

1998; Barkan and Goldschmidt-Clermont, 2000; Rochaix, 2001; Leister, 2003). 

The identification of these factors will undoubtedly improve our understanding of 

the assembly of photosynthetic complexes and how their functionality is 

maintained. Here, we report the isolation and characterisation of the PAM68 

protein and its homologue, PAM68HL, in Arabidopsis thaliana. All available 

evidence indicates that PAM68 behaves as a PSII-specific assembly factor, 

whereas PAM68HL seems to be important for the activity of the NDH-complex 

(NAD(P)H-dehydrogenase). 

 

4.2) Both Proteins Are Localised in the Chloroplast  

The prediction of a chloroplast transit peptide for the homologous proteins in all 

photosynthetic organisms (sequenced to date) indicated that the PAM68 and 

PAM68HL proteins are localised in the chloroplast. The localisation was 

confirmed by immunoblot-analyses with a peptide-antibody raised against an 

epitope of Arabidopsis PAM68 and PAM68HL, respectively. With these 

antibodies, the proteins could be detected in both, total protein extracts and 

isolated thylakoid membranes of WT but not of the respective mutant (pers. 

comm. Renate Kreller). Also in an overexpression line of PAM68 in the mutant-
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background of pam68-2, the protein appeared at the same size as in WT but in 

higher amounts. Additionally, in vitro import of PAM68 into intact chloroplasts and 

translocation of a PAM68::RFP construct into Arabidopsis protoplasts was carried 

out (Fig. 3.3). In both experiments, the protein was transported into the 

chloroplast. These results together with a prediction for two transmembrane 

domains in the C-terminal part of PAM68 and PAM68HL, strongly suggest a 

localisation in the thylakoid membrane. Interestingly, for all orthologues two 

transmembrane domains in the C-terminal part of the protein were predicted as 

well. However, an additional hint for thylakoid localisation was given by recent 

proteomic approaches, where PAM68 and PAM68HL were found in thylakoid 

membrane preparations (Zybailov et al., 2008; Peltier et al., 2004). The co-

expression data also substantiate this assumption.  

 

4.3) PAM68 Has a Function in PSII Biogenesis   

4.3.1) PSII Function Is Diminished 

PSII function is easily monitored by fluorescence measurements with the Dual-

PAM fluorometer. Here, pam68-2 plants show a typical photosynthesis affected 

phenotype (Fig. 3.12). F0, the minimal level of fluorescence of dark-adapted 

plants, was higher in the mutant, indicating photoinhibition on the acceptor side. 

Simultaneously, the maximal fluorescence in the dark was decreased resulting in 

a strongly reduced FV/FM-ratio, which represents the maximal quantum yield of 

PSII. Such a strong reduction of this parameter as in pam68-2 points to a 

decrease in accumulation or function of PSII. Another hint for defects in 

photosynthesis was given by the parameter for photochemical quenching, 1-qP. It 

was remarkably increased, which means that the PQ pool is more reduced. This 

suggests an intact electron transfer downstream of the PQ pool. In summary, all 

these spectroscopic data propose a PSII-phenotype for pam68-2.  

The composition of the leaf pigments nicely fits into this assumption, as the 

mutant exhibits reduced levels of lutein, ß-carotene and chlorophyll, especially 

Chl a, which are found in PSII reaction centres. Furthermore, the contents of 

xanthophylls point to oxidative stress in the mutant plant. 
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4.3.2) PSII RC Proteins Accumulate to Less Extent 

The spectroscopic measurements, suggesting a reduction in PSII performance, 

were supported by the analyses of protein levels of PSII reaction centre 

components. Here it became evident that PSII complexes were severely 

decreased in the mutant. D1, D2, CP47 and CP43 are reduced to less than 25% 

of wild-type level (Fig. 3.14). Because of CES mechanisms, it is difficult to 

distinguish whether there is a defect in the accumulation of all four PSII core 

proteins or if only synthesis of the dominant subunit D2 is diminished, resulting 

additionally in reduced protein levels of D1, CP47, and CP43. 

However, in the lpa1 mutant, all four PSII core proteins were reduced with the 

strongest reduction in D1 protein level and CP43, as it is the case for pam68-2. 

Because of the interaction of PAM68 with D1 in the split-ubiquitin system as well 

as equally reduced amounts of the PSII core proteins in both mutants, it is likely 

that defects in pam68-2 are due to inefficient biogenesis of D1. The mutation of 

PAM68 does not affect the accumulation of the chloroplast ATP synthase and the 

light-harvesting complex of PSI. In the protein level of the LHCII, the OEC, the 

cytochrome b6f complex, and the PSI complex only a slight decrease is visible. 

However, it is often observed within PSII mutants that their PSI content is also 

affected, indicating that the reduced PSI and Cyt b6f levels in PSII mutants are 

due to secondary effects of the mutation (Meurer et al., 1998; Plücken et al., 

2002). In the case of pam68-2 this view is supported by analyses of structural 

changes within the thylakoid complexes. No alterations could be observed for all 

complexes excepting PSII, as no PSII-supercomplexes and only small amounts 

of dimers and monomers were detectable. Therefore, a direct effect of the pam68 

mutation on PSI appears to be unlikely but cannot be excluded at the current 

stage of investigation. 

To unravel the reason for less accumulating PSII proteins, transcription of the 

respective genes was analysed. No alterations in the abundance or patterns of 

PSII, LHCII, and ATP-synthase gene transcripts were detected in the pam68 

mutant. These results demonstrate that the reduced PSII contents are not due to 

the absence of transcripts encoding one of these structural PSII proteins but may 

be due to impaired translation or, alternatively, accelerated degradation of the 

PSII subunits once they have been synthesised. Beside the protein and transcript 

level of photosynthetic proteins, also the abundance of PAM68 mRNA and 
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protein was controlled. Both accumulated at very low levels, suggesting that the 

PAM68 protein is not a stoichiometric component of the mature PSII complex. 

 

4.3.3) pam68-2 Shows No Accelerated Degradation of Proteins 

To give further insight into the function of PAM68, in vivo pulse experiments were 

carried out (Figures 3.18, 3.19, and 3.20). In contrast to the steady-state level of 

the PSII core proteins D1, D2, CP47 and CP43, the amount of de novo 

synthesised proteins was quite different. D1 and D2 synthesis is decreased in 

PAM68-deficient plants, whereas the synthesis rate of CP47 and CP43 was 

comparable to wild-type. Diminished synthesis of D1 and D2 could be due to an 

accelerated degradation of these proteins maybe because of defects in the repair 

cycle of PSII, as these two proteins are the main targets for light-induced 

damage. To clarify this, we analysed the turnover rate and degradation of D1 and 

D2. In pulse-chase experiments, no significant difference between WT and 

mutant was detectable (data not shown). Also BN/SDS-PAGE of labelled 

thylakoid proteins and immunoblot-analyses of the second dimension argue 

against a defect in the degradation of PSII proteins during the repair cycle as no 

accumulation of degradation products was visible. Testing the growth of mutant 

plants under different conditions, however, could not rule out defects in the repair 

process (Fig. 3.22). The phenotype of pam68-2 was the same for plants grown 

directly on soil or grown on medium supplemented with 0.5% sucrose under 

growing light conditions. But under lower light the plants grew better, suggesting 

oxidative stress in mutant plants.  

Comparison with the recently discovered TLP18.3 protein, which was assumed to 

be involved in the repair cycle of PSII in Arabidopsis (Sirpiö et al., 2007), 

demonstrates clear differences. Plants lacking the TLP18.3 protein did not reveal 

any visible phenotype under standard growth conditions. Also the amount of 

photosynthetic proteins in immunoblot analyses was not affected, but the 

degradation of newly synthesised D1 after high-light treatment was significantly 

decreased. All together we can conclude that PAM68 is not a component of the 

degradation machinery of PSII proteins during the repair cycle. But we can not 

exclude the possibility of an involvement in de novo synthesis or integration of 

damaged proteins. 
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4.3.4) Is PAM68 an Assembly or Stability Factor of PSII? 

PSII specific stability and assembly factors are becoming increasingly uncovered 

in cyanobacteria, green algae and flowering plants. Mutation of one of these 

components in Arabidopsis leads generally to a visible growth phenotype and 

defects in photosynthesis. Most of these described proteins are involved in the 

biogenesis of the PSII reaction centre protein D1 (CtpA, HCF136, HCF173, 

LPA1, and CYP38) and mutants exhibit a typical “PSII-phenotype”. As this is also 

the case for pam68-2, we tested it for deficiencies in the assembly and/or 

stabilisation of PSII proteins and compared the results with the recently described 

PSII assembly factor LPA1 (Peng et al., 2006). Blue native PAGE with labelled 

thylakoid proteins from lpa1 showed an accumulation of free proteins, which were 

not assembled in photosynthetic complexes. Also, the incorporation of 

[35S]Met/Cys into D1 and D2 was significantly reduced. This is also true for 

pam68-2. However, BN/SDS PAGE of labelled thylakoid proteins showed that 

most of the radioactivity was found to be associated with the PSII complexes in 

both mutant and wild-type. Unassembled proteins were barely detectable, 

indicating sufficient assembly of PSII complexes in pam68-2 although no dimers 

could be observed in the experiment (Fig. 3.18). But this is probably due to 

reduced levels of dimers, which were not detectable under these conditions, as 

immunoblot-analyses of photosynthetic complexes could show assembly of D1 

and CP43 into PSII-dimers (Fig. 3.15). These results indicate that PAM68 is not 

directly involved in the assembly of PSII complexes, since the absence of free 

proteins can also result from a decreased stability or accelerated degradation of 

the newly synthesised proteins. In this work no accumulation of degradation 

products could be observed. In immunoblot-analyses of lincomycin-treated 

thylakoid proteins the stability of the investigated proteins showed no big 

differences between WT and mutant. So it seems unlikely that PAM68 is 

important for the stability of thylakoid proteins. It might be that the degradation of 

proteins is too fast to be detected in the experiments we carried out until now. 

However, it is remarkable that all the tested conditions provided no indication of 

an increase of degradation products. Another possibility is of course an 

involvement of PAM68 in the dimerisation. In the mutant the reduction of PSII 

dimers seems to be higher than the reduction of monomers (Figures 3.14, 3.15, 

3.19). But this would also be the case, if one of the PSII core proteins is not 
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accurately synthesised or folded into the thylakoid membrane leading to a 

decreased stability of the complex. Also instability of the monomer itself is 

possible. For clarification of an involvement in assembly or stabilisation of PSII 

complexes, it is important to investigate a possible comigration of PAM68 with 

these complexes. An interaction of PAM68 with core proteins of PSII, namely D1, 

D2, CP47, and CP43, could already be observed in a split-ubiquitin assay. The 

translocase cpSecY, which integrates at least D1 into the thylakoid membrane, 

did not interact with PAM68 substantiating the suspicion that PAM68 is not part of 

the assembly process.  

 
 
4.3.5) Possible Involvement of PAM68 in Synthesis of D1 

Conversely, synthesis of thylakoid proteins might be defective in pam68-2. In vivo 

labelling experiments revealed decreased synthesis of D1. This is also the case 

for plants lacking the D1 translation factor HCF173 (Schult at al., 2007). In this 

mutant the synthesis and the steady-state level of the corresponding psbA mRNA 

is significantly reduced. Polysome association experiments suggested that this is 

primarily caused by reduced translation initiation of psbA mRNA. Previous results 

with pam68-2 on the other hand suggested no alterations in the distribution 

pattern compared to WT (Fig. 3.16B). Also the steady-state level of the psbA 

mRNA is not affected. Thus, PAM68 is not important for the translation initiation 

of D1. Further support is provided by the differences in accumulation of thylakoid 

proteins. The OEC components PsbO and PsbP are less abundant in hcf173 (≤ 

25%) than in pam68-2 (~ 90%). The more drastic phenotype of hcf173 is also 

visible in the stronger reduction of the maximum quantum yield of PSII, FV/FM 

(0.15 vs. 0.33 in pam68-2). If PAM68 is involved in synthesis of D1, it is probably 

acting downstream of HCF173, as the effect of a mutation is less vigorous. One 

possibility is a stabilising role during the elongation of the D1 protein. It might also 

be that the binding of cpSRP54 to the D1 nascent chain and the translocation to 

the thylakoid membrane is dependent on the function of PAM68. Clarification 

could be achieved by testing the interaction of more constructs like cpSRP54 with 

PAM68 in yeast or biochemically with co-immunoprecipitation experiments. For 

HCF136 and LPA1, an interaction with PAM68 in yeast could already be shown, 

suggesting that PAM68 might be part of the same biological pathway. However, 
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as PAM68 also interacts with four PSII core proteins (D1, D2, CP47, and CP43) 

the function might be more general. 

In vivo labelling of thylakoid proteins revealed a reduction in the de novo 

synthesis of two bands running at a size of ~ 34 kDa (Fig. 3.18 and 3.20). The 

lower band represents mature D1, whereas the upper band can either display the 

synthesis of D2 or of pD1. A hint for pD1 is the unchanged synthesis rate of CP47 

and CP43. This observation speaks against a defect in D2-synthesis, as CP47 

(and probably also CP43) is a CES-subunit of D2 and thus the translation of the 

two chlorophyll binding proteins should also be down-regulated in the mutant. 

However, the steady-state protein level of both is strongly reduced, suggesting an 

increased degradation. A less available amount of D1 protein for the biogenesis 

of the PSII complex would consequentially lead to the degradation of dispensable 

proteins like CP43 or CP47. 

 

4.4) PAM68HL is Not Involved in the Same Processes as PAM68 

Co-expression analyses of PAM68 and PAM68HL suggested an involvement in 

photosynthetic processes for both proteins (Fig. 3.11). Different PSII biogenesis 

factors like LPA2, DegP5, thylakoid lumen proteins or components of the oxygen-

evolving complex are co-expressed with both proteins. But in general there are 

some differences, as PAM68 seems to be more co-expressed with PSII 

biogenesis factors, whereas PAM68HL shows co-expression with many proteins 

important for the activity of the NDH complex. Also the phenotype of deletion 

mutants suggests an involvement in PSII biogenesis rather for PAM68 than for its 

homologue, as PAM68HL-deficient plants exhibit no growth phenotype (Fig. 3.8). 

This is not surprising as the NDH complex is involved in electron pathways 

around PSI and plays not a major role during photosynthesis (Rumeau et al., 

2007). Thus, a depletion of the NDH complex is not resulting in a strong 

phenotype (Sirpiö et al., 2009). NDH is not ubiquitous among oxygenic 

photosynthetic organisms, being absent from many green algae like 

Chlamydomonas but present in cyanobacteria and a lot of plant species (Rumeau 

et al., 2007). As already mentioned (see section 3.2), PAM68HL seems to be the 

result of a duplication event. The duplication most likely occurred after 

endosymbiosis, probably after the splitting of green algae and flowering plants as 

there is only one homologue in green algae. PAM68 is more closely related to 
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green algae as PAM68HL. Preliminary experiments with a deletion mutant of 

PAM68HL revealed that the PSI/NDH supercomplex is absent. This was further 

confirmed by spectroscopic measurements of the functional status of the NDH 

complex. Pam68hl exhibited a typical NDH-defective phenotype in this 

experiment. However, the involvement of PAM68HL in the activity of the NDH 

complex has to be analysed in more detail. Anyway, deletion of both proteins in 

one plant did not result in an additional growth phenotype (Fig. 3.8), giving further 

support to the assumption that PAM68 and PAM68HL are not acting in the same 

process. 

 

4.5) Evolution of Auxiliary Factors 

Eukaryotes co-opted photosynthesis from prokaryotes by engulfing and stably 

integrating a photoautotrophic prokaryote in a process known as primary 

endosymbiosis (reviewed in Gould et al., 2008). During evolution, this 

endosymbiont was more and more integrated into its host organism. The main 

part of its genome was either lost or transferred into the nucleus of the host cell 

(Martin et al., 1998). This made photosynthesis quite complicated, as biogenesis 

of photosynthetic complexes includes now on the one hand translation of proteins 

directly in the chloroplast, and on the other hand synthesis of nucleus-encoded 

proteins in the cytosol, followed by translocation into the chloroplast across its 

two envelope membranes (Reumann et al., 2005). Hence, new proteins and 

protein complexes evolved to assist this multistep formation of photosynthetically 

active thylakoid membranes. Dependent on the function of these biogenesis 

factors, they emerged at different time points during evolution. Proteins that are 

important for the translocation of nucleus-encoded components into the 

chloroplast probably evolved early on in the conversion of the endosymbiont into 

an organelle (Gould et al., 2008). The evolution of factors directly involved in the 

biogenesis of photosynthetic complexes, especially of PSII, is depicted in Figure 

4.1. The Oxa1/Alb3/YidC family of membrane insertases is highly conserved. All 

members seem to play an important role in the membrane protein biogenesis of 

respiratory and energy transduction proteins and exist in mitochondria, 

chloroplasts and bacteria (Yi and Dalbey, 2005). A second protein family which 

originated quite early in evolution is the tellurite resistance C (TerC) family. For a 

knock-out line of the homologue in Arabidopsis it was recently shown that it is 
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involved in thylakoid membrane biogenesis in early chloroplast development 

(Kwon and Cho, 2008). Orthologues of AtTerC are present in a variety of 

bacteria, archaea, algae and other plant species.  

Beside these two proteins that evolved before separation of the cyanobacteria, 

several more PSII biogenesis factors occurred after this splitting event. HCF173, 

HCF136, CYP38, and CtpA play a role in translation, chlorophyll-binding, folding 

and processing of D1, respectively (Schult et al., 2007; Plücken et al., 2002; 

Sirpiö et al., 2008; Merchant and Dreyfuss, 1998). TLP18.3 facilitates degradation 

Fig. 4.1: Evolution of auxiliary proteins. 
LPA1 (Peng et al., 2006), LPA2 (Ma et al., 2007), AtTerC (Kwon and Cho, 2008), TLP18.3 
(Sirpiö et al., 2007), HCF173 (Schult et al., 2007), HCF136 (Meurer et al., 1998; Plücken et 
al., 2002), CYP38 (Sirpiö et al., 2008), CtpA (Bowyer et al., 1992; Merchant and Dreyfuss, 
1998), Alb3 (Sundberg et al., 1997). 
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of D1 after photo-damage (Sirpiö et al., 2007). However, until now there are two 

auxiliary factors for PSII biogenesis known that emerged after the engulfment of a 

cyanobacterium, LPA1 and LPA2 (Peng et al., 2006; Ma et al., 2007). Both have 

orthologues only in eukaryotic organisms that perform photosynthesis, namely 

green algae and plants. LPA2 is thereby the “younger” protein as there exists 

only one orthologue in green algae (Ostreococcus). Mutants of these two proteins 

show a much weaker phenotype compared with many of the more conserved 

biogenesis factors like Alb3, HCF173 or HCF136.  

The new PSII biogenesis factor PAM68, described in this work, emerged early 

during evolution of photosynthetic organisms as it is present in all cyanobacterial 

groups. After endosymbiosis, a duplication event led to the appearance of 

PAM68HL, which has orthologues in the same plant species (sequenced until 

now) as PAM68. The orthologues in the green algae Chlamydomonas reinhardtii 

and Ostreococcus lucimarinus, however, seem to originate from PAM68 and not 

from PAM68HL (see phylogram, Fig. 3.2). This would fit into the assumption that 

PAM68HL is somehow involved in the activity of NDH, as this complex is not 

present in green algae.  

 

4.6) Conclusion 

The biological function of PAM68 and PAM68HL is still not completely resolved, 

even though the point of action for PAM68 is quite constricted. Comparison of 

pam68-2 with hcf173 and lpa1 suggested that PAM68 probably acts downstream 

of HCF173 and upstream of LPA1. HCF173 was supposed to ensure initiation of 

psbA mRNA translation as component of a high-molecular weight complex that 

contains psbA RNA (Schult et al., 2007). LPA1 on the other hand is thought to act 

as a chaperone, assisting the proper folding and integration of D1 into the 

thylakoid membrane and promoting the subsequent interaction between D1 and 

D2 (Peng et al., 2006). The role of PAM68 might be stabilisation of the whole 

psbA mRNA/polysome complex (Fig. 4.2A) or of the D1 nascent chain during 

transition to (Fig. 4.2B) or integration into the thylakoid membrane (Fig. 4.2C). 

The latter possibility is supported by the observed interaction of PAM68 with 

LPA1 and HCF136 in yeast. However, for further elucidation, a possible binding 
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Fig. 4.2: Model for biochemical function of PAM68. 
A) Stabilising of polysome/mRNA-complex. B) Binding of 
nascent D1-chain to cpSRP54 or stabilisation during 
transition to thylakoid membrane. C) Stabilisation during 
insertion into the membrane. 

B 

A 
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of PAM68 to proteins of the transition/integration machinery, like cpSRP54 or 

Alb3, has to be tested biochemically (co-immunoprecipitation experiments). 

Analysis of ancestor proteins might also be important. Deletion of the orthologue 

in Synechocystis does not result in such a strong effect, but experiments with this 

mutant suggested also a slight PSII phenotype (Prof. Nickelsen; pers. comm.). As 

the duplication of PAM68 occurred after the engulfment of the chloroplastid 

precursor, it would additionally be interesting to test whether the ancestral protein 

combined the function of both, PAM68 and PAM68HL. 
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6.1) Vector Maps 

 

 
 

 

 
 

 

Fig. 6.2: T-DNA transformation vector pAC161 (GABI-collection). 
Binary cloning vector used for insertional mutagenesis of an Arabidopsis population (Rosso et 
al., 2003). LB = left border, RB = right border of T-DNA; SUL1-ORF = gene for resistance 
against the herbizide sulfadiazine; 1´-2´-promoter = drives expression of the SUL1 ORF; 35S 
= Cauliflower Mosaic Virus Promoter. 

Fig. 6.1: T-DNA transformation vector pROK2 (SALK-collection). 
Binary cloning vector used for insertional mutagenesis of an Arabidopsis population (Alonso et 
al., 2003). LB = left border, RB = right border of T-DNA; NPTII = neomycin 
phosphotransferase II; NOS-Promoter = Nopaline Synthase Promoter; NOS-Terminator = 
Nopaline Synthase Terminator; 35S = Cauliflower Mosaic Virus Promoter. 
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Fig. 6.3: Binary vector for Agrobacterium-mediated plant transformation. 
The pH2GW7 gateway vector (Karimi et al. (2002) was used for complementation of pam68-2 
plants with a pH2GW7/PAM68 construct including full-length coding sequence of PAM68. 
Sm/SpR = resistance against streptomycin and spectinomycin (for selection of positive 
clones); HygR = resistance against hygromycin (for selection of plant transformants); 
attR1/attR2 = attachment sites: DNA recombination sites; CmR = chloramphenicol resistance 
gene; ccdB = cytotoxic protein, used for negative selection. 

Fig. 6.4: Yeast split-ubiquitin vectors. 
A) pAMBV4. ADH-promoter = Saccharomyces cerevisiae ADH1 promoter; Cub = amino acids 
34-76 of yeast ubiquitin; LexA = amino acids 1-200 of LexA; VP16 = Herpes simplex VP16 
transactivator; CYC-terminator = S.cerevisiae CYC1 terminator; CEN/ARS = origin of 
replication (allows propagation of plasmids in yeast at low copy numbers); KanR = 
kanamycine resistance gene. B) pADSL-Nx. NubG = amino acids 1-38 of yeast ubiquitin; 
2micron = origin of replication (allows propagation of plasmids in yeast at low copy numbers); 
AmpR = ampicillin resistance gene. 
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