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Zusammenfassung
Das Verständnis der physikalischen Prozesse, welche die Sternentwicklung bestimmen, sowie die
präzise Bestimmung der stellaren Parameter wie Alter, Masse, Radius und Metallizität ist von
herausragender Bedeutung für viele Bereiche der Astrophysik. Aus der stellaren Entwicklung
abgeleitete Größen werden regelmäßig verwendet, um die Struktur, Entstehungsgeschichte sowie
Dynamik von Sternpopulationen zu untersuchen. Ein fundamentaler Bestandteil der Theorie der
Sternentwicklung ist der Energietransport durch Konvektion. Man geht davon aus, dass Sterne
mit Massen über 1.1 M� während ihrer Hauptreihenentwicklung eine homogen durchmischte
Zentralregion ausbilden, deren genaue Ausdehnung jedoch nicht mit Hilfe von einfachen An-
nahmen abgeleitet werden kann. In der vorliegenden Arbeit beschreibe ich den Einfluss von ver-
schiedenen konvektiven Stabilitäts- und Grenzdefinitionen auf die Größe des konvektiven Kerns
und die allgemeine Entwicklung von Hauptreihensternen im Massenbereich um 1.3±0.2 M�.

Durch Berücksichtigung von Durchmischungsprozessen jenseits der formalen Grenzbedin-
gungen wie Semikonvektion oder ’Overshooting’ untersuche ich den Einfluss der Größe des
konvektiven Kerns auf die Hauptreihenlebensdauer. Die Bedeutung jener Prozesse in Evolutions-
rechnungen bedingt die Untersuchung tiefliegender Sternschichten mit Hilfe von Techniken,
welche über einfaches Anpassen von Isochronen hinausgehen. Asteroseismologie hat sich in
diesem Zusammenhang als die leistungsfähigste Methode erwiesen, um äußere Sternschichten
zu durchdringen und das Sterninnere zu untersuchen.

Durch die Verwendung geeigneter Kombinationen von Schwingungsfrequenzen entwickeln
wir ein asteroseismisches Instrument, welches sensitiv für die tiefsten Sternschichten ist. Wir
testen dieses Instrumentarium mit Hilfe theoretischer Schwingungsrechnungen. Dabei stellt sich
heraus, das wir damit in der Lage sind, zwischen Sternen mit und ohne konvektivem Kern zu un-
terscheiden. Ebenso ist es möglich, die Größe eines eventuellen Kernes mit großer Genauigkeit
zu bestimmen. Da eine seismische Diagnose eine genaue Kenntnis der Sternmasse voraussetzt,
untersuchen wir ebenfalls die Möglichkeit, die Masse mit Hilfe von genau bekannten Werten der
Sonne sowie entsprechenden asteroseismischen Skalenrelationen abzuschätzen.

Die Verwendung der Daten des Kepler Satelliten, der die Oszillationen hunderter Sterne
genauestens vermisst, erlaubt uns erstmalig, eine Sequenz von Feld-Sternen mit Massen ver-
gleichbar der Sonne anhand ihrer seismischen Parameter und Effektivtemperaturen aufzustellen.
Zwei dieser Sterne wurden lange genug beobachtet, um individuelle Frequenzen mit hoher Prä-
zision zu bestimmen. Die detaillierte Modellierung dieser Sterne, sowie die asteroseismische
Analyse der beobachteten Frequenzen erlaubt es, zwischen einem Stern ohne und einem mit
konvektivem Kern zu unterscheiden, sowie zum ersten Mal die Größe eines vollständig durch-
mischten Kernes innerhalb eines Sternes mit einer Unsicherheit von weniger als 1% zu messen.
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Summary

Understanding the physical processes governing stellar evolution and determining stellar param-
eters such as ages, masses, radii and metallicities is of paramount importance for many fields in
astrophysics. Derived quantities from evolutionary calculations are routinely used to constrain
composite stellar populations and determine their structure, formation history, dynamics, and
kinematics. One key ingredient of the theory of stellar evolution is that of energy transport by
convective motions. It is believed that stars with masses larger than ∼1.1 M� develop a homoge-
neously mixed central region during their main-sequence evolution, but its exact extent cannot
be derived from first principles.

In this thesis, we describe the impact that different convective stability and boundary defini-
tions have in the size of convective cores and overall evolution of main-sequence stars of masses
1.3±0.2 M�. By considering mixing processes beyond the formal boundaries such as semicon-
vection and overshooting, we study the influence of the convective core size in quantities such
as main-sequence lifetimes. While assessing the importance of a precise description of these
processes in evolutionary calculations, we also realize the necessity of probing the deep layers of
stars with a technique more accurate than isochrone fitting. In this respect, asteroseismology as
been shown to be the most powerful technique capable of piercing the outer layers of stars and
probing their interiors.

Using suitable combinations of oscillation frequencies, we develop an asteroseismic tool
sensitive to the deepest layers of stellar interiors. We test this tool using theoretical frequency
calculations and find that it is capable of discriminating between stars with and without a convec-
tive core, while setting tight constrains on the size of a convective core when this is present. As
the application of this seismic diagnosis requires a good estimate of stellar mass, we explore the
possibility of determining stellar masses using asteroseismic scaling relations from the accurately
known solar values.

Taking advantage of the hundreds of stars with oscillations detected by the Kepler mission,
we are able for the first time to correctly identify a sequence of field stars with masses similar to
the Sun using their global seismic parameters and effective temperatures. Two of these targets
have been observed long enough for individual frequencies to be determined with high level
of precision. Doing detailed modeling of these stars and applying our asteroseismic tool to the
observed frequency combinations, we are able to disentangle a star without a convective core and
directly measure, for the first time, the size of the fully mixed core in a star with an uncertainty
of less than 1%.
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Preface

A comprehensive view on how stars evolve and interact with their surrounding medium is cru-
cial for many fields in astrophysics. Current techniques used to estimate parameters such as ages,
masses, radii and metallicities in stellar populations heavily rely on having adequate evolution-
ary calculations of their member stars. This impacts the results in diverse topics of study such as
structure and formation history of galaxies, dynamics and kinematics of stellar systems, or char-
acterization of parent stars in planetary systems, just to name a few. These evolutionary models,
however, require an accurate description of the relevant evolutionary phases for different stellar
masses; we can only accomplish this by correctly describing the physical processes taking place
in stellar interiors during a star’s lifetime.

The luminosity flux radiated from the surface of a star is naturally a consequence of the
intricate processes taking place in the stellar interior. Although the main ingredients of the theory
of stellar evolution are well established, large uncertainties still remain in cases where empirical
evidence is lacking or the physical descriptions are not well understood and thus parametrized
to a simple form. How stars produce, transport, and emit their energy; how they burn and mix
chemical elements; how is the stellar matter constituted and what is its state, etc., are some of the
important topics where still many uncertainties exist.

A crucial example of these cases is mixing due to convective motions in stellar interiors,
which due to its complexity and short relevant time scales is usually parametrized in stellar
evolution calculations. During the main-sequence phase in low- and intermediate-mass stars,
the existence and size of a central convectively mixed zone determines the total amount of fuel
available for nuclear burning, the size of the remaining helium core, and to a large extent the
age of stars at the turn-off. This not only affects the subsequent evolution once hydrogen in
the center is exhausted, but it also critically impacts the most commonly used techniques to
determine stellar ages such as isochrone fitting.

Up to now, the existence and size of convective cores in the main-sequence phase cannot be
directly inferred from classical observations, and are usually estimated by reproducing features
observed in the Color Magnitude Diagram of certain simple stellar populations. However, this
technique is affected by many other ingredients of stellar evolution that are not accurately known,
such as the helium abundances, distribution of metals, nuclear reaction rates, etc. To overcome
this limitation, we need a different approach that allows us to pierce the outer layers of a star and
probe its inner regions.

In this respect, stellar pulsations have been long known to be an indicator of the conditions
in the deep layers of stars. Although radial pulsations in stars such as Cepheids and RR Lyrae
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are mostly used as distance indicators (e.g., Leavitt & Pickering 1912; Catelan et al. 2004),
their period of pulsation is intrinsically dependent on the state of stellar matter in the ionization
zones. However, a dramatic leap forward occurred in the field when oscillations in the Sun were
discovered (Leighton et al. 1962), giving birth to the field of helioseismology. These data have
served for extracting the adiabatic sound speed and density profiles of the Sun, determining the
location of the solar helium second ionization zone and the base of the convective envelope,
constraining the solar surface abundances, and providing the constraints that finally led to the
solution of the solar neutrino problem (see Christensen-Dalsgaard 2002; Basu & Antia 2008,
and references therein).

Helioseismology has so far provided the best example of indirect observations of the interior
of a star by piercing the outer layers of the Sun using the oscillations observed at its surface.
Extending these techniques to other stars by means of asteroseismology requires long continuous
observations to detect the global oscillations in stars much further away. With this purpose in
mind, the CoRoT (Convection, Rotation and planetary Transits Baglin et al. 2006) and Kepler
(Borucki et al. 2009) missions were launched to monitor thousands of stars for a period of several
years and detect their oscillations.

With the idea of taking advantage of the current flow of data, this thesis deals with the topic of
mixing processes in stellar interiors, in particular convective mixing in stellar cores, and the po-
tential of asteroseismology to constrain these processes and derive more accurate stellar parame-
ters. We1 have implemented in an evolutionary code different scenarios for convective mixing in
stellar cores, and tested their impact on the evolution of stars where oscillations are expected to be
detected by the aforementioned space missions. We have developed an asteroseismic diagnostic
tool sensitive to the deepest layers of stars and analyzed its behavior according to the conditions
in the stellar center. This allowed us to put constraints in the existence and size of convective
cores in main sequence stars, and derive precise ages and evolutionary stages for main-sequence
stars observed by the Kepler mission.

This dissertation consists of seven chapters of which two are introductory, four contain arti-
cles published or in preparation for refeered publications, and one summarizing the main con-
clusion and future prospects. Chapter 1 contains the basic picture of stellar evolution, giving
context of the current status and challenges in the field particularly related to asteroseismology .
In Chapter 2 the theory of stellar oscillations is described, emphasizing the dependence on the
inner structure of stars and how this information has been used to constrain processes in stellar
interiors. Chapter 3 describes the implementation of the mixing processes for stellar cores in our
evolutionary code, and shows the impact they have during main-sequence evolution of low- and
intermediate-mass stars.

With this in mind, in Chapter 4 we apply to our theoretical models a combination of fre-
quencies sensitive to the deep interior, and study the variations of this frequency combination
according to different conditions in the stellar core. However, this frequency combination needs
information about the stellar mass, which is why we explore in Chapter 5 a technique to de-
termine the mass of a star from its global asteroseismic parameters and effective temperature.

1The pronoun ‘we’ is used throughout this dissertation only as a matter of formal semantics. Unless otherwise
specified, ‘we’ refers to work developed and led by the author of this thesis.
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Finally, we apply in Chapter 6 the asteroseismic tools developed to disentangle a star without
a convective core using its individual frequency determinations, and to constrain the size of a
convective core in a star containing a homogeneously mixed central region.

I am the main author of all the sections in this thesis, although the introductory chapters have
been based on the references I mention at the beginning of them. I am co-author of some papers
that are mentioned in Chapters 1 and 2, although the topic of those publications is not directly
related to the core of the work I have developed for this thesis.
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Chapter 1

Basic principles of stellar structure and
evolution

The following chapter briefly introduces the basics of stellar evolution theory, with particular
emphasis on those topics related to stellar pulsations and asteroseismology . The interested reader
can find much more detailed accounts on these subjects in several of the standard astrophysics
textbooks consulted for this chapter, such as Clayton (1983); Kippenhahn & Weigert (1990);
Hansen et al. (2004); Salaris & Cassisi (2005), and Weiss et al. (2005), just to name a few. There
are also reviews available in the literature for different types of stars and evolutionary phases,
such as those of Salaris et al. (2002); Catelan (2007), and Catelan (2009).

1.1 Preliminary considerations

The vast majority of stars are currently in long-lasting phases of their evolution, in which the
time scales involved for appreciable change to occur are too large to be observed. Stellar matter
is naturally victim of interacting forces such as gravitation and pressure, but if no acceleration of
material takes place a stage of mechanical equilibrium is maintained. This equilibrium in a star,
referred to as hydrostatic equilibrium, is one of the pillars of stellar structure studies.

1.1.1 Relevant time scales

Stars owe their brightness to a delicate interplay between gravitational contraction and thermonu-
clear reactions as energy generation sources, both mechanisms not always acting simultaneously.
This interaction produces changes in the star of different relevance and time scales, which are
important for stellar oscillations.

When nuclear reactions are not efficient in producing energy, the physical conditions in stellar
interiors evolve with the rate of change of the gravitational potential and internal energy. We can
consider that the star contracts gradually while maintaining sphericity and that this is the sole
responsible for the stellar luminosity. The corresponding time scale a star can shine by this
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mechanism is called the Kelvin-Helmholtz time scale,

τkh '
GM2

2RL
, (1.1)

where G is the Newtonian constant of gravitation, M is the mass of the star, R its radius, and L
the associated luminosity produced by the contraction. For a 1 M�

1 star, this is approximately
15 Myr.

The shortest relevant time scale describes the time a star needs to recover its equilibrium
when the balance between gravitational forces and pressure is disturbed by some dynamical
process. For a star close to hydrostatic equilibrium, it is the free-fall time scale of the star, or the
dynamical time scale

τdyn '

√
R3

GM
'

√
1

G 〈ρ〉
, (1.2)

where 〈ρ〉 corresponds to the mean density of the star. In the case of the Sun, the free-fall time
scale is of the order of 20 min.

Finally, the longest relevant time scale involved is the nuclear time scale,

τnuc =
εqMc2

L
, (1.3)

where c is the speed of light, q the fraction of the total stellar mass involved in the nuclear
burning, and ε the amount of mass that is converted into energy as a result of the nuclear reaction
processes. Essentially, this time scale describes how long a star can shine with nuclear fusion as
its sole source of energy. If the Sun was made of pure hydrogen and the central 10% of its mass
would contribute to nuclear reactions, it could shine through this mechanism for around 10 Gyr.

1.1.2 Nuclear reactions and chemical composition
Thermonuclearly fueled reactions in stellar interiors produce energy that is carried out through
radiation, convection or conduction (see Sect. 1.3.1). We mention here briefly the main channels
for burning hydrogen into helium, the longest evolutionary phase in the lifetime of a star, and the
reaction network to transform helium into heavier elements.

There are two reaction chains that transform four protons into one 4He nucleus, namely the
p-p chain and the CNO cycle (see Table 1.1). Presence of C, N, or O isotopes is necessary for the
CNO cycle to begin, and since they are both destroyed and produced during the cycle they act as
catalysts for the reactions. These p-p chain and the CNO cycle usually take place simultaneously
in a star but with different efficiencies depending on the total stellar mass.

The nuclear energy generation rate (ε) of these channels has different temperature sensitivi-
ties, meaning that the conditions in the stellar interior will define the efficiency each one of them
operates with. The p-p chain has a commonly adopted average relation of the order of εpp ∝ T 4

at T ≈ 15 × 106 K, while the CNO cycle has a higher value of εCNO ∝ T 18 at T ≈ 20 × 106 K. As

1The symbol � is commonly adopted in astrophysics to refer to the solar values.
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Table 1.1: Reaction networks involved in the p-p chain and the CNO cycle
p-p chain

pp I pp II pp III
1H + 1H→ 2D + e+ +νe

3He + 4He→ 7Be + γ 3He + 4He→ 7Be + γ
2D + 1H→ 3He + γ 7Be + e− → 7Li + νe

7Be + 1H→ 8B + γ
3He + 3He→ 4He + 1H + 1H 7Li + 1H→ 4He + 4He 8B→ 8Be + e+ +νe

8Be→ 4He + 4He

CNO cycle
CN cycle NO cycle

12C + 1H→ 13N + γ 15N + 1H→ 16O + γ
13N→ 13C + e+ +νe

16O + 1H→ 17F + γ
13C + 1H→ 14N + γ 17F→ 17O + e+ +νe
14N + 1H→ 15O + γ 17O + 1H→ 14N + 4He
15O→ 15N + e+ +νe

15N + 1H→ 12C + 4He

an example, in the center of the sun T ≈ 15 × 106 K and more than 90% of the energy budget
corresponds to the p-p chain. An important consequence of the temperature sensitivities is that,
if the H-burning process is dominated by the CNO cycle, it will be confined towards the very
central regions of the star. This results in a larger energy flux arising from the innermost regions
which favors the presence of a convective core.

Following the exhaustion of hydrogen in the center, stars begin burning helium as soon as the
central temperature increases enough as to produce the triple alpha (3α) reaction:

4He + 4He→ 8Be
8Be + 4He→ 12C + γ

The temperature sensitivity is quite strong for the 3α reaction: ε3α ∝ T 40 at T ≈ 108 K. Thus, for
the same physical reason as in the case of the CNO cycle, stars burning helium via 3αmechanism
have extended convective cores. For the sake of completeness, we mention the other important
nuclear reactions involved in the helium burning process:

12C + 4He→ 16O + γ
16O + 4He→ 20Ne + γ

It is clear by looking at these reactions that helium burning transforms 4He particles mainly
into 12C, 16O and 20Ne. These elements have burning processes in more advanced stages of stellar
evolution. We refer the reader to the monograph by Clayton (1983) for a detailed description of
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the above mentioned reactions, and further explanations on the reaction networks of elements
heavier than helium.

Before closing this section, some general comments regarding the chemical composition of
stars. In evolutionary calculations, abundances are represented with the letters X, Y , Z, deter-
mining the mass fraction of hydrogen, helium, and all elements heavier than helium (‘metals’),
respectively. In the case of photometric or spectroscopic observations of stars, the chemical com-
position is usually given in terms of logarithmic abundances ratios with respect to the solar value,
normalized to 1012 atoms of hydrogen. For the species i and j, this is expressed as

log(i/ j) − log(i/ j)� ≡ [i/ j] . (1.4)

Clearly, the observed abundances of stars depend on the solar reference value. In particular, to
estimate the logarithmic mass fraction of heavy elements from the observed iron abundance in
stars, it is assumed that

log(Z/X) − log(Z/X)� ' [Fe/H] , (1.5)

and that the fraction of each element comprising Z is distributed accordingly to the chosen set of
solar abundance ratios (or solar ‘mixture’).

The topic of the surface abundances in the Sun has been one of hot debate in the past years,
where the latest determinations of the individual abundances values have decreased considerably
the total metallicity of the Sun. However, no set of solar abundances is yet completely accepted
by the astrophysics community, and determinations such as those given by Grevesse & Noels
(1993); Grevesse & Sauval (1998); Asplund et al. (2005) and Asplund et al. (2009) are widely
applied according to personal preference. The reader is referred to Basu & Antia (2004); Bahcall
et al. (2005) and Serenelli et al. (2009) for further explanations on the topic and its implications
for helioseismology.

Equation 1.5 is not sufficient to estimate the three necessary components X, Y , and Z, of
the stellar composition. Moreover, it is not possible to directly measure helium abundances in
stars of temperatures lower than ∼ 104 K. Thus, a so called ‘galactic chemical evolution law’
is applied (Peimbert & Torres-Peimbert 1976), which basically tells the amount of fresh helium
supplied by stars to the interstellar medium relative to their supply of heavy elements:

∆Y
∆Z

=
Y − Yref

Z − Zref
. (1.6)

The value of ∆Y/∆Z is usually considered to be around 1.5-2.5 (e.g., Pagel & Portinari 1998;
Casagrande et al. 2007). In Eq. 1.6 one must provide a reference value for Y and Z; big bang
nucleosynthesis values can be considered (Zref = 0 and Yref ∼ 0.245), or the primordial solar
Z and Y values obtained from a solar calibration (see Sect. 1.3.1 below). In the latter case, the
chosen set of today’s surface abundances in the Sun plays an important role, although it has been
suggested the initial helium abundance of the Sun could be independent of them (Serenelli &
Basu 2010). Finally, the third equation comes from the obvious fact that X + Y + Z = 1.
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1.2 Evolution across the Hertzsprung–Russell Diagram
The ultimate fate of a star depends mostly in its initial mass and chemical composition, properties
related to the place and time where the star was born and possible interactions with the medium
surrounding it. It is customary to analyze the main phases of stellar evolution following the
path described by the surface luminosity, L, and effective temperature, Teff , throughout the star’s
lifetime. This is the so-called Hertzsprung-Russell Diagram (HRD), and it is shown for several
masses in Fig. 1.1 for a given chemical composition. In the particular case of this thesis, we
will be interested in evolution of stars with masses below ∼2.5-3.0 M�, from the beginning of
the hydrogen burning phase until helium is exhausted in the center. Nevertheless, we will also
broadly describe the evolution of more massive stars. For better guidance through the different
evolutionary stages, Fig. 1.2 presents two HR Diagrams of different evolutionary phases for stars
of the same metallicity as that of the tracks in Fig. 1.1. The left panel shows a 1 M� star evolving
from the pre-main sequence until helium ignition, while the right panel depicts a 8 M� star in
similar evolutionary phases.

1.2.1 Pre-main sequence phase
Protostars form through condensation of interstellar matter at low temperatures in hydrostatic
equilibrium. Giant molecular clouds with masses large enough to undergo gravitational collapse
fragment into smaller subunits due to the presence of inhomogeneities. Each of these subregions
forms an hydrostatic core and accretes free-falling gas from its surroundings. Once this accretion
process is complete, the protostar collapses again until hydrostatic equilibrium is restored, giving
birth to a new star.

A star in this phase is fully convective, has a low temperature, a large radius and a high
luminosity. It evolves almost vertically in the HRD (at roughly constant temperature) in the
so-called Hayashi track (see point ‘A’ in Fig. 1.2(a)), its exact location depending on the initial
mass and chemical composition. Once a radiative core appears, the star leaves the Hayashi track
and moves to higher effective temperatures while its convective envelope slowly retreats. The
star contracts increasing its central temperature and density until fusion of hydrogen to helium
becomes efficient and releases enough energy to counteract the gravitational force. At this point,
the star has reached the Zero Age Main Sequence (ZAMS, point ‘B’ in both panels of Fig. 1.2).

Due to the temperature sensitivity of the reaction networks, stars of masses M ≤ 1.3 M� burn
hydrogen mainly through the p-p chain (see Table 1.1), the exact transition mass value depending
on the initial chemical composition (it is ≈1.3 M� at solar metallicity). Before reaching the
ZAMS, some nuclear burning occurs in these stars, such as transforming deuterium into 3He.
While this reaction takes place and the abundance of 3He is not high enough as to complete the
ppI branch of the p-p chain, the star is forced to reach higher temperatures and densities in order
to satisfy its energy needs. This higher temperature also induces the first three reactions of the
CNO cycle, burning 12C into 14N. A small convective core appears as a consequence of an energy
generation more concentrated to the center; it only survives until the 12C abundance decreases
and the amount of 3He increases enough for the p-p reactions to become more important and the
energy generation to be redistributed over a larger area.
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Figure 1.1: Hertzsprung-Russell Diagram plotted for different masses at a fixed chemical com-
position, shown in the figure. The tracks cover the evolution from the beginning of the main
sequence to the red giant phase or, for M ≥ 3.0 M�, also the helium burning phase. Evolutionary
tracks courtesy of A. Weiss. See text for details.

1.2.2 Main sequence evolution
The main sequence corresponds to the phase in which a star transforms hydrogen into helium at
its center, and it is the longest of the evolutionary phases in a star’s lifetime (points ‘B’ to ‘C’ in
Fig. 1.2). Its duration is mainly controlled by the mass of the star, while in comparison the chem-
ical composition and mixing processes play a secondary role. From homology relations (see,
e.g. Kippenhahn & Weigert 1990), it exists a mass-luminosity relation that gives the dependence
between these parameters in different evolutionary stages. For stars in the main sequence, at a
given chemical composition, it is of the order of(

L
L�

)
∝

(
M
M�

)3.5

. (1.7)
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Figure 1.2: Hertzsprung-Russell Diagram for stars at the same metallicity of those in Fig. 1.1.
(a) Evolution of a 1 M� star from the pre-main sequence to the tip of the red giant branch. (b)
Similar evolution of an 8.0 M� star, where the pre-main sequence has been removed for better
visualization. See text for details and explanation of the letters.

Recalling the nuclear time scale given by Eq. 1.3, and replacing L with the mass-luminosity
relation, it is clear that the time a star can shine with nuclear burning as its energy source de-
creases for increasing stellar mass. To give some numbers, at solar metallicity a 1.0 M� star
burns hydrogen for approximately 9 Gyr., while a 20.0 M� star does it for 8 Myr.

Stars more massive than ∼1.7 M� have a convective core and a radiative envelope, while their
less massive counterparts have convective envelopes on top of their radiative interiors and can
host either radiative or convective cores. The presence of a convective envelope has important
consequences for the pulsation properties of stars (see Sect. 1.4).

The main effect of a larger mass is a significant increase of the interior temperature, re-
sulting in different efficiencies of the H-burning reaction networks. Depending on the resulting
mechanism employed to burn hydrogen, stars are usually classified in lower main-sequence stars
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(masses below ∼1.3 M� where the p-p chain is the main mechanism) and upper main-sequence
stars (more massive stars where the CNO cycle plays the leading role).

When the CNO cycle is the dominant source of energy production, the center of the star be-
comes convective due to a very high energy flux in the innermost regions. As the mass increases,
convective core size also grows as a consequence of the higher temperature in the interior leading
to a larger flux.

It is assumed that the convective core is homogeneously mixed, producing a chemical gra-
dient inside of the star that varies during the main-sequence lifetime and determines the amount
of available fuel for hydrogen burning. For a star of a given mass and chemical composition,
this defines the total time it will spend burning hydrogen, the size of its helium core once the
hydrogen in the center is exhausted, and the exact position of the star in the HRD. If the star had
a convective core during its main-sequence evolution, its disappearance once the star reaches the
turn-off point leaves a characteristic hook-like feature in the HRD (compare point ‘C’ in each
panel of Fig. 1.2). The existence of this feature in the Color Magnitude Diagram (CMD) of clus-
ters is used to calibrate the amount of mixing beyond the convective core and directly impacts
age determinations via isochrone fitting (e.g., Vandenberg et al. 2007). Despite its importance,
the exact extension of the convective core is still an open problem due to the uncertainty in the
‘true’ convective boundary definition, and the contribution of the different physical processes
that mix material beyond this formal boundary.

1.2.3 Subgiants, giants, and clump giants
At the turn-off point (related to hydrogen exhaustion in the center), hydrogen burning ceases to
be a central process and becomes a shell-burning process in a layer outside of the He-rich core.
At the same time, the stellar envelope expands cooling down the star and moving it to the right in
the HRD. This constitutes the subgiant phase (point ‘D’ in Fig. 1.2), where stars evolve roughly
at the rate of the Kelvin-Helmholtz time scale (Eq. 1.1).

For masses above ∼2.5-3.0 M�, the core contracts since it cannot counteract the pressure
exerted by the layers above it (the exact relation between core and envelope mass is given by
the Schönberg-Chandrasekhar limit, Schönberg & Chandrasekhar 1942). A convective envelope
develops due to the cooling down of the outer layers, which marks the beginning of the red giant
(RG) phase (point ‘E’ in Fig. 1.2(b)). From here onwards, the star evolves at a roughly constant
temperature, burning hydrogen in a shell while increasing its luminosity and radius and further
contracting the core. Eventually, the central temperature reaches values high enough as to ignite
helium in the center, marking the end of the RG phase (point ‘F’ in Fig. 1.2(b)). This occurs
under non-degenerate conditions, as the central density is low enough to prevent the onset of
electron degeneracy. For increasing stellar mass, the time needed to reach He-burning central
temperatures is very short and the RG might even disappear.

The case of masses lower than ∼2.5 M� is slightly different from their more massive counter-
parts. The gas in the He-rich core is electron-degenerate, providing enough pressure to support
the envelope above it and at the same time grow from the production of helium in the H-burning
shell. During the subgiant phase, the cooling down of the outer layers results in an inward
penetration of the already existing convective envelope, which drags partially processed nuclear
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material to the surface. Point ‘E’ in Fig. 1.2(a) shows the position in the HRD where maximum
inward penetration of the envelope occurs, a phenomenon called the first dredge-up. This is ob-
servationally witnessed by the change in CNO abundances due to mixing of former core material
dredged-up to the surface.

After this process, the convective envelope begins to retreat and the star continues its vertical
ascent through the red giant branch (RGB, the portion of the HRD populated by stars evolving
through the RG phase). One must keep in mind that, during the evolution up the RGB, stars lose
some amount of mass through stellar winds due to their increasingly larger envelopes. Neverthe-
less, the mass-loss rates have not been tightly constrained by either observations or theory, and
ad-hoc parametrizations are used to reproduce that phenomena such as the one given by Reimers
(1975, 1977).

Although helium ignition occurs quietly in massive stars, the case for stars below ∼2.5 M�

is somewhat different. For better visualization, Fig. 1.3 depicts the evolution from the tip of the
red giant branch until center helium exhaustion of a 0.85 M� star at low metallicity (Z = 0.001,
X = 0.749). In the late stages of the RGB, stars lose large amounts of energy in the form of
neutrinos, this form of dissipation being most efficient where the stellar matter is more dense
(its center). An inversion of the thermal profile occurs in the He-core, the hottest place being a
layer located off-center within the He-rich core. When temperatures high enough to start helium
burning are reached, the ignition takes place off-center in a sort of thermonuclear runaway, called
the core helium flash (point ‘F’ in Fig. 1.2(a) and Fig.1.3).

The reason for this phenomenon has to do with a property of the electron-degenerate gas,
which is the decoupling of the temperature dependence from the P − ρ relation (the equation of
state or EOS, see Sect. 1.3.2 below). For such a case, the energy input to the medium due to the
nuclear reactions when helium ignites increases the local temperature, but no compensating in-
crease of the pressure takes place. As a consequence, the region where burning takes place does
not expand to cool down the material, leading to an increase in the thermonuclear reaction rates,
which leads to a further increase in the local temperature, and so forth. The thermodynamical
runaway is terminated once the increasing temperature removes degeneracy and the EOS be-
comes temperature dependent. During this phase, the large amounts of energy produced by the
ignition are used to lift up the degeneracy in the core, decreasing considerably the luminosity.;
in fact, secondary flashes take place increasingly closer to the center until degeneracy has been
lifted throughout the He-core, producing loops in the HRD.

If the ignition of helium is degenerate or not depends on the core mass of the star in the RGB.
As a result of the degenerate helium ignition, the magnitude of these stars in the CMD is nearly
constant. The star is finally able to burn helium quiescently in a convective core and hydrogen in
a shell, marking the end of the RG phase. This evolutionary phase is called the horizontal branch
phase for stars in Globular Clusters (low-mass metal-poor stars, see point ‘G’ in Fig. 1.3), while
it is usually known as the red clump for composite populations since their location in the HRD
can be closer to the RGB. In this latter case, a secondary (and less luminous) red clump can
also be present, comprising the more massive stars that started the He-burning in non-degenerate
conditions (Girardi 1999).

The horizontal branch or clump is the second largest evolutionary phase in the life of a star,
in which helium is burned in a homogeneously mixed convective core through the 3αmechanism
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Figure 1.3: Hertzsprung-Russell Diagram of a 0.85 M� star from the tip of the red giant branch
until center helium exhaustion at low metallicity. See text for details.

(see Sect. 1.1.2), surrounded by a H-burning shell. Evolution until exhaustion of helium in the
center is shown in Fig. 1.3 (points ‘G’ to ‘H’), which for this case lasts approximately 80 Myr.

1.2.4 Advanced stages of evolution

Evolutionary phases beyond the helium burning phase are briefly mentioned here for the sake of
completeness. Once helium is exhausted in the core, stars with initial masses . 8.0 M� shine
by helium and hydrogen shell burning. They are said to ascend the asymptotic giant branch
(AGB), a phase where extinction and re-ignition of helium leads to the occurrence of thermal
pulses. During this evolutionary stage, stars undergo large amounts of mixing and complex
nuclear reactions, such as slow-neutron capture and carbon burning. Large amounts of mass are
lost due to dust-driven winds and large amplitude pulsations. Once hydrogen is largely exhausted
in the burning shell, the remaining envelope is rapidly lost and shines due to ionization by the
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bare core of the star as a planetary nebula. This exposes the central star (a white dwarf ), which
consequently evolves down the white dwarf cooling curve over a time scale of billions of years.

The value of ∼8.0 M� given above is a very loose approximation of the maximum initial mass
a star should have to end its life as a white dwarf. Its ultimate fate will depend on its capability of
losing enough mass by stellar winds throughout evolution to have a final mass smaller than the
so-called Chandrasekhar limiting mass. This limit gives the highest possible final core mass a
star can have in order to be a stable a white dwarf, and it is usually considered to be approximately
∼1.45 M�.

Naturally there are stars that have core masses far higher than the Chandrasekhar limiting
mass once they have exhausted helium in the center. These stars will ignite carbon under non-
degenerate conditions. As they go through several cycles of nuclear burning, they produce shells
of heavier elements inside in a so-called onion skin model. At last, the core consisting mostly of
56Fe (or a neighboring nuclei) becomes dynamically unstable and core collapse sets in, resulting
in a supernova explosion.

The picture we have sketched in this section is an overwhelmingly simplified one, but it
suffices the purpose of the present work. We encourage the reader to refer to the works of Clayton
(1983), and Kippenhahn & Weigert (1990) for all the most interesting (and complicated) details
of these evolutionary phases.

1.3 Modeling stars: a naive first look

The previous section highlighted the major changes experienced by a star throughout its evolution
which are of interest for this thesis. This rough picture becomes much more complicated when
we consider the subtle details of the physical processes responsible for these changes, that must
be somehow taken into account when computing realistic evolutionary models.

The structure and evolution of stars can be described to a considerable extent as a ‘solved’
problem in astrophysics. However, some important considerations must be kept in mind. As
shown in Sect. 1.1.1 there are large differences between the relevant time scales for stellar evo-
lution, where τnuc � τkh � τdyn. If we intent to follow a large portion of the evolution of a star,
the processes occurring in the shortest time scales will have to be consistently parametrized over
larger periods. Moreover, some processes are usually neglected due to the lack of a consistent
theory describing their effects in the overall stellar evolution, such as rotation and magnetic fields.
Therefore, many assumptions and simplifications about the nature of stellar matter and complex
physics must be used. It is customary to separate these major ingredients in stellar evolution
calculations into macrophysics and microphysics, which we broadly describe in the following.
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1.3.1 Macrophysics

The main ingredient of modern theory of stellar studies are the four basic differential equations
of stellar structure, namely

∂r
∂m

=
1

4πr2ρ
, (1.8)

∂P
∂m

= −
Gm
4πr4 , (1.9)

∂L
∂m

= ε − εν + εg , (1.10)

∂T
∂m

= −
GmT
4πr4P

∇ , (1.11)

where

∇ =
∂ ln T
∂ ln P

. (1.12)

In these equations, r is the distance from the center of the star, and m the mass contained within
this distance. P, T and ρ are the thermodynamic variables pressure, temperature and density
respectively, while L is the luminosity at the corresponding position of r (or m). The ε term
corresponds to the energy rate generated by nuclear reactions (cf. Sect. 1.1.2), εν to the energy
rate lost (in form of neutrinos), and εg to the work that is performed on the gas during any
expansion or contraction of the star. These equations are, in order of appearance, the mass
conservation equation, the hydrostatic equilibrium equation (briefly mentioned in Sect. 1.1), the
energy conservation equation, and the energy transport equation.

The solutions to the equations are not stationary but rather evolve with time as a consequence
of contraction and nuclear reactions taking place, and the resulting changes in the chemical
composition and mean molecular weight brought about by them. The first two equations define
the mass profile in the stellar interior, while the latter two equations determine the thermal profile
inside of the star. In fact, Eq. 1.12 is simply the definition of ∇, whose value must be derived
from a theory of energy transport.

Under normal circumstances there is a steady flow of energy from the deep stellar interior,
where the nuclear reactions take place, to the outermost layers of the star, where energy is radi-
ated to the interstellar medium. Depending on the thermodynamical properties of matter in the
interior, such energy transport can occur via radiative transfer, convective motions, or conductive
transfer. The last transport method becomes very efficient under degenerate conditions and it is
not relevant for the subject of this thesis.

Radiative energy transport

In the time-independent three dimensional case, the equation of radiative transfer can be written
as

µi
∂I
∂xi

= −(κab + κsc) ρI + κab ρB + κsc ρJ , (1.13)



1.3 Modeling stars: a naive first look 13

where I(x,µ, t) is the specific intensity at x in direction µ, κab the mean absorption opacity, κsc

the scattering opacity, B = (ac/4π)T 4 is the integrated Planck intensity and J the mean intensity.
In order to obtain the flux, it is customary to use the Eddington Approximation (e.g. Unno &
Spiegel 1966). Assuming the intensity to be isotropic, a relation between the zeroth and first
order moments of Eq. 1.13 can be obtained, that yields the radiation flux as

F = −
4π

3ρ (κab + κsc)
∇J . (1.14)

The near-isotropy of the radiation intensity is usually associated with a short photon mean free
path, where radiation is efficiently trapped (i.e. ρκab → ∞). For this case, also referred to as the
optically thick case, a diffusive mechanism takes place for radiative energy transport leading to
the following expression for the energy flux:

F = −
4π
3ρκ
∇B = −

4acT 3

3ρκ
∇T , (1.15)

where κ = (κab + κsc). This is usually know as the diffusion approximation.
The radiation flux then clearly depends on the opacities κ, of which we have so far neglected

the natural frequency dependence. This comes from the idea that we can replace the problem of
frequency dependence (the non-grey atmosphere problem) through some sort of mean opacities.
In fact, one can show that a particular average of the opacities can be found by imposing the Ed-
dington approximation in the equation of radiative transfer (Eq. 1.13), thus making the problem
frequency-independent. These are called Rosseland mean opacities, and are defined as

κ−1
ross =

∫ ∞
0

1
κν

∂Bν
∂T dν∫ ∞

0
∂Bν
∂T dν

=
π

acT 3

∫ ∞

0

1
κν

∂Bν

∂T
dν , (1.16)

where a is the radiation constant.
When essentially all energy is transported outwards by photons (condition of radiative equi-

librium), it can be shown that the temperature gradient in Eq. 1.12 takes the form

∇rad =
3

16πacG
κLP
mT 4 , (1.17)

where κ is the Rosseland mean opacity of the stellar matter. A very clear description of the
radiation theory in stellar interiors and its connection with stellar atmospheres can be found in
Mihalas (1970).

Convective energy transport

When the temperature gradient indicated in Eq. 1.17 is too steep, radiation is not able to carry all
the energy outwards and convective instabilities set in. A theory of convective transport includes
a stability criterion for convection to take place, and a consistent description of how energy is
transported outwards by convective motions.
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Based on a displacement analysis of random bubbles inside of the star, a criterion for the
onset of convective stabilities can be derived. In a nutshell, consider a slight temperature fluc-
tuation in a gas element with respect to its surroundings. Assuming that the element remains
in pressure equilibrium with the medium, the temperature increase translates into a density de-
crease when considering an ideal gas law. Thus, this lighter bubble will be lifted upwards by the
force of buoyancy. The gas element will travel until its density equalizes that of its surroundings,
dissolving into the gas. For adiabatic motions of bubbles, it can be shown that a layer will remain
stable if

∇rad < ∇ad +
ϕ

δ
∇µ , (1.18)

where ∇ad is the temperature gradient introduced in eq. 1.12 when the displacement of the bubble
takes place adiabatically, and

ϕ =

(
∂ ln ρ
∂ ln µ

)
P,T
, δ = −

(
∂ ln ρ
∂ ln T

)
P,µ
,∇µ =

(
d ln µ
d ln P

)
. (1.19)

Equation 1.18 is the Ledoux criterion for convection (Ledoux 1947), which takes into account
variations in the molecular weight µ to define the boundaries of convective regions. However, in
regions of homogeneous composition one has simply the Schwarzschild criterion (Schwarzschild
& Härm 1958), according to which a region remains stable against convection as long as

∇rad < ∇ad . (1.20)

This is by far the most commonly used criterion in stellar evolution codes. One reason for this is
that, once convection sets in in a certain region, the chemical composition gradient is annihilated
by convective mixing and Eq. 1.18 simplifies to Eq. 1.20. However, the application of a different
criterion has a large effect in the size of the convective regions, with a subsequent impact in the
resulting luminosity, effective temperature, and main sequence lifetime of the star. The issue of
convective criteria definition including molecular weight gradients, and determining convective
boundaries in stellar interiors is one of the main topics of this thesis and is extensively discussed
in Chapter 3.

In a radiative (dynamically stable) layer, a displaced element is pushed back by buoyancy
forces. This interaction imprints a certain momentum in the gas element, which will overshoot
from its original position when descending and thus start to oscillate. The frequency of this
oscillation, when it takes place adiabatically, is called the Brunt-Väisälä frequency and is given
by:

N2 =
gδ
Hp

(
∇ad − ∇ +

ϕ

δ
∇µ

)
, (1.21)

where Hp is the pressure scale height given by

Hp
−1 = −

d ln P
dr

. (1.22)

For the displacement to be oscillatory, and thus for a region to be convectively stable, the con-
dition for the frequency N2 > 0 must be fulfilled. It is interesting to note that, for stars in the
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subgiant and red giant phase of evolution, N2 reaches very high values in the core of the star
due to the strong central condensation and resulting high value of g (e.g., Christensen-Dalsgaard
2004).

Once a region is found by any stability criteria to be convective, the temperature gradient
of that zone needs to be defined (Eq. 1.12). The usual way to do this is using the mixing-
lenght theory for convection (MLT) in any of its flavors, most commonly the original formulation
given by Böhm-Vitense (1958). The critical free parameter involved in the formulation is the so-
called mixing-length parameter αMLT = l/Hp, l being the distance a bubble will traverse before
dissolving into the surrounding medium.

The value of αMLT ultimately defines the value of ∇ in a convective region, but unfortunately
it cannot be obtained from first principles. It is normally calibrated from a solar model in order
to reproduce the luminosity and radius of the Sun, at present solar age, for a chosen surface
composition of the Sun; its value usually ranges between 1.5 < αMLT < 2.5 depending on the
input physics and evolutionary code employed. There is a vast amount of literature devoted to the
solar calibration problem where the interested reader can find more details, such as Christensen-
Dalsgaard et al. (1996); Bahcall et al. (2001); Serenelli et al. (2009), and references therein.

The last layer of complications in the macrophysics of stellar evolution comes from physical
processes that are likely to take place in stars and are still poorly understood; among them we can
mention atomic diffusion of helium and heavier elements, radiative levitation, rotational mixing,
the influence of magnetic fields, stellar winds, etc. (see Pinsonneault 1997, for a review). This
physical processes have influence in the frequency of oscillations, thus making asteroseismol-
ogy an excellent tool to further probe and learn about them (see e.g., Christensen-Dalsgaard &
Mauro 2007; Reese et al. 2009; Schunker & Cally 2006). Of great importance for this thesis is
the case of mixing beyond the formal boundaries of convective regions (convective overshooting)
in main-sequence stars, in particular for convective cores (see Sect. 1.2.2). Currently, it is not
clear if this process occurs at all inside of stars, and if it does how much extra mixing is actually
taking place. Calibration of isochrones in open clusters suggest that some overshooting is needed
to reproduce the morphology of their CMD, but the topic remains an open question.

1.3.2 Microphysics

Up to now, we have discussed the problem of stellar evolution calculations based on the structure
of stars and physical processes taking place inside of them. The correct description of these
processes depends critically in the properties of stellar matter, which are termed the microphysics
of stellar evolution.

Inspection of the structure equations (Eqs. 1.8 to 1.11) clearly reveals that we are trying to
solve a problem for five explicitly shown unknowns (r, ρ, P, L, and T ) through a set of four
equations. The missing relation is given by the Equation Of State (EOS), which provides one
of the thermodynamic quantities in terms of the others (for instance, ρ = ρ(P,T, µ), where µ is
just an indicator of the general chemical composition). It is customary to refer to the EOS as one
of the constitutive equations of stellar structure; the other quantities that enter the equations and
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need to be defined form the set of constitutive equations. These can be written as,

ρ = ρ (P,T, µ) , (1.23)
cP = cP (P,T, µ) , (1.24)
κν = κν (P,T, µ) , (1.25)
r jk = r jk (P,T, µ) , (1.26)
εν = εν (P,T, µ) , (1.27)

where cP is the specific heat at constant pressure, κν the monochromatic opacity of stellar matter
(a particular average of it was introduced in Sect. 1.3.1), r jk the thermonuclear reaction rate
transforming nuclei j into nuclei k, with the corresponding energy generation rate ε jk given by
the product of r jk and the energy released when the transformation takes place. Time evolution
of a certain chemical species Xi when only nuclear reactions create or destroy it is given by

∂Xi

∂t
=

mi

ρ

∑
j

r ji −
∑

k

rik

 , (1.28)

with the constrain that
∑

i Xi = 1. If exchange of mass occurs between different stellar layers,
diffusive processes also affect the chemical evolution of species.

1.3.3 Modeling stars with GARSTEC
The GARching STellar Evolution Code (GARSTEC), is a one-dimensional, hydrostatic code,
which does not include the effects of rotation (Weiss & Schlattl 2008). The program in its
present version is capable of calculating precise solar models as well as following the evolution
of low-mass stars into the latest phases of their evolution, and has been successfully used to
follow a star through the He-flash (e.g., Schlattl et al. 2001). The numerical scheme is the usual
Henyey-scheme for handling the four equations of stellar structure (cf. Eqs 1.8 to 1.11), extended
to solve simultaneously the equations of diffusion if required (see Kippenhahn & Weigert 1990,
and references therein).

Regarding the macrophysics, by default GARSTEC applies the Schwarzschild criterion for
convection and treats convective motions using the MLT as described by Kippenhahn & Weigert
(1990). The full turbulent spectrum theory by Canuto & Mazzitelli (1991, 1992) is also imple-
mented, which includes a different free parameter from αMLT. It is possible to treat the mixing in
convective regions not instantaneously but as a diffusive process, where the convective velocities
are estimated from the MLT.

Mixing of chemical elements beyond the formal convective boundaries can be also included.
It is assumed that this process induces mixing but does not modify the thermal structure of the
layers (overshooting, if we use the terminology given by Zahn 1991). It is implemented in the
code as a diffusive process consisting of an exponential decline of the convective velocities within
the radiative zone (Freytag et al. 1996). The diffusion constant is given by

Dov (z) = D0 exp
(
−2z
ξHp

)
, (1.29)
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where ξ corresponds to an efficiency parameter, Hp is the pressure scale height, z the distance
from the convective border, and the diffusion constant D0 is derived from MLT-convective veloc-
ities (Kippenhahn & Weigert 1990). An overshooting efficiency of ξ = 0.016 corresponds to the
value obtained by calibrating this parameter with open clusters, which is in the range expected
for main sequence stars (Herwig et al. 1997). The size of the overshooting region is limited
further in the case of small convective cores. This is done in GARSTEC using a geometrical
cutoff factor, allowing the overshooting region to extend only to a fraction of the convective zone
(see Weiss & Schlattl 2008; Magic et al. 2010, for details). This geometric restriction is strong
enough as to inhibit the survival of the pre-main sequence convective core in stars of masses
below ∼1.1 M� once the reach the zero age main sequence.

Atomic diffusion of elements can be included for hydrogen and helium, and some other
elements selected individually. The diffusion coefficients are calculated using the prescription of
Thoul et al. (1994). Mass loss, when included, is treated by an analytic formula such as that of
Reimers (Reimers 1977).

The outer layers of stars suffer from similar complications as convective zones when it comes
to stellar evolution models, and suitable approximation for the temperature stratification in the
stellar atmospheres must be used. In GARSTEC, a plane-parallel Eddington atmosphere is used
by default for the boundary conditions, matched at an optical depth of τ = 2/3. It is also possible
to use the Krishna-Swamy T − τ relation instead (Krishna-Swamy 1966).

In terms of the microphysics, nuclear reactions are either those compiled by the NACRE
collaboration (Angulo et al. 1999) or the ones provided by Adelberger et al. (1998), including
updates in some crucial reaction rates (e.g., Marta et al. 2008). The opacities are used as mean
Rosseland opacities for suitable mixtures from the OPAL opacity project (Iglesias & Rogers
1996), including conductive opacities from Cassisi et al. (2007) or Itoh et al. (1983). Several
EOS are included in the code, the most commonly used being the 2005 version of the OPAL
EOS (Rogers et al. 1996; Rogers & Nayfonov 2002) and the MHD EOS (Hummer & Mihalas
1988).

Applications of the code can be found in Schlattl et al. (1997); Serenelli & Weiss (2005);
Silva-Aguirre et al. (2008) and Weiss & Ferguson (2009), just to name a few.

1.4 Pulsating stars
The picture we have painted so far about the ingredients of stellar evolution is an overly sim-
plified one. There are many complications in the calculations of realistic constitutive equations
(such as occupation probabilities of atomic states for the EOS, scattering cross-sections for the
nuclear reaction rates, and radiation theory for opacities, just to name a few), as well as for the
correct description of physical processes. The study of oscillations in the Sun (helioseismology)
has helped setting many constrains for these processes in the solar interior (see the reviews by
Christensen-Dalsgaard 2002; Basu & Antia 2008, for details). Is it possible to achieve something
similar by studying pulsations in stars other than our Sun?

At the current level of precision in our observations (µmag in photometry and cm s−1 in radial
velocities), there are many different types of stars that are known to pulsate. Figure 1.4 shows
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an HRD marking the position of the ones known up to now. It is clear from their location in
the figure that a large diversity exists in the masses and evolutionary stage of oscillating stars.
However, it is interesting to notice that the stars pulsate with periods given by the dynamical time
scale (cf. Eq. 1.2), which is of the order of minutes for the Sun, several hours for red giants, and
days for the Cepheids.

The boundaries of the different classes of pulsating stars are not strict and the latests space
continuous observations have revealed hybrid pulsators (see, e.g., Grigahcène et al. 2010). Nev-
ertheless, the pulsation mechanisms operating in each case and the oscillation spectra produced
by it are directly related to their internal structure.

During a pulsation cycle, stars swell and contract, heat up and cool down. Most of the
stellar interior loses energy during the pulsation (damps the oscillation); in order for the cycle to
continue, some part of the star (the driving region) must feed the same amount of energy lost by
the rest of the stellar interior. When a certain layer of the star succeeds in driving the oscillation,
converting thermal energy into mechanical energy, the star functions as a heat engine. Thus, this
pulsation mechanism is known as the heat engine mechanism or κ mechanism, as it is related to
the presence of large opacity sources.

In a nutshell, the ionization layers of an element that largely contributes to the opacity block
the radiation from escaping the stellar interior. The gas heats up and the pressure increases,
expanding the star beyond its equilibrium point. However, ionization due to the increase in tem-
perature reduces the opacity and allows the gas to flow trough; the region cools down and cannot
support the weight of the layers above, so the star contracts. The contraction and temperature
decrease allow the chemical element to recombine and absorb flux again: the heat engine mech-
anism is present, as the layer gains heat again upon compression.

Most of the stars in Fig. 1.4 pulsate via the κ mechanism in helium and hydrogen ionization
zones. Oscillations of stars contained within the classical instability strip (Cepheids, RR Lyrae,
and δ Scuti stars, see Fig. 1.4) are primarily driven by the second helium ionization zone. Mira
and stars and semi-regular variables are excited by the heat mechanism in the first ionization
zone of hydrogen and helium, thus they lie on the cool side of the instability strip. However, for
some cases such as the β Cep and sdBV stars, the opacity contributors to the κ mechanism are
iron group elements.

There are cases where the heat engine mechanism is not efficient enough as to drive the
oscillations. Nevertheless, the presence of an outer convective envelope can provide sufficient
acoustic energy for the star to resonate in some of its natural oscillation frequencies. This mecha-
nism is known as the stochastic mechanism, which operates in the Sun and in principle in any star
with a large enough convective envelope. This type of pulsations (called solar-like oscillations)
have been detected in numerous late-type main-sequence and red giant stars.

A third mechanism of excitation theoretically exists and it is called the ε mechanism. It
is related to possible variations in the energy generation rate in the stellar center that could
drive global pulsations. However, up to now no class of stars are thought to be excited by this
mechanism alone.

This thesis deals with oscillations in stars excited by the stochastic mechanism, focused in
solar-type pulsators. In Figs. 1.5 and 1.6 several power spectra are shown for stars in different
evolutionary stages, observed by instruments on the ground and the Kepler space mission. There



1.4 Pulsating stars 19

Figure 1.4: Pulsation HRD showing many classes of pulsating stars. Hatched regions mark
where stars have been found to pulsate. Dashed line shows the ZAMS, while the dotted line
depicts the white dwarf cooling curve. Some evolutionary tracks are also shown (continuous
solid line). Two parallel dashed lines delimit the classical instability strip. Figure courtesy of
J. Christensen-Dalsgaard.
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is clear excess power in each spectrum where the oscillations are located, showing a characteristic
’gaussian-bell’ shape. Stars in Fig. 1.5 populate different regions of the HRD: a main-sequence
pulsator like the Sun, a subgiant star such as η Bootis, and a red giant star as the case of ξ Hydrae.
The position of the overall oscillations spectrum shifts in frequency as the star evolves, moving
to lower frequency values from the main sequence to the subgiant phase (Fig. 1.5), and also along
the red giant branch (Figs. 1.6, from bottom to top panels).

From Figs. 1.5 and 1.6 and the discussion in the previous sections it is clear that the internal
structure of stars determines its oscillation properties. Thus, study of this pulsations can tell us
about the existence or not of convective and ionization layers according the pulsation mecha-
nism, constrain the evolutionary stage of stars depending on its oscillation spectrum, and help
us identifying which type of star we are dealing with without the need of further observations.
Nevertheless, the full theory of stellar pulsation shows that the oscillations depend on many other
physical quantities, allowing us to put even tighter constrains on the stellar interior.
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Figure 1.5: Power spectra showing oscillations detected from the ground for stars in the main-
sequence (bottom panels), evolving through the subgiant phase until the red giant branch (upper
panel). Reproduced with the permission of T. Bedding (from Bedding & Kjeldsen 2003)
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Figure 1.6: Power spectra of red giant stars observed by the Kepler satellite, organized by de-
creasing luminosity (from top to bottom). Reproduced with the permission of T. Bedding (from
Bedding et al. 2010a)



Chapter 2

Stellar oscillations

The previous chapter described the main phases of stellar evolution for stars of different masses,
and showed that we can find pulsating stars in several places across the HRD. We now present the
mathematical background of astrophysics fluid dynamics, and set the equations for oscillations
in stars. These topics are presented in much more detail in textbooks of fluid dynamics or non-
radial oscillations of stars such as Ledoux & Walraven (1958); Landau & Lifshitz (1959); Cox
(1980); Unno et al. (1989); Thompson (2006), and Aerts et al. (2010).

2.1 Fluid dynamics

Before entering the mathematical description of the oscillations, it is necessary to understand the
equations governing the dynamics of any fluid, such as stellar gas. There are two ways to describe
the behavior of a continuous fluid medium; the first is to characterize the properties of the fluid,
such as its velocity or temperature, as functions of the position r and time t. This is called the
Eulerian description, where the properties of the gas depend on the point of observation. Another
possibility is to follow the motion of a particular fluid element and observe the rate of change of
some property of it, which is known as the Lagrangian description.

Let φ(r, t) be some quantity describing a property of the fluid. The Lagrangian time derivative
dφ/dt, following a particular fluid element, is given by

dφ
dt

=
∂φ

∂t
+ v· ∇ , (2.1)

where ∇ is the gradient operator and v = v(r, t) is the velocity of the fluid.

A full set of equations to completely describe the properties of a fluid consist of: the conti-
nuity equation, the equations of motion, and the energy equation.
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2.1.1 Continuity equation
We can consider a volume V enclosed by a surface S where matter is flowing. The mass of fluid
contained in the volume is given by

m =

∫
V
ρ dV ,

and the total mass of fluid flowing into the volume is∮
S
ρv· dA =

∫
V
∇· (ρv) dV .

Inside of the volume V , the mass decrease is given by

−
∂

∂t

∫
V
ρ dV ,

and equating what enters the volume equals what goes out∫
V

(
∂ρ

∂t
+ div (ρv)

)
dV = 0

we obtain the continuity equation:

∂ρ

∂t
+ div (ρv) = 0 . (2.2)

This is a typical conservation of mass equation written in Eulerian coordinates. Using Eq. 2.1 it
can also be written as the rate of change in density following the motion,

dρ
dt

+ ρ div v = 0 . (2.3)

2.1.2 Euler’s equation
We will consider now the equation of motion for a fluid in which two types of forces are acting
upon: surface body forces. Let us consider the force exerted by the pressure on the surface,
which can be written as

F = −

∮
S

P dA = −

∫
V
∇P dV .

Thus, we can consider a force −∇P acting upon a unit of volume as a surface force. The equation
of motion for that volume is given by

ρ
dv
dt

= −∇P + ρ f ,

where f represents the possible body forces acting on the unit volume. This equation is written
for a specific fluid particle. Using again Eq. 2.1 it is possible to obtain the equation of motion for
a specific point in time:

∂v
∂t

+ v· (∇v) = −
1
ρ

(∇P + ρ f ) . (2.4)



2.1 Fluid dynamics 25

This is known as Euler’s equation in the case, such as this one, when the effects of viscosity in
the fluid have been ignored. The version of this equation when viscous drag forces are taken into
account is called the Navier-Stokes equation.

For the particular case of stellar interiors, we will ignore the effects of internal friction (vis-
cosity), and consider gravity as the only body force. The gravitational acceleration g can be
written as the gradient of the gravitational potential Φ:

g = −∇Φ ,

where Φ satisfies the Poisson equation:

∇2 Φ = 4πGρ . (2.5)

2.1.3 Energy equation

To complete the equations, we can consider the principle of conservation of internal energy given
by the first law of thermodynamics for purely mechanical pressure,

dq
dt

=
dE
dt

+ P
dV
dt

=
dE
dt

+ P
d
dt

(
1
ρ

)
=

dE
dt
−

P
ρ2

dρ
dt
, (2.6)

where q corresponds to the heat gained or lost by the system, and E its internal energy. It will
prove useful to consider the case of a system undergoing adiabatic changes. For such a system
we can define the three adiabatic exponents:

Γ1 =

(
d ln P
d ln ρ

)
ad
,

Γ2

Γ2 − 1
=

(
d ln P
d ln T

)
ad
, Γ3 − 1 =

(
d ln T
d ln ρ

)
ad
, (2.7)

which allow us to write the energy equation in terms of more convenient variables:

dq
dt

=
1

ρ(Γ3 − 1)

(
dP
dt
−

Γ1P
ρ

dρ
dt

)
(2.8)

= cP

(
dT
dt
−

Γ2 − 1
Γ2

T
P

dP
dt

)
(2.9)

= cV

(
dT
dt
− (Γ3 − 1)

T
P

dρ
dt

)
, (2.10)

where cP and cV are the specific heats at constant pressure and volume, respectively (cf. Eq. 1.24).
It is worth mentioning that for the particular case of an ideal gas,

γ =
cP

cV
= Γ1 = Γ2 = Γ3 = 5/3 . (2.11)
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2.1.4 Heat transfer

As mentioned before, a full set of equations to determine the properties of a fluid consists of the
continuity equation, Euler’s equation, and the energy conservation equation. When the gravi-
tational potential is the only important body force, Euler’s equation is complemented with the
poison equation to compute the local gravity.

From the sections above, the perceptive reader would have noticed that we face a similar
problem as in Sect. 1.3.2 regarding the number of equations and variables: we currently have a
system of six equations and seven explicitly shown variables (ρ, the three components of v, P, E
and Φ). Moreover, the energy equation (Eq. 2.6) includes a heat loss and gain term that needs to
be computed. This term can be written as

dq
dt

= ε −
1
ρ

div F , (2.12)

where ε is the rate of energy generation (as in Eq. 1.10) and F is the total vector flux of energy.
It is clear now that constitutive equations such as those presented in Sect. 1.3.2 (EOS, nuclear
reaction rates, etc.) are needed to solve the system, as well as an energy transport theory for the
outgoing flux.

The most important contributions to F are usually radiation, convection and conduction. In
principle, each of the contributions should be calculated and added as an extra term on the right-
hand side of Eq. 2.12. However, conduction plays an important role in regions dominated by
electron degeneracy (such as the cores of low-mass stars in the RGB, see Sect. 1.2.3) which
are nearly isothermal. When necessary, the conductive flux can be treated formally in the same
way as the radiative flux. On the other hand, the flux due to radiative energy transport can be
computed in a relatively simple way as shown in Sect. 1.3.1.

We mention one extra assumption commonly used to deal with the oscillations. It can be
shown (e.g. Aerts et al. 2010) that the time scales for radiation and for energy generation are
much larger than the time scale for pulsation, the latter one being usually of the order of hours
or minutes. Thus, we assume that the motion due to oscillations occurs adiabatically and the
heating term can be neglected. For this particular case, Eq. 2.8 yields:

dP
dt

=
Γ1P
ρ

dρ
dt
, (2.13)

which gives the necessary relation between P and ρ.
The case of the convective flux poses severe theoretical challenges. In principle, a time-

dependent theory of convection should be included in the entire hydrodynamical system to cor-
rectly address the description of stellar oscillations, as the time scales for convection can be very
similar to those of pulsation. However, the resulting equations are too complicated to handle ana-
lytically or even numerically. An average over large length scales is usually made to compensate
for this, and the convective flux is calculated using the equations of turbulent motion. A classic
example of this is the mixing-length theory (see Sect. 1.3.1).



2.2 Equations of non-radial stellar oscillations 27

2.2 Equations of non-radial stellar oscillations
The continuity equation (Eq. 2.2), the equations of motion (Eq. 2.4), the Poisson equation
(Eq. 2.5) and the energy equation (Eq. 2.12), complemented with a set of constitutive equa-
tions (Eqs. 1.23 to 1.27) and an energy transport theory, are sufficient to determine completely
the future development of the fluid of interest. However, they form a set of non-linear partial dif-
ferential equations which has exact solutions only in certain cases. Nevertheless, these solutions
can be used to construct other by means of perturbation analysis to linearize the equations.

2.2.1 Equilibrium structure and perturbation theory
If we know a particular (stable) solution to the equations of hydrodynamics, we can find another
(perturbed) solution by means of perturbation analysis. The unperturbed solution is called equi-
librium structure and is assumed to be static (no velocities present), so all time derivatives can in
principle be neglected.

It is clear that such a solution satisfies immediately the continuity equation Eq. 2.2. For the
purpose of our study, the most important equilibrium case is naturally spherical symmetry under
the effects of self-gravitation. The structure depends then only on the radial distance r to the
center and we can express vectors as g0 = g0 ar , where the ‘0’ subscript denotes unperturbed
quantities and ar the unit vector directed radially outwards. For the equilibrium structure, the
equations of motion (Eq. 2.4) reduce to

∇P0 = −g0 ρ0 , (2.14)

while the Poisson equation (Eq. 2.5) can be integrated once to obtain

g0 =
Gm0

r2 . (2.15)

The flux is directed outwards, so it can be expressed also as F = Fr,0 ar . The energy equation
(Eq. 2.12) then reduces to

ρ0 ε0 =
1
r2

d
dr

(
r2Fr,0

)
, (2.16)

where we can express the total flow of energy through the sphere of radius r by L0 = 4πr2Fr,0,
and re-write the energy equation as

dL0

dr
= 4πr2ρ0 ε0 . (2.17)

Finally, we use the diffusion approximation (Eq. 1.15) for the flux in the unperturbed solution,
which may be written as

dT0

dr
= −

3κ0 ρ0

16πr2acT 3
0

L0 . (2.18)

Equations 2.14, 2.15, 2.17 and 2.18 are the familiar equations of stellar structure presented in
Sect. 1.3.1. It is clear then from this discussion that we can use the results of a stellar evolution
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code (as described in Sect. 1.3.3) as an equilibrium structure for oscillations calculations, and
perturb it in order to obtain the other solutions.

We begin by considering a small Eulerian perturbation (at a given point) to the density. This
can be expressed as

ρ(r, t) = ρ0(r, t) + ρ′(r, t) , (2.19)

where ρ′ is the perturbation. In an equivalent way as in Eq. 2.1, the perturbation can be written
in the Lagrangian description. Following a fluid particle, if the gas element moves due to the
perturbation from r0 to r0 + δr, the density perturbation can be written as

δρ = ρ′(r, t) + δr· ∇ρ0 , (2.20)

to leading order in perturbations. It is important to keep in mind that, when the unperturbed
solution is an equilibrium one (v0 = 0), the velocity is given by the time derivative of the dis-
placement:

v =
d δr
dt

=
∂ δr
∂t

. (2.21)

Now we apply perturbation analysis to the equations of hydrodynamics and heat flow, ne-
glecting quantities of order higher than one in the perturbations. Using Eq. 2.19 for the density,
we can obtain the linearized equation of continuity (Eq. 2.2):

δρ + ρ0 div (δr) = 0 , (2.22)

which, by means of Eq. 2.20, can also be expressed in the Lagrangian description:

∂ρ′

∂t
+ div (ρ0v) = 0 . (2.23)

We can integrate it once with respect to time to obtain the most commonly used form of the
linearized equation of continuity:

ρ′ + div (ρ0 δr) = 0 . (2.24)

The equations of motion Eq. 2.4 become

ρ0
∂2δr
∂t2 = ρ0

∂v
∂t

= −∇P′ + ρ0g′ + ρ′g0 , (2.25)

where g′ = −∇Φ′ and the Poisson equation is satisfied by the perturbed gravitational potential:

∇2Φ′ = 4πGρ′ , (2.26)

with
Φ′ = −G

∫
V

ρ′(r′, t)
|r − r′|

dV ′ . (2.27)

For the equation of energy, we can consider the expression presented in Eq. 2.8 in its per-
turbed form:

∂δq
∂t

=
1

ρ0 (Γ3,0 − 1)

(
∂δP
∂t
−

Γ1,0P0

ρ0

∂δρ

∂t

)
, (2.28)
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presented here in Lagrangian description due to its simplicity. It can of course be expressed as an
Eulerian perturbation. The term of the heating rate needs also to be expressed as a perturbation,
which can be easily done from Eq. 2.12 and gives

ρ0
∂δq
∂t

= δ(ρε − divF) = (ρε − divF)′ . (2.29)

Finally, if we consider the adiabatic approximation presented in Eq. 2.13 by neglecting the
heating term, we obtain

∂δP
∂t
−

Γ1,0P0

ρ0

∂ δρ

∂t
= 0 , (2.30)

or, integrating once over time,

δP =
Γ1,0P0

ρ0
δρ . (2.31)

2.2.2 Separation of variables
As the equilibrium model is assumed to be non-rotating and we ignore the possible effects of
magnetic fields, it depends only on the radial coordinate r. The perturbations on the other hand
are not restricted to be only radial, so a spherical polar coordinate system (r,θ,φ) can naturally be
used to describe them. We look for harmonic solutions to the equations, which can be expressed
as

f (r, θ, φ, t) = f1(r, θ, φ) exp(−iωt) , (2.32)

where ω is the angular frequency. Separating the displacement δr into a radial and a horizontal
component,

δr = ξr(r, θ, φ)ar + ξh(r, θ, φ) , (2.33)

the perturbed equation of continuity Eq. 2.24 becomes

ρ′ = −
1
r2

∂

∂r
(ρ0 r2ξr) − ρ0 ∇h· ξh , (2.34)

where ∇h is the horizontal component of the divergence (see Eq. A.6 in Appendix A). The equa-
tions of motion give

−
∂2

∂t2

[
ρ′ +

1
r2

∂

∂r
(r2ρ0 ξr)

]
= −∇h

2P′ − ρ0 ∇h
2Φ′ , (2.35)

ρ0
∂2ξr

∂t2 = −
∂P′

∂r
− ρ′g0 − ρ0

∂Φ′

∂r
, (2.36)

for the horizontal and radial components, respectively. The Poisson equation may be written as

1
r2

∂

∂r

(
r2∂Φ′

∂r

)
+ ∇h

2Φ′ = 4πGρ′ . (2.37)

It should be noticed that the term ∇h
2 contains derivatives only with respect to θ and φ.
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The energy equation suffers from the complication of the heat gain equation. In principle,
the result will clearly depend on the form assumed for the flux F (c.f Eq.2.29). If we consider
the diffusion approximation given by Eq. 1.15, the flux is expressed in terms of the gradient of a
scalar (in this case T ); the heat term then contains only derivatives in θ and φ in ∇h

2. Thus, by
means of variable separation, the horizontal part of the displacement can be further split into a θ
and φ component with a solution in spherical harmonics of the form:

f2(θ, φ) = (−1)mc`m P`
m(cos θ) exp(imφ) ≡ Y`m(θ, φ) . (2.38)

where c`m is a normalization constant and P`
m are the associate Legendre functions. Y`m is a

spherical harmonic characterized by its degree ` and its azimuthal order m, with |m| ≤ `. A more
detailed derivation of Eq. 2.38, including the complete process of variable separation, definition
of the Legendre polynomials and spherical harmonics is given in Appendix A.

The dependent variables in Eqs. 2.35-2.37 can then be written as

ξr(r, θ, φ, t) =
√

4π ξ̃r(r)Y`m(θ, φ) exp(−iωt) (2.39)

P′(r, θ, φ, t) =
√

4π P̃′(r)Y`m(θ, φ) exp(−iωt) , (2.40)

etc., where the tilde denotes amplitudes. It is clear then that the geometry of the oscillation
modes will be defined by the spherical harmonic entering the eigenfunctions.

From the equation of motion, the horizontal displacement is given by

ξh =
√

4π ξ̃h

(
∂Y`m

∂θ
aθ +

1
sin θ

∂Y`m

∂φ
aφ

)
exp(−iωt) , (2.41)

where

ξ̃h =
1

rω2

(
1
ρ0

P′ + φ̃′
)
.

Thus, the displacement vector can be written as

δr =
√

4π<
{ [
ξ̃r(r)Y`m(θ, φ)ar + ξ̃h(r)

(
∂Y`m

∂θ
aθ +

1
sin θ

∂Y`m

∂φ
aφ

)]
exp(−iωt)

}
. (2.42)

At last, and dropping the ‘0’ for the equilibrium quantities and the tilde for the amplitudes, we
can write the final system of equations of oscillations in the adiabatic approximation (Eq. 2.31):

dξr

dr
= −

(
2
r

+
1

Γ1P
dP
dr

)
ξr +

1
ρ cs

2

(
S `

2

ω2 − 1
)

P′ +
`(` + 1)
ω2r2 Φ′ , (2.43)

dP′

dr
= ρ (ω2 − N2) ξr +

1
Γ1P

dP
dr

P′ − ρ
dΦ′

dr
, (2.44)

1
r2

d
dr

(
r2 dΦ′

dr

)
= 4πG

(
P′

cs
2 +

ρ ξr

g
N2

)
+
`(` + 1)

r2 Φ′ , (2.45)
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where cs
2 = Γ1P/ρ is the square of the adiabatic sound speed. We have made use of two char-

acteristic frequencies, namely the Lamb frequency S `
2 and the buoyancy or Brunt-Väisälä fre-

quency N2. The latter had already been introduced in the frame of convective energy transport in
stellar interiors (Sect. 1.3.1). The expressions for these frequencies can be written as

S `
2 =

`(` + 1) cs
2

r2 , (2.46)

N2 = g
(

1
Γ1P

dP
dr
−

1
ρ

dρ
dr

)
. (2.47)

The last ingredient necessary to solve the set of equations just presented is suitable boundary
conditions. For the case of small adiabatic oscillations of spherical stars, these are obtained at r =

0 and r = R. The central condition imposes that the displacement at the center must vanish, while
the conditions at the surface demand either continuity of Φ′ and its derivative, or the pressure to
be constant at the stellar surface. We caution the reader that in current numerical computations
of stellar oscillations, the atmospheres are assumed to be isothermal due to the simplicity of the
boundary conditions arising for those particular cases. A more extensive discussion of this topic
can be found in the Appendix D of Aerts et al. (2010).

Before closing this section, it is worth mentioning that the final set of equations can be solved
numerically. An equilibrium structure (computed by a stellar evolution code such as GARSTEC)
is provided as an input, and an adiabatic oscillations code solves the equations for the perturbed
quantities in the manner described above. One example of these codes (and probably the most
widely used) is the Aarhus adiabatic oscillation package (ADIPLS, Christensen-Dalsgaard 2008).

2.2.3 Modes, frequencies and asymptotic analysis
It must be noted that the oscillations equations have no dependence on the azimuthal order m.
This is a consequence of the assumption that the equilibrium state is independent of the polar
axis of the coordinate system. This condition is not satisfied when a preferred axis of symmetry
exists, as is for instance the case when stellar rotation is taken into account. We neglect these
effects for the purpose of our work and characterize the oscillations only by their radial order
n (number of nodes the eigenfunction has in the stellar interior) and degree `, but the issue of
rotation in stellar evolution and asteroseismology is still far from well understood. The reader
is referred to the monographs by Maeder (2009) and Aerts et al. (2010) for a more detailed
discussion on these topics.

In the previous section we have carefully derived the equations governing adiabatic stellar
oscillations, where the solutions to the perturbations contain a geometric component represented
by the spherical harmonics and a periodic time dependence characterized by an angular frequency
ω. This is indeed an eigenvalue problem, where for each eigenfrequency ωn,` the associated
eigenfunctions (i.e. the displacements) can be projected over the orthogonal base of the spherical
harmonics.

We are still dealing with a fourth order system whose analytic solutions can be obtained in
very restricted cases, such as the highly unrealistic case of the homogeneous compressible model
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(where density is not a function of position, see Cox (1980)). It would be useful to approximate
the equations to a point where they can be discussed analytically, in order to gain some further
insight in the behavior of the oscillations. One interesting approximation that can be made is
to neglect the perturbation to the gravitational potential Φ′. The qualitative justification for this
is that rapidly varying perturbation regions with positive and negative ρ′ nearly cancel out in
the gravitational potential (cf. Eq. 2.27). Thus, Φ′ can be considered more or less an average
over the star of the effects of the gravitational potential at each point in the star. Neglecting the
perturbation in the gravitational potential is called the Cowling approximation (Cowling 1941).

The equations of stellar oscillations in the Cowling approximation reduce to a second order
system, which can be written as:

dξr

dr
= −

(
2
r

+
1

Γ1P
dP
dr

)
ξr +

1
ρ cs

2

(
S `

2

ω2 − 1
)

P′ , (2.48)

dP′

dr
= ρ (ω2 − N2) ξr +

1
Γ1P

dP
dr

P′ . (2.49)

This approximation is valid for modes of large degree ` or radial order n. Under these conditions,
the eigenfunctions vary much more rapidly than the equilibrium quantities inside the star. Thus,
the left hand term in Eq. 2.48 is much larger than the first term in the right hand side. We can
make a very rough (but instructive!) approximation by neglecting these terms and the derivatives
of the equilibrium quantities, which allow us to obtain a single second-order differential equation:

d2ξr

dr2 =
ω2

cs
2

(
1 −

N2

ω2

) (
S `

2

ω2 − 1
)
ξr = −Ks

2(r) ξr . (2.50)

This is a very crude approximation to the equations of stellar oscillations. In fact, the term 2/r
becomes very large near the center, while the neglected pressure derivatives increase towards the
stellar surface. However, we must regard Eq. 2.50 as a useful expression to describe the overall
properties of the modes.

Not surprisingly, Eq. 2.50 is a classic time-independent wave equation in one dimension. The
behavior of ξr depends on the sign of Ks

2: when Ks
2 > 0, the solutions are oscillatory functions in

r, when negative they are increasing or decreasing exponential solutions in r. When the solution
is exponential in a certain zone of the stellar interior, it is said that the mode is evanescent in that
particular region.

For a given mode of oscillation Ks
2 changes in value and sign throughout the stellar interior,

thus the solution can oscillate in some regions while it is evanescent in others. In general, one
of the oscillatory zones dominates with the solution decaying exponentially from it. The mode
is said to be trapped in that region, and its frequency is mainly determined by the structure of
this zone. The boundaries of the trapping regions are the points where Ks

2 = 0, usually known
as turning points.

Equation 2.50 allows us to determine the behavior of the modes depending on the stellar
structure. There are two cases when the solutions are oscillatory:

• |ω| > |N| and |ω| > S ` : modes with high frequencies called p-modes.
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• |ω| < |N| and |ω| < S ` : modes with low frequencies called g-modes.

The reason why the first type of oscillations are called p modes is that they are standing acoustic
waves where pressure acts as the only restoring force. On the other hand, modes whose restoring
force is buoyancy are trapped internal gravity waves, thus named g modes.

It is evident that the characteristic frequencies S ` and N defined in Eqs. 2.46 and 2.47 play
a very important role determining the type of oscillations present in the stellar interior, and in
which region they propagate. These are shown in Fig. 2.1 for a solar model in terms of the cyclic
frequency ν = ω/2π, including the trapping regions for particular modes of oscillation. It is
important to keep in mind that the buoyancy frequency N2 is negative in convective regions (see
Sect. 1.3.1). This means that g modes, as expected, can be effectively trapped only in radiative
regions.

Figure 2.1: Characteristic frequencies N (solid line) and S ` (dashed line with values of ` labelled
on each curve) for a model of the present Sun. Solid horizontal lines represent the trapping region
of a g mode with frequency ν = 100 µHz, and a p mode of degree ` = 20 and ν = 2000 µHz.
Figure courtesy of C. Aerts (from Aerts et al. 2010)

For the observed modes in the Sun and solar-like oscillators, the typical situation is that
ω � N. In those cases, the behavior of the modes depends only on the variation of the sound
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speed across the stellar interior. However, as mentioned in Sect. 1.3.1, there are situations during
the evolution of a star when the buoyancy frequency becomes large enough in the stellar center
and it is comparable to the value of the Lamb frequency. In those cases, the modes behave as
acoustic modes in the outer zones, while the act as g modes in the central region of the star. These
dual behavior is characteristic of the so-called mixed modes that appear in evolutionary phases
such as the subgiant branch. Figure 2.2 shows the characteristic frequencies for a model in the
main sequence (the Sun) and a star in the shell H-burning phase. It is clear that for the solar case,
the region where g modes are trapped is well below the observed frequency range. In the case of
the subgiant star, modes with frequencies in the observable region will present a mixed p-mode
and g-mode character. This behavior is also characteristic of stars in the RGB and red clump
phases.

While radial p-mode oscillations (` = 0) travel all the way to the center of the star, non-radial
p modes are trapped between an inner turning point r = rt and the surface. This turning point is
located where S ` (rt) = ω, which can be written as

cs
2(rt)
rt

2 =
ω2

`(` + 1)
. (2.51)

This relation has been derived under the Cowling approximation. A slightly more sophisticated
description can be made when considering the gravitational potential using a dispersion relation
for plane waves. We write the square length of the wave as the sum of a radial and horizontal
component: |k2| = kr

2 + kh
2. The dispersion relation is such that ω2/cs

2 = kr
2 + kh

2; an extra
term related to the density is introduced when considering the gravitational potential: ω2 =

cs
2(kr

2 + kh
2)−4πGρ (Jeans 1928). The expression for the inner turning point can now be written

as:
cs

2(rt)
rt

2 =
ω2 − 4πGρ(rt)

`(` + 1)
. (2.52)

In terms of ray theory for cases where sound speed gradients exists (stellar interiors), the internal
reflection of p modes can be understood as a consequence of the increasing sound speed towards
the stellar center. In an analogous way as light bends when changing mediums, the mode propa-
gation changes direction as the wave front experiences a higher sound speed and therefore travels
faster. In the inner turning point, the wave travels horizontally, which gives the condition pre-
sented in either Eq. 2.51 or 2.52 from the dispersion relation. A similar analysis can be made for
low frequency g-modes using the condition N = ω which for the case of the Sun gives a turning
point very close to the center and another just below the convective zone. Figure 2.3 shows an
interior section of a solar model where the propagation of p modes and g modes are depicted,
including the turning points.

Reflection of p-modes at the surface (or the outer turning point of p-modes) is still a matter
of great uncertainty. The full theoretical development results in equations that are very complex
to analyze. From the numerical point of view, stellar structure calculations still rely on crude
approximations of the real outer structure of stars (those mentioned in Sect. 1.3.3). It is possible
to derive a condition for the outer turning point for p modes assuming an isothermal atmosphere,
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Figure 2.2: Characteristic Lamb and buoyancy frequencies, in units of (GM/R3)1/2, for a model
of the present Sun and a 1.63 M� star in the subgiant phase. The dashed and solid lines show N in
the solar and subgiant model, respectively. The dot-dashed lines show S ` for ` = 1, 2, essentially
indistinguishable in the two models with this scaling. The shaded band roughly indicates the
region in frequency corresponding to the observed modes. Reproduced with the permission of
J. Christensen-Dalsgaard (from Christensen-Dalsgaard 2004)

which gives a critical frequency of propagation

ωa =
cs

2Hp
. (2.53)

called the acoustic cut-off frequency. For the case of the Sun, the acoustic cut-off frequency in
the solar photosphere is of the order of νa ' 5400 µHz.
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Figure 2.3: Propagation of rays in a cross-section of the solar interior. (a) shows the propagation
of rays of acoustic p-modes, bending by the increase of the sound speed towards de solar interior.
Total reflection occurs in the inner turning point (dotted circles). Rays shown have a frequency
of ν = 3000 µHz and angular degrees of ` = 75, 25, 20 and 2 (in order of increasing penetration
depth). (b) depicts rays of a gravity mode of frequency ν = 190 µHz and degree 5. Reproduced
with the permission of M. Cunha (from Cunha et al. 2007)

2.2.4 Frequency differences
It is possible to extend the analysis made in the previous section to a slightly more physically
sound one, but still simple enough as to be treated analytically. Taking into account the deriva-
tives of the equilibrium structure, with the exception of those in ρ and r, and considering the
Cowling approximation, Deubner & Gough (1984) derived an asymptotical formalism that re-
sults in a second order differential equation:

d2X
dr2 +

1
cs

2

[
S `

2
(

N2

ω2 − 1
)

+ ω2 − ωc
2
]

X = 0 . (2.54)

The quantity introduced for the displacement is X = cs
2ρ2 div δr, and a generalized formulation

for the acoustic cut-off frequency is included as

ωc
2 =

cs
2

4H2

(
1 − 2

dH
dr

)
. (2.55)

In an isothermal atmosphere, H = Hp is constant and Eq. 2.53 is recovered.
Equation 2.54 is obviously a wave equation. The behavior of its solutions can be studied by

the factor:

K2(r) =
1

cs
2

[
S `

2
(

N2

ω2 − 1
)

+ ω2 − ωc
2
]
. (2.56)
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Lets consider the case of a region between r1 and r2 where K2(r) > 0 and the solution is os-
cillatory. Using JWKB analysis it has been shown (e.g., Unno et al. 1989) that an approximate
expression for the eigenfrequencies can be obtained, namely∫ r2

r1

K(r) dr =

(
n −

1
2

)
π , n = 1, 2, ... . (2.57)

For the case of p modes, where ω2 � |N |2, the lower turning point is approximately that defined
in Eq. 2.51 since ωc is only large near the surface. The upper turning point r2 ' Rt, where
ω = ωc(Rt). The result is the so-called Duvall law (Duvall 1982),∫ R

rt

(
1 −

`(` + 1)cs
2

ω2r2

)1/2 dr
cs

=

(
[n + α(ω)]π

ω

)
, (2.58)

where α(ω) is a function of frequency determined by the conditions in the stellar surface. In the
case of low-degree p-modes, the turning point rt is very close to the stellar, center. Thus, the
second term in the brackets of the left hand side of Eq. 2.58 is very small, which leads to the
following simple relation:

νn,` =
ωn,`

2π
'

(
n +

`

2
+

1
4

+ α

)
∆ν , (2.59)

where ∆ν is known as the large frequency separation, defined as the inverse of twice the sound
travel time between the stellar center an the surface:

∆ν =

[
2
∫ R

0

dr
cs

]−1

. (2.60)

As ∆ν is a measurement of the time it takes a sound wave to reach the center of the star, it is very
sensitive to the total radius of the star. In fact, as pressure modes are dynamical processes that
disturb the hydrostatic equilibrium, they are expected to have periods of the order of τdyn (see
Eq. 1.2). Thus, ∆ν is clearly sensitive to the mean density of the star (e.g. Ulrich 1986).

From a similar analysis (e.g., see Appendix E in Aerts et al. 2010), it can be shown that the
eigenfunctions of p modes can be written as

ρ1/2 cs
1/2 r ξr(r) ' A cos(ωτ − (1/4 + α) π) , (2.61)

where A is an amplitude factor, and τ is the acoustic depth given by

τ =

∫ R

r

dr
cs
. (2.62)

This variable measures the travel time of p modes from the surface towards the interior.
The asymptotic behavior of oscillations have been extensively studied (e.g., Tassoul 1980,

1990). For low-degree modes, the asymptotic relation predicts modes evenly spaced in frequency
for consecutive radial orders. Thus, the large frequency separation can be characterized as ∆νn,` =
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Figure 2.4: Portion of the solar oscillation spectrum showing the large and small frequency sep-
aration for low-degree modes. Pairs in brackets show the (n, `) value of each mode. Reproduced
with the permission of T. Bedding (from Bedding & Kjeldsen 2003)

νn,`−νn−1,`. Also from Eq. 2.59, modes with the same value of n+`/2 should be almost degenerate.
Departures from this degeneracy are thought to have considerable diagnosis potential, and are
characterized by the small frequency separation δνn,` = νn,` − νn−1,`+2. These frequency patterns
have been observed in the solar frequency spectrum, as it can be seen in Fig. 2.4.

From an observational point of view, it is useful to consider the average ∆ν0 = 〈νn,`−νn−1,`〉n,`

over a certain region of the oscillation spectrum. The individual frequencies can be expressed as
reduced modulo ∆ν0, expressed by

νn,` = ν0 + k∆ν0 + ν̃n,` , (2.63)

where ν0 is a chosen reference frequency, k is an integer such that ν̃n,` is between 0 and ∆ν0. In
Fig. 2.5 this so-called Echelle diagram is presented for the Sun. This type of diagram separates
the oscillation modes into vertical ridges for each angular degree, and is used as a method to
identify ` in photometric observations of oscillations. If the asymptotic relation in Eq. 2.59
would have been exact, the frequencies would be stacked vertically one exactly on top of the
other.

For the g modes, a similar analysis can be carried out of Eq. 2.57 when ω2 � S `
2. In this

case, the asymptotic approximation leads to a relation between the periods of the oscillation
modes. This can be written as:

Π =
Π0

√
`(` + 1)

(n + α`,g) ,with Π0 = 2π2
(∫ r2

r1

N
dr
r

)−1

, (2.64)
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Figure 2.5: Echelle diagram for observed solar frequencies obtained with the Birmingham Solar-
Oscillations Network (BiSON Chaplin et al. 2002), plotted for ∆ν0 = 135.1 µHz. Circles, dia-
monds, squares and triangles are used for modes of degree ` = 0, 1, 2 and 3, respectively. BiSON
data kindly provided by W. J. Chaplin.

where α`,g is a phase term that depends on the details of the boundaries of the trapping region (r1

and r2). This relation shows that, asymptotically, the g-mode periods are equally spaced in the
order of the mode, the spacing decreasing with increasing `.

Despite the many approximations we have done so far to gain insight into the nature of the
oscillations, numerical calculations can solve the full set of equations for adiabatic oscillations
as presented in Eqs. 2.43 to 2.45. In Figs. 2.6 and 2.7 the radial displacement eigenfunctions are
plotted for a set of selected oscillation modes. For the p modes (Fig. 2.6) the radial mode (` = 0)
has non-zero amplitudes up to the center of the star, while modes with higher angular degree
oscillate inside the cavity delimited by the turning points and decay exponentially beyond them.
The amount of zeros of the displacement function (nodes) clearly increases with increasing radial
order n. For the case of g modes (Figs. 2.7), the amplitudes increase towards the center and decay
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beyond the convective region. It is worth mentioning that, by convention, g modes are labelled
using negative values of n.

2.3 The CoRoT and Kepler missions
The analysis of the oscillations presented in this Chapter reveals the potential of studying stel-
lar pulsations as a tool to probe the internal structure of stars. It is clear that the frequencies
of oscillation depend on the mass and radius of the star, as well as the set of equilibrium vari-
ables P, ρ, Γ1, and g. Any physical process in the stellar interior affecting this quantities can in
principle be tested by comparing the observed frequencies to those obtained from evolutionary
calculations including different sets of input physics.

As mentioned in Sect. 1.4, there are many stars where pulsations have been detected. How-
ever, it is very challenging to measure these oscillations from the ground due to their small
amplitudes. In 1991, Brown et al. (1991) made the claim of possible detection in Procyon of
solar-like oscillations. Nevertheless, it took until 1999 for Martić et al. (1999) to definitely es-
tablish the pulsation in Procyon to be real. The subsequent determination of individual mode
frequencies in α Cen A (Bouchy & Carrier 2001) and detection of solar-like oscillations in β Hyi
(Bedding et al. 2001) opened the doors to new discoveries in the field.

Another particularly interesting case if that of non-radial oscillations in red giant stars. Early
detection of excess power in this type of stars revealed pulsations, although it was unclear if they
where radial or non-radial modes (e.g., Buzasi et al. 2000; Frandsen et al. 2002).

Regardless of this encouraging results, main-sequence stars with oscillations detected were
only a handful, and individual modes of oscillation where very difficult to measure even in multi-
site observation campaigns (Bedding & Kjeldsen 2007; Bedding et al. 2010b). The quest for
non-radial oscillations in red giants continued and it was hard to see how it would be possible to
detect them with the current limitations.

In December 2006, the Convection, Rotation and planetary Transits mission (CoRoT) was
successfully launched (Baglin et al. 2006). The satellite consists of a 27 cm primary mirror
and four CCD detectors, two devoted to exoplanet research and another two for asteroseismic
investigations. During its life span, the mission alternately observes for 6 months two opposite
fields in the intersection between the equatorial plane and the galactic plane.

One of the greatest success of the CoRoT mission was to provide unambiguous detection of
non-radial oscillations in red giant stars (De-Ridder et al. 2009), with more than 1800 of them
having global oscillation parameters measured (Mosser et al. 2010). Some properties of these
stars can be determined from their oscillation spectra that could otherwise only be inferred by
using sophisticated galactic chemical evolution models, such as radii and masses (e.g., Miglio
et al. 2009).

Following the encouraging results of CoRoT, in March 2009 the Kepler mission was launched
(Christensen-Dalsgaard et al. 2007; Borucki et al. 2009). The satellite is equipped with a 95 cm
diameter corrector and a mosaic of 42 CCD detectors, with the primary goal of finding planets via
the transit method. The field of observation is a fixed for the full length of the mission (nominal
4 years), with the possibility of a two years extension. Data is acquired in either short or long
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Figure 2.6: Scaled radial displacement eigenfunctions, on an arbitrary scale, for selected p-modes
in a solar model. a) ` = 0, n = 23, ν = 3310 µHz; b) ` = 20, n = 17, ν = 3375 µHz; c) ` = 60,
n = 13, ν = 3234 µHz. In panels b) and c) the arrows mark the location of the inner turning
points (derived with Eq. 2.51). Figure kindly provided by C. Aerts (from Aerts et al. 2010)
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Figure 2.7: Scaled radial displacement eigenfunctions, on an arbitrary scale, for selected g-modes
in a solar model. a) ` = 1, n = −5, ν = 110 µHz; b) ` = 2, n = −10, ν = 103 µHz; c) ` = 4,
n = −19, ν = 100 µHz. The vertical dotted line shows the position of the convective envelope.
Reproduced with the permission of J. Christensen-Dalsgaard (from Aerts et al. 2010)
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cadence mode, changing the time of sampling from 60 sec to 30 min. Periods of observations are
divided into 3-months quarters, with an initial 10 days quarter (Q0) devoted to commissioning.
At any given time, a minimum of 512 stars are being observed by the asteroseismology program
in short cadence mode to detect solar-like oscillations.

The results obtained by the Kepler mission have been outstanding in the amount of stars with
detected oscillations and the quality of the data obtained by the satellite. The first seven months
of observations comprehended the survey phase, with stars observed only one month each to
detect the most promising candidates for long time follow-up. For the short cadence observation
mode, more than 500 stars with detected oscillations were found during this period (Chaplin et al.
2011c)1, which are shown in Fig. 2.8. These stars comprise the full sample of main-sequence
and subgiant stars observed with Kepler. As mentioned above, ∆ν is a measurement of the mean
density of the star, which decreases during the H-burning evolution due to the increase in the
stellar radius. Thus, ∆ν can be considered as a measurement of evolutionary stage and it is
customary to use this quantity instead of luminosity to construct this ‘asteroseismic’ HRD. It
is important to notice that in order to obtain the average ∆ν0 it is not necessary to identify the
angular degree of the oscillation modes, just to measure directly the average separation between
the peaks from the power spectrum (see Fig. 2.4). Effective temperatures have been estimated
using the available Sloan photometry of the field obtained before the mission was launched to
characterize the targets (Brown et al. 2011).

Kepler observations have also revealed solar-like oscillations in hundreds of red giant stars
(Bedding et al. 2010a). These have been detected in field stars and in the open clusters present
in the Kepler field of view (Stello et al. 2010)2. One of the important results obtained from red
giants studies is the possibility of disentangling RGB stars from clump red giants (cf. Sect. 1.2.3)
using the detected period spacings of mixed modes (Beck et al. 2011,Bedding et al. 20113). In
a nutshell, low-and intermediate-mass stars are expected to show modes with mixed p-mode and
g-mode character across their oscillation spectrum when they are in the red giant phases, due
to their highly compact cores (see Sect. 2.2.3). That being the case, this modes should be very
sensitive to the conditions in the core of these stars. As mentioned in Sect. 1.3.1, stars in the
RGB burn hydrogen in a shell surrounding the inert He-rich core, while stars in the red clump
are already burning helium in the center and have a convective core. The period spacings for
g modes introduced in Eq. 2.64 should be sensitive to this drastic differences in the interiors of
both types of stars.

In Fig. 2.9 the large frequency separation versus observed mean g-mode period spacing of
a large sample of Kepler red giants is presented. There is a clear distinction between two large
groups of stars, where the larger period spacing values correspond to those stars in the red clump
(red and orange symbols). It has been mentioned by the authors in Bedding et al. (2011) that
a secondary population of stars can be seen among those in the central helium burning phase
(orange symbols). Models suggests that the reason for this is a mass difference in the progenitor
of the red clump star, with those cases where the initial mass was large enough for the helium

1V. Silva Aguirre is a coauthor in this paper.
2V. Silva Aguirre is a coauthor in this paper.
3V. Silva Aguirre is a coauthor in this paper.
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Figure 2.8: Average large frequency separations, ∆ν0, against effective temperature, for Kepler
targets with oscillations detected within the first seven months of observations (blue circles). The
dotted lines show predicted evolutionary tracks for models of different stellar mass (0.8 to 1.5
solar masses, in steps of 0.1), from the BaSTI database (Pietrinferni et al. 2004). Oscillations
data kindly provided by W. J. Chaplin (from Chaplin et al. 2011c)

ignition to occur under non-degenerate conditions separating into the ‘secondary clump’. As
pointed out in Sect. 1.2.3, the secondary population in clump stars was already inferred by Girardi
(1999) from evolutionary considerations.

The most important parameter defining if the ignition of helium will occur under degenerate
conditions or not is the mass of the helium core (e.g., Chiosi et al. 1992). As the threshold for
degenerate ignition has been usually believed to be around ∼1.8-2.3 M�, any process affecting the
extent of the convective core in the main-sequence evolution of these stars will impact the exact
value where this transition takes place. However, as mentioned in Sect. 1.3.1, size of convective
cores and mixing processes that affect them are still poorly understood.

Another example of the difficulties constraining the interiors comes from the analysis per-
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Figure 2.9: Observed period spacing as a function of the large separation in red giants. Model
tracks show the evolution for hydrogen shell-burning red giants of near-solar metallicity (Z =

0.017) and masses between 1.0 M� and 2.4 M�. Black dots show ∆Pobs as measured from
Kepler red giant branch stars by Bedding et al. (2011). Red and orange dots show red clump and
secondary clump stars. Blue diamonds on the 2.4 M� track are equally spaced in time by 10 Myr,
starting from 520 Myr. Figure kindly provided by T. White (from White et al. 2011).

formed on a subgiant Kepler target nicknamed ‘Gemma’ (Metcalfe et al. 2010)4. This particular
star has a large set of individual frequencies detected, including the presence of mixed modes,
and it was simultaneously modeled by several teams. The results yielded two families of equally
possible solutions from a statistical point of view. The two families agree in the estimated ra-
dius but one set estimates a mass of ∼1.13 M� and the other of ∼1.24 M�. Thus, although the
possible solutions had very different evolutionary histories (the large-mass family of solutions
shows a convective core in the main-sequence phase), our current lack of understanding of mix-
ing processes in the H-burning phase inhibits us from further constraining more advanced stellar
evolutionary phases. Moreover, determination of stellar ages crucially depend on the assump-
tions made on physical processes taking place during the main-sequence evolution. It is expected

4V. Silva Aguirre is a coauthor in this paper.



46 2. Stellar oscillations

that longer observations of this target will allow to discriminate between the two families of so-
lutions.

In order to get some insight on these topics, and considering the increasing amount of avail-
able data coming from the space missions just described, we will study the effects that different
mixing processes in stellar interiors have on the overall main-sequence evolution of intermediate-
mass stars, in particular related to the issue of convective boundary definition and mixing beyond
this formal boundaries.



Chapter 3

Mixing processes in stellar cores

The bulk of this chapter forms part of an article published in Astronomy & Astrophysics in March
2011 (Silva-Aguirre, Ballot, Serenelli, & Weiss 2011a). It deals with different types of mixing
processes in stellar interiors, its implementation in an evolutionary code, and the implications for
the overall evolution of main-sequence stars. The initial research was made for a CoRoT target
(HD 49933), and then theoretically extended to stars of different masses in the main sequence.

3.1 Motivation: the case of HD 49933

Understanding the physical processes dominating stellar interiors and correctly characterizing
their impact on the evolution of stars are two of the main goals of stellar astrophysics. For a
long time it has been acknowledged that different mixing processes in stars, such as convection,
microscopic diffusion, and rotational mixing, strongly influence the overall evolution of stars
(e.g. Zahn 1992; Maeder & Meynet 2000; Thoul et al. 1994; Turcotte et al. 1998, and refer-
ences therein), with subsequent effects on observable quantities, such as luminosity, effective
temperature, and surface abundances. This has a direct impact on any determinations of derived
parameters relying on evolutionary models still to a large extent, as in the case of stellar masses
and ages.

How the boundaries of the convective regions are defined and how the convective zones
themselves are treated from the point of view of mixing of elements severely affects the inte-
rior structure of the stellar models. As mentioned in Sect. 1.3.1, in evolutionary calculations
the boundaries of convective regions are defined by means of a stability criterion, such as the
Ledoux (Eq. 1.18) or the Schwarzschild (Eq. 1.20) criterion. When molecular weight gradients
exists and the Ledoux criterion is not equivalent to the Schwarzschild one, it can occur that a
zone will be convectively unstable or not depending on the applied criterion. A region which is
convective according to Schwarzschild but convectively stable according to Ledoux is known as
a semiconvective region.

If the Ledoux criterion is applied and a semiconvective zone identified, the next issue to
consider is how to treat such a region from the point of view of mixing of elements. Depending
on the adopted prescription for mixing to take place, these semiconvective layers could maintain
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Figure 3.1: Echelle diagram for the 60-day run of observations from CoRoT for the target
HD 49933, showing a clear signature of oscillations in the vertically aligned ridges. The iden-
tification of the angular degree of the modes is far from trivial. The large separation used is
∆ν0 = 85 µHz. Reproduced with the permission of T. Appourchaux (from Appourchaux et al.
2008)

their chemical composition or undergo a mixing process known as semiconvective mixing.
In the case of massive star evolution, the case of semiconvection has been extensively studied.

During the hydrogen-burning phase the convective core retreats leaving behind a nonuniform
chemical profile determined by the composition of the core at the moment each layer is detached
from it. This situation allows semiconvective regions to develop when the Ledoux criterion is
considered. Since the pioneering work of Schwarzschild & Härm (1958), several authors have
investigated the occurrence of semiconvective mixing and its effects on stellar evolution (e.g.
Stothers 1970; Stothers & Chin 1975; Chiosi 1978; Langer et al. 1985). Although it was initially
thought to occur only in massive stars, semiconvection was also predicted to take place in low-
mass stars (e.g. Mitalas 1972; Faulkner & Cannon 1973; Gabriel & Noels 1977) but with a
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Figure 3.2: Evolutionary tracks for the 1.2 M� models for HD 49933 at a metallicity of [Fe/H]=
−0.35, depicted in solid lines for the case without (blue) and with overshooting (red). Position of
the models for the two possible scenarios are marked: scenario A in filled squares and scenario
B with filled circles. See text for details.

stronger impact in the helium-burning phase.
As an example for the importance of semiconvective mixing in low-mass stars, we discuss

the case of the CoRoT target HD 49933, one of the priority targets of the mission. HD 49933
is a main-sequence F type star with an absolute visual magnitude of Mv=3.408±0.026 derived
from Hipparcos parallax measurements (Leeuwen 2007), and an estimated iron abundance of
[Fe/H]= −0.43 ± 0.09 (Bruntt et al. 2008). Effective temperature and luminosity were estimated
using the parallax information and the InfraRed Flux Method (Casagrande et al. 2010), taking
into account random errors in photometry, and uncertainties in parallax and metallicity. The
obtained values are Teff = 6750±140 K and log(L/L�) = 0.549±0.02. This effective temperature
value is in accordance with the spectroscopic one derived by Bruntt et al. (2008).

The first asteroseismic results of HD 49933 comprising 60 days of observations were pub-
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Figure 3.3: Echelle diagram for the 60-day run of observations from CoRoT for the target
HD 49933, including the theoretical frequencies for two models: one without (blue) and one
with overshooting (red). Symbols represent the angular degrees ` = 0 (circles), ` = 1 (dia-
monds), and ` = 2 (squares). Top panel: models fitting scenario A. Bottom panel: models fitting
scenario B. Observational data kindly provided by J. Ballot

lished by Appourchaux et al. (2008). In Fig. 3.1 an Echelle diagram of the data is shown, where
the y-axis depicts the assumed radial order n of the modes. From the excess power it is clear
that oscillations are detected; however, the identification of the angular degree of the modes is
far from evident. It could be that the left-hand side ridge corresponds to the ` = 1 modes and the
right-hand side one to the ` = 0, 2 modes (scenario A), or the other way around (scenario B). It is
worth mentioning that, due to partial cancellation effects, we do not expect to detect ` = 3 modes
yet (see Appendix A). From their analysis, Appourchaux et al. (2008) determined the mean large
frequency separation to be ∆ν0 = 85.9 ± 0.15 µHz.

Although the quality of these data does not allow for individual mode identification, we
modeled the star in order to predict the most probable configuration in the Echelle diagram from
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a theoretical point of view. Two grids of models were constructed using GARSTEC covering the
error box in luminosity and effective temperature for a chemical composition adequate to that of
HD 49933, with masses ranging between 1.0 and 1.3 M�. One of the grids included convective
overshooting as described in Sect. 1.3.3 using the calibrated value for the free parameter in
Eq. 1.29, which determines the extension of the overshooting region.

For both grids, best-fit models were found matching the large frequency separation to the
value given by Appourchaux et al. (2008), and also constraining them to be within the 1-σ
uncertainties in the Teff and log(L/L�) observational error box. Within these margin of error, it is
possible to find models along an evolutionary track that fit both possible ridge identifications in
the Echelle diagram. In Fig. 3.2 we show the HRD of the 1.2 M� track from each grid, marking
the position of the model that agrees with each scenario. For each track the difference between
the model fitting the mode identification scenario A and B is of the order of ∼200 Myr.

Regardless of the grid considered, the curvature of the ridges always favored a solution where
the left-hand side ridge corresponds to the ` = 0, 2 modes (scenario B, see Fig. 3.3). This
identification was later confirmed by independent methods when longer data sets for the star
were acquired (Benomar et al. 2009). Since one of the grids included overshooting, the two best-
fit models found have different ages, size of the convective core, and remaining central hydrogen
content. Although the use of the Echelle diagram allowed us to restrict the possible solutions to
a subset of models, we cannot use this tool to discriminate between the existence or absence of
a convective core, or what the precise evolutionary stage of the star is. Moreover, for the 1.2 M�

model without overshooting we encountered a semiconvective region outside the fully convective
core, reminiscent of the well-known situation for massive stars.

As mentioned in Sect. 1.2.2 stars with masses higher than ∼1.1 M� develop a convective core
during the main-sequence evolution, whose extent is determined by their temperature stratifica-
tion. As the timescale for mixing of elements in this convective region is much shorter than the
nuclear timescale, the core is believed to be homogeneously mixed, and a discontinuity in density
appears at the edge of the fully mixed core. This discontinuity is produced either by convective
core expansion, owing to the increasing importance of the CNO cycle over the p-p chain (Mi-
talas 1972), or by the retreating convective core leaving behind a nonuniform chemical profile
(Faulkner & Cannon 1973). Both cases produce higher opacities outside the convective core and
allow a semiconvective region to develop. If the resulting density barrier is sustained throughout
the main-sequence evolution, the homogeneously mixed central region will either be restricted in
its growth or not allowed to develop at all, drastically changing the behavior of the evolutionary
tracks, especially close to the main sequence turn-off. This has important implications for the
use of the color-magnitude diagram (CMD) morphology and the existence of a hook-like feature
at the turn-off to estimate properties of stars at the end of the main sequence and the age of a
given stellar population (see for instance Maeder 1974a,b; Maeder & Meynet 1991).

With all these in mind, we start by addressing in this chapter the issue of determining con-
vective boundaries and the treatment of zones that present a gradient in the molecular weight.
We include in our evolution code the Ledoux criterion for convective instability, with a diffu-
sive approach for semiconvective mixing, and study the impact of these process along the main
sequence.
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3.2 Ingredients of the stellar models

For our model calculations with GARSTEC we used the 2005 version of the OPAL equation of
state (Rogers et al. 1996; Rogers & Nayfonov 2002) complemented by the MHD equation of
state for low temperatures (Hummer & Mihalas 1988), low-temperature opacities from Ferguson
et al. (2005) and OPAL opacities for high temperatures (Iglesias & Rogers 1996), the Grevesse &
Sauval (1998) solar mixture, and the NACRE compilation for thermonuclear reaction rates (An-
gulo et al. 1999). Convective zones are treated with the mixing-length theory (MLT), regardless
of the criterion used to define their boundaries. Within these zones, the chemical composition is
modified either instantaneously or by a diffusive process that uses the convective velocity esti-
mated from the MLT as described, for instance, in Kippenhahn & Weigert (1990).

For the frequency computations of the specific models analyzed, we used the Aarhus adia-
batic oscillation package (ADIPLS, Christensen-Dalsgaard 2008).

3.2.1 Boundaries of convective and semiconvective zones

As briefly mentioned in Sect. 1.3.1, the convective zones within a stellar model are defined
using a stability criterion. The convectively unstable regions are usually determined with the
Schwarzschild criterion by comparing the radiative and adiabatic temperature gradients, denoted
∇rad and∇ad, respectively (Schwarzschild & Härm 1958). Recalling eq. 1.20, a layer is convective
when

∇ad < ∇rad . (3.1)

However, gradients of molecular weight µ can have a stabilizing – or destabilizing – effect on the
convection process. The Ledoux criterion (Ledoux 1947) takes this effect into account. Within
this prescription, a layer is convective when

∇L < ∇rad , (3.2)

with ∇L, the Ledoux temperature gradient, defined as

∇L = ∇ad +
ϕ

δ
∇µ , (3.3)

where ϕ, δ, and ∇µ are those defined in Eq. 1.19. For an equation of state appropriate to a mixture
of an ideal gas and black body radiation, Eq. 3.2 reduces to

∇L = ∇ad +
β

4 − 3β
∇µ , (3.4)

where β is the ratio of gas pressure to total pressure (Kippenhahn & Weigert 1990).
Including changes in the molecular weight in the definition of the relevant temperature gra-

dients leads to the appearance of zones whose energy transport process will depend on the
convective criterion considered. There are regions that would be considered convective if the
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Schwarzschild criterion were used, but they are in turn convectively stable if the Ledoux crite-
rion were applied. These zones are called semiconvective zones, and are defined as the regions
where

∇ad < ∇rad < ∇L . (3.5)

As an example, a model of a 1.5 M� star computed using the Ledoux criterion and displaying a
semiconvective zone during its main-sequence evolution is depicted in Fig. 3.4. The hydrogen
profile in the stellar interior is constant inside the homogeneously mixed convective core, and
presents a sharp variation at the position where the edge of the core is located. This feature
produces a step in the radiative gradient ∇rad due to the change in the chemical composition and
opacities, and the departure of the Ledoux gradient ∇L from the adiabatic gradient ∇ad as a result
of the change in the molecular weight. Therefore, a significant semiconvective layer appears at
the boundary of the convective core. We notice that, in this example, the semiconvective zone
comprehends 60% of the total mass of the convective region itself. If the Schwarzschild criterion
were used instead, the semiconvective layer would be part of the convective core.

3.2.2 Prescription for semiconvective layers

Throughout the years, several approaches have been proposed to deal with semiconvective re-
gions when they appear in stellar models (Stevenson 1979; Langer et al. 1983; Spruit 1992;
Grossman & Taam 1996). According to the chosen prescription, the semiconvective zone is
considered to be mixed more or less efficiently (see the comparison made by Merryfield 1995).
The amount of mixing in semiconvective layers is crucial, because an efficient mixing process
can reduce the molecular weight gradient sufficiently and then trigger convective instability. For
the present work, we have implemented the prescription proposed by Langer et al. (1983, 1985)
in GARSTEC, based on the description of vibrational instability made by Kato (1966). With
this method, the true temperature gradient ∇ in a semiconvective region is calculated from the
relation

Lsc

Lrad
= αsc

∇ − ∇ad

2∇ (∇L − ∇)

[
(∇ − ∇ad) −

β (8 − 3β)
32 − 24β − β2∇µ

]
, (3.6)

where Lsc and Lrad are the semiconvective and radiative luminosities, respectively.
The mixing is treated as a time-dependent diffusive process, with the diffusion coefficient

calculated as

Dsc = αsc
κr

6 cp ρ

∇ − ∇ad

∇L − ∇
, (3.7)

where κr is the radiative conductivity, cp the specific heat at constant pressure, and ρ the density.
Both the diffusion coefficient and the temperature gradient in this prescription depend on an
efficiency parameter of semiconvection (αsc). The meaning of this parameter is discussed further
in Sect. 3.3.2. We stress that this diffusive and time-dependent approach differs significantly
from the ones used in previous efforts to treat semiconvection in low-mass stars. In previous
studies, the mixing in the semiconvective layer is either performed by adjusting the composition
until convective neutrality according to the Schwarzschild criterion is again reached (Crowe &
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Figure 3.4: Internal structure of a 1.5 M� stellar model in the main-sequence phase. The hy-
drogen abundance profile X (black solid line), the adiabatic gradient ∇ad (red dotted line), the
radiative gradient ∇rad (green dash-dotted line), and the Ledoux gradient ∇L (blue dashed line)
are plotted as functions of the mass fraction. From left to right, tones of gray fill regions of
different energy transport processes: convective zone, semiconvective zone, and radiative zone.
See text for details.

Mitalas 1982; Miglio et al. 2008), or approximating the results obtained by Spruit (1992) with a
two-step function (Popielski & Dziembowski 2005).

3.3 Impact on the stellar models

Several models were computed using the different mixing prescriptions and definition of the
convective boundaries. Within a convective zone, the mixing is performed diffusively using the
MLT, while in a semiconvective region the mixing is carried out as explained in Sect. 3.2.2. Cal-
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culations were done for both the Schwarzschild and the Ledoux criterion for the definition of the
convective zones, with and without including extra mixing due to overshooting and semiconvec-
tion. All the models considered here are computed for solar metallicity. We explore the effects of
these processes for masses ranging from 1.2 to 2 M� starting at the pre-zero age main sequence
and evolved until hydrogen exhaustion in the core.

3.3.1 Convective boundary definition criteria

Figure 3.5: Evolution of the convective core boundary in mass coordinate as a function of central
hydrogen content during the main sequence phase for the two considered convective boundary
definition criteria: Ledoux (solid blue lines) and Schwarzschild (solid red lines). Blue dotted
lines depict semiconvective zones when the Ledoux criterion is applied. (By definition there
are no semiconvective zones when the Schwarzschild criterion is applied.) The panels represent
different masses: 1.2 M� (top), 1.5 M� (middle), and 2.0 M� (bottom).

Applying either the Schwarzschild or the Ledoux criterion influences the appearance and the
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size of convective cores as a function of stellar mass. To study these effects, we computed models
with no convective overshoot and no mixing throughout the semiconvective regions when these
were present (αsc = 0).

In Fig. 3.5 we present the evolution during the main sequence of convective and semiconvec-
tive regions in the interiors of three representative models, computed with the two criteria:

• a model where the including the Ledoux criterion inhibits the growth of the convective
core in the late phase of the main sequence evolution (1.2 M� model, Fig. 3.5 top panel);

• a model with a convective core increasing in size during the hydrogen-burning phase,
whose growth is restrained if the Ledoux criterion is applied (1.5 M� model, Fig. 3.5 mid-
dle panel);

• a model where the convective core recedes during the main sequence, leaving behind a
chemical discontinuity (2.0 M� model, Fig. 3.5 bottom panel).

There are clear differences in the convective core behavior for the two considered criteria. For
growing convective cores (Fig. 3.5 top and middle panels), the molecular weight discontinuity at
the edge of the convective zone produces a steep increase in the opacity, which translates into a
sharp discontinuity in the radiative gradient (as shown in Fig. 3.4).

If the Schwarzschild criterion is applied, the profile of the convective core presents wrinkles
throughout the evolution, signature of a convective process not properly taken into account (Le-
breton et al. 2008). The exact position of the convective core edge will depend largely on the
numerics of the evolutionary code and the way the mesh points are placed where the discontinuity
in the molecular weight is located (Miglio et al. 2008). Slight variations in the radiative gradient
are induced by, for instance, the interpolation in the opacity tables, the allowed time-step, and
the accuracy of the calculations, resulting in a small region right outside the core edge becom-
ing convective and supplying fresh hydrogen to the outer layer of the core. The core expands
and produces the crumple profiles (backwards loops) observed in the top and middle panels of
Fig. 3.5, in a phenomena similar to the so-called breathing pulses in horizontal branch stars (see
for example Catelan 2007, for a detailed discussion and further references on the topic).

If the Ledoux criterion is applied instead, the convective core profile remains flat and con-
tinuous throughout the main sequence evolution, because the molecular weight discontinuity at
its edge inhibits its growth. The semiconvective zone appearing outside the core is not mixed
through and thus becomes larger during the hydrogen-burning phase. At the end of the main-
sequence evolution, the convective core recedes leaving a radiative layer between it and the
semiconvective zone, causing a change in the temperature gradients and ultimately making the
semiconvective region disappear.

In a model with a receding core, the convective central region reaches its largest size dur-
ing the initial phase of hydrogen-burning, and the Schwarzschild criterion allows it to grow to a
slightly greater extent than the Ledoux criterion (Fig. 3.5, bottom panel). The chemical disconti-
nuity left behind by the retreating core leaves an imprint on the molecular weight, which permits
a semiconvective zone to develop, but the radiative gradient decreases following the shrinking
of the core, which in turn transforms the zone into a radiative one. Since the effect is almost
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negligible in this case, we focus for the rest of the paper on the models where the inclusion of
the Ledoux criterion plays an important role (masses below ∼1.7 M� with growing convective
cores).

3.3.2 Main-sequence evolution

Figure 3.6: Hertzprung-Russell diagram for 1.2 M� (left panel) and 1.5 M� (right panel) mod-
els. Computations with the Ledoux criterion and no mixing in the semiconvective regions are
plotted with dashed blue lines, Schwarzschild criterion with solid red lines, and dotted black
lines correspond to tracks with Schwarzschild criterion and overshooting. Two values for the
semiconvective efficiency αsc are also plotted in thin green dash-dotted line (αsc = 0.001; not
shown for the 1.2 M� as it overlaps with the dashed track) and thick light blue dash-dotted line
(αsc = 0.01). The tracks span the evolution from the Zero-Age main sequence until hydrogen
exhaustion in the core.

In the previous section we have shown the impact that different mixing prescriptions have on
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the size of the homogeneously mixed central region during the main sequence evolution. The
size (and existence) of the convective core will determine the appearance (or lack) of a hook-like
feature in the CMD at the end of the hydrogen-burning phase. This feature at the turn-off is used
in the determination of the age of stellar populations by fitting isochrones reproducing the shape
of the hook at a certain metallicity, thus setting constraints on the stellar mass at the end of the
main sequence for a given set of input physics (as an example, see Vandenberg et al. 2007; Magic
et al. 2010, for the specific case of M67). As discussed in Sect. 3.3.1, using the Ledoux criterion
can inhibit the growth of the convective core for the 1.2 M� model and therefore the appearance
of the hook feature in the evolutionary track. This is the case where no mixing is performed
within the developing semiconvective region (αsc = 0) and the molecular weight barrier caused
by hydrogen burning does not allow the core to grow.

The amount of semiconvective mixing is controlled by the efficiency parameter αsc. Its value
is restricted to αsc < 1, but has normally been used in the range 0.001 < αsc < 0.1 according
to the desired superadiabaticy level of the semiconvective region (Langer et al. 1985; Langer
1991; Merryfield 1995). Higher values of αsc mean faster mixing velocities, which is equivalent
to using the Schwarzschild criterion. In Fig. 3.6 we have plotted evolutionary tracks for 1.2
and 1.5 M� cases calculated with different mixing prescriptions and semiconvective efficiency
parameters. By increasing the value of αsc the convective core develops to a greater extent, and
the evolutionary tracks resemble the one calculated with the Schwarzschild criterion. For the 1.2
M� case, the evolutionary sequence computed with αsc = 0.001 does not increase the size of the
convective core with respect to the one calculated with no mixing in the semiconvective zone,
thus their tracks overlap in the HRD. One interesting aspect is that a position in the HRD can
be shared by stars with the same mass but different evolutionary stages, internal structures, and
stellar ages.

Changing the prescription for convection has an impact on the stellar age at which the end
of the main sequence is reached. In the diffusive prescription we use for semiconvective zones,
αsc modifies the value of the diffusion coefficient and also the true temperature gradient in the
semiconvective zone. The growth of the convective core is not enhanced but restricted owing to
the molecular weight gradient, and no extra fuel supply is added to the core, which translates
into shorter main sequence lifetimes. In Fig. 3.7 we present the hydrogen contents at the center
of the models as a function of age, where the differences are clearly visible for the considered
mixing prescriptions and can amount to 30% of the main sequence lifetimes.

3.3.3 Effects of mixing in semiconvective layers
In Fig. 3.8 we present hydrogen profiles near the center for 1.5 M� models calculated with the
Ledoux criterion and different semiconvective mixing efficiency values, with the Schwarzschild
criterion and with overshooting. The sizes of the homogeneously mixed zones are different as is
the shape of the chemical profile at the edge of the convective core. It is worth noticing that, for
the 1.5 M� case considered in this paper, a semiconvective coefficient of αsc ∼ 0.01 is already
efficient enough to very closely reproduce the results obtained when the Schwarzschild criterion
is applied (see the evolutionary tracks in Fig. 3.6). The same is true for αsc ∼ 0.1 in the 1.2 M�

model. This suggests that the value of the semiconvective efficiency required to reproduce the
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Figure 3.7: Central hydrogen content of the selected models during their main sequence evolu-
tion: 1.2 M� (blue) and 1.5 M� (red). Solid lines: Schwarzschild criterion without overshooting.
Dashed lines: Ledoux criterion with no semiconvective mixing (αsc = 0). Dash-dotted lines:
Ledoux criterion and a semiconvective efficiency of αsc = 0.01. Dotted lines: models with
convective overshooting.

results obtained with the Schwarzschild criterion decreases with mass. In relative terms, the
extent of the semiconvective zone compared to the total convective core size is smaller at higher
masses, leading to a shorter mixing timescale.

Convective overshooting has for long been thought of as a natural process capable of smooth-
ing out molecular weight gradients close to the convective core (e.g. Maeder 1974a,b; Langer
1991; Noels et al. 2010). We computed models using the Ledoux criterion and the overshooting
prescription described in Sect. 1.3.3 and realized that this is also the case for low-mass stars using
our calibrated value for the overshooting efficiency. One should keep in mind, though, that the
calibration itself was based on certain assumptions about convection (e.g Pietrinferni et al. 2004;
Vandenberg et al. 2006).
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Figure 3.8: Hydrogen profiles for similar central hydrogen contents of the 1.5 M� models and
different mixing prescriptions: Ledoux criterion and no mixing in the semiconvective zones
(dashed blue line), αsc = 0.001 (thin dash-dotted green line), αsc = 0.01 (thick dash-dotted
light blue line), Schwarzschild criterion (solid red line), and one model including convective
overshooting (dotted black line).

3.4 Discussion

We have presented the results of our study of the influence of different convective boundary
definitions and prescriptions for chemical mixing on main sequence evolution of low-mass stars.
This has important consequences for the overall evolution of these stars: the resulting luminosity,
temperature, and main sequence lifetime of the star are strongly affected by these processes. We
focused our study on the effects of the existence and size of convective cores on stellar ages and
CMD morphology.

The definition of convective zone boundaries and the treatment of these regions from the
point of view of mixing has significant impact in derived quantities from stellar models. For stars
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such as HD 49933, where precise observational constraints such as metallicity, parallaxes, and
effective temperatures exists, we have shown that models for a given mass can differ significantly
in their inner structure by considering different criteria for convective boundary definition and
mixing processes. Although for the particular case of HD 49933 measuring the large frequency
separation reduces the parameter space of possible best-fit models, a large uncertainty remains
as models with completely different convective core sizes can reproduce this feature within the
HRD observational error box.

The age of a star at the end of the main sequence phase depends on the amount of fuel avail-
able for core burning. In the prescriptions we considered, this is governed by the size of the
homogeneously mixed zone in the center. The implementation of the Ledoux criterion for con-
vection and no mixing beyond the formal boundaries of the central convective region produces
the smallest convective core and consequently the shortest main sequence age for a given stel-
lar mass and composition. The time-dependent diffusive mixing in the semiconvective region
increases the amount of hydrogen in the center, reaching the same convective core size as the
Schwarzschild criterion for mixing efficiencies that are sufficiently high. Convective overshoot
can increase even more the extension of the mixed zone and the associated age value at the end
of the main sequence.

The appearance of a hook-like feature at the end of the central hydrogen-burning phase can
be shifted to higher mass values by including the Ledoux criterion, as we showed for a 1.2 M�

model. This has relevant consequences when isochrones are used to reproduce the shape of the
CMD of a stellar population given a chemical composition and a set of input physics (Vanden-
berg et al. 2007; Magic et al. 2010). Previous methods of analysis do not allow us to ensure
the existence or absence of a semiconvective region in stellar interiors. Further development of
numerical simulations and asteroseismic tools, such as the one presented here, can be the key
to solving this interesting issue (Bascoul 2007; Miglio et al. 2008). In the same line, constrain-
ing the existence and size of the central mixed region is another step towards a comprehensive
understanding of mixing processes.

While investigating different convective zone boundary definitions, we have seen that using
the Schwarzschild criterion for models with growing convective cores leads to inconsistencies in
the exact location of these regions. The layers at the top of the core may suddenly be mixed into
the central region increasing the central hydrogen content and developing loops in the convective
core boundary evolution (breathing pulses phenomenon). The question that arises then is how
to treat these zones. In the study by Crowe & Mitalas (1982), the authors took these layers into
account by mixing them until convective neutrality according to the Schwarzschild criterion was
recovered. The convective core grows beyond its previously established boundary, and a new
supply of fresh hydrogen is added to the core, also increasing the time a star spends transforming
hydrogen into helium.

Another option for dealing with these breathing pulses is to use convective overshoot as im-
plemented in GARSTEC, producing a smooth convective core profile during the main sequence
evolution. This prescription does not modify the thermal structure of the overshooting layers.
When an adiabatic stratification of the convective zone is considered instead (convective pen-
etration), small fluctuations at the edge of the core still appear but are smaller than the ones
presented in Fig. 3.5 (M. Salaris, private communication). These fluctuations are not likely to
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affect the computation of adiabatic frequencies.
Overshooting is an interesting topic in itself, but a detailed analysis of it goes beyond the

scope of this thesis. However, we can mention two important aspects we think deserve atten-
tion. One is the temperature gradient in the overshooting region. We have assumed in our study
that the temperature stratification in the radiative zone is not affected by the convective motions
beyond the formal boundary, while convective penetration assumes an adiabatic stratification in
this layer. Currently there is no consensus on this issue, and it is expected that numerical simula-
tions and asteroseismology will cast some light on the topic (Godart 2007). The other important
aspect is the size of the overshooting region. An exponential decay of the convective velocities
is an alternative to an adiabatic extension to a fraction of a scale height of the convective region
(see Ventura 2007, for details). However, numerical simulations are not yet able to reproduce the
conditions of stellar interiors (Dintrans 2009).

Regarding the impact of overshooting in semiconvective layers, our calibrated value for the
the overshooting efficiency washes out the molecular weight discontinuity that produces semi-
convective regions. However, it has been suggested that the presence of a molecular weight
barrier at the edge of the core might reduce the amount of overshooting from it (Canuto 1999),
thus it could be possible for a semiconvective region to exist even with overshooting. As an
example, when using half of our calibrated value for the efficiency of overshooting, a semicon-
vective region still exists for masses of the order 1.2 M�.

The type of overshooting implemented in GARSTEC considers an exponential decay of the
convective velocities, producing a smooth chemical profile in the overshoot region. Other evo-
lutionary codes employ a different approach for this process, such as extending the convective
region from its boundary by a certain fraction of a pressure scale height, and fully mixing this
region. The net effect is to produce a larger convective core, but the sharp discontinuity in the
molecular weight remains at the edge of the overshoot region. It may be possible for semicon-
vective zones to develop under these circumstances.



Chapter 4

Asteroseismic diagnoses for stellar interiors

This chapter contains the second part of the article published in Astronomy & Astrophysics in
March 2011 (Silva-Aguirre, Ballot, Serenelli, & Weiss 2011a). We explore the possibility of de-
termining the presence of a convective core and distinguishing different sizes of homogeneously
mixed central regions and evolutionary stages by means of asteroseismology. We do this by
studying the effects that different types of convective mixing processes have on asteroseismic
variables obtained by means of frequency combinations, in agreement with the expected quality
of data being obtained by the aforementioned space missions.

4.1 Introduction

We have highlighted in Chapter 3 the importance of the different mixing prescriptions considered
in this paper on structure and evolution of low-mass stars. In practical terms, these convective
processes translate into different convective core sizes, ages, and evolutionary stages for compat-
ible positions in the HRD. The quest for detecting the variations in stellar interiors produced by
differences in the mixing and energy transport processes can be fulfilled by a technique capable
of piercing the outer layers of stars, and which is sensitive to density discontinuities.

There have been many efforts to discover the physics of stellar interiors by understanding
the influence that different physical phenomena have on the observed frequency spectra. In
particular, it is known that a discontinuity in the chemical profile of a star produces a sharp
variation in the adiabatic sound speed, which in turn introduces an oscillatory component in
the frequencies (Vorontsov 1988; Gough 1990; Provost et al. 1993). This fact has already been
applied to determine the position of the base of the convective envelope in the Sun (Christensen-
Dalsgaard et al. 1991), to constrain the amount of overshoot below it (Monteiro et al. 1994;
Roxburgh & Vorontsov 1994; Christensen-Dalsgaard et al. 1995), and to constrain the properties
of the solar helium second-ionization zone (Christensen-Dalsgaard & Hernández 1991; Antia &
Basu 1994; Monteiro & Thompson 2005). The same technique has been proposed to determine
the position of the base of the convective envelope and estimate the helium abundance for stars
other than the Sun (Monteiro et al. 2000; Monteiro & Thompson 1998).

Following this principle, convective cores in low-mass stars have been the subject of several



64 4. Asteroseismic diagnoses for stellar interiors

studies by means of asteroseismology aiming to determine the evolutionary state and size of
the mixed central region in stars (e.g Audard & Provost 1994; Audard et al. 1995; Mazumdar
& Antia 2001; Mazumdar et al. 2006; Cunha & Metcalfe 2007). Most of these investigations
have focused their attention on constraining the size and chemical composition of the convective
core, while only a few of them have acknowledged the impact of its boundary definition and
extra mixing processes such as semiconvection and overshooting in the oscillation frequencies
(Popielski & Dziembowski 2005; Godart 2007; Miglio et al. 2008; Lebreton et al. 2009). In this
section we aim at finding a seismic tool that isolates the stellar core and which is sensitive to its
size and central hydrogen content, allowing us to disentangle the different mixing prescriptions.

4.2 Seismic variables suited to isolate the core
To study the inner structure of a star using asteroseismology , we first need to find an appropriate
seismic variable that allows us to probe the desired region of the star and extract the required
information. Different combinations of low-degree p modes have been suggested as suitable
probes of the physical characteristics of a star, the most commonly used being the so-called large
and small frequency separations defined as

∆`(n) = νn,` − νn−1,` (4.1)
d`,`+2(n) = νn,` − νn−1,`+2 , (4.2)

where νn,` is the mode frequency of angular degree ` and radial order n. These combinations are
affected by the outer layers of the star where turbulence on the near surface is almost never taken
into account in stellar modeling (e.g. Ballot et al. 2004).

In our case, we need to isolate the signal arising from the interior of the star from surface
contamination in order to properly quantify the effects in the frequency spectra of the presence
of a convective core. Roxburgh & Vorontsov (2003) proposed to use the smooth 5-points small
frequency separations and the ratio of small to large separations, and showed that these quantities
are mainly determined by the inner structure of the star. They are constructed as

d01(n) =
1
8

(νn−1,0 − 4νn−1,1 + 6νn,0 − 4νn,1 + νn+1,0) (4.3)

d10(n) = −
1
8

(νn−1,1 − 4νn,0 + 6νn,1 − 4νn+1,0 + νn+1,1) (4.4)

r01(n) =
d01(n)
∆1(n)

, r10 =
d10(n)

∆0(n + 1)
. (4.5)

The small frequency separations have already been used to identify the location of the convective
envelope and the helium second-ionization zone in the Sun by applying them to observational
data (Roxburgh 2009), while it has been shown that the ratios (Eq. 4.5) fairly cancel out the
influence in the frequencies of the outer layers (Roxburgh 2004, 2005; Otı́-Floranes et al. 2005).
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We can consider the ratios r10 and r01 as a single set of data (dubbed r010), alternately centered
on ` = 0 and ` = 1.

As mentioned before, sharp variations in the adiabatic sound speed produce a shift in the
eigenfrequencies relative to those in a corresponding star with a smooth sound speed profile.
The shift is an oscillatory function of the frequency itself, whose period is related to the posi-
tion of such a discontinuity. Thus, the frequencies can be expressed as a combination of two
components:

νn,` = νsmooth
n,` + δνn,` , (4.6)

where νsmooth
n,` corresponds to the smooth component and δνn,` represents the perturbation intro-

duced by the discontinuity in the sound speed.
The period of the oscillatory signal relates to the travel time of the wave through the acoustic

cavity, hence to the radial coordinate where the discontinuity is located (Monteiro et al. 1994;
Roxburgh & Vorontsov 1994, 2001). As shown in Sect. 2.2.4 (Eqs. 2.61 and 2.62), the travel
time of the wave is given by the acoustic depth τ. There is an alternative representation of this
acoustic depth called the acoustic radius, given by

t̃ =

∫ r

0

dr
cs

(4.7)

which measures the travel time from the center towards the surface. Therefore, if the total acous-
tic radius is given by τc = t̃(R), then clearly τ = τc − t̃. If the location of the density discontinuity
is given by, say, r1 in radial coordinates, and that same position is represented in acoustic radius
and acoustic depth by t̃1 and τ1 respectively, the periods of the oscillation in frequency space in-
duced by this sharp variation are 1/(2t̃1) and 1/(2τ1), according to the considered seismic variable
in Eq. 2.61. That being the case, if either the ratios or the small separations are only affected by
the position of the convective core, we could extract this information from the frequency data.

4.3 Sensitivity of r10 and r01 to the core
If the differences and ratios defined in Eqs. 4.3, 4.4, and 4.5 are indeed sensitive to the deep
stellar interior, they should be strongly influenced by the presence of a convective core or a
steep gradient in the adiabatic sound speed near the center (Roxburgh & Vorontsov 2007). To
test this, we produced two sets of evolutionary tracks for a 1.1 M� star, one using the normal
Schwarzschild criterion and the other including overshooting without the geometrical restriction
described in Sect. 1.3.3. This way, we produced a 1.1 M� model with a growing convective
core during the hydrogen-burning phase, while the Schwarzschild model has a radiative core. To
compare the effects of the presence of the core, we plotted the evolution of these models during
the main sequence in Fig. 4.1. The left panels present the ratios as a function of frequency, while
the center panels show the adiabatic sound speed in the stellar core for the selected models,
whose position in the observational plane is depicted by a filled circle in the right panels of the
figure.

The frequency ratios present a common component in the low frequency domain (see left
panels), which therefore should be dependent on the global seismic properties of the star: the
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Figure 4.1: 1.1 M� models with a convective core (green) and without one (red) during the
main-sequence evolution. Each row depicts models sharing the same large frequency separation.
Left Panels: frequency ratios as defined in Eq. 4.5. Horizontal lines show a typical observable
frequency range for each mixing prescription of radial orders n=15-27. Central Panels: adiabatic
sound speed as a function of the acoustic radius. Right Panels: evolutionary tracks for the two
cases considered, the position of the studied models being represented by a filled circle. Values
of the selected large frequency separations are given (in µHz)

selected models have the same large frequency separation. At higher frequencies, the ratios
deviate from each other, revealing the structural differences between the models. This part of
the frequency domain presents two contributions: one given by the presence of a convective
core and another one dominated by the evolutionary state of the model (equivalent to the central
hydrogen content). The oscillatory component observed in the ratio of the model calculated with
overshooting is related to the presence of a convective core.

A straight line can be drawn between the point where the ratios start deviating from each
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other and the frequency value where the oscillatory component of the model with the convective
core shows its first minimum. We refer to this part of the frequency domain as the linear range
from here on. Independently of the presence of a convective core, we observe an increase in
the slope – strictly speaking of its absolute value – with evolution, suggesting that it traces the
central hydrogen content of the star (hence stellar age). Thus, the sole presence of a negative
slope does not ensure the existence of a convective core (see also Brandão et al. 2010).

Figure 4.2: Same as Fig. 4.1 for 1.1 M� models having a similar central hydrogen content of
Xc ∼ 0.14. See text for details.

However, in the last row of panels in Fig. 4.1, the plotted models have very different central
hydrogen abundances (Xc ∼ 0.14 versus Xc ∼ 0.4 for the model without and with convective
core, respectively). In the model without a convective core, the increase in the slope mainly
comes from the growth of the density gradient in the center, built during hydrogen burning.
Nevertheless, the slope is noticeably higher for the model with a convective core, even if this
star is less evolved. In fact, we show in Fig. 4.2 the difference in the frequency ratios and sound
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speed profiles of the model without convective core at Xc ∼ 0.14 and the equivalent model with
convective core at the same central hydrogen content. It is clear in the figure that, regardless of
having the same central hydrogen content, the model with a convective core shows a much larger
absolute slope in its frequency ratios. This difference is clearly a clue to the presence or absence
of a convective core and will be discussed in Sect. 4.5.

The global behavior of the small frequency separations is the same as the one observed in
the frequency ratios. Thus, we will focus the analysis in the ratios keeping in mind that the same
conclusions are applicable to the case of the separations.

4.4 Influence of mixing prescriptions on r10 and r01

When considering only those models that do have a convective core, we can study the sensitivity
of the ratios to the position and size of the convective core and to the size of the density disconti-
nuity. We explore the behavior of 1.3 M� models in the three most extreme cases in terms of the
size of the mixed region: Ledoux criterion with no extra mixing in the semiconvective region,
the normal Schwarzschild criterion, and one evolutionary sequence including overshooting. An
error of 0.2 µHz in the frequency determinations was assumed, as expected from the CoRoT and
Kepler missions (Baglin et al. 2006; Christensen-Dalsgaard et al. 2007).

In Fig. 4.3 we present a similar diagram as in Fig. 4.1 showing the changes of this seismic
diagnose as a function of the central hydrogen content, therefore mapping the main sequence
evolution. When considering one mixing prescription (indicated by different colors) we notice
that the absolute value of the slope of the frequency ratios increases with evolution. The con-
sidered models have the same central hydrogen content, so when observing this behavior of the
ratios nothing can be said about the exact evolutionary stage of the star. However, the size of
the discontinuity in the adiabatic sound speed is indeed different, as is the size of the cores, the
largest being the one with the most negative slope.

One is tempted to interpret this as a direct relation between the size of the discontinuity and
the absolute slope of the ratios, but two details must be taken into account: for the Ledoux cri-
terion, the change in the slope during the main sequence evolution is much smaller than for the
other cases, and the acoustic radius of the fully mixed region remains almost constant (while for
the other prescriptions it increases). It is clear that the value of the absolute slope has contribu-
tions from the position of the convective core and the size of the sound speed discontinuity.

Bearing this in mind, instead of using the central hydrogen content as a proxy for the evo-
lution of the ratios, we considered models with the same large frequency separation, as it is the
parameter first and most easily obtained from seismic observations. Figure 4.4 shows this case
for the 1.3 M� models with large separations equal to ∆ν =110, 100, 95, and 88 µHz. Due to
the differences in the mixing prescriptions, the selected models do not have the same central
hydrogen content but almost the same age. As a side remark it is worth mentioning that, as ∆ν is
a measure of the mean density, models with equal masses and large frequency separations have
also the same radius. Recalling the mass-luminosity relation for main-sequence stars introduced
in Sect. 1.2.2 (Eq. 1.7), the effective temperature of the stars must also be the same. Thus, it is
not surprising that the models overlap in the HRD, as shown in the right panels of Fig. 4.4.
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Figure 4.3: Comparison of 1.3 M� models using different mixing prescriptions: Ledoux (blue),
Schwarzschild (red) and overshooting (green). Each row of models represents a value of the
central hydrogen content (from top to bottom): Xc = 0.65, Xc = 0.45, Xc = 0.25, and Xc = 0.05.
Left Panels: frequency ratios as defined in Eq. 4.5. Horizontal lines show a typical observable
frequency range for each mixing prescription of radial orders n=15-27. Central Panels: adiabatic
sound speed showing the position of the density discontinuity and therefore of the edge of the
homogeneously mixed core. Right Panels: evolutionary tracks for the three selected prescrip-
tions, and the position of the studied models is represented by a filled circle. Error bars have
been plotted for reference in the models computed with the Schwarzschild criterion.

The behavior at the low-frequency range (ν . 1200 µHz) is the same for the three mixing pre-
scriptions for a given value of the large frequency separation. As already mentioned in Sect. 4.3,
this is an indication that this part of the frequency spectrum is dominated by the global seismic
properties of the star, while the frequency values above ∼ 1200 µHz seem to be sensitive to the
differences in the interior (the linear range).
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Figure 4.4: Same as Fig. 4.3 but each row represents models with the same value of the large
frequency separation, which is given in the right panel of each row (in µHz).

Within this frequency region where the information of the core is contained, we can compare
in Fig. 4.4 a case opposite to the one in Fig. 4.3: the last row presents models with the same size
of discontinuity of the adiabatic sound speed (∼ 0.27× 107 cm s−1). The hydrogen content of the
Ledoux (blue) model is only ∼ 2% while for the the Schwarzschild criterion and for the model
with overshooting it is ∼ 28% and ∼ 32%, respectively. The model calculated with the Ledoux
criterion again has the lowest absolute slope value and the smallest size of the convective core.

We stress that the absolute value of the slope cannot be attributed only to the size of the
adiabatic sound speed discontinuity. In fact, we can distinguish three effects directly linked to
the global behavior of the ratios:

• a decrease in the central hydrogen content produces an increase in the slope in the linear
range, which is visible no matter whether a convective core is present or not;
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∆ν Model Teff log(g) Age Xc Jump Aradcc Slope Mean
(µHz) (K) (Myr) (107

cm s−1)
(s)

96 1.10 M� Sch 6048 4.22 6130.4 1e-5 —– — −23 × 10−4 0.049
Ove 5955 4.22 6531.1 0.216 0.610 150 −71 × 10−4 0.007

1.25 M� Led 6379 4.22 2636.2 0.016 0.225 62 −8 × 10−4 0.046
Sch 6332 4.22 2636.2 0.245 0.434 115 −21 × 10−4 0.041
Ove 6343 4.22 2630.4 0.287 0.430 125 −26 × 10−4 0.034

1.30 M� Led 6463 4.23 1812.8 0.159 0.370 75 −6 × 10−4 0.043
Sch 6496 4.23 1812.8 0.347 0.338 117 −15 × 10−4 0.038
Ove 6499 4.23 1810.5 0.376 0.329 128 −19 × 10−4 0.033

1.35 M� Led 6628 4.24 1146.8 0.346 0.255 90 −4 × 10−4 0.041
Sch 6651 4.24 1146.8 0.444 0.213 122 −10 × 10−4 0.035
Ove 6655 4.24 1144.6 0.465 0.228 131 −12 × 10−4 0.034

Table 4.1: Main properties of the models for a chosen value of the large frequency separation.
See text for details.

• when a convective core is present, an increase in the size of the discontinuity in the adia-
batic sound speed at the core boundary increases the amplitude of the oscillatory signature,
making the slope of the ratios steeper;

• the extent of the convective core also affects the slope: a larger convective core reduces the
period of the oscillatory component in the ratios, increasing in turn the absolute value of
the slope.

It is not straightforward to determine how much influence each of these effects have on the slope.
A differential comparison must be made in order to assess where the major contributions are
coming from. Nevertheless, now that the key processes affecting the frequency ratios have been
identified, we can use this information to disentangle those models with different central mixed
zones sizes and evolutionary stages.

4.5 Breaking the degeneracy: splitting mixing prescriptions
and finding convective cores

In the examples above we have shown that the frequency ratios are sensitive to the central hydro-
gen content, the existence and extent of a convective core, and the amplitude of the discontinuity
in the adiabatic sound speed, hence the importance of being able to disentangle the different
mixing prescriptions. An attempt to do so was presented by Popielski & Dziembowski (2005),
where they characterized the size of the mixed zone in stellar models using the small frequency
separation. The authors studied differences between two types of semiconvective mixing and two
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values of convective overshooting by averaging the small frequency separation over a range of
radial orders and using its slope. We apply a similar approach to the frequency ratios using the
radial orders n=15–27, a typical range that is expected to be detected by the CoRoT and Kepler
missions (see left panels of Figs. 4.1, 4.3, and 4.4).

Thus, following Popielski & Dziembowski (2005), we define the mean value of the frequency
ratios r010 for the total of 26 modes (13 for each ` value) in the range mentioned above as

〈r010〉 =
1

2(n2 − n1 + 1)

n2∑
ni=n1

r01(ni) + r10(ni) , (4.8)

where (n1, n2) = (15, 27) are the radial orders aforementioned. We use a normalized mean slope
defined as follows:

rs = ∆0
d r010

d ν
, (4.9)

where the derivative is determined by a linear fit in the considered radial orders, and ∆0 is the
mean large frequency separations of the ` = 0 modes in that range.

In Fig. 4.5 we present a slope (rs) versus mean (〈r010〉) diagram in the observable range of
the frequency ratios, for the complete main sequence evolution of different masses and mixing
prescriptions. For each mass value and mixing prescription, we have also selected one model
with a large frequency separation value of 96 µHz, their properties presented in Table 4.1. The
position of the zero-age main sequence model for a given mass value is the same regardless of the
applied mixing prescription, as the interiors are the same until that point. Once the models start
evolving, the different behaviors in their frequency ratios make them clearly distinguishable. The
tracks reach a minimum value in slope near the exhaustion of the hydrogen in the center (when
the convective core starts receding if present).

For the 1.1 M� tracks, the two cases present very different values of slopes throughout the
evolution, allowing us to differentiate a star with a convective core from one that has a radiative
interior. This is particularly interesting because the stellar parameters are almost the same for
both stars, so their positions in the CMD overlap within the usual observational uncertainties (see
Table 4.1). The potential of this technique has only recently started to be exploited (Deheuvels
et al. 2010; De-Meulenaer et al. 2010).

For more massive models, we show how this type of diagram can help us identify different
convective core sizes, evolutionary stages, and therefore mixing prescriptions. Keeping in mind
the results presented in Fig. 4.4, for a given mass value the diagram plotted in Fig. 4.5 can
disentangle between different convective core sizes, as tracks of a given mass and composition
neatly separate according to the mixing prescription applied. With an accurate measurement of
the large frequency separation, as expected from the space missions, we can identify the size of
the convective core and, since the mass and composition are known, the evolutionary stage.

Nevertheless, mass values determined from a combination of asteroseismic measurements
and modeling are usually precise within 5-10 % when metallicity is known (Metcalfe et al. 2010;
Gai et al. 2011). In Table 4.1 we present the parameters of models for each mixing prescription,
including central hydrogen content (Xc), size of the sound speed discontinuity at the edge of the
convective core (Jump), position of the edge of the convective core in terms of acoustic radius
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Figure 4.5: Slope versus mean value diagram of the frequency ratios (defined in Eqs. 4.9 and 4.8
respectively) in the assumed observable range throughout the main sequence evolution. Top
panel: 1.1 M� models without overshooting (solid red line) and with overshooting (dashed green
line). Bottom panel: different mass values for the three considered mixing prescriptions: Ledoux
(blue), Schwarzschild (red), and Overshooting (green). A representative 1-σ error bar is plotted
at the top left. Models marked with a filled circle have the same value of the large frequency
separation, and error bars correspond to 3-σ uncertainties in the frequencies. See text for details.

(Aradcc), and the slope and mean values of the frequency ratios in the radial order n=15-27.
These models have a mass difference of up to ∼8% and are neatly distinguishable in Fig. 4.5 for
the considered error bars, showing that our method is able to break the degeneracy between mass
value and mixing process. We stress again that this analysis relies on known seismic and stellar
parameters, in particular frequencies and metallicity. The effective temperature differences for
the mass range considered in Table 4.1 within a mixing prescription are ∼150 K, a typical obser-
vational error bar. Stars with a greater mass difference for this composition will have an effective
temperature that is incompatible with the observations at the same large frequency separation,
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which allows us to exclude them from the analysis.
As a closing remark, we notice that in Fig. 4.5 the track representing the evolution according

to the Schwarzschild criterion shows abrupt jumps in its slope and mean values. This effect is
a consequence of the convective process that was not properly taken into account at the edge of
the core, and the abrupt variations correspond to the loops in the convective core profiles (see
Sect. 3.3.1). However, the same general behavior as in the other mixing prescription is present,
so a mean value can be considered for comparisons.

4.6 Discussion
We focused our attention upon using frequency combinations sensitive to the convective core
size and the evolutionary stage of the star to discriminate the different mixing prescriptions. For
this purpose, we have chosen the frequency ratios and analyzed their behavior throughout the
main sequence evolution for different masses and mixing prescriptions. The ratios present a low-
frequency domain that is governed by the global seismic properties of the star (especially the
large frequency separation). However, for higher frequencies the behavior of the ratios changes
together with the inner conditions of the star. These are all high order low-degree modes and
correspond to what we have termed the linear range.

We have shown that the frequencies in the linear range are sensitive to the central regions
of the star. However, it is not straightforward to determine whether the modes are reaching the
convective core. The radial (l = 0) modes propagate down to the center of the star, but the
situation is different for the l = 1 modes. Different estimations of the turning points can be
made if the perturbation in the gravitational potential is neglected (the cowling approximation,
Cowling 1941) or taken into account (Jeans 1928). In fact, it has been suggested that for stars
with convective cores the dipolar modes reach the very center of the star (Takata 2005, 2006).
This is an interesting topic where further development is surely needed.

From the results presented in this Chapter we can say that it is possible to estimate the size
of the homogeneously mixed zone using seismic data. In particular, we can distinguish between
stars with and without a convective core. This has important implications to, for instance, the
study of the pre-main sequence evolution. As mentioned in Sect. 1.2.1, stars in this phase develop
a small convective core, consequence of the spatially concentrated energy generation which dis-
appears once it is distributed over larger areas. Nevertheless, if the amount of overshooting in
the pre-main sequence phase is large enough, the convective core can survive and be sustained
during the main-sequence evolution. This will also impact on the minimum mass where a con-
vective core is prone to exist, and is a matter related to other interesting topics such as the solar
abundance determinations (see Vandenberg et al. 2007; Magic et al. 2010). Seismic observations
of low-mass main-sequence stars could shed new light into this hotly debated topic.

There are, however, several assumptions behind our prediction of discriminating between the
presence and absence of a convective core. Besides the expected frequency data, we assume that
there are determinations of stellar parameters from either spectroscopy or photometry, with an
uncertainty in effective temperature of ∼150 K. Given these observables we are only limited by
the value of the stellar mass, which might be estimated within 5-10% precision for a given mixing



4.6 Discussion 75

prescription using isochrones and asteroseismic scaling relations (Stello et al. 2009b; Basu et al.
2010; Gai et al. 2011).

The frequency ratios seem to isolate the signal arising from the stellar core enough to allow
us to study the central conditions of a star. Another asteroseismic tool aimed at studying small
convective cores was proposed by Cunha & Metcalfe (2007), where a combination of small and
large separations was constructed and analyzed using modes of angular degree l = 0, 1, 2, 3. In
their work, Cunha & Metcalfe (2007) find that the sharp discontinuity formed at the edge of
the convective core has a direct impact on the slope of their proposed quantity when plotted
against frequency, showing that the absolute value of the slope increases as a function of the
size of the chemical discontinuity (and therefore with decreasing amount of central hydrogen
content). Since observing l = 3 modes is very challenging owing to severe amplitude reduction,
Cunha & Brandão (2011) extended this study by using the small frequency separations defined in
Eqs. 4.3 and 4.4 and analyzing the changes in the slope, reaching the same conclusions as Cunha
& Metcalfe (2007).

The behavior with evolution is the same for the small frequency separations, the frequency
ratios, and the asteroseismic tool proposed by Cunha & Metcalfe (2007). Thus, our findings
are applicable to all of them. We have shown in Sect. 4.4 that, although there is a relation
between the size of the discontinuity in the adiabatic sound speed and the absolute slope of the
ratios, the total extent of the convective core and the central hydrogen content heavily influence
the frequency ratios. Three models with the same large frequency separation and similar size
of chemical discontinuity at the edge of the core have very different absolute slopes thanks to
their different convective core sizes and central hydrogen contents. On the other hand, models
that barely change the size of the convective core during the hydrogen burning phase show the
mildest change in the absolute slope of the ratios.

Using this linear range, our findings predict that we can distinguish stars with and without
convective cores, constrain the size of the homogeneously mixed central region and disentangle
the effects from stellar mass. All of these provided we use an adequate frequency combination
for isolating the signal coming from the core. The method relies on our knowledge of the stel-
lar composition, where large uncertainties can still be present. Nevertheless, the extensive and
highly accurate sets of observations obtained by the CoRoT and Kepler missions (e.g Michel
et al. 2008; Stello et al. 2010; Chaplin et al. 2010; Christensen-Dalsgaard et al. 2010) open an
exciting possibility for stellar physics: to apply differential analysis to stars with a common
property, such as metallicity, and pin down the differences arising from the inner layers of their
structure.

From the analysis performed in this Chapter, we have a clear theoretical understanding of
the different contributions in the linear range of the frequency domain and how to distinguish
the effects of mass and type of mixing for realistic error expectations in the observables. We
have based our study of the frequency ratios assuming that the oscillations are pure p modes,
but this assumption breaks down when modes with mixed p-mode and g-mode character ap-
pear (see Aerts et al. 2010, and references therein). These mixed modes carry information from
the deep interior and are very sensitive to the core conditions, making them ideal probes for
age calibrations in subgiant stars and mixing processes occurring during the main sequence (e.g.
Dziembowski & Pamyatnykh 1991; Straka et al. 2005; Deheuvels & Michel 2010; Metcalfe et al.
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2010). For instance, they could be detected in main sequence F-type stars with shallow convec-
tive envelopes, where these avoided crossings could more easily reach the visible frequency
range. However, different analysis tools from the ones presented in here must be developed to
fully exploit their potential.



Chapter 5

Ensemble asteroseismology using Kepler
data

In the preceding Chapter we presented an asteroseismic tool sensitive to the central conditions of
main-sequence stars. In particular, we showed how these frequency combinations are dependent
on the presence of a convective core, its size, and the evolutionary stage of the star. However, as
emphasized in Sects. 4.5 and 4.6, we have based our analysis under the assumption that accurate
stellar parameters are available for the targets, and that the mass is known within ∼10%. This
kind of precision is usually not possible to achieve by means of stellar track fitting; the com-
monly obtained error bars in Teff , log g, and [Fe/H], allow solutions to fulfill the observations for
different input physics and chemical compositions spanning a mass range larger than ∼10%.

Nevertheless, asteroseismology provides a different approach that can be used to determine
the mass and radius of pulsating stars. The following chapter contains a slightly extended version
of an article accepted by The Astrophysical Journal Letters in August 2011 (Silva-Aguirre et al.
2011c). In it, we study the possibility of identifying analogues of stars along the main-sequence
and subgiant phases using their global asteroseismic parameters, and thus construct for the first
time an evolutionary sequence in a model-independent way.

5.1 Introduction

The high-precision photometric observations obtained by the NASA Kepler mission (Borucki
et al. 2009) have led to a dramatic increase in the number of main-sequence and subgiant stars
with detected oscillations (Chaplin et al. 2010; Gilliland et al. 2010a). Data on hundreds of these
stars are now available to test our knowledge of solar-like oscillations and their dependence on
stellar parameters. Moreover, extremely precise information can be extracted on fundamental
stellar properties and compared to population synthesis models of our galaxy (e.g., Chaplin et al.
2011c).

The large ensemble of stars with detected oscillations allows us to select cohorts of targets
sharing one or more common properties. By performing comparative studies on these stars, it
should be possible to suppress the dependence of the modeling results on the shared charac-
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teristic, opening an exciting possibility for further constraining the internal physical processes.
This is the basis for differential asteroseismology : a detailed seismic comparison of the inner
structures of stars showing some similar property.

To exploit this technique, one must be able to identify stars with common characteristics.
Comparing the quantities extracted from conventional observations such as spectroscopy is not
sufficient to fully constrain stellar properties, and evolutionary models must be employed to
determine, e.g., masses and radii. Asteroseismology allows us to go one step further by providing
a tool to find pairs or groups of stars with similar characteristics.

In this Chapter, we use global seismic properties of solar-type targets observed by Kepler to
construct an observational sequence of field stars with masses similar to that of the Sun, in a
model-independent way.

5.2 Extracting mass and radius from asteroseismic data

There are two asteroseismic parameters that can be readily extracted from the p-mode oscil-
lation spectrum without the need for individual frequency determinations. As mentioned in
Sect. 2.3, one of them is the large frequency separation, ∆ν, which denotes the frequency differ-
ence between modes of the same degree and consecutive radial order (see Fig. 2.4). It has been
shown that, to very good approximation, ∆ν scales as the square root of the mean density (see
Sect. 2.2.4). This gives the following relation:

∆ν

∆ν�
=

√
ρ

ρ�
'

(M/M�)0.5(Teff/Teff,�)3

(L/L�)0.75 , (5.1)

∆ν� = 135.1 µHz and Teff,� = 5777 K are the observed values in the Sun.
The other parameter is the frequency of maximum oscillation power, νmax. In Fig. 5.1 we

show a power spectrum of the oscillations observed in the Sun, where the ’bell-shape’ pattern
of the oscillations can be clearly seen and the position of its maximum inferred. The value of
the solar frequency maximum oscillation power is usually considered to be νmax,� = 3150 µHz
(e.g., Chaplin et al. 2011a), although values down to νmax,� = 3050 µHz have also been used in
the literature (e.g., Mosser et al. 2010). The fact that νmax,� is defined for the total power (area)
under the peak of the highest ` = 0 mode, combined with realization noise, contribute to values
that can have of the order of ∼100 µHz difference.

The quantity νmax is related to the dynamical timescale of the atmosphere (e.g., Brown et al.
1991; Kjeldsen & Bedding 1995), as represented by the acoustic cut-off frequency given in
Eq. 2.53. This depends on the structure of the outer layers of the star, where the temperature,
pressure and density stratification will define the maximum frequency before oscillations become
evanescent. We remind the reader that, as mentioned in Sects. 1.3.3 and 2.2.2, simple approxi-
mations are normally used in stellar evolution calculations to model the outer atmosphere. The
relation for νmax reads

νmax

νmax,�
'

νa

νa,�
'

(M/M�)(Teff/Teff,�)3.5

(L/L�)
, (5.2)
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Figure 5.1: Power spectrum of the Sun obtained by the Birmingham Solar- Oscillations Network
(BiSON). The ’gaussian-bell’ shape forming the envelope of the well-defined peaks is clearly
visible, and the position of the frequency of maximum oscillation power can also be observed.
Figure courtesy of A.-M. Broomhall (from Broomhall et al. 2009).

where νa and νa,� are the acoustic cut-off frequency of the star and the Sun, respectively (cf.,
Eq 2.53). The exact nature of this relation is not yet fully understood.

The two global asteroseismic quantities ∆ν and νmax are tightly correlated over a wide range
of values, and the scaling relations they follow from the accurately known solar parameters
(Eqs. 5.1 and 5.2) have been extensively used in asteroseismic investigations (e.g. Hekker et al.
2009; Stello et al. 2009a; Hekker et al. 2011a). These scaling relations can be written as
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From these two equations it is evident that, provided we have a measurement of Teff , the
global seismic observables give a determination of stellar mass and radius for a given star that
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is independent of evolutionary models. This is the so-called direct method, and it has so far
been used to constrain the fundamental properties of red giant stars and distinguish different
populations of stars (e.g., Miglio et al. 2009; Kallinger et al. 2010; Huber et al. 2010; Hekker
et al. 2011b). It can now be applied to the hundreds of solar-type stars for which Kepler has
detected oscillations (Chaplin et al. 2011c), and find stars that have the mass of the Sun.

5.3 Data analysis and stellar properties determination

Figure 5.2: Teff-νmax diagram for the complete sample of targets with detected oscillations. Evo-
lutionary tracks are also plotted: at solar ([Fe/H]=0.0) metallicity for 0.85 M� (dash-dotted line),
1.0 M� (solid line), and 1.15 M� (dashed line), and at sub-solar metallicity ([Fe/H]=-0.5) for
1.0 M� (dotted line). The Sun is marked with its usual symbol.

We examined asteroseismic results for 2000 solar-type stars observed by Kepler during the
first seven months of science operations, with oscillations detected in more than 500 of them



5.3 Data analysis and stellar properties determination 81

(Chaplin et al. 2011c; Verner et al. 2011). Each star was observed for one month in short-
cadence mode (58.85 s sampling; see Gilliland et al. 2010b). Time series were prepared for
asteroseismic analysis as described by Garcı́a et al. (2011), using procedures that work on the
raw light curves. The prepared light curves were analyzed by different teams, who detected
and extracted the basic properties of the solar-like oscillations (∆ν and νmax). The methods of
extraction and descriptions of each pipeline may be found in Chaplin et al. (2010); Huber et al.
(2009); Mosser & Appourchaux (2009); Hekker et al. (2010); Mathur et al. (2010); Campante
et al. (2010), and Karoff et al. (2010).

Effective temperatures have been derived via the InfraRed Flux Method (IRFM) described by
Casagrande et al. (2010), using the available Sloan and Two Micron All Sky Survey (2MASS)
photometry compiled for the targets in the Kepler Input Catalog (KIC; Brown et al. 2011). Com-
parison shows that the KIC effective temperatures are on average ∼250 K cooler than the ones
derived used in this study. This difference is within the uncertainties of both methods, and in
agreement with the results obtained from detailed spectroscopic analysis (Molenda-Żakowicz
et al. 2011).

As mentioned in Sect. 1.4, the position of the oscillations in the power spectrum shifts to-
wards lower frequencies as the star evolves. Thus, the value of the maximum power of the
oscillations can be considered as a proxy of evolutionary stage. Since we are interested in main-
sequence and subgiant stars with masses similar to that of the Sun, we have omitted stars with
νmax below 350 µHz which are beyond the subgiant phase of evolution.

Figure 5.2 shows a Teff-νmax diagram for all the targets constructed from results of different
pipelines, where we demanded that at least two of them reported oscillations in a star to consider
a detection. These results have been consolidated to take into account the different methods
for estimating uncertainties of each pipeline (as described by Verner et al. 2011). We have
overplotted evolutionary tracks for different masses and metallicities calculated with GARSTEC,
scaled from the Grevesse & Sauval (1998) solar mixture considering a helium enrichment ratio of
∆ Y/∆ Z = 1.8 (Casagrande et al. 2007) and not including diffusion of helium and heavy elements
(which is why the solar metallicity 1 M� track does not overlap the position of the Sun).

It is already clear in Fig. 5.2 that a number of oscillating stars are located on or very close
to the evolutionary tracks and thus are potentially 1 M� stars. Interestingly, the stars are con-
centrated in two main regions, with an apparent gap between them (around Teff ∼5300 K and
νmax ∼600 µHz). This feature suggests a rapid evolutionary stage where few stars are found,
which could be identified as the transition between the main-sequence turn-off and the base of
the red giant branch, or the disappearance of a convective core following the hydrogen exhaustion
in the center which is not predicted by the models. It has also been suggested that an increase in
the surface magnetic activity due to evolution can account for the lack of detections in this region,
since activity depresses the oscillation amplitudes (Gilliland 1985; Chaplin et al. 2011b). The
concentration of stars above the gap (around Teff ∼5200 K and νmax ∼400 µHz) further supports
the latter idea.
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5.4 Results
We have applied the direct method to the sample in Fig. 5.2 and determined log g values using
the asteroseismic results extracted by the Queen Mary of London University (QML) pipeline,
which has been used as reference for comparison with other pipelines (Verner et al. 2011). In
order to identify stars with masses similar to the Sun for constructing the evolutionary sequence,
we selected targets that according to their determined masses and uncertainty, propagated from
Eq. 5.3, had a probability larger than 68 % to be in the 0.85-1.15 M� range.

Figure 5.3: Position in the log g-Teff plane of the targets, where log g was obtained from the
scaling relations. Stars with masses determined to be 1 M� ± 15% are plotted in red circles,
and stars with oscillations detected that do not match the criterion are plotted as gray diamonds
(without error bars to reduce clutter). Blue squares are stars with available spectroscopic results.
Stellar tracks and position of the Sun are plotted as in Fig. 5.2.

Figure 5.3 shows these stars in the log g-Teff plane, where 72 targets are found to match the
selection criterion. The distribution of matches in the observational plane is neatly contained
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by the stellar tracks, pointing towards an agreement between the asteroseismic mass values and
evolutionary predictions. As in Fig. 5.2, a gap can be seen around Teff ∼5300 K and log g ∼3.7,
again identified with the separation between the end of the main-sequence and the red giant
phases.

In Fig. 5.3 it is also clear that most of the matches fall on the hotter side of the solar-metallicity
1 M� track. There are two possible reasons for this. The first is that the amplitudes of the oscil-
lations increase with increasing L/M ratio (or some variant of it, see Samadi et al. 2007; Mosser
et al. 2010; Chaplin et al. 2011b; Kjeldsen & Bedding 1995, 2011), resulting in a detection bias
in our ensemble that favors hotter (higher-than-solar-mass) main-sequence and subgiant stars.
However, for our considered threshold, only 53 % of the matches have a determined mass larger
than 1 M�, suggesting a mass distribution barely skewed to higher values than our target mass.
The second reason is a spread due to different chemical compositions of the stars because, for a
given mass, a lower metallicity will imply a higher luminosity (and vice versa).

Table 5.1: Stellar parameters of the four targets with available spectroscopic observations.
Star Mass (M�)a Teff IRFM (K) Teff (K)b log ga log gb [Fe/H]b Source

1 0.96 ± 0.051 5671 ± 94 5715 ± 82 4.32 ± 0.007 4.31 ± 0.14 0.30 ± 0.06 ARES
2 1.04 ± 0.043 6073 ± 100 6073 ± 78 4.28 ± 0.006 4.38 ± 0.12 −0.10 ± 0.06 ARES
3 1.07 ± 0.051 6105 ± 101 5940 ± 70 4.18 ± 0.006 4.21 ± 0.08 −0.10 ± 0.07 VWA
4 1.07 ± 0.062 5836 ± 124 5870 ± 70 4.09 ± 0.008 4.07 ± 0.08 −0.01 ± 0.07 VWA

a From the direct method.
b From spectra.

Keeping this in mind, we can infer from the position of the stellar tracks in Fig. 5.3 that the
spread is most likely due to differences in the chemical compositions of the stars. The effects
of different masses and other physical processes such as microscopic diffusion (estimated by the
separation between the 1 M� solar metallicity track and the position of the Sun) are not large
enough to account for this spread. Unfortunately, we do not yet have spectroscopic determina-
tions of metallicity for most of the stars we are studying, so the question arises: can we reliably
identify stars with similar masses, or does the direct method provide incorrect mass determina-
tions that are camouflaged by the unknown stellar parameters?

We can have a first glimpse at the answer by using spectroscopic results which are available
for four of our targets (blue squares in Fig. 5.3). The stellar parameters have been determined us-
ing the Automatic Routine for line Equivalent widths in stellar Spectra (ARES; Sousa et al. 2008)
and the projected rotational Velocity, Wavelength shift, and Abundance analysis (VWA; Bruntt
et al. 2010) methods. It is worth mentioning that we selected the spectroscopic set of parameters
with log g value closer to the direct method determination. These are shown in Table 5.1, where
it can be seen that the uncertainties in log g from the direct method are of the order of 10 times
smaller than those coming from high-resolution spectroscopy. Our Teff input values (IRFM) for
these four stars are compatible with the spectroscopic results.

In Fig. 5.4 we compare the results of the direct method for the four stars with evolutionary
predictions by showing deviations in Teff between our IRFM input parameter and stellar tracks
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Figure 5.4: First three panels show the Teff difference (IRFM-model) for the four targets marked
in Fig. 5.3 and: (a) the 1 M� track at solar metallicity, (b) a 1 M� track at the spectroscopic
metallicity for that star, and (c) a track of the mass determined by the direct method and the
spectroscopic metallicity for that star. Panel (d) shows the log g values obtained from spec-
troscopy compared to those determined with the direct method, with the dashed line indicating
the one-to-one relation.

at the log g value determined from the direct method. Figure 5.4(a) shows the Teff difference be-
tween our targets and a 1 M� evolutionary track at solar metallicity, with large deviations arising
from a combination of different metallicities and masses. The following panels show the results
when we take these differences into account step by step. Firstly, Fig. 5.4(b) depicts the differ-
ence in Teff between our targets and 1 M� tracks at the metallicity obtained from spectroscopy.
Stars 1 and 2 are already compatible with the stellar tracks, which is encouraging as their masses
determined with the direct method are consistent with 1 M� within their 1-σ uncertainties. The
other two stars have slightly higher-than-solar mass determinations. In Fig. 5.4(c) the difference
is calculated with respect to evolutionary tracks of the metallicity measured by spectroscopy and
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mass determined from the direct method. It is clear that the agreement improves as we include
the effects of mass and chemical composition, reinforcing the conclusion that the direct method
predicts masses for field stars compatible with evolutionary tracks at the metallicities obtained
from spectroscopy, in a model-independent way. Moreover, the log g values determined with the
direct method are in agreement with the spectroscopic results, as shown in Fig. 5.4(d).

Unfortunately, individual frequency determinations are not yet available for the four targets
with spectroscopic metallicities determined. Further confirmation of the stellar masses could be
provided by the behavior of some frequency combinations, such as the ratios r010 introduced in
Chapter 4. As an example, we show these quantities in Fig. 5.5 for models from the 1.0 M� and
1.15 M� tracks from Figs. 5.2 and 5.3, selected at the large frequency separation value of the four
targets with spectroscopic data.

Figure 5.5: Frequency ratios r010 for models of 1.0 M� (blue) and 1.15 M� (red) at solar metallic-
ity, selected at the large frequency separation of the four targets with spectroscopic data. Labeling
of the targets is given in the upper-right corner of each panel, where the numbers correspond to
those given in Table 5.1 and Fig. 5.4.
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A similar analysis was presented in Sect. 4.3, where models with the same mass but differing
in their means for energy transport in the stellar core were presented. It was clear from that
example that the frequency ratios are very sensitive to the existence of a convective core. In
the comparison shown in Fig. 5.5, both models have radiative interiors, but different central
hydrogen contents. The ratios r010 are clearly different for the cases considered, hinting towards
the interesting possibility of discriminating between stars of different masses by means of these
frequency combinations. This possibility is further explored, and applied to Kepler data, in
Sect. 6.4 below. It is also interesting to notice that for the most evolved target (number ‘4’), the
range of frequencies that could be potentially observed reaches only the beginning of the linear
range in r010. This must be kept in mind when trying to characterize the stars using this frequency
combination.

Figure 5.6: Metallicity distribution in the Kepler field as simulated by the SMAUG code, show-
ing stars with a probability higher than 90 % to have oscillations detected after one month of
observations.

For the rest of the targets, however, the issue of the chemical composition still remains.
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In order to obtain some information on the expected metallicities for the rest of our targets,
we simulated the stellar population in the Kepler field using the Simple Model for Analytic
Understanding of our Galaxy code (SMAUG; Schönrich & Binney 2009a,b). The outcome of the
simulation has been filtered to retain only synthetic stars that, according to their radius, effective
temperature and visual magnitude, have a probability greater than 90% for the Kepler satellite to
detect oscillations in one-month-long observations (Chaplin et al. 2011b). The resulting subset
has been further restricted to stars with Teff ≤ 7000 K, log g ≥ 3.4, and mv ≤ 12.5. The metallicity
distribution of that population is shown in Fig. 5.6, and it peaks at a sub-solar value with the bulk
of stars contained in a range for chemical composition that makes them clearly compatible with
the position of our matches and stellar tracks in Fig. 5.3.

5.5 Discussion
The sequence of field stars identified in the previous section shows very good agreement with
the expected position of 1 M� stars in the log g-Teff plane. For those targets with metallicity
measurements available, the masses and radii determined with the direct method are fully com-
patible with evolutionary tracks and spectroscopic log g determinations. Nevertheless, we must
keep in mind that uncertainties in the observables and the scaling relations can affect our derived
quantities.

From Eqs. 5.3 and 5.4 it is clear that the mass and radius determinations are mostly sensitive
to the uncertainties arising from the asteroseismic parameters. Although the errors in effective
temperature determinations cannot be neglected, the fractional uncertainties in νmax are currently
up to four times larger than those in Teff and ∆ν. Therefore, the uncertainties in the frequency of
maximum oscillation power currently account for most of the error budget.

Masses and radii determined from the direct method have an intrinsic uncertainty associated
with two effects: deviations from the scaling relations and unknown stellar properties that can
change the pulsation characteristics of the star. The scaling relation between the large frequency
separation and the mean stellar density has been shown by theoretical models to be quite robust
(Stello et al. 2009a). It is more complicated to estimate the uncertainties arising from the νmax

scaling, since it relies on the relation between νmax and the acoustic cut-off frequency under the
assumption of an isothermal atmosphere (e.g., Brown et al. 1991). Although a partial theoretical
basis for this relation has only recently been developed (Belkacem et al. 2011), comparisons
under this assumption with stellar models predict that it holds within a few percent for cool
models (close to solar-mass, see; Stello et al. 2009a). Observational results for stars whose
parameters are accurately known confirm this result (Bedding & Kjeldsen 2003). Realistic model
atmospheres could help to assess its deviations, as could comparisons with direct observational
methods to measure stellar properties, such as long-baseline interferometry.

The other main source of uncertainties is related to unknown stellar parameters, such as
chemical composition. It is possible to complement the direct method with our knowledge of
stellar evolution and match the seismic observables to their expected values from previously cal-
culated evolutionary models. This so-called grid-based method has been shown by simulations
to perform as well as the direct method for constraining the radius (Stello et al. 2009b; Basu
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et al. 2010; Kallinger et al. 2010). When accurate metallicity measurements are available, the
grid-based method is supposed to reduce the uncertainty in the mass determination (Gai et al.
2011). However, this study has shown that the scaling relations are not too sensitive to stellar
composition.

A few words of caution regarding the grid-based asteroseismic analysis. To find the mass and
radius of a target, the grid-based method calculates the maximum likelihood of the set of observ-
ables ∆ν, νmax, Teff, [Fe/H], and their uncertainties, with respect to pre-calculated evolutionary
tracks (Basu et al. 2010; Gai et al. 2011). In order to do so, the same set of input parameters must
be estimated for the stellar models, which will naturally depend on several considerations used
to build the grid. In particular, estimations of ∆ν and νmax are normally made from the relations
given in Eqs. 5.1 and 5.2. Thus, for a given mass, any process affecting the outcoming effective
temperature and luminosity will change the value of the global seismic parameters.

A clear example of this are the estimates of metallicity. As this comparisons are made in
terms of [Fe/H], the results will depend on the set of chosen solar abundances and reference Z
and Y values (cf. Sect. 1.1.2), and the possible inclusion of any process that can alter the surface
chemical composition during evolution (such as atomic diffusion). This has a direct impact in
the obtained Teff and luminosities. Same occurs with the other physical processes described
in Sect. 1.3.1, where the inclusion of overshooting, or the chosen value of the mixing-length
parameter αMLT have an impact in the resulting Teff . The impact in the obtained masses and radii
using the grid-based method of the different ingredients of stellar evolution remains to be tested
thoroughly.

In the future, we expect another validation of our results to be made by comparing the log g
values determined with the direct method to the parallaxes that will be obtained from the Kepler
(Gilliland et al. 2010a) and Gaia missions in the future, given that a variation in mass of 10 %
translate into a change in log g of approximately 0.04 dex (Casagrande et al. 2011).

In this work, we constructed the evolutionary sequence by applying the selection criterion to
the parameters extracted by one particular pipeline. Different pipelines produced similar results
in terms of the distribution of the matches in the HRD and the spread around the evolutionary
tracks (see Fig. 5.3). A natural step forward would be to combine the results of several pipelines
to restrict further the matches and make the results even more robust. However, there is still some
variation between the extraction methods in the determination of νmax. The reason probably lies
in the low signal-to-noise ratio of some of the observations and the relatively short time-span of
the data currently available (Verner et al. 2011).

Finally, our selection criterion can be arbitrarily modified to accept, for instance, stars with
masses within 10 % of 1 M�. In such case only 20 targets satisfy the criterion, while increasing
the threshold to 20 % results in 120 matching stars. We have kept the 15 % threshold as a good
compromise between a required high precision and the uncertainties described in the previous
paragraphs.



5.6 Conclusions 89

5.6 Conclusions
Constructing empirical evolutionary sequences from asteroseismic data offers the exciting pos-
sibility of performing differential analysis on field stars of similar masses, allowing us to test
stellar properties very precisely through different evolutionary phases. Scaling relations using
global asteroseismic parameters and Teff measurements allowed us to determine masses of stars
in a model-independent way. The position of our matches in Fig. 5.3 suggests that we have
successfully identified an evolutionary sequence of field stars with masses very close to 1 M�.
The results are encouraging and for the first time we can construct such a sequence without par-
allax information, spectroscopic log g, or masses estimated from evolutionary tracks. Longer
time series and ground-based follow-up spectroscopy will further enhance the capabilities of this
technique, allowing us to reach a higher level of precision.

The results from Sect. 5.4 indicate that our mass and radius determinations are very robust.
Using these results and the input effective temperature, together with a grid of stellar models, it
should be possible to derive the expected metallicity distribution of the targets. This distribution
will depend on the input parameters used to calculate the grid, most notably the selected solar
abundances, ∆ Y/∆ Z value, αMLT parameter, and the inclusion of mixing processes such as dif-
fusion. Future comparisons of this metallicity distribution with accurate chemical composition
determinations could help to constrain the input parameters of the grid models that produce the
largest variation in the resulting metallicities.

When suitable analogues are found in different evolutionary stages and their individual fre-
quencies determined, a differential analysis can be performed to better constrain the interior
physics of stars throughout their evolution. If targets with masses higher than solar are chosen
instead, we could differentially study the effects of mixing processes in their interiors and con-
strain processes that still rely mostly on empirical calibrations, such as convective core evolution
and overshooting (e.g. De-Meulenaer et al. 2010; Silva-Aguirre et al. 2011a). For example, by
selecting a sequence of stars of very similar mass it could be possible to produce a precise relative
age calibration.

Asteroseismology has provided us with a method to disentangle stars still ascending the red
giant branch from those already burning helium in their cores (Bedding et al. 2011). Our work
can be extended to identify evolutionary sequences from the main sequence to the red clump.
Differential analysis of these targets can provide further constraints on the main-sequence phys-
ical processes and shed light on the progenitors of horizontal branch stars.

In the near future, it will be interesting to construct evolutionary sequences and select twins of
very well-studied main-sequence stars, both seismically and in terms of their stellar parameters.
From the ensemble it is already possible to identify sequences for αCen A and B, although for
the latter case the number of analogues is much smaller due to our bias toward higher amplitudes
than the Sun. Some twins of αCen A are already present in the ensemble, and longer time-series
will allow us to expand the search to lower temperatures and find twins of our Sun and αCen B.
The potential of combining asteroseismic data with spectroscopic determinations for solar twins
has only recently begun to be exploited (see Bazot et al. 2011).
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Chapter 6

Sounding deep stellar interiors: convective
cores in Kepler main-sequence targets

This chapter presents the preliminary results of the seismic analysis of two main-sequence Ke-
pler targets, where individual frequencies have been determined. The work is organized as a
working package among the Kepler collaboration, and it is being led by V. Silva-Aguirre. The
results will be described in a forthcoming article which is currently in preparation (Silva-Aguirre
et al. 2011b). In order to fulfill the regulations of the non-disclosure agreement signed by every
member of the Kepler Asteroseismic Science Consortium (KASC), the identity of the targets
discussed in this chapter must remain anonymous. For simplicity, we will assign them ‘cat’
nicknames1.

6.1 Introduction
We have now all the necessary ingredients to carry out a thorough analysis of oscillations fre-
quency data to detect and constrain the properties of convective cores in main-sequence stars.
In Chapter 3 we evaluated the impact and importance of the size of the convective core for the
hydrogen-burning evolutionary phase, with special attention to the age differences. With this in
mind, in Chapter 4 we developed and tested an asteroseismic tool to probe the inner regions of
stars and studied its sensitivity to the presence and size of a convective core. However, we recog-
nized the necessity of a mass determination of the targets precise to ∼10%. The large ensemble
of stars with oscillations detected by the Kepler mission gave us the opportunity to apply scaling
relations from the global seismic parameters and identify stars of similar masses along an evolu-
tionary track. In Chapter 5 we showed that our mass determinations using the direct method are
compatible with stellar evolution models constructed using spectroscopically determined chem-
ical compositions, giving us confidence that we are in fact able to identify stars of a certain mass
with the required precision.

1The ‘cat’ names assigned to the stars are unique among the Kepler collaboration, and are commonly used in the
publications related to Kepler targets. Upon publication of the paper, the catalogue names and coordinates of the
objects will be revealed.
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From the hundreds of main-sequence targets the Kepler mission has provided asteroseismic
data for (e.g., Chaplin et al. 2011c; Silva-Aguirre et al. 2011c), individual frequencies have now
been determined for some of them from time-series spanning several months. We carry out
here the first investigation of two of these targets, with the aim of detecting convective cores,
constraining their size, and narrowing down the age uncertainties from those obtained by fitting
stellar tracks. Choosing suitable frequency combinations, we show that the current asteroseismic
data allows us to discriminate between existence or not of convective cores, and that it is also
sensitive to its total extent. We discuss our results in comparison with those obtained from the
direct method (presented in Sect. 5.2) and grid-based analysis for the stellar masses, and briefly
discuss the issue of the spectroscopically determined stellar parameters.

6.2 Characteristics of the chosen targets

The stars ‘Perky’ and ‘Dushera’2 selected to perform this study have been continuously observed
by the Kepler satellite for periods of 6 and 9 months, respectively. This has allowed the detection
of oscillations spanning several radial orders for both targets, which can be clearly seen in the
Echelle diagrams shown in Figs. 6.1 and 6.2. The length and quality of the observations allow
a clear identification of the ` = 0, 1 and 2 modes, as the excess power is neatly aligned into the
expected vertical ridges. It is important to notice that no signature of mixed-modes are present in
the diagrams (cf., Sect. 2.2.3), suggesting that both targets are in fact main-sequence stars. Using
the QML pipeline (Verner et al. 2011), we have obtained the global seismic parameters ∆ν and
νmax.

The stars have also been monitored from the ground. The available photometric information
from the KIC (Brown et al. 2011) has allowed the estimation of effective temperatures via the
IRFM (Casagrande et al. 2010), and high-resolution spectra obtained for both targets and ana-
lyzed using the VWA method (Bruntt et al. 2010) has complemented the set of stellar parameters.
In the case of Dushera, low-resolution spectra has also been obtained and analyzed using ARES
(Sousa et al. 2008). The stellar and global seismic parameters obtained for both stars are given in
Table 6.1. It is important to notice that the low- and high-resolution spectroscopic determinations

Table 6.1: Parameters determined from the observations of the Kepler mission, ground based
photometry, and spectroscopy for both stars.

Star νmax (µHz) ∆ν (µHz) Teff (K)a Teff (K) log g [Fe/H]
Perky 2210.73 ± 11.95 104.20 ± 0.04 6155 ± 73 5990 ± 70b 4.31 ± 0.04b −0.12 ± 0.07b

Dushera 1833.13 ± 12.82 88.41 ± 0.14 6337 ± 104 6065 ± 70b 4.21 ± 0.04b −0.12 ± 0.07b

6358 ± 99c 4.45 ± 0.13c 0.11 ± 0.07c

a From the IRFM.
b From VWA.
c From ARES.

2Cat-names given to the stars to comply with the KASC restrictions.
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Figure 6.1: Echelle diagram of Perky showing the signature of oscillations from 6 months obser-
vations. The vertical ridges are (from left to right) the ` = 2, 0, 1 modes. Position of individual
fitted frequencies has been marked with green squares (` = 2), crosses (` = 0), and diamonds
(` = 1), including the error bars.

of stellar parameters for Dushera do not agree, even when considering the 1-σ uncertainties. The
values of log g given for the VWA analysis were obtained by means of the grid-based method
using seismic data, and applied as an input to determine the other stellar parameters. The validity
of such an approach remains to be tested.

6.3 Grid-based analysis
In principle, since the chemical composition is determined by spectroscopy for both targets, we
can complement the seismic global parameters with this information and perform a grid-based
analysis. As mentioned in Sect. 5.5, when accurate metallicities are available the grid-based
method is supposed to narrow down the mass uncertainty with respect to those obtained by the
direct method. We performed a grid-based analysis for the two targets, using several pipelines
constructed from different evolutionary codes to search for their solutions of the best-fit model
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Figure 6.2: Same as Fig. 6.1 for the 9 month-long observations of the target Dushera.

to the seismic and spectroscopic data. The main characteristics of the input physics included
in each grid of models is shown in Table. 6.2. The details on how each grid of evolutionary

Table 6.2: Some characteristics of the input physics included in the evolutionary grids of models.

Grid Mixture Overshooting Diffusion
YB Grevesse & Sauval (1998) Yes Yes

RADIUS Grevesse & Noels (1993) No No
GARSTEC Grevesse & Sauval (1998) Yes Yes

SEEK Grevesse & Sauval (1998) Yes No

calculations was built and the different search methods can be found in the references of the
pipelines: Basu et al. (2010) (Yale-Birmingham or YB), Stello et al. (2009b) (RADIUS), and
Quirion et al. (2010) (SEEK). One more grid of models was constructed using GARSTEC, and
the best set of parameters for the models was found applying the same procedure as presented in
Basu et al. (2010).

Table 6.3 shows the stellar parameters that where given to the teams performing the grid
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based analysis, which were naturally accompanied with νmax and ∆ν. The uncertainties in the

Table 6.3: Input stellar parameters used by different teams to perform grid-based search of a
best-fit models for the two targets.

Star Teff (K) log g [Fe/H]
Perky 6100 ± 200 4.27 ± 0.1 −0.08 ± 0.1

Dushera 6200 ± 200 4.30 ± 0.2 0.0 ± 0.15

parameters, in particular for the case of Dushera, were chosen large enough to encompass as
best as possible the discrepant values provided by the spectroscopic analysis (those shown in
Table 6.1).

Table 6.4 shows the results obtained with each pipeline for the mass of the two targets, in-
cluding their 1-σ uncertainties. It is worth mentioning that the grid of models of each pipeline
have been constructed using different sets of input physics, solar abundances, opacities, equa-
tion of state, etc., which can account for some of the differences seen in the results. The last
column shows, for comparison, the mass value obtained with the direct method we presented in
Chapter 5.

Table 6.4: Masses (in solar units) as determined from each pipeline for the two targets. Also
shown is the mass value determined from the direct method. See text for details.

Star YB RADIUS GARSTEC SEEK Direct
Perky 1.013 ± 0.0691 1.020 ± 0.0297 1.167 ± 0.0978 1.200 ± 0.1162 1.060 ± 0.0549

Dushera 1.161 ± 0.1087 1.190 ± 0.1046 1.298 ± 0.1145 1.300 ± 0.1241 1.195 ± 0.0635

The average values of the mass determinations from the grids are 1.10 M� for Perky and 1.23
M� for Dushera. Within a 10% uncertainty of this average values, all the central masses obtained
by the pipelines are contained. However, when taking into account the 1-σ uncertainties given
by each grid, mass values between ∼0.94-1.31 M� are possible for Perky, and between ∼1.05-
1.42 M� for Dushera. These differences of more than ∼0.35 M� are much larger than expected
from the grid-based analysis, and the reason why they arise is yet to be tested for the pipelines
here involved.

6.4 The frequency ratios: precise mass estimations
Giving the difficulties for finding a precise mass determination using the grid-based analysis,
we turn our attention into detailed modeling of the two targets. We intent to use individual
frequency determinations and apply the tool developed in Chapter 4 to find the best-fit model by
reproducing the ratios r010 given in Eq. 4.5.

We start with the target Perky. Dushera will follow in Sect. 6.5. In Fig. 6.3 three evolutionary
tracks constructed at solar metallicity are shown, where the model fitting the large frequency
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Figure 6.3: Evolutionary tracks computed at solar metallicity to match the observations of Perky.
The filled circles represent the position of the model fitting the large frequency separation. The
tracks are constructed for 1.2 M� (red), 1.1 M� (blue), and 1.0 M� (orange). Dashed line shows
the observational error box. See text for details.

separation given in Table. 6.1 is marked with a filled circle on each track. The models where
constructed at solar metallicity (Grevesse & Sauval 1998) with the same input physics as de-
scribed in Sect. 5.3, using the Schwarzschild criterion for convective zones determination and
no additional mixing beyond this boundary. In the figure the observational error box given as
an input for the grid-based analysis is also depicted, and it can bee seen that two of the possible
best-fit models fall into the 1-σ values of Teff and log g.

There are different ways of defining what exactly the best-fit model is for a particular tar-
get. It is common practice in asteroseismology to minimize the difference between the modeled
frequencies and those observed, staying within the observational error box in the HRD. The prob-
lem with this approach is the well known issue of the surface effects, or the current inability of
stellar models to correctly describe the outer layers of stars. This leads to a systematic offset of
the modeled frequencies with respect to the real ones, which occurs even for the system that we
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know to be best constrained: the standard solar model. In Fig. 6.4 we show an Echelle diagram
comparing the solar frequencies observed by BiSON with those computed for the standard solar
model by Serenelli et al. (2009). Although the agreement is quite good for frequencies below
∼2500 µHz, a large discrepancy between observed and calculated values appears as frequencies
increase.

Figure 6.4: Echelle diagram for observed Sun. Solar frequencies obtained with the Birmingham
Solar-Oscillations Network (BiSON Chaplin et al. 2002) are plotted in black, while the frequen-
cies calculated from the standard solar model of Serenelli et al. (2009) are shown in blue. Circles,
diamonds, squares and triangles are used for modes of degree ` = 0, 1, 2 and 3, respectively. Bi-
SON data kindly provided by W. J. Chaplin, and the theoretical frequencies of the solar model
were provided by A. Serenelli.

A technique that is widely adopted to deal with this issue is to apply an empirical surface
correction to the frequencies. In a nutshell, the shape of the necessary correction to fit the fre-
quencies of the standard solar model to the solar data is used to match the observed frequencies
of other stars (a power-law, see Kjeldsen et al. 2008). This procedure assumes that the overall
behavior of the frequency differences are independent of the type of star, its effective tempera-
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ture, gravity, metallicity, or evolutionary phase. We prefer not to use such an approach here, and
instead we work with the original frequencies computed by the oscillations code.

Keeping this in mind, in Fig. 6.5 we show the Echelle diagram of the individual frequencies
observed in Perky, and the three best-fit models marked in Fig. 6.3. They have been chosen to
match the frequency value of the lowest ` = 0 mode within its 1-σ uncertainty, as it is assumed
that the surface effect shift is less important at low frequencies. Not surprisingly, from the figure

Figure 6.5: Echelle diagram of the models for Perky shown in Fig. 6.3. The symbols show the
frequencies of ` = 0 (circles), ` = 1 (diamonds) and ` = 2 (squares). The data are shown in
black connected with a solid line to guide the eye. Data plotted without error bars since they are
smaller than the symbols. Colors represent the corresponding models of Fig. 6.3. See text for
details.

it is clear that the computed frequencies deviate from those observed in the star as a function of
frequency, and that the curvature and position of the ridges seem to favor the 1.1 M� or 1.0 M�

models. However, for the reasons aforementioned, we refrain from making any inference about
the quality of the fits using the Echelle diagram. We focus our attention in the frequency ratios
r010, which have been shown to cancel out almost completely the effects of the poorly model
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outer layers (Roxburgh & Vorontsov 2003; Roxburgh 2005).
The three models considered are in different evolutionary stages, and only the more massive

one has a convective core. By investigating the behavior of the frequency ratios given in Eq. 4.5,
we intent first to discriminate between the masses of the models. Figure 6.6 shows the large
frequency separation, ∆ν, and the frequency ratios, r010, for the three models under consideration
and the seismic data of Perky. As expected, there is a clear offset between the value of the large

Figure 6.6: Frequency combinations for the three models of Perky at solar metallicity. Black
symbols show the data obtained by the Kepler mission, plotted using circles (when centered in
` = 0) and diamonds (when centered in ` = 1). Colors as in Fig. 6.3. Top panel: large frequency
separation for modes of degree ` = 0, 1. Bottom panel: frequency ratios, plotted as a unique set
called r010. See text for details.

frequency separation calculated from the model and the observed one from the data. This is again
due to the lack of realistic modeling of the outer layers of the star. However, the overall shape
and the position in frequency of the minimum value of ∆ν suggest a better agreement with the
1.1 M� model. It is still left to be investigated what feature in the internal structure of the star
defines the position in frequency were this minimum in ∆ν occurs.
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More revealing than the large frequency separation are the ratios shown in the lower panel
of Fig. 6.6. Both the position of the curves and the slopes shown by each of them strongly favor
the model of 1.1 M� with respect to the other two cases. The frequency ratios show a clear
sensitivity to the mass of the models which we only briefly mentioned in Sect. 5.4 (see Fig. 5.5),
and is allowing us to discriminate between the models with the required precision of 10%.

There are other parameters that can affect the properties of stellar models and might lead us
to confuse the effect of mass with other causes. In particular, the metallicity as determined from
high-resolution spectroscopy suggest that the target is metal poor with respect to the Sun. We
investigate this effect by constructing another evolutionary track for a 1.1 M� model at a metal-
licity of [Fe/H]= −0.1, scaled as always from the Grevesse & Sauval (1998) solar abundance
ratios compilation. In Fig. 6.7 we show the evolutionary tracks for these cases, where we see that
both solutions fall into the observational error box.

Figure 6.7: Evolutionary tracks of 1.1 M� stars constructed at solar (blue) and sub-solar (violet,
[Fe/H]= −0.1) metallicity. Best-fit model is marked with a circle, while the dashed line shows
the observational error box. See text for details.

In Fig. 6.8 we show the frequency combinations for these models. The large frequency
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separation and the frequency ratios show a very similar behavior for both models in the range
of frequencies where data is available, which is almost insensitive the metallicity. This is due to
the fact that both stars have no convective core, and the central hydrogen contents are roughly
similar (Xc ∼ 0.130 and Xc ∼ 0.168 for solar and sub-solar metallicity, respectively). In order to
detect these differences, other frequency combinations such as the small frequency separations
(cf., Eq. 4.1) could be used, although the current level of uncertainty in the determination of the
` = 2 modes is too high as to make a definitive statement (see Sect. 6.5 below for more details).

Figure 6.8: Frequency combinations for the two models of Perky constructed at different metal-
licities. Colors as in Fig. 6.7, and symbol convention as in Fig. 6.6.

Besides the fact that the frequency ratios are seemingly insensitive to the chemical composi-
tion, we have tested another important feature of these frequency combinations. It is clear that
they are strongly dependent on the mass of the model, and this feature can help us constrain-
ing the models to a much better precision than that obtained from the grid-based analysis. It is
interesting to notice that the mass we have derived is compatible with that estimated from the
direct method (see Table 6.4). Some uncertainties still remain regarding the influence of other
parameters such as metallicity or helium abundance, but we have established that a model with a
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convective core cannot reproduce the frequency ratios as good as models with no core.
One can try to find a better match to the data by changing other input parameters in the

stellar modeling to see the effect on the frequencies . However, an ‘oscillatory’ component is
present in the frequency ratios which is not expected (and clearly not predicted) by the models
(see curvature between frequencies ∼2000 and 2400 µHz in Figs. 6.6 and 6.8). It is not clear
at this moment if such a feature is real or just an artifact introduced in the fitting procedure of
individual frequencies due to very broad peaks of the oscillation power spectrum. It remains to
be seen if this oscillatory component disappears once longer data sets of Perky are analyzed and
the oscillation peaks in the power spectrum are better defined.

6.5 The frequency ratios: unveiling convective cores
In the previous section we showed the potential of the frequency ratios for establishing a very
precise mass value and disentangling stars with and without convective cores. We move forward
in our analysis and try to estimate the size of the homogeneously mixed central region when
the data suggest one exists. The second target we analyzed (Dushera) has the added complexity
of discrepant spectroscopic determinations from two sources in effective temperature, surface
gravity, and metallicity (see Table 6.1). For these reasons, we start the modeling efforts using
solar metallicity evolutionary tracks to determine, as done with Perky, an appropriate stellar mass
using the frequency ratios. Initially we consider the Schwarzschild criterion for convection with
no additional mixing beyond the convective boundaries.

In Fig. 6.9 we show the evolutionary tracks at solar metallicities for masses 1.1 M�, 1.2 M�,
and 1.3 M�, where the model best-fitting the Echelle diagram of Dushera is marked. The two
observational error boxes from spectroscopic determinations are also depicted (see Table 6.1).
As mentioned before, it is not surprising that the log g value of the three models agree with
the 1-σ uncertainty of the VWA determinations, as they were tailored to reproduce this seismic
feature. The 1.1 M� model does not have a convective core, while the two more massive cases
do have one.

To discriminate between the masses, in Fig. 6.10 we show the large frequency separation for
the data and the three models, as well as the frequency ratios. We will not consider frequencies
above ∼1900 µHz for fitting the ratios, as the oscillatory component seen from that frequency
value and above is likely due to difficulties in fitting the high-frequency data as peaks become
broader. A similar behavior was observed at lower frequencies when 1-month data of Dushera
was analyzed, and it disappeared once the 9-month long time-series were available. In a similar
way, the first two points of the frequency ratios will not be considered to define a best fit, and are
only shown for completeness.

The lowest mass model (1.1 M�) can be discarded as its mean value of r010 is not compatible
with that shown by the data. Regarding the two more massive models, the ratios suggest by their
mean level and slope that the 1.2 M� model reproduces the data better. Moreover, it can be seen
in the top panel of Fig. 6.10 that the overall shape and the position of the minimum value of the
large frequency separation are also compatible with the 1.2 M� case and not the more massive
option.
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Figure 6.9: Evolutionary tracks computed at solar metallicity to match the observations of
Dushera. The filled circles represent the position of the model fitting the large frequency separa-
tion. The tracks are constructed for 1.3 M� (red), 1.2 M� (blue), and 1.1 M� (orange). Dashed
line shows the observational error box. See text for details.

An important point to keep in mind is that, although the 1.2 M� fits the data better, the
frequency ratios do not completely overlap with the observed slope in the data for frequencies
between ∼1600-1900 µHz. In Chapter 4 we extensively discussed the physical reasons that
could change the overall slope of the frequency ratios, most notably the existence and size of
the convective core. Since the ratios favor a model with an already existent convective core,
the possibilities to create a steeper slope are a more evolved star with a lower central hydrogen
content, or a star harboring a larger convective core in its interior.

We proceed by carefully studying a mass range close to 1.2 M� in order to assess the uncer-
tainties in our results due to stellar mass. Sets of evolutionary calculations were made at solar
metallicities for 1.18 and 1.22 M�, including now overshooting until the ratios r010 for each case
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Figure 6.10: Frequency combinations for the three models of Dushera at solar metallicity. Sym-
bols as in Fig. 6.6, while colors are the same as those used in Fig. 6.9. Top panel: large frequency
separation for modes of degree ` = 0, 1. Bottom panel: frequency ratios r010.

closely reproduced the data. All the models fit the large frequency separation in the Echelle di-
agram as explained in Sect. 6.4 (see Fig. 6.5), and are plotted in Fig. 6.11. Their characteristics
are given in Table 6.5.

In order to assess the deviations from the data and find the best fit models, we estimate the
goodness of fit for the frequency ratios by calculating χ2:

χ2 =
1
N

∑
n

(
r obs

010 (n) − r model
010 (n)

σ(r obs
010 (n))

)2

, (6.1)

where N is the total number of ratios fitted. We show in Fig. 6.11 only the data for the frequency
ratios we are considering in the fit (the linear range, see Sect. 4.3).

Inspection of the figure reveals that, regardless of the mass considered, only models with
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Table 6.5: Characteristics for the different models shown in Figs. 6.11 and 6.12. Columns give
the mass in solar units, overshooting efficiency as implemented in GARSTEC (cf., Sect. 1.3.3),
size of the convective core in mass coordinates, central hydrogen content, age, effective
temperature, surface gravity, chemical composition, color in which the model is plotted in the
figures, and the goodness of fit value. See text for details.

Mass ξov Mcc Xc Age (Gyr) Teff (K) log g [Fe/H] Color χ2

1.18 0.0 0.0228 0.0818 4.034 6267 4.2147 0.0 Blue 8.675
0.026 0.0560 0.2319 4.128 6234 4.2138 0.0 Red 0.255
0.028 0.0608 0.2494 4.145 6227 4.2136 0.0 Green 1.063
0.025 0.0563 0.1995 4.372 6112 4.2110 +0.1 Orange 0.150
0.026 0.0582 0.2065 4.407 6109 4.2105 +0.1 Violet 0.808
0.028 0.0587 0.2723 3.782 6354 4.2180 −0.1 Gray 0.388
0.029 0.0672 0.2983 3.883 6340 4.2173 −0.1 Cyan 1.331

1.20 0.0 0.0314 0.1579 3.605 6315 4.2190 0.0 Blue 1.997
0.024 0.0554 0.2638 3.674 6297 4.2185 0.0 Red 0.425
0.026 0.0615 0.2803 3.692 6287 4.2181 0.0 Green 1.883

1.22 0.0 0.0342 0.2154 3.190 6376 4.2236 0.0 Blue 1.846
0.022 0.0544 0.2946 3.252 6359 4.2230 0.0 Red 0.761
0.024 0.0606 0.3110 3.284 6351 4.2225 0.0 Green 2.175

overshooting are able to consistently reproduce the frequency ratios within the 1-σ error bars. In
fact, the slope of the ratios can be best reproduced by models of 1.18 M� in the entire frequency
range considered, giving a very strong constrain on the stellar mass that could have not been
accomplished using fits of evolutionary tracks. The χ2 of the models also point towards this
conclusion, as it predicts the best fit models to be for cases with overshooting of 1.18 M� (see
Table 6.5).

However, the issue of metallicity still remains unsolved. As the spectroscopic determinations
give discrepant results, we explore the effects of chemical composition in models of 1.18 M�.
We have performed the same type of analysis as before for evolutionary tracks computed at
[Fe/H]= 0.1 and [Fe/H]= −0.1, finding the models best fitting the ratios and calculating their
χ2. These frequency ratios are shown in Fig. 6.12, while their characteristics are also given in
Table 6.5.

The models at [Fe/H]=0.1 and solar metallicity are able to reproduce within the 1-σ uncer-
tainties all the frequency ratios, while the low metallicity values show a slightly higher offset with
respect to the data. Since they do not reproduce the highest value of the ratios within the errors,
the models at [Fe/H]=−0.1 are not able to fit the slope properly, and this is reflected in a slightly
higher value of the χ2. Nevertheless, one of the low-metallicity models has a comparatively low
χ2 as it fits very well the rest of the ratios (gray color model).

One way we could disentangle the mass values without directly using the χ2 value is by using
the seismic tool we developed in Sect. 4.5. Using the mean value and slope of the ratios r010 as
defined in Eqs. 4.8 and 4.9, respectively, we can place the models in a diagram as that presented
in Fig. 4.5 to assess the goodness of fit from each one to the data.
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Figure 6.11: Frequency ratios for models of Dushera at solar metallicity, calculated with no over-
shooting (blue), and at two different overshooting values (red and green). Masses of the models
are indicated in each panel. Symbols as in Fig. 6.6. Characteristics of the models (including the
overshooting efficiencies) are given in Table 6.5.

In Fig. 6.13 we show such a slope versus mean diagram for the frequency ratios r010 of
Dushera, where we have estimated the 1-σ errors by means of a linear fit including the uncer-
tainties in the data. Using the solar data from BiSON for comparison (see Fig. 6.4), we can also
construct the frequency ratios for the Sun in a range of radial orders around the frequency of
maximum oscillation power (νmax, see Sect 5.2) similar to that of Dushera. This is also marked
in Fig. 6.13, where the 1-σ area for the Sun is naturally narrower than the one for Dushera as the
error bars are much smaller.

Using the formulation proposed by Kjeldsen et al. (2008), we have computed the necessary
surface correction to be applied to the frequencies of the standard solar model from Serenelli
et al. (2009) in order to reproduce the solar data (as explained in Sect. 6.4 above). For both
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Figure 6.12: Frequency ratios for 1.18 M� models of Dushera at different metallicites, including
overshooting with the efficiencies shown in Table 6.5. Panels show models for different values
of [Fe/H]: +0.1 (top panel), 0.0 (middle panel), and −0.1 (bottom panel). Colors are those given
in Table 6.5. Symbols as in Fig. 6.6. See text for details.

corrected and uncorrected sets of theoretical solar frequencies, we can calculate the mean and
slope of the ratios r010 and compare them to the obtained values from the solar data. As it can be
seen in Fig. 6.13, both sets of frequencies fit within the 1-σ uncertainties the values observed in
the Sun. This fact has important implications: it as a clear suggestion that we can use the tool
r010 to find our best-fit models, regardless of the poor modeling we do of the outer layers of the
star.

All the models we have computed to reproduce the ratios of Dushera have been depicted
in Fig. 6.13, using their slopes and mean values in the frequency range where the fit has been
performed (data shown in Figs. 6.11 and 6.12). We remind the reader that all these models
have the same large frequency separation, as they have been chosen to fit the Echelle diagram of
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Figure 6.13: Slope versus mean diagram for the models and data of Dushera. The 1-σ fit to the
data of Dushera is depicted by the shaded gray zone, while a similar zone for the Solar data from
BiSON is plotted for comparison in a green shaded area. Symbols show the result of the fit in
each model to the frequency ratios, using the same colors as those given in Table 6.5. Fits to
the solar model are shown for the fit to the uncorrected frequencies (filled brown diamond), and
those corrected for surface effects (golden open diamond). See text for details.

Dushera. The first interesting feature to notice is that, for a given mass, the effect of overshooting
(and thus of larger convective core and higher Xc) is to increase the absolute slope and decrease
the mean value. On the other hand, a change in mass of ±0.02 M� has a larger effect than a
change in metallicity of ±0.1dex, probably due to the larger effect on the size of the convective
core.

Figure 6.13 also shows that the 1.18 M� model of super-solar metallicity fits the mean value
and slope of r010 within the 1-σ uncertainties. Following the displacements in Fig. 6.13 caused
by changes in mass and metallicity one can easily realize that, for instance, a model of 1.17 M� at
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sub-solar metallicity should also fit the ratios. Preliminary calculations show that this is indeed
the case: a model of 1.17 M� can also reproduce this feature with a convective core size of
Mcc = 0.0589, a central hydrogen content of Xc = 0.2564, and an age of 4.010 Gyr. The amount
of overshooting required for this case is ξov = 0.030.

The remarkable feature of this analysis is that, regardless of the unknown metallicity, we
are able to set very tight constrain on the mass of the star and the size of its convective core
using the mean value and slope of r010. However, one must keep in mind that these frequency
ratios are calculated by a combination of five different frequencies. If one frequency in the
data is ill-determined, it will affect the five frequency ratios where it is involved (to a larger or
smaller degree depending on the numerical coefficient next to it, see Eqs.4.3 and 4.3). Thus,
since the lowest frequencies used in the fit play a role in the determination of the highest ratio
(and thus strongly impact the mean and slope obtained from the data), it could be that longer
datasets change the results obtained. For the moment, we rather take a conservative approach
and consider the three models with the lowest χ2 values as the best ones, while also taking into
account that the chemical composition allows a shift in mass of approximately ±0.01 M�.

Considering all these uncertainties, the models that encompass best the observed frequency
ratios suggest a star with a convective core comprising 5.6%±0.3 of its mass, an age of the order
of 4.1±0.4 Gyr, and a central hydrogen content of Xc = 0.24 ± 0.05. This is the first time a
convective core can be identified and its size constrained to such a level of precision.

One interesting aspect of the results above is the large difference between the central hydro-
gen content of the models, which seems to have little impact in the frequency range where the
ratios are available for Dushera. A different frequency combination that has long been known
to be sensitive to the central hydrogen content is the small frequency separation (dl,l+2(n), see
Eq. 4.1). In fact, they have been used to construct the so called C-D asteroseismic diagram of
evolution (Christensen-Dalsgaard 1988). Although this frequency combination is affected by the
poor modeling of the outer layers, it could be used to discriminate between the different central
hydrogen contents, and therefore give insight into the chemical composition.

In Fig. 6.14 we show the small frequency separations for the 1.18 M� models shown in
Fig 6.12. It can be seen in it that this quantity indeed separates the models into groups, ascend-
ing in metallicity from top to bottom. At each metallicity value, the two models shown have very
similar central hydrogen content, reflecting the sensitivity of the separations to this parameter.
Unfortunately, the current data does not allow to favor any of the models due to the large uncer-
tainties still present in the ` = 2 modes. If longer time-series are able to determine these modes
with better precision, a combination of the frequency ratios and the small frequency separations
would be highly appropriate to further constrain the models and the physics involved in stellar
interiors.

Another interesting point of our analysis is that, regardless of the metallicity, the amount
of overshooting needed to reproduce the frequency ratios is larger than our calibrated value (see
Sect 1.3.3). In every case, the size of the convective core needs to be over 60% larger than the size
predicted by plain application of the Schwarzschild criterion. One must keep in mind, though,
that we have used in our calculations the geometrical restriction to the overshooting efficiency
described in Sect. 1.3.3. It is possible that the calibrated value is correct, but the geometrical
cutoff factor is too restrictive. We have not investigated the possibility of producing models
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Figure 6.14: Small frequency separations for the models of Dushera shown in Fig. 6.12.

using the Ledoux criterion, as from Chapter 4 we know that such a steep slope is not possible to
reproduce with this approach. Of course, overshooting can be included to enlarge the core and
fit the ratios, but in that case there is no difference between the application of the Ledoux and
Schwarzschild criterion (see Sect. 3.3.3).

Finally, it is worth mentioning that the mass we have determined from detailed modeling also
agrees with that found using the direct method (Table 6.4).

6.6 Discussion and perspectives
The existence and extension of convective cores in low-and intermediate-mass main-sequence
stars have been subject many studies throughout the years in the field of stellar astrophysics.
Although theoretical predictions of their appearance in stellar models are clearly understood,
the classical observations allowing to probe them are indirect and heavily dependent in many
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different (and not well constrained) physical processes (e.g., Pietrinferni et al. 2004; Vandenberg
et al. 2006). Asteroseismology has the unique capability of bridging the gap between theory and
observations by giving direct probes of stellar interiors. Observations from the Kepler satellite
spanning several months are now available, and we have access to sets of individual frequencies
spanning several radial orders at an exquisite level of precision. We have analyzed such sets for
two main-sequence targets, putting firm constraints in their fundamental parameters.

The star Perky has been found to have frequencies compatible with a low-mass main-sequence
star with no convective core in its interior. Although a thorough analysis of this targets has not
yet been possible due to some unexpected behavior in the frequencies, its data has served to find
a very good determination of stellar mass. We have shown that, even within the uncertainties in
the frequencies and the input physics of the models, the frequency ratios are able to constrain
the total mass to ∼1.1 M� with an uncertainty smaller than ∼10%. This result is extremely en-
couraging, in particular considering the somewhat scattered mass determinations coming from
the grid-based analysis.

A similar analysis was made for the second target Dushera, where the frequency ratios re-
vealed a stellar mass close to 1.2 M� and the presence of a convective core. Exploring masses
around that value, we found the best fits for models of 1.18± 0.01 M�, the only mass values able
to effectively reproduce the ratios in the whole frequency range. As the available spectroscopic
determinations of chemical composition gave discrepant results, we modeled the star consider-
ing two more values of [Fe/H] for comparison. Regardless of the metallicity, the goodness of fit
from the best models found allowed us to constrain the size of the convective core to be within
∼ 5.3± 0.3% of the total stellar mass, reaching an unprecedented level of precision. The age and
central hydrogen contents show larger discrepancies due to the unknown chemical composition,
but they remain well constrained within ∼20%.

Of particular interest is to compare our results with the ”classical” methods to calibrate over-
shooting and determine the existence of convective cores. One method that has been widely
used to restrict the amount of overshooting in stars is to use binary stars with accurately deter-
mined mass an radius, such as the case of the eclipsing binary AI Phe (e.g. Pietrinferni et al.
2004). Masses and radii for the two components were very precisely determined by Milone
et al. (1992), and were found to be 1.190±0.006 M� and 1.231±0.005 M�, and 1.762±0.007 R�
2.931±0.007 R�. The mass of both components is very close to that we determined for Dushera,
although the stars are in a slightly more evolved evolutionary phase than our target. Neverthe-
less, Pietrinferni et al. (2004) found that the mass and radius of both components could only
be simultaneously fitted at a given age using BaSTI isochrones with no overshooting during the
main sequence. This is in contrast with our findings that a considerable amount of overshooting
is needed to reproduce the seismic data, and surely deserve further investigation.

Given that for these binaries the investigation done by Pietrinferni et al. (2004) used a dif-
ferent evolutionary code, it is much more instructive to compare our results with calibrations of
clusters made with GARSTEC. For the particular case of M67, Magic et al. (2010) constructed
several sets of isochrones aimed at reproducing the hook-like feature at the main-sequence turn-
off for different combinations of solar abundances and input physics. Using as we do the Grevesse
& Sauval (1998) compilation for the solar composition, they showed that two prescriptions for
overshooting were capable of fitting the data of M67: one with overshooting as we have applied
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it (described in Sect. 1.3.3), and another one where a mass-dependent ramp function for the over-
shooting efficiency was used. The latter case does not take into account the geometric restriction
for overshooting in small convective cores.

Since an isochrone is constructed by means of interpolations over several stellar tracks at a
given age, the closest evolutionary sequence we have to our mass results for Dushera is of 1.2 M�

in both prescriptions (Z. Magic, private communication). We compare in Table 6.6 these tracks
to our model of 1.2 M� that best fits the data from Dushera (red model for that mass value in
Table 6.5).

Table 6.6: Comparison of a model fitting the frequency ratios of Dushera to models computed to
mat the CMD of M67. Columns show the model identification, overshoot efficiency, application
of the geometrical cut factor, maximum convective core size during the evolution, and the age at
the turn-off. See text for details.

Model ξov Geo. cut Max Mcc T-O Age (Gyr)
Dushera 0.024 Yes 0.0590 4.990

M67 normal 0.018 Yes 0.0448 4.650
M67 ramp 0.00645 No 0.0503 4.806

M67 is the prototype cluster of solar metallicity; as we do not have reliable metallicities for
Dushera, we do not consider in this case possible differences in the chemical composition. The
overshooting efficiency in the case of the ramp function is much smaller than the calibrated one,
showing the effect the geometrical cut off factor has in convective core sizes for this mass range.
It is interesting to notice that, for both prescriptions of the calibrated values of overshooting, the
maximum size of the convective core reached during the main sequence is smaller than the one
we have obtained for Dushera. Although the 1.2 M� case is not exactly the mass of the best-fit
model we found in the previous section, we showed that the size of the core is the most important
parameter to reproduce effectively the ratios r010, regardless of the mass. In fact, slightly smaller
masses will have smaller convective cores when the calibrated efficiency values for M67 are
used, in contrast to the equally large convective core size we found for models of 1.18 M�. Most
importantly, as also shown in the previous section, for the metallicities studied the ratios r010

can always be fitted as long as a model with the appropriate size of the convective core can
be produced. Asteroseismic data is clearly challenging the classical approaches to the topic of
convective core sizes and overshooting.

We proposed the use of other frequency combination sensitive to the central hydrogen con-
tent, the small frequency separation, as possible diagnosis to help disentangling the chemical
composition of the stars. Although this quantity is clearly different for the best-fit models found,
the current uncertainties in the ` = 2 modes do not allow a firm preference for one set of models
or another. We expect this to change as longer datasets are acquired. However, we caution that
since the small separations are more affected by the outer layers, they are subject to the influ-
ence of the surface effects. It is not clear at this point how much impact this has on the small
separations, but this issue surely deserves further attention.

The analysis presented in this Chapter constitutes the preliminary results of the investigation
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carried out for these targets. We have based our conclusions on the outcome of one particular
evolutionary code, thus we expect the scatter in the results to be larger when other codes are also
included. Although the mass determinations and convective core sizes appear to be consistent
among the different models received from other modelers (A. M. Serenelli, T. Metcalfe, S. Basu,
J. Montalban, and Y. Lebreton, private communication), there are differences in ages larger than
those encountered here for one particular code. Still, further improvement of the models by
minimizing the difference to the frequency ratios promises to reveal ages constrained to a level
better than ∼20%.
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Chapter 7

Conclusions and future outlook

The field of stellar structure and evolution has entered an era of accelerated development thanks
to the advances of helio- and asteroseismology. Observations of stellar pulsations in the Sun
and other stars have opened new doors for understanding physical processes and the condition
of stellar matter in stars’ interiors. There has been a huge leap in the amount of available data
since the launch of the space missions CoRoT and Kepler, filling the gap between theoretical
predictions and observations of stars.

In order to take full advantage of the observational results gather by asteroseismic investiga-
tions, data mining must be accompanied by suitable theoretical developments capable of testing
state-of-the-art models and compare their outcome with the observations. The work presented in
this dissertation has aimed to provide a bridge between models of stellar evolution and observa-
tions of stellar pulsations, allowing us to constrain and learn about the physical process taking
place in the deep interiors of stars.

7.1 Mixing, convective cores, and main-sequence evolution

Convective mixing in stellar interiors is a matter of great importance in theory of stellar evolution,
where significant uncertainties still remain. We have explained in Sect. 1.3.1 the main ingredients
of the theory of convective energy transport, highlighting the assumptions and parameterizations
used in its description. Among the key issues is that of defining the exact boundary of convective
regions, and determining if mixing of chemical elements beyond that boundary exists (convective
overshooting).

Two criteria are commonly adopted in calculations of stellar evolution to define the boundary
of convective regions. While the Schwarzschild criterion only compares the temperature gradi-
ents when energy is being transported adiabatically or entirely by radiation, the Ledoux criterion
takes into account the existence of molecular weight gradients in stellar interiors. This difference
becomes important in stars where a homogeneously mixed central core exists, which produces
a discontinuity in the chemical composition at its boundary and may allow the appearance of a
zone which, depending on the criterion used, should transport energy by means of radiation or
convection. This situation, well known in massive stars, is referred to as semiconvection.
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Keeping this in mind, in Chapter 3 we investigated the conditions in interiors of intermediate-
mass stars for a semiconvective region to develop. By including the Ledoux criterion in our
evolutionary code, we studied the impact during the main-sequence evolution of using differ-
ent criteria for defining convective boundary, and considering overshooting beyond them. Our
findings suggest that, when the Ledoux criterion is applied, a semiconvective region can develop
at the top of the convective core in stars of masses ∼1.2-1.7 M�. Mixing inside of this zone
can occur, at a speed that is parametrized by an efficiency coefficient. If the mixing within the
semiconvective region is large, the zone disappears and becomes part of the convective core,
recovering the condition given by the Schwarzschild criterion. Overshooting beyond the convec-
tive boundaries is also capable of washing out the semiconvective regions, and we have seen that
it is the case for our calibrated value of overshooting efficiency.

Application of the Ledoux criterion, with no mixing in semiconvective regions when these
exists, produces models with convective cores limited in size due to the molecular weight barrier
created outside the fully-mixed convective core. In the opposite case, the largest convective
cores are produced when overshooting is included. The differences in the HRD between these
two cases for a given mass an metallicity are negligible, and certainly not distinguishable by
common observation techniques such as stellar parameters determination from spectroscopy.
However, the differences in age can be up to ∼40% for models of 1.2 M� at solar metallicity at
the end of the main-sequence phase (cf., Fig. 3.7); this age difference is equivalent to a difference
in central hydrogen content, which is measurable using asteroseismic diagnostics.

The appearance of a ‘hook-like’ feature in the HRD at the end of the main sequence can
be suppressed when the Ledoux criterion is applied (see Fig. 3.6). This hook feature is used to
estimate ages in simple stellar populations by means of isochrone fitting, thus large uncertainties
remain due to the unknown size of convective cores. If we aim at decreasing the age uncertainties
in stellar populations, and learn something about the physics processes dominating in stellar
interiors, tighter constraints in convective core existence and size must be set.

7.2 Probing convective cores with stellar pulsations
We have extensively discussed the theoretical background of stellar oscillations in Chapter 1,
emphasizing the dependence of the pulsation modes in the internal structure of stars. By rec-
ognizing that the frequencies of oscillations probe different parts of the star according to their
propagation cavities, it seems natural to consider the possibility of combining some frequencies
to test the conditions in certain regions of the star.

Since the application of the different mixing prescriptions in Chapter 3 effectively leads to
different sizes of convective cores, we investigated in Chapter 4 the sensitivity of the frequency
ratios proposed by Roxburgh & Vorontsov (2003) to the conditions in the stellar center. We have
determined that in the high frequency regime (the linear range), the frequency ratios are sensitive
to gradients in the adiabatic sound speed. As the presence of a convective core produces a
discontinuity at its edge in the chemical composition, the ratios are strongly affected by this
sharp feature and allow us to discriminate between a star harboring a convective core from one
with a radiative central region.
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In order to characterize the influence of convective cores in the frequency ratios, we have
studied the impact of different mixing prescriptions in the absolute slope of the ratios in the
linear range. Our findings indicate that the slope is mostly affected by the position of the sound
speed discontinuity (the size of the core), but also by the size of the jump created by the edge of
the core (related to the central hydrogen content). For a given stellar mass, the slope and mean
value of the linear range would allow us to estimate the size of the homogeneously mixed central
region and constrain the evolutionary stage of the star.

However, we assumed in this study that the stellar mass could be estimated with a precision
better than ∼10% from stellar parameters and asteroseismic observations. The validity of that
assumption could only be tested once enough targets with oscillations were detected.

7.3 From dreams to data: stellar cores as seen by Kepler
During the survey phase, the Kepler mission has detected over 500 stars oscillating in the main-
sequence phase. These observations have allowed the determination of the two global astero-
seismic parameters, namely the large frequency separation (see Fig. 2.4) and the frequency of
maximum oscillation power (see Fig. 5.1). In Chapter 5 we showed how these two quantities,
combined with an estimation of the effective temperature, can be used in scaling relations from
the solar values to determine the mass and radius of a star.

Using the ensemble of stars from Kepler observations, together with effective temperatures
determined via the IRFM, we were able for the first time to construct an evolutionary sequence of
field stars of similar masses using asteroseismic scaling relations. This opens the exciting possi-
bility of performing differential analysis on stars with similar masses but in different evolutionary
stages, and follow for instance the evolution of a convective core along the main sequence. Since
the stars in the sequence we identified in Chapter 5 do not yet have individual frequency determi-
nations, in Sects. 4.3 and 5.4 we theoretically studied the behavior during the main sequence of
the frequency ratios for compatible masses. We have shown that using the slope and mean value
of the ratios r010 in the linear range, we are able to discriminate between the presence or absence
of a convective core in stars of masses close to solar.

We have tested our determinations of stellar masses and log g values with spectroscopic
observations available for fours targets. Our results are in excellent agreement with evolutionary
tracks constructed at the metallicities from spectroscopy, as well as our log g values. These
encouraging results suggest that the technique is indeed capable of determining stellar masses
with the appropriate precision needed for convective core studies.

Longer time-series from Kepler observations have also provided enough individual frequen-
cies to construct the frequency ratios and study convective cores. We have done in Chapter 6 de-
tailed modeling using GARSTEC of two of these targets, coupled with an adiabatic oscillations
code to determine the theoretical modes of oscillations. For the first star we modeled (Perky),
we found that the frequency ratios favored a model without a convective core. Moreover, we
showed that the ratios are extremely sensitive to the stellar mass and allowed us to extract it with
a high level of precision. The exact evolutionary stage of the star could not be determined due
to a strange unexpected feature in the ratios that could be due to some ill-determined frequency
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value. Longer time-series that will be analyzed in the near future should provide de answer to
this issue, although if the feature remains its nature remains to be explained as it is not predicted
by any of the theoretical models.

The method used for Perky was applied to the second target, Dushera. For this case, the sen-
sitivity of frequency ratios to the stellar mass allowed us to pin-point its value to 1.18±0.01 M�,
regardless of the fact that two spectroscopic determinations give discrepant metallicity values.
Further exploring models for this mass showed that, even without exact information of the stel-
lar metallicity, the frequency ratios constrain the size of the convective core to be ∼5.6% of the
stellar mass. This value is larger than the one obtained from calibrations of clusters such as the
case of M67, and poses important challenges the application of convective boundary definitions
and overshooting efficiencies.

Although the central hydrogen content and the age of the star can not be constrained so tightly
due to the lack of a reliable chemical composition, we propose a complementary analysis using
the small frequency separations to determine more precisely the evolutionary stage of the star.
The current seismic data does not allow to use this quantity yet due to the large uncertainties in
the ` = 2 modes. We expect this situation to be circumvented as longer time-series are acquired.

7.4 From individual stars to stellar populations and galaxies:
the future of asteroseismology

Considering the importance of constraining convective cores existence and size described in
Chapter 3; applying the asteroseismic techniques developed in Chapter 4 to probe the deep stellar
interior; and using the huge amount of available seismic data from space missions to precisely
determine stellar masses; we have disentangled a star without a convective core and constrained
the convective core size of another one to be ∼5.6% of its mass, while the uncertainty in its
age and central hydrogen content has been constrained to ∼20%. Although the results are still
code dependent, the level of precision reached is remarkable compared to classical techniques for
determining stellar ages, where uncertainties of several gigayears are common. Most importantly,
it is the first time that the size of a convective core is directly measured from observational data,
and it has showed that for this particular target the amount of overshooting needed to reproduce
the data is larger than the usually calibrated value.

Asteroseismology has the possibility of improving our understanding of stellar physics and
galactic dynamics from at least two points of view, which we have developed extensively in
this dissertation. First, measurement of internal characteristics from several targets will test our
assumptions in stellar modeling, leading to better predictions of properties based on isochrone
fitting. In particular, if we are able to measure convective core sizes for stars with different masses
and metallicities, an accurate calibration of the overshooting efficiency can be made across the
HRD and applied to our stellar evolution calculations. This results in less degrees of freedom for
stellar modeling and more precise derived parameters, such as stellar ages.

The second interesting application comes from the capability of asteroseismology of charac-
terizing stellar populations in a certain region of the sky. As we discussed in Chapter 5, seismic
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observations coupled with effective temperatures estimates are capable of determining masses
and radii to a very high level of precision for stars in different evolutionary phases. This opens
the exciting possibility of deriving stellar ages to a precision that exceeds that possible by other
techniques adopted in stellar population studies, e.g., isochrones or chromospheric activity dat-
ing. Combining these results with parameters obtained via the IRFM such as metallicities and
angular diameters (and thus distances, by comparison with radii) could offer a complete picture
of the stellar population in, for instance, the Kepler field.

It will be possible to study abundance gradients, the metallicity distribution function and the
age-metallicity relation with an accuracy and a completeness that until now has been possible
only for the Solar Neighborhood. The age-metallicity relation is possibly the most crucial con-
straint on Galactic models, yet it remains very uncertain. A very precise age-metallicity relation
will also allow tighter constraints to be placed on the extent of stellar radial migration in the
Galactic disc.

The possibilities are many, and the potential of asteroseismology to constrain theoretical
models, unveil the underlying physical processes, and discover the dynamical history of our
galaxy is finally being exploited.
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Appendix A

Variable separation and spherical
harmonics

Lets assume a scalar field α and a vector field β. In spherical coordinates, where the unit vectors
are denoted by ar, aθ, aφ, the gradient of the scalar field is given by
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The divergence of the vector field β = βrar + βθaθ + βφaφ takes the following form:
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while the Laplacian operator is written as:
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For our particular case of interest, it is useful to define the horizontal (or tangential) components
of the gradient, divergence and Laplacian as
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Now, lets start by slightly modifying Eq. 2.33 and expressing a random displacement in
spherical coordinates as follows:

δr = (ξr, r ξθ, r sin θ ξφ) . (A.8)
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Considering this formulation, and without loss of generality, we can write the perturbed continu-
ity equation (Eq. 2.24) as

ρ′ + div (ρ0 δr) = 0 , (A.9)

ρ′

ρ0
+
ξr

ρ0

∂ρ0

∂r
+

1
r2

∂

∂r
(r2ξr) +

1
r sin θ

∂

∂θ
(r sin θ ξθ) +

1
r sin θ

∂

∂φ
(r sin θ ξφ) = 0 . (A.10)

In a similar manner, and assuming hydrostatic equilibrium, the perturbed equations for motion
(Eq. 2.36 and 2.35) can be written for each of its components as

∂2ξr

∂t2 =
1
ρ0

∂P′

∂r
+
∂Φ′

∂r
−
ρ′

ρ2
0

∂P0

∂r
, (A.11)

∂2(rξθ)
∂t2 =

1
r
∂

∂θ

(
P′

ρ0
+ Φ′

)
, (A.12)

∂2(r sin θξφ)
∂t2 =

1
r sin θ

∂

∂φ

(
P′

ρ0
+ Φ′

)
, (A.13)

where we remind the reader that the equilibrium structure depends only on the radial coordinate.
From the equations above, it is clear that the terms involved in the horizontal components (ξθ

and ξφ) include only derivatives in θ and φ as given by ∇h (Eq. A.5). Moreover, as the horizontal
gradient in equilibrium quantities is zero, the horizontal divergence Eq. A.6 can be applied to the
equations of motion and have all the tangential derivatives in terms of ∇2

h. A similar analysis can
be carried out for the energy equation Eq. 2.28, where it can be shown (e.g., Ledoux & Walraven
1958) that it results in

P′ + ξr
∂P0

∂r
−

Γ1,0P0

ρ0

(
ρ′ + ξr

∂ρ0

∂r

)
= ρ (Γ3,0 − 1) δq . (A.14)

On the left hand side of Eq. A.14, only radial derivatives appear. The term of the heat exchange
δq (Eq. 2.29), if we consider the diffusion approximation for the flux given in Eq. 1.15, depends
on the gradient of a scalar field (in this case the temperature T ). Once the perturbation is applied,
the energy equation will only contain derivatives with respect to θ and φ in ∇2

h.
The advantages of this dependance are the following. We are trying to find the solutions as

presented in Eq. 2.32, which we want to express in the form:

f (r, θ, φ, t) = f̃ (r) f2(θ, φ) exp(−iωt) . (A.15)

Due to the form of the equations, and that all tangential derivatives form part of ∇2
h, it is possible

to factor out f2(θ, φ) if it is an eigenfunction of the horizontal Laplace operator, and thus satisfies

∇2
h f2(θ, φ) = −

1
r2 k2 f2(θ, φ) , (A.16)

where k2 is a constant. Using the horizontal Laplacian from Eq. A.7 we can write:

1
sin θ

∂

∂θ

(
sin θ

∂ f2

∂θ

)
+

1
sin2 θ

∂2 f2

∂φ2 = −k2 f2(θ, φ) . (A.17)
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Proposing a solution of the form f2(θ, φ) = ∆(θ) Ω(φ), Eq. A.17 reduces to

1
∆ sin θ

d
dθ

(
sin θ

d∆

dθ

)
+

1
Ω sin2 θ

d2Ω

dφ2 = −k2 , (A.18)

[
−

1
∆ sin θ

d
dθ

(
sin θ

d∆

dθ

)
− k2

]
sin2 θ =

1
Ω

d2Ω

dφ2 . (A.19)

As the variables θ and φ are independent, each side of Eq. A.19 equates to a constant. Thus

1
Ω

d2Ω

dφ2 = −m2 , (A.20)

which has solutions of the form Ω(φ) = exp(imφ) when demanding the solution to be continuous
and periodic. Normalization to make the function orthogonal in the azimuthal coordinate yields:

Ω(φ) =
1
√

2π
exp(imφ) . (A.21)

Replacing back into Eq. A.19, we obtain:

1
sin θ

d
dθ

(
sin θ

d∆

dθ

)
+

(
−

m2

sin2 θ
+ k2

)
∆ = 0 , (A.22)

an equation known as an associated Legendre equation (e.g., Arfken & Weber 2005). It has only
a regular solution when k2 = `(`+1) and |m| ≤ `. For those cases, ∆ is given by ∆(θ) = P`

m(cos θ)
where P`

m are the associated Legendre functions.
The Legendre functions arise naturally as solutions of equations in many different physi-

cal situations. There are several ways of deriving these functions, and more than one general
expression to define them. For instance, it can be shown that they follow:

P`
m(x) = (1 − x2)m/2 dm

dxm P`(x) , (A.23)

P`
m(x) =

1
2``!

(1 − x2)m/2 dm+`

dxm+`
(x2 − 1)` , −` ≤ m ≤ ` ; (A.24)

where P` are the Legendre polynomials. The orthonormal function with respect to the polar
angle θ is obtained by a normalization, which gives an extra coefficient in Legendre functions

P′`
m(cos θ) =

√
2` + 1

2
(` − m)!
(` + m)!

P`
m(cos θ) , −` ≤ m ≤ ` . (A.25)

In order to obtain a solution which is orthonormal to the spherical surface, we take the product
of the two solutions and define:

∆(θ) Ω(φ) = (−1)m

√
2` + 1

4π
(` − m)!
(` + m)!

P`
m(cos θ) exp(imφ) ≡ Y`m(θ, φ) , (A.26)
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which is exactly the expression given in Eq. 2.38, and defines the spherical harmonics. This
allowed to write the solutions of the equations, as shown in Eq. A.15, in the form given by
Eq. 2.39. As a side remark, the factor (−1)m is a phase factor introduced to alternate the sign of
positive m spherical harmonics, which has important consequences in quantum theory of angular
momentum.

From the above equations, it is clear that the geometry of the oscillations will be defined
by the spherical harmonics comprising the eigenfunction of each oscillation mode. The simplest
modes are the radial oscillation mode (` = 0), and the simplest of those modes is the fundamental
mode, where the star swells and contracts as a whole. The first overtone has a radial node in a
concentrical shell within the star; in terms of a radial displacement the node does not move, thus
the motions above and below the node occur in antiphase.

Non-radial oscillations are modes with ` ≥ 1, with many examples of them shown in Fig. A.1.
While the positive contours heat up and swell, the negative counterparts cool down and contract.
The value of ` and m define the number of nodal lines in latitude and longitude, respectively.

Only for the case of the Sun, observations of the oscillations are able to resolve the stellar
disk and identify the nodal lines directly from the doppler maps. For other stars, as they cannot
be resolved, we must deal with integrated observations along the stellar surface. It is clear from
the cases presented in Fig. A.1 that, due to partial cancellation of positive and negative regions,
the observed brightness variations are increasingly more difficult to detect for higher degree `
(assuming an inclination angle). This means that even with the current precision attained with
the space missions, in asteroseismic observations only low-degree modes ` . 4 can be observed.

Finally, a few words about the effects of rotation in the oscillation frequencies. From Eqs.2.38
and 2.39 it can be seen that, for m , 0, the time dependance goes as exp(−i(ωt−mφ)). This phase
factor means that the solutions are traveling waves, which in our sign convention result in a wave
traveling in the direction of the rotation for m > 0 (prograde modes) and against the rotation for
m < 0 (retrograde modes). Remembering that −` ≤ m ≤ `, the 2` + 1 multiplets of a particular
frequency are the same in the case of a spherically symmetric star. Rotation favors a particular
axis, and thus this degeneracy can be lifted. The mode is then splitted into the components of the
multiplet as:

ωn,`,m

2π
= νn,`,m = νn,` + m(1 −Cn,`)

Ω

2π
, (A.27)

where Cn,` is a mode dependent quantity and Ω is the angular frequency. This description holds
as long as νn,` � Ω/2π and Ω �

√
GM/R3 (e.g. Ballot et al. 2010). See Ledoux (1951) for

detailed accounts on the derivation of this formula.
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m = 0

` = 0 m = 1 i = 60◦

` = 1 m = 2

` = 2 m = 3

` = 3 m = 4

` = 4

Figure A.1: Snapshot of the radial component of various modes as seen by an observer under
an inclination angle of 60◦. Solid lines show the positions of the nodes; red and blue represent
sections of the star that are moving in (out) at any given time, then vice versa. Values of ` and m
are indicated. Figure kindly provided by J. Ballot.
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