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Abstract

Advances of modern technologies produce huge amounts of data in various

fields, increasing the need for efficient and effective data mining tools to

uncover the information contained implicitly in the data. This thesis mainly

aims to propose innovative and solid algorithms for data mining from a novel

perspective: synchronization.

Synchronization is a prevalent phenomenon in nature that a group of

events spontaneously come into co-occurrence with a common rhythm through

mutual interactions. The mechanism of synchronization allows controlling of

complex processes by simple operations based on interactions between ob-

jects.

The first main part of this thesis focuses on developing the innovative

algorithms for data mining. Inspired by the concept of synchronization, this

thesis presents Sync (Clustering by Synchronization), a novel approach to

clustering. In combination with the Minimum Description Length principle

(MDL), it allows discovering the intrinsic clusters without any data distribu-

tion assumptions and parameters setting. In addition, relying on the differ-

ent dynamic behaviors of objects during the process towards synchronization,

the algorithm SOD (Synchronization-based Outlier Detection) is further pro-



xxiv Abstract

posed. The outlier objects can be naturally flagged by the definition of Local

Synchronization Factor (LSF). To cure the curse of dimensionality in clus-

tering, a subspace clustering algorithm ORSC is introduced which automati-

cally detects clusters in subspaces of the original feature space. This approach

proposes a weighted local interaction model to ensure all objects in a common

cluster, which accommodate in arbitrarily oriented subspace, naturally move

together. In order to reveal the underlying patterns in graphs, a graph parti-

tioning approach RSGC (Robust Synchronization-based Graph Clustering)

is presented. The key philosophy of RSGC is to consider graph clustering

as a dynamic process towards synchronization. Inherited from the powerful

concept of synchronization, RSGC shows several desirable properties that

don’t exist in other competitive methods. For all presented algorithms, their

efficiency and effectiveness are thoroughly analyzed. The benefits over tradi-

tional approaches are further demonstrated by evaluating them on synthetic

as well as real-world data sets.

Not only the theory research on novel data mining algorithms, the second

main part of the thesis focuses on brain network analysis based on Diffusion

Tensor Images (DTI). A new framework for automated white matter tracts

clustering is first proposed to identify the meaningful fiber bundles in the

Human Brain by combining ideas from time series mining with density-based

clustering. Subsequently, the enhancement and variation of this approach

is discussed allowing for a more robust, efficient, or effective way to find

hierarchies of fiber bundles. Based on the structural connectivity network,

an automated prediction framework is proposed to analyze and understand

the abnormal patterns in patients of Alzheimer’s Disease.



Zusammenfassung

Durch den technologischen Fortschritt werden in verschiedenen Anwendun-

gen riesige Datenmengen gewonnen. Daher gibt es einen steigenden Bedarf

an effektiven und effizienten Data-Mining-Techniken um aus den Daten die

implizit enthaltenen Information zu extrahieren. In dieser Arbeit werden vor

allem innovative und grundlegende Algorithmen vorgestellt, die Data Mining

aus einer neuen Perspektive betrachten: Synchronisation.

Synchronisation ist ein in der Natur weit verbreitetes Phänomen. Grup-

pen von Ereignissen kommen spontan in einen gemeinsamen Rhythmus durch

wechselweise Interaktion. Das Prinzip der Synchronisation erlaubt es, kom-

plexe Prozesse durch einfache Operationen, die auf Interaktion zwischen Ob-

jekten beruhen, zu steuern.

Der erste Teil der Arbeit beschäftigt sich mit innovativen Algorithmen

für synchonisationsbasiertes Data Mining. Zunächst wird die Technik Sync

(Clustering by Synchronisation) vorgestellt. Diese Technik kombiniert das

Synchronisationsprinzip mit dem Prinzip der minimalen Beschreibungslänge

(Minimum Description Length, MDL). Dadurch wird die intrinsische Cluster-

struktur gefunden, ohne einschränkende Annahmen über die Datenverteilung

oder Parametrisierung zu treffen. Der Algorithmus SOD (Synchronization



xxvi Zusammenfassung

based Outlier Detection) beruht auf den Unterschieden in der Objektdynamik

im Synchronisationsprozess. Ausreißer können mit dem lokalen Synchro-

nisationsfaktor (Local Synchronization Factor, LSF ) auf natürliche Weise

erkannt werden. Um den “Curse of Dimensionality” (“Fluch der Dimen-

sionalität”) zu lindern, wird der Subspace-Clustering-Algorithmus ORSC

vorgestellt, der automatisch Cluster in Unterräumen des ursprünglichen Merk-

malsraums entdeckt. Dieser Ansatz beinhaltet ein lokal gewichtetes Interak-

tionsmodell, um zu gewährleisten, dass sich alle Objekte in einem beliebig ori-

entierten Subspace-Cluster auf natürliche Weise aufeinander zubewegen. Um

Muster in Graphen zu entdecken, wird ein Graph-Clustering-Ansatz (RSGC,

Robust Synchronization-based Graph Clustering) vorgestellt. Die zentrale

Idee von RSGC ist es, Graph Clustering als einen dynamischen Synchroni-

sationprozess aufzufassen. Durch das mächtige Konzept von Synisation hat

RSGC einige wünschenswerte Eigenschaften, die andere Vergleichsverfahren

nicht haben. Alle vorgestellten Algorithmen werden hinsichtlich ihrer Ef-

fektivität und Effizienz gründlich evaluiert. Die Vorteile über traditionelle

Verfahren sind nachgewiesen durch Evaluierung an synthetischen und Real-

daten.

Der zweite Teil dieser Arbeit beschäftigt sich mit der Analyse von Net-

zwerken im Gehirn basierend auf Diffusionstensor-Bildern (Diffusion tensor

Imaging, DTI). Es wird ein neues Framework fr automatisches Clustering

der Nervenfaserbündel vorgestellt. Dieses Framework kombiniert Ideen von

Data Mining auf Zeitreihen mit dichtebasiertem Clustering. Anschließend

wird eine verbesserte Variante dieses Ansatzes vorgestellt, die eine effiziente

und effektive Möglichkeit bietet, eine hierarchische Clusterstruktur von Ner-
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venbündeln zu finden. Außerdem wird basierend auf der strukturellen Kon-

nektivität von Netzwerken im Gehirn ein automatisches Framework vorgestellt,

das es erlaubt, Patienten mit der Alzheimerschen Krankheit zu erkennen und

die veränderten Muster in Gehirnnetzwerken zu verstehen.
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Preliminaries





Chapter 1

Introduction

Nowadays, we are overwhelmed with data. As information technology be-

comes ever more prevalent in nearly every aspect of our lives, the amount of

data generated and stored continues to grow at an astounding rate in various

fields, such as medicine, biology, society, etc. This increase in the amount

of data calls for a need to automatically understand and analyze the data

effectively and efficiently. The interdisciplinary field of Knowledge Discovery

in Databases (KDD) has thus emerged in recent years to unveil the potential

patterns or rules contained implicitly in the data automatically. During last

decades, the study of knowledge extraction and discovery in databases has

attracted huge attention, with multiple books, e.g., surveys and papers.

In this chapter, the overview on the field of Knowledge Discovery in

Databases and Data Mining is first generally described in Section. After-

wards, the current open challenges of clustering are illustrated in Section

1.2. The chapter concludes with an outline of the thesis in Section 1.3.
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Figure 1.1: The KDD process.

1.1 Knowledge Discovery in Databases

“Knowledge Discovery in Databases is the non-trivial process of

identifying valid, novel, potentially useful, and ultimately under-

standable patterns in data.” [57]

According to this definition, KDD extracts the meaningful patterns from

data, which should be interpretable by a human user. In addition, KDD is a

process, indicating that it consists of an iterative sequence of steps, which is

further illustrated as follows (cf. Figure 1.1).

1. Selection. The first step of KDD process is to create a target data

set by selecting a data set or focusing on a subset of attributes or data

samples. The criteria of data selection often include data availability,

quality, type, format, semantics, etc.

2. Preprocessing. The main goals of this step are cleaning and inte-

grating the target data set. The data from multiple sources should be

combined together and strategies to handle the noise and inconsistent

data have to be selected and applied.
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3. Transformation. To help the goal of the KDD task, the useful at-

tributes are first identified to represent the data, e.g. using feature

selection approaches or transformation methods (like PCA) to reduce

the number of attributes or to find compact representation for the data.

4. Data Mining. The goal of this essential step is to identify the relevant

data mining task, e.g. clustering, classification and association mining.

In this step, efficient and effective algorithms are used to extract novel,

unknown and useful patterns from the transformed or original data.

5. Interpretation and Evaluation. The interesting patterns extracted

in the data mining step are presented using knowledge visualization

and representation techniques. In addition, the extracted patterns are

evaluated by domain experts according to the task definition. If the

results are not satisfactory, we need to go back one or more steps.

Among all these steps of the KDD process, data mining is the core step.

Therefore, in most literatures, the terms “data mining” and “KDD” are often

used in a synonymous way. Formally, data mining in [57] is defined as follows:

Data Mining is a step in the KDD process consisting of applying data

analysis and discovery algorithms that, under acceptable computational ef-

ficiency limitations, produce a particular enumeration of patterns over the

data. [57]

In the following, the most important data mining methods are presented.

� Clustering: Clustering is the task of finding a grouping of the objects

of the data sets into groups (clusters) while maximizing the similarity
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of the objects in a common cluster and minimizing the similarity of the

objects in different clusters.

� Classification: Classification is the task of learning a function that

maps data objects to one or several classes in a predefined class set.

To learn this function, classification methods need a training set, con-

taining data objects that are already mapped to the class they belong

to. After learning the training set, classification methods can map new

unknown objects to the classes.

� Association Rules: Discover association rules that occur frequently

together in a given data set. Association rules express as a specified

set of items appearing together in the same transaction with a certain

support/probability.

� Outlier Analysis: Find irregular objects in the data set, e.g. which

do not correspond to the general characteristics or model of the data

set.

� Characterization and Discrimination: Finding a compact descrip-

tion for a subset of the data or comparing a particular subset of the

data with comparative subsets.

This thesis mainly focuses on proposing new clustering and outlier de-

tection techniques and the practical applications of data mining techniques

in neuroscience. Clustering is essential for knowledge discovery in a large

variety of applications. During the last decades, clustering has attracted a

huge volume of attention and many algorithms have been proposed. The
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most typical algorithms will be elaborated in Section 2.1.1. As we will see,

many established approaches have some specific limitations. To deal with

the limitations of existing methods, a new cluster notion: “Synchronization”

for cluster analysis is introduced (cf. Part II). Furthermore, the practical

applications of data mining methods on brain network analysis in the field

of neuroscience are demonstrated in Part III. A series of frameworks are pro-

posed for brain network mining by the integration with the techniques of

clustering, feature selection and graph mining.

In the following section, the current open challenges in clustering are

given, and then a broad overview of the main contributions of this thesis is

provided in Section 1.3.

1.2 Challenges in Clustering

During last several decades, although many clustering algorithms have been

proposed, there also exist some open challenges in clustering as follows. This

thesis tries to address most of these challenges in Part II and III by proposing

different data mining algorithms.

� High-Dimensional Data: In real-world, high-dimensional data are

always encountered in various areas. These real-world data sets are

often represented as sparse, high-dimensional feature vectors, contam-

inated by outliers and noisy objects. Clustering such high-dimensional

data becomes difficult for traditional clustering methods due to the

problem called “curse of dimensionality”. With increasing dimension-

ality, more and more objects are located at the boundaries of the feature
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space. In very high dimensions, it is common for all of the data objects

to be nearly equidistant from each other and objects do not cluster

anymore in the full-dimensional feature space. Global dimensionality

reduction like Principal Component Analysis (PCA) can be applied to

transform the data to a lower dimensional space. However, for cluster-

ing, Global PCA is not the best way to cure the curse of dimensionality.

The reason is that PCA preserves the global variance between objects.

It is thus impossible to yield good results if many irrelevant attributes

hide the cluster structure. Moreover, it is a non-trivial task to interpret

the new features (principal components).

� Large Data: Nowadays, the size of databases has been increasing dra-

matically. Most traditional clustering algorithms have been proposed

to handle a relatively small size of data set.

� Noise Handling: In real data sets, there often exist some noise or

outliers due to the erroneous measurement, or human error. For many

proposed clustering algorithms, such as K-Means, EM, Spectral Clus-

tering, the performance of these algorithms are very sensitive to noise

or outliers.

� Parametrization: For many clustering algorithms, the results strongly

depend on suitable parameter settings. For instance, the number of

clusters or cluster density needs to be specified as an input parameter.

Such parameters are not easy to be estimated without prior knowledge

of the data set.

� Complex data: In recent years, a large amount of data sets have
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been generated in the field of multimedia, neuroscience, biology, etc.

Most of these data sets are represented as complex, application spe-

cific data objects. Since clustering algorithms build on a similarity of

data objects, a specific similarity measure must be defined. However,

introducing a new similarity measure for handling complex objects is a

non-trivial task.

1.3 Outline of the Thesis

In this thesis, novel clustering and outlier detection algorithms are proposed

based on the synchronization principle. Furthermore, the practical applica-

tions of data mining techniques in neuroscience are developed. The content

of this thesis is organized as follows:

Part I deals with the preliminaries.

Chapter 1 presents an overview on the field of Knowledge Discovery in

Databases and Data Mining in a very general manner, providing the reader

with the broader context of this thesis.

Chapter 2 introduces basic notions of clustering and outlier detection,

and surveys some fundamental algorithms in more detail.

Part II presents new techniques to clustering and outlier detection inspired

by synchronization.

Chapter 3 gives a brief introduction of synchronization, including the

concept of synchronization, Kuramoto model and its applications in diverse

fields.
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Chapter 4 proposes Sync, a novel approach to clustering. By combining

with the Minimum Description Length principle (MDL), it allows discov-

ering the intrinsic clusters without any data distribution assumptions and

parameters setting.

Chapter 5 presents the algorithm hSync, by extending the concept of

synchronization to hierarchical data analysis. It robustly reveals the natural

cluster hierarchy regardless of size and data distribution of the clusters.

Chapter 6 proposes a subspace clustering algorithm ORSC to find all

synchronized clusters in arbitrarily oriented subspaces. Relying on a weighted

local interaction model, all objects in a common cluster which accommodated

in arbitrarily oriented subspace can naturally move together.

Chapter 7 presents the graph partitioning approach RSGC, which con-

siders graph clustering as a dynamic process towards synchronization. As

the graph connection information is naturally integrated in the interaction

model, RSGC shows several desirable properties and can find the natural

partitions of a graph without any insensitive parameters.

Chapter 8 introduces a new outlier detection algorithm SOD from a

new perspective: “Out of Synchronization”. By simulating the dynamical

behavior of each data object towards synchronization, outlier objects are

naturally flagged by local synchronization factor (LSF).

Part III presents new techniques on brain network mining in the field of

neuroscience.

Chapter 9 provides the background information on brain network mining,

especially for Diffusion Tensor Image (DTI) and fiber tracking.

Chapter 10 presents a framework for automated white matter tracts clus-
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tering in the Human Brain by combining ideas from time series mining with

density-based clustering.

Chapter 11 proposes the enhancement and variation of hierarchical fiber

clustering approach which allowing for a more robust, efficient, or effective

way to find hierarchies of fiber bundles.

Chapter 12 gives an automated prediction framework to analyze and un-

derstand the abnormal patterns in patients of very early Alzheimer’s disease

based on individual structural connectivity networks.

Part IV Conclusion.

Chapter 13 concludes the thesis and gives the outlook for the future work.
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Chapter 2

Clustering and Outlier

Detection

As the main focus of this thesis is to develop new algorithms for data min-

ing especially for clustering and outlier detection, this chapter first gives a

general background to both of them. Section 2.1 starts with a general intro-

duction to clustering. As there is a huge variety of clustering algorithms, only

a brief survey on different representatives of various clustering paradigms is

provided (cf. Section 2.1.1). Subsequently, Section 2.1.2 presents the valida-

tion of the clustering results for comparing clustering algorithms. Afterwards,

Section 2.2 introduces outlier analysis. Finally, the chapter ends with a short

conclusion in Section 2.3.
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2.1 Cluster Analysis

Clustering is the process of grouping a given data set into classes or clusters.

The objects within a cluster should be similar to each other and the objects

of different clusters should be dissimilar to each other. To determine the

similarity between objects, an appropriate similarity measure is needed.

Given two d-dimensional objects x = {x1, · · · , xd} and y = {y1, · · · , yd}

of a data set D, to measure the similarity between them, a distance function

dist is used. Formally, let dist be one of the Lp norms. The similarity of the

two objects is defined as follows for an arbitrary p ∈ N :

dist(x, y) = p

√√√√ d∑
i=1

(xi − yi)p

Currently, the widely-used distance functions are the Euclidean, Ham-

ming, Manhattan, and Mahalanobis distance. Whenever not otherwise spec-

ified, throughout this thesis, Euclidean distance measure is used (p = 2).

However, for complex data objects, such as images, protein structures or

text data, it is a non-trivial task to define domain specific similarity mea-

sures. In Chapter 10, a new similarity measure for white matter tracts in the

human brain is introduced.

During the last decades, clustering has attracted a huge volume of atten-

tion, with multiple books, e.g. [82], surveys, e.g. [115] and research papers,

e.g. [6, 8, 47, 179] to mention a few. As there is a huge variety of clustering

algorithms, only methods which are fundamental for the techniques described

in this thesis are surveyed in the following. For a comprehensive survey on

basic clustering algorithms, please refer to [82, 75].
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2.1.1 Clustering Algorithms

In general, clustering algorithms can be classified into partitioning and hier-

archical methods. In the following, the common algorithms of each type are

described.

Partitioning Clustering

Partitioning clustering refers to a class of methods which group objects of a

data set into a set of clusters and assign each object to exactly one cluster.

Here, four prominent representatives of partitioning clustering methods and

their related approaches are briefly illustrated.

K-Means. The most well-known and commonly used partitioning clus-

tering algorithm is K-Means [101]. The algorithm starts with an arbitrary

initial partitioning of the data set into k clusters. Afterwards, the algorithm

iteratively improves the initial clustering by minimizing the sum of squared

distances of the data objects to the mean vector of respective cluster.

Formally, given a data set D, x ∈ D and the initial set of k cluster centers

are (m1, · · · ,mk), which can be specified randomly or by some heuristics, the

K-Means algorithm proceeds by alternating between two following steps.

Assignment step: Assign each point to the closest cluster center.

Si = {x|dist(x,mi) ≤ dist(x,mj)(∀j = 1, · · · , k)}

where dist(·) is a distance function.

Update step: Update the new cluster center to be the centroid of the

objects in the current cluster.

mi =
1

|Si|
∑
x∈Si

x
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The algorithm terminates when no changes in the cluster assignment of

the objects. The main advantage of K-Means is its efficiency. However, for

K-Means, the number of clusters k has to be specified in advance, which is a

non-trivial task on real-world data sets. The clustering result is also sensitive

to noise and outliers. In addition, K-Means implicitly assumes a Gaussian

data distribution, and is thus restricted to detect spherically or Gaussian

clusters. To handle these problems, many extended algorithms have been

proposed. For example, to estimate the reasonable number of clusters k,

the X-means [125] is proposed in combination with the information theory.

The K-Medoid methods [86] are presented to alleviate the noise effect on

clustering.

Expectation-Maximization (EM) Clustering. Generally, the EM-

algorithm [47] is a soft version of the K-means algorithm. It is an iterative

optimization method to estimate the unknown parameters. EM algorithm

proceeds by alternating an expectation (E ) step, which computes the expec-

tation of the log-likelihood under the current estimate of the parameters, and

a maximization (M ) step, which finds parameters maximizing the expected

log-likelihood.

Specifically, the EM algorithm can be outlined as follows:

1. Choose some random values to the estimated parameters.

2. E-step: Calculate the expected value of the log-likelihood function with

respect to the given parameter values.

3. M-step: Find a better estimate for the parameters by the maximization

of the log-likelihood obtained in the E-step.
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4. Assess convergence (with respect to some criterion) and repeat the E

and M-steps until convergence is reached.

For clustering, the data set is modeled as a finite mixture of k distribu-

tions. To calculate the cluster membership of each data point, the mixture

model of the k distributions is optimized until no improvement of the log-

likelihood of the data is reached. Like K-Means, the result heavily depends

on the initialization and is very sensitive to noise and outliers.

DBSCAN. The DBSCAN algorithm [55] considers the clustering prob-

lem from a density-based point of view: Clusters are regarded as areas of

high object density which are separated by areas of lower object density.

DBSCAN is based on three main concepts: core object, density reachability

and density connectability. These concepts depend on two input parameters

ε and MinPts. MinPts specifying a minimum number of objects, and ε ,

the radius of a hyper-sphere. An object is called a core object if there are

at least MinPts objects in the ε-neighborhood. If one object P is in the

ε-neighborhood of a core-object Q, then P is said to be directly density-

reachable from Q. The density-connectivity is the symmetric, transitive clo-

sure of the direct density reachability, and a density based cluster is defined

as a maximal set of density connected objects. Except for DBSCAN, many

other density-based clustering have been proposed, such as DENCLUE [78]

and OPTICS [8].

In contrast to many other partitioning clustering methods such as K-

Means and EM methods, the density-based notion has several attractive

benefits. The user does not have to specify the number of clusters. Density-

based clustering algorithms are able to detect clusters of arbitrary shape.
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It is robust to noise and outliers. Finally, density-based clustering methods

are not restricted to vector data but applicable on general metric spaces. In

Chapter 10, the density-based clustering and dynamic time wrap are com-

bined to identify meaningful fiber bundles in the human brain. However, for

DBSCAN, the clustering result strongly depends on an appropriate choice of

the density parameters.

Spectral Clustering. Spectral Clustering refers to a class of well-known

techniques which rely on the Eigenvector decomposition of a similarity matrix

to partition objects into disjoint clusters [165]. One of the most popular

algorithms is normalized spectral clustering [116] proposed by Ng et al. The

basic idea of this algorithm is first to map the data points into a new space

and then apply the traditional methods (like K-Means) in this new space for

clustering. Formally,

1. Given a set of data points A, construct a similarity matrix S, where

Sij represents a measure of the similarity between points i, j ∈ A.

2. Define D to be the diagonal matrix whose (i, i)-element is the sum of

S’s i-th row, and construct the matrix L = D−1/2SD−1/2.

3. Find x1, · · · , xk: the k largest eigenvector of L and form a new matrix

X = [x1, · · · , xk] by stacking the eigenvectors in columns.

4. Normalize each of X’s rows to have unit length to form a matrix Y .

5. Regard each row of Y as a point and cluster them as k clusters by

K-Means or other algorithms.
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Figure 2.1: Hierarchical clustering with agglomerative and divisive strategies.

6. Assign the original point i to cluster j if and only if row i of the matrix

Y is assigned to cluster j.

Hierarchical Clustering

In hierarchical clustering, the data are not partitioned into a particular clus-

ter but a series of partitions in different levels. Currently, there are two

strategies to explore the hierarchical clusters: agglomerative and divisive.

Agglomerative strategies perform in a bottom-up way. Starting with each

data object regarding as a cluster, they gradually merge the most similar

pair of clusters until all data objects are in a common cluster. In contrast,

divisive strategies work in a top-down way. Starting with all points in a

common cluster, they recursively split the clusters when all data objects are

in different clusters (See Figure 2.1).

Single Link. Single link [82] is a very simple agglomerative hierarchical

clustering method. The algorithm starts with n singleton clusters, each con-
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taining only one data object. The algorithm then merges the pair of clusters

which have the minimal distance in each step until all objects are merged in

one cluster. The hierarchical cluster structure can be then visualized in a

dendrogram (cf. Figure 2.1). The leaves of the dendrogram represent data

objects and the levels of the dendrogram demonstrate the cluster merging

procedure.

During the merging process, a distance function between two groups of

objects should be specified. Single Link uses the smallest minimum pair-

wise distance between the two clusters of objects. Except for Single Link,

many other variants of Single Link have been proposed based on different

distance functions. The variant Complete Link applies the smallest maximum

pair-wise distance between two clusters, while the Average Link uses the

average among the distances between both clusters of objects. Through

the dendrogram, the clusters can be obtained at any level by horizontally

cutting the dendrogram. However, the dendrogram of real data is often very

complicated and difficult to visualize the data structure. The reason lies in

the generated dendrogram has N−1 levels with N objects, which reflects the

merging process according to the distances among pair of clusters. For real

data, it is not easy to find the optimal splitting of the dendrogram to identify

clusters. Another drawback of Single Link and its variants is the single-link

effect. Moreover, the clustering result is also sensitive to noise and outliers,

which can be demonstrated in Section 10.5.4.

OPTICS. OPTICS [8] is a hierarchical variant of the density-based clus-

tering algorithm DBSCAN. In contrast to DBSCAN, OPTICS does not as-

sign cluster membership, but orders objects of a data set D into a hierarchi-
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Figure 2.2: Illustration of the reachability plot of OPTICS. Left: 2D sample

data set, where different capital letters indicate hierarchical clusters with

different densities, shapes and sizes. Right: the reachability plot of the

sample data set, where the different valleys of this plot indicate the clusters.

cal cluster structure. This structure contains clustering information, which

could also be achieved by all possible DBSCAN clusterings with respect to

distances ε′ that are smaller than the generating distance ε. To describe the

hierarchical cluster structure, each object is characterized by two measures,

its core-distance and its reachability-distance. The output of OPTICS is a

linear order of the data objects according to their hierarchical cluster struc-

ture which is visualized in the so-called reachability-plot. This reachability

plot is a 2D plot showing the objects’ position index on the x-axis and the

objects’ reachability-distance on the y-axis. The reachability plot provides

a visual representation of the cluster structure of the data from the density-

based point of view and enables an intuitive way to find clusters. Valleys in

this plot indicate clusters, the deeper the valley, the denser the cluster. Clus-

ters can be obtained by cutting the reachability plot with a horizontal line.
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An example of a reachability plot for a 2D data set is presented in Figure

2.2. The reachablity plot provides information about the general number of

clusters, the densities of different clusters, and the hierarchical structure of

the data.

2.1.2 Validation of Clustering Results

Several quantitative measures have emerged to compare the results of differ-

ent clustering algorithms. In the following, different measures that are used

in this thesis are described.

Encoding Cost

To compare clustering results for different approaches with a ground truth,

an information-theoretic external cluster-validity measure in [50] is proposed.

The evaluation scheme measures how useful the calculated cluster labels are

as predictors of the ground truth cluster labels.

In contrast to measures like the Rand Index [72] or the Cluster Purity

[167], different numbers of clusters can be compared. The clustering quality

measure is defined as the entire encoding cost, Q(C,K), which is the sum

of the empirical conditional entropy H(C|K) and of the code length for the

number of clusters CL(C|K):

Q(C,K) = H(C|K) + CL(C|K) (2.1)

Where C is the set of ground truth labels and K equals the set of calcu-

lated labels.
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H(C|K) = −
|C|∑
c=1

|K|∑
k=1

h(c, k)

n
log

h(c, k)

h(k)

CL(C|K) =
1

n

|K|∑
k=1

log

(
h(k) + |C| − 1

|C| − 1

)
where h(c, k) is the number of fibers labeled within class C with label c and

within class K with label k. h(k) ≡
∑

c h(c, k). |K| and |C| are the number

of calculated clusters and the number of ground truth clusters respectively.

The smaller the value of the entire encoding cost, the better is the quality of

the clustering results.

Mutual Information

Besides the entire coding cost used to evaluate the clustering results, more

and more information theoretic measures are proposed based on the Mutual

Information. Formally, the mutual information between two discrete random

variables X and Y is defined as:

MI(X, Y ) =
∑
y∈Y

∑
x∈X

p(x, y)log(
p(x, y)

p(x)p′(y)
)

where p(x, y) is the joint probability distribution function of X and Y ,

and p(x) and p
′
(y) are the marginal probability distribution functions of X

and Y .

Intuitively, mutual information measures the information that X and Y

share. This property indicates that the mutual information can be used to

measure the information shared by two clusters. Based on this idea, many

mutual information-based measures are proposed.
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Normalized Mutual Information (NMI): The most popular and in-

tuitive way to use mutual information for clustering evaluation is the nor-

malized version of the Mutual Information (NMI) [156]. Formally, given two

clusterings U = {Ui, · · · , UM} and V = {V1, · · · , VN}, the NMI is defined as:

NMI(U, V ) =
MI(U, V )√
H(U)H(V )

where H(U) and H(V ) are the entropies associated with the clustering U

and V respectively. The Normalized Mutual Information of two clusterings

U and V has fixed upper and lower bounds and takes a value of 1 when two

clusterings are identical and 0 when the two clusterings are independent.

Adjusted Mutual Information (AMI): To correct the effect of chance

agreement in clustering evaluation, AMI [164] is proposed based on the ex-

pected mutual information. Given two clusterings U and V , the adjusted

measure for the mutual information can be:

AMI(U, V ) =
MI(U, V )− E{MI(U, V )}

max{H(U), H(V )} − E{MI(U, V )}

where H(U) and H(V ) are the entropies associated with the clustering

U and V respectively, and E{MI(U, V )} is the expected mutual information

of clusterings U and V . AMI takes a value of 1 when the two clusterings

are identical and 0 when the mutual information between the two clusterings

equals its expected value.

Adjusted Variation of Information (AVI): In addition, based on the

variation of information, the Adjusted Variation of Information (AVI) [164]

is given by:
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AV I(U, V ) =
2MI(U, V )− 2E{MI(U, V )}

H(U) +H(V )− 2E{MI(U, V )}

Like AMI, AVI takes a value of 1 when the two clusterings are identical

and 0 when the mutual information between the two clusterings equals its

expected value.

2.2 Outlier Detection

As illustrated in Section 1.1, outlier detection is a primary step in KDD. In

data analysis, one of the preliminary steps is to detect the outlying observa-

tions in the data sets. According to the definition of Hawkins [76], an outlier

is defined as an observation that deviates so much from other observations

as to arouse suspicion that it was generated by a different mechanism. Sim-

ilarly, Grubbs [67] indicates that an outlying observation, or outlier, is one

that appears to deviate markedly from other members of the sample in which

it occurs. Detecting such irregular observations in data sets is very curial for

further data analysis. In addition, in this thesis, outliers also refer to noise

objects. The terms “outlier” and “noise” are used in a synonymous way.

During last several decades, outlier detection has attracted huge attention

in diverse applications, such as credit card fraud detection, clinical trials,

voting irregularity analysis, network intrusion detection, fault detection, and

athlete performance analysis. Many algorithms for outlier detection have

thus been proposed [30, 91, 92, 24]. In the following, some widely-used

outlier detection algorithms are generally described.

Mahalanobis distance: The most of the earliest methods for outlier
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detection rely on the statistical analysis. For a given data set, it often assumes

to follow a known distribution, such as Gaussian. If the data objects of the

data set badly fit the data distribution and then they are considered as

outliers. One of a well-known method is Mahalanobis distance. Given n

data objects in the d-dimensional data set, Mahalanobis distance for each

data object xi is defined as [19]:

Mahalxi =

√√√√ n∑
i=1

(xi − x̄n)T · Σ−1 ·
n∑
i=1

(xi − x̄n) (2.2)

Where Σ is the covariance matrix of n data objects and x̄n denotes mean

vector.

Since Mahalanobis distance reflects the distribution of the data set, data

objects with a large Mahalanobis distance are indicated as outliers.

CoCo: Based on information-theoretic principle, recently, Böhm, et al.

proposed CoCo [24], a parameter-free outlier detection with coding cost.

Based on the MDL principle, outliers are flagged as those objects which

need more coding cost than regular objects. For coding each object, the

optimal neighborhood size is heuristically determined. Independent Com-

ponent Analysis and Exponential power distribution (EPD) are combined

to estimate the probability and the corresponding coding cost. Like most

distribution-based methods, CoCo tends to fail if the estimated distribution

does not fit the data model well. It is also time consuming to find the opti-

mal neighborhood to estimate the coding cost for each object by screening

for suitable neighborhood sizes.

LOF: To handle the issue of varying densities in the data set, Breunig, et

al. [30], introduce a notion of local outlier from a density-based perspective.
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P1

P2

P3

Figure 2.3: LOF: local outlier vs. global outlier [30].

An object is regarded as an outlier if its local density does not fit well into

the density of its neighboring objects. The local outlier factor (LOF) is then

proposed to capture the degree to which the object is an outlier. It is defined

as the average of the ratio of the local reachability density of the object and

those of the objects in its neighborhood. A LOF value of approximately 1

indicates the object is located inside a cluster, while the objects with higher

LOF values are more rather considered as outliers. In Figure 2.3, LOF shows

the advantage of outlier detection for local outliers in the data set with

varying densities. It can obtain the local outliers by computing the relative

degree of isolation from its surrounding neighborhood.

LOCI: The Local Outlier Integral (LOCI) [120] flags outliers, based on

probabilistic reasoning and motivated from the concept of a multi-granularity

deviation factor (MDEF). Similar to LOF, the LOCI outlier model takes the

local object density into account, but differently, the MDEF of LOCI uses

ε-neighborhoods rather than MinPts nearest neighbors. The local neigh-
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borhood in LOCI model is defined by two parameters: the counting and

the sampling neighborhood. The counting neighborhood specifies some vol-

ume of the feature space which is used to estimate the local object density.

The sampling neighborhood is larger than the counting neighborhood and

contains all points which are used to compute the average object density in

the neighborhood. Objects which deviate in their local object density more

than three times of the standard deviation are regarded as outliers. The

flagging scheme of LOCI thus assumes the object densities follow a Gaussian

distribution.

In the Chapter 8, the advantages and drawbacks will be further illus-

trated and discussed by comparing with the new proposed outlier detection

algorithm based on synchronization principle.

2.3 Conclusion

In this chapter, a brief introduction to clustering and outlier detection is

given. Some wide spread algorithms which are fundamental for the tech-

niques described in the following chapters have been briefly characterized.

In view of the open challenges of clustering (cf. Section 1.2), a new concept

in data mining analysis: synchronization, is introduced in the following part.
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Chapter 3

Synchronization

Synchronization, a ubiquitous phenomenon in nature, has attracted a large

volume of interest in physics, biology, ecology, sociology, communication and

other fields of science and technology. In this chapter, the concept of syn-

chronization is first introduced. In Section 3.2, the widely used Kuramoto

model to describe the mechanism of synchronization is provided. Finally, the

applications based on synchronization are reviewed.

3.1 The Concept of Synchronization

“Synchronization means an adjustment of rhythms of oscillating

objects due to their weak interaction.” [126]

Synchronization is an emerging phenomenon of a population of dynami-

cally interacting units, has fascinated humans from ancestral times [10]. In

1665, the great Dutch physicist and mathematician, inventor of the pendu-

lum clock, Christiaan Huygens discovered an odd ”sympathy of two clocks”,
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where a couple of pendulum clocks hanging from a common support were

swinging in perfect synchrony [80]. He explained this effect as mutual syn-

chronization and suspected that the conformity of the rhythms of two clocks

had been caused by air movements or imperceptible vibrations in the common

support [126]. From that moment on, synchronization has been observed in

biological, chemical, physical, and social systems, and it has attracted the in-

terest of scientists for centuries. For example, in the middle of the nineteenth

century, Rayleigh [131] described the interesting phenomenon of synchroniza-

tion in acoustical systems in his famous treatise ”The Theory of Sound”. Ec-

cles and Vincent [52] applied for a British Patent confirming their discovery

of the synchronization property of a triode generator. Appleton [9] and van

der Pol [162] replicated and extended the experiments of Eccles and Vincent

and made the first step in the theoretical study of this synchronization effect.

Actually, synchronization is one of the most captivating collective phe-

nomena in nature [2]. A paradigmatic example is the synchronous flashing of

fireflies. At the beginning, each firefly rests in the trees. And suddenly, some

fireflies start emitting flashes of light. Firstly they emit flash incoherently, but

after some time all the fireflies are flashing with the same frequency. More-

over, it is known that synchrony is rooted in human life from the metabolic

processes in our cells to the highest cognitive tasks we perform as a group

of individuals [10]. For instance, synchronization seems to be a basic mecha-

nism for organizing neuronal information processing within a brain area, such

as visual cortex [66] and sensorimotor cortex [133]. However, as yet, little is

known about the basic mechanism of synchronization. Therefore, it is impor-

tant to analyze synchronization processes to achieve a better understanding
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of it.

3.2 The Kuramoto model

To capture what are the basic mechanisms responsible for the collective syn-

chronous behavior, the pioneering work was done by Winfree [170], which

called for mathematical approaches to tackle the problem. Based on this,

Kuramoto proposed the simplest and most successful model for the analysis

of synchronization: Kuramoto model (KM) [94, 95] in 1975. Its formulation

was motivated by the behavior of systems of chemical and biological oscilla-

tors. Kuramoto model considers a system consists of a large population of

weakly-coupled, nearly identical, interacting limit-cycle oscillators. For each

oscillator, it interacts with others and therefore changes its rhythm accord-

ing to a given coupling function. Specially, when the natural frequencies of

the oscillators are too different, they are difficult to synchronize together.

However, if the coupling strength is strong enough, all oscillators can achieve

synchrony.

Formally, the KM model consists of a population of N coupled phase

oscillators where the phase of the i-th unit, denoted by θi, evolves over time

according to the following dynamics:

dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi), (i = 1, . . . , N), (3.1)

where ωi stands for its natural frequency and K describes the coupling

strength between units. There are two major tendencies in this model: the

coupling strength K tends to synchronize the oscillators through mutual in-

teraction while the variance of these natural frequencies, ωi, tends to drives
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them to stay away from each other. When the coupling strength K = 0,

each oscillator tries to run independently at its own frequency. However, if

the coupling is strong enough, all oscillators will freeze into synchrony, which

called global synchronization.

To characterize the level of synchronization between oscillators, a global

order parameter r is defined as [94]:

reiψ =
1

N

N∑
j=1

eiθj , (3.2)

where r changes over time and 0 ≤ r(t) ≤ 1, measures the coherence of the

oscillator population at time t, and ψ(t) is the average phase at time t. In

the thesis, r will instead r(t) for simplification.

In the following chapters (Chapter 4 to Chapter 8), the Kuramoto model

will be reformulated in different ways to handle the clustering and outlier

detection problems in various aspects, e.g. subspace clustering, hierarchical

clustering.

3.3 Applications

Synchronization phenomena in large populations of interacting elements are

the subject of intense research efforts in physical, biological, chemical, and

social systems. Seliger et al. [141] discuss mechanisms of learning and plastic-

ity in networks of phase oscillators through a generalized Kuramoto model.

Arenas et al. [11] apply the Kuramoto model for network analysis, and

study the relationship between topological scales and dynamic time scales

in complex networks. This analysis provides a useful connection between
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synchronization dynamics, network topology and spectral graph analysis. In

bioinformatics, Kim et al. [89] propose a strategy to find groups of genes by

analyzing the cell cycle specific gene expression with a modified Kuramoto

model. Aeyels et al. [3] introduce a mathematical model for the dynamics of

chaos system. They characterize the data structure by a set of inequalities

in the parameters of the model and apply it to a system of interconnected

water basins. In summary, previous approaches mainly focus on the synchro-

nization phenomena of a dynamic system from a global perspective. In this

case, the local structure of the system cannot be well explored.

3.4 Conclusion

In this chapter, a brief introduction to synchronization is given. The basic

concept of synchronization is illustrated. After that, the Kuramoto model

which is used to understand the collective synchronization is provided. The

Kuramoto model is the basis for the following proposed interaction models

in this thesis. Finally, the widely applications based on synchronization

are briefly surveyed. In next chapters, the local synchrony effect and new

approaches to clustering and outlier detection will be presented.
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Chapter 4

Clustering by Synchronization

As illustrated in Chapter 3, synchronization is a powerful basic concept

in nature regulating a large variety of complex processes ranging from the

metabolism in the cell to social behavior in groups of individuals [10]. Based

on this powerful concept, Sync, a novel approach to clustering, is proposed

in this chapter. Inherited from synchronization principle, Sync has several

desirable properties over existing approaches: (i) The clusters revealed by

dynamic synchronization truly reflect the intrinsic structure of the data set;

(ii) Sync does not rely on any distribution assumption and allows detect-

ing clusters of arbitrary number, shape and size; (iii) In combining with the

Minimum Description Length (MDL) principle, Sync allows fully automatic

clustering.

The remainder of this chapter is organized as follows: in Section 4.1, it

starts with an introduction. A brief summary of related work is given in

Section 4.2. In Section 4.3, the algorithm of Sync is elaborated. Section

4.4 contains an extensive experimental evaluation of synthetic and real data
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sets. Finally, Section 4.5 gives a summary and concludes this chapter. Parts

of the material presented in this chapter have been published in [27], where

Junming Shao (J.S.) was mostly responsible for the development of the main

concept and wrote the largest parts of the paper. C.P. developed the idea of

MDL-based parameter estimation. C.B., C.P. and Q.Y. also contributed to

the conceptual development and paper writing.

“Christian Böhm, Claudia Plant, Junming Shao, Qinli Yang.

Clustering by synchronization. The 16th ACM SIGKDD Confer-

ence on Knowledge Discovery and Data Mining 2010: 583-592.”

4.1 Introduction

Clustering is essential for knowledge discovery in a large variety of appli-

cations. During the last decades, clustering has therefore attracted a huge

volume of attention, with multiple books, e.g. [82], surveys, e.g. [115] and

research papers, e.g. [6, 8, 47, 179] to mention a few. Many approaches

have been proposed to address the clustering problem from different points

of view, and each cluster notion comes with specific advantages and draw-

backs. As an example, consider the wide-spread Expectation Maximization

(EM) algorithm [47]. The result of EM, a mixture model of multivariate

Gaussians, is very useful for interpretation in many applications. However,

EM only yields good results if the data at least approximately follows the

model assumption, i.e. consists of Gaussian clusters. Moreover, the number

of clusters needs to be specified as an input parameter and the result of EM

is very sensitive w.r.t. outliers.
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In this chapter, a novel point of view for clustering: synchronization is

proposed. Before demonstrating many attractive benefits of clustering based

on synchronization, the basic idea will be first illustrated.

4.1.1 Basic Idea

Synchronization phenomena are prevalent in daily life, as an example consid-

ering opinion formation. In the beginning, each person has their own view

about a certain problem. After interaction by conversation or discussion,

some people with similar background, such as education or hobby, will easily

group together and form a common opinion. As time evolves, in the phase

of local synchronization, groups with diverse opinions will be formed. After

further conversation with different groups, all people may finally achieve a

uniform opinion (global synchronization).

Based on these synchronization phenomena, the synchronization dynam-

ics is exploited to obtain a natural clustering of a given data set. The key idea

is to regard each data object as a phase oscillator which interacts dynamically

with similar objects. The formal description of the dynamical object interac-

tion patterns by a reformulated Kuramoto model will be elaborated in Section

4.3.2 but now the intuition of clustering by synchronization is first provided.

The process of the dynamical clustering involves the following stages: First,

starting from initial conditions, each object runs independently at its own

phase. As time evolves, those objects with highest similarity will synchro-

nize first. Then, in a sequential process, more and more objects synchronize

together and clusters are produced driven by the intrinsic structure of the

data set. Finally, the whole population is split into several stable distinct
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Figure 4.1: Illustration of Clustering by synchronization. (a) The initial

state of the objects: the black arrows indicate the mutual interaction and

red arrows indicate the direction of movement for some sample objects. (b)

The comparison of objects states before and after one time step: black points

represent the initial state, red points indicate the new state. (c) The final

state of objects in local synchronization: synchronized clusters and outliers.

synchronized clusters. Outliers are effectively detected due to their different

dynamic behaviors hardly synchronizing with any of the cluster objects.

To illustrate cluster formation by synchronization, Figure 4.1 displays 3

snapshots of the simulated dynamical movements of objects. For simplicity,

2-dimensional data are displayed. Consider the 3 objects (P1, P2, P3),

where P1 and P2 are cluster objects and P3 is an outlier. For border object

P1, its neighborhood contains less objects and all neighbors are located at

the inner side of the cluster. Therefore, the border object is driven towards

the inside of the cluster through the non-linear dynamical interaction with

its neighbors (Figure 4.1 (a)). The larger the distance between an object
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and its neighbors, the stronger is the interaction imposed, which implies that

neighbors with larger distances have a stronger impact on the object. For the

center objects, e.g. P2, its neighborhood contains more objects, however, all

these neighbors locate around the object, causing a relatively slow movement

of P2 in comparison to the border objects, such as P1. The movements of

objects depend on the structure of their overall neighborhood, which implies

that the objects will move towards the main direction of their neighborhood.

Through the non-linear interaction, all objects with similar attributes finally

synchronize together. In contrast, outlier objects remain isolated from all

other objects, e.g. P3. Figure 4.1 (b) displays the old and the new positions

of the objects for comparison. The objects with high similarity gradually

synchronize together through mutual coupling. The initial points (black

color) are replaced by the red points after one time step. Figure 4.1 (c)

depicts the final states of the objects. The data set is split into clusters and

outliers, where cluster objects are synchronized together and have the same

phase while outlier objects remain isolated over time.

4.1.2 Contributions

The major benefits of the algorithm Sync: (Clustering by Synchronization),

can be summarized as follows:

1. Clusters detected by Sync truly reflect the intrinsic data structure.

Rooted in the concept of synchronization, Sync allows detecting clus-

ters of arbitrary number, shape, size and object density without requir-

ing any distribution assumptions.

2. Sync is a powerful technique for clustering and outlier detection. Based
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on the different dynamical behaviors of objects during the process of

synchronization, outliers are naturally and effectively detected.

3. Sync is robust against parameter settings and fully automatic by the

combination with Minimum Description Length. The basic version of

the algorithm is relatively robust against parameter settings. For au-

tomatic clustering, Sync is combined with the Minimum Description

Length principle.

To the best of our knowledge, no other clustering method meets all of the

above properties. Table 4.1 gives a list of symbols used in the following.

4.2 Related Work

As mentioned, during the past several decades, many algorithms have been

proposed for clustering, such as EM [47], CURE [69], CLIQUE [6], BIRCH

[179], CLARANS [117], and DBSCAN [55]. Here, only a very brief survey

on some important major research directions is provided. In addition, the

related work on kernel density estimation is briefly introduced.

PDF-based Clustering. The key idea of these methods is to detect clus-

ters by using a model of probability density functions (PDFs) to describe

the data structure. The most fundamental techniques in this line are K-

Means [101] and EM [47]. These methods are suitable to detect spherically

Gaussian clusters and the number of clusters k needs to be specified by the

user. The algorithm X-Means [125] extends K-Means by a technique for

automatically detecting k founded on information theory. The algorithm

G-Means [74] additionally provides detection of non-spherical Gaussian clus-
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Table 4.1: Table of symbols.

Symbol Definition

KM Kuramoto model.

D The data set.

x A data object in the data set D .

xi The i-th dimension of the data object x .

N The number of objects in the data set.

d The dimensionality of the data set.

k The number of clusters in a data set.

x(t) The renewal value of object x at time step t during dynamic clustering.

K The coupling strength among objects in the Kuramoto model.

Nε(x) ε-neighborhood of the object x.

rc Cluster order parameter.

Ci The i-th cluster of the data set.

|Ci| The number of object in the i-th cluster.

|pi| The number of free parameters.

ters. Another information-theoretic method, RIC [22], has been designed as

a postprocessing step to improve an initial clustering of an arbitrary conven-

tional clustering algorithm. The cluster model comprises a rotation matrix

determined by PCA and a PDF assigned to each coordinate selected from

a set of predefined PDFs. Clusters with similar characteristics are finally

merged. However, the result strongly depends on the quality of the initial

clustering and the cluster model is limited to linear attribute correlations and

a predefined set of PDFs. Recently, OCI [23] is proposed to detect clusters
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using Independent Components. This algorithm uses the Exponential Power

Distribution as cluster model and applies the Independent Component Anal-

ysis for determining the main directions inside a cluster as well as for finding

split planes in a top-down clustering approach. All methods in this category

tend to fail if the data distribution does not correspond to the cluster model.

An alternative largely avoiding restricting assumptions on the data distribu-

tion is the idea of Parzen Windows. Local information on the object density

is collected by histograms over local windows in the feature space or by local

kernel functions, e.g. Gaussian. Thereby, at a global level, arbitrary data

distributions can be captured. The algorithm MeanShift [40] combines this

idea with clustering: during the run of the algorithm, the windows move to-

wards the direction of the highest object density until convergence. However,

the window size needs to be suitably selected and the experiments demon-

strate that this algorithm tends to degrade in performance in the presence

of outliers and noise points.

Density-Based and Spectral Clustering. In density-based clustering, clus-

ters are regarded as regions of high object density in the data space which are

separated by regions of low object density (noise). The algorithm DBSCAN

[55] formalizes this idea using two parameters : the neighborhood of a given

radius ε has to contain at least a minimum number of objects (MinPts).

Arbitrarily shaped clusters can be easily detected by DBSCAN, however the

choice of a suitable settings of ε and MinPts is often difficult, especially

since the parameters are correlated. Conceptually closely related, spectral

clustering refers to a class of techniques which rely on the Eigenstructure

of a similarity matrix to partition objects into disjoint clusters. These algo-
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rithms, e.g. [116], [14] detect arbitrarily shaped clusters by considering the

clustering problem from a graph-theoretic perspective. A clustering is ob-

tained by removing the weakest edges between highly connected subgraphs,

which is formally defined by the normalized cut or similar objective functions.

Similar to K-Means, the problem of these approaches is to choose a suitable

number of clusters and they are sensitive w.r.t. outliers. The approach [14]

partially overcomes these problems by proposing a new cost function for spec-

tral clustering based on the error between a given graph partitioning and a

clustering result. However, this approach requires sample data with a known

partitioning which is not available in most cases. The approach of Affinity

Propagation [60] is closely related to spectral and density-based clustering.

Each data point is regarded as a node in a network. The algorithm performs

clustering by letting the data points exchange messages along the edges of

the networks. By message passing, certain data points emerge as so-called

exemplars (cluster representatives) and the other data points establish their

cluster membership. As input parameter for each data point a real value

must be specified characterizing the probability that this particular point is

selected as an exemplar. The number of clusters is not only controlled by

this parameter but also by the structure of the network.

Kernel density estimation. The kernel density estimation technique (also

called Parzen window method) is a non-parametric way of estimating the

probability density function of a random variable, which is widely used in

various applications, such as machine learning, data mining, pattern recog-

nition, and computer vision [124]. In comparison to parametric estimation

where the density is assumed to come to from a given probability distribu-
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tion function, kernel density estimation has no fixed distribution assumption

and depends upon all the data points to reach an estimate. The extent of

the influence of each data point depends on the shape of the kernel function

adopted and the bandwidth of the kernel. The choice of bandwidth is im-

portant since it affects the roughness or smoothness of the kernel histogram

that is ultimately generated. A variety of techniques have been developed

for bandwidth selection, such as plug-in and cross-validation methods [84].

4.3 Clustering by Synchronization

In this section, Sync, is introduced to explore clusters by synchronization.

It starts with an introduction of the Kuramoto Model and then develops

a variant suitable for clustering. In Section 4.3.3 the algorithm Sync is

discussed in detail.

4.3.1 Kuramoto Model

As stated in Section 3.2, to understand basic mechanisms responsible for

synchronization phenomena, the most successful approach is Kuramoto model

(KM), first proposed by Kuramoto [94, 95]. The KM model consists of a

population of N coupled phase oscillators where the phase of the i-th unit,

denoted by θi, evolves over time according to the following dynamics:

dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi), (i = 1, . . . , N), (4.1)

where ωi stands for its natural frequency and K describes the coupling

strength between units.
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The Kuramoto model well describes the global synchronization behavior

of all coupled phase oscillators, which implies that all the oscillators will be in

phase finally through mutual coupling. This situation rarely occurs in real-life

systems. Phase locking or local synchronization is more often observed. This

means a local ensemble of oscillators are synchronized together, where the

whole oscillators are divided into several clusters of mutually synchronized

oscillators. Moreover, it is observed that the sets of oscillators with high

similarity synchronize more easily than those with large variance.

4.3.2 Reformulation of the Kuramoto Model for Clus-

tering

To apply KM for clustering, it is necessary to extensively reformulateEq.(4.1).

Here, the concept of local synchronization of phase oscillators needs to be for-

mally introduced to reflect the intrinsic data structure. To introduce the local

synchronization, the notion of ε-neighborhood is defined.

Definition 4.1 (ε-neighborhood of an object x): The ε- neighborhood of

object x, which denoted by Nε(x), is defined as:

Nε(x) = {y ∈ D|dist(y, x) ≤ ε}, (4.2)

where dist(y, x) is a metric distance function.

Definition 4.2 (Extensive Kuramoto model for Clustering): Let x ∈ Rd

be an object in the data set D and xi be the i-th dimension of the data object

x respectively. Each object x is regarded as a phase oscillator. According to

Eq.(4.1), with an ε-neighborhood interaction, the dynamics of each dimension
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xi of the object x is governed by:

dxi
dt

= ωi +
K

|Nε(x)|
∑

y∈Nε(x)

sin(yi − xi). (4.3)

Let dt = ∆t, then:

xi(t+ ∆t) = xi(t) + ∆tωi +
∆t ·K
|Nε(x(t))|

∑
y∈Nε(x(t))

sin(yi(t)− xi(t)) (4.4)

It is essential that all objects have a common frequency ω since different

individual frequencies would disturb or even prevent cluster formation. The

term ∆t · ωi can thus be safely ignored. ∆t ·K is a constant and simply set

to 1. Finally the dynamics of each dimension xi of the object x over time is

provided by:

xi(t+ ∆t) = xi(t) +
1

|Nε(x(t))|
·
∑

y∈Nε(x(t))

sin(yi(t)− xi(t)). (4.5)

The object x at time step t = 0: x(0) = (x1(0), ..., xd(0)) represents the initial

phase of the object (the original location of object x). The xi(t+∆t) describes

the renewal phase value of i-th dimension of object x at the t = t+ ∆t time

evolution.

To characterize the level of synchronization between oscillators during

the synchronization process, an order parameter needs be defined. The or-

der parameter of Eq.(3.2) is suitable for global synchrony. However, it is

not effective to identify local dynamic effects. In particular it cannot bring

the deep information of the degree of local synchronization. For this rea-

son, instead of a global observation, a cluster order parameter rc is defined,

measuring the degree of synchronization of the local oscillator population.
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Definition 4.3 (Cluster Order Parameter): The cluster order parameter

rc characterizing the degree of local synchronization is provided by:

rc =
1

N

N∑
i=1

1

|Nε(x)|
∑

y∈Nε(x)

e−||y−x||. (4.6)

The value of rc increases as more neighbors synchronize together over time

evolution. The dynamic clustering will terminate when rc(t) converges, which

indicates the local phase coherence, also called local perfect synchronization.

At this moment, all local objects (within in a cluster) have the same phase

(location).

4.3.3 The Sync Algorithm

In this section, the Sync algorithm based on the reformulated extensive Ku-

ramoto model is presented.

Dynamic Clustering

The basic idea of Sync is to regard each object as a non-identical phase

oscillator which changes its phase (location) dynamically over time evolution

according to Eq.(4.5). The process of the dynamic clustering involves the

following steps:

1. At initial time (t = 0), without any interaction, all objects in the data

set have their own phase, which are represented by different values

(feature vectors). Thus, there are N disconnected sets (N clusters).

2. As time evolves, each object interacts with its ε- neighborhood, cf.

Definition 4.1. The interaction strength which each neighbor is deter-
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(a) t = 0 (b) t = ∆t (c) t = 2∆t

(d) t = 3∆t (e) t = 4∆t (f) rc.

Figure 4.2: The process of dynamical clustering over time evolution and cor-

responding cluster order parameter: Diagrams (a)-(e) describe the detailed

process of dynamical clustering towards synchronization. Here, the states

of objects at the time step t = (0, 1, 2, 3, 4) · ∆t are presented. Diagram

(f) illustrates the corresponding cluster order parameter during dynamical

clustering.

mined proportional to the similarity (Eq.(4.5)). Objects with similar

attributes synchronize together and form several synchronized clusters

gradually following the intrinsic structure of a data set.

3. Finally, the cluster order parameter (Definition 4.3), which character-
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izes the level of local synchronization, is used to determine the termi-

nation of the dynamic clustering (rc converges).

During the dynamic process toward synchronization, all objects change

their locations through the interaction with similar objects according to

Eq.(4.5). This means that also the neighborhood of each object changes

dynamically over time evolution. The traces of all objects are in line with

the main direction of the local data structure. Finally, all objects in each

cluster synchronize at a certain common phase. Figure 4.2 (a)-(e) show the

detailed process of dynamic clustering of 2-dimensional points from t = 0

to t = 4∆t. t = 0 indicates the original data set at the initial time. From

that moment on, all objects with similar attributes start to synchronize to-

gether through the dynamic interaction and finally, all objects in the data

set synchronize at 4 different phases after 4 time steps. The level of local

synchronization over time evolution is characterized by the cluster order pa-

rameter, which indicated in Figure 4.2 (e). When rc converges, all objects

in a cluster synchronize together (coherence or phase locking). According

to empirical studies, in most cases, rc will converge in 20 time steps. The

dynamic clustering is illustrated in Algorithm 1.

Outlier Handling

Depending on their dynamic behavior over time evolution, all objects can be

divided into two types: synchronized objects (objects in several synchronized

clusters) and non-synchronized objects (outliers). Most objects synchronize

with other objects and form synchronized clusters. Objects which remain

isolated all the time are regarded as outliers. In order to illustrate the process
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Algorithm 1 DynamicClustering

Input: Data Set D, Interaction Range ε

while (loopFlag = True) do

for (Each object p ∈ D) do

Compute N(p);

//Update value

Obtain new value of object p using Eq.(4.5);

end for

//Order parameter

Compute local order rc of all objects using Eq.(4.6);

if rc converges OR loopNum > 50 then

loopFlag = False;

C = synCluster(D′); //Find synchronized clusters

O = setDiff(D′, C); //Outliers

R = {C,O};

end if

end while

return R;

of handling outliers, two simple one-dimensional data sets are used: Without

outliers D1 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0, 1.1, 1.3, 1.5}, and with outliers

D2 = {-0.5, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0, 1.1, 1.3, 2.0}. As displayed in

Figure 4.3, in D1, all objects synchronize to different clusters and achieve

the phase lock. However, in D2, owing to the different movement dynamics
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Figure 4.3: Object dynamics plot displaying the different dynamics of cluster

and outlier objects. (a): data set without outliers, (b): data set with outliers.

and directions, outlier objects cannot synchronize with other objects and

keep their original location over time. Moreover, the plots of dynamic object

movement are a concise visualization for the intrinsic data structure including

cluster points and outliers.

MDL-based Clustering Model Selection

To explore clusters based on synchronization, an appropriate initial size of the

neighborhood for mutual interaction needs to be determined. Although the

experiments demonstrate that the clustering result is quite robust against the

initial neighborhood size ε, the Minimum Description Length [68] principle is

also used for fully automatic clustering. More specifically, the MDL principle

is applied to compress a set of candidate clustering models M l, where in our

case different models correspond to the clustering results with various ε.

To generate a suitable set of models, the following heuristic is applied:
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To guarantee a stable interaction of each object, ε is initiated with the av-

erage value of the k-nearest neighbor distance determined from a sample

from the data set for a small k. The ε is increased stepwise until all objects

synchronize in a cluster. A reasonable step size is determined by the differ-

ence between average (k+1)-nearest neighbor distance and average k-nearest

neighbor distance. Choosing k sufficiently small is recommended and k = 3

nearest neighbors are applied in all experiments. From all candidate models,

the model resulting in the minimum description length is selected. In the

following, how to compress a candidate model is explained in detail.

Given a data set D and a clustering model M , the fundamental idea of

MDL is to exploit the regularities in the data described by M for effective

compression of the data. To avoid overly complex models, the overall de-

scription length includes not only the cost for coding the data exploiting the

model, denoted by L(D|M), but also the cost L(M) for coding the model M

itself.

Assuming there are k clusters, the coding cost or description length for

the data L(D|M) is provided by:

L(D|M) = −
k∑
i=1

∑
x∈Ci

log2(pdf(x)). (4.7)

where the pdf(x) means the probability of object x in each cluster. To

allow for arbitrarily shaped clusters, we propose to estimate pdf(x) by non-

parametric kernel density estimation, a widely used technique with numer-

ous applications in machine learning, pattern recognition and computer vi-

sion [124].

For coding the cluster model L(M), the cluster assignment as well as the
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model parameters need to be specified, which are given as:

L(M) =
k∑
i=1

|Ci|∑
j=1

log2(
N

|Ci|
) +

k∑
i=1

pi
2

log2 (|Ci|). (4.8)

where the first term represents the coding cost for the cluster assignment and

the second term is dedicated for coding the parameters. Here pi is the number

of bandwidths for kernel density estimation, which equals the dimensionality

of the data set.

Finally, the total coding cost for a clustering model M is:

L(D,M) = L(M) + L(D|M). (4.9)

The objective is to find the best cluster model minimizing the total coding

cost.

M j = argmin
Mj

L(D,M j). (4.10)

Kernel Density Estimation. The multivariate kernel density estimation

(KDE) is defined as follows:

f̂(x) =
1

N

∑
y∈D

1

hd
K(

x− y
h

). (4.11)

where h = (h1, · · · , hd)T is the bandwidth and the termK(·) is a d−dimensional

kernel function that is non-negative and integrates to one. As a common

choice, the Gaussian kernel with mean 0 and variance 1 is used. More specif-

ically:

f̂(x) =
1

N

∑
y∈D

( d∏
i=1

1

hi
K
(xi − yi

hi

))
, (4.12)

where K(x) = (2π)−1/2 exp(−x2/2). The bandwidth h is selected using an

established heuristic which is proven to work well in various applications,
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Figure 4.4: Kernel density estimation vs. Gaussian estimation.

even in the case of outliers and bi-modal distributions [151]:

hi = 0.9 ·N−1/(d+4) min(σj, IQRi/1.34), where σi is the variance and IQRi is

the interquartile range of dimension i.

Finally, the probability of each object x is given as:

pdf(x) =
f̂(x)∑
y∈D f̂(y)

. (4.13)

Unlike parametric statistics, KDE allows to robustly estimate the probability

for any unknown distribution. Consider for instance the cluster in Figure 4.4,

KDE provides an exact and concise representation of the data. In contrast,

the Gaussian model is inappropriate for this cluster.
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4.3.4 Runtime Complexity

For each dynamic clustering by synchronization, the runtime complexity with

respect to the number of data objects is O(T ·N2), where N is the number of

objects and T is the time evolution. In most cases, T is small with 5 ≤ T ≤

20. If there exists an efficient index, the complexity reduces to O(T ·N logN).

With clustering model selection based on MDL principle, the final complexity

of Sync is O(L·T ·N logN) and L is the number of different clustering models.

4.4 Experimental Evaluation

To extensively study the performance of Sync, its performance is compared to

representatives of various clustering paradigms on synthetic and real-world

data. The selected algorithms include iterative partitioning algorithm K-

Means [101], the density-based algorithm DBSCAN [55], spectral clustering

(SC) [116], the algorithm MeanShift [40] and the affinity propagation algo-

rithm (AP) [60]. For the comparison methods, several parameter settings are

tried and the best result is presented. Moreover, Sync is compared to sev-

eral state-of-the-art parameter-free clustering algorithms: To X-Means [125],

which extends K-Means by estimation of the number of clusters based on

MDL, and to RIC [22] and OCI [23] which have been recently proposed for

parameter-free and outlier-robust clustering. For X-Means, RIC and OCI, no

parameter settings are required. In all experiments, Sync is used in combi-

nation with MDL as introduced in Section 4.3.3 which also does not require

any input parameters.

Spectral clustering and Sync are implemented in Java and the source
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code of RIC and OCI are obtained from the authors. The source code

of the MeanShift algorithm is available at: http://www.mathworks.com/

matlabcentral/fileexchange/10161-mean-shift-clustering and that of

AP at: http://www.psi.toronto.edu/affinitypropagation/. K-Means,

DBSCAN and X-Means are implemented in WEKA available at http://

www.cs.waikato.ac.nz/ml/weka. All experiments have been performed on

a workstation with 2.4 GHz CPU and 2.0 GB RAM.

Comparing the results of different clustering algorithms is a non-trivial

problem, especially if different algorithms produce results with different num-

bers of clusters. To provide an objective comparison of effectiveness, EC, an

information-theoretic cluster validity measure proposed in [50], is reported.

Intuitively, EC corresponds to the number of bits required to encode the

class labels when the cluster labels are known, the smaller EC the better is

the clustering. Recently, 3 more robust information-theoretic measures for

cluster quality have been proposed in [164]: Adjusted Mutual Information

(AMI), Adjusted Variation of Information (AVI), and Normalized Variation

of Information (NVI). For these measures, higher values represent better

clusterings. For more information, please refer to Section 2.1.2.

4.4.1 Synthetic Data

It starts with the evaluation of 2-dimensional synthetic data to facilitate

presentation and follows to demonstrate the benefits of Sync mentioned in

Section 4.1.2.

http://www.mathworks.com/matlabcentral/fileexchange/10161-mean-shift-clustering
http://www.mathworks.com/matlabcentral/fileexchange/10161-mean-shift-clustering
http://www.psi.toronto.edu/affinitypropagation/
http://www.cs.waikato.ac.nz/ ml/weka
http://www.cs.waikato.ac.nz/ ml/weka
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(a) Arbitrarily shaped. (b) Various densities. (c) Outlier-robust.

Figure 4.5: Clustering driven by the intrinsic data structure.

Clusters Reflecting the Intrinsic Structure

The performance of Sync to detect natural clusters in difficult settings is

first evaluated, starting with clusters of arbitrary shape and data distribu-

tion. The data set displayed in Figure 4.5 (a) consists of 6 clusters: one

Gaussian cluster, one correlation cluster and 3 other arbitrarily shaped clus-

ters. Sync successfully detects all types of clusters without requiring any

input parameters. Moreover, Sync allows detecting clusters of very different

object density, as Figure 4.5 (b) demonstrates. The performance of Sync

also does not degrade in the presence of outliers or noise points. Regardless

of whether the data set contains noise, such as in Figure 4.3(b) and Figure

4.5 (c) the clustering result remains stable.

Performance on High-dimensional Data

To assess the impact of the dimensionality of the data space on Sync, a

5-dimensional synthetic data set (1,000 objects, 5 clusters) is created and

successively the dimensionality is increased by adding noise dimensions with

uniform data distribution. Table 4.2 presents the results. The performance
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Table 4.2: Performance of Sync on high-dimensional data.

Data set #Dim./#Noise Dim. #Clusters #Clusters Detected NMI AMI AVI EC

DS1 5/0 5 5 1 1 1 0.090

DS2 8/3 5 5 1 1 1 0.090

DS3 10/5 5 5 0.996 0.996 0.998 0.092

DS4 12/7 5 5 0.785 0.783 0.811 0.439

DS5 15/10 5 4 0.557 0.555 0.569 0.801

of Sync does not degrade up to a dimensionality of 8 as demonstrated by

a constant EC of 0.09 (NMI, AMI, AVI = 1). Also on the 10-dimensional

data set, which corresponds to a fraction of one third noise dimensions, 5

clusters are detected but one instance is regarded as a noise point resulting

in a slight increase of EG to 0.092 (NMI = 0.996, AMI = 0.996, AVI = 0.998).

When the dimensionality increases to 12, more and more objects are viewed

as noise but Sync still obtains the correct clusters (EC:0.44, NMI:0.785,

AMI:0.783, AVI:0.811). Sync detects 4 clusters with dimensionality of 15.

Two clusters are merged together and some objects are regarded as noise

(EC:0.8, NMI:0.557, AMI:0.555, AVI:0.569). In summary, the Sync performs

very well on high-dimensional data with a fraction of approximately up to

50% noise dimensions.

Comparison to State-of-the-art Clustering

For comparison, a 2-d data set is created consisting of 8 arbitrarily shaped

clusters plus noise points, cf. Figure 4.6. For K-Means and spectral clus-

tering, best results have been achieved for K = 9 clusters. K-Means cannot
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(a) Sync (b) K-Means (c) SC (d) AP

(e) MS (f) X-Means (g) RIC (h) OCI

Figure 4.6: Comparison with various clustering algorithms: K-Means (K=9),

Spectral Clustering (SC) (K=9), Affinity Propagation (AP) (K=9), Mean-

Shift (MS) (bandwidth = 6.3), X-Means, RIC and OCI.

successfully detect the clusters in this data set which are not limited to Gaus-

sian or spherical data distribution, cf. Figure 4.6 (a). Spectral clustering,

which in principle has the potential to detect arbitrarily shaped clusters also

performs poorly on the data set cf. Figure 4.6 (b). The reason lies in the fact

that the performance of spectral clustering is severely affected by outliers or

noise objects. Parameterized as recommended in [60], affinity propagation

yields 341 clusters. However, the implementation also allows manually se-

lecting the number of clusters. For comparison with the other algorithms,

the result with K = 9 clusters is displayed in Figure 4.6 (c). As for spectral

clustering, the performance of AF degrades in the presence of noise and out-

liers. For MeanShift clustering, best results have been achieved setting the
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window size to 6.3. In Figure 4.6 (d), the areas of estimated major object

density are marked by black circles. Similar to SC and AF, the density es-

timation in Meanshift is disturbed by outliers. For DBSCAN, a wide range

of different settings for the parameters MinPts and ε are tried. However, to

find two suitable parameters is not a trivial task as they are correlated. Fix-

ing MinPts = 6 (the default value in Weka) and varying ε yielded the best

clustering results, displayed in Figure 4.7 (a-b). Since the data includes clus-

ters of various object densities, DBSCAN cannot identify all these clusters at

the same time. In comparison with these established clustering algorithms,

Sync automatically and correctly detects all clusters and noise points driven

by the synchronization principle, cf. Figure 4.6 (e).

(a) DBSCAN(ε=0.035) (b) DBSCAN(ε=0.025)

Figure 4.7: The result of DBSCAN with different parameters on the synthetic

data.

In the experiments displayed in Figure 4.6 (f-h), the performance of Sync

is further compared to various parameter-free clustering algorithms. As evi-

dent from Figure 4.6 (f), X-Means fails to detect the clusters since they are

not Gaussian and the data set contains noise points. The cluster model of

RIC is limited to linear attribute correlations and a predefined set of PDFs,
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Table 4.3: Performances on synthetic data.

Algorithms SynC K-Means SC AP MS

NMI 1 0.8493 0.7702 0.8837 0.7034

AMI 1 0.8472 0.767 0.8822 0.6999

AVI 1 0.8527 0.7732 0.9103 0.7957

Algorithms X-MEANS OCI RIC DBSCAN(0.035) DBSCAN(0.025)

NMI 0.2882 0.3241 0.8342 0.7318 0.9

AMI 0.287 0.3219 0.8325 0.729 0.8985

AVI 0.4422 0.4427 0.8828 0.8364 0.9338

which does not fit to our example data set. Therefore, RIC does not perform

very well on this example, cf. Figure 4.6 (g). Also the performance of OCI

is not satisfying since again, the assumption of the data distribution, in this

case Exponential Power Distribution, does not fit to our example data set,

cf. Figure 4.6(h).

4.4.2 Real-world Data

In this section, the performance of Sync is evaluated on real-world data

publicly available at the UCI machine learning repository (http://archive.

ics.uci.edu/ml). Due to difficult parametrization, only the comparisons to

the parameter-free clustering algorithms are provided.

Wisconsin Data

The Wisconsin data set deriving from a study on breast cancer consists of

683 instances which are labeled to the classes malignant (M: 239 instances)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
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and benign (B: 444 instances) (16 instances with missing values have been re-

moved from the original data set). Each instance is described by 9 numerical

attributes.

Sync detects two clusters successfully. The first cluster with 433 ob-

jects represents the class benign, the second cluster with 250 objects the

class malignant. In total, 23 instances have been wrongly clustered which

results in an EC of 0.154. X-Means detects 3 clusters (C1:197(M:23,B:174),

C2:261(B:261), C3:225(M:216 B:9)). 32 instances have been wrongly clus-

tered with EC of 0.183. With RIC, five clusters are obtained with EC of

0.182. On the data set, also the OCI algorithm obtains a good result com-

prising 13 clusters with good class purity, as reported in [23]. This clustering

result has an equally good EC(0.154) as the result of Sync. However, the

detected 2 clusters by Sync correspond to the expert rating that there are 2

classes in the data set.

In total, Sync achieves all aims that people want: (1) Sync automatically

finds the correct number of clusters; (2) Sync detects natural clusters in the

data (with high EC value); (3) Sync discovers almost all objects of each

cluster with high recall (96.2% and 97.5%); (4) all instances in each cluster

match with corresponding type (with highest precision of 98.6% and 93.2%).

Moreover, the other three measures also demonstrated its advantages in Table

4.4.

Diabetes Data

The Pima Indian diabetes database is a collection of medical diagnostic re-

ports of 768 samples from a population living near Phoenix, Arizona, USA.
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1 2 3 4 5 6 7 8

Figure 4.8: Illustration of the result of Sync on diabetes data: each bar in

each of the 6 clusters indicates the mean value of different factors and is scaled

to [0,1]. The eight factors correspond to: number of pregnancies, plasma

glucose concentration, diastolic blood pressure, triceps skin fold thickness,

2-hour serum insulin, body mass index, diabetes pedigree function and age,

respectively.

Table 4.4: Performances on Wisconsin data and diabetes data.

Algorithms
Wisconsin Data Diabetes Data

SynC X-Means OCI RIC SynC X-Means OCI RIC

NMI 0.7767 0.3238 0.2742 0.3441 0.0514 0.0512 0.0319 0.0109

AMI 0.7765 0.3223 0.2716 0.3428 0.0481 0.0503 0.0307 0.009

AVI 0.7821 0.464 0.4112 0.4747 0.0582 0.0508 0.038 0.0111

Each sample consists of eight significant risk factors which were chosen for

forecasting the onset of diabetes, including e.g. the number of pregnancies,

the diastolic blood pressure, the diabetes pedigree function, age, etc. These

samples are labeled to 2 classes (Positive:268; Negative:500), namely whether

the patient is tested positive for diabetes or not according to World Health

Organization criteria. Sync detects 6 clusters on the data set. Figure 4.8

summarizes the cluster contents. Each bin represents the scaled average of

each attribute within the cluster. The first cluster consists of 477 samples

and mainly hosts the healthy subjects (365 samples). This group is charac-

terized with the relative low value of these eight risk factors, especially for



66 4. Clustering by Synchronization

number of pregnancies and the body mass index which is characteristic for

young people. Sync assigns 118 out of 216 samples of the patient group to

cluster 2, who are mainly middle-aged people who have a high number of

pregnancies, and a high plasma glucose concentration. Cluster 3 and Cluster

6 are mainly hosting subjects with diabetes, who are characterized by high

diabetes pedigree function, skin fold thickness and age. Subjects in cluster 4

are characterized by a high plasma glucose concentration a 2 hours in an oral

glucose tolerance test and missing measurements for blood pressure, skin fold

thickness and 2-hour serum insulin. Moreover, Cluster 5 hosts people who

have no measurement of blood pressure, skin fold thickness, 2-hour serum

insulin and body mass index. In total, the clustering results in an EC of

0.625. X-Means merges all instances in one big cluster. RIC and OCI detect

3 and 4 clusters, respectively and corresponding EC values are 0.661 and

0.635. In summary, Sync detects meaningful clusters and yields best results

with the lowest EC value. For a further comparison of the clustering results,

Table 4.4 provides a summary of the quality criteria introduced in [164]. As

with EC, Sync clearly outperforms the comparison methods on most data

sets.

4.5 Conclusion

In this chapter, the partitioning clustering algorithm Sync is introduced

based on the synchronization principle. The basic idea is to regard each

data object as a phase oscillator and simulate the dynamical object interac-

tion over time. To characterize the object interaction, an adapted variant
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of the Kuramoto model suitable for clustering is proposed. The extensive

experiments demonstrate that the Sync algorithm shows several desirable

properties and outperforms most of the art-of-state clustering algorithms.
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Chapter 5

Exploring Natural Hierarchies

of Synchronized Cluster

In Chapter 4, the flat structure of a data set is analyzed using Sync. In real-

life, the structure of a data set may be complex and can be better represented

as a hierarchy. It is not sufficient to analyze the cluster structure only on

one scale. Hierarchical clustering algorithms have thus been proposed to find

the compact representations with different scales and provide deeper insights

into the data structure.

In nature, synchronization is a powerful and inherently hierarchical con-

cept regulating a large variety of complex processes. In the beginning of

the dynamical synchronization process, each object interacts with its local

neighborhood only. As time evolves, small distinct groups of similar objects

emerge which are gradually combined to form larger groups. In this chapter,

the algorithm hSync, is introduced by extending the concept of synchroniza-

tion to the hierarchical data analysis. Similarly, each data object is regarded
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as a phase oscillator and the dynamical behaviors of the objects over time are

simulated. By interaction with similar objects, the phase of an object gradu-

ally aligns with its neighborhood, resulting in a non-linear object movement

naturally driven by the local cluster structure. The inherently hierarchical

nature of object movement allows exploring the hierarchical cluster structure

at several levels of abstraction. Compared with existing hierarchical cluster-

ing algorithms, hSync robustly reveals the natural cluster hierarchy regard-

less of size and data distribution of the clusters. The MDL principle guides

hSync to identify meaningful levels of the cluster hierarchy corresponding to

high-quality clusterings.

The remainder of this chapter is organized as follows: After an introduc-

tion to the basic idea of the novel hierarchical clustering in Section 5.1, the

related work on hierarchical clustering is given in Section 5.2. In Section

5.3, the algorithm of hSync is elaborated. Section 5.4 contains extensive

experimental evaluations on synthetic and real data sets. Finally, Section

5.5 concludes this chapter. Parts of the material presented in this chapter

have been submitted in [147], where J.S. was mostly responsible for the de-

velopment of the main concept, implemented the main algorithms and wrote

the largest parts of the paper; X.H. implemented the main part of hierar-

chical algorithm; C.P., C.B. and Q.Y. also contributed to the conceptual

development and paper writing.

“Junming Shao, Xiao He, Christian Böhm, Qinli Yang, and Clau-

dia Plant. Synchronization-inspired Partitioning and Hierarchi-

cal Clustering. Submitted for publication.”
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5.1 Introduction

As stated in Section 2.1.1, partitioning clustering is efficient and concep-

tually simple, but is often difficult to unveil the natural cluster structure

of complex hierarchical data. Hierarchical clustering outputs a hierarchy,

a structure that is more informative than the unstructured set of clusters

returned by partitioning clustering. During the last decades, hierarchical

clustering has become very popular in various scientific disciplines, such as

molecular biology, medicine, or economy. However, well-known hierarchical

clustering algorithms like Single Link [82] often fail to detect the true clus-

ters for a real data set. The dendrogram generated by Single Link is usually

very complex and difficult to interpret. Moreover, the performance of many

hierarchical clustering algorithms are very sensitive to noise and outliers.

How can we find a natural, compact and meaningful representation of a

given hierarchical data set? In this chapter, hSync, a new clustering algo-

rithm to hierarchial data analysis, is proposed. Based on natural synchro-

nization phenomena, the synchronization dynamics is exploited to obtain a

natural hierarchical representation of a given data set. The key idea is to

regard each data object as a coupled phase oscillator and each object in-

teracts dynamically with similar objects on different levels. The process of

the hierarchical clustering inspired by synchronization involves the following

stages: Starting from initial conditions, each object runs independently with

its own phase. As time evolves, those objects with highest density form-

ing local clusters will synchronize together with a small interaction range.

Then, in a sequential process, more and more objects synchronize together

and clusters are produced with a larger interaction range. Finally, the whole
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population will synchronize together and have a common phase. Thus, with

different interaction ranges, the dynamical process of synchronization reveals

the whole structure of the data set on all scales, from the micro-scale at an

early stage up to the macro-scale. At each scale, outliers are effectively

detected since they exhibit differently and hardly synchronize with any of

the cluster objects. The principle of synchronization thus allows detecting a

natural clustering of complex multi-scale data sets with outliers.

To illustrate cluster formation by synchronization at each scale, Figure 5.1

displays 6 snapshots of the simulated dynamical object movement. For sim-

plicity, 2-dimensional data are displayed. Specifically, for illustration, the

3 objects (P1, P2, P3) are considered in detail, where P1 is an object in

cluster C1 having high object density, P2 is an object in cluster C2 having

relatively low density and P3 is a global outlier, respectively. At the first

level, given a small interaction range, each object interacts with its neighbors.

For example P1 interacts with the objects highlighted by a blue dash circle

(See Figure 5.1(a)). The movement of the object is determined by oscilla-

tion phases within of its neighborhood. Through the non-linear interaction,

all objects in C1 finally synchronize together. In contrast, for objects with

less local density such as objects P2 and P3, they are not likely interacting

with other objects and therefore keep the original phases corresponding to

their original position over time. Figure 5.1(b) displays the old and the new

positions of the objects for comparison. The initial points (black color) are

replaced by the red points after one time step. The objects with highest

similarity gradually synchronize together through mutual coupling. Figure

5.1(c) depicts the final states of the objects. The objects in cluster C1 are
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Figure 5.1: Illustration of hierarchical cluster structure exploring by syn-

chronization. (a)-(c). The dynamics of objects during the process towards

synchronization in the first level. (a) The initial state of the objects: the

blue dashed circles indicate the interaction range for each object. (b) The

comparison of objects states before and after one time step: black points

represent the initial state, red points indicate the new state. (c) The final

state of objects: a synchronized cluster C1 and noise points. (d-f). The dy-

namics of objects in the second level with larger interaction range. (d) The

initial state of the objects. Here, for illustration, the black arrows indicate

the mutual interaction and red arrow indicates the direction of movement for

the sample object P2. (e) The comparison of objects states before and after

one time step at the second level. (f). The final state of objects in second

level: a new synchronized cluster C2 and two outliers.
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synchronized and have the same phase (location) while outlier objects remain

isolated over time, e.g. P3. Similarly, with a larger interaction range, more

and more objects will synchronize together. Take an object P2 for exam-

ple, in contrast with the first level, it can interact with its neighbors (Figure

5.1(d)). Due to the interactions with its neighbors, P2 will move towards the

center of the cluster driven by the local data structure. Finally, the cluster of

lower density will gradually synchronize as indicated by a common oscillation

phase ((Figure 5.1(f))). Since P3 is isolated, it keeps its original phase and

location during the time revolution and can be easily identified as a global

outlier object. In Chapter 4, the idea of synchronization is introduced for

flat clustering. In this chapter, this idea is extended to a general framework

not only supporting partitioning but also hierarchical clustering.

Contributions

The powerful paradigm of synchronization has many attractive benefits for

hierarchical clustering, most importantly:

1. Clustering driven by the intrinsic data structure. The simulated non-

linear object movement faithfully follows the intrinsic data structure.

Thereby our synchronization-based hierarchical algorithm hSync reli-

ably detects clusters of arbitrary number, shape, size and data distri-

bution, even in difficult settings with large amounts of noise points and

outliers.

2. Robust discovery of natural cluster hierarchies. The inherent hierarchi-

cal nature of synchronization allows an intuitive and effective approach
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for hierarchical clustering. The algorithm hSync explores the hierar-

chical cluster structure from micro-scale to macro-scale by simulating

the way to synchronization over different levels of locality.

3. Compact and interpretable cluster hierarchies. In combination with

MDL, the algorithm hSync generates an interpretable cluster tree only

consisting of meaningful levels, each representing a clustering of high

quality. Besides the cluster tree, the output of hSync includes the

locality-quality diagram, a visualization which allows the user to com-

prehensively assess the quality of the cluster hierarchy over all levels.

5.2 Related Work

Hierarchical clustering algorithms decompose a data set into several levels

of partitions, representing by a dendrogram. One of the most well-known

hierarchical clustering approaches is Single-Link [82]. Starting with the clus-

tering obtained by placing every object in a unique cluster, in every step

two closest clusters are merged until all objects are in a whole cluster [115].

For the merging criterion several alternatives have been proposed, such as

Average-Link and Complete-Link (for a detailed survey see [115]). The hi-

erarchy obtained by the merging order is visualized as a dendrogram. For a

real data set, the dendrogram is often very complex. If a large data set has

N objects, the generated dendrogram contains N − 1 layers and thus it is

difficult to find optimal splitting levels that correspond to meaningful clus-

ters. Outliers may also cause the so-called single-link effect that two clusters

are difficult to be separated if there is a chain between the two clusters.
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The technique CURE [69] utilizes multiple representative points to eval-

uate the distance between clusters to exploit arbitrary shaped clusters and

avoid the so-called single-link effect. However, for a given data set, it is still

difficult to define appropriate splitting levels which correspond to meaningful

clusters. Furthermore, the dendrogram is created to indicate the clustering

process, and does not display the true hierarchical structure of a data set.

The well known OPTICS algorithm [8] analyzes the hierarchical data from

the perspective of density (cf. Section 2.1.1). It provides the reachability plot

to give a more intuitive and transparent way to visualize the hierarchical

cluster structure for large data sets. However, for many real data sets, the

reachability plot is very smooth and cannot find the hierarchal clusters.

5.3 hSync: Discovering Interpretable Cluster

Hierarchies

In the section, relying on the concept of synchronization and the Minimum

Description Length (MDL) principle, a new algorithm hSync is introduced

for detecting meaningful levels of the hierarchical cluster structure.

5.3.1 Key Observation

For the partitioning clustering algorithm Sync, it starts the dynamical in-

teraction among objects with a small value of ε and then increases it step-

wise until all objects synchronize in a cluster. Minimum Description Length

(MDL) is used to find the best cluster structure: whenever the clusters are
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Figure 5.2: Exploring hierarchical structural data.

good representation of the data structure, they can be used for efficient cod-

ing (or compression) of the data set, which results in the minimal MDL value.

Actually, the MDL principle can also be linked to hierarchical data analysis,

not linking the global minimal MDL value, but all local stable minimal MDL

values. The key observation is that if a data set exhibits a hierarchical cluster

structure, the MDL values show several distinct stable local minima.

Specifically, when the interaction range ε starts with a small value, objects

with highest density will synchronize together and are regarded as a cluster

(See Figure 5.1(a - c) in Introduction Section 5.1). If the synchronized objects

form reasonable clusters reflecting the data structure at the micro-scale, the

coding costs of the clusters will result in a local relatively low MDL value. By
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increasing of the ε with the step size ∆ε, if there exists a hierarchal structure

of the data, a period of the interaction ranges ε will result in the similar

clustering results, which thus result in a period of stable MDL values. Then,

in a sequential process, with the further increase of the ε, more and more

objects with less local density will tend to synchronize together (c.f. Figure

5.1(d - f)). Equally, if these new synchronized clusters indicate a meaningful

level of the hierarchical structure of data, it will result in a new period of

relatively low and stable MDL values for a range of ε. Finally, all objects

may merge together with enough interaction range ε.

5.3.2 Exploring the Hierarchical Cluster Structure

Based on the above observation, the MDL values obtained with different in-

teraction ranges ε indicate meaningful levels of the cluster hierarchy. Since

the MDL values specify the coding costs or compression ratio of a cluster-

ing, the local minima of the MDL values indicate high-quality clusterings

representing meaningful levels of the hierarchy. Multiple periods of stable

ranges of MDL values strongly support the hierarchical nature of a cluster

structure. The locality-quality plot visualizes the MDL values for increasing

ε. From this plot, for each local and stable range of minimal MDL values,

the corresponding clusters can be easily determined. To robustly explore the

cluster structure, the central ε associated with a local stable range of MDL

values is selected as a representative denoted by εKEY . After determining

these representatives εKEY , the corresponding clusters can be easily deter-

mined. These clusterings form a compact and interpretable hierarchical tree.

Formally, a representative εKEY and the locality-quality plot are defined as
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follows.

Definition 5.1 (Representative εKEY ): Let J be the set of all intervals

J = (ε̌, ε̂) where MDL(ε) is sufficiently constant, i.e. where ∂
∂ε
MDL(ε) ≤ δ.

Then the mean of each of these intervals defines a representative εKEY with

εKEY = 1
2
(ε̌+ ε̂) ∀J ∈ J .

Definition 5.2 (Locality-quality Plot): The x-axis of this plot repre-

sents clustering results generated by increasing ε from a small start value

with step size ∆ε. The y-axis displays the corresponding MDL values. Fur-

thermore, representatives εKEY corresponding to meaningful hierarchy levels

are included.

For illustration, Figure 5.2 shows a 2-dimensional data set with hierarchi-

cal structure. Figure 5.2(a) displays the locality-quality plot. It is obvious

that there exist two stable and local minimal ranges of MDL values. The

representative εKEY are detected as in Definition 5.1 (see the star points in

Figure 5.2(a)). The corresponding hierarchical tree of the data set is shown

in Figure 5.2(b). Figure 5.2(c)-(d) further illustrates the detected clusterings

with the the representatives εKEY at different levels. Finally, the pseudocode

of hierarchical clustering algorithm hSync is displayed in Algorithm 2.

5.3.3 Parameter Selection

In order to explore data structure inspired by synchronization, the interaction

range needs to be determined. The MDL principle is thus used to compress

a set of candidate clustering models M l which correspond to the clustering

results with various ε. The ε is initiated with a small value and then increased

with a reasonable step size ∆ε. The question is: what is the impact of the
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Algorithm 2 Hierarchical Clustering Algorithm hSync

Input: Data Set D

l = 0, ε0=NN(k); //Initialization

while (No global synchronization) do

[Rl]=DynamicClustering(D, εl);

if (Rl.clusterSize==1) then

global synchronization = True;

end if

Compute the coding cost L(D,Rl);

εl = εl + ∆ε; //Increase ε: ∆ε = (NN(k+1) - NN(k))

l = l + 1;

end while

Calculate the representative εKEY with Definition 5.1;

Generate the Hierarchical tree;

return RεKEY ;

step size ∆ε on clustering?

As illustrated in Section 4.3.3, the step size ∆ε can be heuristically de-

termined by the difference between average (k+1)-nearest neighbor distance

and average k-nearest neighbor distance. To systematically examine the im-

pact of the step size on clustering, the variation of MDL values with different

∆ε is studied. Figure 5.3 shows different locality-quality plots obtained by

increasing with different step size (from ∆ε = 0.005 to ∆ε = 0.02) on the data

set as indicated in Figure 5.2. Obviously, the hierarchical pattern of MDL
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Figure 5.3: The impact of different step size ∆ε on clustering by investigating

the corresponding locality-quality plots.

values is very similar for different step sizes. Therefore, the corresponding

representative εKEY indicating the clustering structures are the same. Thus,

the result is very robust against ∆ε which shows that our heuristic is sufficient

to provide accurate results.

Furthermore, the impact of different slope thresholds on clustering is eval-

uated. Figure 5.4 displays three locality-quality plots obtained with different
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Figure 5.4: The impact of different slope threshold δ on clustering by checking

the locality-quality plots.

slope thresholds (from δ = pi/12 to δ = pi/6) on the same data set. It is

interesting to note that the slope threshold is very robust in relation to the

clustering results since the corresponding representative εKEY are nearly the

same in all plots.
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5.3.4 Runtime Complexity

For each dynamical clustering by synchronization, the runtime complexity

with respect to the number of data objects is O(T · N2), where N is the

number of objects and T is the time step. In most cases, T is small with

5 ≤ T ≤ 20. If there exists an efficient index, the complexity reduces to

O(T ·N logN). With meaningful hierarchical clustering exploring based on

MDL principle, the final complexity of hSync is O(L · T ·N logN) and L is

the number of different clustering models.

5.4 Experimental Evaluation

To extensively study the performance of the algorithm hSync, they are com-

pared to two representatives of various hierarchical clustering paradigms on

synthetic and real-world data: Single-Link [82] and OPTICS [8]. hSync

is implemented in Java. OPTICS is implemented in WEKA available at

http://www.cs.waikato.ac.nz/ml/weka. Single Link is implemented in

Matlab. All experiments have been performed on a workstation with 2.4

GHz CPU and 2.0 GB RAM.

5.4.1 Synthetic Data

To evaluate the performance of hSync on hierarchical data set, a simple two-

dimensional data is generated with the so-called single-link effect and noise,

which are two known problems with hierarchical clustering. Here, hSync

successfully copes with both problems and finds the clear hierarchy, which

is illustrated in Figure 5.5(b). It is obvious that two stable ranges of local

http://www.cs.waikato.ac.nz/ ml/ weka
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Figure 5.5: Exploring the Single-Link effect data with different hierarchical

clustering algorithms.

minimal MDL values exist in the Locality-quality Plot (cf. Figure 5.5(a)).

Therefore, the cluster structure and corresponding clusters in different levels

are easily obtained with the three representative εKEY (see Figure 5.5(c)-

(e)). For comparison, the two popular hierarchical clustering algorithms
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Single Link and OPTICS are also applied to the data set. For Single Link,

there is no obvious cluster structure visible in the dendrogram (cf. Figure

5.5(f)) due to the massive single-link effect. Also with OPTICS, it is not

easy to detect the cluster hierarchy, especially because of the noise points,

see Figure 5.5(g). Best results have been obtained using ε = 0.8 and MinPts

= 6. Note that hSync is especially robust against outliers and noise points,

since those points do not synchronize with any of the clusters but keep their

original phases during time evolution.

5.4.2 Real-world Data

In this section, we evaluate the performance of hSync on real-world data

publicly available at the UCI machine learning repository (http://archive.

ics.uci.edu/ml).

Glass Data

The data set comprises 9 attributes representing different physical and chem-

ical properties. 214 instances are labeled to 7 classes (no instance for class

of vehicle windows) representing various types of glass of this data set. Since

the real data set exhibits a hierarchical structure, the hierarchical cluster-

ing algorithm hSync is performed and the results are further illustrated in

Figure 5.6. At the first scale, clusters (A)-(C) start to emerge from the

data set when ε ranges from 0.2 to 0.3, which represent the classes ”building

windows float processed” and ”building windows non float processed” and

”vehicle windows float processed” respectively. At the same time, Cluster

(D) and Cluster (E) are detected at this level, which mainly represent in-

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
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Figure 5.6: Hierarchical Structure of Glass Data detected by different ap-

proaches. (a) The plot of the variation of MDL values w.r.t. ε with hSync.

(b) The hierarchical cluster structure generated by hSync according to the

MDL values explored. (c) The dendrogram with Single Link, in which it is

hard to detect hierarchy of the data. (d) The reachability-plot of OPTICS

algorithm. Approximately two clusters (A, B) can be detected from the plot.

stances of the classes ”non-window glass containers” and ”non-window glass

tableware”. Since the three clusters (A)-(C) are very similar, they are further

merged together as the cluster [F] (”window glass”) when ε at the ranges from
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0.4 to 0.62. Similarly, the cluster (D) and cluster (E) are also synchronized

together with cluster [G] at the second level. In addition, another cluster

[H] is formed, which mainly belongs to the class ”head-lamps”. With further

increase of ε, over the range from 0.64 to 0.78, the cluster [G] and cluster

[H] are merged as a cluster [I], which is characterized as the ”non-window

glass”. Finally, most instances (except a few outliers) are formed as a cluster

when ε ≥ 1.2 at the fourth level. For comparison, Figure 5.6(c) displays

the reachability-plot generated by OPTICS with MinPts = 7, ε = 1.5 of

this data set. Only two clusters are visible and the class ”tableware” is well

separated forming a distinct cluster (marked by B). The other clusters are

much less pronounced. For the dendrogram of Single Link only the cluster

”headlamps” can be identified clearly and most other instances are wrongly

clustered (See Figure 5.6(d)).

Ecoli Data

This Ecoli data set derives from a study on protein locations and consists

of 336 instances. It includes 8 highly unbalanced classes having from 2 to

142 objects per class and each instance is described by 7 attributes. The

real data set is also represented as a hierarchical structure [26], therefore,

the hierarchical analysis is performed. For algorithm hSync, the plot of the

MDL values w.r.t. ε is indicated in Figure 5.7(a). Based on the plot, the

hierarchical structure of the data set can be easily generated (see Figure

6.9). Sync detects a three-level hierarchy. At the first level, five stable

clusters (A - E) start to emerge when ε ranges from 0.26 to 0.32. Cluster

A is composed of 155 instances and 135 out of them belong to “cytoplasm
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Figure 5.7: Exploring the hierarchical cluster structure of Ecoli data with

different algorithms.

(cp)”, which results in P = 87.1% and R = 94.4%. Cluster B includes 30

instances and mainly represents the type “perisplasm (pp)” with the P =

90.0%. The types of “inner membrane without signal sequence (im)” and

”inner membrane, uncleavable signal sequence (imu)” form as the cluster C

(77 instances) as they both belong to “inner membrane” and thus are very

similar. Cluster D contains 16 instances of “inner membrane without signal

sequence (im)” (P = 100.0%). Cluster E consists of 20 instances and 17 out
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of them belong to the type “outer membrane (om)”. In addition, 38 instances

are viewed as outliers at this level. Subsequently, at the second level with

ε ranging from 0.39 to 0.53, the cluster A (type ”cp”) and cluster B (type

”pp”) merge together and form cluster F. At the same time, the cluster C

(”imu”) and cluster D (’”im”) form a new cluster G, which represent the

”inner membrane”. At the third level, cluster G (”imu” and ”im”) and

cluster E (”om”) further group together and are represented as cluster H

with both inner and outer membrane. Finally, cluster F and cluster H merge

to cluster I. The corresponding hierarchical cluster structure is illustrated in

Figure 5.7(b). For Single Link, the dendrogram is created and it is difficult

to find the cluster structure (See Figure 5.7(c)). Figure 5.7(d) shows the

reachability- plot of OPTICS. From the plot, like the dendrogram of Single

Link, it is hard to identify the cluster structure. However, only two general

clusters (A, B) can be visualized.

5.5 Conclusion

In this chapter, the novel dynamic hierarchical clustering algorithm hSync

based on synchronization and MDL principle is introduced. The extensive

experiments demonstrate that the algorithm shows several desirable proper-

ties and outperforms most state-of-the-art hierarchical clustering algorithms.
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Chapter 6

Finding Arbitrarily Oriented

Synchronized Subspace

Clusters

How to address the challenges of the curse of dimensionality in clustering?

Clustering is a powerful data mining technique for structuring and orga-

nizing vast amounts of data. However, the high-dimensional data space is

usually very sparse and meaningful clusters can only be found in lower di-

mensional subspaces. In many applications the subspaces hosting clusters

provide valuable information for interpreting the major patterns in the data.

Detection of subspace clusters is challenging since usually many of the at-

tributes are noisy, some attributes may exhibit correlations among each other

and only few of the attributes truly contribute to the cluster structure. In

this chapter, ORSC (Arbitrarily ORiented Synchronized Clusters), a novel

effective and efficient method for subspace clustering, is proposed. Relying
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on the proposed weighted local interaction model, the approach ORSC natu-

rally detects correlation clusters in arbitrarily oriented subspaces, including

arbitrarily-shaped non-linear correlation clusters. ORSC is robust against

noise points and outliers. In contrast to previous methods, ORSC is easy to

parameterize, since there is no need to specify the subspace dimensionality

and all interesting subspace clusters can be detected. Finally, ORSC outper-

forms most comparison methods in terms of runtime efficiency and is highly

scalable to large and high-dimensional data sets.

The remainder of this chapter is organized as follows: In the following

section, the introduction is given. Section 6.2 briefly surveys related work of

subspace clustering. Section 6.3 presents our new concept and algorithm in

detail. Section 6.4 contains an extensive experimental evaluation and Section

6.5 concludes the chapter. Parts of the material presented in this chapter

have been published in [150], where J.S. proposed the main idea, implemented

the algorithms and wrote the largest parts of the paper; C.P., C.B. and Q.Y.

also contributed to the conceptual development and paper writing.

“Junming Shao, Qinli Yang, Christian Böhm, and Claudia Plant.

Detection of Arbitrarily Oriented Synchronized Clusters in High-

dimensional Data. ICDM 2011, in press.”

6.1 Introduction

Owing to the modern technology advance, nowadays, tremendous amounts

of data in a large variety of application domains have been produced. These

real-world data sets are often represented as sparse, high-dimensional feature
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vectors, contaminated by outliers and noisy objects. Clustering such high-

dimensional data becomes difficult for traditional clustering methods due to

the problem called “curse of dimensionality”. With increasing dimension-

ality, more and more objects are located at the boundaries of the feature

space. In very high dimensions it is common for all of the data objects to

be nearly equidistant from each other and objects do not cluster anymore

in the full-dimensional feature space. Instead, clusters of data objects are

often embedded in subsets of features. Another reason why traditional clus-

tering algorithms often deteriorate in high-dimensional spaces is that many

of the dimensions may be irrelevant for the clustering problem. These irrele-

vant dimensions can confuse clustering algorithms by hiding clusters in noisy

data. To reduce the effect of “curse of dimensionality”, a classic approach

is to map the whole high-dimensional feature space onto a relatively lower-

dimensional subspace using dimensionality reduction techniques like princi-

pal component analysis (PCA). Such dimensionality reduction approaches

attempt to transform a high-dimensional data set into fewer dimensions by

creating linear combinations of the original attributes. However, since they

preserve the global variance between objects, it is impossible to yield good

results if many irrelevant attributes hide the cluster structure. It only pro-

vides a single, global reduction that does not account for local variances in

subspaces for different patterns. Moreover, it is very difficult to interpret the

new features in the context of the domain.

To cure the curse of dimensionality in clustering, the new concept of sub-

space clustering has been introduced which automatically detects clusters in

subspaces of the original feature space. A number of subspace clustering
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algorithms have already been proposed, which can be mainly distinguished

as axis-parallel subspaces clustering, e.g. [6], [4], [93] and arbitrarily oriented

subspace clustering (also called generalized subspace clustering, or correla-

tion clustering), e.g. [5], [25], [161]. However, most of these algorithms fail to

discover clusters of complex shapes and different densities. Take CLIQUE [6]

for example. This approach detects dense units by using a grid of regular size

to divide each dimension into bins. Adjacent dense units are then combined

to form clusters. Obtaining meaningful results is dependent on the proper

tuning of the grid size and the density threshold parameters. Even after well

tuning both parameters, the algorithm will likely fail if at least two clusters

with quite different densities are present in the data set. This problem also

exists in other approaches, such as density-based subspace clustering SUB-

CLU [93]. Another challenge for subspace clustering is the search strategy

for the suitable subspaces. The number of possible axis-parallel subspaces is

exponential (2d) in the number of dimensions d, and the number of arbitrarily

oriented subspaces is even infinite. Therefore, a complete enumeration of all

possible subspaces to be checked for clusters is not feasible. Consequently,

all previous solutions rely on specific assumptions and heuristics, and try

to find promising subspaces during the clustering process, for instance in

an iterative optimization. It can be seen that these previous approaches of

learning suitable subspaces work well if (but only if) subspace clusters are

locally well separated and no outlier objects (belonging to no cluster) ex-

ist. In the presence of outliers in the local neighborhood of cluster points

or cluster representatives in the entire feature space, most previous subspace

clustering algorithms fail to detect subspace clusters, because the algorithms
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Figure 6.1: Illustration of the Synchronized Subspace Clusters.

try to find suitable subspaces for each cluster from the local neighborhood

of cluster points or cluster representatives in the entire feature space.

To deal with these problems, in this chapter, subspace clustering is con-

sidered from a different point of view, synchronization. Each object interacts

with similar objects and the strength of the interaction is determined by the

local structure of objects. Through non-linear weighted interaction among

objects, objects with similar attributes in arbitrarily oriented subspaces tend

to synchronize together. It will be demonstrated that the synchronization-

based subspace clustering has many attractive benefits, but some of its fun-

damental concepts are first illustrated.
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6.1.1 Synchronized Subspace Cluster

Based on these synchronization phenomena and models, each dimension of

objects is considered as a phase oscillator and the dynamics of objects towards

synchronization is exploited to obtain clusters in arbitrarily oriented sub-

spaces. The concept is demonstrated with the help of a simple 3-dimensional

data set. Fig. 6.1(a) and Fig. 6.1(c) represent the X-Y and Y-Z projec-

tion of the data, respectively. In Cluster C1, the X and Y dimensions are

strongly correlated and the Z-dimension is not cluster-specific white noise.

Cluster C2 only exists in the Y-Z space and the X dimension is noise. To

find such clusters, in this context, like oscillators, each object interacts with

similar objects in axis-parallel or arbitrarily oriented subspaces. Objects will

gradually change their states and move to other objects driving by its intrin-

sic structure, which will be elaborated in detail in Section 6.3. The arrows

in Fig. 6.1(a) and Fig. 6.1(c) illustrate the main directions of movements

for objects. Fig. 6.1(b) and Fig. 6.1(d) further indicate the final states of

objects (red points) after synchronization. Finally, all objects of a common

subspace cluster move together and form as synchronized clusters (cf. Fig.

6.1(b) and Fig. 6.1(d)).

6.1.2 Contributions

Inherited by the concept of synchronization, in this chapter, a new subspace

clustering approach, ORSC (arbitrarily ORiented Synchronized Clusters) is

proposed. The major benefits of the algorithm ORSC can be summarized as

follows:
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1. Natural data structure exploring. The synchronized cluster formation

is driven by the mutual interactions among objects relying on intrinsic

data structure.

2. Detection of arbitrarily shaped correlation clusters. Without any as-

sumption of the data distribution, ORSC allows detecting clusters with

different densities as well as arbitrary numbers, shapes and sizes in sub-

spaces.

3. Outlier robustness. Since the outliers cannot easily synchronize with

other objects, they can be effectively distinguished from cluster objects.

4. Efficient subspace searching. Inherited by the properties of synchro-

nization, the subspace search strategy of ORSC does not need scan

possible subspaces but simply find all subspace clusters by searching

all synchronized phases.

5. Easy parametrization. ORSC requires only one single user specified

parameter which is more flexible and robust to clustering results.

6.2 Related Work

As most traditional clustering algorithms fail to detect clusters embedded

in high-dimensional data, various subspace clustering approaches have been

studied. Subspace clustering algorithms like CLIQUE [6] and its extensions

ENCLUS [38], OptiGrid [79], projected clustering algorithms such as PRO-

CLUS [4], DOC [128], and SUBCLU [93] only find axis-parallel clusters. Pat-

tern based subspace clustering methods (e.g. [166],[97]) aim to group objects
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that exhibit a similar trend in a subset of attributes into clusters rather than

objects with low distance. However, they limit themselves to finding only

clusters that represent pairwise positive correlations in the data set. Here,

the focus is the more recent correlation clustering algorithms which can find

clusters in arbitrarily oriented subspaces. Recently, many arbitrarily oriented

subspace clustering algorithms such as ORCLUS [5], 4C [25], Curler [161] are

proposed to find clusters with arbitrarily oriented principle axes.

ORCLUS [5] is one of the iterative top-down search methods for arbi-

trarily projected subspaces. It integrates PCA into k-means and includes

three steps: assign clusters, determinate subspaces and merge them. How-

ever, it requires users to specify the number of clusters and the size of the

subspace dimensionality in advance. If the estimation does not match with

the actual number of clusters the result of ORCLUS tend to fail. Another

problem is that ORCLUS cannot handle the noisy and sparse data efficiently.

Moreover, due to using random sampling to improve computation speed and

scalability, it may suffer from missing smaller clusters. 4C [25] combines

PCA and density-based clustering (DBDSCAN) to identify local subgroups

of the data objects sharing a uniform but arbitrarily complex correlation. It

formalizes the correlation connected cluster as a dense region of points in

the d-dimensional feature space having at least one principal axis with low

variation along this axis. Like ORCLUS, 4C assumes the clustering struc-

ture is dense in the entire feature space, thus it can not handle sparse data

properly. Moreover, both ORCLUS and 4C limit them to identifying linear

correlation clusters without considering nonlinear correlation clusters. Actu-

ally, in real-life data sets, the correlation between attributes could however be
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nonlinear. To address the nonlinear issue, Curler [161] is proposed which al-

lows to detect both global and local orientations of the clusters. This method

merges the micoclusters generated by the EM variant algorithm according

to their co-sharing level. Therefore, the resulting clusters may represent a

more complex, not necessarily liner correlation. However, like ORCLUS, the

performance of Curler is very sensitive to noise and strongly depends on the

suitable parametrization.

6.3 The Algorithm ORSC

In this section, ORSC is presented to discover all possible clusters in arbitrar-

ily oriented subspaces. First the overview of the novel perspective of subspace

clustering is given and then the weighted interaction model is constructed to

simulate the dynamics of objects towards synchronization. Finally an effi-

cient searching strategy is used to find all synchronized clusters.

6.3.1 A Novel Perspective of Subspace Clustering

As introduced in Section 6.1, the subspace analysis is considered from a novel

perspective: synchronization. The key point is to view each object as an os-

cillator and it moves dynamically according to a weighted local interaction

model (cf. Section 6.3.2). For each object, its similar objects are determined

as interaction partners. The strength of interactions from these similar ob-

jects is determined by its local structure. To ensure all objects of a common

arbitrarily oriented subspace cluster can move together, PCA is integrated

into the interaction model to determine the main directions of the local clus-
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ter structure. Through the weighted interactions, all objects in arbitrarily

oriented subspace clusters can easily synchronize together and form as syn-

chronized clusters. In the following, it starts to elaborate how to construct

the weighted local interaction model.

6.3.2 Interaction Model

Currently, the most successful way to explore the synchronization phenomena

is Kuramoto Model [94, 95] (cf. Section 3.2). However, in order to introduce

the Kuramoto model into subspace clustering, it is reconsidered in a different

way.

1. Local Interaction Fashion. To exploit the hidden clusters or pat-

terns in arbitrarily oriented subspaces, the local structure of data should

be investigated. Therefore, it focuses on the dynamics of objects in a

local way.

2. Weighted Interaction. In high dimensional space, the correlations

in the dimensions are often specific to data locality, which means some

objects are correlated with respect to a given set of dimensions and

others are correlated with different dimensions. Thus, the coupling

strengths of interactions of objects in relevant or irrelevant dimensions

should be considered with different weights.

In the following, the interaction model will be reformulated based on the

above two criteria.
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Figure 6.2: ε-Range search with different distance functions.

Local Interaction

To formalize the local interaction for each object, the intuitive way is to

consider its ε-neighborhood according to Equation 4.2.

However, such ε-neighborhood search can not fit the goal well since it does

not consider the local data distribution. To look for objects which are close

in the local subspace cluster structure, therefore, the Mahalanobis distance

instead of Euclidean distance is used to determine similar objects.

Definition 6.1 (ε-Neighborhood with mahalanobis distance)

Given a ε ∈ R and x ∈ D, the ε-neighborhood of an object x with Maha-

lanobis distance, Nm
ε (x), is defined as:

Nm
ε (x) = {y ∈ D|

√
(y − x) · Σ−1

x · (y − x)T} (6.1)

where Σx is the covariance matrix of ε-neighborhood of x. Since the Ma-

halanobis distance considers the local data distribution, it can better search

similar objects considering the local cluster structure and is also less sensitive

to noise. Fig. 6.2 illustrates the similar objects determination of an object

P with different distance functions.
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According to Definition 6.1, the Kuramoto model is extended in a local

fashion, where each object interacts with its ε-Neighborhood with maha-

lanobis distance during time revolution. Moreover, since without additional

attributes of each object, all objects are assumed to be the same frequency

ω, which well fits the condition of Kuramoto model. Here, each dimension

of an object is viewed as a phase oscillator and its original value represents

the initial phase.

Formally, let x ∈ Rd be an object in the data set D and xi be the i-th

dimension of the data object x. Nm
ε (x) is the ε-neighborhood of object x.

According to Eq.(3.1), the dynamics of each dimension xi of the object x

with a local interaction is further written as:

dxi
dt

= ω +
K

|Nm
ε (x)|

∑
y∈Nm

ε (x)

sin(yi − xi) (6.2)

Let dt = ∆t, then:

xi(t+ ∆t) = xi(t) + ∆t · ω +
∆t ·K
|Nm

ε (x(t))|
·

∑
y(t)∈Nm

ε (x(t))

sin(yi(t)− xi(t)) (6.3)

Since the term ∆t · ω is the same for each dimension of all objects and thus

can be ignored. Let C = ∆t · K, the dynamics of each dimension xi of an

object x over time is written as:

xi(t+ ∆t) = xi(t) +
C

|Nm
ε (x(t))|

·
∑

y(t)∈Nm
ε (x(t))

sin(yi(t)− xi(t)) (6.4)

Weighted Interaction Determination

For most existing interaction models, e.g. [94], [11], [3], the coupling strength

of the object interactions is constant. However, it is not appropriate for sub-

space clustering since clusters exist in different subspaces. Thus, to ensure all
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cluster objects can synchronize in corresponding subspaces, the strength of

interactions is considered followed by the local data structure of the objects.

For an object x, it is expected that the interactions along the main directions

of the local cluster structure (relevant and potentially correlated dimensions)

are imposed much higher weights while those in irrelevant dimensions have

lower weights. Therefore, to determine the main directions of the local cluster

structure, the PCA is used to decompose the covariance matrix Σ of objects

Nm
ε (x), which is denoted by Σ = V EV T . The orthogonal Matrix V called

eigenvector matrix and the diagonal matrix E called eigenvalue matrix. The

eigenvectors represent the principal directions of these similar objects and the

eigenvalues represent the variance along these directions. The eigenvalues are

normalized into the interval (0, 1) by dividing each eigenvalue λi with the

sum of all eigenvalues. Then, the normalized eigenvalues are viewed as the in-

teraction weights along with the corresponding principal directions. Finally,

the difference vector between two objects is projected onto these orthogonal

eigenvectors and the difference with corresponding normalized eigenvalues is

coupled. Formally, the weighted interaction between two objects are defined

as follows.

Definition 6.2 (Weighted Interaction) Let x ∈ Rd be an object

in the data set D. Nm
ε (x(t)) is the ε-Neighborhood of the object x and

y ∈ Nm
ε (x(t)). ~v1, ..., ~vd and λ1, ..., λd are the eigenvectors and eigenvalues

by PCA decomposition of the covariance matrix of Nm
ε (x(t)). The weighted

interaction between the object y ∈ Nm
ε (x(t) and the object x, donated by

WI(y./x), is defined as:
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Figure 6.3: Weighted interaction between two objects.

WI(y./x) =
d∑

k=1

λi · sin(proj(∆(y, x), ~vk)) (6.5)

where ∆(y, x) = y − x means the difference vector between y and x,

proj(∆(y, x), ~vi) means the projection of vector ∆(x, y) onto ~vi. Since the

eigenvectors ~vi are unit vectors, therefore,

proj(∆(y, x), ~vi) = (∆(y, x)� ~vi) · ~vi (6.6)

where � means the inner product.

To illustrate the weighted interaction, Fig. 6.3 gives an example with a 2-

dimensional data set. Given an object P , first, the ε-neighborhood of object

P with Mahalanobis distance are obtained. Then the covariance matrix

of these objects is decomposed by PCA and the eigenvectors (~v1, ~v2) and

eigenvalues (λ1, λ2) are obtained respectively. For each interaction with

object P , e.g. Q ./ P interaction, the difference vector
−→
QP is projected

to the first direction ~v1 with
−−→
Q1P and the second direction ~v2, denoted by

−−→
Q2P . The interaction between objects Q and P is finally determined with

λ1 · sin(
−−→
Q1P ) + λ2 · sin(

−−→
Q2P ).

Finally, the dynamics of each dimension xi of the object x is governed by:
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xi(t+ ∆t) = xi(t) +
1

|Nm
ε (x(t))|

·
∑

y(t)∈Nm
ε (x(t))

(6.7)

·
d∑

k=1

λk · sin(proj(i)(∆(x(t), y(t)), ~vk))

where proj(i) means the i-th dimension of project vector. The object x at

time step t = 0 : x(0)(x1(0); · · · ;xd(0)) represents the initial state of the

object. The xi(t+ ∆t) describes the renewal state value of i-th dimension of

object x at time point (t+ ∆t).

To determine the termination of the dynamic process, a synchronization

order parameter r is defined as measuring the degree of synchronization of

objects.

Definition 6.3 (Synchronization order parameter) The synchro-

nization order parameter r characterizing the degree of synchronization is

defined as the average movements of objects over time:

r =
1

N

N∑
i=1

(
1

|Nε(x)|
∑

y∈Nε(x)

WI(y−x)

)
(6.8)

The value of r decreases as more and more objects synchronize over time.

The process towards synchronization terminates when r converges, which

indicates there is no further change of objects.

6.3.3 Simulation of the Object Dynamics

After the formulation of the interaction model, the dynamics of objects are

simulated to investigate all clusters in arbitrarily oriented subspaces. Gen-

erally, the dynamics of objects involve the following steps:
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Figure 6.4: Illustration of dynamics of objects.

1. Initially (t = 0), all objects in the data set have their own states (feature

vectors).

2. As time evolves (t > 0), for each object x(t), it searches its similar

objects with Mahalanobis distance Nm
ε (x(t)) and then applies PCA to

decompose the covariance matrix of Nm
ε (x(t)) to obtain the correspond-

ing eigenvectors and eigenvalues. The renewal state of object x(t+ ∆t)
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is then determined by Eq. 6.7.

3. During the process towards synchronization, the order parameter r(t)

(Eq. 6.8) is calculated to terminate the simulation when r converges.

To illustrate the dynamics of objects according to our interaction model,

for the ease of illustration, a 3-dimensional data set is provided as an ex-

ample. Fig. 6.4(a) (t=0) shows the initial states of objects, where three

clusters exist in the data set: a 3-dimensional Gaussian cluster in full di-

mensions, a 2-dimensional linear correlation cluster in arbitrarily oriented

subspace and 1-dimensional linear cluster in Z axis. When t > 0, for each

object, it starts to interact with similar objects according to the local cluster

structure. For revelent dimensions, the object interaction is imposed much

higher strength while there is lower impact for irrelevant dimensions. E.g., in

Fig. 6.4(b)-(f), the objects in the Gaussian cluster gradually move together

from all directions in the three dimensions since these objects belong to a

common 3-d subspace cluster. We can see that the eigenvalues along with

main directions of these objects (eigenvectors) decomposed by PCA are very

similar (λ1 ≈ λ2 ≈ λ3, see Fig. 6.4(g)). Therefore, the objects interactions

are imposed similar strengths and gradually group together. This situation

is different from objects in the other two clusters. For the objects in the

2-dimensional correlation cluster, the main directions of the cluster structure

are not along the coordinate axis but arbitrarily oriented. The eigenvalues

on the corresponding eigenvectors decomposed by PCA are thus very differ-

ent, where (λ1 > λ2 and λ3 → 0). These cluster objects therefore mainly

move towards two directions (~v1) and (~v2) with weights λ1 and λ2 respec-

tively (Fig. 6.4(g)). Similarly, the 1-dimensional linear cluster objects tend
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Table 6.1: Illustration of the subspace search strategy.

Obj. d1 d2 d3 d4 Syn. Dim. New Subs. Cluster

1 0.1 0.2 0.1 0.3 1,2 (1,2) (1 2 3 4)

2 0.1 0.2 0.2 0.2 1,2,4 (1,2,4) (2 3 4)

3 0.1 0.2 0.7 0.2 1,2,3,4 (1,2,3,4) (3,4)

4 0.1 0.2 0.7 0.2 1,2,3,4 - -

5 0.3 0.4 0.3 0.3 3 (3) (5,6)

6 0.9 0.5 0.3 0.1 3 - -

7 0.7 0.6 0.4 0.5 Null - Noise

to move towards one direction (~v1). Through such weighted interactions, fi-

nally, all cluster objects synchronize together in the corresponding subspaces

(Fig. 6.4(f) and Fig. 6.4(i)). During the process of synchronization, the

synchronization order parameter will decrease and finally converge. (Fig.

6.4(h)).

6.3.4 Synchronized Clusters Search

After the simulation of dynamics of objects by our interaction model, cluster

objects in arbitrarily oriented subspaces synchronize together. To find these

synchronized clusters, the intuitive way is to find all synchronized phases

and corresponding objects. The principle of our strategy is to consider the

subspace search from objects instead of dimensionality. Begin that, let’s

first define L-Dimensional Synchronized Cluster and Synchronized

Dimension.

Definition 6.4 (L-Dimensional Synchronized Cluster)
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Let S ⊆ D,L ⊆ N and L = {`1, · · · , `i}, `i ∈ N, `i < d. If all objects in

S are synchronized in L dimensions, S forms a L-Dimensional Synchro-

nized Cluster. Formally,

SynCluL(S)⇔ {x`i = y`i |x, y ∈ S, `i ∈ L}

Definition 6.5 (Synchronized Dimensions )

Let S ⊆ D be a L-Dimensional Synchronized Cluster, L ∈ N are called

synchronized dimensions, denoted by SynDim(S).

To search all subspace synchronized clusters, each object is investigated

over whether other objects synchronize with it in any dimension. If it does

not synchronize with any dimension of other objects (with same phase), this

object is viewed as noise. If it synchronizes with some dimensions of other

objects, these synchronized dimensions are regarded as a synchronized sub-

space and these synchronized objects are formed as a synchronized cluster.

All synchronized subspaces are extracted and the synchronized objects are

assigned in corresponding subspaces. This process is repeated for each ob-

ject and finally all synchronized subspaces and corresponding synchronized

clusters are obtained.

To illustrate the search strategy, please look at Table 6.1. Supposing there

are 7 objects with 4 dimensions, after weighted interaction among objects,

the final states of objects are outlined in the left part of Table 6.1. For each

object, its synchronized dimensions and objects are found. For instance, for

object #1, it synchronizes with objects #2 to #4 in dimensions of 1 and

2. Therefore, a synchronized subspace (1,2) is created and the corresponding

objects #1to #4 are added to a cluster in this subspace. Similarly, for object

#2, it synchronizes with objects #3 and #4 in dimensions (1,2,4) and a new
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subspace is thus created and obtains corresponding cluster. This process is

repeated until all objects are investigated. In addition, since object #7 does

not synchronize with any other object in any dimension, it is thus viewed as

noise in the full dimensional space.

Through this search strategy, all synchronized subspaces and correspond-

ing clusters are obtained by iterating all objects. Once all synchronized

clusters are detected, their dimensionality can be further determined. The

reason is that objects in synchronized clusters moving together do not need

to be parallel with an axis but arbitrarily orientated of the synchronized

cluster objects. Therefore, if a cluster is located in axis-parallel subspace,

the synchronized subspace is the exact subspace. However, if a cluster is em-

bedded in an arbitrarily oriented subspace, the synchronized subspace only

stands for the original feature space that these clusters accommodated.

Definition 6.6 (Dimensionality of a Synchronized Cluster )

Let S ⊆ D be a synchronized cluster and Σ is the covariance matrix of

objects in the clustering and Σ = V EV T , λ1, · · ·λd are the eigenvalues of S

in descending order. Given a δ ≈ 0, the dimensionality of S w.r.t δ is η if

d−η eigenvalues of S are close to zero (Φ(λi) ≤ δ and Φ(λi) = λi/λ1), which

is denoted by DimSynCluηδ .

Finally, the Pseudocode of the ORSC Algorithm is illustrated in Fig. 6.5.

6.3.5 Parameter Setting

To simulate the dynamics of objects, an interaction range (ε) needs to be

specified in the Interaction Model. The question is: how to determine the ε

value and how does the clustering results change when the ε value is adjusted?
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algorithm [S,C] = ORSC(D, ε)

D
′
= Simulation(D, ε);

[S,C] = SearchCluster(D
′
)

Return S,C;

Function D
′
=Simulation(D, ε); //Objects’ dynamics Simulation.

while(r converges)

for(each object x ∈ D)

Search Nε(x) of object x;

Compute Nm
ε (x) by Definition 1 in Nε(x);

Determine the interaction directions and weights by PCA;

Obtain new state of object x with interaction model (Eq.6.7);

end for

Set D
′

to be the new states of all objects;

Compute synchronization order parameter r;

end while

Return D
′
;

Function [S,C]=SearchCluster(D
′
);

S = null;C = null; //S saves subspaces and C saves clusters

for(each object x ∈ D′
)

for(each object y ∈ D′
)

If y synchronized with x in dimensions L;

If (L exists in S) and synchronized phases are same

Add y to the exist corresponding cluster;

Else

Create a new synchronized subspace L and a new cluster CL;

Add x and y to the new cluster CL and S.add(L), C.add(CL);

End If

Else

y is viewed as noise object;

End For

End For

Return S,C;

Figure 6.5: Pseudocode of the ORSC Algorithm.
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Figure 6.6: Impact of parameter setting for clustering.

In order to generate a stable interaction among objects, a heuristic way is

to use the average value of the k-nearest neighbor distance determined by a

sample from the data set for a small k. Fig. 6.6(a) shows a simple data set

which consists of 2 clusters plus outliers. It starts with a very small value

and then gradually increases it to see the change of clustering results. With

different parameter ε, the number of detected clusters is computed. It can be

seen that the same clustering results (2 clusters) are obtained with a fairly

long stable range (see Fig. 6.6(b)). In contrast to other subspace clustering

algorithms, the parameter of our algorithm is much more flexible and more

robust to noise. The reason is that our clustering is a dynamic process, in

which each object moves during the process towards synchronization. With

a small interaction range, in the beginning, a few objects interact with each

other. But after several time steps, these objects in a cluster will gradually

move closer and thus more and more objects can interact with each other

and finally synchronize together. For relatively larger interaction range, the
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only difference is that more objects interact with each other at the beginning

and thus tend to synchronize much faster.

6.3.6 Complexity Analysis

For the simulation of the dynamics of objects at each time step, ε-Neighborhood

of each object with Mahalanobis distance needs to be searched. The covari-

ance matrix with Euclidean distance query computation can be evaluated in

O(N · d) time. The covariance matrix is then used to calculate the Maha-

lanobis distance and the time complexity approximately requires O(d3) time.

PCA is further used to decompose the covariance matrix with Mahalanobis

distance and it thus requires O(d3) time. For each object’s interaction, it

requires O(d3) time. Therefore, for all objects together, the simulation of

dynamics at one time step is O(N2 · d + N · d3). If there exists an efficient

index, the complexity reduces to O(T ·N logN · d + logN · d). For all time

steps towards synchronization, the time complexity of objects’ simulation is

O(T · (N2 · d+N · d3)) in worst case. T is the number of time steps. In most

cases, T is small with 5 ≤ T ≤ 20.

For the time complexity of subspaces and the corresponding clusters

search, the most bottom-up establishing algorithms of subspace clustering

need O(2d) time. For the search, it is not necessary to iterate all subspaces

but instead finding all synchronized subspaces by investigating the synchro-

nized dimensions of each object. Therefore, the time complexity becomes

O(N2 ·d). Finally, the time complexity of the algorithm ORSC in worst case

is O(T · (N2 · d+N · d3) +N2 · d).
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6.4 Experimental Evaluation

To extensively study the performance of ORSC, experiments are performed

on several synthetic and real world data sets. The performance of ORSC is

compared to ORCLUS [5], 4C [25] and Curler [161]. These particular algo-

rithms are selected because they are representatives of different algorithmic

paradigms: ORCLUS is a K-means style iterative partitioning algorithm; 4C

is a local density-based method; Curler tries to find non-linear correlation

clusters based on EM clustering. All experiments have been performed on a

workstation with 2.4 GHz CPU and 2.0 GB RAM.

Moreover, two established measures for cluster quality [50] are reported:

Normalized Mutual Information (NMI), Adjusted Mutual Information (AMI)

to evaluate different clustering results. For both measures, higher values

represent better clustering performance. The precision (P) and recall (R)

are also provided as validity measures to analyze each individual cluster.

6.4.1 Effectiveness

Synthetic Data

The evaluation of ORSC starts with several synthetic data sets to facilitate

presentation and demonstrate its benefits. Fig. 6.7 displays the clustering

results on a 3-dimensional synthetic data with all subspace clustering algo-

rithms to be compared. The data consists of 11 clusters of different dimen-

sionality, object density and correlation strength plus noise (Fig. 6.7(a)).

For ORSC with parameter ε = 0.06, it successfully detects all these cor-

relation clusters, including five 1-dimensional linear correlation clusters, two
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(a) ORSC (b) ORCLUS

(c) 4C (d) Curler

Figure 6.7: Comparison with different algorithms on a 3-d synthetic data.

2-dimensional linear plane clusters, two 2-dimensional non-linear clusters and

two 3-dimensional clusters (Fig. 6.7(a)). ORCLUS requires the number of

cluster K and the average subspace dimensionality l as input parameters.

Specifying K = 11, the best results are obtained with l = 3, which are in-

dicated in Fig. 6.7(b). Fig. 6.7(c) displays the best clustering results of 4C

with parameters ε = 0.03, MinPts = 6 and λ = 3. For Curler, all default

parameter values suggested by authors are used. It obtains as many as 150

clusters (Fig. 6.7(d)). For better investigating different clustering results,

it focuses on the detailed views of the 2-d linear plane cluster and four 1-d
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Figure 6.8: Detailed view of clustering results with different algorithms on

part of 3-d synthetic data.

linear clusters in the center of the data set (cf. Fig. 6.8). It is obvious

that ORSC outperforms the competitors, where all correlation clusters are

successful detected with high precision and recall. The evaluation of the

clustering results is further illustrated in Table 6.4.

To further evaluate the algorithm ORSC, five high-dimensional data sets

are generated (See Table 6.2). In each data set, several clusters are hidden in

subspaces of varying dimensionality plus noise. For comparison, it is checked

whether each algorithm can detect these clusters with suitable parameters.

The precision and recall for each cluster are reported. The results with
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Table 6.2: Data Description.

Data d #Clu. Dim. of Clu.

DS1 5 1 3

DS2 10 1 5

DS3 15 2 10,5

DS4 20 2 10,10

DS5 30 3 20,15,10

Table 6.3: Comparative evaluation of different subspace approaches on high-

dimensional synthetic data sets.

Data
True clusters found by

ORCLUS 4C Curler ORSC

DS1
1 (Dim.: 3) 1 (Dim.: 3) 1 (Dim.: 3) 1 (Dim.: 3)

(P=32.7%;R=91.2%) (P=100%;R=100%) (P=99.0%;R=20.4%) (P=100%;R=97.0%)

DS2
1 (Dim.: 5) 1 (Dim.: 5) 1 (Dim.: 5) Dim.: 5)

(P=27.8%;R=62.2%) (P=100%;R=94.2%) (P=48.4%;R=11.8%) (P=100%;R=97.4%)

DS3

2 (Dim.: 10,5) 1 (Dim.: 10) 2 (Dim.: 10,5) 2 (Dim.: 10,5)

(P=16.9%,74.4%) (P=100%,R=99.6%) (P=14.5%,12.0%) (P=100%,99.6%)

(R=14.0%,61.6%) (R=19.3%,16.0%) (R=99.6%,100%)

DS4

2 (Dim.: 10,10) 2 (Dim.: 10,10) 2 (Dim.: 10,10) 2 (Dim.: 10,10)

(P=17.9%,100%) (P=100%,100%) (P=12.5%,100%) (P=100%,99.6%)

(R=13.2%,74.0%) (R=100%,100%) (R=12.5%,100%) (R=100%,99.6%)

DS5

3 (Dim.: 20,15,10) 1 (Dim.: 20) 3 (Dim.: 20,15,20) 3 (Dim.: 20,15,10)

(P=21.7%,12.3%,13.2%) (P=100%; R=98.5%) (P=100%,99.5%,76.9%) (P=100%,98.5%,99.6%)

(R=100%,67.5%,72.5%) (R=99.0%,100%,5%) (R=100%,99.5%,100%)



118 6. Finding Synchronized Subspace Clusters

Table 6.4: Evaluation on different data sets.

Methods
Synthetic data Ecoli data Wine data

NMI AMI NMI AMI NMI AMI

ORSC 0.981 0.980 0.682 0.670 0.701 0.695

4C 0.830 0.829 0.338 0.328 0.474 0.469

ORCLUS 0.598 0.596 0.452 0.430 0.191 0.182

Curler 0.583 0.561 0.060 0.049 0 0

different subspace clustering algorithms are depicted in Table 6.3. In all these

data sets, ORSC finds the synthetic clusters in corresponding subspaces with

both high recall and precision. In contrast to the comparing algorithms, there

is no need to specify the subspace dimensionality and all interesting subspace

clusters are detected. For 4C and ORCLUS, the subspace dimensionality is

manually specified although it is difficult to know in real-world. 4C performs

very well on the first two low-dimensional data sets. But it fails to find

5-dimensional cluster in 15-dimensional data set. This is also the same for

the fifth data set, where it can not find the 10-dimensional cluster and 15-

dimensional cluster because these two clusters are not dense in the full 30-

dimensional feature space any more. The algorithm of ORCLUS is sensitive

to noise and usually most noisy objects are included in the clusters identified.

In addition, ORCLUS often merges these subspace clusters together, which

thus results in low precision. The algorithm of Curler is also sensitive to

noise and cannot yield good results for all data sets. However, in contrast

to ORCLUS, it tends to splits true clusters into several distinct clusters and

the obtained clusters are usually with low recall.



6.4 Experimental Evaluation 119

Real-world Data

In the following, the performance of ORSC is evaluated on two real-world

data sets which are publicly available at the UCI machine learning repository.

Ecoli Data: This Ecoli data deriving from a study on protein location

consists of 336 instances. It includes eight highly unbalanced classes having

from 2 to 142 objects per class and each instance is described by 7 attributes.

ORSC detects 6 meaningful clusters for this data set. Each cluster is mainly

represented as one type, see Fig. 6.9 in detail. Cluster 1 is composed of

147 instances and 140 out of them belong to cytoplasm, which results in

P = 95.24% and R = 97.90%. Cluster 2 includes 56 instances and mainly

represents perisplasm with P = 85.71% and R = 92.31%. The type of in-

ner membrane without signal sequence is identified by cluster 3 and cluster

4 together. Similarly, the cluster 5 and cluster 6 represent the type outer

membrane and outer membrane lipoprotein with high precision 92.86% and

100% respectively. For 4C algorithm, it obtains best results with parameters

Minpts = 6, ε = 0.15 and λ = 7. It detects 6 clusters but many instances

are wrongly clustered. ORCLUS obtains much better results with parame-

ters k = 8 and l = 7. However, like 4C, many instances are wrongly assigned.

The algorithm of Curler has similar results like 4C and ORCLUS, which can-

not predict the protein location effectively. The evaluation of the clustering

results is further illustrated in Table 6.4.

Wine Data: The well-known wine data set is the results of a chemical

analysis of wine grown in the same region in Italy but deriving from three

different cultivars. The analysis determined the quantities of 13 constituents

found in each of the three types of wine. The class distribution is as follows:
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Figure 6.9: Clusters found by ORSC on the Ecoli data set (ε = 0.25)

type1: 59; type2: 71, type3: 48. Table 6.5 gives the clustering results of

ORSC with parameter ε = 0.6. It detects 4 clusters and 8 instances are

viewed as noise. Three main detected clusters match with corresponding

wine types with high precision and recall. In detail, cluster 1 includes nearly

all instances (58 out of 59 instances) of type 1 plus 3 instances of type 2. 53

instances in cluster 2 completely belong to type 2. Cluster 3 consists of all

instances of type 3. In addition, the cluster 4 includes 4 instances of type

2. It is clear that ORSC can discover interesting patterns of the data set

effectively. For 4C with parameter Minpts = 6, ε = 0.5 and λ = 13, it

discovers 2 clusters and 34 instances are regarded as noise. Many instances

of the two clusters are wrongly clustered and it is difficult to distinguish the

three wine types. The algorithm of ORCLUS can not obtain good clustering

results although we manually specify the number of clusters with parameters

k = 3 and l = 13. For Curler, it even can not find any correlation cluster

for the data set with different parameters. All instances are regarded as

a cluster. The evaluation of these clustering results is further indicated in

Table 6.4.
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Table 6.5: ORSC clustering results on Wine Data.

Cluster ID Type1 Type2 Type3 Prec. Rec.

1 58 3 0 95.2% 98.3%

2 0 53 0 100% 73.6%

3 0 5 48 90.6% 100%

4 0 4 0 100% 5.6%

6.4.2 Efficiency

Fig. 6.10 shows the results of runtime experiments for a 3-d synthetic data

set varying numbers of objects in the range of 500 to 30,000. ORCLUS and

ORSC scale nearly linear against the size of the data set while 4C scales

quadratically. The runtime of Curler is rather high for large number of ob-

jects and thus only the runtime for maximal 10,000 objects is displayed. For

comparison of the scalability in the dimensionality d, data sets consisting of

2000 objects of dimensionality ranging from 5 to 50 are generated. Fig. 6.11

displays the results of runtime against dimensionality. Since all algorithms

are involved with PCA, they scale similar with the dimensionality. ORCLUS

is the fastest approach but its effectiveness is not satisfying (cf. Section 6.4.1)

and ORSC outperforms 4C and Curler. In summary, ORSC scales very well

against the number of objects as well as dimensionality.

6.5 Conclusions

In this chapter, the algorithm ORSC is proposed for subspace clustering.

Each dimension of object is considered as a phase oscillator and the dynamics
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Figure 6.10: Scalability of ORSC against the size of the data set.
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of each object are simulated according to the proposed weighted local interac-

tion model. Through the weighted non-linear interaction among objects, all

axis-parallel and arbitrarily oriented subspace clusters naturally synchronize

together. To the best of our knowledge, ORSC is the first approach relating

the problem of finding subspace clusters in high-dimensional data to syn-

chronization. The extensive experiments demonstrate that ORSC algorithm

has several desirable properties. (a) ORSC can naturally detect arbitrarily

oriented subspace clusters driven by the natural topological structure of the

data without assuming any data distribution; (b) ORSC is robust against

noise points and outliers since they are difficult to synchronize with other

objects. (c) ORSC is robust against parameter settings and easily to param-

eterize in comparison to existing approaches, requiring e.g. the number of

clusters and subspace dimensionality (d) ORSC outperforms most compar-

ison methods in terms of efficiency although the ORCLUS are much faster

but cannot achieve the same level of quality.
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Chapter 7

Robust Synchronization-based

Graph Clustering

The last three chapters focus on the clustering of traditional feature vector

data. However, complex graph data now arises in various fields like social

networks, protein-protein interaction networks, World Wide Web, ecosys-

tems, etc. In order to reveal the underlying patterns in graphs, an important

task is to partition them into several meaningful clusters (also called com-

munities). The question is: how to find the natural partitions which truly

reflect the intrinsic patterns of a complex graph? In this chapter, RSGC,

a novel approach to graph clustering, is introduced. The key philosophy of

RSGC is to consider graph clustering as a dynamic process towards syn-

chronization. Specifically, for each vertex, it is viewed as an oscillator and

it interacts with other vertices (oscillators) according to the graph connec-

tion information, such as interaction weight and range. During the process

towards synchronization, vertices with similar connectivity patterns will ex-
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hibit similar dynamics and thus naturally synchronize together to form a

cluster. Compared with other existing graph clustering algorithms, RSGC

has some major benefits: (a) it provides a novel and natural perspective for

graph clustering based on the proposed interaction model, which captures

the characteristics of real-world networks very well. (b) RSGC allows dis-

covering graph clusters with arbitrary size and density. (c) RSGC is also

robust against noise vertices or outliers. (d) RSGC does not involve any

difficult or sensitive input parameters.

The remainder of this chapter is organized as follows: Introduction is

given in Section 7.1. Section 7.2 briefly surveys the related work of graph

clustering. Section 7.3 presents our algorithm in detail. Section 7.4 contains

an extensive experimental evaluation and Section 7.5 concludes the chapter.

Parts of the material presented in this chapter have been submitted in [148],

where J.S. was mostly responsible for the development of the main concept;

J.S. and X.H. implemented the algorithm; J.S., X.H. and Q.Y. performed

the experiments; J.S., C.P., C.B., X.H. and Q.Y. contributed to the paper

writing.

“Junming Shao, Xiao He, Claudia Plant, Qinli Yang and Chris-

tian Böhm. Robust Synchronization-based Graph Clustering. Sub-

mitted for publication.”

7.1 Introduction

Advanced modern technologies produce huge amounts of data in various

fields. As a data type, graph-structured data becomes increasingly popular
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in many applications, e.g. social network, protein-protein interaction net-

work, World Wide Web, and ecosystems. Entities, often called nodes or

vertices, are linked to each other by edges expressing relationships between

entities. To reveal the underlying patterns from such complex graph data,

graph clustering provides a promising way. It investigates the graph structure

by identifying the meaningful clusters of graphs where vertices in a cluster

are highly connected while the connections between clusters are sparse.

During the last decades, the study of graph clustering has attracted a

huge volume of attention and a large number of algorithms are proposed,

e.g. Metis [85], Cross-association [44], MCL [155], PaCCo [114] to mention

a few. However, discovering the natural clusters in complex graphs is a

non-trivial task. In real world, the connectivity between vertices in graph is

often associated with different intensities. Therefore, for graph clustering, it

should consider not only the information whether two vertices are connected

or not, but the intensity of the connections (called edge weights) should also

be well integrated. If the edge weights are neglected through binarization

or thresholding, the true graph structure cannot be revealed but at most

roughly approximated [114]. To illustrate a natural graph partitioning, Fig-

ure 7.1 displays the desired clustering result for a simple weighted graph.

The vertices assigned to a cluster are drawn with the same color and are

enclosed in a dashed circle. The objective of graph clustering is not only to

minimize the number of edges between clusters but also consider the inten-

sity of interactions (edge weights) effectively. In addition, another challenge

of most established graph clustering algorithms is parametrization. Due to

the lack of prior knowledge of given data, it is difficult for users to specify
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Figure 7.1: An example of clustering weighted graph. Here three clusters

exist and are denoted by the dashed circles with different colors. Clustering

a weighted graph maximizes the number of edges inside each cluster while

minimizing edges between clusters also takes the edge weights into consider-

ation.

some parameters, such as the number of clusters.

To deal with these problems, in this chapter, a new graph clustering based

on the synchronization principle is proposed. To better illustrate the concept

of synchronization, social networks can be taken as a good example. It is

interesting to see that people in a social network with similar attributes, e.g.

common interest, friends, or similar calling behaviors from phone companies

tend to be a community. In such network, regarding an event, e.g. common

opinion formation, it is easy to see synchronization phenomenon. Given a

certain problem, in the beginning, each person has his/her own opinion. As

time evolves, people will discuss with their known correspondents (connected

vertices in the network) and change their opinions gradually. The closer
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relationship (higher weight) they have, the higher change they have. Through

these weighted interactions, finally, people with similar attributes tend to

achieve the same opinion. Unlike in Chapter 3, the interaction information

of objects (connectivity information) is directly available in the graph data.

Therefore, for graph clustering, an intuitive idea is to consider it as a

dynamic process towards synchronization. Each vertex is regarded as an

oscillator and it interacts with other vertices (oscillators) relying on its in-

trinsic connection information. The graph clustering is thus transformed

into investigating the dynamics of vertices during the process towards syn-

chronization. A graph cluster is defined as a set of vertices which finally

synchronize together.

Contributions

In this chapter, the algorithm RSGC: Robust Synchronization-based Graph

Clustering, is presented. The major benefits of RSGC can be summarized

as follows:

1. Natural Interaction Model. Rooted in the concept of synchronization,

RSGC proposes a natural interaction model to capture the properties

of the real-world networks. The connection patterns among vertices,

such as edge weights, interaction range, are naturally integrated into

the interaction model for graph clustering.

2. Intrinsic cluster structure discovery. Based on the proposed interaction

model, the hidden cluster structure of a graph can be effectively de-

tected during the process of synchronization. RSGC allows discovering
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graph clusters with arbitrary size and density.

3. RSGC is robust against outliers. Inherited from the properties of syn-

chronization, RSGC can find the outlier vertices in graphs by investi-

gating their different dynamic behaviors.

4. Automatic. RSGC is automatic and does not involve any difficult or

sensitive input parameters.

7.2 Related Work

During the past several decades, many approaches have been proposed for

graph clustering, such as Metis [85], MCL [155], Cross-association [44], Spec-

tral [176], and PaCCo [114]. Here, only a very brief survey on graph clustering

is provided. For detailed reviews, please refer to [140].

Graph Clustering: One of the most prevailing methods for graph clus-

tering is spectral partitioning. This approach refers to a class of well-known

techniques which rely on the Eigenvector decomposition of a similarity ma-

trix to partition objects into disjoint clusters [165]. The algorithm proposed

by [116] allows detecting arbitrarily shaped clusters in vector data by consid-

ering the clustering problem from a graph-theoretic perspective. A cluster

is obtained by removing the weakest edges between highly connected sub-

graphs, which is formally defined by the normalized cut or similar objective

functions. In [14], they propose a learning method to derive a new cost

function based on a measure of error between a given partition and a solu-

tion of the spectral relaxation of a minimum normalized cut problem. Like

k-Means [101], the problem of most spectral clustering approaches requires



7.3 Synchronization-based Graph Clustering 131

to specify the suitable number of k clusters. To overcome the difficulty of

parameter setting, Zelnik-Manor and Perona [176] recently propose a new

method to estimate the number of clusters by investigating the structure of

the Eigenvectors.

Recently, a large number of approaches are proposed for graph clustering

based on the information-theoretic principle. The key idea of these methods

is to link the clustering problem to data compression. The more bits can

be saved by compression, the better of the clusters are. One of fundamental

techniques in this line is Cross-Association [44], which finds groups in un-

weighted graphs by loss-less compression with Mimimin Description Length

(MDL). Similar to Cross-Association, the algorithm called PaCCo [114], is

proposed for weighted graph, which combines the MDL principle with a bi-

secting k-Means strategy. The weights of a graph are further modeled by

a predefined set of PDFs. In general, the MDL principle provides a good

way to qualify the clustering results and thus avoids the parameter setting.

However, it tends to fail if the weights of the graph do not correspond to the

assumed model.

7.3 Synchronization-based Graph Clustering

Inherited from the concept of synchronization, the novel approach RSGC is

introduced for graph clustering. As described in Section 7.1, the key idea is to

consider the graph clustering as a dynamic process towards synchronization.

For each vertex in a graph, it is regarded as a phase oscillator and interacts

with other oscillators relying on its connectivity information. The dynamics
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of each vertex during the process towards synchronization is then investi-

gated with an interaction model (cf. Section 7.3.2). Vertices with similar

interaction patterns will finally synchronize together and form a cluster.

Thus, in order to model each vertex as an oscillator, the first step is to

extract features from a graph to represent its phase. In the following, the

vertex feature representation is first presented. After that, an interaction

model for graph clustering is introduced. In Section 7.3.3 the algorithm

RSGC is discussed in detail.

7.3.1 Vertex Feature Representation

Given an undirected graph G, in most cases, the only information can be

gained is its connectivity patterns. Therefore, to extract features from graph

to represent the phases of vertices, the dissimilarity among vertices based on

their connectivity information is investigated. First, some necessary defini-

tions are introduced.

Definition 7.1 (Undirected Graph ) Let G = (V,E,W ) be an undi-

rected graph, where V is the set of vertices and E is the set of edges.

e = {u, v} ∈ E indicates a connection between the vertices u and v. W (e)

represents the intensity of connection of edge e.

Definition 7.2 (Neighbors of vertex u) Given an undirected graph

G = (V,E,W ), the neighborhood of a vertex u ∈ V is the set Γ(u) containing

vertex u and its connected vertices.

Γ(u) = {v ∈ V |{u, v} ∈ E} ∪ {u}

Currently, the most straightforward way of determining whether two ver-
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tices are similar is to study their structural similarity based on their common

neighbors. The more common neighbors the two vertices have, the more

similar they are. In order to quantify the similarities among vertices, a good

choice is the Jaccard coefficient [77].

Given any two vertices u and v, the Jaccard coefficient is defined as:

ρ(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

(7.1)

Based on the Jaccard coefficient, the Jaccard distance of any two vertices

can be defined as follows.

Definition 7.3 (Jaccard distance) Given any two vertices u and v in

Graph G, their Jaccard distance Jd(u, v) is written as:

Jd(u, v) =

 1− ρ(u, v) ρ(u, v) > 0

∞ else
(7.2)

The vertex similarity measure based on Jaccard coefficient normalizes the

number of common neighbors by summing up the size of both neighborhoods.

It thus effectively denotes the local connectivity density of any two adjacent

vertices in an undirected graph. However, the Jaccard distance of the pairs

of non-neighbor vertices is∞, which is insufficient to represent the similarity

of any two vertices effectively. Therefore, the Transitive distance is further

defined.

Definition 7.4 (Transitive distance) If (u, · · · , vi, w) ∈ S are the

shortest paths between vertices u and w, vi is the second end vertex of any

shortest path, ρ(u, vi) 6= ∞, ρ(vi, w) 6= ∞, the Transitive distance between

vertices u and w is defined as the minimal distance of these shortest paths
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according to Equation 7.2:

Td(u,w) =

 Jd(u,w) Jd(u, v) 6=∞

min{Jd(u, vi) + Jd(vi, w)} else
(7.3)

Vi Vj Jd(Vi Vj) Vi Vj Td(Vi Vj)

(b) Jaccard Distance (c) Transitive Distance(a) Graph
Vi Vj Jd(Vi,Vj)
1 2 0.50

1 3 0.20

Vi Vj Td(Vi,Vj)
1 2 0.50

1 3 0.20

2

4

7 Jd(4,6) =0.57
Jd(5,6) =0.50
Jd(6,7) =0.60

1 4 0.69

1 5 0.83

1 4 0.69

1 5 0.83
1

3

4
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Jd(6,8) =0.60
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Figure 7.2: Illustration of computing the dissimilarity among vertices. (a)

The example graph. (b) The Jaccord distances from vertex 1 to other ver-

tices. (c) The distance from vertex 1 to other vertices based on the Transitive

distance.

Based on the Transitive distance, the dissimilarity matrix D for all pairs

of vertices can be effectively captured, where each element Duv = Td(u, v)

captures the dissimilarity between any two vertices u and v. Figure 7.2 illus-

trates the process of computing the dissimilarity from vertex 1 to all other

vertices. E.g., for the distance between vertex 1 and vertex 6, the short-

est paths from 1 to 6 contain {(1,2,4,6),(1,3,4,6),(1,3,5,6)}. The transitive

distance between vertex 1 and vertex 6 is thus Td(1, 6) = min(Jd(1, 4) +

Jd(4, 6), Jd(1, 5) + Jd(5, 6)) =1.26.
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vi

vx vyvi' vy
dist(vx, vy)fvi

Figure 7.3: Illustration of the feature space transformation by projection in

one dimension. Vx and Vy are two vertices with the maximal distance. Any

vertex including the two vertices can be projected in the line (Vx-Vy). fvi

indicates the corresponding feature of vertex Vi.

To further obtain the features of each vertex, the dissimilarity matrix is

mapped into 2-dimensional points in a feature vector space. Here, the well-

known method, called FastMap [56], is applied to transform the dissimilarity

matrix in a metric space into a feature vector space. The key point is to

project the vertices on a carefully selected ’line’ and the feature of each vertex

is then represented as the length of projection on the ’line’. For illustration,

Figure 7.3 indicates the projection of the vertices in 1-dimensional space.

Here, all vertices are projected into a 2-dimensional feature vector space and

their corresponding coordinates are represented as their phases.

7.3.2 Interaction Model

The Kuramoto model (cf. Section 3.2) well describes the global synchroniza-

tion behavior of all coupled phase oscillators. In real-world graphs or net-

works, the connectivity among vertices are often not full but partial, which

indicates that only a local ensemble of vertices are connected. Therefore, it
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is necessary to extensively reformulate Eq.(3.1). The natural way is to model

the interaction as the graph structure itself.

Definition 7.5 (Interaction Range of vertex u) The interaction

range of vertex u, namely Ru, is defined as the maximal distance among these

neighbors, formally,

Ru = max{dist(u, v)}|v ∈ Γ(u)} (7.4)

where dist(·) is the metric function. L2 distance is used in this chapter.

After calculating the interaction range for each vertex, its dynamic behav-

ior with other vertices can be simulated according to an interaction model.

Formally, the interaction model for graph clustering is defined as follows.

Definition 7.6 (Interaction Model) Let u be a vertex in the graph

G(V,E,W ). Γ(u) are the neighbors of vertex u and ui is the i− th feature of

vertex u. With the interaction rangeRu, according to Eq. (3.1), the dynamics

of i− th phase ui of the vertex u is governed by:

dui
dt

= ωi +
K∑

v∈Γ(u) W (v, u)

∑
v∈Γ(u)

W (v, u)· (7.5)

Φ(u, v) · sin(vi − ui).

where W(v,u) is the edge weight between vertices u and v. The Φ(u, v)

is used to check whether the vertex v is in the interaction range of u, which

is defined as:

Φ(u, v) =

 0 dist(v, u) > Ru

1 else

Then, let dt = ∆t, the Equation 7.5 can be further written as:

ui(t+ ∆t) = ui(t) + ∆t · ωi +
∆t ·K∑

v∈Γ(u) W (v, u)

∑
v∈Γ(u)

W (v, u)· (7.6)
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Φ(u(t), v(t)) · sin(vi(t)− ui(t)).

Here, as mentioned in last chapters, all vertices (oscillators) are assumed

having the same frequency w. The term ∆t · ωi is thus the same for each

vertex and ignored. ∆t ·K = C is a constant. Finally the dynamics of i− th

phase ui of the vertex u over time is provided by:

ui(t+ ∆t) = ui(t) +
C∑

v∈Γ(u) W (v, u)

∑
v∈Γ(u)

W (v, u)· (7.7)

Φ(u(t), v(t)) · sin(vi(t)− ui(t)).

The vertex u at time step t = 0: u(0) represents the initial phase of the

vertex (the original feature of vertex u). The ui(t+∆t) describes the renewal

phase value of i-th phase of vertex u at the t = t+ ∆t time evolution.

To characterize the level of synchronization between oscillators during the

synchronization process, a graph order parameter rg is defined to measure

the coherence of the local oscillator population in graphs.

Definition 7.7 (Graph Order Parameter) Let u ∈ G(V,E,W ),

|V | = N , the graph order parameter rg characterizing the degree of local

synchronization in graphs is provided by:

rg =
1

N

N∑
i=1

(
1∑

v∈Γ(u) W (v, u)

∑
v∈Γ(u)

W (v, u) · Φ(u, v) · ||v − u||
)

(7.8)

The rg calculates the average interaction during the process towards syn-

chronization among all vertices. Therefore, the more vertices synchronize

together, the value of rg becomes smaller. The dynamics of all vertices will

terminate when the rg converges, which indicates that the vertices in clusters

synchronize together (in phase).
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7.3.3 The RSGC Algorithm

With the interaction model, the dynamics of vertices can be simulated. Gen-

erally, the process of the graph clustering based on synchronization involves

the following steps:

1. Vertices Feature Representation: Given a graph G, the dissimilar-

ity matrix D is first calculated according to Eq. (7.1) (7.2) (7.3). Then

FastMap is used to transform dissimilarity matrix D into feature space

so that each vertex is represented as a 2-dimensional feature vector.

2. Synchronization on Graph: After feature representation for each

vertex, its dynamics are investigated with the interaction model. In

the beginning (t = 0), all vertices have their own phases and thus

have N disconnected sets (N subgraphs). As time evolves, each ver-

tex interacts with other vertices relying on its connection information

according to Equation 7.7. The interaction strength of each pair of

vertices is naturally fitted as the edge weight (for unweighted graph,

all weights of edges are equal and set as 1). Through interactions, ver-

tices with similar patterns will gradually synchronize together. The

process of synchronization terminates when the graph order parameter

converges (Definition 7.7).

3. Clusters Discovery: At the end of synchronization, all clusters are

easily detected by exploring the final phases of vertices. A graph cluster

is defined as a set of vertices with the same phase.

For illustration, a simple weighted graph is introduced in Figure 7.4(a).

Figure 7.4(b) plots the edge distribution of the graph. The RSGC starts
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Figure 7.4: The simulation of the dynamics of vertices during the process

towards synchronization. (a) The original weighted graph without ordering

and partition. (b) The underlying edge weights distribution. (c) The Feature

Representation, where each point in the feature space represent a vertex. (d-

f). The states of vertices at time steps t = 3∆t and t = 8∆t. (g) The

dynamics of vertices over time resolution. (h) Graph order parameters. (i)

The result of graph partitioning.
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with the vertices similarity computation and then projects it in feature space,

which is indicated in Figure 7.4(c). After that, the dynamics of all vertices

can be simulated according to Eq.(7.7). Figure 7.4(g) displays the dynamic

movement of all vertices during the process towards synchronization. It is

obvious that these vertices which are highly connected gradually move to-

gether and finally have the same phase. Figure 7.4(d)-(f) further depict the

detailed states of vertices at time step t = 3∆t, 5∆t, 8∆t. When t = 8∆t, we

can see the vertices in a cluster synchronize together. The process of synchro-

nization will be terminated when the graph order parameter rg converges,

which indicates in Figure 7.4(h). Finally, the result of graph partitioning is

showed in Figure 7.4(i). The pseudocode of RSGC algorithm is provided as

follows.

7.4 Experiments

To extensively study the performance of RSGC, multiple experiments are

conducted on several synthetic as well as real-world data sets. Furthermore,

RSGC is compared with two other parameter-free weighted graph cluster-

ing paradigms: information-theoretic clustering PaCCo [114] and the spec-

tral clustering approach proposed by Zelnik-Manor and Perona [176] (named

Spectral in the following). RSGC is implemented in Java. The source codes

of PaCCo and Spectral are obtained from the authors and are implemented

in Java and C++ respectively. All experiments have been performed on a

workstation with 2.0 GHz CPU and 8.0 GB RAM.
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Algorithm 3 RSGC algorithm

Input: Graph G(V,E,W )

Compute matrix A with Jaccard Coefficient ;

Obtain dissimilarity matrix D with transitive distance & A;

Transform D into features vectors F using FastMap;

for (Each u ∈ F ) do

u(0) = Fu(0)

end for

while (loopFlag = True) do

for (Each u ∈ F ) do

Obtain new phase u(t+ 1) using Eq.(7.7);

end for

Compute graph order parameter rg;

F (t+ 1) =
∑N

1

⋃
u(t+ 1);

if rg converges then

loopFlag = False;

C = synCluster(F (t+ 1));

end if

end while

return C;
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7.4.1 Evaluation Criteria

For objective comparison, a criterion called modularity [64] is applied to quan-

tify the quality of a division of a network into modules or communities. The

modularity value is higher if links inside a cluster are maximized while the

links between clusters are minimized. Formally, modularity on a graph par-

titioning of an unweighted graph into k clusters is defined as

M =
k∑
c=1

(
lc
L
−
(
dc
2L

)2
)

with L being the number of all edges inside the graph, lc being the number

of links enclosed by the cluster c, and dc being the sum of the degree of the

nodes of cluster c.

Based on the above definition, we can thus reformulate modularity for a

weighted graph, by considering the edge weights instead of their counts. We

define weighted modularity as

M =
k∑
c=1

(
wc
W
−
(
dwc
2W

)2
)

where W indicates the sum of all edge weights and wc is the sum of weighted

edges inside the cluster c. dwc is the total weighted degrees inside a cluster.

7.4.2 Proof of Concept

The evaluation starts with some synthetic data sets to facilitate presentation

and demonstrate the benefits of RSGC mentioned in Section 7.1.

Intrinsic Cluster Structure Discovery. First the performance of

RSGC is evaluated to discover natural graph partitioning in difficult set-

tings, starting with subgraphs of arbitrary size. The data set displayed in
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(a) Different Sizes (b) Various Densities (c) Outliers Handling

Figure 7.5: Performance of RSGC.

Figure 7.5(a) consists of 4 clusters with different sizes, ranging from 20 to

80. The intra-connection is approximately 40% and the distribution of edge

weights is Gaussian. RSGC successfully detects all clusters without any data

or edge weights distribution assumptions. Moreover, we generate four clus-

ters with different densities. For each cluster, it includes 20 vertices and the

probabilities of intra-connection of each cluster vary from 20% to 80%, see

Figure 7.5(b). RSGC allows detecting clusters with very different densities.

Outlier Handling. In real-world networks or graphs, there often exist

some noise or outlier vertices, which behave with different roles or behav-

iors in graphs. Discovering such outlier vertices is very important for graph

analysis. Inherited from the concept of synchronization, the RSGC algo-

rithm allows detecting all these outliers effectively, where all these vertices

in graphs are difficult to synchronize with other vertices and have different

dynamics. As displayed in Figure 7.5(c), the outliers are naturally found by

exploring these vertices which are not synchronized.
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7.4.3 Real-world Data

In this section, the performance of RSGC is evaluated on several real-world

data sets. Five author-collaboration networks are obtained from different

communities: Network Theory (Netsci), PhD Student Network in Computer

Science (CS-PhD), Computational Geometry (Geom), Arxiv General Rela-

tivity (CA-GrQc), Erdos Research (Erdos) 1; three Protein-Protein Interac-

tion networks from three species, which are S. cerevisiae (Scere), Escherichia

coli (Ecoli) and C.elegans (Celeg)2 and an Autonomous Systems network of

routers comprising the Internet (As) 3.

These 9 real-world data sets are selected to evaluate the performance of

RSGC and compare with two other approaches. However, data preprocessing

is first conducted. The reason is that some of these data sets (Netsci, CS-Phd,

Geom, CA-GrQc, Scere, Ecoli and Celeg) only have one major subgraph.

They contain many small isolated subgraphs, which have no connection to

others at all. For instance, the author-collaboration network Netsci has 396

isolated subgraphs, among which there are one subgraph with 379 nodes and

hundreds of subgraphs with only several vertices. The PPI network Celeg

has 133 isolated subgraphs, among which there is one subgraph with 2880

nodes and the vertices that others contain are no more than 5. Obviously,

1CS-Phd, Geom, Erdos are Obtained from the website: http://vlado.fmf.uni-

lj.si/pub/networks/data/default.htm.

Netsci: http://www-personal.umich.edu/ mejn/netdata.

CA-GrQc: http://snap.stanford.edu/data/
2Obtained from the Database of Interacting Proteins: http://dip.doe-

mbi.ucla.edu/dip/Main.cgi
3As: http://snap.stanford.edu/data/
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Table 7.1: The statistics of the real data sets.

Data Set weight |V | |E| Avg. degree CC

Netsci weighted 379 914 2.411 0.741

CS-Phd unweighted 1025 1043 1.018 0.003

Geom weighted 3621 9461 2.612 0.539

CA-GrQc unweighted 4158 13422 3.228 0.557

Erdos unweighted 6927 11850 1.711 0.124

As unweighted 6474 12572 1.942 0.252

Scere unweighted 5157 24879 4.824 0.098

Ecoli unweighted 2595 11726 4.548 0.098

Celeg unweighted 2880 4812 1.671 0.019

before clustering, it is necessary to preprocess such data sets. Here, for each

graph, the subgraphs of the network are first obtained and then the biggest

subgraph taken for comparison. The reason is that all these data sets only

have one primary subgraph. If there is no preprocessing, it is difficult to

define the similarity among vertices in our algorithm RSGC and Spectral.

After preprocessing, the statistics of the data sets is further indicated in

Table 7.1.

The experiments are performed on these real data sets and the perfor-

mance of RSGC is compared to PaCCo and Spectral. Table 7.2 shows the

clustering results in terms of modularity score. It is obvious that RSGC per-

forms very well on all these data sets and obtains the best modularity scores

for all experiments except the Spectral algorithm on As data set. For the

algorithm of PaCCo, it can not yield good partition results for most data
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sets, especially for the unweighted graphs. The reason behind this is that

PaCCo tends to fail if the weight distribution does not correspond to the

cluster model. Therefore, for most data sets, PaCCo only partitions these

graphs into two clusters. Like PaCCo, Spectral also obtains relatively few

clusters except for the CS-PhD and As data sets.

Table 7.2: Performance of graph clustering algorithms on real-world data

sets, including RSGC, Spectral and PaCCo.

Data Set
PaCCo Spectral RSGC 2

#clu. Modu. #clu. Modu. #clu. Modu.

NetSci 11 0.542 4 0.696 19 0.779

CS-Phd 2 0.077 40 0.531 36 0.715

Geom 54 0.327 6 0.067 44 0.465

CA-GrQc 2 0.352 4 0.144 46 0.627

As 2 0.151 19 0.439 39 0.382

Erdos 2 0.049 2 0.001 24 0.422

Scere 2 0.085 3 0.053 32 0.196

Ecoli 2 0.052 2 0.002 25 0.224

Celeg 2 0.019 2 0.005 32 0.309

In total, it is noticeable that RSGC have obvious benefits over the two

compared algorithms. First, without any weight or data distribution assump-

tion, RSGC can automatically partition the graphs into reasonable clusters.

Second, RSGC also allows detecting more meaningful clusters in the graphs

(with high modularity scores).

Case Study: To further evaluate the performance ofRSGC, a case study
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Table 7.3: Biological significant clusters detected by different graph clustering

algorithms.

Molecular Function Annotations P-value

RSGC

structural constituent of ribosome 1.2e-17

acetylcholine receptor activity 3.1e-6

protein binding 0.002

PaCCo structural constituent of ribosome 2.3e-9

Spectral structural constituent of ribosome 1.3e-19

Biological Processing Annotations P-value

RSGC

embryo development 2.1e-24

reproduction 2.9e-11

growth 0.004

multicellular organismal reproductive pro. 0.006

protein localization 0.007

morphogenesis of an epithelium 0.007

germ cell development 0.009

translation 0.011

inductive cell migration 0.045

PaCCo
reproduction 3.7e-20

embryo development ending in birth 6.8e-18

Spectral reproduction 3.1e-37

on a protein-protein interaction (PPI) network is illustrated. The objective

of PPI network analysis is to investigate the structure of interaction networks

of proteins and thus provide insight into their functions where proteins in a
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subgraph indicate the same biological process or similar molecular functions.

Currently, it is an interesting and challenging problem since the functions of

many proteins are unknown even for the most well-studied organisms such

as yeast.

Here, the latest version of PPI network of C.elegans (Celeg) is used, which

contains 2880 proteins and 4812 known interactions. This interaction net-

work is analyzed with RSGC and the performance is compared to PaCCo

and Spectral. RSGC discovers 32 clusters, while PaCCo and Spectral pro-

duce only 2 clusters, respectively. In the context of biology, the biological

significance of obtained clusters can be evaluated with the help of the Gene

Ontology database [13], which provides the ontology of defined terms repre-

senting gene product properties in three vocabularies of annotations: Molec-

ular Function, Biological Process and Cellular Component. Researchers often

apply the P-value to demonstrate the biological significance, which is defined

as the probability to observe by chance at least x elements at the intersection

between the query set and the reference set. Formally, let the total number

of proteins be N with a total of M proteins sharing a particular annotation.

Based on Hyper-geometric distribution, the P-value [31] of observing m or

more proteins that share the same annotation in a cluster of n proteins is

defined as:

P − value =
n∑

i=m

(
N
n

)(
N−M
n−i

)(
N
n

) (7.9)

Under the evaluation with Molecular Function annotations, RSGC finds

3 clusters which are enriched for three molecular functions. In contrast,

PaCCo and Spectral only obtain one biological significance cluster for molec-

ular functions. In addition, for all three approaches, they find a significant
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cluster enriched for the function structural constituent of ribosome, where the

P-values are 1.2e-17, 2.3e-9 and 1.3e-19 for RSGC, PaCCo and Spectral

respectively. In addition, RSGC finds another two clusters enriched for

protein binding (P-value = 2.5e-03), acetylcholine receptor activity (P-value

= 3.1e-06). Therefore, RSGC can detect more clusters which make sense

biologically. Similarly, the clusters are also evaluated using biological pro-

cessing annotations. Here, RSGC successfully obtains 9 significant clusters

which are enriched for biological processing while PaCCo and Spectral have

two and one significant clusters respectively. All of RSGC, PaCCo and

Spectral methods discover one significant cluster which is enriched for the

term reproduction with the P-values of 2.8e-11, 3.7e-20, 3.1e-37 respectively.

Moreover, RSGC also reveals another 8 significant clusters enriched for differ-

ent biological process, such as embryo development, multicellular organismal

reproductive process , morphogenesis of an epithelium, etc. Please refer to

Table 7.3 for details.

7.4.4 Runtime Complexity

For runtime comparisons, several synthetic data sets are generated, where

the number of clusters k ranges from 10 to 50 and each cluster contains

100 vertices. Approximately 30 % of the intra cluster edges are connected

and 5% inter cluster edges are linked. The edge distribution of all cluster are

Gaussian. In order to obtain more accurate runtime results, for each method,

each data set is processed 10 times and then the mean of the 10 rounds is

found. Fig. 7.6 clearly shows that RSGC is faster than Spectral since

Spectral has a time complexity of O(n3) due to the eigenvalue decomposition
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Figure 7.6: The runtime of the different graph clustering algorithms, includ-

ing RSGC, PaCCo and Spectral.

and time complexity ofRSGC is only super-linear. In addition, RSGC is also

slightly better than PaCCo (approximately 2 times). In summary, RSGC

scales very well against the number of vertices.

7.5 Conclusions

In this chapter, the algorithm RSGC is introduced for graph clustering.

The extensive experiments demonstrate that RSGC algorithm has several

desirable properties: (a) RSGC provides a natural way for graph clustering,

where the proposed interaction model can capture the characteristics of the

real-world networks very well, such as the interaction weights and range.

(b) Relying on the proposed interaction model, RSGC allows discovering

graph clusters with arbitrary size and density. Moreover, (c) RSGC is fully

automatic and does not involve any difficult or sensitive input parameters.



Chapter 8

Outlier Detection: “Out of

Synchronization”

The study of extraordinary observations is of great interest in a large vari-

ety of applications, such as criminal activities detection, athlete performance

analysis, and rare events or exceptions identification. The question is: how

can we naturally flag these outliers in a real complex data set? In this chap-

ter, outlier detection is considered from a new perspective: “Out of Synchro-

nization”. By simulating the dynamical behavior of each data object over

time according to an extensive Kuramoto model, regular objects and outliers

exhibit different interaction patterns during the process towards synchroniza-

tion. Outlier objects are naturally detected by local synchronization factor

(LSF).

The remainder of this chapter is organized as follows: In the following

section, the introduction is given. Section 8.2 briefly surveys the related work

of outlier detection. Section 8.3 presents our new concept and algorithm
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in detail. Section 8.4 contains an extensive experimental evaluation and

Section 8.5 concludes the chapter. Parts of the material presented in this

chapter have been published in [144], where J.S. was mostly responsible for

the development of the main concept; J.S., Q.Y., C.P. and C.B. performed

the experiments and wrote the paper.

“Junming Shao, Christian Böhm, Qinli Yang, Claudia Plant.

Synchronization Based Outlier Detection. ECML/PKDD (3) 2010:

245-260.”

8.1 Introduction

“An outlying observation, or outlier, is an observation that devi-

ates so much from other observations as to arouse suspicion that

it was generated by a different mechanism.” [76]

Such irregular observations often contain useful information on abnormal

behavior of the system described by the data. The detection of these irregular

data is thus equally or even more interesting and useful than finding regular

patterns applicable to a considerable portion of objects in a data set [30]. For

example, the identification of criminal activities, such as credit card fraud,

is crucial in electronic commerce applications.

Currently, outlier detection has attracted increasing attention and many

algorithms have been proposed (e.g. [30] [91] [92] [24]). However, they suffer

from one or more of the following drawbacks: They explicitly or implicitly as-

sume the data follows a given distribution model, such as Gaussian, uniform

or Exponential Power Distribution. The results of many methods strongly
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depend on suitable parametrization and/or their results are difficult to in-

terpret. In addition, most approaches are restricted to a flat data structure

and do not support complex hierarchical data. A more detailed discussion

on these studies will be given in Section 8.2.

In this chapter, outlier detection is considered from a novel perspective:

out of synchronization. Inspired by natural synchronization phenomena, the

outliers are considered as the elements which are difficult to synchronize with

others.

8.2 Related Work

Currently, most existing approaches to outlier detection can be mainly classi-

fied into three categories: distribution-, distance-, and density-based outlier

detection.

Distribution-based Outlier Detection. Methods in this category are

mainly developed in the field of statistics. Generally, they assume a known

distribution model (Gaussian, Poisson, Exponential Power Distribution, etc.)

for the observations based on statistical analysis of a given data set. Out-

liers are defined as those objects that deviate considerably from the model

assumptions [12, 76, 135]. In [12], numerous discordancy tests are discussed

for different scenarios. In [174] and [173], authors propose SmartSifter (SS),

which is an on-line real-time outlier detection algorithm. The basic principle

of SS is to use a probabilistic model (a finite mixture model) to represent

the underlying distribution of a given data set. Each time a datum is in-

put and SS employs an on-line learning algorithm to adjust the probability
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model. An anomaly score is calculated for each datum based on the learned

model. However, the method relies on histograms and requires preparing as

many Gaussian mixture models as cells in the histogram density. Moreover,

in real-world applications, it is not trivial to find an appropriate model to

fit an arbitrary data distribution without prior knowledge. Recently, CoCo,

an information-theoretic outlier detection approach has been proposed by

Böhm, et al. [24]. Based on the MDL principle, outliers are flagged as

those objects which need more coding cost than regular objects. Like most

distribution-based methods, CoCo tends to fail if the estimated distribution

does not fit the data model well (cf. Section 2.2) .

Distance-based Outlier Detection. The concept of distance-based outlier

detection is proposed by E.M. Knorr and R.T. Ng [91] [92]. These techniques

identify potential outliers from ordinary points based on the number of points

in the specified neighborhood. They define a point in a data set T to be an

outlier if at least p fraction of points in T have greater distance than d from it

[91]. The basic notion is extended in [130] by computing the distances to the

k nearest neighbors and then ranking the objects based on their proximity to

their k-th nearest neighbors. Consequently top n outliers are obtained using

a partition-based algorithm. However, it is difficult to accurately determine

the parameters p and d for a arbitrary data set.

Density-based Outlier Detection. Breunig, et al. [30], introduce a no-

tion of local outlier from a density-based perspective. An object is regarded

as an outlier if its local density does not fit well into the density of its neigh-

boring objects. The local outlier factor (LOF) is then proposed to capture

the degree to which the object is an outlier. (cf. Section 2.2) In [157], a
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P1

(a) (b)

P2

(c)

P1

P2

P1

P2

Figure 8.1: Illustration of synchronization-based outlier detection. (a)-(c):

The dynamics of objects towards synchronization. (d): Interaction Plot.

connectivity-based outlier factor (COF) scheme is proposed to improve the

effectiveness of LOF scheme when a pattern itself has a similar neighborhood

density as an outlier. Although these approaches to outlier detection are use-

ful, their performances are sensitive to the parameter Minpts which can be

very difficult to determine. The Local Outlier Integral (LOCI) [120] flags out-

liers based on the concept of a multi-granularity deviation factor (MDEF).

Objects which deviate in their local object density more than three times of

the standard deviation are regarded as outliers (cf. Section 2.2).

8.3 Synchronization-Based Outlier Detection

In this section, the algorithm SOD is introduced to detect outliers based on

synchronization principle. The basic idea is first illustrated in Section 8.3.1.

In Section 8.3.2 the algorithm SOD and its properties in detail are discussed.
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8.3.1 Basic idea

The concept of synchronization provides a natural way to outlier detection.

The basic idea is to flag outliers by distinguishing the object dynamical be-

haviors during the process towards synchronization. In this work, each data

object is regarded as a phase oscillator and interacts dynamically with other

objects according to the Extensive Kuramoto model (EKM), as introduced

in Section 4.3.2. Finally, the local synchronization factor (LSF) is defined

to distinguish outliers based on the different dynamics of objects during the

process towards synchronization.

To gain some intuition into the synchronization-based outlier detection,

consider a simple data set as illustrated in Figure 8.1. For an object within

a cluster, such as P1, many similar objects are located around it and P1

starts interacting with these similar objects. Through non-linear dynamical

interaction, the object changes its initial phase and moves towards the main

direction of its interaction partners (Figure 8.1(a)). The situation is like the

mutual influence of people in discussion. As time evolves, regular objects

move gradually closer together through mutual interaction and thus more

and more objects can interact with them. Figure 8.1(b) displays the new

positions of the objects for comparison. The objects with similar attributes

gradually synchronize together. The initial points (black color) are replaced

by the red points after one time stamp. Then, in a sequential process, all

these similar objects synchronize together, which finally have the same phase

(Figure 8.1(c)). Outliers, such as P2, due to the significantly different at-

tributes in comparison with regular objects, have difficulties to interact with

other objects and tend to keep their own phases. Therefore, the dynamics of
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Figure 8.2: The dynamics of object toward to synchronization. (a)-(d) de-

scribe the detailed object movement during the time resolution. (e): Objects

movement, (f): Local order parameter, (g). Interaction Plot for three objects

circled in (a).

the objects show two different patterns during the process towards synchro-

nization. For each regular object, as time evolves, it interacts with more and

more objects and finally synchronizes with other objects. For outliers, there

is none or only very minor interaction. Strong outliers keep their unique

phase over the whole time during the process towards synchronization. The

two different patterns can be easily visualized: Figure 8.1(d) shows the In-

teraction Plot, which displays for each object the number of interactions on

the time scale.
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8.3.2 The SOD Algorithm

In this section, we elaborate the SOD algorithm based on our extensive

Kuramoto model.

First, without any interaction, all objects in a data set have their own

phases. As time evolves, each object starts to interact with its ε-neighborhood,

cf. Definition 4.1. The traces of all objects are in line with the main di-

rection of their neighborhoods. Gradually, regular objects with similar at-

tributes synchronize together following the intrinsic structure of a data set.

In contrast, outliers are difficult to interact with other objects due to the

large variance. Finally, the local regular objects with similar attributes syn-

chronize together with same phase while outliers tend to keep their original

phases. The objects synchronization process is terminated when the local

order parameter converges.

To simply illustrate the objects dynamical movement, the Figure 8.2

(a)-(d) show the detailed dynamics of 2-dimensional points at time steps:

t = 0,∆t, 3∆t, 5∆t. t = 0 indicates the original data set at the initial time.

From that moment on, all objects with similar attributes start to synchronize

together through the dynamical interaction according to Eq.(6.4) and finally,

all objects in the data set synchronize at two different phases after 5 time

steps. A more intuitive visualization of the objects movement is illustrated

in Figure 8.2(e). Figure 8.2 (f) demonstrates the local order parameter of

the data set with time evolution. During the process of synchronization, it

is clear that regular objects and outliers behave different dynamics. Intu-

itively, for regular objects, since more and more objects interact with it and

gradually group together, the pair-wise distances among their neighborhood
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become smaller and smaller. For outliers, they are isolated from other ob-

jects, the distances between objects to its neighborhood tend to much larger.

Therefore, based on this observation, Local Synchronization Factor is pro-

posed as follows, which is used to capture the degree of synchronization of

each object during the process of synchronization.

Definition 8.1: (Local Synchronization Factor of an object x) The local

synchronization factor LSF (x) of object x is defined as:

LSF (x) =
1

T

T∑
t=0

(
1

|Nbε(x(t))|
∑

y(t)∈Nbε(x(t))

cos(||y(t)− x(t)||)
)
. (8.1)

where T is the whole number of time steps for the process of synchroniza-

tion. The synchronization factor captures the degree to which the object is

an outlier. The smaller of the LSF value, the higher probability of being an

outlier.

According to the definition, LSF shows major desirable properties:

1. Intuitive. Since the LSF value indicates each object synchronization

factor, it provides an intuitive way to summarize its dynamical inter-

action behavior with other objects during the process towards synchro-

nization. The easier an object synchronizes with other objects, the

higher is its LSF value. Outliers are objects which are out of synchro-

nization.

2. Tight. The range of LSF is restricted to [0 1). The lower bound of LSF

value is 0, which means the object does not interact with any other

object during the synchronization process. For cluster points which

easily synchronize the LSF value is close to 1. The LSF value can thus
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be easily interpreted as the degree of each object of being an outlier,

e.g. Degree(p) = 1− LSF (p).

3. Distinguishable. Due to the different dynamics between regular objects

and outliers during the synchronization process, the values of LSF are

fairly distinguishable. For outliers, the LSF value is around 0 while the

regular objects nearly to 1. It can easy to discern them.

In addition, in order to explore each object dynamically during the pro-

cess towards synchronization, the Interaction Plot is defined to characterize

the interaction behavior pattern between objects over time.

Definition 8.2: (Interaction Plot) For any object x, the plot of the

number of objects involved in mutual interaction with x versus the time

step, is called Interaction Plot.

As a valuable addition to LSF, the Interaction Plot provides a detailed

visualization of the dynamic behavior of each object according to the Ex-

tensive Kuramoto model. With the same data set above, the interaction

plot is illustrated in Figure 8.2(g). From this plot, two distinct interaction

patterns become evident. For regular objects, during the synchronization

process, more and more objects interact together over time. Outliers often

fail to interact with other objects (maybe a few at the beginning). As time

evolves, the number of interacting objects becomes constant. For example,

two regular objects and one outlier are visualized with dashed color lines to

illustrate the different interaction patterns in Figure 8.2 (a),(g).
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Outliers Flagging.

After LSF is obtained for each object, all outliers usually exhibit a low value

in comparison to the regular objects. The denser the local region of an object,

the higher its value of LSF is. Therefore, selecting a suitable threshold for

flagging outliers could be easily selected since the LSF value is distinct for

outliers and regular objects. However, for automatically flagging, in this

work, the K-Means algorithm is applied on the LSF values to split the data

into two clusters: outliers and regular objects. Finally, the Pseudocode of

the SOD is illustrated in Algorithm 4.
Runtime Complexity.

For SOD, to detect outliers based on synchronization, the runtime complexity

with respect to the number of data objects is O(T · N2), where N is the

number of objects and T is the time evolution. In most cases, T is small

with 5 ≤ T ≤ 20. If there exists an efficient index, the complexity reduces

to O(T ·N logN).

Parameter Setting.

In order to flag outliers based on synchronization principle, an interaction

range (ε) needs to be specified for EKM. The question is: how to determine

the ε value and how does the LSF value change when the ε value is adjusted?

Given a data set, theoretically, the ε value can be 0, which means there

is no interaction at all among the objects. In order to generate object inter-

action, there should be a lower bound of ε. To generate a stable interaction

for most objects, a heuristic way is to use the average value of the k-nearest

neighbor distance determined by a sample from the data set for a small k.
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Algorithm 4 SOD(D, ε)

LSF := {}; // Synchronization Factors

while loopFlag=true do

for each object p ∈ D do

Compute Nε(p);

Obtain new value of object p using Eq.(4.5); // Update value

end for

Compute local order r using Eq.(4.6);

if r converges then

loopFlag=false;

for each object p ∈ D do

Compute local synchronization factor LSF (p) using Eq.(8.1);

end for

end if

end while

Flagging outliers by K-Means based on LSF values.

The ε should not be so large that encloses all data objects for interaction.

In that way, the local object dynamical behaviors can be detected. However,

the range of suitable values for ε is very large. In all experiments on different

data sets, the ε is set as the average value of the k-nearest neighbor distances

for k ranging from 10 to 50.

To asses the impact of ε value on LSF value and outlier detection, Figure

8.3 shows a simple data set which consists of 2 clusters with different size

(C1:50, C2:200) and density. 17 outliers are added to the data. For each
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Figure 8.3: Influence of ε on LSF.

ε value, the mean and standard deviation of LSF values are calculated for

each cluster as well as for the outliers. Figure 8.3 displays the LSF value with

respect to ε. For all settings of ε, the mean LSF value for the points in cluster

C1 and C2 are clearly much larger than 0, in most cases close to 1 while the

mean and standard deviation of LSF value for outliers remain stable at 0.

With the increase of ε, the LSF value of cluster objects begin to decrease.

The reason behind it is that more and more objects are enclosed to interact

with each other at each time step and thus more difficult to synchronize

together. The situation is like two people finding it much easier to agree over

some thing than a larger group of people. Moreover, since objects in denser

cluster are easier to synchronize, the LSF values are much more closer to 1

(e.g. the mean LSF value of objects in C1 are larger than those in C2). For

different parameters, outliers and regular objects show distinct LSF values

and can be discerned easily. For further evaluation on the robustness of SOD

w.r.t. parameter settings please refer to the experimental section.
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P1
P2

(a) SOD (b) LOF (c) LOCI (d) CoCo

Figure 8.4: Outlier detection results with different methods. (a): SOD (k =

10 − 40), (b): LOF (MinPts = 20, selecting only the top 30 outliers), (c):

LOCI (α= 1, rmin = 10 and rmax =50), (d): CoCo. Detected outliers are

highlighted with red crosses.

8.4 Experimental Evaluation

In the following, the outlier detection SOD is evaluated in comparison to

LOF [30], LOCI [120], CoCo [24] on synthetic data set as well as NBA data.

SOD, CoCo, and LOF are implemented in Java and the implementation of

LOCI and CoCo are obtained from the authors.

Synthetic Data.

The evaluation starts with 2-dimensional synthetic data set to facilitate

presentation. The data set displayed in Figure 8.4 consists of six clusters

(C1-C6): one Gaussian cluster (C2:39), two correlation clusters (C1:167 and

C3:73), two arbitrarily shaped clusters (C4:60 and C6:67 ) and one a spher-

ical hierarchical cluster (C5:131), including a nested cluster. 30 outliers are

added to the data set. Figure 8.4 provides the results of outlier detection by

using SOD, LOF, LOCI and CoCo for the same synthetic data set.
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Figure 8.5: LOCI Plot of cluster point P1 (left) and outlier P2(middle);

Interaction Plot of P1 and P2 (right).

Figure 8.6: Visualization of the LSF, LOF and CoCo for the synthetic data

set.
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Without any prior knowledge, SOD successfully detects all 30 outlier points

(Figure 8.4 (a)) from the complex data. The outliers are highlighted with

red crosses and cluster objects are shown in black. Moreover, SOD obtains

the same result with the parameter ε set to the average k-nearest neighbor

distance for k ranging from 10 to 40.

For LOF, a wide range of different settings is tried for the parametersMinPts

from 10 to 50, which is suggested by authors. The top 30 outliers are ob-

tained according to the LOF value. For different parameters, there are 17,

17, 9, 8 and 10 out of 30 correctly assigned with MinPts =10,20,30,40,50,

respectively. Most cluster objects, especially for the objects of hierarchical

cluster are wrongly flagged as outliers. The best result is presented in Figure

8.4 (b) obtained with parameter MinPts =20. Obviously, the result of LOF

is very much influenced by the parameter MinPts. In addition, the priori

information about the number of desired outliers is often unknown.

LOCI is applied to the synthetic data set with α = 1, rmin= 10 and rmax

=50 (Figure 8.4 (c)). 46 outlier points are detected based on the suggested

outlier flagging criteria and 16 true outliers are correctly detected. Many

cluster points of C2, C4 and C6 are wrongly flagged. With the decrease of

rmin value, more true outlier points are found, but at the same time more

cluster points are mislabeled as outliers. As the LOCI plot provides the

information for each object, we thus have a closer look at the cluster point

(Fig. 8.4 (c): P1) and outlier point (P2). It is noticeably that the two LOCI

plots look very similar (Figure 8.5(a)-(b)). Using this plot, it is difficult

to distinguish the cluster point P1 from outlier point P2. For comparison,

Interaction Plot is displayed for the same two points (Figure 8.5(c)). It is
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very clear that the cluster point P1 and outlier point P2 have totally different

interaction patterns, where the number of interactions for cluster point P1

gradually increase and finally has the same size while there is no any objects

interact with it during the process of synchronization.

CoCo identifies all 95 outliers for the synthetic data and only one outlier

is missing. However, 66 cluster points are wrongly flagged as outliers. CoCo

relies on the assumption that the data follows an Exponential Power Dis-

tribution, which is not the case for our example and therefore CoCo yields

many false-positives.

To visualize the degree of “outlierness” for each object, the Local Syn-

chronization Factor (LSF) is further compared to the outlier factor of LOF

and CoCo in Figure 8.6. For LSF, the local synchronization factor of all

outlier points are nearly 0 and all cluster points are close to 1. Due to the

desirable properties of LSF, such as tightness and distinguishable, cluster

points and outliers are easily to differentiate. As to LOF and CoCo, the

range of values is very wide and the gap between outliers and cluster points

is not clear. For example, the range of LOF is from 0.85 to 2.15, which makes

it difficult to determine a suitable threshold for outlier flagging.

NBA Performance Statistics.

After extensive evaluation of SOD on synthetic data set, the novel outlier

detection method is further evaluated on the real data. The NBA data is

used, which is available at the NBA website http://www.nba.com. In the

Season 2008/09, the performance of 444 players are described with four at-

tributes: the number of games played (GP), the number of points (PPG), the

http://www.nba.com
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Figure 8.7: Outlier detection with SOD for the NBA data set. All 18 outliers

are marked in red. The strongest outliers with LSF = 0 are also marked with

the name.

rebounds (RPG), and assists (APG) per game. SOD is applied to this NBA

data detecting 18 outliers with k = 30. Figure 8.7 displays scatter plots of the

data with different attributes and the histogram of each attribute in the di-

agonal respectively. Obviously, the data distribution is non-Gaussian. All 18

outliers are highlighted in red. For the most outstanding players with LSF

= 0 also the names are provided. For comparison with other techniques,

Table 8.1 lists the top 10 outliers for various settings of k. For different

parametrization (k=30,40,50) the same players are among the top 10 out-
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liers of SOD. Eight of 10 players are strongest outliers with a LSF of 0 for all

parameterizations. For comparison, Table 8.2 lists the top 10 outliers identi-

fied by LOF with MinPts =50. Only seven players are reproducibly detected

as top 10 for MinPts =40. LOCI (α = 1, rmin = 10 and rmax =50) and

CoCo detect the top 10 outliers listed in Table 8.3 and Table 8.4, respec-

tively. For the comparison methods, the intersection with SOD is marked in

bold. Gilbert Arenas with LSF = 0 is a strong outlier who is among the top

10 for all methods. Having played only 2 games, he has shown outstanding

performance in terms of rebounds, points and especially in terms of assists.

Most other players with an LSF of zero are also among the top 10 of at least

one of the comparison methods, e. g. the well-known and truly outstanding

players Brendan Haywood, Dwyane Wade and LeBron James. Interestingly,

Chris Paul is not among the top 10 of any comparison methods although he

is especially outstanding in the number of points and assists per game. In the

2006-07 season he has been ranked fourth in the overall NBA in assists (http:

//www.nba.com/playerfile/chris_paul/bio.html). Another strong out-

lier missed by the comparison methods is Dwight Howard who has been

named the NBA Defensive Player of the Year in 2008-2009 season (http:

//www.nba.com/playerfile/dwight_howard/bio.html). Dwight Howard

is especially characterized by an outstanding number of 13.8 rebounds per

game.

http://www.nba.com/playerfile/chris_paul/bio.html
http://www.nba.com/playerfile/chris_paul/bio.html
http://www.nba.com/playerfile/dwight_howard/bio.html
http://www.nba.com/playerfile/dwight_howard/bio.html
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LSF(k=30) (k=40) (k=50) Name GP PPG RPG APG

0 0 0 Chris Paul (NOH) 78 22.8 5.5 11

0 0 0 Jason Kidd (DAL) 81 9 6.2 8.7

0 0 0 Dwyane Wade (MIA) 79 30.2 5 7.5

0 0 0 LeBron James (CLE) 81 28.4 7.6 7.2

0 0 0 Kevin Martin (SAC) 51 24.6 3.6 2.7

0 0 0 Dwight Howard (ORL) 79 20.6 13.8 1.4

0 0 0 Gilbert Arenas (WAS) 2 13 4.5 10

0 0 0 Brendan Haywood (WAS) 6 9.7 7.3 1.3

0 0.036 0 Cuttino Mobley (LAC) 11 13.7 2.6 1.1

0 0.260 0.035 Deron Williams (UTA) 68 19.4 2.9 10.7

Table 8.1: Top 10 outliers identified with SOD on NBA data.

LOF Name GP PPG RPG APG

1.5058 Gilbert Arenas (WAS)* 2 13 4.5 10

1.4938 Brendan Haywood (WAS)* 6 9.7 7.3 1.3

1.4463 DJ White (OKC)* 7 8.9 4.6 0.9

1.4069 Michael Redd (MIL)* 33 21.2 3.2 2.7

1.4011 Cuttino Mobley (LAC) 11 13.7 2.6 1.1

1.3623 Carlos Boozer (UTA)* 37 16.2 10.4 2.1

1.3532 Monta Ellis (GSW)* 25 19 4.3 3.7

1.3492 Elton Brand (PHI)* 29 13.8 8.8 1.3

1.3365 Chris Kaman (LAC) 31 12 8 1.5

1.3294 Tracy McGrady (HOU) 35 15.6 4.4 5

Table 8.2: Top 10 outliers identified with LOF on NBA data.
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Name GP PPG RPG APG

Dwyane Wade (MIA) 79 30.2 5 7.5

LeBron James (CLE) 81 28.4 7.6 7.2

Ben Wallace (CLE) 56 2.9 6.5 0.8

Monta Ellis (GSW) 25 19 4.3 3.7

Pops Mensah-Bonsu (TOR-SAS) 22 5 5.1 0.3

Corey Brewer (MIN) 15 6.2 3.3 1.7

Gilbert Arenas (WAS) 2 13 4.5 10

Kobe Bryant (LAL) 82 26.8 5.2 4.9

Jason Kidd (DAL) 81 9 6.2 8.7

Michael Redd (MIL) 33 21.2 3.2 2.7

Table 8.3: Top 10 outliers identified with LOCI on NBA data.

CoCo o.f. Name GP PPG RPG APG

20.76 Michael Redd (MIL) 33 21.2 3.2 2.7

17.39 Andrew Bogut (MIL) 36 11.7 10.2 2

17.31 Kevin Martin (SAC) 51 24.6 3.6 2.7

16.55 Monta Ellis (GSW) 25 19 4.3 3.7

14.42 Elton Brand (PHI) 29 13.8 8.8 1.3

13.84 Gilbert Arenas (WAS) 2 13 4.5 10

13.80 Tracy McGrady (HOU) 35 15.6 4.4 5

12.12 Kobe Bryant (LAL) 57 17.5 3 5

11.85 Cuttino Mobley (LAC) 11 13.7 2.6 1.1

11.45 Tyson Chandler (NOH) 45 8.8 8.7 0.5

Table 8.4: Top 10 outliers identified with CoCo on NBA data.
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8.5 Conclusions

In this chapter, the algorithm SOD is proposed for outlier detection based

on the different interaction patterns of objects during the process towards

synchronization. The major benefits of SOD can be summarized as follows:

1. Natural outlier detection. Based on the synchronization principle, out-

liers are naturally flagged from a data set due to their unique dynamical

interaction pattern during the process towards synchronization.

2. Intuitive to interpret. Outliers are represented as those objects which

hardly interact with other objects since they have been generated by

a different mechanism. Outlier objects are the members of the system

which are out of synchronization. The probability for each object of

being an outlier can be characterized by a numerical value: The Local

Synchronization Factor (LSF). The Interaction Plot provides a detailed

view of the dynamical behavior pattern of each object.

3. Without any data distribution assumption. Without any data distribu-

tion assumption or any prior knowledge, outliers are easily flagged by

investigating the different interact patterns, which are driven by the

intrinsic data structure.

4. Complex data handling. The SOD allows detecting outliers from a

complex data set including clusters with arbitrary number, shape, size

and density as well as hierarchical data structures.

5. Robustness to parametrization. The outlier detection result is insensi-

tive to parameter settings.
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Chapter 9

Background on Diffusion

Tensor Imaging and Analysis

Diffusion Tensor imaging (DTI) is unique in its ability to explore the or-

ganization and integrity of human white matter tracts in vivo, using water

diffusion properties as a probe [107]. It measures for every voxel the diffusiv-

ity of water molecules within the tissue, and thus gives valuable insight into

the orientation of fiber tracts. Potential pathways of fiber tracts in the human

brain can be reconstructed by deterministic or stochastic tractography based

on the measured diffusion weighted magnetic resonance imaging (DW-MRI).

Hence DTI modularity provides a promising way to study the structure, de-

velopment, and diseases of brain. This chapter gives the background of DTI

which also will be used in Chapter 10 and Chapter 11. Furthermore, a basic

description of the diffusion process and the approaches used to measure the

image diffusion with MRI is provided and the white matter tractography is

briefly reviewed.
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A B

Figure 9.1: Water molecules diffusion in free medium and human brain. A:

The random displacements of water molecules resulting from thermal agita-

tion (Brownian motion). B: The diffusivity of water molecules in the human

brain, which is hindered by obstacles, e.g. myelin, the axonal membrane and

microtubule.

9.1 Water Diffusion in White Matter

The concept of diffusion refers to the random motion of molecules (also called

Brownian motion) that results from their thermal energy [20]. This motion

can be described as a random walk and the displacement of molecules with

diffusion time can be well characterized by Einstein [53].

r =
√

6Dt (9.1)

where r is the displacement, D is the diffusion constant and t is the diffu-

sion time. Since diffusion is driven by the thermal energy of the molecules,

the diffusion coefficient D depends only on the size of the molecules, the

temperature and the nature of the medium [20].

In an isotropic medium, diffusivity is independent of the direction (See
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Figure 9.1 A). However, what makes diffusion interesting is that the diffu-

sivity of water measured in the brain highly relies on the direction. In the

human brain, water molecules do not exist in such an isotropic environment.

Instead, their diffusion is restricted due to the presence of structures such as

myelin, the axonal membrane, microtubule (see Figure 9.1 B). The diffusiv-

ity perpendicular to the axon is thus smaller than that parallel to the axon.

Thus, the non-invasive observation of the water molecular diffusion-driven

movement provides important information of the microstructure of tissues.

9.2 Diffusion Weighted MRI

Diffusion Weighted MRI is deeply rooted in the concept of water anisotropic

diffusion in whiter matter [20]. Briefly, a pair of dephasing and rephasing

gradients is applied to investigate the molecular diffusion. With the different

gradients, the MR signal intensity sensitized to the movement of molecules

will result in the signal loss. This reduction in signal due to the amount of

diffusion can be governed by the Stejskal-Tanner equation [15].

S = S0e
−bDg (9.2)

where S is the measured signal, S0 is the signal in absence of a diffusion-

sensitizing gradient. Dg is the diffusion constant in gradient g. The b-value

is a measure of the diffusion weighting and depends on the magnitude and

duration of the gradients. For the commonly used trapezoidal gradients, the

b-value can be calculated as [168]:

b = γ2δ2(∆− δ

3
)|g|2 (9.3)
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Figure 9.2: Sixteen diffusion-weighted images. The first is the B0 image

and the remaining are diffusion-weighted images with 15 different magnetic

field gradients which are employed to sensitize the image to diffusion in a

particular direction. The direction is different for each image, resulting in a

different pattern of signal loss (dark areas) due to anisotropic diffusion.
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where γ is the gyro-magnetic ratio for the hydrogen nucleus (42 MHz/Tesla),

δ is the duration of the diffusion weighting gradient, g is the magnitude of

the diffusion sensitizing gradient, and ∆ is the time between the gradient

pulses.

For brain Diffusion Weighted MRI, the b-value usually ranges from 500

to1500 s/mm2. By applying multiple magnetic field gradients, the diffu-

sion weighted images can be obtained. Figure 9.2 displays an example of

diffusion-weighted images, where the first is the B0 image without a diffusion-

sensitizing gradient and the remaining are diffusion-weighted images with 15

different magnetic field gradients.

9.3 Diffusion Tensor MRI

In brain white matter, the diffusivity of water molecules is highly depen-

dent on the environment (c.f. Section 9.1). To infer the microscopic nature

of tissue from diffusion, a diffusion model is required to account for this

anisotropic behavior. Currently, the most well-known model is diffusion ten-

sor model [107], which represents the diffusion as a 3× 3 symmetric tensor:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (9.4)

To calculate the diffusion tensor, at least six gradient images and one

non-diffused image are required. However, in practice, more than six gradient

directions are measured to better fit the model. Since the calculated tensor
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ADC FA Orientation Map

Figure 9.3: Diffusion Tensor Measures.

D is a positive definite, it can be further diagonalized as:

D = E


λ1 0 0

0 λ2 0

0 0 λ3

E−1 (9.5)

where λ1, λ2, and λ3 are the eigenvalues of the tensor and E is the matrix

whose columns are the corresponding eigenvectors, e1, e2, and e3. Once the

diffusion tensor has been calculated and decomposed, a range of quantities

can be easily derived as follows.

9.3.1 Mean Diffusivity

Mean diffusivity (MD) is a measure of the average diffusivity of the water in

a voxel.

Trace(D) = Dxx +Dyy +Dzz (9.6)

The mean diffusivity is defined as MD = Trace(D)/3 and can be re-
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written as:

MD =
λ1 + λ2 + λ3

3
(9.7)

9.3.2 Anisotropy Measures

Currently, the most widely used anisotropy measures are fractional anisotropy

(FA), relative anisotropy (RA), and volume ratio (VR), which are defined as

[17]:

FA =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

(λ2
1 + λ2

2 + λ2
3)

(9.8)

RA =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

(λ1 + λ2 + λ3)
(9.9)

V R =
λ1λ2λ3(

(λ1 + λ2 + λ3)/3
)3 (9.10)

Recently, many experiments indicate that various diseases highly related

to white matter atrophy, such as alzheimer’s disease [42] or schizophre-

nia [121], tend to decrease the diffusion anisotropy. Therefore, the three

anisotropy measures, especially FA, are usually used in clinical studies to

diagnose diseases and assess the progress of the therapy.

9.3.3 Geometrical Anisotropy Measures

Assuming that the three eigenvalues of the tensor are λ1 ≥ λ2 ≥ λ3, Westin

et al. [168], [169] propose three intuitive measures Cl, Cp, and Cs to describe
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λ1 >> λ2≈ λ3 λ1≈ λ2 >> λ3 λ1≈ λ2 ≈ λ3

Figure 9.4: Ellipsoidal representation of a tensor with linear, planar, or spher-

ical symmetry.

whether the shape of diffusion is like a cigar (linear), pancake (planar), or

sphere (spherical).

Cl =
λ1 − λ2√

(λ2
1 + λ2

2 + λ2
3)

(9.11)

Cp =
2(λ2 − λ3)√

(λ2
1 + λ2

2 + λ2
3)

(9.12)

Cs =
3λ3√

(λ2
1 + λ2

2 + λ2
3)

(9.13)

9.4 White Matter Tractography

As DTI characterizes underlying white matter structure by measuring the dif-

fusivity anisotropy of water with a diffusion tensor model, the orientation of

dominant axonal tracts thus can be reconstructed based on the diagonalized

eigenvectors and eigenvalues. To date, various white matter tractography

algorithms have been proposed, which can be generally classified as deter-

ministic tractography and probabilistic tractography. The deterministic trac-
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Figure 9.5: Illustration of tensor deflection (TEND) algorithm for different

tensor shapes. For more anisotropic tensor (left) the incoming vector is

deflected toward the major eigenvector. The amount of deflection decreases

with decreasing anisotropy (from left to right) [96].

tography refers to a class of streamline propagation techniques that use local

tensor information for each step of the propagation or global optimization

techniques to estimate of the true fiber pathway using energy minimization

algorithms. The main difference of probabilistic tractography is to consider

the uncertainty of the connections among regions. This group of approaches

usually provides connection probability maps derived using such frequency

of connection methods.

9.4.1 Deterministic Tractography

Currently, the most intuitive and simplest way to reconstruct the fiber tracts

is based on streamline propagation techniques [108, 16, 96]. The basic princi-

ple of these approaches is to associate the major eigenvector with the tangent

to a fiber tract. Specifically, fiber tracking starts from any seed point with

high FA value since these voxels are more likely to contain a high proportion

of white matter. It propagates fiber paths by simply following the measured

eigenvectors, using the major eigenvector of tensors [108, 16] or the entire
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(a) Sagittal (b) Axial (c) Coronal

Figure 9.6: White matter tractography in corpus callosum with TEND algo-

rithm.

diffusion tensor to deflect the estimated fiber trajectory in both directions

[96]. Tracking stopped in voxels with low FA value or physiologically implau-

sible curvature of the track. For illustration, Figure 9.6 gives an example of

fiber tracking on Corpus Callosum with TEND algorithm. The main prob-

lem of streamline propagation techniques for white matter tractography is

that the orientations of fiber tracts are estimated locally. Thus errors can be

accumulated and the tracing can be confounded by regions of crossing fibers.

To deal with such a problem, another type of the deterministic tractogra-

phy approaches is proposed based on global optimization techniques. Start-

ing from a seed point, they attempt to explore the true fiber pathway using

energy minimization techniques. For instance, Parker et al. [123] propose

the fast marching technique to find the optimal connection paths. Similarly,

Gossl et al. [65] track globally optimal paths relying on the smoothness

criterion.

The common feature of the deterministic tractography approaches is that

fiber orientations are determined in a deterministic way. However, this type
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of approach cannot handle the multiple fibers which cross or branch. One

solution is to measure the local uncertainty of fiber orientation, which is

called probabilistic tractography.

9.4.2 Probabilistic Tractography

Instead of using the major eigenvector, the full tensor or global optimiza-

tion techniques, these probabilistic methods place a probability model on

the fiber orientation at each voxel. Rather than producing one path from

each seed point, a distribution of paths is produced by sampling. First, the

uncertainty of the fiber orientation at each voxel is modeled as a probability

density function (PDF) [32, 122, 61, 18]. After that, probabilistic track-

ing algorithms perform the streamline propagation procedure with different

propagation directions relying on the probability density function. The main

difference among existing methods is the diverse ways to model the uncer-

tainty of fiber orientations. The drawback for probabilistic tracking methods

is time consuming, which is not appropriate in practice.

Therefore, although many methods have been proposed, the most popular

way in practice also relies on some basic methods such as the FACT [108],

Euler [16] or TEND [96] methods.

9.5 Conclusion

In this chapter, the basic background of DTI is provided, including the prin-

ciple of the water diffusion, diffusion tensor model and anisotropy measures.

Finally, the methods of white matter tractography are brief reviewed. In
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next chapters, the data mining techniques will be applied in diffusion tensor

imaging to explore and analyze the brain structural networks.



Chapter 10

Combining Time Series

Similarity with Density-based

Clustering to Identify Fiber

Bundles in the Human Brain

It is well known that understanding the connectome of the human brain is

a major challenge in neuroscience. Discovering the wiring and the major

cables of the brain is essential for a better understanding of brain function.

Diffusion Tensor imaging (DTI) provides the potential way of exploring the

organization of white matter fiber tracts in human subjects in a non-invasive

way, as introduced in Chapter 9. However, it is a long way from the ap-

proximately one million voxels of a raw DT image to utilizable knowledge.

After preprocessing including registration and motion correction, fiber track-

ing approaches extract thousands of fibers from diffusion weighted images.



188 10. Fiber Clustering based on Dynamic Time warping.

In this chapter, the question that how to identify meaningful groups of fiber

tracks which represent the major cables of the brain is addressed. The ideas

from time series mining are combined with density-based clustering to a novel

framework for effective and efficient fiber clustering. First a novel fiber sim-

ilarity measure based on dynamic time warping is introduced. This fiber

warping measure successfully captures local similarity among fibers belong-

ing to a common bundle but having different start and end points. A lower

bound on this fiber warping measure speeds up computation. The result of

fiber tracking often contains imperfect fibers and outliers. Therefore, fiber

warping is combined with an outlier-robust density-based clustering algo-

rithm.

The remainder of this chapter is organized as follows: An introduction is

presented in the following Section 10.1. Section 10.2 gives a brief summary

of the related work of fiber similarity and clustering. In Section 10.3, the

fiber measure based on dynamic time warping is proposed. Afterwards, in

Section 10.4 the framework of the fiber density-based clustering is explained

in detail. Section 10.5 contains an extensive experimental evaluation on

synthetic and real data sets. Finally, Section 10.6 gives a summary and

concludes this chapter. Parts of the material presented in this chapter have

been published in [145], where J.S., K.H, C.B and C.P designed the research;

J.S. implemented algorithms; J.S. and K.H. performed the experiments; J.S.,

K.H., and Q.Y. analyzed the data; and J.S., K.H, Q.Y., C.B., A.M, N.M and

C.P. wrote the paper.

“Junming Shao, Klaus Hahn, Qinli Yang, Christian Böhm, Afra

M. Wohlschläger, Nicholas Myers, Claudia Plant. Combining
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Time Series Similarity with Density-Based Clustering to Iden-

tify Fiber Bundles in the Human Brain. ICDM Workshops 2010:

747-754.”

10.1 Introduction

As introduced in Chapter 9, diffusion tensor imaging (DTI) provides a promis-

ing way to explore organization and integrity of white matter tracts in vivo,

using water diffusion properties as a probe [107]. Through fiber tracking

in the human brain, thousands of tracks can be obtained. The remaining

problem in clinical research is how to classify this vast amount of fiber tra-

jectories. To date, the most frequently used method is to select fibers based

on expert knowledge, which is often referred to as virtual dissection. Experts

first specify some regions of interest (ROIs) based on domain knowledge and

then select all fibers that pass through these pre-defined ROIs [36]. This

process tends to be inefficient especially since it is time consuming and lim-

ited by expert resources. Moreover, manual specification of ROIs in different

patients may be biased. Therefore, a more promising approach is to cluster

fiber tracks into fiber bundles which provide an overview of the structural

organization of the fiber pathways. Grouping this large amount of data into

more manageable clusters of tracks would be extremely useful for further

applications, such as investigating connectivity in mental and neurological

disorders. Another example is tract-based analysis. In comparison with tra-

ditional methods, such as ROI-based analysis or voxel-based morphometry

(VBM), tract-based analysis computes the quantitative measures of interest
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along the white matter tracts. To accomplish this goal, algorithms are re-

quired to segment the trajectories into bundles. A further evident example is

surgical planning, where it is important to consider the uncertainty associated

with the estimated fiber bundles. Automatically clustering these fibers would

not be biased in patients with brain lesions or distorted anatomy. Therefore,

the development of effective and efficient algorithms for white matter fiber

tract segmentation in diffusion MRI is of significant interest for neuroscience

community.

Though several algorithms have been proposed for clustering trajectories

into meaningful bundles, such as k-nearest neighbors [49], spectral cluster-

ing [35, 118] or hierarchical clustering [177], the following two problems are

particularly vital but remain essentially unsolved:

1. Fiber Similarity Measure: An effective and efficient similarity measure

for pair-wise fiber comparison is desired.

2. Outlier-robustness: Due to experimental limitations, like thermal noise

or partial volume effects, the set of fibers produced by tractography

contains also imperfect fibers or outliers. These fibers should not be

clustered into any fiber bundle and need to be excluded.

In view of these issues, a novel fiber similarity measure based on adapted

dynamic time warping is proposed to calculate the pair-wise similarity dis-

tance between fibers. Furthermore, a lower bounding technique for the sim-

ilarity measure is proposed to save computation cost. Considering the noise

in real data, density-based clustering is explored to group these fiber tracts.

Imperfect fibers or outliers are eliminated during this clustering process.
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10.2 Related Work

Due to the wide application of diffusion tensor imaging modality, white mat-

ter tract clustering has gained significant attention. In order to perform

clustering, first a fiber similarity measure must be specified , which is then

used as input to a clustering algorithm. Therefore, in this section, a brief sur-

vey on fiber similarity measures is first given and then the recently proposed

fiber clustering algorithms are reviewed.

10.2.1 Fiber Similarity Measure

A fiber similarity measure is a function that computes the (dis)similarity

between pairs of fibers. Two fibers are considered similar when they have

comparable length, similar shape, and are separated by a small distance [49].

The early work by Brun et al. [35] assumes that two fiber tracts with similar

end points should be considered as similar. Thus they define fibers as similar

if the fibers start and end in the same area. Euclidean distance between

the end points of fiber traces is then used to calculate the fiber similarity.

However, the assumption is not reasonable in many cases since not all fiber

bundles start and end in the same regions. It also ignores the information

of most other points and the fiber pair-wise shape similarity. Ding et al.

[49] propose a similarity measure by cutting each fiber into corresponding

fiber segments and use the mean Euclidean distance between the segments

to define piece-wise similarity. This similarity method is efficient but not

effective since this measure also loses the point-by-point information. Several

authors acknowledge that point-by-point correspondence of the trajectories
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should be used for accurate clustering and quantitative analysis. Zhang et

al. [177] define the distance between two fibers as the average distance from

any point on the shorter fiber to the closest point on the longer fiber, and

only distances above a certain threshold contribute to this average. This

similarity metric is thus not symmetrical and is affected by outliers or noise

fibers. Corouge et al. [41, 63] form point pairs by mapping each point of

one fiber to the closest point on the other fiber. The resulting point pairs

are then used to define the distance between fiber pairs. They define three

similarity distances: closest point distance, mean of closest point distance

(MCP) and Hausdorff distance (HDD).

Currently, MCP [41, 106, 118] and HDD [41, 106, 63] are widely used

fiber similarity measures. The formal definition of the two fiber similarity

measures are as follows.

Suppose there are two fibers P and Q, MCP is defined as:

dMCP (P,Q) = avg(dm(P,Q), dm(Q,P )). (10.1)

with dm(P,Q) = avgpi∈P{minqj∈Q||pi − qj||}.

While HDD is defined as:

dHDD(P,Q) = max(dh(P,Q), dh(Q,P )) (10.2)

with dh(P,Q) = maxpi∈P{minqj∈Q ||pi − qj||}

The two measures are currently widely used for fiber similarity compari-

son. However, they have difficulty to capture the fiber shape characteristics

effectively, such as local shift or distortion. In order to overcome these prob-

lems, a novel fiber similarity measure based on dynamic time warping (DTW)

is proposed to better represent the fiber similarity.
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10.2.2 Fiber Clustering

Instead of grouping fibers by hand with expert knowledge, fiber clustering

approaches take advantage of the similarity of the fiber paths to cluster these

fibers by algorithms. Fiber clustering methods analyze a collection of white

matter tracts in 3D and separate them into meaningful bundles, or clusters,

that contain paths with similar shape and spatial position. These bundles

are expected to contain fiber paths with similar anatomy and function. To

date, several fiber clustering methods have been proposed in the literature.

Corouge et al. [41] use a k-nearest neighbors method to calculate the similar-

ity metric between paired fiber tracts defined in terms of the length ratio and

the Euclidean distance. It propagates cluster labels from a fiber to a neigh-

boring fiber, which assigns each unlabeled fiber to the cluster of its closest

neighbor if the closest neighbor is below a threshold. A partition of the data

with a specific number of clusters can be acquired by setting a threshold on

the maximal accepted distance. This is similar to the algorithm employed by

Ding et al. [49], which establishes a corresponding segment to define the fiber

similarity and then use k−nearest neighbors method to obtain fiber bundles.

The k nearest-neighbors related method is very sensitive to the value of K

and hard to obtain the proper threshold without prior knowledge. Another

popular fiber clustering method is spectral clustering [35, 100], which refers

to a class of techniques which rely on the eigenstructure of a similarity ma-

trix. This type of method first uses a spectral embedding technique to map

the fibers to a new feature space and then uses traditional clustering method,

such as K-Means to group the fibers in this new space. Brun et al. [35] use a

spectral embedding technique called Laplacian eigenmaps to map the fibers
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to a Euclidean feature space and then use a Gaussian kernel to compare the

fibers in this new space. Donnell et al. [100] decompose the fiber similarity

matrix into the eigenvalues and eigenvectors. The top eigenvectors are used

to represent each fiber and then, using a specific clustering called k-way nor-

mal cut, they obtain fiber bundles. Spectral clustering can detect arbitrarily

shaped clusters but needs much memory and thus is not convenient to clus-

ter large fiber sets. Furthermore, spectral clustering is sensitive to outliers

and the user should specify the number of clusters, which is hard to know

in advance. Zhang and Laidlaw [177] use a hierarchical clustering algorithm

for fiber clustering. The Hierarchical clustering algorithms decompose a data

set into several levels of partitions, represented by a dendrogram. One of the

most well-known hierarchical clustering approaches is Single-Link. Starting

with the clustering obtained by placing every object in a unique cluster, in

every step two closest clusters are merged until all objects are in a whole

cluster. The main drawback of hierarchical clustering is that it is difficult

to find the best partition of the dendrogram. In this chapter, the fiber clus-

tering problem is considered from a density-based point of view, where fiber

bundles are regarded as areas of high fiber density which are separated by

areas of lower fiber density.

10.3 Fiber Warping

After deterministic tractography, a fiber is represented as an ordered set

of points in space. The steps of the arc length, defined by two successive

points of a fiber, are not necessarily identical, if e.g. numerical Runge Kutta
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methods with dynamical stepsizes are used for tracking. In addition, two

fibers may have different lengths and consequently different numbers of points

in space. To quantify similarity between two fibers, we adapt for this work the

Dynamic Time Warping (DTW) method [81, 136, 139]. DTW is introduced

for the comparison of time series which are out of phase and is applied in

fields as diverse as speech recognition [136], bioinformatics [1] or data mining

[88].

In the following section, DTW for time series is first briefly reviewed and

then extended to a similarity measure for space curves. Finally, a convenient

lower bounding technique is presented to save computational cost.

10.3.1 Dynamic Time Warping

Dynamic time warping (DTW) is a technique that looks for the optimal align-

ment of two time series. To achieve this goal, the time series are ”warped”

together non-linearly, by stretching or shrinking them along the time axes

[137].

Suppose we have two time seriesX and Y , of lengthsm and n respectively,

where

X = (x1, x2, ..., xi, ..., xm) (10.3)

Y = (y1, y2, ..., yj, ..., yn) (10.4)

The objective is to optimize a warping path W :

W = (w1, w2, ..., wk, ..., wK) (10.5)
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where K is the length of W , with max(m,n) < K < m + n − 1. The kth

element of W is a pair of indices indicating a connection of time points in X

and Y and is written as wk = (i, j), see Figure 10.1. A warping path follows

the constraints [87] :

1. Boundary conditions: w1 = (1, 1) and wK = (m,n). This requires the

warping path to start and finish in the first and last points of the series

respectively;

2. Monotony: Given wk = (i, j), then wk+1 = (i′, j′), with i′− i >= 0 and

j′ − j >= 0. This forces the points in W to be monotonically spaced

in time.

3. Continuity: Given wk = (i, j), then wk+1 = (i′, j′), with i′− i <= 1 and

j′− j <= 1. This restricts the admissible steps in the warping path to

adjacent points of the series.

There are many warping paths satisfying the above conditions. In order

to find a best match between two time series, the focus is looking for the

path which minimizes the cumulative distance between them. The distance

dtw for this optimum path is defined as:

dtw(X, Y ) = min(
K∑
k=1

d(wk)) (10.6)

where d(·) is a distance function. We define it as

d(wk) ≡ d(i, j) ≡ |xi − yj| (10.7)
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(a) (b)

Figure 10.1: Illustration the dynamic time warping. (a) Cost Matrix. (b)

Optimal warping path for time series

The optimum warping path for dtw(X, Y ) can be obtained through the

dynamical programming approach [81]. It proceeds as follows: First, a m by

n cost matrix D is constructed. A component D(i, j) is defined recursively

as sum of the distance d(i, j) and the minimum of the cumulative distances

in the adjacent elements :

D(i, j) = d(i, j) +min{D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)} (10.8)

After the entire cost matrixD is filled, starting fromD(1, 1), the minimum-

distance warping path can be found in reverse order, starting from D(m,n).

For this purpose a greedy search is performed to evaluate cells to the left,

down, and diagonally to the bottom-left. Whichever of these three adjacent

cells has the minimum value is added to the beginning of the warping path

found so far, and the search continues from that cell. The search stops if

D(1, 1) is reached. Figure 10.1(a) shows an example of two time series with

their cost matrix and a minimum-distance warping path between them. The
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Figure 10.2: Illustration the optimal warping path of two 3D fibers.

warping path is W = {(1, 1), (1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (4, 7), (5, 8),

(6, 9), (7, 10), (8, 11), (8, 12), (9, 13), (10, 14), (11, 15), (12, 16), (13, 17),

(14, 18), (15, 19), (16, 19), (17, 20), (18, 21), (19, 21), (20, 21), (21, 21), (22, 21),

(23, 21)}. If the warping path passes through a cell D(i, j) in the cost matrix,

the ith point in time series X is warped to the jth point in time series Y . Since

a single point may map to multiple points in the other time series, dynamic

time warping can handle time series with different lengths. An illustration of

the optimum warping path between two time series can be found in Figure

10.1(b).

10.3.2 Fiber Similarity Measure with DTW

To calculate the similarity distance between fibers in space, the one di-

mensional concept of dynamic time warping is extended [159]. Suppose

pi(p
1
i , p

2
i , p

3
i ) and qj(q

1
j , q

2
j , q

3
j ) are points of the fibers P and Q, indexed along

the arc length, where the three coordinates are given within the brackets.
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(a) overlap (b) enclose (c) disjoint

Figure 10.3: Illustration of possible arrangements of RP and RQ.

The distance between the two points is defined as:

d(pi, qj) = |p1
i − q1

j |+ |p2
i − q2

j |+ |p3
i − q3

j | (10.9)

Using this distance function, the spatial fiber problem is treated like a

time series problem. The optimal warping path can be obtained through

dynamical programming and is represented as W = (w1, ...wk, ...wK), where

K is the length of the path and

d(wk) ≡ d(pi, qj) (10.10)

.

To reduce the effect of different lengths of fibers for similarity calculation,

the similarity distance DTW (P,Q) between the fibers P and Q is defined as

the averaged distance for the optimal warping path, see Figure 10.2:

DTW (P,Q) = min(

∑K
k=1 d(wk)

K
) (10.11)
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10.3.3 Lower Bounding Distance

The time complexity of the fiber similarity measure DTW is O(m ·n), which

is demanding in terms of CPU time. To deal with this problem, an easily

computed lower bounding distance LB in introduced. For two fibers, there is

LB ≤ DTW , where an efficient LB should be a tight lower bound to DTW .

For two given spatial fibers P (P 1, P 2, P 3) and Q(Q1, Q2, Q3), they can be

rewritten as three sequences of point pairs (P 1, Q1), (P 2, Q2) and (P 3, Q3)

respectively. First considering the pair-wise sequence (P 1, Q1), Max(P 1) and

max(Q1) denote the maximum values in P 1 and Q1, respectively. Min(P 1)

and min(Q1) define the minimum values. A pair (min(P 1),max(P 1)) defines

the range RP of P 1. Without loss of generality, it is assumed that max(P 1) ≥

max(Q1). There are then three possible arrangements for the two ranges RP

and RQ, see Figure 10.3.

The lower bounding distance between the two sequences is defined as

follows [175]:

lb(P1,Q1)=



∑
p1
i
>max(Q1)

|p1i −max(Q1)|+
∑

q1
j
<min(P1)

|q1j −min(P1)|

if P1 and Q1 overlap

∑
p1
i
>max(Q1)

|p1i −max(Q1)|+
∑

p1
i
<min(Q1)

|p1i −min(Q1)|

if P1 and Q1 enclose

max(
∑|P1|

i=1 |p
1
i −max(Q1)|,

∑|Q1|
j=1 |q

1
j −min(P1)|

if P1 and Q1 disjoint

(10.12)

An analogous definition is used for the other pair-wise sequences (P 2, Q2)

and (P 3, Q3). Finally, the lower bounding distance between fibers P and Q
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algorithm rangeLBQuery (P, ε,D)

Neigbors = {};

For each object Q ∈ D
LB dist = LB(Q,P );

if(LB dist < ε)

DTW dist = DTW (Q,P );

if(DTW dist < ε)

Neigbors.add(Q)

EndIf

EndIf

EndFor

Return Neigbors;

Figure 10.4: Pseudocode of ε-range query using lower bounding distance.

is defined as:

LB(P,Q) =
lb(P 1, Q1) + lb(P 2, Q2) + lb(P 3, Q3)

m+ n− 1
(10.13)

The property that LB(P,Q) ≤ DTW (P,Q) for spatial fibers can be

proven.

For two fibers P = (p1, ..., pm) and Q = (q1, ..., qn), for each dimension,

there is lb(pd, qd) ≤ dtw(pd, qd), d = {1, 2, 3} [175]. wants to prove

DTW (P,Q) ≥ LB(P,Q)
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This is shown in the following.

DTW (P,Q) =

∑K
k=1(|p1

i − q1
j |+ |p2

i − q2
j |+ |p3

i − q3
j |))

K

≥
∑K

k=1(|p1
i − q1

j |+ |p2
i − q2

j |+ |p3
i − q3

j |))
m+ n− 1

=

∑K
k=1(|p1

i − q1
j |)

m+ n− 1
+

∑K
k=1(|p2

i − q2
j |)

m+ n− 1
+∑K

k=1(|p3
i − q3

j |))
m+ n− 1

=
dtw(p1, q1) + dtw(p2, q2) + dtw(p3, q3)

m+ n− 1

≥ lb(p1, q1) + lb(p2, q2) + lb(p3, q3)

m+ n− 1

= LB(P,Q)

This concept is especially useful for density-based clustering, see the fol-

lowing Section 10.4. For clustering, it is necessary to perform a so-called

range search. That means, it is necessary to query the data set for the most

similar fibers with respect to P , i.e. for fibers Q with DTW (P,Q) below a

given threshold ε. First, LB(P,Q) is computed for these fibers. DTW (P,Q)

must then only be computed for those fibers with LB(P,Q) < ε. The Pseu-

docode of ε-range search with lower bounding distance is provided in Figure

10.4.
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10.4 Fiber Clustering

10.4.1 Density-based clustering fiber tracts

After calculation of the fiber similarity, each fiber is regarded as a data object

in metric space and a clustering approach can be applied to group the fibers.

Since clustering is a common challenge in a large variety of applications, it has

attracted much attention during the last decades, producing a vast number of

research papers, books and surveys, eg. [47, 55, 8, 116, 82, 172] to mention a

few. One very interesting branch of research considers the clustering problem

from a density-based point of view: Clusters are regarded as areas of high

object density which are separated by areas of lower object density. This

cluster notion has several attractive benefits, four of which are of major

importance for fiber clustering: (1) Unlike in many other methods, the user

does not have to specify the number of clusters he wants to find. (2) Density-

based clustering algorithms are able to detect clusters of arbitrary shape.

(3) It is robust to noise and outliers. (4) Density-based clustering methods

are not restricted to vector data but applicable on general metric spaces.

Recently, some approaches to density-based clustering have been proposed,

including DBSCAN [55], DENCLUE [78], and OPTICS [8]. However, to the

best of knowledge none of them has been applied to the problem of fiber

clustering so far. DBSCAN is the most wide spread algorithm for density-

based clustering and its definitions are intuitive in our context. The density-

based clustering notion is formalized in DBSCAN using two parameters: ε

specifying a range and MinPts specifying a number of objects. The central

notion of DBSCAN is the core object. A fiber is a core object of a density-
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Figure 10.5: Illustration of Density-based Clustering with DBSCAN.

based cluster if at least MinPts fibers are in its ε-neighborhood. Formally

this is captured by the following definitions:

Definition 10.1 (Core Object) Let D be a set of n objects, ε ∈ R+

and MinPts ∈ N+. An object P ∈ D is a core object, iff

|Nε(P )| ≥ MinPts, where Nε(P ) = {Q ∈ D : ||P −Q|| ≤ ε}.

Two objects may be assigned to a common cluster. In density-based

clustering this is formalized by the notions direct density reachability, and

density connectedness.

Definition 10.2 (Direct Density Reachability) Let P,Q ∈ D. Q

is called directly density reachable from P (in symbols: P �Q) iff

1. P is a core object in D, and

2. Q ∈ Nε(P ).

If P and Q are both core objects, then P �Q is equivalent with P �Q.

The density connectedness is the transitive and symmetric closure of the

direct density reachability:

Definition 10.3 (Density Connectedness) Two objects P and Q are

called density connected (in symbols: P ./ Q) if there is a sequence of core
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objects (P1, ..., Pm) of arbitrary length m such that

P � P1 � ...� Pm �Q.

For illustration, Figure 10.5 demonstrates the definitions of DBSCAN.

Here, P is a core object, Q is directly density reachable and density connect-

edness from P in the middle and right of the figure, respectively.

In density-based clustering, a cluster is defined as a maximal set of density

connected objects:

Definition 10.4 (Density-based Cluster) A subset C ⊆ D is called

a cluster if the following two conditions hold:

1. Density connectedness: ∀P,Q ∈ C : P ./ Q.

2. Maximality: ∀P ∈ C, ∀Q ∈ D \ C : ¬P ./ Q.

The algorithm DBSCAN [55] implements the cluster notion of Definition

10.4 using a data structure called seed list S containing a set of seed objects

for cluster expansion. More precisely, the algorithm proceeds as indicated in

Figure 10.6.

Since every object of the database is considered only once, the complexity

is n times the complexity of Nε(P ). To illustrate the algorithmic paradigm,

Figure 10.7 displays a snapshot of DBSCAN during cluster expansion. For

simplicity, 2-dimensional vector data is displayed but note that all definitions

of DBSCAN apply to general metric data as well. The light grey cluster on

the left side has been processed already. The algorithm currently expands

the dark grey cluster. The seed list S only contains the object P . P is a core

object since there are more than MinPts = 3 objects in its ε-neighborhood.
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algorithm Density-based Fiber Clustering

Mark all objects as unprocessed.

While(D contains unprocessed object) Loop

Consider arbitrary unprocessed object P ∈ D
Nε(P ) = rangeLBQuery(P ,ε, D);

If Nε(P ).size < MinPts

assign P Noise; Continue;

Else

assign new cluster-ID C

EndIf

For all elements Q ∈ Nε(P )

If Q is unprocessed

mark element Q with cluster-ID C

insert object Q into seed list S.

EndIf

EndFor

While(S not ∅) Loop

For all elements P ′ ∈ S
Nε(P

′) = rangeLBQuery(P ′,ε,D);

If Nε(P
′).size > MinPts

For all elements Q′ ∈ Nε(P
′)

If Q′ is unprocessed or Noise

If Q′ is unprocessed

insert object Q′ into seed list S

EndIf

mark element Q′ with cluster-ID C

EndIf

EndFor

EndIf

EndFor

EndLoop

EndLoop

Figure 10.6: Pseudocode of DBSCAN algorithm.
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Figure 10.7: Illustration of Density-based Clustering with DBSCAN.

Two of these objects, Q and R have not been processed so far and are there-

fore inserted into S. This way, the cluster is iteratively expanded until S is

empty. After that, the algorithm continues with an arbitrary unprocessed

object until all objects have been processed.

Like other clustering approaches, DBSCAN requires user to specify two

parameters: ε and MinPts, which can be roughly estimated by visualizing

the first ”valley” of a sorted k − dist graph [55].

10.5 Experimental result and analysis

In this section, a series of numerical experiments are performed on synthetic

and real data to explore the efficiency and effectiveness of the approach.

All algorithms are implemented in Java and the fiber visualization functions

are programmed in MatLab. The calculations have been performed on a

workstation with 2.4 GHz CPU and 2.0 GB RAM.

10.5.1 Cluster Validation Measure

To compare clustering results for different approaches with a ground truth,

an information-theoretic external cluster-validity measure [50] is used. A
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short description of this measure is given: A clustering of a set of fibers can

be described by a set of cluster labels, mapping every fiber to a cluster. The

evaluation scheme measures how useful the calculated cluster labels are as

predictors of the ground truth cluster labels. The clustering quality measure

is defined as the entire encoding cost, which is the sum of the empirical

conditional entropy and the code length for the number of clusters. For

more information, please see Section 2.1.2.

10.5.2 Fiber Data

To evaluate the proposed approach, realistic human brain data is taken from

the open source software “Slicer3-3.4”, folder “surgery case” (http://www.slicer.org/).

This measurement comprises 55 non-collinear directions for the diffusion

weighted images, with a b − factor = 1000 s/mm2, and 5 acquisitions for

the reference, with a b − factor = 0 s/mm2. The brain volume contains

256 × 256 × 70 voxels with size 1 × 1 × 2.6 mm3. For fiber tracking the

numerical Runge Kutta method (4-th order) is applied. The seed points are

given in two ways : First, small fiducial seed regions are defined by specifying

their central points within the map of Fractional Anisotropy (FA); second,

ROI seeding is defined by all seed points within a larger constrained volume.

The deterministic tracks for fiber clustering are started from the seed points,

following the principal diffusion in both directions. They are stopped for too

low FA and for too high curvature of the tracks.
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10.5.3 Experiments on Fiber Similarity Measure

To explore different similarity measures, a realistic set of fibers is obtained

by specifying 6 fiducial seed regions manually (see Figure 10.8(a) for the

seed regions). They are located in the internal and external Capsules and in

the Corpus Callosum. After fiber tractography, gold standard fiber clusters

(ground truth) are created with the help of an experienced physician (See

Figure 10.8(b)). This gold standard includes 372 fibers and shows 6 anatom-

ically meaningful fiber bundles assigned by C1-C6 with different colors and

one group of noise or outliers (3 fibers, black color). These fibers f1, f2, f3

differ from their neighbours by shape and length.

Based on these data, the similarity measure (DTW) is compared with two

frequently used measures: Mean of closest point distance (MCP) and Haus-

dorff distance (HDD). For all three measures, the density-based clustering

method is applied to achieve the result which is closest to the ground truth.

It is clear that DTW and MCP separate the data into the 6 gold standard

clusters of the ground truth, whereas HDD already segments the data for a

global threshold into 10 clusters. For further comparison between DTW and

MCP, the focus is the noise fibers indicated in Figure 10.8(b) in black color.

Whereas MCP does not separate f1, f2 from the neighbors, DTW matches

the ground truth. As MCP averages the minimum distances of point pairs

from one fiber to another, it seems to “smooth out” the information in the

data more than DTW.

Apart from the evaluation of effectiveness of a fiber similarity measure,

the efficiency (computation cost) should also be considered. For this purpose

experiments are performed on a range search (search the ε−neighborhood
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(a) Seed points (b) Gold standard

(c) DTW (d) MCP (e) HDD

Figure 10.8: Experimental results of different fiber similarity measures. (a):

Seed points, (b): Gold standard, (c-e): Fiber clustering results with different

measures, where the same fiber bundles in identical coloring.

fibers for one fixed fiber), which is the most time consuming step in fiber clus-

tering. The involved similarity measures include: DTW with lower-bounding

distance LB, DTW, MCP and HDD. The number of test fibers in the data

set range from 1000 to 5000. Figure 10.9 presents the computational cost of

range search for increasing numbers of fibers.
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Figure 10.9: Comparison of efficiency with different fiber similarity measures.

Figure 10.9 shows that the efficiency of DTW outperforms that of MCP

and HDD. LB further improves the efficiency of DTW. The larger the size of

the data, the more the advantage of the LB technique becomes apparent. For

example, LB costs about 60% and 35% of the computation time needed for

MCP, when they are applied to 1000 and 5000 fibers respectively. Compared

with DTW, LB improves efficiency by about 50% for 5000 fibers.

10.5.4 Experiments on Fiber Clustering

In this section, experiments are performed on synthetic data as well as many

real brain data to test the density-based fiber clustering scheme using the

fiber similarity measure with lower-bounding technique. Other two fiber

clustering approaches: Spectral clustering [116]and Hierarchical clustering

(Single Link)[177] are also implemented in Java to compare with our fiber
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clustering approach.

Synthetic Data

The ground truth of our synthetic data in three dimensions includes five

clusters of straight lines and two clusters of helices (See Figure 11.4(a)),

these clusters are composed of 410 individual fibers. Due to limitations of

the experiment and of the tracking method, outliers may appear in fiber

data. To evaluate the three clustering methods with respect to such outliers,

8 outlier lines and 2 outlier helices are added to the synthetic data (Figure

11.4(b)), creating a total of 420 synthetic fibers.

For all three clustering methods the ground truth presented in Figure

11.4(a) is reproduced perfectly. The situation is different for Figure 11.4(b).

Only the density-based fiber clustering can reproduce the ground truth, if the

outliers are included, see (Figure 11.4(b-d)). As the knowledge of the syn-

thetic data (the true class label for each object) is known, like the compari-

son of similarity measures, the information-theoretic external cluster-validity

measure is applied to qualify the clustering results with different clustering

methods. The Table 10.1 presents the quality of clustering results of data

without and with outliers, which further indicates the effectiveness of the

density-based fiber clustering.

Real Data

In this section, the approach is applied on three real data sets with different

clustering structures, to demonstrate the method’s effectiveness.

Data 1: For Figure 10.11, 825 fibers are seeded from 4 different compact
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(a) Synthetic Data (b) Data with Outliers/DC

(c) Spectral Clustering (d) Single Link

Figure 10.10: Different fiber clustering results based on synthetic data.

seed regions. From the mid-sagittal FA slice, one seed region is taken for

occipital and temporal tracks and another one for prefrontal tracks. Two

additional seed regions are taken in a symmetric way from a coronal FA slice

to track projection fibers ending within the brain in the corona radiata [110].

Using the estimating parameters (ε = 10,MinPts = 6) for clustering, Figure

10.11 (a-c), shows the 4 clusters are in agreement with the seed regions.

Three fibers are viewed as outliers with dark blue color (Figure 10.11 (d)).

Data 2: For the data set, 973 fibers are seeded from one seed region

from the mid-sagittal FA slice. For clustering, six fiber bundles and few

noisy fibers are detected, which are illustrated in Figure 10.12.
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Table 10.1: Comparison of different fiber clustering methods without and

with outliers

Measures
Performance without and with Outliers

Conditional-entropy Code-length Encoding-cost

DC 0.0|0.0 0.304|0.358 0.304|0.358

SL 0.0|0.515 0.304|0.311 0.304|0.826

SC 0.0|0.775 0.304|0.232 0.304|1.001

Corpus Callosum: The corpus callosum is a white matter structure

located just ventral to the cortex that connects the left and right cerebral

hemispheres to allow communication between the two halves of the brain.

From the mid-sagittal slice, 1100 seed points are taken from the corpus cal-

losum via a FA map. Main part of the fibers connects cortical areas in

approximate mirror-image sites. A smaller set is built of commissural trajec-

tories to the temporal lobes [110]. With parameters (ε = 10,MinPts = 6),

three main fiber bundles and noisy fibers are successfully identified (Figure

10.13).

10.6 Conclusion

In this chapter, a novel framework is presented for clustering white mat-

ter tracts. The technique combines a novel fiber similarity measure using

adapted dynamic time warping and an outlier robust density-based cluster-

ing. The extensive experiments on synthetic as well as real data demonstrate

the effectiveness and efficiency of our approach. In summary, the proposed
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(a) Axial (b) Coronal

(c) Sagittal (d) Sagittal (Noise)

Figure 10.11: The automatic fiber clustering result for Real Data 1 with

parameters MinPts = 6, ε = 10.

fiber clustering method shows several desirable properties:

1. The adapted dynamic time warping is proposed to define fiber similar-

ity, which allows to capture local similarity among fibers belonging to

a common bundle but having different start and end points. It is more

effective and efficient than MCP or HDD.
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(a) Sagittal (b) Coronal

(c) Axial (d) Axial (Noise)

Figure 10.12: The automatic fiber clustering result for Real Data 2 with

parameters MinPts = 6, ε = 5.

2. In order to deal with the time complexity of fiber similarity, a lower-

bounding technique is proposed for 3D fibers to speed up computational

cost.

3. To explore meaningful fiber bundles in the human brain, the fiber clus-

tering problem is considered from a density-based point of view. The
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(a) Axial (b) Coronal

(c) Sagittal (d) Sagittal (Noise)

Figure 10.13: The automatic fiber clustering result for Corpus Callosum with

parameters MinPts = 6, ε = 10.

number of clusters is not needed a priori and the DBSCAN parameters

can be heuristically estimated by a k − dist graph.

4. The density-based clustering approach can deal with noisy fibers which

may be caused by limitations of imaging or by the fiber tracking tech-
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nique. These noisy fibers are easy to be excluded from any cluster,

which is of significant importance for further processing such as group

tract-based analysis, etc.



Chapter 11

Hierarchical Density-based

Clustering of White Matter

Tracts in the Human Brain

In Chapter 10, the density-based clustering algorithm DBSCAN is applied for

automated white matter tract clustering. However, the approach limited the

data clustering in only one scale. In the real fiber data sets, many of them are

represented in a hierarchical structure. It is more reasonable to analyze them

in a hierarchical way. Thus, in this chapter, the algorithm OPTICS is applied,

to sort the data into a reachability plot, visualizing the clustering structure

of the data. Afterwards, interactive and automatic clustering algorithms are

then introduced to obtain the hierarchical clusters. The hierarchical density-

based clustering method enables to group fiber tracts into meaningful bundles

on multiple scales as well as eliminating noisy fibers.

The remainder of the chapter is organized as follows: A brief introduction
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is given in Section 11.1. Section 11.2 presents the hierarchical density-based

fiber clustering in detail. A series of clustering experiments on synthetic and

real data and the relevant results are described in Section 11.3. A discus-

sion of the results follows in Section 11.4. Finally, this chapter is concluded

in Section 11.5. Parts of the material presented in this chapter have been

published in [146], where J.S., K.H., C.B. and C.P. designed the research;

J.S. implemented algorithms; J.S. and K.H. performed the experiments; J.S.,

K.H., and Q.Y. analyzed the data; and J.S., K.H., Q.Y., C.B., A.M., N.M.

and C.P. wrote the paper.

“Junming Shao, Klaus Hahn, Qinli Yang, Afra M. Wohlschläger,

Christian Böhm, Nicholas Myers, Claudia Plant. Hierarchical

Density-Based Clustering of White Matter Tracts in the Human

Brain. IJKDB 1(4): 1-25 (2010).”

11.1 Introduction

During the last decade, some hierarchical fiber clustering algorithms have

been proposed. Zhang and Laidlaw [178] use an agglomerative hierarchical

clustering algorithm. This type of algorithm decomposes a fiber set into

several levels of partitions, represented by a dendrogram. A drawback of hi-

erarchical clustering is that it is hard to find the best partition of the dendro-

gram. Maddah et al. [103], [102] incorporate anatomical expert knowledge

into clustering. They use an atlas of fiber tracts, labeled by the number of

their bundle. To build such an atlas, they start with a set of labeled ROIs

specified by an expert and calculate the corresponding fiber bundles seeded
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from those ROIs. Affine registration is then used to map extracted fibers

of some subject to the atlas. To make the comparison between fibers of the

subject and of the atlas efficient, B-spline representations of the tracts are

used. Similar subject and atlas fibers are labeled identically. Donnell et al.

[119] also present an atlas based segmentation of fiber tracts. Their seg-

mentation is performed in two steps. First, an atlas, labeled by experts, is

learned from a population of subjects using spectral clustering. Based on this

model, fibers of a novel subject are clustered by an extension of the spectral

clustering solution stored in the atlas, using the Nystrom method. This seg-

mentation across subjects enables testing of neuroscientific hypotheses with

respect to group differences.

Though appreciable progress has been achieved in fiber clustering, the

following problems are still challenging and may justify a novel approach:

1. Flexibility: The fiber clustering approach should be flexible enough

to cluster fibers on multiple scales. Hierarchical cluster structures are

prevalent in nature and can be found e.g. for the fibers of the Corpus

Callosum.

2. Transparency: A frequently used visualization of a hierarchical cluster-

ing result is the dendrogram. This graph lacks transparency for large

data sets and is hard to analyze. More informative visual presentations

of a clustering structure would be useful.

3. Outlier-detection and -robustness: Due to experimental limitations,

like thermal noise or partial volume effects, the set of fibers produced

by tractography contains also imperfect fibers or outliers. It is benefi-



222 11. Hierarchical Clustering of White Matter Tracts

cial for further tract-based analysis to separate out those fibers during

clustering to obtain compact clusters. Another aspect is the impact of

such outliers on the results of some clustering algorithms. Algorithms

which are robust to outliers are necessary.

In view of these issues, in this chapter, the hierarchical density-based

clustering is applied to group fiber tracts. The resulting clustering structure

of the fiber data can be visualized in a transparent manner by a so-called

reachability plot of OPTICS. From this plot, the clusters are subsequently

calculated by interactive or automatic fiber clustering algorithms on multi-

ple scales. Imperfect fibers or outliers are eliminated during the clustering

process. The approach is tested on several synthetic as well as real fiber data

sets.

11.2 Hierarchical Density-based Fiber Clus-

tering

After calculation of the fiber similarities based on dynamic time warping (cf.

Section 10.3), a clustering approach can be applied to group fibers. Here,

hierarchical density-based clustering is used.

11.2.1 Hierarchical Density-Based Clustering

The idea behind density-based clustering is, that the object density in neigh-

borhood of each cluster object P is sufficiently high. The basic algorithm

for density-based clustering is DBSCAN [55], also see Section 10.4. In DB-
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SCAN a flat clustering of the data is computed. OPTICS [8] is a hierarchical

density-based clustering algorithm, which emerges from DBSCAN. In con-

trast to DBSCAN, OPTICS does not assign cluster membership, but orders

objects of a dataset D into a hierarchical cluster structure. This structure

contains clustering information, which could also be achieved by all possi-

ble DBSCAN clusterings with respect to distances ε′ that are smaller than

the generating distance ε. To describe the hierarchical cluster structure, each

object is characterized by two measures, its core-distance and its reachability-

distance. Formally this is captured by the following definitions:

Definition 11.1 (Core-distance of an object P ) Let P ∈ D,

MinPts ∈ N , ε ∈ R, Nε(P ) be the ε-neighborhood of P , MinPtsdist(P )

be the distance from P to its MinPts-nearest neighbor. The core-distance

of object P is defined as:

CoDist(P ) =


UNDEFINED, |Nε(P )| < MinPts

MinPtsdist(P ), otherwise.

The core-distance of an object P measures its local density. It is defined

as the MinPts-nearest neighbor distance of P if P is a core object. Other-

wise it is UNDEFINED.

Definition 11.2 (Reachability-distance of O with respect to

object P ) Let P,O ∈ D, MinPts ∈ N , ε ∈ R, Nε(P ) be the ε-neighborhood

of P ,the reachability distance of object O w.r.t P is defined as:
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Figure 11.1: Illustration of core-distance and reachability-distance. The ra-

dius of the solid circle indicates the generating distance ε while the radius

of the dashed circle is the MinPts-nearest neighbor distance of P (core-

distance).

ReDist(O,P ) =


UNDEFINED, |Nε(P )| < MinPts

max(CoDist(P ), dist(O,P )), otherwise

Figure 11.1 illustrates the notions of core-distance and reachability-distance.

The reachability-distance of Q w.r.t. P is the core-distance of P while the

reachability-distance of R w.r.t. P is the distance between P and R.

The result of the algorithm OPTICS is an ordering of the data set re-

flecting the hierarchical cluster structure. More precisely, during the run of

the algorithm, OPTICS computes for each object the core distance and a

suitable reachability distance and writes this information to an output file.

OPTICS starts with an arbitrary unprocessed object O, sets its reachability

distance to UNDEFINED and determines its core distance. The object O

is now processed and written with its core and reachability distance to the
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output. If O is a core object, all objects in the ε-neighborhood of O are

retrieved and inserted into a data structure called seed list. The seed list is

a priority queue and the objects in the seed list are sorted according to the

minimum reachability distance with respect to any of the objects processed

before. As next object, OPTICS always selects the top object of the seed

list, or in case the seed list is empty, an arbitrary unprocessed object from

the data set. Consider the case that the start object O is a core object and

object P is the top object in the seed list which has minimum reachability

distance w.r.t. O. Object P is processed now, which implies that P is writ-

ten with its core distance and reachability distance to the output. If P is a

core object, all objects in the ε neighborhood are added to the seed list. If

necessary, the seed list is updated: Some objects already in the seed list may

have a smaller reachability distance from P than from O. The algorithm

terminates as soon as all objects have been processed. In this ordering, for

every object the smallest reachability distance w.r.t. its preceding object is

determined.

Finally, the structure of the data ordering can be visualized in a reacha-

bility plot. This reachability plot is a 2D plot showing the objects’ position

index on the x-axis and the objects’ reachability-distance on the y-axis. The

reachability plot provides a visual representation of the cluster structure of

the data from the density-based point of view and enables an intuitive way to

find clusters. Valleys in this plot indicate clusters, the deeper the valley, the

denser the cluster. Clusters can be obtained by cutting the reachability plot

with a horizontal line. An example of a reachability plot for a 2D data set

is presented in Figure 2.2. The reachablity plot provides information about
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the general number of clusters, the densities of different clusters, and the

hierarchical structure of the data.

Like DBSCAN, OPTICS requires two parameters: MinPts and ε. For

DBSCAN it is difficult to find the optimal parameters for clustering [55].

OPTICS, however, is rather insensitive to the input parameters [8]. For all

experiments in this chapter, MinPts = 10 and ε = 30 have been used. See

Section 11.4 for a discussion of parameter selection.

11.2.2 Fiber Cluster Extraction

The simplest way to obtain clusters in a reachability plot is to select a suitable

parameter 0 < εi < ε and to cut the reachability plot with the corresponding

horizontal line. Intuitively, the valleys below the line indicate the clusters.

Also their left borders are part of the clusters, if they are not noise. Noise or

outliers of clusters are defined by the condition that their core- and reacha-

bility distances are larger than εi. See for an illustration Figure 2.2. With

parameter ε1, four clusters A, B, C, and D are obtained. If the line is moved

down to ε2, four new clusters B, C, D1, and D2 are obtained, and some data

which are interpreted as outliers (e.g. the cluster A and the group on the

right side of D1). This demonstrates that a global threshold may not be

sufficient, to extract all meaningful clusters (e.g. A with ε2), since clusters

can have varying densities. Therefore, two improved methods are proposed

for fiber clustering.
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(1a) First level (1b) Axial (1c) Sagittal

(2a) Second level (2b) Axial (2c) Sagittal

Figure 11.2: Illustration of the interactive clustering approach on a real data

set. (1a): interactive fiber cluster extraction at the first level based on the

reachability plot. (1b-1c): The corresponding segmented fiber bundles in Ax-

ial and Sagittal perspectives. Different colors indicate different fiber bundles.

(2a): Fiber cluster extraction at the second level. (2b-2c): The segmented

fiber bundles at the second level, where the fiber bundles with red color are

further split into two new fiber bundles: one with cyan color ending at A

and another with the red color. Three fibers with black color ending at B

are interpreted as noise.

Interactive Fiber Cluster Extraction

To extract fiber bundles with different densities, it is desirable to use a series

of localized parameters. A novel software is implemented to enable such
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interactive fiber clustering. The parameters can be selected from a screen-

graph of the reachability plot in several steps.

1. For a first segmentation of the fibers, a global ε1 is selected (first level).

This may create several large clusters (C1
1 , ..., C

1
i , ..., C

1
n) and one cluster

O for noise, where the core- and reachability distances are above ε1.

Quantification of noise follows the definition proposed for DBSCAN.

2. For each cluster C l
i found at level l, there may exist several valleys

inside. To obtain those smaller subclusters, it goes to next level l = l+1,

selecting the parameter εli only within C l−1
i and proceed like in step 1).

This creates new subclusters and in some cases noise.

3. To find clusters at higher levels, step 2) is repeated until the fibers are

appropriately segmented.

To select the parameter values ε on the screen-graph, users only need to

double-click one position (x,y) in the reachability plot. The y-coordinate of

the position indicates the ε, the x-coordinate is used to indicate its range. The

first range is automatically global, while further ranges are localized to the

cluster chosen. Figure 11.2 illustrates this approach on a real data set. Here,

250 fibers are seeded in the Splenium of Corpus Callosum (see Section 10.5.2

for details of the data and of the tractography). For the first segmentation

into three clusters ε1 = 17.75 is chosen (see Figure 11.2 /(1a-1c) for the

segmented reachability plot and for the fiber clusters in identical coloring).

At the second level, we use ε2 = 7.62, to separate the two obvious valleys

within the red cluster. See Figure 11.2/(2a-2c) for the resulting clusters and

for the three noise fibers. The arrows in Fig. 11.2/2b indicate the endpoints
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Figure 11.3: Illustration of automatic fiber clustering. (a): Automatic fiber

clustering based on the reachability plot with ratio = 0.7,minSize = 10.

(b): The cluster structure of the data set.

of the cluster colored in cyan (A) and of the noise cluster (B), colored black.

This fast and easy to use software provides users with a flexible method to

quantify a visually meaningful clustering of a reachability plot.

Automatic Fiber Cluster Extraction

The interactive method is useful to get a segmentation of data sets with a

simple cluster structure, which can be inspected visually. For more complex

data sets, however, an automatic segmentation is needed. To achieve this

goal, the Tree Clustering algorithm [138] is adapted, which extracts a hierar-

chical clustering from a reachability plot and creates a cluster tree. The basic

idea in this algorithm is to identify significant local maxima separating the

valleys in the reachability plot and to use these points for cluster extraction.

A local maximum is regarded as significant if its height is well above the level

of the valleys to its right and left side.

To determine the clusters between the local maxima, two parameters are
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introduced: MinSize, specifying the minimum number of fibers in a cluster

or the minimum scale of segmentation, and Ratio, which determines if the

local maximum is sufficiently above the neighbouring valleys to use it as a

split point between two clusters.

The adaption of the Tree Clustering algorithm is briefly described, which

can now also segment highly irregular reachability plots. First, all points

P are collected, whose reachability distances (RD) are local maxima of the

right and left neighbourhoods that enclose at least MinSize points. This

set of points P is then sorted in descending order according to their RD P.r.

Clusters are determined from this list by recursively removing the point P

with largest RD, possibly separating clusters, until the list is empty. P is

regarded as split point SP of two neighbouring clusters, if the median values

of the RDs in both valleys are significantly lower than SP.r (median/SP.r <

Ratio < 1). Noise points N within a cluster are detected by the condition

N.r > SP.r and CoDist(N) > SP.r. Clusters without noise are listed in

a tree graph, and noise is collected separately. There are two places in the

tree where new nodes can be added: they can become children of the current

node, or children of the parent node, replacing the current node. If the RDs

of the current and parent split points are close, the newly created nodes are

attached to the parent node instead of the current node itself.

Figure 11.3 illustrates the application of this method to the same data

set which was used for interactive clustering. The reachability plot (Fig.

11.3(a)) and the cluster tree (Fig. 11.3(b)) indicate the same fiber clustering

and noise, which is presented in Fig. 11.2. MinSize = 10 and Ratio = 0.7

are applied. See section 11.4 for a discussion of parameter setting.
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11.3 Experimental Result and Analysis

In this section, a series of numerical experiments are performed on synthetic

and on real data to explore the efficiency and effectiveness of the fiber clus-

tering approach. All algorithms are implemented in Java and the fiber visu-

alization functions are programmed in Matlab. The calculations have been

performed on a workstation with 2.4 GHz CPU and 2.0 GB RAM. The differ-

ent clustering algorithms are first evaluated with respect to outliers. Finally,

an application of hierarchical density-based fiber clustering to special real

fiber sets is presented.

11.3.1 Experiments on Fiber Clustering

In this section, experiments are performed on synthetic data as well as on

real brain data using DTW with LB. The clustering method OPTICS is first

compared to two different approaches: Spectral clustering (SC) [116] and

Hierarchical clustering (Single Link, SL) [177].

Synthetic Data

To evaluate the performance of the different clustering algorithms, experi-

ments are performed on the same data set in Section 10.5.4. Moreover, to

test the sensitivity to variations within the fibers, the gaussian noise is added

to the fibers. For every point (x(t), y(t), z(t)) of a synthetic fiber, the coor-

dinates by (x(t) + ε(t), y(t) + ε(t), z(t) + ε(t)) is modified, where ε(t) is

Gaussian noise (Figure 11.4(b)).

For all three clustering methods the ground truth presented in Figure
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(a) Data without Noise (b) Data with Noise (c)Data with Outliers

(d) Density-based Clustering (e) Spectral Clustering (f) Single Link

Figure 11.4: Different fiber clustering results based on the synthetic data.
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Figure 11.5: Dendrograms and reachability Plots for the synthetic data.
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11.4(a-b) is reproduced perfectly. The situation is different for Figure 11.4(c).

Only OPTICS can reproduce the ground truth, if the outliers are included,

see (Figure 11.4(d-f)). For SC the user has to specify the desired number of

clusters (8 clusters are applied in (Figure 11.4(e)). For SL either the perfect

split of the dendrogram has to be chosen or, like in SC, the number of clusters

must be given (8 clusters are chosen). For the perfect split some information

theoretic methods, like Minimal Description Length [68], can be used.

Figure 11.5 shows the dendrograms and reachability plots for the syn-

thetic fibers without (410 fibers) and with the 10 additional noisy fibers.

Only the top 30 nodes in the dendrogram are visualized: the total number of

layers is 419. It can be seen that the dendrogram is appreciably complicated

by adding a few outliers. The reachability plots in both cases, however, are

robust to the outliers and already indicate visually the 7 clusters and the

outliers.

Applications of Hierarchical Density-based Clustering to Real Data

In this section, OPTICS and automatic clustering are applied on two real

data sets with very different clustering structure, to demonstrate the flexibil-

ity of the method. For the two real data sets, they are generated according

to Section 10.5.2.

Real Data 1: For Figure 11.6, 1768 fibers are seeded from 5 fiducial

seed regions, chosen according to [110]. Six big fiber groups are thus created,

comprising two branches of the Corticospinal Tracts (red, magenta), part of

the middle Cerebellar Peduncle (cyan), two parts of the Cingulum (yellow,

blue) and a smaller section of the Corpus Callosum (green). Figure 11.6 (a)
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Figure 11.6: Automatic fiber clustering on the real data 1. (a): Automatic

clustering of the fibers with parameter ratio = 0.2,MinSize = 30 based

on the reachablity plot. (b): The fiber cluster structure of the data, where

the data are split into 6 fiber bundles; (1a-1c): Fiber clustering results, the

different color indicates various fiber bundles and black color means outliers.

(1d): The outliers in axial perspective.

shows the reachability plot and its colored segmentation, which corresponds

to the cluster structure in Figure 11.6 (b). A low Ratio = 0.2 and MinSize =

30 are used to achieve a coarse clustering. Finer details of the structures

within the clusters should not be detected. Figures 11.6 (1a-1c) present the

result in different perspectives. The six clusters are well detected, but some
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noise is found as well. Noise is presented in Figure 11.6 (1d).

Real Data 2: Figure 11.7 presents a segmentation of the Corpus Callo-

sum. Starting from the mid-sagittal slice of an FA-map within the Corpus

Callosum, 1100 fiber tracts are calculated by ROI seeding of the slicer data.

The main part of the fibers connects cortical areas in approximate mirror-

image sites. A smaller subset is built of commissural trajectories to the

Temporal Lobes [110]. Automatic fiber clustering is applied to the reacha-

bility plot of these data with Ratio = 0.7 and MinSize = 30 to detect also

subclusters within any hierarchy. The final reachability plot with colored

segmentation and the cluster tree are given in Figure 11.7 (a-b). Automatic

Tree Clustering creates three levels, as illustrated in Figure 11.7 (1a-1c).

Noise fibers are presented in black color. At the first level, only three big

clusters are detected. The second level splits up cluster number three (blue

color) into four clusters. At the third level, a finer segmentation into nine

clusters of similar fibers is performed. Noise is given separately in Figures

11.7 (2a-2c). The final compact clustering without noise is given in Figures

11.7 (3a-3c) in three perspectives.

11.4 Discussion

In this chapter a novel framework is presented for clustering of white matter

tracts. Based on the similarity measure between two fibers is introduced in

Chapter 11, the robust hierarchical density-based clustering method OPTICS

is applied. To the best of knowledge, this is the first application of OPTICS

to the fiber clustering problem. The outcome is a reachabiltiy plot, which
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Figure 11.7: The automatic fiber clustering result for Corpus Callosum.

(a):Automatic clustering of fibers with parameters ratio = 0.7,MinSize =

30. (b): The Cluster tree of Corpus Callosum. (1a-1c): Clustering results at

three levels respectively. (2a-2c): The noise fibers at different levels. (3a-3c):

The different views of clustering results at level 3 (without noise fibers)
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gives a transparent visualization of the clustering structure of the fibers.

The clusters or valleys in the reachability plot are then determined by a

novel interactive method and by a new modification of an automatic method,

called Tree Clustering. Noise or outlier fibers are detected in a local fashion.

For the evaluation, OPTICS is compared with the clustering method

Spectral Clustering and the hierarchical method Single Link . Synthetic ex-

amples show no advantage of OPTICS for regular data, but more robustness

if outliers are included.

The result of OPTICS is a reachability plot visualizing the clustering

structure of the data. This plot must be further analyzed to quantify the

location of the clusters. For this purpose we introduce an easy to use in-

teractive software and demonstrate its utility on a realistic fiber set seeded

in the Splenium of Corpus Callosum. The main bundles are reasonably de-

tected, also noise fibers are found. The same results are achieved with an

automatic method. This method is an adaption of Tree Clustering to the

irregular reachability plots based on DTW. To make Tree Clustering more

robust, the median is used to calculate the significance of the split points

and eliminate noise fibers at every recursive clustering step. Noise or outliers

are identified by a criterion defined in density based clustering [8]. The pro-

posed method detects noise in a local fashion, as at every level of the cluster

hierarchy noise can be detected. A fiber in a cluster is defined as noise, if

its core and reachability distances are above the reachability distance of the

corresponding split point. Other concepts of local outliers or noise in den-

sity based clustering can be found in [30]. A comparative exploration of the

different noise concepts is beyond the scope of this work.
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Finally two very different realistic data sets are segmented, to demon-

strate the flexibility of our method. For data set 1, including partly the Cin-

gulum (left, right branch), the Corpus Callsoum, the Corticospinal Tracts

(left, right branch) and the Cerebellar Peduncle, a coarse clustering is per-

formed. This is achieved by special parameters in Tree Clustering. For

Ratio = 0.2 the finer details of any hierarchy in the clusters are suppressed

and MinSize = 30 prevented too small clusters. The cluster tree shows just

one level of a flat clustering. Ignoring any hierarchy, the fiber clusters fit

to a segmentation into the 6 big groups of the ground truth. For data set

2 the Corpus Callosum is segmented, a hierarchy should be detected. For

this purpose the parameters Ratio = 0.7 and MinSize = 30 are applied and

produced three levels in the hierarchical cluster tree. The clustering fits well

to the anatomical expectation, looking for groups with similar fibers. At the

end 11 clusters are detected.

Also, at every level, noise is detected in data set 2, which is comprised

of 1100 fibers. The first level clustering detects 6 noise fibers, this adds up

to 14 at the second level. Finally we detect a total of 48 noise fibers or

outliers. These numbers reflect, on the one hand, the degree of irregularity

in the fiber data set, indicating erroneous fiber tracking due to wrong seed

points, experimental noise, or partial volume effects. On the other hand, as

mentioned, these numbers may also be influenced by the special definition of

noise applied.

The proposed approach of automatic fiber clustering needs 4 parameters

to be specified. For the algorithm OPTICS MinPts and eps must be given.

For Tree Clustering, Ratio and MinSize are needed.
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All calculations in this chapter with OPTICS are performed with the

same parametrization: MinPts = 10 and eps = 30. This insensitivity of

OPTICS to its parameters is discussed by Ankerst et al. [8], and greatly

simplifies the application of OPTICS. Ankers et al. [8] show that there is a

broad range of possible parameters which can be seen in the same clustering

structure of the data in the reachability plots. What is important is that eps

is sufficiently large. The smaller the eps is defined, the more objects have an

UNDEFINED reachability distance. Consequently, clusters with low density

may disappear.

For Tree Clustering, the two parameters are more versatile and their se-

lection should be guided by the user’s intention: MinSize constrains the

resolution or scale of clustering, preventing very small clusters. Ratio de-

termines whether a flat or more hierarchical clustering should be detected.

The larger Ratio, the more valleys in the reachability plot are accepted as

clusters, enabling the detection of the hierarchy within the reachability plot.

11.5 Conclusion

In this chapter, for the first time, the application of hierarchical density-based

clustering to the fiber clustering problem is presented. The algorithm OP-

TICS is applied to calculate reachability plots. These plots present the clus-

ter structure of the fiber data in a transparent manner. A novel interactive

and an automatic cluster extraction method are introduced. Experiments on

several synthetic and real data sets demonstrate that the proposed methods

compare well with existing techniques and show advantages with respect to
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transparency, flexibility, effectivity, efficiency and outlier robustness.



Chapter 12

Automated Prediction of Very

Early Alzheimer’s Disease

Based on Individual Structural

Connectivity Networks

Alzheimer’s disease (AD) degrades progressively the grey and white matter of

brain. White matter changes reflect changes of brain’s structural connectiv-

ity pattern. Here, whether individual structural connectivity networks (IS-

CNs) enable to distinguish patients with prodromal or mild AD from healthy

controls (HC) in individual scans? Patients with prodromal AD are charac-

terized by mild cognitive impairment and conversion to AD-related dementia

within three years. Diffusion-weighted MRI, diffusion tractography and 96

predefined cortical regions are used to map cortico-cortical ISCNs of 61 in-

dividual subjects in a fully automated procedure. For each between-region
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connection of ISCN, three attributes (fiber density, fractional anisotropy and

mean diffusivity) are extracted to represent its pattern. Afterwards, relying

on feature selection criteria, most distinctive connections for the discrimina-

tion among HC, prodromal and mild AD are identified. Finally, three typi-

cal classifiers including Support Vector Machine, Näıve Bayes, and k-Nearest

Neighbor are applied to predict HC, prodromal and mild AD. Patients with

mild AD are separated from HC with accuracy above 95% for each attribute,

patients with prodromal AD from HC with accuracy more than 90% for

each attribute, and patients with mild AD from these with prodromal AD

with accuracy of about 86% for fiber density and mean diffusivity. The find-

ing provides evidence that individual cortico-cortical structural connectivity

networks are changed in earliest forms of AD. Cortico-cortical ISCNs may

be useful as a white matter-based imaging biomarker to distinguish healthy

aging from AD.

The remainder of this chapter is organized as follows: A brief introduction

is given in Section 12.1. Section 12.2 presents the material and methodology

in detail. The results of the experiments are demonstrated in Section 12.3.

Discussion of the results and the conclusion of this chapter are presented in

Section 12.4. Finally, the supplemental information is provided in Section

12.5. Parts of the material presented in this chapter have been submitted

in [149], where J.S., N.M and C.S designed the research; J.S., N.M., C.S.,

Q.Y., H.F., A.K., C.Z. and A.W. performed the research; J.S., N.H., and

Q.Y. analyzed the data and J.S., N.M., C.S., Q.Y., C.M., V.R., and A.W.

wrote the paper.

“Junming Shao, Nick Myers, Qinli Yang, Jing Feng, Claudia
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Plant, Christian Böhm, Hans Förstl, Alexander Kurz, Claus Zim-

mer, Chun Meng, Valentin Riedl, Afra Wohlschläger, Christian

Sorg. Prediction of Alzheimer’s disease using individual struc-

tural connectivity networks. Submitted for publication.”

12.1 Introduction

Alzheimer’s disease (AD), the most common cause of age-related demen-

tia, is a neurodegenerative disease characterized by increasing cognitive and

behavioral deficits [21]. AD is neuropathologically characterized by amy-

loid plaques, neurofibrillary tangles and the loss of neurons, with changes

starting regionally and spreading out gradually across brain’s grey mat-

ter [29, 160]. Complementary, post-mortem histological and in-vivo imag-

ing studies demonstrate widespread alterations of patients’ white matter

[34, 54, 134, 28, 39, 154]. Since brain functions depend critically on the

integration of regionally remote neural processes by structural white matter

connections, the biological hypothesis of AD as disconnection syndrome sug-

gests that increasing biochemical and micro-structural changes at the level

of synapses and cell compartments result in progressive cell death and white

matter degeneration with both accompanied by progressive cognitive and be-

havioral deficits [33, 142, 46, 152, 99]. Based on these findings, it is hypoth-

esized that subject-specific patterns of changed white matter connectivity

reflect AD’s impact on patients’ health status.

Diffusion weighted magnetic resonance imaging (DWI) is a technique

that can be used to explore white matter microstructure in-vivo [83]. The
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DWI signal is sensitive to the diffusion of water molecules, which is direc-

tion dependent in the brain e.g. in a coherent fiber bundle water diffusion

is less restricted along the bundle than across it. During DWI, multiple

brain images are acquired each sensitive for a distinct direction. At each

voxel measured data is fitted to a mathematical diffusion tensor model de-

scribing diffusion as an ellipsoid or tensor. Both local properties of water

diffusion (such as fractional anisotropy (FA) or mean diffusivity (MD)) and

diffusion-based tractography (direction estimates used for the reconstruction

of fiber paths) can be derived from the voxel-wise diffusion tensor [109, 96].

DWI-based imaging studies in AD demonstrate aberrant FA and MD values

in patients’ white matter, involving frontal, occipital, and temporal lobes

[28, 59, 153, 143] and selected tracts such as the corpus callosum or cin-

gulum [58, 153, 98, 45, 39, 154, 143]. DWI-based studies in mild cognitive

impairment (MCI), which is a high-risk state for AD, demonstrate similarly

distributed but less distinctive FA/MD changes in patients [153, 59, 58, 39].

Recently Lo and colleagues [99] use DWI-based tractography to explore ex-

plicitly individual fiber-based structural connectivity changes in patients with

AD, i.e. this study focuses on subject-specific tracts in contrast to previous

studies focusing on regions that are spatially consistent across subjects; they

find that the topological organization of structural connectivity networks is

altered in AD and these alterations correspond with cognitive deficits of pa-

tients.

The objective of the this study is to use DWI-based diffusion tractogra-

phy to explore subject-specific patterns of individual structural connectivity

networks (ISCN) in the spectrum of prodromal and mild AD. Patients with
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prodromal AD are defined as patients with MCI, which convert to AD-related

dementia within 3 years. It addresses two questions: (i) Are ISCNs of pa-

tients with prodromal AD changed in comparison to that of healthy controls?

(ii) Do ISCNs separate patients with prodromal or mild AD from healthy

controls at the individual subject level? For each individual subject, the

cortico-cortical ISCN is constructed based on the DWI-based diffusion trac-

tography. ISCN patterns are then compared across subjects using machine-

learning-based pattern recognition techniques [127, 90]. Machine-learning-

based pattern classifiers enable disease state estimations of individuals by

their characteristic training-test procedure; i.e. specific algorithms repre-

senting the pattern recognition machine are trained for well-characterized

data and then used to categorize new input patterns as members of separate

(clinical) groups.

12.2 Materials and Methods

12.2.1 Subjects

17 patients with mild AD (age 68.9 years +/- 8.1, 7 females), 23 patients

with prodromal AD (age 67.6 +/- 5.4, 11 females) and 21 healthy controls

(HC, age 66.3 +/-7.4, 13 females) participated in this study (see Table 12.1).

All participants provided informed consent in accordance with the Human

Research Committee guidelines of the Klinikum Rechts der Isar, Technische

Universität, Mnchen. Patients were recruited from the Memory Clinic of the

Department of Psychiatry, healthy controls by word-of-mouth advertising.

Examination of every participant included medical history, neurological ex-
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amination, neuropsychological assessment (Consortium to establish a registry

for AD, CERAD [112]), structural MRI, and (for patients only) informant

interview (Clinical Dementia Rating, CDR [111]) as well as blood tests. Pa-

tients with mild AD fulfilled criteria for dementia (CDR global score=1) and

the NINCDS-ADRDA criteria for AD [104]. Patients with prodromal AD

met criteria for amnestic MCI and converted to mild AD within 3 years.

Amnestic MCI criteria included reported and neuropsychologically assessed

memory impairments, largely intact activities of daily living, and excluded

dementia (CDR=0.5) [62]. Conversion to AD was assessed during annual

follow-up clinical assessments after baseline including medical history, neu-

rological examination, informant interview (CDR), and neuropsychological

assessment (CERAD). 4 patients converted to AD after one year, 7 after 2,

and 12 after 3 years. Exclusion criteria for entry into the study were other

neurological, psychiatric, or systemic diseases (e.g., stroke, depression, alco-

holism) or clinically remarkable MRI (e.g., stroke lesions) potentially related

to cognitive impairment. 21/10 patients/controls were treated for hyperten-

sion (Beta-blockers, ACE-inhibitors, and Calcium channel blockers), 14/9

for hypercholesterolemia (statins). 4 patients had diabetes mellitus, 5 pa-

tients received antidepressive medication (Mirtazapine, Escitalopram), and

all patients with mild AD received cholinesterase inhibitors.

12.2.2 Data Acquisition

A 3T-MRI scanner (Achieva, Philips) together with a pulsed gradient spin-

echo echo planar imaging sequence with a parallel imaging (SENSE) factor

of 2.5, TE = 60 ms, and TR = 6516 ms was used for DWI. Images were
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Table 12.1: Demographical and neuropsychological scores.

Group HC (n=21) AD (n=17) Prodromal AD (n=23) P

Gender

Female 13 7 11
0.42

Male 8 10 12

Age 66.4±7.5 68.9±8.1 67.6±5.4 0.53

MMSE Score 29.4±0.8 22.1±4.3 26.8±2.0 ¡0.01

Delayed Recall 6.5±2.1 0.9±1.8 3.1±2.0 ¡0.01

Note: AD: Alzheimer’s disease; HC: healthy controls; pAD: prodro-

mal AD; MMSE: Mini-Mental-State -Examination; CERAD: Con-

sortium to Establish Registry for AD; p: p-value; for statistical eval-

uation of group differences χ2 (gender) and F-Tests (age, MMSE,

delayed recall) are used.

acquired for 112 × 112 matrix size of slice and subsequently reconstructed

for a 128 × 128 matrix size, with a resolution of 1.75 mm in plane and

a slice thickness of 2 mm. A total of 60 contiguous slices were acquired

to give complete brain coverage containing 128 × 128 × 60 voxels with size

1.75 × 1.75 × 2 mm3. Diffusion gradients were applied in 15 non-collinear

directions with b = 800 s/mm2. B0 image without diffusion weighting, b=0

s/mm2, was additionally acquired.
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Figure 12.1: The framework of automated prediction of Alzheimer’s disease.

12.2.3 Construction of Individual Structural Connec-

tivity Networks (ISCNs)

To construct the structural connectivity network for each participant, the

procedure involved the following steps (Figure 12.1 gives the proposed frame-

work of automated prediction of Alzheimer’s disease).

Cortical parcellation. This step was to partition the cerebral cortex of
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each participant into 96 cortical regions of the Harvard-Oxford brain atlas

(http://www.mrib.ox.ac.uk/fsl/). Individual’s non-diffusion weighted (B0)

image was first affine-registered to the ICBM 152 template of Montreal Neu-

rological Institute space (MNI, http://www.bic.mni.mcgill.ca) to obtain the

transformation matrix (T). The inverse transformation matrix (T-1) was then

applied to the Harvard-Oxford atlas and (B0) image to generate correspond-

ing cortical regions in each individual’s diffusion-weighted image native space.

Diffusion tractography. To determine the connectivity between pair-wise

cortical regions, diffusion tractography was used to reconstruct the white

matter axonal bundle trajectories in the human brain based on fiber tracking

algorithms. Distortion induced by motion for weighted MRI images was

first corrected by aligning all diffusion-weighted images to the non-diffusion

(B0) image using a 2-D linear registration algorithm (AIR, Automated Image

Registration) [171]. Maps of the diffusion tensor elements, mean diffusivity

(MD), and fractional anisotropy (FA) were calculated for each voxel by using

in-house software. Then fiber tracking algorithm TEND [96] was applied to

investigate the white matter in the whole brain. Since voxels with high FA

were more likely to contain a high proportion of white matter, voxels with

an FA value above 0.3 were taken as seed points of fiber tracking. Tracking

started from these seed points, using the entire diffusion tensor to deflect

the estimated fiber trajectory in both directions. Tracking stopped in voxels

with low FA value (<0.2) or physiologically implausible curvature of the track

(>60 degrees).

ISCN Construction. Then the output of both cortical parcellation and

diffusion tractography was combined to construct individual structural con-
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nectivity networks ISCNs for each subject. Each cortical region was regarded

as a network node. Connectivity of each pair of nodes was measured by the

attribute of fiber across two regions. If there existed at least one fiber with

end-points in one pair of regions (e.g. region i and region j), the two cortical

regions were assumed to be connected [71, 70]. In order to investigate ab-

normal ISCNs in AD, three attributes were used to capture the properties of

each connection: (a) fiber density was proposed to quantifying the density

of white matter in brain regions [71, 70, 132]; it was defined as proportion of

all fibers connecting the two cortical regions (nij) over the total number of

fibers of the subject (nall), namely cdij = nij/nall . (b) FA reflected fractional

anisotropy for all voxels located in the connected fibers between two corti-

cal regions. (c) MD reflected mean diffusivity for all voxels located in the

connected fibers between two cortical regions. After calculating the three at-

tributes for each connection, each attribute reflected the weighted edge of the

network. I.e. finally three ISCNs characterizing different attribute patterns

were obtained for each subject.

12.2.4 Pattern Classification of ISCNs

After construction of ISCNs, most distinctive connections among groups were

identified by a feature selection criterion. Information Gain criterion [129, 73]

was used to rate the information-based interestingness of each connection and

attribute for prediction and classification (c.f. refsec:SupplementalInformation).

After that, pattern classification algorithms were applied to classify subjects

based on selected connections for each ISCN type. In order to evaluate

whether potential changes between ISCNs depend on used pattern classifier,
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three representative classification approaches with very different algorithmic

paradigms were selected: Support Vector Machine (SVM), k -Nearest Neigh-

bor (k -NN), and Näıve Bayes (NB).

The basic idea of SVM procedures [163] is to construct a separating hy-

perplane between the training instances of both classes. Among all possible

hyperplanes, that one with the maximum margin between classes was se-

lected [37]. Given training vectors xk ∈ Rn(k = 1, ,m) in two classes, and a

vector of labels y ∈ Rm such that yk ∈ {1,−1}, then SVM solved a quadratic

optimization problem.

min
ω,b,ε

1

2
ωTω + C

m∑
k=1

εk (12.1)

with yk(ω
Tφ(xk) + b) ≥ 1− εk, εk ≥ 0, k = 1, · · · ,m

where ω is a normal vector, b is a scalar and εk are non-negative variables,

C is a penalty parameter on the training error, yk is the class label, and φ(·)

is a map function to transfer the training data into a higher dimensional

space. For any testing instance x, the critical decision function (predictor)

has then the form.

f(x) = sgn(ωTφ(x) + b) (12.2)

where f(x) is the prediction function, sgn(·) is a symbol function, ωT is the

permutation of normal vector ω.

The k -NN [7] is a method for classifying objects based on closest training

examples in the feature space. It is a typical instance-based learning algo-

rithm where an object is classified by a majority vote of its neighbours, with

the object being assigned to the class most common amongst its k nearest

neighbours. Given an instance, its k closest neighbours are found in terms of
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the Pearson correlation coefficient, and then its label value is determined by

these k neighbours using the majority vote manner principle. In this study,

k = 6 was specified for all experiments.

The NB-classifier [51] is a simple probabilistic classifier based on applying

Bayes’ theorem with strong (i.e. näıve) independence assumptions. A Näıve

Bayes classifier assumes that the presence/absence of a particular feature

of a class is unrelated to the presence/absence of any other feature. The

fundamental idea of Bayesian classification is to classify instances x based on

a probability model, which is defined as:

NB(x) = argmin
c∈C

p(c|x1, · · · , xn) (12.3)

with classes C and feature variablesx1, · · · , xn constituting the components

of x. Using Bayes’ theorem, it can be re-written as:

NB(x) = argmin
c∈C

p(c)p(x1, · · · , xn|c)
p(x1, · · · , xn)

= argmin
c∈C

p(c)p(x1, · · · , xn|c) (12.4)

Since Näıve Bayes assumes that the conditional probabilities of the indepen-

dent variables are statistically independent, the prediction function of Näıve

Bayes is finally defined as:

NB(x) = argmin
c∈C

∏
i

p(xi|c) (12.5)

12.3 Results

For each type of ISCN, information gain for distinctive connections among

groups was calculated for all possible 4560 inter-regional connections and all
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possible group comparisons. E.g. regarding fiber-density-based ISCNs and

group comparison between healthy controls and patients with mild AD, 53

connections of were selected by information gain above 0 (ranging from 0.13

to 0.41). Figure 12.2 (a)-(c) shows the distinguishing connections (with red

points) between the healthy control (HC) group and mild AD group based

on the attributes of fiber density, FA and MD, respectively (analog Figure

12.3 and 12.4 for group comparisons HC vs. prodromal AD and prodromal

AD vs. mild AD, respectively).

The classification framework was applied with 10-folds cross-validation on

the data set to predict the health status of each subject based on the selected

distinct structural connections among groups. Table 12.2 summarizes the

classification results for all group comparisons.
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(i) Mild AD vs. HC: All three classifiers SVM, k-NN and NB distin-

guished mild AD and HC subjects effectively. Particularly, SVM obtained

fully correct predictions of 100% based on the attributes fiber density and

MD; regarding FA, SVM obtained classification accuracy of 92.11%. For

k -NN classifier, it yielded the same classification accuracy (94.74%) with re-

spect to each attribute. As with SVM, the predictions of NaiveNäıve Bayes

were completely correct (100%) with respect to the attributes fiber density

and FA.

(ii) Prodromal AD vs. HC: Regarding the prediction of prodromal AD

and HC, SVM gained classification accuracy of 97.73% with respect to fiber

density. For FA and MD, classification accuracies of SVM were 84.09% and

93.18%, respectively. The NB classifier achieved the classification accuracy

of 95.45%, 97.73% and 100% with respect to fiber density, FA and MD. The

k -NN classifier yielded accuracies of 81.82%, 88.64% and 86.36% for fiber

density, FA and MD.

(iii) Prodromal AD vs. mild AD: Between the patient groups of prodro-

mal AD and mild AD, SVM achieved classification accuracies of 85%, 82.5%,

85% for fiber density, FA and MD respectively. Similarly, k -NN received

classification accuracies of 85%, 75%, 82.5% corresponding to fiber density,

FA and MD. The NB classifier gained the highest classification accuracies of

95%, 85% and 90%, respectively, for fiber density, FA and MD.
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Table 12.2: Accuracy of pattern classification based on ISCNs.

SVM k-NN Näıve Bayes

AD vs. HC

Density 100.0% 94.7% 100.0%

FA 92.1% 94.7% 100.0%

MD 100.0% 94.7% 89.5%

AD vs. pAD

Density 85.0% 85.0% 95.0%

FA 82.5% 75.0% 85.0%

MD 85.0% 82.5% 90.0%

pAD vs. HC

Density 97.7% 81.8% 95.5%

FA 84.1% 88.6% 97.7%

MD 93.2% 86.4% 100.0%

Note: ISCN: individual structural connectivity network; SVM: support

vector Machine; k -NN: k -nearest neighbor; AD: Alzheimer’s disease; HC:

healthy controls; pAD: prodromal AD; FA: fractional anisotropy; MD:

mean diffusivity

12.4 Discussion and Conclusion

In current study, diffusion tractography-based individual structural connec-

tivity networks (ISCNs) and machine-learning-based pattern recognition have

been used to study white matter changes in prodromal and mild AD. Com-

pared with healthy controls, ISCNs of patients critically changed for fiber

density and fiber integrity characterized by FA and MD. ISCNs enabled the

predictions of prodromal and mild AD, respectively, with accuracies of about

90% and 95%.
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First, the critical methodological issues of the approach were discussed

and then the finding of disrupted ISCNs in AD particularly in prodromal AD

was focused, finally it gave the discussion on whether ISCNs have the po-

tential to apply as an imaging-based biomarker to separate AD from healthy

aging.

Previous DWI-based studies in AD and MCI demonstrated widely dis-

tributed changes in the white matter of patients (for review [39, 154, 143]).

Sexton and colleagues [143] performed a quantitative meta-analysis of 41

DWI studies in AD/MCI and found that patients with AD were character-

ized by decreased FA and increased MD in the white matter of all brain

lobes (except that of the parietal lobe for FA changes) and in regionally se-

lected white matter tracts. Similarly distributed but less distinctive changes

were observed in patients with MCI [143]. These findings suggested pro-

gressive, early starting (in pre-dementia stages), widely distributed changes

of structural fiber connectivity in AD. However, most of these DWI-based

studies did not explicitly account for the individual connectivity network

of subject-specific tracts (i.e. usually individual FA/MD images were nor-

malized into a standard space without explicitly considering subject-specific

tracts; subsequently across-subject-comparisons of these normalized images

were performed for all voxels and then statistically evaluated (e.g. [105], for

selected regions see e.g. [153], for restricted tract skeletons see e.g. [42]).

The objective of the current study was to explore AD’s increasing effects

on white matter structure based on subject-specific, tract-based patterns of

white matter connectivity. Since in the proposed approach subject-specific

tract-based pattern scores were fully derivable in an automated way (i.e.
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without any white matter focused normalization procedure), this approach

fulfills basic formal criteria for a biomarker.

(i) Subject-specific diffusion tractography: Diffusion tractography and a

predefined cortical atlas were used to realize a completely automated char-

acterization of each individual’s ISCN. This approach was based on indi-

vidual’s native space, on specific properties of subject-specific tracts, and it

accounted for all white matter relevant for cortico-cortical connections. Lo

et al. applied a very similar approach as in the current study to characterize

systemic properties of ISCNs in AD [99]. In order to compare patients with

controls, these authors derived graph-theory-based topological scores from

ISCNs and compared them across groups by the use of univariate statistical

methods. Instead of focusing on scalar-based scores reflecting the systemic

organization of an ISCN, here it focused on individual ISCN patterns based

on high-dimensional feature vectors.

(ii) Pattern-focused approach: Patterns of structural connectivity net-

works based on DWI strongly varied across healthy individuals (e.g. [70, 48]).

This might be partly due to used imaging/tractography methods but likely

more due to individual variability [83]. The impact of neurodegenerative dis-

eases such as AD may further increased this variability of individual connec-

tivity. One way to handle this problem of pattern variability across subjects

(particularly when being interested in a classification-focused evaluation of

”individual” ISCN patterns), was the use of pattern recognition techniques.

These techniques evaluated the connectivity pattern as a whole instead of

element by element. Here we used canonical machine-learning-based pattern

recognition procedures (SVM, k -NN, and Näıve Bayes), which have been
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applied previously in MRI data analysis [127, 90]. From a group-point-of-

view, findings of high accuracy for group separation resulting from machine-

learning-based classification indicated that the pattern-of-interest was differ-

ent across groups. In classical terms this was addressed by the issue of brain

reading, i.e. the separation of two brain-states with respect to behavioral

differences [113]. This means for this study that ISCNs of healthy controls,

patients with prodromal or mild AD were typically different (discussed in

detail in the next paragraph). From an individual-point-of-view, machine

learning-based pattern classifiers fulfill some requirements of diagnostic pro-

cedures [90]; i.e. specific algorithms underlying the classifier were trained on

well-characterized data in order to test subsequently new input data against

trained sets and then classified them as members of a clinical group (below

discussed in detail).

Concerning group differences between healthy controls, prodromal and

mild AD, all classification results for different ISCN-pattern types (fiber den-

sity, FA, MD) were largely independent from selected classifiers, indicating

that results reflected real group differences in ISCN patterns. Furthermore

different ISCN features of fiber density, FA and MD produced largely com-

parable accuracy scores for each possible group comparison, being in line

with previous voxel-/ROI-based results of comparable FA and MD changes

in AD/MCI and therefore suggesting that AD does not selectively impact on

diffusion tensor properties.

(i) Mild AD: Patients with mild AD were separated from healthy con-

trols with an accuracy of more than 95%. Studies using similar pattern

recognition methods but instead of white matter grey matter features (such
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as regional volume) observed comparable separation results [127, 90, 158, 43].

E.g. Klöppel and his colleagues used T1-weighted grey matter images and

SVM to separate pathologically verify AD patients from healthy controls with

accuracy of 96% [90]. The congruence of this almost perfect separation of AD

from healthy controls based once on grey once on white matter features was

in line with the disconnection hypothesis of AD. I.e. AD induces progressive

neuron degeneration, which is associated with progressive, functionally rele-

vant white matter degeneration [142, 46]. The study of Lo et al., which was

to our knowledge the only study using also tractography-based ISCNs in AD,

observed changed topological ISCN features in patients [99]. The results of

this study complement these findings from a more pattern-focused point of

view.

(ii) Prodromal AD: Patients with prodromal AD were separated from

healthy controls with accuracy of more than 90%. The result is in line with

previous findings of widely distributed FA decreases and MD increases in

MCI (see [143] for review). Few studies of MCI patients using similar pat-

tern recognition methods and grey matter features such as tissue density

found comparable separation results [158, 43]. E.g. Davatzikos et al. used

grey matter density as well as a combination of both high-dimensional im-

age analysis and pattern classification to separate MCI patients from healthy

controls with 90% accuracy [43]. Assessed MCI patients of this study con-

verted to AD-related dementia within 3 years, i.e. patients fulfilled criteria

of prodromal AD for the time point of scanning. This means that AD al-

ters ISCNs substantially in already pre-dementia stages. Furthermore it is

found that groups of prodromal and mild AD were separated by an accu-
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racy of about 86%, suggesting increasing ISCN changes along the course of

AD. Future studies have to explore whether the selected tracts of ISCNs are

preferentially affected along the course of AD and whether ISCN changes are

accompanied by increasing changes of topological ISCN characteristics.

The findings of the current study demonstrated several reasons why IS-

CNs - at least in principle - may have the potential to realize an imaging-

and white matter-based biomarker to distinguish healthy aging from AD.

(i) White matter scores of our study, which were used to compare subjects,

were directly derived from measurements of the individual subject. They

were calculated within the native space, i.e. no normalization procedure was

used, and derived in a fully automated way by tractography. The algorithm

underlying tractography realized a deterministic streamlining approach al-

lowing for maximal control of single steps of data analysis. (ii) White matter

scores of across-subject comparisons were tract-based pattern scores. Fibers

and tracts organized brain’s white matter. Patterns of individual fiber con-

nectivity were characterized by a large inter-subject variability, which was

likely further increased by AD. Therefore scores based on tract-based pat-

terns seemed to be appropriate to reflect AD’s impact on white matter. It

will be a topic of future studies to decide whether the use of the whole brain

connectivity pattern or parts of it (as used in the current study) or combi-

nation of both is most suitable to separate patients from healthy controls.

(iii) As already mentioned above, machine learning-based pattern classifiers

have an appropriate training-test structure, which fulfills criteria of a diag-

nostic tool. Classification methods used have the potential to separate AD

from normal aging already in pre-dementia stages of AD. However, further
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studies are necessary on whether results of group separation with accuracies

of more than 90% are robust for enlarged training samples, different imaging

protocols, and measurements at different scanners. (iv) The imaging proto-

col of the current study was chosen economically, i.e. time saving, with 15

gradients for one measurement and the use of the B0 image for cortical par-

cellation. Once a training data set is prepared, representing the most time

consuming step, tractography, feature network definition and classification

are performed within several minutes without any user interaction, i.e. time

for the whole procedure is not a practical limiting factor for using ISCNs as

biomarkers.

Conclusively, fully automated derivable ISCNs separate healthy aging

from prodromal and mild AD with accuracy of 90% and 95%, respectively, in-

dicating ISCN’s potential as an imaging-based white matter-focused biomarker

for AD.

12.5 Supplemental Information

12.5.1 Anatomical Atlas

For cortical parcellation, the whole cerebral cortex of each participant is seg-

mented into 96 cortical regions via Harvard-Oxford cortical structural atlas

(http://www.fmrib.ox.ac.uk/fsl/data/atlas-descriptions.html). This anatom-

ical atlas is a probabilistic population-based atlas; i.e. cortical regions are

thresholded in a way that only voxels, which are estimated above 35% proba-

bility of being in that structure, are included in the mask. Table S1 illustrates

the names of these cortical regions and their corresponding consequential
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Table 12.3: Decoding anatomical labels.
ID Cortical Regions ID Cortical Regions

1 Frontal Pole 25 Parahippocampal Gyrus (anterior)

2 Insular Cortex 26 Parahippocampal Gyrus (posterior)

3 Superior Frontal Gyrus 27 Temporal Fusiform Cortex (anterior)

4 Middle Frontal Gyrus 28 Temporal Fusiform Cortex (posterior)

5 Inferior Frontal Gyrus, pars triangularis 29 Temporal Occipital Fusiform Cortex

6 Inferior Frontal Gyrus, pars opercularis 30 Planum Polare

7 Precentral Gyrus 31 Heschl’s Gyrus (includes H1 and H2)

8 Frontal Medial Cortex 32 Planum Temporale

9 Juxtapositional Lobule Cortex 33 Postcentral Gyrus

10 Subcallosal Cortex 34 Superior Parietal Lobule

11 Paracingulate Gyrus 35 Supramarginal Gyrus (anterior)

12 Cingulate Gyrus (anterior) 36 Supramarginal Gyrus (posterior)

13 Frontal Orbital Cortex 37 Angular Gyrus

14 Frontal Operculum Cortex 38 Cingulate Gyrus (posterior)

15 Central Opercular Cortex 39 Precuneous Cortex

16 Temporal Pole 40 Cuneal Cortex

17 Superior Temporal Gyrus (anterior) 41 Parietal Operculum Cortex

18 Superior Temporal Gyrus (posterior) 42 Lateral Occipital Cortex (superoir)

19 Middle Temporal Gyrus (anterior) 43 Lateral Occipital Cortex (inferior)

20 Middle Temporal Gyrus (posterior) 44 Intracalcarine Cortex

21 Middle Temporal Gyrus (temporooccipital) 45 Lingual Gyrus

22 Inferior Temporal Gyrus (anterior) 46 Occipital Fusiform Gyrus

23 Inferior Temporal Gyrus (posterior) 47 Supracalcarine Cortex

24 Inferior Temporal Gyrus (temporooccipital) 48 Occipital Pole

Note: Here only cortical regions of left hemisphere are displayed, where IDs (1-15) indicate the

Frontal Lobe (FL), IDs (16-32) the Temporal Lobe (TL), IDs (33-41) the Parietal Lobe (PL) and

IDs (42-48) the Occipital Lobe (OL).

numbers.
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Figure 12.5: Illustration of structural brain connectivity matrix. The conse-

quential numbers on the left of the matrix correspond to the cortical regions

in Table S1 respectively. The upper triangular matrix represents the struc-

tural connectivity of patients with mild AD while the lower triangular matrix

represents structural connectivity of healthy controls. Each element of the

matrix represents the connection between two cortical regions. White points

indicate there exists at least one connection in more than 50% of members

of the group of interest. FL: frontal lobe, TL: temporal lobe, PL: parietal

lobe, OL: occipital lobe, HC: healthy controls.



12.5 Supplemental Information 267

12.5.2 Structural Connectivity Matrices Reflect Across

Group Members Averaged ISCNs

After cortical parcellation and white matter tractography, the individual

structural connection network ISCN for each individual is obtained. These

ISCNs are then averaged for each group and represented as structural con-

nectivity matrices, see Figure 12.5 and Figure 12.3, 12.3, 12.4. Here each

element of the matrix represents the connection between two cortical re-

gions. White points indicate there exists at least one connection in more

than 50% of members of the group of interest; black points indicate that this

is not the case.

12.5.3 Feature Selection

After construction of ISCNs, the most distinctive connections among groups

are identified by feature selection. Information Gain criterion [129, 73] is

used to rate the information-based interestingness of each connection for

prediction and classification. For a given attribute A with respect to the

class attribute C, the Information Gain is the reduction in uncertainty about

the value of C when A is known. Uncertainty about class C is measured by

its entropy H(C), which is defined as:

H(C) =
∑
c∈C

p(c) log2 p(c) (12.6)

where p(c) denotes the probability of class c. The entropy of the class C
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after known the attribute A is given as:

H(C|A) = −
∑
a∈A

∑
c∈C

p(c|a) log2 p(c|a) (12.7)

where p(c|a) is the conditional probability of c for a given a. Since the

reduction amount of the entropy of the class after knowing the attribute A

reflects the additional information about the class provided by the attribute,

Information Gain captures the importance of attribute for the class concept.

Formally, the Information Gain IG(A) is defined as:

IG(A) = H(C)−H(C|A) (12.8)

In order to find most distinguishing connections among different groups,

therefore, the power of each connection for group comparison is measured by

the information gain. Since three attributes (fiber density, FA and MD) are

used to characterize each connection, the distinguishing connections selection

with each attribute are considered separately (indicated by red dots of Figure

12.3, 12.3, 12.4).



Part IV

Conclusion





Chapter 13

Summary and Outlook

In this thesis, the preliminaries of data mining are introduced in part I and

novel clustering and outlier detection methods are then proposed from the

perspective of synchronization in part II. The applications of data mining

algorithms in neuroscience databases are further investigated in Part III.

In this chapter, the major contributions of this thesis are summarized (cf.

Section 13.1) and possible directions for future research are pointed out (cf.

Section 13.2).

13.1 Summary

The large amounts of data arising in various fields increases the need for

efficient and effective data mining tools to uncover the information in the

data. This thesis mainly proposes innovative data mining algorithms (cf.

Part II) and apply data mining algorithms in neuroscience databases (cf.

Part III). The summary of these contributions is given as follows.
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Preliminaries (Part I)

The part of preliminaries provides some background information of this the-

sis. After a very general introduction to the process of Knowledge Discovery

in Databases and Data Mining in Chapter 1, a brief introduction to clustering

and outlier detection is illustrated in Chapter 2.

Synchronization-based Data Mining (Part II)

Synchronization is a prevalent phenomenon in nature that a group of events

spontaneously come into co-occurrence with a common rhythm through mu-

tual interactions. The mechanism of synchronization allows controlling of

complex processes by simple operations based on interactions between ob-

jects. Based on this powerful concept, innovative algorithms for data mining

are proposed and Junming Shao (J.S.) made the main contribution to all

these works consisting of proposing the idea; implementing the algorithms;

performing the experiments and writing the papers.

In Chapter 4, the algorithm Sync is proposed to clustering inspired by

the concept of synchronization. The key idea is to regard each data object

as a phase oscillator and interacts dynamically with similar objects by a re-

formulated Kuramoto model. Through interactions, similar objects tend to

synchronize together and form as clusters. Inherited from prosperities of syn-

chronization, the clusters revealed by dynamic synchronization truly reflect

the intrinsic structure of the data set. Sync does not rely on any distribu-

tion assumption and allows detecting clusters of arbitrary number, shape and

size. As additional value add, Sync allows discovering the clusters without

requiring sensitive input parameters in combination with the Minimum De-
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scription Length principle (MDL). A preliminary version of this chapter has

been published in [27], where J.S. made the main contribution to this work.

In Chapter 5, hSync is proposed by extending the Sync to hierarchi-

cal data analysis. The algorithm hSync explores the hierarchical cluster

structure from micro-scale to macro-scale by simulating the way to synchro-

nization over different levels of locality. Compared with existing hierarchical

clustering algorithms, hSync robustly reveals the natural cluster hierarchy

regardless of size and data distribution of the clusters. The MDL princi-

ple guides hSync to generate an interpretable cluster tree only consisting

of meaningful levels, each representing a clustering of high quality. Besides

the cluster tree, the output of hSync includes the locality-quality diagram, a

visualization which allows the user to comprehensively assess the quality of

the cluster hierarchy over all levels. Part of this chapter has been submitted

in [147].

To cure the curse of dimensionality in clustering, ORSC (Arbitrarily

ORiented Synchronized Clusters), a novel effective and efficient method to

subspace clustering is introduced in Chapter 6. ORSC works on the proposed

local weighted interaction model, which ensures all objects in a common

cluster, which accommodate in arbitrarily oriented subspace, naturally move

together. The subspace search is easily transformed to find all synchronized

phases in arbitrarily oriented subspaces. In contrast to previous methods,

ORSC naturally detects correlation clusters in arbitrarily oriented subspaces,

including arbitrarily-shaped non-linear correlation clusters. ORSC is robust

against noise points and outliers. ORSC is easy to parameterize, since there is

no need to specify the subspace dimensionality, and all interesting subspace
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clusters can be detected. A preliminary version of this chapter has been

published in [150].

In order to reveal the underlying patterns in graphs, a graph partitioning

approach RSGC is presented in Chapter 7. The key philosophy of RSGC

is to consider graph clustering as a dynamic process towards synchroniza-

tion. For each vertex, it is viewed as an oscillator and interacts with other

vertices (oscillators) according to the graph connection information. During

the process towards synchronization, vertices with similar connectivity pat-

terns will exhibit similar dynamics and thus naturally synchronize together

to form a cluster. Compared with other existing graph clustering algorithms,

RSGC has some major benefits: it provides a novel and natural perspective

for graph clustering based on the proposed interaction model, which can cap-

ture the characteristics of the real-world networks very well; RSGC allows

discovering graph clusters with arbitrary size and density; RSGC is also ro-

bust against noise vertices or outliers; RSGC is fully automatic. Part of this

chapter has been submitted in [148].

Local Synchronization Factor (LSF) is introduced in Chapter 8. This def-

inition is designed to naturally flagged outlier objects relying on the different

dynamic behaviors of objects during the process towards synchronization.

The outliers are considered as the perspective: “Out of Synchronization”.

By simulating the dynamical behavior of each data object over time accord-

ing to an extensive Kuramoto model, regular objects and outliers exhibit

different interaction patterns. Interaction plot further provides a detailed

view of the dynamical behavior pattern of each object. In contrast to outlier

detection algorithms, LSF is intuitive, tight, and distinguishable. A prelimi-
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nary version of this chapter has been published in [144].

Brain Network Mining (Part III)

It is well known that understanding the connectome of the human brain is a

major challenge in neuroscience. In this thesis, the brain structural networks

are analyzed involving with the techniques of clustering, feature selection and

classification.

Discovering the wiring and the major cables of the brain is essential for

a better understanding of brain function. In Chapter 10, a framework to

identify meaningful groups of fiber tracks which represent the major cables

of the brain is developed. The proposed approach combines ideas from time

series mining with density-based clustering to an effective and efficient fiber

clustering. A novel fiber similarity measure based on dynamic time warping

is proposed, which can captures local similarity among fibers effectively. A

lower bound on this fiber warping measure is introduced to speed up com-

putation. Finally, the meaningful fiber bundles in the Human Brain are

identified by density-based clustering. Parts of the material presented in this

chapter have been published in [145], where J.S., K.H, C.B and C.P designed

the research; J.S. implemented algorithms; J.S. and K.H. performed the ex-

periments; J.S., K.H., and Q.Y. analyzed the data; and J.S., K.H, Q.Y. C.B.

A.M, N.M and C.P. wrote the paper.

In Chapter 11, the enhancement and variation of this approach is dis-

cussed allowing for a more robust, efficient, or effective way to find hierarchies

of fiber bundles. With the reachability plots, the novel interactive and an

automatic cluster extraction method are introduced. The proposed methods
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compare well with existing techniques and show advantages with respect to

transparency, flexibility, effectiveness, efficiency and outlier robustness. The

framework is evaluated successfully on several synthetic and real data sets.

Parts of the material presented in this chapter have been published in [146],

where J.S., K.H, C.B and C.P designed the research; J.S. implemented al-

gorithms; J.S. and K.H. performed the experiments; J.S., K.H., and Q.Y.

analyzed the data; and J.S., K.H, Q.Y. C.B. A.M, N.M and C.P. wrote the

paper.

As Alzheimer’s disease (AD) degrades progressively the white matter

of brain , Chapter 12 explores whether individual structural connectivity

networks (ISCNs) enable to distinguish patients with prodromal or mild

AD from healthy controls (HC) in individual scans. Therefore, Diffusion-

weighted MRI, diffusion tractography and 96 predefined cortical regions are

used to map cortico-cortical ISCNs of 61 individual subjects in a fully au-

tomated procedure. For each between-region connection of ISCN, three at-

tributes (fiber density, fractional anisotropy and mean diffusivity) are ex-

tracted to represent its pattern. Afterwards, relying on feature selection

criteria, most distinctive connections for the discrimination among HC, pro-

dromal and mild AD are identified. Finally, three typical classifiers including

Support Vector Machine, Naive Bayes, and k-Nearest Neighbor are applied to

predict HC, prodromal and mild AD. The experiments indicate that individ-

ual cortico-cortical structural connectivity networks are changed in earliest

forms of AD. Cortico-cortical ISCNs may be useful as a white matter-based

imaging biomarker to distinguish healthy aging from AD. A preliminary ver-

sion of this chapter have been submitted in [149], where J.S., N.M and C.S
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designed the research; J.S., N.M, C.S., Q.Y., H.F., A.K., C.Z. and A.W. per-

formed the research; J.S., N.H., and Q.Y. analyzed the data and J.S., N.M,

C.S., Q.Y., C.M., V.R., and A.W. wrote the paper.

13.2 Outlook

The last section of this thesis points out some major directions for future

research. In particular, for synchronization-based on data mining, future

research could be explored in the following directions:

General model: More general model to understand the basic mechanism

of synchronization should be investigated. In this thesis, Kuramoto model is

analyzed and it is reformulated in different ways to the field of data mining.

However, a more general, robust model is needed. For instance, the coupling

function should not be restricted to sine function. Many other functions

should be further considered.

Synchronization in stream data: This thesis focuses on synchronization-

based data mining on static data sets. How to use the synchronization prin-

ciple to stream data is an interesting direction.

Visualization: During the process towards synchronization, objects ex-

hibit different dynamic behaviors. It is very interested in visualizing the

clustering process and find clusters or patterns in a interactive way.

Application: It is well known that synchronization is rooted in human

life from the metabolic processes in our cells to the highest cognitive tasks we

perform as a group of individuals. For instance, synchronization seems to be

a central mechanism for neuronal information processing. Therefore, using
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the synchronization principle to explore the brain networks is very promising.



Bibliography

[1] J. Aach and G. Church. Aligning gene expression time series with time

warping algorithms. Bioinformatics, 17:495–508, 2001.

[2] J. A. Acebron, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler.

The kuramoto model: A simple paradigm for synchronization phenom-

ena. Rev. of Modern Physics, 77(2):137–185, Jan. 2005.

[3] D. Aeyels and F. D. Smet. A mathematical model for the dynamics

of clustering. Physica D: Nonlinear Phenomena, 273(19):2517–2530,

2008.

[4] C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S.

Park. Fast algorithms for projected clustering. In SIGMOD Conference,

pages 61–72, 1999.

[5] C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in

high dimensional spaces. In SIGMOD Conference, pages 70–81, 2000.

[6] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic

subspace clustering of high dimensional data for data mining applica-

tions. In SIGMOD Conf., pages 94–105, 1998.



280 BIBLIOGRAPHY

[7] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning

algorithms. Mach. Learning, 6:37–66, 1991.

[8] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics:

Ordering points to identify the clustering structure. In SIGMOD Conf,

pages 49–60, 1999.

[9] E. V. Appleton. The automatic synchronization of triode oscillator.

In Proc. Cambridge Phil. Soc. (Math. and Phys. Sci.), pages 231–248,

1922.

[10] A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou. Syn-

chronization in complex networks. Phys. Rep., 469:93–153, 2008.

[11] A. Arenas, A. Diaz-Guilera, and C. J. Perez-Vicente. Plasticity and

learning in a network of coupled phase oscillators. Phys. Rev. Lett.,

96:7, 2006.

[12] V. Arnett and T. Lewis. Outliers in Statistical Data. John Wiley, 1994.

[13] M. Ashburner, C. A. Ball, J. A. Blake, and et al. Gene ontology:

tool for the unification of biology. the gene ontology consortium. Nat.

Genet., 25:25–29, 2000.

[14] F. Bach and M. Jordan. Learning spectral clustering. In Proc. of NIPS.

MIT Press, 2004.

[15] P. Basser. Inferring microstructural features and the physiological state

of tissues from diffusion-weighted images. NMR in Biomedicine, 8,

1995.



BIBLIOGRAPHY 281

[16] P. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi. In vivo

fiber tractography using dt-mri data. Magn. Reson. Med., 44:625–632,

2000.

[17] P. Basser and C. Pierpaoli. Microstructural and physiological features

of tissues elucidated by quantitative-diffusion-tensor mri. J. Magn.

Reson. Ser. B, 111:209–219, 1996.

[18] T. Behrens, H. Berg, S. Jbabdi, M. Rushworth, and M. Woolrich. Prob-

abilistic diffusion tractography with multiple fibre orientations: what

can we gain? NeuroImage, 34:144–155, 2007.

[19] I. Ben-Gal. Outlier detection. Data Mining and Knowledge Discov-

ery Handbook: A Complete Guide for Practitioners and Researchers.

Kluwer Academic Publishers, 2005.

[20] D. L. Bihan. Looking into the functional architecture of the brain with

diffusion mri. Nature Reviews Neuroscience, 4(6):469–480, 2003.

[21] K. Blennow, M. de Leon, and H. Zetterberg. Alzheimer’s disease.

Lancet, 368:387–403, 2006.
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[147] J. Shao, X. He, C. Böhm, Q. Yang, and C. Plant. Synchronization-

inspired partitioning and hierarchical clustering. In Submitted for pub-

lication.

[148] J. Shao, X. He, C. Plant, Q. Yang, and C. Böhm. Robust
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