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Contents

1 Zusammenfassung 7

2 Summary 9

I Introduction 11

3 Motivation 11

4 Overview 15

II Methods 17

5 Computational Modeling approaches 17

5.1 Mathematical vs. computational models . . . . . . . . . . . . 17

5.2 A Primer on the Gillespie algorithm . . . . . . . . . . . . . . . 18

5.3 Pi-Calculus allows an unbounded number of species and reac-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

III Results 25

6 Context-sensitive image analysis of single-cell assay movies 25

6.1 Image Analysis Work-�ow . . . . . . . . . . . . . . . . . . . . 27

6.2 Cell Tracking as Linear Assignment Problem . . . . . . . . . . 29

6.3 Event Management and Event Detection . . . . . . . . . . . . 32

6.4 Classi�cation and Handling of Image Analysis Events . . . . . 33

6.5 Automatic distinction between touching cells . . . . . . . . . . 35

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Gene Expression in non-viral Gene Transfer 39

7.1 Time lapse microscopy and single cell EGFP expression . . . . 41

7.2 Modeling steady state gene expression . . . . . . . . . . . . . 43

7.3 Analyzing the Distribution of Proteins . . . . . . . . . . . . . 47

5



7.4 Fit to experimental data yields expression factor and e�ective

cargo size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Co-Transfection indicates correlated delivery 53

8.1 Deriving relevant probabilities for plasmid (co-)transfection . . 54

8.2 A Pi-Calculus model of plasmid co-transfection . . . . . . . . 59

9 The time distribution of gene delivery and gene expression

onset: Experiment and Stochastic Modeling 63

9.1 A stochastic models reproduces the mean, variance and skew-

ness of the experimental onset time distributions . . . . . . . . 65

9.2 Magnetofection: a faster uptake rate is responsible for the shift

in speed and e�ciency . . . . . . . . . . . . . . . . . . . . . . 69

9.3 What can we learn from the model to optimize the gene trans-

fer process? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10 Dynamics of gene expression 75

10.1 mRNA poly-A tails act as match cords . . . . . . . . . . . . . 75

10.2 non-Markovian distributions are helpful to model poly-A tail

degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

10.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

11 Strand displacement elements for nucleic acid based compu-

tation 79

11.1 A primer on the DNA Strand Displacement language . . . . . 80

11.2 Logic gates for building up autonomous molecular machines . 84

11.3 Bu�ered logic gates enable constant reaction rates . . . . . . . 86

11.4 Reaction rules in the DSD language . . . . . . . . . . . . . . . 87

11.5 Hierarchy of abstract semantics . . . . . . . . . . . . . . . . . 89

11.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

12 Outlook 93

6



1 Zusammenfassung

Nicht-virale Gentransfersysteme haben sich innerhalb der letzten Dekade zu
weitgenutzten Vektoren für das Einbringen exogener DNA in Eukaryotische
Zellen entwickelt. Viele Studien in diesem Forschungsgebiet berichten über
Transfektionse�zienzen als Funktion der Vektorzusammensetzung und, in
geringerem Ausmaÿ, über Einzelmolekülexperimente die sich mit den Trans-
portprozessen der Vektoren befassen. Dennoch sind bis jetzt Arbeiten über
zeitaufgelöste Einzelzellexperimente mit eukaryotischem Gentransfer kaum
vorhanden. Diese Arbeit befasst sich mit Bildverarbeitung experimenteller
Zeitra�erstudien und Computermodellierung der resultierenden Protein-Ex-
pressions-Zeitkurven.

Die Zellen wurden mit GFP-kodierenden Plasmiden trans�ziert und Einzel-
zell-Zeitra�er�lme wurden mit Bildverarbeitung ausgewertet. Zu diesem
Zweck wurde ein Zellverfolgungsalgorithmus entwickelt, der Zellumrisse iden-
ti�ziert, zu Zellspuren zuordnet und Fehler behebt oder Zellereignisse meldet.
Der Algorithmus behandelt die Zuweisung der erkannten Umrisse zu Zell-
spuren als lineares Zuordnungsproblem, dabei benutzt er die gewichtete Über-
lagerung der normierten Zelleigenschaften als Kosten. Singularitäten in den
Kosten indizieren entweder Ereignisse im zellulären Lebenszyklus, die berichtet
werden, oder Bildverarbeitungsereignisse, die korrigiert werden. Die Software
erhöhte den Ertrag der nutzbaren Zeitserien aus Hochdurchsatzexperimenten
etwa um einen Faktor zwei und beseitigte die Notwendigkeit der mühsamen
und häu�g systematisch falschen Handauswertung.

Die Fluoreszenzintensitätszeitspuren aus Experimenten mit Lungenep-
ithelzellen wiesen ein sigmoidales Anfangsverhalten auf, dass in einem sta-
tionären Zustand sättigte. Eine phänomenologische Fitfunktion lieferte das
Maximalexpressionsniveau, die Expressionsrate und die Startzeit. Die Verteil-
ung der stationären Expressionsniveaus zeigte eine breite Poisson-artige Form
welche einen zugrundeliegenden stochastischen Prozess mit niedriger Erfol-
gswahrscheinlichkeit andeutet. Dies wurde als zweischrittiger stochastischer
Prozess in Zusammenarbeit mit J.-T. Kuhr aus der Gruppe von Prof. Frey
mathematisch modelliert. Der erste Schritt mit kleiner Wahrscheinlichkeit
der betrachtet wurde war die Lieferung von Plasmidkomplexen in den Nu-
cleus, der zweite war die Abgabe und Aktivierung einer kleinen Anzahl von
Plasmiden aus dem Komplex. Dieses konzeptionell einfache Modell erklärt
den beobachteten Anteil trans�zierter Zellen und die Verteilung der Expres-
sionsniveaus konsistent. Die mittlere Anzahl transkribierter Plasmide pro
Komplex konnte aus dem Modell bestimmt werden; in unseren Experimenten
waren es ungefähr 3.0.
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Das Modell sagte ebenfalls die Farbverteilung in einem Ko-Transfektions-
experiment mit Gelb und Cyan �uoreszierenden Proteinen korrekt voraus.
Eine alternative Implementierung des Modells wurde mit dem Pi-Calculus
Ansatz entwickelt, die es erlaubte, eine nicht-exponentielle Verteilung und
eine potentiell unbegrenzte Anzahl von Zuständen zu verwenden. Simulation
des Modells lieferte eine detaillierte, bivariate Verteilung der Ko-Transfektions-
ergebnisse hinsichtlich der exprimierten Plasmide und Farbverteilungen.

Um die Faktoren zu bestimmen, die die Zuführungswahrscheinlichkeit
und die Auswirkungen des zeitlichen Ablaufs auf die Transfektionse�zienz
beein�ussen, wurde ein stochastisches Zustandsmodell des Gentransferüber-
tragungswegs erstellt. Dieses Modell benutzte Übergangsraten aus der Liter-
atur und von Einzellmolekülexperimenten um die Startzeitverteilung akku-
rat zu reproduzieren. Das Modell sagte die Verschiebung der Startzeiten
und der Gesamte�zienz bei Verwendung von Magnetofektion verglichen mit
normaler Transfektion korrekt voraus. Weiter Simulationen klärten mögliche
Strategien auf um den Genlieferungsprozess hinsichtlich Geschwindigkeit und
E�zienz zu verbessern.

Ein Nachteil des oben beschriebenen, linearen stochastischen Modells war,
dass die Form der einzelnen Zeitspuren aus demModell, nicht mit der Expres-
sionsgeschwindigkeit von den experimentellen Kurven übereinstimmte. Aus
diesem Grund wurde die Rolle des poly-A Appendix beim mRNA Abbau un-
tersucht und ein detaillierterer Expressionsmechanismus wurde in das Mod-
ell eingebaut, der zu einer verbesserten Annäherung an die experimentellen
Daten führte.

Ein weitreichendes Ziel ist es autonome biomolekulare Computer zu er-
scha�en, die bedingt in Abhängigkeit der in Zellen vorhandenen mRNA
Niveaus agieren können. DNA Strang-Ablösung ist besonders geeignet um
biochemische, logische Schaltkreise zu entwickeln. In Anbetracht dessen, dass
die (Dis-)Assoziationsraten gut bekannt sind, sind sehr ähnliche Ergebnisse
gewährleistet ob man ein DNA Strang-Ablösungsprogramm in vitro oder in
silico ausführt. Strang-Ablösung wurde kürzlich mit einer formalen Comput-
ersprache beschrieben. In dieser Arbeit wurde ein Compiler für die Sprache
entwickelt, der eine intuitive Darstellung der Moleküle und dazugehörigen
Bindungsa�nitäten beinhaltet. Alle möglichen Kombinationen der Stränge
zu einer gegebenen Eingabe werden berechnet und in einem darau�olgenden
Gillespie-basierten Simulationslauf wird eine Zeitevolutionstrajektorie dieses
Systems berechnet. Mehrere hierarchische Abstraktionsniveaus wurden als
Erweiterungen zu der DNA Strang Ablösungssprache vorgeschlagen. Die
Software wurde eingesetzt um eine Pu�erstrategie für logische Gates zu testen
und stochastisch zu simulieren.
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2 Summary

Non-viral gene transfer systems have evolved over the last decade into widely-
used vectors for delivery of exogenous DNA to eukaryotic cells. Many studies
in the �eld report on transfection e�ciencies as a function of vector compo-
sition and, to a lesser extent, on single-molecule experiments of vector trans-
port processes. However, work on time-resolved single-cell experiments of
eukaryotic gene transfection has been circumstantial. This thesis is on image
processing of experimental time-lapse studies and computational modeling
of the resulting protein expression time courses.

Cells were transfected with GFP-encoding plasmids and single-cell time-
lapse movies were evaluated using image analysis. To this purpose, a cell
tracking algorithm that identi�es cell shapes, assigns cell tracks and resolves
errors or reports cell events was developed. The algorithm treats the mapping
of detected shapes to cell traces as a linear assignment problem using the
weighted superposition of normalized cell properties as cost. Singularities
in cost indicate either events in the cellular life cycle which are reported
or image analysis events which are resolved. The software increased the
yield of usable time series from high-throughput experiments by a factor
of approximately two and eliminated the need for tedious and bias-prone
manual movie evaluation.

The �uorescence intensity time-series obtained from experiments on ep-
ithelial lung cells exhibited a sigmoidal onset behavior that saturated to a
steady-state. A phenomenological �t to these yielded the maximum expres-
sion level, the expression rate and the onset time. The distribution of steady
state expression levels showed a broad Poisson-like shape which is indicative
of an underlying stochastic process with a low success probability. This was
modeled mathematically as a two-step stochastic process in collaboration
with J.-T. Kuhr from the group of Prof. Frey. The �rst, low-probability step
considered was the delivery of plasmid complexes into the nucleus and the
second was the release and activation of a small number of plasmids from
this complex. This conceptually simple model consistently explained the ob-
served fraction of transfected cells and the expression level distribution. The
mean number of transcribed plasmids per complex could be determined from
the model, which in our experiments was approximately 3.0.

The model also correctly predicted the color distribution in a co-transfection
experiment with yellow and cyan �uorescing proteins. An alternative imple-
mentation of the model was developed using the Pi-calculus approach which
allows the use of a non-exponential distribution and a potentially unbounded
number of species. Simulation of the model yielded a detailed, bi-variate dis-
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tribution of co-transfection results in terms of expressed plasmids and color
ratios.

To determine the factors that in�uence the delivery probability and the
impact of timing on the transfection e�ciency, a stochastic state model of
the gene transfer pathway was created. This model used transition rates
from literature and from single-particle experiments to accurately reproduce
the onset time distribution. The model correctly predicted the shift in onset
times and total e�ciency induced by magnetofection compared to normal
transfection. Further simulations elucidated possible strategies to improve
the gene delivery process in terms of speed and e�ciency.

A drawback of the linear stochastic model described above was that the
shapes of the individual time-traces produced by the model did not match
the expression speed of the experimental curves. For this reason, the role
of poly-A in mRNA degradation was investigated and a more detailed ex-
pression pathway was introduced in the model, that lead to an improved
approximation to the experimental data.

A far-reaching goal is to create autonomous bio-molecular computers that
can act conditionally depending on the mRNA concentration levels present
in cells. DNA strand displacement is particularly suited for developing bio-
chemical logic circuits. Given that the (dis-)association rates are well known,
very similar results are ensured when a DNA strand displacement program
was executed in vitro and in silico. Strand displacement has recently been
described by a formal computer language. In this thesis, a compiler for
the language including an intuitive representation of the molecules and cor-
responding binding a�nities was developed. All possible combinations of
strands for a given input are calculated and in a subsequent Gillespie-based
simulation run, a time-evolution trajectory of this system is calculated. Mul-
tiple hierarchical abstraction levels were proposed as extensions to the DNA
strand displacement language. The software was used to test and stochasti-
cally simulate a bu�ering strategy for logic gates.
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Part I

Introduction

3 Motivation

Systems biology constitutes a shift in our perspective onto �what to look

for� in biology. A �rm grasp on the mechanics of proteins and molecules re-

mains important, however, the focus currently shifts to discovering systems'

biochemical network structures and their dynamics. Yet, such a network

diagram only marks the �rst step towards a thorough understanding of a

pathway's inner workings. It is comparable to a static road-map that out-

lines the interaction possibilities, while we are really interested in quantitative

information about the extent of interactions corresponding in the road-map

analogy to the tra�c patterns which depend on external stimuli such as the

time of day or the weather [34, 35]. Over the last years huge amounts of

quantitative data on bio-molecular pathways have become available. Several

attempts are under way to systematically store these data in a comprehensive

database on gene-regulatory and biochemical networks [74]. Still, currently

the task of creating a network model entails extensive literature surveys and

carrying out experiments to �ll in the speci�c knowledge gaps. Two prop-

erties make these models valuable as scienti�c tools: �rstly, they sharpen

the understanding of a speci�c pathway and serve as central communication

platform between the modeler and the practitioner. Secondly, by identifying

the transition rates between states, it is possible to simulate the model. Such

an executable model helps to characterize central feedback loops and to pre-

dict the outcome of future experiments. In this manner it helps to identify

a promising experimental research strategy and enables clear and simpli�ed

communication between di�erent groups researching the same subject [23].

Figure 1 illustrates schematically how this modeler-experimentalist inter-

action takes place ideally.

The low-copy numbers of proteins involved in many bio-molecular path-

ways induce a high degree of stochasticity. This corresponds to a high phe-
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Figure 1: Hypothesis-driven research in systems biology. Executable
biology is an interplay between collecting data in experiments (experimental
biology) and constructing executable models that capture some mechanis-
tic understanding of how the systems under study work. By executing the
models under various conditions that correspond to the experiments and by
comparing the outcomes to the experimental data, one can identify discrep-
ancies between hypothetical mechanisms and the experimental observations.
These di�erences can be used to suggest new hypotheses, which serve to ad-
just the model and need to be validated experimentally, or new experiments,
which can con�rm or falsify modeling hypotheses. Figure from [23]

notypical cell-to-cell variability in clonal populations of cells. In this setting,

the modeler-experimentalist teams introduced above could focus on stochas-

tic modeling paired with single-cell experiments as these are key to under-

standing cell-to-cell variability [20]. A meaningful comparison between model

and experiment necessitates image analysis to convert single-cell �uorescence

movies into time series [42] which contain the full time-resolved information

about the onset of gene expression in a cell. In the gene transfection context,

the timing of the delivery process is of increased importance as the probabil-

ity of the vector to transgress critical cellular barriers is linked to the period

of stay of the vector in the intermediary stages. A di�erent approach to

in�uencing the protein household of cells is to directly deliver RNA into the

cytosol. This RNA could take on the form of mRNA acting as a blueprint

for proteins or as siRNA suppressing the production of speci�c proteins [29].

More involved designs are also feasible, where RNA measures concentration

levels of cellular mRNA and calculates a response in the form of mRNA or

siRNA [39].
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Figure 2: The single-cell modeling feedback cycle. Single-cell time-
lapse experiments are designed and carried out. Using image analysis, time-
series are extracted and analyzed. Results from this analysis are compared
with the results predicted by a stochastic model. If both data-sets agree, the
model can be used to generate new hypotheses. If not, the model needs to
be adapted to the experimental results.
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4 Overview

Non-viral vectors for gene delivery in cell culture have been constantly im-

proved using novel chemistry, vector formulations as well as rational design

strategies for targeting, endosomal release and nuclear transport. For fur-

ther advancement of the �eld quantitative modeling is timely as it supports

hypothesis driven strategies.

In this work, we consider the case of non-viral or synthetic gene transfec-

tion. Exogenous plasmid DNA is delivered into the cell and subsequently into

the nucleus by means of packing them into a complex. Transfection of eu-

karyotic cells typically involves opening transient pores or "holes" in the cell

membrane, to allow the uptake of lipid or polymer plasmid complexes. These

complexes travel inside liposomes partially along the microtubules [15]. After

an unpacking step and the endosomal release, some of the plasmid molecules

enter the nucleus where they are expressed.

Green �uorescent protein (GFP) is encoded on the DNA that was de-

livered in our gene transfection experiments. GFP is currently used as the

reporter protein of choice as it has several properties that make it valuable

in gene expression studies: �rstly it is non-toxic. Secondly, GFP exists in

a stable and an unstable variety [3] allowing to selectively switch between

degradation rates. Thirdly, the �uorescent response of GFP is linear under

the precondition that there is no saturation of excited states of the �uorescent

molecules or processes.

Improved microscope automation combined with an extended range of

novel �uorescent reporter proteins such as GFP has boosted the amount

of quantitative image data in the life sciences. Through image analysis of

high throughput time-lapse movies the course of �uorescence of thousands

of cells can be assessed in parallel. Two processes form the cornerstone of

image analysis: the recognition or segmentation of objects, which could be

cells, organelles, nano particles etc. and secondly the consistent tracking of

individual objects by frame to frame assignment. These tasks can become

complicated as cells undergo cell cycle induced changes such as cell division

or lysis. On top of these challenges inherent to all living cells, con�uent cells
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in dense cultures frequently touch and separate again. A context sensitive

approach to tracking that considers multiple cellular properties is introduced

in chapter 6.

Using our image analysis algorithm we could extract quantitative data on

onset times and �uorescence intensities from single-cell time-lapse movies of

gene transfection experiments. The resulting distributions exhibit a Poisson-

like shape; we analyzed them in terms of a theoretical model of gene delivery

in chapter 7.

The characteristic form of the maximum expression value distribution

together with the total e�ciency indicate a correlated delivery of multiple

plasmids per successful complex. Our co-transfection analysis (see Chapter 8)

underlines the notion that plasmids enter the nucleus in complexes, and not

as isolated plasmids. Microscopy studies have argued favorably for complexes

being present at the �nal delivery stage [41, 78].

A close relation exists between the e�ciency of a transfection experiment

and its delivery kinetics. The understanding gained from a stochastic deliv-

ery model (see Chapter 9) could supports design decisions and modi�cations

towards a plasmid vector with optimal stability and matching targeting func-

tionalization.

Highly e�ective gene therapy needs to employ a combination of external

targeting such as localized injection, magnetic �elds or target receptor speci�c

functionalization as well as implicit targeting which produces the required

amount of a therapeutic protein depending on the environmental protein

levels in a given cell. The drugs of the future will be programs that sense the

environment, make decisions and apply remedies, all in single cells. Nucleic

acid based systems have great potential to �ll this role as they are well

suited for all three tasks of detecting RNA concentrations, performing the

computation and interacting directly with biological systems. A particularly

promising approach to RNA programming is the DNA strand displacement

language [56] that is discussed and extended in chapter 11.
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Part II

Methods

5 Computational Modeling approaches

Modeling of biological systems is becoming increasingly important to better

understand complex biological phenomena and behaviors. In this work, we

use two modeling approaches: mathematical and computational, which di�er

in their representations of biological systems. Underlying our computational

approach is the stochastic simulation algorithm or Gillespie algorithm [27],

which can be classi�ed as a continuous-time Markov chain algorithm. We

employ this algorithm directly for the models of gene delivery kinetics and

gene expression (chapters 8-11) or in a modi�ed form as the stochastic engine

for a Pi-Calculus machine [73]. We propose a modi�cation to the stochastic

simulation algorithm, so that non-Markovian distributions could be used for

calculating the time until the next event happens in the course of a simulation

run. We prove the correctness of this approach and give an example for its

feasibility [52]. Studies of co-transfection of two di�erent plasmids show,

that the number of combinations of complexes containing two plasmids soon

becomes very large: using Pi-calculus it is possible to generate new species

on-the-�y with the required properties [52].

5.1 Mathematical vs. computational models

A mathematical model has a denotional primary semantics, meaning that

the model describes a relationship of quantities and their time evolutions by

means of equations. These equations do not contain a prescription of how to

solve them; an exact solution is often di�cult and can only be approximated

by a computer algorithm. Consequently, for a complicated mathematical

model there is a gap between its (exact) formulation and the corresponding

approximate solution on a computer. This gap could be closed by proving

that a given algorithm solves the equations with a certain stipulated preci-
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sion.

A computation model on the other hand, has operational primary seman-

tics. The model itself contains a set of possible steps that can be executed

by an abstract machine. From this, it follows that by the very de�nition of

the computational view of a system, its implementation on a computer is

a faithful representation of a model. This is not to say, however, that the

representation gap magically disappears for computational models. Rather,

it is shifted and reappears between the biological system and the model [23].

In the remainder of this chapter we will focus on computational ap-

proaches.

5.2 A Primer on the Gillespie algorithm

If a system meets several criteria outlined below, it is possible to exactly cal-

culate possible trajectories for its time evolution. The method and algorithm

presented here work for a system in equilibrium, that is well-stirred and whose

reaction-rates correspond to the cross-section of the involved molecules (de-

tails below). Furthermore, we will only regard unary and binary reactions,

as tertiary and higher order reactions are a) very seldom and b)usually com-

posed of consecutive binary reactions.

A unary reaction occurs spontaneously and thus, the probability for such

a reaction depends only on the number of molecules and the reaction-rate for

a single molecule under the given circumstances(temperature, pressure etc.).

Generally a binary reaction occurs when two molecules of the participat-

ing kinds collide and when some other circumstantial constraints are met(e.g.

when the kinetic energy is higher than some threshold value). Following these

lines and still assuming that the molecules are distributed randomly and uni-

formly it is straightforward to calculate an upper limit for the reaction rates

between species S1 and S2 in the following way:

A center to center collision will occur whenever a molecule of S1 gets as

close as r12 = r1 + r2 to a molecule of S2. Denoting by v12 the speed of a

molecule 1 relative to a molecule 2, then molecule 1 will, during the time

δt, transit the collision volume δVcollision = πr212 ∗ v12δt. Thus, if molecule 2
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Figure 3: The collision volume which molecule 1 will transit during the
time interval [t, t+ δt](Picture courtesy of D. Gillespie) .

lies in the collision volume during the time t, then the molecules will collide

in [t, t + δt]. Hence the probability for a single molecule of Species S2 to be

found in the collision volume is just

Psinglecollision = δVcollision/V = πr212 ∗ v12δt/V

Where the average v12 can be calculated using the Maxwellian velocity dis-

tribution

v12 =
√

8kT/πm12

with m12 = m1m2/(m1 + m2) being the reduced mass. As the probability

for collision scales linearly with the number of participating molecules from

Species S1 and S2 respectively, the probability that a 1-2 collision inside V

will occur during [t, t+ δt] is given by

Pcollision = [S1][S2]πr
2
12 ∗ v12δt/V.

It is evident then, that a system in equilibrium can be characterized

by a collision probability per unit time, instead of a collision rate equaling

the di�erence between stochastic Markovian processes and deterministic rate
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processes.

The stochastic reaction constant can be derived straightforwardly

from the previous considerations, namely by arguing that when a collision

occurs with probability... then the molecules 1 and 2 can undergo the tran-

sition

S1 + S2 −→ S12

The actual probability for such a reaction depends then on the collision

probability as well as on the physical properties of the involved molecules

and the temperature of the system. These constant factors are merged into

c′physicalproperties.

Psinglereaction = Psinglecollision ∗ cphysicalproperties = c′physicalproperties ∗ δt

and likewise the probability that such a reaction will happen somewhere

in V during the next in�nitesimal time interval

Preaction = [S1][S2]πr
2
12∗v12δt/V ∗cphysicalproperties = [S1][S2]c

′
physicalproperties∗δt.

This formula is generally referenced as propensity function.

Calculating the time evolution

Starting from the formula for an in�nitesimal time interval, we can derive

the temporal evolution of a well-stirred system of N molecular species inter-

reacting throughM reaction channels. However, there are two fundamentally

di�erent approaches to this problem: a) the traditional master equation ap-

proach which is concerned with all possible trajectories and b) the stochastic

simulation approach, which calculates one trajectory at a time and, thus,

by doing a large number of simulations delivers an equivalent distribution

as solution. It should be emphasized that, although very di�erent, both

approaches are rigorous consequences of the chemical master equation and

therefore equivalent. In this work, we focus on the stochastic simulation
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algorithm that allows to gracefully generate single trajectories by repeat-

edly picking the next reaction stochastically and executing it, starting from

the well known initial state. This approach can be made exact by choosing

reactions and times from the correct probability distributions, so that the dis-

tributions generated by running a stochastic simulation algorithm are equal

to the probability distributions that follow from solving the master equation.

The beauty of this approach lies in its ability to simulate wildly complex sys-

tems whose master equations are unknown and often intractable. The only

input needed for setting up such a stochastic simulation is a set of species and

transitions. Gillespie developed two algorithms that ful�ll the requirements

stated above, the direct method [27] and the somewhat less famous, earlier

�rst reaction method [26].

First Reaction Method was a simulation method devised by Gillespie

[26], which does not explicitly 'toss a coin' to determine the next reaction, but

which calculates a putative time for each reaction according to the underlying

exponential distribution and executes the reaction with the least time. In

that way it is ensured that the putative time is correct as the assumptions

made are only true for the �rst reaction. In the same spirit, those putative

times are recalculated after execution of the reaction.

Again, algorithmizing yields:

Algorithm 1 First Reaction Method

1. Initialize( t← 0, set populations of species)

2. Calculate propensities aj for all j

3. For each j calculate a putative time τj according to an exponential dis-
tribution with parameter aj

4. Choose µ according to τµ = Min(τj)

5. Adjust populations according to reaction µ, t← t+ τµ

6. Go to 2.

This algorithm builds on the following key properties of the interactions
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between species of molecules:

Memorylessness I - Markov Property When simulating a single tra-

jectory of time evolution it is possible to halt the simulation at any point

τintermediate, restart it afterwards and stop it �nally at τend. The probabil-

ity distribution for such a trajectory is, according to the chemical master

equation, the same as for a trajectory that starts from the state τintermediate.

Memorylessness II - Reusability of Random Numbers At a time

τ0 a putative time of a reaction is calculated according to an exponential

distribution. If at a later point τ1 the reaction has not been successful, the

probability distribution for the putative time from τ0 is the same as for a

newly created one from τ1. A change in the propensity can be taken into

account.

τα ← (aα,old/aα,new)(τα − t) + t.

Partitionability It is possible to group di�erent reactions into a partition,

such that one putative time is determined for those reactions according to

P (τ)dτ = asumexp (−τasum) dτ

with

asum =
∑
j

aj

If a partition is selected for the next simulation step, the reaction channel

that is actually executed is then determined after

P (µ) =
aµ∑
j aj

Elementarity A molecule of a given species has no internal state and is

therefore indistinguishable from any other molecule of this species. If, for

some reason, it has an internal state, it forms a new Species together with

all like molecules (usually none).
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5.3 Pi-Calculus allows an unbounded number of species

and reactions

Pi-Calculus was originally designed in the context of communication systems

as it allows to describe concurrent computations whose con�guration may

change during the computation.

This property makes it very well suited for the computation of biochem-

ical systems whose constituents may not all be known at the beginning of a

computation or simulation run. The conceptual di�erence to the stochastic

state models introduced in the previous subsection is that with Pi-calculus

execution of a simulation is associated with a sequence of events and their

causal dependencies unlike the sequence of states in a state model. Accord-

ingly, to model biological systems in pi-calculus a process is associated with

each molecule and multiple (the number of like molecules) processes of a

given type run in parallel. The interaction between di�erent species is mod-

eled as communication channel. Although an event can be represented by a

state change and a state by a history of events, the two views give rise to

di�erent styles of modeling.

Figure 4: Comparison of a state model with pi-calculus. Two reversible
intertwined reactions are modeled using a) chemical reaction and b) the Pi-
calculus. Figure from [73].
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For example, an active protein Xp can interact with a protein Y through

a reaction, to produce a protein X and an active protein Y p. The reverse

reaction d can also occur. For the graphical representation, each shape rep-

resents a protein in a particular state and each box represents a reaction,

with inbound edges (arcs) from reactants and outbound edges to products.

In contrast, the model of Fig. 4B is constructed by describing the behavior

of the individual components in the system. This is achieved by splitting the

reaction a into two complementary actions, a send a and a receive a, and

similarly for the reaction d. Thus, an active protein Xp can send on a and

evolve to a protein X, which can receive on d and evolve to Xp. Similarly,

a protein Y can receive on a and evolve to an active protein Y p, which can

send on d and evolve to Y . For the graphical representation, each shape

represents a protein in a particular state and each connected graph represents

the set of possible states of a given protein, where a labeled edge represents

an action that the protein can perform in order to change from one state to

another. Since Xp can send on a and Y can receive on a, the two proteins

can interact with each other and evolve to a new state simultaneously. The

model explicitly represents the fact that the Xp protein evolves to X and the

Y protein evolves to Y p after the interaction takes place. This contrasts with

the chemical reaction model, which does not explicitly state which product

comes from which reactant. Although we can guess by looking at the re-

actant and product names, we could equally well interpret the reactions to

mean that Xp becomes Y p and Y becomes X [73].

A detailed description of the Pi-calculus can be found in the literature

[48, 54, 55] or in the internet [5, 73].
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Part III

Results

6 Context-sensitive image analysis of single-cell

assay movies

�Any su�ciently advanced technology is indistinguishable from magic.� (Arthur

C. Clarke)

Improved microscope automation combined with an extended range of

novel �uorescent reporter proteins has boosted the amount of quantitative

image data in the life sciences. Through analysis of high throughput time-

lapse movies the course of �uorescence of thousands of cells can be assessed in

parallel and be compiled into a meaningful statistical distribution of dynam-

ical cell behavior. In the last years there has been rapid progress in the �eld

of examining the statistics of intra- and inter-cellular processes from investi-

gating the time-lapse studies on single cells. These e�orts have been reviewed

with a focus on the gene circuits in bacterial cells [42] and high-throughput

�uorescence imaging for genome studies [53]. Muzzy and van Oudenaarden

have emphasized the bene�ts of single cell measurements in contrast to bulk

experiments in time-lapse �uorescence microscopy [50]. However, for many

practical applications software is the limiting factor in image based data anal-

ysis. Surprisingly, since often obvious to the human eye, the task of assigning

and sorting cells from frame to frame is far from trivial for an algorithm. Cells

are highly dynamic objects. In particular eukaryotic cells often move fast,

attach and detach from each other and repeatedly divide during the time

interval of observation. Bacterial cells vastly proliferate and require a single

cell analysis to generate a lineage tree. Standard image analysis procedures

are not prepared to cope with longer time traces with discontinuities in the

cell tracks. False assignments may lead to signi�cant bias in the �nal data.

Furthermore �uorescent fusion proteins visualize a characteristic hetero-

geneous distribution of the tagged proteins within cells containing a mul-
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titude of informative details (high content) that one wishes to extract reli-

ably over time. An automated image analysis system needs to cope with all

types of cellular conduct and in equal measure is expected to deal with large

amounts of recorded data in adequate time.

Tasks of Image Analysis Software Two processes form the cornerstone

of image analysis: the recognition or segmentation of objects, which could

be cells, organelles, nano particles etc. and secondly the consistent tracking

of individual objects by frame to frame assignment. These tasks can become

complicated as cells undergo cell cycle induced changes such as cell division

or lysis. On top of these challenges inherent to all living cells, con�uent cells

in dense cultures frequently touch and separate again.

Previous Work Various automated image-processing systems have made

attempts at coping with these di�culties [42, 43]. Large-scale gene expres-

sion experiments deliver sets of movies containing a multitude of information

on the single cell level. In these experiments the cells produce �uorescent

reporter proteins, which allow segmenting and tracking [18]. Cell cycle in-

formation is being extracted from movies of bacterial colonies and reported

in the form of lineage trees [61, 62]. 'CellTracer' is a shot at integrating

basic segmentation and tracking algorithms into an easy-to-use framework

for single-cell assay analysis [13]. Two recent papers [32, 70] have thoroughly

treated the theoretical challenges innate to segmentation and tracking respec-

tively and exhibited two possible approaches to robustly tackle these. Serge

et al repeatedly loop the tracking step with a model-based segmentation to

subtract �rst the objects with high intensity and by and by the objects with

lower intensity. Jaquaman et al. introduced cost matrices from the inter

object distances in neighboring frames and solve them as a Linear Assign-

ment Problem. Still, work that regards cells in the context of their life cycle

and that speci�cally addresses problems such as cell division, lysis and con-

tact between neighboring cells remains circumstantial. A community-driven

e�ort towards an integrated single cell assay image processing toolkit helps

to address these challenges and to provide a basis for further developments.
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[42, 68].

6.1 Image Analysis Work-�ow

Figure 1 provides a schematic view on the image analysis work-�ow. The key

steps are (1) background correction, (2) segmentation (3) multi-parameter

tracking and (4) event management consisting of event detection, event clas-

si�cation and event handling. Event management recognizes tracking con-

�icts and may force the system to repeat the tracking routine (loop), until a

convergent model of all cell traces is found. Background Correction corrects

experimental movies using a reference background movie. Segmentation de-

tects contiguous, su�ciently bright areas as individual objects. The choice of

segmentation parameters critically determines the number of identi�ed ob-

jects and the quality of the following assignments. The following two steps

are the subject of this work. The identi�ed objects need to be connected in

time and assigned on a frame to frame basis.

Figure 5: Image Analysis Work-�ow consists of a) background correc-
tion to remove the e�ects of noise and inhomogeneous illumination. b) seg-
mentation based on density combined with a threshold condition. c) multi-
parameter tracking. d) representations of cells are checked for inconsistencies.
When events are found, they are used to improve the segmentation of the
involved cells and a new tracking is initiated. Cell division and cell death
events are stored and reported.

Calculation of a Reference Background

We assume that only a small fraction of the pixels of each picture is part of

a cell, the rest forms part of the background. We determine the background
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of the pixel at position xi and yj in slice k by calculating the median of all

values of Pixel(xi, yj, k) from all movies of the experiment. The quality of

this background movie increases with the number of movies that are grabbed

during the experiment. When too many bright pixels have been recorded,

typically more than a third, a reliable background cannot be calculated by the

median method. In these cases we use backgrounds that have been directly

measured. For all backgrounds, we do a smoothing with a Gaussian kernel.

Correct according to Reference Background

Original - File Corrected - FileBackground - File

a b c

Figure 6: Background correction background correction to remove the
e�ects of noise and inhomogeneous illumination.

The most prominent challenges in Background Correction are non-uniform

illumination of the view-�eld and background �uorescence of samples. Also

the background �uorescence is routinely �uctuating between snapshots. In

the background creation step, we have determined the most probable back-

ground �uorescence distribution. As this distribution depends on the il-

lumination, we de�ne an illumination factor fillu as the ratio between the

background for any pixel b and the mean background of the whole image

<b>.

The background values are normally distributed, so some values can be

very low or even zero. Therefore we have set an upper limit for this factor to

two standard deviations of the background value distribution. The resulting

pixel values pcorrected are then given by

pcorrected = pold ∗ fillu− < b >
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Segmentation

We detect �uorescent labeled cells using a density-based clustering algorithm

combined with a threshold condition. This algorithm assumes that a �u-

orescent cell has on average higher �uorescence intensity values than the

background. Bright pixels, with above-threshold brightness, are identi�ed

as part of a cell when more than n bright (above-threshold brightness) pix-

els in a distance not bigger than e are collocated. The parameters n and

e can be adjusted according to the size and density of objects that are to

be identi�ed; default is 8 points and distance 2.0 respectively. Neighboring

objects that ful�ll the density criterion are combined into a single object.

We use a density-based clustering algorithm combined with a threshold con-

dition [21] The ideal threshold condition has to be de�ned in the tension

zone between capturing small objects (low brightness value) and increasing

the contrast to separate adjacent cells (high brightness value). Therefore the

initial segmentation often yields objects which are not corresponding to the

actual cells in so far as they are either overly segregated or not detected at

all (over-segmentation) or neighboring cells are recognized as a single object

(under-segmentation).

6.2 Cell Tracking as Linear Assignment Problem

Tracking is the art of identifying individual cells and connecting them through

time. A typical assignment scenario consists of connecting objects from frame

n to frame n+1 whereby the objects in frame n+1 have changed their position,

shape, size and possibly their total number with respect to frame n (see Fig.

3a). Standard assignment algorithms for cell tracking typically rely solely on

the property 'position'. In our example, cell 1 in the third frame would be

connected to cell 4 in the fourth frame in �gure 3a. However, this is not the

only plausible assignment option in this case: the most reliable assignment

is marked by relative continuity in all cellular properties (Fig. 3b).

The tracking accuracy is enhanced by combining multiple parameters as

�uctuations in one parameter are counterbalanced by the others. For all

properties cost matrices are calculated by computing the di�erence between
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Figure 7: Combining cost. a) The costs for the individual parameters are
calculated and put in cost matrices. b) user-selected penalties constitute the
maximum of the allowed cost. c) matrix entries are normalized to mean 0
and standard deviation in their respective matrix. d) weighted matrices are
combined by superposition.
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Figure 8: Multi-parameter Tracking Panel a) shows typical snapshots
from single-cell time-lapse data, the colors of the cells correspond to the plots
in b-d. We compare the outcome of multi-parameter tracking (Panel b) with
distance-only (Panels c,d). The graphs in panels b-d show the assignment
costs for di�erent scenarios: in b) the costs are calculated by mixing the
costs of area (25%) and distance (75%) assignments, in c) the costs are 100%
distance-based. In d) costs are calculated as in b) (75% distance, 25% area):
while using the assignments established on the costs of distance-only as in
c).. Overshooting lines, i.e. costs above the threshold (red line), indicate
incorrect established connections. These connections, which only become
visible when using distance and area as tracking parameters, are illustrated
by changing graph colors in c and d. For more details see supplement.

property values on a log scale, except for the property 'position' where the

Euclidean distance between centers of mass is used. The resulting cost dis-

tributions are shifted to mean zero and divided by the standard deviation.

After this normalization we combine the di�erent assignment costs according

to weights provided by the user (explanation and �gure in the supplement).

This multi parameter approach increases the tracking robustness: �uctua-

tions in a single property are balanced by the others as the total �uctuation

is less than or equal to the sum of the �uctuations of the individual properties.

As proposed by Jaqaman et. al. tracking can be treated as a linear

assignment problem (LAP). A linear assignment problem is a mathemati-
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cal formulation of all sorts of cost minimization or maximization problems.

Here, we apply it to minimize the total connection costs for all cells between

individual frames of a time-lapse single-cell movie. The cost can either be

derived from a single parameter, most commonly `distance', but it is also

feasible to construct weighted mixtures of parameter values. To this end

we construct cost matrices for all parameters that have been chosen by the

user. These contain sub-matrices of actual costs, the penalties and a segment

consisting of zeroes. We mix these matrices in the following fashion: we cal-

culate individual mean and variance values of all cost sub-matrices. The

complete matrices are then normalized to mean 0.0 and variance 1.0. The

matrix elements ri,j of the resulting matrix are the sum of the products of

the entries of the parameter matrices p with their corresponding weights wp:

The resulting cost matrix can be evaluated with the regular LAP approach

which we solve by applying the Hungarian method [46].

6.3 Event Management and Event Detection

Multi Parameter Tracking exhibits robust tracking performance for large cell

numbers, however in cases where unambiguous assignment is impossible, it

returns indications for events (examples for events in Fig. 2). Dying or

dividing cells lack correspondents in their respective neighboring frames; in

long-time experiments cells frequently touch each other. These events en-

tail severe increases in cost for the a�ected cells, so-called singularities. The

cost for connecting the same cell through the stack is �uctuating over time,

therefore the user needs to provide con�dence intervals for the parameter

distributions to discriminate between merely elevated costs and proper sin-

gularities. Exceeding the con�dence interval of a single parameter does not

automatically indicate an event if the rise in cost is balanced by the other

parameters. Typical cost time lines are shown in �gure 3. We distinguish

between image analysis events which are due to inadequate image analysis

such as touching cells and cell cycle events as cell division and lysis.
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Figure 9: Schematic illustration of cellular contours and event types
During their lifetime cells might undergo cell cycle events or cause image
analysis events. Cell cycle events are endemic to cells, whereas image anal-
ysis events originate from shortcomings in the imaging process: I)Transient
Contact: Cell 1 and 2 apparently fuse to become cell 8 (�touch�), which than
splits into the cells 9 and 10 (�go�). II) Asymmetrical Contact: The small
cell 5 gets seemingly eaten by the big cell 4. III) Contour Fusion: Same mo-
tif as Transient Contact, but cell 8 cannot be separated into two parts. IV)
Boundary Losses: Cell 7 leaves the window of observation. V) Cell Demise:
Cell 6 disappears due to lysis. VI) Cell-Division: Cell 3 divides into two
daughter cells, 11 and 12.

6.4 Classi�cation and Handling of Image Analysis Events

An object exhibiting unusual deformation (compare to shape 8 in Fig. 2b)

causes a peak or singularity in costs. This object could represent any of the

three following situations: a) mitosis, b) a �uorescent cell that is squeezed by

non-�uorescent neighbors or c) two cells that are transiently in contact. We

will, for now, focus on ambiguities that we can, in principle, resolve by image

analysis means (case c) ). When also considering the neighboring frames in

our example it becomes evident that two cells have touched and separated

(Figs. 2a and 2c). Generally, the tracking step brings segmented objects

into a temporal context and starts event handling for all singularities. The

contextual information around these objects is utilized to classify and handle

all events. We employ the following characteristics for the classi�cation of

four image analysis event classes:

� Transient contact or touch-and-go: two or more cells are separate from

each other in a given frame and then apparently fuse with each other

leading to segmentation as a single cellular shape. They may split into
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separate shapes at a later time again. They are detected, when several

time series end in the same vicinity (de�ned by mean cell radius) and

di�erent time series start in the same area in the following frame. Both

sets need to be completely disjunctive. This approach may lead to a

detection of too many events. Even so, during the resolving step of

touch-and-go events, a check is performed to prevent errors (details

below).

� Asymmetrical contact or eaten-cells : one or more small cells get seem-

ingly eaten by a bigger neighbor. This fusion of cell shapes is segmented

into a single shape which is being tracked to the bigger cell. They may

split into separate shapes at a later time again. They are detected,

when at least one time series ends in the vicinity of a continuously

tracked cell. This approach may lead to a detection of too many events

as it is well possible that the smaller cell has undergone lysis. Even so,

during the resolving step of touch-and-go events, a check is performed

to prevent errors (details below).

� Contour fusion or simply fusion: Same motif as transient contact or

asymmetrical contact, however it is impossible to �nd a division line

between cells. E�ectively, this is reported when the algorithm failed to

automatically divide cell shapes after a transient contact or asymmet-

rical contact. The cause may either be that the event was erroneously

detected (a cell has simply died) or that the cell resolving failed.

� Boundary losses or borderline cells : cells leave the window of observa-

tion.

Event handling for Image Analysis Events

Once the type of an event is established, the algorithm takes the appropriate

action: traces of cells that undergo a borderline event are terminated at the

time they reach the border, cells that are touching each other (touch-and-go,

eaten cell) are automatically segmented (see below). However, sometimes

touching cells cannot be separated because their brightest spots are too close
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to each other. These seemingly fusing cells are also cut short to the time

point when the event occurred.

6.5 Automatic distinction between touching cells

Cells that are transiently in contact are automatically separated. The area of

the object that should be separated is divided into clusters which are grown

from the centers of the separate cells in the previous frame. To decide the

order (and implicitly the target cluster) in which to assign the pixels, we

calculate a score for all pixels of the original compound area

Score(p) = brightness(p) ∗ dcenter
size ∗ log(size)

The score is a measure for assigning pixels to the cells that were visible in

the previous frame. Brightness is cluster-assignment-invariant, but including

it in the score leads to formation of the separated cells around their most

�uorescent areas, which typically correspond to their centers. When one of

the touching cells is much brighter than the other, it may happen that it `eats'

into the other. We counterbalance this tendency by including a distance/size

factor. Pixels at the border of the cluster are sequentially added when their

score is higher than that of all pixels at the border of the other cluster(s). By

repeating this procedure until all pixels of the original shape are distributed,

two (or more) new cells are formed in the area of the old shape; the procedure

and the result are similar to those of the watershed algorithm. This method

also works well for more than two cells. Automatic separation of cells helped

to reduce the fraction of erroneously-tracked cells by 56%. In gene expression

experiments with eukaryotes the delayed onset of expression is both a blessing

and a curse: on the one hand, information about movement and location of

a cell is only available for �uorescent cells. On the other hand an additional

criterion, the onset time, can be used to distinguish between neighboring cells

(touch-and-go, eaten cell). If cells appear totally separated in at least one

image prior to their `merging' we can automatically separate both (or more)

cells by using past information such as size and position in the respective
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last image and iterate until the con�ict is fully resolved. In a sample gene

transfection experiment, we obtain 86 valid cellular time series by automatic

evaluation, a result that surpasses the 68 cell traces that are retrieved from

the same movies using standard LAP tracking. We ascribe this increase to

the automatic separation of touching cells, which were mostly discarded by

the human evaluator. Even more important to the researcher than the 27%

of additional traces is a relief from repetitive-strain-injury inducing manual

evaluation.

Context-based �ltering of healthy cells

Contextual information allows the selection of cells that ful�ll well-de�ned

criteria, such as `contact-free' and `only after �rst cell division' combined with

standard conditions such as `only cell traces that exceed any given length'

etc. The combination of context-aware �ltering with classical quality �lters

yields a reliable, objective set of single-cell traces that obviates the need for

manual selection with its associated problems, such as inherent user-speci�c

subjectiveness and individual quality thresholds. In particular, it saves quite

a lot of valuable time in between the modeling-experimental iterations.

Classi�cation of cell cycle events

In live-cell cultures, cells regularly divide and die. We employ the following

characteristics to discern between the life cycle events mitosis and lysis and

the previously discussed image analysis events. Life cycle events are reported

for later evaluation and analysis.

� Cell lysis: Cells exhibit an increase in size while their �uorescence in-

tensity declines before they disappear from view. Often, this is accom-

panied by a seeming division into multiple daughter objects or simply

a lack of the corresponding cell in the following frame which is how we

detect these lysis events.

� Cell division: Cells divide into two approximately equally sized daugh-

ter cells.
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Bookkeeping of cell cycle events Event handling or bookkeeping of life

cycle events) The algorithm does bookkeeping for all cell division and cell

death events. All recorded events can be analyzed to create statistics about

cell deaths, average cell life spans, etc. or to correlate the behavior of cells

with the behavior of their daughter cells. We collect all cell division events

and report them as lineage tree (see Fig. 5b). This tree has proven to be

useful for evaluating the resulting data with special regard to the propagation

of noise over multiple cell generations and the dispersion time of cell cycle

synchronicity.

6.6 Discussion

There are two major tasks in image analysis: segmentation and tracking.

We have added contextual event handling to this list. The detailed han-

dling of events together with a re�ned tracking algorithm enables a reliable,

adaptable and fully automatic approach to high-throughput single-cell time-

lapse analysis. It has been shown [32] that tracking of individual cells can

be solved robustly by treating it as a linear assignment problem. We have

extended this approach by introducing compound cost matrices, which can

be constructed from various properties with individual weights. During the

testing and application of the algorithm it has become clear that a 90%

bias towards distance yields accurate tracking results in typical single-cell

applications while the remainder is enough to balance ambiguous positions

of the cells. These cost matrices contain singularities when cells show any

form of unsteady behavior; we have developed an event handling algorithm

which detects, classi�es, resolves and reports events such as cell division, cell

death and transient contact behavior of cells. Our method uses contextual

information to automatically distinguish between con�uent cells enabling a

higher ratio of healthy cells than is possible with manual evaluation which

becomes tedious for large amounts of cells in long-time experiments. Improv-

ing the scrap rate and having an objective measure for healthy cells reduces

the probability of introducing a bias in the experimental results. We have

demonstrated the feasibility and �exibility of our method on several di�erent
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biological questions[30, 4, 49] that have been analyzed with a problem spe-

ci�c choice of parameters. The modular software reference implementation

additionally provides a semi-automatic and a fully manual mode for hard,

non-automatable problems. We think that these characteristics make our

software a suitable platform and starting point for an organized community

e�ort towards the common goal of developing more general-purpose and user-

friendly solutions to the image analysis challenges in single-cell imaging [42].

A publication on this algorithm is currently in preparation.
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7 Gene Expression in non-viral Gene Transfer

Non-viral gene delivery systems have evolved over the last decade into widely-

used vectors for exogenous DNA delivery to eukaryotic cells. Synthetic

cationic lipids and polymers, in particular, are used in molecular biology

for transgene expression, and are being further re�ned for use in DNA-based

therapies [22, 63, 51]. Despite considerable progress in the e�ciency and

characterization of vectors, important aspects of the delivery pathway and

transfer kinetics remain poorly understood, including how arti�cial vectors

are taken up, transported to the nucleus, and how these factors collectively

in�uence the expression characteristics of a cell population. Current under-

standing from intracellular studies of transgene delivery includes the following

steps: DNA-vector complex uptake via the endosomal pathway, followed by

endosomal escape and cytoplasmic transport, nuclear entry, vector unpacking

and transcription initiation [83, 63, 38, 15, 65, 76]. These processes are ac-

companied by a huge loss of material and temporal delays. It is therefore not

surprising that transfected cells in a culture respond very heterogeneously

over time, notably in terms of the expression onset time (ton) and the max-

imum expression levels attained. Cell culture-averaged expression levels are

reliable indicators of gene transfer e�ciency, but the expression behavior of

a single cell is stochastic.

We used quantitative single cell time-lapse microscopy combined with

mathematical modeling to analyze the variability in transgene expression (see

Fig. 10). From the synthetic vectors currently being evaluated for therapeu-

tic use, we chose polyethyleneimine (PEI) [9] and the commercial Lipofec-

tamine 2000, as cationic polymer and lipid model systems, respectively. Both

synthetic vectors are able to condense plasmid DNA into DNA-nanoparticles,

denoted as cationic lipid- (cationic polymer-) DNA complexes or just "com-

plexes". Distributions of the expression onset times and expression steady

state levels were evaluated for both vectors. Data are well described by a

stochastic delivery model, which is based on the assumption that in a de-

cisive step, only a small number of complexes enter the nucleus through a

stochastic process. Out of these complexes, only a fraction of the plasmid
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Figure 10: Experimental setup for single cell transfection experi-
ments (upper part) and key elements of the theoretical model (lower
part). EGFP-encoding plasmids and cationic agents form complexes, which
are administered to eukaryotic cell cultures. Automated single cell mi-
croscopy yields statistics on phenotypical expression of EGFP. For the de-
livery of plasmids to the nucleus, stochastic e�ects are important, while the
following expression of �uorescent proteins can be described in a determin-
istic fashion.

load is expressed (Fig. 10). The theoretical model is further corroborated

by a co-transfection analysis, i.e. the case of the simultaneous transfection

using two distinguishable plasmids encoding for CFP and YFP.
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7.1 Time lapse microscopy and single cell EGFP expres-

sion

Human lung epithelium cells were transfected with plasmids encoding green

�uorescent protein (EGFP). We denote with t0 the time when the complexes

were added to the cell culture. Single-cell EGFP expression was followed by

imaging 25 view �elds of the cell culture in 10 minute intervals. Fig. 11a)

shows a sample images from the sequence of a Lipofectamine transfection

experiment, including the initial bright-�eld image, that is used to obtain

ratios of transfected cells. These images exhibit heterogeneity in the gene

expression onset times as well as in the maximum expression levels. It is

observed that the ratio of transfected cells increases with time, reaching a

level of approximately 23% and 30% for PEI and Lipofectamine-mediated

transfection, respectively. Between 500 and 1500 cells were observed in a
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Figure 11: Acquisition of single cell time series. a: Microscopy view
�elds from a Lipofectamine transfection experiment. The �rst frame is a
bright �eld (BF) control image. Fluorescence image sequences are taken
automatically at 10-min intervals for at least 30 h. b: De�nition of regions of
interest (ROIs), total gray value measurement and conversion to the number
of EGFP molecules. c: Representative time-courses of EGFP expression
in individual cells following PEI-transfection. The population average (red)
is plotted to demonstrate its linear increase in contrast to the sigmoidal
shape of the individual traces. d: Characteristic parameters of expression are
obtained by �tting the heuristic function 1 (red) to the recorded �uorescence
time course (black). The time of expression onset, ton, is calculated from
the time of half-maximal expression t1/2 and the slope at that point.
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single experiment. Fig 11C shows some representative time traces from

one Lipofectamine transfection experiment. The graphs re�ect the hetero-

geneity in onset time and expression level. The typical sigmoidal shape of

the �uorescence time courses is phenomenologically described by the tangens

hyperbolicus function,

I(t) =
Imax

2
[1 + tanh(

t− t1/2
trise

)], (1)

This formula gives an estimation for the maximum expression level (Imax)

the time of the steepest increase (t1/2) and the characteristic rise time. Note,

that the di�erence betweent1/2 and trise yields a good estimate for the expres-

sion onset time. The phenomenological �t to the data works robustly with

automated data analysis and facilitates the quick generation of statistics for

large numbers of cells.
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7.2 Modeling steady state gene expression

RNA Unf. GFP GFPX (plasmids)
sA sP kM

δ
R

δ
U

δ
G

P(X)P(c)

qµ m

A

B

Figure 12: Theoretical model for transfection and gene expression .
a: Our model of plasmid delivery consists of several stochastic components.
The number of complexes C delivered per cell is Poisson-distributed, with
mean m. Each complex carries a random number of plasmids, described by
a Poisson distribution with mean m. Finally, each plasmid has an activa-
tion probability q, resulting in a Binomial distribution of active plasmids
X out of the total number of delivered plasmids. With this approach, the
overall distribution, P(X), of actively expressing plasmids can be derived. b:
Deterministic model of EGFP expression including transcription (sA), trans-
lation (sP ) and protein maturation (kM). mRNA (R), unfolded proteins (U)
and GFP (G) are degraded with rates δR, δU and δG, respectively. Solving
the corresponding rate equations, the steady state distribution of �uorescent
proteins, P(G), can be related to that of active plasmids, P(X).

We introduce a deterministic mathematical model that describes EGFP

expression after nuclear translocation and activation of a single plasmid.

Stochasticity due to nuclear translocation of the plasmid complexes and the

intra-nuclear activation gives rise to a probability distribution P(X) for X suc-

cessfully expressed plasmids (see Fig. 12). The subsequent EGFP expression

is derived according to the central dogma of cell biology and supplemented

by the GFP maturation process as depicted in �gure 12b. The ensuing rate
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equations describe the expression processes.

Ṙ = sAX − δRR (2)

U̇ = sPR− (kM + δU)U (3)

Ġ = kMU − δGG (4)

Here R denotes the number of RNA molecules, U the number of unfolded

polypeptide chains, and G the number of folded EGFP proteins. sA, sP
and kM denote the rate constants for transcription, translation and EGFP

maturation and δR, δU and δG the degradation constants of each product,

respectively. The degradation rates of folded (δG) and unfolded protein (δU)

are assumed to be equal, since the same proteases are involved [40]. Plasmid

degradation is negligible in the time frame considered [75]. When solving the

equations 2-4 we obtain a linear relation for the steady-state

Imax = G(t→∞) =
kMsP sA

δG(kM + δG)δR
X (5)

between the number of plasmids and the expressed EGFP proteins is

obtained.

G(t→∞) = X ∗ kexp (6)

Here, kexp comprises all rates in formula 5 into a single expression fac-

tor, corresponding to the number of proteins expressed per transcribed plas-

mid.With the values given in table 1 in the Appendix and used throughout

this thesis we obtain kexp ≈ 4.0 ∗ 106 proteins/plasmid. Since this is of the

same order of magnitude as the experimentally estimated values for Imax, the

number of transcribed plasmids must be of order one. Ignoring �uctuations

in gene expression, it can be deduced from these �ndings that the distribu-

tion of steady-state protein numbers is non-zero only for multiples of kexp,

where it takes the values of P (X) = P (G = X ∗ kexp) and 0 elsewhere.

These conclusions are supported by an experiment where the expression
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factor kexp is modi�ed through the use of destabilized EGFP. It has a 14-fold

higher degradation rate due to an additional amino acid sequence (PEST),

which makes it more susceptible to proteolysis [45].
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Figure 13: EGFP expression statistics for PEI- and Lipofectamine-
mediated transfection. Distributions of expression onset times ton (a and
b) and maximal expression values Imax (c and d), for PEI-mediated (red)
and Lipofectamine-mediated (dashed black) transfection depict strong vari-
ability within the cell cultures. The total number of expressing cells was
23% out of 560 for PEI and 30% out of 502 in the case of Lipofectamine. b
and d: Thymidine kinase-synchronized cultures with 40% out of 1981 and
30% out of 1797 cells expressing EGFP for PEI and Lipofectamine, respec-
tively. For synchronized cells, expression onset time distributions coincide for
Lipofectamine and PEI, indicating that transfection is more likely to happen
in speci�c phases of the cell cycle. Distributions for Imax (given in units
of EGFP molecules) cannot be explained by post-transfectional sources of
�uctuations alone. e and f: E�ect of the altered expression rates on the
distribution of maximal expression levels Imax. Distributions for d2EGFP
(gray) and EGFP (red) transfected with Lipofectamine (e) or PEI (f) are
shown. d2EGFP, which has a higher degradation rate, exhibits a systematic
shift of the Imax distribution compared to EGFP, independent of the vec-
tor used. Besides this shift, a change in the number of proteins per active
plasmid, kexp, preserves the shape of the distribution. This suggests that the
shape is determined during plasmid delivery prior to expression.

Figures 13e,f display the shift in the steady state distribution of Imax,

shown in a logarithmic scale. As predicted above, the shape of the distribu-

tion function remains largely unchanged for both, PEI- and Lipofectamine-

mediated transfection. In addition, the peak positions shifted by a factor

12.5, which agrees with the value 14.3 predicted from equation 5. These
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�ndings suggest that the term transfection e�ciency, which generally refers

to the �uorescence or luminescence intensity of a cell culture population really

should be interpreted as the product of �expression e�ciency� and �delivery

e�ciency�, where the delivery e�ciency is equivalent to the average number

of plasmids delivered and activated. The expression e�ciency is the copy

number of proteins resulting from a single activated plasmid in the steady

state, it is here given by kexp.

This theoretical model predicts a discrete, integer distribution of plasmids

X, which corresponds to discrete expression levels Imax separated by the

expression factor kexp. There is, however, additional �post-transfectional�

noise that masks the discreteness of plasmid numbers. The most important

ones are cell-cell variability (extrinsic noise), stochastic �uctuations in the

involved chemical reactions (intrinsic noise), and experimental e�ects (such as

image processing errors and limitations in measurement accuracy). Intrinsic

noise in the expression process can be estimated to be less than 1% from

equations 2-4 and following a formalism developed in [77]. Experimentally

determined �uorescence time courses regularly show deviations beyond 1%

indicating that extrinsic �uctuations dominate post-transfectional noise, as

is expected for biochemical processes with high copy numbers of involved

proteins. In a kinetic rate model, extrinsic noise corresponds to a variability

in the rates.
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7.3 Analyzing the Distribution of Proteins

The protein number distribution P(G) inherently carries the signature of the

associated plasmid distribution P(X). Ignoring intrinsic and extrinsic noise

in gene expression the mean number of proteins can simply be computed

from the distribution of plasmids equation 15 and the expression factor:

〈G〉 = kexp 〈X〉 = kexpµmq (7)

The mean protein number can be obtained from single cell statistics. Ad-

ditional relations are found between the parameters in Eq. 7 by evaluating

how the percentage of non-�uorescent cells, p0 depends on them. p0 is identi-

cal to the percentage of cells with no activated plasmids in Eq. 15 in chapter

8 or 1- TR, where TR is the transfection ratio.

p0 := Prob(X = 0) = exp
{
µ(e−mq − 1)

}
(8)

Eliminating µ from Eqs. 7 and 8, and with rearrangements, one �nds

αeα = wew

where α := 〈G〉
kexpln p0

and w := mq + α. Solving this equation for w gives

the Lambert W-function. Hence,

meff := mq = LambertW (αeα)− α

which only depends on measurable quantities and kexp. Fitting the ex-

pression factor as the only free parameter, m and meff can be determined

from single cell data. The distribution of proteins then follows by stretching

the distribution of plasmids according to Eq. 6. As argued above, theory

predicts discrete protein distributions, with peaks spaced by kexp. Of course,

there are additional noise sources like all post-transfectional �uctuations and

limited measurement accuracy. To compare theory with experiment, we re-

placed the peaks of the discrete protein distribution by Gaussians with the

same area and a standard deviation of 0.3 of each peak's position to approx-

47



imate extrinsic noise. Figure 14 shows the complex, plasmid and protein

distributions for four sets of single cell data obtained from this theory.

7.4 Fit to experimental data yields expression factor

and e�ective cargo size
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Figure 14: Comparison of single cell data with the theoretical model.
The theoretical EGFP distribution (black) is intimately connected with the
underlying distribution of expressing plasmids (red). To facilitate compari-
son, the protein distribution has been scaled down by the average number of
proteins per active plasmid in steady state, kexp. For synchronized cultures
(A and B) the measured protein distribution (green) is �tted very well by
our theoretical model (black). The �t for PEI transfection (A) yields an
average number of delivered complexes, µ = 0.53, and an average number of
activated plasmids per complex, meff = 3.2. In case of Lipofectamine (B),
we �nd µ = 0.37 and meff = 3.2. For non-synchronized cultures (C and
D) the agreement is less pronounced as a result of the strong extrinsic noise
resulting from cell cycle-dependent gene expression.

These theoretical results can now be compared with the experimental

data for the measured Imax�distribution for Lipofectamine- and PEI- medi-

ated transfection in synchronized and non-synchronized cell culture. Fig. 6

shows the calculated distribution of activated plasmids, P(X), as red bars

and the resulting protein distribution, P(G), as black lines. P(G) is obtained

from P(X) by additionally accounting for noise in gene expression, where we
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have used a relative magnitude of 0.3 for post-transfectional noise from the

literature (see above). The corresponding experimental distribution of the

�uorescence intensity is shown as green lines. Note that these �ts use only

one free parameter, since our model yields �xed relations between the aver-

age number of complexes (µ), the average number of successful plasmids per

complex, and the expression factor (kexp). We obtain kexp ≈ 1 ∗ 106, meff

≈ 3, and µ ≈ 0.3-0.5. The EGFP-distribution of non-synchronized cells is

not as well-�tted, indicating that the probability of successful gene delivery

might evolve with time. Interestingly, independent data on the number of

plasmids per complex from �uorescence correlation spectroscopy (FCS) ex-

periments [14] has a comparable meff (≈ 3) for PEI complexes. We have

independently determined the number of plasmids per complex using FCS,

yielding 5-6 for PEI and 2 for Lipofectamine under low salt conditions. The

model gives an expression for the mean number of activated plasmids, which

appeared in Eq. 6:

[plasmid] = µmq (9)

Another quantity of interest is the total transfection ratio, TR, de�ned as

the percentage of cells expressing one or more plasmids, which can easily be

determined experimentally by counting the number of �uorescent cells. Our

theoretical model gives an exponential dependence of this e�ciency

TR(µ,m, q) = 1− exp {−µq̄} (10)

on average number of complexes delivered, m, multiplied by the e�ective

probability, q̄ := 1− e−mq, that from a given complex at least one plasmid is

successfully expressed.
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7.5 Discussion

The distribution of expression onset times and steady-state expression levels

derived from single cell �uorescence time courses have been measured. Onset

times collapse on a single curve for synchronized cell cultures for PEI and

Lipofectamine, showing that gene transfection is strongly cell cycle depen-

dent. The observed broad distribution in expression levels was analyzed in

terms of a theoretical model of gene delivery, which describes the delivery

process as a multi-step stochastic process and the subsequent expression in

terms of deterministic rate equations. This model, which is fully consistent

with our data, suggests that noise in transfection is due to small number

�uctuations intrinsic to the delivery process. Furthermore, it allows us to

infer the expression factor and other parameters like the number of acti-

vated plasmids per complex or the average number of delivered complexes

from the measured single cell statistics. Our co-transfection analysis under-

lines the notion that plasmids enter the nucleus in complexes, and not as

isolated plasmids. Microscopy studies have argued favorably for complexes

being present at the �nal delivery stage [78, 41]. However, single nuclear en-

try events have not been documented explicitly. In this work, we indirectly

determine the average number of successful complexes and the e�ective num-

ber of activated plasmids per complex by employing our theoretical model

for the analysis of single cell statistics. Cationic-lipid complexes are known

to form multi-lamellar aggregates that contain a large number of plasmids

[37, 60, 88]. However, following endocytosis and the endocytotic release the

complexes slowly dissociate in a stepwise, unwrapping mechanism [41, 33].

PEI complexes have been seen to be actively transported inside cells [15] and

to accumulate in the periphery of the nucleus [76]. Both scenarios describe

a situation where numerous small complexes have equal chances of entering

the nucleus during the course of mitosis, which is consistent with our model

assumptions. The probability of transgene expression in the nucleus again

depends on the nature of the transfection agent, with cationic lipid com-

plexes being less e�cient compared to PEI complexes [58]. In general, our

results show that from high content statistical analysis of gene expression
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details of the mechanistic pathway of transfection can be inferred. It will be

interesting to compare our results directly with high resolution studies of the

intracellular pathway in single cells [15]. Automated microscopy might also

prove powerful for routinely measuring transfection e�ciency, which allows

to distinguish the probability of successful plasmid delivery and activation

(P(X)) from the deterministic expression factor (kexp). Furthermore, analysis

of expression onset times enables one to give a highly sensitive quanti�cation

of the delivery kinetics and e�ects of procedures such as cell cycle synchro-

nization. We expect that our mathematical model can be adapted to a wide

class of transfection agents and cells, for which the numerical estimates of

probabilities, rate constants and number of e�ective complexes vary. Quanti-

tative comparison of transfection experiments and theoretical modeling will

become useful in the identi�cation of rate-limiting barriers to gene transfer,

and will result in improved data comparability, making it a versatile tool

in the continuous evaluation and improvement of existing synthetic vectors.

This work has been published [69].
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8 Co-Transfection indicates correlated delivery

A key assumption of the stochastic delivery model in the previous chapter is

that gene delivery complexes contain several plasmids and that as a conse-

quence the expression of plasmids released from the same complex should be

correlated. To validate this, we designed a two-color co-transfection exper-

iment. We prepared pre-mixed or post�mixed complexes containing distin-

guishable plasmids encoding for CFP and YFP, which allow the assessment of

correlations in the plasmid delivery (for details, see supporting information).

Pre-mixed complexes contain CFP- and YFP-plasmids in a single complex,

whereas post-mixed complexes contain either CFP- or YFP-plasmids (Figs.

15A and 15B). Steady-state values were analyzed at 24h post-transfection,

when the total number of transfected cells is not expected to increase any

further. As shown in two-color micrographs (Figs. 15C and 15D), and the

corresponding histograms (Figs. 15E and 15F), pre-mixed complexes exhibit

a higher probability of CFP/YFP co-transfection than post-mixed complexes.

This indicates that plasmids originating from the same complex are delivered

collectively. Plasmids appear to be delivered in packages and the transfection

probability of plasmids within one complex is correlated. In more quantita-

tive terms, we can de�ne a co-transfection ratio, r, as the probability of

�nding a cell expressing both CFP and YFP divided by the probability of

�nding a cell expressing either CFP or YFP. An analytical expression for the

co-transfection ratio in the cases of pre- and post-mixed complexes can be

derived. We have put these �ndings into a stochastic Pi-calculus model, that

reproduces the color distributions found in the experiment.
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Figure 15: Correlated delivery in CFP/YFP co-transfection with
post-mixed (uni-colored) complexes (left) and pre-mixed (dual-
colored) complexes (right). (A, B) Post-mixed (uni-colored) and pre-
mixed (dual-colored) complexes carry di�erent plasmid content, but take the
same pathway to the nucleus. (C, D) Superposition of CFP and YFP �uo-
rescence after transfection reveals a qualitative di�erent expression pattern
for the two distinct experimental protocols. Cyan �uorescence is slightly dis-
placed to permit identi�cation of co-transfected cells. All micrographs are
arti�cially colored. (E, F) Percentage of cells expressing only CFP (blue),
only YFP (yellow), and cells expressing both proteins (brown). Results for
PEI- and Lipofectamine-mediated cells are shown in strong and soft color,
respectively.

8.1 Deriving relevant probabilities for plasmid (co-)transfection

The variance in the steady-state EGFP copy number distribution is primarily

given by the number �uctuations of plasmids delivered, which result from

the underlying stochastic transfection process. The transfection experiments

inherently deliver a variable copy number of plasmid DNA per complex. As

pointed out above, gene expression has very low noise and can very well

be described with deterministic rate equations, whereas the gene delivery
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process has to be described stochastically.

In a simplistic gene transfection model, delivery is essentially described

as a two step process (Fig. 12a): nuclear translocation of plasmid complexes,

with probability m, and intra-nuclear activation of plasmids, with probability

q. In addition, the distribution of plasmids per complex is assumed to be

Poissonian with mean m. The the probability distribution P(X) of activated

plasmids is the result of successive stochastic events. Complexes are delivered

to the nucleus by rare and statistically independent events, yielding a Poisson

distribution for the number C of delivered complexes

P (C) =
µC

C!
e−µ (11)

characterized by its mean number µ. Together with the distributions of

plasmids per complex this results in an overall distribution of plasmids in

the nucleus.

Probability distribution of active plasmids per cell Independent ac-

tivation of each of these plasmids is a Bernoulli process with success proba-

bility q. The probability P(X) of �nding X plasmids expressed in a given cell

can be computed from a convolution of all underlying stochastic processes

that occur prior to transcription initiation. Supposing X plasmids have been

activated, then n ≥ X plasmids �rst had to be delivered to the nucleus, with

a probability q for each plasmid to be expressed. This results in a binomial

distribution with sample size n and parameter q:

P (X|n) =

(
n

X

)
qX(1− q)n−X (12)

Two relevant stochastic processes determine the number of delivered plas-

mids n, namely, the number of complexes C that arrive in the nucleus, and

the number of plasmids in a given complex. Poisson distributions are assumed

for both, with means m and m, respectively. Summing over all possibilities,
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gives the distribution

P (n) =
∞∑
C=0

µC

C!
e−µ

∞∑
n=0

(Cm)n

n!
e−Cm (13)

for n. Here it was used that the convolution of C Poisson distributions,

each with mean m, is again a Poissonian with mean C�m. Considering the

previous two equations the overall probability of having X active plasmids is

P (X) =
∞∑
n=0

P (X|n)P (n) =
∞∑
C=0

µC

C!
e−µ

∞∑
n=0

(Cm)n

n!
e−Cm

(
n

X

)
qX(1−q)n−X

(14)

By interchanging the order of summation, shifting summation indices

and using the normalization condition of the Poisson distribution, this can

be rewritten as

P (X) =
(mq)X

X!
e−µ

∞∑
C=0

(µe−mq)C

C!
CX (15)

Summing from X=1 to in�nity yields the transfection probability

TE := Prop(X > 0) = 1− exp{µ(e−mq − 1)} (16)

Co-transfection probabilities Of interest are the number of cells that

are either monochromatic, dichromatic or not �uorescent at all. To compute

the probabilities for each, a sum over all possible plasmid numbers X has

to be evaluated, with each term in the sum weighted with the probability

of activation of zero, one, or two species, depending on the case being con-

sidered. If there are i plasmids of one color in the nucleus, the probability

that none are activated is (1-q)i, while the probability that at least one is

activated is 1-(1-q)i. The two di�erent co-transfection experimental setups

namely pre-mixing and post-mixing are explained in the Material and Meth-

ods section. For uni-colored complexes (post-mixing), the total number of

complexes can be subdivided into complexes of either color, yielding a bi-

nomial term in the complex number. Thus, for example, the probability of
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having non-�uorescent cells (not (CFP OR YFP)) is given by

Probpost(¬(C
∨

Y ) =
∞∑
C=0

µC

C!
e−µ

∞∑
k=0

(
C

k

)(
1

2

)C ( ∞∑
i=0

(km)i

i!
e−km(1− q)i

)
∗

∗

(
∞∑
i=0

((C − k)m)i

i!
e−(C−k)m(1− q)i

)
(17)

In the case of dual colored complexes (pre-mixing), the total number

of plasmids is binomial distributed between YFP and GFP, such that the

probability of �nding, for example, dichromatic cells (CFP and YFP) is given

by:

Probpre(C∧Y ) =
∞∑
C=0

µC

C!
e−µ

∞∑
n=0

(Cm)n

n!
e−Cm

n∑
i=0

(
n

i

)
(1−(1−q)i)(1−(1−q)n−1)

(18)

Similar expressions can be found for all other cases. From these expres-

sions, it is easy to compute the co-transfection ratio,

r(µ,m, q) =
Prob(c ∧ y)

Prob(c ∨ y)
=

Prob(c ∧ y)

2Prob(c ∧ ¬y) + Prob(c ∧ y)
(19)

Fig. 16 is a representative result for the co-transfection ratio, r as a

function of the transfection ratio, TR, for pre- and post-mixed complexes.

Our model predicts that co-transfection is enhanced in pre-mixed complexes,

and that the probability of co-transfection approaches 1 as TR approaches

100%. This is consistent with experimental results. The result in Fig. 16

is particularly relevant in experiments, since one relies on co-transfection for

the simultaneous delivery of two di�erent plasmids.
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Figure 16: Co-Transfection probability. The probabilities of �nding a
bichromatic �uorescent cell as function of transfection e�ciency, when com-
plexes contain only a single type of plasmid (red) or when plasmids are mixed
before complexation (blue). The transfection e�ciency is also plotted for ref-
erence (dotted black line).
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8.2 A Pi-Calculus model of plasmid co-transfection

To corroborate these results we present a model of gene delivery and expres-

sion by co-transfection. This model includes complex formation from red and

green plasmids (the plasmids are obviously not red and green themselves but

encode the red and green variety of �uorescent proteins.), the main stages of

transfection and a detailed view on mRNA degradation including stepwise

shortening of the poly-A tail (Fig. model) that will be introduced in detail

in chapter 10.

This model can be formalized into Pi-calculus syntax, the graphical rep-

resentation is shown in Fig 17. The process C(g,r) represents a complex of

g green plasmids and r red plasmids, where g,r are numbers. A complex can

grow in size by receiving the numbers g´, r´ on channel bind and adding

these to g, r respectively. Alternatively, it can bind to another complex by

sending the numbers g, r on channel bind. At any stage a complex C(g,r)

can enter the cell, represented by an enter reaction to DC(g,r). The rate

of entry is proportional to the square of the size of the complex, where the

size is given by the total number of red and green plasmids g + r. Once

translocation has occurred, the resulting complex of plasmids ENC can dis-

sociate into individual green (ENG) or red (ENR) plasmids, one at a time.

We model this using an unbind reaction, which removes a red or green plas-

mid from the complex. The unbinding rate is proportional to the number of

red or green plasmids, respectively. The gene expression of plasmids involves

the transcription of plasmids into mRNA and the translation of mRNA into

proteins. The degradation of mRNA is a 170-step process which we model

as a single reaction with an Erlang distribution. The green plasmids produce

green �uorescent proteins (GF P ), while the red plasmids produce red �u-

orescent proteins (RF P ). The SPiM code for the model together with its

parameters is given in Appendix A. The individual plasmids stochastically

bind together to form complexes of di�erent sizes, which then enter the cell

and move towards the nucleus. Entire complexes can be degraded while in

transit. Once they reach the nucleus the complexes unbind, releasing their

plasmid cargo, which is then transcribed to produce red or green �uorescent
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Figure 1: A stochastic pi-calculus model of plasmid
co-transfection.

mids ENC can dissociate into individual green (ENG) or
red (ENR) plasmids, one at a time. We model this using
an unbind reaction, which removes a red or green plasmid
from the complex. The unbinding rate is proportional to
the number of red or green plasmids, respectively. The gene
expression of plasmids involves the transcription of plasmids
into mRNA and the translation of mRNA into proteins. The
degradation of mRNA is a 170-step process which we model
as a single reaction with an Erlang distribution. The green
plasmids produce green fluorescent proteins (GFP ), while
the red plasmids produce red fluorescent proteins (RFP ).
The SPiM code for the model is given in Appendix A.

Fig. 2 shows the results of simulating the model of Fig. 1,
using the generic abstract machine instantiated with the
non-Markovian stochastic pi-calculus. The model paramet-

Figure 2: Simulation results of the plasmid co-
transfection model of Fig. 1, where the horizontal
axis represents time in hours and the vertical axis
represents numbers of molecules.

Figure 3: Simulation of the initial entry of com-
plexes into the cell. We simulated the initial stages
of the model of Fig. 1, starting with 1000 indi-
vidual red and green plasmids and allowing these
plasmids to form complexes before entering the cell.
We let DC(g,r) = () to prevent further movement
of the complexes and plot the composition of plas-
mids DC(g,r) immediately after entry. We used a
3D plot where the x axis represents the number of
green plasmids in the complex, the y-axis represents
the number of red plasmids in the complex and the
height represents the number of complexes with the
given composition of red and green plasmids. The
largest complex contained 11 red and 9 green plas-
mids, but the majority of complexes contained less
than 10 plasmids.

Figure 17: A Pi-calculus model of plasmid co-transfection. Full de-
scription of this model is in the text.
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Figure 1: A stochastic pi-calculus model of plasmid
co-transfection.

mids ENC can dissociate into individual green (ENG) or
red (ENR) plasmids, one at a time. We model this using
an unbind reaction, which removes a red or green plasmid
from the complex. The unbinding rate is proportional to
the number of red or green plasmids, respectively. The gene
expression of plasmids involves the transcription of plasmids
into mRNA and the translation of mRNA into proteins. The
degradation of mRNA is a 170-step process which we model
as a single reaction with an Erlang distribution. The green
plasmids produce green fluorescent proteins (GFP ), while
the red plasmids produce red fluorescent proteins (RFP ).
The SPiM code for the model is given in Appendix A.

Fig. 2 shows the results of simulating the model of Fig. 1,
using the generic abstract machine instantiated with the
non-Markovian stochastic pi-calculus. The model paramet-

Figure 2: Simulation results of the plasmid co-
transfection model of Fig. 1, where the horizontal
axis represents time in hours and the vertical axis
represents numbers of molecules.

Figure 3: Simulation of the initial entry of com-
plexes into the cell. We simulated the initial stages
of the model of Fig. 1, starting with 1000 indi-
vidual red and green plasmids and allowing these
plasmids to form complexes before entering the cell.
We let DC(g,r) = () to prevent further movement
of the complexes and plot the composition of plas-
mids DC(g,r) immediately after entry. We used a
3D plot where the x axis represents the number of
green plasmids in the complex, the y-axis represents
the number of red plasmids in the complex and the
height represents the number of complexes with the
given composition of red and green plasmids. The
largest complex contained 11 red and 9 green plas-
mids, but the majority of complexes contained less
than 10 plasmids.

Figure 18: Color distributions of transfected red and green plasmids.
On the x-Axis, the number of activated red plasmids and on the y-axis the
number of activated green plasmids is given. The z-axis gives a measure for
the number of cells expressing the speci�ed combination of plasmids. Thus,
this plot can be read as a two-dimensional histogram.

proteins. In order to visualize the proportion of complexes of di�erent sizes,

we can plot the complexes immediately after entry into the cell (Fig. 18).

In general the complexes can be of arbitrary size, depending on the initial

populations of plasmids. A challenging goal is to be able to optimize the

co-transfection process so that equal numbers of red and green plasmids are

transfected in low numbers. Here stochasticity plays an important role. Fu-

ture analysis of the model can be used as a basis for determining optimal

co-transfection strategies that result in equal production of red and green

�uorescent proteins inside individual cells.
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9 The time distribution of gene delivery and

gene expression onset: Experiment and Stochas-

tic Modeling

In a previous chapter (Chapter 7) we have demonstrated that plasmid com-

plexes are delivered in packages and that there is an all-or-nothing behavior

of gene expression, depending on successful delivery. These vectors may be

improved by combining them with additional nanotechnological approaches

such as adding magnetic particles (magnetofection), plasmonic heating or

magnetic heating. All of these delivery systems share the same underlying

uptake principle: particles need to pass the cell membrane, use the cellular

transportation and enter the nucleus.

Even though most research focuses on �nding vectors with improved ef-

�ciency, much has been learned about the pathway of transfection over the

past ten years. These introspective experiments have been carried out using

di�erent techniques which led accordingly to entirely di�erent types of quan-

titative data. Outstanding examples are high throughput assays which were

�rstly used for transfection studies at the MIT [81, 79, 80]. Single particle

tracking has elucidated key transitions in this pathway and yielded good es-

timates for the durations of stay in intermediate states [15, 67]. Time-lapse

single cell assays have been introduced in a previous chapter and published

in [69]. These experiments produced a vast number of quantitative data in-

cluding rates, e�ciencies and onset times. Modeling is a useful approach to

integrate these data into a systemic description and is likely to considerably

advance the �eld.

Previous models of the gene transfer [80, 81, 1] have been calculated using

single systems of �rst order ODEs, not taking into account the noise arising

from cell to cell variability, so-called extrinsic noise and from Poisson pro-

cesses during gene transfection. Measuring clonal populations in single cell

assays yields substantial phenotypical variability. Dinh et al model reaction

di�usion of polyplexes [16]. Transport kinetics of gene delivery systems that

are observed in single cell assay measurements, reveal considerable variabil-
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ity in gene expression onset times [69]. This variability stems from two in

principle di�erent sources: a) inherent stochasticity in several steps of gene

delivery arises from the relative randomness of arti�cial virus translocation

events; b) external parameters such as cell size and cell cycle state which

exhibit substantial variance even in an otherwise clonal population.

In this chapter we present a stochastic delivery model that maps existing

knowledge of cellular uptake and intracellular pathway of non-viral gene vec-

tors. The model is based on a stochastic algorithm and uses kinetic rates and

variances that are taken from single particle tracking experiments. Unknown

parameters are optimized such as to �t experimental gene expression onset

distributions obtained from single cell time-lapse experiments using a GFP

reporter gene. The modeling tool allows to predict a number of systematic

shifts in the time distribution as well as overall e�ciency of gene delivery as a

function of tunable parameters. We show that magnetically enhanced trans-

fection (magnetofection) leads to a 30 min shift in expression onset compared

to ordinary lipofection. The model also reproduces di�erences in the gene

expression kinetics of lipid based and polymer based transfection. Further

simulations depict hypothetical scenarios that help to elucidate optimization

strategies.
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9.1 A stochastic models reproduces the mean, variance

and skewness of the experimental onset time distri-

butions

Sedimentation

Diffusion on Cellular

Membrane

Budding

Diffusion of

Endosome

Binding to Microtubule

active Transport

Detaching from 

Microtubule
Nuclear 

Translocation

Figure 19: A graphical representation of Gene delivery kinetics . Success-
ful gene delivery begins with the formation of plasmid complexes of adequate
size and composition. These complexes sediment through the cell culture
where some complexes adhere to cell membranes and after di�usion along
the cell surface are internalized into the early endosome. This endosome can
hop on and o� the microtubules, so that the microtubules e�ect an accelera-
tion in the distribution of endosomes in a cell. The complexes can escape the
late endosome and di�use to the nuclear membrane where their payload is
translocated into the nucleus. Some of these plasmids are activated by being
transported into active areas in the nucleus.

The typical transportation steps and uptake barriers and of the gene

transfection pathway are illustrated in Figure 19: Gene carriers sediment

on the outer membrane, do 2d di�usion on this membrane until they �nd a

suitable spot to begin endocytosis. Endocytosis is either receptor or charge-

mediated and leads to the uptake of the plasmid complex into an endosome in

the cytosol. Endosomes move along in subdi�usive and di�usive mode until

they bind to a microtubule which are responsible for e�cient transportation
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in cells. They could bind to the microtubules and travel to and from the

nucleus on them, e�ectively speeding up the di�usion process of endosomes

containing plasmid complexes within cells. Finally, after vector unpacking

and disrupture of the late endosomes, the plasmids transcend the double

membrane of the nucleus.

Here, we map these individual steps to state transitions in a generic,

cell-type-agnostic model of the gene delivery process. In terms of delivery

e�ciency, the transcending of these various membranes and transportation

stretches are the rate-limiting steps in the delivery pathway.

Figure 20: Schematic representation of the delivery process as illus-
trated in a). Di�erent transport or packing/unpacking states of the com-
plexes correspond to the boxes in the diagram. The arrows indicate state
transitions, the rates belonging to these transitions are displayed below.

In particular, the individual state transitions in our model are: inter-

nalization, this includes sedimentation of the plasmid complexes on the cell

membrane, 2d di�usion on this membrane and endocytosis which could be

receptor- or clathrin-mediated and leads to the presence of an early endo-

some containing the complex in the cytosol near the cell membrane. This

endosome is in a subdi�usive state until it leaves the neighborhood of the

cell membrane. In the cytosol it can di�use freely and may hop on and o�

a microtubule. Microtubule-mediated active transport of these endosomes is

not directed to the nucleus but speeds up the availability of endosomes in all

regions of the cell. This transportation is followed by endosomal release and

complex unpacking. The plasmids that are in the neighborhood of the nucleus

at this point may undergo the last steps of a successful transfection: nuclear

translocation and plasmid activation. At most stages of this state model,

the endosome/complex/plasmid can be degraded or washed away from the
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cellular surface or the cytosol with varying probabilities. The complete set

of transitions is shown in Figure 20.

The transitions given in Figure 20 together with the rates in table 1

constitute a complete description of the model. It is noteworthy, that we have

only one free parameter: the total e�ciency. Obtaining this total e�ciency

from the experimental dataset to be approximately 23%, and assuming a

plasmid degradation of .003/min in the nucleus, we have obtained a value of

.0003/min for the activation rate. All other kinetic rates are derived from

the literature or from single-particle experiments in the Bräuchle lab [15].

Using these rates, we simulate our model in a stochastic framework using

the Gillespie algorithm introduced in chapter 5.

We compare the simulation onset time distribution with onset time dis-

tributions of earlier single-cell time-lapse experiments of BEAS cells ([69],

Fig 21) of Lipofectamine mediated transfection.

Figure 21: Tonset histogram comparing the distributions of the onset times
of expression. Data of the model from Fig 20) (red) and from the experiments
(transfection with asynchronous Lipofectamine, green). The distributions are
normalized to total number of transfected cells for better comparability.

A particular characteristic of the experimentally derived onset time distri-

butions is that most successfully transfected cells start expression early (the

peak of the distribution is earlier than the mean). However, even long times

after transfection onset, signi�cant numbers of cells switch on. This behavior

is re�ected in our simplistic model: simulation data show remarkably similar
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mean, variance and skewness.

Name Value[1/min] Source

Kend 0.001 [80]
KphaseI 0.4 [15]
KphaseIII 1.5 [15]
Khop onmt 0.66 [15]
Khop off mt 4 [86]
Kescape 0.01 [80]

Ktranslocate 0.004 [80]
Kactivate 0.00002 [80]
Stranscribe 4.0 [31]
Stranslate 1.5 [2]
Kfold 0.019 [72]

δendosome 0.007 same value as complex assumed
δcomplex 0.007 [69]
δplasmid 0.003 [69]
δRNA 0.466 [64]

δRNA_one step 0.00274 dividing by 170
δGFP 0.019 [64]

Table 1: The rate constants The numerical rates for simulating the model.
K indicates a state change or transition process, S a process where another
object is created without a�ecting the generating species and δ stands for a
degradation process.
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9.2 Magnetofection: a faster uptake rate is responsible

for the shift in speed and e�ciency

Figure 22: Onset time distributions of magnetized complexes (blue)
vs. Standard Lipoplexes (red). The mean onset time of magnet-
ically enhanced transfection is 15.8h compared to 19.6h for the standard
Lipofectamine-mediated transfection.

Magnetic Nanoparticles are known to speed up the uptake of gene delivery

complexes. This leads to an increased total e�ciency and earlier onset times

(see Fig. 22), an increase in Luciferase activity by a factor of 2-107 has been

observed depending on vector dose [67]. 98.4 % of cells have been internal-

ized by the cells after 20 minutes, which corresponds to an uptake rate of

0.30/min. The question was, whether our model could be adapted to these

modi�ed vectors. The amount of complexes that are available for transporta-

tion to and into the nucleus is dependent on the degradation, the uptake rate

and the initial number of complexes: [CA] = [C] ∗ (K/(δ + K)). The mean

speedup of a single successfully delivered complex is equivalent to the dif-

ference in rates K2 − K1. Taking into account previously published data

[57], we can deduce from this simple formula the existence of extracellular

degradation of complexes and estimate it with

δ =
(CA1 − CA2)K1K2

CA2K1 − CA1K2

Our model predicts a speedup of transfection onset and an increase in

69



e�ciency, depending on the increase of the uptake rate (see Figure23a).

9.3 What can we learn from the model to optimize the

gene transfer process?

The model elucidates the e�ects of di�erent variations of key rates (see Fig

23) on the speed and e�ciency of the gene transfer process. In particular,

we investigate and interpret the in�uence on degradation, translocation and

complex escape:

The in�uence of degradation Elimination of degradation leads to

an increase in delivered complexes, at the price of prolonged escape times.

The total e�ciency is increased at the price of late average onset times. We

distinguish between the degradation of the complex and the disruption of

the endosome. Typically, the endosome will be permeable for the complexes

in its late stage. If the complex is stable, it will last longer and have higher

chance of reaching the proximity of the nucleus. An overly stable complex on

the other hand will never release the plasmids contained within, e�ectively

hindering gene transfection. The optimum for the degradation rate depends

on the size of the cell, the number of microtubules and the average life span

of endosomes in this particular cell line.

The nuclear translocation rate The nuclear translocation rate is

the biggest remaining bottleneck: an increase of its kinetic rate leads to an

increased e�ciency and a signi�cant speed-up of the transfection process.

However, with current single-particle techniques it has so far not been pos-

sible to directly observe an nuclear translocation event. Improving this rate

would improve the speed and the e�ciency of transfection without obvious

drawbacks, however the process is currently ill-understood and therefore not

accessible for easy manipulation.

Complex escape rate The complex escape rate is linked to the degra-

dation of a complex. Generally, there are two possible regimes: Firstly, the
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Figure 23: Variation of key rates. The rates for a) uptake, c) endosome
degradation and e) translocation from table 1 have been multiplied by 1/4,
1/2, 1, 2, 4 respectively, lower to higher rates correspond to lighter to darker
red. b), d) and f) percentage of transfected cells vs. varied rate
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complex escape rate can be faster, than the average life span of an endo-

some, leading to a situation where plasmid DNA is contained by the endoso-

mal membrane and upon disruption of this membrane leaks into the cytosol.

Secondly, when the complex is, on average, more stable than the endosome,

complexes enter the cytosol. The exact proceedings of complex unpacking

and nuclear translocation are largely unknown.

From a modeling point of view, an increase in the complex escape rate in

the cytosol leads to an increased e�ciency and to a signi�cant speed up of

the transfection. It should be pointed out, that this narrows the window of

opportunity for translocation.

9.4 Discussion

We have introduced a mesoscopic model for relevant processes involved in

delivery of plasmid DNA by means of synthetic viruses. This model incorpo-

rates several assumptions about these synthetic viruses: Firstly, we employ a

bulk rate for the transport along the microtubule. This assumption is justi-

�ed as viruses in live cells are actively transported along these microtubules

in both directions, e�ectively leading to a faster stirring. Secondly, the time

the complexes spend in transit from the cell membrane to the nucleus is short

compared to the other processes involved. Membranes and unpacking steps

are the barriers in real-live gene transfection and similarly they are the rate

limiting steps in our stochastic model. This stochastic modeling is useful

to quantitatively predict and understand the e�ects of modi�cations to the

gene delivery complexes. In particular, it is possible to adjust several rates

simultaneously, to simulate crosslinking e�ects between parts of the pathway.

We have shown a close relation between the e�ciency of a transfection

experiment and its delivery kinetics. Generally, faster uptake reduces the

time in which the complexes are subjected to environmental damage and in

which they can be degraded. An exception to this rule is the stabilization

of plasmid complexes: when these are overly labile, they do not survive long

enough in the cytosol to reach the nucleus. If, on the other hand, they are

stabilized too much, the plasmids are released very late. These plasmids may
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well be discharged at a point in time after the observation period has ended.

The gene delivery process resembles a stepwise dilution of the complexes

that are sedimented onto the cell population. Thus, it is possible for most

steps in the pathway to determine a dilution coe�cient from the ratio between

the passing-on rate k and its sum with the degradation rate δ as dilution :=

k/(k + δ) .

73



74



10 Dynamics of gene expression

In chapter 7 we investigate the steady-state behavior of gene expression onset

in eukaryotic gene expression. Our model takes the relevant production and

degradation rates from the literature into account to calculate an e�ective

expression factor. However, the distribution of half-maximal times, combined

with the distribution of Hill parameters, indicate that the gene expression

part of the simulation lacks in speed. In fact, many instances can be found

where the onset of expression is very early and still the half-maximal time

is late compared to experimental data. In this chapter, we investigate pos-

sible reasons for this discrepancy between experimental and simulated gene

expression curves such as those in Figure 24.
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Figure 24: Comparison between experimental and simulation ex-
pression time courses. Displayed are protein concentrations over time
from a single cell experiment (red) and a typical stochastic simulation run
(black).

10.1 mRNA poly-A tails act as match cords

In the underlying model that generated this graph, we have made the as-

sumption that mRNA degradation is a Poisson process, i.e. that it is ex-

ponentially distributed. Biologically, however, mRNA degradation follows a

process called deadenylation or poly-A tail shortening. Most mRNA molecule

types have an appended poly-A tail with a typical length of 200 Adenosines

and are stable until the poly-A tail is removed. Each Adenosine is degraded
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Figure 25: a)The poly(A) regulation A schematic depiction of the degra-
dation of the poly-a tail. Picture derived from [2]. b)Two probability
distribution functions An exponential distribution(black) with the pa-
rameter λ = 0.01 resulting in mean 100 and a gamma distribution(red) with
parameters n = 200, λ = n ∗ λexp = 2 also resulting in mean 100.

after approximately 10 ribosomes have translated the information stored on

this mRNA molecules; in other words mRNA decays after approximately

2000 proteins have been produced (see Fig. 25a). For a large number of

steps, the probability distribution of the process approaches a standard dis-

tribution according to the central limit theorem. Cum grano salis, the poly-A

tail serves as fuse or match cord for the mRNA degradation (see Fig. 25b).

10.2 non-Markovian distributions are helpful to model

poly-A tail degradation

A Poisson process such as the degradation of a single Adenosin at the end

of the poly-A chain is mathematically described by an exponential probabil-

ity distribution. Concatenating n subsequent degradation steps leads to an

integrated probability distribution: given that all exponential distributions

share the same rate k, this results in a summary Erlang distribution with

parameters n and k and mean time n*k. A derivation of this result can be

found in [86]. Non-Markovian distributions have also been integrated into

a simulation engine for the stochastic Pi-Calculus. These results have been

published in [52].
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Figure 26: The impact of poly-A regulation on the gene expression
onset behavior. The graphs show the population count over time of a)
activated plasmids b) mRNA c) unfolded GFP and d) mature GFP. The
black time courses correspond to the exponential mRNA degradation model,
the red time courses incorporate poly-A regulation.

10.3 Discussion

Including the poly-A degradation pathway for mRNA improved the �t of

the model to the measured data (Fig. 26). However, there remains a gap

between the amended model and the experimental data. In a continuous

production model, the normalized form of the time series is solely determined

by the degradation of the proteins. The half-life of the eGFP molecules

however is well-known and the theoretical shift introduced by a destabilized

variant of the molecule matches this prediction. The hypothesis that mRNAs

are produced in bursts may provide an explanation for that gap. However,

elucidating this hypothesis was not in the scope of this work.

77



78



11 Strand displacement elements for nucleic acid

based computation

�What I cannot create, I do not understand�

The role of DNA programming in gene therapy

In the previous chapters we characterized some aspects of successful gene de-

livery and elucidated ways to optimize the gene transfection process. How-

ever, it is also feasible to improve the �eld by developing intelligent gene

delivery payloads. Highly e�ective gene therapy needs to employ a combina-

tion of explicit targeting such as localized injection, magnetic �elds or target

receptor speci�c functionalization. Implicit targeting, which can be achieved

by genetic programming, produces the required amount of a therapeutic pro-

tein depending on the environmental protein levels in a given cell. Advances

in the �elds of gene delivery have enabled the controlled and precise trans-

portation of considerable amounts of nucleic acids into cells. At the same

time, siRNAs have been identi�ed to silence or a�ect important pathways.

Together, these techniques have the potential to enable in situ diagnostics

and conditional drug activation.

Most incurable and chronic diseases of today are `systems diseases'. Cells

run very complicated and poorly understood programs. When something

goes wrong, it is not something that one can often �x with a silver bullet as

biological systems rarely have a single point of failure, or a single point of

cure: it takes a program to cure a program. The drugs of the future will be

programs that analyze the environment, make decisions and employ remedies

on a single-cell level. Nucleic acid based systems have great potential to

ful�ll this role as they are well suited for all three tasks of detecting RNA

concentrations, performing the computation and interacting directly with

biological systems. In the future these systems can be inserted into cells by

means of gene transfection.
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Strand displacement suitable as basic mechanism of computation

Various implementations of DNA computers have been proposed, for exam-

ple using hairpins [66, 8, 85] or restriction enzymes [6, 7]. These approaches

either require complicated DNA structures or additional enzymes or transla-

tion/transcription machinery.

Displacement of DNA strands by branch migration was initially investi-

gated by Green and Tibbetts as early as 1981 [28]. They found that under

conditions of reassociation (T -25°C) the average lifetime of branched DNA

is less than 10 seconds. This time corresponds to the displacement rate of

short (1.6Kb) strands.

An entropy-driven molecular tweezer, based on strand displacement, that

opens and closes during a tweezing cycle was introduced in 2000 by Yurke et.

al. [87]. This tweezer consumes a pair of 'fuel' strands to transiently close

a secondary hairpin structure e�ecting its 'close' state. However, its 'fuel'

molecules can simply attach to each other a�ecting the e�cacy of the device.

Toehold-mediated DNA strand displacement [89] relies solely on hybridiza-

tion between complementary nucleotides sequences to perform computational

steps. These strand displacement systems are driven by entropy, which means

they proceed autonomously towards a state where the entropy is maximized.

Strand displacement has been used to build robust, modular circuits such as

the catalytic gate described in [89]. This approach has been formalized into

a formal language by Phillips and Cardelli [56].

In the following chapter, this language will be explained, extended by a

hierarchy of semantic abstractions and exploited to build a bu�ering strategy

for logic gates that ensures constant kinetic behavior during a computation.

11.1 A primer on the DNA Strand Displacement lan-

guage

Single strands of DNA composed of complementary sequences of the bases

adenine, cytosine, guanine and thymine (A, C, G and T correspondingly)

hybridize to form a stable duplex (double helix) bound together by hydrogen

bonds between complementary base pairs (A-T and C-G). However, the sta-
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bility of the individual base pairs is dependent on the temperature, a rising

temperature negatively a�ects the binding a�nity (and hence the disassoci-

ation rate). The stability of the duplexes is additionally dependent on the

composition of the strand in terms of base complementarity: A-T has only

two hydrogen bonds, while G-C has three. Additionally the energy neces-

sary for spontaneous disassociation, (which a�ects the disassociation rate) is

increasing with the length of a sequence of base pairs.

a)

b)

c)

Figure 27: DNA abstraction. A DNA complex (top) is typically abstracted
as several directional lines, one for each strand, with bases identities shown.
Here, DNA strands and complexes are abstracted one step further by group-
ing contiguous nucleotides into domains, functional regions of DNA that act
as units in binding. Because the principles and mechanisms under scrutiny
are expected to be generalizable to most DNA sequences, the sequences of
DNA strands in �gures are typically not shown.

In this work, neither the temperature nor the length or the type of com-

plementarity is explicitly considered. Instead, the rates for association and

disassociation of strands re�ect these parameters.

The DNA strand displacement (DSD) language uses branch migration

and consecutive strand displacement as mechanism of computation. In the

DSD language lower and upper strand are each well de�ned with the upper

81



strand having the 3' end on the right hand side and the lower strand or gate

having it on the left side. By de�nition, gates only expose toehold domains,

that means they are always double stranded molecules. The language is built

around the abstraction of domains, which are �nite, non-empty sequences of

nucleotides. We distinguish between two domain types: a toehold domain

is short enough so that two complementary sections can �nd each other

and spontaneously bind to each other. At the same time, their binding

a�nity (which is correlated to their length) is low enough so that they can

spontaneously unbind, e.g. due to sheer forces. Toehold domains typically

have a length of 6 nucleotides. Long domains consist of signi�cantly more

nucleotides, they do not bind spontaneously and hybridize irreversibly in

our model. However, a strand that is bound to a gate with hybridized long

domain can still unbind from this gate when the neighboring strand also has

a competing complementary long domain.

These domains are represented by letters (see Fig. 27): The letter x in

Figure 28 represents a domain which will hybridize with its complement x,

which is constructed using Watson-Crick (C-G, T-A) complementarity. Note

that the upper and the lower strand are well-de�ned as the 3' and 5' are

on the respective opposite ends, therefore we dispense with the intuitive yet

cumbersome x̄ notation. Long domains are depicted in grey, throughout

this chapter. So-called toehold domains are colored (and written with a

hat e.g. 't�' in the textual notation of Fig. 28). It is required that distinct

letters represent distinct nucleotide sequences to avoid unwanted interference.

DNA molecules can be a single strand (with an orientation) or a double-

stranded molecule where the two strands have opposite orientations. Double-

stranded molecules (gates) may also have overhanging single strands. Since

they hybridize reversibly, toeholds are ideal for controlling the interaction

between DNA molecules. Indeed, the syntax of the language will ensure

that molecules can only react with each other via a toehold. Physically

this is sensible because the shorter nucleotide sequence is far more likely to

spontaneously �nd its counterpart while its binding strength is small enough

so that it can spontaneously unbind.

Figure 28 illustrates the strand displacement paradigm in action. Working
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Toehold mediated Toehold binding Branch Migration Displacement Release

a) b) c) d) e)

Figure 28: The mechanism of strand displacement. a) A strand (top)
�nds a gate (below). b) binds to the gate, c) competes with the already
bound strand for domain x. d) the formerly bound strand is displaced and
e) released.

from left to right in Figure 28, in the �rst reaction the toehold t� in the

single-stranded input <t^ x> hybridizes reversibly with the exposed toehold

t� in the double-stranded gate t^[x] (Fig. 28a). This produces a double-

stranded molecule with an overhanging single strand [t^]<x>:[x] (Fig. 28b).

Since the x domain in the overhanging strand matches the x domain in the

double-stranded section, the junction performs a random walk along the

upper strand which we call branch migration (Fig. 28c). In case the toehold

is reached, the newly bound strand may be displaced again or the branch

migration starts over until, at the right end of the gate, it displaces the single-

stranded output x (Fig. 28d). The strand consisting of the long domain x

can therefore unbind from the gate (Fig. 28e). This basic computational

mechanism allows us to construct logic gates which translate input signals

into output signals. Since the inputs and outputs are both just single

strands of DNA these gates can be combined to produce cascades which

implement more complicated functionality. Our language makes it possible

to ignore some of the intermediate steps presented in Figure 28 if a higher

level of abstraction is more appropriate.
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11.2 Logic gates for building up autonomous molecular

machines

An input state of an electronic switchable circuit is characterized by the

presence of few electrons (o� ) or many electrons (on). Combinations of

these states are interpreted as complex input states or input signals. These

signals are processed by a series of logic gates. The most common logic gates

are NAND, AND, OR, NOT, XOR, XNOR. Interestingly, all other gates

could be constructed from a series of NAND gates.

To build equally e�ective nuclear-acid-based biochemical logic circuits

and to draw from the experience gathered in electronic switchable circuit

design, it might prove helpful to engineer logic gates as primary building

blocks in the strand displacement paradigm.

Figure 29: The logic gate 'AND'. The input strands to the AND gate are
shown on the left, t^ is the mediating toehold, the input domains are a and
b. The middle section shows the logic gate symbol for AND: an output signal
(y) is only produced (or set to 1) if both input signals a and b evaluate to
on. The right side shows the output strand with domain y.

This poses several challenges. Firstly, in order to build more involved

circuits, logic gates are connected to each other, so that one gate's output

is another gate's input. This connectivity implies that the output of a gate

is similar in construction to its input. Here that means that the toehold

domain needs to always be on the same side (see Fig. 29). Secondly, a

catalytic mechanism needs to be identi�ed and coupled to a suitable energy

source to provide the gates with signal gain. Finally, a modular gate design

is needed that allows to specify circuits of unlimited complexity leading to

the intended dynamical behavior.
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A DNA version of the logic gate An example logic 'AND' gate has

been introduced in [11], its start con�guration is depicted here.

Figure 30: Initial state of 'AND' in DNA. The input strands on a blue
background are combined with the initial state of the 'AND' gate. This
initial state consists of all other strands and gates depicted in the �gure.
The arrows indicate the possible reactions and their numbers the order of
execution. E.g. <t^ x> binds to the gate, displaces <x t^>, thus making
space for the second reaction, the binding of <t^ y>. The last reaction is
the disassociation of the signal <t^ z>.

Note, that each distinct combination of input and output gates x, y− > z

requires distinct private domains to connect the input with the output; in

this case, these are the domains 'a' and 'b'. Also, the lowest gate displayed

in the �gure serves as a 'garbage collector'. Without it, the processing of
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the gate would leave residual <t^ b> and <y t^> strands. Thus the only

active component in the 'end state' of the gate is the desired strand <t^

z>. Removal of the garbage is important to avoid an e�ect on the kinetic

rates of other reactions due to unproductive or spurious binding of the toehold

domain. The �gure below shows the end state after all intermediate reactions

have terminated.

Figure 31: End state of 'AND' in DNA. After execution of the 'AND'
gate, all strands are bound to gates. Apart from the signal <t^ z>, all
toeholds are occupied and no spontaneous reaction can occur.

11.3 Bu�ered logic gates enable constant reaction rates

As the reactions in a strand displacement system are driven by entropy, they

will inherently approach a maximum of entropy that equals a depletion of

fuel strands. In the general case this will lead to a slowing down of reactions.

However, there may be rare cases where the decrease of an inhibiting strand

actually speeds up a reaction. In any case, this implies, that near-constant

kinetic properties are only achieved in the early stages of the time evolution

of such a system. Su�ciently large initial populations of reactants could

ensure that the programmed kinetic behavior lasts long enough for the in-

tended purposes. Unfortunately, this approach su�ers from large numbers of

free toehold signals that may bind reversibly to the 'wrong' gates, hindering

progress. Alternatively, it is possible to replenish the used-up input strands,

which e�ectively means lowering the entropy externally. Here, a bu�ering

strategy proposed in [10] is applied to elementary logic gates. The idea is

to keep a quasi-constant but relatively low concentration of gate structures

by means of a higher concentration of bu�er structures that are turned into
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gates on demand. The bu�er levels do not signi�cantly a�ect the kinetics of

the reactions (at least until they run out), and they could be replenished peri-

odically without signi�cantly a�ecting the ongoing kinetics of the gates. The

e�ective rates of the signal processing reactions remain then almost constant,

provided the gates are replenished fast enough from the bu�ers.

Details on this bu�ering strategy have been published in [12].

11.4 Reaction rules in the DSD language

The reduction rules of the DNA strand displacement language can be modi-

�ed in various ways in order to create trade o�s between the accuracy of the

model and the computational cost of analyzing the model (e.g. by stochastic

simulation). The resulting modi�cations give rise to a hierarchy of seman-

tic abstractions for the DNA strand displacement language. In this way, a

system can be de�ned once and evaluated with varying degrees of exactness.

Spurious bindings Some of the reactions involving a given collection

of DNA molecules are unproductive or spurious in the sense that they do

not contribute meaningfully to the progress of a simulation. An example

of a spurious reaction is the case when a strand binds to a gate along a

short domain, but cannot initiate any subsequent migration, displacement

or covering reactions. In general, a binding reaction is considered to be

spurious if none of the domains immediately adjacent to the binding toehold

are complementary on the strand and the gate. The following is a concrete

example of an unproductive reaction.

Note that this rule does not exclude all possible unproductive reactions,

since it is still possible for a strand to bind to a gate and take part in a

subsequent branch migration without further contributing to the evolution

of the system. An example is the case of a strand <1� 2> binding to a gate

5:1�[2 3]4�:6. It is di�cult to tell upfront whether the binding on toehold
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N1� and subsequent migration is unproductive, since later on there may be

a second strand <3 4�> that binds to the gate and causes a displacement to

occur. In this case both of the individual binding reactions seem unproduc-

tive in isolation, but together they give rise to a productive displacement.

Our de�nition of productive reactions in Figure 32 can therefore be consid-

ered a safe approximation, which is guaranteed to exclude all unproductive

reactions but which may also exclude some productive ones.

Figure 32: Co-operative displacement. Two strands whose individual in-
teraction with the gate is unproductive, could together displace the originally
bound strand.

Fast reactions The goal of this paper is to equip the DNA strand

displacement language with multiple semantic interpretations which abstract

away some of the complexity of the DNA interactions. Our �rst step in this

direction is to delimit which behaviors we would like to abstract away. To

this end we introduce the notion of fast and slow reactions. For a given

semantic abstraction (de�ned in the following section) we write −→σ,fast for
reduction corresponding to fast reactions, the main purpose of which is to

allow us to merge maximal sequences of fast reactions into a single step. We

will call the rate of this merged reaction the fast reaction rate. Reactions

which are not fast will be referred to as slow, for which we use the reduction

relation −→σ. As we shall see, the exact de�nition of which reactions are fast

and which are slow, and the value of the fast reaction rate, will depend on

our chosen semantic abstraction sv. We write D→*

sv,fast D' if D can reduce to

D' by zero or more fast reactions, and D′ 9sv,fast if D' cannot perform any

fast reactions. Using these de�nitions, we write D �sv D' if D can reduce to
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D' by a maximal sequence of fast reactions:

D � D' if D→∗
sv, fastD

′9σ,fast

Note that in the general case a given molecule D can potentially reduce

to multiple possible molecules D' through mutually exclusive, competing dis-

placement reactions. However, if we ensure that the starting molecules of

the system do not have any competing fast reactions then we can show that

no subsequent molecules produced by the system will have competing fast

reactions.

11.5 Hierarchy of abstract semantics

It is now feasible to construct a hierarchy of semantic abstractions σ for the

strand displacement paradigm. In this hierarchy, there are three distinct

hierarchical levels single-step, merged and non-spurious.

All levels share an ignorance towards circular reactions, where products

and reactants are the same. This simpli�cations is justi�ed in that the reac-

tion propensities are linearly dependent on the rate as well as on the size of

the reactant populations. The levels of the semantic hierarchy are described

in the following:

Figure 33: Merged semantics. A binding reaction with following instanta-
neous strand migration and displacement a) is combined into a single reaction
in b).

Merged semantics The assumption for the merged semantics is, that

binding happens with a �nite rate and is followed by instantaneous branch

89



migration, displacement and unbinding.

Single-step semantics are the most detailed representation of all in-

dividual reactions and branch migrations involved in a computation: every

such step is modeled as having assigned a �nite rate, even though some of

these rates may be fast.

Figure 34: Single step semantics. a) A sample irreversible reaction where
the input strands are displayed to the left and the output with all strands
migrated to the right on the right hand side. b) the same reaction in single
step semantics, all binding, migration and displacement steps are displayed.

Both, the merged and the non-spurious semantics share the fundamental

assumption, that branch migration is fast enough to be treated as instan-

taneous. This has two consequences: �rstly, both possible con�gurations

of two adjacent strands competing for a long domain on a gate are consid-

ered equivalent. Secondly, the number of individual reaction steps is greatly

reduced.

Non-spurious semantics Non-spurious semantics work on the same

underlying assumptions as the merged semantics. Additionally, spurious

bindings are suppressed.
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Characterization of the hierarchical semantic levels

The single-step semantics contain the largest number of reactions: all

con�guration-changing events such as toehold binding and unbinding, branch

migration and strand displacement are modeled as individual reaction steps

with �nite rate. While being the truest representation of the underlying pro-

cesses, using the single-step semantics quickly leads to an unwieldy reaction

graph.

DNA interactions modeled with themerged semantics essentially retain

the �delity of the single-step semantics, as long as the migration, displace-

ment and unbinding rates are very fast compared to the binding rate. The

reaction network graph is greatly reduced in complexity versus the network

graph of single-step semantics.

The execution of non-spurious semantics networks is faster than the merged

semantics, for the catalytic gate there was a factor of 6 in the time needed

for a single run.

11.6 Discussion

A hierarchy of semantic abstractions for modeling the behavior of computa-

tional devices implemented using DNA strand displacement was presented.

The di�erent semantic abstractions are suitable for di�erent purposes, from

high-level, simpli�ed views for assembling large systems to low-level, detailed

views for designing and verifying individual components of the DNA circuits.

More complex models required more computational resources to simulate or

analyze, so designers can move from simpler models to more complex mod-

els as their con�dence in a new design increases. This means that we do

not have to commit larger amounts of computational resources to analyz-

ing a design in detail until we have some degree of con�dence that it will

function as expected. Our experience using these techniques to design the

bu�ered join gate and three-way oscillator shows how the DSD language can

be integrated in the scienti�c work-�ow. Switching between the di�erent

semantic models can also qualitatively change the dynamic behavior of sys-

tems. We demonstrated above that adding leak reactions signi�cantly alters
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the behavior of our join gate design, and many chemical oscillators are eas-

ily perturbed by the presence of leaks. Furthermore, certain programming

idioms may not be possible under certain semantic models. We mentioned

that unproductive reactions never appear when the non-spurious semantics

is selected�this means that co-operative displacement (�g. 32) cannot be

modeled using the non-spurious semantics, because the �rst incoming strand

does not stay bound long enough for a second strand to arrive and complete

the displacement process. Thus one must take care to select the correct se-

mantic model for a given program. A common programming idiom in DNA

computing is the use of fuel molecules which are assumed to be present in

abundance and which drive reactions forward (such as the garbage-collection

molecules in our example). Our implementation of the DSD language allows

the user to abstract away from small changes in large populations of fuel

molecules by declaring certain species to be �constant�. This means that

their population remains �xed, even when they are involved in a reaction,

and can further simplify the de�nition and analysis of certain systems. An-

other important contribution is the modular de�nition of compilation (and

hence, simulation and analysis) with regard to the underlying operational se-

mantics of the DNA interactions. This enabled us to implement our various

semantic abstractions within a single common framework [36].
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12 Outlook

In this work the mechanism of gene delivery and expression of non-viral

synthetic vectors to Eukaryotic cells have been investigated by computa-

tional modeling and image analysis. A novel context-sensitive cell tracking

algorithm was developed to extract time series from experimental single-cell

movies. To quantitatively compare model and experiment these time series

were �tted with a phenomenological function which generated indicators for

expression e�ciency, onset time and speed of gene expression onset time.

The resulting distributions were analyzed and a measure for the activated

plasmids per vector was calculated. With a stochastic model the kinetics of

gene delivery were investigated, the onset distributions could be reproduced

and the shift in onset speed and e�ciency for magnetic particles could be

predicted. Finally, a compiler and simulator for biochemical circuits based

on nucleic acid strand displacement was developed.

Future challenges exist in research on the modeling of gene delivery and

expression by obtaining more detailed rate information towards a complete

predictive model of gene transfection . In our transfection experiments we

have predominantly found vectors with approximately three activated plas-

mids. However, it remains unclear whether the experimental preparation of

vectors favors a certain composition or whether vectors are �ltered by size

at di�erent stages of the transfection pathway. A possible strategy to this

question is to produce vectors with well-de�ned numbers of plasmids and

to measure the corresponding delivery e�ciencies [84]. Preparing these vec-

tors with plasmids of multiple colors allows to determine a ratio of activated

plasmids per delivered plasmids [35].

Finite availability of uptake channels in the outer cell membrane suggests

a saturation of vector-containing endosomes above a certain threshold of

initial complexes. This theoretical upper limit of up-taken vectors contradicts

the dose response graph in �gure 16. Behavior in this regime and �nding of

the actual saturation point is subject of future work.

It was pointed out in the discussion of the chapter about the dynamics of

gene expression (Chapter 10) that the form of the gene expression time-series
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could not be explained by a model of continuous mRNA production with the

established protein degradation parameters. Investigating the mRNA burst

hypothesis or alternatively �nding a still unknown feedback loop could pro-

vide an explanation for the form of these time series. In particular considering

that in cell-free extract experiments, which have less cross-linking e�ects than

Eukaryotic cells, the theoretically predicted curves have been produced.

Our image analysis tracking algorithm will be made available in the form

of an open-source software [42]. Integrating time series data of multiple

channels into a single multi-dimensional output could be very helpful in many

modeling scenarios.

The DNA strand displacement interpreter has already been embedded

into the tools landscape by introducing an SBML interface and a PRISM

model checker. It is in good shape to become a valuable building block in a

convergent systems biology toolkit.

The combination of improved image analysis and computational meso-

scopic modeling yielded deeper insights into the mechanism of gene delivery

and led to possible strategies to increase the e�ciency and the speed of the

transfection process. These are important steps towards the development

of e�cient, non-toxic and well-controlled transfection of RNA. Our model

predicts that the mean number of RNA available in the cytosol will be com-

parable to the number following transfection of ssDNA. However, since this

number is less noisy, RNA transfection is a promising candidate for the in

vitro and in vivo insertion of autonomous bio-molecular computers [29, 39, 8].
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Appendix SPiM Code for the Co-Transfection

Model

directive sample 4.0 1000

val enter = 0.1

val degrade = 0.01

val detach = 1.0

val transport = 1.0

val translocate = 1.0

val unbind = 1.0

val transcribe = 4.0

val translate = 1.5

val d_RNA = 0.466

val d_protein = 0.019

new bind@0.01:chan(float,float)

new attach@1.0:chan

new c@1.0:chan

let C(g:float,r:float) =

do delay@enter*(g+r)*(g+r); DC(g,r)

or !bind(g,r)

or ?bind(g',r'); C(g+g',r+r')

or delay@degrade

and DC(g:float,r:float) =

do !attach; MDP(g,r)

or delay@degrade

and ENC(g:float,r:float) =

do delay@degrade

or delay@unbind*g; (ENG() | ENC(g-1.0,r))

or delay@unbind*r; (ENR() | ENC(g,r-1.0))

and MDP(g:float,r:float) =

do delay@detach; DC(g,r)

or delay@transport; PC(g,r)

or delay@degrade; ()
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and PC(g:float,r:float) =

do delay@translocate; ENC(g,r)

or delay@degrade; ()

and Microtubule() = ?attach; Microtubule()

and ENG() = delay@transcribe; (ENG() | mRNAG())

and ENR() = delay@transcribe; (ENR() | mRNAR())

and mRNAG() =

do delay@translate; (mRNAG() | GFP())

or delay@Erlang(170,d_RNA)

and GFP() = delay@d_protein

and mRNAR() =

do delay@translate; (mRNAR() | RFP())

or delay@Erlang(170,d_RNA)

and RFP() = delay@d_protein

run 100 of C(1.0,0.0)

run 100 of C(0.0,1.0)

run 100 of Microtubule()
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