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2 Abbreviations 

A   Adenosine 

Ab  Antibody 

BSA  Bovine Serum Albumin 

C   Cytosine 

cDNA  Complementary DNA 

Conc  Concentration 

DMEM  Dubeco’s minimum essential medium 

DMSO  Dimethylsulfoxid 

DNA  Desoxyribonucleotide triphosphate 

FAM  Carboxyfluorescein 

FCS   Fetal Calf Serum 

FSC  Forward Scatter 

G  Guanin 

GAPDH  Glycerinaldehyd-3-phosphat-dehydrogenase 

HPRT   Hypoxanthin-Guanin-Phosphoribosyltransferase 

kDa  Kilo Dalton 

mRNA  Messenger ribonuclein acid 

SSC  Sideward Scatter 

siRNA  Small interfering RNA 

T   Thymidine 

Tab   Table 

TNF/TNFR Tumor necrosis factor/ Tumor necrosis factor receptor 

TRAIL   Tumor necrosis factor related apoptosis inducing ligand 

TRAIL-R TRAIL-Receptor 

U   Uracil 
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3 Introduction 

3.1  Background 

Cancer is one of the leading causes of death (Ferlay et al., 2010). Cancer therapy attracts 

considerable research attention and has made great advances in past decades.  The aim of 

cancer therapy is to effectively reduce the amount of malignant tumor cells while sparing 

healthy cells.  To reach this goal cancer therapy has become an interdisciplinary field. Today 

it incorporates the field of Surgery, Radiotherapy, Chemotherapy and Immunotherapy 

(Neubauer et al., 2002).  In most advanced cancers chemotherapy plays an integral role 

(Papac, 2001). Cytotoxic drugs applied in chemotherapy exert high toxicity on tumor cells. In 

general most healthy cells are not spared from cell death. Adverse effects of chemotherapy 

are linked to the toxicity of cytotoxic drugs on healthy cells. Multiple adverse effects have 

been described, ranging from hair loss, diarrhea to more life threatening myelosuppression 

and organ failure. These adverse effects limit the effectiveness of cancer therapy in 

advanced stage cancer disease. The search for novel strategies of selective cancer therapy 

as well as the search for novel anti-cancer drugs with minimal adverse effects is ongoing. In 

the past, several drugs have been proposed as potential new anti-cancer drugs (Caponigro 

et al., 2005). Among the newly identified anti-cancer drugs Tumor necrosis factor related 

apoptosis-inducing ligand (TRAIL) was found to selectively trigger apoptosis in cancer cells 

(Walczak et al., 1999), while sparing healthy cells (Ashkenazi et al., 1999). But in depth 

research in our laboratory detected an unexpected adverse effect of TRAIL. TRAIL improved 

survival and accelerated cell growth on a subset of TRAIL resistant cancers (Ehrhardt et al., 

2003; Baader et al., 2005). The pro-proliferative effect of TRAIL opposed the initially 

described function of TRAIL and represented a threat for a successful cancer therapy.  

3.2 Multiple biological functions of TRAIL 

Independently isolated by Pitti and Wiley (Wiley et al., 1995; Pitti et al., 1996) Tumor necrosis 

factor related apoptosis-inducing ligand (TRAIL), also called Apo2 ligand, was identified as a 

member of the tumor necrosis factor superfamily (TNFSF), a group of proteins involved in the 

regulation of the immune system (Gruss and Dower, 1995). 

Since its discovery multiple biological functions of TRAIL have been proposed (Levina et al., 

2008). The significance of TRAIL for innate immunity has been emphasized, showing that the 

up regulation of TRAIL in lung tissue accelerated clearance of viral infections in mice, e.g. 

with influenza virus, (Ishikawa et al., 2005). In Natural Killer cells TRAIL cell activation was 
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associated with an up regulation of surface bound TRAIL (Smyth et al., 2001; Street et al., 

2001). Other reports provided evidence for the involvement of TRAIL in autoimmune disease. 

TRAIL-deficient mice showed defective thymocyte development and increased sensitivity to 

autoimmune disease (Lamhamedi-Cherradi et al., 2003). In-vivo studies provided data that 

recombinant TRAIL induced pathognomonic features of asthma and promoted eosinophilic 

survival in mice, underlining a role of TRAIL in the field of allergology (Robertson et al., 2002; 

Weckmann et al., 2007). 

In addition TRAIL was found to have a considerable role for tumor biology. Both tumor 

formation and tumor metastasis were found to be controlled by TRAIL. Studies showed the 

potential of TRAIL as a pro-apoptotic factor, suppressing tumor cell growth (Shi et al., 2005) 

and tumor metastasis in-vivo (Grosse-Wilde and Kemp, 2008). Yet a key role as a 

suppressor of tumor genesis could not be successfully established. In-vivo studies on TRAIL-

deficient mice failed to show spontaneous formation of tumors (Sedger et al., 2002).  

3.3  Expression of Tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL)  

TRAIL was initially found to be expressed on activated cells of the immune system, among 

them dendritic cells (Fanger et al., 1999), NK cells, monocytes and resting T-cells (Kayagaki 

et al., 1999). A tissue-wide screen further identified a variety of transformed and non-

transformed organs expressing TRAIL (Wiley et al., 1995; Spierings et al., 2004). The 

expression of TRAIL was described as a prognostic factor for several solid cancers, including 

end stage colon cancer (Van Geelen et al., 2006), renal cell cancer (Macher-Goeppinger et 

al., 2009), end stage lung cancer (Spierings et al., 2003), melanoma (Bron et al., 2004) and 

gynecological cancers such as ovarian cancer (Lancaster et al., 2003), breast cancer (Van et 

al., 2006) and cervical cancer (Maduro et al., 2009). Furthermore endogenous TRAIL 

expression was shown to be regulated by different factors. For instance, INF-gamma, a 

cytokine with an important role for innate and adaptive immunity, up-regulates the expression 

of TRAIL on inflammatory cells (Smyth et al., 2001; Abadie and Wietzerbin, 2003). 

Immunostimulants, such as viral RNA or synthetic double stranded analogs, for instance Poly 

(I:C), and Lipopolysaccharin (LPS), a bacterial endotoxin, have also been shown to have an 

up-regulatory effect on TRAIL expression (Halaas et al., 2004; Harada et al., 2007; Cho et 

al., 2010).  
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3.4 TRAIL and its receptors 

TRAIL is expressed as a type 2 transmembrane protein, with an intracellular amino-terminal 

region, a transmembrane domain and an extracellular carboxy terminal region (Wiley et al., 

1995). TRAIL remains surface-bound or, alternatively, its extracellular domain is 

proteolytically cleaved from the cell surface or is released in association with micro vesicles 

to produce soluble TRAIL (Wiley et al., 1995; Martinez-Lorenzo et al., 1999). Both surface 

bound TRAIL and soluble TRAIL interact in humans with five receptors, among them death 

receptor 4, 5 (DR-4 / DR-5), decoy receptor 1, 2 (DcR-1 / DcR-2) and osteoprotegerin (OPG) 

(Mongkolsapaya et al., 1999).  DR-4 (TRAIL-R1) and DR-5 (TRAIL-R2) belong to the TNF 

receptor family and hold a death domain. Both death receptors induce cell death upon 

binding with TRAIL (Pan et al., 1997; Sheridan et al., 1997).  TRAIL also binds to DcR-1 / 

DcR-2, which are closely related to DR4 and 5, but do not induce cell death due to structural 

differences within the receptor. DcR-1 lacks a cytosolic region which is necessary to transfer 

the death signal (Sheridan et al., 1997). DcR2 has a truncated non-functioning cytosolic 

death domain which prevents further death signaling (Marsters et al., 1997). In addition to the 

death receptors TRAIL binds with low affinity to the soluble TNF receptor family member 

osteoprotegerin (OPG). The significance of its binding remains poorly understood up-to-date 

(Kimberley and Screaton, 2004). 

3.5 Apoptosis and the pro-apoptotic effect of TRAIL 

Apoptosis is a cell´s intrinsic death program which demarcates itself from other forms of cell 

death, for instance necrosis, as a programmed and deliberate mode of cell dying. Apoptosis 

is characterized by typical morphological changes, such as cell shrinkage, nuclear 

defragmentation and membrane blebbing (Hengartner, 2000).  Important effector molecules 

of apoptosis are proteolytically active enzymes, which are termed caspases (Degterev et al., 

2003). Chemotherapeutic agents, among them TRAIL, contribute to the activation of 

caspases by initiating the extrinsic or intrinsic pathway of apoptosis (Fulda and Debatin, 

2004).   

 A well known extrinsic stimulus for the induction of apoptosis is the interaction of TRAIL with 

its cellular death receptors, DR-4 (TRAIL Receptors 1) and DR-5 (TRAIL Receptors 2). The 

interaction of TRAIL with its death receptors initiates an intracellular molecular cascade 

which concludes with apoptotic cell death.  The binding of TRAIL with its receptor induces 

the clustering of the receptor´s death domain and the recruitment of the adapter molecule 
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Fas-associated death domain (FADD) (Walczek and Krammer, 2000).  FADD in turns 

recruits caspase 8, which serves as the apoptosis initiator and forms the so called death- 

inducing signaling complex (DISC) (Kischkel et al., 1995; Sprick et al., 2000).  Initiator 

caspases activate a cascade of downstream caspases, termed the effector caspases, 

leading eventually to features of apoptosis, such as the degradation of cytoplasmatic proteins 

and the fragmentation of nuclear DNA (Ashkenazi, 2002).  Figure 1 illustrates the intracellular 

cascade of the extrinsic pathway of apoptosis.  

 

 

 

 

Figure 1.TRAIL activates the extrinsic pathway of apoptosis by binding TRAIL receptor R1/R2.  
(Modeled after “TRAIL signaling: Decisions between life and death”, (Falschlehner et al., 2007)). 
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Next to extrinsic stimuli which activate the extrinsic pathway of apoptosis intrinsic stimuli can 

function as initiators of apoptosis. Apoptosis induction through the intrinsic pathway is 

mediated partly by mitochondrial activation. Various chemotherapeutic agents induce 

mitochondrial damage by disrupting the mitochondrial membrane and by increasing 

membrane permeability (Decaudin et al., 1998; Green and Kroemer, 2004). A consequence 

of increased membrane permeability is the release of proteins which normally occupy the 

space between mitochondrial inner and outer membrane. These proteins, among them 

cytochrome c, once in the cytoplasm, activate the aforementioned cascade of caspases or 

carry out a caspase independent death program (Saelens et al., 2004). 

3.6 TRAIL as an anti-cancer drug 

Apoptosis plays a major role in regulating tumor formation (Fulda and Debatin, 2006). 

TRAIL´s role as an anti cancer drug has been emphasized in in-vitro studies which showed 

that TRAIL induces cell death in cancer cells (Walczak et al., 1999), while sparing normal 

cells (Ashkenazi et al., 1999). A variety of cancers, both liquid and solid cancers, have been 

described sensitive to TRAIL therapy in in-vivo experiments. The systemic administration of 

TRAIL showed decreased tumor growth in murine xenograft models of colon carcinoma 

(Kelley et al., 2001), models of breast carcinoma (Walczak et al., 1999), malignant glioma 

(Roth et al., 1999) and thyroid cancer (Ahmad and Shi, 2000).  Even tumors with high 

resistance to conventional cytostatics drugs, particularly multiple myeloma, were effectively 

treated with TRAIL therapy (Mitsiades et al., 2001).  The tumoricidal effect of TRAIL is 

effectively increased when applied in combination with other cytostatic drugs. In human 

glioma and acute leukemia combination therapy with TRAIL markedly increased cell death, 

which was attributed to an upregulation of DR5 in tumor cells (Nagane et al., 2000; Wen et 

al., 2000). Increased efficiency of chemotherapy was also seen in human breast carcinoma 

and hepatocellular carcinoma, conferring TRAIL the role of a sensitizing agent (Keane et al., 

1999; Ganten et al., 2004). The sensitizing effect of TRAIL was further observed in 

conjunction with radiation therapy in lymphoma cells (Belka et al., 2001). Next to its 

apoptosis inducing effect on cancer cells, TRAIL´s ability to spare healthy cells emphasizes 

its potential as an anti-cancer drug. Normal fibroblasts, epithelial cells, astrocytes and 

smooth muscle cells were not affected by the cytotoxicity of TRAIL (Ashkenazi et al., 1999). 

Reports proposed a toxic effect of TRAIL on neurons in the presence of ischemia and 

hepatocytes (Martin-Villalba et al., 1999; Jo et al., 2000), but  subsequent studies contained 
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the risk reporting that cytotoxicity of hepatocytes was attributed to the high dose and to the 

derivative of TRAIL applied in the study (LeBlanc and Ashkenazi, 2003).  

 

3.7 Non-apoptotic effect of TRAIL  

TRAIL´s rising potential as an anti-cancer drug was damped by an increasing occurrence of 

resistance to TRAIL therapy. A significant number of cancer cell lines and tumors showed 

resistance to TRAIL induced apoptosis (Kim et al., 2000) or became resistant to the 

apoptosis inducing effect of TRAIL through prolonged or repeated exposure to TRAIL 

(acquired resistance). For example, human invasive neuroblastoma cell lines (Hopkins-

Donaldson et al., 2000) and renal cell cancer (Oya et al., 2001) did not respond to apoptosis 

when treated with TRAIL, while for instance breast cancer cells became resistant to TRAIL 

when incubated with repeated sub toxic doses of TRAIL (Yoshida et al., 2009).  A screening 

of human urothelial carcinoma cell lines showed that 2 out of 6 cell lines were resistant or 

refractory to the apoptosis inducing effect of TRAIL. Further studies were conducted in our 

research lab on leukemic cells and solid tumor cell lines. A screening of 53 leukemic 

samples, which were obtained from children with newly diagnosed acute leukemia, showed 

that 73% of patients were resistant to TRAIL induced apoptosis. Lower numbers were 

obtained from the screening of solid tumor cell lines subjected to TRAIL treatment. Among 18 

cell lines tested, 56% showed sensitivity, 44% showed resistance to TRAIL induced 

apoptosis. The study went on to examine TRAIL resistance in cancer cell lines in more detail. 

Four of 18 cancer cell lines revealed an unexpected increase in cell growth and survival upon 

TRAIL treatment (Baader et al., 2005). 
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3.8 The pro-proliferative effect of TRAIL  

Up-to-date TRAIL mediated proliferation has been identified on a group of TRAIL resistant 

cancer cells including human leukemia cells (Ehrhardt et al., 2003), human neuroblastoma 

cells (Baader et al., 2005), pancreatic cancer (Trauzold et al., 2006), human small cell lung 

carcinoma (Belyanskaya et al., 2008) and human glioma cells (Vilimanovich and 

Bumbasirevic et al., 2008). In-vitro studies further extended the observed pro-proliferative, 

pro-survival effect of soluble TRAIL to non-cancerous cells such as t-lymphocytes (Chou et 

al., 2001), vascular endothelial cells (Secchiero et al., 2004) and synovial fibroblasts (Morel 

et al., 2005). Furthermore, clinical studies described an association of increased endogenous 

TRAIL expression and decreased disease-specific survival in renal cell carcinoma and 

cholangiocarcinoma (Macher-Goeppinger et al., 2009; Ishimura et al., 2006), proposing a 

tumor promoting role of endogenous TRAIL. Throughout the tumor entities different 

molecular mechanisms were found to be involved in TRAIL mediated proliferation. TRAIL 

resistant cancer cells which showed TRAIL mediated proliferation formed a heterogeneous 

cancer group, in which soluble TRAIL exerted a pleiotropic effect. For instance in small cell 

lung carcinoma cells TRAIL induced proliferation was found to be a result of the activation of 

ERK, a growth promoting intracellular kinase (Belyanskaya et al., 2008). In human vascular 

endothelial cells growth induced by soluble TRAIL was attributed to the activation of Akt, a 

growth regulating serine/threonine kinase (Secchiero et al., 2003). Furthermore the 

transcription factor NF-ĸB, an activator of pro-inflammatory and pro-proliferative genes and 

key regulator of cell growth (Karin et al., 2002) was described to be involved in TRAIL 

induced proliferation in lymphoid cells and cells of cholangiocarcinoma (Malhi and Gores, 

2006). Studies on lymphoid cells showed the activation of NF-ĸB upon binding of TRAIL to its 

receptors (Lin et al., 2000; Ehrhardt et al., 2003; Zauli et al., 2005). The concomitant 

inhibition of NF-ĸB during TRAIL treatment eliminated TRAIL induced proliferation (Jeremias 

and Debatin, 1998). In cholangiocarcinoma cells the importance of the activation of NF-ĸB for 

TRAIL induced cell migration and tumor invasion was observed (Ishimura et al., 2006).  
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3.9 Aim of present work  

The present work is based on published data showing that TRAIL can induce survival and 

proliferation in human neuroblastoma, small cell lung cancer and cholangiocarcinoma cells 

(Ehrhardt et al., 2003, Baader et al., 2005; Belyanskaya et al., 2008). The growth promoting 

effect of soluble TRAIL implicates a possible role of endogenous TRAIL as an endogenous 

growth factor in cancers resistant to TRAIL-induced apoptosis.  

Therefore, the present work had the aim to study the role of endogenous TRAIL for 

spontaneous cell growth and survival in cancer cells resistant to TRAIL-induced apoptosis. 

Towards this aim, the expression levels of endogenous TRAIL were reduced using RNA 

interference. In a first step, the transfection method was optimized together with the 

confirmatory readouts of successful knockdown. In a second step, these techniques were 

used to knockdown endogenous TRAIL in the neuroblastoma cell line KELLY, a cancer cell 

line resistant towards TRAIL-induced apoptosis. In addition, two cancer cell lines, sensitive 

towards TRAIL-induced apoptosis, were subjected to the knockdown of endogenous TRAIL. 

Functional readouts for growth and apoptosis finally enabled to determine the impact of 

endogenous TRAIL for each of these cell lines. 

Taken together, the presenting work had the aim to evaluate the putative role of endogenous 

TRAIL as a novel therapeutic target in the therapy of cancers resistant to TRAIL-induced 

apoptosis.  

 



Material 

17 

 

4 Material  

4.1 Cell lines  

Adherent cell lines used in this work were of human origin.  

Table below describes cell lines applied in this work: 

 

P*= dilution ratio after passaging  

 

 

 

 

 

Name of cell line Cell type and origin Morphology P* 

KELLY Neuroblastoma cell line 

(Fulda  et al., 2001)  

Adherent 1:3 

SHEP Neuroblastoma cell line 

 (Baader et al., 2005) 

Adherent 1:3 

HEK 293 Embryonic kidney tissue (EKT) 

cell line (Shetty  et al., 2002)   

Adherent 1:10 

HEKpCDNA.TRAIL EKT cell line stabily transfected 

with pCDA-vector (Hausherr-

Bohn, 2009)  

Adherent 1:10 

Melanoma 1205 Lu  Lung metastasized melanoma 

cell line (Besch et al., 2009) 

Adherent 1:10 
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4.2 Oligonucleotides  

Oligonucleotides (siRNAs and primers) used in this work were obtained from MWG-Biotech. 

Immunostimulant, Poly (I:C), was a kind gift of Dr. Robert Besch. All oligonucleotides were 

stored at -20°C. 

Small interfering RNAs (siRNAs)  

Name Sequence  Modification Conc. 

TRAIL787 5`GGU CUA AAG AUG CAG AAU ATT 3` None 20 µM 

TRAIL127 5`GCA GAU GCA GGA CAA GUA CTT 3` None 20 µM 

TRAILq2 5`AAC ACA AAG AAC GAC AAA CAA 3` None 20 µM 

LAMIN 5`ACU GCA GCA UCA UGA AAU CTT 3` None 20 µM 

LAMINFAM 5`ACU GCA GCA UCA UGA AAU CTT 3` 5`FAM 20 µM 

TRAIL787FAM 5`GGU CUA AAG AUG CAG AAU ATT 3` 5`FAM 20 µM 

Primers 

Name Direction Sequence  Type Conc. 

TRAIL  Reverse 5`TCT TGG AGT TTG GAG AAG AC 3` Target 0.5 µM 

TRAIL  Forward 5`GTC AGC TCG TAA GAA AGA TG 3` Target 0.5 µM 

HPRT Reverse 5`AGG AAA GCA AAG TCT GCA TT 3` Control 0.5 µM 

HPRT Forward 5`GGT GGA GAT GAT CTC TCA AC 3` Control 0.5 µM 

Immunostimulant 

Name Conc. 

Polyinosinic-polycytidylic acid (Poly(I:C)) 
3 µM  

(Besch et al., 2009)  
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4.3 Antibodies of Western blot analysis 

 

 

 

 

 

4.4 Kits 

High Capacity cDNA -      

Reverse Transcription   Applied Biosystems (Foster City, USA) 

Light cycler Fast Start DNA -     

Master Plus SYBR Green   Roche (Mannheim, D) 

SV total RNA Isolation System  Promega (Madison, USA) 

4.5 Software 

Cell Quest Pro  BD Biosciences (USA) 

Excell Microsoft (Redmond, USA) 

Light cycler Software 4.05 Roche (Mannheim, D) 

PA Adhesion Software  Innovatis (Bielefeld, D) 

SigmaStat   Blue Stallion Tech (South Africa) 

4.6 Laboratory Equipement  

Cell culture CO2 Incubator Heraeus (Hanau, D) 

CellScreen Innovatis (Bielefeld, D) 

Centrifuge  Eppendorf (Hamburg, D) 

Electrophoresis chamber  Biorad (Hamburg, D) 

Filmentwicklungsmaschine CP 1000  Agfa (Köln, D) 

Name Species Dilution Origin 

Anti-TRAIL Rabbit 1:200 in 5% milk Peprotech  

Anti-GAPDH Mouse 1: 20.000 in TBST Affinity Bioreagents 

Anti-Mouse (2. Ab) Goat 1:20.000 in TBST Pierce 

Anti-Rabbit (2.Ab) Goat 1:5000 in Rotiblock  Pierce 
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FACS      Becton Dickinson (Heidelberg, D) 

Laminar flow     Heraeus (Hanau, D) 

Lightcycler     Roche Diagnostics (Mannheim, D)  

Light microscope Olympus   Zeiss (Jena, D)  

Nanodrop-ND 2000     Thermoscientific (Bonn, D) 

Neubauer counting chamber Labor Optik (Bad Homburg, D) 

Nitrocellulose-membrane    Millipore (Bedford, USA) 

PCR cycler     Peqlab (Erlangen, D) 

PCR workstation  Peqlab (Erlangen, D)   

Pipettes   Eppendorf (Hamburg, D)          

Trans-Blot SD semi-dry transfer cell   Biorad (Krefeld, D)   

Whatman-paper     BioRad (München, D)  

4.7 Materials of cell culture 

BSA    Sigma (Steinheim, D) 

Cell Culture Flask    BD Bioscience (Heidelberg, D) 

DMSO                   Sigma (Steinheim, D)  

DMEM      Gibco, (San Diego, USA) 

FCS    Invitrogen (San Diego, USA) 

Ficoll-Isoplaque    Amersham (Uppsala, Sweden) 

Gentamycin    Biochrom AG (Berlin, D) 

Glutamin     Gibco (San Diego, USA)  

Lipofectamine 2000    Invitrogen (Carlsbad, USA) 

Lipofectamine RNAimax    Invitrogen (Carlsbad, USA) 

L-Glutamin     Gibco (San Diego, USA) 
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Opti-MEM     Gibco (San Diego, USA) 

Penicillin/ Streptomycin    Gibco (San Diego, USA) 

Q-vad (10mM solution in DMSO)  Calbiochem (Gibstown, USA) 

RPMI Medium1640    Gibco (San Diego, USA) 

TRAIL      Peprotech (Rocky Hill, USA) 

Trypsin-EDTA    PAN
TM

 Biotech (Aidenbach, D)  

24-well plates     BD Bioscience (Heidelberg, D) 

*Prior to application FCS was heated to 54 degrees for 30 min   

4.8 Chemicals 

APS    Biomol (Hamburg, D) 

Ethanol    Roth (Karlsruhe, D) 

Isopropanol     Roth (Karlsruhe, D) 

Methanol    Roth (Karlsruhe, D) 

Milchpulver     Roth (Karlsruhe, D) 

Page Ruler Prestained     Fermentas (Burlington, USA) 

Polyacrylamid 30%    Roth (Karlsruhe, D)  

Propidium iodide     Sigma (Steinheim, D) 

Protein Ladder    New England Biolabs (Ipswich, USA) 

Roti-Block    Roth (Karlsruhe, D) 

Rotiphorese Gel 30    Roth (Karlsruhe, D)    

SDS          ICN Biomedicals (Meckenheim, D) 

TEMED      Roth (Karlsruhe, D) 

TRIS    Roth (Karlsruhe, D) 

Tween 20    Sigma (Steinheim, D) 
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4.9  Solutions/ buffers 

Buffer A:  36.3 g TRIS (3M), 48 mL 1M HCl, with aqua dest. 

ad 100 mL, pH = 8.9 

Buffer B:   5.7 g TRIS (0.47M), 25.6 mL 1M phosphoric acid,

   with aqua dest. ad 100 mL, pH = 6.7 

Cytosolic lysis-buffer  62.5 mM TRIS-HCl (pH = 6.8), 2% SDS, 10% (1x 

SDS sample buffer, Glycerin, 0.01% 

Bromphenolblue cell signaling)  

5x loading buffer    12.5 mL 1M TRIS (pH 6,8), 25 mL SDS 20%, 

   25 mL Glycerol 100%, 12.5 mL aqua ad 

    injectionem 

Nicoletti buffer  0.1% Triton-x-100, 0.1% Na-Citrate ad 1 liter water 

10x PBS  29.2 g Na2HPO4 2H2O, 4 g KH2PO4, 160 g NaCl, 

  4 g KCl, H2O dd. ad 2 L   

5x running buffer   37.75 g Tris Base, 235 g Glycin, 125 ml SDS (10%) 

10x TBS  48.4 g TRIS, 60 g NaCl, aqua dest. ad 2 L, pH = 6.8 

Transfer buffer  15 g Tris, 71 g Glycin, 790 g Methanol, dest. aqua 

ad.5 L
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5 Methods 

5.1 Cell culture 

All cell culture steps were performed under sterile condition within a laminar flow work 

station. 

Cell lines applied in this work (see chapter 4.1) were maintained in RPMI 1620 medium 

supplemented with 10% FCS and 2 mmol/L L-Glutamine in medium sized culture flasks 

(75cm2). Flasks were kept in incubators providing 37°C and 5% CO2. Cellpassage was 

performed every 3 days. Adherent cells were released from monolayer by adding Trypsin-

EDTA for 3 to 5 minutes and subcultures in the ratio described in chapter 4.1.   

For long-term storage, adherent cell lines were counted with the Neubauer counting 

chamber. 106 cells per ml medium were suspended in 1ml FCS and 10% dimethyl 

sulphoxid (DMSO), a cryoprotective agent. Cells were stored in cryotubes at -196°C. For 

recovery cells were thawed swiftly in a water bath holding a temperature of 37°C and 

resuspended in 10ml RPMI medium with 20% FCS, 1% Glutamin and 1% Penicillin. All 

cells were kept on antibiotics in culture flasks for 1-2 days after recovery, but maintained 

and applied in experiment only on RPMI medium 1% Glutamine and 10% FCS for a 

consecutive period of up to 2 months. 

5.2 In-vitro assays 

5.2.1 Stimulation with TRAIL  

The human neuroblastoma cell line KELLY was stimulated with soluble TRAIL. KELLY 

cells were seeded at 10 x 104 cells per ml medium in100μl well plates and incubated at 

37°C for 24h to allow attachment and to reach a well coverage of at least 10% prior to 

stimulation with TRAIL. After 24h adherent cells were replenished with 200μl of fresh 

medium and stimulated with TRAIL at concentrations of 1, 10 and 40 ng/ml for another 24h 

to 48h. Experiments were performed fourfold in parallel to compensate for intra-assay 

variations. 
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5.2.2 Transient transfection  

Adherent human cell lines were transiently transfected with small interfering RNAs (siRNA) 

(table 4.2). Small interfering RNAs were used to downregulate endogenous TRAIL on RNA 

and Protein level. To successfully transfect siRNAs into human cell lines liposome forming 

substances, such as Lipofectamine 2000 and RNAimax were used.  Lipofectamine and 

RNAimax form liposomes which react with siRNA to complexes. These complexes fuse 

with cell membranes and allow cellular siRNA uptake.  

For this purpose cell lines were seeded in 24-well plates and incubated at 37°C at different 

durations to reach a confluency of at least 5-10% at the time of transfection. For each 

transfection sample 1µl of transfection agent and 1µl of 20µM RNAi (20pmol) were 

separately diluted in 50µl of Opti-mem and mixed gently. Diluted transfection agent and 

diluted RNAi were combined gently. After the initial incubation time cells were replenished 

with 400 µl fresh growth medium and RNAi- Lipofectamine complex was added to give a 

final volume of 500µl. Plates were gently rocked back and forth to assure even distribution 

and placed at 37°C for incubation. The duration of incubation varied among the different 

cell lines. Transfection experiments were performed fourfold to compensate for intra-assay 

variation. 

 

Cell line HEK MELANOMA KELLY SHEP 

Seeding cells/ml 60.000 80.000 25.000 50.000 

Incubation (h) 12 24 36 24 

Agent Lipo 2000 RNAimax Lipo 2000 Lipo 2000 

Transfection (h) 24 48  48 48 

Source A B  C A 

Tab. 1 Transfection protocol of cell lines used in this work. 
A Manufactor’s protocol (Invitrogen), B (Besch et al., 2009), C (Kroll,Lisa; 2011) 
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5.2.3 Caspase inhibition   

The human neuroblastoma cell line KELLY was subjected to caspase inhibition with the 

pan-caspase inhibitor Q-VD prior to being transiently transfected with TRAIL targeting 

siRNA. Q-VD [N-(2-Quinolyl)valyl-aspartly-(2,6-difluorophenoxy)methyl Ketone] irreversibly 

binds caspases (Caserta et al., 2003). For caspase inhibition cells were seeded in 24-well 

plates and pan-caspase inhibitor Q-VD was added 1 h prior to transfection to reach an 

end-concentration of 50µM. Q-VD was repeatedly added after 48h.  Control samples were 

treated with the Q-VD solvent DMSO alone.  

5.3 Cell growth analysis using CellScreen 

Cell growth analysis was carried out with the use of CellScreen.  CellScreen is a computer 

supported microscope which consists of an inverse microscope with 10x and 4x 

magnification, a CCD- Camera (1024x1024 Pixel), a motorized plate table and a high 

power processor. CellScreen takes pictures of exactly the same cell in culture over time 

without disturbing culture conditions. Adherent cells of the present work were acquired in 

the AC mode with 4x magnification. The percentage of cell coverage was estimated by 

automated analysis of each picture using the PA adhesion software (Innovatis). Growth 

curves were calculated from the collected data. Cell growth analysis was performed 

following TRAIL stimulation (see chapter 5.2.1) and transient transfection (see chapter 

5.2.2).  

 

Figure 2. Cell growth analysis using CellScreen.  
CellScreen, an automated microscope, measured the cell coverage (cell density) of preselected 
wells at defined time points. Growth curves were calculated from these data. 
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5.4 Cell death analysis using Fluorescence activated cell sorting 

(FACS) 

Cell death analysis was carried out using Fluorescence activated cell sorting (FACS). By 

means of flow cytometric analysis different cell populations were characterized according 

to cellular size, granularity or by the attachment of fluorescent dye or fluorescent labeled 

antibodies. Adherent cells entering cell death are characterized by a decreased content of 

DNA due to DNA fragmentation and a consecutive loss of nuclear DNA. Specific DNA 

labeling agents, such as the fluorescent DNA intercalating agent Propidium Iodide (PI), 

attach to fragmented intracellular DNA of apoptotic cells and emit light upon laser beam 

stimulation (Nicoletti et al., 1991). Light detectors measure the light emission of a specific 

wavelength and allow the detection of cells entering cell death.  

To analyze cell death adherent cells were pelleted and lysated with Nicoletti buffer at 4°C 

for 30 minutes to allow cell membrane degradation. Following the incubation period cells 

were stained with Propidium Iodide (PI) (50 µg/ml). PI emits a fluorescent light at an 

emission maximum of 617nm. Fluorescence intensity of cells pre-treated with PI was 

measured by flow cytometry in channel FL-3 (Emission fluorescence wavelength (λ) = 

650nm). Acquired data were analyzed using Cell Quest Pro Software (BD Bioscience, 

USA) to determine absolute cell death rates.  

Figure 3 illustrates flow cytometric analysis of adherent cells entering cell death which were 

characterized by a lower DNA content and therefore lower detected fluorescence intensity 

(M1). 

 

Figure 3. Analysis of apoptosis in adherent cells using FACS. 
Cells were subjected to lysis with Nicoletti buffer and stained with Propidium Iodide (PI) to visualize 
DNA content. Cells with low DNA content (M1) represent apoptotic cell fraction.   
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5.5 Analysis of transfection efficiency using Fluorescence 

activated cell sorting (FACS) 

Cellular detection of siRNA after transient transfection was performed using flow 

cytometric analysis. Cellular delivery of siRNA is a significant factor for successful 

downregulation of proteins (Elbashir et al., 2001; Ovcharenko et al., 2005). To assess 

successful delivery of siRNA cells were transfected with Fluorochrom-labeled siRNAs 

(FAM-labeled control siRNA, FAM-labeled TRAIL targeting siRNA) and subjected to flow 

cytometric analysis. FAM-labeled siRNAs are dye conjugated oligonucleotides which emit 

light at a maximum emission wave length (λ) of 520nm when stimulated.  

To estimate the amount of successfully transfected cells with FAM-labeled siRNAs, cells 

were detached from cell plates after transient transfection using Trypsin. Enzymatic activity 

of Trypsin was stopped by the addition of culture medium. Cell suspension was transferred 

in 1ml eppendorf tubes and subjected to two washing steps with PBS. 250µl of cell 

suspension were analyzed for fluorescence intensity using flow cytometry. Fluorescence of 

stimulated cells was detected by light detectors of flow cytometry using channel FL-1 

(Emission fluorescence wavelength (λ) = 530nm). Acquired data were analyzed using Cell 

Quest Pro Software (BD Bioscience, USA). 

5.6 Statistical Analysis 

To determine statistical significance of results the unpaired ANOVA-Test (one-way 

analysis of variance) was applied. Statistical significance was determined by p-values < 

0.05, respectively < 0.01 (highly significant), and was indicated in the present work by * 

respectively **. 

5.7 RNA/DNA studies 

5.7.1 RNA Isolation and quantification 

RNA was isolated from cultured cells using the SV total RNA Isolation System (Promega). 

Approximately 106 cells were collected and pelleted to receive a sufficient RNA yield. All 

steps of cell lysation and RNA isolation were carried out according to manufactor´s 

protocol. Total isolated RNA was quantified and quality of RNA estimated using the UV 

spectrophotometer Nanodrop-ND 2000 (Thermoscientific, Bonn). 

For the purpose of quantification 1-2 μl of an undiluted solution sample were pipetted on a 

measuring pedestal to assess light absorbance of a specific wavelength. In a 
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concentration dependent manner UV spectrometer detected the absorption of light of a 

solution containing nucleic acid.  The concentration of single stranded nucleic acid was 

estimated in reference to the Beer-Lambert equation by measuring the absorption of light 

at a wavelength of 260nm and 280nm (A260/A 280) (Kallansrud and Ward, 1996). The quality 

of isolated RNA was estimated calculating the ratio of light absorption at a wavelength of 

260 and 230nm (A260/A 230). By this means contamination, for instance protein or phenol, 

were excluded. According to the manufactor´s protocol RNA with the following absorbance 

ratio was considered to be free of contaminants and applied in experiments of the present 

work:    A260/A280: 1.8 - 2.0, A260/A230: 1.8 - 2.2 

5.7.2 Reverse Transcriptase Reaction 

Isolated total RNA was subjected to Reverse Transcription Reaction after determining the 

concentration and purity of total RNA. Reverse Transcriptase Reaction, using the High 

Capacity cDNA Reverse Transcription kit (Applied Biosystems), allows the conversion of 

RNA strands to complementary DNA (cDNA). Reverse Transcriptase Reaction was 

performed with the aim to quantify levels of mRNA expression in different cell lines and 

validate the down regulating potential of various TRAIL targeting siRNAs.  

To synthesize single-stranded cDNA from total RNA up to 2 μg of isolated RNA were 

applied in a 20 μl reaction. Amounts greater than 2 μg were not used due to an inhibitory 

effect.  RNA and kit components were thawed on ice. Reverse Transcriptase mastermix 

consisting of 2 μl 10x RT Buffer, 0.8 μl 25x dNTP Mix (100mM), 2 μl 10x RT Random 

Primers and 1 μl of reverse Transcriptase were prepared for a 20 μl reaction.  RNA, 

equaling an amount of 2 μg, and RNAse free H20 were added to the mixture and content 

was centrifuged briefly to eliminate air bubbles. Reaction tubes were loaded into the 

thermal cycler and initially incubated for 10 minutes at 25°C and subsequently for 120 min 

at 37°C. The reaction was terminated by increasing the temperature to 85°C for 5 

seconds. Synthesized cDNA was stored at -20°C or directly used as a template for qRT-

PCR. 
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5.7.3 Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

To quantify synthesized cDNA in the present work quantitive Real-Time Polymerase Chain 

reaction (qRT-PCR) was performed using Lightcycler (Roche Diagnostics, Mannheim). 

QRT-PCR is based on general principles of Polymerase Chain reaction for the qualitative 

detection of DNA and additionally measures fluorescence in real-time for its quantification. 

The detection of TRAIL DNA by qRT-PCR using LightCycler was optimized in previous 

work of our research lab (Kroll, Lisa; 2011). 

The detection of specific DNA sequences is realized using pairs of short oligonucleotides 

(primers) which are complementary to a segment of the DNA of interest. In a PCR cycle a 

temperature increase is initially generated to separate double stranded DNA into two 

single strands (denaturation). A subsequent decrease in temperature allows the 

attachment of primers to the DNA sequence of interest (annealing). The addition of a 

thermo-stable DNA polymerase (Taq Polymerase) initiates the amplification of the DNA 

sequence of interest (extension) and a complimentary copy of the template DNA is 

generated. The PCR cycle (denaturation, annealing, extention) repeats itself, as copies of 

generated DNA serve as templates.  

The quantification of DNA is realized by the application of a DNA binding dye, SYBR 

Green, during the PCR process. SYBR green, a fluorescent dye, binds to double stranded 

DNA in a concentration dependent manner. Upon binding light of a different wavelength is 

emitted and the intensity of fluorescence is analyzed. 

For LightCycler reaction a mastermix containing 2 µl light cycler mix (Roche), 0.5 µl 

forward primer, 0.5 µl reverse primer, 6 µl water was prepared. Reagents were mixed 

within a PCR workstation to avoid contamination with DNA. 9 µl of LightCycler mastermix 

were filled in LightCycler glass capillaries and 1 µl of cDNA was added as PCR template. 

Samples were pipetted in duplicates to eliminate pipetting errors. These steps were 

performed outside the PCR workstation. As a next step capillaries were closed, 

centrifuged and placed into the LightCycler roter. For the quantification of TRAIL qRT-PCR 

using LightCycler was performed with temperature targets listed in table 2.  

 

 

 

 



Methods 

30 

 

 

 

 

 

 

 

 

 

 

 

*Number of cycles: 45 

Tab. 2. Temperature targets for RT-PCR using LightCycler (Roche diagnostics, Mannheim).  
Protocol was optimized in previous work of our research laboratory (Kroll, Lisa; 2011). 

 

5.7.4 Analysis of qRT-PCR (crossing point and melting curve analysis) 

Fluorescence measured with qRT-PCR was analyzed using the LightCycler software 

version 4.05. By means of fluorescence analysis the quality and quantity of amplified DNA 

was measured.  

For quality purposes melting curve analysis was performed. During qRT-PCR melting 

curves are generated to measure the quality of the amplified DNA product. A slow 

temperature increase (65°C to 95° at 0.1°C per s, see Table.2.) is generated for this 

purpose. Amplified DNA has a characteristic melting temperature (TM). Once the specific 

melting temperature is reached, DNA denaturizes and the fluorescence signal terminates, 

as SYBR-green loses its binding site. Hereby melting curves are generated which allow 

the analysis of the specificity of amplified DNA products. Identical PCR products have 

identical melting temperatures and were applied in further analysis. Primer mismatches, 

which do not influence DNA product quantification, have a very low melting temperature 

and can thus be identified. PCR products contaminated with by-products, are identified by 

multiple melting temperatures during a single analysis, and are thus excluded from further 

analysis. Figure 4 illustrates melting curves for the TRAIL product as generated by the light 

cycler software 4.05.  

Program Temperature and time  

Denaturation   95°C for 10 min 

Amplification  

- Denaturation 

 

95°C for 2s 

- Annealing 61°C for 18s 

- Elongation 72°C for 15s  

Melting curve analysis   

- 1. part 65°C for 15 s 

- 2. part 65°C - 95°C, slope 0.1 °C/s 

Cooling of instrument  40°C for 10s 
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Figure 4. Overlapping melting temperatures indicate a high specificity of the PCR-product 
TRAIL.   
Melting curve of the PCR product TRAIL was generated to test for specificity of the amplified 
product. For this purpose the melting temperature was calculated (Tm). To facilitate the read-out the 
first derivative of fluorescence was charted against temperature.   

 

For quantification purposes Crossing Point (CP) analysis was performed. By means of CP 

analysis the amount of amplified DNA was estimated by measuring fluorescence intensity. 

A threshold for fluorescence detection was set and cycle numbers were measured when 

threshold levels were reached (CP value). High amplification cycles are required to reach 

threshold levels for the detection of fluorescence in samples with low initial concentration 

of target DNA. In the presenting work mRNA transcripts of TRAIL were relatively quantified 

to allow standardization of results using the non- regulated housekeeper gene 

Hypoxanthin-Guanin-Phosphoribosyltransferase (HPRT) as a reference gene.  

 

To quantify the relative amount of the DNA of interest, and respectively the amount of RNA 

of interest, CP values were measured of TRAIL and HPRT and applied in the following 

mathematical model (Pfaffl, 2001):  

Relative mRNA transcripts =   (E TRAIL) 
∆CP TRAIL (control-sample) 

  (E HPRT) 
∆CP HPRT (control-sample) 

Figure 5. Mathematical model for relative quantification of endogenous TRAIL mRNA 
applying crossing point values.      
ETRAIL = Efficiency of TRAIL primer = 1.88, E HPRT = efficiency of HPRT Primer = 1.96. 
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5.8 Protein studies 

5.8.1 Cell lysis 

To measure protein expression of endogenous TRAIL cultured cells were subjected to cell 

lysis and subsequent gel electrophoresis and immunoblotting.  

2.5 x 105 HEK cells were seeded in 6 well plates and cultured at 37°C for 24h to 72h. Well 

plates were transferred from the incubator on ice to carry out steps of cell lysis.  Growth 

medium was removed and cells were washed with 1ml of PBS (4°C). 200µl of 

cytoplasmatic lysis buffer (SDS Sample Buffer) were supplemented with Protease inhibitor 

(1%) and added to well plates.  A cell scraper was used to efficiently detach cells from well 

plates and assist in cell lysis. The generated cell lysates was transferred to pre-labeled 

Eppendorf-tubes and stored at -20°C. 

Prior to gel electrophoresis and immunoblotting cell lysates were treated with ultrasound, 

at an amplitude of 10% and 5 (20) impulses, heated for 5 minutes at 95°C and vortexed 

briefly. These steps assisted in decreasing lysates’ viscosity and in protein denaturation. 

Cell lysate were then loaded onto a SDS-Polyacrylamide gel. 
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5.8.2 SDS-Polyacrylamid Gel Electrophoresis (PAGE) 

SDS-Polyacrylamid Gel electrophoresis describes a method in which denaturated proteins 

are separated into subunits according to size while migrating through the pores of a gel 

matrix in response to an electric field.  Different proteins of same molecular weight migrate 

through the gel in a similar pace.  To separate endogenous TRAIL from other proteins and 

subsequently measure protein’s expression level, cell lysates were subjected to SDS-

Polyacrylamide Gel Electrophoresis. 

SDS-Polyacrylamide gel consisted of a stacking gel and a running gel. Acrylamide 

concentration determines the size of the pores of the gel and thus the degree of protein 

resolution.  The following acrylamide concentration and gel composition was chosen to 

identify endogenous TRAIL (35kB):  

Stacking gel (5%): 680 µL ddH2O 

 170 µL Acrylamide (30%) 

 130 µL Puffer B 

 10 µL SDS (20%) 

 10 µL APS (10%) 

Running Gel (12%): 1.6 mL ddH2O 

 2 mL Acrylamide (30%) 

 1.25 mL Puffer A   

 50 µL SDS (20%) 

 50 µL APS (10%) 

 2 µL TEMED 

 

The prepared polyacrylamide gel was overlaid with running buffer. 25µl of cell lysate and 2 

µl of a standardized protein ladder (rainbowmarker) were loaded into the pockets of the 

stacking gel. Running buffer was added to the cover gel creating a close circuit. Gel was 

subjected for the initial 30 minutes to a voltage of 80 V to allow protein transfer into the 

running gel and then subjected for the following 180 minutes to a voltage of 180 V to allow 

protein separation.   
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5.8.3 Immunoblotting and Immunodetection 

Immunoblot and immunodetection are analytical methods which are used to detect 

proteins separated by SDS-PAGE. As a first step proteins are transferred onto a 

Polyvinylidene difluoride (PVDF) membrane to make proteins accessible to antibody 

detection (immunoblot). As a second step PVDF membrane is subjected to protein specific 

antibodies (immunodetection). 

2 Whatman-papers were soaked in transfer buffer and instilled into the blotting chamber 

(Trans-Blot SD Semi-dry transfer cell). The PVDF membrane was activated in Methanol 

for 1 minute, shortly washed with transfer buffer and placed onto Whatman-papers. The 

protein carrying SDS-gel was washed with transfer buffer and placed onto the PVDF 

membrane. As the contact between membrane and gel is critical for protein transfer air 

bubbles were avoided. Finally, 2 Whatman papers soaked with transfer buffer were placed 

onto the SDS-gel. The blotting chamber was subjected to an electrical field of 200 mA for 

120min to allow protein transfer.  

In preparation for immunodetection PVDF membrane was incubated at room temperature 

for 1 hour in TBST with 5 % powdered milk. This step was taken to prevent all non-specific 

binding of antibodies with the PVDF membrane. After blocking the PVDF membrane was 

incubated overnight with a diluted solution of antigen specific antibody (primary antibody) 

at 4°C. 3 x 15 minute washing steps with TBST followed.  For primary antibody detection 

and signal enhancement PVDF membrane was incubated with species specific antibodies 

(secondary antibodies) for 1 hour at room temperature (see chapter 4.3). Three additional 

10 minute washing steps with TBST followed. Immunodetection was carried out using the 

chemo-luminescence reaction. Secondary antibodies were linked to the enzyme 

horseradish peroxidase (HRP), which produced luminescence when used in conjunction 

with a chemo luminescent agent (ECL). 1 ml of ECL was applied for 1 minute to the PVDF 

membrane. The PVDF membrane was placed into an x-ray film cassette. Exposure time 

ranged from 3 minutes for the detection of Anti-Trail Antibody (Peprotech) to 1 second for 

the detection of Anti-GAPDH Antibody (Affinity Bioreagents).  
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6 Results 

The importance of soluble and endogenous TRAIL in tumor biology has been shown for 

TRAIL sensitive cancers. Data provided evidence that the upregulation of endogenous 

TRAIL in apoptosis sensitive cancers increased cancer immune surveillance and thus 

suppressed cancer cell growth (Takeda et al., 2002; Sanlioglu et al., 2008).  In the past 

studies have shown that a variety of cancers were resistant to TRAIL induced cell death 

and report TRAIL mediated survival and proliferation as a new adverse effect of TRAIL in 

cancer therapy (Baader et al., 2005).  To investigate the potential role of endogenous 

TRAIL as an endogenous growth factor in a subgroup of TRAIL resistant cancers the 

present work examined the effect of the downregulation of endogenous TRAIL on 

spontaneous cell growth in different human cancer cell lines, and in particular in the 

neuroblastoma cell line KELLY, a cell line sensitive to TRAIL mediated proliferation.  

6.1 TRAIL mediated proliferation  

Our research group has previously described TRAIL mediated survival and proliferation as 

an adverse effect of cancer therapy on primary leukemia cells and furthermore on the 

human neuroblastoma cell line KELLY (Baader et al., 2005).  At the beginning of my 

investigation I examined whether I could reproduce TRAIL mediated proliferation on the 

neuroblastoma cell line KELLY in the experimental setting applied.  In this case KELLY 

cells would serve as an adequate cell line to study the function of endogenous TRAIL.  

KELLY cells were cultured in well plates and incubated with TRAIL at various 

concentrations (1, 10 or 40 ng/ml) for 48h. To evaluate cell growth the density of cultured 

cells were measured using CellScreen.  CellScreen, an automated microscope which 

takes pictures of exactly the same cell in culture over time, estimated the percentage of 

well coverage by an automated analysis of each picture and calculated the cell density 

(cell numbers per cm2) using a standard curve. From this data growth curves were 

generated. Figure 6 illustrates the results of TRAIL stimulation of the neuroblastoma cell 

line KELLY.  
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Figure 6. TRAIL mediated increase in cell density of the neuroblastoma cell line KELLY.  
KELLY cells were stimulated with 1, 10 or 40 ng/ml TRAIL and incubated for 48h. Untreated KELLY 
cells were used as control. Cell density was measured using CellScreen at 0h, 24h and 48h. One 
representative of two independent experiments is shown.  

 

The data of the present study showed an increase of density in TRAIL treated cells in 

culture at 24h and 48h in comparison to untreated control cells. The strongest increase in 

growth of TRAIL stimulated cells took place in the first 24h. Furthermore growth increase 

was concentration dependent, as treatment with 10 ng/ml and 40ng/ml of TRAIL lead to a 

greater increase within the first 24h than treatment with 1 ng/ml TRAIL. Thus, the data of 

the present work showed that KELLY cells responded to TRAIL treatment with an increase 

of cell density, which is a strong indicator of cell growth and cell proliferation. Taken 

together the initial experiments confirmed the presence of TRAIL mediated proliferation on 

the neuroblastoma cells line KELLY, as initially described by my research group (Baader 

et al., 2005). The results of the present study thus emphasize the suitability of the human 

neuroblastoma cell line KELLY to be applied in the present study in order to investigate the 

role of endogenous TRAIL as a growth promoting factor. 

 



Results 

37 

 

6.2   Downregulation of endogenous TRAIL: optimization 

After showing that the human neuroblastoma cell line KELLY proliferates when treated 

with TRAIL, the downregulation of endogenous TRAIL using TRAIL targeting interfering 

RNA was optimized. In a first step various cell lines were screened for endogenous TRAIL 

expression to determine the optimal cell line for the downregulation of TRAIL. In a second 

step fluorescent dye-labeled siRNAs were transfected into selected cells to evaluate the 

delivery of siRNA, as siRNA-based gene delivery is a significant factor for downregulation 

(Ovcharenko et al., 2005). As a last step various siRNAs were examined for their efficiency 

to downregulate endogenous TRAIL on mRNA and protein level.  

6.2.1 Screening human cell lines for endogenous TRAIL expression 

Studies showed that endogenous TRAIL expression varies considerably throughout the 

tissue (Spierings et al., 2004). Furthermore it has been shown that cultured cells up- or 

downregulate endogenous TRAIL production according to their activation status (Ehrlich et 

al., 2003). As an abundant production of target protein facilitates the detection of an 

efficient downregulation by means of RNA interference, various human cancer cell lines 

were screened for high endogenous TRAIL expression. Human cell lines were screened 

by measuring RNA expression of endogenous TRAIL with Real-time Polymerase Chain 

Reaction (RT-PCR). RT-PCR was optimized for the detection and quantification of 

endogenous TRAIL in previous work of our research laboratory (Kroll, 2011). 

For this purpose multiple human cancer cell lines were thawed and kept in culture for 7 

days. All cells were held in optimal culture conditions without usage of antibiotics before 

being prepared for RT-PCR. TRAIL overexpressing HEK cells, HEK-TRAIL, a cell line 

which was stabily transfected with a constitutively TRAIL expressing vector in our research 

lab, served as a positive control. Furthermore, a melanoma cell line (MEL) was stimulated 

with Polyinosinic Polycytidylic acid (Poly I:C), a short double stranded RNA which has 

been shown to have an immunostimulatory potential (Alexopoulou et al., 2001). As 

immunostimulators are strong up-regulators of endogenous TRAIL expression (Bretz et al., 

1999), I expected to measure high endogenous TRAIL production in POLY (I:C) stimulated 

cell lines. 
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 For RT-PCR cultured cell lines were harvested and total RNA extracted. Total extracted 

RNA was quantified and subjected to reverse transcription. For the quantification of TRAIL 

DNA, HPRT, a housekeeper gene, was simultaneously detected and used as a reference 

for the expression of endogenous TRAIL (relative mRNA transcripts). Housekeeper genes 

are stably expressed genes which are not influenced by experimental settings. Figure 7 

illustrates the results of the present study showing relative expression levels of TRAIL 

mRNA in selected cell lines.  

 

 

Figure 7. A. Variability of endogenous TRAIL expression on mRNA level in human cell lines. 
Selected human cell lines were cultured and subjected to RNA isolation and mRNA measurement 
using RT-PCR. Illustrated are mRNA levels of endogenous TRAIL expression in relation to the 
expression of the housekeeper gene, HPRT (rel. mRNA transcripts). B. Up-regulation of 
endogenous TRAIL expression on mRNA level by Poly (I:C).  Melanoma cells (Mel) were 
subjected to the stimulation with the synthetic RNA analog, Poly (I:C), for 17h (+), or left 
unstimulated (-). Thereafter cells were subjected to RNA isolation and mRNA measurement using 
RT-PCR. Illustrated are mRNA levels of endogenous TRAIL expression in relation to the 
housekeeper gene, HPRT (rel. mRNA transcripts). n.d.=not detected. 
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The results demonstrated that throughout the cell lines a considerable difference of 

endogenous TRAIL expression existed (figure 7 A). Untreated cells showed low levels of 

endogenous TRAIL production in comparison to TRAIL over-expressing HEK cells, which 

served as a positive control.   The selected neuroblastoma cell line Kelly expressed the 

lowest amounts of endogenous TRAIL. Furthermore, unstimulated Melanoma cells proved 

to be natively deficient of endogenous TRAIL, as endogenous TRAIL was not detected 

using RT-PCR (figure 7 B). Poly (I:C) stimulated Melanoma cells in contrast showed an 

upregulation of endogenous TRAIL on RNA level. A melting curve analysis validated the 

purity and thus the accuracy of the quantification data (see chapter 5.7.3). 

Taken together, with this data I showed that endogenous TRAIL expression is highly 

variable throughout human cancer cell lines. As all cells were kept in similar culture 

conditions, I interpreted differences of endogenous TRAIL expression as a result of 

variable endogenous production. As Kelly cells produced a very little amount of 

endogenous TRAIL, they were considered not to be suitable for optimization experiments. 

For the same reason non-stimulated Melanoma cells proved to be unsuitable. 

Furthermore, the data of the present study confirmed that immunostimulators, such as 

Poly (I:C), upregulated endogenous TRAIL production on RNA level. Therefore, Poly (I:C)  

stimulated Melanoma cells and the TRAIL over-expressing control cell line, HEK-TRAIL, 

were selected for the following optimization experiments.  

6.2.2 Evaluation of siRNA delivery  

As a next step siRNA delivery was evaluated. Cellular delivery of siRNA is a significant 

factor for successful downregulation of gene products of interest (Elbashir et al., 2001; 

Ovcharenko et al., 2005). To assess successful delivery of siRNA cells were transfected 

with FAM-labeled control siRNAs and subjected to flow cytometric analysis. FAM-labeled 

siRNAs are fluorencent-dye labeled oligonucleotides which are used to trace transfected 

cells. 
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Both endogenous TRAIL over-expressing HEK cells, HEK-TRAIL, and Melanoma cells 

were transfected according to published transfection protocol using liposome forming 

substances (see chapter 5.2.1). Melanoma cells were incubated with FAM-labeled siRNA 

for 48h and retransfected for another 17h while simultaneously being stimulated with Poly 

(I:C). HEK-TRAIL cells were incubated with Fam-labeled siRNA for 24h. Cells treated with 

transfection medium without siRNA (mock transfection) were used as controls. 

Fluorescence was measured in channel FL-1, which was termed FAM, using flow 

cytometry. Figure 8 shows a representative result of flow cytometric analysis of treated 

cells.  

 

 

Figure 8. Successful cell delivery of FAM-labeled siRNA. 
Melanoma and HEK cells were transfected with FAM-labeled control siRNA according to 
transfection protocol and subjected to flow cytometric analysis. The illustration shows histograms 
created by flow cytometric analysis of HEK cells which were transfected with FAM-labeled control 
siRNA. Fluorescence intensity is plotted against the number of measured cells (counts). The 
histogram on the left shows a cell sample subjected to mock transfection (no siRNA). The histogram 
on the right shows a cell sample transfected with FAM-labeled siRNA. M2 delineates transfected cell 
fraction.  

 

Flow cytometry analysis rendered histograms which showed a marked right shift of 

fluorescence intensity in cells treated with transfection medium and siRNA. The right 

shifted histogram represented an increase in fluorescence intensity and thus indicated a 

high number of successfully transfected cells. A successful siRNA delivery was detected in 

94% (M2 – M1) of HEK-TRAIL cells. Same transfection results were achieved in Melanoma 

cells (data not shown). These results confirmed the successful delivery of siRNA by means 

of transfection protocols used in the present study.  
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6.2.3 Evaluation of siRNA efficiency  

In a last step of optimization I examined various siRNAs for their efficiency to down-

regulate endogenous TRAIL on mRNA and protein level. The aim of this undertaking was 

to find a powerful tool of downregulation in order to study the function of endogenous 

TRAIL. 

6.2.3.1 Efficiency on RNA level 

In an initial step the efficiency of several TRAIL targeting siRNAs on RNA level was 

evaluated. The aim of this undertaking was to identify an efficient siRNA which suppressed 

endogenous TRAIL on RNA level and which would be used to study the role of 

endogenous TRAIL. For this purpose I selected three promising siRNAs, whose 

sequences met published guidelines for efficient inhibition (Ui-Tei et al., 2007).  I 

transfected cells with TRAIL targeting siRNAs and assessed siRNA delivery using flow 

cytometry as previously described (see chapter 6.2.2). Cells were subjected to 

measurement of RNA only if transfection rates of 90% and above were reached.  Down-

regulation of endogenous TRAIL was evaluated on RNA level using RT-PCR. For this 

purpose Poly (I:C) stimulated melanoma cells, which proved to have a high endogenous 

TRAIL expression in previous experiments, were used.  

Poly (I:C) stimulated melanoma cells were transfected according to transfection protocol 

with three different TRAIL targeting siRNAs. Control cells were either transfected with 

control siRNA and stimulated with Poly (I:C) (co), or left non-transfected and non-

stimulated (-). 17h after retransfection and restimulation cells were harvested for RNA 

isolation. RNA expression of TRAIL was quantified using RT-PCR.  
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Figure 9. Efficient downregulation of endogenous TRAIL on mRNA level by three different 
TRAIL targeting siRNAs.  
Melanoma cells were stimulated with Poly (I:C) and transfected with three TRAIL targeting siRNAs 
(t1, t2, t3) or control  siRNA (co) for 48h. Unstimulated and untransfected cells served as control. 
Afterwards cells were subjected to RNA isolation and mRNA measurement using RT-PCR. Shown 
are expression levels of endogenous TRAIL mRNA in relation to the housekeeper gene, HPRT (rel. 
mRNA transcripts).  

 

The results of the present experiment, illustrated in figure 9, showed a significant decrease 

of TRAIL expression in melanoma cells, treated with TRAIL targeting siRNAs (siTRAIL t1, 

t2, t3). Among the three siRNAs tested TRAIL targeting siRNA t2 was identified as the most 

effective siRNA, inhibiting TRAIL RNA production by 99% in comparison to non-silencing 

control siRNA (co). SiRNA t1 showed a slightly lower TRAIL reducing potential on RNA 

level. Poly (I:C) stimulated melanoma cells transfected with non-silencing siRNA in 

contrast showed high levels of endogenous TRAIL expression. Non-transfected and non-

stimulated melanoma cells again demonstrated no detectable endogenous TRAIL 

production. A melting curve analysis validated the purity and thus the accuracy of the 

quantification data (not shown).   
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6.2.3.2 Efficiency on Protein Level 

In a next step I tested the efficiency of the selected siRNA on protein level. Studies had 

shown that the downregulation on mRNA level must not extend to the protein level, 

especially in proteins with a low turn-over rate (Dykxhoorn et al., 2003; Wu et al., 2004).  

To prove that TRAIL targeting siRNA t2 downregulated TRAIL on protein level, 

endogenous TRAIL expression of siRNA t2 transfected cells was evaluated using western 

blot. For this purpose the TRAIL over-expressing human cell line, HEK-TRAIL, was 

applied. 

TRAIL over-expressing HEK cells, HEK-TRAIL, were transfected for 24h with siRNA t2 and 

control siRNA and by means of western blot analysis endogenous TRAIL production was 

measured. Endogenous TRAIL production was directly measured at the end of 

transfection (24h) and every 12h thereafter (32h, 48h, 72h) to evaluate the duration of 

downregulation. Cells were subjected to flow cytometric analysis to assure adequate 

siRNA delivery prior to western blot analysis. Only cells with transfection rates of 90% and 

above were subjected to Western blot analysis. GAPDH, a constitutively expressed house 

keeper protein, was measured alongside of TRAIL to function as a reference for the 

quantification of endogenous TRAIL.  Figure 10 shows the results of the western blot 

analysis.  

 

 

Figure 10. Efficent downregulation of endogenous TRAIL on protein level by TRAIL targeting 
siRNA.  
HEK cells overexpressing TRAIL (HEK-TRAIL) were treated for 24h with control siRNA (control) 
and TRAIL targeting siRNA (siRNA TRAIL).  Transfected cells were harvested for lysis directly after 
transfection at 24h and after an additional treatment free period at 36, 48 and 60h. Shown are 
results of western blot analysis for endogenous TRAIL. GAPDH served as a loading control.  
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The results of the western blot analysis confirmed the potential of siRNA t2 to 

downregulate endogenous TRAIL on protein level. The results of the present study 

showed that cells transfected with TRAIL targeting siRNA produced lower levels of 

endogenous TRAIL on protein level than cells transfected with non-silencing siRNA 

(control).  A marked reduction of protein production was observed at 24h and 32 h after 

start of transfection. At 48h and thereafter efficacy of protein inhibition was reduced and 

reversed at 72h as seen by the reaccumulation of TRAIL protein to control conditions 

(72h).  GAPDH was detected in equal amounts throughout the samples.  

Taken together, the present study showed that TRAIL targeting siRNA t2 had a greater 

potential to downregulate endogenous TRAIL on mRNA level than other TRAIL targeting 

siRNAs tested and moreover had an inhibitory potential on protein level. 

In summary, the experiments of the present study showed that TRAIL targeting siRNA can 

be successfully delivered into Poly (I:C) stimulated Melanoma cells and TRAIL over-

expressing HEK cell, two cell lines which showed very high endogenous TRAIL 

expression. Transfection efficiencies of 90% and above were attained in cells treated with 

siRNA. Downregulation studies with various TRAIL targeting siRNAs showed the highest 

inhibiting potential of TRAIL targeting siRNA t2 on RNA and protein level. Furthermore, 

inhibition of endogenous TRAIL was not cell line specific. Therefore, the present studies 

showed that TRAIL targeting siRNA t2 served as a powerful tool to study the function of 

endogenous TRAIL.   

6.3 Downregulation of endogenous TRAIL: screening for effects 

on cell growth 

In a subpopulation of TRAIL resistant cancer cells TRAIL mediated cancer cell growth 

(Baader et al., 2005). In the following study the growth promoting potential of endogenous 

TRAIL in tumor cells showing TRAIL mediated proliferation is investigated. 

For this purpose human cancer cell lines were transfected with TRAIL targeting siRNA t2, 

which in previous studies had shown a strong potential to downregulate endogenous 

TRAIL. Thereafter, human cell lines were screened for effects on cell growth using 

CellScreen.  Downregulation studies were carried out on two human cell lines showing 

sensitivity to TRAIL mediated apoptosis, SHEP cells (Baader et al., 2005) and HEK cells 

(Shetty et al., 2002) and one cell line showing sensitivity to TRAIL mediated proliferation, 

the human neuroblastoma cell lines KELLY (Baader et al., 2005). Cells were transfected 

according to previously described transfection protocols (see chapter 5.2.1). In reference 
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to previous experiments of the present work which showed a transient character of 

downregulation during transfection (see Figure 10), transfection times of the 

neuroblastoma cell line SHEP and KELLY were extended from initial 24h to 48h to prolong 

observation time. The transfection time of HEK cells remained at 24h due to high 

sensitivity to the toxicity of the transfection medium. To ensure adequate siRNA delivery 

additional transfection with fluorescent dye-labeled siRNA t2 with subsequent flow 

cytometric analysis was carried out. Analysis of siRNA delivery and analysis of cell growth 

of transfected HEK, SHEP and KELLY cells are illustrated in Figure 11, Figure 12 and 

Figure 13.  

Flow cytometric analysis of transfected HEK cells confirmed a successful delivery of 

fluorescent dye-labeled siRNA as illustrated by a right shifted histogram. 92% (M2 – M1) of 

HEK cells were successfully transfected, a transfection efficiency which was consistent 

with previously shown studies of cells transfected with TRAIL targeting siRNA and 

successful downregulation of endogenous TRAIL (chapter 6.2.3.). Subsequent cell growth 

analysis of HEK cells using CellScreen showed similar cell growth behavior of control cells 

transfected with non-silencing siRNA (siRNA control) and cells transfected with TRAIL 

targeting siRNA (siRNA TRAIL) at 24h and 48h respectively. Both control siRNA 

transfected cells and TRAIL targeting siRNA transfected cells showed cell densities of 

approximately 45.000 cells per cm2 at 48 h of cell growth analysis.  

Similar observations were made for the human cell line SHEP as illustrated in Figure 12.  

90% (M2 – M1) of SHEP cells were successfully transfected when analyzed by flow 

cytometry, confirming successful delivery of TRAIL targeting siRNA. SHEP cells 

transfected with TRAIL targeting siRNA and untransfected control cells showed no 

difference in cell growth for 48h of growth analysis performed by CellScreen. Both 

untransfected cells and TRAIL targeting siRNA transfected cells showed cell densities of 

approximately 70.000 cells per cm2 at 48 h after start of transfection. SHEP cells 

transfected with non-silencing control siRNA showed slightly lower cell densities at 48h of 

growth analysis. 

 

 



Results 

46 

 

 

B 

 

Figure 11. Transfection with TRAIL targeting siRNA shows no effect on cell growth in 
HEK cells. 
A. HEK cells were treated for 24h with FAM-labeled TRAIL targeting siRNA (siRNA TRAIL) and 
subjected to flow cytometric analysis to evaluate siRNA delivery.  Shown are histograms of a 
representative sample. M2 delineates transfected cell fraction. B. HEK cells were transfected for 
24h with TRAIL targeting siRNA (siRNA TRAIL) and control siRNA. Cells were subjected to 
CellScreen measurement for 48h to evaluate cell growth. Untransfected cells served as control. 
Error bars represent standard deviation of two independent experiments. 
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Figure 12. Transfection with TRAIL targeting siRNA shows no effect on cell growth in 
SHEP cells. 
A. SHEP cells were treated for 48h with FAM-labeled TRAIL targeting siRNA (siRNA TRAIL) and 
subjected to flow cytometric analysis to evaluate siRNA delivery.  Shown are histograms of a 
representative sample with M2 delineating transfected cell fraction. B. SHEP cells were transfected 
for 48h with TRAIL targeting siRNA (siRNA TRAIL) and control siRNA and afterwards subjected to 
cell growth analysis using CellScreen. Untransfected cells served as control. Error bars represent 
standard deviation of two independent experiments. 
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As a next step the human neuroblastoma cell line KELLY, a cell line resistant to TRAIL 

induced apoptosis and sensitive to TRAIL mediated proliferation (Baader et al., 2005), was 

tested (see Figure 13). In a first step, flow cytometric analysis confirmed that 91% (M2 – 

M1) of KELLY cells were successfully transfected with TRAIL targeting siRNA t2. In a 

second step, cell growth analysis of transfected cells using CellScreen showed no 

difference in cell growth in the initial 24h. At 48h, however, control transfected cells 

measured cell densities of 18.000 cells per cm2, while KELLY cells transfected with TRAIL 

targeting siRNA measured 8.000 cells per cm2. A significant difference in cell density 

between KELLY cells transfected with TRAIL targeting siRNA t2 and control siRNA 

transfected cells was confirmed by statistical analysis. 

Taken together, growth behavior of transfected HEK, SHEP and KELLY cells differed in 

the course of the observation as demonstrated by the results of the present study. HEK 

and SHEP cells which were successfully transfected with TRAIL targeting siRNA t2 

showed growth behavior similar to control cells. The neuroblastoma cell line KELLY, 

however, demonstrated a significant difference in cell growth upon transfection with TRAIL 

targeting siRNA t2. Compared to control cells KELLY cells which were transfected with 

siRNA t2 showed a significantly decreased cell growth at 48h of growth analysis 

 

 

 

 

 

 

 



Results 

49 

 

 

 

Figure 13. Transfection with TRAIL targeting siRNA shows an effect on cell growth in 
KELLY cells. 
A. KELLY cells were treated for 48h with FAM labeled siRNA TRAIL and subjected to flow 
cytometric analysis. Histograms of a representative sample are illustrated. M2 shows the fraction of 
transfected cells. B. KELLY cells were transfected for 48h with TRAIL targeting siRNA (siRNA 
TRAIL) and control siRNA and subjected to CellScreen measurement for 48h. Untransfected cells 
served as control. Error bars represent standard deviation of two independent experiments. 
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6.4 KELLY cells and the effects of downregulation of 

endogenous TRAIL 

To further characterize the proposed function of endogenous TRAIL for tumor cell growth, 

KELLY cells, which were transfected with TRAIL targeting siRNA, were further analyzed 

microscopically and flow cytometrically. 

6.4.1 Reduction of cell growth 

KELLY cells transfected with siRNA t2 showed reduced cell growth compared to control 

cells, suggesting a function of endogenous TRAIL for tumor cell growth. To further analyze 

the described cell growth behavior and provide evidence that reduced cell growth was a 

result of endogenous TRAIL downregulation, I extended observation times and replicated 

the experiment using another TRAIL targeting siRNA.  A direct verification of endogenous 

TRAIL downregulation on mRNA and protein level on KELLY cells, as performed in 

previous experiments of the present work (chapter 6.2.3), was technically not feasible due 

to very low expression levels of endogenous TRAIL in KELLY cells (see Figure 7). To 

exclude that the described cell growth behavior was a result of a sequence specific off-

target effect of the interfering RNA (Jackson et al., 2006), the experiment was reproduced 

using a TRAIL targeting siRNA of an alternative sequence.   

To analyze growth behavior in more detail the exposure time of transfection medium and 

TRAIL targeting siRNA was prolonged to another 48h, and the observation time was 

extended to a total of 96h. Figure 14 illustrates the results of the extended cell growth 

analysis of KELLY cells transfected with TRAIL targeting siRNA t2.  
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Figure 14. Decreased cell growth in KELLY cells transfected with TRAIL targeting siRNA.  
KELLY cells were transfected with control siRNA or TRAIL targeting siRNA (siRNA TRAIL) at 0h 
and 48h. Cell growth was evaluated using CellScreen for 96h. Error bars represent standard 
deviation of three independent experiments. ** P < 0.01 (one-way RM ANOVA).  

 

The results of the present study confirmed persistent cell growth reduction in KELLY cells 

transfected with TRAIL targeting siRNA t2 at 72h and 96h (siRNA TRAIL). Significant 

differences of cell growth behavior of control transfected cells (control siRNA) and cells 

transfected with TRAIL targeting siRNA were detected at 48, 72 and 96h, indicating a 

stable manifestation. Cell densities of KELLY cells transfected with TRAIL targeting siRNA 

persisted at an equal level until 72h of transfection. At 96h a regressive growth behavior of 

KELLY cells was noticed, suggesting the occurrence of cell death.  

In a next step, I repeated the experiment applying the TRAIL targeting siRNA t1, which has 

been shown to have the second highest potential of reducing endogenous TRAIL on RNA 

level (chapter 6.2.3.1). Similar to the previous experiment KELLY cells were transfected at 

0h and retransfected at 48h and thereafter subjected to cell growth measurement using 

CellScreen. Figure 15 illustrates results of the growth analysis of KELLY cells which were 

transfected with TRAIL targeting siRNA t1.  
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Figure 15. Decreased cell growth in KELLY cells transfected with a TRAIL targeting siRNA of 
a different sequence. 
KELLY cells were transfected with control siRNA and a TRAIL targeting siRNA of a different 
sequence (siRNA TRAIL t1) at 0h and 48h. Cell growth was evaluated for 96h using CellScreen. 
Shown is a representative of two independent experiments.  

 

Cell growth analysis of KELLY cells which were transfected with an alternative TRAIL 

targeting siRNA (siRNA TRAIL t1) revealed a similar reduction of cell density. Yet start of 

decreased cell growth was detected at 72h of observation, a later time point when 

compared to initial studies with KELLY cells transfected with TRAIL targeting siRNA t2. 

Regressive cell growth was noted at 96h. The observation of a delayed decrease of cell 

growth, in comparison with the growth analysis of KELLY cells transfected with siRNA t2, 

was compatible with the previously described reduced inhibiting potential of TRAIL 

targeting siRNA t1 (see Figure 9).  
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Taken together, the results of the present study show that the decrease in cellular density, 

which was seen in KELLY cells transfected with TRAIL targeting siRNA is stable over time 

and reproducible. Different TRAIL targeting siRNAs induced similar growth patterns in 

transfected KELLY cells. Previous experiments of the present work confirmed the potential 

of TRAIL targeting siRNA t2 to downregulate endogenous TRAIL on mRNA and protein 

level independent of cell line used (6.2.3). In reference to these experiments I interpreted 

altered growth behavior of transfected KELLY cells, not to be a result of a sequence 

specific off-target effect of the siRNA used, but to be a direct effect of endogenous TRAIL 

downregulation. Furthermore, the extended analysis of cell growth of transfected KELLY 

cells yielded a regressive cell growth behavior at 96h, an observation which was 

suggestive of cell death.   

6.4.2 Cell growth reduction is a result of cell death induction 

After verifying the reproducibility and stability of the observed decrease of cell growth in 

KELLY cells upon the downregulation of endogenous TRAIL, I proceeded to investigate 

whether decreased cell numbers were a result of decreased cell growth or, alternatively, a 

result of an increase in cell death, which was suggested by a regressive growth behavior 

of KELLY cells, seen in previous studies of the present work (see Figure 14 and Figure 

15).  

To further characterize the observed cell growth behavior, KELLY cells were 

microscopically examined at 96h for morphological changes characteristic of cell death, 

such as cell shrinkage and membrane blebbing (Hengartner, 2000).  Figure 16 illustrates 

microscopic evaluation of KELLY cells with and without the downregulation of endogenous 

TRAIL at 96h of cell growth analysis.  
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Figure 16. Reduced cell vitality in KELLY cells transfected with TRAIL targeting siRNA.  
KELLY cells were transfected with control siRNA or TRAIL targeting siRNA (siRNA TRAIL) at 0h 
and 48h. Pictures of KELLY cells were taken at 0h (time of transfection) and at 96h in culture. 
Pictures of the upper panel show KELLY cells transfected with control siRNA. Pictures of the lower 
panel show KELLY cells transfected with TRAIL targeting siRNA (siRNA TRAIL).  

 

At 96h of cell growth analysis KELLY cells transfected with TRAIL targeting siRNA showed 

a decrease in cell vitality when compared to cells transfected with non-silencing control 

siRNA. In-detail analysis by higher magnification revealed a rounded phenotype of Kelly 

cells with downregulated levels of endogenous TRAIL, suggesting the presence 

morphological changes specific of cell death (Wiley et al., 1980; Hengartner, 2000).  

To confirm that the described changes were a manifestation of cell death, cells were 

subjected to a flow cytometric analysis to assess nuclear DNA fragmentation. DNA 

fragmentation is a process during apoptosis, in which nuclear DNA is cut into pieces and 

packaged away. Visualization of DNA fragmentation by flow cytometry was described as a 

reliable method for detecting cell death in past studies (Nicoletti et al., 1991; 

Darzynkiewicz et al., 1992). Figure 17 illustrates the result of the present experiment. 
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Figure 17. Increase in cell death in KELLY cells transfected with TRAIL targeting siRNA.  
KELLY cells were transfected with TRAIL targeting siRNA (siRNA TRAIL) or control siRNA at 0h 
and 48h. Untreated KELLY cells served as control. At 0h, 24, 48, 72 and 96h after transfection cells 
were treated with Nicoletti buffer and subjected to cell death analysis using flow cytometry. Columns 
represent percentage of cell death of respective cell sample. Error bars represent standard 
deviation of three independent experiments.  ٭P < 0.05, ٭٭P < 0.01 (one-way RM ANOVA).  

 

Flow cytometric analysis performed at the time of transfection (0h) and at 24h, 48h, 72h 

and 96h after transfection yielded significant differences in the occurrence of cell death 

between KELLY cells transfected with TRAIL targeting siRNA (siRNA TRAIL) and control 

transfected cells (control siRNA). At the start of transfection both transfected and non-

transfected KELLY cells showed similar cell death rates. However, at 72h and 96h after 

transfection cell death rates significantly increased in a time dependant manner in KELLY 

cells transfected with TRAIL targeting siRNA (siRNA TRAIL).  40 % of KELLY cells 

subjected to the transient downregulation of endogenous TRAIL showed cell death specific 

morphological changes at 96h in comparison to 20% of control transfected cells. Cell 

death rates of untreated KELLY cells accounted for 15% of cell death rates at 96h.  

Taken together, the results of the present study showed that the downregulation of 

endogenous TRAIL by means of RNA interference induced morphological changes in Kelly 

cells which were consistent with morphological changes seen in cell death. This 
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observation was confirmed by a flow cytometric analysis, showing an increase in nuclear 

DNA fragmentation, a reliable marker of cell death, in KELLY cells transfected with TRAIL 

targeting siRNA. The data of the present study suggested that the previously observed 

reduction of cell growth in KELLY cells, subjected to the downregulation of endogenous 

TRAIL, was a result of the induction of cell death. 

6.4.3 Soluble TRAIL rescues cell death induced by the downregulation of 

endogenous TRAIL  

The experiments of the present work showed that the downregulation of endogenous 

TRAIL induced cell death in the neuroblastoma cell line KELLY and lead therefore to a 

decrease in tumor growth. In the following study I investigated the potential of soluble 

TRAIL to replace the function of endogenous TRAIL and prevent cell death induced by the 

downregulation of endogenous TRAIL. For this purpose levels of endogenous TRAIL were 

once more reduced by transfecting KELLY cells with TRAIL targeting siRNA (tsiRNA) for 

48h. For the following 24h I treated KELLY cells with 10 ng/ml of soluble TRAIL, a 

concentration, which was shown to induce cell growth in KELLY cells in previous 

experiments of this study (chapter 6.1). Flow cytometric analysis followed 24h after 

completing transfection at a total observation time of 72h. Figure 18 illustrates the results 

of the experiment.  
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Figure 18. Treatment with soluble TRAIL rescues KELLY cells which were transfected with 
TRAIL targeting siRNA.   
Kelly cells were transfected with control siRNA (cosiRNA) or TRAIL targeting siRNA (tsiRNA) for 48h. 
Thereafter cells were stimulated with 10 ng/ml TRAIL (10) or left unstimulated (-) for the following 
24h. Cells were treated with Nicoletti buffer subsequently and subjected to flow cytometric analysis 
to evaluate cell death. Untransfected KELLY cells served as control. Columns represent percentage 
of cell death. Error bars represent standard deviation of three independent experiments.  

 

Flow cytometric analysis of nuclear DNA fragmentation in KELLY cells treated with TRAIL 

confirmed the previously described pro-survival function of soluble TRAIL by showing a 

reduction of cell death in non-transfected TRAIL treated cells. Furthermore, KELLY cells 

subjected to the transfection with TRAIL targeting siRNA and subsequent TRAIL treatment 

(tsiRNA) showed decreased occurrence rates of cell death measured by flow cytometry. The 

occurrence of cell death in these cells decreased to levels which were comparable to 

untreated control cells (co). Cell death rates decreased to lower levels than rates of control 

transfected cells, indicating that soluble TRAIL prevented apoptotic cell death induced by 

endogenous TRAIL down regulation and in addition exerted a further pro-survival/ pro-

proliferative function on KELLY cells. Control transfected KELLY cells (csiRNA) did not show 

a significant difference in cell death occurrence in TRAIL treated and non-treated samples. 

This observation suggested the presence of cell death, which was unresponsive to TRAIL 

treatment.   
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Taken together the data of the present study confirmed that soluble TRAIL, which has 

been shown to have a pro-survival function in previous studies, rescued KELLY cells with 

downregulated levels of endogenous TRAIL and by this means successfully replaced the 

putative survival promoting function of endogenous TRAIL in KELLY cells.  

6.4.4 Cell death is mediated by caspases  

Morphological changes and DNA fragmentation occurring after the downregulation of 

endogenous TRAIL were features suggesting cell death in the neuroblastoma cell line 

KELLY. Cell death is executed either in a programmed manner, as for instance in form of 

apoptosis, or in a non-programmed manner, as for instance in form of necrosis. 

Characteristic features of the programmed cell death apoptosis are, next to morphologic 

changes, the activation of caspases (Degterev et al., 2003).    

In the following experiment cell death induced by the downregulation of endogenous 

TRAIL was analyzed in more detail. Caspase activation was measured to assess for 

apoptotic cell death. If Kelly cells died by apoptosis upon downregulation of endogenous 

TRAIL, and caspases, as the central mediators of apoptosis, are inhibited, then 

downregulation of endogenous TRAIL should have no effect on KELLY cells. To 

investigate this hypothesis I subjecting KELLY cells to treatment with the pancaspase 

inhibitor Q-VD prior to the downregulation of endogenous TRAIL by means of interfering 

RNA and subjected cells to flow cytometric analysis of cell death. The pancaspase 

inhibitor Q-VD irreversibly binds and inactivates downstream caspases 1, 3, 8 and 9 

(Caserta et al., 2003). Figure 19 illustrates the results of the flow cytometric analysis.  
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Figure 19. The Pancaspase inhibitor Q-VD prevents cell death of KELLY cells induced by the 
transfection of TRAIL targeting siRNA.  
KELLY cells were transfected with control siRNA (cosiRNA) and Trail targeting siRNA (tsiRNA) at 0h and 48h. Q-
VD was added to KELLY cells 1 h prior to transfection and at 48h to reach a concentration of 50µM. Cells were 
subjected to cell death analysis using flow cytometry at 96h. Untransfected cells served as controls (co). 
Columns represent the percentage of cell death which was measured at 96h. Error bars show the standard 
deviation of three independent experiments. ٭٭P < 0.01(one-way RM ANOVA). n.s.= not significant. 

 

In accordance to data of previous experiments (Figure 17) flow cytometric analysis of cell 

death at 96h after transfection yielded cell death rates of 42% in KELLY cells, which were 

transfected with TRAIL targeting siRNA (tsiRNA). As expected cell death rates were 

significantly higher when compared to cell death rates of control transfected cells. Further 

analysis demonstrated that the pre-treatment of KELLY cells with pancaspase inhibitor 

prevented an increase in cell death upon downregulation of endogenous TRAIL.  

Pretreated KELLY cells had similar cell death rates as control transfected cells. No 

significant difference in cell death was detected in control transfected cells with or without 

prior caspase inhibition. 

Taken together, as control transfected KELLY cells and KELLY cells transfected with 

TRAIL targeting siRNA showed similar rates of cell death upon treatment with pancaspase 

inhibitor Q-VD, the results of the present study demonstrated that pancaspase inhibitor 

successfully prevented cell death induced by the downregulation of endogenous TRAIL. 
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No significant differences in cell death occurred in control transfected cells with or without 

prior caspase inhibition, showing that caspase activation was not involved in 

spontaneously occurring cell death of KELLY cells.  As caspases are key mediators of the 

programmed cell death apoptosis (Hengartner, 2000), caspase activation in KELLY cells 

suggested the induction of apoptosis by the downregulation of endogenous TRAIL. This 

data therefore suggested an anti-apoptotic function of endogenous TRAIL. 

In summary, microscopic and flow cytometric analysis provided evidence that the initially 

observed decrease of cell growth in the neuroblastoma cell line KELLY, subjected to the 

downregulation of endogenous TRAIL, was a result of cell death induction. Cell death 

induced by the downregulation of endogenous TRAIL was successfully rescued by soluble 

TRAIL and dependent on caspase activation. Taken together, the data of the present work 

provided first evidence for a putative role of endogenous TRAIL as a pro-survival /anti-

apoptotic factor in the neuroblastoma cell line KELLY, a human cancer cell line resistant to 

TRAIL induced apoptosis.  
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7 Discussion 

The pro-proliferative and pro-survival effect of soluble TRAIL has been described as a new 

adverse effect of TRAIL therapy in past studies (Ehrhardt et al., 2003). A positive 

correlation between endogenous TRAIL expression and cancer cell growth, in terms of 

decreased disease-specific survival, has been shown in renal cell carcinoma, a cancer cell 

line resistant to TRAIL induced apoptosis (Oya et al., 2001; Macher-Goeppinger et al., 

2009). The present data provided first evidence for the function of endogenous TRAIL as 

an endogenous pro-survival factor of the neuroblastoma cell line KELLY, a human cell line 

resistant to TRAIL induced apoptosis. By means of cell death analysis endogenous TRAIL 

downregulation has been shown to result in an increase of cell death in the neuroblastoma 

cell line KELLY. The present data thus suggested that endogenous TRAIL expression is 

an important intrinsic stimulus for the cell survival and cell growth of KELLY cells. This 

novel, up-to-date unknown function of endogenous TRAIL is of great importance for the 

understanding of the role of endogenous TRAIL in tumor cell survival and for its potential 

as a novel target in cancer therapy. 

7.1 Substantial effect of the down regulation of TRAIL on cell 

viability 

Downregulation of endogenous TRAIL resulted in an impressive cell growth decrease in 

KELLY cells as measured using the automated microscope CellScreen. This was an 

unexpected observation, as previous studies of our research laboratory and initial studies 

of the present work showed that TRAIL had a significant, yet small proliferation inducing 

effect on KELLY cells. With the down regulation of endogenous TRAIL our research group 

anticipated a cell growth decrease of similar extent. Yet CellScreen data showed that the 

downregulation of endogenous TRAIL had a deleterious effect on KELLY cells. The 

seemingly disproportional effect of endogenous TRAIL and soluble TRAIL on KELLY cells 

measured by CellScreen initiated further in-detail studies.  Flow cytometric analysis, 

measuring cell death, proved that the downregulation of endogenous TRAIL induced cell 

death and lead to decreased cell survival.  Furthermore, by this means an equally strong 

effect of soluble TRAIL and endogenous TRAIL was shown, as soluble TRAIL fully 

rescued cell death induced by the downregulation of endogenous TRAIL. Taken together, 

we concluded that the use of CellScreen is a valuable approach to study cell proliferation 

in culture, but the present data suggested that it is an unreliable tool to measure cell 

viability and survival. 
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7.2 Cell-type specificity of the function of endogenous TRAIL 

The downregulation of endogenous TRAIL was carried out by transient transfection of 

TRAIL targeting interfering RNA. By this means the production of endogenous TRAIL was 

identified as a critical factor for cell survival, but the experiments of the present work 

showed that this observation was limited to the human neuroblastoma cell line KELLY. 

Different reasons can account for this limited detection. The limited occurrence of the pro-

survival function of endogenous TRAIL on KELLY cells, but not on two additional human 

cancer cell lines, may have been a result of an imprecise detection of a generally occurring 

function of endogenous TRAIL. Initial optimization studies of the present work proved the 

potential of the applied siRNA to lower endogenous TRAIL on mRNA and protein level. 

Screening different cell lines showed that KELLY cells naturally produce very little amounts 

of endogenous TRAIL. Subjecting KELLY cells to transient transfection with RNA 

interference possibly lead to exceptionally low levels of endogenous TRAIL. It can be 

assumed that only a complete downregulation of endogenous TRAIL sufficiently evoked 

an apoptotic cell death response. As other human cancer cell lines showed naturally high 

levels of endogenous TRAIL, the present studies presumably never lead to a comparable 

level of downregulation of endogenous TRAIL in the cell lines tested. Therefore the 

methodology applied in this work may have been ineffective to induce equally low levels of 

endogenous TRAIL among the human cancer cell lines and the occurrence of the pro-

survival function of endogenous TRAIL may have been underestimated. 

It is also possible that the significance of endogenous TRAIL for cell survival is a cell-type 

specific phenomenon of cells which show TRAIL-induced proliferation such as KELLY 

cells. Cell-type specific functions of proteins are a common observation. Furthermore 

cellular heterogeneity has been shown in the neuroblastoma cell lines (Ross and 

Spengler, 2004). The present findings therefore may describe a function of endogenous 

TRAIL which due to cellular heterogeneity is only applicable to the neuroblastoma cell line 

KELLY.  

Apart from that, a group-specific function of endogenous TRAIL is conceivable.  The pro-

survival function of endogenous TRAIL may be limited to cancers which show TRAIL 

mediated proliferation, among them the neuroblastoma cell line KELLY. As past studies 

showed that selected cancer cells (SHEP, HEK) are not sensitive to TRAIL mediated 

proliferation (Ehrhardt et al, 2003), the present work proved that the downregulation of 

endogenous TRAIL had no effect on their cell growth. According to this data the 

significance of endogenous TRAIL for tumor cell survival may be a group-specific 

phenomenon.  
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7.3 Role of endogenous TRAIL for cancer cells 

The pro-proliferative function of soluble TRAIL has been widely recognized. In the present 

work, the role for tumor cell growth and cell survival of endogenous, membrane-bound, 

TRAIL was investigated. Results of the present work showed that reduced expression of 

endogenous TRAIL lead to a cell death response in the neuroblastoma cell line KELLY, 

which in turn was rescued by treatment with soluble TRAIL. Therefore, it is presumed that 

the expression of endogenous TRAIL is necessary for the survival of KELLY cells. 

In the past, the role of endogenous TRAIL in tumor biology has been suggested. Clinical 

studies had shown that increased TRAIL expression in renal-cell carcinoma is associated 

with decreased disease-specific survival (Macher-Goeppinger et al., 2009). Furthermore, 

studies observed that the expression of endogenous TRAIL is associated with an 

aggressive and proliferative phenotype in human melanoma cells (Bron et al., 2004). This 

data suggested an association between endogenous TRAIL expression and tumor burden, 

or tumor cell growth. The data of the present study provide first evidence of a direct effect 

of endogenous TRAIL on tumor cell growth. Down regulated TRAIL expression lead to a 

significant decrease of cell growth by increasing apoptotic cell death in the human 

neuroblastoma cell line, KELLY. TRAIL treatment, in turn, rescued cell death induced by 

the down regulation of endogenous TRAIL. With this data the present work provided first 

evidence that the expression of endogenous TRAIL was essential for the viability of the 

selected human cancer cell line KELLY and suggested an important role of endogenous 

TRAIL for the cell survival of cancers resistant to TRAIL-induced apoptosis. Further 

studies under N. Ishimura complement the present data, showing that endogenous TRAIL 

is up regulated in cholangiocarcinoma cells, which show increased cell migration and 

invasion upon TRAIL treatment (Ishimura et al., 2006). 
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7.4 Pro-survival function of several members of the TNF-family 

Next to the proliferation-inducing effect of soluble TRAIL further members of the 

TNF/TNFR-superfamily have been acknowledged to exert a pro-proliferative function on 

cancer and non-cancerous cells (Vinay and Kwon, 2009). In-vitro studies showed that the 

member of the TNF/TNFR-superfamily, Tumor necrosis factor-α (TNF-α), induces 

proliferation on cancer cell lines derived from osteosarcoma and leukemia (Kirstein et al., 

1988; Ferrajoli et al., 2002). Investigations around C. Tselepis emphasized the role of 

TNF-α as an autocrine and paracrine growth factor of Barett’s adenocarcinoma. C. 

Tselepis showed that a direct effect of TNF-α stimulation on the intracellular c-myc 

expression of esophageal cells exists, linking the activation of c-myc to the observed pro-

proliferative effect of TNF-α (Tselepis et al., 2002). In further investigations B.C. Bernhart 

identified CD95, also a member of the TNF/TNFR-superfamily, to exert a pro-tumorigenic 

effect on apoptosis resistant cancers, by increasing cancer cell motility and invasiveness. 

The tumor enhancing effect of CD95 was described as a result of the stimulation of 

membrane-bound CD95 by several ligands (Bernhart et al., 2004).  

Furthermore, several members of the TNF/TNFR-superfamily have been shown to exert 

an intrinsic pro-survival function on cell growth and cell survival. For instance, 

investigations under H.J. Gruss and S.K. Dower showed that members of the TNF/TNFR-

superfamily, CD40 and CD 40 Ligand (CD40L), have a pro-survival function on immune 

cells. CD40 and CD40L are membrane-bound proteins which are expressed on the 

surface of B- and T-lymphocytes. The interaction of CD40 with CD40L activates immune 

cells and leads to their proliferation and protection against apoptosis. Defect or absence of 

CD40 or CD40L results in the disruption of protein interaction, the induction of cell death 

and thus the development of an immunodeficient state (Gruss and Dower, 1995; Baker 

and Reddy, 1996). Furthermore, Ox-40, also a member of the TNF/TNFR-superfamily, has 

been recognized as an essential factor for long-term survival of T-lymphocytes. In-vitro 

studies showed that the knockdown of OX-40 in activated CD-4+ T-lymphocytes lead to 

the loss of anti-apoptotic factor Bcl-2 and therefore to the induction of apoptosis within 4-8 

days (Rogers et al., 2001). The data of the present work further showed that the 

downregulation of endogenous TRAIL lead to the induction of apoptotic cell death in the 

neuroblastoma cell line KELLY. With this data a putative function of endogenous TRAIL, a 

member of the TNF/TNFR-superfamily, as an intrinsic pro-survival factor was suggested.  
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7.5 Mechanisms of the pro-survival function of TNF-family 

members 

The pro-survival and pro-cancerogenic effect of TNF-α, CD95 ligands and TRAIL has been 

described to be mediated through direct stimulation of the aforementioned ligands with its 

receptors. With the data of the presenting work, we provided evidence that endogenous 

TRAIL exerts an intrinsic pro-survival function on selected cells.  

So far, it remains unknown how endogenous TRAIL expression protects the 

neuroblastoma cell line from apoptotic cell death. Different pro-survival mechanisms of the 

TNF/TNFR-superfamily members have been well-recognized. In reference to the 

TNF/TNFR-superfamily members CD40 and CD40L, it is conceivable that endogenous 

TRAIL expression leads to a reciprocal interaction of TRAIL with its receptor, activating 

intracellular pro-survival factors in a paracrine manner. Furthermore, the intracellular 

interaction of endogenous TRAIL with its receptor may bestow endogenous TRAIL the 

function as an intrinsic survival factor. The intracellular expression of TRAIL receptors on 

organelles, such as the Golgi apparatus, has been described in past studies (Zhang et al., 

2000). Further mechanisms have been well recognized for the TNF/TNFR-superfamily 

member OX-40.  The activation of OX-40, a membrane-bound surface receptor, has been 

shown to induce the expression of BCL-2, a well known anti-apoptotic factor and by this 

means contribute to the survival of T-cells (Rogers et al., 2011). Comparable interactions 

have been described in past studies for endogenous TRAIL, showing that the expression 

of endogenous TRAIL is linked to NF-ĸB activation on t-lymphocytes (Baetu et al., 2001). 

7.6 Future perspective 

TRAIL has been identified as a promising anti-cancer drug in the past (Walzak et al., 1999; 

Ashkenazi et al., 1999). But rising resistance to TRAIL therapy has initiated a growing 

demand for additional therapeutic approaches.  The present work provides first evidence 

for the potential of endogenous TRAIL as a novel therapeutic target of cancer therapy. Yet 

to evaluate the potential role of endogenous TRAIL for cellular growth and survival, current 

investigations need to integrate further models of cancer. Stable transfection of 

endogenous TRAIL targeting interfering RNA and those targeting potential interaction 

partners, would allow a further molecular characterization of the apoptotic effect induced 

by downregulation of endogenous TRAIL on different cancer entities. In addition, 

investigations on primary cells would be of special interest, to allow the acquisition and 

analysis of larger datasets and by this means reliably assess the frequency of occurrence. 
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7.7 Potential relevance as a novel approach of cancer therapy 

The efficiency of loco-regional siRNA treatment of different cancer entities have been 

shown in different in-vitro and in-vivo cancer models (Tong et al., 2005; Hosaka et al., 

2006; Morales et al., 2007). Systemic application of siRNA for cancer therapy is an 

emerging therapeutic tool and currently synthetic siRNAs are being evaluated in clinical 

Phase1 trials (Davis et al., 2010). The data of the present work provided new evidence for 

the potential of the downregulation of endogenous TRAIL by TRAIL targeting siRNAs 

(siRNAs) as an additional therapeutic approach in cancer therapy directed against cancers 

resistant to TRAIL-induced apoptosis. The data of the present work showed that small 

interfering RNAs targeting endogenous TRAIL induce an apoptotic cell death response in 

the neuroblastoma cell line KELLY and by this means effectively reduced the number of 

cancer cells. This up-to-date unknown effect of the downregulation of endogenous TRAIL 

on cancer cells is of great importance for the understanding of the role of endogenous 

TRAIL in tumor biology and for its potential as a novel therapeutic target in cancer therapy. 

In the light of the emerging clinical applicability of siRNAs in cancer therapy, the apoptotic 

function of TRAIL targeting siRNAs on selected cancer cells provides an interesting 

therapeutic approach for patient with cancers resistant to TRAIL-induced apoptosis and 

high expression of endogenous TRAIL. 
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8 Summary 

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to exert 

an unexpected pro-survival, pro-proliferative and pro-invasive effect on a subset of human 

cancer cell lines. Recent clinical studies report that increased expression of endogenous 

TRAIL is associated with decreased disease-specific survival in renal cell carcinoma and 

cholangiocarcinoma which are resistant to TRAIL induced apoptosis. The present work 

investigated the role of endogenous TRAIL as an intrinsic growth factor in apoptosis-

resistant human cancer cells.  

Several cell lines derived from solid human tumors were studied, among them the 

neuroblastoma cell line KELLY, a cancer cell line resistant to TRAIL-induced apoptosis. 

First, to investigate whether TRAIL-knockdown could inhibit cell growth, the use of small 

interfering RNAs (siRNA) for endogenous TRAIL was established and a successful 

knockdown was verified on both mRNA and protein level. Second, the functional impact of 

the knockdown of endogenous TRAIL was investigated by measuring cell growth and cell 

death after transfection: Interestingly, the human neuroblastoma cell line KELLY 

unexpectedly showed markedly reduced cell growth upon knockdown of endogenous 

TRAIL. Furthermore, knockdown of TRAIL induced cell death in KELLY cells, which was 

dependent on caspase-signaling and rescued by the addition of soluble TRAIL. Thus, 

endogenous TRAIL functions as an intrinsic survival and growth factor in the 

neuroblastoma cell line KELLY. The present work provided first evidence that the 

expression of endogenous TRAIL can be specifically downregulated through siRNA 

knockdown to inhibit survival and growth of cancer cells in-vitro, which are resistant to 

TRAIL induced apoptosis. 

The present data strongly supports the potential of endogenous TRAIL to function as a 

novel therapeutic target in cancer therapy. In the light of the emerging clinical use of 

siRNAs for cancer therapy, targeting TRAIL by RNA interference may provide a valuable 

treatment approach for patients with cancers resistant to TRAIL induced apoptosis and 

high expression levels of endogenous TRAIL. 
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9 Zusammenfassung 

Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) zeigt eine unerwartete 

Wachstums-, Überlebens- und Invasionsfördernde Wirkung auf einzelne Apoptose-

resistente humane Tumorzelllinien. Gleichzeitig wurde in klinischen Studien belegt, dass 

der Nachweis einer gesteigerten Expression von endogenem TRAIL im Tumorgewebe von 

Patienten mit Nierenzellkarzinomen und Cholangiokarzinomen mit einer Verminderung der 

tumorspezifischen Überlebensrate vergesellschaftet ist. In der vorliegenden Arbeit wurde 

die Bedeutung von endogenen TRAIL als intrinsischer Wachstumsfaktor auf Apoptose-

resistente Tumorzellen untersucht. 

Die Analyse umfasste Zelllinien solider Tumoren, insbesondere die humane 

Neuroblastoma Zelllinie KELLY, die eine Resistenz gegenüber TRAIL-induzierter 

Apoptose aufweist. In einem ersten Schritt wurde ein effizienter TRAIL-knockdown mittels 

small interfering RNAs (siRNA) methodologisch etabliert und die erfolgreiche 

Abregulierung von endogenen TRAIL auf mRNA- und Proteinebene nachgewiesen. In 

einem zweiten Schritt wurde die funktionelle Auswirkung der Abregulation von endogenen 

TRAIL auf das Proliferations- und Apoptoseverhalten der Tumorzellen untersucht: 

Interessanterweise führte der spezifische knockdown von TRAIL mittels siRNA zu einer 

unmittelbaren Proliferationshemmung der Neuroblastoma Zelllinie KELLY. Darüber hinaus 

wurde durch den knockdown von endogenem TRAIL ein Caspase-abhängiger Zelltod der 

KELLY Zellen induziert. Die Zugabe von exogenem TRAIL konnte die Apoptose der 

KELLY Zellen nach Behandlung mit TRAIL-siRNA effizient vermindern. Endogenes TRAIL 

wirkt somit als intrinsischer Überlebens- und Wachstumsfaktor für die Neuroblastoma 

Zelllinie KELLY. Die vorliegende Arbeit zeigt erstmals, dass die Expression von 

endogenem TRAIL durch die Anwendung von siRNA erfolgreich reduziert werden kann 

und das TRAIL-knockdown das Wachstum einer Apoptose-resistenten Zelllinie  inhibiert. 

Diese Ergebnisse unterstützen die Hypothese, dass TRAIL einen potentiellen 

Angriffspunkt für die Behandlung Apoptose-resistenter Tumoren darstellen könnte. Vor 

dem Hintergrund der beginnenden klinischen Anwendung von siRNA könnte RNA-

Interferenz mit TRAIL einen interessanten Ansatzpunkt für die Behandlung von Tumoren 

mit einer Resistenz gegenüber TRAIL induzierter Apoptose sowie einer hoher Expression 

von endogenen TRAIL darstellen. 
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