
C O N S T R U C T I V E R E A S O N I N G F O R S E M A N T I C W I K I S

jakub kotowski

Dissertation an der Fakultät für Mathematik, Informatik und Statistik der
Ludwig-Maximilians-Universität, München

Oktober 2011

C O N S T R U C T I V E R E A S O N I N G F O R S E M A N T I C W I K I S

jakub kotowski

Dissertation an der Fakultät für Mathematik, Informatik und Statistik der
Ludwig-Maximilians-Universität, München

Oktober 2011

Erster Berichterstatter: Prof. Dr. François Bry
Ludwig-Maximilians-Universität München

Zweiter Berichterstatter: Prof. Dr. Peter Dolog
Aalborg University

Datum der Disputation: 18. Oktober 2011

A B S T R A C T

One of the main design goals of social software, such as wikis, is to
support and facilitate interaction and collaboration. This dissertation
explores challenges that arise from extending social software with
advanced facilities such as reasoning and semantic annotations and
presents tools in form of a conceptual model, structured tags, a rule
language, and a set of novel forward chaining and reason mainte-
nance methods for processing such rules that help to overcome the
challenges.

Wikis and semantic wikis were usually developed in an ad-hoc
manner, without much thought about the underlying concepts. A con-
ceptual model suitable for a semantic wiki that takes advanced features
such as annotations and reasoning into account is proposed. More-
over, so called structured tags are proposed as a semi-formal knowl-
edge representation step between informal and formal annotations.

The focus of rule languages for the Semantic Web has been pre-
dominantly on expert users and on the interplay of rule languages
and ontologies. KWRL, the KiWi Rule Language, is proposed as a
rule language for a semantic wiki that is easily understandable for
users as it is aware of the conceptual model of a wiki and as it
is inconsistency-tolerant, and that can be efficiently evaluated as it
builds upon Datalog concepts.

The requirement for fast response times of interactive software
translates in our work to bottom-up evaluation (materialization) of
rules (views) ahead of time – that is when rules or data change, not
when they are queried. Materialized views have to be updated when
data or rules change. While incremental view maintenance was inten-
sively studied in the past and literature on the subject is abundant,
the existing methods have surprisingly many disadvantages – they
do not provide all information desirable for explanation of derived
information, they require evaluation of possibly substantially larger
Datalog programs with negation, they recompute the whole exten-
sion of a predicate even if only a small part of it is affected by a
change, they require adaptation for handling general rule changes.

A particular contribution of this dissertation consists in a set of
forward chaining and reason maintenance methods with a simple declar-
ative description that are efficient and derive and maintain informa-
tion necessary for reason maintenance and explanation. The reason-
ing methods and most of the reason maintenance methods are de-
scribed in terms of a set of extended immediate consequence operators the
properties of which are proven in the classical logical programming
framework. In contrast to existing methods, the reason maintenance

v

methods in this dissertation work by evaluating the original Datalog
program – they do not introduce negation if it is not present in the in-
put program – and only the affected part of a predicate’s extension is
recomputed. Moreover, our methods directly handle changes in both
data and rules; a rule change does not need to be handled as a special
case.

A framework of support graphs, a data structure inspired by justifi-
cation graphs of classical reason maintenance, is proposed. Support
graphs enable a unified description and a formal comparison of the
various reasoning and reason maintenance methods and define a no-
tion of a derivation such that the number of derivations of an atom is
always finite even in the recursive Datalog case.

A practical approach to implementing reasoning, reason maintenance,
and explanation in the KiWi semantic platform is also investigated. It
is shown how an implementation may benefit from using a graph
database instead of or along with a relational database.

Z U S A M M E N FA S S U N G

Ein vorrangiges Designziel von sozialer Software, wie zum Beispiel
Wikis, ist es, die Interaktion und Zusammenarbeit zu unterstützen
und zu erleichtern. Diese Dissertation untersucht Herausforderun-
gen, die beim Anreichern von sozialer Software mit fortgeschritte-
nen Funktionen, wie dem Schließen und semantischen Annotationen,
entstehen, und stellt Hilfsmittel in Form eines konzeptuellen Modells,
strukturierten Tags, einer Regelsprache und einer Menge von neuarti-
gen Methoden zum Vorwärtsschließen und zur Begründungsverwal-
tung zur Verarbeitung solcher Regeln zur Verfügung, um diese Her-
ausforderungen zu meistern.

Wikis und semantische Wikis wurden üblicherweise nach einem
Ad-Hoc-Ansatz entwickelt, ohne sich über die darunterliegenden Kon-
zepte Gedanken zu machen. Es wird ein für semantische Wikis geei-
gnetes konzeptuelles Modell vorgeschlagen, welches fortgeschrittene
Funktionen wie Annotationen und Schließen berücksichtigt. Darüber-
hinaus werden sog. strukturierte Tags als semi-formales Bindeglied
zwischen informalen und formalen Annotationen vorgeschlagen. Re-
gelsprachen des Semantic Web waren bisher hauptsächlich auf die
Benutzung durch Experten und das Zusammenspiel mit Ontologien
ausgerichtet. KWRL, die KiWi Rule Language, ist ein Vorschlag einer
für den Benutzer leicht verständlichen Regelsprache für ein semantis-
ches Wiki, da sie das konzeptuelle Modell eines Wikis berücksichtigt
und Inkonsistenzen toleriert. Da sie auf Konzepten von Datalog auf-
baut, ist sie zudem effizient auswertbar.

vi

Der Anforderung an schnelle Antwortzeiten von interaktiver Soft-
ware wird in unserer Arbeit durch eine vorzeitige Bottom-Up-Aus-
wertung (Materialisierung) von Regeln (Sichten) entsprochen – d.h.
wenn sich Regeln oder Daten ändern, und nicht erst wenn sie ange-
fragt werden. Materialisierte Sichten müssen aktualisiert werden, so-
bald sich Daten oder Regeln ändern. Während "Incremental View
Maintenance" intensiv in der Vergangenheit studiert wurde und es
reichlich Literatur dazu gibt, haben die existierenden Methoden über-
raschenderweise viele Nachteile – sie liefern nicht all die Information,
die für die Erklärung der hergeleiteten Informationen wünschenswert
wäre, sie erfordern die Auswertung von unter Umständen erheblich
größeren Datalog Programmen mit Negation, sie berechnen die voll-
ständige Erweiterung eines Prädikats selbst wenn nur ein kleiner Teil
davon von einer änderung betroffen ist, und sie müssen angepasst
werden, um allgemeine Regeländerungen verarbeiten zu können.

Ein Beitrag dieser Dissertation besteht in einer Menge von Meth-
oden zum Vorwärtsschließen und zur Begründungsverwaltung mit
einer einfachen deklarativen Beschreibung, welche effizient sind und
die zur Begründungsverwaltung und Erklärung notwendigen Infor-
mationen ableiten und bereithalten. Die Methoden zum Schließen
und die meisten der Methoden zur Begründungsverwaltung werden
in Form einer Menge von erweiterten, unmittelbaren Folgerungsop-
eratoren beschrieben, deren Eigenschaften im Rahmen der klassis-
chen Logikprogrammierung bewiesen werden. Im Gegensatz zu den
bereits existierenden Methoden der Begründungsverwaltung, funk-
tionieren die Methoden dieser Dissertation durch Auswertung des
ursprünglichen Datalog Programmes – es wird keine Negation einge-
führt, wenn diese nicht schon im Eingabeprogramm vorhanden war –
und nur der von einer Prädikatserweiterung betroffene Teil wird neu
berechnet. Darüberhinaus werden änderungen in Daten sowohl als
auch Regeln direkt durch unser Verfahren behandelt; eine Regelän-
derung stellt also keinen Spezialfall dar.

Weiterhin wird das Konzept von Support Graphen vorgeschlagen,
einer von den Rechtfertigungsgraphen der klassischen Begründungs-
verwaltung inspirierten Datenstruktur. Diese ermöglichen eine ein-
heitliche Beschreibung und formale Gegenüberstellung der verschiede-
nen Methoden zum Schließen und zur Begründungsverwaltung und
definieren einen Begriff einer Herleitung, derart dass die Anzahl der
Herleitungen eines Atoms immer endlich ist, selbst im Falle von rekur-
sivem Datalog.

Auch wird in der semantischen Plattform von KiWi ein praktis-
cher Ansatz zur Implementierung des Schließens, der Begründungs-
verwaltung und Erklärung untersucht. Es wird gezeigt, wie eine Im-
plementierung von einer Graphdatenbank anstelle oder in Ergänzung
zu einer relationen Datenbank profitieren kann.

vii

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following publica-
tions:

Jakub Kotowski, François Bry, and Norbert Eisinger. A Potpourri of Reason
Maintenance Methods. Submitted for publication.
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2011-9

Jakub Kotowski, François Bry, and Simon Brodt. Reasoning as Axioms Change
– Incremental View Maintenance Reconsidered. In Proceedings of the 5th Inter-
national Conference on Web Reasoning and Rule Systems (RR), Galway, Ireland
(23rd - 24th August 2011).
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2011-5

Jakub Kotowski and François Bry. A Perfect Match for Reasoning, Explana-
tion and Reason Maintenance: OWL 2 RL and Semantic Wikis. In Proceedings
of 5th Semantic Wiki Workshop (SemWiki), 2010. (Demo, short paper), Hersonis-
sos, Crete, Greece (31st May 2010)
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2010-5

François Bry and Jakub Kotowski. A Social Vision of Knowledge Repre-
sentation and Reasoning. In Proceedings of the 36th International Conference
on Current Trends in Theory and Practice of Computer Science (SOFSEM), 2010,
Špindlerův Mlýn, Czech Republic (23rd–29th January 2010)
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2010-2

François Bry, Michael Eckert, Jakub Kotowski, and Klara Weiand. What the
User Interacts With: Reflections on Conceptual Models for Sematic Wikis. In
Proceedings of the 4th Workshop on Semantic Wikis (SemWiki), 2009, Heraklion,
Greece (31st May–4th June 2009)
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2009-2

François Bry, Jakub Kotowski, and Klara Weiand. Querying and Reasoning
for Social Semantic Software. In Proceedings of 6th European Semantic Web Con-
ference (ESWC), 2009. (Poster), Heraklion, Greece (31st May–4th June 2009)
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2009-3

Jakub Kotowski, Stephanie Stroka, François Bry, and Sebastian Schaffert. De-
pendency Updates and Reasoning for KiWi. In Proceedings of the 4th Work-
shop on Semantic Wikis (SemWiki), 2009, Heraklion, Greece (31st May–4th June
2009)
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2009-4

Jakub Kotowski and François Bry. Reason Maintenance – Conceptual Frame-
work. KiWi project deliverable D2.4, June 2009.
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2009-17

ix

http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2011-9
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2011-5
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2010-5
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2010-2
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2009-2
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2009-3
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2009-4
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2009-17

Jakub Kotowski and François Bry. Reason Maintenance – State of the Art.
KiWi project deliverable D2.3, September 2008.
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2008-17

x

http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2008-17

A C K N O W L E D G M E N T S

Many people have helped me with writing this thesis and I am grateful
that I could enjoy the supportive environment of LMU Munich. I would
like to thank especially to my advisor François Bry. He was always ready to
provide help and support, including matters not directly related to research.
I learned a lot from him about research and work in academia in general.
I am also indebted to Peter Dolog for taking the time and effort to read
the whole thesis thoroughly as the external reviewer. The Programming and
Modelling Languages group has always been very inspiring and helpful and
I am glad I could be one of its members. I want to thank especially Norbert
Eisinger, from whom I have learned a lot, for careful and repeated proof-
reading and for spending time to discuss most of my research with me. I
thank Sebastian Schaffert, the scientific coordinator of the KiWi project, for
all kinds of advice and for allowing me to spend time working with the KiWi
core team in Salzburg. I enjoyed working with all the members of the KiWi
project at Aalborg University, Brno University of Technology, Logica, Oracle
(a team which was formerly at Sun Microsystems), Salzburg Research, and
the Semantic Web Company many of whom also provided me with valuable
insights, discussions, and help implementing the prototype.

I cannot mention all who helped or supported me but I would like to
thank namely at least those who I worked with the most: Simon Brodt,
Frederico Durão, Michael Eckert, Tim Furche, Steffen Hausmann, Josef Holý,
Karsten Jahn, Fabian Kneißl, Alex Kohn, Stephan Leutenmayr, Benedikt
Linse, Hans Jürgen Ohlbach, Alexander Pohl, Olga Poppe, Sebastian Schaf-
fert, Marek Schmidt, Edgar-Philipp Stoffel, Stephanie Stroka, Klara Weiand,
Christoph Wieser, and Harald Zauner. I thank Martin Josko and Ingeborg
von Troschke for always ensuring that day to day things run smoothly. I
thank also the participants in the user study on structured tags and RDF
for making the research possible. The research described in this thesis was
partly funded by the European Community’s Seventh Framework Program-
me (FP7/2007-2013) under grant agreement No. 211932 as the “KiWi – Kno-
wledge in a Wiki” project. This funding allowed me to pursue my research,
travel to conferences, and get in touch with fellow researchers.

Last but not least, I would like to thank my family and friends for sup-
porting me and encouraging me during the work on this thesis.

xi

C O N T E N T S

1 introduction 1

1.1 Contributions and Structure of This Thesis 1

2 from wikis to semantic wikis 5

2.1 The World Wide Web . 5

2.2 The Social Web . 5

2.3 Wikis . 6

2.4 The Semantic Web . 7

2.4.1 RDF . 8

2.4.2 RDF Triple Stores . 11

2.4.3 OWL . 12

2.4.4 Linked Data . 13

2.5 Semantic Wikis . 14

2.5.1 Semantic MediaWiki 15

2.5.2 IkeWiki . 16

3 knowledge representation and reasoning for a seman-
tic wiki 19

3.1 A social semantic wiki – an analysis and motivation 19

3.1.1 Work in Progress . 19

3.1.2 Emergent Collaboration 20

3.1.3 Knowledge Representation and Reasoning the Wiki
Way . 20

3.1.4 From Informal to Formal Knowledge Representation 21

3.1.5 Negative Information 21

3.1.6 Inconsistency Tolerant Reasoning with Semi-formal
Knowledge . 21

3.2 Knowledge representation and reasoning with a social per-
spective . 22

4 a conceptual model of a semantic wiki 25

4.1 Content . 25

4.1.1 Content Items . 25

4.1.2 Fragments . 26

4.1.3 Links . 28

4.2 Annotation . 28

4.2.1 Formal Annotations: RDF and OWL 29

4.2.2 Informal Annotations – Tags 29

4.2.3 Semi-formal Annotations – Structured Tags 32

4.2.4 Representing Annotations in RDF 36

4.3 Social Content Management 37

5 experimental evaluation : structured tags and rdf 39

5.1 Experimental setup and execution 40

5.2 Results . 41

5.2.1 User judgments . 41

5.2.2 Time requirements for annotations 48

5.2.3 Analysis of the annotations 49

5.2.4 Qualitative analysis of the annotations 52

5.3 Discussion . 53

6 kwrl – the kiwi rule language 57

6.1 sKWRL – The Core Sublanguage 57

xiii

xiv contents

6.1.1 Syntax . 57

6.1.2 Examples . 59

6.1.3 Semantics . 60

6.1.4 Significance of Value Invention 61

6.2 KWRL . 62

6.2.1 Syntax . 62

6.2.2 Examples . 64

6.2.3 Semantics . 64

6.2.4 Evaluation . 64

6.3 Related Work . 65

7 forward chaining revisited 69

7.1 Preliminaries . 69

7.1.1 Rules and programs 69

7.1.2 Herbrand interpretations 71

7.1.3 Fixpoint theory . 73

7.1.4 Immediate consequence operator TP 76

7.1.5 Multisets . 77

7.1.6 Support graphs . 81

7.2 Classical forward chaining . 86

7.3 Support keeping forward chaining 89

7.4 Dependent supports algorithm 93

7.5 Support counting forward chaining 96

7.6 Derivation counting forward chaining 100

7.7 Multiplicities and multiset operators 107

7.8 Well-foundedness and derivability 108

7.8.1 Algorithms to decide well-foundedness 109

7.9 Herbrand interpretations and extended operators 114

7.10 Stratifiable programs with negation 115

7.10.1 Support graphs for programs with negation 117

7.11 Discussion and related work 118

8 incremental reason maintenance 123

8.1 Introduction . 123

8.2 The Reason Maintenance Problem 123

8.3 Reason maintenance by deciding well-foundedness 124

8.3.1 Rule updates . 125

8.3.2 Comparison with related work 125

8.4 Reason maintenance without support graphs 126

8.4.1 Rule updates . 129

8.4.2 Comparison with related work 129

8.5 Support counting . 134

8.5.1 Support counting reason maintenance 134

8.5.2 Well-foundedness and support counts 139

8.5.3 Reason maintenance specialized to non-recursive Dat-
alog programs . 141

8.5.4 Comparison with related work 146

8.6 Derivation counting . 146

8.6.1 Reason maintenance with extended atoms 147

8.6.2 Derivation counting without keeping dependencies . 150

8.6.3 Discussion . 156

8.6.4 Comparison with related work 157

8.7 Explanation . 158

8.8 Different algorithms for different parts of data 160

contents xv

8.9 Batch updates and lazy evaluation 160

8.9.1 Batch updates . 161

8.9.2 Answering queries and lazy evaluation 163

8.9.3 Related Work . 164

8.10 Related work . 164

8.10.1 Monotonic JTMS reason maintenance 166

8.10.2 Other reason maintenance methods 171

9 implementation 175

9.1 A relational database representation 175

9.1.1 Reducing the number of joins 177

9.2 A graph database representation 178

9.3 Comparison . 180

9.4 The KiWi 1.0 implementation 182

10 conclusion and perspectives 185

Appendix 189

a structured tags user study materials 191

a.1 Introductory texts . 191

a.1.1 General Instructions 191

a.1.2 An Introduction to Structured Tags 193

a.1.3 An Introduction to RDF 195

a.2 Texts for Annotation . 199

a.2.1 Text A . 199

a.2.2 Text B . 201

a.3 Questionnaires . 203

a.3.1 After Each Round Questionnaire 203

a.3.2 Final Questionnaire . 205

bibliography 207

L I S T O F F I G U R E S

Figure 2.1 An RDF graph. 9

Figure 2.2 The so called Linking Open Data cloud diagram show-
ing most of Linked Open Data as of September 22,
2010. The size of the circles corresponds to the num-
ber of triples in each dataset, there are five sizes: for
<10k, 10k-500k, 500k-10M, 10M-1B, >1B triples. An
arrow indicates the existence of at least 50 links be-
tween two datasets. The thickness of an arrow corre-
sponds to the number of links: <1k, 1k-100k, >100k
links. 13

Figure 4.1 An example of content item nesting. The URL in the
address bar is that of the main, outer content item. . 25

Figure 4.2 An example of fragments of a textual content item. . 27

Figure 4.3 A content item tagged “munich” and “city,” and a
fragment tagged “city hall.” Fragments are assumed
to have URIs. Tags are attached to fragments using
the URIs. 28

Figure 5.1 Percentages of participants’ levels of agreement with
statement 1 . 42

Figure 5.2 Percentages of participants’ levels of agreement with
statement 2 . 43

Figure 5.3 Percentages of participants’ levels of agreement with
statement 3 . 43

Figure 5.4 Percentages of participants’ levels of agreement with
statement 4 . 44

Figure 5.5 Percentages of participants’ levels of agreement with
statement 5 . 45

Figure 5.6 Percentages of participants’ levels of agreement with
statement 6 . 45

Figure 5.7 Percentages of participants’ levels of agreement with
statement 7 . 46

Figure 5.8 Percentages of participants’ levels of agreement with
statement 8 . 46

Figure 5.9 Percentages of participants’ levels of agreement with
statement 9 . 47

Figure 5.10 Percentages of participants’ levels of agreement with
statement 10 . 47

Figure 5.11 Average time taken to annotate the different revisions
of the text . 49

Figure 5.12 Average number of annotations per text revision . . . 49

Figure 5.13 Average number of elements in annotations added
per text revision . 50

Figure 5.14 Relationship between tag complexity and time spent
annotating and number of total elements in the added
structured tags . 51

Figure 5.15 Average percentage of annotations not based on pre-
vious annotations . 51

xvi

List of Figures xvii

Figure 7.1 An example of a support graph G = (S, F,E, l). . . . 82

Figure 7.2 Compact support graphs D and E and non-compact
support graphs F and G are homomorphically em-
bedded in the compact support graph H. 83

Figure 7.3 An example support graph G ′ = G+ s4. 86

Figure 7.4 The compact support graph induced by the fixpoint
of skTP for P from Example 113. 90

Figure 7.5 Support graph SG(skTωP) for program P from Exam-
ple 120. 94

Figure 7.6 The compact support graph SG(skTωP) for P from Ex-
ample 125. 96

Figure 7.7 Support graphs illustrating Example 147. Note that
each of (b), (c), (d), (e) is a subgraph of (a) and thus
homomorphically embedded in (a). 107

Figure 7.8 Support graphs illustrating derivation merging in the
proof of Lemma 153. 110

Figure 7.9 A support graph in which deciding that s is not well-
founded using Algorithm 7.11 requires visiting all
supports of f and their ancestors three times. 111

Figure 7.10 An example of a support graph G = (S, F,E, l). . . . 119

Figure 8.1 Illustration of how K, U, and O relate in the case that
D is a set of base facts. B is the set of all base facts
in P. With removal of arbitrary rules, there may be
more “U” sets each having its own “O” subset, see
Figure 8.2. 126

Figure 8.2 Illustration of how K, U, and O relate in the general
case. B is the set of all base facts in P. D1 is a set of
base facts to remove, D2 is a set of rules to remove,
D = D1 ∪D2. U1 is the set of atoms that depend on
a fact from D1. U2 is the set of atoms that depend on
a rule from D2. U = U1 ∪U2. 127

Figure 8.3 A reproduction of a diagram found in [69]. A graph
depicting the (extensional) edge predicate. There is
a directed edge from x to y iff edge(x,y) holds. The
edge (e, f) is to be removed. 131

Figure 8.6 A diagram showing the relationship between setsU,K,
and O as computed by Algorithm 8.15 for Example
176. xy stands for reach(x,y), xEy stands for edge(x,y).
Atom eEf (i.e. edge(e, f)) is being removed. 133

Figure 8.8 A graph depicting the (extensional) edge predicate.
There is a directed edge from x to y iff edge(x,y)
holds. The edge (a,b) is to be removed. 135

Figure 8.11 The compact support graph SG(skTωP) for P from Ex-
ample 179 . 136

Figure 8.12 An example of a rule dependency graph that shows
all cases possible with respect to cycles. Rules 4, 5, 7,
8, 9, 10, 11, 12 (denoted by a green dot) are safe rules.
Rule 13 is in a cycle with itself (i.e. its head unifies
with one of its body atoms). Edges in a cycle are dotted. 141

Figure 8.13 Diagrams for the program P from Example 187. . . . 142

Figure 8.14 Graphs illustrating Example 188. 143

Figure 8.15 The support graph SG(skTωP) for program P from
Example 191. Fact a← > is to be removed. 145

Figure 8.16 The support graph SG(skTωP) for P in Example 202. 157

Figure 8.17 An example rendering of a part of a support graph
using the explanation facility in the KiWi wiki. Atoms
are represented by their database id numbers in the
graph. Pointing at an atom node shows the corre-
sponding statement as a tooltip and highlights it in
the textual part of the explanation on the right hand
side. 159

Figure 8.18 An example of a support rendered as a tooltip in the
KiWi wiki. 160

Figure 8.19 Venn diagrams illustrating the proof of Lemma 206.
The resulting sets are marked in blue. 162

Figure 8.20 Data-dependency network. 167

Figure 8.21 Data-dependency network with a cycle. 168

Figure 8.22 Illustrative examples of simplified data-dependency
networks. 170

Figure 9.1 A screenshot of the KiWi 1.0 wiki after installation
and after assigning the Process QA Plan type from
the Logica ontology to the start page. Immediately
after the type was assigned, the forward chaining
reasoner derived consequences and stored supports
which are then shown for example in the form of the
tooltip explaining why the Front Page is also of type
Description Class. 175

Figure 9.2 An entity-relationship diagram for a support repre-
sentation. 176

Figure 9.3 A relational database schema modelling atoms, sup-
ports and their relationships. �FK� denotes a for-
eign key. 176

Figure 9.4 A graph database “schema” for support graphs. There
are three different node types: atom, rule, and support.
There are two atom nodes in this diagram for clar-
ity reasons; there is only one atom node type. There
are three different edge types: bodyAtom (meaning “is
body atom of”), rule (meaning “is rule of”), and
supports. Properties are denoted with dotted lines.
The plus by the bottom left atom node is to indicate
that there can be multiple atom nodes connected to a
support node via bodyAtom edges. 179

Figure 9.5 A screenshot of the KiWi 1.0 reasoning configura-
tion and status page. The “Online reasoning” option
means that reasoning tasks (triple additions and re-
movals) are processed as they come. The “Hybrid rea-
soning” option refers to an experimental optimiza-
tion of the reasoner with respect to the current TBox
analogously to a similar optimization employed in
the SAOR reasoner [116]. 183

xviii

Figure 10.1 Support graphs with derivation counts. Numbers by
supports indicate the number of derivations that the
support contributes to the supported atom. 187

L I S T O F TA B L E S

Table 6.1 Mapping of annotation pattern keywords to RDF prop-
erties. 63

Table 6.2 AnnotationPattern to sKWRL TriplePatterns mapping. 65

Table 8.4 A run of the DRed algorithm for Example 176. xy
stands for reach(x,y). Atom edge(e, f) is being re-
moved. 132

Table 8.5 A run of the PF algorithm for Example 176. xy stands
for reach(x,y). Atom edge(e, f) is being removed. . . 133

Table 8.7 A run of Algorithm 8.15 for Example 176. xy stands
for reach(x,y), xEy stands for edge(x,y). Atom eEf

(i.e. edge(e, f)) is being removed. 134

Table 8.9 A run of the DRed algorithm for the example in Fig-
ure 8.8. xy stands for reach(x,y). Atom edge(a,b) is
being removed. 136

Table 8.10 A run of Algorithm 8.15 for the example in Figure 8.8.
xy stands for reach(x,y), xEy stands for edge(x,y).
Atom aEb (i.e. edge(a,b)) is being removed. 137

Table 8.23 An overview of different reason maintenance appro-
aches. 172

L I S T I N G S

Listing 2.1 An example of RDF/XML. 10

Listing 2.2 An example of N-Triples. 10

Listing 7.1 Naive forward chaining 86

Listing 7.2 Naive TP forward chaining 87

Listing 7.3 Semi-naive TP forward chaining 88

Listing 7.4 Naive forward chaining with keeping supports . . . 91

Listing 7.5 Semi-naive forward chaining with keeping supports 92

Listing 7.6 Supports depending on a rule from a set of rules. . . 93

Listing 7.7 Naive support counting forward chaining. 97

Listing 7.8 Semi-naive support counting forward chaining. . . . 99

Listing 7.9 Naive forward chaining with the dcTP operator. . . . 102

Listing 7.10 Semi-naive forward chaining with the dcTP operator. 105

Listing 7.11 Deciding well-foundedness naively 109

Listing 7.12 Topological ordering of ancestors of a support in a
support graph . 112

Listing 7.13 Deciding well-foundedness using topological ordering 113

Listing 8.14 Reason maintenance by well-foundedness 124

xix

xx Listings

Listing 8.15 Reason maintenance without support graphs. 128

Listing 8.16 Reason maintenance with support counts and classi-
cal fixpoint output. 137

Listing 8.17 Reason maintenance with support counts and sup-
port counting fixpoint output. 138

Listing 8.18 Deciding well-foundedness with support counts . . . 139

Listing 8.19 Reason maintenance with support counts and no cy-
cles. 144

Listing 8.20 Reason maintenance for base fact updates using deriva-
tion counts . 147

Listing 8.21 Reason maintenance for general rule updates using
derivation counts . 149

Listing 8.22 Compute the number of derivations of f which do
not include any atom from F 151

Listing 8.23 Recomputing derivation counts 154

Listing 8.24 Current support algorithm 168

Listing 9.3 An SQL query to find atoms depending directly on a
given atom with id ATOMID 176

Listing 9.4 Finding atoms depending directly on a given atom f

in Neo4j . 179

1
I N T R O D U C T I O N

Social software, such as wikis, is affluent with user interaction and one of its
main design goals is to support and facilitate interaction and collaboration.
In other words, social software is often concerned with creative work and
work in progress. Any work that is still in progress will be changed and it
is likely to contain inconsistencies and generate disagreements. While tools
and theories for handling change and inconsistencies already do exist, they
have shortcomings with respect to their use by casual or non-expert users.

Extending social software with advanced facilities such as reasoning pre-
sents a set of challenges that need to be overcome in order to provide a
nimble and understandable user experience for non-expert users. In this
dissertation, these challenges are analysed and tools for working with a se-
mantic wiki in form of a conceptual model, structured tags, a rule language,
and a set of novel forward chaining and reason maintenance methods are
presented. The potential impact of the presented forward chaining and rea-
son maintenance methods in particular extends beyond the realm of the
Semantic Web as these methods concern problems traditionally solved in
the broader area of (deductive) databases.

Most of the work reported about in this dissertation has been realized
in the context of the KiWi – Knowledge in a Wiki – project1 of the Seventh
Framework Programme of the European Community. The goal of the project
was to provide practical social and semantic tools for software and process
management in an enterprise setting. Two of the project partners, were large
international IT companies, Logica and Sun Microsystems (taken over by
Oracle during 2009 and early 2010), that provided practical use cases based
on their actual needs. Communication with these companies revealed that
advanced semantic features can indeed be difficult to fully grasp even for
not-so-casual users and that the implemented KiWi 1.0 prototype mostly
met their expectations.

1.1 contributions and structure of this thesis

Social semantic software has originated from the original Web introduced
[131] by Tim Berners-Lee in 1989. Chapter 2 summarizes this evolution and
highlights milestones and technologies important for this thesis. Chapter 3

analyses properties characteristic for social applications and, based on this
analysis, suggests a set of requirements on social semantic software that
guide the rest of this thesis.

A conceptual model for a semantic wiki that reflects the identified require-
ments is presented in Chapter 4. Wikis and semantic wikis were usually
developed in ad hoc manners, without much thought about the underlying
concepts. One of the few exceptions is [16] that focuses on the expressivity
and formal grounding of the Semantic MediaWiki. Our conceptual model
contributes a more user-oriented view with an emphasis on the use of anno-
tations.

1 http://www.kiwi-project.eu/

1

http://www.kiwi-project.eu/

2 introduction

A particular contribution that extends beyond the conceptual model is the
proposal of structured tags also in Chapter 4. Structured tags are a flexible
semi-formal knowledge representation step between informal annotations
such as tags and formal annotations such as RDF and OWL. Structured
tags are suggested as a more user-friendly addition to the standard RDF
annotation formalism. Their usability in this respect is evaluated in a user
study in Chapter 5.

The KiWi Rule Language, KWRL, presented in Chapter 6, is an inconsis-
tency-tolerant rule language for a semantic wiki, the KiWi wiki, that aims
to be easily understandable for users, as it is aware of the conceptual model
of the wiki, and that can be efficiently evaluated as it builds upon Datalog
concepts. KWRL is, to the best of our knowledge, the first rule language
specifically about annotations. It employs a kind of value invention that
differs from those common in Semantic Web rule languages and that is
more suitable for annotations and the web of Linked Data.

The second part of this dissertation focuses on reasoning and reason main-
tenance.

Users expect that web applications are interactive and fast. The require-
ment for fast response time of interactive software translates in our work to
bottom-up evaluation (materialization) of rules (views) ahead of time. Mate-
rialized views have to be updated when data or rules change which brings
the need for reason maintenance. While incremental view maintenance was
intensively studied in the past and literature on the subject is abundant, the
existing methods have surprisingly many disadvantages – they do not pro-
vide all information desirable for explanation of derived information, they
require evaluation of possibly substantially larger Datalog programs with
negation, they recompute the whole extension of a predicate even if only a
small part of it is affected by a change, they require adaptation for handling
general rule changes. A particular contribution of this thesis consists in a
set of forward chaining and reason maintenance methods presented in Chapters
7 and 8 that overcome these shortcomings.

Chapter 7 first introduces so called support graphs – a justification-graphs-
inspired formalism that allows for a unified description of our reasoning
and reason maintenance algorithms. Support graphs allow to precisely de-
termine relations between algorithms inspired from different fields, such
as reason maintenance [74, 72] and incremental view maintenance [103],
that have traditionally used different and to some extent incompatible for-
malisms. Moreover, support graphs and derivation in support graphs are
defined in such a way that the number of derivations of an atom in a sup-
port graph with respect to a recursive Datalog program is a finite number
(Proposition 150 and Corollary 143). The corresponding number may be in-
finite in the traditional methods [158, 138]. Chapter 7 then defines several
extended immediate consequence operators on sets and multisets that allow for
a declarative and arguably simple description of the respectively extended
forward-chaining algorithms that derive information useful for reason main-
tenance and explanation. These algorithms and operators can also be seen
as providing alternative set and multiset (duplicate) semantics for Datalog.
Their properties are proven in the classical logical programming framework
based on fixpoint theory [136].

Chapter 8 describes several novel reason maintenance methods based on the
extended immediate consequence operators from Chapter 7. These reason
maintenance methods overcome shortcomings of the existing methods men-

1.1 contributions and structure of this thesis 3

tioned above, i.e. our reason maintenance methods use the original input
program, i.e. they do not introduce negation and do not increase the size of
the program, they recompute only the part of the predicate extension that
is affected by a change, and they directly handle changes in both data and
rules; a rule change does not need to be handled as a special case. Most
of the methods also provide additional information that may be used for
explanation. The price to pay for the above-mentioned advantages is a mod-
ification of classical forward chaining in most cases. The chapter further dis-
cusses how the methods may be combined in a real-world implementation
of a semantic web application and proves minor results (batch processing
and lazy evaluation in Section 8.9) that would likely facilitate an implemen-
tation.

A practical approach to an implementation of reasoning, reason mainte-
nance, and explanation in the KiWi wiki is also investigated in this work
and it is shown how an implementation may benefit from using a graph
database in comparison to a relational database. An additional contribution
in this respect is a functional implementation of reasoning, reason mainte-
nance, and explanation in the KiWi 1.0 system that is Open Source and that
can be downloaded at http://code.google.com/p/kiwi/downloads/list.

http://code.google.com/p/kiwi/downloads/list

2
F R O M W I K I S T O S E M A N T I C W I K I S

This chapter provides a brief overview of the context of this dissertation the
main use case of which are semantic wikis. A semantic wiki is a semantic
social web application. The following sections thus introduce a path from
the beginning of the Web via emergence of the Social Web and wikis up
to the Semantic Web and its technologies such as RDF triple stores that can
benefit from results presented in later chapters. Semantic wikis emerge from
the intersection of the Social Web with the Semantic Web.

2.1 the world wide web

The World Wide Web is a system of interlinked hypertext documents ac-
cessed via the Internet [3]. It started [130] as a small project at CERN with
an “Information Management” project proposal [131] by Tim Berners-Lee
in 1989 at CERN. By the end of 1990, the first web browser and web server
were developed. By April 1994, the size of the Web was 829 servers and it
grew much faster than other Internet services such as Gopher (a campus-
wide information system) and WAIS (text-based information retrieval) [132].
This original mostly non-interactive web of webpages and hyperlinks is now
often referred to as Web 1.0.

The next bigger and agreed upon shift of the Web came with a rather
sudden broad adoption of AJAX (Asynchronous JavaScript and XML) tech-
nologies in 2004 (Google Gmail), 2005 (Google Maps) and with web applica-
tions that facilitate user participation and collaboration on the Web. It was
described as Web 2.0 by Tim O’Reily in 2005 [171]. Three conceptual parts
of Web 2.0 may be distinguished [1]: rich internet applications (enabled by
AJAX, Adobe Flash, and other technologies), services (mostly RSS/ATOM
feeds and public web application APIs), and social web applications (the
Social Web).

2.2 the social web

Social media are media meant for social communication. The Social Web is
a term for social media on the Web1, see also [78]. Social websites are char-
acterized by enabling user participation, collaboration, information sharing,
and relationship building. Currently popular website types include wikis,
social networking, photo sharing, blogging, micro blogging, bookmarking,
and bulk discount platforms.

Social websites typically provide a low barrier for participation meaning
that beginning users may engage for example in tagging to enrich content
while more advanced users edit and create content. Tagging, assigning la-
bels to content, is employed by many social websites to simplify navigation
and search for example by means of faceted browsing [230] and its success
lead to a variety of research [95, 54, 141, 10, 108, 53].

1 Non-Web social media include e.g. virtual worlds such as Second Life (http:
//secondlife.com/)

5

http://secondlife.com/
http://secondlife.com/

6 from wikis to semantic wikis

The focus of this dissertation is predominantly on wikis and metadata
(and in particular tagging) but the results may be valuable to a broader
spectrum of social web applications.

2.3 wikis

A wiki is a web application for creating and managing information in the
form of web pages [133]. Coincidentally, a personal wiki (i.e. a wiki typically
not used for collaboration) could perhaps be seen as a re-implementation of
the experiment that led to the idea of the World Wide Web:

The idea of the Web was promted by positive experience of a
small “home-brew” personal hypertext system used for keeping
track of personal information on a distributed project. [132]

Wikis are characterized by a balanced mix of technological and social
features. Typically, they are easy to use [68], in the sense that they do not
require any special knowledge (e.g. HTML, CSS, programming, ...) other
than a mere familiarity with the concept of hypertext [57] and they are open
and easily accessible in the sense that any user can edit any page often
even anonymously. Openness can be seen as a social feature because it is
enabled by trusting that people will not misuse the system. Trust has its
obvious limits which are, to certain extent, surmounted for example with the
help of versioning, i.e. keeping history of each page so that malicious and
inadvertent edits can always be reverted. Another notable feature is support
for easy hyperlinking [50], especially within a particular wiki instance but
also to external content.

Wiki was described by the inventor of the concept, Ward Cunningham, as
“The simplest online database that could possibly work.” [62]. Ward Cun-
ningham designed and implemented the first wiki in 1994 and launched it
as the WikiWikiWeb in 1995

2. It was a notable effort because at that time
most web pages were “read-only”, a fact about which Tim-Berners Lee com-
plained even four years later [25]:

“ I wanted the Web to be what I call an interactive space where
everybody can edit. And I started saying ‘interactive,’ and then
I read in the media that the Web was great because it was ‘in-
teractive,’ meaning you could click. This was not what I meant
by interactivity.”

Note that from research perspective, a wiki can serve as a model of the web
– as a “web in the small” [198] – because it has the hyperlinked organic
nature of the Web but it is self-contained and simplified at the same time.

Today, there is a wealth of wiki implementations [49] and wikis have a
variety of applications: as a collaborative knowledge sharing software, the
most prominent example of which is Wikipedia [2], for collaborative knowl-
edge building [61], for collaborative learning [186, 212], as a support for
process-driven knowledge-intensive tasks [87, 122] or as a personal knowl-
edge management tool. In all these cases wiki serves as a knowledge man-
agement tool which is usually intended for incremental collaborative work
and serves the purpose of knowledge sharing – either with other people or
with a future self. This aspect of wikis is crucial and will be revisited in

2 http://en.wikipedia.org/wiki/WikiWikiWeb

http://en.wikipedia.org/wiki/WikiWikiWeb

2.4 the semantic web 7

the discussion of requirements for reasoning in semantic wikis in the next
section.

Traditional wikis used to be aesthetically crude [129], a shortcoming still
(as of 2010) visible in the WikiWikiWeb, it is however worth mentioning that
Ward Cunningham regarded it as a feature which keeps people focused on
the deep functional quality [129]. It has also been argued that simple user
interface enables fast operation due to low resource demand [122]. Wikis
usually provide a common appearance to all pages in order to convey a
sense of unity and to let people wholly focus on structure and content [127].
A more substantive problem can emerge with structuring and searching
when a wiki grows large [47]. Traditional full text search seems to be insuffi-
cient for large amounts of structured data [173, 198]. This, together with the
fact that full text search is the primary means of navigation in wikis, may
leave users to feel lost. This problem can be mitigated, to a certain extent, by
implementing a concept of hierarchical workspaces such as in TWiki [187],
by creating overview pages to improve the possibilities of navigation and by
improving the search facility.

Another set of problems, both technological and social, arises when de-
ploying a wiki system in a corporate environment. Technological problems
include those of authentication and access rights (e.g. financial and personal
data have to be protected). Social problems may arise because of different
motivations of users to create content, e.g. a fear of losing a competitive
advantage by sharing knowledge with colleagues. In this sense it may be
useful to view a wiki as a market [127]. It should however be noted that
adoption of wikis in corporate environment is heavily influenced by the
ability of company leadership to understand and clarify economic benefits
and by the ability to perform organizational changes that may be necessary
to fully leverage the technology [60]. See for example [63] for a more thor-
ough discussion of the role of wikis in companies.

Content in traditional wikis consists of natural language text (and possi-
bly multimedia files) and is not directly accessible to automated semantic
processing. Therefore, knowledge in wikis can be located only through sim-
ple user-generated structures (tables of contents, inter-page links) and sim-
ple full text keyword search which hinders information reuse – information
in overview pages has to be manually duplicated and maintained. More
advanced functionalities that are highly desirable in knowledge-intensive
professional contexts such as reasoning and semantic browsing are not pos-
sible.

2.4 the semantic web

Knowledge hidden in data published on the Web is, despite advances in
natural language processing, not readily amenable to computer processing.
The main idea behind the Semantic Web (sometimes called Web 3.0) is to
mediate meaning represented on the Web to computers by means of seman-
tic annotations. As Tim Berners-Lee puts it in the original article about the
Semantic Web:

The Semantic Web will bring structure to the meaningful con-
tent of Web pages, creating an environment where software
agents roaming from page to page can readily carry out sophis-
ticated tasks for users. [27]

8 from wikis to semantic wikis

The idea of a roaming software agent working on behalf of a user –
putting together a vacation itinerary, signing up for a medical examination
while considering a range of personalized criteria – is usually referred to
as the Semantic Web vision. The vision is to be realized by giving data
unique global identifiers, ideally dereferenceable URIs, and providing se-
mantic annotations based on these identifiers using for example the Re-
source Description Framework (RDF) (Section 2.4.1) and the Web Ontology
Language (OWL) (Section 2.4.3). The semantic annotations mediate precise
formal meaning and enable reasoning about the data on the Web.

The Semantic Web is a Web of actionable information – informa-
tion derived from data through a semantic theory for interpret-
ing the symbols. The semantic theory provides an account of
“meaning” in which the logical connection of terms establishes
interoperability between systems. [200]

While semantic annotations should ideally enable interoperability between
systems, interoperability is hindered by several factors in practice: anno-
tations do not use the same vocabularies (ontologies), the same identifier
is used for (slightly) different concepts by different semantic data publish-
ers depending on the exact use and purpose of the data. Using different
ontologies for the same data then requires automated methods of ontol-
ogy alignment or manual mapping, a still active research topic. Using one
identifier for differing concepts by different parties is a problem of context
and intended meaning. Such a problem arises also for example between
different natural languages in which “the same” concept may in fact have
slightly different meanings (it may be two slightly different concepts) re-
flecting for example cultural differences. Another limiting factor was, until
recently, scarceness of semantic data on the Web which lead to the origin
of the Linked Data community (Section 2.4.4). These and other challenges
are discussed in the literature [22, 114, 107, 90, 4, 228] and probably con-
tribute to the fact that the Semantic Web vision has not yet been realised,
after more than 10 years since the article [27] of Tim Berners-Lee and Jim
Hendler introduced it to general public.

2.4.1 RDF

“The Resource Description Framework (RDF) is a language for representing
information about ’resources’ in the World Wide Web.” [139]. The vision
for RDF was to provide a minimalist knowledge representation format for
the web [200] and it is currently perhaps the most common format for se-
mantic data. RDF data are suited for processing by machines but not easily
human-interpretable. For practical applications, support of RDF is impor-
tant in order to enable of interoperability with current Semantic Web and
linked data [26, 28] applications.

“RDF’s vocabulary description language, RDF Schema, is a semantic ex-
tension [...] of RDF. It provides mechanisms for describing groups of related
resources and the relationships between these resources.” [36]. These basic
constructs can be used to describe ontologies.

2.4 the semantic web 9

2.4.1.1 RDF Concepts

The central concept of RDF is an RDF triple. An RDF triple consists of a sub-
ject, a property, and an object and expresses a simple statement not unlike a
simple natural language sentence of the form “subject verb object”. An RDF
triple has however a precise formal meaning and should not be confused
with natural language statements. A set of RDF triples is called an RDF
graph. An RDF graph is in fact a labelled directed graph where subjects and
objects are nodes and edges are labelled with properties. Note that a URI
may appear as both an edge label and a node in an RDF graph and this is
in fact useful and common, consider the following two triples: “isFatherOf
rdf:type rdf:Property; Peter isFatherOf Meg”, see Figure 2.1.

Figure 2.1: An RDF graph.

Three types of entities can take place of an object in an RDF triple: a
URI reference, an RDF literal, and an RDF blank node. The subject must
be either a blank node or a URI reference and the property must be a URI
reference. The type restrictions of properties and particularly subjects are
often disputed3 and not always adhered to in practice.

URI references are used to refer to concepts and objects one wishes to
make a statement about. It is important to keep in mind that one object
can have many absolute URIs (see4 RFC 2396 for the precise difference be-
tween URIs and URI references). While RDF makes no assumption about
the URIs, the Linked Data [26] movement suggests that RDF URIs should
be dereferenceable and should contain a description of the resource.

RDF literals can be used when a literal value such as a name string
"Peter" conveys the whole meaning and inventing a URI reference for such
a value would be superfluous. An example triple may be: example:Peter
foaf:name "Peter", using the popular FOAF5, friend of a friend, onotology.
RDF distinguishes plain and typed literals. The string "Peter" is a plain lit-
eral; it has no associated datatype. In comparison, "Peter"^^xsd:string is
a typed literal of the xsd:string datatype.

RDF blank nodes (or often just b-nodes) can be used when it is not pos-
sible or convenient to identify a concept or an object with a URI. The RDF
Abstract Syntax [121] does not provide any symbols for b-nodes, it only
states that “Given two blank nodes, it is possible to determine whether or
not they are the same.” For example Turtle6, a concrete syntax of RDF, uses
the “_:nodeID” schema for blank nodes. The use of blank nodes in RDF
asserts existence of a concept or object without identifying it.

See the “Resource Description Framework (RDF): Concepts and Abstract
Syntax” W3C recommendation [121] for more details about RDF concepts.

3 See for example http://lists.w3.org/Archives/Public/semantic-web/2010Jul/

thread.html#msg2

4 http://www.ietf.org/rfc/rfc2396.txt

5 http://www.foaf-project.org/

6 http://www.w3.org/TeamSubmission/turtle/

http://lists.w3.org/Archives/Public/semantic-web/2010Jul/thread.html##msg2
http://lists.w3.org/Archives/Public/semantic-web/2010Jul/thread.html##msg2
http://www.ietf.org/rfc/rfc2396.txt
http://www.foaf-project.org/
http://www.w3.org/TeamSubmission/turtle/

10 from wikis to semantic wikis

2.4.1.2 RDF Serializations

There are several common RDF serialization: RDF/XML, N3, Turtle, and N-
Triples. RDF/XML [19] is officially the primary serialization format of RDF.
It is an XML application which however is arguably not very human-reader
friendly but serves well as an interchange format on the web.

Listing 2.1: An example of RDF/XML.

1 <rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/">

4 <rdf:Description rdf:about="http://www.kiwi-project.eu">

<dc:title>KiWi - Knowledge in a Wiki</dc:title>

<dc:publisher>KiWi</dc:publisher>

7 </rdf:Description>

</rdf:RDF>

Notation 3 [24], or N3, is an RDF serialization format designed with
human-readability in mind. It provides many shortcuts for writing complex
RDF and provides bigger expressivity than RDF/XML (and in fact RDF
graphs) as it allows for example for specifying rules and universal and ex-
istential quantification. Turtle [21] is a subset of Notation 3 which does not
go beyond RDF graphs. While Turtle is not a W3C recommendation, it has
become popular on the Semantic Web. N-Triples[20] is a line-based subset
of Turtle; it is a simple one triple per line format.

Listing 2.2: An example of N-Triples.

1 <http://www.kiwi-project.eu> <http://purl.org/dc/elements/1.1/

title> "KiWi - Knowledge in a Wiki" .

<http://www.kiwi-project.eu> <http://purl.org/dc/elements/1.1/

publisher> "KiWi" .

2.4.1.3 RDF(S) Model Theory

Perhaps the biggest advantage of using RDF and RDF(S) as knowledge rep-
resentation languages is that their semantics is formally specified by a model
theory [112]. Here, only a brief overview of RDF model theory is provided.
Most of this dissertation uses only the logical core of RDF(S) as specified by
Munoz et al. [160].

Definition 1. Let U be a set of RDF URI references, B a set of blank nodes, and L

a set of literals such that they are pairwise disjoint. Unions of these sets are denoted
by concatenating their names in the following for brevity. A tuple (s,p,o) ∈ UB×
U×UBL is an RDF triple. An RDF graph is a set of triples. An RDF graph is
ground if it does not contain any blank nodes. The set of members of UBL that
occur in the triples of a graph G is called the universe of G, denoted universe(G).
The vocabulary of G is the set universe(G)∩UL.

Note that for example Munoz et al. [160] allow literals in the subject posi-
tion.

The RDF model theory [112] defines four RDF interpretations: simple
RDF interpretations, RDF interpretations, RDF(S) interpretations, and RDF(S)
datatyped interpretations. They are theories with increasingly more restric-
tions on the vocabulary of a graph. For example RDF interpretations impose

2.4 the semantic web 11

extra semantic conditions on rdf:type, rdf:Property, and rdf:XMLLiteral

and RDF(S) datatyped interpretations specify a minimal semantics for typed
literals in an RDF graph (given a datatype map, a mapping from lexical
space to value space).

The notion of entailment between RDF graphs is defined using interpre-
tations similarly to classical logic entailment and it also comes in four kinds:
simple, RDF, RDF(S), and datatype (D-Entailment) entailments.

The main purpose of providing a formal theory of meaning of RDF graphs
is to support reasoning and to determine when it is valid; or as the specifi-
cation puts it:

The chief utility of a formal semantic theory is not to provide
any deep analysis of the nature of the things being described
by the language or to suggest any particular processing model,
but rather to provide a technical way to determine when in-
ference processes are valid, i.e. when they preserve truth. This
provides the maximal freedom for implementations while pre-
serving a globally coherent notion of meaning. [...] The notion
of entailment [...] makes it possible to define valid inference
rules. [112]

The inference rules are listed in the RDF model theory specification [112]
(W3C Recommendation 10 February 2004) but they are not complete as
shown in [140]. [140] also provides a correction of this flaw and provides
also other suggestions for improvement, mostly regarding ambiguities in
the definitions, of a future revision of the specification.

2.4.2 RDF Triple Stores

RDF data are usually stored in dedicated data management systems called
triple stores. While three years ago a study [199] found that RDF stores
were not yet capable of scaling real-world queries to tens of millions of RDF
triples, a recent study states [111] that certain current RDF stores such as
OpenLink Virtuoso7 or 4Store8 can handle the volumes of the European Dig-
ital Library project Europeana9 which are on the magnitude of hundreds of
millions of RDF triples. Other popular triple stores include Sesame10 which
is also a general framework for processing RDF data, Jena11 – also a general
framework as well as a triple store, and OWLIM12 which is also available as
a SAIL – an interface layer for the Sesame framework.

Most current triple stores support some kind of reasoning. Often, query
answering is sped up by forward chaining in advance and some triple stores
(such as e.g. Jena) are capable of combining forward and backward query
evaluation. To the best of our knowledge, no current forward chaining triple
store implements incremental updates of materialization in the case of triple
removals. Jena employs a general purpose RETE-based [86] forward chain-
ing reasoner which supports incremental additions but no incremental re-

7 http://virtuoso.openlinksw.com/

8 http://4store.org/

9 http://europeana.eu/

10 http://www.openrdf.org/

11 http://www.openjena.org/

12 http://www.ontotext.com/owlim/

http://virtuoso.openlinksw.com/
http://4store.org/
http://europeana.eu/
http://www.openrdf.org/
http://www.openjena.org/
http://www.ontotext.com/owlim/

12 from wikis to semantic wikis

movals.13 Sesame itself has a limited support for custom rule reasoning and
does not offer incremental removals in the general case. There is an imple-
mentation of incremental updates for Sesame [39] inspired by reason main-
tenance [73] but it is specific to RDF/S reasoning and requires space to store
auxiliary information about derivations. OWLIM also does not support in-
cremental removals.14 From personal communication with one of the au-
thors at ESWC 2010, we know that the state-of-the-art forward chaining rea-
soner for the Semantic Web SAOR (Scalable Authoritative OWL Reasoner)
[116, 117] also does not implement incremental removals. In most cases, re-
moval is implemented by recomputing materialization from scratch.

Chapter 8 of this dissertation contributes several incremental maintenance
algorithms that forward chaining triple stores can use to implement support
for incremental removal. Note that for example Algorithm 8.15 from Section
8.4 can likely be implemented using the existing forward chaining reasoners
while leveraging all or most of their optimizations.

2.4.3 OWL

The Web Ontology Language [220], OWL, is a knowledge representation
language, meant for the Semantic Web, with a formally defined meaning. It
can be seen as more expressive than RDF as it provides more predefined
constructs for representing ontologies. An ontology is usually defined as an
explicit specification of conceptualization [101]. “A conceptualization is an
abstract, simplified view of the world that we wish to represent for some
purpose.” [101]

OWL is a subset of first order logic and the main idea behind its de-
sign is to provide guarantees about computational complexity depending
on which of its subsets is used. OWL has several flavours: OWL Lite, OWL
DL, and OWL Full. OWL Lite is a light version of OWL DL which is a de-
cidable fragment of OWL; DL stands for Description Logic. Because OWL
is a vocabulary extension of RDF and in order to ensure the computability
properties, the Lite and DL versions of OWL put restrictions on the use of
RDF Schema requiring disjointness of classes, properties, individuals, and
data values. OWL Full allows arbitrary mixing with RDF Schema.

The current version of OWL, OWL 2 [220], also defines three so called
profiles [157]: OWL 2 EL, OWL 2 QL, and OWL 2 RL. The profiles are sub-
languages of OWL aimed at specific application scenarios. OWL 2 EL is
aimed at applications requiring large ontologies as it allows for polynomial
time reasoning. OWL 2 QL is suitable for applications with rather small on-
tologies and large amounts of instance data and allows for answering con-
junctive queries in LogSpace (LogSpace ⊆ P, it is an open problem whether
LogSpace = P). OWL 2 RL is aimed at applications relying on rule-based rea-
soning and database technologies; the specification provides the semantics
of OWL 2 RL axiomatized using rules (first-order implications).

OWL is a language widely used on the current Semantic Web and it is
in part, e.g. the GoodRelations15 e-commerce ontology, recognized also by
Internet search engines such as Google and Yahoo.

13 http://tech.groups.yahoo.com/group/jena-dev/message/43618

14 http://www.mail-archive.com/owlim-discussion@ontotext.com/msg00496.html

15 http://purl.org/goodrelations/

http://tech.groups.yahoo.com/group/jena-dev/message/43618
http://www.mail-archive.com/owlim-discussion@ontotext.com/msg00496.html
http://purl.org/goodrelations/

2.4 the semantic web 13

2.4.4 Linked Data

Tim Berners-Lee argued [26] that Semantic Web research projects produced
many ontologies and data stores but made only very little data available
on the Web. In order to promote semantic data publishing on the Web, he
suggested [26] four rules to follow:

• Use URIs as names for things.

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using the
standards (RDF, SPARQL).

• Include links to other URIs, so that they can discover more things.

The idea behind linked data is to create a web of data: a piece of linked
data is linked to other data that can thus be discovered by following the
links. Linked data freely available on the Web is called “Linked Open Data.”

Since Berners-Lee’s proposal in 2006, the community took up this effort
and now there are 203 data sets available that consist together of over 25

billion RDF triples and are interlinked by around 395 million RDF links, see
the Linking Open Data cloud diagram16,17 in Figure 2.2.

Figure 2.2: The so called Linking Open Data cloud diagram showing most
of Linked Open Data as of September 22, 2010. The size of the
circles corresponds to the number of triples in each dataset, there
are five sizes: for <10k, 10k-500k, 500k-10M, 10M-1B, >1B triples.
An arrow indicates the existence of at least 50 links between two
datasets. The thickness of an arrow corresponds to the number
of links: <1k, 1k-100k, >100k links.

16 http://richard.cyganiak.de/2007/10/lod/

17 http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData

http://richard.cyganiak.de/2007/10/lod/
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

14 from wikis to semantic wikis

2.5 semantic wikis

Semantic wikis are ordinary wikis extended with Semantic Web technolo-
gies and, in particular, with means for specifying information in machine-
processable ways.

Probably the first semantic wiki software was the Platypus wiki18 the de-
velopment of which started in December 2003 and which was introduced
in 2004. Since then, many different semantic wiki systems have been devel-
oped [13, 120, 197, 198, 33, 173, 217, 180]. Some, such as Semantic MediaWiki
[124], are implemented as an extension of an existing wiki, other, such as for
example IkeWiki [196] and its successor KiWi19, are built from scratch. See
http://semanticweb.org/wiki/Semantic_wiki_projects/ for an overview
of currently active and past semantic wiki projects.

Semantic wikis fall into two basic categories described, after [126], as “Se-
mantic data for Wikis” and “Wikis for semantic data”. The former category
consists of wikis enhanced with semantic technologies while the latter one
consists of wikis which support development of ontologies (wikis for ontol-
ogy engineers). This distinction is currently not strict as semantic wikis exist
that fall into both categories [196].

In general, semantic wikis include features such as:

• semantically annotated links,
• semantically annotated content,
• personalisation based on semantic data,
• information extraction – to enrich content with metadata,
• reasoning – to make implicit information explicit,
• semantic browsing – e.g. faceted search with facets based on automat-

ically generated metadata,
• semantic search – querying not only by keyword but also by (possibly

implicit) relations and categories,
• RDF(S), OWL, web services, linked data – to provide interoperability.

The range of technologies and concepts of the Semantic Web employed
in semantic wikis enables to see them as “Semantic Web in small” [198] and
thus as a small self-contained space ideal for implementing and trying out
ideas and technology aimed at the Semantic Web too [126].

Although semantic wikis have been implemented and researched since
more than six years, little formal research of their functionality has been
done. One notable exception is [16] by a group around James Hendler. [16]
formally studies Semantic MediaWiki, its modelling and query languages
and specifies for them a semantics alternative to the OWL DL based seman-
tics of [218]. Although the report focuses on Semantic MediaWiki, it illus-
trates that all wikis can benefit from having a formally worked out model:
[16] shows the complexity of entailment and querying in Semantic Medi-
aWiki based on a formal semantics that is more faithful to the actual wiki
than the original semantics of [218], a way to implement a native reasoner
(as opposed to translating to SQL or SPARQL), and a set of possible prob-
lems and extensions of Semantic MediaWiki functionality. The paper does
not try to analyse decisions leading to the conceptual model of Semantic

18 http://www.c2.com/cgi/wiki?PlatypusWiki

19 http://kiwi-project.eu/

http://semanticweb.org/wiki/Semantic_wiki_projects/
http://www.c2.com/cgi/wiki?PlatypusWiki
http://kiwi-project.eu/

2.5 semantic wikis 15

MediaWiki. A contribution to the study of conceptual models of wikis can
be found in Chapter 4 and partly in Chapter 5.

Many semantic wikis support reasoning but most of them rely on con-
ventional reasoning techniques and technologies that were developed for
use in a mostly static environment with annotations, rules, and ontologies
being crafted by knowledge representation experts. This is in contraposition
to the ever-changing, dynamic character of wikis where content and anno-
tations are, for the most part, created by regular users. Reasoning suitable
for the wiki environment arguably should consider these differences to the
traditional setting. See Chapter 3, where these aspects are explored in more
detail.

Reasoning in wikis was investigated by Krötszch et al. in [126] – it com-
pares a rather simple (at that time) but efficient reasoning in Semantic Me-
diaWiki with a more sophisticated reasoning facility in IkeWiki and men-
tions several challenges with respect to reasoning: validation of formalised
knowledge (with respect to a background ontology), performance, usabil-
ity, closed and open world assumption (which is mentioned also by [16]).
Another often mentioned concern is the expressiveness of modelling and
querying formalisms – often, reasoning in semantic wikis is constrained to
RDF(S) entailment as supported by their underlying RDF triple store while
support of negation and user-defined rules is desirable. These problems are
as important for semantic wikis as for the Semantic Web, however, the solu-
tion may differ. For example [175] suggests that the Semantic Web is better
served by classical logics rather than by a Datalog-related logics20 while [16]
found that their Datalog-based semantics was a better match for Semantic-
Media Wiki than the description logics based semantics proposed by [218].
In this case the essential difference probably lies in the fact that the closed
world assumption is found to be better suited for a semantic wiki and the
open world assumption for the Semantic Web. Let us review Semantic Me-
diaWiki and IkeWiki in more detail now.

2.5.1 Semantic MediaWiki

Semantic MediaWiki (SMW) is a semantic extension of the popular open-
source wiki engine MediaWiki21 that is used to run for example Wikipedia.22

SMW was originally developed to address three problems [217]: consistency
of content, accessing knowledge (i.e. better search and search results), better
knowledge reusing (which is related to consistency too).

SMW classifies pages into namespaces (individual elements, categories,
properties, and types) to distinguish pages according to their function. Se-
mantic annotations are based on properties and types in SMW. Properties
express a binary relationship between a semantic entity (represented by a
page) and another entity or data value. SMW also allows links to be charac-
terized by properties. For example if one wishes to express that London
is the capital of the United Kingdom then it can be done in an exten-
sion of wiki text (a syntax for describing wiki pages) by writing [[capital

of::England]] on the page for London. A page “Property:capital_of” (in
the Property namespace) may then contain additional information about the

20 It has to be mentioned that claims in the opposite direction have also been made, as
the paper states.

21 http://www.mediawiki.org/

22 http://www.wikipedia.org/

http://www.mediawiki.org/
http://www.wikipedia.org/

16 from wikis to semantic wikis

“capital of” property. The type property may be used to specify the type of
properties (their co-domain). SMW provides a formal semantics for its anno-
tations via a mapping to OWL DL. SMW annotations mostly correspond to
ABox statements in OWL DL (i.e. they describe individuals); schema (TBox)
statements are limited on purpose [126].

It is possible to query the Semantic MediaWiki via direct and inline
queries (embedded in pages) expressed in the SMW query language. The
syntax of the language is derived from wiki text and its semantics corre-
sponds to certain class expressions in OWL DL [217] which can be charac-
terized [126] as concepts of the description logic EL++ [15], with addition
of (Horn) disjunction that does not add to the complexity [125]. Note that
EL++ is a fragment of so called Horn description logics. Horn description
logics are suitable [125] for reasoning with large ABoxes which is aligned
with the focus of the Semantic MediaWiki.

As already noted before, Bao et al. [16] specified an alternative minimal
Herbrand model semantics for SMW and found that the entailment problem
is NL-complete in SMW and that query answering is P-complete in general
in SMW and it is in L if subqueries are disallowed.

2.5.2 IkeWiki

IkeWiki23 is the semantic wiki predecessor of the KiWi wiki and the KiWi
semantic platform that is the focus of this dissertation. IkeWiki was origi-
nally developed as a tool for collaborative development of ontologies and
for knowledge management purposes [198]. The focus of IkeWiki, in con-
trast to the Semantic MediaWiki, is more on reasoning [198]. It supports
OWL DL reasoning and also SPARQL querying via the Jena Semantic Web
Framework.24 Same as SMW, IkeWiki also supports typed links and page
presentation according to page types. Editing web pages is done in the
Wikipedia wiki text syntax with semantic extensions. Thanks to its full sup-
port of OWL DL, IkeWiki can be used also as an ontology engineering tool.
IkeWiki is however rather a research prototype and it does not for example
provide a simple way of selecting and exporting a specific ontology from
its knowledge base. IkeWiki, in contrast to SMW, stores annotations sepa-
rately from wiki pages. Wiki pages and annotations are combined together
on page request in a rendering pipeline.

23 http://sourceforge.net/projects/ikewiki/

24 http://jena.sourceforge.net/

http://sourceforge.net/projects/ikewiki/
http://jena.sourceforge.net/

3
K N O W L E D G E R E P R E S E N TAT I O N A N D R E A S O N I N G F O R
A S E M A N T I C W I K I

This chapter identifies several characteristics important for wikis that should
be maintained and even enhanced in semantic wikis. The following chapters
describe concepts and methods based on this analysis.

3.1 a social semantic wiki – an analysis and motivation

Social software is affluent with user interaction and one of its main goals
is to support and facilitate the interaction and collaboration. Any advanced
functionality, including reasoning and reason maintenance, built into such
software should further boost this defining trait, not hinder it.

This section summarizes distinguishing properties of social software and
motivates the general features reasoning, reason maintenance, and explana-
tion should have in a semantic wiki. The focus is mainly on wikis in an
enterprise setting in which people seek efficient ways to “get things done”
as opposed to note taking without a clear goal. Note that while the focus
is on a social semantic wiki in an enterprise setting (a setting of the whole
KiWi project), the observations can be generalized and transferred to other
social semantic systems too.

3.1.1 Work in Progress

The work of knowledge workers is varied in that it does not follow strict
guidelines and a large part of such work involves a creative process. Creative
processes do not adhere to predefined schemes (ontologies, scenarios) and
may involve inadvertent inconsistencies, i.e. they involve and result in “work
in progress” which needs to be further refined. Creative thinking requires
exploring alternatives, generating and testing ideas, or brainstorming to get
started. A social semantic wiki should support creative work and should not hinder
it by imposing unnecessary predefined constraints.

It is in the nature of creative process that inconsistencies arise and can
even constitute a desirable contrast that can be a source of inspiration. In
the ideal case inconsistencies should be tolerated and even automatically
resolved. This is however not realistic. For example logic itself does not
provide information how to resolve inconsistencies in a theory; all formulas
are “equally important” for logic. For this very reason, the field of belief
revision [8] introduces the concept of entrenchment which in effect helps
to resolve inconsistencies by expressing that a formula “is more important
than” some other formula (see Section 8.10 for more about belief revision).
A social semantic wiki should support users in resolving inconsistencies.

A system can support users by drawing attention to inconsistencies and
by providing additional information about them. Additional information
can include information about the origin and users and facts involved in
derivation of the inconsistencies. In short, the system should be able explain
inconsistencies and highlight their culprits. A social semantic wiki should pro-
vide tools that help users define and resolve inconsistencies.

19

20 knowledge representation and reasoning for a semantic wiki

3.1.2 Emergent Collaboration

In an enterprise environment, collaboration is directed towards a common
goal. A free unconstrained collaboration where virtual teams form sponta-
neously based on need is one of the main distinguishing features of social
software. However, as McAfee remarks [144], it is naive to only provide
users with a new software and expect that everyone will start using it and
content will simply emerge. Incentives are still needed on the Internet and
even more so in an enterprise environment. A social semantic wiki should fa-
cilitate joint work as much as possible and provide further incentives for active
collaboration.

People work together by sharing and comparing their viewpoints which
can frequently be in conflict. Conflicts can be seen as mutually inconsistent
views that need to be settled. This is not to mean that conflicting ideas are
not desirable. The same way as inconsistencies can drive a creative process,
disagreements can be a means of creative problem solving [106]. It has been
shown [92] that collaborative reasoning (problem solving) can be more ef-
ficient than individual reasoning. While the study in [92] presupposes a
live environment where people gather together in a room and talk together,
communication can also happen vicariously in a web-based social platform.
In fact, another study [128] indicates that less can sometimes be more with
respect to means of communication and problem solving:

The most unexpected result of these experiments was that the
participants who were limited to communicating with text-only
explored three times as many ideas as those using graphic tools.
Examination of the protocols suggested that the participants us-
ing the graphic tools fixated on solutions and gave themselves
to exploring the early solutions and often engaging in lower
level, even trivial, design decisions while ignoring the oppor-
tunity to explore more widely. Consequentially, the students
using graphic communication explored the problem space less
thoroughly than those using text. [128]

A social semantic wiki should support users in expressing agreements and dis-
agreements explicitly as well as to provide them with tools to discover and explain
disagreements in order to facilitate reconciliation.

3.1.3 Knowledge Representation and Reasoning the Wiki Way

Knowledge representation and reasoning should be easy to grasp and it
should fit well with the idea of “wikiness.” Traditionally, knowledge is repre-
sented in complex formalisms by experts cooperating with domain experts.
Such an approach is typically neither possible nor desirable in the usual
enterprise. A motivated casual user should be able to semantically enrich content.

Two ways of enriching content with semantics can be distinguished: auto-
mated annotation and manual annotation. Automated annotation has been
mainly the domain of information extraction. Manual annotation has a long
tradition in information science. Both approaches can be combined to a cer-
tain extent to form a semi-automatic annotation system. Annotation should
be as simple and as supported by the system as possible.

3.1 a social semantic wiki – an analysis and motivation 21

A fully automated annotation is not realistic given the state of the art
annotation techniques. Therefore users should be able to create gradually more
formal annotations as they become familiar with the system.

3.1.4 From Informal to Formal Knowledge Representation

Traditional approaches to knowledge management impose a rigid prior
structure on information. In contrast, social software enables phenomena
such as social tagging that leads to emergent creation of folksonomies. The
word folksonomy, a portmanteau word made up of folk and taxonomy, is
used here to mean a user-generated taxonomy. A folksonomy is implicitly
present in a bag of tags and can be extracted and represented the way
traditional taxonomies are represented. Advantages and disadvantages of
folksonomies compared to taxonomies and ontologies have been discussed
before [209, 215, 211].

A traditional taxonomy limits the number of dimensions according to
which distinctions can be made while folksonomies naturally include many
dimensions[209]. Therefore different taxonomies and even ontologies can
be extracted [154, 178] from a bag of simple tags using specialized algo-
rithms based on data-mining and information extraction methods. Natural
language processing is usually necessary because tags usually are simple
words without structure that would provide clues about their relationships.

Informal annotations such as simple tags are easy to use but offer low ex-
pressiveness. In contrast, formal annotations, e.g. OWL, allow for greater ex-
pressiveness and better accuracy of annotation in exchange for significantly
lower user-friendliness. A semi-formal annotation formalism that would e.g.
provide more cues to automated information extraction methods seems to
be desirable but lacking. While there already are proposals in this direction
[18, 17], most are a variation of keyword-value pairs and in some cases RDF
triples [229].

3.1.5 Negative Information

In real life, people often work with negative information. It is important to
be able to express that something is not something else, something is not
possible, it is excluded, or perhaps not allowed. An information about a
project’s approval is as important as information about its rejection and it is
common knowledge that a project cannot be both approved and rejected at
the same time. A social semantic wiki should provide a way to express and handle
negative information.

3.1.6 Inconsistency Tolerant Reasoning with Semi-formal Knowledge

Let us assume that a company follows a process of denoting projects as risky
and not risky – for example by tagging the respective project descriptions in
a wiki. A manager trying to determine potential problems with projects may
be interested in finding disagreements about riskiness of a project which
in this case can be recognized by inconsistent taggings. A disagreement
or an inconsistency may not be so direct and it may follow from a set of
rules that is assumed to be correct. It is desirable that reasoning can tolerate

22 knowledge representation and reasoning for a semantic wiki

inconsistencies and allows for pointing out incorrect assumptions. A social
semantic wiki should employ inconsistency tolerant reasoning.

3.2 knowledge representation and reasoning with a social

perspective

Let us first summarize the essence of requirements on knowledge represen-
tation and reasoning for a social semantic wiki observed in the previous
section.

Knowledge representation in a social semantic wiki:

• should not impose predefined ontologies,
• should allow for free tagging,
• should allow for gradually more formal annotation,
• should allow for expressing negative information,
• should allow for expressing agreements and disagreements,
• should provide means for describing inconsistencies.

Reasoning in a social semantic wiki:

• should be simple, understandable, and explainable,
• should be inconsistency tolerant,
• should enable processing negative information.

The requirement on simple, understandable, and explainable reasoning
translates to four more explicit requirements on reasoning in this disser-
tation, namely: categoricity, intuitionistic reasoning, two-valued logic, and
finitism. Let us shortly review them.

categoricity The reasoning should be categorical in the sense that
for each possible information (formula) F, either F or ¬F should be prov-
able in order to exclude “disjunctive information.” Even though disjunctive
information may be useful for some applications, it basically conveys an “al-
ternative worlds” semantics which is not the most widely assumed when
annotating. Furthermore, the restriction to categorical reasoning simplifies
explanations.

intuitionistic reasoning restrictions Intuitionistic reason-
ing requires witnesses of existence in proving existential statements which
makes it rather intuitive and simple. For example (∃x)F can only be proved
if a value for x is shown for which F holds, and to prove F1 ∨ F2, one of F1
or F2 must be proven. It excludes both refutation proofs and some forms of
reasoning by cases that, arguably, are not familiar to everyone and therefore
might be difficult to convey in proof explanations. It is worth stressing that
the choice of a sort of intuitionistic reasoning is not philosophically moti-
vated. It is a pragmatic choice aiming at simplifying reasoning and therefore
explanations.

two-valued logic A two-valued logic is desirable in order to fit well
with a widespread common sense. As a consequence, fuzzy reasoning is
not directly expressible and inconsistency tolerant reasoning building upon
specific truth values for conveying inconsistency is also excluded.

3.2 knowledge representation and reasoning with a social perspective 23

finitism Finite numbers of both individuals and derivable minimal
statements are assumed. This assumption is safe as many applications of
social software hardly will require deductions yielding infinitely many im-
plicit atoms. The question whether applications with possibly infinite atom
generation might be meaningful is not further addressed in this dissertation.
It suffices that applications limited to finitely many atoms are likely to be
frequent.

The following chapters describe reasoning and reason maintenance meth-
ods that comply with these requirements. In particular, we suggest a con-
structive inconsistency tolerant reasoning based on KWRL (the KiWi Rule
Language) rules, see Chapter 6. The proposed rule language provides two
kinds of rules: constructive rules and constraint rules. Constructive rules de-
scribe how new information is derived from explicit information while con-
straint rules are rules that derive a special “inconsistency symbols” and thus
enable description of constraints or contradictions. With range restricted
(see Definition 17 in Section 7.1.1) constructive rules only, one can build up
a categorical theory amounting to a set of positive variable-free atoms, that
is up to the syntax a relational database. With constructive rules that are not
range-restricted, more general statements can be made, namely universally
quantified statements.

The requirement for a simple user-friendly system translates to the choice
of forward chaining reasoning (or materialization) in this thesis. Materializa-
tion has the advantage that all information deducible from rules and explicit
information is readily available which is likely to have a positive effect on
user experience. Chapter 7 revisits forward chaining and describes several
novel forward chaining methods that also derive information desirable and
necessary for explanation.

Materialization, however, puts high demand on efficient handling of up-
dates of explicit information. To this end, methods for handling such changes
are explored in detail in this dissertation too. Chapter 8 describes several
novel reason maintenance methods for updating materialized facts some of
which can also serve as methods for explanation and reason maintenance.

The next chapter presents a conceptual model of the KiWi semantic wiki.

4
A C O N C E P T U A L M O D E L O F A S E M A N T I C W I K I

This chapter presents a conceptual model of a semantic wiki from a user’s
point of view and with consideration of the analysis of the previous chapter.
Note that there has been little research on the principles underlying wikis,
their architecture and design [210].

It is necessary to know what the user-level concepts of a system are in
order to design the system properly. This section reviews the basic concepts
a user interacts with within a semantic wiki. It provides a common ground
for the rest of this dissertation.

The conceptual model described here is not fully implemented in the
KiWi 1.0 system which does not include concepts such as annotated links,
negative and structured tags, and the assignment of multiple labels to a
single tag concept.

4.1 content

This section outlines representation of content in the KiWi wiki. “Content”
here refers to text and multimedia which is used for sharing information,
most frequently through the use of natural language, between users of the
wiki, and whose meaning is not directly accessible for automatic processing.
Information Extraction techniques enable computerised processing of struc-
tured data extracted from text or speech, but this introduces another level
of representation which is not considered “content” in this sense.

4.1.1 Content Items

Content items, the primary unit of information in the KiWi wiki, are com-
posable, non-overlapping documents. Every content item has a unique URI
and can be addressed and accessed individually. As a consequence, there
is no inherent distinction between wiki pages and content items. Rather, by
default, all content items are wiki pages.

Figure 4.1: An example of content item nesting. The URL in the address bar
is that of the main, outer content item.

An atomic textual content item can be thought of as being similar to a
paragraph or a section in a formatted text in that it contains content but it
also structures the text. A content item can directly contain only one type

25

26 a conceptual model of a semantic wiki

of content, for example text or video. However, content items can be nested
through transclusion1 [166] to enable the representation of complex compos-
ite content structure. Consequently, a content item may contain its textual
or multimedia content and any number of inclusion declarations, both of
which are optional.

Having an explicit concept of content structure in a wiki is desirable both
with respect to the semantic as well as the social nature of a semantic wiki;
the structural semantics of the content can be immediately used for query-
ing and reasoning, for example for automatically generating tables of con-
tents through queries, as well as for facilitating collaboration and planning
of content. In addition, content items constitute a natural unit for assigning
annotations for content (see Section 4.2).

Content items can be multiply embedded in other content items. This
means that content items can be easily reused and shared, which is use-
ful for example for schedules, contact data, or guidelines. If only a copy
of a content item’s content is embedded, multiple occurrences of the con-
tent item in the wiki cannot be traced as naturally or easily and data, for
example changes of schedule or email address, have to be updated in mul-
tiple locations. On the other hand, updating a multiply embedded content
item or reverting it to an earlier version can lead to unintuitive and unde-
sired effects when the content item changes in all contexts it is embedded in
without the editing user being aware of all these contexts. Therefore, upon
modifying a content item that appears in several different locations, the user
is presented with a list of the embedding locations and the choice to edit the
content item or a copy its content.

Loops arise when a content item contains itself as a descendant through
multiple embedding. The resulting infinite recursion is problematic with
respect to the rendering of the content item2 as well as reasoning and query-
ing over it. Since such loops arguably have no straightforward meaningful
interpretation in the wiki context, transclusions which would cause loops
are generally forbidden. However, it is generally possible to embed a con-
tent item several times into another content item or one of its descendant
content items as long as the embedding does not give rise to a loop.

Assuming that all links to content items included through transclusion
have been resolved, the wiki content can be seen to consist of a set of finite
trees. Root nodes, that is, content items that are not contained in another
content item, then have a special status in that they encompass all content
that forms a cohesive unit. In this, they can be seen as being alike to a wiki
page in a conventional wiki.

external content items Linked websites that are located outside
of the wiki are considered to be external content items. That means, they
can be tagged and they can contain non-intrusive fragments (see below),
but they are not considered to be complex, that is, nested.

4.1.2 Fragments

Fragments are small continuous portions of text (or, potentially, multime-
dia) that can be annotated. While content items allow the authors to create
and organise their documents in a modular and structured way, the idea

1 Inclusion by reference.
2 At least if we assume that all of the content item is to be rendered at once.

4.1 content 27

behind fragments is that they enable the annotation of user-defined pieces
of content independently of the canonical structure. If content items are like
chapters and sections in a book, then fragments can be seen as passages that
readers mark; they are linear and transcend the structure of the document,
spanning across paragraphs or sections. Different sections of the book might
be marked depending on which aspect or topics a reader is interested in.

Figure 4.2: An example of fragments of a textual content item.

Fragments should be maximally flexible in their placement and size to
allow for different groupings. Towards this goal, it is generally desirable that
– unlike content items – fragments can overlap. The intersection between two
overlapping fragments can either be processed further or it can be ignored.
When two overlapping fragments f1 and f2 are tagged with “a” and “b”
respectively, a third fragment that spans over the overlapped region and is
tagged “a, b” can be derived automatically. Similarly, automatically taking
the union of identically tagged overlapping or bordering fragments might
be intuitive and expected by the user. However, this automatic treatment
of fragments is a complex issue which might not always be appropriate or
wanted.

Therefore, fragments are seen as co-existing but not interacting, meaning
that relationships between fragments are not automatically computed and
no tags are added. This view has the advantage of being simpler and more
flexible in that control of fragments and their tags stays with the user. It is
also in tune with the philosophy that, unlike content items that always only
realise one structuring, fragments are individual in that different users can
group a text in many different ways and under many different aspects.

Fragments can either be restricted to be directly contained in one content
item, or they can span across content items. In the latter case, a rearrange-
ment of content items can lead to fragments that span over multiple content
items which no longer occur in successive order in the wiki and, similarly,
transclusion means that content items may contain only part of a fragment
with the other part being absent (but present in some other content in which
the content item is used).

To avoid these problems, in the KiWi wiki, fragments start and end in the
same content item, but can span over contained content items. One single
content item then contains the whole fragment. More precisely, this means
that fragments can span over different content items as long as they have a
common parent content item and all intervening sibling content items are
part of the fragment, too.

There are two possible ways of realising fragments:

• “intrusive”: the insertion of markers in the text to label the beginning
and the end of an fragment, and

28 a conceptual model of a semantic wiki

• “non-intrusive”: external referencing of certain parts of a content items,
using for example XQuery3, XPath4, XPointer5, or line numbers.

As the former means that fragments are less volatile and updates to the text
do not affect fragments as easily, for example when text is added to the
fragment, fragments in the KiWi wiki are intrusive.

4.1.3 Links

Links, that is simple hypertext links as in HTML, can be used for relating
content items to each other and to external resources. Links have a single
origin, which is a content item, an anchor in this origin, and a single target,
which is a content item or external URI. Links are primarily used for naviga-
tion but can also be considered a kind of annotation that specifies relation
between the two linked resources. For an untyped link, this relation may
default to the “is related to” relation. Typed links express a specific relation
between two resources. The link structure within a wiki can therefore be
seen as a (possibly cyclic) directed graph with typed edges.

4.2 annotation

Annotations are meta-data attached to content items, fragments, and links
which convey information about their meaning or properties. Annotations
can be created by users either manually or via rules. Content items and anno-
tations also include system meta-data such as the creation and last edit date
and the author(s) of a content item or an annotation. These meta-data are
automatically generated and cannot be modified by the user. The KiWi wiki
comes with pre-defined application independent vocabularies, taxonomies,
and ontologies expressing authorship, versions, and the like. This is not fur-
ther developed here as it is not in the focus of this dissertation. Note that
meta-data and annotations have to be clearly distinguished. Especially in
informal speech meta-data and annotations are often not distinguished and
one talks about a tag of a content item while a tag annotation may be meant.
This distinction is important for proper modelling of annotations and for
example negative tags, see e.g. “Representing Tags in RDF” below.

Figure 4.3: A content item tagged “munich” and “city,” and a fragment
tagged “city hall.” Fragments are assumed to have URIs. Tags
are attached to fragments using the URIs.

Two kinds of user generated meta-data are available in KiWi 1.0: tags and
RDF triples. Tags allow to express knowledge informally, that is, without

3 http://www.w3.org/TR/xquery/

4 http://www.w3.org/TR/xpath/

5 http://www.w3.org/TR/xptr-xpointer/

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xptr-xpointer/

4.2 annotation 29

having to use a predefined vocabulary, while RDF triples are used for for-
mal knowledge representation, possibly using an ontology or some other
application-dependent predefined vocabulary. Regular users are generally
not confronted with RDF, which is considered an enhancement for experi-
enced users. Here we contribute so called “structured tags” that allow for a
smooth transition between informal and formal meta-data.

4.2.1 Formal Annotations: RDF and OWL

The Resource Description Framework (RDF, see Section 2.4.1) is currently
the most wide-spread knowledge representation format on the semantic
web. It enables interoperability of semantic web systems to a certain ex-
tent. Even though RDF is easily machine processable, the use of RDF alone
does not guarantee full interoperability as the same RDF vocabulary can
have different intended meanings in different contexts. Still, RDF provides
a common ground for the semantic web and therefore it has a prominent
place in the KiWi system too.

Vocabularies and richer structures such as taxonomies, thesauri, and on-
tologies (referred to as “terminologies” in the following) can be defined
using RDF Schema or the Web Ontology Language (OWL, see Section 2.4.3).
KiWi 1.0 employs both RDF(S) and OWL but only a subset of OWL rea-
soning is supported, namely the OWL 2 RL profile the semantics of which
can be expressed using rules. Although both RDF and OWL formalisms
provide a human-friendly syntax, they are not always intuitive and easy to
write or read; their perhaps the main advantage lies in providing a common
ground for semantic web systems and in enabling reasoning. An example
of an RDF annotation is kiwi:item/123 rdf:type kiwi:ContentItem. Note
that a triple like this is often called an annotation on the Semantic Web. With
respect to our conceptual model, the triple is a piece of meta-data that can
be attached to a resource for example by means of reification. The whole
structure is then called an annotation.

A semantic wiki can translate flat, structured tags, and links to an RDF(S)
or OWL representation using predefined terminologies in order to make
them accessible to semantic querying and reasoning.

4.2.2 Informal Annotations – Tags

One problem that frequently arises in the context of semantic web applica-
tions that use relatively complex formalisms such as RDF for annotation is
that it is hard to motivate users to annotate content since they find the pro-
cess complicated, laborious, and time-consuming. In addition, predefined
terminologies are not ideally suited for capturing emerging knowledge as
they constitute a top-down, single-viewpoint approach to describing do-
main concepts and their relations. They do not and cannot account for newly
arising concepts whose definition and classification might initially be vague.
Social semantic software also needs less formal and more flexible modes of
annotation.

Tagging is one such kind of informal or semi-formal (depending on the
exact use and implementation) annotation. Tags normally consist only of
keywords users associate with resources. Despite their simplicity, there are
many possibilities as to how exactly tags should work and be used [204].

30 a conceptual model of a semantic wiki

The ability to tag content is provided by many social websites where
users can assign tags to content, for example bookmarks or pictures, thus
creating groups of items that share similar characteristics, namely a relation
to the tag which serves as the label for that group. Through this, ordering
and retrieval of content is enabled which serves as a further incentive for
tagging.

An informal tag is a simple string such as “contentItem” or “animal.”
In a tagging system, no meaning is assigned a priori to a string, and on
the other hand, no specific string is pre-assigned to express a concept. The
meaning of a tag can thus be seen to emerge from the collaborative tagging
by individual users who do not have to commit to a pre-defined view on
categorization. Note that this view is akin to Wittgenstein’s language games
[226] – meaning of a word emerges from a context and from the way it is
used.

As a consequence of this flexibility and accommodation for different points
of view, the same concepts are frequently expressed using different tags, for
example synonyms, tags in different languages or inflected or simply differ-
ently spelled versions of the same word. Similarly, different concepts may
be assigned the same string as a tag due to polysemy and homographs.
Yet another problem is basic level variation, varying degrees of specificity
in tagging depending on the level of expertise in an area. Since no explicit
relations between tags exist in a folksonomy, tags referring to similar or
identical concepts at different degrees of specificity are not recognized as
being related.

These factors have a negative influence on the consistency of the emer-
gent semantics and consequently on both recall and precision as well as
users’ understanding of the structure of the system. The practical and social
aspects are interrelated and mutually reinforcing since users not sure about
tagging conventions are likely to break them, leading to more inconsistency
in the folksonomy.

As above observations indicate, social and technical factors must be taken
into consideration – but can also be leveraged – when supporting the pro-
cess of emerging semantics in a folksonomy.

The KiWi system employs tagging with advanced features such as URIs
on the conceptual level (tags as concepts) and autocomplete and disam-
biguation on the user interface level. This helps to overcome the downsides
of uncontrolled, ad-hoc categorization and it also helps to enable a transition
between informal and formal annotation.

tags as concepts The KiWi system distinguishes between tags as
mere strings or labels and the abstract concepts they stand for by represent-
ing tag concepts as content items, tags in our terminology. Each tag is asso-
ciated with one or more labels which may overlap between tags, thus mir-
roring the non-unique mapping between strings and concepts as described
above. Each tag concept content item may, but does not have to, contain a
textual description of its meaning and a list of resources it has been assigned
to, thus making it easier for users to negotiate the meaning and use of the
concept.

When a user enters a tag to be assigned to a resource, the system auto-
matically resolves it to the corresponding tag concept, allowing the user to
intervene if she disagrees with the concept association that occurs in the case
of ambiguity. Various approaches for semantic disambiguation, for example

4.2 annotation 31

based on co-occurences of concepts and distances between words in Word-
net6, exist and can be used. Each tag concept’s content item can be used
as a tag label, meaning that each concept can be unambiguously addressed
during tagging, even when all of its associated labels are ambiguous. This
is especially relevant for the automatic assignment of tags where no user-
intervention is possible or desired. In summary, a resource in the KiWi wiki
is tagged not with a string or label but with a concept to which the label
serves as a shortcut.

Besides offering a solution for resolving ambiguous mappings between
concepts and labels, tags can also be matched to formal concepts in an on-
tology, allowing for the ontological grounding of a tag concept.

the semiotic triangle . One question to ask when designing a sys-
tem that includes annotations is “What is it that is being annotated?” On
the purely technical level, this question may have a quick superficial answer:
any resource that the system allows to be annotated. But what is the actual
meaning? Let us say that the resource is a content item about an elephant.
Does a tag added to the page state a fact about the page itself (a representa-
tion of an elephant in the wiki system) or does it refer to the actual elephant?
This kind of analysis leads to a concept well-known as the semiotic triangle
[170], Peirce’s triad[177] or de Saussure’s distinction between the signifier
and the signified [195]. The distinction is important because it may have
consequences on how annotations are interpreted and treated. In [172], the
authors let the users explicitly express whether an annotation refers to a
text or its meaning by providing them with a syntax that allows the users to
distinguish between these two cases.

The KiWi system addresses the problem of multiple meanings of a tag
label as described above. It, however, purposefully does not address the
problem of what a tagging refers to – to a concept or the page that describes
it. The reasons for this are that such a distinction is likely to be insignificant
in most cases with respect to the practical use of tags, irrelevant to many
users and, above all, forcing users to be aware of the distinction and employ
it during tagging reduces the user-friendliness of tagging and thus deters
users from annotating content. In summary, introducing such a distinction
would be likely to lead to an unnecessary increase of complexity of the
tagging process.

tag label normalization Tag normalization defines an equiva-
lency on the set of tag labels. Tag label normalization can mean for example
that the tag labels “Wifi”, “WiFi”, “Wi-fi” and “WIFI” are all equivalent to
the tag label “wifi” which can be the canonical form of this tag label equiv-
alency class. The canonical form is shown in aggregated views such as tag
clouds. Trailing whitespace and multiple whitespace within a tag are always
removed upon saving the tag. In other cases, each user always sees the tag
label that he or she entered. Further, tag label normalization in KiWi is done
by converting all letters to lowercase and removing punctuation.

negative tags In a collaborative context, one may be interested in
tracking disagreements which presupposes some way to express negative
information. Just as a user can tag a resource with tag “t” he or she may
want to tag it with “–t” (meaning “not t”) as a way to express disagreement

6 http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

32 a conceptual model of a semantic wiki

or to simply state that the resource is not “t” or does not have the property
“t.” An example may be a medical doctor tagging a patient’s card as “–lupus”
to state that the patient definitely does not have “lupus.”

Although a tag “–t” could be seen as introducing classical negation into
the system, it may in fact be only a very weak form of negation because we
can allow negating only pure tags, not general formulae (or sets of tags),
and the only way to interpret this kind of negation would be by introducing
a rule which expresses that from tag “t” and tag “–t” a contradiction symbol
should be derived. See Chapter 6 for a more thorough discussion of negative
tags.

tags and content structure . In presence of nested content items
and fragments, it is a question whether annotations should be propagated
from items and fragments to containing content items or the other way
around. Propagation may be appropriate in cases where the parent-child re-
lationship corresponds to a “isA” or “isInstanceOf” between concepts which
the content items describe. In contrast, when the parent-child relationship
corresponds to an “isPartOf” relation then tag propagation may be not ap-
propriate. The content structure is accessible to the rule and query language
in form of metadata. Therefore, this functionality is best left up to users who
can tailor it to their needs by defining approriate rules.

tag hierarchies . Tag hierarchies constitute a step in the transition
from informal to formal annotation. They are useful for example for reason-
ing and querying since they enable the processing of tag relationships. Tag
hierarchies could be created through “tagging tags”, that is, tagging a tag’s
content item to indicate an “is-a” relation.

representing tags in rdf . A simple tag (i.e. we mean a piece
of meta-data here, not an annotation in our terminology) may be repre-
sented in RDF as the triples tagUri rdf:type kiwi:SimpleTag and tagUri

kiwi:hasLabel label where tagUri is a unique URI of the tag and label

is a string literal with a normalized label of the tag. Original labels used
by users for the tag are then modelled as a property of the respective an-
notations (item-tag relationships) if they are to be preserved. We suggest
that the polarity of a tag is also a property of an annotation rather than of
the tag. The advantage of such modelling is that for one tag concept there
is only one tag URI and not two (one for the positive concept and one for
the negative concept), i.e. annotations using the tag concept (positively or
negatively) can be identified more directly.

Also note that the KiWi 1.0 system represents tags and tag annotations
using the Holygoat tag ontology.7

4.2.3 Semi-formal Annotations – Structured Tags

Ordinary flat tags are limited in their expressiveness. To overcome this lim-
itation, different extensions of tagging are currently being proposed: ma-
chine tags8, sub-tags [18] as used in the website http://www.rawsugar.com/,
structured tags [18, 17]. Most proposals are a variation of keyword-value
pairs, in some cases RDF triples [229]. One approach also considers ratings

7 http://www.holygoat.co.uk/owl/redwood/0.1/tags/tags.n3

8 http://tech.groups.yahoo.com/group/yws-flickr/message/2736

http://www.rawsugar.com/
http://www.holygoat.co.uk/owl/redwood/0.1/tags/tags.n3
http://tech.groups.yahoo.com/group/yws-flickr/message/2736

4.2 annotation 33

on tags [91]. Note that keyword-value pairs can be seen as triples too – the
resource being annotated is the subject, the keyword is the predicate and
the value is the object of the triple. More complex schemes which involve
nesting of elements might be practical in some cases, e.g. “hotel(stars(3))”
could express that the tagged resource is a three-star hotel. These exten-
sions develop the structure of the tag itself and a set of tags is interpreted
as a conjunction. It is conceivable to allow users to tag resources with a dis-
junction of tags or even with arbitrary formulae. This may be practical for
some applications but it has two drawbacks: reasoning with disjunctive in-
formation is difficult and simplicity and intuitiveness would suffer (see also
the requirement for categoricity in the previous chapter).

Structured tags enhance the expressive power of tags and serve as an
intermediate step between informal (unstructured) tags and formal annota-
tions.

Two basic operations lie at the core of structured tagging: grouping and
characterization. Grouping, denoted “()”, allows to relate several (complex
or atomic) tags using the grouping operator. The group can then be used
for annotation. Example: a wiki page describes a meeting that took place
in Warwick, UK on May 26, 2008, began at 8 am and involved a New
York customer. Using atomic tags, this page can be tagged as “Warwick”,
“New York”, “UK”,“May 26”, “2008”, “8am” leaving an observer in doubts
whether “Warwick” refers to the city in UK or to a town near New York.
Grouping can be used in this case to make the tagging more precise: “(War-
wick, UK), New York, (May 26, 2008, 8am)”. The annotation of a group of
tags assigns only the higher unit made out of the individual atomic tags or
group, but not the separate constituents. If this functionality is desired, it
could be implemented for example via rules. A group of tags can also be
used to describe the properties of something whose name is not yet known
or for which no name exists yet.

Characterization enables the classification or, in a sense, naming of a
tag. The characterization operator, denoted “:”, can be used to make the
tagging even more precise. For example, if we wanted to tag the meet-
ing wiki page with a geo-location of the city Warwick, we could tag it as
“(52.272135, -1.595764)” using the grouping operator. This, however, would
not be sufficient as the group is unordered. Therefore we could use the
characterization operator to specify which number refers to latitude and
which to longitude: “(lat:52.272135, lon:-1.595764)” and later perhaps spec-
ify that the whole group refers to a geo-location: “geo:(lat:52.272135, lon:-
1.595764)”. Similarly, Warwick in our example could be expressed as “loca-
tion:(warwick)” to differentiate it from Warwick fabric or person with the
last name Warwick.

Together, grouping and characterization provide a powerful tool for struc-
turing and clarifying the meaning of tags. Structured tags are a step between
informal simple tags and formal RDF/S annotations.

The meaning of a structured tagging rests, for the most part, with the
user who specified it. Structured tags do not impose rules on their use or
purpose, they only allow users to introduce structure into taggings. It can be
seen as a wiki-like approach to annotation which enables a gradual, bottom-
up refinement process during which meaning emerges as the user’s work
and understanding develop.

Minimal rules are, however, necessary in order to ensure a flexible useful
order and to avoid chaos:

34 a conceptual model of a semantic wiki

• Groups

– can be used on positive and negative atomic tags, groups, and
characterizations,

– are unordered,

– cannot contain two equal members, e.g. (Bob, Bob, Anna) and
((Bob, Anna), (Anna, Bob)) are not allowed,

– can contain arbitrarily but finitely many elements,

– can be arbitrarily but finitely nested,

– are identical in meaning to the atomic tag when they only con-
tain one element, i.e. (Anna) is the same as Anna

• Characterization

– can be used on positive and negative atomic tags and groups,

– is not commutative, i.e. geo:x is not the same as x:geo.

– can use atomic and complex tags as a label

Structured tags have to be syntactically correct. That means that for exam-
ple “Bob:190cm,90kg” is not a valid structured tag.

The same information can be expressed in many ways using structured
tags. The above described way of structuring geo-location is only one of
several. Others include:

• geo:(x:y):(1,23:2,34)
• geo:(y:x):(2,34:1,23)
• geo:(1,23:2,34)
• geo:1,23:2,34

and possibly many more. Users are free to choose what suits their needs and
purpose the best. Of course, for structured tags to be useful in a community,
the community needs to agree on a common way of structuring informa-
tion. It is important that only a very minimal structure is required by the
system leaving the possibilities open; different users and different commu-
nities can agree on different ways of structuring the same information. This
heterogeneity is an advantage. First, it provides users with freedom and sec-
ond, it can be beneficial for different communities to encode similar kinds
of information in different ways as the precise meaning of a similar concept
may differ. In such a case, different encoding may facilitate automatic trans-
lation of structured tags to formal annotations because it would allow to
distinguish the two concept structurally.

Introducing structure into tags increases their expressiveness and pro-
vides a means of limiting ambiguity of the intended meaning as shown for
example by the above geo-location example. Note that uniqueness of mean-
ing cannot be asked for. Even a theory of first order logic can have many
different models while only one is the intended one. One example of such
a theory is the Peano axioms – natural numbers are the intended (standard)
model of the theory but it also has non-standard models. Also, it is for exam-
ple impossible to define a transitive relation in first order logic. This should
not be seen as a flaw of the theory but as a limit of the expressiveness of the
formalism.

4.2 annotation 35

representing structured tags in rdf . A structured tag may
be represented in RDF using the following scheme. Three axiomatic triples
defining the relationship of simple tags, structured tags, and grouping and
characterization are assumed:

• kiwi:TagGrouping rdfs:subClassOf kiwi:StructuredTag

• kiwi:TagCharact rdfs:subClassOf kiwi:StructuredTag

• kiwi:SimpleTag rdfs:subClassOf kiwi:StructuredTag

Members of a structured tag of type kiwi:TagGrouping are described by
the kiwi:hasMember property with kiwi:StructuredTag range.

The left and the right side of a structured tag of type kiwi:TagCharact

is described by the kiwi:hasLeft and the kiwi:hasRight properties both
of range kiwi:TagGrouping ∪ kiwi:SimpleTag. Both properties have to be
used exactly once.

Note that this representation does not allow negative tags in structured
tags. Negative tags may be useful to some: “(red, nice, –sweet)” but their
meaning is not clear in general. Consider the following examples: “sweet,
(red, nice, –sweet)”, “(sweet, –sweet)”, “apple:(ripe:sweet, crude:–sweet)”, “–
crude:sweet”, etc. See also the following section on representing annotations
in RDF.

structured tags from a psychological perspective . The
idea of the grouping and characterization operators of structured tags is
rooted in the observation of basic human skills – skills like naming and
categorization that are innate to humans and as such are very natural and
easy to do. This kind of observation has been first described perhaps in
Gestalt psychology. Gestalt psychology developed as a theory of visual per-
ception and it is based around the principle that people tend to perceive
holistic patterns rather than individual pieces following so called gestalt
laws of closure, proximity, similarity, symmetry, continuity, and common
fate. This tendency can be seen as a tendency to group things according to
a kind of regularity (a gestalt law). Gestalt psychology has been criticized
for being merely descriptive [41] but it nevertheless provides valuable ob-
servations about natural human inclinations and aptitudes and it is often
used in design and human-computer interaction research and development.
More recently (in 1973), Eleanor Rosch introduced [191, 190] so called proto-
type theory as a mode of graded categorization. In a simplified way, it says
that people determine categories by means of graded prototypes – exam-
ples that to varying extent represent a given category. It is noteworthy that
these categorization and naming skill are used even by very young children
[98, 99, 163, 29, 32, 137] which strengthens our assumption that grouping
and characterization is likely to be well received by users.

Semi-formal annotations described in this section provide a means to
transform knowledge from human-only content described in Section 4.1 to
machine-processable information. Semi-formal annotations seem to be an
important feature of social software because they provide a low-barrier en-
try point for user participation on enrichment of content with metadata
which are machine processable. Users can use gradually more expressive
and formal methods of annotation as they become familiar with the system.
First, they only create and edit content. Then they can begin using flat tags
to annotate content and later perhaps start using structured tags. Advanced

36 a conceptual model of a semantic wiki

users or system administrators can further enhance the metadata enrich-
ment efforts by specifying rules for semi-formal annotations. Of course, the
underlying assumption is that users in fact like using structured tags as an
annotation formalism. This assumption is closer examined in a user study
presented in the next chapter.

4.2.4 Representing Annotations in RDF

Annotations are metadata (RDF and OWL, tags, structured tags) attached
to content items, fragments, and links. An RDF annotation is an RDF triple
attached to an entity, i.e. it must be possible to identify the triple in order
to make statements about it. This is standardly achieved by RDF reification9

and here this standard is assumed. OWL is a vocabulary extension of RDF
(see Section 2.4.3) and thus OWL statements can be represented as RDF
triples and reification can also be used to express a statement about an RDF-
represented OWL meta-data.

We assume that any entity (resource) that a user may want to explicitly
talk about has a URI, a blank-node, or that it is a literal. Statements about
such entities can be expressed as RDF triples. In particular, it can be ex-
pressed that a given entity (except a literal, which cannot be in the subject
position) has some metadata attached, e.g.: entityURI kiwi:hasMetadata

metadataURI. In this case, metadataURI denotes an annotation of (the de-
notation of) entityURI. Therefore statements about tags and structured tags
can be easily expressed in RDF too. While entering full URIs is inconvenient,
disambiguation of tag labels into specific URIs can be done in user interface
with user feedback or automatically using linguistic and information ex-
traction methods, see for example [188, 181, 169, 7]. In-depth treatment of
disambiguation is out of the scope of this dissertation.

An annotation is described by at least the following properties:

property object

kiwi:metadata a tag, a structured tag, or an RDF triple

kiwi:annotatedEntity the annotated entity

kiwi:hasAuthor an author of the annotation

kiwi:dateCreated the date of creation of the annotation

kiwi:marker one of "user", "rule", "system"

kiwi:polarity one of "-", "+"
Additional properties may be used as appropriate, for example kiwi:

dateModified for annotations that may be changed. The property kiwi:

hasAuthor may be used multiple times if there are multiple authors of
the annotation. No restriction is put on the range of the kiwi:hasAuthor

property enabling thus an author to be a user, an automated annotating sys-
tem, or some other entity. Properties kiwi:metadata, kiwi:annotatedEntity,
kiwi:dateCreated, kiwi:marker have to be used exactly once. The property
kiwi:polarity can be used to specify the polarity of an annotation. If the
polarity property is not used it is assumed to be positive.

9 http://www.w3.org/TR/rdf-mt/#Reif

http://www.w3.org/TR/rdf-mt/#Reif

4.3 social content management 37

4.3 social content management

To facilitate social collaboration and leverage the social aspects of the seman-
tic wiki, several options and aspects have to be considered.

groups . User groups can be used among other things for personalisa-
tion of wiki content, for querying and reasoning and to attribute wiki data to
a group. Tags are an easy way to group things which is used in the wiki, so
it is an obvious choice to form user groups by tagging users’ content items.
Groups are created by assigning at structured tag with the label ‘group’ to
a content item, fragment or link, e.g. “group:(java)”

access rights . Users, user groups and rules for reasoning could be
used to handle access rights in the wiki, but this is a complex issue which
requires further investigation. Questions that arise include who owns the
rules and what are the access rights on rules and who can assign the tags
that restrict the access. Static rules would not be suited for rights manage-
ments in all environments. For them to function well, the organization and
roles in the wiki have to be relatively stable, which may be the case in profes-
sional applications. In other areas, such as the development of open source
software, such rules may not be desired or the social organization might not
be static enough for rules to be adequate.

the social weight of tags . It is useful to aggregate tag assign-
ments (and annotations in general) to provide a clearer view of them and
their popularity. Tag assignments then can be seen to have weights. Some
users might not agree with the assignment of a certain tag to a content item,
and add a negative component to the tags’ weight to express this. The over-
all social weight of a tag can then be calculated by assigning a value to both
a tag assignment and disagreement with it and calculating the total. The so-
cial weight of a tag summarizes the users’ views on the appropriateness of
a specific tag assignment and thus provides a valuable measure that can be
used in reasoning and querying. Note that agreeing with a tag assignment
is identical to also making it but disagreement is not identical to adding the
negative tag since not being content with the assignment of tag does not
necessarily imply that one thinks its negation makes an appropriate tag.

Tag weights also give an overview over users’ opinions and could help
form a consensus on tag usage. Thom-Santinelli et al. show evidence [194]
that users have a desire for consistency with other users’ tag assignments
and are often willing to adopt a tag that they know has been used on the
same resource by other users. Weighting tags could further foster this pro-
cess. To facilitate this, it should be as easy as possible to also assign a tag or
to disagree with its assignment.

Finally, reinforcing or disagreeing about tag assignments constitutes a
low-barrier activity in the wiki which makes it easy for users to participate.

5
E X P E R I M E N TA L E VA L U AT I O N : S T R U C T U R E D TA G S
A N D R D F

This chapter presents a user study that compares structured tags to RDF
as an established annotation formalism. The study has been conducted in
a joint work with Klara Weiand; the quantitative and statistical part of this
text is a joint work, the introduction, qualitative evaluation, and discussion
were written by me alone. Klara’s assessment of the results of the study can
be found in her dissertation [223].

Structured tags, introduced in the previous chapter, are a semi-formal
annotation formalism that enriches flat ordinary tags with two operators:
grouping and characterization. Grouping allows for dividing tags into dis-
tinct groups while characterization allows for naming or characterizing of
groups and simple tags. The meaning of a structured tag depends on its use
and is not predefined. Structured tagging introduces only a minimal set of
rather intuitive rules. Arguably (see Section 4.2.3), grouping and character-
izing are two elementary concepts learned by all at an early age: who has
not seen a three years old child grouping things according to some rule or
characterizing objects by enumerating some of their properties?

RDF is a knowledge representation and annotation formalism established
on the Semantic Web. RDF is rather simple in that it consists only of triples
that resemble simple natural language sentences. It also provides a human-
friendly syntax, and it is conceptually simpler than more advanced for-
malisms such as OWL and first order logic. For this reason, RDF was chosen
as an alternative annotation mechanism in this user study. Structured tags
are, however, not intended as a replacement of RDF. Instead, they are or-
thogonal to it in that they provide a semi-formal step between RDF and
informal annotation using simple flat tags.

Structured tags are flexible because on the one hand they are based on
only two basic concepts, grouping and characterization, yet these two con-
cepts allow for high accuracy, and because they build upon freely chosen
atomic tags with an implicit semantics. The simplest form of structured tags
are ordinary flat tags that can be combined and related to each other by
repeated application of grouping and characterization resulting in sophisti-
cated structures. This flexibility enables capturing knowledge as it evolves.
Starting with vague information best expressed as a simple set of flat tags
one can gradually create complex and more precise (less ambiguous) de-
scriptions. This feature of structured tags is only partially studied in this
chapter. The main focus of this study is on the user-friendliness of struc-
tured tags as it is crucial to their acceptance and usefulness in social seman-
tic applications.

This study provides first insights into the practical use of structured tags:
users’ opinions about structured tags, their ability to capture complex and
evolving information in the formalism, the complexity of created structured
tags, observations about the suitability of structured tags for expressing con-
cepts such as causality, conditions, and negative information. While other
interesting topics such as the transition from structured tags to RDF using
(user-defined) rules and other automated means are not evaluated in this

39

40 experimental evaluation : structured tags and rdf

study, the results can serve as a valuable basis for further evaluation and
implementation of structured tags.

5.1 experimental setup and execution

Nineteen participants were recruited through announcements in several
computer science lectures at LMU. They each were rewarded with 100 Euros
for their participation (during eight hours) in the study.

Participants’ ages ranged from 21 to 26 with the average age being 23

years. All of the participants were students. Most studied computer science
or media computer science at LMU, but some were students of related disci-
plines like mathematics, physics and computational linguistics. On average,
participants had been students for 5.2 semesters with the individual dura-
tions ranging from two to ten semesters.

The study was performed in a single session that lasted about 8 hours
and included a half-hour break at noon. Participants were split up into two
groups that were balanced in terms of the fields of study and study progress
of the group members. All materials that the participants were given were
written in English, but comments could be given in English or German.
At the start of the session, participants were asked to rate their experience
with RDF and of tags on a scale from 1 (“never used/no knowledge”) to 3

(“frequent use”).
The participants were provided with a short introduction into the experi-

ment scenario, reproduced here:

You work in a software development company that runs several
projects. When a project starts, information about it is added in
the company wiki. The text there describes the project, its goals
and projects and the people involved in it. Since several peo-
ple collaborate to write the text and since more information be-
comes available as the project progresses, the text is changing
and is also becoming more detailed. However, the company’s
wiki does not only contain text but also annotations that de-
scribe the content of the text, that is, it is a semantic wiki. These
annotations are useful for example for retrieving wiki content
and for automated reasoning, the deduction of new facts.

The first part of the experiment consisted of participants annotating dif-
ferent revisions of a text on project management in a software development
scenario using RDF. Since structured tags are not yet implemented and avail-
able in practice, participants wrote down their annotations to the text on pa-
per. The texts were written specifically for use in the study and represented
the content of a wiki page describing a fictional software project. Two dif-
ferent texts of equal length with six revisions each were written, we will
refer to them as “text A” and “text B” in the following. All revisions of both
texts as they were presented to the participants are given in the Appendix
(Chapter A).

To provide participants with an introduction into the annotation forma-
lisms, two texts of similar length describing structured tags and RDF were
prepared. These texts are also given in the Appendix (Chapter A). To en-
sure that the texts were comparable in quality and intelligibility, they were
examined by two computer science researchers at LMU who knew both for-
malisms and were not involved with the study. The description of RDF was

5.2 results 41

simplified in that URIs and namespaces were omitted and capitalization
and quotation marks were used to distinguish between classes, instances
and literals. The introduction to structured tags did not mention negative
tag assignments as described in Section 4.2.2.

Participants were provided with the introductory text on RDF and in-
structions for the experiment. Participants could refer to the introduction at
any point, and were asked not to modify their annotations once they had
received the following revision of the text. Changes in the text between revi-
sions were highlighted. Participants were told to add as many annotations
as they felt appropriate.The instructions further encouraged participants to
refer to annotations made to previous revisions and to describe new anno-
tations in terms of modifications to these annotations.

The annotation process was self-paced and the next revision of the text
was only handed out once a participant had finished annotating the previ-
ous revision.

In this first part of the experiment, one group annotated text A, while
the other group was given text B to annotate. Participants were asked to
write down the times when they started and stopped annotating each of the
revisions.

After they had completed annotating the final revision, participants were
provided with questionnaires where they had to indicate their agreement
with ten statements about the annotation formalism and their impressions
of the annotation process. For each statement, participants were asked to
tick one of five boxes corresponding to a Likert scale representing different
extents of agreement. The categories were “strongly disagree,” “disagree,”
“undecided,” “agree,” “strongly agree.”

In addition, participants could optionally provide written comments.
The second part of the experiment was executed in the same manner us-

ing structured tags instead of RDF as an annotation formalism. Additionally,
the group that annotated text A with RDF was now given text B and vice
versa.

When participants had completed both parts of the study, they were
asked to fill out a final questionnaire describing which formalism they pre-
ferred and for which reasons.

5.2 results

The analysis of participants’ previous experience with RDF and tagging
shows that out of the nineteen participants, only five had any knowledge
of RDF before the experiment. All five rated their amount of experience
with RDF as “a little” and no participants indicated that they used RDF
frequently or knew it well.

The situation is similar for tags; all but six participants stated that they
had never used tags. Out of these six participants, five indicated that they
occasionally assigned tags to web content, and one participant declared that
he often uses tags.

5.2.1 User judgments

This section describes participants’ level of agreement with ten statements
about the annotation formalisms. For each statement, two figures are given,
one showing the distribution of participants’ answers ranging from 1 (“stro-

42 experimental evaluation : structured tags and rdf

(a) (b)

Figure 5.1: Percentages of participants’ levels of agreement (1 to 5) with
statement 1, grouped by (a) text and (b) annotation formalism

ngly disagree”) to 5 (“strongly agree”) grouped by the text type, and the
second showing the same data grouped by the annotation formalism used.
The former allows to determine for each statement whether there is a con-
nection between the text, A or B, and the answer given. The latter shows
how answers differ with the annotation formalism used. In addition, we
performed Wilcoxon-Mann-Whitney tests to determine whether the differ-
ences are significant.

statement 1 : “After reading the introductory text, I felt I had understood how
to use the annotation formalism” This statement refers only to the introduc-
tory text and is independent of the annotated text. Figure 5.1a confirms that
the answers are similarly distributed in both texts. The difference across
texts was not significant (W=178, p=0.40), but a significant difference in re-
actions depending on the annotation formalism used was found (W=275,
p=0.001).

Participants perceived the introduction on structured tags as being more
helpful than that on RDF. Over seventy percent of participants agreed or
agreed strongly with the statement with respect to structured tags, but
about 65 percent of participants disagreed or disagreed strongly with the
statement after they had read the introduction to RDF. In both cases, only
about ten percent of participants were unsure whether they agreed with the
statement.

Regardless of the annotation formalism, most participants’ written com-
ments state that more examples should have been included.

statement 2 : “The annotation formalism allowed to annotate the text in an
intuitive way” As before, the answers are similarly distributed across the
texts (see Figure 5.2a), indicating that participants’ opinions were indepen-
dent of the text they had annotated. Indeed, the difference in answers be-
tween annotation formalisms (W=317.5, p<0.001) but not that between texts
(W=188, p=0.59) was found to be significant.

More than eighty percent of the participants found structured tags to be
intuitive (“agree” or “strong agree,” see Figure 5.2b), and a small number
was undecided. No participant found structured tags to be unintuitive. The
situation is reversed for RDF which almost three quarters of participants

5.2 results 43

(a) (b)

Figure 5.2: Percentages of participants’ levels of agreement (1 to 5) with
statement 2, grouped by (a) text and (b) annotation formalism

(a) (b)

Figure 5.3: Percentages of participants’ levels of agreement (1 to 5) with
statement 3, grouped by (a) text and (b) annotation formalism

found unintuitive. Only about ten percent of participants agreed with the
statement with respect to RDF.

Many participants in their comments criticized what they considered to
be limitations of RDF, for example that annotations always take the shape of
triples, that a clear idea of the domain is needed to formalize the concepts
and relations, and that the content of long and complex sentences is hard to
express as RDF.

Comments about the intuitiveness of structured tags were mostly positive,
although here, too, one participant found it hard to express long sentences
as structured tags.

statement 3 : “The annotation formalism allowed to annotate the text in a
convenient way” The reactions to the third statement differ slightly more
between texts than those to the two statements before, but overall are com-
parable (see Figure 5.3a). Again, the difference between the answers given
by participants using different annotation formalisms (W=43.5, p<0.001) but
not that between participants annotating different texts (W=158.5, p=0.39) is
significant.

Again, with respect to structured tags, most participants agree with the
statement, while the majority of participants using RDF disagrees with it
(see Figure 5.3b). While the difference between the two formalisms is con-

44 experimental evaluation : structured tags and rdf

(a) (b)

Figure 5.4: Percentages of participants’ levels of agreement (1 to 5) with
statement 4, grouped by (a) text and (b) annotation formalism

siderable, the reactions are less divided across formalisms than those to the
previous statement.

Only few participants added further comments about this statement. One
participant found writing RDF triples repetitive, while another remarked
that structured tags often need to be rearranged when new information is
provided.

statement 4 : “I feel that a way to represent negative facts is missing from
the formalism” The reactions to this statements are similar across texts, al-
though participants annotating text B slightly more frequently agreed with
the statement than those annotating text A (see Figure 5.4a). However, the
difference between texts is not significant (W=136.5, p=1), while that be-
tween annotation formalisms is (W=85, p=0.05).

There is little difference in the reactions across formalisms (see Figure 5.4b).
Overall, more participants feel that RDF is missing a way to represent nega-
tive facts, but only by a small margin. For both formalisms, more than 75%
of participants agree or agree strongly with the statement and no partici-
pants disagrees strongly with it.

In the comments, one participant remarked that he considered a way to
express conditions and consequences to be of greater importance than sup-
port for negation.

statement 5 : “The annotation formalism was expressive enough to let me an-
notate the text the way I wanted” Here, reactions differ across texts, but less
strongly than the reactions across formalisms (see Figures 5.5a and 5.5b)
and, again, the difference between annotation formalisms (W=99.5, p=0.26)
but not that between texts (W=48.5, p=0.001) is significant.

When using structured tags, over eighty percent of participants found
structured tags expressive and agreed or strongly agreed with the statement.
The levels of agreement are more varied when participants use RDF with
roughly equal proportions answering “disagree,” “undecided” and “agree.”

statement 6 : “I feel confident about the formal correctness of the annota-
tions I made” Participants’ answers are very similar across texts (see Fig-
ure 5.6a). As before, the difference in answers between texts is not signif-

5.2 results 45

(a) (b)

Figure 5.5: Percentages of participants’ levels of agreement (1 to 5) with
statement 5, grouped by (a) text and (b) annotation formalism

(a) (b)

Figure 5.6: Percentages of participants’ levels of agreement (1 to 5) with
statement 6, grouped by (a) text and (b) annotation formalism

icant (W=130.5, p=0.85) but that between annotation formalisms is (W=69,
p=0.014).

More than sixty percent of participants are not confident about the cor-
rectness of their RDF annotations (“disagree” or “strongly disagree,” see
Figure 5.6b), only few are undecided and about 25 percent agree with the
statement. The situation is different for structured tags where more than
forty percent of participants are undecided, that is, are not sure whether
their annotations were formally correct. Another forty percent of partici-
pants agrees or strongly agrees with the statement and only about a fifth
disagrees with it.

statement 7 : “I feel confident about the appropriateness of the annotations I
made” Again, the distributions of reactions across texts, while not identi-
cal, are highly similar and the difference between texts is smaller than that
between formalisms (see Figures 5.7a and 5.7b). Neither the difference be-
tween texts (W=117.5, p=0.70) nor annotation formalisms (W=97.5, p=0.24)
is significant.

The reactions of participants using RDF are distributed in comparable
proportions over “disagree,” “undecided,” and “agree.” A smaller number
of participants strongly disagreed with the statement. With respect to struc-
tured tags, the reactions are very different with more than half being unde-

46 experimental evaluation : structured tags and rdf

(a) (b)

Figure 5.7: Percentages of participants’ levels of agreement (1 to 5) with
statement 7, grouped by (a) text and (b) annotation formalism

(a) (b)

Figure 5.8: Percentages of participants’ levels of agreement (1 to 5) with
statement 8, grouped by (a) text and (b) annotation formalism

cided, a small number disagreeing and about a third agreeing or agreeing
strongly.

statement 8 : “I feel that the annotations I made convey the important aspects
of the text” For this statement, again, the distributions of the different lev-
els of agreement do not greatly differ across texts or annotation formalisms
(see Figures 5.8a and 5.8b), and the answer distributions do not differ sig-
nificantly between texts (W=200, p=0.30) or annotation formalisms (W=128,
p=0.13).

The majority of participants agrees or agrees strongly, while a minority
of about twenty percent is uncertain. In the case of RDF, about ten percent
of participants disagree with the statement.

Several participants in both groups wrote in their comments that they felt
they might have annotated too much and expressed too many unimportant
details in their annotations.

statement 9 : “I enjoyed using the formalism” Here, a small difference
in reactions between the texts can be observed (see Figure 5.9a). The differ-
ence in reactions between texts is not significant (W=148, p=0.48), but that
between annotation formalisms is highly significant (W=28.5, p<0.001).

5.2 results 47

(a) (b)

Figure 5.9: Percentages of participants’ levels of agreement (1 to 5) with
statement 9, grouped by (a) text and (b) annotation formalism

(a) (b)

Figure 5.10: Percentages of participants’ levels of agreement (1 to 5) with
statement 10, grouped by (a) text and (b) annotation formalism

About 24 percent of participants annotating text A and 37 percent of the
participants annotating text B disagree with the statement. Inversely, 16 per-
cent of the participants annotating text A and 42 percent of participants
annotating text B agree with the statement. However, ten percent of the
participants annotating text A but no participants annotating text B agree
strongly and the difference between texts is smaller than that between for-
malisms.

The difference in the distributions of levels of agreement between for-
malisms is very high for this statement (see Figure 5.9b). Over eighty percent
of participants do not enjoy using RDF (“disagree” and “disagree strongly”),
and the rest are undecided. No participant indicated that he enjoyed using
RDF. The case is reversed for structured tags with over two thirds stating
that they enjoyed using structured tags. About twenty percent are unde-
cided and ten percent disagree with the statement.

Several participants commented that they did not enjoy using RDF since
they found it too difficult, did not feel that they fully understood the formal-
ism or because they found the process too laborious.

statement 10 : “Given more time, I would have liked to add more annotations”
Grouped by text, the levels of agreement show a difference in that the reac-

48 experimental evaluation : structured tags and rdf

tions of participants annotating text A overall are more negative than those
of participants annotating text B (see Figure 5.10a).

A similar difference can be found for the reactions grouped by formalism
where more participants using RDF would have liked to add more annota-
tions (see Figure 5.10b). Overall, the differences found for this statement are
minor compared to the differences in reactions to the other statements and
neither difference is significant (text:W=173.5, p=0.95; annotation formalism:
W=107, p=0.61).

In the final questionnaire, eighteen of the nineteen participants stated
that they preferred structured tags to RDF. Frequently given reasons given
for this choice are that structured tags are more flexible and intuitive, easier
to understand and use and quicker to write.

Several participants stated that they thought that structured tags were ex-
pressive and could be updated easily, making it possible to start annotating
without having a clear idea of all concepts in the domain. The latter point
was a major point of criticism with respect to RDF where many participants
expressed opinions similar to the following: “[W]ithout prior knowledge of
the subjects to be annotated, it is quite hard to define a structure that is
compact, yet flexible enough to be used in future edits.”

One participant suspected that users would be more willing to write an-
notations in the form of structured tags than RDF, while another remarked
that, when the people annotating the content are paid, RDF is better be-
cause of it can be used for reasoning, but that structured tags are better for
encouraging casual users to add annotations.

While most participants were more in favor of structured tags, several par-
ticipants commented on the advantages of RDF. A number of participants
found that when the domain and its concepts are known, RDF should be
used since it allows for a cleaner formalization that is better suited for, for
example, reasoning.

One participant remarked that when several people work on one annota-
tion, RDF is preferable to structured tags due to its more rigid, pre-defined
semantics. Another participant wrote that “RDF” delivers a more “clean”
feeling, whereas [structured tags] feel somewhat “quick & dirty.”

Some participants criticized both formalisms because they felt that uncer-
tainty, negation, temporal information and complex relationships could not
easily be expressed.

5.2.2 Time requirements for annotations

The average times needed to annotate each revision, grouped by text and
formalism, are shown in Figures 5.11a and 5.11b.

On average, participants spent 22.5 minutes annotating each revision of
text A and 23.4 minutes each revision of text B. The differences in the time
spent annotating per revision between texts are minor and the distributions
of time spent over the revisions of each text resemble each other.

Annotating one revision of a text with RDF on average took participants
30.7 minutes, almost double the average time needed to annotate a revision
with structured tags, 15.7 minutes.

Not only the average amount of time, but also the differences in time
spent annotating across revisions differ.

5.2 results 49

(a) (b)

Figure 5.11: Average time taken to annotate the different revisions of the text
(in minutes), grouped by (a) text and (b) annotation formalism

Figure 5.12: Average number of annotations per text revision (1 to 6),
grouped by annotation formalism

Participants assigning RDF annotations spent 40.6 minutes on the first re-
vision, more than on any other revision. At 28 minutes, the second revision
was annotated comparatively quickly. The time spent annotating revisions
three and four is higher and almost identical at 32.7 and 32 minutes re-
spectively, and declines for the next and final two revisions (26.9 and 24

minutes).
When structured tags were used, the first revision took the shortest amount

of time to annotate, 9 minutes. From there, the time taken gradually in-
creases; revision 4 on average was annotated within 20.8 minutes, the high-
est amount of time across a revisions. The average time then declines to 19.1
minutes for the final revision.

5.2.3 Analysis of the annotations

On average, each participant wrote 178.53 annotations, 14.88 for each indi-
vidual revision. 27.36 percent of those annotation are structured tags and
72.64 percent are RDF triples. 34.05 percent of the structured tags and 10.19

percent of the RDF triples were marked by participants as changes to earlier
annotations.

50 experimental evaluation : structured tags and rdf

Figure 5.13: Average number of elements in annotations added per text re-
vision (1 to 6), grouped by annotation formalism

Figure 5.12 shows the average number of annotations added per revision
for both formalisms. In both cases, the number of annotations increases from
the first to the fourth revision and then decreases for the last two revisions.

The initial increase in the number of annotations added is proportion-
ally lower for the RDF annotations. Overall, considerably more RDF triples
than structured tags were assigned; the number of RDF triples assigned is
between two and four times higher than that of structured tags.

While RDF triples have a fixed number of elements, structured tags can
be made up of an arbitrary number of simple tags. This means that compar-
ing the overall number of annotations is not a sufficient metric to compare
how much information is expressed through the annotations in each formal-
ism. Figure 5.13 displays the average number of elements, that is, subjects,
predicates, and objects, and simple tags, that were added to each revision
of the text. For the first three revisions, the number of RDF elements is
higher by a factor of 2 to 1.5, but for revisions 4 to 6, the number of RDF
elements assigned is only about 10 percent higher than that of structured
tags elements.

Note that this statistic does not fully capture the differences in the amount
of information contained in the annotations either: while an RDF triple de-
scribes the relationship between a subject and a predicate, structured tags
use labels and the grouping operator to describe the relationships between
tags. Since structured tags can be characterized and grouping can be applied
to an arbitrary number of simple or structured tags, the number of elements
alone is not sufficient to determine how much information is expressed in
a structured text in terms of the relations between elements. However, since
the nature of relations in RDF and structured tags differ greatly, this fac-
tor cannot be easily quantified and we use the number of elements as an
approximation of the information content of an annotation.

The average number of constituent simple tags in each structured tag is
8.35 across all revisions.

Grouping and characterization are used to comparable extents and often
in combination; structured tags use grouping at least once in 85.39%, and
characterization in 83.20% of all annotations.

The number of complex structured tags, that is, structured tags that con-
tain at least one occurrence of labeling or characterizing a tag that itself

5.2 results 51

(a) (b)

Figure 5.14: Relationship between tag complexity and time spent annotating
(a) and number of total elements in the added structured tags
(b), per revision

Figure 5.15: Average percentage of annotations not based on previous anno-
tations, per revision

uses one the operations, is high, 79.62%. In most cases, it is the elements
of a grouping or the tag being characterized that are complex, and 96.13

percent of labels are simple tags.
As figure 5.14 shows, the percentages of structured tags that use grouping,

characterization or that are complex are not clearly related to the average
time spent annotating or the average number of elements per structured
tag.

When using structured tags, participants more frequently indicated that
a newly added annotation was based on an existing annotation that it re-
places (see Figure 5.15). Since participants wrote their annotations on paper,
they had to manually specify that a new annotation was to be understood
as a change to a previous annotation. It is likely that participants did not re-
member to add this note in all cases and consequently, the numbers shown
in Figure 5.15 should be understood as a low estimate.

52 experimental evaluation : structured tags and rdf

5.2.4 Qualitative analysis of the annotations

Different types of information (such as dates, time ranges, negative infor-
mation, conditions, . . .) were introduced in the texts in order to get a better
idea how natural structured tags are to represent various kinds of knowl-
edge. Not all types of information were represented in both texts and the
precise encoding was not always clear (mostly due to unintelligible hand-
writing). Therefore the results presented in this subsection should be taken
only as the first indication of the actual usage. Let us first examine proper-
ties inherent to the two individual formalism.

rdf Two out of 19 participants had trouble properly distinguishing URIs
and RDF literals, the same number of participants seemed to have trouble
distinguishing b-nodes and URIs in some cases. 11 participants made use
of blank nodes at least once and 9 participants used them mostly correctly.
All participants used the “rdf:type” predicate and most used it heavily in-
dicating that encoding type information was easy for the participants. 15

participants chose the simple triple syntax, 4 participants made use of the
more compact Turtle syntax.

structured tags 14 participants used grouping and characterization
to describe classes of things, an example is: Employee:(Al, Andy, Allen).
Five out of 19 participants used a group as characterization at least once,
an example is (Spanish,Italian):(pretty well, cannot speak). All but
two participants chose to represent dates in a detailed form, an example is:
(day:31, month:3, year:2011). The reason for such a high number proba-
bly is that representing date in a similar way is one of the examples in the
introductory text to structured tags. In comparison, most participants repre-
sented a whole date as one literal in RDF (using various date formats). This
may indicate that examples of best practices are likely to influence users’ an-
notation behaviour significantly. Roughly 40% participants tended to form
one complex structured tag instead of using many smaller ones. Such large
structures bore a striking resemblance to involved JSON1 objects.

different kinds of knowledge 15 out of 19 participants (= ~79%)
used grouping to represent a list of office days of a person, example: John:
reachable: (Mo, Tu, We). In comparison, only 8 participants represented
such a list explicitly in RDF, 10 participants employed a literal, example:
John isReachableOn "Mo, Tu, We". Roughly the same number of partici-
pants (~30%) unambiguously encoded a chain of properties (e.g. A is a com-
ponent of B, B is a component of C) in both formalisms with a higher to-
tal number of explicit (but partly ambiguous) encodings in structured tags.
Participants were presented with the problem of representing information
such as “Al maybe knows Bob” stressing the qualification of the knows pred-
icate. Only one participant provided an explicit reification-based solution
in RDF. Most participants (10) used a new predicate such as maybeKnows.
Eight participants provided either a wrong solution, no solution, or used
a literal in RDF. In comparison, 17 participants encoded such a statement
explicitly in structured tags; 8 ambiguously such as (a, probably, knows,

b), 9 unambiguously such as a:(probably:knows):b. An if-then condition
(“if project p is successful then it can be extended”) was explicitly repre-

1 JavaScript Object Notation, see http://www.json.org/

http://www.json.org/

5.3 discussion 53

sented by only one out of 19 participants in both formalisms. A comparison
(“Al likes Python more than Java”) was slightly more often explicitly repre-
sented in structured tags than in RDF but most participants provided either
no, literal, or wrong solution in both cases. Interestingly, most participants
encoded “causality” (“A likes B because C”) explicitly in structured tags
but almost none in RDF. Moreover, many of the structured tags solutions
included a non-trivial combination of characterization, grouping and nest-
ing. Participants encoded duration (“A project P runs from 2003 to 2006”)
wrongly or by a single literal in RDF in most cases while 13 participants
provided a (partially) explicit solution in structured tags. Four out of the 13

solutions were unambiguous. Negation (“Al does not know Haskell”) was
encoded by most participants by introducing a new, implicitly dual, pred-
icate in RDF, an example is Al notKnows Haskell. More participants tried
to encode negation explicitly in structured tags and 5 of 19 participants en-
coded the negated relation unambiguously as for example: not:knows while
the whole statement still sometimes remained ambiguous: not:knows:(a,
b) (groups are unordered and thus it is unclear who does not know whom).

5.3 discussion

The results indicate that participants find structured tags convenient and
comfortable to use and at the same time expressive.

The short introduction to structured tags was sufficient for most partic-
ipants to understand how to use them and a majority of participants con-
siders structured tags to be intuitive, convenient, and flexible. Participants
were also more confident in the correctness of their annotations when using
structured tags and found using structured tags more enjoyable than us-
ing RDF. Further, participants represented similar amounts of information
in structured tags and RDF, but needed substantially less time when using
structured tags even though the amount of explicitly encoded information
was likely even higher in the case of structured tags.

Due to the experimental setup, the possibility cannot be fully excluded
that the order in which the formalisms were used had an effect on the out-
come of the experiment. For example, it is possible that the smaller amount
of time needed for annotating the texts with structured tags is partially due
to participants’ experiences in creating the RDF annotations. If this prac-
tice would significantly decrease the time needed to write annotations, it
could be expected that later revisions of the text annotated with RDF are
annotated quicker than the earlier ones. However, this is not what we ob-
served and with the exception of the very first text that was annotated, the
relative amounts of time spent on each revisions are proportional between
formalisms. This might indicate that either learning took place at the very
beginning of the experiment or that RDF is initially harder to understand
or use than structured tags. One might think that a different experimen-
tal setup would eliminate this issue but it would in fact introduce another
uncertainty – for example either due to participant nuisance variables (per-
sonality, intelligence, previous experience, ...) if different groups were used
for different formalisms, or due to the order of the used text variants which
were of course created as similar but sufficiently different and as such can be
a source of an order effect, or a significantly larger number of participants
could be necessary. See for example [193] for a more in-depth discussion of

54 experimental evaluation : structured tags and rdf

the problems around order effects, nuisance (confounding) variables, and
experimental setups in general.

More structured tags than RDF triples were identified as being based on
annotations to prior revisions. Additionally, several participants remarked
that, unlike structured tags, RDF requires to have a clear idea of the concep-
tual domain before beginning to annotate. Together, these findings indicate
that structured tags are seen as more suited for expressing evolving knowl-
edge than RDF is. At the same time, several users find that, when it is used
in an appropriate environment where the domain concepts are known and
where the annotations are assigned by experienced users, RDF has advan-
tages over structured tags.

The qualitative evaluation showed that many participants had problems
using for example b-nodes, which is not surprising, but some also had diffi-
culties with properly distinguishing URI resources and literals. Participants
were also more likely to correctly encode different kinds of knowledge such
as causation, predicate specialization, and negation in structured tags. In
RDF, they were more likely to either not encode such knowledge at all, en-
code it using literals, or implicitly using new predicates. The example of
encoding dates in structured tags shows that if the users were presented
with predefined constructs for each different knowledge kind in the intro-
duction, they would likely use them. Moreover, the number of creative and
“correct” solutions to such problems was higher with structured tags than
with RDF which supports our initial hypothesis that structured tags can be
seen as a more suitable candidate for (non-expert) community driven anno-
tation than RDF.

Overall, the results of the experiment indicate that structured tags succeed
at realizing a way to assign semi-formal annotations that are more expres-
sive than simple tags but easier to use, especially for expressing evolving
knowledge, than RDF.

The proportions to which the two operations, grouping and characteriza-
tion, were used were roughly equal and did not change across revisions. A
high number of the structured tags that participants created are complex.
While, especially in the case of large structured tags, some evolution of a
tag across revisions was observed, it was mostly adding new information
and little or no evolution from vague to more specific concepts could be
observed.

One reason for this could be that the conditions of the experiment were
not realistic in that the experiment lasted several hours which were explicitly
dedicated to creating annotations. Another way in which the annotations
assigned likely differ from those used in practice is that they merely describe
but do not enhance the content given in the text, for example with additional
information, or with subjective opinions and assessments.

This experimental evaluation is concerned mainly with the participants’
impressions and acceptance of structured tags. A study that focuses on the
evolution of annotations, both from simple to structured tags and from struc-
tured tags to RDF, should consider this aspect in its experimental design.

acknowledgements . This user study was realized in collaboration
with my colleague Klara Weiand.

6
K W R L – T H E K I W I R U L E L A N G U A G E

KWRL, pronounced [quirl], is an inconsistency-tolerant rule language based
upon Datalog concepts that is aware of the conceptual model of the KiWi
wiki. It aims at being simple for beginning users while staying sufficiently
expressive and efficiently evaluable. KWRL consists of two sublanguages:
sKWRL, pronounced [squirl], which is the core sublanguage, and the full
KWRL which adds syntactic sugar to sKWRL to allow for a more compact
conceptual-aware syntax.

The contribution of this chapter is twofold: a rule language about anno-
tations, no other rule language for this purpose has yet been described as
far as we know, and identification of the expressive power of such a lan-
guage that is necessary for expressing rules about annotations: the power
of a Datalog language with value invention. Moreover, value invention in
KWRL is different from value invention in current Semantic Web rule lan-
guages in that the created constants are URLs instead of RDF blank nodes
which makes information derived by KWRL more easily usable for example
as part of Linked Data [26].

6.1 skwrl – the core sublanguage

sKWRL is a rule language based on RDF triple patterns that can express for
example the logical core of RDF(S) [160].

6.1.1 Syntax

This section presents the syntax of sKWRL. For brevity, only a simplified
version is shown that for example does not allow omitting parenthesis in
conjunctions with more than two conjuncts. The extension to a full syntax is
a standard task and thus it is not included in this dissertation, an interested
reader can have a look at the KiWi 1.0 sKWRL implementation.1 We use the
EBNF standard [119] accompanied by railroad diagrams [153, 150].2

Variable = ’?’ Name ;

?
���Name

Resource = URI | QNAME ;

URI�
�QNAME

�

Variables are denoted by a question mark. A resource is either a full URI
(an XML expanded name3) or an XML qualified name4 that can be expanded
to a URI; that is, while the XML Namespaces specification [34] does not

1 http://www.kiwi-community.eu/display/SRCE/Get+KiWi

2 We use white space as the concatenation symbol for better legibility. The standard
uses a comma.

3 http://www.w3.org/TR/xml-names/#dt-expname

4 http://www.w3.org/TR/xml-names/#dt-qualname

57

http://www.kiwi-community.eu/display/SRCE/Get+KiWi
http://www.w3.org/TR/xml-names/#dt-expname
http://www.w3.org/TR/xml-names/#dt-qualname

58 kwrl – the kiwi rule language

require a namespace to be a URI, we do require it here so that the expanded
name forms a valid RDF URI reference.5

Predicate = Variable | Resource ;

Variable�
�Resource

�

SubjObj =
Variable | Resource | Literal ;

Variable�
�Resource

�Literal

�

A triple pattern, TriplePattern, is a triple that allows a variable and a
resource in any position and a literal in subject and object positions (in line
with [160]).

TriplePattern = ’(’ SubjObj ’,’ Predicate ’,’ SubjObj ’)’ ;

(
���SubjObj ,

���Predicate ,
���SubjObj)

���
The base query is a triple pattern. Base queries can be combined using

negation and conjunction to form complex queries.

Query = TriplePattern | ’not’ Query | Conjunction ;

TriplePattern�
� not

�� �Query

�Conjunction

�

Conjunction = ’(’ Query ’and’ Query ’)’ ;

(
���Query and

�� �Query)
���

A rule can optionally have a name, a feature that is nice to have for later
explanation purposes. A rule body consists of a (complex) query. A rule
that has a TriplePattern or a conjcuntion of TriplePatterns as its head is
a constructive rule. A rule that has the inconsistency keyword as its head
is a constraint rule.

TPConj = TriplePattern {’and’ TriplePattern} ’.’ ;

TriplePattern �
�TriplePattern and

�� �
�

.
���

ConstructiveRule = [Name ’:’] Query ’->’ TPConj ’.’ ;�
�Name :

���
�

Query ->
�� �TPConj .

���

5 http://www.w3.org/TR/rdf-concepts/#section-Graph-URIref

http://www.w3.org/TR/rdf-concepts/#section-Graph-URIref

6.1 skwrl – the core sublanguage 59

ConstraintRule = [Name ’:’] Query ’->’ ’inconsistency’ ’.’ ;�
�Name :

���
�

Query ->
�� �inconsistency

�� �.
���

Rule = ConstructiveRule | ConstraintRule ;

ConstructiveRule�
�ConstraintRule

�

A program consists of an optional finite set of namespace declarations
followed by a finite set of rules.

NamespaceDecl = ’@prefix’ Name ’<’ URI ’>’ ;

@prefix
�� �Name <

���URI >
���

Program = { NamespaceDecl } { Rule }�
�NamespaceDecl

�

�
�Rule

�

6.1.2 Examples

Let us assume the following namespace declarations:

@prefix kiwi <http://kiwi-project.eu/ns/kiwi-core/>

@prefix rdf <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix rdfs <http://www.w3.org/2000/01/rdf-schema#>

Then the following sKWRL rule expresses the (arguably questionable)
transitivity of the kiwi:relatedTo relation:

((?x, kiwi:relatedTo, ?y) and (?y, kiwi:relatedTo, ?z))

-> (?x, kiwi:relatedTo, ?z) .

The following example sKWRL program consists of two constraint rules
and checks that a resource p is a parent of a resource c iff c is a child of p.

((?p, kiwi:isParentOf, ?c) and not (?c, kiwi:isChildOf, ?p))

-> inconsistency .

(not (?p, kiwi:isParentOf, ?c) and (?c, kiwi:isChildOf, ?p))

-> inconsistency .

Let us now specify a rule that creates a new tag annotation for any entity
that has a tag annotation with label “squirrel.” We omit the “kiwi:” names-
pace for brevity and only include two triple patterns in the head – the full
rule would include triple patterns for all mandatory properties of an anno-
tation in the head.

(?t rdf:type SimpleTag) and (?t hasLabel "squirrel") and

(?a annotatedEntity ?e) and (?a metadata ?t) ->

(?new annotatedEntity ?e) and (?new metadata animalTagUri)

and ...

60 kwrl – the kiwi rule language

Note that ?new is only a variable (i.e. the name “new” has no special
meaning in sKWRL). The variable does not occur in the rule body (i.e. it
is not range restricted) and therefore it makes use of the value invention
feature of sKWRL, see the next section for more information. Also note that
value invention is necessary in order to create new taggings: intuitively, the
rule head can use values bound to variables in the rule body – none of these
values can represent a new tagging and thus a new constant has to be created
in the rule head. Values created by sKWRL are URLs which means that they,
in contrast to blank nodes, can be used outside of a local RDF graph too.
This is important in the context of LinkedData and data sharing in general.

The full KWRL provides syntactic sugar that allows for writing rules
about annotations that are much more concise.

6.1.3 Semantics

In this section, the semantics of sKWRL is provided by translation to Datalog
¬∞, i.e. a deterministic Datalog language with negation and value invention.
Datalog ¬∞ is formally defined in [5] by fixpoint semantics and by translation
to a procedural language. In contrast to [5], we restrict ourselves to Datalog
with stratified negation [44]. See also [136, 6] for an introduction to standard
Datalog without value invention.

In ordinary Datalog, a non-range-restricted rule (also called “unsafe” [5])
is a rule that has a variable in its head that is not in its body. Such a variable
can be instantiated by any constant from the universe of discourse for any
variable binding satisfying the body resulting in a valid rule instance. Such
rules are of limited use as they inherently express a property satisfied by
all constants in the universe of discourse. An example is a rule expressing
that everything is an rdfs:Resource in RDF: (x rdf:type rdfs:Resource)← >
which however does not hold in the current version of RDF because RDF
literals are not of type rdfs:Resource.

Datalog ∞, i.e. ordinary Datalog with value invention, interprets non-
range-restricted rules so that new constants are created for each body vari-
able binding and variable in the rule head that is not bound. This means
that a variable occurring in a rule head but not in the rule body is con-
sidered existentially quantified instead of universally quantified. Intuitively,
the new constants mark the respective body variable bindings; the constant
is sometimes referred to as the “witness” of the variable binding. Datalog∞ is strictly more expressive than ordinary Datalog because it can express
queries that include new constants which is impossible in ordinary Datalog.
Datalog ∞ does not guarantee termination because, with recursive rules,
new constants may be generated ad infinitum. This can be alleviated by
syntactically restricting the use of value invention, e.g. by forbidding “re-
cursion over value invention” which can be verified in a similar manner as
stratifiability of a Datalog ¬ program, see the similar notion of weakly safe
programs in [5]. In the following, we use the standard logic programming
syntax for Datalog [136].

Datalog ¬∞ is defined in [5] so that only a single atom may appear in
rule heads but, as [5] notes (e.g. the remark on page 90), the syntax with
multiple atoms in rule heads does not increase expressiveness under deter-
ministic semantics. Datalog ¬∞ with unrestricted negation is complete for
the class of deterministic database queries. We assume Datalog ¬∞ with strat-
ified negation which is likely less expressive. See for example [118, 55, 58]

6.1 skwrl – the core sublanguage 61

for an in-depth discussion of database complexity classes and the power of
relational database languages.

Qualified names and namespaces in sKWRL serve only the purpose of
abbreviations. Therefore we assume that qualified names are expanded into
full URIs using namespace declarations of a program and we give semantics
for the transformed program with expanded qualified names. Most of the
recursive translation of sKWRL to Datalog ¬∞ is straightforward:

(Variable) J?xK := varx

(Resource) JuriK := consturi

(Literal) JliteralK := constliteral

(TriplePattern) J(s,p,o)K := triple(JsK, JpK, JoK)
(not Query) Jnot queryK := ¬JqueryK
(Conjunction) J(query1 and query2)K := (Jquery1K, Jquery2K)
(TPConj) Jtp1 and tp2 . . . and tpnK := (Jtp1K, Jtp2K, . . . , JtpnK)
(ConstructiveRule) Jquery -> headK := JheadK← JqueryK

varx is a Datalog variable for the sKWRL variable ?x, similarly consturi
is a constant corresponding to the URI uri, and constliteral is a constant
corresponding to the literal literal. triple(_, _, _) is a predicate that rep-
resents RDF triples in a single predicate axiomatization of RDF(S) as for
example in [140, 160].

Constraint rules translate to not range restricted Datalog ¬∞ rules with a
fresh variable in the head: for each constraint rule, x is a fresh variable that
does not occur in JqueryK:

(ConstraintRule) Jquery->inconsistencyK := triple(sub,prop, x)← JqueryK

Where sub stands for a URI identifying the default RDF graph (resp.
named graph [51]) and prop stands for a URI for a special hasInconsistency
property. This way each variable binding of the query is “marked” by a new
constant – each inconsistency can be tracked back to its origin; the variable
binding that “caused it.” This feature is important for explanation. For the
semantics of the language, it is sufficient that for each variable binding and
each not range restricted variable in the head there is a unique constant
without imposing further restrictions on the constant. For explanation, it
may be beneficial to enable inverting constants to the corresponding rule
body instances. See Chapter 9 for an example how this can be achieved.

sKWRL is sufficiently expressive to represent for example the ρdf logical
fragment of RDF(S) defined in [160] ([160] gives a deductive system for ρdf
that corresponds to a set of Datalog rules, their translation to sKWRL is
straightforward). sKWRL programs can however become lengthy and thus
a more concise language is desirable especially for wiki users.

6.1.4 Significance of Value Invention

One of the motivations behind sKWRL and KWRL is the need to express
rules about annotations, for example: “if there is a tag annotation ’linked-
Data’ of an item then the item should also be annotated with the tag ‘seman-
ticWeb’.” Remember that an annotation is a piece of meta-data attached to
a resource (Section 4.2); ‘semanticWeb’ is the meta-data in this case and the

62 kwrl – the kiwi rule language

annotation is an object that is “supposed to exist.” If we constrain ourselves
to declarative rule languages (we forbid e.g. production rules and Event-
Condition-Action rules) then the traditional way of specifying this rule is to
use existential quantification in the rule head: “if there is a tag annotation
‘linkedData’ of an item then there exists a ‘semanticWeb’ tag annotation of
that item.” Existential quantification in the head of an RDF rule language
naturally translates to creation of b-nodes because b-nodes can be seen as
existentially quantified variables. RDF b-nodes however are not accessible
from outside their RDF graph – i.e. the ‘semanticWeb’ annotation could not
be referred to from outside the system that created it which is a major dis-
advantage from the perspective of for example Linked Data. Of course, this
problem can be circumvented by creating a new URI for the annotation and
expressing that it is equivalent to the b-node. Allowing value invention di-
rectly in rules solves this problem in an arguably simpler way and the result-
ing rule language has moreover a clear formally defined semantics. Formal
semantics of the language allows for analysing its properties and for exam-
ple determining and enforcing syntactic restrictions such as safeness with
respect to value invention that ensure good behaviour of the program, e.g.
termination.

6.2 kwrl

KWRL is a rule language about annotations (Section 4.2) that is based on
sKWRL; KWRL adds two syntactic constructs (annotation patterns and dis-
junction) that allow for more compact rules. KWRL programs can be ex-
panded into equivalent sKWRL programs.

6.2.1 Syntax

KWRL adds Annotation Pattern atomic queries to sKWRL for easier de-
scription of annotations. An AnnotationPattern is a tuple of keyword-value
pairs that correspond to RDF triples that describe annotations and metadata
(Section 4.2):

There also may be a Variable at any of the values positions.

Keyword = ’taguri’ | ’tag’ | ’staguri’ | ’stag’ | ’rdfuri’ | ’rdf’ | ’entity’ | ’author’
| ’date’ | ’marker’ | ’polarity’
Value = Resource | Literal | Variable | StructuredTag | TriplePattern | ’user’ |
’rule’ | ’system’ | ’+’ | ’-’

AnnotationPattern = ’(’ Keyword ’:’ Value {’,’ Keyword ’:’ Value } ’)’ [’@’ Variable]

(
��� Keyword :

���Value�
� ,

���
�

)
����

�
��

�@ Variable

�

6.2 kwrl 63

property keyword value

kiwi:metadata taguri Resource

kiwi:hasLabel tag Literal

kiwi:metadata staguri Resource

(see Section 4.2.3) stag StructuredTag

kiwi:metadata rdfuri Resource

(see RDF reification)6 rdf TriplePattern

kiwi:annotatedEntity entity Resource

kiwi:hasAuthor author Resource

kiwi:dateCreated date Literal

kiwi:marker marker user, rule, system

kiwi:polarity polarity -, +

Table 6.1: Mapping of annotation pattern keywords to RDF properties.

If a Literal stands at the value position of the tag keyword then all tags
with the label corresponding to the literal are matched. The StructuredTag
nonterminal serves an analogous purpose for structured tags.

StructuredTag = SimpleTag | TagGrouping | TagCharact
SimpleTag = Literal | Resource | Variable
TagGrouping = ’(’ StructuredTag ’,’ StructuredTag ’)’
TagCharact = (SimpleTag | TagGrouping) ’:’ (SimpleTag | TagGrouping)

In contrast to sKWRL queries, KWRL queries also allow annotation pat-
terns and disjunction.

Query = AnnotationPattern | TriplePattern | ’not’ Query | Conjunction | Dis-
junction
Disjunction = ’(’ Query ’or’ Query ’)’

The head of a KWRL constructive rule consists of a conjunction of anno-
tation and triple patterns.

ConstructiveRule = [Name ’:’] Query ’->’ (AnnotationPattern | TriplePattern) {
’and’ (AnnotationPattern | TriplePattern) } ’.’ ;�

�Name :
���

�

Query ->
�� ��

�
� AnnotationPattern�

�TriplePattern

�

�
� and

�� �

�

.
���

As usual, it is also allowed to omit unnecessary parenthesis around con-
junctions and disjunctions and and has a higher precedence than or.

64 kwrl – the kiwi rule language

6.2.2 Examples

In full KWRL, the second sKWRL program example may be rewritten as a
single rule:

((?p, kiwi:isParentOf, ?c) or (?c, kiwi:isChildOf, ?p)) and

(not (?c,kiwi:isChildOf,?p) or not (?p,kiwi:isParentOf,?c))

-> inconsistency .

Let us rewrite the sKWRL rule about annotations to full KWRL.

(tag:"squirrel",entity:?e) -> (taguri:animalTagUri,entity:?e)

The full KWRL rule is apparently much more concise than the corre-
sponding sKWRL rule from Section 6.1.2 and it moreover hides the details
of representing annotations in RDF and the necessity to use value invention
which arguably is not a common feature. This more compact notation is
likely to benefit beginner users as they can focus on formulating rules about
annotations and do not have to care much about the internal representation
details.

6.2.3 Semantics

Semantics of KWRL is given here by translation of KWRL rules to sKWRL
rules. sKWRL is moreover a sublanguage of KWRL and therefore KWRL
and sKWRL have the same expressive power.

An annotation pattern query translates to a conjunction of triple pattern
queries according to the annotation representation as RDF triples. Each an-
notation has a URI which is either implicit in the annotation pattern or it
is referred to explicitly by the “@ Variable” part of the query. Each annota-
tion pattern without the “@”-part is given one with a fresh variable. Each
keyword-value pair of an annotation pattern maps to one or several triple
pattern conjuncts. Table 6.2 shows the mapping derived from Table 6.1 and
from the representation of annotations and metadata described in Section
4.2.

A KWRL rule containing disjunction in its body translates to possibly
several sKWRL rules. For example the KWRL rule

((a,p,x) or (a,p,y)) -> inconsistency

translates to two sKWRL rules:
(a,p,x) -> inconsistency

(a,p,y) -> inconsistency

In the general case, a KWRL rule body is transformed to a disjunctive
normal form by De Morgan’s laws and a new rule is created (using the
head of the original rule) from each of the disjuncts.

6.2.4 Evaluation

While the semantics of KWRL is specified by translation to sKWRL, direct
evaluation of KWRL rules may be advantageous. For example rules with
disjunction in the body may be evaluated more efficiently directly. It is ap-
parent that rules about annotations can become long in sKWRL. Such rules

6.3 related work 65

J(k1 : v1, . . . ,kn : vn)@?xK = J?x,k1, v1K and . . . and J?x,kn, vnK

J?x, taguri, resK = (?x, kiwi:metadata, res)

J?var, tag, labelK = (?x, kiwi:metadata, ?m) and

(?m, kiwi:hasLabel, label)

J?x, staguri, resK = (?x, kiwi:metadata, res)

J?x, stag, sK = a conjunction of triple patterns that
describe the structured tag s – see the
StructuredTag non-terminal definition
and “Representing structured tags in
RDF” in Section 4.2.3.

J?x, rdfuri, resK = (?x, kiwi:metadata, res)

J?x, rdf, (s,p,o)K = (?x, kiwi:metadata, ?m) and

(?m, rdf:type, rdf:Statement) and
(?m, rdf:subject, s) and
(?m, rdf:predicate,p) and
(?m, rdf:object,o)

J?x, entity, resK = (?x, kiwi:annotatedEntity, res)

J?x,author, resK = (?x, kiwi:hasAuthor, res)

J?x,date,dK = (?x, kiwi:dateCreated, res)

J?x,marker,mK = (?x, kiwi:marker,m)

J?x,polarity,pK = (?x, kiwi:polarity,p)

Table 6.2: AnnotationPattern to sKWRL TriplePatterns mapping.

may result in a large number of joins in an SQL implementation of the lan-
guage. Traditional relational database systems are not optimized for exceed-
ingly long queries. Therefore it may be beneficial to represent annotations
not only in RDF but also directly as a single entity. In such a setting, anno-
tation pattern queries can be evaluated using significantly fewer SQL joins
and thus more efficiently. This approach (taken, in part, by the KiWi 1.0 im-
plementation), however, has disadvantages such as the need to synchronize
the two distinct annotation representations.

Evaluation of structured tags poses a specific problem and that is struc-
tural matching. Structured tag queries are deliberately limited in KWRL in
order to fit well with classical Datalog. More powerful constructs could be
provided such as a descendant operator or a unification-like variable match-
ing. This topic is outside the scope of this dissertation and the interested
reader is referred to Klara Weiand’s dissertation [223] about the KiWi query
language KWQL and structural search.

6.3 related work

There is a variety of rule languages for the Semantic Web. SPARQL [182]
is the first standardized rule language for the Semantic Web. It is a rule
language for RDF that also supports value invention which is however lim-
ited to blank-node construction (see Section 10.2.1 of [182]). HEX [79, 80],

66 kwrl – the kiwi rule language

“Higher-order with EXternal atoms”, is a rule language for the Semantic
Web that includes features such as default negation and higher-order rea-
soning. It also supports external sources of data via the external atoms – a
feature that is closely related to value invention that allows for enriching the
universe of discourse with new constants for external data. RDFLog [45] and
XcerptRDF [46] are rule languages that also support blank node construc-
tion. RDFLog supports arbitrary quantifier alternation and XcerptRDF is
an RDF extension of the powerful query language Xcerpt [134, 43] that can
query both data (XML, HTML, ...) on the Web and data on the Semantic
Web (RDF, TopicMaps, ...). The semantic web rule language TRIPLE [203]
has some kind of RDF triple import feature and thus “value creation by im-
porting.” TRIPLE is a syntactic extension of Horn logic and thus not range-
restricted rules have the standard semantics of first order logic. A more
detailed model theoretic semantics of TRIPLE and blank node treatment
were left for a next version of the language which probably never came. Tim
Berners-Lee’s N3 [23] allows existential quantification in rule heads which
has the meaning of blank node value invention. To the best of our knowl-
edge, KWRL is the first rule language that invents URLs; other semantic
web rule languages with value invention invent blank nodes.

Most semantic wikis such as for example SemperWiki [174, 172] and Se-
mantic MediaWiki [217] provide some annotation mechanism that however
usually assumes that users write, in effect, RDF triples the subject of which
is the annotated page. In contrast, KWRL and the conceptual model of KiWi
(Chapter 4) clearly distinguish between this kind of adding triples and cre-
ating annotations as rich descriptions “attached to” existing resources.

Most rule languages for the Semantic Web are general and aim at high
expressiveness. This means that they can handle a large class of use cases
sometimes at the expense of usability. This is natural and not surprising as
the rule languages do not and cannot provide syntactic sugar for specific
uses. Therefore the annotation and wiki-related rules expressed in them are
likely to be similar to the long sKWRL rules such as in Section 6.1.2. For
example the last rule of the section may be expressed in N3Logic as follows
(we omit namespace declarations):

@forAll t, a, e

{ t a SimpleTag. t hasLabel "squirrel". a annotatedEntity e.

a metadata t }

log:implies

{ ?new annotatedEntity e. ?new metadata animalTagUri. ... }

A similar TRIPLE program would look as follows (we again omit names-
pace declarations and the optional model specifications):

FORALL t, a, e

EXISTS new (new[annotatedEntity -> e; metadata ->

animalTagUri] AND ...)

<-

t[rdf:type -> SimpleTag; hasLabel -> "squirrel"] AND

a[annotatedEntity -> e; metadata -> t]

Note that both the N3 program and the TRIPLE program have different
semantics than the corresponding sKWRL program from Section 6.1.2. The
N3 program invents blank nodes while the sKWRL program invents URLs.

6.3 related work 67

The variable “new” in the TRIPLE program has the standard semantics that
does not invent values. While TRIPLE allows for a slightly more compact
syntax by glueing together statements with the same subject (a feature sup-
ported by N3 too), the full rule still has to explicitly list all mandatory prop-
erties of an annotation in the head. In comparison, KWRL is aware of the
conceptual model of a wiki and provides syntactic sugar for it which allows
for a significantly more compact rule specification that hides most technical
details:

(tag:"squirrel",entity:?e) -> (taguri:animalTagUri,entity:?e)

KWRL embraces the social Semantic Web and the conceptual model of
the KiWi wiki in order to simplify its use to non-expert users. These goals
are shared with the KWQL query language [223] that is also aware of the
conceptual model of the KiWi wiki but is more focused on querying struc-
ture than on annotations.

7
F O RWA R D C H A I N I N G R E V I S I T E D

This chapter presents several extended forward chaining algorithms and
builds a unifying framework of so called support graphs in which they (and
reason maintenance algorithms of the next chapter) are described. First clas-
sical forward chaining is reviewed. Then a support keeping extension and
several novel extensions are presented. Each is described using a new imme-
diate consequence operator defined in such a way that the resulting naive
and semi-naive algorithms are directly analogous to the classical forward
chaining algorithms.

Recall that the focus on forward chaining over backward chaining in
this dissertation stems from its anchoring around a wiki. Materialization
of derivable facts can be seen as a completion of the wiki according to the
rules defined by its users. This completion makes it easier and more effi-
cient for wiki users to see the “current state of affairs” including possible
inconsistencies immediately.

7.1 preliminaries

Most of this section follows the usual definitions as for example in [44].
Sections 7.1.1, 7.1.2, and 7.1.3 review classical definitions from logic pro-
gramming for the reader’s convenience. Section 7.1.4 introduces the notion
of a support and a definition of the classical immediate consequence op-
erator based on this notion. Section 7.1.5 reviews multisets extended with
infinite multiplicities and defines the so called powerset of a multiset that
is useful for the fixpoint theory of the multiset-based extended immediate
consequence operators proposed and studied in next sections. Section 7.1.6
introduces so called “support graphs”, a novel data structure for derivations
inspired by data-dependency networks from the field of reason maintenance
(see e.g. [74] or the next chapter).

Throughout this dissertation a first order predicate logic language with
signature S is assumed. S is assumed to have no function symbols other
than constants, and it is assumed to include at least one constant and the
two S-formulas: > and ⊥ which respectively evaluate to true and false in all
interpretations.

7.1.1 Rules and programs

First, let us review standard definitions from terms to logical formulas and
programs. This subsection is based on [44] and can easily be skipped by
readers familiar with these notions.

Definition 2 (S-term). Let S be a signature. We define:

1. Each variable x is an S-term.

2. Each constant c of S is an S-term.

Definition 3 (S-atom). Let S be a signature. For n ∈N, if p is an n-ary relational
symbol of S and t1, . . . , tn are S-terms, then p(t1, . . . , tn) is an S-atom or atomic

69

70 forward chaining revisited

S-formula. For n = 0 the atom may be written p() or p and is called a propositional
S-atom.

Definition 4 (S-formula). Let S be a signature. We define inductively:

1. Each S-atom is an S-formula. (atoms)

2. > and ⊥ are S-formulas. (0-ary connectives)

3. If ϕ is an S-formula, then ¬ϕ is an S-formula. (1-ary connectives)

4. If ϕ and ψ are S-formulas, then (ϕ∧ψ) and (ϕ∨ψ) and (ϕ ⇒ ψ) are
S-formulas. (2-ary connectives)

5. If x is a variable and ϕ is an S-formula, then ∀xϕ and ∃xϕ are S-formulas.
(quantifiers)

Definition 5 (Substitution). A substitution is a function σ, written in postfix
notation, that maps terms to terms and is

• identical on constants, i.e. cσ = c for constants,

• identical almost everywhere, i.e., {x | x is a variable and xσ 6= x} is finite.

The domain of a substitution σ, denoted dom(σ), is the finite set of variables on
which it is not identical. Its codomain is the set of terms to which it maps its domain.
A substitution σ is represented by the finite set {x1 7→ x1σ, . . . , xk 7→ xkσ} where
x1, . . . , xk is its domain and x1σ, . . . , xkσ is its codomain. {x1 7→ x1σ, . . . , xk 7→
xkσ} can be shortly written as {x1/x1σ, . . . , xk/xkσ}.

The application of a substitution to a formula, a set of formulas, or any other
object containing terms is defined as usual (cf [44]) and also written in postfix
notation.

Definition 6 (Subsumption ordering). A term s subsumes a term t, denoted
s 6 t, iff there exists a substitution σ with sσ = t. One also says that t is an
instance of s, or t is more specific than s, or s is more general than t.

Analogously for atoms.
A substitution σ subsumes a substitution τ, denoted σ 6 τ, iff there exists a

substitution θ with σθ = τ. One also says that τ is an instance of σ, or τ is more
specific than σ, or σ is more general than τ.

Definition 7 (Unification). Two terms s and t are unifiable, if there exists a
substitution σ with sσ = tσ. In this case σ is called a unifier of s and t.

A most general unifier or mgu is a minimal element w.r.t. the subsumption or-
dering among the set of all unifiers of s and t. If σ is a most general unifier of s and
t, the term sσ is called a most general common instance of s and t.

Notation 8 (Function var()). Let us denote var() a function that maps an object
(a term, a formula, a substitution, . . .) to the set of all variables that occur in it.

Definition 9 (Ground). A term t is a ground term iff var(t) = ∅. A formula
ϕ is a ground formula iff var(ϕ) = ∅. A substitution is ground if its codomain
consists of ground terms only. A grounding substitution for a term t is a ground
substitution σ whose domain includes all variables in t, such that tσ is ground.

Definition 10 (Instance of a formula). Let ϕ be a formula and σ a ground
substitution. Thenϕσ is the formula obtained fromϕ by replacing each free variable
occurrence x in ϕ by xσ.

7.1 preliminaries 71

Notation 11 (Rule). A rule r = ψ ← ϕ is a notation for a formula (ϕ ⇒ ψ)

which can but does not have to be closed. The subformulaϕ is called the antecedent
or body, body(r) denotes the set of atoms in ϕ, and ψ the consequent or head
of the rule, head(r) denotes the set of atoms in ψ, and heads(R) =

⋃
r∈R head(r),

where R is a set of rules.

Definition 12 (Literal, Complement). If A is an atom then both A and ¬A are
literals (the former positive, the latter negative). The complement of a positive literal
A, denoted A, is ¬A, the complement of ¬A, denoted ¬A, is A.

Note that ⊥,>,¬⊥,¬> are no literals because the are defined as formulas
but not atomic formulas.

Definition 13 (Clause). A clause is a disjunction of finitely many literals. It is
a shorthand for its universal closure, i.e., a closed formula. A clause A1 ∨ . . .∨
Am ∨ L1 ∨ . . .∨ Ln, where the Ai are positive literals, and the Lj are literals, is
written as A1 ∨ . . .∨Am ← L1, . . . ,Ln in rule notation. For m = 0, the head of
the rule is written ⊥. For n = 0, the body of the rule is written >.

Definition 14 (Definite rule, normal rule). A definite rule is a rule of the form
A ← L1, . . . ,Ln, where Li are positive literals and A is an atom. A normal rule
is a rule of the form A← L1, . . . ,Ln, where Li are literals and A is an atom.

Definition 15 (Program, base facts). A program is a finite set of rules. A defi-
nite program is a finite set of definite rules. A normal program is a finite set of
normal rules. A base fact is a rule with > as its body.

Terminology 16 (Base fact). The term “base fact” may be used for both a rule
with > as its body and for the head atom of such a rule. It is usually clear from
context which exact meaning is meant. The only exception is the case when both
meanings are admissible and lead to equivalent statements such as “the number of
terms in base fact x” because > is a formula that contains no terms and thus the
number of terms in a and the number of terms in a ← > is the same for an atom
a.

See also Terminolgy 104.

Definition 17 (Range restricted). A definite rule is range restricted if each
variable occurring anywhere in it also occurs in its body. A definite program is
range restricted if each of its elements is.

Note that the base facts in a range restricted definite programs are ground
atoms.

7.1.2 Herbrand interpretations

Let us review standard definitions relating to models of logical theories. This
subsection is based on [44] and can easily be skipped by readers familiar
with the notions. However, note that for example Observation 25 is often
used in later sections in proofs of termination of the presented algorithms
and definitions analogous to Definition 28 are given with respect to the
novel operators in later sections.

Definition 18 (Variable assignment). Let D be a nonempty set. A variable as-
signment inD is a function V mapping each variable to an element ofD. We denote
the image of a variable x under an assignment V by xV .

72 forward chaining revisited

Definition 19 (S-Interpretation). Let S be a signature. An S-interpretation is a
triple I = (D, I,V) where

• D is a nonempty set called the domain or universe (of discourse) of I, denoted
dom(I),

• I is a function defined on the symbols of S mapping
– each n-ary function symbol f to an n-ary function fI : Dn → D. For
n = 0 this means fI ∈ D. Notation: fI = fI.

– each n-ary relation symbol p to an n-ary relation pI ⊆ Dn. For n = 0

this means either pI = ∅ or pI = {∅}. Notation: pI = pI.

• V is a variable assignment in D. Notation: xI = xV

Notation 20. Let V be a variable assignment in D, let V ′ be a partial function
mapping variables to elements of D, which may or may not be a total function.
Then V[V ′] is the variable assignment with

• xV[V ′] = xV
′

if xV
′

is defined

• xV[V ′] = xV if xV
′

is undefined

Let I = (D, I,V) be an interpretation. Then I[V ′] := (D, I,V[V ′]). By [x1 7→
d1, . . . , xk 7→ dk] we denote the partial function that maps xi to di and is unde-
fined on other variables. In combination with the notation above, we omit the set
braces and write V[x1 7→ d1, . . . , xk 7→ dk] and I[x1 7→ d1, . . . , xk 7→ dk].

Definition 21 (Tarski, model relationship). Let I be an interpretation and ϕ a
formula. The relationship I |= ϕ, pronounced “I is a model of ϕ” or “I satisfies ϕ”
or “ϕ is true in I”, and its negation I 2 ϕ, pronounced “I falsifies ϕ” or “ϕ is
false in I”, are defined inductively:

I |= p(t1, . . . , tn) iff (tI1, . . . , tIn) ∈ pI

I |= p iff ∅ ∈ pI

I 2 ⊥
I |= >
I |= ¬ϕ iff I 2 ϕ
I |= (ϕ1 ∧ϕ2) iff I |= ϕ1 and I |= ϕ2

I |= (ϕ1 ∨ϕ2) iff I |= ϕ1 or I |= ϕ2
I |= (ϕ1 ⇒ ϕ2) iff I 2 ϕ1 or I |= ϕ2
I |= ∀xϕ iff I[x 7→ d] |= ϕ for each d ∈ D
I |= ∃xϕ iff I[x 7→ d] |= ϕ for at least one d ∈ D

For a set of formulas S, I |= S iff I |= ϕ for each ϕ ∈ S.

Definition 22 (Semantic properties). A formula, or a set of formulas, is

valid or a tautology iff it is satisfied in each interpretation

satisfiable iff it is satisfied in at least one interpr.

falsifiable iff it is falsified in at least one interpr.

unsatisfiable or inconsistent iff it is falsified in each interpretation

Definition 23 (Entailment). Let ϕ and ψ be formulas or sets of formulas.

ϕ |= ψ pronounced: “ϕ entails ψ” or “ψ is a (logical) conseq. of ϕ”,

iff for each interpretation I: if I |= ϕ then I |= ψ.

ϕ |=| ψ pronounced: “ϕ is (logically) equivalent to ψ”,

iff ϕ |= ψ and ψ |= ϕ.

7.1 preliminaries 73

Definition 24 (Herbrand universe, Herbrand base). The Herbrand universe
HU is the set of all ground S-terms. The Herbrand base HB is the set of all ground
S-atoms. Let P be a program. Herbrand universe HUP is the set of ground terms
that can be constructed with symbols occurring in P. Herbrand base HBP comprises
all ground atoms that can be constructed with symbols ocurring in P.

Observation 25 (HBP is finite). If P is a program with no function symbols other
than constants then HBP is finite because, by Definitions 15 and 24, the number
of constants and predicate symbols occurring in P is finite and thus the number
of ground atoms that can be generated using these constants and predicates is also
finite. Note that under the same assumption HUP is also finite.

Definition 26 (Herbrand interpretation). An interpretation I = (D, I,V) is a
Herbrand interpretation if dom(I) = HU and cI = c for each constant c.

Definition 27 (Herbrand model). Let S be a set of closed formulas. A Herbrand
model for S is a Herbrand interpretation which is a model for S.

Definition 28 (Herbrand interpretation induced by a set of ground atoms).
Let V be some fixed variable assignment in HU. Let B ⊆ HB be a set of ground
atoms. Then HI(B) is the Herbrand interpretation with variable assignment V and
pHI(B) = {(t1, . . . , tn) | p(t1, . . . , tn) ∈ B} for each n-ary relation symbol p.

Definition 29. Let {Bi | i ∈ I,Bi ⊆ HB} be a nonempty set of sets of ground
atoms. Then the intersection of Herbrand interpretations {HI(Bi) | i ∈ I} is defined
as
⋂
{HI(Bi) | i ∈ I} = HI(

⋂
{Bi | i ∈ I}), i.e. it is the Herbrand interpretation

induced by the intersection of the sets of ground atoms.

Definition 30. Let B1,B2 be two sets of ground atoms. Then HI(B1) 6 HI(B2)
iff B1 ⊆ B2 and HI(B1) < HI(B2) iff B1 ⊂ B2.

Definition 31. A minimal Herbrand model of a program is a 6-minimal member
of the set of its Herbrand models.

Proposition 32. Let P be a definite program.

• P has a Herbrand model: HI(HB).

• If {Mi}i∈I is a non-empty set of Herbrand models for P, then
⋂
i∈IMi is a

Herbrand model for P.

Definition 33 (Minimal Model of a Definite Program). Let P be a definite
program. The minimal Herbrand model of P, for short: its minimal model, is the
intersection of the set of all Herbrand models of P.

Note that by Proposition 32 the minimal model of a definite program
exists and is unique.

7.1.3 Fixpoint theory

This section introduces a general fixpoint theory for operators on complete
lattices, it mostly follows Lloyd’s book [136], Lemma 51 is adapted from [44].
The advantage of using a lattice-based fixpoint theory is that it can be used
both for the standard immediate consequence operator defined on sets, see
Section 7.1.4, and for the novel extended immediate consequence operators
defined on multisets introduced later in this chapter.

74 forward chaining revisited

Definition 34 (Relation). Let S be a non-empty set. A relation R on S is a subset
of S× S.

Notation 35. Let R be a relation on a set S. The fact that (x,y) ∈ R is denoted
xRy.

Definition 36 (Powerset of a set). Let S be a set. The powerset of S, denoted P(S),
is the set of all subsets of S; i.e. P(S) = {X | X ⊆ S}.

Definition 37 (Partial order, partially ordered set). A relation R on a set S is a
partial order if the following conditions are satisfied:

• xRx, for all x ∈ S (R is reflexive),

• xRy and yRx imply x = y, for all x,y ∈ S (R is antisymmetric),

• xRy and yRz imply xRz, for all x,y, z ∈ S (R is transitive).

A nonempty set with a partial order on it is called a partially ordered set, or
shortly a poset.

Notation 38. Partial order will be denoted6 in cases when it is not given a specific
symbol.

Definition 39 (Upper bound, lower bound). Let S be a set with partial order
6. Then a ∈ S is an upper bound of a subset X ⊆ S if for all x ∈ X it holds that
x 6 a.

Similarly, b ∈ S is a lower bound of X ⊆ S if b 6 x, for all x ∈ X.

Definition 40 (Least upper bound, greatest lower bound). Let S be a set with
a partial order 6. Then a ∈ S is the least upper bound (supremum) of a subset X
of S, denoted lub(X), if a is an upper bound of X and, for all upper bounds a ′ of X,
it holds that a 6 a ′.

Similarly, b ∈ S is the greatest lower bound (infimum) of a subset X of S,
denoted glb(X), if b is a lower bound of X and, for all lower bounds b ′ of X, it holds
that b ′ 6 b.

Definition 41 (Complete lattice). A partially ordered set (S,6) is a complete
lattice if lub(X) and glb(X) exist in (S,6), for every subset X of S.

Observation 42. Let S be a set. Then (P(S),⊆) is a complete lattice and lub(X) =⋃
X and glb(X) =

⋂
X for each X ⊆ P(S).

Definition 43 (Operator). Let L = (S,6) be a complete lattice. An operator on
L is a mapping Γ : S→ S.

Definition 44 (Monotonic operator). Let L = (S,6) be a complete lattice and Γ
an operator on L. Γ is monotonic iff for all x,y ∈ S such that x 6 y it holds that
Γ(x) 6 Γ(y).

Definition 45 (Directed set). Let (S,6) be a complete lattice and X ⊆ S. X is
directed if every finite subset of X has an upper bound in X.

Note that the finiteness requirement on the subset of X is meant with
respect to the number of members of the subset; the elements themselves
may be infinite (if they are sets). This observation is important in proofs with
infinite sets and with multisets where the multiset can contain elements with
infinite multiplicities. An equivalent definition is that the set X is directed
iff each pair of elements has an upper bound in X.

7.1 preliminaries 75

Definition 46 (Continuous operator). Let L = (S,6) be a complete lattice and
Γ an operator on L. Γ is continuous iff for each directed set Y ⊆ S it holds that
Γ(lub(Y)) = lub(Γ(Y)).

Lemma 47. Let Γ be a continuous operator on a complete lattice (S,6). Then Γ is
monotonic.

Definition 48 (Fixpoint, least fixpoint, greatest fixpoint). Let Γ be a continuous
operator on a complete lattice (S,6). a ∈ S is a fixpoint of Γ if Γ(a) = a. a is the
least fixpoint of Γ , denoted lfp(Γ), if it is a fixpoint and for all fixpoints b of Γ it
holds that a 6 b. Analogically, the greatest fixpoint gfp(Γ) is defined.

Proposition 49 (Knaster-Tarski, existence of the least and the greatest fix-
point). Let Γ be a monotonic operator on a complete lattice (S,6). Then Γ has a
least fixpoint and a greatest fixpoint. Moreover:

lfp(Γ) = glb({x | Γ(x) = x}) = glb({x | Γ(x) 6 x}),

gfp(Γ) = lub({x | Γ(x) = x}) = lub({x | x 6 Γ(x)})

Definition 50 (Ordinal powers of a monotonic operator). Let Γ be a monotonic
operator on a complete lattice (S,6). For each finite or transfinite ordinal the power
of Γ is defined as:

Γ0 = glb(S) (base case)

Γα+1 = Γ(Γα) (successor case)

Γλ = lub({Γβ | β < λ}) (limit case)
Let s ∈ S and n ∈N1. Then
Γ1(s) = Γ(s) for n = 1

Γn+1(s) = Γ(Γn(s)) for n > 1

Γλ(s) = lub({Γβ(s) | β < λ}) (limit case)

Lemma 51. Let Γ be a monotonic operator on a complete lattice (S,6). For each
ordinal α holds:

1. Γα 6 Γα+1

2. Γα 6 lfp(Γ)
3. If Γα = Γα+1 then lfp(Γ) = Γα.

Corollary 52. Let Γ be a monotonic operator on a complete lattice (S,6). Then

1. if m 6 n ∈N then Γm 6 Γn

2. if n1, . . . ,nk ∈N then Γmax(n1,...,nk) is an upper bound of
{Γn1 , . . . , Γnk }.

Proposition 53. Let Γ be a monotonic operator on a complete lattice (S,6). There
exists an ordinal α such that Γα = lfp(Γ).

Theorem 54 (Kleene). Let Γ be a continuous operator on a complete lattice (S,6).
Then lfp(Γ) = Γω.

Proof. It is sufficient to show that Γω+1 = Γω by Lemma 51.

Γω+1 = Γ(Γω) by definition, successor case

= Γ(lub({Γn | n ∈N})) by definition, limit case

= lub({Γ(Γn) | n ∈N}) by continuity of Γ , note that
{Γn | n ∈N} is directed,
see Corollary 52

= lub({Γn+1 | n ∈N}) by definition, successor case

= Γω by definition, limit case

76 forward chaining revisited

7.1.4 Immediate consequence operator TP

This section introduces the notion of a support which is close to the notion of
justification from the field of reason maintenance. Definitions of immediate
consequence and of the classical immediate consequence operator are then
given in terms of supports. They are however equivalent to the standard
definitions which can be reviewed for example in [44].

Definition 55 (Support). A support with respect to a definite program P is a pair
s = (r,σ), where r ∈ P and σ is a substitution such that dom(σ) ⊆ var(r).

For r = A← B1, . . . ,Bn the atom Aσ is called the head of s, written head(s),
and the set {B1σ, . . . ,Bnσ} of atoms is called the body of s, written body(s). If
n = 0 (i.e., r = A← >) then body(s) = ∅ and s is called a base support, otherwise
it is called a derived support. Furthermore, heads(S) for a set of supports S is the
set {head(s) | s ∈ S}. A support is ground if its head and its body are ground. We
say that s supports head(s).

Observation 56. A given atom a may be the head of infinitely many supports
with respect to P as long as the substitutions may be arbitrary. However, there are
only finitely many rule heads in P of which a can be an instance. Thus, appropriate
restrictions on the substitutions, such as that their codomains are subsets of some
finite set of terms, can ensure that there are only finitely many supports with head
a. In particular, the number of ground supports with respect to HBP is finite, be-
cause the codomains of their substitutions are subsets of HUP, which is finite by
Observation 25.

Also note that while the notion of a support is close to the notion of a
rule instance, they are not the same as the following example shows.

Example 57. Consider the following program:

r1 = p(a,a)← >
r2 = q(x)← p(x, x)

r3 = q(y)← p(a,y)
The atom q(a) is derivable both via rule r2 and r3 from the base fact r1. In both

cases the resulting rule instance is q(a)← p(a,a). However there are two different
supports (r2, {x 7→ a}) and (r3, {y 7→ a}) which allows for distinguishing the two
different derivations of q(a) (see Section 7.1.6).

Definition 58 (Immediate consequence). Let P be a definite program and F ⊆
HB a set of ground atoms. An immediate consequence of P with respect to F is a
ground atom a such that there is a support s = (r,σ) with respect to P with

• dom(σ) = var(r),
• body(s) ⊆ F,
• head(s) = a.

In general there are cases with infinitely many immediate consequences
of P with respect to F. Any of the following conditions is sufficient to ensure
that the number of immediate consequences is finite:

• HB is finite, or
• F is finite and P is range restricted (because then the codomain of σ is

a subset of the set of ground terms in F).

7.1 preliminaries 77

Definition 59 (Immediate consequence operator). Let P be a definite program.
The immediate consequence operator TP for P is

TP: P(HB) → P(HB)

TP(F) = {a ∈ HB | a is an immediate conseq. of P w.r.t. F}
where HB is the Herbrand base, i.e., F ⊆ HB is a set of ground atoms.

Lemma 60 (TP is continuous). Let P be a definite program. The immediate conse-
quence operator TP is continuous.

This implies that TP is monotonic (Lemma 47), i.e. if F ′ ⊆ F then TP(F ′) ⊆
TP(F). In addition, the operator is also monotonic in another sense:

Observation 61 (Monotonicity of TP w.r.t. P.). Let P be a definite program and
let F be a set of ground atoms. If P ′ ⊆ P then TP ′(F) ⊆ TP(F). It is easy to see that
if a ground atom is an immediate consequence of P ′ with respect to a set of ground
atoms F then it also is an immediate consequence of a superset of P ′ with respect to
the same set of ground atoms F.

The immediate consequence operator can be used to characterize the min-
imal Herbrand model of a positive program P (see [44], page 54, for details):

Theorem 62. Let P be a definite program. Then lfp(TP) = TωP = {A ∈ HB | P |=

A} and HI(lfp(TP)) is the unique minimal Herbrand model of P.

Note that for any definite program P, by definition T0P = ∅ and T1P is the
set of ground instances of the base facts in P. If HB is finite then TωP = TnP
for some n ∈N.

7.1.5 Multisets

Subsequent sections in this chapter define operators on multisets. A multiset
is often described as a bag of elements or as a set where an element can occur
multiple times. There are a number of different definitions of multisets and
even formalizations of multisets, see for example [208, 31] for an overview.
Most of the definitions are equivalent, see [31]. The theory of this disserta-
tion requires that an element can occur infinitely many times in a multiset
so that a certain set of multisets is a complete lattice. This kind of extended
multisets has also been studied in the literature, see for example [115, 52]
and [30, 185] for a more general axiomatic treatment. This section follows
the naive (non-axiomatic) definitions of [52] as it describes exactly the kind
of extended multisets that are needed in this dissertation. The name “root
set”, and the ∈m operator are borrowed from [30]. The only non-standard
definition in this section is Definition 75. The corresponding Lemma 84 then
shows that the Lloyd’s standard lattice-based fixpoint theory can be applied
to the multiset-based extended immediate consequence operators defined
later in this chapter.

Notation 63 (Natural numbers). N is the set of all positive natural numbers,i.e.
N = {1, 2, 3, . . .}. N0 is the set of all natural numbers inlcuding zero, i.e. N0 =

{0, 1, 2, 3, . . .}. The set of positive natural numbers can also be denoted N1 to stress
that it does not include zero, i.e. N = N1. The usual total ordering 6 is assumed.

Notation 64 (Infinity). Infinity, denoted∞, is a number greater than any natural
number; i.e. ∀n ∈ N0 n < ∞. It is assumed that∞+ n = n+∞ = ∞, for all
n ∈N0.

Furthermore, the set N0 ∪ {∞} is denoted N∞0 , the set N1 ∪ {∞} is denoted
N∞1 . Therefore also N∞ = N∞1 .

78 forward chaining revisited

Observation 65. The infinity symbol ∞ completes the total ordering 6 on N0

so that each subset of N∞0 has the least upper bound (and also the greatest lower
bound) in N∞0 .

Definition 66 (Multiset). Let D be a non-empty set. A multiset on D is a pair
A = (D,µ), where µ : S → N∞0 is a function from D, the domain set, to the set
N∞0 . µ is called the multiplicity (or frequency) function of A and D the domain of
A.

Observation 67. Let A be an ordinary set. Then A can be seen as the multiset
(A,χA), where χA is the characteristic function of A.

Definition 68 (Empty multiset). Let A = (D,µ) be a multiset on D. Then A is
the empty multiset on D if µ(d) = 0, for all d ∈ D. The empty multiset is denoted
∅Dm. The domain set superscript may be omitted where the domain set is clear from
context.

Operators on multisets always assume that domain sets of the operands
are the same. Therefore the domain set of the empty multiset is always clear
from context.

Definition 69 (Root of a multiset). Let A = (D,µ) be a multiset. The root of A
is the set root(A) = {d ∈ D | µ(d) > 0}.

The root of a multiset A is the set of elements of A with multiplicity
greater than zero.

Observation 70. A multiset can be infinite in two different ways: its root is infinite
or it contains an element with infinite multiplicity.

Definition 71 (Membership relationship). Let (D,µ) be a multiset.
a ∈im (D,µ) iff a is a member of (D,µ) with multiplicity i ∈ N∞1 , i.e. iff a ∈ D
and µ(a) = i. a ∈m (D,µ) holds iff there is an i > 0 such that a ∈im (D,µ).

Definition 72 (Submultiset, proper submultiset). Let A = (D,µA) and B =

(D,µB) be multisets. A is a submultiset of B, denoted A ⊆m B, if for all a ∈ D:
µA(a) 6 µB(a).
A is a proper submultiset of B, denoted A ⊂m B, if in addition to A ⊆m B

there is an a ∈ SA such that µA(a) < µB(a).

Notation 73 (Multiset, multiset-builder). Square brackets “[]” are used to de-
note multisets and to distinguish them from sets (denoted by braces “{ }”), e.g.

A = [a,a,b, c] = ({a,b, c}, {(a, 2), (b, 1), (c, 1)}), root(A) = {a,b, c},

B = [a,b, c] = ({a,b, c}, {(a, 1), (b, 1), (c, 1)}), root(B) = {a,b, c}.

Analogically to the set-builder (sometimes called set comprehension) notation
{x | P(x)}, a multiset-builder notation [x | P(x)] is used to specify multisets. The
formula P(x) is called the (multiset-)builder condition and [x | P(x)] is the mul-
tiset of individuals that satisfy the condition P(x). It is assumed that whenever
the ∈m relationship is used in the multiset-builder condition the multiplicities are
transferred to the resulting multiset. Also, in cases like [x | ∃yP(x,y)], the multi-
plicity of x in the resulting multiset is |{y | P(x,y)}|. See the following example.

Example 74. Let A = {a} and N = [n,n,n]. Then
N1 = [{x,y} | x ∈ A,y ∈m N] = [{a,n}, {a,n}, {a,n}],

N2 = [{x,y} | x ∈ A,y ∈ root(N)] = [{a,n}],

N3 =
{
{x,y} | x ∈ A,y ∈m N

}
= {{a,n}}.

Also, n ∈m N, n ∈3m N, {a,n} ∈3m N1, {a,n} ∈1m N2, {a,n} ∈ N3.

7.1 preliminaries 79

Definition 75 (Multiset powerset of a set). Let S be a set. The multiset powerset
of S, P(S), is the set of all multisets on S, i.e. P(S) = {(S,µ) | µ : S → N∞0 },
P(∅) = ∅.

Note that the value of the multiplicity function can be zero for an element.
Therefore P(S) also includes multisets the roots of which are subsets of S.
Also, the multiset powerset of a set should not be confused with the pow-
erset of a multiset which is a closely related but different concept usually
defined as the set of all submultisets of a multiset. Only the multiset power-
set of a set is needed in this dissertation, therefore the concept of a powerset
of a multiset is not introduced formally.

Example 76. Let S = {a,b, c}. Then
P(S) = {(S,µ) | µ : S→N∞0 } =

{∅m, [a], [a,a], [a,a,a], . . . , [b], [b,b], [b,b,b], . . . , [c], [c, c],

[c, c, c], . . . , [a,b], [a,a,b], . . . , [a,b,b], . . . , [a,b, c],

[a,a,b, c], . . . , [a,b,b, c], . . . , [a,b, c, c], . . . ,

[a,a,b,b, c], . . . , . . . }.
Let M = [a,a,b, c]. The powerset of M is the set of all submultisets of M, i.e.

the set
{ [a,a,b, c], [a,b, c], [a,a, c], [a,a,b], [b, c], [a, c], [a,b], [a,a],

[a], [b], [c], ∅m }

Lemma 77. Let S be a set. The submultiset relation ⊆m is a partial order on
P(S).

Proof. Let A = (D,µA),B = (D,µB),C = (D,µC) ∈ P(S).
⊆m is reflexive. A ⊆m A because µA(s) 6 µA(s) for each s ∈ SA.
⊆m is antisymmetric. If A⊆m B and B⊆m A then for each s ∈ D it holds

that µA(s) = µB(s) because µA(s) 6 µB(s) and µB(s) 6 µA(s). Therefore
A = B.
⊆m is transitive. Let if A⊆m B and B⊆mC then for all s ∈ D it holds that

µA(s) 6 µC(s) because µA(s) 6 µB(s) 6 µC(s). Therefore also A⊆m C.

Definition 78 (Multiset union ∪m). Let A = (D,µA) and B = (D,µB) be
multisets. The union of A and B, denoted A ∪m B, is the multiset C = (D,µC),
where for all d ∈ D: µC(d) = max(µA(d),µB(d)).

Let X be a set of multisets on a set D. Then
⋃
mX = (D,µX), where mX(d) =

lub({µ(d) | (D,µ) ∈ X}), for all d ∈ D.

Lemma 79. Let S ⊆ P(HB). Then root(
⋃
mS) =

⋃
{root(s) | s ∈ S}.

Proof. ⊆: Let a ∈ root(
⋃
mS). Then by definition lub({µ(a) | (HB,µ) ∈ S}) >

0 and there is an s ∈ S such that a ∈m s. Therefore also a ∈m
⋃
mS by the

definition of multiset union and therefore a ∈ root(S) by the definition of
root().
⊇: Let a ∈

⋃
{root(s) | s ∈ S}. Then there is an s ∈ S such that a ∈ root(s).

Hence a ∈m s, by the definition of root(), and thus a ∈m
⋃
mS and a ∈

root(
⋃
mS).

Definition 80 (Multiset intersection ∩m). Let A = (D,µA) and B = (D,µB)
be multisets. The intersection of A and B, denoted A ∩m B, is the multiset C =

(D,µC), where for all d ∈ D: µC(d) = min(µA(d),µB(d)).
Let X be a nonempty set of multisets on a set D. Then

⋂
mX = (D,µX), where

µX(d) = glb({µ(d) | (D,µ) ∈ X}), for all d ∈ D.

80 forward chaining revisited

Definition 81 (Multiset sum]). LetA = (D,µA) and B = (D,µB) be multisets.
The sum of A and B, denoted A] B, is the multiset C = (D,µC), where for all
s ∈ D: µC(s) = µA(s) + µB(s).

Let X be a set of multisets on a set D. Then
⊎
mX = (D,µX), where µX(d) =∑

(D,µ)∈X µ(d), for all d ∈ D.

Definition 82 (Multiset removal). Let A = (D,µA) be a multiset and B =

(D,µB) be a multiset with finite multiplicities, i.e. µB(d) <∞ for all d ∈ D. The
removal of B from A, denoted A	 B, is the multiset C = (D,µC), where for all
d ∈ D: µC(d) = max(µA(d) − µB(d), 0).

Lemma 83. Let A = (D,µA), B = (D,µB), and C = (D,µC) be multisets. The
following holds:

A ∪m B = B ∪m A

A ∩m B = B ∩m A

A ∪m (B ∪m C) = (A ∪m B) ∪m C

A ∩m (B ∩m C) = (A ∩m B) ∩m C

A ∪m A = A

A ∩m A = A

A ∪m (B ∩m C) = (A ∪m B) ∩m (A ∪m C)

A ∩m (B ∪m C) = (A ∩m B) ∪m (A ∩m C)

Proof. Follows directly from definitions by associativity, commutativity, and
distributivity of the min and max functions.

Notice that although operations on multisets are similar to their set coun-
terparts, caution has to be taken in some cases. For example, it is not clear
how to define the complement operation on general multisets. Casasnovas
defines complement on finite n-bounded multisets (multisets with maximal
multiplicity n) [52] and also provides results about infinite distributivity, see
Proposition 33 in [52].

Lemma 84. Let S be a set. Then (P(S), ⊆m) is a complete lattice.

This lemma corresponds to Proposition 23 in Casasnovas et al. [52]. Ca-
sanovas et al. use a definition of lattices more common in algebra using the
meet and join operators while this report follows Lloyd’s definitions using
an order relation. Therefore, and because of the importance of this result for
this work, a slightly different and a bit more detailed proof of the lemma is
given here.

Proof. Let X ⊆ P(S). Let (S,m) =
⋃
mX. Then (S,µ) ∈ P(S) by definition

of P(S) and
⋃
m and it is an upper bound of X: (x,µx) ⊆m (S,µ), for all

(S,µx) ∈ X because µ(s) is the supremum of {µx(s) | (S,µx) ∈ X} for each
s ∈ S by Definition 78. Let (S,µ ′) ∈ P(S) be an upper bound of X such that
(S,µ ′) ⊆m (S,µ). Then µ ′(s) 6 µ(s), for all s ∈ S, and also µ ′(s) > µ(s),
for all s ∈ S, because µ(s) is the supremum of the set {µx(s) | (S,µx) ∈ X}.
Therefore (S,µ ′) = (S,µ) and (S,µ) is the least upper bound of X. The top
element of the lattice is (S,µ∞), where µ∞(s) =∞, for all s ∈ S.

Let (S,µ) =
⋂
mX. Then (S,µ) ∈ P(S) by the definition of P(S) and

⋂
m

and it is a lower bound of X: (S,µ)⊆m (S,µx), for all (S,µx) ∈ X because µ(s)
is the infimum of the set {µx(s) | (S,µx) ∈ X} for each s ∈ S by Definition 80.
Let (S,µ ′) ∈ P(S) be a lower bound of X such that (S,µ) ⊆m (S,µ ′). Then

7.1 preliminaries 81

µ(s) 6 µ ′(s), for all s ∈ S, and also µ(s) > µ ′(s), for all s ∈ S, because µ(s)
is the infimum of the set {µx(s) | (S,µx) ∈ X}. Therefore (S,µ ′) = (S,µ) and
(S,µ) is the greatest lower bound of X. The bottom element of the lattice is
∅m = (S,µ0), where µ0(s) = 0, for all s ∈ S.

Note, that because S is fixed in all pairs (S,µ) ∈ P(S), the set P(S) is a
complete lattice iff the set {µ | µ : S→N∞0 } is a complete lattice. In fact, one
of the definitions of multisets [155, 31, 52] uses functions directly (instead of
a pair of a set and a function) to represent multisets. A multiset is defined
as a pair in this dissertation because it seems to reflect the intuition of a
multiset and because it stresses the domain set. Also note that the lub() and
glb() on multisets correspond to pointwise lub() and glb() on N∞0 [52].

Observation 85. Let X ⊆ P(S). The proof of Lemma 84 also proves that lub(X) =⋃
mX and glb(X) =

⋂
mX.

7.1.6 Support graphs

This section introduces so called support graphs and related notions. A sup-
port graph is a data structure inspired by data-dependency networks of clas-
sical reason maintenance. In contrast to data-dependency networks, support
graphs can accommodate a notion of derivation which is close to the notion
of a proof from assumptions in classical mathematical logic. This fact in it-
self is a contribution as it allows a unified description of the reasoning and
reason maintenance algorithms of this dissertation and the proposed defini-
tion of a derivation has the advantage that the number of derivations with
respect to range restricted Datalog programs is always finite. In contrast,
for example in [158] the number of so called derivation trees (a notion de-
fined in [138]) that is used in some of the established reason maintenance
methods can be infinite. See Chapter 8 for more details. The notion of a well-
founded support is equivalent to the notion of a well-founded justification
from reason maintenance [74].

Definition 86 (Support graph, compact support graph). Let P be a definite
range restricted program. A support graph with respect to P is a bipartite directed
graph G = (S, F,E, l) such that

• S is a set of ground supports with respect to P,
• F is a set of nodes,
• l is a function labelling nodes with ground atoms, l : F→ HBP,
• E ⊆ (F× S)∪ (S× F) and for each (x,y) ∈ E

– either x ∈ F, y ∈ S, l(x) ∈ body(y)
– or x ∈ S, y ∈ F, l(y) = head(x),

• for each s ∈ S

– for each b ∈ body(s) exists an x ∈ F such that l(x) = b and (x, s) ∈ E
– optionally for a = head(s) exists a y ∈ F such that l(y) = a and

(s,y) ∈ E

If the labelling function l is moreover injective then the support graph is called a
compact support graph. In compact support graphs, we identify atom nodes with
atoms.

82 forward chaining revisited

Note that the definition requires that if a support graph contains a sup-
port then it also contains all its body atoms and all edges connecting the
support to these atoms. It may or may not contain the head of a support
and an edge connecting the head to the support because of the optional
point in the definition.

When drawing support graphs, nodes in F are represented as dots and
nodes in S as ovals.

A support with empty body does not have an incoming edge. However, in
drawings, such supports are emphasised by marking them with the symbol
> and no arrow, although > is neither a node nor an edge in the support
graph.

Example 87.
Let u, v,w, x,y be variables, a,b constants, and P = {r1, r2, r3, r4} with

r1 = p(a,w)← >,

r2 = p(u, v)← r(u, v),

r3 = r(x, z)← p(x,y),q(y, z),

r4 = q(b,b)← >,

G = (S, F,E, l) is a compact support graph with respect to P for

F = {n1,n2,n3}

l = {n1 7→ p(a,b),n2 7→ q(b,b),n3 7→ r(a,b)}

S = {s1, s2, s3} with s1 = (r1, {w 7→ b})

s2 = (r2, {u 7→ a, v 7→ b})

s3 = (r3, {x 7→ a,y 7→ b, z 7→ b})

and E as indicated by the edges in the graphical representation in Fig. 7.3.

Figure 7.1: An example of a support graph G = (S, F,E, l).

Note that body(s1) = ∅, body(s2) 6= ∅, body(s3) 6= ∅.

Definition 88 (Support graph induced by a set of supports). Let T be a set of
ground supports with respect to a definite program P. Support graph induced by T ,
denoted SG(T), is a compact support graph G = (S, F,E, l), where S = T is the set
of supports, F is a set of nodes such that l(F) = heads(T) is the set of atoms, where
l is the injective labelling function, and E satisfies all the conditions in Definition
86, including the optional one.

Observation 89. Let T be a set of ground supports with respect to a definite pro-
gram P. Then G = SG(T) is unique up to renaming of its atom nodes (those in
F) because no atoms and no supports can be repeated in G and G also satisfies the
optional requirement of Definition 86 for all supports.

7.1 preliminaries 83

Definition 90 (Homomorphic embeddeding). A support graph G = (SG, FG,
EG, lG) is homomorphically embedded in a support graph H = (SH, FH, EH,
lH) if there is a graph homomorphism f of G to H that also respects labellings, i.e.
f : SG ∪ FG → SH ∪ FH and (∀x,y ∈ SG ∪ FG)(x,y) ∈ EG ⇒ (f(x), f(y)) ∈ EH
and lG(x) = lH(f(x)) whenever x ∈ FG and lG(y) = lH(f(y)) whenever y ∈ FG.

(a) Support graph D. (b) Support graph E.

(c) Support graph F. (d) Support graph G.

(e) Support graph H.

Figure 7.2: Compact support graphs D and E and non-compact support
graphs F and G are homomorphically embedded in the compact
support graph H.

Example 91. Let P be the following propositional definite program:

d← a, c

c← a,b

a← a1

a← a2

a1 ← >; a2 ← >; b← >

84 forward chaining revisited

See Figure 7.2 for an example of five support graphs with respect to P. H is
compact because no two atom nodes have the same label and thus the labelling
function of H is injective. F and G are not compact because they both have two
nodes labelled a. It is easy to see that the respective homomorphisms “merge” the
two a nodes into one while mapping all other nodes to their obvious counterparts.

Note that there can be at most as many nodes for an atom in a support
graph as there are supports of that atom, by Definition 86 and because sup-
port nodes cannot be repeated.

Lemma 92. Let G = (S, F,E, l) be a non-compact support graph. Then G is homo-
morphically embedded in SG(S).

Proof. Let H = SG(S) = (S, FH,EH, lH). We will build a homomorphism
f : S ∪ F → S ∪ FH from G to H. The set of supports in both G and H is S.
Therefore let f(s) = s for all s ∈ S. The only way G and H can differ is if
|F| > |FH|. Then there are nodes in F with the same labels. Nodes sharing a
label a are mapped by f to the node in FH which has label a (it is unique
because H is compact). Thus f respects labellings and it is a homomorphism
because G and H have the same set of supports S which means that the
requirements on edges in Definition 86 are also the same (with respect to
labels) for G and H.

Notation 93 (Operations on support graphs). Let P be a definite program, G =

(S, F,E, l) a support graph with respect to P, s, s1, s2, . . . supports with respect to
P that may or may not be in S, a,a1,a2, . . . atoms that may or may not be in F.

• G+ s := (S ′, F ′,E ′, l ′), where S ′ = S∪ {s}, for each b ∈ body(s)∪ {head(s)}
if (@n ∈ F)l(n) = b then add a new node n to F ′ and l ′(n) = b, (∀n ∈
F)l ′(n) = l(n), E ′ = E∪ {(b, s) | b ∈ body(s)}∪ {(s, head(s))}.

• G− s := (S ′, F,E ′, l), where S ′ = S \ {s}, E ′ = E \ {(x,y) | x = s or y = s}.
Note that F (and thus also l) remains unchanged.

• G+ {s1, s2, . . .} := (((G+ s1) + s2) + . . .)

• G− {s1, s2, . . .} := (((G− s1) − s2) − . . .)

• G+ a := (S, F ′,E, l ′), where l(f) = l ′(f) for all f ∈ F and if (@f ∈ F)l(f) =
a then let n be a new node not in F and F ′ = F ∪ {n} and l ′(n) = a. Note
that S and E remain unchanged.

• G− a := (S ′, F ′ \ l−1(a),E ′, l �F ′\l−1(a)), where (S ′, F ′,E ′, l) = G− {s |

a ∈ body(s) or a = head(s)}, where � stands for “restricted to”.
• G+ {a1,a2, . . .} := (((G+ a1) + a2) + . . .)

• G− {a1,a2, . . .} := (((G− a1) − a2) − . . .)

Definition 94 (Path). Let P be a definite program and G = (S, F,E, l) a support
graph with respect to P. A path inG is an alternating sequence a0s1 . . . an−1snan
for n > 0, with si ∈ S, l(ai−1) ∈ body(si), head(si) = l(ai).

The sequence may also start with s1 and/or end with sn. The path has length n
and is said to be:

• a path from a0 to an,
• a path from s1 to an,
• a path from a0 to sn,
• a path from a1 to sn.

A path is cyclic if ai = aj for some i 6= j.
A support graph G is called acyclic if there is no cyclic path in G.

7.1 preliminaries 85

Note, that an acyclic path in a non-compact support graph may homo-
morphically map to a cyclic path in the respective compact support graph.

Terminology 95 (Supports, depends). If there is a path from a node x to a node
y in G, we say that x supports y in G and y depends on x in G. If the path has
length 1 we may add the adverb “directly”. If the path has length > 1 we may add
the adverb “indirectly”.

A node in a support graph depends on a rule if it is a support that includes the
rule or it depends on a support in the graph that includes the rule.

The convention that a support depends on a rule that it includes simpli-
fies formalization of the dependent-supports algorithm (Algorithm 7.6) in
Section 7.4 and of the following formalizations in the reason maintenance
chapter, especially in Section 8.4.

Definition 96 (Subgraph). Let G1 = (S1, F1,E1, l1) and G2 = (S2, F2, E2, l2)
be support graphs with respect to a definite program P. G1 is a subgraph of G2,
written G1 ⊆ G2, if S1 ⊆ S2, F1 ⊆ F2, E1 ⊆ E2, and l1(n) = l2(n), for all
n ∈ F1.

Definition 97 (Well-founded support graph). A support graph G = (S, F,E, l)
with respect to a definite program P is well-founded, if it is acyclic, and for each
n ∈ F there is an incoming edge (s,n) ∈ E.

Note that all source nodes (i.e. nodes with no incoming edge) of a well-
founded support graph are supports with empty body. Being acyclic, a (fi-
nite) well-founded support graph has at least one sink node (i.e. a node with
no outgoing edge).

Definition 98 (Derivation, well-founded support). Let G = (S, F,E, l) be a
support graph with respect to a definite program P. Let a be an atom and s a
support.

A derivation of a in G is a minimal (w.r.t ⊆) well-founded support graph that
is homomorphically embedded in G and has a node labelled a as its only sink node.

A derivation of s in G is a minimal (w.r.t ⊆) well-founded support graph that
is homomorphically embedded in G and has s as its only sink node.

A support s ∈ S is well-founded in G if there exists a derivation of head(s) in
G that includes s.

We say that an atom a has a derivation with respect to P, or that a is derivable
from P, if there is a derivation of the atom in a support graph with respect to P.

Definition 99 (Depth of a derivation). Let P be a definite program and D a
derivation with respect to P. The depth of D is the number of supports on the
longest path in D that ends with the only sink node.

Example 100. Consider Figure 7.2. Graphs D,E, F, and G are all derivations of d
inH. The graphH is not a derivation because its proper subgraphD is well-founded.

Lemma 101. Let P be a definite program and let a ∈ HBP. Then the number of
derivations of a from P is finite up to renaming atom nodes.

Proof. A derivation of a from P is a support graph with respect to P. Note
that support graphs are defined only with respect to ground supports. There
is only a finite number of ground supports with respect to P (Observation 56)
and therefore there is only a finite number of support graphs with respect
to P. It follows that there must be only a finite number of derivations of a
with respect to P.

86 forward chaining revisited

Definition 102 (Depends strongly). Let G be a support graph with respect to a
definite range restricted program P. A node x in G depends strongly on a node y in
G if y is in every derivation of x in G.

Example 103. The graph G from Example 87 is not well-founded for two reasons:
it is cyclic and its atom q(b,b) has no incoming edge.

Let G ′ = G + s4, where s4 = (r4, ∅). Then G ′ is not well-founded, but s3
well-founded in G ′ because G ′ − s2 is a derivation of head(s3) in G ′.

The only support that is well-founded in G is s1.

Figure 7.3: An example support graph G ′ = G+ s4.

Terminology 104 (Base fact, derived fact). Let G = (S, F,E, l) be a support
graph with respect to a definite program P. Let s ∈ S be well-founded in G and let
head(s) = a.

If body(s) = ∅ then a is said to be (an instance of) a base fact in G. If
body(s) 6= ∅ then a is said to be a derived fact in G.

See also Definition 15 and Terminology 16.

Note that an instance of a base fact in G is an instance of a base fact in P.
Moreover, an atom can have well-founded supports of both kinds.

7.2 classical forward chaining

Forward chaining, or data-driven evaluation of a program, is a deductive
procedure that iteratively derives atoms that a program and a set of atoms
entail. Theorem 62 allows for operational understanding of a definite pro-
gram in terms of forward chaining. The immediate consequence operator
TP corresponds to one forward chaining iteration: it computes immediate
consequences of a program P and a set of atoms. Reaching a fixpoint for a
program means that all atoms entailed by that program are computed. The
theorem indicates that a fixpoint is reached in at most ω steps.

Using the immediate consequence operator, a naive forward chaining al-
gorithm can be directly formulated. The structure of the naive algorithm
is the same for several operators defined in this chapter and therefore the
common structure is shared, see Algorithm 7.1. It is then used to specify an
operator-specific algorithm, see Algorithm 7.2 for the naive forward chain-
ing algorithm for the TP operator. The algorithm is naive because all previ-
ously computed results are recomputed in each iteration.

Algorithm 7.1: Naive forward chaining

1 Name

naive-fw-chaining(XP)

7.2 classical forward chaining 87

4 Input

XP − one of TP, skTP, scTP,dcTP operators defined on a lattice L

, P is a definite range restricted program

7 Output

F − a set, F = XωP , F ∈ L

10 Variables

F ′ − a set, F ′ ∈ L

13 Initialization

F := ∅; F ′ := XP(∅)

16 begin

while F 6= F ′
begin

19 F := F ′

F ′ := XP(F)
end

22

return F

end

Algorithm 7.2: Naive TP forward chaining

Name

naive-tp-fw-chaining(P)

3

Input

P − a definite range restricted program

6

Output

F − a set of ground atoms, F = TωP
9

begin

return naive-fw-chaining(TP)

12 end

Proposition 105. Let XP be a continuous operator on a complete lattice. Then
Algorithm 7.1 computes the least fixpoint of XP.

Proof. i-th iteration of the algorithm computes XiP. XP is continuous there-
fore XωP is the least fixpoint of XP by Theorem 54.

Proposition 106. Let P be a definite range restricted program. Algorithm 7.2 com-
putes TωP = lfp(TP) in a finite number of steps.

Proof. Algorithm 7.2 only calls Algorithm 7.1 with TP as input, therefore the
first part of the proposition follows immediately from Proposition 105 and
the fact that TP is continuous (Lemma 60).
F either grows in each iteration or remains unchanged because TP is mono-

tonic by its continuity and Lemma 47. The number of ground atoms is finite

88 forward chaining revisited

because no other functional symbols other than constants are assumed and
the program is finite, cf. Observation 25. Therefore F remains unchanged
after a finite number of steps and the algorithm terminates.

The idea of semi-naive (or incremental) evaluation of definite programs lies
in the observation that new ground atoms can be derived only if a rule is
instantiated using at least one ground atom that was new in the last iteration
(otherwise it was derived in an earlier iteration). A semi-naive procedure
therefore has to keep record of newly derived facts.

Definition 107 (Semi-naive TP mapping). Let P be a definite range restricted
program. The semi-naive immediate consequence mapping TP for P is

TP : P(HB)×P(HB)→ P(HB)

TP(F,∆) = { a ∈ HB | (∃s = (r,σ))r = H← B1, . . . ,Bn ∈ P,

(∃1 6 j 6 n)Bjσ ∈ ∆,

dom(σ) = var(r),body(s) ⊆ F,head(s) = a }

where HB is the Herbrand base, i.e., F ⊆ HB and ∆ ⊆ HB are sets of ground atoms.

Algorithm 7.3: Semi-naive TP forward chaining

Name

semi-naive-fw-tp-chaining(P)

3

Input

P − a definite range restricted program

6

Output

F − a set of ground atoms, F = TωP
9

Variables

∆ − a set of ground atoms

12

Initialization

F := ∅; ∆ := TP(∅)
15

begin

while ∆ 6= ∅
18 begin

F := F∪∆
∆F := TP(F,∆) {new atoms}

21 ∆ := ∆F \ F {forbid redundant and cyclic derivations}

end

24 return F

end

Algorithm 7.3 is a semi-naive forward chaining procedure formulated
using the semi-naive TP mapping. In each iteration of the while cycle, new
ground atoms are collected in ∆ by instantiating rules of P using already
known atoms from F and using at least one atom from ∆.

Lemma 108. Let P be a definite range restricted program. TP(Tn+1P , Tn+1P \TnP) =

Tn+2P \ Tn+1P .

7.3 support keeping forward chaining 89

Proof. Follows directly from Definition 107.

Proposition 109. Let P be a definite range restricted Datalog program. Algorithm
7.3 terminates and computes the least fixpoint of TP.

Proof. Let n be the iteration number and let Fn and ∆n be the F and ∆

computed in the n-th iteration (i.e. after n executions of the while body).
We will show that Fn = TnP and ∆n = Tn+1P \ TnP by induction on n.
n = 0.
F0 = ∅ = T0P and ∆0 = TP(∅) = T1P = T1P \ T0P
n n+ 1.
First for ∆i:
∆n+1 = TP(Fn+1,∆n) \ Fn+1 from Alg. 7.3 for ∆n+1

= TP(Fn ∪∆n,∆n) \ (Fn ∪∆n) from Alg. 7.3 for Fn+1
= TP(T

n
P ∪ (T

n+1
P \ TnP) ,

Tn+1P \ TnP) \ (T
n
P ∪ (T

n+1
P \ TnP)) induction hypothesis

= TP(T
n+1
P , Tn+1P \ TnP) \ T

n+1
P Lemma 51 (1.)

= Tn+2P \ Tn+1P Lemma 108

Therefore ∆i = T i+1P \ T iP, for all i ∈N0. Now for Fi:

Fn+1 = Fn ∪∆n from Algorithm 7.3 for Fn+1
= TnP ∪∆n induction hypothesis

= TnP ∪ (T
n+1
P \ TnP)

= Tn+1P TnP ⊆ T
n+1
P (Lemma 51)

TωP = lub({TβP | β < ω}) by Definition 50 and Fω =
⋃
{TnP | n < ω}.

Therefore the result of Algorithm 7.3 is TωP which is the least fixpoint of TP
by Theorem 54 and continuity of TP.
∆ always contains only those atoms that were not generated in a previous

iteration because the set of already generated atoms is subtracted when a
new ∆ is computed. The number of ground atoms with no functional sym-
bols other than constants is finite. Therefore ∆ is empty and the algorithm
terminates.

complexity. Let P be a range restricted Datalog program and let B ⊆ P
be the set of base facts in P. It is a well-known result [146] that TωP can be
computed in O(nk) time, where n is the number of terms (i.e. constants
because all atoms in B are ground) in B and k is the maximum over all rules
in P of the number of variables in that rule. To compute TωP in the given
time, one can generate all instances of all rules in P using the constants in
B and then apply the well-known algorithm for the deductive closure of a
set of ground Horn clauses [71], which runs in linear time (note that the sat-
isfiability problem is NP-complete for the general class of all propositions).
Algorithms 7.2 and 7.3 therefore run in time O(nk).

7.3 support keeping forward chaining

The original reason maintenance methods and some of the algorithms pre-
sented in Chapter 8 require a support graph. Traditionally, support graphs
were recorded by a reason maintenance component in form of so-called jus-
tifications passed to the component by a reasoner. This section presents an
extended immediate consequence operator which keeps record of supports

90 forward chaining revisited

directly. To the best of our knowledge, this has not yet been done in the liter-
ature and it has the advantage that compact support graphs induced by the
fixpoint of this operator can thus be easily and simply described. These com-
pact support graphs are studied in this dissertation and correspond directly
to the data-dependency networks studied in classical reason maintenance.

Definition 110 (Support Herbrand base). Let P be a definite program. The sup-
port Herbrand base sHB is the set of all ground supports. sHBP is the set of all
ground supports with respect to P.

Lemma 111. sHBP is finite.

Proof. P comprises a finite number of rules by Definition 15 and HBP is
finite by Observation 25. In a finite number of rules, there is only a finite
number of variables and for any support (r,σ) it by definition holds that
dom(σ) ⊆ var(r). Therefore, for each rule in P, there is only a finite number
of substitutions that make it ground. Therefore there is only a finite number
of ground supports with respect to P, i.e. sHBP is finite.

Definition 112 (Support keeping immediate consequence operator). Let P
be a definite range restricted program. The support keeping immediate consequence
operator skTP for P is the mapping:

skTP : P(sHBP)→ P(sHBP)

skTP(F) = { s = (r,σ) ∈ sHBP | r = H← B1, . . . ,Bn ∈ P,

dom(σ) = var(r), body(s) ⊆ heads(F) }
where F ⊆ sHBP is a set of supports with respect to P.

Let us first explore skTP on an example.

Figure 7.4: The compact support graph induced by the fixpoint of skTP for
P from Example 113.

Example 113. Consider the following program P:

r1 = a← >
r2 = b← >
r3 = c← a,b

r4 = d← b

r5 = e← c,d
Let us explore ordinal powers of skTP:

7.3 support keeping forward chaining 91

skT0P = ∅
skT1P = { (r1, ∅), (r2, ∅) }

skT2P = { (r1, ∅), (r2, ∅), (r3, ∅), (r4, ∅) }

skT3P = { (r1, ∅), (r2, ∅), (r3, ∅), (r4, ∅), (r5, ∅) }

It is easy to verify that skT iP = skT3P for all i > 3 in this example. See the
compact support graph induced by skT3P in Figure 7.4.

Note that heads(skTP(F)) = TP(heads(F)).

Lemma 114. skTP is continuous.

Proof. It is easy to see that skTP is monotonic: let M ⊆ M ′ ⊆ sHBP then
skTP(M) ⊆ skTP(M

′) because if body(s) ⊆ M for a support s then also
body(s) ⊆M ′.

To show that skTP is continuous we have to show (by Definition 46 and
Observation 42) that skTP(

⋃
Y) =

⋃
{skTP(M) | M ∈ Y} for each directed

Y ⊆ P(sHBP). Let Y be a directed subset of P(sHBP).⋃
{skTP(M) | M ∈ Y} ⊆ skTP(

⋃
Y) follows directly from monotonicity of

skTP: skTP(M) ⊆ skTP(
⋃
Y) for each M ∈ Y.

Let us prove skTP(
⋃
Y) ⊆

⋃
{skTP(M) |M ∈ Y}. Let s = (r,σ) ∈ skTP(

⋃
Y).

Then r ∈ P and body(s) ⊆
⋃
Y. Therefore there is Yi ∈ Y such that bi ∈ Yi

for each 1 6 i 6 n, where body(s) = {b1, . . . ,bn}. {Y1, . . . , Yn} is a finite sub-
set of Y, therefore there is Y ′ ∈ Y such that

⋃
{Y1, . . . , Yn} ⊆ Y ′ because Y is

directed. Therefore body(s) ⊆ Y ′ and therefore s ∈ skTP(Y ′) ⊆
⋃
{skTP(M) |

M ∈ Y}.

Algorithm 7.4: Naive forward chaining with keeping supports

Name

2 naive-sktp-fw-chaining(P)

Input

5 P − a nonempty finite definite range restricted program

Output

8 F − a set of supports, F = skTωP

begin

11 return naive-fw-chaining(skTP)

end

Proposition 115. Let P be a definite range restricted program. Algorithm 7.4 ter-
minates and computes the least fixpoint of skTP.

Proof. Algorithm 7.4 terminates because sHBP is finite (Lemma 111) and
skTP is monotonic because it is continuous (Lemma 47).

The rest of the claim follows directly from Proposition 105 by using
Lemma 114 and the fact that (P(sHBP),⊆) is a complete lattice (Observa-
tion 42).

Much like in the case of classical forward chaining, a semi-naive version
of the support keeping immediate consequence operator can be defined.

92 forward chaining revisited

Definition 116 (Semi-naive support keeping immediate consequence map-
ping). Let P be a definite range restricted program. The semi-naive support keeping
immediate consequence mapping skTP for P is the mapping:

skTP : P(sHBP)×P(HBP)→ P(sHBP)

skTP(F,∆) = { s = (r,σ) ∈ sHBP | r = H← B1, . . . ,Bn ∈ P,

(∃1 6 j 6 n)Bjσ ∈ ∆,

dom(σ) = var(r), body(s) ⊆ heads(F) }
where F ⊆ sHBP is a set of supports and ∆ ⊆ HBP is a set of atoms.

Lemma 117. Let P be a definite range restricted program. Then T iP = heads(skT iP),
for all i ∈N0, and TωP = heads(skTωP).

Proof. By induction on i.
i = 0: T0P = ∅ and skT0P = ∅ and heads(∅) = ∅.
i i + 1: ⊆: Let a ∈ T i+1P . Then there is a support s of a such that

body(s) ⊆ T iP, therefore also body(s) ⊆ heads(skT iP) by the induction hy-
pothesis. Therefore s ∈ skT i+1P , i.e. a ∈ heads(skT i+1P).
⊇: Let a ∈ heads(skT i+1P). Then there is a support s of a such that

body(s) ⊆ heads(skT iP), i.e. body(s) ⊆ T iP by the induction hypothesis and
thus a ∈ T i+1P .

Naive skTP forward chaining terminates by Proposition 115 therefore
there is an i ∈N0 such that T iP = TωP and therefore TωP = heads(skTωP).

Lemma 118. skTP(skTnP , TnP \ Tn−1P) = skTn+1P \ skTnP .

Proof. First, let us show that skTP(skTnP , TnP \ Tn−1P) ⊆ skTn+1P \ skTnP . Let
s ∈ skTP(skTnP , TnP \ Tn−1P). Then body(s) ⊆ heads(skTnP) from the defini-
tion of skTP(F,∆). Therefore s ∈ skTn+1P , from the definition of skTP and the
definition of ordinal powers of a monotonic operator. There is a b ∈ body(s)
such that b ∈ TnP \ Tn−1P by the definition of skTP(F,∆). Thus b /∈ Tn−1P and
therefore s /∈ skTnP by the definition of skTP and the simple observation that
skTP cannot derive support for an atom sooner than TP derives the atom
(Lemma 117). In summary s ∈ skTn+1P \ skTnP .

Let us show that skTn+1P \ skTnP ⊆ skTP(skT
n
P , TnP \Tn−1P). Let s ∈ skTn+1P \

skTnP . Then body(s) ⊆ heads(skTnP) from monotonicity and the definition
of skTP. There must be a b ∈ body(s) such that b /∈ heads(skTn−1P) be-
cause s /∈ skTnP . Therefore s ∈ skTP(skTnP , TnP \ Tn−1P) by the definition of
skTP(F,∆).

Algorithm 7.5: Semi-naive forward chaining with keeping supports

Name

semi-naive-skTP-fw-chaining(P)

3

Input

P − a definite range restricted program

6

Output

F − a set of supports, F = skTωP
9

Variables

∆ − a set of supports

12 ∆F − a set of supports

7.4 dependent supports algorithm 93

Initialization

15 F := ∅; ∆F := skTP(∅); ∆ := skTP(∅)

begin

18 while ∆ 6= ∅
begin

F := F∪∆F
21 ∆F := skTP(F, heads(∆)) {new supports}

∆ := ∆F \ {s ∈ ∆F | head(s) ∈ heads(F)} {forbid redundant and

cyclic derivations}

24 end

return F

27 end

Algorithm 7.5 semi-naively computes a set of supports S which corre-
sponds to all rule instances generated during a classical forward chaining
such as in Algorithm 7.3. It differs from classical semi-naive forward chain-
ing because some of the new supports may support an atom that was de-
rived in a previous iteration. Such supports belong to the fixpoint but have
to be removed from further computation to avoid redundant and cyclic
derivations.

Proposition 119. Let P be a definite range restricted program. Algorithm 7.5 ter-
minates and computes the least fixpoint of skTP.

Proof. Analogical to Proposition 109 by using Lemma 111, Lemma 114, and
Lemma 118.

Algorithms 7.4 and 7.5 derive all the information that normal forward
chaining derives plus the supports in addition. The correspondence is shown
by Lemma 117, where the function heads() projects supports out and leaves
only head atoms.

complexity. Algorithm 7.5 has the same worst case time complexity
as classical semi-naive forward chaining, i.e. O(nk), because it is essentially
the same as classical semi-naive forward chaining only with remembering
supports.

7.4 dependent supports algorithm

Algorithms in Chapter 8 that process rule removal updates of a program,
and its fixpoint, often require only a specific subgraph of the whole support
graph corresponding to the fixpoint. The subgraph of interest is the graph
induced by the set of supports that depend on a rule to be removed.

The algorithm to compute the set of such supports is a simple modifi-
cation of the semi-naive forward chaining, see Algorithm 7.6. Analogous
algorithms can be easily formulated for all the other (extended) operators
described in this chapter. The idea is the same and the actual differences
are small and thus only Algorithm 7.6 is described here as a representative
example. See also Observation 122.

Algorithm 7.6: Supports depending on a rule from a set of rules.

94 forward chaining revisited

Name

dependent-supports(P, L, D)

3

Input

P − a definite range restricted program

6 L − a set of supports, L = skTωP
D − a set of rules, D ⊆ P

9 Output

F − a set of supports from L that depend on a rule from D

12 Variables

∆ − a set of supports

∆F − a set of supports

15

Initialization

F := ∅; ∆F := skTD(L); ∆ := skTD(L)

18

begin

while ∆ 6= ∅
21 begin

F := F∪∆F
∆F := skTP(L, heads(∆)) {new supports}

24 ∆ := ∆F \ {s ∈ ∆F | head(s) ∈ heads(F)} {forbid redundant and

cyclic derivations}

end

27

return F

end

Algorithm 7.6 is similar to the semi-naive support keeping Algorithm 7.5.
One difference is that ∆ and ∆F are initialized with supports to be removed.
The second difference is that the skTP mapping is applied to the fixpoint
and ∆ which means that the computation is in some cases faster, see Figure
7.5.

Figure 7.5: Support graph SG(skTωP) for program P from Example 120.

Example 120. Let P = {a← >;b← a; c← a,b}. See the corresponding induced
support graph in Figure 7.5. Support s3 is derived only in the second iteration of

7.4 dependent supports algorithm 95

support keeping forward chaining while it is derived already in the first iteration of
Algorithm 7.6 with the input L = skTωP , D = {a← >}.

Lemma 121. Algorithm 7.6 is correct in the sense that it computes exactly the
supports from skTωP that depend on a rule from D in SG(skTωP).

Proof. Let i be the iteration number and let Fi and ∆F,i and ∆i be the F,
∆F and ∆ computed in the i-th iteration (i.e. after i executions of the while
body). Let G = SG(skTωP), all uses of the “depends” relationship are with
respect to G in this proof.

We will show by induction on i that s ∈ Fi iff s ∈ skTωP depends on a rule
from D and there is a sequence of at most 6 i supports as evidence.
i = 0: Trivial because F0 = ∅.
i = 1: F1 = F0 ∪ ∆F,0 = ∅ ∪ skTD(skTωP). That is if s ∈ F1 then s ∈

skTD(skTωP) and thus s depends on a rule from D and s itself is the ev-
idence. Conversely, if s ∈ skTωP and it is evidenced by a single support
then the support must directly depend on a rule in D and therefore s ∈
skTD(skTωP) = F1.
i i+ 1.
⇒: Let s ∈ Fi+1. Fi+1 = Fi ∪∆F,i. If s ∈ Fi then the statement holds by

induction hypothesis. If s ∈ ∆F,i then s ∈ skTP(skTωP , heads(∆i−1)). There-
fore there is a support t ∈ ∆i−1 such that head(t) ∈ body(s). ∆i−1 ⊆ Fi
and thus, by induction hypothesis, t depends on a rule from D and there is
a sequence of at most i supports that shows it. Adding t to the end of the
sequence creates one of length at most i+ 1 that shows that s depends on a
rule from D.
⇐: Let s ∈ skTωP such that it depends on a rule from D and there is a

sequence of supports t1, . . . , ti, ti+1 that shows it. Then by induction hy-
pothesis ti ∈ Fi. Therefore there is a j < i such that head(ti) ∈ heads(∆j)
(because Fi =

⋃i
k=0 ∆F,k and “∆ is ∆F without repetitions”). Therefore

ti+1 ∈ skTP(skTωP , heads(∆j)), and thus either ti+1 ∈ ∆F,j+1 or ti+1 ∈ Fj,
in either case ti+1 ∈ Fj+1 ⊆ Fi+1.

Let m be the maximal length of non-cyclic paths in G. If ∆⌈m
2

⌉
+1
6= ∅

(one iteration of the algorithm extends paths by up to two nodes) then there
is path of length at least m + 1 in G that is either non-cyclic, which is in
contradiction with the choice of m or it is cyclic, which is in contradiction
with the construction of ∆ in the algorithm – supports supporting an atom
for which a support was previously computed are excluded. m is finite
(follows from Observation 25 and groundness of support graphs) and thus
Algorithm 7.6 terminates.

Observation 122. The definition of skTP(F,∆) uses only heads(F). Therefore, af-
ter a trivial modification and by Lemma 117, Algorithm 7.6 can compute dependent
supports also when it is given TωP instead of skTωP as input.

Observation 123. Let SU be the output of Algorithm 7.6 for some input P, skTωP ,
D. Then heads(SU) are all the atoms from TωP that depend on a rule from D in
G = SG(skTωP). Each support s in SU depends on a rule from D and thus its head
depends on that rule in G. If an atom in TωP depends on a rule in D it is because
at least one of its supports depends on a rule from D and thus such a support is in
SU.

96 forward chaining revisited

complexity. The worst case time complexity of Algorithm 7.6 can be
estimated also as O(nk) because, in the worst case, the set of dependent
supports can be simply computed from scratch. While the algorithm uses
the already computed fixpoint to speed up computation, in the worst case it
however runs only as fast as normal forward chaining. The worst case occurs
when for each support s it holds that body(s) ⊆ T iP and body(s)∩ T i−1P = ∅,
i.e. for each support all its body atoms are derived in the same forward
chaining iteration when computing from scratch.

7.5 support counting forward chaining

Keeping record of all supports is not always necessary because they can
be easily rederived as it is shown by Observation 122. Reason maintenance
and explanation may however require more information – for example for
each atom the number of supports it has in skTωP . This section defines an
extended support counting immediate consequence operator, denoted scTP,
which derives atoms and keeps track of their number of supports by means
of multisets. Note that the number of supports is clearly different from the
number of derivations of an atom, see also Section 8.6.

The support counting immediate consequence operator scTP is defined
as follows:

Definition 124 (Support counting immediate consequence operator scTP).
Let P be a finite definite range restricted program. The support counting immedi-
ate consequence operator scTP for P is:

scTP: P(HBP)→ P(HBP)

scTP(S) = [Hσ ∈ HBP | ∃ s = (r,σ),

r = H← B1, . . . ,Bn ∈ P,

body(s) ⊆ root(S), dom(σ) = var(r)]

Figure 7.6: The compact support graph SG(skTωP) for P from Example 125.

Example 125. Consider the following program P:

a← > b← >
c← a d← a

c← b d← b

e← c,d b← e

7.5 support counting forward chaining 97

See the corresponding support graph SG(skTωP) in Figure 7.6. Let us explore
ordinal powers of scTP:

scT0P = ∅m
scT1P = [a,b]

scT2P = [a,b, c, c,d,d]

scT3P = [a,b, c, c,d,d, e]

scT4P = [a,b, c, c,d,d, e,b]

It is easy to verify that scT iP = scT4P for all i > 4 in this example.

Lemma 126. scTP is continuous.

Proof. It is easy to see that scTP is monotonic: let M,M ′ ∈ P(HBP) and
M ⊆m M ′ then scTP(M) ⊆m scTP(M

′) because if body(s) ⊆ root(M)

for a support s then body(s) ⊆ root(M ′) because root(M) ⊆ root(M ′) by
M ⊆m M ′ and the definition of the submultiset relation.

We have to show that scTP(
⋃
mY) =

⋃
m{scTP(M) | M ∈ Y} for each di-

rected Y ⊆ P(HBP) by Definition 46 (continuous operator) and Observation
85. Let Y be a directed subset of P(HBP).

For each M ∈ Y: scTP(M) ⊆m scTP(
⋃
mY) by monotonicity of scTP. Thus⋃

m{scTP(M) |M ∈ Y} ⊆m scTP(
⋃
mY).

Let us show scTP(
⋃
mY) ⊆m

⋃
m{scTP(M) | M ∈ Y}. Let Hσ ∈µm

scTP(
⋃
mY).

Case µ ∈ N. Then there are µ different supports with respect to P that
satisfy the condition of Definition 124 for Hσ. Let (H ← B1, . . . ,Bn,σ) be
one such support. For each 1 6 i 6 n it holds that Biσ ∈m

⋃
mY. Thus for

each 1 6 i 6 n there is a Yi ∈ Y such that Biσ ∈m Yi by the definition of
the multiset union. The set {Y1, . . . , Yn} is a finite subset of the directed set
Y. Therefore there is an M ∈ Y such that

⋃
m{Y1, . . . , Yn} ⊆m M. Therefore

Hσ ∈m
⋃
m{scTP(M) |M ∈ Y} and its multiplicity is at least µ by repeating

the argument µ times.
Case of µ =∞. If the multiplicity of a Biσ is infinite in a multiset in Y then

Hσ is generated infinitely many times in
⋃
m{scTP(M) | M ∈ Y}, from the

definition of scTP, and thus Hσ ∈∞m ⋃
m{scTP(M) | M ∈ Y}. If, on the other

hand, Hσ ∈∞m ⋃
mY while multiplicities in all multisets in Y are finite then

lub({f(Hσ) | (X, f) ∈ Y}) = ∞, i.e. there is an infinite sequence of growing
multiplicities of Hσ in {f(Hσ) | (X, f) ∈ Y}, which means that there is an
infinite sequence of growing finite multiplicities of Hσ in {scTP(M) |M ∈ Y}
by the previous argument,i.e. lub({f(Hσ) | (X, f) ∈ {scTP(M) |M ∈ Y}}) =∞.

In summary, scTP(
⋃
mY) ⊆m

⋃
m{scTP(M) |M ∈ Y}.

Note that the proof of Lemma 126 does not use the assumptions that P
is a range restricted and Datalog program and thus the scTP operator is,
in this sense, as powerful as the classical TP operator while providing more
information. In fact, for Datalog programs, multiplicities of atoms in scTP(S)
are finite if multiplicities of atoms in S are finite. See Section 7.7, for more
information.

Algorithm 7.7: Naive support counting forward chaining.

1 Name

naive-scTP-fw-chaining(P)

4 Input

98 forward chaining revisited

P − a definite range restricted program

7 Output

F − a multiset of ground atoms, F = scTωP

10 begin

return naive-fw-chaining(scTP)

end

Proposition 127. Let P be a definite range restricted program. Algorithm 7.7 ter-
minates and computes the least fixpoint of scTP.

Proof. scTP is monotonic because it is continuous (Lemma 47) which also
means that root(scTP(M)) ⊆ root(scTP(M ′)), for each M ⊆m M ′. The root
set is always a subset of HBP which is finite (Observation 25) and the num-
ber of rules in P is finite by definition. Therefore Algorithm 7.7 terminates.

The rest of the claim follows directly from Proposition 105 by using
Lemma 126 and the fact that (P(HBP), ⊆m) is a complete lattice (Lemma
84).

Definition 128 (Semi-naive scTP mapping). Let P be a definite range restricted
program. The semi-naive support counting immediate consequence mapping is de-
fined as follows:

scTP: P(HBP)×P(HBP)→ P(HBP)

scTP(S,∆) = [Hσ ∈ HBP | ∃ s = (r,σ),

r = H← B1, . . . ,Bn ∈ P,

(∃1 6 j 6 n)Bjσ ∈ ∆,

body(s) ⊆ root(S),dom(σ) = var(r)],
where S ∈ P(HBP) is a multiset and ∆ ⊆ HBP is a set of ground atoms.

Lemma 129. Let P be a definite range restricted program. Then T iP = root(scT iP),
for all i ∈N0. Also TωP = root(scTωP)

Proof. By induction on i.
i = 0: T0P = ∅ and scT0P = ∅m and root(∅m) = ∅.
i i + 1: ⊆: Let a ∈ T i+1P . Then there is a support s of a such that

body(s) ⊆ T iP, therefore also body(s) ⊆ root(scT iP) by the induction hypoth-
esis. Therefore a ∈m scT i+1P , i.e. a ∈ root(scT i+1P). ⊇: Let a ∈ root(scT i+1P).
Then there is a support s of a such that body(s) ⊆ root(scT iP), i.e. body(s) ⊆
T iP by the induction hypothesis and thus a ∈ T i+1P .

All together T iP = root(scT iP), for all i ∈N0.

TωP =
⋃
{T
β
P | β < ω} by definition, limit case

=
⋃
{root(scTβP) | β < ω} by the first part of the lemma

= root(
⋃
m{scT

β
P | β < ω}) by Lemma 79

= root(scTωP) by definition, limit case

Lemma 130. scTP(scTnP , TnP \ Tn−1P) = scTn+1P 	 scTnP .

Proof. Let us show scTP(scT
n
P , TnP \ Tn−1P) ⊆m scTn+1P 	 scTnP .

Let a ∈m scTP(scT
n
P , TnP \ Tn−1P) and let ma be its multiplicity. From the

definition of scTP(F,∆), there are ma supports of a with respect to P, let

7.5 support counting forward chaining 99

s be one of them, such that body(s) ⊆ root(scTnP). scT
n+1
P = scTP(scT

n
P),

therefore all such supports s are generated in scTn+1P too and a ∈m scTn+1P

with multiplicity > ma (> because there may be supports of a that do not
satisfy the additional condition of the semi-naive mapping that there is a
b ∈ body(s) such that b ∈ TnP \ Tn−1P). There is a b ∈ body(s) such that
b ∈ TnP \ Tn−1P by the definition of scTP(F,∆). Thus b /∈ Tn−1P and therefore
s is not generated in the computation of scTnP . Therefore, by the definition
of scTP, the multiplicity of a in scTnP is by ma smaller than the multiplicity
of a in scTn+1P . In summary a ∈m scTn+1P 	 scTnP with the multiplicity ma,
therefore scTP(scTnP , scTnP \ scTn−1P) ⊆m scTn+1P 	 scTnP .

Let us show scTn+1P 	 scTnP ⊆m scTP(scT
n
P , TnP \ Tn−1P).

Let a ∈m scTn+1P 	 scTnP with a multiplicity ma. Then there are ma sup-
ports of awith respect to P, let s be one of them. Then body(s) ⊆ root(scTnP)
and body(s) * root(scTn−1P). Therefore there is a b ∈ body(s) such that
b ∈ root(scTnP) \ root(scTn−1P), i.e. b ∈ TnP \ Tn+1P by Lemma 129. There-
fore a ∈m scTP(scT

n
P , TnP \ Tn−1P) with the multiplicity ma. In summary,

scTn+1P 	 scTnP ⊆m scTP(scT
n
P , TnP \ Tn−1P).

Algorithm 7.8: Semi-naive support counting forward chaining.

Name

semi-naive-scTP-fw-chaining(P)

3

Input

P − a definite range restricted program

6

Output

F − a multiset of ground atoms, F = scTωP
9

Variables

∆ − a set of ground atoms

12

Initialization

F := ∅m; ∆ := TP(∅); ∆F := scTP(∅m)

15

begin

while ∆ 6= ∅
18 begin

F := F]∆F
∆F := scTP(F,∆) {new atoms}

21 ∆ := root(∆F) \ root(F) {forbid redundant and cyclic derivations

}

end

24 return F

end

Proposition 131. Let P be a definite range restricted program. Algorithm 7.8 ter-
minates and computes the least fixpoint of scTP.

Proof. Analogical to the proof of Proposition 109 by using the fact that HBP
is finite in the Datalog case, Lemma 126, and Lemma 130.

100 forward chaining revisited

The following proposition shows that the support counting operator in-
deed counts the number of supports as one would expect.

Proposition 132. Let P be a definite range restricted program. Then a ∈xm scTωP
iff x = |{s ∈ skTωP | head(s) = a}|.

Proof. ⇒: Let a ∈xm scTωP . Then there are x supports of a with respect to P
such that for each such support s there is an is ∈ N0 such that body(s) ⊆
root(scT isP) by definition of ordinal power (the limit case), and by definition
of scTP. root(scT isP) = T isP by Lemma 129, therefore body(s) ⊆ T isP and thus
s ∈ skT is+1P by definition of skTP and Lemma 117.
⇐: Similarly.

complexity. It is easy to see that Algorithm 7.8 has the same worst
case time complexity as classical semi-naive forward chaining, i.e. O(nk).

7.6 derivation counting forward chaining

An atom is derivable from a program if it has a derivation with respect to the
program. An approach to reason maintenance, in the next section, is based
on counting the number of derivations of atoms. This section defines an ex-
tended immediate consequence operator that also records all dependencies
of each atom which are later used to count the number of all derivations of
each atom. A dependency of an atom is informally a set of atoms that are
in a derivation of that atom.

Let us assume that during a forward chaining iteration, a set of new de-
pendencies D of an atom bi is derived. Dependencies D correspond to new
derivations of bi and may contribute to new derivations of head(s) for any
s in the support graph such that bi ∈ body(s). A new derivation of head(s)
can result from a combination of a new derivation of bi with existing deriva-
tions of bj ∈ body(s), j 6= i. Not all combinations are admissible. No deriva-
tion of a bj ∈ body(s) that uses head(s) can be used as a part of a derivation
of head(s).

Let us now define dependencies formally.

Definition 133 (Extended atom, dependency). Let P be a program. An ex-
tended atom is a pair (a,D), where a ∈ HB and D ⊆ HB. An extended atom
with respect to P is a pair (a,D), where a ∈ HBP and D ⊆ HBP. D is called a
dependency of a.

Definition 134 (Derivation counting Herbrand base). Let P be a definite pro-
gram. Then

dHB = HB×P(HB) is the derivation counting Herbrand base, and

dHBP = HBP ×P(HBP) is the derivation counting Herbrand base
with respect to P.

The derivation counting Herbrand base is non-empty for a non-empty
program because at least one constant is assumed.

Observation 135. If HB (resp. HBP) is finite then dHB (resp. dHBP) is.

Lemma 136. If P is a program with no function symbols other than constants then
dHBP is finite.

7.6 derivation counting forward chaining 101

Proof. The lemma follows directly from Observation 135 and Observation
25.

The derivation counting immediate consequence operator dcTP is defined
as follows:

Definition 137 (Derivation counting immediate consequence operator). Let
P be a definite range restricted program. The derivation counting immediate
consequence operator dcTP for P is the mapping:

dcTP: P(dHBP) → P(dHBP)

dcTP(S) = [(Hσ,D) ∈ dHBP | (∃s = (r,σ)),

dom(σ) = var(r), r = H← B1, . . . ,Bn ∈ P;

∀1 6 i 6 n ∃Di (Biσ,Di) ∈m S;Hσ /∈ Di,
Hσ 6= Biσ,D =

⋃n
i=1Di ∪ {Biσ}].

The dcTP operator maps a multiset of extended atoms with respect to
P to a multiset of extended atoms with respect to P. Repeatedly generated
extended atoms are kept because the operator is defined using a multiset.
Note that most cyclic derivations are avoided by the condition Hσ /∈ Di
which does not cover one step cycles (cycles of length 2 in the respective
support graph), hence the condition Hσ 6= Biσ.

A reproduction of Figure 7.6 for convenience of the reader. The compact
support graph induced by the fixpoint of skTP, where P = {a ← >;b ←
>; c← a;d← a; c← b;d← b; e← c,d;b← e}.

Example 138. Consider the example in Figure 7.6. Let us explore ordinal powers
of dcTP:

dcT0P = ∅m
dcT1P = [(a, ∅), (b, ∅)]
dcT2P = [(a, ∅), (b, ∅), (c, {a}), (c, {b}), (d, {a}), (d, {b})]

dcT3P = [(a, ∅), (b, ∅), (c, {a}), (c, {b}), (d, {a}), (d, {b}), (e, {c,d,a}),

(e, {c,d,b}), (e, {c,d,a,b}), (e, {c,d,a,b})]

dcT4P = [(a, ∅), (b, ∅), (c, {a}), (c, {b}), (d, {a}), (d, {b}), (e, {c,d,a}),

(e, {c,d,b}), (e, {c,d,a,b}), (e, {c,d,a,b}), (b, {e, c,d,a})]

It is easy to verify that dcT iP = dcT4P for all i > 4 in this example.

Lemma 139. dcTP is continuous.

102 forward chaining revisited

Proof. It is easy to see that dcTP is monotonic: let M,M ′ ∈ P(dHBP) and
M⊆mM ′ then dcTP(M)⊆m dcTP(M ′) because if (Biσ,Di)∈xmM then also
(Biσ,Di) ∈ym M ′ and x 6 y by the definition of the submultiset relation.

We have to show that dcTP(
⋃
mY) =

⋃
m{dcTP(M) | M ∈ Y} for each di-

rected Y ⊆ P(dHBP) by Definition 46 (continuous operator) and Observation
85. Let Y be a directed subset of P(dHBP).

For eachM ∈ Y: dcTP(M)⊆m dcTP(
⋃
mY), by monotonicity of dcTP. Thus⋃

m{dcTP(M) |M ∈ Y} ⊆m dcTP(
⋃
mY).

Let us show that dcTP(
⋃
mY) ⊆m

⋃
m{dcTP(M) |M ∈ Y}.

Let (Hσ,D) ∈µm dcTP(
⋃
mY).

Case µ ∈ N. Let s = (H ← B1, . . . ,Bn,σ) and Di, 1 6 i 6 n, be
any of the µ combinations that satisfy the multiset-builder condition (see
Definition 137). For each ei = (Biσ,Di) ∈m

⋃
mY let Yi ∈ Y be a set

with ei ∈m Yi ⊆m
⋃
mY. Such a set exists by definition of the multiset

union. The set {Y1, . . . , Yn} is a finite subset of the directed set Y. Therefore
there is an M ∈ Y such that

⋃
m{Y1, . . . , Yn} ⊆m M. Therefore (Hσ,D) =

(Hσ,
⋃n
i=1Di ∪ {Biσ}) ∈m

⋃
m{dcTP(M) | M ∈ Y} and its multiplicity is at

least µ by repeating the argument µ times.
Case µ = ∞. If the multiplicity of ei is infinite in a multiset in Y then

(Hσ,D) is generated infinitely many times in {dcTP(M) | M ∈ Y} by the
definition of dcTP, and thus (Hσ,D) ∈∞m {dcTP(M) | M ∈ Y}. If, on the
other hand, ei ∈∞m ⋃

mY while multiplicities in all multisets in Y are finite
then lub({f(ei) | (X, f) ∈ Y}) =∞, i.e. there is an infinite sequence of growing
multiplicities of ei in {f(ei) | (X, f) ∈ Y}, which means that there is an infinite
sequence of growing finite multiplicities of (Hσ,D) in {dcTP(M) |M ∈ Y} by
the previous argument, i.e. m = lub({f(Hσ) | (X, f) ∈ {dcTP(M) |M ∈ Y}}) =∞.

In summary, dcTP(
⋃
mY) ⊆m

⋃
m{dcTP(M) |M ∈ Y}.

The naive version of forward chaining with dcTP is directly analogous to
the classical naive forward chaining, see Algorithm 7.9.

Algorithm 7.9: Naive forward chaining with the dcTP operator.

Name

2 naive-dcTP-fw-chaining(P)

Input

5 P − a definite range restricted program

Output

8 F − a multiset of extended atoms, F = dcTωP

begin

11 return naive-fw-chaining(dcTP)

end

Lemma 140. Let G = (S, F,E, l) be a support graph and s ∈ S a support. Let
W = (SW , FW ,EW , lW) be a well-founded subgraph of G that includes s. Then
there is a derivation of head(s) in W that includes s.

Proof. We will show how to find a minimal well-founded subgraph of W
that includes s and has a node labelled head(s) as its only sink node.

7.6 derivation counting forward chaining 103

W may not be compact – there may be several nodes labelled head(s),
let z be one such node (note, that a derivation may be non-compact, see
Definition 98 and Example 100). If z is not a sink node of W or if it is not
the only sink node of W then it is easy to see that all nodes that z does not
depend on make W not minimal. Let D = {a ∈ FW | z does not depend on
a in W}, e = {t ∈ SW | z does not depend on t in W}. It is easy to verify
that W ′ = (W − E) −D is a connected well-founded subgraph of W that
includes s and has head(s) as its only sink node.

The only admissible way (see Definition 86) how W ′ may be not minimal
is that some of its atom nodes have more than one support.

Let A be the set of nodes in W ′ with more than one support: A = {a |

a ∈ FW ′ , |{t ∈ SW ′ | (t,a) ∈ EW ′ }| > 1}. This is a redundancy which can be
reduced by removing all but one support of each such a. Let f : A → SW ′

be a function from atom nodes to supports which for each atom node a
selects one support out of all its supports {t ∈ SW ′ | (t,a) ∈ EW ′ } and
such that f(l−1

W ′(head(s))) = s. Such a function exists because finite support
graphs are assumed. Then W ′′ = W ′ − (SW ′ ∩ f(FW ′)) is a subgraph of
W ′ it is well-founded because W ′ is well-founded and each atom node has
exactly one support selected by f. W ′′ however may not be minimal w.r.t
the subgraph relationship: removing a support s may leave new sink nodes
labelled body(s). z does not depend on the new sink nodes in W ′′ and thus
the previous approach of removing superfluous sink nodes can be applied.
Let W ′′′ be the support graph resulting from recursively removing all such
sink nodes (except for z) and their supports. Then W ′′′ is a minimal well-
founded subgraph that includes s and has z as its only sink node, i.e. W ′′′

is a derivation of head(s).

Proposition 141. Let P be a definite range restricted program. Algorithm 7.9 ter-
minates and computes the least fixpoint of dcTP.

Proof. dcTP is monotonic because it is continuous (Lemma 47). In the range
restricted Datalog case, there is only a finite number of extended atoms
(Lemma 136) and cycles are prevented by the conditions Hσ /∈ Di and Hσ 6=
Biσ. Therefore Algorithm 7.9 terminates.

The rest of the claim follows directly from Proposition 105 by using
Lemma 139 and the facts that dHBP is non-empty and (P(dHBP), ⊆m)

is a complete lattice (Lemma 84).

The following proposition shows that the dcTP operator counts correctly
in the sense that the multiplicity of extended atoms corresponds to the num-
ber of different derivations of the atom that use atoms only in the atom’s
dependency.

Proposition 142. Let P be a definite range restricted Datalog program. Then
(a,D) ∈xm dcTωP iff there are x derivations of a with respect to P that use all
atoms in D and only atoms in D.

Proof. We will prove by induction on n that (a,D) ∈xm dcTnP iff there are x
derivations of depth (Definition 99) 6 n of a with respect to P that use all
atoms in D and only atoms in D.
n = 1:
⇒: Let (a, ∅)∈m dcT1P . Any support generated in dcT1P has an empty body

because dcT0P = ∅m. Therefore there is exactly one ground support s of a
with respect to P, by definition of dcTP. SG(s) is a derivation of depth 1 of
a with respect to P.

104 forward chaining revisited

⇐: If G is a derivation of depth 1 of a with respect to P then it contains
only one support s of a which thus must have an empty body, from the
definition of a support graph. Therefore (a, ∅) ∈m dcT1P . There is only one
support of a with an empty body therefore there is only one derivation of a
of depth 1 and the multiplicity of (a, ∅) in dcT1P is 1.
n n+ 1:
⇒: Let (a,D) ∈xm dcTn+1P . Then there are x ways to satisfy the multiset-

builder condition for generating (a,D) in dcTn+1P . Let us explore one such
combination. Let s be a support of a generated in dcTn+1P and for each bk ∈
body(s) there is a Dk such that (bk,Dk) ∈m dcTnP and D =

⋃|body(s)|
k=1 Dk ∪

{bk}. By induction hypothesis, for each bk, there is a derivation of length n
that uses all and only atoms in Dk. Because a /∈ Dk for all k, derivations of
body atoms body(s) can be combined into a derivation of a of length n+ 1

by adding s.
Each such combination of derivations of body atoms and a support of

a results in a derivation of a. Different supports of a result in different
derivations of a (they differ at least in the support). By induction hypothesis,
for each bk all derivations of length n using all and only atoms in Dk are
generated in dcTnP and the next application of the dcTP operator generates
all admissible combinations that result in a derivation of (a,D): the multiset-
builder condition of dcTP avoids only cycles and a graph with a cycle is not
minimal and thus it is not a derivation. Therefore the multiplicity is correct.
⇐: Let G be a derivation of depth n+ 1 of a with respect to P that uses

all and only atoms in D. There is exactly one support s of a in G and there-
fore any derivation in G − s has length at most n. G − s is well-founded
(because G is) and it contains all atoms in body(s) as well as a support
for each of them. Therefore, by Lemma 140, for each atom bk ∈ body(s)
there is a derivation in G− s of bk that uses (all and only) atoms Dk. By
induction hypothesis, (bk,Dk) ∈m dcTnP . Then, by the definition of dcTP,

(a,D) ∈m dcTn+1P , where D =
⋃|body(s)|
k=1 Dk ∪ {bk} is the set of atoms in G.

By induction hypothesis, the multiplicity of each (bk,Dk) in dcTnP is cor-
rect. Any derivation of a that uses all and only atoms in D combines deriva-
tions of such bk with a support of a and all and only such supports are gen-
erated by dcTP, by its definition. Thus the multiplicity of (a,D) in dcTn+1P

is correct.

Proposition 142 leads to the following corollary which justifies the opera-
tors name.

Corollary 143. Let P be a definite range restricted Datalog program. Then the
number of derivations of a with respect to P is

derivP#(a) =
∑

∃D(a,D) ∈xm dcTωP

x

Proof. Follows directly from Proposition 142.

Algorithm 7.9 recomputes all the previously computed extended atoms
in each step. Again, it is possible to define a semi-naive version of the dcTP
operator which is then used to specify a semi-naive dcTP forward chaining
procedure.

Definition 144 (Semi-naive dcTP mapping). Let P be a definite range restricted
program. The semi-naive derivation counting immediate consequence mapping is
the mapping:

7.6 derivation counting forward chaining 105

dcTP: P(dHBP)×P(dHBP)→ P(dHBP)

dcTP(S,∆) = [(Hσ,D) ∈ dHBP | ∃ s = (r,σ),

dom(σ) = var(r), r = H← B1, . . . ,Bn ∈ P;

∀1 6 i 6 n ∃Di (Biσ,Di) ∈m S;Hσ /∈ Di,
∃1 6 j 6 n(Bjσ,Dj) ∈m ∆,

Hσ 6= Biσ,D =
⋃n
i=1Di ∪ {Biσ}],

where S ∈ P(dHBP) and ∆ ∈ P(dHBP) are multisets of extended atoms.

Lemma 145. dcTP(dcTnP ,dcTnP 	 dcT
n−1
P) = dcTn+1P 	 dcTnP

Proof. Let us show dcTP(dcT
n
P ,dcTnP 	 dcT

n−1
P) ⊆m dcTn+1P 	 dcTnP . Let

a ∈m dcTP(dcT
n
P ,dcTnP 	 dcT

n−1
P) and let ma be its multiplicity. Then, the

multiset-builder condition of the semi-naive dcTP mapping is satisfied ma
times. Let s = (H ← B1, . . . ,Bl,σ) and Di, 1 6 i 6 l, be any combi-
nation that satisfies the condition. Then they also satisfy the condition of
dcTn+1P because it is less restrictive; i.e. a ∈m dcTn+1P with a multiplicity
at least ma. There are at least ma satisfying combinations that are not sat-
isfied in dcTnP because in each such combination there is a 1 6 j 6 l such
that (Bjσ,Dj) ∈m dcTnP 	 dcT

n−1
P . The rest follows from monotonicity of

the dcTP operator. In summary, dcTP(dcTnP ,dcTnP 	 dcT
n−1
P) ⊆m dcTn+1P 	

dcTnP .
Let us show dcTn+1P 	 dcTnP ⊆m dcTP(dcT

n
P ,dcTnP 	 dcT

n−1
P). Let a ∈m

dcTn+1P 	 dcTnP and let ma be its multiplicity. Then the multiset generating
condition of dcTn+1P is satisfiedma more times than in dcTnP . dcTn+1P is gen-
erated based on dcTnP and dcTnP is generated based on dcTn−1P . Therefore
there arema occurrences of extended atoms in dcTnP 	dcT

n−1
P that generate

a. Therefore the multiplicity of a in dcTP(dcTnP ,dcTnP 	 dcT
n−1
P) is at least

ma. In summary, dcTn+1P 	 dcTnP ⊆m dcTP(dcT
n
P ,dcTnP 	 dcT

n−1
P).

Algorithm 7.10: Semi-naive forward chaining with the dcTP operator.

Name

semi-naive-dcTP-fw-chaining(P)

3

Input

P − a definite range restricted program

6

Output

F − a multiset of extended atoms, F = dcTωP
9

Variables

∆ − a multiset of extended atoms

12

Initialization

F := ∅m; ∆ := dcTP(∅m)

15

begin

while ∆ 6= ∅m
18 begin

F := F]∆
∆ := dcTP(F,∆) {cycles are handled by the dcTP mapping itself

}

106 forward chaining revisited

21 end

return F

24 end

Proposition 146. Let P be a definite range restricted program. Algorithm 7.10
terminates and computes the least fixpoint of dcTP.

Proof. Analogical to the proof of Proposition 109 by using the fact that dHBP
is finite in the Datalog case (Lemma 136), continuity of dcTP (Lemma 139),
and Lemma 145.

If non-empty, the ∆ in semi-naive TP forward chaining always contains
new atoms – atoms that are not in the input set to which the semi-naive
operator is applied. ∆ in Algorithm 7.10 does not satisfy the same property
with respect to extended atoms as Example 147 shows.

Example 147. Let P be the following program:

r1 = a← >; r2 = b← >
r3 = b← a

r4 = c← b

r5 = c← a,b

See Figure 7.7 for the support graph corresponding to the fixpoint of P.
Let us explore ordinal powers of dcTP:

dcT0P = ∅m
dcT1P = [(a, ∅), (b, ∅)]
dcT2P = [(a, ∅), (b, ∅), (b, {a}), (c, {b}), (c, {a,b})]

dcT3P = [(a, ∅), (b, ∅), (b, {a}), (c, {b}), (c, {a,b}), (c, {a,b}), (c, {a,b})]

As you can see, (c, {a,b}) ∈1m dcT2P and (c, {a,b}) ∈3m dcT3P – in total, there are
four derivations of c. Three of the derivations use the same set of atoms {a,b} and
are of different lengths, compare (c) to (d) and (e) in Figure 7.7. The extended atom
(c, {a,b}) is thus in ∆ in two (subsequent) iterations of the while cycle of Algorithm
7.10. Such repeated derivations of the same extended atom are propagated further in
order to derive all derivations of all atoms. Cyclic derivations are prevented by the
definition of the dcTP operator and dcTP semi-naive mapping themselves.

It is easy to verify that dcT iP = dcT3P for all i > 3 in this example.

complexity. Algorithm 7.10 is less efficient than both semi-naive TP
and semi-naive scTP forward chaining because computation cannot stop
when an atom is derived again that has already been derived. A new deriva-
tion of the atom may mean new derivations of its consequences. The algo-
rithm derives each atom as many times as there are derivations of the atom
with respect to P as the preceding example also shows. In the theoretical
worst case, any atom is derivable from any atom. In this case the O(nk)
computation has to be repeated O(nk) times, thus the upper bound on the
worst case time complexity is O(n2k), i.e. not that significantly worse than
for computation of the classical fixpoint.

7.7 multiplicities and multiset operators 107

(a) The compact
support graph
induced by
skTωP .

(b) The derivation of
(c, {b}) in dcT2P .

(c) The derivation of
(c, {a,b}) in dcT2P .

(d) A derivation of
(c, {a,b}) in dcT3P .

(e) A derivation of
(c, {a,b}) in dcT3P .

Figure 7.7: Support graphs illustrating Example 147. Note that each of (b),
(c), (d), (e) is a subgraph of (a) and thus homomorphically em-
bedded in (a).

7.7 multiplicities and multiset operators

A multiset can be infinite in two ways: 1) its root set may be infinite and 2)
it may contain an element with infinite multiplicity and these two options
do not exclude each other. This section shows that the multiset operators
are well-behaved in the sense that they do not create infinite multiplicities
under the assumption of Datalog programs.

The following lemma shows that infinite multiplicities can be reached
only in ω steps, not sooner, beginning from a multiset with finite multiplic-
ities.

Lemma 148. Let P be a definite Datalog program. Let X ∈ P(HBP) be a multiset
with finite multiplicities. Then scTP(X) is a multiset with finite multiplicities.

Proof. There is a finite number of rules in P, a finite number of ground
substitutions for each of the rules because HBP is finite (Observation 25),

108 forward chaining revisited

root(X) is finite for the same reason (Observation 25), and all multiplicities
are finite in X. Therefore there is only a finite number of combinations by
which an atom Hσ can be generated in scTP(X). Therefore multiplicities of
all extended atoms in dcTP(X) are finite.

Lemma 149. Let P be a definite Datalog program. Let X ∈ P(dHBP) be a multiset
with finite multiplicities. Then dcTP(X) is a multiset with finite multiplicities.

Proof. There is a finite number of rules in P, a finite number of ground sub-
stitutions for each of the rules because HBP is finite (Observation 25), dHBP
is finite (Lemma 136), and for each (Biσ,Di) ∈ym X it holds that y < ∞
because all multiplicities are finite in X. Therefore there is only a finite num-
ber of combinations by which an extended atom (Hσ,D) can be generated
in dcTP(X). Therefore multiplicities of all extended atoms in dcTP(X) are
finite.

It has been shown in previous sections that the least fixpoint of both scTP
and dcTP operators is reached in less than ω steps if P is a Datalog program,
hence the following corollary.

Proposition 150. Let P be a definite Datalog program. Then scTωP and dcTωP are
multisets with finite multiplicities.

Proof. Follows directly from Lemma 148, Proposition 127, and Theorem 54

and from Lemma 149, Proposition 141, and Theorem 54.

7.8 well-foundedness and derivability

One way of demonstrating that there is a derivation of an atom in TωP is
to show that it has a support in skTωP which is well-founded with respect
to the support graph induced by the fixpoint as the following two lemmas
show.

Algorithms and lemmas about well-foundedness of supports described
in this section were likely common knowledge in the now non-existent rea-
son maintenance community. They are described in the framework of this
dissertation and presented for the sake of completeness here.

Lemma 151. Let P be a definite range restricted program and let s ∈ skTωP . If s is
not well-founded in SG(skTωP) then there is no derivation of head(s) in SG(skTωP)

that includes s.

Proof. The statement is the contrapositive of the definition of a well-founded
support, Definition 98.

Lemma 152. Let P be a definite range restricted program. a ∈ TωP iff a has a
support with respect to P that is well-founded in SG(skTωP).

Proof. ⇒: Let a ∈ TωP be an atom that has no support well-founded in
SG(skTωP). Then there is no derivation of a in SG(skTωP) by Lemma 151.
On the other hand, TωP = heads(skTωP) by Lemma 117 and the fact that the
fixpoint is reached in a finite number of steps (datalog and range restricted-
ness is assumed). Thus there is a support of a in skTωP and therefore there
is a derivation of a in SG(skTωP) – a contradiction.
⇐: If a has a support well-founded in SG(skTωP) then a ∈ skTωP and by

Lemma 117 a ∈ TωP .

7.8 well-foundedness and derivability 109

A support s is well-founded in a support graph G if there is a derivation
of head(s) in G which includes s, see Definition 98. Two algorithms are
presented in this section which determine well-foundedness of a support in
a support graph.

7.8.1 Algorithms to decide well-foundedness

Let G = (S, F,E, l) be a support graph. An obvious way to decide well-
foundedness of supports in S is to try to construct a derivation backwards
from s to base facts in G; if there is a derivation that includes s then it can
be constructed this way. This method amounts to a depth-first search with
avoiding cyclic paths, see Algorithm 7.11.

Algorithm 7.11: Deciding well-foundedness naively

Name

is-well-founded(s, G, Forbidden)

3

Input

G = (F,S,E, l) − a finite compact support graph

6 s − a support, s ∈ S
Forbidden − a set of atoms

9 Output

true − if s is well-founded

false − if s is not well-founded

12

Variables

t − a support

15 f − an atom

begin

18 if head(s) ∈ body(s) or body(s)∩ Forbidden 6= ∅
then return false

21 for each f ∈ body(s)
if not exists t ∈ S such that

head(t) = f and

24 is-well-founded(f,G, Forbidden∪ {head(s)})
then return false

27 return true

end

Lemma 153. Let G be a compact support graph and s one of its supports. s is
well-founded in G iff there is a derivation for each atom in body(s) that does not
include head(s).

Proof. ⇒: Let s be well-founded in G. Then there is a derivationD of head(s)
in G that includes s. If D− s includes head(s) then there is a cycle in D and
thus D is not a derivation, a contradiction. Each atom in body(s) has a
support in D− s which is a well-founded graph and therefore the supports
are well-founded too, by Lemma 140 and Definition 98.

110 forward chaining revisited

(a) Derivation Dk. (b) Derivation Dl. (c) The cyclic sup-
port graph result-
ing from merging
Dk and Dl.

Figure 7.8: Support graphs illustrating derivation merging in the proof of
Lemma 153.

⇐: Let s be a support in G such that there is a derivation Di for each
atom bi ∈ body(s) that does not include head(s). By Definition 98, we have
to show that there is a derivation of head(s) that includes s. By Lemma
140, it is sufficient to show that there is a well-founded subgraph of G that
includes s.

Each Di is a minimal well-founded subgraph of G that does not include
head(s). Let Di = (Si, Fi,Ei, li). Then

D = (S, F,E, l) = (

|body(s)|⋃
i=1

Si,
|body(s)|⋃
i=1

Fi,
|body(s)|⋃
i=1

Ei,
|body(s)|⋃
i=1

li)

is a subgraph of G. It is clear that for each f ∈ F there is at least one incoming
edge in E because eachDi is a subgraph ofD. However,Dmay be cyclic, see
Figure 7.8. For any cycle in D there are two derivations Dk, Dl (0 6 l,k 6
|body(s)|) and two nodes a,b ∈ Fk ∩ Fl such that (WLOG) a depends on b in
Dk and b depends on a in Dl. Each such cycle can be broken by removing
either the path from a to b or the path from b to a. Note that both a and b
have initially at least two supports and at least one support after breaking
the cycle. Let D ′ be a support graph after subsequently breaking each cycle
in D. Then D ′ is acyclic and for each atom node in D ′ there is still at least
one incoming edge in D ′. head(s) is not in any Di and therefore it is not in
D ′ either. Thus D ′ + s is a well-founded subgraph of G that includes s.

Lemma 154. Algorithm 7.11 called with Forbidden = ∅ terminates and outputs
true if s is well-founded in G and false otherwise.

Proof. The algorithm terminates because any support with a body atom in
Forbidden is skipped (i.e. cycles are excluded), Forbidden increases in each
recursive call, and G is finite.

The algorithm looks for well-founded supports of each atom in body(s)
such that do not depend strongly on head(s) in G. If such supports are
found then s is well-founded in G by Lemma 153. If such supports are not
found then s is not well-founded in G also by Lemma 153. The algorithm
excludes derivations of atoms in body(s) that include head(s) by means

7.8 well-foundedness and derivability 111

of the set Forbidden and the base case that stops recursion is correct: if
body(s) = ∅ then return true, see the proof of Lemma 153,⇒,n = 1.

Figure 7.9: A support graph in which deciding that s is not well-founded
using Algorithm 7.11 requires visiting all supports of f and their
ancestors three times.

Algorithm 7.11 is inefficient because a support may be visited repeatedly,
see Figure 7.9 for an illustration of the problem. The core of the inefficiency
is that a derivation is constructed branch by branch and each time a new
branch is explored information is not available about previous branches.
In the worst case, any atom is derivable from any other atom. This means
that from each of the O(nk) atoms each of the O(nk) atoms can be vis-
ited, giving a minimum worst case time complexity O(n2k), where n is the
number of terms occurring in base facts and k is the maximum over all
rules in P of the number of variables in that rule (see discussion of com-
plexity of classical forward chaining in Section 7.2). This estimate however
does not account for traversing edges. To estimate the number of edges in
a support graph, let us assume that b is the maximum over all rules in
P of the number of body atoms in that rule. Any support has at most b
body atoms and thus the corresponding support node has at most b + 1

edges (to body atoms and to the head of the support). Therefore the num-
ber of edges in a support graph can be estimated as O((b+ 1) ∗ nk). Thus
given an atom, a visit of another arbitrary atom involves traversing at most
O((b+ 1) ∗ nk) edges. The worst case time complexity of Algorithm 7.11 is
thus O(n2k ∗ (b+ 1) ∗nk) = O((b+ 1)n3k). In summary, well-foundedness
of each support in a support graph can be decided in time O((b+ 1)n4k) by
running this algorithm for each support in a support graph.

A more efficient algorithm constructs a derivation that shows well-foun-
dedness of s more directly. A derivation is a minimal well-founded graph.
To show well-foundedness of a support, it suffices to find a well-founded
graph that includes s (Lemma 140).

Well-founded graph is an acyclic subgraph of a support graph in which
all source nodes are base supports. An acyclic graph that has a support s
as its sink can be found by a modified topological ordering of ancestors of
s. The topological ordering algorithm is a standard graph algorithm (see
for example [59]) that can be used to detect cycles in a directed graph. It

112 forward chaining revisited

produces a linear ordering of nodes such that each node precedes nodes
to which it has outbound edges. This ordering can be used to guide the
search for a well-founded graph. Let us first specify the topological ordering
algorithm adapted to support graphs, see Algorithm 7.12.

Algorithm 7.12: Topological ordering of ancestors of a support in a support
graph

Name

2 topological-sort(s, G)

Input

5 G = (F,S,E, l) − a finite compact support graph

s − a support in S

8 Output

L − a list with topologically sorted nodes and atoms of G,

global variable, initially empty

11 Variables

t − a support

i − a number, a global variable, initially 0

14 marked(x) − a boolean, initially false for all x ∈ F∪ S, global

begin

17 marked(head(s)) := true

to-be-sorted := body(s) \ L

20 if ∃f ∈ to-be-sorted such that marked(f) then

return L { a cycle detected, disregard s }

23 for each f ∈to-be-sorted
begin

for each t ∈ S such that head(t) = f
26 topological-sort(t, G)

L[i] := f

29 i := i+ 1

end

32 L[i] := s

i := i+ 1

35 return L

end

Algorithm 7.12 is a depth-first search beginning from a given support.
The latest recursive incarnation of the function stops either when a cycle
is detected or when a base support (a support with an empty body) is en-
countered. It numbers nodes in the support graph in postorder manner and
never processes a numbered support of an atom again. The algorithm there-
fore terminates because the input support graph is finite.

7.8 well-foundedness and derivability 113

complexity. The worst-case time complexity of topological ordering
based on depth-first search is the same as that of depth-first search, i.e. linear
in the size of the input graph.

Algorithm 7.13 uses the topological ordering determined by Algorithm
7.12 to guide its search for a well-founded subgraph including a support s.

Algorithm 7.13: Deciding well-foundedness using topological ordering

Name

is-well-founded-topological(s, G)

3

Input

G = (F,S,E, l) − a finite support graph

6 s − a support in S

Output

9 true − if s is well-founded in G

false − if s is not well-founded in G

12 Variables

t − a support

L − a list of nodes in G

15 well-founded(x) − a boolean for x ∈ S, initially false for
each x ∈ S

Initialization

18 L := topological-sort(s, G)

begin

21 for i from 0 to |L| such that L[i] = t and t ∈ S
begin

if ∀b ∈ body(t)∃w ∈ S such that L[j] = w, head(w) = b, j < i and

well-founded(w)

24 then well-founded(t) := true

end

27 return well-founded(s)

end

Algorithm 7.13 uses Algorithm 7.12 to find a candidate C for a well-
founded subgraph of G that by Lemma 140 contains a derivation of s if
there is one. The algorithm then verifies whether C is indeed a well-founded
graph. C is acyclic because that is how it was constructed. Therefore Algo-
rithm 7.13 verifies only whether each node in F has an incoming edge –
meaning that atoms and supports of C are properly connected and source
nodes of the graph are base supports. The algorithm moreover marks each
well-founded support in C as such.

Lemma 155. Algorithm 7.13 terminates and outputs true if s is well-founded in
G and false otherwise.

Proof. The algorithm terminates because G is finite, Algorithm 7.12 termi-
nates, and it visits each sorted support exactly once.

The call to Algorithm 7.12 (L := topological-sort(s, G)) finds a maximal
acyclic subgraph W of G with s as its only sink node. If there is a derivation

114 forward chaining revisited

of head(s) inG that includes s then it is a subgraph ofW becauseW contains
all nodes that s depends on except for those that head(s) also depends on
(these are the “causes” of the possibly present cycles). Then the algorithm
examines each support in W in the topological order. The topological order
ensures that supports are examined in the right order; i.e. first supports inW
are examined that do not depend on any other node inW and then supports
are examined that depend on already examined supports. Therefore the
algorithm verifies the assumption of Lemma 153 for each support in W and
thus it outputs true iff s is well-founded in G.

complexity. Algorithm 7.13 first sorts ancestors of a support s topolog-
ically and then accesses each of its ancestor supports exactly once and for
each support it performs a number of tests bounded by the maximal number
of body atoms over all supports in the support graph (assuming constant
time access to neighbouring nodes). Therefore Algorithm 7.13 runs in linear
time in the size of the input support graph which is O((b+ 2)nk) because
the number of nodes is O(nk) and the number of edges is O((b+ 1) ∗ nk),
where b is the maximum over all rules in P of the number of body atoms
in that rule (see the discussion of Algorithm 7.11 after Lemma 154). There-
fore well-foundedness of each support in a support graph can be decided
in O(nk ∗ (b + 2)nk) = O((b + 2)n2k) time in the worst case by running
Algorithm 7.13 for each support node of the graph.

7.9 herbrand interpretations and extended operators

Let P be a definite program. The least fixpoint of TP induces the unique min-
imal Herbrand model of P by Theorem 62. A similar result can be obtained
for the skTP, scTP, and dcTP operators by defining Herbrand interpretation
represented by a set of ground supports, a multiset of ground atoms, and
by a multiset of ground extended atoms respectively.

Definition 156 (Herbrand interpretation represented by a multiset of ground
atoms). LetA ∈ P(HB) be a multiset of ground atoms. Then HI(A) = HI(root(A)
), i.e. the Herbrand interpretation represented by A is defined as the Herbrand in-
terpretation represented by the set of ground atoms root(A).

Definition 157. Let P be a definite program, e = (a,D) be an extended atom with
respect to P, and let A be a multiset of extended atoms with respect to P. Then
atom(e) = a and atoms(A) = {atom(x) | x ∈m A}.

Definition 158 (Herbrand interpretation represented by a multiset of ground
extended atoms). Let A ∈ P(dHB) be a multiset set of ground extended atoms.
Then HI(A) = HI(atoms(A)), i.e. the Herbrand interpretation represented by A
is defined as the Herbrand interpretation represented by the set of ground atoms
atoms(A).

Lemma 159. Let S ⊆ P(dHB). Then atoms(
⋃
mS) =

⋃
{atoms(s) | s ∈ S}.

Proof. ⊆: Let a ∈ atoms(
⋃
mS). Then there is a D ⊆ HB such that (a,D) ∈m⋃

mS, hence there is an s ∈ S such that (a,D) ∈m s. Therefore a ∈ atoms(s)
and thus a ∈

⋃
{atoms(s) | s ∈ S}.

⊇: Let a ∈
⋃
{atoms(s) | s ∈ S}. Then there is an s ∈ S such that a ∈

atoms(s). Therefore there is a D ⊆ HB such that (a,D) ∈m s. Therefore
(a,D) ∈m

⋃
mS and a ∈ atoms(

⋃
mS).

7.10 stratifiable programs with negation 115

Lemma 160. Let P be a definite range restricted program and let β < ω. Then
atoms(dcTβP) = T

β
P .

Proof. atoms(dcTβP) ⊆ T
β
P : let (a,D) ∈m dcT

β
P (thus a ∈ atoms(dcTβP)). By

Proposition 142 (the left to right implication), there is a derivation of a with
respect to P that uses all and only atoms in D. The depth of the derivation
(Definition 99) cannot be more than β because it is generated in β steps (as
evidenced by (a,D) ∈m dcT

β
P) and each step can increase the depth by at

most 1. Therefore there is a derivation of a of depth at most β in SG(skTωP)

and thus a ∈ heads(skTβP) = T
β
P , by Lemma 117.

atoms(dcTβP) ⊇ T
β
P : Let a ∈ TβP . By Lemma 152 there is a support s of a

well-founded in G = SG(skTωP) such that body(s) ⊆ Tβ−1P . Because s is well-
founded and because head(s) = a ∈ TβP , there is a derivationD of head(s) in
G that includes s and the depth ofD is at most β.D− s does not contain a =

head(s) because D is a derivation (thus acyclic). Therefore D is a derivation
of a that uses only atoms in D− s and therefore, by Proposition 142 (the
right to left implication), (a,D)∈m dcTωP .D− s is a well-founded graph that
includes supports for each atom in body(s). For each such support there is
a derivation in D by Lemma 140. Each such derivation has depth at most 1

less than D, i.e. β− 1. Therefore for each f ∈ body(s) there is a set of ground
atoms Sf such that (f,Sf) ∈m dcT

β−1
P and a /∈ Sf. Therefore s satisfies the

condition in Definition 137 and (a,S)∈m dcT
β
P , i.e. a ∈ atoms(dcTβP), where

S is the set of atoms in D− s.

Lemma 161. Let P be a definite range restricted program. Then
atoms(dcTωP) = TωP .

Proof.

atoms(dcTωP) = atoms(
⋃
m{dcT

β
P | β < ω}) by def., limit case

=
⋃
{atoms(dcTβP) | β < ω} by Lemma 159

=
⋃
{T
β
P | β < ω} by Lemma 160

= TωP by def., limit case

Proposition 162. Let P be a definite program. Then

HI(lfp(TP)) = HI(skTωP) = HI(scTωP) = HI(dcTωP)

is the unique minimal Herbrand model of P.

Proof. heads(skTωP) = TωP by Lemma 117, root(scTωP) = TωP by Proposition
129, and atoms(dcTωP) = TωP by Lemma 161.

Therefore HI(skTωP) = HI(scTωP) = HI(dcTωP) = HI(TωP). The rest follows
from Proposition 62.

7.10 stratifiable programs with negation

Previous sections mostly assumed definite programs. Many real world prob-
lems often require programs with negation. This section introduces the no-
tion of stratified negation and shows that a fixpoint of stratifiable programs
can be computed in similar manner as the least fixpoint of definite programs.
Stratifiable programs are thus more expressive while the complexity of com-
puting their fixpoint remains the same as for definite programs. See for

116 forward chaining revisited

example [44, 12] for a detailed treatment of stratifiable programs, including
motivation and examples. Here, the approach is described for the classical
TP operator and it is shown that it can be applied the same way to all the
extended immediate consequence operators defined in this chapter.

Definition 163 (Stratification). Let S be a set of rules. A stratification of S is a
partition S1, . . . ,Sn of S such that

• For each relation symbol p there is a stratum Si, such that all rules of S
containing p in their head are members of Si. In this case one says that the
relation symbol p is defined in stratum Si.

• For each stratum Sj and for each positive literal A in the bodies of members
of Sj, the relation symbol of A is defined in a stratum Si with i 6 j.

• For each stratum Sj and for each negative literal ¬A in the bodies of members
of Sj, the relation symbol of A is defined in a stratum Si with i < j.

A set of rules is called stratifiable, if there exists a stratification of it.

Let S1, . . . ,Sn be a stratification for a program P. Then the semantics of P
can be defined “hierarchically” [44, 12] by a sequence of fixpoints stratum by
stratum. Let S6i =

⋃i
k=1 Sk. S1 is definite and thus it has the least Herbrand

model: M1 = TωS1 . Then M2 = TωS62(M1), . . . ,Mm = TωS6m(Mm−1) and the
semantics of the program P is the set Mm.

Example 164. Let S be the following program:

project(proj123)← >
risky(X)← expensive(X)

promising(X)← project(X), not risky(X)
Then S1,S2, where

• S1 = {project(proj123)← >, risky(X)← expensive(X)},
• S2 = {promising(X)← project(X), not risky(X)}

is a stratification of S.
The least Herbrand model of S1 is M1 = {project(proj123)} and M2 =

TωS1∪S2(M1) = {project(proj123),promising(proj123)}. The semantics of S
is M2.

Observation 165. The stratum by stratum computation of a fixpoint of a program
ensures that all information is available when negative literals are evaluated. In
other words, if a rule with a negative literal A is used in the computation then all
instances of the relational symbol of A that are in the resulting fixpoint of the whole
program had already been previously derived in a fixpoint computation using lower
strata.

Therefore if something is derived by a rule in this kind of computation
it also belongs to the resulting fixpoint; it will not be non-monotonically
removed later. Stratification is thus a way of ordering computation of a fix-
point of a normal program so that non-monotonic changes do not occur.
Once an order is determined (all stratifications of a program lead to the
same fixpoint), the actual computation is a sequence of the “usual” fixpoint
computations. The full account of stratification can be found in Apt et al.
[12]. Stratification is well-known, the idea behind it is very intuitive, and its
full account with respect to our extended operators would be mostly repeti-
tion of the work of Apt and therefore it is not worked out in detail here. We
still provide one more viewpoint at Observation 165.

7.10 stratifiable programs with negation 117

Observation 165 can be seen as giving an operational semantics to strat-
ifiable normal programs. In the deductive database community, they use
the notion of “built-in predicates” to provide a more declarative perspective.
The idea is to consider the already computed predicates and their negations
as built-in predicates. A built-in predicate is not defined in a program but in
a system that evaluates the program – it usually is the case for example for
the 6 predicate. Let us assume that Mk is computed. Then all predicates in
Mk and their negations are considered to be built-in predicates. Then S6k+1
becomes a definite program and thus it has the least Herbrand model which
can be computed as TωS6k+1 (assuming the built-in predicates in S6k+1).

The same stratification idea can be applied to all the extended immediate
consequence operators defined in this chapter. First a stratification has to
be found for a given program and then extended immediate consequence
operators fixpoints are computed in hierarchical manner stratum by stratum.
The approach is correct for the same reason it is correct for the TP operator:
negative predicates in a higher stratum depend only on information that
is derived in a strictly lower stratum. Therefore no non-monotonic changes
can occur during the computation and a resulting fixpoint is reached.

complexity. Mn is polynomially computable given a stratification sin-
ce each single Mi is polynomially computable (in the number of constants
in base facts). Stratification is described by a simple syntactic criterion and
can be found in polynomial time in the size of a program’s dependency
graph (a similar notion to the notion of dependency graph, but only for def-
inite programs, is defined in the next chapter in Definition 185). Therefore
admitting programs with stratified negation does not increase complexity
[44].

While fixpoint computation is easily extended from definite programs
to stratifiable normal programs, more adaptation of support-graphs-related
notions is necessary.

7.10.1 Support graphs for programs with negation

Support graphs in Definition 86 are defined only for definite programs. Sup-
port graphs for programs with negation are defined in this section in order
to make the framework complete. Support graphs for normal programs are
not further explored in this dissertation.

The notion of a support s and the notations head(s) and body(s) are
extended to normal programs in the obvious way. Note that in this case
head(s) is an atom and body(s) is a set of literals.

Definition 166 (Support graph, compact support graph). Let P be a normal
program. A support graph with respect to P is a bipartite directed graph G =

(S, F,E, l) such that

• S is a set of ground supports with respect to P,
• F is a set of nodes,
• l is a function labelling nodes with ground literals, l : F→ HBP ∪ { not a |

a ∈ HBP},
• E ⊆ (F× S)∪ (S× F) and for each (x,y) ∈ E

– either x ∈ F, y ∈ S, l(x) ∈ body(y),
(i.e. l(x) may be positive or negative)

118 forward chaining revisited

– or x ∈ S, y ∈ F, l(y) = head(x),
(i.e. l(y) is positive)

• for each s ∈ S
– for each b ∈ body(s) exists an x ∈ F such that l(x) = b and (x, s) ∈ E
– optionally for a = head(s) exists a y ∈ F such that l(y) = a and

(s,y) ∈ E

If the labelling function l is moreover injective then the support graph is called
a compact support graph. In compact support graphs, we identify literal nodes
with literals.

Definition 166 is only a small modification of Definition 86 that admits
labelling nodes also with negative literals. The definition does not prevent
that the support graph contains both an atom and its negation and thus a
contradictory set of supports may also be modelled as a support graph. This
in itself does not pose a problem because a support graph is only an auxil-
iary representation of derivations with respect to a program but it requires
an additional change of the definition of a well-founded graph.

Definition 167 (Well-founded support graph). A support graphG = (S, F,E, l)
with respect to a program P is well-founded, if it is acyclic and for each n ∈ F: if
l(n) is a positive literal a then there is an incoming edge (s,n) ∈ E and there is no
m ∈ F such that l(m) = not a.

The definition of a well-founded support graph with respect to a program
forbids that it contains both an atom and its negation. Note that nodes with
a negative literal as a label do not have supports. All other support graphs
related definitions for programs with negation are directly analogous to
definitions from Section 7.1.6.

Graphical notation for support graphs for programs with negation also
remains the same. An edge between a negative literal and a support may
be crossed in order to stress the negative dependency, see the following
example.

Example 168. Let P be the following program:

r1 = a← >
r2 = b← a

r3 = d← not c

r4 = e← b,d
Then G = (S, F,E, l), where

• S = {s1, s2, s3, s4},
• F = {n1,n2,n3,n4,n5},
• l = {n1 7→ a,n2 7→ b,n3 7→ not c,n4 7→ d,n5 7→ e},
• for E and S see the graphical representation of G in Figure 7.10, note that

support si corresponds to an instance of rule ri in this case.

is a support graph with respect to P

7.11 discussion and related work

This chapter extends the classical notion of immediate consequence opera-
tor in several ways that help to retain information useful for reason mainte-
nance of materialized fixpoints (see Chapter 8) and can also help to bring

7.11 discussion and related work 119

(a) Support graph G. (b) Support graph G

with the edge from
a negative literal
stressed.

Figure 7.10: An example of a support graph G = (S, F,E, l).

inferences closer to casual users. All the immediate consequence operators
derive the same common information, as Proposition 162 shows. Naive and
semi-naive (extended) forward chaining algorithms with operators skTP and
scTP have the same time complexity, O(nk), as naive and semi-naive TP
forward chaining which is apparent because the two operators only keep
some of the information that TP derives as well but “forgets” it. Most of
their value lies in the fact that they allow for a simple declarative descrip-
tion of reasoning and the corresponding reason maintenance methods. The
dcTP immediate consequence operator derives and retains information that
is not derived by any of the other operators, namely dependencies. Depen-
dencies provide global information about atoms with respect to a program.
Consequently, the corresponding naive and semi-naive forward chaining al-
gorithms have a worse time complexity (O(n2k)) than naive and semi-naive
forward chaining for the other operators.

To the best of our knowledge, the skTP, scTP, and dcTP operators and the
corresponding semi-naive mappings are novel. Especially support counting
seems not to be leveraged in any of the methods existing in literature. Meth-
ods similar to derivation counting do exist in the area of incremental view
maintenance in deductive databases, for example [158], but the notion of
a derivation is different. Mumick in [158] counts so called derivation trees
which, in contrast to derivations in this work, admit “recursive repetitions”
and thus there can be an infinite number of derivations even in the range re-
stricted Datalog case (compare to Proposition 150). Derivation tree counting
of [158] is used to define so called duplicate semantics of Datalog programs;
i.e. it is tracked not only whether an atom is derived but also how many
times it is derived. From this viewpoint, the scTP and dcTP operators can
be seen as defining alternative multiset Datalog semantics. The skTP oper-
ator defines an alternative set semantics from this perspective. Proposition
162 shows that they are all equivalent and differ only in the information
that they provide in addition to the classical TP set semantics. [159] extends
[158] to ensure termination with recursive Datalog programs. The idea is
similar to our derivation counting operator: to track the sets of atoms that
an atom depends on, i.e. its derivation sets. Our contribution is three-fold:
we show how the duplicate semantics with derivation sets can be computed
in a declarative and agruably simple way using the dcTP operator and either
the classical naive forward chaining procedure with dcTP or a slightly modi-

120 forward chaining revisited

fied semi-naive procedure. We also prove the correctness of the approach in
the classical logic programming way relying on properties of fixpoint oper-
ators. And we show the correspondence of the dependencies to derivations
in support graphs. Moreover, and as already implied, our structured graphs
framework allows us to precisely relate and compare the different Datalog
semantics provided by the classical and extended immediate consequence
operators.

A similar approach to defining an extended immediate consequence op-
erator together with the corresponding naive and semi-naive methods can
be found in [201] where Shiri and Zheng define a fixpoint computation with
uncertainties using multisets. Their interest is in uncertainties and thus the
multiplicities they use correspond to truth values in the closed unit interval
[0, 1]. As a consequence, they for example do not have to deal with possible
infinite multiplicities as it is necessary in our work. This difference is signifi-
cant. While infinite multiplicities may not be essential in typical applications,
they are useful and can be encountered in non-Datalog settings (i.e. when
functional symbols other than constants are allowed). Infinite multiplicities
also posed a new challenge in proving continuity of the multiset extended
immediate operators.

8
I N C R E M E N TA L R E A S O N M A I N T E N A N C E

8.1 introduction

This chapter studies the problem of maintaining a set of materialized atoms
after removing a subset of rules of a program. This problem is called the
reason maintenance problem here.

The reason maintenance problem is closely related to two areas of re-
search: reason maintenance [74] (originally called truth maintenance [72])
that is not active anymore, and incremental view maintenance [103] which
is studied on and off as part of deductive databases, see Section 8.10 for a
thorough review of related work. We first define the reason maintenance
problem formally in terms of fixpoints. Then we show a simple solution
based on the concept of well-foundedness in Section 8.3. In Section 8.4, we
analyse the properties of a fixpoint and provide a method of solving the
reason maintenance method without relying on support graphs based on
the analysis. This method improves upon the traditional DRed [105] and PF
[110] algorithms in that it makes do with the original program – it does not
increase its size and it does not introduce negation. The method also takes
full advantage of the already computed fixpoint and it handles both changes
in data and rules. We provide a detailed comparison of the three algorithms
based on two representative examples. Next we proceed to reason mainte-
nance algorithms based on multiset semantics. In Section 8.5, we show an
improvement of the algorithm from Section 8.4 that replaces its initial naive
step by a direct computation that takes advantage of support counts. Then
we study the reason maintenance problem restricted to non-recursive Dat-
alog programs with support counting multiset semantics. For this special
case, we formulate a purely incremental reason maintenance algorithm that
is a more efficient alternative to the classical counting algorithm of [104] that
counts derivation trees. We define a concept of “safeness” that is akin to the
idea of local stratification [183, 231] and that could be used to optimize al-
gorithms for the recursive Datalog case. In Section 8.6, we provide several
reason maintenance algorithms based on the derivation counting multiset
semantics. Although the worst case time complexity (resp. the worst case
space complexity) of the derivation-counting-methods is worse than that of
the other methods, it provides additional information that can be used for
explanation of derived atoms to users. In Section 8.7, we discuss how the
methods described in this dissertation can be used for explanation purposes.
Then in Sections 8.8 and 8.9, we discuss questions related to practical use
and implementation of the suggested methods.

8.2 the reason maintenance problem

Let P be a definite range restricted program andD ⊆ P a subset of P. The rea-
son maintenance problem is the problem of computing Tω

P\D
given the fixpoint

TωP .
The reason maintenance problem has a trivial solution which is comput-

ing the fixpoint Tω
P\D

directly from P \D, disregarding TωP . This solution

123

124 incremental reason maintenance

is obviously inefficient because it necessarily repeats many of the computa-
tions used to generate TωP and it can also be seen as a version of the frame
problem[113] as noted in [165] and [64]. This chapter studies how to solve the
reason maintenance problem incrementally by leveraging information avail-
able from computing the old fixpoint. Here, this modified task is called the
incremental reason maintenance problem.

The incremental reason maintenance problem is the task to solve the reason
maintenance problem incrementally, i.e. to leverage information available
from computation of the old fixpoint to minimize the amount of resources
necessary to compute the new fixpoint. A formal definition of the incremen-
tal maintenance problem is not provided here because it also is a subject of
study of this chapter.

Note, that it may be beneficial to extend the standard forward chaining
to store additional information with each atom which will then allow for
incremental computation of the new fixpoint.

To solve the incremental maintenance problem, it is necessary to decide
for each g ∈ TωP whether g ∈ Tω

P\D
. This amounts to deciding whether g

can be derived from P \D. Any algorithm that decides this question has to
demonstrate that there is a derivation of g with respect to P \D. In other
words, the incremental maintenance problem can be solved for example by
keeping track of derivations of each atom. Later sections describe methods
that avoid keeping all derivations but still can decide whether a derivation
exists or not.

This chapter describes several algorithms which solve the incremental
maintenance problem and which do not rely on storing the whole support
graph.

8.3 reason maintenance by deciding well-foundedness

Section 7.8, Lemma 152, shows that derivability of an atom and the property
of having a well-founded support are equivalent. This observation leads to
a simple reformulation of the reason maintenance problem which, together
with algorithms from the previous section, provides a simple (but inefficient)
solution of the reason maintenance problem. This approach is explored here
nevertheless because it can be improved upon and its core idea of showing
that an atom has a well-founded support in the new fixpoint is the basis of
the advanced algorithms described in next sections.

The problem is to “incrementally” determine the Tω
P\D

subset of TωP . By
Lemma 152, it is sufficient to find those atoms in TωP that have a support
well-founded in SG(skTω

P\D
).

Algorithm 8.14: Reason maintenance by well-foundedness

Name

2 rm-well-founded(skTωP , D)

Input

5 G = SG(skTωP) = (SG, FG,EG, lG) − a finite support graph

D − a subset of base facts in P (to remove)

8 Output

Tω
P\D

8.3 reason maintenance by deciding well-foundedness 125

11 Variables

F − a set of atoms

U − a set of supports {unsure supports}

14

Initialization

U := dependent-supports(P, skTωP , D) {Alg. 7.6}

17 F := heads(skTωP) \ heads(U)

begin

20 for each s ∈ U
if is-well-founded(s, SG(skTωP), heads(D)) then {Alg. 7.11}

F := F∪ head(s)
23

return F

end

Lemma 169. Algorithm 8.14 terminates and computes Tω
P\D

.

Proof. The algorithm terminates because Algorithms 7.6 and 7.11 terminate
and G is finite.
U is the set of supports with respect to P that depend on an atom from

heads(D) in SG(skTωP), i.e. the set of supports that may be affected by
removal of D. Therefore only supports in U need to be checked for well-
foundedness in SG(skTω

P\D
). The algorithm checks well-foundedness in SG(

skTω
P\D

) by forbidding heads(D) to be in the derivation found by Algorithm
7.11 which shows well-foundedness of s in SG(skTωP) and thus the deriva-
tion, if found, shows well-foundedness of s in SG(skTω

P\D
).

This algorithm is not efficient for several reasons. The first, which is
easily fixable, is that it uses the inefficient algorithm for determining well-
foundedness. A modification of the efficient topological-ordering-based Al-
gorithm 7.13 which would allow to forbid some atoms could be used in-
stead (see e.g. Algorithm 8.18 for such a modification in a different context).
Other possible minor improvements are also not included for the sake of
brevity. More importantly, the algorithm requires that the whole support
graph SG(skTωP) is available. Section 8.4 presents an approach which lifts
this requirement.

8.3.1 Rule updates

Algorithm 8.14 removes only selected base facts from P. A simple modifica-
tion of the is−well−founded procedure, Algorithm 7.11, so that it forbids
not only atoms but also general rules would be sufficient for generalizing
the algorithm to removing any rules from P.

8.3.2 Comparison with related work

Algorithm 8.14 is inspired by classical reason maintenance algorithms and
specifically by reason maintenance of the JTMS [73] kind. It is a less efficient
but simpler version of monotonic JTMS reason maintenance, see Section 8.10

for a detailed description of the original algorithm.

126 incremental reason maintenance

8.4 reason maintenance without support graphs

The reason maintenance problem can be solved by finding supports for
atoms in the old fixpoint which are well-founded in the new fixpoint. Pre-
vious sections present an approach to this idea but they require the full
support graph corresponding to the fixpoint. This section shows how this
requirement can be removed. The resulting algorithm is a modification of
the classical semi-naive forward chaining where the initialization step is
naive. Section 8.5 then shows how the first naive step can be replaced by a
more efficient computation that uses support counts.

Let us explore the problem more formally. The following notation is used
throughout the rest of this section.

Notation 170. Let P be a definite range restricted Datalog program, D ⊆ P a set
of rules to remove, and let G = SG(skTωP) be the support graph induced by skTωP .
Then

• U = {a ∈ TωP | (∃d ∈ D) a depends on d in G},
• K = TωP \U – the set of atoms that do not depend on a rule from D in G,
• O = U∩ Tω

P\D
– the set of atoms that depend on a rule from D in G but not

strongly,

U is the set of [u]nsure atoms, i.e. the set of atoms that may have to be removed
as a result of removing D. K is the set of atoms to [k]eep, i.e. the set of atoms that
definitely are not affected by the removal of D. O is the set of [o]therwise supported
atoms, i.e. the set of atoms from U that are derivable without D.
TωP will also be referred to as the old fixpoint and Tω

P\D
as the new fixpoint.

The following lemma and Figure 8.1 illustrate relationships between U,K,
and Os.

Figure 8.1: Illustration of how K, U, and O relate in the case that D is a set
of base facts. B is the set of all base facts in P. With removal of
arbitrary rules, there may be more “U” sets each having its own
“O” subset, see Figure 8.2.

Lemma 171. The following holds:

1. U∪K = TωP ,
2. U∩K = ∅,
3. O∩K = ∅.

Proof. Follows immediately from definition.

Lemma 172. The following holds:

8.4 reason maintenance without support graphs 127

Figure 8.2: Illustration of how K, U, and O relate in the general case. B is the
set of all base facts in P. D1 is a set of base facts to remove, D2 is
a set of rules to remove, D = D1 ∪D2. U1 is the set of atoms that
depend on a fact from D1. U2 is the set of atoms that depend on
a rule from D2. U = U1 ∪U2.

1. K ⊆ Tω
P\D

,

2. Tω
P\D

= K∪O,

3. TP\D(K) ⊆ Tω
P\D

.

Proof. Point 1: Let a ∈ K. K = TωP \U and therefore a does not depend on
any rule in D in G by the definition of U. In other words, no derivation
of a in G includes a support that includes a rule from D or any atom that
depends on a rule from D in G. Therefore a is in SG(skTω

P\D
) which, by an

observation analogous to Observation 61, is a subgraph of G in which no
node depends on a rule fromD. Thus a ∈ heads(skTω

P\D
). heads(skTω

P\D
) =

Tω
P\D

, by Lemma 117, therefore a ∈ Tω
P\D

. In summary K ⊆ Tω
P\D

.
Point 2: K ∪O = (TωP \U) ∪ (U ∩ Tω

P\D
) ⊇ Tω

P\D
, from Notation 170 and

because Tω
P\D

⊆ TωP by Observation 61. K ∪ O ⊆ Tω
P\D

by Point 1 and
because O ⊆ Tω

P\D
by definition.

Point 3 follows from Point 1 and the fact that Tω
P\D

is the least fixpoint of
TP\D.

Lemma 172 shows a way to compute the new fixpoint by determining
the sets K and O. The core of the problem lies in determining the set O, i.e.
those atoms that lose some derivations after removing D but are derivable
nevertheless. The following two propositions show that the new fixpoint can
be computed by forward chaining on the set K.

Proposition 173. Tω
P\D

= Tω
P\D

(K).

Proof. TP\D(∅) ⊆ TP\D(K) by monotonicity of TP (Lemma 47 and Lemma
60). Therefore also Tn

P\D
⊆ Tn

P\D
(K), for all n ∈N1, by monotonicity of TP.

⊆: Let a ∈ Tω
P\D

=
⋃
{T
β
P\D

| β < ω}. Then there is a β such that a ∈
T
β
P\D

⊆ Tβ
P\D

(K) ∈ {T
β
P\D

(K) | β < ω}. Therefore a ∈ Tω
P\D

(K). In summary
Tω
P\D

⊆ Tω
P\D

(K).
⊇: Let a ∈ Tω

P\D
(K). There is an α such that a ∈ Tα

P\D
(K). By Lemma 172,

it holds that K ⊆ Tω
P\D

. Therefore there is a β such that K ⊆ Tβ
P\D

. Thus,

Tα
P\D

(K) ⊆ Tβ+α
P\D

by monotonicity of TP. Together, a ∈ Tβ+α
P\D

⊆ Tω
P\D

. And
in summary, Tω

P\D
(K) ⊆ Tω

P\D
.

128 incremental reason maintenance

An immediate corollary of Proposition 173 is the following proposition
which states that all atoms in O are eventually derived by forward chaining
on K.

Proposition 174. If a ∈ O then there is an n ∈N1 such that a ∈ Tn
P\D

(K).

Proof. Let a ∈ O. O = U ∩ Tω
P\D

, therefore a ∈ Tω
P\D

(K) by Proposition 173.
P (and therefore also P \D) is a definite range restricted Datalog program.
Therefore the fixpoint is reached in a finite number of steps and therefore
there is an n ∈N1 such that a ∈ Tn

P\D
(K).

The set U can easily be determined by the semi-naive forward chaining
Algorithm 7.6 modified according to Observation 122, with TωP as input
instead of skTωP . Then atoms in K are those in the old fixpoint TωP that are
not in U.

Therefore a reason maintenance algorithm to compute the new fixpoint
can be summarized as follows:

1. Determine U (and therefore K).
2. Compute Tω

P\D
(K)

See Algorithm 8.15 for a complete specification.

Algorithm 8.15: Reason maintenance without support graphs.

Name

FP-update(P, TωP , D)

3

Input

P − a range restricted definite \datalog program

6 D − a subset of P, the set of rules to remove

TωP − the least fixpoint of TP

9 Output

Tω
P\D

− the new least fixpoint

12 Variables

U,K,∆, F − sets of atoms

15 Initialization

U := heads(dependent-supports(P, TωP , D))

K := TωP \U

18 ∆ := TP\D(K) \K

F := K

21 begin

while ∆ 6= ∅
begin

24 F := F∪∆
∆F := TP\D(F,∆) {"new" atoms}

∆ := ∆F \ F {forbid redundant and cyclic derivations}

27 end

return F

30 end

8.4 reason maintenance without support graphs 129

Proposition 175. Algorithm 8.15 terminates and computes Tω
P\D

.

Proof. The algorithm correctly computes the set K, by definition of K and
because the dependent supports algorithm is correct (Lemma 121).

The algorithm computes T i
P\D

(K) where i is the i − th iteration of the
while loop in the algorithm. The algorithm computes TωP (K) by a similar
argument as for the correctness of classical semi-naive forward chaining,
see Proposition 109. HBP and HBP\D are finite (Observation 25), hence the
algorithm terminates.

The rest follows immediately from Proposition 173.

Let ∆i be the ∆ in the i-th iteration of the algorithm. Notice that (
⋃n
i=0 ∆i)

= O, where n is the number of the iteration in which fixpoint is reached.
Algorithm 8.15 does not require the support graph to be stored in order

to compute the new fixpoint from the old one. Notice that the first forward
chaining step (in the initialization) is naive, the rest of the computation con-
tinues semi-naively. The first naive forward chaining step can be avoided by
leveraging support counts as it is described in Section 8.5.

complexity. The worst-case complexity of Algorithm 8.15 is the same
as the worst-case complexity of semi-naive forward chaining, i.e. O(nk) –
polynomial in the number of constants in base facts of the input program
(recall that k is the maximum over all rules in P of the number of variables
in that rule).

stratifiable normal programs . Algorithm 8.15 can be easily
extended to stratifiable normal programs the same way as fixpoint compu-
tation is done for stratifiable normal programs in Section 7.10.

8.4.1 Rule updates

It is worth stressing that Algorithm 8.15 works for both base fact and general
rule updates. In fact, if a rule, which is not a base fact, is to be removed then
all atoms that directly depend on it can be determined by a single query;
by executing the rule’s body. Indeed, exactly this is the main reason for
computing the least fixpoint of a program in advance.

Atoms that indirectly depend on a rule to be removed can then be com-
puted by the usual semi-naive forward chaining algorithm. This situation is
depicted in Figure 8.2 by the sets with index 2 (D2 is not depicted there; it
consists of rules of supports “on the border of U2 and K”).

8.4.2 Comparison with related work

Reason maintenance without support graphs is closely related to the prob-
lem of incremental view maintenance in deductive databases. The problem
has been studied on and off since around 1980, see for example a survey arti-
cle [103] by Gupta and Mumick, authors of the probably most popular DRed
algorithm [105]. In line with the deductive database perspective, all incre-
mental view maintenance algorithms distinguish between extensional (base
facts) and intensional (rules that are no base facts) part of a database. The
incremental view maintenance algorithms solve the problem of updating a
view upon a change in the extensional part of the database. The algorithms

130 incremental reason maintenance

do not directly handle rule changes but they can be extended to do so. It is
important to clearly distinguish the incremental view maintenance problem
from the view update problem [102]. The view update problem is trying to
solve the question how to change a program so that a given formula cannot
(resp. can) be derived from it. This section provides a detailed comparison
of the incremental view maintenance methods with our approach.

The most prominent incremental view maintenance algorithms are the
DRed (derive and rederive) algorithm [105] and the PF (propagate filter)
algorithm [110]. Both work on the same principle of deriving an overestima-
tion of deleted atoms (i.e. the set U) and then finding alternative derivations
for them (i.e. determining the set O). The DRed algorithm first derives the
whole overestimation and only then finds alternative derivations. The PF al-
gorithm, which was originally developed in the context of top-down memo-
ing [69], finds alternative derivations (filters) as soon as an atom to possibly
be deleted is derived (propagated). Both algorithms perform the two steps
by evaluating a transformed version of the original rules.

Staudt and Jarke developed [207] a purely declarative version of DRed.
Their algorithm, however, transforms the original program into even more
rules than DRed itself meaning that to perform maintenance a possibly
substantially bigger program has to be evaluated. Also, the transformed
program includes negation even if the original program does not. Recently,
Volz, Staab, and Motik extended [219] Staudt and Jarke’s version of DRed
to handle rule changes. For example, the Volz, Staab, and Motik version of
DRed transforms 12 RDF semantics Datalog rules into a maintenance pro-
gram of 60 rules [219]. In comparison, Algorithm 8.15 makes do with the
original 12 rules. Moreover, these purely declarative maintenance methods
by Staudt and Jarke and Volz et al. handle atom insertions and deletions at
one time by a single maintenance program. Their method leads [219] to com-
plete recomputation in case of a single (ternary) predicate axiomatization of
RDF(S) which is a significant disadvantage especially in the area of seman-
tic web where this axiomatization is very common. In our case, insertions
are handled by semi-naive forward chaining, deletions by Algorithm 8.15

and always only the relevant part of a predicate’s extension is recomputed,
including the case of a single predicate axiomatization of RDF(S).

Let us now compare DRed [105], the PF [110] algorithm and Algorithm
8.15 in detail. In the Encyclopedia of database systems [135], there is a com-
parison of the DRed and the PF algorithm [69] on a classic reachability ex-
ample. Let us reproduce the comparison here and let us add evaluation of
Algorithm 8.15 on the same example, see Example 176.

Example 176. Let P be a Datalog program that consists of the following two rules
and of a set of base facts represented as a graph in Figure 8.3.

r1: reach(S,D)← edge(S,D)

r2: reach(S,D)← reach(S, I), edge(I,D)
Note that S can stand for “source”,D for “destination”, and I for “intermediate”.

The DRed algorithm works in three steps: first it overestimates deletions
by deriving all atoms that lose at least one derivation, second it computes
alternative derivations for potential deletions, and third it computes the ac-
tual changes. Step 1 and 2 are performed by evaluating rules created by
transforming rules of the original program. Notation from [69] is used here.
Following is the transformed program P ′ (excluding the base facts, which
remain the same):

8.4 reason maintenance without support graphs 131

Figure 8.3: A reproduction of a diagram found in [69]. A graph depicting
the (extensional) edge predicate. There is a directed edge from x

to y iff edge(x,y) holds. The edge (e, f) is to be removed.

∆−(r1): δ−(reach(S,D))← δ−(edge(S,D))

∆−(r21): δ−(reach(S,D))← δ−(reach(S, I)), edge(I,D)

∆−(r22): δ−(reach(S,D))← reach(S, I), δ−(edge(I,D))

∆r(r1): δ+(reach(S,D))← δ−(reach(S,D)), edgev(S,D)

∆r(r2): δ+(reach(S,D))← δ−(reach(S,D)), reachv(S, I), edgev(I,D)

∆− rules compute potential deletions, denoted as δ−(reach). There is one
∆− rule for each body atom of each original rule. ∆− rules use current
estimates of the potential deletions, i.e. evaluation of ∆− rules emulates
the original semi-naive computation for reach. Note that rules ∆−(r1) and
∆−(r22) intuitively say that deletions in the edge relation potentially lead to
deletions in the reach relation. Rule ∆−(r21) says that potential deletions in
the reach relation lead to potentially more deletions in the reach relation.
∆r rules determine rederivations of the potential deletions. The super-

script v indicates the use of the current instance (i.e. the relation after incor-
porating the already known changes) of the relation corresponding to the
respective subgoal.

Table 8.4 shows a run of the DRed algorithm for deletion of the atom
edge(e, f). For brevity, edge(x,y) is shortened as xEy and xy stands for
reach(x,y).

You can see that the DRed algorithm identifies tuples {(e, f), (e,h), (b, f),
(b,h)} as to be removed from the reach relation.

The PF (Propagate Filter) algorithm derives (propagates) possible dele-
tions and immediately looks for alternative derivation (i.e. immediately fil-
ters the new possible deletions) in each step. For example, the algorithm
begins by propagating deletion of edge(e, f) to reach(e, f). reach(e, f) is a
possible deletion and it is not filtered because no alternative derivation is
found. Thus reach(e, f) is an actual deletion and is propagated further. Ta-
ble 8.5 shows a whole run of the PF algorithm on the same example.

The PF algorithm also identifies the tuples {(e, f), (e,h), (b, f), (b,h)} as to
be removed from the reach relation.

Let us now explore a run of Algorithm 8.15. Algorithm 8.15 first deter-
mines the set of possible deletions U by calling Algorithm 7.6 and then it
performs semi-naive forward-chaining on the set K (the complement of U in
the fixpoint) and thus computes, using the new updated program, the new
fixpoint. Figure 8.6 shows the old fixpoint of program P with the sets U, K,

132 incremental reason maintenance

DRed algorithm

Step 1 Compute overestimate of potential dele-
tions

δ−(reach)

∆−(r1):δ−(reach(S,D))← δ−(edge(S,D)) ef

∆−(r21):δ−(reach(S,D)) ←
δ−(reach(S, I)), edge(I,D)

eg eh

∆−(r22):δ−(reach(S,D)) ←
reach(S, I), δ−(edge(I,D))

af bf

Repeat until no change: No new tuples for
∆−(r1) and ∆−(r22)

∆−(r21):δ−(reach(S,D)) ←
δ−(reach(S, I)), edge(I,D)

ag ah bg bh

Last iteration does not generate any new
tuples

Step 2 Find alternative derivations to remove po-
tential deletions

δ+(reach)

∆r(r1):δ+(reach(S,D)) ←
δ−(reach(S,D)), edge(S,D)

∆r(r2):δ+(reach(S,D)) ←
δ−(reach(S,D)), reachv(S, I), edgev(I,D)

eg af ag ah bg

Step 3 Compute actual changes to reach ∆−(reach)

∆−(reach) = δ−(reach) − δ+(reach) ef eh bf bh

Table 8.4: A run of the DRed algorithm for Example 176. xy stands for
reach(x,y). Atom edge(e, f) is being removed.

and O marked. The number of a row corresponds to the forward chaining
iteration in which the atoms in the row are first derived. Atoms are ordered
alphabetically in each row.

Table 8.7 shows a run of Algorithm 8.15 for the same example, see also
Figure 8.6.

As you can see, Algorithm 8.15 directly computes the new fixpoint. The
set of tuples deleted from the reach relation is the same as in the previous
two algorithms: U \ (K∪ {af bg eg ag ah}) = {ef eh bf bh}.

Algorithm 8.15 fully takes advantage of the already computed fixpoint
when computing the set U of possible deletions.

Let us explore how the original fixpoint is leveraged in more detail on
another example where it is better visible. Assume again the reachability
program from Example 176 but this time, let the edge relation be as in
Figure 8.8 and let the second rule be r2: reach(S,D)← edge(S, I), reach(I,D).
The exact specification of a program makes a difference. The original rule
r2 would not help to fully leverage the existing fixpoint in this case as it
would first match the original unsure atom reach(a,b) and the rest would
be derived edge by edge in subsequent iterations.

Let us first examine a run of the DRed algorithm in the case that the atom
edge(a,b) is to be removed from the materialized fixpoint, see Table 8.9. The

8.4 reason maintenance without support graphs 133

PF algorithm

Propagate Filter

Rule δ−(reach) δ+(reach) ∆−(reach)

δ−(edge):{(e, f)} ∆−(r1) ef {} ef

∆−(reach):{(e, f)} ∆−(r21) eg eh eg eh

∆−(reach):{(e,h)} ∆−(r21) {} {}

δ−(edge):{(e, f)} ∆−(r22) af bf af bf

∆−(reach):{(b, f)} ∆−(r21) bg bh bg bh

∆−(reach):{(b,h)} ∆−(r21) {} {}

Table 8.5: A run of the PF algorithm for Example 176. xy stands for
reach(x,y). Atom edge(e, f) is being removed.

Figure 8.6: A diagram showing the relationship between sets U,K, and O

as computed by Algorithm 8.15 for Example 176. xy stands for
reach(x,y), xEy stands for edge(x,y). Atom eEf (i.e. edge(e, f))
is being removed.

transformed program P ′ first derives δ−(reach(a,b)) from δ−(edge(a,b))
using rule ∆−(r1). There is only the (a,b) tuple in the δ−(edge) relation
and no other tuple can be derived in the relation. Therefore the rest of the
derivation is done only by rule ∆−(r22). The rest of the potential deletions is
derived in one application of the ∆−(r21) rule. The set of potential deletions
determined by the first phase of the algorithm is {aEb ab ac ae af ag}. The
second phase determines one rederivation ag in one step by application of
the rule ∆r(r2).

Algorithm 8.15 also leverages the original fixpoint in computing the set of
possible deletions. First, it derives reach(a,b) from edge(a,b) by applying
rule r1. Then the whole set of possible deletions U = {aEb ab ac ae af ag} is
derived in one step by application of (the modified) rule r2. The second step
determines one rederivation ag by application of rule r2. See Table 8.10.

In this last example, the overestimation phase of both algorithms derives
the same information by two rule applications. With the unchanged rule,
the same information would be derived in six rule applications. In gen-
eral, the difference is the bigger the longer derivations exist with respect
to the original program. This comparison holds also for the PF algorithm

134 incremental reason maintenance

Step 1 Algorithm 8.15: the call of Algorithm 7.6

F ∆F ∆

Initialization ∅ eEf eEf

eEf ef ef

eEf ef bf af eg eh bf af eg eh

eEf ef bf af eg eh bg bh ag ah bg bh ag ah

eEf ef bf af eg eh bg bh ag ah ag ∅
Step 2 The rest of Algorithm 8.15

Initialization U = {eEf ef bf af eg eh bg bh ag ah} K = TωP \U

∆ = {af bg eg ag} F = K

F = K∪ {af bg eg ag} ∆ = {ah}

F = K∪ {af bg eg ag ah} ∆ = ∅

Table 8.7: A run of Algorithm 8.15 for Example 176. xy stands for reach(x,y),
xEy stands for edge(x,y). Atom eEf (i.e. edge(e, f)) is being re-
moved.

and Algorithm 8.15 because the overestimation phase of the PF algorithm is
comparable.

8.5 support counting

The initial naive step in reason maintenance without support graphs can be
removed by keeping and leveraging the number of supports per atom, see
Section 8.5.1.

Section 8.5.2 shows how support counts can be used to improve algo-
rithms that decide well-foundedness of a support.

Section 8.5.3 presents a novel support counting reason maintenance al-
gorithm specialized to non-recursive Datalog programs. It also defines a
“safeness” criterion, important for the recursive Datalog case, that enables
identification of certain acyclic subgraphs of the whole SG(skTωP) graph
which can be processed more efficiently than the algorithms for recursive
Datalog programs allow without this criterion.

8.5.1 Support counting reason maintenance

Algorithm 8.15 requires an initial naive forward chaining step. The follow-
ing two lemmas show how this step can be replaced by a simple compari-
son of atom support counts. The resulting modification of Algorithm 8.15

computing the TωP fixpoint is then presented as Algorithm 8.16 and a modi-
fication to compute the scTωP fixpoint is presented as Algorithm 8.17.

Let us first extend Notation 170 and introduce the set of supports SU
analogous to the set U.

Notation 177. Let P be a definite range restricted Datalog program, D ⊆ P a set
of rules to remove, and let G = SG(skTωP) be the support graph induced by skTωP .
Then SU = {t ∈ skTωP | t depends on a rule from D in G}.

8.5 support counting 135

Figure 8.8: A graph depicting the (extensional) edge predicate. There is a
directed edge from x to y iff edge(x,y) holds. The edge (a,b) is
to be removed.

The set SU has the following properties:

• heads(SU) = U, by Observation 123,

• supports(D) ⊆ SU, directly from Notation 177 and Terminology 95

(“Supports, depends”).

Lemma 178. Assume Notations 170 and 177 and let a ∈xm scTωP . Then a ∈ O
and a ∈ TP\D(K) iff x > |{t ∈ SU | head(t) = a}|.

Proof. ⇒: Let a be as in the lemma. a ∈ TP\D(K) and TP\D(K) ⊆ Tω
P\D

by Lemma 172 point 3. Therefore there is a support s = (r,σ) of a (i.e.
head(s) = a) such that r ∈ P \D and body(s) ⊆ K. In addition, U ∩ K = ∅
(Lemma 171) and thus (∀x ∈ body(s))x /∈ U which means that s does not
depend on a rule from D in G because it does not directly depend on any
atom that depends on a rule from D (i.e. atoms in U) and r /∈ D. Therefore
s /∈ SU ′ = {t ∈ SU | head(t) = a} and we found at least one support of a
that is in skTωP and not in SU ′. Therefore x > |{t ∈ SU | head(t) = a}| by
Lemma 132.
⇐: Let a be as in the lemma. Then there is a support s = (r,σ) of a (i.e.

head(s) = a) in G which does not depend on a rule from D in G, i.e. no
derivation of s in G includes a support that includes a rule from D or any
atom that depends on a rule from D. Thus s is in skTω

P\D
and therefore

head(s) = a ∈ O because O = heads(SU) ∩ Tω
P\D

. s does not depend on
any atom in U in G (otherwise it would depend on a rule in D) therefore
no atom from body(s) is in U. Because also TωP = U ∪ K, it must hold that
body(s) ⊆ K. Hence a = head(s) ∈ TP\D(K).

Notice that Lemma 178 does not say whether or not the extra support of
a is well-founded. The following lemma shows that any extra support of a,
i.e. a support of a that is not in SU, is well-founded because, intuitively, all
not well-founded supports of a depend strongly on a and thus they depend
on a rule from D, hence they are in SU. See Example 179 for an example of
a not well-founded support.

136 incremental reason maintenance

DRed algorithm

Step 1 Compute overestimate of potential deletions δ−(reach)

∆−(r1):δ−(reach(S,D))← δ−(edge(S,D)) ab

∆−(r21):δ−(reach(S,D)) ←
δ−(edge(S, I)), reach(I,D)

ac ae af ag

∆−(r22):δ−(reach(S,D)) ←
edge(S, I), δ−(reach(I,D))

Repeat until no change: No new tuples for
∆−(r1) and ∆−(r22)

Last iteration does not generate any new tuples

Step 2 Find alternative derivations to remove poten-
tial deletions

δ+(reach)

∆r(r2):δ+(reach(S,D)) ←
δ−(reach(S,D)), reachv(S, I), edgev(I,D)

ag

Step 3 Compute actual changes to reach ∆−(reach)

∆−(reach) = δ−(reach) − δ+(reach) ab ac ae af

Table 8.9: A run of the DRed algorithm for the example in Figure 8.8. xy
stands for reach(x,y). Atom edge(a,b) is being removed.

Example 179. Let P be the program {r1 = a ← ∅, r2 = b ← a, r3 = a ← b}.
Then skTωP = {s1 = (r1, ∅), s2 = (r2, ∅), s3 = (r3, ∅)} and the support s3 is not
well-founded while supports s1 and s2 are well-founded. See also Figure 8.11.

Figure 8.11: The compact support graph SG(skTωP) for P from Example 179

Lemma 180. Let P be a definite range restricted program. Each support of an atom
g ∈ TωP not well-founded in G = SG(skTωP) depends strongly on the node labelled
g in G (note that G is compact by Definition 88).

Proof. Let s be a support of g not well-founded in G = SG(skTωP). Assume,
by contradiction, that s does not strongly depend on l−1G (g). Then there
is a derivation D = (SD, FD,ED, lD) of s which does not include l−1G (g).
D is a minimal well-founded subgraph of G with s as its only sink node.
Then D ′ = (SD, FD ∪ {l−1G (g)},ED ∪ {(s, l−1G (g))}, lG � D) is a derivation
of g = head(s) which includes s. Therefore s is well-founded which is a
contradiction.

Lemma 178 can be used to speed up computation of the new fixpoint in
Algorithm 8.15 by computing the first delta using support counts instead of

8.5 support counting 137

Step 1 Algorithm 8.15: the call of Algorithm 7.6

F ∆F ∆

Initialization ∅ aEb aEb

aEb ab ab

aEb ab ac ae af ag ac ae af ag

aEb ab ac ae af ag ∅ ∅
Step 2 The rest of Algorithm 8.15

Initialization
U = {aEb ab ac ae af ag} K = TωP \ U ∆ =

{aEb ab ac ae af ag} F = K
F = K∪ {ag} ∆ = ∅

Table 8.10: A run of Algorithm 8.15 for the example in Figure 8.8. xy
stands for reach(x,y), xEy stands for edge(x,y). Atom aEb (i.e.
edge(a,b)) is being removed.

by naive forward-chaining, see Algorithm 8.16 for the respective modifica-
tion.

Algorithm 8.16: Reason maintenance with support counts and classical fix-
point output.

Name

scTP-TP-update(P, scT
ω
P , D)

3

Input

P − a range restricted definite \datalog program

6 D − a subset of P, the set of rules to remove

scTωP − the least fixpoint of scTP

9 Output

Tω
P\D

− the new least fixpoint

12 Variables

F,K,∆ − sets of atoms

SU − a set of supports

15

Initialization

TωP := root(scTωP)

18 SU := dependent-supports(P, TωP , D)

K := TωP \ heads(SU)
∆ := { a ∈ heads(SU) | a ∈xm scTωP and x > |{t ∈ SU | head(t) = a}| }

21 F := K

begin

24 while ∆ 6= ∅
begin

F := F∪∆
27 ∆F := TP\D(F,∆) {"new" atoms}

∆ := ∆F \ F {forbid redundant and cyclic derivations}

end

138 incremental reason maintenance

30

return F

end

Proposition 181. Algorithm 8.16 terminates and computes Tω
P\D

.

Proof. For the initial delta it holds that ∆ = {a ∈ O | a ∈ TP\D(K)} by
Lemma 178. Then

∆ = {a ∈ O | a ∈ TP\D(K)} Lemma 178

= O∩ TP\D(K) trivial

= U∩ TP\D(K) Notation 170 for O, Lemma 172 point 3

= TP\D(K) \K Lemma 171, TP\D(K) ⊆ TωP
Let us review the last step in detail: U ∩ K = ∅ and U ∪ K = TωP by

Lemma 171 and “intersecting with a set (i.e. U) is the same as subtracting
its complement (i.e. K)”.

Thus the variables ∆,∆F, and F after initialization have the same value as
variables in Algorithm 8.15 after initialization. The rest follows from Propo-
sition 175.

Algorithm 8.16 takes the old fixpoint with support counts and computes
the new fixpoint without support counts. The new fixpoint is computed
without support counts for clarity reasons only, obviously, in a real-world
setting one will want to compute the new support counting fixpoint. This
insufficiency is remedied in Algorithm 8.17 which computes a multiset ini-
tialization and then continues with support counting semi-naive forward
chaining.

Algorithm 8.17: Reason maintenance with support counts and support
counting fixpoint output.

1 Name

scTP-scTP-update(P, scT
ω
P , D)

4 Input

P − a range restricted definite \datalog program

D − a subset of P, the set of rules to remove

7 scTωP − the least fixpoint of scTP

Output

10 scTω
P\D

− the new least fixpoint

Variables

13 SU − a set of supports

∆,∆F − a set of atoms

F,K − multisets of atoms

16

Initialization

TωP := root(scTωP)

19 SU := dependent-supports(P, TωP , D)

K := [a | a ∈m scTωP and a /∈ heads(SU)]
∆F := [a ∈ heads(SU) | a ∈xm scTωP and x > |{t ∈ SU | head(t) = a}|]

22 ∆ := root(∆F)
F := K

8.5 support counting 139

25 begin

while ∆ 6= ∅
begin

28 F := F]∆F
∆F := scTP\D(F,∆) {repetitions add to F}

∆ := root(∆F) \ root(F) {forbid cyclic derivations}

31 end

return F

34 end

Proposition 182. scTω
P\D

= scTω
P\D

(MK).

Proof. Analogous to the proof of Proposition 173.

Proposition 183. Algorithm 8.17 terminates and computes scTω
P\D

.

Proof. ∆ is initialized correctly by the same argument as in the proof of
Proposition 181. It is easy to see that for K after initialization it holds that
root(K) is equal to the K from Notation 170, K ⊆m scTωP , and for all a ∈xm K

also a ∈xm scTωP . The rest follows from correctness of semi-naive support
counting forward chaining (Proposition 131) and from Proposition 182.

complexity. Algorithms 8.16 and 8.17 function analogously to classical
forward chaining. It is easy to see that the worst-case complexity of Algo-
rithm 8.16 is the same as that of classical semi-naive forward chaining. Al-
gorithm 8.17, in contrast to classical forward chaining, also counts supports.
Counting supports, however, does not increase the worst-case complexity
(see Section 7.5) and therefore the worst-case complexity of Algorithm 8.17

is also the same as the worst-case complexity of semi-naive forward chain-
ing, i.e. polynomial in the number of terms occurring in base facts.

stratifiable normal programs . Both Algorithm 8.16 and Algo-
rithm 8.17 can be easily extended to stratifiable normal programs the same
way as fixpoint computation for stratifiable normal programs, see Section
7.10.

rule updates . Both algorithms in this section can handle base fact
updates as well as general rule updates for the same reason that is explained
in Section 8.4.1.

8.5.2 Well-foundedness and support counts

The reason maintenance algorithm (Algorithm 8.14) based on well-founde-
dness from Section 8.3 uses the auxiliary algorithm Algorithm 7.11 to de-
cide well-foundedness of a support. Algorithm 7.13, which could be used
instead of Algorithm 7.11, can be modified to leverage support counts, see
Algorithm 8.18.

Algorithm 8.18: Deciding well-foundedness with support counts

Name

2 is-well-founded-support-counts(s, D, SU, scTωP)

140 incremental reason maintenance

Input

5 D − a subset of base facts in P (to remove)

SU − the set of supports from skTωP that depend on an atom

from heads(D)

s − a support in SU

8 scTωP − fixpoint of scTP for a definite range restricted \

datalog program P

Output

11 true − if s is well-founded in SG(skTω
P\D

)

false − if s is not well-founded in SG(skTω
P\D

)

14 Variables

t − a support

L − a list of nodes

17 well-founded(x) − a boolean for x ∈ SU, initially false for

each x ∈ SU

Initialization

20 L := topological-sort(s, SG(SU))

begin

23 for i from 0 to |L| such that L[i] = t and t ∈ SU
begin

if body(t) = ∅ and head(t) ∈ heads(D) then continue

26 if ∀b ∈ body(t)
either (∃w ∈ SU) head(w) = b, well-founded(w), and

L[j] = w, j < i
29 or b ∈xm scTωP and x > |{l ∈ SU | head(l) = b}|

then well-founded(t) := true

end

32

return well-founded(s)

end

Lemma 184. Algorithm 8.18 terminates and outputs true if s is well-founded in
SG(skTω

P\D
) and false otherwise.

Proof. The algorithm terminates because it visits each sorted support ex-
actly once, SG(SU) is finite (P is a Datalog program and HBP is finite by
Observation 25), and Algorithm 7.12 terminates.

Algorithm 8.18 works analogically to Algorithm 7.13 with the difference
that 1) it forbids derivations that include an atom from heads(D), 2) only a
subgraph of the whole support graph SG(skTωP) is available. Point 1) assures
that any found derivation of head(s) is a subgraph of SG(skTω

P\D
). Point 2)

is solved by applying Lemma 178 – i.e. support counts of an atom are used
to determine whether it has a well-founded support in skTωP \ SU (line 29).

Line 25 prevents any base supports that include a rule from D from being
marked as well-founded. It can be shown by induction on i that therefore
any support marked by the algorithm as well-founded has a derivation with
respect to P \D and thus it is well-founded in SG(skTω

P\D
).

8.5 support counting 141

rule updates . The algorithm works for removing base facts. The mod-
ification to removing general rules from P is a matter of forbidding supports
using the rules to be removed in the search for a well-founded subgraph.

8.5.3 Reason maintenance specialized to non-recursive Datalog programs

Most of the complexity of reason maintenance algorithms stems from the
fact that there can be directed cycles in a support graph for a general recur-
sive program. If there are no cycles in a support graph then all supports are
well-founded and the support graph can be examined fully incrementally in
contrast to first computing the whole overestimation (i.e. the subgraph that
depends on a rule to be removed). This section explores this idea and for-
mulates a criterion, safeness, that can be used to determine acyclic subgraphs
in the case of recursive programs thus enabling the use of the more efficient
fully incremental algorithm for parts of a support graph for a recursive pro-
gram.

Definition 185 (Rule dependency, rule dependency graph). Let P be a definite
range restricted program. A rule r1 = H1 ← A1, . . . ,Am ∈ P depends on a rule
r2 = H2 ← B1, . . . ,Bn ∈ P if there is an 1 6 i 6 m such that H2 and Ai are
unifiable. We assume that r1 and r2 have no variables in common (otherwise we
rename the variables of r2).

A rule dependency graph for P is a directed graph GP = (V ,E), where V = P,
and E = {(r2, r1) | ∃r1, r2 ∈ P, r1 depends on r2}.

Graphically, rules are represented by dots and edges by arrows.

The direction of edges in a rule dependency graph is in the “forward
chaining direction”, i.e. from a rule the head of which unifies with a body
atom to the rule that includes the body atom. It is a trivial observation that
any rule that is in a cycle in GP can lead to a cycle in the support graph
G = SG(skTωP). Also, any rule on which a rule from a cycle depends can
lead to a cycle in G. See the example in Figure 8.12. Rule 3 is in a cycle
and it depends on rule 6. Therefore rule 6 may derive a fact which can be
re-derived in the cycle.

Figure 8.12: An example of a rule dependency graph that shows all cases
possible with respect to cycles. Rules 4, 5, 7, 8, 9, 10, 11, 12

(denoted by a green dot) are safe rules. Rule 13 is in a cycle with
itself (i.e. its head unifies with one of its body atoms). Edges in
a cycle are dotted.

This observation can be used to define a heuristic useful to recognize
some atoms that cannot be part of any cycle with respect to a given program.

Definition 186 (Safe rule, safe atom). Let P be a definite range restricted pro-
gram. A rule r1 ∈ P is safe in P if there is no rule r2 ∈ P such that r2 depends on

142 incremental reason maintenance

r1 and r2 is in a cycle of a rule dependency graph GP. P is safe if all its rules are
safe in P.

An atom is safe with respect to P if it does not unify with any body atom of any
rule in P that is not safe in P.

It is easy to see that a program is safe if and only if its rule dependency
graph is acyclic, i.e. the program is a non-recursive Datalog program. Note
that a safe atom can be derived also by a rule that is not safe as the following
example shows.

Example 187. Consider the following program P and the corresponding rule de-
pendency graph in Figure 8.13:

r1 = t(X, Y)← t(4, Y), t(2,X)

r2 = t(1,X)← s(X)

f1 = s(3)← >
f2 = t(2, 1)← >
f3 = t(4, 3)← >

(a) The rule dependency graph (b) The graph SG(skTωP)

Figure 8.13: Diagrams for the program P from Example 187.

Rule r1 is not safe because t(X, Y) unifies for example with t(4, Y) and thus it
is in cycle in the rule dependency graph for P. r2 is safe because it is not in a cycle
and t(1,X) unifies neither with t(4, Y), nor with t(2,X). Both rules however derive
the atom t(1, 3) which is safe because it unifies neither with t(4, Y) nor with t(2,X)
– i.e. with no body atom of the only unsafe rule r1 in P.

Note that base facts f2 and f3 and the corresponding atoms t(2, 1) and t(4, 3)
are not safe because r1, which is in a cycle, depends on them.

Note that an unsafe atom may depend on an atom that is safe. Consider
the following example.

Example 188. Consider the following program P and the corresponding rule de-
pendency graph in Figure 8.14:

f1 = a← >
r1 = b← a

r2 = c← b

r3 = d← c

r4 = c← d

Atom a is safe in P because r1 is safe and no body atom of any other rule unifies
with a. All the other atoms b, c, and d are not safe in P and they depend on a in
SG(skTωP).

It is important that atoms that directly depend on an atom safe in P

have only well-founded supports in SG(skTωP), see the following lemma

8.5 support counting 143

(a) The rule dependency graph for
the program P. Rules f1 and r1
are safe in P. Rules r2, r3, and r4
are not safe in P.

(b) The support graph SG(skTωP) for
the program P.

Figure 8.14: Graphs illustrating Example 188.

that justifies the definition of a safe atom and explains its meaning. It gives
a simple syntactic criterion for recognizing when an atom cannot have not
well-founded supports.

Lemma 189. Let P be a definite range restricted program and let a ∈ TωP be an
atom safe with respect to P. Then all supports of any atom that directly depends on
a in G = SG(skTωP) are well-founded in G.

Proof. Let GP be the rule dependency graph for P. No rule in a cycle in GP
depends on a rule safe in P, by Definition 186. This means that any atom
derived by a rule safe in P cannot be derived by a rule in a cycle in GP
(remember that, intuitively, “rules feed atoms to other rules” in direction of
the directed edges in GP). An atom is safe w.r.t. P iff it unifies only with
body atoms of rules safe in P, by Definition 186. Together, any atom that
directly depends on a safe atom in G is derived by a safe rule and cannot be
derived by a rule in a cycle in GP. Such an atom therefore does not depend
on itself in G (if it depended on itself it would be derived by a rule in a cycle
in GP). Thus no support of such an atom depends on the atom and thus all
its supports are well-founded in G by Lemma 180.

It is a simple observation that a support graph corresponding to the least
fixpoint of a safe program contains no cycles.

Lemma 190. Let P be a safe definite range restricted program. Then there are no
cycles in SG(skTωP).

Proof. All rules in P are safe in P. There is no cycle in the rule dependency
graph for P because rules in a cycle are not safe. For a contradiction, let
there be a cycle a1, s1 = (r1,σ1), . . . ,an−1, sn−1 = (rn−1,σn−1),a1 in
G = SG(skTωP). Then a body atom of r1 is unifiable with a1 (because
a1 ∈ body(s1)) and a1 = head(sn−1) and therefore r1 depends on rn−1.
Similarly, ri+1 depends on ri for 1 6 i 6 n− 2. Thus rules ri create a cycle
in the rule dependency graph for P which is a contradiction.

144 incremental reason maintenance

A corollary of this lemma is that all supports in a support graph corre-
sponding to a fixpoint of a safe program are well-founded (see Lemma 180).

The special structure of support graphs for safe programs allows for a
specialized incremental reason maintenance algorithm that processes only
atoms that are eventually removed or at most one step in the support graph
further, see Algorithm 8.19. Recall that, in the general case, the other reason
maintenance algorithms process all atoms in U while Algorithm 8.19 only
processes atoms in O (see Notation 170).

In the initialization, Algorithm 8.19 first determines atoms that directly
depend on a rule to remove (∆F is computed using the scTD operator, notice
the set D) and out of these it takes atoms (the set ∆) that lose all supports
and therefore are not in the new fixpoint and it propagates their deletion.
The while cycle works similarly, with the difference that any affected atom
directly depends on an atom that lost all supports in the previous iteration
(∆F is computed using the scTP mapping and ∆, notice the set P).

Algorithm 8.19: Reason maintenance with support counts and no cycles.

Name

2 reason-maintenance-support-counts-no-cycles(P, scTωP , D)

Input

5 P − a safe range restricted definite \datalog program

D − a subset of P, the set of rules to remove

scTωP − the least fixpoint of scTP
8

Output

scTω
P\D

− the new least fixpoint

11

Variables

∆ − a set of atoms

14 F,∆F − multisets of atoms

Initialization

17 F := ∅m
∆F := scTD(scTωP) {atoms losing a support}

∆ := {a | (∃x ∈N1)a ∈xm scTωP and a ∈xm ∆F}

20 ∆Σ := ∆ {atoms that lost all supports}

begin

23 while ∆ 6= ∅
begin

F := F]∆F
26 ∆F := scTP(scT

ω
P ,∆) {atoms losing a support}

∆ := {a | (∃x ∈N1)a ∈xm scTωP and a ∈xm F]∆F} \∆Σ
∆Σ := ∆Σ ∪∆ {atoms that lost all supports}

29 end

return scTωP 	 F
32 end

Example 191. Consider the following non-recursive program P and the correspond-
ing support graph in Figure 8.15:

8.5 support counting 145

Figure 8.15: The support graph SG(skTωP) for program P from Example 191.
Fact a← > is to be removed.

a← >
b← a

c← a

c← b

d← c

See the following table for a run of Algorithm 8.19 for the input P, scTωP =

[a,b, c, c,d], D = {a← >}.
F ∆F ∆ ∆Σ

∅m [a] {a} {a}

[a] [b, c] {a,b} \ {a} = {b} {a,b}

[a,b, c] [c] {a,b, c} \ {a,b} = {c} {a,b, c}

[a,b, c, c] [d] {a,b, c,d} \ {a,b, c} = {d} {a,b, c,d}

[a,b, c, c,d] ∅m {a,b, c,d} \ {a,b, c,d} = ∅ {a,b, c,d}
In this case, the algorithm thus outputs the empty multiset: scTωP 	 F = [a,b,

c, c,d]	 [a,b, c, c,d] = ∅m.

Proposition 192. Algorithm 8.19 terminates and computes scTω
P\D

.

Proof. Let i denote the iteration number of the algorithm, where i = 0 is
initialization, and let variables with index i denote value of the respective
variable in step i (i.e. after i executions of the while body). We will prove by
induction on i that no atom in ∆i is in Tω

P\D
and no support “generated” in

(the multiset builder condition of) scTP(scTωP ,∆i−1) is in skTω
P\D

.

i = 0: ∆0F = scTD(scTωP) generates all supports that include a rule from
D, none of these supports is in skTω

P\D
. If a ∈ ∆0 then all supports of a are

generated in ∆0F and thus a /∈ Tω
P\D

.

i = 1: ∆1F = scTP(scT
ω
P ,∆0), i.e. each support generated in ∆1F depends

directly on an atom in ∆0. No atom in ∆0 is in Tω
P\D

, thus no support

generated in ∆1F is in skTω
P\D

by Lemma 117. If a ∈ ∆1 then a ∈xm scTωP and
all x supports of a depend directly on an atom in ∆0. Hence a /∈ Tω

P\D
.

i i+ 1: ∆i+1F = scTP(scT
ω
P ,∆i). By induction hypothesis, no atom in ∆i

is in Tω
P\D

. Therefore no support generated in scTP(scTωP ,∆i) is in skTω
P\D

.

146 incremental reason maintenance

Let a ∈ ∆i. Then a ∈xm scTωP and all x supports of a depend directly on an
atom in ∆i none of which is in Tω

P\D
as already proved. Hence a /∈ Tω

P\D
.

Each support in skTωP \ skTω
P\D

is generated in a ∆iF because each such

support depends on a rule from D. Also, F =
⊎
i ∆
i
F and thus scTω

P\D
=

scTωP 	 F, by Proposition 132.
The algorithm terminates because HBP is finite (Observation 25) and there

are no cycles in SG(skTωP) by Lemma 190.

The concept of safeness is important of course in the case of recursive
programs. A support graph of a recursive program may have large acyclic
subgraphs which could be processed more efficiently than by Algorithm
8.15. A modified algorithm can take advantage of the fact that all atoms that
directly depend on a safe atom have only well-founded supports (Lemma
189) and thus for atoms directly depending on a safe atom an incremental
algorithm like Algorithm 8.19 could be applied instead of automatically de-
riving the whole set of “unsure” atoms. This idea is similar to the idea of
local stratification [183, 231].

8.5.4 Comparison with related work

Support is a concept closely related to the concept of a justification known
from the reason maintenance literature (see Section 8.10 for more about rea-
son maintenance). To our best knowledge, counting supports has not yet
been described in the literature. A closely related topic is counting deriva-
tions, which is treated in the next section in detail. Counting derivations
leads to a so called duplicate (or multiset) semantics [159] for Datalog in
which all atoms have a multiplicity corresponding to the number of their
derivations. In this respect, support counting gives an alternative dupli-
cate semantics which provides the same information about derivability and
which can be computed more efficiently than numbers of derivations in the
original duplicate semantics. Duplicate semantics enables certain counting
approaches to incremental view maintenance [104] which are similar to the
approach described in Section 8.5.3 ([104] provides no solution for general
recursive Datalog programs – i.e. for Datalog programs in which the deriva-
tion count in the sense of [104] is infinite). Counting supports is inherently
more efficient than counting derivations as it can be done by extending stan-
dard semi-naive forward chaining to keep count of generated rule instances
per atom. In contrast, counting derivations is in general akin to generat-
ing all derivations. From this perspective, counting supports of an atom
amounts to determining the in-degree of the atom node in the respective
compact support graph while counting derivations amounts to generating
all specific subtrees (derivations) of the support graph. See the next section
for more details.

8.6 derivation counting

To solve the incremental maintenance problem it is necessary to be able to
show whether there is a derivation of an atom or not (as indicated in the
introduction to this chapter). This observation leads to the idea of count-
ing derivations of each atom and updating the counts upon insertion and
deletion. This section explores the idea and presents two different, in a way

8.6 derivation counting 147

complementary, approaches to derivation counting and incremental reason
maintenance based on derivation counts.

The methods of this section are important especially in the wiki context as
they provide users with provenance information for each atom. Provenance
information can be used for explanation and thus it can help to mitigate the
problem that users feel lost even in wikis without complex features such as
reasoning [173, 198].

8.6.1 Reason maintenance with extended atoms

Reason maintenance becomes a simple task in the case of base fact updates
when a dcTP fixpoint is available. Such a fixpoint provides information
about derivations of any atom in the form of extended atoms (see Defini-
tion 133). Any atom derived from a base fact has a corresponding extended
atom in the dcTP fixpoint that has the base fact in its dependency. To com-
pute the new fixpoint for a base fact removal, it is only necessary to remove
all extended atoms from the fixpoint that have the base fact in its depen-
dency. See Algorithm 8.20.

Algorithm 8.20: Reason maintenance for base fact updates using derivation
counts

1 Name

dcTP-dcTP-update(P, dcT
ω
P , D)

4 Input

P − a definite range restricted \datalog program

dcTωP − the least fixpoint of dcTP
7 D − a set of base facts from P to remove

Output

10 dcTω
P\D

− the least fixpoint of dcTP\D

Variables

13 Invalidated − a multiset of extended atoms

begin

16 Invalidated := [(a,S) | (a,S) ∈m dcTωP , (∃d ∈ heads(D)) d ∈ S] ∪m
[(a, ∅) | a ∈ heads(D)]

19 return dcTωP 	 Invalidated

end

Example 193. Consider the example in Figure 7.6. Let us remove the base fact
a ← > from the fixpoint using Algorithm 8.20. Remember that the fixpoint of
dcTP is:

dcTωP = [(a, ∅), (b, ∅), (c, {a}), (c, {b}), (d, {a}), (d, {b}), (e, {c,d,a}),

(e, {c,d,b}), (e, {c,d,a,b}), (e, {c,d,a,b}), (b, {e, c,d,a})].

Algorithm 8.20 computes:

Invalidated = [(c, {a}), (d, {a}), (e, {c,d,a}), (e, {c,d,a,b}),

(e, {c,d,a,b}), (b, {e, c,d,a})] ∪m
[(a, ∅)]

148 incremental reason maintenance

A reproduction of Figure 7.6 for convenience of the reader. The compact
support graph induced by the fixpoint of skTP, where P = {a ← >;b ←
>; c← a;d← a; c← b;d← b; e← c,d;b← e}.

And thus it returns:

dcTωP\{a←>} = [(b, ∅), (c, {b}), (d, {b}), (e, {c,d,b})].

Proposition 194. Algorithm 8.20 terminates and computes dcTω
P\D

.

Proof. dHBP is finite by Lemma 136. The fixpoint is also finite by Lemma
141. Algorithm 8.20 only removes a certain submultiset of the fixpoint from
the fixpoint. Therefore it terminates.

After D is removed from P, all derivations of atoms in dcTωP that in-
clude an atom from heads(D) are invalidated. Derivations correspond to
dependencies of extended atoms by Proposition 142. Therefore the multiset
Invalidated represents exactly the invalidated derivations. Thus dcTωP 	
Invalidated = dcTω

P\D
is the new fixpoint.

Algorithm 8.20 does not count the number of derivations of an atom di-
rectly; the counting is implicit via multisets. It is easy to see that if the
number of derivations of an atom represented in the multiset Invalidated
is the same as the number of derivations of the atom in SG(skTωP) then all
derivations of the atom are invalidated by removal of D from P and it has
zero derivations with respect to P \D and thus it is not in the new fixpoint.

While derivation counting keeps track of which atoms any atom depends
on, it does not keep track of rules that are used to derive an atom. Reason
maintenance for removing rules that are not base facts therefore requires
either tracking rules as well or a more involved approach. The dcTP oper-
ator and the current fixpoint can be used to determine all extended atoms
that were derived using a rule to remove (let us call it the initial set of ex-
tended atoms). All derivations that use any atom from the initial multiset
of extended atoms are thus invalidated. They can be computed by semi-
naive forward-chaining using the initial multiset of extended atoms as the
∆ (analogously to determining all dependent supports in Algorithm 7.6).

Note that the semi-naive forward chaining is necessary. It is not suffi-
cient for example to look for extended atoms the dependencies of which
are supersets of a dependency of one of the initial extended atoms. For the
counterexample, look at Example 147 in Section 8.6 and consider removing
rule c ← a,b. The initial multiset of extended atoms then is ∆initial =

8.6 derivation counting 149

dcT{c←a,b}(dcT
ω
P) = [(c, {a,b}), (c, {a,b})] representing derivations (c) and

(e) in Figure 7.7 which are invalidated by the removal. Their dependen-
cies are the same as the dependency of the extended atom (c, {a,b}) corre-
sponding to derivation (d) in Figure 7.7 which remains valid. Therefore a
simple search for dependency supersets would remove even the extended
atom corresponding to the derivation that remains valid. In comparison, the
Algorithm-7.6-like semi-naive computation ∆ = dcTP(dcT

ω
P ,∆initial) =

∅m shows that only the initial multiset ∆initial is to be removed from the
old fixpoint in this case.

See Algorithm 8.21 for the algorithm for reason maintenance for general
rule updates.

Algorithm 8.21: Reason maintenance for general rule updates using deriva-
tion counts

1 Name

dcTP-dcTP-update-rules(P, dcT
ω
P , D)

4 Input

P − a definite range restricted \datalog program

dcTωP − the least fixpoint of dcTP
7 D − a set rules from P to remove

Output

10 dcTω
P\D

− the least fixpoint of dcTP\D

Variables

13 F, ∆ − a multisets of extended atoms

Initialization

16 F := ∅m; ∆ := dcTD(dcTωP)

begin

19 while ∆ 6= ∅m
begin

F := F]∆
22 ∆ := dcTP(F,∆) {cycles are handled by the dcTP mapping}

end

25 return dcTωP 	 F
end

Example 195. Consider the example in Figure 7.6. Let us remove the rule d ← b

from the program and fixpoint using Algorithm 8.21. Remember that the fixpoint
of dcTP is:

dcTωP = [(a, ∅), (b, ∅), (c, {a}), (c, {b}), (d, {a}), (d, {b}), (e, {c,d,a}),

(e, {c,d,b}), (e, {c,d,a,b}), (e, {c,d,a,b}), (b, {e, c,d,a})].

Algorithm 8.21 computes:

F ∆

∅m [(d, {b})]

[(d, {b})] [(e, {c,d,b}), (e, {c,d,a,b})]

[(d, {b}), (e, {c,d,b}), (e, {c,d,a,b})] ∅m

150 incremental reason maintenance

And thus it returns:

dcTωP\{d←b} = [(a, ∅), (b, ∅), (c, {a}), (c, {b}), (d, {a}), (e, {c,d,a})

(e, {c,d,a,b}), (b, {e, c,d,a})].

Proposition 196. Algorithm 8.21 terminates and computes dcTω
P\D

.

Proof. There is only a finite number of extended atoms (Lemma 136), thus
dcTωP is finite, so is dcTD(dcTωP), and cycles are prevented by the conditions
Hσ /∈ Di and Hσ 6= Biσ in the definition of the dcTP mapping (Definition
144), and dcTP is monotonic because it is continuous (Lemma 47, Lemma
139). Therefore Algorithm 8.21 terminates.

After initialization, ∆ contains all extended atoms that directly depend
on a rule from D in SG(skTωP). The while cycle then derives exactly those
extended atoms from dcTωP that depend on a rule from D by an argument
similar to the one in the proof of Lemma 121 (correctness of the algorithm
to compute supports dependent on a rule from a given subset of P).

complexity. Algorithm 8.20 identifies extended atoms that are not in
the new fixpoint by directly accessing them using their dependencies and
the set of base facts to remove. The time compexity of the algorithm is there-
fore linear in the number of atoms removed from the old fixpoint (assuming
constant time access to extended atoms via their dependencies) and it is op-
timal because such atoms have to be removed by any reason maintenance
algorithm.

The worst case space complexity of Algorithm 8.20 is at most exponential
in the number of atoms in a fixpoint because dependencies are sets of atoms
and for each atom there may be an indefinite number of extended atoms
having different dependencies. However, not all sets of atoms are admissible
dependencies; some sets of atoms do not correspond to a derivation. The
number of dependencies of an atom is greatly affected by the structure of
rules and data. The worst case occurs in the case that each atom has many
different derivations which suggests big redundancies in rules. This case is
quite unlikely in the wiki context where user rules can be assumed to be
local, e.g. focused on data by a specific user or associated with a specific
page.

The worst case time complexity of Algorithm 8.21 is apparently the same
as that of semi-naive dcTP forward chaining, i.e. O(n2k).

It is not necessary to keep dependencies to count derivations to do reason
maintenance, as the following section shows. Not keeping dependencies
however means that a better space complexity of reason maintenance is
traded for its bigger time complexity.

8.6.2 Derivation counting without keeping dependencies

The derivation counting immediate consequence operator dcTP provides a
way to count derivations in forward manner. It can be beneficial, especially
for the purpose of explanation in combination with other reason mainte-
nance methods, to count (and possibly enumerate) derivations for a specific
atom on demand backwards. A backward derivation counting procedure
then also leads to an alternative reason maintenance algorithm which first
determines atoms that depend on an update and then recomputes numbers
of derivations for each of them with respect to the updated program.

8.6 derivation counting 151

Numbers of derivations are not associated directly with atoms but rather
with their individual supports in this method.

Definition 197 (derivP#(s)). Let P be a definite range restricted Datalog program
and let s = (r,σ) be a support with respect to P. Then derivP#(s) is a variable that
represents the number of derivations of head(s) with respect to P that include s.

Algorithm 8.22, which is central to this method, counts derivations of a
given atom f which do not include any atom from the set of “forbidden”
atoms F. Each well-founded support of an atom contributes at least one
derivation to the atom (by the definition of a well-founded support, Defini-
tion 98). The total number of derivations of an atom is therefore the sum
of derivations contributed by its supports. Derivations contributed by a sup-
port are computed by counting the number of derivations of each of its body
atom. However, only such derivations of a body atom can be combined into
a derivation of the head atom which do not use the head atom. Therefore
the head atom becomes forbidden when searching for derivations of body
atoms. The input parameter G is used to increase efficiency of the computa-
tion. SG(G) is a subgraph of the whole compact graph SG(skTωP) such that it
contains all supports that depend on an atom from F∪ {f}. Derivation counts
have to be computed only for atoms in SG(G), see the proof of Proposition
200 for an explanation. The idea is that the set of atoms possibly affected
by a removal (the set U of Notation 170) is likely to be small in comparison
with the whole compact support graph. The reason maintenance algorithm
based on derivation counting without keeping dependencies can first deter-
mine this set and use the corresponding support graph as the input G to
Algorithm 8.22. Note that SG(skTωP) is a compact support graph and thus
Algorithm 8.22 does not distinguish between atoms and atom nodes for the
sake of simplicity.

Algorithm 8.22: Compute the number of derivations of f which do not in-
clude any atom from F

1 Name

count-derivations-without(P, skTωP , G, f, F, derivP#())

4 Input

P − a definite range restricted \datalog program

S = skTωP − a set of supports

7 G − a set of supports, G ⊆ skTωP . G must contain at least all

supports that depend on any atom from F∪ {f} in SG(skTωP)

f − an atom

F − a set of forbidden atoms

10 derivP#() − an up-to-date number of derivations for
each support in S

Output

13 The number of derivations of f that do not include any atom from

F

Variables

16 count(g) − a number temporarily assigned to a node g, local to

the procedure

begin

152 incremental reason maintenance

19 for each support s ∈ S such that head(s) = f
begin

if body(s)∩ F 6= ∅ then count(s) := 0; continue

22 {the body of s contains a forbidden atom}

for each g ∈ body(s)
25 begin

count(g) :=
∑

t∈(S\G)
head(t)=g

derivP#(t)+

∑
t∈G

head(t)=g

count-derivations-without(P,S,G,g, F∪ {f}, derivP#())

28 end

count(s) :=
∏

g∈body(s)

count(g) {assuming
∏
g∈∅

count(g) = 1}

31 end

return
∑
t∈G

head(t)=f

count(t) +
∑

t∈(S\G)
head(t)=f

derivP#(t)

34 end

Lemma 198. Let P be a definite range restricted program, let G = (S, F,E, l) =
SG(skTωP) be a support graph, and let a ∈ F. Then the number of derivations of a
with respect to P that do not use any atom from a set of atoms X is deriv(f,X) =∑

t∈S
head(t)=f

∏
g∈body(t) deriv(g,X∪ {f}).

Proof. For an atom f and a set of atoms X, let derivi(f,X) be the number of
derivations of f in G with depth 6 i that do not include any atom from X.
Similarly, let derivi(s,X) be the number of derivations of head(s) in G that
include s, do not include any atom from X, and are of depth 6 i.

We will show by induction on i that

derivi(f,X) =
∑
t∈S

head(t)=f

derivi(t,X)

=
∑
t∈S

head(t)=f

∏
g∈body(t)

derivi−1(g,X∪ {f})

i = 1: a derivation of f of depth 1 consists only of a support s of f
(head(s) = f) with an empty body. Thus deriv1(s,X) = 1 if body(s) = ∅
(an empty product is equal to 1) and deriv1(s,X) = 0 if body(s) 6= ∅
because deriv0(s,X ∪ {f}) is trivially 0. Because there is at most one sup-
port of f with an empty body, it also trivially holds that deriv1(f,X) =∑

t∈S
head(t)=f

deriv1(t,X), i.e. deriv1(f,X) = 1 if there is a base support of f in

G and deriv1(f, F) = 0 otherwise.
i i+ 1: Let s be a support of f. s corresponds to derivations of f only

if it is well-founded (Definition 98). Let D be a derivation of f of depth at

8.6 derivation counting 153

most i+ 1 that includes s and does not use any atom from X. D consists
of s and derivations of its body atoms are of length at most i. No such
body atom derivation includes f (and trivially no atom from X) because
otherwise D would not be a derivation, see Lemma 153 and its proof for
a similar and more detailed argument and consider that if two body atom
derivations share an atom a but with different supports then the resulting
combined derivation includes two atom nodes labelled a and the resulting
acyclic well-founded graph is still a derivation because it is homomorphi-
cally embedded in G. From the induction hypothesis, the number of such
derivations of a body atom g ∈ body(s) is derivi(g,X ∪ {f}). Each combina-
tion of such derivations of body atoms can be combined into a derivation
of f because they do not use f, see the proof of Lemma 153 for details.
Therefore derivi+1(s,X) =

∏
g∈body(s) derivi(g,X∪ {f}). Each well-founded

support of f corresponds to different derivations of f (they differ at least in
the support). Therefore derivi+1(f,X) =

∑
t∈S

headt=f
derivi+1(t,X).

For i = ω we get

derivP#(f,X) =
∑
t∈S

head(t)=f

∏
g∈body(t)

deriv(g,X∪ {f})

Corollary 199. Let P be a definite range restricted program, let G = (S, F,E, l) be
the support graph SG(skTωP), and let f ∈ F. Then f ∈derivP#(f,∅)

m dcTωP .

Proof. Follows directly from Lemma 198 and from correctness of dcTP, Propo-
sition 142.

The following proposition proves that Algorithm 8.22 is correct.

Proposition 200. Algorithm 8.22 terminates and computes the number of deriva-
tions of f with respect to P that do not include any atom from F.

Proof. The algorithm terminates because the size of the set of forbidden
atoms increases with each recursive call, there is only a finite number of
supports in S (HBP is finite, Lemma 111), and cycles are avoided by adding
the head of s to F.

First assume that S = G. In this case the algorithm computes exactly
derivP#(f, F) which is correct by Lemma 198.

Let G ⊂ S. G contains all supports that depend on an atom from F ∪ {f}

in SG(skTωP). Let s ∈ (S \G). We will show by contradiction that no deriva-
tion of head(s) uses a forbidden atom. If a derivation of head(s) includes
a forbidden atom then s is a depends on that forbidden atom. By assump-
tion of the algorithm, supports that depend on a forbidden atom are in G.
Therefore s must also be in G which is a contradiction. Thus no derivation
of head(s) uses a forbidden atom. The number of derivations of head(s)
via s not using any forbidden atom is thus the same as the number of all
derivations of head(s) via s which is equal to derivP#(s), the number of
derivations associated with s (assumed to be up-to-date by the algorithm).
In other words, derivP#(s) does not have to be recomputed and can be used
directly in this case.

Note that if G is a proper subset of S then potentially a lot of computation
is avoided by relying on derivation counts of supports in S \G. It is also

154 incremental reason maintenance

worth noting that Algorithm 8.22 shows how to enumerate all proofs of an
atom based on a support graph – it explores all dependencies of the atom
back to base facts.

Algorithm 8.23 is the main reason maintenance procedure of this method.
It finds supports that depend on a support to be removed and runs Algo-
rithm 8.22 on them. Supports and atoms are not actually removed by this
algorithm; only their derivation counts are updated.

Algorithm 8.23: Recomputing derivation counts

Name

2 reason-maintenance-derivation-count-update(P,skTωP ,derivP#(),D)

Input

5 P − a definite range restricted \datalog program

S = skTωP − a set of supports

derivP#() − up-to-date derivation counts of supports in S

8 D − a set of rules to remove

Output

11 derivP\D#(s) for each s ∈ skTωP

Variables

14 f − an atom

V − a set of supports

count(g) for a g ∈ TωP − a number temporarily assigned to an

atom g

17

Initialization

SD := {(A← >, ∅) | A← > ∈ D}

20 for each s ∈ SD derivP#(s) := 0

SU := dependent-supports(P, skTωP , D)\SD
G := SU

23 for each s ∈ skTωP derivP\D#(s) := derivP#(s)

begin

26 for each s ∈ SU
begin

derivP\D#(s) :=

29

∏
f∈body(s)

count-derivations-without(P,S,G,f,{head(s)},derivP#())

end

32 return derivP\D#(s)
end

Proposition 201. Algorithm 8.23 terminates and computes derivP\D#() such
that
skTω

P\D
= skTωP \

{
s ∈ skTωP | (derivP#(s) 6= 0 and derivP\D#(s) = 0)

or (derivP#(s) = 0 and (@t ∈ skTωP)head(s) = head(t), derivP\D#(t) > 0)
}

.

Proof. Algorithm 8.23 terminates because all input sets are finite, the algo-
rithm processes each support at most once, and Algorithm 8.22 terminates.

8.6 derivation counting 155

G contains all supports s that depend on a support to be removed (be-
cause algorithm dependent−supports is correct, Lemma 121) and thus its
derivation count, derivP#(s), may change after removing SD. For the same
reason, derivation counts of supports in skTωP \G are not affected by the re-
moval of SD. Algorithm 8.22 recomputes derivation counts of any support
in G. Algorithm 8.23 computes derivation counts of supports in SU correctly
by Lemma 198 and Proposition 200.

Let s ∈ skTωP . If derivP\D#(s) = 0 and derivP#(s) 6= 0 then all derivations
of head(s) that include s also include a support from SD and are invalidated
after SD is removed.

If derivP#(s) = 0 then s is not well-founded in SG(skTωP) and remains
in the new fixpoint as long as there is some support t of head(s) such that
derivP\D#(t) > 0 because then head(s) is still derivable in the new fixpoint
and s depends strongly on it in SG(skTωP) by Lemma 180. That is, a support
s such that derivP#(s) = 0 and all supports of head(s) have zero derivation
count in the new fixpoint is not in the new fixpoint obviously either.

complexity. Let us give a rough estimate of the time complexity of
Algorithm 8.22. Let us assume the worst case, i.e. for the input it holds G =

skTωP and thus derivation counts have to be computed recursively for each
support. Let us also assume that each atom in the fixpoint is derivable from
any other atom in the fixpoint. The size of TωP is bounded by O(nk) (see
the complexity of forward chaining described in Section 7.2). This means
that from the input atom f at most O(nk) atoms can be visited and because
derivation counts are computed recursively for each of the visited atoms, the
time to compute each such derivation count is also O(nk) (with a smaller
constant because the number of forbidden atoms grows with each recursive
descent). The number of edges traversed during computation of each such
derivation also has to be taken into account. The number of edges in a
support graph is O(nk) – any support has at most k + 1 edges and k is
a constant with respect to a given program. Thus the time complexity of
Algorithm 8.22 is O(n3k).

Algorithm 8.23 calls Algorithm 8.22 for each support in the worst case.
The number of supports is O(nk) and thus the worst case time complexity
of Algorithm 8.23 is O(n4k). This means that Algorithm 8.23 can compute
derivation counts for each atom in the fixpoint in time by factor n2k bigger
than the forward derivation counting Algorithm 7.10. This result represents
a classical time-space tradeoff, where the better time complexity of Algo-
rithm 7.10 is paid for by increased space complexity needed for keeping
dependencies for each atom. In comparison, Algorithm 8.23 does not keep
dependencies for each atom and thus has to perform more work to recom-
pute them. The space required by Algorithm 8.23 is linear in the size of the
support graph because only the support graph and one number per each
support have to be kept. Note that the algorithm subtracts any processed
support s from G and thus, in the next step, the execution of Algorithm 8.22

does not recompute the number of derivations corresponding to s again
lowering the actual amount of computation needed. The advantage of not
counting derivations of any support outside of G is likely to be substantial
because in the usual case G, which corresponds to a set of consequences of
rules to remove, can be assumed to be much smaller in size than the whole
fixpoint if we assume that the algorithm is used for “small” updates most
of the time.

156 incremental reason maintenance

The worst case analysis assumes a highly connected graph with large
numbers of cycles which means a high number of redundant derivations
caused by redundancies in rules. In a semantic wiki context, such a support
graph is unlikely as rules are likely to be either a set of rules for example
for RDF(S) semantics well crafted to limit redundancies or rules specified
by users which are likely to be local to specific pages and users.

8.6.3 Discussion

Derivation and support counts provide similar information about derivabil-
ity of atoms. An atom a is derivable with respect to a program P iff there
is a well-founded support of a in SG(skTωP) (Lemma 152) and an atom a is
derivable with respect to a program P iff there is at least one derivation of
a with respect to P. This information provided support counts and deriva-
tion counts is not the same in the non-recursive Datalog case. A derivation
count says how many ways there are to derive an atom. A support count
expresses an upper bound on the number of well-founded supports of an
atom, i.e. if one out of x supports of an atom is invalidated and x > 1 then
it is not possible to say, using this information alone, whether or not the
atom remains derivable. In contrast, derivation and support counts provide
the same information about derivability in the case of non-recursive Datalog
programs because in that case all supports are well-founded, i.e. if one out
of x supports of an atom is invalidated and x > 1 then the it is clear that the
atom remains derivable.

A support graph for a recursive Datalog program can contain not well-
founded supports, i.e. supports that do not provide evidence of derivability.
For this reason, a reason maintenance algorithm for non-recursive Datalog
programs based on support counts cannot work in the ideally incremental
way – exploring only those atoms which will eventually be removed and
at most one step further as in the case of Algorithm 8.19. While derivation
counts and support counts alone are not sufficient for an “ideally incre-
mental” reason maintenance algorithm in the non-recursive Datalog case,
they can still help to improve computation as in the case of Algorithm 8.17,
where support counts are used to avoid the initial naive step which would
otherwise be necessary.

The cost of counting derivations is higher than the cost of counting sup-
ports. It is inherently cheaper to count supports as it amounts to classical
forward chaining with increasing a counter each time an atom is derived
(an operation implicit in Algorithm 7.8 thanks to the use of multisets). In
contrast, counting derivations is more expensive as each derivation of an
atom has to be propagated to all atoms that depend on it.

Derivation counts and support counts provide different perspectives on
derivability. Derivation count of an atom is a “global measure” of derivabil-
ity, it is with respect to a whole support graph; it cannot be computed by
examining only a local part of a support graph. In contrast, support counts
provide a “local measure” of derivability; it depends only on the local struc-
ture of a support graph.

Another difference between the two kinds of counts can be important
for explanation. A derivation count of an atom includes the number of all
derivations, even those that may seem unintuitive or unexpected to casual
users, see Example 202.

Example 202. Let P be the following program:

8.6 derivation counting 157

Figure 8.16: The support graph SG(skTωP) for P in Example 202.

r1 = a← >
r2 = b← >
r3 = b← a

r4 = c← b

r5 = a← b

r6 = c← a

Consider the support graph G = SG(skTωP) in Figure 8.16. Atom c has two
supports (s4 and s6) and four derivations in G. Following are the derivations of c
in G:

• d1 = s1as6c

• d2 = s1as3bs4c

• d3 = s2bs4c

• d4 = s2bs5as6c

In this case, the longer derivations d2 and d4 may seem to be “redundant” or
perhaps even unexpected by casual users and thus the information that c has two
well-founded supports may be sufficient and more intuitive. On the other hand,
for example derivation d2 provides information that b (and thus any atom that
strongly depends on b) is derivable even if the base fact r2 is removed. This kind of
distinction may be useful in ranking derivations for the purpose of explanations.

Note that this example is only a simple example to illustrate the problem; in a
more complex support graph, the difference can be more significant.

Although only information about derivability of atoms is necessary for
the purpose of solving the maintenance problem, computing the numbers of
derivations, enumerating dependencies, or enumerating even whole deriva-
tions potentially provides additional valuable information to wiki users.

8.6.4 Comparison with related work

Derivation counting is referred to in the deductive database community. Du-
plicate semantics as defined in [158], uses a notion of derivation trees de-
fined by Michael Maher in [138]. Maher’s definition allows (see Definition
4.1 on page 11 and the proof of Theorem 6.1 on page 16 in [138]) for repe-
titions which is excluded in our definition of derivation (Definition 98) by
the minimality condition. As a result, it is possible that an atom has an infi-
nite number of Maher’s derivation trees with respect to a Datalog program
while the number of derivations is always finite for Datalog programs in
our case. While derivation counts are always finite in the Datalog case, the
problem, which essentially is detecting cycles in support graphs of recursive

158 incremental reason maintenance

Datalog programs, remains the same. This problem and related decidability
problems are studied by Mumick and Shmueli in [159].

The derivation counting methods described in this section can also be
seen as a novel extension of traditional reason maintenance in that they
rely on derivation counts instead of sets of assumptions as the ATMS (assu-
mption-based truth maintenance) systems [65], or they use and generate
dependencies which are better suited for explanation than the more coarse-
grained assumptions. Traditional reason maintenance systems of the ATMS
kind, record only sets of base facts (assumptions) from which an atom can be
derived which is not sufficient to count the number of derivations. They usu-
ally also are independent of the actual reasoner. In contrast, the approach
presented in this section takes advantage of the additional knowledge about
reasoning to speed up computation in cases where it can be justified for ex-
ample by properties of a fixpoint (if a fixpoint contains an atom a then it
contains also all atoms that can be derived using a) as exemplified by the
parameter G in Algorithm 8.22. This dissertation also explicitly shows the
correspondence between derivations, well-founded supports, and support
graphs which is not discussed in literature (the reason may be that the focus
in the reason maintenance context is solely on derivability).

As noted in Section 8.6.2, Algorithm 8.22 can also be used for proof enu-
meration which is a subject studied for example in [224] using an intuition-
istic logic calculus.

Very recently, Nigam et al. [167, 168] developed an extension of [159]
in the area of distributed (networked) Datalog view maintenance. Our ex-
tended immediate consequence operators, especially the scTP operator, and
the corresponding reason maintenance methods may provide insights for
developing their distributed counterparts in the spirit of [167, 168] that
shows (formally proves) especially how to deal with “out of order” com-
putations that may occur in a realistic distributed setting.

8.7 explanation

Information derived by skTP, scTP, and dcTP operators, as well as informa-
tion derived by the backward derivation counting algorithms can be used
for explanation in semantic wikis. Even in traditional wikis users may feel
lost [173, 198], and semantic wikis usually only increase the perceived com-
plexity. Explanation is one of the ways to mitigate the added complexity
by providing reasons for whatever happens in the wiki. In this section, the
focus is on explaining derived information, although similar techniques can
be used for other purposes too. One such example is general provenance
tracking – tracking the origin and the full history of an information: where
it comes from originally, how it was modified, when and by whom. Prove-
nance has been studied in general [94, 202] and it has already been applied
in fields such as scientific workflows [232, 67], databases [48], wikis [70], and
with specific technologies such as RDF(S) [83, 88, 176, 221]. The concept of
provenance is important because it is more general than that of a support
or a derivation. For example, the provenance and explanation community
even proposed a markup language for representing deduction processes –
PML, the Proof Markup Language [151, 161].

Reasoning coupled with explanation can help to solve traditional prob-
lems of even classical wikis such as detecting inconsistencies. Wikis are well
suited for work in progress which inevitably means that at some points of

8.7 explanation 159

time they are likely to include contradictory information. For example au-
tomatic tagging using the kind of constructive reasoning with KWRL con-
structive and constraint rules as described in Chapter 6 may detect such
contradictions. Explanation can then help pinpoint the root causes of such
automatically detected inconsistencies because an inconsistency is only a
special (reserved) kind of atom in KWRL and thus it can be explained as
any other derived atom.

The methods described in this thesis provide a range of information that
can be leveraged for explanation: from simple yes or no answers about deriv-
ability of an atom (all methods), via presenting direct supports (Section 7.3)
or support counts (Section 7.5) together with information about their well-
foundedness (Section 7.8), sets of atoms from which a given atom can be
derived (i.e. dependencies of extended atoms corresponding to the atom,
Section 8.6), to presenting whole derivations by walking a stored support
graph (Sections 7.3 and 8.10) or by extracting them backwards on demand
(Section 8.6.2). Moreover, different methods may be suitable and can be used
for different parts of data, see the next section for more details.

An approach to explanation using stored support graphs and a backward
rendering of derivation trees was explored in the KiWi project. In this imple-
mentation, a whole skTωP fixpoint is stored in form of the compact support
graph SG(skTωP) in the open source graph database Neo4j1 (see Chapter 9

for more details about the implementation). Parts of the support graph then
can be rendered on user’s request for explanation of a derived information.
Figure 8.17 shows one such example rendering. The interactive graph, im-
plemented in JavaScript, allows a user to interactively fold and unfold nodes
upon which actions the user’s browser dynamically loads required parts of
the graph from the server. Note that rules are depicted as green nodes con-
nected to supports and deviating slightly from the support graph diagrams
introduced in this dissertation. Alongside the graph, there is also a textual
representation of the related supports on the right side.

Figure 8.17: An example rendering of a part of a support graph using the
explanation facility in the KiWi wiki. Atoms are represented by
their database id numbers in the graph. Pointing at an atom
node shows the corresponding statement as a tooltip and high-
lights it in the textual part of the explanation on the right hand
side.

1 http://neo4j.org/

http://neo4j.org/

160 incremental reason maintenance

The textual representation of supports is done by a simple translation of
RDF triples using a predefined vocabulary for properties. Such explanations
can be conveniently displayed as tooltips for derived information in the wiki,
see Figure 8.18. Note that, because the skTωP fixpoint is precomputed and
stored, such tooltips are available as soon as a page loads and thus users can
get explanations immediately. Initial feedback shows that this feature is well
appreciated by users. At occasions, the explanation facility helped the KiWi
developers themselves in figuring out some unexpected derivation due to
the RDF(S) or OWL 2 RL semantics. A user study, however, has not yet been
carried out to analyse the advantages and disadvantages scientifically.

Figure 8.18: An example of a support rendered as a tooltip in the KiWi wiki.

8.8 different algorithms for different parts of data

One reason maintenance method may not fit all needs especially in a system
containing as diverse kinds of information as a semantic wiki. For example,
if a semantic wiki uses RDF to represent its data then basic RDF(S) reason-
ing may be ubiquitous and thus ought to be fast. Some parts of the data
contained in the wiki may be used only internally by the wiki for example
for navigation purposes. Explanation may not be necessary in such cases
and a reasoning and reason maintenance method that does not use support
graphs or dependencies may be used. Other parts of the data may be fre-
quently viewed by users as it is the case for example with tags or categorical
data. In such cases a better choice is reasoning with storing whole support
(sub-)graphs or deriving dependencies.

Semantic wikis employ RDF(S) and OWL ontologies and often use many
different ontologies to represent different kinds of data. As Weaver and
Hendler showed [222], it is often easy to split RDF(S) data in parts for which
the fixpoint can be computed in parallel. A similar strategy can be taken for
reasoning and reason maintenance in a semantic wiki. For each independent
part a specific reasoning and reason maintenance algorithm can be chosen
according to the system and user needs. Such an approach is justified by
Proposition 162 which shows that the same basic information is derived by
all the methods from Chapter 7.

8.9 batch updates and lazy evaluation

All previous sections consider the problem of incrementally processing one
single update, this section explores the problem of efficient processing of
sequences of updates. It may happen that a set of facts is removed and
added again shortly after. In such a case, postponing updates and processing
them in a batch may save computation. Note that this section studies how
updates in a sequence of updates relate to each other and how they affect
query evaluation rather than how to ensure consistent query results. That

8.9 batch updates and lazy evaluation 161

is, while the aim is not for a transaction concept, the results may be useful
for designing a transactional system with materialization. See for example
[156] for an in-depth discussion of transactions and deductive databases.

The problem of processing a sequence of updates is a very practical prob-
lem that any real world reasoner and reason maintenance system likely has
to support, especially in the wiki context and in general in any application
which interacts with users a lot. Large amounts of facts may be scheduled to
be added and removed as a result of a few mouse clicks. A straightforward
implementation may process updates as they come and let a user access
whatever partially updated state that a database is currently in. A more so-
phisticated implementation will process whole sequences of updates and, in
addition, inform a user which information may change after all updates are
processed.

8.9.1 Batch updates

Notation 203 (Update). An update is either

• a simple adding update, denoted +A, where A is a set of rules, or
• a simple removing update, denoted −A, A is a set of rules, or
• a complex update, denoted 〈δ1, . . . , δn〉, which is an ordered list of simple

updates δ1, . . . , δn.

Set A is called the update set. If A contains only base ground facts then we talk
about a base fact update. If A contains rules that are not base facts we talk about
a rule update. If all rules in A are definite we talk about a definite update. We say
that two simple updates are disjoint if their update sets are disjoint.

Definition 204 (Application of an update to a program, equivalent updates).
Let P be a program and let δ be an update. Then application of δ to P, denoted Pδ,
is defined as follows:

Pδ = P ∪A if δ = +A,

Pδ = P \A if δ = −A,

Pδ = ((. . . (Pδ1) . . . δn−1)δn) if δ = 〈δ1, . . . , δn〉.
Parentheses may be omitted for brevity.

Let δ and σ be two updates. δ is equivalent to σ with respect to P if Pδ = Pσ.

Updating a program with a set of rules is simply making a set union or
set subtraction. A trivial observation is that if a part of an update adds rules
that already are in the program or removes rules that are not in the program
then this part of the update is irrelevant to the result.

Lemma 205. Let P and A be two programs. Then

• P+A = P+ (A \ P), and
• P−A = P− (A∩ P).

Proof. Follows immediately from Definition 204.

Lemma 206. Let A,B,P be sets. Then

• (P ∪A) \B = (P ∪ (A \B)) \B = (P \B)∪ (A \B).
• (P \B)∪A = (P \ (B \A))∪A = (P ∪A) \ (B \A).

162 incremental reason maintenance

(a) (P ∪A) \B (b) (P ∪ (A \ B)) \ B and
(P \B)∪ (A \B)

(c) (P \B)∪A (d) (P \ (B \A))∪A and
(P ∪A) \ (B \A)

Figure 8.19: Venn diagrams illustrating the proof of Lemma 206. The result-
ing sets are marked in blue.

Proof. Point 1: Let f ∈ (P∪A) \B, see Figure 8.19a. Then f ∈ P∪A and f /∈ B.
Thus f ∈ (P∪ (A \B)) \B and also f ∈ (P \B)∪ (A \B), see Figure 8.19b. The
other direction is similar.

Point 2: Let f ∈ (P \B)∪A, see Figure 8.19c. Then either (f /∈ A and f /∈ B)
or f ∈ A.

If f is neither in A nor in B then it remains in P on the right sides too. If f ∈
A then f /∈ B \A and therefore f ∈ (P \ (B \A))∪A and f ∈ (P ∪A) \ (B \A),
see Figure 8.19d.

Similarly the other direction.

Lemma 207. Let P,B, and A be programs. Then

• P+B+A = P+ (A∪B),
• P−B−A = P− (A∪B),
• P+A−B = P+ (A \B) −B = P−B+ (A \B),
• P−B+A = P+A− (B \A) = P− (B \A) +A.

Proof. Point 1 and 2 follow directly from Definition 204.
Points 3 and 4 follow directly from Lemma 206.

Lemma 207 says that a sequence of two updates where one is an adding
update and the other a removing update can be evaluated to two, possibly
smaller, commuting updates. The resulting updates commute because they
have an empty intersection.

Lemma 208. Let δ be a finite complex update. Then there is an update +A and
an update −B such that A ∩ B = ∅ and Pδ = P−B+A = P+A−B for any
program P.

8.9 batch updates and lazy evaluation 163

Proof. Let P be a program. The lemma is trivially true because all simple
updates are union and set difference operations. Thus, after all updates in
the sequence are applied, the net result is that some elements are removed
from P and some are added to P. Let us now present a constructive proof
which shows in detail how to actually compute the updates.
δ = 〈δ1, . . . , δn〉, thus Pδ = (((Pδ1) . . . δn−1)δn) by Definition 204. If all δi

are pairwise disjoint then the order of update application is irrelevant, thus
δi can be reordered so that first all adding updates are applied and then all
removing updates are applied. Let δa be the set of adding updates in δ and
δr the set of removing updates in δ. Then Pδ = P−

⋃
δr +

⋃
δa, by Lemma

207 points 1 and 2.
In the non-disjoint case, two consecutive adding or removing operations

can be merged into one by Lemma 207 points 1 and 2. A sequence of updates
P +A− B+ C, where B ∩ C 6= ∅, can be transformed to the sequence P +

A + C − (B \ C), by Lemma 207 point 4, which is equal to P + (A ∪ C) −
(B \C), by Lemma 207 point 1. After at most n− 2 such operations Pδ can
be transformed to Pδ+δ− and Pδ = Pδ+δ−, where δ+ is a simple adding
operation and δ− is a simple removing operation. If δ+ and δ− are not
disjoint then one additional application of Lemma 207 results in two disjoint
simple update operations to P.

Notation 209. Let δ be a complex update. Then let δ+, resp. δ−, denote the adding,
resp. removing, update from Lemma 208.

The notation is justified because δ and 〈δ−, δ+〉 are equivalent updates
with respect to any program.

Definition 210 (Application of an update to a fixpoint). Let P be a program
and let δ be an update. Then application of δ to TωP , denoted TωP δ, is defined as
TωP δ = T

ω
Pδ.

Definition 210 formalizes the idea that applying an update to a fixpoint
means updating the program and computing the corresponding new fix-
point.

A complex update can be transformed to an equivalent sequence of two
updates which are disjoint, by Lemma 208. Disjointness of updates ensures
that no unnecessary redundant computation is done when applying the
updates to a fixpoint.

8.9.2 Answering queries and lazy evaluation

Processing an update may take considerable time during which an applica-
tion is likely to run queries on behalf of users. Until processing of an update
is completed, answers to some queries of the currently materialized fixpoint
may be “unsure” in the sense that they may be not in the new fixpoint. This
section explores this problem.

Let P be a definite range restricted program let δ be a complex definite
range restricted update. Assume that TωP is computed and a sequence of
updates δ is pending, i.e. the fixpoint TωPδ is to be computed. By Lemma 208,
there are two simple updates +A and −B such that TωPδ = TωP+A−B. Because
P and A are definite and TP is monotonic, it holds that TωP ⊆ T

ω
P+A and thus

an answer to a query of TωP is an answer also in a new fixpoint resulting
from an adding update. The more interesting case is the removing update.

164 incremental reason maintenance

Let U(D) be the set of atoms in TωP that depend on a rule from B in
G = SG(skTωP), and let K(D) = TωP \U. Then any answer to a query that is
in U(D) is unsure, an atom in U(D) may be removed after the update −D is
processed, while any answer that is in K(D) is safe; it is a valid answer also
after −D is processed. It also means that processing removing updates can
be postponed as long as queries can be answered using only atoms from
K(D).

An application that postpones updates should thus maintain the sets
U(D) and K(D) as well. This maintenance amounts to marking and unmark-
ing atoms that depend on a rule fromD in G. This computation corresponds
to the initialization step in reason maintenance by the FP−update algorithm
(Algorithm 8.15) and thus is useful in any case.

This kind of lazy evaluation may be beneficial especially when K(D) is
big in comparison with U(D) but U(D) is still significantly big. When U(D)

is small then processing the −D update is likely to be fast and there is less
advantage to putting it off. This is however only a heuristic.

8.9.3 Related Work

This section studies practical problems around implementation of reasoning
and reason maintenance in a real world system such as a wiki. It is essen-
tially a problem of reasoning and materialization strategies and as such it
is related to a variety of techniques from query modification to query cost
analysis and materialization deferring. See for example [109] and [56] for an
overview of such techniques.

8.10 related work

The problem studied in this chapter is essentially a problem of changing
knowledge and especially a problem of updating derived facts or beliefs
upon changes in base facts or assumptions. As such, the problem is related
to a wealth of literature ranging from epistemology, to logic, to databases.
One of the overarching concepts is defeasible reasoning which includes two
subfields important for this work: belief revision (an epistemological ap-
proach) and reason maintenance (a logical approach). The Stanford Ency-
clopedia of Philosophy describes defeasible reasoning as a reasoning where
“the corresponding argument is rationally compelling but not deductively
valid” [123]. Note that deductive validity is meant here as synonymous to
logical validity2 which is synonymous to logical truth. A more correct term
is probably “soundness”3. See also Pollock’s discussion [179] of the history
and difference of defeasible and deductive reasoning. In this sense, reason-
ing described in Chapter 7 is defeasible because the reasoning procedure is
rationally compelling but the reasoning is not deductively valid (resp., more
correctly, it is not sound) because the underlying assumptions, base facts, can
change. This section introduces the two defeasible reasoning subfields and
gives an overview of related work from the field of reason maintenance. Re-
lated work from the field of deductive databases is covered in Section 8.4.2.

The terms belief revision and reason maintenance are sometimes treated
as synonymous, sometimes one of them is taken as the more general con-

2 http://en.wikipedia.org/wiki/Validity

3 http://en.wikipedia.org/wiki/Soundness

http://en.wikipedia.org/wiki/Validity
http://en.wikipedia.org/wiki/Soundness

8.10 related work 165

cept. In fact, the fields are closely related and are compared in the literature
for example by Jon Doyle [75], the founder of reason maintenance, and by
Alvaro Val [214]. Belief revision, as an epistemological approach, studies
properties of belief change and defeasible reasoning as a form of inference
– a process by which knowledge is increased. In comparison, reason mainte-
nance, as a logical approach, focuses on the consequence relation between
sets of propositions.

Belief revision is developed as a formal theory by Alchourrón, Gärdenfors
and Makinson [8, 9], often it is called the AGM theory. It tries to answer the
question what to do in the case when an agent believes a set of propositions
and a change (addition or retraction of a proposition) has to be carried out.
If a proposition is added which is inconsistent with the original belief set
then the agent has to revise the belief set by retracting some beliefs so that
the belief set is consistent again. Logic itself does not provide any reason to
prefer removal of one belief over another. Therefore it is necessary to rely
on additional information about these propositions. The AGM theory states
so called “rationality postulates” which characterize general properties that
the revision should conform to. The main idea is that the revision should
make a minimal change to accommodate the new information consistently.
Note that for belief revision there is, by default, no difference between base
facts and derived facts. This is in stark contrast to reason maintenance and
deductive databases.

The term reason maintenance refers to a variety of knowledge base update
techniques which share a common conceptual design – they distinguish be-
tween an inference engine and a separate reason maintenance system which
communicate with each other via an interface [149]. The original term for
these techniques was truth maintenance as Jon Doyle named it in his Mas-
ter thesis and technical report at MIT [72]. Later, he suggested the name
reason maintenance as a better alternative for “being more precise and less
deceptive” [74]. Both terms are used in this section due to the fact that all
abbreviations of the names of the algorithms still end with the TMS (truth
maintenance system) suffix.

Reason maintenance was originally devised for use in problem solvers
and therefore it puts stress on different aspects of handling updates than
for example incremental view maintenance in deductive databases. It can
also be seen as an implementation technique for belief revision [164]. Note
that, in problem solving, a belief is a fact that can be derived from base facts
(facts that cannot be refuted) and assumptions (facts that can be refuted).
Classical reason maintenance addresses the following problems [143]:

• deriving new beliefs from old ones (the inference problem),
• methods of recording dependencies between beliefs (dep. recording),
• maintaining beliefs after a fact is disbelieved (disbelief propagation),
• changing beliefs in order to remove a contradiction (belief revision),
• dependency of beliefs on the absence of other beliefs (the nonmono-

tonicity problem).

Reason maintenance systems usually consist of two components: a rea-
soner and a reason maintenance component. The reasoner component ad-
dresses the inference problem, i.e. the derivation of new facts based on base
facts, and notifies the reason maintenance system of new derivations and
contradictions. The core responsibility of a reason maintenance system is to
record dependencies between facts in order to be able to solve the disbe-

166 incremental reason maintenance

lief propagation problem: to update the recorded dependencies when a fact
was removed or added. Most authors of the original reason maintenance
systems claim that this separation of responsibilities is advantageous, espe-
cially because of the increased modularity. However, it limits capabilities of
the system. For example, the reason maintenance component cannot itself
detect contradictions, it has to be notified of them.

Dependency records are usually called justifications and correspond to
the notion of a support (Definition 55) in this dissertation. The original rea-
son maintenance systems only invalidated justifications, they did not re-
move them in order to save computation in case a problem solver changes
assumptions back. This was motivated by the fact that derivation steps could
involve costly computations such as solving a differential equation.

Not all systems address all the listed problems. For example KiWi (ver-
sion 1.0) does not address the nonmonotonicity problem and handles the
belief revision problem only partially by supporting users in resolving in-
consistencies.

Note that the disbelief propagation problem becomes a problem in fact
only if derived facts are materialized (i.e. stored or cached). There is no such
problem if derivation always happens at query time.

There is a simple solution to the disbelief propagation problem: comput-
ing a whole materialization anew after each update. If this obviously ineffi-
cient solution is left aside then one of the options is to keep records about
derivations. In the reason maintenance jargon, the derivation record struc-
ture is called a data-dependency network.

8.10.1 Monotonic JTMS reason maintenance

This section presents an overview of the classical justification-based reason
maintenance (JTMS) and related concepts. Note that the JTMS algorithm
assumes that a data-dependency network is recorded and available. This
corresponds to storing a compact support graph during extended forward
chaining and, in fact, if a full support graph is stored then the algorithm in
Listing 8.24 in this section (also in [73, 145, 96, 97, 165]) can (and perhaps
should) be used for incremental view maintenance. In contrast, most of the
work in this dissertation assumes that the full compact support graph is not
stored. The memory cost of storing a support graph can be large. Let us
now review the concept of a data-dependency network which is similar to
but different than the concept of support graphs.

A data-dependency network (DDN) is a directed graph G = (V ,E), where
the set of vertices V consists of two disjoint sets N, a set of nodes represent-
ing atomic facts and rules, and J, a set of justifications, i.e. records of the
dependency of a fact on facts that were used in its derivation. Edges are al-
ways between a node and a justification: E ⊂ (J×N)∪ (N× J). Justification
with an outgoing edge to a node representing a fact is said to support the fact.
A fact participates in a justification if there is an edge from the fact’s node
to the node of the justification. To distinguish DDNs from support graphs
in diagrams, fact nodes are denoted with ovals and justification nodes with
rectangles. A justification with no incoming edges is an empty justification
that denotes a base fact (an assumption).

Note that most of the reason maintenance systems do not “understand”
the content (atoms, literals) of nodes in a DDN. This is the reason why they,
for example, cannot detect inconsistencies on their own.

8.10 related work 167

Figure 8.20: Data-dependency network.

It is also worth mentioning that there is also a dual representation of JTMS
dependencies proposed by Dung [76, 77]. This alternative representation
makes dependencies between justifications explicitly. It is equivalent to the
DDN representation described here and it makes it possible to separate the
monotonic and non-monotonic parts of the dependency graph in the case
of the non-monotonic JTMS.

Let us now examine a specific DDN, consider the following example.

Example 211. Consider a set of atoms F = {a,b, c, i1, i2}, where

• a = (kiwi:StructuredTag rdfs:subClassOf kiwi:Tag),
• b = (kiwi:Tag rdfs:subClassOf kiwi:ContentItem),
• c = (kiwi:ContentItem rdfs:subClassOf kiwi:Document),
• i1 = (kiwi:StructuredTag rdfs:subClassOf kiwi:ContentItem),
• i2 = (kiwi:StructuredTag rdfs:subClassOf kiwi:Document),

and a rule r =
($x rdfs:subClassOf $z)← ($x rdfs:subClassOf $y), ($y rdfs:subClassOf $z).
Atoms a,b, c are base facts, atoms i1 and i2 are derived using the subClassOf

transitivity rule r, see Figure 8.20 for the corresponding data-dependency network.
Suppose that fact a should be removed.

The idea of the JTMS algorithm is based on an idea similar to the over-
estimation and rederivation phases of incremental view maintenance algo-
rithms in deductive databases. The basic idea leads to the following (incor-
rect) sketch of the monotonic JTMS algorithm:

1. Determine all justifications J in which a removed fact participates.
2. For each justification in J invalidate the justification and add the fact

that the justification supports to F.
3. For each fact in F check if it still has a justification. If yes do nothing.

If not then remove the fact recursively.

168 incremental reason maintenance

Figure 8.21: Data-dependency network with a cycle.

The basic algorithm does not handle cycles correctly. Let us assume that
another base fact d = (kiwi:Document rdfs:subClassOf kiwi:ContentItem)
is asserted. This leads to a new derivation of i1, see the resulting data-
dependency network in Figure 8.21.

To illustrate the problem, let us again assume that the node a is to be
removed. This means that justification j1 is removed in step 2 of the basic al-
gorithm and node i1 is checked for an alternative justification in step 3. The
alternative justification exists; it is justification j3. Therefore the algorithm
stops although node i2 is not derivable from the current set of base facts
({b, c,d}). In reason maintenance parlance, justification j3 is not well-founded
– it supports node i1 on which it also depends via justification j2. In other
words, the subtree rooted in j3 does not represent a derivation of i1 because
it uses i1.

A more sophisticated algorithm [72, 73, 145, 96, 97, 165] that uses the idea
of current support can handle cycles correctly (the description here is based
mainly on the nice description of Nebel [165]). The idea is that for each
derived fact node one justification is marked as current and is guaranteed
to be well-founded. Let us assume there is a DDN in which all current
supports are well-founded and the current support of a fact node f is to be
removed. See Listing 8.24 for the algorithm to remove a justification and to
maintain the set of current well-founded supports.

Algorithm 8.24: Current support algorithm

Name

current-support-algorithm-mark(f, G)

3

Input

f − a fact node

6 G = (N∪ J,E) − a data-dependency network

Output

8.10 related work 169

9 marked() − a boolean variable for each node of G

Variables

12 j − a justification

x − a fact node

15 begin

marked(f) := true

for each j that f participates in

18 begin

marked(j) := true

if j is the current support of x then

21 current-support-algorithm-mark(x, G)

end

24 return marked()

end

27 Name

current-support-algorithm-remove(f, G)

30 Input

f − a fact node

G = (N∪ J,E) − a data-dependency network

33

Output

updated G

36

Variables

x − a fact node

39

begin

current-support-algorithm-mark(f, G)

42

for each x ∈ N such that x 6= f and marked(x) == true

begin

45 if ∃j ∈ J such that marked(j) == false and j justifies x then

begin

make j the current support of x

48 recursively-unmark(x)

end

end

51

invalidate all nodes that remained marked

54 return the accordingly updated G

To remove a fact f, first all facts and justifications that depend on f via
current supports are marked. Then each marked fact is checked whether it
has some unmarked justification. If yes then the justification is made the cur-
rent support of the fact. The fact being checked and facts and justifications
that depend on it are unmarked. Finally, all nodes that remain marked are
invalidated.

170 incremental reason maintenance

(a) x depends on itself. (b) x depends on y that depends
on itself.

Figure 8.22: Illustrative examples of simplified data-dependency networks.

The following argument is, to the best of our knowledge, not available
in the literature. It is given here for the sake of completeness and for the
reader’s convenience.

It may not be apparent why an unmarked justification of a marked fact is
well-founded, i.e. why line 47 of the algorithm is correct. Let us assume that
it is not the case – that there is a not well-founded unmarked justification j of
a marked fact x. j being not well-founded means that (a) it supports x while
it also depends on x or (b) it depends on a fact y that depends on itself, by
definition of well-foundedness.

• If j depends on x, see Figure 8.22a, each fact that participates in j has
a current support. If none of these current supports depend on x then
j is well-founded. Therefore one of the current supports must depend
on x. By repeating this argument there has to be a path via current
supports from x to j. This is a contradiction because in this case the
whole path would have been marked because x was marked.

• If j depends on y that depends on itself, see Figure 8.22b, there are
three possibilities for y:

1. y has only one justification that depends on y. This is in con-
tradiction with the assumption that each fact has a current well-
founded support.

2. y has a current support jy that depends on f. Then it would
have been marked and so would j (by the argument from the
previous point).

3. y has a current support jy that does not depend on f. Then it
must depend on other base facts which means that y has a well-
founded support and therefore j is well-founded too which is a
contradiction.

When a DDN is being built, the first justification of a node is made its
current support. It is easy to see that such a justification derived by forward
chaining is well-founded.

8.10 related work 171

The current support algorithm is more expensive than the basic one. In
the basic algorithm, only those vertices are visited which are eventually
deleted. The current support algorithm generally marks more nodes (over-
estimates) than the number of nodes that are going to be deleted and visits
them twice – first to mark them and then to delete them. Note that the first
algorithm is essentially an algorithm for non-recursive Datalog programs
while the second algorithm works correctly in the recursive Datalog case
too and thus the efficiency difference is not surprising. The current support
algorithm requires the whole DDN (resp. support graph) to be stored, i.e.
it requires more space than algorithms in Section 8.4 (TP reason mainte-
nance without support graphs), but potentially less space than the depen-
dency keeping algorithm from Section 8.6.1 (dcTP reason maintenance with
keeping dependencies). With respect to time complexity, the current sup-
port algorithm is in general more efficient than the algorithms of Section
8.4 because it has more information (the support graph) available, hence
a classical time-space tradeoff. See Chapter 10 for a discussion of a possi-
ble graph-based modification of the reason maintenance algorithms without
support graphs of Section 8.4.

Another way to cope with the well-foundedness problem is to ensure that
no cyclic justifications are created. This approach has been applied for exam-
ple in the ITMS reason maintenance system [162]. In fact, current forward
chaining reasoners for the semantic web [116, 213] aim to increase speed
by eliminating duplicate inferences which of course includes cyclic infer-
ences. If only well-founded justifications were found and stored the basic
algorithm could be used. A classical semi-naive forward chaining reasoner
cannot however easily ensure that only well-founded justifications are gen-
erated. To ensure well-foundedness, either dependencies have to be stored
or it has to be proved that a given program has the property that no not
well-founded justifications can be generated by forward chaining – this is
trivially true in the case of non-recursive Datalog programs.

The monotonic JTMS [149] approach has been implemented by Broekstra
et al. [39] in the area of semantic web, although only in a limited way. Their
reasoning and reason maintenance system is specific to RDF(S) reasoning. In
particular, it is limited to a fixed Datalog axiomatization of RDF(S) semantics
which uses at most two body atoms per rule. This limitation allows them to
hand-optimize semi-naive forward chaining to avoid redundant derivations
by analysing dependencies between rules. It was implemented as part of the
Sesame triple store [38].

8.10.2 Other reason maintenance methods

Monotonic JTMS reason maintenance is a simplification of the original JTMS
reason maintenance system which is non-monotonic. Other significant rea-
son maintenance systems are ATMS, LTMS, HTMS, and ITMS, see Table
8.23. Refer for example to [142, 85, 206] for an introduction and comparison
of some of them.

LTMS, the Logical Truth Maintenance System, was first developed by
Mc Allester in [147, 148]. LTMS is more powerful than JTMS because it can
represent general formulas as justifications and it can also represent negated
nodes. On the other hand it also means that its implementation requires a
more sophisticated algorithm.

172 incremental reason maintenance

Nonmon. JTMS The original non-monotonic, justification-based
TMS.

Mon. JTMS Monotonic justification-based TMS. A simplifi-
cation of the original non-monotonic JTMS.

LTMS Logic TMS – a JTMS-inspired TMS modified to
to accept arbitrary clauses.

ATMS Assumption based TMS – de Kleer’s TMS that
tracks sets of assumptions for all derived facts.

HTMS Hybrid TMS – combines advantages of JTMS,
LTMS, and ATMS. By de Kleer.

ITMS Incremental TMS – improves assumption switch
performance of LTMS.

Table 8.23: An overview of different reason maintenance approaches.

ATMS [65, 84, 66], the Assumption based TMS, was developed in order
to support fast switching of sets of assumptions which was required by
certain problem solvers. Many problem-solving tasks require the inference
engine to rapidly switch among contexts (sets of assumptions) or to work
in multiple contexts at once. Two examples of such tasks are qualitative rea-
soning and diagnosis [85]. Switching context in JTMS and LTMS requires
relabelling nodes which can be costly and it is the main reason for develop-
ing and using ATMS. ATMS is similar to monotonic JTMS but it avoids such
relabelling by tracking sets of assumptions for all derived facts. The price is
exponential increase in memory consumption.

ITMS [162], the Incremental Truth Maintenance System, was designed for
real-time use in embedded devices. Therefore ITMS includes an optimiza-
tion to perform faster context switches than the LTMS. ITMS was used for
example in NASA’s project called Livingstone [225] which was a real-time
execution kernel that performs a variety of functions such as commanding,
monitoring, diagnosis, recovery and safe shutdown automatically with re-
quired response times on the order of hundreds of milliseconds.

The ITMS, works only based on approximations which means that it does
not always perform optimally. This problem was adressed by Guofu Wu and
George Coghill in their Propositional Root Antecedent ITMS [227]. Their
method is based on the concept of root antecedents, which are assumptions
that help to determine the dependency relationship between a rules accu-
rately. Their algorithm however still requires that the data-dependency net-
work is stored.

The use of reason maintenance in systems with limited memory led to
the development of a “Fact-Garbage-Collecting” technique [81] to remove
facts and justifications that are unlikely to be used in the future again. The
algorithm adds an additional step to the normal LTMS retraction algorithm
which is the garbage collection.

Each of the approaches has its own problem domain where it performs
the best. An exception is perhaps the HTMS which combines features of the
JTMS and ATMS and behaves as the former or the latter depending on its
usage.

8.10 related work 173

Note that, unlike belief revision, reason maintenance is more pragmatic;
it started with practical implementations and formal description and theory
came only later. Detlef Fehrer created a unifying logical framework [82]
which describes all the various reason maintenance algorithms using one
logical framework based on Gabbay’s Labelled Deductive Systems [89].

9
I M P L E M E N TAT I O N

Many real-world semantic web applications process millions and even bil-
lions [116, 213, 14] of RDF triples. This makes scalability important and a
pure in-memory implementation of triple stores impractical.

Data intensive applications have a long tradition of using relational da-
tabase management systems as persistent storage. This chapter compares
the traditional approach with a graph database approach [11, 192] to im-
plementing reasoning and reason maintenance methods that make use of
graph traversals. A hybrid approach that uses a relational database for rea-
soning and a graph database for reason maintenance and explanation is
implemented as part of the KiWi 1.0 system.1

Figure 9.1: A screenshot of the KiWi 1.0 wiki after installation and after as-
signing the Process QA Plan type from the Logica ontology to
the start page. Immediately after the type was assigned, the for-
ward chaining reasoner derived consequences and stored sup-
ports which are then shown for example in the form of the tooltip
explaining why the Front Page is also of type Description Class.

9.1 a relational database representation

Graph structures play an important role in reasoning and reason mainte-
nance. Yet many current data management systems that provide a reasoning
and reason maintenance functionality, such as triple stores, rely mostly on
traditional relational database systems.

Processing graph structured data in a relational database system is not
straightforward because of the paradigm mismatch between tables and gra-
phs. To represent a graph in a relational database it has to be described in
terms of tables. This in itself presents no obstacle but it has repercussions
on the efficiency with which data can later be handled due to the need for
joins.

1 http://kiwi-project.eu/

175

http://kiwi-project.eu/

176 implementation

Figure 9.2: An entity-relationship diagram for a support representation.

Figure 9.3: A relational database schema modelling atoms, supports and
their relationships.�FK� denotes a foreign key.

Let us quickly review how a graph structure can be represented in a re-
lational database. Two possible modelling approaches can be distinguished.
A general one that admits modelling a generic graph structure which cov-
ers a wide range of specific problems and a problem-specific representation.
Let us explore the latter approach as it allows for a clearer comparison to a
graph database representation.

The support (r,σ) named s can be seen as the triple (r, body(s), head(s))
where rule r together with atoms body(s) can be used to derive the atom
head(s). Three distinct entities can be distinguished: atoms, rule names, and
supports. Figure 9.2 shows how the entities and their relationships can be
modelled.

The entity-relationship model in Figure 9.2 can be represented using four
tables: three for the three entities and one for the BodyAtom relation. See
Figure 9.3 for the corresponding relational database schema. Alternatively,
one could use a single relation. Such an approach has the classical disadvan-
tage of denormalized databases: more complicated and thus perhaps less
efficient updates. This approach is not further investigated here as updates
are as important as reads in our use-case.

One operation that is elementary in most of the algorithms of previous
chapters is determining which atoms depend directly on a given atom. Let
us express the operation as an SQL query assuming the relational model in
Figure 9.3. See Listing 9.3.

Listing 9.3: An SQL query to find atoms depending directly on a given atom
with id ATOMID

SELECT adep.id, adep.subject, adep.predicate, adep.object

FROM Atom adep, Support s, BodyAtom ba

3 WHERE ba.atom = ATOMID AND ba.support = s.id AND s.headAtom =

adep.id;

9.1 a relational database representation 177

As the query in Listing 9.3 shows, three tables have to be joined in order to
determine the set of atoms that directly depend on a given atom. Although it
is possible to use indexes to improve the efficiency of join computation, the
operation still is rather expensive especially when a whole graph traversal
needs to be performed – then each traversal of an additional edge adds more
joins to the query. Let us first consider whether it is possible to reduce the
number of joins.

9.1.1 Reducing the number of joins

Broekstra and Kampman [39] limit the number of body atoms per rule to
two in the implementation of reasoning in the triple store Sesame [38] as
they are interested only in RDF(S) reasoning. In our case this would mean
that the BodyAtom relation could be included directly in the Support table
removing one join per edge traversal. Putting a limit on the number of body
atoms is however not desirable for a general-purpose rule language with
user defined rules such as KWRL.

It is conceivable, that the BodyAtom relation could be encoded directly in
the Support table in the general case too. The problem is to represent a
variable number of body atoms using a fixed number of columns if we do
not want to put an upper limit on the number of body atoms in a rule body.
Each body atom is identified by a unique id in the Atom table. The body of a
support can be encoded as a single number using these ids. It is necessary
that the encoding is easily invertible and also that it is simple so that it
can possibly be computed by the database itself (e.g. as a stored procedure).
Given such an encoding, supports can be represented using a single table.

One candidate encoding is a generalization of the Cantor’s pairing func-
tion. The Cantor pairing function is a bijection from N ×N to N, i.e. it
uniquely and invertibly maps pairs of natural numbers to individual natu-
ral numbers. It is also easily computable:

c(x,y) =
1

2
(x+ y)(x+ y+ 1) + y

The Cantor pairing function can be generalized to a bijection Nn → N

for example as follows

cn(x1, x2, ..., xn) = c2(cn−1(x1, x2, ..., xn−1), xn)

where c2(x,y) is the original Cantor pairing function c(x,y). Other recursive
schemes2 are also possible and some of them produce smaller numbers (in
the sense that small inputs lead to a small result).

The number of body atoms per rule can vary and it can be encoded as the
last number in the sequence of body atom ids in order to make decoding
possible. The first decoding step then retrieves the number of body atoms
that need to be decoded. Computing the Cantor’s pairing function as well as
its inverse is simple (the inverse requires computing a square root) and can
be implemented as a stored procedure in many current relational database
systems. However, the function grows rapidly with the number and with the
size of its arguments. This poses a major disadvantage when the number of
stored atoms can easily be in the millions or even billions making the input
atom ids potentially very large. It is unlikely that other pairing functions

2 See for example http://mathworld.wolfram.com/PairingFunction.html

http://mathworld.wolfram.com/PairingFunction.html

178 implementation

would mitigate the problem significantly as the Cantor pairing function is
bijective and in this sense it is “compact.”

It may be useful to use the above described scheme to reduce the number
of joins in some cases but the number of joins will still grow linearly with
the number of edge traversals. Let us now review a not relational database
approach designed with graph traversals in mind.

9.2 a graph database representation

Recently, many unconventional new approaches to data management have
appeared and are usually referred to as “NoSQL.”3 NoSQL stands either
for “no SQL” to contrast the approach to traditional relational databases or
for “not only SQL” to acknowledge the importance of relational databases
and to stress NoSQL as an orthogonal approach. Indeed, there is evidence
[152] that SQL and NoSQL may be just dual approaches (note that the anal-
ysis of [152] does not include graph databases). Following is the definition
of NoSQL from http://nosql-database.org/ which currently is the main
NoSQL portal (footnotes were added):

Next Generation Databases mostly addressing some of the points:
being non-relational, distributed, open-source and horizontal
scalable. The original intention has been modern web-scale databases.
The movement began early 2009 and is growing rapidly. Often
more characteristics apply as: schema-free, easy replication sup-
port, simple API4, eventually consistent / BASE5 (not ACID6),
a huge data amount, and more.

The main motivation behind NoSQL databases is the insufficiency of re-
lational databases in some use cases that handle large amounts of data very
rapidly. Examples include the short message social network Twitter7 and
Facebook8 which are willing to trade the ACID [100] properties for the dif-
ferent BASE [35, 93, 40] guarantees that mean a higher data throughput or
smaller latency. Brewer’s CAP theorem [35], formally proved by Gilbert and
Lynch in [93], says that an application can achieve only two of the following
three properties: Consistency, Availability, Partition tolerance. ACID drops
partition tolerance while BASE drops consistency. The acronym BASE has
been chosen by Brewer and his students to indicate the opposite of ACID

[40]; “base” is synonymous to “alkali.”
A graph database is a kind of NoSQL database that is optimized for han-

dling graph structured data. The term is used loosely both for systems that
use native data structures optimized for storing and traversing graphs and
for systems that are built on top of relational database systems. This section
is based predominantly on properties of the Neo4j9 system – a prominent
graph database that uses a native data storage designed for fast graph traver-
sals [189] and that has been10 in commercial development and deployment
since 2003.

3 http://nosql-database.org/

4 Application Programming Interface
5 Basically Available, Soft state, Eventual consistency
6 Atomicity, Consistency, Isolation, Durability
7 http://twitter.com/

8 http://facebook.com/

9 http://neo4j.org/

10 http://neotechnology.com/about-us

http://nosql-database.org/
http://nosql-database.org/
http://twitter.com/
http://facebook.com/
http://neo4j.org/
http://neotechnology.com/about-us

9.2 a graph database representation 179

Figure 9.4: A graph database “schema” for support graphs. There are three
different node types: atom, rule, and support. There are two
atom nodes in this diagram for clarity reasons; there is only one
atom node type. There are three different edge types: bodyAtom
(meaning “is body atom of”), rule (meaning “is rule of”), and
supports. Properties are denoted with dotted lines. The plus by
the bottom left atom node is to indicate that there can be multiple
atom nodes connected to a support node via bodyAtom edges.

Neo4j is designed for handling directed property graphs: directed graphs
the nodes and edges of which can be adorned with multiple properties,
edges (relationships in the Neo4j terminology) are typed. The types of edges
and the number and type of properties need not be specified in advance
(i.e. Neo4j is schema-less). There is no query language directly in Neo4j, in-
stead, one has to traverse graphs manually by navigating between nodes
and edges using the Neo4j API (natively in Java but bindings are provided
for other languages too). Alternatively, Neo4j provides a so called Traverser
class which can be used to traverse a graph in breadth-first or depth-first
manner. It is possible to specify a starting node, a stopping criterion, a con-
dition to determine which nodes are to be returned, and relationship types
to traverse.

There also is an “XPath inspired graph traversal and manipulation lan-
guage”11 called Gremlin12 as a third-party alternative to manual traversals.

The Neo4j API for nodes provides access to their associated relationships
by type and direction. A Neo4j relationship provides methods that return
its beginning node and its end node. Properties of nodes and edges must be
of one of Java’s primitive types.

Support graphs can easily be modelled using property graphs, see Figure
9.4. Atoms, rules, and supports are represented by nodes each having an
id property the value of which uniquely identifies the represented object
(a specific atom, a rule, or a support respectively). Note that there are at
most as many rule nodes in a specific support graph as there are rules in
the corresponding program. This has the advantage that a rule node gives
direct access to all supports that use it. If a rule of a support was represented
as a property of the support node then there would be no direct access to
supports that use a specific rule.

Let us again explore how to determine atoms depending on a given atom
“f”, see Listing 9.4.

Listing 9.4: Finding atoms depending directly on a given atom f in Neo4j

11 http://wiki.neo4j.org/content/Gremlin

12 http://github.com/tinkerpop/gremlin

http://wiki.neo4j.org/content/Gremlin
http://github.com/tinkerpop/gremlin

180 implementation

Set<Node> dependingNodes = new HashSet<Node>();

Iterable<Relationship> bodyAtomEdges =

3 f.getRelationships(EdgeType.bodyAtom);

for (Relationship bae : bodyAtomEdges) {

6 Node support = bae.getEndNode();

Relationship supports =

support.getRelationship(EdgeType.supports);

9 Node depAtom = supports.getEndNode();

dependingNodes.add(depAtom);

}

Note that new edge and node types as well as new properties can be
added to an existing graph any time without a need to modify existing
data. A disadvantage is that graph traversing has to be specified purely
imperatively and it is Neo4j-specific.

There is no concept of a “join” in graph databases. A graph is essentially
an already “joined structure” where each node and edge has references to
its adjacent nodes and edges. This has two important implications: first, it
is difficult to shard13 a graph, and second, adjacent vertices and edges are
retrieved in constant time [189]. In comparison, retrieving an adjacent node
from a relational database takes at least logarithmic time if a join is involved
and indexes are used [189].

Let us now compare the relational and graph database representations
and the respective query evaluation complexity more closely.

9.3 comparison

First, let us inspect the relational database approach, see Listing 9.3. The
problem is to find ids of atoms that depend directly on a given atom with
id ATOMID:

1. find all rows with BodyAtom.atom = ATOMID

2. for each found BodyAtom row ba, find a supp. swith s.id = ba.support

3. for each found support s, find the atom it supports, i.e. s.atom =
adep.id

Assuming indexes are used, each step takes logarithmic time in the size
of the respective table. If there are b rows in the BodyAtom table, s rows in
the Support table, and a rows in the Atom table then the time to process
the query is O(log2(b) ∗ log2(s) ∗ log2(a)). It usually will be the case that
b > 2 ∗ s because it can be assumed that there are at least two body atoms
per support. Therefore the overall time is O(log22(b) ∗ log2(a)).

Let us do the same analysis for the graph database approach, analogously
to the more general account given in [189]. The problem is to find all atoms
directly depending on an atom represented by a node “f”:

1. find all outgoing relationships of type EdgeType.bodyAtom of the node
f

13 To scale a database horizontally, i.e. across multiple machines.

9.3 comparison 181

2. for each found bodyAtom relationship find its end node (representing
a support)

3. for each found support node find its EdgeType.Supports relationship

4. for each found Supports relationship find its end node (representing
an atom)

It should be noted that the atom node f may have to be first found by its
ATOMID. This is however only a one-time operation in an algorithm look-
ing for all atoms (indirectly) depending on a given atom. After the atom
node is found by the atom id, other atom nodes are found by traversing
edges. The first search has to be fast too. This is usually achieved by in-
dexing nodes by a property – Neo4j offers a Lucene14-based indexing ser-
vice. Looking up the atom node f by its id can thus be assumed to take
O(log2(a)) time.

Let us first assume that the graph database indexes node relationships
by relationship type and properties by property type. In a graph database,
adjacent nodes and edges are accessible via direct references and thus step 1

requires O(r) operations, where r is the number of EdgeType.bodyAtom rela-
tionships of the node f. Steps 2-4 each require also O(r) operations because
each edge has only one end node and each support has only one supports

relationship. If atoms are represented externally then an additional step of
O(r) operations has to be executed which will query properties of the found
nodes for their external identifiers.

If indexes for relationships and properties are not used then the first step
requires a sequential scan of O(r + x) operations, where x is the number
of incoming bodyAtom relationships of each atom node assuming this num-
ber is the same for all atom nodes (i.e. node f has r outgoing bodyAtom

relationships, x incoming bodyAtom relationships, and it has no other rela-
tionships). The second step requires O(r) operations. The third step requires
O(r ∗ (1+ y+ 1)) operations, where y is the number of bodyAtom edges of a
support. Step 4 requires again O(r) operations. The additional step of find-
ing external identifiers requires O(p ∗ r) operations if there are p properties
per atom node, in this example p = 1.

Overall, the time to retrieve atoms depending on a given atom is O(r) if
indexes for relationships and properties are used and O(r ∗ y+ x) if indexes
are not used.

Note that both r and r ∗ y+ x are much smaller than any of b, s,a. The
time required by a graph database implementation of a graph traversal al-
gorithm depends only on the number of nodes and vertices visited by the
algorithm. In particular, it is independent of the size of the graph. By con-
trast, the relational database implementation requires time dependent on
the size of the tables, i.e. it depends on the size of the whole graph. The
difference is likely to be significant in cases where an algorithm traverses a
graph along long paths. As noted earlier, a price to pay for faster traversals is
substantial difficulty of horizontal scaling due to the difficulty of automatic
splitting of a graph into (independent) parts.

See for example [216] for a comparison (including benchmarks) of Neo4j
and MySQL from the perspective of storing and querying provenance data.
Soussi et al. [205] discuss how relational data related to social networks may
be converted to a graph database representation.

14 http://lucene.apache.org/

http://lucene.apache.org/

182 implementation

9.4 the kiwi 1 .0 implementation

KiWi 1.0 is an enterprise Java application built using the Seam framework15,
a framework for building web applications, and the JBoss16 application
server. It is a platform for building social semantic web applications (one
example of which is the KiWi wiki). As such it has to support a wide range
of use cases which is reflected also in its pragmatically hybrid and often
redundant architecture.

The implementation of reasoning, reason maintenance, and explanation
also employs a hybrid approach. Atoms are stored in a relational database
so that they can easily be queried by SQL and automatically mapped to Java
objects using the JPA17 Java technology. A graph database is used to store
the compact graph SG(skTωP) which enables an efficient implementation of
reason maintenance and explanation algorithms which are predominantly
graph algorithms. The link between the two data management systems is
the primary key value of the atom in the relational database which is also
stored as a property of atom nodes in the graph database.

KiWi 1.0 implements semi-naive reasoning with sKWRL rules by translat-
ing sKWRL rule bodies into JQL (a Java Peristence API version of SQL) in
order to query the relational database system. The retrieved results are also
stored as supports in the Neo4j graph database according to the scheme in
Figure 9.4. The advantage of using JPA and JQL over a specific relational
database system is the possibility to switch between different relational
databases without changing source code. On the other hand, it hinders ef-
ficiency due to the inability to use a native database access. The implemen-
tation is a proof of concept not aiming for high efficiency in all cases. Note
that other semantic web applications and especially triple stores often imple-
ment native data storage to improve efficiency. Designing and building an
efficient triple store is not the goal of this dissertation or of the KiWi project.
KiWi in fact uses the Sesame18 triple store to enable SPARQL querying.

The value invention feature of sKWRL rules is implemented using the
Rabin fingerprinting method [184, 37]. A character string created from a
rule body instance is hashed using the Rabin’s fingerprint function that
provides probabilistic guarantees on the improbability of a collision. This
way it is guaranteed that new (reasonably-sized) constants are created when
necessary without keeping track of rule body instances explicitly.

A graph database was chosen for two reasons: first, it is schema-less
which facilitates development and second, it is optimized for graph traver-
sals which is important for implementation of graph algorithms for reason
maintenance and explanation. KiWi 1.0 implements the current support al-
gorithm (Algorithm 8.24) because the whole compact graph is stored and
available in the Neo4j database in order to be able to provide fast expla-
nations. It would be desirable to implement also Algorithm 8.15 (reason
maintenance without support graphs) in a future release of KiWi. A graph
database can then still be used for example in order to provide fast explana-
tions for data often used by users (see also Section 8.8).

Explanation services in KiWi 1.0 provide access to parts of a support
graph on demand. Any atom can be readily and quickly “explained” which

15 http://seamframework.org/

16 http://www.jboss.org/

17 Java Persistence API – a Hibernate-based object-relational mapping system.
18 http://www.openrdf.org/

http://seamframework.org/
http://www.jboss.org/
http://www.openrdf.org/

9.4 the kiwi 1 .0 implementation 183

Figure 9.5: A screenshot of the KiWi 1.0 reasoning configuration and status
page. The “Online reasoning” option means that reasoning tasks
(triple additions and removals) are processed as they come. The
“Hybrid reasoning” option refers to an experimental optimiza-
tion of the reasoner with respect to the current TBox analogously
to a similar optimization employed in the SAOR reasoner [116].

allows for a nimble user interface that is easily understandable for users.
For example the explanation tooltips (see Section 8.7) are praised by users
of the KiWi wiki. The KiWi user interface is rendered based on informa-
tion loaded from a relational database. Therefore atoms’ primary keys are
available during rendering and they are used to query the graph database
to obtain explanations of the atom by traversing from corresponding atom
node against edge directions. This means that the starting point of the traver-
sal, an atom node corresponding to the body atom to be explained, has to be
quickly accessible in the graph database for example by the primary key of
the corresponding body atom. For this purpose and as already mentioned,
Neo4j provides an indexing mechanism based on the Lucene full-text search
engine library which is used in the KiWi 1.0 implementation too. For a more
thorough discussion of explanation see Section 8.7.

The hybrid approach allows to leverage a relational database for imple-
mentation of rule-based (sKWRL) reasoning by translation of rule bodies to
SQL while explanation and the graph-based reason maintenance algorithm
are implemented using Neo4j and thus make use of fast graph traversals.

10
C O N C L U S I O N A N D P E R S P E C T I V E S

In this thesis, we have investigated theoretical and practical problems stem-
ming from extending social software with advanced semantic functionalities
such as annotation, reasoning, and explanation. First we presented social
semantic software, analysed its defining properties, and formulated require-
ments that guided the rest of the thesis.

The conceptual model of a semantic wiki described in Chapter 4 has been
implemented to a high degree in the KiWi 1.0 release. Structured tags are the
most significant part of the model that has not been implemented and that
has been evaluated only in the user study described in Chapter 5. An im-
plementation of structured tags poses interesting challenges with respect to
user interface, querying, and reasoning. In addition to the structural query-
ing of structured tags already mentioned in Chapter 6 and partly addressed
in [223], it is also the problem of propagating and accumulation of infor-
mation along paths in structured graphs. For example, the question of au-
thorship of derived annotations and its querying is left open in this thesis.
It has been in part addressed in our article [42] where we show that the
impending combinatorial explosion may be sidetracked by keeping infor-
mation only for groups of authors that will likely be a natural part of an
enterprise wiki system. This problem is closely related to the area of prove-
nance and provenance querying [202, 94, 232] that is becoming a more and
more active area of research with the increasing availability of data.

The KWRL language is to the best of our knowledge the first rule lan-
guage focused on annotations. It provides a compact syntax aware of the
conceptual model and it provides a value invention feature that fits the
Linked Data requirements and annotations. KWRL has been implemented
only in part in KiWi 1.0. The syntax of KWRL adopts the keyword:value
style which is close to the syntax of the KWQL query language developed
in [223]. KWQL allows also for specification of boolean queries which pro-
vides a possible point of intersection of the two languages. Another integra-
tion possibility is a loose integration of KWRL and KWQL via special built-
in constructs aimed solely at annotation querying in KWQL with KWRL
constructs and at rule-based reasoning with structural and fuzzy queries
in KWRL with KWQL constructs. A closer investigation of the relationship
and possible integration points of the two languages is desirable as it could
result in a more coherent and powerful system.

The presented extended forward chaining reasoning methods cover a
broad range of possibilities with respect to the information that is derived in
addition to the standard forward chaining. We have designed and analysed
a reason maintenance algorithm that works without support graphs and
that provides significant advantages over the traditional DRed and PF algo-
rithms for the price of modifying the classical forward chaining procedure.
The skTP, scTP, dcTP operators and the related theorems clarify the relation-
ship between supports and derivations which has not been previously done
and the analysis leads to a formulation of novel reason maintenance algo-
rithms based on counting supports. We have provided several derivation
counting algorithms that offer different space-time trade-offs and that pro-

185

186 conclusion and perspectives

vide information that can be used for explanation. The properties of all the
methods are formally investigated and proved within the classical logical
programming framework based on fixpoint theory and the methods are for-
mally compared thanks to their formulation within the unifying framework
of support graphs.

This dissertation does not go into full details with respect to the question
of optimality of the suggested derivation counting methods. There how-
ever are reasons to believe that the methods are nearly optimal. The non-
recursive Datalog case enables formulation of purely incremental derivation
counting and reason maintenance algorithms – there is no need to detect cy-
cles and thus the termination condition is simple. In the recursive Datalog
case, it is necessary to detect cycles and there seems to be no simple way
of formulating a similarly efficient divide and conquer algorithm. The rea-
son is that following different paths in a support graph necessarily leads
to formulation of different sub-problems which makes optimization hard:
if we want to count the number of derivations of an atom a that directly
depends on atoms b and c then we can count the number of derivations
of the atom b that do not use a and the number of derivations of c that
do not use a, i.e. solving the sub-problem for b and c depends on how
they were reached during the previous execution of the algorithm making it
hard to reuse information computed on the way to a; no two sub-problems
are the same unless the algorithm explores exactly the path it had explored
before. Another point of view is that the derivation count of an atom is a
global property that in general cannot be computed from a local subgraph.
See Figure 10.1a. Let a,b, s1, s2 be the local subgraph. Then the numbers of
derivations of atoms “to the left of a” do not help in determining the num-
ber of derivations of a because it is not clear for example whether the atoms
depend also on b and thus on a. Indeed, the number of derivations of an
atom provides little information about the structure of the whole graph, e.g.
the two situations in Figure 10.1a and Figure 10.1b, where in both cases a
and b have two derivations but for different reasons, are indistinguishable
from only the local subgraph and the numbers of derivations. Note that
this situation is distinguishable with respect to support counts. In Figure
10.1a, both a and b have two supports, in Figure 10.1b, a has two supports
(only one is well-founded) and b has one support. This however does not
help because supports are not evidence of derivability unless they are well-
founded. And well-foundedness is again a global property that cannot be
determined only from a local subgraph in general. Despite these difficulties,
the concept of safeness introduced and discussed in Section 8.5.3 seems to
offer a promising direction for finding improvements to reason maintenance
algorithms.

It would be interesting to see how our reason maintenance algorithms
could be applied in a distributed Datalog setting as discussed for example
in [167] and in Section 8.6.4. The method of [167] is based on the DRed
algorithm [105] for which we have provided alternatives – mainly in Section
8.4.

We have also offered and implemented an approach to explaining de-
rived data to a non-expert user. Explanation would deserve a more in-depth
treatment that would consider different ways of transforming and present-
ing derivations to make them more accessible to the casual user. For this
purpose, alternative definitions of a derivation can be explored that would
further limit the amount of redundant (and possibly confusing) information.

conclusion and perspectives 187

(a) a has one derivation “from outside” and
one via s2. Similarly for b.

(b) a has two derivations “from
outside,” b has two deriva-
tions via s1.

Figure 10.1: Support graphs with derivation counts. Numbers by supports
indicate the number of derivations that the support contributes
to the supported atom.

Such a limitation may however make derivation counting more expensive
even in the non-recursive Datalog case and further investigation would be
desirable.

Lastly, this dissertation focuses on forward chaining and it would be in-
teresting to explore a combination of some of the algorithms with backward
methods. Backward methods can for example be used for explanation when
no support graph is available. Note that the fact that a program is material-
ized means that the backward procedure becomes a simple lookup of atoms
that are already materialized.

A P P E N D I X

189

A
S T R U C T U R E D TA G S U S E R S T U D Y M AT E R I A L S

a.1 introductory texts

a.1.1 General Instructions

Introduction to the experiment

The scenario

You work in a software development company that runs several projects. When a project
starts, information about it is added to the company wiki. It describes the project, its goals
as well as projects and the people involved in them. Since several people collaborate to
write the text and since more information becomes available as the project progresses, the
text is changing and is also becoming more detailed.
However, the company's wiki does not only contain text but also annotations that describe
the content of the text (it is a semantic wiki). These annotations are useful for example for
retrieving wiki content and for automated reasoning, the deduction of new facts.

Instructions

In this experiment, you play the role of an employee of the company who annotates differ
ent versions of the same text which describes a project using the given formalism. You are
doing this because it helps automatic processing of the text and therefore it helps you to
organize information, search for information and possibly process it.

You will receive an introduction to the given formalism printed on paper. Feel free to refer
to these instructions as needed.

You will receive 6 versions of the same text and you should annotate all of them. There is
no need to repeat annotations in places where the text does not change between two ver
sions. You can freely refer to earlier annotations by their line number (given on the work
sheet).
To indicate that the annotation no longer applies write down the line number and cross it
through:

45 29

To indicate a change in the annotation write down the line number and indicate what
should be changed. E.g.:

46 change 13 to: …...........

If you find some part of the text difficult to represent in the given formalism, please indicate
this by underlining the part of the text.

The words and phrases printed in bold stress pieces of information that you have to try to
represent using the given formalism. So if an adjective is highlighted, as in “Patrick likes
red apples.”, it means that you should try to represent both the object and its quality (so
“red” and “apple” are different entities, it is not one “red apple” entity)*. Of course, you

* The reason is that you might be interested in retrieving all things red (e.g. both cars and apples). If you
represented red apple as one entity, the information that it in fact is an apple which happens to be red
would be lost.

191

should also annotate the rest of the text, but annotating the bold sections should be a pri
ority.

The gray text indicates for your convenience what information changed in the current revi
sion compared to the previous revision.

You can add as many annotations and as detailed annotations as you feel is appropriate.

Once you are finished annotating a section, it is not allowed to modify it anymore in any
way (adding, changing, ...).

You will only receive the next revision, that is, the new worksheet, after you have finished
annotating the previous version.

After this part of the experiment, you will be asked to fill out a questionnaire about your ex
periences.

Most of the questions should only be answered when you have annotated all six versions,
but the first sections requires you to fill in the times when you started and finished annotat
ing. Please remember to fill this in as soon as you can.

A.1 introductory texts 193

a.1.2 An Introduction to Structured Tags

Introduction to Structured Tags
Structured tags are almost like normal simple tags you know from the Internet, only en
hanced with structure. Two basic operations lie at the core: grouping and characterization.
Grouping, denoted “()”, allows to relate several (complex or simple) tags using the group
ing operator. The group can then be used for annotation. Example: a Wiki page describes
a meeting that took place in Warwick, UK on May 26, 2008, began at 8 am and involved a
New York customer. Using simple tags, this page can be tagged as “Warwick”, “New York”,
“UK”,“May 26”, “2008”, “8am” leaving an observer in doubts whether “Warwick” refers to
the city in UK or to a town near New York. Grouping can be used in this case to make the
tagging more precise: “(Warwick, UK), New York, (May 26, 2008, 8am)”.

Characterization enables the classification or, in a sense, naming of a tag. For example, if
we wanted to tag the meeting Wiki page with the time and date we could tag it as “(5, 26,
2008, 8)” using the grouping operator. The characterization operator can be used to make
the tagging more precise: “(month:5, day:26, year:2008, hour:8)” and later perhaps specify
that the whole group refers to a time: “time:(month:5, day:26, year:2008, hour:8)”. The user
is free to use the operators in whichever way as long as the resulting structured tag is
formed correctly.

Some rules apply to the use of operators (they express what is a correct structured tag and
how to recognize equivalent structured tags):

• Groups
◦ are unordered: (apple, pear) is the same as (pear, apple)
◦ cannot contain two equal members, e.g. (Bob, Bob, Anna) and ((Bob, Anna),

(Anna,Bob)) are not allowed,
◦ can contain arbitrarily many elements and can be arbitrarily nested, e.g. ((cat,

dog, cow), ((mushroom),(daisy, dandelion, Sunflower))),
◦ are identical in meaning to the simple tag when they only contain one element,

i.e. (Anna) is the same as Anna
• Characterization

◦ is not commutative, i.e. geo:x is not the same as x:geo.
◦ can be used on both simple and stuctured tags: (animal:plant):((fox,

squirrel,horse,panda):(pine,birch,chamomile))
•

Structured tags have to be syntactically correct. That means that for example
“Bob:190cm,90kg” is not a valid structured tag because "190cm,90kg" is not enclosed in
parenthesis.

The same information can of course be encoded in many different ways using structured
tag, the user is free to choose the way that suits her the best.

The structure of structured tags has two purposes:
• it enables users to group related things and to classify them
• it facilitates automated processing

◦ For example if users tag pages describing products consistently as "stars:3",
"stars:0", "stars:5", etc. to express how content they are with the product then

these tags can be automatically processed to compute for example average
product ratings. And because the characterization operator is not commutative it
would know that it should ignore tags such as "3:stars" because they can mean
something else. (In case of grouping (3, stars) and (stars, 3) would be consid
ered equal.)

A.1 introductory texts 195

a.1.3 An Introduction to RDF

Introduction to RDF/S
RDF is a formalism that can be used to model information in graphs. RDF graphs contain
simple statements (“sentences”) about resources (which, in other contexts, are be called
“entities”, “objects”, etc., i.e., elements of the domain that may take part in relations).
Statements are triples consisting of subject, predicate, and object, all of which are re
sources:

If we want to refer to a specific resource, we use (supposedly globally unique) URIs. If we
want to refer something about which we know that it exists but we don't know or don't care
what exactly it is, we use blank nodes. For example we know that each country has a capi
tal city but perhaps we don't know what the capital of Mali is but we want to say that there
is some. In this case we would use a blank node for the capital (instead of a URI):

where geo:mali and geo:hasCapital are URIs and _:maliCapital indicates a blank node (the
identifier _:maliCapital is used only for simplification and better readability in this experi
ment, otherwise it could well be _:x05fg85t and the meaning would be the same). Blank
nodes play the role of existential quantifiers in logic. However, blank nodes may not occur
in predicate position. In the object position of a triple there can also be literal values. Literal
values are used to represent dates, character strings, numbers, etc.
RDF may be serialized in many formats. The following example is written in the Turtle seri
alization:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix vcard: <http://www.w3.org/2001/vcard−rdf/3.0#> .
@prefix bib: <http://www.edutella.org/bibtex#> .
@prefix ex: <http://example.org/libraries/#> .

ex:smith2005 a bib:Article ; dc:title "...Semantic Web..." ;
dc:year "2005" ;
ex:isPartOf [a bib:Journal ; bib:number "11"; bib:name "Computer
Journal"] ;

The document begins with a definition of namespace* prefixes used in the remainder of the
document (omitting common RDF namespaces), each line contains one or more state
ments separated by colon or semicolon. If separated by semicolon, the subject of the
previous statement is carried over. E.g., line 1 reads as ex:smith2005 is a (has rdf:type)
bib:Article and has dc:title “...Semantic Web...”. Line 2 shows a blank node: the article is
part of some entity which we can not (or don’t care to) identify by a unique URI but for
which we give some properties: it is a bib:Journal, has bib:number “11”, and bib:name
“Computer Journal”.

If you know Turtle (or any other “official” RDF syntax for that matter) and feel confident us
ing it you can use it. If this is not the case you can write simple triples. Following is the
above example rewritten in simple triples:

* You can see namespaces as a way to shorten long URIs. From this point of view, bib:Article is only a
shortcut for http://www.edutella.org/bibtex#Article.

Subject Predicate Object

geo:mali geo:hasCapital _:maliCapital

ex:smith2005 rdf:type bib:Article

ex:smith2005 dc:title “...Semantic Web...”

ex:smith2005 dc:year “2005”

ex:smith2005 ex:isPartOf _:someJournal

_:someJournal rdf:type bib:Journal

_:someJournal bib:number “11”

_:someJournal bib:name “Computer Journal”

See the end of this introduction for details of the conventions used in this simplified syntax.

The following figure shows a visual representation of the above RDF data, where we distin
guish literals (in square boxes) and classes, i.e., resources that can be used for classifying
other resources, and thus can be the object of an rdf:type statement (in square boxes with
rounded edges) from all other resources (in plain ellipses).

RDF graphs contain simple statements about resources. RDF Schema lets us specify vo
cabularies (terms) that we wish to use in those statements. In the example above, we
would want for example classes bib:Article, bib:Journal and perhaps also bib:Author and
bib:Person. We could also want to use properties such as bib:hasAuthor, ex:isPartOf, ... to
describe the classes. RDF schema allows resources to be instances of one or more
classes. Classes can form a hierarchy (a little similar to object oriented type systems, but
not quite) so for example if a resource ex:resourceABCD is of type zoo:Fox and it is speci
fied that zoo:Fox is rdfs:subClassOf zoo:Mammal then we know that the resource is of
type zoo:Mammal too (because that is how the meaning of the subclass relationship is de
fined: any instance of the subclass is also an instance of the superclass). In RDF Schema,
class is any resource of type rdfs:Class. Hence, to assert that zoo:Fox is a class we would
assert the following triple: zoo:Fox rdf:type rdfs:Class. The rdfs:subClassOf property is
transitive. So if we also knew that zoo:Mammal rdfs:subClassOf ex:LivingThing then ac
cording to RDF Schema zoo:Fox would be a subclass of ex:LivingThing.

RDF Schema also allows for description of properties. Properties are described using the
class rdfs:Property and properties rdfs:domain, rdfs:range, and rdfs:subPropertyOf. There
fore, to introduce new property ex:hasMother one would assert the triple: ex:hasMother
rdf:type rdfs:Property. It is possible to further specify the property it describes people:
ex:hasMother rdfs:domain ex:Person, ex:hasMother rdfs:range ex:Person. Then if there is
a triple of the form ex:a ex:hasMother ex:b then according to RDF Schema and our de
scription of the property ex:hasMother we could derive that both ex:a and ex:b have type
ex:Person (to be more precise, the following two triples could be derived: ex:a rdf:type
ex:Person, ex:b rdf:type ex:Person).

ex:smith2
005

 ...Semantic Web...

2005

_:someJournal

bib:Article
bib:Journal

11

Computer Journal

Remarks

Following simplifying conventions hold for the use of the simple triples:
• The first letter of a class name is upper case. E.g.: Person, Car, Animal
• The first letter of an instance name is lower case. E.g.: spoon, camera, pine
• Literals are enclosed in quotation marks. E.g.: "Red fox", "3 stars",

"31415"
• Blank nodes are indicated by "_:" prefix. E.g.: _:b1, _:SomeBlankNodeName,

_:blank
• It is not necessary to use whole URIs or namespaces in RDF. But always be careful

to put literals in quotation marks and to clearly distinguish blank nodes from other
resources.

• Introduce new namespaces using the Turtle syntax:

Examples

• "New York" a literal string
• NewYork a class which in real RDF has a URI and is of type rdfs:Class (it means

that the following triple is true: NewYork rdfs:type rdfs:Class)
• newYork an instance which in real RDF has a URI and is not of type rdfs:Class
• _:NewYork a blank node

@prefix ex: <http://company.com/concepts/>

198 structured tags user study materials

A.2 texts for annotation 199

a.2 texts for annotation

a.2.1 Text A

Text - Revision 1

The Ant project started on 1st of April 2008. Thematically, it is situated in the area of social
software. Anna is the project coordinator. The other people working on the project include Al, a
programmer, Andy, an analyst and Allen, a student of Software Engineering.
The project will end on 31st of March 2011.

Text - Revision 2

The Ant project, a cooperation with Anchor Inc., started on 1st of April 2008. Thematically, it is
situated in the area of social software and deals with the development of a new social network.
Anna is the project coordinator. She is responsible for supervising the project members' work.
Before taking this position, she worked in the Deer project which ended in late 2007. Anna has
been working for the company since 2003. other people from the companyworking for the project
include Al and Andy, both programmers, and Allen, who studies computer science with a focus on
software engineering and who works for the project part-time. The project will end on 31st of
March 2011.

Text - Revision 3

The Ant project, a cooperation with the Madison branch of Industries, started on 1st of April
2008. Thematically, it is situated in the area of social software and deals with the development of
a new social network for simplifying collaboration in Biomedical research. Anna is the project
coordinator. She is responsible for supervising the project members' work. Before taking this
position, she worked in the Deer project which ended in late 2007. Anna has been working for the
company since 2003. The other people from our company working for the project include Al and
Andy, both programmers, and Allen, who studies computer science with a focus on software
engineering and who works for the project part-time. Al holds a degree in Physics with a minor in
computer science, he has eight years of experience with programming in Java and used to teach
Java. Allen has some experience in Java, but has not used it as much as Python, his favourite
programming language which he has been using for five years. Our contact person at Anchor
Industries is Ali, a medical engineer who serves as an advisor. The project will end on 31st of
March 2011. Upon successful review, its duration may be extended to four years.

Text - Revision 4

Currently, there are two projects in our company: The Ant project and the Bee project.
The Ant project, a cooperation with the Madison, Wisconsin (Latitude = 43.0553, Longitude =
-89.3992)branch of Industries, started on 1st of April 2008. It deals with the development of a
new social network for simplifying collaboration in Biomedical research. Specifically, it aims at
making it easy for researchers to find related projects and to cooperate. is the project coordinator.
She is responsible for supervising the project members' work. Before taking this position, she
worked as an architect in the Deer project which ended in late 2007. Anna has been working for
the company since 2003, starting as an intern in usability testing. Anna knows a colleague very
well.The other people from our company working for the project include Al and Andy, both
programmers, and Allen, who studies computer science with a focus on software engineering and
who works for the project part-time, 15 hours a week. Al holds a Master'sdegree in Physics with a
minor in computer science, he has eight years of experience with programming in Java and used
to teach Java to undergraduate students for three semesters. He has expert knowledge of Java EE
and JavaServer Faces. He has also one other academic degree.Allen has some experience in Java,
but has not used it as much as Python, his favourite programming language which he has been
using for five years. Our contact person at Anchor Industries is Ali, a medical engineer who
serves as an advisor. She has worked on a similar project, the Eagle project which ran from 2003
to 2006, before. Ali can be reached on Wednesday, Thursday, and Friday every week. The Ant
project will end on 31st of March 2011. Upon successful review, its duration may be extended by
up to two years.

200 structured tags user study materials

Text - Revision 5

Currently, there are two projects in our company: The Ant project and the Bee project.
The Ant project, a cooperation with the Madison, Wisconsin (Latitude = 43.0553, Longitude =
-89.3992) branch of IndustriesAnchor Industries, started on 1st of April 2008. It deals with the
development of a new social network for simplifying collaboration in Biomedical research.
Specifically, it aims at making it easy for researchers to find projects that are similar in their topic,
participating researchers and institutions or location and to cooperate by sharing access to
expensive experimental equipment that not all research facilities own and by sharing the contact
data of participants which might be interested in participating in further experiments. Anna is the
project coordinator. She is responsible for supervising the project members' work. Before taking
this position, she worked as an architect in the Deer project which ended in late 2007. Anna has
been working for the company since 2003, starting as an intern in usability testing. Anna knows a
colleague very well, the colleague is Andy. other people from our company working for the
project include Al and Andy, both programmers, and Allen, who studies computer science with a
focus on software engineering and who works for the project part-time, 15 hours a week. Al holds
a Master's degree in Physics with a minor in computer science. He has eight years of experience
with programming in Java and used to teach Java to undergraduate students for three semesters.
He has expert knowledge of Java EE and JavaServer Faces. He also has a degree in mechanical
engineering. Andy is a self-taught programmer who holds a Bachelor's degree in Biology. He
has five years of experience in Programming in Java, and seven years of experience with web
programming overall. has taken three classes in Java at university,but has not used it as much as
Python, his favourite programming language which he has been using for five years. Our contact
person at Anchor Industries is Ali, a medical engineer who serves as an advisor in questions
concerning biomedical practice. She has worked on a similar project, the Eagle project which ran
from 2003 to 2006, before. Ali can be reached by phoneon Wednesday, Thursday, and Friday
every week but can reply to emails from Monday to Friday. Ali most probably knows Andy. Ant
project will end on 31st of March 2011. Upon successful review, its duration may be extended by
up to two years.

Text - Revision 6

The Ant project, a cooperation with the Madison, Wisconsin (Latitude = 43.0553, Longitude =
-89.3992) branch of Anchor Industries, started on 1st of April 2008. It deals with the development
of a new social network for simplifying collaboration in Biomedical research (it is not about
inorganic chemistry but it is also about organic chemistry). Specifically, it aims at making it easy
for researchers to find projects that are similar in their topic, participating researchers and
institutions or location and to cooperate by sharing access to expensive experimental equipment
that not all research facilities own and by sharing the contact data of participants which might be
interested in participating in further experiments. On the other hand, it does not help with process
management. The software will be written in Java using the JBoss Seam framework.Anna is the
senior project coordinator. She is responsible for supervising the project members' work and
overseeing the evaluation of the final product. Before taking this position, she worked as an
architect in the Deer project which ended in late 2007. Anna has been working for the company
since 2003, starting as an intern programmer. Anna knows a colleague very well, the colleague is
Andy. The other people from our company working for the project include Al and Andy, both
programmers, and Allen, who studies computer science with a focus on software engineering and
who works for the project part-time, 15 hours a week (it is full hours, not the 45 min. teaching
units). Al holds a Master's degree in Physics with a minor in computer science. He has eight years
of experience with programming in Java and used to teach Java to undergraduate students for
three semesters. He has expert knowledge of Java EE and JavaServer Faces. He also has a degree
in mechanical engineering. Before joining our company, he worked as a Perl programmer for
three years.Andy is a self-taught programmer who holds a Bachelor's degree in Biology. He has
five years of experience in Programming in Java, and seven years of experience with web
programming overall. He does not know the programming language Haskell. Allen has taken
three classes in Java at university, but has not used it as much as Python, his favourite
programming language which he has been using for five years. He does not know any other
programming language.Our contact person at Anchor Industries is Ali, a medical engineer who
serves as an advisor in questions concerning biomedical practice. She has worked on a similar
project, the Eagle project which ran from 2003 to 2006, before. Ali can be reached by phone on
Wednesday, Thursday, and Friday every week but can reply to emails from Monday to Friday. Ali
is not a programmer and does not want to consult information technology problems.Ali most
probably knows Andy. The Ant project will end on 31st of March 2011. Upon successful review,
its duration may be extended by up to two years.

A.2 texts for annotation 201

a.2.2 Text B

Text - Revision 1

Bob is in charge of the Bee project which started on November 15th 2007 and will run for five
years. Benjamin is employed as the head programmer in the project. He supervises the work of
Bill, Barbara and Bud.

Text - Revision 2

Bob is in charge of the Bee project which started on November 15th 2006 and will run for six
years and five months. Benjamin is employed as the team lead in the project. He supervises the
work of Bill, Barbara and Bud. Bill and Barbara are programmers, Bud is technical document
writer, he is American who speaks Spanish fluently and is learning French. Barbara knows C++
and Java, Bill knows Java and Python. The Bee project is a small long-term project for a big
telecomunication company. The Bee project team is located in London.

Text - Revision 3

Bob is in charge of the Bee project which started in autumn 2006 and will run for six years and a
half. Benjamin is employed as the team lead in the project. He supervises the work of Bill,
Barbara and Bud. Bill is a novice programmer, Barbara is an experienced programmer, Bud is
technical document writer, he is an American from New York who speaks Portugese fluently and
his French is on an intermediate level. Bud is now working on a component design document.
Barbara knows C++ (she was teaching C++ for a while) and Java (she was programming in it for
3 years), Bill knows Java (for 8 years, he is an expert) and Python (3 years, it is his hobby). The
Bee project is a large long-term project for a big mobile operator company. The Bee project team
is located in London - West Kensington and cooperates very well with a team based in Bangalore,
India.

Text - Revision 4

Bob is in charge of the Bee project which started in autumn 2006 and will run for six years and a
half. Benjamin is employed as the team lead in the project. He supervises the work of Bill,
Barbara and Bud. Bill is an expert programmer, Barbara is a former consultant and an
experienced programmer with extensive theoretical knowledge, Bud is technical document writer,
he is an American from New York (geo-location 40.76 (latitude), -73.98(longitude)) who speaks
Portugese fluently (he is a native speaker) and his French is on an intermediate level (he has been
learning French for 3 years). Bud is now working on a design document for the SingleSignOn
component. Barbara knows C++ (she was teaching C++ for 2 years) and Java (she was
programming in it for 3 years) and she has a project manager experience, Bill knows Java (for 8
years, he is an expert who worked on the JVM too) and Python (3 years, it is his hobby, he loves
Python). Barbara worked as a tester for a year in the past. The Bee project is a large long-term
project for a big mobile operator company called PhoneCorp. The Bee project team is located in
London - West Kensington, geo-location 51.49 (latitude), -0.220 (longitude), previously it was
located in the New York headquarters, and cooperates very well with a testing team based in
Bangalore, India.

202 structured tags user study materials

Text - Revision 5

Bob is in charge of the Bee project which started in autumn 2006 and will run for six years and a
half. Benjamin is employed as the team lead in the project. He supervises the work of Bill,
Barbara and Bud. Bill is an expert programmer, Barbara is a former junior consultant and an
experienced programmer with extensive theoretical knowledge (she has a background in
theoretical computer science, esp. the theory of complexity), Bud is technical document writer, he
is an African-American from New York (geo-location 40.76 (latitude), -73.98(longitude)) who
speaks Portugese fluently (he is a native speaker) and his French is on an intermediate level (he
has been learning French for 3 years), he understands Spanish and Italian pretty well but cannot
speak. Bud is now working on a design specification document for the SingleSignOn
subcomponent of the security component. Barbara knows C++ (she was teaching C++ for 2
years) and Java (she was programming in it for 3 years, her focus is on frontend programming,
especially in the JSF technology) and she has a project manager experience, Bill knows Java (for
8 years, he is an expert who worked on the JVM of some company too) and Python (3 years, it is
his hobby, he loves Python, Java not so much). Barbara worked as a tester for a year in the past.
Barbara knows a colleague very well. The Bee project is a large long-term project for a big
mobile operator company called PhoneCorp. The Bee project team is located in London - West
Kensington, geo-location 51.49 (latitude), -0.220 (longitude), previously it was located in the
New York headquarters, and cooperates very well with and manages a testing team based in
Bangalore, India. The other people working for the project include Bao and Bert. Bob maybe
knows Bert.

Text - Revision 6

Bob is in charge of the Bee project which started in autumn 2006 and will run for six years and a
half. The project can be extended by up to two years upon a successful review. Bob is not in
charge of any other project. Benjamin is employed as the team lead in the project. He supervises
the work of Bill, Barbara and Bud. Before joining our company he worked as a consultant for an
international company. Bill is an expert programmer, Barbara is a former junior consultant and an
experienced programmer with extensive theoretical knowledge (she has a background in
theoretical computer science, esp. the theory of complexity), Bud is technical document writer,
not a programmer, he is an African-American from New York (geo-location 40.76 (latitude),
-73.98(longitude)) who speaks Portugese fluently (he is a native speaker) and his French is on an
intermediate level (he has been learning French for 3 years), he understands Spanish and Italian
pretty well but cannot speak. Bud is now working on a design specification document for the
SingleSignOn subcomponent of the security component. Barbara knows C++ (she was teaching
C++ for 2 years) and Java (she was programming in it for 3 years, her focus is on frontend
programming, especially in the JSF technology), she has a project manager experience and she
does not speak French and does not like Bud because he's a chauvinist, Bill knows Java (for 8
years, he is an expert who worked on the JVM of Sun Microsystems too) and Python (3 years, it
is his hobby, he loves Python, Java not so much). Barbara worked as a tester for a year in the past.
Barbara knows a colleague very well, the colleague is Bob. The Bee project is a large long-term
project for a big mobile operator company called PhoneCorp. The Bee project team is located in
London - West Kensington, geo-location 51.49 (latitude), -0.220 (longitude), previously it was
located in the New York headquarters, and cooperates very well with and manages a testing team
based in Bangalore, India. Project management is not the responsibility of Bill. Bill is reachable
on Monday, Tuesday, and Wednesday by phone but he can reply to e-mails from Monday to
Friday. The other people from the company working for the project include Bao and Bert. Bob
maybe knows Bert.

A.3 questionnaires 203

a.3 questionnaires

a.3.1 After Each Round Questionnaire

ID:____________________
Formalism: RDF Structured Tags☐ ☐

Time you started annotating revision 1: ___________
Time you finished annotating revision 1: ___________

Time you started annotating revision 2: ___________
Time you finished annotating revision 2: ___________

Time you started annotating revision 3: ___________
Time you finished annotating revision 3: ___________

Time you started annotating revision 4: ___________
Time you finished annotating revision 4: ___________

Time you started annotating revision 5: ___________
Time you finished annotating revision 5: ___________

Time you started annotating revision 6: ___________
Time you finished annotating revision 6: ___________

After reading the introductory text, I felt I had understood how to use the annotation formalism
 strong disagree disagree undecided agree strong agree☐ ☐ ☐ ☐ ☐

Comments:___
__
__
__

The given annotation formalism allowed to annotate the text in an intuitive way
 strong disagree disagree undecided agree strong agree☐ ☐ ☐ ☐ ☐

Comments:___
__
__
__

The given annotation formalism allowed to annotate the text in a convenient way
 strong disagree disagree undecided agree strong agree☐ ☐ ☐ ☐ ☐

Comments:___
__
__
__

The given annotation formalism was expressive enough to annotate the text the way I wanted
 strong disagree disagree undecided agree strong agree☐ ☐ ☐ ☐ ☐

Comments:___
__
__
__

ID:____________________
Formalism: RDF Structured Tags☐ ☐

I feel confident about the formal correctness of the annotations I made
 strong disagree disagree undecided agree strong agree☐ ☐ ☐ ☐ ☐

Comments:___
__
__
__

I feel confident about the appropriateness of the annotations I made
 strong disagree disagree undecided agree strong agree☐ ☐ ☐ ☐ ☐

Comments:___
__
__
__

I feel confident that the annotations I made convey the important aspects of the text
 strong disagree disagree undecided agree strong agree☐ ☐ ☐ ☐ ☐

Comments:___
__
__
__

I enjoyed using the formalism
 strong disagree disagree undecided agree strong agree☐ ☐ ☐ ☐ ☐

Comments:___
__
__
__

Given more time, I would have liked to add more annotations
 strong disagree disagree undecided agree strong agree☐ ☐ ☐ ☐ ☐

Comments:___
__
__
__

Do you have any further comments?
__
__
__
__
__
__
__
__
__

A.3 questionnaires 205

a.3.2 Final Questionnaire

ID:____________________
Formalism: RDF Structured Tags☐ ☐

Given a similar task, which formalism would you prefer for annotation and why?
__
__
__
__
__
__
__
__
__
__
__

What did you notice comparing the two formalisms?
__
__
__
__
__
__
__
__
__
__
__

Do you have any further comments?
__
__
__
__
__
__
__
__
__
__
__

B I B L I O G R A P H Y

[1] Web 2.0. http://en.wikipedia.org/wiki/Web_2.0. Retrieved August
16, 2010.

[2] Wikipedia. URL http://en.wikipedia.org/wiki/Wikipedia. Re-
trieved August 16, 2010.

[3] World Wide Web. http://en.wikipedia.org/wiki/World_Wide_Web.
Retrieved April 12, 2011.

[4] Karl Aberer, Philippe C. Mauroux, Aris M. Ouksel, Tiziana Catarci,
Mohand S. Hacid, Arantza Illarramendi, Vipul Kashyap, Massimo Me-
cella, Eduardo Mena, Erich J. Neuhold, and Et Al. Emergent seman-
tics principles and issues. In DASFAA, LNCS, pages 25–38. Springer,
March 2004. URL http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.9.6378.

[5] S. Abiteboul. Datalog extensions for database queries and updates.
Journal of Computer and System Sciences, 43(1):62–124, August 1991.
ISSN 00220000. doi: 10.1016/0022-0000(91)90032-Z. URL http://dx.

doi.org/10.1016/0022-0000(91)90032-Z.

[6] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995. ISBN 0-201-53771-0.

[7] Eneko Agirre and German Rigau. Word sense disambiguation us-
ing conceptual density. In Proceedings of the 16th conference on Com-
putational linguistics - Volume 1, COLING ’96, pages 16–22, Strouds-
burg, PA, USA, 1996. Association for Computational Linguistics. doi:
10.3115/992628.992635. URL http://dx.doi.org/10.3115/992628.

992635.

[8] Carlos E. Alchourron, Peter Gardenfors, and David Makinson. On
the logic of theory change: Contraction functions and their associated
revision functions. Theoria, 48:14–37, 1982.

[9] Carlos E. Alchourron, Peter Gardenfors, and David Makinson. On the
logic of theory change: Partial meet contraction and revision functions.
J. Symbolic Logic, 50:510–530, 1985.

[10] Morgan Ames and Mor Naaman. Why we tag: motivations for an-
notation in mobile and online media. In Proceedings of the SIGCHI
conference on Human factors in computing systems, CHI ’07, pages 971–
980, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-593-9. doi:
10.1145/1240624.1240772. URL http://dx.doi.org/10.1145/1240624.

1240772.

[11] Renzo Angles and Claudio Gutierrez. Survey of graph database
models. ACM Comput. Surv., 40(1):1–39, February 2008. ISSN 0360-
0300. doi: 10.1145/1322432.1322433. URL http://dx.doi.org/10.

1145/1322432.1322433.

207

http://en.wikipedia.org/wiki/Web_2.0
http://en.wikipedia.org/wiki/Wikipedia
http://en.wikipedia.org/wiki/World_Wide_Web
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.6378
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.6378
http://dx.doi.org/10.1016/0022-0000(91)90032-Z
http://dx.doi.org/10.1016/0022-0000(91)90032-Z
http://dx.doi.org/10.3115/992628.992635
http://dx.doi.org/10.3115/992628.992635
http://dx.doi.org/10.1145/1240624.1240772
http://dx.doi.org/10.1145/1240624.1240772
http://dx.doi.org/10.1145/1322432.1322433
http://dx.doi.org/10.1145/1322432.1322433

208 bibliography

[12] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declar-
ative knowledge, pages 89–148. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1988. ISBN 0-934613-40-0. URL http:

//portal.acm.org/citation.cfm?id=61352.61354.

[13] S. Auer, S. Dietzold, and T. Riechert. Ontowiki-a tool for social, seman-
tic collaboration. International Semantic Web Conference, 4273:736–749,
2006.

[14] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary Ives. Dbpedia: A nucleus for a web of
open data. In Karl Aberer, Key-Sun Choi, Natasha Noy, Dean Alle-
mang, Kyung-Il Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika,
Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe
Cudré-Mauroux, editors, The Semantic Web, volume 4825, chapter 52,
pages 722–735. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.
ISBN 978-3-540-76297-3. doi: 10.1007/978-3-540-76298-0_52. URL
http://dx.doi.org/10.1007/978-3-540-76298-0_52.

[15] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL en-
velope. In Proceedings of the 19th international joint conference on Artifi-
cial intelligence, pages 364–369, San Francisco, CA, USA, 2005. Morgan
Kaufmann Publishers Inc. URL http://portal.acm.org/citation.

cfm?id=1642351.

[16] Jie Bao, Li Ding, and James A. Hendler. Knowledge representation
and query in semantic mediawiki: A formal study. Technical report,
Tetherless World Constellation (RPI), 2009. URL http://www.cs.rpi.

edu/~baojie/pub/2009-06-02_iswc-bao_tr.pdf.

[17] J. Bar-Ilan, S. Shoham, A. Idan, Y. Miller, and A. Shachak. Structured
versus unstructured tagging: a case study. Online Information Review,
32(5):635–647, 2008.

[18] Judit Bar-Ilan, Snunith Shoham, Asher Idan, Yitzchak Miller, and Aviv
Shachak. Structured vs. unstructured tagging - a case study. In Pro-
ceedings of the WWW 2006 Collaborative Web Tagging Workshop, 2006.

[19] Dave Beckett. RDF/XML syntax specification (revised). Technical
report, W3C, 2004.

[20] Dave Beckett and Art Barstow. N-Triples. Technical report, W3C, 2001.

[21] David Beckett and Tim Berners-Lee. Turtle - terse RDF triple language.
Technical report, W3C, 2006.

[22] V. Richard Benjamins, Jesús Contreras, Oscar Corcho, and Asunción
Gómez-pérez. Six challenges for the semantic web. In In KR2002
Semantic Web Workshop, volume 1, 2002. URL http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.107.8902.

[23] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and J. Hendler.
N3Logic: A logical framework for the World Wide Web. Theory and
Practice of Logic Programming, 8(03):249–269, 2008.

[24] Tim Berners-Lee. Notation 3. Technical report, W3C, 1998.

http://portal.acm.org/citation.cfm?id=61352.61354
http://portal.acm.org/citation.cfm?id=61352.61354
http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://portal.acm.org/citation.cfm?id=1642351
http://portal.acm.org/citation.cfm?id=1642351
http://www.cs.rpi.edu/~baojie/pub/2009-06-02_iswc-bao_tr.pdf
http://www.cs.rpi.edu/~baojie/pub/2009-06-02_iswc-bao_tr.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.8902
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.8902

bibliography 209

[25] Tim Berners-Lee. Transcript of Tim Berners-Lee’s talk to the LCS 35th
Anniversary celebrations. http://www.w3.org/1999/04/13-tbl.html,
April 1999.

[26] Tim Berners-Lee. Linked data. International Journal on Semantic
Web and Information Systems, 4(2), 2006. URL http://www.w3.org/

DesignIssues/LinkedData.html.

[27] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific American, 284(5):28–37, May 2001.

[28] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth
Dhanaraj, James Hollenbach, Adam Lerer, and David Sheets. Tabula-
tor: Exploring and analyzing linked data on the semantic web. In In
Proceedings of the 3rd International Semantic Web User Interaction Work-
shop, 2006. URL http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.97.950.

[29] Agnès Blaye and Françoise Bonthoux. Thematic and taxonomic re-
lations in preschoolers: The development of flexibility in categoriza-
tion choices. British Journal of Developmental Psychology, 19(3):395–412,
2001. doi: 10.1348/026151001166173. URL http://dx.doi.org/10.

1348/026151001166173.

[30] W. Blizard. Dedekind multisets and function shells. Theoretical
Computer Science, 110(1):79–98, March 1993. ISSN 03043975. doi:
10.1016/0304-3975(93)90351-S. URL http://dx.doi.org/10.1016/

0304-3975(93)90351-S.

[31] Wayne D. Blizard. The development of multiset theory. The Review of
Modern Logic, 1(4):319–352, 1991.

[32] Amy E. Booth and Sandra Waxman. Object names and object func-
tions serve as cues to categories for infants. Developmental Psychology,
38(6), 2002. URL http://www.sciencedirect.com/science/article/

pii/S0012164902014985.

[33] Philip Richard Boulain. Swiki: A semantic wiki wiki web. Master’s
thesis, University of Southampton, 2005.

[34] Tim Bray, Dave Hollander, Andrew Layman, Richard Tobin, and
Henry S. Thompson. Namespaces in XML 1.0 (Third Edition). Tech-
nical report, W3C, 2009.

[35] Eric A. Brewer. Towards robust distributed systems (abstract). In
Proceedings of the nineteenth annual ACM symposium on Principles of dis-
tributed computing, PODC ’00, New York, NY, USA, 2000. ACM. ISBN
1-58113-183-6. doi: 10.1145/343477.343502. URL http://dx.doi.org/

10.1145/343477.343502.

[36] Dan Brickley and R. V. Guha. RDF vocabulary description language
1.0: RDF schema. Technical report, W3C, 2004.

[37] A. Broder. Some applications of Rabin’s fingerprinting method. In
Sequences II: Methods in Communications, Security, and Computer Science,
pages 143–152. Citeseer, 1993.

http://www.w3.org/1999/04/13-tbl.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.950
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.950
http://dx.doi.org/10.1348/026151001166173
http://dx.doi.org/10.1348/026151001166173
http://dx.doi.org/10.1016/0304-3975(93)90351-S
http://dx.doi.org/10.1016/0304-3975(93)90351-S
http://www.sciencedirect.com/science/article/pii/S0012164902014985
http://www.sciencedirect.com/science/article/pii/S0012164902014985
http://dx.doi.org/10.1145/343477.343502
http://dx.doi.org/10.1145/343477.343502

210 bibliography

[38] J. Broekstra, A. Kampman, and F. Van Harmelen. Sesame: A generic
architecture for storing and querying RDF and RDF Schema. LNCS,
2342, 2002.

[39] Jeen Broekstra and Arjohn Kampman. Inferencing and truth mainte-
nance in RDF Schema – exploring a naive practical approach. Work-
shop on Practical and Scalable Semantic Systems (PSSS), 2003.

[40] Julian Browne. Brewer’s CAP Theorem, January 2009. URL http:

//www.julianbrowne.com/article/viewer/brewers-cap-theorem.

[41] Vicki Bruce, Patrick R. Green, and Mark A. Georgeson. Visual percep-
tion: Physiology, psychology, & ecology. Psychology Press, 2003.

[42] François Bry and Jakub Kotowski. A social vision of knowledge rep-
resentation and reasoning. In Proceedings of the 36th Conference on Cur-
rent Trends in Theory and Practice of Computer Science, pages 235–246.
Springer-Verlag, 2009.

[43] François Bry, Tim Furche, and Benedikt Linse. Data model and query
constructs for versatile web query languages: State-of-the-Art and
challenges for xcerpt. In In Proc. Int’l. Workshop on Principles and Prac-
tice of Semantic Web Reasoning (PPSWR, pages 90–104, 2006. URL http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.4497.

[44] François Bry, Benedikt Linse, Tim Furche, Clemens Ley, Thomas Eiter,
Norbert Eisinger, Georg Gottlob, Reinhard Pichler, and Fang Wei.
Foundations of rule-based query answering. Springer LNCS 4636, Rea-
soning Web, Third International Summer School 2007, 2007.

[45] François Bry, Tim Furche, Clemens Ley, Benedikt Linse, and Bruno
Marnette. Taming existence in RDF querying. In Diego Calvanese
and Georg Lausen, editors, Web Reasoning and Rule Systems, volume
5341 of Lecture Notes in Computer Science, chapter 22, pages 236–237.
Springer Berlin / Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-
540-88736-2. doi: 10.1007/978-3-540-88737-9_22. URL http://dx.

doi.org/10.1007/978-3-540-88737-9_22.

[46] François Bry, Tim Furche, Benedikt Linse, and Alexander Pohl. Xcerp-
tRDF: A pattern-based answer to the versatile web challenge. In Pro-
ceedings of 22nd Workshop on (Constraint) Logic Programming, Dresden,
Germany (30th September–1st October 2008), pages 27–36, 2008. URL
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2008-10.

[47] Michel Buffa and Fabien Gandon. Sweetwiki : Semantic web enabled
technologies in wiki. Proceedings of the international symposium on Sym-
posium on Wikis, ACM Press, 2006.

[48] Peter Buneman and Wang C. Tan. Provenance in databases. In SIG-
MOD ’07: Proceedings of the 2007 ACM SIGMOD international conference
on Management of data, pages 1171–1173, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-686-8. doi: 10.1145/1247480.1247646. URL
http://dx.doi.org/10.1145/1247480.1247646.

[49] C2.com. Wiki engines, . URL http://c2.com/cgi/wiki?WikiEngines.
Retrieved August 16, 2010.

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.4497
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.4497
http://dx.doi.org/10.1007/978-3-540-88737-9_22
http://dx.doi.org/10.1007/978-3-540-88737-9_22
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2008-10
http://dx.doi.org/10.1145/1247480.1247646
http://c2.com/cgi/wiki?WikiEngines

bibliography 211

[50] C2.com. Elements of wiki essence, . URL http://c2.com/cgi/wiki?

ElementsOfWikiEssence. Retrieved August 16, 2010.

[51] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler.
Named graphs, provenance and trust. In WWW ’05: Proceedings of
the 14th international conference on World Wide Web, pages 613–622, New
York, NY, USA, 2005. ACM. ISBN 1-59593-046-9. doi: 10.1145/1060745.
1060835. URL http://dx.doi.org/10.1145/1060745.1060835.

[52] J. Casasnovas and G. Mayor. Discrete t-norms and operations on
extended multisets. Fuzzy Sets and Systems, 159(10):1165–1177, May
2008. ISSN 01650114. doi: 10.1016/j.fss.2007.12.005. URL http:

//dx.doi.org/10.1016/j.fss.2007.12.005.

[53] Claudio Castellano, Santo Fortunato, and Vittorio Loreto. Statistical
physics of social dynamics. Reviews of Modern Physics, 81(2):591–646,
May 2009. ISSN 0034-6861. doi: 10.1103/RevModPhys.81.591. URL
http://dx.doi.org/10.1103/RevModPhys.81.591.

[54] Ciro Cattuto, Dominik Benz, Andreas Hotho, and Gerd Stumme. Se-
mantic analysis of tag similarity measures in collaborative tagging
systems. In Proceedings of the 3rd Workshop on Ontology Learning
and Population (OLP3), pages 39–43, Patras, Greece, July 2008. URL
http://olp.dfki.de/olp3/.

[55] A. Chandra. Structure and complexity of relational queries. Jour-
nal of Computer and System Sciences, 25(1):99–128, August 1982. ISSN
00220000. doi: 10.1016/0022-0000(82)90012-5. URL http://dx.doi.

org/10.1016/0022-0000(82)90012-5.

[56] Latha S. Colby, Timothy Griffin, Leonid Libkin, Inderpal S. Mumick,
and Howard Trickey. Algorithms for deferred view maintenance. SIG-
MOD Rec., 25:469–480, June 1996. ISSN 0163-5808. doi: 10.1145/
235968.233364. URL http://dx.doi.org/10.1145/235968.233364.

[57] J. Conklin. Hypertext: An introduction and survey. Computer Sup-
ported Cooperative Work: A Book of Readings, pages 423–476, 1988.

[58] Luca Corciulo, Fosca Giannotti, and Dino Pedreschi. Datalog with
non-deterministic choice computes NDB-PTIME. In Stefano Ceri, Kat-
sumi Tanaka, and Shalom Tsur, editors, Deductive and Object-Oriented
Databases, volume 760 of Lecture Notes in Computer Science, pages 49–
66. Springer Berlin / Heidelberg, 1993. doi: 10.1007/3-540-57530-8_4.
URL http://dx.doi.org/10.1007/3-540-57530-8_4.

[59] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. McGraw-Hill Sci-
ence / Engineering / Math, 2nd edition, December 2003. ISBN
0072970545. URL http://www.amazon.com/exec/obidos/redirect?

tag=citeulike07-20&path=ASIN/0072970545.

[60] Mariano Corso, Antonella Martini, Luisa Pellegrini, and Andrea
Pesoli. Emerging approach to e2.0: The case of social enterprise -
first results from a 1-year field research. In The Open Knowlege Soci-
ety. A Computer Science and Information Systems Manifesto, Communica-
tions in Computer and Information Science, chapter 12, pages 92–100.

http://c2.com/cgi/wiki?ElementsOfWikiEssence
http://c2.com/cgi/wiki?ElementsOfWikiEssence
http://dx.doi.org/10.1145/1060745.1060835
http://dx.doi.org/10.1016/j.fss.2007.12.005
http://dx.doi.org/10.1016/j.fss.2007.12.005
http://dx.doi.org/10.1103/RevModPhys.81.591
http://olp.dfki.de/olp3/
http://dx.doi.org/10.1016/0022-0000(82)90012-5
http://dx.doi.org/10.1016/0022-0000(82)90012-5
http://dx.doi.org/10.1145/235968.233364
http://dx.doi.org/10.1007/3-540-57530-8_4
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0072970545
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0072970545

212 bibliography

Springer Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-87783-7_12.
URL http://dx.doi.org/10.1007/978-3-540-87783-7_12.

[61] Ulrike Cress and Joachim Kimmerle. A systemic and cognitive view
on collaborative knowledge building with wikis. International Journal
of Computer-Supported Collaborative Learning, 3(2):105–122, June 2008.
ISSN 1556-1607. doi: 10.1007/s11412-007-9035-z. URL http://dx.doi.

org/10.1007/s11412-007-9035-z.

[62] Ward Cunningham. What is a wiki. WikiWikiWeb. URL http://wiki.

org/wiki.cgi?WhatIsWiki. Retrieved August 16, 2010.

[63] Ilana Davidi. Web 2.0 wiki technology: Enabling technologies, commu-
nity behaviors, and successful business techniques and models. Mas-
ter’s thesis, Massachusetts Institute of Technology, February 2007.

[64] J. De Kleer. Choices without backtracking. In Proceedings of AAAI-84,
pages 79–85, 1984.

[65] Johan de Kleer. An Assumption-based TMS. Artificial Intelligence, 28,
1986.

[66] Johan de Kleer. A general labeling algorithm for assumption-based
truth maintenance. AAAI 88, 1988.

[67] Nicholas Del Rio and Paulo da Silva. Probe-It! Visualization Sup-
port for Provenance. In George Bebis, Richard Boyle, Bahram Parvin,
Darko Koracin, Nikos Paragios, Syeda-Mahmood Tanveer, Tao Ju,
Zicheng Liu, Sabine Coquillart, Carolina Cruz-Neira, Torsten Müller,
and Tom Malzbender, editors, Advances in Visual Computing, volume
4842 of Lecture Notes in Computer Science, chapter 72, pages 732–741.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-
540-76855-5. doi: 10.1007/978-3-540-76856-2_72. URL http://dx.doi.

org/10.1007/978-3-540-76856-2_72.

[68] Alain Désilets, Sébastien Paquet, and Norman G. Vinson. Are wikis
usable? In WikiSym ’05: Proceedings of the 2005 international symposium
on Wikis, pages 3–15, New York, NY, USA, 2005. ACM. ISBN 1-59593-
111-2. doi: 10.1145/1104973.1104974. URL http://dx.doi.org/10.

1145/1104973.1104974.

[69] S. W. Dietrich. Maintenance of Recursive Views. In Encyclopedia of
Database Systems, pages 1674–1679. Springer Verlag, 2009.

[70] L. Ding, D. DiFranzo, A. Graves, J. R. Michaelis, X. Li, D. L. McGuin-
ness, and J. Hendler. Data-gov wiki: Towards linking government
data. In AAAI Spring Symposium on Linked Data Meets Artificial Intelli-
gence, 2010.

[71] W. Dowling and Jean H. Gallier. Linear-time algorithms for test-
ing the satisfiability of propositional horn formulae. The Journal of
Logic Programming, 1(3):267–284, October 1984. ISSN 07431066. doi:
10.1016/0743-1066(84)90014-1. URL http://dx.doi.org/10.1016/

0743-1066(84)90014-1.

http://dx.doi.org/10.1007/978-3-540-87783-7_12
http://dx.doi.org/10.1007/s11412-007-9035-z
http://dx.doi.org/10.1007/s11412-007-9035-z
http://wiki.org/wiki.cgi?WhatIsWiki
http://wiki.org/wiki.cgi?WhatIsWiki
http://dx.doi.org/10.1007/978-3-540-76856-2_72
http://dx.doi.org/10.1007/978-3-540-76856-2_72
http://dx.doi.org/10.1145/1104973.1104974
http://dx.doi.org/10.1145/1104973.1104974
http://dx.doi.org/10.1016/0743-1066(84)90014-1
http://dx.doi.org/10.1016/0743-1066(84)90014-1

bibliography 213

[72] Jon Doyle. Truth maintenance systems for problem solving. Techni-
cal Report AI-TR-419, Dep. of Electrical Engineering and Computer
Science of MIT, 1978.

[73] Jon Doyle. A Truth maintenance system. Artificial Intelligence, 12:231–
272, 1979.

[74] Jon Doyle. The ins and outs of reason maintenance. Proc. IJCAI’83,
1983.

[75] Jon Doyle. Reason maintenance and belief revision – Foundations vs. Co-
herence theories, pages 29–51. Cambridge University Press, 1992.

[76] Truong Quoc Dung. A new representation of jtms. LNCS, 990/1995,
1995.

[77] Truong Quoc Dung. A revision of dependency-directed backtracking
for jtms. LNCS, 1137, 1996.

[78] Anja Ebersbach, Markus Glaser, and Richard Heigl. Social Web. UVK
Verlagsgesellschaft mbH, 2008. in German.

[79] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans
Tompits. A uniform integration of higher-order reasoning and exter-
nal evaluations in answer-set programming. In Proceedings of the 19th
international joint conference on Artificial intelligence, pages 90–96, San
Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc. URL
http://portal.acm.org/citation.cfm?id=1642308.

[80] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans
Tompits. Effective integration of declarative rules with external evalu-
ations for Semantic-Web reasoning. In York Sure and John Domingue,
editors, The Semantic Web: Research and Applications, volume 4011 of
Lecture Notes in Computer Science, chapter 22, pages 273–287. Springer
Berlin / Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-34544-
2. doi: 10.1007/11762256_22. URL http://dx.doi.org/10.1007/

11762256_22.

[81] John O . Everett and Kenneth D . Forbus. Scaling up logic-based truth
maintenance systems via fact garbage collection. Proc. AAAI-96, pages
614–620, 1996.

[82] Detlef Fehrer. A Unifying Logical Framework for Reason Maintenance.
In ECSQARU ’93: Proceedings of the European Conference on Symbolic
and Quantitative Approaches to Reasoning and Uncertainty, pages 113–
120, London, UK, 1993. Springer-Verlag. ISBN 3-540-57395-X. URL
http://portal.acm.org/citation.cfm?id=646560.695273.

[83] Giorgos Flouris, Irini Fundulaki, Panagiotis Pediaditis, Yannis Theo-
haris, and Vassilis Christophides. Coloring RDF Triples to Capture
Provenance. In Abraham Bernstein, David R. Karger, Tom Heath,
Lee Feigenbaum, Diana Maynard, Enrico Motta, and Krishnaprasad
Thirunarayan, editors, The Semantic Web - ISWC 2009, volume 5823,
chapter 13, pages 196–212. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2009. ISBN 978-3-642-04929-3. doi: 10.1007/978-3-642-04930-9_
13. URL http://dx.doi.org/10.1007/978-3-642-04930-9_13.

http://portal.acm.org/citation.cfm?id=1642308
http://dx.doi.org/10.1007/11762256_22
http://dx.doi.org/10.1007/11762256_22
http://portal.acm.org/citation.cfm?id=646560.695273
http://dx.doi.org/10.1007/978-3-642-04930-9_13

214 bibliography

[84] Kenneth D. Forbus. The qualitative process engine, A study in
assumption-based truth maintenance. International Journal for Artifi-
cial Intelligence in Engineering, pages 200–215, 1988.

[85] Kenneth D. Forbus and Johan de Kleer. Building Problem Solvers. MIT
Press, 1993.

[86] C. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19(1):17–37, September
1982. ISSN 00043702. doi: 10.1016/0004-3702(82)90020-0. URL http:

//dx.doi.org/10.1016/0004-3702(82)90020-0.

[87] Frank Fuchs-Kittowski and André Köhler. Wiki communities in the
context of work processes. In WikiSym ’05: Proceedings of the 2005
international symposium on Wikis, pages 33–39, New York, NY, USA,
2005. ACM. ISBN 1-59593-111-2. doi: 10.1145/1104973.1104977. URL
http://dx.doi.org/10.1145/1104973.1104977.

[88] Joe Futrelle. Harvesting RDF Triples. In Luc Moreau and Ian Fos-
ter, editors, Provenance and Annotation of Data, volume 4145, chap-
ter 8, pages 64–72. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006. ISBN 978-3-540-46302-3. doi: 10.1007/11890850_8. URL http:

//dx.doi.org/10.1007/11890850_8.

[89] D. M. Gabbay. Labelled deductive systems. Oxford University Press,
USA, 1996.

[90] P. Gärdenfors. How to make the semantic web more semantic. In
FOIS, 2004.

[91] F. Gedikli and D. Jannach. Rating items by rating tags. In Proc. of the
2nd Workshop Recommender Systems and the Social Web, RSWEB 2010,
2010.

[92] David M. Geil. Collaborative reasoning: Evidence for col-
lective rationality. Thinking & Reasoning, 4(3):231–248, 1998.
doi: 10.1080/135467898394148. URL http://dx.doi.org/10.1080/

135467898394148.

[93] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, June 2002. ISSN 0163-5700. doi: 10.1145/564585.564601.
URL http://dx.doi.org/10.1145/564585.564601.

[94] B. Glavic and K. Dittrich. Data provenance: A categorization of exist-
ing approaches. In BTW07 - 12. GI-Fachtagung für Datenbanksysteme in
Business, Technologie und Web, 2007.

[95] Scott Golder and Bernardo A. Huberman. The structure of collab-
orative tagging systems. Journal of Information Science, 32(2):198–208,
August 2005. URL http://arxiv.org/abs/cs.DL/0508082.

[96] James W. Goodwin. An improved algorithm for non-monotonic de-
pendency net update. Technical report, Linkoping University, Depart-
ment of Computer and Information Science, 1982.

http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://dx.doi.org/10.1145/1104973.1104977
http://dx.doi.org/10.1007/11890850_8
http://dx.doi.org/10.1007/11890850_8
http://dx.doi.org/10.1080/135467898394148
http://dx.doi.org/10.1080/135467898394148
http://dx.doi.org/10.1145/564585.564601
http://arxiv.org/abs/cs.DL/0508082

bibliography 215

[97] James W. Goodwin. A Theory and System for Non-Monotonic Reasoning.
PhD thesis, Linkoping University, 1987.

[98] Alison Gopnik and Andrew Meltzoff. The development of categoriza-
tion in the second year and its relation to other cognitive and linguis-
tic developments. Child Development, 58(6), 1987. ISSN 00093920. doi:
10.2307/1130692. URL http://dx.doi.org/10.2307/1130692.

[99] Alison Gopnik and Andrew N. Meltzoff. Categorization and nam-
ing: Basic-Level sorting in Eighteen-Month-olds and its relation to
language. Child Development, 63(5):1091–1103, 1992. ISSN 00093920.
doi: 10.2307/1131520. URL http://dx.doi.org/10.2307/1131520.

[100] Jim Gray. The transaction concept: virtues and limitations (invited
paper). In Proceedings of the seventh international conference on Very Large
Data Bases - Volume 7, VLDB ’1981, pages 144–154. VLDB Endowment,
1981. URL http://portal.acm.org/citation.cfm?id=1286846.

[101] Thomas R. Gruber. A translation approach to portable ontology spec-
ifications. Knowledge Acquisition, 5(2):199–220, June 1993. ISSN 1042-
8143. doi: 10.1006/knac.1993.1008. URL http://dx.doi.org/10.1006/

knac.1993.1008.

[102] A. Guessoum and J. Lloyd. Updating knowledge bases. New
Generation Computing, 8(1):71–89, June 1990. ISSN 0288-3635. doi:
10.1007/BF03037514. URL http://dx.doi.org/10.1007/BF03037514.

[103] Ashish Gupta and Inderpal S. Mumick. Maintenance of Materialized
Views: Problems, Techniques, and Applications. Data Engineering Bul-
letin, 18(2):3–18, 1995. URL http://portal.acm.org/citation.cfm?

id=310737.

[104] Ashish Gupta, Dinesh Katiyar, and Inderpal S. Mumick. Counting so-
lutions to the View Maintenance Problem. In In Workshop on Deductive
Databases, JICSLP, pages 185–194, 1992. URL http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.54.8990.

[105] Ashish Gupta, Inderpal S. Mumick, and V. S. Subrahmanian. Main-
taining views incrementally. SIGMOD Rec., 22:157–166, June 1993.
ISSN 0163-5808. doi: 10.1145/170035.170066. URL http://dx.doi.

org/10.1145/170035.170066.

[106] Mandy Haggith. Disagreement in creative problem solving. Technical
report, Department of Artificial Intelligence, University of Edinburgh,
1993.

[107] Harry Halpin. The semantic web: The origins of artificial intelligence
redux. In HPLMC-04, 2004. URL http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.134.6799.

[108] Harry Halpin, Valentin Robu, and Hana Shepherd. The complex dy-
namics of collaborative tagging. In Proceedings of the 16th international
conference on World Wide Web, WWW ’07, pages 211–220, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-654-7. doi: 10.1145/1242572.
1242602. URL http://dx.doi.org/10.1145/1242572.1242602.

http://dx.doi.org/10.2307/1130692
http://dx.doi.org/10.2307/1131520
http://portal.acm.org/citation.cfm?id=1286846
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1007/BF03037514
http://portal.acm.org/citation.cfm?id=310737
http://portal.acm.org/citation.cfm?id=310737
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.8990
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.8990
http://dx.doi.org/10.1145/170035.170066
http://dx.doi.org/10.1145/170035.170066
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.6799
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.6799
http://dx.doi.org/10.1145/1242572.1242602

216 bibliography

[109] Eric N. Hanson. A performance analysis of view materialization
strategies. In Proceedings of the 1987 ACM SIGMOD international con-
ference on Management of data, SIGMOD ’87, pages 440–453, New York,
NY, USA, 1987. ACM. ISBN 0-89791-236-5. doi: 10.1145/38713.38759.
URL http://dx.doi.org/10.1145/38713.38759.

[110] John V. Harrison and Suzanne W. Dietrich. Maintenance of material-
ized views in a deductive database: An update propagation approach.
In Workshop on Deductive Databases, JICSLP, pages 56–65, 1992.

[111] Bernhard Haslhofer, Elaheh M. Roochi, Bernhard Schandl, and Stefan
Zander. Europeana RDF store report. Technical report, University of
Vienna, Vienna, March 2011. URL http://eprints.cs.univie.ac.at/

2833/.

[112] Patrick Hayes. RDF semantics. Technical report, W3C, 2004.

[113] Patrick J. Hayes. The frame problem and related problems in artificial
intelligence. Technical report, Stanford University, Stanford, CA, USA,
1971.

[114] Martin Hepp. Possible ontologies: How reality constrains the de-
velopment of relevant ontologies. IEEE Internet Computing, 11(1):90–
96, 2007. ISSN 1089-7801. doi: 10.1109/MIC.2007.20. URL http:

//dx.doi.org/10.1109/MIC.2007.20.

[115] J. L. Hickman. A note on the concept of multiset. Bul-
letin of the Australian Mathematical Society, 22(02):211–217, 1980.
doi: 10.1017/S000497270000650X. URL http://dx.doi.org/10.1017/

S000497270000650X.

[116] A. Hogan, A. Harth, and A. Polleres. Scalable authoritative owl rea-
soning for the web. International Journal on Semantic Web and Informa-
tion Systems, 5(2), 2009.

[117] Aidan Hogan and Stefan Decker. On the ostensibly silent ’w’ in OWL
2 RL. In Axel Polleres and Terrance Swift, editors, Web Reasoning
and Rule Systems, volume 5837, chapter 9, pages 118–134. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-05081-
7. doi: 10.1007/978-3-642-05082-4_9. URL http://dx.doi.org/10.

1007/978-3-642-05082-4_9.

[118] N. Immerman. Relational queries computable in polynomial time. In-
formation and Control, 68(1-3):86–104, January 1986. ISSN 00199958.
doi: 10.1016/S0019-9958(86)80029-8. URL http://dx.doi.org/10.

1016/S0019-9958(86)80029-8.

[119] ISO/IEC. ISO/IEC 14977:1996(E) First edition – Information tech-
nology – Syntactic metalanguage – Extended BNF. Technical report,
ISO/IEC, 1996.

[120] Kensaku Kawamoto, Yasuhiko Kitamura, and Yuri Tijerino. Kawawiki:
A template-based semantic wiki where end and expert users col-
laborate. In Proceedings of 5th International Semantic Web Conference
(ISWC2006), 2006.

http://dx.doi.org/10.1145/38713.38759
http://eprints.cs.univie.ac.at/2833/
http://eprints.cs.univie.ac.at/2833/
http://dx.doi.org/10.1109/MIC.2007.20
http://dx.doi.org/10.1109/MIC.2007.20
http://dx.doi.org/10.1017/S000497270000650X
http://dx.doi.org/10.1017/S000497270000650X
http://dx.doi.org/10.1007/978-3-642-05082-4_9
http://dx.doi.org/10.1007/978-3-642-05082-4_9
http://dx.doi.org/10.1016/S0019-9958(86)80029-8
http://dx.doi.org/10.1016/S0019-9958(86)80029-8

bibliography 217

[121] Graham Klyne and Jeremy J. Carroll. Resource description framework
(RDF): Concepts and abstract syntax. Technical report, W3C, 2004.

[122] André Köhler and Frank Fuchs-Kittowski. Integration of communities
into process-oriented structures. Journal of Universal Computer Science,
11(3):410–425, 2005. URL http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.98.7209.

[123] Robert Koons. Defeasible reasoning. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Spring 2005. URL http://plato.

stanford.edu/archives/spr2005/entries/reasoning-defeasible/.

[124] Markus Krötzsch, Denny Vrandečić, and Max Völkel. Semantic me-
diawiki. In The Semantic Web - ISWC 2006, volume 4273, chap-
ter 68, pages 935–942. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2006. ISBN 978-3-540-49029-6. doi: 10.1007/11926078_68. URL
http://dx.doi.org/10.1007/11926078_68.

[125] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Complex-
ity boundaries for horn description logics. In Proceedings of the 22nd
national conference on Artificial intelligence - Volume 1, pages 452–457.
AAAI Press, 2007. ISBN 978-1-57735-323-2. URL http://portal.acm.

org/citation.cfm?id=1619718.

[126] Markus Krötzsch, Sebastian Schaffert, and Denny Vrandecic. Reason-
ing in semantic wikis. In Reasoning Web Summer School 2007, Lecture
Notes in Computer Science, pages 310–329. Springer Berlin / Heidel-
berg, 2007.

[127] Clif Kussmaul and Roger Jack. Wikis for knowledge management:
Business cases, best practices, promises, & pitfalls. In Web 2.0, chap-
ter 9, pages 1–19. Springer US, 2009. doi: 10.1007/978-0-387-85895-1_9.
URL http://dx.doi.org/10.1007/978-0-387-85895-1_9.

[128] T. Kvan. Designing collaborative environments for strategic knowl-
edge in design. Knowledge-Based Systems, 13(6):429–438, November
2000. ISSN 09507051. doi: 10.1016/S0950-7051(00)00083-6. URL
http://dx.doi.org/10.1016/S0950-7051(00)00083-6.

[129] Brian Lamb. Wide open spaces: Wikis ready or not. EDUCAUSE
Review, 39(5), 2004. URL http://www.eric.ed.gov/ERICWebPortal/

detail?accno=EJ710632.

[130] Tim B. Lee. How It All Started: Pre-W3C Web and Internet Back-
ground. http://www.w3.org/2004/Talks/w3c10-HowItAllStarted/

?n=13, .

[131] Tim B. Lee. WorldWideWeb: Proposal for a HyperText Project. http:

//www.w3.org/Proposal.html, .

[132] Tim B. Lee, Robert Cailliau, Ari Luotonen, Henrik F. Nielsen, and
Arthur Secret. The World-Wide web. Commun. ACM, 37(8):76–82,
August 1994. ISSN 0001-0782. doi: 10.1145/179606.179671. URL http:

//dx.doi.org/10.1145/179606.179671.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.98.7209
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.98.7209
http://plato.stanford.edu/archives/spr2005/entries/reasoning-defeasible/
http://plato.stanford.edu/archives/spr2005/entries/reasoning-defeasible/
http://dx.doi.org/10.1007/11926078_68
http://portal.acm.org/citation.cfm?id=1619718
http://portal.acm.org/citation.cfm?id=1619718
http://dx.doi.org/10.1007/978-0-387-85895-1_9
http://dx.doi.org/10.1016/S0950-7051(00)00083-6
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ710632
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ710632
http://www.w3.org/2004/Talks/w3c10-HowItAllStarted/?n=13
http://www.w3.org/2004/Talks/w3c10-HowItAllStarted/?n=13
http://www.w3.org/Proposal.html
http://www.w3.org/Proposal.html
http://dx.doi.org/10.1145/179606.179671
http://dx.doi.org/10.1145/179606.179671

218 bibliography

[133] Bo Leuf and Ward Cunningham. The Wiki Way: Collaboration and Shar-
ing on the Internet. Addison-Wesley Professional, April 2001. ISBN
020171499X. URL http://www.amazon.com/exec/obidos/redirect?

tag=citeulike07-20&path=ASIN/020171499X.

[134] Benedikt Linse and Andreas Schroeder. Beyond XML and RDF: the
versatile web query language xcerpt. In WWW ’06: Proceedings of the
15th international conference on World Wide Web, pages 1053–1054, New
York, NY, USA, 2006. ACM. ISBN 1595933239. doi: 10.1145/1135777.
1136011. URL http://dx.doi.org/10.1145/1135777.1136011.

[135] Ling Liu and M. Tamer Özsu, editors. Encyclopedia of Database Systems.
Springer Verlag, 2009. ISBN 978-0-387-35544-3.

[136] J. Lloyd. Foundations of Logic Programming. Berlin: Springer-Verlag,
1987.

[137] C. Fergus Lowe, Pauline J. Horne, and J. Carl Hughes. Naming and
categorization in young children: III. vocal tact training and transfer
of function. Journal of the experimental analysis of behavior, 83(1):47–65,
January 2005. ISSN 0022-5002. doi: 10.1901/jeab.2005.31-04. URL
http://dx.doi.org/10.1901/jeab.2005.31-04.

[138] M. Maher and R. Ramakrishnan. Déjà vu in fixpoints of logic pro-
grams. In North American Conference on Logic Programming, 1989.

[139] Frank Manola and Eric Miller. RDF primer. Technical report, W3C,
2004.

[140] Draltan Marin. A formalization of RDF (Applications de la logique
á la sémantique du Web). Technical report, Ecole Polytechnique –
Universidad de Chile, 2004.

[141] Cameron Marlow, Mor Naaman, Danah Boyd, and Marc Davis. HT06,
tagging paper, taxonomy, flickr, academic article, to read. In Proceed-
ings of the seventeenth conference on Hypertext and hypermedia, HYPER-
TEXT ’06, pages 31–40, New York, NY, USA, 2006. ACM. ISBN 1-
59593-417-0. doi: 10.1145/1149941.1149949. URL http://dx.doi.org/

10.1145/1149941.1149949.

[142] João P. Martins. The Truth, the Whole Truth, and Nothing But the
Truth: An Indexed Bibliography to the Literature of Truth Mainte-
nance Systems. AI Magazine, 11, 1990.

[143] Joao P. Martins and Stuart C. Shapiro. A model for belief revision.
Artificial Intelligence, 35, 1988.

[144] A. P. Mcafee. Enterprise 2.0: the dawn of emergent collaboration. Engi-
neering Management Review, IEEE, 34(3), 2006. doi: 10.1109/EMR.2006.
261380. URL http://dx.doi.org/10.1109/EMR.2006.261380.

[145] D. A. McAllester. Reasoning utility package user’s manual, version
one. Technical report, Massachusetts Institute of Technology - Ar-
tificial Intelligence Laboratory, 1982. URL http://dspace.mit.edu/

handle/1721.1/5683.

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/020171499X
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/020171499X
http://dx.doi.org/10.1145/1135777.1136011
http://dx.doi.org/10.1901/jeab.2005.31-04
http://dx.doi.org/10.1145/1149941.1149949
http://dx.doi.org/10.1145/1149941.1149949
http://dx.doi.org/10.1109/EMR.2006.261380
http://dspace.mit.edu/handle/1721.1/5683
http://dspace.mit.edu/handle/1721.1/5683

bibliography 219

[146] David McAllester. On the complexity analysis of static analyses.
J. ACM, 49(4):512–537, 2002. ISSN 0004-5411. doi: 10.1145/581771.
581774. URL http://dx.doi.org/10.1145/581771.581774.

[147] David A. McAllester. A three valued truth maintenance system. AI-
Memorandum rept., MIT, 1978.

[148] David A. McAllester. An outlook on truth maintenance. Technical
report, MIT, 1980.

[149] David A. McAllester. Truth maintenance. AAAI90, 1990.

[150] Daniel D. McCracken and Edwin D. Reilly. Backus-Naur form (BNF).
In Encyclopedia of Computer Science, pages 129–131. John Wiley and
Sons Ltd., Chichester, UK, 2003. ISBN 0-470-86412-5. URL http://

portal.acm.org/citation.cfm?id=1074155.

[151] Deborah L. Mcguinness and Paulo P. da Silva. Explaining answers
from the semantic web: the Inference Web approach. Web Semantics:
Science, Services and Agents on the World Wide Web, 1, 2004.

[152] Erik Meijer and Gavin Bierman. A Co-Relational model of data for
large shared data banks. Communications of the ACM, 54(4):49–58, 2011.

[153] Andrew B. Mickel, James F. Miner, Kathleen Jensen, and Niklaus
Wirth. Pascal user manual and report (4th ed.): ISO Pascal standard.
Springer-Verlag New York, Inc., New York, NY, USA, 1991. ISBN 0-
387-97649-3. URL http://portal.acm.org/citation.cfm?id=116409.

[154] Peter Mika. Ontologies are us: A unified model of social networks
and semantics. In Yolanda Gil, Enrico Motta, V. Benjamins, and Mark
Musen, editors, The Semantic Web - ISWC 2005, volume 3729 of Lecture
Notes in Computer Science, chapter 38, pages 522–536. Springer Berlin /
Heidelberg, Berlin, Heidelberg, 2005. ISBN 978-3-540-29754-3. doi: 10.
1007/11574620_38. URL http://dx.doi.org/10.1007/11574620_38.

[155] GP Monro. The concept of multiset. Mathematical Logic Quarterly, 33

(2):171–178, 1987. ISSN 1521-3870.

[156] D. Montesi, E. Bertino, and M. Martelli. Transactions and updates
in deductive databases. IEEE Transactions on Knowledge and Data
Engineering, 9(5):784–797, September 1997. ISSN 10414347. doi:
10.1109/69.634755. URL http://dx.doi.org/10.1109/69.634755.

[157] Boris Motik, Bernardo C. Grau, Ian Horrocks, Zhe Wu, Achille Fokoue,
and Carsten Lutz. OWL 2 web ontology language – profiles. Technical
report, W3C, 2009.

[158] Inderpal S. Mumick. Query Optimization in Deductive and Relational
Databases. PhD thesis, Stanford University, 1991.

[159] Inderpal S. Mumick and Oded Shmueli. Finiteness Properties
of Database Queries. Fourth Australian Database Conference, 1993.
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

30.9206.

http://dx.doi.org/10.1145/581771.581774
http://portal.acm.org/citation.cfm?id=1074155
http://portal.acm.org/citation.cfm?id=1074155
http://portal.acm.org/citation.cfm?id=116409
http://dx.doi.org/10.1007/11574620_38
http://dx.doi.org/10.1109/69.634755
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.9206
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.9206

220 bibliography

[160] Sergio Munoz, Jorge Perez, and Claudio Gutierrez. Minimal deduc-
tive systems for RDF. LNCS, 4519, 2007.

[161] William J. Murdock, Deborah L. Mcguinness, Paulo P. da Silva, Chris
Welty, and David Ferrucci. Explaining Conclusions from Diverse
Knowledge Sources. ISWC 2006, LNCS, 4273, 2006.

[162] Pandurang P. Nayak and Brian C. Williams. Fast context switching in
real-time propositional reasoning. Proc. 14th Nat. Conf. AI, 1997.

[163] T. Nazzi and A. Gopnik. Linguistic and cognitive abilities in infancy:
when does language become a tool for categorization? Cognition, 80

(3):B11–B20, July 2001. ISSN 00100277. doi: 10.1016/S0010-0277(01)
00112-3. URL http://dx.doi.org/10.1016/S0010-0277(01)00112-3.

[164] Bernhard Nebel. Belief revision, volume 422 of Lecture Notes in Computer
Science, chapter 6, pages 149–186. Springer-Verlag, Berlin/Heidelberg,
1990. ISBN 3-540-52443-6. doi: 10.1007/BFb0016451. URL http://dx.

doi.org/10.1007/BFb0016451.

[165] Bernhard Nebel. Reasoning and revision in hybrid representation sys-
tems. Springer-Verlag New York, Inc., New York, NY, USA, 1990.
ISBN 0-387-52443-6. URL http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.65.1537.

[166] Ted Nelson. Literary Machines. Mindful Press, 1981.

[167] Vivek Nigam, Limin Jia, Boon T. Loo, and Andre Scedrov. Maintaining
distributed logic programs incrementally. In Proc. 13th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative Pro-
gramming, Odense, Denmark, July 2011.

[168] Vivek Nigam, Limin Jia, Boon T. Loo, and Andre Scedrov. Maintaining
distributed recursive views incrementally. Technical report, University
of Pennsylvania, 2011.

[169] Zheng Y. Niu, Dong H. Ji, and Chew L. Tan. Word sense disambigua-
tion using label propagation based semi-supervised learning. In Pro-
ceedings of the 43rd Annual Meeting on Association for Computational Lin-
guistics, ACL ’05, pages 395–402, Stroudsburg, PA, USA, 2005. Asso-
ciation for Computational Linguistics. doi: 10.3115/1219840.1219889.
URL http://dx.doi.org/10.3115/1219840.1219889.

[170] C.K. Ogden, I.A. Richards, B. Malinowski, and F.G. Crookshank. The
Meaning of Meaning: A Study of the Influence of Language upon Thought
and of the Science of Symbolism. Harcourt, Brace & Company, 1938.

[171] Tim O’Reilly. What is web 2.0. design patterns and business mod-
els for the next generation of software. http://oreilly.com/web2/

archive/what-is-web-20.html, 2005.

[172] E. Oren. Semantic Wikis for Knowledge Workers. WWW2006, poster,
2006. URL http://library.deri.ie/resource/499ixefG.

[173] Eyal Oren. Semperwiki: a semantic personal wiki. In Proceedings of 1st
Workshop on The Semantic Desktop - Next Generation Personal Information
Management and Collaboration Infrastructure, Galway, Ireland, 2005.

http://dx.doi.org/10.1016/S0010-0277(01)00112-3
http://dx.doi.org/10.1007/BFb0016451
http://dx.doi.org/10.1007/BFb0016451
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.1537
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.1537
http://dx.doi.org/10.3115/1219840.1219889
http://oreilly.com/web2/archive/what-is-web-20.html
http://oreilly.com/web2/archive/what-is-web-20.html
http://library.deri.ie/resource/499ixefG

bibliography 221

[174] Eyal Oren. Semperwiki: a semantic personal wiki. In Proceedings of 1st
Workshop on The Semantic Desktop - Next Generation Personal Information
Management and Collaboration Infrastructure, Galway, Ireland, 2005.

[175] Peter F. Patel Schneider and Ian Horrocks. Position paper: a com-
parison of two modelling paradigms in the semantic web. In WWW
’06: Proceedings of the 15th international conference on World Wide Web,
pages 3–12, New York, NY, USA, 2006. ACM. ISBN 1-59593-323-9. doi:
10.1145/1135777.1135784. URL http://dx.doi.org/10.1145/1135777.

1135784.

[176] P. Pediaditis, G. Flouris, I. Fundulaki, and V. Christophides. On ex-
plicit provenance management in RDF/S graphs. In TAPP’09: First
workshop on on Theory and practice of provenance, pages 1–10, Berkeley,
CA, USA, 2009. USENIX Association. URL http://portal.acm.org/

citation.cfm?id=1525936.

[177] C.S. Peirce. On a new list of categories. In Proceedings of the American
Academy of Arts and Sciences, volume 7, pages 287–298, 1868.

[178] Isabella Peters and Wolfgang G. Stock. Folksonomy and informa-
tion retrieval. Proc. Am. Soc. Info. Sci. Tech., 44(1):1–28, 2007. ISSN
1550-8390. doi: 10.1002/meet.1450440226. URL http://dx.doi.org/

10.1002/meet.1450440226.

[179] John L. Pollock. Defeasible reasoning. Cognitive Science, 11:481–
518, October 1987. URL http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.93.111.

[180] Niko Popitsch, Bernhard Schandl, Arash Amiri, Stefan Leitich, and
Wolfgang Jochum. Ylvi - multimedia-izing the semantic wiki. In Pro-
ceedings of the 1st Workshop "SemWiki2006 - From Wiki to Semantics",
Budva, Montenegro, 2006.

[181] B. Popov, A. Kiryakov, D. Manov, A. Kirilov, D. Ognyanoff, and
M. Goranov. Towards semantic web information extraction. In Work-
shop on Human Language Technology for the Semantic Web and Web Ser-
vices, 2003.

[182] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language
for RDF – W3C recommendation. Technical report, W3C, 2008.

[183] T. C. Przymusinski. On the declarative semantics of deductive databases
and logic programs, pages 193–216. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1988. ISBN 0-934613-40-0. URL http://

portal.acm.org/citation.cfm?id=61352.61357.

[184] Michael O. Rabin. Fingerprinting by random polynomials. Technical
report, Center for Research in Computing Technology, Harvard Uni-
versity., 1981.

[185] Richard Rado. The cardinal module and some theorems on families of
sets. Annali di Matematica Pura ed Applicata, 102(1):135–154, December
1975. ISSN 0373-3114. doi: 10.1007/BF02410602. URL http://dx.doi.

org/10.1007/BF02410602.

http://dx.doi.org/10.1145/1135777.1135784
http://dx.doi.org/10.1145/1135777.1135784
http://portal.acm.org/citation.cfm?id=1525936
http://portal.acm.org/citation.cfm?id=1525936
http://dx.doi.org/10.1002/meet.1450440226
http://dx.doi.org/10.1002/meet.1450440226
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.111
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.111
http://portal.acm.org/citation.cfm?id=61352.61357
http://portal.acm.org/citation.cfm?id=61352.61357
http://dx.doi.org/10.1007/BF02410602
http://dx.doi.org/10.1007/BF02410602

222 bibliography

[186] Ruth Raitman and Naomi Augar. Employing wikis for online collab-
oration in the e-learning environment: Case study. In ICITA ’05: Pro-
ceedings of the Third International Conference on Information Technology
and Applications (ICITA’05) Volume 2, volume 2, pages 142–146, Wash-
ington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2316-
1. doi: 10.1109/ICITA.2005.127. URL http://dx.doi.org/10.1109/

ICITA.2005.127.

[187] R.E. Raygan and D.G. Green. Internet collaboration: Twiki. In South-
eastCon, 2002. Proceedings IEEE, pages 137–141. IEEE, 2002.

[188] Lawrence Reeve and Hyoil Han. Survey of semantic annotation plat-
forms. In Proceedings of the 2005 ACM symposium on Applied computing,
SAC ’05, pages 1634–1638, New York, NY, USA, 2005. ACM. ISBN 1-
58113-964-0. doi: 10.1145/1066677.1067049. URL http://dx.doi.org/

10.1145/1066677.1067049.

[189] Marko A. Rodriguez and Peter Neubauer. The graph traversal pattern.
arXiv, April 2010. URL http://arxiv.org/abs/1004.1001.

[190] Eleanor Rosch, Carolyn B. Mervis, Wayne D. Gray, David M. John-
son, and Penny Boyes-Braem. Basic objects in natural categories.
Cognitive Psychology, 8(3):382–439, July 1976. ISSN 00100285. doi:
10.1016/0010-0285(76)90013-X. URL http://dx.doi.org/10.1016/

0010-0285(76)90013-X.

[191] Eleanor H. Rosch. Natural categories. Cognitive Psychology, 4(3):328–
350, May 1973. ISSN 00100285. doi: 10.1016/0010-0285(73)90017-0.
URL http://dx.doi.org/10.1016/0010-0285(73)90017-0.

[192] Sherif Sakr and Ghazi Al-Naymat. Graph indexing and query-
ing: a review. International Journal of Web Information Systems,
6(2), 2010. URL http://www.emeraldinsight.com/journals.htm?

articleid=1864789&show=abstract.

[193] F. Sani, J. Todman, and J.B. Todman. Experimental design and statistics
for psychology: a first course. Wiley-Blackwell, 2006.

[194] Jennifer T. Santelli, Michael J. Muller, and David R. Millen. So-
cial tagging roles: publishers, evangelists, leaders. In CHI ’08: Pro-
ceeding of the twenty-sixth annual SIGCHI conference on Human factors
in computing systems, pages 1041–1044, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-011-1. doi: 10.1145/1357054.1357215. URL
http://dx.doi.org/10.1145/1357054.1357215.

[195] F. Saussure. Course in general linguistics (W. Baskin, Trans.). New
York: Philosophical Library, 1916.

[196] S. Schaffert. IkeWiki: A semantic wiki for collaborative knowledge
management. In 1st International Workshop on Semantic Technologies in
Collaborative Applications (STICA’06), Manchester, UK, 2006.

[197] Sebastian Schaffert, Rupert Westenthaler, and Andreas Gruber.
Ikewiki: A user-friendly semantic wiki. In 3rd European Semantic Web
Conference (ESWC06), Budva, Montenegro, 2006.

http://dx.doi.org/10.1109/ICITA.2005.127
http://dx.doi.org/10.1109/ICITA.2005.127
http://dx.doi.org/10.1145/1066677.1067049
http://dx.doi.org/10.1145/1066677.1067049
http://arxiv.org/abs/1004.1001
http://dx.doi.org/10.1016/0010-0285(76)90013-X
http://dx.doi.org/10.1016/0010-0285(76)90013-X
http://dx.doi.org/10.1016/0010-0285(73)90017-0
http://www.emeraldinsight.com/journals.htm?articleid=1864789&show=abstract
http://www.emeraldinsight.com/journals.htm?articleid=1864789&show=abstract
http://dx.doi.org/10.1145/1357054.1357215

bibliography 223

[198] Sebastian Schaffert, François Bry, Joachim Baumeister, and Malte
Kiesel. Semantic wikis. IEEE Software, 25, 2008.

[199] Michael Schmidt, Thomas Hornung, Norbert Küchlin, Georg Lausen,
and Christoph Pinkel. An experimental comparison of RDF data man-
agement approaches in a SPARQL benchmark scenario. In Amit Sheth,
Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Timo-
thy Finin, and Krishnaprasad Thirunarayan, editors, The Semantic Web
- ISWC 2008, volume 5318 of Lecture Notes in Computer Science, chap-
ter 6, pages 82–97. Springer Berlin / Heidelberg, Berlin, Heidelberg,
2008. ISBN 978-3-540-88563-4. doi: 10.1007/978-3-540-88564-1_6.
URL http://dx.doi.org/10.1007/978-3-540-88564-1_6.

[200] N. Shadbolt, T. Berners-Lee, and W. Hall. The semantic web revis-
ited. Intelligent Systems, IEEE [see also IEEE Intelligent Systems and Their
Applications], 21(3):96–101, 2006. URL http://ieeexplore.ieee.org/

xpls/abs_all.jsp?arnumber=1637364.

[201] Nematollaah Shiri and Zhi H. Zheng. Challenges in Fixpoint Com-
putation with Multisets. In Dietmar Seipel and a, editors, Foun-
dations of Information and Knowledge Systems, volume 2942 of Lec-
ture Notes in Computer Science, chapter 18, pages 273–290. Springer
Berlin / Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-20965-
2. doi: 10.1007/978-3-540-24627-5_18. URL http://dx.doi.org/10.

1007/978-3-540-24627-5_18.

[202] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A Survey of
Data Provenance Techniques. Technical report, Computer Science
Department, Indiana University, Bloomington IN, 2005. URL http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.6294.

[203] Michael Sintek and Stefan Decker. TRIPLE - a query, inference, and
transformation language for the semantic web. In Proceedings of the
First International Semantic Web Conference on The Semantic Web, ISWC
’02, pages 364–378, London, UK, UK, 2002. Springer-Verlag. ISBN 3-
540-43760-6. URL http://portal.acm.org/citation.cfm?id=646996.

711416.

[204] Gene Smith. Tagging: People-powered Metadata for the Social Web
(Voices That Matter). New Riders Press, December 2007. ISBN
0321529170. URL http://www.amazon.ca/exec/obidos/redirect?

tag=citeulike09-20&path=ASIN/0321529170.

[205] Rania Soussi, Marie-Aude Aufaure, and Hajer Baazaoui. To-
wards social network extraction using a graph database. Ad-
vances in Databases, First International Conference on, 0:28–34,
2010. doi: http://doi.ieeecomputersociety.org/10.1109/DBKDA.2010.
19. URL http://dx.doi.org/http://doi.ieeecomputersociety.org/

10.1109/DBKDA.2010.19.

[206] Mladen Stanojevic, Sanja Vranes, and Dusan Velasevic. Using truth
maintenance systems - a tutorial. IEEE, 1994.

[207] Martin Staudt and Matthias Jarke. Incremental Maintenance of Exter-
nally Materialized Views. In Proc. 22th Int. Conf. VLDB, San Francisco,
CA, USA, 1996. ISBN 1-55860-382-4.

http://dx.doi.org/10.1007/978-3-540-88564-1_6
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1637364
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1637364
http://dx.doi.org/10.1007/978-3-540-24627-5_18
http://dx.doi.org/10.1007/978-3-540-24627-5_18
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.6294
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.6294
http://portal.acm.org/citation.cfm?id=646996.711416
http://portal.acm.org/citation.cfm?id=646996.711416
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0321529170
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0321529170
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/DBKDA.2010.19
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/DBKDA.2010.19

224 bibliography

[208] Apostolos Syropoulos. Mathematics of multisets. In Cristian
Calude, Gheorghe PAun, Grzegorz Rozenberg, and Arto Salomaa,
editors, Multiset Processing, volume 2235 of Lecture Notes in Com-
puter Science, chapter 17, pages 347–358. Springer Berlin / Heidel-
berg, Berlin, Heidelberg, December 2001. ISBN 978-3-540-43063-6.
doi: 10.1007/3-540-45523-X_17. URL http://dx.doi.org/10.1007/

3-540-45523-X_17.

[209] G. Thomas. Ontology of folksonomy: A mashup of apples and or-
anges. Intl Journal on Semanic Web and Information Systems, 2007.

[210] Robert Tolksdorf and Elena Paslaru Bontas Simperl. Towards wikis
as semantic hypermedia. In Proceedings of the 2006 international sym-
posium on Wikis, WikiSym ’06, pages 79–88, New York, NY, USA,
2006. ACM. ISBN 1-59593-413-8. doi: 10.1145/1149453.1149470. URL
http://dx.doi.org/10.1145/1149453.1149470.

[211] Jennifer Trant. Studying social tagging and folksonomy: A review
and framework. Journal of Digital Information, 2009. URL http://hdl.

handle.net/10150/105375.

[212] G. Trentin. Using a wiki to evaluate individual contribution to a col-
laborative learning project. Journal of Computer Assisted Learning, 0(0):
43–55, February 2009. ISSN 0266-4909. doi: 10.1111/j.1365-2729.2008.
00276.x. URL http://dx.doi.org/10.1111/j.1365-2729.2008.00276.

x.

[213] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen.
Scalable distributed reasoning using mapreduce. In Abraham Bern-
stein, David R. Karger, Tom Heath, Lee Feigenbaum, Diana Maynard,
Enrico Motta, and Krishnaprasad Thirunarayan, editors, The Semantic
Web - ISWC 2009, volume 5823, chapter 40, pages 634–649. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-04929-
3. doi: 10.1007/978-3-642-04930-9_40. URL http://dx.doi.org/10.

1007/978-3-642-04930-9_40.

[214] Alvaro D. Val. On the relation between the coherence and foundations
theories of belief revision. AAAI94, 1994.

[215] Céline Van Damme, Martin Hepp, and Katharina Siorpaes. FolksOn-
tology: An integrated approach for turning folksonomies into ontolo-
gies. In Bridging the Gep between Semantic Web and Web 2.0 (SemNet
2007), pages 57–70, 2007. URL http://www.kde.cs.uni-kassel.de/

ws/eswc2007/proc/FolksOntology.pdf.

[216] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin
Chen, and Dawn Wilkins. A comparison of a graph database and a
relational database: a data provenance perspective. In Proceedings of
the 48th Annual Southeast Regional Conference, ACM SE ’10, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0064-3. doi: 10.1145/1900008.
1900067. URL http://dx.doi.org/10.1145/1900008.1900067.

[217] Max Völkel, Markus Krötzsch, Denny Vrandecic, Heiko Haller,
and Rudi Studer. Semantic wikipedia. In WWW ’06: Pro-
ceedings of the 15th international conference on World Wide Web,

http://dx.doi.org/10.1007/3-540-45523-X_17
http://dx.doi.org/10.1007/3-540-45523-X_17
http://dx.doi.org/10.1145/1149453.1149470
http://hdl.handle.net/10150/105375
http://hdl.handle.net/10150/105375
http://dx.doi.org/10.1111/j.1365-2729.2008.00276.x
http://dx.doi.org/10.1111/j.1365-2729.2008.00276.x
http://dx.doi.org/10.1007/978-3-642-04930-9_40
http://dx.doi.org/10.1007/978-3-642-04930-9_40
http://www.kde.cs.uni-kassel.de/ws/eswc2007/proc/FolksOntology.pdf
http://www.kde.cs.uni-kassel.de/ws/eswc2007/proc/FolksOntology.pdf
http://dx.doi.org/10.1145/1900008.1900067

bibliography 225

pages 585–594, New York, NY, USA, 2006. ACM. ISBN 1-
59593-323-9. doi: http://doi.acm.org/10.1145/1135777.1135863.
URL http://portal.acm.org/ft_gateway.cfm?id=1135863&type=

pdf&coll=GUIDE&dl=GUIDE&CFID=64724004&CFTOKEN=29620398.

[218] Max Völkel, Markus Krötzsch, Denny Vrandecic, Heiko Haller, and
Rudi Studer. Semantic wikipedia. In WWW ’06: Proceedings of the
15th international conference on World Wide Web, pages 585–594, New
York, NY, USA, 2006. ACM. ISBN 1-59593-323-9. doi: 10.1145/1135777.
1135863. URL http://dx.doi.org/10.1145/1135777.1135863.

[219] Raphael Volz, Steffen Staab, and Boris Motik. Incrementally Main-
taining Materializations of Ontologies Stored in Logic Databases. In
Stefano Spaccapietra, Elisa Bertino, Sushil Jajodia, Roger King, Dennis
McLeod, Maria E. Orlowska, and Leon Strous, editors, Journal on Data
Semantics II, volume 3360 of Lecture Notes in Computer Science, chap-
ter 1, pages 1–34. Springer Berlin / Heidelberg, Berlin, Heidelberg,
2005. ISBN 978-3-540-24208-6. doi: 10.1007/978-3-540-30567-5_1. URL
http://dx.doi.org/10.1007/978-3-540-30567-5_1.

[220] W3C. OWL 2 web ontology language. Technical report, W3C, 2009.

[221] E. Watkins and Denis Nicole. Named Graphs as a Mechanism for Rea-
soning About Provenance. In Xiaofang Zhou, Jianzhong Li, Heng T.
Shen, Masaru Kitsuregawa, and Yanchun Zhang, editors, Frontiers of
WWW Research and Development - APWeb 2006, volume 3841, chap-
ter 99, pages 943–948. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2006. ISBN 978-3-540-31142-3. doi: 10.1007/11610113_99. URL
http://dx.doi.org/10.1007/11610113_99.

[222] Jesse Weaver and James Hendler. Parallel materialization of the finite
rdfs closure for hundreds of millions of triples. In Abraham Bernstein,
David Karger, Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico
Motta, and Krishnaprasad Thirunarayan, editors, The Semantic Web -
ISWC 2009, volume 5823 of Lecture Notes in Computer Science, chap-
ter 43, pages 682–697. Springer Berlin / Heidelberg, Berlin, Heidel-
berg, 2009. ISBN 978-3-642-04929-3. doi: 10.1007/978-3-642-04930-9_
43. URL http://dx.doi.org/10.1007/978-3-642-04930-9_43.

[223] Klara Weiand. Keyword-based querying for the social semantic web – the
KWQL language - concept, algorithm, and system. PhD thesis, December
2010.

[224] J. B. Wells and Boris Yakobowski. Graph-Based Proof Counting and
Enumeration with Applications for Program Fragment Synthesis. In
Sandro Etalle, editor, Logic Based Program Synthesis and Transformation,
volume 3573 of Lecture Notes in Computer Science, chapter 17, pages
262–277. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2005. ISBN
978-3-540-26655-6. doi: 10.1007/11506676_17. URL http://dx.doi.

org/10.1007/11506676_17.

[225] Brian C. Williams and P. Pandurang Nayak. A model-based approach
to reactive self-configuring systems. Proceedings of AAAI-96, 1996.

[226] L. Wittgenstein and G. E. M. Anscombe. Philosophical investigations: the
German text, with a revised English translation. Wiley-Blackwell, 2001.

http://portal.acm.org/ft_gateway.cfm?id=1135863&type=pdf&coll=GUIDE&dl=GUIDE&CFID=64724004&CFTOKEN=29620398
http://portal.acm.org/ft_gateway.cfm?id=1135863&type=pdf&coll=GUIDE&dl=GUIDE&CFID=64724004&CFTOKEN=29620398
http://dx.doi.org/10.1145/1135777.1135863
http://dx.doi.org/10.1007/978-3-540-30567-5_1
http://dx.doi.org/10.1007/11610113_99
http://dx.doi.org/10.1007/978-3-642-04930-9_43
http://dx.doi.org/10.1007/11506676_17
http://dx.doi.org/10.1007/11506676_17

226 bibliography

[227] Guofu Wu and George Macleod Coghill. A propositional root an-
tecedent itms. Proceedings of the 15th International Workshop on Princi-
ples of Diagnosis, 2004.

[228] Jakub Yaghob and Filip Zavoral. Semantic web infrastructure using
DataPile. In Web Intelligence and Intelligent Agent Technology Workshops,
pages 630–633, December 2006. doi: 10.1109/WI-IATW.2006.119. URL
http://dx.doi.org/10.1109/WI-IATW.2006.119.

[229] Jie Yang, Yutaka Matsuo, and Mitsuru Ishizuka. Triple tagging:
Toward bridging folksonomy and semantic web. In Proceedings of
ISWC07, 2007.

[230] Ka P. Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. Faceted
metadata for image search and browsing. In Proceedings of the
SIGCHI conference on Human factors in computing systems, CHI ’03,
pages 401–408, New York, NY, USA, 2003. ACM. ISBN 1-58113-630-
7. doi: 10.1145/642611.642681. URL http://dx.doi.org/10.1145/

642611.642681.

[231] Shen Yidong, Tong Fu, and Cheng Daijie. On local stratifiability of
logic programs and databases. Journal of Computer Science and Technol-
ogy, 8:97–107, 1993. doi: 10.1007/BF02939472. URL http://dx.doi.

org/10.1007/BF02939472.

[232] Yong Zhao and Shiyong Lu. A Logic Programming Approach
to Scientific Workflow Provenance Querying. In Provenance and
Annotation of Data and Processes, Lecture Notes in Computer Sci-
ence, chapter 5, pages 31–44. Springer Berlin / Heidelberg, 2008.
doi: 10.1007/978-3-540-89965-5_5. URL http://dx.doi.org/10.1007/

978-3-540-89965-5_5.

http://dx.doi.org/10.1109/WI-IATW.2006.119
http://dx.doi.org/10.1145/642611.642681
http://dx.doi.org/10.1145/642611.642681
http://dx.doi.org/10.1007/BF02939472
http://dx.doi.org/10.1007/BF02939472
http://dx.doi.org/10.1007/978-3-540-89965-5_5
http://dx.doi.org/10.1007/978-3-540-89965-5_5

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Contributions and Structure of This Thesis

	2 From Wikis to Semantic Wikis
	2.1 The World Wide Web
	2.2 The Social Web
	2.3 Wikis
	2.4 The Semantic Web
	2.4.1 RDF
	2.4.2 RDF Triple Stores
	2.4.3 OWL
	2.4.4 Linked Data

	2.5 Semantic Wikis
	2.5.1 Semantic MediaWiki
	2.5.2 IkeWiki

	3 Knowledge representation and reasoning for a semantic wiki
	3.1 A social semantic wiki – an analysis and motivation
	3.1.1 Work in Progress
	3.1.2 Emergent Collaboration
	3.1.3 Knowledge Representation and Reasoning the Wiki Way
	3.1.4 From Informal to Formal Knowledge Representation
	3.1.5 Negative Information
	3.1.6 Inconsistency Tolerant Reasoning with Semi-formal Knowledge

	3.2 Knowledge representation and reasoning with a social perspective

	4 A Conceptual Model of a Semantic Wiki
	4.1 Content
	4.1.1 Content Items
	4.1.2 Fragments
	4.1.3 Links

	4.2 Annotation
	4.2.1 Formal Annotations: RDF and OWL
	4.2.2 Informal Annotations – Tags
	4.2.3 Semi-formal Annotations – Structured Tags
	4.2.4 Representing Annotations in RDF

	4.3 Social Content Management

	5 Experimental Evaluation: Structured Tags and RDF
	5.1 Experimental setup and execution
	5.2 Results
	5.2.1 User judgments
	5.2.2 Time requirements for annotations
	5.2.3 Analysis of the annotations
	5.2.4 Qualitative analysis of the annotations

	5.3 Discussion

	6 KWRL – The KiWi Rule Language
	6.1 sKWRL – The Core Sublanguage
	6.1.1 Syntax
	6.1.2 Examples
	6.1.3 Semantics
	6.1.4 Significance of Value Invention

	6.2 KWRL
	6.2.1 Syntax
	6.2.2 Examples
	6.2.3 Semantics
	6.2.4 Evaluation

	6.3 Related Work

	7 Forward Chaining Revisited
	7.1 Preliminaries
	7.1.1 Rules and programs
	7.1.2 Herbrand interpretations
	7.1.3 Fixpoint theory
	7.1.4 Immediate consequence operator TP
	7.1.5 Multisets
	7.1.6 Support graphs

	7.2 Classical forward chaining
	7.3 Support keeping forward chaining
	7.4 Dependent supports algorithm
	7.5 Support counting forward chaining
	7.6 Derivation counting forward chaining
	7.7 Multiplicities and multiset operators
	7.8 Well-foundedness and derivability
	7.8.1 Algorithms to decide well-foundedness

	7.9 Herbrand interpretations and extended operators
	7.10 Stratifiable programs with negation
	7.10.1 Support graphs for programs with negation

	7.11 Discussion and related work

	8 Incremental reason maintenance
	8.1 Introduction
	8.2 The Reason Maintenance Problem
	8.3 Reason maintenance by deciding well-foundedness
	8.3.1 Rule updates
	8.3.2 Comparison with related work

	8.4 Reason maintenance without support graphs
	8.4.1 Rule updates
	8.4.2 Comparison with related work

	8.5 Support counting
	8.5.1 Support counting reason maintenance
	8.5.2 Well-foundedness and support counts
	8.5.3 Reason maintenance specialized to non-recursive Datalog programs
	8.5.4 Comparison with related work

	8.6 Derivation counting
	8.6.1 Reason maintenance with extended atoms
	8.6.2 Derivation counting without keeping dependencies
	8.6.3 Discussion
	8.6.4 Comparison with related work

	8.7 Explanation
	8.8 Different algorithms for different parts of data
	8.9 Batch updates and lazy evaluation
	8.9.1 Batch updates
	8.9.2 Answering queries and lazy evaluation
	8.9.3 Related Work

	8.10 Related work
	8.10.1 Monotonic JTMS reason maintenance
	8.10.2 Other reason maintenance methods

	9 Implementation
	9.1 A relational database representation
	9.1.1 Reducing the number of joins

	9.2 A graph database representation
	9.3 Comparison
	9.4 The KiWi 1.0 implementation

	10 Conclusion and Perspectives
	Appendix
	A Structured Tags User Study Materials
	A.1 Introductory texts
	A.1.1 General Instructions
	A.1.2 An Introduction to Structured Tags
	A.1.3 An Introduction to RDF

	A.2 Texts for Annotation
	A.2.1 Text A
	A.2.2 Text B

	A.3 Questionnaires
	A.3.1 After Each Round Questionnaire
	A.3.2 Final Questionnaire

	Bibliography

