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Abstract

This thesis addresses two different topics within the field of string theory.

In the first part it is shown how Hodge-theoretic methods in conjunction with open string

mirror symmetry can be used to compute non-perturbative effective superpotential couplings

for type II/F-theory compactifications with D-branes and fluxes on compact Calabi-Yau mani-

folds. This is achieved by studying the flat structure of operators which derives from the

open/closed B-model geometry. We analyze the variation of mixed Hodge structure of the

relative cohomology induced by a family of divisors, which is wrapped by a D7-brane. This

leads to a Picard-Fuchs system of differential operators, which can be used to compute the

moduli dependence of the superpotential couplings as well as the mirror maps at various

points in the open/closed deformation space. These techniques are used to obtain predictions

for genuine A-model Ooguri-Vafa invariants of special Lagrangian submanifolds in compact

Calabi-Yau geometries and real enumerative invariants of on-shell domain wall tensions.

By an open/closed duality the system of differential equations can also be obtained from a

gauged linear σ-model, which describes a non-compact Calabi-Yau four-fold compactification

without branes. This is used in the examples of multi-parameter models to study the various

phases of the combined open/closed deformation space. It is furthermore shown how the brane

geometry can be related to a F-theory compactification on a compact Calabi-Yau four-fold,

where the Hodge-theoretic techniques can be used to compute the G-flux induced Gukov-

Vafa-Witten potential. The dual F-theory picture also allows to conjecture the form of the

Kähler potential on the full open/closed deformation space.

In the second part we analyze the background dependence of theories which derive from

multiple wrapped M5-branes. Using the Kontsevich-Soibelman wall-crossing formula and the

theory of mock modular forms we derive a holomorphic anomaly equation for the modified

elliptic genus of two M5-branes which are wrapped around a rigid divisor inside a compact

Calabi-Yau manifold. The non-holomorphicity of the modified elliptic genus in this situation is

traced back to the contribution of non-trivial BPS bound states of M5-branes. As a byproduct

a result from pure mathematics obtained by Göttsche is re-derived in physical terms, which

concerns the structure of the moduli spaces of stable sheaves on certain complex surfaces.

The anomaly equation fulfilled by the modified elliptic genus is shown to be consistent with

the holomorphic anomaly equations observed in the context of N = 4 topological Vafa-

Witten theory on P2 and theories of E-strings obtained from wrapping M5-branes on del

Pezzo surfaces. In selected examples it is argued how the holomorphic anomaly equation

supplemented with appropriate boundary conditions can be used to explicitly compute the

BPS degeneracies for certain charges.

This work is based on the original publications [1, 2, 3, 4].



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit zwei verschiedenen Themen aus dem Gebiet der

Stringtheorie.

Im ersten Teil werden Hodge-theoretische Methoden und Mirrorsymmetrie offener Strings

dazu verwendet um nicht-perturbative effektive Superpotentiale in Typ II/F-Theorie Kom-

paktifizierungen auf kompakten Calabi-Yau Mannigfaltigkeiten mit D-Branen und Flüssen zu

berechnen. Möglich ist dies aufgrund der zugrundeliegenden flachen Ringstruktur der Ope-

ratoren im kombiniert offen/geschlossenen B-Modell. Für bestimmte D-Branengeometrien

entspricht diese Struktur der mathematischen Theorie von Variationen gemischter Hodge-

Strukturen einer relativen Kohomologiegruppe. Im Falle einer D7-Brane, welche um eine

Familie von Vierzyklen gewickelt ist, wird hiermit ein System von Picard-Fuchs Gleichungen

abgeleitet, welches die relativen Perioden des Deformationsproblems annihiliert. Da die rela-

tiven Perioden für diese Geometrien das von den D-Branen induzierte Superpotential, sowie

die Mirrorabbildungen beschreiben, können die Picard-Fuchs Gleichungen dazu benutzt wer-

den, um nicht-perturbative Superpotentialkopplungen in der Umgebung zahlreicher Punkte

im offen/geschlossenen Deformationsraum explizit zu berechnen.

Mithilfe dieser Techniken trifft die Arbeit Vorhersagen für Ooguri-Vafa Invarianten von spe-

ziellen Lagrange-Branen in kompakten Calabi-Yau Geometrien, sowie für reell enumerative

Invarianten von Massendichten supersymmetrischer Domänenwände. Eine offen/geschlossene

Stringdualität, welche die Branengeometrie auf eine Calabi-Yau Viermannigfaltigkeit ohne

Branen abbildet, kann desweiteren dazu benutzt werden, um das Picard-Fuchs System der

D-Branengeometrie aus einem ’gauged linear σ-model’ herzuleiten. In Modellen mit mehreren

Deformationsparametern werden hiermit, unter Zuhilfenahme von Methoden aus der torischen

Geometrie, die unterschiedlichen Phasen des kombinierten offen/geschlossenen Deformations-

raums untersucht. Zudem erläutert die Arbeit wie die Branengeometrie in eine F-Theorie

Kompaktifizierung auf einer kompakten Calabi-Yau Viermannigfaltigkeit ohne D-Branen über-

setzt werden kann. Die Hodge-theoretischen Methoden erlauben in diesem Fall die Berechnung

von G-Fluss induzierten Gukov-Vafa-Witten Potentialen. Aus dem dualen Bild der F-Theorie

wird außerdem die Form des Kähler Potentials auf dem kombiniert offen/geschlossenen De-

formationsraum der D7-Brane abgeleitet.

Der zweite Teil der Arbeit ist der Untersuchung der Hintergrundabhängigkeit von The-

orien mit mehreren M5-Branen gewidmet. Unter Verwendung der Kontsevich-Soibelman

’wall-crossing’ Formel und der Theorie der mock-modularen Formen wird eine holomorphe

Anomaliegleichung für den modifizierten elliptischen Genus von mehreren M5-Branen auf

einem rigiden Divisor innerhalb einer kompakten Calabi-Yau Mannigfaltigkeit hergeleitet.

Die Nichtholomorphizität des modifizierten elliptischen Genus kann dabei auf den Beitrag

von nicht-trivialen Bindungszuständen von M5-Branen zurückgeführt werden. Als ein Neben-



produkt wird mithilfe physikalischer Überlegungen ein Resultat aus der reinen Mathematik

von Göttsche hergeleitet, welches die Struktur der Moduliräume von stabilen Garben auf

bestimmten komplexen Flächen betrifft. Zudem diskutiert die Arbeit die Konsistenz der ge-

fundenen holomorphen Anomaliegleichung mit den holomorphen Anomaliegleichungen, welche

im Fall der N = 4 topologischen Vafa-Witten Theorie, sowie im Rahmen von Theorien so-

genannter E-Strings, welche von M5-Branen auf del Pezzo Flächen herrühren, abgeleitet wur-

den. In ausgewählten Beispielen wird gezeigt, wie die holomorphe Anomaliegleichung dazu

benutzt werden kann um die BPS-Entartungen für bestimmte Ladungen, unter Zuhilfenahme

geeigneter Randbedingungen, explizit zu berechnen.

Diese Doktorarbeit basiert auf den Veröffentlichungen [1, 2, 3, 4].
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Part I

Introduction





1
Chapter 1

Motivation and overview

Contents

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1. Motivation

This thesis is devoted to topics in string theory, which over the past decades has emerged as

the prime candidate for a theory which combines quantum mechanics and general relativity

in a sensible way. The original idea of string theory, born in a completely different context in

hadronic physics, is that elementary particles might not be described by mathematical points

but rather by tiny extended strings, whose excitations are interpreted as different particles.

This simple idea has remarkable consequences.

First of all the spectrum of theories with closed strings contains an excitation which cor-

responds to a massless spin two particle. Such an excitation is the hallmark of gravity and

therefore string theories naturally incorporate general relativity and gravity. Amazingly the

quantum mechanical scattering amplitudes between strings with such excitations produce

UV-finite results, which means that string theories are a sensible UV-completion of quantum

gravity. A second consequence of the string idea is that quantum mechanical consistency of

string theories often fixes the dimension1 of the space-time the string propagates in. For the

well-studied and phenomenological most interesting theories, the type IIA/B and E8 ×E8 or

SO(32) heterotic strings, the space-time dimension is for example fixed to D = 10. At first

sight this seems as a huge drawback, as only four space-time dimensions have so far been

observed. However with the compactification idea of Kaluza and Klein it can be turned into

a partial or at least theoretical very appealing advantage. For this it is usually assumed that

the unobserved space-time dimensions are small2 and their existence therefore does not affect

the physics at energies which are accessible by current experiments, such as collider or astro-

1Strictly speaking the notion of dimension is tied to a geometric interpretation of the theory. However such

a notion might not always immediately exist or even depend on the position in moduli space (see e.g. the

Calabi-Yau – Landau-Ginzburg correspondence as in [5]).
2In appropriate units.
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physical experiments. The shape of the six-dimensional ’inner space’ nonetheless governs the

effective physics in four dimensions which can be derived from the study of string propaga-

tion in such higher dimensional spaces. The geometry and symmetries of the compactification

manifold for example determine the particle content and the gauge symmetries which can be

observed in the lower dimensions. A further interesting property of string models is that such

theories contain only one adjustable parameter, namely the tension of a fundamental string,

while the other scales and parameters are set by (possibly complicated) mechanisms and dy-

namics. This is a very appealing feature, as phenomenological theories of particle physics

such as the standard model or models beyond it generically contain a plethora of parameters

which can only be fixed by direct comparison with experiment.

All of this hints at the possibility of ’geometrizing’ the abstract symmetries which were

found in nature and are at the heart of the standard model of elementary particle physics.

The hope is thus to derive the properties of the real four dimensional world as a direct

consequence of the complicated shape and geometry of a higher-dimensional space-time itself

and the objects which can propagate in it.

In summary a theory of strings seems to have a lot of the ingredients one would expect of a

fundamental theory of nature, which describes gravity and the other fundamental forces in a

unified framework. Unfortunately the current understanding of string theory does not allow

to single out a particular preferred background or even a small enough class of backgrounds

from which standard-model like physics could be uniquely extracted. One in fact seems to

be stuck in a vast landscape of admissible geometries and furthermore it turns out that it is

technically challenging to extract the four dimensional physics which is encoded in a particular

compactification. Unfortunately it seems therefore hard to connect string theory to the real

world.3

Nonetheless the ideas originating from string theory have changed the understanding of the

inner workings of the theoretical models underlying the most successful theories of nature,

such as quantum field theories and general relativity. These insights are not tied to the

question whether string theory might describe the real world at very short distances and high

energies and remain true even if string theory might be falsified at some point.

Not only in physics but also in the field of pure mathematics ideas from string theory have

triggered tremendous progress over the last decades. Among the reasons for this ’unreason-

able effectiveness’ of string theory in mathematics seems to be the fact that strings and more

generally extended objects probe geometries and algebraic structures very different from or-

dinary point particles. In addition the study of non-perturbative aspects of (supersymmetric)

field theories hints at a deep connection between geometry and non-perturbative quantum

physics, as was for example shown in the celebrated Seiberg-Witten non-perturbative low-

energy solution of N = 2 super-Yang-Mills theory [6, 7]. These two aspects are actually

interrelated as can be deduced from remarkable non-perturbative dualities between different

3There has however been tremendous progress on these questions in the last decades.
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string theories and with the help of the good technical control over quantum corrections due

to supersymmetry, which is built into a lot of models coming from string constructions.

D-branes and dualities

String theories generically not only contain strings as fundamental degrees of freedom, but also

higher dimensional solitonic objects, called D-branes [8]. These are exact non-perturbative

states of string theory4 and their perturbative excitations are described by open strings which

can end on the D-branes. The discovery of D-branes led to the possibility of studying non-

perturbative aspects of string theory in great detail. A remarkable consequence of these

studies was for example the derivation of the entropy of certain extremal black holes from a

microscopic picture of black holes as being built from D-brane micro-states [9]. This can be

interpreted as another hint that string theories indeed contain the right degrees of freedom

for a sensible theory of quantum gravity.

The study of non-perturbative effects in string theories using D-branes led also to various

remarkable dualities which connect seemingly different string theories in ten dimensions with

each other. Some of them exchange the perturbative states of one theory with the non-

perturbative states of another theory and map weak and strong coupling regimes onto each

other. A central theme in this is played by M-theory5 [12, 13], the conjectured 11-dimensional

strong coupling limit of type IIA string theory. Unfortunately up to now the details of M-

theory are poorly understood, however some of its properties have been uncovered indirectly,

as it can be related to other theories by dualities.6 The physical degrees of freedom of M-

theory are not that of a theory of strings anymore but rather given by a membrane, called

M2-brane and its magnetic dual, the M5-brane. The fundamental type IIA string and the

various D-brane states arise upon compactification of these M2- and M5-branes on a circle to

ten dimensions. By a duality called T-duality, which relates circle compactifications of type

IIA and IIB strings, M-theory on an elliptically fibered Calabi-Yau four-fold can be related

to yet another theory called F-theory [15], which is a non-perturbative description of type

IIB string theory and lives in twelve dimensions7. Remarkably the rather abstract F-theory

has recently been used to obtain very stringent and (semi-)realistic models of particle physics

[16].

Supersymmetry and topological string/field theories

A second property of the above mentioned string models is supersymmetry8 [17], an extension

of Poincaré symmetry which maps bosonic and fermionic degrees of freedom onto each other.

4Or better string field theory.
5See e.g. [10, 11] for pedagogical introductions.
6Recently there has for example been a lot of progress on the question of the world-volume theory which lives

on N M2-branes in certain backgrounds and an explanation of the N3/2 scaling behavior of its number of

degrees of freedom, see e.g. [14] for a detailed account.
7Two of these ’dimensions’ actually describe the axio-dilaton of the type IIB theory.
8Both in the space-time and worldsheet sense.
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Supersymmetric theories often contain a sector of states, which is largely protected against

quantum corrections and therefore under good technical control. A lot of results about

string compactifications and non-perturbative aspects of the theory rely on the rigidity of

these so-called BPS-states. For example some of the interesting couplings of the low-energy

effective action of a string compactification are protected against quantum corrections by

holomorphicity and receive only contributions from BPS-saturated states. In some cases it

is even possible to replace the full string theory by another theory, called topological string

theory [18, 19, 20, 21], which captures the protected couplings and whose physical degrees of

freedom are precisely the BPS-saturated states or a subset of them.9

Topological string and field theories are more easier to handle than their physical cousins

and have some remarkable properties. These theories are for example generically independent

of a large class of deformations of the full underlying string theory. Furthermore correlation

functions do not depend on a particular worldsheet metric and the semi-classical approxima-

tion is exact. Therefore the correlation functions localize to configurations which are invariant

under the topological symmetry of the theory and get only contributions from fixed topolog-

ical sectors. The contributions in each sector yield topological or enumerative invariants of

the target space geometry.

An example of this is the topological A-model on a Calabi-Yau space Z, which can be

obtained from the type IIA string by a procedure called topological twisting10 [20]. The cor-

relation functions of this theory compute the prepotential of the effective N = 2 supergravity

theory in four dimensions, which a compactification of closed type IIA strings engineers.11

The topological A-model correlators get only contributions from holomorphic maps and count

the number of such maps from a string worldsheet of fixed genus to the Calabi-Yau manifold

in a way which can be made mathematically rigorous. The topological A-model is insensitive

to complex structure deformations of the target space geometry and in this sense yields topo-

logical invariants of the Calabi-Yau manifold Z. The enumerative invariants one obtains are

called Gromov-Witten invariants [20, 26, 27] and can be used to distinguish more generally

symplectic manifolds. By physical arguments Gromov-Witten invariants can be related to

the counting of BPS-states of M2-branes in a M-theory compactification to five dimensions

[28, 29]. As the appropriate counting of the BPS-states coming from M2-branes produces in-

teger invariants [28, 29] this led to the remarkable conjecture that there is a hidden integrality

structure in Gromov-Witten theory, which is a priori hard to see from the pure mathematical

side.

Another example of a topological field theory is the Vafa-Witten gauge theory on a complex

surface P [30]. This theory can be obtained by twisting an N = 4 supersymmetric Yang-Mills

9See [22, 23] for the case of effective couplings in type II compactifications.
10This procedure changes the spins of the worldsheet fields. The twisting of the type IIB string leads to the

so-called B-model.
11See [24, 25] for the closely related engineering of N = 2 quantum field theories form type II strings.
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theory with U(r) gauge group on the complex surface. The partition function of the Vafa-

Witten theory gets only contributions from topological non-trivial instanton configurations

and is independent of the complex structure on the surface P . It can be shown that the

contributions to the partition function compute the Euler characteristics of moduli spaces of

stable sheaves on these surfaces and these are related to the notion of Donaldson invariants

in mathematics [31, 32]. Therefore this theory can be used to study on the one hand the

abstract theory of stable sheaves on complex surfaces and on the other hand the structure

of micro-states of BPS black-holes in supergravity theories, to which the Vafa-Witten theory

can be related by dualities.12

Albeit the topological theories greatly simplify the technical problems for a particular class

of interesting physical quantities and couplings and have deep connections to mathematics it

is nonetheless a complicated problem to explicitly compute correlation functions and therefore

the quantities of interest. Sometimes these problems can be overcome by an application of

the dualities mentioned above. For example for the case of the topological A-model, explicit

computations are possible by an application of a duality of Calabi-Yau spaces, called mirror

symmetry [35].

Mirror symmetry

In its strongest form the mirror symmetry conjecture states that the full physical type IIA

string compactified on a Calabi-Yau manifold Z leads to the same four-dimensional physics as

the type IIB string compactified on a mirror Calabi-Yau manifold Z∗. From the worldsheet

perspective mirror symmetry can be motivated by a rather trivial symmetry of U(1) currents

[21], however from the space-time perspective the geometry of the target space is changed

drastically. This means in particular that for a large class of Calabi-Yau manifolds there

should exist on physics grounds a mirror Calabi-Yau manifold, which is very surprising from

the point of view of pure mathematics. Mirror symmetry can be understood from a target

space perspective in terms of the more elementary T-duality symmetry of circle compactifica-

tions of type IIA and IIB string theories [36]. This led to the conjecture that any Calabi-Yau

manifold with a mirror partner admits a description in terms of a special Lagrangian torus

fibration and mirror symmetry is given by T-duality along the torus directions. This is very

surprising as both special Lagrangian submanifolds as well as higher dimensional Calabi-Yau

manifolds are hard to understand mathematically and it is even very challenging to construct

non-trivial examples of both objects.

The equivalence of physical mirror theories has also remarkable consequences for string

theories themselves. In particular mirror symmetry implies that not only two particular

theories are dual, but one can actually map whole deformation spaces of mirror symmetric

theories upon each other. This turns the mirror conjecture into a powerful computational

tool in the realm of topological strings. Difficult questions about the type IIA string, such

12See e.g. [33]. This is in a smiliar spirit as the famous AdS/CFT correspondence [34].
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as the computation of the instanton corrected prepotential, can be turned into a much easier

question about the type IIB string on the mirror manifold. This was demonstrated in [37]

where the fully worldsheet instanton corrected prepotential of a closed type IIA string theory

on the quintic Calabi-Yau was computed by utilizing its mirror description. In particular the

prepotential of the topological A-model is given in terms of the B-model mirror theory by

geometric integrals on the mirror Calabi-Yau manifold. This means that a question about

subtle quantum effects in the A-model can be turned by mirror symmetry into a problem in

purely classical geometry on the B-model side.

As the prepotential of the topological A-model encodes the generating function of Gromov-

Witten invariants this could be used to solve a longstanding problem about the enumeration

of spheres of various degrees in certain Calabi-Yau geometries, which is interesting from a

mathematics point of view. An important ingredient in the matching between the families of

A- and B-model theories on the mirror symmetric Calabi-Yau manifolds was the identification

of the non-trivial mapping between the moduli of both models. These maps are called mirror

maps and they in particular reflect the flat structure of the underlying deformation families

of topological theories [20].

Mirror symmetry can also be used to gain insights into non-perturbative aspects of other

string and field theories. For example mirror symmetry can be used to derive the explicit

solution of N = 2 supersymmetric gauge theories in four dimensions [38, 39, 25] using a local

version of mirror symmetry, which reproduces the Seiberg-Witten prepotential and allows for

a generalization to arbitrary gauge groups and the addition of matter fields.13 Furthermore

it is possible to construction non-trivial stable vector bundles on elliptically fibered Calabi-

Yau manifolds14 and to describe their moduli spaces using mirror symmetry constructions

[25, 42, 43]. This is a necessary and interesting but in general hard task for semi-realistic

compactifications of the heterotic string.

Finally mirror symmetry is also expected to connect the non-perturbative sectors of the

involved theories [44]. Therefore there should exist an open string version of mirror symmetry,

which exchanges the D-brane states of the type IIA and IIB string theories. This led to

an algebraic characterization of D-branes and mirror symmetry as a matching of D-brane

categories, known as homological mirror symmetry [45]. This approach captures all the D-

brane states of both theories, unfortunately in its current formulation this framework cannot

be used as a computational tool for open string mirror symmetry, at least not along the lines

of the closed string case, as for example in [37].

This thesis

As sketched above string theory and parts of modern mathematics enjoy a very close and

fruitful relationship. This thesis deals with two further examples of this close relationship.

13See [40] for the solution via M-theory.
14These particular types of bundles on elliptically fibered Calabi-Yau manifolds were constructed in [41].
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Part II of this thesis is based on the original publications [1, 2, 3]. In this part we are

going to use an off-shell version of mirror symmetry for the computation of certain D-brane

induced effective superpotentials. As already mentioned it is natural to contemplate about an

open string version of mirror symmetry [44], in order to compute non-perturbative effective

couplings by mapping them to easier computable geometric objects on a mirror Calabi-Yau

manifold, similar as was done in the case of closed strings in [37].

When adding D-branes and fluxes to a type II compactification on a Calabi-Yau three-

fold, the effective theory in four dimensions is generically described by a N = 1 supergravity

theory coupled to gauge fields. The vacuum structure of such theories is governed by a

superpotential of the chiral superfields, which describe the moduli of the compactification in

the supergravity theory. In general it is a hard problem to determine the non-perturbative

effective superpotential for a given D-brane configuration.

In order to use mirror for the computation of these superpotential couplings one first has to

identify a sensible deformation problem for a given D-brane. A general D-brane has infinitely

many non-supersymmetric deformations inside the Calabi-Yau manifold and therefore it is

a priori not clear how to single out a well-defined finite dimensional sub-problem. In this

work we concentrate on a particular situation which was first described in [46, 47]. On the

B-model side we consider a D7-brane which is wrapped around a four-cycle inside the Calabi-

Yau manifold. This configuration comes with a natural moduli space of supersymmetric

deformations, which correspond to flat directions of the superpotential. Upon the addition

of flux on the D7-brane or equivalently the addition of D5-brane charge a superpotential is

generated, which obstructs certain directions of the deformation space.

The deformation problem of the D7-brane can be described by the mathematical theory of

variation of mixed Hodge structure of a relative cohomology group [46, 47] and the superpo-

tential which is induced by the addition of the D5-brane charge is captured by a geometrical

relative period integral, as is discussed in detail in section 3.3. In physics terms this structure

is known as N = 1 special geometry [48, 49, 46, 47] and it can be understood as a general-

ization of the well-known concept of N = 2 special geometry [50], which appears for example

in the context of closed string mirror symmetry.

The formulation in terms of the variation of mixed Hodge structure not only allows for

the explicit computation of the relative periods, but also for the identification of appropriate

mirror maps to the corresponding A-model geometry on the mirror Calabi-Yau manifold, as

outlined in section 3.5. The moduli dependence of the relative periods is captured by the

solutions to a Picard-Fuchs system of differential equations, similar as in the case of closed

string mirror symmetry. Therefore the effective superpotential and the mirror maps can be

computed as solutions to a particular set of differential operators, which are derived from the

variation of mixed Hodge structure of the relative cohomology group in section 3.4.

On the A-model side the effective superpotential receives non-trivial disc-instanton cor-

rections [51] and encodes enumerative invariants of Lagrangian submanifolds in Calabi-Yau
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manifolds, which therefore become computable by mirror symmetry techniques [44]. Depend-

ing on the point in the deformation space one encounters two different situations. In the first

situation the deformation space of the D-brane is classically unobstructed and gets obstructed

by non-trivial disc-instanton corrections, only. In this case the superpotential enjoys an ex-

pansion in terms of integral Ooguri-Vafa invariants, which enumerate the number of maps

from a worldsheet with topology of a disc to the Lagrangian D-brane [52]. In the other case

the deformations are classically massive and should therefore be integrated out in the effective

action. This leads to a superpotential which depends only on the closed string deformation

parameters and describes the tension of domain walls which connect supersymmetric brane

vacua. Interestingly such configurations also contain enumerative information and enjoy an

Ooguri-Vafa-like expansion [53, 54, 55].

By an open/closed duality [48, 56, 57] the above brane geometry can be mapped to a non-

compact Calabi-Yau four-fold without branes and with fluxes only, as will be discussed in

sections 3.7 and 3.8. In this situation the relative periods can be used to compute G-flux

induced Gukov-Vafa-Witten superpotentials [58]. One has to note that the so obtained su-

perpotentials enjoy a very special structure as compared to generic F-theory superpotentials,

as they inherit and reflect the structure of the underlying N = 1 special geometry.

For the special case of divisors which describe toric branes on hypersurfaces in toric ambient

spaces15 the non-compact Calabi-Yau four-fold can be described by a gauged linear σ-model

[5], as is discussed in section 3.7. This allows for the study of the combined open/closed de-

formation space of such configurations by the well-known techniques of toric geometry [27, 59].

We use these in explicit examples in chapter 4 to compute non-perturbative superpotential

couplings and verify the integrality properties of the obtained enumerative invariants. This

leads to the prediction of genuine Ooguri-Vafa invariants for certain special Lagrangian sub-

manifolds in compact Calabi-Yau geometries, such as the quintic Calabi-Yau three-fold in

section 4.1. In models with multiple closed string parameters we furthermore analyze the

fate of domain wall tensions through extremal transitions, which change the topology of the

target space. These points often correspond to loci of enhanced gauge symmetry for the

effective space-time theory and in some examples we encounter tensionless domain walls at

such points, which might play a role for the generation of the non-perturbatively enhanced

gauge symmetry.

Upon compactification of the non-compact Calabi-Yau four-fold the brane geometry can

be related to an honest F-theory compactification on a compact Calabi-Yau four-fold. The

details of the compactification are conjectured to capture non-perturbative corrections to the

superpotential in the string coupling constant gs, which are induced by D-instantons [57].

The dual F-theory picture in addition allows to conjecture the form of the Kähler potential

on the deformation space of the D7-brane, as will be discussed in section 3.8.

15More generally complete intersection Calabi-Yau manifolds in toric ambient spaces.
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Part III of this thesis is based on the original publication [4]. Herein we will make use of

the duality web of M-theory to connect theories of multiple wrapped M5-branes to the mathe-

matical theories of moduli spaces of stable sheaves and mock modular forms [60, 61, 62]. This

part of the work elucidates aspects of the relation between wall-crossing phenomena [63, 31],

holomorphic anomaly equations [64, 22, 30] and background-dependence [65] in topological

string and field theories.

The duality web of multiple wrapped M5-branes in particular connects the world-volume

theory, which lives on multiple M5-branes, to the topological Vafa-Witten gauge theory on

a complex surface [30] and links it furthermore to a certain two-dimensional conformal field

theory defined on a torus, which is known as MSW-CFT [66].16

As a special application of these dualities the appropriate counting of the BPS-states of

the dual theories is expected to lead to the same results. In the MSW-CFT an appropriate

counting function is given by the modified elliptic genus17, which gets directly related to the

partition function of the dual Vafa-Witten gauge theory. Both objects are expected to enjoy

definite transformation properties under the modular group SL(2,Z). From the point of view

of the gauge theory this is related to the S-duality invariance of the theory [30], whereas in

the CFT picture this property is related to the modular invariance of the modified elliptic

genus on the torus [69, 70, 71].

It was observed in [30] that the partition function of Vafa-Witten theory suffers from a

holomorphic anomaly, if the theory is put on a rigid complex surface. The occurrence of

the holomorphic anomaly equation was attributed to the contribution of reducible gauge

connections. Translated into the M5-brane picture this can be interpreted as the contribution

of non-trivial BPS bound states of M5-branes.

It is well-known that the spectrum of stable BPS-states depends on the point in moduli

space under consideration and that the number of BPS-states can jump when crossing a wall

of marginal stability in moduli space [63]. Recently Kontsevich and Soibleman (KS) even gave

a rigorous mathematical formula for the change in the BPS-spectrum when crossing such a

wall, the celebrated KS wall-crossing formula [72].

In view of the interpretation of the holomorphic anomaly of Vafa-Witten gauge theory as

being caused by bound states, it seems therefore reasonable to expect a relation between the

wall-crossing phenomenon and the holomorphic anomaly equation. Indeed we will show in

chapter 5 that the KS-formula implies the holomorphic anomaly equation for the case of two

wrapped M5-branes. In particular the application of the KS-formula in this situation can be

viewed as a re-derivation of results obtained in pure mathematics by Göttsche [32] on the

structure of sheaves on a complex surface by physical techniques.

The way the holomorphic anomaly equation emerges from the result obtained by the ap-

plication of the KS-formula is very intriguing and involves the theory of mock modular forms

16This is in a similar spirit as the recently studied 4d/2d-correspondences, see e.g. [67].
17Technically this is a BPS-index, see e.g. [68].
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[60, 61, 62].18 The jumps in the BPS-numbers are encoded in an indefinite theta-function,

first described in the mathematical work of Göttsche [32], which is a highly singular object

and furthermore breaks explicitly modular invariance. As demanded by S-duality invariance,

a modular invariant object can be constructed by a smoothing procedure, first described by

Zwegers in [61], which introduces a mild non-holomorphicity. This turns the modified el-

liptic genus into a mock modular form and explains the appearance of a non-holomorphic

dependence.

Physics-wise this can also be understood as follows. The holomorphic expansion of the

modified elliptic genus in the neighborhood of a given point in moduli space, which encodes

the degeneracies of the stable BPS-spectrum, does not know about non-trivial bound states,

which can potentially contribute when a wall of marginal stability is crossed. However the

restoration of the duality invariance, after crossing the wall, forces one to take them into

account and leads to a non-holomorphic dependence.

The holomorphic anomaly equation can be used to compute the BPS-degeneracies in fa-

vorable cases, when supplemented by appropriate boundary conditions, as is exemplified in

section 5.4. Mathematically the BPS-degeneracies encode the Euler characteristics of the

moduli spaces of sheaves of fixed topology and the holomorphic anomaly equation can there-

fore be used to explicitly compute these topological invariants by physical reasoning.

18See Appendix H for a short account of mock modular forms.
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1.2. Outline

It follows a short outline of the following chapters.

• In chapter 2, in order to set the stage for the discussion of open string mirror symmetry,

we give a short overview of topological string and field theories and the main techniques

used in closed string mirror symmetry. After introducing the general concepts we apply

these to the explicit examples of the sextic Calabi-Yau three-fold in P4
(1,1,1,1,2) and the

sextic Calabi-Yau four-fold in P5 in section 2.6.

In part II, based on the original publications [1, 2, 3], we show how the Hodge-theoretic

approach to N = 1 mirror symmetry of [46, 47] can be extended to compact Calabi-Yau

geometries.

• Chapter 3 is concerned with off-shell mirror symmetry. After a short review of aspects

of topological D-branes in section 3.1, we give a general overview of the concepts of

off-shell mirror symmetry in section 3.2. Then we turn to a description of the geometric

model for the deformation space of the B-model geometry in section 3.3, which we are

going to study further in subsequent sections. Section 3.4 contains a detailed derivation

of the Picard-Fuchs operators which annihilate the relative periods. In addition we

discuss the integrability conditions which stem from the expected flat structure of the

chiral ring of the underlying open/closed topological field theory in section 3.5 and out-

line connections to CFT correlation functions in section 3.6. In section 3.7 we show how

for the case of toric branes the Picard-Fuchs operators can be obtained from a gauged

linear σ-model for an open/closed dual Calabi-Yau four-fold. Furthermore in section 3.8

it is pointed out how the brane geometry can be lifted to a F-theory compactification

and how this can be used to conjecture the form of the Kähler potential of the effective

N = 1 supergravity theory on the full open/closed deformation space.

• In chapter 4 the techniques presented in the preceding chapter are applied to various

brane geometries in hypersurfaces of toric varieties. Particular emphasis lies on the

relation between the off-shell techniques presented in chapter 3 and the on-shell com-

putations of [53, 73]. We compute Ooguri-Vafa invariants for certain compact brane

geometries and verify integrality of the obtained invariants to high order. For the case

of multi-parameter models we study the fate of domain wall tensions through extremal

transitions connecting different Calabi-Yau geometries and observe that the web of

vacua stays connected for our particular brane geometries.

Part III, based on the original publication [4], is concerned with the relation between wall-

crossing and holomorphic anomaly equations in the case of conformal field theories related to

multiple M5-brane bound states.
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• Chapter 5 contains a review of the effective descriptions of wrapped M5-brane theories

in section 5.2 and discusses the Kontsevich-Soibelman (KS) wall-crossing formula in sec-

tion 5.3. The KS-formula is then used to reproduce a wall-crossing formula of Göttsche

for the Euler numbers of the moduli spaces of sheaves on a divisor. After this we derive

the holomorphic anomaly equation for the case of two wrapped M5-branes from the

expressions for the modified elliptic genus by an application of the ideas of Zwegers

[61] and point out the relation to mock modular forms. The application of the general

formulae to particular examples and some speculations about possible extensions in

section 5.4 finish this chapter.

The part IV is comprised of appendices.

• Chapter A contains a short review of techniques from toric geometry, which are rele-

vant for the technical discussions in the main text.

• For better readability we furthermore relegated some of the details from the main text

to the chapters B-G.

• The last chapter H contains a short introduction to the theory of mock modular forms.
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Chapter 2

Closed string mirror symmetry
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In this chapter we review some aspects of closed string mirror symmetry. The extension

to open strings, which is the central topic of chapter 3, parallels the closed string case in

many respects and in favorable circumstances can even be mapped onto closed string mirror

symmetry in one complex dimension higher. Therefore closed string mirror symmetry is a

good starting point for the discussions which follow in later chapters.

This chapter follows the expositions given in [22, 35, 27, 74, 75, 76, 77, 78, 79]. For the

geometrical tools from toric geometry we refer to the Appendix A and the additional literature

given there. We start with a discussion of some aspects of the vacuum geometry of N = (2, 2)

SCFTs in two dimensions.

2.1. Vacuum geometry of N = (2, 2) SCFTs

2.1.1. The N = 2 superconformal algebra

The N = 2 superconformal algebra in two dimensions is a supersymmetric extensions of the

conformal algebra. In addition to the Virasoro generators one has two fermionic currents

G±(z) of conformal weight h = 3
2 together with an U(1) R-current J(z) of weight h = 1

under which the fermionic currents carry charges ±1. These fields together with the energy-

momentum tensor T (z) of weight h = 2 fit into an N = 2 multiplet. In addition one has

to specify boundary conditions for the fermionic fields. There are two possibilities: periodic

boundary conditions, which lead to the Neveu-Schwarz (NS) sector and anti-periodic bound-

ary conditions, which lead to the Ramond (R) sector. The OPEs between the above currents
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are given by1

T (z) · T (w) ∼ c

2

1

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

(z − w)
,

T (z) ·G±(w) ∼ 3

2

G±(w)

(z − w)2
+
∂wG

±(w)

(z − w)
,

T (z) · J(w) ∼ J(w)

(z − w)2
+
∂wJ(w)

(z − w)
,

G+(z) ·G−(z) ∼ 2c

3

1

(z − w)3
+

2J(w)

(z − w)2
+

2T (w) + ∂wJ(w)

(z − w)
,

J(z) ·G±(w) ∼ ± G
±(w)

(z − w)
, J(z) · J(w) ∼ c

3

1

(z − w)2
,

(2.1)

where c denotes the central charge.2 A highest weight representation of the N = 2 supercon-

formal algebra can be constructed from a highest weight state |φ〉 which fulfills

Ln|φ〉 = 0, G±r |φ〉 = 0, Jm|φ〉 = 0, n, r,m > 0 . (2.2)

Here r ∈ Z + 1
2 for the NS-sector and r ∈ Z for the R-sector and the mode expansions are

given by

T (z) =
∑
n

Ln z
−n−2, J(z) =

∑
n

Jn z
−n−1, G±(z) =

∑
n

G±n±a z
−(n±a)− 3

2 , (2.3)

where 0 ≤ a ≤ 1 is integral in the Ramond sector and half-integral in the NS-sector. The

Cartan subalgebra of the N = 2 superconformal algebra is spanned by L0 and J0 and thus a

general state can be labeled by its eigenvalues with respect to these operators

L0|φ〉 = hφ|φ〉, J0|φ〉 = qφ|φ〉 . (2.4)

An important datum of a supersymmetric theory are the supersymmetric ground states.

In this case the supersymmetric ground states lie in the R-sector and are given by highest

weight states which are furthermore annihilated by the modes G±0 .

The N = 2 algebra has a large group of automorphisms, which map the NS- and the

R-sector onto each other. This property is called spectral flow automorphism. For string

constructions the spectral flow automorphism leads to space-time supersymmetry of the cor-

responding string spectrum. For our purpose the spectral flow will turn out to be important

in the related context of the N = 4 superconformal algebra in chapter 5.

1See e.g. [35, 80] for pedagogical introductions.
2In a non-linear σ-model realization the central charge is connected to the dimension of the target space

geometry.
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2.1.2. Chiral rings

There is an interesting ring structure coming with anN = 2 superconformal symmetry algebra

[21]. For this let |φ〉 be a primary state in the NS-sector which furthermore fulfills

chiral primary: G+
−1/2|φ〉 = 0 ,

anti-chiral primary: G−−1/2|φ〉 = 0 .
(2.5)

By the superconformal algebra one can show that the space of chiral fields is finite dimensional

as for such a state [21]

hφ ≤
c

6
, and hφ =

qφ
2
. (2.6)

Under the OPE the chiral fields form a closed finite ring, called the chiral ring [21]

φi · φj = Ckij φk , (2.7)

where i, j, k label the finite number of different fields. The structure constants Ckij are related

to the three-point functions Cijk of three chiral primaries on a genus zero worldsheet

Cijk ≡ 〈φiφjφk〉0 = 〈φiφm〉0Cmjk ≡ ηimCmjk . (2.8)

Here the two-point function 〈φiφm〉0 = ηim is called the topological metric and becomes

important once one considers deformations of a given theory.

As the U(1)-charge is additive the chiral ring comes with a charge filtration [21, 35]. This

becomes also apparent when looking at the operator-state correspondence. By spectral flow

the R- and the NS-sector can be mapped to each other and the chiral primaries are mapped

to the supersymmetric ground states in the R-sector [21]. There is a canonical vacuum |0〉
from which one can construct the other vacua by the action of the chiral primaries φi [35]3

|i〉 = φi|0〉 . (2.9)

Therefore the states have a definite U(1)-charge. The same steps can also be carried out for

the anti-chiral fields. If one considers a theory of closed strings one has a left- and a right

moving N = 2 superconformal algebra. This will lead to combined chiral rings denoted by

(c, c) and (a, c), where c denotes the chiral- and a the anti-chiral ring.4

2.2. Topological field theories

Up to now implicitly only flat worldsheets were considered. To define the theory on a closed

worldsheet one has to make sure that there exist covariantly constant sections of the spin

3Strictly speaking this is not a one-to-one map in general. However for the concrete models we will be

interested in (the A-model on a Calabi-Yau manifold and B-twisted LG-models) this statement is true [35].
4The other two possible rings are isomorphic to the given ones.
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bundle. For higher genus surfaces this is however not guaranteed. One way to solve this

problem is to construct a new theory out of the original one by the so-called topological twist

procedure [18, 19, 20].5

The idea is to combine the local Lorentz/euclidean symmetry with the R-symmetries of

the worldsheet supersymmetry and to declare a diagonal subgroup to be the new local

Lorentz/euclidean symmetry group. This changes the bundles the original fields were sec-

tions of and thus their spins. For the supercharges this procedure generically leads to some

fermionic scalar charges and one-form fields. Thus one obtains scalar charges Q which square

to zero and lead in particular to the simplifications one knows from supersymmetric theories

also for higher genus worldsheets.

2.2.1. Properties of topological field theories

A topological field theory (TFT) obtained from twisting has some very remarkable properties:

• The operators and states of the topological and the superconformal theory do not differ.

However the notion of a physical state is changed. In the topological theory the Q-

cohomology classes are the physical states and they correspond to the ground states of

the supersymmetric theory.

• The energy-momentum tensor T = {Q,G} is Q-exact. As a consequence the correla-

tion functions of physical operators do not depend on the metric on the worldsheet.

Furthermore the correlation functions are independent of the position of the inserted

operators.

• The semi-classical approximation is exact. If the action of the theory is furthermore

Q-exact the correlation functions get contributions only from the fixed-points of the

Q-symmetry. This important property is called localization.

• The correlation functions are independent of a large class of deformations of the under-

lying QFT. For example they generically do not depend on D-term deformations. Naive

arguments leading to these kind of statements can however have important subtleties, as

in the case of the holomorphic anomaly equation of topological string theory at higher

genus [64, 22].

In addition a topological theory obtained by twisting an N = 2 superconformal theory has

vanishing central charge and is thus automatically conformal at the quantum level. In contrast

to physical string models the quantum consistency of the model therefore does not single

out a particular space-time dimension anymore. However for the special case of topological

non-linear σ-models on Calabi-Yau spaces the correlation functions are non-vanishing only

if the ghost number anomaly is cancelled [18, 19, 20] and this condition singles out the

5For pedagogical introductions to topological field and string theories see e.g. [35, 76, 78, 79, 81].
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complex dimensions three and four as particular interesting dimensions for target spaces of

the topological string.6

2.2.2. Deformations of topological theories

Deformations of topological theories can be constructed via the so-called descent procedure.

This procedure is analogous to the construction of marginal operators from chiral fields of

charge (q, q̄) = (1, 1) in the superconformal theory.7

By the topological twist some of the supercharges become scalars, while the others become

one-form operators. Now given a Q-closed operator φ(0) one can find one-form and two-form

operators φ(1) and φ(2) such that [20]8

0 = [Q,φ(0)], dφ(0) = {Q,φ(1)},

dφ(1) = [Q,φ(2)], dφ(2) = 0 .
(2.10)

These equations are called descent equations and can be formulated in any dimension. In-

tegrating φ(1) over a curve γ and φ(2) over the whole worldsheet Σ one can construct new

non-local topological observables by virtue of the descent equations (2.10). The second type

of operator with the appropriate U(1)-charges can be used to deform the action

S(t, t̄) = S0 + ti
∫

Σ
φ

(2)
i + t̄j̄

∫
Σ
φ̄

(2)

j̄
, (2.11)

where we included for convenience the deformations of the anti-topological theory obtained

by twisting for example the (a, a)-ring. The indices i, j̄ = 1, . . . , N run over all physical

operators with U(1)-charges (q, q̄) = (1, 1). The parameters (ti, t̄j̄) are local coordinates on

the deformation space M of the theory, which is called the moduli space.9

The deformations can be used to construct perturbed correlation functions. For example

the three-point correlator in the deformed theory can be written as

Cijk(t) = 〈φiφjφk exp

(
tn
∫

Σ
φ(2)
n

)
〉0 . (2.12)

Although this expression looks asymmetric with respect to its insertions it can be shown to

fulfill an integrability condition [77]

∂iCjkl = ∂jCikl (2.13)

6At least if the theory is coupled to worldsheet gravity and one considers also higher genus worldsheets [78].

For the ghost number anomaly without worldsheet gravity see also section 2.3.
7See e.g. [74].
8See also e.g. [76] for a pedagogical account.
9For non-linear σ-models on Calabi-Yau target spaces, in which we will be mainly interested in the following,

this deformation space is classically unobstructed and one therefore obtains a true classical moduli space,

see also section 2.4.1.
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and thus there exists at least locally a function F(t) such that

Cijk(t) = ∂i∂j∂kF(t) . (2.14)

The function F(t) is called the prepotential and can be considered as the generating function

of tree-level correlators of the topological field theory. The integrability condition furthermore

leads to the identity10

∂iηmn = ∂iC0mn = ∂0Cimn = 0 , (2.15)

which shows that in the flat TFT coordinates (ti, t̄j̄) in (2.11) the topological metric is locally

constant. In addition it follows from crossing-symmetry that the deformed chiral ring is

associative

CnijCnkl = CnikCnjl . (2.16)

These equations are called the WDVV-equations [82, 83] and they yield infinitely many condi-

tions on the expansion coefficients of the prepotential F(t) and therefore between the various

n-point correlation functions. For open topological strings there exist analogous conditions,

which lead to the very rich mathematical structure of A∞-categories [84, 85].

The above conditions (2.14)-(2.16) abstractly define what is called a Frobenius algebra

[86, 77]. This is a spaceM together with a vector bundle V, which is equipped with a locally

constant bilinear form η. Furthermore on each fiber there is an associative multiplication with

totally symmetric structure constants Cijk, which can be integrated to a generating function

F(t). From this viewpoint a two-dimensional topological field theory can be considered as a

particular representation of a Frobenius algebra [86, 77].

2.2.3. The vacuum bundle and tt∗-geometry

The physical operators of the twisted topological theory are in one-to-one correspondence to

the RR ground states of the original N = (2, 2) theory11 and furthermore by spectral flow

to the chiral primaries of the NSNS-sector. When considering deformations of the theory the

space of RR ground states, denoted by H(t), gets fibered over the moduli space M and one

obtains a bundle V of ground states

H ⊃ H(t) −→ V
↓
M

(2.17)

Here we denoted by H the full Hilbert-space of the superconformal theory in which, in view

of (2.9), the subspace H(t) sits. The bundle V is called the vacuum bundle of the theory and

10Note that φ0 denotes the identity operator.
11In this chapter we consider closed string theories with two copies of the N = 2 superconformal algebra.
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it can be written as a direct sum of sub-bundles Vq with definite U(1)-charges

V = ⊕qVq . (2.18)

There is an interesting catch in the above [87]. As one varies the parameters of the theory

the number of ground states is known to stay constant, however the chiral ring (2.7) changes

rather drastic, e.g. the structure constants Ckij(t) will depend on t. This means that the

variation of the ground states under a change of parameters should encode the structure of

the chiral ring. This turns out to be true and the dependence of the ground states on the

deformation parameters is captured by the so-called tt∗-equations [87, 35], which we describe

in the following.

For this let |̄i〉 denote the ground states of the anti-topological theory obtained from acting

with the anti-chiral fields φ̄ī on the canonical ground state |0〉. Using the topological and

anti-topological theory one can define the tt∗-metric [87]

gīj = 〈̄i|j〉 . (2.19)

The tt∗-metric induces a connection on the bundle V which is compatible with the natural

complex structure of M. There exists a basis, called the holomorphic or topological basis,

which makes this explicit. In this basis the connection Di = 11∂i −Ai is given by

(Ai)
a
b = gac̄∂igbc̄ , (Aī)

a
b = 0 . (2.20)

The structure constants Ci of the chiral ring and the tt∗-connection are related by the tt∗-

equations [87]

[Di, Dj ] = 0, [D̄ī, D̄j̄ ] = 0 ,

[Di, C̄j̄ ] = 0, [D̄ī, Cj ] = 0,

[Di, Cj ] = [Dj , Ci], [D̄ī, C̄j̄ ] = [D̄j̄ , C̄ī],

[Di, D̄j̄ ] = −[Ci, C̄j̄ ],

(2.21)

where [Di, D̄j̄ ] = ∂iĀj̄−∂j̄Ai−[Ai, Āj̄ ]. The tt∗-equations imply that the improved connection

∇i = Di − Ci is flat [87]

[∇i,∇j ] = [∇i,∇j̄ ] = [∇ī,∇j̄ ] = 0 . (2.22)

In a certain non-linear σ-model realization of the above structures, the so-called B-model

which we will consider in a moment, the improved connection can be given a geometrical

interpretation and is in this context known as the Gauss-Manin connection.

2.2.4. Geometry of the moduli space

There exists a preferred basis of sections of the bundle V which can be used to define a metric

on TM. For this one has to remember that the elements φa, for a = 1, . . . , N with U(1)
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charge qφa = 1, can be used to deform the theory. Thus these elements can be considered

as sections of TM. Denoting the operator which generates the canonical ground state of

charge zero by φ0 one can define a basis of the chiral (sub-)ring by taking the fields φ0 and

φa and furthermore their duals with respect to either the topological or the tt∗-metric.12 We

therefore obtain two distinct splits of the vacuum bundle. For the case of c = 9, corresponding

to Calabi-Yau three-fold, the vacuum bundle can be split for example in a non-holomorphic

way as

VC = L ⊕ (L ⊗ TM)⊕ (L ⊗ TM)∗ ⊕ L∗ , (2.23)

where the ground state is a section of the line bundle L and ∗ denotes the dual space. Using

instead the topological metric leads to a holomorphic split of the bundle and the basis elements

can be constructed by successive OPE-multiplication of the operators φ0, φa. Restricting the

tt∗-metric to the directions tangent toM one obtains the Zamolodchikov metric, denoted by

Gab̄ and given by

Gab̄ =
gab̄
g00̄

. (2.24)

Using the tt∗-equations one can furthermore show that [87]

Gab̄ = −∂a∂b̄ ln g00̄

and thus the Zamolodchikov metric is Kähler with Kähler potential given by K = − ln g00̄.

The tt∗-equations also imply a certain relation for the curvature of the metric Gab̄, see e.g.

[22, 35]

Rab̄c
d ≡ −∂̄b̄Γdac = Gcb̄δ

d
a +Gab̄δ

d
c − e2KCacnG

nn̄C̄b̄m̄n̄G
m̄d . (2.25)

This condition together with the Kähler property turn the manifoldM into a special Kähler

manifold and the geometry of such spaces is called special geometry [50, 22].

2.3. Non-linear σ-model realizations

The structure outlined above can be realized by a two-dimensional N = (2, 2) non-linear σ-

model with target space a Calabi-Yau manifold X of complex dimension d. It turns out that

there are two topological twists possible in this case, called the A- and B-twist respectively

[20].13 The qualitative features of the two theories differ rather drastically, however mirror

symmetry will connect the two theories on different Calabi-Yau manifolds, as will be discussed

in section 2.5.

12Here we will be only interested in situations where the chiral ring contains operators up to charge q = 4.
13Good introductions to the A- and B-model can be found in [22, 35, 88, 76, 78, 79].
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We start with a N = (2, 2) non-linear σ-model, defined on a two-dimensional worldsheet

Σ, with action

S =

∫
Σ
d2z gij̄∂zx

i∂z̄x̄
j̄ +

∫
Σ
x∗B + fermions . (2.26)

The fields xi are interpreted as local coordinates on the target space X and B denotes a

possible two-form B-field background to which closed strings can naturally be coupled. The

non-linear σ-model can be considered as a theory of maps from the worldsheet Σ to the target

space X

xi : Σ −→ X . (2.27)

From the general discussion above this theory comes with two finite rings, the (a, c) and the

(c, c) ring. The elements of the chiral rings of the non-linear σ-model have nice geometric

representatives in terms of the target space geometry. The supercharges act as differential

operators and thus their cohomology is isomorphic to geometric cohomology groups. One can

show that [19, 74]

(a, c) ∼
⊕
p,q

H0,q

∂̄
(X,ΛpT ∗M ) ∼

⊕
p,q

Hp,q

∂̄
(X) , (2.28)

(c, c) ∼
⊕
p,q

H0,q

∂̄
(X,ΛpTM ) ∼

⊕
p,q

Hd−p,q
∂̄

(X) , (2.29)

where the second isomorphism for the (c, c) ring follows by contraction with the unique (d, 0)-

form of the Calabi-Yau manifold. In the context of mirror symmetry we will mainly be

interested in the sub-ring of operators with equal left and right U(1)-charges.

The marginal deformations of the non-linear σ-model correspond to the geometrical de-

formations of the Ricci-flat Kähler metric of its target space. They fall into two classes:

Kähler deformations, whose infinitesimal generators are represented by elements of H1,1(X),

and complex structure deformations, which are given by elements of H1(TX) ' Hd−1,1(X).

Locally the moduli space of the non-linear σ-model therefore is a direct product of the Kähler

moduli space MK and the complex structure moduli space MCS of the target space Calabi-

Yau manifold

M =MK ×MCS . (2.30)

On the level of the N = (2, 2) superconformal algebra the topological twist can be imple-

mented by the following redefinitions of the energy-momentum tensor and the U(1)-current

T (z)→ T (z)± 1

2
∂J(z) ,

J(z)→ ±J(z) .
(2.31)
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An analogous redefinition is also made in the right-moving sector of the N = (2, 2) non-

linear σ-model.14 With these redefinitions the superconformal algebra becomes the conformal

topological algebra [89]

T (z) · T (w) ∼ 2T (w)

(z − w)2
+
∂wT (w)

(z − w)
, T (z) ·G(w) ∼ 2G(w)

(z − w)2
+
∂wG(w)

(z − w)
,

T (z) ·Q(w) ∼ Q(w)

(z − w)2
+
∂wQ(w)

(z − w)
, T (z) · J(w) ∼ − ĉ

(z − w)3
+

J(w)

(z − w)2
+
∂wJ(w)

(z − w)
,

J(z) ·G(w) ∼ − G(w)

(z − w)
, J(z) ·Q(w) ∼ Q(w)

(z − w)
, J(z) · J(w) ∼ ĉ

(z − w)2
,

Q(z) ·G(w) ∼ ĉ

(z − w)3
+

J(w)

(z − w)2
+

T (w)

(z − w)
,

(2.32)

where ĉ = c
3 and the quantities Q and G have the following mode expansions

G(z) =
∑
n

Gn z
−n−2, Q(z) =

∑
n

Qn z
−n−1 . (2.33)

There are two different topological twists possible, which differ by the relative sign chosen

for the left- and right-movers in the replacement (2.31) and by the states which become the

physical ones. This leads the following topological models [20]

A-model B-model

Physical states (a, c)-ring (c, c)-ring

Twist T → T − 1
2J T → T − 1

2J

T̄ → T̄ − 1
2 J̄ T̄ → T̄ + 1

2 J̄

(2.34)

The two different topological theories are called the A- and B-model respectively. Their

properties under deformations and the respective Q-invariant configurations, which contribute

to correlation functions, are different and we discuss them in turn.

2.3.1. The A-model

The sub-ring of equal U(1)-charges of the A-model is given by elements in Hp,p

∂̄
(X). The

marginal operators have representatives in H1,1(X) and can thus be considered as Kähler

deformations of the target space geometry. The A-model is however insensitive to deforma-

tions of the complex structure15 and in this sense its correlation functions produce topological

invariants of the target space geometry.

The condition for a correlation function 〈O(p1,q1)
1 O(p2,q2)

2 . . .O(pn,qn)
n 〉g of operators with

charges (pi, qi) to yield a non-vanishing result is given by the ghost number anomaly cance-

14By (0, 2)-deformations it is also possible to construct so-called half-twisted models [20, 5].
15The operators corresponding to complex structure deformations are Q-exact with respect to the Q-operator

of the A-model [20].
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lation condition [20, 35]16

∑
i

pi =
∑
i

qi = d(1− g) +

∫
X
x∗c1(X) . (2.35)

Here g denotes the genus of the closed worldsheet Σ. For a Calabi-Yau three-fold and g = 0

the most interesting correlators are thus the three-point functions of three marginal operators

with charge (p, p) = (1, 1).

The correlation functions localize to the Q-invariant configurations, which for the A-model

are given by holomorphic maps [20]

∂z̄x
i = 0 . (2.36)

The path-integral thus splits up into topological sectors, labeled by the class in H2(X) to

which the worldsheet is mapped. The three-point correlation functions can be written as

Cijk = 〈O(1,1)
i O(1,1)

j O(1,1)
k 〉0 =

∫
X
ωi ∧ ωj ∧ ωk +

∑
~d>0

N
0,~d

didjdk

∏h1,1

i=1 e
2πi tidi

1−
∏h1,1

i=1 e
2πi tidi

. (2.37)

Here di denotes the degree of the holomorphic map with respect to a basis of divisors Di

of the Calabi-Yau target space, where the Poincaré-dual basis of two-forms is denoted by

{ωi}i=1,...,h1,1(X) ⊂ H1,1(X). The complexified Kähler class can be decomposed as B + iJ =∑h1,1

i=1 t
iωi, where B denotes the two-form B-field background. The coefficients N

0,~d
are

called (closed string) Gromov-Witten invariants [20, 26, 27] and count the number of maps

of prescribed degree and homology-image from the worldsheet to the Calabi-Yau manifold.

These numbers are enumerative invariants of the target space geometry. The Gromov-Witten

invariants can physically be related to the counting of BPS-states coming from M2-branes,

wrapped around curves of the Calabi-Yau manifold, in a M-theory compactification down to

five dimensions and can be re-summed into integral enumerative invariants of the target space

geometry, called Gopakumar-Vafa invariants [28, 29].

The expression for the three-point correlator (2.37) has an intriguing geometrical interpre-

tation. The first term in (2.37), which comes from constant maps, computes the classical

triple intersection numbers #(Di ∩Dj ∩Dk) of the Poincaré-dual divisors Di. The Gromov-

Witten invariants then ”count” the number of rational maps of prescribed degree such that

three points are mapped to the divisors which are Poincaré-dual to the forms ωi in (2.37).

This leads schematically to

Cijk = 〈O(1,1)
i O(1,1)

j O(1,1)
k 〉0 = #(Di ∩Dj ∩Dk) + instanton corrections . (2.38)

One can interpret this as a stringy deformation of the classical geometrical notion of intersec-

tions of submanifolds by stringy worldsheet instanton corrections. This is an example of the

16This condition changes when coupling the theory to worldsheet gravity and accessing the higher genus sector,

i.e. for topological strings.
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fact that strings probe geometry different from point-particles. In mathematics terminology

the above is also known as quantum cohomology and can be given a precise mathematical

meaning [27, 90, 26].

The two-points functions ηij = 〈O(pi,qi)
i O(pj ,qj)

j 〉0 in contrast receive no non-trivial instanton

corrections and are in flat TFT coordinates given by classical constant intersection numbers

[20]. This follows also from the existence of a prepotential as in (2.15).

2.3.2. The B-model

The physical operators of the B-model of equal left and right U(1)-charges are given by

elements of Hd−p,p(X) and thus the marginal deformations are represented by elements of

H1
∂̄
(X,TX) ' Hd−1,1(X). These describe deformations of the complex structure of the

target space X and the theory is independent of Kähler deformations of the target space

metric.17 The topological metric in this case is given by wedging and integrating the form-

representatives of the operators over the whole Calabi-Yau manifold

ηij = 〈Q(pi,qi)
i Q(pj ,qj)

j 〉0 =

∫
X
α

(pi,qi)
i ∧ α(pj ,qj)

j , (2.39)

where α
(pi,qi)
i ∈ Hd−pi,qi(X) are the geometric representatives of the B-model operators

Q(pi,qi)
i . The ghost number anomaly cancellation condition is in this case given by [20]∑

i

pi =
∑
j

qj = d(1− g) (2.40)

and thus the interesting correlators are in the Calabi-Yau three-fold case with g = 0 again the

three-point functions of the marginal operators. In contrast to the A-model the Q-invariant

configurations of the B-model are given by constant maps [20]

∂zx
i = 0 = ∂z̄x

i . (2.41)

Therefore there are no non-trivial instanton contributions to correlation functions. The three-

point correlators are given by classical integrals on the target space geometry, e.g. for d = 3:

Cabc = 〈Q(1,1)
a Q(1,1)

b Q(1,1)
c 〉0 =

∫
X

Ω(3,0) ∧ (ωa ∧ ωb ∧ ωc,Ω(3,0)), a, b, c = 1, . . . , h2,1(X) .

(2.42)

Here ωa ∈ H1
∂̄
(X,TX) are the geometric representatives of the marginal operators Q(1,1)

a .

The mapping (., .) : Ω0,p(ΛqTX) → Ωd−q,p(X) is given in any dimension by contraction of

vector indices with the holomorphic (d, 0)-form Ω(d,0) of the Calabi-Yau manifold

(ω,Ω(d,0)) = Ω
(d,0)
i1,...,iq ,iq+1,...id

ω
i1,...,iq
j̄1,...j̄p

dxiq+1 ∧ · · · ∧ dxid ∧ dxj̄1 ∧ · · · ∧ dxj̄p , ω ∈ Ω0,p(ΛqTX) .

(2.43)

17The operators corresponding to Kähler-deformations are Q-exact with respect to the Q-operator of the

B-model [20].
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The classical integrals for the B-model three-point functions can be computed explicitly. This

is due to their relation to period integrals and the mathematical theory of variation of mixed

Hodge structure, which we describe in the following.

2.4. Variation of mixed Hodge structure and period integrals

In this section we are going to discuss how the B-model three-point functions can be expressed

in terms of period integrals on the Calabi-Yau manifold X in question. Furthermore we outline

how the periods can be computed by an application of the theory of variation of mixed Hodge

structure.

2.4.1. Complex structure deformations of Calabi-Yau manifolds

To express the B-model correlators in terms of period integrals we first review some aspects

of complex structure deformations of Calabi-Yau d-folds. Complex structure deformations

can be understood as deformations of the Dolbeault operator ∂̄ī on the Calabi-Yau manifold

∂̄′ī = ∂̄ī − ω
j
ī
(za) ∂j , ωj

ī
(0) = 0, for ω(za) ∈ H1(X,TX) ' H1

∂̄(TX) , (2.44)

where the za ∈ C, a = 1, . . . , hd−1,1 are local coordinates on the complex structure moduli

spaceMCS. The vector-valued forms ω ∈ H1(X,TX) ' TMCS can be considered as tangent

vectors to the moduli spaceMCS. The deformed Dolbeault operator should be nilpotent, e.g.

(∂̄′
ī
)2 = 0, and this leads to the Kodaira-Spencer equation18

∂̄[̄iω
k
j̄] = ωl[̄i∂lω

k
j̄], ωj

ī
(0) = 0 , (2.45)

which has to be satisfied by the deformations ωk
j̄
(z). In order to solve (2.45) one starts with

a formal power-series

ω(z) = ω(1)
a za + ω

(2)
ab zazb + . . . a = 1, . . . , hd−1,1 (2.46)

and solves the Kodaira-Spencer equation iteratively. A priori a generic first-order deformation

ω
(1)
a ∈ H1(X,TX) could be obstructed at higher orders in the deformation parameters za. For

the complex structure moduli space of Calabi-Yau manifolds this is not the case and every

first-order deformation ω
(1)
a ∈ H1(X,TX) can be integrated to a finite complex structure

deformation, as is the content of the Tian-Todorov lemma [91, 92]. Therefore the complex

structure moduli space of a Calabi-Yau manifold is itself a manifold and its complex dimension

is given by

dimC (MCS) = hd−1,1 . (2.47)

18See e.g. [22, 79] and references therein.
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For open strings this is generically not the case and open string deformations get obstructed

at higher orders in the deformation parameters [84], physically encoded in a superpotential

coupling. This will be the central topic of chapter 3.

Complex structure deformations can also be understood more explicitly by considering the

theory of variation of mixed Hodge structure to which we turn in the following.

Variation of mixed hodge structure

The structure of the vacuum bundle of the B-model ground states can be phrased in the

mathematical framework of variation of mixed Hodge structure [93, 94, 95, 96, 97, 98]. For

convenience we restrict the discussion to the case of d = 3, while the higher dimensional cases

can be treated similarly. The physical states of the B-model are in this case represented by

(3 − p, p)-forms. However the notion of (anti-) holomorphicity changes in H3(X) when the

background complex structure is changed. The vacuum (sub-) bundle V is in this case known

as the Hodge bundle H3 over the complex structure moduli space M =MCS with fiber

H3(X) =
3⊕
p=0

H3−p,p(X) . (2.48)

One can define a filtration Fp of holomorphic sub-bundles of H3(X) with fibers F p

H3(X) = F 0 ⊃ F 1 ⊃ F 2 ⊃ F 3 ⊃ F 4 = 0, F p =
⊕
q≥p

Hq,3−q(X) . (2.49)

Explicitly these spaces are given by

F 3 = H3,0(X) ,

F 2 = H3,0(X)⊕H2,1(X) ,

F 1 = H3,0(X)⊕H2,1(X)⊕H1,2(X) ,

F 0 = H3,0(X)⊕H2,1(X)⊕H1,2(X)⊕H0,3(X) .

(2.50)

As the fiber H3(X) ⊃ H3(X,Z) of the Hodge bundle is a topological group, which in particu-

lar admits a basis of integral sections which does not vary over the complex structure moduli

space, one obtains an up to monodromies flat connection on the Hodge bundle. This con-

nection is known as the Gauss-Manin connection ∇ and can be identified with the improved

tt∗-connection of the vacuum bundle. The flatness of the Gauss-Manin connection translates

into the following condition

[∇∂za ,∇∂zb ] = 0 , (2.51)

where za denotes as above local coordinates on the complex structure moduli space MCS.

Furthermore the Gauss-Manin connection fulfills Griffiths transversality

∇(Fp) ⊂ Fp−1 ⊗ T ∗M . (2.52)
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This property can be understood from the topological field theory viewpoint by noticing that

the multiplication of a charge one operator can be replaced by the action of the improved

connection in the topological path integral [22]

Q(1,1)
a · Q(p,p) → ∇∂za Q

(p,p) . (2.53)

More explicitly the action of the Gauss-Manin connection on the holomorphic (3, 0)-form is

given by

∇∂zaΩ(3,0) = (ωa,Ω
(3,0)) +maΩ

(3,0) ∈ F 2 = H2,1(X)⊕H3,0(X) , (2.54)

where the ma are possible moduli-dependent functions. Furthermore Griffiths transversality

together with a consideration of the involved Hodge types leads to the following identities19∫
X

Ω(3,0) ∧Ω(3,0) = 0,

∫
X

Ω(3,0) ∧∇∂zaΩ(3,0) = 0,

∫
X

Ω(3,0) ∧∇∂za∇∂zbΩ
(3,0) = 0 . (2.55)

This allows to rewrite the three-point functions of three marginal operators in the B-model

(2.42) in terms of derivatives of the holomorphic (3, 0)-form

Cabc =

∫
X
∇∂zaΩ(3,0) ∧∇∂zb∇∂zcΩ

(3,0) = −
∫
X

Ω(3,0) ∧∇∂za∇∂zb∇∂zcΩ
(3,0)

= −
∫
X

Ω(3,0) ∧ ∂za∂zb∂zcΩ
(3,0) ,

(2.56)

which follows upon differentiating (2.54). To proceed further one chooses an explicit parametriza-

tion of the complex structure moduli space, given by period integrals of the holomorphic

(3, 0)-form.

2.4.2. Period integrals

We first choose a symplectic basis20 of the homology group H3(X) given by closed cycles

(γ
(3)
A , γ

(3)
B ) for A,B = 0, 1, . . . , h2,1 such that the intersection pairing η of the cycles is given

by the symplectic form

η =

(
0 Ξh3

H×h3
H

−Ξh3
H×h3

H
0

)
, where (ΞN×N )ij := δi,(N+1−j), i, j = 1, . . . , N , (2.57)

and h3
H = h2,1(X)+1. One can form the so-called period vector with respect to this symplectic

basis as

Π(z) = (XA,FB) ≡

(∫
γ

(3)
A

Ω(3,0),

∫
γ

(3)
B

Ω(3,0)

)
. (2.58)

19For complex even dimensional Calabi-Yau manifolds the analogous identities lead to algebraic relations

between the periods to be defined below in (2.58). See e.g. [99, 100] for particular clear discussions in the

case d = 4.
20In d = 3 the middle dimensional (co)-homology is a symplectic vector space w.r.t. the topological metric.
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Since Ω(3,0) is only defined up to rescalings, the periods XA can be considered as projective

coordinates onMCS and parametrize the complex structure moduli space. The other periods

FB should therefore be expressible in terms of the coordinates XA. One defines the projective

prepotential F(XA) as

F(XA) =
1

2
XAFA , (2.59)

such that FA = ∂XAF . Near a point of maximal unipotent monodromy21 in the complex

structure moduli space, there are also inhomogeneous local coordinates called canonical co-

ordinates ta with a = 1, . . . , h2,1 on the moduli space [22]. They are given by

ta =
Xa

X0
. (2.60)

Transforming to canonical coordinates and using Griffiths transversality one finds the prepo-

tential F (ta) in flat coordinates

F(XA) = (X0)2 F (ta) . (2.61)

The period vector is expressed in terms of flat coordinates as

Π(t) = X0(1, ta, ∂taF, 2F − taFa) , (2.62)

where Fa = ∂taF . The three-point couplings can also be expressed in terms of flat coordinates,

leading to

Cabc =
∂3F

∂ta∂tb∂tc
, (2.63)

upon a canonical normalization Ω → Ω/X0. This means that once the periods (2.58) are

known in some symplectic basis and in some local coordinates one can calculate the three-

points functions in canonical coordinates up to a symplectic redefinition of the periods.

Also the Kähler potential on the moduli space MCS can be written in terms of the period

integrals

K = − log i

∫
X

Ω(3,0) ∧ Ω̄(0,3) = − log 2 Im
(
XAF̄Ā

)
. (2.64)

Using canonical coordinates this can be rewritten with the help of the intersection matrix η

in the following way

e−K = Π† · η ·Π, η =

(
0 Ξh3

H×h3
H

−Ξh3
H×h3

H
0

)
, (2.65)

or more explicitly

e−K = −X0X̄0

(
(ta − t̄a)(Fa − F̄a)− 2(F − F̄

)
) . (2.66)

21See also section 2.4.5.
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2.4.3. Picard-Fuchs equations

In some concrete models the period integrals (2.58) can be computed explicitly by direct

integration of the involved integrals [37, 101, 102, 103, 104]. However in general this is tech-

nically rather challenging. Alternatively one can use the variation of mixed Hodge structure

to compute the period integrals as the solutions to a set of differential operators, which are

called Picard-Fuchs operators. For this one notes that starting with the holomorphic (d, 0)-

form of a Calabi-Yau d-fold one can create a basis of Hd(X) by applying successive complex

structure deformations, i.e. ∇i∂zaΩ(d,0)(z) ∈ F d−i, by Griffiths transversality. This leads to

the following schematic diagram

Ω(d,0) ∇a−→ Ω(d−1,1) ∇a−→ · · · ∇a−→ Ω(0,d) . (2.67)

As the space Hd(X) is finite dimensional there should exist relations between derivatives at

different order. For example for the case of a single complex structure deformation hd−1,1 = 1,

the d+1-th derivative can be re-expressed in terms of the lower derivatives up to exact pieces,

leading to a differential equation of the form

∇d+1Ω(d,0) +

d∑
i=0

gi(z)∇iΩ(d,0) = dβ , (2.68)

for some β ∈ Ωd−1(X). The equations (2.68) are called Picard-Fuchs equations and they can

be used to compute the moduli dependence of the period integrals by integrating them over

a topological basis of closed cycles, such that the term on the right-hand side drops out.

The Picard-Fuchs equations are a manifestation of the flat structure of the Hodge bundle

over the moduli space. Choosing a basis of sections of the Hodge bundle given by

~ω = (Ω(d,0),∇Ω(d,0), . . . ,∇dΩ(d,0)) (2.69)

for the case of hd−1,1 = 1 the flatness of the Gauss-Manin connection translates into a matrix

differential equation

∇ · ~ω = (11(d+1)×(d+1)∂z −A(z)) · ~ω ∼ 0 , (2.70)

which holds up to exact terms. Choosing a topological basis of closed d-cycles γ
(d)
α ∈ Hd(X)

one can get rid of the exact terms in (2.70) by constructing the period matrix

Πα
β(za) =

∫
γ

(d)
α

~ωβ , α, β = 0, . . . , d , (2.71)

which fulfills the following differential equation

∇ ·Πα
β(z) = 0 . (2.72)

These are coupled first-order differential equations which can be traded for several higher-

order equations by eliminating the lower rows of the period matrix. These higher order
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differential operators are the Picard-Fuchs operators (2.68) and they are schematically given

by

La(zb, ∂zb) ·Π
α
0 (z) = La(zb, ∂zb) ·

∫
γ

(d)
α

Ω(d,0) = 0 , (2.73)

where the Πα = Πα
0 are the components of the period vector, e.g. (2.58) for d = 3. When

studying open/closed mirror symmetry in chapter 3 we will find similar open/closed Picard-

Fuchs operators for relative periods. The closed cycles are in this case replaced by open chains

and thus the exact terms of (2.70) will give important contributions.

2.4.4. Computation of Picard-Fuchs operators

For the concrete computation of Picard-Fuchs operators one needs an explicit realization of

the Calabi-Yau manifold and the unique holomorphic (d, 0)-form. In most cases the Calabi-

Yau manifold is given as the zero locus of some transversally intersecting polynomials in a

toric ambient space. In this situation the Picard-Fuchs equations can either be derived from

a residue expression of the holomorphic (d, 0)-form [97, 105, 106] or from a set of generalized

hypergeometric differential operators, which express the invariance of the forms on the Calabi-

Yau space under the torus actions of the toric ambient space [107, 108, 109, 110]. We will

describe both techniques shortly in the following.

Residue representation and Griffiths-Dwork reduction

For the ease of notation we consider the case of a Calabi-Yau d-fold X given as the zero locus

of a single homogeneous polynomial Pz of degree w0 =
∑

iwi in a weighted projective space

Pd+1
w1,...,wd+2

as in [111]. The canonical (d+ 1, 0)-form ∆ on the ambient space is given by

∆ =

d+2∑
i=1

(−1)i+1wixi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd+2 , (2.74)

where the hat denotes omission. It has been shown in [97] that a closed d-form Ξ(k) ∈ F d−k(X)

in the Hodge filtration on the Calabi-Yau manifold is given by the following residue integral

Ξ(k) = ResPz=0

(
q(x)

P k+1
z

∆

)
∈ F d−k(X) , (2.75)

for some homogeneous polynomial q(x) of degree w0k. The holomorphic (d, 0)-form for ex-

ample can be written as

Ω(d,0)(z) = ResPz=0

(
ρ(z)

Pz
∆

)
, (2.76)

for some moduli dependent holomorphic function ρ(z). Given homogeneous polynomials Ai

of degree w0(k − 1) + wi one obtains a (d− 1, 0)-form α(k) by

α(k) = ResPz=0

∑
i<j

(−1)i+j+1 (wixiAj − wjxjAi)
P kz

dx1 ∧ . . . d̂xi . . . d̂xj · · · ∧ dxd+2

 (2.77)
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and the exterior derivative is given by

dα(k) = ResPz=0

((∑
i

k
Ai∂iPz

P k+1
z

− ∂iAi
P kz

)
∆

)
. (2.78)

The above residue expressions can be used to compute the Picard-Fuchs operators by the

Griffiths-Dwork reduction procedure [112].22 By taking derivatives of (2.76) with respect to

the complex structure modulus z one spans the whole Hodge filtration
⊕

k F
d−k(X). By

(2.78) any numerator which lies in the Jacobian ideal C[x]/(∂iPz) can furthermore be traded

for a form of lower pole order up to an exact form. The form with lower pole is then an

element of F d+1−k(X). Iterating this procedure and using for convenience Gröbner basis

techniques one can eventually derive the relations between the complex structure variations

of the holomorphic (d, 0)-form and therefore the Picard-Fuchs equations (2.68).

Generalized hypergeometric systems

For complete intersection Calabi-Yau manifolds in toric ambient spaces the period integrals

can also be computed from a generalized hypergeometric system of differential operators,

called the GKZ-system [107, 108, 109, 110]. The usefulness of the GKZ-system stems from

the fact, that this set of differential operators can be extracted directly from the combinatorial

data which defines the toric ambient space. A short overview of toric geometry is contained

in Appendix A to which we again refer for further details and additional literature.

Let us first fix our notation: ∆ is a reflexive polyhedron in Rd+2 defined as the convex hull

of p integral vertices νi ⊂ Zd+2 ⊂ Rd+2 lying in a hyperplane of distance one to the origin.23

W = PΣ(∆) is the toric variety with fan Σ(∆) defined by the set of cones over the faces of ∆.

∆? is the dual polyhedron and W ∗ the toric variety obtained from Σ(∆?). We denote by Z

and Z∗ the toric hypersurfaces in the ambient spaces W , W ∗ respectively.

The p (relevant) integral points of ∆ determine the hypersurface Z∗ ⊂W ∗ as the vanishing

locus of the equation

P (Z∗) =

p−1∑
i=0

aiyi =
∑
νi∈∆

aiX
νi ,

where ai are complex parameters, yi are certain homogeneous coordinates [114] on W ∗, Xk,

k = 1, ..., (d+ 1) are inhomogeneous coordinates on an open torus (C∗)d+1 ⊂W ∗ and Xνi :=∏
kX

νi,k
k [109]. The integral points νi and the homogeneous coordinates yi fulfill hd−1,1(Z∗)

relations

p−1∑
i=0

lai νi = 0 ,

p−1∏
i=0

y
lai
i = 1 , a = 1, ..., hd−1,1(Z∗) . (2.79)

22See [111] for an account from the perspective of mirror symmetry.
23We use the standard convention, identify the interior point ν0 of ∆ with the origin, and specify the vertices

by (d+1) components νi,k, k = 1, ..., (d+1), i.e. ν0 = (0, 0, . . . , 0); see refs. [109, 108, 113] for more details.
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The p-dimensional integral vectors la specify the charges of the matter fields of the gauged

linear σ-model (GLSM) associated with the manifold Z [5].24 The index 0 refers to the special

field p of negative charge which enters linearly in the two-dimensional GLSM superpotential.

As discussed above we are interested in the period integrals of the holomorphic (d, 0)-form

Ω(d,0). The fundamental period integral on Z∗ can be defined as [107]

Π0(ai) =
1

(2πi)d+1

∫
|Xj |=1

1

P (Z∗)

d+1∏
k=1

dXk

Xk
. (2.80)

As noted in [107, 109], the period integral is annihilated by a system of differential operators

of the so-called GKZ hypergeometric type [115]

L(l) =
∏
li>0

(
∂

∂ai

)li
−
∏
li<0

(
∂

∂ai

)−li
, l ∈ K,

Zk =

p−1∑
i=0

νi,kϑi , k = 1, ..., 4; Z0 =

p−1∑
i=0

ϑi + 1 ,

(2.81)

where ϑi = ai∂ai and K denotes the set of integral linear combinations of the charge vectors la.

The differential equations L(l) Π0(ai) = 0 follow straightforwardly from the definition (2.80).

The equations Zk Π0(ai) = 0 express the invariance of the period integral under the torus

actions and imply that the periods depend, up to normalization, only on special combinations

of the parameters ai, Π0(ai) ∼ Π0(za), where

za = (−)l
a
0

∏
i

a
lai
i (2.82)

define hd−1,1(Z∗) local coordinates on the complex structure moduli space of Z∗ [108]. One has

to note that the GKZ-operators might not immediately lead to the Picard-Fuchs operators.

However by appropriate factorization the GKZ-system can often be reduced to the Picard-

Fuchs system [108, 110].

The solutions to the GKZ-equations (2.81) can be obtained via the Frobenius method.25

For this one first rewrites (2.81) in terms of the coordinates (2.82)

L(l) =

l0∏
k=1

(θ0 − k)
∏
li>0

li−1∏
k=0

(θi − k)− (−1)l0za

−l0∏
k=1

(θ0 − k)
∏
li<0

−li−1∏
k=0

(θi − k) , (2.83)

where θ = za∂za . The solutions of (2.83) for an appropriate choice of vectors l can then be

obtained from the following generating function

B{la}(za; ρa) =
∑

n1,...,nN∈Z+
0

Γ (1−
∑

a l
a
0(na + ρa))∏

i>0 Γ (1 +
∑

a l
a
i (na + ρa))

∏
a

zna+ρa
a , (2.84)

24See Appendix A for a brief account.
25See e.g. [108].
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by taking multi-derivatives with respect to the formal parameters ρa and evaluating at ρa = 0.

Linear combinations of these solutions capture the moduli dependence of the period integrals

in (2.58).

2.4.5. Global properties of the complex structure moduli space

As motivated above linear combinations of the solutions of the Picard-Fuchs equations yield

the geometric period integrals. However the particular linear combinations are not fixed

as the Picard-Fuchs equations are linear differential equations. To pin down the geometric

and in particular integral linear combinations of the periods one can make use of the global

properties of the complex structure moduli space. This is possible as the period integrals are

sections of a bundle over the complex structure moduli space. Analyzing the monodromies

around boundary divisors of MCS and demanding global consistency of the transformation

behavior of the period sections restricts the possible linear combinations. Looping around a

boundary point z∗ ∈MCS the period vector transforms as

Π(z) −→M(z∗) ·Π(z), M ∈ Spη(h
d
H(X),Z) , (2.85)

where hdH(X) denotes the dimension of the primary horizontal subspace

Hd
H(X) ⊆

⊕
p

Hd−p,p(X) ,

consisting of elements which can be reached by complex structure variations of elements of

Hd,0(X). The group Spη(h
d
H(X),Z) consists of all matrices, which leave the intersection

form η invariant. For a Calabi-Yau three-fold η is given by the symplectic form in flat

coordinates and for a suitable normalization. The integrality condition in (2.85) stems from

charge quantization.

The above is in the same spirit as the techniques used in the geometric solution of N = 2

SU(2) SYM-theory by Seiberg and Witten [7, 6]. In this situation the moduli space is given

by the u-plane of the scalar vev of the N = 2 vector-multiplet scalars. The periods of an

auxiliary torus, which is fibered over the u-plane, capture the quantum corrected scalar vevs,

coupling constants and the fully instanton corrected prepotential. Using the behavior of the

periods at the monopole, dyon and weak coupling points together with a positivity condition

leads to a particular linear combination of torus periods which yields the physical quantities.

The Seiberg-Witten setup can be embedded into string theory and actually be mapped to

the complex structure moduli space of a type IIB compactification [50, 38, 39, 25]. Therefore

this situation is literally captured by the discussion in this section.

We sketch the argument in the following for the case of a Calabi-Yau d-fold X with a single

complex structure deformation z and refer to the explicit examples at the end of this chapter

for more details. Models with more than one complex structure deformation can be handled

in a similar way, but turn out to be technically more challenging [116, 117]. Generically the
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MCS

z∞

z0

z1

Figure 2.1.: Schematic picture of the generic complex structure moduli space of a Calabi-Yau

manifold with a single complex structure deformation.

complex structure moduli space of a Calabi-Yau manifold with a single complex structure

modulus is upon compactification topologically equivalent to a P1 with three special branch

points26:

• Point of maximal unipotent monodromy z∞:

Such a point will be mirror symmetric to a large volume point in the mirror A-model

geometry and is therefore a natural base point for mirror symmetry constructions. A

point of maximal unipotent monodromy is characterized by the condition [111]

(11hdH×hdH
−M∞)d+1 = 0, (11hdH×hdH

−M∞)n 6= 0, n < d+ 1 , (2.86)

on the monodromy M∞ around z∞.

• Principal discriminant27 point z1:

At a principle discriminant point the manifold develops a special type of ’singularity’.

The nature of such a point depends on the particular form and dimension of the Calabi-

Yau manifold under consideration. In the explicit example of the mirror sextic three-fold

in section 2.6.1 and generically for Calabi-Yau three-folds the manifold develops at this

locus a true geometrical conifold singularity and this can be traced to the vanishing of

a 3-cycle of topology S3 [118, 37]. The monodromy M1 around such a conifold point

is for three-folds generically of infinite order. However for higher-dimensional Calabi-

Yau manifolds with d > 3 the principal discriminant needs not to be related to a true

26Details on the determination of the branch points for models which have an description in terms of a gauged

linear σ-model can be found in Appendix A.
27For higher dimensional moduli spaces, e.g. hd−1,1(X) > 1, the principal discriminant is generically of

complex co-dimension one.
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conifold singularity. In particular in the example of the sextic Calabi-Yau four-fold in

section 2.6.2, we observe a principle discriminant monodromy of order two, which does

not seem to be related to a vanishing cycle.

• Landau-Ginzburg point z0:

At a Landau-Ginzburg point the compactification can be described by a Landau-Ginzburg

orbifold model, which generically has a discrete quantum symmetry Zk. The periods

have to respect this symmetry and therefore the monodromy M0 around z0 is of finite

order k

Mk
0 = 11hdH×hdH

. (2.87)

The global consistency of the moduli space and the absence of further branch points leads to

the following relation between the monodromy matrices [37]28

M−1
∞ ·M1 ·M0 = 11hdH×hdH

. (2.88)

Typically one has given the solutions to the Picard-Fuchs equations as a Taylor-series with

finite radius of convergence around one of the boundary points and obtains therefore a vector

of solutions ω̄. This vector should be related to the geometric integral period vector Π by a

(non-integral) change of basis B

Π = B · ω̄ . (2.89)

To relate the Taylor-series solutions around one point to the solutions around the other

boundary points one has to resort to analytic continuation techniques. It is a non-trivial

statement that the analytic continuation of one series can be expressed as a linear-combination

of solutions around another point and is a consequence of the well-defined global structure of

the deformation problem under consideration. For the case of hypersurfaces in toric varieties

the Taylor-series are of hypergeometric type and can be analytically continued with the help

of Barnes type integrals, as is shown in the explicit examples of section 2.6.

By demanding integrality of the obtained analytic continuation matrices one can then

eventually fix the change of basis B and obtain the geometric integral period integrals.

2.5. Mirror symmetry

The properties of the topological A- and B-models are very different, as summarized in Table

2.1. While for example the correlation functions of one theory receive an infinite tower of

worldsheet instanton corrections the other theory receives no such corrections. It is remarkable

28This relation depends on a choice of base-point and on the direction in which the boundary points are

encircled. It can also be obtained from the Zariski–van Kampen theorem, see e.g. [119, 117].
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A-model B-model

Topological states (p = q) Hp,p

∂̄
(X) Hd−p,p

∂̄
(X)

Marginal deformations H1,1

∂̄
(X) Hd−1,1

∂̄
(X)

Geometrical deformations Kähler deformations complex structure deformations

Moduli Space MKähler MCS

Q-invariant configurations ∂z̄x
i = 0 (hol. curves) ∂zx

i = ∂z̄x
i = 0 (points)

Topological D-branes (special) Lagrangian submanifolds holomorphic submanifolds

(real d-dim.) (even dim.)

+ flat bundles + holomorphic bundles

Table 2.1.: Comparison of the topological A- and B-models on a Calabi-Yau d-fold X. The

topological D-branes are discussed in section 3.1.

that nonetheless both theories become equivalent upon compactification on mirror symmetric

Calabi-Yau manifolds.

That such a relation exists can be seen from the perturbative string worldsheet point of view

by a Z2 redefinition of the U(1)-currents J̄ → −J̄ of the topological conformal algebra (2.34),

which exchanges the A- and B-twists [21]. This simple symmetry has drastic consequences

on the target spaces the theories live on, as we will discuss momentarily.

Mirror symmetry can be extended to the full physical type II theories compactified on

mirror symmetric Calabi-Yau three-folds. In its most general form the mirror conjecture then

states that given a compactification of type IIA string theory on a Calabi-Yau three-fold Z

there exists a mirror dual compactification of IIB string theory on a Calabi-Yau three-fold Z∗

such that the effective physics in the lower dimensions stays the same.29 The mirror duality

includes not only the operator content and the perturbative correlators, but also the moduli

spaces of both theories and the non-perturbative D-branes states [44].

The equivalence between the topological models on the mirror symmetric Calabi-Yau man-

ifolds leads therefore to the following prediction on their respective topology

Hp,p
V (Z) ' Hd−p,p

H (Z∗) , (2.90)

where HV (Z) denotes the primary vertical subspace of
⊕

pH
p,p(Z) obtained by wedging the

forms in H1,1(Z) and HH(Z∗) is the primary horizontal subspace of
⊕

pH
d−p,p(Z∗) spanned

by the complex structure deformations of the elements in Hd,0(Z∗). This already shows that

mirror symmetry acts highly non-trivial on the target space geometry.

Mirror symmetry respects string perturbation theory30 and therefore it predicts a relation

29This should at least be true, if the moduli space of the compactification contains a Gepner point.
30See e.g. [114] for a worldsheet derivation of closed string mirror symmetry for models which can be described

by a gauged linear σ-model.
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between the generating functions of correlation functions on a closed worldsheet with genus

g, which is schematically given by

F
(g)
A (t) ←→ F

(g)
B (z) . (2.91)

For the case g = 0 one in particular recovers the prepotential

FA(t) ' FB(z(t)) . (2.92)

Here we collectively denoted by t the Kähler-moduli of the A-model and by z the complex

structure moduli of the B-model. As discussed the left-hand side of (2.92) receives a whole

tower of worldsheet instanton corrections, whereas the right-hand side can be computed by

classical integrals on the target space geometry. To make use of the relation (2.92) one has

to find the explicit mappings z(t) between the moduli of both models. These mappings are

called mirror maps and we will outline how they can be determined in the following.

Flat coordinates and mirror maps

In order to find an explicit isomorphism between Hp,p
V (Z) and Hd−p,p

H (Z∗) one can make use

of the flat structure of the chiral ring of the underlying topological field theories [20, 75, 22,

107].31 This isomorphism gives in particular a mapping between the tangent spaces of the

respective moduli spaces. The classical moduli space of the A-model is a linear space, given

by the Kähler cone

MK =

{∑
i

taωa : Im ta ≥ 0, a = 1, . . . , h1,1(Z)

}
, (2.93)

where {ωa}a=1,...,h1,1(Z) is a basis of H1,1(Z), such that the Kähler volumes of all submanifolds

are positive. There is a natural basis for the A-model operators32 O(p)
kp

near a large volume

point mA ∈MK , generated by wedging the basis elements ωa. For this we denote by Da the

Poincaré-dual basis of H2d−2(Z). The basis is then given by

O(0) = 1, O(1)
a = ωa, O(2)

b2
= (E

(2)
b2

)ab ωaωb . . . O(d) = (E(d))b1...bdωb1 . . . ωbd , (2.94)

where the form and the number dp of the coefficient matrices E
(p)
bp

, p = 0, . . . , d, bp = 1, . . . , dp

is fixed by the classical intersection properties of the homology basis spanned by the Da. This

basis has the following properties33

O(1)
a · O

(p)
b = (C(p))cab O(p+1)

c , η(O(p)
a ,O(q)

b ) = δp+q,d η
(p)
ab , O(1)

a · O(d) = 0 , (2.95)

where η
(p)
ab denotes the classical intersections of the respective Poincaré-dual cycles.

31See also [99] for a particular clear discussion in the case d = 4.
32We abbreviate here O(p,p)

kp
≡ O(p)

kp
.

33In these equations the indices a, b, c are to be understood as running over all the dp Operators of charge p

respectively.
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A mirror symmetric basis of the B-model operators Q(p)
bp

should reproduce the properties

of the above A-model basis. The moduli space of the B-model is a curved manifold and

therefore the mirror isomorphism will require a choice of base-point around which suitable

flat coordinates can be constructed to match the properties of the linear A-model moduli

space. The crucial step of [75] in finding a suitable base-point and constructing a basis is to

replace the OPE-action of a marginal operator by the action of the unprojected Gauss-Manin

connection on the B-model operators

O(1)
a · O

(p)
bp
−→ ∇aQ(p)

bp
. (2.96)

Here the directional derivative is specified in terms of marginal operators Q(1)
a corresponding

to deformations parametrized by the coordinates ta of the A-model. The properties of the

chiral ring of the topological field theory enforces the following non-trivial relation [22]

Q(1)
a · Q

(p)
bp

= ∂taQ(p)
bp

!
= (C(p)

a )
cp+1

bp
(t)Q(p+1)

cp+1
, (2.97)

where C
(p)
a are the chiral ring coefficients and the operators Q(p)

bp
have definite U(1)-charge,

e.g. Hodge-degree. This means that in flat coordinates one can replace an operator product

with a marginal operator by a derivative with respect to the flat coordinate in the topological

path integral [22]. The Gauss-Manin connection in general coordinates za centered near a

point mB ∈MCS has the following schematic form

∇a = 11hdH×hdH
∂za − Γa(z)− Ca(z), Ca(z) =


0 11 0 0 0 . . .

0 0 C
(1)
a (z) 0 0 . . .

0 0 0 C
(2)
a (z) 0 . . .

0 0 0 0 C
(3)
a (z) . . .

. . . . . .

 .

(2.98)

In order to implement the flat structure of the chiral ring one therefore has to find a suitable

change of coordinates t(z) and possibly moduli-dependent normalizations of the operators

such that the transformed Gauss-Manin connection becomes upper triangular, e.g. Γ′a(t) = 0.

The suitable basis and coordinate changes can be found by row-manipulations on the period

matrix (2.71), which include addition of rows and multiplication with moduli dependent

holomorphic functions [75, 107]. As the A-model is invariant under an integral shift of the

B-field, e.g. t → t + 1 [111, 75], a suitable basepoint mB for the identification with the

A-model is given by a point of maximal unipotent monodromy [37, 111, 75, 107]. This is a

boundary point of the complex structure moduli space around which the topological cycles

have non-trivial monodromies. Specifically near a point of maximal unipotent monodromy

one finds the following schematic leading behavior of the periods (for hd−1,1(Z∗) = 1) [37, 111]∫
γk

Ω(z) = S0(z)
(log z)k

(2πi)k
+ . . . , k = 0, . . . , d (2.99)



2.6 Examples of closed string mirror symmetry 43

and S0(z) =
∫
γ0

Ω(z) = single− valued.

The flat TFT structure leads then near a point of unipotent maximal monodromy to the

condition that the flat coordinates ta are given by ratios of periods [75]

ta(z) =

∫
γa

Ω(d,0)(z)∫
γ0

Ω(d,0)(z)
(2.100)

and this brings the period matrix into the form

(Πα
β)(ta) =


1 ∗ ∗ ∗ . . .

0 11d1×d1 ∗ ∗ . . .

0 0 11d2×d2 ∗ . . .

0 0 0 11d3×d3 . . .

. . .

 , α, β = 1, . . . , hdH . (2.101)

The leading behavior of the periods near a point of maximal unipotent monodromy given

in (2.99) then singles out the ratio of the period with linear logarithmic behavior as the

candidate for the mirror map near this point. One has to note that the above construction

can also be carried out around other points and therefore yields candidates for mirror maps

around any point in the closed string moduli space [107].

In the following examples we are going to show how these structures are implemented in

explicit examples.

2.6. Examples of closed string mirror symmetry

The aim of this section is to give explicit examples the above general considerations. Both

models which we are going to study have already been discussed to great extent in the

literature. The sextic Calabi-Yau three-fold was analyzed in [120, 121] along the lines of [37],

and in [107], whereas results for the sextic Calabi-Yau four-fold were obtained in [75, 122, 123].

For details on the techniques from toric geometry, which are used in the following, especially

the construction of the mirror manifolds, we refer again to Appendix A.

2.6.1. The Calabi-Yau three-fold X
(1,1,1,1,2)
6

As a first example we consider the Calabi-Yau three-fold X
(1,1,1,1,2)
6 , which is given by the

generic degree six hypersurface in weighted projective space P4
(1,1,1,1,2). The ambient space

for the A-model geometry is specified by the vertices in Table 2.2.34

One has to note that the weighted projective space P4
(1,1,1,1,2) has singular points, however

as a generic hypersurface misses single points, one does not have to smooth out the ambient

34Here and in the following we adopt the convention that all vertices are to be understood as lying in an affine

hyperplane in one dimension higher, e.g. the true vertices are ν̂i = (1, ν̃i), see e.g. [108].
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∆ ν̃0 = ( 0 0 0 0 )

ν̃1 = ( 1 0 0 0 )

ν̃2 = ( 0 1 0 0 )

ν̃3 = ( 0 0 1 0 )

ν̃4 = ( −1 −1 −1 −2 )

ν̃5 = ( 0 0 0 1 )

,

∆∗ ν0 = ( 0 0 0 0 )

ν1 = ( 5 −1 −1 −1 )

ν2 = ( −1 5 −1 −1 )

ν3 = ( −1 −1 5 −1 )

ν4 = ( −1 −1 −1 −1 )

ν5 = ( −1 −1 −1 2 )

Table 2.2.: Vertices ∆ of the toric ambient geometry of the hypersurface X
(1,1,1,1,2)
6 .

geometry in this case. Triangulating35 ∆ leads to two phases:

1. Orbifold phase: In this phase the cones of the fan are given by

{〈ν̃1, ν̃2, ν̃3, ν̃4, ν̃5〉} . (2.102)

One obtains a Landau-Ginzburg orbifold model with orbifold group Z6 and superpo-

tential given by the generic hypersurface constraint.

2. Large volume phase: The cones of the fan in this phase are given by

{〈ν̃0, ν̃1, ν̃2, ν̃3, ν̃4〉, 〈ν̃0, ν̃1, ν̃2, ν̃3, ν̃5〉, 〈ν̃0, ν̃1, ν̃2, ν̃4, ν̃5〉, 〈ν̃0, ν̃1, ν̃3, ν̃4, ν̃5〉, 〈ν̃0, ν̃2, ν̃3, ν̃4, ν̃5〉} .
(2.103)

Computing the Mori-cone leads to the following charge vector

0 1 2 3 4 5

l −6 1 1 1 1 2
(2.104)

and the topological data is given by

c(Z) = 1 + 14K2 − 68K3, K3 = 3, χ(X) = −204,
c2 ·K

24
=

7

4
. (2.105)

The Kähler form is expressed as J = tK, where K denotes the hyperplane class. The

non-vanishing Hodge numbers can be computed to

h0,0 = 1 = h3,0, h1,1 = 1, h2,1 = 103 . (2.106)

We next describe the geometry, which is mirror to the above specified A-model geometry.

The mirror model

The mirror model can be constructed by the Batyrev-Borisov construction [109, 126], see

also Appendix A. The hypersurface constraint for the mirror model is given in terms of

homogeneous coordinates on P4
(1,1,1,1,2)/(Z

2
6 × Z3) by

P (Z∗) = x6
1 + x6

2 + x6
3 + x6

4 + x3
5 − 6ψ x1x2x3x4x5 , (2.107)

35These and the following calculations of topological data were performed with the help of existing computer

code [124, 125].
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together with an appropriate Greene-Plesser orbifold Z2
6×Z3 action, which acts by xi → λ

gk,i
k xi

for λ6
1,2 = λ3

3 = 1 and weights

Z6 : g1 = (1,−1, 0, 0, 0), Z6 : g2 = (1, 0,−1, 0, 0), Z3 : g3 = (1, 0, 0, 0,−1) . (2.108)

The Picard-Fuchs operators can be computed from the general formula (2.83) and are given

by

L(l) = θ4 − 9z(6θ + 1)(6θ + 2)(6θ + 4)(6θ + 5) , (2.109)

where z = (6ψ)−6 and we factorized the degree six GKZ-operator to a degree four operator.36

Using the explicit form of the Picard-Fuchs operator one can recover the Gauss-Manin con-

nection expressed in the coordinate z. Choosing a basis Ωz = (Ω(z), ∂zΩ(z), ∂2
zΩ(z), ∂3

zΩ(z))T

the Gauss-Manin connection is given by

∇zΩ = (114×4∂z −G(z)) Ω , (2.110)

where

G(z) =


0 1 0 0

0 0 1 0

0 0 0 1

− 360
z3(11664z−1)

1−55080z
z3(11664z−1)

7z−167508z2

z3(11664z−1)
6z2−93312z3

z3(11664z−1)

 . (2.111)

The solutions to the Picard-Fuchs equations (2.109) can be found by using the generating

function (2.84), which specializes in this case to

B{l}(z; ρ) =
∑
n≥0

Γ(1 + 6n+ 6ρ) zn+ρ

Γ(1 + n+ ρ)4 Γ(1 + 2n+ 2ρ)
(2.112)

and leads to a basis of solutions ω̄ near the point z = 0 given by ω̄k = 1
(2πi)k

∂kρB{l}(z; ρ)|ρ=0

for k = 0, . . . , 3

ω̄(z) =


1

log(z)
2πi

log(z)2

(2πi)2 − 7
6

log(z)3

(2πi)3 − 7i log z
4π − 51iζ(3)

π3

+O(z) . (2.113)

This basis has the following monodromy around the point z = 0 of maximal unipotent mon-

odromy

ω̄(e−2πiz) = M̃∞ · ω̄(z), M̃∞ =


1 0 0 0

−1 1 0 0

1 −2 1 0

−1 3 −3 1

 . (2.114)

36This form is expected from the Stanley-Reisner ideal of the mirror manifold Z and the form of the classical

mirror map [110].
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To fix the particular linear combinations, which correspond to the integral periods we compare

the large volume basis with a basis near the orbifold point ψ = 0. In order to carry this out

we represent the solutions to (2.109) near the orbifold point as

ωorb
j (ψ) = ψj 4F3

 j
6
,
j

6
,
j

6
,
j

6
;

︷ ︸︸ ︷
j + 2

6
,
j + 3

6
,
j + 5

6
,
j + 6

6
; 4ψ6

 , j = 1, 2, 4, 5 , (2.115)

where the overbrace means, that the coefficient which is equal to one is left out. The functions

ωorb
j can be represented by a Barnes type integral37 as

ωorb
j (ψ) = −ajψj

∮
C+

Γ(s+ j
6)4Γ(−s)(−1)sΓ(s+ 1) (4ψ6)s

Γ(s+ j+2
6 )Γ(s+ j+3

6 )Γ(s+ j+5
6 )Γ(s+ j+6

6 )
ds , (2.116)

where C+ is a closed contour which picks the poles at s = n for n ≥ 0 and makes the integrand

to vanish exponentially fast at infinity. The coefficients aj are given by

aj =
Γ( j+2

6 )Γ( j+3
6 )Γ( j+5

6 )Γ( j+6
6 )

Γ( j6)4
. (2.117)

In order to analytically continue we close the contour to the left along a path C− to obtain

− ajψj
∮
C−

Γ(s+ j
6)4Γ(−s)(−1)sΓ(s+ 1) (4ψ6)s

Γ(s+ j+2
6 )Γ(s+ j+3

6 )Γ(s+ j+5
6 )Γ(s+ j+6

6 )
ds , (2.118)

and pick the poles at s = −n − j
6 for n ≥ 0 and j = 1, 2, 4, 5. The result can be matched to

the large volume basis ω̄. This leads to an analytic continuation matrix m of the form

ω̄(z) = m · ωorb(ψ(z)), m =



−1296(
√

3+i)π
Γ(− 1

6)
4
Γ( 2

3)

9 3√−2
√

3Γ( 7
6)

π3/2Γ( 2
3)

6−6i
√

3

Γ( 1
3)

3 − 36(
√

3−i)π
Γ( 1

6)
4
Γ( 1

3)

− 2iπ

Γ( 2
3)Γ( 5

6)
4

9i 3√2Γ( 7
6)

π3/2Γ( 2
3)

− 4i
√

3

Γ( 1
3)

3
72iπ

Γ( 1
6)

4
Γ( 1

3)

− 7776
√

3π

Γ(− 1
3)Γ(− 1

6)
4 − 2

Γ( 2
3)

3 − 4

Γ( 1
3)

3
72
√

3π

Γ( 1
6)

4
Γ( 1

3)
12960iπ

Γ(− 1
6)

4
Γ( 2

3)
− 2i

√
3

Γ( 2
3)

3
4i
√

3

Γ( 1
3)

3
540iπ

Γ(− 2
3)Γ( 1

6)
4


.

(2.119)

The action of the Z6-orbifold action with α6 = 1 on the solutions ωorb is given by

ωorb(αψ) = M̃orb
0 · ωorb(ψ), M̃orb

0 = diag(α, α2, α4, α5) . (2.120)

Therefore the orbifold monodromy acts on the large volume solutions as

ω̄(αψ) = M̃0 · ω̄(ψ), M̃0 = m · M̃orb
0 ·m−1 . (2.121)

The basis of solutions ω̄ should now be related to the integral periods by a linear transforma-

tion

Π(z) = B · ω̄(z) . (2.122)

37See e.g. [37].
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This change of basis can be fixed up to a symplectic transformation by demanding integrality

of the symplectic38 monodromy matrices M0, M∞ and M1 = M∞ ·M−1
0 with respect to the

new basis. Under the coordinate change the monodromy matrices transform as M̃a →Ma =

B · M̃a · B−1, where a ∈ {0, 1,∞}. This leads to the following monodromy matrices in the

integral basis

M∞ =


1 0 0 0

−1 1 0 0

3 −3 1 0

4 0 1 1

 , M0 =


−3 0 −1 −1

−1 1 0 0

3 −3 1 0

4 0 1 1

 , M1 =


1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1


(2.123)

and the basis change is fixed to

B =


1 0 0 0

0 1 0 0

0 −3
2

3
2 0

0 −7
2 0 −1

2

 . (2.124)

Using the mirror map t(z) given by

2πi t(z) =
ω̄1(z)

ω̄0(z)
= log(z) +O(z) , (2.125)

this translates into the following integral period vector in flat coordinates

Π(t)

ω̄0(t)
=


1

t

Ft

F0

 =


1

t
3t2

2 −
3t
2 −

7
4

− t3

2 −
7t
4 + 51iζ(3)

2π3

+O(te2πit, e2πit) . (2.126)

on which the monodromies act as (2.123). This period vector fulfills the integrability condition

F0 = 2F − tFt. Using the mirror map one can find the following limit for ψ → 0

B + iJ = t(z(ψ))
ψ→0−→ −1

2
− i
√

3

6
, (2.127)

which gives the expected behaviour of a half-integral B-field at the orbifold point noted in

[37, 127]. Now one can compute the instanton corrected three-point correlators, as in [121, 120]

Cttt = ∂2
t Ft = 3 +

∑
n≥1

N(n)n3 qn

1− qn
, q = e2πit , (2.128)

38The symplectic form is given by η =

(
0 Ξ2×2

−Ξ2×2 0

)
, where Ξ2×2 was defined in (2.57), and a symplectic

matrix A fulfills AT · η ·A = η. The matrices M̃a, a ∈ {0, 1,∞} are not symplectic.
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where the first few N(n) are given by

n 1 2 3 4 5

N(n) 7884 6028452 11900417220 34600752005688 124595034333130080
(2.129)

The above result can also be obtained by bringing the connection matrix (2.110) into upper

triangular form. For this one chooses a new basis

Ω′t =

(
Ω(z(t)

S0(z(t)
, ∂t

Ω(z(t)

S0(z(t)
, C(z(t))−1∂2

t

Ω(z(t)

S0(z(t)
, ∂t

(
C(z(t))−1∂2

t

Ω(z(t)

S0(z(t)

))T
(2.130)

under which the connection matrix transforms as

G′(t) = ∂tA(t) ·A(t) +A(t) ·G(z(t)) ·A(t)−1 , (2.131)

where

Ω′t(t) = A(t) ·Ωz(z(t)) . (2.132)

The condition that G′(t) should be upper triangular leads to differential equations which can

be solved for z(t), C(t) and S0(t). This leads to

G′(t) =


0 1 0 0

0 0 C(q) 0

0 0 0 1

0 0 0 0

 , (2.133)

where

S0(q) = 1 + 360q + 1247400q2 + 6861254400q3 + . . . , (2.134)

z(q) = q − 2772q2 + 1980126q3 − 4010268048q4 + . . . , (2.135)

C(q) = c
(
3 + 7884q + 48235500q2 + 321311272824q3 . . .

)
. (2.136)

By comparison to (2.128) the coefficient c ∈ R is fixed to c = 1 .

Near the conifold

This model exhibits a conifold singularity at z = 6−43−2. The form of the conifold monodromy

M1 in (2.123) hints at the fact that there is a vanishing cycle associated to this point. To

make this more explicit we study the Picard-Fuchs system near the conifold point. In the

coordinate ∆ = 1− 6432z a complete system of solutions near ∆ = 0 can be constructed as

ωcon
0 = 1 +

5∆3

1944
+

3485∆4

839808
+

614113∆5

120932352
+O

(
∆6
)
,

ωcon
1 = ∆− 67∆3

216
− 13513∆4

31104
− 10953457∆5

22394880
+O

(
∆6
)
,

ωcon
2 = ∆2 +

265∆3

216
+

118753∆4

93312
+

84727369∆5

67184640
+O

(
∆6
)
,

ωcon
3 =

(ωcon
1 + 49

72ω
con
2 )

2πi
log ∆− 6677∆3

93312
− 9551897∆4

80621568
− 2673939853∆5

18139852800
+O

(
∆6
)
.

(2.137)
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This set of solutions exhibits around the point ∆ = 0 a monodromy of the form

ωcon
i (e2πi∆) = (M̂1)ij ω

con
j (∆), M̂1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 1 49
72 1

 . (2.138)

By a Lefschetz argument [128] the period ωcon
3 gives the integral of the holomorphic (3, 0)-

form over a vanishing S3 at ∆ = 0. The basis of solutions near the conifold (2.137) should

be related to the large volume basis Π(t) (2.126) by analytic continuation. The form of the

conifold monodromies (2.123),(2.138) restricts the form of the associated analytic continuation

matrix to

Πi = m̂ij · ωcon
j , m̂ =


b11 b12 b13

72
49b43

b21 b22 b23 0

b31 b32 b33 0

0 72
49b43 b43 0

 . (2.139)

Furthermore the coefficients bij 6= 0 can be fixed numerically and are given by

m̂ ≈


1.06 −0.0212 −0.00918 0.276i

1.50i 0.152i 0.0781i 0

−5.09− 2.25i −0.710− 0.228i −0.393− 0.117i 0

0 0.276i 0.188i 0

 . (2.140)

This shows that the period F0 vanishes as ∆ → 0. This is in accord with the expectations

from the SYZ-picture of mirror symmetry [36].

2.6.2. The Calabi-Yau four-fold X
(1,1,1,1,1,1)
6

The second example is the Calabi-Yau four-fold X
(1,1,1,1,1,1)
6 , which is given by a generic degree

six hypersurface in P5. The toric ambient space for the A-model geometry is specified by the

vertices in Table 2.3. Triangulating ∆ leads to two phases:

1. Orbifold phase: In this phase the cones of the fan are given by

{〈ν̃1, ν̃2, ν̃3, ν̃4, ν̃5, ν̃6〉} . (2.141)

One obtains a Landau-Ginzburg orbifold model with orbifold group Z6 and superpo-

tential given by the generic hypersurface constraint.

2. Large volume phase: The cones of the fan in this phase are given by

{〈ν̃0, ν̃1, ν̃2, ν̃3, ν̃4, ν̃5〉, 〈ν̃0, ν̃1, ν̃2, ν̃3, ν̃4, ν̃6〉, 〈ν̃0, ν̃1, ν̃2, ν̃3, ν̃5, ν̃6〉,

〈ν̃0, ν̃1, ν̃2, ν̃4, ν̃5, ν̃6〉, 〈ν̃0, ν̃1, ν̃3, ν̃4, ν̃5, ν̃6〉, 〈ν̃0, ν̃2, ν̃3, ν̃4, ν̃5, ν̃6〉} .
(2.142)
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∆ ν̃0 = ( 0 0 0 0 0 )

ν̃1 = ( 1 0 0 0 0 )

ν̃2 = ( 0 1 0 0 0 )

ν̃3 = ( 0 0 1 0 0 )

ν̃4 = ( 0 0 0 1 0 )

ν̃5 = ( −1 −1 −1 −1 −1 )

ν̃6 = ( 0 0 0 0 1 )

,

∆∗ ν0 = ( 0 0 0 0 0 )

ν1 = ( 5 −1 −1 −1 −1 )

ν2 = ( −1 5 −1 −1 −1 )

ν3 = ( −1 −1 5 −1 −1 )

ν4 = ( −1 −1 −1 5 −1 )

ν5 = ( −1 −1 −1 −1 5 )

ν6 = ( −1 −1 −1 −1 −1 )

Table 2.3.: Vertices ∆ of the toric ambient geometry of the hypersurface X
(1,1,1,1,1,1)
6 .

Computing the Mori-cone leads to the following charge vector

0 1 2 3 4 5 6

l −6 1 1 1 1 1 1
(2.143)

and the topological data is given by

c(Z) = 1 + 15K2 − 70K3 + 435K4, K4 = 6, χ(X) = 2610 , (2.144)

where the Kähler form is J = tK, with K the hyperplane class. The non-vanishing

Hodge numbers are computed to

h0,0 = 1 = h4,0, h1,1 = 1, h3,1 = 426, h2,2 = 1752 . (2.145)

We proceed by discussing the mirror B-model geometry.

The mirror model

The mirror model can again be constructed by the Batyrev-Borisov method [109, 126]. The

hypersurface constraint for the mirror model is given in terms of homogeneous coordinates

on P5/Z4
6 by

P (Z∗) = x6
1 + x6

2 + x6
3 + x6

4 + x6
5 + x6

6 − 6ψ x1x2x3x4x5x6 (2.146)

and an appropriate Greene-Plesser orbifold Z4
6 action, which acts by xi → λ

gk,i
k xi for λ6

k = 1

and weights

Z6 : g1 = (1,−1, 0, 0, 0, 0), Z6 : g2 = (1, 0,−1, 0, 0, 0),

Z6 : g3 = (1, 0, 0,−1, 0, 0), Z6 : g4 = (1, 0, 0, 0,−1, 0) .
(2.147)

The Picard-Fuchs operators can be computed from the general formula (2.83) and are given

by

L(l) = θ5 − 6z(6θ + 1)(6θ + 2)(6θ + 3)(6θ + 4)(6θ + 5) , (2.148)
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where z = (6ψ)−6 and we factorized the degree six GKZ-operator to a degree five opera-

tor.39 Using the explicit form of the Picard-Fuchs operator one can recover the Gauss-Manin

connection expressed in the coordinate z. Choosing a basis

Ωz = (Ω(z), ∂zΩ(z), ∂2
zΩ(z), ∂3

zΩ(z), ∂4
zΩ(z))T (2.149)

the Gauss-Manin connection is given by

∇zΩ = (115×5∂z −G(z)) Ω , (2.150)

where

G(z) =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

− 720
z4(46656z−1)

1−331920z
z4(46656z−1)

15z−1895400z2

z4(46656z−1)
25z2−1976400z3

z4(46656z−1)
10z3−583200z4

z4(46656z−1)

(2.151)

The solutions to the Picard-Fuchs equations (2.148) can be found by using the generating

function (2.84), which specializes in this case to

B{l}(z; ρ) =
∑
n≥0

Γ(1 + 6n+ 6ρ) zn+ρ

Γ(1 + n+ ρ)6
, (2.152)

and leads to a basis of solutions ω̄ near the point z = 0 given by ω̄k = 1
(2πi)k

∂kρB{l}(z; ρ)|ρ=0

for k = 0, . . . , 4

ω̄ =



1
log(z)

2πi
log2(z)
(2πi)2 − 5

4
log3(z)
(2πi)3 + 15i log(z)

8π − 105iζ(3)
2π3

log4(z)
(2πi)4 + 15 log2(z)

8π2 − 105ζ(3) log(z)
π4 + 161

16


+O(z) . (2.153)

This basis has the following monodromy around the point z = 0 of maximal unipotent mon-

odromy

ω̄(e−2πiz) = M̃∞ · ω̄(z), M̃∞ =


1 0 0 0 0

−1 1 0 0 0

1 −2 1 0 0

−1 3 −3 1 0

1 −4 6 −4 1

 . (2.154)

39This form is expected from the Stanley-Reisner ideal of the mirror manifold Z and the form of the classical

mirror map [110].
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To fix the particular linear combinations which correspond to the integral periods we compare

the large volume basis with a basis near the orbifold point ψ = 0. We again represent the

solutions of (2.148) near the orbifold point in terms of hypergeometric functions as

ωorb
j (ψ) = ψj 5F4

 j
6
,
j

6
,
j

6
,
j

6
,
j

6
;

︷ ︸︸ ︷
j + 1

6
,
j + 2

6
,
j + 3

6
,
j + 4

6
,
j + 5

6
;ψ6

 , j = 1, . . . , 5 ,

(2.155)

where the overbrace means, that the coefficient which is equal to one is left out. The functions

ωorb
j can be represented by a Barnes type integral as

ωorb
j (ψ) = −ajψj

∮
C+

Γ(s+ j
6)5Γ(−s)(−1)sΓ(s+ 1) (4ψ6)s

Γ(s+ j+1
6 )Γ(s+ j+2

6 )Γ(s+ j+3
6 )Γ(s+ j+4

6 )Γ(s+ j+5
6 )

ds , (2.156)

where C+ is a closed contour which picks the poles at s = n for n ≥ 0 and makes the integrand

to vanish exponentially fast at infinity. The coefficients aj are given by

aj =
Γ( j+1

6 )Γ( j+2
6 )Γ( j+3

6 )Γ( j+4
6 )Γ( j+5

6 )

Γ( j6)5
. (2.157)

In order to analytically continue we close the contour to the left along a path C− to obtain

− ajψj
∮
C−

Γ(s+ j
6)5Γ(−s)(−1)sΓ(s+ 1) (4ψ6)s

Γ(s+ j+1
6 )Γ(s+ j+2

6 )Γ(s+ j+3
6 )Γ(s+ j+4

6 )Γ(s+ j+5
6 )

ds , (2.158)

and pick the poles at s = −n − j
6 for n ≥ 0 and j = 1, . . . , 5. The result can be matched to

the large volume basis ω̄. This leads to an analytic continuation matrix m of the form40

ω̄(z) = m · ωorb(ψ(z)) . (2.159)

The action of the Z6-orbifold action with α6 = 1 on the solutions ωorb is given by

ωorb(αψ) = M̃orb
0 · ωorb(ψ), M̃orb

0 = diag(α, α2, α3, α4, α5) . (2.160)

Therefore the orbifold monodromy acts on the large volume solutions as

ω̄(αψ) = M̃0 · ω̄(ψ), M̃0 = m · M̃orb
0 ·m−1 . (2.161)

The basis of solutions ω̄ should be related to the integral periods by a linear transformation

Π(z) = B · ω̄(z) . (2.162)

This change of basis can be fixed, up to a transformation which leaves the intersection form

invariant, by demanding integrality of the monodromy matrices M0, M∞ and M1 = M∞ ·M−1
0

40The matrix m is a very complicated constant matrix, therefore we refrain from displaying its explicit form.
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with respect to the new basis.41 Under the coordinate change the monodromy matrices

transform as M̃a → Ma = B · M̃a · B−1, where a ∈ {0, 1,∞}. This leads to the following

monodromy matrices in the integral basis (2.166)42

M∞ =


1 0 0 0 0

1 1 0 0 0

6 6 1 0 0

7 3 1 1 0

−4 −4 0 −1 1

 , M0 =


−4 −4 0 −1 1

1 1 0 0 0

6 6 1 0 0

7 3 1 1 0

1 0 0 0 0

 , M1 =


0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0


(2.163)

and the basis change is fixed to

B =


1 0 0 0 0

0 −1 0 0 0

0 −3 3 0 0

0 −9
2

3
2 −1 0

−1 0 −15
4 0 −1

4

 . (2.164)

Using the mirror map t(z) given by

− 2πi t(z) =
ω̄1(z)

ω̄0(z)
= log(z) +O(z) , (2.165)

this translates into the following integral period vector in flat coordinates

Π(t)

ω̄0(t)
=


1

t

F (2)

Ft

F0

 =


1

t

3t2 + 3t− 15
4

t3 + 3t2

2 + 3t
4 + 105iζ(3)

2π3 − 15
8

− t4

4 −
15t2

8 −
105itζ(3)

2π3 + 3375ζ(4)
32π4

+O
(
te2πit, e2πit

)
, (2.166)

on which the monodromies act as (2.163). The linear combinations of integral periods can

also be fixed universally from an open string picture [129]. For the case at hand this leads for

F0(t) =
∑4

n=0 ant
n to (see also [123] and Appendix B)43

a4 = − 1

4!
K3, a2 = −c2 ·K2

48
, a1 =

c3 ·K
(2πi)3

ζ(3), a0 =
5c2

2

2(2πi)4
ζ(4) . (2.167)

41In addition the monodromy matrices should leave invariant the form η =

 0 0 Ξ2×2

0 − 1
6

0

Ξ2×2 0 0

, where Ξ2×2

was defined in (2.57), e.g. fulfill MT ·η ·M = η. The matrices M̃a, a ∈ {0, 1,∞} do not fulfill this condition.
42The orders of the monodromies are consistent with a direct analysis of the residues of the Gauss-Manin

connection as in [111, 116].
43Note that the term proportional to ζ(3) is not fixed by this argument. Also in this case the coefficient a3 is

identically zero.
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The above results can alternatively also be obtained from the techniques presented in [129],

as is shown in Appendix C.

Using its explicit form one can in addition find the following limit for the mirror map near

the orbifold point ψ → 0

B + iJ = t(z(ψ))
ψ→0−→ −1

2
− i
√

3

3
, (2.168)

which shows the same behaviour as in the three-fold case [37]. Furthermore one can compute

the instanton corrected three-point correlator as [75]44

Cttt = ∂2
t F

(2) = 6 +
∑
n≥1

N(n)n2 qn

1− qn
, q = e2πit , (2.169)

where the first few N(n) are given by

n 1 2 3 4 5

N(n) 60480 440884080 6255156277440 117715791990353760 2591176156368821985600

(2.170)

This reproduces the results of [75, 122]. The above can also be obtained by bringing the

connection matrix (2.150) into upper triangular form. For this one chooses a new basis

Ω′t =



Ω(t)
S0(t)

∂t
Ω(t)
S0(t)

(C(1)(t))−1∂2
t

Ω(t)
S0(t)

(C(2)(t))−1∂t

(
(C(1)(t))−1∂2

t
Ω(t)
S0(t)

)
∂t

(
(C(2)(t))−1∂t

(
(C(1)(t))−1∂2

t
Ω(t)
S0(t)

))


(2.171)

under which the connection matrix transforms as

G′(t) = ∂tA(t) ·A(t) +A(t) ·G(z(t)) ·A(t)−1 , (2.172)

where

Ω′t(t) = A(t) ·Ωz(z(t)) . (2.173)

The condition that G′(t) should be upper triangular leads to differential equations which can

be solved for the unknown functions z(t), C(1)(t), C(2)(t) and S0(t). This leads to

G′(t) =


0 1 0 0 0

0 0 C(1)(q) 0 0

0 0 0 C(2)(q) 0

0 0 0 0 1

0 0 0 0 0

 , (2.174)

44This correlator is given by Cttt = 〈O(1) · O(1) · O(2)〉. In this case there is a single operator of charge two

and therefore this is the only three-point coupling. See [75, 99] for a discussion of the general case. Note

also the modified multi-cover prescription as opposed to the three-fold situation [75, 122].
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where

S0(q) = 1 + 720q + 7484400q2 + 137225088000q3 + . . . , (2.175)

z(q) = q − 6264q2 − 8627796q3 − 237290958144q4 + . . . , (2.176)

C(1)(q) = c1

(
6 + 60480q + 1763596800q2 + . . .

)
, (2.177)

C(2)(q) = c2

(
6 + 60480q + 1763596800q2 + . . .

)
. (2.178)

By comparison to (2.169) the coefficients c1, c2 ∈ R are fixed to c1 = −1
6 and c2 = 1.

Near the point z = 6−6

The moduli space of this model has a principal discriminant boundary point at z = 6−6. The

form of the monodromy matrix M1 in (2.163) shows that the monodromy has order two and

exchanges the periods 1 and F0. To gain more insight we study the Picard-Fuchs system near

this point. In the coordinate ∆ = 1− 66z a complete system of solutions near ∆ = 0 can be

constructed as

ωcon
0 = 1− ∆4

3888
− 269∆5

489888
− 194101∆6

238085568
+O

(
∆7
)
,

ωcon
1 = ∆ +

1981∆4

19440
+

70187∆5

349920
+

47942173∆6

170061120
+O

(
∆7
)
,

ωcon
2 = ∆2 − 41∆4

48
− 57503∆5

38880
− 36510907∆6

18895680
+O

(
∆7
)
,

ωcon
3 = ∆3 +

125∆4

72
+

1451∆5

648
+

16287101∆6

6298560
+O

(
∆7
)
,

ωcon
4 = ∆3/2 +

17∆5/2

18
+

551∆7/2

648
+

1210999∆9/2

1574640
+O

(
∆11/2

)
.

(2.179)

This set of solutions exhibits a monodromy around the point ∆ = 0 of the form

ωcon
i (e2πi∆) = (M̂1)ij ω

con
j (∆), M̂1 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −1

 . (2.180)

By a Lefschetz argument [128] this form of the monodromy matrix would imply that there

is either a linear combination of cycles vanishing or there is no vanishing cycle at all at

∆ = 0 and therefore no geometric singularity. The basis of solutions near the conifold (2.179)

should again be related to the large volume basis Π(t) (2.166) by analytic continuation. The

form of the conifold monodromies (2.180),(2.163) restricts the form of the associated analytic
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continuation matrix to

Πi = m̂ij · ωcon
j , m̂ =



b51 b52 b53 b54
1√
3π2

b21 b22 b23 b24 0

b31 b32 b33 b34 0

b41 b42 b43 b44 0

b51 b52 b53 b54 − 1√
3π2


. (2.181)

The coefficients bij 6= 0 can be fixed numerically and are given by

m̂ ≈


1.02 −0.0516 −0.0577 −0.0524 0.0584

−1.72i −0.155i −0.0787i −0.0527i 0.+ i0.

−12.54− 5.15i −1.63− 0.47i −0.891− 0.236i −0.619− 0.158i 0.+ i0.

−6.27 + 5.74i −0.82 + 1.30i −0.446 + 0.772i −0.310 + 0.561i 0.+ i0.

1.02 −0.0516 −0.0576 −0.0523 −0.0586

 . (2.182)

This indicates that there are no vanishing cycles associated to the locus ∆ = 0 in this

case. This is in contrast to the generic principal discriminant in three-fold case. It would be

interesting to understand this type of boundary point better.
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In this chapter, which is based on the original publications [1, 2, 3], we turn to the study of

open string mirror symmetry on compact Calabi-Yau manifolds. By Hodge-theoretic methods,

first described in [46, 47] for the case of non-compact Calabi-Yau manifolds, we are able

to compute the fully disc instanton corrected superpotential induced by certain parameter

dependent families of D-branes in type II and F-theory compactifications on compact Calabi-

Yau manifolds. For this we start with a geometric Gauss-Manin connection for B-type branes

and study their integrability and flatness conditions in sections 3.3 and 3.5. Relations to CFT

correlators are pointed out in section 3.6. The B-model geometry defines an interesting ring

structure of operators. For the mirror A-model this indicates the existence of an open-string

extension of the so-called A-model connection, whereas the discovered ring structure should

be part of the open-string A-model quantum cohomology.

In section 3.4 we give a derivation of the Picard-Fuchs operators, which annihilate the

relative periods associated to a particular off-shell deformation problem. For the case of

toric branes we describe how to do explicit and efficient computations by constructing a

gauged linear σ-model for an open/closed dual Calabi-Yau four-fold in section 3.7. These

techniques allow one to deduce a canonical hypergeometric system, whose solutions determine

the open/closed mirror maps and the partition functions for spheres and discs. In section 3.8

we furthermore discuss the lift of the brane compactifications to F-theory on compact Calabi-
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Yau four-folds and the effective couplings in the effective supergravity action as determined

by the N = 1 special geometry of the open/closed deformation space. We start by reviewing

certain aspects of topological D-branes.

3.1. Topological D-branes

Up to now the discussion was mainly concerned with worldsheets without boundaries. There

are various reasons why the inclusion of boundaries is very important. From a space-time

point of view for example one would like to break part of the supersymmetries the background

preserves. This can be achieved by adding supersymmetric D-branes to the compactification,

which can break the N = 2 space-time supersymmtry to N = 1 in d = 4. From the space-

time perspective a D-brane can be wrapped around a non-trivial cycle in space-time and has

a physical theory living on top of it, describing its excitations. For the case of supersymmetric

D-branes these theories are given by supersymmetric Yang-Mills theories. As is well-known

the low-energy excitations of a D-brane are described by the excitations of open strings ending

on the D-brane [8]. Thus in order to describe these kind of compactifications from a worldsheet

perspective one has to include boundaries.

By analyzing the conditions for unbroken supersymmetry/topological symmetry either from

the space-time [130] or the string worldsheet perspective [131] it turns out that there are two

different types of topological D-branes.1

3.1.1. A-branes

Physical A-branes wrap special Lagrangian (sL) cycles of the compactification manifold

[130, 131]. For a Calabi-Yau d-fold Lagrangian submanifolds are real d-dimensional cycles

L such that the pull-back of the Kähler class J vanishes on L. This is the main condition2

on a topological A-brane, which corresponds to a boundary condition on the string world-

sheet which is compatible with the topological twist of the A-model. Therefore Lagrangian

submanifolds are the topological branes of the A-model [51]. To qualify furthermore as a

special Lagrangian and thus a physical A-brane the restriction of the holomorphic (d, 0)-form

Ω should in addition be proportional to the induced volume form on L:

J |L = 0, Ω|L = eiθ vol, F (A) = 0 , (3.1)

where on top of the Lagrangian sits a flat vector bundle E with gauge potential A and F (A)

denotes the curvature form of the connection A. The physical open string states of the theory

can be represented by elements of the following sheaf-cohomology groups

{open string states} '
3⊕

n=0

Hn(L,End(E)) , (3.2)

1A good introduction to topological A- and B-type branes is given in [88].
2In addition a topological A-brane should have a trivial Maslov class, see e.g. [88] for an account.
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where n denotes the ghost number.3 Strictly speaking the above geometrical notions are only

valid in large volume regimes of a compactification. More general A-branes are more appro-

priately modeled by objects in a category, called the Fukaya category, where the morphisms

are given by the open string states, which stretch between the branes.4

The deformations of a sL-cycle are given by Hamiltonian deformations and Wilson line

moduli of the flat bundle on L [132, 133]. These marginal deformations are represented by

elements inH1(L,Z) and thus the moduli space of a sL-cycle has dimension dimCML = b1(L).

The size of a deformation can naturally be measured by integrating the Kähler form over a

disc D with ∂D = S1 ⊂ L and pairing it up with the Wilson line of the gauge field A around

the S1 into a complex parameter, similar as in the closed string case

t̂ =

∫
∂D

A+ i

∫
D
J . (3.3)

These open string parameters get in general corrections from closed string worldsheet in-

stantons. The instanton corrected open string parameters together with their closed string

counterparts are the natural flat coordinates on the open/closed deformation space of the

A-model. We are going to show in certain examples in chapter 4, how the closed string in-

stanton corrections to the open string parameters can in some cases be computed explicitly

by an application of off-shell mirror symmetry.

From a space-time perspective there exists a functional fR on the space of submanifolds,

whose critical points are given by the Lagrangian submanifolds. This functional is a variant

of the real Chern-Simons functional and for d = 3 given by [35]

fR(L) =

∫ L

L0

(FA + J)2 (3.4)

where the integration is over a four-chain connecting L to a homologous three-cycle L0. The

connection A on the four-chain is such that A|L0 = A0 and A|L = A for some fixed A0 on L0.

Ooguri-Vafa invariants and quantum geometry

As in the closed string case the open string A-model disc correlators receive worldsheet in-

stanton corrections [51, 134, 135], which in this case come from worldsheets whose topology

is that of a disc and which end on the Lagrangian A-brane L inside the Calabi-Yau Z under

consideration. The topological path integral for the generating function of disc correlators

splits into instanton contributions from different topological sectors

F
(0,1)
A (t, t̂) = p

(2)
cl (t, t̂) +

∑
ni,n̂j≥0

N{ni,n̂j} Li2(

h1,1(Z)∏
i=1

e2πi nit
i
r∏
j=1

e2πi n̂j t̂
j
) , (3.5)

3The ghost number is subtle to define in the open string A-model as it is subjected to an anomaly. The

cancellation condition is that the Maslov class of the Lagrangian should vanish, see e.g. [88] for a discussion.
4See [88] for a more detailed account.
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where p
(2)
cl (t, t̂) denotes a possible classical polynomial contribution quadratic in the moduli

and r is the total number of open string deformation parameters. The integers ni, n̂j denote

the degrees of images of the disc worldsheet in H2(Z,L) with respect to an arbitrary basis

{Ci, Dj} such that ∂Dj ⊂ L. The parameters ti, t̂j measure the (complexified) classical

volume of the fundamental spheres and discs respectively as in (3.3)

ti =

∫
Ci

B + iJ, t̂j =

∫
∂Dj

A+ i

∫
Dj

J , (3.6)

where B denotes the NSNS two-form B-field, which naturally couples to the closed string

worldsheet. Remarkably the coefficients N{ni,n̂j} are integers and define enumerative invari-

ants of the open/closed target space geometry. They are called Ooguri-Vafa invariants and can

be related to the counting of BPS-states in five dimensions coming from M2-branes which end

on M5-branes [52, 136]. They are the open string analogs of the Gopakumar-Vafa invariants

[28, 29], which count M2-brane states.

The classical polynomial contribution in (3.5) derives from point-like worldsheet instantons

and can in principle be given a meaning in terms of classical intersections of appropriate cycles.

In the closed string case the analog of (3.5) can be interpreted as a stringy deformation of

the classical wedge product of forms. This structure is called quantum cohomology and it

shows that strings probe geometry very different from point particles. The geometry derived

from the study of string propagation in manifolds is called quantum geometry and leads in

the A-model to a foamy picture of space-time [137]. Up to now no proper generalization of

the notion of quantum geometry to the open string case has been given, however this notion

is expected to incorporate a stringy deformation of a certain classical intersection theory, yet

to be defined.

3.1.2. B-branes

B-type branes wrap holomorphic submanifolds Y of the compactification space X, together

with a holomorphic bundle on top of them [130, 131]. Therefore they can correspond to

physical D(2p)-branes p = 0, 1, 2, 3. The proper mathematical framework to describe the

lower dimensional B-branes and bound-states of branes of various dimensions is given by the

bounded derived category of coherent sheaves [45]. By the Calabi-Yau – Landau-Ginzburg

correspondence the category of B-branes can alternatively also be characterized by the cate-

gory of matrix factorizations [138, 139].5 The physical open string states in the B-model are

furthermore described by Ext-groups [141], as is briefly discussed in section 3.6.

On general grounds, as in the closed string case, the B-model amplitudes are expected

to be computable by classical integrals on the target space geometry Z∗, which we take as

a Calabi-Yau three-fold. It is known [51] that the generating function of disc correlation

5See [140] for an overview.
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functions for a B-brane which wraps the whole Calabi-Yau manifold Z∗ is computed by the

holomorphic Chern-Simons functional

F
(0,1)
B = ShCS =

∫
Z∗

Ω ∧ Tr

(
A ∧ ∂̄A+

2

3
A ∧A ∧A

)
, (3.7)

where Ω denotes the nowhere-vanishing holomorphic (3, 0)-form on Z∗ and A is the anti-

holomorphic part of the gauge connection. For lower dimensional branes one can find similar

expressions by dimensional reduction [51, 142, 143, 144]. For a B-brane wrapping a divisor

D inside the Calabi-Yau this leads for example to

ShCS|D =

∫
D

Tr (iφΩ ∧ F ) , (3.8)

where F = dA is the field-strength on the brane and φ is a section of the normal bundle ND|Z∗

of i : D ↪→ Z∗. The holomorphic Chern-Simons functional can locally also be rewritten as a

geometrical chain integral [145]

ShCS|D(z, ẑ) =

∫
γ(ẑ)

Ω(z) , (3.9)

where γ is a three-chain in Z∗ such that ∂γ = C ⊂ D and the curve C is the Poincaré-dual

of F in the divisor D. The critical points of (3.8) are given by flux which satisfies F (0,2) = 0

and therefore correspond to holomorphic curves. With trivial flux F = 0 the infinitesimal

geometrical deformations of the brane wrapped on D, which preserve supersymmetry, can

be represented by holomorphic deformations of the divisor D and are given by elements of

H0(D,ND|Z∗) ' H2,0(D), where the isomorphism follows upon contraction with the unique

(3, 0)-form of the Calabi-Yau manifold.

The representation (3.9) of the holomorphic Chern-Simons action as a geometrical chain

integral will be of prime interest for us in the following.

3.1.3. Effective couplings for N = 1 compactifications

The addition of branes and fluxes into a Calabi-Yau compactification changes the low-energy

effective action, which is obtained in the remaining four-dimensional non-compact space-time.

Such a compactification leads to an effective N = 1 supergravity theory in four dimensions

coupled to various gauge fields, whose two-derivative part is specified by the gauge kinetic

function f(φ), the Kähler potential K(φ, φ̄) and the holomorphic superpotential W(φ). Here

φ denotes collectively the chiral superfields, which describe some of the moduli of the com-

pactification in the N = 1 supergravity theory. The superpotential W(φ), in which we will

be mainly interested in the following, encodes the obstructions of the deformations described

by the fields φ and has a ’closed string’ part coming from fluxes and an ’open string’ part

induced by D-branes

WN=1(z, ẑ) =Wflux(z) +Wbrane(z, ẑ) , (3.10)
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where we denoted by z/ẑ collectively the closed/open moduli respectively. Explicit computa-

tions of the superpotential couplings turn out to be possible as these quantities are known to

be related to topological string amplitudes. More generally the topological string computes

the following F-terms in the effective supergravity theory [23, 22, 52]

Ssugra ⊃
∫
d4x

∫
d2θ F (g,h)(φ)(W2)g(W · v)h−1 , (3.11)

where g denotes the genus of the worldsheet, h the number of boundaries and W the gravi-

photon multiplet. The superpotential is therefore captured by the topological disc amplitude

[23, 22, 52, 51]. As discussed above, depending on whether one considers the type IIA or

IIB compactification one has to consider either the topological A-model or B-model and the

quantum corrections and properties of the topological disc amplitudes are very different in

nature. Nonetheless mirror symmetry is expected to identify the D-brane states and open

string correlation functions of the two topological models upon compactification on mirror

symmetric manifolds [44].

3.2. Off-shell mirror symmetry

In view of the successes for closed strings it is natural to contemplate about an open string

version of mirror symmetry [44], which in particular relates the generating functions of the

A- and B-model worldsheet correlators on a general worldsheet of genus g with h holes

schematically as

F
(g,h)
A (t, t̂) ←→ F

(g,h)
B (z, ẑ) . (3.12)

This seems also natural from the mathematical viewpoint of the homological mirror symmetry

conjecture [45]. The Fukaya category of A-branes is notoriously hard to describe and it would

be desirable to obtain an explicit description in terms of the more manageable bounded

derived category of coherent sheaves or equivalently the category of matrix factorizations on

a mirror Calabi-Yau manifold.

The action of mirror symmetry is expected to map a given configuration of B-branes to

a configuration of mirror-symmetric A-branes. Generalizing the approach of closed mirror

symmetry, in order to compute instanton corrected couplings in the open/closed A-model

by mapping it to classically computable couplings in the open/closed B-model, one would

therefore be tempted to map deformation families of branes upon each other.

This however leads to an immediate puzzle. The deformation space M of a generic B-

brane configuration is obstructed in the physical theory by a superpotential W(φ) in the

resulting N = 1 space-time theory which is computed by the holomorphic Chern-Simons

action (3.7). On the A-model side the expected mirror-symmetric superpotential is in certain

circumstances non-perturbatively generated and receives a whole tower of non-trivial disc-

instanton corrections.
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A topological B-brane with a true flat deformation space however has a vanishing super-

potential along the flat directions and therefore these deformations cannot be used to study

non-trivial superpotential couplings. In contrast the generic off-shell deformations of the

brane, which are obstructed by a superpotential and therefore represent heavy fields in space-

time that should be integrated out in the effective action, span an infinite dimensional space.

To write an off-shell superpotentialW(φ) on a true deformation spaceM, one therefore needs

to specify extra data, in particular a concrete parametrization for the off-shell configurations.

In order to define a suitable finite dimensional spaceM with obstruction potential W(φ) one

needs to choose an appropriate set of ’light’ fields and integrate out infinitely many others.

The result at the critical locus is independent of the parametrization of the off-shell directions,

but the off-shell values depend, in a well-defined way, on the parametrization. A priori it is

thus not clear how one can consistently single out a sensible deformation problem out of the

infinite dimensional space of non-supersymmetric deformations. In this sense one is in need

of a non-trivial off-shell version of open string mirror symmetry.

In this work we will be interested in the situation of a B-brane which is wrapped around

a two-cycle C inside a Calabi-Yau manifold Z∗. Generically also in this situation, there are

many consistent choices for the set of light fields, corresponding to local coordinate patches

of the off-shell deformation space of different dimension and range of validity.6 The way this

problem is overcome in the present work was pioneered in [46, 47]. We are going to study a

preferred class of parametrizations favored equally well by mathematics and physics, which

arises from the following construction motivated by duality to M/F-theory. For this we embed

C into a four-cycle D and define M as the unobstructed deformation space of a holomorphic

family D of such 4-cycles. Adding a D-brane charge on C ⊂ H2(D) induces a superpotential

W(C) onM [145, 142]. Physics-wise this can be viewed as perturbing the true moduli space

M of an F-theory compactification with an unobstructed family of D-branes wrapped on the

four-cycles D by adding a D-brane charge on a two-cycle C in D [2, 56].

Therefore we actually do not study the generic deformation of a D5-brane wrapped on a two-

cycle C, but only those deformations which can be described by the holomorphic deformations

of a divisor D, which contains the curve C. Physically this can be understood as a D7-brane,

whose unobstructed moduli space gets obstructed upon the addition of a D5-brane charge on

the curve C ∈ H2(D), where the obstruction is captured by (3.8) [56].

It was observed in [46, 47], that this class of parametrizations is the one preferred by

the topological open/closed string theory, as it leads to flat coordinates on the open/closed

deformation spaceM, which are in agreement with the expectations from the chiral ring in the

topological string theory. Moreover the Hodge-theoretic definition of the open-string mirror

map obtained from the reasoning of [46, 47] yields consistent results for the A-model disc

invariants, as is shown in examples in chapter 4, which are in agreement with localization

6Each choice of parametrization corresponds to a slightly different formulation as a relative cohomology

problem as is discussed below in section 3.3.
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computations in the A-model, if available. Mathematically, this class of parametrizations

furthermore derives directly from the on-shell meaning of the superpotential as an Abel-

Jacobi invariant measuring rational equivalence of the cycles C and C∗ in (3.13), as explained

below in section 3.3.3.

In the approach of [46, 47] the superpotential W(C) is derived in view of (3.9) from the

period integrals Π(z, ẑ) on certain relative cohomology groups defined by the branes, as is

discussed in more detail in section 3.3. Schematically this means

Π(z, ẑ) =

∫
γ

Ω =W(C)−W(C∗) =Wbrane(z, ẑ) , ∂γ = C − C∗ , (3.13)

where (z, ẑ) are local coordinates on the open/closed deformation spaceM, further specified

in section 3.3. The 3-chain γ has at its two boundaries a 2-cycle C ⊂ Z∗ wrapped by the

D-brane and a 2-cylce C∗, which is a reference cycle in the same homology class, [C∗] = [C].

The above expression is equal to the tension of a domain wall interpolating between the

configurations obtained by wrapping the D-brane either on C or on C∗. The relative periods

also capture the 3-form flux superpotential Wflux =
∫
Z∗ G3 ∧ Ω of [146, 58], leading to a

unified expression of the four-dimensional N = 1 superpotential in terms of a general linear

combination of all relative7 period integrals [46, 47]

WN=1(z, ẑ) =
∑

NΣ ΠΣ(z, ẑ) =Wflux(z) +Wbrane(z, ẑ) . (3.14)

The coefficients NΣ are determined by the topological charges of the brane and flux back-

ground. Solving the vacuum condition d
dẑWN=1 = 0 in the open-string direction gives the

on-shell (in the open-string direction) superpotential Wcrit(z) as a function of the closed string

moduli and the topological data NΣ.

The perturbation idea can also be understood in the framework of a dual M/F-theory

compactification on an open/closed dual Calabi-Yau four-fold X4, which geometrizes the

branes to flux [48, 56], as discussed in section 3.8. In this context,Mmaps to the unobstructed

complex structure moduli space MCS(X4) of the four-fold X4, which is the vacuum space of

topological strings in the type IIA compactification on X4, and open/closed mirror symmetry

maps to closed-string mirror symmetry for four-folds. Adding a 4-form flux G4 induces the

Gukov-Vafa-Witten superpotential [58] on the moduli space MCS(X4), and this is the dual

description of the off-shell deformation space M of the brane geometry and the obstruction

superpotential W(C) on it. More precisely, the F-theory superpotential8 on X4 computes gs

corrections to the superpotential W(C) as captured by the relation [57]

WGVW(X4) =

∫
X4

G4 ∧ Ω(4,0) =
∑

Σ

NΣ(G)ΠΣ(z, ẑ) +O(gs) +O(e−1/gs) , (3.15)

7Objects defined in relative (co-)homology will be distinguished by an underline.
8See ref. [56] for the discussion from the M-theory perspective.
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where the leading term on the right hand side is the result (3.14) for the B-type branes on the

three-fold with the linear combination of relative periods determined by the flux G4 on the

four-fold. We will only consider the leading term in gs in this chapter, which can be computed

from the integral periods of a certain non-compact limit X]
4 of X4, related to the three-fold

Z by the open/closed duality of [48, 1, 56], as is discussed in section 3.8. The details of the

compactification X4 of X]
4 affect only the higher terms in gs and can be computed similarly

[57]. More details and many examples on the computation of the four-fold superpotential

from the geometric period integrals can be found in [99, 100, 147].

In the following we turn to a more detailed discussion of the concepts and geometrical ideas

outlined in the above section.

3.3. Geometry and deformation space of the B-model

We start with the definition of the geometrical structure that will be taken as a model for

the open/closed deformation spaceM, following [47, 46, 103, 1]. Let (Z,Z∗) be a mirror pair

of Calabi-Yau three-folds and (L,E) a mirror pair of A/B-type branes on it. On-shell, the

classical A-type brane geometry is perturbatively defined by a special Lagrangian submanifold

L ∈ H3(Z) together with a flat bundle on it [51]. At the quantum level non-perturbative open

worldsheet instantons may couple to the special Lagrangian submanifold L. Then an on-shell

quantum A-type brane arises if the classical geometry is not destabilized by such instanton

corrections [134, 135]. The mirror B-type geometry consists of a holomorphic sheaf E on

Z∗ describing a D-brane with holomorphic gauge bundle wrapped on an even-dimensional

cycle. The concrete realization and application of open string mirror symmetry to this brane

geometry, which will be central to all of the following, has been formulated in the pivotal

work [142]. More details on the action of mirror symmetry on brane geometries can be found

in [131, 35] or for toric branes in Appendix A.

The moduli space of the closed string B-model on Z∗ is the space MCS of complex struc-

tures, parametrizing the family Z∗ →MCS of three-folds with fiber Z∗(z) at z ∈MCS . Here

z = {za}, a = 1, ..., h2,1(Z∗) denote some local coordinates on MCS . As discussed above

the important concept in the Hodge-theoretic approach to open string mirror symmetry of

[47, 46, 103] is the definition of an off-shell deformation spaceM, which includes open string

deformations. In order to study the obstruction superpotential onM, one first definesM as

an unobstructed deformation space for a relative homology problem and studies the functions

ΠΣ : M → C defined by integration over the dual cohomology space. In a second step, one

then adds an obstruction, which can be shown to induce a superpotential onM proportional

to a linear combination of these ’relative periods’ ΠΣ.

As outlined above the unobstructed moduli space for the family of relative cohomology

groups can be defined as the moduli space of a holomorphic family of hypersurfaces D em-
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bedded into the family Z∗ of Calabi-Yau three-folds [47, 46, 103]

i : D ↪→ Z∗

D(z, ẑ) ↪→ Z∗(z)
(3.16)

where ẑ = {ẑα} are local coordinates on the moduli space of the embeddings i : D(z, ẑ) ↪→
Z∗(z) for fixed complex structure z. The total moduli spaceM of this family is the fibration

M̂(ẑ) −→ M
↓ π

MCS(z)

(3.17)

where the point z ∈ MCS on the base specifies the complex structure on the Calabi-Yau

three-fold Z∗(z) and the point ẑ ∈ M̂ on the fiber the embedding. In the context of string

theory, the moduli z and ẑ arise from states in the closed and open string sector, respectively.

Note that the fields associated with the fiber and the base of M couple at a different order

in string perturbation theory. This will be relevant when defining a Kähler metric on TM in

section 3.8.

Following [47, 46, 148, 103], we consider functions on the unobstructed deformation spaceM
given by ’period integrals’ on the relative cohomology group defined by the brane geometry.

The embedding i : D ↪→ Z∗ defines the space Ω∗(Z∗,D) of relative p-forms via the exact

sequence

0 −→ Ω∗(Z∗,D) −→ Ω∗(Z∗)
i∗−→ Ω∗(D) −→ 0 .

The associated long exact sequence defines the relative three-form cohomology group

H3(Z∗,D) ' ker
(
H3(Z∗)→ H3(D)

)
⊕ coker

(
H2(Z∗)→ H2(D)

)
, (3.18)

which provides the geometric model for the space of ground states of the open/closed topo-

logical B-model. In a generic9 situation, the first summand equals H3(Z∗) and represents the

closed string sector capturing the deformations of the complex structure of Z∗. The relation

of the above sheaf cohomology groups considered in [47, 46, 103] and the Ext groups studied

in [141] will be discussed in section 3.6.

By (3.18), a closed relative three-form Φ ∈ Ω3(Z∗,D), representing an element ofH3(Z∗,D),

can be described by a pair (Φ, φ), where Φ is a 3-form on Z∗ and φ a 2-form on D. The dif-

ferential is dΦ = (dΦ, i∗Φ − dφ) and the equivalence relation is given by (Φ, φ) ∼ (Φ, φ) +

(dα, i∗α − dβ) for α ∈ Ω2(Z∗), β ∈ Ω1(D). The duality pairing between a 3-chain class

γΣ ∈ H3(Z∗,D) and a relative p-form class [Φ] is given by the integral∫
γΣ

Φ =

∫
int(γΣ)

Φ−
∫
∂γΣ

φ . (3.19)

9That is H1(Z∗) ' 0 and we made the simplifying assumption that D is ample, which is a reasonable condition

on the divisor wrapped by a B-type brane. The Lefschetz hyperplane theorem then implies H1(D) ' 0

and, by Poincaré duality, H3(D) ' 0.
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The fundamental holomorphic objects of the open/closed topologicalB-model are particular

examples of (3.20), namely the relative period integrals of the holomorphic (3, 0) form Ω on

Z∗, viewed as the element (Ω, 0) ∈ H3(Z∗,D), over a basis {ΓΣ} of topological 3-chains:

ΠΣ(z, ẑ) =

∫
ΓΣ

Ω, ΓΣ ∈ H3(Z∗,D) . (3.20)

The cohomology group H3(Z∗,D) is constant overM, but the Hodge decomposition given

by the filtration F pH3(Z∗,D) and the direction of the (3,0) form Ω varies with the moduli.

The period integrals ΠΣ(z, ẑ) thus define a set of moduli dependent local functions on M.

Despite the fact, that there is not yet a superpotential onM, these functions should have an

important physical meaning in the unobstructed theory as well. In section 3.8 we will argue

that they define a Kähler metric onM and thus determine the kinetic terms of the bulk and

brane moduli in the effective action.

3.3.1. Obstructed deformation problem

The physical meaning of the period integrals is altered after adding an additional lower-

dimensional brane charge on a 2-cycle, which induces an obstruction on M. From a physics

point of view this perturbation may be realized by either adding an additional brane on a

2-cycle in D or by switching on a 2-form gauge flux on the original brane on D. A worldsheet

derivation of the obstruction from the relevant Ext groups in the open string CFT will be

given in section 3.6.

In the Hodge theoretic approach of [47, 46, 103, 1], the superpotential on M in the ob-

structed theory is given by a certain linear combination of the relative periods (3.20) of the

unobstructed theory. This is similar to the case of closed string flux compactifications, where

the flux superpotential on the space MCS of complex structures can be computed in the

unobstructed theory with MCS as a true moduli space [149, 146, 150].

Let Ci denote the irreducible components of the 2-cycle carrying the additional brane charge

and C =
∑

iCi their sum. If [C] = 0 as a class in H2(Z∗), there exists a 3-chain Γ in the

sheaf cohomology group (3.18), with ∂Γ = C. In particular, the choice of the brane cycle C

restricts the relevant co-homology to the subspace

H3(Z∗, D) −→ H3(Z∗,
∑
i

Ci) . (3.21)

The open/closed string superpotentialW(z, ẑ) onM for this brane configuration is computed

by a relative period integral Π(z, ẑ) on this subspace [47, 46, 103, 1].

As discussed above it was argued in [145], that a superpotential, that has the correct critical

points to describe a supersymmetric brane on C, is given by the chain integral

T =

∫
γ(C)

Ω ∂γ(C) 6= 0 . (3.22)
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This expression was later derived from a dimensional reduction of the holomorphic Chern-

Simons functional of [51] in [134, 135, 142].10

As it stands, (3.22) can be viewed either as a definition in absolute cohomology, or in

relative cohomology, replacing Ω→ (Ω, 0) and including the explicit boundary term in (3.20).

The difference is important only off-shell and in this way the relative cohomology ansatz of

[47, 46, 103, 1], building on the results of [142], can be viewed as a particular proposal for an

off-shell definition of the superpotential.

In absolute cohomology, the integral (3.22) is a priori ill-defined because of non-vanishing

boundary contributions from exact forms, which do not respect the equivalence relation

[Ω] = [Ω + dω]. To obtain a well-defined pairing one may restrict homology to chains

with boundary ∂γ a holomorphic curve and cohomology to sections of the Hodge subspace

F 2H3 = H3,0 ⊕H2,1 [93, 94].11 This is the normal function point of view taken in [53, 54].

Since the curve C = ∂γ being holomorphic corresponds to a critical point dW|ẑcrit
= 0 of the

superpotential with respect to the open string moduli [145], continuous open-string deforma-

tions are excluded from the beginning and one obtains the critical value Wcrit(z) =W(z, ẑcrit)

of the superpotential as a function of the closed-string deformations z, only. The dependence

of the critical superpotential Wcrit(z) on the closed string moduli z is still a highly interesting

quantity and at the center of the works [53, 54] on open string mirror symmetry, which gave

the first computation of disc instantons in compact Calabi-Yau three-folds from mirror sym-

metry. The dependence of the superpotential on open string deformations ẑ is not captured

by this definition.

In the relative cohomology ansatz of [47, 46, 103, 1], the pairing (3.22) is well-defined in

cohomology also away from the critical points as a consequence of enlarging the co-homology

spaces as in (3.18). The extra contribution to H3(Z∗,D) from the second factor in (3.18)

describe additional degrees of freedom in the brane sector. According to this proposal, the rel-

ative periods Π(z, ẑ) on the subspace H3(Z∗, C) describe the ’off-shell’ superpotentialW(z, ẑ)

depending on brane deformations ẑ. For consistency, W(z, ẑ) should reduce to the critical

superpotential Wcrit(z) at the critical points. We will verify this for particular examples in

chapter 4.

Although we eventually end up with studying the periods on the restricted subspace

H3(Z∗, C) in (3.21) for a fixed brane charge C, the introduction of the larger relative co-

homology space H3(Z∗, D) was not redundant, even for fixed choice of obstruction brane C,

as it was crucial for the definition of the finite-dimensional off-shell deformation space M,

on which the obstruction superpotential can be defined. As discussed the off-shell deforma-

tion space for a brane on C is generically infinite-dimensional, with most of the deformations

10More precisely, the chain integral gives the tension T of a domain wall realized by a brane wrapped on the

3-chain γ(C).
11The potentially ambiguous boundary terms then vanish as

∫
γ

Ω + dω =
∫
γ

Ω +
∫
∂γ
ω =

∫
γ

Ω for ω a (2,0)

form and ∂γ a 2-cycle of type (1, 1).
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representing heavy fields in space-time that should be integrated out. To define an effective

superpotential we have to pick an appropriate set of ’light’ fields and integrate out infinitely

many others.

The ansatz of [47, 46, 103, 1] to define M by perturbing the unobstructed moduli space

of a family D of hypersurfaces is thus not a circuitry, but rather a systematic way to define

a finite-dimensional deformation space with parametric small obstruction, together with a

local coordinate patch, on which a meaningful off-shell superpotential can be defined. As C

can be embedded in different families of hyperplanes, the parametrization of the deformation

space depends on the choice of the family D and this corresponds to a different choice of

light fields for the effective superpotential.12 Each choice covers only a certain patch of the

off-shell deformation space and there will be many choices to parametrize the same physics

and mathematics near a critical locus by slightly different relative cohomology groups. This

choice of a set of light fields is inherent to the use of effective actions and should not be

confused with an ambiguity in the definition.13

In the context of open string mirror symmetry, the most interesting aspect of the deforma-

tion spaces M constructed in this way is the presence of ’almost flat’ directions in the open

string sector, which lead to the characteristic A-model instanton expansion of the superpo-

tential, as will be shown in the examples of chapter 4. The result passes some non-trivial

consistency checks which provides some evidence in favor of this definition of off-shell string

mirror symmetry.14 On the other hand, for general massive deformations, one would not

expect the simple notions of flatness and an integral instanton expansion observed in this

work.

There are two important points missing in the above discussion, which will be further

studied in the following. One is the selection of the proper homology element γ(C) that

computes the superpotential, given a 2-cycle C representing the lower-dimensional brane

charge. The other one is the mirror map, which allows to extract a prediction for the disc

and sphere instanton expansion for the A-model, starting from the result obtained from the

relative periods of the B-model. The additional information needed to answer these questions

comes from the variation of mixed Hodge structure on the Hodge bundle with fiber the relative

cohomology group H3(Z∗, D). The Hodge filtration defines a grading by Hodge degree p of

the cohomology space at each point (z, ẑ). In closed string mirror symmetry, restricting

to H3(Z∗) ⊂ H3(Z∗, D), this grading is identified with the U(1)-charge of the chiral ring

elements in the conformal field theory on the string worldsheet. A similar interpretation in

terms of an open/closed chiral ring has been proposed in [47, 46, 103]. The upshot of this

12One could always combine these ’different’ families into a single larger family at the cost of increasing the

dimension of the deformation space M.
13An attempt to reformulate the relative cohomology approach of [47, 46, 103, 1] by using the excision theorem,

as contemplated on in [151], is thus likely to produce just another parametrization corresponding to a

slightly different choice of light fields, rather then a distinct description [123, 152, 153, 154].
14See also [1, 104, 3] for additional examples and arguments.
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extra structure is, that there are two relevant relative period integrals associated with the

brane charge C, distinguished by the grading, such that one gives the mirror map to the

A-model, and the other one the superpotential [47, 46, 103, 1].

3.3.2. N = 1 special geometry of the open/closed deformation space

Using the above model for the open/closed deformation space of the B-model one can use the

variation of mixed Hodge structure on the deformation family of relative cohomology groups

H3(Z∗,D) of Z∗ to capture the moduli dependence of the relative periods. The topological

nature of the cohomology group H3(Z∗,D) leads, similar as in the closed string case, to an

up to monodromies flat Gauss-Manin connection on the vacuum bundle over the open/closed

deformation space. In the simplest case, D is a family of single hypersurfaces and the action

of the closed and open string variations on the holomorphic (3, 0)-form Ω(3,0), written as a

relative form (Ω(3,0), 0), is schematically given by15

(Ω(3,0), 0)
δz //

δẑ

&&

(Ω(2,1), 0)
δz //

δẑ

&&

(Ω(1,2), 0)
δz //

δẑ

&&

(Ω(0,3), 0)

(0, ω(2,0))
δz ,δẑ // (0, ω(1,1))

δz ,δẑ // (0, ω(0,2))

(3.23)

Here δz and δẑ denote the closed and open string variations, respectively and ω(2,0) = iδẑΩ
(3,0)

is the contraction of the holomorphic (3, 0)-form with a vector field along the open string

deformation. The variations δ can be identified with the flat Gauss-Manin connection ∇,

which captures the variation of mixed Hodge structure on the bundle with fibers the relative

cohomology groups. The mathematical background is described in [93, 94, 95, 96, 97, 98].

The flatness of the Gauss-Manin connection leads to a non-trivial ”N = 1 special geometry”

of the combined open/closed field space, that governs the open/closed chiral ring of the

topological string theory [46, 47] similar as in the closed string case. This geometric structure

leads to a Picard-Fuchs system of differential equations satisfied by the relative period integrals

LaΠΣ = 0, ΠΣ(z, ẑ) =

∫
ΓΣ

Ω, ΓΣ ∈ H3(Z∗,D) . (3.24)

Here {La} is a system of linear differential operators, z(ẑ) stands collectively for the closed

(open) string parameters and the holomorphic (3, 0)-form Ω and its period integrals are defined

in relative cohomology. The relative periods ΠΣ(z, ẑ) determine the mirror map and the

combined open/closed string superpotential, which can be written in a unified way as above

WN=1(z, ẑ) =Wflux(z) +Wbrane(z, ẑ) =
∑

ΓΣ∈H3(Z∗,D)

NΣΠΣ(z, ẑ) . (3.25)

15Here we display the label which gives the Hodge type of the form. In the following we denote the holomorphic

(3, 0)-form again by Ω.
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HereWflux(z) is again the closed string superpotential proportional to the periods over cycles

γΣ ∈ H3(Z∗) and Wbrane(z, ẑ) the brane superpotential proportional to periods over chains

γΣ with non-empty boundary ∂γΣ. The coefficients NΣ are the corresponding ’flux’ and brane

numbers.16

In the following we are going to implement this general structure for the class of toric

branes on compact Calabi-Yau manifolds.17 In this context, the relative cohomology problem

is naturally defined by a family D of toric hypersurfaces in the B-model. In [46, 47] this

identification was used to set up the appropriate problem of mixed Hodge structure for branes

in non-compact Calabi-Yau manifolds and to compute the Picard-Fuchs system of the N = 1

special geometry. This approach was extended to the compact case in [103] by relating D to

the algebraic Chern class c2(E) of a B-brane as obtained from a matrix factorization. These

two definitions of D are closely related and it is straightforward to check that they coincide

in concrete examples; in particular the hypersurfaces defined in [103] fit into the definition of

D in [46, 47].18

3.3.3. Relative periods and normal functions

As discussed above, a preferred parametrization adapted to topological string states and open-

string mirror symmetry is to parametrize the off-shell deformations of the D-brane on a 2-cycle

C by the deformations of a holomorphic family of 4-cycles D that embed C ∈ H2(D). The

relative periods capturing the superpotential for the brane on C are obtained by restriction

to the subspace H3(Z∗, C) ⊂ H3(Z∗, D). Mathematically, this class of parametrizations

derives directly from the concept of rational equivalence and the on-shell meaning of the

superpotential as an Abel-Jacobi invariant, as will be discussed now.19

To this end, consider a Calabi-Yau three-fold Z∗0 together with an ample divisor D0. We

assume that H1,0(Z∗0 ) = H2,0(Z∗0 ) = 0, such that the complex structure deformations of the

pair (Z∗0 , D0) are unobstructed. Then this pair (Z∗0 , D0) extends to a family X of Calabi-Yau

three-folds together with a family of ample divisors π : (X ,D) → ∆ fibered over the disc ∆,

which parametrizes a local patch of the combined moduli spaceM of the family obtained by

deforming the central fiber π−1(0) = (Z∗0 , D0). M is a fibration M̂ → M → MCS , where

the base MCS corresponds to complex structure deformations z of the family of Calabi-Yau

three-folds X , while the fiber M̂, parametrized by the coordinates ẑ, corresponds to the

16To obtain the physical superpotential, an appropriate choice of reference brane has to be made for the chain

integrals, since a relative period more precisely computes the brane tension of a domain wall [145, 134, 135,

142]. This should be kept in mind in the following discussion where we simply refer to ’the superpotential’.
17See Appendix A for details on toric branes.
18As was stressed in section 3.6 of [54], the chain integrals, which define the normal functions associated with

the superpotential, do not depend on the details of the infinite complexes constructed in [155]. Our results

suggest that the relevant information for the superpotential is captured by the linear σ-model to be defined

in section 3.7.
19For a related mathematical discussion, see [98].
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deformations of the family of divisors D.

Since the holomorphic three-form Ω(z) of the Calabi-Yau three-fold Z∗z vanishes on the

divisor D(z,ẑ), the three form Ω(z), which is an element of H3(Z∗z ), lifts to an element Ω(z, ẑ)

of the relative cohomology group H3(Z∗z , D(z,ẑ)). We define the integral relative periods as

above

Π(Γ; z, ẑ) =

∫
Γ(z,ẑ)

Ω(z, ẑ) , (3.26)

where Γ(z,ẑ) is an integral relative cycle in H3(Z∗z , D(z,ẑ),Z) whose boundary ∂Γ(z,ẑ) is trivial

as a class in H2(Z∗,Z). For concreteness we often assume that the boundary is the difference

∂Γ(z,ẑ) = C+
(z,ẑ) − C

−
(z,ẑ) of two 2-cycles in H2(Dz,ẑ) with [C+

(z,ẑ)] = [C−(z,ẑ)] in H2(Z∗z ,Z).

As discussed above, following the fundamental works [142, 145], it was proposed in [46, 47,

103] that the relative period (3.26) defines the off-shell tension T (z, ẑ) of a physical D-brane

wrapped on the chain Γ(z,ẑ), that is T (z, ẑ) = Π(Γ; z, ẑ). This D-brane represents a domain

wall interpolating between the two configurations obtained by wrapping a D-brane on C+
(z,ẑ)

or on C−(z,ẑ) and its tension measures the difference of the value of the superpotentials for the

two D-brane configurations

T (z, ẑ) =W(C+
(z,ẑ))−W(C−(z,ẑ)) . (3.27)

The vacuum condition in the open-string direction is d
dẑW(C±)|ẑ=ẑcrit = 0 and it holds if

C±z := C±(z,ẑcrit)
is a holomorphic curve [145]. Imposing this condition on both branes implies

d
dẑT (z, ẑ) = 0 as well.

Mathematically speaking, the vacuum configurations hence lie within the so-called Noether-

Lefschetz locus, defined as [156]

N =

{
(z, ẑ) ∈ ∆

∣∣∣∣ 0 ≡ dΠ(z, ẑ)

dẑ

}
. (3.28)

Equivalently the locus N can be specified by the vanishing condition

N =
{

(z, ẑ) ∈ ∆
∣∣∣ 0 ≡ ~π(z, ẑ; ∂Γ(z,ẑ))

}
, (3.29)

for the period vector of the divisor D(z,ẑ)

~π(z, ẑ; ∂Γ(z,ẑ)) =

(∫
∂Γ(z,ẑ)

ω
(2,0)
â (z, ẑ)

)
, â = 1, . . . ,dimH2,0(D(z,ẑ)) . (3.30)

Here ω
(2,0)
â (z, ẑ) is a basis of two forms for H2,0(D(z,ẑ)). Hence the critical locus of D-brane

vacua is mapped to the subslice of complex structures on the surface D(z,ẑ), where certain

linear combinations of period vectors on the surface vanish. At such points in the complex

structure the Picard lattice of the surface D(z,ẑ) is enhanced due to the appearance of an

additional integral (1, 1)-form.
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At the Noether-Lefschetz locus (z, ẑcrit) ∈ N there is an interesting connection between

the relative periods and another mathematical quantity studied in [53, 54]. By the result

of [156], the relative period Π(z, ẑ) evaluated at the Noether-Lefschetz locus (z, ẑcrit) ∈ N
gives (modulo bulk periods) the Abel-Jacobi invariant associated to the normal function of

the algebraic curve ∂Γ(z,ẑcrit):

Π(z, ẑcrit) = ν
calg
2 (∂Γ(z,ẑcrit))

(z) mod (bulk periods) . (3.31)

Specifically, the Abel-Jacobi invariant is defined via the normal function ν
calg
2 (α)

(z) as

AJ : CH2(Z∗z )→ J3(Z∗z ) ' F 2H3(Z∗z )∗

H3(Z∗z ,Z)
; α 7→ ν

calg
2 (α)

(z) , (3.32)

where, in the concrete setting, the normal function is defined as the chain integral

T (z) =

∫
Γ±z

Ω(z) = ν
calg
2 (C+

z −C−z )
(z) mod (bulk periods) . (3.33)

Here ∂Γ±z = C+
z −C−z , with C±z the holomorphic curves at fixed ẑ = ẑcrit. As already discussed,

(only) at the critical locus, the above integral is well-defined in absolute cohomology, because

the potentially dangerous boundary terms vanish by holomorphicity of the boundary ∂Γ±z
and the Hodge type of Ω. The normal functions (3.33) have been introduced in [53, 54] to

study the on-shell values of the superpotentials

T (z) = W (C+
z )−W (C−z ) .

By the above argument, these are the restrictions of the relative period integrals (3.26) to the

critical locus N .

There is also a partial inverse of this relation, which recovers the relative periods for the

family of divisors starting from the normal functions. To this end, recall the meaning of

rational equivalence and the Abel-Jacobi invariant. The second algebraic Chern class calg
2 takes

values in the second Chow group CH2(Z∗z ), which consists of equivalence classes of algebraic

cycles of co-dimension two modulo rational equivalence [157].20 Two algebraic cycles α and

β of co-dimension two are rationally equivalent, if we can find a subvariety V of co-dimension

one, in which α and β are rationally equivalent as co-dimension one cycles. This is the case if

α and β are given by two linearly equivalent divisors on V , that is [α− β] = 0 ∈ CH1(V ).21

Moreover, rational equivalence implies that the Abel-Jacobi invariant vanishes.

Starting from an algebraic cycle α of co-dimension two with ctop
2 (α) = 0 we can find a

three chain Γα such that α = ∂Γα, and associate a normal function ν
calg
2 (α)

to it via the

20The second algebraic Chern class is a refined invariant of the topological second Chern class [157].
21If the subvariety V is not normal the cycles α and β are rationally equivalent, if their Weil divisors Dα and

Dβ are linearly equivalent in the normalization Ṽ of V , namely α ∼ β if Dα ∼ Dβ with f : Ṽ → V and

α = f∗Dα and β = f∗Dβ .
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integral (3.33). By (3.32), the normal function vanishes for algebraic two cycles C±z that are

rationally equivalent [54]. On the contrary, if C+
z and C−z are not rationally equivalent, we

obtain an element in the relative cohomology of each family D(z, ẑ) of divisors that contains

the two holomorphic curves C±z at a ’critical’ value ẑ = ẑcrit. Indeed, since C+
z and C−z are

not rationally equivalent, C+
z − C−z defines by Poincaré duality a non-trivial Element ω ∈

Pic(D(z,ẑcrit)) ' H
1,1(D(z,ẑcrit)) ∩H

2(D(z,ẑcrit),Z). Since the algebraic cycle α is topologically

trivial on Z∗z , the associated two form ω is not induced from the hypersurface Xz and lifts to

a relative three form Θ(z,ẑcrit) by the relation

H3(Z∗z , D(z,ẑ)) ' ker
(
i∗ : H3(Z∗z )→ H3(D(z,ẑ))

)
⊕ coker

(
i∗ : H2(Z∗z )→ H2(D(z,ẑ))

)
,

with i : D(z,ẑ) ↪→ Z∗z . By construction, the three-chain Γα ' Γ(z,ẑcrit) is a representative of the

relative homology class in H3(Z∗z , D(z,ẑcrit)) dual to Θ(z,ẑcrit). Surjectivity of the boundary map

of homology then asserts that the above construction assigns to each normal function a rela-

tive period on H3(Z∗z , D(z,ẑ)), which measures the superpotential of the off-shell deformation

parametrized by the family D(z, ẑ).

Using this connection between normal functions (3.33), that is to say domain walls between

critical points C±z , and the off-shell tensions represented by the integral relative periods (3.26)

ending on C±(z,ẑ), we may calculate the critical tensions as follows. First determine the possible

critical points as the vanishing locus (3.29) of the periods of the surface D(z,ẑ). The critical

domain wall tension is then given by the relative period associated with the vanishing period

on the surface, evaluated at the critical point zcrit

T (z) = T (z, ẑcrit) . (3.34)

This determines the critical tension up to a possible addition of a bulk period Πbulk(z).

The vanishing condition (3.29), classifying the critical points, can be studied very explicitly

for off-shell deformations in a single open-string parameter ẑ, which is sufficient to determine

the on-shell tensions. In this case the surface D(z,ẑ) has geometric genus one and it is isogenic

to a K3 surface [158], that is the integral Hodge structures of the surface D(z,ẑ) can be mapped

to the equivalent Hodge structure of its isogenic K3 surface.

One particular type of solutions to the vanishing condition arises at the discriminant locus

of the isogenic K3 surface, where the period vector, associated with a geometrically vanishing

cycle in the K3 surface, develops a zero. However, this type of solution is non-generic in

the sense that it is often related to points in the deformation space with a domain wall with

zero tension. The generic critical points arise instead from a zero of the period vector, which

is a linear combination of volumes of geometric cycles in the K3 surface rather then the

volume of an irreducible cycle. The typical example is a point where the volumes of two

different cycles coincide, such that the period vector associated with the difference vanishes.

At these particular symmetric points there is an ’accidental’ global symmetry of the K3 lattice,

exchanging the two cycles. More generally the generic critical points should be classified by

special symmetric points in the K3 moduli studied in [159].
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3.4. Generalized hypergeometric systems for the B-model

As described already above the variation of mixed Hodge structure on the family of relative

cohomology groups can be translated into to set of differential operators, which annihilate

the relative periods (3.20). In this section we are going to derive a generalized hypergeo-

metric system of differential operators for the deformation problem at hand, in the concrete

framework of toric branes on toric Calabi-Yau hypersurfaces first defined in [142] and further

scrutinized in [1, 104, 3]. The result is a system of differential equations acting on the relative

cohomology space and its periods, whose associated Gauss-Manin system and solutions will

be studied in subsequent sections. For a mathematical treatment of the GKZ systems in this

context, see [160].

In section 3.7 it will be shown how the same set of differential operators can be obtained

from a dual non-compact four-fold. This reflects the duality of B-type branes on the three-

fold Z∗ to an M/F-theory compactification on a four-fold X]∗
4 determined by the open/closed

duality of [48, 1, 56]. Specifically, the set of differential operators for the relative periods on

Z∗ and for the four-fold periods on X]∗
4 have the superpotential periods in (3.14) and (3.15) as

common solutions, and the superpotential can be equivalently computed on the three-fold or

on the four-fold. This gives also a complementary view on the variation of Hodge structures

on the relative cohomology.

For clarity we relegate the definitions of the family of toric branes in compact toric hy-

persurfaces used in this section to the Appendix A.5 and refer to [142, 1] for further details.

A brief review of toric geometry is given in the Appendix A. Further details about gener-

alized hypergeometric systems for the closed-string case can be found in section 2.4.4 and

[107, 108, 109].

3.4.1. Extended hypergeometric systems for relative periods

We proceed with the derivation of a GKZ hypergeometric system which annihilates the relative

period integrals (3.20) on the relative cohomology group for a class of toric branes. The

definition of the (union of) hypersurfaces D cannot preserve all torus symmetries of the toric

ambient space. Instead (some of) the torus actions move the position of the branes.22 As

a consequence, the relative periods are no longer annihilated by all the operators Zk and

depend on additional parameters specifying the geometry of D. The differential equations

(2.81) for the period integrals imply on the level of forms

L(l) Ω = dω(l) ,

Zk Ω = dωk .

The exact terms on the r.h.s. contribute only to integrals over 3-chains γ̂ ∈ H3(Z∗,D) with

non-trivial boundaries ∂γ̂. The modification of the differential equations for the relative

22This is what one would expect intuitively from the formulation of mirror symmetry as T -duality [36].
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periods can be computed from these boundary terms.

To keep the discussion simple we derive the differential operators for the relative periods on

the mirror of the quintic and present general formulae at the end of this section. The integral

points of the polyhedron ∆(Z) are

∆(Z) ν̃0 = ( 0 0 0 0 )

ν̃1 = ( 1 0 0 0 )

ν̃2 = ( 0 1 0 0 )

ν̃3 = ( 0 0 1 0 )

ν̃4 = ( 0 0 0 1 )

ν̃5 = ( −1 −1 −1 −1 )

(3.35)

leading to the defining polynomial for the mirror quintic:

P (Z∗) = a0 + a1X1 + a2X2 + a3X3 + a4X4 + a5(X1X2X3X4)−1 .

The holomorphic (3,0) form on the mirror quintic can be explicitly represented as the residuum

Ω = ResP
a0

P

∏
k

dXk

Xk
, (3.36)

at P = 0 [107]. Here we have changed the normalization with respect to (2.80) to the

standard convention Π(ai) → a0Π(ai). The GLSM for the quintic is specified by one charge

vector l1 = (−5, 1, 1, 1, 1, 1) which defines one differential operator L1 = L(l1) annihilating

the periods on the mirror. For this operator we do not get an exact term, and we find(
5∏
i=1

ϑi + z

5∏
i=1

(ϑ0 − i)

)
Ω = 0 . (3.37)

Furthermore the operators Zk give rise to the relations

5∑
i=0

ϑi Ω = 0, (ϑi − ϑ5) Ω = dωi , i = 1, ..., 4, (3.38)

with

ωi = (−)i+1ResP
a0

P

4∏
j=1
j 6=i

dXj

Xj
. (3.39)

Equation (3.38) expresses the torus invariance of the period integrals in absolute cohomology

and implies that the integrals depend only on the single invariant complex modulus z1 defined

as in (2.82). In relative cohomology, the exact terms on the r.h.s. descend to non-trivial 2-

forms on D by the equivalence relation

H3(Z∗,D) 3 (Ξ, ξ) ∼ (Ξ + dα, ξ + i∗α− dβ) , (3.40)
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where i : D ↪→ Z∗ is the embedding. The exact pieces in (3.38) may give rise to boundary

terms that break the torus symmetry and introduce an additional dependence on moduli ẑα

associated with the geometry of the embedding of D.

To proceed we need to specify the family of hypersurfaces D. We consider a simple one-

parameter family D of hypersurfaces defined by a linear equation, which can be put into the

standard form

D : Q = 1 +X1 = 0 , (3.41)

by a coordinate transformation on X1.23 In order to determine the preserved torus symme-

tries we examine the boundary contributions (3.38) with respect to the hypersurfaces D by

evaluating the pullbacks of the two forms (3.39). One finds i∗ωk = 0 for k = 2, 3, 4 and

i∗ω1 = ResPD
a0

PD

4∏
i=2

dXi

Xi
= ResP,Q

a0X1

P Q

4∏
k=1

dXk

Xk
, (3.42)

where PD = P (Z∗)|Q=0 = (a0 − a1) + a2X2 + a3X3 + a4X4 − a5(X2X3X4)−1. In the second

equation above, we represented the pull-back as a double residue in P = 0 and Q = 0 in the

ambient space as in [103], which allows for a direct evaluation of periods as in [104] and is

convenient also for higher degree hypersurfaces.

In the presence of the hypersurface D the torus action X1 → λX1 with λ ∈ C∗ generated

by the operator Z1 is broken, whereas the remaining torus symmetries, associated to the

operators Z0,Z2,Z3,Z4, are preserved.24 From these four differential operators for the six

parameters ai it follows that the family D ⊂ Z∗ depends precisely on the two moduli

z = −a1a2a3a4a5

a5
0

, ẑ = −a1

a0
, (3.43)

together with the logarithmic derivatives

θ := z ∂z = ϑ5 , θ̂ := ẑ ∂ẑ = Z1 = ϑ1 − ϑ5 . (3.44)

Here z is the complex structure modulus of Z∗ and ẑ is the open-string position modulus

parametrizing the position of the brane. This analysis justifies in retrospect that the defined

family of hypersurfaces (3.41) indeed depends on a single open-string modulus.

The next task is to determine the differential operators L of the extended GKZ hypergeo-

metric system associated to the periods of the relative (3,0) form representative

Ω := (Ω, 0) =

(
ResP

a0

P

∏
k

dXk

Xk
, 0

)
. (3.45)

23At first glance it seems that we have chosen a rigid hypersurface D. However, as we vary the embedding of

the Calabi-Yau manifold Z∗ in the ambient toric space, we effectively change the hypersurface D in in the

Calabi-Yau manifold Z∗.
24Alternatively one may express the independence of the periods on extra parameters in (3.41) by a modified

differential operator Z1, see also the discussion below (3.49).
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Due to (3.37) the operator L1 annihilates the three form Ω even on the level of forms (and

not just on the level of the absolute three-form cohomology), and therefore the operator

L1 annihilates also the relative three form Ω. In the extended relative cohomology setting,

however, there is an additional differential operator L2 governing the functional dependence of

the exact piece dω1. It is straightforward to check that the (2,0) form i∗ω1 of the hypersurface

D defined in (3.42) obeys

(ϑ1 − ẑ(ϑ0 − 1)) i∗ω1 = 0 .

Together with the relation

θ2Ω = Z1(Ω, 0) = (dω1, 0) ∼ (0,−i∗ω1) (3.46)

associated to the broken torus action, we determine the second operator L2 to be

L2 = (ϑ1 − ẑ(ϑ0 − 1))(ϑ1 − ϑ5) .

Thus in summary we find that the relative (3,0)-form cohomology class, represented by the

relative three-form Ω, is annihilated by the six differential operators

LaΩ ∼ 0 , a = 1, 2 ,

ZkΩ ∼ 0 , k = 0, 2, 3, 4 .
(3.47)

With the help of the differential operators Zk, k = 0, 2, 3, 4 , it is straightforward to derive

the two extended GKZ operators La, a = 1, 2 , in terms of the moduli z and ẑ and their

logarithmic derivatives θ and θ̂

L1 = (θ + θ̂)θ4 + z
5∏
i=1

(−5θ − θ̂ − i) =: Lbulk
1 + Lbdry

1 θ̂ ,

L2 =
(
(θ + θ̂)− ẑ(−5θ − θ̂ − 1)

)
θ̂ =: Lbdry

2 θ̂ .

(3.48)

Here Lbulk
1 = θ5 + z

∏5
i=1(−5θ − i) is the θ̂-independent GKZ operator of the quintic and

the operators Lbdrya are always accompanied by at least one derivative θ̂ and thus are only

sensitive to boundary contributions

0 = La
∫
γΣ

Ω = Lbulk
a

∫
int(γΣ)

Ω− Lbdry
a

∫
∂γΣ

i∗ω1 , a = 1, 2 , (3.49)

with Lbulk
2 ≡ 0.

The significance of the interplay of the operator θ̂ with the operator Lbdry
a is reflected in

(3.46). We observe that the (linear combinations) of boundary operators Lbdry
a , which are

not accompanied with a non-vanishing bulk operator Lbulk
a , become the GKZ operators of

the periods localizing on the hypersurface D. As noted above, the Hodge variation on the

hypersurface PD = 0 is isomorphic to that of the mirror of the quartic K3 surface and i∗ω1 is a
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∆(Z) ν̃0 = ( 0 0 0 0 0 )

ν̃1 = ( 1 0 0 0 0 )

ν̃2 = ( 0 1 0 0 0 )

ν̃3 = ( 0 0 1 0 0 )

ν̃4 = ( 0 0 0 1 0 )

ν̃5 = ( −1 −1 −1 −1 0 )

∆[(Z,L) = ∆∪ ν̃6 = ( 1 0 0 0 1 )

ν̃7 = ( 0 0 0 0 1 )

Table 3.1.: Vertices of the enhanced polyhedron ∆[(Z,L) for the quintic example.

representative for the holomorphic (2,0)-form. The associated K3 periods
∫
i∗ω1 are precisely

annihilated by these GKZ operators arising form the boundary sector.

Thus we have obtained two differential operators La, a = 1, 2 , in (3.48) annihilating the

relative periods. These operators can be rewritten in a concise form by realizing that they

represent the differential operators L(l) for a different GKZ system of the type (2.81) specified

by the two linear relations

l̃1 = (−5; 1, 1, 1, 1, 1, 0, 0), l̃2 = (−1; 1, 0, 0, 0, 0, 1,−1) , (3.50)

together with the five-dimensional enhanced toric polyhedron ∆[ with the integral vertices

in Table 3.1. This polyhedron defines a Calabi-Yau four-fold X]
4, which is dual to the brane

compactification in the sense of [48]. A systematic construction, which associates a (compact)

dual F-theory four-fold to a mirror pair of toric branes defined as in [142], is given in sections

3.7 and 3.8.

Note that the enhanced polyhedron ∆[ gives rise to six operators Z̃k, k = 0, . . . , 5 , with

Z̃k = Zk for k = 0, 2, 3, 4. The two additional operators Z̃1 and Z̃5 guarantee that the

functional dependence on the local coordinates z̃a(l̃
a) defined by the general relation (2.82)

also coincide with the moduli of the relative cohomology problem defined in (3.43). Moreover,

the GKZ operators L̃a = L(l̃a) obtained from the general expression25

L(l) =

l0∏
k=1

(ϑ0 − k)
∏
li>0

li−1∏
k=0

(ϑi − k)− (−1)l0za

−l0∏
k=1

(ϑ0 − k)
∏
li<0

−li−1∏
k=0

(ϑi − k) (3.51)

coincide with the two operators La of the relative cohomology problem in the local coordinates

25The same formula describes also the generalized hypergeometric operators of GKZ type for the closed-string

compactification [109, 108] and this will be used in the examples to determine the periods of the three-fold

Z∗ and the surface D below. The distinction between the three different cases arises only from the different

generators la, which encode the action of the gauge symmetry of the GLSM associated with the surface D,

the three-fold Z∗, the brane geometry (Z∗,D) and the dual F-theory four-fold X]
4, respectively, with the

latter two cases having the identical generators in the decoupling limit.
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defined by (2.82).

La(z, ẑ) = L̃a(z̃1 = z, z̃2 = ẑ) .

In fact one can show that all differential operators L(l) for l a linear combination of l1, l2

also annihilate the relative periods.26

3.4.2. Picard-Fuchs and GKZ equations for domain wall tensions

As discussed above, the flat Gauss-Manin connection on the relative cohomology bundle

leads to Picard-Fuchs type of differential operators for the relative periods, which provide an

effective method to determine and to study the tensions T (z, ẑ). Therefore there should be

a relation of the derived differential operators to the inhomogeneous Picard-Fuchs equations

of on-shell domain walls as analyzed in [53, 54].

For concreteness, we assume that the holomorphic curves C±z which lie at the ends of the

domain wall are contained in the intersection of the hypersurface Z∗ : P = 0 with two

hyperplanes D1,2 defined in a certain toric ambient space. Choose coordinates such that the

equation for D1 does not depend on the closed-string moduli z, typically of the form27

D1 : xa1 + η xb2 = 0 ,

where xi are some homogeneous coordinates on the ambient space, a, b some constants that

depend on the details and η a fixed constant, which is a phase factor in appropriate coor-

dinates. This hyperplane can be deformed into a family D1 : xa1 + ẑ xb2 = 0 by replacing

the constant η by a complex parameter ẑ. The relative three-form Ω and the relative pe-

riod integrals on the family of cohomology groups H3(Z∗,D1), satisfy a set of Picard-Fuchs

equations

La(θ, θ̂) Ω = dω(2,0) ⇒ La(θ, θ̂) T (z, ẑ) = 0 , a = 1, ..., A ,

where a is some label for the operators. As above the differential operators can be split into

two pieces

La(θ, θ̂) =: Lbulk
a − Lbdry

a θ̂ , (3.52)

where the bulk part Lbulk
a (θ) acts only on the closed-string moduli z and the boundary part

Lbdry
a (θ, θ̂) θ̂ contains at least one derivative in the parameters ẑ. Since the dependence on

ẑ localizes on D1, the derivatives 2πi θ̂ T (z, ẑ) are proportional to the periods (3.30) on the

surface D1

2πi θ̂ T (z, ẑ) = π(z, ẑ) . (3.53)

26For the quintic the additional operators are of the form Lbdryθ2, where Lbdryi∗ω1 = 0 modulo exact 2-forms

on D.
27Note that the equation for D1 is a priori defined in the ambient space. However, by restriction to the

hypersurface Z∗ we also identify D1 with a divisor on the hypersurface Z∗. For ease of notation we denote

both the divisor of the ambient space and of the hypersurface with the same symbol D1.
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Rearranging eq.(3.52) and restricting to the critical point ẑ = η one obtains an inhomogeneous

Picard-Fuchs equation

Lbulk
a T (z) = fa(z) (3.54)

with T (z) = T (z, η) and

2πi fa(z) = Lbdry
a π(z, ẑ)

∣∣∣
ẑ=η

. (3.55)

In absolute cohomology the inhomogeneous term fa(z) is due to the fact that the bulk oper-

ators Lbulk
a satisfy

Lbulk
a Ω = dβ ⇒ Lbulk

a

∫
Γ∈H3(X,Z)

Ω = 0 , (3.56)

where d is the differential in the absolute setting. This is sufficient to annihilate the pe-

riod integrals over cycles, as indicated on the right hand side of the above equation, but

leads to boundary terms in the chain integral (3.33). In the absolute setting and based on

Griffiths-Dwork reduction the inhomogeneous term fa(z) has been determined by a residue

computation in [54]. Here we see that the functions fa(z) are different derivatives of the

surface period π(z, ẑ), restricted to the critical point. Hence, together with the bulk Picard-

Fuchs operators, the surface period determine both the critical locus (3.29) and the critical

tension.

In the examples we are going to find that the inhomogeneous terms fa(z) satisfy a hyper-

geometric differential equation as well:

Linh
a fa(z) = 0 . (3.57)

The hypergeometric operators Linh
a descend from the Picard-Fuchs operators LD of the sur-

face, which annihilate the surface periods LDπ(z, ẑ) = 0.28 Specifically, if fa(z) is non-zero,

the operator Linh
a can be defined as

Linh
a =

(
LD + [Lbdry

a ,LD]Lbdry
a

−1
)
ẑ=η

, (3.58)

where the operators on the right hand side are restricted to the critical point as indicated.

It follows from the above that the inhomogeneous terms fa(z) can be written as an infinite

hypergeometric series in the closed-string moduli. However, on general grounds the fa(z) need

to be well-defined over the open/closed moduli space, which simplifies on-shell to a finite cover

of the complex structure moduli spaceMCS(Z∗) of the three-fold [73]. This implies that the

hypergeometric series fa(z) can be written as rational functions in the closed string moduli

and the roots of the extra equations defining the curves C.29

In the examples of chapter 4 we observe that already the leading terms of the surface periods

π(z, ẑ) become rational functions at the special symmetric points on the Noether-Lefschetz

28For simplicity we suppress an index for distinguishing several Picard-Fuchs operators LD.
29We are grateful to Johannes Walcher for explaining to us this property of the inhomogeneous terms and for

pointing out the results of [161] on this issue.
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locus N in this sense. Hence there appears to be a connection between the enhancement

of the Picard-lattice of the surface at these points, rationality of its periods and D-brane

vacua. The rationality property is preserved when acting with Lbdry in (3.55) to obtain

the inhomogeneous term fa. In the examples we verify, that the contribution fa(Cα`) of a

particular boundary curve Cα` to the inhomogeneous term can be written in closed form as

follows:

fa(Cα`) =
pa(ψ, α)

qa(ψ, α)
|α=α`(ψ) =

ga(ψ, α)∏
i ∆l(C)γ

a
i
|α=α`(ψ) , (3.59)

where pa, qa are polynomials in the variables (ψ, α). Here ψ = ψ(z) is a short-hand for

the fractional power of the closed string moduli z appearing in the defining equation of the

hypersurface Z∗ and {α`} are the roots of the extra equations defining the curves, with the

root α` corresponding to the component Cα` . Moreover, the zeros of the denominator appear

only at the zeros of the components ∆i(C) of the open-string discriminant, where different

roots/curves coincide for special values of the moduli ψ. The exponents γai are some constants

and ga(ψ, α) some functions without singularities in the interior of the moduli space.

3.5. Gauss-Manin connection and integrability conditions

The Picard-Fuchs system for the relative periods derived in the previous section captures

the variation of mixed Hodge structure on the relative cohomology group H3(Z∗,D). In this

section we work out some relations and predictions of mirror symmetry for a family of A- and

B-branes from the associated Gauss-Manin connection.

3.5.1. Gauss-Manin connection on the open/closed deformation space M

Geometrically we can view H3(Z∗,D) as the fiber of a complex vector bundle over the

open/closed deformation space M. As the relative cohomology group30 H3 depends only

on the topological data, the fiber is up to monodromy constant over M, and there is a

trivially flat connection, ∇, called the Gauss-Manin connection. The Hodge decomposition

H3 = ⊕3
p=0H

3−p,p varies over M, as the definition of the Hodge degree depends on the

complex structure. The Hodge filtrations F p

H3 = F 0 ⊃ F 1 ⊃ F 2 ⊃ F 3 ⊃ F 4 = 0 , F p = ⊕q≥pHq,3−q ⊂ H3 ,

define holomorphic subbundles Fp whose fibers are the subspaces F p ⊂ H3. The action of

the Gauss-Manin connection ∇ on these subbundles has the property ∇(Fp) ⊂ Fp−1 ⊗ T ∗M,
known as Griffiths transversality.

Concretely, the mixed Hodge structure on the relative cohomology space H3(Z∗,D) looks

as follows. The Hodge filtrations are

F 3 = H3,0(Z∗,D) = H3,0(Z∗) ,

30Letters without arguments refer to relative cohomology over C, e.g. H3 = H3(Z∗,D; C).
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F 2 = F 3 ⊕H2,1(Z∗,D) = F 3 ⊕H2,1(Z∗)⊕H2,0
var(D) ,

F 1 = F 2 ⊕H1,2(Z∗,D) = F 2 ⊕H1,2(Z∗)⊕H1,1
var(D) ,

F 0 = F 1 ⊕H0,3(Z∗,D) = F 1 ⊕H0,3(Z∗)⊕H0,2
var(D) , (3.60)

where the equations to the right display the split H3(Z∗,D) ' ker
(
H3(Z∗) → H3(D)

)
⊕

coker
(
H2(Z∗)→ H2(D)

)
. The weight filtration is defined as

W2 = 0 , W3 = H3(Z∗) , W4 = H3(Z∗,D) ,

such that the quotient spaces W3/W2 ' H3(Z∗) and W4/W3 ' H2(D) define pure Hodge

structures. Variations in the closed (δz) and open (δẑ) string sector act schematically as

F 3 ∩W3
δz //

δẑ

''

F 2 ∩W3
δz //

δẑ

((

F 1 ∩W3
δz //

δẑ

((

F 0 ∩W3

F 2 ∩ (W4/W3)
δz ,δẑ // F 1 ∩ (W4/W3)

δz ,δẑ // F 0 ∩ (W4/W3)

(3.61)

The variation of the Hodge structure over M can be measured by the period matrix

ΠΣ
A =

∫
γΣ

αA , αA ∈ H3 ,

where γΣ is a fixed topological basis for H3(Z∗,D) and {αA} with A = 1, ...,dim(H3) denotes

a basis of relative 3-forms. One may choose an ordered basis {α(q)
A } adapted to the Hodge

filtration, such that the subsets {α(q′)
A }, q′ ≤ q span the spaces F 3−q for q = 0, ..., 3.

To make contact between the Hodge variation and the B-model defined at a point m ∈
M, the Gauss-Manin connection has to be put into a form compatible with the chiral ring

properties of a SCFT. Chiral operators of definite U(1) charge are identified with forms of

definite Hodge degree, which requires a projection onto the quotient spaces F p/F p+1 at the

point m. Moreover, the canonical CFT coordinates ta, centered at m ∈ M, should flatten

the connection ∇ and we require

∇aα(q)
A (m) = ∂taα

(q)
A (m)

!
= (Ca(t) · α(q)

A )(m) ∈ F 3−q−1/F 3−q|m . (3.62)

The second equation is an important input as it expresses the non-trivial fact, that in the CFT,

an infinitesimal deformation in the direction ta is generated by an insertion of (the descendant)

of a chiral operator φ
(1)
a in the path integral, which in turn can be described by a naive

multiplication by the operator φ
(1)
a represented by the connection matrix Ca(t). The above

condition assumes that such a simple relation holds on the full open/closed deformation space

for all deformations in F 2/F 3. Thus φ
(1)
a can be either a bulk field of left-right U(1) charge

(1, 1) or a boundary operator of total U(1) charge 1. The consistency of the results obtained

below with this ansatz and the correct matching with the CFT deformation space, discussed

in section 3.6, provides evidence in favor of a proper CFT realization of this structure.
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Phrased differently, we consider the α
(q)
A as flat sections of an “improved” flat connection

Da in the sense of [87, 22]

Daα
(q)
A = 0, Da = ∂za − Γa(z)− Ca(z), [Da, Db] = 0 ,

where za are local coordinates on M, the connection terms Γa(z) and Ca(z) are maps from

F3−q to F3−q and F3−q−1, respectively, and Γa(z) vanishes in the canonical CFT coordinates

ta.
31

Instead of working in generality, we study the Gauss-Manin connection again for the relative

cohomology group on the two parameter family of branes on the quintic defined by (3.41). We

consider a large volume phase with moduli (2.82) defined by the following linear combination

of charge vectors:

l̃1 = (−4; 0, 1, 1, 1, 1,−1, 1), l̃2 = (−1; 1, 0, 0, 0, 0, 1,−1) . (3.63)

A complete set of differential operators derived from (3.51) is given by

L1 = θ4
1 + (4z1(θ1 − θ2)− 5z1z2(4θ1 + θ2 + 4))

3∏
i=1

(4θ1 + θ2 + i) ,

L2 = θ2(θ1 − θ2) + z2(θ1 − θ2)(4θ1 + θ2 + 1) ,

L3 = θ3
1(θ1 − θ2) + (4z1

3∏
i=1

(4θ1 + θ2 + i) + z2θ
3
1)(θ1 − θ2) .

(3.64)

Computing the ideal generated by the Lk acting on Ω shows that H3 is a seven-dimensional

space spanned by the multiderivatives (1, θ1, θ2, θ
2
1, θ1θ2, θ

3
1, θ

2
1θ2) of Ω. The dimensions dq =

dim(F 3−q/F 3−q+1) are 1, 2, 2, 2 for q = 0, 1, 2, 3, respectively. The d1 = 2 directions tangent

to M represent the single complex structure deformation z = z1z2 of the mirror quintic Z∗

and the parameter ẑ = z2 parametrizing the family of hypersurfaces.

To implement a CFT like structure at a point m ∈ M, one may take linear combinations

of the multiderivatives acting on Ω to obtain ordered bases {α(q)
A } and {γΣ} which bring the

period matrix into a block upper triangular form32

ΠΣ
A =


1 ∗ ∗ ∗
0 11d1×d1 ∗ ∗
0 0 11d2×d2 ∗
0 0 0 11d3×d3

 . (3.65)

31See section 2.6 of [22] for the definition of canonical coordinates from the (closed-string) CFT point of view.
32It is understood, that all entries in the following matrices are block matrices operating on the respective

subspaces of definite U(1) charge, with dimensions determined by the numbers dq.
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Griffiths transversality then implies that in the local coordinates at a point of maximal unipo-

tent monodromy

∇α(0)
1

∇α(1)
2

∇α(1)
3

∇α(2)
4

∇α(2)
5

∇α(3)
6

∇α(3)
7


=


0
∑2

a=1
dza
za
M

(1)
a 0 0

0 0
∑2

a=1
dza
za
M

(2)
a 0

0 0 0
∑2

a=1
dza
za
M

(3)
a

0 0 0 0





α
(0)
1

α
(1)
2

α
(1)
3

α
(2)
4

α
(2)
5

α
(3)
6

α
(3)
7


, (3.66)

where the moduli-dependent matrices M
(q)
a of dimension dq−1 × dq are derivatives of the

entries of Π in (3.65). The above expression is written in logarithmic variables log(za), antici-

pating the logarithmic behavior of the periods at the point of maximal unipotent monodromy

centered at za = 0. In local coordinates xa centered at a generic point m ∈M, the periods are

analytic in xa and dza/za should be replaced with dxa. The left upper block can be brought

into the form
2∑

a=1

dza
za
M (1)
a = (

dq1

2πi q1
,
dq2

2πi q2
)

by the variable transformation

qa(z) = exp(2πiΠa+1
1 (z)) . (3.67)

It has been proposed in [47, 46] that (3.67) represents the mirror map between the A-model

Kähler coordinates ta = 1
2πi ln(qa) on the open/closed deformation space of an A-type com-

pactification (Z,L) and the coordinates za on the complex structure moduli space of an B-type

compactification (Z∗, E) near a large complex structure point. We propose that the above

flatness conditions defines more generally the mirror map between the open/closed deforma-

tion spaces for any point m ∈ M. It is worth stressing that the mirror map defined by the

above flatness argument coincides with the mirror map obtained earlier in [142, 162] for non-

compact examples by a physical argument, using domain wall tensions and the Ooguri-Vafa

expansion at a large complex structure point. This coincidence can be viewed as experimental

evidence for the existence of a more fundamental explanation of the observed flat structure

from the underlying topological string theory, as advocated for in this chapter.

Identifying α
(0)
1 with the unique operator φ(0) = 1 and the α

(1)
a+1 with the charge one

operators φ
(1)
a associated with the flows parametrized by log(qa), (3.66) implements the CFT

relation

∇qaφ(0) = φ(1)
a = φ(1)

a · φ(0) ,

discussed below (3.62). The above series of arguments and manipulations is standard material

in closed string mirror symmetry and led to the deep connection between the geometric Hodge
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variations of Calabi-Yau three-folds in the B-model and A-model quantum cohomology on

the mirror.33 After the variable transformation (3.67) and restricting to the subspace H3(Z∗)

describing the complex moduli space MCS of the mirror quintic, (3.66) becomes
∇α(0)

cl

∇α(1)
cl

∇α(2)
cl

∇α(3)
cl

 =


0 dq

2πi q 0 0

0 0 C(q) dq
2πi q 0

0 0 0 − dq
2πi q

0 0 0 0



α

(0)
cl

α
(1)
cl

α
(2)
cl

α
(3)
cl

 (3.68)

with α
(p)
cl ∈ H3−p,p(Z∗,C) and q = q1q2 = e2πit. Under mirror symmetry these data get

mapped to the Kähler volume t and the so-called Yukawa coupling C(q) = 5 + O(q), which

describes the classical intersection and the Gromov-Witten invariants on the quintic. In the

CFT, the quantities C(q) represent the moduli-dependent structure constants of the ring of

chiral primaries defined in [21].

The point which we are stressing here is that at least part of these concepts continue to

make sense for the Hodge variation (3.66) on the full relative cohomology space H3(Z∗,D)

over the open/closed deformation space M fibered over MCS . More importantly, the Hodge

theoretic definition of mirror symmetry described above gives correct results for the open

string analogues of the Gromov-Witten invariants in those cases, where results have been

obtained by different methods, such as space-time arguments involving domain walls [142,

162].34

In this sense, the existence of a flat structure observed above, and the agreement of the

Hodge theoretic results with other methods, if available, urges for a proper CFT description of

the deformation families defined overM and an appropriate open-string extension of A-model

quantum cohomology. In the following we collect further evidence in favor of an interesting

integrable structure on the open/closed deformation space, working in the B-model.

3.5.2. Integrability conditions

The correlation functions of the topological family of closed-string CFTs satisfy the famous

WDVV integrability condition [82, 83]. In the context of the B-model on a Calabi-Yau

three-fold, this condition becomes part of the N = 2 special Kähler geometry of the complex

structure moduli space, which implies, amongst others, the existence of a single holomor-

phic prepotential F that determines all entries of the period matrix in the canonical CFT

coordinates ta.

There exists no prepotential for the period matrix (3.65) on the relative cohomology group

H3(Z∗,D), but certain aspects of the N = 2 special geometry of the closed-string sector

H3(Z∗) ⊂ H3(Z∗,D) generalize to the larger cohomology space, justifying the term N = 1

33See [35, 93, 94] for background material and a comprehensive list of references.
34See [49, 47, 46, 163, 103, 1, 104] for various examples.
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special geometry [48, 47, 46].35 Some aspects of this N = 1 special geometry have been

worked out for non-compact Z∗ in [47, 46, 163] and we add here some missing pieces for the

compact case. In the following we work at a “large complex structure point” m0 ∈ M of

maximal unipotent monodromy. The existence of such points m0 follows from the general

property of the GKZ systems.

We start from the following general ansatz for the 7-dimensional period vector of the holo-

morphic 3-form

ΠΣ
0 =

(
1, t, t̂, Ft(t), W (t, t̂), F0(t), T (t, t̂)

)
, (3.69)

where t is the closed- and t̂ the open-string deformation, related to the flat normal crossing

divisor coordinates (t1(z1, z2), t2(z1, z2)) of (3.67) by the linear transformation t = t1 + t2,

t̂ = t2. The subset of periods in the closed-string sector is determined by the prepotential

F as (1, t, Ft = ∂tF , F0(t) = 2F(t) − t∂tF) and depends only on t. The additional periods

(t̂,W (t, t̂), T (t, t̂)) are so far arbitrary functions, except that the leading behavior at za = 0

is, schematically,

t, t̂ ∼ log(z.), Ft,W ∼ log2(z.), F0, T ∼ log3(z.) .

The function W is in some sense the closest analogue of the closed string prepotential and

indeed has been conjectured to be a generating function for the open-string disc invariants in

[47, 46, 103].

For an appropriate choice of basis {α(q)
A }, the period matrix takes the upper triangular form

(3.65) with entries

(Π) =



1 t t̂ Ft W F0 T

0 1 0 Ft,t W,t F0,t T,t

0 0 1 0 W,t̂ 0 T,t̂
0 0 0 1 0 −t µ

0 0 0 0 1 0 ρ

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, (3.70)

where the derivatives w.r.t. t and t̂ are denoted by subscripts and the functions µ and ρ are

defined by

µ =
W,tt̂T,tt −W,ttT,tt̂

CW,tt̂

, ρ =
T,tt̂
W,tt̂

, C = F,ttt = Ft,tt .

35N = 1, 2 denotes the number of 4d space-time supersymmetries of the Calabi-Yau compactification of the

physical type II string to four dimensions with and without branes.
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The connection matrices read

Mt =



0 1 0 0 0 0 0

0 0 0 C W,tt 0 0

0 0 0 0 W,tt̂ 0 0

0 0 0 0 0 −1 µt

0 0 0 0 0 0 ρ,t

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, Mt̂ =



0 0 1 0 0 0 0

0 0 0 0 W,tt̂ 0 0

0 0 0 0 W,t̂t̂ 0 0

0 0 0 0 0 0 µ,t̂
0 0 0 0 0 0 ρ,t̂
0 0 0 0 0 0 0

0 0 0 0 0 0 0


. (3.71)

The integrability condition ∂tMt̂ − ∂t̂Mt + [Mt̂,Mt] = 0 implies that

ρ(t, t̂) = aW,t̂ + b , µ(t, t̂) = aC−1(t)

(∫
(W 2

,tt̂
−W,ttW,t̂t̂) dt̂+ g(t)

)
, (3.72)

with a, b some complex constants and g(t) an undetermined function. The relation (3.62)

then implies that the period T is of the form

T (t, t̂) =

∫ (a
2
W 2
,t̂

+ bW,t̂

)
dt̂+ f(t) , (3.73)

with ∂2
t f(t) = g(t). The integrability condition (3.73) determines the top period in the open-

string sector in terms of the other periods, up to the function f(t). In this sense it is similar

to the relation in the closed-string sector, that determines the top period F0 in terms of the

other periods. The integration constants can be fixed by determining the leading behavior of

the periods in the large volume limit, as we will do in Appendix D for the quintic example.

The above argument and the integrability relation (3.73) applies to any two parameter

family with one closed- and one open-string modulus and can be straightforwardly generalized

to more parameter cases. For a given geometry, such as the quintic family described by

the operators Lk in (3.64), one can of course reach the same conclusion by studying the

explicit solutions and also determine the function f(t). As noticed below (3.49), the relative

forms in the open-string sector of this family can be associated with the Hodge variation

on a quartic K3 surface. The period vector ~π of the K3 surface is spanned by the solutions

∂t̂(t̂,W, T ) = (1,W,t̂, T,t̂) and the integrability condition (3.73) represents an algebraic relation

~πT η̂ ~π = 0 amongst the K3 periods, where η̂ is the intersection matrix. We will come back

to the intersection form η̂ when we discuss the topological metric in section 3.8.

One has to note that the above discussion was essentially independent of the choice of

the large complex structure point m0 and a similar argument for other m shows that the

integrability condition (3.73) holds for any m ∈M in the local coordinates defined by (3.67).

A cautious remark

The similarities of the above arguments with those in the case of closed string mirror symmetry

may have obscured the fact that one crucial datum is still incomplete: the topological metric η

on the open/closed state space. In the closed-string sector, the topological metric ηcl is given
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by the classical intersection matrix on H3(Z∗) and its knowledge permits, amongst others,

the determination of the true geometric periods as a particular linear combinations of the

solutions to the Picard-Fuchs equations. More importantly, the topological metric is needed

to complete the argument that identifies C(q) in (3.68) with the structure constants of the

chiral ring of [21], as well as to access the non-holomorphic and higher genus sector of the

theory using the tt∗-equations [87] and the holomorphic anomaly equation [22].

3.6. Relation to CFT correlators

As discussed in the last section the structure of the Gauss-Manin connection, which is asso-

ciated to the variation of the mixed Hodge structure, hints at a worldsheet interpretation.

In this section we elaborate further on this aspect and point out the relation between rela-

tive periods and CFT correlators. In particular we motivate the obstruction of the D7-brane

moduli space by D5-branes from the worldsheet point of view.

3.6.1. Open/closed observables

The relevant closed-string observables in the BRST cohomology of the topological B-model

of a Calabi-Yau manifold are locally given by [20]

φ(p) = φ(p)j1···jp
ı̄1···̄ıp η

ı̄1 · · · ηı̄pθj1 · · · θjp , (3.74)

where the worldsheet fermions, ηı̄ = ψı̄+ + ψı̄− and θi = gi̄
(
ψ̄+ − ψ

̄
−
)
, are sections of the

pullbacks of the anti-holomorphic tangent bundle and the holomorphic cotangent bundle of

target-space Calabi-Yau manifold. For the Calabi-Yau three-fold Z∗ these observables φ(p)

are identified geometrically with representatives in the sheaf cohomology groups

φ(p) ∈ Hp(Z∗,ΛpTZ∗) ' H(3−p,p)(Z∗) , p = 0, 1, 2, 3 . (3.75)

The last identification is due to the contraction with the unique holomorphic (3,0) form of

the Calabi-Yau three-fold Z∗. The integer p represents the left and right U(1) charge of the

bulk observable φ(p).

The local open-string observables for a worldsheet with B-type boundary are analogously

given by

φ̂(p+q) = φ̂(p+q)j1···jq
ı̄1···̄ıp η

ı̄1 · · · ηı̄pθj1 · · · θjq . (3.76)

In the absence of a background gauge field on the worldvolume of the brane the fermionic

modes θj vanish along Neumann directions whereas the fermionic modes ηı̄ vanish along

Dirichlet directions on the boundary of the worldsheet [164]. Hence, locally we view the

fermionic modes θj as sections of the normal bundle and the fermionic modes ηı̄ as sections
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of the anti-holomorphic cotangent bundle of the brane. With background fluxes on the brane

worldvolume the boundary conditions become twisted and obey [51]

θi = Fi̄ η
̄ . (3.77)

In [141] it is explicitly demonstrated that the observables (3.76) in the BRST cohomology

of the open-string sector for a brane E arise geometrically as elements of the extension groups

φ̂(p+q) ∈ Extp+q(E,E) , p+ q = 0, 1, 2, 3 . (3.78)

In the present context, the integer p+ q is equal to the total U(1)-charge of the open-string

observable φ̂(p+q).

Deformations of the topological B-model are generated by the marginal operators, which

correspond to BRST observables with U(1)-charge one, and hence they appear in the coho-

mology groups H(2,1)(Z∗) and Ext1(E,E) for the closed and open deformations, respectively.

In order to make contact with the Hodge filtration of H3(Z∗,D) we interpret the divisor

D of the Calabi-Yau three-fold Z∗ as the internal worldvolume of a B-type brane. For a

divisor the extension groups (3.78) simplify [141], and in particular Ext1(D,D) reduces to

H0(D, ND) ' H(2,0)(D), where the last identification results again from the contraction with

the holomorphic (3,0)-form. For our particular example the cohomology groups H(2,1)(Z∗)

and H(2,0)(D1) are both one-dimensional and therefore are generated by the closed- and

open-string marginal operators φ and φ̂

φ(1) ∈ H(2,1)(Z∗) ⊂ F 2/F 3 , φ̂(1) ∈ H(2,0)(D1) ⊂ F 2/F 3 .

Due to the identification F 2/F 3 = H(2,1)(Z∗,D1) ' H(2,1)(Z∗) ⊕ H(2,0)(D1) we observe

that the infinitesimal deformations ∇tα(0)
1 ∼ φ(1) and ∇t̂α

(0)
1 ∼ φ̂(1) in (3.62) precisely agree

with the closed and open marginal operators φ(1) and φ̂(1). As a consequence the discussed

Picard-Fuchs equations, governing the Hodge filtration F p, describe indeed the deformation

space associated to the closed and open marginal operators φ(1) and φ̂(1).

3.6.2. Obstructions and CFT correlators

In the presence of B-type boundaries infinitesimal deformations are generically obstructed

at higher order. These obstructions are encoded in the moduli-dependent superpotential

generated by disc correlators with insertions of bulk and boundary marginal operators [165,

166, 167, 140]. The relevant disc correlators arise from non-trivial ring relations involving

marginal operators and the (unique) boundary top element φ̂(3) ∈ Ext3(D,D). Hence the

superpotential is extracted by identifying the element φ̂(3) in the relative cohomology group

H3(Z∗,D). For the family of hypersurfaces D the extension group Ext3(D,D) becomes [141]

φ̂(3) ∈ Ext3(D,D) ' H2(D, ND) ' H(2,2)(D) ,



3.6 Relation to CFT correlators 93

where locally φ̂(3) = φ̂(3)k
ı̄̄η

ı̄η̄θk. It is obvious that the cohomology group H(2,2)(D) does

not appear in the filtration F p of the relative cohomology group H3(Z∗,D). On the other

hand the variation of mixed Hodge structure encodes by construction the ring relations of the

observables generated by the marginal operators φ(1) and φ̂(1). Therefore we conclude that

these marginal operators do not generate the boundary-boundary top element φ̂(3). Thus

the analyzed deformation problem is unobstructed and does not give rise to a non-vanishing

superpotential.

From a physics point of view the family of divisors D describes a family of holomorphic

hypersurfaces, which all give rise to supersymmetric B-brane configurations, and hence we

should not expect any obstructions resulting in a superpotential.

However, the result of the above analysis drastically changes as we add a D5-brane charge

on 2-cycles in D, e.g. by adding non-trivial background fluxes on the worldvolume of the

B-type brane. From a space-time perspective [143, 168], we expect the appearance of F-

terms precisely for those two-form background fluxes, whose field strength takes values in the

variable cohomology of the hypersurface D

F ∈ coker
(
H2(Z∗,Z)→ H2(D,Z)

)
. (3.79)

These fluxes induce a macroscopic superpotential [143, 168, 169, 144]

W =

∫
D
F ∧ ω =

∫
Γ
F ∧ Ω , (3.80)

where ω ∈ H2,0(D) is obtained by contracting the bulk (3,0)-form Ω with a section of the

normal bundle to D. The second expression, derived in a more general context in [144], is

equivalent to the first one for an appropriate choice of 5-chain with boundary D.

In the microscopic worldsheet description the worldvolume flux Fi̄ yields twisted boundary

conditions (3.77), and the fermionic modes θi of the open-string observables (3.76) are in

general no longer sections of the normal bundle ND. Instead they should be viewed as

appropriate section in the restricted tangent bundle, TZ∗|D [141]. As a consequence we can

trade (without changing the U(1) charge) fermionic modes η̄ with appropriate fermionic

modes θi. As a result the boundary top element φ̂(3) can now be associated with an element

in the variable two-form cohomology

Ext3(D,D) 3 φ̂(3)k
ı̄̄ ηı̄η̄θk

Fi̄←→ φ̂
(3)jk
ı̄ ηı̄θjθk

Ωijk←→ φ̂
(3)
i̄ dx

i ∧ dx̄ ∈ coker
(
H2(Z∗)→ H2(D)

)
.

(3.81)

Thus in the presence of worldvolume background fluxes the boundary top element φ̂(3) does

correspond to an element in the Hodge structure filtration F p, and the superpotential is de-

scribed by a solution of the Picard-Fuchs equations. In this way the a priori unobstructed

deformation problem of divisors D in the Calabi-Yau three-fold is capable to describe super-

potentials associated to D5-brane charges in H2(D) [47, 46, 103, 1].
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On the other hand, since the discussed F-term fluxes (3.79) are elements of the variable

cohomology of the hypersurface D, i.e. the field strength of the fluxes can be extended

to exact two forms in the ambient Calabi-Yau space, they do not modify the D5-brane K-

theory charges. Therefore if a suitable D5-brane interpretation is applicable the flux-induced

superpotentials describe domain wall tensions between pairs of D5-branes, which wrap homo-

logically equivalent two cycles.

When written in the flat coordinates ta = 1
2πi ln(qa) in (3.67), the Gauss-Manin connection

on the total cohomology space takes the form:



∇α(0)
1

∇α(1)
2

∇α(1)
3

∇α(2)
4

∇α(2)
5

∇α(3)
6

∇α(3)
7


=
∑
b


0 C

(0)
b (qa)

dqb
qb

0 0

0 0 C
(1)
b (qa)

dqb
qb

0

0 0 0 C
(2)
b (qa)

dqb
qb

0 0 0 0





α
(0)
1

α
(1)
2

α
(1)
3

α
(2)
4

α
(2)
5

α
(3)
6

α
(3)
7


. (3.82)

The most notable difference to the closed-string case (cf. (3.68)) is that, whereas the

matrix C
(0)
b still is of the canonical form (C

(0)
b ) l

1 = δbl, the matrices C
(q)
b are now both moduli

dependent for q = 1, 2:

(C
(1)
t ) =

(
C W,tt

0 W,tt̂

)
, (C

(1)

t̂
) =

(
0 W,tt̂

0 W,t̂t̂

)
, (C

(2)
t ) =

(
−1 µ,t

0 ρ,t

)
, (C

(2)

t̂
) =

(
0 µ,t̂
0 ρ,t̂

)
.

In correspondence with the closed-string sector it is tempting to interprete the dq−1 × dq

matrices C
(q)
b as the structure constants of a ring of open and closed chiral operators

φ
(1)
b · φ

(q)
k

?
= (C

(q)
b ) l

k φ
(q+1)
l ,

as described in [47, 46, 170]. A rigorous CFT derivation of such a relation is non-trivial, as

the Hodge variation mixes bulk and boundary operators and describes the bulk-boundary

ring in the sense of [141], about which little is known in the context of topological strings

(see however [85, 84]). A related complication is the need of a topological metric on the

space of closed and open BRST states that mixes contributions at different order of the string

coupling. The most direct way to connect the closed-string periods with a CFT quantity is the

interpretation as overlap functions between boundary states and chiral operators [131], and it

is likely that a similar idea can be applied to the entries of the relative period matrix. It would

be interesting to make this precise. It would also be interesting to understand more generally

the relation of the above concepts to the CFT results obtained from matrix factorizations in

[171, 172, 173, 174].
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3.7. GLSM and enhanced toric polyhedra

We observed in section 3.4 that the differential operators we derived from the variation of

mixed Hodge structure on the Calabi-Yau three-fold for the case of toric branes can be

interpreted as the GKZ-system of a non-compact Calabi-Yau four-fold. This reflects the

open/closed duality of B-branes and Calabi-Yau four-folds of [48, 56]. In this section we are

going to show how one can systematically associate a gauged linear σ-model (GLSM) to a

given toric B-brane and how to extract the GKZ-system from it.

The GLSM puts the Calabi-Yau and the brane geometry on equal footing and allows

to study the phases of the combined system by standard methods of toric geometry. The

GLSM thus provides valuable information on the global structure of the combined open/closed

deformation space which will be important for identifying and investigating the various phases

of the brane geometry, in particular large volume phases as well as transitions among different

phases [49, 73].

3.7.1. Construction of the open/closed GLSM

We will use the concept of toric polyhedra to define the GLSM for the mirror pairs of toric

brane geometries. This approach has the advantage of giving a canonical construction of

the B-model mirror to a certain A-brane geometry and provides a short-cut to derive the

generalized hypergeometric system for the relative periods as given in (3.51).

As discussed in Appendix A, Batyrev’s correspondence describes a mirror pair of toric

hypersurfaces (Z,Z∗) by a pair of dual polyhedra (∆,∆?). What we are proposing here is

that there is a similar correspondence between “enhanced polyhedra” (∆[(Z,L),∆?
[ (Z

∗, E))

and the pair (Z,Z∗) of mirror manifolds together with the pair of mirror branes (L,E) as

defined before.

The enhanced polyhedron ∆[(Z,L) has the following simple structure: The points νi(Z) of

∆(Z) defining the manifold Z are a subset of the points of ∆[(Z,L) that lie on a hypersurface

H in a five-dimensional lattice Λ5. We choose an ordering of the points µi ∈ ∆[(Z,L) and

coordinates on Λ5 such that the points in H are given by

(µi) = (νi, 0), i = 1, ..., k ,

where k is the number of points of ∆(Z). The brane geometry is described by k′ extra points

ρi with (ρi)5 < 0, where k′ is related to the number n̂ of (obstructed) moduli of the brane by

k′ = n̂+ 1. Thus ∆[(Z,L) is defined as the convex hull of the points

∆[(Z,L) = conv
(
{µi(∆(Z))} ∪ {ρi(L)}

)
, {µi(∆(Z))} ⊂ ∆[(Z,L) ∩H . (3.83)

For simplicity we assume that the polyhedron ∆?
[ can be naively defined as the dual of ∆[ in

the sense of [109].
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To make contact between the definition of the toric branes (as e.g. in Appendix A) and

the extra points ρi, consider the linear dependences between the points of ∆[(Z,L)∑
i

lai (∆[)µi = 0 . (3.84)

These relations may be split into two sets in an obvious way. There are h1,1(Z) relations, say

(la(∆[)) = (la(∆), 0k
′
), a = 1, ..., h1,1(Z) ,

which involve only the first k points and reflect the original relations la(∆) between the points

νi(Z) of ∆(Z); they correspond to Kähler classes of the manifold Z. The remaining relations

la(∆[), a > h1,1(Z) involve also the extra points ρi. To describe a brane as defined by the

charge vectors l̂a(L) we choose the points ρi such that the remaining relations are of the form

(la(∆[)) = (l̂a(L), ...), a > h1,1(Z) .

The above prescription for the construction of the enhanced polyhedron ∆[(Z,L) from the

polyhedron ∆(Z) for a given manifold Z is well-defined if we require a minimal extension by

k′ = n̂+ 1 points.

3.7.2. Differential equations on the moduli space from the GLSM

The combined open/closed string deformation space of the brane geometries (Z,L) or (Z∗, E)

can now be studied by standard methods of toric geometry. Let36 {lai } denote a specific

choice of basis for the generators of the relations (3.84) in the GLSM and ai the coefficients

of the hypersurface equation P =
∑

i aiyi of the mirror B-model. From the homogeneous

coordinates ai on the complex moduli space one may define local coordinates associated with

the choice of a basis {lai } as above by37

za = (−)l
a
0

∏
i

a
lai
i , a = 1, ...,M +N . (3.85)

Given the toric polyhedra we define the Picard-Fuchs system as the canonical GKZ system

associated with ∆[.
38 By the results of [115, 109], the generalized hypergeometric system

associated to (∆[,∆
?
[ ) leads to the following differential operators for a = 1, ...,M +N :

La =

la0∏
k=1

(ϑa0 − k)
∏
lai>0

lai−1∏
k=0

(ϑai − k)− (−1)l
a
0za

−la0∏
k=1

(ϑa0 − k)
∏
lai<0

−lai−1∏
k=0

(ϑai − k) . (3.86)

36The underscore on la(∆[) will be dropped again to simplify notation.
37The sign is a priori convention but receives a meaning if the classical limit of the mirror map is fixed as in

[108].
38We are tacitly assuming that the GKZ system {La} is already a complete Picard-Fuchs system, which is

possibly only true after a slight modification of the GKZ system.
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Here ϑx denotes a logarithmic derivative ϑx = x ∂
∂x and the derivatives of the homogeneous

coordinates ai on the complex structure moduli and the local coordinates (2.82),(3.85) are

related by ϑai =
∑

a l
a
i ϑza . The products are defined to run over non-negative k only so that

the derivatives ϑa0 appear only in one of the two terms for given a. Therefore we obtained

the GKZ-equations in (3.51) as claimed. The solutions of the Picard-Fuchs system in (3.51)

have a nice expansion around za = 0; expansions around other points in the moduli space

can be obtained from a change of variables.

For an appropriate choice of basis vectors la, given by the mori vectors of a triangulation

(see below), the solutions to the GKZ system can be written down explicitly by the Frobenius

method [108, 110], as already discussed in section 2.4.4. This will be important for explicit

computations in chapter 4. In appropriate variables the generating functions are given by

B{la}(za; ρa) =
∑

n1,...,nN∈Z+
0

Γ (1−
∑

a l
a
0(na + ρa))∏

i>0 Γ (1 +
∑

a l
a
i (na + ρa))

∏
a

zna+ρa
a . (3.87)

By differentiation with respect to ρi and evaluation at ρi = 0 one can construct the solutions

to (3.51),(3.86).

3.7.3. Phases of the GLSM and structure of the solutions

In the previous definitions we have used a specific choice of basis {lai } to define the local

coordinates (2.82) and the differential operators (3.51). Different choices of coordinates cor-

respond to different phases of the GLSM [5]. The extreme cases are on the one hand a large

volume phase in all the Kähler parameters, where the GLSM describes a smooth classical

geometry and on the other hand a pure Landau-Ginzburg phase. In between there are mixed

phases, where only some of the moduli are at large volume and other moduli are fixed in a

stringy regime of small volume. A nice instanton expansion can be expected a priori only for

moduli at large volume. Representing the GLSM by the toric polyhedron ∆[, the different

phases of the GLSM may be studied by considering different triangulations of the polyhedron

[175, 109] (see figure 3.1 for an example). Without going into the technical details of this

procedure, let us outline the relevance of this phase structure in the present context. A given

B-brane configuration corresponds to a critical point of the superpotential which lies in a

certain local patch of the parameter space. To study the critical points in a given patch and

to give a nice local expansion of the superpotential it is necessary to work in the appropriate

local coordinates. The different triangulations of ∆[ define different regimes in the parame-

ter space, where the relative periods ΠΣ have a certain characteristic behavior depending on

whether the brane moduli are at large or at small volume. To find an interesting instanton

expansion we look for triangulations that correspond to patches where at least some of the

moduli are at large volume.

From the interpretation of the system {La} of differential operators as the Picard-Fuchs

system for the relative periods on Z∗ we expect the solutions of the equations (??) to have
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toric brane

fundamental disc

Phase I Phase II

Figure 3.1.: Two different large volume triangulations of ∆[(Z,L) for a toric brane on local P2 [49].

The two phases are connected by an open string flop transition at the marked edge

[49, 73].

the following structure:

1. There are 2M + 2 solutions Π(z) that represent the periods of Z∗ up to linear com-

bination and depend only on the complex structure moduli za, a = 1, ..., h1,1(Z) of

Z∗.

2. There are 2N further solutions Π̂(z, ẑ) that do depend on all deformations and define

the mirror map for the open string deformations and the superpotential (more precisely:

brane tensions).

3.39For a maximal triangulation corresponding to a large complex structure point centered

at za = 0 ∀a, there will be a series solution ω0(za) = 1 + O(za) and M + N solutions

ωc(za) with a single log behavior that define the open/closed mirror maps as (c is fixed

in the following equation)

tc(za) =
ωc(za)

ω0(za)
=

1

2πi
ln(zc) + Sc(za) ,

where Sc(za) is a series in the coordinates za.

39The following holds for appropriate choices of normalization and the sign in (2.82) that have been made in

(3.51), explaining the special appearance of the entry i = 0 corresponding to the fiber of the anti-canonical

bundle.



3.8 F-theory four-folds and effective N = 1 supergravity 99

It follows from a) that the mirror map tcl(z) in the closed string sector does not involve the

open string deformations, similarly as has been observed in [142, 162, 46, 47] in the non-

compact case.40 However the open string mirror map top(z, ẑ) depends on both types of

moduli. For explicit computations of the mirror maps at various points in the moduli we

refer to the examples in chapter 4.

The special solution Π =Wbrane(z, ẑ) has the further property that its instanton expansion

near a large volume/large complex structure point encodes the Ooguri-Vafa invariants of the

brane geometry:

Winst(qa) =
∑
β

Gβq
β =

∑
β

∞∑
k=1

Nβ
qk.β

k2
. (3.88)

Here β is the non-trivial homology class of a disc, β ∈ H2(Z,L), qβ a weight factor related to

its appropriately defined Kähler volume, Gβ the fractional Gromov-Witten type coefficients

in the instanton expansion and Nβ the integral Ooguri-Vafa invariants [52].

3.8. F-theory four-folds and effective N = 1 supergravity

The four-dimensional effective action for the brane compactification (Z,L), or its mirror

(Z∗, E), should be described by a general N = 1 supergravity theory, which depends on the

Kähler potential and the superpotential through the function [176, 177]

G = K(z, ẑ; z̄, ¯̂z) + lnW(z, ẑ) + ln W̄(z̄, ¯̂z) . (3.89)

Here (z, ẑ) denote again local complex coordinates on the bundle M→MCS . Similarly the

construction of the las section associates to the mirror pair of brane compactifications (Z,L)

and (Z∗, E) a dual four-fold compactification with the same supersymmetry. Some details

of this duality, including a lift to a full F-theory compactification, will be explained below.

Subsequently we compare the effective couplings in these two descriptions and show that they

lead to a consistent proposal for the N = 1 supergravity function G(z, ẑ; z̄, ¯̂z).

3.8.1. Four-fold dualities and F-theory

The construction of the last section associates a toric four-fold polyhedron ∆[ to a toric brane

configuration defined as in [142]. For the quintic example, ∆[ is defined in (3.1) and has the

property that the toric GKZ system associated with ∆[ reproduces the GKZ system for the

relative cohomology group for the brane compactification (Z∗, E) via (3.51). In the following

we describe some details of the duality map on the target and moduli spaces.

First note that the polyhedron ∆[ and its dual polyhedron ∆?
[ actually define a mirror

pair of Calabi-Yau four-folds X]
4 and X]∗

4 . As is clear from the derivation of the Picard-

Fuchs equations in section 3.4, the relative periods of the brane compactification (Z∗, E) are

40This statement holds at zero string coupling.
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identified with the periods of holomorphic (4, 0)-form on the four-fold X]∗
4 . It follows that the

complex structure deformations of the brane compactification (Z∗, E) map to the complex

structure of the four-fold X]∗
4 . Adding mirror symmetry, one obtains the following relation

between the different compactifications:

(Z,L)
(A− branes)

4f dual
��

mirror

symmetry
//

(Z∗, E)
(B− branes)oo

4f dual

��
X]

4
mirror

symmetry
// X]∗

4
oo

(3.90)

The vertical maps in this diagram preserve, whereas the horizontal maps exchange, the notion

of complex and Kähler moduli.

The mirror pair (X]
4, X

]∗
4 ) of four-folds constructed in this way has a very special geometric

structure that reflects the mirror symmetry between A-type and B-type branes on the mirror

pair (Z,Z∗) of Calabi-Yau three-folds. Whereas the correspondence between moduli spaces is

manifest on the B-type side as the relation between the periods of (Z∗, E) and X]∗
4 ,41 there

is a simple correspondence between the target spaces on the A-type side. Namely, the mirror

four-fold X]
4 is a fibration over the complex plane

Z // X]
4

π

��
C

(3.91)

with generic fiber a Calabi-Yau three-fold of type Z and a degenerate central fiber at the

origin specified by the toric polyhedron constructed in [48]. Thus the dual four-fold X]∗
4 that

captures the relative periods of the brane compactification (Z∗, E) is effectively constructed

by fibering the Calabi-Yau three-fold Z for the A-branes over C and then taking the (four-fold)

mirror of the fibration X]
4 obtained in this way.

The mirror pair (X]
4, X

]∗
4 ) of non-compact Calabi-Yau four-folds can be related to a hon-

est four-dimensional F-theory compactification by a simple P1 compactification of the non-

compact base of X]
4. In this way one obtains a mirror pair of compact Calabi-Yau four-folds

(X4, X
∗
4 ), where X∗4 is the four-fold for F-theory compactification.

Z // X4

π
��

mirror

symmetry
// X∗4 (F− theory)oo

P1

(3.92)

An important point is to identify the image of the large base limit of X4 in the moduli space

of the F-theory compactification on X∗4 , which can be deduced from the mirror map and the

41An explicit match of period integrals for a class of examples can be found in [48] and the Appendix E.
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methods of [178, 179]. The result is that the large volume limit ImS = Vol(P1) → ∞ maps

under mirror symmetry to a weak coupling limit gs → 0

Vol(P1) ∼ 1/gs →∞ . (3.93)

Thus the pair of four-folds (X]
4, X

]∗
4 ) is recovered in the decompactification/weak-coupling

limit and the diagram (3.90) is completed downwards to

X]
4

mirror

symmetry
// X]∗

4
oo

X4

Vol(P1)→∞

OO

mirror

symmetry
// X∗4

oo

gs→0

OO
(3.94)

On the one hand, the details of the P1 compactification determine the subleading corrections

in gs but become irrelevant in the decompactification/decoupling limit. On the other hand it

is worth stressing, that the “duality” between non-compact Calabi-Yau four-folds (X]
4, X

]∗
4 )

and the mirror pair of brane compactifications (Z,L) and (Z∗, E), which underlies the su-

perpotential computation, represents the strict limit gs = 0, where most of the degrees of

freedom decouple from the superpotential sector. A true duality can exist only at the level

of the lower row of the above diagram [57].

In the example of the quintic in section 3.4, the P1 compactification can be obtained by

adding the extra vertex

ν̃8 = (1, 0, 0, 0,−1) (3.95)

to the toric polyhedron in Table 3.1 of the non-compact Calabi-Yau four-fold X]
4. This

defines a compact Calabi-Yau four-fold X4. The Kähler modulus S of the compact P1 base

is described by the charge vector

l̃3 = (0;−2, 0, 0, 0, 0, 0, 1, 1) .

The mirror manifold X∗4 is elliptically fibered and defines an F-theory compactification that

will be used to compute the effective couplings in the effective four-dimensional N = 1

supergravity theory in the following section.

3.8.2. Effective N = 1 supergravity

According to the above discussion the N = 1 superpotential appearing in the N = 1 super-

gravity function (3.89) is

W(z, ẑ) =
∑

Σ

NΣ

∫
γΣ

Ω(3,0), γΣ ∈ H3(Z∗,D) , (3.96)
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if we consider the brane compactification (Z∗, E) as in [47, 46, 103, 1], or, alternatively

W(z, ẑ, S) =
∑

Σ

NΣ

∫
γΣ

Ω(4,0), γΣ ∈ H4(X∗) , (3.97)

for the F-theory compactification on the dual four-fold X∗4 .42 As discussed above, the dif-

ference between the four-fold periods and the (relative) three-fold periods are subleading

corrections in small gs.
43

As for the Kähler potential, consider first the N = 2 Kähler potential on the base of the

fibration M, that is on the complex structure moduli space MCS for the string compactifi-

cation on Z∗ without branes. This is given by [180, 50, 181]

KCS(z; z̄) = − lnYCS , YCS = −i
∫
Z∗

Ω ∧ Ω̄ = −i
∑

γΣ∈H3(Z∗)

ΠΣ(z) ηΣΛ Π̄Λ(z̄) .

Here Σ,Λ = 1, ..., h3(Z∗) and ηΣΛ is the symplectic intersection matrix on H3(Z∗,Z), which

represents the constant, topological metric on the space of ground states in the SCFT [22].

Restricting the sum in (3.96) to the “flux” superpotential, that is to the absolute cohomology

H3(Z∗), one obtains a function

GCS = KCS(z; z̄) + lnWCS(z) + ln W̄CS(z̄), WCS(z) =
∑

γΣ∈H3(Z∗)

NΣΠΣ(z) , (3.98)

that depends only on the closed string moduli and is invariant under Kähler transformations

generated by rescalings of the holomorphic (3,0) form, Ω→ efΩ.

We will now give two independent arguments, that the N = 1 Kähler potential on the full

N = 1 deformation space M can be written, to leading order in gs, as

K(z, ẑ; z̄, ¯̂z) = − lnY , Y = −i
∑

γΣ∈H3(Z∗,D)

ΠΣ(z, ẑ) η
ΣΛ

Π̄
Λ

(z̄, ¯̂z) (3.99)

with a pairing matrix (η) defined below. Indeed this ansatz is a natural guess in view of the

extension of the summation from H3(Z∗) to H3(Z∗,D) in the N = 1 superpotential (3.96)

and defines an N = 1 supergravity function G(z, ẑ; z̄, ¯̂z) which is invariant under Kähler

transformations generated by rescalings of the relative (3,0) form

Ω→ efΩ, ΠΣ → efΠΣ .

Note that since the Kähler metric for the closed and open string deformations arises from dif-

ferent worldsheet topologies, the pairing (η) on H3(Z∗,D) necessarily mixes terms of different

order in the string coupling gs.

42See also [147, 99] for an early discussion of four-fold periods and superpotentials in lower dimensions.
43See the Appendix D for some details of the computation and a precise match between the periods in the

quintic example.
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The first argument comes from the results of [148] on the effective space-time action for

orientifold compactifications of D7-branes. It has been shown there, that the Kähler metric

obtained by dimensional reduction of a D7-brane worldvolume wrapping the orientifold plane

D? in an orientifold Z? is consistent, at first order in the brane deformation, with a Kähler

potential K = − lnYOF with

YOF = −i
∫
Z?

(P (3)Ω) ∧ (P (3)Ω̄) + g̃

∫
D?

(P (2)Ω) ∧ (P (2)Ω̄) . (3.100)

Here P (3) and P (2) are projection operators onto the two summands in (3.18), and g̃ is gs

times a constant. This is of the form (3.99) with the pairing matrix

(
η
)

=

(
ηZ? 0

0 ig̃ η̃D?

)
, (3.101)

where η̃D? is the (symmetric) intersection matrix on H2
var(D?).

The second argument is obtained by computing the Kähler potential of the dual four-fold

X∗4 , which is of a similar form as (3.99) [75]:

K(z, ẑ, S; z̄, ¯̂z, S̄) = − lnY , Y =
∑

γΣ∈H4(X∗)

ΠΣ(z, ẑ, S) ηΣΛ Π̄Λ(z̄, ¯̂z, S̄) . (3.102)

Here η denotes the topological intersection matrix on H4(X∗4 ) and S is the afore mentioned

extra modulus in the compact manifold. An explicit computation44 in the weak coupling limit

ImS →∞ then shows that the four-fold Kähler potential can be rewritten, to leading order

in gs, as the sum of two terms, corresponding to a split (3.101) with the two blocks given

by the symplectic form ηZ∗ on H3(Z∗,Z) and η̃D the intersection matrix on the hypersurface

D. Thus, to leading order in gs, the F-theory result is in perfect agreement with the local

orientifold result of [148].

The role of the intersection matrix η̃D as defining a topological metric in the open-string

sector is natural in view of the localization of the open-string degrees of freedom on D. In

the quintic example, D describes the K3 geometry that captures the variation of the chain

integrals with the open-string deformations, as described below (3.49), and η̃D is simply the

K3 intersection matrix η̂ discussed below (3.73). Explicitly, the resulting Kähler potential for

the four-fold X4 defined in Table 3.1 together with (3.95), reads, to leading order in small gs

and in an expansion near the large complex structure point,

K = − ln(g̃−1 Ỹ ), Ỹ =
5i

6
(t− t̄)3 + g̃

(
−1

6
(t1 − 1t1)4 +

5

12
(t− t̄)4

)
+O(|t|2) , (3.103)

where (t, t1) are the flat coordinates of (3.63), (3.69) and g̃−1 = 2 ImS. The second summand

in the order g̃1 term is a correction predicted by the dual F-theory four-fold, which is not

44See the Appendix D for details.
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captured by the dimensional reduction, (3.100). By mirror symmetry, (3.103) then represents

a prediction for the Kähler metric on the deformation space of A-type branes on the quintic

Z. It would be interesting to understand the relation of the above proposal to the metric

described by Hitchin in [133].
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In this chapter we apply the techniques of the preceding chapter to the examples of type II/F-

theory superpotentials for brane geometries on toric hypersurfaces with several open/closed

string deformations. These results can be found in the original publications [1, 2, 3]. Using

the small Hodge variation associated with the surface operators and the GKZ system on the

relative cohomology group we are able to efficiently compute the integral relative periods and

the mirror map. Using this we obtain enumerative predictions for the number of discs in the

corresponding open/closed A-model geometry.

The application of the off-shell techniques to multi-parameter models is also interesting

for another reason. These models often allow for extremal transitions through points with

enhanced gauge symmetry. In the considered models we are able to track the fate of certain

domain wall tensions through these transitions and find that they fall into representations of

the non-perturbative gauge group near the transition point. For some models we furthermore

find tensionless domain walls at the point of the enhanced gauge symmetry.

The models we are going to consider are given by:

• We start in section 4.1 by considering the example of branes on the quintic in detail.

In particular we show how the results of [54, 53] for the rigid involution brane can be

obtained by off-shell techniques.

• Afterwards we consider two different divisors on the hypersurface X
(1,2,2,3,4)
12 in section

4.2. This example will show that two different off-shell deformations of a brane lead

to the same on-shell potential. Furthermore it will turn out that the Hodge problem
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on the second divisor is equivalent to that of a particular two-parameter family of K3

surfaces. The relevant zero of the period vector will be at an orbifold point of the K3,

which has been interpreted as a point with half-integral B-field for the closed-string

compactification on the local geometry [127] and seems to be a generic feature.

• Our third and fourth example are the two elliptic fibrations X
(1,1,1,6,9)
18 and X

(1,1,1,3,3)
9 in

sections 4.3 and 4.4 respectively. These are both compactifications of the non-compact

Calabi-Yau manifold O(−3)P2 and we are able to reproduce the results of [142, 162] in

the decompactification limit. In addition we study the deformation of the involution

brane on O(−3)P2 .

• The last model in section 4.5 is given by a certain toric brane on the hypersurface

X
(1,1,2,2,2)
8 . Here the zero of the derivative of the relevant superpotential period will

turn out to correspond to a point where the geometric volumes of two 2-cycles in the

subsystem K3 coincide. By our Hodge theoretic methods we are able to compute the in-

homogeneous Picard-Fuchs equations and obtain, via the mirror map, the disc invariants

of the domain wall tensions of the corresponding A-model geometry. We furthermore

study the extremal transition to the one-parameter model X
(1,1,1,1,1,1)
2,4 .

Further examples of type II/F-theory superpotentials with several open/closed deforma-

tions can be found in the original publication [3].

4.1. Branes on the quintic X
(1,1,1,1,1)
5

We first study a family of toric branes on the quintic that includes branes that have been

studied before in [53, 54, 103] by different means. We recover these results for special choice

of boundary conditions and study connected configurations.

4.1.1. Bulk geometry

As discussed earlier the toric ambient space of quintic hypersurface X
(1,1,1,1,1)
5 is given by the

polyhedron ∆(Z) in Table 4.1

∆(Z) ν̃0 = ( 0 0 0 0 )

ν̃1 = ( 1 0 0 0 )

ν̃2 = ( 0 1 0 0 )

ν̃3 = ( 0 0 1 0 )

ν̃4 = ( 0 0 0 1 )

ν̃5 = ( −1 −1 −1 −1 )

Table 4.1.: Vertices of the bulk geometry ∆(Z) for the quintic example X
(1,1,1,1,1)
5 .
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A maximal triangulation of ∆(Z) leads to the following relation

0 1 2 3 4 5

l̃1 −5 1 1 1 1 1
. (4.1)

The mirror geometry can be specified by a hypersurface equation in P4/Z3
5:

P (Z∗) : x5
1 + x5

2 + x5
3 + x5

4 + x5
5 − x1x2x3x4x5 z

− 1
5 = 0 , (4.2)

where z = −a1a2a3a4a5

a5
0

denotes the local coordinate, which is adapted to the point of maximal

unipotent monodromy. One has also to take into account the Z3
5-orbifold action which acts

as xi → λ
gk,i
k xi with λ5

k = 1 and the weights

Z5 : g1 = (1,−1, 0, 0, 0), Z5 : g2 = (1, 0,−1, 0, 0) , Z5 : g3 = (1, 0, 0,−1, 0) . (4.3)

4.1.2. Brane geometry

As in section 3.4.1. we consider a one parameter family of A-branes defined by an additional

charge vector

0 1 2 3 4 5

l̂ 1 −1 0 0 0 0
. (4.4)

As discussed in the last chapter we may associate with this brane geometry a five-dimensional

toric polyhedron ∆[(Z,L) that contains the points of the polyhedron ∆(Z) of the quintic as

a subset on the hypersurface y5 = 0 (see Table 4.2). Choosing a maximal triangulation of

∆(Z) ν̃0 = ( 0 0 0 0 0 )

ν̃1 = ( 1 0 0 0 0 )

ν̃2 = ( 0 1 0 0 0 )

ν̃3 = ( 0 0 1 0 0 )

ν̃4 = ( 0 0 0 1 0 )

ν̃5 = ( −1 −1 −1 −1 0 )

∆[(Z,L) = ∆∪ ν̃6 = ( 1 0 0 0 1 )

ν̃7 = ( 0 0 0 0 1 )

Table 4.2.: Vertices of the enhanced polyhedron ∆[(Z,L) for the quintic example.

∆[(Z,L) determines the following basis of generators1

0 1 2 3 4 5 6 7

l1 −4 0 1 1 1 1 1 −1

l2 −1 1 0 0 0 0 −1 1

, (4.5)

1The following computations have been performed using parts of existing computer code [124].
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where the last two entries correspond to the extra points describing the brane geometry. In

the local variables2

z1 = −a2a3a4a5a6

a4
0a7

, z2 = −a1a7

a0a6
, (4.6)

the hypersurface equations for the B-brane geometry read

P (Z∗) : x5
1 + x5

2 + x5
3 + x5

4 + x5
5 − x1x2x3x4x5 z

− 1
5 = 0 ,

Q(D) : x5
1 + x1x2x3x4x5 z2z

− 1
5 = 0 .

(4.7)

Here z = −z1z2 denotes the complex structure modulus of the Calabi-Yau geometry Z∗.

From (4.5) one can immediately proceed and solve the toric Picard-Fuchs system (3.51) to

derive the mirror maps and the superpotentials and we will do so momentarily. However it

is instructive to take a closer look at the geometry of the problem of mixed Hodge variations

on the relative cohomology groups (3.61) and to explicitly recover the subsystem K3-system.

Rewriting the superpotential P (Z∗) in the original variables yi of the toric ambient space and

restricting to the hypersurface Q(D) : y1 = y0 defines the following boundary superpotential

PD = P (Z∗)|y1=y0 for the relative cohomology problem on D:

PD = (a0 + a1)y0 + a2y2 + a3y3 + a4y4 + a5y5 .

The boundary superpotential PD describes a K3 surface defined as a quartic polynomial in

P3 after the transformation of variables yi = x4
i , i = 1, ..., 4:

PD = x4
1 + x4

2 + x4
3 + x4

4 + z
−1/4
D x1x2x3x4 . (4.8)

Thus the part of the Hodge variation associated with the lower row in (3.61), which can be

properly defined as a subspace through the weight filtration [47, 46, 103], is the usual Hodge

variation associated with the complex structure of the family of K3 manifolds defined by PD.

The complex structure determined by the (2,0) form ω(2,0) on the K3 is parametrized by the

modulus

zD =
z1

(1 + z2)4

a6/a7=−1
−−−−−→ a2a3a4a5

(a0 + a1)4
,

which is a special combination of the closed and open string moduli. Since the dependence

of the Hodge variation on the brane modulus z2 localizes on D, the open string mirror map

and the brane tension will be directly related to periods on the K3 surface (4.8) as discussed

before.

The differential operators (3.51) in the local variables z1, z2 defined by (4.5) read

L1 = (θ4
1 − z1

4∏
i=1

(4θ1 + θ2 + i))(θ1 − θ2) ,

L2 = (θ2 + z2(4θ1 + θ2 + 1))(θ1 − θ2) .

(4.9)

2We equipped z1 with an additional minus sign compared to (2.82) for later convenience.
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The above operators L1 and L2 reveal the relation of the variation of mixed Hodge structure

to the family of K3 manifolds defined in (4.8). Indeed the combination (θ1−θ2) is the direction

of the open string parameter that localizes on D. The split

La = L̃a(θ1 − θ2)

shows that the solutions πσ of the equations L̃aπσ = 0 are just the K3 periods. The operator

L̃2 imposes that the periods depend non-trivially only on the variable zD
3

L̃2

(
(z2 + 1)−1f(zD)

)
= 0 ,

whereas the operator L̃1 reduces to the Picard-Fuchs operator of the K3 surface in the new

variable zD. It follows that the solutions of the K3 system are the first variations of the

relative periods w.r.t. the open string deformation and a critical point δẑW = 0 corresponds

to a particular solution π of the K3 system that vanishes at that point. The solution that

describes the involution brane is determined by requiring the right transformation property

under the discrete symmetry of the moduli space as in [103].

Further differential operators can be obtained from linear combinations of the basis vectors

la. E.g. the linear combination l = l1 + l2 defines the differential operator

L′1 = θ2θ
4
1 + z1z2

5∏
i=1

(4θ1 + θ2 + i) ,

which also annihilates the relative periods.4 The mirror maps can be computed to be

−z1(t1, t2) = q1 + (24 q2
1 − q1 q2) + (−396 q3

1 − 640 q2
1 q2) + . . . ,

z2(t1, t2) = q2 + (−24 q1 q2 + q2
2) + (972 q2

1 q2 − 178 q1 q
2
2 + q3

2) + . . .
(4.10)

with qa = exp(2πi ta). The deformation parameters t1 and t2 are the flat coordinates near the

large complex structure point z1 = z2 = 0 associated with open string deformations [47, 46].

Their physical interpretation is the quantum volume of two homologically distinct discs as

measured by the tension of D4 domain walls on the A-model side [142, 162]. The other

solutions of the differential operators (3.51) describe the brane tensions (3.25) of the domain

walls in the family. We proceed with a study of various critical points of the superpotential.

4.1.3. Near the involution brane

Large volume in the A-model: z1 ∼ 0

To study brane configurations mirror to the involution brane of [53] we consider the following

D5-brane locus

x5
2 + x5

3 = 0, x5
4 + x5

5 = 0, x5
1 − x1x2x3x4x5 z

− 1
5 = 0 .

3The z2 dependent prefactor arises from the normalization of the holomorphic form.
4One can further factorize the above operators to a degree four differential operator which together with L2

represents a complete Picard-Fuchs system.
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Comparing with (4.7) we search for a superpotential with critical locus near z2 = −1 and

arbitrary z1. Let us first look at the large volume phase z1 ∼ 0 of the mirror A-brane, where

one expects an instanton expansion with integral coefficients. The local variables (4.6) are

centered at z1 = z2 = 0, not z2 = −1, however. To get a nice expansion of the superpotential

near the locus z2 + 1 = 0 we change variables to

u = z
−1/4
1 (1 + z2), v = z

1/4
1 .

Examining the z2-dependent solution of the GKZ system in these variables, we find the

superpotential

cW(u, v) =
u2

8
+15v2 +

5u3v

48
− 15uv3

2
+

u6

46080
+

35v2u4

384
− 15v4u2

8
+

25025v6

3
+ . . . , (4.11)

which has the expected critical locus δẑW = 0 at u = 0 for all values of v. Here c is a constant

that cannot be fixed from the consideration of the differential equations (4.9) alone.5 At the

critical locus u = 0 the above expression yields the critical valueWcrit(z) =W(u = 0, v = z1/4)

Wcrit(z) = 15
√
z +

25025

3
z3/2 +

52055003

5
z5/2 + . . . . (4.12)

Here the constant can be fixed to c = 1 by an analytic continuation argument given in

Appendix F or by comparing (4.12) with the result of [53] for Wcrit(z).

As alluded to earlier, the differential operators (4.9) have the special property that the peri-

ods of Z∗ are amongst their solutions. One may check that the open string mirror maps (4.10)

conspire such that the mirror map for the remaining modulus z = −z1z2 at the critical point

coincides with the closed string mirror map for the quintic. Using the multi-cover prescription

of [52, 53] and expressing (4.12) in terms of the exponentials q(z) = exp(2πi t(z)) = z+O(z2)

one obtains the integral instanton expansion of the A-model

Wcrit(z(q))

ω0(q)
= 15

√
q +

2300

3
q3/2 +

2720628

5
q5/2 + . . . ,

=
∑
k odd

(
15

k2
qk/2 +

765

k2
q3k/2 +

544125

k2
q5k/2 + . . .

)
.

To make contact with the inhomogeneous Picard-Fuchs equation of [54], we rewrite the dif-

ferential operators above in terms of the bulk modulus z and the open string deformation z2

and split off the z2 dependent terms as in (3.52). In particular the operator L′1 leads to a

5The precise linear combination of the solutions of the Picard-Fuchs system that corresponds to a given

geometric cycle can be determined by an intersection argument and possibly analytic continuation, similarly

as in the closed string case [37]. Such an argument has been made in the present example already in [53]

and is re-derived in Appendix F.
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non-trivial equation of the form θLbulkΠ = −LopenΠ, where

Lbulk = θ4 − 5z

4∏
i=1

(5θ + i) , Lopen = L′1 − θLbulk ,

L′1 = (θ + θ2)θ4 − z
5∏
i=1

(5θ + θ2 + i)

(4.13)

and θ = θz. Setting Π =W(u, v) and restricting to the critical locus z2 = −1 one obtains

LbulkWcrit(z) =
15

16

√
z . (4.14)

This identifies the inhomogeneous Picard-Fuchs equation of [53, 54] as the restriction of (3.51)

to the critical locus.

While the result (4.12) had been obtained in [53], the above derivation gives some extra

information. Since the definition of the toric branes holds off the involution locus, the super-

potentialW(u, v) describes more generally any member of the family of toric A-branes defined

by (4.4), not just the involution brane. It describes also the deformation of the large volume

superpotential away from z2 = −1. It should be noted that the use of the closed string mirror

map in [53] was strictly speaking an assumption, as the closed string mirror map measures the

quantum volume of fundamental sphere instantons, not the quantum tension of D4 domain

walls wrapping discs, which is the appropriate coordinate for the integral expansion of [52]. It

is neither obvious nor true in general that this D4 tension agrees with half the sphere volume

of the fundamental string, in particular off the involution locus. In the present case it is not

hard to justify this choice and to check it from the computation of the mirror map, but more

generally there will be corrections to the D4 quantum volume that are not determined by the

closed string mirror map.

Small volume in the A-model: 1/z1 ∼ 0

Another interesting point in the moduli space is the Landau-Ginzburg point of the B-model.

This case has been studied previously in [103], so we will be very brief. The only non-

trivial thing left to check is that the system of differential equations obtained in [103] from

Griffiths-Dwork reduction is equivalent to the toric GKZ system (3.51) transformed to the

local variables near the LG point. Choosing local variables

x1 =
a0

(a2a3a4a5)1/4

(
−a7

a6

)1/4

, x2 =
a1

(a2a3a4a5)1/4

(
−a7

a6

)5/4

,

one obtains by a transformation of variables the differential operators

L1 = (x4
1(θ1 + θ2)4 − 44

4∏
i=1

(θ1 − i))(θ1 + 5θ2) ,

L2 = (x2(θ1 − 1)− x1θ2) (θ1 + 5θ2) ,

L′1 = x5
1(θ1 + θ2)4θ2 − 44x2

5∏
i=1

(θ1 − i) ,

(4.15)
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where θi denotes the logarithmic derivatives θxi . The superpotential is

W(x1, x2) = −x
2
1

2
− x2x1

6
− x6

1

11520
− x2x

5
1

3840
− x2

2x
4
1

2688
− x3

2x
3
1

3456
− x4

2x
2
1

8448
− x5

2x1

49920
+ . . . ,

which has its critical locus at x2 = −x1, which corresponds to u = 0 in these coordinates. In

terms of the closed string variable x = −x1x
−1/5
2 at the Landau Ginzburg point, the expansion

at the critical locus reads

Wcrit(x) = −x
5/2

3
− x15/2

135135
− x25/2

1301375075
+ . . . ,

which satisfies a similar equation as (4.14)

LbulkWcrit =
15

16
x5/2 ,

where Lbulk = 5−4x5θ4
x − 5

∏4
i=1(θx − i) .

4.1.4. Large radius invariants for the A-model

The geometry of A-branes is notorically more difficult to study than that of the B-branes.

For the type of B-branes studied above, the A-model mirror geometry can be in principle

obtained from the toric framework of [142]. The conjectural family of A-branes mirror to the

B-brane family studied above, is defined on the quintic hypersurface Z in the toric ambient

space W = O(−5)P4 with homogeneous coordinates

x̃0 x̃1 x̃2 x̃3 x̃4 x̃5

−5 1 1 1 1 1
. (4.16)

The Kähler moduli (t1, t2) mirror to the complex structure coordinates (z1, z2) are defined by

the equations∑5
i=1 |x̃i|2 − 5|x̃0|2 = Im t = Im t1 + Im t2, |x̃1|2 − |x̃0|2 = Im t2 (4.17)

with Im t1, Im t2 > 0. The first constraint holds on all of Z and the Kähler modulus t describes

the closed string deformation, the overall Kähler volume of Z. The second constraints holds

only on the Lagrangian submanifold L and describes the open-string deformation.

The toric framework of [142] gives an explicit description of the geometry of Lagrangian

subspaces in the ambient space W , which has been used to study an interesting class of non-

compact branes for Calabi-Yau ambient spaces, see e.g. [142, 162, 47, 46]. The clear geometric

picture of the toric description is lost for hypersurfaces and the searched for subspace L ⊂ Z
carrying the mirror A-brane has no simple description, at least at general points in the (full)

moduli space and to our knowledge. However, by the homological mirror symmetry conjecture

[45], we expect that a corresponding A-brane, which is mirror to the B-brane given in terms

of the discussed divisor together with its curvature 2-form, should be present in the A-model
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geometry. Clearly, in order to complete our picture a constructive recipe of mapping B-branes

to the corresponding A-branes for compact Calabi-Yau geometries is desirable.

Since the A-model geometry is naively independent of the complex structure moduli, one is

tempted to choose a very special form of the hypersurface constraint to simplify the geometry.

In [182] it is shown how the number 2875 of lines in the generic quintic can be determined

from the number of lines in a highly degenerate quintic, defined by the hypersurface constraint

P (Zα) = p1.p4 + αp5, α ∈ ∆ . (4.18)

Here α is a parameter on the complex disc ∆ and the pk are degree k polynomials in the

homogeneous coordinates of P4. At the point α = 0 the quintic splits into two components of

degree one and four. Katz shows, that there are 1600+1275=2875 holomorphic maps to lines

in the two components of the central fiber that deform to the fiber at α 6= 0.

The N1 = 2875 curves of degree one contribute to the tension T of a D4-brane wrapping

the 4-cycle Γ = H ∩ Z as

T = −5

2
t2 +

1

4π2

(
2875

∑
k

qk

k2
+ 2 · 609250

∑
k

q2k

k2
+ ...

)
,

where q = exp(2πit), H is the hyperplane class and the dots denote linear and constant terms

in t as well as instanton corrections from maps of degree d > 2. In the singular Calabi-Yau

the generic 4-cycle splits into two components and one expects two separate contributions

T (1) = c(1) t2 +
N

(1)
d

4π2

∑
k

qdk

k2
+ ..., T (2) = T − T1

with N
(1)
1 = 1600 and N

(2)
1 = 1275.

As explained in [182], there are other genus zero maps to the two components, that develop

nodes at the intersection locus p1 = p4 = 0 upon deformation, and they do not continue to

exist as maps from S2 to S2. The idea is that in the presence of the Lagrangian A-brane

on the degenerate quintic, the nodes of the spheres can open up to become the boundary of

holomorphic disc instantons ending on L. Indeed the two independent double logarithmic

solutions of the Picard-Fuchs system (4.9) can be written in the flat coordinates as

T (1) = −2t2 +
1

4π2

∑
k

1

k2

(
1600qk + 2 · 339800q2k + ...

)
+ T (o)(t1, t2) ,

T (2) = −1

2
t2 +

1

4π2

∑
k

1

k2

(
1275qk + 2 · 269450q2k + ...

)
− T (o)(t1, t2) ,

(4.19)

showing the expected behavior and adding up to the closed-string period T . The split of the

degree two curves, N2 = 609250 = 339800+269450 = (258200+ 1
2163200)+(187850+ 1

2163200)

is compatible with the results of [183].
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n2\n1 0 1 2 3 4 5

0 0 −320 13280 −1088960 119783040 −15440622400

1 20 1600 −116560 12805120 −1766329640 274446919680

2 0 2040 679600 −85115360 13829775520 −2525156504560

3 0 −1460 1064180 530848000 −83363259240 16655092486480

4 0 520 −1497840 887761280 541074408000 −95968626498800

5 0 −80 1561100 −1582620980 931836819440 639660032468000

6 0 0 −1152600 2396807000 −1864913831600 1118938442641400

7 0 0 580500 −2923203580 3412016521660 −2393966418927980

8 0 0 −190760 2799233200 −5381605498560 4899971282565360

9 0 0 37180 −2078012020 7127102031000 −9026682030832180

10 0 0 −3280 1179935280 −7837064629760 14557931269209000

11 0 0 0 −502743680 7104809591780 −20307910970428360

12 0 0 0 155860160 −5277064316000 24340277955510560

13 0 0 0 −33298600 3187587322380 −24957649473175420

14 0 0 0 4400680 −1549998228000 21814546476229120

15 0 0 0 −272240 597782974040 −16191876966658500

16 0 0 0 0 −178806134240 10157784412551120

17 0 0 0 0 40049955420 −5351974901676280

Table 4.3.: Predictions for Ooguri–Vafa invariants for the brane geometry on the quintic three-

fold specified in Table 4.2.

The extra contribution T (o)(t1, t2) can be written as

T (o)(t1, t2) = 4tt2 − 2t22 +
1

4π2

∑
k,n1,n2
n1 6=n2

1

k2
Nn1,n2(qn1

1 qn2
2 )k .

The first few coefficients Nn1,n2 for small ni, including the contributions from n1 = n2, are

listed in Table 4.3.

According to the general philosophy of the Hodge theoretic mirror map described in the

previous sections, the double logarithmic solutions represent the generating function of holo-

morphic discs ending on the A-brane L. In the above basis we find

Ft = T (1) + T (2) = T , W = T (1) .

Assuming that the normalization argument leading to (4.19) is correct, the numbers Nn1,n2

of Table 4.3 are genuine Ooguri-Vafa invariants for the A-brane geometry predicted by mirror

symmetry. It would be interesting to justify the above arguments and the prediction for the

disc invariants in Table 4.3 by an independent computation. Further evidence for the above

results will be given in the appendix D, by deriving the same result from the afore mentioned

duality to Calabi-Yau four-folds.
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4.2. Domain wall tensions on X
(1,2,2,3,4)
12

As a second example we study branes on the two moduli Calabi-Yau manifold Z = X
(1,2,2,3,4)
12 .

This example in particular shows that different off-shell deformations of the same on-shell

geometry lead to the same on-shell domain wall tensions.

4.2.1. Bulk geometry

The toric ambient geometry of the hypersurface X
(1,2,2,3,4)
12 is given by the polyhedron ∆(Z)

in Table 4.4.

∆(Z) ν̃0 = ( 0 0 0 0 )

ν̃1 = ( 2 2 3 4 )

ν̃2 = ( −1 0 0 0 )

ν̃3 = ( 0 −1 0 0 )

ν̃4 = ( 0 0 −1 0 )

ν̃5 = ( 0 0 0 −1 )

ν̃6 = ( 1 1 1 2 )

Table 4.4.: Vertices of the bulk geometry ∆(Z) for X
(1,2,2,3,4)
12 .

A maximal triangulation of ∆(Z) leads to the following relations [108]

0 1 2 3 4 5 6

l1 −6 −1 1 1 0 2 3

l2 0 1 0 0 1 0 −2

. (4.20)

Written in homogeneous coordinates of P4
1,2,2,3,4/Z

2
6 the hypersurface constraint for the mirror

manifold reads

P (Z∗) = a1x
12
1 + a2x

6
2 + a3x

6
3 + a4x

4
4 + a5x

3
5 + a0x1x2x3x4x5 + a6x

6
1x

2
4

= x12
1 + x6

2 + x6
3 + x4

4 + x3
5 + ψ x1x2x3x4x5 + φx6

1x
2
4 .

(4.21)

In the second equation the variables xi have been rescaled to display the dependence on the

torus invariant parameters ψ = z
−1/6
1 z

−1/4
2 and φ = z

−1/2
2 , with the za given by (2.82). On

the mirror manifold, the Greene-Plesser orbifold group acts as xi → λ
gk,i
k xi with weights6

Z6 : g1 = (1,−1, 0, 0, 0), Z6 : g2 = (1, 0,−1, 0, 0) , (4.22)

where we denote the generators by λk with λ6
1,2 = 1. The closed-string periods near the large

complex structure point can be generated by evaluating the functions B{la}(za; ρa) in (3.87)

and its derivatives with respect to ρi at ρ1 = ρ2 = 0 [108].

6The other factors of the Greene-Plesser group give nothing new, using a homogeneous rescaling of the

projective coordinates, e.g. for the factor generated by g3 = (1, 0, 0,−1, 0) with λ4
3 = 1 one finds g3 ∼ g3

1g
3
2 .
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In this geometry we consider the set of curves defined by the equations

Cα,κ = {x2 = ηx3 , x4 = αx3
1 , x5 = κ

√
αηψx3x

2
1} ,

η6 = −1 , κ2 = −1 , α4 + φα2 + 1 = 0 . (4.23)

The labels (η, α, κ) are identified as (η, α, κ) ∼ (ηλ1λ
−1
2 , αλ3

1λ
3
2, κ) under the orbifold group.

In the following we choose to label each orbit of curves by (α, κ) := (eiπ/6, α, κ). Note that a

rotation of η corresponds to a change of sign for α in this notation, (e3iπ/6, α, κ) = (−α, κ).

Instead of choosing a fixed η we can also fix the sign of α and keep two choices for η3.

We are going to calculate the domain wall tensions and the superpotentials for the vacua

Cα1,κ and Cα2,κ and for this we will study two families of divisors. The familyQ(D1) = x6
2+ẑx6

3

interpolates between vacua related by a sign flip of η3 or of the root α of the quartic equation.

The family Q(D2) = x4
4 + ẑx6

1x
2
4 interpolates between any two different roots α.

4.2.2. First divisor

We start with the analysis of the divisor

Q(D1) = x6
2 + z3x

6
3 . (4.24)

To obtain some geometrical understanding of the surface defined by the intersection P = 0 =

Q(D1) we explicitly solve for x3 = (−z3)−1/6x2 and rescale x2 to find

PD1 = x12
1 + x6

2 + x4
4 + x3

5 + ψ̃x1x
2
2x4x5 + φx6

1x
2
4 . (4.25)

Here ψ̃ = u
−1/6
1 u

−1/4
2 , φ = u

−1/2
2 are expressed in terms of the previous parameters as

u1 = −z1

z3
(1− z3)2, u2 = z2 . (4.26)

Changing coordinates to x̃2 = x2
2 displays the family D1 as a double cover of a family of toric

K3 surfaces associated to a GLSM with charges

D1 :

0 1 2 4 5 6

l̃1 −6 −1 2 0 2 3

l̃2 0 1 0 1 0 −2

(4.27)

and with the two algebraic K3 moduli (4.26). The two covers are distinguished by a choice

of sign for x2.

The family of algebraic K3 manifolds obtained from (4.25) by the variable change x̃2 = x2
2

generically has four parameters with the two extra moduli multiplying the monomials x3
1x

3
4

and x9
1x4. Since these terms are forbidden by the Greene-Plesser group of the Calabi-Yau

three-fold, the embedded surface is at a special symmetric point with the coefficients of these

monomials set to zero. The periods on the K3 surface at this point can be computed from
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the GKZ system for the two parameter family, obtained from (3.51) with the charge vectors

{l̃} in eq. (4.27):

LD1
1 = θ̃1(2θ̃1 − 1)

2∏
k=0

(−3θ̃1 + 2θ̃2 + k)− 9

2
u1(θ̃1 − θ̃2)

∏
k=1,2,4,5

(6θ̃1 + k) ,

LD1
2 = θ̃2(θ̃2 − θ̃1)− u2(2θ̃2 − 3θ̃1)(2θ̃2 − 3θ̃1 + 1) , (4.28)

where θ̃a = ua
d
dua

. Apart from the regular solutions this system has two extra solutions

depending on fractional powers in the ui:

π1(u1, u2) =
c1

2
B{l̃}(u1, u2; 1

2 , 0) =
4c1

π

√
u1 2F1(−1

4 ,−
3
4 ,

1
2 , 4u2) +O(u

3/2
1 ) ,

π2(u1, u2) =
c2

2
B{l̃}(u1, u2; 1

2 ,
1
2) =

12c2

π

√
u1u2 2F1(−1

4 ,
1
4 ,

3
2 , 4u2) +O(u

3/2
1 ) . (4.29)

Here ca are some normalization constants not determined by the differential operators. Later

they will be fixed to one by studying the geometric periods on the surface.

As indicated, the exceptional solutions vanish at the critical point u1 = 0 as ∼ √u1, with

the coefficient a hypergeometric series in the modulus u2 = z2. These solutions arise as the

specialization of the standard solutions of the four parameter family of K3 manifolds to the

special symmetric point.7 Since u1 = 0 is not at the discriminant locus of the K3 family for

general u2, there is no geometric vanishing cycle associated with the zero of π1,2. Instead

the zero at u1 = 0 arises from the ’accidental’ cancellation between the volumes of different

classes at the symmetric point.8 The periods (4.29) have the special property that their

leading terms ∼ √u1 near the critical point u1 = 0 can be written in closed form as

lim
z3→1

πa(u1, u2)

(1− z3)
=

4ca
π
· (iα)(2α2 − φ)(α2 + φ)

ψ3

∣∣∣∣
α=αa,+

, (4.30)

where

α1,± = ±

√
−φ+

√
φ2 − 4

2
, α2,± = ±

√
−φ−

√
φ2 − 4

2
, (4.31)

denote the roots of the quartic equation α4 + φα2 + 1 = 0 appearing in the definition (4.23).

Hence the leading part of the two K3 periods near the symmetric point is proportional to a

rational function in the coefficients of the defining equations for the curve, evaluated at the

critical points.

We will first compute the domain wall tensions by integrating the periods π1,2 of the surface

D1. Note that the K3 periods πa depend on ξ =
√
z3 via their dependence on u1 and the sign

of the square root correlates with the sign of α. To obtain the off-shell tension, we integrate

πa(ξ) as

W(±)
a (z1, z2, z3) =

1

2πi

∫ ±√z3
ξ0

πa(ξ)
d ξ

ξ
, (4.32)

7An explicit illustration of this fact is given in the case of the second family of divisors below.
8One parameter controlling the difference of these volumes is the direction of the off-shell modulus.
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where ξ0 denotes a fixed reference point. For example, the period π1 integrates to

4πiW(±)
1

c1
=

∫ ±√z3
ξ0

∑
n1,n2≥0

Γ (4 + 6n1)
(
− z1
ξ2 (1− ξ2)2

)n1+ 1
2
zn2

2

Γ (2 + 2n1)2 Γ (1 + n2) Γ
(

1
2 − n1 + n2

)
Γ
(

5
2 + 3n1 − 2n2

) dξ
ξ

=
∑

n1,n2≥0

Γ (4 + 6n1) (−z1)n1+ 1
2 zn2

2

(
ξ2 − 1

)2n1+2
2F1

(
1, 3

2 + n1,
1
2 − n1, ξ

2
)

(1 + 2n1) Γ (2 + 2n1)2 Γ (1 + n2) Γ
(

1
2 − n1 + n2

)
Γ
(

5
2 + 3n1 − 2n2

)
ξ2n1+1

∣∣∣∣∣∣
ξ=±√z3

ξ=ξ0

where the contribution from the reference point ξ0 can be set to zero by choosing ξ0 = i as the

lower bound. This will be used to split the result of the integral for the domain wall tension

into two contributions of the superpotentials from the endpoints as in eq. (3.27). This split

is not obvious in general, and ambiguous with respect to adding rational multiples of bulk

periods. In the example we can use the Z2 symmetry acting on the curves to require that the

superpotentials obey W(+)
1 = −W(−)

1 . With this convention and the particular choice of ξ0

above, we obtain 1
2πi

∫ ±√z3
ξ0

πa(ξ)
d ξ
ξ =W(±)

a or 1
2πi

∫ +
√
z3

−√z3 πa(ξ)
d ξ
ξ =W(+)

a −W(−)
a = 2W(+)

a .

According to the discussion in chapter 3, the superpotentialsW(±)
a (z1, z2, z3) restrict to the

on-shell superpotentials W
(±)
a (z1, z2) with vanishing derivative in the open-string direction z3

at the critical point:

W (±)
a (z1, z2) = W(±)

a

∣∣∣
z3=1

, ξ∂ξW(±)
a (z1, z2, ξ

2)
∣∣∣
z3=1

= ± 1

2πi
πa|u1=0 = 0 . (4.33)

For the above integrals one obtains

W
(±)
1 = ∓ c1

8π

∑
n1,n2≥0

(−1)n1+1 Γ
(
−n1 − 1

2

)
Γ (6n1 + 4) z

n1+ 1
2

1 zn2
2

Γ
(
n1 + 3

2

)
Γ (2n1 + 2) Γ

(
3n1 − 2n2 + 5

2

)
Γ (n2 + 1) Γ

(
−n1 + n2 + 1

2

) ,
(4.34)

W
(±)
2 = ∓ c2

8π

∑
n1,n2≥0

(−1)n1+1 Γ
(
−n1 − 1

2

)
Γ (6n1 + 4) z

n1+ 1
2

1 z
n2+ 1

2
2

Γ
(
n1 + 3

2

)
Γ (2n1 + 2) Γ

(
3n1 − 2n2 + 3

2

)
Γ
(
n2 + 3

2

)
Γ (−n1 + n2 + 1)

.

These functions can be expressed in terms of the bulk generating function as

W
(±)
1 = ∓c1

8
B{l}

(
z1, z2; 1

2 , 0
)
, W

(±)
2 = ∓c2

8
B{l}

(
z1, z2; 1

2 ,
1
2

)
. (4.35)

Complementary, the tensions T (±)
a (z1, z2, z3) and their on-shell restrictions T

(±)
a (z1, z2) can be

described as solutions to the large GKZ system for the relative cohomology problem specified

by the vertices in Table 4.5. For the family (4.24) the additional charge vector is

0 1 2 3 4 5 6 7 8

l3 0 0 1 -1 0 0 0 -1 1
.

Together with the charge vectors l1 and l2 for the Calabi-Yau hypersurface this defines the

extended hypergeometric system of the form (3.51). From the extended charge vectors one
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∆(Z) ν̃0 = ( 0 0 0 0 0 )

ν̃1 = ( 2 2 3 4 0 )

ν̃2 = ( −1 0 0 0 0 )

ν̃3 = ( 0 −1 0 0 0 )

ν̃4 = ( 0 0 −1 0 0 )

ν̃5 = ( 0 0 0 −1 0 )

ν̃6 = ( 1 1 1 2 0 )

∆[(Z,L1) = ∆∪ ν̃7 = ( −1 0 0 0 1 )

ν̃8 = ( 0 −1 0 0 1 )

Table 4.5.: Vertices of the enhanced polyhedron ∆[(Z,L1) for the first divisor family D1 on

the Calabi-Yau X
(1,2,2,3,4)
12 .

obtains after an appropriate factorization the system of differential operators9

L1 = (θ1 + θ3)(θ1 − θ3)(3θ1 − 2θ2)− 36z1(6θ1 + 5)(6θ1 + 1)(θ2 − θ1 + 2z2(1 + 6θ1 − 2θ2)) ,

L2 = θ2(θ2 − θ1)− z2(3θ1 − 2θ2 − 1)(3θ1 − 2θ2) ,

L3 = θ3(θ1 + θ3) + z3θ3(θ1 − θ3) . (4.36)

After a simple variable transformation y = ln(z3), with the variable y centered at the crit-

ical point, the solutions to this system describe the expansion of the periods on the rel-

ative homology H3(Z∗,D1) around the critical point. These include the off-shell tensions

T (±)
a (z1, z2, z3) (4.32), which restrict to the functions (4.35), and in addition the closed-string

periods Π(z1, z2). The integration from the geometric surface periods of the subsystem fixes

the z3-dependent piece. The GKZ system restricts the afore mentioned integration constant

to a linear combination of the closed-string periods Π(z1, z2). The rational coefficients ap-

pearing in this combination can be determined by a monodromy argument, as in [53] and as

discussed for a non-compact limit of the Calabi-Yau three-fold in the Appendix G.

Finally one may also characterize the critical tensions T
(±)
a , or, for the above reasons also

the critical superpotentials W
(±)
a , as the solution to the inhomogeneous Picard-Fuchs equation

(3.54), which makes contact to the normal function approach of [54]. Due to

L1 = Lbulk
1 (θ1, θ2)− (3θ1 − 2θ2)θ2

3, L2 = Lbulk
2 (θ1, θ2) , (4.37)

we observe that only the first operator may acquire a non-zero inhomogeneous term at the

critical point. This term is determined by the leading behavior of the surface periods πa in

the limit u1 → 0. Acting with Lbdry
1 = (3θ1 − 2θ2)θ3 on the terms on the right hand side of

9The first operator is obtained after a factorization similar to the one described in [108] for the underlying

three-fold.
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eqs. (4.29) one obtains the inhomogeneous Picard-Fuchs equations

Lbulk
1 W

(±)
1 = ∓ 3c1

2π2

√
z1 2F1(1

4 ,−
1
4 ,

1
2 , 4z2) = f1(α1,±) ,

Lbulk
1 W

(±)
2 = ∓ 3c2

2π2

√
z1z2 2F1(3

4 ,
1
4 ,

3
2 , 4z2) = f1(α2,±) ,

(4.38)

while Lbulk
2 W

(±)
a = 0. The roots (4.31) of the quartic equation are identified with the label

(a,±) of the curves in the right hand side of eq. (4.38). Indeed, as a consequence of eq. (4.30),

the inhomogeneous terms can again be written in closed form as

Lbulk
a W (α) = fa(z, α) ,

with W (αa,±) = W
(±)
a and the fa(z, α) rational functions in the coefficients of the defining

equation:

f1(z, α) =
3c

2π2
· i φα(α2 + φ)

ψ3
, f2(z, α) = 0 , (4.39)

for c = c1 = c2. As is apparent from (4.38), this function satisfies a hypergeometric

equation Linhf1 = 0. The hypergeometric operator is related to the surface operators

by eq. (3.57). In the present case, the relevant operator arises from LD2 , that is Linh =

(LD2 + [Lbdry
1 ,LD2 ]Lbdry

1

−1
)|ẑcrit

, while LD1 becomes irrelevant. With

LD2 |ẑcrit
= θ2(θ2 − 1

2)− 4z2(θ2 − 1
4)(θ2 − 3

4) , Lbdry
1 |ẑcrit

= i(θ2 − 3
4) ,

one obtains

Linh = θ2(θ2 − 1
2)− 4z2(θ2 − 1

4)(θ2 + 1
4) . (4.40)

In the above we have used that the relevant surface period is the solution to the Picard-Fuchs

system {LDb } with index 1
2 in the variable u1 to set θ̃1 = 1

2 .

A-model expansion

By mirror symmetry, the above functions should have an integral instanton expansion when

expressed in terms of the appropriate coordinates and taking appropriately into account the

contributions from multi-covers [52]. For the critical branes at fixed ẑ, we use the modified

multi-cover formulae of the type proposed in [53, 55, 73]:

W
(±)
1 (z(q))

ω0(z(q))
=

1

(2πi)2

∑
k odd

∑
d1 odd
d2≥0

n
(1,±)
d1,d2

q
kd1/2
1 qkd2

2

k2
, (4.41)

W
(±)
2 (z(q))

ω0(z(q))
=

1

(2πi)2

∑
k odd

∑
d1 odd
d2 odd

n
(2,±)
d1,d2

q
kd1/2
1 q

kd2/2
2

k2
. (4.42)

In this way one obtains the integer invariants in Table 4.6 for ca = 1. As can be guessed from

these numbers, the superpotentials for a = 1, 2 are in fact not independent, but related by
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n
(1,+)
d1,d2

d1
\d2 0 1 2 3 4

1 16 48 0 0 0

3 −432 −480 38688 10800 0

5 45440 −78192 5472 92812032 146742768

7 −7212912 25141920 −165384288 61652832 327357559584

9 1393829856 −6895024080 49628432160 −426927933792 261880092960

11 −302514737008 1905539945472 −14487202588320 131586789107520 −1448971951799232

13 70891369116256 −538859226100800 4335978084777792 −39691782337561536 440278250387930640

15 −17542233743427360 155713098595732704 −1328641212531217728 12308540119113753936 −132576278776141577664

n
(2,+)
d1,d2

d1
\d2 1 3 5 7 9 11 13

1 48 16 0 0 0 0 0

3 0 10800 38688 −480 −432 0 0

5 0 82080 26162880 146742768 92812032 5472 −78192

7 0 −10780160 241323840 88380335472 702830702688 1094178697056 327357559584

9 0 1843890480 −36172116480 932346639840 364829042312640 3751178206812144 ∗

11 0 −369032481792 6979488962400 −143329914498240 4246347124847520 ∗ ∗

Table 4.6.: Disc invariants for the on-shell superpotentials W
(+)
a of the three-fold X

(1,2,2,3,4)
12 .

a Z2 symmetry. The family of Calabi-Yau hypersurfaces (4.21) develops a singularity at the

discriminant locus ∆ = 1− 4z2 = 0, which is mirror to a curve of A1 singularities [184, 185].

On the B-model side the Z2 monodromy around the singular locus ∆ = 0 exchanges the two

sets of roots α1,± and α2,± in eq. (4.31). Accordingly, the superpotentials W
(±)
1 and W

(±)
2

are also exchanged as can be seen from the structure of the inhomogeneous terms. On the

level of periods this monodromy action yields

t1 → t1 + 3t2, t2 → −t2 . (4.43)

As a result the invariants of W2 are related to that of W1 by the Z2 quantum symmetry

q1 → q1q
3
2, q2 → q−1

2 generated by (4.43).10

Extremal transition and a non-compact limit

The above results and the normalization obtained by integration from the subsystem can be

verified by taking two different one-parameter limits. At the singular locus ∆ = 0, there is an

extremal transition to the one parameter family mirror to a degree (6,4) complete intersection

hypersurface in P5
(1,1,1,2,2,3). From eq. (4.43) it follows that the transition takes place at q2 = 1,

predicting the relation

3k∑
`=0

n
(a,+)
k,` (X

(1,2,2,3,4)
12 ) = nk(X

(1,1,1,2,2,3)
6,4 ) , a = 1, 2 , (4.44)

10The Z2 symmetry is also realized on the closed-string invariants, see the results of [108].
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where (k, `) denote the degree in q1 and q2, respectively. The finiteness of the sum over `

follows from the symmetry (4.43). From the left hand side of the above equation one gets

nk = 64, 48 576, 265 772 480, 2 212 892 036 032, 22 597 412 764 939 776, . . . (4.45)

for the first invariants of X
(1,1,1,2,2,3)
6,4 . This can be checked by a computation for the complete

intersection manifold with the inhomogeneous Picard-Fuchs equation

L W (z) =
4
√
z

(2πi)2
, L = θ4 − 48z(6θ + 5)(6θ + 1)(4θ + 3)(4θ + 1) . (4.46)

Another interesting one modulus limit is obtained for z2 → 0, where X degenerates to the

non-compact hypersurface

X[ : y2
1 + y3

2 + y6
3 + y6

4 + y−6
5 + ψ̂ y1y2y3y4y5 = 0, ψ̂ =

ψ√
φ

= z
−1/6
1 (4.47)

in weighted projective space P4
3,2,1,1,−1, with the new variables yi related to the xi by

y1 = φ1/2x4x
3
1, y2 = x5, y3 = x2, y4 = x3, y5 = x−2

1 .

The non-compact three-fold X[ is a local model for a certain type of singularity associated

with the appearance of non-critical strings and has been studied in detail in [186].

In this limit the curves Cα2,±,κ of eq. (4.23) are pushed to the boundary of the local three-fold

geometry X[ and the domain wall tension between Cα2,+,κ and Cα2,−,κ becomes independent

of the modulus z1, which is reflected by the fact that all the disc invariants of W2 vanish in

the limit z2 → 0. The curves Cα1,±,κ become

C[ε,κ =

{
y3 = η y4 , y1y

3
5 = ε , y2y5 = κ y4

√
εηψ̂

}
, ε = ±i , κ = ±i , (4.48)

where ε = ±i distinguishes between the two roots α1,+ and α1,−. In Appendix G we show, that

the 3-chain integral representing the domain wall tension in X[ descends to an Abel-Jacobi

map on a Riemann surface, which can be computed explicitly as an geometric integral. The

invariants n[6] obtained for the superpotential in the non-compact geometry X[ are reported

in Appendix G and they agree with the q0
2 term of T1, nk,0 = n

[6]
k .

4.2.3. A second family of divisors and symmetric K3s

The same critical points can be embedded into a different family of divisors

Q(D2) = x4
4 + z3z

−1/2
2 x6

1x
2
4 . (4.49)

Our motivation to consider this second family in detail is two-fold. Firstly, the Hodge problem

on the surface is equivalent to that of a two parameter family of K3 surfaces at a special point

in the moduli, which can be studied explicitly without too many technicalities. We will
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∆(Z) ν̃0 = ( 0 0 0 0 0 )

ν̃1 = ( 2 2 3 4 0 )

ν̃2 = ( −1 0 0 0 0 )

ν̃3 = ( 0 −1 0 0 0 )

ν̃4 = ( 0 0 −1 0 0 )

ν̃5 = ( 0 0 0 −1 0 )

ν̃6 = ( 1 1 1 2 0 )

∆[(Z,L2) = ∆∪ ν̃7 = ( 0 0 −1 0 1 )

ν̃8 = ( 1 1 1 2 1 )

Table 4.7.: Vertices of the enhanced polyhedron ∆[(Z,L2) for the second divisor family D2

on the Calabi-Yau X
(1,2,2,3,4)
12 .

explicitly show that the relevant zero of the period vector arises at an orbifold point of the

K3, which has been interpreted as a point with a half-integral B-field for the closed-string

compactification on the local geometry [127]. Secondly, this family tests a different direction

of the off-shell deformation space of the brane, leading to a different off-shell superpotential

W for the deformation (4.49). However, since the family contains the curves Cα,κ for z3 =

−α2z
1/2
2 , the critical superpotential has to be the same as the one obtained for the family

D1 in eq. (4.35). The agreement with the previous result and normalization gives an explicit

illustration of the fact that different parametrizations of the off-shell directions, corresponding

to a different choice of light fields represented by different relative cohomologies, fit together

consistently near the critical locus.

As the critical point is determined by the vanishing condition (3.29), we again study the

subsystem P (Z∗) = Q(D2) = 0 . Solving for x4 and changing coordinates to x̃1 = x4
1, the

surface can be described as a cover11 of a mirror family of K3 hypersurfaces

x̃3
1 + x6

2 + x6
3 + x3

5 + ψ̃x̃1x2x3x5 + φ̃(x2x3)3 = 0 .

Here ψ̃−6 := u = − z1z2
z3
3

(z2 − z3 + z2
3)2 and the parameter φ̃ is zero for the embedded surface.

At φ̃ = 0, the GLSM for this family is defined by the charges

0 1 2 3 5

l̃ -6 2 1 1 2
.

The GKZ system for this one modulus GLSM has an exceptional solution

π(u) =
c

2
B{l̃}(u; 1

2) =
c

2

∞∑
n=0

Γ(4 + 6n)

Γ(2 + 2n)2Γ(3
2 + n)2

un+ 1
2 , (4.50)

11The change from x1 to x̃1 gives a fourfold cover acted on by a remaining Z2 action generated by g1 in (4.22).
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that vanishes at the critical point u = 0. To get a better understanding of this solution and

of the integral periods on the surface, one may describe π as a regular solution of the two

parameter family of K3 surfaces parametrized by ψ̃ and φ̃, restricted to the symmetric point

φ̃ = 0. The charges of the GLSM for the two parameter family of K3 manifolds are

0 1 2 3 4 5

l̃1 -3 1 0 0 1 1

l̃2 0 0 1 1 0 -2

.

The two algebraic moduli of this family are v1 = −φ̃ψ̃−3 and v2 = φ̃−2 and these are related to

the single modulus of the embedded surface by u = ψ̃−6 = v2
1v2. The principal discriminant

locus for this family has the two components

∆ = ∆0 ·∆1 = (1 + 54v1 + 729v2
1 − 2916v2

1v2) · (1− 4v2) .

The periods near φ̃ = 0 can be computed in the phase of the two parameter GLSM with

coordinates u1 = v1v
1/2
2 and u2 = v

−1/2
2 . The hypergeometric series

π̃(u1, u2) =
c

2π2

∞∑
n=0

∞∑
p=0

Γ(1 + 3n)Γ(1
2 − n+ p)2

Γ(1 + n)2Γ(2− n+ 2p)
un1u

1+2p−n
2 (4.51)

is a solution of the Picard-Fuchs equation that restricts to π(
√
u) in the limit u2 = 0. This

series can be expressed with the help of a Barnes type integral as

π̃(u1, u2) =− c

2π2

∫
C+

∞∑
n=0

Γ(1 + 3n)Γ(1
2 + s)2Γ(1 + s)Γ(−s)(−1)s

Γ(1 + n)2Γ(2 + n+ 2s)
(u1u2)nu1+2s

2 (4.52)

+
c

2π2

∞∑
n=0

∞∑
p=1

Γ(1 + 3n)Γ(1
2 − p)

2

Γ(1 + n)2Γ(2 + n− 2p)
(u1u2)nu1−2p

2 , (4.53)

where the contour C+ encloses the poles of the Gamma functions on the positive real line

including zero. To relate the special solution π̃(u1, u2) to the integral periods on the K3, one

may analytically continue it to large complex structure by closing the contour to the left and

obtains

π̃(v1, v2) =
c

2πi

∞∑
n,p=0

Γ(1 + 3n)vn1 v
p
2 (−iπ + ln(v2) + 2(Ψ(1 + n− 2p)−Ψ(1 + p)))

Γ(1 + n)2Γ(1 + n− 2p)Γ(1 + p)2

= c ω0

(
tK3
2 − 1

2

)
. (4.54)

Here ω0 = Bl̃(va; 0, 0) is the fundamental integral period at large volume and the quantity

tK3
2 = (2πiω0)−1∂ρ2Bl̃|ρa=0 is the integral period associated with the volume of another 2-

cycle C, which is mirror to the base of the elliptic fibration defined by the GLSM of the

A-model side.
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From the last expression it follows that the zero of the K3 period vector associated with

the D-brane vacuum arises at the locus

JK3 = Im tK3
2 = 0 , BK3 = Re tK3

2 = 1
2 , (4.55)

which, in the closed string compactification on this local K3 geometry, is interpreted as a

2-cycle of zero volume with a half-integral B-field. Indeed, in the limit u = 0 = u1, eq. (4.51)

becomes

π̃(u1, u2)|u1=0 ∼ ln

(
1− 2v2 −

√
1− 4v2

2v2

)
− iπ ,

expanded around v2 =∞. The first term on the right hand side is the period for the compact

cycle of the C2/Z2-quotient singularity studied in [127], which is zero on the discriminant

locus ∆1 = 0, but a constant at v2 = ∞. The zero associated with the critical point hence

does not appear on the principal discriminant, but at an orbifold point with non-vanishing

complex quantum volume. It has been argued in [53, 54], that the A-model data associated

with the critical points of the present type include Z2-valued open-string degrees of freedom

from the choice of a discrete gauge field on the A-brane. Here we see that to this discrete

choice in the A-model there corresponds, at least formally, a half-integral valued B-field for

the tension in the B-model geometry. It would be interesting to study this phenomenon and

its C2/Zn generalizations in more detail.

As in the previous parametrization, the tensions can be computed from the integrals

Ta =
1

2πi

∫ βa

∗
π(u(ξ))

dξ

ξ
,

where β1/2 = ±iz1/4
2 α1/2, with α1/2 defined in eq. (4.31). We again choose the reference point

such that W (+,α) = −W (−,α) and find

W (±,α1) = ∓ c

8
· B{l1,l2}

(
z1, z2; 1

2 , 0
)
, W (±,α2) = ∓ c

8
· B{l1,l2}

(
z1, z2; 1

2 ,
1
2

)
, (4.56)

which is in agreement with (4.35) for c = 1.

4.3. Branes on X
(1,1,1,6,9)
18

As a third example we study branes on the two moduli Calabi-Yau Z = X
(1,1,1,6,9)
18 . For this

geometry closed string mirror symmetry has been studied in [117]. The manifold Z is an

elliptic fibration over P2 with the elliptic fiber and the base parametrized by the coordinates

x4, x5, x6 and x1, x2, x3 in (4.57), respectively. In the decompactification limit of large fiber,

the compact Calabi-Yau approximates the non-compact Calabi-YauO(−3)P2 with coordinates

x1, x2, x3, x6. This limit is interesting, as it makes contact to the previous studies of branes

on O(−3)P2 in [162, 49].
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∆(Z) ν̃0 = ( 0 0 0 0 )

ν̃1 = ( 1 1 6 9 )

ν̃2 = ( −1 0 0 0 )

ν̃3 = ( 0 −1 0 0 )

ν̃4 = ( 0 0 −1 0 )

ν̃5 = ( 0 0 0 −1 )

ν̃6 = ( 0 0 2 3 )

Table 4.8.: Vertices of the bulk geometry ∆(Z) for X
(1,1,1,6,9)
18 .

4.3.1. Bulk geometry

The toric ambient geometry of X
(1,1,1,6,9)
18 is given by the polyhedron ∆(Z) in Table 4.8. A

maximal triangulation of ∆(Z) leads to the following relations

0 1 2 3 4 5 6

l̃1 −6 0 0 0 2 3 1

l̃2 0 1 1 1 0 0 −3

. (4.57)

In homogeneous coordinates of P4
(1,1,1,6,9) the hypersurface constraint for the mirror manifold

in P4
(1,1,1,6,9)/(Z18 × Z6) becomes

P (Z∗) = x18
1 + x18

2 + x18
3 + x3

4 + x2
5 + ψ (x1x2x3x4x5) + φ (x1x2x3)6 , (4.58)

where ψ = z
−1/6
1 z

−1/18
2 and φ = z

−1/3
2 . The coordinates z1 =

a2
4a

3
5a6

a6
0

and z2 = a1a2a3

a3
6

are

local coordinates in the neighborhood of the point of maximal unipotent monodromy. The

Greene-Plesser orbifold group acts as xi → λ
gk,i
k xi with λ18

1 = 1, λ6
2 = 1 and the weights

Z18 : g1 = (1,−1, 0, 0, 0), Z6 : g2 = (0, 1, 3, 2, 0) . (4.59)

4.3.2. Brane geometry

We consider a family of A-branes parametrized by the relations

|x̃3|2 − |x̃6|2 = ĉ,
0 1 2 3 4 5 6

l̂ 0 0 0 1 0 0 −1
. (4.60)

This defines a family of D7-branes in the mirror parametrized by one complex modulus. To

make contact with the non-compact branes we may add a second constraint |x2|2 − |x6|2 = 0

that selects a particular solution of the Picard-Fuchs system.12 The brane geometry on the

12Since the constant in this equation must be zero to get a non-zero superpotential [142], there is no new

modulus.
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∆(Z) ν̃0 = ( 0 0 0 0 0 )

ν̃1 = ( 1 1 6 9 0 )

ν̃2 = ( −1 0 0 0 0 )

ν̃3 = ( 0 −1 0 0 0 )

ν̃4 = ( 0 0 −1 0 0 )

ν̃5 = ( 0 0 0 −1 0 )

ν̃6 = ( 0 0 2 3 0 )

∆[(Z,L1) = ∆∪ ν̃7 = ( 0 −1 0 0 −1 )

ν̃8 = ( 0 0 2 3 −1 )

Table 4.9.: Vertices of the enhanced polyhedron ∆[(Z,L1) for the family D1 on X
(1,1,1,6,9)
18 .

B-model side is defined by the two equations

P (Z∗) =
∑

aiyi = a0x1x2x3x4x5 + a1x
18
1 + a2x

18
2 + a3x

18
3 + a4x

3
4 + a5x

2
5 + a6(x1x2x3)6,

Q(D1) : y3 = y6 or (x1x2x3)6 = x18
3 .

(4.61)

As in the previous cases one observes that the complex deformations of the brane geometry

are related to the periods of a K3 surface defined by

PD1 = a0x
′
1x
′
2x
′
3x
′
4 + (a3 + a6)(x′1x

′
2)6 + a1x

′
1

12
+ a2x

′
2

12
+ a4x

′
4

3
+ a5x

′
5

2
.

The GLSM for the above brane geometry corresponds to the enhanced polyhedron ∆[(Z,L1)

in Table 4.9. Choosing a triangulation of ∆[(Z,L1) that represents a large complex structure

phase yields the following basis of the linear relations:

0 1 2 3 4 5 6 7 8

l1 −6 0 0 0 2 3 1 0 0

l2 0 1 1 0 0 0 −2 1 −1

l3 0 0 0 1 0 0 −1 −1 1

(4.62)

The last two charge vectors define a GLSM for the “inner phase” of the brane in the non-

compact Calabi-Yau described in [49]. The differential operators (3.51) for the relative periods

are given by

L1 = θ1(θ1 − 2θ2 − θ3)− 12z1(6θ1 + 5)(6θ1 + 1),

L2 = θ2
2(θ2 − θ3) + z2(θ1 − 2θ2 − θ3)(θ1 − 2θ2 − 1− θ3)(θ2 − θ3),

L3 = −θ3(θ2 − θ3)− z3(θ1 − 2θ2 − θ3)(θ2 − θ3) .

(4.63)

4.3.3. Large volume brane

The elliptic fiber compactifies the non-compact fiber direction x6 of the non-compact Calabi-

Yau O(−3)P2 . In the limit of large elliptic fiber we therefore expect to find a deformation of
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l\m 0 1 2 3 4 5 6

0 ∗ 1 0 0 0 0 0

1 1 ∗ −1 −1 −1 −1 −1

2 −1 −2 ∗ 5 7 9 12

3 1 4 12 ∗ −40 −61 −93

4 −2 −10 −32 −104 ∗ 399 648

5 5 28 102 326 1085 ∗ −4524

6 −13 −84 −344 −1160 −3708 −12660 ∗
7 35 264 1200 4360 14274 45722 159208

8 −100 −858 −4304 −16854 −57760 −185988 −598088

9 300 2860 15730 66222 239404 793502 2530946

10 −925 −9724 −58208 −262834 −1004386 −3460940 −11231776

Table 4.10.: Invariants N0,l,m for the geometry (4.62).

the brane studied in [162, 49]. Large volume corresponds to za = 0 in the coordinates defined

by eqs. (4.62),(2.82).

The mirror maps and the superpotential can be computed from (4.63). Expressing the

superpotential in the flat coordinates ta gives the Ooguri-Vafa invariants. The homology class

β can be labelled by three integers (k, l,m) that determine the Kähler volume kt1+lt2+mt3 of

a curve in this class. Here t1 is the volume of the elliptic fiber and t2, t3 are the (D4-)volumes

of two homologically distinct discs in the brane geometry. The Kähler class of the section,

which measures the volume of the fundamental sphere in P2, is t2 + t3.

For the discs that do not wrap the elliptic fiber β = (0, l,m) we obtain the invariants in

Table 4.10. This result agrees with the results of [162, 49] for the disc invariants in the “inner

phase” of the non-compact Calabi-Yau O(−3)P2 and can be explained heuristically as follows.

The holomorphic discs ending on the non-compact A-brane in O(−3)P2 lie within the zero

section of O(−3)P2 . Similarly discs with k = 0 in X
(1,1,1,6,9)
18 are holomorphic curves that must

map to the section x6 = 0 of the elliptic fibration. The moduli space of maps into the sections

of the non-compact and compact manifolds, respectively, does not see the compactification in

the fiber, explaining the agreement. The agreement of the two computations can be viewed

as a statement of local mirror symmetry in the open string setup. For worldsheets that wrap

the fiber on obtains the numbers in Table 4.11. It would be interesting to confirm some of

these numbers by an independent computation.

4.3.4. Deformation of the non-compact involution brane

In [187] an involution brane in the local model O(−3)P2 has been studied. Similarly as in the

previous case one expects to find a deformation of this brane by embedding it in the compact

manifold and taking the limit of large elliptic fiber, z1 = 0. In order to recover the involution
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k = 1

l\m 0 1 2 3 4 5

0 ∗ 252 0 0 0 0

1 −240 ∗ 300 300 300 300

2 240 780 ∗ −2280 −3180 −4380

3 −480 −2040 −6600 ∗ 24900 39120

4 1200 6300 22080 74400 ∗ −315480

5 −3360 −21000 −82200 −276360 −957600 ∗
6 10080 73080 319200 1134000 3765000 13300560

7 −31680 −261360 −1265040 −4818240 −16380840 −54173880

k = 2

l\m 0 1 2 3 4

0 ∗ 5130 −18504 0 0

1 −141444 ∗ −73170 −62910 −62910

2 −28200 −108180 ∗ 544140 778560

3 85320 403560 1557000 ∗ −7639920

4 −285360 −1647540 −6485460 −24088680 ∗
5 1000440 6815160 29214540 106001100 392435460

6 −3606000 −28271880 −133294440 −505417320 −1773714840

Table 4.11.: Invariants Nk,l,m for the geometry (4.62).

brane of the local geometry we study the critical points near z3 = 1 in the local coordinates

z̃1 = z1(−z2)1/2, u = (−z2)−1/2(1− z3) , v = (−z2)1/2 .

After transforming the Picard-Fuchs system to these variables, the solution corresponding to

the superpotential has the following expansion

cW(u, v, z̃1) = −v − 35v3

9
+

1

2
uv2 +

200

3
z̃1v

2 − u2v

8
− 12320z̃2

1v − 60uz̃1v + . . . , (4.64)

where c is a constant that will be fixed again by comparing the critical value with the results

of [187]. In the decompactification limit z̃1 = 0, the critical point of the superpotential is at

u = 0, where we obtain the following expansion

cWcrit(z2) = −
√
z2 −

35

9
z

3/2
2 − 1001

25
z

5/2
2 + . . . , (4.65)

The restricted superpotential satisfies the differential equation

LbulkWcrit(z2) = −
√
z2

8c
,

with Lbulk the Picard-Fuchs operator of the local geometry O(−3)P2 . The above expressions

at the critical point agree with the ones given in [187] for c = 1. Using the closed string
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mirror map the real invariants for the involution brane on O(−3)P2 are given by [187]

Wcrit(z(q)) =
∑
k odd

(
(−1)

k2
qk/2 +

1

k2
q3k/2 +

(−5)

k2
q5k/2 +

42

k2
q7k/2 +

(−429)

k2
q9k/2 + . . .

)
.(4.66)

As might have been expected, the full superpotential (4.64) shows that the involution brane

of the local model is non-trivially deformed in the compact Calabi-Yau manifold for z1 6= 0.

It is not obvious that the modified multi-cover description of [53], which is adapted to real

curves and differs from the original proposal of [52], can be generalized to obtain integral

invariants for the deformations of the critical point in the z1 direction. One suspects that an

integral expansion in the sense of [53] exists only at critical points with an extra symmetry

and for deformations that respect this symmetry.

4.3.5. Further domain wall tensions

In the bulk geometry of X
(1,1,1,6,9)
18 we consider domain walls which connect the curves

Cα,± = {x2 = η1x1, x5 = η2x
9
3 −

ψ

2
x1x2x3x4, x4 = ψ2α(x1x2x3)2} ,

η18
1 = η2

2 = −1, α3 − 1

4
α2 +

φ

ψ6
= 0 , (4.67)

where different choices for η1,2 are identified under the Greene-Plesser group as (η1, η2, α) ∼
(η1λ

2
1λ
−1
2 , η2λ

3
2, α), and we distinguish the curves Cα,+ and Cα,− by the orbits of the labels

(η1, η2, α) under this orbifold action. Specifically the orbits Cα,± contain the components

η9
1 = ±i for fixed η2 = i and fixed α, respectively.

Divisor geometry and tensions

To capture the deformation of the above curves we study the family of divisors

Q(D2) = x18
2 + z3x

18
1 . (4.68)

The periods on this family are captured by the GLSM with charges

0 1 2 3 4 5

l̃1 -6 0 0 2 3 1

l̃2 0 1 2 0 0 -3

,

where the two algebraic moduli are u1 = z1 and u2 = − z2
z3

(1−z3)2. The exceptional solutions

π1(u) =
c1

2
B{l̃1,l̃2}(u1, u2; 0, 1

2) = − c1

2π

√
u2 2F1

(
1
6 ,

5
6 ,−

1
2 , 432u1

)
+O(u

3/2
2 ) ,

π2(u) =
c2

2
B{l̃1,l̃2}(u1, u2; 1

2 ,
1
2) =

2048c2

π
u

3/2
1

√
u2 2F1

(
5
3 ,

7
3 ,

5
2 , 432u1

)
+O(u

3/2
2 ) ,

(4.69)

vanish at the critical point u2 = 0. Similarly to eq. (4.32) we define off-shell superpotentials

by

W(±)
a (z1, z2, z3) =

1

2πi

∫ ±√z3
ξ0

πa(u(z1, z2, ξ
2))

dξ

ξ
,
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∆(Z) ν̃0 = ( 0 0 0 0 0 )

ν̃1 = ( 1 1 6 9 0 )

ν̃2 = ( −1 0 0 0 0 )

ν̃3 = ( 0 −1 0 0 0 )

ν̃4 = ( 0 0 −1 0 0 )

ν̃5 = ( 0 0 0 −1 0 )

ν̃6 = ( 0 0 2 3 0 )

∆[(Z,L2) = ∆∪ ν̃7 = ( 1 1 6 9 −1 )

ν̃8 = ( −1 0 0 0 0 )

Table 4.12.: Vertices of the enhanced polyhedron ∆[(Z,L2) for the family D2 on X
(1,1,1,6,9)
18 .

with the fixed reference point ξ0. For ξ0 = i the contribution of the reference point vanishes,

and at the critical value z3 = 1 we arrive at the on-shell superpotentials W
(±)
a , where the

±-label is now correlated with the orbits of the curves (4.67)

W
(±)
1 = ±c1

8

∑
ni≥0

Γ (6n1 + 1) zn1
1 z

n2+ 1
2

2

Γ (2n1 + 1) Γ (3n1 + 1) Γ
(
n1 − 3n2 − 1

2

)
Γ
(
n2 + 3

2

)3 ,

W
(±)
2 = ±c2

8

∑
ni≥0

Γ (6n1 + 4) z
n1+ 1

2
1 z

n2+ 1
2

2

Γ (2n1 + 2) Γ
(
3n1 + 5

2

)
Γ (n1 − 3n2) Γ

(
n2 + 3

2

)3 .

(4.70)

They can be expressed in terms of the bulk generating function as

W
(±)
1 = ±c1

8
B{l1,l2}

(
z1, z2; 0, 1

2

)
, W

(±)
2 = ±c2

8
B{l1,l2}

(
z1, z2; 1

2 ,
1
2

)
. (4.71)

Again these functions can be also obtained as solutions to the large GKZ system (3.51) of the

relative cohomology problem. The vertices of the enhanced polyhedron ∆[(Z,L2) are given

in Table 4.12. For the family (4.68) triangulation of ∆[(Z,L2) gives the additional charge

vector
0 1 2 3 4 5 6 7 8

l3 0 -1 1 0 0 0 0 1 -1
.

This leads to the generalized hypergeometric system

L̃1 = θ1(θ1 − 3θ2)− 12z1(6θ1 + 1)(6θ1 + 5) ,

L̃2 = θ2(θ2 − θ3)(θ2 + θ3)− z2(θ1 − 3θ2)(θ1 − 3θ2 − 1)(θ1 − 3θ2 − 2) , (4.72)

L̃3 = θ3(θ2 + θ3) + z3θ3(θ2 − θ3) ,

annihilating the relative period integrals. There are two solutions with a minimum at the

critical locus ln(z3) = 0 that restrict to the on-shell superpotentials W
(±)
1 and W

(±)
2 , respec-

tively.
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To characterize the on-shell superpotentials W
(±)
a as solutions to an inhomogeneous Picard-

Fuchs equation we note that

L̃1 = Lbulk
1 , L̃2 = Lbulk

2 − θ2θ
2
3 .

So only the second operator acquires an inhomogeneous term, which is determined by the

leading part of the surface periods πa(u). Acting with θ2θ3 on the terms in (4.69) one obtains

the inhomogeneous Picard-Fuchs equations

A
(±)
1 := Lbulk

2 W
(±)
1 = ± −c1

16π2

√
z2 2F1

(
1
6 ,

5
6 ;−1

2 ; 432z1

)
,

A
(±)
2 := Lbulk

2 W
(±)
2 = ±4096c2

16π2
z

3/2
1

√
z2 2F1

(
5
3 ,

7
3 ; 5

2 ; 432z1

)
. (4.73)

To find the geometric domain wall tensions, we note that the three roots α` of the cubic

equation (4.67) can be written as

α` =
1

12

(
1 + e

2πi
3

(`−1) ∆ + e−
2πi
3

(`−1) 1

∆

)
, ` = 1, 2, 3 ,

with

∆ =
3

√
1− 864z1 + 2

√
432z1 (432z1 − 1) .

Under a monodromy z−1
1 → e2πi z−1

1 around z1 = ∞, ∆ transforms as ∆ → e
2πi
3 ∆ and the

three roots are permuted according to α` → α`+1. On the curves Cα,± the monodromy acts

as the Z6 symmetry

M(z1 =∞) :

α1,±

α2,±

α3,±

 7→
α2,∓

α3,±

α1,±

 .

It follows that the domain walls between the curves Cα,± for fixed α must be permuted under

the monodromy as well. To this end note that the hypergeometric functions in eq. (4.73)

are solutions of the same hypergeometric differential equation and in fact are related by

monodromy. Indeed, for c ≡ c1 ≡ c2, the inhomogeneous pieces can be expressed in terms of

the single rational expression

f1(α) = 0 , f2(α) =
c

4π2

1− 12α

ψ9 α3 (1− 6α) 3
, (4.74)

as

f2(α1) = −2A
(+)
2 , f2(α2) = −A(+)

1 +A
(+)
2 , f2(α3) = A

(+)
1 +A

(+)
2 . (4.75)

From the above we obtain the following linear combinations for the geometric superpotentials

W (±)
α1

= 2W
(±)
2 , W (±)

α2
= W

(±)
1 −W (±)

2 , W (±)
α3

= W
(±)
1 +W

(±)
2 , (4.76)

which satisfy Lbulk
2 W

(±)
α = ±f(α).
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The inhomogeneous term (4.75) becomes singular at the zeros of the open-string discrimi-

nant

∆α = z1(1− 432z1) ,

of the cubic equation, where two roots coincide. This leads to the appearance of tensionless

domain walls

z1 = 0 ⇒ (α`) = (1
4 , 0, 0) ⇒

T
(+,−)
α1,α1 = W

(+)
α1 −W

(−)
α1 = 0

T
(±,±)
α2,α3 = W

(±)
α2 −W

(±)
α3 = 0

,

z1 = 1
432 ⇒ (α`) = (1

6 ,−
1
12 ,

1
6) ⇒

T
(+,−)
α2,α2 = W

(+)
α2 −W

(−)
α2 = 0

T
(±,±)
α1,α3 = W

(±)
α1 −W

(±)
α3 = 0

.

(4.77)

A-model expansion

As before by mirror symmetry, the functions (4.70) should have an integral instanton ex-

pansion when expressed in terms of the appropriate coordinates and taking into account

appropriately the contributions from multi-covers [52]. For the critical branes at fixed ẑ, we

use again the modified multi-cover formulae of the type proposed in [53, 55, 73]:

W
(±)
1 (z(q))

ω0(z(q))
=

1

(2πi)2

∑
k odd

∑
d2 odd
d1≥0

n
(1,±)
d1,d2

qkd1
1 q

kd2/2
2

k2
, (4.78)

W
(±)
2 (z(q))

ω0(z(q))
=

1

(2πi)2

∑
k odd

∑
d1 odd
d2 odd

n
(2,±)
d1,d2

q
kd1/2
1 q

kd2/2
2

k2
. (4.79)

In the Table 4.13 we list the integer invariants of the superpotentials W
(+)
a obtained with the

modified multicover formulas (4.78) and (4.79) for the normalization c = c1 = c2 = 1.

In the limit q1 → 0 the superpotential W
(+)
1 reproduces the numbers n

[3]
k of the local Calabi-

Yau geometry O(−3)P2 given in Table G.1 in Appendix G and (4.66). Therefore in this local

limit the domain wall between the curves Cα2,+ and Cα3,−, which yields the on-shell tension

T
(+−)
α2,α3 ≡ W

(+)
α2 −W

(−)
α3 = 2W

(+)
1 , becomes equivalent to the local domain wall of the local

three-fold O(−3)P2 for the numbers n
[3]
k . The on-shell superpotentials W

(±)
2 vanish in this

limit and give rise to tensionless domain walls (4.77).

Non-compact limit

We exhibit the non-compact limit by redefining the projective coordinate of P1,1,1,6,9/(Z18 ×
Z6) according to

y1 = x6
1 , y2 = x6

2 , y3 = x6
3 , x = x5 , z = x5 + ψ x1x2x3x4 ,

where y` ∈ C∗, x, z ∈ C. In these local coordinates the Greene-Plesser orbifold group reduces

to Z3. It acts on the coordinates y` as y` → λ`y`, with λ3 = 1, while the coordinates x, z
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1
2 · n

(1,+)
d1,d2

d1
\d2 1 3 5 7 9

0 1 −1 5 −42 429

1 −270 270 −2430 27270 −351000

2 −35235 0 467775 −7767495 131193270

3 −1129110 −3171960 −56432160 1346568000 −30388239450

4 −19625112 −9840669480 18001000575 −268964593065 6132575901195

5 −237548052 −4228413761754 2588348258640 38534260978296 −1115308309663386

1
8192 · n

(2,+)
d1,d2

d1\d2 1 3 5 7 9

1 0 0 0 0 0

3 −1 0 0 0 0

5 −54 108 −270 1728 −15444

7 −1215 −24300 99630 −918540 10783125

9 −17290 −60310547 −15819570 220135880 −3485260710

Table 4.13.: Disc invariants for the on-shell superpotentials W
(+)
a of the three-fold X

(1,1,1,6,9)
18 .

remain invariant. In the limit z1 → 0, which is mirror symmetric to the limit q1 → 0, we

arrive at the local Calabi-Yau geometry

0 = y3
1 + y3

2 + y3
3 + z

1/3
2 y1y2y3 + x z +O(

√
z1) ,

together with the associated local holomorphic three-form Ω. The local geometry is related

to the (mirror) cubic elliptic curve with the points y` = 0 removed, and it captures the local

mirror of the non-compact three-folds O(−3)P2 (see Appendix G for details). This explains

the appearance of the disc invariants n
[3]
k = n

(1,+)
0,d2

in Table 4.13.

4.4. Branes on X
(1,1,1,3,3)
9

As a further example we study branes on the two moduli Calabi-Yau manifold Z = X
(1,1,1,3,3)
9 .

This manifold is also an elliptic fibration over P2 and one can consider a similar compactifi-

cation of the non-compact brane in O(−3)P2 as in the preceding example.

4.4.1. Bulk geometry

The toric ambient geometry of X
(1,1,1,3,3)
9 is given by the polyhedron ∆(Z) in Table 4.14.

A maximal triangulation of ∆(Z) leads to the following relations

0 1 2 3 4 5 6

l̃1 −3 0 0 0 1 1 1

l̃2 0 1 1 1 0 0 −3

(4.80)
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∆(Z) ν̃0 = ( 0 0 0 0 )

ν̃1 = ( −1 0 1 1 )

ν̃2 = ( 0 −1 1 1 )

ν̃3 = ( 1 1 1 1 )

ν̃4 = ( 0 0 −1 0 )

ν̃5 = ( 0 0 0 −1 )

ν̃6 = ( 0 0 1 1 )

Table 4.14.: Vertices of the bulk geometry ∆(Z) for X
(1,1,1,3,3)
9 .

The hypersurface constraint for the mirror manifold in P1,1,1,3,3/(Z2
9 × Z3), written in homo-

geneous coordinates of P1,1,1,3,3 is

P (Z∗) = x9
1 + x9

2 + x9
3 + x3

4 + x3
5 − ψ (x1x2x3x4x5) + φ (x1x2x3)3 , (4.81)

where ψ = z
−1/3
1 z

−1/9
2 and φ = z

−1/3
2 . The coordinates z1 = −a4a5a6

a3
0

and z2 = a1a2a3

a3
6

are

again local coordinates of the point of maximal unipotent monodromy. The Greene-Plesser

orbifold group acts as xi → λ
gk,i
k xi with λ9

1 = λ9
2 = 1, λ3

3 = 1 and weights

Z9 : g1 = (1,−1, 0, 0, 0), Z9 : g2 = (1, 0,−1, 0, 0), Z3 : g2 = (0, 0, 0, 1,−1) . (4.82)

4.4.2. Brane geometry

We consider a family of D7-branes which we expect to include a brane that exists at the

Landau Ginzburg point of the two moduli Calabi–Yau. The mirror A-brane is defined by

− |x̃0|2 + |x̃4|2 = ĉ,
0 1 2 3 4 5 6

l̂ −1 0 0 0 1 0 0
. (4.83)

The enhanced polyhedron ∆[(Z,L1) for this brane geometry is given in Table 4.15. A suitable

basis of relations for the charge vectors is

0 1 2 3 4 5 6 7 8

l1 −2 0 0 0 0 1 1 −1 1

l2 0 1 1 1 0 0 −3 0 0

l3 −1 0 0 0 1 0 0 1 −1

(4.84)

leading to the differential operators

L1 = θ1(θ1 − 3θ2)(θ1 − θ3) + z1(θ1 − θ3)(2θ1 + 1 + θ3)(2θ1 + 2 + θ3),

L2 = θ3
2 − z2(θ1 − 3θ2)(θ1 − 3θ2 − 1)(θ1 − 3θ2 − 2),

L3 = −θ3(θ1 − θ3)− z3(θ1 − θ3)(2θ1 + 1 + θ3) .

(4.85)
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∆(Z) ν̃0 = ( 0 0 0 0 0 )

ν̃1 = ( −1 0 1 1 0 )

ν̃2 = ( 0 −1 1 1 0 )

ν̃3 = ( 1 1 1 1 0 )

ν̃4 = ( 0 0 −1 0 0 )

ν̃5 = ( 0 0 0 −1 0 )

ν̃6 = ( 0 0 1 1 0 )

∆[(Z,L1) = ∆∪ ν̃7 = ( 0 0 0 0 −1 )

ν̃8 = ( 0 0 −1 0 −1 )

Table 4.15.: Vertices of the enhanced polyhedron ∆[(Z,L1) for on X
(1,1,1,3,3)
9 .

The brane geometry on the B-model side is defined by the two equations

P (Z∗) =
∑

aiyi = a0x1x2x3x4x5 + a1x
9
1 + a2x

9
2 + a3x

9
3 + a4x

3
4 + a5x

3
5 + a6(x1x2x3)3,

Q(D1) : y0 = y1 or x1x2x3x4x5 = x3
4 .

(4.86)

As in the previous cases, the deformations of the hypersurface Q(D1) are described by the

periods on a K3 surface.

We are interested in a brane superpotential with critical point at z3 = −1. Choosing the

following local coordinates centered around z3 = −1

u = (−z1)−1/2z
−1/6
2 (z3 + 1) , v = (−z1)1/2z

1/6
2 x2 = z

−1/3
2 ,

we obtain the superpotential

cW(u, v, x2) = −1

2
ux2 +

1

24
u3 + 210v3 +

3

4
vx2

2 −
3

8
u2vx2 + . . . . (4.87)

This superpotential has a critical point at u = 0 and x2 = 0. At the critical locus we have

v = z1/6, where z denotes the closed string modulus

z = −a
3
4a

3
5a1a2a3

a9
0

.

The expansion of the superpotential at this critical locus reads

cWcrit(z) = 210
√
z+

53117350

3
z3/2 +

18297568296042

5
z5/2 +

7182631458065952702

7
z7/2 + . . . .

4.4.3. Large volume brane

As above one can extract large volume Ooguri-Vafa invariants. Some of these large volume

invariants for the brane geometry (4.84) are given in Table 4.16. There is another interesting

large volume brane, which is the compactification of the local brane inO(−3)P2 . It is described
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l = 0
k\m 0 1 2 3 4 5

0 ∗ 54 0 0 0 0

1 −36 ∗ 54 −18 0 0

2 18 −54 ∗ 36 0 0

3 0 0 −54 ∗ 54 0

4 0 0 0 −36 ∗ 54

5 0 0 0 18 −54 ∗
6 0 0 0 0 0 −54

7 0 0 0 0 0 0

l = 1
k\m 0 1 2 3 4

0 ∗ 0 0 0 0

1 72 ∗ −108 36 0

2 −36 −1728 ∗ 2772 −1026

3 −1224 17280 −80460 ∗ 243756

4 5508 −64800 340092 −1075140 ∗

l = 2
0 1 2 3

∗ 0 0 0

−180 ∗ 270 −90

108 7020 ∗ −11160

−108 −5832 −97686 ∗
−10944 133488 −588276 2643372

Table 4.16.: Invariants Nk,l,m for the geometry (4.84).

∆(Z) ν̃0 = ( 0 0 0 0 0 )

ν̃1 = ( −1 0 1 1 0 )

ν̃2 = ( 0 −1 1 1 0 )

ν̃3 = ( 1 1 1 1 0 )

ν̃4 = ( 0 0 −1 0 0 )

ν̃5 = ( 0 0 0 −1 0 )

ν̃6 = ( 0 0 1 1 0 )

∆[(Z,L2) = ∆∪ ν̃7 = ( 1 1 1 1 −1 )

ν̃8 = ( 0 0 1 1 −1 )

Table 4.17.: Vertices of the enhanced polyhedron ∆[(Z,L2) for on X
(1,1,1,3,3)
9 .

by the enhanced polyhedron ∆[(Z,L2) given in Table 4.17. A maximal triangulation of

∆[(Z,L2) leads to the following charge vectors

0 1 2 3 4 5 6 7 8

l1 −3 0 0 0 1 1 1 0 0

l2 0 1 1 0 0 0 −2 1 −1

l3 0 0 0 1 0 0 −1 −1 1

(4.88)

Some invariants for this geometry are given in Table 4.18. The invariants for k = 0 are

three times the invariants in Table 4.10, where the overall factor comes from the three global
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k = 0

l\m 0 1 2 3 4 5

0 ∗ 3 0 0 0 0

1 3 ∗ −3 −3 −3 −3

2 −3 −6 ∗ 15 21 27

3 3 12 36 ∗ −120 −183

4 −6 −30 −96 −312 ∗ 1197

5 15 84 306 978 3255 ∗
6 −39 −252 −1032 −3480 −11124 −37980

7 105 792 3600 13080 42822 137166

k = 1

l\m 0 1 2 3

0 ∗ 27 0 0

1 −72 ∗ 90 90

2 72 234 ∗ −684

3 −144 −612 −1980 ∗
4 360 1890 6624 22320

5 −1008 −6300 −24660 −82908

6 3024 21924 95760 340200

7 −9504 −78408 −379512 −1445472

k = 2

0 1 2 3

∗ 81 −108 0

−1269 ∗ −1539 −1377

−684 −2808 ∗ 13554

2268 11232 42336 ∗
−7848 −46656 −182916 −671922

27972 194832 835758 3020382

−102024 −813456 −3844512 −14554242

377784 3390336 17598600 70975872

Table 4.18.: Invariants Nk,l,m for the geometry (4.88).

sections of the elliptic fibration X
(1,1,1,3,3)
9 . It appears that the invariants for k = 1, l 6= 0 are

generally 3/10 times the invariants in Table 4.11.

4.4.4. Further domain wall tensions

We are going to furthermore study the family of divisors

Q(D3) = x9
2 + z3x

9
1 , (4.89)

near the point z3 = −1. The surface periods defined by the family (4.89) are captured by the

GLSM with charges

0 1 3 4 5 6

l̃1 -3 0 0 1 1 1

l̃2 0 2 1 0 0 -3

,
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∆(Z) ν̃0 = ( 0 0 0 0 0 )

ν̃1 = ( −1 0 1 1 0 )

ν̃2 = ( 0 −1 1 1 0 )

ν̃3 = ( 1 1 1 1 0 )

ν̃4 = ( 0 0 −1 0 0 )

ν̃5 = ( 0 0 0 −1 0 )

ν̃6 = ( 0 0 1 1 0 )

∆[(Z,L3) = ∆∪ ν̃7 = ( −1 0 1 1 −1 )

ν̃8 = ( 0 −1 1 1 −1 )

Table 4.19.: Vertices of the enhanced polyhedron ∆[(Z,L3) for the family D3 on X
(1,1,1,3,3)
9 .

depending on the two algebraic moduli u1 = z1 and u2 = − z2
z3

(1 − z3)2. The exceptional

solutions

π1 =
c1

2
B{l̃1,l̃2}(u1, u2; 0, 1

2) =
−c1

2π

√
u2 2F1(1

3 ,
2
3 ,−

1
2 , 27z1) +O(u

3/2
2 ) ,

π2 =
c2

2
B{l̃1,l̃2}(u1, u2; 1

2 ,
1
2) =

105c2

2π

√
u2 z

3/2
1 2F1(11

6 ,
13
6 ,

5
2 , 27z1) +O(u

3/2
2 ) ,

(4.90)

vanish at the point z3 − 1 = 0 = u2. The sign of the root
√
z3 distinguishes the two sheets of

the coordinate change x2
1 = x̃1 similarly as in eq. (4.32). Integrating along similar contours

as in that case, we obtain the superpotentials

W
(±)
1 = ±c1

8

∑
ni≥0

Γ (3n1 + 1) zn1
1 z

n2+ 1
2

2

Γ (n1 + 1)2 Γ
(
n1 − 3n2 − 1

2

)
Γ
(
n2 + 3

2

)3 ,

W
(±)
2 = ±c2

8

∑
ni≥0

Γ
(
3n1 + 5

2

)
z
n1+ 1

2
1 z

n2+ 1
2

2

Γ
(
n1 + 3

2

)2
Γ (n1 − 3n2) Γ

(
n2 + 3

2

)3 ,

(4.91)

or equivalently, expressed in terms of the bulk generating function

W
(±)
1 = ±c1

8
B{l1,l2}

(
z1, z2; 0, 1

2

)
, W

(±)
2 = ±c2

8
B{l1,l2}

(
z1, z2; 1

2 ,
1
2

)
. (4.92)

These functions are solutions to the large GKZ system (3.51) of the relative cohomology

problem. The enhanced polyhedron ∆[(Z,L3) for the family D3 in (4.89) is given in Table

4.19. For the family in (4.89) maximal triangulation of the enhanced polyhedron ∆[(Z,L3)

leads to the additional extended charge vector

0 1 2 3 4 5 6 7 8

l3 0 -1 1 0 0 0 0 1 -1
,
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1
2 · n

(1,+)
d1,d2

q1\q
1/2
2 1 3 5 7 9 11

0 1 −1 5 −42 429 −4939

1 −27 27 −243 2727 −35100 487647

2 −243 0 4131 −71442 1230795 −21333942

3 −1347 −2295 −33804 979800 −24220836 544584789

4 −6021 −231876 532575 −10061955 319551804 −9298367514

5 −22356 −7276878 5101407 73610289 −3196953927 117194205483

1
2 · n

(2,+)
d1,d2

q
1/2
1
\q

1/2
2 1 3 5 7 9

1 0 0 0 0 0

3 −105 0 0 0 0

5 −567 1134 −2835 18144 −162162

7 −2916 −18954 81648 −826686 10133100

9 −11904 −1421850 −498555 13289664 −255008817

Table 4.20.: Disc invariants for the on-shell superpotentials W
(+)
a of the brane geometry D3

of the three-fold X
(1,1,1,3,3)
9 .

which together with the charge vectors of the three-fold, gives rise to the differential operators

according to eq. (3.51)

L̃1 = θ1(θ1 − 3θ2)− 3z1(3θ1 + 1)(3θ1 + 2) ,

L̃2 = (θ2 − θ3)(θ2 + θ3)θ2 − z2(θ1 − 3θ2)(θ1 − 3θ2 − 1)(θ1 − 3θ2 − 2) ,

L̃3 = θ3(θ2 + θ3) + z3 θ3(θ2 − θ3) .

(4.93)

The solutions to these operators are the relative period integrals. In particular there are

two solutions with a minimum at the critical locus ln(z3) = 0, which restrict to the on-shell

superpotentials W
(±)
1 and W

(±)
2 , respectively.

To characterize the critical superpotentials W
(±)
a as solutions to an inhomogeneous Picard-

Fuchs equation, we observe

L̃1 = Lbulk
1 , L̃2 = Lbulk

2 − θ2θ
2
3 .

So only the second operator acquires an inhomogeneous term, which is determined by the

leading part of the surface periods πa. Acting with θ2θ3 on the leading coefficients of (4.90)

one obtains the inhomogeneous Picard-Fuchs equations

Lbulk
2 W

(±)
1 = ∓ c1

16π2

√
z2 2F1

(
1
3 ,

2
3 ;−1

2 ; 27z1

)
,

Lbulk
2 W

(±)
2 = ±105c2

16π2
z

3/2
1

√
z2 2F1

(
11
6 ,

13
6 ; 5

2 ; 27z1

)
. (4.94)
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The inhomogeneous terms are again solutions to the same hypergeometric equation and re-

lated by monodromy. The differential operator is obtained by specializing the Picard-Fuchs

operator of the surface LD1 = θ̃1(θ̃1− 3θ̃2)− 3u1(3θ̃1 + 1)(3θ̃1 + 2) to the critical point u2 = 0:

Linh f2(z1, z2) = 0 , Linh = LD1 |ẑcrit
= (1− z)z d

2

dz2
+

(
−1

2
− 2z

)
d

dz
− 2

9
,

with θ̃a = ua
d
dua

, z = 27z1. The specialization to the leading term in the limit u2 = 0

is achieved by setting θ2 = 1
2 . Similarly as in the other examples one can verify that the

hypergeometric functions (4.94) can be written in closed form.

In Table 4.20 we list the integer invariants obtained with the modified multicover formula

(4.78), (4.79) for the normalization c1 = c2 = 1. Similarly as in the previous examples, the

hypersurface degenerates to the non-compact mirror three-fold ofO(−3)P2 in the limit z1 → 0.

This explains the appearance of the invariants n[3] (c.f. Table G.1) in the superpotential W
(+)
1 ,

which are listed in the first row of the first table in Table 4.20.

4.5. Domain wall tensions on X
(1,1,2,2,2)
8

As a last example we consider certain domain wall tensions on the Calabi-Yau X
(1,1,2,2,2)
8 .

Closed string mirror symmetry for this geometry was studied in [116]. This example is

qualitatively very similar to the two-parameter on-shell brane geometry considered in [73].

4.5.1. Bulk geometry

The toric ambient geometry of the hypersurface X
(1,1,2,2,2)
8 is given by the polyhedron ∆(Z)

in Table 4.21. A maximal triangulation of ∆(Z) leads to the following relations

0 1 2 3 4 5 6

l1 −4 0 0 1 1 1 1

l2 0 1 1 0 0 0 −2

. (4.95)

The hypersurface constraint for the mirror manifold written in homogeneous coordinates of

P4
1,1,2,2,2/(Z8 × Z2

4) is

P (Z∗) = x8
1 + x8

2 + x4
3 + x4

4 + x4
5 + ψ x1x2x3x4x5 + φ (x1x2)4 , (4.96)

where ψ = z
−1/4
1 z

−1/8
2 and φ = z

−1/2
2 . The Greene-Plesser orbifold group acts as xi → λ

gk,i
k xi

with generators λ8
1 = 1, λ4

2 = λ4
3 = 1 and weights

Z8 : g1 = (1,−1, 0, 0, 0), Z4 : g2 = (1, 0,−1, 0, 0), Z4 : g2 = (1, 0, 0,−1, 0) . (4.97)

In this geometry we consider the curves

Cα = {x3 = η1x
2
1 , x4 = η2x

2
2 , η1η2x5 = αx1x2} ,

η4
1 = η4

2 = −1 , α4 + ψ α+ φ = 0 , (4.98)
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∆(Z) ν̃0 = ( 0 0 0 0 )

ν̃1 = ( 1 2 2 2 )

ν̃2 = ( −1 0 0 0 )

ν̃3 = ( 0 −1 0 0 )

ν̃4 = ( 0 0 −1 0 )

ν̃5 = ( 0 0 0 −1 )

ν̃6 = ( 0 1 1 1 )

Table 4.21.: Vertices of the bulk geometry ∆(Z) for X
(1,1,2,2,2)
8 .

where η4
1 = η4

2 = −1. Under the orbifold action the curves are identified as (η1, η2, α) ∼
(η1λ

2
1λ

3
2λ

2
3, η2λ

−2
1 λ3, α). The curves are labeled by the four roots α, while under the Z8 × Z2

4

orbifold action the 16 distinct choices for the phases η1 and η2 are identified. Thus we find

four distinct orbits of curves Cα.

4.5.2. Brane geometry and tensions

To compute domain wall tensions for these curves we study the family of divisors

Q(D) = x4
5 − z3 z

−1/4
1 z

−1/8
2 x1x2x3x4x5 . (4.99)

The curves Cα are included in D for the critical values z3 = z
1/4
1 z

1/8
2 α3 ≡ α̃, where the new

label α̃ obeys the fourth order equation

α̃(1 + α̃)3 + y = 0 , y ≡ z1

z2
. (4.100)

Note that the roots α̃ of this fourth order equation are in one-to-one correspondence with

the curves Cα. The chosen open-string coordinate z3 is the natural coordinate on the non-

compact fourfold defined by the enhanced polyhedron in Table 4.22. This adds the following

further constraint
0 1 2 3 4 5 6 7 8

l3 -1 0 0 0 0 1 0 1 -1

to the GLSM of the A-model manifold. Periods on the intersection Q(D) = P = 0 are

captured by a GLSM with charges

0 1 2 3 4 5

l̃1 -3 0 0 1 1 1

l̃2 0 1 1 0 0 -2

,

where the algebraic moduli are u1 = − z1
z3(1+z3)3 and u2 = z2. In these coordinates the critical

points z3 = α̃ arise at u1 = u2. This condition corresponds to the fourth order equation (4.100)

for the label α̃.
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∆(Z) ν̃0 = ( 0 0 0 0 0 )

ν̃1 = ( 1 2 2 2 0 )

ν̃2 = ( −1 0 0 0 0 )

ν̃3 = ( 0 −1 0 0 0 )

ν̃4 = ( 0 0 −1 0 0 )

ν̃5 = ( 0 0 0 −1 0 )

ν̃6 = ( 0 1 1 1 0 )

∆[(Z,L) = ∆∪ ν̃7 = ( 0 0 0 −1 1 )

ν̃8 = ( 0 0 0 0 1 )

Table 4.22.: Vertices of the enhanced polyhedron ∆[(Z,L) for the divisor family D on

X
(1,1,2,2,2)
8 .

The solutions of this subsystem can be generated with the Frobenius method from the

generating function

B{l̃1,l̃2}(u1, u2; ρ1, ρ2) =
∑

ni∈Z+ρi

Γ(1 + 3n1)un1
1 un2

2

Γ(1 + n1)2 Γ(1 + n1 − 2n2) Γ(1 + n2)2
. (4.101)

The linear combination

τ =
c

2πi
(∂ρ1B{l̃1,l̃2} − ∂ρ2B{l̃1,l̃2})

∣∣
ρi=0

:= c(t1 − t2) , (4.102)

vanishes at the critical locus u1 = u2. The moduli t1 and t2 measure the volumes of two

generators of H2(K3,Z) and at criticality the zero of the period arises because their volumes

coincide. The four critical points α̃k, k = 0, 1, 2, 3, which are given in terms of the fourth

order equation (4.100), enjoy in terms of y = z1
z2

the expansion

α̃0(y) = −y
(
1 + 3y + 15y2 + 91y3 + 612y4 + 4389y5 + 32890y6 + . . .

)
,

α̃`(y) = −1 + ν`y
1/3 +

1

3
ν2
` y

2/3 +
ν3
` y

3
+

35

81
ν4
` y

4/3 +
154

243
ν5
` y

5/3 + ν6
` y

2 + . . . ,
(4.103)

with ν` = e
2πi
3

(`−1), ` = 1, 2, 3. There appears an additional measure factor for the integration

of subsystem period to the superpotential, namely

2πi θz3W(z1, z2, z3) =
1

1 + z3
π(u1, u2) .

Hence, integrating the discussed subsystem period (4.102) with the additional measure factor,

we obtain for the critical point α̃0 the on-shell superpotential

W (α0)(y, z2) = − c

4π2

(
1

2
S0 log(−y)2 + (S1 − S2) log(−y) + Sα0(y, z2)

)
. (4.104)
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Here S0, S1 and S2 are the power-series13

S0 = 1 + 24yz2 + 2520y2z2
2 + 5040y2z3

2 + 369600y3z3
2 + 2217600y3z4

2 + . . . ,

S1 = −z2 + 104yz2 −
3

2
z2

2 + 24yz2
2 + 12276y2z2

2 −
10

3
z3

2 + 12yz3
2 −

35

4
z4

2 + . . . ,

S2 = 2z2 + 48yz2 + 3z2
2 − 48yz2

2 + 7560y2z2
2 +

20

3
z3

2 − 24yz3
2 +

35

2
z4

2 + . . . .

(4.105)

For the instanton part Sα0 we get

Sα0(y, z2) = (4y + 3z2)+

(
7y2 − 64yz2 +

45z2
2

4

)
+

(
220y3

9
+ 210y2z2 + 528yz2

2 +
191z3

2

6

)
+. . . .

(4.106)

Finally, we note that in terms of the GLSM charges suitable for the coordinates y, z2

0 1 2 3 4 5 6

h1 -4 -1 -1 1 1 1 3

h2 0 1 1 0 0 0 -2

we can express the superpotential W (α0) as

W (α0)(y, z2) = − c

8π2
∂2
ρ1
B{h1,h2}(y, z2, ρ1, ρ2)|ρi=0 . (4.107)

Integrating the subsystem period with the additional measure factor to the other roots α̃`(y)

one finds similar expansions for the on-shell superpotentials W (α`)(y, z2) associated to these

roots.

To characterize the superpotential W (α0) by an inhomogeneous Picard-Fuchs equation we

calculate the inhomogeneous pieces with the following bulk operators

Lbulk
1 = θ2

1(θ1 − 2θ2)− 4z1(4θ1 + 1)(4θ1 + 2)(4θ1 + 3) , (4.108)

Lbulk
2 = θ2

2 − z2(θ1 − 2θ2)(θ1 − 2θ2 − 1) , (4.109)

and we obtain

Lbulk
1 W (α0) = − 3 c

4π2
θy 3F2

(
1
4 ,

2
4 ,

3
4 ; 1

3 ,
2
3 ; 256 y

27

)
= 3 θyf(α0) ,

Lbulk
2 W (α0) = − c

4π2 3F2

(
1
4 ,

2
4 ,

3
4 ; 1

3 ,
2
3 ; 256 y

27

)
= f(α0) ,

(4.110)

where the label α0 refers to the root of the quartic equation in (4.98) associated to the

corresponding root α̃0 in eq. (4.103). As in previous examples we can also express the inho-

mogeneous terms as functions in the coefficients of the defining equations, i.e.

f(α) =
c

4π2

z
1/8
2 α

4y1/4 + 3z
1/8
2 α

= − c

4π2
· 1

4α̃+ 1
. (4.111)

13S0 is the fundamental closed string period and Sa, a = 1, 2, the series part of the single logarithmic closed

string periods (2πi)ta = log(za) + Sa, which determine the closed string mirror map. However there is no

double logarithmic closed-string period that has the same classical terms as eq. (4.104).
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qy \
qz2 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 4 188 188 4 0 0 0 0 0

2 6 −68 5194 19024 5194 −68 6 0 0

3 24 −292 −3232 259524 3569704 3569704 259524 −3232 −292

4 112 −1660 −10996 −4092 13712184 555071696 1455120104 555071696 13712184

5 620 −10768 −42752 383424 −256440 695568492 74900481736 418921719720 418921719720

6 3732 −75468 −140150 4170468 6794752 −464516720 32227348614 9235136625472 97930146122188

7 24164 −556600 5648 37548816 24834800 −2671560544 −62352854944 991475402468 1066545645786456

8 164320 −4256460 7444296 318651284 −286806192 −20467318044 −282718652536 −7115509903004 −64593220192464

9 1162260 −33442800 114057840 2622725460 −7347237536 −170307380384 −1384203066912 −28014543398208 −915396773309428

Table 4.23.: Symmetric disc invariants for the on-shell superpotentials W (α0) of the three-fold

X
(1,1,2,2,2)
8 .

The open string discriminant is ∆α = y(1− 256y
27 ), with the three roots α̃`, ` > 0 colliding for

y = 0 at α̃` = −1, see eq. (4.103), while at y = 27
256 one has α̃0 = −1

4 = α̃1. The inhomogeneous

term (4.111) become singular at the second zero, indicating a tensionless domainwall between

the curves associated with α̃0,1.

For the other on-shell superpotentials W (α`)(y, z2), we find the same inhomogeneous terms

Lbulk
1 W (α`) = 3 θyf(α`) , Lbulk

2 W (α`) = f(α`) , ` = 1, 2, 3 , (4.112)

where again the roots α` are associated to the corresponding roots α̃`.

A-model expansion

Using the standard multicover formula

W (α0)(z(q))

ω0(z(q))
=

1

(2πi)2

∑
k

∑
d1,2≥0

n
(α1)
d1,d2

qkd1
1 qkd2

2

k2

we obtain for c = 1 the integer invariants in Tab. 4.23. Here qy = z1 − z2 + . . . and q2 =

z2 + . . . . We have added a rational multiple of a closed-string period with leading behavior

Π = 3
2 t1t2 + . . . to get invariants nd1,d2 symmetric under the Z2 symmetry t1 → t1 + t2, t2 →

−t2; qy → qyq2, q2 → q−1
2 . This is the Weyl symmetry of a non-perturbative SU(2) gauge

symmetry appearing in the type II compactification at the transition point [184, 185]. The

domain wall is a singlet under this global symmetry as can be seen from the defining equation

(4.98).

For the candidate superpotentials W (α`), ` = 1, 2, 3, which have an expansion in fractional

powers q
dy/3
y with dy ∈ Z, we did not find integral invariants with the multi-cover formula

used in the other examples and in [73]. It appears that only the numbers ndy ,d2 · Zdy , with
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Z a small power of 3, are integral. The solution to this problem might require a shift of the

open string mirror map or a refinement of the multi-cover formula.

Extremal transition

At the singular locus φ2 = 1 (z2 = 1
4) there is an extremal transition to the mirror of the

one-parameter model X
(1,1,1,1,1,1)
2,4 [116]. The large complex structure parameters z(1) of the

one-parameter model and the two-parameter model are related by

z(1) =
1

2
z1 . (4.113)

To restrict the superpotential found in the two-parameter model to that of the one-parameter

model we have to add as in [73] an additional linear combination of bulk periods

W̃ (α0)(y, z2) = W (α0)(y, z2) + 3F1(y, z2) +
3

2
F2(y, z2) , (4.114)

where (2πi)2 F1 = ∂ρ1∂ρ2B{l1,l2}|ρi=0 and (2πi)2 F2 = ∂2
ρ1
B{l1,l2}|ρi=0. We then obtain

W (1,α0)(z(1)) = W̃α0(8z(1), 1
4) . (4.115)

Using the Picard-Fuchs operator of the one-parameter model

L(1) = θ4 − 8z(1)(4θ + 1)(4θ + 2)(4θ + 3)(2θ + 1) (4.116)

with θ = z(1)∂z(1) one obtains the inhomogeneous term

L(1)W (1,α0) =
224z(1)

(2πi)2

(
1 + 272z(1) +

285120(z(1))2

7
+ 4925440(z(1))3 + . . .

)
. (4.117)

For the integer invariants we expect the following relation

3k∑
l=0

n
(α0)
k,l (X

(1,1,2,2,2)
8 ) = n

(α0)
k (X

(1,1,1,1,1,1)
2,4 ) . (4.118)

However such a relation only emerges after the addition of an additional bulk period, again

as in [73]

W̃ (1,α0)(z(1)) = W (1,α0)(z(1))− 3

2
F (1)(z(1)) , (4.119)

where (2πi)2 F (1) = ∂2
ρB{l(1)}|ρ=0 with l(1) = (−4,−2 | 1, 1, 1, 1, 1, 1). The invariants of W̃ (1,α0)

are given by

n
(α0)
k = 384, 29288, 7651456, 2592654592, 989035688064, . . . . (4.120)

It would be interesting to also get a better understanding of the restriction of the superpo-

tentials W (α`), ` = 1, 2, 3, to the one-parameter model.



Summary and outlook of Part II

In this part of the thesis we analyzed the deformation problem of certain families of D-branes

in compact Calabi-Yau three-folds. This was achieved by studying the variation of mixed

Hodge structure as described by the periods of the holomorphic three-form of the Calabi-

Yau manifold while keeping track of the boundary contributions relative to a family D of

four-cycles describing the B-brane geometry.

We found that, similarly to the well-studied deformation problem in the pure closed-string

sector, the notions of flatness and integrability of the Gauss-Manin connection continue to

make sense on the open-closed deformation spaceM of the family and lead to sensible results

for open string enumerative invariants. Amongst others, the Gauss-Manin connection in flat

coordinates displays an interesting ring structure on the infinitesimal deformations in F 2,

which is compatible with CFT expectations and gives evidence for the existence of an A-

model quantum product defined by the Ooguri-Vafa invariants. Other hints in this direction

are the integrability condition and the meaningful definition of the mirror map via a flatness

condition.

For geometries with a single open string modulus the integrability conditions imply that

the relative period matrices and the Gauss-Manin connection matrices can all be expressed in

terms of functional relations involving only the holomorphic prepotential F and one additional

holomorphic function W . The analyzed open-closed deformation problem can also be related

to CFT correlators. We explained how an a priori unobstructed deformation problem of

B-branes wrapping a holomorphic family of four-cycles describes an obstructed deformation

problem after turning on D5-brane charges. In particular this effect can be described in the

CFT by the change of boundary conditions induced by non-trivial fluxes on the worldvolume

of the B-brane. The afore mentioned holomorphic function W in the Gauss-Manin connection

then turns into a superpotential encoding these obstructions.

By mirror symmetry our analysis carries over to the quantum integrable structure of the

obstructed deformation space of the mirror A-branes in the mirror three-fold. For our explicit

examples we obtain predictions for the Ooguri-Vafa invariants of the open-closed deformation

space that satisfy the expected integrality constraints and further consistency conditions. We

also analyzed the critical points of the type studied in [53, 54, 55, 188, 172, 189], where the

A-model expansion emerges only after integrating out the open-string directions. The on-shell

computations of [53, 54, 55] are conceptually well understood and provided the first examples

of open-string mirror symmetry in compact Calabi–Yau manifolds. Our main motivation

to study the type of critical points accessible also in the on-shell formalism was to gain a

better understanding of the minimization in the open-string direction, which relates the on-

shell computation to the described off-shell framework. On the B-model side, the relation is

provided by the connection between integral relative period integrals and normal functions

described in section 3.3.3. An important datum in this correspondence is the period vector
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on the surface, that is the brane 4-cycle. It classifies the D-brane vacua by the vanishing

condition (3.29) and determines the inhomogeneous term in the Picard-Fuchs equation for

the normal function.

In the relative cohomology approach the open-string deformations are off-shell yet one

avoids working in string field theory by perturbing the unobstructed F-theory moduli space

associated with the family of surfaces D by a probe brane representing an element in H2(D).

This leads to well-defined finite dimensional off-shell deformation spaces associated with a

particular parametrization by ’light’ fields in the superpotential and this parametrization

of off-shell deformations is also adapted to the topological string. By general arguments,

different parametrizations are bound to fit together in an consistent way, as is explicitly

demonstrated in one of the examples, where we parametrized the off-shell superpotentials by

different choices of open-string deformation parameters. This means that by starting from a

given supersymmetric configuration, we compare different off-shell deformation directions in

the infinite-dimensional open-closed deformation space, and we find that the obtained on-shell

tensions are independent from the chosen off-shell directions.14 This is a gratifying result as

the on-shell domain wall tensions should not depend on the details of integrating out the

heavy modes.

The relative cohomology approach to open-closed deformations has successfully passed

other non-trivial checks [56, 190]. In leading order the computed off-shell superpotentials

are compatible with derivations of effective superpotentials using open-string worldsheet and

matrix factorization techniques [191, 192, 193, 190, 140, 173, 194]. Beyond leading order,

however, the discussed off-shell superpotentials predict in the context of type II theories

higher order open-closed CFT correlators, which (at present) are difficult to compute by

other means.

Turning to the effective four-dimensional N = 1 supergravity theory we observed that

the open-closed deformation space M is a fibration π : M → MCS over the complex

structure moduli and defines a Kähler manifold that is not of the most general form allowed by

supergravity, but has a restricted “N = 1 special geometry”. By constructing a class of dual

Calabi-Yau four-folds for F-theory compactification we derived an expression for the effective

N = 1 Kähler potential and the superpotential on M in terms of period integrals. The

F-theory compactification on the dual four-fold provides a global embedding of the B-brane

geometry on the three-fold and reduces to a local description in the decompactification/weak-

coupling limit. The effective description obtained in this limit is in good agreement with the

results obtained for D7-branes on orientifolds in the existing literature.

From this point of view some of the chain integrals we explicitly computed are off-shell

brane superpotentials for the four-dimensional type II/F-theory compactifications depending

on several open-closed deformations as well as their specialization to the on-shell values in the

open-string direction. Mathematically the two potentials are therefore respectively related to

14See ref. [56] for an earlier example of this kind.
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the integral period integrals on the (relative) cohomology group and the concept of normal

functions, depending only on closed-string moduli [73, 54]. Both objects can therefore be

studied Hodge theoretically by computing the variation of Hodge structure on the relevant

(co-)homology fibers over the open-closed-string deformation space M as we have discussed.

Ultimately, this determines the superpotential as a particular solution of a system of gener-

alized GKZ type differential equations determined by the integral (relative) homology class

of the brane.

From the phenomenological point of view, the superpotential determines the vacuum struc-

ture of four-dimensional F-theory compactifications. The complicated structure of the super-

potential for our class of compactifications, described by infinite generalized hypergeometric

series, should be contrasted with the simple structure of F-theory superpotentials in other

classes of compactifications, as e.g. in [195, 196]. These hypergeometric series have sometimes

a dual interpretation as D-instanton corrections and heterotic worldsheet corrections [57], and

the rich structure of non-perturbative corrections to the brane superpotential should lead to

interesting hierarchies of masses and couplings in the low-energy effective theory.

As shown in ref. [57], the solutions to the generalized GKZ system representing the F-

theory superpotential do not only capture the superpotentials of dual Calabi-Yau three-fold

compactifications, but more generally of type II and heterotic compactifications on generalized

Calabi-Yau manifolds of complex dimension three.15 This offers a powerful tool to study more

generally the vacuum structure of phenomenologically interesting F-theory/type II/heterotic

compactifications. It would be interesting to apply the Hodge theoretic approach described in

these chapters to examples of phenomenologically motivated F-theory scenarios, as described

e.g. in [200, 201, 202].16 In the search for vacua, the step of passing from relative periods

depending on open and closed-string deformations to normal functions depending only on

closed-string moduli provides a natural split in the minimization process, which should be

helpful in a regime of small string coupling. On the other hand, this distinction between

closed and open-string moduli disappears away from this decoupling limit, for finite string

coupling, where the two types of fields mix in a way determined by a certain degeneration of

the F-theory four-fold.

However, the B-model results of these chapters, obtained predominantly from a Hodge

theoretic approach, raise also a number of unanswered questions. The first is about the general

meaning of mirror symmetry between open-closed deformation spaces in the presence of a non-

trivial superpotential, which requires some sort of off-shell concept of mirror symmetry. As

discussed above, a heuristic ansatz might be to defineM first as the deformation space of an

unobstructed family and then add in obstructions as a sort of perturbation, here represented

by D5-brane charges. However, we feel that there should be a more fundamental answer to

15The first examples of dual compactifications of this type were given in ref. [197]. See also [198, 199] for

related works and examples.
16See also ref. [203], for a recent review on this subject, and further references therein.
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this important issue.

Another set of urgent questions concerns the A-model interpretation, such as a proper

formulation of an A-model quantum ring that matches the ring structure observed on the B-

model side and should include the Ooguri-Vafa invariants and Floer (co-)homology as essential

ingredients. Similarly one would like to have a more explicit description of the target space

geometry of the A-branes.

As we have seen the variation of mixed hodge structure is largely captured by the Hodge

structure of the family of divisors D. For examples with a single open-string deformation

a detailed analysis of the Hodge structure of the K3 surface, equivalent to the subsystem

defined by the Hodge structure on the surface D, might be rewarding. In this work we

explained how the analyzed supersymmetric domain wall tensions arise at enhancement points

of the Picard lattice in the K3 moduli space. The leading term of the K3 periods near these

specially symmetric points is a rational function in the deformations z and the roots α of

the defining equations of the curves the chain connects. As argued in section 4.2, the global

symmetry seems to be related to the discrete symmetry in the A-type brane in the mirror A-

model configuration. It would be interesting to study in detail the structure of Picard lattice

enhancement loci in order to systematically explore the web of N = 1 domain wall tensions

in Calabi-Yau three-folds. Such an analysis potentially sheds light on the global structure of

N = 1 superpotentials (see e.g. [204]).

In the examples we have focused on a single open-string deformation. Then the subsystem

of the extended hypergeometric GKZ system, which governs the open deformations, describes

the periods of an isogenic K3 surface. The presented techniques are directly applicable also to

examples with several open deformations [205]. Then the subsystem geometry is not anymore

governed by K3 periods but instead by the periods of a complex surface of a higher geometric

genus. Exploring such examples is technically more challenging but new phenomena and

interesting structures, like non-commutativity in the open-string sector, are likely to emerge.

A related question in this context is the contribution from D-instanton corrections, which are

also computed by the GKZ system for the F-theory compactification [57]. It would be very

interesting to connect these results to the recent progress in computing D-brane instantons

by different methods [206, 207, 208, 209, 210].
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In this chapter, which is based on the original publication [4], we use wall-crossing formulae

and the theory of mock modular forms to derive a holomorphic anomaly equation for the

modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold.

The anomaly originates from restoring modularity of an indefinite theta-function capturing

the wall-crossing of BPS invariants associated to D4-D2-D0 brane systems. We show the

compatibility of this equation with anomaly equations previously observed in the context of

N = 4 topological Yang-Mills theory on P2 and E-strings obtained from wrapping M5-branes

on a del Pezzo surface. The non-holomorphic part is related to a contribution originating

from bound states of singly wrapped M5-branes on the divisor. We show in examples that

the information provided by the anomaly is enough to compute the BPS degeneracies for

certain charges. We further speculate on a natural extension of the anomaly to higher D4-

brane charge.

5.1. Background dependence of multiple M5-branes

The study of background dependence of physical theories has been a rich source of insights.

Understanding the change of correlators as the background parameters are varied supple-

mented by boundary data can be sufficient to solve the theory. A class of theories where the

question of background dependence can be sharply stated are topological field theories. Cor-

relators in topological theories typically have holomorphic expansions near special values of

the background moduli. The expansion coefficients can be given precise mathematical mean-

ing as topological invariants of the geometrical configuration contributing to the topological
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non-trivial sector of the path integral. Physically the expansion often captures information

of the degeneracies of BPS states of theories related to the same geometry.

An example of this, that was analyzed in the preceding parts of this thesis, is the topological

A-model [19], with a Calabi-Yau three-fold Z as target space, which in a large volume limit

counts holomorphic maps from the worldsheet into H2(Z,Z) and physically captures the

degeneracies of BPS states coming from an M-theory compactification on Z [28, 29]. Another

example is the modified elliptic genus of an M5-brane wrapping a complex surface P ,1 which

was related in ref. [211] to the partition function of topologically twisted N = 4 Yang-

Mills theory [30], which computes generating functions of Euler numbers of moduli spaces of

instantons. This same quantity was shown in ref. [68] to capture the geometric counting of

degeneracies of systems of D4-D2-D0 black holes associated to the MSW string [66].

In both cases the topological theories enjoy duality symmetries. T -duality acting on the

Kähler moduli on Z in the topological string case and S-duality for the N = 4 SYM theory

acting on the gauge coupling τ = 4πi
g2 + θ

2π . The former symmetry extends by mirror symmetry

and both might extend to U -duality groups. Both symmetries can be conveniently expressed

in the language of modular forms.

The holomorphic expansions of the topological string correlators are given in the moduli

spaces of families of theories. Fixing a certain background corresponding to a certain point

in the moduli space, the topological correlators are expected to be holomorphic expansions.

In refs. [64, 22] holomorphic anomaly equations governing topological string amplitudes were

derived showing that this is not the case and hence the correlators suffer from background

dependence.2 In ref. [65] a background independent meaning was given to the correlators,

stating that the anomaly merely reflects the choice of polarization if the partition function

is considered as a wave function only depending on half of the variables of some phase space

which has a natural geometric meaning in this context.

This anomaly is also manifest in a failure of target space duality invariance of the holo-

morphic expansion which can only be restored at the expense of holomorphicity as shown

in ref. [219].3 A similar story showed up in N = 4 topological U(2) SYM theory on

P2 [30], where it was shown that different sectors of the partition function need a non-

holomorphic completion which was found earlier in ref. [223] in order to restore S-duality

invariance. An anomaly equation describing this non-holomorphicity was expected [30] in

the cases where b+2 (P ) = 1. In these cases holomorphic deformations of the canonical bundle

are absent. The non-holomorphic contributions were associated with reducible connections

1In the following we will use the terms surface, divisor and four-cycle (of a CY) interchangeably when the

context is clear.
2The anomaly relates correlators at a given genus to lower genera thus providing a way to solve the theory.

Using a polynomial algorithm [212, 213, 214] and boundary conditions [215] this can be used to compute

higher genus topological string amplitudes on compact CY [216] manifolds and solve it on non-compact

CY [217, 218].
3Following the anomaly reformulation of refs. [220, 221], see also [222].
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U(n)→ U(m)×U(n−m) [30, 211]. In ref. [211] this anomaly was furthermore related to an

anomaly appearing in the context of E-strings [224]. These strings arise from an M5-brane

wrapping a del Pezzo surface B9, also called 1
2K3. The anomaly in this context was related to

the fact that n of these strings can form bound-states of m and (n−m) strings. Furthermore,

the anomaly could also be related to the one appearing in topological string theory.

The anomaly thus follows from the formation of bound-states. Although the holomorphic

expansion would not know about the contribution from bound-states, the restoration of du-

ality symmetry forces one to take these contributions into account. The non-holomorphicity

can be understood physically as the result of a regularization procedure. The path integral

produces objects like theta-functions associated to indefinite quadratic forms which need to

be regularized to avoid divergences. This regularization breaks the modular symmetry, restor-

ing the symmetry gives non-holomorphic objects. The general mathematical framework to

describe these non-holomorphic completions is the theory of mock modular forms developed

by Zwegers in ref. [61].4 A mock modular form h(τ) of weight k is a holomorphic function

which becomes modular after the addition of a function g∗(τ), at the cost of losing its holo-

morphicity. Here, g∗(τ) is constructed from a modular form g(τ) of weight 2 − k, which is

referred to as shadow.

Another manifestation of the background dependence of the holomorphic expansions of the

topological theories are wall-crossing phenomena associated to the enumerative content of the

expansions. Mathematically, it is known that Donaldson-Thomas invariants jump on surfaces

with b+2 (P ) = 1, see [31] and references therein, for related physical works see for example

refs. [226, 227]. On the physics side wall-crossing refers to the jumping of the degeneracies

of BPS states when walls of marginal stability are crossed. These phenomena were observed

in the jumps of the soliton spectrum of two-dimensional theories [63] and were an essential

ingredient of the work of Seiberg and Witten [7] in four-dimensional theories. Recent progress

was triggered by formulae relating the degeneracies on both sides of the walls, which were given

from a supergravity analysis in refs. [228, 229] and culminated in a mathematical rigorous

formula of Kontsevich and Soibelman (KS) [72], which could also be derived from continuity

of physical quantities in refs. [230, 231] (See also refs. [232, 233, 234]). The fact that the

holomorphic anomaly describes how to transform the counting functions when varying the

background moduli, which in turn changes the degeneracy of BPS states, suggests that non-

holomorphicity and wall-crossing are closely related. In fact the failure of holomorphicity can

be traced back to the boundary of the moduli space of the geometrical configuration, where the

latter splits in several configurations with the same topological charges. Mock modularity was

used in a physical context in the study of the wall-crossing of degeneracies of N = 4 dyons5

in ref. [236]. In the context of N = 2 supersymmetric theories the application of ideas related

4See [60, 225] and Appendix H for an introduction and overview.
5See for example ref. [235] and references therein for more details.
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to mock modularity was initiated in ref. [237] and further pursued in refs. [238, 239, 240].6

In the following we are going to study the relation between wall-crossing and non-holomorphicity

and relate the appearance of the two. A central role is played by a wall-crossing formula by

Göttsche [32], where the Kähler moduli dependence of a generating function of Euler numbers

of stable sheaves is given in terms of an indefinite theta-function due to Göttsche and Zagier

[31]. We show that this formula is equivalent to wall-crossing formulae of D4-D2-D0 systems

in type IIA. The latter can be related to the (modified) elliptic genus of multiple M5-branes

wrapping a surface. Rigid surfaces are subject to Göttsche’s wall-crossing formula. Using

ideas of Zwegers [61], we translate the latter into a holomorphic anomaly equation for two

M5-branes wrapping the surface/divisor. We show that this anomaly equation is the equa-

tion which was found in the context of N = 4 SYM [30] and E-strings [224, 211]. We further

propose the generalization of the anomaly equation for higher wrappings and comment on its

implications for the wall-crossing of multiple D4-branes.

5.2. Effective descriptions of wrapped M5-branes

We begin our discussion by reviewing the effective descriptions of M5-branes wrapping a

complex surface P as well as previous appearances of the holomorphic anomaly which will be

derived in the next section. The world-volume theory of M5-branes can have either a two-

dimensional CFT description in terms of the so-called MSW-CFT [66] or a four-dimensional

description giving the N = 4 topologically twisted Yang-Mills theory of Vafa and Witten [30].

In the latter theory it was observed [30] that a non-holomorphicity [223] had to be introduced

in order to restore S-duality, the resulting holomorphic anomaly was related in ref. [211] to

an anomaly [224] appearing in the context of E-strings. The anomaly was conjectured to

take into account contributions coming from reducible connections in N = 4 SYM theory.

In ref. [211] it was related to the curve counting anomaly [22] and was given the physical

interpretation of taking into account the bound-state contribution of E-strings. Later we will

show that the contributions from bound-states as a cause for non-holomorphicity will persist

more generally for the class of surfaces we will be studying. In our work we investigate the

(generalized/modified) elliptic genus which captures the content of the CFT description of

the M5-branes [211, 69] and its relation to D4-D2-D0 systems [68, 71, 246, 229, 247, 248] and

the associated counting of black holes which has been intensively studied (e.g. in ref. [249]).

Our goal is to show that wall-crossing in D4-D2-D0 systems leads to an anomaly equation

which coincides with the anomalies found before and hence our work complements in some

sense this circle of ideas.

6Further physical appearances of mock modularity can be found for example in refs. [241, 242, 243, 244, 245].
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N = 2 supergravity
Dyonic D4-D2-D0
BPS black holes
in 4d

r M5-branes
Self-dual two-form
gauge theory with
N = (0, 2) on

T2 × P

E-strings
Space-time string
dual to F-theory
with vanishing P1

MSW-CFT
Conformal field theory
with N = (0, 4) on T2

Compactification
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Compactification
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2
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Dimensional
Reduction on P

Dimensional
Reduction on T2

Vafa-Witten theory
N = 4 U(r)
topological Yang-Mills
theory on P

Figure 5.1.: Overview of the M5-brane duality web.

5.2.1. A Duality web for multiple M5-branes

Through dualities a system of multiple wrapped M5-branes can be viewed in various inter-

related ways. For this we compactify time and view the world-volume of the M5-brane as

T 2 × P . The dual perspectives are then given by

1. N = (0, 2) world-volume theory living on the M5-brane:

On the world-volume of r M5-branes lives a N = (0, 2) self-dual two-form gauge theory,

which unfortunately admits no proper Lagrangian description (see e.g. [250] for a re-

view). As the M5-brane wraps a curved manifold in this case, there appear also induced

M2-brane charges on the world-volume of the M5-brane, described by non-trivial flux

of the self-dual two-form gauge field on the M5-brane.

2. N = 4 SU(r) topological SYM on P :

Reduction of the world-volume theory on the r M5-branes along the T 2 leads to a

topologically twisted N = 4 U(r) Yang-Mills theory on P , called Vafa-Witten gauge

theory [30]. The geometric SL(2,Z) symmetry of the torus translates into the S-duality

of the topological Yang-Mills theory on P . The M5-brane and induced M2-brane charges

together with momentum around the circle direction correspond to the rank of the gauge

group, the different flux sectors and instanton numbers.

3. N = (0, 4) SCFT living on T 2:

By reducing along P one obtains a two-dimensional theory which lives on the T 2. As-

suming the existence of a conformal fixed point this theory is expected to flow to a
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non-trivial N = (0, 4) superconformal field theory, called MSW-CFT [66]. The degrees

of freedom of the CFT are given by the deformations of the M5-branes inside Z and in-

duced M2-brane charges on the M5-brane world-volume. This can also be considered as

a special type of string theory obtained from the (0, 2)-world-volume theory of wrapped

M5-branes [66, 251].

4. D4-D2-D0 black holes in N = 2 supergravity in d = 4:

Compactification of the theory on S1×Z leads to an effective N = 2 supergravity theory

in four dimensions. By M-theory – type IIA duality the M5-branes with induced M2-

brane charges and momentum around the S1 give rise to BPS-particles with D4-D2-D0-

brane charges in four dimensions. This theory is supposed to capture the micro-states

of dyonic D4-D2-D0 BPS-black holes in four dimensions and counts, in an appropriate

sense, the number of bound-states of D4-D2-D0 branes.

5. Exceptional strings from F-theory:

For a special type of surface P , called 1
2K3 the M-theory compactification is dual to

the heterotic string with an E8 instanton of zero size and the resulting space-time

string is called E-string [252, 224, 211]. This theory is furthermore dual to a F-theory

compactification on a Calabi-Yau three-fold down to six dimensions, where the base P1

shrinks to zero size.

The above dualities allow to relate different physical quantities in each theory with each

other. An example of this is the partition function of topological N = 4 SYM, which is

directly related to a particular BPS-index of the MSW-CFT, called the modified elliptic

genus [211, 69]. The modified elliptic genus will be the central physical quantity which we

are going to study in the following.

5.2.2. The elliptic genus and D4-D2-D0 branes

We now turn to a more detailed discussion of the 2d CFT perspective of the M5-brane

world-volume theory. We want to study BPS states that arise in the context of an M-theory

compactification on a Calabi-Yau manifold Z with r M5-branes wrapping a complex surface

(or a four-cycle) P , and extended in R1,3 × S1. Considering P to be small compared to the

M-theory circle, the reduction of the world-volume theory of the M5-brane is described by

a (1 + 1)-dimensional (0, 4) MSW-CFT [66].7 The BPS states associated to the string that

remains after wrapping the M5-branes on P are captured by a further compactification on

a circle. They are counted by the partition function of the world-volume theory of the M5-

branes on P × T 2 [211]. The effective CFT description will thus exhibit invariance under

7The target space sigma model description of which was given in ref. [251], for more details see ref. [253] and

references therein. In the following we will be concerned with the natural extension of the analysis of the

degrees of freedom to r M5-branes.
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the full SL(2,Z) symmetry of the T 2. Furthermore, excitations of the M5-branes will induce

M2-brane charges corresponding to the flux of the self-dual field strength of the M5-brane

world-volume theory. In addition, the momentum of the M2-branes along the M-theory circle

will give rise to a further quantum number. As a result BPS states of the effective two-

dimensional description will be labeled by the class of the divisor the M5-branes wrap, the

M2-brane charges and by the momentum along S1. In a type IIA setup, r times the class of the

divisor will correspond to D4-brane charge, the induced M2-brane charge corresponds to D2-

brane charge and the momentum to D0-brane charge. Choosing a basis ΣA , A = 1, . . . , b4(Z)

of H4(Z,Z), the charge vector will be given by

Γ = (Q6, Q4, Q2, Q0) = r(0, pA, qA, q0) , (5.1)

where the Qp are the Dp-brane charges and r is the number of coincident M5-branes wrapping

the divisor specified by pA. A priori the set of all possible induced D2-brane charges, or

equivalently of U(1) fluxes of the world-volume of the M5-brane would be in one-to-one

correspondence with ΛP = H2(P,Z) which is generically a larger lattice than Λ = i∗H2(Z,Z),

where i : P ↪→ Z, however the physical BPS states are always labeled by the smaller lattice

Λ. The metric dAB on Λ is given by

dAB = −
∫
P
αA ∧ αB , (5.2)

where αA is a basis of two-forms in Λ, which is the dual basis to ΣA of H4(Z,Z). In order

to obtain a generating series of the degeneracies of those BPS states one has to sum over

directions along Λ⊥ which is the orthogonal complement to Λ in ΛP w.r.t. dAB [68]. 8

The partition function of the MSW-CFT counting the BPS states is given by the modified

elliptic genus9 [211, 69]

Z ′
(r)
P (τ, z) = TrHRR

(−1)FR F 2
R q

L′0−
cL
24 q̄L̄

′
0−

cR
24 e2πiz·Q2 , (5.3)

where the trace is taken over the RR Hilbert space. Furthermore, vectors are contracted

w.r.t. the metric dAB, i.e. x · y = xAyA = dABx
AyB. For a single M5-brane it was shown in

ref. [71] that Z ′
(1)
P (τ, z) transforms like a SL(2,Z) Jacobi form of bi-weight (0, 2) due to the

insertion of F 2
R, we demand that the same is true for all r.

Following ref. [71] the center of mass momentum ~pcm for the system of r M5-branes can be

integrated out. In this way L′0 and L̄′0 can be written in the form

L′0 =
1

2
~p 2

cm + L0, L̄′0 =
1

2
~p 2

cm + L̄0 . (5.4)

8In general, the lattice Λ ⊕ Λ⊥ is only a sublattice of H2(P,Z), because det dAB 6= 1 in general, see for

example ref. [251] and ref. [229] for a more recent exposition. However, we will only be concerned with

divisors P with b+2 (P ) = 1, such that det dAB = 1.
9We follow the mathematics convention of not writing out explicitly the dependence on τ which will be clear

in the context. Moreover, we denote q = e2πiτ and τ = τ1 + iτ2. To avoid confusion without introducing

new notation we will denote the charge vector of D2-brane charges by q, its components by qA.
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This allows one to split up the center of mass contribution and rewrite formula (5.3) as

Z ′
(r)
P (τ, z) =

∫
d3pcm(qq̄)

1
2
~p 2
cmZ

(r)
P (τ, z)

∼ (τ2)−
3
2 Z

(r)
P (τ, z) , (5.5)

where Z
(r)
P (τ, z) is now a Jacobi form of weight (−3

2 ,
1
2) which we simply call elliptic genus

for short in the following.

The decomposition of the elliptic genus

The elliptic genus Z
(r)
P (τ, z) and equivalently the generating function of D4-D2-D0 BPS de-

generacies is subject to a theta-function decomposition, which has been studied in many

places, see for example refs. [249, 68, 71, 246, 229]. This is ensured by two features of the

superconformal algebra of the (0,4) CFT. One of these is that the τ contribution entirely

comes from BPS states |q〉 satisfying(
L0 −

cR

24
− r

2
q2

R

)
|q〉 = 0 , (5.6)

the other one is the spectral flow isomorphism of theN = (0, 4) superconformal algebra, which

we want to recall for r M5-branes here, building on refs. [71, 254], see also [249]. Proposition

2.9 of ref. [254] describes the spectral flow symmetry by an isomorphism between moduli

spaces of vector bundles on complex surfaces. The complex surface here is the divisor P and

the vector bundle configuration describes the bound-states of D4-D2-D0 branes. Within this

setup the result of [254] translates for arbitrary r to a symmetry under the transformations

q0 7→ q0 − k · q −
1

2
k · k,

q 7→ q + k , (5.7)

where k ∈ Λ. Physically these transformations correspond to monodromies around the large

radius point in the moduli-space of the Calabi-Yau manifold [249]. Denote by Λ∗ the dual

lattice of Λ with respect to the metric rdAB. Keeping only the holomorphic degrees of freedom

one can write

Z
(r)
P (τ, z) =

∑
Q0;QA

d(Q,Q0) e−2πiτQ0 e2πiz·Q2

=
∑

q0;q∈Λ∗+ [P ]
2

d(r, q,−q0) e−2πiτrq0 e2πirz·q , (5.8)

where d(r, q,−q0) are the BPS degeneracies and the shift10 [P ]
2 originates from an anomaly

[255, 256]. Now, spectral flow symmetry predicts [71]

d(r, q,−q0) = (−1)rp·kd(r, q + k,−q0 + k · q +
k2

2
) . (5.9)

10In components, [P ] is given by dABp
A.
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Making use of this symmetry and the following definition

q = k + µ+
[P ]

2
, µ ∈ Λ∗/Λ, k ∈ Λ , (5.10)

one is led to the conclusion that the elliptic genus can be decomposed in the form

Z
(r)
P (τ, z) =

∑
µ∈Λ∗/Λ

f
(r)
µ,J(τ)θ

(r)
µ,J(τ, z) , (5.11)

f
(r)
µ,J(τ) =

∑
rq̂0≥−

cL
24

d(r)
µ (q̂0)e2πiτrq̂0 , (5.12)

θ
(r)
µ,J(τ, z) =

∑
k∈Λ+ [P ]

2

(−1)rp·(k+µ)e2πiτ̄r
(k+µ)2+

2 e2πiτr
(k+µ)2−

2 e2πirz·(k+µ) , (5.13)

where J ∈ C(P ), C(P ) denotes the Kähler cone of P restricted to Λ⊗ R and q̂0 = −q0 − 1
2q

2

is invariant under the spectral flow symmetry. The subscript + refers to projection onto

the sublattice generated by the Kähler form J and − is the projection to its orthogonal

complement, i.e.

k2
+ =

(k · J)2

J · J
, k2

− = k2 − k2
+ . (5.14)

There are two issues here for the case of rigid divisors with b+2 (P ) = 1 on which we want

to comment. First of all note, that q0 contains a contribution of the form 1
2

∫
P F ∧ F where

F ∈ ΛP . Now, F can be decomposed into F = q+ q⊥ with q⊥ ∈ Λ⊥, which allows us to write

q̂0 = q̃0 +
1

2
q2
⊥. (5.15)

For b+2 (P ) = 1 and r = 1, the degeneracies d(r, µ, q̃0) are independent of the choice of q⊥ and

moreover it was shown by Göttsche [257] that∑
q̃0

d(1, µ, q̃0) e2πiτ q̃0 =
1

ηχ(P )
. (5.16)

Then, for r = 1 (5.12) becomes

f
(1)
µ,J(τ) =

ϑΛ⊥(τ)

ηχ(P )(τ)
, ϑΛ⊥(τ) =

∑
q⊥∈Λ⊥

eiπτq
2
⊥ . (5.17)

The second subtlety is concerned with the dependence on a Kähler class J . Due to wall-

crossing phenomena we will find that f
(r)
µ,J(τ) also depends on J . We expect that it has the

following expansion (q̃0 = d
r −

cL
24 )

f
(r)
µ,J(τ) = (−1)rp·µ

∑
d≥ 0

Ω̄(Γ; J) qd−
rχ(P )

24 . (5.18)
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Here, the factor (−1)rp·µ is inserted to cancel its counterpart in the definition of θ
(r)
µ,J , which

was only included to make the theta-functions transform well under modular transformations.

The invariants Ω̄(Γ; J) are rational invariants first introduced by Joyce [258, 259] and are

defined as follows

Ω̄(Γ; J) =
∑
m|Γ

Ω(Γ/m; J)

m2
, (5.19)

where Ω(Γ, J) is an integer-valued index of BPS degeneracies, given by [260]

Ω(Γ, J) =
1

2
Tr(2J3)2(−1)2J3 , (5.20)

where J3 is a generator of the rotation group Spin(3). Note, that for a single M5-brane Ω̄

and Ω become identical and independent of J .

5.2.3. N = 4 SYM, E-strings and bound-states

In the following we sketch the relation [211] of the elliptic genus of M5-branes to the N = 4

topological SYM theory of Vafa and Witten [30]. Our goal is to relate the holomorphic

anomaly equation which we will derive from wall-crossing in the next section to the anomalies

appearing in the N = 4 context. We review moreover the connection of the anomaly to the

formation of bound-states given in ref. [211].

The N = 4 topological SYM arises by taking a different perspective on the world-volume

theory of n M5-branes on P × T 2 considering the theory living on P which is the N = 4

topologically twisted SYM theory described in ref. [30]. The gauge coupling of this theory is

given by

τ =
4πi

g2
+

θ

2π
(5.21)

and is geometrically realized by the complex structure modulus of the T 2. The partition

function of this theory counts instanton configurations by computing the generating functions

of the Euler numbers of moduli spaces of gauge instantons [30]. S-duality translates to the

modular transformation properties of the partition function. The analogues of D4-D2-D0

charges are the rank of the gauge group, different flux sectors and the instanton number.

In ref. [211] the relation is made between this theory and the geometrical counting of BPS

states of exceptional strings obtained by wrapping M5-branes around a del Pezzo surface B9,

also called 1
2K3. This string is dual to the heterotic string with an E8 instanton of zero size

[261, 262] and is therefore called E-string. In F-theory this corresponds to a P1 shrinking to

zero size [263, 264, 265]. The geometrical study of the BPS states of this non-critical string

was initiated in ref. [252] and further pursued in refs. [186, 266, 224]. In ref. [211] the counting

of BPS states of the exceptional string with increasing winding n was related to the U(n)

N = 4 SYM partition functions.
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In the following we will use the geometry of ref. [252] which is an elliptic fibration over the

Hirzebruch surface F1, which in turn is a P1 fibration over P1.11 We will denote by tE , tF

and tD the Kähler parameters of the elliptic fiber, the fiber and the base of F1, respectively

and enumerate these by 1, 2, 3 in this order. We further introduce q̃a = e2πit̃a , a = 1, 2, 3

the exponentiated Kähler parameters appearing in the instanton expansion of the A-model

at large radius, which are also the counting parameters of the BPS states.

Within this geometry we will be interested in the elliptic genus of M5-branes wrapping

two different surfaces, one is a K3 corresponding to wrapping the elliptic fiber and the fiber

of F1, the resulting string is the heterotic string. The other possibility is to wrap the base

of F1 and the elliptic fiber corresponding to 1
2K3 and leading to the E-string studied in

refs. [252, 186, 266, 224, 211]. The two possibilities are realized by taking the limits tD, tF →
i∞, respectively. The resulting surface in both cases is still elliptically fibered which allows

one to identify the D4-D0 charges n and p with counting curves wrapping n-times the base and

p-times the fiber of the elliptic fibration [211]. The multiple wrapping is hence encoded in the

expansion of the prepotential F0(q̃1, q̃2, q̃3) of the geometry. In order to get a parameterization

inside the Kähler cone of the K3 in which the corresponding curves in H2(K3,Z) intersect

with the standard metric of the hyperbolic lattice Γ1,1, we define t1 = t̃1 , t2 = t̃2 − t̃1 and

t3 = t̃3 as well as the corresponding q1 = q̃1, q2 = q̃2/q̃1 and q3 = q̃3. Taking q2 or q3 → 0,

the multiple wrapping of the base is expressed by

F0(t1, ta) =
∑
n≥1

Z(n)(t1)qna , a = 2 or 3 . (5.22)

The Z(n) can be identified with the elliptic genus of n M5-branes wrapping the corresponding

surface after taking a small elliptic fiber limit [211]. In this limit the contribution coming

from the theta-functions (5.13) reduce to τ
−3/2
2

(
τ
−1/2
2

)
for the K3(1

2K3) cases, these are the

contributions of 3(1) copies of the lattice Γ1,1 appearing in the decomposition of the lattices

of K3(1
2K3). Omitting these factors gives the Z(n) of weight (−2, 0) in both cases. The

elliptic genera of wrapping n M5-branes corresponding to n strings are in both cases related

recursively to the lower wrapping. The nature of the recursion depends crucially on the ability

of the strings to form bound-states.

The heterotic string, no bound-states

The heterotic string is obtained from wrapping an M5-brane on the K3 by taking the q3 → 0

limit. The heterotic string does not form bound-states and the recursion giving the higher

wrappings in this case is the Hecke transformation12 of Z(1) as proposed in ref. [211]. The

formula for the Hecke transformation in this case is given by

Z(n)(t) = nwL−1
∑
a,b,d

d−wLZ(1)

(
at+ b

d

)
, (5.23)

11The toric data of this geometry is summarized in Appendix A.6.2.
12For a review on Hecke transformations see Zagier’s article in [267].
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with ad = n and b < d and a, b, d ≥ 0. Which specializes for wL = −2 and n = p, where p is

prime to

Z(p)(t) =
1

p3
Z(1)(pt) +

1

p

[
Z(1)

(
t

p

)
+ Z(1)

(
t

p
+

1

p

)
+ · · ·+ Z(1)

(
t

p
+
p− 1

p

)]
. (5.24)

For example the partition functions for n = 1, 2 obtained from the instanton part of the

prepotential of the geometry read

Z(1) = −2E4E6

η24
, Z(2) = −

E4E6

(
17E3

4 + 7E2
6

)
96η48

, (5.25)

and are related by the Hecke transformation.13 The fact that the partition functions of

higher wrappings of the M5-brane on the K3, which correspond to multiple heterotic strings,

are given by the Hecke transformation was interpreted [211] by the absence of bound-states.

Geometrically, multiple M5-branes on a K3 can be holomorphically deformed off one another.

This argument fails for surfaces with b+2 = 1 and in particular for 1
2K3.

One reason that the higher Z(n) can be determined in such a simple way from Z(1) can be

understood in topological string theory from the fact that the BPS numbers on K3 depend

only on the intersection of a curve C2 = 2g−2 [269], and not on their class in H2(K3,Z). This

allows to prove (5.23) to all orders in the limit of the topological string partition function

under consideration by slightly modifying the proof in [270]. Using the Picard-Fuchs system

of the elliptic fibration one shows in the limit q3 → 0 the first equality in the identity

1

2

(
∂

∂t2

)3

F0|q3→0 =
E4(t1)E6(t1)E4(t2)

η(t1)24(j(t1)− j(t2))

=
q1

q1 − q2
+ E4(t2)−

∑
d,l,k>0

l3c(kl)qkl1 q
ld
2 ,

(5.26)

where j = E3
4/η

24 and c(n) are defined as

− 1

2
Z(1) =

∑
n

c(n)qn . (5.27)

This equations shows two things. The BPS numbers inside the Kähler cone of K3 depend

only on C2 = kl and all Z(n) are given by one modular form. The second fact can be used as

in [270] to establish that

1

2

(
∂

∂t2

)3

F0|q3→0 =
∞∑
n=0

Fn(t1)qn2 , (5.28)

where Fn is the Hecke transform of F1, i.e. n3Fn = F1|Tn. Using Bol’s identity and restoring

the n3 factors yields (5.23).

13Further examples of higher wrapping can be found in [4, 268].
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E-strings and bound-states

The recursion relating the higher windings of the E-strings to lower winding, developed in

[266, 224, 211] in contrast reads

∂Z(n)

∂E2
=

1

24

n−1∑
s=1

s(n− s)Z(s) Z(n−s) , (5.29)

which becomes an anomaly equation, when E2 is completed into a modular object Ê2 by

introducing a non-holomorphic part (see Appendix H). The anomaly reads:

∂t̄1Ẑ
(n) =

i(Im t1)−2

16π

n−1∑
s=1

s(n− s)Ẑ(s)Ẑ(n−s) , (5.30)

and was given the interpretation [211] of taking into account the contributions from bound-

states. Starting from [252]

Z(1) =
E4
√
q

η12
, (5.31)

and using the vanishing of BPS states of certain charges one obtains recursively all Z(n)

[266, 224, 211]. E.g. the n = 2 the contribution reads:

Ẑ(2) =
qE4E6

12η24
+
qÊ2E

2
4

24η24
, (5.32)

where the second summand has the form Ê2

(
Z(1)

)2
and takes into account the contribution

from bound-states of singly wrapped M5-branes.

A relation to the anomaly equations appearing in topological string theory [22] was pointed

out in ref. [211] and proposed for arbitrary genus in refs. [271, 272]. The higher genus gener-

alization reads [271, 272]:

∂Z
(n)
g

∂E2
=

1

24

∑
g1+g2=g

n−1∑
s=1

s(n− s)Z(s)
g1
Z(n−s)
g2

+
n(n+ 1)

24
Z

(n)
g−1 , (5.33)

where the instanton part of the A-model free energies at genus g is denoted by Fg(q1, q2, q3),

and Fg(q1, q2 → 0, q3) =
∑

n≥1 Z
(n)
g qn3 . The Z

(n)
g have the form [272]

Z(n)
g = P (n)

g (E2, E4, E6)
q
n/2
1

η12n
, (5.34)

where P
(n)
g denotes a quasi-modular form of weight 2g + 6n− 2.

5.2.4. Generating functions from wall-crossing

In the last section we have argued that the partition function of N = 4 U(r) Super-Yang-Mills

theory suffers from a holomorphic anomaly for divisors with b+2 (P ) = 1. In fact there exists
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another way to see the anomaly which is also intimately related to the computation of BPS

degeneracies encoded in the elliptic genus and will be the subject of this section. This method

relies on wall-crossing formulas and originally goes back to Göttsche and Zagier [31, 32]. In

the physics context it has also been employed in [238, 239]. It will be used in section 5.3

to derive the elliptic genus for BPS states and their anomaly rigorously. In the following

presentation we will be very sketchy as we merely want to stress the main ideas. We refer to

section 5.3 for details.

The starting point is the Kontsevich-Soibelman formula [72] which describes the wall-

crossing of bound-states of D-branes. Specifying to the case of two M5-branes and taking the

equivalent D4-D2-D0 point of view the Kontsevich-Soibelman formula reduces to the primitive

wall-crossing formula

∆Ω(Γ; J → J ′) = Ω(Γ;J ′)− Ω(Γ; J) = (−1)〈Γ1,Γ2〉−1〈Γ1,Γ2〉Ω(Γ1) Ω(Γ2) , (5.35)

which describes the change of BPS degeneracies of a bound-state with charge vector Γ =

Γ1 + Γ2, once a wall of marginal stability specified by JW is crossed. The symplectic charge

product 〈·, ·〉 is defined by

〈Γ1,Γ2〉 = −Q(1)
6 Q

(2)
0 +Q

(1)
4 ·Q

(2)
2 −Q

(1)
2 ·Q

(2)
4 +Q

(1)
0 Q

(2)
6 . (5.36)

Hence, for D4-D2-D0 brane configurations 〈Γ1,Γ2〉 is independent of the D0-brane charge.

Further, in eq. (5.35) Γ1 and Γ2 are primitive charge vectors such that Ω(Γi) do not depend

on the moduli. Thus, the Γi can be thought of as charge vectors with r = 1 whereas Γ

corresponds to a charge vector with r = 2. Assuming, that the wall of marginal stability does

not depend on the D0-brane charge, formula (5.35) can be translated into a generating series

∆f
(2)
µ,J→J ′ defined by

∆f
(2)
µ,J→J ′ =

∑
d≥0

∆Ω̄(Γ; J → J ′) qd−
χ(P )

12 . (5.37)

Assuming that there exists a reference chamber J ′ such that Ω̄(Γ; J) = 0, this gives us directly

an expression for f
(2)
µ,J .

As it will turn out in the next section, ∆f
(2)
µ,J→J ′ is given in terms of an indefinite theta-

function ΘJ,J ′

Λ,µ , which contains the information about the decays due to wall-crossing as one

moves from J to J ′. Indefinite theta-functions were analyzed by Zwegers in his thesis [61].

One of their major properties is that they are not modular as one only sums over a bounded

domain of the lattice Λ specified by J and J ′. However, Zwegers showed that by adding

a non-holomorphic completion the indefinite theta-functions have modular transformation

behavior and fall into the class of mock modular forms.14 Every mock modular form h of

weight k has a shadow g, which is a modular form of weight 2− k, such that the function

ĥ(τ) = h(τ) + g∗(τ) (5.38)

14We review some notions in Appendix H.
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transforms as a modular form of weight k but is not holomorphic. Here, g∗ is a certain

transformation of the function g that introduces a non-holomorphic dependence. Taking the

derivative of ĥ with respect to τ̄ yields a holomorphic anomaly given by the shadow

∂ĥ

∂τ̄
=
∂g∗

∂τ̄
= τ−k2 g(τ) , (5.39)

where τ2 = Im(τ).

As described in sections 5.2.2 and 5.2.3 the (MSW) CFT and the N = 4 U(r) Super-Yang-

Mills partition functions should behave covariantly under modular transformations of the

SL(2,Z) acting on τ . Thus, the modular completion outlined above will effect the generating

functions f
(2)
µ,J through their relation to the indefinite theta-function ΘJ,J ′

Λ,µ , which needs a

modular completion to transform covariantly under modular transformations, i.e.

ΘJ,J ′

Λ,µ 7→ Θ̂J,J ′

Λ,µ (5.40)

and consequently f
(2)
µ,J is replaced by f̂

(2)
µ,J . Due to eq. (5.38) the counting function of BPS

invariants f̂
(2)
µ,J and thus the elliptic genus Z

(2)
P are going to suffer from a holomorphic anomaly,

to which we turn next.

5.3. Wall-crossing and mock modularity

In this section we derive an anomaly equation for two M5-branes wound on a rigid sur-

face/divisor P with b+2 (P ) = 1, inside a Calabi-Yau manifold Z. We begin by reviewing

D4-D2-D0 bound-states in the type IIA picture and their wall-crossing in the context of the

Kontsevich-Soibelman formula. Then we proceed by deriving a generating function for rank

two sheaves from the Kontsevich-Soibelman formula which is equivalent to Göttsche’s formula

[32]. This generating function is an indefinite theta-function, which fails to be modular. As

a next step we apply ideas of Zwegers to remedy this failure of modularity by introducing a

non-holomorphic completion. This leads to a holomorphic anomaly equation of the elliptic

genus of two M5-branes that we prove for rigid divisors P .

5.3.1. D4-D2-D0 wall-crossing

In the following we take on the equivalent type IIA point of view, adapting the discussion

of refs. [273, 238, 239] to describe the relation to the Kontsevich-Soibelman wall-crossing

formula [72]. We restrict our attention to the D4-D2-D0 system on the complex surface P

and work in the large volume limit with vanishing B-field.

Let us recall that a generic charge vector with D4-brane charge r is given by

Γ = (Q6, Q4, Q2, Q0) = r

(
0, [P ], i∗F (E),

χ(P )

24
+

∫
P

1

2
F (E)2 −∆(E)

)
, (5.41)
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where E is a sheaf on the divisor P . Further, we define

∆(E) =
1

r(E)

(
c2(E)− r(E)− 1

2r(E)
c1(E)2

)
, µ(E) =

c1(E)

r(E)
, F (E) = µ(E) +

[P ]

2
. (5.42)

We recall that in the large volume regime the notion of D-brane stability is equivalent to

µ-stability, see e.g. [273]. Given a choice of J ∈ C(P ), a sheaf E is called µ-semi-stable if for

every sub-sheaf E ′

µ(E ′) · J ≤ µ(E) · J . (5.43)

Moreover, a wall of marginal stability is a co-dimension one subspace of the Kähler cone C(P )

where the following condition is satisfied

(µ(E1)− µ(E2)) · J = 0 , (5.44)

but is non-zero away from the wall. Across such a wall of marginal stability the configuration

(5.41) splits into two configurations with charge vectors

Γ1 = r1

(
0, [P ], i∗F1,

χ(P )

24
+

∫
P

1

2
F 2

1 −∆(E1)

)
,

Γ2 = r2

(
0, [P ], i∗F2,

χ(P )

24
+

∫
P

1

2
F 2

2 −∆(E2)

)
, (5.45)

where ri = rk(Ei) and µi = µ(Ei). By making use of the identity

r∆ = r1∆1 + r2∆2 +
r1r2

2r

(
c1(E1)

r1
− c1(E2)

r2

)2

, (5.46)

one can show that Γ = Γ1 + Γ2. Therefore, charge-vectors as defined in (5.41) form a vector-

space which will be essential for the application of the Kontsevich-Soibelman formula.

Before we proceed, let us note, that the BPS numbers and the Euler numbers of the moduli

space of sheaves are related as follows. Denote by MJ(Γ) the moduli space of semi-stable

sheaves characterized by Γ. Its dimension reads [274]

dimCMJ(Γ) = 2r2 − r2χ(OP ) + 1 . (5.47)

The relation between BPS invariants and the Euler numbers of the moduli spaces MJ(Γ) is

then given by [273]

Ω(Γ, J) = (−1)dimCMJ (Γ)χ(M(Γ), J) . (5.48)

Moreover, for the system of charges we have specified to, the symplectic pairing of charges

simplifies to [273]

〈Γ1,Γ2〉 = r1r2(µ2 − µ1) · [P ] . (5.49)

The holomorphic function f
(r)
µ,J(τ) appearing in eq. (5.11) can now be identified with the

generating function of BPS invariants of moduli spaces of semi-stable sheaves. Its wall crossing

will be described in the following.
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Kontsevich-Soibelman wall-crossing formula

Kontsevich and Soibelman [72] have proposed a formula which determines the jumping be-

havior of BPS-invariants Ω(Γ; J) across walls of marginal stability. The wall-crossing formula

is given in terms of a Lie algebra defined by generators eΓ and a basic commutation relation

[eΓ1 , eΓ2 ] = (−1)〈Γ1,Γ2〉〈Γ1,Γ2〉eΓ1+Γ2 . (5.50)

For every charge Γ an element UΓ of the Lie group can be defined by

UΓ = exp

−∑
n≥1

enΓ

n2

 . (5.51)

The Kontsevich-Soibelman wall-crossing formula states that across a wall of marginal sta-

bility the following formula holds

y∏
Γ:Z(Γ;J)∈V

U
Ω(Γ;J+)
Γ =

y∏
Γ:Z(Γ;J)∈V

U
Ω(Γ;J−)
Γ , (5.52)

where J+ and J− denote Kähler classes on the two sides of the wall. Further, V is a region

in R2 bounded by two rays starting at the origin and y denotes a clockwise ordering of the

factors in the product with respect to the phase of the central charges Z(Γ; J), that are given

by mirror symmetry as

Z(Γ; J) = −
∫
e−(B+iJ) Γ + (instanton− corrections) . (5.53)

Restricting to the case r = 2 and r1 = r2 = 1, (5.52) can be truncated to∏
Q0,1

U
Ω(Γ1)
Γ1

∏
Q0

U
Ω(Γ;J+)
Γ

∏
Q0,2

U
Ω(Γ2)
Γ2

=
∏
Q0,2

U
Ω(Γ2)
Γ2

∏
Q0

U
Ω(Γ;J−)
Γ

∏
Q0,1

U
Ω(Γ1)
Γ1

, (5.54)

where Q0 is the D0-brane charge of Γ and the Q0,i are the D0-brane charges belonging to

Γi, respectively. The above formula has been derived by setting all Lie algebra elements

with D4-brane charge greater than two to zero. Therefore, the element eΓ is central, using

the Baker-Campbell-Hausdorff formula eXeY = eY e[X,Y ]eX and the fact that the symplectic

product is independent of the D0-brane charge, one finds the following change of BPS numbers

across a wall of marginal stability [238, 230]

∆Ω(Γ) = (−1)〈Γ1,Γ2〉−1〈Γ1,Γ2〉
∑

Q0,1+Q0,2=Q0

Ω(Γ1) Ω(Γ2) . (5.55)

Moreover, one can deduce that the rank one degeneracies Ω(Γ1) and Ω(Γ2) do not depend on

the modulus J .
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5.3.2. Relation of KS to Göttsche’s wall-crossing formula

Göttsche has found a wall-crossing formula for the Euler numbers of moduli spaces of rank

two sheaves in terms of an indefinite theta-function in ref. [32]. In this section we want to

derive a modified version of this formula from the Kontsevich-Soibelman wall-crossing formula

associated to D4-D2-D0 bound-states with D4-brane charge equal to two.

We use the short notation Γ = (r, µ,∆) to denote a rank r sheaf with the specified Chern

classes that is associated to the D4-D2-D0 states. For rank one sheaves the generating function

has no chamber dependence and we have already seen that it is given by (5.17). Following

the discussion of our last section, higher rank sheaves do exhibit wall-crossing phenomena

and therefore do depend on the chamber in moduli space, i.e. on J ∈ C(P ).

Our aim now is to determine the generating function of the D4-D2-D0 system using the

primitive wall-crossing formula derived from the KS wall-crossing formula. From now on we

restrict our attention to rank two sheaves E . They can split across walls of marginal stability

into rank one sheaves E1 and E2 as outlined in section 5.3.1. Using relation (5.46) we can

write

d = d1 + d2 + ξ · ξ , (5.56)

where ξ = µ1 − µ2 and d = 2∆. Further, a wall is given by (5.44), i.e. the set of walls given

a split of charges ξ reads

W ξ = {J ∈ C(P ) | ξ · J = 0} . (5.57)

Now, consider a single wall JW ∈ W ξ determined by a set of vectors ξ ∈ Λ + µ. Let J+

approach JW infinitesimally close from one side and J− infinitesimally close from the other

side. Thus, in our context the primitive wall-crossing formula (5.55) becomes

Ω̄(Γ; J+)− Ω̄(Γ; J−) =
∑

Q0,1+Q0,2=Q0

(−1)2ξ·[P ] 2 (ξ · [P ]) Ω(Γ1) Ω(Γ2) , (5.58)

where we have used the identity (5.49). Note, that Q0,i and Q0 are determined in terms of Γ

and Γi through (5.41) and (5.45). Now, we can sum over the D0-brane charges to obtain a

generating series. This yields∑
d≥ 0

(Ω̄(Γ; J+)− Ω̄(Γ; J−))qd−
χ(P )

12

=
∑

d1,d2≥ 0, ξ

(−1)2ξ·[P ] (ξ · [P ]) Ω(Γ1)Ω(Γ2)qd1+d2+ξ2− 2χ(P )
24

= (−1)2µ·[P ]−1 ϑΛ⊥(τ)2

η(τ)2χ(P )

∑
ξ

(ξ · [P ]) qξ
2
, (5.59)

where for the first equality use has been made of the identities (5.56, 5.58), and for the second

equality the identity (5.17) has been used. The last line can be rewritten as

(−1)2µ·[P ]−1 1

2

ϑΛ⊥(τ)2

η(τ)2χ(P )
Coeff2πiy(Θ

J+,J−
Λ,µ (τ, [P ]y)) , (5.60)
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where we have introduced the indefinite theta-function

ΘJ,J ′

Λ,µ (τ, x) :=
1

2

∑
ξ∈Λ+µ

(sgn〈J, ξ〉 − sgn〈J ′, ξ〉) e2πi〈ξ,x〉 qQ(ξ) , (5.61)

with the inner product15 defined by 〈x, y〉 = 2dABx
AyB and the quadratic formQ(ξ) = 1

2〈ξ, ξ〉.
As these theta-functions obey the cocycle condition [31]

ΘF,G
Λ,µ + ΘG,H

Λ,µ = ΘF,H
Λ,µ , (5.62)

we finally arrive at the beautiful relation between the BPS numbers in an arbitrary chamber

J and those in a chamber J ′ first found by Göttsche in the case Λ = H2(P,Z):

f
(2)
µ,J ′(τ)− f (2)

µ,J(τ) =
1

2

ϑΛ⊥(τ)2

η2χ(P )(τ)
Coeff2πiy(Θ

J,J ′

Λ,µ (τ, [P ]y)) . (5.63)

5.3.3. Holomorphic anomaly at rank two

In this subsection we discuss the appearance of a holomorphic anomaly at rank two and give

a proof of it by combing our previous results with results of Zwegers [61].

Elliptic genus at rank two and modularity

An important datum in eq. (5.63) is the choice of chambers J, J ′ ∈ C(P ), which are any points

in the Kähler cone of P . As a consequence, the indefinite theta-series does not transform well

under SL(2,Z) in general. However, from the discussion of sect. 5.2.2 we expect, that the

generating series f
(r)
µ,J(τ) transforms with weight − r(Λ)+2

2 in a vector-representation under the

full modular group, where r(Λ) denotes the rank of the lattice Λ. Hence, there is a need to

restore modularity. The idea is as follows.

Following Zwegers [61], it turns out that the indefinite theta-function can be made modular

at the cost of losing its holomorphicity. From the definition (5.61) Zwegers smoothes out the

sign-functions and introduces a modified function as

Θ̂c,c′

Λ,µ(τ, x) =
1

2

∑
ξ ∈Λ+µ

(
E

(
〈c, ξ + Im (x)

τ2
〉√τ2√

−Q(c)

)
− E

(
〈c′, ξ + Im (x)

τ2
〉√τ2√

−Q(c′)

))
e2πi〈ξ,x〉qQ(ξ) ,

(5.64)

where E denotes the incomplete error function

E(x) = 2

∫ x

0
e−πu

2
du . (5.65)

Note, that if c or c′ lie on the boundary of the Kähler cone, one does not have to smooth

out the sign-function. Zwegers shows, that the non-holomorphic function Θ̂c,c′

Λ,µ(τ, x) satisfies

the correct transformation properties of a Jacobi form of weight 1
2r(Λ). Due to the non-

holomorphic pieces it contains mock modular forms, that we want to identify in the following.

15Note, that this is not the symplectic product of D-brane charges defined before.
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In order to separate the holomorphic part of Θ̂c,c′

Λ,µ(τ, x) from its shadow we recall the following

property of the incomplete error function

E(x) = sgn(x)(1− β 1
2
(x2)) , (5.66)

which enables us to split up Θ̂c,c′

Λ,µ(τ, x) into pieces. Here, βk is defined by

βk(t) =

∫ ∞
t

u−ke−πudu . (5.67)

Hence, one can write eq. (5.64) as

Θ̂c,c′

Λ,µ(τ, x) = Θc,c′

Λ,µ(τ, x)− Φc
µ(τ, x) + Φc′

µ (τ, x) , (5.68)

with

Φc
µ(τ, x) =

1

2

∑
ξ ∈Λ+µ

[
sgn〈ξ, c〉 − E

(
〈c, ξ + Im (x)

τ2
〉√τ2√

−Q(c)

)]
e2πi〈ξ,x〉qQ(ξ) . (5.69)

If c belongs to C(P ) ∩ Qr(Λ), we may write

Φc
µ(τ, x) = R(τ, x)θ(τ, x) , (5.70)

where we decomposed the lattice sum into contributions along the direction of c and per-

pendicular to c given by R and θ, respectively. Hence, θ is a usual theta-series associated

to the quadratic form Q|〈c〉⊥, i.e. of weight (r(Λ) − 1)/2. R is the part which carries the

non-holomorphicity. It transforms with a weight 1
2 factor and therefore Coeff2πiy(R(τ, [P ]y))

is of weight 3
2 . Following the general idea of Zagier [60] we should encounter the β 3

2
function

in the 2πiy-coefficient of Φ. From the above expressions one can indeed prove the following

identity [275]

Coeff2πiyΦ
c
µ(τ, [P ]y) = − 1

4π

〈c, [P ]〉
〈c, c〉

∑
ξ ∈Λ+µ

|〈c, ξ〉|β 3
2

(
τ2〈c, ξ〉2

−Q(c)

)
qQ(ξ)+

∑
ξ ∈Λ+µ

sgn(〈c, ξ〉)
2

〈ξ−, [P ]〉β 1
2

(
τ2〈c, ξ〉2

−Q(c)

)
qQ(ξ) .

(5.71)

The first term in (5.71) has the expected form, however there is also a second contribution.

One has to note that the second term vanishes whenever [P ] can be chosen to lie in the Kähler

cone. For the examples we are going to consider this is possible and thus we are going to drop

the second contribution in the following. For rational ruled surfaces of higher genus, this is

however not possible and it would be interesting to understand the meaning of this term in

more detail [275].

Taking the derivative with respect to τ̄ in order to obtain the shadow we arrive at the

following final expression for surfaces with [P ] ∈ C(P )

∂τ̄Coeff2πiyΦ
c
µ(τ, [P ]y) = −τ

− 3
2

2

8πi

c · [P ]√
−c2

(−1)4µ2
θ

(2)

µ− [P ]
2
,c

(τ, 0) , (5.72)
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where we define the Siegel-Narain theta-function θ
(r)
µ,c(τ, z) as in eq. (5.13). For more details on

the transformation properties of the indefinite theta-functions we refer the reader to appendix

H.

Now, these results can be used to compute the elliptic genus for two M5-branes wrapping

the divisor P . Consider

f
(2)
µ,J(τ) = fµ,J ′(τ)− 1

2

ϑΛ⊥(τ)2

η2χ(P )
Coeff2πiyΘ

J,J ′

Λ,µ (τ, [P ]y) , (5.73)

where fµ,J ′(τ) is a holomorphic ambiguity given by the generating series in a reference chamber

J ′, which we choose to lie at the boundary of the Kähler cone J ′ ∈ ∂C(P ). In explicit

computations it may be possible to choose J ′ such that the BPS numbers vanish. In general,

however, such a vanishing chamber might not always exist, but since J ′ is at the boundary

of the Kähler cone, fµ,J ′(τ) has no influence on the modular transformation properties, nor

on the holomorphic anomaly. We write the full M5-brane elliptic genus as

Z
(2)
P (τ, z) =

∑
µ∈Λ∗/Λ

f̂
(2)
µ,J(τ)θ

(2)
µ,J(τ, z) , (5.74)

where f̂
(2)
µ,J denotes the modular completion as outlined above. We can show using Zwegers’

results [61], that the M5-brane elliptic genus transforms like a Jacobi form of bi-weight (−3
2 ,

1
2).

Proof of holomorphic anomaly at rank two

Now, we are in position to prove the holomorphic anomaly at rank two for general surfaces

P with b+2 (P ) = 1 and [P ] ∈ C(P ). The holomorphic anomaly takes the following form

D2Z
(2)
P (τ, z) = τ

−3/2
2

1

16πi

J · [P ]√
−J2

(
Z

(1)
P (τ, z)

)2
, (5.75)

where the derivative Dk is given as

Dk = ∂τ̄ +
i

4πk
∂2
z+ , (5.76)

and z+ refers to the projection of z along a direction J ∈ C(P ). For the proof, D2Z
(2)
P can be

computed explicitly. Using (5.72) we obtain directly

D2Z
(2)
P (τ, z) = τ

−3/2
2

1

16πi

J · [P ]√
−J2

ϑΛ⊥(τ)2

η(τ)2χ

∑
µ∈Λ∗/Λ

(−1)4µ2
θ

(2)

µ− [P ]
2
,J

(τ, 0)θ
(2)
µ,J(τ, z) . (5.77)

Since the following identity among the theta-functions θµ,J holds(
θ

(1)
0,J(τ, z)

)2
=

∑
µ∈Λ∗/Λ

(−1)4µ2
θ

(2)

µ− [P ]
2
,J

(τ, 0)θ
(2)
µ,J(τ, z) , (5.78)

we have proven the holomorphic anomaly equation at rank two.



174 5. Mock modularity of multiple M5-branes

5.4. Applications and extensions

In the following we want to apply the previous results to several selected examples. Before

doing so, we explain two mathematical facts which will help to fix the ambiguity fµ,J ′(τ),

which are the blow-up formula and the vanishing lemma. After discussing the examples, we

turn our attention to a possible extension to higher rank. This leads us to speculations about

mock modularity of higher depth and wall-crossing having its origin in a meromorphic Jacobi

form.

5.4.1. Blow-up formulae and vanishing chambers

There is a universal relation between the generating functions of stable sheaves on a surface

P and on its blow-up P̃ [30, 276, 277, 278, 32]. Let P be a smooth projective surface and

π : P̃ → P the blow-up at a non-singular point with E the exceptional divisor of π. Let

J ∈ C(P ), r and µ such that gcd(r, rµ · J) = 1. Then, the generating series f
(r)
µ,J(τ ;P ) and

f
(r)
µ,J(τ ; P̃ ) are related by the blow-up formula

f
(r)

π∗(µ)− k
r
E,π∗(J)

(τ ; P̃ ) = Br,k(τ)f
(r)
µ,J(τ ;P ) , (5.79)

with Br,k given by

Br,k(τ) =
1

ηr(τ)

∑
a∈Zr−1+ k

r

q
∑
i≤j aiaj . (5.80)

The second fact states that for a class of semi-stable sheaves on certain surfaces the moduli

space of the sheaves is empty. We refer to this fact as the vanishing lemma [32]. For this let

P be a rational ruled surface π : P → P1 and J be the pullback of the class of a fiber of π.

Picking a Chern class µ with rµ · J odd, we have

M((r, µ,∆), J) = ∅ (5.81)

for all d and r ≥ 2.

5.4.2. Applications to surfaces with b+
2 = 1

The surfaces we are going to consider are P2, the Hirzebruch surfaces F0 and F1, and the del

Pezzo surfaces B8 and B9.

Projective plane P2

The projective plane P2 has been discussed quite exhaustively in the literature. The rank one

result was obtained by Göttsche [257]

Z
(1)
P2 =

ϑ1(−τ̄ ,−z)
η3(τ)

. (5.82)
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The generating functions of the moduli space of rank two sheaves or SO(3) instantons of

super-Yang-Mills theory on P2 were written down by [279, 276, 30] and are given by

f0(τ) =

∞∑
n=0

χ(M((2, 0, n), J))qn−
1
4 =

3h0(τ)

η6(τ)
,

f1(τ) =
∞∑
n=0

χ(M((2, 1, n), J))qn−
1
2 =

3h1(τ)

η6(τ)
.

(5.83)

Here, hj(τ) are mock modular forms given by summing over Hurwitz class numbers H(n)

hj(τ) =
∞∑
n=0

H(4n+ 3j)qn+ 3j
4 , (j = 0, 1) . (5.84)

Their modular completion is denoted by ĥj(τ), where the shadows are given by ϑ3−j(2τ)

[223]. Explicitly, we have

∂τ̄ ĥj(τ) =
τ
− 3

2
2

16πi
ϑ3−j(−2τ̄) . (5.85)

Note, that these results are valid for all Kähler classes J ∈ H2(P2,Z) as there is no wall

crossing in the Kähler moduli space of P2. This leads directly to the following elliptic genus

of two M5-branes wrapping the P2 divisor

Z
(2)
P2 (τ, z) = f̂0(τ)ϑ2(−2τ̄ ,−2z)− f̂1(τ)ϑ3(−2τ̄ ,−2z) . (5.86)

Denoting by D2 = ∂τ̄ + i
8π∂

2
z one finds the expected holomorphic anomaly equation at rank

two, given by16

D2 Z
(2)
P2 (τ, z) = − 3

16πi
τ
− 3

2
2

(
Z

(1)
P2 (τ, z)

)2
, (5.87)

which can be derived directly from the simple fact that

ϑ1(τ, z)2 = ϑ2(2τ)ϑ3(2τ, 2z)− ϑ3(2τ)ϑ2(2τ, 2z) . (5.88)

Further note, that the q-expansion of f0, eq. (5.83), has non-integer coefficients. It was

explained in [238] that this is due to the fact that the generating series involves the fractional

BPS invariants Ω̄(Γ), which we encountered before.

Hirzebruch surface F0

Our next example is the Hirzebruch surface P = F0. We denote by F and B the fiber and the

base P1’s respectively. For an embedding of this surface into a compact Calabi-Yau manifold

one may consult the Appendix A.6.2. Let us choose J = F + B, J ′ = B and Chern class

µ = F/2. The choice µ = B/2 can be treated analogously and leads to the same results.

16This result has already been derived in [240].



176 5. Mock modularity of multiple M5-branes

The other sectors corresponding to µ = 0 and µ = (F + B)/2 require a knowledge of the

holomorphic ambiguity at the boundary and will not be treated here. One obtains

f
(2)
µ,F+B(τ) =

1

2η8(τ)
Coeff2πiy(Θ

F+B,B
Λ,µ (τ, [P ]y))

= q−
1
3
(
2q + 22q2 + 146q3 + 742q4 + . . .

)
,

(5.89)

where we denote by µ either B/2 or F/2. This exactly reproduces the numbers obtained in

[280].

We want to compute the shadow of the completion given by adding ΦF+B
µ and ΦB

µ to

the indefinite theta-series ΘF+B,B
Λ,µ . Since B is chosen at the boundary, ΦB

µ vanishes for

µ = F/2, B/2. The only relevant contribution has a shadow proportional to ϑ2(τ). Precisely,

we obtain

∂τ̄f
(2)
µ,F+B(τ) = −τ−3/2

2

1

4πi
√

2

ϑ2(τ)ϑ2(τ)

η8(τ)

(
µ =

F

2
,
B

2

)
. (5.90)

Hirzebruch surface F1

The next example is the Hirzebruch surface F1, which is a blow-up of P2. Again we denote by

F and B the fiber and base P1’s. The P2 hyperplane is given by the pullback of F + B and

B is the exceptional divisor. This example is particularly nice, since we can check our results

against the blow-up formula (5.79) or use the results known from P2 to write generating

functions in sectors which are not accessible through the vanishing lemma. Notice, that the

holomorphic expansions have been already discussed in ref. [239]. From the general discussion

one sees that there are four different choices for the Chern class µ ∈ {B2 ,
F+B

2 , F2 , 0}.
First, we choose J = F +B, J ′ = F and Chern class µ = B/2. We then obtain

f
(2)
µ,F+B(τ) =

1

2η8(τ)
Coeff2πiy(Θ

F+B,F
Λ,B (τ, [P ]y))

= q−
1
12

(
−1

2
− q +

15

2
q2 + 91q3 + 558q4 + . . .

)
.

(5.91)

A check of this result against the blow-up formula (5.79) applied to P2 yields

3h0(τ)

η6(τ)

ϑ2(2τ)

η2(τ)
= q−

1
12

(
−1

2
− q +

15

2
q2 + 91q3 + 558q4 + . . .

)
= f

(2)
µ,F+B(τ) . (5.92)

Further, we calculate the shadow by differentiating f̂ (2) with respect to τ̄

∂τ̄ f̂
(2)
µ,F+B(τ) =

3

16πi
τ
−3/2
2

ϑ3(2τ)ϑ2(2τ)

η8(τ)
, (5.93)

which also is in accord with the blow-up formula. Note, that (5.91) has half-integer expansion

coefficients, since J = B + F lies on a wall for the Chern class µ = B/2.
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As a second case we choose J = F +B, J ′ = F and Chern class µ = (F +B)/2 and obtain

f
(2)
µ,F+B(τ) =

1

2η8(τ)
Coeff2πiy(Θ

F+B,F
Λ,F+B (τ, [P ]y))

= q−
7
12
(
q + 13q2 + 93q3 + 496q4 + . . .

)
,

(5.94)

which we again can check against the blow-up formula (5.79) for P2

3h1(τ)

η6(τ)

ϑ3(2τ)

η2(τ)
= q−

7
12
(
q + 13q2 + 93q3 + 496q4 + . . .

)
= f

(2)
µ,F+B(τ) . (5.95)

Calculating the shadow yields

∂τ̄ f̂
(2)
µ,F+B(τ) =

3

16πi
τ
−3/2
2

ϑ2(2τ)ϑ3(2τ)

η8(τ)
, (5.96)

which is also in accord with the blow-up formula.

The last two sectors µ = F/2, 0 are not accessible via the vanishing lemma. However, using

a blow-down to P2 we observe, that the above two cases reproduce correctly the two Chern

classes in the cases of rank two sheaves on P2. Using the blow-up formulas once more we

finally arrive at

f
(2)
(0,0),J(τ) =

3h0(τ)

η6(τ)

ϑ3(2τ)

η2(τ)
,

f
(2)

( 1
2
,0),J

(τ) =
3h1(τ)

η6(τ)

ϑ2(2τ)

η2(τ)
,

f
(2)

(0, 1
2

),J
(τ) =

3h0(τ)

η6(τ)

ϑ2(2τ)

η2(τ)
,

f
(2)

( 1
2
, 1
2

),J
(τ) =

3h1(τ)

η6(τ)

ϑ3(2τ)

η2(τ)
,

(5.97)

where J = F + B and µ = (a, b) = aF + bB. Note, that in the cases f
(2)
(0,0),J and f

(2)

(0, 1
2

),J
the

blow-up formula is not valid since we violate the gcd-condition, as π∗µ = 0 in these cases.

However, for rank two sheaves on F1 the blow-up formula seems to work anyway, since the

generating series using the blow-up procedure and the indefinite theta-function description

coincide for the Chern class µ = (0, 1
2).

Del Pezzo surface B8

As in [68] we embed the surface B8 in a certain free Z5 quotient17 of the Fermat quintic

X̃ = {
∑5

i=1 x
5
i = 0} in P4. The action of the group G = Z5 on the projective coordinates

of the ambient space is given by xi ∼ ωixi, where ω = e2πi/5. For the hyperplane section,

denoted P , we observe that P 3 = 1, as for the Fermat quintic the five points of intersection

of three hyperplanes {xi = xj = xk = 0} are identified under the action of the group G. The

17The only freely acting group actions for the quintic are a Z2
5 and the above Z5.
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Euler character of the hyperplane is given by χ(P ) = 11. It can be shown that the divisor P

is rigid and has b+2 = 1. We observe that H2(P,Z) = Z⊕ (−E8) as is explained in [68]. The

elliptic genus of a single M5-brane is then fixed by the modular weights

Z
(1)
P (τ, z) =

E4(τ)

η11(τ)
ϑ1(−τ ,−z) . (5.98)

The form of Z
(2)
P can now be calculated as for P2 and is given by

Z
(2)
P (τ, z) ∼ E4(τ)2

η(τ)22
(ĥ0(τ)ϑ2(−2τ̄ ,−2z)− ĥ1(τ)ϑ3(−2τ̄ ,−2z)) . (5.99)

The holomorphic anomaly equation fulfilled by Z
(2)
P (τ, z) can be obtained as in the P2 case

D2 Z
(2)
P (τ, z) ∼ τ

− 3
2

2

16πi

(
Z

(1)
P (τ, z)

)2
. (5.100)

Del Pezzo surface B9, the 1
2K3

We end our examples by returning and commenting on 1
2K3 or B9 which was the example

of section (5.2.3), as M5-branes wrapping on it give rise to the multiple E-strings. The B9

surface can be understood as a P2 blown up at nine points (see appendix A.6 for details)

or a rational elliptic surface. This case is interesting as one can map via T-duality along

the elliptic fibration the computation of the modified elliptic genus to the computation of

the partition function of topological string theory on the same surface [211]. The middle

dimensional cohomology lattice of B9 is given by H2(B9,Z) = Γ1,1⊕E8 and the Euler number

can be computed to χ(B9) = 12. Modularity then fixes the form of the elliptic genus at rank

one to

Z
(1)
B9

(τ, z) =
E4(τ)

η(τ)12
θ

(1)
0,J(τ, z) , (5.101)

where θ
(1)
0,J(τ, z) is the theta-function associated to the lattice Γ1,1 with standard intersection

form

(−dAB) =

(
0 1

1 0

)
. (5.102)

Choosing the Kähler form J = (R−2, 1)T , where (1, 0)T is the class of the elliptic fiber, one

can show that

θ
(1)
0,J(τ, 0)→ R

√
τ2

as R→∞ . (5.103)

In this limit of small elliptic fiber one recovers the results of sect. 5.2.3. The factor E4(τ) is

precisely the theta-function of the E8 lattice. The results obtained from the anomaly for higher

wrappings of refs. [224, 211] were proven mathematically for double wrapping in ref. [281].

In this analysis the Weyl group of the E8 lattice was used to perform the theta-function

decomposition.
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5.4.3. Extensions to higher rank and speculations

In the following sections we want to discuss the extension of our results to higher rank.

Partial results for rank three can be found already in the literature [280, 239, 254, 282, 283].

Thereafter, we discuss a possible generalization of mock modularity and speculate about a

contour description which stems from a relation to a meromorphic Jacobi form.

Higher rank anomaly and mock modularity of higher depth

We want to focus on the holomorphic anomaly equation at general rank as conjectured in

[211]. We recall that its form is given by

DrZ(r)
P (τ, z) ∼

r−1∑
n=1

n(r − n)Z
(n)
P (τ, z)Z

(r−n)
P (τ, z) , (5.104)

where Z
(r)
P (τ, z) can be decomposed into Siegel-Narain theta-functions as described in section

5.2.2. One may thus ask the question what it implies for the functions f̂
(r)
µ,J(τ) for general

r. In order to extract this information we want to compare the coefficients in the theta-

decomposition on both sides of (5.104). For this we need a generalization of the identity

(5.78). A computation shows that

θ
(n)
ν,J (τ, z) θ

(r−n)
λ,J (τ, z) =

∑
µ∈Λ∗/Λ

cµνλ(τ) θ
(r)
µ,J(τ, z) , (5.105)

where cµνλ are Siegel-Narain theta-functions themselves given by

cµνλ(τ) = δg(µ)
∑

ξ ∈Λ+µ+ g
r

(ν−λ)

q̄
− rn(r−n)

2g2
ξ2
+q

rn(r−n)

2g2
ξ2
− (5.106)

with g = gcd(n, r − n) and δg(µ) yields one if rµ is divisible by g and vanishes otherwise.

With this input one finds

∂τ̄ f̂
(r)
µ,J(τ) ∼

r−1∑
n=1

n(r − n)
∑

ν,λ∈Λ∗/Λ

f̂
(n)
ν,J (τ)f̂

(r−n)
λ,J (τ)cµνλ(τ) , (5.107)

which sheds some light onto the question about the modular properties of generating functions

at higher rank as follows.

The structure of eq. (5.107) indicates, that an appropriate description of the generating

function f̂
(r)
µ,J needs a generalization of the usual notion of mock modularity. This results

from the fact, that on the right hand side of the anomaly equation (5.107), mock modular

forms appear, such that the shadow of f̂
(r)
µ,J is a mock modular form itself. Therefore, it is

also subject to a holomorphic anomaly equation. This would lead to the notion of mock

modularity of higher depth [62], similar to the case of almost holomorphic modular forms of

higher depth. These are functions like Ê2(τ) and powers thereof, which can be written as a

polynomial in τ−1
2 with coefficients being holomorphic functions.
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A further motivation for this comes from the observation that the generating functions f̂
(r)
µ,J

could be obtained from an indefinite theta-function as in the case of two M5-branes. The

lattice, however, that is summed over in these higher rank indefinite theta-functions will be

of higher signature. In the case of r M5-branes one would expect a signature (r − 1, (r −
1)(r(Λ) − 1)) due to the r − 1 relative D2-brane charges of the possible r decay products of

D4-D2-D0 bound-states [237, 238]. However, a complete discussion of the modular properties

of such functions and their relation to mock modular forms of depth is beyond the scope of

this work.

The contour description

The elliptic genus of r M5-branes wrapping P is denoted by Z
(r)
P (τ, z), where we don’t indicate

any dependence of Z
(r)
P on a Kähler class/ chamber J ∈ C(P ). The basic assumption is that

the elliptic genus does not depend on such a choice. We simply think about Z
(r)
P as being a

meromorphic Jacobi form, which has poles as a function of the elliptic variable z. We assume,

that it is of bi-weight (−3
2 ,

1
2). In the following we want to exploit the implications of this

statement.

It is known that a Jacobi form has an expansion into theta-functions with coefficients being

modular forms. Since Zwegers [61], we also know that a meromorphic Jacobi form with one

elliptic variable has a similar expansion, where the coefficients are mock modular. Using our

Siegel-Narain theta-function θ
(r)
µ,J(τ, z), eq. (5.13), we conjecture the following expansion

Z
(r)
P (τ, z) =

∑
µ∈Λ∗/Λ

f
(r)
µ,J(τ)θ

(r)
µ,J(τ, z) + Res , (5.108)

with J a point in the Kähler cone which is related to a point zJ ∈ ΛC where the decomposition

is carried out. Note, that in eq. (5.108) the term “Res” should be given as a finite sum over

the residues of Z
(r)
P (τ, z) in the fundamental domain zJ + eτ + e with e = [0, 1]r(Λ).

Let’s see how the dependence on J comes about. Doing a Fourier transform we can write

f
(r)
µ,J(τ) = (−1)rµ·[P ]q̄

r
2
µ2

+q−
r
2
µ2
−

∫
CJ
Z

(r)
P (τ, z)e−2πir(µ+ [P ]

2
)·zdz , (5.109)

where CJ is a contour which has to be specified since Z
(r)
P is meromorphic. Due to the

periodicity in the elliptic variable CJ can be given as zJ + e for some point zJ . Now, suppose

we have a parallelogram P = zJ + ezJ ′ + e and that there is a single pole of Z
(r)
P inside P,

say at z = z0. Then, we obtain by integrating over the boundary of P

f
(r)
µ,J(τ)− f (r)

µ,J ′(τ) = 2πi αµ(τ) Res
z=z0

(
Z

(r)
P (τ, z)e−2πir(µ+ [P ]

2
)·z
)
, (5.110)

where we abbreviate

αµ(τ) = (−1)rµ·[P ]q̄
r
2
µ2

+q−
r
2
µ2
− . (5.111)



5.4 Applications and extensions 181

That is, the coefficients of the Laurent expansion of the elliptic genus encode the jumping

of the BPS numbers across walls of marginal stability and the walls are in one-to-one corre-

spondence with the positions of the poles of Z
(r)
P . An analogous dependence on a contour of

integration for wall-crossing of N = 4 dyons was introduced in refs. [284, 285].

Moreover, the shadow of f
(r)
µ,J should be determined in terms of the residues of Z

(r)
P , since

a generalizations of the ideas of [61] should show, that it is contained in the factor “Res” of

eq. (5.108). Thus, combining this result with the interpretation of eq. (5.110) one expects,

that the shadow not only renders f
(r)
µ,J modular, but also encodes the decay of bound-states

and hence knows about the jumping of BPS invariants across walls of marginal stability.

It is tempting to speculate even further. When comparing our results to the case of dyon

state counting in N = 4 theories [235, 236] one might suspect that there is an analog of the

Igusa cusp form φ10 in our setup. In the N = 4 dyon case there are meromorphic Jacobi

forms, often denoted ψm, which are summed up to give φ10. In analogy, it may be useful to

introduce another parameter ρ ∈ H and to study the object

φ−1
P (τ, ρ, z) =

∑
r≥1

Z
(r)
P (τ, z)e2πirρ . (5.112)





Summary and outlook of Part III

In this part of the thesis we investigated background dependence of theories that originate

from r M5-branes wrapping a smooth (semi-)rigid divisor P in a Calabi-Yau three-fold back-

ground. Such divisors P have b+2 = 1 and (semi-)positive anti-canonical class. In this case

the wrapped M5-brane can be studied locally in the Calabi-Yau manifold using an effective

description of the M5-brane theory on P × T 2 by a twisted U(r) N = 4 Super-Yang-Mills

theory on P .

The main object of interest was the partition function Z
(r)
P of the twisted gauge theory

and its modular and holomorphic properties. This partition function can be related to the

modified elliptic genus of the N = (0, 4) sigma model description of the M5-brane. Using the

spectral flow symmetry one establishes for all r a decomposition of the partition function into

vector-valued modular forms f̂
(r)
µ,J(τ) w.r.t. the S-duality group of N = 4 super-Yang-Mills

theory and Siegel-Narain theta-functions θ
(r)
µ,J(τ, z).

Our main result is a rigorous proof of a holomorphic anomaly equation of the partition

function valid for rank two on all P described above. The proof in section 5.3.3 relies on the

large volume wall-crossing formula of Göttsche [32] for invariants associated to sheaves on P ,

which are related to integer BPS invariants. By summing the change of the invariants across all

intermediate walls one can express the difference of the generating function of the invariants

f
(r)
µ,J(τ) in two arbitrary chambers J and J ′ in the Kähler cone in terms of an indefinite

theta-function ΘJ,J ′

Λ,µ (τ, z) [31]. This theta-function is regularized by cutting out the negative

directions of the quadratic form on the homology lattice, a procedure which renders the result

in general non-modular. The spoiled S-duality invariance can be regained following the work

of Zwegers by smoothing out the cutting procedure with the non-holomorphic error function.

The non-holomorphicity introduced by this procedure completes the mock modular forms

f
(r)
µ,J(τ) to non-holomorphic modular forms f̂

(r)
µ,J(τ). The non-holomorphicity of the Siegel-

Narain theta-functions on the other is trivial since it is annihilated by the non-holomorphic

heat operator. This allows to write a concise holomorphic anomaly equation for the partition

function (5.75).

We checked this holomorphic anomaly equation and its implications for the counting of

invariants of sheaves on P2, F0, F1 and B8 in section 5.4.2. The anomaly equation (5.75) is

in particular compatible with the form of a holomorphic anomaly that has been conjectured

in the context of E-strings on 1
2K3 for all r and checked for certain classes using the duality

to the genus zero topological string partition function [211]. Since the non-holomorphicity of

the f̂
(r)
µ,J(τ) for r > 1 is related in an intriguing way to mock modularity and wall-crossing,

we analyzed the decomposition for arbitrary rank and give a general form of the conjectured

general anomaly equation at the level of the f̂
(r)
µ,J(τ) in equation (5.107), which indicates a

theory of mock modular forms of higher depth [62]. The holomorphic limit of the f̂
(r)
µ,J(τ)

yield generating functions for invariants associated to sheaves of rank r. However, it is in
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general difficult to provide boundary conditions, which fix the holomorphic ambiguity.

The wall-crossing formula of Göttsche, which induces in the steps described above the non-

holomorphicity of the f̂
(2)
µ,J(τ), can be rederived using the Kontsevich-Soibelman wall-crossing

formula, as we did in section 5.3.2. As the wall-crossing formula takes a primitive form at rank

two, one can rewrite the generating function of BPS differences in terms of an indefinite theta-

function. The Kontsevich-Soibelman formula can be used for arbitrary rank to determine the

counting functions f
(r)
µ,J(τ) for all sectors µ in all chambers, if it is known in one chamber for

all µ, e.g. by a vanishing lemma or use of the blow-up formula. This was studied for rank

3 by [239], where it was also shown that the rank three wall-crossing formula is primitive.

In general if the wall-crossing formula is primitive, the sum over walls induce lattice sums of

signature (r− 1)(b+2 , b
−
2 ) with similar regularization requirements as for the rank two case. It

is an interesting question if the program of Zwegers to build modular objects can be extended

to the higher rank situation and leads upon non-holomorphic modular completion to the

conjectured form of holomorphic anomaly equation and a precise notion of the mock modular

forms of higher depth.

The problem of providing boundary conditions at least in one chamber for the del Pezzo

surfaces (except for the Hirzebruch surface F0) can in principle be solved by using the blow

formula in both directions in connection with the wall-crossing formula before and after the

blow-up. However, the blow-up formulae in the literature apply only if r and c1 · J have no

common divisor. This restriction forbids in general to provide boundary conditions for all

sectors.

The higher genus information discussed in equation (5.33) gives finer information about

the cohomology of moduli spaces of sheaves than its Euler number. Namely, an elliptic genus

obtained by tracing over the right j3
R quantum numbers of the Lefshetz decomposition in

the cohomology of the moduli space. On rigid surfaces it can be further refined to include

the general Ω background parameters of Nekrasov [286], which capture the individual (j2
L, j

3
R)

quantum numbers [287]. For rank two such refined partition functions have been considered in

[288] and it should be possible to extend the consideration above to the refined BPS numbers.

Furthermore, the relation between D6-D2-D0 brane systems as counted by topological string

theory and D4-D2-D0 brane systems associated to black hole state counting is the hallmark

of the OSV conjecture [289], which has been intensively studied. Wall-crossing issues in

combination with this conjecture have been studied in ref. [229] and more recently from

an M-theory perspective for example in ref. [290]. It would be interesting to examine the

implications of the anomaly equation in these contexts.

A conceptually very interesting but at this point more speculative approach is to consider

the elliptic genus as a J independent meromorphic Jacobi form, as we did in section 5.4.3. As

shown by Zwegers such meromorphic Jacobi forms have an expansion in theta-functions whose

coefficients are mock modular forms, just as holomorphic Jacobi forms have an expansion in

theta-functions with holomorphic modular forms as coefficients. This formalism relates the
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changes in the BPS numbers across walls of marginal stability to the different choices of the

contour in the definition of f
(r)
µ,J(τ) as a Fourier integral of Z

(r)
P , i.e. to the poles in Z

(r)
P , like

in the N = 4 case [291, 285].
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In this appendix we want to give a short account of toric geometry and the related techniques

used for the computations in the main text. There are a lot of good resources on toric

varieties available, see e.g. [35, 292, 293, 294, 295, 296, 297] for physics oriented reviews and

[59, 298, 27] for mathematical treatments.

Toric varieties are useful for two reasons, which we will both discuss in the following.

Mathematically a large part of their geometry and topology can be encoded in certain com-

binatorial data, which makes it easier to do explicit computations. Physically toric varieties

appear as the vacuum manifolds of certain two-dimensional supersymmetric gauge theories,

called gauged linear σ-models (GLSM). This viewpoint allows for a physical construction of

mirror manifolds [114] which parallels the mathematical constructions of dual polyhedra [109].

We will first review certain aspects of the mathematical theory of toric geometry and then

turn to the physical GLSM description.

A.1. Toric varieties

Abstractly a toric variety X is a complex algebraic variety which contains an open torus

T = (C∗)r as a dense open subset together with an appropriate action of T on X. Thus a

toric variety can be understood as a generalization of a (complex) torus, which is allowed

to degenerate in particular ways. Examples of such varieties include (weighted) projective

spaces Pn or orbifolds thereof.

There are two basic ways to encode the geometry of a toric variety. The first uses so-called

fans and yields normal toric varieties, while the second way uses lattice points in polytopes
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and produces so-called projective toric varieties. We will start by constructing a toric variety

via its fan.

A.1.1. The fan description

First we have to clarify what a fan is. For this let N be an integral lattice N ' Zr and

NR = N ⊗ R its real extension. We will need the notion of a strongly convex rational

polyhedral cone σ, which is defined by

σ =

{
k∑
i=1

akvk|ak ≥ 0

}
⊂ NR, with σ ∩ (−σ) = {0} , (A.1)

for some vectors vk ∈ N . A fan Σ is then given by a collection of cones σ such that each face

of a cone in Σ is itself a cone in Σ and the intersection of two cones is a face of both cones.

In the following we will also need the dual of the lattice N , which is denoted by M =

Hom(N,Z) and the associated natural pairing 〈., .〉 between the lattices N and M .

The toric variety X can now be given as a quotient

X =
(Cn \ Z(Σ))

G
, (A.2)

where all the necessary data can be extracted from the fan Σ. This can be obtained as follows

• Let Σ(1) be the set of one-dimensional cones of Σ then n = |Σ(1)|. To each ρ ∈ Σ(1)

one can associate a divisor Dρ of X and a local coordinate zρ ∈ C such that Dρ = {zρ =

0}. In the following we will choose an ordering of Σ(1) and denote the corresponding

coordinates as zi.

• The set Z(Σ) is called exceptional set and consists of all the loci where some or all the

coordinates zi are not allowed to vanish simultaneously. To extract it from the fan one

takes the union of all subsets of Σ(1) which do themselves not generate a cone.

• The group G by which one quotients needs a bit of explanation. First of all there is

short exact sequence

0 −→M −→ ZΣ(1) −→ Ar−1(X) −→ 0 , (A.3)

where the first map is given by m 7→
∑

i〈m, vi〉Di and the second map is given by taking

the linear equivalence class of the divisor. The group Ar−1(X) is called the Chow group

of X and is given by the Weil divisors modulo linear equivalence. For a toric variety

it can be shown that the Chow group is actually generated by the torus invariant

irreducible divisors [59]. By applying Hom(−,C∗) and noting that Hom(M,C∗) = N

one obtains

0 −→ Hom(Ar−1(X),C∗) −→ Hom(ZΣ(1),C∗) −→ Hom(M,C∗) ' N −→ 0 , (A.4)
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where the second map is given by (Q1, . . . , Qn) 7→
∑

iQivi. The group G is now given

by Hom(Ar−1(X),C∗) ' ker
(
Hom(ZΣ(1),C∗) −→ Hom(M,C∗)

)
. From this one can see

that

G ' Cn−r ×H, where H = ×iZai . (A.5)

Here H denotes a possible torsion part. One can also give a more direct characterization

of G by using local coordinates. The group G can then be written as

G = {(ti) ∈ (C∗)Σ(1)|
∏

vj∈Σ(1)

t
〈m,vj〉
j = 1 for all m ∈M} (A.6)

or by decomposing the vj =
∑
vkj ek w.r.t. an appropriate basis ek of M

G = {(ti) ∈ (C∗)Σ(1)|
∏

vj∈Σ(1)

t
vkj
j = 1} . (A.7)

As G ⊂ Hom(ZΣ(1),C∗) this induces also an action on the coordinates zi. This action

can be seen to be given by

(z1, . . . , zn) ∼ (λ
Qa1
a z1, . . . , λ

Qan
a zn), where λa ∈ C∗ (A.8)

with
∑

j Q
a
jvj = 0. The numbers Qaj are sometimes called charges, because they are

physical charges in the GLSM description.

We will also need two important properties which can be read off directly from the fan.

1. Compactness: The variety obtained from the above quotient construction is compact iff

its fan Σ spans the whole lattice N .

2. Calabi-Yau condition: A section of the anti-canonical bundle of a smooth variety is

given by Ω =
∏ dzi

zi
and thus one can show that the anti-canonical class is KX =∑

i[Di]. Furthermore one can show that X is Calabi-Yau when the generators of Σ(1)

all lie in a common affine hyperplane. Thus any toric Calabi-Yau variety is necessarily

non-compact. In terms of the charges Qai the Calabi-Yau condition can be stated as∑
iQ

a
i = 0.

Example: O(−3)→ P2

The vertices for this geometry are given by

v0 = (1, 0, 0), v1 = (1, 1, 0), v2 = (1, 0, 1), v3 = (1,−1,−1) (A.9)

and they fulfill −3v0 + v1 + v2 + v3 = 0. From these vertices one can build two different fans
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1. The top dimensional cones are given by {〈012〉, 〈013〉, 〈023〉}. In this case Z(Σ) turns

out to be given by Z(Σ) = {z1 = z2 = z3 = 0}. From the relation between the vertices

one finds for the action of G:

(z0, z1, z2, z3) ∼ (λ−3z0, λz1, λz2, λz3) . (A.10)

Note that the divisor D0 is a P2. By studying the transition functions one can show

that the total space is actually the bundle O(−3) → P2. As the charges Qi sum up to

zero in this case, one sees that this space is a Calabi-Yau space. Furthermore the fan

does not span the whole lattice N ' Z3 and thus the variety is non-compact.

2. One can leave out the vertex v0 and then is left with a single top dimensional cone

{〈123〉}. The exceptional set is now empty and there are only three coordinates z1, z2, z3.

The action of G can now for example be seen from the kernel description.1 One has

t1t2t3
!

= 1

t1t
−1
3

!
= 1

t2t
−1
3

!
= 1

 =⇒ G = {(λ, λ, λ) : λ ∈ C∗ ∧ λ3 = 1} ' Z3 . (A.11)

The toric variety is therefore given by an orbifold X = C3 \Z3, which is singular at the

origin. By adding the vertex v0 and sub-dividing the fan one can smooth this singularity

by inserting a P2 at the origin.

A.1.2. Divisors and intersections

A very nice feature of toric varieties is that the intersection theory is also encoded in the

combinatorial data of the fan. Already from the exceptional set Z(Σ) one sees that certain

divisors might have no intersection at all, as the corresponding coordinates might not be

allowed to vanish simultaneously. The leads to non-linear relations in the intersection ring

of torus invariant divisors. A collection of all these relations is called the Stanley-Reisner

ideal R. Together with the linear relations coming from the linear equivalence relations

one can fix the intersection ring up to a normalization. The linear relations can be obtained

from the fact that the principal divisors are given by (m) =
∑
〈m, vj〉Dj ∼ 0 and are trivial

in the Chow group. For a maximal dimensional cone σ, spanned by vertices vi1 , . . . vir the

corresponding intersection number is given by

Di1 · ... ·Dir =
1

Vol(σ)
, (A.12)

where Vol(σ) is the standard volume divided by r!.

It turns out that the charges Qai also have an interpretation in terms of intersections. They

are given by

Qai = Di · Ca , (A.13)

1Alternatively one can also note that v1 + v2 + v3 = 0 mod 3.
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where Ca denotes a particular basis of H2(X,Z). The Ca can be represented as complete

intersection of (r− 1) torus-invariant divisors, e.g. Ca = (Da1 · ... ·Dar−1), where one can pin

down the particular representation by using the intersection ring and the linear and non-linear

relations among the divisors. By Poincaré duality the above can be used to compute Kähler

volumes of cycles. The Kähler form can be expanded as J = taαa where αa ∈ H2(X,Z) is

Poincare dual to Da ∈ H4(X,Z). Thus the volume of a curve for example given by

Vol(Ca) =

∫
Ca
tbαb = tb(Db · Ca) = tbQab (A.14)

and analogous for higher-dimensional cycles.

As we have seen above toric Calabi-Yau spaces are necessarily non-compact. To build

compact Calabi-Yau varieties one can look at zero sections of bundles in toric non-Calabi-

Yau spaces. For this it is useful to give a representation of the global sections of line bundles

on toric varieties. A general Weil-divisor is given by a formal linear combination of irreducible

subvarieties in X, e.g. D =
∑

i aiDi. First we note that the torus invariant globally defined

coordinates are given by ti =
∏
j z
〈ei,vj〉
j for some basis ei ∈M . The torus action acts as

ti →
∏
j

(λ
Qaj
a zj)

〈ei,vj〉 = λ
∑
j〈ei,Qaj vj〉

a z
〈ei,vj〉
j = ti , (A.15)

because
∑

j Q
a
jvj = 0. A general coordinate is then given by the character χm(t) =

∏
i t
mi
i =∏

j z
〈m,vj〉
j for m ∈M . One associates to every (Cartier) divisor D the so-called supporting

polyhedron

∆D = {u ∈MR | 〈u, vi〉 ≥ −ai} , (A.16)

which gives the holomorphic sections of the bundle O(D)

Γ(X,O(D)) =
⊕

m∈∆D∩M
C · χm+a , (A.17)

where a = (a1, . . . ). For the description of mirror symmetry one needs a second polyhedron,

which encodes which kinds of blow-ups are consistent with a given toric polynomial. It is

called the polar polyhedron and given by

∆∗ = {v ∈ NR | 〈m, v〉 ≥ −1, for allw ∈ ∆K} , (A.18)

where K =
∑

iDi denotes the anti-canonical bundle. By the adjunction formula sections of

the anti-canonical bundle lead to Calabi-Yau varieties and thus are of primary interest to us.

If the vertices of ∆∗ ⊂ NR lie again in N the polyhedron is called reflexive.

A.1.3. Hodge numbers

The Hodge numbers of a generic hypersurface in a toric ambient space are also encoded in

the combinatorial data of the fan. Denoting by ∆ a reflexive polyhedron, which defines the
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ambient toric variety PΣ(∆) (see the next section), it was shown in [109, 299, 300] that the

Hodge numbers hp,1(X) of a generic anti-canonical hypersurface X of dimensions d can be

computed as

h1,1(X) = l(∆∗)− (d+ 2)−
∑

codimS∗=1

l′(S∗) +
∑

codimS∗=2

l′(S∗) · l′(S) , (A.19)

hp,1(X) =
∑

codimS∗=p+1

l′(S) · l′(S∗), 1 < p < d− 1 , (A.20)

hd−1,1(X) = l(∆)− (d+ 2)−
∑

codimS=1

l′(S) +
∑

codimS=2

l′(S) · l′(S∗) , (A.21)

where S denotes the faces of ∆ and S∗ the dual face of S. Furthermore l and l′ are the

number of integral points on a face and in the interior of a face, respectively.

A.2. Batyrev’s mirror construction

In [109, 126] it was shown how to construct mirror pairs of compact Calabi-Yau manifold

which are given by hypersurfaces in toric varieties. It turns out that this construction is

equivalent to the one coming from the GLSM description, to be reviewed below.

For this the ambient toric variety W is given by a reflexive polytope ∆, which is the convex

hull of p integral vertices, which all lie in a hyperplane at distance one from the origin. The

toric variety is then given by the set of cones over the faces of ∆ and one writes W = PΣ(∆).

From the dual or polar polytope ∆∗ one obtains analogously a toric variety W ∗ = PΣ(∆∗).

[109] has shown that the hypersurfaces (Z,Z∗), given as the zero set of sections of the anti-

canonical bundles of (W,W ∗), are mirror to each other.

Example: The quintic in P4

The toric polyhedron ∆ and its dual ∆∗ describing the anti-canonical bundle over P4 are

given by

∆ ν0 = ( 0 0 0 0 )

ν1 = ( 0 0 0 1 )

ν2 = ( 0 0 1 0 )

ν3 = ( 0 1 0 0 )

ν4 = ( 1 0 0 0 )

ν5 = ( −1 −1 −1 −1 )

,

∆∗ ν̃0 = ( 0 0 0 0 )

ν̃1 = ( 4 −1 −1 −1 )

ν̃2 = ( −1 4 −1 −1 )

ν̃3 = ( −1 −1 4 −1 )

ν̃4 = ( −1 −1 −1 4 )

ν̃5 = ( −1 −1 −1 −1 )

, (A.22)
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where the vertices are understood to lie in a hyperplane at distance one from the origin.

These polytopes lead to the following manifolds

∆ : P4 ∩ {x ∈ P4 :
∑

{
∑
i ni=5}

a{ni}

5∏
i=1

xnii = 0} ,

∆∗ : P4/Z3
5 ∩ {x ∈ P4 :

5∑
i=1

bix
5
i + b0

5∏
i=1

bi = 0} ,

(A.23)

which gives the known quintic and mirror quintic varieties.

A.3. The gauged linear σ-model

A gauged linear σ-model (GLSM) is an auxiliary two dimensional N = 2 supersymmetric

gauge theory [5]. Its usefulness stems from the fact that its vacuum manifold is given by a

toric variety for an appropriate choice of the parameters. We just give a schematic overview

and refer for further details to the literature [5, 301].

The gauge group of the GLSM is taken to be G = U(1)r and the field content is given by n

chiral superfields Φi and r vector superfields Va. The Lagrangian density can then be written

in superspace as

L =

∫
d4θ

[∑
i

Φ̄ie
∑
aQ

a
i VaΦi −

1

4e2

∑
a

Σ̄aΣa

]
+ Re

∫
d2θ̃

[
−
∑
a

τaΣa

]
+ Re

∫
d2θW (Φ) .

(A.24)

Here the parameters

τa = ra − iθa (A.25)

are linear combinations of the FayetIliopoulos parameters ra and the theta angles θa for the a-

th gauge group and Σa = D̄+D−Va is the twisted chiral field-strength. The last term denotes

a possible superpotential, which is a holomorphic gauge-invariant polynomial. Integrating

out the auxiliary fields one obtains the following bosonic potential

U =
e2

2

r∑
a=1

D2
a +

n∑
i=1

|Fi|2 +

n∑
i=1

r∑
a,b=1

QaiQ
b
i σ̄aσb |φi|2 , (A.26)

where the D- and F -terms are given by

Da =
n∑
i=1

Qai |φi|2 − ra, Fi =
∂W

∂φi
(φ) . (A.27)

The field σa denotes the bosonic component of the a-th vector multiplet in the above. For

certain values of the parameters ra the vacuum manifoldM is then given byM = U−1(0)/G

subjected to the F -term equations.
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A.3.1. The phases

Depending on the values of the parameters one may obtain different solutions to the equation

U = 0. Thus the space of the Fayet-Iliopoulos parameters is divided into chambers. These

chambers are called phases and the boundaries between them phase boundaries. One can

encounter several possibilities

• Geometric phase: The gauge group is completely broken for any solution to U = 0

and all the modes transverse to U = 0 are massive. In this phase the theory is described

by a non-linear σ-model with target space the vacuum manifold M = U−1(0)/G sub-

jected to the F-term equations Fi = 0. Geometrically the quotient can be understood

as

M =
Cn \ Z
GC

, (A.28)

where Z denotes the deleted set, which consists of all points whose orbits under the

gauge group do not pass through the solutions to the D-term equations. We thus

recover the mathematical description of a smooth toric variety.

• Landau-Ginzburg orbifold phase: It might happen that the solutions to the D-

term equations consists of isolated points and that all transverse modes are massless.

In the limit of large ra all the tangent modes are expected to decouple and one is left

with an (orbifold) Landau-Ginzburg model with superpotential given by the F -term

equations.

• Hybrid phases: In such a phase one might find a fibration of a geometric model over

a Landau-Ginzburg model or reverse. In this sense these are mixtures of the two above

phases.

The phase boundaries can be found by looking for the values of parameters where a non-

compact Coulomb branch emerges, as the wave functions on these branches are not normal-

izable. This leads to the following parametrization of the phase boundaries [5, 301]:

n∏
i=1

(
r∑
b=1

Qbiσb

)Qai
= e−t

a
. (A.29)

This part of the singular locus coming from a non-compact Coulomb-branch is sometimes

called Principal discriminant. There are also other singular loci coming from mixed

Coulomb-Higgs branches [301].

A very useful pictorial description is given by the so-called secondary fan. It can be

obtained by drawing the n vectors (Qi)
a in the ta plane. This partitions the ta-plane in the

above mentioned chamber structure. The good parameters for a given chamber can then be

obtained by demanding that the respective chamber is spanned by positive linear combinations

of these parameters.
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Example: O(−3)→ P2

The gauge group is given by a single U(1) and the field content by four chiral superfields with

charges

φ0 φ1 φ2 φ3

−3 1 1 1
.

The superpotential is W = 0. The bosonic potential then reads

U =
e

2

(
−3|φ0|2 +

3∑
i=1

|φi|2 − r

)2

+ |σ|2
(

9|φ0|2 +

3∑
i=1

|φi|2
)
. (A.30)

One finds the following phases:

1. r � 0: Not all φi are allowed to vanish simultaneously by the first term in (A.30) and

thus σ = 0 by the second term. The deleted set is given by Z = {φ1 = φ2 = φ3 = 0}.
Thus the vacuum manifold is given by

M =

{
−3|φ0|2 +

3∑
i=1

|φi|2 = r

}
/
{

(φ0, φ1, φ2, φ3) ∼ (λ−3φ0, λφ1, λφ2, λφ3)
}
, λ ∈ U(1) .

(A.31)

This form can be shown to be equivalent to the toric description given before.

2. r = 0: At this point a solution with φ0 = φi = 0 and unbroken gauge group is possible.

The value of σ is unconstrained and thus one finds a non-compact field branch. This

phase is called the Coulomb branch.

3. r � 0: In this case the deleted set is Z = {φ0 = 0} and thus σ = 0 again. The gauge

group is broken to a Z3 by the non-vanishing φ0. Thus the vacuum manifold is given

by

M' {(φ1, φ2, φ3) ∼ (λφ1, λφ2, λφ3) |λ3 = 1} . (A.32)

A.3.2. Calabi-Yau hypersurfaces

To describe Calabi-Yau hypersurfaces in toric varieties. One takes the superpotential to be

W = φ0G(φi) for a transverse and homogeneous polynomial G. The charges of the field φ0

are given by Qa0 = −
∑

iQ
a
i in order to satisfy the Calabi-Yau condition

∑
iQ

a
i = 0.2 The

F -term contribution to (A.26) is then given by

n∑
i=0

|Fi|2 = |G(φi)|2 + |φ0|2
∑
i

|∂iG(φi)|2 . (A.33)

Example: A Calabi-Yau hypersurface in P4
(1,1,2,2,2)

To describe the ambient weighted projective space the charges are chosen to be

2Which is the condition that the FI-parameters do not run under RG-flow and that the axial and vector U(1)

R-charges are non-anomalous.
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φ0 φ1 φ2 φ3 φ4 φ5 φ6

−4 1 1 1 1 0 0

0 0 0 0 −2 1 1

.

The superpotential is given by W = φ0G(φi) where G is a homogeneous polynomial of bi-

degree (6, 0). The D-terms are given by

D1 = −4|φ0|2 + |φ1|2 + |φ2|2 + |φ3|2 + |φ4|2 − r1 , (A.34)

D2 = −2|φ4|2 + |φ5|2 + |φ6|2 − r2 . (A.35)

One finds then the following phases:

1. r1 ≥ 0, r2 ≥ 0: The deleted set in this phase is given by Z1 = {φ1 = φ2 = φ3 = φ4 =

0} ∪ {φ5 = φ6 = 0} and the gauge group is completely broken for every solution of

U = 0. Thus the target space of the GLSM is a the zero section G = 0 of the space

O(−4, 0) over the toric base specified by the charges.

2. r2 ≤ 0, 2r1 + r2 ≥ 0: The deleted set is given by Z2 = {φ1 = φ2 = φ3 = φ5 = φ6 =

0} ∩ {φ4 = 0}. One finds a unbroken Z2 gauge group along φ5 = φ6 = 0 and the

total space is O(−8) → P4
(1,1,2,2,2). Incorporating the F -term one finds in this phase

the hypersurface G = 0 in the unresolved ambient space P4
(1,1,2,2,2), which has a Z2

singularity.

3. r2 ≤ 0, 2r1 + r2 ≤ 0: The deleted set is Z3 = {φ0 = 0} ∪ {φ4 = 0}. The vevs of the

fields φ0 and φ4 are then fixed up to an Z4 × Z8 ' Z8 residual gauge symmetry at

{φ1 = φ2 = φ3 = φ5 = φ6 = 0}. The total space is thus C5/Z8 subjected to G = 0.

Therefore one obtains a LG-orbifold model with superpotential G.

4. r1 ≤ 0, r2 ≥ 0: The deleted set is Z4 = {φ0 = 0}∪{φ5 = φ6 = 0} and the residual gauge

symmetry is Z4. Thus one obtains a non-linear LG-orbifold with targetOP1(−2)×C3/Z4

and superpotential G. This phase is a hybrid phase.

The principal discriminant can be computed from (A.29) to

∆ = −1 + 512 e−t1 + 65536(−1 + 4 e−t2) e−2t2 . (A.36)

Another singularity is at e−t2 = 1/4. At this point the model becomes birational equivalent

to the one-parameter model P5[2, 4] [116].

A.4. Mirror symmetry for the GLSM

In [114] a physical proof of mirror symmetry was given for the models which are described

by a GLSM. To a given GLSM a mirror LG-model is associated, which can be deformed to a

non-linear σ-model by Kähler-deformations to which the B-model side is insensitive.
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Given a GLSM with gauge group U(1)r, chiral fields φi of charge Qai and superpotential

W = Pβ Gβ(φi), where the fields Pβ have charges −dβa, one can describe a complete intersec-

tion manifold in a toric variety. [114] associates to this a mirror model with mirror variables

Yi and a twisted chiral superpotential W̃ given by

W̃ =
r∑

a=1

Σa

∑
i

Qai Yi −
∑
β

dβaPβ − ta
+

∑
i

e−Yi +
∑
β

e−Yβ . (A.37)

The variables Yi are periodic and satisfy

Re Yi = |φi|2 . (A.38)

The periods of the compact mirror model can then be computed from the following ordinary

integral

Π =

∫ ∏
a

dΣa

∫ ∏
i

dYi

∫ ∏
β

dYβ

(∏
γ

δγ

)
e−W̃ , (A.39)

where δγ =
∑

a dγaΣa. For a non-compact model the factor
(∏

γ δγ

)
is absent [114].

Non-compact models

For non-compact toric models there exists a mirror description in terms of a non-compact

Calabi-Yau manifold which is a fibration over a Riemann surface [38, 39, 164]. To see how

this works one can use the expression for the periods of the non-compact mirror (A.39). We

will specialize to the case of a single field φ0 with charges Qa0 = −
∑n

i=1Q
a
i . The periods are

then given by [302, 164]

Π =

∫ ∏
a

dΣa

∫ ∏
i

dYi

∫
dY0 e

−(
∑
a Σa[

∑n
i=0 Q

a
i Yi−ta]+

∑n
i=0 e

−Yi) (A.40)

=

∫ n∏
i=0

dYi
∏
a

δ

(
n∑
i=0

Qai Yi − ta
)
e−

∑n
i=0 e

−Yi . (A.41)

By a change of coordinates xi = e−Yi this can be written as

Π ∼
∫ n∏

i=0

dxi
xi

∏
a

δ

(
n∏
i=1

x
Qai
i − e

−tax
∑
iQi

0

)
e−

∑n
i=0 xi (A.42)

=

∫ n∏
i=1

dx̂i
x̂i

dx0

x0

∏
a

δ

(
n∏
i=1

x̂
Qai
i − e

−ta
)
e−x0(1+

∑n
i=1 x̂i) , (A.43)

where we introduced x̂i = xi/x0. By noting that 1/x0 =
∫
du dv ex0uv one can simplify further

Π =

∫ n∏
i=1

dx̂i
x̂i
du dv dx0

∏
a

δ

(
n∏
i=1

x̂
Qai
i − e

−ta
)
e−x0(1+

∑n
i=1 x̂i−uv) (A.44)

=

∫ n∏
i=1

dx̂i
x̂i
du dv

∏
a

δ

(
n∏
i=1

x̂
Qai
i − e

−ta
)
δ

(
1 +

n∑
i=1

x̂i − uv

)
. (A.45)
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This means that as far as the BPS-geometry is concerned the mirror model we started with

is equivalent to the model

uv = F (x̂i), F (x̂i) = 1 +
n∑
i=1

x̂i, subjected to
n∏
i=1

x̂
Qai
i = e−t

a
. (A.46)

For a Calabi-Yau three-fold one has n = 3 + r − 1 and thus via the delta-functions one

can eliminate r of the x̂i leading to two independent variables ẑ1, ẑ2. Thus (A.46) gives

the mirror geometry as a complete intersection {uv − F (ẑ1, ẑ2) = 0} ⊂ C2 × (C∗)2 and

{F (ẑ1, ẑ2) = 0} ⊂ (C∗)2 defines a Riemann surface. The holomorphic (3, 0)-form can then be

written as [38, 39, 164]

Ω =

∏2
i=1

dẑi
ẑi
du dv

dF
=

∏2
i=1

dẑi
ẑi
du

u
. (A.47)

Compact geometries: The Quintic in P4

In this section we show how the mirror of the quintic hypersurface in P4 can be recovered

from the above [164]. The charges of the GLSM are given by

φ0 φ1 φ2 φ3 φ4 φ5

−5 1 1 1 1 1
,

The periods are in this case given by

Π =

∫
dΣ

∫ ∏
i

dYi

∫
dY0 (5Σ) e−(Σ[

∑n
i=0 Yi−5Y0−t]+

∑n
i=0 e

−Yi) (A.48)

p.i.∼
∫
dΣ

∫ ∏
i

dYi

∫
dY0 e

−Y0 e−(Σ[
∑n
i=0 Yi−5Y0−t]+

∑n
i=0 e

−Yi) (A.49)

=

∫ ∏
i

dyi
yi

∫
dy0 δ

(
n∏
i=0

yi − z y5
0

)
e−

∑n
i=0 yi (A.50)

∼
∫ ∏

i

dxi e
−
∑n
i=1 x

5
i−z−1/5

∏5
i=1 xi , (A.51)

where z = e−t and e−Yi = yi = x5
i and e−Y0 = y0 = z−1/5x

∏5
i=1 xi. One has to note that the

coordinate change is not one-to-one and this leads to the Greene-Plesser orbifold group. It

can be shown that the last expression for the periods is equivalent to the residue expression

which comes from the large volume perspective [302].3

A.5. Toric branes

In [142, 303] a class of special Lagrangian branes in toric varieties was defined. These are

called toric or Harvey-Lawson branes. Given a toric variety W as above with M constraints∑
i

lai |φi|2 = ta , (A.52)

3See also Appendix E.
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where a = 1 . . .M , one considers the following further N constraints∑
i

l̂bi |φi|2 = cb,
∑
i

vibθ
i = 0,

∑
i

l̂ai v
i
b = 0 , (A.53)

where b = M + 1, . . . N +M and φi = |φi|eiθ
i
. This defines a Lagrangian cycle and in order

to obtain a special Lagrangian cycle one furthermore has to require that
∑

i l̂
b
i = 0.

To obtain the mirror of the above brane in the mirror variety W ∗ one can use the techniques

of [109, 114]. This leads to the following constraint for the mirror manifold∑
i

yi = 0,
∏
i

y
lai
i = za, a = 1, . . . ,M (A.54)

and the brane [142]∏
i

y
l̂ai
i = ẑa, ẑa = εa e

−ca , a = M + 1, . . .M +N , (A.55)

where εa denotes a phase which is dual to the gauge configuration on the A-model side.

A.6. Divisors in Calabi-Yau spaces

In this section we recapitulate some facts about the geometry of smooth divisors P in a

Calabi-Yau three-fold Z.

A.6.1. General facts about rigid divisors

We start with some facts about complex surfaces. The Riemann Roch formula relates the

signature σ and arithmetic genus χ0 to Chern class integrals

σ =
∑
i

(b+2i − b
−
2i) =

1

3

∫
P

(c2
1 − 2c2), χ0 =

∑
i

(−1)ihi,0 =
1

12

∫
P

(c2
1 + c2) . (A.56)

Regarding the embedding one has the distinction whether P is very ample or not, i.e. if the

line bundle LP is generated by its global sections or not. In the former case P has h0(Z,LP )−1

deformations and there exists an embedding j : Z → PnP so that LP = j∗(O(1)), i.e. P can

be described by some polynomial. This situation has been considered in [66], where the

deformations and b+, b− have been given. Generically one has h2,0(P ) = 1
2(b+2 − 1), which is

positive in the very ample case.

In this work we consider mainly rigid smooth divisors. In this case one has no deformations

and locally the Calabi-Yau manifold can be written as the total space of the canonical line

bundle O(KP ) → P and the latter can be globalized to a elliptic fibration over P , see

section A.6.2, for P = Fn. In this case ΛP = Λ, compare sec. 5.2.2.

As Z is a Calabi-Yau manifold and to allow no section, P has to have a positive D2 > 0

anti-canonical divisor class D = −KP , which is also required to be nef, i.e. D.C ≥ 0 for any
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irreducible curve C. This defines a weak del Pezzo surface. If D.C > 0, then D is ample and

P is a del Pezzo surface [304]. Del Pezzo surfaces are either Bn, which are blow-ups of P2

in n ≤ 8 points or P1 × P1. We can also allow the Hirzebruch surface F2 which is weak del

Pezzo.

As h1,0 = h2,0 = 0 one has χ0(Bn) = 1 for all surfaces under consideration. As the Euler

number χ(Bn) = 3 + n one has by (A.56) that
∫
P c

2
1 = 9− n, which implies that n = 9 is the

critical case for positive anti-canonical class, and (b+2 , b
−
2 ) = (1, n). The case n = 9 is called

1
2K3. We include this semi-rigid situation.

In more detail the homology of Bn is generated by the hyperplane class h of P2 and the

exceptional divisors of the blow-ups ei, with the non-vanishing intersections h2 = 1 = −e2
i .

The anti-canonical class is given by −KBn = 3h −
∑n

i=1 ei. Defining the lattice generated

by this element in H2(P,Z) as ZKBn and E∗n = (ZKBn )⊥ one sees that E∗1 is trivial and E∗n
are the lattices of the Lie algebras (A1, A1 × A2, A4, D5, E6, E7, E8) for n = 2, . . . , 8. The

corresponding basis in terms of (h, ei) is worked out in [304]. The homology lattice for B9 is

Γ1,1 ⊕ E8, where Γ1,1 is the hyperbolic lattice with standard metric.

In order to study topological string theory in Calabi-Yau backgrounds realized in simple

toric ambient spaces, one has to consider situations in which Λ ⊂ ΛP , which is the case for

the 1
2K3 realized in the toric ambient space discussed in the next section.

A.6.2. Toric data of a CY containing Hirzebruch surfaces Fn

Let Z be an elliptic fibration over Fn for n = 0, 1, 2 given by a generic section of the anti-

canonical bundle of the ambient spaces specified by the following vertices

∆ ν0 = ( 0 0 0 0 )

ν1 = ( 0 0 0 1 )

ν2 = ( 0 0 1 0 )

ν3 = ( 0 0 −2 −3 )

ν4 = ( 0 −1 −2 −3 )

ν5 = ( 0 1 −2 −3 )

ν6 = ( 1 0 −2 −3 )

ν7 = ( −1 −n −2 −3 )

One finds large volume phases with the following Mori-vectors

D0 D1 D2 D3 D4 D5 D6 D7

l1 = −6 3 2 1 0 0 0 0 C1

l2 = 0 0 0 −2 1 1 0 0 C2

l3 = 0 0 0 n− 2 −n 0 1 1 C3

.

We choose a basis {CA, A = 1, 2, 3} of H2(X,Z). Let KA be a Poincaré dual basis of the Chow

group of linearly independent divisors of X, i.e.
∫
CA KB = δAB. The divisors Di = lAi KA have
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intersections with the cycles CA given by Di.C
A = lAi . We have the following non-vanishing

intersections of the divisors given by

K1.K2.K3 = 1, K1.K
2
2 = n, K2

1 .K2 = n+ 2, K2
1 .K3 = 2, K3

1 = 8 . (A.57)

The divisor giving the Hirzebruch surface inside the Calabi-Yau manifold corresponds to

[Fn] = D3 = K1 − 2K2 − (2− n)K3 . (A.58)

Thus, the metric on H2(Fn,Z) coming from the intersections in the Calabi-Yau manifold is

(KA.KB.[Fn]) =

0 0 0

0 n 1

0 1 0

 . (A.59)

Projecting out the direction corresponding to the elliptic fiber we reduce the problem to the

Hirzebruch surface itself. We denote by F = K3 and B = K2 − nK3 the class of the fiber

and base, respectively. Thus, the canonical class reduces to [Fn] = −(2 + n)F − 2B. The

intersection numbers are given as follows(
F.F F.B

B.F B.B

)
=

(
0 1

1 −n

)
. (A.60)

Hence, the Kähler cone is spanned by the two vectors F and 2B + nF , i.e.

C(Fn) = {J ∈ H2(Fn,R) | J = t1F + t2(2B + nF ), t1, t2 > 0} . (A.61)

For n = 1 the geometry admits also an embedding of a K3 and a B9 surface.
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Appendix B

Central charges for B-branes

In this appendix we give a short overview of the computation of central charges of B-branes.

Near a large volume point of a Calabi-Yau d-fold X mirror symmetry predicts the following

expression for the central charges of a B-brane described by a coherent sheaf E of rank r

[305, 306]

~Q(E) · ~Π(t) = Z(t) = −
∫
X
e−Jch(E)

√
Td(X), for t→∞ , (B.1)

where

~Q(E) = (Q0, Q2, Q4, . . . , Q2d) , (B.2)

~Π(t)T = (Π0(t),Π2(t),Π4(t), . . . ,Π2d(t)) . (B.3)

Using the expressions for the Todd-class and the Chern-character

Td(X) = 1 +
c1

2
+

1

24
c1c2 +

1

12

(
c2

1 + c2

)
+

1

720

(
−c4

1 + 4c2
1c2 + 3c2

2 + c1c3 − c4

)
+ . . . ,

ch(E) = r + c1(E) +
c1(E)2

2
+ c2(E) +

c1(E)3

6
− c1(E)c2(E)

2
+
c3(E)

2
+ . . . ,

together with the Grothendieck-Hirzebruch-Riemann-Roch-theorem for a divisor i : D → X

i∗ (ch(E)Td(D)) = ch(i∗E)Td(X) , (B.4)

one finds the following central charges:

• d = 3 [306, 129]:

Z6 =
J3

3!
+
J · c2

24
, Z4 = −J

2 · [D]

2
+

1

2
J · i∗c1(D) . (B.5)

• d = 4:1

Z8 = −J
4

4!
− J2 · c2

48
− 7c2

2

5760
+

c4

1440
,

Z6 =
J3 · [D]

3!
− J2 · i∗c1(D)

4
+ J ·

(
i∗c2(D)

12
+

[D] · c2

24

)
−

1

12
i∗c1(D) · i∗c1(D)− 1

48
i∗c1(D) · c2 .

(B.6)

1Implicitly given in [123].
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Appendix C

Analytic continuation via fractional

branes

In this appendix we apply the techniques of [129] to the example of the sextic Calabi-Yau

four-fold discussed in section 2.6.2. For the notation and further explanations of the method

we refer to [129].

The target space geometry Y is given by the zero locus of a generic section of the bundle

O(−6)→ P5. The basis {Ra} of geometric bundles is therefore

{Ra} = {O(−5),O(−4),O(−3),O(−2),O(−1),O} . (C.1)

The inverse of the index χZ6
ab which describes the intersections of the basis of fractional branes

{Sa} is given by

χZ6,ab =



1 −6 15 −20 15 −6

0 1 −6 15 −20 15

0 0 1 −6 15 −20

0 0 0 1 −6 15

0 0 0 0 1 −6

0 0 0 0 0 1


(C.2)

Using the central charge formula (B.1) and the following form of the period vector1

~Π(t) =


1

t

3t2 + 3t− 15
4

t3 + 3t2

2 + 3t
4 −

15
8

− t4

4 −
15t2

8 + 75
64

 , (C.3)

1Compare to (2.166), noting that 3375ζ(4)

32π4 = 75
64

= − 7c22
5760

+ c4
1440

+ 1 in view of (B.6). Note also that the

’loop’-terms proportional to ζ(3) in (2.166) cannot be obtained from the open string picture of [129].
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leads to the following matrix QS of D-brane charges for the bundles V a = Sa|Y

Q0 Q2 Q4 Q6 Q8

V 1 −5 −4 0 −1 1

V 2 10 13 −1 4 −5

V 3 −10 −21 3 −6 10

V 4 5 19 −3 4 −10

V 5 −1 −7 1 −1 5

V 6 1 0 0 0 −1

(C.4)

where ~Q(V 6) = −
∑5

a=1
~Q(V a). The monodromy matrix M0 around the orbifold point ex-

pressed in the large volume basis (C.3) fulfills

QS ·M0 = g ·QS , (C.5)

where g = h + δ6,1 and h is the 6 × 6 shift matrix with unit entries above the diagonal and

zeroes otherwise [129]. Choosing the bundles V a, a = 1, . . . 5 as a basis near the LG-point the

analytic continuation matrix m between the basis ~Π (C.3) and ωa = Z(V a) can be obtained

from

Πa = mab · ωa, QS ·m = D · (116×6 − g) ·

(
115×5

R

)
, (C.6)

where R = (−1,−1,−1,−1,−1,−1) and Dij = −δ7−i,j , with i, j = 1, . . . 6. Explicitly the

matrix m is given by

m =


−1 0 0 0 0

1
6 −2

3 −1
2 −1

3 −1
6

5
2 0 −3

2 −2 −3
2

7
3

2
3 1 1

3 −1
3

0 −1 0 0 0

 . (C.7)

Using the relation M1 = M∞ ·M−1
0 between the conifold monodromy M1 and the large volume

monodromy M∞, obtained from t→ t+ 1, one gets the monodromy matrices (2.163) for the

large volume basis (C.3)

M∞ =


1 0 0 0 0

1 1 0 0 0

6 6 1 0 0

7 3 1 1 0

−4 −4 0 −1 1

 , M0 =


−4 −4 0 −1 1

1 1 0 0 0

6 6 1 0 0

7 3 1 1 0

1 0 0 0 0

 , M1 =


0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0


(C.8)

This reproduces the results from mirror symmetry and analytic continuation given in section

2.6.2.
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Appendix D

Four-fold computation in the quintic

example

In the following, we hand in some technical details of the computation of the superpotential

(D.9) and the Kähler potential (3.103) from the F-theory four-fold X4 presented in section

3.8 and substantiate some of the claims made there. This includes an explicit illustration of

the relation between the four-fold flux superpotential (D.9) and the three-fold superpotential

(3.96) from RR and NS fluxes in the weak coupling limit as well as the derivation of the Kähler

potential (3.103). To avoid excessive repetitions, we refer to [75, 99, 100] for the details on

mirror symmetry for Calabi-Yau four-folds and to [178] for the application of toric geometry

to analyze geometry of the relevant F-theory four-folds.

The A-model four-fold X4 is defined by the polyhedron ∆ with vertices given in Table 3.1

and (3.95). We consider a phase of the Kähler cone described by the charge vectors given in

the text, which we reproduce here for convenience:

l̃1 ( −4 0 1 1 1 1 −1 1 0 )

l̃2 ( −1 1 0 0 0 0 1 −1 0 )

l̃3 ( 0 −2 0 0 0 0 0 1 1 )

. (D.1)

The Kähler form is J =
∑

a taJa, where Ja, a = 1, 2, 3 denotes the basis of H1,1(X4) dual to

the Mori cone defined by (D.1). The basic topological data are the intersections

Kabcd =

∫
X4

Ja ∧ Jb ∧ Jc ∧ Jd ,

which can be concisely summarized in terms of the generating function1

F4 =
1

4!

∫
X4

J4 =
1

4!

∑
a,b,c,d

Kαβγδt
αtβtγtδ

=
1

4
t41 +

5

3
t31(t2 +

1

2
t3) +

5

2
t21t2(t2 + t3) +

5

3
t1t

2
2(t2 +

3

2
t3) +

5

12
t32(t2 + 2t3) .

(D.2)

1Details on the computation of the following data from toric geometry and many sample computations for

three-fold fibered four-folds can be found in [99, 100].
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From these intersections one obtains the following topological invariants of X4
2

χ =

∫
X4

c4 = 1860 = 12 mod 24 , R4 =

∫
X4

c2
2 = 1100 ,

R2 =

∫
X4

J ∧ J ∧ c2 = 90J2
1 + 110J2

2 + 220J1J2 + 100J3(J1 + J2) ,

R3 =

∫
X4

J ∧ c3 = −330J1 − 410J2 − 200J3 ,

(D.3)

where ck denote the Chern classes of X4. The independent Hodge numbers h1,1 = 3, h1,2 = 0,

h1,3 = 299 can be read off from the toric polyhedra [99, 100] and fix h2,2 = 12 + 2
3χ+ 2h1,2 =

1252; we refer to [307] for more details and the meaning of the mod 24 condition on χ.

After a linear change of coordinates, the form of the generating function F4 simplifies to

F4 = S
5

6
t3 +

(
5

12
t4 − 1

6
t41

)
, (D.4)

where t3 = S is the Kähler modulus of the P1 base, t1 + t2 = t is the modulus of the generic

quintic three-fold fiber and t2 = t̂ will be related to the open string modulus. Note that the

fibration structure becomes explicit in the coordinates (S, t) and that the leading term in large

S contains the intersection form on the quintic fiber Z. To simplify some of the following

expressions, we use the linear combinations

t′1 = t = t1 + t2, t′2 = t̂− t = −t1, t′3 = S = t3 .

To compute the superpotential and the Kähler potential we have to determine the integral

periods of the elements of the vertical subspace H2q
ver(X4) generated by wedge products of

the elements Ja ∈ H2(X4) over topological cycles in H2q(X4,Z), for q = 0, ..., 4. Except for

q = 2, there is a canonical basis for H2q(X4,Z) given by the class of a point, the class of X4,

the divisors dual to the generators Ja and the curves dual to these divisors, respectively.3 In

an expansion near the large volume point Im ta → ∞ ∀a, the leading part of the periods,

denoted by Π̃q,., is, up to a sign, the Kähler volume of the cycle as measured by the volume

form 1
k!J

k, explicitly

Π̃0 = 1, Π̃1,a = t′a, Π̃3,a = − ∂

∂t′a
F4, Π̃4 = F4 . (D.5)

As for the mid-dimensional part, k = 2, we choose basis elements defined by intersections of

the toric divisors Di = {xi = 0}

γ1 = D1 ∩D2, γ2 = D2 ∩D8, γ3 = D2 ∩D6 .

2Contrary to first appearances, our choice of X4 is not at all related to a preference for a particular soccer

club.
3To be precise, some of these basis elements may actually be integral multiples of the generators of H2q(X4,Z)

on the hypersurface.
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with intersection form and inverse

(η̃)kl = γk ∩ γl =

−10 5 0

5 0 0

0 0 −4

 ,
(
η̃−1
)kl

=

0 1
5 0

1
5

2
5 0

0 0 −1
4

 . (D.6)

The leading parts of the q = 2 periods are then

Π̃2,1 = 5t′1t
′
3 , Π̃2,2 =

5

2
t′21 , Π̃2,3 = 2t′22 . (D.7)

The subleading terms of the exact periods Πq,., correcting the leading parts Π̃q,. away from

the large Im t limit, come in two varieties. Firstly polynomial corrections in the ta of lower

degree, which involve the topological invariants (D.3).4 For simplicity, we ignore these terms

in the following, as they can be interesting for other applications5 but do not matter for the

present purpose.

Secondly, there are instanton corrections ∼ qa = exp 2πita, which will be important in the

match between the open string superpotential (3.96) and the F-theory superpotential (D.9)

claimed in section 3.8. These instanton corrections can be computed by mirror symmetry of

the four-folds (X4, X
∗
4 ) as in [75, 99, 100] which can be summarized as follows. To determine

the instanton corrections, we may simply replace the leading periods Π̃q in (D.5), (D.7) with

the exact solutions to the Picard-Fuchs equations in (3.64) with the same leading part when

rewritten in ta coordinates, using the mirror map (3.67).6 The result for the exact periods

Πq,k = Π̃q,k +O(qa) is of the form

Π0 = 1,

Π1,1 = t′1, Π1,2 = t′2, Π1,3 = S · 1,

Π2,1 = S·, 5t′1 + π2,1, Π2,2 = −F̃t, Π2,3 = −W̃ ,

Π3,1 = S·, F̃t + π3,1, Π3,2 = T̃ , Π3,3 = −F0,

Π4 = S·, F̃0 + π4 ,

(D.8)

where we have again indicated the fibration structure by explicitly indicating powers in the

base volume S = t3 = t′3. The other functions πq,k denote subleading corrections whose

precise form does not matter for the moment.

The leading terms in weak coupling limit ImS →∞ are characterized by the Kähler moduli

t, t̂ and the four functions Ft, F0 and W, T. The first two functions are equal to the periods

Ft = ∂tF(t) and F0 = 2F(t)− t∂tF(t) of the quintic three-fold up to instanton corrections in

4The coefficients should be determined by a computation of the anomalous charges of wrapped D-branes,

similarly as in [129].
5See e.g. [308].
6A more formal account of this relation between A- and B-models is elaborated on in [99, 100], using Frobenius

method as in [309, 110].
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qS = exp(2πiS), where F(t) denotes the exact instanton corrected prepotential of the quintic

F̃t = Ft(t) +O(qS) = −5

2
t2 + ..., F̃0 = F0(t) +O(qS) =

5

6
t3 + ... .

Similarly, the remaining functions W̃ , T̃ agree with the domain wall tension and the top

period computed in the main text, up to instanton corrections in S

W = W +O(qS) = −2t′22 + ... , T̃ = T +O(qS) =
2

3
t′32 + ... .

Indeed, the function W is of the form

W = −2t21 +
1

4π2

∞∑
k=1

∑
na≥0

1

k2
Nn1,n2(qn1

1 qn2
2 )k ,

where the instanton numbers Nn1,n2 and the classical term are exactly the same as in the

superpotential T (1) in (4.19) computed for the brane compactification (Z,L) (see Table 4.3).

This remarkable correspondence between disc instantons in a three-fold Z and sphere instan-

tons of a dual four-fold X4 [48] is possible due to the coincidence of the multicover factor

∼ k−2 for discs in a three-fold [52] and spheres in a four-fold [75, 99].

From the above it follows that the exact instanton corrected four-fold periods on X4 can

be informally written as7

ΠΣ(X4) =


(1, S)×ΠΣ(Z∗)

W (t, t̂)

+ . . .

up to subleading corrections in S denoted by the dots. Thus the closed-string superpotential

of the four-fold, (D.9), agrees with the open-closed superpotential computed for the brane

compactification (Z∗, E) in eq. (3.96), up to subleading corrections in S:

W(z, ẑ, S) =
∑

γΣ∈H3(Z∗)

(NΣ + S MΣ)

∫
γΣ

Ω(3,0) +
∑

γΣ∈H3(Z∗,D)
∂γΣ 6=0

N̂Σ

∫
γΣ

Ω(3,0) + . . . .
(D.9)

The first term includes the three-fold flux superpotential on Z∗ from both RR and NS fluxes,

in agreement with our identification of the modulus S with the type IIB string coupling.8

The last term describes the disc instanton corrected domain wall tension. This concludes the

derivation of our claims in sect. 3.8 concerning the superpotential.

Eventually we can obtain the Kähler potential from (3.102), using the topological metric

η =


0 0 0 0 1

0 0 0 13 0

0 0 η̃−1 0 0

0 13 0 0 0

1 0 0 0 0

 .

7A similar relation holds in a more general form for any three-fold fibration over P1, see sect. 2 of [99].
8This has already been observed earlier in a related context in [198].
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It is not very illuminating to display the exact result and we restrict to discuss the leading

order in an expansion for large S and near large volume. Inserting the periods (D.8) into

(3.102), and keeping only the leading order terms one obtains the result in (3.103). It is

straightforward to check, that this can be rewritten, to leading orders in S, in the form (3.99)

with a pairing matrix (η) of the form (3.101) with blocks

ηZ∗ =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 , η̃D] =

0 0 1

0 1
4 0

1 0 0

 .

To leading order the flat relative periods are given by

Π̃ =
(

1, t, F̃t, F̃0, t1, W̃ , T̃
)

=

(
1, t,−5

2
t2,

5

6
t3, t1,−2t21,−

2

3
t31

)
.

This substantiates our claim in section 3.8 concerning the Kähler potential.
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Appendix E

Three-fold – four-fold

correspondence

In the following we will clarify the relation between the compact open/closed geometry (Z,D)

on the three-fold Z∗ and the non-compact four-fold X]∗
4 which can be associated to it via the

open/closed duality of [48]. We show how the periods of the four-fold can be mapped to the

relative periods of the open/closed system [48, 56]. This will also show how to obtain explicit

expressions for the periods of the surface D.

Mapping on the level of periods

We would like to compute the periods of the fourfold directly by taking the contour integral

over the four cycles of the Calabi-Yau four-fold. As has been discussed in [48], there are two

types of four cycles γ(4) in the non-compact fourfold. The first type corresponds to those four

cycles which are made from a three cycle γ(3) in Z and a compact small cycle from the base

cylinder, e.g. γ(4) = γ(3) × S1. The period associated with this type of cycles should reduce

to the pure threefold periods modulo an irrelevant constant. The second type of periods of

the fourfold come from the integration between branch points of the cylinder, where a 3-cycle

in the fiber collapses. We study both types of cycles in the following.

There are two convenient ways of representing the period integral for bulk geometries which

are mirror to a complete intesection in a toric variety. One can represent them either by a

residue integral1 or in terms of an integral in a LG-orbifold model [109, 114]. For the case

at hand the second representation was already skillfully used in [48, 56]. The advantages

of the LG-model representation are that the orbifold actions which are introduced to obtain

the mirror model in our examples are automatically taken care of and that the integrals

involved are simpler than their residue counterparts. However the geometric embedding of

the divisor into the bulk geometry is not directly transparent in the LG-model. For this

it is more convenient to study the relative periods in terms of their residue representations

directly on the three-fold. In the following we will also show how the two representations can

be transformed into each other.2

We exemplify the map between the periods in the example of the mirror quintic with the

1This representations is also available for general complete intersection Calabi-Yau manifolds.
2See also [302].
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divisor

Q = x4
5 − ξx1x2x3x4 . (E.1)

The non-compact A-model four-fold X]
4 which can be associated to this geometry has the

following GLSM charges in a large volume phase

ν0 ν1 ν2 ν3 ν4 ν5 ν6 ν7

l1 -4 1 1 1 1 1 -1 1

l2 -1 0 0 0 0 1 1 -1

In terms of the complex structure variables of the mirror corresponding to the above mori

vectors we find

zc = z1z2, ξ = z2z
−1/5
c , (E.2)

where zc denotes the usual bulk complex structure variable of the mirror quintic. The Hori-

Vafa construction of the four-fold mirror leads to the following expression for the four-fold

periods

Πγ =

∫
γi

5∏
i=1

dwi
wi

∫
γ0

dw0

∫
γv

du

u
δ

(
zcw

5
0 −

5∏
i=1

wi

)
e−

∑5
i=0 wi−u(w5+z2w0) , (E.3)

where we already integrated out w6 and w7. By a change of coordinates

w0 = z−1/5
c

5∏
i=1

xi, wi = x5
i i = 1, . . . 5, u =

v

x5
(E.4)

this can also be written as

Πγ ∼
∫
γ(3)×γv

( 5∏
i=1

dxi

)dv
v
e−P−v Q , (E.5)

where γ(3) = ×5
i=1γi and

P = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 − 5ψ x1x2x3x4x5 , (E.6)

Q = x4
5 − ξ x1x2x3x4 . (E.7)

with 5ψ = −z−1/5
c and ξ = −z2z

−1/5
c . Now we can look at the two types of cycles mentioned

above.

1. γ = γ(3) × S1 where γ(3) denotes a three-cycle on the three-fold. This type of cycle

should reproduce the closed string periods of the mirror quintic. The period is given by

Πγ ∼
∫
γ(3)×S1

( 5∏
i=1

dxi

)dv
v
e−P−v Q , (E.8)
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and by integrating around v = 0, we obtain

Πγ ∼
∫
γ(3)

( 5∏
i=1

dxi

)
e−P . (E.9)

Now, we introduce the following change of variables

y5 = x5
5 , yi =

xi
x1
, i = 1, 2, 3, 4 . (E.10)

Note that the Jacobian of (E.10) is one and this is linked with the fact that the degree

of polynomial P is five (CY condition). Having this, the period becomes

Πγ ∼
∫ ( 5∏

i=1

dyi

)
e−y5F , F ≡ 1 + y5

1 + y5
2 + y5

3 + y5
4 − 5ψ y1y2y3y4

=

∫ ( 4∏
i=1

dyi

)
δ(F ) =

∫ ( 4∏
i=1

dyi

) 1

∂y4F

∣∣∣
F=0

=

∫
γ

1

P
∆ . (E.11)

In the last line, in addition to the integral over the 3-cycle of the three-fold, we have

a residue integral as well. Thus we recover the familiar residue expression of the bulk

periods of the mirror quintic.

2. γ = γ(3)×γv where we integrate v between branch points of the cylinder, where a 3-cycle

in the fiber collapses. The periods associated with these type of 4-cycles is evaluated

from the derivative of the period with respect to the open modulus of three-fold.3 One

obtains

∂ξΠγ ∼
∫ ( 5∏

i=1

dxi

)dv
v

(−v ∂ξQ) e−P−v Q =

∫ ( 5∏
i=1

dxi

)
dv(x1x2x3x4) e−P−v Q

=

∫ ( 5∏
i=1

dxi

)
(x1x2x3x4)δ(Q) e−P =

∫ ( 4∏
i=1

dxi

)x1x2x3x4

∂5Q
e−P

∣∣∣
Q=0

=
1

4 ξ3/4

∫ ( 4∏
i=1

dxi

)
(x1x2x3x4)1/4 e−G , (E.12)

where in the last line G is defined as

G ≡ x5
1 + x5

2 + x5
3 + x5

4 − u (x1x2x3x4)5/4 , u = ξ1/4(5ψ − ξ) . (E.13)

3Alternatively one can also directly use the expression (E.3) to quickly derive the GLSM charges of the

subsystem and the functional dependence of its algebraic complex structure parameters on the four-fold

parameters by first taking the derivative w.r.t. the open modulus and then integrating out v.
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Note that u is the algebraic modulus of the K3 subsystem in the threefold language.

Now, we change the variables by introducing

yi = x
5/4
i , i = 1, 2, 3, 4 , (E.14)

and under (E.14) transforms to

∂ξΠ ∼
1

ξ3/4

∫ ( 4∏
i=1

dyi

)
e−(y4

1+y4
2+y4

3+y4
4−u y1y2y3y4) . (E.15)

This is exactly the LG-period expression for the mirror of a K3-surface given as P3
1,1,1,1[4].

Note however that the coordinate change (E.14) is not one-to-one. Thus the surface

{P = 0}∩{Q = 0} is actually a branched cover of a K3-surface in the three-fold Z∗. We

can now perform the same trick as we did for evaluating the previous type of periods

by introducing new variables si as

s4 = y4
4 , si =

yi
y4

, i = 1, 2, 3 . (E.16)

The Jacobian of (E.16) is unity and this originates from the fact that the subsystem is

a K3. The period (E.15) under (E.16) goes to

∂ξΠ ∼
1

ξ3/4

∫ ( 4∏
i=1

dsi

)
e−s4H , H = 1 + s4

1 + s4
2 + s4

3 − u s1s2s3

∼ 1

ξ3/4

∫ ( 4∏
i=1

dsi

)
δ(H) =

1

ξ3/4

∫ ( 3∏
i=1

dsi

) 1

∂s4H

∣∣∣
H=0

∼ 1

ξ3/4

∫
∆K3

x4
1 + x4

2 + x4
3 + x4

4 − ux1x2x3x4
, (E.17)

where in the last line we also have a residue integral over the tubular neighborhood

of H = 0 in P3
1,1,1,1. This is exactly what we compute by ∂ξΠ ∼

∫
1
P Q ∆ as the

starting point. Now, we can even push the computation further and compute the

periods explicitly. Let us take the limit where the modulus of K3 subsystem is very

large. Then we can compute the residue integrals by expanding the denominator of

(E.17)

∂ξΠ ∼
1

ξ(5ψ − ξ)

∞∑
n=0

∫
∆

x1x2x3x4

(x4
1 + x4

2 + x4
3 + x4

4

ux1x2x3x4

)n
∼ 1

ξ(5ψ − ξ)

∞∑
n=0

(4n)!

(n!)4

( 1

u4

)n
∼ 1

ξ(5ψ − ξ) 3F2

(1

4
,
2

4
,
3

4
, 1, 1;

256

u4

)
. (E.18)

If we analytically continue this result, we exactly get the semi-periods (5.21) in [103] in

the limit of small u.
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Therefore we have seen, that the two types of 4-cycles that were introduced in [48] capture

all periods of the open/closed geometry.





F
Appendix F

Normalization of the domain wall

tension in the quintic example

In section 4.1 we found the expression (4.12) for the domain wall tension associated with the

involution brane of [53]. In this appendix we give a derivation of its normalization, as in

[53, 54], by an analysis of the open/closed moduli space and analytic continuation techniques,

similar as in the closed string case. For the notation we refer to the section 2.6.

The Picard-Fuchs operator of the bulk geometry for the quintic is given by

L = θ4 − 5z
4∏
i=1

(5θ − i) , (F.1)

where z denotes the complex structure coordinate near the point of maximal unipotent mon-

odromy and θ = z∂z. The solutions to (F.1) for small z can be generated from the Frobenius

generating function (2.84), which in this case becomes

B(z; ρ) =
∑
n≥0

Γ(1 + 5n+ 5ρ) zn+ρ

Γ(1 + n+ ρ)
. (F.2)

This leads to a vector ω̄ of solutions1

ω̄(z) =



1
log(z)

2πi
log2(z)
(2πi)2 − 5

6
log3(z)+10π2 log(z)−240ζ(3)

(2πi)3

60
√
z


+O(z) . (F.3)

Note that the domain wall solution can be represented as Wcrit(z) = B(z, 1/2) and fulfills

LWcrit(z) =
15
√
z

4
. (F.4)

To compute the integral period vector we compare ω̄ to the solutions near the orbifold point

ψ = (55z)−1/5 = 0. This can be achieved by analytic continuation of the generating function

(F.2) via a Barnes-type integral for ρ ≥ 0

B(z; ρ) = −
∮
C+

(−1)sΓ(−s)Γ(s+ 1)Γ(5s+ 5ρ+ 1) zs+ρ

Γ(s+ ρ+ 1)5
ds , (F.5)

1In addition we chose a convenient normalization for the solutions.
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where C+ is a contour which encircles the roots at s = n, for n ∈ N≥0. By closing the contour

to the left along a contour C− one picks poles at s = −n − ρ − j
5 , for j = 1, . . . 4 and at

s = −n− 1, where n ∈ N≥0 and arrives at2

B(z(ψ); ρ) =
π

5

4∑
j=1

∑
n≥0

e−iπ( 6
5
j+5n+ρ)

Γ(− j
5 − n+ 1)5Γ(j + 5n) sin

(
πi
5 + πρ

) (5ψ)5n+j +

∑
n≥0

Γ(−5n+ 5ρ− 4)

Γ(ρ− n)5
(5ψ)5(n−ρ+1) .

(F.6)

Upon differentiating with respect to ρ and evaluating at ρ = 0 and ρ = 1/2 one can express

the large volume basis of solutions ω̄(z) in terms of a basis of solutions ωorb(ψ) to (F.1) near

the orbifold point. The basis ωorb(ψ) is given by

ωorb
j (ψ) =

π

5

∑
n≥0

e−iπ( 6
5
j+5n)

Γ(− j
5 − n+ 1)5Γ(j + 5n) sin

(
πi
5

) (5ψ)5n+j , j = 1, . . . , 4 , (F.7)

ωorb
5 (ψ) = π2

∑
n≥0

Γ(−5n− 3/2)

Γ(1/2− n)5
(5ψ)5(n+1/2) . (F.8)

This leads to an analytic continuation matrix m

ω̄(z) = m · ωorb(ψ(z)) . (F.9)

The basis of solutions ωorb(ψ) has a monodromy around the the orbifold point given by

ωorb(αψ) = M̃0 · ωorb(ψ),


α 0 0 0 0

0 α2 0 0 0

0 0 α3 0 0

0 0 0 α4 0

0 0 0 0 −1

 , (F.10)

where α5 = 1. The large volume basis is related to the extended integral period vector Π(z)

by a change of basis Π(z) = B · ω̄(z). Using the relation3 M1 = M−1
0 ·M∞ for the conifold

monodromy and the explicit expression for the analytic continuation matrix m the change of

basis can be fixed by demanding integrality of the involved monodromy matrices. This leads

to4

M∞ =


1 0 0 0 0

−1 1 0 0 0

−3 −5 1 0 0

5 −8 1 1 0

0 1 0 0 −1

 , M1 =


1 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , M0 =


1 0 0 −1 0

−1 1 0 1 0

−3 −5 1 3 0

5 −8 1 −4 0

0 1 0 0 −1


(F.11)

2Note that the second set of poles at s = −n− 1, for n ∈ N≥0, gives effectively only a contribution for ρ 6= 0.
3Note that the relation between the monodromy matrices is different as compared to the choices made in the

rest of this work.
4This monodromy matrices are consistent with the closed string result of [37].
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and

B =


1 0 0 0 0

0 1 0 0 0

0 11
2

5
2 0 0

0 −25
6 0 −5

6 0
1
4

1
2 0 0 −1

4

 . (F.12)

Using the mirror-map

2πi t(z) =
ω̄1(z)

ω̄0(z)
= log(z) + . . . ,

the extended integral period vector Π(t) is given by

Π(t)

ω̄0(z(t))
=


1

t
5t2

2 + 11t
2 −

25
12

−5t3

6 −
25t
12 + 25iζ(3)

π3

t
2 + 1

4 − 15
√
q

+O(tq, q) , (F.13)

where q = e2πit. These results are consistent with the discussion of [53].
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Appendix G

From three-chains to Abel-Jacobi

maps on the elliptic curve

In some of the examples considered in chapter 4, the domain wall tensions can be directly

related to the Abel-Jacobi map on an elliptic curve in a certain limit in the moduli. This

gives a check on the normalization obtained from the geometric surface periods. To this end,

we consider the non-compact Calabi-Yau manifolds X[ of ref. [186]

P4
3,2,1,1,−1[6] : P = y2

1 + y3
2 + y6

3 + y6
4 +

1

y6
5

+ ψ̂ y1y2y3y4y5 , z = ψ̂−6 ,

P4
2,1,1,1,−1[4] : P = y2

1 + y4
2 + y4

3 + y4
4 +

1

y4
5

+ ψ̂ y1y2y3y4y5 , z = ψ̂−4 , (G.1)

P4
1,1,1,1,−1[3] : P = y3

1 + y3
2 + y3

3 + y3
4 +

1

y3
5

+ ψ̂ y1y2y3y4y5 , z = ψ̂−3 .

The closed-string periods on the non-compact three-folds are solutions of the Picard-Fuchs

operators

L[n] = L[n]
E (−z) · θ , (G.2)

where L[n]
E (z) denote the Picard-Fuchs operators for the representations of the elliptic curve E

P3,2,1[6] : L[6]
E (z) = θ2 − 12z(6θ + 5)(6θ + 1) ,

P2,1,1[4] : L[4]
E (z) = θ2 − 4z(4θ + 3)(4θ + 1) , (G.3)

P1,1,1[3] : L[3]
E (z) = θ2 − 3z(3θ + 1)(3θ + 2) ,

with θ = z d
dz . The equation for the elliptic curve is given by the restriction to (y4y5)n = −1

in (G.1).1 Eq. (G.2) implies the relation 2πi θΠ`(z) = π`(−z) between the periods Π`(z) of

the non-compact threefold and the periods π(z) on the elliptic curve.

A similar relation

2πi θT (z) = τ(−z) , (G.4)

holds for the chain integrals between the domain wall tension T of the non-compact threefold

and the line integral τ of the associated elliptic curve E. They fulfill the inhomogeneous

differential equation

L[n]T (z) = − c[n]

16π2

√
z , L[n]

E (z)τ(z) = −c
[n]

8π

√
z , (G.5)

1Keeping the convention eq. (2.82), the algebraic modulus of the Calabi-Yau manifold and the curve differ

by a minus sign, as indicated in eq. (G.2) and below.
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k n
[6]
k n

[4]
k n

[3]
k

1 16 8 2

3 -432 -24 -2

5 45 440 320 10

7 -7 212 912 -6 776 -84

9 1 393 829 856 175 536 858

11 -302 514 737 008 -5 123 448 -9 878

13 70 891 369 116 256 161 777 200 123 110

15 -17 542 233 743 427 360 -5 401 143 120 -1 622 890

17 4 520 954 871 206 554 016 187 981 969 232 22 308 658

19 -1 202 427 473 254 100 406 128 -6 756 734 860 408 -316 775 410

21 327 947 495 234 600 477 004 048 249 179 670 525 576 4 616 037 426

23 -91 298 034 448 725 882 319 078 384 -9 384 048 140 182 200 -68 700 458 258

Table G.1.: Disc invariants for the on-shell superpotentialsWinst = 1
2Tinst for the non-compact

hypersurfaces X[ of degree d = 6, 4, 3.

in terms of the constants c[n]

c[6] = 16 , c[4] = 8 , c[3] = 2 , (G.6)

which determine the normalization of the of the domain wall tension T . Then the domain

wall tensions T , which are now solutions to the normalized inhomogeneous Picard-Fuchs

equations (G.5), contains the quantum instanton contribution Tinst, which starts as

Tinst(z) = − 1

2π2

(
c[n]√z + . . .

)
,

and yields for the three geometries (G.1) the normalized disc invariants in Tab. G.1.2

The normalization constants c[n] are determined by requiring integrality of the monodromy

matrices with respect to the singularities of the moduli space of the extended period vector.

The extended period vector consists of the bulk periods Π and the domain wall tension T .

Alternatively, the constants c[n] can be determined by directly evaluating the line integral τ

on the curve E and by exploiting its relation to the 3-chain integral T according to eq. (G.4).

In the following we exemplify the two approaches for the non-compact sextic threefold (G.1)

to determine the normalization constant c[6]. The other two normalization constants c[4] and

c[3] are obtained analogously.

The moduli space of the non-compact sextic threefold (G.1) exhibits three singularities

z = 0, z = − 1
432 , and z = ∞, which correspond to a large radius, a conifold, and a orbifold

point of the moduli space. In the vicinity of the large radius point |z| < 1
432 a complete set

2Here we list the integral disc instanton numbers n
[n]
k . These invariants are related to the real invariants

n
[n]
k,real in ref. [187] by a factor 2, i.e. n

[n]
k = 2 · n[n]

k,real.
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of solutions to the Picard-Fuchs operator L[6] is given by

Π̃0(z) =1 ,

Π̃1(z) = log z +
+∞∑
k=1

(6k)!

k! (2k)! (3k)!
· (−z)k

k
,

Π̃2(z) =
1

2
(log z)2 +

+∞∑
k=1

(6k)!

k! (2k)! (3k)!
· (−z)k

k
·
(

log z − 1

k
+ 6Ψ(6k + 1)

−Ψ(k + 1)− 2Ψ(2k + 1)− 3Ψ(3k + 1)

)
,

(G.7)

in terms of the Polygamma function Ψ. Together with the solution T̃ to the inhomogeneous

Picard-Fuchs equation L[6]T̃ (z) ∼
√
z

T̃ (z) =
π

32

√
z

+∞∑
k=0

Γ(6k + 4)

Γ(3k + 5
2)Γ(2k + 2)Γ(k + 3

2)(k + 1
2)

(−z)k , (G.8)

they form the extended period vector Π̃ =
(

Π̃0, Π̃1, Π̃2, T̃
)

. For this vector we determine the

large radius monodromy matrix M̃LR. Furthermore, by analytically continuation with the

help of Barnes integrals to the other singular points in the moduli space we also infer the

conifold and orbifold monodromy matrices M̃con and M̃orb. Next we perform a change of basis

to the integral extended period vector Π = (Π0,Π1,Π2, T ) by demanding integrality of all the

monodromy matrices. For the bulk sector these steps can be found in detail in ref. [186]. In

addition to integrality of the monodromy matrices we require that the domain wall tension T

vanishes at z =∞. The latter condition arises because the domain wall tension T interpolates

between two supersymmetric vacua that coincide at the orbifold point. After these steps we

finally arrive at the integral periods

Π0(z) = Π̃0(z) = 1 ,

Π1(z) =
1

2πi
Π̃1(z) = t(z) ,

Π2(z) =
1

(2πi)2
Π̃2(z)− 1

4πi
Π̃1(z)− 5

12
Π̃0(z) =

1

2
t(z)2 − 1

2
t(z)− 5

12
+ Πinst(z) ,

T (z) =
32

(2πi)2
T̃ (z)− 1

4πi
Π̃1(z) +

1

4
Π̃0(z) = −1

2
t(z) +

1

4
+ Tinst(z) .

(G.9)

Here we also exhibit the classical terms in terms of the flat coordinate t and the instanton

contributions Πinst and Tinst. In particular the normalized domain wall tension yields the

normalized instanton contribution

Tinst(z) = − 16

2π2

(√
z − 512

9
z3/2 +

229 376

25
z5/2 − . . .

)
,

and hence the normalization constant c[6] = 16 in eq. (G.6). The integral monodromy matrices
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in the integral basis (G.9) are then given by

MLR =


1 0 0 0

1 1 0 0

0 1 1 0

0 −1 0 −1

 , Mcon =


1 0 0 0

1 1 1 0

0 0 1 0

0 0 0 1

 , Morb =


1 0 0 0

0 0 −1 0

0 1 1 0

0 −1 0 −1

 ,

with MconMorb = MLR.

As an independent calculation to determine normalized domain wall tensions we now di-

rectly reduce the three-chain integrals of the domain wall tensions between the curves C[ε,± of

eq. (4.48) to line integrals on the elliptic curve E. In order to evaluate the chain integrals we

first change to the inhomogeneous coordinate α, y, z1, z2, which are suitable to evaluate the

chain integrals [186]

y1 = y − 1

2
ψ̂αz3

1z2 , y2 = −αz2
1 , y3 = −iz1 , y4 = −iz2 , y5 = 1 .

In terms of these coordinates the hypersurface equation (G.1) of the non-compact sextic

Calabi-Yau threefold X[ becomes

X[ : y2 = z6
1

(
1 + α3 +

1

4
(ψ̂α)2z2

2

)
+ (z6

2 − 1) ,

while the holomorphic three form reads

Ω(ψ̂) =
6

(2πi)3
· ψ̂ z2

1 dα dz1 dz2

2

√
z6

1

(
1 + α3 + 1

4(ψ̂α)2z2
2

)
+ (z6

2 − 1)

.

We can think of this geometry as a complex surface given in terms of the coordinates z1 and

z2 fibered over a P1 base parametrized by the affine coordinate α. Furthermore, in these

coordinates the curves C[ε,κ are given by3

C[ε,κ =

{
z1 = i z2 , αz2 = −iκ

√
ε i ψ̂ , ε =

i

2
ψ̂αz4

1 + y

}
, ε = ±i κ = ±i .

The goal is now to evaluate the domain wall tensions

T`(ψ̂) =

∫
Γ`

Ω(ψ̂) ,

where we consider the two three chains Γ1 and Γ2 bounded by

∂Γ1 = C+i,+i − C−i,−i , ∂Γ2 = C−i,+i − C−i,−i .

As we will see in the calculation the domain wall tensions for the remaining combinations of

curves do not yield independent results. The steps to reduce the three dimensional integral to

3For ease of notation we have chosen here the explicit root η = i for η6 = −1 in eq. (4.48).
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a line integral over the P1 base are worked out and explained in detail in ref. [186]. Therefore

for completeness we merely sketch the necessary steps here.

Instead of calculating the domain wall tension, it is easier to derive the line integral τ of

eq. (G.4). With z = ψ̂−6 we get

τ`(−z) = 2πi θ T`(ψ̂(z)) = −2πi

6
ψ̂
dT`(ψ̂)

dψ̂

= − ψ̂

(2πi)2

∫
Γ`

dα dz2 dz1
d

dz2

1

2

√
z6

1

(
1 + α3 + 1

4(ψ̂α)2z2
2

)
+ (z6

2 − 1)

.

The simplification occurs because for the integrand the derivative with respect to ψ̂ is equiva-

lent to the derivative with respect to z2. Then the integral over z2 becomes trivial.4 We now

evaluate the integral over the coordinate z1 along a closed contour encircling the six branch

points of the square root. Next we integrate the coordinate z2 along the interval from z2 = 1

to z2 = −1 to arrive at [186]

∫
Ω = − 1

2πi

∫ ψ̂ z2 dα

2
√

1 + α3 + 1
4(ψ̂z2)2α2

∣∣∣∣∣∣
z2=1

−
∫

ψ̂ z2 dα

2
√

1 + α3 + 1
4(ψ̂z2)2α2

∣∣∣∣∣∣
z2=−1

 . (G.10)

Note that the performed integration is equivalent to the integration over a homology 2-sphere,

as the contour in the z1 coordinate can be shrunk to a point at the endpoints z2 = ±1 of the

interval.

If we now carry out the remaining integral (G.10) over α along a closed contour encircling

the two branch points with leading behavior ∼ ψ̂−1 for large ψ̂, we integrate over a one cycle

of the elliptic curve E and obtain the fundamental period of the elliptic curve

π0(−z) = 2F1(1
6 ,

5
6 ; 1;−432z) = 1− 60z + 13 860z2 − . . . .

If, instead, we reduce the three chains Γ1 and Γ2 to line integrals over α in eq. (G.10), we

need to evaluate the integrals

τ1(−z) = − 1

2πi

∫ −√ψ̂
i
√
ψ̂

ψ̂ dα

2
√

1 + α3 + 1
4 ψ̂

2α2
+

∫ √ψ̂
−i
√
ψ̂

ψ̂ dα

2
√

1 + α3 + 1
4 ψ̂

2α2

 ,

τ2(−z) = − 1

2πi

∫ −√ψ̂√
ψ̂

ψ̂ dα

2
√

1 + α3 + 1
4 ψ̂

2α2
+

∫ √ψ̂
−
√
ψ̂

ψ̂ dα

2
√

1 + α3 + 1
4 ψ̂

2α2

 .

(G.11)

Here the integration boundaries for α are determined by requiring that the coordinates (z2 =

±1, α) associated to the endpoints of the line integral correspond to a point on the appropriate

curve C[ε,κ.

4Similarly as for the examples discussed in ref. [188], there is no contribution from the derivative d

dψ̂
acting

on the three chain Γ`.
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While the line integral (G.11) trivially vanishes for Γ2, namely τ2(−z) = 0, we evaluate the

integral over Γ1 and arrive at

τ(−z) ≡ τ1(−z) =
16
√
z

2πi
3F2(2

3 ,
4
3 , 1; 3

2 ,
3
2 ;−432z)− 1

2
π0(−z) . (G.12)

The resulting domain wall tension τ(−z) = 2πi θT (z) is in agreement with the result in

eq. (G.9) and in eq. (G.5) together with the normalization c[6] = 16 of eq. (G.6).
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In this section we want to review the definition and some basic properties of mock modular

forms. In addition we give the definitions of modular forms appearing in the main body text.

For more details on mock modular forms the reader is referred to the mathematics’ literature

[61, 60, 225].

H.1. Mock modular forms

Following [60], we denote the space of mock modular forms of weight k by Mk and the space

of modular forms by Mk. Mock modular forms are holomorphic functions of τ , which is an

element of the upper half planeH, but do not transform in a modular covariant way. However,

to every mock modular form h of weight k there exists a shadow g ∈ M2−k such that the

function ĥ, given by

ĥ(τ) = h(τ) + g∗(τ) (H.1)

transforms as of weight k. Denoting by gc(z) = g(−z̄), the completion g∗(τ) is defined by

g∗(τ) = −(2i)k
∫ ∞
−τ̄

(z + τ)−kgc(z) dz . (H.2)

Thus, ĥ is modular but has a non-holomorphic dependence. The corresponding space con-

taining forms of type (H.1) is denoted by M̂k. Given g as the expansion g(τ) =
∑

n≥0 bnq
n,

the completion g∗(τ) can also be written as

g∗(τ) =
∑
n≥0

nk−1bn βk(4nτ2) q−n , (H.3)

with τ2 = Im (τ) and βk defined by

βk(t) =

∫ ∞
t

u−ke−πudu . (H.4)
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Conversely, given ĥ, one determines the shadow g by taking the derivative of ĥ with respect

to τ̄ . One easily sees that

∂ĥ

∂τ
=
∂g∗

∂τ
= τ−k2 g(τ) . (H.5)

This viewpoint opens another characterization of M̂k as the set of real-analytic functions F

that fulfill a certain differential equation. To be precise, let us define the space Mk as the

space of real-analytic functions F in the upper half-plane H transforming as a modular form

under Γ ⊂ SL(2,Z), i.e.

F (γτ) = ρ(γ)(cτ + d)kF (τ) ,

where ρ(γ) denotes some character of Γ and we demand exponential growth at the cusps.

Hence, the space of completed mock modular forms M̂k can now be characterized by

M̂k =

{
F ∈Mk

∣∣ ∂
∂τ

(
τk2
∂F

∂τ̄

)
= 0

}
. (H.6)

This definition induces the following maps1

Mk = Mk,0
τk2 ∂τ̄−→ M0,2−k

τ2−k
2 ∂τ−→ Mk,0 = Mk , (H.7)

so that the composition can be converted to the Laplace operator in weight k. Hence, mock

modular forms in M̂k have the special eigenvalue k
2

(
1− k

2

)
and are sometimes also called

harmonic weak Maass forms.

Zwegers showed in [61] that mock modular forms can be realized in three different ways,

namely either as Appell-Lerch sums, indefinite theta-series or as Fourier coefficients of mero-

morphic Jacobi forms. Further, there is a notion of mixed mock modular forms, which are

functions that transform in the tensor space of mock modular forms and modular forms.

However, we will call them simply mock modular forms as well.

In the following a simple example of a mock modular form is presented.

Example: E2 as a mock modular form

The modular completion of the holomorphic Eisenstein series E2 (see below for a definition)

has the form

Ê2(τ) = E2(τ)− 3

πτ2
.

From ∂τ Ê2 = τ−2
2

3i
2π we get g = 3i

2π , a constant shadow. Doing the integral indeed yields

g∗(τ) = − (2i)2
∫ ∞
−τ

(z + τ)−2 3i

2π
dz = −6i

π

[
−1

z + τ

]∞
−τ

= − 3

πτ2
. (H.8)

1 A function f ∈Mk,l transforms under modular transformations γ ∈ Γ with bi-weight (k, l) and character

ρ, i.e. f(γτ) = ρ(γ)(cτ + d)k(cτ̄ + d)lf(τ).
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H.2. Modular forms

Let us collect the definitions of various modular forms appearing in the main body text. We

denote the following standard theta-functions by

ϑ1(τ, ν) =
∑

n∈Z+ 1
2

(−1)nq
1
2
n2
e2πinν ,

ϑ2(τ, ν) =
∑

n∈Z+ 1
2

q
1
2
n2
e2πinν ,

ϑ3(τ, ν) =
∑
n∈Z

q
1
2
n2
e2πinν ,

ϑ4(τ, ν) =
∑
n∈Z

(−1)nq
1
2
n2
e2πinν .

(H.9)

In the case that ν = 0 we simply denote ϑi(τ) = ϑi(τ, 0) (notice that ϑ1(τ) = 0). Under

modular transformations the theta functions ϑi(τ) behave as vector-valued modular forms of

weight 1
2 . They transform as

ϑ2(−1/τ) =

√
τ

i
ϑ4(τ), ϑ2(τ + 1) = e

iπ
4 ϑ2(τ), (H.10)

ϑ3(−1/τ) =

√
τ

i
ϑ3(τ), ϑ3(τ + 1) = ϑ4(τ), (H.11)

ϑ4(−1/τ) =

√
τ

i
ϑ2(τ), ϑ4(τ + 1) = ϑ3(τ) . (H.12)

Further, the eta-function is defined by

η(τ) = q
1
24

∞∏
n=1

(1− qn) , (H.13)

and transforms according to

η(τ + 1) = e
iπ
12 η(τ), η

(
−1

τ

)
=

√
τ

i
η(τ) . (H.14)

The Eisenstein series are defined by

Ek(τ) = 1− 2k

Bk

∞∑
n=1

nk−1qn

1− qn
, (H.15)

where Bk denotes the k-th Bernoulli number. Ek is a modular form of weight k for k > 2 and

even.

H.3. Modular properties of the elliptic genus

We denote by Z
(r)
P (τ, z) the elliptic genus of r M5-branes wrapping P as defined previously

in sect. 5.2.2. The elliptic genus should transform like a Jacobi form of bi-weight (−3
2 ,

1
2) and
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bi-index ( r2(dAB − JAJB
J2 ), r2

JAJB
J2 ) under the full modular group. In particular, we impose

Z
(r)
P (τ + 1, z) = ε(T )Z

(r)
P (τ, z),

Z
(r)
P (−1

τ
,
z−
τ

+
z+

τ̄
) = ε(S) τ−

3
2 τ̄

1
2 eπir(

z2−
τ

+
z2+
τ̄

) Z
(r)
P (τ, z) ,

(H.16)

where ε are certain phases [310].

Siegel-Narain theta-function and its properties

Let us start by recalling the definition of the Siegel-Narain theta-function of eq. (5.13)

θ
(r)
µ,J(τ, z) =

∑
ξ ∈Λ+ [P ]

2

(−)r(ξ+µ)·[P ]q̄−
r
2

(ξ+µ)2
+q

r
2

(ξ+µ)2
−e2πir(ξ+µ)·z , (H.17)

where we define

ξ2
+ =

(ξ · J)2

J · J
, ξ2

− = ξ2 − ξ2
+ . (H.18)

Note, that ξ2
+ < 0 if J lies in the Kähler cone.

If we denote by Dk = ∂τ̄ + i
4πk∂

2
z+ , the theta-function fulfills the heat equation

Dr θ(r)
µ,J(τ, z) = 0 . (H.19)

Further, we denote by Λ∗ the dual lattice to Λ w.r.t. the metric rdAB. For µ ∈ Λ∗/Λ, we can

deduce the following set of transformation rules

θ
(r)
µ,J(τ + 1, z) = (−1)r(µ+ [P ]

2
)2
θ

(r)
µ,J(τ, z),

θ
(r)
µ,J(−1

τ
,
z+

τ̄
+
z−
τ

) =
(−1)r

[P ]2

2√
|Λ∗/Λ|

(−iτ)
r(Λ)−1

2 (iτ̄)
1
2 eπir(

z2−
τ

+
z2+
τ̄

)
∑

δ ∈Λ∗/Λ

e−2πirµ·δθ
(r)
δ,J(τ, z) .

(H.20)

Rank one

At rank one we have the universal answer

f
(1)
µ,J(τ) =

ϑΛ⊥(τ)

η(τ)χ
. (H.21)

The transformation rules are simply given by (H.14) for the eta-function and for ϑΛ⊥ we

obtain (assuming Λ⊥ even and self-dual)

ϑΛ⊥(τ + 1) = ϑΛ⊥(τ) ,

ϑΛ⊥(−1

τ
) =

(τ
i

) r(Λ⊥)
2

ϑΛ⊥(τ) .

(H.22)

Rank two

Using Zwegers’ theta-function with characteristics ϑc,c
′

a,b (τ) given in def. 2.1 of his thesis [61],

we can write

Θ̂c,c′

Λ,µ(τ, x) = q−
1
2
〈a,a〉e−2πi〈a,b〉ϑc,c

′

a+µ,b(τ) , (H.23)
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where x = aτ + b, i.e.

a =
Im(x)

Im(τ)
, b =

Im(x̄τ)

Im(τ)
. (H.24)

Following Corollary 2.9 of Zwegers [61], we can deduce the following set of transformations

Θ̂c,c′

Λ,µ(τ + 1, x) = (−1)〈µ,µ〉Θ̂c,c′

Λ,µ(τ, x) ,

Θ̂c,c′

Λ,µ(−1

τ
,
x

τ
) =

i(−iτ)r(Λ)/2√
|Λ∗/Λ|

eπi
〈x,x〉
τ

∑
δ ∈Λ∗/Λ

e−2πi〈δ,µ〉 Θ̂c,c′

Λ,δ(τ, x) .
(H.25)

This input enables us to write down the transformation rules for f̂
(2)
µ,J . They read

f̂
(2)
µ,J(τ + 1) = (−1)

χ
6

+2µ2
f̂

(2)
µ,J(τ) ,

f̂
(2)
µ,J(−1

τ
) = −(−iτ)−

r(Λ)+2
2√

|Λ∗/Λ|

∑
δ ∈Λ∗/Λ

e4πiδ·µf̂
(2)
δ,J (τ) .

(H.26)

This gives the conjectured transformation properties (H.16).

The blow-up factor

For completeness we elaborate on the transformation properties of the blow-up factor. We

define

Br,k(τ) = η(τ)−r
∑

ai ∈Z+ k
r

q
∑
i≤j≤r−1 aiaj .

(H.27)

We can deduce the following set of transformation rules

Br,k(τ + 1) = (−1)
r
12

+ k2(r−1)
r Br,k(τ) ,

Br,k(−
1

τ
) =

1√
r

(τ
i

)− 1
2
∑

0≤l≤r−1

(−1)
2kl(r−1)

r Br,l(τ) .
(H.28)
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