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Abstract

This thesis focuses on the Bayesian data analysis of single-molecule fluorescence reso-
nance energy transfer (FRET) experiments carried out to infer structural information of
biological macromolecules and macromolecular complexes labeled with fluorophores.
In general, the measurement of FRET efficiencies allows to determine the distance

of two fluorophores quantitatively and thus acts as a molecular ruler on the nanometer
length scale. Moreover, it is possible to calculate the yet unknown position of one or more
fluorophores relative to each other by trilateration. In doing so, FRET efficiency measure-
ments between the fluorophore to be localized, called antenna, and several fluorophores at
known locations, called satellites, are used to constrain the position of the antenna. This,
in turn, can be used to answer questions in structural biochemistry, when the antennas are
attached for example to a yet unlocalized constituent of a macromolecular complex, while
the satellites are linked to positions known from e.g. X-ray crystallography experiments.
However, FRET efficiency depends not only on the fluorophore separation but also

on the orientation of the transition dipole moments of the fluorophores. This makes a
simple conversion of FRET efficiencies into distances inapplicable, as the orientations are
usually unknown. Although these orientation effects were known to be a major source
of uncertainty in FRET-based localization experiments, they have often been ignored or
argued away in the literature.
The main result of this thesis is a novel data analysis tool, which was developed in order

to account for both distance and orientation effects and thus allowing an accurate FRET-
based localization. This tool was called Nano-Positioning System (NPS) and applies
Bayesian data analysis to infer possible positions of fluorophores and optionally also the
positions and orientations of the subunits of a macromolecular complex.
The results of NPS can be readily displayed in the form of probability densities that

reflect the information about the position of a fluorophore or a particular subunit in
a macromolecular complex. The location, form and fuzziness of the densities impart
simultaneously the position and the uncertainty of localization. Shown together with an
already known macromolecule structure, these densities can then be interpreted in an
intuitive way.
NPS was successfully tested by localizing a fluorophore attached to a known position

in yeast RNA polymerase II (Pol II) elongation complexes (ECs). To demonstrate the
practical value of NPS, it was applied to study the influence of the transcription factor
IIB (TFIIB) on the position of the nascent RNA as well as to map the pathway of the
nontemplate and upstream DNA in yeast Pol II ECs. Furthermore, the position and ori-
entation of the TATA binding protein (TBP) in initial transcribing complexes of Pol II
were inferred. A deeper understanding of NPS was obtained by analyzing synthetic data.
Unknown fluorophore orientations were found to be indeed the major source of localiza-
tion uncertainty under commonly encountered experimental conditions. Synergy effects
emerging from the simultaneous analysis of a FRET network containing several antenna
and satellite fluorophores were observed to improve the accuracy of the inference. It is
proposed to use FRET anisotropy data in addition to the commonly measured FRET effi-
ciencies to calculate accurate fluorophore orientations and thus dramatically increase the
localization accuracy of NPS. Finally, general aspects of NPS are discussed and possible
future improvements of NPS are pointed out.
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1 Introduction

Nowadays, many different experimental methods exist to study the structure and function
of biologically relevant macromolecules like proteins, nucleic acids and protein complexes.
They cover a wide range of applications from fundamental research to rational drug design
in pharmaceutical industry.
This thesis focuses on an application of fluorescence to structural studies of macro-

molecules. The word “structure” will be used throughout in the sense of the three-
dimensional alignment of subunits, e.g. amino acids in a protein. In order to put the
method studied into a wider context, an overview of the most common techniques used
in structural biology will be outlined.
The probably furthest developed standard methods for the determination of three-

dimensional macromolecular structures are X-ray crystallography (Drenth, 1999), nuclear
magnetic resonance (NMR) spectroscopy (Wüthrich, 1986) and single particle electron
microscopy (EM) (van Heel et al., 2000; Frank, 2006). X-ray crystallography and single
particle EM probe directly the positions of atoms, whereas NMR spectroscopy, at least
when applied to large molecules, uses the distance-dependent coupling of nuclear spins to
reconstruct a three-dimensional structure.
The structures obtained by NMR spectroscopy or X-ray crystallography have usually

very high resolution, oftentimes even down to the size of atoms. Both are ensemble-
based methods and rely on the presence of many identical molecules that contribute to
the detected signal. However, those methods fail when the studied ensemble consists of
molecules in too many conformations that each give rise to slightly different signals, which
in turn cannot be resolved any more. Moreover, too large disorder or structural differences
can even inhibit crystallization and thus make X-ray crystallography inapplicable and, in
general, large macromolecules are difficult to solve with NMR spectroscopy because of
anisotropy effects (Griswold and Dahlquist, 2002).
In this case, single particle EM can be used to collect data from single macromolecules

separately. Since the scattering signal of single macromolecules is weak, many of them
need to be observed in order to obtain a structure. In addition, the overall resolution is
often lower compared to X-ray crystallography and NMR spectroscopy. However, because
the data is acquired on a single-molecule level, one can resolve different conformation
populations even when their structures differ much.
Conformation inhomogeneities, when observed, may be either static or dynamic, i.e.

the macromolecules might remain in a conformation or show transitions between different
states. These transitions might be important for the biological function, but it is not
possible to study them in single particle EM since the sample is usually shock-frozen or
fixated.
The method used for structural studies in this work is the so-called Nano-Positioning

System (NPS) (Andrecka et al., 2008). It is based on single-molecule fluorescence res-
onance energy transfer (FRET) and is capable of obtaining time-resolved structural in-
formation from single biomolecules under native conditions. Single-molecule FRET can
therefore be used to resolve different macromolecule conformations as well as the transi-
tions between those states. In particular, NPS can be applied to localize fluorescent dye
molecules that are attached to regions of a macromolecule with yet unknown structure.
Although the data obtained is of lower resolution compared to X-ray crystallography and
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1 Introduction

NMR spectroscopy it can be a valuable source of information when the standard methods
of structural biology fail or when independent measurements are needed to reduce the
impact of artifacts.
The scope of this work is the development of a quantitative data analysis method

for FRET localization experiments such as the NPS. The information about transitions
between conformation states will not be analyzed here, but instead, it will be discussed
how to combine NPS with methods that extract this kind of information.
After an introduction of some relevant physical phenomena and of the data analysis

methods used in this work, a quantitative framework for the analysis of NPS data will
be developed, which accounts for various error sources that accompany the underlying
FRET measurements.
The thesis focuses mainly on the methodical but yet interesting aspects of the con-

struction of a consistent physical model, the data analysis and the visualization of the
analysis results. Bayesian inference will be applied to analyze the NPS data. It is a pow-
erful and general method, which is used for example in the interpretation of mass spectra
(Schwarz-Selinger et al., 2001) and was already applied to NMR spectroscopy structure
determination (Rieping et al., 2005).
Later on, an application of NPS to the eukaryotic RNA polymerase II elongation com-

plex will be shown. In particular, the effect of the transcription factor IIB on the position
of the nascent RNA, the localization of the nontemplate DNA strand, and the prelimi-
nary analysis of the position and orientation of the TATA binding protein in the initial
transcribing complex will be demonstrated.
Based on model calculations, a strategy will be proposed to increase the localization

accuracy of NPS by the additional measurement of FRET anisotropy data and by the
adequate design of the FRET network. Finally, possible improvements and extensions of
NPS will be outlined.
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2 Basics

2.1 Fluorescence

Fluorescence is the emission of light accompanied by the transition of a molecule from the
first or a higher electronically excited singlet state (S1,S2, . . . ) to the electronic ground
state S0 (Michalet et al., 2003; Lakowicz, 2006, chapter 1). In the following sections, some
basics of single-molecule fluorescence spectroscopy are explained.

2.1.1 Physical model of fluorescence

In most biological applications, the excited state is populated by absorption of light, as
shown in form of a Jabłoński diagram in figure 2.1a. The fluorophore that exists initially in
the electronic ground state with low vibrational excitation is transferred by the absorption
of a photon with frequency νexc to higher vibrational states of the electronic excited states.
Caused by collisions with the solvent molecules, the excitation relaxes typically on the
picosecond time scale to the lowest vibrational state of the first electronic excited state
that is metastable on a nanosecond time scale. From there, the excitation can decay
into vibrationally excited states of the electronic ground state by emission of a photon of
frequency νem, and relax further, again due to collisions, to the vibrational ground state.
Alternatively the excitation can be quenched by other processes, and the transition to the
ground state is called non-radiative.
The average ratio of emitted photons to the average number of photons absorbed is

called quantum yield Q. It can be expressed in terms of rates, i.e. probabilities per time
interval, for the radiative and non-radiative transitions to occur from the excited state
to the ground state. When Γ is the rate to emit a photon and the total of non-radiative
processes is summarized in the rate knr the quantum yield of a fluorophore (Lakowicz,
2006, chapter 1) is given by

Q = Γ
Γ + knr

. (2.1.1)

The quantum yield not only quantifies the relative importance of radiative and non-
radiative excitation decay channels, but it is also of practical impact when applied to
energy transfer.
Since absorption and emission occurs almost always from the vibrational ground states,

the emitted photon has usually a lower energy compared to the absorbed photon. This
phenomenon is called Stokes shift, and consequently, the absorption and fluorescence
spectra are also shifted (Lakowicz, 2006, chapter 1) (figure 2.1b). The Stokes shift is the
reason why fluorescence based methods are widely used to study single molecules: it allows
the spectral separation of the emitted from the excitation light and allows to observe the
comparatively weak fluorescence of single molecules in non-fluorescent surroundings.

2.1.2 Time-dependent fluorescence decay

It is possible to measure the time dependence of the fluorescent light photon flux I(t)
after a pulsed excitation at time t = 0. For a solution of identical fluorophores with a

3



2 Basics

Figure 2.1: Scheme of fluorescence. (a) Jabłoński diagram of fluorescence. The energies of
the singlet ground state (S0) and the first electronic excited state (S1) are shown together
with their associated vibrational states. The fluorophore in S0 absorbs a photon of the
excitation light with frequency νexc and is elevated (arrow) to vibrationally excited states of
S1. From there the vibrational excitations relax rapidly on a picosecond time scale (dashed
arrows). On a nanosecond time scale, the fluorophore in the lowest vibrational state of S1
decays to vibrationally excited states in the electronic ground state and emits a photon of
frequency νem, followed by a rapid relaxation to the vibrational ground state. Alternatively,
the excitation can relax without emission of a photon into the electronic and vibrational
ground state (quenching). Adapted from (Lakowicz, 2006, chapter 1). (b) Fluorescence
spectra, sketch. Absorption coefficient and normalized fluorescence emission intensity are
shown as function of the wavelength. Adapted from (Lakowicz, 2006, chapter 1).

single fluorescent transition the observed data can be described by an exponential decay,

I(t) ∝ exp
(
− t
τ

)
, (2.1.2)

where τ = Γ−1 is the lifetime of the excited state S1, which is termed often the fluorescence
lifetime (Lakowicz, 2006). A non-exponential decay indicates a complex fluorescence
transition scheme that might be caused e.g. by several conformations of the fluorophore
exhibiting different lifetimes, or by a sequence of states populated after excitation but
before the actual fluorescence occurs.

2.1.3 Fluorescence polarization

Another important property of light besides its frequency is the polarization state de-
scribed by the polarization vector, Ê, i.e. the orientation of the electrical field component
of light. Since absorption and fluorescence emission originate both in the interaction
of the fluorophore with the electric field of light, the relative orientations of both, the
fluorophore and the polarization vector, are of importance.
The probability for absorption of light with polarization Êex is proportional to

cos2(∠(Êex,µabs)), the squared cosine of the angle between absorption transition dipole
moment µabs and Êex. This means that fluorophores oriented with µabs parallel to Êex are
excited with highest probability, and fluorophores with µabs perpendicular to Êex cannot

4



2.1 Fluorescence

Figure 2.2: Fluorescence anisotropy.
Randomly oriented, freely mobile
fluorophores (gray arrows) are ex-
cited more likely by polarized light
when their absorption transition
dipole moments and the excitation
polarization (double-headed arrow,
left) make a small angle. The
preferential orientation of excited
fluorophores (solid gray arrows) is
destroyed over time due to ran-
dom orientation fluctuations. The
amount of emitted fluorescent light
is partly polarized (ellipses with ar-
rows) immediately after excitation,
and the degree of polarization de-
creases with time. Adapted from
Lakowicz (2006, chapter 1).

be excited at all. Likewise, the probability to emit a photon with polarization Êem is
proportional to cos2(∠(Êem,µem)), the square of the cosine of the angle between emission
transition dipole moment µem and Êem. That, in turn, means that the fluorophore shows
the typical transition dipole emission characteristics and emits light with preferential
polarization along its emission transition dipole moment.

The polarization effects described above are called photoselection and polarized emis-
sion, respectively. By exploiting these effects it is possible to infer information about the
angle between absorption and emission transition dipole moments and the orientational
freedom of the fluorophores. An example of freely mobile fluorophores with parallel ab-
sorption and emission transition dipole moments is shown in figure 2.2. There, the excited
fluorophores aligned mostly parallel to the excitation light polarization lose their prefer-
ential orientation with time by orientational diffusion while staying excited. Hence, the
amount of polarization of the emitted light decays in time, an effect that will be discussed
in more detail in the next section.

2.1.4 Fluorescence anisotropy

A quantity often used to describe the polarization effects introduced previously is the
fluorescence anisotropy r defined as

r =
I‖ − I⊥
I‖ + 2I⊥

, (2.1.3)

where I‖ and I⊥ denote the intensities of fluorescence light with polarization parallel and
perpendicular to the polarization of the excitation light.

When a pulsed and polarized excitation light source is used, e.g. a pulsed laser, the
time dependent fluorescence intensities I‖(t) and I⊥(t) can be measured, and in analogy
to equation (2.1.3) the time dependent fluorescence anisotropy r(t) is monitored. Here, t
denotes the time after the pulsed excitation, and the fluorescence intensities parallel and
perpendicular to the excitation light polarization can be expressed as

5



2 Basics

I‖(t) = 1
3I(t) [1 + 2r(t)]

I⊥(t) = 1
3I(t) [1− r(t)] . (2.1.4)

Usually, a decay of anisotropy is observed that can be related to the rotational diffusion
of the fluorophores (Lakowicz, 2006, chapter 10). When the fluorophores can rotate
without any constraints the fluorescence anisotropy approaches 0 for t → ∞. When the
fluorophore molecules are restricted in motion, e.g. because they are immobilized in a
solid polymer matrix, r(t) will approach a non-zero residual anisotropy, r∞.
In the limit of t→ 0 the anisotropy approaches r0, the so called fundamental or limiting

anisotropy. For a solution of randomly oriented fluorophores it is related directly to the
angle β between absorption and emission transition dipole moments by

r0 = 3 cos2 β − 1
5 . (2.1.5)

As a consequence of equation (2.1.5), 2
5 and − 1

5 are upper and lower bounds for the
fundamental anisotropy under these conditions. Throughout this work it will be assumed
that excitation and emission transition dipole moments are parallel and r0 = 2/5.
The fluorescence anisotropy defined in equation (2.1.3) is called steady-state anisotropy,

and it is a fluorescence weighted average of the time dependent anisotropy r(t)

r = 〈I(t)r(t)〉
〈I(t)〉 . (2.1.6)

This can be derived easily when one considers that the steady-state intensities I‖ and I⊥
are time averages of the time dependent intensities I‖(t) and I⊥(t), respectively.

2.2 Fluorescence Resonance Energy Transfer (FRET)

When two fluorophores are in close proximity their electronic systems interact with each
other directly without emitting and absorbing photons, and due to this coupling excita-
tion energy is transferred in between the fluorophores. The farthest reaching interaction
responsible for energy transfer is the dipolar coupling of the electronic systems, and the
resulting energy transfer between fluorophores is termed Fluorescence Resonance Energy
Transfer (FRET). The first correct quantum mechanical description of FRET originates
back to Förster (1948), and the acronym is also often referred to as Förster Resonance
Energy Transfer. In the Förster theory the fluorophores are treated as infinitely small
point like dipoles, an approximation that holds well for fluorophore separations that are
larger than the size of the fluorophore electron systems (Förster, 1948).

2.2.1 Physical model of FRET

A sketch of the FRET scheme is shown in figure 2.3. The fluorophore that is initially in the
excited state is termed donor, and it can transfer its excitation to the other fluorophore,
the acceptor, which is initially in the electronic ground state. Due to energy conservation
one prerequisite for the observation of FRET is the overlap of the donor emission and
acceptor absorption spectra, and that is also the reason for the term “resonance” in the
acronym.
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Figure 2.3: Jabłoński diagram of Fluo-
rescence Resonance Energy Trans-
fer (FRET). Additionally to the
basic fluorescence scheme (see fig-
ure 2.1a) the excitation can travel
from the donor to the acceptor fluo-
rophore. This is caused by dipolar
coupling of the electronic systems
of donor and acceptor (lines be-
tween term systems). Effectively,
the donor fluorescence is quenched
and the acceptor is excited simul-
taneously. Finally, the acceptor re-
laxes to its ground state by emis-
sion of a photon of frequency νAem.

Depending on the strength of the coupling the excited donor can relax to its electronic
ground state either by emission of a photon or by non-radiative energy transfer to the
acceptor that would become fluorescent in the latter case. Likewise, as shown in figure 2.1
there might be also other processes that quench the fluorescence of donor and/or acceptor,
and in an experiment one must account for these processes.

2.2.2 Definition of FRET efficiency

Similar to fluorescence, the energy transfer between two fluorophores can be described by
a rate (Förster, 1948). In the absence of an acceptor the donor has the rate kD = 1/τD of
fluorescence emission, where τD is its fluorescence lifetime (see equation (2.1.2)). In the
case of FRET the excitation is transferred to the acceptor with the rate kT given by

kT = kD
R6

d6 . (2.2.1)

d is the distance between the positions of the transition dipole moments of the fluo-
rophores, and R is the characteristic length scale of the energy transfer, called Förster
distance. The usual nomenclature for the Förster distance is R0, but in this work this in-
dex will be omitted for better legibility. From equation (2.2.1) one recognizes immediately
that the transfer rate increases the shorter the distance between the fluorophores.
A useful dimensionless parameter that quantifies the amount of energy transfer com-

pared to the radiative emission of both donor and acceptor is the FRET efficiency E
defined by

E = kT
kD + kT

= 1
1 + (d/R)6 . (2.2.2)

The range of FRET efficiency lies between 0 and 1. The lower limit is caused by an
infinitely large separation of donor and acceptor or alternatively a Förster distance equal
to zero. A FRET efficiency close to 1 must be handled with care since the assumptions
of Förster theory might be violated.
The Förster distance is a function of different fluorophore properties like the overlap of

the donor emission and acceptor absorption spectra, J , the quantum yield of the donor,
QD, the transition moment orientations relative to the interconnecting line between the
fluorophore positions that enter the orientation factor, κ2, as well as the refractive index
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Figure 2.4: Relative fluorophore orien-
tations in FRET. The donor and
acceptor fluorophores are located
at the positions xD and xA, re-
spectively. Their transition dipole
moments (arrows) lie in the gray
planes. The relative orientation of
the transition dipole moments is
defined by three angles. θD and θA
are the angles between the donor
and acceptor transition dipole mo-
ments and the line drawn between
the fluorophores. ψAD is the angle
between the transition dipole mo-
ments of donor and acceptor.

n of the medium surrounding the fluorophores:

R6 = 8.79 · 10−5 Å
6 cmM
nm4 · κ

2QDJ

n4N
. (2.2.3)

N denotes the Avogadro number, and the spectral overlap J is calculated from the spectral
density of the donor emission fluorescence intensity, fD(λ), and the absorption spectrum
(i.e. the absorption coefficient of the acceptor as function of the excitation wavelength),
εA(λ), by

J =
∫∞

0 dλfD(λ)εA(λ)λ4∫∞
0 dλfD(λ)

(2.2.4)

The wavelength λmust be measured in nm, the fluorescence fD(λ) can have arbitrary units
(but must be a density normalized to unity area), and εA(λ), the absorption coefficient,
must be given in the units of M−1cm−1 in order to get the spectral overlap J in units of
M−1cm−1nm4 and be compatible with equation (2.2.3).

For donor and acceptor fluorophores with a fixed relative orientation the orientation
factor κ2 is given by

κ2 = (cosψAD − 3 cos θD cos θA)2 , (2.2.5)
where ψAD is the angle between the transition dipole moments of the fluorophores, and
cos θD and cos θA are the angles between the transition dipole moments of donor and
acceptor and the line interconnecting the fluorophores (see figure 2.4).

When both donor and acceptor fluorophores are free to rotate and undergo fast reorien-
tation compared to the fluorescence lifetime of the donor in the presence of the acceptor
the orientation effects vanish and κ2 adopts it isotropic value of 2/3 irrespective of the
relative position of the fluorophores. The Förster distance under these conditions will be
called isotropic Förster distance and is abbreviated as Riso. It is related to the Förster
distance by

R = Riso 6

√
3
2κ

2. (2.2.6)

Fluorophore pairs chosen to optimize energy transfer have isotropic Förster distances
usually between 20 and 90Å (Lakowicz, 2006, chapter 13), which is a suitable length for
studies of interaction of proteins and protein complexes.
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2.2.3 Definition of FRET anisotropy

As described in the previous section, the energy transfer in between donor and acceptor
is strongly dependent on the transition dipole moment orientations. Moreover, in the
case of polarized excitation the polarization properties of the light emitted by donor and
acceptor differ since the transfer process acts to reduce the degree of polarization. This
effect is called transfer depolarization and it influences the FRET anisotropy rT. The latter
is defined as the fluorescence anisotropy of the acceptor fluorophore after the polarized
excitation of the donor (equation (2.1.3)).
According to Dale et al. (1979) a randomly oriented ensemble of donors and acceptors

fixed in space with the constant angle ψAD between their transition dipole moments shows
the FRET anisotropy of

rT = 2
5 ·

3 cos2 ψAD − 1
2 . (2.2.7)

The FRET anisotropy carries thus information about the angle between donor and ac-
ceptor transition dipole moments. The limiting values are like for limiting anisotropies
− 1

5 and 2
5 . rT vanishes when the angle between transition dipole moments is equal to the

magic angle ψAD = arccos( 1√
3 ) ≈ 54.7◦.

2.2.4 Measurement of FRET efficiency

In the experiments conducted to collect the data analyzed in this work the fluorescence of
donor and acceptor fluorophores is monitored simultaneously. Since for the calculation of
FRET efficiency it is sufficient to measure the number of photons per time, i.e. the photon
flux, emitted by each type of fluorophore irrespective of the photon frequency, there is no
need to measure a detailed spectrum. Instead, the photon flux is measured by detecting
the photons within a spectral range selected by suitable optical filters. To this end, the
fluorophores must be chosen so as to separate spectrally their fluorescent light.
Let FD(ti) and FA(ti) be the detector signals of donor and acceptor fluorescence ac-

quired at the time ti. FD(ti) and FA(ti) are proportional to the number of photons emitted
by the donor and acceptor during the acquisition time of the detectors, respectively. The
proportionality constant is determined experimentally since it depends on the fluorophore
type, i.e. the emission spectrum, the optical instrumentation and the detectors.
Though there are excellent and sophisticated ways to extract the FRET efficiency from

the measured fluorescence signals (Antonik et al., 2006; Nir et al., 2006; Liu et al., 2010b)
the easiest method (Roy et al., 2008) will be presented here to demonstrate how E can
be obtained.
Given perfect spectral separation of the donor and acceptor fluorescence channels and

assuming that only the donor is excited1, the fluorescence signals FD and FA are propor-
tional on average to the rate of donor fluorescence, kD, and the rate of energy transfer, kT,
respectively. Using equation (2.2.2) the measured FRET efficiency, Emeasured, is obtained
by

Emeasured = FA
FA + γFD

, (2.2.8)

where the correction factor γ compensates for the different quantum yields of donor and
acceptor as well as for the different detection efficiencies mentioned above.

1Often, the donor and acceptor fluorescence detection channels overlap, which is called spectral
crosstalk. Furthermore, direct excitation of the acceptor can occur due to a non-zero absorption
coefficient at the wavelength of the donor excitation light. Fortunately, these effects can be easily
accounted for (see subsection 5.1.3, equation (5.1.1)).
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Having seen how the FRET efficiency can obtained by fluorescence measurement the
next section treats the theory of the particular scenario that occurs typically in biological
applications in which the donor and acceptor fluorophores are bound to a macromolecule.

2.3 FRET in labeled macromolecules

Because of the strong dependence of FRET efficiency on the separation of donor and
acceptor, and also due to the suitable range of distances, FRET is a popular tool to
monitor distance changes (Clegg, 2002; Schuler and Eaton, 2008; Santoso et al., 2010)
and measure absolute distances between directly interacting biomolecules like proteins,
nucleic acids and macromolecular complexes (Mukhopadhyay et al., 2004; Knight et al.,
2005; Andrecka et al., 2008). Stryer and Haugland (1967) used even the terminology of
the “spectroscopic ruler” in respect to FRET.
To measure distances by FRET the macromolecules have to be labeled with donor and

acceptor fluorophores, which are usually aromatic compounds that have absorption and
fluorescence spectra in the visible and near-IR range. Consequently, their fluorescence can
be detected efficiently with the currently available detectors like avalanche photo diodes,
photomultipliers and highly sensitive charged coupled device (CCD) cameras.
Absolutely necessary for the application discussed in this work is the site-specific label-

ing, i.e. donor and acceptor fluorophores are covalently attached to two different positions
on the macromolecule known at least from its primary structure. A popular labeling
approach for proteins is the covalent attachment of fluorophore derivates that contain a
maleimide group, which can be cross-linked with the thiol group of cysteins (Michalet
et al., 2003). Site-specific labeling is then usually achieved by creating single-cystein
mutants of the proteins of interest. Other labeling approaches include labeling with reac-
tive unnatural amino-acids (Kapanidis and Weiss, 2002) and the labeling of lysines, but
the latter approach is mostly unspecific because lysine is a very common amino acid in
proteins.
In order to preserve the biological function a direct attachment of the fluorophore to

the macromolecule is avoided and instead flexible linkers that have the length of several
covalent bonds are used to tether the fluorophore. This section gives an introduction into
the effects on fluorescence anisotropy and FRET caused by the flexible attachment of the
fluorophores.
Furthermore, it will be assumed throughout this work that the macromolecule has a

defined tertiary structure and does not show continuous structure fluctuations, which can
be tested by increasing the time resolution of the instrument.

2.3.1 Fluorescence anisotropy of a macromolecule-bound fluorophore

When compared to direct immobilization of a fluorophore, one expects from fluorophores
immobilized via flexible linkers that the orientational and spatial mobilities are increased
but are still smaller when compared to free fluorophores.
While it is probably difficult to measure the spatial mobility of the fluorophore at

length scales smaller than the linker, a common means to quantify the amount of orienta-
tional freedom is the measurement of the fluorescence anisotropies of donor and acceptor
fluorophores attached to the macromolecules (Lakowicz, 2006, chapter 11). As shown
in figure 2.5, the fluorophore is reoriented due to thermal fluctuations during the time
it stays in the excited state and finally emits a photon at a different transition dipole
moment orientation.
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2.3 FRET in labeled macromolecules
Figure 2.5: Standard model of a

macromolecule-bound fluorophore
exhibiting constrained segmental
motion. The transition dipole
moment of a fluorophore (arrow
in the cone) attached to a large
macromolecule is shown at the
moments of absorption of a photon
with frequency νexc and emission
of a photon with frequency νem. In
between absorption and emission
the fluorophore undergoes a con-
strained segmental motion relative
to the macromolecule. An axially
symmetric orientation constraint
imposed by the macromolecule
is shown here as a cone, its axis
(dashed line) pointing in the
direction of the average transition
dipole moment. On a short time
scale the decay of fluorescence
anisotropy is mainly caused by the
segmental motion. On a longer
time scale also the reorientation of
the macromolecule will contribute
to the decay. Adapted from Dale
et al. (1979).

When there is a difference in the time scales of segmental motion of the attached
fluorophore, ρf, and macromolecule rotation, ρp, then the time-resolved anisotropy will
have an approximately bi-exponential decay (Lakowicz, 2006, chapter 11),

r(t) = (r0 − r∞) exp
(
−
(
ρ−1
f + ρ−1

p
)
t
)

+ r∞ exp
(
−ρ−1

p t
)
. (2.3.1)

The slow decay on the time scale ρp is attributed to the overall rotational motion of
the macromolecule, whereas the fast decay on the time scale (ρ−1

f + ρ−1
p )−1 is attributed

to the reorientation of both the fluorophore and the macromolecule. r∞ is the residual
anisotropy in the reference frame of the macromolecule, i.e. as if all macromolecules were
immobilized but would have random orientations. It quantifies the amount of orientational
freedom of the fluorophore relative to the macromolecule.
In the limit ρf � τ � ρp, where τ is the fluorescence lifetime, the steady-state flu-

orescence anisotropy, r, will approximately coincide with the residual anisotropy in the
reference frame of the macromolecule as a consequence of equation (2.1.6), and the steady-
state r can thus be used instead of r∞.

2.3.2 Influence of segmental motion on the FRET efficiency and anisotropy

The segmental motion of the fluorophores introduced above does also have influence on
FRET efficiency and anisotropy as pointed out by Dale and Eisinger (1974) and Dale
et al. (1979). Their model describes the orientation factor κ2 and the FRET anisotropy
rT in the intermediate region between completely immobile donor and acceptor molecules
(equations (2.2.5) and (2.2.7)) and the complete orientation averaging limit resulting in
κ2 = 2

3 and rT = 0.
The proposed model is based on the assumption that both donor and acceptor fluo-

rophores have fixed positions during the energy transfer but undergo a fast reorientation
constrained by the macromolecule. In that case the relevant transitions, namely, the
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Figure 2.6: Model of FRET for fluorophores exhibiting constrained segmental motion. (a) FRET
between flexibly attached fluorophores. The donor, symbolized by the direction of its tran-
sition dipole moment (arrows in the cone on the left), absorbs a photon of frequency νexc
and undergoes a constrained segmental motion before the excitation is transferred to the
acceptor (arrows in the cone on the right). Likewise does the acceptor before the photon of
frequency νAem is emitted. In the theory of Dale et al. (1979) both constraints are required
to result in axially symmetric distributions of donor and acceptor transition dipole moment
orientations, shown as cones labeled with a “D” and “A”, respectively. The average orienta-
tions of the transition dipole moments are shown as dashed lines. The segmental motions of
the fluorophores as well as the energy transfer are depolarizing steps. (b) Angle definitions
in a FRET pair of flexibly attached donor and acceptor. A FRET pair is shown, the donor
fluorophore at position xD and the acceptor fluorophore at position xA. The relative average
orientations of the transition dipole moments are described by the angles ΘD and ΘA to the
interconnecting line between the fluorophores, and the angle ΦAD between the planes that
contain the average transition dipole moment orientations and the interconnecting line. ΨAD
is the angle between the average transition dipole orientations. Adapted from Dale et al.
(1979).

absorption of a photon by the donor, the energy transfer to the acceptor and the final
emission of a photon by the acceptor occur from different independent transition dipole
moment orientations (figure 2.6a). More precisely, the reorientation time scales of both
fluorophores must be much shorter than the lifetime of the donor in the presence of the
acceptor, so that the fluorophores sample the possible orientations many times before the
transfer takes place in average.
When these assumptions apply, i.e. the so called dynamic orientational averaging limit

is fulfilled, the quickly fluctuating transfer rate can be replaced by its time average, and
equations (2.2.1) and (2.2.2) are replaced by

〈kT〉 = kD

〈
R6〉
d6 and (2.3.2)

E = 1
1 + d6/ 〈R6〉 , (2.3.3)

with the dynamically averaged Förster distance
〈
R6〉 proportional to the corresponding

average orientation factor
〈
κ2〉, 〈

R6〉 =
(
Riso)6 3

2
〈
κ2〉 . (2.3.4)

Under the additional assumption that the orientation distributions of the fluorophores
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are axially symmetric but remarkably without need of a more detailed model, Dale et al.
(1979) derived the average value of the orientation factor as a function of the orientations
of the symmetry axes, i.e. the average transition dipole moment orientations of donor and
acceptor, 〈

κ2〉 = (cos ΨAD − 3 cos ΘA cos ΘD)2 〈dxA〉 〈dxD〉

+
(
1/3 + cos2 ΘD 〈dxD〉

)
(1− 〈dxA〉)

+
(
1/3 + cos2 ΘA 〈dxA〉

)
(1− 〈dxD〉) . (2.3.5)

Here, ΨAD, ΘA and ΘD are the angles that define the relative orientation of the average
donor and acceptor transition dipole moments (see figure 2.6b), and 〈dxD〉 and 〈dxA〉 are the
average axial depolarizations, which are related to the residual fluorescence anisotropies
of donor and acceptor by

〈dxD〉2 = rD,∞
rD,0

and 〈dxA〉2 = rA,∞
rA,0

, (2.3.6)

which can be written as

〈dxD〉2 = 5
2rD and 〈dxA〉2 = 5

2rA (2.3.7)

if the segmental motion of the donor and acceptor is much faster than the fluorescence
lifetime, and if the absorption and emission transition dipole moments of both donor
and acceptor are parallel. It is worth mentioning that the axial depolarizations have an
ambiguous sign when rD/A,∞/rD/A,0 < 1/4. Alternatively, the cosine of ΨAD can be
expressed by the angles ΘA, ΘD and ΦAD, the angle between the planes defined by the
line interconnecting the fluorophores centers and each of the average transition dipole
moments (figure 2.6b),

cos ΨAD = sin ΘD sin ΘA cos ΦAD + cos ΘD cos ΘA. (2.3.8)

Dale et al. (1979) derived also an expression for the transfer depolarization in the
dynamic orientational averaging limit, 〈dT〉,

〈dT〉 = 〈dxD〉
1
2
(
3 cos2 ΨAD − 1

)
〈dxA〉 , (2.3.9)

which is related to the average FRET anisotropy by

〈rT〉 = 2
5 〈dT〉 . (2.3.10)

In this way, the measurement of the fluorescence anisotropy allows for the character-
ization of the orientational freedom of the fluorophores, and measurement of the FRET
anisotropy quantifies the angle between the average orientation of the transition dipole
moments. That, in turn, reduces the inevitable uncertainties of the Förster distance due
to the unknown angles ΘA and ΘD, and can be used to increase the accuracy of distance
measurements as proposed by Dale et al. (1979) and Ivanov et al. (2009). However, these
authors discuss only the minimum and maximum values κ2 can take. In contrast, in this
work the resulting uncertainties in position and distance will be treated in a more elegant
way with probabilistic data analysis.
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2.4 Probabilistic data analysis

Probabilistic data analysis, also called Bayesian data analysis after Reverend Thomas
Bayes’ theorem (Bayes, 1763) that is central to probability calculus, is based upon the
mathematical representation of the degree of belief, or plausibility, as a probability or
probability density. This interpretation was already used by Pierre-Simon de Laplace to
infer the mass of Saturn (Laplace, 1812, premier supplément) and differs fundamentally
from the nowadays common definition of probability as the relative frequency of an event
taken to the limit of an infinite number of events.
Based on the excellent introduction to Bayesian data analysis by Jaynes (2003) and

Sivia (2006), in this section, it will be explained how information about several competing
hypotheses, e.g. the parameter values quantifying a model, can be expressed as probability,
and how probability calculus can be used to merge different sources of information. That
is, in turn, the essence of data analysis and will be applied later on in this work to the
analysis of FRET data.

2.4.1 Probability calculus

Let X be a proposition or statement, and the probability, i.e. belief that X is true, will be
written as p (X|I). The first axiom of probability calculus is that by specifying p (X|I)
the probability p

(
X|I
)
that X is false is already defined implicitly, meaning that

p (X|I) + p
(
X|I
)

= 1, (2.4.1)

with p (false) = 0 and p (true) = 1 defining the certainty that something is either false
or true, respectively. I denotes the background information, i.e. the state of knowledge of
the observer, and the probabilities are conditional to I as symbolized by the vertical bar
“|”.
Equation (2.4.1) can be generalized to continuous variables, resulting in normalization

of the probability density p (X|I), ∫
dXp (X|I) = 1. (2.4.2)

The integration domain will be the whole range where X is defined (e.g. −∞ < X <∞).
This notation will be kept throughout this work. Equation (2.4.2) states that a probability
density is normalized in all variables written left of the vertical bar. The converse is not
true, and in general probability densities are not normalized in the condition variables
right of the vertical bar.
When Y is a second proposition, the joint probability that X and Y are true, abbre-

viated as p (X,Y |I) can be calculated by multiplying the probability that Y is true with
the probability that X is true given Y is true,

p (X,Y |I) = p (X|Y, I) p (Y |I) . (2.4.3)

The product rule above is the second axiom of probability calculus, and Bayes’ theorem
(equation (2.4.4)) can be directly derived from it when the expansion is done with X and
Y interchanged,

p (Y |X, I) = p (X|Y, I) p (Y |I)
p (X|I) . (2.4.4)
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Another useful corollary of equations (2.4.3) and (2.4.2) is the marginalization rule,∫
dY p (X,Y |I) = p (X|I) , (2.4.5)

which works as well when the roles of X and Y are interchanged,∫
dXp (X,Y |I) = p (Y |I) . (2.4.6)

It should be stressed again for clarity that a conditional probability density is not nec-
essarily normalized in the condition variable, and consequently, the integration over a
variable in the condition does not yield unity,∫

dY p (X|Y, I) 6= 1. (2.4.7)

In the next section, it will be shown how to use Bayes’ theorem and the marginalization
rule in order to analyze experimental data.

2.4.2 Bayesian parameter estimation

Let the data d quantify the outcome of an experiment, and θ be the parameters that are
part of a model that describes the measurements. For example, the measurement could
be the acquisition of a signal and the parameter would be the “true” amplitude of the
signal.
Usually, there will be no unique mapping between the model parameters and the data,

for instance due to measurement errors, or because the data is inherently noisy. A common
example for the latter case is measuring the light intensity by counting the number of
photons. In such experiments, the number of photons (data) detected in a time interval
is connected by a probability distribution, the Poisson distribution, to the light intensity,
which is the average number of photons (model parameter) that determines the shape of
the distribution.
The density p (d|θ, I) of the probability distribution that describes the expectation of

possible data that could be produced in the experiment for given model parameters is
called likelihood in Bayesian data analysis. The likelihood is of course conditional on the
background information I that subsumes all information relevant to the experiment.
In order to extract information about the parameters in the light of the measured data,

one must apply Bayes’ theorem and calculate

p (θ|d, I) = p (d|θ, I) p (θ|I)
p (d|I) . (2.4.8)

p (θ|d, I) is called posterior in Bayesian data analysis, and is calculated by multiplying
the likelihood with the prior p (θ|I) and dividing by the evidence p (d|I).
The evidence p (d|I), abbreviated often as Z, is a constant that normalizes the product

of prior and likelihood. It becomes clear that the evidence is a constant since the data d
does not vary once it is measured. Furthermore, when p (d|I) is constant and the posterior
p (θ|d, I) is proportional to the product of prior and likelihood, normalization is necessary
since the likelihood is normalized only as a function of the data but not as function of the
parameters. Consequently, the evidence can be computed by integrating the product of
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likelihood and prior,

p (d|I) =
∫
dθ p (d|θ, I) p (θ|I) . (2.4.9)

Though the model parameters do not appear in the evidence explicitly, this does not
mean that the evidence solely depends on the data. That, in turn, can be recognized by
a closer look on the background information I, since it contains implicitly all information
about the theory applied to the parameter estimation problem, i.e. the parametrization
and the functional form of the likelihood and the prior. The evidence will be important
later on when different models that could describe the same data will be compared.
The prior p (θ|I) encodes the information about the parameters θ without knowledge of

the experimental results, e.g. in the state of knowledge before the experiment was done.
If, for instance, there is information about the parameters from an old measurement it
can be encoded in the prior.
Before focusing on the assignment of priors, consider the example mentioned in the

beginning of this section. Assume that the signal s measured in the experiment can
deviate from the “true” amplitude a of the signal, and that the difference s− a is known
to be normal distributed with the standard deviation σ, the measurement error. In that
case the likelihood can be written as

p (s|a, I) = 1√
2πσ

exp
[
− (s− a)2

2σ2

]
. (2.4.10)

If it is known, for instance from an old measurement, that the “true” amplitude has some
approximate value, a ≈ a0 ± σ0, this can be expressed in the prior,

p (a|I) = 1√
2πσ0

exp
[
− (a− a0)2

2σ2
0

]
. (2.4.11)

One has to keep in mind that equation (2.4.11) is just the observers limited knowledge
about a. Even though this knowledge can be very vague (i.e. when σ0 is large) according
to the “theory” in that example the parameter a can have only one particular value in
“reality”, and therefore it is referred to as the “true” amplitude.
The equations (2.4.10) and (2.4.11) can be used together with Bayes’ theorem (2.4.8)

and the definition of the evidence (2.4.9) to compute the posterior. In this example, it is
possible to write down the posterior in closed form,

p (a|s, I) = 1√
2πσ

exp
[
− (a− a)2

2σ2

]
, (2.4.12)

with a being the weighted mean of a0 and the data s,

a =
a0
σ2

0
+ s

σ2

1
σ2

0
+ 1

σ2
, (2.4.13)

and σ being the propagated errors,

σ =
(

1
σ2

0
+ 1
σ2

)−1/2

. (2.4.14)

The example is also shown graphically in figure 2.7. As a consequence of equation (2.4.14),
the width σ of the posterior is smaller than the width σ0 of the prior, and that in fact, the
prior information contributes to the posterior maximum position as one single properly
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weighted data point. The latter finding remains true even when several independent
measurements are performed (Dose, 2002).
Generally speaking, the more localized the probability density of a variable, i.e. the

narrower the density, the more precise is the information about the variable.
After having demonstrated how the prior information gets updated to the posterior

with the information present in the measured data, the example will be extended in order
to show how marginalization can be applied.
Assume that the measured signal s consists of two contributions, the “true” amplitude

a and a “true” background b. The latter is measured with a reference measurement that
results in the data r. The likelihood p (s, r|a, b, I) will be again normal distributed in the
measured signal s and the reference r, so that it has the maximum at s = a+ b and r = b.
After defining the prior p (a, b|I) and using Bayes’ theorem, the posterior p (a, b, |s, r, I)
can be computed and is shown in figure 2.8.
While the posterior contains the full information available on the model parameters a

and b, only the signal amplitude a might be of practical importance. Nevertheless, the
accuracy of the reference measurement will influence the uncertainties of the amplitude a,
because a and b contribute both to the measured signal s. In classical data analysis this
problem is solved by propagation of errors. Probabilistic data analysis has the inherent
property of propagating the limited information about the parameters if the corresponding
marginal posterior densities are computed. In the example, this means that if b is not of
importance it can be removed from the posterior by integration over all possible values,
a process referred to as marginalization (see equation (2.4.5)),

p (a|s, r, I) =
∫
db p (a, b|s, r, I) . (2.4.15)

What was basically done here is the consideration of all possible values of the background
b for a fixed amplitude a and weighting them by their probability. The result is the
marginal posterior density p (a|s, r, I). One can do the same for the other parameter a to
get p (b|s, r, I) as shown in figure 2.8.
Now, after having seen how less interesting model parameters can be marginalized, the

assignment of priors will be discussed. This topic becomes increasingly important if the
information content of the data is very low.

Figure 2.7: Example of parameter es-
timation. All quantities are shown
as functions of the “true” ampli-
tude a. The posterior p (a|s, I)
(solid gray line), here the proba-
bility density of the “true” ampli-
tude a given the measured signal
s is shown together with the like-
lihood p (s|a, I) (solid black line),
the prior p (a|I) (dashed black line)
and the product of prior and likeli-
hood, p (s|a, I) p (a|I) (dashed gray
line). The posterior is calculated
by dividing the product of likeli-
hood and prior by the evidence Z
(gray area). s = 10, σ = 1, a0 =
12 and σ0 = 1.5 was used in the
drawing.
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Figure 2.8: Example of marginalization. The shape of the posterior p (a, b|s, r, I) shown in
gray scale, indicates that the signal amplitude a and the background b are correlated. The
marginal posterior densities p (a|s, r, I) and p (b|s, r, I) (top and left side, solid lines) are
shown in the top and left panels.

2.4.3 Assignment of priors

Jaynes (1963, 1968) generalized the principle of maximum entropy to continuous variables.
A prior p (θ|I) that reflects the complete lack of information about the parameter θ can
be therefor found by maximizing the entropy S,

S = −
∫
dθ p (θ|I) ln

[
p (θ|I)
m(θ)

]
(2.4.16)

under the constraint of normalization∫
dθ p (θ|I) = 1. (2.4.17)

This is solved usually with the method of Lagrange multipliers (Bronstein et al., 2000).
In equation (2.4.16), m(θ) denotes a function (in fact a Lebesgue measure) that ensures
that the entropy S is invariant under changes of parametrization, since it transforms in
the same way like p (θ|I).
Beside the normalization, also other constraints that represent some piece of information

can be accounted for. A constraint could be, for example, a known average value or
variance of θ, but for this work only non-informative priors are of importance, which are
defined on the basis of maximum entropy and normalization alone.
A maximum entropy prior has the property that given the constraints a minimum of

information will be encoded. For example, when m(θ) is constant, no particular value of θ
would be preferred. It can be shown in general that in the case of complete ignorance, i.e.
lack of any other information besides the normalization property in equation (2.4.17), a
maximum entropy prior p (θ|I) is proportional to the measure m(θ) (Sivia, 2006, chapter
5).
At first, it seems that the problem of prior assignment is just deferred to the assignment

of the measure m(θ). The solution to this was proposed again by Jaynes (1963), and
according to him, m(θ) should be chosen, so that a non-informative prior (and hence
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m(θ)) is invariant under a transformation group of the parameter space that reflects the
fundamental invariances of the inference problem. In the following, this principle will
be discussed with the help of two particular examples, a location and a scale invariance,
occurring often in data analysis.

Location prior

Imagine for example that two observers A and B measure the location of an object in
two different coordinate systems shifted by the distance α, so that B’s location θ′ can be
calculated from A’s θ by

θ′ = θ + α. (2.4.18)
Equation (2.4.18), a translation, represents a transformation group since α can have any
arbitrary value. Let A and B each assign a prior of the form

p (θ|I) = f(θ) and p
(
θ′|I
)

= g(θ′), (2.4.19)

where f and g are normalized, positive-definite functions. When on the one hand A and
B are both completely ignorant about the object’s location the prior probabilities reflect
the same state of knowledge and should transform according to

p (θ|I) dθ = p
(
θ′|I
)
dθ′. (2.4.20)

On the other hand, since neither A’s nor B’s reference frame is to be preferred, both A
and B should assign a prior of the same functional form in θ and θ′, respectively, so that
f = g, and finally

f(θ)dθ = f(θ′)dθ′. (2.4.21)
After inserting equation (2.4.18) and as dθ′ = d(θ + α) = dθ, equation (2.4.21) reads

f(θ) = f(θ + α), (2.4.22)

which is satisfied by choosing
f(θ) = constant. (2.4.23)

Hence, the constant prior p (θ|I) is invariant under arbitrary translations of the frame
of reference. Since p (θ|I) does not contain any structure it is often referred to as a flat
prior. In contrast, in the next example a prior will be discussed, which is not flat but yet
uninformative.

Jeffreys prior

Assume now that θ is a quantity that describes a scale, i.e. a positive observable, for
example the length of an object. Imagine two observers A and B who want to measure
the length of an object that is denoted by θ and θ′ in the respective coordinate systems.
Since A and B can use completely different units, e.g. the metric and the imperial unit
systems, the observables θ and θ′ are related by the following scale transformation,

θ′ = βθ, (2.4.24)

where β is a factor that converts the units of A into the units of B. Now, the argument
to derive a prior for θ follows the same steps as before. Again, both observers assign a
prior of the general form stated in equation (2.4.19), and when both are in the same state
knowledge, their prior probabilities interconvert as shown in equation (2.4.20). Assume
now that A and B are in a state of complete ignorance, then they should assign a prior
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of the same functional form, which results in equation (2.4.21). Now, after substituting
equation (2.4.24) into equation (2.4.21), and since dθ′ = d(βθ) = βdθ, the function f(θ)
has to satisfy

f(θ)dθ = f(βθ)βdθ, (2.4.25)
which is solved by choosing

f(θ) = constant

θ
. (2.4.26)

The prior p (θ|I) = constant/θ was proposed by and named after Sir Harold Jeffreys
(1939). It is invariant under arbitrary scale transformations and assigns the same proba-
bility to every order of magnitude. The latter is shown easily when one considers a flat
prior in the logarithm of θ, i.e. p (ln(θ)|I) = constant, which is equivalent to Jeffreys
prior, since

p (ln(θ)|I) d(ln(θ)) = constant · 1
θ
dθ = p (θ|I) dθ. (2.4.27)

Jeffreys prior should be used when there is no information about the scale of a parameter.
Although it is not flat and assigns more probability to small values of θ compared to large
values, it encodes only the information that θ is a scale variable.
An application of Jeffreys prior to an example from physical chemistry is shown in the

following. Imagine two spectroscopists who want to infer the spectral position of a peak.
One of them prefers to work with wavelengths and tries to estimate λ, whereas the other
favors wavenumbers and would like to estimate ν̃. Both quantities are related by λ = 1/ν̃.
It is obvious that λ and ν̃ are both scale variables since they are positive and describe

the scale of the wavelength of light and the scale of the energy of a transition. A Jeffreys
prior in the wavelength λ transforms into an equivalent Jeffreys prior in the wavenumber
as follows,

p (λ|I) dλ = constant

λ
dλ = constant · ν̃

∣∣∣dλ
dν̃

∣∣∣ dν̃ = (2.4.28)

= constant · ν̃
∣∣∣− 1
ν̃2

∣∣∣ dν̃ = constant

ν̃
dν̃ = p (ν̃|I) dν̃. (2.4.29)

The choice of different priors, in particular a flat prior, would lead to inconsistencies in
the prior knowledge of both spectroscopists.
In conclusion, the principle of maximum entropy together with the transformation group

invariance of the measure m(θ) lead to a unique and objective definition of the prior in
both the presence and absence of additional information (Jaynes, 1968).
Now, after having laid the foundations for the solution of parameter estimation prob-

lems, the next section deals with the visualization of probability densities, as well as with
the calculation of an estimate and an error margin from the posterior information.

2.4.4 Characterization of continuous probability distributions

Although in Bayesian data analysis the information has the form of a probability density,
which exactly reflects the fuzziness of the knowledge, often it is difficult to display the
density adequately. This is especially true when the density is defined in more than one
dimension, and therefore it is convenient to subsume the information in a few numbers that
state the position of the probability maximum and the width of the density. Alternatively,
one can use other easy-to-display means of visualization that are not as fuzzy as a density
plot or scatter plot.
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Figure 2.9: A two-dimensional probability density p (θ1, θ2) (grayscale) shown with iso-lines at
30%, 60% and 90% of the maximum density (a) and credible intervals containing 68% and
95% probability (b).

Visualization by iso-surfaces

In two or three parameter space dimensions one can usually depict a smooth and contin-
uous probability density p (θ) by a set of iso-surfaces Si that contour the density at a few
levels pi, e.g. at the 90%, 60% and 30% fractions of the probability density maximum,

Si = {θ|p (θ) = pi} . (2.4.30)

The iso-surface will be a line when the probability density is two-dimensional (figure 2.9a),
and it will be a surface when it is three-dimensional.
Instead of contouring p (θ) at some fraction of the maximum one can display iso-surfaces

that are related to the amount of probability Pj contained inside the volume enclosed by
the surface, e.g. 68% or 95% (figure 2.9b),

SPj = {θ|p (θ) = pj ,

∫
dθ

p(θ)>pj

p (θ) = Pj}. (2.4.31)

Drawn for a posterior probability density p (θ|data, I) the volumes enclosed by these
iso-surfaces are called credible intervals and are similar to confidence intervals in classical
statistics. Credible intervals are the smallest volumes in the parameter space that contour
the given probability. Later on in this work three-dimensional credible intervals will be
called credible volumes.
Note that iso-surfaces and credible intervals are only means to display a probability

density, and that the complete information is contained in the density itself.

Specification of uncertainties

Sometimes it is necessary to compress the information even more by stating only a few
numbers. Usually, the position of the maximum of the probability density, θmax, is spec-
ified together with an uncertainty. This is equivalent to an expansion of ln p (θ) up to
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second order,

ln p (θ) ≈ const+ 1
2 (θ − θmax)T

[
∂2 ln p (θ)

∂θ2

]
θ=θmax

(θ − θmax) , (2.4.32)

where the linear term has vanished since ln p (θ) is expanded at the maximum θmax, and
(.)T denotes the transposition operation. Equation (2.4.32) is equivalent to a Gaussian
approximation of p (θ). The uncertainty is computed from the second derivative matrix
of ln p (θ), also called the Hessian matrix H = ∂2 ln p (θ) /∂θ2 evaluated at θmax. When it
is not important to report correlations of the different parameter space dimensions, the
uncertainty of the ith component θi can be stated in the form θi = θi,max ± ∆θi. The
uncertainties ∆θi are calculated from the diagonal elements of the inverse Hessian matrix,

∆θi =
√
− (H−1)ii. (2.4.33)

They are equivalent to the standard deviations of the marginalized Gaussian approxima-
tion of p (θ) at its maximum. If correlations are important it is necessary to write down
the complete matrix −H−1 instead of stating only the marginal errors ∆θi.
Since the approximation in equation (2.4.32) is valid only when there is one symmetric

peak in the posterior, the above shorthand notation cannot be applied if the probability
distribution is highly asymmetric or even has more than one maximum. When a quantity
and an uncertainty are given one should always keep in mind that this is a short-hand
notation for a Gaussian approximation of the probability density maximum.
An alternative way to describe a probability density is stating its expectation value 〈θ〉,

〈θ〉 =
∫
dθ θp (θ) , (2.4.34)

together with the uncertainty given by its covariance matrix C

C =
∫
dθ (θ − 〈θ〉)T (θ − 〈θ〉) p (θ) . (2.4.35)

The uncertainty (standard deviation) in the parameter space dimension i is obtained from
the covariance by computing the square root of the diagonal elements of C.
Note that in the case that p (θ) is exactly a multivariate Gaussian the covariance matrix

will be equal to the negative of the inverse Hessian matrix, C = −H−1.
After this useful section the focus will be on the comparison of different models that

describe the same data.

2.4.5 Bayesian model selection

When there are different competing models or theories for the same data, Bayesian reason-
ing can be used to calculate the probabilities that a certain model is valid. For example,
the models might differ in the functional form of the data, e.g. when a spectrum is mea-
sured different line shapes might be possible. Because of broadening of the spectral lines
it also might not be obvious how many lines contribute to the measured spectrum. In the
following section it will be shown using an example, how probabilistic data analysis can
be used to compare different models.
Imagine for example that the observable y is measured as a function of some experi-

mentally controllable quantity x, so that the data {yi} = y1, y2, . . . , yN is available for
the values {xi} = x1, x2, . . . , xN . Assume that there are two models, A and B, to which
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different functions fA(x) and fB(x) are underlying to the data apart from the unknown
deviations (i.e. measurement errors) {εi} = ε1, ε2, . . . , εN ,

yi = fA/B(xi) + εi. (2.4.36)

Say that in the model A the data does not show any dependence on x,

y = fA(x) = c, (2.4.37)

where c, the “true” value of the observable y, is a model parameter. In the competing
model B the data is a linear function of x,

y = fB(x) = a+ bx, (2.4.38)

where a and b are the offset and slope of the line that describes y as a function of x.

Assume now that though the exact values of the experimental errors {εi} are not
known the distribution of {εi} is known, so that the likelihoods p ({yi}|c, A, I) and
p ({yi}|a, b, B, I) can be stated for the models A and B, respectively. In addition, the
model parameter priors p (c|A, I) and p (a, b|B, I) of both models A and B must have
been assigned. In order to infer whether model A or B is more plausible given the mea-
sured data {yi}, the probabilities p (A|{yi}, I) and p (B|{yi}, I) have to be computed.
After using Bayes’ theorem the probabilities of each model are

p (A|{yi}, I) = p ({yi}|A, I) p (A|I)
p ({yi}|I) and

p (B|{yi}, I) = p ({yi}|B, I) p (B|I)
p ({yi}|I) , (2.4.39)

with the total evidence p ({yi}|I) being a constant. The probabilities p (A|I) and p (B|I)
are prior probabilities of the models A and B, which encode whether one model is preferred
over the other. They should not be confused with the priors of the model parameters.
When there is no reason to prefer one of the models then both probabilities p (A|I) and
p (B|I) should be equal.

The evidences of each model, p ({yi}|A, I) and p ({yi}|B, I), must be computed as in
equation (2.4.9) from likelihood times prior integrated over the parameters,

p ({yi}|A, I) =
∫
dc p ({yi}|c, A, I) p (c|A, I)

p ({yi}|B, I) =
∫
da

∫
db p ({yi}|a, b, B, I) p (a, b|B, I) . (2.4.40)

According to equations (2.4.39) and (2.4.40) the probability of a model rises the larger
the evidence of that particular model.

In order to get rid of the constant probability p ({yi}|I), the so called odds ratio can be
computed,

p (A|{yi}, I)
p (B|{yi}, I) = p ({yi}|A, I)

p ({yi}|B, I) ·
p (A|I)
p (B|I) . (2.4.41)

An odds ratio > 1 would support model A over model B and vice versa. If, as in
this example, the models have a different number of parameters and thus differ in their
complexity, it can be shown with the help of equation (2.4.41) that usually the model
with less parameters (here model A) should be preferred when both models explain the
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data equally likely.2
Of course, also more than two models can be compared at once, but that changes merely

the normalization probability in the right hand side of equation (2.4.39) and the finding
that the probability of a model is proportional to p (data|model, I) · p (model|I) remains
unaffected.
In the next section some challenges will be discussed that are often encountered in

“real life” applications of probabilistic data analysis. They usually appear when one
is confronted with marginalization of a posterior distribution or the calculation of the
evidence of a model.

2.4.6 Application to real problems
When probabilistic data analysis is applied to real problems, oftentimes the evidence as
well as marginal posterior distributions cannot be computed analytically any more.
Also the evaluation of the posterior on a regularly spaced grid, which could be used as

an approximation in order to compute the evidence by “brute force” methods becomes
inapplicable when the parameter space has too many dimensions: in that case, the number
of supporting points and posterior evaluations will become too large and the problem is
infeasible to calculate in a reasonable time.
Fortunately, it is often not necessary to know the posterior value on every point of a

grid, as many of the evaluations would yield a probability density close to zero, since
most of the posterior probability is often concentrated in a small region of the parameter
space. This can be used to tackle the problem of representation and the calculation of the
evidence by concentrating on a computationally feasible number of supporting points, so
called samples, which are placed in parameter space regions of substantially high posterior
probability density.

In the next section, some techniques used to obtain samples from probability densities
will be discussed.

2Model selection based on the model complexity is often called of Occam’s razor. This common
practice is reasonable when initially none of the models is preferred, i.e. prior probabilities of the
models are approximately equal, p (A|I) ≈ p (B|I), and hence drop out of equation (2.4.41). For
simplicity it will be assumed that in both models there is a parametrization, so that the prior of the
model parameters is constant and the posterior is proportional to the likelihood. When both models
describe the data equally well then both likelihoods will have similar optimal values that will be the
main contribution to the evidence of the model. In the more complex model the prior probability
of parameter values close to the likelihood maximum will be usually smaller compared to the more
simple model because the prior (more precisely its support) will occupy a larger parameter space
volume. In other words it will be less probable to have parameter values that would explain the
data in the complex model compared to the simple one because it is easier to “detune” the complex
model.
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Figure 2.10: Samples representation of a probability density. A probability density, here an
example in two dimensions, p({θi}) = p(θ1, θ2) (gray scale, left), can be approximately
represented by a set of samples {θi}j (dots) that are drawn with the probability p({θi}j).
Approximate marginal densities can be computed by creating normalized (area = 1) his-
tograms in the parameter space dimensions of interest and neglecting the other dimensions
(right).

2.5 Sampling from probability densities

When marginal posterior densities have to be calculated in order to project a probability
density onto a few relevant parameter space dimensions, or when the evidence of a model
needs to be computed, it is often infeasible to do this by analytic techniques. The “brute
force” numerical approximation of these integrals as done by evaluating the product of
prior and likelihood on a grid and subsequently using quadrature is applicable only when
the number of parameter space dimensions to integrate over is small as it becomes in-
efficient in high dimensions. The problem of the integration of probability densities in
high dimensional parameter spaces has been already addressed in the field of statistical
physics. A popular approach is the use of Monte Carlo techniques that are based on the
representation of a probability density by a set of samples.
The probability to draw a sample at the parameter space position {θi} = (θ1, θ2, . . . , θN )

from the probability density p({θi}) is given by p({θi})d{θi}, where d{θi} is the infinites-
imal parameter space region around the position {θi}. When many of such samples are
drawn, the density of the samples in the parameter space divided by the number of samples
will approximate the probability density p({θi}) (see figure 2.10).
By using these samples one can calculate for example approximate average values of an

arbitrary function f({θi}),

〈f〉 =
∫
d{θi} f({θi})p({θi})

≈ 1
M

M∑
j=1

f({θi}j). (2.5.1)
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Here, {θi}j denotes the jth sample of M samples in total, which were drawn with the
probability p({θi}j)dp{θi}. Also approximate marginal densities can be constructed from
such a set of samples by creating histograms normalized to area = 1 of a subset of
parameters.
In the next sections two methods will be discussed that were used to solve the inference

problems appearing in this work. First, the well known technique of Markov chain Monte
Carlo and the Metropolis algorithm will be explained. Thereafter, the nested sampling
algorithm will be introduced that will be used later on to compute model evidences and
to produce also sets of samples that approximate the posterior.

2.5.1 Markov chain Monte Carlo
A popular technique to draw samples from high dimensional probability distributions is
Markov chain Monte Carlo (MCMC) that has its origin in statistical physics (Metropolis
and Ulam, 1949). A good introduction is found for example in Bishop (2006, chapter 11)
and Neal (1993). The MCMC method is often based on a random walk in the parameter
space of the probability density p({θi}) to be sampled. In analogy to classical physics,
one can imagine a particle that is subject to thermal fluctuations but trapped in a poten-
tial landscape U({θi}) = − ln [p({θi})] that is constructed from the probability density
p({θi}). When the particle is in equilibrium, it will explore the whole potential landscape
driven by the fluctuations. In the limit of an infinitely long random walk the distribution
of positions {θi}t occupied will be equal to the Boltzmann distribution that is of course
exactly p({θi}).

Definition of a Markov chain

The random walk is realized in a way that the position {θi}t occupied at the discrete
time t depends only on the preceding position {θi}t−1 but not positions {θi}t−2, . . . , {θi}0
further in the past, which makes the positions {θi}t with t = 0, . . . , N a first order Markov
chain. The probability p ({θi}t|{θi}t−1) to obtain a position {θi}t based on the preceding
position {θi}t is called the transition probability and will be denoted by Tt({θi}t, {θi}t−1)
in the following. When the transition probabilities do not depend directly on t, i.e. when
Tt = Tt′ ≡ T for any two times t and t′ then the Markov chain is called homogeneous.
In order for a homogeneous Markov chain to converge to the equilibrium distribution

p({θi}) it is sufficient (but not necessary) that the latter is invariant or stationary with
respect to the Markov chain, i.e.

p({θi}) =
∫
d{θi}′T ({θi}, {θi}′)p({θi}′). (2.5.2)

This property can be achieved by choosing the transition probabilities to satisfy the
condition of detailed balance,

T ({θi}′, {θi}) p({θi}) = T ({θi}, {θi}′) p({θi}′), (2.5.3)

which requires that the flux of probability from {θi} to {θi}′ cancels the reverse flux from
{θi}′ to {θi}, which is similar to what happens in a chemical reaction in equilibrium. A
Markov chain is called reversible when it satisfies detailed balance.

The Metropolis algorithm

Metropolis et al. (1953) proposed a way to construct a reversible Markov chain with
the desired stationary probability distribution p({θi}) as follows: First, for a given po-
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sition {θi}t at time t a possible next position {θi}t+1 is proposed with the probability
pprop ({θi}t+1|{θi}t). The only requirement on the proposal probability is that it is sym-
metric with respect to the two positions,

pprop ({θi}t+1|{θi}t) = pprop ({θi}t|{θi}t+1) . (2.5.4)

The proposed position can be then accepted (A) or rejected (A) with the probability

p (A|{θi}t+1, {θi}t) = min
(

1, p ({θi}t+1)
p ({θi}t)

)
. (2.5.5)

When the proposed position is accepted it becomes the “current” position in the random
walk. In the case of a rejection the random walk remains in the old position and the new
position {θi}t+1 is set to the old position {θi}t.
It is easy to show that the Markov chain is reversible when equations (2.5.4) and (2.5.5)

hold. Because only the ratio of the probability densities p ({θi}t+1) /p ({θi}t) appears in
equation (2.5.5) one might replace p({θi}) with a density p̃({θi}) that is not normalized
but proportional to p({θi}) without changing the sampling. This property is especially
useful for Bayesian parameter estimation since the posterior is known often only up to a
normalizing constant (the evidence), provided the prior and likelihood can be evaluated.

Convergence consideration

A second important property needed for a robust MCMC is the convergence of the Markov
chain to the probability distribution p({θi}) irrespectively of the initial position {θi}0.
This property is called ergodicity, and it can be shown (Neal, 1993) that a homogeneous
Markov chain will be ergodic already under weak restrictions on the transition probabili-
ties and the invariant distribution (Bishop, 2006, chapter 12).
Of practical importance is the time it takes the chain to converge to p({θi}) since for

shorter times the chain will not be in equilibrium and the produced samples should not
be used. Even long after convergence the samples will still be highly correlated, and when
independent samples are needed, the samples in between have to be discarded.

Monte Carlo Moves

Usually the proposal probability is a normal distribution centered at {θi}t, but it is also
possible to use other distributions that satisfy the symmetry condition in equation (2.5.4).
Such proposal probability distributions are called moves. One can even combine several
different moves, by for example deciding at random with a constant probability pm, which
move m will be used to propose the next position, so that

pprop
(
{θi}′|{θi}

)
=
∑
m

pm pprop,m
(
{θi}′|{θi}

)
, (2.5.6)

where pprop,m ({θi}′|{θi}) is the proposal probability of the mth move. That strategy is
useful to reduce the time of convergence and the time in between independent samples.
An example of different moves would be the proposal probabilities pprop,m ({θi}′|{θi})
that change only the mth component of the parameter vector {θi}. The application of
these moves would be then equivalent to deciding, in which dimension to move by choosing
m proportional to pm, and then proposing a new position {θi}′ = (θ1, . . . , θ

′
m, . . . , θN ).

Another example would be the mixing of moves with different step sizes.
After this short introduction to Markov chain Monte Carlo for sampling a probability
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density p({θi}), in the next subsection a Monte Carlo method will be addressed that can
be used to integrate a probability density.

2.5.2 Nested sampling

Nested sampling was developed by Skilling (2006) and can be used to compute the evidence
in probabilistic data analysis. Up to now, it was mainly applied in the fields of astrophysics
and cosmology (Shaw et al., 2007; Feroz et al., 2010). It can be useful in problems in which
phase changes occur, i.e. when there are one or more small high-probability density regions
in the parameter space that contain a substantial amount of the total probability, while
other, much larger regions have low probability densities. Such problems are difficult to
solve with other Monte Carlo methods like simulated annealing, since the high-probability
density regions must be found, which might be difficult when the Markov chain is located
initially in a large low probability density regions (Skilling, 2006).
In contrast, nested sampling is based on the compression of a set of samples referred

to as objects. The algorithm starts with an initial set of objects drawn from the prior
and proceeds by repeatedly replacing the object with the smallest likelihood value by a
new object drawn from the prior that has a higher likelihood. In this way, the objects are
compressed into parameter space regions that have high likelihood values.
Unlike the Metropolis algorithm, Nested sampling is not a technique to obtain samples

from a probability density directly. Instead, it is a protocol that uses samples from the
constrained prior drawn by other sampling methods to compute the evidence. However,
one can reuse the samples produced during nested sampling to get a set of posterior
samples as shown at the end of this section.
In the following, the abstract concept of the sorted likelihood function will be introduced

first. This concept is important to explain how the evidence can be computed with nested
sampling, which will be shown thereafter.

Sorted likelihood

To understand the principle of nested sampling consider the prior p ({θi}|I) ≡ π({θi}) and
the likelihood p (data|{θi}, I) ≡ L({θi}). Imagine now that the parameter space can be
partitioned into small volume elements δVk, in which the likelihood has the approximate
value Lk (figure 2.11a).
The amount of prior probability inside these volumes is equal to

δπk =
∫

{θi}∈δVk

d{θi} π({θi}), (2.5.7)

and by adjusting the size of the individual volume elements δVk the corresponding prior
probability elements δπk can be made equally sized, δπk ≡ δπ.
In this notation, the evidence Z (equation (2.4.9)) is approximately

Z ≈
∑
k

Lkδπk =
∑
k

Lkδπ. (2.5.8)

A natural order of the prior probability elements is given by the corresponding likelihood
values Lk, and one could require an ordering by descending likelihood, Lk ≥ Lk+1. Simi-
larly, the whole prior volume can be sorted like this when the limit to infinitely small prior
probability elements, δπ → dπ, is taken. In this case, the sorted prior mass ξ is formally
defined as the prior probability accumulated in the parameter space volume where the
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Figure 2.11: Sorting the likelihood. (a) Segmentation of the parameter space. The likelihood
L({θi}) is shown as a function of the parameters (gray scale). The parameter space can
be subdivided into small regions δVk with approximately equal likelihood (stripes in be-
tween black lines) containing an equal amount of prior probability δπk = δπ. In the two-
dimensional example shown here there are 10 regions δVk. For simplicity the prior was taken
to be constant. (b) The sorted likelihood function, L(ξ), is plotted as a function of the sorted
prior mass ξ. The prior probabilities πk contained in the parameter space regions δVk are
shown on the ξ − axis. Each δπk corresponds to the volume δVk in (a). The area (gray)
under the sorted likelihood function is equal to the evidence Z.

likelihood exceeds a given value λ,

ξ(λ) =
∫

L({θi})>λ

d{θi}π({θi}). (2.5.9)

Note that this is only a formal definition of the sorted prior mass, and that ξ(λ) will be
computed based on an estimate later on.
The element of sorted prior mass, dξ, is then equal to the element of prior probability

defined before, dπ. The likelihood can be regarded as a function of the sorted prior mass
ξ by defining the sorted likelihood function as follows,

L(ξ) ≡ λ. (2.5.10)

By comparison with equation (2.5.8) in the limit of infinitesimally small prior probability
elements it is obvious that the evidence Z is simply the area below the sorted likelihood
function L(ξ),

Z =
∫
dξL(ξ), (2.5.11)

as shown in figure 2.11b.

The nested sampling algorithm

Nested sampling is a Monte Carlo technique that uses the sorted likelihood function to
compute the evidence. It is based upon a collection of M independent objects that are
uniformly distributed within the interval [0, ξ∗). The uniform sampling in the constrained
interval of the sorted prior mass is equivalent to the sampling of the prior π({θi}) subject
to the likelihood constraint L({θi}) > L(ξ∗) ≡ L∗.
Initially, at iteration j = 0, ξ∗ is set to 1, and, consequently, there is no likelihood
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Figure 2.12: Principle of nested sampling. The nested sampling scheme displayed in the pa-
rameter space (a) and the sorted likelihood function L(ξ) (b). The first four iterations are
shown. Objects from the collection are shown as black and gray dots. The arrows indicate
the replacement of the object with the lowest likelihood by a new object with a higher like-
lihood drawn from the constrained prior (gray dots). The respective constraints are shown
as black lines in the left panel. The first four weights wj = Lj · (ξj−1 − ξj) are shown in the
right panel as gray rectangles (magnified view in the inset).

constraint for which reason all objects are sampled from the unconstrained prior. At
each following iteration j the object with the lowest likelihood value is identified and the
corresponding likelihood and parameter values are saved in the list of samples as {θi}j
and Lj = L({θi}j). The likelihood constraint is then set to L∗ = Lj , and the object with
the lowest likelihood is replaced by another one sampled from the prior subject to the
updated constraint. Consequently, the M objects become more and more constrained to
regions of high likelihood as the algorithm advances (figure 2.12a).
When observed on the axis of the sorted prior mass, the M objects become compressed

towards ξ = 0 and leave behind a sequence of discarded samples at the positions ξj with
likelihoods Lj . If the algorithm proceeded far enough to the left of the ξ-axis one could
calculate the evidence approximately from these samples by adding the rectangular areas
wj in between successive samples (figure 2.12b),

Z ≈
∑
j

wj =
∑
j

Lj · (ξj−1 − ξj), (2.5.12)

In that way, each sample ξj is attributed a weight wj = Lj · (ξj−1 − ξj).
Unfortunately, the exact position of the samples on the ξ− axis is not known. Instead,

one can estimate the average position and use it in equation (2.5.12). To do so, consider
first the shrinking ratio tj = ξj/ξj−1 of two successive sorted prior masses ξj and ξj−1.
As stated by Skilling (2006), it is distributed as

p (tj) = MtM−1
j . (2.5.13)

The above equation can be shown easily: Assume that the M objects are placed one at
a time and with uniform probability in the interval [0, ξj−1). First, the outermost object
(i.e. the object with largest ξ) is chosen out of M objects in total, which can be done in
M realizations, which explains the first term in the right hand side of equation (2.5.13).
However, the outermost object must be placed at the position ξj to be consistent with
the definition of the shrinking ratio. The remaining objects have to be placed then in the
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interval [0, ξj), which is done with the probability of ξj/ξj−1 = tj for each of the M − 1
objects, which explains the remaining term tM−1

j .
The mean and standard deviation of the natural logarithm of the shrinking ratios,

ln(tj), are consequently (Skilling, 2006)

〈ln tj〉 = −1/M, (2.5.14)
∆ ln tj = 1/M.

The position of the samples on the ξ axis can be expressed as the product of successive
shrinking ratios,

ξj =
j∏

k=1

tk, (2.5.15)

in which each shrinking ratio is independently distributed according to equation (2.5.13).
Hence, the average and standard deviation of ln ξj is

〈ln ξj〉 = −j/M, (2.5.16)
∆ ln ξj =

√
j/M.

When these estimates are used instead of the unknown exact positions in equation
(2.5.12) the further approximated evidence is given by the sample weights (rectangular
areas in figure 2.12b),

Z ≈
∑
j

Lj · [exp (〈ln ξj−1〉)− exp (〈ln ξj〉)] =
∑
j

Lj ·
[
exp
(
− j − 1

M

)
− exp

(
− j

M

)]
.

(2.5.17)
An example of this approximation is shown in figure 2.13a. Usually, the weights will be
very small at the beginning and at the end of the nested sampling run and will have a
maximum in between (figure 2.13b). This happens because at first the vanishingly small
likelihood values will dominate the widths of the rectangles. As the likelihood rises rapidly
the weights will increase though the widths ξj − ξj−1 will shrink. At the end, when all
objects are crowded close to the maximum of the sorted likelihood function the extremely
small widths of the rectangles will dominate the high likelihood values that cannot rise
as much as in the beginning, and the weights wj will be small again.
Because the actual values of the sample positions ξj deviate from their average, the

evidence is accompanied by an uncertainty inherent to the Monte Carlo approach. Since
the logarithm of the evidence rather than the evidence itself is distributed symmetrically
it is more convenient to state the mean and standard deviation of lnZ,

〈lnZ〉 ≈ ln

(∑
j

wj

)
, (2.5.18)

∆ lnZ ≈
√
H

M
.

Here, the logarithmic uncertainty ∆ lnZ is approximately given by the number of objects
M and the information or negative entropy, H, of the posterior relative to the prior,

H ≈
∑
j

wj
Z

ln
(
Lj
Z

)
. (2.5.19)
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Figure 2.13: Estimated sample weights. (a) The estimated sample weights wj (gray rectangles)
add up to the approximate evidence Z. The deviations of the sample positions (dots) from
the exact values on the sorted prior mass axis ξ are visible as horizontal shifts off the sorted
likelihood function L(ξ). (b) Estimated weights wj as function of the iteration j.

The nested sampling algorithm should be terminated when a substantial fraction of the
evidence Z was acquired, i.e. when the collection of objects passed most of the area under
the sorted likelihood function. Since the main contribution to Z occurs usually where ξ ≈
exp(−H) (Skilling, 2006), the algorithm may be terminated when the iteration number
significantly exceeds MH, as the sample produced at iteration j = MH is approximately
at the position ln ξj=MH ≈ −j/M |j=MH = −H.

Parallelization

When nested sampling is run multiple times, for instance on different computers, one can
merge the resulting samples in a straight forward way. Assume that the samples {θi}(r)j
with corresponding likelihoods L(r)

j and (hypothetical) positions on the sorted prior mass
axis ξ(r)

j were obtained in separate nested sampler runs r, each run having a collectionMr

objects. These samples can be ordered by ascending likelihood and basically treated as
the result of only one nested sampling run with a total of M =

∑
r
Mr objects (Skilling,

2006).

Reweighting the samples

Because the samples {θi}j acquired during nested sampling have different weights wj ,
they cannot be used to display the posterior or its marginal distributions directly. In
order to obtain equally weighted samples, i.e. samples drawn from the posterior, one can
apply staircase sampling (Sivia, 2006, chapter 9), which is similar to importance sampling
but requires to draw only one random number and ensures that a sample cannot be drawn
twice.
First a cumulant “staircase” Sk is constructed,

Sk =
k∑
j=1

wj
wmax

, (2.5.20)

where wmax = maxj wj is the largest weight of the nested samples. The largest step in
the staircase will have thus the height 1. The staircase is now used to choose a subset
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Figure 2.14: Staircase sampling. The

cumulant staircase, Sk, is plotted
versus the sample number, k. A
sample is selected when its “stair”
is “hit” by a horizontal line at the
offset u + n, where u is a random
number uniformly distributed in
[0, 1), and n is integer. The selected
samples are indicated by arrows,
and the corresponding “stairs” are
drawn with a thicker line. In the
drawing, the sample k = 8 has
the largest weight, and therefore a
“stair” of height 1. Independently
of the random number drawn it will
be selected always.

of nested samples {θi}eqn that have equal weight. To this end, first, a random number u
uniformly distributed in [0, 1) is drawn. Then, for each integer number n = 0, 1, . . . , the
sample is selected that has the smallest index, k, and, in addition, possesses a step Sk in
between u+ n and u+ n+ 1 in the stair case (figure 2.14),

{θi}eqj = {θi}kmin,j where kmin,j = min (k)
u+j−1<Sk<u+j

. (2.5.21)

The resulting samples {θi}eqn are then equivalent to samples directly taken from the pos-
terior and have equal weights, however, many of the original samples are discarded in this
way.

Final remarks

Nested sampling requires that the objects in the collection are independently sampled
from the constrained prior. These samples could be produced with any standard sampling
method. However, when Markov chain Monte Carlo is used to generate the samples it
might take a long time until a random walk leads to sufficient independence. Moreover,
since the shape of the constrained prior is changing constantly the proposal probabilities
used in the MCMC must be adjusted during the progress of nested sampling. The same
applies to the correlation time that will vary depending on how difficult it is to sample
the constrained prior, and it must be evaluated “on the fly” as well. In total, care must
be taken when nested sampling is set up based on MCMC, and one should always check
whether the results are plausible.

After these final remarks on nested sampling the next chapter will focus on the inference
problem of FRET-based fluorophore localization relative to a macromolecule.
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The idea of trilateration, i.e. the localization of an object in space from distances measured
between the object and three other known positions (figure 3.1), is conceptually simple
and has been applied often to the analysis of experiments in which FRET was used to
obtain distance restraints between fluorophores attached to biological macromolecules
(Mukhopadhyay et al., 2001; Mekler et al., 2002; Rasnik et al., 2004; Kapanidis et al.,
2005, 2006; Santoso et al., 2010; Ermolenko et al., 2007a,b; Margittai et al., 2003; Woźniak
et al., 2008; Andrecka et al., 2008). Determining the position of a fluorophore can provide
valuable information that might solve biochemical questions when the fluorophore to be
localized is attached to a part of the macromolecule that cannot be observed by standard
methods like X-ray crystallography or NMR spectroscopy.
The basic idea behind such FRET localization experiments is the following: As a prereq-

uisite the macromolecule of interest must be specifically labeled with donor and acceptor
fluorophore pairs. The positions of some of the labeling sites will be known relative to the
partially defined structure of the macromolecule. The fluorophores at these labeling sites
will be called satellites (SATs) in this work, those attached to the remaining labeling sites,
which are not present in the structure, will be called antennas (ANTs). The objective is
now to localize the ANTs by using the distances inferred from separate FRET measure-
ments between pairs of ANTs and SATs. Each ANT-SAT pair must of course consist of
a donor and an acceptor fluorophore, and usually a fluorophore will be either donor or
acceptor, unless three types of fluorophores are used. In that case, one of the fluorophores
could act as both donor and acceptor depending on its FRET partner. Because of the
obvious similarity to the Global Positioning System (GPS), namely the localization of the
ANT, this method will be referred to as “Nano-Positioning System” (NPS).
Usually, one assumes that the FRET efficiency is directly related to the distance of

two fluorophores as described in chapter 2.2. Further, as soon as the Förster distance is
characterized, the problem of localization is equivalent to the minimization of a scoring
function by adjusting the positions of the fluorophores. In the most simple case of three
FRETmeasurements and exactly known SAT positions, the global minimum of the scoring

Figure 3.1: Trilateration basics. (a)
The positions of four points in
space, A,B,C and D are known,
the position of a fifth point E (not
shown) is unknown. (b) When the
distance AE is known the position
of the point E is limited to a sphere
with radius AE centered at A. (c)
A second distance BE constraints
E to be on the intersection of the
two spheres. (d) A third distance
CE leaves only two possible posi-
tions for E (arrows). (e) With a
fourth distance DE all four spheres
intersect in exactly one point, E.
(f) By construction, point E satis-
fies all four distance constraints.

35



3 Development of the Nano-Positioning System

Figure 3.2: Effects of satellite placement on the localization uncertainty. Two-dimensional ex-
ample. The “true” fluorophore positions are shown in gray, those based on the available
information in black. SATs and ANTs are shown as filled and open stars, respectively. Po-
sition constraints of the ANT are partly shown (black circle segments). (a) The SATs differ
much in position and the constraints are almost perpendicular at their intersection. The
error of the inferred ANT position is on the same scale as the uncertainties of the SAT posi-
tions. (b) The SATs are very close and the constraints intersect at a small angle. The error
of the inferred ANT position is much larger than the uncertainties of the SAT positions.

function can be calculated analytically by trilateration from the SAT positions as shown
by Andrecka et al. (2008). With more than three FRET measurements and also more
realistic approaches that account for the attachment of the fluorophores via a linker, the
analysis becomes much more sophisticated. Unfortunately, in this case the physical model
can get obscured by the complicated data processing, which often implicates assumptions
not clearly stated by the authors (Margittai et al., 2003; Knight et al., 2005; Choi et al.,
2010). The reader might hence be confused or not aware of the pitfalls of the method
applied. Furthermore, it is difficult to understand the results in detail and judge whether
the taken approach is justified or not.
In this work, instead of using such ad-hoc methods for the analysis of FRET localization

experiments, the different error sources that contribute to the localization uncertainty will
be identified first, and a physical model that produces the observed data will be stated.
Then, Bayesian parameter estimation will be applied to the problem, and by doing so,
one is forced (by probability calculus) to state clearly the approximations made in the
inference process.
The first and most obvious error source is the measurement error of the FRET efficiency.

It consists of both, systematical and statistical contributions. In the following, it will be
assumed that both contributions were estimated correctly and were combined in the total
FRET efficiency error, which is assumed to be normal distributed (section 5.1.3).
Another source of uncertainty is the limited information on the SAT positions of the

fluorophores introduced by the attachment to the macromolecule via flexible linkers. In
addition, the placement of the SATs is of great importance to the final localization uncer-
tainty. For instance, the measurements between an ANT and two SATs that are attached
at completely different parts of the macromolecule should contribute more information
compared to a scenario, in which the SATs are attached at almost the same position (see
figure 3.2).
The last and most important source of uncertainty treated here are the orientation

effects in FRET. Often, the reported fluorescence anisotropies of fluorophores attached to
macromolecules exceed 0.2 (Rasnik et al., 2004; Andrecka et al., 2008; Andrecka, 2009;
Roy et al., 2008), and, depending on the average orientation of the transition dipole mo-
ments of donor and acceptor, the Förster distance may vary considerably (section 2.3.2).
Unfortunately, the fluorophore orientations are not known, and this in turn precludes the
direct relation between FRET efficiency and distance. Although these complications are

36



3.1 The position - Förster distance model

known in general, many authors still work with the isotropic dynamic averaging model,
even when the fluorescence anisotropies are moderate or high, and thereby completely
neglect a major source of uncertainty (Rasnik et al., 2004; Andrecka et al., 2008; Chen
et al., 2009; Choi et al., 2010).
The contribution of this work to the field of FRET-based structural studies of biomole-

cules is to estimate the influence of these orientation effects on the localization uncertainty
that goes beyond a maximum error estimation proposed by Dale et al. (1979) and Ivanov
et al. (2009).
Three closely related models were developed by the author, which all base upon the

model proposed by Dale et al. (1979) (see section 2.3.2), but differ in the parametrization
and the kind of data that can be analyzed.
The first model can be used to compute the ANT position only and is restricted to the

analysis of FRET efficiency measurements in between several SATs and a single ANT.
As the spatial positions of the fluorophores and the Förster distances of each individual
FRET efficiency measurement are used as parameters, the model is called “position -
Förster distance model”.
The second model is more general: it can be used to analyze networks of fluorescent

dyes with FRET efficiency only or both, FRET efficiency and anisotropy, measured be-
tween arbitrary numbers of SATs and ANTs. This analysis can infer the positions and
average transition dipole orientations of any of the fluorophores in the network. Since
these quantities are used as parameters the method is hence called “position - orientation
model”.
Finally, in the third model, called “position - orientation model with docking”, the

position - orientation model has been extended in order to determine the positions and
orientations of the subunits comprising a macromolecular complex.

3.1 The position - Förster distance model

This section focuses on the NPS parametrized in the fluorophore positions and Förster
distances as described by Muschielok et al. (2008).

3.1.1 Model assumptions and parametrization

In the position - Förster distance NPS model a system of donor and acceptor fluorophores
attached to a macromolecule is treated in terms of fluorophore positions and Förster dis-
tances. The method is limited to the analysis of Nsat satellite fluorophores and only one
antenna fluorophore (see figure 3.3). An experiment performed with several ANTs must
be separated into multiple problems with only one ANT, which have to be analyzed sep-
arately. The fluorophore positions are assumed to be fixed relative to the macromolecule,
meaning that the position fluctuations are much smaller than the separation of the fluo-
rophores. As a consequence, the fluorophores and linkers must be in a stable conformation
within the time resolution of the experiment. The same applies to the macromolecule,
which is modeled as a rigid object. Furthermore, the macromolecular structure is assumed
to be known from, e.g. , X-ray crystallography or NMR spectroscopy studies.
For each FRET pair that consists of the ANT at position xa and the ith SAT (i =

1,2, . . . ,Nsat) at position xi, one can calculate the expected FRET efficiency Eai (equation
(2.3.3)) given that the dynamically (but not isotropically) averaged Förster distance Rai
is known,

Eai (xa,xi, Rai) = 1
1 + (|xa − xi| /Rai)6 . (3.1.1)
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Figure 3.3: Schematic drawing of the position -
Förster distance model. The antenna fluo-
rophore at position xa is attached to a part
of the macromolecule with unknown position.
Several satellite fluorophores at positions xi
are attached to the macromolecule by car-
bon chain linkers. The sequentially measured
FRET efficiencies between the satellites and
the antenna are shown as dotted lines.

Note that, in order to improve legibility, a different notation is used here for the dy-
namically averaged Förster distance. The notations Rai in equation (3.1.1) and

〈
R6〉 in

equation (2.3.4) are related by Rai ≡ 6
√
〈R6〉.

3.1.2 Likelihood

The likelihood p({Eai}|xa, {xi}, {Rai}, I) describes how well the FRET efficiencies
{Eai} = Ea1, Ea2, . . . , EaNsat measured between the ANT and each SAT, can be repro-
duced by the model with fluorophore positions xa, {xi} = x1, x2, . . . , xNsat and Förster
distances {Rai} = Ra1, Ra2, . . . , RaNsat . I denotes the background information, i.e. the
FRET model used. Under the assumption that the measurements are independent, the
likelihood can be factorized, and each likelihood factor p (Eai|xa,xi, Rai, I) describes one
measurement,

p({Eai}|xa, {xi}, {Rai}, I) =
∏
i

p(Eai|xa,xi, Rai, I). (3.1.2)

When the Eai are normal distributed around the expected FRET efficiency Eai, the cor-
responding likelihood factor can be written as

p(Eai|xa,xi, Rai, I) = 1
∆Eai

√
2π

exp
{
− [Eai (xa,xi, Rai)− Eai]2

2 (∆Eai)2

}
=Li (|xa − xi| /Rai) . (3.1.3)

When regarded as a function of the parameters and as indicated by the abbreviation
Li (|xa − xi, | /Rai) the likelihood factor in equation (3.1.3) depends only on the ratio of
the ANT-SAT distance and the Förster distance, |xa − xi| /Rai. The measurement error
of the FRET efficiency is denoted by ∆Eai and is implicitly contained in the background
information I.

3.1.3 Prior

The prior p(xa, {xi}, {Rai}|I) can be factorized when the positions of each dye and the
Förster distances of each measurement are independent, so that

p(xa, {xi}, {Rai}|I) = p(xa|I)
∏
i

[p(xi|I)p(Rai|I)]. (3.1.4)

At this level of approximation, it is obvious that the ANT position and the SAT posi-
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tions are mutually independent. However, the independence of the fluorophore positions
and the Förster distances is not evident since these quantities can be calculated from the
fluorophore positions and the average transition dipole moment orientations. The same
criticism applies to the independence of different Förster distances Rai and Raj , as they
are correlated by the common position and average transition dipole moment orientation
of the ANT fluorophore.
In the following, the mutual independence of the fluorophore positions and Förster

distances will be assumed, but it should be considered as an approximation. The meaning
of this approach will become clear later on in section 3.2.3, where the prior assignment
in the position - orientation model is introduced. The discussion of the validity of this
approximation will be postponed until section 6.1.3.

Fluorophore positions

The priors of the antenna position, p(xa|I), and satellite position, p(xi|I), are assumed
to be constant inside the volume Va and Vi accessible to the ANT and SAT fluorophore,
respectively. As there is no reason to prefer a particular position, this flat location prior
is invariant under infinitesimal translations (subsection 2.4.3). Outside of the accessible
volume the prior is set to 0, i.e.

p
(
xa/i|I

)
=

{(∫
xa/i∈Va/i

dxa/i

)−1
for xa/i ∈ Va/i

0 otherwise
(3.1.5)

The accessible volume is limited by steric clashes of the fluorophore with the macro-
molecule, and, when present, the attachment by a linker that prevents complete detach-
ment from the macromolecule. In this work, the accessible volumes are computed with
a crude model that treats the fluorophore as a ball with known diameter and the linker
as a flexible rod with known length and diameter (see figure 3.4a and section 5.3.1 for
details), but one could also use more realistic models.
For computational purposes, each SAT position prior is approximated by a superposi-

tion of isotropic 3-dimensional Gaussian kernels Sij (xi) (see figure 3.4b),

p(xi|I) ≈
∑
j

wijSij (xi). (3.1.6)

Each Gaussian is normalized to unit volume, and the weights wij of each kernel sum up
to 1 (

∑
j
wij = 1), so that p (xi|I) is normalized (see section 5.4 for details). The ANT

position prior is not approximated in this manner.

Förster distances

The Förster distance priors base upon equations (2.3.4) and (2.3.5) as explained in section
2.3.2. The idea is that, given the experimentally measured isotropic Förster distance
and the fluorescence anisotropies of donor and acceptor (section 5.1.4), one can compute
the dynamically averaged Förster distance, when the relative orientations of the average
transition dipole moments and the vector interconnecting the fluorophores are known. As
a second prerequisite, the distribution of transition dipole moment orientations, which
are sampled while the fluorophores are in the excited state, must be axially symmetric
in order to apply the FRET model of Dale et al. (1979). Since neither the orientation
of the average transition dipole moments nor the interconnecting vector between the
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Figure 3.4: (a) A typical antenna fluorophore position prior. The accessible volume (gray cloud)
is bounded by the macromolecule (gray, red and blue ribbons). Other constraints, such as
the attachment of the ANT by a long flexible linker molecule, can be used in addition.
(b) The accessible volume of a typical satellite fluorophore is shown as yellow mesh. The
approximation of the SAT position prior p (xi|I) consists of several superimposed Gaussian
kernels Sik(xi) and its 68% credible interval is shown as blue surface. The protein atoms
are shown as gray spheres.

fluorophores is known, each possible orientation should contribute with the same weight
to the Förster distance distribution.
In this work, Monte Carlo simulations were used to compute samples from the Förster

distance distribution (section 5.3.2). The histograms of these samples were then approxi-
mated by superpositions of Gaussians (see figure 3.5), which are, in turn, approximations
of the Förster distance priors p (Rai|I) given by

p(Rai|I) ≈
∑
k

vikQik(Rai). (3.1.7)

In order to simplify the subsequent calculation, the functions Qik(Rai) are pseudo-
Gaussian kernels that are normalized to unity area. Each kernel has an approximately
Gaussian form and a zero-crossing at Rai = 0 and consists of a sum of two Gaussians
with a positive and negative amplitude (see section 5.4 for details). The weights vik sum
up to 1 (

∑
k
vik = 1).

3.1.4 Posterior

According to Bayes’ theorem (see section 2.4), the posterior can be computed from the
likelihood and the prior. With the approximations used in the assignment of the prior,
the not yet normalized posterior factorizes into

p(xa, {xi}, {Rai}|{Eai}, I) ∝ p(xa|I)
∏
i

p(Eai|xa,xi, Rai, I)p(xi|I)p(Rai|I). (3.1.8)
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3.1 The position - Förster distance model

Figure 3.5: A typical Förster dis-
tance distribution. 1·106 samples
from the Förster distance distribu-
tion were computed (fluorescence
anisotropies ra = 0.2, ri = 0.3,
isotropic Förster distance Riso

ai =
50Å) and a histogram of the sim-
ulated Förster distances was cre-
ated (gray area). The approximate
Förster distance prior p (Rai|I)
(black line) used for further com-
putation consists of a superposi-
tion of 7 pseudo-Gaussian kernels
Qik(Rai) fitted to the histogram.

In order to determine the estimate of the ANT position, the posterior is marginalized by
integrating over all SAT positions and Förster distances,

p(xa|{Eai}, I) =
∫
d{xi}

∫
d{Rai} p(xa, {xi}, {Rai}|{Eai}, I) (3.1.9)

Further, the marginal posterior can be written as

p(xa|{Eai}, I) ∝ p(xa|I)
∏
i

∫
dxi

∫
dRai Li(|xa − xi| /Rai)p(xi|I)p(Rai|I)

= p(xa|I)
∏
i

∑
j

∫
dxi

∫
dRai Li(|xa − xi| /Rai)wijSij (xi) p(Rai|I)

= p(xa|I)
∏
i

∑
j

wijKij(xa). (3.1.10)

The functions Kij(xa) are defined as

Kij(xa) =
∫
dxi

∫
dRai Li(|xa − xi| /Rai)Sij (xi) p(Rai|I), (3.1.11)

and represent fuzzy spherical shells centered at the position of the jth Gaussian kernel of
the ith SAT, Sij (xi). Details of the computation of Kij(xa) are described in section 5.4.
The fuzzy shells have approximately the radius Rmax

ai · (1− 1/Eai)1/6, where Rmax
ai is the

maximum of p (Rai|I). Consequently, Kij(xa) is the contribution of the FRET efficiency
measurement between ANT and the ith SAT, given the SAT position is described by the
Gaussian kernel Sij (xi).
The sum

∑
j
wijKij(xa) in equation (3.1.10) superimposes the fuzzy sphere shells and

represents therefore the total contribution of the FRET efficiency measurement between
the ANT and the ith SAT. When the approximate radii of the fuzzy shells Kij(xa) are
smaller than the spread of the center positions of the Gaussian kernels Sij , also the
sum

∑
j
wijKij(xa) will be approximately a fuzzy sphere shell. The product of the

measurement contributions from different SATs with the ANT prior results then in the
marginal ANT position posterior (see figure 3.6).
The composition of the marginal antenna position posterior is reasonable, since the

widths of the contribution of the ith measurement comprise the uncertainty of the ith
satellite position, the imprecisely known Förster distance, as well as the error of the
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3 Development of the Nano-Positioning System

Figure 3.6: The marginal ANT position posterior, p(xa|{Eai}, I) (bottom right), consists of a
product of the ANT position prior, p(xa|I), and contributions from each FRET measure-
ment,

∑
j
wijKij(xa). These sums are linear combinations of fuzzy spheres (here shown

schematically as fuzzy circles) centered around the Gaussian kernels Sij (xi) the SAT posi-
tion prior, p (xi|I), is consisting of.
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3.2 The position - orientation model

Figure 3.7: Effect of the satellite placement on the
inferred antenna fluorophore position. The
schematic drawing depicts the contributions of
two FRET efficiency measurements shown as
fuzzy circles. When the SAT positions (stars)
are substantially different and the contributions
of each measurement,

∑
j
wijKij(xa) (cyan and

magenta densities), intersect approximately per-
pendicularly (a), the localization uncertainty
(gray density) will be smaller (b) compared to a
scenario, in which the intersection angles are small
(c, d).

corresponding FRET efficiency measurement. Also, the effect of the satellite fluorophore
attachment site on the inferred position is reflected in a plausible way, as shown in figure
3.7.

3.1.5 Evidence

Only three out of 4 × Nsat parameter space dimensions remain after marginalization of
the posterior. Hence, the evidence Z (equation (2.4.9)), used to normalize the product of
likelihood and prior (equation (3.1.8)), can be computed easily, as soon as the unnormal-
ized marginal ANT position posterior p (xa|I)

∏
i

∑
j
wijKij(xa) has been evaluated on

a reasonable amount of supporting points, x(k)
a . In this work, a lattice with grid spacing

δx is used, and the evidence Z is given by

Z =
∫
dxa p (xa|I)

∏
i

∑
j

wijKij(xa) ≈ δx3
∑
k

p
(
x(k)
a |I

)∏
i

∑
j

wijKij(x(k)
a ).

(3.1.12)

After the position - Förster distance NPS model has been explained the focus of the
next section focuses is the more general position - orientation NPS model. There, the
restriction to FRET networks with only one antenna fluorophore will be lifted.

3.2 The position - orientation model

In this section, the NPS analysis problem will be generalized to several antenna fluo-
rophores. To this end, a more fundamental set of parameters will be used, namely the
positions and average transition dipole moment orientations of each fluorophore. Fur-
thermore, additionally to the FRET efficiencies, a new kind of observable is introduced,
the FRET anisotropy. Because of these generalizations, there are no symmetries that
one could use to compute the marginal antenna position posterior analytically, and it is
necessary to switch to fully numerical methods. Therefore, only the formal definition of
the data analysis problem will be given here, while the computation details are described
in section 5.5.

3.2.1 Model assumptions and parametrization

As before, in the position - Förster distance model (section 3.1.1), each fluorophore in the
FRET network is located at a fixed position. The position of the ith fluorophore is denoted
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3 Development of the Nano-Positioning System

Figure 3.8: In the position - orienta-
tion NPS model, the fluorophores
(double arrows) are described by
their position xi and average tran-
sition dipole moment orientation
Ωi. The axially symmetric fluc-
tuations around the average ori-
entation are indicated by motion
lines. Here, three SATs attached
to a known macromolecule struc-
ture (bottom) and two ANTs at-
tached to an unknown macro-
molecule part (top) are shown.
Separately measured FRET effi-
ciencies and/or FRET anisotropies
are indicated by dashed lines be-
tween the fluorophores.

by xi, irrespective of whether it is a SAT or ANT.
Exactly like in the assignment of the Förster distance priors in the position - Förster

distance model (section 3.1.3), the transition dipole moments of each fluorophore are
assumed to sample axially symmetric distributions. The symmetry axes, i.e. the average
transition dipole moment orientations of each fluorophore, will be denoted by Ωi and are
assumed to be fixed. In order to meet the conditions of dynamical averaging (section
2.3.2), the reorientation of the transition dipole moments must be much faster compared
to the times the fluorophores stay in the excited state.
The FRET network (see figure 3.8) is then defined by the parameters {xi,Ωi} = (x1,

Ω1), . . . , (xN ,ΩN ), where N is the number of fluorophores in the network.
Given that the average axial depolarizations 〈dxi 〉 are known for each fluorophore from

measurement of fluorescence anisotropies (see equation (2.3.6)), one can calculate the
expected FRET efficiencies and FRET anisotropies. The expected FRET efficiency,
Eij(xi,xj ,Ωi,Ωj) (see equation (3.1.1)), is defined by

Eij (xi,xj ,Ωi,Ωj) = 1
1 + (|xi − xj | /Rij (xi,xj ,Ωi,Ωj))6 , (3.2.1)

where the dynamically averaged Förster distance, Rij (xi,xj ,Ωi,Ωj), is computed di-
rectly from the isotropic Förster distance Riso

ij for the FRET pair ij and from the angles
Θij , Θji and Ψij that describe the orientation of the fluorophores relative to each other
(figure 3.9). These angles are, in turn, functions of the model parameters xi, xj , Ωi and
Ωj .
The expected FRET anisotropy (see equations (2.3.10) and (2.3.9)) is given by

Aij(xi,xj ,Ωi,Ωj) = 2
5 〈d

x
i 〉
〈
dxj
〉{3

2 cos2 [Ψij (Ωi,Ωj)]−
1
2

}
, (3.2.2)

where 〈dxi 〉 and
〈
dxj
〉
are the axial depolarizations of the fluorophores i and j, respectively1.

1Note that Eij and Aij can take up to 4 and 2 different values, respectively, depending on the measured
fluorescence anisotropies r∞,i and r∞,j . This is due to the ambiguities caused by the possibly
negative sign of the average axial depolarizations when 0 ≤ r∞,i/r0i ≤ 1/4 and/or 0 ≤ r∞,j/r0j ≤
1/4 (equation (2.3.6)).
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3.2 The position - orientation model
Figure 3.9: A FRET pair consisting of two fluo-

rophores i and j at positions xi and xj , respec-
tively. The dynamically averaged Förster distance
Rij is calculated by using the angles Θij , Θji
and Ψij . Θij and Θji are the angles between
the preferred transition dipole orientations, Ωi/j ,
and the vector interconnecting the fluorophores,
(xj − xi). Ψij is the angle between the pre-
ferred fluorophore orientations Ωi and Ωj . Al-
ternatively, Ψij can be expressed as a function of
Θij , Θji and Φij , the angle between the planes
defined by the orientations Ωi/j and the vector
(xj −xi) can be used to compute Rij . Unlike the
FRET efficiency, the FRET anisotropy depends
only on Ψij and is independent of the direction of
the vector interconnecting the fluorophores.

3.2.2 Likelihood
Since FRET efficiencies and/or FRET anisotropies are measured independently, the like-
lihood is the product of contributions from each FRET pair,

p ({Eij}, {Aij}| {xi,Ωi} , I) =
∏
ij∈M

Lij (xi,Ωi,xj ,Ωj). (3.2.3)

Lij denotes the contribution of the FRET pair ij as a function of the positions and average
transition dipole moment orientations of the respective fluorophores, and M is the set of
measured FRET pairs. Depending on whether FRET efficiency, FRET anisotropy or
both were measured for a FRET pair, Lij is assigned to be an uni- or bivariate Gaussian

Lij (xi,Ωi,xj ,Ωj) =


N∆Eij (Eij − Eij) Eij measured
N∆Aij (Aij −Aij) Aij measured
N∆Eij (Eij − Eij) · N∆Aij (Aij −Aij) Eij and Aij measured.

(3.2.4)
Here, Nσ(.) is the normal distribution of standard deviation σ centered at 0. ∆Eij and
∆Aij denote the measurement uncertainties of FRET efficiency and FRET anisotropy,
respectively. The expected observables Eij and Aij of course depend on xi,xj ,Ωi and
Ωj , as already mentioned in section 3.2.1.
When the average axial fluorescence depolarizations have ambiguous signs, si =

sgn(〈dxi 〉), the likelihood in equation (3.2.3) must be averaged over all combinations of
{si}. This is equivalent to the marginalization over all average axial depolarizations with
the signs si = 1 and si = −1 being equally probable. Consequently, equation (3.2.3) is
generalized to

p ({Eij}, {Aij}| {xi,Ωi} , I) = 1∏
k
Sk

∑
{sk}

∏
ij∈M

L
(sisj)
ij (xi,Ωi,xj ,Ωj), (3.2.5)

where the dependencies on the signs of the average axial fluorescence depolarizations is
denoted by the indices (sisj). Sk = 2 when 〈dxk〉 is ambiguous, otherwise Sk = 1. Hence,∏
k
Sk is the number of combinations of {sk}.
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3 Development of the Nano-Positioning System

Figure 3.10: The fluorophore i is described by its transi-
tion dipole moment at position xi that fluctuates (indi-
cated by motion lines) around its preferred orientation
Ωi (double arrow). Ωi is described by the polar and
azimuth angle, θi and φi, relative to the frame of ref-
erence of the macromolecule, (x, y, z). In the analysis,
the parametrization Ωi = (− cos θi, φi) is used since
a flat prior in Ωi is invariant under rotations of the
coordinate system and does not favor any particular
orientation of the average transition dipole moment.

3.2.3 Prior

Similarly than in the position - Förster distance model, all correlations between the model
parameters, here the positions and average transition dipole moment orientations, are
neglected. Correlations between positions and orientations of different fluorophores might
be caused either by direct interactions of the fluorophores with each other or by a change
of the macromolecule structure induced by the labeling. However, here it will be assumed
that these correlations are negligible and thus the prior can be factorized and written as

p ({xi,Ωi}|I) =
∏
i

p (xi,Ωi|I). (3.2.6)

It is further assumed that the position and the average transition dipole orientation of
a fluorophore are independent, and consequently, that the prior for the fluorophore i
factorizes as well, so that

p (xi,Ωi|I) = p (xi|I) p (Ωi|I) . (3.2.7)

The actual meaning of equation (3.2.7) is the lack (or ignorance) of any detailed knowl-
edge about the fluorophore structure, its attachment to the macromolecule and the in-
teractions of macromolecule and fluorophore. For example, there could be certain stable
conformations of the fluorophore-linker-macromolecule construct that introduce correla-
tions to xi and Ωi. Also, fluorophore positions in close proximity to the macromolecule
surface are accessible only when the fluorophore aligns parallel to the surface.
These and other scenarios are ignored here due to the difficulties of obtaining reliable

quantitative information for large macromolecular system by simulations. Instead, a flat
position prior p (xi|I) will be assigned inside the volume accessible to the fluorophores,
which will be computed with the same crude model as in the position - Förster distance
NPS model (sections 3.1.3 and 5.3.1).
In order to assign a prior in the average transition dipole moment orientation, p (Ωi|I),

the parametrization of Ωi needs to be clarified first. Ωi will be parametrized by − cos θi
and φi, where θi and φi are the polar and azimuth angle relative to the frame of ref-
erence of the macromolecule, (x, y, z) (see figure 3.10). A flat prior is assigned in this
parametrization, and the prior of each orientation can be written as

p (Ωi|I) = p (− cos θi, φi|I) = (2π)−1

for − 1 ≤ − cos θi < 1 and 0 ≤ φi < π. (3.2.8)

p (Ωi|I) is invariant under arbitrary rotations of the coordinate system and, consequently,
does not favor any particular orientation of the average transition dipole moments.
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3.3 The position - orientation model with docking

3.2.4 Posterior and evidence
Since the inference problem stated here is far more complex than the one of the position
- Förster distance NPS model, the computation of the posterior and the evidence must
be performed fully numerically. In this work, Monte Carlo methods are used to this
end, and the reader is referred to sections 2.5 and 5.5 for details. The computation
result will be a set of samples that are used to represent and visualize the posterior
p ({xi,Ωi}|{Eij}, {Aij}, I).

In the next section, the position - orientation NPS model will be extended to model in
addition the macromolecule part the antenna fluorophores are attached to.

3.3 The position - orientation model with docking

Now, the position - orientation model introduced in the last section will be extended in
order to perform “remote docking”, i.e. the inference of relative positions and orientations
of two or more macromolecules within a complex. This model is of interest when the
structures of the components of the complex are known, but there is no structure of the
whole complex, and when FRET efficiency or/and anisotropy can be measured between
FRET pairs distributed over different components. Determining the component locations
is to be preferred over simple localization of fluorophores, since finally one is interested
in the properties of the biochemically important object and not in the properties of the
probes.

3.3.1 Model assumptions, parametrization and likelihood
In order to dock the parts of a macromolecular complex by means of FRET, a frame
of reference is attached to each constituent. One of the components of the complex is
chosen to be the reference, and its coordinate system (x(0), y(0), z(0)) will be called “root”.
(x(0), y(0), z(0)) is in fact identical with the coordinate system used in the other NPS
models. The relative alignment of the remaining Nmol components to the root component
is then described by the origins o(k) and orientations Ξ(k) of the frames of reference
(x(k), y(k), z(k)) (figure 3.11), where k = 1, . . . , Nmol enumerates the component.
In addition to the assumptions made in the position - orientation model (section 3.2.1),

the parts of the macromolecular complex are regarded as rigid bodies that have a fixed
position and orientation relative to each other. In that case, the fluorophore i linked
to the kthi component is uniquely described by its position x(ki)

i and average transition
dipole orientation Ω(ki)

i relative to the reference frame ki. With the known reference
frame position and orientation, the fluorophore position x(0)

i and orientation Ω(0)
i in the

root reference frame can be calculated by a simple coordinate transformation.
The expected FRET efficiency and FRET anisotropy values, Eij and Aij , are then

computed from x
(0)
i and Ω(0)

i according to the equations (3.1.1) and (3.2.1), used already
in the position - orientation model (section 3.2). The likelihood is computed exactly like in
the position - orientation model using x(0)

i and Ω(0)
i , the fluorophore positions and average

transition dipole orientations in the root reference frame.
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3 Development of the Nano-Positioning System
Figure 3.11: NPS with docking.

The structure of several macro-
molecules constituting a complex
is known, but their relative posi-
tion and orientation is not. The
“root” reference frame is assigned
to one of the macromolecules
(here macromolecule 0), and the
other macromolecules (here macro-
molecule 1) are docked to the root
macromolecule by means of sepa-
rately measured FRET efficiencies
or/and anisotropies (dashed lines).
The position and orientation of the
kth docked macromolecule (k ≥ 1)
is parametrized by the origin
o(k) and the orientation Ξ(k)
of an attached reference frame
(x(k), y(k), z(k)). The fluorophores
(double arrows) are described as in
the position - orientation model by
the position x(ki)

i and orientation
Ω(ki)
i of their average transition

dipole moment. However, these
parameters are given now relative
to the reference frame ki of the
macromolecule the fluorophore
is attached to (indicated by the
superscript (ki)).

3.3.2 Prior

Like in the position - orientation model, the prior is assumed to factorize, i.e. the positions
and orientations of the fluorophores ({x(ki)

i ,Ω(ki)
i }) and the reference frames ({o(k),Ξ(k)})

must be independent,

p
(
{x(ki)

i ,Ω(ki)
i }, {o(k),Ξ(k)}|I

)
=
∏
i

[
p
(
x

(ki)
i |I

)
p
(

Ω(ki)
i |I

)]∏
k

[
p
(
o(k)|I

)
p
(
Ξ(k)|I

)]
.

(3.3.1)
This implies, of course, the same assumptions as described in section 3.2.3. Additionally,
to enable a factorization as in equation (3.3.1), it must be assumed that neither the dif-
ferent parts of the macromolecular complex do interfere with each other by steric clashes,
nor that a fluorophore attached to the component k can interact with another component
l 6= k. For some situations, these simplifications might be unrealistic and one should
account for such effects in future NPS versions.
Similar to the position and average transition dipole orientation priors of the fluo-

rophores, the position prior of the reference frame origin, p
(
o(k)|I

)
, is constant within a

volume V(k) and zero outside,

p
(
o(k)|I

)
=

{(∫
o(k)∈V(k)

do(k)

)−1
for o(k) ∈ V(k)

0 otherwise
(3.3.2)

The volume V(k) must be chosen large enough to allow a wide range of positions around
the “root” macromolecule.
The orientation of the kth reference frame is parametrized by Ξ(k) =
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3.3 The position - orientation model with docking

Figure 3.12: Parametrization of the reference frame orientation. The coordinate axes x(k), y(k)
and z(k) of the kth reference frame (black arrows) are shown relative to the root reference
frame, (x(0), y(0), z(0)) (gray arrows). The orientation Ξ(k) is defined by the angles ρ(k), θ(k)
and φ(k) of three consecutive rotations (curved arrows) around the axes z(0), y(0) and z(0),
respectively. The state of the kth reference frame before each rotation is shown as dashed
arrows.

(ρ(k),− cos θ(k), φ(k)), where ρ(k), θ(k) and φ(k) are the angles of three subsequent ro-
tations (figure 3.12). The orientation prior is assigned to be constant as well, as given
by

p
(
Ξ(k)|I

)
= p

(
ρ(k),− cos θ(k), φ(k)|I

)
= (8π2)−1

for − π ≤ ρ(k) < π, −1 ≤ − cos θ(k) < 1, and − π ≤ φ(k) < π. (3.3.3)

This prior is invariant under infinitesimal translations and rotations of the root reference
frame and satisfies the requirements of a maximum entropy prior (section 2.4.3).

3.3.3 Posterior and evidence
The posterior and the evidence are calculated with the same methods like in the position -
orientation NPS model (section 3.2.4). Additionally to the marginal positions and orienta-
tions of the fluorophores, the distributions of the reference frame origins and orientations
can be calculated.
Furthermore, another kind of marginalization is possible that can be used to compute

the estimated position of an arbitrary atom or any other point in the reference frame of
the docked macromolecule. Let the point Q (e.g. an atom) be located at an arbitrary,
fixed position q(k) in the reference frame k. One can compute the posterior estimate
of the position q(l) of this point in any other arbitrary reference frame l. This is done
by calculating the coordinates q(l) from q(k) and the origin and orientation of the kth
reference frame contained in each posterior sample.
In this way, an estimate of the center and orientation of the docked macromolecule can

be calculated by choosing the point to be at the center of the macromolecule and at a
position far from the center, respectively.

After this final remark on the details of NPS analysis, in the next chapter, a biologically
important macromolecular complex will be introduced briefly. It is the eukaryotic RNA
polymerase II elongation complex, a macromolecular complex to which NPS was already
successfully applied to.
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4 The eukaryotic RNA polymerase II

The genetic information contained in the deoxyribonucleic acid (DNA) of most cells of
any living organism needs to be read out to produce proteins.For most proteins, this flow
of information is indirect with the DNA being transcribed into ribonucleic acid (RNA),
which is then translated into proteins (Thieffry and Sarkar, 1998), as proposed by Francis
Crick in 1958 (Crick, 1958) and revised to greater generality later (Crick, 1970).
The transcription of the DNA by synthesis of an complementary RNA chain is carried

out by DNA dependent RNA polymerases (Alberts et al., 2008, chapter 6). These mul-
tisubunit enzymes catalyze the polymerization of nucleoside triphosphates (NTPs), the
building blocks of RNA, in a highly conserved fashion (Steitz, 1998). Without going into
detail, in eukaryotic cells different RNA polymerases exist, which produce RNAs that
play different roles in cellular processes. One of them, the RNA polymerase II (Pol II),
was studied in this work by NPS. It produces mainly the so called precursor messenger
RNA (pre-mRNA), which is further modified to become messenger RNA (mRNA) and
codes for the sequence of proteins.

4.1 Structure and function

Pol II has a molecular weight of approximately 514 kDa and is approximately 13nm in
diameter. It consists of 12 protein subunits (Rpb1, . . . , Rpb12) and comprises a 10 subunit
core, as well as two peripheral protein subunits, the Rpb4/7 heterodimer (Cramer et al.,
2008).
First structures of Pol II were obtained by electron microscopy (Darst et al., 1991) and

X-ray crystallography (Fu et al., 1999), followed by a structures of higher resolution that
show the 10 subunit core (Cramer et al., 2001). Nowadays, crystal structures have been
observed that show the complete 12 subunit Pol II in a complex with DNA, RNA and
NTPs (Kettenberger et al., 2004), called the elongation complex. A detailed review of
current research in the field of eukaryotic RNA polymerases was given by Cramer et al.
(2008).
The elongation complex is characterized by Pol II bound to one strand of a partially

melted (i.e. opened) DNA double helix, the template DNA strand (see figure 4.1). The
melted DNA region without base pairing between the template and the complementary
strand, the so called nontemplate DNA, is called transcription bubble. In this region,
the synthesized RNA strand is base-paired with the template DNA, and aligned in a
way that an incoming NTP can bind at the enzymatically active site of Pol II. When
the NTP is able to base pair with the corresponding base in the template DNA it gets
covalently bound to the RNA strand under formation of the byproduct pyrophosphate.
After incorporation of the new nucleotide the polymerase shifts by one base, so that the
next unpaired template DNA base becomes aligned at its active site. A few bases away
from the active site the DNA-RNA hybrid gets separated. In this way the template DNA
can hybridize again with its complementary strand, the nontemplate DNA, after it has
exited Pol II. The NTPs and the RNA enter and exit Pol II through the NTP entry
channel and the RNA exit channel, respectively, while the template and nontemplate
DNA slide through and above the enzyme during the elongation process.
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4 The eukaryotic RNA polymerase II

Figure 4.1: Crystal structure of the RNA polymerase II elongation complex. Two standard
views, the top and the side view of the PDB structure 1Y1W (Kettenberger et al., 2004) are
shown. The Pol II core, Rpb4 and Rpb7 are shown as gray, red and blue ribbons, respectively.
The nucleic acids are colored red (RNA), blue (template DNA) and cyan (nontemplate DNA).
In the side view panel the NTP incorporation site is marked by an arrow, and the part of
Pol II in front of the nucleic acids was cut away as indicated by the dashed line in the front
view panel. The inset shows Pol II schematically in the top view and in the same color
code as the crystal structures. Nucleic acids resolved and unresolved in the crystal structure
are shown as solid and dashed lines, respectively. The motion of the nucleic acids during
transcription is indicated by arrows.

The DNA ahead of the Pol II active site, when viewed in the transcription direction,
is called downstream DNA. Its nucleotides are usually numbered with positive integers,
the active site being at register +1. The DNA lying behind the Pol II active site is called
upstream DNA and is numbered with negative integers that start at -1 directly behind
the active site. Thus, there is no nucleotide “0” in this system. The RNA is numbered
by positive integers, beginning at +1 directly behind the active site, so that the RNA
nucleotide at register +n will usually be able to form a base pair with the template DNA
nucleotide at register −n.
In the cell, Pol II does not work on its own. Instead, it is embedded in a network of

dependencies with other proteins, which initiate and regulate the transcription process in
eukaryotes (Hahn, 2004; Cramer, 2007; Alberts et al., 2008, chapter 6). The proteins most
closely interacting with Pol II are called general transcription factors. The transcription
factor IIB (TFIIB), for example, accurately places the Pol II at the transcription start
site and plays a crucial role in transcription initiation, whereas the TATA binding protein
(TBP), a subunit of the transcription factor IID (TFIID), is required to recognize the
TATA box, a specific DNA sequence found in front of many transcription start sites. The
general transcription factor IIF (TFIIF) functions in both transcription initiation and
elongation and is needed for recruitment of other transcription factors (Eichner et al.,
2010, and references therein) that constitute the so-called pre-initiation complex.
Until today, only few crystal structures exist that show Pol II in assembly with tran-

scription factors (Bushnell et al., 2004; Kettenberger et al., 2003, 2004; Kostrewa et al.,
2009), and even in these studies only fragments of the transcription factors have been
observed. However, such structures shed light upon the molecular mechanism of tran-
scription initiation and regulation.
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4.2 Questions addressed

Although many interesting structural details have been observed already by X-ray crys-
tallography, the crystal structures of Pol II elongation complexes lack nevertheless the
density of the nascent RNA after it has left Pol II, the density of the single stranded
nontemplate DNA in the transcription bubble, and the density of the upstream DNA.
Therefore, two questions arise: Do the unobserved but yet present RNA and DNA

regions have a well defined position? And if there is a well defined position, where are
the nucleic acids located? Since the term “well-defined” depends on the method used
to observe the position (see introduction), it will be assumed that the nucleic acids and
Pol II are rigid enough to be observed in single-molecule FRET experiments as one or
only a few populations, which can be assigned to a biochemically reasonable state of the
elongation complex.
The position of the nascent RNA chain in the transcribing Pol II complex is of general

interest since the RNA is modified before it gets transported to the ribosome, and Pol II
together with other associated proteins could promote or initiate this post-processing. In
addition, the knowledge of the nontemplate DNA position has important implications not
only for elongation but also for understanding transcription initiation and completes the
picture of the Pol II elongation complex.
To answer these questions, the Nano-Positioning System was applied to the Pol II

elongation complex. The size of the complex makes it perfectly suitable for FRET stud-
ies. Moreover, site-specific fluorescent labeling, which would be extremely difficult in a
macromolecular complex of this size is feasible since the elongation complex can be re-
constituted from its constituents. Instead of labeling the 10 subunit core, the separately
expressed Rpb4/7 as well as commercially available nucleic acids serve as a platform to
attach satellite and antenna fluorophores.
In an earlier work, the trilateration-based “ancestor” of the NPS has been used to

determine the maximum probable positions of antenna fluorophores attached to the 5’-
end of RNAs with lengths varying between 17 and 35 nucleotides (Andrecka et al., 2008).
There, the observation 26 and 29 nucleotide long RNAs suggested the binding of the
5’ RNA end to the Pol II core at the so called dock domain. This finding apparently
contradicted studies in which RNA of comparable length could be covalently cross-linked
to the Rpb4/7 heterodimer (Újvári and Luse, 2006). However, it was difficult to judge
whether there was a true contradiction, or whether both experiments were not comparable.
The latter was likely since first, the elongation complexes used by Andrecka et al. (2008)
did not contain any TFIIB, and second because no meaningful uncertainties were stated
for the position of the 5’ RNA end.
Apart from these questions, there is ongoing research on the structure of the initial

transcribing complex (ITC). The ITC consists of Pol II and the general initiation factors,
and is the state of the transcription machinery just before Pol II starts to synthesize RNA
continuously (Young et al., 2002; Murakami and Darst, 2003). In the ITC, Pol II is still
close to the transcription start site and synthesizes short RNA fragments, a process called
abortive initiation (Carpousis and Gralla, 1980; Grachev and Zaychikov, 1980; Munson
and Reznikoff, 1981; Kapanidis et al., 2006; Revyakin et al., 2006).
The transition from the ITC to the elongation complex is still unclear. Besides the

position of TFIIB in the ITC, which is crucial to understand in detail how Pol II transits
from the ITC to the elongation complex, also the position of TBP and the upstream DNA
is important, since TFIIB binds Pol II and TBP located at the TATA box (Kostrewa et al.,
2009; Liu et al., 2010a). The analysis of preliminary FRET data will be shown that reveals
the position and orientation of TBP and the TATA box relative to Pol II (Treutlein et al.,
unpublished) (section 6.6).
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The next chapter allows to have a closer look on some experimental details and on the
data analysis needed to perform and interpret the experiments outlined above. The focus
is clearly on the analysis part since this work focuses on the NPS as a general method for
structural studies of macromolecules, which is based upon FRET efficiency and additional
FRET anisotropy data that could be obtained also by other means than those described
in the following.
The reader interested mainly in the general results may skip the next chapter and is

encouraged to continue reading in chapter 6 instead.
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5.1 Experimental methods, data acquisition and data pre-processing

In this section, the experimental methods for measuring the data analyzed in this work
are described briefly.
Sample preparation, all FRET efficiency and fluorescence anisotropy measurements

analyzed in this work, as well as data pre-processing were done by Joanna Andrecka,
Barbara Treutlein, Julia Nagy and Maria Angeles Izquierdo Arcusa. Design of labeling
sites on proteins and nucleic acid oligomers, as well as labeling of proteins were done by
Joanna Andrecka and Barbara Treutlein.
All experiments were performed in the absence of NTPs, so that the Pol II complexes

were stalled and not transcribing.

5.1.1 Macromolecular complexes
This section describes the labeling and the reconstituted macromolecular complexes used
in the FRET measurements analyzed in this work.

Fluorescent labeling

Nucleic acid oligomers labeled with Alexa Fluor dyes 647, 555, and tetra-methyl rho-
damine (TMR) were purchased from IBA and Biomers (Andrecka, 2009). Site-specific
labeling of proteins was achieved with maleimide chemistry. Here, single cystein mutants
of Rpb4 and Rpb7 subunits of eukaryotic RNA polymerase II that were expressed in
E. coli were labeled with Alexa Fluor 647 maleimide (Invitrogen / Molecular Probes)
(Andrecka, 2009). Single cystein mutants of the S. cerevisiae TATA binding protein were
labeled site-specifically with cyanine dye Cy3 maleimide (GE Healthcare) and Alexa Fluor
647 maleimide (Invitrogen / Molecular Probes). The labeling sites are listed in table 5.1.

Reconstituted Pol II complexes

Pol II elongation complexes were assembled from nucleic acids and the Pol II enzyme
following a protocol of Armache et al. (2003) as described by Andrecka et al. (2008).
Depending on the FRET pair measured in the experiment, some of above the components
were labeled with fluorophores.
The complexes used for inference of fluorophore positions attached to the RNA consisted

of nucleic acid scaffolds, the 10 subunit Pol II core purified from S. cerevisiae (provided
by Patrick Cramer), and the Rpb4/7 heterodimer. The latter was either expressed in
E. coli or purified from S. cerevisiae (both in collaboration with Patrick Cramer). The
nucleic acid scaffolds were assembled from a 41 nucleotides (nt) long template DNA, a
41nt long biotinylated nontemplate DNA and a 29 nt RNA. The DNA possessed a 11nt
long mismatched region, which formed an artificial transcription bubble and did readily
bind to the Pol II enzyme without help of other factors. The RNA was designed to bind
the template strand in the middle of the mismatched region over a length of 8nt, and
thus mimicked the nascent RNA strand and stabilized the complex.
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abbrev. residue chain fluorophore linker len. PDB-ID project
tDNA(-10) T28 templ. DNA Alexa 647 12 C 1Y1W 1,2
tDNA(-10) T28 templ. DNA TMR 12 C 1Y1W 3
tDNA(+3) T16 templ. DNA Alexa 647 12 C 1Y1W 1,2
tDNA(+3) T16 templ. DNA TMR 12 C 1Y1W 3
tDNA(+7) T12 templ. DNA Alexa 647 12 C 1Y1W 3
tDNA(+7) T12 templ. DNA TMR 12 C 1Y1W 3
tDNA(+9) T10 templ. DNA Alexa 647 12 C 1Y1W 1,2
tDNA(+12) T7 templ. DNA Alexa 647 12 C 2VUM‡ 3
RNA(+1) 3’-end RNA Alexa 647 6 C 1Y1W 2
RNA(+1) 3’-end RNA Alexa 555 6 C 1Y1W 1
RNA(+1) 3’-end RNA TMR 6 C 1Y1W 1,3
RNA(+4) U14 RNA Alexa 647 12 C 1Y1W 2
RNA(+10) 5’-end RNA Alexa 647 6 C 1Y1W 2
Rpb7(C150) C150 Rpb7 Alexa 647 6 C† 1Y1W 1,2,3
Rpb7(C94) C94 Rpb7 Alexa 647 6 C† 1Y1W 1
Rpb4(S73C) S73C Rpb4 Alexa 647 6 C† 1Y1W 1,2
Rpb7(S16C) S16C Rpb7 Alexa 647 6 C† 1Y1W 1
RNA(+29) 5’-end RNA TMR 6 C - 1
ntDNA(+1) T26 nontempl. DNA TMR 12 C - 2
ntDNA(+1) T26 nontempl. DNA Alexa 555 12 C - 2
ntDNA(-2) T24 nontempl. DNA TMR 12 C - 2
ntDNA(-2) T24 nontempl. DNA Alexa 555 12 C - 2
ntDNA(-4) T22 nontempl. DNA TMR 12 C - 2
ntDNA(-4) T22 nontempl. DNA Alexa 555 12 C - 2
ntDNA(-7) T19 nontempl. DNA TMR 12 C - 2
ntDNA(-7) T19 nontempl. DNA Alexa 555 12 C - 2
ntDNA(-12) T14 nontempl. DNA TMR 12 C - 2
ntDNA(-12) T14 nontempl. DNA Alexa 555 12 C - 2
ntDNA(-15) T11 nontempl. DNA TMR 12 C - 2
ntDNA(-15) T11 nontempl. DNA Alexa 555 12 C - 2
ntDNA(-18) T8 nontempl. DNA TMR 12 C - 2
ntDNA(-18) T8 nontempl. DNA Alexa 555 12 C - 2
ntDNA(-20) T7 nontempl. DNA TMR 12 C 1BNA+ 3
ntDNA(-30) T24 nontempl. DNA TMR 12 C 1VOL∗ 3
ntDNA(-37) T17 nontempl. DNA TMR 12 C 1VOL∗ 3
TBP(S159C) S159C TBP Alexa 647 6 C 1VOL∗ 3
TBP(S159C) S159C TBP Cy3 6 C 1VOL∗ 3

Table 5.1: Labeling sites and attached fluorescent dyes used in the measurements.
The length of the linker (linker len.) is given as number of backbone atoms.
projects: (1) RNA / TFIIB, (2) nontemplate DNA, (3) initial transcribing complex (ITC)
(+) position known relative to a segment of double strand DNA in B-form (Drew et al., 1981,
PDB-ID: 1BNA) but unknown relative to the Pol II elongation complex (Kettenberger et al.,
2004, PDB-ID: 1Y1W)
(∗) position known relative to the TBP/DNA complex (Nikolov et al., 1995, PDB-ID: 1VOL)
but unknown relative to 1Y1W
(†) comprises a 2-carbohydrate linker of the fluorophore and the maleimid group
(‡) the structure 2VUM (Brückner and Cramer, 2008) was matched to 1Y1W
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Elongation complexes with TFIIB from S. cerevisiae were prepared as described in
(Muschielok et al., 2008), either by directly adding TFIIB during the measurement, or by
preincubating the nucleic acid scaffolds with TFIIB.
Elongation complexes used for inference of fluorophore positions attached to the non-

template DNA were assembled as described above, but possessed a 17nt long RNA.
Initial transcribing complexes were assembled similarly and purified thereafter by size

exclusion chromatography, but contained different nucleic acid scaffolds, and, in addition,
the transcription factor IIF and the TBP, both from S. cerevisiae (Treutlein et al., unpub-
lished). The nucleic acid scaffolds consisted of a 63nt long template DNA, a 61nt long
biotinylated nontemplate DNA, and a 7 nt RNA. The DNA double strand was partially
mismatched over a region of 18nt, in which the RNA could bind to the template DNA
strand. The first thymine of the TATA box was located at register -37, i.e. 36 nt from
the base pairing with the last ribonucleotide at the RNA 3’-end. When labeled, TBP
was a full length construct expressed in E. coli (in collaboration with Patrick Cramer, the
plasmid was provided by Michael Meisterernst). Unlabeled TBP was a deletion mutant
that lacked the first 60 N-terminal amino acids.

5.1.2 Isotropic Förster distance measurements

The isotropic Förster distances Riso for all constructs are listed in table 2, 5 and 7 (ap-
pendix II) and were determined as described by Andrecka (2009), following a standard
procedure (Vamosi et al., 1996). In short, the donor quantum yield was determined
from absorption and emission spectra of donor samples versus an ethanol solution of
Rhodamine 101 as standard. The isotropic Förster distances were calculated with the
PhotochemCAD software (Lindsey, 2008) from donor emission spectra and acceptor ab-
sorption spectra, assuming the refractive index n = 1.3492 and κ2 = 2/3 (see section
2.2.2). All fluorescence spectra were measured in bulk samples using a steady state flu-
orescence spectrometer (Edinburgh Instruments F900) and for all absorption spectra, a
UV-VIS spectrophotometer (Varian Cary 50) was used.

5.1.3 FRET efficiency measurements

FRET efficiency data was collected with a custom-built single-molecule TIRF microscope
(Lewis, 2009; Andrecka, 2009) and is listed in tables 1, 4 and 6 (appendix II). In short, the
reconstituted complexes were immobilized to the surface of a quartz glass slide function-
alized with biotinylated polyethyleneglycol and incubated with neutravidin, which was
bound to the biotin on the nontemplate DNA. Time traces of donor and acceptor fluores-
cence signals acquired for the immobilized complexes were recorded with an acquisition
time of 100ms. The traces were averaged with a ten-frame sliding average filter and the
FRET efficiencies E(t) were calculated taking into account instrumental systematic errors
as well as heterogeneities between different molecules observed:

E(t) = FA(t)− βFD(t)
FA(t) + γFD(t) . (5.1.1)

FD(t) and FA(t) denote the time trace of the acquired background-corrected donor and
acceptor fluorescence signals, respectively. The factors β and γ are used to correct for
leakage of donor fluorescence into the acceptor channel, different detection efficiencies, as
well as quantum yields that may vary from molecule to molecule. They are determined
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Figure 5.1: Typical FRET efficiency histogram.
FRET efficiency histograms were computed
by binning the acquired and smoothed FRET
efficiencies of well-defined FRET pairs. One
ore more Gaussians were fitted to the his-
tograms in order to obtain the centers of the
peaks (arrows) and the statistical uncertain-
ties of the center estimates. The uncertain-
ties obtained from the fit and the estimated
systematic errors were used as data in the
Bayesian analysis.

for each molecule as follows,

β =
〈FA〉D 6A
〈FD〉D 6A

(5.1.2)

γ =
〈FA〉DA − 〈FA〉D 6A
〈FD〉D 6A − 〈FD〉DA

. (5.1.3)

The averages 〈.〉DA and 〈.〉D 6A are taken before donor and acceptor bleaching, and be-
fore donor bleaching but after acceptor bleaching, respectively. Hence, only molecules
exhibiting acceptor bleaching prior to donor bleaching were analyzed.
Average FRET efficiencies Eij between the fluorescent dyes i and j were obtained

by least-square fitting a Gaussian to the histograms of the measured FRET efficiencies.
When more than one FRET efficiency population was visible in the histogram, multiple
Gaussians were used for fitting, each Gaussian representing a population of molecules (see
figure 5.1).
For each average FRET efficiency Eij , its uncertainty ∆Eij was computed from the fit

error and the systematic error assuming both error sources to be independent. The sys-
tematic error was estimated from the standard deviation of the average FRET efficiencies
obtained by fitting data acquired on different days.
Pre-processed in this way, the average FRET efficiencies Eij and errors ∆Eij that

belong to the same state of the Pol II complex were used as data points in the Bayesian
analysis.

5.1.4 Fluorescence anisotropy measurements

Fluorescence anisotropies were acquired as described by Andrecka (2009) with a steady
state fluorescence spectrometer (Edinburgh Instruments F900) and are listed in table 3
(appendix II). In short, the instrumental corrections were accounted for, and anisotropy
values were calculated as the spectral average over a small region around the maximum of
the fluorescence emission spectrum. The measurements were performed on site-specifically
labeled complexes with either donor or acceptor. Due to the slow rotational diffusion of the
Pol II macromolecular complexes, the measured fluorescence anisotropies were attributed
completely to the segmental motion of the fluorophores.

5.1.5 FRET anisotropy data

In this work, only artificial (i.e. simulated) transfer anisotropy data was used (see section
5.3.4), but in principle transfer anisotropies can be acquired in a similar way like fluores-
cence anisotropies from the polarization resolved acceptor fluorophore emission intensity
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after polarized donor excitation. However, it would be best to measure FRET anisotropies
like FRET efficiencies in single-molecule experiments to avoid systematic errors, which
might occur when several FRET populations are present in the sample.

5.2 Nano-Positioning System software

In order to solve the Nano-Positioning System parameter estimation problem, utility
programs and graphical user interfaces (GUIs) were developed in MATLAB (The Math-
Works).
Separate GUIs were developed for the NPS, based on the position - Förster distance

model and the position - orientation model, both without and with optional docking of
rigid bodies. The GUIs allow for a user-friendly operation of the utility programs as well
as for input of FRET measurement data and a convenient visualization of the parameter
estimation results.
The utility programs were used to define model parameter priors, to perform the pa-

rameter estimation calculations, to visualize the calculation results and to check them
for consistency, and finally, to export marginalized position posteriors for visualization in
molecular viewing software (see section 5.3.5).

5.2.1 Position - Förster distance model

The parameter estimation calculations based on the position - Förster distance model were
done according to sections 3.1 and 5.4. The information flow and coarse structure of the
software developed to compute the marginal antenna position posterior is shown in figure
5.2.
In short, FRETnps.m was used to define the FRET network (i.e. for measurement data

input and prior input), to simulate the antenna position prior, to perform the calculations,
and to manage the FRET network data as well as the resulting marginal antenna position
posterior. The data was stored in the global structure FRETnpsDat in memory, as well
as in files. In the latter case, two types of files were generated, the measurement and
the posterior files. The measurement files were written and loaded by FRETnpsGUI.m and
contained the definition of the FRET network and the prior knowledge, i.e. the FRET
efficiency with measurement error, the Förster distance and satellite position prior (both
as approximations), the antenna position prior (as a binary grid), as well as the positions
and element names of the atoms in the PDB file used to compute the antenna position
prior. The posterior files were written by FRETnpsGUI.m and contained the marginal
antenna position posterior in addition to the FRET network definition. The posterior
files could be processed further by utility functions.
The FRETnpsTools.m GUI was used to start FRETnps.m and other utility func-

tions and GUIs. More precisely, the GUIs ModelSatellitePosition.m and
ModelFoersterradiusPrior.m were used to model satellite position priors and Förster
distance priors, respectively. ExportDensity.m was used to save the marginal antenna
position posterior densities in .MRC and .XPLOR formats, which could be read by molecu-
lar viewing software (see section 5.3.5).
The utility program ConsistencyCheck.m was used to check the consistency of the ana-

lyzed data (see section 5.3.6). Both ExportDensity.m and ConsistencyCheck.m processed
posterior files.
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Figure 5.2: Position - Förster distance model NPS software overview
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Figure 5.3: Position - orientation model NPS software overview
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5.2.2 Position - orientation model with optional docking
The parameter estimation calculations based on the position - orientation model with
optional docking were done according to sections 3.2 and 3.3. The information flow and
coarse structure of the software developed to this purpose is shown in figure 5.3.
In short, FRETnpsGUI.m was used to manage the definitions and results of NPS prob-

lems, as well as to call the GUIs FRETnpsEditgeometry.m, FRETnpsCalculation.m and
FRETnpsViewresults.m, which were used to define the FRET network, perform the calcu-
lations and visualize the results. The data was stored in the global structure FRETnpsDat
in memory, as well as in project files, which could be saved and loaded by FRETnpsGUI.m.

FRETnpsEditgeometry.m was used to define the FRET network, i.e. to specify the mea-
surement data, to load or edit the priors of fluorophore parameters, and, optionally, as
well of reference frame parameters. In addition, it is also possible to introduce distance
constraints between fluorophore positions.
The priors of the satellite fluorophore positions were simulated with

ModelSatellitePosition.m and its sub-functions as described in section 5.2.1.
They were manually converted into the box collection prior format (BCP, see section
5.5.3), which could be opened by FRETnpsEditgeometry.m. The priors for the parameters
of docking reference frames were edited manually with EditBCP.m.
The calculations underlying the inference process were based on nested sampling and

Metropolis sampling of the posterior. They were performed with the general sampling
engine described in section 5.5 and called from the GUI FRETnpsCalculation.m.

FRETnpsViewresults.m was used to display the results of the calculations. The export
of marginal densities of fluorophore positions and of points defined in a docking reference
frame was done in the GUI ExportDensity.m.

5.3 Simulation and visualization

This section describes how simulations were carried out that were relevant for the assign-
ment of priors, the generation of artificial data for test calculations, and for visualization
and testgin of the Nano-Positioning System analysis results.

5.3.1 Calculation of accessible volumes
Fluorophore positions were assumed to be limited by two constraints, steric clashes with
the macromolecule, and the maximum length of the linker used for the attachment. A
clash was defined by Van der Waals contact of either dye or linker (if present) with the
macromolecule.
In order to calculate the accessible volume, i.e. the positions that satisfy the constraints,

the fluorophore was approximated with a sphere of diameter Dfl. In this work, Dfl was
set to 7Å for all fluorophores. If the fluorophore was attached to the macromolecule via
a flexible linker, e.g. a carbon chain linker, RNA or DNA, the linker was modeled to
have the thickness Dli and the length Lli (see figure 5.4a). The linker lengths used in
the calculations were the lengths of the stretched carbohydrate chain in the case of short
carbohydrate linkers, and 80% of the contour length of nucleic acid linkers (see table 5.2).
The linker and fluorophore diameters were set to the respective minimum diameter in
a space-filling representation. In this way, fluorophore positions were allowed that were
accessible only at certain linker segment or fluorophore orientations.
The structures of the macromolecules were taken from the Protein Data Bank (PDB

format). The labeling sites were C6 in the case of DNA, and O3 in the case of RNA
on the respective nucleotides. The labeling sites on the protein were the sulfur atoms of
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Figure 5.4: Computation of accessible volumes. (a) Coarse model used to compute the accessible
volume for a fluorophore. In this model the fluorophore is treated as a sphere of diameter
Dfl. It is attached to the macro-molecule (light gray area, bottom) by a flexible linker of
length Lli and diameter Dli.
(b) Accessible volumes were computed on a lattice (small gray circles). The lattice points
in which a sphere of diameter Dli could be placed without causing steric clashes with the
macromolecule (small yellow and blue filled circles above the bottom green dashed line).
Points directly around the attachment site A were allowed as well (inside the green dashed
circle). From these points a sub-set was selected (in between the green dashed lines) that
could be connected by a line of at most Lli+Dfl/2 length that started at A and could connect
allowed points that are within third order neighborhood only. From these lattice points those
were assigned as accessible to the fluorophore (small blue filled circles) which allowed to place
a sphere of diameter Dfl (big blue open circle) without clash with the macromolecule.

the respective cysteins. If the cystein was introduced by the mutation of a serine, the
coordinates of the respective oxygen atom were used in the simulations instead.
In order to calculate the volumes accessible to the satellite fluorophores, a cubic lattice

inside a box was used. The box was centered around the attachment point and had the
edge lengths 2Lli +Dfl. The lattice spacing was equal to 1

5 of the smallest of the lengths
appearing in the model (Dfl, Dli or Lli) by default. In the case of antenna fluorophores,
the box was chosen manually to incorporate the macromolecule and a reasonable amount
of extra space around it, and a lattice spacing of either 1 or 2Å was used.
In the initial step of the calculation, all lattice points were chosen which allowed to

place a sphere with diameter Dli without clashing with the macromolecule. When the
attachment of the fluorophore was not considered, Dfl was used instead of Dli, and the
algorithm terminated after the first step, so that all lattice points accessible to the sphere
were treated as accessible to the fluorophore.
When a linker was simulated, all points were allowed in addition, which were located

inside the sphere with diameter Dli centered at the attachment point of the linker to the
macromolecule. This was done in order to allow the linker to “escape” the macromolecule
interior. From these lattice points those were chosen that could be connected to the
lattice point located closest to the attachment point by a line with length smaller than
Lli +Dfl/2. The line had to connect neighboring and allowed lattice points only, and was
able to fold back on itself (see figure 5.4b). Neighboring lattice points were defined as all
points within a third order neighborhood in three dimensions, i.e. at a maximum distance
of
√

3 of the lattice spacing. Finally, for all points that were reached by the linker, it was
checked whether there was enough space in the surroundings. To this end a sphere of
diameter Dfl had to fit into the position without causing a clash with the macromolecule.
All lattice points that have survived the selection steps were treated as accessible to the
fluorophore.
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labeling site fluorophore attachment position/Å Lli/Å
x y z

tDNA(-10)∗ ALX647,TMR 77.9 35.8 -16.4 13
tDNA(+3)∗ ALX647,TMR 95.7 59.8 -15.3 13
tDNA(+7)∗ ALX647,TMR 93.2 79.8 -23.4 13
tDNA(+9)∗ ALX647 93.2 79.8 -23.4 13
tDNA(+12)∗ ALX647 94.9 87.8 -31.5 13
RNA(+1)∗ ALX647,ALX555,TMR 105.0 45.7 8.9 7
RNA(+4)∗ ALX647 92.0 41.7 0.5 13
RNA(+10)∗ ALX647 85.4 29.1 -15.5 7
Rpb7(C150)∗ ALX647 117.3 30.0 -64.5 7
Rpb7(C94)∗ ALX647 118.1 7.3 -74.5 7
Rpb4(S73C)∗ ALX647 147.4 18.5 -40.5 7
Rpb7(S16C)∗ ALX647 133.8 19.3 -27.0 7
ntDNA(-20)+ TMR 2.7 1.5 0.41 13
ntDNA(-30)† TMR 2.2 18.8 -10.3 13
ntDNA(-37)† TMR 12.0 1.8 -8.5 13
TBP(S159C)†,‡ ALX647,CY3 -4.3 -4.4 8.1 23

Table 5.2: Attachment position coordinates (x, y, z) relative to the X-ray structure model, as well
as linker lengths Lli used to simulate accessible volumes at different labeling sites. Linker
diameters Dli = 4.5Å as well as fluorophore diameters Dfl = 7Å were used in all simulations.
Fluorophore abbreviations: ALX647: Alexa 647, ALX555: Alexa 555, CY3: Cyanine 3,
TMR: Tetra-methyl rhodamine
(∗) relative to Pol II elongation complex (Kettenberger et al., 2004, PDB-ID: 1Y1W)
(+) relative to a B-DNA double strand (Drew et al., 1981, PDB-ID: 1BNA)
(†) relative to TBP/DNA/TFIIB complex (Nikolov et al., 1995, PDB-ID: 1VOL). TFIIB
was deleted, the DNA was extended with B-DNA at the 3’ and 5’-ends, and the struc-
ture was moved to the origin. The attachment points of NT-DNA(-30), NT-DNA(-37) and
TBP(S159C) are identical with the positions of the C6 atom of guanine 24, the C6 atom
of thymine 17 (both in the nontemplate DNA strand), and the Cα atom of Gln164 (in the
TBP), respectively.
(‡) Residues 158-163 in the TBP chain were deleted from the structure but added to the
linker because there was no secondary structure element. The attachment point was Gln164,
the closest amino acid that shows secondary structure.
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5.3.2 Monte Carlo simulation of Förster distances

Förster distances of single FRET pairs

For the calculation of the Förster distance prior in the position - Förster distance NPS
model, p (Rij |I), the assumption of independent and completely unknown average tran-
sition dipole moment orientations was made.
To simulate p (Rij |I), random relative orientations of the average transition dipole

moment were calculated that correspond to uniformly distributed average transition dipole
moment orientations for each fluorophore,

Θij = arccos [rand(0, 1)] , (5.3.1)
Θji = arccos [rand(0, 1)] , (5.3.2)
Φij = 2π · rand(0, 1), (5.3.3)

where rand(0, 1) denotes uniform pseudo random numbers between 0 and 1. Θij and Θji

are the angles between the average transition dipole orientations of the fluorophores i and
j to the line interconnecting the fluorophores, and Φij is the angle between the planes
defined by each average orientation and the interconnecting line (see figure 3.9).

Θij ,Θji and Φij , the isotropic Förster distance Riso
ij , as well as the average axial depo-

larizations 〈dxi 〉 and
〈
dxj
〉
calculated from fluorescence anisotropies were used to compute

the dynamically averaged Förster distance Rij = 6
√〈

R6
ij

〉
(see section 3.2.1). When the

axial depolarizations had ambiguous signs, two or four Förster distances were computed
for a single set of angles Θij ,Θji and Φij . The histogram of the simulated Förster dis-
tances was calculated and normalized to unity area, and was used as an approximation
of the prior p (Rij |I).

Förster distances of correlated FRET pairs

Simulations of the joint probability distribution of two dynamically averaged Förster
distances, Rij and Rik were carried out in a similar way like the simulations in the section
above. The studied FRET pairs, ij and ik have the fluorophore i in common. Since the
Förster distances are correlated by the average transition dipole moment orientation and
the position of the fluorophore i, the probability distribution p (Rij , Rik|xi,xj ,xk, I) will
depend on the relative position of fluorophore i in respect to fluorophores j and k.
In the simulation, independent uniformly distributed orientations of the average tran-

sition dipole moments of all fluorophores were assumed. Consequently, the orientations
given by the azimuth angles θi, θj , θk and the polar angles φi, φj , φk (see figure 3.9) were
simulated as

θi/j/k = arccos [2 · rand(0, 1)− 1] , (5.3.4)
φi/j/k = 2π · rand(0, 1). (5.3.5)

In addition, the isotropic Förster distances of both FRET pairs were assumed to be
equal, i.e. Riso

ij = Riso
ik = Riso. This is possible as the only reason that causes a finitely

broad Förster distance distribution in the Position - orientation NPS model are orientation
effects, which are independent of the isotropic Förster distance as a length scale. Without
loss of generality, the fluorophores j and k were placed on the z−axis in a distance of
Riso. The position xi of the fluorophore i was scanned with a step size of 0.05 ·Riso in a
plane, which contained the z−axis.
The angles θi/j/k, φi/j/k, and the fluorophore positions xi/j/k were used to compute
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the angles Θij , Θji, Ψij and Θik, Θki, Ψik, which describe the relative orientations of the
average transition dipole moments (see figure 3.9). These angles together with the average
axial depolarizations 〈dxi 〉,

〈
dxj
〉
and 〈dxk〉 were used to calculate the pair of dynamically

averaged Förster distances Rij and Rik at the particular positions of the fluorophore i.
When the sign of an average axial depolarization was ambiguous, it was chosen to be
either positive or negative with equal probability.
The Förster distance pairs (Rij , Rik) were binned into two-dimensional histograms at

each position xi. Subsequently normalized to unity volume, these histograms were ap-
proximations of the joint probability distribution p (Rij , Rik|xi,xj ,xk, I).

5.3.3 Measuring statistical dependence

A good method to quantify the statistical dependence of two random variables, X and
Y , is the normalized mutual information (NMI), I(X,Y ) (Strehl and Ghosh, 2002). This
quantity is the normalized dissimilarity of the joint distribution of p (X,Y |I) compared
to a reconstruction from the marginal distributions p (X|I) p (Y |I). I(X,Y ) is computed
by means of the Kullback-Leibler divergence, DKL, (Kullback and Leibler, 1951) and
normalized with the geometric mean of the Shannon informations H of the marginal
distributions.
Explicitly, in this work the NMI was used to compute the amount of statistical depen-

dence of the Förster distances Rij and Rik of two FRET pairs with a common fluorophore
i (see section 5.3.2 for simulation details). It is given by

I(Rij , Rik) = DKL [p (Rij , Rik|xi,xj ,xk, I) || p (Rij |I) p (Rik|I)]√
H [p (Rij |I)]H [p (Rik|I)]

, (5.3.6)

where the Kullback-Leibler divergence, DKL, of two probability densities p (A) and p (B)
is defined as

DKL [p (A) || p (B)] =
∫
dA p (A) ln

[
p (A)
p (B)

]
, (5.3.7)

and the Shannon information H of a probability density p (A) is given by

H[p (A)] =
∫
dA p (A) ln [p (A)] , (5.3.8)

which is basically the negative of the Shannon-Jaynes entropy (equation (2.4.16)) with a
uniform measure.

5.3.4 Artificial data for test calculations

For test calculations an artificial data set was generated. Initially, random uniformly
distributed fluorophore positions were created within a reasonable volume, but under
the condition that the fluorophores are separated by at least 25 Å. The volume was
bounded by a cone (half opening angle 60◦) and two spheres centered at the cone tip.
The spheres had a radius of 40 and 60Å for the satellites, and 90 and 110Å for the
antennas. In addition to the fluorophores created above, two more satellite fluorophores
were added manually to the network in positions that promised to reduce localization
uncertainty. The average transition dipole moment orientations were randomly chosen
from a uniform distribution in the solid angle without any constraint. Residual fluores-
cence anisotropies were randomly chosen from a uniform distribution between 0.15 and
0.32. In this range all experimental fluorescence anisotropies were observed (see table 3,
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appendix II). The fluorophore data (positions, average transition dipole orientations and
fluorescence anisotropies) are listed in table 8 (appendix II).
Isotropic Förster distances were chosen from a uniform distribution between 55Å and

65Å (see table 10, appendix II).
Using these values, the expected FRET efficiencies and anisotropies (tables 9 and 11)

were calculated based on the position - orientation model (see 3.2, appendix). The ex-
pected data was used directly without adding any noise that is used usually to model
experimental noise. This was done since it is necessary to know the maximum posterior
solution independently of the numerical computation in order to test the convergence of
the algorithm.
For FRET efficiency and anisotropy data an error of 0.02 and 0.01 was assumed, re-

spectively.

5.3.5 Probability density visualization

Marginal posterior probability densities of fluorophore positions were computed in two
ways. Either, the marginalized posterior was evaluated on a grid (position - Förster dis-
tance NPS model, see section 5.4), or, normalized histograms of fluorophore positions
were calculated from the posterior samples (position - orientation NPS model). In both
ways, the marginal posterior was represented by an approximate probability density value
assigned to each voxel in space.

Densities

The three-dimensional marginal posterior densities of fluorophore positions were saved
as files in XPLOR or MRC/CCP4 map format (the latter referred to as MAPFORMAT
by Crowther et al. (1996)). The files were loaded with the molecular viewing software
UCSF Chimera (Chi, 2010; Pettersen et al., 2004) and displayed as “solid”, so that low
probability densities were shown more transparent than high probability densities.

Credible volumes

In order to display three-dimensional credible volumes, the probability density p (x) was
transformed into the function, c(x), which has the property that an iso-surface SP at the
level P , i.e.

SP = {x|c(x) = P}, (5.3.9)
encloses the credible volume that corresponds to the probability P (see section 2.4.4). The
function c(x) was evaluated at the supporting points x = xm (m = 1, . . . , Nx ·Ny ·Nz) of
the probability density p (x), and saved in MRC/CCP4 format. The supporting points
were spaced on a cubic grid with spacing δx consisting of Nx ·Ny ·Nz lattice sites. The
actual size of the spacing was chosen, so that the iso-surfaces were looking smooth and
varied between 0.5 and 14Å for the densities displayed in this work. The MRC/CCP4 files
were loaded in UCSF Chimera and used to visualize the credible volumes for an arbitrary
probability P . To this end, iso-surfaces of c(x) were displayed as “surface” or “mesh”.
To compute c(xm), the probability density p (xm), known at its supporting points xm,

was sorted in descending order, so that

p (ξ) ≡ p
(
xm(ξ)

)
≥ p

(
xm(ξ+1)

)
, (5.3.10)

where ξ and m are the voxel indices after and before the sorting, respectively, m(ξ) is
the sorting operation, and p (ξ) denotes the sorted probability density. Thereafter, the
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Figure 5.5: Visualization of

credible volumes. The
position space (left) and
the sorted voxel space
(right) are shown. The
function c(x) used to
display credible vol-
umes is calculated from
the marginal position
probability density
p (x) (yellow fog) by
sorting, calculation of
cumulative probabilities,
and re-mapping of the
cumulative probabilities
into the position space.
The sorted probability
density, p (ξ), and its
cumulative distribution,
P (ξ), are shown on the
right side as functions of
the voxel index ξ. Three
voxels in the position
space are symbolized
by white cubes. The
function c(x) contoured
at the level P (cyan
mesh) is the surface
of the credible volume
corresponding to the
probability P .

cumulative sorted probabilities, P (ξ), defined as

P (ξ) = (δx)3
ξ∑

ξ′=1

p
(
ξ′
)
, (5.3.11)

were calculated and mapped back into the three-dimensional position space (figure 5.5).

5.3.6 NPS measurement consistency check

Depending on the NPS model used, the consistency of measurements was checked in
different ways, which will be shown in the following.

Position - Förster distance model

In the position - Förster distance model, the consistency of FRET efficiency measurements
was checked by comparison of the posterior, p (xa| {Eai} , I), with the contributions of
each measurement between satellite i and the antenna a,

∑
j
wijKij(xa). To this end,

the measurement profiles, Pi(d), of the the densities
∑

j
wijKij(xa) and the posterior

profiles, Pi,post(d), of the posterior density p (xa| {Eai} , I) were compared. The profiles
were calculated by integrating the density that lies in the distance d from the average
SAT position, 〈xi〉, and reweighting it with the factor 1/d2, i.e.

Pi/i,post(d) =
d−2 ∫ dxaδ ((|xa − 〈xi〉| − d)D(xa)∫

dxaD(xa)
, (5.3.12)
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where D is the density to be projected, i.e. D =
∑

j
wijKij(xa) or D = p (xa| {Eai} , I).

δ(.) denotes the Dirac delta distribution. The average SAT position, 〈xi〉, is defined as

〈xi〉 =
∫
dxi xip (xi|I) . (5.3.13)

Profiles, which were calculated relative to the same satellite i, were compared visually.
A large overlap of Pi(d) and Pi,post(d) suggested that the measurements were consistent,
whereas a small overlap suggested inconsistencies.

Position - orientation model with optional docking

In the position - orientation model with optional docking, the consistency of measure-
ments was checked by comparing the experimental data with the expected observables
FRET efficiency, Emn, and FRET anisotropy, Amn, which were computed from posterior
samples. This was done by plotting normalized histograms of the expected observables
together with the corresponding marginal likelihoods defined by

p (Emn|{xij}, {Ωij}, I) =
∫
d{Ekl6=mn}

∫
d{Akl} p ({Ekl}, {Akl}|{xij}, {Ωij}, I)

(5.3.14)
and

p (Amn|{xij}, {Ωij}, I) =
∫
d{Ekl}

∫
d{Akl6=mn} p ({Ekl}, {Akl}|{xij}, {Ωij}, I) .

(5.3.15)
When the FRET measurements are independent, the expressions above can be simplified,
so that only the sums of the likelihood factors (see equations (3.2.4) and (3.2.5)) remain,
i.e.

p (Emn|{xij}, {Ωij}, I) = 1
SmSn

∑
smsn

N∆Emn (Emn − E(smsn)
mn ) (5.3.16)

and
p (Amn|{xij}, {Ωij}, I) = 1

SmSn

∑
smsn

N∆Amn (Amn −A(smsn)
mn ). (5.3.17)

Here, Nσ(.) denotes the normal distribution with σ standard deviation, which is equal
either to the measurement uncertainty ∆Emn and ∆Amn of FRET efficiency and FRET
anisotropy, respectively. The index (smsn) indicates the ambiguities of the expected
FRET efficiency and FRET anisotropy caused by the ambiguous signs of the average
axial depolarizations, whereas Sk denotes, whether there is an ambiguity (Sk = 2) or not
(Sk = 1) (see section 3.2.2).
Like in the previous section, a large overlap of the histograms and the marginal like-

lihoods suggested consistent measurements, whereas a small overlap suggested inconsis-
tencies or errors in the computation.

5.3.7 Characterization of fluorophore positions and orientations

In all NPS models, average fluorophore positions, 〈xi〉, were calculated from the ap-
proximate marginal posterior evaluated on a cubic grid of points in space, as described
in section 5.3.5. The localization accuracy was computed from the covariance matrix
Cpos
i =

〈
(xi − 〈xi〉)(xi − 〈xi〉)T

〉
by diagonalization (see equation (2.4.35)). This re-

sulted in three standard deviations σxi
1 , σxi

2 and σxi
3 in the principal directions. In order to
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summarize the localization accuracy in one number the geometric mean (σxi
1 σxi

2 σxi
3 )1/3 =

det(Cpos
i )1/6 was computed, which is equivalent to the 6th root of the determinant of

Cpos
i .
In the position - orientation model, the average fluorophore orientation was calculated

directly from posterior samples. In order to deal with the spherical topology correctly, the
average transition dipole moment orientation from each sample was represented by two
points on the unit sphere. These points, {sl}, were the intersections of the unit sphere and
the line defined by the average transition dipole moment orientation. By construction,
the center of mass of all points {sl} was the origin.
Like in the case of fluorophore positions, the covariance matrix Cori

i =
〈
sls

T
l

〉
was

computed and diagonalized, which resulted in three principal directions and variances.
The mean estimated average transition dipole moment orientation 〈Ωi〉 was defined as the
principal direction with the largest variance, and the orientation accuracy as the standard
deviations σΩi

1 and σΩi
2 in the remaining principal directions. In order to summarize the

orientation accuracy in one number, the geometric mean (σΩi
1 σΩi

2 )1/2 was computed.

5.4 Computation of the marginal antenna position posterior in the
position - Förster distance model

In this section, the computation of the the marginal posterior of the antenna fluorophore
position in the position - Förster distance model (Muschielok et al., 2008, supplementary
material) is described in detail. The variables used here were explained in section 3.1.
All integrals were computed either by hand or using the computer algebra software

Maple (Maplesoft, Waterloo Maple Inc). Integrals that could not be computed in a
closed form were integrated numerically using adaptive quadrature that is implemented
in the MATLAB function quadgk (Gander and Gautschi, 2000).
As stated in section 3.1, the marginal ANT position posterior was written as

p(xa|{Eai}, I) ∝ p(xa|I)
∏
i

∑
j

wijKij(xa), (5.4.1)

with the functions Kij(xa) defined by

Kij(xa) =
∫
dxi

∫
dRai Li(|xa − xi| /Rai)Sij (xi) p(Rai|I), (5.4.2)

where Li(|xa − xi| /Rai) is the likelihood factor, and the other two terms originate from
the prior. The likelihood factor is given by

Li (|xa − xi| /Rai) =
exp
{
− [Eai (xa,xi, Rai)− Eai]2 /

[
2 (∆Eai)2]}

∆Eai
√

2π
. (5.4.3)

The functions Sij (xi) in equation (5.4.2) are Gaussian kernels that approximate the
position prior of the ith satellite, p (xi|I), as follows,

p(xi|I) ≈
∑
j

wijSij (xi), (5.4.4)

Sij (xi) =
(√

2π∆sij
)−3 exp

(
−

∣∣xi − 〈s〉ij∣∣2
2 (∆sij)2

)
. (5.4.5)
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The centers 〈s〉ij , widths ∆sij and weights wij were obtained from a least-square fit of
the position prior to the normalized accessible volume Vi (see sections 3.1.3 and 5.3.1).
To save computation time in the last calculation step later on, all widths were kept at an
equal value during the fit, i.e. ∆sij = ∆s.

The Förster distance prior is approximated similarly with the functions Qik(Rai),

p(Rai|I) ≈
∑
k

vikQik(Rai),

Qik(Rai)=
[√

2π∆q̃ikerf
(

q̃ik√
2∆q̃ik

)]−1{
exp
[
− (Rai − q̃ik)2

2 (∆q̃ik)2

]
− exp

[
− (Rai + q̃ik)2

2 (∆q̃ik)2

]}
,

(5.4.6)

where q̃ik and ∆q̃ik are parameters related to the center and width of the pseudo-Gaussians
Qik(Rai). q̃ik and ∆q̃ik were obtained from a least square fit to the simulated normalized
histograms of Förster distances (see section 5.3.2).

In the following paragraphs, the computation of the four-dimensional (three dimensions
for xi and one for Rai) integrals in equation (5.4.2) will be discussed in detail. Maple
was used to integrate over three out of 4 dimensions analytically. To this end, spherical
coordinates centered at xa = (xxa, xya, xza) were used to substitute the satellite position
xi = (xxi , xyi , xzi ), i.e. (xxi − xxa, xyi − xya, xzi − xza)→ (ri, θi, φi). The integration over the
angular variables yielded the following expression:

Kij(xa) =
∑
k

vik

∫ ∞
0

∫ ∞
0

Li (ri/Rai)
ri√

2π∆sijdij[
exp
(
− (ri − dij)2

2 (∆sij)2

)
− exp

(
− (ri + dij)2

2 (∆sij)2

)]
Qik(Rai)dRaidri (5.4.7)

where dij =
∣∣xa − 〈s〉ij∣∣. Since Kij(xa) depends not directly on xa but on the distance

dij only, it possesses spherical symmetry around the point 〈s〉ij . Consequently, Kij(x)
was calculated by evaluating its radial profile Fij(dij),

Kij (xa) = Fij (dij) =
∑
k

vikFijk (dij) , (5.4.8)

where Fijk (dij) is the contribution of the kth kernel of the Förster distance prior to the
radial profile Fij (dij).

In order to calculate Fijk (dij), equation (5.4.6) was substituted into equation (5.4.7).
The integration variables were transformed, (ri, Rai) → (ri, ρi) = (ri, Ri/ri), and inte-
gration over ri yielded the lengthy expression

Fijk (dij) =
[√

2πdijerf
(
q̃ik/
√

2∆q̃ik
)]−1∫ ∞

0

Li (1/ρi)[
(∆q̃ik)2 + ρ2

i (∆sij)2]5/2 {[(q̃2
ik + (∆q̃ik)2) (∆sij)4 ρ2

i+(
d2
ij + (∆sij)2) (∆q̃ik)4]X− + 2

[
dij (∆q̃ik)2 q̃ikρi (∆sij)2]X+

}
dρi, (5.4.9)
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where

X± = exp
[
−

1
2 (dijρi − q̃ik)2

(∆q̃ik)2 + ρ2
i (∆sij)2

]
± exp

[
−

1
2 (dijρi + q̃ik)2

(∆q̃ik)2 + ρ2
i (∆sij)2

]
(5.4.10)

The radial profiles Fijk (dij) were evaluated in several hundred supporting points on the
dij-axis by solving the integral in equation (5.4.9) numerically with adaptive quadrature.
In the next step, the radial profile Fij (dij) of the fuzzy sphere (equation (5.4.8)) was

calculated. The tree-dimensional fuzzy spheres, Kij(xa), were evaluated on a cubic lattice
(either 1 Å or 2 Å spacing) by interpolation of their radial profiles, Fij (dij).
Finally, the fuzzy spheres that contributed to the same FRETmeasurement, i.e.Kij(xa)

for a fixed i, were weighted, added and multiplied with the antenna fluorophore position
prior (equation (5.4.1)). In this way, the not yet normalized antenna position posterior
was calculated. The evidence, Z, was computed approximately by trapezoidal integration
of the sampled density with the MATLAB function trapz, so that the marginal antenna
position posterior was given by

p(xa|{Eai}, I) = Z−1p (xa|I)
∏
i

∑
j

wijKij(xa). (5.4.11)

5.5 Implementation and development of a sampling engine for
Bayesian data analysis

In contrast to the previous section, the complexity of the parameter estimation problem in
the position - orientation NPS model makes it necessary to use a fully numerical approach.
To this sake, two sampling algorithms were implemented in MATLAB (The MathWorks)

and C: The nested sampling algorithm (section 2.5.2) based on Markov-chain Monte Carlo
was used to search high probability regions of the posterior in the multi-dimensional pa-
rameter space, to compute the evidence and a small number1 of posterior samples. More
posterior samples were drawn by using the Metropolis Monte Carlo algorithm (section
2.5.1). The implementation of the algorithms, called sampling engine, was kept general in
order to solve arbitrary finite-dimensional parameter estimation problems with a continu-
ous parameter space. The sampling engine was adapted to the NPS parameter estimation
by implementing a custom prior and likelihood.
In this section the requirements of the sampling engine will be discussed, followed by a

description of the implementation and the adaptation to the NPS analysis.

5.5.1 Requirements

In the case of NPS, which was here a moderate-dimensional (≈ 50 dimensional) parameter
estimation problem, the posterior has a complicated shape because of strong correlations
between fluorophore positions and average transition dipole orientations caused by the
likelihood. Probably, the posterior does not even possess a unique global maximum since,
in most cases, the number of parameters exceeds the number of data (see section 6.7.4
for a detailed discussion). In addition, the posterior probability values of the samples are
usually spread over many orders of magnitude and must be handled in a way that keeps
rounding errors small.

1The number of posterior samples computed by reweighting samples obtained by nested sampling was
small (here: 5 to 20 times less) compared to the number of samples from nested sampling (here:
25·103 to 170·103).
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When MCMC is used to compute samples, the Markov chain must be able to maneuver
efficiently in the parameter space constrained by either the posterior directly, as in the
case of the Metropolis algorithm, or by a likelihood constraint, as in nested sampling.
Since the likelihood constraint changes gradually, the step sizes of local moves must be
adapted as well. In order to ensure ergodicity and to produce independent samples, the
chain must be also able to move long distances between high probability regions, which
was achieved by a non-local move.
Since the prior is flat but has at the same time a rather difficult form caused by the

complicated shape of the volumes accessible to the fluorophores, the Markov chain must
check frequently whether it stays within the prior. To this end an efficient access to the
prior information was required.
In the following, the most important details of the implementation will be discussed.

5.5.2 Working with small numbers

When the Markov chain samples parameter space regions with strongly varying likelihood
values, care must be taken in order to avoid rounding errors due to the finite representation
of numbers on a computer. To this end, instead of using directly the likelihood values,
their logarithms were utilized in the implementation of the sampling engine. This common
approach (Sivia, 2006, chapter 9) increases the dynamic range at cost of precision. When
two numbers a and b were added, rounding errors were kept small by adding the logarithms
of a and b (Sivia, 2006, chapter 9),

ln(a+ b) =
{

ln(a) + ln {1 + exp [ln(b)− ln(a)]} a > b

ln(b) + ln {exp [ln(a)− ln(b)] + 1} a ≤ b.
(5.5.1)

5.5.3 Implementation of prior information

Let {θi} = (θ1, θ2, . . . , θN ) be the vector of model parameters in the N − dimensional
parameter space. The prior is assumed to factorize into M independent priors, each
factor covering a subspace Pk of the parameter space,

p ({θi}|I) =
∏
k

p ({θi∈Pk}|I). (5.5.2)

Now, each factor in the equation above is a sum of non-overlapping boxes Bj with uniform
probability density pj ,

p ({θi∈Pk}|I) =
{
pj {θi∈Pk} ∈ Bj
0 otherwise.

(5.5.3)

Each box j is defined by its lower and upper corner, {θL,ji∈P } and {θ
U,j
i∈P }, respectively. The

prior factors are called box collection priors (BCPs), and a schematic example is shown
in figure 5.6. In this way, non-uniform priors can be described by assigning different
probability densities pj to each box. Though this can be used in future, it was not needed
in the calculations performed in this work, as all priors were flat.
For fast access to the prior information, i.e. for the calculation of p ({θi}|I), one needs

to determine the boxes (one in each subspace) that contain the point in parameter space.
Since most of the moves are expected to be local, it is checked first whether {θi∈Pk} is
located in the boxes that contained its last position.
When the box did not contain the point, a search was performed that used lists of
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Figure 5.6: Schematic sketch of a box col-
lection prior. Four boxes (B1 . . . B4,
solid lines) are shown with different
probability densities indicated as differ-
ent gray scales. The total upper (θU,toti )
and lower (θL,toti ) limits of the collection
of boxes are shown as dashed lines.

boxes sorted according to their lower and upper bounds. The sorted lists allow a fast
determination of boxes that could potentially contain the point, and intersection of the
sets of possible candidates yields the box that contains {θi∈Pk}. When the resulting set
is empty the point is “outside” of the prior, i.e. p ({θi∈Pk}|I) = 0.

5.5.4 Markov chain Monte Carlo

The MCMC comprises of two sorts of moves, a local and a non-local move. In order to
maintain detailed balance, at each step of the random walk it is determined at random
with probability pNL whether the local or the global move is used. In the calculations,
the probability to choose the non-local move was set much smaller than the probability
to choose the local move, i.e. pNL � 1, since the non-local move is computationally
expensive.

Local Monte-Carlo move

The move that ensures local mobility of the Markov chain alters the current position of the
Markov chain in all parameter space dimensions simultaneously. More precisely, the move
from the position {θi}t at time t to the position {θi}t+1 at the next time increment is done
by adding or subtracting exponentially distributed random numbers to each component
of the parameter vector, so that the probability to propose {θi}t+1 as the next position
of the chain is

pprop({θi}t+1|{θi}t) =
∏
i

1
2si

exp
(
−|θi,t+1 − θi,t|

si

)
. (5.5.4)

si is the length scale of the move in the parameter space dimension i. Figure 5.7 shows a
two-dimensional example. The move in equation (5.5.4) is similar to the physical diffusion
of a particle since a random walk is performed, but instead of normal distributed jumps
the computationally cheaper exponential distribution is used.
The proposed position {θi}t+1 is then accepted (A) or rejected (A) in order to maintain

detailed balance. The acceptance probability differs depending on whether samples from
the posterior (during Metropolis sampling) or from the constrained prior (during nested
sampling) are drawn. Checking of the acceptance is done in two consecutive steps by ap-
plying the acceptance criterion of Metropolis to the prior and to the likelihood separately.
In the first step, the position can be hence accepted (Aπ) or rejected (Aπ) due to the
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Figure 5.7: Local move proposal. Pro-
jection of the probability density
function pprop({θi}t+1|{θi}t) onto
two parameter space dimensions,
θ1 and θ2. The gray scale is pro-
portional to the probability density
of the position {θi}t+1 proposed
during a local move from the cur-
rent position {θi}t (black dot in the
center).

prior π({θi}) := p ({θi}|I),

p(Aπ|{θi}t+1, {θi}t) =
{

1 if π({θi}t+1) ≥ π({θi}t)
π({θi}t+1)/π({θi}t) otherwise.

(5.5.5)

This ensures that the chain stays within the parameter space occupied by the prior and
would yield prior samples when applied alone. In the second step, if the proposed position
was accepted due to the prior, the likelihood L is evaluated at {θi}t+1. Again, the position
can then be accepted (AL) or rejected (AL), but now due to the likelihood. In the case
of sampling the posterior, the new position is accepted with the probability

p(AL|{θi}t+1, {θi}t) =
{

1 if L({θi}t+1) ≥ L({θi}t)
L({θi}t+1)/L({θi}t) otherwise.

(5.5.6)

In the case of nested sampling, the prior constrained by L({θi}) > L∗ is sampled, which
is done by the following acceptance criterion:

p(AL|{θi}t+1, {θi}t) =
{

1 if L({θi}t+1) > L∗

0 otherwise.
(5.5.7)

Finally, the “total” acceptance probability is given by

p (A|{θi}t+1, {θi}t) = p(Aπ|{θi}t+1, {θi}t) p(AL|{θi}t+1, {θi}t) (5.5.8)

and the transition probability, i.e. the probability to move from {θi}t to {θi}t+1 is

p({θi}t+1|{θi}t) = pprop({θi}t+1|{θi}t) p(A|{θi}t+1, {θi}t). (5.5.9)

It is clear, that when si is constant during the random walk the move maintains detailed
balance since pprop({θi}t+1|{θi}t) = pprop({θi}t|{θi}t+1), and in the case of posterior
sampling the ratio of transition probabilities in between two positions is

p({θi}t+1|{θi}t)
p({θi}t|{θi}t+1) = π({θi}t+1)L({θi}t+1)

π({θi}t)L({θi}t)
, (5.5.10)

which proves that the local move generates samples proportional to the posterior. In the
case of nested sampling the ratio of transition probabilities is

p({θi}t+1|{θi}t)
p({θi}t|{θi}t+1) = π({θi}t+1)

π({θi}t)
, as long as L({θi}t), L({θi}t+1) < L∗, (5.5.11)
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i.e. the local move generates samples from the constrained prior.
Often during the random walk the proposed position will be in a region where the prior

is zero, which results in a rejection and reduces the efficiency of the sampling algorithm.
This behavior is especially problematic in high dimensional parameter spaces since the
probability that the move was too large in at least one parameter space direction rises
with the dimensionality. One can, in this case, try to “recycle” the random numbers as
proposed by Sivia (2006, chapter 9). To this end, different kind of “boundary conditions”
were applied to the initially proposed position, {θi}t+1, before the acceptance was checked.
The objective was to re-map positions outside of the box that encloses all prior probability
into the interior of the box. As long as the re-mapping is symmetrical2, this procedure
maintains detailed balance and is especially effective when the prior consists of only one
box.
The enclosing box is defined by

θL,toti < θi < θU,toti (5.5.12)
θL,toti = min{θi|π ({θi}) > 0} (5.5.13)
θU,toti = max{θi|π ({θi}) > 0}, (5.5.14)

where θL,toti and θU,toti are the lower and upper limits of the prior, respectively. The size
of the enclosing box in each parameter space dimension is, ∆i, is given by

∆i = θU,toti − θL,toti . (5.5.15)

The most simple boundary conditions are the reflecting

θi ←


θU,toti −

(
θi − θU,toti

)
mod ∆i if θi > θU,toti

θL,toti +
(
θL,toti − θi

)
mod ∆i if θi < θL,toti

θi otherwise
(5.5.16)

and the periodic boundary condition

θi ←


θL,toti +

(
θi − θL,toti

)
mod ∆i if θi > θU,toti

θU,toti −
(
θU,toti − θi

)
mod ∆i if θi < θL,toti

θi otherwise.
(5.5.17)

The latter is useful when the parameter space bends back onto itself and the likelihood
and prior are periodic (see figure 5.8a). In this way a maximum close to the limits θU,toti

and θL,toti is only apparently separated as the chain can easily transit in between the ends
of the box.
Also more complicated boundary conditions can be used that mirror the parameter

space coordinate i when the coordinate j was re-mapped by periodic or reflecting boundary
conditions, i.e.

θi ←
{
θL,toti + θU,toti − θi if θj was remapped
θi otherwise.

(5.5.18)

This boundary condition should be used in a Möbius tape or Klein bottle topology (figure
5.8b).

2If a move from the initial position {θi}t to the proposed position {θi}t+1 is re-mapped to {θi}′t+1,
the reverse move from {θi}′t+1 to {θi}′t+1 − {θi}t+1 + {θi}t must be re-mapped to {θi}t.
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Figure 5.8: Boundary conditions examples. Local moves (black arrows) from position {θi}t (dot)
to an invalid position {θi}t+1 (cross) outside the box containing all the prior probability are
re-mapped (gray arrows) in order to lie inside the box. This defines different topologies, and
two examples are shown. The parameter space in (a) has the topology of a ring: reflective
boundary conditions in coordinate 1 and periodic boundary conditions in coordinate 2. In
(b) it has the topology of a Klein bottle: periodic boundary conditions in coordinate 1 and
2, but coordinate 2 is also mirrored after re-mapping coordinate 1. The box collection prior
consists here only of one box, B1, hence the total extension of the prior given by the lower
and upper limits, is identical to B1.

Non-local Monte-Carlo move

The non-local move was designed to enable the Markov chain to jump in between the
neighborhoods of two of the N equilibrated samples, called reference points. The under-
lying idea is, that in the proximity of the reference points there is parameter space with
sufficiently high probability density, and this, in turn, allows to move the Markov chain
from the current position {θi}t near the “source” reference position, {ri}s, to some other
position {θi}t+1 close to the “destination” reference position, {ri}d. In the case of nested
sampling, the reference points were the set of active objects, which intrinsically satisfy
the likelihood constraint. In the case of posterior sampling, the reference points were a
small set of posterior samples. Here, the equally weighted samples of a nested sampling
run were used for this purpose.

The move comprises of five steps (see figure 5.9). In the first step, the source reference
point, {ri}s, is chosen from the set of reference points {ri}k with the probability

pref({ri}s|{θi}t) =
exp
(
− 1

2 ‖{ri}s − {θi}t‖
2
{si}

)∑
k

exp
(
− 1

2 ‖{ri}k − {θi}t‖
2
{si}

) . (5.5.19)

Here ‖.‖{si} denotes the Euclidean distance that is scaled by the length scales of the local
move,

‖{θi}‖{si} :=

(∑
i

|θi/si|2
)1/2

. (5.5.20)

It is therefore most probable to choose the reference point, which has the smallest nor-
malized distance to the current position.

In the second step, the destination reference point, {ri}d, is chosen with the probability
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Figure 5.9: A non-local move from {θi}t to {θi}t+1 (bent solid arrow) comprises of five steps.
(1) Choose from the set of equilibrated samples a “source” reference point {ri}s that is in
proximity to the current position {θi}t (zig-zag arrow). (2) Choose from the remaining equi-
librated samples a “destination” reference point {ri}d (dashed arrow). (3) Try at maximum
M times to find an accepted position on the hyper-sphere (circle) around the destination
reference point. Not accepted positions are shown as crosses, the accepted position as black
a dot. Reject the whole move if no accepted position was found. (4) Verify that {ri}d is
in proximity of the accepted position {θi}t+1 (zig-zag arrow), reject the move if it is not.
(5) Choose Mrej, a uniformly distributed integer from 0 to M − 1, and satisfy reversibility
of the non-local move by forcing exactly Mrej successive rejections (crosses) from proposed
positions on a hyper-sphere (circle) around the source reference point. If Mrej successive
rejections cannot be produced reject the whole move.

density
pdst({ri}d|{ri}s) = 1

N − 1
∑
k 6=s

δ({ri}d − {ri}k), (5.5.21)

where δ(.) is the Dirac-delta distribution. The probability density in equation (5.5.21) is
simply generated by choosing the coordinates of one of the remaining reference points.
In the third step, the parameter space normalized by si is probed on the hypersphere

with center {ri}d and radius ‖{θi}t − {ri}s‖{si} in order to find an accepted position
{θi}t+1. To this end, random numbers {ui}sphere are generated that are uniformly dis-
tributed on a hypersphere with radius 1 using the algorithm described by Muller (1956,
1959). The proposed position is set to θi,t+1 = ri,t + siu

sphere
i · ‖{θi}t − {ri}s‖{si} , and

therefore

pprop({θi}t+1|{ri}d, {ri}s, {θi}t) =
{
const. if ‖{ri}d − {θi}t+1‖ = ‖{ri}s − {θi}t‖
0 otherwise

(5.5.22)
The acceptance probability is the same as in equation (5.5.8). The probing is repeated
until an accepted position is found, but not more than M times in total. The whole move
is rejected when no accepted position is found, so that the probability density to find a
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valid position {θi}t+1 is equal to

p ({θi}t+1, A|{ri}d, {ri}s, {θi}t) =

pprop({θi}t+1|{ri}d, {ri}s, {θi}t)p (A|{θi}t+1, {θi}t)
M−1∑
n=0

Rn({ri}d, {ri}s), (5.5.23)

where R({ri}d, {ri}s) denotes the average probability to reject a proposed position,

R({ri}d, {ri}s) =
∫
d{θi}′ pprop({θi}′|{ri}d, {ri}s, {θi}t)

(
1− p

(
A|{θi}′, {θi}t

))
,

(5.5.24)
and where the nth powers of the average rejection probability are denoted by
Rn({ri}d, {ri}s) ≡ [R({ri}d, {ri}s)]n.
Now, the fourth and fifth step are needed to maintain detailed balance that would

be severely violated by the repeated probing and by the choice of the source reference
position. In the fourth step, it is verified whether {θi}t+1 is in the proximity of the
destination reference point by accepting the move with probability pref,acc, which is given
as

pref,acc = pref({ri}d|{θi}t+1). (5.5.25)
In the fifth step, a term is constructed that acts as a “counterbalance” of the sum in
equation (5.5.23). This is done by forcing Mrej successive rejections during the probing of
the parameter space on a hypersphere in analogy to step three, but centered at the source
reference position instead. Mrej is a uniformly distributed integer from 0 to M − 1, each
number being chosen with the probability 1/M . Hence, the probability to pass step five
is

ppass({ri}d, {ri}s, {θi}t+1) = 1
M

M−1∑
n=0

Rn({ri}s, {ri}d), (5.5.26)

where R({ri}s, {ri}d) is the average rejection probability at the source reference point,

R({ri}s, {ri}d) =
∫
d{θi}′ pprop({θi}′|{ri}s, {ri}d, {θi}t+1)

(
1− p

(
A|{θi}′, {θi}t+1

))
.

(5.5.27)
Finally, the probability to accept the complete non-local move is the product of the

probabilities in the equations (5.5.19), (5.5.21), (5.5.23), (5.5.25) and (5.5.26) marginalized
over source and destination reference positions,

p ({θi}t+1|{θi}t) = p (A|{θi}t+1, {θi}t)×∑
k,l,k 6=l

pref({ri}k|{θi}t)
1

N − 1 pref({ri}l|{θi}t+1)×

pprop({θi}t+1|{ri}l, {ri}k, {θi}t)×[
M−1∑
n=0

Rn({ri}l, {ri}k)

]
1
M

[
M−1∑
n=0

Rn({ri}k, {ri}l)

]
. (5.5.28)

The acceptance probability was taken out of the sum over k and l since it does not depend
on the reference points. The sum over k and l is invariant under exchange of {θi}t+1 and
{θi}t because of two facts: First, k and l can be exchanged due to the summation over
all reference point pairs. Second, each line in equation (5.5.28), including the proposal

79



5 Materials and methods

Figure 5.10: (a) The number of probing retries, M , that maximizes the probability of the non-
local move given source and destination reference points. The optimal M is plotted as a
function of the average rejection probabilities at source and destination, R({ri}s, {ri}d) and
R({ri}d, {ri}s). The higher the average rejection probabilities the higher is the optimal M .
Values up to M = 30 were computed. In the white area in the plot the optimal M > 30.
(b) Probability to accept the non-local move in average for an optimal number of probing
retries M as function of R({ri}s, {ri}d) and R({ri}d, {ri}s).

probability in particular, is invariant under simultaneous exchange of {θi}t+1 ↔ {θi}t
and k ↔ l (note that the average rejection probabilities depend on {θi}t and {θi}t+1).

When the ratio p ({θi}t+1|{θi}t) /p ({θi}t|{θi}t+1) is computed, the result is the same
as in equations (5.5.10) and (5.5.11) since everything besides the acceptance probabilities
drops out, and finally detailed balance is maintained by the non-local move.

In total, the probability to perform a non-local move is increased by the repeated
probing, which is especially useful when the average rejection probabilities are close to
1. Nevertheless, one has to select a suitable number of retries, M , because too small M
might not work well when the average rejection probabilities are high, and vice versa,
which can be concluded from the steps three and five, respectively. It is therefore of
interest to see how M influences the maximum probability to perform a non-local move
on average. The average acceptance probability for given reference points is given by

P〈acc〉({ri}d, {ri}s) =
∫
d{θi}′ pprop({θi}′|{ri}d, {ri}s, {θi}t)p

(
A|{θi}′, {θi}t

)
×[

M−1∑
n=0

Rn({ri}d, {ri}s)

]
1
M

[
M−1∑
n=0

Rn({ri}s, {ri}d)

]

= (1−Rn({ri}d, {ri}s))

[
M−1∑
n=0

Rn({ri}d, {ri}s)

]
1
M

[
M−1∑
n=0

Rn({ri}s, {ri}d)

]
(5.5.29)

In figure 5.10 the optimalM and the optimal average acceptance probability are shown as
functions of the average rejection probabilities. Since the latter are not known in advance,
M has to be chosen by other means. This leads to the topic of the next section, the tuning
of the Monte Carlo to a particular data analysis problem.
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5.5.5 Automatic adjustment of Monte Carlo parameter settings

For a successful computation, the Monte Carlo parameter settings, like the length of
the random walk needed to acquire an independent sample, the ratio of acceptances to
rejections, as well as the probability and number of retries of the non-local move had to be
set to meaningful values. As discussed briefly in section 2.5.2, these values must be tuned
in a way, so that the sampling algorithm is efficient. This is especially needed during
nested sampling since the shape of the constrained prior changes during the progress of
the algorithm.

Nested sampling

In every nested sampling iteration, the length scales of the local move, si, were adjusted
before the actual random walk was performed, during which si had to be kept constant.
The tuning was done with a modified version of the algorithm proposed by Skilling in
Sivia (2006, chapter 9). In brief, the aim was to tune si in a way that a given ratio
αA/R of acceptances to rejections is achieved. To this end, several short random walks,
which contained local moves only, were started from randomly chosen equilibrated samples
in parameter space. The equilibrated samples were essentially the current objects that
satisfied the likelihood constraint L∗. The local move length scales si were decreased when
the actual acceptance/rejection ratio was smaller than the set value αA/R, and increased
when it was larger. In contrast to Skilling’s original algorithm, the modified version
(algorithm 1) is able to treat each parameter space dimension i separately. Algorithm 1
makes use of the random numbers ui, which were used to compute the size θi+1 − θi of
the proposed step (even if it was rejected),

ui = 1− exp(− |θi,t+1 − θi| /si). (5.5.30)

ui serves as a measure of the step size in the parameter space direction i, and approaches
0 and 1 at infinitely small and large steps, respectively. The amount of increase and
decrease of si was proportional to ui and was reduced during the initial random walk in
order to stabilize si. The fluctuations of si between different nested sampling iterations
were further damped by applying exponential smoothing.
The ratio of acceptances to rejections, αA/R, was initially set by the user. It was

adapted only in the parallel version of nested sampling (see section 5.5.6), otherwise αA/R
stayed constant.

The length of the random walk, tc, in between two sufficiently independent samples is
initially set by the user. It is adjusted every 10 nested sampling iterations, so that the
average correlation g(τ) after tc time increments decays below a user-specified threshold
c,

g(τ) =
〈(
θi,t − 〈θi,t〉t

) (
θi,t+τ − 〈θi,t〉t

)〉
t〈(

θi,t − 〈θi,t〉t
)2〉

t

≤ c for τ > tc and all i (5.5.31)

Here, the averages 〈.〉t are taken only over the time increments in which the argument is
defined. In particular, 〈θi〉 denotes the average position computed over the whole Markov
chain.
Instead of calculating the autocorrelation functions in each parameter space dimension

and fitting them with exponential decays, the averaged power spectra were computed
and fitted with a separate Lorentz function each. This procedure is based on Parseval’s
theorem and has the advantage that the fit can be done purely analytically as described
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Algorithm 1 Adjust length scales
// initialize length scale adjustment
si = si,prev // start with length scale from previous MCMC or a user-defined value
// initialize acceptance and rejection counters in each parameter space dimension
nAi = 0, nRi = 0
choose random equilibrated sample θi as starting position
// adjust length scale
repeat
// move to another equilibrium position with probability prepo:
if rand(0,1) < prepo then
replace θi with new randomly chosen equilibrated position

end if
propose next position and check acceptance
if move accepted then
nAi ← nAi + 2ui // increase acceptance counter

else
nRi ← nRi + 2ui // increase rejection counter

end if
// adjust length scales using adjustment sensitivity σ:
if nAi < αA/Rn

R
i then

// decrease si when there are too many rejections
si ← si exp

(
−uiσ/

(
1 + nAi + nRi

))
else if nAi > αA/Rn

R
i then

// increase si when there are too many acceptances
si ← si exp

(
uiσ/

(
1 + nAi + nRi

))
end if

until (nAi + nRi ) ≥ Nadj for all i
// damp fluctuations in si by exponential smoothing ln si with decay rate 1− ι:
si ← sιis

1−ι
i,prev

by Berg-Sørensen and Flyvbjerg (2004) without the need to use a time-consuming non-
linear least squares algorithms. Even though the random walk does not satisfy the model
assumptions underlying the fit, namely that it is a confined diffusive process with normal
distributed step sizes θi,t+1 − θi,t, the procedure was used to infer an average correlation
decay.
Using the exponential decay model, the smallest length of the random walk, t′c, was

calculated, which satisfied the inequalities (5.5.31) in every parameter space dimension.
The random walk length used in the next 10 nested sampling iterations was calculated
from the estimated length t′c and the current value tc as follows:

tc ←
{
t′c when tc < t′c

max (d(t′c + tc)/2e , 20) when tc > t′c.
(5.5.32)

Another important parameter is the probability to try a non-local move, pNL. It was
initially set to the 1/1000 fraction of the maximum, pmax

NL , which was set by the user.
During nested sampling, it was adjusted after every iteration, based on two quantities
obtained from the random walk.
The first quantity is the decay of correlation in between non-local moves. It was de-

termined in a similar way like the correlation time t′c, which was explained above. To
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this end, the average positions in equation (5.5.31), were replaced by “local” averages
〈θi,t〉t,tk≤t<tk+1

computed in between two successive non-local moves at time tk and tk+1,
i.e.

〈θi,t〉t,tk≤t<tk+1
= 1
tk+1 − tk

tk+1−1∑
t=tk

θi,t. (5.5.33)

The average power spectra were thus computed from the random walk with subtracted
local average, θt − 〈θi,t〉t,tk≤t<tk+1

. To this end, the random walk with subtracted local
average was split in 10 segments of equal length, and a power spectrum was computed for
each of the segments. Finally, the power spectra were averaged and fitted with a Lorentz
function each. From the fits, the average correlation decay was determined.
The second quantity used in the adjustment of pNL is the ratio of “far” to “near”

diffusion events, which characterizes the random walk in between two successive accepted
non-local moves. Let the non-local moves have the source and destination reference points
{ri}s1, {ri}d1, and {ri}s2, {ri}d2. When {ri}d1 6= {ri}s2 the Markov chain was able to
escape the proximity of the destination reference position {ri}d1 by local moves only, and
this is categorized as a far diffusion event. In the opposite case, when {ri}d1 = {ri}s2,
the successive non-local moves end and start at the same reference point, which is called
a near diffusion event.
The non-local move probability, pNL, is adjusted after each nested sampling iteration,

as listed in algorithm 2. In short, by changing pNL the actual far/near diffusion event ratio
is controlled, so that it is close to the user-specified ratio of far to near diffusion events,
αF/N. The adjustment is applied only if the correlation in between non-local moves is
above the maximum correlation, cNL, also specified by the user.

Algorithm 2 Adjust non-local move probability
if (correlation in between non-local moves did not decay on average below cNL) then

if (number of far diffusion events < αF/N× number of near diffusion events) then
pNL ← exp (log (pNL)× exp (0.009 + 0.001× rand(0, 1))) // decrease pNL

end if
else
// correlation decayed on average
pNL ← exp (log (pNL)× exp (−0.009− 0.001× rand(0, 1))) // increase pNL
pNL ← min (pNL, pmax

NL ) // and stay below
upper limit

end if

The idea behind sampling at the ratio αF/N (that should be set > 1) is that even when
the correlation between non-local moves does not decay below cNL, the parameter space
in between the reference points is sampled sufficiently well. When pNL would be too high
and αF/N � 1, a global correlation decay could be achieved by jumps in between positions
close to the reference points, without ever sampling the parameter space in between them
properly.
The number of retries, M , to find an accepted position in the non-local move was also

adjusted every iteration. Hereby the numbers of “forward” and “backward” rejections
were used, i.e. the number of rejections due to failure to find an accepted position in the
proximity of the destination reference point (step 3 in figure 5.9) and the number of rejec-
tions due to failure to generate a given number of rejections in the proximity of the source
reference point (step 5 in figure 5.9), respectively. When the number of forward rejections
was larger/less than the number of backward rejections, M was increased/decreased by
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1. The minimum value for M was 1, the maximum Mmax could be set by the user.

Posterior sampling

During posterior sampling, αA/R was set to the average value used to calculate the nested
samples with 90-100% of the maximum weight. The length scales of the local move, si,
were adjusted with algorithm 1 once before the actual sampling took place. A subset
of the equally weighted samples computed from the previous nested sampling run was
used as both, the equilibrated samples needed in the adjustment, and the reference points
used in the non-local move during sampling. Also the procedures described to adjust tc,
pNL and M were applied before the actual sampling. They were run simultaneously and
repeated until tc and pNL were stable.

5.5.6 Parallelization
The computation of samples was parallelized on up to 8 threads, which were executed
on a personal computer (PC). The PCs used to perform the calculations were equipped
with various processors (Intel Core2 Quad 3GHz, Intel Core i7 2.8GHz, AMD Phenom II
X4 3.39GHz). In the case of posterior sampling, the parallelization was straight forward
after the Monte Carlo parameters have been set since the code execution was completely
independent.
In the case of nested sampling, however, the Message Passing Interface (MPI) func-

tionality of the MATLAB parallel computing toolbox was used to set up communication
in between the threads, also called “labs” in MATLAB. Every 10 iterations, the labs ex-
changed the newly generated active objects, which were included into the set of reference
points of each lab. The current Monte Carlo parameter settings were exchanged and
compared as well in between labs. The settings (including the local move length scales) of
the lab exhibiting the fastest decay of correlation were then used by all labs for the next
10 iterations after a small random alteration. This simple genetic algorithm optimized
the Monte Carlo parameter settings during the nested sampling run.
Sample weights and evidence were computed from the samples generated in each lab

as described in section 2.5.2 by using the sorted list of all samples.

5.5.7 Settings used for NPS analysis
When the sampling engine was used for NPS analysis, each prior factor in equation
(5.5.2) contained the position and orientation parameters of either one fluorophore or one
docking reference frame. The prior information of the five fluorophore parameters (xi,Ωi)
respectively 6 reference frame parameters (ok,Ξk) is thus encoded in a box collection prior.
In this way, it is possible to express correlations between positions and orientations, even
though this feature was not exploited in the current work.
The boundary conditions were reflecting in all spatial variables, i.e. fluorophore posi-

tions, xi, and reference frame positions, ok. The orientations of the average fluorophore
transition dipole moments had the following Klein bottle-like boundary conditions

− cos(θi)←
{

+ cos(θi) if φi < 0 or φi > π

− cos(θi) otherwise
(5.5.34)

φi ←


(φi − π) mod π if φi > π

φi mod π if φi < 0
φi otherwise

(5.5.35)
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− cos(θi)←


−1 + (− cos(θi)− 1) mod 2 if − cos(θi) > 1
1− (1 + cos(θi)) mod 2 if − cos(θi) < −1
− cos(θi) otherwise.

(5.5.36)

In the angular parameters ρ(k) and φ(k) used for reference frame orientation, periodic
boundary conditions were applied, in the parameter − cos(θ(k)) it was reflective boundary
conditions. Unfortunately these are not the correct boundary conditions since a remapping
of − cos(θ(k)) should be accompanied by a shift of both ρ(k) and φ(k) by π. Since both
the correct and incorrect re-mapping would occur when − cos(θ(k)) ≈ ±1 the orientation
of the x(k) and y(k) axes of the reference frame would not change much in both cases.
Remapping with the incorrect boundary conditions will thus not lead to a completely
different reference frame orientation.
The Monte Carlo parameter settings used in the calculations are listed in table 5.3.

Different numbers of active objects were used, ranging from 120 objects in the most
simple calculations that involved only one antenna and one satellite, up to 10000 objects
in the case of a calculation with 7 antennas and 7 satellites.
Nested sampling was terminated when all of the following conditions were met: First,

the average sample weights had to decrease, which guaranteed that the likelihood was
rising slower than the shrinking of the constrained prior mass. Second, the product of
the number of objects in the collection, the acquired information H (equation (2.5.19))
and a user defined factor between 1.5 and 2 had to exceed the number of nested sampling
iterations.

parameter name abbrev. value
initial local move length scale si 0.1× (θU,toti − θL,tot)
repositioning probability prepo 0.5
adjustment sensitivity σ 0.9
adjustment influence ι 0.1
initial acceptance/rejection ratio αA/R 0.3 . . . 1.0
correlation decay c 0.05
initial random walk length tc 200000
number of adjustment steps Nadj 1000
maximum non-local move probability pNL 0.1
correlation decay between non-local moves cNL 0.05
initial number of retries M 1
maximum number of retries Mmax 100
far/near diffusion ratio αF/N 3

Table 5.3: Monte Carlo parameter settings used in the NPS analysis.
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5.5.8 Implementation
The sampling engine is called via two main sampling functions, NestedSampler.m and
MetropolisSampler.m, or alternatively via their parallel versions ParNestedSampler.m
and
ParMetropolisSampler.m (figure 5.11). NestedSampler.m/ParNestedSampler.m perform
nested sampling, whereas MetropolisSampler.m/ParMetropolisSampler.m are used to
sample the posterior.
The posterior is encoded in the likelihood (specified in loglikelihood.cpp), the prior

(specified in box collection prior format), and the data. The user-specified function
loglikelihood(), which is located in loglikelihood.cpp, must return the natural loga-
rithm of the likelihood given the position in parameter space and the data that is passed
internally through the calling functions. In this work loglikelihood.cpp was adapted
to the NPS parameter estimation problem by implementing the likelihood of the position
- orientation model with optional docking (equation (3.2.3)). The calling functions of
loglikelihood.cpp are seedfun.cpp and explfun.cpp that compute samples from the
unconstrained prior and produce a new sample from a given starting position by perform-
ing a random walk, respectively. They can be accessed from MATLAB by the wrapper
functions, seedfunction.cpp and explorationfunction.cpp.
Before executing the sampling functions, the C source code must be compiled into

.mex functions that are executable in MATLAB (The MathWorks). The compilation
was done with buildmex.m, which called the MATLAB MEX compiler. Since nested
sampling and Metropolis posterior sampling both use Markov chain Monte Carlo, the
same source code was used to compile the executables explorationfunctionNS.mex and
explorationfunctionMS.mex, which were called during nested sampling and posterior
sampling, respectively. The only difference between the two functions is the acceptance
criterion used during the random walk, which was switched by a preprocessor flag at time
of compilation. seedfunction.mex used the box collection prior to draw samples from the
unconstrained prior and was called by NestedSampler.m in order to compute the initial
set of samples together with their log-likelihood values. From the samples acquired in the
nested sampling run, posterior samples were computed by EquallyWeightedSamples.m
and passed to MetropolisSampler.m, where they were used then as reference positions in
the non-local move. NestedSampler.m and MetropolisSampler.m generated temporary
files, which were used to recover the calculation results when one of the programs did not
terminate properly.

After the above discussion of the methodical details, the next chapter will focus on the
main results of the NPS analysis.
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5.5 A sampling engine for Bayesian data analysis

Figure 5.11: Sampling engine software overview
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6 Results and discussion

This chapter consists of the main results accumulated during the development of the
NPS. Simulations and applications to the Pol II system will be presented in an alternat-
ing order. Starting from simulations of Förster distance distributions, more and more
complex scenarios will be addressed. Each simulation and application will be discussed
immediately, followed by a general discussion at the end of the chapter.

6.1 Simulation I – Förster distances

In the first part of this section, the effect of fluorescence anisotropies on the simulated
Förster distance priors will be studied. The justification of the independence of Förster
distances, which is required in the position - Förster distance NPS model, will be motivated
in the second part.

6.1.1 Effects of fluorescence anisotropy on the Förster distance distribution
To study the impact of fluorophore orientation constraints on the Förster distance, the
Förster distance priors p (Rai|I) of a FRET pair consisting of an antenna a and a satellite
i were calculated as described in section 5.3.2. The computed densities are shown in
figures 6.1 and 6.2 for different residual fluorescence anisotropies of donor and acceptor.
The priors consist of a peak centered roughly at the isotropic Förster distance and exhibit
one and in certain cases two maxima. The highest maximum lies below the isotropic
Förster distance when both fluorescence anisotropies are low, and above when both are
high. The width of the densities is rising with the fluorescence anisotropies, as one can
readily see in figures 6.1 and 6.2. This observation which is supported by the standard
deviations of Rai/Riso

ai (table 6.1). Even when the fluorescence anisotropy of one of the
fluorophores is small, the corresponding Förster distance distribution can be broadened
if the other residual fluorescence anisotropy is high.

6.1.2 Discussion
It is evident from the above simulations that the effect of fluorescence anisotropies on the
Förster distance distribution is strong. Even at small residual fluorescence anisotropies of
r∞,i = r∞,a = 0.1 the standard deviation of p (Rai|I) is above 5% of the isotropic Förster

PPPPPr∞,i

r∞,a 0.01 0.1 0.2 0.3 0.4

0.01 1.7% 4.1% 5.4% 6.6% 7.7%
0.1 6.3% 7.8% 9.6% 12.0%
0.2 9.0% 10.8% 12.9%
0.3 13.1% 16.0%
0.4 23.9%

Table 6.1: Relative Förster distance standard deviations are shown for different ANT and SAT
fluorescence anisotropy values, r∞,a and r∞,i, respectively. They were calculated by di-
viding the standard deviations of the simulated Förster distance priors, p (Rai|I), by the
corresponding isotropic Förster distance Riso

ai .
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6 Results and discussion

distance. For Riso = 50Å, this would result in an approximately 10Å wide 95% credible
interval of p (Rai|I). When ri = ra = 0.2, this value would be even 18Å. Since the Förster
distance is proportional to the inferred distances, the uncertainty in Rai has a similar effect
like the uncertainties caused by the linkers (table 5.2). Both sources of uncertainty will
often have comparable magnitudes, and both should be accounted for, since they can be
easily scaled up when the satellite fluorophores are placed in a disadvantageous way.
In particular, using the “rule of thumb” (Roy et al., 2008, and references therein) of

setting the orientation factor to its isotropic value when the fluorescence anisotropies
are below 0.2, can result in a severe underestimation of the uncertainties in the inferred
distances.
As a remark, one should stress that the information contained in the Förster distance

prior will be used in full detail in the NPS. The maximum error estimate proposed by
others (Dale et al., 1979; Ivanov et al., 2009) and used for instance by Kaiser et al.
(2006) would decrease the information content of the inferred position estimate. When
a flat prior in the Förster distance between the maximum and minimum values of Ria
were used instead of the prior shown here, one would state to have information about the
average transition dipole moment orientations. In that way, the unlikely cases of extremely
good and bad coupling would be assigned more weight in the calculation. Thus, one
would overestimate the scenario of the average transition dipole moments being parallel
to the line between donor and acceptor, which corresponds to good coupling. Also the
perpendicular orientations of the average transition dipole moments of donor and acceptor,
which correspond to bad coupling, would be considered more important than they actually
are. Finally, the non-informative prior as computed in section 5.3.2 should be used, unless
there is reliable information about the average transition dipole moment orientations.

Having demonstrated the influence of fluorescence anisotropies on the Förster distance
distribution of two fluorophores, in the next section the correlations of Förster distances
will be studied.

6.1.3 Förster distance correlations
An assumption made in the position - Förster distance NPS model is the mutual indepen-
dence of the Förster distances Rij and Rik of the FRET pairs ij and ik, which “share”
the antenna fluorophore i. This assumption is crucial for the factorization of the posterior
(equation (3.1.8)). However, it is clearly an approximation, since both Förster distances
depend on the position and average transition dipole moment orientation of the common
fluorophore i. A correlation is thus expected, yet it was not proven that the approximation
holds.
To test the validity range of the above approximation, simulations of the Förster dis-

tance distribution of two FRET pairs were carried out (section 5.3.2). As described above,
the FRET pairs comprised the fluorophores i, j and k, and were coupled by the common
fluorophore i (figure 6.3). Assuming ignorance about the average transition dipole mo-
ment orientations Ωi, Ωj and Ωk, the density p (Rij , Rik|xi,xj ,xk, I) was computed for
given fluorophore positions.
Now, to quantify the degree of independence of the two Förster distances, the nor-

malized mutual information (NMI), I(Rij , Rik), (Strehl and Ghosh, 2002) of the density
p (Rij , Rik|xi,xj ,xk, I) was computed (section 5.3.3). This quantity is a measure of the
statistical dependency of two random variables, here Rij and Rik, and ranges from 0
(completely independent) to 1 (completely dependent). Without loosing generality, it
was assumed that the isotropic Förster distances are equal, Riso

ij = Riso
ik = Riso, and that

the fluorophores j and k are separated by the distance d = |xj − xk|. The residual fluo-
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6.1 Simulation I – Förster distances

Figure 6.3: Simulation of correlated Förster distance
distributions. The joint Förster distance den-
sity p (Rij , Rik|xi,xj ,xk, I) between three fluo-
rophores, i, j and k (double arrows) is correlated
by the orientation and position of the fluorophore
i. The FRET measurements corresponding to the
Förster distances are indicated by dashed lines.
It was assumed that the isotropic Förster dis-
tances of both FRET efficiency measurements are
equal, Riso

ij = Riso
ik = Riso. The positions of

two fluorophores j and k was fixed, their distance
was set to d, while the position of the third flu-
orophore, i, was varied in the (x, z)-plane. To
obtain the density p (Rij , Rik|xi,xj ,xk, I) condi-
tional only on the fluorophore positions, the den-
sity p (Rij , Rik|xi,Ωi,xj ,Ωj ,xk,Ωk, I), which is
conditional on the average transition dipole mo-
ment orientations, was marginalized with a uni-
form prior in the orientations.

Figure 6.4: Normalized mutual information (NMI), I(Rij , Rik), of two correlated Förster dis-
tances, Rij and Rik. The dependence of the NMI on the position xi = (x, 0, z) of the
fluorophore i is shown in each subfigure. The residual fluorescence anisotropies of all fluo-
rophores were set to the same value r, i.e. r∞,i = r∞,j = r∞,k = r, which was varied from
0.01 to 0.4.
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6 Results and discussion

rescence anisotropies of each fluorophore were set to the same value, r. The position xi
of the fluorophore i was scanned in the (x, z)-plane within the limits −2d < x < 2d and
−2d < z < 2d, and at each position the NMI was plotted for different values of r (see
figure 6.4).
The highest NMI values were observed when all fluorophores were aligned along a

common axis. Independent of the fluorophore position, along this axis the NMI was
constant and ranged from 0.054 for the extremely small residual fluorescence anisotropy
r = 1 · 10−5 to 0.0085 for r = 0.4. For moderate fluorescence anisotropy values of r = 0.1,
the NMI was 0.025 and on average (over the range of fluorophore positions xi) it was
much smaller than these maximum values.

6.1.4 Discussion
The small NMI values obtained in the simulations indicate that the correlations of the
Förster distances introduced by a common antenna fluorophore are indeed negligible. This
can be readily seen in figure 6.5, where the correlated joint densities of Förster distances,
p (Rij , Rik|xi,xj ,xk, I), and the uncorrelated reconstructions from marginal densities,
p (Rij |I) p (Rik|I), are shown.
Judging from the maximum NMI values (figure 6.4), the approximation of independent

Förster distances holds best for high residual fluorescence anisotropies and is still reason-
able when the residual fluorescence anisotropies are small and orientation effects are less
important. Thus, the approach of independent Förster distances used in the position -
Förster distance NPS model is put on a firm footing.
The approximate independence of the Förster distances will break down when more

information on the average transition dipole moment orientations is available. This applies
either when an informative fluorophore orientation prior exists, or when there is data, like
FRET anisotropy, that couples the fluorophore orientations tightly.

In the next section, two applications of the NPS based on the position - Förster distance
model will be shown.
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6.1 Simulation I – Förster distances

Figure 6.5: Joint and reconstructed Förster distance distributions. In panel (a) and (c), the
correlated joint Förster distance densities p (Rij , Rik|xi,xj ,xk, I) are displayed, while the
panels (b) and (d) show the uncorrelated Förster distance densities p (Rij |I) p (Rik|I) re-
constructed from the marginal probability densities. In the simulation the fluorophores
were aligned on a common axis. The densities are shown for two fluorescence anisotropies
r = 1 · 10−5 (a, b) and r = 0.4 (c,d). In the case of r = 1 · 10−5, the bulk of the joint proba-
bility density is described well by the reconstruction, while only fine features like the ridge at
Rij/R

iso = Rik/R
iso and the missing density on the anti-diagonal Rij/Riso +Rik/R

iso = 1
cannot be recovered. Note also that the absolute width of the distribution is extremely small
(only 1/1000 of the isotropic Förster distance). For high fluorescence anisotropies, the joint
distribution and the reconstructed distribution are almost identical.

95
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6.2 Application I – RNA in the Pol II elongation complex

In the following, the localization capability of the NPS will be demonstrated with exper-
imental data. The position - Förster distance model was used to determine positions of
fluorophores attached to the 3’ and 5’-end of a 29 nucleotides long RNA within the Pol II
elongation complex (Muschielok et al., 2008). Since all experiments were performed in
the absence of NTPs, the elongation complexes were stalled and not able to transcribe.

6.2.1 NPS inference of the 3’-RNA end position

The position of the antenna fluorophore attached to the 3’-RNA end was determined to
serve as a proof of principle for NPS, since this antenna position is known from the crystal
structure. The analysis is based on experimental data measured by Joanna Andrecka and
listed in the appendix II in tables 1 (FRET efficiencies), 2 (isotropic Förster distances)
and 3 (fluorescence anisotropies).
Alexa 647 was used as satellite fluorophore and was attached at five labeling sites.

Three of them (tDNA(-10), tDNA(+3), tDNA(+9)) were located on the template DNA,
the other two (Rpb7(S16C), Rpb7(C150)) were situated on the Rpb4/7 heterodimer. De-
pending on the measurement, Alexa 555 or TMR was used as antenna fluorophore, which
was attached to the 3’-RNA end (RNA(+1)). Both, Alexa 555 and TMR, were assumed
to be located at the same position. The measurements are summarized in figure 6.6, and
the approximated satellite position priors are shown in figure 6.7. The antenna position
prior was a cuboid of several hundred Ångström side length and did not contain any
information about the Pol II elongation complex besides its gross position. In particular,
the ANT was not excluded from the interior of Pol II, since the accuracy of NPS should
be tested.
The marginal ANT position posterior, as estimated with the position - Förster distance

NPS, is shown in figure 6.8. As a control, the possible positions of the antenna fluo-
rophore were determined based on the model used to compute the accessible volumes of
the satellites. The marginal posterior has a maximum at (x, y, z) = (117, 46,−2)Å in
the coordinate system of the crystal structure 1Y1W (Kettenberger et al., 2004), and
standard deviations in the principal directions of 4.6, 5.4 and 9.5Å. It is consistent with
the control, which has its center-of-mass at (x, y, z) = (110, 53, 9)Å.
The influence of the number of measurements was studied as well (figure 6.9). When

only the SATs on the DNA are used, the marginal posterior resembles a ring. With a
fourth measurement from Rpb7(S16C), the marginal posterior separates into two modes
connected by a thin thread of probability. Finally, the measurement from Rpb7(C150)
selects one of the modes.
To verify the consistency of the data, i.e. whether some FRET efficiency measurements

Figure 6.6: 3’-RNA end FRET net-
work. The position of the an-
tenna fluorophore attached to the
3’-end of RNA (position RNA(+1))
was determined from 5 FRET ef-
ficiencies (dotted lines) to satel-
lite fluorophores attached to Pol II
and the template DNA. Alexa 647
(ALX647) was used as satellite
throughout, while TMR and Alexa
555 (ALX555) were used as an-
tenna. TMR and ALX555 were as-
sumed to occupy the same position.
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6.2 Application I – RNA in the Pol II elongation complex

Figure 6.7: 3’-RNA satellite
position priors. The 68%
credible volumes of the
satellite position priors
used in the inference
of the 3’-RNA end po-
sition are highlighted
by arrows. The Pol II
elongation complex is
shown in the top and
side view. The core (gray
ribbons), Rpb4 (red
ribbons), Rpb7 (blue
ribbons), template DNA
(blue), nontemplate
DNA (cyan) and RNA
(red) are displayed. The
Pol II core was left out in
the side view for clarity.

Figure 6.8: Inference of the 3’ RNA end position. The 95%, 68% and 38% credible volumes (blue
mesh) of the marginal antenna position posterior are shown in the context with the nucleic
acids (cartoons, template DNA: dark blue, nontemplate DNA: bright blue, RNA: red). The
upper panels show the standard side view, the view in the bottom panels is rotated by 90◦.
The red surface is the volume accessible to the antenna fluorophore, in which the attachment
and the steric constraints were accounted for.
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Figure 6.9: 3’ RNA end po-
sition inference with dif-
ferent number of data.
(a,b,c) show the side
view, (d,e,f) the bottom
view. The 68% credible
volumes of the antenna
position are shown as red
mesh. In (a,d) only three
measurements were used
(tDNA(-10), tDNA(+3),
tDNA(+9)), whereas in
(b,e) Rpb7(S16C) and in
(c,f) Rpb7(C150) were
added consecutively.

Figure 6.10: Schematic computation
of posterior and measurement pro-
files. The posterior (density,
left) and a measurement contribu-
tion (density, right) are projected
(curved arrows) onto a semi-infinite
line. Each probability element at
the distance d from the center of
mass of the satellite position prior
(solid circles) is thus accumulated,
and contributes to the posterior
profile and measurement profile, re-
spectively (bottom).

were “outliers”, the overlap of the marginal posterior, p (xa|{Eai}, I), and the contribution
of each measurement,

∑
j
wijKij(xa), were compared. To this end, posterior profiles and

measurement profiles were computed (section 5.3.6). These are projections of either the
marginal posterior or the contribution of a measurement onto a semi-infinite line, which
starts at the center-of-mass of the satellite position posterior (see figure 6.10). A vanishing
overlap between the profiles signalizes an inconsistency of the measured data. In the case
of the ANT attached to the 3’ RNA end, the data was consistent with the model, as can
be seen from figure 6.11.

6.2.2 Discussion

As readily seen from figure 6.8, the position of the antenna fluorophore attached to the 3’-
end of RNA was correctly inferred by five FRET efficiency measurements. The localization
uncertainty, which ranges from 4% to 7% of the size of Pol II, proves NPS a versatile tool
to answer structural questions on the 10Å length scale.
It is important to stress that the shape of the marginal antenna position posterior does

not imply any mobility, since the fluorophore positions do not vary over time in the model.
Instead, the uncertainties originate in the limited information about the satellite position
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6.2 Application I – RNA in the Pol II elongation complex

Figure 6.11: 3’ RNA end position inference, posterior and measurement profiles. The well over-
lapping normalized measurement profiles (black) and posterior profiles (gray) indicate that
there is no data inconsistent with the model.

(see accessible volumes in figure 6.7), the widths of the Förster distance distributions,
and the number and quality of the measurements available. As depicted in figure 6.9, the
estimated antenna position changes its shape dramatically, depending on how many and
which measurements are analyzed.
The fact that also the satellite positions are important for the uncertainty of the position

determination becomes evident in panel (a) and (d) of figure 6.9, where three measure-
ments from the satellites tDNA(-10), tDNA(+3) and tDNA(+9) were analyzed. The
observed shape of the posterior does not differ much from what one would expect when
only two measurements of tDNA(-10) and tDNA(+9) were analyzed. In fact, the position
prior of tDNA(+3) is located close to the center of the ring and cannot contribute much
new information (compare figures 6.9a and 6.7, side view). The other measurements from
Rpb7(S16C) and Rpb7(C150) are more informative and concentrate the posterior further,
first into two high-probability regions (additional measurement from Rpb7(S16C), figure
6.7b,e) and then into a single maximum (all measurements, figure 6.7c,f).
Finally, since the posterior overlapped well with the contributions of each measurement,

the data did not show any inconsistencies. In this particular case, the inference is based
on five FRET efficiency measurements, a fairly small number of data when compared to
the minimum number of four measurements needed to create a marginal antenna position
posterior closest to a point-like object (see introduction of chapter 3). The presence of
inconsistencies would hence allow only to tell that at least one of the measurements is not
consistent with the rest. However, it would be impossible to say which one it is (when it
is only one), since every combination of four measurements yields a different “intersection
point”, which is inconsistent with the remaining measurement.
For the more general situation in which more distance measurements are used, it is

important to check always the consistency since it can reveal gross errors in the acquired
data or in the analysis assumptions.

After having demonstrated the capability of NPS to localize a fluorophore the first
biological application will be presented and discussed in the next two sections.

6.2.3 NPS inference of the 5’ RNA end position

The position of the antenna fluorophore attached to the 5’-end of a 29 nucleotide long
RNA was determined in order to clarify the contradictions between Andrecka et al. (2008)
and Újvári and Luse (2006). Újvári and Luse could covalently cross-link the RNA to the
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6 Results and discussion

Figure 6.12: The satellite
position priors used for
inference of the 5’ RNA
end position are shown
as 68% credible volumes
in the top view of Pol II
(PDB-ID: 1Y1W). The
elongation complex is
colored according to
figure 6.7.

Rpb7 subunit, whereas Andrecka et al., who used the “ancestor” of NPS, observed the
RNA at a position distant to Rpb4/7. Since TFIIB was present in the experiments of
Újvári and Luse but was not used by Andrecka et al., the experiments analyzed in this
work were performed both, in the absence and presence of TFIIB. Like before, all data
were measured by Joanna Andrecka and are listed in the appendix II in tables 1 (FRET
efficiencies), 2 (isotropic Förster distances) and 3 (fluorescence anisotropies).
In short, Alexa 647 was used as satellite fluorophore and was attached to 6 labeling

sites. Two of them (tDNA(-10), tDNA(+3)) were located at the template DNA, the
other four (Rpb7(S16C), Rpb4(S73C), Rpb7(C94), Rpb(C150)) were on the Rpb4/7 het-
erodimer. TMR was used as antenna fluorophore, which was attached to the 5’ RNA end
(RNA(+29)). The approximated satellite position priors are shown in figure 6.12, and
the measurements are summarized in figure 6.13.
In the absence of TFIIB, all measurements resulted in single FRET efficiency popu-

lations, with the exception of Rpb4(S73C), which always showed two populations. The
latter were attributed to different conformational states of the linker, since the accessible
volume of Alexa 647 attached to Rpb4(S73C) was fragmented in two separate regions.
Hence, both Rpb4(S73C) FRET efficiencies were used in the inference, effectively as two
satellites with a prior of exactly the same form.
In the presence of TFIIB, all FRET efficiency measurements resulted in two populations.

The major population (∼ 80% of molecules) had the same FRET efficiency as measured
without TFIIB, and the smaller population (∼ 20% of molecules) was attributed to Pol II
elongation complexes that had TFIIB bound. The recorded FRET efficiency traces did
not show dynamic switching between the FRET efficiency populations within the dura-
tion of the experiments (∼ 10 s). The satellite Rpb4(S73C) was not measured because of
possible complications in the FRET efficiency assignment, since four populations were ex-
pected. Control experiments verified that TFIIB was capable of binding to the elongation
complexes (Muschielok et al., 2008, supplementary material).
As before, the antenna position prior was a cuboid of several hundred Ångström side

length, but now the antenna was excluded from the Pol II elongation complex interior.
In addition, the accessible volume was constrained by the length of the RNA, which was
treated as a flexible chain attached to the last ribonucleotide observed in the crystal
structure 1Y1W (see figure 3.4a, page 40).
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6.2 Application I – RNA in the Pol II elongation complex

Figure 6.13: Scheme of the FRET network used to infer the 5’ RNA end position, both with-
out and with TFIIB. The FRET efficiency measurement from Rpb4(S73C) denoted by stars
resulted in two populations already without TFIIB, which were interpreted as two different
conformations of the satellite fluorophore linker. Rpb4(S73C) was not used in the experi-
ments with TFIIB as the assignment of four expected peaks in the FRET efficiency histogram
would have been too difficult.

The inferred position of the antenna fluorophore in the presence of TFIIB can be seen
in figure 6.14. The posterior maximum is located far from the Rpb4/7 heterodimer at
(x, y, z) = (99,−9,−14)Å with standard deviations in the principal directions of 3, 6
and 9Å. In the presence of TFIIB, the posterior density is shifted towards Rpb4/7,
its maximum is located close to the interface of Pol II core and Rpb4/7 at (x, y, z) =
(138, 15,−23)Å, with standard deviations in the principal directions of 4, 6 and 15Å
(figure 6.14). A stereo-image of the inferred ANT positions is depicted in figure 6.15.
The measurements did not show any inconsistencies as one can see from the good

overlap of posterior and measurement profiles (figures 6.16 and 6.17).

6.2.4 Discussion
It can be concluded from the experiments that the 5’-end of the 29 nucleotide long RNA
adapts a position even further away from Rpb4/7 than former measurements by Andrecka
et al. (2008) suggested. Covalent cross-linking of RNA and Rpb7 can be ruled out from
this position. The deviation of the previously determined position from the result of
NPS can be ascribed to different factors. First, in the former analysis only a fraction of
the data presented here was analyzed, since only measurements from satellites attached
to tDNA(-10), tDNA(+3) and Rpb7(C150) were available. Second, the attachment of
satellite fluorophores via carbon chain linkers was not accounted for, but instead, the
attachment sites at the protein and the DNA, respectively, were used as satellite positions.
Finally, there were no error estimates given and the former calculations were based upon
the complete isotropic dynamical averaging model (orientation factor κ2 = 2/3).
In the presence of TFIIB, however, the 5’-end of the RNA is most probably located close

to the Rpb4/7 heterodimer. Covalent cross-linking of RNA and Rpb7 is thus possible in
this position and it is in agreement with Újvári and Luse (2006). The displacement of the
nascent RNA by TFIIB is plausible, since the amino-terminal domain of TFIIB binds to
the so called dock domain on the Pol II surface (Bushnell et al., 2004). The dock domain
is close to the position of the RNA 5’-end in the absence of TFIIB (figure 6.15), and it
lies on the path of the nascent RNA (Andrecka et al., 2008; Andrecka, 2009). Therefore,
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6 Results and discussion

Figure 6.14: 5’ RNA end position inference. The Pol II elongation complex (Kettenberger et al.,
2004, PDB-ID: 1Y1W) is shown in the top view (left) and a rotated view (right). The colors
are according to figure 6.7. (a) shows the 68% credible volume of the inferred ANT position
in the absence of TFIIB (red surface) together with the position inferred by Andrecka et al.
(2008) (small blue sphere, black arrow). The last base of RNA observed in the X-ray structure
is marked with a yellow arrow. In addition, the amino-terminal domain of TFIIB (Bushnell
et al., 2004, PDB-ID: 1R5U) is shown as green spheres in (b) together with the 68% credible
volume of the inferred ANT position in the presence of TFIIB (yellow surface). (c) and (d)
show 95% and 10% credible volumes. In (d) the location of the marginal posterior maxima
are marked by arrows.

102



6.2 Application I – RNA in the Pol II elongation complex

Figure 6.15: Stereo image
of the inferred 5’ RNA
end position. The top
view (top) and a rotated
view (bottom) of the
Pol II elongation com-
plex (Kettenberger et al.,
2004, PDB-ID: 1Y1W)
is shown. The colors
are according to figure
6.7. In addition, the
amino-terminal domain
of TFIIB (Bushnell
et al., 2004, PDB-ID:
1R5U) is shown as
green spheres. The 68%
credible volumes of the
marginal antenna posi-
tion posterior are shown
as red surface (absence
of TFIIB) and yellow
surface (with TFIIB).

Figure 6.16: Posterior pro-
files and measurement
profiles for the inference
of the 5’ RNA end po-
sition in the absence of
TFIIB. In all measure-
ments, there is substan-
tial overlap of the pro-
files, i.e. there is no incon-
sistent data.
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6 Results and discussion

Figure 6.17: Posterior profiles and measurement profiles for the inference of the 5’ RNA end
position in the presence of TFIIB. In all measurements, there is substantial overlap of the
profiles, i.e. there is no inconsistent data.

TFIIB and the nascent RNA compete for the binding site on the dock domain. The
contradiction between Andrecka et al. and Újvári and Luse was thus caused by different
experimental conditions.
Although the posterior maximum is located close to Rpb4/7, it would be desirable

to shrink the uncertainty even more by including more FRET efficiency measurements
between new SATs and the ANT, so that the elongated shape of the posterior becomes
smaller. This would however be experimentally difficult for the following reasons. First,
additional labeling sites on Rpb4/7 would be either too close to the present marginal
posterior with the effect that only a maximum distance to a satellite can be measured,
or at a position where the posterior density lies at roughly the same distance from the
satellite. The same effect can be seen in the measurement profile of Rpb7(S16C) (figure
6.17), which stays at a high probability level even at small distances. Second, new labeling
sites on the nucleic acids do not improve the localization accuracy either, since they are
located roughly in the same plane as the already present satellites. Third, labeling of the
Pol II core at a suitable position is extremely difficult with the techniques used here.
Finally, one can speculate that TFIIB remains bound to the elongation complex dur-

ing elongation of the RNA and thus helps to direct the RNA towards the Rpb4/7 het-
erodimer.

After demonstrating that the Nano-Positioning System based on the position - Förster
distance NPS model is a versatile tool to handle structural biology questions, its refined
version, the position - orientation NPS model, will be motivated and compared to the
position - Förster distance model in the next section.

6.3 Simulation II – Improvement of localization accuracy

In the first part of this section, simulations will be shown that demonstrate the minimum
localization accuracy of FRETmeasurements if one only considers the uncertainties caused
by the unknown orientation of the average transition dipole moments.
In the second part, test calculations performed with the position - orientation NPS

model will be shown. The position - orientation model will be compared to the position -
Förster distance model based of these calculations. The improvement of the localization
accuracy expected from the position - orientation model will be demonstrated, and the
influence of the data on the localization accuracy will be discussed. In addition, the
performance of the Monte Carlo algorithm utilized in the calculations will be presented.
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6.3 Simulation II – Improvement of localization accuracy

Figure 6.18: The effect of fluorescence anisotropy on the localization given known fluorophore
orientations. (a) The satellite and antenna average transition dipole orientations (red and
green double arrows) are known to be aligned along the z − axis. The satellite position
prior (red) is concentrated on a point in the center of the coordinate system, whereas the
antenna position prior is flat in a cube around the satellite. The panels (b-f) show 90%
credible volumes of the inferred antenna position density for varying residual fluorescence
anisotropies r =0.4, 0.3, 0.2, 0.1 and 0, respectively. The anterior part of the density was
removed in order to show the thickness of the credible volumes (white arrows).

6.3.1 Effects of anisotropy and orientation on the localization uncertainty

To demonstrate the minimum localization uncertainty caused only by the FRET effi-
ciency measurement error, an analysis with one simulated FRET pair was carried out
with the position - orientation NPS model. The FRET pair consisted of a satellite fluo-
rophore, s, and and antenna fluorophore, a, of equal residual fluorescence anisotropies,
r∞,s = r∞,a = r. A FRET efficiency value of Eas = 0.5± 0.02 was used as the only data.
Different informative average transition dipole moment orientation priors were used in
the simulations, in contrast to the non-informative priors presented in section 3.2.3. Ad-
ditionally, the satellite fluorophore possessed an infinitely small accessible volume to rule
out that the satellite position uncertainty propagates into the localization error. The
antenna position prior was flat within a cube of several isotropic Förster distances side
length.
In the first calculation, the average transition dipole moments of both fluorophores were

known to be oriented along the z − axis of the coordinate system (figure 6.18a), which is
equivalent to the prior

p
(
Ωs/a|I

)
∝ 1
π
δ(cos θs/a − 1), (6.3.1)

where δ(.) denotes the Dirac-delta distribution.
Now, the fluorescence anisotropies were varied from 0.4 to 0 to demonstrate the effect

on the shape of the inferred antenna positions. The calculation was performed using
nested sampling with 120 objects, followed by Metropolis sampling of the posterior, which
resulted in 1·105 independent samples. The 90% credible intervals of the marginal antenna
position posterior are shown in figure 6.18b-f.
The computed densities exhibit shell-like structures that are highly anisotropic when

r = 0.4 (figure 6.18b) and gradually approaches the form of a sphere when the fluorescence
anisotropy drops to 0 (figure 6.18f). In the latter case, the density has sphere symmetry,
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6 Results and discussion

whereas in the scenarios with r > 0 the density belongs to the C∞h point group, i.e.
has rotation symmetry along the z − axis and mirror symmetry at the (x, y) − plane
(figure 6.18b-e). The thickness of the 90% credible interval is the same for fluorescence
anisotropies r > 0.1 and r = 0. When r = 0.1, the thickness is larger.
In a second calculation, the residual fluorescence anisotropy was kept constant at r =

0.4, and the orientation of the antenna average transition dipole moment was rotated
gradually to be perpendicular to the antenna average transition dipole orientation. This
corresponds to the following prior:

p (Ωa|I) = δ(cos θa − cos θa,0)δ(φa), (6.3.2)

where θa,0 takes the values θa,0 = π/6, π/3, π/2. As in the first calculation, nested
sampling with 120 objects was used, followed by Metropolis sampling of the posterior,
which resulted in 1 · 105 independent samples. As a result, the inferred antenna position
density transformed gradually into a four-lobed shape that belongs to the D4h point group
(figure 6.19a-d).
When less informative orientation priors are used, e.g. when the antenna is known to

be oriented in the (x, y)− plane,

p (Ωa|I) = 1
π
δ(cos θa), (6.3.3)

or when no information is present, which is the most realistic case, the thickness of
the antenna credible volume increases (figure 6.19e,f). When there is also less knowledge
about the satellite average transition dipole orientation, the thickness increases even more
(figure 6.19g), and finally sphere-symmetry is regained (figure 6.19h).

6.3.2 Discussion

In the first calculation, the fluorescence anisotropy was varied, the average transition
dipole orientations were known, and the satellite position was known with high accuracy.
The simulation indicates that the localization limited by the FRET efficiency measure-
ment error is roughly independent from the fluorescence anisotropy as long as r > 0.1.
Anisotropy values below 0.1 are accompanied by an increased localization uncertainty
caused by the ambiguity of the sign of the average axial depolarizations (equation (2.3.6)).
This increase in uncertainty is reduced again when the fluorescence anisotropy approaches
0.
Though the shapes of the posterior are far less symmetrical compared to a sphere,

they could be used to infer fluorophore positions equally well as in the case of vanishing
fluorescence anisotropy. Yet, this would be applicable only when the absolute orientation
of the average transition dipole moments would be known.
The second simulation shows that, given high fluorescence anisotropy values, the local-

ization uncertainty increases dramatically, which has been already shown in section 6.1.1.
Now, the estimated antenna position posterior densities can be interpreted as an average
over a continuum of shapes similar to those shown in figure 6.19a-d. The smaller the
fluorescence anisotropy, the more resemble these shapes a sphere (figure 6.18b-f), and the
more the averaged density is concentrated on the surface of a sphere.

Beside the fluorophore positions, the position - orientation NPS model allows to infer the
average transition dipole moment orientations from the data. That information, in turn,
can improve the localization accuracy, as shown above. In the following, the conditions
will be tested that allow to reduce the localization uncertainty.
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6.3 Simulation II – Improvement of localization accuracy

Figure 6.19: Effect of average transition dipole moment orientation prior on the estimated ANT
position. The surface of the 90% credible volume of the ANT position is shown as exterior
view and as a section (left and right parts of each panel, respectively). In the section view
the shell-like structure can be seen. The estimate in (a) has axial symmetry and was already
shown in figure 6.18b. The fluorescence anisotropies of SAT and ANT were 0.4 throughout.
In (a-d) the average transition dipole orientations of both fluorophores are known, and the
angle between them is changed (see insets, yellow: possible average transition dipole moment
orientations). In (e-f) less informative priors are used. In particular, only the satellite
orientation is known accurately in (e,f), while the antenna is either known to be oriented in
the (x, y) − plane (e) or its orientation is completely unknown (f). In the subfigures (g,h)
the orientation information is decreased for the satellite as well. The thickness of the 90%
credible volumes is indicated by two arrows.
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6.3.3 Position - orientation NPS model test calculations

Here, more test calculations performed with the position - orientation NPS model will be
presented. The objective was to determine under which condition the improvement of
localization accuracy expected from the position - orientation model analysis can be ob-
served, i.e. when the independent Förster distance approximation breaks down. This is of
interest, since the calculation with the position - orientation model takes much more com-
putational time compared to the calculation with the position - Förster distance model.
In addition, the effect of including FRET anisotropy data in the inference process will be
examined. Finally, the numerical performance of the implementation of nested sampling
will be briefly discussed.

FRET network structure

The studied FRET network consisted of 7 antennas (ANT 1-7) and 7 satellites (SAT 1-7),
which is similar to the network used to infer the nontemplate DNA position in the Pol II
elongation complex (section 6.4). In some of the calculations, two additional satellites
(SAT 8 and 9) were used to increase the amount of data and hence to improve the
localization accuracy, which is also often done in experiments when the resulting antenna
position densities are too large to be accurately localized. The fluorophore positions (figure
6.20) and average transition dipole moment orientations are listed in table 8 (appendix
II).
All test calculations were based on synthetic data generated as described in section

5.3.4. The data is listed in the appendix II in tables 8 (fluorescence anisotropies), 9
(FRET efficiencies), 10 (isotropic Förster distances) and 11 (FRET anisotropies). Briefly,
49 FRET measurements (FRET efficiencies as well as FRET anisotropies) between ANT
1-7 and SAT 1-7, as well as 6 measurements between ANT 2-7 and SAT 8 and 9 were
simulated. The residual fluorescence anisotropies of all fluorophores were in the range
between 0.15 and 0.32, which consistent with the fluorescence anisotropies observed in
the experiments with Pol II.
In all but the last analysis of the synthetic data the size of the accessible volumes of

the satellites was vanishingly small to study orientation effects only, while the volumes
accessible to the antennas were flat within a large cube around the satellites. In contrast,
in the last analysis, finite-sized satellite position priors were used that are comparable in
size with those simulated in the Pol II experiments. The average transition dipole moment
orientation priors of all fluorophores were flat and uninformative (equation (3.2.8)).

Figure 6.20: Fluorophore positions
(synthetic data). The positions
of the fluorophores used to com-
pute synthetic data are shown as
spheres relative to a hypothetical
macromolecule (gray surface). The
ANTs, numbered 1-7, are shown in
color, the SATs, numbered 1-7, in
gray. The additional SATs 8 and 9
used to extend the measurement
network are shown in blueish-gray
and are highlighted by arrows.
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Antenna positions inferred with the position - orientation NPS

To compare the position - Förster distance NPS model with the position - orientation NPS
model, the FRET efficiency data was separated into seven subsets of measurements be-
tween each single ANT fluorophore and the SATs 1-7. Then, in the scenario referred to as
separate analysis, each data subset was analyzed with both models. The analysis resulted
in very similar marginal antenna position posteriors (figure 6.21a,b). In particular, the
position densities of all but ANT 1 and 6 were elongated, and many had a second proba-
bility maximum at the “wrong” side of the hypothetical macromolecule1. Beside the large
position uncertainty, most of the antenna positions were estimated well, except ANT 2.
Its simulated position was rather far from the estimated density, since it was located on
the surface of the 95% credible interval (position - Förster distance model) or was found
even outside of it (position - orientation model).
In the next scenario, the global analysis, all 49 measurements between ANT 1-7 and

SAT 1-7 were analyzed at once with the position - orientation model (figure 6.21c). As
a result, some of the estimated antenna position densities were smaller as compared to
the separate analysis, and all second maxima contained now less probability than before.
Also the simulated position of ANT 2 was found inside of the 95% credible interval.
The separate and global analysis with the position - orientation model were repeated

after including the additional measurements to the satellites SAT 8 and 9 into the analyzed
data set. These scenarios will be referred to as extended network. All marginal antenna
position densities did shrink when compared to the previous FRET network with only 7
satellites (figure 6.21d,e), and the difference between separate and global analysis was more
pronounced. Yet, the simulated positions of many antennas were still at asymmetrical
positions in the posterior density.
When FRET anisotropy data was used in addition to FRET efficiency data (section

3.2.2), an overwhelming decrease in localization uncertainty was observed even when the
smaller FRET network was analyzed (figure 6.21f). Now, all estimated densities were
nicely centered around the simulated antenna positions.
In the last calculations, the influence of the imprecisely known satellite positions was

studied. To this end, the satellite position priors were changed to be flat within small
cubes of 8Å side length centered around the simulated position (figure 6.21g). The
inferred antenna position densities spread slightly, but the localization uncertainty was
small when compared to the uncertainties obtained from FRET efficiency data alone, and
the estimated densities stayed nicely centered around the simulated antenna positions.

Average transition dipole moment orientations inferred with the position - orientation
NPS

When the position - orientation model was used, there is more information contained in the
analysis results than just the fluorophore positions shown above. The samples drawn from
the posterior carry information about the average transition dipole moment orientations,
which will be studied next.
The 68% and 95% credible intervals of the marginal average transition dipole moment

orientation of a typical antenna fluorophore are shown in figure 6.22a to give an impression
of the inference accuracy of separate analysis. Note that all positions − cos θi = ±1 are
physically equivalent, and that the parameter space at φi = 0 and φi = π is connected
by (− cos θi, φi = 0) ≡ (+ cos θi, φi = π). This is caused by the fact that flipping the
direction of any average transition dipole moment does not change the likelihood value.

1In a real application, such ambiguities can be often removed by considering the space the antenna
can reach, which is easily encoded in the corresponding position prior
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6 Results and discussion

Figure 6.21: Comparison of analysis methods. Stereo images of 95% credible volumes of the
marginal antenna position priors are shown as surfaces and were colored in the same way
like the antennas in figure 6.20. In (a) and (b) the results of the separate analysis are shown,
computed with the position - Förster distance model and the position - orientation model,
respectively. The global analysis of the small FRET network is shown in (c), whereas the
separate and global analysis of the extended network is depicted in (d) and (e), respectively.
In (f) and (g), the smaller network was analyzed like in (a-c), but FRET anisotropy data was
used in addition to FRET efficiency data. (a-f) were computed with infinitely small satellite
position priors, while finite-sized accessible volumes were used in (g).
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While the separate analysis of the extended network decreased the uncertainties only
slightly (figure 6.22b), global analysis improved the average transition dipole moment
orientation accuracy stronger (figure 6.23a,b). Compared to the accuracy of localization
(see marginal antenna position posteriors, figure 6.21), the accuracy of the inferred average
transition dipole moment orientations was much lower when only FRET efficiency data
was analyzed, as the marginal posterior density was very diffuse.
In the extended network the presence of more data improved not only the inference of

fluorophore positions but also the accuracy to determine average transition dipole mo-
ment (figure 6.23c,d). The analysis of FRET anisotropy data had an even stronger effect
(figure 6.23e,f), so that all average transition dipole moment orientations were computed
correctly. The reason therefor was the small error of FRET anisotropy measurements
(∆Aij = 0.01), which was sufficient to detect orientation effects expected to be in the
order of (ri,∞rj,∞)1/2 (equations (2.3.10), (2.3.9) and (2.3.7)). The introduction of finite-
sized satellite position priors increased the orientation uncertainty only slightly (figure
6.23g,h).

Overall quantification of uncertainties and evidences

In order to summarize the overall quality of the inference, the relative localization and
orientation uncertainties were computed (figure 6.24). To this end, the approximate
localization and orientation accuracies (section 5.3.7) were normalized by the accuracy of
the separate analysis and averaged over all ANTs.
The position - Förster distance NPS model has a slightly larger average localization

uncertainty when compared to the separate analysis using the position - orientation NPS
model. The other average localization uncertainties follow the trend that was described
in words in the previous two subsections. In particular, the uncertainty drops by almost
an order of magnitude when FRET anisotropy data is analyzed in addition to FRET
efficiency data.
The same applies to the orientation uncertainty. Both accuracies increase upon in-

Figure 6.22: Typical marginal average transition dipole moment orientation posterior densities
computed by separate analysis. The density of a typical antenna fluorophore, here ANT 2,
is shown as scatter plot and credible intervals. 68% and 95% correspond to the inner and
outer lines, respectively. For comparison, the simulated average transition dipole moment
orientation underlying the data is displayed as a star. In (a) the measurements of the
satellites SAT 1-7 were used to infer the orientation, whereas (b) was computed based on
SAT 1-9 (extended FRET network).
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Figure 6.23: Marginal average transition dipole moment orientations in the global analysis. 68%
and 95% credible intervals (inner and outer lines, respectively) of the marginal average tran-
sition dipole moment orientation posterior of antennas (left column) and satellites (right
column) computed by global analysis are shown. For comparison, the simulated orientations
underlying the data are displayed as stars. The following scenarios are shown: (a,b) FRET
efficiency data only, (c,d) extended network, FRET efficiency data only, (e,f) FRET effi-
ciency and anisotropy data, (g,h) FRET efficiency and anisotropy data with finite-sized SAT
position priors. In the presence of FRET anisotropy data (e-h), the fluorophore orientations
are inferred with high accuracy, while the accuracy is lower when only FRET efficiency data
is available (a-d). For clarity reasons the density of only one fluorophore is displayed both
as credible intervals and scatter plot in the latter scenario. In panels (a-d), the assignment
of the fluorophore orientations is better in the extended FRET network (c,d) than in the
smaller FRET network with 7 ANTs and 7 SATs (a,b).
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Figure 6.24: Average relative uncertainties. The position and average transition dipole moment
orientation uncertainty of each antenna was divided by the respective uncertainty value
obtained in the separate analysis. Averaging of these relative uncertainties over the ANTs
resulted in the average relative uncertainty, which are shown together with the standard
deviation (whiskers) for each scenario. The average relative uncertainties of positions and
orientations behave similarly. The position - Förster distance model shows a slightly higher
position uncertainty compared to the separate analysis with the position - orientation model.
Compared to separate analysis, global analysis has a stronger impact when more data is
present (extended network). When FRET anisotropy is analyzed, the uncertainties decrease
drastically to values limited probably by data quality, whereas the analysis of FRET efficiency
w/o FRET anisotropy suffers from lack of orientation information. Finite-sized SAT position
priors have a stronger effect on the position error than on the orientation error.

troduction of finite-sized SAT position priors, but the effect is small compared to the
accuracy gain caused by additional analysis of FRET anisotropy measurements.
Supplemental separate analyses of FRET efficiency data only were performed with

finite-sized satellite position priors (data not shown). This had only a minor effect on the
average normalized localization and orientation uncertainties, which increased by only
11% and 2.6%, respectively.
In principle, the evidence, Z, calculated by nested sampling (equation (2.5.19)) can be

used in model selection (see sections 2.4.5 and 6.7.5). Evidences of various global analyses
are listed in table 6.2 together with the information gain, H (equation (2.5.19)), which
reflects the degree of dissimilarity between posterior and prior.
To determine whether nested sampling could find the likelihood maximum, the largest

sampled likelihood values were compared to the maximum possible likelihood values (table
6.2). The latter were known in the test calculations, but are usually not known when
experimental data is used. In general, nested sampling converged closer to the likelihood
maximum when FRET efficiency data was analyzed together with FRET anisotropy data.

Performance of the sampling engine

The calculations based on the position - orientation model shown above were performed
with nested sampling based on Markov chain Monte Carlo (sections 2.5.1 and 5.5). The
number of objects used in the different scenarios is listed in table 6.3 together with the
number of free parameters. A detailed listing of Monte Carlo settings can be found in
section 5.5.7. In order to study the performance of the sampling engine (section 5.5),
the nested sampling used in the global analysis of FRET efficiency and anisotropy data
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calculation lnZ H/bit lnLsampl
max lnLmax Lmax/L

sampl
max

FRET efficiency only 8.3± 0.1 164 144.2 146.7 12.2
FRET efficiency only, 9.5± 0.3 185 162.5 164.6 8.2
extended network
FRET efficiency 133.5± 0.4 244 326.5 327.3 2.2
and anisotropy
FRET efficiency and 125.0± 0.3 253 327.1 327.3 1.2
anisotropy, finite SAT prior

Table 6.2: Evidences, information and likelihoods of global NPS calculations. The natural log-
arithm of the evidence (lnZ), the information (H), the natural logarithms of the maxi-
mum likelihood achieved by nested sampling (lnLsampl

max ), the analytically obtained likelihood
(lnLmax) as well as their ratio are listed for the global NPS calculations.

scenario sep., E glob., E sep., E,
ext. netw.

glob., E,
ext. netw.

glob.,
E&A

glob., E&A,
fin. sat. pos.

objects 500∗, 1000†,
2000‡ 10000 1000 2000 1000 1000

num. of free
parameters 19 49 21 53 49 70

∗) ANT 1-4 and 7 †) ANT 6 ‡) ANT 5

Table 6.3: Number of sampling objects and free parameters in the different scenarios

with finite-sized satellite priors will be discussed in detail. This particular calculation was
chosen since it has the most free parameters.
During the progress of nested sampling, the objects were compressed more and more

to parameter space regions of high likelihood values. This is demonstrated for two fluo-
rophores (ANT 1 and SAT 5) in figure 6.25 showing the marginal position of the samples
(i.e. objects with the lowest likelihood) produced in each nested sampling iteration. Al-
ready in an early state of the calculation (iteration ∼ 25 · 103), the ANT positions were
roughly determined. They were refined as soon as the correct average transition dipole
orientations of all fluorophores were found (iteration ∼ 100 · 103). The SAT positions do
not show any noticeable gain in position accuracy since their priors were already very
informative.
Each iteration of the nested sampling algorithm a new sample was drawn from the

constrained prior by Markov chain Monte Carlo. Two types of moves were used in the
Monte Carlo, a local move that ensured the short-range mobility of the Markov chain, and
a non-local move that should allow the chain to move between several not interconnected
posterior modes. As the shape of the constrained prior changed dramatically during
the progress of nested sampling, the Monte Carlo control parameters like for example the
length of the Markov chain (also called length of the random walk in the following) needed
to be adjusted to guarantee an efficient exploration of the constrained prior (section 5.5.5).
This will be shown in the following.
The adaptation of the local move length scales si is shown in figure 6.26 for the param-

eters describing ANT 1 and SAT 5. After the initial collapse of ANT positions, the local
move length scales shrink approximately exponentially in all parameters.
Other quantities beside the local move length scales were recorded as well during the

course of nested sampling. The logarithm of the likelihood approaches asymptotically
the maximum, while the sample weights reach a maximum around iteration jmax = 175 ·
103 and decrease thereafter until the termination criterion is satisfied, here at iteration
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Figure 6.25: Samples produced during nested sampling. The samples produced in each nested
sampling iteration are shown as dots for a selected set of coordinates in the multi-dimensional
parameter space. These coordinates are the position and orientation of ANT 1 (left column)
and SAT 5 (right column). The collection of objects used in nested sampling is compressed
in two phases. In the first phase (iteration ∼ 25·103), the rough ANT position is determined.
In the second phase (iteration ∼ 100 ·103), the average fluorophore transition dipole moment
orientations of both ANT and SAT are found, and the ANT position is refined.
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6 Results and discussion

Figure 6.26: Adaptation of local move length scales. The local move length scales, si, are shown
for a subset of parameters, namely the positions (a, b) and orientations (c, d) of ANT 1 (a,
c) and SAT 5 (b, d).

261·103 (figure 6.27a,b). This was in agreement with the chosen termination criterion
j > 1.5 ×MH ≈ jmax, where j is the iteration number, M the number of objects (here
M = 1000), and H the information in nats (subsection 2.5.2 page 31). The length of the
random walk needed to create an approximately independent sample from the constrained
prior was adapted (section 5.5.5) and is shown in figure 6.27c. Also the ratio of accepted
and rejected local moves was adapted to minimize the length of the random walk (figure
6.27d).
Non-local moves were used to improve the exploration of the constrained prior. The

probability to use a non-local move as well as the number of retries, which is a parameter
of the move (section 5.5.4), were found almost always at their maximum values of 0.1 and
100, respectively (traces not shown). As an adjustment to smaller values has been ob-
served in other calculations (not shown), the adaptation of these Monte Carlo parameters
apparently depends on the inference problem. The average number of successful non-local
moves and their average efficiency was very low here (figure 6.27e,f), but in certain regions
several successful moves per trace were typically observed (figure 6.28).
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6.3 Simulation II – Improvement of localization accuracy

Figure 6.27: Nested sampling and Monte Carlo quantities. The logarithm of the likelihood (a)
and the weights (b) of the samples produced during nested sampling are shown as functions of
the nested sampling iteration. Several other Monte Carlo parameters are shown in the other
subfigures: (c) Length of the random walk needed to compute an approximately independent
sample. (d) Ratio of local move acceptances and rejections averaged over 100 iterations. (e)
Number of non-local moves per random walk averaged over 100 iterations. (f) Efficiency of
non-local moves averaged over 100 iterations.
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Figure 6.28: Relative frequency of suc-
cessful non-local moves per random
walk. Data from three different
regions during nested sampling is
shown: iteration 1–70·103 (region
1), iteration 80·103–130·103 (region
2), iteration 150·103–230·103 (re-
gion 3).
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6.3.4 Discussion

Inference results

The comparison of both NPS models on the basis of the separate analysis of FRET
efficiency data supports the approximations used in the position - Förster distance NPS
model further. In contrast to the separate analysis, more accurate position and orientation
estimates are achieved when the data is analyzed globally. This is obvious, since the
measurements of FRET efficiency between a particular antenna and a set of satellites
can be used to estimate the positions and average transition dipole orientations of the
satellites, and might even introduce correlations between different satellites. In the spirit
of Bayesian data analysis, this information should be used as prior in the next analysis. In
fact, this was not done in the separate analysis, as the same uninformative prior was used
each time. In contrast, the global analysis can profit from the synergy effects because all
data is analyzed at once.
It is even possible to compute rough estimates of the average transition dipole ori-

entations by globally analyzing FRET efficiency data, as can be seen in the extended
FRET network scenario. Yet, in general, the fluorophore positions were determined bet-
ter than the average transition dipole moment orientations. One reason therefor might
be the different sensitivity of the FRET efficiency on variations of fluorophore distances
and orientations in the range of the fluorescence anisotropies analyzed. Another reason
is definitely the main difference between position and orientation priors: while informa-
tive priors were used for all satellite positions (informative in the sense of a localized
density), the average transition dipole moment orientation priors were always completely
uninformative.
A trivial result of the test calculations was that the fluorophore positions and their

average transition dipole moment orientations are determined more precisely when more
data is analyzed. At a second glance, this result is amazing from the point of view of
traditional data analysis, since for small FRET networks, it might be that each new
satellite introduces more unknown model parameters (especially average transition dipole
moment orientations) than data. This “paradox” will be discussed in more detail later in
section 6.7.4.
The most striking result was that FRET anisotropy data analyzed in addition to FRET

efficiency data drastically reduces the localization uncertainty and the uncertainty in the
estimated average transition dipole moment orientations. The fact that the localization
uncertainty is only slightly increased when finite-sized satellite position priors are used
proves that, under the chosen conditions, the major source of localization uncertainty is
indeed the a priori unknown average transition dipole moment orientation. One could ar-
gue that the FRET anisotropy measurement errors of 0.01 used here are overly optimistic,
since it is difficult to measure FRET anisotropy accurately when the FRET efficiency is
low (∼ 20% of the simulated FRET efficiencies were smaller than 0.1). Nonetheless, one
would try to place satellites in a way, so that moderate FRET efficiencies are observed in
a realistic experiment, and thus FRET anisotropy is observable as well.
Eventually, it follows from the definition of the likelihood (equation (3.2.5)) and the

FRET anisotropy (equations (2.3.10), (2.3.9) and (2.3.7)) that the ability to determine the
average transition dipole moment orientations depends on whether the FRET anisotropy
measurement error is notably smaller than the range in which the FRET anisotropies are
expected to vary. This range is given by 3/2 of the geometric mean of the respective fluo-
rescence anisotropies and in the calculations shown here it exceeds the FRET anisotropy
measurement error by an order of magnitude.
Although the measurement of FRET anisotropy is promising, one should not forget
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6.3 Simulation II – Improvement of localization accuracy

that when only few informative measurements were present, e.g. only the FRET efficiency
data of a small network was analyzed, the simulated antenna positions were often found
at low probability density values of the marginal posterior, and many of the densities
were elongated. This finding was even more pronounced in the average transition dipole
moment orientations, which might have several reasons. One reason (probably easiest
to fight but most difficult to prove) is the convergence of the nested sampler. Here, it
was possible to check how far the sampling had proceeded, since the maximum possible
posterior value was known. As the prior was flat and the experimental errors that are
usually modeled by the width of the likelihood were not simulated, the posterior maximum
was located exactly at the simulated fluorophore positions and average transition dipole
moment orientations. Thus, the maximum possible likelihood value, Lmax, was a suitable
indicator for the progress of nested sampling.
The worst convergence, indicated by the largest ratio of the maximum possible like-

lihood and the maximum sampled likelihood, Lsampl
max , was found indeed in the case of

globally analyzed FRET efficiency data (Lmax/L
sampl
max = 12.2, table 6.2), followed by

the globally analyzed extended network (Lmax/L
sampl
max = 8.2). In the presence of FRET

anisotropy data, the ratio was only 2.2, and when the finite satellite position priors were
used, it was only 1.2. This might indicate that, when FRET anisotropy data helps to fix
the average transition dipole orientations, the posterior has a shape that can be sampled
more easily.
Yet, even convergence does not guarantee that the “true” position will have a high prob-

ability density in the marginal posterior. Another reason for the peripheral location of the
simulated positions and average transition dipole moment orientations might be a strange
shape of the posterior. After marginalization, the posterior maximum might be masked by
many suboptimal solutions, especially when they are asymmetrically distributed around
the maximum. This effect will be discussed in detail in section 6.7.3.
At last, there is evidence that supports a strange shape of the posterior, which is that

even in the position - Förster distance model calculations the simulated positions were
found often at small marginal posterior values. Since the position - Förster distance model
works without any complicated sampling scheme and both models produce nearly the same
results, there is no convergence problem in the separate analysis, but instead, the posterior
must have a peculiar shape. Of course, this argument does not rule out convergence
problems in the global analysis, but it seems that a straight-forward interpretation of the
marginal position densities is problematic.
Since these effects were notably smaller in the test calculations when more data was

available, one should, from the practical point of view, shape the marginal antenna posi-
tion posteriors as compact as possible by measurements to additional satellites placed in
adequate positions. In that case, the posterior is easier to sample, which will improve the
convergence properties and speed up the calculation. Otherwise, when it is not feasible to
introduce suitable satellites and the antenna position densities have an elongated shape,
one should be careful with the interpretation of the posterior densities.

Sampling

The sampling engine was able to perform nested sampling based on Markov chain Monte
Carlo, which converged close to the maximum of the posterior. As discussed above, the
convergence was better when more data was available, especially when FRET anisotropy
data was analyzed. The result of nested sampling was a set of samples with individual
weights as well as the evidence, which can be used in model selection. The latter possibility
is discussed in detail in section 6.7.5.
The compression of the objects (i.e. samples from the constrained prior) used in nested
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sampling can be deduced from the plots of samples produced during the course of the
algorithm. Though, strictly speaking, the sample produced at iteration j originates from
the surface of the constrained prior and not from its bulk, such plots are useful to monitor
the sampling process2.
During the sampling process, the local move length scales were adapted successfully

to achieve a specific ratio of accepted and rejected moves. Both the local move length
scales and the acceptance/rejection (A/R) ratio are correlated quantities, since a decrease
of the local move length scale results in more accepted local moves and vice versa. The
A/R ratio, in turn, was adjusted in order to sample the constrained prior in an efficient
way. The length of the random walk needed to produce an independent sample from the
constrained prior was dynamically adapted during the course of nested sampling. The
higher the random walk length, the more difficult it is to maneuver within the constrained
prior.
From the behavior of the A/R ratio and the local move length scales, one can get

a qualitative impression of the average local structure and the global structure of the
constrained posterior density. For example, a high A/R ratio would occur when a density
is compact on the length scale of the local move and occupies only a small fraction of
parameter space volume on larger length scales. A further increase of local move length
scale and therefore a lower number of accepted moves would yield more rejections, which,
in turn, must be compensated by an increased random walk length. A decrease of local
move length scale accompanied by an increase of the A/R ratio, would result in a slower
exploration of the density, and thus be suboptimal.
In contrast, a low A/R ratio and therefore a large local move length scale corresponds

to a rather scattered constrained prior density. In this case, it is efficient to put up with a
larger number of rejections, as it is eventually possible to reach some distant probability
region in a single local move. A decrease or increase of the A/R ratio would again increase
the random walk length.
In the example calculation, the constrained prior density was compacted in two phases.

In the first phase, the antenna positions condensed (iteration ∼ 25 · 103), which was
preceded by a decrease of local move length scales in these parameters and accompanied
by a decrease of the A/R ratio. After a close examination, there is evidence for an earlier
compaction in the average transition dipole orientation parameters. This process is not
visible in the plots of samples, but can be observed in the decrease of the local move
length scales (iteration < 10 · 103).
In the second phase, the average transition dipole orientation parameters become fixed,

and the antenna positions are refined (iteration ∼ 100 · 103). This change is preceded by
the shrinking of the local move length scales in all parameters (iterations ∼ 50 · 103 –
100 · 103) and visible in the fine structure of the produced samples (figure 6.25).
The non-local move was intended to speed up sampling by jumping in between the

neighborhoods of two reference points. One of the reference points was chosen close to
the current position of the random walk, whereas the other reference point was randomly
chosen from the collection of nested sampling objects (section 5.5.4). Unfortunately, the
non-local move was found to have only a very low efficiency (figure 6.27f). The reason
therefor might be the infamous “curse of dimensionality”. As the collection of objects
might be sparsely distributed in the parameter space, the distance of the current position
to its closest reference point might actually be very large, while the current position is
still regarded to be “close” to the reference point. In high dimensional spaces, the amount

2When one is interested in the nested sampling objects at a specific iteration j, those can be approxi-
mately recovered by drawing from the samples {θi}k≥j with probability proportional to e−(k−j)/M ,
where k is the index of the sample, and M is the total number of objects.
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6.4 Application II – Nontemplate DNA in the elongation complex

of constrained prior density in such a large neighborhood can be vanishingly small, and it
might not be feasible to find these regions. This is supported by the increase of the non-
local move efficiency (figure 6.27f) during nested sampling as follows: since the collection
of objects gets more and more compressed during the progress of nested sampling, the
size of the neighborhood of an object shrinks, which, in turn, might cause the observed
effect.
It is questionable, however, whether the non-local move presented here is necessary,

since the move is computationally expensive. Furthermore, the starting point of the
random walk is chosen from the set of nested sampling objects, which might produce
sufficiently independent new samples even though the random walk does not explore the
whole constrained prior. Yet, this question should be checked in a separate study, and
there might be a way to improve the efficiency of the move.

Now, after the theoretical discussion of the benefits and risks of global data analysis
with the position - orientation NPS model, as well as the possible improvement of com-
monly performed FRET localization experiments by introduction of FRET anisotropy
measurements, a real FRET efficiency network will be analyzed by position - orientation
NPS in the next section.

6.4 Application II – Nontemplate DNA in the elongation complex

Only a small part of the nontemplate DNA was observed in the Pol II elongation complex
crystal structures (chapter 4), while the major part located in the transcription bubble
and the upstream DNA were missing. In the following, the position - orientation NPS
model will be used to localize the positions of fluorophores attached to different sites
on the nontemplate strand. The resulting antenna fluorophore position densities will be
compared to previously published results (Andrecka et al., 2009), which were obtained by
position - Förster distance model analysis and were used to build a model of the complete
Pol II elongation complex. As in section 6.2, the experiments were performed in the
absence of NTPs, hence the Pol II complex was always stalled.

6.4.1 NPS inference
The analysis is based on experimental data measured by Joanna Andrecka, Barbara Treut-
lein, Julia Nagy and Maria Angeles Izquierdo Arcusa.

FRET network structure and prior assumptions

The satellite fluorophores were attached on the template DNA, the RNA and the Rpb4/7
heterodimer to the positions tDNA(-10), tDNA(+3), tDNA(+9), RNA(+1), RNA(+4),
RNA(+10), Rpb7(C150) and Rpb4(S73C). The antennas were placed on the nontem-
plate DNA at positions ntDNA(+1), ntDNA(-2), ntDNA(-4), ntDNA(-7), ntDNA(-12),
ntDNA(-15) and ntDNA(-18). Almost every satellite-antenna combination was measured
(figure 6.29). The data is listed in the appendix II in tables 3 (fluorescence anisotropies),
4 (FRET efficiencies) and 5 (isotropic Förster distances).
While Alexa 647 was used as satellite fluorophore throughout, the antenna fluorophores

were either Alexa 555 or TMR. In order to stay in the distance range in which FRET
efficiency measurements are sensitive, TMR was used when longer distances between
antenna and satellite were expected, while Alexa 555 was used for shorter separations. In
the position - Förster distance NPS calculations it was assumed that TMR and Alexa 555
had the identical position when attached to the same labeling site, while both average
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6 Results and discussion

Figure 6.29: Nontemplate DNA FRET network. The positions of various antenna fluorophores
attached to the nontemplate DNA was determined from 49 FRET efficiencies (dotted lines)
to satellite fluorophores attached to Pol II. Alexa 555 (ALX555) and TMR were used as
antennas, while Alexa 647 (ALX647) was used as satellite throughout. TMR and ALX555
were assumed to occupy the same position.

transition dipole moment orientation and position were assumed to be identical in the
analysis with the position - orientation model.
The average transition dipole moment orientation priors of all fluorophores were flat

and completely uninformative. The satellite position priors were flat within the accessible
volumes shown in figure 6.30.
In the analysis based on the position - Förster distance model described by Andrecka

et al. (2009), the antenna position prior was flat within the accessible volume bounded
by the known Pol II structure. The minimum allowed distance between the antenna
position and the protein was 2.5Å in the case of ntDNA(+1), ntDNA(-2), ntDNA(-
4) and ntDNA(-7), and 5Å in the case of ntDNA(-12), ntDNA(-15) and ntDNA(-18).
The antenna fluorophores ntDNA(-15) and ntDNA(-18) were bounded additionally by
the attachment via the nontemplate DNA strand, which was treated effectively as a
flexible linker. The linker attached at the last known nontemplate DNA nucleotide was
35Å (ntDNA(-15)) and 45Å long (ntDNA(-18)). Different FRET efficiency measurement
uncertainties, ∆Eij , were used depending on the measured FRET efficiency. ∆Eij = 0.02
was assumed when the measured FRET efficiency was smaller than 0.9, and a twice as
large uncertainty was used otherwise.
The position - orientation model analysis was based upon slightly different antenna

position priors. The minimal distance between the antenna fluorophore and the protein
was 2.5Å, and was the only constraint besides a large box around the Pol II structure. All
measurement uncertainties were set to the same value of ∆Eij = 0.02 irrespective of the
measured FRET efficiency. In order to compare the two NPS models on equal footing,
an additional calculation based on the position - Förster distance model was set up with
the same prior and FRET efficiency measurement uncertainties.
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6.4 Application II – Nontemplate DNA in the elongation complex

Figure 6.30: Nontemplate DNA, satellite position priors as published in Andrecka et al. (2009).
The accessible volumes of the satellite fluorophores (indicated by arrows) are shown in top
view (left) and side view (right) of the Pol II elongation complex. The position priors were
flat within these volumes.

Inference with the position - Förster distance model

The marginal antenna position posteriors computed with the position - Förster distance
NPS model were used to build a molecular model of the nontemplate DNA and the up-
stream DNA (Andrecka et al., 2009) (figure 6.31a). The model was manually constructed
by Alan Cheung, who tried to maximize the overlap between the inferred antenna po-
sition densities and the predicted accessible volumes of the antenna fluorophores bound
to the nontemplate DNA (figure 6.31b,c). At the same time, he tried to maintain the
“molecular biologist’s common sense”, e.g. to take into account the attraction between
electrical charges on the Pol II surface and the nontemplate DNA backbone. At the end
of the manual modeling process, an energy minimization was performed.

Inference with the position - orientation model

The same FRET efficiency data was analyzed globally with the position - orientation
NPS model by nested sampling the 75-dimensional posterior with a collection of 1000
objects. The analysis resulted in compact position densities even without encoding the
constraints imposed by the attachment via the nontemplate DNA to Pol II in the prior
(figure 6.32a,b). The orientation uncertainty (data not shown) was comparable in mag-
nitude to the situation of the simulated 7 satellite / 7 antenna FRET efficiency network
shown before (figure 6.23a,b). Yet, some inconsistencies were found in the measured
data by comparing the marginal likelihood with the density of expected FRET efficien-
cies computed from the posterior (section 5.3.6, figure 6.33). This control is equivalent
to identifying outliers in the data from unexpectedly large deviations of a data point
from the fitted function. It can be interpreted in the same way like the measurement
and posterior profiles in section 6.2. Here, two out of 49 measurements, namely the
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Figure 6.31: Nontemplate DNA, position - Förster distance model inference. In (a) the molecu-
lar model of the nontemplate and upstream DNA is shown, which is based on the marginal
antenna position posterior densities inferred by the position - Förster distance NPS model.
The nontemplate DNA, the template DNA and the RNA are shown in cyan, blue and
red, respectively. (b) shows 68% credible intervals of the position densities (surfaces) of
the antennas attached at ntDNA(+1) (blue), ntDNA(-4) (cyan), ntDNA(-12) (yellow) and
ntDNA(-18) (red). The simulated accessible volumes of the fluorophores attached to the
nontemplate DNA are displayed as meshes in the same colors. In (c) the analogous situation
is shown for the antennas attached at ntDNA(-2) (corn flower blue), ntDNA(-7) (green) and
ntDNA(-15) (orange).

measurements of ntDNA(-18)-TMR to tDNA(+3)-ALX647 and ntDNA(-18)-ALX555 to
tDNA(+3)-ALX647 exhibited the strongest inconsistencies as indicated by a vanishing
overlap between the marginal likelihood and the expected FRET efficiency density (figure
6.33e,f).
In contrast to the global position - orientation model calculation, an independent

position - Förster distance model analysis with the same prior assumptions resulted in
elongated (ntDNA(-12)) and in two cases (ntDNA(-15) and ntDNA(-18)) also bimodal
marginal position posterior densities of the antennas (figure 6.32c,d). The remaining esti-
mated antenna positions ntDNA(+1), ntDNA(-2), ntDNA(-4) and ntDNA(-7) are closer
to the downstream DNA, similar to the original position - Förster distance NPS model
calculation (figure 6.31b,c).
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6.4 Application II – Nontemplate DNA in the elongation complex

Figure 6.32: Nontemplate DNA, position - orientation model inference. The 68% credible vol-
umes of the marginal antenna position posteriors are shown as surfaces. In (a) and (b) the
position - orientation model results are displayed, while below (c,d) the corresponding po-
sition - Förster distance model calculations performed with the same prior assumptions are
shown. Subfigures (a,c) depict the credible volumes of the antennas attached to the sites
ntDNA(+1) (blue), ntDNA(-4) (cyan), ntDNA(-12) (yellow) and ntDNA(-18) (red), while
subfigures (b,d) show the antennas attached to ntDNA(-2) (corn flower blue), ntDNA(-7)
(green) and ntDNA(-15) (orange). The template DNA (blue), the nontemplate DNA (cyan)
and the RNA (red) observed in the 1Y1W crystal structure are shown for better orientation.
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Figure 6.33: Nontemplate DNA consistency check. The marginal likelihood (solid line) and the
expected FRET efficiency density computed from the posterior samples (gray) are plotted
together with the expected FRET efficiency of the maximum likelihood sample and the
measured FRET efficiency. For most of the measurements, the expected FRET efficiency
distribution is almost identical with the marginal likelihood, like in the case of ntDNA(+1)
/ tDNA(+9) and ntDNA(-2) / tDNA(-10) (a, b). For some ANT-SAT attachment site
pairs, FRET efficiencies were measured twice with different donor fluorophores (TMR and
Alexa 555). Those measurements produced a slightly more peaked expected FRET efficiency
density similar to the densities shown in (c) and (d). Only in the case of the FRET efficiency
measurements between ntDNA(-18) and tDNA(+3) the data was noticeably incompatible
(e, f).
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6.4.2 Discussion
The model built on the basis of the position - Förster distance model NPS results (An-
drecka et al., 2009) is consistent with published biochemical, biophysical and genetic data.
The angle between the upstream and downstream DNA double strands of ∼ 60◦3 is in
agreement with atomic force microscopy data, which revealed an angle of 88± 37◦ (Rees
et al., 1993). Since the bases -5 to -10 of the nontemplate DNA are exposed, the model
accounts for the observed cleavage of the upstream nontemplate DNA nucleotides (up
to position -5) by micrococcal nuclease in the bacterial elongation complex (Andrecka
et al., 2009; experiments by Wang and Landick, 1997). The model is also consistent with
site-specific DNA-protein cross-linking within the bacterial elongation complex (Korzheva
et al., 2000; Naryshkin et al., 2000). However, Korzheva et al. (2000) do not make any
statement about protein-DNA cross-links in the nontemplate DNA region -4 to -14, which
are predicted by the NPS based model.
Yet, the densities of the antennas attached at ntDNA(-12), ntDNA(-15) and ntDNA(-

18) shown in figure 6.31b,c were strongly influenced by the prior, as verified by test
calculations without additional constraints (figure 6.32c,d). Hence, the antenna positions
on the upstream part of the nontemplate DNA were determined primarily by the estimated
maximum distance between the antenna fluorophores and the last nontemplate DNA base
visible in the structure. These distances, however, were arbitrarily set to 15Å (ntDNA(-
15)) and 45Å (ntDNA(-18)) (Andrecka et al., 2009), which corresponds to roughly 80%
of the DNA backbone lenght (Andrecka et al., 2009). The angle between the upstream
and downstream DNA double strands might thus be imprecise.
The global analysis of the FRET efficiency data from Andrecka et al. (2009) with the

position - orientation NPS model, however, increased the localization accuracy reasonably
without the aid of a highly informative antenna position prior. The resulting marginal
antenna position posteriors suggest that the angle between the upstream and downstream
double strand DNA is larger than in the original model (figure 6.34a,b) and might be in
better agreement with the published data (Rees et al., 1993). Also the bend in the
single strand region of the nontemplate DNA is presumably located further away from
the downstream DNA double strand (figure 6.34c-f), but it is difficult to judge whether
more bases would then be susceptible to cleavage by nucleases.
However, the data contained inconsistencies, the most peculiar being the measurements

between the positions ntDNA(-12) and tDNA(+3). Recent experiments performed by
Wolfgang Kügel and Anders Barth shed light on the possible reason for this puzzle (Kügel
and Barth, 2010, unpublished data). They used multiparameter fluorescence detection
(MFD) (Eggeling et al., 2001) to study fluorescently labeled Pol II elongation complexes
prepared as described by Andrecka et al. (2009). MFD is a single molecule technique that
enables to measure various properties of fluorescent molecules in solution like time-resolved
fluorescence anisotropy and fluorescence lifetime, FRET efficiency and anisotropy, as well
as the translational and rotational diffusion. Kügel and Barth (2010) could distinguish two
FRET efficiency populations in the samples. Based on the translational diffusion of the
labeled molecules, the populations were identified as nucleic acids bound to Pol II and as
free nucleic acids without Pol II. Astonishingly, in the case of measurements between the
positions ntDNA(-12)-ALX555 and tDNA(+3)-ALX647, as well as the positions ntDNA(-
18)-ALX555 and tDNA(-10)-ALX647, only a minor part of the labeled nucleic acids was
bound to Pol II. Most of the detected molecules were free nucleic acids and exhibited a
FRET efficiency comparable to the values reported by Andrecka et al. (2009).
Upon closer inspection, also the fluorescence anisotropy data has inconsistencies. For

3In the original publication a rough estimate of ∼ 80◦ was given, but a more accurate analysis resulted
in the angle of 61◦.
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Figure 6.34: Nontemplate DNA, proposed changes in the model. The 68% credible volumes
of the marginal antenna position posterior (surfaces) analyzed globally with the position -
orientation model are shown together with the simulated antenna positions (meshes) based
on the molecular model (transparent cartoons) previously proposed by Andrecka et al. (2009).
The color code is as in figure 6.32, and the nucleic acids observed in the crystal structure
1Y1W are shown as well (opaque cartoons). The global analysis suggests that the upstream
DNA double strand must be tilted to form a larger angle with the downstream DNA double
strand (a, b), and that the single-stranded nontemplate DNA should be located further away
from the downstream part of the template DNA (c-f).
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6.5 Simulation III – FRET-assisted docking

instance, the anisotropies of Alexa 647 attached to the positions RNA(+1) and RNA(+4)
are very small (r = 0.15) when compared to the anisotropies measured for e.g. tDNA(+3)
(r = 0.32), a site located at similar depth inside the Pol II complex. A simple expla-
nation is that either the nucleic acid scaffold consisting of RNA and DNA cannot bind
efficiently to Pol II when the RNA is labeled with a bulky fluorophore that is intended
to be incorporated deeply in the protein. Another reason might be a hindered forma-
tion of the DNA-RNA hybrid when RNA is labeled in the basepaired region of only 7
nucleotides length. Alternatively, the RNA could be stripped off when the nucleic acid
scaffold binds to Pol II. It is thus questionable, whether the fluorescence anisotropies
measured in bulk experiments represent the fluorescence anisotropies of the FRET sam-
ples, since they might be influenced by the signal of free nucleic acid scaffolds or even free
RNA. While the fluorescence anisotropies determine the overall localization accuracy and
have only a minor effect on the position of the Förster distance distribution in the position
- Förster distance model (sections 6.1.1 and 6.1.2), the global analysis with the position
- orientation model could suffer from systematical errors, since all model parameters are
strongly correlated by the measurements.
Finally, the fluorescence lifetime of Alexa 555 is short (0.3 ns) when compared to the

lifetime of Alexa 647 (1.0ns) (Invitrogen / Molecular Probes, 2010) and TMR (up to
3.6ns) (Eggeling et al., 1998). Thus, it is difficult to determine the residual fluorescence
anisotropy of Alexa 555 even when time-dependent single-photon counting experiments
are performed, and the steady state values used here might be systematically too high.
Hence, the model proposed by Andrecka et al. (2009) as well as the global analysis must

be regarded as preliminary. New data should be acquired with a fluorophore that possesses
a longer fluorescence lifetime than Alexa 555 and, at the same time, has a similar isotropic
Förster distance when used as donor in a FRET pair with Alexa 647. In general, it would
be desirable to increase experimental control. To this end, the fluorescence anisotropies
should be acquired in single-molecule experiments. Moreover, weakly bound components
of the Pol II EC could be labeled with an additional fluorophore that does not influence
the other fluorophores constituting the FRET pair, so that correctly assembled molecules
could be recognized by the presence of all fluorophores.

Up to now, only the positions and orientations of fluorophores were determined by NPS.
In the next section, test calculations will be presented showing how two macromolecules
can be “docked” by FRET measurements.

6.5 Simulation III – FRET-assisted docking

In this section, a test calculation will show the ability to dock macromolecules with the
position - orientation NPS model. To this end, the artificial data used in section 6.3.3 was
reanalyzed with different prior information.
The prior information of the satellite fluorophores was not changed, and they were as-

sumed to be bound to known positions of a macromolecule, M0, with known structure4.
The antenna fluorophores, however, were likewise assumed to be attached to known posi-
tions on a second macromolecule, M1, that was unlocalized yet (figure 6.35). As before,
the average transition dipole moment orientations were not known in the analysis, and
hence flat uninformative priors were assigned in these parameters.
The position and orientation of the reference frame, (x(1), y(1), z(1)), that represents the

second macromolecule was assigned an uninformative prior. The orientation prior was
4The macromolecule is only hypothetical, since its presence was not accounted for in the calculations.
Its true purpose is to serve as a fiducial mark in the figures.
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6 Results and discussion

Figure 6.35: Antenna fluorophore positions
relative to a second macromolecule. A
reference frame (x(1), y(1), z(1)) is at-
tached to the macromolecule M1 (brown
surface).

flat as stated in equation (3.3.3), and the position prior was flat in a large cube of 300Å
side length.
Three scenarios (I, II, III) were studied. All were based on the artificial data of the

7 satellite / 7 antenna FRET network (section 6.3.3). In the scenarios I and II, the
positions of the fluorophores relative to the respective macromolecules were known with
infinite accuracy. In scenario III, the position priors of all fluorophores were uniform
within cubes of 8Å side length centered at the simulated positions in the reference frames
of the respective macromolecules. While only FRET efficiency data was used in scenario
I, FRET anisotropies were analyzed in addition to FRET efficiencies in the other two
scenarios.
Nested sampling with a collection of 2·103 objects was used to compute posterior sam-

ples in all three scenarios, which contained 34 (scenario I and II) and 76 (scenario III)
model parameters. In the following, the results of the calculations will be shown and
discussed.

6.5.1 FRET-assisted docking of two macromolecules

The inference results were visualized by 95% credible volumes of the marginal position
of four points in the reference frame of the docked macromolecule M1. One point was
the origin of the docked reference frame, and the other three points were located on the
axes 60Å away from the origin. The marginal position posterior density of the point
in the origin was used as an estimate of the localization uncertainty, while the densities
of the other points served as a measure of the orientation accuracy (figure 6.36). The
smallest localization uncertainty was observed in scenario II, while the largest was found
in scenario III.
To get an impression of the orientation accuracy of the fluorophores, the marginal pos-

terior densities of the average transition dipole moment orientations were calculated. The
corresponding 68% and 95% credible intervals are displayed for the satellite fluorophores
in figure 6.37. In the case of antenna fluorophores, the orientation accuracies were of simi-
lar size and are not shown here. The calculations with the largest and smallest orientation
accuracy were scenario I and II, respectively.
The maximum sampled likelihood, Lsampl

max , was closest to the maximum possible likeli-
hood in scenario II (lnLsampl

max = 326.7), followed by scenario I (lnLsampl
max = 145.1) and III

(lnLsampl
max = 324.6).
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6.5 Simulation III – FRET-assisted docking

Figure 6.36: FRET docking. The docking of two macromolecules, M0 and M1, is shown for
the scenarios I, II and III (a, b, and c). The marginal position posterior densities of four
points are displayed as 95% credible volumes: red, within the semi-transparent surface of
M1: origin of the reference frame (x(1), y(1), z(1)) of the docked molecule M1; green, yellow
and orange: points located at the x, y and z-axis and separated 60Å from the origin. The
tripod is shown at the simulated position and orientation.
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Figure 6.37: Average transition dipole moment orientations. The marginal posterior densities
of the average satellite transition dipole moment orientations are shown as 68% and 95%
credible intervals. The scenarios I, II and III are shown in (a), (b) and (c), respectively, and
the simulated orientations are displayed as stars.
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6 Results and discussion

6.5.2 Discussion

In all three scenarios, the position and orientation of the docked frame of reference was
estimated correctly. The highest localization and orientation accuracy was achieved in the
presence of FRET efficiency and anisotropy data with precisely known relative fluorophore
positions (scenario II).
The performed test calculations were based on the same data as the global analysis of

FRET efficiency only data and combined FRET efficiency and anisotropy data in the 7
satellites / 7 antenna network in section 6.3.3. The corresponding scenarios will be hence
compared.
The localization accuracies of the docked reference frame origin were always higher than

the localization accuracies of the satellite positions in the corresponding calculations in
section 6.3.3. This is not surprising, since the antenna positions were highly correlated
by the attachment to the docked molecule, while each position was independent without
this information.
One would expect that the introduction of uncertainty in the satellite and antenna

fluorophore positions should have a larger effect on the position of the docked reference
frame origin than on the positions of the antennas computed in section 6.3.3 (figure
6.21f,g). The uncertainty would apply twice in the case of docking, once on molecule
M0 and a second time on the molecule M1. This effect can be seen by comparing figure
6.36b and c. Yet, on the absolute scale, the effect is compensated here by the still strong
correlation of antenna positions, and finally, the origin of the docked reference frame is
determined with a higher accuracy than any antenna position in the analysis without
docking.
Even when only FRET efficiency data was available (scenario I), the correct average

transition dipole moment orientations were almost perfectly recovered. Supposedly, the
reason were the correlations between the antenna positions and orientations introduced
by the measured FRET efficiencies and the information about the relative antenna and
satellite positions.
The differences of the maximum sampled likelihood and maximum possible likelihood

(table 6.2, page 114) were comparable to those determined in the calculations in section
6.3.3. This suggests that the sampling of the posterior was of a similar difficulty level
when compared to the global analyses without docking. Further, one can infer that in
the latter case it was indeed the lack of orientation information that caused the strongly
asymmetric marginal antenna position posterior densities (figure 6.21), because most of
the marginal densities are now nicely centered at the simulated average transition dipole
moments.
Although the docking of only two macromolecules was shown here, the analysis method

is capable of docking several macromolecules simultaneously. Furthermore, the posterior
marginalized in the position and orientation of each docked macromolecule at the same
time, can be used as a restraint in other docking applications. Effectively this would be
done by a 6-dimensional docking potential (the negative of the natural logarithm of the
marginal posterior) that acts on the position and orientation coordinates of the docked
component. In that way, the complete information about the position and orientation of
each component of the macromolecular complex is preserved. In contrast, the computation
of marginal position posterior densities of arbitrary points in the docking reference frame,
as presented here, destroys the correlations between position and orientation. In this
spirit, the practice to determine the position and orientation of docked macromolecules
from the marginal position posterior densities of arbitrary points in the docking reference
frame should be replaced by a different method that allows to utilize the full information
content.
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6.6 Application III – Position and orientation of TBP in the ITC

In general, the docking of macromolecules as demonstrated in the test calculations
above shifts the focus of NPS from determining fluorophore positions to the structurally
more relevant positions and orientations of macromolecules relative to each other. In the
next section, this framework will be applied to determine the gross structure of the initial
transcribing complex of Pol II.

6.6 Application III - Position and orientation of TBP in the initial
transcribing complex

This section deals with the coarse positioning of the TATA binding protein (TBP) within
the initial transcribing complex (ITC), which is important for the detailed understanding
of the initiation phase of eukaryotic transcription.

6.6.1 NPS inference

The analysis is based on experimental data measured by Barbara Treutlein, Joanna An-
drecka and Monika Holzner. The measurements were carried out with stalled Pol II initial
transcribing complexes (section 5.1.1). The analysis should be regarded as preliminary,
as the ITC project is still subject of current research.

FRET Network structure and prior assumptions

The satellite fluorophores were attached on the template DNA and the Rpb4/7
heterodimer to the positions tDNA(-10), tDNA(+3), tDNA(+7), tDNA(+12), and
Rpb7(C150). The antennas were placed on the nontemplate DNA at both ends of the
TATA box at positions ntDNA(-30) and ntDNA(-37), as well as on TBP at the position
TBP(S159C). It was assumed that these labeling sites are located on a rigid macro-
molecule, the TBP/TATA subcomplex, consisting of TBP and the bent DNA double
strand in the region of the TATA box. An additional antenna fluorophore was placed
at position ntDNA(-20) on the nontemplate DNA strand, which was assumed to be base
paired with the template DNA and thus part of a locally rigid upstream DNA double
strand segment.
The TBP/TATA subcomplex and the upstream DNA segment were docked to Pol II

by means of 20 FRET efficiency measurements in total, which were acquired with various
fluorophores (Alexa 647, TMR and Cy3) (figure 6.38). The data is listed in the appendix

Figure 6.38: Initial tran-
scribing complex FRET
network. 20 FRET
efficiencies (dotted lines)
were measured between
fluorophores attached to
Pol II, the TBP/TATA
subcomplex and the
upstream DNA. Fluo-
rophores attached to the
same labeling site were
treated as completely
independent, i.e. were
described by separate
positions and average
transition dipole moment
orientations.
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6 Results and discussion

Figure 6.39: Satellite position priors. The volumes accessible to the satellite fluorophores at-
tached to Pol II are shown in the top (left) and side view (right). The fluorophore position
priors were flat within these volumes.

II in tables 3 (fluorescence anisotropies), 6 (FRET efficiencies) and 7 (isotropic Förster
distances).
The volumes accessible to the fluorophores were computed based on the Pol II elon-

gation complex structure (Kettenberger et al., 2004, PDB-ID: 1Y1W) (figure 6.39), the
structure of TBP bound to DNA with the TATA sequence (Nikolov et al., 1995, PDB-ID:
1VOL) (figure 6.40a), and a structure of double-strand DNA in B-form (Drew et al., 1981,
PDB-ID: 1BNA) (figure 6.40b). It was hence assumed that the structure of the Pol II
enzyme is identical in the elongation and initial transcribing complexes. This applies in
particular to the position of the Rpb4/7 heterodimer and the template DNA strand. Fur-
ther, the local structure of the DNA bent by TBP at the TATA sequence was assumed
to be unchanged by possible interactions with the other ITC components. Also the local
structure of the upstream DNA was assumed to be double stranded and not bent within
two lengths of the carbon chain linker used for attachment of the fluorophore at the po-
sition ntDNA(-20) (figure 6.40b). In this way, it was possible to compute the marginal
position density of the attachment atom of ntDNA(-20).
In contrast to the calculations in the sections 6.2 and 6.4, each fluorophore was described

by a separate set of parameters even when different fluorophores were attached to the same
labeling site. Completely uninformative priors were used in the average transition dipole
moment parameters of the fluorophores, and the fluorophore position priors were flat
within the accessible volumes.
The docked macromolecule parts were described by the positions and orientations of

reference frames (figure 6.40). The reference frame position priors were flat within large
boxes, which contained the region that was accessible to the upstream DNA and the
TBP/TATA subcomplex5, while the orientation priors were completely uninformative.

5A supplemental analysis with a position prior that enclosed the whole Pol II resulted in a second
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6.6 Application III – Position and orientation of TBP in the ITC

Figure 6.40: ITC, antenna position priors. The accessible volumes of the antenna fluorophores
are shown for the TBP/TATA subcomplex (a) and the upstream DNA segment (b).
The fluorophore position priors were flat within these volumes. The frames of reference,
(x(k), y(k), z(k)) (k ∈ {1, 2}), attached to the rigid macromolecule parts are shown as well.
The accessible volume of TBP(S159C) was computed by using an unusually long linker, since
the fluorophore is attached to the end of an amino acid sequence lacking secondary structure
in the crystal. It was hence assumed that this sequence might be disordered and therefore
at a different position in reality, which elongated the linker effectively.

Inference results and preliminary modeling

The inference of th 77 model parameters was performed with nested sampling using 1000
objects. The position of the TBP/TATA subcomplex was visualized by displaying the
marginal position posterior density of the Cα carbon atom of isoleucin 168 (I168) in the
TBP structure, which is located at the interface of TBP and DNA in close proximity
to the bent DNA. To estimate the position of the upstream DNA at register -20, the
marginal position posterior density of the attachment site ntDNA(-20) was computed
(figure 6.41a).
To find the approximate orientation of the TBP/TATA subcomplex, the marginal posi-

tion posterior densities of three points located far from I168 were computed. Two points
were situated approximately on the axes defined by the DNA double strands upstream
and downstream of the TATA box sequence, while the third point was placed on the
opposite side of TBP, above the bent DNA. Since the marginal densities of these points
were very large and hence the orientation uncertainty was high, the densities were used
only as a guide to orient the TBP/TATA subcomplex (figure 6.41b). Finally, an existing
biochemical model of the minimal pre-initiation complex (Kostrewa et al., 2009) was used
as a rough guideline for the orientation of the DNA in between the TATA box and Pol II.
The orientation of the DNA segment between the transcription bubble and the TATA

box was not evaluated, since it contained only one attachment site.
Inconsistent FRET efficiency data was not observed, as confirmed by comparison of

each measurement’s marginal likelihood factors and the distribution of the respective
expected FRET efficiencies (not shown).

6.6.2 Discussion

The position of the TBP/TATA subcomplex was localized by FRET efficiency measure-
ments above the cleft of Pol II with an accuracy of 9, 17 and 18Å (standard deviation

probability density maximum, which could not be reached by the TBP/TATA subcomplex and the
upstream DNA at register -20 when the complexes were assembled correctly.
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6 Results and discussion

Figure 6.41: A preliminary ITC model. Stereo images of the preliminary ITC model. In (a),
the approximate position of the TBP/TATA subcomplex (TBP: magenta ribbons, template
DNA: blue, nontemplate DNA: cyan cartoons) located above the Pol II (1Y1W PDB struc-
ture) is shown. The model was built by considering the density of I168 (68% credible volume,
yellow) shown together with the density of ntDNA(-20) (68% credible volume, red). Both
positions are shown as spheres in the structure and marked by arrows. The position of
the ntDNA(-20) density indicates that the DNA strand between TBP and Pol II must be
bent, as it is expected from the approximate exit site of the upstream template DNA (blue
cartoon inside of Pol II). In (b), a detailed view of the 68% credible volumes of of the I168
position and three other points in the TBP/TATA reference frame is shown. Each point is
displayed as a sphere in the respective color of the credible volume surface and marked by
an arrow. The TBP/TATA subcomplex is shown as magenta ribbons (TBP, barely visible)
and blue/cyan cartoons. The front part of the surfaces are not shown.
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Figure 6.42: Pol II center of mass position in the TBP/TATA reference frame. The 68%
credible volume of the marginal position posterior density of the Pol II center of mass
((x(0), y(0), z(0)) = (107, 52,−2)Å in the coordinate system of 1Y1W) is shown (blue sur-
face). The density is banana-shaped since the fluorophores attached to TBP and the DNA
(accessible volumes are shown) constitute only a small trilateration basis in that direction.
Measurements to additional labels at the positions TBP(A187) or TBP(L337) (arrows) would
improve the localization accuracy of the Pol II center of mass, and therefore also the orien-
tation accuracy of the TBP/TATA subcomplex relative to Pol II. The direction along the
DNA towards the transcription bubble is shown by an arrow.

of the I168 density in the principal directions). The marginal position density of the
upstream DNA segment labeled at the site ntDNA(-20) indicates that the DNA between
TBP and Pol II is bent towards Pol II. Moreover, a straight DNA double strand between
TBP and Pol II would clearly disagree with the inferred orientation of the TBP/TATA
subcomplex (figure 6.40b, blue density), given the angle of DNA bent by TBP is the same
in the ITC and the crystal structure 1VOL.
The DNA could be melted in addition, which is expected since the template DNA

strand must reach its exit site separated from the nontemplate DNA in order to form
the transcription bubble. The simultaneous melting and bending during transcription
initiation, also called scrunching, was originally proposed in the bacterial RNA polymerase
system (Kapanidis et al., 2006; Revyakin et al., 2006). However, the size of the melted
region in the ITC is still unclear and subject of current research. This information will be
important for both building a correct biochemical model and for the NPS analysis, since
it is not known whether the DNA at position ntDNA(-20) is really double stranded as
assumed.
Although the position of the TBP/TATA subcomplex was determined well, its orien-

tation was less accurate. It would be possible to impove the orientation accuracy by
analyzing FRET efficiency measurements between the satellites on the Pol II elongation
complex and additional antenna fluorophores on TBP. This becomes evident when one
switches to the reference frame of TBP/TATA and displays the marginal posterior posi-
tion density of the Pol II center of mass (figure 6.42). The density is very elongated, and
would shrink if additional labels were attached to the aminoacids A187 or L337 on TBP
(sequence given as in 1VOL), which is equivalent to an improved orientation accuracy of
TBP/TATA in the Pol II frame of reference.
In general, it was difficult to orient the TBP/TATA subcomplex by using the marginal
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position densities of points located far from the subcomplex center. It is hence desirable to
develop a better method to visualize the orientation of a rigid macromolecule, as discussed
already in section 6.5.2.
TFIIB might play this role, since it interacts with DNA and TBP (Nikolov et al., 1995),

but this should be proven by direct localization of TFIIB in the ITC.

After having shown the preliminary analysis of docking the TBP/TATA subcomplex to
PolII, the next section will focus on some general aspects of NPS.

6.7 General discussion

In the following, NPS will be compared to similar FRET-based methods in the literature,
and its basic assumptions will be examined closely. After discussing the impact of flu-
orophore attachment on their suitability for structural studies of macromolecules, some
possible misinterpretations of NPS results will be pointed out. Thereafter, the design of
FRET networks will be discussed in regard to keep localization uncertainty small. Fi-
nally, a way will be presented how NPS can be linked to current FRET data preprocessing
techniques.

6.7.1 NPS and other FRET analysis methods
NPS will be now compared to other data analysis methods, which have been either ap-
plied to FRET experiments or were discussed theoretically. The studies will be examined
mainly with respect to aspects important for the localization of fluorophores: the FRET
network structure, the fluorophore- and FRET model on a single-molecule level, the inter-
relationship between the FRET model and the measured data, as well as the presentation
of the inference results.

FRET network structure

Two main categories of experiments exist. In the first, a single donor-acceptor distance
is inferred in a qualitative (Mukhopadhyay et al., 2001; Kapanidis et al., 2006; Santoso
et al., 2010) or quantitative way (Stryer and Haugland, 1967; Kapanidis et al., 2005; Kaiser
et al., 2006; Ermolenko et al., 2007a,b), whereas in the second category multiple FRET
measurements are used to compute the unknown position of one or more fluorophores
(Margittai et al., 2003; Medintz et al., 2004; Rasnik et al., 2004; Sun et al., 2006; Radman-
Livaja et al., 2005; Woźniak et al., 2008; Chen et al., 2009; Auclair et al., 2010) or to dock
molecules (Mekler et al., 2002; Mukhopadhyay et al., 2004; Knight et al., 2005).
NPS belongs clearly to the second category, yet, it is also possible to extract distribu-

tions of distances in the position - orientation NPS model. The distances can be inferred
either between arbitrary fluorophores, or, when macromolecules are docked, between any
two points located in different reference frames. The calculation of distances is basically
a kind of marginalization, since the information is already present in the posterior, repre-
sented by a set of samples. In the same way, NPS can be used to compute other geometric
quantities, for example the angles between the average transition dipole moments of two
fluorophores.

Fluorophore model and FRET model

Although the basics of FRET at large donor-acceptor distances is covered already by
the quantum mechanical theory derived by Förster (1948) for immobile fluorophores, a
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plethora of models has been developed thereafter to analyze experimental data. The
reason is probably not the disagreement with the effects that can alter the theoretically
expected FRET efficiency and anisotropy, which are basically the static and dynamic
inhomogeneities in positions and orientations of the fluorophores (Schröder et al., 2005;
Cherny et al., 2009; Auclair et al., 2010), but it is rather the lack of simple ways to char-
acterize these inhomogeneities. Basically, there are two groups of effects that complicate
the analysis of FRET data. One is the dynamics intrinsic to a single macromolecule,
for example fluctuations of the macromolecule and the attached fluorophores. The other
group of effects is extrinsic, as it is caused by the measurement process, for example the
counting noise of detectors or the averaging over an ensemble of macromolecules. Here,
an overview of the models will be given that describe effects intrinsic to the observed
system, whereas the extrinsic factors will be discussed in the next part.
In most studies, a fixed fluorophore position and complete dynamic orientational averag-

ing (κ2 = 2/3) is assumed, whereas some authors account for the fluorophore attachment
via carbon chain linkers (Mekler et al., 2002; Margittai et al., 2003; Medintz et al., 2004;
Rasnik et al., 2004; Mukhopadhyay et al., 2004; Lee et al., 2005; Nir et al., 2006; Woźniak
et al., 2008; Auclair et al., 2010), and again others ignore these effects or argue that they
are not of importance for the analysis (Stryer and Haugland, 1967; Radman-Livaja et al.,
2005; Knight et al., 2005; Kaiser et al., 2006; Sun et al., 2006; Ermolenko et al., 2007a,b;
Andrecka et al., 2008; Chen et al., 2009; Auclair et al., 2010). In some cases, the modeling
of linkers is kept open (Schröder and Grubmüller, 2004).
One should point out the work of Woźniak et al. (2008), who studied FRET pairs

bound to a short DNA double strand at known positions, and simulated the volumes and
orientations accessible to the fluorophores with molecular dynamics simulations. They
compared different FRET models in detail, namely complete dynamic averaging in orien-
tation and position, complete dynamic averaging in the orientation while the position is
static, and FRET of an ensemble of completely static fluorophore orientations and posi-
tions. They observed low residual anisotropies of all fluorophores, and used the complete
dynamic orientational averaging combined with a static position model, which described
the measured FRET efficiency data best.
In the applications of NPS shown in this work, the assumption of κ2 = 2/3 is clearly

not applicable, since many fluorophores are located deep inside Pol II and have a very
restricted orientational mobility, as proven by high fluorescence anisotropies. This is
accounted for in NPS analysis in contrast to other published FRET localization methods.
However, common to NPS and the literature cited above is the model of fluorophore
positions, which are static on the time scale of fluorescence lifetime or on even larger time
scales.
Although the treatment of anisotropy effects in NPS is based on the work of Dale et al.

(1979), these authors computed only the maximum and minimum values of the Förster
distances (Dale and Eisinger, 1974; Dale et al., 1979). This calculation was repeated by
Ivanov et al. in more detail in a recent publication 2009. In contrast, Hillel and Wu
(1976) proposed a probabilistic treatment of average transition dipole moment orienta-
tions, which shares some similarities with the model used in NPS. One of their results
is the probability density of donor-acceptor distances, similar to the density obtained by
NPS when only one FRET pair is analyzed. In particular, the transition dipole moment
was assumed to be freely mobile on the surface of a cone, which is a more explicit model
of the dynamically averaged fluorophore distributions when compared to the work of Dale
et al. (1979) and to NPS. The opening angle of the cone was determined from the flu-
orescence anisotropies of the fluorophores like done by Dale and Eisinger (1974). The
approach of Hillel and Wu (1976) can be interpreted in the Bayesian data analysis frame-
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work as follows: In contrast to the NPS that uses a Gaussian likelihood and a flat prior in
the antenna fluorophore position, a flat prior in the distance and a flat likelihood between
an experimentally measured maximum and minimum FRET efficiency was used. Dale
et al. (1979) explicitly reject the probabilistic treatment of Hillel and Wu, an opinion that
is probably based on a misinterpretation of the distance distributions, combined with a
criticism of the uninformative fluorophore orientation prior, which has a strong influence
on the inference. However, 100% credible intervals of a Bayesian distance estimate would
correspond to the reported maximum and minimum error margins proposed by Dale et al.
(1979) and Ivanov et al. (2009).
In a theoretical investigation, which is based on molecular dynamics simulations, the

correlations between the orientation factor κ2 and the donor-acceptor distance were stud-
ied (VanBeek et al., 2007). The authors report that the fluorophore positions and orienta-
tions are correlated, and hence result in a correlation between κ2 and the inter-fluorophore
distance. These correlations, when averaged over the lifetime of the fluorophore excited
states, can affect the energy transfer. Such behavior of fluorophores is supported by
the combined experimental and theoretical study of fluorescence anisotropy decay of a
fluorophore on a protein (Schröder et al., 2005), in which the fluorophore was observed
to adapt two distinct conformations with different preferred transition dipole moment
orientations.
NPS at its current state cannot account for such correlations, which is effectively dy-

namic averaging over the combined parameter space of fluorophore orientations and posi-
tions. Yet, as long as the fluorescence lifetime is high enough and the position fluctuations
of the fluorophores are small compared to their separation, NPS does account correctly
for constrained orientation effects observed in a complete FRET network, which is not
possible with any of the methods presented above.

Data processing and the likelihood function

Driven by thermal fluctuations, the fluorophore positions and orientations discussed above
are known to vary on different time scales. Fast fluctuations are usually caused by the
attachment of the fluorophores via flexible carbon chain linkers (Kinosita et al., 1982;
Eggeling et al., 2001), while slower dynamics is expected to be caused by conformational
changes of the macromolecules (Schröder et al., 2005). Fluctuations much faster than the
donor and acceptor fluorescence lifetimes are averaged over dynamically, and cannot be
detected directly in FRET. However, slower dynamics can be detected in an experiment
with sufficiently high time resolution (Nir et al., 2006; Kalinin et al., 2010b; Andrecka
et al., 2008).
In addition, it is likely that inhomogeneities of photophysical properties like the accep-

tor quantum yield contribute considerably to the observed FRET efficiency broadening
(McCann et al., 2010; Kalinin et al., 2010a).
The inhomogeneities described above are averaged over in bulk experiments like those

conducted by Stryer and Haugland (1967); Mukhopadhyay et al. (2001); Mekler et al.
(2002); Mukhopadhyay et al. (2004); Radman-Livaja et al. (2005); Knight et al. (2005);
Lee et al. (2005); Kaiser et al. (2006); Sun et al. (2006); Ermolenko et al. (2007a,b) and
Auclair et al. (2010). This averaging, in combination with the negligible contribution of
photon counting noise to the measured FRET efficiency, is probably the reason why in
bulk studies the measured FRET efficiency is usually directly translated into an average
distance of fluorophores when the Förster distance is known. In few cases, a generous error
is provided for this distance (Knight et al., 2005) or the corresponding FRET efficiency
(Mekler et al., 2002; Mukhopadhyay et al., 2004; Kapanidis et al., 2005), which might be
large enough to account for orientation effects.
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In contrast to bulk techniques, single molecule measurements are affected by substantial
contributions of photon counting noise, often called shot noise. Fortunately, this noise
source can be quantified reliably and there are techniques like photon distribution analysis
(PDA) (Antonik et al., 2006; Kalinin et al., 2007, 2010a) or the similar proximity ratio
histograms (PRH) (Nir et al., 2006) that are able to extract from the measured FRET
efficiency distribution the amount of inhomogeneous broadening exceeding shot noise.
Yet, the development of methods that interconnect structural parameters like the average
fluorophore position with the measured data is subject to current research, as presented
by Woźniak et al. (2008) and Kalinin et al. (2010b) in a first approach. In general, it is
desirable to derive a likelihood function that depends on the parameters, which physically
describe the ensemble of observed molecules, and thus close the gap between observation
and the molecular model of FRET.
Since such first-principles likelihood functions are still missing, a phenomenological data

pre-processing approach is applied in NPS. It consists of the determination of the centers
of Gaussian peaks in FRET efficiency histograms calculated from single-molecule inten-
sity traces (section 5.1.3). This popular method is used by many other authors (Margittai
et al., 2003; Medintz et al., 2004; Kapanidis et al., 2005, 2006; Margeat et al., 2006; An-
drecka et al., 2008; Chen et al., 2009; Santoso et al., 2010), but as soon as a likelihood
derived from first principles is available, one should use this more precise method. The
method of using center FRET efficiencies is risky, since inhomogeneities are known to
change the shape of FRET efficiency histograms and thus cause apparent discrepancies
between average structural parameters, for example the average distance (Cherny et al.,
2009). In particular, the distance of average fluorophore positions does not necessarily
coincide with the distance corresponding to the maximum of the observed FRET effi-
ciency (Churchman et al., 2006) for the following reasons. First, in the presence of static
position inhomogeneities, the distance of the average fluorophore positions is smaller than
the average over all distances, and second, FRET efficiency depends nonlinearly on the
fluorophore distance, which has impact on the actual shape of the FRET efficiency his-
togram. However, these effects become less important on an absolute scale when the
position inhomogeneity is small compared to fluorophore separation.
In conclusion, the data pre-processing method used in NPS works well when the FRET

efficiency histograms are narrow. In that case, only small inhomogeneities are present
and the differences between the maximum FRET efficiency derived from the data and
the FRET efficiency corresponding to the distance of the average donor and acceptor
positions can be accounted for in the FRET measurement error.

Visualization of results

The results of data analysis should be presented in a compact and comprehensible way
together with the accuracy of the inference. In the following, different ways to visualize
the information inferred by FRET localization experiments will be discussed.
Some authors depict the best fitting antenna fluorophore position as a sphere (Rasnik

et al., 2004; Andrecka et al., 2008; Chen et al., 2009), which is indeed a very compact
and intuitive way to display the experimental results. Yet, the position is often not
accompanied by an error margin, and even with the uncertainty given as a number, the
depiction of a single position might give the misleading impression of a precise localization.
Authors that use algorithms applied in NMR structure determination usually dis-

play several structures of the molecule or the measured position in the FRET network
(Radman-Livaja et al., 2005; Sun et al., 2006). In other studies, scatter plots are used to
display an ensemble of the positions of atoms or of fluorophores explaining the observed
data (Margittai et al., 2003; Medintz et al., 2004; Knight et al., 2005). Both ways of
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visualization are difficult to interpret in a Bayesian sense, since the conformations or po-
sitions are found with an algorithm that maximizes a FRET efficiency restraint based on
a scoring function, and the conformations are not drawn from any particular probability
distribution. Instead, the scatter might represent local maxima of the scoring function
without indicating their probability. It is rather the performance of the maximum search
than an uncertainty, which is shown in that way. Besides our own work (Muschielok et al.,
2008; Andrecka et al., 2009) only Woźniak et al. (2008) report accurate uncertainties of
the structural parameters.
In contrast to most studies discussed above, the fluorophore position densities computed

with NPS have a well defined meaning as a marginalized posterior probability density,
which can be easily displayed as credible volumes, and will be discussed in more detail
later (see “credible volumes” in section 6.7.3). However, it might be advantageous to show
several molecular models that are built into the same marginal densities like commonly
done for NMR structures, since up to now, models built into NPS results did not contain
any error margins. In that way, the uncertainty of the inferred positions could be expressed
in the final model.

After having compared NPS to present FRET localization techniques, a possible way
to improve the resolution of such methods will be discussed, and the concept of an “ideal”
FRET state will be developed.

6.7.2 Well-defined FRET states as tools for structural biology
It is evident from the preceding discussion that FRET-based structural studies are ham-
pered by molecular properties, which are difficult to control in the experiment. Therefore,
the question arises, which properties the donor and acceptor fluorophores should possess
in order to be suitable to be used in a FRET localization study.
In general, the fluorophores contributing to a well-defined FRET state used to ana-

lyze distances and orientations in macromolecules should be accurately characterized by
experiments and simulations. In particular, the chemical structure of the fluorophores
should be known in order to be able to simulate accessible volumes and orientations.
Another important requirement is a single photophysical and conformational state of the
fluorophore attached to the macromolecule. More than one state can obviously compli-
cate the interpretation, since different conformational states of the fluorophores might be
confused with different conformations of the macromolecule, which is usually not known
a priori. Finally, the FRET efficiency should be in a sensitive range.
In its present form, NPS requires fluorophores in static positions that exhibit con-

strained, axially symmetric orientational fluctuations faster than the donor and acceptor
fluorescence lifetimes. The fluorophores must thus have either long fluorescence lifetimes
or short rotation correlation times. While photophysical artifacts like quenching by metal
ions (Chung et al., 2010) cannot be ruled out in general, at least the effect of quenching
in different environments caused by different fluorophore conformations on the macro-
molecule (Eggeling et al., 1998) could be reduced by an attachment by short linkers
and/or the usage of fluorophores like Alexa 647 that can stick to a hydrophobic protein
surface (Loman et al., 2010). This would, in addition, shrink the volume accessible to the
fluorophore and thus decrease the influence of this source of uncertainty.
Unfortunately, probably the residual fluorescence anisotropy would be increased as

well, which results in higher localization uncertainties. Yet, NPS is able to account for
these uncertainties and is even able to compensate them by analyzing additional FRET
anisotropy data as shown in the test calculations in section 6.3.3. Moreover, a pronounced
orientational constraint would probably reduce the rotation correlation time scale of the
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fluorophore in the reference frame of the macromolecule, since a smaller solid angle would
be sampled by the transition dipole moment.
The angular and spatial immobilization of fluorophores to the macromolecule could

be further improved by a bivalent attachment via two short linkers (Forkey et al., 2000;
Peterman et al., 2001), but this would make site-specific labeling more complicated as
more than one amino acid must be mutated.
In summary, the requirements of the Dale-Eisinger-Blumberg theory could be satis-

fied better than it is done nowadays, if long carbon chain linkers were used mainly to
reduce anisotropy effects in FRET. By using short linkers one could reduce possible dy-
namic averaging over an ensemble of fluorophore positions, which is not accounted for in
the theory. Also correlations between fluorophore orientations and fluorophore positions
(VanBeek et al., 2007) are a complication, which should be avoided in experiments by a
more rigid immobilization of the fluorophores to the macromolecule.
Although one might argue that the Dale-Eisinger-Blumberg theory is also valid when

the fluorescence lifetime is shorter than the translational diffusion time in the accessible
volume, the distribution of fluorophore positions is not known a priori. For example, the
fluorophore might stick to several positions on the surface of the macromolecule, or it
might be located far from the surface. The distribution of fluorophore positions, however,
does influence the observed distribution of FRET efficiencies. The same criticism applies
to a static average of FRET efficiencies that would have to be applied when the time
resolution of the experiment is not high enough to resolve dynamic inhomogeneities on a
time scale longer than the fluorescence lifetime.
In this spirit it would be desirable to attach the fluorophores in a well defined position

and orientation. However, even when the fluorophores are rigidly attached the devel-
opment of an accurate likelihood function derived from first principles is needed, since
there might be still static and dynamic structural inhomogeneities of the observed macro-
molecules. The fluorescence lifetimes that are on the order of a couple of nanoseconds
for fluorophores used typically in single-molecule FRET experiments could thus enable
to study structural changes in the macromolecules that occur on a longer time scale. In
future NPS experiments, this information could be then interpreted without the compli-
cations caused by long linkers and give detailed insight in the conformational dynamics
of the studied macromolecules in three dimensions.
Finally, the analysis of well-defined FRET states promises to improve the resolution of

FRET-based structural studies substantially.

6.7.3 Interpretation of NPS results
The following section deals with the interpretation of the marginal posterior probability
densities computed with the NPS. The possible effects of invalid prior assumptions and
data outliers will be treated in the first part, whereas in the second part, the interpretation
of the posterior based on credible volumes will be discussed, since it was used often in
this work.

Invalid prior and data

In any experiment, one should make sure that the assumed conditions apply, and that
the acquired data does not contain any outliers or systematic errors. In the case of NPS,
besides the failure of Dale-Eisinger-Blumberg theory discussed already in section 6.7.2,
several other sources of systematic errors are possible.
A possible error source that affects only the prior assumptions is an incorrect crystal

structure. One or more satellite position priors would then be shifted away from their
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“true” position, and probably also the shape of the “true” and simulated accessible volume
would differ. It is difficult to predict how strong such erroneous satellite priors would
influence the inferred antenna positions, since the effect depends on the FRET network
structure and the number of satellites.
Even when the structures of the individual macromolecules in the complex are correct,

all complexes or just a fraction might be assembled in a wrong way. While the latter case
results in a possible misassignment of peaks in FRET efficiency or FRET anisotropy his-
tograms, invalid data is definitely acquired in the first case. In any of the scenarios above,
the result of the inference might not reflect a real position of the antenna fluorophore.
Similarly, like in the case of incorrectly assumed satellite positions, it is hard to predict
the final localization accuracy.
Incorrectly assembled complexes are an even greater problem in bulk measurements,

since they cannot be easily detected. In particular, such errors might affect the bulk flu-
orescence anisotropies when fluorophores exhibit different anisotropies in different com-
plexes or complex constituents. Time-resolved fluorescence anisotropies should be hence
determined in single-molecule measurements, if possible.
Presumably, systematic errors will have in general a larger impact when the FRET

network is analyzed globally. At least in the case of FRET efficiencies and anisotropies,
such errors should be easier to detect with the consistency check proposed (section 5.3.6),
since it is more likely to produce a contradiction in the result. Yet, the consistency check
will work only, when there is enough valid data and when a sufficient amount of satellite
positions is assigned correctly (section 6.2.2). These conditions could be established by
control measurements between different satellite attachment sites, which has other positive
effects and will be discussed later (section 6.7.4).
One could also try to account for outliers and invalid prior assumptions in the likelihood

and prior assignment. Instead of being purely Gaussian, each likelihood factor could be
composed of a constant “background” and a Gaussian. The “background” would model
possible outliers in the data, while the Gaussian would describe a correct measurement.
Similarly, the satellite position priors could be assigned to be less informative and in that
way, incorrect satellite positions could be modeled.
Yet, since the influence of the prior was found to be strong in all experiments shown

in this work (sections 6.2, 6.4 and 6.6), a less informative satellite position prior and
likelihood would lead to an even less peaked marginal antenna position posterior. This
would express the general distrust in the data and the prior assumptions rather than help
to detect and eliminate inconsistencies automatically. However, when more informative
data is available, such modifications of the prior and the likelihood might be useful.
In addition, the prior assumptions and the measured data should be verified also by

other methods than FRET, if possible.

Credible volumes

Even when the data and prior assumptions are correct, one has to be cautious when a
probability density is interpreted in terms of credible intervals. This applies to all marginal
posterior distributions, and in particular to the marginal fluorophore position posterior
densities computed with NPS.
A credible interval is defined as the smallest volume that contains a certain probability,

the credibility level (see section 2.4.4). When one would analyze many random FRET
networks, and when the influence of the prior on the shape of the posterior would be
negligible, the frequency of the “true” parameters being inside the volume should approx-
imately correspond to the credibility level.
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Figure 6.43: Misunderstandings in

marginal posterior interpreta-
tion. In the case of a strange
shaped posterior, p (x, y|data, I)
(grayscale), the “true” set of
parameters (cross) might lie far
away from its maximum (circle)
but may still have reasonable
probability density. The positions
corresponding to the maxima of
the marginalized density (squares)
and the average values of x and y
(triangles) are indicated by arrows
and might have very low probabil-
ity values. Credible intervals, like
the 68% credible interval shown
here (dashed lines), are just a way
to display the posterior and should
not be overinterpreted.

On the other hand, one could define an infinite number of other credible volumes (i.e.
not the smallest one), and still, the above argument would be valid. Because of that, one
has to be comfortable with the plain interpretation of the surfaces of credible volumes as
a useful way to display iso-levels of the posterior. It is the complete posterior probability
distribution that is, by definition, the result of a Bayesian parameter estimation.

Nevertheless, the credible volumes were used in order to be comparable with standard
methods of data analysis. For example, a 68% and 95% credible interval corresponds to
an error margin of one and two standard deviations, respectively, when the posterior is
normal distributed.

In the same way, one should be aware of pitfalls that might occur when the proximity
of the “true” parameters to the maximum of a posterior probability density is interpreted,
especially when the posterior density was marginalized. In figure 6.43, a peculiar case is
shown, in which the “true” parameters exhibit a fairly high posterior probability density
and lie within the 68% credible volume, while being outside of the 68% credible interval
of one of the marginalized posterior densities. Due to the special shape of the posterior
also the point defined by the maxima of the marginal posterior densities as well as the
center of mass of the posterior exhibit very low posterior density values and cannot be
used to summarize the posterior in a few numbers. It is likely that exactly this effect is
observed in the test calculations of section 6.3.3, in which only FRET efficiency data was
analyzed. There, the simulated antenna positions were found at asymmetrical locations
in the marginal posterior.

However, if there is enough informative data to concentrate the posterior density in
a single spot in the parameter space, the posterior might be approximated well by a
multivariate Gaussian. In that case, the effect discussed above will not occur, since the
posterior maximum coincides with the point defined by the maxima of the marginalized
posteriors, which are also described approximately by Gaussians.

As discussed in the previous part, it is desirable that the posterior probability is well
localized in the parameter space. In the next section, a discussion of the FRET network
architecture will be given in respect thereof.
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PPPPPNsat

Nant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30
2 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15
3 0∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
6 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
7 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
8 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
9 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90
10 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105
11 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120
12 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135
13 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
14 11 22 33 44 55 66 77 88 99 110 121 132 143 154 165
15 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

Table 6.4: Determinacy Nobs − Nunk for FRET efficiency-only networks with fluorescence
anisotropies equal 0 in dependence of number of satellites Nsat and number of antennas
Nant. Negative and zero determinacies are printed on a dark gray and light gray back-
ground, respectively. The minimal overdetermined networks is denoted by a star.

6.7.4 Optimal FRET network design

Besides the profound understanding of the measurement process and a realistic model for
FRET between fluorophores attached to a macromolecule (section 6.7.2), the informa-
tion content of the data must not be neglected. Although it is possible in Bayesian data
analysis to account for nuisance parameters, like for instance the unknown average ori-
entation of fluorophore transition dipole moments or the satellite fluorophore positions,
one should be cautious when there is only few data available or when the data is not
very informative. In general, the inference depends not only on the data but also on the
background information, which might be dominant in such cases, causing the problem to
be ill-defined. It is thus desirable to design experiments capable of inferring fluorophore
positions and average transition dipole moment orientations based mainly on the data.
A critical aspect to accomplish this is the FRET network architecture, which will be
discussed in the following.

Minimal well-defined FRET networks

It is interesting to ask, how many measured FRET efficiencies and FRET anisotropies
are necessary in order to have a well-defined inference problem.
It will be assumed in the following that the measurement error and the size of the satel-

lite position priors are negligibly small, which is an approximation to the real experiment.
In the best case of all residual fluorescence anisotropies are larger than 0.1, the likelihood
will consist of a product of likelihood factors, one for each data point (equations (3.2.3)
and (3.2.4)). Each likelihood factor, no matter whether it represents FRET efficiency or
anisotropy data, defines in general a hyper-surface6 in the parameter space of fluorophore
positions and average transition dipole moment orientations. All parameter space points
that are part of this hyper-surface will produce the same FRET efficiency or anisotropy
value equal to the measured data. The region of the parameter space consistent with all
measurements is hence the intersection of all hyper-surfaces.
Now, a well-defined FRET network consists of enough measurements, so that all hyper-

surfaces intersect in exactly a single point of dimensionality 0. In the absence of mea-
6When the parameter space has N dimensions, in general, the hyper-surface is of dimensionality N−1.
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PPPPPNsat

Nant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 -6 -10 -14 -18 -22 -26 -30 -34 -38 -42 -46 -50 -54 -58 -62
2 -7 -10 -13 -16 -19 -22 -25 -28 -31 -34 -37 -40 -43 -46 -49
3 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36
4 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23
5 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
6 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
7 -12 -10 -8 -6 -4 -2 0∗ 2 4 6 8 10 12 14 16
8 -13 -10 -7 -4 -1 2∗ 5 8 11 14 17 20 23 26 29
9 -14 -10 -6 -2 2∗ 6 10 14 18 22 26 30 34 38 42
10 -15 -10 -5 0∗ 5 10 15 20 25 30 35 40 45 50 55
11 -16 -10 -4 2 8 14 20 26 32 38 44 50 56 62 68
12 -17 -10 -3 4 11 18 25 32 39 46 53 60 67 74 81
13 -18 -10 -2 6 14 22 30 38 46 54 62 70 78 86 94
14 -19 -10 -1 8 17 26 35 44 53 62 71 80 89 98 107
15 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120

Table 6.5: DeterminacyNobs−Nunk for FRET efficiency-only networks in dependence of number
of satellites, Nsat, and number of antennas Nant. Negative and zero determinacies are printed
on a dark gray and light gray background, respectively. Minimal overdetermined networks
are denoted by a star.

surement errors and when the satellite positions are known exactly, this point will cor-
respond to the “true” positions and average transition dipole moment orientations of all
fluorophores. When the measurements are not redundant, the intersection of all hyper-
surfaces has the dimensionality of either 0 or Nunk − Nobs, whichever is larger. Nunk
denotes the number of unknown parameters, and Nobs is the number of measurements.
Yet, due to symmetries, the intersection could consist of several points, even though its
dimensionality is 0. In a well-defined FRET network, the number of data must be hence
at least equal to the number of unknowns.
In the following, typical FRET network architectures will be discussed in respect of their

determinacy, i.e. the number of unknowns subtracted from the number of observables,
Nobs−Nunk. It will be assumed, that all possible satellite-antenna pairs are measured. A
positive determinacy indicates that the FRET network is probably well-defined, and the
FRET network will be called overdetermined. A negative determinacy suggests a possibly
ill-defined inference problem, and the FRET network is termed underdetermined. A FRET
network of determinacy zero will be treated here as overdetermined for simplicity.
If fluorescence anisotropies were 0, then the orientation factor κ2 would be 2/3 for

all fluorophores, and there would be no orientation effects at all. It would be hence
unnecessary to define average transition dipole moment orientations. The number of
unknowns in a FRET network consisting of Nsat satellite fluorophores and Nant antenna
fluorophores would be simply given by Nunk = 3Nant, since only the antenna positions
have to be determined. If all possible FRET efficiencies were measured, the number of
observables were Nobs = NantNsat. The resulting determinacy of networks with different
Nsat and Nant is shown in in table 6.4. It is obvious that no matter how many antenna
fluorophores there are, three or more satellites are enough to calculate the position of the
antenna, given every possible satellite-antenna combination is measured.
In the opposite case, when florescence anisotropies of all fluorophores were non-zero, the

number of unknowns is given by Nunk = 5Nant + 2Nsat, since in addition to the antenna
positions, also the average transition dipole moment orientations of all antennas and satel-
lites have to be determined. The determinacy of such a network has a completely different
behavior when compared to the previous scenario without anisotropy effects (Table 6.5).
In particular, the introduction of more satellites leads to a decrease of determinacy when
only a single antenna fluorophore is in the FRET network, as for each new measurement
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PPPPPNsat

Nant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 -5 -8 -11 -14 -17 -20 -23 -26 -29 -32 -35 -38 -41 -44 -47
2 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19
3 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
4 -5 -2 1∗ 4 7 10 13 16 19 22 25 28 31 34 37
5 -5 0∗ 5 10 15 20 25 30 35 40 45 50 55 60 65
6 -5 2 9 16 23 30 37 44 51 58 65 72 79 86 93
7 -5 4 13 22 31 40 49 58 67 76 85 94 103 112 121
8 -5 6 17 28 39 50 61 72 83 94 105 116 127 138 149
9 -5 8 21 34 47 60 73 86 99 112 125 138 151 164 177
10 -5 10 25 40 55 70 85 100 115 130 145 160 175 190 205
11 -5 12 29 46 63 80 97 114 131 148 165 182 199 216 233
12 -5 14 33 52 71 90 109 128 147 166 185 204 223 242 261
13 -5 16 37 58 79 100 121 142 163 184 205 226 247 268 289
14 -5 18 41 64 87 110 133 156 179 202 225 248 271 294 317
15 -5 20 45 70 95 120 145 170 195 220 245 270 295 320 345

Table 6.6: Determinacy Nobs − Nunk for FRET networks with measured FRET efficiency and
anisotropy in dependence of number of satellites, Nsat, and number of antennas, Nant.
Negative and zero determinacies are printed on a dark gray and light gray background,
respectively. Minimal overdetermined networks are denoted by a star.

two unknown satellite average transition dipole moment orientations are introduced, while
the number of data increases only by one (see table 6.5, first column).
Often, the number of labeling sites is limited, or it is hard to introduce additional labels.

In this case, it is reasonable to choose the experimental conditions, so that the FRET
network is well defined and the number of fluorophores is minimized. Such FRET networks
will be called minimal overdetermined FRET networks. When only FRET efficiency data
is measured and the fluorescence anisotropies are non-zero, a network with 14 fluorophores
in total is minimal when Nsat = 7 . . . 10 and Nant = 7 . . . 4.
When FRET anisotropy data is measured in addition, the size of such a well-defined

FRET network will shrink, since there are twice as much observables as compared to
networks in which only FRET efficiency data is available (see table 6.6). In that case,
the minimal overdetermined FRET network has only 7 fluorophores in total, which are
realized in two cases with Nsat = 4 / Nant = 3 and Nsat = 5 / Nant = 2 fluorophores.
In an experiment, which comprises of Ndock macromolecules that are docked to the

macromolecule 0 by means of FRET, all satellites and antennas are located at precisely
known positions on the respective macromolecules. The number of unknowns is then
Nunk = 6Ndock + 2(Nsat + Nant), since there are 6 additional unknowns originating in
the position and orientation of each docked macromolecule, but only two unknowns per
fluorophore, namely the angles defining the average transition dipole moment orienta-
tions. When there is only one macromolecule with unknown position and orientation (i.e.
Ndock = 1), then the minimum number of fluorophores needed for a well-defined network
is 11 (Nsat = 4 . . . 7 and Nant = 7 . . . 4) and 6 (Nsat = 3 and Nant = 3), respectively. The
determinacy is listed in table 6.7 for the docking via FRET efficiency data only, and in
table 6.8 when FRET efficiencies and anisotropies are measured.
It is obvious that the influence of the orientation effects will continuously decrease

the smaller the fluorescence anisotropy is, and that there should be a smooth transition
between tables 6.4, 6.5 and 6.6. In that case, a definition of the importance of the spatial
and angular parameters is necessary, and the errors of the data should be accounted for
as well.
Still, it is interesting to compute the determinacy of the FRET networks analyzed in

sections 6.1–6.6. To this end, the residual fluorescence anisotropy was assumed to have
a strong influence on the measured FRET efficiency, and all measurements between two
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PPPPPNsat

Nant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23
2 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
3 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
4 -12 -10 -8 -6 -4 -2 0∗ 2 4 6 8 10 12 14 16
5 -13 -10 -7 -4 -1 2∗ 5 8 11 14 17 20 23 26 29
6 -14 -10 -6 -2 2∗ 6 10 14 18 22 26 30 34 38 42
7 -15 -10 -5 0∗ 5 10 15 20 25 30 35 40 45 50 55
8 -16 -10 -4 2 8 14 20 26 32 38 44 50 56 62 68
9 -17 -10 -3 4 11 18 25 32 39 46 53 60 67 74 81
10 -18 -10 -2 6 14 22 30 38 46 54 62 70 78 86 94
11 -19 -10 -1 8 17 26 35 44 53 62 71 80 89 98 107
12 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120
13 -21 -10 1 12 23 34 45 56 67 78 89 100 111 122 133
14 -22 -10 2 14 26 38 50 62 74 86 98 110 122 134 146
15 -23 -10 3 16 29 42 55 68 81 94 107 120 133 146 159

Table 6.7: Determinacy Nobs−Nunk for FRET efficiency-assisted docking of one macromolecule
in dependence of number of satellites, Nsat (on macromolecule 0), and number of antennas,
Nant (on macromolecule 1). Negative and zero determinacies are printed on a dark gray
and light gray background, respectively. Minimal overdetermined networks are denoted by
a star.

PPPPPNsat

Nant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
2 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20
3 -8 -4 0∗ 4 8 12 16 20 24 28 32 36 40 44 48
4 -8 -2 4 10 16 22 28 34 40 46 52 58 64 70 76
5 -8 0 8 16 24 32 40 48 56 64 72 80 88 96 104
6 -8 2 12 22 32 42 52 62 72 82 92 102 112 122 132
7 -8 4 16 28 40 52 64 76 88 100 112 124 136 148 160
8 -8 6 20 34 48 62 76 90 104 118 132 146 160 174 188
9 -8 8 24 40 56 72 88 104 120 136 152 168 184 200 216
10 -8 10 28 46 64 82 100 118 136 154 172 190 208 226 244
12 -8 12 32 52 72 92 112 132 152 172 192 212 232 252 272
13 -8 14 36 58 80 102 124 146 168 190 212 234 256 278 300
14 -8 16 40 64 88 112 136 160 184 208 232 256 280 304 328
15 -8 18 44 70 96 122 148 174 200 226 252 278 304 330 356
16 -8 20 48 76 104 132 160 188 216 244 272 300 328 356 384

Table 6.8: Determinacy Nobs − Nunk for FRET efficiency and anisotropy-assisted docking of
one macromolecule in dependence of number of satellites, Nsat (on macromolecule 0), and
number of antennas, Nant (on macromolecule 1). Negative and zero determinacies are printed
on a dark gray and light gray background, respectively. Minimal overdetermined networks
are denoted by a star.
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labeling sites were treated as only one data point. The computed determinacies are shown
in table 6.9.
All experimentally studied FRET networks have a negative determinacy, while the

networks studied in the test calculations exhibiting small localization uncertainties have
positive determinacies. The network used in the nontemplate DNA study has the highest
determinacy (-4) of all experimentally studied networks. However, as shown in simula-
tions and applications in this thesis, it is possible to determine the positions of antenna
fluorophores even when the determinacy of the FRET network is negative, though these
estimates are usually not limited by the measurement accuracy but rather by insufficient
information on the average transition dipole moment orientations. In this case, the in-
ferred positions depend to a certain degree on prior information and will be correct as
long as the prior assumptions are true.
Although the FRET network determinacy quantifies whether the positions and average

transition dipole moment orientations of all fluorophores can be determined, it cannot be
ruled out that the position and orientation of a particular fluorophore can be determined
accurately. It could be even possible in this way to determine both the position and
average transition dipole moment orientation of a single antenna by measuring FRET
efficiencies to many satellite fluorophores. The inference would be then based on rather
“statistical” reasoning but might be correct nevertheless. In this context it would be
interesting to study the influence the network structure on the inferred antenna fluo-
rophore positions and average transition dipole moment orientations in a systematic and
quantitative way.
In the above discussion, FRET efficiency and FRET anisotropy data was treated

equally, but it is clear that it would never be possible to infer antenna positions from
FRET anisotropy measurements alone. However, since the FRET efficiency depends on
the average transition dipole moment orientations, FRET anisotropy can be used to im-
prove the localization accuracy, as shown already in section 6.3.3. In certain cases, it might
be possible that some marginal antenna position posteriors are more compact even though
the FRET network has a determinacy smaller than zero. The opposite case might occur
as well by chance, and a FRET network might be ill-defined although its determinacy is
positive.
Hence, when it is really of interest whether the posterior is concentrated in one small

region of parameter space, one should check this individually. For this analysis, a more
general definition of dimensionality will be needed, since the posterior is a probability
density that is spread in all parameter space dimensions. Furthermore, such a generalized
dimensionality must be inferred from the available posterior samples.

While a positive determinacy cannot guarantee that a FRET network is well-defined, it
is yet a good indicator for a well-defined FRET network, as shown above. In the next part,
it will be demonstrated, how the determinacy can be increased without the introduction
of additional labeling sites.

Measurement platforms

Since the unknown average transition dipole moment orientation of the fluorophores in-
volved in the measurement increases the localization uncertainty drastically, a measure-
ment platform with known average transition dipole moment orientations is advantageous.
This can be established by measuring FRET efficiency or/and anisotropy between known
positions on a macromolecule.
To this end, FRET should be measured twice between all possible combinations ij of

labeling sites on a macromolecule with known structure, once with the donor and acceptor
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experimental network Nsat Nant Ndock Nobs determinacy
RNA(+1) 5 1 0 5 -10
RNA(+29) without TFIIB 7 1 0 7 -12
RNA(+29) with TFIIB 5 1 0 5 -10
ntDNA 8 7 0 47 -4
ITC 8 5 2 20 -18

test calculation Nsat Nant Ndock Nobs determinacy
separate 7 1 0 7 -12
separate, extended network 8 1 0 8 -13
global 7 7 0 49/37∗ 0/-12*
global, extended network 9 7 0 55/43∗ +2/-10*
global, FRET anisotropy 7 7 0 98/86∗ +49/37*
docking 7 7 1 49/37∗ +15/+3*
docking, FRET anisotropy 7 7 1 98/86∗ +64/+52*

Table 6.9: Determinacies of the analyzed FRET networks. The values marked with a * were
obtained by ignoring measurements with FRET efficiency smaller than 0.1.

attached to the sites i and j, respectively, and the other time with interchanged donor
and acceptor fluorophores. When the satellite position uncertainty is negligible and when
there are Nsat labeling sites in total, the number of unknowns is Nunk = 4Nsat, and the
number of observables measured in between the satellites is Nobs = Nsat(Nsat − 1) when
either FRET efficiency or anisotropy (E xor A) is measured and Nobs = 2Nsat(Nsat − 1)
when both FRET efficiency and anisotropy (E and A) is measured. One should be able to
determine the average orientations of all fluorophores within the measurement platform
when Nobs > Nunk and thus when more than 5 (E xor A7) and 3 (E and A) labeling sites
are used (figure 6.44).
Note that several types of fluorophores can be used in the final network, which consists

of a donor and acceptor fluorophore at each satellite labeling site and one or more antenna
fluorophores. For example, the antennas could be donors that are matched well to the
acceptors on the macromolecule. Consequently, the additional fluorophores used to set
up the measurement platform must be donors as well, but it is not necessary that they
have the same chemical structure like the antenna donors. In that way, it should be
possible to optimize the Förster distances between the acceptors and both types of donor
fluorophores.
In addition, the measurements between known positions in a structure can be used to

control whether the macromolecule structure is correct.

After the discussion of an optimal FRET network architecture, which is relevant for
the analysis and planning of any complex FRET localization experiment, the next section
will focus on the pre-processing of the FRET efficiency data, and how it can be coupled
to the NPS in its present form.

7When FRET anisotropy is the only data, the average transition dipole moment orientations can
be inferred only relative to each other. The absolute orientation in the reference frame of the
macromolecule is not accessible by such measurements, unless the absolute orientation of at least
one average transition dipole moment is known.
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Figure 6.44: Example of a measurement platform.
A donor and an acceptor fluorophore are at-
tached to each of four satellite labeling sites (site
1 . . . 4). Each of the 12 possible FRET efficiency
and anisotropy measurements between the satel-
lites and 4 additional measurements to an an-
tenna fluorophore (here a donor) are performed
(dashed lines). The determinacy of this network
is Nobs −Nunk = +11.

6.7.5 Data pre-processing and model selection

As shown in chapter 3, the NPS is based upon pre-processed FRET data, i.e. average
FRET efficiencies and anisotropies, which depend on the distance between average donor
and acceptor positions and the angle between the average transition dipole moment ori-
entations. It is left open, how the pre-processing accomplishes to describe the “raw”
FRET data “sufficiently well” by a yet unknown number of macromolecule states each
with unknown average FRET efficiency and anisotropy.
In several recent publications the FRET efficiency time traces (McKinney et al., 2006)

or the underlying donor and acceptor fluorescence signals (Liu et al., 2010b; Bronson
et al., 2009) were analyzed. These authors addressed the questions how to model the
macromolecule states, how many states to assign, and tried to quantify the above term
“sufficiently well”. Hidden-Markov-modeling (HMM) was used in these studies to charac-
terize the average FRET efficiency of each state and in order to extract the transitions
rates between the states. The data was analyzed with maximum-likelihood estimation
(McKinney et al., 2006; Liu et al., 2010b) or with Bayesian data analysis (Bronson et al.,
2009).
Other popular methods to extract the average FRET efficiency of different states with-

out modeling the underlying dynamics explicitly are Gaussian fits of FRET efficiency
histograms, photon distribution analysis (PDA), and proximity ratio histograms (PRH)
(see section 6.7.1 for references).
Typically, the number of states is obtained by some heuristic rule based on the goodness

of the fit. In Bayesian data analysis, there are better ways to deal with the selection of
models according to their probability, which was done by Bronson et al. (2009). They cal-
culated the probability of a model with a specific number of states given the experimental
data, which is proportional to the evidence obtained in the pre-processing analysis.
However, seen from the point of view of Bayesian parameter estimation, all pre-

processing methods listed above assign a flat prior in the parameters that describe a
FRET state, which is in particular the FRET efficiency E. This choice seems to be rather
arbitrary, since one could work as well with a flat prior in other parametrizations, e.g.
ln(E) instead of E. However, a flat prior in E represents a different state of information
than a flat prior in ln(E), which is inconsistent when absolutely no information about the
FRET efficiency of a state is available.
As shown in section 2.4.3, a natural parametrization can be obtained from transforma-

tion invariances, and a maximum entropy prior in this parametrization truly expresses
the experimenter’s ignorance. This was done for NPS (section 3.2.1) and resulted in flat
priors in the fluorophore positions and average transition dipole moment orientations.
Conversely, this means that the shape of the prior in the parameters that describe a

FRET state, i.e. the FRET efficiencies, will not be flat in the pre-processing analysis. One
can therefore reason that a non-flat prior could change the probabilities of concurring
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models with different number of states. This, in turn, would have implications on the
biochemical interpretation of the experiments.
As a consequence, one should couple NPS with a pre-processing method to infer the

number of states of a macromolecule. This can be done by modifying the likelihood of
the NPS analysis with the results of any pre-processing method that utilizes a flat prior
in FRET efficiency and anisotropy, as will be shown in the following.

Coupling of NPS and FRET data preprocessing methods

In the following, it is assumed that the macromolecule and the attached fluorophores
are described by a model, M , with KM states in total8. A particular macromolecule
state k is quantified by the positions xi;k and the average transition dipole orientations
Ωi;k of each fluorophore i, as well as by the potentially ambiguous signs of the average
axial depolarizations, si;k. In the following, these structural parameters of NPS will be
abbreviated by qNPSi;k := (xi;k,Ωi;k, si;k), and {qNPSi;k } will be the structural parameters of
all fluorophores in all possible macromolecule states. The observables measured for the
fluorophore pairs ij, for example the FRET efficiency, are available as time series, i.e. as
FRET efficiency time traces, and will be denoted by Oij(t). The ensemble of the time
traces of all measured molecules and FRET pairs ij will be denoted by {Oij(t)}.
Now, in order to infer the structural parameters of the model M , one must compute

the posterior probability density p
(
{qNPSi;k }|{Oij(t)},M, I

)
, which is done with Bayes’

theorem,

p
(
{qNPSi;k }|{Oij(t)},M, I

)
= 1
ZM

p
(
{Oij(t)}|{qNPSi;k },M, I

)
p
(
{qNPSi;k }|M, I

)
, (6.7.1)

where ZM is the evidence of the model M , the likelihood of the time series data is
denoted by p

(
{Oij(t)}|{qNPSi;k },M, I

)
, and p

(
{qNPSi;k }|M, I

)
is the prior. Note that the

likelihood depends on the “raw data”, and not on pre-processed observables, in contrast
to equation (3.2.5), and that the prior p

(
{qNPSi;k }|M, I

)
can be split into a contribution

of the depolarization signs, si;k, and a contribution of fluorophore positions, xi;k, and
average transition dipole moment orientations, Ωi;k,

p
(
{qNPSi;k }|M, I

)
= 1∏

l;k Sl;k
p ({xi;k,Ωi;k}|M, I) . (6.7.2)

Here,
∏
l;k Sl;k is the number of combinations of possible average axial depolarization signs

(similar to equation (3.2.5)) and p ({xi;k,Ωi;k}|M, I) is the regular NPS prior (section
3.2.3).
The most probable macromolecule model can be found by maximizing the probability

of the model M given the experimental data {Oij(t)}. This probability can be related to
the evidence ZM of the model, again by using Bayes’ theorem,

p (M |{Oij(t)}, I) ∝ p ({Oij(t)}|M, I) p (M |I) = ZM p (M |I) , (6.7.3)

where p (M |I) denotes the prior probability of the model M with KM states.
As shown in the appendix, one can rewrite the likelihood p

(
{Oij(t)}|{qNPSi;k },M, I

)
in

equation (6.7.1) into an expression that contains the posterior of a completely independent
data pre-processing analysis, e.g. HMM, PDA, PRH, or the simple fits of FRET efficiency
histograms. When the applied method is not based on Bayesian parameter estimation,
the analogue of a posterior density must be found (Sivia, 2006, chapter 3.5). The pre-

8Note that there might exist several different models with the same number of states.
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processing must compute the estimates of the “true” values of the observables, {Õij;k},
that characterize the states k = 1 . . .KM , and it must utilize a flat prior in {Õij;k}. The
coupling between NPS and the pre-processing method turns out to be

p
(
{Oij(t)}|{qNPSi;k },M, I

)
= ZPP

M

πPPM
p
(
{Õij;k}|{Oij(t)},M, I

)∣∣
Õij;k=Oij;k

(
qNPS

i;k ,qNPS
j;k

) ,
(6.7.4)

where ZPP
M is the evidence of the pre-processing inference, πPPM denotes the value

of the flat prior in the “true” observables {Õij;k}, i.e. πPPM = p
(
{Õij;k}|M, I

)
, and

p
(
{Õij;k}|{Oij(t)},M, I

)
is the posterior of the pre-processing analysis. The observables

Oij;k
(
qNPSi;k , qNPSj;k

)
expected from NPS (i.e. Eij;k or Aij;k) are functions of the positions,

average transition dipole moment orientations and average axial depolarization signs of
the fluorophores i and j. Oij;k

(
qNPSi;k , qNPSj;k

)
is substituted for the “true” observables Õij;k

in the pre-processing posterior.

As a consequence of equations 6.7.1 and 6.7.4, the task to identify a fixed number
of states is left to the pre-processing algorithm, whereas the computation of possible
fluorophore positions and average transition dipole moment orientations is done by NPS.
The posterior obtained by the pre-processing thus plays the role of the likelihood in the
NPS calculation.

The probability of the model M can be then computed as follows:

p (M |{Oij(t)}, I) ∝ ZPP
M

πPPM
ZNPS
M KM ! · p (M |I) . (6.7.5)

ZNPS
M is the evidence of the NPS problem, calculated with the posterior of

the data pre-processing, p
(
{Õij;k}|{Oij(t)},M, I

)∣∣
Õij;k=Oij;k

, substituted for∏
ij∈M L

(sisj)
ij (xi,Ωi,xj ,Ωj) in

equation (3.2.5). The factor KM ! accounts for the multimodality of
p
(
{Õij;k}|{Oij(t)},M, I

)∣∣
Õij;k=Oij;k

(
qNPS

i;k ,qNPS
j;k

) as this function is invariant under

permutations of σij;k for different conformations k9.

It might be legitimate to approximate the posterior of the pre-processing analysis by
a multivariate normal distribution (see section 2.4.4) that is characterized by {Oij;k},
the best estimate of the “true” observables, and a corresponding covariance matrix,
∆2Oij;k,lm;n, describing the correlations between Õij;k and Õlm;n. When the covari-
ance matrix is diagonal, the standard deviations ∆Oij;k of each estimated observable
Oij;k can be obtained directly by taking the square root of the diagonal elements, i.e.
∆Oij;k =

√
∆2Oij;k,ij;k. The pre-processed data Oij;k ±∆Oij;k can be used in the NPS

calculation as already described in section 3.2.2. Note that the coupling of NPS and a
data pre-processing method was used in all analyses presented in this thesis, since fits
of FRET efficiency histograms were used to extract the center FRET efficiencies and
their standard deviations. When the covariance matrix is not diagonal, the likelihood in
equation (3.2.5) must be modified in order to support correlated FRET efficiencies and
anisotropies.

9NPS in its present form requires a unique assignment of observables to conformations and thus cannot
account for this permutation symmetry.
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Discussion

As shown above, NPS can be coupled to arbitrary FRET efficiency and anisotropy pre-
processing methods, which was proven formally in the appendix. In short, the posterior
probability distribution computed in a pre-processing analysis like PDA, PRH or HMM,
plays the role of the likelihood in the NPS calculation. The evidence obtained by NPS
modifies the posterior probability of a model, which, in turn, can have consequences in
Bayesian model selection.
However, the question arises what kind of prior one should choose in the NPS analysis,

since usually one would expect rather small changes in the macromolecule structure, e.g.
movements of domains. That would correlate the a priori expected positions and average
transition dipole moment orientations of the same fluorophore in different states of the
macromolecule. It might be necessary to introduce a different parametrization to describe
the positions of the same fluorophores in different states of the macromolecule. Such a
parametrization could, for instance, model possible conformational changes as rotations
about “hinges” in the protein, for example similar to mechanistic models of bent DNA
(Woźniak et al., 2008).
Finally, it still has to be verified, whether NPS is useful to determine the number of

states of a macromolecule. It might be possible that the influence of the evidence calcu-
lated with NPS is overwhelmed by the evidence obtained by the pre-processing method.
This could happen, when, for example dynamic information is analyzed with a HMM
method, since the transitions between different states might be very informative them-
selves.

After this concluding section, the results of the thesis will be summarized in the follow-
ing chapter.
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This thesis focused on the data analysis of fluorescence resonance energy transfer (FRET)
experiments carried out to infer structural information of biological macromolecules. The
purpose of such experiments is to determine the yet unknown position of one or more
fluorophores, called antennas, based on FRET measurements between the antennas and
the satellite fluorophores, which are attached to known positions on the macromolecule
determined by high-resolution structure methods. Alternatively, the relative position and
orientation of several rigid components constituting a macromolecular complex can be
computed, which is referred to as FRET-assisted docking. In this case, the structure of
all components must be known, and the fluorophores must be attached to known positions
on the components.
As it is easier to resolve structural heterogeneities in single-molecule experiments than

with standard ensemble-based methods like X-ray crystallography or NMR spectroscopy,
single-molecule FRET-based localization techniques can be used whenever high-resolution
ensemble methods fail due to inhomogeneity effects.
However, since FRET is caused by dipolar coupling of the electronic systems of the

fluorophores, inevitable orientation effects complicate the straight-forward interpretation
of FRET efficiencies in terms of distances, and therefore also hamper the localization of
fluorophores based on a simple trilateration scheme. In order to account for these effects,
Bayesian data analysis has been applied to resolve the challenging task of FRET-based
localization of fluorophores attached to biological macromolecules, as well as to FRET-
assisted docking of several macromolecules.
This was accomplished by developing the Nano-Positioning System (NPS), a model

to describe FRET between pairs of several partially oriented fluorophores attached to
a macromolecule (chapter 3). In the model, the fluorophores are fixed in their position
and exhibit constrained, fast, and axially symmetric orientation fluctuations. The FRET
efficiency depends on the distance of the fluorophores and on the length scale of energy
transfer, the so-called Förster distance. The latter can be calculated from the relative
orientation of the average transition dipole moments of the fluorophores and from experi-
mentally accessible observables, among them fluorescence anisotropies of the fluorophores,
which quantify the magnitude of the orientation effects.
The challenge in the data analysis was to infer the antenna positions even though

none of the average transition dipole moments was known. However, even the lack of
information can be mathematically represented in Bayesian data analysis, and this state
of knowledge is encoded by assigning an adequate maximum entropy prior. The prior
also contains information about possible fluorophore positions calculated by taking into
account the constraints imposed by the known macromolecule structure. Thereafter, the
prior is combined with the likelihood that is the probability to generate the measured
data by a specific configuration of fluorophores, in order to yield the posterior probability
density, which is the result of the inference. Thus, it is possible to combine structural
information obtained by high-resolution ensemble methods like X-ray crystallography or
NMR spectroscopy with FRET data measured in single-molecule experiments.
The results of NPS can be readily displayed as marginal posterior probability densities,

which reflect the information about the position of a fluorophore. The location, form and
fuzziness of the densities impart simultaneously the position of the fluorophore and the
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uncertainty of localization. The densities can also be shown as a set of credible volumes,
which are three-dimensional credible intervals, and the Bayesian equivalent of confidence
intervals. By displaying them along with a high resolution structure it is possible to
perceive the available information in an intuitive way.
The major advantage of NPS over related analysis methods is the possibility to account

for orientation effects, which are known to be a source of uncertainty in FRET-based
localization experiments but have often been ignored or argued away in the literature so
far. NPS also accounts for other uncertainties like FRET measurement errors as well as
the positions of fluorophores known only to a limited extent due to the attachment via
carbon chain linkers.
The NPS model was realized in two versions that differ in their parametrization. The

first is called position - Förster distance NPS model and uses the fluorophore positions
and the Förster distances as model parameters (section 3.1). This model is capable of
inferring the unknown position of one antenna fluorophore by analyzing FRET efficiency
measurements between the antenna and an arbitrary number of satellite fluorophores. In
fact, the position - Förster distance NPS model is a special case and an approximation of
the more general second version, the position - orientation NPS model, which uses the
fluorophore positions and the average transition dipole moment orientations as model pa-
rameters (section 3.2). The position - orientation NPS model is able to infer the unknown
positions and average transition dipole orientations of an arbitrary number of satellites
and antennas. Moreover, the position - orientation NPS model was applied to the docking
of several macromolecules by the additional modeling of the position and orientation of
the docked macromolecule (section 3.3). The approach is also capable of processing an ar-
bitrary number of FRET efficiency measurements and potentially also FRET anisotropy
data, which carries information about the angle between the average transition dipole
moment orientations of the fluorophores constituting a FRET pair.
Inference calculations of both the position - Förster distance NPS model and the position

- orientation NPS model can be carried out in separate custom-written Matlab software
packages (section 5.2). The software packages contain graphical user interfaces and can
be operated by users with only basic knowledge of NPS. Marginal position densities of
fluorophores as well as the densities of arbitrary positions in the reference frame of a
docked macromolecule can be easily exported to common electron density map formats,
which can be loaded into molecular viewing software (subsection 5.3.5).

The Nano-Positioning System was applied to study the eukaryotic RNA Polymerase II
(Pol II) elongation complex. Though many structural details are already known from high
resolution X-ray crystallography studies, a large part of the nascent RNA, the nontemplate
DNA and the upstream part of the template DNA could not be observed in the crystal
structure (chapter 4).
NPS was successfully tested by inferring the position of a fluorophore attached to the

3’-end of the RNA (section 6.2.1). This position was already known to be located close
to the active site of Pol II from the crystal structure and NPS was able to reproduce this
position.
In the first project, the position of a fluorophore attached to the 5’-end of a nascent 29

nucleotides long RNA was inferred from FRET efficiency data acquired both in the pres-
ence and absence of the transcription factor IIB (TFIIB) (section 6.2.3). Interestingly, it
could be shown that the RNA can be displaced by TFIIB from a position close to the dock
domain on Pol II towards the Rpb4/7 heterodimer (Muschielok et al., 2008). In general,
NPS can be used in this way to monitor conformational changes of macromolecules that
are initiated by factors or ligands.
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In the second project, FRET efficiency measurements were used to compute the position
of fluorophores attached to the nontemplate DNA in the region of the transcription bubble
and to the upstream part of the DNA (section 6.4). The resulting position densities were
used to build a model of the complete Pol II elongation complex (Andrecka et al., 2009).
However, some of the data was found to contain strong systematic errors, which might
change the inferred fluorophore positions. Since the errors were caused by insufficient
control of the elongation complex integrity, these experiments and the analysis should be
repeated under improved experimental conditions.
In the third project, FRET efficiency data was used to infer the position and the

approximate orientation of the TBP/TATA subcomplex in the initial transcribing complex
(ITC) of Pol II. In that way, FRET-assisted docking was demonstrated (section 6.6).

Beside the analysis of experimental data also test calculations were performed. In
section 6.1, simulations of Förster distance distributions of one FRET pair have shown
that orientation effects may contribute substantially to the localization uncertainty even
if fluorescence anisotropies are low. This was found to be contrary to the common belief
that orientation effects are negligible in the case of fluorescence anisotropies below 0.2.
Furthermore, the assumption of statistically independent Förster distance distributions
made in the position - Förster distance NPS model was confirmed in the case of missing
information about the average transition dipole moment orientations.
Test calculations with the position - orientation NPS model revealed that irrespective

of the fluorescence anisotropies the localization accuracy remains high when the average
transition dipole moment orientations of both fluorophores constituting a FRET pair is
known (section 6.3). Furthermore, it was demonstrated how the localization uncertainty
increases upon loss of average transition dipole moment orientation information.
The position - Förster distance NPS model and the position - orientation NPS model

were compared by analyzing artificial FRET efficiency data of a simulated FRET net-
work (section 6.6). In particular, the position - orientation NPS model provided results
similar to those of the position - Förster distance NPS model when the artificial data was
analyzed separately, i.e. only measurements between all satellites and a single antenna
were analyzed. In contrast, the simultaneous inference of all fluorophore positions and
orientations, called global analysis, was found to produce more accurate position and
average transition dipole moment orientation estimates than the separate analysis. This
effect was stronger when the number of informative FRET measurements was increased
by adding more satellite fluorophores to the FRET network.
An overwhelming improvement in localization and orientation accuracy was observed

after the analysis of combined FRET efficiency and FRET anisotropy data. This calcula-
tion ultimately proved that one of the major sources of uncertainty in FRET localization
experiments is the unknown orientation of the average transition dipole moments, and at
the same time pointed out how these orientations can be inferred.

At the end of the results chapter (section 6.7.1), NPS was compared to other FRET
localization techniques. Thereafter, the potential advantages of a more rigid fluorophore
attachment were discussed (section 6.7.2). As a result, the usage of short or even bivalent
linkers in order to attach fluorophores would possibly allow to create single, well-defined
photophysical states, which can be described well by the theory. Although this would
increase orientation effects in the first place, the measurement of both FRET efficiency
and anisotropy data in a FRET network should, in total, allow an improved localization
of fluorophores, as shown in the test calculations.
Possible consequences of systematic effects like incorrect prior assumptions or outliers
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in the data were discussed. Common mistakes in the interpretation of marginal posi-
tion posterior densities like confusing the posterior maximum with the maximum of the
marginal posterior were pointed out, which is especially important when the inference is
based only on FRET efficiency data. Furthermore, it was shown how FRET networks
can be optimized in order to increase the number of data beyond the number of unknown
model parameters, while the number of labeling sites is kept small.
Finally, a way was proposed how simple FRET efficiency histogram fitting and advanced

FRET data pre-processing methods like photon distribution analysis (PDA), proximity
ratio histograms (PRH) or hidden Markov modeling (HMM) can be linked to the Nano-
Positioning system to obtain evidence values, which can be used in Bayesian model selec-
tion.

To carry out the data analysis with the position - orientation NPS model, a custom
Markov chain Monte Carlo - based implementation of nested sampling was written in
Matlab and C (section 5.5). The performance of this software called sampling engine was
demonstrated and discussed for a typical NPS calculation (subsections 6.3.3 and 6.3.4)
and was found to be well suited for NPS inference problems.
Since the sampling engine was developed to be applicable to general Bayesian inference

calculations with a continuous moderate-dimensional parameter space, it is currently used
in two other projects that require a thorough data analysis, as described in the following.

Applications and improvements of the sampling engine

The sampling engine developed to solve Bayesian parameter estimation problems (section
5.5) is currently used to analyze data from two further projects realized by doctorate
students in the lab.
In one project, Wolfgang Kügel uses the sampling engine to globally analyze fluorescence

correlation spectroscopy (FCS, Magde et al., 1972; 1974) data of fluorescently labeled
DNA hairpins obtained in a Pulsed Interleaved Excitation (PIE, Müller et al., 2005)
scheme . This data analysis problem is challenging, since many of the 20 model parameters
are highly correlated and a precise estimation of uncertainties is desired. Of special interest
are the marginal densities of rates that model the dynamic transitions between the open
and closed state of a DNA hairpin in this particular case. In general, this method is
capable of inferring the conformational dynamics of biological macromolecules.
In the other project conducted by Michael Budde the sampling engine is used to an-

alyze force spectroscopy (Janshoff et al., 2000) data, which consists of rupture times of
polydimethylsiloxane (PDMS) polymers, which were acquired in atomic force microscope
(AFM, Binnig et al., 1986) experiments at different constant holding forces. The ob-
jective is to characterize the rupture process of a single silicon-oxygen bond within the
scope of transition state theory. In particular, the free energy barrier between the bound
and ruptured state is quantified in terms of its height and its position on the reaction
coordinate, as well as by the rupture rate at zero force. As the data was acquired at many
different holding forces it is not possible to construct a histogram of rupture times at a
single force that contains enough data points to satisfy the conditions of a least squares
fit. Moreover, it is not clear whether all bonds in a polymer can break independently
or whether only one bond at the end of the polymer ruptures due to different boundary
conditions. Consequently, a model selection should be applied to this problem optimally
achieved by Bayesian data analysis. In general, the Bayesian approach, which can be
applied as well to dynamic force spectroscopy experiments, promises to develop into a
useful tool for characterization of chemical bonds.
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However, the calculations can take a long time on a multicore personal computer (some-
times several weeks for large NPS problems), and therefore the sampling engine has to be
improved.
In order to maneuver efficiently through the parameter space one could use Hybrid

Monte Carlo (HMC) that is also more specifically and descriptively called Hamiltonian
Monte Carlo (Duane et al., 1987; Neal, 2010). This method utilizes Hamiltonian mechanics
to sample efficiently the parameter space. However, this method is not compatible with
nested sampling, and for a calculation of the evidence it will be necessary to use other
algorithms instead, for example simulated annealing (Kirkpatrick et al., 1983; Neal, 1993).
This could be combined with a Metropolis Coupled Markov chain Monte Carlo (MCMCM)
scheme, also called replica exchange (Swendsen and Wang, 1986), which should enable
even faster exploration of a multimodal posterior density as demonstrated by Rieping et al.
(2005). One should think as well of parallelizing the calculations to a computer cluster
or to graphical processing units (GPUs). In either case, it will be necessary to rewrite
the software in a different programming language than Matlab that is both generally and
financially more suitable for parallel computing.
Speeding up present position - orientation NPS model calculations with an improved

sampling engine will certainly make NPS data analysis more comfortable. However, the
improvements pointed out above will definitely be necessary to make calculations based
on more complex future NPS models feasible at all. Some of these models as well as ways
to improve NPS will be outlined in the next section.

Possible NPS improvements and extensions

As already pointed out in the discussion (chapter 6) there is plenty space for future
improvements of the Nano-Positioning System. A few specific ideas will be described in
the following.
The most promising improvement will be the additional use of FRET anisotropy data

acquired in single-molecule experiments, since a considerable increase of localization ac-
curacy is expected, as was shown in section 6.3.3. However, the inferred positions and
average transition dipole moment orientations have to be tested on a macromolecular
system with well known structure, in order to check whether the position - orientation
NPS model is valid. Beside sufficiently large proteins of known structure, a possible test
system could be built from nucleic acid scaffolds by using the method of DNA origami
(Rothemund, 2006).
A minor improvement of the NPS framework can be achieved by implementing a like-

lihood function that is able to process correlated FRET efficiency and FRET anisotropy
data. Such correlations can occur when a FRET efficiency histogram contains partially
overlapping peaks and the positions of all FRET efficiency states have to be inferred
at once. Another minor enhancement is the implementation of correct boundary con-
ditions for the reference frame orientations in a docking application. Similarly, a better
parametrization of the average transition dipole moment orientations could make the pos-
terior easier to sample, since the currently used mapping of a sphere surface to a rectangle
distorts the average transition dipole moment orientations almost parallel to the z − axis
severely. The current parametrization has the effect that the local move length scales in
the polar angle can strongly depend on the azimuthal angle, which could be improved by
a different choice of parameters optimized for a random walk on a sphere.
More important and still feasible will be the improvement of data pre-processing. The

donor and acceptor fluorescence signals used to calculate the FRET efficiency data in this
work were computed by subtracting signal and local background counts of an EM-CCD
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7 Summary and outlook

camera. The signal and background counts were obtained by binning the readout of a
couple of pixels on the camera that contained mainly signal and background, respectively.
However, one could optimize this procedure and reduce the noise in the acquired signals by
fitting the correct point spread function (Mortensen et al., 2010, supplementary material)
to the diffraction limited spot of the fluorophore (Holden and Kapanidis, 2009).
Another major improvement would be the parameterization of the average axial de-

polarizations 〈dxi 〉 and the isotropic Förster distances Riso
ij . In the current NPS version

both are assumed to be known with infinite accuracy, but the experimentally determined
values are obviously limited in precision. While a log-normal distribution will probably
be suitable as a prior for the isotropic Förster distance, it will be more difficult to assign
a correct prior for the average axial depolarizations.
An important long-term objective should be the porting of the NPS software to a free

programming language, since Matlab is proprietary. NPS could then be applied and
developed by more researchers.
It is necessary but simultaneously also challenging to extend the theory of Dale,

Eisinger, and Blumberg (1979), who assumed parallel absorption and emission dipole mo-
ments of the fluorophores. However, this assumption holds only for certain fluorophores,
since in reality, is exists a finite angle between those dipole moments. Most fluorophores
exhibit thus fundamental fluorescence anisotropies below 0.4 (Lakowicz, 2006, chapter
10), although the deviation from parallel transition dipole moments can be very small for
certain fluorophores (Faucon and Lakowicz, 1987; Sanborn et al., 2007). It will be partic-
ularly important to account for this in order to model FRET between fluorophores with
highly restricted orientational movement, since the expected FRET efficiency depends on
the relative orientation of the donor emission and acceptor absorption dipole moments,
while the expected FRET anisotropy is a function of the relative orientation of the donor
absorption and acceptor emission dipole moments.
Another important but ambitious refinement of the NPS model will be the use of

FRET histogram widths to model position and orientation fluctuations of the fluorophores
and the macromolecule. A physically reasonable parametrization of these widths will be
needed and should then be used in an improved NPS model, which could be similar to the
model of Schröder and Grubmüller (2004), and moreover would account for constrained
fluorophore orientations. Thus the simultaneous monitoring of fluorescence anisotropy
(Schröder et al., 2005), FRET efficiency and FRET anisotropy might help to distinguish
position fluctuations from orientation fluctuations.
Even more appreciable is the development of a “first principles” likelihood function that

accounts for extrinsic effects caused by the measurement process, for example shot noise,
and likewise for intrinsic fluorophore and macromolecule fluctuations, which can occur on
different time scales (see section 6.7.1). The latter objective is already subject of current
research based on an isotropic FRET model assuming κ2 = 2/3 (Savol and Chennubhotla,
2010), while the measurement process has already been put on a firm footing in photon
counting experiments (Antonik et al., 2006; Nir et al., 2006) and TIRF-based experiments
using an EM-CCD camera (Mortensen et al., 2010). Finally, both approaches should be
combined and approximated to a level treatable with current computational methods.
As the measurement of all possible pairs of fluorophore locations in a large FRET

network is time-consuming, a shorter measurement time is desirable. To this end, an
approach to speed up the acquisition of FRET data was developed recently (Uphoff et al.,
2010). By using a single site-specifically attached donor fluorophore and several switchable
acceptors located at arbitrary positions on the same macromolecule, it was possible to
measure FRET efficiencies that belong to several donor-acceptor pairs. NPS could be
adapted to such experiments by simultaneous probabilistic assignment of the observed
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FRET populations to pairs of fluorophores.
In order to reduce the number of unknowns in the NPS model, it is desirable to use

more detailed prior information. To this end, one could simulate possible positions and
orientations of the average transition dipole moments of the fluorophores. A first step
in that direction was realized recently in the lab: in the scope of his bachelor thesis
Moritz Haag used a space filling representation of a protein and attached a fluorophore
to compute possible orientations and positions of the transition dipole moment (Haag,
2009). In order to use such simulations, one has to identify possible average transition
dipole moment orientations that are consistent with both the simulated transition dipole
moment orientations and with the measured fluorescence anisotropies. This still needs
to be done, which would allow to encode orientation information in the prior. In this
way, the information on the partial dependence of the fluorophore positions and average
transition dipole moment orientations could be used.
However, this approach would fail completely if no macromolecular structure is available

at all, and it would lead to incorrect results when the structure is incorrect. Thus one
could try to infer fluorophore positions based only on FRET measurements, which could
already be done with the current position - orientation NPS model. Yet, a convenient
marginalization and representation of the inferred results has still to be found as there is
no reference like in the case when a high resolution structure is available. Furthermore,
it will be extremely important to measure a large and consistent FRET network, and
to acquire as much data as possible, for example by measuring FRET efficiencies and
anisotropies.
The control of experimental conditions like the correct assembly of complexes is crucial

when the subunits are interacting weakly or only transiently. Alternating laser excitation
(ALEX) (Lee et al., 2005) is a common way to control the presence of the acceptor in
a FRET pair by its direct excitation. This technique has been used in some cases to
acquire the data analyzed in this thesis. However, the ALEX excitation scheme might
not be sufficient to control experiments similar to the RNA 5’-end localization presented
here, as the presence of an additional factor (here TFIIB) might cause a very small and
therefore unnoticed FRET change. In this case, the labeling of the additional factor with
a third fluorophore emitting in a different spectral range without disturbing the donor
and acceptor would increase the experimental control.
Also FRET experiments utilizing three or more fluorophores simultaneously (Hohng

et al., 2004) can potentially increase experimental control and also yield data that con-
tains valuable information on correlated conformational motions. However, in the case of
a stable static conformation, the analysis of such experiments would not lead to an infor-
mation gain compared to conventional FRET performed for each FRET pair separately.
A challenging but also very profitable endeavor would be the construction of a hybrid

data analysis approach that combines NPS results with those obtained by low-resolution
methods for structure determination. Reasonable candidates are for example chemical
cross-linking experiments, small-angle X-ray scattering (SAXS) and pulsed dipolar elec-
tron spin resonance (ESR), which have all been applied to study the structure of biological
macromolecules. While the proximity of residues can be determined by chemical cross-
linking (Sinz, 2006) SAXS can be used to infer the approximate shape of macromolecules
in solution (Koch et al., 2003) and ESR provides, similar to FRET, long range distance
restraints (Bhatnagar et al., 2007).
A good approach would be to use already present modeling software, for example the

Integrated Modeling Platform (IMP) developed in the lab of Andrej Sali (Alber et al.,
2007a,b, 2008). This software package can analyze commonly applied biochemical and
structural data obtained by various methods, and it should be possible to implement
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marginal NPS results as a constraint in IMP (Lasker and Sali, 2010).
Furthermore, the prediction of protein and protein complex structures from their amino-

acid sequence could profit from results obtained by NPS. This approach has been already
documented with mass spectrometry and SAXS data (D’Abramo et al., 2009), and pos-
sibly it could be extended to use FRET-derived constrains as well.

Finally, the author hopes that this thesis could convince the reader of the usefulness of
modern FRET-based localization methods as well as of the elegance of probabilistic data
analysis.
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List of abbreviations and variables

abbreviation explanation
A, A(t) measured FRET anisotropy
Aai, Aij FRET anisotropymeasured between fluorophores a/i, and i/j, resp.
Aai, Aij FRET anisotropyexpected between fluorophores a/i, and i/j, resp.
ALX Alexa Fluor®

ANT antenna fluorophore
BCP box collection prior
CY3 cyanine 3
dx, dxi axial depolarization, axial depolarization of fluorophore i
〈dxi 〉 average axial depolarization, axial depolarization of fluorophore i
DNA deoxyribonucleic acid
E, E(t) measured FRET efficiency
Eai, Eij FRET efficiencymeasured between fluorophores a/i, and i/j, resp.
Eai, Eij FRET efficiencyexpected between fluorophores a/i, and i/j, resp.
FD(t), FA(t) fluorescence signal of donor (D) and acceptor (A) fluorophores
FRET Fluorescence Resonance Energy Transfer
GUI graphical user interface
κ2 (orientation factor)2

MCMC Markov-Chain Monte Carlo
nt nucleotide
Pol II eukaryotic RNA polymerase II
ri steady-state fluorescence anisotropy of fluorophore i
r∞,i residual fluorescence anisotropy of fluorophore i
R Förster distance
Rai, Rij Förster distance between the fluorophores a/i, and i/j, respectively
Riso, Riso

ai , Riso
ij isotropic Förster distance (assuming κ2 = 2/3)

RNA ribonucleic acid
Rpb4/7 heterodimer of the Pol II subunits Rpb4 and Rpb7
SAT satellite fluorophore
TBP TATA binding protein
TFII[X] general transcription factor [X] for RNA polymerase II
TMR tetramethylrhodamine
x arbitrary spatial position (e.g. of a fluorophore)
xi spatial position of the ith fluorophore
Ωi average transition dipole moment orientation of the ith fluorophore
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Appendix I: Coupling of data pre-processing to NPS

It will be shown here that the likelihood in equation (6.7.1) can be obtained from the
result of commonly used data pre-processing procedures.
The “raw” data {Oij}(t), i.e. time traces of the observables like FRET efficiency and

anisotropy acquired for the FRET pairs ij, will be described with a hierarchical model M
that consists of a low-level part, which pre-processes the original data, and a high-level
NPS part that uses the result of pre-processing as data. The model M assumes that the
macromolecule is in one of KM possible conformational states.
The pre-processing part of the model describes the time traces by a set of “true” values
{Õij;k} of the observables in the state k = 1 . . .KM , and by some auxiliary parameters
hM . The latter are used to account for properties of the data that are not directly related
to FRET, for example the dynamics observed between different states. In the NPS part,
the parameters qNPSi;k = (xi;k,Ωi;k) are used to model structural properties of the FRET
network, i.e. the positions and average transition dipole moment orientations, as well as
the signs of the average axial depolarizations (see section 6.7.5 for a definition).
The likelihood in equation (6.7.1) is the probability of time traces given the set of NPS

parameters, {qNPSi;k }, and can be written as

p
(
{Oij(t)}|{qNPSi;k },M, I

)
=
∫
d{Õij;k} p

(
{Oij(t)}, {Õij;k}|{qNPSi;k },M, I

)
=∫

d{Õij;k} p
(
{Oij(t)}|{Õij;k},����{qNPSi;k },M, I

)
p
(
{Õij;k}|{qNPSi;k },M, I

)
=∫

d{Õij;k} p
(
{Oij(t)}|{Õij;k},M, I

)
δ({Õij;k −Oij;k}),

In the first line, the “true” observable values were introduced, and Bayes’ theorem was
applied to move them into the condition. Since the time traces do not depend directly on
the NPS parameters, they can be canceled from the condition in the second line. In the
third line, the term p

(
{Õij;k}|{qNPSi;k },M, I

)
is identified with a product of Dirac-delta

distributions,

δ({Õij;k −Oij;k}) :=
∏
ij;k

δ
(
Õij;k −Oij;k

(
qNPSi;k , qNPSj;k

))
.

This is obvious, since the “true” observable values {Õij;k} and the observables Oij;k (i.e.
Eij;k or/and Aij;k) expected from the NPS parameters must be the same.
The auxiliary parameters hM are introduced in the same way like the “true” observables,

p
(
{Oij(t)}|{qNPSi;k },M, I

)
=∫

d{Õij;k}
∫
dhM p

(
{Oij(t)}|hM , {Õij;k},M, I

)
p (hM |M, I) δ({Õij;k −Oij;k}).

Here, it was assumed that the prior of the auxiliary parameters does not depend on the
“true” observables, i.e. that p (hM |M, I) = p

(
hM |{Õij;k},M, I

)
.

The probability p
(
{Oij(t)}|hM , {Õij;k},M, I

)
is essentially the likelihood of the
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data pre-processing, which is related to the posterior of the pre-processing,
p
(
hM , {Õij;k}|{Oij(t)},M, I

)
, by Bayes’ theorem,

ZPP
M p

(
hM , {Õij;k}|{Oij(t)},M, I

)
=

p
(
Õij;k|M, I

)
p (hM |M, I) p

(
{Oij(t)}|hM , {Õij;k},M, I

)
.

Here, ZPP
M denotes the evidence of the pre-processing, and p

(
Õij;k|M, I

)
is the prior of

the “true” observables. From the two above equations, one obtains

p
(
{Oij(t)}|{qNPSi;k },M, I

)
=∫

d{Õij;k}
∫
dhM

ZPP
M

p
(
Õij;k|M, I

)p (hM , {Õij;k}|{Oij(t)},M, I
)
δ
(
{Õij;k −Oij;k}

)
=

ZPP
M

∫
d{Õij;k}

1
p
(
Õij;k|M, I

) p ({Õij;k}|{Oij(t)},M, I
)
δ
(
{Õij;k −Oij;k}

)
.

When the data pre-processing uses a constant prior in the “true” observables,

const = p
(
Õij;k|M, IPP

)
=: πPPM ,

which applies in particular to maximum likelihood approaches and least squares fits (Sivia,
2006, chapter 3.5). The prior can be taken out of the integral and the following equation
results:

p
(
{Oij(t)}|{qNPSi;k },M, I

)
=

ZPP
M

πPPM

∫
d{Õij;k}p

(
{Õij;k}|{Oij(t)},M, I

)
δ
(
{Õij;k −Oij;k}

)
=

ZPP
M

πPPM
p
(
{Õij;k}|{Oij(t)},M, I

)∣∣
Õij;k=Oij;k

(
qNPS

i;k ,qNPS
j;k

) .
One easily recognizes that the likelihood of the NPS problem is obtained by weighting the
posterior of the pre-processing problem with ZPP

M /πPPM and substituting the observables
expected from NPS, Oij;k, for the “true” observables Õij;k.
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1 Measured data

Eai ±∆Eai RNA(+1) RNA(+1) RNA(+29) RNA(+29)
-ALX555 -TMR -TMR, w/o TFIIB -TMR, w/ TFIIB

tDNA(-10)-ALX647 0.507± 0.0035 – 0.673± 0.006 0.382± 0.008

tDNA(+3)-ALX647 0.800± 0.0014 – 0.422± 0.007 0.630± 0.027

tDNA(+9)-ALX647 0.610± 0.0040 – – –

Rpb7(C150)-ALX647 – 0.415± 0.0039 0.604± 0.006 0.770± 0.010

Rpb7(C94)-ALX647 – – 0.522± 0.011 0.712± 0.043

Rpb4(S73C)-ALX647 – – 0.529± 0.021/ –
0.752± 0.029∗

Rpb7(S16C)-ALX647 39.4± 0.38 – 0.736± 0.007 0.936± 0.041

∗) two peaks were observed and attributed to different positions of the satellite
Rpb4(S73C)-ALX647.

Table 1: Measured FRET efficiencies (RNA, taken from (Muschielok et al., 2008))

Riso
ai /Å RNA(+1) RNA(+1) RNA(+29) RNA(+29)

-ALX555 -TMR -TMR, w/o TFIIB -TMR, w/ TFIIB

tDNA(-10)-ALX647 47 – 62 62

tDNA(+3)-ALX647 47 – 62 62

tDNA(+9)-ALX647 47 – – –

Rpb7(C150)-ALX647 – 57 65 65

Rpb7(C94)-ALX647 – – 66 66

Rpb4(S73C)-ALX647 – – 63 –

Rpb7(S16C)-ALX647 48 – 62 62

Table 2: Measured isotropic Förster distances (RNA, taken from (Muschielok et al., 2008))

169



Appendix II: Data

attachment site / fluorophore fluoresc. anisotropy∗

tDNA(-10)-ALX647 0.30(1,2)/0.28(3)

tDNA(-10)-TMR 0.31(3)

tDNA(+3)-ALX647 0.32(1,2)/0.27(3)

tDNA(+3)-TMR 0.30(3)

tDNA(+7)-ALX647 0.26(3)

tDNA(+7)-TMR 0.28(3)

tDNA(+9)-ALX647 0.31(1,2)

tDNA(+12)-ALX647 0.19(3)

RNA(+1)-ALX647 0.15(2)

RNA(+1)-ALX555 0.31(1)

RNA(+1)-TMR 0.21(1)

RNA(+4)-ALX647 0.15(2)

RNA(+10)-ALX647 0.20(2)

Rpb7(C150)-ALX647 0.23(1,2,3)

Rpb7(C94)-ALX647 0.22(1)

Rpb4(S73C)-ALX647 0.27(1,2)

Rpb7(S16C)-ALX647 0.20(1)

RNA(+29)-TMR w/o TFIIB 0.21(1)

RNA(+29)-TMR w/ TFIIB 0.21(1)

ntDNA(+1)-TMR 0.19(2)

ntDNA(+1)-ALX555 0.29(2)

ntDNA(-2)-TMR 0.19(2)

ntDNA(-2)-ALX555 0.31(2)

ntDNA(-4)-TMR 0.21(2)

ntDNA(-4)-ALX555 0.30(2)

ntDNA(-7)-TMR 0.18(2)

ntDNA(-7)-ALX555 0.29(2)

ntDNA(-12)-TMR 0.18(2)

ntDNA(-12)-ALX555 0.27(2)

ntDNA(-15)-TMR 0.16(2)

ntDNA(-15)-ALX555 0.31(2)

ntDNA(-18)-TMR 0.17(2)

ntDNA(-18)-ALX555 0.27(2)

ntDNA(-20)-TMR 0.24(3)

ntDNA(-30)-TMR 0.29(3)

ntDNA(-37)-TMR 0.26(3)

TBP(S159C)-ALX647 0.14(3)

TBP(S159C)-CY3 0.22(3)

(1) used in the RNA/TFIIB project (Muschielok et al., 2008)
(2) used in the nontemplate DNA project (Andrecka et al., 2009)
(3) used in the initial transcribing complex project (Treutlein et al., unpub-
lished)
(∗) steady state anisotropy

Table 3: Measured fluorescence anisotropies
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1 Measured data

Eai

tDNA
(-10)
-ALX647

tDNA
(+3)
-ALX647

tDNA
(+9)
-ALX647

RNA
(+1)
-ALX647

RNA
(+4)
-ALX647

RNA
(+10)
-ALX647

Rpb7
(C150)
-ALX647

Rpb4
(S73C)
-ALX647

ntDNA(+1)-
TMR

– – – – – – 0.32 –

ntDNA(+1)-
ALX555

0.86 – 0.80 0.80 0.96 0.73 – –

ntDNA(-2)-
TMR

– – – – – – 0.35 –

ntDNA(-2)-
ALX555

0.84 0.91 0.75 0.64 0.90 0.76 – –

ntDNA(-4)-
TMR

– – – – – – 0.36 –

ntDNA(-4)-
ALX555

0.78 0.88 0.61 0.46 0.81 0.57 – –

ntDNA(-7)-
TMR

– – – – – – 0.54 –

ntDNA(-7)-
ALX555

0.80 0.83 0.57 0.40 0.78 0.60 – –

ntDNA(-12)-
TMR

– 0.90 – – – – 0.57 0.32

ntDNA(-12)-
ALX555

– 0.53 0.46 0.45 0.86 – – –

ntDNA(-15)-
TMR

– 0.68 – – – – 0.48 0.29

ntDNA(-15)-
ALX555

0.89 0.38 0.30 0.33 0.63 – – –

ntDNA(-18)-
TMR

– 0.40∗/
0.60

0.37∗/
0.71 – – – 0.31∗/

0.39 –

ntDNA(-18)-
ALX555

0.68∗/
0.35 – – 0.27∗/

0.56
0.51∗/
0.35

0.63∗/
0.31 – –

Andrecka et al. (2009) used ∆Eij = 0.02 for all FRET pairs with Eij < 0.9, and ∆Eij = 0.04
for all FRET pairs with Eij ≥ 0.9.
In the comparison of position - Förster distance model and position - orientation model, ∆Eij =
0.02 was used for all FRET efficiency measurements.
∗) main peak used in the inference

Table 4: Measured FRET efficiencies (nontemplate DNA, taken from (Andrecka et al., 2009))
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Riso
ai /Å

tDNA
(-10)
-ALX647

tDNA
(+3)
-ALX647

tDNA
(+9)
-ALX647

RNA
(+1)
-ALX647

RNA
(+4)
-ALX647

RNA
(+10)
-ALX647

Rpb7
(C150)
-ALX647

Rpb4
(S73C)
-ALX647

ntDNA(+1)-
TMR

– – – – – – 64 –

ntDNA(+1)-
ALX555

54 – 54 54 54 53 – –

ntDNA(-2)-
TMR

– – – – – – 62 –

ntDNA(-2)-
ALX555

50 50 50 50 50 49 – –

ntDNA(-4)-
TMR

– – – – – – 64 –

ntDNA(-4)-
ALX555

49 49 49 49 49 48 – –

ntDNA(-7)-
TMR

– – – – – – 64 –

ntDNA(-7)-
ALX555

46 46 46 46 46 45 – –

ntDNA(-12)-
TMR

– 59 – – – – 62 64

ntDNA(-12)-
ALX555

– 49 49 49 49 – – –

ntDNA(-15)-
TMR

– 60 – – – – 63 64

ntDNA(-15)-
ALX555

49 49 49 49 49 – – –

ntDNA(-18)-
TMR

– 58 58 – – – 62 –

ntDNA(-18)-
ALX555

48 – – 48 48 48 – –

Table 5: Measured isotropic Förster distances (nontemplate DNA, taken from (Andrecka et al.,
2009))
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1 Measured data

Eij

ntDNA
(-20)
-TMR

ntDNA
(-30)
-TMR

ntDNA
(-37)
-TMR

TBP
(C61)
-CY3

TBP
(C61)
-ALX647

tDNA(-10)-
TMR

– – – – 0.18

tDNA(-10)-
ALX647

0.84 0.37 0.24 – –

tDNA(+3)-
TMR

– – – – 0.20

tDNA(+3)-
ALX647

0.58 0.32 0.11 – –

tDNA(+7)-
TMR

– – – – 0.08

tDNA(+7)-
ALX647

0.58 0.26 0.11 – –

tDNA(+12)-
ALX647

0.36 0.22 – – –

Rpb7(C150)-
ALX647

0.34 0.34 0.12 0.018 –

TBP(S159C)-
ALX647

– 0.71 0.77 – undef.

∆Eij = 0.02 for all FRET pairs.

Table 6: Measured FRET efficiencies (initial transcribing complex, taken from (Treutlein et al.,
unpublished))

Riso
ij /Å

ntDNA
(-20)
-TMR

ntDNA
(-30)
-TMR

ntDNA
(-37)
-TMR

TBP
(C61)
-CY3

TBP
(C61)
-ALX647

tDNA(-10)-
TMR

– – – – 58

tDNA(-10)-
ALX647

56 60 59 – –

tDNA(+3)-
TMR

– – – – 60

tDNA(+3)-
ALX647

56 60 59 – –

tDNA(+7)-
TMR

– – – – 60

tDNA(+7)-
ALX647

57 61 60 – –

tDNA(+12)-
ALX647

57 61 – – –

Rpb7(C150)-
ALX647

60 65 63 47 –

TBP(S159C)-
ALX647

– 60 57 – undef.

Table 7: Measured isotropic Förster distances (initial transcribing complex, taken from (Treut-
lein et al., unpublished))
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Appendix II: Data

2 Artificial data

fluorophore i xi/Å yi/Å zi/Å θi/rad φi/rad ri
SAT 1 36.7 12.0 27.2 3.01 0.78 0.31
SAT 2 23.2 46.9 3.4 1.53 0.37 0.31
SAT 3 45.7 31.3 3.6 1.11 3.00 0.15
SAT 4 8.5 36.3 44.9 0.46 0.07 0.32
SAT 5 46.9 3.0 2.0 1.44 2.54 0.24
SAT 6 5.0 5.3 48.9 2.69 0.17 0.22
SAT 7 4.4 56.4 18.6 1.16 0.12 0.29
SAT 8∗ 49.9 -27.3 30.2 2.52 0.73 0.24
SAT 9∗ 44.2 61.6 -24.7 0.73 1.99 0.21
ANT 1 56.5 49.7 75.6 1.52 0.91 0.31
ANT 2 89.7 47.0 36.6 1.42 2.26 0.18
ANT 3 65.1 5.7 82.0 2.55 1.29 0.31
ANT 4 72.6 77.4 28.4 0.61 2.07 0.27
ANT 5 81.1 2.1 54.1 2.43 2.05 0.27
ANT 6 86.6 11.1 27.0 1.04 2.29 0.23
ANT 7 49.8 78.9 17.0 0.47 1.69 0.22

∗) used in extended FRET network only

Table 8: Fluorophore data

Exact fluorophore positions xi = (xi, yi, zi) and average transition dipole moment
orientations Ωi = (− cos θi, φi) together with fluorescence anisotropy ri.

Eij ANT 1 ANT 2 ANT 3 ANT 4 ANT 5 ANT 6 ANT 7
SAT 1 0.5516 0.1688 0.4556 0.1684 0.3280 0.3773 0.3356
SAT 2 0.0501 0.3696 0.0866 0.4617 0.1382 0.1544 0.9560
SAT 3 0.2306 0.5455 0.0642 0.5336 0.3407 0.6438 0.7262
SAT 4 0.8171 0.1009 0.1183 0.1647 0.0603 0.1334 0.2951
SAT 5 0.0623 0.2111 0.0709 0.0502 0.2089 0.7019 0.0946
SAT 6 0.1512 0.0289 0.3600 0.0286 0.2969 0.1339 0.0758
SAT 7 0.1187 0.1656 0.1430 0.0727 0.1313 0.1295 0.6309
SAT 8 - - 0.1871∗ - 0.6646∗ 0.2966∗ -
SAT 9 - 0.2714∗ - 0.4459∗ - - 0.9042∗

∗) used in extended FRET network only
∆Eij = 0.02 for all FRET pairs.

Table 9: Simulated FRET efficiencies
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2 Artificial data

Riso
ij /Å ANT 1 ANT 2 ANT 3 ANT 4 ANT 5 ANT 6 ANT 7

SAT 1 56.7 62.3 57.7 56.7 56.3 55.2 58.6
SAT 2 57.4 64.3 62.7 57.8 60.0 56.6 64.4
SAT 3 64.1 64.8 58.2 59.6 61.9 64.2 64.8
SAT 4 63.5 64.6 58.2 63.0 63.9 63.4 59.4
SAT 5 60.8 56.0 63.4 60.9 55.2 57.1 56.0
SAT 6 60.6 61.2 64.1 57.1 64.1 64.8 61.3
SAT 7 64.0 57.2 64.3 55.4 63.3 57.8 63.2
SAT 8 - - 60.5∗ - 61.6∗ 8.3∗ -
SAT 9 - 63.2∗ - 64.8∗ - - 55.2∗

∗) used in extended FRET network only

Table 10: Simulated isotropic Förster distances

Aij ANT 1 ANT 2 ANT 3 ANT 4 ANT 5 ANT 6 ANT 7
SAT 1 −0.1516 −0.1113 0.2124 0.1290 0.1173 −0.0363 0.1478
SAT 2 0.1888 −0.0839 −0.1131 −0.1453 −0.1392 −0.1036 −0.1211
SAT 3 −0.0505 0.0470 −0.0450 0.0379 −0.1011 0.0940 −0.0219
SAT 4 −0.1036 −0.1137 0.0494 0.0298 0.1305 −0.1158 0.1153
SAT 5 −0.1338 0.1825 −0.1327 0.0174 −0.0429 0.1660 −0.0541
SAT 6 −0.0992 −0.0628 0.1538 0.1243 0.0086 0.0308 0.0952
SAT 7 0.0480 −0.0490 −0.1419 −0.1342 −0.0278 −0.1066 −0.0778
SAT 8 - - 0.0483∗ - 0.1651∗ −0.1189∗ -
SAT 9 - 0.0637∗ - 0.2335∗ - - 0.1840∗

∗) used in extended FRET network only
∆Aij = 0.01 for all FRET pairs.

Table 11: Simulated FRET anisotropies
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