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tmchxn    N,N,N′,N′-tetramethyl-(1R,2R)-cyclohexane-1,2-diamine 

tmen     N,N,N′,N′-tetramethylethane-1,2-diamine 

tn     propane-1,3-diamine 

Xyl     xylose 

Xyl5ald    xylo-pentodialdose 

Xylt     xylitol 
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1 Introduction 

1.1 The biological importance of carbohydrates 

Carbohydrates are ubiquitous and belong to the four most important classes of 

macromolecules in nature, namely nucleic acids, proteins, carbohydrates and lipids. 

Moreover, only carbohydrates can be found in direct association with all three of the rest. In 

two important characteristics carbohydrates differ from the other two classes of biological 

polymers: they can be highly branched molecules, and their monomeric units may be 

connected to one another by many different linkage types. These characteristic features allow 

carbohydrates to provide almost unlimited variations in their structures. The terms 

glycoprotein and glycolipid are used to reflect the fact that the majority of carbohydrates 

present in cells are attached to proteins or lipids, although carbohydrates can also be present 

without being attached to other molecules. Furthermore, such a highly branched oligomeric 

carbohydrate is often referred to as an oligosaccharide.
[1]

 

In the early days of the functional characterization of biopolymers, it was thought that 

carbohydrates had two roles, namely structural functions and energy storage. The 

development of effective methods for characterizing carbohydrate structures and functions 

during the last decades has revealed that carbohydrates are integrally involved in a multitude 

of biological systems.
[2]

 Glycoproteins are fundamental to many important biological 

processes including fertilization, embryogenesis, immune defense, viral replication, parasitic 

infection, cell growth, tissue repair, neuronal development, degradation of blood clots and 

inflammation, among others. Glycoproteins and glycolipids, together with proteoglycans and 

glycophosphatidylinositol-linked proteins (GPI anchor) are major components of the outer 

surface of mammalian cells, with carbohydrates covalently attached through either a nitrogen 

atom (supplied by the amino acid asparagine) or an oxygen atom (supplied by serine or 

threonine).
[1, 3]

 These so-called glycans form an individual layer known as the glycocalyx, 

ranging from 10 to 100 pm in thickness.
[4]

  

Structural encoding and storage of biological information is another property of complex 

oligosaccharides. This information is decoded by non-covalent complexes between 

carbohydrate ligands and protein receptors. These proteins were called lectins or selectins, 

specialized to selectively recognize certain sections of oligosaccharides. These carbohydrate–

protein interactions are fundamental for many biological processes such as cell–cell adhesion 

and communication.
[3]
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Oligosaccharide structures change dramatically during development, and it has been shown 

that specific sets of oligosaccharides are expressed at distinct stages of differentiation. 

Furthermore, alterations in cell surface oligosaccharides are associated with various 

pathological conditions including malignant transformation.
[1]

 Oligosaccharides can modify 

the intrinsic properties of proteins to which they are attached by altering the stability, protease 

resistance, or quaternary structure. The large size of oligosaccharides may enable them to 

cover functionally important areas of proteins, to adjust the interactions of glycoconjugates 

with other molecules, and to affect the rate of processes which involve conformational 

changes. Glycosylation is highly sensitive to alterations in cellular function, and abnormal 

glycosylation is diagnostic of a number of disease states including rheumatoid arthritis and 

cancer.
[1]

  

A prominent example for carbohydrate-encoded biological information is the well-known 

AB0(H) blood group system. It consists of three antigens H, A and B and is the most 

important in blood transfusions. The H antigen, the precursor for the other two, is the 

disaccharide α-L-Fucp-(1→2)-β-D-Galp. Addition of N-acetyl-α-D-galactosamine in (1→3)- 

linkage to the β-D-galactopyranose of the H structure gives the A antigen, α-L-Fucp-(1→2)-

[α-D-GalpNAc-(1→3)]-β-D-Galp. The B antigen differs from the A antigen in having α-D-

galactopyranose instead of N-acetyl-α-D-galactosamine. Depending on the presence and/or 

absence of the A and B antigens, individuals are broadly classified as belonging to one of the 

four groups: 0, A, B and AB. Individuals in the 0 group express only the H determinant and 

carry anti-A and anti-B antibodies. Those in the AB group express both the antigens and have 

antibodies to neither.
[5]

  

 

1.2 Industrial applications of carbohydrates 

Being polyfunctional in nature, carbohydrates participate in a multitude of chemical 

and biochemical reactions, making them ideal scaffolds for industrial applications. With the 

annual worldwide production of about 200 billion tons of carbohydrates by photosynthesis, 

carbohydrates are the most abundant natural products. About 11% of raw materials used by 

the German industry are renewable.
[6]

 Throughout the years 2006–2009, the annual German 

sugar production fluctuated between 3.5 and 4 million tons and human consumption did not 

exceed three million tons per year. As a consequence of the European Quota System 

(Germany‘s quota 2.9 million tons), significant surpluses exist which cannot be exported to 
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the full extent but must be used for industrial conversions. It is estimated that per year, 

approximately 50,000–60,000 tons of sugar, supplementing molasses, are used for yeast 

fermentation, 180,000–200,000 tons for the fermentation of fine chemicals, food, feed and 

pharmaceutical additives and 300,000–400,000 tons for bio ethanol production.
[7]

 

Since the responsibility for developing appropriate food products with balanced functionality 

and nutritional value has shifted from domestic kitchens to the development laboratories of 

food manufacturing companies, polyols and monosaccharides are of considerable interest and 

value to the commercial food sector. Nutritive sweeteners not only provide nutrition, bulk, 

sweetness, and moisture control, furthermore, as Maillard reaction products they are 

important elements in the flavor and color profiles of different foods. In fact, the adulteration 

of honey using high fructose corn syrup or the application of invert sugar produced by the 

hydrolysis of the disaccharide sucrose to its component monosaccharides are only two 

examples of monosaccharide-based sweeteners used in the food industry.
[8]

 

Another example for the interest of the food industry in monosaccharides is the employment 

of crystalline fructose to provide sweetness without causing the spike in blood glucose with 

its resulting elevated insulin level which is important for people with diabetes. D-Fructose is 

produced commercially by the enzyme-catalyzed epimerization of D-glucose and has been 

recognized as having a relatively low glycemic index because it is not metabolized as rapidly 

as glucose is. Also polyols can provide sweetness, texture, and bulk in many sugar-free 

applications as well and are metabolized more slowly by mammalian systems. They can serve 

as humectants, cryoprotectants and aids to control freezing point depression. The benefits of 

polyols in food and confectionery products include reduced caloric content, reduced glycemic 

response, and reduced cariogenicity, especially with xylitol. Polyols are generally not 

fermented by oral bacteria, so that acid production is minimized while plaque production is 

not supported. Xylitol has been reported to actually reduce cariogenesis and, consequently, is 

in great demand for chewing gum, and sorbitol (glucitol) is used heavily in toothpaste to help 

maintain its creamy texture. The lack of a free aldehyde or ketone group means that polyols 

will also not participate in Maillard-type browning reactions.
[8]

  

The current non-food utilization of carbohydrates as a chemical feedstock—be it for bulk, 

intermediate or fine chemicals, pharmaceuticals, agrochemicals, or high-value-added 

speciality chemicals—is modest and only a few examples are presently realized on an 

industrial scale. The most common example is the bio-based manufacturing of ethanol by 
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fermentation of glucose to replace the petrochemically-based process from ethane and its use 

as a fuel additive. However, the fermentation generates two moles of CO2 per mole of sugar 

and therefore, the process does not contribute to the reduction of CO2 in the environment. 

Another fermentation-based process starting from glucose-containing materials such as 

sucrose, whey or starch is the large-scale production of lactic acid. Besides its major use in 

the food industry, recent non-food applications have made it a large-scale organic commodity 

chemical, most of which is subsequently polymerized via its cyclic dimer (lactide) to a high 

molecular weight polyester, polylactic acid. Due to its high strength, it can be fabricated into 

fibers, films, and rods that are fully biodegradable and compostable, having degraded within 

two months. Accordingly, polylactic acid and copolymers of lactic and glycolic acid are of 

particular significance for food packaging and for agricultural or gardening applications. 

Another development based on lactic acid is its ethyl ester. As a most benign solvent it has the 

potential to displace various petrochemically based solvents such as acetone, DMF or toluene 

in industrial processes.
[9]

 

Sugar-based surfactants, such as sorbitan esters, sucrose esters and alkyl polyglycosides are 

well established in industrial products due to their advantages with regard to performance, the 

health of consumers and environmental compatibility compared to some standard products. 

Considering the amphiphilic structure of a typical surfactant with a hydrophilic head group 

and a hydrophobic tail, it has always been a challenge to attach a carbohydrate molecule as 

the perfect hydrophilic group to a fat and oil derivative, such as a fatty acid or a fatty alcohol, 

due to their numerous hydroxy groups. Although numerous ways of making such linkages 

with a large number of different carbohydrates used in such reactions are reported in the 

literature, it is clear from an industrial perspective, since only a few carbohydrates fulfill the 

criteria of price, quality, and availability, that they are an interesting raw material source. 

Sorbitan esters are used mainly as emulsifiers for food or as textile auxiliaries at a volume of 

approx. 20,000 tons per year. With an actual market size of about < 4,000 tons per year, the 

relatively hydrophobic sucrose esters are applied mainly as emulsifiers for food and 

cosmetics. Alkyl polyglycosides and fatty acid glucamides represent a perfect amphiphilic 

structure with excellent surface activity as well as solubility due to highly selective syntheses. 

A total capacity of approx. 80,000 tons per year of alkyl polyglycosides have been established 

for industrial processes for use in cosmetics, manual dishwashing and detergent 

applications.
[10]
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These few examples of industrial sugar-based non-food products represent a modest 

beginning in the endeavor to replace petrochemicals by carbohydrates as a chemical 

feedstock. Nevertheless, their potential as an organic raw material for the elaboration of 

industrially useful chemicals is far from being fully explored.
[9]

 

In the same way, carbohydrates are a relatively unexploited source of new drugs for the 

pharmaceutical industry and therefore offer exciting new therapeutic opportunities. Although 

carbohydrates play an important part in innumerable biological processes, carbohydrates and 

carbohydrate-derived drugs cover only a limited area of the world of therapeutics. Current 

advances in the functional understanding of carbohydrate–protein interactions of over eighty 

carbohydrate-binding proteins have enabled the development of a new class of small-

molecule drugs, known as glycomimetics, which form a novel class of therapeutics. These 

compounds mimic the bioactive function of carbohydrates and evade the disadvantages of 

carbohydrate lead structures, namely their low activity and insufficient drug-like properties. 

Pharmacokinetic drawbacks are linked to carbohydrate-based drugs‘ high polarity – they are 

unable to cross passively through the enterocyte layer in the small intestine – a prerequisite 

for oral availability. Prominent examples (Fig. 1.1) are the low-molecular-weight heparins, 

derived from pigs‘ small intestine mucosa, and fondaparinux (Arixtra; GlaxoSmithKline), 

which are used as anticoagulants. In other cases such as the inhibition of α-glycosidases in the 

brush border of the small intestine for the treatment of diabetes (by voglibose 

(Basen/Glustat/Volix; Takeda), miglitol (Glyset; Pfizer) and acarbose (Glucobay/Prandase/ 

Precose; Bayer)) or the inhibition of viral neuraminidases in the pharyngeal mucosa (by 

zanamivir (Relenza; GlaxoSmithKline)) oral availability is not required. The paradigm of a 

glycomimetic drug in the classical sense is oseltamivir (Tamilu; Gilead/Roche). Starting from 

a carbohydrate lead structure 2,3-didehydro-2-deoxy-N-acetylneuraminic acid (Neu5Ac2en), 

an orally available prodrug was designed by systematically eliminating polar groups and 

metabolic 'soft spots' that were not required for affinity.
[4]
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Figure 1.1. Carbohydrate and carbohydrate-derived drugs. Structures of currently approved drugs (trade name in 

brackets). These include glycosidase inhibitors that prevent the digestion of carbohydrates for the treatment of 

diabetes (voglibose, acarbose and miglitol) and the prevention of influenza virus infections (zanamivir and 

oseltamivir phosphate). Further carbohydrate-derived drugs are used to treat Gaucher‘s disease (miglustat), 

epilepsy (topiramate) and osteoarthritis (sodium hyaluronate). In addition, sulphated glycosaminoglycans, which 

function as anticoagulants by binding to antithrombin III for the treatment of thrombosis (e.g. ardeparin sodium 

or fondaparinux).  
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Raw starch is used as native, converted into physical-chemical modificates or hydrolyzed to 

starch sugars. Native starch is derived from wheat, maize or potatoes and the current usage is 

estimated at 450,000–500,000 tons with a decreasing tendency. Native starch is primarily 

used in the food industry and in the manufacturing of paper and in corrugating. In all these 

application areas however, native starch is increasingly being substituted by modified starches 

as these products comply better with the demand for functionality and streamlined 

manufacturing processes. Currently, 450,000 tons of modified starches and special starch 

mixes are used mostly in food and paper manufacturing. 500,000–550,000 tons of extracted 

raw starch are usually hydrolyzed and converted to maltodextrine, glucose and dextrose 

syrups.
[7]

 

Cellulose is the most important plant‘s structural support molecule; the associated hetero-

polysaccharides (―hemicelluloses‖) serve to provide for moisture sorption, fracture toughness, 

and storage energy. For industrial use, cellulose is mainly obtained from wood pulp and 

cotton under removal of lignin and hemicelluloses.  It is used not only to produce paperboard 

and paper; to a smaller extent it is converted into a wide variety of derivative products. The 

chemical-physical conversion of cellulose in Germany is carried out by only two companies. 

Both are specialized in ether technology and consequently the total production of cellulose 

derivatives in the range of 200,000 tons comprizes mostly these products. However, the 

application of cellulose derivatives outside the traditional sectors of paper and construction is 

still small and only moderately developing.
[7]

 Cellulose ethers are applied to cigarette filters, 

textiles, thermoplasts, explosives, and enamels, while cellulose esters are additives in the 

detergent industry, the cosmetic industry and the textile industry. Viscose, the oldest 

industrial-scale manufactured fibre, is produced with regenerated cellulose films and fibres. 

Nowadays the hundred-years-old CS2-containing viscose process with cellulose xanthogenate 

as intermediate has been replaced by the ecological lyocell process which uses N-

methylmorpholine-N-oxide (NMMO) to dissolve cellulose.
[11]

 

As we see, carbohydrates already play key roles as raw materials in the chemical and 

pharmaceutical industries. Nevertheless, whereas nature has perfected the use of 

carbohydrates, the industrial or pharmaceutical application is still in its infancy. In 

consequence, it is imperative that carbohydrates, as important raw materials, are 

systematically further investigated.  
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1.3 Carbohydrate structure and conformation 

Carbohydrate molecules have complex personalities.
[12]

 Reducing sugars exist in 

solution in various cyclic and acyclic forms.
[13]

 The common cyclic forms include pyranoses 

and furanoses, whereas acyclic forms include the carbonyl and hydrate forms, as shown in 

Figure 1.2 for D-glucose.  

 

Figure 1.2. The isomerization of D-glucose in aqueous solution. The percentages of cyclic and acyclic forms of 

D-[1-
13

C]glucose were determined at 30 °C in D2O.
[14]

 

 

The sugars in their pyranose or furanose form can be represented by Haworth projection 

formulae. These projections are widely used to represent carbohydrates although they suggest 

mistakenly that the six-membered ring is planar which is not the case. The pyranose ring, in 

reality, puckers to form different conformations with the approximate shape of a chair.
[5]

 In 

general, chair forms are preferred,
[13]

 although other ring forms such as boat and skew-boat 

(twist-boat) conformations can also be realized for the pyranose ring. The two chair 

conformations are mirror images of each other and are designated as 
4
C1 and 

1
C4. They can be 

visualized as having two ring atoms puckered above and below the plane formed by the 

remaining four ring atoms. The atom puckered above the plane is represented as superscript 

on the left and the atom puckered below as subscript on the right side of the C.  
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Altogether, six boat conformations are possible for pyranose rings depending on which pair of 

atoms are puckered out of the ―best plane‖ and on whether they are above or below. Besides 

the chair and the boat forms, the pyranose ring can adopt a third puckered form called the 

twist-boat or skew-boat. In this form, the first and the third atoms are puckered out of the 

plane formed by the remaining four ring atoms. As with the boat form, six skew-boat forms 

are possible. It is important to remember that the chair, boat and twist-boat conformations 

represent distinct families of pyranose ring conformations. Small changes in molecular 

geometry lead to a number of different conformations which can be categorized under one of 

these families.  

In the chair conformation, the two exocyclic substituents on the ring carbon atoms are not 

geometrically or chemically equivalent; one of them is oriented parallel to and the other, 

somewhat perpendicular to the axis of the pyranose ring. They are said to be axial and 

equatorial, respectively, and are indicated by the corresponding letters ―ax‖ and ―eq‖. Since 

4
C1 and 

1
C4 represent two different conformations of the same ring, in principle, it is possible 

for a sugar molecule to convert from one chair to the other without breaking bonds. Such a 

conversion brings about a change in orientation of the substituent from axial to equatorial and 

vice versa. For example, in Fig. 1.2 all the hydroxy groups of β-D-glucopyranose are in 

equatorial orientations in the 
4
C1 conformation, but they are all axial in the 

1
C4 conformation. 

Since β-D-glucopyranose is the mirror image of β-L-glucopyranose, the orientation of the 

substituents remains the same but the conformation of the pyranose ring changes. Thus, the 

orientations of the exocyclic substituents for the pento- and hexopyranoses are all the same in 

4
C1 (D) and 

1
C4 (L) forms.

[5]
      

For simple monosaccharides, a general rule is that equatorial substituents confer stability to a 

given chair form, whereas axial substituents are destabilizing. The magnitude of the latter 

effect is particularly strong for exocyclic hydroxymethyl groups. Thus, for example, the 

preferred chair form of both anomers of D-glucopyranose is 
4
C1 in which no (β-anomer) or 

only one (O1, α-anomer) substituent is axial. As the number of axial and equatorial 

substituents within a given chair form become comparable, the difference in the stabilities of 

both chair forms decreases. In this situation, both chair forms will be present in measurable 

quantities in solution. 

To contribute to a better understanding of the stereochemistry and the resulting conformation 

of simple sugars, the effect of side groups‘ various steric arrangements and their effect on the 
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stability of the pyranose or furanose ring shapes were investigated in-depth. A first approach 

was the estimation of the relative free energies of the different pyranose-ring conformations in 

aqueous solution using empirical additive schemes such as the Hassel and Ottar scheme.
[15]

 It 

postulates that the steric arrangement (1,3-diaxial interaction) which places the axially 

oriented hydroxymethyl and hydroxy groups on the same side of the ring is unstable (also 

called the Hassel–Ottar effect).  

Another approach was the determination of predominant conformations of many methyl 

glycosides by studying the complexes which some of them form with the cuprammonium 

reagent by Reeves.
[16-17]

 According to Reeves, complex formation requires the presence of 

two hydroxy groups quite close to each other: an equatorial and an axial, or two equatorial. 

Hydroxy groups on adjacent carbon atoms are suitable, as are two syn-axial hydroxy groups. 

In consequence, the Reeves–Kelly scheme evolved which supplemented the Hassel–Ottar 

scheme by considering that any axial group other than hydrogen also imparts instability to the 

pyranose ring. Even though the Reeves–Kelly scheme explained the preferred conformations 

assigned for aldopyranoses from cuprammonium complexes, it differs from the Hassel–Ottar 

scheme in many cases. Several important interactions such as syn-diaxial hydroxy groups and 

the anomeric effect were not considered in assigning the relative stabilities of various chair 

conformations.  

Significant progress was made by Angyal
[13]

 who assigned free energies for all the hexo- and 

pentopyranoses, taking into account the various interactions which impart instability to the 

ring and the anomeric effect. In aqueous solutions, the conformations of the 

aldohexopyranoses are governed mainly by the disposition of the bulkiest substituent, the 

hydroxymethyl group, which tends to assume an equatorial position. In the absence of a 

hydroxymethyl group at C5, the conformations of the aldopentopyranoses are governed by the 

disposition of the hydroxy groups. Thus, the D-arabinopyranoses favor the 
1
C4 form, α-D-

lyxopyranose and D-ribopyranose are each conformational mixtures, and the other 

aldopentoses are predominantly in the 
4
C1 form.  

Besides these interactions, one must take into account the anomeric effect which makes an 

equatorially attached group on the anomeric carbon atom less stable than an axially attached 

group. The anomeric effect varies inversely with the dielectric constant of the solvent, and is 

greatest when the effective charge density on the substituent atom attached directly to C1 is 

high. Recent MM3 force field calculations
[18-19]

 back up Angyal‘s results (see Table 1.1). 
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MM3 was used to study ring conformations of the aldopentopyranoses; the obtained energy 

surfaces exhibit low-energy regions corresponding to the various ring forms. 

Table 1.1. Calculated relative interaction energies, according to Angyal
[13]

, and MM3 relative energies for the 

MM3 local minima, according to Dowd
[18-19]

, of the D-pentopyranoses. Energies, originally given in kcal/mol, 

were converted to kJ/mol. 

kJ/mol Angyal (1969) Dowd (2002) 

 
4
C1 

1
C4 

4
C1 

1
C4 

α-D-Arap 4.82 0.0 14.28 0.0 

β-D-Arap 2.09 0.0 6.09 0.0 

α-D-Lyxp 0.0 2.30 0.0 3.87 

β-D-Lyxp 0.0 4.40 0.0 10.83 

α-D-Ribp 0.0 0.42 7.54 0.0 

β-D-Ribp 0.0 2.51 0.0 0.96 

α-D-Xylp 0.0 6.91 0.0 7.26 

β-D-Xylp 0.0 9.63 0.0 15.95 

 

Currently, intramolecular hydrogen bonding and solvation effects influencing the 

conformational properties of carbohydrates are being discussed.
[20]

 These effects consist of a 

combination of competition between intramolecular and solute–solvent hydrogen bonds, 

preferential solvation of sterically more accessible hydroxy groups and specific interactions 

between solute hydroxy groups and tightly bound solvent molecules. These observations have 

led to the proposal of several models for monosaccharide hydration, among which the axial-

equatorial model suggests that equatorial hydroxy groups are more strongly hydrated 

compared to axial ones because they are sterically more accessible and less likely to be 

involved in strong intramolecular hydrogen bonds.
[21]

 

If furanose forms are involved, the assignment of ring conformation is more complicated. 

This complication arises from the ability of these rings to assume various nonplanar 

geometries in solution characterized by two generic types, the envelope (E) and twist (T) 

forms. The former contains four adjacent coplanar atoms with the remaining atom out-of-

plane, whereas the latter contains three adjacent coplanar atoms and two out-of-plane atoms 

(one above and one below the plane). Twenty idealized nonplanar forms are possible (10 E 

and 10 T). These nonplanar forms interconvert readily via pseudorotation or inversion, the 

latter involving the planar form as an intermediate. Studies have suggested that the energies of 

nonplanar forms are very similar, and thus it is expected that two or more conformers may be 
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present in solution for a given furanose ring. The nature of the conformational equilibrium 

and dynamics is likely to be very much configuration dependent, so no general rule can be 

readily applied at the present time to predict preferred geometries. However, several factors 

influence furanose conformation, namely, the anomeric effect, the preferred quasi-equatorial 

orientation of side chain, staggered orientation of ring substituents, the gauche effect, and a 

preference for tetrahedral carbon angles in the ring. 

 
 

 

 
Figure 1.3. Conformational wheel for furanose rings. The inner ring is for the Cremer–Pople

[22]
 parameters (υ2, 

black) and the next ring is for the numeric values of Altona and Sundaralingam
[23]

 (blue). The next ring gives the 

letter designators for ketose conformations (black) and the next for aldose conformations (blue). The letter 

designators are chosen unambiguously, the short form is 
3
T2 instead of 

C3
TC2 or 

O
E instead of 

O4
E. 

 

Because each of the twenty characteristic conformers is spaced 18° apart on the 

conformational wheel, any intermediate can be described in terms of a phase angle. The 

extent of out-of-plane deviation is called the amplitude. These puckering parameters may be 

plotted on a plane polar coordinate system, with the amplitude being the radius and the phase 
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angle corresponding to the position on the pseudorotational wheel (see Fig. 1.3). Two 

conventions are used for five-membered rings. One is the Altona–Sundaralingam system,
[23]

 

consisting of a phase angle P, and an amplitude angle, τm. The other is the Cremer–Pople 

system
[22]

, with a different phase angle, υ, and an amplitude scalar, Q. In the Altona–

Sundaralingam system, P = 0° for a T form with the carbon atoms opposite the ring oxygen 

atom displaced below and above the plane of the other three (e.g. 
3
T2 for an aldofuranose). In 

the C–P description, υ = 0° for the 
O
E form. In both systems, the phase angle increases with 

clockwise rotation, a reflection of the clockwise numbering of rings when they are viewed in 

the standard position. The degree of puckering τm or the amplitude Q is zero for an all-planar 

structure that would be depicted at the center of the conformational wheel. Off the center, Q is 

the mean deviation of the ring atoms from the mean plane. A useful coincidence is that 

τm(°) = 102.5 Q(Å) and P = υ + 90°. The Altona–Sundaralingam system is used extensively 

for nucleotides and nucleosides, while the Cremer–Pople system is favored by some 

crystallographers because the same system can be applied to rings of other sizes. Given the 

coordinates of the ring atoms, computer programs can calculate the puckering parameters. 

Besides the quantitative puckering parameters and the qualitative letter notation, there is an 

even more informal notation that divides the conformational wheel into four quadrants, 

labelled north, south, west and east.
[24]

 

 

 

Figure 1.4. The three possible, perfectly staggered rotamers about the exocyclic C5–C6 bond of aldohexo-

pyranoses.  

 

The conformational determination of exocyclic hydroxymethyl groups includes the 

assessment of the C5–C6 bond‘s torsional behavior in aldohexopyranoses (or of the C4–C5 

bond in aldopentofuranoses). One can address this problem in several ways. In the first, only 

three idealized (i.e., perfectly staggered) rotamers (gg, gt, tg, see Fig. 1.4) are considered 

potential forms in solution. All other rotamers are ignored; in fact, they are implicitly treated 
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as transient intermediates in the rapid interconversion of the three staggered forms and thus 

have very short lifetimes compared to the experimental measurement time. As a consequence 

of the latter, they do not make a contribution to measured experimental parameters.  

In an intermediate approach, the same three rotamers are considered, but may not be perfectly 

staggered. Finally, in the most complex and less constrained treatment, rotation about the C–C 

bond is treated as a continuum, that is, all rotamers are considered in the analysis. 

 

Figure 1.5. Definiton of the phi (φ) and psi (ψ) glycosidic torsion angle in a disaccharide (β-lactose).  

 

The conformation about the glycosidic linkage is defined by two or three torsion angles 

depending on the nature of the linkage. In disaccharides as depicted in Fig. 1.5, only two 

torsion angles are involved, namely C1–O1 (υ) and O1–C4' (ψ). The υ torsion angle is 

affected by the exoanomeric effect, whereas both υ and ψ will be influenced by nonbonded 

interactions and potential interresidue hydrogen bonding. For linkages involving the oxygen 

of an exocyclic CH2OH group, a third torsion (ω) is required (e.g., C5–C6) to define 

geometry.
[12]

 

 

1.4 NMR spectroscopy and the Karplus equation 

 The discovery that the vicinal proton-proton coupling constant 
3
JHH varies smoothly 

with the associated H–C–C–H torsion angle υHH in ethane had a profound impact on the 

acceptance of NMR as an indispensable tool in stereochemistry and conformational analysis. 

Initially, VB theory was used by Karplus
[25]

 to calculate 
3
JHH in ethane, which could be fitted 

approximately by the equations: 

3
JHH = 8.5 cos

2
(υHH) – 0.28 for 0° ≤ υ ≤ 90° and 

3
JHH = 9.5 cos

2
(υHH) – 0.28 for 90° ≤ υ ≤ 180°    (1.1) 
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Later, the equation was restated in a trigonometric form, namely, 

3
JHH = A cos

2
(υHH) + B cos(υHH) + C     (1.2) 

because its quadratic form allows an explicit calculation of υ from the coupling constant, 

despite a warning from Karplus that ―the person who attempts to estimate the dihedral angles 

to an accuracy of one or two degrees does so at his own peril‖.
[25]

 The general shape of the 

Karplus curve (Fig. 1.6), large 
3
JHH at υ = 0° (eclipsed) and at or near υ = 180° (trans or anti), 

and decreasing to a minimum value (
3
JHH ≈ 0 Hz) near υ = 90°, in the course of time was 

shown to be applicable to many molecular fragments.
[26]

 

 

 

Figure 1.6. Schematic Karplus curve: 
3
JHH coupling constants‘ dependence on the H–C–C–H torsion angle υHH. 

 

Despite the success of 
3
JHH values as conformational probes, several limitations must be 

appreciated when applying them in structural studies. The exact form of the Karplus equation 

depends highly on the structure of the H–C–C–H fragment; the values A, B, and C in the 

original Karplus equation set to A = 9.0, B = −0.5 and C = −0.28 reflect this dependency.
[27]

 

In particular, the presence of electronegative substituents on or near the H–C–C–H fragment, 

and their orientation with respect to the coupling pathway, significantly affect the amplitude, 

and to a lesser extent, the shape of Karplus curves. Since the original report by Karplus, who 

himself recognized this limitation, several more sophisticated Karplus equations have been 

proposed that take substitution effects into account. Most notable is that proposed by Altona 

and co-workers.
[28]
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Thus, 
3
JHH values cannot be interpreted without access to a Karplus equation appropriate for 

the coupling pathway under consideration. Furthermore, the interpretation of 
3
JHH values in a 

molecule depends on its dynamical properties which are often unknown or assumed in many 

analyses. The simplest interpretation assumes one and only one conformation in solution. 
3
JHH 

values are then assessed to identify this single conformation. However, more often the 

molecule is not conformationally fixed, that is, it samples two or more conformations in 

solution with an exchange between these states which is rapid compared to the frequency of 

observation. Under these circumstances, the observed 
3
JHH values will be averaged to reflect 

this heterogeneity. This averaging can be complex depending on the dynamics of the system 

and the NMR parameter involved.
[12]

 Nevertheless, systematic investigations into the 

orientational effects of substituents on 
3
JHH have resulted in a differentiation of the following 

three situations: 

(a) Gauche protons and a substituent in an anti orientation: 
3
JHH decreases strongly with 

increasing electronegativity of the substituent (Booth‘s rule);
[29]

 

(b) Gauche protons and a substituent in a gauche orientation with respect to its vicinal 

coupling proton: 
3
JHH increases with increasing electronegativity of the substituent 

(Abraham‘s rule);
[30]

 

(c) Anti or trans protons with a substituent necessarily in a gauche position: 
3
JHH decreases 

with increasing electronegativity of the substituent. 

If the substituent is oxygen in conformationally rigid pyranose sugars, a statistical analysis of 

a large set of couplings clearly illustrates the fact that gauche couplings do not obey the 

simple cosine-square rule. Therefore, for example, Haasnoot et al.
[28]

 have described a 

generalized Karplus equation: 

3
JHH = P1 cos

2
(υHH) + P2 cos(υHH) + P3 + ΣiΔχi [P4 + P5 cos

2
(ξi(υHH)+ P6 |Δχi|)]   (1.3) 

The parameters P1–P6 were empirically determined with the aid of a test set containing 315 

couplings and corresponding υHH values derived from a variety of pyranosides and related 

compounds. Each substituent was assigned a Δχi value according to Huggins,
[31]

 but 

empirically modified to account for the moderation of the electronegativity of the 

α substituent by attached atoms or groups (β substituents), other than hydrogen. Finally, ξi is a 

sign factor corresponding to the protons‘ orientation defined by Haasnoot et al.
[28]
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Although several other Karplus equations exist, the Díez–Donders equation, for example,
[32]

 

the Haasnoot–de Leeuw–Altona equation is favored because of its carbohydrate origin. 

MESTRE-J,
[33]

 a graphical tool for the prediction of vicinal 
3
JHH coupling constants, allows an 

easy access to a variety of Karplus equations and was used in this work for the calculation of 

coupling constants from torsion angles and the other way around. 

 

1.5 Aims of this work 

In the middle of the last century, Reeves used copper–ammine-based probes as a tool 

to unravel the conformation of the glycopyranoses. The method was based on the 

coordination chemistry of Schweizer‘s reagent with carbohydrates.
[16-17]

 In 1981, Taylor and 

Waters
[34]

 published their pioneering work on the first crystal-structure determination of a 

monosaccharide–metal complex, a dinuclear molybdenum–lyxose complex (Fig. 1.7). For 

more than a decade, this crystal-structure determination on a heteroleptic oxido-alkoxido 

complex remained the only one in the field.  

 

Figure 1.7. NH4[Mo2O4(µ-O)(β-D-Lyxf 1,2,3H−3-κO
1,2,3,4

)], a redetermination of the first monosaccharide–metal 

complex‘s structure.
[35]

 

 

Only in the year 2001 was [Pd2(en)2(α-D-Glcp1,2;3,4H−4-κO
1,2

:κO
3,4

] the first published 

Pd
II
N2-complex with D-glucose,

[36]
 starting a series of publications

[37-39]
 which expanded the 

knowledge of carbohydrate-coordination chemistry with Pd
II
N2-fragments. Now, the aim of 

this work is the further investigation of Pd
II
N2-complexes with more reactive carbohydrates, 

such as the ketoses and dialdoses, with di-, tri- and oligosaccharides.   



1 Introduction 

18 

 

Also, the coordination chemistry of Pd
II
N2-carbohydrate complexes in neutral aqueous 

solution and the dynamic behavior of methyl pentosides and pentoses should be further 

investigated. Thus, studies of the effect of the side groups‘ various steric arrangements and 

their effect on the stability of the pyranose- or furanose ring shapes contributes greatly to a 

better understanding of the stereochemistry of simple sugars. Therefore, in a first step, the 

pool of Pd
II
N2-fragments has to be extended with regard to a higher resistance to the reduction 

to palladium(0) and a better crystallization tendency.  
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2 Results 

2.1 Palladium(II) fragments: nomenclature and characteristics 

Metal-containing reagents that had been developed primarily as cellulose solvents 

have been used as diagnostic tools for basic research on monosaccharides and their 

derivatives since the early days of carbohydrate chemistry. The first solvent of this kind was 

‗Schweizer‘s reagent‘ (1857), which is a solution of cupric hydroxide in excess aqueous 

ammonia.
[40]

 In this work, Schweizer‘s reagent (‗cuoxam‘, ‗cuprammonium hydroxide‘, 

‗cupra‘) is abbreviated Cu-NH3, using a nomenclature which was introduced for cellulose 

solvents. The first palladium-based solvents, Pd-NH3 and Pd-en, an aqueous solution of 

[Pd(en)(OH)2] (en = ethane-1,2-diamine), were introduced about a decade ago.
[41-42]

 Because 

the formed complexes are diamagnetic low-spin-d
8
 species in contrast to the copper- 

containing complexes, they are analytic tools that allow the use of NMR spectroscopy in 

complexation studies. These palladium solvents are kinetically inert with respect to ligand 

exchange on the NMR timescale. Therefore, NMR data that are mean values due to the 

contributions from two or more species (mean chemical shift, mean coupling constants), are 

indicative of the dynamic behavior of an individual intact complex.  

The replacement of the initially applied Pd-en by the related chiral solvent termed Pd-chxn, an 

aqueous solution of (R,R)-cyclohexane-1,2-diamine-dihydroxido-palladium(II), led to a 

consistent body of data on the metal-binding sites of a glycose.
[37]

 A common property of all 

Pd-based solvents is the magnitude of the so-called ‗coordination-induced shift‘ (CIS). 

Depending on the binding mode of the carbohydrate, these shifts remain almost constant 

among the solvents. Thus, in the case of five-membered chelate rings, the signals of the 

carbon atoms experience an approximately 10-ppm downfield shift relative to the free 

chelator. In the case of six-membered chelate rings, markedly smaller CISs are observed. 

Now, as it is the aim of this work to investigate Pd
II
N2-complexes with more reactive 

carbohydrates, in a first step, the pool of Pd
II
N2-fragments has to be extended in regard to a 

higher resistance to reduction to palladium(0) and better crystallization tendency. Therefore, 

in a first step, suitable C2-symmetric diamines have to be reacted with PdCl2 and, in a second 

step, the chloride ligands have to be substituted by hydroxide ligand. Hereinafter, the most 

promising of the various tested Pd
II
N2 fragments,

[43-45]
 their properties and their suitability for 

use will be described. 
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2.1.1 [Pd(dmen)(OH)2] and [Pd(tmen)(OH)2] 

 N,N′-Dimethylethane-1,2-diamine and N,N,N′,N′-tetramethylethane-1,2-diamine were 

both commercially available and could be treated with PdCl2 the same way as ethane-1,2-

diamine to obtain the [Pd(dmen)Cl2] and [Pd(tmen)Cl2] compounds. Also the treatment with 

Ag2O to Pd-dmen and Pd-tmen resulted by the proven method of Pd-en and clear yellow 

solutions were obtained. In the case of Pd-dmen, this Pd
II
N2-fragment was not suitable for 

NMR investigations because the two methyl groups can form a syn and an anti isomer which 

multiply the signals in NMR spectra. Also the resistance to reduction to palladium(0) is 

comparable to Pd-en which makes Pd-dmen unfavorable for any conversions with reducing 

carbohydrates such as the ketoses or dialdoses. Nevertheless, with the polyols, a few crystal 

structures could be determined and are discussed below.  

 

 

Figure 2.1. The molecular structure of [Pd(tmen)(OH)2] in crystals of the dihydrate (1). ORTEP plot is drawn 

with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard deviations of the last digit in 

parentheses): Pd1–O1 1.976(2), Pd1–O2 2.005(2), Pd1–N1 2.067(3), Pd1–N2 2.067(3); O1–Pd1–O2 93.40(9), 

O1–Pd1–N1 89.69(10), O2–Pd1–N2 91.46(11), N1–Pd1–N2 85.66(12). 

In Fig. 2.1, the Pd
II
N2-fragment dihydroxido-N,N,N′,N′-tetramethylethane-1,2-diamine-

palladium(II) crystallized from DMF is depicted. The asymmetric unit in the orthorhombic 

space group P 212121 contained only one [Pd(tmen)(OH)2] fragment. Compared to the crystal 

structure of [Pd(en)(OH)2] {Pd–O 2.017(2) Å, Pd–N 2.028(2) Å, O–Pd–O 93.6(1) °, N–Pd–N 

84.0(1) °}, the Pd–O bond distances of [Pd(tmen)(OH)2] were slightly smaller, while the    

Pd–N bond distances were extended.
[46]

 The O–Pd–O and N–Pd–N were almost the same for 

both compounds. The distances and angles of the hydrogen bonds are listed in Table 2.1.  
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Table 2.1. Distances [Å] and angles [°] of hydrogen bonds in 1. Standard deviations of the last digit are given in 

parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O1  H1   O2
i
  0.84    2.07    2.903(3) 171.5  

O2  H2   O2
i
  0.84    2.65    3.447(2) 159.5  

O91 H911 O1  0.84(3) 1.84(3) 2.660(4) 165(3) 

O91 H912 O92
ii
 0.70(4) 2.37(4) 3.046(5) 165(4) 

O92 H921 O2  0.74(4) 2.01(3) 2.747(4) 175(4) 

O92 H922 O91
ii
 0.75(5) 2.34(5) 3.067(6) 164(5) 

 

Symmetry code: (i) x+
1
⁄2, −y+

5
⁄2, −z+2; (ii) x−

1
⁄2, −y+

5
⁄2, −z+2. 

The Pd-tmen solvent‘s characteristics were determined by the substitution of the N-bonded 

H atoms of Pd-en by methyl groups. As a result, there was an increased steric demand in the 

direction of the bonded diolate and hence modified species stabilities and no intramolecular 

hydrogen bonds could be formed toward adjacent functions of the bonded carbohydrate. The 

most remarkable property of Pd-tmen is its superior resistance to reduction to palladium(0) in 

relation to the fragments introduced so far thus making the investigation of dialdoses possible. 

A common property with other Pd-based solvents was the magnitude of the CIS which 

enabled the comparison of 
13

C NMR chemical shifts and CIS values of different Pd
II
N2-

fragments. The only disadvantage of Pd-tmen was the overlap of the tmen‘s 
13

C NMR signal 

with the signal of carbohydrates‘ C6 but this does not necessarily mean a loss of information. 

 

2.1.2 [Pd(tmchxn)(OH)2] 

 Due to the various advantages of Pd-tmen, the synthesis of Pd-tmchxn was a corollary. 

Although not commercially available, N,N,N′,N′-tetramethyl-(1R,2R)-cyclohexane-1,2-

diamine and its treatment with PdCl2 is known in the literature and easily accessible.
[47-48]

 

Contrary to all expectations, this fragment did not combine the crystallization tendency of Pd-

chxn with the stability of Pd-tmen. Of course, Pd-tmchxn showed an increased crystallization 

rate. Unfortunately, only η
2
-carbonato-N,N,N′,N′-tetramethyl-(1R,2R)-cyclohexane-1,2-di-

amine-palladium(II) hexahydrate (2) was found instead of carbohydrate-containing 

compounds. Fig. 2.2 shows the compound crystallized in the orthorhombic space group 

C 2221 with a single carbonate forming a four-membered chelate ring with palladium(II). As a 

result, with a O–Pd–O angle of 64.86(10)°, the square-planar coordination of palladium(II) 
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was impaired. This motif is also known for Pd-tmen,
[49-50]

 with bond distances and angles in a 

comparable range, but without this dominant crystallization tendency. 

 

Figure 2.2. The molecular structure of [Pd(tmchxn)(CO3)] in crystals of the 6-hydrate (2). ORTEP plot is drawn 

with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard deviations of the last digit in 

parentheses): Pd1–O1 2.047(2), Pd1–N1 2.038(2); O1–Pd1–O1
i
 64.86(10), O1–Pd1–N1

i
 104.56(10), O1

i
–Pd1–

N1 104.56(10), N1–Pd1–N1
i
 86.03(10); chelate torsion angle: N1–C3–C3

i
–N1

i
 −51.2(3). [Symmetry code:       

(i) −x, y, −z + ½]  

In Table 2.2, the distances and angles of the hydrogen bonds are listed and the hydrogen 

bonding network has only one single contact with O1 of the molecule.  

Table 2.2. Distances [Å] and angles [°] of hydrogen bonds in 2. Standard deviations of the last digit are given in 

parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O91 H911 O93 0.823(18) 1.97(2) 2.778(5) 166(5) 

O92 H921 O93 0.827(18) 2.03(3) 2.785(5) 152(5) 

O93 H931 O94 0.823(19) 2.01(3) 2.776(4) 154(7) 

O93 H932 O1
i
  0.852(18) 1.95(2) 2.735(3) 154(4) 

O94 H941 O92
ii 

0.806(19) 2.08(3) 2.854(5) 162(7) 

O94 H942 O91
iii 

0.813(18) 2.04(2) 2.846(5) 173(6) 
 

Symmetry code: (i) −x+2, −y+2, z−
1
⁄2; (ii) x−

1
⁄2, y−

1
⁄2, z; (iii) x+

1
⁄2, y−

1
⁄2, z. 

NMR experiments with Pd-tmchxn are lacking although the compound would be a chiral and 

stable Pd
II
N2-fragment for the investigation of dialdoses.  
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2.1.3 [Pd(teen)(OH)2] 

 To increase the steric demand of the Pd
II
N2-fragment, N,N,N′,N′-tetraethylethane-1,2-

diamine was used for the treatment with PdCl2 instead of tmen. Using the synthesis conditions 

of [Pd(tmen)Cl2], yellow crystals could be obtained. Fig. 2.3 (left) shows N,N,N′,N′-tetra-

ethylethane-1,2-diammonium tetrachloridopalladate(II) crystallized in the monoclinic space 

group P 21/n. As the crystal-structure analysis showed, the expected product was not obtained. 

Whereas for en or tmen the chelate effect enforced the splitting off of two equivalents of 

hydrochloric acid, on teen, the steric demand of the ethyl groups weakened the chelate effect. 

Only by raising the pH value to 5, could [Pd(teen)Cl2] be obtained. This method is known for 

the synthesis of [Pd(R,R-chxn)Cl2] and [Pd(tmchxn)Cl2] as well. 

 

Figure 2.3. The molecular crystal structures of (teenH2)[PdCl4] (3) (left) and [Pd(teen)Cl2] (4) (right). ORTEP 

plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard deviations of 

the last digit in parentheses) of 4: Pd1–Cl1 2.309(3), Pd1–N1 2.112(8); Cl1–Pd1–Cl1
i
 90.72(10), Cl1–Pd1–N1

i
 

90.6(2), Cl1
i
–Pd1–N1 90.6(2), N1–Pd1–N1

i
 88.2(3). [Symmetry code: (i) −x, y, −z + ½] 

Dichlorido-N,N,N′,N′-tetraethylethane-1,2-diamine-palladium(II) crystallized in the space 

group C 2/c and is depicted in Fig. 2.3 (right). The treatment to Pd-teen with Ag2O could be 

performed under identical conditions as for Pd-tmen and a clear yellow solution was obtained 

which showed a increased resistance to reduction to palladium(0). As for Pd-tmen, the teen‘s 

13
C NMR signal overlapped with the signal of carbohydrates‘ C6 but, in comparison to 

Pd-tmen, with Pd-teen, minor species could be enriched and elucidated. Therefore, the 

combination of Pd-tmen and Pd-teen promised a maximum of information about the 

coordination chemistry of carbohydrates with Pd
II
N2-fragments. 
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2.1.4 [Pd(tn)(OH)2] 

 So far, only five-membered ring Pd
II
N2-fragments were applied for the investigation of 

carbohydrate-metal chemistry, although with [Pd(htn)Cl2], a six-membered ring Pd
II
N2-

fragment is known in the literature.
[51-53]

 Because of the missing C2-symmetry, 2-hydroxy-

propane-1,3-diamine was replaced by propane-1,3-diamine to yield [Pd(tn)Cl2]. After the 

treatment with Ag2O to Pd-tn, the 
13

C NMR spectrum revealed the instability of the six-

membered ring Pd
II
N2-fragment because signals of [Pd(tn)(OH)2] and free propane-1,3-

diamine were detected in equimolar amounts. In consequence, reactions of Pd-tn with polyols 

yield high amounts of free polyol, whereas the CIS values do not differ from those of five-

membered ring Pd
II
N2-fragments. Nevertheless, a few crystal structures of Pd-tn with polyols 

could be obtained and are discussed below. 

 

2.1.5 [Pd(bpy)(OH)2] and [Pd(phen)(OH)2] 

 2,2′-Bipyridine and 1,10-phenanthroline are known as strong chelate ligands, 

especially for square-planar coordinated metal ions such as palladium(II). Furthermore, the 

syntheses of [Pd(bpy)(OH)2] and [Pd(phen)(OH)2] and their conversion with simple diols 

such as ethane-1,2-diol are described in the literature.
[54-55]

 

 

 

 

 

 

 

 

 

 

Figure 2.4. The molecular structure of [Pd(bpy)(OH)2] in crystals of the 5-hydrate (5). ORTEP plot is drawn 

with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard deviations of the last digit in 

parentheses): Pd1–O1 2.005(5), Pd1–O2 1.988(5), Pd1–N1 1.986(5), Pd1–N2 2.011(5); O1–Pd1–O2 89.9(2), 

O1–Pd1–N1 93.9(2), O2–Pd1–N2 95.1(2), N1–Pd1–N2 81.0(2). 
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The synthesis of [Pd(bpy)Cl2] and [Pd(phen)Cl2] followed the usual method as far as possible, 

except for dissolution of bpy and phen acetone was added, the treatment with Ag2O yielded a 

clear yellow to orange solution. The aim to reduce the solubility of the Pd
II
N2-fragment was 

definitely overperformed because [Pd(bpy)(OH)2] and [Pd(phen)(OH)2] rapidly crystallized 

completely. The crystal structures are shown in Fig. 2.4 and 2.5 where both compounds 

formed pentahydrates in the asymmetric unit of the monoclinic space group P 21/n and the 

bond distances and angles of palladium(II) are almost identical.  

 

Figure 2.5. The molecular structure of [Pd(phen)(OH)2] in crystals of the 5-hydrate (6). ORTEP plot is drawn 

with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard deviations of the last digit in 

parentheses): Pd1–O1 1.9865(17), Pd1–O2 1.9922(17), Pd1–N1 2.014(2), Pd1–N10 2.016(2); O1–Pd1–O2 

93.39(7), O1–Pd1–N1 92.04(7), O2–Pd1–N10 92.43(8), N1–Pd1–N10 82.15(8). 

As one can see in Fig. 6.44 and Fig. 6.45 of the Appendix, the [Pd(bpy)(OH)2] and 

[Pd(phen)(OH)2] fragments formed close stacks along the crystallographic a axis linked by a 

hydrogen-bonding network (for 6, see Table 2.3) which is the reason for the high 

crystallization tendency. The distance between the individual molecular planes is 3.351 Å for 

[Pd(bpy)(OH)2] and 3.447 Å for [Pd(phen)(OH)2]. This characteristic motif of the planar 

[Pd(bpy)(OH)2] and [Pd(phen)(OH)2] fragments was repeated in the crystal structures with the 

simple diols. Otherwise, due to this stacking, [Pd(phen)(OH)2] was almost unsoluble in water 

and only soluble in methanol and, furthermore, crystal structures could only be obtained with 

planar or almost planar diols whereas non-fitting polyols or carbohydrates formed only 

amorphous powders or decomposed to oxalate. 
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Table 2.3. Distances [Å] and angles [°] of hydrogen bonds in 6. Standard deviations of the last digit are given in 

parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O1  H811 O91
i 

0.84      2.17      2.962(3) 156.7  

O2  H821 O91
i
 0.84      2.00      2.828(3) 170.0  

O91 H911 O92 0.773(13) 1.968(13) 2.741(3) 178(3) 

O91 H912 O94 0.779(13) 1.939(13) 2.718(3) 179(3) 

O92 H921 O93 0.769(13) 2.064(14) 2.819(3) 167(3) 

O92 H922 O1  0.778(13) 2.012(14) 2.785(3) 172(3) 

O93 H931 O2
ii 

0.781(13) 1.900(14) 2.680(3) 177(3) 

O93 H932 O95
iii 

0.777(13) 2.055(14) 2.824(4) 171(3) 

O94 H941 O93
iv

 0.776(13) 2.043(13) 2.819(3) 177(3) 

O94 H942 O1
v
  0.777(13) 1.981(13) 2.750(3) 171(3) 

O95 H951 O2
vi

  0.775(13) 1.957(14) 2.723(3) 170(3) 

O95 H952 O95
iii 

0.773(14) 2.126(16) 2.889(5) 169(5) 
 

Symmetry code: (i) x−
1
⁄2, −y+

1
⁄2, z−

1
⁄2; (ii) x−

1
⁄2, −y+

1
⁄2, z+

1
⁄2; (iii) −x+1, −y, −z+1; (iv) x+

1
⁄2, −y+

1
⁄2, z−

1
⁄2; (v) x+1, 

y, z; (vi) x+
1
⁄2, −y+

1
⁄2, z+

1
⁄2. 

The crystal structure of [Pd(phen)(oxH−2)] monohydrate is described in the literature.
[56]

 

Compounds with ethane-1,2-diol and anhydroerythritol will be discussed in the next chapter. 

 

2.2 Simple diols: ethane-1,2-diol and anhydroerythritol complexes with Pd-phen 

 The structures of [Pd(phen)(EthdH−2)] heptahydrate (7) and Pd(phen)(AnErytH−2)] 

4.5-hydrate (8) both crystallized in the monoclinic space group C 2/c and were stacked along 

the c axis as depicted in Fig. 6.46 and Fig. 6.47 of the Appendix. The nonplanarity of the diols 

in the case of ethane-1,2-diol resulted in four different positions around the stack of the 

phenanthroline ligands and did not clearly affect the interplanar distance [3.420 Å for 7].    

For anhydroerythritol, the diols were aligned opposite each other along the stack which also 

did not remarkably affect the interplanar distance of the phenanthroline ligands [3.510 Å 

for 8]. Again, in both cases, the single stacks were held together by a hydrogen-bonding 

network which is analyzed for 7. The distances and angles of the hydrogen bonds are listed in 

Table 2.4. The five-membered oxolane ring of anyhydroerythritol was characterized by the 

puckering parameters
[22]

 q = 0.372(3) Å and υ = 257.5(5)° for the O1–C1–C2–C3–C4 ring. 

The conformation was approximately E3 indicating an envelope conformation with the C2 

atom deviating the most from the respective best-fit plane.  
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Figure 2.6. The molecular structure of [Pd(phen)(EthdH−2)] in crystals of the 7-hydrate (7). ORTEP plot is 

drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard deviations of the last 

digit in parentheses):  Pd1–O1 1.987(3), Pd1–O2 1.974(2), Pd1–N1 2.009(3), Pd1–N2 2.013(3); O1–Pd1–O2 

85.93(11), O1–Pd1–N1 95.75(11), O2–Pd1–N2 96.25(11), N1–Pd1–N2 82.06(11); chelate torsion angle: O1–

C1–C2–O2 –49.9(5). 

Table 2.4. Distances [Å] and angles [°] of hydrogen bonds in 7. Standard deviations of the last digit are given in 

parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O91 H911 O93 0.841(17) 1.90(2)   2.729(4)  169(6)  

O91 H912 O91
i
 0.840(18) 2.08(5)   2.785(6)  142(8)  

O92 H921 O91 0.837(17) 1.967(18) 2.802(4)  176(5)  

O92 H922 O2  0.847(17) 1.854(18) 2.696(4)  173(4)  

O93 H931 O92
ii 

0.842(17) 1.91(2)   2.731(4)  164(6)  

O93 H932 O95
ii 

0.836(17) 2.04(2)   2.873(4)  170(6)  

O94 H941 O2  0.836(17) 1.88(2)   2.705(4)  167(5)  

O94 H942 O94
iii 

0.843(18) 1.90(3)   2.712(6)  163(10) 

O95 H951 O97 0.839(17) 2.01(3)   2.814(10) 161(5)  

O95 H952 O95
iv 

0.838(18) 2.01(3)   2.837(6)  170(11) 

O96 H961 O1
iii

  0.842(17) 1.84(2)   2.667(4)  166(7)  

O96 H962 O91
v 

0.847(17) 1.96(3)   2.746(5)  154(6)  

O97 H971 O96 0.836(17) 1.93(4)   2.629(7)  141(5)  

O97 H972 O1
v
 0.836(17) 1.85(2)   2.664(6)  164(5)  

 

Symmetry code: (i) −x+2, y, −z+
3
⁄2; (ii) −x+

3
⁄2, −y+

1
⁄2, −z+1; (iii) −x+

3
⁄2, −y+

1
⁄2, −z+2; (iv) −x+1, y, −z+

3
⁄2; 

(v) −x+
3
⁄2, y+

1
⁄2, −z+

3
⁄2. 
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Figure 2.7. The molecular structure of [Pd(phen)(AnErytH−2)] in crystals of the 4.5-hydrate (8). ORTEP plot is 

drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard deviations of the last 

digit in parentheses): Pd1–O2 1.990(2), Pd1–O3 1.989(2), Pd1–N1 2.024(3), Pd1–N2 2.018(3), O2–Pd1–O3 

85.66(9), O2–Pd1–N1 96.00(10), O3–Pd1–N2 96.72(10), N1–Pd1–N2 81.61(10); chelate torsion angles: O1–

C1–C2–O2 43.0(3); puckering parameters of the furanose ring O1–C1–C2–C3–C4: q = 0.372(3) Å, 

υ = 257.5(5)°.
[22]

 

The ideal υ value for this conformation is 252°. The observed phase angle indicated a 

distortion towards a twist conformation 
4
T3, whereas in the known structure of 

Pd(bpy)(AnErytH−2)] 6.5-hydrate,
[57]

 the oxolane rings showed a 
4
T3 twist conformation with 

a distortion towards an E3 envelope conformation.  

 

2.3 The polyols: open-chain carbohydrate complexes of palladium(II) 

 To evaluate the properties of a new Pd
II
N2-fragment, the polyols (Fig. 2.8) were an 

ideal starting point. Well-investigated with Pd-en
[58]

 and almost unreactive because of a 

missing aldehyde function, the polyols promptly indicated the advantages and disadvantages 

of a Pd
II
N2-fragment compared with Pd-en. 

Polyols, although open-chain carbohydrate derivatives, are by no means the flexible ligands 

they are expected to be. Instead, a couple of stereochemical rules determine the ligand 

properties. Thus, the highest stability is found if (1) the individual chelate ring is formed by a 

threo-configured diol group, (2) two adjacent chelating diol groups are erythro-linked, and 



2 Results 

29 

 

(3) a δ hydrogen bond, that is, a hydrogen bond whose donor hydroxy and acceptor alkoxido 

parts are separated by a C4 chain, can be established. Intramolecular hydrogen bonding seems 

to be the most competitive variable to metalation of a polyol. If a specific metalation pattern 

matches all these conditions, such as that of the dimetalated dulcitol, the polyolato ligand is 

invariably found in this bonding situation. If not, a variety of species of comparable stability 

is then present in solution.
[58]

 

 

Figure 2.8. Fischer projections and atomic numbering of the C4 (tetritols, top), C5 (pentitols, middle) and C6 

(hexitols, bottom) glycitols. From top left to bottom right: erythritol, D-threitol, D-arabitol, ribitol (‗adonitol‘), 

xylitol, allitol, D-altritol (= tallitol), dulcitol (‗galactitol‘), L-iditol, D-mannitol and D-sorbitol (‗glucitol‘, 

[= gulitol]). Note that, in a Fischer projection, a pair of secondary hydroxy functions at the same side of the 

carbon backbone is erythro-linked, whereas a right-left couple is threo-configured. Note that Eryt, Ribt and Allt 

are all-erythro; Thre, Xylt and Idit are all-threo. Glycitols lacking the D or L designator are Ci- or Cs-symmetric 

meso forms. 

Preliminary investigations have eliminated most of the Pd
II
N2-fragments introduced so far and 

have identified the fully alkylated fragments as the most promising ones. In consequence, 

only 
13

C NMR spectroscopy results with Pd-tmen, and new results with Pd-en will be 

presented in the next section. Additionally, crystal structures with all fragments will be 

discussed. 
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2.3.1 The tetritols: erythritol and D-threitol 

 With Pd-en, the isomeric tetritols, erythritol and D-threitol, formed the fully metalated 

[Pd2(en)2(TetrH−4-κO
1,2

:κO
3,4

)] species in aqueous solutions of Pd-en/tetritols of a molar ratio 

of 3:1. With erythritol, the binuclear species was the main species in solution, whereas, as a 

rough estimate, only half of the D-threitol bound two Pd(en) moieties; the other half acted as a 

ligand in the mononuclear [Pd(en)(D-Thre2,3H−2-κO
2,3

)] species.  

This stability of the binuclear [Pd2(en)2(ErytH−4-κO
1,2

:κO
3,4

)] and the mononuclear [Pd(en)(D-

Thre2,3H−2-κO
2,3

)] in the respective solutions dominated the species distribution in 1:1 

solutions as well. In the case of erythritol, about one quarter of the tetritol was found as a 

ligand in the binuclear complex despite the fact that a remarkable amount of erythritol 

remained uncomplexed in the equimolar solutions. With D-threitol, the [Pd(en)(D-Thre2,3H−2-

κO
2,3

)] complex was almost the only species in 1:1 solutions. Hence, the analogous complex 

with the D-Thre1,2H−2-κO
1,2

 ligand was only a minor species in solution. 

With Pd-tmen in the 1:1 solutions, the species distribution changed remarkably. With 

erythritol, the main species was [Pd(tmen)(Eryt1,2H−2-κO
1,2

)]. Free erythritol and the other 

species listed in Table 2.5 could be detected only in small amounts. With D-threitol, the 

dominance of the [Pd(tmen)(D-Thre2,3H−2-κO
2,3

)] species was noticeably reduced in favor of 

[Pd(tmen)(D-Thre1,2H−2-κO
1,2

)], [Pd2(tmen)2(D-ThreH−4-κO
1,2

:κO
3,4

)] and free 

Table 2.5. 
13

C NMR chemical shifts (δ/ppm) and shift differences (∆δ) to the free polyol of erythritol and D-

threitol ligands in Pd-tmen. Atoms are numbered as in Figure 2.8. 

  C1 C2 C3 C4 Chelate 

Eryt δ 63.3 72.7    

Eryt1,2H−2 δ 71.4 81.9 73.2 65.1  

 ∆δ 8.1 9.2 0.5 1.8 κO
1,2

 

Eryt2,3H−2 δ 62.7 81.5    

 ∆δ −0.6 8.8   κO
2,3

 

ErytH−4 δ 75.3 83.6    

 ∆δ 12.0 10.9   κO
1,2

:κO
3,4

 

D-Thre δ 63.3 72.3    

D-Thre1,2H−2 δ 70.8 80.9 73.8 62.6  

 ∆δ 7.5 8.6 1.5 −0.7 κO
1,2

 

D-Thre2,3H−2 δ 65.4 80.4    

 ∆δ 2.1 8.1   κO
2,3

 

D-ThreH−4 δ 72.0 85.2    

 ∆δ 8.7 12.9   κO
1,2

:κO
3,4
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D-threitol occurred only in small amounts. The chemical shifts are listed in Table 2.5. 

Attempts to crystallize some of the tetritol–palladium complexes were successful for the 

binuclear erythritolato compound which was obtained in the form of yellow crystals from 3:1 

solutions. Crystals of [Pd2(dmen)2(ErytH−4-κO
1,2

:κO
3,4

)] · 14 H2O (9) in the space group P 1̄ 

and [Pd2(tn)2(ErytH−4-κO
1,2

:κO
3,4

)] · 10 H2O (10) (Fig. 2.9 and 2.10) in the space group C 2/c 

were composed of almost flat, centrosymmetric molecules whose structures resemble that of 

the ammine
[59]

 and the ethane-1,2-diamine
[58]

 analog. In both cases, the alkoxido O atoms of 

the fully deprotonated erythritolato ligands acted as hydrogen-bond acceptors in two H bonds 

each. With the nitrogen-bonded protons of the Pd
II
N2-fragment acting as hydrogen-bond 

donors, both erythritolato compounds were integrated into a hydrogen-bonded network. As 

one can see in Fig. 6.48, the [Pd2(dmen)2(ErytH−4-κO
1,2

:κO
3,4

)] molecules formed chains 

connected via a N–H···O hydrogen bond along the c axis with water molecules linking these 

chains and forming themselves homodromic six-membered rings around the inversion center; 

the distances and angles of the hydrogen bonds are listed in Table 2.6. For the crystal 

structure of [Pd2(tn)2(ErytH−4-κO
1,2

:κO
3,4

)] a similar motif could be found where chains of 

molecules were connected by water molecules. The contact between the single molecules was 

additionally mediated by a water molecule. 

 

Figure 2.9. The molecular structure of [Pd2(dmen)2(ErytH−4-κO
1,2

:κO
3,4

)] in crystals of the 14-hydrate (9). 

ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O1 2.0071(18), Pd1–O2 2.0100(19), Pd1–N1 2.049(2), Pd1–N2 

2.040(2), O1–Pd1–O2 85.34(7), O1–Pd1–N1 95.48(9), O2–Pd1–N2 94.91(8), N1–Pd1–N2 84.29(9); chelate 

torsion angles: N1–C4–C5–N2 56.9(3), O1–C1–C2–O2 52.2(3). [Symmetry code: (i) −x, −y, −z] 
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Table 2.6. Distances [Å] and angles [°] of hydrogen bonds in 9. Standard deviations of the last digit are given in 

parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

N1  H711 O1
i
  0.93      1.90      2.817(3) 168.5  

N2  H721 O93
ii
 0.93      1.99      2.910(4) 171.3  

O91 H911 O1  0.731(14) 1.911(15) 2.640(3) 174(4) 

O91 H912 O91
iii

 0.729(14) 2.045(17) 2.769(4) 172(8) 

O92 H921 O2  0.736(13) 2.009(15) 2.743(3) 175(4) 

O92 H922 O95 0.726(14) 2.151(18) 2.848(3) 161(4) 

O93 H931 O92
ii
 0.727(14) 2.16(3)   2.752(4) 139(4) 

O93 H932 O94 0.730(14) 2.052(17) 2.752(4) 161(4) 

O94 H941 O91 0.729(14) 2.028(14) 2.757(3) 177(4) 

O94 H942 O95 0.732(14) 2.096(15) 2.818(4) 169(4) 

O95 H951 O96 0.727(14) 2.060(14) 2.784(3) 174(4) 

O95 H952 O97 0.721(14) 2.124(14) 2.839(3) 172(4) 

O96 H961 O94
iv 

0.726(13) 2.095(15) 2.817(4) 173(4) 

O96 H962 O92
v
 0.730(14) 2.064(16) 2.785(3) 170(4) 

O97 H971 O2
vi

  0.730(13) 2.048(14) 2.777(3) 176(4) 

O97 H972 O91
iii

 0.727(14) 2.080(16) 2.799(3) 170(4) 
 

Symmetry code: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z+2; (iii) −x, −y+1, −z+1; (iv) −x, −y+1, −z+2; (v) −x, −y+1, 

−z+2; (vi) −x+1, −y+1, −z+1. 

 

 

Figure 2.10. The molecular structure of [Pd2(tn)2(ErytH−4-κO
1,2

:κO
3,4

)] in crystals of the 10-hydrate (10). 

ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O1 2.007(3), Pd1–O2 2.011(3), Pd1–N1 2.045(3), Pd1–N2 

2.035(3), O1–Pd1–O2 85.39(11), O1–Pd1–N1 91.12(13), O2–Pd1–N2 91.40(12), N1–Pd1–N2 92.12(14); 

chelate torsion angle: O1–C1–C2–O2 47.3(5). [Symmetry code: (i) −x, −y, −z] 
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2.3.2 The pentitols: ribitol and xylitol 

Owing to the lack of favorable threo chelation and according to the known 

stereochemical rules, monometalation of ribitol is reliably predictable: the Ribt1,2H−2-κO
1,2

 

species is expected to dominate over the Ribt2,3H−2-κO
2,3

 species. With Pd-en at a 1:1 

Pd/Ribt ratio, both species and free ribitol could be found in equimolar amounts. Only with 

Pd-tmen, κO
1,2

-chelated Ribt1,2H−2 became the main species accompanied by minor amounts 

of free ribitol, whereas κO
2,3

-chelated Ribt2,3H−2 was not detected.  

At an equimolar Pd/pentitol ratio, xylitol formed the expected chelate ring according to the 

threo rule. As the dimetalated complex was less predominant with xylitol because of a 

missing erythro position which is preferred for dimetalation, with Pd-en the predicted  

monometalated main species [Pd(en)(Xylt2,3H−2-κO
2,3

)] was observable as well as the 

terminally chelated [Pd(en)(Xylt1,2H−2-κO
1,2

)] in minor amounts. Both species and free 

xylitol were also found with Pd-tmen, but now the dominance of Xylt2,3H−2-κO
2,3

 was 

lessened in favor of Xylt1,2H−2-κO
1,2

. The chemical shifts for both pentitols are listed in 

Table 2.7. 

Table 2.7. 
13

C NMR chemical shifts (δ/ppm) and shift differences (∆δ) to the free polyol of ribitol and xylitol 

ligands in Pd-tmen. Atoms are numbered as in Figure 2.8. 

  C1 C2 C3 C4 C5 Chelate 

Ribt δ 63.0 72.7 72.9    

Ribt1,2H−2 δ 71.2 82.5 75.4 72.3 63.0  

 ∆δ 8.2 9.8 2.5 −0.4 0.0 κO
1,2

 

Xylt δ 63.3 72.6 71.4    

Xylt1,2H−2 δ 71.0 80.5 72.5 70.7 63.7  

 ∆δ 7.7 7.9 1.1 −1.9 0.4 κO
1,2

 

Xylt2,3H−2 δ 65.8 79.3 79.6 73.7 62.4  

 ∆δ 2.5 6.7 8.2 1.1 −0.9 κO
2,3

 

 

2.3.3 The hexitols 

 Hexitols are composed of three adjacent diol groups, hence a maximum of three 

Pd
II
N2-fragments may be expected to be bonded at high metal/polyol ratios. The two common 

symmetrical hexitols, D-mannitol and dulcitol, were already investigated with Pd-en, now 

D-altritol, allitol and D-sorbitol and conversions with both Pd
II
N2-fragments, Pd-en and 

Pd-tmen, have completed the results (chemical shifts are listed in Table 2.8 for Pd-en and in 

Table 2.9 for Pd-tmen). By using a Pd/hexitol molar ratio of 1:1, the threo rule derived above 
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was confirmed. In fact, the threo-configured [Pd(en)(Dulc2,3H−2-κO
2,3

)] racemate was the 

only complex of 1:1 Pd/hexitol stoichiometry. Neither the terminal κO
1,2

-bonded Dulc1,2H−2 

nor the erythro κO
3,4

-bonded Dulc3,4H−2 species was detected by 
13

C NMR spectroscopy. In 

D-mannitol, the favored threo diol occurred only once, but there were two terminal and two 

erythro-configured diol groups. Accordingly, at the 1:1 Pd/Mann ratio, equal amounts of 

[Pd(en)(D-Mann1,2H−2-κO
1,2

)] and [Pd(en)(D-Mann3,4H−2-κO
3,4

)] were detected; erythro 

coordination did not appear competitive as only weak signals were assigned to [Pd(en)(D-

Mann2,3H−2-κO
2,3

)].
[58]

 With Pd-tmen and dulcitol, the results of the former investigation 

were confirmed as only κO
2,3

-bonded Dulc2,3H−2 occurred in solution. The species 

distribution changed for D-mannitol in Pd-tmen where Mann3,4H−2-κO
3,4

 became the main 

species and D-Mann1,2H−2-κO
1,2

 is only a minor species in addition to free D-mannitol and 

traces of higher metalated forms.  

Table 2.8. 
13

C NMR chemical shifts (δ/ppm) and shift differences (∆δ) to the free polyol of allitol and D-sorbitol 

ligands in Pd-en. Atoms are numbered as in Figure 2.8. 

  C1 C2 C3 C4 C5 C6 Chelate 

Allt δ 62.3 72.1 72.3     

Allt1,2H−2 δ 71.3 81.6 73.0 72.5 71.0 62.0  

 ∆δ 9.0 9.5 0.7 0.2 −1.1 −0.3 κO
1,2

 

Allt2,3H−2 δ 62.7 80.7 82.0 74.4 70.8 61.9  

 ∆δ 0.4 8.6 9.7 2.1 −1.3 −0.4 κO
2,3

 

Allt3,4H−2 δ 63.7 71.2 82.1     

 ∆δ 1.4 −0.9 9.8    κO
3,4

 

Allt1,2;3,4H−4 δ 73.0 81.4 82.6 83.0 71.0 64.4  

 ∆δ 10.7 9.3 10.3 10.7 −1.1 2.1 κO
1,2

:κO
3,4

 

Allt1,2;4,5H−4 δ 70.8 81.7 73.0 83.9 81.0 62.1  

 ∆δ 8.5 9.6 0.7 11.6 8.9 −0.2 κO
1,2

:κO
4,5

 

Allt1,2;5,6H−4 δ 69.9 80.5 73.9     

 ∆δ 7.6 8.4 1.6    κO
1,2

:κO
5,6

 

Allt2,3;4,5H−4 δ 62.3 80.8 82.9     

 ∆δ 0.0 8.7 10.6    κO
2,3

:κO
4,5

 

D-Sorb δ 63.1 73.5 70.3 71.7 71.6 63.4  

D-Sorb2,3H−2 δ 63.2 82.1 80.2 73.1 73.0 64.7  

 ∆δ 0.1 8.6 9.9 1.4 1.4 1.3 κO
2,3

 

D-Sorb3,4H−2 δ 62.6 74.1 80.3 81.3 73.2 64.6  

 ∆δ −0.5 0.6 10.0 9.6 1.6 1.2 κO
3,4

 

D-Sorb3,4;5,6H−4 δ 62.9 74.1 83.5 81.5 83.4 74.0  

 ∆δ −0.2 0.6 13.2 9.8 11.8 10.6 κO
3,4

:κO
5,6
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Table 2.9. 
13

C NMR chemical shifts (δ/ppm) and shift differences (∆δ) to the free polyol of allitol, dulcitol, 

D-sorbitol and D-mannitol ligands in Pd-tmen. Atoms are numbered as in Figure 2.8. 

  C1 C2 C3 C4 C5 C6 Chelate 

Allt δ 62.3 72.1 72.3     

Allt1,2;3,4H−4 δ 72.1 82.3 83.3 83.8 74.2 65.7  

 ∆δ 9.8 10.2 11.0 11.5 2.1 3.4 κO
1,2

:κO
3,4

 

Allt1,2;5,6H−4 δ 72.1 83.0 74.4     

 ∆δ 9.8 10.9 2.1    κO
1,2

:κO
5,6

 

Allt2,3;4,5H−4 δ 62.7 82.0 82.5     

 ∆δ 0.4 9.9 10.2    κO
2,3

:κO
4,5

 

Dulc δ 63.9 70.8 70.0     

Dulc2,3H−2 δ 66.0 79.8 80.1 71.8 73.7 63.8  

 ∆δ 2.1 9.0 10.1 1.8 2.9 −0.1 κO
2,3

 

D-Sorb δ 63.1 73.5 70.3 71.7 71.6 63.4  

D-Sorb3,4H−2 δ 63.1 74.2 79.2 81.6 73.2 65.0  

 ∆δ 0.0 0.7 8.9 9.9 1.6 1.6 κO
3,4

 

D-Mann δ 63.8 71.5 69.9     

D-Mann1,2H−2 δ 72.0 80.7 72.1 72.1 72.1 63.8  

 ∆δ 8.2 9.2 2.2 2.2 0.6 0.0 κO
1,2

 

D-Mann3,4H−2 δ 65.0 73.0 81.7     

 ∆δ 1.2 1.5 11.8    κO
3,4

 

D-Mann1,2;3,4H−4 δ 73.0 84.4 83.3 84.3 72.7 64.6  

 ∆δ 9.2 12.9 13.4 14.4 1.2 0.8 κO
1,2

:κO
3,4

 

D-Mann1,2;5,6H−4 δ 70.9 82.2 72.7     

 ∆δ 7.1 10.7 2.8    κO
1,2

:κO
5,6

 

D-Mann2,3;4,5H−4 δ 62.6 81.4 81.1     

 ∆δ −1.2 9.9 11.2    κO
2,3

:κO
4,5

 

D-MannH−6 δ 75.7 84.9 82.6     

 ∆δ 11.9 13.4 12.7   κO
1,2

:κO
3,4

:κO
5,6

 

 

At a higher Pd/hexitol ratio, the dimetalated species became the main solution species for both 

hexitols. As a reflection of the weakness of erythro chelation and the strength of the erythro 

link between two adjacent diol chelators, no symmetrical [Pd2(en)2(D-Mann2,3;4,5H−4-

κO
2,3

:κO
4,5

)] species was detected in the spectra with Pd-en. Instead, the main solution species 

was [Pd2(en)2(D-Mann1,2;3,4H−4-κO
1,2

:κO
3,4

)], which comprises pairwise terminal/threo 

chelation with an erythro link in between. Accordingly, another dimetalated species, 

[Pd2(en)2(D-Mann1,2;5,6H−4-κO
1,2

:κO
5,6

)], was detected as a minor component. Again, with 

Pd-tmen all species mentioned above occurred in solution, but surprisingly the symmetrical 
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D-Mann2,3;4,5H−4-κO
2,3

:κO
4,5

 species now could be observed in the 
13

C NMR spectra. The 

crystal structures of [Pd2(tmen)2(D-Mann1,2;3,4H−4-κO
1,2

:κO
3,4

)] in Fig. 2.11 and [Pd2(tn)2(D-

Mann1,2;3,4H−4-κO
1,2

:κO
3,4

)] in Fig. 2.12 both crystallized in the space group P 21 and 

highlighted another structural feature which is also known for the Pd-en analogue: the 

δ hydrogen bond, which is clearly the most stable type of intramolecular hydrogen bond in a 

polyolato ligand.
[58]

 

 

 

 

 

 

 

 

Figure 2.11. The molecular structure of [Pd2(tmen)2(Mann1,2;3,4H−4-κO
1,2

:κO
3,4

)] in crystals of the 9-hydrate 

(11). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O1 2.002(4), Pd1–O2 2.001(4), Pd1–N1 2.066(5), Pd1–N2 

2.046(4), Pd2–O3 1.996(4), Pd2–O4 1.999(3), Pd2–N3 2.057(4), Pd2–N4 2.069(4), O1–Pd1–O2 84.79(16), O1–

Pd1–N1 95.42(17), O2–Pd1–N2 94.29(18), N1–Pd1–N2 85.64(19), O3–Pd2–O4 83.90(16), O3–Pd2–N3 

95.88(17), O4–Pd2–N4 95.07(16), N3–Pd2–N4 85.08(17); chelate torsion angles: N1–C9–C10–N2 54.9(6), N3–

C16–C17–N4 −55.7(6), O1–C1–C2–O2 53.3(6), O3–C3–C4–O4 −50.7(5). 

Table 2.10. Distances [Å] and angles [°] of hydrogen bonds in 11. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O5  H851 O2  0.84      1.66      2.495(5) 171.2  

O6  H861 O4  0.84      1.89      2.605(5) 142.2  

O91 H911 O94
i 

0.812(16) 1.99(2)   2.782(6) 165(7) 

O91 H912 O93 0.808(16) 2.10(3)   2.856(6) 155(6) 

O92 H921 O98
ii 

0.807(16) 1.90(2)   2.680(7) 164(7) 

O92 H922 O6
iii

  0.810(16) 2.019(18) 2.829(6) 178(5) 

O93 H931 O97 0.815(16) 1.95(2)   2.751(6) 166(6) 

O93 H932 O1  0.816(16) 1.94(2)   2.737(6) 166(6) 
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Table 2.10. Continued. 

D H A D–H H···A D···A D–H···A 

O94 H941 O1
iv

  0.815(16) 1.892(18) 2.703(6) 173(5) 

O94 H942 O5
iii

  0.812(16) 2.045(18) 2.855(6) 175(5) 

O95 H951 O92 0.811(16) 2.03(2)   2.817(7) 165(6) 

O95 H952 O4
v
 0.811(16) 2.01(2)   2.804(6) 167(6) 

O96 H961 O91
vi 

0.809(16) 1.99(2)   2.780(6) 165(5) 

O96 H962 O3  0.808(16) 1.93(2)   2.720(6) 163(6) 

O97 H971 O92 0.814(16) 2.04(3)   2.798(7) 155(6) 

O97 H972 O5
vi

  0.816(16) 2.05(2)   2.858(6) 170(6) 

O98 H981 O99
iv 

0.811(16) 1.94(2)   2.745(7) 170(6) 

O98 H982 O96
i 

0.814(16) 1.95(2)   2.747(7) 166(7) 

O99 H991 O93 0.809(16) 2.246(18) 3.054(7) 177(6) 

O99 H992 O95 0.808(16) 1.898(18) 2.701(7) 172(5) 
 

Symmetry code: (i) −x+1, y+
1
⁄2, −z+1; (ii) −x+1, y−

1
⁄2, −z; (iii) −x+1, y−

1
⁄2, −z+1; (iv) x+1, y, z; (v) x, y, z−1; 

(vi) −x, y−
1
⁄2, −z+1. 

 

 

 

Figure 2.12. The molecular structure of [Pd2(tn)2(Mann1,2;3,4H−4-κO
1,2

:κO
3,4

)] in crystals of the 5-hydrate (12). 

ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O1 2.000(3), Pd1–O2 2.010(3), Pd1–N1 2.041(5), Pd1–N2 

2.046(4), Pd2–O3 2.027(3), Pd2–O4 1.974(3), Pd2–N3 2.054(4), Pd2–N4 2.045(4), O1–Pd1–O2 84.62(13), O1–

Pd1–N1 88.63(16), O2–Pd1–N2 91.47(15), N1–Pd1–N2 95.24(18), O3–Pd2–O4 83.99(13), O3–Pd2–N3 

94.36(15), O4–Pd2–N4 90.18(16), N3–Pd2–N4 91.48(17); chelate torsion angles: O1–C1–C2–O2 52.3(5), O3–

C3–C4–O4 −54.3(5). 
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Table 2.11. Distances [Å] and angles [°] of hydrogen bonds in 12. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O5  H85  O2  0.84      1.73      2.546(5) 163.5  

O6  H86  O3
i
  0.84      1.88      2.695(5) 163.9  

N1  H711 O6
ii
  0.92      1.99      2.886(6) 165.0  

N2  H721 O94
iii 

0.92      2.14      3.012(7) 157.9  

N2  H722 O92
iii 

0.92      2.06      2.938(6) 158.6  

N3  H731 O6
iv

  0.92      2.29      3.081(6) 143.3  

N3  H731 O5
iv

  0.92      2.38      3.153(6) 141.6  

N3  H732 O94
v 

0.92      2.15      3.008(7) 154.1  

N4  H742 O93
vi 

0.92      2.28      2.996(6) 134.0  

O91 H911 O92 0.828(10) 1.946(18) 2.764(6) 169(6) 

O91 H912 O3
i
  0.830(10) 2.03(3)   2.791(6) 153(6) 

O92 H921 O4  0.825(10) 1.889(14) 2.710(5) 173(7) 

O92 H922 O93
vi 

0.830(10) 1.94(3)   2.709(6) 155(5) 

O93 H931 O1
vii

  0.828(10) 1.84(2)   2.634(5) 160(6) 

O93 H932 O5  0.824(10) 2.07(3)   2.786(5) 145(5) 

O94 H941 O1
viii

  0.830(10) 1.95(3)   2.725(6) 156(8) 

O94 H942 O95
vi 

0.828(10) 1.92(2)   2.711(7) 159(7) 

O95 H951 O2  0.827(10) 2.017(14) 2.841(6) 174(8) 

O95 H952 O91 0.825(10) 2.038(18) 2.845(7) 166(6) 
 

Symmetry code: (i) −x+1, y+
1
⁄2, −z+1; (ii) −x+1, y−

1
⁄2, −z; (iii) x, y, z−1; (iv) −x+1, y−

1
⁄2, −z+1; (v) −x+1, y−

1
⁄2, 

−z+2; (vi) x, y, z+1; (vii) −x+1, y+
1
⁄2, −z; (viii) −x, y+

1
⁄2, −z+1. 

In 11, the additional intramolecular γ hydrogen bond O6–H···O4 finally inhibited 

[Pd2(tmen)2(D-Mann1,2;3,4H−4-κO
1,2

:κO
3,4

)] from acting as a hydrogen bond donor. Because 

of the protons‘ replacement of tmen by methyl groups and the two intramolecular hydrogen 

bonds of the remaining hydroxy functions, the coordination compound could only accept 

hydrogen bonds from the nine water molecules in the asymmetric unit. In Table 2.10, the 

distances and angles of the hydrogen bonds are listed. In contrast, in 12 [Pd2(tn)2(D-

Mann1,2;3,4H−4-κO
1,2

:κO
3,4

)] showed only the δ hydrogen bond again and the terminal 

hydroxy function connected the single molecules via a O6–H···O3 hydrogen bond. The chains 

were stabilized by a second hydrogen bonding path via N4–H···O93–H···O1. The remaining 

N–H functions of the Pd
II
N2-fragments and water molecules linked the single chains of the 

crystal structure, the distances and angles of the hydrogen bonding network are listed in 

Table 2.11. 
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In the case of dulcitol, all the optimum conditions for dimetalation coincided: each individual 

palladium atom was incorporated into a threo chelate, the two Pd-binding sites were erythro-

linked, and the terminal hydroxy groups could act as donors in δ hydrogen bonds. When the 

palladium content of the solution exceeded the Pd/Dulc ratio of 2:1, the result was a simple 

three-signal 
13

C NMR spectrum of the expected Ci-symmetrical Dulc2,3;4,5H−4-κO
2,3

:κO
4,5

 

species. Crystallization from 3:1 solutions was successful for [Pd2(dmen)2(Dulc2,3;4,5H−4-

κO
2,3

:κO
4,5

)] (Fig. 2.13) and [Pd2(tn)2(Dulc2,3;4,5H−4-κO
2,3

:κO
4,5

)] (Fig. 2.14). Crystallizing 

in the space group P 1̄ and, independent of the Pd
II
N2-fragment, both compounds presented 

the S-shaped dulcitol motif fixed by the two intramolecular δ hydrogen bonds. In 13, the 

single molecules formed chains along the hydrogen bond N1–H···O21 where the chains were 

held together by a hydrogen bonding network of eight water molecules. The distances and 

angles of the hydrogen bonding network are listed in Table 2.12. In 14, dulcitol appeared with 

the identical S-shaped motif as in 13. In contrast, the intermolecular hydrogen-bonding 

network differed noticeably. No direct hydrogen-bonding contact connected the molecules; all 

contacts were water-mediated as in N11–H···O93–H···O22 and N12–H···O91–H···O21. 

Additionally, another water molecule linked the polyols via O11···H–O94–H···O22 and, 

acting as a double acceptor, O92 of the corresponding water molecule bridged the tn ligands 

via N21–H···O92···H–N22. The remaining distances and angles of the hydrogen bonding 

network are listed in Table 2.13. 

 

Figure 2.13. The molecular structure of [Pd2(dmen)2(Dulc2,3;4,5H−4-κO
2,3

:κO
4,5

)] in crystals of the 8-hydrate 

(13). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O2 1.9968(18), Pd1–O3 2.0032(17), Pd1–N1 2.058(3), Pd1–N2 

2.049(3), O2–Pd1–O3 83.63(7), O2–Pd1–N1 95.46(10), O3–Pd1–N2 97.03(9), N1–Pd1–N2 83.88(11); chelate 

torsion angles: N1–C5–C6–N2 58.9(4), O2–C2–C3–O3 53.7(3). [Symmetry code: (i) −x, −y, −z] 
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Table 2.12. Distances [Å] and angles [°] of hydrogen bonds in 13. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O1  H811 O3
i
  0.84      1.80      2.569(3) 151.6  

N1  H711 O2
ii
  0.93      1.97      2.883(3) 166.4  

N2  H712 O91
iii 

0.93      1.96      2.845(3) 158.5  

O91 H911 O94
iv 

0.943(16) 1.781(17) 2.720(4) 174(4) 

O91 H912 O2  0.940(16) 1.761(17) 2.698(3) 174(3) 

O92 H921 O1  0.934(16) 1.785(17) 2.716(3) 175(4) 

O92 H922 O93
v 

0.935(16) 1.806(17) 2.729(3) 169(3) 

O93 H931 O3  0.932(16) 1.887(17) 2.817(3) 176(4) 

O93 H932 O92
vi 

0.930(16) 1.947(17) 2.862(3) 167(3) 

O94 H941 O92
vii 

0.948(16) 1.802(17) 2.748(4) 175(4) 

O94 H942 O91 0.939(16) 1.93(2)   2.797(4) 152(3) 
 

Symmetry code: (i) −x+1, −y, −z; (ii) −x, −y+1, −z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z−1; (v) −x, −y, −z; 

(vi) x, y, z+1; (vii) −x+1, −y, −z−1. 

 

 

 
Figure 2.14. The molecular structure of [Pd2(tn)2(Dulc2,3;4,5H−4-κO

2,3
:κO

4,5
)] in crystals of the 6-hydrate (14). 

ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O21 1.989(2), Pd1–O31 1.9925(19), Pd1–N11 2.033(3), Pd1–

N21 2.045(3), O21–Pd1–O31 84.11(8), O21–Pd1–N11 91.52(10), O31–Pd1–N21 93.15(10), N11–Pd1–N21 

91.24(11); chelate torsion angle: O21–C21–C31–O31 −50.2(3). [Symmetry code: (i) −x, −y, −z] 
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Table 2.13. Distances [Å] and angles [°] of hydrogen bonds in 14. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O11  H811 O31
i
  0.84      1.73      2.521(3)  157.0  

O12  H812 O32
ii 

 0.84      1.75      2.538(3)  154.8  

N11  H711 O21
iii

  0.92      2.20      3.102(3)  166.5  

N11  H712 O93  0.92      2.12      2.984(3)  156.7  

N12  H721 O91  0.92      2.08      2.946(3)  156.3  

N12  H722 O22
iv

  0.92      2.58      3.492(3)  174.4  

N21  H713 O94
v
  0.92      2.56      3.407(3)  152.8  

N21  H714 O92
iii

  0.92      1.92      2.836(4)  172.3  

N22  H723 O94
iv

  0.92      2.05      2.963(3)  170.4  

N22  H724 O92
vi

 
 

0.92      2.08      2.927(4)  153.3  

O91  H911 O21  0.819(10) 1.940(11) 2.754(3)  173(4) 

O91  H912 O94  0.817(10) 2.047(16) 2.789(3)  151(3) 

O92  H921 O93  0.867(9)  1.898(8)  2.709(3)  155(2) 

O92  H922 O12
vii

  0.848(10) 1.874(8)  2.650(3)  151(2) 

O93  H931 O22  0.833(10) 1.995(10) 2.826(3)  175(3) 

O93  H932 O951 0.828(10) 1.881(18) 2.699(12) 169(4) 

O94  H941 O22  0.832(10) 1.943(10) 2.765(3)  169(3) 

O94  H942 O11
viii

  0.824(10) 1.897(10) 2.720(3)  177(3) 

O951 H951 O31
iii

  0.828(10) 1.941(15) 2.742(8)  163(4) 

O951 H952 O96  0.829(10) 1.88(2)   2.654(8)  154(4) 

O96  H961 O32
ii
  0.829(10) 1.99(2)   2.775(3)  157(6) 

O96  H962 O91
viv

  0.829(10) 1.892(12) 2.714(3)  172(5) 
 

Symmetry code: (i) −x, −y, −z+1; (ii) −x+2, −y−1, −z; (iii) −x+1, −y−1, −z+1; (iv) −x+1, −y, −z; (v) −x+1, −y, 

−z+1; (vi) −x+1, −y−1, −z; (vii) x−1, y, z; (viii) x+1, y, z; (viv) x+1, y−1, z. 

With the various contributions to the overall stability of a metal complex of a particular 

hexitol configuration in mind, complete metalation at high Pd/hexitol ratios appeared possible 

for mannitol but a challenge in the case of dulcitol. In fact, the three signals of the 

[Pd3(en)3(D-MannH−6-κO
1,2

:κO
3,4

:κO
5,6

)] species were detected in solutions of Pd-tmen as for 

Pd-en, but not even a trace of trimetalated species was observed with dulcitol underlining the 

high contribution of the δ hydrogen bond to the overall complex stability.  

The currently investigated D-Altritol provides one threo position at O2/O3 which should be 

metalated first; the second Pd
II
N2-fragment should coordinate at O4/O5 with an erythro link 

between the two adjacent diol chelators. Indeed, the crystal structure of 15 in Fig. 2.15 which 
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was solved in the space group P 21 confirmed the predictions. Furthermore, [Pd2(tmen)2(D-

Altr2,3;4,5H−4-κO
2,3

:κO
4,5

)] showed a S-shaped motif with two intramolecular δ hydrogen 

bonds as identified for dulcitol, another proof of the importance of the δ hydrogen bond for 

the polyols‘ coordination chemistry.  

 

Figure 2.15. The molecular structure of [Pd2(tmen)2(D-Altr2,3;4,5H−4-κO
2,3

:κO
4,5

)] in crystals of the 9-hydrate 

(15). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O2 1.998(3), Pd1–O3 2.005(2), Pd1–N1 2.063(3), Pd1–N2 

2.062(3), Pd2–O4 2.001(2), Pd2–O5 2.005(2), Pd2–N3 2.068(3), Pd2–N4 2.055(3), O2–Pd1–O3 84.33(9), O2–

Pd1–N1 93.91(12), O3–Pd1–N2 96.14(10), N1–Pd1–N2 85.66(12), O4–Pd2–O5 84.33(10), O4–Pd2–N3 

95.11(10), O5–Pd2–N4 95.55(13), N3–Pd2–N4 85.11(13); chelate torsion angles: N1–C9–C10–N2 53.3(4), N3–

C15–C16–N4 54.5(4), O2–C2–C3–O3 −53.3(3), O4–C4–C5–O5 51.8(3). 

Table 2.14. Distances [Å] and angles [°] of hydrogen bonds in 15. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O1  H811 O4  0.84      1.78      2.576(3) 157.5  

O6  H861 O3  0.84      1.88      2.701(3) 163.9  

O91 H911 O2  0.835(10) 2.053(13) 2.871(4) 166(4) 

O91 H912 O93
i 

0.834(10) 2.009(11) 2.839(4) 173(4) 

O92 H921 O2
ii
  0.833(10) 2.025(17) 2.819(4) 159(4) 

O92 H922 O95
ii 

0.837(10) 1.837(12) 2.667(4) 171(4) 

O93 H931 O92 0.831(10) 1.861(12) 2.677(4) 167(3) 

O93 H932 O1  0.832(10) 1.999(11) 2.823(4) 170(3) 

O94 H941 O4  0.836(10) 1.969(11) 2.804(4) 177(4) 

O94 H942 O91 0.833(10) 2.118(11) 2.950(4) 177(5) 
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Table 2.14. Continued. 

D H A D–H H···A D···A D–H···A 

O95 H951 O98 0.832(10) 1.920(15) 2.737(5) 167(4) 

O95 H952 O99 0.831(10) 1.935(15) 2.743(4) 164(4) 

O96 H961 O3
ii
  0.837(10) 1.955(11) 2.789(4) 175(4) 

O96 H962 O93 0.837(10) 2.104(17) 2.914(4) 163(4) 

O97 H971 O5
ii
 0.840(10) 1.910(11) 2.747(4) 174(5) 

O97 H972 O94
iii 

0.840(10) 2.137(17) 2.964(4) 168(5) 

O98 H981 O96 0.835(10) 1.924(12) 2.752(5) 172(4) 

O98 H982 O97 0.836(10) 1.99(3)   2.783(5) 159(7) 

O99 H991 O5
iii

  0.839(10) 1.880(11) 2.717(3) 175(4) 

O99 H992 O94
iv 

0.840(10) 1.961(11) 2.800(4) 180(4) 
 

Symmetry code: (i) x−1, y, z; (ii) −x+1, y−
1
⁄2, −z+1; (iii) x, y, z−1; (iv) −x+1, y+

1
⁄2, −z+1. 

As in structure 11 with D-mannitol, [Pd2(tmen)2(D-Altr2,3;4,5H−4-κO
2,3

:κO
4,5

)] could only 

accept hydrogen bonds from the water-mediated hydrogen-bonding network because of 

missing hydrogen donors at the Pd
II
N2-fragment and the intramolecular hydrogen bonds of the 

polyol. As depicted in Fig. 6.54 of the Appendix, a prominent hydrogen-bonding pattern of 

four molecules which was characterized by the ring descriptor R4
2
(8)

[60]
 and an additional 

water molecule were involved in the linking of [Pd2(tmen)2(D-Altr2,3;4,5H−4-κO
2,3

:κO
4,5

)] 

molecules. 

 

 

 

 

 

 

 

Figure 2.16. The molecular structure of [Pd2(en)2(Allt2,3;4,5H−4-κO
2,3

:κO
4,5

)] in crystals of the 14-hydrate (16). 

ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O2 1.993(4), Pd1–O3 2.022(4), Pd1–N1 2.034(5), Pd1–N2 

2.048(5), O2–Pd1–O3 84.83(14), O2–Pd1–N1 93.09(17), O3–Pd1–N2 98.33(16), N1–Pd1–N2 83.76(18); 

chelate torsion angles: N1–C4–C5–N2 49.8(6), O2–C2–C3–O3 −54.5(5). [Symmetry code: (i) −x, −y, −z] 
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Table 2.15. Distances [Å] and angles [°] of hydrogen bonds in 16. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O1  H1   O91
i
 0.84      1.93    2.748(6) 165.0  

N1  H711 O98
ii
 0.92      2.60    3.282(7) 131.4  

N1  H712 O95 0.92      2.16    3.017(7) 155.4  

N2  H721 O94
iii

 0.92      2.22    3.013(6) 143.3  

N2  H721 O91
iii

 0.92      2.58    3.248(7) 130.4  

N2  H722 O1
iv

  0.92      2.11    3.013(6) 168.0  

O91 H911 O3
ii
  0.746(19) 1.89(2) 2.634(5) 173(6) 

O91 H912 O92 0.743(19) 2.10(3) 2.827(8) 166(8) 

O92 H921 O94 0.738(19) 2.18(4) 2.881(9) 160(8) 

O92 H921 O91 0.738(19) 2.48(8) 2.827(8) 111(7) 

O92 H922 O96 0.739(19) 2.04(3) 2.764(8) 168(8) 

O93 H93  O92 0.739(19) 1.99(2) 2.722(7) 171(8) 

O94 H941 O97 0.741(19) 2.34(7) 2.783(5) 120(7) 

O94 H942 O2
i
  0.745(19) 1.97(2) 2.703(5) 168(6) 

O95 H951 O93
v 

0.740(19) 2.07(3) 2.776(6) 160(8) 

O95 H952 O2
i
  0.739(19) 1.96(2) 2.695(5) 175(7) 

O96 H961 O98 0.741(19) 1.98(2) 2.718(7) 175(8) 

O96 H962 O95 0.742(19) 2.01(3) 2.733(7) 164(7) 

O97 H97  O94
i
 0.736(19) 2.28(6) 2.781(5) 127(7) 

O98 H981 O3
vii

  0.741(19) 2.03(2) 2.772(6) 173(8) 

O98 H982 O1
iii

  0.741(19) 2.21(3) 2.916(6) 158(8) 
 

Symmetry code: (i) −x, y, −z+
1
⁄2; (ii) −x+

1
⁄2, y−

1
⁄2, −z+

1
⁄2; (iii) −x+

1
⁄2, y+

1
⁄2, −z+

1
⁄2; (iv) −x+

1
⁄2, −y+

1
⁄2, −z+1; 

(v) x−
1
⁄2, y+

1
⁄2, z; (vi) x, −y+1, z−

1
⁄2. 

In the ring motif, the water molecules of O97 and O99 as double hydrogen donors, and the 

alkoxido O5 and the water molecule of O94 as hydrogen bonding acceptors were involved. 

The water molecule of O94 participated in two hydrogen-bonding paths: O94–H···O4 and 

O94–H···O91–H···O4. To summarize, the contact of the single molecules of [Pd2(tmen)2(D-

Altr2,3;4,5H−4-κO
2,3

:κO
4,5

)] was mediated by four water molecules forming a rigid hydrogen-

bonding network, without direct hydrogen bonds between the molecules. The distances and 

angles of the hydrogen bonding network are listed in Table 2.14. The most interesting 

example of the influence of the Pd
II
N2-fragment‘s ability to form hydrogen bonds was 

presented by the investigations of Allitol with Pd-en and Pd-tmen. Providing only erytho-

configured diol groups according to the rules, the terminal chelation sites for metalation 

should be preferred. At an equimolar Pd/allitol ratio, with Pd-en
[61]

 all monometalated forms 



2 Results 

45 

 

listed in Table 2.8 and free allitol were detected in similar amounts. Small signals could be 

observed for the dimetalated species in Table 2.8. Increasing the Pd/Allt ratio to 3:1, 

Allt1,2;3,4H−4-κO
1,2

:κO
3,4

 became the main species and Allt1,2;4,5H−4-κO
1,2

:κO
4,5

 a minor 

species. Weak signals indicated the presence of κO
1,2

:κO
5,6

-bonded Allt1,2;5,6H−4 and 

κO
2,3

:κO
4,5

-bonded Allt2,3;4,5H−4 in solution. Nevertheless, attempts to crystallize one of the 

palladium(II)-allitol complexes were unexpectedly successful for the binuclear compound in 

Fig. 2.16, [Pd2(en)2(Allt2,3;4,5H−4-κO
2,3

:κO
4,5

)] which crystallized in the space group C 2/c. 

Although the terminal diol functions were a suitable distance to form a δ hydrogen bond, for 

sterical reasons it seemed not to be plausible. The single molecules were linked via two 

hydrogen bonds: N2–H···O1 and O3···H–O98–H···O1 involving a water molecule. The 

remaining water molecules in 16 formed a hydrogen-bonding network connecting the chains 

of coordinated allitol. The distances and angles of the hydrogen bonding network are listed in 

Table 2.15. The situation changed with Pd-tmen at a 3:1 Pd/Allt ratio. Now, Allt1,2;5,6H−4-

κO
1,2

:κO
5,6

 was obviously the main species and only small signals of Allt1,2;3,4H−4-

κO
1,2

:κO
3,4

 and Allt2,3;4,5H−4-κO
2,3

:κO
4,5

could be detected. Structural analysis confirmed the 

spectroscopic result in Fig. 2.17. where the molecular structure of [Pd2(tmen)2(Allt1,2;5,6H−4-

κO
1,2

:κO
5,6

)] is depicted. The crystals of the 8-hydrate 17 were isolated from 3:1 solutions and 

solved in the space group P 21/n. The first time, the use of two different Pd
II
N2-fragments 

resulted in noticeably different coordination patterns. Analyzing the crystal structure of 17 

two facts were especially striking: (1) the use of Pd-tmen inhibited the complex‘s donor 

function for hydrogen bonding as it was found for the mannitolato (11) and D-altritolato (15) 

compounds and (2) the formation of intramolecular hydrogen bonding was enforced as the 

two protons of O3 and O3
i
 form γ hydrogen bonds to O2 and O2

i
. These intramolecular 

hydrogen bonds explained the high formation tendency of κO
1,2

:κO
5,6

-chelated Allt1,2;5,6H−4 

as opposed to κO
1,2

:κO
3,4

-chelated Allt1,2;3,4H−4 which was the main species with Pd-en. As 

one can see in Fig. 6.56 of the Appendix, the crystal structure could be distinguished from 

among the hydrophobic part of the tmen fragments, the hydrophilic part of the allitol‘s 

hydroxy functions and the hydrogen bonding network of the water molecules. The distances 

and angles of the hydrogen-bonding network are listed in Table 2.16. 

Finally, D-sorbitol is an asymmetric polyol providing two threo and one erythro position, so 

in a first metalation step D-Sorb2,3H−2-κO
2,3

 or D-Sorb3,4H−2-κO
3,4

 should be formed. For 

dimetalation, the main solution species should be the favorable bischelate D-Sorb3,4;5,6H−4-

κO
3,4

:κO
5,6

 which comprised pairwise terminal/threo chelation with an erythro link in 

between. 
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Figure 2.17. The molecular structure of [Pd2(tmen)2(Allt1,2;5,6H−4-κO
1,2

:κO
5,6

)] in crystals of the 8-hydrate 

(17). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O1 2.0047(12), Pd1–O2 1.9893(12), Pd1–N1 2.0587(16), Pd1–

N2 2.0647(15), O1–Pd1–O2 85.15(5), O1–Pd1–N1 95.85(5), O2–Pd1–N2 93.61(6), N1–Pd1–N2 85.54(6); 

chelate torsion angles: N1–C6–C7–N2 −54.5(2), O1–C1–C2–O2 −48.05(18). [Symmetry code: (i) −x, −y, −z] 

Table 2.16. Distances [Å] and angles [°] of hydrogen bonds in 17. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O3  H831 O2
i
  0.84      1.83      2.5849(17) 149.1  

O91 H911 O1
ii
  0.795(12) 1.960(12) 2.744(2)   169(2) 

O91 H912 O3  0.786(12) 2.084(12) 2.864(2)   172(2) 

O92 H921 O1  0.786(11) 1.936(12) 2.7182(19) 174(2) 

O92 H922 O94
iii 

0.785(11) 2.067(12) 2.851(2)   177(2) 

O93 H931 O92 0.787(11) 2.080(12) 2.862(2)   172(2) 

O93 H932 O91 0.793(12) 1.960(12) 2.743(2)   169(2) 

O94 H941 O92
ii
 0.788(12) 2.108(12) 2.892(2)   174(2) 

O94 H942 O93 0.791(12) 1.980(12) 2.766(2)   172(2) 
 

Symmetry code: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) x+1, y, z. 

For both solvents the predictions were valid, κO
3,4

-bonded D-Sorb3,4H−2 was the main species 

for Pd-en and Pd-tmen. Additionally, high amounts of free D-sorbitol were detected for both 

solvents, in Pd-en, κO
2,3

-chelated D-Sorb2,3H−2 formed a minor species. For a Pd/D-sorbitol 

ratio of 3:1, D-Sorb3,4;5,6H−4-κO
3,4

:κO
5,6

 represented the main species.  
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However, minor species occurred in solution which could not be resolved. 
13

C NMR shifts of 

the species identified for Pd-en and Pd-tmen are listed in the Tables 2.8 and 2.9. 

 

2.4 Palladium(II)–polyol complexes in neutral aqueous solution 

In previous work,
[58]

 Pd-en was used without alterating its pH value so that the 

investigation of carbohydrates‘ solution species was always until now related to a pH value of 

about 11–12. In Fig. 2.18 we can see a titration curve of the alkaline Pd-en towards the 

mononuclear diaqua complex. The entire curve was analyzed with HYPERQUAD2008.
[62]

 With 

the decreasing pH value of the solution, only the refinement of three intermediate species (see 

Fig. 2.18 below) besides the known [Pd
II
N2(OH)2] fitted the calculated curve to the measured 

titration curve.  

 

Figure 2.18. Measured and calculated titration curve (dots and line, left ordinate) and species distribution (right 

ordinate) for the [Pd(en)(OH)2] base and its conjugate acids.; c0 = 0.1 M, titration with nitric acid. Curve fitting 

and species distribution were calculated with HYPERQUAD2008.  

In the alkaline regime, [Pd
II
N2(OH)2] was the main solution species and the binuclear 

hydroxido-bridged species M2H−3 had only a minor share of maximally 15% of the total Pd 

content at pH 10–11. With the titration‘s progress, the mentioned species decreased and two 

new species, the predominant species M2H−2 and the minor species MH−1 appeared. It should 
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be noted that due to the method‘s limitations, slight amounts of species of higher nuclearity 

may be hidden in this peak. After the addition of one equivalent of acid, both these species 

reached their maximum at pH 7–8. Further addition of nitric acid enriched only the species M, 

the mononuclear [Pd
II
N2(OH2)2] complex. Most of the refined species in Fig 2.18 correspond 

with structurally characterized compounds such as [Pd(en)(OH)2]
[46]

 or [Pd(tmen)(OH)2] (see 

Fig. 2.1). A mono-hydroxido-bridged dimer with a Pd
II
N3 core and related to the M2H−3 

species has been published recently.
[63]

 The major binuclear, di-hydroxido-bridged species as 

well as further species of the common formula [(Pd
II
N2)n(μ2-OH)n]

n+
 with n = 3 and 4 and 

close to the equivalence point are well established both for palladium(II) or platin(II).
[64-69]

  

Interpreting the titration‘s results, a decreasing pH resulted in a decreasing supply of the 

Lewis-basic hydroxide or alkoxido ligands which are shared by the Lewis-acidic central 

atoms. This had an effect on the bonding modes: the lower the pH value, the lower the ratio of 

terminal to bridging hydroxide or alkoxide ligand. 

 

2.4.1 μ-Triolato-chelation and ligand conformation at pH 8–9 

 As known from previous work,
[58]

 in a solution of Pd-en with glycerol of a molar ratio 

of 2:1, the κO
1,2

-bonded five-ring chelate [Pd(en)(Glyc1,2H−2-κO
1,2

)] is the major species 

with the isomeric κO
1,3

-bonded six-ring chelate and free glycerol occurring in negligible 

amounts only. After the addition of one equivalent of nitric acid (2:1:1 molar ratio of Pd-en, 

Glyc, and H
+
) in the 

13
C NMR spectrum (depicted in Fig. 2.19) a new species distribution was 

detected. 

 

 

 

 
Figure 2.19. Left: 

13
C NMR spectrum of [Pd

II
(en)(OD)2]/D2O solution, glycerol, and 2 M nitric acid at a 2:1:1 

molar ratio. The signals of the free glycerol are grey-colored; A is the [Pd(en)(Glyc1,2H−2)] five-ring chelate, 

B is the binuclear cation [Pd2(en)2(Glyc1,2,3H−3)]
+
. Right: Metalated glycerol species in Pd-en solutions of pH 

8–9. The en ligand is encoded by a pair of dots.  

Identifying the signals for free glycerol and [Pd(en)(Glyc1,2H−2-κO
1,2

)] (A), two signals of a 

new species B arose. The 20.5 ppm-CIS of the C2 signal (Table 2.17) could not be interpreted 

by a single bonding Pd
II
N2-fragment, but the chemical shifts of B were in agreement with the 
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assignment of a bridging O2 atom, resulting in a CIS such as the value known for the 

binuclear μ-hydroxido-bridged chelating reagent [Pd2(tm-2,1:3,2-tet)(OH)3].
[58]

 Additionally, 

keeping in mind the postulated species M2H−3, a structural model, as depicted for B in 

Fig. 2.19, resulted.  

This μ-triolato chelation mode could not only be detected for glycerol. Investigations of the 

polyols depicted in Fig. 2.8 revealed a number of μ-triolato species for the tetritols, pentitols 

and hexitols which are summarized in Table 2.17. 

Table 2.17. 
13

C NMR chemical shifts (δ/ppm) of μ-triolato-dipalladium complexes (and some tri-palladium 

derivatives thereof), referenced to 49.5 ppm for the 
13

C signal of methanol. Atoms are numbered as in Fig. 2.8. 

Δδ is the difference between the chemical shifts of the free and the palladium-binding polyols taken from the 

same spectrum in each case. The ―%‖ column shows the amount of bis-chelate relative to total polyol. 

 C1 C2 C3 C4 C5 C6 % Chelate 

Cs-[Pd2(en)2(Glyc1,2,3H−3)]
+
 68.3 93.3 68.3    24  

Δδ 5.0 20.5 5.0     1κO
1
,1:2κ

2
O

2
,2κO

3
 

[Pd2(en)2(Eryt1,2,3H−3)]
+
 67.3 93.4 79.1 62.5   26  

Δδ 4.0 20.7 6.4 −0.8    1κO
1
,1:2κ

2
O

2
,2κO

3
 

[Pd2(en)2(D-Thre1,2,3H−3)]
+
 70.7 93.0 76.9 63.9   38  

Δδ 7.4 20.7 4.6 0.6    1κO
1
,1:2κ

2
O

2
,2κO

3
 

[Pd2(en)2(D-Arab1,2,3H−3)]
+
 71.4 92.8 76.6 73.4 64.6  15  

Δδ 7.7 21.9 5.5 1.8 1.0   1κO
1
,1:2κ

2
O

2
,2κO

3
 

[Pd2(en)2(Ribt1,2,3H−3)]
+
 67.5 94.0 78.6 73.3 64.3  25  

Δδ 4.5 21.3 5.7 0.6 1.3   1κO
1
,1:2κ

2
O

2
,2κO

3
 

[Pd3(en)3(RibtH−5)]
+
 67.7 94.3 80.8 83.2 75.5  21  

Δδ 4.7 21.6 7.9 10.5 12.5   1κO
1
,1:2κ

2
O

2
,2κO

3
,3κO

4,5
 

[Pd2(en)2(Xylt1,2,3H−3)]
+
 69.4 93.1 76.8 72.7 64.0  16  

Δδ 6.1 20.5 5.4 0.1 0.7   1κO
1
,1:2κ

2
O

2
,2κO

3
 

[Pd3(en)3(XyltH−5)]
+ 

69.9 93.5 76.6 83.2 73.4  7  

Δδ 6.6 20.9 5.2 10.6 10.1   κO
1,2

: κO
2,3

:κO
4,5

 

Cs-[Pd2(en)2(Xylt2,3,4H−3)]
+
 63.8 78.4 92.6 78.4 63.8  28  

Δδ 0.5 5.8 21.2 5.8 0.5   1κO
2
,1:2κ

2
O

3
,2κO

4
 

[Pd2(en)2(Allt1,2,3H−3)]
+
 67.5 93.8 79.3 74.0 73.1 62.2 28  

Δδ 4.5 21.0 6.3 1.0 0.3 −0.8  1κO
1
,1:2κ

2
O

2
,2κO

3
 

Ci-[Pd4(en)4(AlltH−6)]
+
 67.8 94.0 80.6 80.6 94.0 67.8 11  

Δδ 4.8 21.2 7.6 7.6 21.2 4.8  κO
1,2

:κO
2,3

:κO
4,5

:κO
5,6

 

[Pd2(en)2(Dulc1,2,3H−3)]
+
 

a 
92.7 75.6 

a a 
63.8 8  

Δδ  21.9 5.6   −0.1  1κO
1
,1:2κ

2
O

2
,2κO

3
 

[Pd3(en)3(Dulc1,2,3;4,5H−5)]
+
 72.0 91.3 76.5 85.1 85.7 64.4 34  

Δδ 8.1 20.5 6.5 15.1 14.9 0.5  κO
1,2

:κO
2,3

:κO
4,5

 
 

a
 Assignment ambiguous,   = 72.4, 71.5 und 71.4 ppm. 
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The 2:1:1 molar Pd-en/polyol/H
+
 ratio used for glycerol was only applicable to the tetritols, 

and had to be altered to 3:1:1.5 for the pentitols and to 4:1:2 for the hexitols. For the three 

pentitols, some rules may be recognized. Hence, if a threo-connection was available, it was 

part of a chelate ring. Thus arabitol formed the 1κO
1
,1:2κ

2
O

2
,2κO

3
 chelate by its only 

terminal/threo pair of diol functions and not 1κO
3
,1:2κ

2
O

4
,2κO

5
 (an erythro/terminal pair of 

diols) or 1κO
2
,1:2κ

2
O

3
,2κO

4
 (a threo/erythro pair). Xylitol allowed the exclusion of erythro-

diol-binding both in its 1,2,3-terminal/threo pair (symmetrically equivalent with the 3,4,5-

threo/terminal site) as well as for the prevailing 2,3,4-threo/threo bonding, as Table 2.17 

shows. Signals of a higher-metalated species were assigned for ribitol and xylitol. In these 

species, the new μ-triolato-binding mode was accompanied by the well-known formation of a 

five-membered chelate ring. The meso-hexitols—allitol and dulcitol—exhibited the attempted 

bonding pattern, too, whereas the C1-symmetric D-sorbitol showed spectra that were too 

signal-rich to be interpreted reliably. Remarkably, mannitol was the only polyol which was 

not capable of forming the μ-triolato mode. Notably, the all-erythro meso-hexitol allitol 

formed a centrosymmetric species whose three 
13

C-NMR signals were assigned to the only 

occurrence of a double-μ-triolato pattern.  

All attempts to crystallize one of the binuclear μ-triolato species failed, leaving questions of 

the Pd
II
N2-fragment‘s orientation and the polyol‘s conformation unanswered. Since a 

dimetalated triolate function appeared to be sterically burdened, restrictions on its 

conformation were expected. In terms of torsion angles, 1κO
1
:2κ

2
O

2
,κO

3
-type palladium 

chelation required a synclinal (sc) conformation about the C-C-bonds. With this boundary 

condition, the three triolate conformations depicted in Fig. 2.20 remained to be considered. A 

preliminary DFT study showed that the most overcrowded Cs-symmetric syn conformation 

did not represent a local energy minimum but relaxed into the C1-symmetric conformation.
[70]

 

This latter chiral (+sc,+sc) pattern (and its −sc,−sc enantiomer) resembled the global 

minimum. A local minimum, some 10 kJ mol
−1

 more unstable, was found for the 

Cs-symmetric anti conformation. The computer-chemical result was supplemented by an 

NMR-spectroscopical investigation on conformationally fixed triol moieties. Suited triols 

were provided by the methyl aldopentopyranosides. Thus, the C1-symmetric, chiral triol 

conformation was frozen in the arabino- and lyxopyranosides, whereas the anti conformation 

is fixed in the xylopyranosides. Three of the eight methyl D-pentosides were investigated: 

β-D-arabino-, α-D-lyxo- and β-D-xylopyranoside. Fig. 2.20 depicts these pentosides and 

highlights the triol moieties.  
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Figure 2.20. The μ-triolato ligand conformation of glycerol, pentopyranosides and inositols. Top: The various 

combinations of synclinal diol moieties for glycerol. Below: The conformationally fixed triol moieties of the 

methyl arabino-, lyxo- and xylopyranoside and neo- and scyllo-inositol. The signs of the specified two torsion 

angles are given in the order C3-C4 first, C2-C3 second.  

The (−sc,−sc)-triol moieties of the methyl D-pyranosides of both β-arabinose and α-lyxose 

showed the 
13

C NMR signals of a μ-triolato bis-chelate as a minor species in batches of a 

molar 2:1:1 ratio of Pd/pyranoside/H
+
 (Table 2.18). The anti-(−sc,+sc)-triol group of the 

β-xylose derivative, however, did not. As a result, a conformationally flexible triol (moiety) 

was expected to reside preferentially in a bis-synclinal conformation of equal sign (+sc,+sc or 

−sc,−sc) within the binuclear μ-triolato cation. Additional proof of this conclusion was 

obtained from a preliminary investigation of inositols. The C2h-symmetric neo-inositol 

provides a centrosymmetrically linked enantiomeric pair of triol functions of the 

(−sc,−sc)/(+sc,+sc) type. In contrast, only anti configurations are fixed in the D3d-symmetric 

scyllo-inositol. In this work, the results of experiments that provoke the binucleating μ-triolato 

bonding mode for the two inositols of higher symmetry (Fig. 2.20) are of special interest. The 

result of an NMR study confirmed the deductions made above. On the one hand, scyllo-

inositol is unable to support the attempted structural feature. On the other, neo-inositol 

exhibits this bonding mode. The [Pd2(en)2(neo-Ins2,3,4H−3)]
+
 and its symmetrically 

equivalent species close to pH 10 were enriched as the major solution species. Though the 

experimental conditions were unsatisfactorily controlled due to the low solubility of neo-

inositol, a 2D-NMR analysis succeeded and allowed the assignment of the six signals of the 

binuclear, κO
2,3,4

-bonded complex (Table 2.18) as well as the 
3
JH,H coupling constants.  
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Table 2.18. 
13

C NMR chemical shifts (δ/ppm) of binuclear μ-triolato bis-chelates complexes (and some tri-

palladium derivatives thereof), referenced to 49.5 ppm for the 
13

C signal of methanol. Atoms are numbered as in 

Fig. 2.20. Δδ is the difference between the chemical shifts of the free and the palladium-binding polyols taken 

from the same spectrum in each case. The ―%‖ column shows the amount of bis-chelate relative to total polyol. 

 C1 C2 C3 C4 C5 CH3/C6 % Chelate 

[Pd2(en)2(Me-β-D-Arap2,3,4H−3)]
+ 101.8 76.7

a 
89.2 78.0

a 
61.7 55.8 20

b
  

Δδ 1.3 7.9 19.8 8.5 −1.4 0.0  κO
2,3

:κO
3,4

 

[Pd2(en)2(Me-α-D-Lyxp2,3,4H−3)]
+ 100.9 79.3 92.0 74.4 63.4 55.5 30

c  

Δδ −0.9 9.2 20.8 6.9 0.3 −0.4  κO
2,3

:κO
3,4 

[Pd2(en)2(neo-Ins2,3,4H−3)]
+ 68.9 77.5 91.2 78.4 71.4 70.6 35

d  

Δδ −0.9 5.4 21.4 8.6 −0.7 0.8  κO
2,3

:κO
3,4

 

[Pd2(R,R-chxn)2(Glyc1,2,3H−3)]
+ 67.1

a 
93.2 69.2

a 
   30  

Δδ 3.9 20.5 6.0     κO
1,2

:κO
2,3 

[Pd2(R,R-chxn)2(Xylt2,3,4H−3)]
+ 63.7 77.8 92.6 78.9 63.8  35  

Δδ 0.4 5.2 21.2 6.3 0.5   κO
2,3

:κO
3,4 

 

a 
Signals may be interchanged. 

b
 50% free glycoside, 30% of [Pd(en)(Me-β-D-Arap3,4H−2)], the major species of 

strongly alkaline solutions. 
c
 10% free glycoside, 60% of [Pd(en)(Me-α-D-Lyxp2,3H−2)], the major species of 

strongly alkaline solutions. 
d
 20% free inositol, 25% of [Pd(en)(neo-Ins2,3H−2)] and 20% of [Pd(en)(neo-

Ins3,4H−2)]. 

In particular the coupling constants within a chelating diol function allowed a final 

characterization of the open-chain μ-triolato complexes. Reference values were provided by 

sterically well-defined, rigid chelate rings. Hence, values of 9–11 Hz were expected from 

Karplus relationships, and were in fact determined for the 
3
JH,H constants of trans-fixed 

H-C-C-H units of neo-inositol‘s and xylopyranoside‘s chelating diol functions. Specifically, 

the H3-C3-C4-H4 unit of the [Pd2(en)2(neo-Ins2,3,4H−3)]
+
 species which is close to a diaxial 

arrangement (Fig. 2.20; H3-C3-C4-H4 torsion ca. 170° derived from a typical O3-C3-C4-O4 

torsion angle of 50°) led to a 
3
JH3,H4 constant of 10.1 Hz. More data were contributed by two 

monometalated xylopyranoside chelates of the general formula [Pd(R,R-chxn)(Me-β-D-

XylpH−2)]: 
3
JH2,H3 for the κO

2,3 
chelate: 9.3 Hz; 

3
JH3,H4 for the κO

3,4 
chelate: 9.1 Hz.

[71]
  

To analyze the bonding situation in an open-chain μ-triolato species, these reference values 

may be compared with the constants of glycerol and its Pd
II
 complexes. If, for example, the 

[Pd(en)(Glyc1,2H−2)] species A of Fig. 2.19 were a rigid chelate, one of the two H-C1-C2-H 

angles should be, for the same reasons as above, ca. 170°, and, accordingly, one of the 

coupling constants should exceed the 9 Hz limit. The 
3
JH,H values in Table 2.19, however, are 

markedly smaller and are rather close to those of free glycerol. The constants thus reflect the 
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non-rigidity of the chelate which dynamically switches between its δ and λ conformation. In 

terms of the glycerol conformations of Fig. 2.20, this motion connects the anti-(+sc,−sc) and 

the (+sc,+sc) conformation if the dangling hydroxymethyl function is chosen as the left one in 

both formulae, and the chelate is established with the right one. For the species 

[Pd2(en)2(Glyc1,2,3H−3)]
+
, the coupling constants indicated a very similar situation. Although 

restricted, flexibility is thus retained in the μ-triolato mode to a large extent. If, despite the 

results with the inositols and the pyranoside, the spectroscopically determined Cs symmetry 

would be interpreted in the sense that the binuclear species resides in a rigid anti-(+sc,−sc) 

conformation, the coupling constants would contradict this assumption. In a rigid Cs-

symmetric anti-(+sc,−sc) complex, again, at least one 
3
JH,H constant should exceed the 9-Hz 

limit, but it did not.  

Table 2.19. Coupling constants, J/Hz for glycerol and its complexes. 

 2
JH1,H1 

3
JH1,H2 

3
JH1,H2 

3
JH2,H3 

3
JH2,H3 

2
JH3,H3 

Glyc −11.8 4.4 6.5 4.4 6.5 −11.8 

[Pd(en)(Glyc1,2H−2)] −10.3 3.9 6.8 5.5 7.2 −11.0 

[Pd2(en)2(Glyc1,2,3H−3)]
+
 −11.0 4.0 5.9 4.0 5.9 −11.0 

 

Combining all the facts so far, a conformationally restricted, but non-rigid Pd2(μ-triolato) unit 

which exhibits time-averaged Cs symmetry would have explained the results best. The 

motional restriction was caused by an energetically strongly unfavorable syn and a weakly 

unfavorable anti conformation of the triol function (Fig. 2.20). As a result, the complex 

should prefer to reside in the enantiomeric pair of C1-symmetric conformations with the Cs-

symmetric anti conformation as the intermediate. As expected, the spectroscopic Cs symmetry 

was lifted if the non-chiral Pd(en) residue was replaced by a chiral probe. In the Pd-chxn 

solvent, the simple spectrum of Fig. 2.19 thus was altered in a characteristic way. The three 

signals of species (A) were split since the chiral probe discriminated between the two halves 

of the meso compound glycerol and formed the diastereomeric pair [Pd(R,R-

chxn)(Glyc1,2H−2)] and [Pd(R,R-chxn)(Glyc2,3H−2)]. The two signals of species (B) split into 

three since C1 and C3 were no longer equivalent (Table 2.18). In addition to the [Pd2(R,R-

chxn)2(Glyc1,2,3H−3)]
+
 cation, a second species of this kind was detected with the [Pd2(R,R-

chxn)2(Xylt2,3,4H−3)]
+
 cation (five signals). Again, the symmetry was lifted in the chiral 

solvent Pd-chxn where the three signals of [Pd2(en)2(Xylt2,3,4H−3)]
+
 split into five signals 

(Table 2.17 and Table 2.18). 
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2.4.2 Pd4(μ-OH)4-derived threo-tetraolato bridging at pH 7–8 

 The addition of defined amounts of nitric acid to Pd-en/polyol solutions had led to a 

complexation of a M2H−3 derived Pd2(μ-triolato) unit with various polyols at a pH value of   

8–9. In Fig. 2.21, three 
13

C NMR spectra of threitol-containing solutions at different 

Pd-en/polyol/H
+
 ratios and pH values should elucidate the effect of Pd-en‘s further 

acidification to the species distribution. 

 

 

Figure 2.21. Left: 
13

C NMR signals of D-threitol species in Pd-en after pH adjustment with nitric acid. Top: 

threitol in a threefold molar amount of Pd-en formed dimetalated C2-symmetric [Pd2(en)2(ThreH−4)] (A) and 

monometalated C2-symmetric [Pd(en)(Thre2,3H−2)] (B) as major species, and minor [Pd(en)(Thre1,2H−2)] (C). 

Middle: Threitol in a double molar amount of Pd-en and one equivalent of acid (3 OH
−
 left) formed 

Pd2(en)2(Thre1,2,3H−3)]
+
 (D) as well as B and C; some free threitol is left (dashed). Bottom: Threitol in a 

fourfold molar amount of Pd-en with three equivalents of acid added (5 OH
−
 left) formed the dimetalated C2-

symmetric [Pd4(en)4(ThreH−4)]
4+

 complex (E) besides marked amounts of free threitol and minute amounts of B 

and C. The subscripts refer to the standard atomic numbering along the threitol chain (Fig. 2.23). Right: 

Metalated tetritol species in Pd-en solutions of various pH values. A–D formed with both threitol and erythritol. 

E‗s C2 axis is highlighted. The α/β notation is used in the text. A–C, the species of the alkaline regime, are 

known from previous work.
[72] 

The en ligand is encoded by a pair of dots.  

 

The upper 
13

C NMR spectrum fell back on a published result.
[58]

 Since only five-membered 

chelate rings were formed and were characterized by a typical CIS of about 10 ppm, species 

assignment of A–C was straightforward. As one can see in the middle 
13

C NMR spectrum, the 

addition of acid made the signals of the dimetalated species vanish, and a signal set of a 

μ-triolato species D, as presented in the latter section, appeared.  
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Quite by chance, a new species was discovered in polyol-containing solutions at a 

Pd-en/polyol/H
+
 ratio of 4:1:3 at pH 7–8. First detected for D-mannitol, the 

13
C NMR spectra 

of this 4:1:3-composition were dominated by a new species E that was accompanied by large 

amounts of free polyol, as depicted in the last 
13

C NMR spectrum of the threitol-containing 

solution in Fig. 2.21. Repeating the experiment with erythritol, this species E could not be 

detected, although the species A–D appeared in the corresponding 
13

C NMR spectra, as it is 

shown in Fig. 2.22. Obviously, to obtain this new species the polyol must be able to provide a 

threo unit. 

 

Figure 2.22. Left: 
13

C NMR signals of erythritol species in Pd-en after pH adjustment with nitric acid. Top: 

erythritol in a threefold molar amount of Pd-en formed dimetalated C2-symmetric [Pd2(en)2(ErytH−4)] (A) and 

traces of [Pd(en)(Eryt1,2H−2)] (C). Middle: Erythritol in a double molar amount of Pd-en and one equivalent of 

acid (3 OH
−
 left) formed Pd2(en)2(Eryt1,2,3H−3)]

+
 (D) as well as [Pd(en)(Eryt2,3H−2)] (B) and C; some free 

erythritol is left (dashed). Bottom: Erythritol in a fourfold molar amount of Pd-en with three equivalents of acid 

added (5 OH
−
 left) formed predominantly free erythritol and minute amounts of A–C. The subscripts refer to the 

standard atomic numbering along the erythritol chain (Fig.2.23). Right: See Fig. 2.21. 

 

The two new signals of E in the bottom 
13

C NMR spectrum in Fig. 2.21 indicated a 

C2-symmetric complex, however, the CIS values differed from those of the C2-symmetric 

[Pd2(en)2(ThreH−4-κO
1,2

:κO
3,4

)]. Furthermore, at a 4:1:3 Pd-en/Thre/H
+
 stoichiometry and 

remembering the μ-alkoxido coordination obtained for a minor Pd-en/Thre/H
+
 ratio of 2:1:1, a 

higher metalation grade than dimetalation was expected. Compared to the titration‘s result at a 

pH value of 7–8, polyol-free solutions were in the regime of [(Pd
II
N2)n(μ2-OH)n]

n+
 species 

which are characterized by μ2-bridging oxygen ligands. Nevertheless, not until a first crystal 
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structure was determined was E identified as the tetranuclear [Pd4(en)4(ThreH−4)]
4+

 tetracation 

depicted in Fig. 2.21 which contains exclusively bridging alkoxide functions. Subsequently, 

this new Pd4-tetrameric species was found for a number of polyols (see Table 2.20 and 

Fig. 2.23 for details).  

Table 2.20. 
13

C NMR chemical shifts (ppm) of the tetranuclear complexes, referenced to 49.5 ppm for the 

13
C NMR signal of methanol. Atoms are numbered as in Fig. 2.23. Δδ is the difference between the chemical 

shifts of the free and the palladium-binding polyols taken from the same spectrum in each case. The chirality of 

the chelating tetraol function is given in the second column. C2 symmetry of a species is noted in the third 

column; each shift value is tabulated twice in this case. For the meso-polyols, the κO
1,2,3,4 

chelate is the 

enantiomer of the κO
2,3,4,5

 (Xylt) or the κO
2,3,4,5

 chelate (Dulc). The ―%‖ column shows the amount of bis-

chelate; the remaining part is free polyol. 

 -threo  C1 C2 C3 C4 C5 C6 % Chelate 

[Pd4(en)4(L-ThreH−4)]
4+

 L C2 76.8  81.6  81.6  76.8    40   

Δδ   13.5  9.3  9.3  13.5     κO
1,2,3,4 

 

[Pd4(en)4(L-Arab1,2,3,4H−4)]
4+

 L  76.9  77.1  80.9  84.2  62.9   40   

Δδ   13.2  6.2  9.8  12.6  −0.7    κO
1,2,3,4 

 

[Pd4(en)4(Xylt1,2,3,4H−4)]
4+

 rac  77.0  83.1  81.5  85.0  64.7   50   

Δδ   13.7  10.5  10.1  12.4  1.4    κO
1,2,3,4 

 

[Pd4(en)4(D-Altr1,2,3,4H−4)]
4+

 D  77.1  76.4  80.8  82.5  73.6  64.2  40   

Δδ   13.4  5.3  9.4  10.3  0.3  1.5   κO
1,2,3,4 

 

[Pd4(en)4(Dulc1,2,3,4H−4)]
4+

 
 

rac  76.9  77.3  80.1  84.2  73.9  64.0  30   

Δδ   13.0  6.5  10.1  14.2  3.1  0.1   κO
1,2,3,4 

 

[Pd4(en)4(L-Idit2,3,4,5H−4)]
4+

 D C2 64.7  85.2  83.0  83.0  85.2  64.7  80   

Δδ   1.4  12.9  11.3  11.3  12.9  1.4   κO
2,3,4,5

  

[Pd4(en)4(D-Mann2,3,4,5H−4)]
4+

 D C2 62.8  84.4  76.4  76.4  84.4  62.8  30   

Δδ   −1.0  12.9  6.5  6.5  12.9  −1.0   κO
2,3,4,5

  

[Pd4(en)4(D-Sorb1,2,3,4H−4)]
4+

 L  77.0  83.2  80.2  84.0  71.6
a
 63.2  25   

Δδ   13.9  9.7  9.9  12.3  0.0  −0.2   κO
1,2,3,4 

 

[Pd4(en)4(D-Sorb2,3,4,5H−4)]
4+

 D  64.8  85.1  77.2  82.4  84.4  62.9  35   

Δδ   1.7  11.6  6.9  10.7  12.8  −0.5   κO
2,3,4,5

  
 

a
 Assignment ambiguous 

The formation of a Pd4-tetrameric tetracation needs four bridging alkoxide functions which 

exactly corresponds to the fourfold deprotonated threitol in [Pd4(en)4(ThreH−4)]
4+

. 
13

C NMR 

identification without the structural information from X-ray analysis had to fail. Looking 

exclusively at the CIS values, a clear dividing line between the κO
1,2,3,4

 and the κO
1,2

:κO
3,4

 

bonding mode could not be drawn. Furthermore, for the identification of a μ-alkoxido 

κO
1,2

:κO
2,4

 bridging atom, a unique CIS, such as the 20-ppm downfield shift of the κO
1,2

:κO
2,3
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bonding mode, was missing. Despite these facts, the assignment of the signals succeeded by 

DEPT and 2D techniques for all investigated polyols. 

 

Figure 2.23. Fischer projections and atomic numbering of the C4 (tetritols, top), C5 (pentitols, middle) and C6 

(hexitols, bottom) glycitols. From top left to bottom right: erythritol, D-threitol, D-arabitol, ribitol (‗adonitol‘), 

xylitol, allitol, D-altritol (= tallitol), dulcitol (‗galactitol‘), L-iditol, D-mannitol and D-sorbitol (‗glucitol‘, 

[= gulitol]). Note that in a Fischer projection, a pair of secondary hydroxy functions on the same side of the 

carbon backbone is erythro-linked, whereas a right-left couple is threo-configured. Note that Eryt, Ribt and Allt 

are all-erythro; Thre, Xylt and Idit are all-threo. Glycitols lacking the D or L designator are Ci- or Cs-symmetric 

meso forms. The boxes enclose the threo-configured tetraol units that are capable of forming Pd4 species in a 

neutral aqueous solution. For xylitol and dulcitol, the dashed boxes denote symmetrically equivalent O4 sets. For 

sorbitol, the dashed box encloses an alternative O4 set. The circles at some positions mark lower-CIS positions 

(see text).  

As one can see in Fig. 2.23, the pentitols already provide more than a threo site for Pd4-

tetrameric coordination. As detected by 
13

C NMR spectroscopy, L-arabitol formed only the 

Pd4-tetramer [Pd4(en)4(L-Arab1,2,3,4H−4)]
4+

 in the κO
1,2,3,4

 mode, the κO
2,3,4,5

 mode 

correspond to an erythro site. The meso-configured xylitol, on the other hand, provided a pair 

of suited threo sites to coordinate in the κO
1,2,3,4

 or in the κO
2,3,4,5

 mode which were 

equivalent in Pd-en solutions. The hexitols D-altritol and D-mannitol provide only a single 

threo site and accordingly, they formed the Pd4-type compound.  
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As shown in Fig. 2.23, D-altritol bonded in a κO
1,2,3,4 

mode and D-mannitol in a C2-symmetric 

κO
2,3,4,5

 mode to the Pd4-tetramer as indicated by only three signals in the 
13

C NMR spectrum. 

Dulcitol, L-iditol and D-sorbitol provide more than one threo site per polyol. The meso-

configured dulcitol, like xylitol, provides an enantiomeric pair of suited threo sites that were 

equivalent in Pd-en solutions. The all-threo hexitol L-iditol should be able to provide its two 

more, symmetrically equivalent, κO
1,2,3,4

 and κO
3,4,5,6

 threo positions for the construction of a 

Pd4-tetramer, but chose exclusively the depicted κO
2,3,4,5

-bonding mode. The most 

complicated case is D-sorbitol. Two unequivalent threo sites were provided, and both were 

used. Hence, both the [Pd4(en)4(D-Sorb1,2,3,4H−4)]
4+

 and the [Pd4(en)4(D-Sorb2,3,4,5H−4)]
4+

 

species were detected in roughly the same quantities. 

Despite the initial problems in deriving the metal-binding pattern from the NMR spectra 

without the support of X-ray work, structural details could be recognized from the shift 

pattern in retrospect. Thus, the 
13

C NMR CIS pattern consistently correlated with the 

configuration of the glycitol. Table 2.20 revealed that two CIS patterns occurred for the O4-

rhomb related signals of four adjacent carbon atoms. The one is >9 >9 >9 >9 and the other 

was similar but one CIS was markedly smaller (two for mannitol). The positions related to the 

small-CIS signals were marked in Fig. 2.23. Without exception, the small CIS always 

indicated the same steric environment. By using the β-α-α′-β′ designation of the chelating 

tetraol chain as defined in Fig. 2.21 (right, species E), the small CIS lay on α, if α′-β′ was 

erythro-configured (and vice versa on α′ if α-β was erythro-configured).  

The restriction to the threo configuration determined whether or not a polyol is suited to 

support a polyolato complex at a neutral pH. Now, looking at Fig. 2.23, the polyols erythritol, 

ribitol and allitol weren‘t able to provide a threo unit and could not form Pd4-type 

tetracations. Among the remaining polyols, by using Pd-chxn, crystallization succeeded for 

L-threitol, xylitol, D-altritol, dulcitol, L-iditol, and D-mannitol, the latter by using the Pd-(S,S)-

chxn solvent additionally. The isolated crystals were depicted in Fig.2.24–2.29.  

The configuration of the tetracations is best presented with L-threitol in Fig. 2.24, all other 

compounds could be deduced from this structure which crystallized in the space group P 21. 

Two Pd
II
N2 fragments bonded in the C2-symmetric κO

1,2
:κO

3,4
 mode to the two diolato units 

of L-threitol, additionally two more Pd
II
N2 fragments bonded in the κO

1,3
 and κO

2,4
 mode to 

complete the cyclic Pd4-tetramer. Linking the Pd
II
N2 fragments by the polyol‘s alkoxido 

functions forced two fragments into an axial position facing each other while two fragments 

remained in an equatorial position.  
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Figure 2.24. The molecular structure of [Pd4(R,R-chxn)4(L-ThreH−4)](NO3)4 in crystals of the 4-hydrate (18). 

ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O1 2.012(2), Pd1–O2 2.023(2), Pd1–N1 2.025(2), Pd1–N2 

2.033(3), Pd2–O1 2.018(2), Pd2–O3 2.035(2), Pd2–N3 2.021(3), Pd2–N4 2.037(3), Pd3–O2 2.016(2), Pd3–O4 

2.009(2), Pd3–N5 2.035(3), Pd3–N6 2.022(3), Pd4–O3 2.0314(19), Pd4–O4 2.016(2), Pd4–N7 2.038(3), Pd4–

N8 2.022(2), O1–Pd1–O2 84.53(9), N1–Pd1–N2 84.04(10), O1–Pd2–O3 91.44(9), N3–Pd2–N4 83.94(12), O2–

Pd3–O4 90.67(9), N5–Pd3–N6 84.26(11), O3–Pd4–O4 84.66(9), N7–Pd4–N8 83.63(11), Pd1–O1–Pd2 

108.47(11), Pd1–O2–Pd3 123.95(11), Pd2–O3–Pd4 120.24(11), Pd3–O4–Pd4 110.87(11); chelate torsion 

angles: O1–C1–C2–O2 54.3(3), O2–C2–C3–O3 –61.1(3), O3–C3–C4–O4 55.3(3). 

 

Figure 2.25. The molecular structure of [Pd4(R,R-chxn)4(Xylt1,2,3,4H−4)](NO3)4 in crystals of the 4.7-hydrate 

(19). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O1 2.012(3), Pd1–O2 2.019(3), Pd1–N1 2.022(3), Pd1–N2 

2.035(3), Pd2–O1 2.015(3), Pd2–O3 2.015(3), Pd2–N3 2.026(4), Pd2–N4 2.022(3), Pd3–O2 2.021(3), Pd3–O4 

2.005(3), Pd4–O3 2.026(3), Pd4–O4 2.017(3), Pd4–N7 2.053(3), Pd4–N8 2.016(3), O1–Pd1–O2 84.99(11), N1–

Pd1–N2 83.91(13), O1–Pd2–O3 90.42(11), N3–Pd2–N4 83.39(14), O2–Pd3–O4 89.37(11), N5–Pd3–N6 

84.06(14), O3–Pd4–O4 84.24(11), N7–Pd4–N8 82.79(15), Pd1–O1–Pd2 111.89(14), Pd1–O2–Pd3 125.59(14), 

Pd2–O3–Pd4 121.52(13), Pd3–O4–Pd4 113.77(12); chelate torsion angles: O1–C1–C2–O2 –55.4(4), O2–C2–

C3–O3 62.7(5),O3–C3–C4–O4 –56.1(4), O4–C4–C5–O5 –59.1(4). 
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Figure 2.26. The molecular structure of [Pd4(R,R-chxn)4(L-Idit2,3,4,5H−4)](NO3)4 in crystals of the 6-hydrate 

(20). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O2 2.019(7), Pd1–O3 2.041(6), Pd1–N1 2.041(8), Pd1–N2 

2.055(8), Pd2–O2 2.046(6), Pd2–O4 2.007(6), Pd2–N3 2.045(8), Pd2–N4 2.008(8), Pd3–O3 2.009(7), Pd3–O5 

2.041(6), Pd3–N5 2.026(8), Pd3–N6 2.030(9), Pd4–O4 2.025(6), Pd4–O5 2.021(6), Pd4–N7 2.042(8), Pd4–N8 

2.040(8), O2–Pd1–O3 84.9(2), N1–Pd1–N2 82.7(3), O2–Pd2–O4 88.2(2), N3–Pd2–N4 83.6(3), O3–Pd3–O5 

90.0(2), N5–Pd3–N6 82.9(4), O4–Pd4–O5 83.9(3), N7–Pd4–N8 83.5(3), Pd1–O2–Pd2 112.1(3), Pd1–O3–Pd3 

123.5(3), Pd2–O4–Pd4 124.6(3), Pd3–O5–Pd4 113.6(3); chelate torsion angles: O1–C1–C2–O2 –59.4(10), O2–

C2–C3–O3 –56.0(9), O3–C3–C4–O4 62.9(10), O4–C4–C5–O5 –54.1(9), O5–C5–C6–O6 –64.8(11). 

 

Figure 2.27. The molecular structure of [Pd4(R,R-chxn)1.66(S,S-chxn)2.34(D-Mann2,3,4,5H−4)](NO3)4 in crystals 

of the 7-hydrate (21). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and 

angles (°) (standard deviations of the last digit in parentheses): Pd1–O2 2.011(2), Pd1–O3 2.034(3), Pd1–N1 

2.020(4), Pd1–N2 2.038(3), Pd2–O2 2.034(3), Pd2–O4 2.015(3), Pd2–N3 2.037(4), Pd2–N4 2.025(4), Pd3–O3 

2.008(2), Pd3–O5 2.025(3), Pd3–N51 2.09(4), Pd3–N61 2.04(2), Pd4–O4 2.036(2), Pd4–O5 2.016(2), Pd4–N7 

2.030(3), Pd4–N8 2.023(3), O2–Pd1–O3 83.92(10), N1–Pd1–N2 83.23(14), O2–Pd2–O4 92.15(10), N3–Pd2–

N4 83.28(15), O3–Pd3–O5 90.64(10), N51–Pd3–N61 85.0(14), O4–Pd4–O5 84.42(10), N7–Pd4–N8 83.88(16), 

Pd1–O2–Pd2 106.36(11), Pd1–O3–Pd3 122.97(12), Pd2–O4–Pd4 119.76(13), Pd3–O5–Pd4 107.67(11); chelate 

torsion angles: O1–C1–C2–O2 71.2(4), O2–C2–C3–O3 –55.5(4), O3–C3–C4–O4 59.6(4), O4–C4–C5–O5 –

57.0(4), O5–C5–C6–O6 177.0(3). 
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Figure 2.28. The molecular structure of [Pd4(R,R-chxn)4(D-Altr1,2,3,4H−4)](NO3)3.57(OH)0.43 in crystals of the 

12-hydrate (22). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) 

(standard deviations of the last digit in parentheses): Pd1–O1 2.038(3), Pd1–O2 2.020(3), Pd1–N1 2.017(4), 

Pd1–N2 2.038(3), Pd2–O1 2.046(3), Pd2–O3 1.993(3), Pd2–N3 2.028(4), Pd2–N4 2.007(4), Pd3–O2 2.006(3), 

Pd3–O4 2.043(3), Pd3–N5 2.016(4), Pd3–N6 2.026(4), Pd4–O3 2.014(3), Pd4–O4 2.029(3), Pd4–N7 2.035(4), 

Pd4–N8 2.019(3), O1–Pd1–O2 84.63(12), N1–Pd1–N2 82.41(16), O1–Pd2–O3 88.66(12), N3–Pd2–N4 

84.27(15), O2–Pd3–O4 90.00(12), N5–Pd3–N6 83.48(14), O3–Pd4–O4 84.19(12), N7–Pd4–N8 83.13(14), Pd1–

O1–Pd2 115.66(14), Pd1–O2–Pd3 124.72(15), Pd2–O3–Pd4 128.77(15), Pd3–O4–Pd4 109.01(13); chelate 

torsion angles: O1–C1–C2–O2 –56.3(4), O2–C2–C3–O3 61.3(4), O3–C3–C4–O4 –58.7(4), O4–C4–C5–O5 –

157.5(3), O5–C5–C6–O6 73.4(5). 

 

 

 

 

 

 

Figure 2.29. The molecular structure of [Pd4(R,R-chxn)4(Dulc1,2,3,4H−4)](NO3)3.5(OH)0.5  in crystals of the 6.75-

hydrate (23). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) 

(standard deviations of the last digit in parentheses): Pd1–O1 2.011(6), Pd1–O2 2.017(7), Pd1–N1 1.992(8), 

Pd1–N2 2.044(7), Pd2–O1 1.999(6), Pd2–O3 2.022(6), Pd2–N3 2.005(9), Pd2–N4 2.021(9), Pd3–O2 2.005(6), 

Pd3–O4 2.026(6), Pd3–N5 2.018(11), Pd3–N6 2.048(9), Pd4–O3 2.015(6), Pd4–O4 2.019(6), Pd4–N7 2.045(8), 

Pd4–N8 2.019(7), O1–Pd1–O2 84.7(3), N1–Pd1–N2 84.1(3), O1–Pd2–O3 90.8(2), N3–Pd2–N4 84.2(4), O2–

Pd3–O4 91.1(2), N5–Pd3–N6 83.6(4), O3–Pd4–O4 84.7(3), N7–Pd4 –N8 83.6(3), Pd1–O1–Pd2 107.9(3), Pd1–

O2–Pd3 128.8(3), Pd2–O3–Pd4 127.0(3), Pd3–O4–Pd4 109.3(3); chelate torsion angles: O6–C6–C5 113.2(9), 

O1–C1–C2–O2 55.8(10), O3–C3–C4–O4 55.8(9), O4–C4–C5–O5 –55.6(10), O5–C5–C6–O6 –70.0(11). 
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In crystals of [Pd4(R,R-chxn)4(Xylt1,2,3,4H−4)](NO3)4 · 4.7 H2O of the space group P 21, the 

Pd4-xylitol moiety, as depicted in Fig. 2.25, formed a zigzag chain extended by the terminal 

hydroxymethyl function. In Fig. 2.26 and 2.27, the structure analyses revealed C2-symmetric 

Pd4 complexes for L-iditol and D-mannitol in the space groups P 1 and P 212121, respectively. 

The two hexitols differed with respect to the environment of the central threo function: two 

more threo links for iditol, two erythro links for mannitol. The double threo link extended the 

zigzag chain, whereas the erythro-linked functions caused a kink in the chain. The same 

connection of configuration and conformation determined the structure of the altritol and 

dulcitol isomers. The crystal structures were solved in the space groups P 212121 for 22 and 

P 41212 for 23. As shown in Fig. 2.28 and 2.29, the Pd4 tetramer bonded in a κO
1,2,3,4

 mode to 

the zigzag chain of D-altritol and dulcitol. The remaining diolato unit turned away from the 

cyclohexane-1,2-diamine ligand.  

 

2.4.3 Pd3(μ-OH)3-derived triolato bridging at pH 7–8 

 The tetrameric Pd4-complexes of the previous section modulated the Pd4(μ-OH)4 core 

of one of the competing μ-hydroxido species of the common formula [(Pd
II
N2)n(μ2-OH)n]

n+
 

(see section 2.4). The concept of stabilizing such a Pdn(μ-OH)n-core for n = 3 (Fig. 2.30, left) 

by providing a matching polyolato ligand, seemed to work if the demanding sterical 

requirements typical for this pH region were respected. Thus the more flexible, C3-symmetric, 

non-carbohydrate triol 2-hydroxymethyl-2-methylpropane-1,3-diol, supported the trinuclear 

pattern. 

 

 

 

 

 
Figure 2.30. (A) The assumed palladium compound; platinum homologues are described with both ammine and 

(R,R)-cyclohexane-1,2-diamine as the nitrogen ligands.
[67, 69]

 (B) The monometalated species of 2-hydroxy-

methyl-2-methylpropane-1,3-diol. (C) The trianion of 2-hydroxymethyl-2-methylpropane-1,3-diol as a μ3-

bridging ligand. The dots represent the N2-type ligand(s). 

At a molar Pd-en/triol/H
+
 ratio of 4:1:3, 70% of the free triol was detected, but about 30% was 

transformed to the expected C3-symmetric, trinuclear complex [Pd3(en)3(HmmpdH−3)]
3+

, as 
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indicated by 
13

C NMR spectroscopy (Table 2.21). For a compound providing exclusively the 

κO
1,3

-diolato functionality, a 11.8 ppm CIS—compare the 4.0 ppm regular CIS for the 

κO
1,3

-diolato coordination of [Pd(en)(Hmmpd1,1′H−2-κO
1,1

) (Fig. 2.30, middle)]—strongly 

indicates the coordination of two Pd
II
 fragments per oxygen atom as shown in Fig. 2.30. 

Attempts to crystallize a triol complex from solutions with an equimolar ratio of palladium(II) 

and base equivalents failed for the monomer. By elimination of a [(R,R-chxn)2Pd]
2+

 cation  

the compound [{Pd2(R,R-chxn)2(HmmpdH−3)}2Pd](NO3)4 · 4 H2O (24) crystallized in the 

space group P 21, as depicted in Fig. 2.31. As predicted by 
13

C NMR spectroscopy the 

Hmmpd ligand provided its three bridging alkoxido functions for the formation of a 

Pd3-trimer. The coordination of the alkoxido functions to a first palladium(II) center reduced 

their Lewis acidity to a level comparable to the N2-chelate ligand favoring the elimination of a 

R,R-chxn ligand towards dimerization.  

 

 

 

 

 

 

 

 

 
Figure 2.31. The molecular structure of [{Pd2(R,R-chxn)2(HmmpdH−3)}2Pd](NO3)4 in crystals of the 4-hydrate 

(24). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O11 2.020(5), Pd1–O12 2.010(5), Pd1–O31 1.993(5), Pd1–O32 

2.028(5), Pd2–O11 2.025(5), Pd2–O21 2.040(5), Pd2–N1 2.019(6), Pd2–N2 2.025(6), Pd3–O21 2.025(5), Pd3–

O31 2.016(5), Pd3–N3 2.034(6), Pd3–N4 2.020(6), Pd4–O12 2.018(5), Pd4–O22 2.022(5), Pd4–N5 2.028(6), 

Pd4–N6 2.028(7), Pd5–O22 2.012(5), Pd5–O32 2.014(5), Pd5–N7 2.024(6), Pd5–N8 2.012(7), O11–Pd1–O31 

93.1(2), O11–Pd1–O32 87.2(2), O12–Pd1–O31 86.0(2), O12–Pd1–O32 93.8(2), O11–Pd2–O21 93.0(2), O11–

Pd2–N1 89.4(2), O21–Pd2–N2 93.6(2), N1–Pd2–N2 83.9(2), O21–Pd3–O31 92.55(19), O21–Pd3–N3 94.0(2), 

O31–Pd3–N4 89.4(2), N3–Pd3–N4 84.2(2), O12–Pd4–O22 92.0(2), O12–Pd4–N5 91.0(2), O22–Pd4–N6 

92.7(2), N5–Pd4–N6 84.5(3), O22–Pd5–O32 93.89(19), O22–Pd5–N7 92.6(2), O32–Pd5–N8 88.8(2), N7–Pd5–

N8 84.8(3), Pd1–O11–Pd2 97.6(2), Pd1–O12–Pd4 99.3(2), Pd2–O21–Pd3 107.7(2), Pd4–O22–Pd5 108.9(2), 

Pd1–O31–Pd3 97.2(2). 
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Table 2.21. 
13

C NMR chemical shifts (δ/ppm) of the 2-hydroxymethyl-2-methyl-propane-1,3-diol (Hmmpd) 

complexes, referenced to 49.5 ppm for the 
13

C signal of methanol. Atoms are numbered as in Fig. 2.30. Δδ is the 

difference between the chemical shifts of the free and the palladium-binding polyol taken from the same 

spectrum in each case. The ―%‖ column shows the amount of chelate; the remaining part is free polyol. 

  C1 C1 C3 C2 C1 % Chelate 

[Pd(en)(Hmmpd1,1H−2)] Cs 69.0 69.0 66.2 48.5 17.4 55  

Δδ  4.0 4.0 1.1 0.0 1.3  κO
1,1

 

[Pd3(en)3(HmmpdH−3)]
3+

 C3 76.8 76.8 76.8 54.8 17.0 30  

Δδ  11.8 11.8 11.8 6.3 0.9  κO
1,1,3

 

 

By the tetrameric and trimeric palladium(II) complexes of the previous sections the concept of 

stabilizing a Pdn(μ-OH)n-core by providing a matching polyolato ligand was proved. From 

Pd-chxn solutions which had a pH value of 7–8 and did not provide a matching polyolato 

ligand, often an oxido-bridged, hexanuclear derivative of the trinuclear μ-hydroxido species 

was crystallized (Fig. 2.32). 

 

Figure 2.32. The molecular structure of [Pd6(R,R-chxn)6(μ4-O)(μ-OH)4](NO3)6 in crystals of the 12.5-hydrate 

(25). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O1 2.053(4), Pd1–O3 2.029(5), Pd1–N1 2.017(5), Pd1–N2 

2.029(6), Pd2–O1 2.047(4), Pd2–O2 2.020(5), Pd2–N3 2.021(6), Pd2–N4 2.040(7), Pd3–O3 2.006(4), Pd3–O2
i
 

2.016(4), Pd3–N5 2.008(5), Pd3–N6 2.020(5), O1–Pd1–O3 89.12(13), N1–Pd1–N2 84.1(2), O1–Pd2–O2 

88.59(12), N3–Pd2–N4 83.6(2), O2
i
–Pd3–O3 86.64(18), N5–Pd3–N6 83.6(2), Pd1–O1–Pd2 120.64(2), Pd1–

O1–Pd2
i
 117.57(2), Pd1

i
–O1–Pd2 117.57(2), Pd1

i
–O1–Pd2

i
 120.64(2), Pd2–O2–Pd3

i
 112.7(2), Pd1–O3–Pd3 

115.4(2). [Symmetry code: (i) −x, y, −z + ½]  
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Two μ-hydroxido ligands of two trinuclear units condensated and formed a spiro-connection 

of the two cyclic Pd3 units. The depicted compound, [Pd6(R,R-chxn)6(μ4-O)(μ-OH)4](NO3)6, 

crystallized in the space group P 2221 and resembled a μ4-oxido building unit of palladium(II) 

oxide which was additionally capped by two Pd(R,R-chxn) fragments.
[73]

 In the literature, 

μ4-oxido bonding was found only once in a tetranuclear species that had formed under less 

typical conditions.
[74]

 

 

2.5 Dihydroxymalonic acid – complexes of palladium(II) with ketone hydrates   

Attempts to crystallize a Pd4–tetraolato species stabilizing the open-chain form of 

D-threose yielded in a crystal structure with a decomposition product, namely dihydroxy-

malonic acid. Although the hydrated mesoxalato complex was not the attempted product, 

[Pd4(R,R-chxn)4(C3O6)(μ-OH)](NO3)3 was the first structure of a ketone hydrate acting as a 

ligand for coordination of Pd
II
N2-fragments. 

 

 

 

 

 

 

 

 
Figure 2.33. The molecular structure of [Pd4(R,R-chxn)4(C3O6)(μ-OH)](NO3)3 in crystals of the 8-hydrate (26). 

ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O111 1.984(11), Pd1–O212 2.012(9), Pd1–N1 2.032(10), Pd1–

N2 2.009(11), Pd2–O41 1.997(11), Pd2–O211 2.057(8), Pd2–N3 1.978(10), Pd2–N4 2.026(11), Pd3–O41 

2.028(11), Pd3–O212 2.039(9), Pd3–N5 1.986(11), Pd3–N6 2.028(13), Pd4–O211 2.009(9), Pd4–O311 

2.022(10), Pd4–N7 1.989(11), Pd4–N8 2.041(12), O111–Pd1–O212 81.7(3), O111–Pd1–N1 95.7(5), O212–

Pd1–N2 98.8(4), N1–Pd1–N2 83.8(5), O41–Pd2–O211 90.7(4), O41–Pd2–N4 93.7(4), O211–Pd2–N3 92.4(4), 

N3–Pd2–N4 83.2(4), O41–Pd3–O212 89.4(4), O41–Pd3–N5 93.7(4), O212–Pd3–N6 93.2(4), N5–Pd3–N6 

83.7(5), O211–Pd4–O311 82.4(3), O211–Pd4–N7 98.0(4), O311–Pd4–N8 96.4(5), N7–Pd4–N8 83.2(5), Pd2–

O41–Pd3 117.6(4), Pd2–O211–Pd4 119.8(4) Pd1–O212–Pd3 115.7(4); chelate torsion angles: O111–C11–C21–

O212 −18.1(15), O212–C21–C31–O312 −72.1(17).  
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The compound 26 crystallized in the triclinic space group P 1 with two formula units in the 

unit cell. The four metal centers in the tetranuclear complex trications were bridged by the 

geminal alkoxido functions of the entirely deprotonated ketone hydrate (Fig. 2.33) One 

oxygen atom of each carboxylate group was coordinated to one metal centre, the two oxygen 

atoms of the hydrated keto group were coordinated to two metal centres. The two palladium 

atoms that were not part of a chelate ring were bridged by a hydroxido ligand. This 

coordination mode is an extension of the metal coordination derived for D-erythrulose from 

spectral data and supports the suggestion that the hydroxy groups of the hydrate are able to 

coordinate to one metal centre each in a spiro-bis(chelate) way.
[72]

  

 

2.6 The inositols: from polyols to pyranose rings 

The inositols are a link between the open-chain polyols and the pyranose forms of the 

reducing carbohydrates. Containing one hydroxy group on each of the ring atoms, nine 

individual inositols are known
[75]

 and are differentiated by their configuration. The most 

common isomer is myo-inositol. Due to limited commercial availability only three additional 

isomers were investigated: D-chiro-inositol, neo-inositol and scyllo-inositol. 

 

Figure 2.34. Configuration and atomic numbering of the inositols. From left to right: Cs-symmetric myo-inositol, 

C2-symmetric D-chiro-inositol, C2h-symmetric neo-inositol and D3d-symmetric scyllo-inositol. 

As one can see in Fig. 2.34, the inositols are arranged according to their increasing molecular 

symmetry. This is also reflected in the 
13

C NMR spectra where four signals were detected for 

the Cs-symmetric myo-inositol, three signals for the C2-symmetric D-chiro-inositol, two 

signals for the C2h-symmetric neo-inositol and only one signal was detected for the D3d-

symmetric scyllo-inositol. This initial molecular symmetry of the inositols prevented an 

unambiguous assignment of the coordination sites. Instead, with the inositol‘s increasing 

molecular symmetry, the number of symmetrically equivalent positions for the coordination 

of a Pd
II
N2 fragment also increased. 
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Myo-inositol, due to its mirror plane across C2 and C5 shows only three independent diolato 

sites for palladium(II) coordination which are depicted in Fig. 2.35. 

 

Figure 2.35: Species detected in Pd-en solutions of myo-inositol at a 1:1 molar ratio. Due to myo-inositol‘s Cs-

symmetry the depicted species always corresponds to a mirror image which could not be distinguished by 

13
C NMR spectroscopy. So, myo-Ins2,3H−2-κO

2,3
 is identical with myo-Ins1,2H−2-κO

1,2
, myo-Ins3,4H−2-κO

3,4
 

with myo-Ins1,6H−2-κO
1,6

 and myo-Ins4,5H−2-κO
4,5

 with myo-Ins5,6H−2-κO
5,6

. 

Each coordination site had its equivalent across the mirror plane, so myo-Ins2,3H−2-κO
2,3

 was 

identical with myo-Ins1,2H−2-κO
1,2

, myo-Ins3,4H−2-κO
3,4

 with myo-Ins1,6H−2-κO
1,6

 and myo-

Ins4,5H−2-κO
4,5

 with myo-Ins5,6H−2-κO
5,6

. In consequence, the difference between these 

positions could not be distinguished by 
13

C NMR spectroscopy as is noted in Table 2.22. 

Table 2.22. 
13

C NMR chemical shifts (δ/ppm) and shift differences (∆δ) to the free inositol of myo-inositol 

ligands in Pd-en. Atoms are numbered as in Figure 2.34. 

 C1 C2 C3 C4 C5 C6 Chelate 

myo-Ins 71.3 72.3 71.3 72.5 74.5 72.5  

[Pd(en)(myo-Ins2,3H−2)] 70.5 82.2 81.4 76.2 74.5 73.1  

Δδ −0.8 9.9 10.1 3.7 0.0 0.6 κO
2,3

 ≡ κO
1,2

 

[Pd(en)(myo-Ins3,4H−2)] 72.3 71.9 81.6 80.5 74.3 73.3  

Δδ 1.0 −0.4 10.3 8.0 −0.2 0.8 κO
3,4

 ≡ κO
1,6

 

[Pd(en)(myo-Ins4,5H−2)] 71.3 73.2 72.9 81.6 83.7 73.1  

Δδ 0.0 0.9 1.6 9.1 9.2 0.6 κO
4,5

 ≡ κO
5,6

 

 

All three species were detected in similar amounts in the 
13

C NMR spectrum, although the 

κO
2,3

 bonding mode corresponds to a cis-vicinal diolato function, whereas the κO
3,4

- and the 

κO
4,5

 bonding mode correspond to a trans-vicinal diolato function.  

D-chiro-inositol had a C2-axis to show across the bonds of C3-C4 and C1-C6, so κO
1,2

-bonded 

D-chiro-Ins1,2H−2 was equivalent to κO
5,6

-bonded D-chiro-Ins5,6H−2. All species detected in 

Pd-en were depicted in Fig. 2.36, for 
13

C chemical shifts and CIS value see Table 2.23. At a 

1:1 molar ratio (Pd/D-chiro-Ins) [Pd(en)(D-chiro-Ins1,2H−2-κO
1,2

)] and free inositol were 

detected in equal amounts and [Pd2(en)2(D-chiro-Ins1,2;5,6H−4-κO
1,2

:κO
5,6

)] was found as a 
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minor species. At a 3:1 molar ratio [Pd2(en)2(D-chiro-Ins1,2;5,6H−4-κO
1,2

:κO
5,6

)] and 

[Pd3(en)3(D-chiro-InsH−6-κO
1,2

:κO
3,4

:κO
5,6

)] were detected in equal quantities.  

 

Figure 2.36: Species detected in Pd-en solutions of D-chiro-inositol at a 1:1 molar ratio. Due to D-chiro-

inositol‘s C2-symmetry the depicted species of D-chiro-Ins1,2H−2-κO
1,2

 corresponded to D-chiro-Ins5,6H−2-κO
5,6

. 

Additionally, crystals of [Pd2(en)2(D-chiro-Ins1,2;5,6H−4)] · 8 H2O were obtained. The crystal 

structure was solved in the space group P 212121. The molecular structure in Fig. 2.37 

confirmed the NMR spectroscopic result, two Pd(en) fragments were coordinated to the two 

cis-vicinal diolato functions, the trans-vicinal diolato function remained uncoordinated. 

 

Figure 2.37. The molecular structure of [Pd2(en)2(D-chiro-Ins1,2;5,6H−4)] in crystals of the 8-hydrate (27). 

ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O1 2.010(6), Pd1–O2 1.983(6), Pd1–N1 2.042(9), Pd1–N2 

2.048(9), Pd2–O5 1.994(7), Pd2–O6 2.008(7), Pd2–N3 2.035(10), Pd2–N4 2.025(10), O1–Pd1–O2 85.7(3), O1–

Pd1–N1 95.6(3), O2–Pd1–N2 95.1(3), N1–Pd1–N2 83.6(4), O5–Pd2–O6 85.7(3), O5–Pd2–N3 95.6(4), O6–

Pd2–N4 95.8(3), N3–Pd2–N4 83.0(4); chelate torsion angles: O1–C1–C2–O2 50.8(9), O3–C3–C4–O4 

−52.5(10), O5–C5–C6–O6 49.3(10); puckering parameters
[22] 

of the pyranose ring C1–C2–C3–C4–C5–C6: 

Q = 0.567(10) Å,   = 167.0(10). 
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Table 2.23. 
13

C NMR chemical shifts (δ/ppm) and shift differences (∆δ) to the free inositol of D-chiro-inositol 

ligands in Pd-en. Atoms are numbered as in Figure 2.34. 

 C1 C2 C3 C4 C5 C6 Chelate 

D-chiro-Ins 72.3 71.0 73.3 73.3 71.0 72.3  

[Pd(en)(D-chiro-Ins1,2H−2)] 83.2 81.0 77.2 73.0 71.8 72.6  

Δδ 10.9 10.0 3.9 −0.3 0.8 0.3 κO
1,2

 ≡ κO
5,6

 

[Pd2(en)2(D-chiro-Ins1,2;5,6H−4)] 83.5 81.4 76.7 76.7 81.4 83.5  

Δδ 11.2 10.4 3.4 3.4 10.4 11.2 κO
1,2

:κO
5,6

 

[Pd3(en)3(D-chiro-InsH−6)] 83.5 84.9 86.0 86.0 84.9 83.5  

Δδ 11.2 13.9 12.7 12.7 13.9 11.2 κO
1,2

:κO
3,4

:κO
5,6

 

 

neo-Inositol provides two independent chelating sites, a cis-vicinal and a trans-vicinal diolato 

function, as depicted in Fig. 2.38. neo-Ins2,3H−2-κO
2,3

, neo-Ins1,2H−2-κO
1,2

, neo-Ins4,5H−2-

κO
4,5

 and neo-Ins5,6H−2-κO
5,6

 belong to the cis-vicinal diolato function which could not be 

distinguished by 
13

C NMR spectroscopy. The trans-vicinal diolato function is only 

represented by two chelating sites, neo-Ins3,4H−2-κO
3,4

 and neo-Ins1,6H−2-κO
1,6

. 

 

Figure 2.38. Species detected in Pd-en solutions of neo-inositol at a 1:1 molar ratio. Due to neo-inositol‘s C2h-

symmetry the depicted species of neo-Ins2,3H−2-κO
2,3

 corresponded to neo-Ins1,2H−2-κO
1,2

, neo-Ins4,5H−2-κO
4,5

 

and neo-Ins5,6H−2-κO
5,6

. Also, the depicted species of neo-Ins3,4H−2-κO
3,4

 corresponded to neo-Ins1,6H−2-κO
1,6

. 

The corresponding chemical shifts and CIS values are summarized in Table 2.24. Higher 

metalation grades were not investigated by NMR spectroscopy; instead, two crystal structures 

of a dimetalated neo-inositol were available.  

Table 2.24. 
13

C NMR chemical shifts (δ/ppm) and shift differences (∆δ) to the free inositol of neo-inositol 

ligands in Pd-en. Atoms are numbered as in Figure 2.34. 

 C1 C2 C3 C4 C5 C6 Chelate 

neo-Ins 69.8 72.1 69.8 69.8 72.1 69.8  

[Pd(en)( D-neo-Ins2,3H−2)] 69.4 81.7 80.0 73.6 72.9 70.5 cis-vicinal 

Δδ −0.4 9.6 10.2 3.8 0.8 0.7  

[Pd(en)( D-neo-Ins3,4H−2)] 70.3 71.5 78.5 78.5 71.5 70.3 trans-vicinal 

Δδ 0.5 −0.6 8.7 8.7 −0.6 0.5  
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Figure 2.39. The molecular structure of [Pd2(tmen)2(neo-Ins1,6;3,4H−4-κO
1,6

:κO
3,4

)] in crystals of the 22-hydrate 

(28). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O1 1.998(2), Pd1–N1 2.065(2), Pd1–O1
iii

 1.998(2), Pd1–N1
iii

 

2.065(2), O1–Pd1–N1 94.10(8), O1–Pd1–O1
iii

 85.95(7), N1–Pd1–N1
iii

 85.85(8), O1
iii

–Pd1–N1
iii

 94.10(8); 

chelate torsion angles: O1–C1–C2–O2 53.6(3), O1–C1–C1
iii

–O1
iii

 57.9(2); puckering parameters
[22] 

of the 

pyranose ring C1–C2–C1
i
–C1

ii
–C2

iii
–C1

iii
: Q = 0.587(3) Å,   = 180.0(1)°. [Symmetry code: (i) −x, y, z; (ii) −x, 

−y, −z; (iii) x, −y, −z] 

Table 2.25. Distances [Å] and angles [°] of hydrogen bonds in 28. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O2 H82  O92
i
 0.827(10) 1.943(14) 2.759(4) 169(4)    

O91 H911 O1
ii
  0.819(10) 2.284(16) 3.068(3) 160(4)    

O91 H912 O95
iii

 0.816(10) 2.052(10) 2.867(3) 177(4)    

O92 H92  O91 0.817(9)  2.076(14) 2.840(3) 156(3)    

O93 H931 O92 0.833(10) 1.940(11) 2.773(4) 180(5)    

O93 H932 O94 0.830(10) 1.930(9)  2.741(3) 165(3)    

O94 H941 O1  0.824(10) 1.841(10) 2.663(3) 176(3)    

O94 H942 O94
iv

 0.826(10) 1.918(13) 2.742(5) 175(5)    

O94 H943 O93 0.825(10) 1.934(12) 2.741(3) 166(4)    

O95 H951 O94 0.819(10) 1.912(14) 2.711(3) 165(4)    

O95 H952 O91 0.824(10) 1.941(10) 2.763(3) 175(3)    

O96 H961 O95 0.825(10) 1.928(10) 2.745(3) 171(3)    

O96 H962 O97
v
 0.811(10) 1.998(10) 2.809(3) 177(4)    

O97 H97  O96 0.800(9)  2.031(12) 2.812(3) 165.1(15) 
 

Symmetry code: (i) −x, y+
1
⁄2, −z+

1
⁄2; (ii) x, y−1, z; (iii) x, y−

1
⁄2, −z+

1
⁄2; (iv) x, −y+1, −z; (v) –x+

1
⁄2, y+

1
⁄2, z. 
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With the first known [Pd2(en)2(D-neo-Ins1,2;4,5H−4-κO
1,2

:κO
4,5

)] · 12 H2O,
[76]

 the Pd(en) 

fragments coordinated two opposite cis-vicinal diolato functions leaving two equatorial 

hydroxy functions uncoordinated. With [Pd2(tmen)2(D-neo-Ins1,6;3,4H−4-κO
1,6

:κO
3,4

)] in 

crystals of the 22-hydrate, depicted in Fig. 2.39, two Pd(tmen) fragments coordinated two 

opposite trans-vicinal diolato functions leaving two axial hydroxy functions uncoordinated. It 

is noteworthy that, as in Section 2.3.3, two different coordination compounds could be 

crystallized with two different Pd
II
N2 fragments. Further, with Pd-tmen, the unfavorable 

trans-vicinal diolato-coordinated compound was obtained in the space group C mce. Despite 

the fact that neo-inositol showed a perfect undistorted pyranose form of the cyclohexane ring 

in 28, the packing diagram of Fig. 6.67 in the Appendix revealed a hydrophobic packing of 

the tmen ligands and a rigid hydrogen-bonding network in-between the [Pd2(tmen)2(D-neo-

Ins1,6;3,4H−4-κO
1,6

:κO
3,4

)] molecules. The distances and angles of the hydrogen bonding 

network are listed in Table 2.25. With the Pd(tmen) fragments not participating in the 

hydrogen-bonding network, each of the coordinating alkoxido functions accepted two 

hydrogen bonds whereas the axial hydroxy function only acted as a hydrogen-bonding donor 

underlining the fact that an axially oriented hydroxy function is less suitable for accepting 

hydrogen bonds than an equatorially oriented hydroxy function. 

The highest-symmetric scyllo-inositol provides only equatorial trans-vicinal diolato functions. 

At a 3:1 molar ratio Pd-tmen/scyllo-Ins, all possible coordination compounds which are 

shown in Fig. 2.40 could be detected. The dimetalated forms could be found in comparable 

amounts as the main species, the mono- and the trimetalated forms occurred only as minor 

species. 

 

Figure 2.40. Species detected in Pd-en and Pd-tmen solutions of scyllo-inositol at various molar ratios. The 

scyllo-inositol‘s D3d-symmetry decreased by the coordination of Pd
II
N2 fragments to a C2-symmetry for κO

1,2
-

chelated scyllo-Ins1,2H−2 and κO
1,2

:κO
3,4

-chelated scyllo-Ins1,2;3,4H−4, to a C2h-symmetry for κO
1,2

:κO
4,5

-

chelated scyllo-Ins1,2;4,5H−4 and to a D3-symmetry for κO
1,2

:κO
3,4

:κO
5,6

-chelated scyllo-InsH−6. 

Due to scyllo-inositol‘s D3d-symmetry, the depicted species of scyllo-Ins1,2H−2-κO
1,2

 

corresponded to scyllo-Ins3,4H−2-κO
3,4

 and scyllo-Ins5,6H−2-κO
5,6

 and couldn‘t be 
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distinguished from the κO
2,3

-, the κO
4,5

- and the κO
1,6

-coordinated monometalated 

compounds by 
13

C NMR spectroscopy. For the same reasons, the numbering of the di- and 

trimetalated species is reversible because the 
13

C NMR chemical shifts and shift differences in 

Table 2.40 only represent the shape of the compound. So, scyllo-Ins1,2;3,4H−4-κO
1,2

:κO
3,4

 

stood for all scyllo-inositol species with an uncoordinated diolato function, whereas 

κO
1,2

:κO
4,5

-bonded scyllo-Ins1,2;4,5H−4 represented all dimetalated species with two 

separated hydroxy functions. Finally, the 
13

C signals of scyllo-InsH−6-κO
1,2

:κO
3,4

:κO
5,6

 also 

included the enantiomeric mirror image κO
2,3

:κO
4,5

:κO
1,6

-chelated scyllo-InsH−6. 

Table 2.26. 
13

C NMR chemical shifts (δ/ppm) and shift differences (∆δ) to the free inositol of scyllo-inositol 

ligands in Pd-tmen. Atoms are numbered as in Figure 2.34. 

  C1 C2 C3 C4 C5 C6 Chelate 

scyllo-Ins D3d 73.6 73.6 73.6 73.6 73.6 73.6  

[Pd(tmen)(scyllo-Ins1,2H−2)] C2 83.8 83.8 75.5 73.9 73.9 75.5  

Δδ  10.2 10.2 1.9 0.3 0.3 1.9 κO
1,2

 

[Pd2(tmen)2(scyllo-Ins1,2;3,4H−4)] C2 84.3 84.6 84.6 84.3 74.6 74.6  

Δδ  10.7 11.0 11.0 10.7 1.0 1.0 κO
1,2

:κO
3,4

 

[Pd2(tmen)2(scyllo-Ins1,2;4,5H−4)] C2h 85.3 85.3 73.0 85.3 85.3 73.0  

Δδ  11.7 11.7 −0.6 11.7 11.7 −0.6 κO
1,2

:κO
4,5

 

[Pd3(tmen)3(scyllo-InsH−6)] D3 84.7 84.7 84.7 84.7 84.7 84.7  

Δδ  11.1 11.1 11.1 11.1 11.1 11.1 κO
1,2

:κO
3,4

:κO
5,6

 

 

As for neo-inositol, with Pd-en and Pd-tmen two different species were crystallized for scyllo-

inositol. In previous work,
[76]

 the crystal structure of the C2h-symmetric dimetalated species 

[Pd2(en)2(scyllo-Ins1,2;3,4H−4-κO
1,2

:κO
3,4

)] · 16 H2O was described. With Pd-tmen, crystals 

of the minor D3-symmetric species [Pd3(tmen)3(scyllo-InsH−6)] · 23 H2O were obtained 

(Fig. 2.41) and the structure was solved in the space group C 2/c. As observed for the 

previous crystal structures with the Pd(tmen) fragment, two domains could be detected in the 

structure. By congregation, the Pd(tmen) fragments formed a hydrophobic domain whereas 

the inositolato fragment together with the high amount of water molecules built the 

hydrophilic domain of the structure. In Fig. 6.68 (Appendix), together with Table 2.27, one 

can identify a rigid hydrogen-bonding network. Without a donor hydroxy function, either 

from the inositol or from the Pd(tmen) fragment, [Pd3(tmen)3(scyllo-InsH−6)] could only 

accept hydrogen bonds. Therefore, each of the six alkoxido functions accepted two hydrogen 

bonds from crystal water. 
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Figure 2.41. The molecular structure of [Pd3(tmen)3(scyllo-InsH−6-κO
1,2

:κO
3,4

:κO
5,6

)] in crystals of the 23-

hydrate (29). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) 

(standard deviations of the last digit in parentheses): Pd1–O1 2.037(7), Pd1–O2 2.000(6), Pd1–N1 2.061(9), 

Pd1–N2 2.061(9), Pd2–O3 2.005(7), Pd2–N3 2.064(9), Pd2–O3
i
 2.005(7), Pd2–N3

i
 2.064(9), O1–Pd1–O2 

84.5(3), O1–Pd1–N1 96.6(3), O2–Pd1–N2 94.0(4), N1–Pd1–N2 85.0(4), O3–Pd2–N3 94.4(3), O3–Pd2–O3
i
 

85.1(3), N3–Pd2–N3
i
 86.2(3), O3

i
–Pd2–N3

i
 94.4(3); chelate torsion angles: O1–C1–C2–O2 −55.0(10), O3–C3–

C3
i
–O3

i
 −60.8(9); puckering parameters

[22] 
of the pyranose ring C1–C2–C3–C3

i
–C2

i
–C1

i
: Q = 0.556(11) Å,   = 

174.2(11)°. [Symmetry code: (i) −x, y, −z + ½] 

 
Table 2.27. Distances [Å] and angles [°] of hydrogen bonds in 29. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O91  H911 O2   0.827(18) 2.14(4)   2.808(6)  138(4) 

O91  H912 O3   0.83(2)   1.81(3)   2.625(6)  169(5) 

O92  H921 O91  0.82(2)   1.96(2)   2.773(6)  168(4) 

O92  H922 O93  0.82(2)   1.97(2)   2.766(6)  166(5) 

O93  H931 O94 0.82(2)   1.91(2)   2.759(6)  173(4) 

O93  H932 O912 0.82(2)   1.95(2)   2.747(7)  163(4) 

O94  H941 O1
i 
  0.81(2)   1.93(2)   2.708(6)  161(3) 

O94  H942 O910
ii
  0.807(19) 2.61(4)   2.773(6)  93(3)  

O95  H951 O3
i
  0.82(2)   1.99(2)   2.806(6)  173(4) 

O95  H952 O92
iii

  0.81(2)   2.08(2)   2.858(6)  159(4) 

O96  H961 O97  0.83(2)   2.13(3)   2.780(11) 135(3) 

O96  H962 O912
iv

 0.83(2)   2.13(3)   2.820(11) 141(4) 
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Table 2.27. Continued. 

D H A D–H H···A D···A D–H···A 

O97  H971 O94  0.82(2)   2.00(2)   2.812(6)  172(3) 

O97  H972 O95  0.82(2)   1.98(2)   2.789(6)  172(6) 

O98  H981 O97  0.82(2)   2.05(3)   2.809(6)  154(5) 

O98  H982 O2
ii
   0.83(2)   1.99(2)   2.814(6)  171(6) 

O99  H99  O98  0.83(2)   2.02(3)   2.832(8)  166(8) 

O910 H91  O1   0.83(2)   1.93(2)   2.737(6)  168(4) 

O910 H92  O913
iii

 0.81(2)   2.17(3)   2.917(7)  153(4) 

O911 H191 O910
i
 0.83(2)   1.99(3)   2.792(7)  162(4) 

O912 H291 O92
v
  0.82(2)   2.01(3)   2.795(7)  162(4) 

O912 H292 O913
vi

 0.83(2)   2.003(18) 2.819(7)  168(6) 

O913 H391 O911 0.82(2)   2.10(3)   2.832(7)  149(4) 

O913 H392 O99
vi

  0.82(2)   2.52(5)   3.031(8)  122(5) 
 

Symmetry code: (i) −x+
3
⁄2, −y+

1
⁄2, −z+1; (ii) x+

1
⁄2, −y+

1
⁄2, z+

1
⁄2; (iii) −x+

3
⁄2, y−

1
⁄2, −z+

3
⁄2; (iv) −x+

3
⁄2, −y+

1
⁄2, −z+2; 

(v) x, −y+1, z+
1
⁄2; (vi) −x+2, −y+1, −z+2. 

 

2.7 Conformational fluctuation in palladium(II)–methyl aldopentopyranoside 

complexes 

The methyl pentosides provide all the properties needed to get on with the 

investigation of palladium(II) coordination to reducing carbohydrates. By the methylation of 

O1 the configuration of the glycose is fixed and the most acidic, anomeric hydroxy group 

cannot participate in chelate ring formation. Otherwise, in aqueous solutions, some of the 

methyl pentosides as well as their parent glycoses fluctuate between the two chair 

conformers.
[5, 17]

 Methyl α-D-lyxopyranoside and methyl β-D-ribopyranoside show a dynamic 

behavior, particularly in the 
4
C1  

1
C4 chair inversion as it is depicted in Fig. 2.42. 

To guarantee full metalation, all reactions were performed under palladium(II) excess 

conditions at a 2:1 molar Pd/pentoside ratio. The 
13

C NMR chemical shifts of the detected 

methyl pentopyranosides solution species in Pd-tmen were collected in Table 2.28. The CIS 

values resulting from coordination did not differ from Pd-chxn
[71]

 or the formerly used 

Pd-en,
[39]

 so the comparability of previous results was guaranteed. Two-dimensional NMR 

techniques were used to elucidate the 
3
JH,H coupling constants for determining the 

conformation of the respective glycosides by means of the Karplus relationship.  
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Figure 2.42. Configuration, conformation and atomic numbering of the methyl pentopyranosides. From the top 

left to the bottom right: 
1
C4-methyl β-D-arabinopyranoside, the fluctuating methyl α-D-lyxopyranoside and β-D-

ribopyranoside and 
4
C1-methyl β-D-xylopyranoside. 

 
Table 2.28. 

13
C NMR chemical shifts (δ/ppm) and shift differences (∆δ) to the free pentopyranoside of methyl 

pentopyranosides in Pd-tmen. Atoms are numbered as in Figure 2.42. 

  C1 C2 C3 C4 C5 OCH3 Chelate 

Me-β-D-Arap2,3H−2 δ 102.2 78.1 77.2 72.0 63.2 55.8  

 ∆δ 1.7 9.3 7.8 2.5 0.1 0.0 κO
2,3

 

Me-β-D-Arap3,4H−2 δ 101.1 72.3 78.6 79.1 63.0 55.9  

 ∆δ 0.6 3.5 9.2 9.6 −0.1 0.1 κO
3,4

 

Me-α-D-Lyxp2,3H−2 δ 104.0 79.9 81.1 70.5 63.8 56.4  

 ∆δ 2.2 9.8 9.9 3.0 0.7 0.5 κO
2,3

 

Me-α-D-Lyxp3,4H−2 δ 101.8 72.8 80.9 74.5 64.4 55.4  

 ∆δ 0.0 2.7 9.7 7.0 1.3 −0.5 κO
3,4

 

Me-β-D-Ribp2,3H−2 δ 103.8 81.3 75.7 69.3 64.0 56.4  

 ∆δ 1.8 10.6 7.4 1.0 0.4 −0.3 κO
2,3

 

Me-β-D-Ribp3,4H−2 δ 102.8 70.9 67.0 78.7 65.0 56.5  

 ∆δ 0.8 0.2 7.7 10.4 1.4 −0.2 κO
3,4

 

Me-β-D-Ribp2,4H−2 δ 104.3 69.1 67.6 67.8 65.7 55.3  

 ∆δ 2.3 −1.6 −0.7 −0.5 2.1 −1.4 κO
2,4

 

Me-β-D-Xylp2,3H−2 δ 105.8 82.8 86.4 71.6 66.5 57.4  

 ∆δ 1.2 9.2 10.1 1.8 0.8 −0.4 κO
2,3

 

Me-β-D-Xylp3,4H−2 δ 105.4 75.1 86.2 79.6 65.8 58.0  

 ∆δ 0.8 1.5 9.9 9.8 0.1 0.2 κO
3,4

 

Me-β-D-Xylp2,4H−2 δ 103.1 71.7 68.8 68.5 60.8 55.6  

 ∆δ −1.5 −1.9
 

−7.5 −1.3 −4.9 −2.2 κO
2,4
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Methyl β-D-arabinopyranoside is non-fluctuating in its free state but resides in the 

1
C4 conformation. The formation of five-membered chelate rings by the attack of a vicinal 

diol function is the predominant mode of palladium(II)–pyranose binding. Both cis- or trans-

diolate binding is common, the latter requiring a diequatorial conformation. As depicted in 

Fig. 2.43, cis coordination is usually the preferred binding mode of methyl glycopyranosides.  

 

Figure 2.43. Species detected in solutions of methyl β-D-arabinopyranoside in Pd-tmen at a molar 2:1 

Pd/pyranoside ratio. Percent values of the species distribution in solution were determined, the remaining 

pyranoside was found unmetalated.   

In the reaction of methyl β-D-arabinopyranoside with Pd-tmen, two kinds of complex species 

were thus detected in solution: the preferred cis-diolato complex of the Me-β-D-Arap3,4H−2-

κO
3,4

 as the major, and the trans-diolato complex of Me-β-D-Arap2,3H−2-κO
2,3

 as the minor 

species. The 
3
JH,H coupling constants of Me-β-D-Arap3,4H−2-κO

3,4
 indicated that the 

1
C4 conformation of the respective free glycoside was maintained on metalation (Table 2.29). 

Table 2.29. Experimental and calculated 
3
JH,H values in Hz for the free glycoside and the major metalated 

species of methyl β-D-arabinopyranoside in Pd-tmen. Bold: calculated coupling constants which unambiguously 

represent the specified conformer. For the calculations of constants, the Karplus relationship in Eq. 8 of Ref.
[28]

 

was used in conjunction with the torsion angles of idealized structures (all torsion angles multiples of 60°). 

 
3
JH1,H2 

3
J H2,H3 

3
J H3,H4 

3
J H4,H5eq 

3
J H4,H5ax Conformation 

Free (exp.)
[77]

 2.8 10.0 3.0 2.3 1.0 1
C4 (Ref.

[77]
) 

D-κO
3,4

 3.5 9.1 4.2 2.2 1.8 1
C4 (cis-vic.) 

Idealized 3.2 9.6 3.2 2.5 0.6 1
C4 (Karplus) 

Idealized 1.5 4.3 3.5 4.3 10.1 4
C1 (Karplus) 

 

In contrast to methyl β-D-arabinopyranoside, free methyl α-D-lyxopyranoside fluctuates.
[18, 77]

 

The reaction of methyl α-D-lyxopyranoside with Pd-tmen gave the cis-chelate κO
2,3

-bonded 

Me-α-D-Lyxp2,3H−2 as the major species accompanied by only small amounts of the trans-

chelate species Me-α-D-Lyxp3,4H−2-κO
3,4

 (Fig. 2.44). In the trans-equatorial minor species, 

fluctuation was frozen because only the 
4
C1 conformer was able to act as a ligand.  
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Figure 2.44. Conformational fluctuation of the major κO
2,3

-binding  methyl α-D-lyxopyranoside in Pd-tmen at a 

molar 2:1 Pd/pyranoside ratio. The minor κO
3,4

-chelate was found in its only possible conformation. Percent 

values of the species distribution in solution were determined, the remaining pyranoside was found unmetalated.   

For the major species, however, the coupling constants confirmed an equilibrium between the 

4
C1 and the 

1
C4 conformation of the Me-α-D-Lyxp2,3H−2-κO

2,3
 chelate. Of the two 

conformers, the 
4
C1 chelate predominated (Table 2.30). 

Table 2.30. Experimental and calculated 
3
JH,H values in Hz for the free glycoside and the various metalated 

species of methyl α-D-lyxopyranoside in Pd-tmen. Bold: measured (formation of a trans-vicinal chelate) or 

calculated coupling constants which unambiguously represent the specified conformer. For the calculations of 

constants, the Karplus relationship in Eq. 8 of Ref.
[28]

 was used in conjunction with the torsion angles of a X-ray 

analysis or the angles of idealized structures (all torsion angles multiples of 60°). 

 
3
JH1,H2 

3
J H2,H3 

3
J H3,H4 

3
J H4,H5eq 

3
J H4,H5ax Conformation 

Free (exp.)
[77]

 3.2 3.8 4.0 4.8 9.0 4
C1  

1
C4 (Ref.

[77]
) 

D-κO
2,3

 3.6 4.0 6.7 3.8 7.2 4
C1  

1
C4, 7:3 ratio

 

D-κO
3,4

 1.6 3.2 n.d. n.d. n.d. 4
C1 (trans-vic.) 

30 1.7 4.5 8.4 4.7 10.1 4
C1 (Karplus)

 

Idealized 1.8 3.5 9.6 4.3 10.1 4
C1 (Karplus) 

Idealized 8.1 3.5 4.3 2.5 0.6 1
C4 (Karplus) 

 

Accordingly, structure analysis of [Pd(R,R-chxn)(Me-α-D-Lyxp2,3H−2-κO
2,3

)] on yellow 

crystals of the 2.25-hydrate (30) revealed the 
4
C1 conformation. The crystal structure was 

solved in the space group P 1, the asymmetric unit revealed four molecules of the 

lyxopyranoside complex and nine water molecules. The N–H functions of the Pd(R,R-chxn) 

fragment as well as the remaining hydroxy function of the lyxopyranoside acted as hydrogen-

bond donor, each alkoxido function accepted two hydrogen bonds. As one can see in Fig. 6.69 

in the Appendix, the hydrogen bonds always connected a pair of [Pd(R,R-chxn)(Me-α-D-

Lyxp2,3H−2-κO
2,3

)] molecules forming a two-ply band along the c axis. Two molecules each 

were arranged alternating the Pd(R,R-chxn) fragment with the opposing lyxopyranoside.  
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All the distances and angles of the hydrogen-bonding network are listed in Table 2.31. The 

R,R-chxn ligand together with the lyxopyranoside‘s methyl group built the hydrophobic edges 

of the band. Only van der Waals attraction held the bands together in the direction of the 

b axis. 

 

Figure 2.45. The molecular structure of [Pd(R,R-chxn)(Me-α-D-Lyxp2,3H−2-κO
2,3

)] in crystals of the 2.25-

hydrate (30). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) 

(standard deviations of the last digit in parentheses): Pd1–O21 1.961(4), Pd1–O31 2.007(3), Pd1–N1 2.045(4), 

Pd1–N2 2.048(4), Pd2–O22 1.983(3), Pd2–O32 1.993(4), Pd2–N3 2.031(5), Pd2–N4 2.031(4), Pd3–O23 

2.003(4), Pd3–O33 2.001(3), Pd3–N6 2.029(5), Pd3–N5 2.046(4), Pd4–O24 1.988(3), Pd4–O34 2.003(3), Pd4–

N7 2.037(4), Pd4–N8 2.048(4), O21–Pd1–O31 84.73(13), O21–Pd1–N1 93.93(14), O31–Pd1–N2 97.56(15), 

N1–Pd1–N2 83.79(16), O22–Pd2–O32 84.82(14), O22–Pd2–N3 95.56(16), O32–Pd2–N4 96.90(17), N3–Pd2–

N4 82.70(18), O23–Pd3–O33 85.41(13), O23–Pd3–N5 94.96(14), O33–Pd3–N6 95.80(15), N5–Pd3–N6 

83.86(16), O24–Pd4–O34 84.75(13), O24–Pd4–N7 94.01(15), O34–Pd4–N8 97.08(14), N7–Pd4–N8 84.16(16); 

chelate torsion angles: O21–C21–C31–O31–45.5(5), O22–C22–C32–O32–46.2(5), O23–C23–C33–O33–

50.6(5), O24–C24–C34–O34–52.6(5); puckering parameters
[22] 

of the pyranose ring O51–C11–. . .: Q = 0.522(5) 

Å,  = 13.9(7)°, υ = 310(2)°; O52–C12–. . .: Q = 0.552(5) Å,  = 15.2(6)°, υ = 297(2)°; O53–C13–. . .: Q = 

0.549(5) Å,  = 5.8(5)°, υ = 302(6)°; O54–C14–. . .: Q = 0.540(5) Å,  = 6.1(5)°, υ = 269(5)°. 

 

A detail of the pyranose-puckering analysis was noteworthy. In two of the four molecules in 

the asymmetric unit, the angle  was about 14° and 15°, which indicated an unusually large 

deviation of the chair conformation (the other  angles in the literature
[71]

 did not exceed ca. 

6°). The phase angle pointed to an admixture of the E5 conformation to the 
4
C1 chair, which 

resembled a small distortion along the transitional path toward the 
1
C4 chair (Fig. 2.45). 
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Table 2.31. Distances [Å] and angles [°] of hydrogen bonds in 30. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O41 H841 O23
i
 0.84      1.99    2.806(5) 162.2  

O42 H842 O91 0.84      1.90    2.693(5) 156.3  

O43 H843 O96 0.84      1.91    2.734(5) 166.2  

O44 H844 O94
ii
 0.84      1.90    2.709(5) 160.5  

N1  H711 O42 0.92      2.06    2.931(5) 158.0  

N1  H712 O54
iii

 0.92      2.44    3.169(5) 136.1  

N2  H721 O92 0.92      2.63    3.092(5) 111.4  

N2  H722 O34 0.92      2.12    3.022(5) 166.0  

N3  H731 O95
iv
 0.92      1.99    2.876(6) 160.9  

N3  H732 O98 0.92      2.29    3.104(7) 147.0  

N4  H741 O96 0.92      2.26    2.964(6) 132.7  

N4  H742 O99
iii

 0.92      2.37    3.057(6) 131.8  

N5  H751 O95
v
 0.92      1.95    2.850(5) 164.6  

N5  H752 O44
iv
 0.92      2.25    3.147(5) 163.5  

N6  H761 O91 0.92      2.56    3.113(5) 118.8  

N6  H762 O97
vi
 0.92      2.05    2.852(6) 144.5  

N7  H771 O43 0.92      2.13    3.033(5) 165.7  

N7  H772 O99 0.92      2.22    3.085(6) 157.3  

N8  H781 O98
ii
 0.92      2.22    3.140(6) 174.2  

N8  H782 O31 0.92      1.97    2.843(5) 158.7  

O91 H911 O24 0.851(19) 1.84(2) 2.685(4) 173(6) 

O91 H912 O33 0.844(19) 1.98(3) 2.759(5) 154(5) 

O92 H921 O34 0.837(19) 1.86(2) 2.668(5) 161(5) 

O92 H922 O22
ii
 0.845(19) 1.87(2) 2.705(5) 172(6) 

O93 H931 O24
iii

 0.838(19) 1.85(3) 2.626(4) 152(5) 

O93 H932 O21 0.838(19) 1.82(2) 2.615(5) 158(5) 

O94 H941 O22 0.841(19) 1.91(3) 2.682(5) 152(5) 

O94 H942 O23 0.845(19) 1.88(2) 2.698(5) 164(6) 

O95 H951 O31 0.836(19) 1.86(2) 2.699(4) 177(7) 

O95 H952 O92 0.846(19) 1.85(2) 2.692(5) 172(5) 

O96 H961 O21 0.841(19) 1.96(3) 2.779(5) 164(6) 

O96 H962 O32 0.838(19) 1.96(2) 2.778(5) 164(6) 

O97 H971 O93 0.85(2)   1.90(2) 2.749(6) 175(8) 

O97 H972 O32 0.86(2)   1.78(2) 2.636(5) 177(8) 

O98 H981 O53 0.86(2)   2.55(7) 3.151(6) 127(7) 

O98 H982 O94 0.86(2)   1.93(5) 2.653(6) 141(8) 

O99 H991 O33 0.83(2)   1.88(3) 2.688(5) 162.2  

O99 H992 O93
vi
 0.83(2)   1.90(4) 2.684(5) 156.3  

 

Symmetry code: (i) x−1, y, z+1; (ii) x, y, z+1; (iii) x−1, y, z; (iv) x, y, z−1; (v) x+1, y, z−1; (vi) x+1, y, z. 
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Aqueous solutions of methyl β-D-ribopyranoside are characterized by the fluctuating 

glycoside‘s conformational equidistribution.
[18, 77]

 The coupling constants thus indicate a 1:1 

mixture of the 
4
C1 and the 

1
C4 conformers of methyl β-D-ribopyranoside. The preferred cis-

vicinal chelation is possible both for the κO
2,3

 and for the κO
3,4

 attacks on the metal probe. 

Accordingly, both kinds of species were observed in the respective solutions at about equal 

quantities (Fig. 2.46). 

 

Figure 2.46. Conformational fluctuation of both the κO
2,3

- and the κO
3,4

-binding methyl β-D-ribopyranoside 

ligand in Pd-tmen at a molar 2:1 Pd/pyranoside ratio. The κO
2,4

-chelate (right) adopted its only possible 

conformation. Percent values of the species distribution in solution were determined, the remaining pyranoside 

was found unmetalated.   

The 
3
JH,H coupling constants of the complexes closely resembled those of the free 

ribopyranoside. Also, the [Pd(tmen)Me-β-D-Ribp2,3H−2-κO
2,3

] and the [Pd(tmen)Me-β-D-

Ribp3,4H−2-κO
3,4

] chelates fluctuated (Table 2.32). Unlike the arabinopyranoside and the 

lyxopyranoside, the ribopyranoside provided a special bonding mode to the palladium(II) 

central metal. For the ribopyranoside, trans-vicinal diol bonding was not possible and was 

replaced by syn-diaxial κO
2,4 

bonding.  

In the past, the κO
1,3

-diolato coordination was accepted as a rare coordination mode for 

palladium(II), appearing only if this binding mode was enforced by sterical restrictions, as in 

the [Pd(en)(1,6AnGlc2,4H−2)] complex,
[41]

 by an intramolecular hydrogen bond, as in the 

[Pd2(en)2(β-D-Galf 1,3;5,6H−4-κO
1,3

:κO
5,6

] complex
[39]

 or by a flexible furanose ring 

supporting the κO
1,3

-diolato function as in the [Pd(R,R-chxn)α-L-Thrf 1,3H−2-κO
1,3

] 
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complex.
[37]

 With the identification of an all-axial 
1
C4-β-D-Xylp1,3;2,4H−4-κO

1,3
:κO

2,4 
in 

Pd-en and Pd-chxn
[37]

 which became the main solution species with the increase of reaction 

time, the κO
1,3

-diolato coordination mode was accepted as an equivalent alternative to the 

κO
1,2

-diolato binding mode. 

Table 2.32. Experimental and calculated 
3
JH,H values in Hz for the free glycoside and the various metalated 

species of methyl β-D-ribopyranoside in Pd-tmen. Bold: measured (formation of a syn-diaxial chelate) or 

calculated coupling constants which unambiguously represent the specified conformer. For the calculations of 

constants, the Karplus relationship in Eq. 8 of Ref.
[28]

 was used in conjunction with the torsion angles of a X-ray 

analysis or the angles of idealized structures (all torsion angles multiples of 60°). 

 
3
JH1,H2 

3
J H2,H3 

3
J H3,H4 

3
J H4,H5eq 

3
J H4,H5ax Conformation 

Free (exp.)
[77]

 5.1 3.4 3.4 3.5 7.0 4
C1  

1
C4 (Ref.

[77]
) 

D-κO
2,3

 3.5 3.6 3.6 – – 4
C1  

1
C4, 3:7 ratio

 

D-κO
3,4

 4.5 3.0 3.2 3.0 5.0 4
C1  

1
C4, 4:6 ratio 

D-κO
2,4

 1.8 3.7 3.7 1.6 2.0 1
C4 (syn-diaxial) 

Idealized 1.8 3.5 3.2 2.5 0.6 1
C4 (Karplus) 

Idealized 8.1 3.5 3.5 4.3 10.1 4
C1 (Karplus) 

 

 [Pd(tmen)(Me-β-D-Ribp2,4H−2-κO
2,4

)] showed a CIS which was substantially different from 

vicinal κ
1,2

-chelation (Table 2.28). However, the results were in fair agreement with CISs of 

the [Pd(en)(1,6AnGlc2,4H−2-κO
2,4

)] (1,6AnGlc = 1,6-anhydro-β-D-glucose) complex.
[41]

 

Furthermore, the structure of [Pd(R,R-chxn)(Me-β-D-Ribp2,4H−2-κO
2,4

)] in crystals of the  

trihydrate confirmed the κO
2,4

-coordination mode.
[78]

  

Methyl β-D-xylopyranoside is found in the 
4
C1 conformation with four equatorial substituents. 

Conformational fluctuation was also not expected to be induced by metalation because a 

fluctuating pentoside chelate obviously required a cis-vicinal diol function. Instead, two trans-

vicinal diol sites could attack the metal probes. Due to the similarity of the κO
2,3

 and the κO
3,4

 

sites—an analogy to the ribopyranoside which provides two cis-vicinal diol functions—

equipartition of Me-β-D-Xylp2,3H−2-κO
2,3

 and Me-β-D-Xylp3,4H−2-κO
3,4

 was detected 

(Fig. 2.47). With the chair-inverted species [Pd(tmen)(Me-β-D-Xylp2,4H−2-κO
2,4

)] found at a 

quantity of 13%, the unexpected result could be rationalized by the fact that trans-vicinal 

chelation is a second-choice coordination mode. The assignment depended on the coupling-

constant analysis (Table 2.33). Because the conformation was different from that of the 

standard state of the free glycoside, CIS values in this case were meaningless (Table 2.28). 

This result underlined the stability of the six-ring chelates.  
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Figure 2.47. Frozen conformations in all monometalated isomers of the methyl β-D-xylopyranoside ligand in 

Pd-tmen at a molar 2:1 Pd/pyranoside ratio. Percent values of the species distribution in solution were 

determined, the remaining pyranoside was found unmetalated.   

 
Table 2.33. Experimental and calculated 

3
JH,H values in Hz for the free glycoside and the various metalated 

species of methyl β-D-xylopyranoside in Pd-tmen. Bold: measured or calculated coupling constants which 

unambiguously represent the specified conformer. For the calculations of constants, the Karplus relationship in 

Eq. 8 of Ref.
[28]

 was used in conjunction with the torsion angles of a X-ray analysis or the angles of idealized 

structures (all torsion angles multiples of 60°). 

 
3
JH1,H2 

3
J H2,H3 

3
J H3,H4 

3
J H4,H5eq 

3
J H4,H5ax Conformation 

Free (exp.)
[77]

 7.9 9.5 9.5 5.5 11.0 4
C1 (Ref.

[77]
) 

D-κO
2,3

 7.8 9.5 8.9 5.4 10.0 4
C1 (trans-vic.) 

D-κO
3,4

 7.6 9.2 9.3 4.7 10.4 4
C1 (trans-vic.) 

31-κO
2,3

 7.9 9.4 9.4 4.1 10.1 4
C1 (Karplus) 

31-κO
3,4

 7.8 9.3 9.5 4.4 10.1 4
C1 (Karplus) 

Idealized 8.1 9.8 9.6 4.3 10.1 4
C1 (Karplus)

 

D-κO
2,4

 <2 <2  <2 1.2 1.2 1
C4 (syn-diaxial) 

Idealized 1.8 4.3 4.3 2.5 0.6 1
C4 (Karplus) 

 

Despite the fact that all substituents are axial in methyl 
1
C4-β-D-xylopyranoside, sufficient 

stability was gained by palladium-binding to make the species detectable. The spectroscopic 

results on the major species were supported by X-ray analysis. From Pd-tmen batches, the two 

major monometalated isomers, [Pd(tmen)(Me-β-D-Xylp2,3H−2-κO
2,3

)] and its κO
3,4

-bonded 

analogue, co-crystallized. Almost undistorted 
4
C1 chairs were found in agreement with the 

spectroscopic result (Fig. 2.48). The crystal structure was solved in the space group P 21. The 

two xylopyranoside ligands built a hydrogen-bond-bridged dimer forming a homodromic 

R2
2
(10) ring via the two remaining hydroxy functions. Therefore, the coordinating diolato 

sites were arranged opposite to each other. These dimeric building units were further linked 

via two water molecules.  
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As Table 2.34 shows, the water molecule with O91 connected two dimeric units via their 

alkoxido O42 and O51 atoms, whereas the water with O92 formed a hydrogen bond both to 

O91 and to the alkoxido O21 of a third dimeric unit. 

 

Figure 2.48. The asymmetric unit (water molecules omitted) of [Pd(tmen)(Me-β-D-Xylp2,3H−2-κO
2,3

)] 

[Pd(tmen)(Me-β-D-Xylp3,4H−2-κO
3,4

)] in crystals of the dihydrate (31). ORTEP plot is drawn with 50% 

probability ellipsoids. Interatomic distances (Å) and angles (°) (standard deviations of the last digit in 

parentheses): Pd1–O21 2.004(3), Pd1–O31 2.000(2), Pd1–N1 2.079(3), Pd1–N2 2.055(3), Pd2–O32 1.9945(19), 

Pd2–O42 2.001(3), Pd2–N3 2.064(3), Pd2–N4 2.067(3); O21–Pd1–O31 85.73(13), N1–Pd1–N2 86.01(17), 

O32–Pd2–O42 85.86(13), N3–Pd2–N4 85.75(17); chelate torsion angles: O21–C21–C31–O31 57.6(4), O32–

C32–C42–O42  −55.4(4), N1–C91–C101–N2 −53.2(5), N3–C92–C102–N4 55.3(5); puckering parameters
[22] 

of 

the pyranose ring O51–C11–. . .: Q = 0.576(4) Å,  = 4.4(4)°; O52–C12–. . .: Q = 0.564(4) Å,  = 3.4(4)°. 

 
Table 2.34. Distances [Å] and angles [°] of hydrogen bonds in 31. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O41 H41  O32
i
 0.84      1.83      2.661(4) 167.4  

O22 H22  O31
ii
 0.84      1.87      2.698(4) 171.3  

O91 H911 O42 0.825(10) 1.922(13) 2.732(4) 167(4) 

O91 H912 O51
iii

 0.816(10) 2.049(14) 2.852(3) 168(5) 

O92 H921 O21
iv

 0.827(10) 1.93(2)   2.704(4) 156(5) 

O92 H922 O91 0.826(10) 2.056(13) 2.878(4) 173(5) 
 

Symmetry code: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x, y−
1
⁄2, −z; (iv) −x, y−

1
⁄2, −z; (v) −x+1, y−

1
⁄2, −z. 
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2.8 Metalation-induced conformational fluctuation of palladium(II)–aldopentose 

complexes 

 The pentoses not only show one defined configuration in aqueous solutions, instead, 

anomerization results in the equilibrium of the α- and β-forms of the pyranoses and furanoses. 

Moreover, contrary to the hexoses, the hydroxymethyl group of C5 is missing which anchors 

the conformation of the hexopyranoses. Therefore, in some cases the pentopyranoses show a 

dynamic behavior, particularly in the 
4
C1

1
C4 chair inversion. Fluctuation between the two 

chair conformations is a common feature of the methyl pentosides as well as the pentoses. In 

Fig. 2.49, all possible forms of the pentoses are depicted; the bright forms are not detected in 

aqueous solutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.49. All possible configurations and conformations of the four aldopentoses D-arabinose (Ara), D-ribose 

(Rib), D-lyxose (Lyx) and D-xylose (Xyl). The bright conformers were not detected in aqueous solutions. The 

percentages of the various cyclic forms of D-[1-
13

C]pentoses were determined at 28 °C in D2O.
[79]
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As known from previous work,
[37, 46, 78]

 the formation of five-membered chelate rings by the 

attack of a vicinal diol function is the predominant binding mode of palladium(II)–pyranose 

binding, but nevertheless the formation of six-membered chelate rings can be observed, too. 

Both cis- or trans-diolato binding is common, the latter requiring a diequatorial conformation. 

Various Pd
II
 solvents were applied for the investigation of the pentoses to obtain an extensive 

set of 
13

C NMR shifts and shift differences as well as 
3
JH,H values representing the 

carbohydrates‘ various configurations and conformations. 

2.8.1 D-Arabinose 

 In aqueous solutions, D-arabinose can be found essentially in the pentopyranose form. 

The D-arabinopyranose anomers are non-fluctuating in their free state but reside in the 
1
C4 

conformation.
[5, 18]

 Fig. 2.50 shows the 
13

C NMR spectra of D-arabinose in Pd-tmen at 

different Pd/Ara ratios. A high amount of β-D-Araf 1,2H−2-κO
1,2

 was noteworthy; enriching 

the κO
1,2

-furanose form is a characteristic property of the Pd-tmen and Pd-teen solvents. In 

Fig. 2.51 the various detected solution species are depicted which were representative for the 

investigations of D-arabinose with the other Pd
II
 solvents as well. The species could be 

detected in the Pd
II
 solvents with almost unaltered 

13
C NMR shifts upon comparing the Tables 

2.35 and 2.36 and other published data.
[37]

 On the other hand, the species distribution at 

different stoichiometries relied on the chosen Pd
II
 solvent as summarized in Table 2.37.  

Focusing on the pyranose complex species, at first sight, the crystal structure of 

[Pd2(tmen)2(β-D-Arap1,2;3,4H−4-κO
1,2

:κO
3,4

)] (Fig. 2.52) attracted attention by showing the 

4
C1 instead of the initial 

1
C4 conformation. Double metalation obviously resulted in chair 

inversion of the pyranose ring. The crystal structure was solved in the space group P 212121. 

The tmen ligands again tended to form hydrophobic areas whereas the carbohydrates were 

linked via the hydrogen-bonding network. Along the a axis an R4
2
(8) ring motif

[60]
 formed by 

two water molecules (O91 and O92) connected the single carbohydrate molecules via O1 and 

O4 to a chain. Therefore, the equatorially standing O1 and O4 alkoxido functions accepted 

four hydrogen bonds and the axially standing O2 and O3 alkoxido functions accepted only 

one hydrogen bond each (see Table 2.38). Furthermore, two additional crystal structures of a 

double metalated 
4
C1-β-D-Arap1,2;3,4H−4 species are known: [Pd2(en)2(β-Arap1,2;3,4H−4-

κO
1,2

:κO
3,4

)] in crystals of the heptahydrate
[38]

 and [Pd2(R,R-chxn)2(β-D-Arap1,2;3,4H−4-

κO
1,2

:κO
3,4

)] in crystals of the 10-hydrate
[78]

. Finally, analysis of the 
3
JH,H coupling constants 

confirmed the chair inversion of the solution species 
4
C1-β-D-Arap1,2;3,4H−4-κO

1,2
:κO

3,4
 (see 

Table 2.39). 
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Figure 2.50. 
13

C NMR spectra of D-arabinose in Pd-tmen at a molar Pd/Ara ratio of 1:1 (top) and 2:1 (bottom). 

The signals of free D-arabinose are marked with (x); (□) α-D-Arap1,2H−2-κO
1,2

, (+) α-D-Arap3,4H−2-κO
3,4

, 

(■) α-D-Arap1,2;3,4H−4-κO
1,2

:κO
3,4

, (○) β-D-Arap1,2H−2-κO
1,2

, (●) β-D-Arap1,2;3,4H−4-κO
1,2

:κO
3,4

,              

(◊) α-D-Araf 1,3H−2-κO
1,3

 and (▼) β-D-Araf 1,2H−2-κO
1,2

. 

 

 

Figure 2.51. Species detected in Pd
II
-containing solutions of D-arabinose at various molar ratios (for details of 

molar ratio and percental distribution of species, see Table 2.35). Blue-framed species were confirmed by X-ray 

analysis (see Fig. 2.52 and Ref.
[39, 78]

).   
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Table 2.35. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free pentose of D-arabinose 

ligands in Pd-tmen. Atoms are numbered as in Fig. 2.49. 

  C1 C2 C3 C4 C5 Chelate 

α-D-Arap1,2H−2 δ 105.6 81.6 74.8 69.4 68.2  

 ∆δ 8.2 9.1 1.7 0.3 1.2 κO
1,2

 

β-D-Arap1,2H−2 δ 103.6 80.9 72.7 67.6 62.5  

 ∆δ 10.4 11.7 3.5 −1.6 −0.6 κO
1,2

 

α-D-Arap3,4H−2 δ 95.8 71.9 81.3 75.6 63.2  

 ∆δ −1.6 −0.6 8.2 6.5 −3.8 κO
3,4

 

α-D-Arap1,2;3,4H−4 δ 105.2 86.5 84.6 79.5 67.6  

 ∆δ 7.8 14.0 11.5 10.4 0.6 κO
1,2

:κO
3,4

 

β-D-Arap1,2;3,4H−4 δ 104.8 84.3 81.9 74.0 65.7  

 ∆δ 11.6 15.1 12.7 4.8 2.6 κO
1,2

:κO
3,4

 

α-D-Araf 1,3H−2 δ 106.4 81.6 78.9 89.3 62.1  

 ∆δ 4.7 −0.5 2.7 5.7 0.4 κO
1,3

 

β-D-Araf 1,2H−2 δ 109.9 88.7 79.3 83.4 63.0  

 ∆δ 14.3 11.9 4.5 1.4 1.3 κO
1,2

 

 

Table 2.36. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free pentose of D-arabinose 

ligands in Pd-teen. Atoms are numbered as in Fig. 2.49. 

  C1 C2 C3 C4 C5 Chelate 

α-D-Arap1,2H−2 δ 105.8 82.0 74.6 69.1 67.7  

 ∆δ 8.4 9.5 1.5 0.09 0.7 κO
1,2

 

β-D-Arap1,2H−2 δ 103.4 79.5 72.7 68.5 62.1  

 ∆δ 10.2 10.3 3.5 −0.7 −1.0 κO
1,2

 

α-D-Arap3,4H−2 δ 95.1 69.9 81.0 73.9 62.4  

 ∆δ −2.3 −2.6 7.9 4.8 −4.6 κO
3,4

 

α-D-Arap1,2;3,4H−4 δ 105.6 86.4 85.0 79.6 66.9  

 ∆δ 8.2 13.9 11.9 10.5 −0.1 κO
1,2

:κO
3,4

 

β-D-Arap1,2;3,4H−4 δ 105.2 84.1 81.7 74.3 65.7  

 ∆δ 12.0 14.9 12.5 5.1 2.6 κO
1,2

:κO
3,4

 

α-D-Araf 1,3H−2 δ 106.0 81.9 78.7 88.4 64.1  

 ∆δ 4.3 −0.2 2.5 4.8 2.4 κO
1,3

 

β-D-Araf 1,2H−2 δ 109.3 88.7 78.7 82.0 62.8  

 ∆δ 13.7 11.9 3.9 0.0 1.1 κO
1,2
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Table 2.37. Percentage distribution of D-arabinose‘s metalated species in Pd-chxn, Pd-tmen and Pd-teen of 

various molar ratios. The values of the pure pentose are taken from Ref.
[79]

, the values of Pd-chxn from Ref.
[37]

. 

   chxn  tmen  teen  

 chelate 0:1 1:1 3:1 1:1 2:1 1:1 2:1 

α-D-Arap  58.7  - 9.0 - 10.0 3.0 

α-D-Arap1,2H−2 κO
1,2

 -  - 5.0 2.0 3.0 12.0 

α-D-Arap3,4H−2 κO
3,4

 -  - 11.0 4.0 14.0 15.0 

α-D-Arap1,2;3,4H−4 κO
1,2

:κO
3,4

 -  10.0 - 16.0 - 10.0 

β-D-Arap  32.2  - 4.0 - 6.0 - 

β-D-Arap1,2H−2 κO
1,2

 - 20.0 - 22.0 5.0 24.0 20.0 

β-D-Arap1,2;3,4H−4 κO
1,2

:κO
3,4

 -  90.0 9.0 58.0 6.0 11.0 

α-D-Araf   5.6  - - - - - 

α-D-Araf 1,3H−2 κO
1,3

 - 16 - 5.0 2.0 2.0 3.0 

β-D-Araf   3.5  - - - - - 

β-D-Araf 1,2H−2 κO
1,2

 - 9 - 33.0 13.0 32.0 26.0 

 

 

 

Figure 2.52: The molecular structure of [Pd2(tmen)2(β-D-Arap1,2;3,4H−4-κO
1,2

:κO
3,4

)] in crystals of the 10-

hydrate (32). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) 

(standard deviations of the last digit in parentheses): Pd1–O1 2.015(2), Pd1–O2 1.979(3), Pd1–N1 2.059(3), 

Pd1–N2 2.060(3), Pd2–O3 1.985(2), Pd2–O4 2.010(2), Pd2–N3 2.044(3), Pd2–N4 2.049(2), O1–Pd1–O2 

85.47(10), N1–Pd1–N2 85.81(13), O3–Pd2–O4 85.79(10), N3–Pd2–N4 86.29(12); chelate torsion angles: O1–

C1–C2–O2 51.2(4), O3–C3–C4–O4 50.7(3), N1–C8–C9–N2 53.9(4), N3–C14–C15–N4 54.2(4); puckering 

parameters
[22] 

of the pyranose ring O5–C1–C2–C3–C4–C5: Q = 0.563(4) Å,   = 6.1(4)°. 
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Table 2.38. Distances [Å] and angles [°] of hydrogen bonds in 32. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O91  H911 O4
i
   0.856(14) 1.91(2)   2.728(4) 159(4) 

O91  H912 O1
ii
  0.853(14) 1.97(2)   2.797(4) 162(5) 

O92  H921 O4   0.852(14) 1.890(18) 2.726(4) 166(5) 

O92  H922 O1
iii

   0.856(14) 1.94(2)   2.756(4) 160(4) 

O93  H931 O94
iii

 0.860(14) 1.975(17) 2.821(4) 167(4) 

O93  H932 O92  0.853(14) 1.955(15) 2.807(4) 178(5) 

O94  H941 O3   0.858(14) 1.800(15) 2.652(4) 172(4) 

O94  H942 O97  0.865(14) 1.951(15) 2.816(4) 178(5) 

O95  H951 O96  0.861(14) 1.994(19) 2.831(4) 164(4) 

O95  H952 O2   0.859(14) 1.854(16) 2.701(4) 168(4) 

O96  H961 O92  0.857(14) 1.928(15) 2.783(4) 175(4) 

O96  H962 O98  0.859(14) 1.961(17) 2.812(4) 171(5) 

O97  H971 O95  0.863(14) 1.91(2)   2.723(5) 157(4) 

O97  H972 O93
iv 

 0.864(14) 1.96(2)   2.758(4) 154(4) 

O98  H981 O97
iii 

 0.861(14) 2.079(17) 2.931(4) 170(4) 

O98  H982 O94
iv

  0.853(14) 1.972(16) 2.819(4) 172(4) 

O99  H991 O91  0.860(14) 1.856(18) 2.707(6) 170(5) 

O99  H992 O910
v
 0.896(14) 1.92(3)   2.683(8) 142(4) 

O910 H913 O5
i
 0.876(14) 2.017(19) 2.862(6) 162(4) 

O910 H914 O99
vi 

 0.868(14) 1.840(17) 2.704(9) 173(4) 
 

Symmetry code: (i) x, y+1, z; (ii) x−1, y+1, z; (iii) x−1, y, z; (iv) –x+1, y+
1
⁄2, −z+

1
⁄2; (v) x−

1
⁄2, −y+

3
⁄2, −z; (vi) x+1, 

y, z. 

With the metalation of the α-D-arabinopyranose‘s κO
1,2

-diolato function, the α-D-Arap1,2H−2-

κO
1,2

 and the α-D-Arap1,2;3,4H−4-κO
1,2

:κO
3,4

 forms were fixed in the 
1
C4 conformation by the 

complexation of the diequatorial trans-diolato function, whereas the corresponding β-anomer 

was flexible in conformation. With Pd-chxn, and caused by an incomplete set of coupling 

constants, the β-D-Arap1,2H−2-κO
1,2

 was postulated to occur exclusively in the 
4
C1 

conformation,
[37]

 assuming the Pd-chxn fragment would prevent fluctuation of the pyranose 

ring. Therefore, the ring inversion was interpreted as a consequence of metalation. Now, 

experiments with Pd-tmen have led to a complete set of coupling constants (Table 2.39) 

which indicated a fluctuation between the 
1
C4 and 

4
C1 conformer of β-D-Arap1,2H−2-κO

1,2
,    

it being the first example of a metalation-induced conformational fluctuation of a 

pentopyranose. To interpret these results, 
3
JH,H coupling constants were calculated with the  
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Karplus equation. Comparing the experimentally determined 
3
JH,H coupling constants of free 

α- and β-D-arabinopyranose with those calculated by the Karplus equation, in both cases the 

results obviously confirmed the 
1
C4 conformation. Further, the 

3
JH,H coupling constants of the 

conformationally fixed forms 
1
C4-α-D-Arap1,2H−2-κO

1,2
 and 

1
C4-α-D-Arap1,2;3,4H−4-

κO
1,2

:κO
3,4

 and, moreover, the 
3
JH,H coupling constants of 

4
C1-β-D-Arap1,2;3,4H−4-κO

1,2
:κO

3,4
 

showed good agreement with the calculated coupling constants obtained with the Karplus 

equation. In contrast, the experimentally determined 
3
JH,H coupling constants of β-D-

Arap1,2H−2-κO
1,2

 disagreed with the 
3
JH,H coupling constants for the various conformations 

calculated with the Karplus equation. To fit the experimental data, it was necessary to assume 

a 1:1 conformational equilibrium between the 
4
C1 and the 

1
C4 conformation. A similar 

example with comparable 
3
JH,H coupling constants is known in the literature for 1,2-O-

alkylidene-β-L-arabinopyranoses.
[80]

  

 
Table 2.39. Experimental and calculated 

3
JH,H values in Hz for the free glycoses and various metalated species of 

D-arabinopyranose. Bold: calculated or measured (formation of a trans-vicinal chelate) constants which 

unambiguously represent the specified conformer. For the calculation of constants, the Karplus relationship in 

eq. 8 of Ref. 
[28]

 was used in conjunction with the torsion angles of the X-ray analyses or the angles of idealized 

structures (all torsions angles multiples of 60°). To complete the set of coupling constants as thoroughly as 

possible, the values of compounds with Pd-en and Pd-chxn were used from former work. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5eq 

3
JH4,H5ax Conformation 

free α-D (exp.)[77] 7.8 9.8 3.6 1.8 1.3 1
C4 (Ref. 

[5]
) 

α-D (idealised) 3.2 4.3 3.5 4.3 10.1 4
C1 (Karplus) 

α-D (idealised) 8.1 9.6 3.2 2.5 0.6 1
C4 (Karplus) 

free β-D (exp.)[77] 3.6 9.3 3.4 2.5 1.7 1
C4 (Ref. 

[5]
) 

β-D (idealised) 1.3 4.3 3.5 4.3 10.1 4
C1 (Karplus) 

β-D (idealised) 3.1 9.6 3.2 2.5 0.6 1
C4 (Karplus) 

α-D-κO1,2 (in Pd-tmen) 7.5 10.0 3.2 n.d. n.d. 1
C4 (trans-vic.) 

α-D-κO3,4 (in Pd-tmen) 4.8 5.9 n.d. n.d. n.d. 4
C1  

1
C4 

β-D-κO1,2 (in Pd-chxn)[78] 2.7 5.5 n.d. n.d. n.d. 4
C1  

1
C4 

β-D-κO1,2 (in Pd-tmen) 2.8 6.4 3.3 3.3 6.7 4
C1  

1
C4 

α-D-κO1,2:κO3,4 (in Pd-chxn)[78] 7.6 9.1 4.1 3.4 3.4 1
C4 (trans-vic.) 

β-D-κO1,2:κO3,4 (in Pd-chxn)[78] 1.6 3.2 4.5 5.3 10.2 4
C1 

β-D-κO1,2:κO3,4 (in Pd-tmen) 1.9 3.0 3.7 5.4 10.1 4
C1 

β-D-κO1,2:κO3,4 (Pd-en, Ref.[39]) 2.2 2.0 4.0 4.5 10.1 4
C1 (X-Ray)

 

β-D-κO1,2:κO3,4 (Pd-chxn, Ref.[78]) 2.0 2.4 3.6 3.9 10.1 4
C1 (X-Ray) 

β-D-κO1,2:κO3,4 (32) 1.9 2.8 3.5 4.3 10.1 4
C1 (X-Ray)

 

 



2 Results 

91 

 

Searching for additional compounds capable of conformational fluctuation, α-D-Arap3,4H−2-

κO
3,4

 possibly provides a second example for metalation-induced conformational fluctuation. 

Although the found 
3
JH,H coupling constants do not allow a final determination of the 

conformation, the data do not support an exclusive presence of the 
4
C1 conformation. 

 

2.8.2 D-Ribose 

 Comparing the four pentoses, aqueous solutions of D-ribose show the highest amount 

of furanose forms. Furthermore, both D-ribopyranoses fluctuate in conformation. Fig. 2.53 

shows the 
13

C NMR spectra of D-ribose in Pd-tmen at different Pd/Rib ratios. Apart from the 

three detected minor D-ribofuranose species, the reaction of D-ribose with Pd-tmen at a molar 

ratio of 1:1 gave α-D-Ribp1,2H−2-κO
1,2

 as the major species, underlining the predominance of 

diolate chelators derived from a cis-vicinal diol function. Unexpectedly, at a molar Pd:Rib 

ratio of 2:1 α-D-Ribp1,2H−2-κO
1,2

 stayed the main species accompanied by only minor 

amounts of the double metalated β-D-Ribp1,2;3,4H−4-κO
1,2

:κO
3,4

 form, indicating a high 

stability of the α-D-Ribp1,2H−2-κO
1,2

 species.  

 

 

Figure 2.53. 
13

C NMR spectra of D-ribose in Pd-tmen at a molar Pd/Rib ratio of 1:1 (top) and 2:1 (bottom). 

The signals of free D-ribose are marked with (x); (□) α-D-Ribp1,2H−2-κO
1,2

, (+) α-D-Ribp3,4H−2-κO
3,4

,  

(●) β-D-Ribp1,2;3,4H−4-κO
1,2

:κO
3,4

, (▼) α-D-Ribf 1,2H−2-κO
1,2

, (▲) α-D-Ribf 2,3H−2-κO
2,3

 and                         

(◊) β-D-Ribf 2,3H−2-κO
2,3

. 
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All the above-mentioned species were depicted in Fig. 2.54, the species‘ distribution in 

various solvents and at different stoichiometries was summarized in Table 2.40. 

 

 

Figure 2.54. Species detected in Pd
II
-containing solutions of D-ribose at various molar ratios (for details of molar 

ratio and percental distribution of species, see Table 2.40). Blue-framed species were confirmed by X-ray 

analysis.
[37, 39]

 

 
Table 2.40. Percentage distribution of D-ribose‘s metalated species in Pd-chxn, Pd-tmen and Pd-teen of various 

molar ratios. The values of the pure pentose are taken from Ref.
[79]

, the values of Pd-chxn from Ref.
[37]

. 

   chxn  tmen  teen  

 chelate 0:1 1:1 3:1 1:1 2:1 1:1 2:1 

α-D-Ribp  20.2  - - - - - 

α-D-Ribp1,2H−2 κO
1,2

 - 36.0 15.0 60.0 59.0 49.0 56.0 

α-D-Ribp3,4H−2 κO
3,4

 -   8.0 6.0 6.0 6.0 

β-D-Ribp  59.1  - 2.0 - 2.0 - 

β-D-Ribp1,2;3,4H−4 κO
1,2

:κO
3,4

 - 5.0 70.0 1.0 17.0 - 9.0 

α-D-Ribf  7.5  - - - - - 

α-D-Ribf 1,2H−2 κO
1,2

 - 9.0 5.0 16.0 18.0 20.0 29.0 

α-D-Ribf 2,3H−2 κO
2,3

 -   6.0 - 10.0 - 

β-D-Ribf  13.2  - - - - - 

β-D-Ribf 2,3H−2 κO
2,3

 -   7.0 - 8.0 - 
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In the Tables 2.41 and 2.42 the 
13

C NMR chemical shifts and shift differences of the detected 

species with Pd-tmen and Pd-teen are listed; comparing the results revealed only minor 

differences which confirmed the comparability of the Pd
II
 solvents. Therefore, it should be 

noted that instead of the double metalated α-D-Ribp1,2;3,4H−4-κO
1,2

:κO
3,4

 species in Ref. 
[39]

, 

the monometalated α-D-Ribp1,2H−2-κO
1,2

 form was detected, as the authors already 

suggested. 

 

Table 2.41. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free pentose of D-ribose ligands 

in Pd-tmen. Atoms are numbered as in Fig. 2.49. 

  C1 C2 C3 C4 C5 Chelate 

α-D-Ribp1,2H−2 δ 106.2 83.3 67.2 71.0 66.6  

 ∆δ 12.1 12.7 −2.6 3.0 3.0 κO
1,2

 

α-D-Ribp3,4H−2 δ 95.2 67.4 81.2 76.1 62.2  

 ∆δ 1.1 −3.2 11.4 8.1 −1.4 κO
3,4

 

β-D-Ribp1,2;3,4H−4 δ 101.3 82.2  83.4 77.8 67.1  

 ∆δ 6.9 10.6 13.8 10.0 3.5 κO
1,2

:κO
3,4

 

α-D-Ribf 1,2H−2 δ 111.2 81.4 71.3 80.6 62.0  

 ∆δ 14.3 9.9 0.7 −3.0 0.1 κO
1,2

 

α-D-Ribf 2,3H−2 δ 96.9 79.3 84.5 83.4 61.6  

 ∆δ 0.0 7.8 13.9 −0.2 −0.3 κO
2,3

 

β-D-Ribf 2,3H−2 δ 102.9 87.4 82.9 86.7 64.3  

 ∆δ 1.4 11.6 11.9 3.6 1.2 κO
2,3

 

 

Table 2.42. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free pentose of D-ribose ligands 

in Pd-teen. Atoms are numbered as in Fig. 2.49. 

  C1 C2 C3 C4 C5 Chelate 

α-D-Ribp1,2H−2 δ 106.7 83.6 67.6 71.0 66.4  

 ∆δ 12.6 13.0 −2.2 3.0 2.8 κO
1,2

 

α-D-Ribp3,4H−2 δ 95.2 66.6 81.9 76.5 61.0  

 ∆δ 1.1 −4.0 12.1 8.5 −2.6 κO
3,4

 

β-D-Ribp1,2;3,4H−4 δ 102.0 83.0 84.2 78.6 67.2  

 ∆δ 7.6 11.4 14.6 10.8 3.6 κO
1,2

:κO
3,4

 

α-D-Ribf 1,2H−2 δ 112.3 81.2 71.8 80.8 62.2  

 ∆δ 15.4 9.7 1.2 −2.8 0.3 κO
1,2

 

α-D-Ribf 2,3H−2 δ 96.8 79.4 84.2 83.8 62.3  

 ∆δ −0.1 7.9 13.6 0.2 0.4 κO
2,3

 

β-D-Ribf 2,3H−2 δ 103.5 87.4 83.3 87.1 64.3  

 ∆δ 2.0 11.6 12.3 4.0 1.2 κO
2,3
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Comparing the 
3
JH,H coupling constants listed in Table 2.43, α-D-Ribp1,2H−2-κO

1,2
 had to be 

frozen in the 
1
C4 conformation. Accordingly, structure analysis on crystals of 

[Pd(R,R-chxn)(α-D-Ribp1,2H−2-κO
1,2

)]
[37]

 revealed a hydrogen bond O4–H4···O2 stabilizing 

this conformation. This hydrogen bond possibly inhibited the double metalation of 

α-D-ribopyranose, too, since only β-D-Ribp1,2;3,4H−4-κO
1,2

:κO
3,4

 for higher ratios of Pd
II
-

containing solutions was detected. 
1
H NMR analysis (Table 2.43) and X-ray analysis on 

crystals of [Pd(en)(β-D-Ribp1,2;3,4H−4-κO
1,2

:κO
3,4

)]
[39]

 both confirmed the 
4
C1 conformation, 

which was obviously forced by trans-vicinal coordination of the κO
1,2

-diolato unit. For α-D-

Ribp3,4H−2-κO
3,4

 the final determination of conformation was unsuccessful because of 

missing coupling constants, but the similarity with the 
3
JH,H coupling constants of free 

α-D-ribopyranose indicated a conformational fluctuation.  

 
Table 2.43. Experimental and calculated 

3
JH,H values in Hz for the free glycoses and various metalated species of 

D-ribopyranose. Bold: calculated or measured (formation of a trans-vicinal chelate) constants which 

unambiguously represent the specified conformer. For the calculation of constants, the Karplus relationship in 

equation 8 of Ref.
[28]

 was used in conjunction with the torsion angles of the X-ray analyses or the angles of 

idealized structures (all torsions angles multiples of 60°). To complete the set of coupling constants as 

thoroughly as possible, the values of compounds with Pd-en and Pd-chxn were used from former work. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5eq 

3
JH4,H5ax Conformation 

free α-D (exp.)[77] 2.1 3.0 3.0 2.6 5.3 4
C1  

1
C4 (Ref.

[5]
) 

α-D (idealised) 3.1 3.5 3.5 4.3 10.1 4
C1 (Karplus) 

α-D (idealised) 1.3 3.5 3.2 2.5 0.6 1
C4 (Karplus) 

free β-D (exp.)[77] 6.5 3.3 3.2 4.4 8.8 4
C1  

1
C4 (Ref.

[5]
) 

β-D (idealised) 8.1 3.5 3.5 4.3 10.1 4
C1 (Karplus) 

β-D (idealised) 3.2 3.5 3.2 2.5 0.6 1
C4 (Karplus) 

α-D-κO1,2 (in Pd-chxn) 1.3 2.4 n.d. 2.6 0.7 1
C4 

α-D-κO1,2 (Pd-chxn, Ref. [37]) 1.8–2.1 2.5–2.7 2.3–2.5 2.3–2.8 0.6–0.9 1
C4 (X-Ray) 

α-D-κO1,2 (in Pd-tmen) 1.4 4.6 2.8 2.7 0.8 1
C4

 

α-D-κO1,2 (in Pd-teen) 1.3 2.8 2.8 2.9 0.7 1
C4

 

α-D-κO3,4 (in Pd-teen) 2.2 2.8 n.d. n.d. n.d. 4
C1  

1
C4 

β-D-κO1,2:κO3,4 (in Pd-chxn) 7.9 2.9 3.1 5.6 10.8 4
C1 (trans-vic.) 

β-D-κO1,2:κO3,4 (in Pd-tmen) 8.3 2.8 2.8 n.d. 10.8 4
C1 (trans-vic.) 

β-D-κO1,2:κO3,4 (Pd-en, Ref.[39]) 7.9–8.3 2.7–2.9 3.6–3.8 2.4–3.3 9.9–10.1 4
C1 (X-Ray) 
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2.8.3 D-Lyxose 

 Aqueous solutions of D-lyxose contain only small amounts of α- and β-D-

lyxofuranose. The major α-D-lyxopyranose fluctuates between the 
4
C1 and the 

1
C4 

conformation while the minor β-D-lyxopyranose exists only in the 
4
C1 conformation. Fig. 2.55 

shows the 
13

C NMR spectra of D-lyxose in Pd-tmen at different Pd/Lyx ratios. The upper 

13
C NMR spectrum was dominated by the α-D-Lyxp2,3H−2-κO

2,3
 and the β-D-Lyxp1,2H−2-

κO
1,2

 species, whereas the double metalated 
4
C1-β-D-Lyxp1,2;3,4H−4-κO

1,2
:κO

3,4
 species 

dominated the lower 
13

C NMR spectrum at a Pd/Lyx ratio of 2:1. 

 

 

Figure 2.55. 
13

C NMR spectra of D-lyxose in Pd-tmen at a molar Pd/Lyx ratio of 1:1 (top) and 2:1 (bottom). 

The signals of free D-lyxose are marked with (x); (□) α-D-Lyxp1,2H−2-κO
1,2

, (+) α-D-Lyxp2,3H−2-κO 

2,3
, (○) β-D-

Lyxp1,2H−2-κO
1,2

, (●) β-D-Lyxp1,2;3,4H−4-κO
1,2

:κO
3,4

, (◊) α-D-Lyxf 2,3H−2-κO
2,3

, (▼) β-D-Lyxf 1,2H−2-κO
1,2

 

and (▲) β-D-Lyxf 1,3H−2-κO
1,3

. 

An overview of the solution species detected for the different Pd
II
-containing solvents is 

depicted in Fig. 2.56. The preferred cis-vicinal chelation was realized both for the α-D-

Lyxp2,3H−2-κO
2,3

 and the β-D-Lyxp1,2H−2-κO
1,2

. According to the 
3
JH,H coupling constants in 

Table 2.49, α-D-Lyxp2,3H−2-κO
2,3

 fluctuated between the between the 
4
C1 and the 

1
C4 

conformation maintaining the conformational state of the free lyxopyranose. On the other 

hand, analysis of the 
3
JH,H coupling constants confirmed that β-D-Lyxp1,2H−2-κO

1,2
 only 

existed in the 
4
C1 conformation.  
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Furthermore, both α-D-Lyxp1,2H−2-κO
1,2

 by trans-vicinal coordination and β-D-Lyxp1,3H−2-

κO
1,3

 by syn-diaxial κO
1,3

-bonding were fixed in the 
1
C4 conformation.  

 

Fig. 2.56. Species detected in Pd
II
-containing solutions of D-lyxose at various molar ratios (for details of molar 

ratio and percental distribution of species, see Table 2.44). Blue-framed species were confirmed by X-ray 

analysis (see Fig. 2.57 and Ref.
[38]

). 

 
Table 2.44. Percentage distribution of D-lyxose‘s metalated species in Pd-chxn, Pd-tmen and Pd-teen of various 

molar ratios. The values of the pure pentose are taken from Ref.
[79]

, the values of Pd-chxn from Ref.
[37]

. 

   en  chxn  tmen  teen  

 chelate 0:1 1:1 2:1 1:1 2:1 1:1 2:1 1:1 2:1 

α-D-Lyxp  70.8 17.0 - 10.0 - 8.0 - 10.0 4.0 

α-D-Lyxp1,2H−2 κO
1,2

 - 2.0 - 2.0 - 5.0 - 4.0 3.0 

α-D-Lyxp2,3H−2 κO
2,3

 - 29.0 12.0 36.0 35.0 31.0 18.0 31.0 29.0 

β-D-Lyxp  26.9 8.0 - 5.0 - 5.0 - 2.0 - 

β-D-Lyxp1,2H−2 κO
1,2

 - 34.0 12.0 33.0 35.0 36.0 20.0 36.0 34.0 

β-D-Lyxp1,3H−2 κO
1,3

 - 10.0 4.0 11.0 11.0 - - - - 

β-D-Lyxp1,2;3,4H−4 κO
1,2

:κO
3,4

 - - 72.0 1.0 13.0 2.0 60.0 - 19.0 

α-D-Lyxf   1.7 - - - - - - - - 

α-D-Lyxf 2,3H−2 κO
2,3

 - - - - - 5.0 - 8.0 7.0 

β-D-Lyxf  0.6 - - - - - - - - 

β-D-Lyxf 1,2H−2 κO
1,2

 - - - - - 4.0 - 6.0 4.0 

β-D-Lyxf 1,3H−2 κO
1,3

 - - - 2.0 6.0 4.0 - 3.0 4.0 
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In Table 2.44, the species distribution for the various palladium reagents and at various 

stoichiometries is summarized. Because of suspicious CIS values found for the complex 

species in Pd-en,
[38]

 a redetermination was carried out. In fact, the postulated κO
2,3

-chelated 

β-D-Lyxp2,3H−2 species turned out to be the κO
2,3

-chelated α-D-Lyxp2,3H−2 species. The 

correct assignment is given in Table 2.45. 

Table 2.45. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free pentose of D-lyxose ligands 

in Pd-en. Atoms are numbered as in Fig. 2.49. 

  C1 C2 C3 C4 C5 Chelate 

α-D-Lyxp2,3H−2 δ 96.7 80.5 81.8 70.7 64.7  

 ∆δ 2.0 9.9 10.7 2.5 1.0 κO
2,3

 

β-D-Lyxp1,2H−2 δ 107.4 83.0 73.1 67.3 64.9  

 ∆δ 12.6 12.3 −0.2 0.2 0.1 κO
1,2

 

β-D-Lyxp1,3H−2 δ 91.3 69.2 67.5 71.9 57.2  

 ∆δ −3.5 −1.5 −5.8 4.8 −7.6 κO
1,3

 

β-D-Lyxp1,2;3,4H−4 δ 108.9 85.8 84.4 74.9 65.4  

 ∆δ 14.1 15.1 11.1 7.8 0.6 κO
1,2

:κO
3,4

 

 

Furthermore, in Tables 2.46, 2.47 and 2.48 the chemical shifts and shift differences for the 

solution species detected in the solvents Pd-chxn, Pd-tmen and Pd-teen are listed. Besides the 

fact that species distribution varied along the Pd
II
 solvents the chemical shifts almost agreed 

simplifying the spectrum analysis. 

 
Table 2.46. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free pentose of D-lyxose ligands 

in Pd-chxn. Atoms are numbered as in Fig. 2.49. 

  C1 C2 C3 C4 C5 Chelate 

α-D-Lyxp2,3H−2 δ 96.2 80.1 81.0 70.2 63.8  

 ∆δ 1.5 9.5 9.9 2.0 0.1 κO
2,3

 

β-D-Lyxp1,2H−2 δ 106.9 82.4 72.6 66.7 64.3  

 ∆δ 12.1 11.7 −0.7 −0.4 −0.5 κO
1,2

 

β-D-Lyxp1,3H−2 δ 90.8 68.6 67.0 71.4 56.6  

 ∆δ −4.0 −2.1 −6.3 4.3 −8.2 κO
1,3

 

β-D-Lyxp1,2;3,4H−4 δ 108.3 85.4 83.7 74.2 64.8  

 ∆δ 13.5 14.7 10.4 7.1 0.0 κO
1,2

:κO
3,4

 

β-D-Lyxf 1,3H−2 δ 96.2 73.4 69.4 80.6 62.8  

 ∆δ 0.2 0.2 −2.7 −0.2 1.1 κO
1,3
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Table 2.47. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free pentose of D-lyxose ligands 

in Pd-tmen. Atoms are numbered as in Fig. 2.49. 

  C1 C2 C3 C4 C5 Chelate 

α-D-Lyxp1,2H−2 δ 101.4 79.9 73.8 70.1 66.6  

 ∆δ 6.7 9.3 2.7 1.9 2.9 κO
1,2

 

α-D-Lyxp2,3H−2 δ 97.0 80.7 81.1 70.6 64.5  

 ∆δ 2.3 10.1 10.0 2.4 0.8 κO
2,3

 

β-D-Lyxp1,2H−2 δ 107.5 82.1 73.3 67.6 64.6  

 ∆δ 12.7 11.4 0.0 0.5 −0.2 κO
1,2

 

β-D-Lyxp1,2;3,4H−4 δ 108.5 86.1 84.2 75.1 65.4  

 ∆δ 13.7 15.4 10.9 8.0 0.6 κO
1,2

:κO
3,4

 

α-D-Lyxf 2,3H−2 δ 104.9 90.6 84.2 80.2 63.0  

 ∆δ 3.6 13.0 12.5 −0.3 2.1 κO
2,3

 

β-D-Lyxf 1,2H−2 δ 111.2 82.2 71.6 79.0 61.5  

 ∆δ 15.2 9.0 −0.5 −1.8 −0.2 κO
1,2

 

 

Table 2.48. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free pentose of D-lyxose ligands 

in Pd-teen. Atoms are numbered as in Fig. 2.49. 

  C1 C2 C3 C4 C5 Chelate 

α-D-Lyxp1,2H−2 δ 101.4 79.4 73.6 69.8 66.3  

 ∆δ 6.7 8.8 2.5 1.6 2.6 κO
1,2

 

α-D-Lyxp2,3H−2 δ 96.9 80.5 81.3 70.1 64.7  

 ∆δ 2.2 9.9 10.2 1.9 1.0 κO
2,3

 

β-D-Lyxp1,2H−2 δ 107.1 80.8 73.2 67.8 63.9  

 ∆δ 12.3 10.1 −0.1 0.7 −0.9 κO
1,2

 

β-D-Lyxp1,2;3,4H−4 δ 108.7 86.2 84.6 75.0 65.6  

 ∆δ 13.9 15.5 11.3 7.9 0.8 κO
1,2

:κO
3,4

 

α-D-Lyxf 2,3H−2 δ 104.6 91.1 84.0 79.5 62.7  

 ∆δ 3.3 13.5 12.3 −1.0 1.8 κO
2,3

 

β-D-Lyxf 1,2H−2 δ 111.2 83.3 71.2 78.4 61.1  

 ∆δ 15.2 10.1 −0.9 −2.4 −0.6 κO
1,2

 

β-D-Lyxf 1,3H−2 δ 95.6 73.6 69.8 81.2 60.8  

 ∆δ −0.4 0.4 −2.3 0.4 −0.9 κO
1,3

 

 

For all species discussed above, in Table 2.49 the 
3
JH,H coupling constants are listed 

confirming the postulated conformations. Whereas the conformation of trans-vicinal chelate 

species was unambiguous, the high value of 
3
JH3,H4 indicated the 

4
C1 conformation for the 

β-D-Lyxp1,2H−2-κO
1,2

 species. 



2 Results 

99 

 

Table 2.49. Experimental and calculated 
3
JH,H values in Hz for the free glycoses and various metalated species of 

D-lyxopyranose. Bold: calculated or measured (formation of a trans-vicinal chelate) constants which 

unambiguously represent the specified conformer. For the calculation of constants, the Karplus relationship in 

eq. 8 of Ref. 
[28]

 was used in conjunction with the torsion angles of the X-ray analyses or the angles of idealized 

structures (all torsions angles multiples of 60°).  

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5eq 

3
JH4,H5ax Conformation 

free α-D (exp.)[77] 4.9 3.6 7.8 3.8 7.2 4
C1  

1
C4 (Ref.

[5]
) 

α-D (idealised) 3.2 3.5 9.6 4.3 10.1 4
C1 (Karplus) 

α-D (idealised) 8.1 3.5 4.3 2.5 0.6 1
C4 (Karplus) 

free β-D (exp.)[77] 1.1 2.7 8.5 5.1 9.1 4
C1 (Ref.

[5]
) 

β-D (idealised) 1.3 3.5 9.6 4.3 10.1 4
C1 (Karplus) 

β-D (idealised) 3.1 3.5 4.3 2.5 0.6 1
C4 (Karplus) 

α-D-κO1,2 (in Pd-tmen) 8.0 3.0 n.d. n.d. n.d. 1
C4 (trans-vic.) 

α-D-κO1,2 (in Pd-teen) 7.9 3.1 n.d. n.d. n.d. 1
C4 (trans-vic.)

 

α-D-κO2,3 (in Pd-tmen) 5.3 4.0 n.d. n.d. n.d. 4
C1  

1
C4

 

α-D-κO2,3 (in Pd-teen) 6.0 5.1 4.4 4.3 5.0 4
C1  

1
C4

 

β-D-κO1,2 (in Pd-tmen) 1.5 3.5 9.2 5.5 n.d. 4
C1 

β-D-κO1,2 (in Pd-teen) 1.7 3.5 8.6 4.6 8.9 4
C1 

β-D-κO1,2:κO3,4 (in Pd-tmen) 1.1 2.8 10.2 5.0 10.5 4
C1 (trans-vic.) 

β-D-κO1,2:κO3,4 (33) 1.7 2.9 9.7 4.7 10.1 4
C1 (X-Ray)

 

β-D-κO1,2:κO3,4 (Pd-en, Ref.[38]) 1.9 3.4 9.5 4.6 10.1 4
C1 (X-Ray)

 

 

Dimetalation of D-lyxopyranose is possible only for 
4
C1-β-D-Lyxp1,2;3,4H−4-κO

1,2
:κO

3,4
. All 

other forms are hindered by trans-oriented vicinal hydroxy groups. According to the 

published crystal structure of [Pd2(en)2(β-Lyxp1,2;3,4H−4-κO
1,2

:κO
3,4

)],
[38]

 with Pd-tmen 

[Pd2(tmen)2(β-D-Lyxp1,2;3,4H−4-κO
1,2

:κO
3,4

)] was crystallized (see Fig. 2.57). The crystal 

structure was solved in the space group P 21. Structural features were very similar to the 

double-metalated β-D-arabinopyranose compound 32. The tmen ligands again tended to form 

hydrophobic areas whereas the carbohydrate ligands were linked via three water molecules 

O92, O94 and O95 along the a axis. Forming an R4
2
(8) ring motif,

[60]
 the water molecules 

O92 and O94 connected the alkoxido O4 to the water molecule O95 which again formed two 

hydrogen bonds to the alkoxido atoms O2 and O3 of the next carbohydrate ligand. Counting 

the carbohydrate‘s accepted hydrogen bonds, the equatorially standing O3 and O4 alkoxido 

functions accepted four hydrogen bonds, whereas O1 and the axially standing O2 alkoxido 

functions accepted only one hydrogen bond each (see Table 2.50). 
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Figure 2.57: The molecular structure of [Pd2(tmen)2(β-D-Lyxp1,2;3,4H−4-κO
1,2

:κO
3,4

)] in crystals of the 10-

hydrate (33). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) 

(standard deviations of the last digit in parentheses): Pd1–O1 1.990(3), Pd1–O2 2.006(3), Pd1–N1 2.060(3), 

Pd1–N2 2.052(3), Pd2–O3 2.015(3), Pd2–O4 2.013(3), Pd2–N3 2.066(3), Pd2–N4 2.063(3), O1–Pd1–O2 

85.44(11), N1–Pd1–N2 86.45(13), O3–Pd2–O4 85.96(10), N3–Pd2–N4 85.52(13); chelate torsion angles: O1–

C1–C2–O2 50.7(4), O3–C3–C4–O4 −54.1(4), N1–C8–C9–N2 53.2(4), N3–C14–C15–N4 −54.1(4); puckering 

parameters
[22] 

of the pyranose ring O5–C1–C2–C3–C4–C5: Q = 0.584(4) Å,   = 2.7(4)°. 

 
Table 2.50. Distances [Å] and angles [°] of hydrogen bonds in 33. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O91  H911 O1   0.800(15) 1.87(2)   2.658(4)  167(5)  

O91  H912 O96
i
  0.801(15) 1.96(2)   2.724(5)  161(5)  

O92  H921 O4
i
   0.805(15) 2.023(17) 2.826(4)  175(4)  

O92  H922 O95  0.800(15) 2.08(2)   2.872(5)  168(5)  

O93  H931 O97
ii
  0.800(15) 2.060(18) 2.854(5)  171(5)  

O93  H932 O99
ii
  0.798(15) 1.970(18) 2.762(5)  171(4)  

O94  H941 O4
i
   0.801(15) 2.030(18) 2.826(4)  172(5)  

O94  H942 O95  0.804(15) 2.024(18) 2.821(5)  171(5)  

O95  H951 O3
iii

   0.807(15) 1.93(2)   2.696(4)  157(4)  

O95  H952 O2
iii

   0.807(15) 1.93(3)   2.675(4)  153(5)  

O96  H961 O93  0.808(15) 2.00(2)   2.790(5)  164(6)  

O96  H962 O94
iv

  0.809(15) 1.96(2)   2.744(5)  164(5)  

O97  H971 O98  0.804(15) 1.995(19) 2.788(6)  169(6)  

O97  H972 O5   0.805(15) 2.05(2)   2.824(4)  162(4)  
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Table 2.50. Continued. 

D H A D–H H···A D···A D–H···A 

O98  H981 O91
v
  0.808(15) 1.882(17) 2.685(5)  172(5)  

O98  H982 O92
v
  0.802(15) 2.16(3)   2.883(5)  151(5)  

O99  H991 O910 0.804(15) 2.140(19) 2.935(7)  170(6)  

O99  H992 O3
vi

   0.807(15) 1.98(2)   2.773(5)  167(5)  

O910 H913 O96  0.805(15) 2.164(17) 2.967(7)  176(6)  

O910 H914 O97  0.805(15) 2.10(3)   2.848(7)  155(7)  

O911 H915 O97  0.803(16) 2.38(4)   3.154(14) 163(13) 

O911 H916 O92  0.804(16) 2.32(10)  3.015(12) 145(15) 
 

Symmetry code: (i) –x+1, y+
1
⁄2, –z+1; (ii) x+1, y, z; (iii) −x, y+

1
⁄2, –z+1; (iv) –x+1, y–

1
⁄2, −z; (v) –x+1, y−

1
⁄2, −z+1; 

(vi) x, y, z−1. 

 

2.8.4 D-Xylose 

 α- and β-D-Xylopyranose both are found in the 
4
C1 conformation. The furanoses 

appear only in small amounts. Fig. 2.58 shows the 
13

C NMR spectra of D-xylose in Pd-tmen at 

different Pd/Xyl ratios. α-D-Xylp1,2H−2-κO
1,2

 represented the main species in the upper 

spectrum at a 1:1 molar Pd:Xyl ratio and 
4
C1-β-D-Xylp1,2;3,4H−4-κO

1,2
:κO

3,4
 became the 

main species at a 3:1 molar Pd:Xyl ratio, as is depicted in the lower spectrum. The amounts of 

the various solution species for the Pd
II
 solvents can be found in Table 2.51.  

Table 2.51. Percentage distribution of D-xylose‘s metalated species in Pd-chxn, Pd-tmen and Pd-teen of various 

molar ratios. The values of the pure pentose are taken from Ref.
[79]

, the values of Pd-chxn from Ref.
[37]

. 

   chxn  tmen  teen  

 chelate 0:1 1:1 3:1 1:1 2:1 1:1 2:1 

α-D-Xylp  36.5 6.0 - 3.0 - 3.0 - 

α-D-Xylp1,2H−2 κO
1,2

 - 30.0 2.0 67.0 22.0 70.0 26.0 

α-D-Xylp1,2;3,4H−4 κO
1,2

:κO
3,4

 - 4.0 41.0 - 18.0 - 10.0 

β-D-Xylp κO
1,2

 - 11.0 - 5.0 - 6.0 - 

β-D-Xylp1,2H−2  62.0 15.0 - 9.0 7.0 4.0 9.0 

β-D-Xylp1,2;3,4H−4 κO
1,2

:κO
3,4

 - - 26.0 - 38.0 - 29.0 

β-D-Xylp1,3;2,4H−4 κO
1,3

:κO
2,4

 - - 23.0 - 4.0 - - 

α-D-Xylf   0.86 - - - - - - 

α-D-Xylf 1,2H−2 κO
1,2

 - 6.0 - 13.0 5.0 17.0 16.0 

α-D-Xylf 1,2;3,5H−4 κO
1,2

:κO
3,5

 - - 8.0 - 6.0 - 10.0 

β-D-Xylf  0.64 - - - - - - 

β-D-Xyl f 1,3H−2 κO
1,3

 - 13.0 - - - - - 
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Figure 2.58. 
13

C NMR spectra of D-xylose in Pd-tmen at a molar Pd/Xyl ratio of 1:1 (top) and 2:1 (bottom). 

The signals of free D-xylose are marked with (x); (□) α-D-Xylp1,2H−2-κO
1,2

, (■) α-D-Xylp1,2;3,4H−4-κO
1,2

:κO
3,4

, 

(○) β-D-Xylp1,2H−2-κO
1,2

, (●) β-D-Xylp1,2;3,4H−4-κO
1,2

:κO
3,4

, (▼) α-D-Xylf 1,2H−2-κO
1,2

, 

(▲) α-D-Xylf 1,2;3,5H−4-κO
1,2

:κO
3,5

 and (◊) β-D-Xylp1,3;2,4H−4-κO
1,3

:κO
2,4

. 

 

 

Figure 2.59. Species detected in Pd
II
-containing solutions of D-xylose at various molar ratios (for details of 

molar ratio and percental distribution of species, see Table 2.51). Blue-framed species were confirmed by X-ray 

analysis.
[37]
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The chemical shifts and shift differences for the solution species detected in the solvents 

Pd-tmen and Pd-teen are listed in the Tables 2.52 and 2.53. Only two furanose forms were 

detected. As for the pentoses above, the various Pd
II
 solvents caused an almost identical 

chemical shift by coordination which made further investigations with new solvents easier. 

 
Table 2.52. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free pentose of D-xylose ligands 

in Pd-tmen. Atoms are numbered as in Fig. 2.49. 

  C1 C2 C3 C4 C5 Chelate 

α-D-Xylp1,2H−2 δ 102.9 82.0 72.6 69.4 63.4  

 ∆δ 10.1 9.9 −0.8 −0.6 1.8 κO
1,2

 

β-D-Xylp1,2H−2 δ 105.7 84.2 77.2 70.5 66.5  

 ∆δ 8.5 9.5 0.8 0.7 0.7 κO
1,2

 

α-D-Xylp1,2;3,4H−4 δ 101.8 84.4 89.3 78.5 62.8  

 ∆δ 9.0 12.3 15.9 8.5 1.2 κO
1,2

:κO
3,4

 

β-D-Xylp1,2;3,4H−4 δ 106.2 86.3 87.7 79.9 65.7  

 ∆δ 9.0 11.6 11.3 10.1 −0.1 κO
1,2

:κO
3,4

 

α-D-Xylf 1,2H−2 δ 111.2 89.0 79.3 78.8 61.0  

 ∆δ 15.1 12.3 3.8 −0.1 0.0 κO
1,2

 

α-D-Xylf 1,2;3,5H−4 δ 110.0 91.5 82.4 81.6 62.6  

 ∆δ 13.9 14.8 6.9 2.7 1.6 κO
1,2

:κO
3,5

 

  

Table 2.53. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free pentose of D-xylose ligands 

in Pd-teen. Atoms are numbered as in Fig. 2.49. 

  C1 C2 C3 C4 C5 Chelate 

α-D-Xylp1,2H−2 δ 103.2 82.1 73.4 69.6 62.8  

 ∆δ 10.4 10.0 0.0 −0.4 1.2 κO
1,2

 

β-D-Xylp1,2H−2 δ 106.2 85.1 77.2 70.6 66.3  

 ∆δ 9.0 10.4 0.8 0.8 0.5 κO
1,2

 

α-D-Xylp1,2;3,4H−4 δ 102.4 84.6 88.6 78.9 63.0  

 ∆δ 9.6 12.5 15.2 8.9 1.4 κO
1,2

:κO
3,4

 

β-D-Xylp1,2;3,4H−4 δ 106.7 86.7 88.0 80.3 65.8  

 ∆δ 9.5 12.0 11.6 10.5 0.0 κO
1,2

:κO
3,4

 

α-D-Xylf 1,2H−2 δ 111.8 89.1 79.6 78.9 61.0  

 ∆δ 15.7 12.4 4.1 0.0 0.0 κO
1,2

 

α-D-Xylf 1,2;3,5H−4 δ 108.3 90.9 82.9 82.4 63.4  

 ∆δ 12.2 14.2 7.4 3.5 2.4 κO
1,2

:κO
3,5
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The various metalated species of D-xylose are depicted in Fig. 2.59. With four equatorial 

substituents and trans-vicinal chelation for 
4
C1-β-D-Xylp1,2H−2-κO

1,2
 and 

4
C1-β-D-

Xylp1,2;3,4H−4-κO
1,2

:κO
3,4

 conformational fluctuation was not expected. Therefore, the 

detection of a syn-diaxial κO
1,3

:κO
2,4

 bonded 
1
C4-β-D-Xylp1,2;3,4H−4-κO

1,3
:κO

2,4
 was 

remarkable.
[37]

 This result was confirmed by 
1
C4-Me-β-D-Xylp2,4H−2-κO

2,4[71]
 and proved the 

D-xylopyranose‘s ability for metalation-induced conformational conversion. Thus, the 

assumption of a metalation-induced conformational fluctuation for α-D-Xylp1,2H−2-κO
1,2

, 

indicated by the comparison of the 
3
JH,H coupling constants in Table 2.54, is reasonable.  

 
Table 2.54. Experimental and calculated 

3
JH,H values in Hz for the free glycoses and various metalated species of 

D-xylopyranose. Bold: calculated or measured (formation of a trans-vicinal chelate) constants which 

unambiguously represent the specified conformer. For the calculation of constants, the Karplus relationship in 

eq. 8 of Ref.
[28]

 was used in conjunction with the torsion angles of the X-ray analyses or the angles of idealized 

structures (all torsions angles multiples of 60°). To complete the set of coupling constants as thoroughly as 

possible, the values of compounds with Pd-en and Pd-chxn were used from former work. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5eq 

3
JH4,H5ax Conformation 

free α-D (exp.)
[77]

 3.7 9.8 9.1 5.1 10.2 4
C1 (Ref. 

[5]
) 

α-D (idealised) 3.1 9.8 9.6 4.3 10.1 4
C1 (Karplus) 

α-D (idealised) 1.3 4.3 4.3 2.5 0.6 1
C4 (Karplus) 

free β-D (exp.)
[77]

 7.8 9.2 9.0 5.6 10.5 4
C1 (Ref. 

[5]
) 

β-D (idealised) 8.1 9.8 9.6 4.3 10.1 4
C1 (Karplus) 

β-D (idealised) 3.2 4.3 4.3 2.5 0.6 1
C4 (Karplus) 

α-D-κO
1,2

 (in Pd-chxn) 2.9 6.9 7.1 3.5 10.7 4
C1

 

α-D-κO
1,2

 (Pd-chxn, Ref. 
[37]

) 4.7 8.0 9.0 4.0 10.1 4
C1 (X-Ray)

 

α-D-κO
1,2

 (in Pd-tmen) 2.2 5.1 5.7 2.6 5.5 4
C1  

1
C4 

α-D-κO
1,2

 (in Pd-teen) 2.6 6.4 6.4 n.d. n.d. 4
C1  

1
C4 

β-D-κO
1,2

 (in Pd-chxn) 7.6 9.4 8.9 5.5 n.d. 4
C1 (trans-vic.) 

β-D-κO
1,2

 (in Pd-tmen) 7.5 9.3 8.8 n.d. n.d. 4
C1 (trans-vic.) 

β-D-κO
1,2

 (in Pd-teen) 7.3 9.4 8.9 5.6 9.3 4
C1 (trans-vic.) 

α-D-κO
1,2

:κO
3,4

 (in Pd-chxn) 3.7 8.9 9.2 4.8 7.4 4
C1 

β-D-κO
1,2

:κO
3,4

 (in Pd-chxn) 7.2 9.2 9.1 n.d. n.d. 4
C1 (trans-vic.) 

β-D-κO
1,2

:κO
3,4

 (in Pd-tmen) 7.2 9.2 9.1 n.d. n.d. 4
C1 (trans-vic.) 

β-D-κO
1,2

:κO
3,4

 (in Pd-teen) 7.3 8.7 8.7 4.5 n.d. 4
C1 (trans-vic.) 

β-D-κO
1,3

:κO
2,4

 (in Pd-chxn) ≈ 1 n.d. n.d. 1.4 ≈ 1 1
C4 

 

Although X-ray analysis
[37]

 confirmed the 
4
C1-form of α-D-Xylp1,2H−2-κO

1,2
, the calculated 

3
JH,H coupling constants could not be explained by the exclusive presence of the 

4
C1-form. 
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Finally, comparing α-D-Xylp1,2H−2-κO
1,2

 with α-D-Ribp1,2H−2-κO
1,2

, a hydrogen bond     

O4–H4···O2 stabilizing the 
1
C4 conformation of α-D-Ribp1,2H−2-κO

1,2
 also should be able to 

stabilize the 
1
C4 conformation of α-D-Xylp1,2H−2-κO

1,2
 inducing the conformational 

fluctuation. Double metalation of α-D-xylopyranose could only be realized in the 
4
C1 

conformation. Thus, it is noteworthy that the ratio of α-D-Xylp1,2;3,4H−4-κO
1,2

:κO
3,4

 and β-D-

Xylp1,2;3,4H−4-κO
1,2

:κO
3,4

 depended on the palladium-containing solvent. In Pd-chxn α-D-

Xylp1,2;3,4H−4-κO
1,2

:κO
3,4

 dominated the solution‘s species distribution, in Pd-tmen and 

Pd-teen β-D-Xylp1,2;3,4H−4-κO
1,2

:κO
3,4

 was preferred. 

 

2.9 Coordination-induced shift patterns of palladium(II)–methyl hex(ul)oside 

complexes 

Despite the progress in analytical methods, the 
13

C NMR investigation of oligo-

saccharides and polysaccharides is still difficult. Just a glance at a 
13

C NMR spectrum of a 

disaccharide with a minimum of twelve signals reveals the problems of analysis which will be 

caused by the formation of various reaction products and the resulting crowded 
13

C NMR 

spectra. Realizing the high similarity of a disaccharide‘s 
13

C NMR spectrum to the 
13

C NMR 

spectra of its monomeric building units, the reaction of coordinating agents as Pd-chxn or 

Pd-tmen with the methyl hex(ul)osides should provide characteristic shift patterns which 

allow the identification of the corresponding signals in a di- or oligosaccharide 
13

C NMR 

spectrum. 

 

2.9.1 The methyl hexopyranosides of D-galactose, D-glucose and D-mannose 

 With the methyl D-galactopyranosides, the cis coordination is usually the preferred 

binding mode in the solution which was realized by the Me-D-Galp3,4H−2-κO
3,4

 species, 

while the trans-diequatorial diolato coordination mode was represented by the minor Me-D-

Galp2,3H−2-κO
2,3

 species (see Fig. 2.60). The detected chemical shifts and 
3
JH,H coupling 

constants are denoted in the Tables 2.55 and 2.56. Probably the axially oriented hydroxy 

group of C4 prevented a κO
1,3

-diolato coordination of O4 and O6 which was detected for the 

methyl glucopyranosides. The Me-D-Galp3,4H−2-κO
3,4

 species could be crystallized with the 

solvents Pd-tmen and Pd-dmen; [Pd(tmen)(
4
C1-Me-α-D-Galp3,4H−2-κO

3,4
)] · 8 H2O (34) and 

[Pd(dmen)(
4
C1-Me-α-D-Galp3,4H−2-κO

3,4
)]  · 9 H2O (35) both were solved in the space group 

P 1 and were very similar to each other.  
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Figure 2.60. Species detected in Pd
II
-containing solutions of methyl α- and methyl β-D-galactopyranoside. The 

difference between the given percentages and 100 % always represents free methyl pyranoside. The Me-α-D-

Galp3,4H−2-κO
3,4

 species was confirmed by X-ray analysis (see Fig. 2.61 and 2.62).   

 
Table 2.55. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free methyl glycoside of 

D-galactopyranoside ligands in Pd-tmen at a molar Pd/Me-Galp ratio of 2:1. Atoms are numbered as in Fig. 2.60. 

  C1 C2 C3 C4 C5 C6 CH3 Chelate 

Me-α-D-Galp2,3H−2 δ 101.2 77.3 79.1 72.1 71.7 61.9 55.6  

 ∆δ 1.2 8.5 9.0 2.3 0.4 0.0 0.0 κO
2,3

 

Me-α-D-Galp3,4H−2 δ 100.7 72.8 79.7 80.6 69.8 63.3 55.6  

 ∆δ 0.7 4.0 9.6 10.8 −1.5 1.4 0.0 κO
3,4

 

Me-β-D-Galp2,3H−2 δ 105.7 79.2 84.2 71.8 76.7 61.7 57.5  

 ∆δ 1.3 7.8 10.8 2.5 1.0 0.1 −0.3 κO
2,3

 

Me-β-D-Galp3,4H−2 δ 104.5 74.3 83.8 80.2 75.6 63.1 57.6  

 ∆δ 0.1 2.9 10.4 10.9 −0.1 1.5 −0.2 κO
3,4

 

 

Table 2.56. Experimental 
3
JH,H values in Hz for the methyl D-galactopyranosides and various metalated species.  

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 

3
JH5,H6‘ Conformation 

free α-D (exp.)
[77]

 3.0 9.8 2.3 1.0 8.2 4.6 
4
C1 

free β-D (exp.)
[77]

 8.0 10.0 3.8 0.8 7.6 4.4 
4
C1 

α-D-κO
2,3

 (in Pd-tmen) 3.0 10.5 2.9 – – – 
4
C1 

α-D-κO
3,4

 (in Pd-tmen) 3.9 9.6 4.1 – – – 
4
C1 

β-D-κO
2,3

(in Pd-tmen) 7.6 – – 1.1 7.6 4.7 
4
C1 

β-D-κO
3,4

 (in Pd-tmen) 8.1 9.1 4.1 1.5 7.0 3.6 
4
C1 
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Figure 2.61. The molecular structure of [Pd(tmen)(
4
C1-Me-α-D-Galp3,4H−2-κO

3,4
)] in crystals of the 8-hydrate 

(34). ORTEP plot drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (with standard 

deviations of the last digit in parentheses): Pd1–O3 2.001(4), Pd1–O4 2.008(4), Pd1–N1 2.070(5), Pd1–N2 

2.070(4), O3–Pd1–O4 85.24(15), O3–Pd1–N1 94.05(17), O3–Pd1–N2 176.54(16), O4–Pd1–N1 176.56(19), O4–

Pd1–N2 96.36(16), N1–Pd1–N2 84.53(18); chelate torsion angles: O3–C3–C4–O4 49.4(4), N1–C10–C11–N2 

52.1(7); puckering parameters
 
of the pyranose ring C1–C2–C3–C4–C5–O5: Q = 0.543(4) Å,   = 2.0(3)°. 

 

 

Figure 2.62. The molecular structure of [Pd(dmen)(
4
C1-Me-α-D-Galp3,4H−2-κO

3,4
)] in crystals of the 9-hydrate 

(35). ORTEP plot drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (with standard 

deviations of the last digit in parentheses): Pd1–O3 2.001(3), Pd1–O4 2.010(3), Pd1–N1 2.059(3), Pd1–N2 

2.047(4), O3–Pd1–O4 85.27(10), O3–Pd1–N1 95.61(12), O4–Pd1–N2 95.31(13), N1–Pd1–N2 83.94(15); 

chelate torsions angles: O3–C3–C4–O4 53.3(3), N1–C9–C10–N2 50.1(5); puckering parameters
 
of the pyranose 

ring C1–C2–C3–C4–C5–O5: Q = 0.554(3) Å,   = 3.1(3)°. 
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Table 2.57. Distances [Å] and angles [°] of hydrogen bonds in 35. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O2  H821 O95  0.84      1.89      2.711(3)  163.8  

O6  H861 O97
i
  0.84      1.96      2.765(3)  159.8  

N1  H711 O94  0.93      2.16      3.077(4)  170.7  

N2  H721 O94
ii
  0.93      2.34      3.252(5)  166.5  

O91 H911 O99  0.827(13) 1.983(15) 2.803(4)  171(6) 

O91 H912 O2   0.819(13) 2.19(4)   2.858(3)  139(6) 

O91 H912 O1   0.819(13) 2.45(3)   3.169(4)  147(5) 

O92 H921 O93  0.824(12) 1.958(13) 2.782(4)  178(5) 

O92 H922 O91
iii 

 0.822(12) 1.95(2)   2.723(4)  155(5) 

O93 H931 O96  0.811(12) 2.050(15) 2.823(3)  159(3) 

O93 H932 O4   0.811(12) 2.072(15) 2.866(3)  166(4) 

O94 H941 O95  0.820(12) 1.899(13) 2.719(3)  178(4) 

O94 H942 O96
iv

  0.817(12) 2.016(17) 2.808(3)  163(3) 

O95 H951 O4
v
   0.820(12) 1.830(13) 2.643(3)  170(3) 

O95 H952 O92  0.824(12) 1.889(13) 2.709(4)  173(3) 

O96 H961 O98  0.813(12) 2.037(16) 2.827(3)  164(3) 

O96 H962 O97
i
  0.813(12) 1.992(14) 2.796(3)  170(4) 

O97 H971 O99  0.812(12) 2.163(16) 2.933(3)  159(3) 

O97 H972 O3   0.817(12) 2.027(18) 2.781(3)  153(3) 

O97 H972 O2   0.817(12) 2.53(3)   3.107(3)  129(3) 

O98 H981 O3
vi 

  0.820(12) 1.851(13) 2.671(3)  178(3) 

O98 H982 O6
v
   0.817(12) 1.986(14) 2.790(3)  168(3) 

O99 H991 O94
vii

  0.836(12) 2.20(3)   2.884(3)  139(4) 

O99 H992 O98
iv

  0.828(12) 1.963(14) 2.785(3)  171(5) 
 

Symmetry code: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x, y, z−1; (v) x−1, y, z; (vi) x−1, y, z+1,  

(vii) x, y−1, z. 

In both structures, the methyl α-D-galactopyranoside showed an almost undistorted 
4
C1 

pyranose ring. Furthermore, along the c axis, chains of molecules were linked by the same 

ring motif of hydrogen bonds. In 34, an R4
3
(8) motif

[60]
 connected two methyl 

galactopyranosides by two water molecules (O91 and O94) with O3 acting as a double 

hydrogen-bond acceptor and O6–H as a hydrogen-bond donor. In 35, the same motif could be 

identified (O97 and O98). Further hydrogen bonds linked the chains, as one can see in 

Fig. 6.73 and 6.74 in the Appendix. The methyl group of the galactopyranoside was oriented 

towards the methyl groups of the Pd
II
N2 fragment. For structure 34, the distances and angles 
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of the hydrogen bonds are listed in Table 2.57. The hydrogen-bonding network of structure 35 

was not resolved properly, therefore a table was not prepared. 

The methyl glucopyranosides provide only trans-vicinal diolato units, nevertheless the κO
2,3

-

diolato coordination was preferred to the κO
3,4

-diolato coordination. Fig. 2.63 shows all the 

metalated species. The α- and β-anomers of methyl glucopyranoside resulted in the same 

compounds with almost an identical share of solution equilibrium, and contrary to the methyl 

galactopyranosides, κO
4,6

-diolato coordination was detected for the glucopyranosides. 

 

Figure 2.63. Species detected in Pd
II
-containing solutions of methyl α- and methyl β-D-glucopyranoside. The 

difference between the given percentages and 100 % always represents free methyl pyranoside. The κO
3,4

-Me-β-

D-Glcp3,4H−2 species was confirmed by X-ray analysis.
[78]

 

Small amounts of Me-D-Glcp4,6H−2-κO
4,6

 and Me-D-Glcp2,3;4,6H−4-κO
2,3

:κO
4,6

 were found 

for both anomers at a molar Pd/Me-Glcp ratio of 2:1 underlining the weak formation tendency 

of a κO
1,3

-diolato coordination with a hydroxymethyl group, especially in competition with a 

κO
1,2

-diolato coordination. The detected chemical shifts and 
3
JH,H coupling constants were 

listed in the Tables 2.58 and 2.59. The coupling constants clearly indicated a 
4
C1 

conformation of the pyranose ring with the hydroxymethyl group anchoring the conformation 

for all investigated compounds. It is noteworthy that the κO
4,6

-diolato coordination was 

indicated by 7.0–9.7 ppm CIS values. Formerly detected κO
1,3

-diolato coordinated species 

showed only a minor or at least non-specific CIS, whereas significant CIS values were 

detected for the κO
1,3

-diolato coordination of the methyl glucosides. 
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Table 2.58. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free methyl glycoside of 

D-glucopyranoside ligands in Pd-tmen at a molar Pd/Me-Glcp ratio of 2:1. Atoms are numbered as in Fig. 2.63. 

  C1 C2 C3 C4 C5 C6 CH3 Chelate 

Me-α-D-Glcp2,3H−2 100.9 81.8 82.0 72.2 72.6 61.1 55.5  

∆δ  1.0 10.0 8.3 2.0 0.4 −0.1 −0.1 κO
2,3

 

Me-α-D-Glcp3,4H−2 100.1 74.1 83.0 79.9 74.1 61.5 55.5  

∆δ  0.2 2.3 9.3 9.7 1.9 0.3 −0.1 κO
3,4

 

Me-α-D-Glcp4,6H−2 100.0 72.1 74.0 79.6 73.4 68.8 55.6  

∆δ  0.1 0.3 0.3 9.4 1.2 7.6 0.0 κO
4,6

 

Me-α-D-Glcp2,3;4,6H−4 101.2 82.1 82.4 79.9 73.3 68.9 55.6  

∆δ  1.3 10.3 8.7 9.7 1.1 7.7 0.0 κO
2,3

:κO
4,6

 

Me-β-D-Glcp2,3H−2 104.7 83.0 86.2 72.1 77.5 61.5 57.4  

∆δ  0.9 9.3 9.8 1.8 1.0 0.1 −0.4 κO
2,3

 

Me-β-D-Glcp3,4H−2 105.0 75.4 86.5 80.3 76.9 61.8 56.0  

∆δ  1.2 1.7 10.1 10.0 0.4 0.4 −1.8 κO
3,4

 

Me-β-D-Glcp4,6H−2 104.0 74.0 76.4 79.6 76.8 68.4 57.8  

∆δ  0.2 0.3 0.0 9.3 0.3 7.0 0.0 κO
4,6

 

Me-β-D-Glcp2,3;4,6H−4 104.9 83.6 86.5 81.3 78.1 68.6 57.3  

∆δ  1.1 9.9 10.1 11.0 1.6 7.2 −0.5 κO
2,3

:κO
4,6

 

 

Table 2.59. Experimental 
3
JH,H values in Hz for the methyl D-glucopyranosides and various metalated species.  

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 

3
JH5,H6‘ Conformation 

free α-D (exp.)
[77]

 4.0 10.0 10.0 10.0 2.8 5.8 4
C1 

free β-D (exp.)
[77]

 8.2 9.6 9.6 9.6 2.4 6.4 4
C1 

α-D-κO
2,3

 (in Pd-tmen) 3.6 9.8 8.9 10.0 2.2 5.9 4
C1 

α-D-κO
3,4

 (in Pd-tmen) 3.9 9.8 8.9 10.2 2.3 5.8 4
C1 

β-D-κO
2,3

(in Pd-tmen) 7.9 9.4 9.4 9.4 1.9 6.3 4
C1 

β-D-κO
3,4

 (in Pd-tmen) 7.7 9.3 9.3 9.4 2.4 7.2 4
C1 

 

Methyl α-D-mannopyranoside, as the methyl galactopyranosides, provides a cis- and a trans-

vicinal diolato unit for coordination. With Me-α-D-Manp2,3H−2-κO
2,3

, again the cis-vicinal 

diolato coordination was preferred, and the trans-vicinal coordinated Me-α-D-Manp3,4H−2-

κO
3,4

 species was found only in very small amounts (see Fig. 2.64). Unexpectedly, the Me-α-

D-Manp4,6H−2-κO
4,6

 species was not detected, although it had been described for Pd-chxn.
[78]

 

The detected chemical shifts and 
3
JH,H coupling constants are denoted in the Tables 2.61 and 

2.62, the latter confirming the 
4
C1 conformation of [Pd(tmen)(Me-α-D-Manp2,3H−2-κO

2,3
)]. 
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Figure 2.64. Species detected in Pd
II
-containing solutions of methyl α-D-mannopyranoside. The difference 

between the given percentages and 100 % always represents free methyl pyranoside. The Me-α-D-Manp2,3H−2-

κO
2,3

 species was confirmed by X-ray analysis (see Fig. 2.65).   

This species was also crystallized and solved in the space group P 21. Crystals of the 3.5-

hydrate contained two molecules in the asymmetric unit which were held together by two 

water molecules (O91 and O94) forming hydrogen bonds to the alkoxido atoms O2 and O3. 

These dimeric units were linked by hydrogen bonds of the hydroxymethyl groups and two 

additional water molecules (O92 and O93). The distances and angles of the hydrogen bonds 

are listed in Table 2.60. 

 

Figure 2.65. The molecular structure of [Pd(tmen)(
4
C1-Me-α-D-Manp2,3H−2-κO

2,3
)] in crystals of the 3.5-

hydrate (36). ORTEP plot drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (with 

standard deviations of the last digit in parentheses): Pd1–O21 2.018(2), Pd1–O31 1.990(2), Pd1–N1 2.067(3), 

Pd1–N2 2.052(3), Pd2–O22 2.011(2), Pd2–O32 1.988(2), Pd2–N3 2.067(3), Pd2–N4 2.061(3), O21–Pd1–O31 

85.22(9), O21–Pd1–N1 97.64(11), O31–Pd1–N2 92.30(10), N1–Pd1–N2 84.93(12), O22–Pd2–O32 86.23(9), 

O22–Pd2–N3 95.66(10), O32–Pd2–N4 92.23(11), N3–Pd2–N4 85.90(12); chelate torsion angles: O21–C21–

C31–O31 −48.9(3), O22–C22–C32–O32 −52.8(3), N1–C101–C111–N2 −49.9(5), N3–C102–C112–N4 53.3(4); 

puckering parameters
 
of the pyranose ring O51–C11–C21–C31–C41–C51: Q = 0.540(3) Å,  = 8.8(4)°; O52–

C12–. . .: Q = 0.552(3) Å,  = 4.9(4)°. 
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Table 2.60. Distances [Å] and angles [°] of hydrogen bonds in 36. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O41 H841 O62
i
 0.84      2.03      2.859(3)  2.859(3)  

O42 H842 O98 0.84      2.06      2.692(11) 2.692(11) 

O61 H861 O93
ii
 0.84      1.91      2.736(4)  2.736(4)  

O62 H862 O91
vi

 0.84      1.95      2.731(4)  2.731(4)  

O91 H911 O31 0.822(10) 1.854(19) 2.643(3)  2.643(3)  

O91 H912 O32 0.828(10) 1.923(12) 2.747(3)  2.747(3)  

O92 H921 O91 0.825(10) 2.013(13) 2.832(4)  2.832(4)  

O92 H922 O22
i
 0.828(10) 1.96(2)   2.762(4)  2.762(4)  

O93 H931 O95
iii

 0.830(10) 2.025(13) 2.841(4)  2.841(4)  

O93 H932 O94 0.831(10) 1.968(15) 2.787(4)  2.787(4)  

O94 H941 O21
i
 0.829(10) 1.927(18) 2.728(4)  2.728(4)  

O94 H942 O22
i
 0.829(10) 2.006(16) 2.819(4)  2.819(4)  

O95 H951 O41
iv

 0.831(10) 2.011(11) 2.840(4)  2.840(4)  

O95 H952 O96
v
 0.833(10) 1.980(15) 2.784(4)  2.784(4)  

O96 H961 O21
iv

 0.836(10) 1.947(11) 2.782(3)  2.782(3)  

O96 H962 O61
iv

 0.830(10) 2.214(12) 3.041(4)  3.041(4)  
 

Symmetry code: (i) –x+1, y−
1
⁄2, –z+1; (ii) x–1, y, z+1; (iii) x+1, y, z; (iv) x, y, z−1; (v) −x, y−

1
⁄2, −z; (vi) –x+1, 

y+
1
⁄2, –z+1. 

 
Table 2.61. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free methyl glycoside of 

D-mannopyranoside ligands in Pd-tmen at a Pd/Me-Manp ratio of 2:1. Atoms are numbered as in Fig. 2.65. 

  C1 C2 C3 C4 C5 C6 CH3 Chelate 

Me-α-D-Manp2,3H−2 101.7 80.7 80.8 70.9 72.8 61.6 55.3  

∆δ  0.3 10.2 9.6 3.5 −0.3 0.0 0.0 κO
2,3

 

Me-α-D-Manp3,4H−2 102.0 73.2 81.5 75.7 75.1 61.6 55.3  

∆δ 0.6 2.7 10.3 8.3 2.0 0.0 0.0 κO
3,4

 

 

Table 2.62. Experimental 
3
JH,H values in Hz for the methyl α-D-mannopyranoside and the metalated species. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 

3
JH5,H6‘ Conformation 

free α-D (exp.)
[77]

 1.6 3.5 10.0 10.0 1.9 5.8 
4
C1 

α-D-κO
2,3

 (in Pd-tmen) 1.3 4.1 8.9 10.3 2.3 5.8 
4
C1 
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2.9.2 The methyl fructosides 

To identify the characteristic shift pattern of disaccharide‘s monomeric building units, 

the methyl hex(ul)osides had to be investigated, too. According to the literature,
[81]

 methyl 

β-D-fructopyranoside and both methyl D-fructofuranosides could be obtained easily. The 

former crystallized (Fig. 2.66), and the crystal structure was solved in the space group C 2. 

 

Figure 2.66. The molecular structure of methyl β-D-fructopyranoside (37). ORTEP plot drawn with 50% 

probability ellipsoids. Puckering parameters
 
of the pyranose ring O5–C1–C2–C3–C4–C5: Q = 0.581(2) Å, 

 = 177.13(19)°. For further details, see 
[82]

. 

Methyl β-D-fructopyranoside was treated with Pd-chxn and Pd-tmen to utilize the various 

characteristics of both solvents. Fig. 2.67 presents the results of the investigation.  

 

Figure 2.67. Species detected in Pd
II
-containing solutions of methyl β-D-fructopyranoside. The difference 

between the given percentage and 100 % always represents free methyl pyranoside.  
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As expected, the cis-vicinal Me-β-D-Frup4,5H−2-κO
4,5

 species was the major species in both 

solvents, the trans-vicinal Me-β-D-Frup3,4H−2-κO
3,4

 species was detected only with Pd-chxn. 

Additionally, in both solvents, the dimetalated Me-β-D-Frup1,3;4,5H−4-κO
1,3

:κO
4,5

 was found. 

The detected chemical shifts and 
3
JH,H coupling constants are listed in Tables 2.63, 2.64 and 

2.65, the latter confirming the 
2
C5 conformation of the pyranose ring. It should be noted that 

the C1 atom showed a low CIS as was expected for the κO
1,3

-diolato coordination whereas the 

C3 atom showed a regular CIS as would be obtained for a κO
1,2

-diolato coordination, too. 

Furthermore, a comparison of the chemical shifts of both solvents revealed that Pd-tmen 

caused a higher CIS. 

 
Table 2.63. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free methyl hexuloside of methyl 

β-D-fructopyranoside ligands in Pd-chxn. Atoms are numbered as in Fig. 2.67. 

  C1 C2 C3 C4 C5 C6 CH3 Chelate 

Me-β-D-Frup3,4H−2 61.9 102.5 77.7 79.3 72.3 65.3 49.2  

∆δ  0.4 1.5 8.7 9.1 2.6 0.9 0.1 κO
3,4

 

Me-β-D-Frup4,5H−2 61.9 101.1 72.6 79.3 79.7 63.8 49.0  

∆δ  0.4 0.1 3.6 9.1 10.0 −0.6 −0.1 κO
4,5

 

Me-β-D-Frup1,3;4,5H−4 64.6 104.1 77.7 79.9 80.3 61.9 48.4  

∆δ  3.1 3.1 8.7 9.7 10.6 −2.5 −0.7 κO
1,3

:κO
4,5

 

 

Table 2.64. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free methyl hexuloside of methyl 

β-D-fructopyranoside ligands in Pd-tmen. Atoms are numbered as in Fig. 2.67. 

  C1 C2 C3 C4 C5 C6 CH3 Chelate 

Me-β-D-Frup4,5H−2 61.5 101.3 72.0 79.1 79.7 63.8 49.1  

∆δ  0.0 0.3 3.0 8.9 10.0 −0.6 0.0 κO
4,5

 

Me-β-D-Frup1,3;4,5H−4 66.6 104.3 79.4 81.2 79.9 62.2 48.5  

∆δ  5.1 3.3 10.4 11.0 10.2 −2.2 −0.6 κO
1,3

:κO
4,5

 

 

Table 2.65. Experimental 
3
JH,H values in Hz for various metallated species of methyl β-D-fructopyranoside.  

  
3
JH3,H4 

3
JH4,H5 

3
JH5,H6 

3
JH5,H6‘  Conformation 

β-D-κO
4,5

 (in Pd-chxn)  9.2 4.4 1.4 1.5  
2
C5 

β-D-κO
1,3

:κO
4,5

 (in Pd-chxn)  8.9 4.3 1.5 1.9  
2
C5 

β-D-κO
4,5

 (in Pd-tmen)  9.4 4.2 3.4 3.5  
2
C5 
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Fixed in the furanose form, the methyl D-fructofuranosides provided only κO
1,3

-diolato units. 

As with methyl β-D-fructopyranoside, the methyl fructofuranosides were treated with Pd-chxn 

and Pd-tmen to utilize the various characteristics of both solvents. Fig. 2.68 presents the 

results of the investigation. 

 

Figure 2.68. Species detected in Pd
II
-containing solutions of methyl α- and β-D-fructofuranoside. The difference 

between the given percentages and 100 % always represents free methyl furanoside. The Me-α-D-Fruf 1,3H−2-

κO
1,3

 species was confirmed by X-ray analysis (see Fig. 2.69). 

κO
1,3

-diolato coordination was favored for the α- instead of the β-anomer of methyl D-fructo-

furanoside, the latter being more restricted in the conformational fluctuation of the furanose 

ring. Furthermore, according to the 
3
JH,H coupling constants in Table 2.66, monometalation of 

methyl β-D-fructofuranoside resulted in a 
C2

TC3–EC3 conformation of the ring. This inhibited a 

second Pd
II
N2 fragment from coordinating to the atoms O4 and O6 because, for this furanose-

ring conformation, the distance of the atoms is too great for metalation. Otherwise, 

monometalation of methyl α-D-fructofuranoside fixed the furanose ring in a EC5–
O5

TC5 

conformation which was perfect for the coordination of a second Pd
II
N2 fragment. Therefore, 

with Pd-tmen, the Me-α-D-Fruf 1,3;4,6H−4 species was found at a quantity of 16%. In the 

Tables 2.67 and 2.68 the 
13

C NMR chemical shifts and shift differences for the various 

species detected in solution are listed. 

Table 2.66. Experimental 
3
JH,H values in Hz for various metalated species of methyl D-fructofuranosides. 

  
3
JH3,H4 

3
JH4,H5 

3
JH5,H6 

3
JH5,H6‘  Conformation 

α-D-κO
1,3

 (in Pd-tmen)  6.5 9.1 2.3 5.2  EC5–
O5

TC5 

β-D-κO
1,3

 (in Pd-chxn)  8.3 6.9 3.1 7.6  
C2

TC3–EC3 

β-D-κO
1,3

 (in Pd-tmen)  8.6 – – –  
C2

TC3–EC3 
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Table 2.67. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free methyl hexuloside of methyl 

D-fructofuranoside ligands in Pd-chxn. Atoms are numbered as in Fig. 2.68. 

 C1 C2 C3 C4 C5 C6 CH3 Chelate 

Me-α-D-Fruf1,3H−2 61.3 110.7 85.1 79.1 79.6 60.8 48.5  

∆δ 3.0 1.8 4.4 1.1 −4.3 −1.1 −0.3 κO
1,3

 

Me-β-D-Fruf 1,3H−2 62.6 109.2 83.6 75.2 83.2 64.0 48.4  

∆δ 2.3 4.8 6.2 −0.4 1.4 0.8 −1.1 κO
1,3

 

 

Table 2.68. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free methyl hexuloside of methyl 

D-fructofuranoside ligands in Pd-tmen. Atoms are numbered as in Fig. 2.68. 

 C1 C2 C3 C4 C5 C6 CH3 Chelate 

Me-α-D-Fruf 1,3H−2 63.0 112.1 86.3 79.0 80.3 61.6 49.7  

∆δ 4.7 3.2 5.6 1.0 −3.6 −0.4 0.9 κO
1,3

 

Me-α-D-Fruf 1,3;4,6H−4 63.0 113.7 86.9 81.0 80.3 67.2 48.8  

∆δ 4.7 4.8 6.2 3.0 3.6 5.3 0.0 κO
1,3

:κO
4,6

 

Me-β-D-Fruf 1,3H−2 64.7 108.6 85.9 75.2 83.4 64.2 48.6  

 4.4 4.2 8.5 −0.4 1.6 1.0 −0.9 κO
1,3

 
 

 

Figure 2.69. The molecular structure of [Pd(R,R-chxn)(Me-α-D-Fruf 1,3H−2-κO
1,3

)] in crystals of the dihydrate 

(38). ORTEP plot drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (with standard 

deviations of the last digit in parentheses): Pd1–O11 2.005(4), Pd1–O31 2.004(5), Pd1–N11 2.052(6), Pd1–N21 

2.052(6), Pd2–O12 2.005(5), Pd2–O32 2.001(5), Pd2–N12 2.048(6), Pd2–N22 2.049(7), O11–Pd1–O31 

89.47(18), O11–Pd1–N11 92.5(2),  O31–Pd1–N21 93.8(2), N11–Pd1–N21 84.2(2), O12–Pd2–O32 90.37(18), 

O12–Pd2–N12 92.4(2), O32–Pd2–N22 92.9(2), N12–Pd2–N22 84.5(3); chelate torsion angles: N11–C81–C91–

N21 −53.4(7), N12–C82–C92–N22 −55.5(8); puckering parameters
 
of the furanose ring O51–C21–C31–C41–

C51–O51: Q2 = 0.341(6) Å, 2  = 334.5(12)°, O52–C12–. . .: Q2 = 0.341(6) Å, 2  = 333.0(11)°; puckering 

parameters
 
of the pyranose ring Pd1–O11–C11–C21–C31–O31: Q = 0.888(6) Å,  = 82.3(4)°,   = 310.7(4)°, 

Pd2–O11–. . .: Q = 0.836(6) Å,  = 81.6(4)°,   = 309.9(4)°. 
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The monometalated Me-α-D-Fruf 1,3H−2 species was crystallized with Pd-chxn with the 

molecular structure depicted in Fig. 2.69. According to the Cremer–Pople puckering 

parameters, the furanose ring‘s conformation could be determined exactly between the EC5 

and 
O5

TC5 conformation. The structure was solved in the space group P 1 with two molecules 

in the asymmetric unit arranged alternating the Pd(R,R-chxn) fragment with the opposing 

methyl α-D-fructofuranoside. Each two [Pd(R,R-chxn)(Me-α-D-Fruf 1,3H−2-κO
1,3

)] molecules 

were connected by one water molecule (O94) along the a axis, accepting two hydrogen bonds 

from the N–H functions N11 and N12 of two Pd(chxn) fragments and building two hydrogen 

bonds to the alkoxido functions O31 and O32. These double-layered bands themselves were 

linked by the remaining three water molecules also forming homodromic chains C3
3
(6)

[60]
 

along the a axis. The distances and angles of all hydrogen bonds are listed in Table 2.69. 

 
Table 2.69. Distances [Å] and angles [°] of hydrogen bonds in 38. Standard deviations of the last digit are given 

in parentheses; values without standard deviation are related to hydrogen atoms at calculated positions. D: donor, 

A: acceptor. 

D H A D–H H···A D···A D–H···A 

O41 H841 O11
i
 0.84      1.68      2.519(6) 177.7   

O42 H842 O12
i
 0.84      1.69      2.532(6) 179.0   

O61 H861 O52
ii
 0.84      2.03      2.861(7) 171.0   

O62 H862 O51
iii

 0.84      2.00      2.821(7) 165.6   

N11 H711 O93
iv

 0.92      2.35      3.254(8) 166.6   

N11 H712 O94
iv

 0.92      2.02      2.936(8) 175.1   

N12 H721 O91
v
 0.92      2.06      2.967(7) 169.1   

N12 H722 O94
iv

 0.92      2.00      2.917(8) 172.7   

N21 H713 O32 0.92      2.23      3.092(7) 155.1   

N21 H714 O92 0.92      2.45      3.199(8) 138.5   

N22 H723 O31 0.92      2.33      3.190(8) 155.7   

N22 H724 O93
v
 0.92      2.59      3.260(9) 129.8   

O91 H911 O93
iv

 0.833(10) 2.002(14) 2.833(7) 176(8)  

O91 H912 O42
vi

 0.830(10) 1.90(2)   2.703(6) 163(8)  

O92 H921 O91 0.830(10) 2.06(4)   2.845(8) 158(10) 

O92 H922 O22
vii

 0.829(10) 2.12(2)   2.932(7) 166(8)  

O93 H931 O92 0.830(10) 2.02(4)   2.816(8) 159(10) 

O93 H932 O41 0.832(10) 1.93(3)   2.744(6) 166(10) 

O94 H941 O31 0.830(10) 1.87(3)   2.680(8) 164(7)  

O94 H942 O32 0.828(10) 1.899(14) 2.725(7) 176(9)  
 

Symmetry code: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y, z−1; (iv) x−1, y, z; (v) x, y+1, z; (vi) x−1, y−1, z; 

(vii) x, y−1, z. 
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2.10 Palladium(II) chelation with Pd-tmen by the common hexoses 

 The common hexoses D-galactose, D-glucose and D-mannose can be found essentially 

in the hexopyranose form in aqueous solutions. The various configurations and their 

percentage in solution are depicted in Fig. 2.70. Contrary to the pentopyranoses, the 

conformational fluctuation of the hexopyranoses with respect to ring inversion between 
4
C1 

and 
1
C4 is frozen to the conformer that bears the terminal hydroxymethyl function in the 

equatorial position. For Pd-en and Pd-chxn, palladium(II) chelation by the hexoses has been 

well investigated and several facts are known.
[36-37, 39]

 There is a preference for the 

participation of the most acidic, anomeric hydroxy group to the chelate rings. With the 

exception of mannose, chelates that leave O1 unbonded are minor species. Further, cis-vicinal 

chelation is always preferred to trans-vicinal chelation. Finally, the hexoses not only provide 

the pyranose form for metalation, but both cis-κO
1,2

- and cis- κO
1,3

-furanose chelation are also 

observed. Most of the metalated species have been characterized, so the assignment of 

13
C signals is supported by the former results.

[37]
 

 

Figure 2.70. All possible configurations of the three investigated aldohexoses D-galactose (Gal), D-glucose (Glc) 

and D-mannose (Man). The percentages of the various cyclic forms of D-[1-
13

C]aldohexoses were determined at 

30 °C in D2O.
[14]

 



2 Results 

119 

 

2.10.1 D-Galactose 

 According to Fig. 2.70 the β-D-galactopyranose configuration is the main species in 

aqueous solutions of D-galactose. It is noteworthy that both furanose forms of D-galactose can 

be detected in the 
13

C NMR spectra without enriching the 
13

C isotopes. So it was interesting to 

identify metalated furanose forms as the main species at various Pd-tmen/D-Gal ratios. The 

13
C NMR spectra of equimolar and 3:1 molar ratio of Pd-tmen/D-Gal are depicted in Fig. 2.71.  

 

 

Figure 2.71. 
13

C NMR spectra of D-galactose in Pd-tmen at a molar Pd/Gal ratio of 1:1 (top) and 3:1 (bottom). 

The signals of free D-galactose are marked with (x); (□) α-D-Galp1,2H−2-κO
1,2

, (■) α-D-Galp1,2;3,4H−4-

κO
1,2

:κO
3,4

, (○) β-D-Galp1,2H−2-κO
1,2

, (●) β-D-Galp1,2;3,4H−4-κO
1,2

:κO
3,4

, (▼) α-D-Galf 1,2H−2-κO
1,2

, (◊) α-D-

Galf 1,2;5,6H−4-κO
1,2

:κO
5,6 

and (▲) β-D-Galf 1,3;5,6H−4-κO
1,3

:κO
5,6

. 

Even at an equimolar Pd-tmen/D-Gal ratio, the α-D-Galf 1,2H−2-κO
1,2

 species was the main 

product in solution, whereas the former main β-D-galactopyranose species was only metalated 

for 7% due to trans-vicinal chelation. Instead, the cis-vicinal coordinated β-D-Galp1,2H−2-

κO
1,2

 was found at higher amounts. At higher Pd-tmen/D-Gal ratios, β-D-Galf 1,3;5,6H−4-

κO
1,3

:κO
5,6

 became the main species. The structure of [Pd2(en)2(β-D-Galf 1,3;5,6H−4-

κO
1,3

:κO
5,6

)]
[39]

 revealed a hydrogen bond O2–H···O5 stabilizing this bonding mode and 

explaining the high formation tendency against α-D-Galf 1,2;5,6H−4-κO
1,2

:κO
5,6

. All detected 

species are pictured together in Fig. 2.72. 
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Figure 2.72. Species detected in solutions of Pd-tmen and D-galactose at different molar ratios (proportional 

distribution of species refer to a molar Pd/Gal ratio of 1:1 for monometalated and to 3:1 for dimetalated species, 

see 
13

C NMR spectra in Fig. 2.71).  

The corresponding 
13

C NMR chemical shifts and shift differences are listed in Table 2.70. It 

should be noted that C3 showed a high CIS even without coordination of a Pd(tmen) 

fragment, especially for α-D-Galf 1,2;5,6H−4-κO
1,2

:κO
5,6

. The detected 
3
JH,H coupling constants 

are summed up in Table 2.71. 

Table 2.70. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free hexose of D-galactose 

ligands in Pd-tmen. Atoms are numbered as in Fig. 2.72. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Galp1,2H−2 δ 102.5 78.5 75.0 70.1 70.2 61.8  

 ∆δ 9.6 9.5 5.2 0.2 −0.9 0.0 κO
1,2

 

β-D-Galp1,2H−2 δ 105.3 81.6 74.6 69.7 77.0 61.6  

 ∆δ 8.2 9.1 1.2 0.3 1.2 0.0 κO
1,2

 

α-D-Galp1,2;3,4H−4 δ 101.8 83.7 83.0 78.9 71.9 62.6  

 ∆δ 8.9 14.7 13.2 9.0 0.8 0.8 κO
1,2

:κO
3,4

 

β-D-Galp1,2;3,4H−4 δ 105.3 87.1 85.1 80.9 75.8 63.5  

 ∆δ 8.2 14.6 11.7 11.5 0.0 1.9 κO
1,2

:κO
3,4

 

α-D-Galf 1,2H−2 δ 108.9 88.7 79.7 83.1 71.7 63.7  

 ∆δ 13.3 11.8 4.9 1.8 −0.7 0.6 κO
1,2

 

α-D-Galf 1,2;5,6H−4 δ 108.5 90.6 82.9 83.8 85.4 72.3  

 ∆δ 12.9 13.7 8.1 2.5 13.0 9.2 κO
1,2

:κO
5,6

 

β-D-Galf 1,3;5,6H−4 δ 107.5 80.3 81.1 87.0 81.2 72.9  

 ∆δ 5.9 −1.6 4.8 4.5 9.9 9.6 κO
1,3

:κO
5,6
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Table 2.71. Experimental 
3
JH,H values in Hz for the metalated species of D-galactose in Pd-tmen. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 

3
JH5,H6‘ Conformation 

α-D-Galp1,2H−2 3.9 9.1 3.3 1.7 6.3 6.3 
4
C1 

β-D-Galp1,2H−2 7.6 9.9 – – – – 
4
C1 

α-D-Galp1,2;3,4H−4 3.4 – – – – – 
4
C1 

β-D-Galp1,2;3,4H−4 7.6 9.0 4.4 1.2 – – 
4
C1 

α-D-Galf 1,2H−2 3.3 4.4 4.4 2.4 6.4 6.5 – 

α-D-Galf 1,2;5,6H−4 3.9 5–6 5–6 – 6.3 – – 

β-D-Galf 1,3;5,6H−4 >1 1.5–2 1.5–2 1.5–2 3.7 10.0 EC2 

 

The 
4
C1 conformation of the various metalated pyranose compounds was confirmed by the 

approximately 9 Hz of the 
3
JH2,H3 coupling constants. The furanoses‘ conformation couldn‘t 

be determined unambiguously. Remembering the dynamic puckering of the furanose ring, it is 

generally hard to fix a single conformation. β-D-Galf 1,3;5,6H−4-κO
1,3

:κO
5,6

 was an exception 

because κO
1,3

-chelation of the furanose ring enforced the EC2 conformation. Without further 

stabilizing factors such as κO
1,3

-chelation or intramolecular hydrogen bonds, the coupling 

constants of the remaining α-D-galactofuranose species were disputable. In consequence, no 

conformation could be determined for the α-D-galactofuranoses‘ furanose ring. 

 

2.10.2 D-Glucose 

 In aqueous solutions of D-glucose only the pyranose forms could be detected, with the 

β-glucopyranose dominating the α-anomer (see Fig. 2.70). In equimolar solutions of 

D-glucose in Pd-tmen, the cis-vicinal coordinated α-D-Glcp1,2H−2-κO
1,2

 was the main species 

and the trans-vicinal coordinated β-D-Glcp1,2H−2-κO
1,2

 only the minor species (Fig. 2.73). In 

comparison with D-galactose, the α-D-Glcf 1,2H−2-κO
1,2

 species was formed only at 6%. 

Conversely, at higher Pd-tmen/D-Glc ratios the dimetallated species of α-D-Glcf 1,2;5,6H−4-

κO
1,2

:κO
5,6

 and β-D-Glcp1,2;3,4H−4-κO
1,2

:κO
3,4

 were found at equal portions, α-D-

Glcp1,2;3,4H−4-κO
1,2

:κO
3,4

 built a minor species. The various species and their proportional 

distribution are shown in Fig. 2.74. It is conspicuous that no κO
1,3

-coordinated furanose form 

was detected. This fact underlined the importance of intramolecular hydrogen bonds. The 

corresponding 
13

C NMR chemical shifts and shift differences are listed in Table 2.72. For the 

calculation of the D-glucofuranose compounds‘ shift differences, only C1 NMR shift values 

are available.
[14]

 Therefore, the C2–C6 NMR shift values of the methyl D-glucofuranoses were 

used for proximity.
[83]
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Figure 2.73. 
13

C NMR spectra of D-glucose in Pd-tmen at a molar Pd/Glc ratio of 1:1 (top) and 3:1 (bottom). 

The signals of free D-glucose are marked with (x); (□)α-D-Glcp1,2H−2-κO
1,2

, (■)α-D-Glcp1,2;3,4H−4-κO
1,2

:κO
3,4

, 

(○) β-D-Glcp1,2H−2-κO
1,2

, (●) β-D-Glcp1,2;3,4H−4-κO
1,2

:κO
3,4

, (▼) α-D-Glcf 1,2H−2-κO
1,2

 and 

(◊) α-D-Glcf 1,2;5,6H−4-κO
1,2

:κO
5,6

. 

 

 

Figure 2.74. Species detected in solutions of Pd-tmen and D-glucose at different molar ratios (proportional 

distribution of species refer to a molar Pd/Glc ratio of 1:1 for monometalated and to 3:1 for dimetalated species, 

see 
13

C NMR spectra in Fig. 2.73).  
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Table 2.72. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free hexose of D-glucose ligands 

in Pd-tmen. Atoms are numbered as in Fig. 2.74. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Glcp1,2H−2 δ 102.4 82.0 78.8 70.2 71.3 61.3  

 ∆δ 9.7 9.9 5.4 0.0 −0.7 0.1 κO
1,2

 

β-D-Glcp1,2H−2 δ 104.8 84.3 77.1 70.7 77.1 61.8  

 ∆δ 8.2 9.6 0.7 0.4 0.5 0.4 κO
1,2

 

α-D-Glcp1,2;3,4H−4 δ 102.2 84.9 89.7 78.6 73.3 –  

 ∆δ 9.5 12.8 16.3 8.4 1.3 – κO
1,2

:κO
3,4

 

β-D-Glcp1,2;3,4H−4 δ 105.7 86.5 87.9 80.1 76.7 –  

 ∆δ 9.1 11.8 11.5 9.8 0.1 – κO
1,2

:κO
3,4

 

α-D-Glcf 1,2H−2 δ 111.8 89.1 79.3 78.0 70.0 64.6  

 ∆δ (14.4) (10.9) (2.2) (−1.3) (−1.2) (−0.1) κO
1,2

 

α-D-Glcf 1,2;5,6H−4 δ 111.7 89.0 80.8 77.4 80.1 73.1  

 ∆δ (14.3) (10.8) (3.7) (−1.9) (8.9) (8.4) κO
1,2

:κO
5,6

 

 

 

The 
3
JH,H coupling constants in Table 2.73 confirmed the postulated 

4
C1 conformation for all 

pyranose compounds. The coupling constants of the trans-vicinal protons β-H1, H2, H3 and 

H4 were all in a range of 8–10 Hz which was expected for the 
4
C1 conformation. As 

mentioned for the metalated D-galactofuranoses, the dynamic puckering of the furanose ring 

complicated the determination of a conformation. Nevertheless, 1.6 Hz was a very low value 

detected for the 
3
JH2,H3 constant of two trans-vicinal protons. Therefore, the angle of the two 

protons should be close to 90° and, in consequence, the conformation could be limited to a 

range between 
C3

TC4 and E
 
C4. 

Table 2.73. Experimental 
3
JH,H values in Hz for the metalated species of D-glucose in Pd-tmen. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 

3
JH5,H6‘ Conformation 

α-D-Glcp1,2H−2 3.9 8.7 9.0 9.7 2.5 5.2 
4
C1 

β-D-Glcp1,2H−2 7.5 9.5 8.8 9.8 2.2 5.7 
4
C1 

α-D-Glcp1,2;3,4H−4 4.1 8.8 9.1 9.7 2.6 5.5 
4
C1 

β-D-Glcp1,2;3,4H−4 7.3 9.1 9.1 9.5 2.5 6.8 
4
C1 

α-D-Glcf 1,2;5,6H−4 3.1 1.6 3.4 6.8 4.0 5.9 
C3

TC4–EC4
 

 

2.10.3 D-Mannose 

 In contrast to D-galactose and D-glucose, the α-pyranose is the main species in aqueous 

solutions of D-mannose. Furthermore, in equimolar solutions of Pd-tmen/D-Man the main 

species α-D-Manp2,3H−2-κO
2,3 

is the only hexopyranose species leaving the O1 unbonded.  
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Figure 2.75. 
13

C NMR spectra of D-mannose in Pd-tmen at a molar Pd/Man ratio of 1:1 (top) and 3:1 (bottom). 

The signals of free D-mannose are marked with (x); (□) α-D-Manp2,3H−2-κO
2,3

, (○) β-D-Manp1,2H−2-κO
1,2

, 

(●) β-D-Manp1,2;3,4H−4-κO
1,2

:κO
3,4

 and (◊)β-D-Manf 1,2;5,6H−4-κO
1,2

:κO
5,6

. 

Only the β-D-Manp1,2H−2 was able to bond a Pd(tmen) fragment by κO
1,2

-chelation. 

Comparing the 
13

C NMR spectra in Fig. 2.75, one could see high amounts of monometalated 

species even at a molar Pd-tmen/D-Man ratio of 3:1. Additionally, two dimetalated species 

were detected, β-D-Manp1,2;3,4H−4-κO
1,2

:κO
3,4

 and β-D-Manf 1,2;5,6H−4-κO
1,2

:κO
5,6

. The 

trans-positioned hydroxy groups of C1 and C2 prevented not only the monometalated 

α-D-Manp1,2H−2-κO
1,2

 but also the dimetalated α-D-Manp1,2;3,4H−4-κO
1,2

:κO
3,4

 species.  

Table 2.74. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free hexose of D-mannose ligands 

in Pd-tmen. Atoms are numbered as in Fig. 2.76. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Manp2,3H−2 δ 94.7 81.6 80.4 71.0 72.9 62.3  

 ∆δ 0.0 10.3 9.6 3.5 −0.1 0.7 κO
2,3

 

β-D-Manp1,2H−2 δ 106.7 83.0 73.5 68.0 75.9 62.4  

 ∆δ 12.4 11.2 −0.2 0.8 −0.9 0.8 κO
1,2

 

β-D-Manp1,2;3,4H−4 δ 107.9 86.9 84.7 76.1 76.6 62.3  

 ∆δ 13.6 15.1 11.0 8.9 −0.2 0.7 κO
1,2

:κO
3,4

 

β-D-Manf 1,2;5,6H−4 δ 110.9 83.8 73.1 77.0 80.4 72.6  

 ∆δ (14.7) (10.2) (1.4) (−4.2) (8.9) (7.7) κO
1,2

:κO
5,6
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The 
13

C NMR chemical shifts and shift differences of the various metalated compounds are 

summarized in Table 2.74. For the calculation of the β-D-Manf 1,2;5,6H−4-κO
1,2

:κO
5,6

 species‘ 

shift differences, only the C1 NMR shift value was available.
[14]

 Therefore, the C2–C6 NMR 

shift values of the methyl β-D-mannofuranose were used for proximity.
[83]

 The given 

proportional distribution of species in Fig. 2.76 referred to a molar Pd-tmen/D-Man ratio of 

1:1 for monometalated and to 3:1 ratio for dimetalated species. Whereas the remaining 15% 

of the equimolar conversion was assigned to free D-mannopyranose, there was still 25% of 

α-D-Manp2,3H−2-κO
2,3

 and 20% of β-D-Manp1,2H−2-κO
1,2

 at the 3:1 conversion (see 

Fig. 2.75). 

 

Figure 2.76. Species detected in solutions of Pd-tmen and D-mannose at different molar ratios (proportional 

distribution of species refer to a molar Pd/Man ratio of 1:1 for monometalated and to 3:1 for dimetalated species, 

see 
13

C NMR spectra in Fig. 2.75).  

 
Table 2.75. Experimental 

3
JH,H values in Hz for the metalated species of D-mannose in Pd-tmen. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 

3
JH5,H6‘ Conformation 

α-D-Manp2,3H−2 1.6 4.1 8.8 9.8 – – 
4
C1 

β-D-Manp1,2H−2 1.4 3.6 9.7 9.7 2.5 6.0 
4
C1 

β-D-Manp1,2;3,4H−4 1.3 2.9 10.2 9.2 2.8 6.3 
4
C1 

 

As for the other two hexoses, the 
3
JH,H coupling constants in Table 2.75 confirmed the 

postulated 
4
C1 conformation for all pyranose compounds. The coupling constants of the trans-

vicinal protons H3, H4 and H5 were all in a range of 8–10 Hz which was expected for the 

4
C1 conformation. 
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2.11 The difficult determination of the palladium(II)–hexulose complexes 

 The equilibrium compositions of the four ketoses D-fructose, D-psicose, L-sorbose and 

D-tagatose differ substantially from that of the aldoses. Whereas the aldoses essentially form 

the α- and β-pyranoses, the ketoses show a different behavior in aqueous solution. L-sorbose 

almost exclusively provides the α-pyranose form, D-fructose, above all, exists in the 

β-pyranose form with a minor share of the β-furanose form. For D-tagatose and D-psicose both 

the pyranose and the furanose forms can be detected in solution, the α-pyranose dominating 

the 
13

C spectrum of D-tagatose. Finally, D-psicose shows almost equidistribution of species 

with a tendency towards α-D-psicofuranose. Fig. 2.77 gives an overall view on the hexuloses‘ 

species and their proportional distribution in aqueous solution.  

 

Figure 2.77. All possible configurations of the four ketoses D-psicose (Psi), D-fructose (Fru), L-sorbose (Sor) 

and D-tagatose (Tag). The proportional distribution of the various cyclic forms of the hexuloses were determined 

in D2O at 31 °C (temperature for D-psicose not known).
[84-85]

  

In fact, the presence of two substituents on the carbon atom C2 alters the interactions in 

comparison to those found in the aldoses. Summarizing the facts, equatorially oriented 

hydroxy groups are preferred to axially oriented ones. Furthermore, the hydroxymethyl group 
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is always oriented equatorially. In consequence, with the ketoses, the hydroxy group at C2 is 

constantly oriented axially. Now, looking at α-L-sorbopyranose which is the most favorable 

ketoses‘ pyranose form, all substituents are oriented equatorially except the hydroxy group at 

C2. In comparison, the axially oriented hydroxy group at C3 of the α-D-tagatopyranose 

decreases the share of this form in equilibrium because the gauche interaction between O3 

and the rotating hydroxymethyl group increases. Also, for the ketofuranoses, the more stable 

form is the one in which O2 and O3 are cis-vicinal avoiding the greater interaction between 

O3 and the hydroxymethyl group. For the same reason, trans-orientation of the hydroxy 

function at C4 and the hydroxymethyl group at C5 is favored. In α-D-psicofuranose, these 

conditions are fulfilled resulting in the high amount of this form in solution.
[86]

 

Another difference from the aldoses is the missing proton at C2 which makes it difficult to 

assign the 
13

C signals to the correct species and to determine the configuration of the anomers. 

Therefore, the differences of signal intensity for the various species become important for the 

assignment of matching signals. So, with the various Pd
II
N2 solvents, the composition of the 

solution equilibrium can be altered and several species are enriched.  

 

2.11.1 D-Fructose 

 The treatment of the most common ketose D-fructose with Pd-tmen resulted in the 

spectra depicted in Fig. 2.78. Starting from β-D-fructopyranose in aqueous solutions, at an 

equimolar ratio of D-fructose in Pd-tmen, κO
2,3

-chelated β-D-Fruf 2,3H−2 dominated the 

spectrum. Increasing the ratio of Pd-tmen:Fru showed a still high amount of κO
2,3

-chelated 

β-D-Fruf 2,3H−2, whereas the two dimetalated species β-D-Frup1,2;4,5H−4-κO
1,2

:κO
4,5

 and 

β-D-Frup2,3;4,5H−4-κO
2,3

:κO 

4,5
 were found at a minor share. As discussed in the literature,

[87]
 

two intramolecular hydrogen bonds O6–H···O3 and O1–H···O4 would explain the high 

stability of the β-D-Fruf 2,3H−2-κO
2,3

 species. In Pd-teen and at an equimolar ratio, two more 

monometalated D-fructopyranose species, which were detected in small amounts for Pd-tmen, 

too, could be enriched (see Fig. 2.79). Especially the κO
4,5

-bonded α-D-Frup4,5H−2 form is 

noteworthy because in aqueous solutions the α-D-fructopyranose cannot be found. 

Furthermore, the κO
2,3

-bonded β-D-Frup2,3H−2 form is expected to be preferred to the 

α-D-Frup4,5H−2-κO
4,5

 species. On the other hand, an intramolecular hydrogen bond O2–

H···O4 would explain the formation of this species. The 
13

C NMR chemical shifts and shift 

differences of the detected species in Pd-tmen and Pd-teen are listed in the Tables 2.76 and 

2.77. 
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Figure 2.78. 
13

C NMR spectra of D-fructose in Pd-tmen at a molar Pd/Fru ratio of 1:1 (top) and 2:1 (bottom). 

The signals of free D-fructose are marked with (x); (▼) β-D-Fruf 2,3H−2-κO
2,3

, (○) β-D-Frup2,3H−2-κO
2,3

, 

(+) α-D-Frup4,5H−2-κO
4,5

, (●) β-D-Frup1,2;4,5H−4-κO
1,2

:κO
4,5

 and (◘) β-D-Frup2,3;4,5H−4-κO
2,3

:κO 

4,5
. 

 

 

Figure 2.79. Species detected in solutions of Pd-tmen and D-fructose at various molar ratios (proportional 

distribution of species refer to a molar Pd/Fru ratio of 1:1 for monometalated and to 2:1 for dimetalated species, 

see 
13

C NMR spectra in Fig. 2.78).  
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Table 2.76. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free hexulose of D-fructose 

ligands in Pd-tmen. Atoms are numbered as in Fig. 2.79. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Frup4,5H−2 δ 63.8 98.3 66.7 80.4 72.1 62.3  

 ∆δ −2.0 −0.3 −4.0 9.3 10.3 0.6 κO
4,5

 

β-D-Frup2,3H−2 δ 66.7 107.2 76.1 75.4 70.2 63.1  

 ∆δ 2.2 8.5 7.9 5.1 0.4 −0.9 κO
2,3

 

β-D-Frup1,2;4,5H−4 δ 75.3 110.3 72.7 79.5 79.5 64.4  

 ∆δ 10.8 11.6 4.5 9.2 9.7 0.4 κO
1,2

:κO
4,5

 

β-D-Frup2,3;4,5H−4 δ 68.3 107.4 81.3 82.6 76.8 62.9  

 ∆δ 3.8 8.7 13.1 12.3 7.0 −1.1 κO
2,3

:κO
4,5

 

β-D-Fruf 2,3H−2 δ 63.6 113.1 87.6 80.3 82.3 62.6  

 ∆δ 0.3 11.0 11.6 5.2 1.0 −0.4 κO
2,3

 

 

Table 2.77. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free hexulose of D-fructose 

ligands in Pd-teen. Atoms are numbered as in Fig. 2.79. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Frup4,5H−2 δ 63.7 98.3 66.8 81.1 72.3 62.4  

 ∆δ −2.1 −0.3 −3.9 10.0 10.5 0.7 κO
4,5

 

β-D-Frup2,3H−2 δ 66.8 107.8 76.1 75.2 70.3 63.2  

 ∆δ 2.3 9.1 7.9 4.9 0.5 −0.8 κO
2,3

 

β-D-Fruf 2,3H−2 δ 63.6 113.3 87.3 79.8 82.2 62.9  

 ∆δ 0.3 11.2 11.3 4.7 0.9 −0.1 κO
2,3

 

 

Table 2.78. Experimental 
3
JH,H values in Hz for the metalated species of D-fructose in Pd-tmen. 

 
2
JH1,H1‘ 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 

3
JH5,H6‘ 

2
JH6,H6‘ Conformation 

β-D-Fruf 2,3H−2 12.1 6.5 6.5 – – – – 

β-D-Frup1,2;4,5H−4 10.2 8.7 4.2 – – – 
2
C5 

β-D-Frup2,3;4,5H−4 11.2 5.8 4.3 – – – 
2
C5  

5
C2 

 

Table 2.79. Experimental 
3
JH,H values in Hz for the metalated species of D-fructose in Pd-teen. 

 
2
JH1,H1‘ 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 

3
JH5,H6‘ 

2
JH6,H6‘ Conformation 

α-D-Frup4,5H−2 11.6 3.7 3.7 6.1 10.2 – 
5
C2 

β-D-Frup2,3H−2 11.2 8.9 3.5 1.2 2.1 12.4 
2
C5 

β-D-Fruf 2,3H−2 12.0 6.8 6.7 2.7 3.8 11.9 – 
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The 
3
JH,H coupling constants for the species in Pd-tmen and Pd-teen are summarized in the 

Tables 2.78 and 2.79. For the β-D-Fruf 2,3H−2 species no conformation was determined, 

however, the two minor values of 
3
JH5,H6 and 

3
JH5,H6‘ indicated the orientation of the 

hydroxymethyl group which is necessary for the formation of a O6–H···O3 hydrogen bond. 

Except for the β-D-Frup2,3;4,5H−4 species, the 
3
JH,H coupling constants confirmed the species 

in Fig. 2.79 and their conformation. A DFT calculation (for details see Section 5.8) found the 

5
C2 conformation energetically favorable to the 

2
C5 conformation by 9.15 kJ/mol. 

 

2.11.2 D-Tagatose 

 Solving D-tagatose in Pd-tmen at an equimolar ratio, the α-D-Tagp1,2H−2-κO
1,2

 species 

was formed almost exclusively. As discussed above, the stability of α-D-tagatopyranose is 

decreased only by the gauche interaction between O3 and the rotating hydroxymethyl group. 

Conversely, the stability of the α-D-Tagp1,2H−2-κO
1,2

 species was increased when 

κO
1,2

-chelation fixed the hydroxymethyl group in a position opposite to O3. At a 2:1 ratio of 

Pd-tmen:Tag three dimetalated forms appeared in the 
13

C NMR spectrum (see Fig. 2.80).  

 

 

Figure 2.80. 
13

C NMR spectra of D-tagatose in Pd-tmen at a molar Pd/Tag ratio of 1:1 (top) and 2:1 (bottom). 

The signals of free D-tagatose are marked with (x); (□) α-D-Tagp1,2H−2-κO
1,2

, (●) α-D-Tag p1,2;4,5H−4-

κO
1,2

:κO
4,5

, (■) α-D-Tag p1,2;3,4H−4-κO
1,2

:κO 

3,4
 and (◊) α-D-Tag f 1,2;3,4H−4-κO

1,2
:κO 

3,4
. 
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As one can see in Fig. 2.81, the species α-D-Tag p1,2;4,5H−4-κO
1,2

:κO 

4,5
 and 

α-D-Tag p1,2;3,4H−4-κO
1,2

:κO 

3,4
 were just the dimetalated forms of the monometalated κO 

1,2
-

chelated α-D-Tagp1,2H−2 species. Unexpectedly, there was no favoring of cis- to trans-vicinal 

chelation. With the α-D-Tag f 1,2;3,4H−4-κO
1,2

:κO
3,4

 species a furanose form was also 

detected, and the anomer was determined in agreement with literature.
[88]

 Whereas the 

uncoordinated ketoses prefer the cis-vicinal orientation of O2 and O3, a trans-vicinal diolato 

unit preferably linked the two metalation sites of the depicted species. 

 

Figure 2.81. Species detected in solutions of Pd-tmen and D-tagatose at various molar ratios (proportional 

distribution of species refer to a molar Pd/Tag ratio of 1:1 for monometalated and to 2:1 for dimetalated species, 

see 
13

C NMR spectra in Fig. 2.80).  

The 
13

C NMR chemical shifts and shift differences of the detected species are given in Table 

2.80, the 
3
JH,H coupling constants in Table 2.81. 

Table 2.80. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free hexulose of D-tagatose 

ligands in Pd-tmen. Atoms are numbered as in Fig. 2.81. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Tag p1,2H−2 δ 76.2 109.3 73.0 71.9 67.7 62.2  

 ∆δ 11.7 10.5 2.6 0.4 0.7 −0.6 κO
1,2 

α-D-Tag p1,2;3,4H−4 δ 75.1 109.0 83.8 82.2 71.8 62.6  

 ∆δ 10.6 10.2 13.4 10.7 4.8 −0.2 κO
1,2

:κO
3,4

 

α-D-Tag p1,2;4,5H−4 δ 76.1 109.4 75.4 81.8 75.3 63.7  

 ∆δ 11.6 10.6 5.0 10.3 8.3 0.9 κO
1,2

:κO
4,5

 

α-D-Tag f 1,2;3,4H−4 δ 74.3 117.4 91.6 86.2 77.7 61.3  

 ∆δ 11.3 11.8 14.3 14.4 −2.1 0.6 κO
1,2

:κO
3,4

 

 

The 
3
JH4,H5 coupling constants of the D-tagatopyranose species obviously confirmed the 

5
C2 conformation of the various chelation species. The α-D-Tag f 1,2;3,4H−4-κO

1,2
:κO

3,4
 

species only provide cis-vicinal oriented protons, so the coupling constants could hardly be 

used to determine the conformation due to the fluctuation of the furanose ring. 
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Table 2.81. Experimental 
3
JH,H values in Hz for the metalated species of D-tagatose in Pd-tmen. 

 
2
JH1,H1‘ 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 

3
JH5,H6‘ 

2
JH6,H6‘ Conformation 

α-D-Tag p1,2H−2 10.3 3.3 9.4 – – 11.3 
5
C2 

α-D-Tag p1,2;3,4H−4 10.2 4.0 8.7 5.7 10.7 – 
5
C2 

α-D-Tag p1,2;4,5H−4 10.2 3.0 9.9 – – – 
5
C2 

α-D-Tag f 1,2;3,4H−4 10.2 4.8 5.0 2.7 3.5 12.0 – 

 

With [Pd2(tmen)2(α-D-Tag p1,2;3,4H−4-κO
1,2

:κO 

3,4
)] · 8 H2O, a metalated ketopyranose was 

crystallized for the first time. Solved in the space group P 212121, the resulting structure is 

depicted in Fig. 2.82. The α-D-tagatopyranose formed an almost undistorted pyranose ring in 

5
C2 conformation. The hydrogen-bond network couldn‘t be resolved completely but the 

complex molecules were ordered uniformly and linked via all four alkoxido atoms. The 

alkoxido atoms O1, O3 and O4 are connected each via two water molecules to their 

counterparts generated by symmetry; the remaining atoms possibly accepted a hydrogen bond 

from O5–H. 

 

 

 

 

 

 

 

 

Figure 2.82: The molecular structure of [Pd2(tmen)2(α-D-Tagp1,2;3,4H−4-κO
1,2

:κO
3,4

)] in crystals of the 8-

hydrate (39). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) 

(standard deviations of the last digit in parentheses): Pd1–O1 1.991(7), Pd1–O2 1.996(8), Pd1–N1 2.053(10), 

Pd1–N2 2.049(11), Pd2–O3 2.018(8), Pd2–O4 1.998(7), Pd2–N3 2.087(8), Pd2–N4 2.056(10), O1–Pd1–O2 

84.6(3), O1–Pd1–N1 94.9(4), O2–Pd1–N2 94.2(4), N1–Pd1–N2 86.3(4), O3–Pd2–O4 85.3(3), O3–Pd2–N3 

97.0(3), O4–Pd2–N4 93.0(4), N3–Pd2–N4 84.8(4); chelate torsion angles: O1–C1–C2–O2 50.1(12), O3–C3–

C4–O4 −51.5(13), N1–C9–C10–N2 53.0(18), N3–C15–C16–N4 −51.3(14); puckering parameters
[22] 

of the 

pyranose ring C2–C3–C4–C5–C6–O6: Q = 0.571(13) Å,   = 1.2(12)°.  
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2.11.3 L-Sorbose 

 In contrast to the three other hexuloses, only the L-enantiomer of sorbose is 

commercially available. At a molar 1:1 Pd-tmen:Sor ratio, three monometalated species could 

be detected (see Fig. 2.83). Remembering the α-L-sorbopyranose as being the most favored 

ketopyranose form, it was interesting to also find an high amount of the κO
2,3

-chelated 

α-L-Sorf 2,3H−2 species. Whereas κO
1,2

-bonded α-D-Tagp1,2H−2 was exclusively formed 

supported by an axially oriented hydroxy group (O3), the α-L-Sorp1,2H−2-κO
1,2

 species was 

impaired by an equatorially oriented hydroxy group (O3). Instead, the α-L-Sorp2,3H−2-κO
2,3

 

form became the most favored coordination species. Comparing the α-L-Sorf 2,3H−2-κO
2,3

 

species with the β-D-Fruf 2,3H−2-κO
2,3

 a hydrogen bond O1–H···O4 possibly stabilized the 

furanose species. 

 

Figure 2.83. 
13

C NMR spectra of L-sorbose in Pd-tmen at a molar Pd/Sor ratio of 1:1 (top) and 2:1 (bottom). 

The signals of free L-sorbose are marked with (x); (○) α-L-Sorp1,2H−2-κO 

1,2
, (□) α-L-Sorp 2,3H−2-κO

2,3
, (▼) α-L-

Sorf 2,3H−2-κO
2,3

, (●) α-L-Sorp1,2;4,5H−4-κO
1,2

:κO
4,5

, (◘) α-L-Sorp2,3;4,5H−4-κO
2,3

:κO
4,5

 and 

(◊) α-L-Sorf 2,3;4,6H−4-κO
2,3

:κO 

4,6
. 

Adding another equivalent of Pd-tmen, both α-L-sorbopyranose forms were attacked 

additionally at the trans-vicinal κO 

4,5
-diolato unit. With the α-L-Sorf 2,3;4,6H−4-κO

2,3
:κO

4,6
 

species, a rare κO
4,6

-chelation was detected. All discussed species are depicted in Fig. 2.84, 

the 
13

C NMR chemical shifts and shift differences are listed in Table 2.82. 
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Figure 2.84. Species detected in solutions of Pd-tmen and L-sorbose at various molar ratios (proportional 

distribution of species refer to a molar Pd/Sor ratio of 1:1 for monometalated and to 2:1 for dimetalated species, 

see 
13

C NMR spectra in Fig. 2.83).  

 
Table 2.82. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free hexulose of L-sorbose 

ligands in Pd-tmen. Atoms are numbered as in Fig. 2.84. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-L-Sorp1,2H−2 δ 75.5 110.4 71.5 74.8 71.0 61.4  

 ∆δ 11.4 12.1 0.5 0.3 1.0 −1.0 κO
1,2 

α-L-Sorp2,3H−2 δ 66.3 107.2 79.6 79.8 70.1 62.0  

 ∆δ 2.2 8.9 8.6 5.3 0.1 −0.4 κO
2,3

 

α-L-Sorp1,2;4,5H−4 δ 75.6 110.7 73.6 83.8 80.7 63.0  

 ∆δ 11.5 12.4 2.6 9.3 10.7 0.6 κO
1,2

:κO
4,5

 

α-L-Sorp2,3;4,5H−4 δ 66.4 106.9 81.8 90.1 78.7 63.3  

 ∆δ 2.3 8.6 10.8 15.6 8.7 0.9 κO
2,3

:κO
4,5

 

α-L-Sorf 2,3H−2 δ 64.5 116.4 89.5 80.3 79.2 61.3  

 ∆δ 0.8 14.0 12.9 4.4 0.9 0.0 κO
2,3

 

α-L-Sorf 2,3;4,6H−4 δ 65.0 113.8 91.4 82.5 81.8 63.4  

 ∆δ 1.3 11.4 14.8 6.6 3.5 2.1 κO
2,3

:κO
4,6

 

 

The 
3
JH,H coupling constants given in Table 2.83 confirmed the 

2
C5 conformation of all 

L-sorbopyranose species by the high values of 
3
JH3,H4 and 

3
JH4,H5. Comparing the coupling 

constants of the α-L-Sorf 2,3H−2 species with the constants of the α-L-Sorf 2,3;4,6H−4 species, 

significant changes were obvious. Although a final determination of the furanoses‘ 
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conformation was not possible, the low 
3
JH3,H4 value of a trans-vicinal pair of protons 

indicated that the conformations of EC3–EC5 were of less importance for the furanose ring 

puckering of the α-L-Sorf 2,3H−2 form. On the other hand, the high 
3
JH4,H5 value of the           

α-L-Sorf 2,3;4,6H−4 species pointed out the κO
4,6

-chelation fixing the protons in a small 

torsion angle. 

 
Table 2.83. Experimental 

3
JH,H values in Hz for the metalated species of L-sorbose in Pd-tmen. 

 
2
JH1,H1‘ 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 

3
JH5,H6‘ 

2
JH6,H6‘ Conformation 

α-L-Sorp1,2H−2 10.3 9.4 – – – – 
2
C5 

α-L-Sorp2,3H−2 11.4 8.4 9.2 5.2 10.5 – 
2
C5 

α-L-Sorp1,2;4,5H−4 10.3 9.6 9.6 4.9 10.5 – 
2
C5 

α-L-Sorp2,3;4,5H−4 11.3 8.3 9.5 4.7 10.4 10.5 
2
C5 

α-L-Sorf 2,3H−2 11.5 2.5 4.4 4.5 6.7 – – 

α-L-Sorf 2,3;4,6H−4 11.5 4.8 7.3 2.9 5.8 – – 

 

2.11.4 D-Psicose 

 In aqueous solutions, D-psicose shows almost equidistribution of species with a 

tendency towards α-D-psicofuranose. Three monometalated species were detected in Pd-tmen 

at an equimolar ratio, one α-D-psicopyranose and two α-D-psicofuranose forms. The detection 

of the κO
2,3

-chelated α-D-Psif 2,3H−2 and κO
3,4

-chelated α-D-Psif 3,4H−2 species was consistent 

with α-D-psicofuranose, being the favored D-psicose form. On the other hand, the 

α-D-Psip4,5H−2-κO 

4,5
 species corresponded to the α-D-Frup4,5H−2-κO 

4,5
 form and was 

possibly also stabilized by an intramolecular hydrogen bond O2–H···O4. The κO 

1,2
-chelation 

of α-D-psicopyranose was impaired by an equatorially oriented hydroxy group (O3). At a 2:1 

molar ratio of Pd-tmen/Psi two dimetalated complexes were additionally found. Whereas the 

κO
4,5

-bonded α-D-Psip4,5H−2 form was found for monometalation, the equatorial oriented 

hydroxy function of C3 hindered κO
1,2

-chelation. Therefore the D-psicopyranose switched 

into the β-form to result in the β-D-Psip1,2;4,5H−4-κO
1,2

:κO 

4,5
 species. This latter species 

corresponded to the α-D-Tag f 1,2;3,4H−4-κO
1,2

:κO
3,4

 form and also this anomer was 

determined in agreement with literature.
[89]

 The above discussed 
13

C NMR spectra and all 

detected species are depicted in Fig. 2.85 and 2.86 and the 
13

C NMR chemical shifts and shift 

differences of the detected species in Pd-tmen are listed in Table 2.84. The 
3
JH,H coupling 

constants are summed up in Table 2.85 and both described pyranose forms are confirmed by 

the coupling constants.  
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Figure 2.85. 
13

C NMR spectra of D-psicose in Pd-tmen at a molar Pd/Psi ratio of 1:1 (top) and 2:1 (bottom). The 

signals of free D-psicose are marked with (x); (▼) α-D-Psif 2,3H−2-κO
2,3

, (▲) α-D-Psif 3,4H−2-κO
3,4

, 

(+) α-D-Psip4,5H−2-κO 

4,5
, (◊) β-D-Psif 1,2;3,4H−4-κO

1,2
:κO

3,4
 and (●) β-D-Psip1,2;4,5H−4-κO

1,2
:κO 

4,5
. 

 

 

Figure 2.86. Species detected in solutions of Pd-tmen and D-psicose at various molar ratios (proportional 

distribution of species refer to a molar Pd/Psi ratio of 1:1 for monometalated and to 2:1 for dimetalated species, 

see 
13

C NMR spectra in Fig. 2.85).  
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Table 2.84. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free hexulose of D-psicose 

ligands in Pd-tmen. Atoms are numbered as in Fig. 2.86. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Psip4,5H−2 δ 63.2 99.6 64.4 81.9 76.2 61.8  

 ∆δ −0.5 1.3 −1.7 9.6 9.7 3.2 κO
4,5

 

β-D-Psip1,2;4,5H−4 δ 76.9 110.5 74.6 74.1 80.3 63.6  

 ∆δ 12.3 11.5 3.8 8.4 10.7 −1.2 κO
1,2

:κO
4,5

 

α-D-Psif 2,3H−2 δ 64.9 117.9 82.3 71.6 81.5 62.1  

 ∆δ 1.0 14.0 11.3 0.6 −1.8 0.2 κO
2,3

 

α-D-Psif 3,4H−2 δ 64.9 103.8 80.7 83.6 85.1 62.3  

 ∆δ 1.0 −0.1 9.7 12.6 1.8 0.4 κO
3,4

 

β-D-Psif 1,2;3,4H−4 δ 71.2 116.7 89.0 84.6 87.1 63.3  

 ∆δ 8.2 10.5 13.7 13.0 3.8 −0.1 κO
1,2

:κO
3,4

 

 

Both α-D-psicofuranose species showed very similar coupling constants, however the 
3
JH4,H5 

values of the trans-vicinal protons indicated that the 
C3

E–EC4 conformations were of less 

importance for furanose ring puckering of the α-D-Psif 2,3H−2 and α-D-Psif 3,4H−2 forms. 

Table 2.85. Experimental 
3
JH,H values in Hz for the metalated species of D-psicose in Pd-tmen. 

 
2
JH1,H1‘ 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 

3
JH5,H6‘ 

2
JH6,H6‘ Conformation 

α-D-Psip4,5H−2 11.7 2.4 3.4 6.5 10.4 – 
5
C2 

β-D-Psip1,2;4,5H−4 10.3 4.7 5.7 2.1 3.6 11.8 
2
C5 

α-D-Psif 2,3H−2 11.7 6.4 8.3 2.9 5.2 12.4 – 

α-D-Psif 3,4H−2 11.7 5.2 8.6  2.3 5.8 12.4 – 

 

2.12 The dialdoses: A first investigation 

 Besides the common aldoses by the conversion of the terminal hydroxymethyl group 

to a second aldehyde group, a new class of compounds comes up, namely the dialdoses. In 

this section, three dialdoses (see Fig. 2.87) were investigated and additionally, a crystal 

structure obtained incidentally from a side product is shown.  

The introduction of this second reactive group abolishes the boundary between the D- and the 

L-series of xylo- and galacto-dialdose, whereas D-manno-dialdose remains in the D-series. 

There is little known in the literature about the dialdoses, only a few synthetic routes were 

developed and the structures and the behavior in solution were described even less. So, not 

only the treatment of the dialdoses with Pd
II
N2 solvents is of interest, but also the aqueous 
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solution species have to be determined. Usually, the aldehyde group which is not involved in 

the formation of a pyranose or furanose ring forms a dihydrate in aqueous solution.  

 

Figure 2.87. Fischer projections and atomic numbering of the four investigated dialdoses. From left to right: 

erythro-tetrodialdose (Ery4ald), xylo-pentodialdose (Xyl5ald), galacto-hexodialdose (Gal6ald) and D-manno-

hexodialdose (D-Man6ald). 

Comparing the 
13

C NMR spectra of the dialdoses to those of their parent aldoses, the spectra 

of the hexodialdoses and aldoses differ only in the position of the C6 signal, whereas the 

spectra of xylo-pentodialdose and xylose appear to be completely different. 

 

2.12.1 erythro-Tetrodialdose 

 Unexpectedly, the crystal structure of [Pd2(tmen)2(Ery4aldfH−4-κO
1,4

:κO
2,3

)] was 

obtained from a solution of Pd-tmen and D-manno-hexodialdose (Pd/Man6ald ratio of 

2:1) which was saturated with acetone. The impurity of D-manno-hexodialdose could be 

explained by the synthesis‘s pathway. Losing an isopropylidene group, 1,2;5,6-di-O-

isopropylidene-D-chiro-inositol or 1,2;5,6-di-O-isopropylidene-D-manno-dialdose could react 

twice with the sodium periodate in a glycol-splitting reaction. 

The structure, depicted in Fig. 2.88, was solved in the space group P 21 although the molecule 

was not chiral. In an attempt with P 21/c, the inversion center moved into the molecule 

impairing a solution of the crystal structure and, additionally, several reflexes which should be 

systematically absent were detected. Furthermore, the structure was refined only isotropically 

because anisotropic refinement would reveal a disordered second molecule which would be 

generated by rotating the molecule along a C2 axis through the C1–C2 and C3–C4 bonds. 

According to the Cremer–Pople puckering parameters, the furanose ring‘s conformation could 

be determined to the 
O5

E conformation which was fixed by the κO 

1,4
-chelation of the 

Pd(tmen) fragment. Along the a axis an R4
2
(8) ring motif

[60]
 formed by two water molecules 

(O92 and O94) connected the single carbohydrate molecules via O2 and O4 to a chain.  
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Therefore, the O2 and O4 alkoxido functions accepted four hydrogen bonds. Additional water 

molecules capped the remaining alkoxido O1 and O3 functions and the acceptor functions of 

O92 and O94 to form a strong hydrogen-bonding network between the single molecules. 

 

Figure 2.88. The molecular structure of [Pd2(tmen)2(Ery4aldfH−4-κO
1,4

:κO
2,3

)]  in crystals of the 12-hydrate 

(40). ORTEP plot is drawn with 50% probability ellipsoids. Interatomic distances (Å) and angles (°) (standard 

deviations of the last digit in parentheses): Pd1–O1 2.008(9), Pd1–O4 2.068(8), Pd1–N1 2.031(12), Pd1–N2 

2.066(11), Pd2–O2 1.961(8), Pd2–O3 2.006(10), Pd2–N3 2.027(11), Pd2–N4 2.065(13), O1–Pd1–O4 88.1(4), 

O1–Pd1–N1 94.5(4), O4–Pd1–N2 91.2(4), N1–Pd1–N2 86.3(4), O2–Pd2–O3 86.3(4), O2–Pd2–N3 95.5(4), O3–

Pd2–N4 93.3(5), N3–Pd2–N4 85.0(5); chelate torsion angles: O2–C2–C3–O3 2.0(11), N1–C7–C8–N2 

−56.2(16), N3–C13–C14–N4 50.7(16); puckering parameters
[22] 

of the furnaose ring C1–C2–C3–C4–O5: Q = 

0.399(9) Å, υ  = 1.9(16)°.  

 

2.12.2 xylo-Pentodialdose 

 The xylo-pentodialdose was obtained from 1,2-O-isopropylidene-α-D-glucofuranose 

by a glycol-splitting reaction and subsequent removal of the isopropylidene group. Comparing 

the 
13

C NMR spectra of D-xylose with that of xylo-pentodialdose, no similarity could be 

detected. In Fig. 2.89 all species which could be formed are shown and identical forms which 

could not distinguished in the 
13

C NMR spectra are arranged together. As one can see, xylo-

pento-dialdose cannot be classified in the usual D- and the L-forms of pyranoses and 

furanoses. Nevertheless, only two pyranose species were detected in the 
13

C NMR spectra of 

aqueous solution, 1ax,5eq-Xyl5aldp at 52 % and [1,5]eq-Xyl5aldp at 38 %, small signals 

indicated the presence of the furanose forms, too.  
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Figure 2.89. All possible configurations of xylo-pentodialdose in aqueous solutions. The configurations in each 

box are identical, no distinction is possible between the D- and the L-forms of [1,5]eq-Xyl5aldp and [1,5]ax-

Xyl5aldp. Only 1ax,5eq-Xyl5aldp and 1eq,5ax-Xyl5aldp represent the D- and L-form of xylo-pentodialdose, 

nevertheless both forms cannot distinguished in the 
13

C NMR spectra.  

The 
13

C NMR chemical shifts and the 
3
JH,H coupling constants are summed up in Tables 2.86 

and 2.87, the 
4
C1 conformation of both described pyranose forms was confirmed by the 

coupling constants.  

 
Table 2.86. 

13
C NMR chemical shifts (δ/ppm) and proportional distribution of xylo-pentodialdose species at 

25 °C in D2O. Atoms are numbered as in Fig. 2.89. 

  C1 C2 C3 C4 C5 % 

1ax,5eq-Xyl5aldp δ 92.3 71.9 71.9 75.1 91.7 52 

[1,5]eq-Xyl5aldp δ 93.5 74.8 74.2 74.8 93.5 38 

 

Table 2.87. Experimental 
3
JH,H values in Hz of xylo-pentodialdose species in D2O. Atoms are numbered as in 

Fig. 2.89. 

  
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5eq Conformation 

1ax,5eq-Xyl5aldp  3.6 9.6 9.6 8.0 
4
C1 

[1,5]eq-Xyl5aldp  8.0 9.3 9.3 8.0 
4
C1 
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The dissolution of xylo-pentodialdose in Pd-tmen resulted in the identified species (see 

Fig. 2.90) according to the stoichiometry of the solution. At an equimolar ratio, uncoordinated 

xylo-pentodialdose was detected at 18 %, the species 1ax,5eq-Xyl5aldp1,2H−2 at 21 % and 

α-Xyl5aldf 1,2H−2 at 23 %. The double-metalated species 1ax,5eq-Xyl5aldp1,2;3,5H−4 was 

already detected at 17 % indicating the high stability of this species which is probably caused 

by the intramolecular hydrogen bond O4–H···O2. 

 

Figure 2.90. Species detected in solutions of Pd-tmen and xylo-pentodialdose at different molar ratios (species 

refer to a molar Pd/xylo-pentodialdose ratio of 1:1 for monometalated and to 2:1 for dimetalated forms).  

At a molar Pd/xylo-pentodialdose ratio of 2:1 the monometalated species disappeared, only 

1ax,5eq-Xyl5aldp1,2;3,5H−4 at 55 % and 1ax,5eq-Xyl5aldp1,2;4,5H−4 at 16 % were identified. 

The species in Fig. 2.90 were assigned according to the 
13

C NMR chemical shifts and shift 

differences in Table 2.88 and confirmed by the coupling constants in Table 2.89. 

Table 2.88. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free pentodialdose of xylo-

pentodialdose ligands in Pd-tmen. Atoms are numbered as in Fig. 2.90. 

  C1 C2 C3 C4 C5 Chelate 

1ax,5eq-Xyl5aldp1,2H−2 101.9 81.8 76.4 74.3 91.8  

∆δ  9.6 9.9 4.5 −0.8 0.1 κO
1,2

 

α-Xyl5aldf 1,2H−2 112.2 88.8 79.2 81.0 89.7  

∆δ  16.1
a
 12.1

a
 5.6

b
 −1.8

b
 1.6

b
 κO

1,2
 

1ax,5eq-Xyl5aldp1,2;3,5H−4
c
 98.4 84.0 70.5 73.7 99.2  

∆δ  6.1 12.1 −1.4 −1.4 7.5 κO
1,2

:κO
3,5

 

1ax,5eq-Xyl5aldp1,2;4,5H−4 102.9 82.6 78.5 84.3 98.9  

∆δ  10.6 10.7 6.6 9.2 7.2 κO
1,2

:κO
4,5

 
 

a
 shift differences (∆δ) to α-D-xylofuranose; 

b
 shift differences (∆δ) to 1,2-O-isopropylidene-xylo-pento-

dialdofuranose. 
c
 Calc. 

13
C NMR chemical shift values confirmed the assignment (for details see Section 5.8).  
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Table 2.89. Experimental 
3
JH,H values in Hz for the metalated species of xylo-pentodialdose in Pd-tmen. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5eq Conformation 

1ax,5eq-Xyl5aldp1,2H−2 3.7 8.2 8.9 7.6 
4
C1 

1ax,5eq-Xyl5aldp1,2;3,5H−4 1.8 3.3 3.4 2.0 
1
C4 

1ax,5eq-Xyl5aldp1,2;4,5H−4 3.9 9.0 9.4 7.8 
4
C1 

 

2.12.3 galacto-Hexodialdose 

 Enzymatic oxidation of D-galactose by D-galactose oxidase produced galacto-hexo-

dialdose according to literature.
[90-93]

 In the 
13

C NMR spectra of aqueous solutions, two 

species were detected which are discussed in the above-mentioned literature. Therein, 

Kieboom and coworkers formulated bicyclic hemiacetalic forms whereas Rabiller and 

coworkers identified the monomeric hydrate forms. By interpretation of the measured two-

dimensional spectra including the 
3
JH,H coupling constants and by comparison of the 

13
C NMR 

spectra to the spectra of D-galactose, the precence of a bicyclic hemiacetalic form could not be 

corroborated. Therefore, all possible configurations of galacto-hexodialdose are shown in 

Fig. 2.91. As one can see, caused by the meso-open-chain form of the dialdose, galacto-

hexodialdose can form the D- and the L-configurations of pyranoses and furanoses. 

Nevertheless, in the 
13

C NMR spectra of an aqueous solution, only the α- and β-pyranoses 

could be detected, whereas no distinction was possible for the D- and the L-configurations. 

The 
13

C NMR chemical shifts and the coupling constants are listed in the Tables 2.90 and 

2.91 and were almost identical to the values of D-galactose except the C6 chemical shift. 

 

 

Figure 2.91. All possible configurations of galacto-hexodialdose in aqueous solutions. No distinction is possible 

between the D- and the L-forms of galacto-hexodialdose in the 
13

C NMR spectra. The asterisk labels the original 

D-C1. 
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Table 2.90. 
13

C NMR chemical shifts (δ/ppm) and proportional distribution of galacto-hexodialdose species in 

D2O. Atoms are numbered as in Fig. 2.91. 

  C1 C2 C3 C4 C5 C6 % 

α-Gal6aldp δ 92.9 68.9 69.8 69.4 72.8 89.1 36 

β-Gal6aldp δ 97.2 72.3 73.3 68.9 77.5 88.8 64 

 

Table 2.91. Experimental 
3
JH,H values in Hz of galacto-hexodialdose species in D2O. Atoms are numbered as in 

Fig. 2.91. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 Conformation 

α-Gal6aldp 3.6 – 3.0 >1 7.4 
4
C1 

β-Gal6aldp 8.0 9.9 3.3 >1 7.4 
4
C1 

 

Solutions of galacto-hexodialdose with Pd-en and Pd-chxn were highly reactive and revealed 

the formation of palladium(0) after a few minutes whereas with Pd-tmen the solutions were 

stable for the period of the NMR measurement. In Fig. 2.92 the 
13

C NMR spectra of galacto-

dialdose in Pd-tmen at a molar Pd/Gal6ald ratio of 1:1 (top) and 2:1 (bottom) are depicted.  

 

Figure 2.92. 
13

C NMR spectra of galacto-dialdose in Pd-tmen at a molar Pd/Gal6ald ratio of 1:1 (top) and 2:1 

(bottom). The signals of free galacto-dialdose are marked with (x); (□) α-Gal6aldp1,2H−2-κO
1,2

, (■) 3,6-

anhydro-α-Gal6aldp1,2H−2-κO
1,2

, (▼) α-Gal6aldf 1,2H−2-κO
1,2

, (◊) (6R)-α-Gal6aldf 1,2;5,6H−4-κO
1,2

:κO
5,6

, 

(♦) (6S)-α-Gal6aldf 1,2;5,6H−4-κO
1,2

:κO
5,6

 and (▲)β-Gal6aldf 1,3;5,6H−4-κO
1,3

:κO
5,6

. 
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As for the unmetalated galacto-hexodialdose, the 
13

C NMR chemical shifts and shift 

differences of the various metalated species were almost identical to the 
13

C NMR chemical 

shifts and shift differences of the corresponding metalated species of D-galactose in section 

2.10.1 except for the C6 signal which was shifted downfield by the additional oxygen atom. 

Therefore, the species‘ identification and the assignment of the signals were successful for 

almost every species which is depicted in Fig. 2.93. 

 

Figure 2.93. Species detected in solutions of Pd-tmen and galacto-hexodialdose at different molar ratios 

(proportional distribution of species refer to a molar Pd/galacto-hexodialdose ratio of 1:1 for monometalated and 

to 2:1 for dimetalated forms). The species are depicted in the D-configuration, although the 
13

C NMR signals also 

correspond to the L-configuration of the compounds. The grey colored species is of equivocal evidence. 

Corresponding to the 
13

C NMR spectra in Fig. 2.92, at a molar Pd/Gal6ald ratio of 1:1 28 % 

of uncoordinated galacto-hexodialdose, 15 % of the species α-Gal6aldp1,2H−2-κO
1,2

, 24 % of 

α-Gal6aldf 1,2H−2-κO
1,2

, 10 % of 3,6-anhydro-α-Gal6aldp1,2H−2-κO
1,2

 and 23 % of 

β-Gal6aldf 1,3;5,6H−4-κO
1,3

:κO
5,6

 were detected. Elevating the Pd/Gal6ald ratio to 2:1 

β-Gal6aldf 1,3;5,6H−4-κO
1,3

:κO
5,6

 became the main species at 46 %, κO
1,2

:κO
5,6

-chelated 

(6R)-α-Gal6aldf 1,2;5,6H−4 and (6S)-α-Gal6aldf 1,2;5,6H−4 each were detected at 16 % and 

3,6-anhydro-α-Gal6aldp1,2H−2-κO
1,2

 at 22 %. The 
13

C NMR chemical shifts and shift 

differences are listed in Table 2.92, the 
3
JH,H coupling constants in Table 2.93. As mentioned 

above, the species‘ identification and the assignment of 
13

C NMR signals were successful for 

almost every species by comparison of the 
13

C NMR signals and the 
3
JH,H coupling constants. 

Especially the dimetalated forms were identified by the interpretation of the coupling 

constants. On the other hand, the correct determination of the 3,6-anhydro-α-Gal6aldp1,2H−2-

κO
1,2

 could not be guaranteed.  
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Table 2.92. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free hexodialdose of galacto-

hexodialdose ligands in Pd-tmen. Atoms are numbered as in Fig. 2.93. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-Gal6aldp1,2H−2 102.4 78.4 75.0 69.7 72.2 89.1  

∆δ 9.5 9.5 5.2 0.3 −0.6 0.0 κO
1,2

 
1
C4-3,6-an-α-Gal6aldp1,2H−2 

a
 105.6 83.5 83.3 83.0 72.2 102.8 κO

1,2
 

α-Gal6aldf 1,2H−2 108.3 88.4 79.5 83.2 73.5 91.1 κO
1,2

 

(6R)-α-Gal6aldf 1,2;5,6H−4 107.7 89.9 82.0 81.8 87.9 99.6 κO
1,2

:κO
5,6

 

(6S)-α-Gal6aldf 1,2;5,6H−4 107.9 90.2 80.9 84.8 87.9 99.6 κO
1,2

:κO
5,6

 

β-Gal6aldf 1,3;5,6H−4 
a
 107.2 80.0 80.7 88.9 83.0 97.6 κO

1,3
:κO

5,6
 

 

a
 Calculated

 13
C NMR chemical shift values confirmed the assignment (for details see Section 5.8). 

 
Table 2.93. Experimental 

3
JH,H values in Hz for the metalated species of galacto-hexodialdose in Pd-tmen. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 Conformation 

1
C4-3,6-an-α-Gal6aldp1,2H−2 2.5 5.4 <1 <1 <1 

1
C4 

(6R)-α-Gal6aldf 1,2;5,6H−4 3.6 5.4 6.1 9.0 <1 – 

(6S)-α-Gal6aldf 1,2;5,6H−4 3.9 5.8 6.1 8.0 4.2 – 

β-Gal6aldf 1,3;5,6H−4 <1 <1 <1 <1 7.5 EC2 

 

The large 
13

C NMR chemical shifts would have indicated a dimetalated species, however, the 

low 
3
JH,H coupling constants impaired the assumption of a pyranose and indicated a furanose 

form. Indeed, all possible dimetalated furanose forms were already identified. 3,6-anhydro-α-

Gal6aldp1,2H−2-κO
1,2 

would have explained the high 
13

C NMR chemical shifts and the low 

coupling constants and corresponded also with the monometalated 3,6-anhydro-form of D-

manno-hexodialdose, nevertheless, for unequivocal evidence reliable reference values of an 

unmetalated species were missing. 

 

2.12.4 D-manno-Hexodialdose 

 According to literature,
[94-96]

 the synthesis of D-manno-hexodialdose started from 

D-chiro-inositol which was converted into 1,2;5,6-di-O-isopropylidene-D-chiro-inositol. The 

two remaining hydroxy groups underwent a glycol-splitting reaction resulting in 2,3;4,5-

di-O-isopropylidene-D-manno-hexodialdose which was crystallized. The structure, depicted in 

Fig. 2.94, was solved in the space group P 21. By removal of the isopropylidene groups 

D-manno-hexodialdose was obtained.  
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Figure 2.94: The molecular structure of 2,3;4,5-di-O-isopropylidene-D-manno-hexodialdose (41). ORTEP plot 

is drawn with 50% probability ellipsoids.  

In the 
13

C NMR spectra of an aqueous solution four species could be detected.  Comparing the 

13
C NMR spectra of D-mannose to D-manno-hexodialdose, the two pyranose species could be 

identified with only the C6 signal shifted downfield. The remaining two species were 

assigned to the 3,6-anhydro-forms of D-manno-hexodialdofuranose as depicted in Fig. 2.95. 

 

Figure 2.95. All detected configurations of D-manno-hexodialdose in aqueous solutions. Manno-hexodialdose 

exists only in the D-configuration, although the C1 also could be found at the C6 position and vice versa.  

Only the symmetrical 3,6-anhydro-α-D-Man6aldf species, instead of an regular furanose form, 

would correspond to three 
13

C NMR signals which were detected in the spectrum. 

Furthermore, an anhydro-form for the dimethyl D-manno-hexodialdoside is also discussed.
[97]

 

The 
13

C NMR chemical shifts and the 
3
JH,H coupling constants are summed up in Tables 2.94 

and 2.95. 
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Table 2.94. 
13

C NMR chemical shifts (δ/ppm) and proportional distribution of manno-hexodialdose species in 

D2O. Atoms are numbered as in Fig. 2.95. 

  C1 C2 C3 C4 C5 C6 % 

α-D-Man6aldp δ 94.7 71.2 70.7 67.9 73.7 88.9 50 

β-D-Man6aldp δ 94.6 71.8 73.5 67.6 77.3 88.7 20 

3,6-anhydro-α-D-Man6aldf δ 102.6 76.8 79.5 79.5 76.8 102.6 15 

3,6-anhydro-β-D-Man6aldf δ 96.6 72.6 79.3 80.0 77.1 102.2 15 

 

Table 2.95. Experimental 
3
JH,H values in Hz of manno-hexodialdose species in D2O. Atoms are numbered as in 

Fig. 2.95. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 Conformation 

α-D-Man6aldp 1.8 – – – 1.3 
4
C1 

β-D-Man6aldp 1.1 – – 9.4 2.2 
4
C1 

3,6-anhydro-α-D-Man6aldf 6.6 – 3.6 – 6.6 – 

3,6-anhydro-β-D-Man6aldf 5.1 5.2 4.7 5.2 5.3 – 

 

The treatment of Pd-tmen with D-manno-hexodialdose at the molar Pd/manno-hexodialdose 

ratios 1:1 and 2:1 resulted in very similar spectra. At an equimolar ratio, already 70 % of the 

dimetalated β-D-Man6aldf 1,2;5,6H−4-κO
1,2

:κO
5,6

 species which became the only detected 

species at a 2:1 ratio and only 30 % of the monometalated 3,6-an-β-D-Man6aldf 1,2H−2-κO
1,2

 

were detected. The species are depicted in Fig. 2.96.  

 

Figure 2.96. Species detected in solutions of Pd-tmen and manno-hexodialdose at various molar ratios.  

The high amount of the dimetalated species at a seemingly equimolar ratio could possibly be 

explained by impurities of the manno-hexodialdose which altered the ratio in favor of 

Pd-tmen. The 
13

C NMR chemical shifts and the coupling constants are listed in the Tables 

2.96 and 2.97. Whereas the monometalated species could be compared to the unmetalated 

3,6-anhydro-β-D-Man6aldf form, no 
13

C NMR chemical shifts are available for the regular 

furanose form of D-manno-hexodialdose for comparison to the dimetalated species. 

Nevertheless, the six 
13

C NMR signals as well as the 
3
JH,H coupling constants indicated an 
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assymmetric furanose form which impaired a dimetalated κO
1,2

:κO
5,6

-anhydro-hexodialdo-

furanose species. 

Table 2.96. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free hexodialdose of manno-

hexodialdose ligands in Pd-tmen. Atoms are numbered as in Fig. 2.96. 

  C1 C2 C3 C4 C5 C6 Chelate 

3,6-an-β-D-Man6aldf 1,2H−2 109.6 85.3 81.9 80.9 73.5 99.0  

 13.0 12.7 2.6 0.9 −3.6 −3.2 κO
1,2

 

β-D-Man6aldf 1,2;5,6H−4 
a 

109.9 83.7 80.7 81.6 75.4 105.0 κO
1,2

:κO
5,6

 
 

a
 Calculated 

13
C NMR chemical shift values confirmed the assignment (for details see Section 5.8). 

 

Table 2.97. Experimental 
3
JH,H values in Hz for the metalated species of manno-hexodialdose in Pd-tmen. 

Atoms are numbered as in Fig. 2.96. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 Conformation 

3,6-an-β-D-Man6aldf 1,2H−2 4.3 5.0 4.8 5.3 4.8 – 

β-D-Man6aldf 1,2;5,6H−4 3.6 6.3 6.3 6.1 1.3 – 
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2.13 The fructose-containing di- and trisaccharides 

  Fig. 2.97 overviews the investigated di- and trisaccharides of D-fructose. For the 

reducing disaccharides the percentages of the various configurations, determined at 20 °C in 

D2O, are given. 

 

Figure 2.97. All configurations detected in the 
13

C NMR spectra of the investigated fructose-containing di- and 

trisaccharides in D2O (see Appendix 6.1). The percentages of the various configurations were determined at 

20 °C in D2O.
[87, 98] 
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From D-sucrose to D-palatinose the glycosidic oxygen atom varies from O2 to O6, affecting 

the equilibrium composition of the fructose unit. Whereas with the non-reducing D-sucrose 

and its derivatives the fructose unit is fixed in the β-D-fructofuranose form, with the 

remaining reducing disaccharides the fructose unit exists in various solution equilibria. The 

glycosidic bond to O5 of D-leucrose inhibits the formation of furanose forms. On the other 

hand, the glycosidic bond to O6 of D-palatinose inhibits the formation of pyranose forms. For 

the remaining three disaccharides, the D-lactulose‘s proportional distribution of fructose 

species is closest to that of D-fructose. In the Fig. 6.25–6.32 the 
13

C NMR spectra of the 

mentioned di- and trisaccharides are compared to the 
13

C NMR spectra of the single 

components. Realizing the high similarity of a di- or trisaccharide‘s spectrum to the spectra of 

its monomeric building units, the reaction of coordinating agents as Pd-tmen with the methyl 

hex(ul)osides and hexoses should provide characteristic shift patterns which allow the 

identification of the corresponding signals in a di- or oligosaccharide 
13

C NMR spectrum. In 

fact, the dectected shift differences of the monomeric units and the di- and trisaccharides are 

almost identical, so that the assignment of signals and species in Pd-tmen become possible 

even for complex 
13

C NMR spectra. 

 

2.13.1 D-Sucrose 

D-sucrose is the most common disaccharide because of its use as table sugar and is 

well investigated. In the crystal structure of D-sucrose
[99]

 two intramolecular hydrogen bonds        

O1′–H···O2 and O6′–H···O5 were found, whereas, suggesting a flexible conformation, the 

presence and nature of such hydrogen bonds in solution has remained controversial.
[5]

 

Predicting the chelation sites, the glucopyranoside unit will act first as chelate ligand, the 

fructofuranoside unit will provide only a less-favored κO
1,3

-diolato unit for chelation as 

shown for the methyl β-D-fructofuranoside. Indeed, in equimolar solutions two 

monometalated forms were identified, 64 % of κO
2,3

-chelated α-D-Glcp2,3H−2-(1→2)-β-D-

Fruf and 13 % of κO
3,4

-chelated α-D-Glcp3,4H−2-(1→2)-β-D-Fruf (see Fig. 2.98). At a 

Pd/sucrose ratio of 2:1 the former species remained the main species at 52 %, the latter 

species was found at 10 %. Additionally, two dimetalated forms were detected, α-D-

Glcp2,3;4,6H−4-(1→2)-β-D-Fruf with 21 % and α-D-Glcp3,4H−2-(1→2)-β-D-Fruf 1,3H−2 at 

8 %. Higher Pd/surose ratios slightly changed the species‘ equilibrium in favor of α-D-

Glcp2,3;4,6H−4-(1→2)-β-D-Fruf. The 
13

C NMR chemical shifts and shift differences of the 

various species are summed up in Table 2.98. 
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Figure 2.98. Species detected in solutions of Pd-tmen and D-sucrose at different molar ratios (species refer to a 

molar Pd/sucrose ratio of 1:1 for monometalated and to 2:1 for dimetalated forms).  

 
Table 2.98. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free disaccharide of D-sucrose 

(α-D-Glcp-(1→2)-β-D-Fruf ) ligands in Pd-tmen. Atoms are numbered as in Fig. 2.98. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Glcp2,3H−2 (C) δ 93.2 81.4 81.7 71.8 73.7 60.6  

 ∆δ 0.5 9.8 8.6 2.0 0.7 −0.1 κO
2,3

 

β-D-Fruf  (C′) δ 63.3 103.6 79.8 75.3 82.0 63.0  

 ∆δ 1.4 −0.6 2.8 0.7 0.1 0.1 – 

α-D-Glcp3,4H−2 (C) δ 92.9 73.9 82.4 79.6 74.9 61.0  

 ∆δ 0.2 2.3 9.3 9.8 1.9 0.3 κO
3,4

 

β-D-Fruf  (C′) δ 61.9 104.1 77.2 74.5 81.8 62.8  

 ∆δ 0.0 −0.1 0.2 −0.1 −0.1 −0.1 – 

α-D-Glcp2,3;4,6H−4 (C) δ 93.5 82.1 83.1 81.8 74.7 69.0  

 ∆δ 0.8 10.5 10.0 12.0 1.7 8.3 κO
2,3

:κO
4,6

 

β-D-Fruf  (C′) δ 63.3 103.6 79.6 75.4 82.1 63.1  

 ∆δ 1.4 −0.6 2.6 0.8 0.2 0.2 – 

α-D-Glcp3,4H−2 (C) δ 93.1 74.1 82.9 78.2 75.2 60.9  

 ∆δ 0.4 2.5 9.8 8.4 2.2 0.2 κO
3,4

 

β-D-Fruf 1,3H−2 (C′) δ 66.8 107.6 85.6 74.9 84.0 63.7  

 ∆δ 4.9 3.4 8.6 0.3 2.1 0.8 κO
1,3 

 

The minor α-D-Glcp3,4H−2-(1→2)-β-D-Fruf 1,3H−2 species was crystallized with two Pd(en) 

fragments revealing an intramolecular hydrogen bond O2–H···O1′ to the fructoside‘s alkoxido 

atom.
[41]

 As indicated by the investigation of methyl β-D-fructofuranoside and methyl α-D-

glucopyranoside, the glucopyranose unit‘s κO
2,3

-chelation site is favored. Furthermore, the 

glucopyranose unit‘s κO
4,6

-chelation site is preferred to the fructofuranoside‘s κO
1,3

-diolato 

site. Although the precence of intramolecular hydrogen bonds in solution was not 

investigated, the known intramolecular hydrogen bonds O1′–H···O2 and O6′–H···O5 were not 
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impaired. For the species with a κO
2,3

-chelator the importance of the former hydrogen bond 

should even increase by the alkoxido O2 acceptor. Instead, a new intramolecular hydrogen 

bond O2–H···O1′ became possible for α-D-Glcp3,4H−2-(1→2)-β-D-Fruf 1,3H−2.
[41]

 The minor 

precence of this species in solution, however, didn‘t indicate a stabilizing effect of this 

hydrogen bond. 

 

2.13.2 D-Turanose 

 D-Turanose is a (1→3)-linked reducing disaccharide with α-D-Glcp-(1→3)-D-Frup as 

the major species in aqueous solutions. This pyranose form is also known from a crystal 

structure,
[100]

 the gluco- and  fructopyranose rings were found in the 
4
C1 and 

2
C5 

conformations, respectively, and a hydrogen bond O4′–H···O2 was detected. 

The (1→3)-linkage impaired the formation of the important κO
2,3

-chelated β-D-Fruf or 

β-D-Frup species resulting in uninterpretable 
13

C NMR spectra at equimolar Pd/turanose 

ratios. Not until a Pd/turanose ratio of 4:1 was a main species was detected, namely, the 

trimetallated α-D-Glcp2,3H−2-(1→3)-β-D-Frup1,2;4,5H−4 species which is depicted in 

Fig. 2.99. The corresponding 
13

C NMR chemical shifts and shift differences are listed in 

Table 2.99.  

 

Figure 2.99. Species detected in Pd-tmen at a molar Pd/tagatose ratio of 4:1. 

 
Table 2.99. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free disaccharide of D-turanose 

(α-D-Glcp-(1→3)-D-Fru) ligands in Pd-tmen. Atoms are numbered as in Fig. 2.99. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Glcp2,3H−2 (C) δ 98.2 82.1 81.4 72.1 73.9 61.0  

 ∆δ −3.3 9.4 8.0 2.2 0.6 −0.1 κO
2,3

 

β-D-Frup1,2;4,5H−4 (C′) δ 76.3 110.2 73.0 81.1 81.5 62.6  

 ∆δ 11.6 11.9 −4.3 10.2 11.8 −1.4 κO
1,2

:κO
4,5
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The metalation of D-turanose agreed with the results obtained for D-fructose and methyl α-D-

glucopyranoside. The (1→3)-linkage impairing the κO
2,3

-chelation site enforced the 

metalation mode of β-D-Frup1,2;4,5H−4-κO
1,2

:κO
4,5

 and the preference of α-D-Glcp2,3H−2-

κO
2,3

 was already proven for the methyl glucoside. Contrary to D-sucrose, the fructose unit 

was dimetalated first because of the preference of κO
1,2

-diolato to κO
1,3

-diolato chelation.  

 

2.13.3 D-Maltulose 

D-Maltulose is a (1→4)-linked reducing disaccharide with α-D-Glcp-(1→4)-D-Frup as 

major species in aqueous solutions. In contrast to D-sucrose and D-turanose, now the κO
2,3

-

chelation site was provided. In agreement with the D-fructose‘s investigation results, at an 

equimolar ratio of Pd/maltulose the main species was α-D-Glcp-(1→4)-β-D-Fruf 2,3H−2 at 

74 %. A minor α-D-Glcp-(1→4)-β-D-Frup2,3H−2 species was detected at 19 %. At a 

Pd/maltulose ratio of 2:1 the monometalated species could be still detected in minor amounts. 

The new main species was α-D-Glcp2,3H−2-(1→4)-β-D-Fruf 2,3H−2 at 37 %, α-D-Glcp2,3H−2-

(1→4)-β-D-Frup2,3H−2 was detected at 10 %. The four mentioned species are depicted in 

Fig. 2.100 and additional signals close to the C1 and C2′ signals of the monometalated species 

also indicated the glucopyranose unit‘s κO
3,4

-metalation of these species. 

 

Figure 2.100. Species detected in solutions of Pd-tmen and D-maltulose at different molar ratios (species refer to 

a molar Pd/maltulose ratio of 1:1 for monometalated and to 2:1 for dimetalated forms).  

 

The 
13

C NMR chemical shifts and shift differences of the four identified species are listed in 

Table 2.100. The (1→4)-linkage impaired the fructose unit‘s double metalation and the 

unfavorable κO
1,2

-chelation was also not detected. In contrast to D-turanose, only the high 

formation tendency of the κO
2,3

-chelated fructose unit made the assignment of the 
13

C NMR 

spectra possible. Furthermore, the exclusive metalation of the reducing unit at equimolar 

ratios was in agreement with previous results.  
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On the other hand, the subsequent metalation of the α-D-glucopyranose unit corresponds with 

the behavior of the methyl glucoside. 

Table 2.100. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free disaccharide of D-maltulose 

(α-D-Glcp-(1→4)-D-Fru) ligands in Pd-tmen. Atoms are numbered as in Fig. 2.100. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Glcp (C) δ 100.4 72.2 73.5 70.1 73.0 61.0  

 ∆δ 1.5 0.4 0.2 0.1 0.0 0.0 – 

β-D-Fruf 2,3H−2 (C′) δ 62.7 112.4 88.9 86.7 81.3 62.9  

 ∆δ −0.6 9.8 13.1 4.9 0.7 −0.1 κO
2,3

 

α-D-Glcp (C) δ 101.7 72.8 73.9 70.3 72.9 61.2  

 ∆δ 0.6 0.4 0.4 0.1 0.0 0.0 – 

β-D-Frup2,3H−2 (C′) δ 67.0 107.4 74.9 84.7 70.2 63.3  

 ∆δ 2.6 8.5 7.4 6.0 0.4 −0.7 κO
2,3

 

α-D-Glcp2,3H−2 (C) δ 102.0 82.1 81.5 72.1 73.5 61.0  

 ∆δ 3.1 10.3 8.2 2.1 0.5 0.0 κO
2,3

 

β-D-Fruf 2,3H−2 (C′) δ 62.4 112.2 89.1 86.6 81.4 62.8  

 ∆δ −0.6 9.6 13.3 4.8 0.8 −0.2 κO
2,3

 

α-D-Glcp2,3H−2 (C) δ 101.9 80.1 83.3 72.2 73.1 61.2  

 ∆δ 0.8 7.7 9.8 2.0 0.2 0.0 κO
2,3

 

β-D-Frup2,3H−2 (C′) δ 67.0 107.2 74.8 84.4 70.3 63.2  

 ∆δ 2.6 8.3 7.3 5.7 0.5 −0.8 κO
2,3 

 

2.13.4 D-Lactulose 

 D-Lactulose is an isomerization product of D-lactose at high temperatures and is used 

as an indicator for the heat treatment of milk. The crystal structure of β-D-Galp-(1→4)-β-D-

Fruf revealed a bifurcated hydrogen bond from O3′ to O5 and O6.
[101]

 In aqueous solutions, 

D-lactulose shows an almost identical species distribution of the various fructose forms as 

D-fructose itself. The 
13

C NMR signals in Fig. 6.28 were assigned according to literature.
[102]

  

 

 

Figure 2.101. Species detected in solutions of Pd-tmen and D-lactulose at different molar ratios (species refer to 

a molar Pd/lactulose ratio of 1:1 for monometalated and to 2:1 for dimetalated forms).  
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Just like D-maltulose, the β-D-Galp-(1→4)-D-Fru-linked disaccharide provides the fructose‘s 

preferred κO
2,3

-chelation site. Therefore, as shown in Fig. 2.101, the expected and detected 

main species at an equimolar Pd/lactulose ratio was β-D-Galp-(1→4)-β-D-Fruf 2,3H−2 at 75 %. 

Due to the preference of cis-vicinal chelation, the main species at a Pd/lactulose ratio of 2:1 

was β-D-Galp3,4H−2-(1→4)-β-D-Fruf 2,3H−2 at 60 %. The 
13

C NMR chemical shifts and shift 

differences of the two identified species are listed in Table 2.101. 

Table 2.101. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free disaccharide of D-lactulose 

(β-D-Galp-(1→4)-D-Fru) ligands in Pd-tmen. Atoms are numbered as in Fig. 2.101. 

  C1 C2 C3 C4 C5 C6 Chelate 

β-D-Galp (C) δ 102.6 71.1 73.2 69.2 75.9 61.6  

 ∆δ −0.9 −0.2 0.0 0.1 0.0 −0.1 – 

β-D-Fruf 2,3H−2 (C′) δ 63.6 113.5 86.6 86.6 82.0 63.2  

 ∆δ −0.5 10.5 11.3 1.8 1.3 −0.1 κO
2,3

 

β-D-Galp3,4H−2 (C) δ 102.5 74.0 83.4 80.2 75.9 61.5  

 ∆δ −1.0 2.7 10.2 11.1 0.0 −0.2 κO
3,4

 

β-D-Fruf 2,3H−2 (C′) δ 63.5 113.4 86.6 86.8 82.4 63.9  

 ∆δ 0.4 10.4 11.3 2.0 1.7 0.6 κO
2,3

 

 

Besides these two characterized species, the remaining signals were too small to perform a 

full assignment of species. Nevertheless, according to the shift differences and the previous 

results, monometalated β-D-Galp-(1→4)-β-D-Frup2,3H−2 and various dimetalated forms with 

a κO
3,4

-chelated and κO
2,3

-chelated galactopyranose unit could also be assumed in small 

amounts. It is noteworthy that the (β1→4)-linkage repressed the κO
2,3

-chelated β-D-fructo-

pyranose unit, whereas with the D-maltulose‘s (α1→4)-linkage the β-D-Frup2,3H−2-κO
2,3

 form 

was detected at almost 20 %. 

 

2.13.5 D-Leucrose 

 D-Leucrose is a (1→5)-linked reducing disaccharide with α-D-Glcp-(1→5)-β-D-Frup 

as unique detectable species in aqueous solutions. Due to the (1→5)-linkage, the furanose 

forms are impaired, whereas the α-anomer of fructopyranose has, in comparison to D-fructose, 

no importance in equilibrium. In the crystal structure,
[103]

 the gluco- and  fructopyranose rings 

were found in the 
4
C1 and 

2
C5 conformations. However, no intramolecular hydrogen bond was 

detected. At a Pd/leucrose ratio of 1:1, the main species α-D-Glcp-(1→5)-β-D-Frup2,3H−2 was 

found at 56 %, a minor signal at 110.7 ppm indicated the formation of α-D-Glcp-(1→5)-
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β-D-Frup1,2H−2, although this κO
1,2

-coordination mode so far was detected only for the 

dimetalated β-D-Frup1,2;4,5H−4 species. At a higher Pd/leucrose ratio of 2:1, the main species 

was α-D-Glcp2,3H−2-(1→5)-β-D-Frup2,3H−2 at 40 %. The two assigned species are depicted 

in Fig. 2.102 and the corresponding 
13

C NMR chemical shifts and shift differences are listed 

in Table 2.102. 

 

Figure 2.102. Species detected in solutions of Pd-tmen and D-leucrose at different molar ratios (species refer to a 

molar Pd/leucrose ratio of 1:1 for monometalated and to 2:1 for dimetalated forms).  

 
Table 2.102. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free disaccharide of D-leucrose 

(α-D-Glcp-(1→5)-D-Frup) ligands in Pd-tmen. Atoms are numbered as in Fig. 2.102. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Glcp (C) δ 100.8 73.5 75.5 70.5 72.6 61.4  

 ∆δ −0.2 0.9 2.0 0.2 0.0 0.1 – 

β-D-Frup2,3H−2 (C′) δ 66.8 107.3 76.7 72.4 80.1 62.1  

 ∆δ 2.4 8.6 8.2 1.8 0.4 −0.6 κO
2,3

 

α-D-Glcp2,3H−2 (C) δ 101.4 82.7 81.4 72.7 75.6 61.4  

 ∆δ 0.4 10.1 7.9 2.4 3.0 0.1 κO
2,3

 

β-D-Frup2,3H−2 (C′) δ 66.9 107.4 77.0 72.5 79.7 62.3  

 ∆δ 2.5 8.7 8.5 1.9 0.0 −0.4 κO
2,3 

 

Additionally, smaller signals were detected which could not be reliably assigned to metalated 

species. However, in comparison to the previous results, one can assume κO
1,2

-chelation with 

the fructopyranose unit as well as κO
3,4

-chelation with the glucopyranose unit. 
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2.13.6 D-Palatinose 

D-Palatinose or D-isomaltulose is a α-D-Glcp-(1→6)-D-Fruf disaccharide which is 

fixed in the furanose form by the (1→6)-linkage of the monomeric units. A crystal structure 

was known in the literature which revealed an intramolecular hydrogen bond O2–H···O2′.
[104]

 

As was expected, at an equimolar Pd/palatinose ratio α-D-Glcp-(1→6)-β-D-Fruf 2,3H−2 was 

the only detected species at 90 %. At a molar ratio of 2:1, this species was still detected at 

18 % and two additional dimetalated forms were identified. The κO
2,3

-chelated dimetalated 

species α-D-Glcp2,3H−2-(1→6)-β-D-Fruf 2,3H−2 was found at 56 % and the κO
3,4

-chelated 

α-D-Glcp3,4H−2-(1→6)-β-D-Fruf 2,3H−2 species at 26 %. The three assigned species are 

depicted in Fig. 2.103 and the corresponding 
13

C NMR chemical shifts and shift differences 

are listed in Table 2.103. 

 

Figure 2.103. Species detected in solutions of Pd-tmen and D-palatinose at different molar ratios (species refer to 

a molar Pd/palatinose ratio of 1:1 for monometalated and to 2:1 for dimetalated forms).  

 
Table 2.103. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free disaccharide of D-palatinose 

(α-D-Glcp-(1→6)-D-Fruf ) ligands in Pd-tmen. Atoms are numbered as in Fig. 2.103. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Glcp (C) δ 97.9 71.2 72.9 69.4 71.6 60.4  

 ∆δ −1.0 −0.8 −0.8 −0.8 −0.9 −0.8 – 

β-D-Fruf 2,3H−2 (C′) δ 63.8 113.2 86.8 77.9 79.9 68.8  

 ∆δ 0.5 10.8 10.9 2.7 0.3 0.4 κO
2,3

 

α-D-Glcp2,3H−2 (C) δ 99.6 82.0 82.2 72.4 73.1 61.3  

 ∆δ 0.7 10.0 8.5 2.2 0.6 0.1 κO
2,3

 

β-D-Fruf 2,3H−2 (C′) δ 64.8 114.1 87.9 78.3 81.0 69.0  

 ∆δ 1.5 11.7 12.0 3.1 1.4 0.6 κO
2,3

 

α-D-Glcp3,4H−2 (C) δ 99.0 74.3 83.3 80.1 74.5 61.6  

 ∆δ 0.1 2.3 9.6 9.9 2.0 0.4 κO
3,4

 

β-D-Fruf 2,3H−2 (C′) δ 64.7 114.0 87.7 78.8 80.8 69.5  

 ∆δ 1.4 11.6 11.8 3.6 1.2 1.1 κO
2,3
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The detected ratio of the two dimetalated forms was similar to the ratio of κO
2,3

- and κO
3,4

-

chelated methyl α-D-glucopyranoside which underlines again the close relation between the 

methylated glycosides to the monomeric units of a disaccharide. The intramolecular hydrogen 

bond found in the crystal structure could possibly be formed in the monometalated and in the 

α-D-Glcp3,4H−2-(1→6)-β-D-Fruf 2,3H−2 complex but not in the κO
2,3

-chelated dimetalated 

species.  

 

2.13.7 D-Melecitose 

D-Melecitose is a trisaccharide which is made up of D-sucrose and an α-D-Glcp unit at 

the O3′ atom. In the crystal structure,
[105]

 an intramolecular hydrogen bond O6′–H···O5, as in 

sucrose, was found. 60 % D-melecitose was detected in equimolar solutions of Pd/melecitose 

together with 40 % of the α-D-Glcp2,3H−2-(1→2)-β-D-Fruf-(3→1)-α-D-Glcp species, whereas 

no signals of a κO
2,3

-chelated glucopyranose unit linked to O3′ could be identified. This is 

noteworthy because the glucopyranose units were assumed to be equally available for 

metalation. Elevating the Pd/melecitose ratio to 4:1, the dimetalated species α-D-Glcp2,3H−2-

(1→2)-β-D-Fruf-(3→1)-α-D-Glcp2,3H−2 was detected at 70 % and both metalated species did 

not influence the formation tendency of the above-mentioned intramolecular hydrogen bond. 

The identified species are depicted in Fig. 2.104. 

 

Figure 2.104. Species detected in solutions of Pd-tmen and D-melecitose at different molar ratios (species refer 

to a molar Pd/melecitose ratio of 1:1 for monometalated and to 2:1 for dimetalated forms).  

The 
13

C NMR chemical shifts and shift differences of the two species are listed in Table 

2.103. Nevertheless, several small 
13

C NMR signals indicated the presence of further 

unidentified species. 
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Table 2.104. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free trisaccharide of 

D-melecitose (α-D-Glcp-(1→2)-β-D-Fruf-(3→1)-α-D-Glcp) ligands in Pd-tmen. Atoms are numbered as in 

Fig. 2.104. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Glcp2,3H−2 (C) δ 92.8 81.4 82.6 72.0 73.7 60.8  

 ∆δ 0.4 9.8 8.9 1.8 0.8 −0.1 κO
2,3

 

β-D-Fru f  (C′) δ 64.8 104.3 86.1 74.7 82.6 62.6  

 ∆δ 2.2 0.0 2.2 0.8 0.8 −0.2 – 

α-D-Glcp  (C″) δ 100.5 72.3 73.7 69.8 72.7 61.3  

 ∆δ −0.4 0.2 0.3 −0.4 −0.2 0.1 – 

α-D-Glcp2,3H−2 (C) δ 92.8 81.5 82.2 72.1 73.8 60.8  

 ∆δ 0.4 9.9 8.5 1.9 0.9 −0.1 κO
2,3

 

β-D-Fru f  (C′) δ 64.9 104.3 86.0 74.2 81.8 62.8  

 ∆δ 2.3 0.0 2.1 0.4 0.0 0.0 – 

α-D-Glcp2,3H−2 (C″) δ 101.3 82.6 82.1 71.7 73.2 61.2  

 ∆δ 0.4 10.5 8.7 1.5 0.3 0.0 κO
2,3

 

 

2.13.8 D-Raffinose 

 D-Raffinose is a trisaccharide which could be obtained by adding a β-D-Galp unit at 

the O6 atom of D-sucrose. The (1→6)-linkage does not impair the intramolecular hydrogen 

bond O6′–H···O5 which is found in sucrose. The 
13

C NMR spectroscopic investigation of 

D-raffinose in Pd-tmen revealed 50 % of unmetalated trisaccharide and various dimetalated 

forms which were not identified until a molar Pd/raffinose ratio of 2:1. At this molar 

Pd/raffinose ratio, two dimetalated forms could be identified which are depicted in Fig. 2.105. 

 

 

Figure 2.105. Species detected in solutions of Pd-tmen and D-raffinose at a molar Pd/raffinose ratio of 2:1. 
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The dimetalated species β-D-Galp3,4H−2-(1→6)-α-D-Glcp2,3H−2-(1→2)-β-D-Fru f was 

detected at 60 % of the species distribution, β-D-Galp2,3H−2-(1→6)-α-D-Glcp2,3H−2-(1→2)-

β-D-Fru f at 30 %. Elevating the molar Pd/raffinose ratio to 4:1, the previously mentioned 

compounds‘ share of species distribution decreased to 55 % and 20 %, whereas a trimetalated 

species β-D-Galp3,4H−2-(1→6)-α-D-Glcp2,3H−2-(1→2)-β-D-Fruf 1,3H−2 was detected at 10 %. 

However, this last species was identified only by its C2 signal of the fructose unit, the 
13

C 

NMR chemical shifts and shift differences of the two dimetalated species are summarized in 

Table 2.105. 

 Table 2.105. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free trisaccharide of D-raffinose 

(β-D-Galp-(1→6)-α-D-Glcp-(1→2)-β-D-Fruf ) ligands in Pd-tmen. Atoms are numbered as in Fig. 2.105. 

  C1 C2 C3 C4 C5 C6 Chelate 

β-D-Galp3,4H−2 (C) δ 99.7 73.2 79.8 80.6 70.0 63.2  

 ∆δ 0.6 4.1 9.7 10.8 −1.6 1.5 κO
3,4

 

α-D-Glcp2,3H−2 (C′) δ 93.1 81.4 81.8 72.0 72.8 66.5  

 ∆δ 0.4 9.8 8.5 2.0 0.8 0.0 κO
2,3

 

β-D-Fru f (C″) δ 63.6 103.6 79.7 75.2 82.0 63.6  

 ∆δ 1.6 −0.8 2.7 0.6 0.0 0.2 – 

β-D-Galp2,3H−2 (C) δ 99.7 77.8 78.7 72.0 71.5 61.8  

 ∆δ 0.6 8.7 8.6 2.2 −0.1 0.1 κO
2,3

 

α-D-Glcp2,3H−2 (C′) δ 93.2 81.6 81.9 72.0 72.6 65.1  

 ∆δ 0.5 10.0 8.6 2.0 0.6 −1.4 κO
2,3

 

β-D-Fru f (C″) δ 63.5 103.7 79.2 75.2 82.0 63.1  

 ∆δ 1.5 −0.7 2.7 0.6 0.0 0.0 – 

 

Again, the detected metalated species corresponded to the preferred metalation sites of the 

methyl glycosides which simplified the interpretation of the 
13

C NMR spectra. The 

intramolecular hydrogen bond O2–H···O1′ detected for the dimetalated sucrose species 

α-D-Glcp3,4H−2-(1→2)-β-D-Fruf 1,3H−2 would also be possible for the trimetalated 

D-raffinose species. 
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2.14 From disaccharides to the polysaccharides with β-connected units 

 D-Lactose, D-cellobiose and cellulose (see Fig. 2.106) have the β-(1→4)-glycosidic 

bond in common which is decisive for the conformation of the carbohydrate. As a result, the 

κO
2,3

-diolato units of the monomers are oriented opposite to each other and an intramolecular 

hydrogen bond O3–H′···O5 stabilizes this conformation. The crystal structures of D-lactose
[106]

 

and D-cellobiose
[107]

 confirmed this hydrogen bond, whereas in aqueous solution it seems to 

be insignificant.
[5, 108]

 Cellulose, the most common polysaccharide in nature, is a linear 

homopolymer of β-(1→4)-linked cellobiose unit which is insoluble in water because of strong 

intra- and intermolecular hydrogen bonds stabilizing cellulose fibers. The most prominent 

cellulose solvent is cuprammonium hydroxide from which the palladium solvents are derived. 

  

 

Figure 2.106. All configurations detected in the 
13

C NMR spectra of the investigated β-connected disaccharides 

in D2O and the configuration of the monomeric building unit of cellulose. The proportional distribution of the 

various forms can be estimated from the corresponding spectra depicted in the Appendix. 

 

2.14.1 D-Lactose 

D-Lactose is a β-D-Galp-(1→4)-α-D-Glcp disaccharide which is found in the milk of 

mammals. As described above, a possible intramolecular hydrogen bond O3–H′···O5 

stabilizes the syndiotactic conformation depicted in Fig. 2.106. Predicting the preferred 
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metalation sites, a first Pd(tmen) fragment will coordinate to the κO
1,2

-diolato unit of the 

reducing β-D-Glcp monomer thereby not affecting the possible intramolecular hydrogen bond. 

A second Pd(tmen) fragment will coordinate predominantely to the κO
3,4

-diolato unit of the 

non-reducing β-D-Galp monomer. Analysis of the various 
13

C NMR spectra confirmed these 

assumptions. At an equimolar Pd/lactose ratio apart from 20 % of the educt, two 

monometalated species were detected, 36 % β-D-Galp-(1→4)-α-D-Glcp1,2H−2 and 21 % β-D-

Galp-(1→4)-β-D-Glcp1,2H−2. Small signals close to the C1′ signals also indicated the 

formation of the α- and β-anomer of the monometalated Galp3,4H−2-(1→4)-D-Glcp species. 

Elevating the Pd/lactose ratio to 2:1, 42 % of the predicted dimetalated β-D-Galp3,4H−2-

(1→4)-α-D-Glcp1,2H−2 species and 32 % of the β-D-Galp3,4H−2-(1→4)-β-D-Glcp1,2H−2 

species were found. The species are depicted in Fig. 2.107 and the 
13

C NMR chemical shifts 

and shift differences are summarized in Table 2.106.  

 

Figure 2.107. Species detected in solutions of Pd-tmen and D-lactose at different molar ratios (species refer to a 

molar Pd/lactosee ratio of 1:1 for monometalated and to 2:1 for dimetalated forms).  

Aditionally, two minor dimetalated species were detected each at 13 %. Although a complete 

assignment of signals was impossible, the species could be identified as β-D-Galp2,3H−2-

(1→4)-α-D-Glcp1,2H−2 (C1 104.8 ppm, C1' 102.3 ppm) and β-D-Galp2,3H−2-(1→4)-β-D-

Glcp1,2H−2 (C1, C1' 105.0 ppm) according to the C1 signals. The coordination of a Pd(tmen) 

fragment to the κO
2,3

-diolato unit of the reducing β-D-Glcp monomer could be precluded by 

the absence of corresponding signals at approximately 100 ppm. 
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Table 2.106. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free disaccharide of D-lactose 

(β-D-Galp-(1→4)-D-Glc) ligands in Pd-tmen. Atoms are numbered as in Fig. 2.107. 

  C1 C2 C3 C4 C5 C6 Chelate 

β-D-Galp (C) δ 103.5 71.8 73.3 69.3 76.0 61.8  

 ∆δ 0.0 0.2 0.1 0.1 0.0 0.1 – 

α-D-Glcp1,2H−2 (C′) δ 102.2 81.9 77.4 79.0 70.1 60.7  

 ∆δ 9.8 10.1 5.4 −0.1 −0.6 0.1 κO
1,2

 

β-D-Galp (C) δ 103.7 71.6 73.2 69.2 76.1 61.7  

 ∆δ 0.2 0.0 0.0 0.0 0.1 0.0 – 

β-D-Glcp1,2H−2 (C′) δ 104.7 84.0 79.9 80.2 75.6 60.7  

 ∆δ 8.3 9.6 4.9 1.3 0.2 0.0 κO
1,2

 

β-D-Galp3,4H−2 (C) δ 103.5 74.4 83.5 80.1 75.7 61.9  

 ∆δ 0.0 2.8 10.3 10.9 −0.3 0.2 κO
3,4

 

α-D-Glcp1,2H−2 (C′) δ 102.2 81.9 76.3 77.7 70.2 61.4  

 ∆δ 9.8 10.1 4.3 −1.4 −0.5 0.2 κO
1,2

 

β-D-Galp3,4H−2 (C) δ 103.8 74.3 83.5 79.9 75.7 61.9  

 ∆δ 0.3 2.7 10.3 10.7 −0.3 0.2 κO
3,4

 

β-D-Glcp1,2H−2 (C′) δ 104.7 84.1 77.3 78.9 76.0 61.4  

 ∆δ 8.3 9.7 2.3 0.0 0.6 0.7 κO
1,2

 

  

2.14.2 D-Cellobiose and Cellulose 

 D-Cellobiose, the monomeric building unit of cellulose, and cellulose itself are built of 

(1→4)-linked β-D-Glcp units. Again, the above described hydrogen bond O3–H′···O5 

stabilizes the conformation depicted in Fig. 2.106. According to the former results, the 

D-cellobiose‘s κO
1,2

-diolato unit of the reducing monomer and the κO
2,3

-diolato unit of the 

non-reducing monomer should be metalated in this order. Interpreting the 
13

C NMR spectra 

depicted in Fig. 2.108 at an equimolar Pd/cellobiose ratio apart from 26 % of the educt, two 

monometalated species were detected, 37 % β-D-Glcp-(1→4)-α-D-Glcp1,2H−2 and 20 %  

β-D-Glcp-(1→4)-β-D-Glcp1,2H−2. Elevating the Pd/cellobiose ratio to 2:1, the two previous  

monometalated species were still detected at 15 % and 9 %, the dimetalated species labeled in 

Fig. 2.108 were found at 38 % for β-D-Glcp2,3H−2-(1→4)-α-D-Glcp1,2H−2 and 24 % for 

β-D-Glcp2,3H−2-(1→4)-β-D-Glcp1,2H−2. As one can see, small unassigned signals remained 

at the bottom 
13

C NMR spectrum in Fig. 2.108 which should correspond to the α- and β-

anomer of β-D-Glcp3,4H−2-(1→4)-D-Glcp1,2H−2. The completely assigned species are 

depicted in Fig. 2.109 and the 
13

C NMR chemical shifts and shift differences are summarized 

in Table 2.107. 
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Figure 2.108. 
13

C NMR spectra of D-cellobiose in Pd-tmen at a molar Pd/cellobiose ratio of 0:1 (top), 1:1 

(middle) and 2:1 (bottom). The signals of free D-cellobiose are marked with (x); (□) β-D-Glcp-(1→4)-α-D-

Glcp1,2H−2, (■) β-D-Glcp2,3H−2-(1→4)-α-D-Glcp1,2H−2, (○) β-D-Glcp-(1→4)-β-D-Glcp1,2H−2 and 

(●) β-D-Glcp2,3H−2-(1→4)-β-D-Glcp1,2H−2. 

 

 

Figure 2.109. Species detected in solutions of Pd-tmen and D-cellobiose at different molar ratios (species refer to 

a molar Pd/cellobiose ratio of 1:1 for monometalated and to 2:1 for dimetalated forms).  



2 Results 

165 

 

Table 2.107. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free disaccharide of D-cellobiose 

(β-D-Glcp-(1→4)-D-Glc) ligands in Pd-tmen. Atoms are numbered as in Fig. 2.109. 

  C1 C2 C3 C4 C5 C6 Chelate 

β-D-Glcp (C) δ 103.1 74.1 76.3 70.0 76.6 61.2  

 ∆δ −0.1 0.3 0.2 −0.1 0.0 0.0 – 

α-D-Glcp1,2H−2 (C′) δ 102.2 82.0 77.4 79.5 70.0 60.8  

 ∆δ 9.8 10.2 5.4 0.1 −0.7 0.3 κO
1,2

 

β-D-Glcp (C) δ 103.3 73.8 76.1 70.1 76.6 61.1  

 ∆δ 0.1 0.0 0.0 0.0 0.0 −0.1 – 

β-D-Glcp1,2H−2 (C′) δ 104.7 84.0 77.8 80.5 75.6 60.8  

 ∆δ 8.3 9.5 2.9 1.3 0.2 0.1 κO
1,2

 

β-D-Glcp2,3H−2 (C) δ 104.3 82.9 85.9 71.7 77.8 61.9  

 ∆δ 1.1 9.1 9.8 1.6 1.2 0.7 κO
2,3

 

α-D-Glcp1,2H−2 (C′) δ 102.4 81.9 77.6 81.8 69.5 61.1  

 ∆δ 10.0 10.1 5.6 2.4 −1.2 0.6 κO
1,2

 

β-D-Glcp2,3H−2 (C) δ 104.2 82.6 85.9 71.7 77.8 61.9  

 ∆δ 1.0 8.8 9.8 1.6 1.2 0.7 κO
2,3

 

β-D-Glcp1,2H−2 (C′) δ 104.8 84.0 75.6 82.2 75.6 61.1  

 ∆δ 8.4 9.5 0.7 3.0 0.2 0.4 κO
1,2

 

  

It is known that Pd-en as Schweizer‘s reagent is able to dissolve cellulose.
[41]

 To complete the 

investigation of β-connected oligosaccharides, hydrocellulose (Mw = 23250) was treated with 

Pd-tmen. After two days under stirring at 5 °C the treatment of Pd-tmen and hydro-

cellulose—two equivalents of Pd-tmen per κO
2,3

-diolato unit—resulted in a clear yellow 

viscous solution. The 
13

C NMR spectrum is depicted in Fig. 2.110, the chemical shifts of 

cellulose in Pd-tmen are listed in Table 2.108. As one can see, essentially one set of signals 

was detected which corresponded to the assumed κO
2,3

-chelated fully metalated cellulose 

polysaccharide.  

 

Figure 2.110. 
13

C NMR spectrum of hydrocellulose (Mw = 23250) in Pd-tmen. The stoichiometry of Pd-tmen 

and D-cellulose 2:1 was set to enforce full metalation. 



2 Results 

166 

 

Table 2.108. 
13

C NMR chemical shifts (δ/ppm) of cellulose in Pd-tmen.  

  C1 C2 C3 C4 C5 C6 Chelate 

[β-D-Glcp2,3H−2]n δ 104.0 81.5 84.1 84.1 77.1 62.3 κO
2,3

 

 

No reference 
13

C NMR signals are available for the calculation of CIS values of the metalated 

cellulose because of the cellulose‘s insolubility in water. Nevertheless, comparing the signals 

of D-cellobiose to those of cellulose, the κO
2,3

-chelation was confirmed. The discussed 

cellulose species is shown in Fig. 2.111. 

 

Figure 2.111. Species detected in solutions of Pd-tmen and cellulose. 

An intramolecular hydrogen bond O6′–H···O2 from the hydroxymethyl group to the alkoxido 

O2 atom to stiffen the metalated cellulose in Pd-en is described in the literature.
[41]

 With Pd-

tmen promoting intramolecular hydrogen bonding, this effect could possibly be intensified. 

  

2.15 From disaccharides to the oligosaccharides with α-connected units 

 Di- and oligosaccharides with α-connected units, depicted in Fig. 2.112, are integrated 

into this section. The non-reducing α,α-D-trehalose is a symmetric (1→1)-linked gluco-

pyranoside dimer whereas D-melibiose consists of an α-D-galactopyranoside which is (1→6)-

linked to a glucopyranoside unit. The focus is set on D-maltose and maltose-derived 

oligosaccharides which all consist of (1→4)-linked glucopyranoside units. Contrary to 

D-cellobiose and cellulose, the κO
2,3

-diolato units of the glucopyranoside monomers were 

oriented on the same site which makes the formation of an intramolecular hydrogen bond 

O3′–H···O2, or the other way round, possible. This hydrogen bond was confirmed in the 

crystal structures of α- and β-D-maltose
[109-110]

 and could be assumed for the maltose-derived 

oligomers, too. Also in aqueous solution, the (1→4)-linked glucopyranoside oligomers were 

found in an isotatic conformation referred to the κO
2,3

-chelation sites.
[111]

 The polymeric 

(1→4)-linked glucopyranoside called amylose is the minor component of starch, the major 

component is amylopectin. Amylose is soluble in water and supposed to form a random coil 
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that has a somewhat helical character.
[112]

 The results of the treatment of Pd-tmen with the 

introduced compounds are presented herein.  

 

Figure 2.112. All configurations detected in the 
13

C NMR spectra of the investigated α-connected di- and 

oligosaccharides in D2O. The proportional distribution of the various forms can be estimated from the 

corresponding spectra depicted in the Appendix. 
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2.15.1 α,α-D-Trehalose 

 The C2-symmetric α,α-D-trehalose shows only six instead of twelve signals in the 

13
C NMR spectrum but with double the intensity. Whereas the 

13
C NMR spectra of higher 

metalation ratios could not be assigned due to the comparable signals‘ intensity, at an 

equimolar ratio of Pd/α,α-trehalose two monometalated species could be assigned. Both 

species are depicted in Fig. 2.113, the corresponding 
13

C NMR chemical shifts and shift 

differences are summed up in Table 2.109. 

 

Figure 2.113. Species detected in solutions of Pd-tmen and α,α-D-trehalose at a molar Pd/trehalose ratio of 1:1.  

Besides 38 % unmetalated α,α-D-trehalose, with 29 % α-D-Glcp-(1→1)-α-D-Glcp2,3H−2 and 

25 % α-D-Glcp-(1→1)-α-D-Glcp3,4H−2, an almost equidistribution of solution‘s species was 

found.  

Table 2.109. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free disaccharide of α,α-

D-trehalose (α-D-Glcp-(1→1)-α-D-Glcp) ligands in Pd-tmen. Atoms are numbered as in Fig. 2.113. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Glcp (C) δ 93.6 71.9 73.2 70.5 72.5 61.1  

 ∆δ −0.2 0.3 0.1 0.2 −0.2 0.0 – 

α-D-Glcp2,3H−2 (C′) δ 94.4 81.3 81.8 72.2 73.0 61.6  

 ∆δ 0.6 9.7 8.7 1.9 0.3 0.5 κO
2,3

 

α-D-Glcp (C) δ 93.8 71.8 73.1 70.3 72.6 61.1  

 ∆δ 0.0 0.2 0.0 0.0 −0.1 0.0 – 

α-D-Glcp3,4H−2 (C′) δ 94.0 73.9 82.4 79.9 74.8 61.9  

 ∆δ 0.2 2.3 9.3 9.6 2.1 0.8 κO
3,4

 

 

With Pd-chxn, two dimetallated compounds were enriched and already assigned.
[78]

 Keeping 

the original C2-symmetry, the main species was identified to be α-D-Glcp3,4-(1→1)-α-D-

Glcp3,4H−2, the minor species was found to be α-D-Glcp2,3-(1→1)-α-D-Glcp3,4H−2. These 

compounds were also identified in solutions of Pd-tmen by their C1 signals.  
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The C1 of α-D-Glcp3,4-(1→1)-α-D-Glcp3,4H−2 was found at 94.0 ppm with double intensity 

and the C1 and C1′ of the minor α-D-Glcp2,3-(1→1)-α-D-Glcp3,4H−2 species were found at 

94.2 and 93.6 ppm, respectively. 

 

2.15.2 D-Melibiose 

  D-Melibiose is a α-D-Galp-(1→6)-α-D-Glcp disaccharide which can be formed by 

invertase-mediated hydrolysis of raffinose. Caused by the (1→6)-linkage of the two 

monomeric building units, D-melibiose is the only investigated disaccharide which provides 

three κO
1,2

-diolato units for metalation. Therefore, the investigation of D-melibiose revealed a 

three-step metalation which confirmed all the rules of Pd
II
N2 metalation formulated so far. 

First, the reducing κO
1,2

-diolato unit was metalated, second the cis-vicinal κO
3,4

-diolato unit 

of the α-D-Galp unit and last the trans-vicinal κO
3,4

-diolato unit of the glucopyranose unit. All 

assigned species are shown in Fig. 2.114. 

 

Figure 2.114. Species detected in solutions of Pd-tmen and D-melibiose at different molar ratios (species refer to 

a molar Pd/melibiose ratio of 1:1 for monometalated, to 2:1 for dimetalated and to 4:1 for higher metalated 

forms).  
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At an equimolar Pd/melibiose ratio, α-D-Galp-(1→6)-α-D-Glcp1,2H−2 was found to be the 

main species with 41 % of the percentual distribution of solution‘s species. Minor species 

were the unmetalated D-melibiose at 33 % and α-D-Galp-(1→6)-β-D-Glcp1,2H−2 at 9 %. 

Additionally, a C1 signal at 112.3 ppm indicated the presence of 5 % of the α-D-Galp-(1→6)-

α-D-Glcf 1,2H−2 species. At a molar Pd/melibiose ratio of 2:1 the monometalated forms α-D-

Galp-(1→6)-α-D-Glcp1,2H−2 and α-D-Galp-(1→6)-β-D-Glcp1,2H−2 were still detected at 

20 % and 7 % of the percentual distribution of solution‘s species. At 35 %, the main species 

was α-D-Galp3,4H−2-(1→6)-α-D-Glcp1,2H−2, accompanied by 20 % of α-D-Galp2,3H−2-

(1→6)-α-D-Glcp1,2H−2. Elevating the Pd/melibiose ratio to 4:1, the β-anomer of the reducing 

D-Glcp unit was the dominating trimetalated form in the 
13

C NMR spectrum. Therefore,  32 % 

of α-D-Galp3,4H−2-(1→6)-β-D-Glcp1,2;3,4H−4 and 15 % of α-D-Galp3,4H−2-(1→6)-α-D-

Glcp1,2;3,4H−4 were identified in the spectrum. Besides those, 14 % of α-D-Galp3,4H−2-

(1→6)-α-D-Glcp1,2H−2 and 9 % of α-D-Galp2,3H−2-(1→6)-α-D-Glcp1,2H−2 were still found. 

The 
13

C NMR chemical shifts and shift differences of the assigned species are listed in 

Table 2.110. 

 
Table 2.110. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free disaccharide of D-melibiose 

(α-D-Galp-(1→6)-D-Glc) ligands in Pd-tmen. Atoms are numbered as in Fig. 2.114. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Galp (C) δ 98.8 69.2 70.1 69.8 71.5 61.7  

 ∆δ 0.0 0.1 0.0 0.0 −0.1 0.0 – 

α-D-Glcp1,2H−2 (C′) δ 102.6 82.0 79.1 70.2 70.0 66.7  

 ∆δ 9.8 10.0 5.5 0.0 −0.7 0.2 κO
1,2

 

α-D-Galp (C) δ 98.8 69.2 70.1 69.8 71.5 61.7  

 ∆δ 0.0 0.1 0.0 0.0 −0.1 0.0 – 

β-D-Glcp1,2H−2 (C′) δ 104.9 84.3 77.2 70.9 75.5 66.2  

 ∆δ 8.2 9.6 0.7 0.9 0.5 −0.2 κO
1,2

 

α-D-Galp2,3H−2 (C) δ 99.4 77.9 78.8 71.9 71.76 61.6  

 ∆δ 0.6 8.8 8.7 2.1 0.1 −0.1 κO
2,3

 

α-D-Glcp1,2H−2 (C′) δ 102.7 82.1 79.3 70.0 70.0 66.4  

 ∆δ 9.9 10.1 5.7 −0.2 −0.7 −0.1 κO
1,2

 

α-D-Galp3,4H−2 (C) δ 99.4 69.8 79.9 80.6 73.2 61.4  

 ∆δ 0.6 0.7 9.8 10.8 1.6 −0.3 κO
3,4

 

α-D-Glcp1,2H−2 (C′) δ 102.6 82.0 79.2 70.0 70.0 63.2  

 ∆δ 9.8 10.0 5.6 −0.2 −0.7 −3.3 κO
1,2
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Table 2.110. Continued. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Galp3,4H−2 (C) δ 99.7 69.9 79.9 80.6 73.0 61.6  

 ∆δ 0.9 0.8 9.8 10.8 1.4 −0.1 κO
3,4

 

α-D-Glcp1,2;3,4H−4 (C′) δ 102.3 84.8 89.8 79.0 72.3 67.2  

 ∆δ 9.5 12.8 16.2 8.8 1.7 0.7 κO
1,2

:κO
3,4

 

α-D-Galp3,4H−2 (C) δ 98.9 69.7 79.9 80.7 73.1 61.5  

 ∆δ 0.1 0.6 9.8 10.9 1.5 −0.2 κO
3,4

 

β-D-Glcp1,2;3,4H−4 (C′) δ 105.7 86.6 88.1 80.4 75.0 63.3  

 ∆δ 9.0 11.9 11.6 10.4 0.0 −3.1 κO
1,2

:κO
3,4

 

 

2.15.3 D-Maltose 

D-Maltose is an α-D-Glcp-(1→4)-D-Glcp disaccharide which is a degradation product 

of starch and therefore the smallest building unit of amylose. Conversions of Pd-tmen with 

D-maltose resulted in the 
13

C NMR spectra shown in Fig. 2.115. 

 

Figure 2.115. 
13

C NMR spectra of D-maltose in Pd-tmen at a molar Pd:maltose ratio of 0/1 (top), 1:1 (middle) 

and 2:1 (bottom). The signals of free D-maltose are marked with (x); (□) α-D-Glcp-(1→4)-α-D-Glcp1,2H−2, 

(■) α-D-Glcp2,3H−2-(1→4)-α-D-Glcp1,2H−2, (○) α-D-Glcp-(1→4)-β-D-Glcp1,2H−2, (●) α-D-Glcp2,3H−2-(1→4)-

β-D-Glcp1,2H−2. 
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As one can see in the middle 
13

C NMR spectrum, at an equimolar Pd/maltose ratio, 32 % of 

D-maltose remained unmetalated. The main species was made up by the α-D-Glcp-(1→4)-α-

D-Glcp1,2H−2 species at 37 %, and the minor species by α-D-Glcp-(1→4)-β-D-Glcp1,2H−2 at 

14 %. In the bottom 
13

C NMR spectrum the Pd/maltose ratio amounted to 2:1. The two 

monometalated α-D-Glcp-(1→4)-α-D-Glcp1,2H−2 and α-D-Glcp-(1→4)-β-D-Glcp1,2H−2 forms 

were still found at 12 % and 10 %, respectively. The new dimetalated main species is 

assigned as α-D-Glcp2,3H−2-(1→4)-α-D-Glcp1,2H−2 at 37 % which was accompanied by a 

minor α-D-Glcp2,3H−2-(1→4)-β-D-Glcp1,2H−2 species at 22 %. The discussed species are 

depicted in Fig. 2.116. 

 

 

Figure 2.116. Species detected in solutions of Pd-tmen and D-maltose at different molar ratios (species refer to a 

molar Pd/maltose ratio of 1:1 for monometalated and to 2:1 for dimetalated forms).  

 

The corresponding 
13

C NMR chemical shifts and shift differences of the depicted complexes 

are listed in Table 2.111. Small 
13

C NMR signals in the spectra of Fig. 2.115 indicated the 

presence of further minor species but the signals could not be assigned reliably. Again, in a 

first step, the reducing κO
1,2

-diolato unit was metalated and only then, in a second step, the 

nonreducing α-D-glucopyranoside‘s κO
2,3

-diolato unit was metalated in agreement with the 

results found for the metalation of methyl α-D-glucopyranoside. 
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Table 2.111. 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free disaccharide of D-maltose 

(α-D-Glcp-(1→4)-D-Glc) ligands in Pd-tmen. Atoms are numbered as in Fig. 2.116. 

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Glcp (C) δ 100.2 72.4 73.6 70.0 73.2 61.1  

 ∆δ 0.0 0.0 0.1 0.1 −0.1 0.0 – 

α-D-Glcp1,2H−2 (C′) δ 102.2 82.0 79.9 77.9 69.8 61.3  

 ∆δ 9.7 10.1 5.2 0.4 −0.8 0.1 κO
1,2

 

α-D-Glcp (C) δ 100.6 72.4 73.5 69.9 73.4 61.1  

 ∆δ 0.4 0.1 0.0 0.0 0.1 0.0 – 

β-D-Glcp1,2H−2 (C′) δ 104.7 84.0 77.9 77.4 75.8 61.6  

 ∆δ 8.3 9.4 1.1 0.1 0.6 0.3 κO
1,2

 

α-D-Glcp2,3H−2 (C) δ 103.0 82.4 82.2 72.0 74.1 61.1  

 ∆δ 2.8 10.0 8.7 2.1 0.8 0.0 κO
2,3

 

α-D-Glcp1,2H−2 (C′) δ 102.5 81.6 78.6 77.2 74.1 61.4  

 ∆δ 10.0 9.7 4.8 −0.3 3.5 0.2 κO
1,2

 

α-D-Glcp2,3H−2 (C) δ 103.1 82.1 82.2 72.0 74.1 61.1  

 ∆δ 2.9 9.8 8.7 2.1 0.8 0.0 κO
2,3

 

β-D-Glcp1,2H−2 (C′) δ 105.1 83.4 79.1 77.5 75.6 61.6  

 ∆δ 8.7 8.8 2.3 0.2 0.4 0.3 κO
1,2

 

 

2.15.4 D-Maltotriose 

Adding an α-D-glucopyranoside unit by (1→4)-linkage to D-maltose produces 

D-maltotriose. The interpretation of the 
13

C NMR spectra becomes even more difficult 

because of by six additional signals as can be seen in Fig. 2.117. For comparison, the top 

13
C NMR spectrum shows the treatment of D-maltotriose with Pd-tmen at a molar 

Pd/maltotriose ratio of 2:1 and the bottom spectrum D-maltotriose in D2O. At this ratio, two 

dimetalated species could be identified, α-D-Glcp-(1→4)-α-D-Glcp2,3H−2-(1→4)-α-D-

Glcp1,2H−2 and α-D-Glcp-(1→4)-α-D-Glcp2,3H−2-(1→4)-β-D-Glcp1,2H−2 at a distribution of 

6:4 among each other. The 
13

C NMR chemical shifts and shift differences of the two species 

are listed in Table 2.112. 

It is noteworthy that two dimetalated species could be unambiguously identified at a molar 

ratio of 2:1 which remained unmetalated at the κO
2,3

-chelation site of the terminal non-

reducing α-D-glucopyranoside unit. A statistical metalation of both the κO
2,3

-chelation sites of 

the middle and terminal α-D-glucopyranoside unit would have been possible as well. Indeed, 

there was an evident preference for the κO
2,3

-diolato unit of the middle α-D-glucopyranoside 

unit. 
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Figure 2.117. 
13

C NMR spectra of D-maltotriose in Pd-tmen at a molar ratio of 2:1 (top) and in D2O (bottom). 

(■) α-D-Glcp-(1→4)-α-D-Glcp2,3H−2-(1→4)-α-D-Glcp1,2H−2, (●) α-D-Glcp-(1→4)-α-D-Glcp2,3H−2-(1→4)-β-D-

Glcp1,2H−2. 

 

Although the 
13

C NMR spectra of conversions at a molar Pd/maltotriose ratio of 1:1 and 4:1 

could not be assigned completely, the occurring species could be identified. Looking at the 

enlarged regions of the 
13

C NMR spectra in Fig. 2.118, at the molar ratios of 2:1 and 4:1 the 

blue-colored 
13

C NMR signals represent the terminal non-reducing α-D-glucopyranoside unit. 

As one can see, elevating the molar ratio from 2:1 to 4:1 resulted in a clear downfield shift of 

the C3 and C4 NMR signals indicating an attack of the Pd(tmen) fragment on the κO
3,4

-

diolato unit. This is remarkable because a κO
2,3

-chelation would have been expected, as 

derived from the previous results. This result is clear evidence for the presence of two 

intramolecular hydrogen bonds O2–H···O3′ and O3″–H···O2′ which stabilize the identified 

metalation pattern as depicted in Fig. 2.119. Looking at the dimetalated species, metalation of 

the κO
1,2

-diolato unit of the reducing D-glucopyranoside and the κO
2,3

-diolato unit of the 

middle α-D-glucopyranoside increased the formation tendency of a hydrogen bond O3″–

H···O2′ by an alkoxido acceptor. With the third Pd(tmen) fragment attacking the κO
3,4

-diolato 

unit of the terminal α-D-glucopyranoside a second hydrogen bond O2–H···O3′ to an alkoxido 

acceptor additionally supported the metalation pattern. On the other hand, an attack of the 

third Pd(tmen) fragment on the κO
2,3

-diolato unit of the terminal α-D-glucopyranoside would 

impair this stabilizing hydrogen bond.  
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Figure 2.118. Enlarged region of the 
13

C NMR spectra of D-maltotriose in Pd-tmen at a molar Pd/maltotriose 

ratio of 2:1 (top) and 4:1 (bottom). The downfield shift of the blue signals indicated κO
2,3

-metalation at the 

remaining α-D-Glcp unit (C) at a ratio of 4:1. 

 
Table 2.112. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free trisaccharide of 

D-maltotriose (α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-α-D-Glc) ligands in Pd-tmen at a molar Pd/maltotriose ratio of 

2:1. Atoms are numbered as in Fig. 2.119.  

  C1 C2 C3 C4 C5 C6 Chelate 

α-D-Glcp (C) δ 100.9 72.6 74.3 69.9 72.9 61.2  

 ∆δ 0.5 0.8 0.4 0.0 0.6 0.1 – 

α-D-Glcp2,3H−2 (C′) δ 102.9 82.6 81.4 81.0 73.4 60.9  

 ∆δ 2.7 10.4 7.9 3.6 0.1 −0.2 κO
2,3

 

α-D-Glcp1,2H−2 (C″) δ 102.5 81.8 81.6 78.4 69.8 61.3  

 ∆δ 10.0 9.9 7.8 0.7 −0.7 0.2 κO
1,2

 

α-D-Glcp (C) δ 101.0 72.7 74.3 69.9 72.9 61.2  

 ∆δ 0.6 0.9 0.4 0.0 0.6 0.1 – 

α-D-Glcp2,3H−2 (C′) δ 103.1 82.4 81.3 81.0 73.4 61.0  

 ∆δ 3.0 10.3 7.8 3.6 0.1 −0.1 κO
2,3

 

β-D-Glcp1,2H−2 (C″) δ 105.0 83.4 82.2 77.1 75.5 61.5  

 ∆δ 8.6 8.8 5.4 −0.4 0.4 0.2 κO
1,2

 

 



2 Results 

176 

 

 

Figure 2.119. Species detected in solutions of Pd-tmen and D-maltotriose at different molar ratios (species refer 

to a molar Pd/maltotriose ratio of 1:1 for monometalated, to 2:1 for dimetalated and to 4:1 for higher metalated 

forms).  

The C1-regions of D-maltotriose and D-maltose in
 
Pd-tmen can be compared to each other in 

Fig. 2.120. Comparing the top 
13

C NMR spectrum to the remaining spectra, all species of D-

maltotriose in Pd-tmen at an equimolar Pd/maltotriose ratio could be identified. Besides 

unmetalated D-maltotriose and the two known dimetalated species, six further monometalated 

forms were assigned. The two major monometalated species are the κO
1,2

-chelated forms 

α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-α-D-Glcp1,2H−2 and α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-β-

D-Glcp1,2H−2, accompanied by two minor species, α-D-Glcp-(1→4)-α-D-Glcp2,3H−2-(1→4)-

α-D-Glcp and α-D-Glcp-(1→4)-α-D-Glcp2,3H−2-(1→4)-β-D-Glcp. The favored formation of 

the two latter species could be explained again by the two intramolecular hydrogen bonds 

O2–H···O3′ and O3″–H···O2′ which stabilize the monometalated forms. Small signals also 

indicated the remarkable presence of two further monometalated species, α-D-Glcp-(1→4)-α-
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D-Glcp-(1→4)-α-D-Glcp2,3H−2 and α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-β-D-Glcp2,3H−2. This 

unusual κO
2,3

-chelation mode at the reducing D-glucopyranose unit could only be explained 

by a stabilization by an intramolecular hydrogen bond O2′–H···O3″. 

 

Figure 2.120. Enlarged regions of the 
13

C NMR spectra of D-maltotriose and D-maltose in Pd-tmen; 

Pd/maltotriose ratio of 1:1 (top), 2:1 (middle) and Pd:maltose ratio of 2:1 (bottom). The signals (top and middle 

13
C NMR spectrum) of free D-maltotriose are marked with (x); (□) α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-α-D-

Glcp1,2H−2, (■) α-D-Glcp-(1→4)-α-D-Glcp2,3H−2-(1→4)-α-D-Glcp1,2H−2, (○) α-D-Glcp-(1→4)-α-D-Glcp-

(1→4)-β-D-Glcp1,2H−2, (●) α-D-Glcp-(1→4)-α-D-Glcp2,3H−2-(1→4)-β-D-Glcp1,2H−2, (▲) α-D-Glcp-(1→4)-α-

D-Glcp2,3H−2-(1→4)-α-D-Glcp, (▼) α-D-Glcp-(1→4)-α-D-Glcp2,3H−2-(1→4)-β-D-Glcp, (◊) α-D-Glcp-(1→4)-α-

D-Glcp-(1→4)-α-D-Glcp2,3H−2, (+) α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-β-D-Glcp2,3H−2. 

 

To sum up the results of the D-maltotriose‘s investigation, a very distinct hydrogen bonding 

pattern determined the metalation of the trisaccharide. The strong intramolecular hydrogen 

bonds not only enforced a rigid metalation pattern which would not be found in the absence of 

the hydrogen bonds but also stabilized metalated species such as the α-D-Glcp-(1→4)-α-D-

Glcp-(1→4)-D-Glcp2,3H−2 form which were only present because of the hydrogen bond‘s 

stabilization.  
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2.15.5 D-Maltoheptaose and amylose 

 Further elongation of D-maltotriose resulted in D-maltoheptose which consists of seven 

α-(1→4)-connected D-glucopyranose units. Investigating D-maltoheptaose should further 

reveal the influence of the above-mentioned intramolecular hydrogen bonds from an 

unmetalated κO
2,3

-diolato unit to the adjacent metalated diolato units. Assuming full 

metalation, two metalation patterns which are depicted in Fig. 2.121 were taken into 

consideration. Starting with κO
1,2

-chelation of the reducing D-glucopyranose unit and taking 

into account the mentioned hydrogen bonds, one would obtain a fivefold metalated 

MaltoheptH−10 whereas, starting with κO
2,3

-chelation of the terminal α-D-glucopyranoside 

unit, a fourfold metalated D-MaltoheptH−8 would be obtained.  

 

 

Figure 2.121. The two possible full-metalated species in solutions of Pd-tmen and D-maltoheptaose at a molar 

Pd/maltoheptaose ratio of 7:1.  

 

Three 
13

C NMR spectra are depicted in Fig. 2.122. The bottom spectrum shows the signals of 

D-maltoheptaose in aqueous solution. As one can see, the four inner α-D-glucopyranoside 

units cannot be distinguished in the 
13

C NMR spectrum. Now, comparing the 
13

C NMR 

spectrum of D-maltoheptaose at a molar Pd/maltoheptaose ratio of 7:1 to the spectrum of 
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D-maltotriose at a molar Pd/maltotriose ratio of 4:1, it is obvious that in the first spectrum the 

composition of solution species was less defined than in the latter spectrum.  

 

Figure 2.122. 
13

C NMR spectra of D-maltoheptaose (7:1, top) and D-maltotriose (2:1, middle) in Pd-tmen; 

13
C NMR spectrum of D-maltoheptaose in D2O (bottom). Top 

13
C NMR spectrum: α-anomer (■) and β-anomer 

(●) of metalated D-maltoheptaose; middle 
13

C NMR spectrum: (■) α-D-Glcp-(1→4)-α-D-Glcp2,3H−2-(1→4)-α-D-

Glcp1,2H−2 and (●) α-D-Glcp-(1→4)-α-D-Glcp2,3H−2-(1→4)-β-D-Glcp1,2H−2. 

 

The poor resolution of the top 
13

C NMR spectrum prevented an exact assignment of the 

signals, nevertheless several signals could be identified. The spectrum‘s poor resolution gave 

evidence that, contrary to the treatment of Pd-tmen and D-maltotriose, the metalation of 

D-maltoheptaose was less regular. Comparing the shift pattern of the C1 signal, 

κO
1,2

-chelation of the α- and β-anomer of the reducing D-glucopyranose unit was detected for 

D-maltoheptaose. On the other hand, no signal indicated the κO
2,3

-chelation of the reducing 

D-glucopyranose unit. Looking at the positions of the C2′ and C3′ signals for metalated and 

unmetalated diolato units, signals could be found at both positions indicating that at least half 

of the κO
2,3

-diolato units were metalated. However, looking at the C4 signal of the terminal 

D-glucopyranoside unit, two signals could be found, one at the position of an unmetalated 
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κO
3,4

-diolato site and one at the position of a metalated κO
3,4

-diolato site. To sum up the 

results the κO
1,2

-diolato site of the reducing D-glucopyranose unit was completely and 

exclusively metalated whereas κO
3,4

-diolato site of the terminal D-glucopyranoside unit was 

not. Taking also into account the spectrum‘s poor resolution, this indicated a weakening of the 

hydrogen bonds‘ controlling function for the metalation which was found for D-maltotriose. 

Finally, amylose as a polymer of α-linked D-glucopyranoside units was investigated to test the 

structure-determining features of intramolecular hydrogen bonding. Comparing the 
13

C NMR 

spectra of amylose in aqueous solution and in Pd-tmen, the shift pattern in Fig. 2.123 

indicated that only half of the available κO
2,3

-diolato units were metalated although Pd-tmen 

was used in excess. Also the 
13

C NMR chemical shifts and shift differences in Table 2.113 

confirmed this assumption. Therefore, the intramolecular hydrogen bonds determine the 

metalation pattern also in the polysaccharide. Furthermore, not even the alkaline conditions of 

Pd-tmen got the remaining hydroxy functions deprotonated.  

 

Figure 2.123. 
13

C NMR spectra of amylose in Pd-tmen (surplus; top) and in D2O (MeOH = 49.5 ppm; bottom). 

 
Table 2.113. 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) to the free polysaccharide of amylose 

ligand in Pd-tmen at Pd/tmen surplus. 

  C1 C2 C3 C4 C5 C6 Chelate 

amylose δ 100.4 71.8 73.9 77.4 72.3 61.0  

α-D-Glcp (C) δ 98.3 71.8 74.6 80.7 72.2 61.2  

 ∆δ −2.1 0.0 0.7 3.3 −0.1 0.2 – 

α-D-Glcp2,3H−2 (C′) δ 101.1 81.6 82.7 80.7 72.8 61.2  

 ∆δ 0.7 9.8 8.8 3.3 0.5 0.2 κO
2,3
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2.16 The cyclodextrins 

 The cyclodextrins are cyclic oligosaccharides composed of six or more α-(1→4)-

linked D-glucopyranoside units. The so-called α-cyclodextrin, β-cyclodextrin and 

γ-cyclodextrin comprise six, seven and eight glucopyranoside units, respectively. With the 

polar hydroxy groups of the glucopyranoside units pointing outwardly, all the cyclodextrins 

have cavities which have interiors that are more lipophilic than their more hydrophilic 

exteriors. Such a cavity has a diameter of 4.7‒5.3 Å for α-cyclodextrin and 7.5‒8.3 Å for 

γ-cyclodextrin. The hosting of a large variety of lipophilic substrates is the most interesting 

industrial feature of the cyclodextrins. A strong hydrogen-bonding network between the 2′-

hydroxy and 3-hydroxy group of an adjacent glucopyranoside unit exists both in solid state 

and in solution.
[113]

  

The four crystal structures [Pd3(teen)3(α-CDH−6)] · 34 H2O (42), [Pd3(tmen)3(α-CDH−6)] 

· 20.7 H2O · acetone (43), [Pd4(teen)4(γ-CDH−8)] · 12 H2O (44) and [Pd4(tmen)4(γ-CDH−8)] 

· 65.79 H2O · 0.96 [Pd(tmen)CO3] (45) were obtained from conversions of the cyclodextrins 

with Pd-tmen and Pd-teen. Independent of the stoichiometry, only half the cyclodextrins‘ 

κO
2,3

-diolato sites were alternatingly metalated in all experiments. Again, the strong 

intramolecular hydrogen bonds between an unmetalated κO
2,3

-diolato site to the adjacent 

glucopyranoside unit‘s metalated κO
2,3

-diolato sites impaired complete deprotonation. 

Therefore, no crystal structure was obtained for β-cyclodextrin because the odd-even number 

of glucopyranoside units disturbed the hydrogen-bond–mediated alternating metalation 

pattern. [Pd3(teen)3(α-CDH−6)] · 34 H2O (42) was solved in the space group P 63 with only a 

third of the molecule in the asymmetric unit. Despite a cell volume of only 5839.3 Å
3
 

anisotropic refinement was successful and no disorder had to be resolved. [Pd3(tmen)3(α-

CDH−6)] · 20.7 H2O · acetone (43) was solved in the space group P 21 with a cell volume of 

4740.2 Å
3
. A complete metalated cyclodextrin with one acetone molecule in the hydrophobic 

cavity was found in the asymmetric unit. Again, anisotropic refinement was possible, 

although some of the hydroxymethyl groups were disordered. Crystal packing of the 

cyclodextrins is described either as a channel- or a cage-type structure.
[113]

 In channel-type 

structures, cyclodextrin molecules stack in such a way as to align their cavities linearly to 

form channels through the crystal. On the other hand, cage-type structures form isolated 

cavities which are blocked off on both sites by neighboring cyclodextrin molecules. In 42, 

layers of cyclodextrin rings were packed staggered along the c axis. Nevertheless channels 

were formed along c as depicted in Fig. 6.81 of the Appendix. 
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Figure 2.124. SCHAKAL plot of the molecular structure of [Pd3(teen)3(α-CDH−6)] · 34 H2O (42). 

 

 

Figure 2.125. SCHAKAL plot of the molecular structure of [Pd3(tmen)3(α-CDH−6)] · 20.7 H2O · acetone (43). 
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In 43, channels were formed along the a axis as one can see in Fig. 6.82 of the Appendix. 

[Pd4(teen)4(γ-CDH−8)] · 12 H2O (44) was solved in the space group P 212121 with a cell 

volume of 13424.4 Å
3
. Because of the cell volume‘s extent and the increasing disorder of the 

movable parts of the complex as the N,N,N′,N′-tetraethylethane-1,2-diamine ligands or the 

hydroxymethyl side chains, an anisotropic refinement was abandoned. Nevertheless, besides 

the hydrogen-bond mediated fourfold metalation, one can recognize a slight deformation of 

the γ-cyclodextrin ring in Fig. 2.126. Channels were formed by the crystal packing in the 

direction of the a axis as depicted in Fig. 6.83 of the Appendix.  

  

Figure 2.126. SCHAKAL plot of the molecular structure of [Pd4(teen)4(γ-CDH−8)] · 12 H2O (44). 

 

[Pd4(tmen)4(γ-CDH−8)] · 65.79 H2O · 0.96 [Pd(tmen)CO3] (45) was solved in the space group  

P 21 with a cell volume of 13766.8 Å
3
. With two complete metalated molecules in the 

asymmetric unit and because of serious disorder, structure solution was complicated and 

anisotropic refinement was abandoned. As a feature, in 96 % of the cavities which formed 

channels along the a axis a [Pd(tmen)CO3] molecule was included. It is noteworthy that 

contrary to the planar structure of [Pd(tmen)CO3] which is known from literature,
[49]

 the 

[Pd(tmen)CO3] structure in the cavitiy showed an angle of almost 120°. This result was 
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dubious but due to the highly disordered structure, a final determination of the embedded 

complex was not possible. An alternative solution would be an embedded [Pd(tmen)(OH)2] 

complex and additional disordered water molecules. Comparing the structure of 44 to the 

structure of 45 (see Fig. 2.127) the storage of [Pd(tmen)CO3] prevented the deformation of the 

cyclodextrin ring.  

 

Figure 2.127. SCHAKAL plot of the molecular structure of [Pd4(tmen)4(γ-CDH−8)] · 0.96 [Pd(tmen)CO3] in 

crystals of the 65.79-hydrate (45). 
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3 Discussion 

3.1 The Pd
II

N2 fragments: characteristics and differences 

 In this work, in addition to the well established Pd
II
N2 reagents [Pd(en)(OH)2] and 

[Pd(R,R-chxn)(OH)2], seven new Pd
II
N2 fragments were introduced. A common property of 

all Pd-based solvents is the magnitude of the so-called ‗coordination-induced shift‘ (CIS), in 

fact, the CIS of the various fragments is almost identical with only minor deviations. A first 

difference was the fragments‘ resistance to reduction to palladium(0). Whereas Pd-en and 

Pd-chxn were rapidly reduced to palladium(0), Pd-tmen, Pd-teen and Pd-tmchxn showed a 

higher resistance to reduction. Contrary, Pd-dmen and Pd-tn were reduced as rapidly as Pd-en. 

Therefore, only the complete alkylation of the chelate ligands‘ amino functions retarded the 

reduction of palladium(II). Furthermore, it should be noted that the κN 

1,3
 chelation of Pd-tn 

was not so stable as the κN 

1,2
 chelation of the other ligands. The stability of [Pd(bpy)(OH)2] 

and [Pd(phen)(OH)2] could not be assessed because of the poor solubility of these fragments 

in water which was caused by the stacked packing in the crystal structures.  

To avoid signal overlap it is important that none of the Pd
II
N2 fragments has 

13
C NMR signals 

in the region between 120–60 ppm. Most of the fragments met this condition, although the C6 

signal of the carbohydrates coincided with the signals of Pd-tmen. The most important feature 

of Pd-tmen and Pd-teen is their ability to stabilize species which were not detected with Pd-en 

and Pd-chxn or were only there in minor amounts. With Pd-tmen, for example, the furanose 

forms of reducing carbohydrates became major species. On the other hand, palladium(II)–

polyol complexes in neutral aqueous solution were possible only for Pd-en and Pd-chxn 

whereas with Pd-tmen no μ-hydroxido-bridged species was detected.  

Another aim of the investigation was an increase in crystallization tendency. A first condition 

therefore was the stability of the complex which should be crystallized. Pd-tmen met this 

condition and, in fact, a series of crystal structures was obtained. Nevertheless, each Pd
II
N2 

fragment had its characteristic features and therefore, the alteration of Pd-en, Pd-chxn and 

Pd-tmen resulted in a series of structures which differed in the coordination mode.  

Also, as mentioned above, the Pd-tmen fragment enriched the furanose forms of some 

reducing carbohydrates. For comparison, the average distances and angles of the various 

[Pd
II
N2(OH)2] complexes are listed in Table 3.1. 
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Table 3.1. The average distances [Å] and angles [°] of the various [Pd
II
N2(OH)2] compounds. 

[Pd
II

N2(OH)2] dPd–O dPd–N N–Pd–N O–Pd–O 

en
[46]

 2.017 2.028 83.98 93.59 

tmen 1.991 2.067 85.66 93.40 

bpy 1.997 1.999 81.0 89.9 

phen 1.989 2.015 82.15 93.39 

 

As one can see, the distances and angles did not differ from each other so much as to explain 

the different behavior of Pd-en and Pd-tmen. On the other hand, the fourfold methylation of 

en increased the hydrophobic character of the fragment which resulted in a separation of 

hydrophobic and hydrophilic regions in the crystal structures of the Pd(tmen) fragment with 

carbohydrates. Therefore, Pd-tmen is a less polar solvent than Pd-en or Pd-chxn and, 

additionally, the steric demand increased because of the methylation which is possibly a 

further reason for the different coordination behavior of Pd-tmen to Pd-en. The application of 

Pd-teen did not increase the advantages of Pd-tmen because the coordination tendency of the 

carbohydrates decreased and only syrup-like substances could be obtained from attempts to 

crystallize a Pd(teen) complex. Finally, the synthesis of Pd-tmchxn should have combined the 

positive properties of Pd-chxn and Pd-tmen. However, the carbonate [Pd(tmchxn)CO3] (2) 

showed a higher formation and crystallization tendency than a corresponding carbohydrate 

complex, therefore further investigations were omitted. Nevertheless, it should be mentioned 

that a 
13

C NMR investigation of Pd-tmchxn with the various carbohydrates is unfinished. 

 

3.2 The Pd
II

N2 fragments’ influence on the hydrogen-bonding network 

The Pd(tmen) fragment showed a different behavior compared to that of the Pd(en) 

and Pd(R,R-chxn) fragment. Various crystal structures revealed a marked difference in the 

formation of the hydrogen-bonding network. Comparing the crystal structures of the 

Pd
II
 complexes of allitol (16, 17) and mannitol (11, 12, 

[58]
) and the various Pd

II
N2 fragments 

to each other, in the structures of the Pd(tmen) fragment, the polyols‘ remaining hydroxy 

groups formed exclusively intramolecular hydrogen bonds whereas in the structures with 

other Pd
II
N2 fragments the hydroxy groups formed hydrogen bonds to adjacent water 

molecules. In the case of allitol, an alternating bonding mode resulted from this effect. 

Probably, the hydrophobic tmen ligands expelled water molecules from the polyol‘s closest 

vicinity and enforced the intramolecular hydrogen bonds in this way, whereas non-alkylated 
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chelate ligands such as en or chxn can act as hydrogen-bond donors to arrange water 

molecules close to the complex. On the other hand, an R4
2
(8) ring motif

[60]
 formed by two 

water molecules and the alkoxido atoms of a polyolato complex with Pd(tmen) connecting the 

single molecules was repeatedly detected. With the crystal structures of the Pd
II
 complexes of 

dulcitol (13, 14, 
[58]

), the S-shaped motif of dulcitol is independent of the Pd
II
N2 fragments 

underlining the importance of the δ hydrogen bond.  

Upon addition of acid to the polyols‘ solutions with Pd-en or Pd-chxn, the hydrogen-bonding 

network lost its influence and the bonding mode was exclusively mediated by the 

μ-hydroxido-bridged Pd
II
N2 fragments. As described in Section 2.4, the acid-dependent 

formation of bridged palladium species and their interaction with a suitable polyol is well 

understood. This chemistry was impossible with the Pd(tmen) fragment because all attempts 

resulted in the formation of a μ-hydroxido-bridged Pd(tmen) dimer.
[114]

 On the other hand, the 

structure of the hexanuclear cation 25 pointed to the possibility of consecutive reactions that 

eliminate the available palladium species from the equilibria that determine the titration curve. 

Within the inositols, neo- and scyllo-inositol formed different crystal structures with Pd-en
[76]

 

and Pd-tmen (28, 29). With [Pd2(en)2(D-neo-Ins1,2;4,5H−4-κO
1,2

:κO
4,5

)] · 12 H2O,
[76]

 the 

Pd(en) fragments coordinated two opposite cis-vicinal diolato functions leaving two 

equatorial hydroxy functions uncoordinated. With [Pd2(tmen)2(D-neo-Ins1,6;3,4H−4-

κO
1,6

:κO
3,4

)] · 22 H2O, two Pd(tmen) fragments coordinated two opposite trans-vicinal 

diolato functions leaving two axial hydroxy functions uncoordinated. Thus, the unfavorable 

trans-vicinal diolato-coordinated compound was obtained with the Pd(tmen) fragments not 

participating in the hydrogen-bonding network. Keeping in mind the fact that an axial 

hydroxy function is less suitable for accepting hydrogen bonds than an equatorial hydroxy 

function, and the realization that the Pd(tmen) fragment expelled water molecules from the 

inositol‘s closest vicinity, the formation of 28 seemed to be the logical consequence. Each of 

the coordinating alkoxido functions accepted two hydrogen bonds whereas the axial hydroxy 

function acted only as a hydrogen-bonding donor underlining the fact that an axially oriented 

hydroxy function is less suitable for accepting hydrogen bonds than an equatorially oriented 

hydroxy function. With this in mind the formation of [Pd3(tmen)3(scyllo-InsH−6)] · 23 H2O 

should be favored for the identical reasons. The dimetalated form would provide two 

equatorial hydroxy functions whereas the trimetalated compound accepted twelve hydrogen 

bonds.  
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3.3 Conformational fluctuation in palladium(II)–methyl aldopentopyranoside and 

aldopentose complexes 

 Conformational fluctuation of a cis-vicinal chelated pyranose was investigated in a 

couple of aldopentopyranosides. As a result, for cis-vicinal diol functions, anellation of a 

chelate and a pyranose ring does not freeze the interconversion of the two chair conformers in 

terms of NMR spectroscopy. Instead, intermediate coupling constants can serve as a measure 

of the conformational equilibrium‘s position. In agreement with the number of cis-vicinal diol 

functions, the investigated methyl pyranosides of lyxose, ribose and xylose exhibited one, two 

and zero fluctuating palladium(II) chelates, respectively. Furthermore, syn-diaxial pyranose 

chelation which was detected previously with a dimetallated 
1
C4-all-axial conformer of β-D-

xylopyranose was confirmed.
[37]

 This chelation mode was found for the complexes of two 

pentosides: [Pd(tmen)(Me-β-D-Ribp2,4H−2)] and [Pd(tmen)(Me-β-D-Xylp2,4H−2)]. The 

formation of six-membered chelate rings results in the absence of pronounced coordination-

induced shifts. Therefore, a caveat on CIS values should be noted. On the one hand, 

levoglucosan, a conformationally fixed bicyclic molecule, did not alter its shape markedly on 

coordination.
[41]

 Methyl β-D-ribopyranoside, on the other hand, is fluctuating in its non-

bonded standard state, but is fixed in the κO
2,4

-bonded chelate. Consequently, the CIS values 

were not affected solely by the coordination of palladium(II) (as is implied in the term 

coordination-induced shift), but were biased by a component caused by freezing out one 

conformer. However, the 
13

C NMR values of the free pyranoside, which were used for 

calculation of the CIS values, are flawed by the equilibrium of conformations. In 

consequence, the CIS values not only represented the coordination of palladium(II) but also 

the change of conformation, which can be read off from the 
13

C NMR shifts that appear to all 

carbon atoms. Moreover, the expected small shifts were biased by a conformational change. 

Thus, both pentosides were fixed in their 
1
C4 conformer, which resembled a freezing of the 

ribopyranoside fluctuation and the inversion of the xylopyranoside chair. Hence, in both 

cases, the standard state of the CIS calculation was different from the chelating conformation, 

an effect that was more pronounced for the xylopyranoside and less so in the case of the 

ribopyranoside. 

The metalation of pentoses in Pd
II
-containing solvents influences the conformation of 

pyranoses in various cases. Four cases could be detected: (1) metalation didn‘t affect the 

pyranose‘s initial conformation, (2) metalation caused an inversion of pyranose‘s initial 

conformation, (3) metalation froze a fluctuating pyranose in one conformation and 
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(4) metalation induced conformational fluctuation of a pyranose. Different effects were 

responsible for these results: the kind of metalation, electrostatic interactions and hydrogen 

bonding. The effects of trans-vicial and syn-diaxial bonded palladium fragments forcing the 

pyranose to assume one defined conformation are easy to interpret. Cis-vicinal metalation 

affecting the pyranose‘s conformation was controlled by intra- and intermolecular hydrogen 

bonds. So, for 
1
C4-[Pd(R,R-chxn)(α-D-Ribp1,2H−2-κO

1,2
)],

[37]
 an intramolecular hydrogen 

bond could be identified by X-ray analysis explaining the conformational fluctuation‘s 

freezing and the impossibility of double metalation of α-D-Ribp. Transferring this argument to 

the other pentopyranoses, an intramolecular hydrogen bond O4–H4···O2 also explained the 

induced conformational fluctuation for a κO
1,2

-bonded α-D-Xylp1,2H−2. Also the missing 

hydrogen bond is responsible for the stable 
4
C1 conformation of a κO

1,2
-bonded β-D-

Lyxp1,2H−2. 

 However, none of these arguments can explain the double-metalation caused inversion of 

D-arabinopyranose‘s conformation. Here, electrostatic interactions were responsible for the 

conformational inversion of β-D-Arap1,2;3,4H−4-κO
1,2

:κO
3,4

 allowing the two negatively 

charged substituents of C2 and C3 to occupy an axial position in the 
4
C1 instead of the initial 

1
C4 conformation; the conformational fluctuation of α-D-Arap1,2H−2-κO

1,2
 and α-D-

Arap3,4H−2-κO
3,4

 was induced by the same electrostatic repulsion.This could be considered to 

be a more general case of the anomeric effect which is usually linked with the C1 position. 

Recent results indicate that the hyperconjugation from the lone pairs on the ring heteroatom to 

the antibonding orbital between the anomeric carbon and its linking substituent are not 

responsible for the anomeric effect and that it is better interpreted in terms of electrostatic 

interactions.
[115]

 Further, the 
4
C1 conformation allows better access for water molecules to 

build hydrogen bonds to the deprotonated oxygen atoms. This accessibility of oxgen atoms 

for hydrogen bonding would also explain the different behavior of D-xylopyranose in Pd-chxn 

and Pd-tmen/Pd-teen. In Pd-chxn the cyclohexane-1,2-diamine itself acts as a fourfold 

hydrogen bond donor suppressing the need of a κO
1,2

:κO
3,4

-bonded α-D-Xylp1,2;3,4H−4 to 

accept hydrogen bonds. Otherwise, N,N,N′,N′-tetraethylethane-1,2-diamine didn‘t provide 

hydrogen bonds forcing the κO
1,2

:κO
3,4

-bonded β-D-Xylp1,2;3,4H−4 species which enabled 

the formation of hydrogen bonds to the diolato units.  

Testing all the detected species for the appearance of the anomeric effect at C1, electrostatic 

repulsion of all substituents of the pyranose ring and hydrogen bonding clearly dominated the 

conformational behavior of metallated pentopyranoses. 



3 Discussion 

190 

 

3.4 Metalation of the methyl hex(ul)osides 

Comparing the detected metalated methyl hex(ul)oside species in the various Pd
II
-containing 

solvents and their proportional distribution referred to a molar Pd/methyl hex(ul)oside ratio of 

2:1 in Fig. 3.1 and the known rules
[78]

 of palladium(II) chelation were confirmed. The 

κO
1,2

-diolato coordination mode is preferred to the κO
1,3

-diolato coordination mode. Within 

the κO
1,2

-diolato coordination mode cis-vicinal chelation is preferred to trans-diequatorial 

chelation. The orientation of the anomeric hydroxy group had only minor effects on the 

chelation modes. Therefore, it was not surprising to find the cis-vicinal κO
3,4

-diolato 

coordination mode favored over the κO
2,3

-chelation with the methyl galactopyranosides, the 

cis-vicinal κO
2,3

-diolato coordination mode favored over the κO
3,4

-diolato chelation with 

methyl α-D-mannopyranoside and the cis-vicinal κO
4,5

-diolato coordination mode favored 

over the κO
3,4

-diolato chelation with methyl β-D-fructopyranoside. With the methyl 

D-glucopyranosides only trans-diequatorial chelation was possible. It is remarkable that 

Pd-tmen and Pd-chxn favored different chelation sites. With Pd-tmen the κO
2,3

-bonded Me-D-

Glcp2,3H−2 species represented the major form, whereas with Pd-chxn the κO
3,4

-bonded 

Me-D-Glcp3,4H−2 form was found as the major species. Furthermore, κO
1,3

-diolato chelation 

was detected for all the methyl hex(ul)osides except the methyl galactopyranosides. 

Obviously, an axially oriented hydroxy group together with the hydroxymethyl group 

impaired the κO
1,3

-diolato chelation. Comparing the α- and β-form of the methyl 

D-fructofuranosides, κO
1,3

-diolato chelation was detected for both anomers, nevertheless a cis-

vicinal orientation of the hydroxymethyl group and the hydroxy group at C3 made chelation 

easier.  

 

3.5 Metalation of the hexoses 

 With the hexoses, a first obvious difference between Pd-tmen and Pd-chxn is 

Pd-tmen‘s preference to stabilize the furanose forms by κO
1,2

-diolato chelation whereas the 

Pd-chxn‘s tendency to attack by κO
1,3

-diolato chelation is underlined by the presence of 

29.7 % of the β-D-Galf 1,3H−3 species in equimolar solutions.
[37]

 Otherwise, the various 

D-galactose species were detected at almost the same percentual share in equimolar solutions. 

With Pd-tmen the monometalated α-D-Glcp1,2H−2-κO
1,2

 and α-D-Manp2,3H−2-κO
2,3

 species 

became the main species with an almost 50 % share of the percentual distribution in solution 

whereas with Pd-chxn, the α-configured species did not dominate the species distribution.  
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Figure 3.1. Overview of the detected metalated methyl hex(ul)oside species in the various Pd
II
-containing 

solvents. The proportional distribution of species refer to a molar Pd/methyl hex(ul)oside ratio of 2:1.  
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Figure 3.2. Overview of the detected metalated aldohexose species in the various Pd
II
-containing solvents. The 

proportional distribution of species refer to a molar Pd/aldohexose ratio of 1:1 for monometalated and to 3:1 for 

dimetalated species.  
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Moreover, with Pd-chxn, the β-D-Manp1,2H−2-κO
1,2

 species was the main species in solution. 

As for the pentoses, the more hydrophobic vicinity of a Pd(tmen) complex could possibly not 

compensate the anomeric effect as well as a more hydrophilic Pd(R,R-chxn) complex.   

At a molar Pd/hexose ratio of 3:1, all three hexoses formed a κO
1,2

:κO
5,6

-dimetalated furanose 

complex with Pd-tmen whereas with Pd-chxn, only the α-D-Galf 1,2;5,6H−4-κO
1,2

:κO
5,6

 form 

which is stabilized by an intramolecular hydrogen bond was detected. Furthermore, with 

Pd-chxn the κO
1,2

:κO
3,4

-dimetalated β-forms of D-glucose and D-mannose were found as 

dominating species whereas with Pd-tmen various species were detected concurrently. In 

conclusion, the fomer proposed rules for the chelation of reducing carbohydrates with Pd
II
N2 

fragments were confirmed. Additionally, Pd-tmen‘s preference for the stabilization of 

furanose forms had to be added. 

 

3.6 The hexuloses’ chelation preferences 

Comparing the species detected in aqueous and in Pd
II
-containing solutions, 

predominantly the former major species were metalated. The Figures 3.3 and 3.4 give an 

overview of the distribution of mono- and dimetalated species. As one can see, κO
1,2

- and 

κO
2,3

-chelation was the preferred mode for monometalation involving the most acidic 

hydroxy function O2. Now, comparing the κO
1,2

-chelated α-D-Tagp1,2H−2 species to the α-L-

Sorp1,2H−2 species, the hydroxy group at C3 in the axial position was clearly favored because 

of minor interactions with the κO
1,2

-chelated hydroxymethyl group. Whereas the κO
1,2

-

chelated α-D-Tagp1,2H−2 species was the dominant species in solution, the α-L-Sorp1,2H−2-

κO
1,2

 species was suppressed in favor of α-L-Sorp2,3H−2-κO
2,3

 and α-L-Sorf 2,3H−2-κO
2,3

 both 

of which avoided the unfavored interaction of a hydroxy group with the Pd(tmen) fragment. 

Additionally, the κO
2,3

-bonded α-L-Sorf 2,3H−2 could be stabilized by an intramolecular 

hydrogen bond O1–H···O4. As discussed in the literature,
[87]

 two intramolecular hydrogen 

bonds O6–H···O3 and O1–H···O4 would explain the high stability of the β-D-Fruf 2,3H−2-κO
2,3

 

species. Nevertheless, two additional species, the κO
2,3

-chelated β-D-Frup2,3H−2 species and 

the κO
4,5

-chelated α-D-Frup4,5H−2 species, were detected. The former species corresponded to 

α-L-Sorp2,3H−2-κO
2,3

 and was favored for the same reasons, the latter species could be 

stabilized by two intramolecular hydrogen bonds, the known hydrogen bond O2–H···O4 and 

an additional hydrogen bond O3–H···O1. The α-D-Psip4,5H−2-κO 

4,5
 species could be 

stabilized by the same intramolecular hydrogen bonds.  
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Furthermore, the most favored furanose form, α-D-psicofuranose, yielded two 

metalated species, the κO
2,3

-bonded α-D-Psif 2,3H−2 and the κO
3,4

-bonded α-D-Psif 3,4H−2 

species which were favored for the same reasons as the unmetalated furanose. 

 

 

Figure 3.3. Overview of the detected monometalated hexulose species in the various Pd
II
-containing solvents. 

The proportional distribution of species refer to a molar Pd:hexulose ratio of 1:1. 

With double metalation of the hexuloses, first and foremost the suitable monometalated forms 

were metalated a second time whereas unsuitable monometalated forms were expelled or 

transformed. The unfavored equatorially standing hydroxy group at C3 was metalated only by 

κO
2,3

-chelation and never by κO
3,4

-chelation. Therefore, neither a κO
1,2

:κO
3,4

-chelated 

β-D-Frup1,2;3,4H−4 nor a κO
1,2

:κO
3,4

-chelated α-L-Sorp1,2;3,4H−4 species were detected.  
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For the same reason, the κO
1,2

:κO
3,4

-dimetalated furanose species of D-tagatose and D-psicose 

were identified in the α- and β-form respectively. Finally, also for this reason, the κO
2,3

:κO
4,5

-

bonded α-L-Sorp2,3;4,5H−4 species was preferred to the α-L-Sorp1,2;4,5H−4-κO
1,2

:κO
4,5

 

species. The above-mentioned intramolecular hydrogen bond O2–H···O4 and electrostatic 

repulsion of two 1,3-diaxially oriented alkoxido atoms impaired further metalation of the α-D-

Frup4,5H−2-κO
4,5

 and α-D-Psip4,5H−2-κO 

4,5
 species to the κO

1,2
:κO

4,5
-dimetalated α-forms. 

Therefore, the less favored β-D-Frup1,2;4,5H−4-κO
1,2

:κO
4,5

 species was detected.  

 

 

Figure 3.4. Overview of the detected dimetalated hexulose species in the various Pd
II
-containing solvents. The 

proportional distribution of species refer to a molar Pd:hexulose ratio of 2:1. 

The analysis of 
3
JH,H coupling constants indicated a fluctuation of the κO

2,3
:κO 

4,5
-chelated 

β-D-Frup2,3;4,5H−4 species between the between the 
5
C2 and the 

2
C5 conformation. A 

possible intramolecular hydrogen bond O1–H···O4 could stabilize the κO
2,3

:κO 

4,5
-chelated 

β-D-Frup2,3;4,5H−4 species in the 
5
C2 conformation which was also found energetically 

favorable to the 
2
C5 conformation. Unfortunately, α-L-Sorp2,3;4,5H−4-κO

2,3
:κO 

4,5
 provided a 

trans-diequatorial κO 
4,5

-chelation site which impaired conformational fluctuation as well as a 

further analysis.  
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3.7. The difficult analysis of the dialdoses 

In the literature, little is known about the class of dialdoses. Comparing the 

13
C NMR spectra of D-galactose and D-mannose to the spectra of galacto- and D-manno-

dialdose, the similarity of the spectra, except for the C6 signal, was evident. Assuming the 

regular pyranose forms containing an aldehyde hydrate at the C6 atom, the signals could be 

assigned. Two further species in the 
13

C NMR spectrum of D-manno-dialdose were found as 

the two 3,6-anhydro-D-manno-dialdofuranose forms whereas no furanose forms were detected 

for galacto-dialdose in aqueous solution. The 
13

C NMR spectrum of xylo-dialdose in water 

did not resemble the 
13

C NMR spectrum of D-xylose. Nevertheless, two species were 

unambiguously assigned.With the pentodialdoses, the aldehyde hydrate is part of the pyranose 

ring and therefore, the influence on the chemical shifts is higher than with the hexodialdoses. 

Additionally, the symmetric meso-dialdoses‘ ability to alternate between the D- and L-form 

complicated the final determination of species in solution.  

In equimolar solutions of Pd-tmen and xylo- or galacto-dialdose the same species were found 

as for the corresponding aldoses. However, in contrast to the mono-metalated α-D-

Xylp1,2H−2-κO
1,2

 species of D-xylose, the additional hydroxy group at C5 impaired the 

conformational fluctuation which is detected for κO
1,2

-bonded α-D-Xylp1,2H−2. Also with 

galacto-hexodialdose, two species were found which corresponded to the D-galactose species. 

Additionally, a third species was identified and is still not certainly assigned. Excluding the 

known species, only κO
1,2

-3,6-anhydro-α-Gal6aldp1,2H−2 was eligible.  It is noteworthy that 

no 
13

C NMR chemical shift values were available for such an unmetalated conformation, so a 

definite determination of CIS values was not possible.  

With D-mannose the main species was the κO
2,3

-chelated α-D-Manp2,3H−2 for mono-

metalation. Transferring this chelation mode to D-manno-hexodialdose, both the most acidic 

hydroxy groups remained unmetalated and an obviously unfavored species would be formed. 

Therefore, it was not surprising to detect high amounts of the dimetalated 

β-D-Man6aldf 1,2;5,6H−4-κO
1,2

:κO
5,6

 species which was the only species with both the most 

acidic hydroxy groups metalated.  

At a molar Pd-tmen/galacto-dialdose ratio of 2:1, three dimetalated furanose species were 

detected with both acidic, anomeric hydroxy groups participating to the chelate rings. For this 

reason, no dimetalated pyranose form was found because the participation of the two specific 

hydroxy functions could be realized only by an unfavored κO
1,3

-chelation.  
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With the dimetalated 1ax,5eq-Xyl5aldp1,2;3,5H−4 species both aldehyde hydrate functions 

were metalated and, additionally, an intramolecular hydrogen bond O4–H···O2 stabilized the 

1
C4-conformation to result in a perfectly matching complex. The minor species 1ax,5eq-

Xyl5aldp1,2;4,5H−4 missed out the stabilizing intramolecular hydrogen bond whereas  [1,5]eq-

Xyl5aldp1,2;4,5H−4 was not formed because of unfavorable electrostatic repulsions between 

all-equatorially standing alkoxido functions. 

To sum up the results, the second aldehyde function of a dialdose in aqueous solution always 

formed an aldehyde hydrate either with a water molecule or by intramolecular ring formation 

as with xylo- and D-manno-dialdose. The general rules of palladium(II) metalation were 

confirmed by the investigation of the three available dialdoses. Additionally, the participation 

of both of the most acidic, anomeric hydroxy groups to the chelate rings seems to be a 

prerequisite for dimetalation. In fact, this was confirmed by the crystal structure of 

[Pd2(tmen)2(Ery4aldfH−4-κO
1,4

:κO
2,3

)] (40). 

 

3.8 Metalation of di- and oligosaccharides  

 In discussing the metalation of di- and oligosaccharides, the building units of the 

investigated carbohydrate has to be taken into account. A fructose-containing di- or 

trisaccharide should not be compared to a di- or trisaccharide that only contains 

glucopyranose units and vice versa. The conservative shift patterns of similar coordination 

modes and moreover, identical CIS values for similar palladium(II)–glycose complexes 

enabled the identification of metalated species and the assignment of corresponding 
13

C NMR 

values. Combining the previous results of hex(ul)osides and hex(ul)oses the metalation sites 

and the order of metalation can be reliably predicted.  

Starting with the fructose-containing di- and trisaccharides, one had to distinguish whether the 

fructose‘s O2/O3 diolato unit is blocked by the glycosidic linkage or not. In the case of 

D-maltulose, D-lactulose, D-leucrose and D-palatinose the glycosidic linkage was formed by 

fructose‘s O4, O5 or O6 remainining the O2/O3 diolato unit ready for metalation. At 

equimolar Pd-tmen/disaccharide solutions this diolato unit was metalated exclusively in 

accordance with the κO
2,3

-β-D-Fruf 2,3H−2 species which was found to be the most stable 

monometalated fructose species. With D-leucrose which cannot provide the fructofuranose 

form, the pyranose form was κO
2,3

-chelated. In the case of D-sucrose and D-turanose this 

preferred κO
2,3

-diolato unit was not available for metalation and the variety of species 
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increased. The two investigated trisaccharides do not provide the fructose‘s favored κO
2,3

-

chelation site, therefore the gluco- and galactopyranoside units were stepwise metalated 

according to the results of the corresponding methyl glycopyranosides. 

The investigation of the selected β-(1→4)-glycosidic-linked disaccharides confirmed the 

previous results. In a first step, the most acidic, anomeric hydroxy groups of the reducing 

glucopyranose unit participated in κO
1,2

-chelation by Pd-tmen. The α/β anomeric ratio 

corresponded to the ratio of monometalated D-glucose. The (1→4)-glycosidic linkage 

impaired further metalation of the reducing glucopyranose unit. Therefore, in a second step, 

the non-reducing α-D-glucopyranoside/β-D-galactopyranoside units were metalated according 

to the results of the corresponding methyl glycopyranoside. No further restrictions for the 

metalation were detected a fact which is confirmed by the full metalation of cellulose. 

Transferring the results to general rules so far, (1) a preference for the participation of the 

most acidic, anomeric hydroxy group to the chelate rings is realized. (2) κO
1,2

-diolato 

chelation is preferred to κO
1,3

-diolato chelation and cis-vicinal diolato chelation is preferred to 

trans-diequatorial diolato chelation. (3) The reducing units of the disaccharides react in the 

same way as the corresponding hex(ul)oses, the non-reducing units of the di- and 

trisaccharides react in the same way as the corresponding methyl hex(ul)osides. (4) Therefore, 

the shift patterns and CIS values of the monomeric model compounds can be used for the 

assignment of the oligomeric metalated species.  

Within the investigated α-(1→4)-glycosidic linked di- and oligosaccharides the formulated 

rules did not completely explain the detected metalation pattern. D-Melibiose is the only 

disaccharide which could be dimetalated at the reducing glucopyranose unit. With 

monometalation, as expected, α-D-Galp-(1→6)-α-D-Glcp1,2H−2 was found to be the main 

species accompanied  by small amounts of α-D-Galp-(1→6)-β-D-Glcp1,2H−2 and α-D-Galp-

(1→6)-α-D-Glcf 1,2H−2. Adding a second Pd-tmen fragment, the galactopyranoside unit of 

α-D-Galp-(1→6)-β-D-Glcp1,2H−2 was metalated. Only with a third Pd(tmen) fragment 

dimetalation of the reducing glucopyranose unit was achieved with the α-D-Galp3,4H−2-

(1→6)-β-D-Glcp1,2;3,4H−4 species which provided the β-configuration for dimetalation. In 

agreement with the D-turanose‘s results, another rule can be postulated. (5) Starting with 

κO
1,2

-diolato chelation of the most acidic, anomeric hydroxy group, each unit of a 

disaccharide had to be metalated first before dimetalation occurs. 
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Finally, investigations of the maltose-derived oligosaccharides and the cyclodextrins revealed 

the wide influence of intramolecular hydrogen bonds to the metalation. Whereas the mono- 

and dimetalation of D-maltose could be explained by the above-listed rules, with 

D-maltotriose the metalation of the terminal α-D-glucopyranoside unit deviated from the 

expected κO
2,3

-diolato chelation. Instead, the Pd(tmen) fragment coordinated at the κO
3,4

-

diolato unit of the terminal α-D-glucopyranoside which has so far been uncommon within the 

investigations. An intramolecular hydrogen bond O2–H···O3′ caused the displacement of the 

expected κO
2,3

-diolato chelation. In general, a strong hydrogen-bonding network passed along 

the hydroxy groups O2–H and O3–H of an α-(1→4)-linked glucopyranose chain. In the 

cyclodextrins‘ crystal structures 42–45, for example, every other κO
2,3

-diolato site was 

metalated because the uncoordinated hydroxy groups O2–H and O3–H formed hydrogen 

bonds to the adjacent alkoxido functions. For this reason, a complete metalation of the 

cyclodextrins was never achieved. Returning to D-maltotriose, these intramolecular hydrogen 

bonds stabilized a metalation pattern which deviated from the expected one. With 

monometalation, the species α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-α-D-Glcp2,3H−2 and α-D-

Glcp-(1→4)-α-D-Glcp-(1→4)-β-D-Glcp2,3H−2 were detected. This unusual κO
2,3

-chelation 

mode at the reducing D-glucopyranose unit could only be explained by a stabilization by an 

intramolecular hydrogen bond O2′–H···O3″. 

The investigation of D-maltoheptaose revealed the limits of a controlling hydrogen-bonding 

network which was found for D-maltotriose and the cyclodextrins. With such a controlling 

hydrogen-bonding network a resulting well-defined complex should have provided a well-

defined 
13

C NMR spectrum as well. The broad signals gave evidence that, contrary to the 

treatment of Pd-tmen and D-maltotriose, the metalation of D-maltoheptaose was less regular. 

This indicated a weakening of the hydrogen bonds‘ controlling function for the metalation 

which is found for D-maltotriose. Furthermore, looking at solutions of amylose in Pd-tmen 

and inspite of the weakened controlling function of the hydrogen bonds, only half of the 

available κO
2,3

-diolato sites were metalated. It is presumed that the hydrogen-bonding 

network did not control the complete polysaccharide. Nevertheless, in restricted domains 

along the polysaccharide, the hydrogen bonds determine the metalation of only every other 

κO
2,3

-diolato site , although it could not be clarified if this is a statistical effect or caused by 

two competing patterns.  
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4 Summary 

 

This thesis deals with carbohydrate complexes of palladium(II) and their characterization via 

NMR spectroscopy and X-ray analysis. The aim of this work was the further investigation of 

Pd
II
N2-complexes with more reactive carbohydrates such as the ketoses and dialdoses and 

with di-, tri- and oligosaccharides. Also, the coordination chemistry of Pd
II
N2-carbohydrate 

complexes in neutral aqueous solution and the dynamic behavior of methyl pentosides and 

pentoses was further investigated. Therefore, in a first step, the pool of Pd
II
N2-fragments was 

extended with regard to a higher resistance to the reduction to palladium(0) and a better 

crystallization tendency. The first part of this work deals with a series of seven new Pd
II
N2 

fragments (see Section 2.1). Pd-dmen, Pd-tmen, Pd-tmchxn, Pd-teen, Pd-tn, Pd-bpy and 

Pd-phen were successfully synthesized and five crystal structures were obtained, 

[Pd(tmen)(OH)2] · 2 H2O (1), [Pd(tmchxn)(CO3)] · 6 H2O (2), [Pd(teen)Cl2] (4), 

[Pd(bpy)(OH)2] · 5 H2O (5) and [Pd(phen)(OH)2] · 5 H2O (6). Pd-tmen is a less polar solvent 

than Pd-en or Pd-chxn and, additionally, the steric demand increased because of the 

methylation which is possibly a further reason for the differing coordination behavior of 

Pd-tmen to Pd-en. The application of Pd-teen did not increase the advantages of Pd-tmen 

because the coordination tendency to the carbohydrates decreased and only syrupy substances 

could be obtained from attempts to crystallize a Pd(teen) complex. Finally, the synthesis of 

Pd-tmchxn combined the positive properties of Pd-chxn and Pd-tmen. However, 2 showed a 

higher formation and crystallization tendency than a corresponding carbohydrate complex, 

therefore further investigations were omitted. Nevertheless, it should be mentioned that a 

13
C NMR investigation of Pd-tmchxn with the various carbohydrates is lacking. The 

structures 5–8 revealed a repeating stacked packing of the Pd(bpy) and Pd(phen) fragments. 

Two structures were obtained for ethane-1,2-diol (7) and anhydroerythritol (8) both of which 

provide only one diolato unit. Attempts to treat Pd-bpy and Pd-phen with a carbohydrate 

providing more than one diolate unit resulted in insoluble precipitates. Obviously, molecules 

which do not support this stacked packing cannot be crystallized.  

 It was possible to crystallize various polyol complexes with the mentioned Pd
II
N2 fragments 

(see Section 2.3). The crystal structures 9–17 revealed a marked difference in the formation of 

the hydrogen-bonding network depending on the used Pd
II
N2 fragment. Comparing the crystal 

structures of the Pd
II
 derivatives of the polyols allitol (16, 17) and mannitol (11, 12, 

[58]
), in 
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the structures of the Pd(tmen) fragment the polyols‘ remaining hydroxy groups formed 

exclusively intramolecular hydrogen bonds whereas in the structures with other Pd
II
N2 

fragments the hydroxy groups formed hydrogen bonds to adjacent water molecules. In the 

case of allitol, an alternating bonding mode resulted from this effect. Probably, the 

hydrophobic tmen ligands expelled water molecules from the polyol‘s closest vicinity and 

enforced the intramolecular hydrogen bonds in this way, whereas non-alkylated chelate 

ligands such as en or chxn acted as hydrogen-bond donors to arrange water molecules close to 

the complex. With the crystal structures of dulcitol (13, 14, 
[58]

) the S-shaped motif of dulcitol 

is independent of the Pd
II
N2 fragments underlining the importance of the δ hydrogen bond.  

The acid-dependent formation of bridged palladium species and their interaction with suitable 

polyols was described in Section 2.4. Along the titration curve, the addition of defined 

amounts of nitric acid to Pd-en/polyol solutions led to the formation of a binuclear hydroxido-

bridged species Pd2H−3 and further species of the common formula [(Pd
II
N2)n(μ2-OH)n]

n+
 with 

n = 3 and 4 close to neutral pH. A series of Pd4(μ-OH)4-derived threo-tetraolato tetracations 

18–23 was crystallized with various polyols which provide a threo-configured tetraol unit. 

Additionally, a Pd3(μ-OH)3-derived triolato trication 24 was crystallized in the form of a 

dimer by the elimination of a [(R,R-chxn)2Pd]
2+

 cation. Furthermore, the structure of the 

hexanuclear cation 25 pointed to the possibility of consecutive reactions that eliminate the 

available palladium species from the equilibria that determine the titration curve. 

Attempts to crystallize a Pd4-tetraolato species stabilizing the open-chain form of D-threose 

yielded a crystal structure with a decomposition product, namely dihydroxy-malonic acid. 

Although the hydrated mesoxalato complex was not the attempted product, 26 was the first 

structure of a ketone hydrate acting as a ligand for coordination of Pd
II
N2-fragments. 

In Section 2.6, within the inositols neo- and scyllo-inositol formed different crystal structures 

with Pd-en
[76]

 and Pd-tmen (28, 29), whereas with D-chiro-inositol a crystal structure was 

only obtained with the Pd(en) fragment (27). 

Evidence was collected for the maintenance of a pyranose‘s conformational fluctuation in the 

case of a cis-vicinal chelator in the Sections 2.7 and 2.8. Conformational fluctuation of this 

type was investigated in a couple of aldopentopyranosides, namely methyl β-D-arabino-

pyranoside, methyl α-D-lyxopyranoside, β-D-ribopyranoside and methyl β-D-xylopyranoside 

as the basis for a discussion of the possible dynamic behavior of similar chelates formed by 

the parent glycoses. As a result, for cis-vicinal diol functions, anellation of a chelate and a 
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pyranose ring did not freeze the interconversion of the two chair conformers in terms of NMR 

spectroscopy. Instead, intermediate coupling constants could serve as a measure of the 

conformational equilibrium‘s position. In agreement with the number of cis-vicinal diol 

functions, the investigated methyl pyranosides of lyxose, ribose and xylose exhibit one, two 

and zero fluctuating palladium(II) chelates, respectively. The two crystal structures of the 

monometalated species of methyl α-D-lyxopyranoside (30) and methyl β-D-xylopyranoside 

(31) completed the methyl pentopyranosides‘ investigation.  

The metalation of pentoses in Pd
II
-containing solvents influenced the conformation of 

pyranoses in various cases. Four cases could be detected: (1) metalation did not affect the 

pyranose‘s initial conformation, (2) metalation caused an inversion of pyranose‘s initial 

conformation, (3) metalation froze a fluctuating pyranose in one conformation and 

(4) metalation induced conformational fluctuation of a pyranose. Different effects were 

responsible for these results – the kind of metalation, electrostatic interactions and hydrogen 

bonding. The effects of trans-vicial and syn-diaxial bonded palladium fragments forcing the 

pyranose to assume one defined conformation were easy to interpret. Cis-vicinal metalation 

affecting the pyranose‘s conformation was controlled by intra- and intermolecular hydrogen 

bonds. Testing all the detected species for the appearance of the anomeric effect at C1, 

electrostatic repulsion of all substituents of the pyranose ring and hydrogen bonding clearly 

dominated the conformational behavior of metallated pentopyranoses. The dimetalated 

species of D-arabinose (32) and D-lyxose (33) could be crystallized with Pd-tmen. 

Investigating the reaction of coordinating agents such as Pd-chxn or Pd-tmen with the methyl 

hex(ul)osides provided characteristic shift patterns which allowed the identification of the 

corresponding signals in a di- or oligosaccharide‘s 
13

C NMR spectrum (see Section 2.9). 

Furthermore, the preferred coordination modes, besides the most acidic O1 atom, were 

examined. The κO
1,2

-diolato coordination mode was preferred to the κO
1,3

-diolato 

coordination mode, within the κO
1,2

-diolato coordination mode cis-vicinal chelation was 

preferred to trans-diequatorial chelation. The orientation of the anomeric hydroxy group has 

only minor effects on the chelation modes. Therefore, it was not surprising to find the cis-

vicinal diolato coordination in the structures 34 and 35 of methyl α-D-galactopyranoside and 

in structure 36 of methyl α-D-mannopyranoside. Comparing the α- and β-form of the methyl 

D-fructo-furanosides κO
1,3

-diolato chelation was detected for both anomers and confirmed in 

38. Nevertheless a cis-vicinal orientation of the hydroxymethyl group and the hydroxy group 

at C3 made the chelation easier.  
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Section 2.11 deals with the Pd
II
N2 complexes of the hexuloses which were characterized for 

the first time. With [Pd2(tmen)2(α-D-Tagp1,2;3,4H−4-κO
1,2

:κO
3,4

)] · 8 H2O (39), the first 

Pd
II
N2-complex of a ketopyranose was obtained. The complete investigation of the hexuloses 

revealed the reasons for the favored and unfavored coordination modes and extended the 

knowledge of carbohyrates‘ metalation with Pd
II
N2-fragments. 

In the literature, less is known about the class of dialdoses. Therefore, xylo-, galacto- and 

D-manno-dialdose were prepared and investigated and, additionally, a crystal structure of 

[Pd2(tmen)2(Ery4aldfH−4-κO
1,4

:κO
2,3

)]  · 12 H2O (40) was obtained. To sum up the results of 

Section 2.12, the second aldehyde function of a dialdose in aqueous solution always formed 

an aldehyde hydrate either with a water molecule or by intramolecular ring formation as with 

xylo- and D-manno-dialdose. The general rules of palladium(II) metalation were confirmed by 

the investigation of the three available dialdoses, additionally the participation of both of the 

most acidic, anomeric hydroxy groups to the chelate rings seemed to be a prerequisite for 

dimetalation.  

The last part of this work deals with the investigation of fructose-containing di- and 

trisaccharides, β-(1→4)-glycosidic- and α-(1→4)-glycosidic-linked disaccharides in Pd-tmen. 

Transferring the results to general rules, (1) a preference for the participation of the most 

acidic, anomeric hydroxy group to the chelate rings was realized. (2) κO
1,2

-diolato chelation 

was preferred to κO
1,3

-diolato chelation and cis-vicinal diolato chelation was preferred to 

trans-diequatorial diolato chelation. (3) The reducing units of the disaccharides reacted in the 

same way as the corresponding hex(ul)oses, the non-reducing units of the di- and 

trisaccharides reacted in the same way as the corresponding methyl hex(ul)osides. 

(4) Therefore, the shift patterns and CIS values of the monomeric model compounds were 

used for the assignment of the oligomeric metalated species. Within the investigated 

α-(1→4)-glycosidic linked di- and oligosaccharides the formulated rules did not completely 

explain the detected metalation pattern. In agreement with the D-turanose‘s and D-melibiose‘s 

results another rule can be postulated: (5) starting with κO
1,2

-diolato chelation of the most 

acidic, anomeric hydroxy group, each unit of a disaccharides had to be metalated first before 

dimetalation occurred. 

Finally, investigations of the maltose-derived oligosaccharides and the cyclodextrins revealed 

the wide influence of intramolecular hydrogen bonds to the metalation. Four crystal structures 

42–45 were obtained from conversions of the cyclodextrins with Pd-tmen and Pd-teen.  
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Independent of the stoichiometry, only half the cyclodextrins‘ κO
2,3

-diolato sites were 

alternatingly metalated in all experiments. Again, the strong intramolecular hydrogen bonds 

between an unmetalated κO
2,3

-diolato site to the adjacent glucopyranoside unit‘s metalated 

κO
2,3

-diolato sites impaired complete deprotonation. 

The conclusion is that, despite the numerous hydroxy functions which are provided by the 

carbohydrates, rules control the coordination of metal probes as the Pd
II
N2 fragments to the 

various carbohydrates. The introduction of new palladium(II) fragments allowed the 

investigation of highly-reactive compounds as the dialdoses and revealed the influence of the 

hydrogen bonds to the metalation. The investigation of di- and trisaccharides in metalating 

agents was intensified and regularities were elucidated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



5 Experimental Section 

207 

 

5 Experimental Section 

5.1 Methods and materials 

Reagent grade chemicals were purchased from Aldrich, Fluka, Merck, Omicron or 

TCI and were used as supplied. The synthesis of [Pd
II
N2(OH)2] and [Pd

II
N2(OD)2] was carried 

out under an atmosphere of nitrogen using standard Schlenk techniques. All Pd
II
N2/ 

carbohydrate complexes were prepared under air atmosphere and ice-bath cooling. For NMR 

investigation, the carbohydrates were dissolved in stoichiometric proportions, e.g. 2:1 (Pd-

tmen: carbohydrate) or 4:1:3 (Pd-en:polyol:HNO3) in 1 mL of the palladium-containing 

solvent and were stirred minimum 2 hours up to 24 hours at 4 °C. To obtain the yellow 

crystals in a good quality, crystallization was interrupted typically at a yield of 25%. The 

elemental analyses were collected on an Elementar Vario EL Apparatur. 

 

5.2 Reagents and solvents 

 

(1R,2R)-cyclohexane-1,2-diamine    ≥ 98.0% (Fluka) 

1,10-phenanthroline monohydrate    ≥ 99.0% (Fluka) 

1,2-O-isopropylidene-α-D-glucofuranose   ≥ 98.5% (Fluka) 

2,2′-bipyridine       ≥ 98% (Fluka) 

2,2-dimethoxypropane      ≥ 99.0% (Acros)  

α-cyclodextrin       98% (Wacker) 

-cyclodextrin       98% (Wacker) 

acetic acid conc.       99.8% (Riedel-de Haën) 

acetone        ≥ 99.5% (Fluka) 

allitol        – (Omicron Biochemicals) 

amylose       – (Merck) 

anhydroerythritol       97% (Aldrich) 

catalase (Bovine)      2950 u/mg solid (Sigma RBI) 

cellulose       synthesis 

chloroform       p.a. ≥ 99.8% (Fluka) 

D-altritol       – (TCI Europe) 

D-arabinose       > 99.0% (Fluka) 

D-arabitol        ≥ 99% (Fluka) 
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D-cellobiose       > 99.0% (Fluka) 

D-chiro-inositol     98% (New Zealand Pharmaceuticals) 

D-erythrose        synthesis 

deuterium oxide (D2O)      99.90% (Eurisotop) 

D-fructose       > 99.0% (Fluka) 

D-galactose       ≥ 99.0% (Fluka) 

D-glucose monohydrate     ≥ 99.5% (Fluka) 

dichlormethane      p.a. (Fluka) 

diethyl ether        ≥ 99.8% (Fluka) 

D-lactose       reinst (Grüssing) 

D-lactulose       > 98.0% (Fluka) 

D-leucrose       ≥ 98.0% (Fluka) 

D-lyxose        99% (ABCR) 

D-maltoheptaose      95.0% (Fluka) 

D-maltose       ≥ 99.0% (Fluka) 

D-maltotriose       – (Senn Chemicals) 

D-maltulose       ≥ 98.0% (Sigma Aldrich) 

D-mannitol        ≥ 99.5% (Fluka) 

D-mannose        ≥ 99% (Fluka) 

D-melecitose       > 99.0% (Fluka) 

D-melibiose       > 98.0% (Merck) 

DMF        p.a. (Fluka) 

Dowex 1x2 16-100      – (Supelco) 

D-palatinose       – (Südzucker) 

D-psicose        > 98.0% (TCI Europe) 

D-raffinose       > 99.0% (Fluka) 

D-ribose        99% (Acros) 

D-sorbitol       ≥ 99.5% (Fluka) 

D-sucrose       ≥ 99.5% (Fluka) 

D-tagatose        96% (ABCR) 

D-threitol       ≥ 98.0% (Fluka) 

D-threose       – (Omicron) 

α,α-D-trehalose      > 99.0% (Fluka) 

D-turanose       ≥ 98.0% (Sigma Aldrich) 



5 Experimental Section 

209 

 

dulcitol        ≥ 99% (Fluka) 

D-xylose       > 98.0% (Fluka) 

erythritol        ≥ 99% (Fluka) 

ethane-1,2-diamine       99% (Grüssing) 

ethanol        ≥ 99.8% (Fluka) 

ethyl acetate       p.a. (Fluka) 

ethylenglycol        ≥ 99.5% (Fluka) 

formaldehyde        37% (Acros) 

formic acid aq.      p.a. (Fluka) 

galactose oxidase (Dactylium dendroides)   6,710 u /g solid (Sigma) 

glycerine anhydrous      ≥ 99.5% (Fluka) 

hydrochloric acid conc.      37% (Biesterfeld Graën) 

Ion Exchange Resin III (OH
−
)    – (Merck) 

Levoglucosan = 1,6-Anhydro--D-glucopyranose   > 99% (Glycon) 

L-gulose        > 99.0% (TCI Europe) 

L-iditol        – (Senn Chemicals) 

L-sorbose       ≥ 98% (Fluka) 

L-threitol       ≥ 98.5% (Fluka) 

methanol        ≥ 99.9% (Biesterfeld Graën) 

methyl α-D-fructofuranoside     synthesis 

methyl α-D-galactopyranoside     ≥ 98% (Fluka) 

methyl α-D-glucopyranoside     ≥ 99% (Fluka) 

methyl α-D-lyxopyranoside     synthesis 

methyl α-D-mannopyranoside     ≥ 98% (Fluka) 

methyl β-D-arabinopyranoside    synthesis 

methyl β-D-fructofuranoside     synthesis 

methyl β-D-fructopyranoside     synthesis 

methyl β-D-galactopyranoside     ≥ 98% (Fluka) 

methyl -D-glucopyranoside     ≥ 99% (Fluka) 

methyl -D-ribofuranoside      synthesis  

methyl -D-ribopyranoside      > 99% (Glycon) 

methyl -D-xylopyranoside      ≥ 99% (TCI Europe) 

myo-inositol        ≥ 98% (Fluka) 

N,N′-dimethylethane-1,2-diamine    ≥ 98.0% (Fluka) 
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N,N,N′,N′-tetraethylethane-1,2-diamine   ≥ 99.0% (Acros)  

N,N,N′,N′-tetramethylethane-1,2-diamine   ≥ 99.5% (Sigma Aldrich) 

neo-inositol       synthesis 

nitric acid       p.a. (Fluka) 

palladium(II)chloride , purum    60% Pd (Fluka, AppliChem) 

petrolether       p.a. (Fluka) 

potassium chloride      p.a. (Fluka) 

potassium hydroxide      p.a. (Merck) 

propane-1,3-diamine      99.0% (Aldrich) 

p-toluenesulfonic acid     p.a. (Fluka) 

ribitol        > 99.0% (Fluka) 

scyllo-inositol       synthesis 

silver(I)oxide       > 99.0% (Merck) 

sodium hydrogen carbonate     p.a. (Fluka) 

sodium hydroxide        ≥ 98% (Fluka) 

sodium periodate      99.0% (Acros) 

sodium thiosulfate      p.a. (Fluka) 

sulphuric acid       p.a. (Fluka) 

toluene        p.a. (Fluka) 

triethylamine       99% (Riedel-de Haën) 

trifluoroacetic acid      p.a. (Fluka) 

water deionized     house installation with ion exchange resin 

xylitol         ≥ 99% (Fluka) 

 

 

5.3 NMR spectroscopy 

NMR spectra were recorded at room temperature on a Jeol Eclipse 400 spectrometer 

(
1
H: 400 MHz, 

13
C{

1
H}: 101 MHz) or a Jeol Eclipse spectrometer 500 (

1
H: 500.16 MHz, 

13
C{

1
H}: 125.77 MHz). The signals of the deuterated solvent (

13
C{

1
H}) and the residual 

protons therein (
1
H) were used as an internal secondary reference for the chemical shift. 

When D2O was used as a solvent, one drop of methanol was added to the sample tube 

(5 mm) in order to obtain a reference signal (δ = 49.5 ppm) in the 
13

C{
1
H} NMR spectra. 

When necessary, the 
1
H and 

13
C{

1
H} NMR signals were assigned by means of 

1
H–

1
H-COSY 

or 
1
H–

1
H-DFQ-COSY, DEPT135, 

1
H–

13
C-HMQC and 

1
H–

13
C-HMBC experiments in 
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solutions of [Pd
II
N2(OD)2] (0.45 M) in D2O. DQF-COSY differs from simple COSY in that 

the former suppresses the detection of singlets (these often intense signals obscure nearby 

signals and do not supply useful coupling information) and provides better resolution of 

crosspeaks near the diagonal, and is thus usually preferred over COSY. Shift differences are 

given as δ(Ccomplex)−δ(Cfree polyol). The values for the free sugars are determined for the 

respective sugar in its neutral aqueous solution, and were referenced to 49.5 ppm for the 

13
C NMR signal of methanol. 

  

5.4 Crystal structure determination and refinement 

Crystals suitable for X-ray crystallography were selected with the aid of a polarization 

microscope (Leica MZ6 with polarization filters), covered with liquid paraffin, mounted on 

the tip of a glass fiber and investigated at 200 K on a Nonius Kappa CCD diffractometer or a 

Oxford XCalibur 3 diffractometer with graphite-monochromated Mo K radiation 

( = 0.71073 Å). The structures were solved by direct methods (SHELXS-97
[116]

 or SIR97
[117]

) 

and refined by full-matrix, least-squares calculations on F
2
 (SHELXL-97

[116]
). Anisotropic 

displacement parameters were refined for all non-hydrogen atoms. The refined structures 

were analyzed with PLATON
[118]

 and visualized with ORTEP-3
[119]

 and SCHAKAL
[120]

. Further 

details on the structures are listed in the Appendix, Tables 6.41–6.55. The values given there 

are defined as follows: 

R(F ) = 
Σ ||Fo| − |Fc|| 

(5.1) 
Σ |Fo| 

 

 

Rint = 
Σ |Fo

2
 − Fo

2
| 

(5.2) 
Σ Fo

2
 

 

 

                                             Rw(F 

2
) = 

Σ w (Fo
2
 – Fc

2
)

2
| 

(5.3) 
Σ w ( Fo

2
)

2 

 

 

                                                      S = 
Σ w (Fo

2
 – Fc

2
)

2
| 

(5.4) 
Nhkl – Nparameter 

 

The weighting factors w and P are defined as follows: 

w = 
1 

         with       P =  
max ( Fo

2
,0) + 2 Fc

2
 

(5.5) 
σ 

2
 ( Fo

2
) + (xP)

2
 + yP 3 

 

√ 

√ 
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In analogy to SHELXL-97, the values of the parameters x and y were adopted minimize the 

variance of w (Fc
2
 / Fo

2
) for several (intensity-ordered) groups of reflexes. 

 The coefficient Ueq is defined as: 

Ueq = 
1 

Σ
3

i=1 Σ
3

j=1
Uijaiajai

*
aj

*
 (5.6) 

3 

 

5.4 Preparation of palladium(II) compounds 

5.4.1 [Pd(en)Cl2] 

To a suspension of PdCl2 (5.00 g, 28.2 mmol) in water (25 mL) was added HCl (5.00 mL, 

37%), and the mixture was stirred for 10 min until a brown solution was formed. Under 

stirring, a pink precipitate of [Pd(en)2][PdCl4] formed on the dropwise addition of ethane-1,2-

diamine (6.04 g, 100.50 mmol) in water (15 mL). After heating to 45 °C, the addition of 

ethane-1,2-diamine solution was continued until the precipitate redissolved to give a pale 

yellow solution. The solution was filtered and acidified with HCl (semi-conc.) to precipitate 

[Pd(en)Cl2]. After the suspension was cooled to about 4 °C for a few hours, the yellow 

complex was filtered through a G4 filter, washed with cold water (5 × 20 mL) and dried in 

vacuo. Further product was collected by concentrating the filtrate. The yield was 6.54 g 

(96%). Anal. Calcd for C2H8Cl2N2Pd: C, 10.12; H, 3.40; N, 11.80; Cl, 29.86. Found: C, 

10.16; H, 3.36; N, 11.77; Cl, 29.83.  

 

5.4.2 [Pd(en)(OH)2] (0.45 M) 

[Pd(en)Cl2] (2.67 g, 11.25 mmol), Ag2O (2.80 g, 12.08 mmol) and water (25 mL) were stirred 

under nitrogen with exclusion of light at 40 °C. After 15 min AgCl was removed by filtration 

through a G4 filter under nitrogen atmosphere, leaving a yellow solution. For the preparation 

of [Pd(en)(OD)2], D2O was used. The alkaline [Pd(en)(OH)2] solution (pH 12 for 0.45 M) was 

kept under a nitrogen atmosphere at 4 °C to prevent absorption of carbon dioxide. The exact 

concentration of the solution was determined by ICP with a Varian-Vista simultaneous 

spectrometer. 
13

C{
1
H} NMR (100.63 MHz, D2O): δ 46.4 (2C, CH2). 
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5.4.3 [Pd(R,R-chxn)Cl2] 

To a suspension of PdCl2 (5.00 g, 28.2 mmol) in water (50 mL) at 45 °C potassium chloride 

(4.20 g, 56.3 mmol) was added, and the mixture was stirred for 10 min until a brown solution 

of K2[PdCl4] was formed. (1R,2R)-cyclohexane-1,2-diamine (3.22 g, 28.2 mmol) dissolved in 

water (95 mL) and HCl (5 mL, 37%) was slowly added. After the reaction mixture was stirred 

for 1 h at 45 °C, the pH was raised by a solution of NaOH (2 M) to 7.0, and the yellow 

complex precipitated from the solution. The reaction mixture was stirred for other 3 h at 45 

°C, (during the first hour, the pH value was repeatedly adjusted). After the suspension was 

cooled to room temperature, the yellow complex was filtered through a G4 filter, washed with 

cold water (5 × 20 mL) and dried in vacuo. The yield was 7.7 g (93%). Anal. Calcd for 

C6H14Cl2N2Pd: C, 24.72; H, 4.84; N, 9.61; Cl, 24.32. Found: C, 24.70; H, 4.73; N, 9.58; Cl, 

24.35. 
13

C{
1
H} NMR (100.63 MHz, DMSO-d6): δ 23.7 (2C, γ-CH2), 32.2 (2C, β-CH2), 61.0 

(2C, α-CH2). 

 

5.4.4 [Pd(R,R-chxn)(OH)2] (0.45 M) 

[Pd(R,R-chxn)Cl2] (3.28 g, 11.25 mmol), Ag2O (2.80 g, 12.08 mmol) and water (25 mL) were 

stirred under nitrogen with exclusion of light at 40 °C. After 2 h AgCl was removed by 

filtration through a G4 filter under nitrogen atmosphere, leaving a yellow solution. Solutions 

of higher or lower concentration were prepared by varying the amount of water. The alkaline 

[Pd(R,R-chxn)(OH)2] solution (pH 12 for 0.45 M) was kept under a nitrogen atmosphere at 

4 °C to prevent absorption of carbon dioxide. The exact concentration of the solution was 

determined by ICP with a Varian-Vista simultaneous spectrometer. 
13

C{
1
H} NMR (100.63 

MHz, D2O): δ 24.3 (2C, γ-CH2), 33.7 (2C, β-CH2), 60.9 (2C, α-CH2).  

 

5.4.5 N,N,N′,N′-tetramethyl-(1R,2R)-cyclohexane-1,2-diamine (tmchxn) 

According to literature,
[47]

 N,N,N′,N′-tetramethyl-(1R,2R)-cyclohexane-1,2-diamine (tmchxn) 

was prepared from (1R,2R)-cyclohexane-1,2-diamine with use of the Eschweiler-Clark 

methylation of amines as follows: (1R,2R)-cyclohexane-1,2-diamine  (8.00 g, 0.07 mol) was 

cooled to 0 C. Following the dropwise addition of 50 mL of 88% aqueous formic acid, 

75 mL of 37% aqueous formaldehyde were added. Gradual heating to 60 C initiates rapid gas 

evolution. The reaction was allowed to proceed without further heating until gas evolution 

subsided and was then heated to 80 C for 24 h. The reaction mixture was cooled, acidified 
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 with 20% aqueous HCl, and extracted three times with 100-mL portions of ether. The 

aqueous layer was stirred in an ice bath and brought to pH 12 by the dropwise addition of 

40% aqueous NaOH without allowing the internal temperature to exceed 25 C. Following the 

separation of the resulting amine/ aqueous layers, the aqueous layer was further extracted 

three times with 100-mL portions of ether. These combined organic layers were dried over 

KOH pellets by stirring. Distillation in vacuo provided tmchxn, the yield was 5.72 g (48%). 

1
H NMR (400 MHz, CDCl3): δ 1.11 (m, 4H, CH2), 1.74 (m, 2H, CH2), 1.84 (m, 2H, CH2), 

2.27 (s, 12H, CH3), 2.38 (m, 2H, CH). 
13

C{
1
H} NMR (100 MHz, CDCl3): δ 21.7, 24.5, 38.9 

(broadened signal), 62.7.  

 

5.4.6 [Pd(tmchxn)Cl2] 

KCl (4.20 g, 56.3 mmol) was added to a suspension of PdCl2 (5.00 g, 28.2 mmol) in water 

(50 mL) at room temperature, and the mixture was stirred for 10 min until a brown solution of 

K2[PdCl4] was formed. N,N,N′,N′-tetramethyl-(1R,2R)-cyclohexane-1,2-diamine (4.80 g, 

28.2 mmol) dissolved in water (95 mL) and HCl (5 mL, 37%) was slowly added. After the 

reaction mixture was stirred for 15 minutes, the pH was raised by a solution of NaOH (1 M) to 

6.5, and the dark green complex precipitated from the solution. The reaction mixture was 

stirred for other 1.5 h at room temperature, (during the first hour, the pH value was repeatedly 

adjusted). After the suspension was cooled to room temperature the green complex was 

filtered through a G4 filter, washed with cold water (5 × 20 mL) and dried in vacuo. The yield 

was 7.45 g (76%). Anal. Calcd for C10H22Cl2N2Pd: C, 34.55; H, 6.38; N, 8.06; Cl, 20.40. 

Found: C, 33.63; H, 5.79; N, 7.87. 

 

5.4.7 [Pd(tmchxn)(OH)2] (0.45 M) 

[Pd(tmchxn)Cl2] (3.91 g, 11.25 mmol), Ag2O (2.90 g, 12.51 mmol) and water (25 mL) were 

stirred under nitrogen with exclusion of light at 40 °C. After 1 h AgCl was removed by 

filtration through a G4 filter under nitrogen atmosphere, leaving a yellow solution. The 

alkaline [Pd(tmchxn)(OH)2] solution (pH 12 for 0.45 M) was kept under a nitrogen 

atmosphere at 4 °C to prevent absorption of carbon dioxide. 
13

C{
1
H} NMR (100.63 MHz, 

D2O): δ 23.8 (2C, γ-CH2), 24.6 (2C, β-CH2), 42.9 (2C, CH3), 48.7 (2C, CH3), 71.5 (2C, 

α-CH2).  
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5.4.8 [Pd(dmen)Cl2] 

To a suspension of PdCl2 (5.00 g, 28.2 mmol) in water (170 mL), HCl (5.00 mL, 37%) was 

added, and the mixture was stirred for 10 min until a brown solution was formed. Under 

stirring, N,N′-dimethylethane-1,2-diamine (6.0 g, 67.96 mmol) in water (180 mL) was added 

dropwise to give a pale yellow solution. The solution was filtered and acidified with HCl 

(semi-conc.) to precipitate [Pd(dmen)Cl2]. After stirring for 30 min, the yellow complex was 

filtered through a G4 filter, washed with cold water and dried in vacuo. The yield was 4.68 g 

(63%). Anal. Calcd for C4H12Cl2N2Pd: C, 18.10; H, 4.56; N, 10.55; Cl, 26.71. Found: C, 

17.93; H, 4.40; N, 10.47; Cl, 26.09.  

 

5.4.9 [Pd(dmen)(OH)2] (0.45 M) 

[Pd(dmen)Cl2] (1.79 g, 6.74 mmol), Ag2O (1.56 g, 6.73 mmol) and water (15 mL) were 

stirred under nitrogen with exclusion of light at 40 °C. After 30 min AgCl was removed by 

filtration through a G4 filter under nitrogen atmosphere, leaving a yellow solution. The 

alkaline [Pd(dmen)(OH)2] solution was kept under a nitrogen atmosphere at 4 °C to prevent 

absorption of carbon dioxide. 
13

C{
1
H} NMR (100.63 MHz, D2O): δ 38.4 (syn), 38.8 (anti) 

(2C, CH3), 53.5 (syn), 54.4 (anti) (2C, CH2). 

 

5.4.10 [Pd(tmen)Cl2] 

HCl (5.00 mL, 37%) was added to a suspension of PdCl2 (5.00 g, 28.2 mmol) in water 

(85 mL), and the mixture was stirred for 10 min until a brown solution was formed. Under 

stirring, on the dropwise addition of N,N,N′,N′-tetramethylethane-1,2-diamine (6.04 g, 

52.00 mmol) in water (15 mL) a yellow precipitate formed. After stirring for 30 min, the 

yellow complex was filtered through a G4 filter, washed with cold water and dried in vacuo. 

The yield was 7.68 g (93%). Anal. Calcd for C6H16Cl2N2Pd: C, 24.55; H, 5.49; N, 9.54; Cl, 

24.16. Found: C, 24.37; H, 5.36; N, 9.50; Cl, 24.12. 

 

5.4.11 [Pd(tmen)(OH)2] (0.45 M) 

[Pd(tmen)Cl2] (3.30 g, 11.24 mmol), Ag2O (2.80 g, 12.08 mmol) and water (25 mL) were 

stirred under nitrogen with exclusion of light at 40 °C. After 30 min AgCl was removed by 

filtration through a G4 filter under nitrogen atmosphere, leaving a yellow solution. For the 

preparation of [Pd(tmen)(OD)2] D2O was used. The alkaline [Pd(tmen)(OH)2] solution was 
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kept under a nitrogen atmosphere at 4 °C to prevent absorption of carbon dioxide. 
13

C{
1
H} 

NMR (100.63 MHz, D2O): δ 50.2 (4C, CH3), 62.1 (2C, CH2). 

 

5.4.12 [Pd(teen)Cl2] 

HCl (5.00 mL, 37%) was added to a suspension of PdCl2 (5.00 g, 28.2 mmol) in water 

(85 mL), and the mixture was stirred for 10 min until a brown solution was formed. Under 

stirring, on the dropwise addition of N,N,N′,N′-tetraethylethane-1,2-diamine (9.6 g, 

55.71 mmol) in water (90 mL) a yellow precipitate formed. After stirring for 15 min, the pH 

value of the solution was set to 6.5 with NaOH (2M). After another 15 min the yellow 

complex was filtered through a G4 filter, washed with cold water and dried in vacuo. The 

yield was 9.62 g (97%). Anal. Calcd for C10H24Cl2N2Pd: C, 34.35; H, 6.92; N, 8.01; Cl, 20.28. 

Found: C, 34.19; H, 6.84; N, 7.95; Cl, 20.37.  

 

5.4.13 [Pd(teen)(OH)2] (0.45 M) 

[Pd(teen)Cl2] (2.67 g, 11.25 mmol), Ag2O (2.80 g, 12.08 mmol) and water (25 mL) were 

stirred under nitrogen with exclusion of light at 40 °C. After 15 min AgCl was removed by 

filtration through a G4 filter under nitrogen atmosphere, leaving a yellow solution. For the 

preparation of [Pd(teen)(OD)2] D2O was used. The alkaline [Pd(teen)(OH)2] solution was kept 

under a nitrogen atmosphere at 4 °C to prevent absorption of carbon dioxide. 
13

C{
1
H} NMR 

(100.63 MHz, D2O): δ 11.0 (4C, CH3), 52.6 (2C, NCH2CH2N), 53.6 (4C, CH2CH3). 

 

5.4.14 [Pd(tn)Cl2] 

HCl (5.00 mL, 37%) was added to a suspension of PdCl2 (5.00 g, 28.2 mmol) in water 

(85 mL), and the mixture was stirred for 10 min until a brown solution was formed. Under 

stirring, on the dropwise addition of propane-1,3-diamine (4.19 g, 56.50 mmol) in water 

(90 mL) a yellow precipitate formed. After 15 min the yellow complex was filtered through a 

G4 filter, washed with cold water and dried in vacuo. The yield was 3.32 g (47%). Anal. 

Calcd for C3H10Cl2N2Pd: C, 14.33; H, 4.01; N, 11.14; Cl, 28.20. Found: C, 14.15; H, 4.04; N, 

11.03; Cl, 28.01.  
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5.4.15 [Pd(tn)(OH)2] (0.45 M) 

[Pd(tn)Cl2] (0.57 g, 2.25 mmol), Ag2O (0.54 g, 2.33 mmol) and water (5 mL) were stirred 

under nitrogen with exclusion of light at room temperature. After 60 min AgCl was removed 

by filtration through a G4 filter under nitrogen atmosphere, leaving a yellow solution. The 

alkaline [Pd(tn)(OH)2] solution was kept under a nitrogen atmosphere at 4 °C to prevent 

absorption of carbon dioxide. 
13

C{
1
H} NMR (100.63 MHz, D2O): δ 28.3 (1C, CH2CH2CH2), 

41.5 (2C, CH2NH2). 

 

5.4.16 [Pd(bpy)Cl2] 

HCl (2.50 mL, 37%) was added to a suspension of PdCl2 (2.50 g, 14.1 mmol) in water 

(85 mL), and the mixture was stirred for 10 min until a brown solution was formed. Under 

stirring, on the dropwise addition of 2,2′-bipyridine (2.19 g, 14.02 mmol) in water (190 mL) 

and acetone (60 mL) a pale yellow precipitate formed. After stirring for 15 min, the pH value 

of the solution was set to 6.5 with NaOH (2M). After 15 min the yellow complex was filtered 

through a G4 filter, washed with cold water and dried in vacuo. The yield was 4.29 g (92%). 

Anal. Calcd for C10H8Cl2N2Pd: C, 36.01; H, 2.42; N, 8.40; Cl, 21.26. Found: C, 35.93; H, 

2.49; N, 8.45; Cl, 19.21.  

 

5.4.17 [Pd(bpy)(OH)2] (0.45 M) 

[Pd(bpy)Cl2] (2.27 g, 6.81 mmol), Ag2O (1.56 g, 6.73 mmol) and water (15 mL) were stirred 

under nitrogen with exclusion of light at 40 °C. After 20 min AgCl was removed by filtration 

through a syringe filter, leaving a yellow solution. The alkaline [Pd(bpy)(OH)2] solution was 

kept under a nitrogen atmosphere at 4 °C to prevent absorption of carbon dioxide. 
13

C{
1
H} 

NMR (100.63 MHz, D2O): δ 123.0 (2C, C4/C4′), 127.3 (2C, C6/C6′), 140.8 (2C, C5/C5′), 

148.0 (2C, C3/C3′), 154.2 (2C, C1/C1′). 

 

5.4.18 [Pd(phen)Cl2] 

HCl (2.50 mL, 37%) was added to a suspension of PdCl2 (2.50 g, 14.1 mmol) in water 

(85 mL), and the mixture was stirred for 10 min until a brown solution was formed. Under 

stirring, on the dropwise addition of 1,10-phenanthroline (2.78 g, 14.02 mmol) in water 

(190 mL) and acetone (50 mL) a yellow precipitate formed. After stirring for 15 min, the pH 

value of the solution was set to 6.5 with NaOH (2M). After 15 min the yellow complex was 
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filtered through a G4 filter, washed with cold water and dried in vacuo. The yield was 4.88 g 

(98%). Anal. Calcd. for C12H8Cl2N2Pd: C, 40.31; H, 2.26; N, 7.84; Cl, 19.83. Found: C, 

40.51; H, 2.25; N, 7.87; Cl, 19.62.  

 

5.4.19 [Pd(phen)(OH)2] (0.45 M) 

[Pd(phen)Cl2] (2.43 g, 6.81 mmol), Ag2O (1.56 g, 6.73 mmol) and water (15 mL) were stirred 

under nitrogen with exclusion of light at 40 °C. After 20 min AgCl was removed by filtration 

through a syringe filter, leaving a yellow solution. The alkaline [Pd(phen)(OH)2] solution was 

kept under a nitrogen atmosphere at 4 °C to prevent absorption of carbon dioxide. 
13

C{
1
H} 

NMR (100.63 MHz, D2O): δ 125.5 (2C, C3/C8), 126.4 (2C, C5/C6), 128.0 (2C, C41/C61), 

138.3 (2C, C4/C7), 142.6 (2C, C101/C102), 147.9 (2C, C2/C3). 

 

5.5 Preparation of carbohydrates  

5.5.1 Methyl α-D-lyxopyranoside 

Following literature,
[121]

 methyl α-D-lyxopyranoside was synthesized from D-lyxose by 

Fischer glycosylation. To a solution of D-lyxose (1.50 g, 10.0 mmol) in methanol (25 mL) 

H2SO4 (0.15 mL, conc.) was added. The mixture was stirred for one week; the addition of ion 

exchange resin III (2.5 g, OH
−
 form) terminated the reaction. The solution was filtered and 

then evaporated to dryness in a rotary evaporator. The solid was recrystallized from ethyl 

acetate to obtain methyl α-D-lyxopyranoside. The yield was 1.46 g (89%). For 
13

C NMR 

shifts, see Table 6.3 in the Appendix.   

 

5.5.2 Methyl D-fructosides 

According to literature,
[81]

 a mixture of methyl β-D-fructopyranoside, methyl α-D-

fructofuranoside and methyl β-D-fructofuranoside was synthesized from D-fructose by Fischer 

anomerization and separated by ion exchange resin chromatography. To a solution of 

D-fructose (10.00 g, 58.3 mmol) in methanol (250 mL) was added H2SO4 (0.9 mL, conc.). The 

mixture was stirred for two days; the addition of ion exchange resin III (20 g, OH
−
 form) 

terminated the reaction. The solution was filtered and then evaporated to dryness in a rotary 

evaporator. To remove remaining D-fructose, the resulting syrup was dissolved in water 

(100 mL) and NaBH4 (0.50 g, 13.2 mmol) was added to the stirring solution. After 6–8 h, 
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acetic acid (6 mL, 2 M) was added and the solution was evaporated to dryness in a rotary 

evaporator. The product was then dissolved repeatedly in methanol and evaporated to dryness. 

The obtained mixture of methyl D-fructopyranosides was separated by ion exchange resin 

chromatography with Dowex 1x2 16-100 mesh, for details see 
[81]

. The various fractions were 

analyzed by the amount of rotation. Fractions with no rotation didn‘t contain a methyl 

D-fructopyranoside. The compounds appear in the following order: first β-D-fructopyranoside 

(yield 3.85 g, 34%), then methyl β-D-fructofuranoside (yield 3.06 g, 27%) and finally, methyl 

α-D-fructofuranoside (yield 1.58 g, 14%). For 
13

C NMR shifts, see Tables 6.12–6.14 in the 

Appendix.   

 

5.5.3 xylo-Pentodialdose 

According to literature,
[122]

 1,2-O-isopropylidene-α-D-glucofuranose (4.40 g, 20.0 mmol) and 

sodium hydrogen carbonate (1.00 g) were dissolved in water (30 mL), after which sodium 

periodate (4.72 g) was added portionwise. After 20 min, sodium thiosulfate (0.1 g) was added 

until the solution was no longer oxidative (starch–iodide test). The solution was then filtered 

and extracted five times with chloroform (5 x 30 mL). The combined organic layers were 

dried over anhydrous sodium sulfate and evaporated to dryness at 50 °C in a rotary evaporator 

to yield 1,2-O-isopropylidene-α-D-xylo-dialdofuranose. 
13

C{
1
H} NMR (100.63 MHz, D2O): 

δ 25.2 (1C, CH3), 25.7 (1C, CH3), 73.6 (1C, C3), 82.8 (1C, C4), 84.6 (1C, C2), 88.1 (1C, 

C5hydrate), 104.7 (1C, C1), 112.8 (1C, Cq). 

Trifluoroacetic acid solution (100 mL, 20% v/v) was added, and the solution was heated at 

80 °C and stirred for 1 h and then evaporated to dryness in a rotary evaporator at 50 °C. Water 

(25 mL) was added, and subsequently evaporated to dryness at 50 °C. The dry residue was 

rinsed with 95% ethanol. Another 25 mL of water were added, and the solution was again 

evaporated to dryness at 50 °C in a rotary evaporator. The yield was 0.91 g (31%). For 

13
C NMR shifts, see Table 2.86. 

 

5.5.4 galacto-Hexodialdose 

According to literature,
[92]

 D-galactose (0.9 g, 5.00 mmol) was dissolved in phosphate buffer 

(0.01 M, pH 7.3) in a 1 L-round-bottom flask. Under stirring, galactose oxidase (150 mg, 

6.710 U/g solid) and catalase (62 mg, 2950 U/mg solid) were added and the flask was sealed 

with a septum. Oxygen was applied for 5 min and this was repeated 24h later. The mixture 
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was stirred for 5 days at room temperature; afterwards the enzymes were filtered off with a 

0.45 μ membrane filter. The solution was evaporated to dryness with a freeze dryer. The yield 

was 0.39 g (44%). For 
13

C NMR shifts, see Table 2.90. 

 

5.5.5 D-manno-Hexodialdose 

According to literature,
[94-95]

 to a solution of D-chiro-inositol (20g, 111.1 mmol) in DMF 

(110 mL), acetone (120 mL, 1.67 mol) and 2,2-dimethoxypropane (100 mL, 0.78 mol) 

p-toluenesulfonic acid (2.00 g) was added. The mixture was stirred overnight at 60 °C, then 

neutralized with triethylamine and concentrated. The resulting syrup was dissolved in CH2Cl2, 

washed with water several times and dried over MgSO4. The solution was evaporated to 

dryness in a rotary evaporator and crystallized from petrolether to yield 1,2;3,4;5,6-tri-O-

isopropylidene-D-chiro-inositol (5.2 g, 16%). 
13

C{
1
H} NMR (100.63 MHz, CDCl3): δ 24.6 

(2C, CH3), 27.1 (2C, CH3), 27.3 (2C, CH3), 76.5 (2C, inositol), 78.2 (2C, inositol), 79.5 (2C, 

inositol), 110.8 (2C, Cq), 113.6 (2C, Cq).  

1,2;3,4;5,6-tri-O-isopropylidene-D-chiro-inositol (10.0 g, 33.3 mmol) was dissolved in acetic 

acid (100 mL, conc.) and stirred for 20 h at 70–80 °C. The solution was evaporated to dryness 

in a rotary evaporator, toluene (50 mL) was added twice and evaporated to dryness and 

finally, CH2Cl2 was added. After filtration, the solution was evaporated to dryness in a rotary 

evaporator and the residue was recrystallized from toluene to yield 1,2;5,6-di-O-

isopropylidene-D-chiro-inositol (2.6 g, 30%).
13

C{
1
H} NMR (100.63 MHz, CDCl3): δ 25.2 

(2C, CH3), 27.7 (2C, CH3), 72.5 (2C, inositol), 76.4 (2C, inositol), 78.8 (2C, inositol), 109.8 

(2C, Cq). 

According to literature,
[96]

 aqueous sodium periodate (2.6 g in 10 mL water) was heated to 

75 °C and stirred over a period of 20 min. Silica (10 g) was added to the stirred solution. The 

mixture was then cooled and shaken vigorously for 20 min to give a coarse powder. CH2Cl2 

(55 mL) was added and to this stirred mixture a solution of 1,2;5,6-di-O-isopropylidene-D-

chiro-inositol (2.0 g) in CH2Cl2 (55 mL) was added. The reaction mixture was stirred at room 

temperature for 80 min, then filtered and washed with CH2Cl2. The combined supernatant was 

concentrated in vacuo. The solid was crystallized from ethyl acetate to give 2,3;4,5-di-O-

isopropylidene-D-manno-hexodialdose (1.1 g, 43%). The crystal structure is depicted in 

Fig.2.94. 
13

C{
1
H} NMR (100.63 MHz, CDCl3): δ 25.1 (2C, CH3), 26.6 (2C, CH3), 76.8 (2C, 

C3/C4), 80.5 (2C, C2/C5), 111.6 (2C, Cq), 201.9 (2C, C1/C6). 
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2,3;4,5-di-O-isopropylidene-D-manno-hexodialdose was dissolved in trifluoroacetic acid 

solution (50 mL, 20% v/v) which was heated at 80 °C and stirred for 1 h and then evaporated 

to dryness in a rotary evaporator at 50 °C. Water (25 mL) was added, and subsequently 

evaporated to dryness at 50 °C. The dry residue was rinsed with 95% ethanol. Another 25 mL 

of water were added, and the solution was again evaporated to dryness at 50 °C in a rotary 

evaporator to yield D-manno-hexodialdose (0.43 g, 57%). For 
13

C NMR shifts, see Table 2.94. 

 

5.6 Preparation of the crystalline compounds 

5.6.1 Dihydroxido-N,N,N′,N′-tetramethylethane-1,2-diamine-palladium(II) dihydrate 

Pd-tmen (0.45 M) was prepared according to preparation 5.4.11. 5 ml of DMF were added to 

5 ml of the Pd-tmen solution, then the volume was reduced in vacuo to 6 ml and filtered. 

Yellow crystals were obtained within 1 week at 5 °C. To obtain crystals of good quality, 

crystallization was interrupted at a typical yield of 30%. 

 

5.6.2 η
2
-Carbonato-N,N,N′,N′-tetramethyl-(1R,2R)-cyclohexane-1,2-diamine- 

palladium(II) hexahydrate 

Pd-tmchxn (0.45 M) was prepared according to preparation 5.4.7. Solutions of Pd-tmchxn 

tended to absorb CO2 from air. Crystals of the compound grew within a few days at 5 °C. To 

obtain crystals of good quality, crystallization was interrupted at a typical yield of 30%. 

 

5.6.3 N,N,N′,N′-tetraethylethane-1,2-diammonium tetrachloridopalladate(II) 

2.50 g (14.10 mmol) palladium(II) chloride were dissolved in 85 ml water and 2.5 ml 

hydrochloric acid (37%). Under stirring, a solution of 4.80 g (27.86 mmol) N,N,N′,N′-

tetraethylethane-1,2-diamine, 190 ml water and 50 ml acetone was added dropwise. The 

yellow precipitate was filtered off, hydrochloric acid (37%) was added to the remaining 

brown solution up to pH 1. Brown crystals were obtained within 1 hour at room temperature 

at a yield of 87%. 

 

5.6.4 Dichlorido-N,N,N′,N′-tetraethylethane-1,2-diamine-palladium(II) dihydrate 

2.50 g (14.10 mmol) palladium(II) chloride were dissolved in 85 ml water and 2.5 ml 

hydrochloric acid (37%). Under stirring, a solution of 4.80 g (27.86 mmol) N,N,N′,N′-
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tetraethylethane-1,2-diamine, 190 ml water and 50 ml acetone was added dropwise. The 

yellow precipitate was filtered off, 2 M NaOH was added to the remaining brown solution up 

to pH 6.5. The solution was stored at 5 °C. Yellow crystals were obtained within one day at 

5 °C at a yield of 97%. 

 

 5.6.5 2,2′-Bipyridine-dihydroxido-palladium(II) pentahydrate 

Pd-bpy (0.45 M) was prepared according to preparation 5.4.17. Yellow crystals were obtained 

within two weeks at 5 °C, crystallization was interrupted at a typical yield of 30%. 

 

5.6.6 Dihydroxido-1,10-phenanthroline-palladium(II) pentahydrate 

Pd-phen (0.45 M) was prepared according to preparation 5.4.19. Yellow crystals were 

obtained within one day at 5 °C at a yield of 95%. 

 

5.6.7 Ethanediolato-κO
1,2

-1,10-phenanthroline-palladium(II) heptahydrate 

According to literature,
[54]

 crystals of (6) (0.22 g) were dissolved in 50 mL water containing 

0.1 g NaOH and adding drop wise ethane-1,2-diol (0.2 g). Crystals (84% yield) formed in a 

few minutes and were collected and washed carefully with ice-cold distilled water. 

 

5.6.8 Anhydroerythritolato-κO
2,3

-1,10-phenanthroline-palladium(II) 4.5-hydrate 

According to literature,
[54]

 crystals of (6) (0.22 g) were dissolved in 50 mL water containing 

0.1 g NaOH and adding drop wise anhydroerythritol (0.2 g). Crystals (79% yield) formed in a 

few minutes and were collected and washed carefully with ice-cold distilled water. 

 

5.6.9 Bis(N,N′-dimethylethane-1,2-diamine)(erythritolato-κO
1,2

:κO
3,4

)dipalladium(II) 

14-hydrate 

Erythritol (0.027 g, 0.22 mmol) was dissolved in Pd-dmen (1 ml, 0.45 M, 0.45 mmol), and 

stirred for 2 h at 4 °C. The solution was saturated with acetone; subsequently, acetone vapors 

were allowed to diffuse into the solution. Pale yellow crystals were formed within one week 

at 5 °C. To obtain crystals of good quality, crystallization was interrupted at a typical yield of 

30%. 
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5.6.10 Dipropane-1,3-diamine(erythritolato-κO
1,2

:κO
3,4

)dipalladium(II) 10-hydrate 

Erythritol (0.018 g, 0.15 mmol) was dissolved in Pd-tn (1 ml, 0.3 M, 0.30 mmol), and stirred 

for 2 h at 4 °C. The solution was saturated with acetone; subsequently, acetone vapors were 

allowed to diffuse into the solution. Pale yellow crystals were formed within two weeks at 

5 °C. To obtain crystals of good quality, crystallization was interrupted at a typical yield of 

30%. 

 

5.6.11 Bis(N,N,N′,N′-tetramethylethane-1,2-diamine)(mannitolato-κO
1,2

:κO
3,4

)-

dipalladium(II) 9-hydrate 

D-Mannitol (0.041 g, 0.225 mmol) was dissolved in Pd-tmen (1 ml, 0.45 M, 0.45 mmol), and 

stirred for 2 h at 4 °C. The solution was saturated with acetone; subsequently, acetone vapors 

were allowed to diffuse into the solution. Pale yellow crystals were formed within one week 

at 5 °C. To obtain crystals of good quality, crystallization was interrupted at a typical yield of 

30%. 

 

5.6.12 Dipropane-1,3-diamine(mannitolato-κO
1,2

:κO
3,4

)dipalladium(II) 5-hydrate 

D-Mannitol (0.027 g, 0.15 mmol) was dissolved in Pd-tn (1 ml, 0.3 M, 0.30 mmol), and stirred 

for 2 h at 4 °C. The solution was saturated with acetone; subsequently, acetone vapors were 

allowed to diffuse into the solution. Pale yellow crystals were formed within two weeks at 

5 °C. To obtain crystals of good quality, crystallization was interrupted at a typical yield of 

30%. 

 

5.6.13 Bis(N,N′-dimethylethane-1,2-diamine)(dulcitolato-κO
2,3

:κO
4,5

)dipalladium(II) 

8-hydrate 

Dulcitol (0.041 g, 0.225 mmol) was dissolved in Pd-dmen (1 ml, 0.45 M, 0.45 mmol), and 

stirred for 2 h at 4 °C. The solution was saturated with acetone; subsequently, acetone vapors 

were allowed to diffuse into the solution. Pale yellow crystals were formed within one week 

at 5 °C. To obtain crystals of good quality, crystallization was interrupted at a typical yield of 

30%. 
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5.6.14 Dipropane-1,3-diamine(dulcitolato-κO
2,3

:κO
4,5

)dipalladium(II) 6-hydrate 

Dulcitol (0.027 g, 0.15 mmol) was dissolved in Pd-tn (1 ml, 0.3 M, 0.30 mmol), and stirred for 

2 h at 4 °C. The solution was saturated with acetone; subsequently, acetone vapors were 

allowed to diffuse into the solution. Pale yellow crystals were formed within two weeks at 

5 °C. To obtain crystals of good quality, crystallization was interrupted at a typical yield of 

30%. 

 

5.6.15 Bis(N,N,N′,N′-tetramethylethane-1,2-diamine)(D-altritolato-κO
2,3

:κO
4,5

)-

dipalladium(II) 9-hydrate 

D-Altritol (0.02 g, 0.113 mmol) was dissolved in Pd-tmen (1 ml, 0.45 M, 0.45 mmol), and 

stirred for 2 h at 4 °C. The solution was saturated with acetone; subsequently, acetone vapors 

were allowed to diffuse into the solution. Pale yellow crystals were formed within one day at 

5 °C. To obtain crystals of good quality, crystallization was interrupted at a typical yield of 

30%. 

 

5.6.16 Diethane-1,2-diamine(allitolato-κO
2,3

:κO
4,5

)dipalladium(II) 14-hydrate 

Allitol (0.0284 g, 0.156 mmol) was dissolved in Pd-en (1 ml, 0.467 M, 0.467 mmol), and 

stirred for 2 h at 4 °C. The solution was saturated with acetone; subsequently, acetone vapors 

were allowed to diffuse into the solution. Pale yellow crystals were formed within one week 

at 5 °C. To obtain crystals of good quality, crystallization was interrupted at a typical yield of 

30%. 

 

5.6.17 Bis(N,N,N′,N′-tetramethylethane-1,2-diamine)(allitolato-κO
1,2

:κO
5,6

)-

dipalladium(II) 8-hydrate 

Allitol (0.041 g, 0.225 mmol) was dissolved in Pd-tmen (1 ml, 0.45 M, 0.45 mmol), and 

stirred for 2 h at 4 °C. The solution was saturated with acetone; subsequently, acetone vapors 

were allowed to diffuse into the solution. Pale yellow crystals were formed within one week 

at 5 °C. To obtain crystals of good quality, crystallization was interrupted at a typical yield of 

30%. 
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5.6.18 [(Pd
II

N2)n(μ2-OH)n]
n+

-derived bridged compounds at pH 7–8 

The respective polyol was dissolved in a aqueous solution of [Pd(R,R-chxn)(OH)2] (1 ml, 

0.5 M, 0.5 mmol; exact concentration was determined by ICP) and HNO3 (2 M) in 

stoichiometric proportions. After stirring for 2 h at 4 °C, the solution was stored at 4 °C. 

Yellow crystals were formed within one week up to six month. To obtain crystals of good 

quality, crystallization was interrupted at a typical yield of 30%. 

Compounds 18–24 were obtained with the stoichiometry 4:1:3 (Pd-chxn:polyol:HNO3) with 

the respective polyol, the same as compound 25, which was found as a side product, for 

example with scyllo-inositol. 

 

5.6.19 [Pd4(R,R-chxn)4(C3O6)(μ-OH)](NO3)3 · 8 H2O 

To 1 mL of a solution of D-threose (0.28 M) in water, a solution of [(R,R-chxn)Pd(OD)2] 

(4 mL, 0.285 M) and HNO3 (0.42 mL,2 M) were added under cooling and stirred for 2 h. The 

yellow solution was stored at 4 °C and eventually precipitating palladium metal was filtered 

off. Few brown crystals of 26 were obtained within four weeks. 

 

5.6.20 Diethane-1,2-diamine(D-chiro-inositolato-κO
1,2

:κO
5,6

)dipalladium(II) 8-hydrate 

D-chiro-Inositol (0.0405 g, 0.225 mmol) was dissolved in Pd-en (1 ml, 0.45 M, 0.45 mmol), 

and stirred for 2 h at 4 °C. The solution was saturated with acetone; subsequently, acetone 

vapors were allowed to diffuse into the solution. Pale yellow crystals were formed within one 

week at 5 °C. To obtain crystals of good quality, crystallization was interrupted at a typical 

yield of 30%. 

 

5.6.21 Bis(N,N,N′,N′-tetramethylethane-1,2-diamine)(neo-inositolato-κO
1,6

:κO
3,4

)di-

palladium(II) 22-hydrate 

neo-Inositol (0.0405 g, 0.225 mmol) was dissolved in Pd-tmen (1 ml, 0.45 M, 0.45 mmol), and 

stirred for 2 h at 4 °C. The solution was saturated with acetone; subsequently, acetone vapors 

were allowed to diffuse into the solution. Pale yellow crystals were formed within one week 

at 5 °C. To obtain crystals of good quality, crystallization was interrupted at a typical yield of 

30%. 
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5.6.22 Tris(N,N,N′,N′-tetramethylethane-1,2-diamine)(scyllo-inositolato-

κO
1,2

:κO
3,4

:κO
5,6

)tripalladium(II) 23-hydrate 

scyllo-Inositol (0.0270 g, 0.15 mmol) was dissolved in Pd-tmen (1 ml, 0.45 M, 0.45 mmol), 

and stirred for 2 h at 4 °C. The solution was saturated with acetone; subsequently, acetone 

vapors were allowed to diffuse into the solution. Pale yellow crystals were formed within one 

week at 5 °C. To obtain crystals of good quality, crystallization was interrupted at a typical 

yield of 30%. 

 

5.6.23 (1R,2R)-Cyclohexane-1,2-diamine(methyl α-D-lyxopyranos-2,3-O-diato-κO
2,3

)-

palladium(II) 2.25-hydrate 

Me-α-D-Lyxopyranoside (213.0 mg, 0.13 mmol) was dissolved in [Pd(R,R-chxn)(OH)2] (1 ml, 

0.26 M, 0.26 mmol), and stirred for 2 h at 4 °C. The solution was saturated with acetone; 

subsequently, acetone vapors were allowed to diffuse into the solution. Pale yellow crystals 

were formed within 1 day at 5 °C. To obtain crystals of good quality, crystallization was 

interrupted at a typical yield of 30%. 

 

5.6.24 N,N,N′,N′-Tetramethylethane-1,2-diamine(methyl β-D-xylopyranos-2,3-O-diato-

κO
2,3

)palladium(II)-N,N,N′,N′-tetramethylethane-1,2-diamine(methyl β-D-xylopyranos-

3,4-O-diato-κO
3,4

)palladium(II) dihydrate 

Me-β-D-Xylopyranoside (44.0 mg, 0.225 mmol) was dissolved in [Pd(tmen)(OH)2] (1 ml, 

0.45 M, 0.45 mmol), and stirred for 2 h at 4 °C. The solution was saturated with acetone; 

subsequently, acetone vapors were allowed to diffuse into the solution. Pale yellow crystals 

were formed within 4 month at 5 °C. 

 

5.6.25 Bis(N,N,N′,N′-tetramethylethane-1,2-diamine)(β-D-arabinopyranos-1,2;3,4-O-

diato-κO
1,2

:κO
3,4

)dipalladium(II) 10-hydrate 

D-Arabinose (34.0 mg, 0.225 mmol) was dissolved in [Pd(tmen)(OH)2] (1 ml, 0.45 M, 

0.45 mol), and stirred for 2 h at 4 °C. The solution was saturated with acetone; subsequently, 

acetone vapours were allowed to diffuse into the solution. Pale yellow crystals were formed 

within 2 weeks at 5 °C. To obtain crystals of good quality, crystallization was interrupted at a 

typical yield of 30%. 
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5.6.26 Bis(N,N,N′,N′-tetramethylethane-1,2-diamine)(β-D-lyxopyranos-1,2;3,4-O-diato-

κO
1,2

:κO
3,4

)dipalladium(II) 10-hydrate 

D-Lyxose (34.0 mg, 0.225 mmol) was dissolved in [Pd(tmen)(OH)2] (1 ml, 0.45 M, 

0.45 mmol), and stirred for 2 h at 4 °C. The solution was saturated with acetone; 

subsequently, acetone vapours were allowed to diffuse into the solution. Pale yellow crystals 

were formed within 2 weeks at 5 °C. To obtain crystals of good quality, crystallization was 

interrupted at a typical yield of 30%. 

 

5.6.27 N,N,N′,N′-Tetramethylethane-1,2-diamine(methyl α-D-galactopyranos-3,4-O-

diato-κO
3,4

)palladium(II) 8-hydrate 

Me-α-D-Galactopyranoside (44.0 mg, 0.225 mmol) was dissolved in [Pd(tmen)(OH)2] (1 ml, 

0.45 M, 0.45 mmol), and stirred for 2 h at 4 °C. The solution was saturated with acetone; 

subsequently, acetone vapours were allowed to diffuse into the solution. Pale yellow crystals 

were formed within 2 weeks at 5 °C. To obtain crystals of good quality, crystallization was 

interrupted at a typical yield of 30%. 

 

5.6.28 N,N′-Dimethylethane-1,2-diamine(methyl α-D-galactopyranos-3,4-O-diato-κO
3,4

) 

palladium(II) 9-hydrate 

Me-α-D-Galactopyranoside (44.0 mg, 0.225 mmol) was dissolved in [Pd(dmen)(OH)2] (1 ml, 

0.45 M, 0.45 mmol), and stirred for 2 h at 4 °C. The solution was saturated with acetone; 

subsequently, acetone vapours were allowed to diffuse into the solution. Pale yellow crystals 

were formed within 2 weeks at 5 °C. To obtain crystals of good quality, crystallization was 

interrupted at a typical yield of 30%. 

 

5.6.29 N,N,N′,N′-Tetramethylethane-1,2-diamine(methyl α-D-mannopyranos-2,3-O-

diato-κO
2,3

)palladium(II) 3.5-hydrate 

Me-α-D-Galactopyranoside (44.0 mg, 0.225 mmol) was dissolved in [Pd(tmen)(OH)2] (1 ml, 

0.45 M, 0.45 mmol), and stirred for 2 h at 4 °C. The solution was saturated with acetone; 

subsequently, acetone vapours were allowed to diffuse into the solution. Pale yellow crystals 

were formed within 2 weeks at 5 °C. To obtain crystals of good quality, crystallization was 

interrupted at a typical yield of 30%. 
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5.6.30 (1R,2R)-Cyclohexane-1,2-diamine(methyl α-D-fructofuranos-1,3-O-diato-κO
1,3

) 

palladium(II) 2-hydrate 

Me-α-D-Fructofuranoside (44.0 mg, 0.225 mmol) was dissolved in [Pd(R,R-chxn)(OH)2] 

(1 ml, 0.45 M, 0.45 mmol), and stirred for 2 h at 4 °C. The solution was saturated with 

acetone; subsequently, acetone vapours were allowed to diffuse into the solution. Pale 

colorless crystals were formed within 2 week at 5 °C. To obtain crystals of good quality, 

crystallization was interrupted at a typical yield of 30%. 

 

5.6.31  Bis(N,N,N′,N′-tetramethylethane-1,2-diamine)(α-D-tagatopyranos-1,2;3,4-O-

diato-κO
1,2

:κO
3,4

)dipalladium(II) 8-hydrate 

D-Tagatose (40.5 mg, 0.225 mmol) was dissolved in [Pd(tmen)(OH)2] (1 ml, 0.45 M, 

0.45 mmol), and stirred for 2 h at 4 °C. The solution was saturated with acetone; 

subsequently, acetone vapours were allowed to diffuse into the solution. Few yellow crystals 

were formed within 2 days at 5 °C. 

 

5.6.32 Bis(N,N,N′,N′-tetramethylethane-1,2-diamine)(erythro-tetrodialdofuranos1,4;2,3-

O-diato-κO
1,4

:κO
2,3

)dipalladium(II) 8-hydrate 

D-manno-hexodialdose (44.1 mg, 0.225 mmol) which was obviously impured with erythro-

tetrodialdose was dissolved in [Pd(tmen)(OH)2] (1 ml, 0.45 M, 0.45 mmol), and stirred for 2 h 

at 4 °C. The solution was saturated with aceton; subsequently, acetone vapours were allowed 

to diffuse into the solution. Few yellow crystals were formed within 2 days at 5 °C. 

 

5.6.33 [Pd3(teen)3(α-CDH−6)] · 34 H2O 

α-Cyclodextrin (146.0 mg, 0.15 mmol) was dissolved in [Pd(teen)(OH)2] (1 ml, 0.45 M, 

0.45 mmol), and stirred for 2 h at 4 °C. The solution was saturated with acetone; 

subsequently, acetone vapours were allowed to diffuse into the solution. Yellow crystals were 

formed within 2 days at 5 °C. To obtain crystals of good quality, crystallization was 

interrupted at a typical yield of 30%. 
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5.6.34 [Pd3(tmen)3(α-CDH−6)] · 20.7 H2O · acetone  

α-Cyclodextrin (146.0 mg, 0.15 mmol) was dissolved in [Pd(tmen)(OH)2] (1 ml, 0.45 M, 

0.45 mmol), and stirred for 2 h at 4 °C. The solution was saturated with acetone; 

subsequently, acetone vapours were allowed to diffuse into the solution. Yellow crystals were 

formed within 2 days at 5 °C. To obtain crystals of good quality, crystallization was 

interrupted at a typical yield of 30%. 

 

5.6.35 [Pd4(teen)4(γ-CDH−8)] · 12 H2O 

γ-Cyclodextrin (73.0 mg, 0.056 mmol) was dissolved in [Pd(teen)(OH)2] (1 ml, 0.45 M, 

0.45 mmol), and stirred for 2 h at 4 °C. The solution was saturated with acetone; 

subsequently, acetone vapours were allowed to diffuse into the solution. Yellow crystals were 

formed within 1 week at 5 °C. To obtain crystals of good quality, crystallization was 

interrupted at a typical yield of 30%. 

 

5.6.36 [Pd4(tmen)4(γ-CDH−8)] · 65.79 H2O · 0.96 [Pd(tmen)CO3]  

γ-Cyclodextrin (73.0 mg, 0.056 mmol) was dissolved in [Pd(tmen)(OH)2] (1 ml, 0.45 M, 

0.45 mmol), and stirred for 2 h at 4 °C. The solution was saturated with acetone; 

subsequently, acetone vapours were allowed to diffuse into the solution. Yellow crystals were 

formed within 1 week at 5 °C. To obtain crystals of good quality, crystallization was 

interrupted at a typical yield of 30%. 
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5.7 
1
H NMR chemical shifts of the methyl pentosides and hex(ul)osides, 

the pentoses, the hex(ul)oses and the dialdoses 

 

Table 5.1. 
1
H NMR chemical shifts of methyl pentopyranoside ligands with Pd-tmen. 

 H-1 H-2 H-3 H-4 H-5 H-5′ CH3 

Me-β-D-Arap3,4H−2 4.77 4.39 2.99 3.72 3.66 3.49 3.32 

 (d) (dd) (dd) (m) (m) (m) (s) 

Me-α-D-Lyxp2,3H−2 4.73 3.16 3.06 3.93-4.00 3.68 3.31 3.29 

 (d) (m) (m) (m) (dd) (dd) (s) 

Me-α-D-Lyxp3,4H−2 4.32 3.72 - - - - - 

 (d) (dd) - - - - - 

Me-β-D-Ribp2,3H−2 4.97 3.34 3.26 - - - 3.42 

 (d) (m) (m) - - - (s) 

Me-β-D-Ribp3,4H−2 4.70 3.45 3.45 3.53 4.16 3.79 3.42 

 (d) (m) (m) (m) (dd) (dd) (s) 

Me-β-D-Ribp2,4H−2 4.76 2.75 3.77 2.79 3.83 3.68 3.40 

 (d) (m) (m) (ddd) (dd) (dd) (s) 

Me-β-D-Xylp2,3H−2 4.05 2.89 3.14 3.37 3.62 2.92 3.34 

 (d) (dd) (dd) (ddd) (dd) (dd) (s) 

Me-β-D-Xylp3,4H−2 3.97 3.02 3.16 3.25 3.63 3.07 3.38 

 (d) (dd) (m) (ddd) (dd) (m) (s) 

Me-β-D-Xylp2,4H−2 4.53 3.13 2.46 2.44 3.94 - 3.29 

 (d) - (m) (m) (dd) - (s) 

 

Table 5.2. 
1
H NMR chemical shifts of D-arabinose ligands with Pd-tmen. 

 H-1 H-2 H-3 H-4 H-5 H-5′ 

α-D-Arap1,2H−2 4.12 3.18 3.44 3.58 - - 

 (d) (dd) (dd) (m) - - 

β-D-Arap1,2H−2 4.70 3.28 4.30 3.99 3.82 3.46 

 (d) (dd) (dd) (m) (m) (dd) 

α-D-Arap3,4H−2 4.60 3.94 3.35 3.51 - - 

 (d) (m) (m) (m) - - 

β-D-Arap1,2;3,4H−4 4.24 3.28 3.44 3.15 4.18 3.56 

 (d) (dd) (m) (m) (m) (m) 

α-D-Araf 1,3H−2 4.51 3.46 3.07 4.56 - - 

 (d) (m) (m) (m) - - 

β-D-Araf 1,2H−2 4.94 3.50 4.37 3.86–3.80 3.86–3.80 3.86–3.80 

 (d) (m) (m) (m) (m) (m) 
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Table 5.3. 

1
H NMR chemical shifts of D-ribose ligands with Pd-tmen. 

 H-1 H-2 H-3 H-4 H-5 H-5′ 

α-D-Ribp1,2H−2 4.18 3.80 3.56 3.66 3.90 3.42 

 (d) (m) (m) (m) (dd) (dd) 

β-D-Ribp1,2;3,4H−4 4.72 - 3.87 - 4.54 - 

 (d) - (m) - (m) - 

α-D-Ribf 1,2H−2 4.93 3.54 3.68 4.77 3.87 3.67 

 (d) (dd) (m) (m) (dd) (dd) 

α-D-Ribf 2,3H−2 5.13 - - - - - 

 (d) - - - - - 

β-D-Ribf 2,3H−2 5.16 - - - - - 

 (d) - - - - - 

 

Table 5.4. 
1
H NMR chemical shifts of D-ribose ligands with Pd-teen. 

 H-1 H-2 H-3 H-4 H-5 H-5′ 

α-D-Ribp1,2H−2 4.11 3.79 3.55 3.63 3.86 3.38 

 (d) (m) (m) (m) (dd) (dd) 

α-D-Ribp3,4H−2 4.83 3.44 3.95 3.13 - - 

 (d) (m) (m) (m) - - 

α-D-Ribf 1,2H−2 4.88 3.51 3.63 4.75 3.84 3.63 

 (d) (dd) (m) (ddd) (dd) (dd) 

α-D-Ribf 2,3H−2 5.10 3.67 3.24 4.80 3.83 3.57 

 (d) (m) (dd) (m) (m) (m) 

β-D-Ribf 2,3H−2 5.19 - - - - - 

 (d) - - - - - 
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Table 5.5.

 1
H NMR chemical shifts of D-lyxose ligands with Pd-tmen. 

 H-1 H-2 H-3 H-4 H-5 H-5′ 

α-D-Lyxp1,2H−2 4.45 3.19 - - - - 

 (d) (dd) - - - - 

α-D-Lyxp2,3H−2 5.31 3.09 3.34 3.83–3.76 - - 

 (d) (m) (m) (m) - - 

β-D-Lyxp1,2H−2 4.19 3.75 3.33 3.87 - - 

 (d) (dd) (m) (m) - - 

β-D-Lyxp1,2;3,4H−4 3.98 3.85 3.13 3.81–3.73 3.68 2.90 

 (d) (dd) (dd) (m) (dd) (m) 

α-D-Lyxf 2,3H−2 5.76 3.46 3.98 - - - 

 (d) (m) (m) - - - 

β-D-Lyxf 1,2H−2 4.75 - - - - - 

 (d) - - - - - 

 

Table 5.6. 
1
H NMR chemical shifts of D-lyxose ligands with Pd-teen. 

 H-1 H-2 H-3 H-4 H-5 H-5′ 

α-D-Lyxp1,2H−2 4.53 3.24 3.89 3.44 - - 

 (d) (d) (m) (m) - - 

α-D-Lyxp2,3H−2 5.42 2.97 3.49 3.87–3.83 3.87–3.83 3.54 

  (m) (m) (m) (m) (dd) 

β-D-Lyxp1,2H−2 4.27 3.72 3.37 3.83–3.78 3.83–3.78 3.02 

 (d) (dd) (dd) (m) (m) (dd) 

α-D-Lyxf 2,3H−2 6.01 3.39 4.00 - - - 

 (d) (m) (m) - - - 

β-D-Lyxf 1,2H−2 4.71 3.64–3.58 3.99–3.96 3.70–3.68 - - 

 (d) (m) (m) (m) - - 

 

Table 5.7.
 1
H NMR chemical shifts of D-xylose ligands with Pd-tmen. 

 H-1 H-2 H-3 H-4 H-5 H-5′ 

α-D-Xylp1,2H−2 4.60 3.20 4.14 3.45 3.75 3.66 

 (d) (dd) (m) (m) (dd) (dd) 

β-D-Xylp1,2H−2 4.29 3.00 3.24 3.42–3.35 3.13 - 

 (d) (dd) (m) (m) (m) - 

α-D-Xylf 1,2H−2 4.96 3.56 4.10 5.16 3.79 3.66 

 (d) (m) (m) (ddd) (dd) (dd) 
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Table 5.8. 

1
H NMR chemical shifts of D-xylose ligands with Pd-teen. 

 H-1 H-2 H-3 H-4 H-5 H-5′ 

α-D-Xylp1,2H−2 4.74 3.12–3.08 4.25 3.50–3.46 3.84 3.73 

 (d) (m) (m) (m) (dd) (dd) 

β-D-Xylp1,2H−2 4.34 3.15 3.27 3.43 - - 

 (d) (dd) (d) (ddd) - - 

α-D-Xylp1,2;3,4H−4 4.84 - - - - - 

 (d) - - - - - 

β-D-Xylp1,2;3,4H−4 4.15 3.06 3.20 3.20–3.13 3.55 3.10 

 (d) (dd) (dd) (m) (dd) (dd) 

α-D-Xylf 1,2H−2 4.98 3.57 4.13 5.26 3.89 3.76 

 (d) (dd) (m) (ddd) (dd) (dd) 

α-D-Xylf 1,2;3,5H−4 4.94 3.42 4.88 4.62 - - 

 (d) (dd) (dd) (ddd) - - 

 

Table 5.9. 
1
H NMR chemical shifts of methyl hexopyranoside ligands with Pd-tmen. 

 H-1 H-2 H-3 H-4 H-5 H-6 H-6′ CH3 

Me-α-D-Galp2,3H−2 4.64 3.57 3.51 3.80 3.69–3.59 − 

 (d) (dd) (dd) (d) (m) (m) (m) − 

Me-α-D-Galp3,4H−2 4.80 4.64 2.93 3.80 3.69–3.59 3.30 

 − (dd) (dd) (d) (m) (m) (m) (s) 

Me-β-D-Galp2,3H−2 4.10 3.29–3.28 3.74 3.41 3.75–3.62 3.50 

 (d) (m) (m) (m) (ddd) − − (s) 

Me-β-D-Galp3,4H−2 4.13 4.44 2.83 3.74 3.50 3.71 3.64 3.51 

 (d) (dd) (dd) (m) (ddd) (dd) (dd) (s) 

Me-α-D-Glcp2,3H−2 4.59 3.23 3.49 3.22 3.31 3.77 3.60 3.28 

 (d) (dd) (dd) (dd) (ddd) (dd) (dd) (s) 

Me-α-D-Glcp3,4H−2 4.51 3.37 3.44 2.95 3.51 3.75 3.68 3.29 

 (d) (dd) (dd) (dd) (ddd) (dd) (dd) (s) 

Me-β-D-Glcp2,3H−2 4.15 2.98 3.28 3.16–3.14 3.82 3.58 3.42 

 (d) (dd) (dd) (m) (m) (dd) (dd) (s) 

Me-β-D-Glcp3,4H−2 4.09 3.08 3.36 3.03 3.30 3.79 3.51 3.46 

 (d) (dd) (dd) (dd) (ddd) (dd) (dd) (s) 

Me-α-D-Manp2,3H−2 4.45 3.62 2.80 4.28 3.42 3.84 3.76 3.26 

 (d) (dd) (dd) (dd) (ddd) (dd) (dd) (s) 
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Table 5.10. 

1
H NMR chemical shifts of methyl hexulopyranoside ligands with Pd-chxn. 

 H-1 H-1' H-3 H-4 H-5 H-6 H-6′ CH3 

Me-β-D-Frup4,5H−2 3.75 3.75 4.36 3.05 3.75 3.64 3.43 3.17 

 (m) (m) (d) (dd) (m) (dd) (dd) (s) 

Me-β-D-Frup1,3;4,5H−4 3.09 3.05 3.78 2.81 3.67 3.53 3.26 3.17 

 (d) (d) (d) (dd) (m) (dd) (dd) (s) 

Me-β-D-Fruf 1,3H−2 3.56 2.83 3.55 3.78 3.80 3.69 3.55 – 

 – (d) (d) (dd) (m) (dd) (dd) – 

 

Table 5.11. 
1
H NMR chemical shifts of methyl hexulopyranoside ligands with Pd-tmen. 

 H-1 H-1' H-3 H-4 H-5 H-6 H-6′ CH3 

Me-β-D-Frup4,5H−2 3.74 3.74 4.52 2.94 3.77 3.59 3.45 3.17 

 – – (d) (dd) – (d) (d) (s) 

Me-α-D-Fruf 1,3H−2 2.97 2.91 3.66 4.20 3.80 3.85 3.68 3.29 

 (d) (d) (d) (dd) (ddd) (dd) (dd) (s) 

Me-β-D-Fruf 1,3H−2 3.26 2.98 3.89 3.82–3.75 3.67 3.55 3.29 

 (d) (d) (d) (m) (m) (d) (s) (s) 

 

Table 5.12. 
1
H NMR chemical shifts of D-galactose ligands with Pd-tmen. 

 H-1 H-2 H-3 H-4 H-5 H-6 H-6′ 

α-D-Galp1,2H−2 5.09 2.93 4.85 3.94 4.07 – – 

 (d) (dd) (dd) (m) (m) – – 

β-D-Galp1,2H−2 4.22 3.19 3.42 – – – – 

 (d) (dd) (dd) – – – – 

α-D-Galp1,2;3,4H−4 5.03 – – – – – – 

 (d) – – – – – – 

β-D-Galp1,2;3,4H−4 4.07 4.22 – 3.54 – – – 

 (d) (dd) – (dd) – – – 

α-D-Galf 1,2H−2 4.96 3.46 4.53 3.87 3.82 – – 

 (d) (dd) (m) (dd) (ddd) – – 

α-D-Galf 1,2;5,6H−4 4.85 3.36 4.53 3.73 3.87 3.39 3.26 

 (d) (m) (m) (m) (m) (dd) (dd) 

β-D-Galf 1,3;5,6H−4 4.43 3.20 3.19 4.29 – 3.36 2.98 

 (s) (s) (s) (s) – (dd) (dd) 
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Table 5.13. 

1
H NMR chemical shifts of D-glucose ligands with Pd-tmen. 

 H-1 H-2 H-3 H-4 H-5 H-6 H-6′ 

α-D-Glcp1,2H−2 5.07 2.73 4.74 3.28 3.81 – – 

 (d) (dd) (m) (m) (ddd) – – 

β-D-Glcp1,2H−2 4.36 3.01 3.29 3.16 3.28 3.76 3.61 

 (d) (dd) (dd) (dd) (m) (dd) (dd) 

α-D-Glcp1,2;3,4H−4 4.84 – 4.80 2.83 3.82 – – 

 (d) – – (m) (ddd) – – 

β-D-Glcp1,2;3,4H−4 4.18 2.99 3.30 2.90 3.24 3.70 3.50 

 (d) (dd) (m) (m) (ddd) (dd) (dd) 

α-D-Glcf 1,2;5,6H−4 4.95 3.61 4.27 5.19 3.53 3.39 3.32 

 (d) (dd) (dd) (dd) (m) (dd) (dd) 

 

Table 5.14. 
1
H NMR chemical shifts of D-mannose ligands with Pd-tmen. 

 H-1 H-2 H-3 H-4 H-5 H-6 H-6′ 

α-D-Manp2,3H−2 4.91 3.65 2.93 4.31 3.63 – – 

 (d) (dd) (dd) (dd) (m) – – 

β-D-Manp1,2H−2 4.22 3.89 3.44 3.61 3.15 – – 

 (d) (dd) (dd) (dd) (m) – – 

β-D-Manp1,2;3,4H−4 4.04 3.92 3.28 3.54 3.06 – – 

 (d) (dd) (dd) (dd) (m) – – 

 

Table 5.15. 
1
H NMR chemical shifts of D-fructose ligands with Pd-tmen. 

 H-1 H-1′ H-3 H-4 H-5 H-6 H-6′ 

β-D-Fruf 2,3H−2 3.71 3.25 3.38 4.76 3.75–3.63 

 (d) (d) (d) (m) (m) (m) (m) 

β-D-Frup1,2;4,5H−4 3.73 3.03 4.02 3.02 3.62 3.92 – 

 (dd) (d) (d) (dd) (m) (m) – 

β-D-Frup2,3;4,5H−4 4.10 3.36 3.46 3.59 3.62 – – 

 (d) (d) (d) (dd) (m) – – 
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Table 5.16. 

1
H NMR chemical shifts of D-fructose ligands with Pd-teen. 

 H-1 H-1′ H-3 H-4 H-5 H-6 H-6′ 

α-D-Frup4,5H−2 – – 3.66 3.95 3.20 – – 

 – – (d) (m) (ddd) – – 

β-D-Frup2,3H−2 – 3.27 2.90 4.61 3.90 3.98 3.46 

 – (d) (m) (dd) (m) (dd) (dd) 

β-D-Fruf 2,3H−2 3.86 3.31 3.38 4.74 3.76 3.71 3.66 

 (d) (d) (d) (m) (m) (dd) (dd) 

 

Table 5.17. 
1
H NMR chemical shifts of D-tagatose ligands with Pd-tmen. 

 H-1 H-1′ H-3 H-4 H-5 H-6 H-6′ 

α-D-Tag p1,2H−2 3.40 3.08 3.89 3.78 – – – 

 (d) (d) (d) (dd) – – – 

α-D-Tag p1,2;3,4H−4 3.32 2.98 4.07 2.97 4.53 – – 

 (d) (d) (d) (dd) (ddd) – – 

α-D-Tag p1,2;4,5H−4 3.37 3.06 3.90 3.50 3.44 – – 

 (d) (d) (d) (m) (m) – – 

α-D-Tag f 1,2;3,4H−4 3.92 3.78 3.78 4.12 3.97 4.11 3.84 

 (d) (dd) (d) (m) (ddd) (dd) (dd) 

 

Table 5.18. 
1
H NMR chemical shifts of L-sorbose ligands with Pd-tmen. 

 H-1 H-1′ H-3 H-4 H-5 H-6 H-6′ 

α-L-Sorp1,2H−2 3.60 2.67 2.92 – – – – 

 (d) (d) (d) – – – – 

α-L-Sorp2,3H−2 3.92 3.08 2.59 4.37 3.28 – – 

 (d) (d) (d) (dd) (ddd) – – 

α-L-Sorp1,2;4,5H−4 3.70 – 2.94 3.33 3.13 – – 

 (d) – (d) (m) (ddd) – – 

α-L-Sorp2,3;4,5H−4 4.08 3.25 – 4.36 3.03 3.55 3.32 

 (d) (d) – (dd) (m) (m) (dd) 

α-L-Sorf 2,3H−2 3.45 3.19 3.40 4.15 5.19 3.67 3.57 

 (d) (d) (d) (dd) (ddd) (dd) (dd) 

α-L-Sorf 2,3;4,6H−4 3.78 3.37 3.86 4.86 4.62 – – 

 (d) (d) (d) (dd) (ddd) – – 

 

 



5 Experimental Section 

237 

 

 
Table 5.19. 

1
H NMR chemical shifts of D-psicose ligands with Pd-tmen. 

 H-1 H-1′ H-3 H-4 H-5 H-6 H-6′ 

α-D-Psip4,5H−2 3.64 3.34 3.52 4.07 3.19 – – 

 (d) (d) (dd) (dd) (ddd) – – 

β-D-Psip1,2;4,5H−4 3.46 3.23 4.10 3.74 4.51 3.64 3.53 

 (d) (d) (d) (m) (m) (dd) (dd) 

α-D-Psif 2,3H−2 – – 2.55 3.68 5.07 3.93 3.75 

 – – (d) (dd) (ddd) (dd) (dd) 

α-D-Psif 3,4H−2 – – 3.57 3.31 4.97 3.86 3.62 

 – – (d) (dd) (ddd) (dd) (dd) 

 

Table 5.20. 
1
H NMR chemical shifts of D-xylo-pentodialdose in D2O. 

 H-1 H-2 H-3 H-4 H-5 

1ax,5eq-Xyl5aldp 5.13 3.51 3.63 3.19 4.94 

 (d) (dd) (m) (dd) (d) 

[1,5]eq-Xyl5aldp 4.62 3.20 3.37 3.20 4.62 

 (d) (dd) (m) (dd) (d) 

 

Table 5.21. 
1
H NMR chemical shifts of D-xylo-pentodialdose ligands with Pd-tmen. 

 H-1 H-2 H-3 H-4 H-5 

1ax,5eq-Xyl5aldp1,2H−2 – 2.86 4.60 3.16 – 

  (dd) (m) (dd)  

1ax,5eq-Xyl5aldp1,2;3,5H−4 4.39 3.03 2.79 3.58 7.49 

 – – – – – 

1ax,5eq-Xyl5aldp1,2;4,5H−4 4.92 – 4.56 – 4.87 

 (d) – (m) – (d) 

 

Table 5.22. 
1
H NMR chemical shifts of D-galacto-hexodialdose in D2O. 

 H-1 H-2 H-3 H-4 H-5 H-6 

α-Gal6aldp 5.25 3.81 – 4.11 3.78 5.08 

 (d) (dd) – (dd) (m) (d) 

β-Gal6aldp 4.56 3.48 3.62 4.06 3.40 5.11 

 (d) (dd) (dd) (dd) (m) (d) 
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Table 5.23. 

1
H NMR chemical shifts of D-galacto-hexodialdose ligands with Pd-tmen. 

 H-1 H-2 H-3 H-4 H-5 H-6 

1
C4-3,6-an-α-Gal6aldp1,2H−2 4.38 3.59 3.86 3.49 3.75 – 

 (d) (dd) (m) – (m) – 

(6R)-α-Gal6aldf 1,2;5,6H−4 4.60 3.18 4.47 3.33 3.72 4.42 

 (d) (m) (m) (dd) (m) (m) 

(6S)-α-Gal6aldf 1,2;5,6H−4 4.67 3.23 4.47 3.64 3.23 4.42 

 (d) (m) (m) (dd) (m) (m) 

β-Gal6aldf 1,3;5,6H−4 4.25 3.02 2.94 4.10 2.94 4.63 

 – – – – (d) (d) 

 

Table 5.24. 
1
H NMR chemical shifts of D-manno-hexodialdose in D2O. 

 H-1 H-2 H-3 H-4 H-5 H-6 

α-D-Man6aldp 5.15 3.86 3.78 3.69–3.67 5.20 

 (d) (m) (m) (m) (m) (d) 

β-D-Man6aldp 4.84 3.87 – 3.59 3.25 5.17 

 (d) (m) – (dd) (dd) (d) 

3,6-anhydro-α-D-Man6aldf 5.15 3.95 4.70 4.70 3.95 5.15 

 (d) (m) (m) (m) (m) (d) 

3,6-anhydro-β-D-Man6aldf 5.32 4.12 4.66 4.54 3.92 5.35 

 (d) (m) (m) (m) (m) (d) 

 

Table 5.25. 
1
H NMR chemical shifts of D-manno-hexodialdose ligands with Pd-tmen. 

 H-1 H-2 H-3 H-4 H-5 H-6 

3,6-an-β-D-Man6aldf 1,2H−2 5.00 3.43 4.16 4.21 3.99 5.15 

 (d) (m) (m) (m) (m) (d) 

β-D-Man6aldf 1,2;5,6H−4 4.89 3.33 4.37 4.64 3.81 5.64 

 (d) (dd) (m) (m) (dd) – 
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5.8 Computational methods and results 

 To estimate the correctness of 
13

C NMR and species assignment, energies, 
13

C NMR 

shift values and 
3
JH,H coupling constants of selected palladium(II)–glycose complexes were 

calculated in a simple procedure. Within the Gaussian 03 program package
[123]

 the BLYP 

DFT method was used. The 6-31+G(2d,p) basis set was applied for the geometry optimization 

of all atoms except palladium. A CEP-4G
[124]

 effective core potential with the corresponding 

valence basis set was used for palladium. GIAO NMR chemical shifts were calculated by the 

PBE1PBE method with the same basis sets used in the geometry optimization and refer to 

δ = 0 for tetramethylsilane, calculated by the same procedure. To take solvent effects into 

account, the PCM method was used during NMR calculations. The use of a linear correlation 

was abandoned since only selected complexes were calculated instead of a series of similar 

compounds. The starting geometries were determined from known crystal structures or 

estimated in accordance with measured 
3
JH,H coupling constants. Remaining hydroxy groups 

were forced to build intramolecular hydrogen bonds. 

 
Table 5.26. Observed and calculated 

13
C NMR chemical shifts (δ/ppm) and shift differences (Δδ) of 

[Pd(tmen)(
1
C4-3,6-an-α-Gal6aldp1,2H−2-κO

1,2
]. Atoms are numbered as in Fig. 2.93. 

  C1 C2 C3 C4 C5 C6 Chelate 

1
C4-3,6-an-α-Gal6aldp1,2H−2 105.6 83.5 83.3 83.0 72.2 102.8 κO

1,2
 

DFT 110.3 86.8 86.7 75.8 80.1 102.9  

∆δ 4.7 3.3 3.4 −7.2 7.9 0.1  

 

Table 5.27. Observed and calculated 
3
JH,H values in Hz of [Pd(tmen)(

1
C4-3,6-an-α-Gal6aldp1,2H−2-κO

1,2
]. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 Conformation 

1
C4-3,6-an-α-Gal6aldp1,2H−2 2.5 5.4 <1 <1 <1 

1
C4 

DFT 2.83 5.29 0.44 1.75 0.05  

 

Table 5.28. Observed and calculated 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) of 

[Pd2(tmen)2(β-Gal6aldf 1,3;5,6H−4-κO
1,3

:κO
5,6

]. Atoms are numbered as in Fig. 2.93. 

  C1 C2 C3 C4 C5 C6 Chelate 

β-Gal6aldf 1,3;5,6H−4 107.2 80.0 80.7 88.9 83.0 97.6 κO
1,3

:κO
5,6

 

DFT 106.5 86.7 78.9 92.2 83.9 99.5  

∆δ −0.7 6.7 −1.8 3.3 0.9 1.9  
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Table 5.29. Observed and calculated 
3
JH,H values in Hz of [Pd2(tmen)2(β-Gal6aldf 1,3;5,6H−4-κO

1,3
:κO

5,6
]. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5 

3
JH5,H6 Conformation 

β-Gal6aldf 1,3;5,6H−4 <1 <1 <1 <1 7.5 EC2 

DFT 0.49 1.19 0.41 2.03 5.96  

 

Table 5.30. Observed and calculated 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) of 

[Pd2(tmen)2(β-D-Man6aldf 1,2;5,6H−4-κO
1,2

:κO
5,6

]. Atoms are numbered as in Fig. 2.96. 

  C1 C2 C3 C4 C5 C6 Chelate 

β-D-Man6aldf 1,2;5,6H−4 109.9 83.7 80.7 81.6 75.4 105.0 κO
1,2

:κO
5,6

 

DFT 109.2 86.0 77.1 87.9 74.2 103.5  

∆δ −0.7 2.3 −3.6 6.3 −1.2 −1.5  

 

Table 5.31. Observed and calculated 
13

C NMR chemical shifts (δ/ppm) and shift differences (Δδ) of 

[Pd2(tmen)2(
1
C4-1ax,5eq-Xyl5aldp1,2;3,5H−4-κO

1,2
:κO

3,5
]. Atoms are numbered as in Fig. 2.90. 

  C1 C2 C3 C4 C5 Chelate 

1ax,5eq-Xyl5aldp1,2;3,5H−4 98.4 84.0 70.5 73.7 99.2 κO
1,2

:κO
3,5

 

DFT  99.8 88.0 72.6 80.9 98.8  

∆δ 1.4 4.0 2.1 7.2 −0.4  
 

 

Table 5.32. Observed and calculated 
3
JH,H values in Hz of [Pd2(tmen)2(

1
C4-1ax,5eq-Xyl5aldp1,2;3,5H−4-

κO
1,2

:κO
3,5

]. 

 
3
JH1,H2 

3
JH2,H3 

3
JH3,H4 

3
JH4,H5eq Conformation 

1ax,5eq-Xyl5aldp1,2;3,5H−4 1.8 3.3 3.4 2.0 
1
C4 

DFT 2.23 3.22 3.27 2.18  
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6 Appendix 

6.1 
13

C NMR spectra and chemical shifts of uncoordinated carbohydrates 

  

C4, C5 and C6 sugar alcohols 

 

 

Table 6.1. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

Glyc δ 63.3 72.8     

Eryt δ 63.3 72.7     

D-Thre δ 63.3 72.3     

D-Arab δ 63.7 70.9 71.1 71.6 63.6  

Ribt δ 63.0 72.7 72.9    

Xylt δ 63.3 72.6 71.4    

Allt δ 63.0 72.8 73.0    

D-Altr δ 63.7 71.1 71.4 72.2 73.3 62.7 

Dulc δ 63.9 70.8 70.0    

L-Idit δ 63.3 72.3 71.7    

D-Mann δ 63.8 71.5 69.9    

D-Sorb δ 63.1 73.5 70.3 71.7 71.6 63.4 
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Methyl β-D-arabinopyranoside 

 

Figure 6.1.
 13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.2. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 CH3 

Me-β-D-Arap δ 100.5 68.8 69.4 69.5 63.1 55.8 
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Methyl α-D-lyxopyranoside 

 

Figure 6.2. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.3. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 CH3 

Me-α-D-Lyxp δ 101.8 70.1 71.2 67.5 63.1 55.9 
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Methyl β-D-ribopyranoside 

 

Figure 6.3. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.4. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 CH3 

Me-β-D-Ribp δ 102.0 70.7 68.3 68.3 63.6 56.7 
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Methyl β-D-ribofuranoside 

 

Figure 6.4. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.5. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 CH3 

Me-β-D-Ribf δ 108.5 74.8 71.4 83.4 63.3 55.7 
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Methyl β-D-xylopyranoside 

 

Figure 6.5.
 13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.6. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 CH3 

Me-β-D-Xylp δ 104.6 73.6 76.3 69.8 65.7 57.8 
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Methyl α-D-galactopyranoside 

 

Figure 6.6. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.7.
 13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 CH3 

Me-α-D-Galp δ 100.0 68.8 70.1 69.8 71.3 61.9 55.6 
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Methyl β-D-galactopyranoside 

 

Figure 6.7. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.8. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 CH3 

Me-β-D-Galp δ 104.4 71.4 73.4 69.3 75.7 61.6 57.8 
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Methyl α-D-glucopyranoside 

 

Figure 6.8. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.9. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 CH3 

Me-α-D-Glcp δ 99.9 71.8 73.7 70.2 72.2 61.2 55.6 

 

 

 

 



6 Appendix 

250 

 

Methyl β-D-glucopyranoside 

 

Figure 6.9. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.10. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 CH3 

Me-β-D-Glcp δ 103.8 73.7 76.4 70.3 76.5 61.4 57.8 
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Methyl α-D-mannopyranoside 

 

Figure 6.10. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.11.
 13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 CH3 

Me-α-D-Manp δ 101.4 70.5 71.2 67.4 73.1 61.6 55.3 
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Methyl β-D-fructopyranoside 

 

Figure 6.11. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.12. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 CH3 

Me-β-D-Frup δ 61.5 101.0 69.0 70.2 69.7 64.4 49.1 

 

 

 

 

 



6 Appendix 

253 

 

Methyl α-D-fructofuranoside 

 

Figure 6.12. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.13. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 CH3 

Me-α-D-Fruf δ 58.3 108.9 80.7 78.0 83.9 61.9 48.8 
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Methyl β-D-fructofuranoside 

 

Figure 6.13.
 13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.14. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 CH3 

Me-β-D-Fruf δ 60.3 104.4 77.4 75.6 81.8 63.2 49.5 
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D-Arabinose 

 

Figure 6.14. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.15. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5  

α-D-Arap δ 97.4 72.5 73.1 69.1 67.0  

β-D-Arap δ 93.2 69.2 69.2 69.2 63.1  

α-D-Araf  δ 101.7 82.1 76.2 83.6 61.7  

β-D-Araf  δ 95.6 76.8 74.8 82.0 61.7  
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D-Lyxose 

 

Figure 6.15. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.16. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5  

α-D-Lyxp δ 94.7 70.6 71.1 68.2 63.7  

β-D-Lyxp δ 94.8 70.7 73.3 67.1 64.8  

α-D-Lyxf  δ 101.3 77.6 71.7 80.5 60.9  

β-D-Lyxf  δ 96.0 73.2 72.1 80.8 61.7  
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D-Ribose 

 

Figure 6.16. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.17.
 13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5  

α-D-Ribp δ 94.1 70.6 69.8 68.0 63.6  

β-D-Ribp δ 94.4 71.6 69.6 67.8 63.6  

α-D-Ribf  δ 96.9 71.5 70.6 83.6 61.9  

β-D-Ribf  δ 101.5 75.8 71.0 83.1 63.1  
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D-Xylose 

 

Figure 6.17. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.18. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5  

α-D-Xylp δ 92.8 72.1 73.4 70.0 61.6  

β-D-Xylp δ 97.2 74.7 76.4 69.8 65.8  

α-D-Xylf  δ 96.1 76.7 75.5 78.9 61.0  

β-D-Xylf  δ 102.2 81.1 74.6 82.2 61.5  
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D-Galactose 

 

Figure 6.18. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.19. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Galp δ 92.9 69.0 69.8 69.9 71.1 61.8 

β-D-Galp δ 97.1 72.5 73.4 69.4 75.8 61.6 

α-D-Galf  δ 95.6 76.9 74.8 81.3 72.4 63.1 

β-D-Galf  δ 101.6 81.9 76.3 82.5 71.3 63.3 
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D-Glucose 

 

Figure 6.19. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.20. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Glcp δ 92.7 72.1 73.4 70.2 72.0 61.2 

β-D-Glcp δ 96.5 74.7 76.4 70.3 76.6 61.4 

α-D-Glcf 
*
 δ 97.4 (78.2) (77.1) (79.3) (71.2) (64.7) 

β-D-Glcf 
*
 δ 103.0 (81.1) (76.3) (82.8) (71.2) (65.2) 

 

*
 The furanoses‘ chemical shifts were adopted from Ref. [14] for C1 and from Ref. [83] for methyl 

D-glucofuranosides‘ C2–C6. 
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D-Mannose 

 

Figure 6.20. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.21. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Manp δ 94.7 71.3 70.8 67.5 73.0 61.6 

β-D-Manp δ 94.3 71.8 73.7 67.2 76.8 61.6 

α-D-Man f 
*
 δ 101.6 78.4 73.0 81.0 71.1 65.0 

β-D-Man f 
*
 δ 96.2 73.6 71.7 81.2 71.5 64.9 

 

*
 The furanoses‘ chemical shifts were adopted from Ref. [14] for C1 and from Ref. [83] for methyl 

D-glucofuranosides‘ C2–C6. 
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D-Fructose 

 

Figure 6.21. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.22. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Frup δ 65.8 98.6 70.7 71.1 61.8 61.7 

β-D-Frup δ 64.5 98.7 68.2 70.3 69.8 64.0 

α-D-Fruf  δ 63.5 105.0 82.6 76.6 81.9 61.7 

β-D-Fruf  δ 63.3 102.1 76.0 75.1 81.3 63.0 
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D-Psicose 

 

Figure 6.22. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.23. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Psip δ 63.7 98.3 66.1 72.3 66.5 58.6 

β-D-Psip δ 64.6 99.0 70.8 65.7 69.6 64.8 

α-D-Psif  δ 63.9 103.9 71.0 71.0 83.3 61.9 

β-D-Psif  δ 63.0 106.2 75.3 71.6 83.3 63.4 
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L-Sorbose 

 

Figure 6.23. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.24. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-L-Sorp δ 64.1 98.3 71.0 74.5 70.0 62.4 

β-L-Sorp δ 64.2 99.2 69.8 73.3 70.8 59.5 

α-L-Sorf  δ 63.7 102.4 76.6 75.9 78.3 61.3 

β-L-Sorf  δ 63.2 106.0 81.9 73.9 80.8 61.8 
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D-Tagatose 

 

Figure 6.24. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.25. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Tag p δ 64.5 98.8 70.4 71.5 67.0 62.8 

β-D-Tag p δ 64.1 98.9 64.3 71.5 69.9 60.7 

α-D-Tag f δ 63.0 105.6 77.3 71.8 79.8 60.7 

β-D-Tag f  δ 63.2 103.1 71.3 71.7 80.7 61.6 
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D-Sucrose 

 

Figure 6.25. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.26. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Glcp δ 92.7 71.6 73.1 69.8 73.0 60.7 

β-D-Fru f (C′) δ 61.9 104.2 77.0 74.6 81.9 62.9 
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D-Turanose 

 

Figure 6.26. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.27. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Glcp δ 101.5 72.7 73.4 69.9 73.3 61.1 

β-D-Fru p (C′) δ 64.7 98.3 77.3 70.9 69.7 64.0 

α-D-Glcp δ 97.5 71.8 73.5 69.9 72.8 60.9 

α-D-Fru f (C′) δ 63.3 104.8 85.4 75.1 82.1 61.6 

α-D-Glcp δ 99.1 72.0 73.5 69.9 72.9 60.9 

β-D-Fru f (C′) δ 63.4 102.3 81.1 75.0 81.5 62.9 
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D-Maltulose 

 

Figure 6.27. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.28. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Glcp δ 101.1 72.4 73.5 70.2 72.9 61.2 

β-D-Fru p (C′) δ 64.4 98.9 67.5 78.7 69.8 64.0 

α-D-Glcp δ 98.3 71.8 73.3 70.0 73.0 61.0 

α-D-Fru f (C′) δ 63.3 105.9 82.8 80.7 81.7 62.0 

α-D-Glcp δ 98.9 71.8 73.3 70.0 73.0 61.0 

β-D-Fru f (C′) δ 63.3 102.6 75.8 81.8 80.6 63.0 



6 Appendix 

269 

 

D-Lactulose 

 

Figure 6.28. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.29. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

β -D-Galp δ 101.5 71.4 73.2 69.3 76.0 61.8 

β-D-Fru p (C′) δ 64.5 98.7 66.7 78.0 67.4 63.6 

β -D-Galp δ 103.9 71.3 73.2 69.1 75.9 61.7 

α-D-Fru f (C′) δ 63.4 105.6 81.4 85.9 81.3 61.8 

β -D-Galp δ 103.5 71.3 73.2 69.1 75.9 61.7 

β-D-Fru f (C′) δ 63.1 103.0 75.3 84.8 80.7 63.3 
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D-Leucrose 

 

Figure 6.29.
 13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.30. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Glcp δ 101.0 72.6 73.5 70.3 72.6 61.3 

β-D-Fru p (C′) δ 64.4 98.7 68.5 70.6 79.7 62.7 
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D-Palatinose 

 

Figure 6.30. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.31. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Glcp δ 99.1 72.0 73.7 70.2 72.5 61.2 

α-D-Fru f (C′) δ 63.4 105.3 82.4 76.7 80.6 67.4 

α-D-Glcp δ 98.9 72.0 73.7 70.2 72.5 61.2 

β-D-Fru f (C′) δ 63.3 102.4 75.9 75.2 79.6 68.4 
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D-Melicitose 

 

Figure 6.31. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.32. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Glcp δ 92.4 71.6 73.7 70.2 72.9 60.9 

β-D-Fru f  (C′) δ 62.6 104.3 83.9 73.9 81.8 62.8 

α-D-Glcp  (C″) δ 100.9 72.1 73.4 70.2 72.9 61.2 
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D-Raffinose 

 

Figure 6.32. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.33.
 13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Galp δ 99.1 69.1 70.1 69.8 71.6 61.7 

α-D-Glcp  (C′) δ 92.7 71.6 73.3 70.0 72.0 66.5 

β-D-Fru f  (C″) δ 62.0 104.4 77.0 74.6 82.0 63.1 
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α.α-D-Trehalose 

 

Figure 6.33. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.34.
 13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Glcp δ 93.8 71.6 73.1 70.3 72.7 61.1 
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D-Melibiose 

 

Figure 6.34. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.35. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Galp δ 98.8 69.1 70.1 69.8 71.6 61.7 

α-D-Glc p (C′) δ 92.8 72.0 73.6 70.2 70.7 66.5 

α-D-Galp δ 98.8 69.1 70.1 69.8 71.6 61.7 

β-D-Glc p (C′) δ 96.7 74.7 76.5 70.0 75.0 66.4 
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D-Lactose 

 

Figure 6.35. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.36. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

β-D-Galp δ 103.5 71.6 73.2 69.2 76.0 61.7 

α-D-Glc p (C′) δ 92.4 71.8 72.0 79.1 70.7 60.6 

β-D-Galp δ 103.5 71.6 73.2 69.2 76.0 61.7 

β-D-Glc p (C′) δ 96.4 74.4 75.0 78.9 75.4 60.7 
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D-Cellobiose 

 

Figure 6.36. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.37. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

β-D-Glcp δ 103.2 73.8 76.1 70.1 76.6 61.2 

α-D-Glc p (C′) δ 92.4 71.8 72.0 79.4 70.7 60.5 

β-D-Glcp δ 103.2 73.8 76.1 70.1 76.6 61.2 

β-D-Glc p (C′) δ 96.4 74.5 74.9 79.2 75.4 60.7 
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D-Maltose 

 

Figure 6.37.
 13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.38.
 13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Glcp δ 100.2 72.4 73.5 69.9 73.3 61.1 

α-D-Glc p (C′) δ 92.5 71.9 73.8 77.5 70.6 61.2 

α-D-Glcp δ 100.2 72.3 73.5 69.9 73.3 61.1 

β-D-Glc p (C′) δ 96.4 74.6 76.8 77.3 75.2 61.3 
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D-Maltotriose 

 

Figure 6.38.
 13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 

 

 

 

Table 6.39. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Glc p δ 100.4 71.8 73.9 69.9 72.3 61.1 

α-D-Glc p (C′) δ 100.2 72.2 73.5 77.4 73.3 61.1 

α-D-Glc p (C″) δ 92.5 71.9 73.8 77.7 70.5 61.1 

α-D-Glc p δ 100.4 71.8 73.9 69.9 72.3 61.1 

α-D-Glc p (C′) δ 100.1 72.1 73.5 77.4 73.3 61.1 

β-D-Glc p (C″) δ 96.4 74.6 76.8 77.5 75.1 61.3 



6 Appendix 

280 

 

D-Maltoheptaose 

 

Figure 6.39. 
13

C NMR spectrum in D2O, referenced to an internal methanol signal (49.5 ppm). 
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Table 6.40. 
13

C NMR chemical shifts (δ/ppm) in D2O, referenced to an internal methanol signal (49.5 ppm). 

  C1 C2 C3 C4 C5 C6 

α-D-Glc p δ 100.3 71.8 73.9 69.9 72.3 61.1 

α-D-Glc p (5 C′) δ 100.2 71.8 73.9 77.3 72.2 61.0 

α-D-Glc p (C″) δ 100.1 72.2 73.5 77.3 73.3 61.1 

α-D-Glc p (C′′′) δ 92.5 71.9 73.8 77.6 70.5 61.1 

α-D-Glc p δ 100.3 71.8 73.9 69.9 72.3 61.1 

α-D-Glc p (5 C′) δ 100.2 71.8 73.9 77.3 72.2 61.0 

α-D-Glc p (C″) δ 100.0 72.2 73.5 77.3 73.3 61.1 

β-D-Glc p (C′′′) δ 96.4 74.6 76.8 77.5 75.1 61.3 
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6.2 Packing diagrams of the crystal structures 

 

 

 

Figure 6.40. SCHAKAL packing diagram of [Pd(tmen)(OH)2] in crystals of the dihydrate (1) viewed along [1̄00]. 

Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the space group P 212121 are 

overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium 

(golden). 
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Figure 6.41. SCHAKAL packing diagram of [Pd(tmchxn)(CO3)] in crystals of the 6-hydrate (2) viewed along 

[1̄00]. The symmetry elements of the space group C 2221 are overlaid. Atoms: carbon (grey), hydrogen (light 

grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.42. SCHAKAL packing diagram of [(teenH2)PdCl4] (3) viewed along [100]. The symmetry elements of 

the space group P 21/n are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), chloride 

(green) and palladium (golden). 
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Figure 6.43. SCHAKAL packing diagram of [Pd(teen)Cl2] (4) viewed along [001].The symmetry elements of the 

space group C 2/c are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), chloride 

(green) and palladium (golden). 
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Figure 6.44. SCHAKAL packing diagram of [Pd(bpy)(OH)2] in crystals of the 5-hydrate (5) viewed along [100]. 

Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the space group P 21/n are 

overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium 

(golden). 
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Figure 6.45. SCHAKAL packing diagram of [Pd(phen)(OH)2] in crystals of the 5-hydrate (6) viewed along [100]. 

Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the space group P 21/n are 

overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium 

(golden). 
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Figure 6.46. SCHAKAL packing diagram of [Pd(phen)(EtdH−2)] in crystals of the 7-hydrate (7) viewed along 

[001̄]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the space group C 2/c 

are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium 

(golden). 
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Figure 6.47. SCHAKAL packing diagram of [Pd(phen)(AnErytH−2)] in crystals of the 4.5-hydrate (8) viewed 

along [001̄]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the space group 

C 2/c are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) and 

palladium (golden). 
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Figure 6.48. SCHAKAL packing diagram of [Pd2(dmen)2(ErytH−4-κO
1,2

:κO
3,4

)] in crystals of the 14-hydrate (9) 

viewed along [100]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the space 

group P 1̄ are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) and 

palladium (golden). 
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Figure 6.49. SCHAKAL packing diagram of [Pd2(tn)2(ErytH−4-κO
1,2

:κO
3,4

)] in crystals of the 10-hydrate (10) 

viewed along [010]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the space 

group C 2/c are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) and 

palladium (golden). 
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Figure 6.50. SCHAKAL packing diagram of [Pd2(tmen)2(Mann1,2;3,4H−4-κO
1,2

:κO
3,4

)] in crystals of the 9-hydrate 

(11) viewed along [100]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the 

space group P 21 are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) 

and palladium (golden). 
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Figure 6.51. SCHAKAL packing diagram of [Pd2(tn)2(Mann1,2;3,4H−4-κO
1,2

:κO
3,4

)] in crystals of the 5-hydrate 

(12) viewed along [100]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the 

space group P 21 are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) 

and palladium (golden). 
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Figure 6.52. SCHAKAL packing diagram of [Pd2(dmen)2(Dulc2,3;4,5H−4-κO
2,3

:κO
4,5

)] in crystals of the 8-hydrate 

(13) viewed along [100]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the 

space group P 1̄ are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) 

and palladium (golden). 
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Figure 6.53. SCHAKAL packing diagram of [Pd2(tn)2(Dulc2,3;4,5H−4-κO
2,3

:κO
4,5

)] in crystals of the 6-hydrate 

(14) viewed along [010]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the 

space group P 1̄ are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) 

and palladium (golden).  
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Figure 6.54. SCHAKAL packing diagram of [Pd2(tmen)2(D-Altr2,3;4,5H−4-κO
2,3

:κO
4,5

)] in crystals of the 

9-hydrate (15) viewed along [100]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry 

elements of the space group P 21 are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen 

(blue), oxygen (red) and palladium (golden). 
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Figure 6.55. SCHAKAL packing diagram of [Pd2(en)2(Allt2,3;4,5H−4-κO

2,3
:κO

4,5
)] in crystals of the 14-hydrate 

(16) viewed along [010]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the 

space group C 2/c are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) 

and palladium (golden). 
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Figure 6.56. SCHAKAL packing diagram of [Pd2(tmen)2(Allt1,2;5,6H−4-κO

1,2
:κO

5,6
)] in crystals of the 8-hydrate 

(17) viewed along [100]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the 

space group P 21/n are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen 

(red) and palladium (golden). 
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Figure 6.57. SCHAKAL packing diagram of [Pd4(R,R-chxn)4(L-ThreH−4)](NO3)4 in crystals of the 4-hydrate (18) 

viewed along [010]. The symmetry elements of the space group P 21 are overlaid. Atoms: carbon (grey), 

hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.58. SCHAKAL packing diagram of [Pd4(R,R-chxn)4(Xylt1,2,3,4H−4)](NO3)4 in crystals of the 4.7-hydrate 

(19) viewed along [100]. The symmetry elements of the space group P 21 are overlaid. Atoms: carbon (grey), 

hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.59. SCHAKAL packing diagram of [Pd4(R,R-chxn)4(L-Idit2,3,4,5H−4)](NO3)4 in crystals of the 6-hydrate 

(20) viewed along [1̄00]. The symmetry elements of the space group P 1 are overlaid. Atoms: carbon (grey), 

hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.60. SCHAKAL packing diagram of [Pd4(R,R-chxn)1.66(S,S-chxn)2.34(D-Mann2,3,4,5H−4)](NO3)4 in 

crystals of the 7-hydrate (21) viewed along [010]. The symmetry elements of the space group P 212121 are 

overlaid. The atoms of the minor part of disordered chxn are not shown. Atoms: carbon (grey), hydrogen (light 

grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.61. SCHAKAL packing diagram of [Pd4(R,R-chxn)4(D-Altr1,2,3,4H−4)](NO3)3.57(OH)0.43 in crystals of the 

12-hydrate (22) viewed along [010]. The symmetry elements of the space group P 212121 are overlaid. Atoms: 

carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.62. SCHAKAL packing diagram of [Pd4(R,R-chxn)4(Dulc1,2,3,4H−4)](NO3)3.5(OH)0.5  in crystals of the 

6.75-hydrate (23) viewed along [001]. The symmetry elements of the space group P 41212 are overlaid. Atoms: 

carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.63. SCHAKAL packing diagram of [{Pd2(R,R-chxn)2(HmmpdH−3)}2Pd](NO3)4 in crystals of the 

4-hydrate (24) viewed along [100]. The symmetry elements of the space group P 21 are overlaid. Atoms: carbon 

(grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.64. SCHAKAL packing diagram of [Pd6(R,R-chxn)6(μ4-O)(μ-OH)4](NO3)6 in crystals of the 12.5-hydrate 

(25) viewed along [1̄00]. The symmetry elements of the space group P 2221 are overlaid. Atoms: carbon (grey), 

hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.65. SCHAKAL packing diagram of [Pd4(R,R-chxn)4(C3O6)(μ-OH)](NO3)3 in crystals of the 8-hydrate 

(26) viewed along [100]. The symmetry elements of the space group P 1 are overlaid. Atoms: carbon (grey), 

hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.66. SCHAKAL packing diagram of [Pd2(en)2(D-chiro-Ins1,2;5,6H−4-κO
1,2

:κO
5,6

)] in crystals of the 

8-hydrate (27) viewed along [010]. The symmetry elements of the space group P 212121 are overlaid. Atoms: 

carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.67. SCHAKAL packing diagram of [Pd2(tmen)2(neo-Ins1,6;3,4H−4-κO
1,6

:κO
3,4

)] in crystals of the 

22-hydrate (28) viewed along [01̄0]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry 

elements of the space group C mce are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen 

(blue), oxygen (red) and palladium (golden). 
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Figure 6.68. SCHAKAL packing diagram of Pd3(tmen)3(scyllo-InsH−6-κO

1,2
:κO

3,4
:κO

5,6
)] in crystals of the 

23-hydrate (29) viewed along [001̄]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry 

elements of the space group C 2/c are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen 

(blue), oxygen (red) and palladium (golden). 



6 Appendix 

 

311 

 

 

 

 

Figure 6.69. SCHAKAL packing diagram of [Pd(R,R-chxn)(Me-α-D-Lyxp2,3H−2-κO
2,3

)] in crystals of the 

2.25-hydrate (30) viewed along [1̄00]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry 

elements of the space group P 1 are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), 

oxygen (red) and palladium (golden). 
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Figure 6.70. SCHAKAL packing diagram of [Pd(tmen)(Me-β-D-Xylp2,3H−2-κO
2,3

)][Pd(tmen)(Me-β-D-

Xylp3,4H−2-κO
3,4

)] in crystals of the dihydrate (31) viewed along [100]. Hydrogen bonds are indicated by yellow 

dashed lines. The symmetry elements of the space group P 21 are overlaid. Atoms: carbon (grey), hydrogen 

(light grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.71. SCHAKAL packing diagram of [Pd2(tmen)2(β-D-Arap1,2;3,4H−4-κO

1,2
:κO

3,4
)] in crystals of the 

10-hydrate (32) viewed along [1̄00]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry 

elements of the space group P 212121 are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen 

(blue), oxygen (red) and palladium (golden). 
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Figure 6.72. SCHAKAL packing diagram of [Pd2(tmen)2(β-D-Lyxp1,2;3,4H−4-κO
1,2

:κO
3,4

)] in crystals of the 

10-hydrate (33) viewed along [100]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry 

elements of the space group P 21 are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen 

(blue), oxygen (red) and palladium (golden). 
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Figure 6.73. SCHAKAL packing diagram of Pd(tmen)(Me-α-D-Galp3,4H−2-κO

3,4
)] in crystals of the 8-hydrate 

(34) viewed along [1̄00]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the 

space group P 1 are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) 

and palladium (golden). 
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Figure 6.74. SCHAKAL packing diagram of [Pd(dmen)(Me-α-D-Galp3,4H−2-κO

3,4
)] in crystals of the 9-hydrate 

(35) viewed along [1̄00]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the 

space group P 1 are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) 

and palladium (golden). 
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Figure 6.75. SCHAKAL packing diagram of [Pd(tmen)(Me-α-D-Manp2,3H−2-κO
2,3

)] in crystals of the 3.5-hydrate 

(36) viewed along [100]. The symmetry elements of the space group P 21 are overlaid. Atoms: carbon (grey), 

hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.76. SCHAKAL packing diagram of methyl β-D-fructopyranoside (37) viewed along [010]. The symmetry 

elements of the space group C 2 are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen 

(blue), oxygen (red) and palladium (golden). 
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Figure 6.77. SCHAKAL packing diagram of [Pd(R,R-chxn)(Me-α-D-Fruf 1,3H−2-κO

1,3
)] in crystals of the dihydrate 

(38) viewed along [1̄00]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the 

space group P 1 are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) 

and palladium (golden). 
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Figure 6.78. SCHAKAL packing diagram of [Pd2(tmen)2(α-D-Tagp1,2;3,4H−4-κO
1,2

:κO
3,4

)]  in crystals of the 

8-hydrate (39) viewed along [1̄00]. The symmetry elements of the space group P 212121 are overlaid. Atoms: 

carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.79. SCHAKAL packing diagram of [Pd2(tmen)2(Ery4aldfH−4-κO
1,4

:κO
2,3

)]  in crystals of the 12-hydrate 

(40) viewed along [001̄]. Hydrogen bonds are indicated by yellow dashed lines. The symmetry elements of the 

space group P 21 are overlaid. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) 

and palladium (golden). 
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Figure 6.80. SCHAKAL packing diagram of ,3;4,5-di-O-isopropylidene-D-manno-hexodialdose (41) viewed along 

[010]. The symmetry elements of the space group P 21 are overlaid. Atoms: carbon (grey), hydrogen (light grey, 

small), nitrogen (blue), oxygen (red) and palladium (golden). 
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Figure 6.81. SCHAKAL packing diagram of [Pd3(teen)3(α-CDH−6)] · 34 H2O (42) viewed along [001]. The 

symmetry elements of the space group P 63 are overlaid. The atoms of the minor part of disordered fragments 

and water are not shown. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen (red) and 

palladium (golden). 
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Figure 6.82. SCHAKAL packing diagram of [Pd3(tmen)3(α-CDH−6)] · 20.7 H2O · acetone (43) viewed along [100]. 

The symmetry elements of the space group P 21 are overlaid. The atoms of the minor part of disordered 

fragments and water are not shown. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen 

(red) and palladium (golden). 
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Figure 6.83. SCHAKAL packing diagram of [Pd4(teen)4(γ-CDH−8)] · 12 H2O (44) viewed along [1̄00]. The 

symmetry elements of the space group P 212121 are overlaid. The atoms of the minor part of disordered 

fragments and water are not shown. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen (blue), oxygen 

(red) and palladium (golden). 
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Figure 6.84. SCHAKAL packing diagram of [Pd4(tmen)4(γ-CDH−8)] · 65.79 H2O · 0.96 [Pd(tmen)CO3] (45) 

viewed along [100]. The symmetry elements of the space group P 21 are overlaid. The atoms of the minor part of 

disordered fragments and water are not shown. Atoms: carbon (grey), hydrogen (light grey, small), nitrogen 

(blue), oxygen (red) and palladium (golden). 



6 Appendix 

327 

 

6.3 Crystallographic tables 

 

Table 6.41. Crystallographic tables of [Pd(tmen)(OH)2] · 2 H2O (1), [Pd(tmchxn)(CO3)] · 6 H2O (2) and 

(teenH2)[PdCl4] (3).  

Compound 1 2 3 

Empirical formula C6H22N2O4Pd C11H34N2O9Pd C10H26Cl4N2Pd 

Mr /g mol
−1 

 292.67 444.82 422.56 

Crystal size /mm 0.17 × 0.10 × 0.08 0.20 × 0.16 × 0.16 0.20 × 0.12 × 0.12 

Crystal system Orthorhombic Orthorhombic Monoclinic 

Space group P 212121 C 2221 P 21/n 

a /Å 5.5453(2) 8.0316(3) 7.2647(2) 

b /Å 10.9053(5) 12.1857(4) 10.8306(3) 

c /Å 18.3138(7) 19.3677(5) 10.7669(4) 

α /° 90 90 90 

β /° 90 90 102.022(3) 

γ /° 90 90 90 

V /Å
3
 1107.49(8) 1895.53(10) 828.57(4) 

Z 4 4 2 

ρcalcd /g cm
−3

 1.75531(13) 1.55871(8) 1.69372(8) 

μ /mm
−1

 1.666 1.021 1.748 

Absorption correction Multi-scan None Numerical 

Tmin, Tmax 0.85056, 1.00000 – 0.2545, 0.8683 

Refls. measured 8292 6577 4810 

Rint 0.0444  0.0330  0.1180  

Mean σ(I)/I 0.0569 0.0339 0.0809 

θ range 3.82–26.33 3.21–27.47 4.21–30.00 

Observed refls. 2005 2002 872 

x, y (weighting scheme) 0.0099, 0 0.0291, 2.1805 0.0522, 0 

Flack parameter −0.04(3) 0.00(5) – 

Refls. in refinement 2245 2181 1217 

Parameters 140 127 81 

Restraints 0 10 0 

R(Fobs) 0.0249 0.0303 0.0456 

RwF
2
 0.0368 0.0696 0.1001 

S 0.904 1.110 0.964 

Shift/errormax 0.002 0.001 0.001 

Max. res. density /e Å
−3 

 0.429 0.994 0.628 

Min. res. density /e Å
−3

 −0.409 −0.994 −1.313 
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Table 6.42. Crystallographic tables of [Pd(teen)Cl2] (4), [Pd(bpy)(OH)2] · 5 H2O (5) and 

[Pd(phen)(OH)2] · 5 H2O (6). 

Compound 4 5 6 

Empirical formula C10H24Cl2N2Pd C10H20N2O7Pd C12H20N2O7Pd 

Mr /g mol
−1 

 349.64 386.70 410.72 

Crystal size /mm 0.36 × 0.045 × 0.037 0.29 × 0.07 × 0.06 0.19 × 0.16 × 0.12 

Crystal system Monoclinic Monoclinic Monoclinic 

Space group C 2/c P 21/n P 21/n 

a /Å 15.4587(10) 7.8358(5) 7.63440(10) 

b /Å 7.9192(5) 17.916(4) 18.68230(40) 

c /Å 11.4100(8) 10.4415(15) 10.91670(20) 

α /° 90 90 90 

β /° 92.629(6) 92.033(8) 91.6894(13) 

γ /° 90 90 90 

V /Å
3
 1395.35(16) 1465.0(4) 1556.352(48) 

Z 4 4 4 

ρcalcd /g cm
−3

 1.66437(19) 1.7533(5) 1.75287(5) 

μ /mm
−1

 1.687 1.298 1.228 

Absorption correction Numerical Numerical Multi-scan 

Tmin, Tmax 0.7841, 0.9673 0.8030, 0.9456 0.693, 0.863 

Refls. measured 1321 11366 25539 

Rint 0.0622  0.0399  0.0421  

Mean σ(I)/I 0.2277 0.0515 0.0298 

θ range 4.53–27.55 3.90–26.04 3.21–27.49 

Observed refls. 390 1933 2924 

x, y (weighting scheme) 0.0225, 0 0.0615, 1.5586 0.0252, 1.0575 

Flack parameter – – – 

Refls. in refinement 886 2867 3563 

Parameters 69 166 236 

Restraints 0 15 17 

R(Fobs) 0.0464 0.0452 0.0279 

RwF
2
 0.0869 0.1237 0.0626 

S 0.805 1.104 1.086 

Shift/errormax 0.001 0.001 0.001 

Max. res. density /e Å
−3 

 1.084 1.601 0.775 

Min. res. density /e Å
−3

 −0.462 −0.864 −0.682 
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Table 6.43. Crystallographic tables of [Pd(phen)(EthdH−2)] · 7 H2O (7), [Pd(phen)(AnErytH−2)] · 4.5 H2O (8) 

and [Pd2(dmen)2(ErytH−4-κO
1,2

:κO
3,4

)] · 14 H2O (9). 

Compound 7 8 9 

Empirical formula C14H26N2O9Pd C16H23N2O7.50Pd C12H58N4O18Pd2 

Mr /g mol
−1 

 472.78 469.78 759.45 

Crystal size /mm 0.38 × 0.02 × 0.01 0.63 × 0.06 × 0.05 0.14 × 0.12 × 0.05 

Crystal system Monoclinic Monoclinic Triclinic 

Space group C 2/c C 2/c P 1̄ 

a /Å 16.6326(6) 15.5764(3) 8.7675(2) 

b /Å 20.2497(8) 16.0200(4) 9.8607(3) 

c /Å 13.7653(4) 14.8394(3) 10.8518(3) 

α /° 90 90 67.3597(16) 

β /° 123.3336(18) 102.7301(14) 86.337(2) 

γ /° 90 90 67.5770(17) 

V /Å
3
 3873.5(2) 3611.91(13) 796.62(4) 

Z 8 8 1 

ρcalcd /g cm
−3

 1.62145(8) 1.72785(6) 1.58307(8) 

μ /mm
−1

 1.006 1.072 1.200 

Absorption correction None None Multi-scan 

Tmin, Tmax  –  – 0.862, 0.942 

Refls. measured 15395 15151 17568 

Rint 0.0401  0.0344  0.0339  

Mean σ(I)/I 0.0340 0.0262 0.0309 

θ range 3.16–27.49 3.43–27.49 3.40–27.51 

Observed refls. 3456 3549 3290 

x, y (weighting scheme) 0.0408, 5.9439 0.0352, 11.1728 0.0333, 0.7853 

Flack parameter – – – 

Refls. in refinement 4426 4133 3648 

Parameters 288 223 209 

Restraints 21 15 21 

R(Fobs) 0.0346 0.0352 0.0284 

RwF
2
 0.0879 0.0891 0.0679 

S 1.055 1.093 1.050 

Shift/errormax 0.002 0.003 0.001 

Max. res. density /e Å
−3 

 0.612 1.241 0.990 

Min. res. density /e Å
−3

 −0.773 −0.753 −0.775 
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Table 6.44. Crystallographic tables of [Pd2(tn)2(ErytH−4-κO
1,2

:κO
3,4

)] · 10 H2O (10), 

[Pd2(tmen)2(Mann1,2;3,4H−4-κO
1,2

:κO
3,4

)] · 9 H2O (11) and [Pd2(tn)2(Mann1,2;3,4H−4-κO
1,2

:κO
3,4

)] · 5 H2O (12). 

Compound 10 11 12 

Empirical formula C10H46N4O14Pd2 C18H60N4O15Pd2 C12H40N4O11Pd2 

Mr /g mol
−1 

 659.33 785.53 629.31 

Crystal size /mm 0.164 × 0.033 × 0.020 0.11 × 0.06 × 0.02 0.218 × 0.052 × 0.045 
Crystal system Monoclinic Monoclinic Monoclinic 

Space group C 2/c P 21 P 21 

a /Å 20.1147(5) 8.4118(2) 8.997(3) 

b /Å 7.0588(2) 14.5993(5) 14.472(5) 

c /Å 17.9562(5) 13.5747(4) 8.997(3) 

α /° 90 90 90 

β /° 104.0199(16) 98.1214(19) 109.70(3) 

γ /° 90 90 90 

V /Å
3
 2473.58(12) 1650.34(8) 1102.9(6) 

Z 4 2 2 

ρcalcd /g cm
−3

 1.77049(9) 1.58079(8) 1.8950(10) 

μ /mm
−1

 1.520 1.155 1.690 

Absorption correction None Multi-scan None 

Tmin, Tmax – 0.873, 0.977 – 

Refls. measured 9575 27763 8387 

Rint 0.0395  0.0932  0.0295  

Mean σ(I)/I 0.0362 0.1077 0.0548 

θ range 3.19–27.53 3.18–27.49 3.70–27.50 

Observed refls. 2340 5274 4134 

x, y (weighting scheme) 0.0427, 11.6587 0.0256, 0 0.0270, 0.7438 

Flack parameter – 0.01(3) 0.00(4) 

Refls. in refinement 2823 7212 4918 

Parameters 121 418 292 

Restraints 15 28 16 

R(Fobs) 0.0350 0.0450 0.0346 

RwF
2
 0.0913 0.0797 0.0742 

S 1.047 1.018 1.066 

Shift/errormax 0.001 0.001 0.001 

Max. res. density /e Å
−3 

 1.296 1.075 1.009 

Min. res. density /e Å
−3

 −0.796 −0.712 −0.858 
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Table 6.45. Crystallographic tables of [Pd2(dmen)2(Dulc2,3;4,5H−4-κO
2,3

:κO
4,5

)] · 8 H2O (13), 

[Pd2(tn)2(Dulc2,3;4,5H−4-κO
2,3

:κO
4,5

)] · 6 H2O (14) and [Pd2(tmen)2(D-Altr2,3;4,5H−4-κO
2,3

:κO
4,5

)] · 9 H2O (15). 

Compound 13 14 15 

Empirical formula C14H50N4O14Pd2 C12H42N4O12Pd2 C18H60N4O15Pd2 

Mr /g mol
−1 

 711.41 647.32 785.53 

Crystal size /mm 0.11 × 0.09 × 0.09 0.279 × 0.072 × 0.061 0.46 × 0.19 × 0.06 

Crystal system Triclinic Triclinic Monoclinic 

Space group P 1̄ P 1̄ P 21 

a /Å 8.37680(20) 9.5891(2) 8.6504(2) 

b /Å 9.08000(20) 9.9439(2) 14.3715(3) 

c /Å 10.31420(29) 14.0725(3) 13.4329(2) 

α /° 76.3950(16) 77.9963(14) 90 

β /° 72.9441(15) 83.5398(14) 103.3687(12) 

γ /° 70.0739(16) 62.1802(11) 90 

V /Å
3
 697.076(31) 1160.63(4) 1624.72(6) 

Z 1 2 2 

ρcalcd /g cm
−3

 1.69470(8) 1.85230(6) 1.60571(6) 

μ /mm
−1

 1.355 1.612 1.173 

Absorption correction Multi-scan None Multi-scan 

Tmin, Tmax 0.742, 0.885 – 0.765, 0.932 

Refls. measured 17099 10092 26969 

Rint 0.0328  0.0194  0.0508  

Mean σ(I)/I 0.0273 0.0306 0.0495 

θ range 3.42–27.53 3.44–27.53 3.24–27.61 

Observed refls. 2902 4438 6920 

x, y (weighting scheme) 0.0290, 0.9502 0.0353, 0.9973 0, 1.1392 

Flack parameter – – 0.016(19) 

Refls. in refinement 3182 5305 7411 

Parameters 183 317 434 

Restraints 12 20 28 

R(Fobs) 0.0294 0.0270 0.0292 

RwF
2
 0.0693 0.0718 0.0588 

S 1.074 1.032 1.081 

Shift/errormax 0.001 0.001 0.001 

Max. res. density /e Å
−3 

 0.858 1.431 0.558 

Min. res. density /e Å
−3

 −0.854 −0.881 −0.756 
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Table 6.46. Crystallographic tables of [Pd2(en)2(Allt2,3;4,5H−4-κO
2,3

:κO
4,5

)] · 14 H2O (16), 

[Pd2(tmen)2(Allt1,2;5,6H−4-κO
1,2

:κO
5,6

)] · 8 H2O (17) and [Pd4(R,R-chxn)4(L-ThreH−4)](NO3)4 · 4 H2O (18). 

Compound 16 17 18 

Empirical formula 122 C18H58N4O14Pd2 C28H70N12O20Pd4 

Mr /g mol
−1 

 763.39 767.51 1320.60 

Crystal size /mm 0.16 × 0.14 × 0.096 0.13 × 0.07 × 0.01 0.16 × 0.10 × 0.05 

Crystal system Monoclinic Monoclinic Monoclinic 

Space group C 2/c P 21/n P 21 

a /Å 11.5082(13) 5.81720(10) 14.03440(20) 

b /Å 12.1545(14) 30.19850(50) 11.58970(20) 

c /Å 21.906(3) 9.22700(10) 15.33700(20) 

α /° 90 90 90 

β /° 103.330(10) 104.2824(9) 108.4452(9) 

γ /° 90 90 90 

V /Å
3
 2981.5(6) 1570.814(41) 2366.474(62) 

Z 4 2 2 

ρcalcd /g cm
−3

 1.7007(3) 1.62273(4) 1.85335(5) 

μ /mm
−1

 1.288 1.209 1.580 

Absorption correction Numerical None None 

Tmin, Tmax 0.8574, 0.9547 – – 

Refls. measured 8581 7045 10583 

Rint 0.0493  0.0169  0.0410  

Mean σ(I)/I 0.0643 0.0254 0.0296 

θ range 3.85–27.50 3.53–27.48 3.25–27.47 

Observed refls. 2963 3230 10055 

x, y (weighting scheme) 0.0127, 17.3173 0.0113, 1.1406 0.0176, 1.8934 

Flack parameter – – −0.034(16) 

Refls. in refinement 3418 3600 10583 

Parameters 209 203 607 

Restraints 22 12 10 

R(Fobs) 0.0659 0.0208 0.0240 

RwF
2
 0.0999 0.0455 0.0516 

S 1.231 1.063 1.054 

Shift/errormax 0.001 0.002 0.001 

Max. res. density /e Å
−3 

 0.866 0.397 0.469 

Min. res. density /e Å
−3

 −0.473 −0.476 −0.473 
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Table 6.47. Crystallographic tables of [Pd4(R,R-chxn)4(Xylt1,2,3,4H−4)](NO3)4 · 4.7 H2O (19), 

[Pd4(R,R-chxn)4(L-Idit2,3,4,5H−4)](NO3)4 · 6 H2O (20) and 

[Pd4(R,R-chxn)1.66(S,S-chxn)2.34(D-Mann2,3,4,5H−4)](NO3)4 · 7 H2O (21). 

Compound 19 20 21 

Empirical formula C29H78N12O24Pd4 C30H78N12O24Pd4 C30H80N12O25Pd4 

Mr /g mol
−1 

 1404.68 1416.69 1434.70 

Crystal size /mm 0.16 × 0.11 × 0.11 0.06 × 0.04 × 0.03 0.19 × 0.16 × 0.12 

Crystal system Monoclinic Triclinic Orthorhombic 

Space group P 21 P 1 P 212121 

a /Å 11.54460(10) 9.6520(3) 11.50610(10) 

b /Å 16.7369(3) 11.8693(5) 13.58680(20) 

c /Å 13.8061(2) 12.2015(6) 33.61050(50) 

α /° 90 83.166(2) 90 

β /° 100.3147(9) 76.848(3) 90 

γ /° 90 73.702(2) 90 

V /Å
3
 2624.51(6) 1304.20(9) 5254.366(119) 

Z 2 1 4 

ρcalcd /g cm
−3

 1.77752(4) 1.80379(12) 1.81366(4) 

μ /mm
−1

 1.435 1.445 1.437 

Absorption correction None None None 

Tmin, Tmax – – – 

Refls. measured 21654 11323 11951 

Rint 0.0295  0.0000  0.0560  

Mean σ(I)/I 0.0414 0.1115 0.0477 

θ range 3.23–27.59 3.22–27.48 3.23–27.52 

Observed refls. 10797 9126 10386 

x, y (weighting scheme) 0.0216, 1.4224 0.0808, 0 0.0130, 6.9656 

Flack parameter −0.02(2) −0.01(4) −0.05(2) 

Refls. in refinement 11825 11323 11951 

Parameters 567 631 622 

Restraints 28 3 21 

R(Fobs) 0.0288 0.0669 0.0343 

RwF
2
 0.0630 0.1539 0.0610 

S 1.077 1.022 1.032 

Shift/errormax 0.002 0.001 0.002 

Max. res. density /e Å
−3 

 0.717 3.464
a
 0.548 

Min. res. density /e Å
−3

 −0.496 −1.136 −0.469 

 
a
 The max. residue density is found at a distance of 1.035 Å to Pd2. 
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Table 6.48. Crystallographic tables of [Pd4(R,R-chxn)4(D-Altr1,2,3,4H−4)](NO3)3.57(OH)0.43 · 12 H2O (22), 

[Pd4(R,R-chxn)4(Dulc1,2,3,4H−4)](NO3)3.5(OH)0.5  · 6.75 H2O (23) and 

[{Pd2(R,R-chxn)2(HmmpdH−3)}2Pd](NO3)4 · 4 H2O (24). 

Compound 22 23 24 

Empirical formula C30H90.43N11.57O29.14Pd4 C30H80N11.50O23.75Pd4 C34H82N12O22Pd5 

Mr /g mol
−1 

 1505.43 1407.70 1543.18 

Crystal size /mm 0.26 × 0.23 × 0.18 0.05 × 0.05 × 0.04 0.17 × 0.12 × 0.07 

Crystal system Orthorhombic Tetragonal Monoclinic 

Space group P 212121 P 41212 P 21 

a /Å 15.11865(18) 14.1520(3) 10.6708(2) 

b /Å 17.6740(4) 14.1520(3) 15.3398(3) 

c /Å 21.9616(4) 53.1914(10) 16.8079(4) 

α /° 90 90 90 

β /° 90 90 92.3206(12) 

γ /° 90 90 90 

V /Å
3
 5868.27(18) 10653.1(4) 2748.99(10) 

Z 4 8 2 

ρcalcd /g cm
−3

 1.70398(5) 1.75541(7) 1.86436(7) 

μ /mm
−1

 1.296 1.414 1.687 

Absorption correction Multi-scan None Multi-scan 

Tmin, Tmax 0.86850, 1.00000 – 0.777, 0.889 

Refls. measured 46583 18221 60056 

Rint 0.0360  0.0523  0.0719  

Mean σ(I)/I 0.0435 0.0775 0.0665 

θ range 4.14–26.32 3.22–25.03 3.15–27.47 

Observed refls. 10331 6866 9585 

x, y (weighting scheme) 0.0454, 0 0.0765, 18.0469 0.0294, 1.4832 

Flack parameter −0.01(2) −0.03(5) 0.03(3) 

Refls. in refinement 11893 9270 12514 

Parameters 664 559 682 

Restraints 3 15 13 

R(Fobs) 0.0303 0.0555 0.0376 

RwF
2
 0.0753 0.1420 0.0785 

S 0.995 1.028 1.026 

Shift/errormax 0.001 0.002 0.001 

Max. res. density /e Å
−3 

 0.712 1.034 0.981 

Min. res. density /e Å
−3

 −0.479 −0.693 −0.592 
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Table 6.49. Crystallographic tables of [Pd6(R,R-chxn)6(μ4-O)(μ-OH)4](NO3)6 · 12.5 H2O (25), 

[Pd4(R,R-chxn)4(C3O6)(μ-OH)](NO3)3 · 8 H2O (26) and [Pd2(en)2(D-chiro-Ins1,2;5,6H−4)] · 8 H2O (27). 

Compound 25 26 27 

Empirical formula C36H113N18O35.50Pd6 C27H73.61N11O24.30Pd4 C10H40N4O14Pd2 

Mr /g mol
−1 

 2004.90 1367.02 653.28 

Crystal size /mm 0.24 × 0.20 × 0.09 0.15 × 0.11 × 0.08 0.144 × 0.109 × 0.039 

Crystal system Orthorhombic Triclinic Orthorhombic 

Space group P 2221 P 1 P 212121 

a /Å 11.7782(4) 12.8502(3) 8.85720(10) 

b /Å 13.5750(4) 14.3042(3) 8.91650(10) 

c /Å 24.8998(8) 14.6608(3) 29.9200(5) 

α /° 90 74.2946(11) 90 

β /° 90 84.3330(11) 90 

γ /° 90 79.2674(11) 90 

V /Å
3
 3981.2(2) 2545.51(9) 2362.94(5) 

Z 2 2 4 

ρcalcd /g cm
−3

 1.67249(8) 1.78355(6) 1.83639(4) 

μ /mm
−1

 1.414 1.477 1.590 

Absorption correction Numerical Multi-scan None 

Tmin, Tmax 0.6705, 0.8343 – – 

Refls. measured 32522 15442 16181 

Rint 0.0476  0.0000  0.0622  

Mean σ(I)/I 0.0775 0.0295 0.0514 

θ range 3.69–26.54 3.16–24.00 3.24–27.51 

Observed refls. 5834 14400 4935 

x, y (weighting scheme) 0.0592, 0 0.1087, 13.4903 0.0848, 21.5763 

Flack parameter −0.05(4) 0.02(4) 0.06(8) 

Refls. in refinement 8274 15442 5396 

Parameters 371 939 271 

Restraints 17 9 0 

R(Fobs) 0.0406 0.0565 0.0672 

RwF
2
 0.1077 0.1689 0.1782 

S 1.016 1.049 1.094 

Shift/errormax 0.002 0.001 0.001 

Max. res. density /e Å
−3 

 0.811 1.802 7.035
a
 

Min. res. density /e Å
−3

 −0.647 −0.685 −1.155 

 
a
 The max. residue density is found at a distance of 1.407 Å to O4. 
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Table 6.50. Crystallographic tables of [Pd2(tmen)2(neo-Ins1,6;3,4H−4-κO
1,6

:κO
3,4

)] · 22 H2O (28), 

[Pd3(tmen)3(scyllo-InsH−6)] · 23 H2O (29) and [Pd(R,R-chxn)(Me-α-D-Lyxp2,3H−2-κO
2,3

)] · 2.25 H2O (30). 

Compound 28 29 30 

Empirical formula C18H84N4O28Pd2 C24H100N6O29Pd3 C12H28.50N2O7.25Pd 

Mr /g mol
−1 

 1017.71 1256.33 423.27 

Crystal size /mm 0.41 × 0.16 × 0.12 0.33 × 0.31 × 0.16 0.191 × 0.065 × 0.023 

Crystal system Orthorhombic Monoclinic Triclinic 

Space group C mce C 2/c P 1 

a /Å 31.452(5) 21.3176(5) 10.8847(4) 

b /Å 7.984(5) 21.1561(5) 12.2073(4) 

c /Å 17.578(5) 12.0968(3) 13.9766(4) 

α /° 90 90 75.205(2) 

β /° 90 102.750(2) 73.759(2) 

γ /° 90 90 85.9442(17) 

V /Å
3
 4414(3) 5321.1(2) 1723.89(10) 

Z 4 4 4 

ρcalcd /g cm
−3

 1.5315(10) 1.56826(6) 1.631 

μ /mm
−1

 0.903 1.088 1.112 

Absorption correction Multi-scan Multi-scan Multi-scan 

Tmin, Tmax 0.74613, 1.00000 0.73718, 1.00000 0.917, 0.975 

Refls. measured 16473 17194 11792 

Rint 0.0342  0.0257  0.0000  

Mean σ(I)/I 0.0369 0.0386 0.0376 

θ range 4.28–26.35 3.85–26.32 3.18–25.40 

Observed refls. 1427 4048 11256 

x, y (weighting scheme) 0.0379, 0 0.0611, 0 0.0313, 1.4978 

Flack parameter – – −0.032(17) 

Refls. in refinement 2276 5373 11792 

Parameters 168 251 864 

Restraints 22 37 30 

R(Fobs) 0.0243 0.0332 0.0301 

RwF
2
 0.0652 0.0981 0.0725 

S 0.964 1.071 1.077 

Shift/errormax 0.001 0.001 0.001 

Max. res. density /e Å
−3 

 1.030 1.491 0.706 

Min. res. density /e Å
−3

 −0.310 −0.710 −0.829 
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Table 6.51. Crystallographic tables of [Pd(tmen)(Me-β-D-Xylp2,3H−2-κO
2,3

)][Pd(tmen)(Me-β-D-Xylp3,4H−2-

κO
3,4

)] · 2 H2O (31), [Pd2(tmen)2(
4
C1-β-D-Arap1,2;3,4H−4-κO

1,2
:κO

3,4
)] · 10 H2O (32) and 

[Pd2(tmen)2(
4
C1-β-D-Lyxp1,2;3,4H−4-κO

1,2
:κO

3,4
)] · 10 H2O (33). 

Compound 31 32 33 

Empirical formula C12H28N2O6Pd C17H58N4O15Pd2 C17H58N4O15Pd2 

Mr /g mol
−1 

 402.78 771.50 771.50 

Crystal size /mm 0.27 × 0.16 × 0.14 0.26 × 0.06 × 0.06 0.27 × 0.12 × 0.09 

Crystal system Monoclinic Orthorhombic Monoclinic 

Space group P 21 P 212121 P 21 

a /Å 8.8758(3) 8.63210(10) 8.6386(2) 

b /Å 18.5971(6) 11.13230(10) 15.7249(4) 

c /Å 10.3814(4) 34.1013(4) 11.9237(2) 

α /° 90 90 90 

β /° 106.680(4) 90 99.1973(12) 

γ /° 90 90 90 

V /Å
3
 1641.50(10) 3276.97(6) 1598.91(6) 

Z 4 4 2 

ρcalcd /g cm
−3

 1.62983(10) 1.56379(3) 1.60250(6) 

μ /mm
−1

 1.157 1.162 1.191 

Absorption correction Numerical None None 

Tmin, Tmax 0.8312, 0.8806 – – 

Refls. measured 16208 39811 25671 

Rint 0.0308  0.0578  0.0368  

Mean σ(I)/I 0.0614 0.0445 0.0416 

θ range 3.73–27.53 3.22–27.54 3.17–27.49 

Observed refls. 6039 6665 6473 

x, y (weighting scheme) 0.0175, 0 0.0378, 0.6835 0.0320, 0.6978 

Flack parameter −0.034(18) −0.01(2) −0.02(2) 

Refls. in refinement 7304 7487 6954 

Parameters 403 413 429 

Restraints 7 30 34 

R(Fobs) 0.0291 0.0315 0.0329 

RwF
2
 0.0466 0.0714 0.0737 

S 0.897 1.030 1.153 

Shift/errormax 0.001 0.001 0.001 

Max. res. density /e Å
−3 

 0.678 0.858 1.454 

Min. res. density /e Å
−3

 −0.432 −0.481 −0.765 
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Table 6.52. Crystallographic tables of [Pd(tmen)(
4
C1-Me-α-D-Galp3,4H−2-κO

3,4
)] · 8 H2O (34), [Pd(dmen)(

4
C1-

Me-α-D-Galp3,4H−2-κO
3,4

)] · 9 H2O (35) and [Pd(tmen)(
4
C1-Me-α-D-Manp2,3H−2-κO

2,3
)] · 3.5 H2O (36). 

Compound 34 35 36 

Empirical formula C13H44N2O14Pd C11H42N2O15Pd C13H35N2O9.50Pd 

Mr /g mol
−1 

 558.91 548.88 477.84 

Crystal size /mm 0.20 × 0.14 × 0.13 0.29 × 0.25 × 0.18 0.24 × 0.17 × 0.12 

Crystal system Triclinic Triclinic Monoclinic 

Space group P 1 P 1 P 21 

a /Å 8.0080(3) 7.613(3) 10.4616(2) 

b /Å 9.1901(4) 8.9634(16) 16.6146(3) 

c /Å 9.1977(3) 9.508(3) 11.8413(2) 

α /° 81.453(3) 80.656(18) 90 

β /° 66.651(4) 69.15(3) 91.9489(12) 

γ /° 82.925(3) 83.10(2) 90 

V /Å
3
 613.02(4) 596.9(3) 2057.01(6) 

Z 1 1 4 

ρcalcd /g cm
−3

 1.51400(10) 1.5270(8) 1.54300(5) 

μ /mm
−1

 0.821 0.844 0.949 

Absorption correction Numerical Numerical Multi-scan 

Tmin, Tmax 0.7714, 0.9168 0.7986, 0.8981 0.702, 0.892 

Refls. measured 11233 6019 32629 

Rint 0.0320  0.0192  0.0468  

Mean σ(I)/I 0.0559 0.0271 0.0485 

θ range 3.69–27.58 4.07–26.32 3.44–27.52 

Observed refls. 5317 4054 8858 

x, y (weighting scheme) 0.0287, 0 0.0286, 0 0.0352, 1.0101 

Flack parameter −0.049(18) −0.023(13) −0.019(19) 

Refls. in refinement 5624 4096 9379 

Parameters 301 326 496 

Restraints 18 30 19 

R(Fobs) 0.0293 0.0186 0.0328 

RwF
2
 0.0596 0.0441 0.0753 

S 0.976 1.017 1.052 

Shift/errormax 0.001 0.001 0.002 

Max. res. density /e Å
−3 

 0.533 0.523 0.989 

Min. res. density /e Å
−3

 −0.366 −0.303 −0.744 
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Table 6.53. Crystallographic tables of methyl β-D-fructopyranoside (37), [Pd(R,R-chxn)(Me-α-D-Fruf 1,3H−2-

κO
1,3

)] · 2 H2O (38) and [Pd2(tmen)2(α-D-Tagp1,2;3,4H−4-κO
1,2

:κO
3,4

)] · 8 H2O (39). 

Compound 37 38 39 

Empirical formula C7H14O6 C13H30N2O8Pd C18H56N4O14Pd2 

Mr /g mol
−1 

 194.182 448.81 765.50 

Crystal size /mm 0.51 × 0.49 × 0.15 0.22 × 0.034 × 0.018 0.08 × 0.02 × 0.01 

Crystal system Monoclinic Triclinic Orthorhombic 

Space group C 2 P 1 P 212121 

a /Å 14.9990(8) 7.3885(2) 6.3980(4) 

b /Å 5.4114(3) 10.1980(3) 12.9167(8) 

c /Å 10.8287(6) 13.1923(4) 37.819(3) 

α /° 90 93.4184(16) 90 

β /° 99.477(5) 105.5699(18) 90 

γ /° 90 107.126(2) 90 

V /Å
3
 866.92(8) 904.63(4) 3125.4(3) 

Z 4 2 4 

ρcalcd /g cm
−3

 1.48781(14) 1.64768(7) 1.62687(16) 

μ /mm
−1

 0.131 1.067 1.215 

Absorption correction Multi-scan Multi-scan None 

Tmin, Tmax 0.96170, 1.00000 0.957, 0.981 – 

Refls. measured 2886 11046 10843 

Rint 0.0148  0.0340  0.0768  

Mean σ(I)/I 0.0159 0.0535 0.0838 

θ range 4.32–26.33 3.20–25.04 3.15–22.47 

Observed refls. 914 5559 3115 

x, y (weighting scheme) 0.0418, 0.2748 0.0875, 0 0.0255, 23.7372 

Flack parameter –
a
 0.00(3) −0.03(8) 

Refls. in refinement 976 5738 4004 

Parameters 123 457 386 

Restraints 1 15 21 

R(Fobs) 0.0266 0.0425 0.0639 

RwF
2
 0.0694 0.1168 0.1283 

S 1.048 1.076 1.118 

Shift/errormax 0.001 0.001 0.001 

Max. res. density /e Å
−3 

 0.187 2.668
b
 0.857 

Min. res. density /e Å
−3

 −0.153 −0.794 −0.644 

 
a
 The absolute structure parameter was meaningless because the compound was a weak anomalous scatterer. 

Therefore, the Friedel pairs were averaged. 
b
 The max. residue density is found at a distance of 1.335 Å to Pd2. 
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Table 6.54. Crystallographic tables of [Pd2(tmen)2(Ery4aldfH−4-κO
1,4

:κO
2,3

)]  · 12 H2O (40), 

2,3;4,5-di-O-isopropylidene-D-manno-hexodialdose (41) and [Pd3(teen)3(α-CDH−6)] · 34 H2O (42). 

Compound 40 41 42 

Empirical formula C16H60N4O17Pd2 C12H18O6 C66H194N6O64Pd3 

Mr /g mol
−1 

 793.50 258.268 2415.51 

Crystal size /mm 0.13 × 0.11 × 0.02 0.31 × 0.21 × 0.11 0.33 × 0.20 × 0.18 

Crystal system Monoclinic Monoclinic Hexagonal 

Space group P 21 P 21 P 63 

a /Å 8.2183(5) 7.9003(13) 16.7917(5) 

b /Å 25.2484(18) 7.6953(11) 16.7917(5) 

c /Å 8.8236(5) 10.5548(15) 23.9134(7) 

α /° 90 90 90 

β /° 117.200(3) 91.200(14) 90 

γ /° 90 90 120 

V /Å
3
 1628.43(18) 641.54(17) 5839.3(3) 

Z 2 2 2 

ρcalcd /g cm
−3

 1.61832(18) 1.3370(4) 1.37383(7) 

μ /mm
−1

 1.176 0.107 0.553 

Absorption correction None Multi-scan Numerical 

Tmin, Tmax – 0.95477, 1.00000 0.8272, 0.9139 

Refls. measured 7627 4549 8062 

Rint 0.0275  0.0337  0.0398  

Mean σ(I)/I 0.0488 0.0423 0.0878 

θ range 3.22–25.34 4.20–26.47 3.79–26.31 

Observed refls. 4215 1151 2747 

x, y (weighting scheme) 0, 5.7724 0.0801, 0 0.0927, 0 

Flack parameter 0.44(7)
a
 –

b
 −0.01(5) 

Refls. in refinement 5081 1400 4604 

Parameters 247 167 418 

Restraints 37 1 1 

R(Fobs) 0.0399 0.0466 0.0540 

RwF
2
 0.0837 0.1220 0.1526 

S 1.140 1.036 0.958 

Shift/errormax 0.001 0.001 0.001 

Max. res. density /e Å
−3 

 0.795 0.315 1.449 

Min. res. density /e Å
−3

 −0.582 −0.208 −1.161 

 
a
 The compound was found to be an inversion twin which is indicated by the Flack parameter. 

b
 The absolute 

structure parameter was meaningless because the compound was a weak anomalous scatterer. Therefore, the 

Friedel pairs were averaged.  
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Table 6.55. Crystallographic tables of [Pd3(tmen)3(α-CDH−6)] · 20.7 H2O · acetone (43), 

[Pd4(teen)4(γ-CDH−8)] · 12 H2O (44) and [Pd4(tmen)4(γ-CDH−8)] · 65.79 H2O · 0.96 [Pd(tmen)CO3] (45). 

Compound 43 44 45 

Empirical formula C57H149.41N6O51.71Pd3 C88H192N8O52Pd4 C150.72H418.94N17.92O148.67Pd8.96 

Mr /g mol
−1 

 2065.84 2620.17 13766.8 

Crystal size /mm 0.38 × 0.25 × 0.17 0.12 × 0.07 × 0.05 0.15 × 0.16 × 0.22 

Crystal system Monoclinic Orthorhombic Monoclinic 

Space group P 21 P 212121 P 21 

a /Å 12.6353(3) 12.7934(2) 13.2690(1) 

b /Å 26.4900(6) 27.5126(5) 35.6901(4) 

c /Å 15.4585(4) 38.1396(7) 29.0741(3) 

α /° 90 90 90 

β /° 113.631(3) 90 90.9467(5) 

γ /° 90 90 90 

V /Å
3
 4740.2(2) 13424.4(4) 13766.8(2) 

Z 2 4 2 

ρcalcd /g cm
−3

 1.44739(6) 1.29643(4) 1.371 

μ /mm
−1

 0.659 0.608 0.672 

Absorption correction Numerical None None 

Tmin, Tmax 0.7758, 0.8818 – – 

Refls. measured 35164 55587 67108 

Rint 0.0309  0.1418  0.0485 

Mean σ(I)/I 0.0557 0.1322 0.0716 

θ range 3.86–26.41 3.15–21.96 3.1–23.5 

Observed refls. 13713 10103 29826 

x, y (weighting scheme) 0.0698, 0 0.1253, 69.0451 0.01046, 58.2289 

Flack parameter −0.057(17) −0.02(5) 0.01(2) 

Refls. in refinement 16966 16336 37973 

Parameters 1079 675 1608 

Restraints 8 2 1 

R(Fobs) 0.0403 0.0903 0.0758 

RwF
2
 0.1089 0.2520 0.2046 

S 1.024 1.025 1.026 

Shift/errormax 0.034 0.001 0.001 

Max. res. density /e Å
−3 

 0.839 0.893 0.95 

Min. res. density /e Å
−3

 −0.615 −0.587 −0.63 
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