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1.0 Introduction   
 

Proteome versus proteins 

 

Each organism contains a single genome in virtually all its cells and thus the difference 

between the numerous cell types within the same organisms are attributed mainly to genetic 

imprinting, epigenetics, transcriptional and post- transcriptional processes. Thus studying all the 

protein molecules present in the living system (termed proteomics) at any given time and 

physiological condition will logically provide insights into the mechanism of life to an 

unprecedented depth. Historically when proteins were studied ‘one at a time’ achieving a 

systems view of the cell or organelle was a daunting and laborious endeavor to undertake. 

Further when proteins are studied individually the results could be occasionally bewildering 

owing to the crosstalk between the signaling pathways and nodes1, 2. Though there are successful 

structural biology technologies on a small scale and techniques like yeast two hybrid3 and phage 

display system4 to characterize the protein- protein interaction at a larger scale they do not 

provide a system wide view apart from establishing the interaction between groups of proteins. 

Further the false positive and false negative rates are difficult to estimate and the information is 

less quantitative (if at all) to construct a stoichiometric protein complex5.  

 

Mass spectrometry based proteomics 

 

Mass Spectrometry (MS) - one the most sensitive analytical techniques - has played an 

enormous role in the development of proteomics to its existing capabilities. The advent of ESI 

and MALDI techniques initially led to mass spectrometry being used for individual protein 

sequencing and identification of gel bands thus gradually replacing the Edman degradation 

method. At first, proteomics was associated with 2-dimensional gel electrophoresis techniques 

(2DE)6 but 2DE has serious limitations7. When protein and peptide separation techniques like 

liquid chromatography were combined with mass spectrometry8 , complex protein and peptide 



 

 6

mixtures were successfully analyzed leading to the emergence of MS-based proteomics9-13. 

Complementary to advances in separation strategies, development of new mass spectrometers 

especially the FT ICR14 and Orbitrap8, 15-18 hybrid instruments, have facilitated routine large 

scale high accuracy and high resolution MS.  

Mass spectrometry is not quantitative by itself and strategies have been developed  to 

obtain relative quantification between conditions either using non-radioactive isotopes or the 

spectral information itself19-21.  Proteins  or  peptides are labeled with light and different heavy 

non-radioactive isotopes which are identical in terms of biochemical properties including the 

ionization efficiency and differ only by mass and thus can be distinguished in the mass 

spectrum22-25. Labeling can be performed by (1) the metabolic labeling of cells using 15N 

isotopes26, 27or by stable isotope labeling of amino acids in cell culture (SILAC)28, 29  and (2) 

chemical labeling of peptides like isotope coded affinity tags (ICAT)30, Hys Tag31, dimethyl 

labeling32 and isobaric tags iTRAQ33. Recently, Geiger et al have demonstrated the applicability 

of SILAC based quantification to clinical samples34, which could potentially lead to a new 

paradigm of clinical proteomics. In a label-free format quantification can be performed from the 

extracted ion chromatogram (XIC) for the peptides (‘label free quantification’). Currently a wide 

range of algorithms are available for label free quantification making this an attractive strategy 

especially for clinical samples and samples for which labeling is generally not feasible.  

With concurrent maturation in many facets, MS based quantitative proteomics is now set 

to become an indispensable tool in cell and systems biology. It is now possible to identify 

complete or near complete proteomes of eukaryotic cells within a reasonable amount of 

measuring time35, 36. Quantitative proteomics in its current state is routinely employed in 

studying overall expression changes, cell signaling networks37, classification of cell types38, post 

translational modification(PTM) (phosphorylation39, 40, acetylation41, ubiquitination42 etc), 

protein-protein interactions43-46, organelle specific localization47-49 and protein turnover rates.  

 

  



 

 7

MS proteomics for clinical applications: hype and hope 

 

As explained above, MS based proteomics is now a common and powerful tool in cell 

biological experiments. However one of the ultimate goals of proteomics is to transfer the 

technology to clinical applications.  In clinical chemistry a few proteins are monitored based on 

assays or ELISA methods for diagnostic and prognostic purposes. These proteins are only a 

minute subset of a plethora available in the sample (plasma, serum or urine50, 51). This warrants 

the application of proteomics, which can handle hundreds if not thousands of proteins 

simultaneously. Thus, the field of clinical proteomics provides opportunity to identify and 

monitor new disease markers in body fluids, cells and tissues that can be used in diagnosis at a 

very early stage of disease, stratification of patients for specific treatment and therapeutic 

monitoring52, 53. The feature of quantitative analysis of thousands of proteins simultaneously and 

the inherent sensitivity of mass spectrometry implies a huge promise for application in clinical 

diagnosis.  

The potential of MS has generated hopes of finding new biomarkers for clinical diagnosis 

of many diseases including cancer especially at very early stage of disease progression. However 

to date there is still no successful protein biomarker developed  from mass spectrometric 

methods that is validated and verified - so far turning the early claims into mere hype54. Several 

contributing reasons include the application of premature technology, the inherent difficulties in 

analyzing body fluid samples that were thought to be an ideal source of samples, the need to 

measure a large number of samples with extensive fractionation and initial lack of reliable 

identification55 and of robust quantification methods. Several strategies were tried to address 

these problems – especially the dynamic range challenge of plasma proteins56, 57  - with varying 

degrees of success. For example, the dynamic range of plasma, serum and urine was reduced by 

applying antibody based depletion methods. However reports suggest that important low 

abundant proteins like cytokines may also be lost concomitantly  during the depletion process58.  
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Thesis work 

 

Given the  challenges of clinical proteomics, it is clear that the technology biomarker 

identification from body fluids needs to be drastically improved, which is the topic of my 

thesis59. Sample preparation methods, mass spectrometric analysis and downstream data analysis 

constitute the different modules of the clinical proteomics platform. As I will show development 

in these modules including speed, accuracy and resolution of the mass spectrometers, unbiased 

sample handling strategies and the availability of sophisticated algorithms to perform label free 

quantification has greatly advanced progress towards ‘real’ MS based clinical proteomics. 

 In my thesis, I have worked on different aspects including sample preparation and 

fragmentation techniques that could potentially improve the technology for clinical proteomics. 

In particular I have applied these improvements together with state of the art LC-MS/MS 

technologies to study the normal human urinary proteome.   

The first two projects are closely related and deal with improved sample preparation 

methods.  The resulting sample is unbiased, cleaner and thus leads to more efficient sample 

fractionation and higher MS/MS identification success rates. The third project investigates the 

feasibility of a new, high accuracy fragmentation method for the analysis of phosphopeptides. 

This ‘HCD’ fragmentation method was thought to be relatively slow and less sensitive than 

existing low resolution methods, however, my work shows that this is not so and that the high 

resolution method is superior in all aspects. This opens up for interesting applications in large 

scale clinical studies of the phosphorylation status of tumor samples. The last project deals with 

application of our sample preparation and LC-MS/MS platform to study the human urinary 

proteome. The project involves development of robust and high-throughput method for 

identification and quantification of more than 600 proteins in human urine. For the first time, we 

accurately determine inter and intra-individual variations in comparison to the technical variation 

in the normal urinary proteome. This information will be crucial in determining the suitability of 

proteins as urinary biomarkers for any disease.   
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Figure 1.  Modules for a clinical proteomics platform (middle panel).  The leftmost panel specifies some 
of the desired attributes for the modules and the current issues to be solved either are listed in the right 
panel. 
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1.1 Introduction to sample preparation and fractionation for 

liquid chromatography- mass spectrometry  
 

1.1.1 Challenges in proteome sample preparation in comparison to other omics 
technologies   
 

 In the post-genomic era, global profiling of cells and tissues to determine changes at the 

transcriptome level has become routine practice in order to gain insight in to the process or 

phenomenon under study. However as this profiling process shifts from transcriptome to 

proteome there is a paradigm shift in the level of complexity and diversity regarding the nature 

of the sample and also the sample handling.  For example, the transcriptomic approaches deals 

with mRNA populations that have minor variation in terms of biochemical properties and its 

diversity is observed only in the sequence and length of the mRNAs. In contrast proteins are very 

diverse in terms of biochemical properties like amino acid sequence, length, three dimensional 

structures and allosteric conformation, solubility and biological properties like cellular 

localization and post translational modification. However this problem itself provides a potential 

solution since these differences and complexity of the proteins can be exploited to fractionate 

them thereby simplifying the proteome and hence the analysis. 

Abundance of proteins in a sample can span up to 12 orders of magnitude60  whereas the 

severity of this problem in mRNA and other high throughput profiling methods is less 

pronounced.  Sample preparation constitutes the very first step in proteomic experiments and 

therefore determines the overall success of proteomics be it in large or small scale studies.  The 

ideal sample preparation technique would not involve any ‘sample handling’. However owing to 

the enormous diversity and complexity of the protein mixture, separation techniques are 

indispensable. 

  The key factors to be considered when designing any sample preparation method include 

maintaining the state of the proteome and avoiding artifacts like dephosphorylation or 

proteolysis, minimizing the bias against specific class of proteins such as membrane proteins, 

keeping the number of fractions to be analyzed in the mass spectrometer to a minimum and 



 

 11

maintaining the possibility of automation for the sample preparation to reduce the technical 

variation. Many proteomic analyses rely on protein level fractionation that can be based on the 

biochemical properties or biological characteristics of the proteins. 

 

Figure 1.1.1 Dynamic range of the plasma proteome.  This is one of the popular plots demonstrating the 
abundance range spanned by plasma proteins. The presence of highly abundant proteins may preclude the 
analysis low abundance proteins that are potential biomarkers. This ‘dynamic range problem’ is 
particularly severe in clinical proteomics. Adopted from ref60 

 

1.1.2 Protein fractionation based on biochemical properties  

 

 Reversed phase high performance liquid chromatography (HPLC) is by far the most 

commonly used fractionation technique in MS-based proteomics. The online coupling of 

reversed phased chromatography to mass spectrometer by an electrospray interface is now 

commonly called LC MS or LC MS/MS. The inherently acidic nature of separation is beneficial 

for peptide ionization in the positive electrospray mode. Even when MALDI is applied for 
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ionizing the peptides before mass spectrometry, HPLC can be used for fractionation in an offline 

mode where samples are spotted onto the MALDI source plate.   

Separation based on protein size by SDS-PAGE is also a commonly used strategy to 

fractionate samples.   The proteins are usually loaded on the SDS gel and the gel is cut into 

several slices followed by in-gel digestion of the proteins using an endoproteinase, which is most 

commonly trypsin61, 62. The peptides are then extracted and separated on a reverse phase column 

before online electrospray in front of the mass spectrometer. This mode of sample preparation 

and analysis is sometimes termed GeLC MS and has been widely adopted for proteomic studies.  

Proteins or peptides can also be separated based on their isoelectric point by isoelectric 

focusing by immobilized pH gradient strips or tubes63.  Separation based both on size and 

isoelectric point is the principle of 2D gel electrophoresis. In this technique proteins are 

separated in the first dimension by isoelectric focusing followed by separation based on size in 

the second dimension and it was believed to be a promising strategy for high resolution 

separation of proteins. However 2D gel technology has many technical issues and limitations 

including bias against membrane proteins, very large and small proteins etc. Furthermore, 

although the 2D gel can give rise to many thousands of protein spots, it actually leads to 

identification of only a few hundred proteins, many fewer than LC MS/MS based approaches. 

Finally, the 2D gel process is time consuming, difficult to automate and replicate runs are 

cumbersome. Though proteomics was initially associated with 2D gels they have been almost 

entirely been replaced by LC MS/MS based proteomics.   

Proteins and especially peptides can also be fractionated by ion exchange 

chromatography. Ion exchange is coupled to reversed phase separation in an orthogonal 

approach to fractionate the complex proteomes in large scale analysis of the peptides resulting 

from in solution digestion of the proteome. In one approach, strong cation exchange and reversed 

phase chromatography were orthogonally coupled online in order to achieve extensive 

identification of these peptides. This approach was termed multi-dimensional protein 

identification technology (MuDPIT) or shotgun proteomics64.  
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1.1.3 Enrichment based on biological properties 
 

Proteome samples can also be fractionated based on the biological properties of the 

proteins. This way of separating proteins serves two purposes; firstly, the sample complexity of 

the proteome mixture is drastically reduced secondly it leads to the enrichment of the proteins of 

biological interest that may otherwise be non-detectable despite reasonable fractionation. The 

biological characteristics that can be exploited for such fractionation are cellular localization 

(nuclear, cytoplasmic, membrane, mitochondrial, synaptic cleft etc)65; specific protein- protein 

interaction43, 44; DNA/RNA – protein interaction66, 67; enrichment for specific post-translational 

modifications such as phosphorylation68-71, acetylation41, glycosylation72, SUMOlyation73, redox 

state of the cellular environment or protein to name a few. 

 

1.1.4 Sample preparation for systems / cell biology versus clinical proteomics 
 

Proper combination of   these separation techniques yields high resolution fractionation 

and thus deeper coverage of the proteome. However with each fractionation step, the number of 

‘fragmentsamples’ that arise from a single fraction multiplies and thus increases the mass 

spectrometric measurement time. In clinical proteomics a large number of fractions is not desired 

considering the number of samples to be analyzed.  Furthermore, multiple fractionations would 

in turn require much starting material to obtain reasonable peptide amounts in each of the final 

fractions that are to be measured in the mass spectrometer.  While the sample is not limiting in 

case of cell lines and animal model tissues, fractionation may not be a good option for precious 

and limited sample material like clinical biopsies, bio-fluids obtained by invasive methods like 

cerebrospinal fluid (CSF).  However limited fractionation can still be performed and the process 

can be scaled down significantly. This miniaturization is not only desirable for clinical samples 

but also for general proteomic applications. Peptide pre-fractionation based on ion exchange74 

and reversed phase separation (for example StageTips)75, 76 can be performed in a pipette tip and 

this is now routinely applied in general proteomic experiments.  

In a clinical perspective apart from body fluids, other major sources of sample typically 

include tissue banks where samples are preserved as formalin fixed and paraffin-embedded 
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(FFPE) or frozen specimens. According to recent reports, it is possible to access the proteome 

and its PTMs in either of these states using new sample preparation techniques77, 78.  

 

 

Figure 1.1.4 Miniaturization of ion exchange separation of peptides. Peptides obtained from protease 
digestion are fractionated on an ion-exchanger by precise pH elution. The fractions eluted from the anion 
exchanger are readily cleaned up in StageTips for LC-MS/MS. A. The set up for coupling anion exchange 
to reversed phase fractionation. B. Resolution can be improved by increasing the number of pH elution 
steps. The process can be scaled down to 20 μg peptides and the whole procedure takes less than two 
hours. Modified from ref74. 
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1.2 Introduction to mass spectrometry based proteomics  
 

1.2.0 History and introduction to mass spectrometers  
 

 Mass spectrometry is an analytical technology that is used in a variety of fields, including 

medicine, life sciences, pharmaceutical sciences, organic chemistry and physics79. Having such a 

wide range of applications, the rapidly evolving technique of mass spectrometry has its roots in 

one of the key experiments of JJ Thomson where he studied the movement of electrons 

(negatively charged cathode ray particles) and other charged particles in electromagnetic fields80.  

In his experiments, J. J. Thompson demonstrated that the movement of these charged particles in 

vacuum under the influence of electric and magnetic fields is dependent upon the mass to charge 

ratio denoted as m/z.  Mass spectrometers were commercially available from as early as 1943 

and the early reports explaining the principles of time of flight (TOF) and ion cyclotron 

resonance (ICR) mass spectrometry were published in 1946 and 1948 respectively81, 82. The ICR 

mass spectrometry requires strong magnets and this issue was alleviated when Paul described the 

use of quadrupole and ion traps as mass analyzers83, 84 and hence these ion traps are also called 

Paul traps. Later the idea of tandem mass spectrometry evolved which resulted in the birth of 

fragmentation mass spectrometry (MS/MS) a hallmark in unambiguous structure 

determination85. This fragmentation or MS/MS turned out to be at the heart of MS-based 

proteomics for obtaining peptide sequences essential for determining the protein identity.  

Any mass spectrometer consists of three basic units (1) source of ions, (2) mass analyzer 

and (3) detector. The mass spectrometer also has an inlet system for the ion source, a data 

system, vacuum system and control electronics. The ion source transfers the analyte into the 

gaseous state and also ionizes the analyte so that it can be manipulated inside the mass 

spectrometer. From the ion source the charged analyte molecules flow into the mass analyzer 

facilitated by pressure differences and by a series of electric potential difference. Inside the mass 

analyzer the charged analyte are separated and analyzed by their motion based on their 

characteristic charge to mass ratio under the influence of magnetic and/or electric fields. These 

mass analyzers can differ in the principle of separation and analysis of ions and are of various 

forms such as magnetic sector, time-of-flight, quadrupole, ion trap and Fourier transform ion 
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cyclotron resonance analyzer.  The detector measures the ion signal and amplifies it to improve 

the signal and sensitivity of the instrument.  Data acquired in the mass analyzer that are recorded 

by the detection system are usually represented as a spectrum. The mass to charge ratio of the 

analyte (denoted as m/z) has units of Thompson (Th) and the relative intensity of each species is 

represented in the y axis. In an over-simplistic representation, with respect to a proteomic 

context, the m/z value yields the identity of a protein and the intensity value translates to the 

relative abundance of a protein in the system under study. In the following sections the key 

aspects of mass spectrometry and proteomics in general are discussed briefly.  

 

1.2.1 Ionization methods 
 

The first step in a mass spectrometric process is to generate charged analyte in the vapor 

state. Ionization of the analyte is crucial as it is easy and practical to control the movement of 

charged particles in electric and magnetic fields and to detect them. If neutral particles were to be 

analyzed this should be under the influence of gravitational fields, for example, and for 

monitoring such minor differences between different species the analyzer might need to be 

several kilometers or even longer to achieve mediocre resolution. 

Methods like electron ionization, chemical and photo ionization, atom bombardment 

ionization were the commonly used techniques in mass spectrometry several decades ago. 

However these methods are too energetic for the large and fragile biomolecules that can 

decompose during the ionization process leading to less informative spectra. The huge gap 

between the potential of mass spectrometry and its application to biomolecules and life sciences 

remained until the development of two soft ionization techniques electrospray ionization (ESI) 

and Matrix assisted Laser desorption ionization (MALDI) that ionizes the peptides and other 

biomolecules in a gentle way.  For this breakthrough with ESI and MALDI, John B Fenn and 

Koichi Tanaka were awarded a share of the Nobel Prize in chemistry 2002. 
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1.2.1.1 Electrospray Ionization 

 

The concept of electrospray ionization (ESI) was put forth by Malcom Dole and 

development of electrospray for mass spectrometry was pioneered by John Fenn86. It is now a 

technique routinely used in proteomics though the mechanism of electrospray ionization itself is 

not well understood. In proteomics work flows, ESI is usually coupled to peptide separation 

techniques like liquid chromatography or capillary electrophoresis.  In electrospray the sample 

flows through a capillary with its end maintained at high voltage up to 5 kV. The solution phase 

when reaching the tip of the column forms a cone shaped structure owing to its surface tension 

combined with the forces of the electric field. This structure called Taylor cone eventually results 

in formation of small droplets that in turn rapidly evaporate. As the charged droplets become 

smaller the increased surface charge density causes the ions to repel each other and the droplet 

bursts into smaller droplets. As the solvent completely evaporates the peptide ions fly into the 

mass spectrometer as gas phase ions that can be easily analyzed. The typical flow rate in 

electrospray used to be from 2- 10 µl/min.  Further improvements in ESI were achieved through 

the nano ESI developed by Matthias Wilm and Matthias Mann where they demonstrated that the 

flow rate in the ESI capillary can be reduced up to 20 nl/min while increasing the sensitivity to 

the attomole range87. In their set up the spray needle was as narrow as few microns and the 

sample was loaded directly close to the spray needle without any pump delivery systems 

(‘nanoelectrospray’). Electrospray ionization usually results in multiply charged ions and thus 

provides information rich MS/MS spectra for peptide sequencing. 

 

1.2.1.2 Matrix assisted laser desorption ionization (MALDI) 
 

A precursor to the MALDI technique was discovered by Kiochi Tanaka in Japan and 

Karras and Hillenkamp independently developed MALDI in Germany. This breakthrough 

facilitated the analysis of molecules of more than 200 kDa with very high sensitivity. MALDI is 

usually coupled to time of flight analyzers and given the method of sample preparation for 

MALDI the technique is not coupled to liquid chromatography in an ‘online’ fashion.  For 

MALDI, the analyte is mixed with an organic matrix material and dried on the plate. The mixing 
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of analyte and sample needs optimization in order to avoid segregation of sample and matrix 

during co-crystallization and to achieve good signals for the sample in the spectrum. The matrix 

and sample when hit with a laser beam of very high irradiance (up to 106 W/cm2) desorb and 

ionize simultaneously. The matrix plays a key role by receiving the laser energy and transferring 

it to the sample, permitting desorption of even large and fragile molecules.  Unlike ESI, singly 

charged ions are generated most prominently in MALDI.  Since the laser is irradiated in a pulsed 

manner MALDI was initially coupled mainly to TOF analyzers, which anyway operate in a 

pulsed manner.  Modifications like orthogonal acceleration have facilitated the use of trapping 

mass analyzers with MALDI. Since MALDI mostly generates singly charged species, the 

fragmentation process is not as efficient and often fails to provide sufficient peaks to sequence or 

identify a peptide. Thus MALDI has mostly been used in peptide mass fingerprinting where the 

peptides are not fragmented for identification. For complex mixture analysis ESI generally 

outperforms MALDI.  
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Figure 1.2.1 Soft ionization methods for biological mass spectrometry. MALDI generates singly charged 
ions and ESI usually results in multiply charged ions. Adopted from ref9 
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1.2.2 Different types of mass analyzers  
 

 Mass analyzers are of diverse types and can be classified and grouped based on several 

properties. Each mass analyzer type separates the ions by their mass to charge ratio (m/z) 

employing different principles of ion motion in electric and magnetic fields.  Based on the 

scanning mode the analyzers can be classified into two types. In scanning analyzers, ions of 

different m/z are analyzed as the instrument allows ions of selected m/z to pass through at any 

given time. The scanning analyzers include magnetic sector and quadrupole instruments. Paul 

ion traps can also scan out the ions in an m/z dependent manner. Other mass analyzers like those 

of the time of flight (TOF) type can allow all ions to pass through at once. The analyzer can also 

be classified into beam type and trapping instruments based on how they store the ions and 

continuous and pulsed analyzers based on the scanning capabilities and high and low energy 

analyzers based on their fragmentation features.  

The key parameters of mass analyzer include mass range, mass accuracy and resolution, 

sensitivity, dynamic range, speed and fragmentation capabilities. In order to achieve best results, 

two mass analyzers are often combined in tandem mass spectrometry. For example, ion trap 

analyzers have good sensitivity and speed and can be coupled to Orbitrap mass analyzers (see 

below) which have very high accuracy and dynamic range however somewhat lower speed 

compared to ion trap.  In this configuration, a high accuracy mass spectrum of the precursor 

peptide ion is acquired in the Orbitrap analyzer at a very high resolution and simultaneously the 

fragmentation spectra of up to ten peptide ions are acquired in the ion trap with a fast duty cycle. 

This combination of analyzers is one of the most commonly applied ones in proteomic studies.   

 

1.2.2.1 Magnetic sector analyzer 
 

Magnetic sector analyzers are among the oldest types of mass analyzers. The magnetic 

sector analyzers can be single or double focusing. The single focusing instruments employ a 

magnetic field and for the double focusing instrument, electrostatic field in addition to magnetic 

field are employed. Sector instruments are known for the high energy collision induced 
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dissociation regimes that fragment peptides not only along the backbone but also at side chains – 

in principle allowing differentiation of isobaric amino acids such as isoleucine and leucine. 

 

1.2.2.2 Time of flight (TOF) analyzer 
 

As the name suggests, in the TOF analyzer different ions are distinguished based on the 

time required to traverse a particular field free path. The TOF analyzer is one of the oldest and 

simplest set ups. The experiments regarding TOF concepts were started as early as 193288.  

William E Stephens described the first mass spectrometer built on the TOF principle in 194689 

Starting from very moderate mass accuracy and resolution its performance has continuously 

increased over the decades and it is still one of most commonly used analyzers for proteomic 

applications. Because of the long field free path, most of the commercial TOF instruments are 

easily recognized by the presence of long tubes. This implies that in order to have long “mean 

free path” for the ions, the neutral particles should be removed and this necessitates relatively 

expensive vacuum systems.  

The ions are accelerated by a potential difference in the acceleration area and then 

traverse the drift region. Since the initial kinetic energy is same for all the ions, the velocity at 

the start of the drift region is inversely related to the mass of the ions.  The following equation 

denotes the kinetic energy from the potential energy difference that is accelerating the ions. The 

mass of ion of charge q is denoted by m and the potential energy difference V 

 

.ܭ 	ܧ = 	 			ሺ݉ݒଶሻ	2 = .ݍ ܸ	 
Replacing the velocity (v) with distance and time, the equation can be re-written as  

	ݐ = ݀√2ܸ	√൬ ݍ݉ ൰ 
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Where d is the distance of the flight path.   

 

Further improvements have been made in the TOF technology with reflectron technology in 

order to increase the resolving power.  Most of the commercial instrument now uses the 

reflectron TOF; however in the reflectron TOF the mass range is not as broad as in the linear 

TOF analyzer.  

http://www.anagnostec.eu/uploads/pics/20060127133154maldiprinzip02_600.jpg 



 

 23

1.2.2.3 Transmission quadrupole  
 

Quadrupole, 3-D ion trap and the linear ion trap are based on slight variations of common 

principles that use the stability of the ion trajectory in oscillating electric fields.  These analyzers 

measure the mass to charge ratio by stability of the trajectory unlike the TOF and FT ICR, which 

use velocity and frequency of oscillation, respectively. A quadrupole analyzer consists of four 

parallel rods usually of an oval geometry with opposing rods of the same polarity and adjacent 

rods of opposite polarity. Application of a time varying field to each set creates a quasi harmonic 

potential well. The rods should ideally have a hyperbolic cross-section and the alternating 

electric field generated focuses the ions to the centre of the quadrupole analyzer. The principle of 

the quadrupole was first described in the early 1950s by Paul and Steinwedel90 and  it later 

turned out to be one of the most successful commercial mass spectrometers91.  

The trajectory of ions is controlled by the combined effect of radio frequency oscillating 

quadrupole field and the constant DC potential applied to the parallel rods.  Ions are initially 

accelerated in the vacuum along the length axis of the quadrupole (z axis) and inside the 

quadrupole by the electric fields in the x and y direction as well, which plays a key role in 

focusing the ion beam A positively charged ion inside the quadrupole will be attracted towards 

the rod of negative polarity. However the potential changes with a radio frequency, thus 

changing the direction of the ion motion, which eventually results in the ions being focused 

along the z axis. At any given time, only a small subset of ions with a narrow window of m/z 

values has a stable trajectory in the quadrupole for the given set of parameters. These parameters 

when plotted present a few regions (called stability areas) in the graph (called stability diagram) 

that allow the ions not to hit the rods where they would become discharged.  In order to obtain a 

full spectrum, these parameters needs to be swept through a range of values to scan ions of 

different mass to charge ratios while maintaining a constant ratio between the RF and DC 

potentials. The stability of any ion in the quadrupole is given by a set of equation of motion 

known as Mathieu’s equations.  

The quadrupole mass analyzer requires that the time for an ion to cross the analyzer is 

shorter than the time used to switch from one mass to the other and that the ions stay long 

enough inside the quadrupole to encounter at least few oscillations of the rod potentials. Apart 
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from being a mass analyzer, the quadrupole can serve many other purposes in a mass 

spectrometer92. For example, the quadrupole  may just be used as a collision cell for tandem 

mass spectrometry, or as a transmission device or as an ion guide to transport ions from one part 

of the mass spectrometer to the next and rather than serving as a mass filter to select for ions of 

specific mass to charge.  

 

 

Figure 1.2.2.3 A quadrupole mass filter. The ions that are stable for the given set of voltages are focused 
in the x, y direction towards the center of the quadrupole and moves along the z-axis. Adopted from79   
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1.2.2.4 Quadrupole ion trap analyzer 
 

The quadrupole ion trap is a by-product of quadrupole technology pioneered by 

Wolfgang Paul. Quadrupole ion traps can be either 3D or linear ion traps. These ion traps are 

called quadrupole ion traps in order to distinguish them from the magnetic ion traps which 

include FT ICR and Orbitrap analyzers. The 1989 Nobel Prize in physics was shared between 

Wolfgang Paul and Hans Georg Dehmelt, for their contributions on ion trapping techniques 

through the development of quadrupole and magnetic ion traps. Since the ion trap works based 

on the Paul’s principles, they are also called Paul traps. 

In ion trap instruments the electric field is three dimensional affecting the ion movement 

in all directions. This confine the ions within the analyzer whereas in the quadrupole analyzer the 

electric field is two dimensional acting on the x, y directions and the ions can travel in the z-

direction along the axis of the analyzer.  The movement of ions both in 3D ion trap and linear ion 

trap are also governed by the Mathieu equations. The linear ion trap can store more ions 

compared to the 3D version93 and is quite commonly used in tandem mass spectrometry together 

with very high accuracy and high resolution mass analyzers like the Orbitrap and FT ICR. 

In contrast to most other mass spectrometers, the ion traps are operated at relatively high 

pressure in the range of 10-2 Pa. The high pressure is maintained inside the trap by a constant 

flow of gas (nitrogen or helium). The gas acts like a cushion and slows down the fast moving 

ions contributing a dampening effect.  The gas helps in improving the trapping efficiency and 

mass resolution. The damping gas also has a role to play in activation and fragmentation of ions 

in collision induced dissociation (CID).  In such a hybrid fashion in the linear ion trap Orbitrap 

instrument the ion trap is usually employed for fragmentation and fragment mass spectrum 

acquisition while the other analyzer simultaneously acquires a full mass spectrum with very high 

resolution and accuracy. 
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Figure 1.2.2.4 Linear ion trap mass analyzer. The center section has a slit that facilitates the axial ejection 
of ions. Modified from ref94 

 

1.2.2.5 The Orbitrap analyzer 
 

The Orbitrap analyzer is one of the latest developments in mass spectrometry and was 

invented by Alexander Makarov and colleagues18, 95.  The Orbitrap derives its basic design from 

the trap device described by K. H. Kingdon in early 1920s that was named Kingdon trap. 

Interestingly as Makarov pointed out in the lecture at International Mass Spectrometry 

Conference, IMSC 2009, Bremen, the construction of the Orbitrap faced so many daunting 

challenges that the project appeared doomed many times. One such case was the problem of 

efficient ion injection into the Orbitrap, which was solved by the introduction of a ‘C-trap’ or a 

curved linear trap device. The C trap ‘squeezes’ the ions in terms of space and time and shoots 

them into the Orbitrap through the z-lens perpendicular to the rectangular section plane of the 

Orbitrap analyzer.  

The Kingdon trap, from which the Orbitrap derives its fundamental principles, employs 

only electrostatic field by applying an electric potential between an outer cylindrical electrode 

and an inner thin wire which acts as the central electrode. In the Orbitrap analyzer, in contrast, 
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the outer electrode is barrel shaped while the inner electrode is spindle shaped. As a result, the 

space between the two electrodes is not constant along the z-axis (length of the Orbitrap), 

implying that the electric field is weakest in the middle where the space between the two 

electrodes is largest. When the ions are injected in packages from the C-trap, they enter a circular 

motion owing to the interaction of centripetal and centrifugal forces generated from the 

tangential movement and the electric field between the electrodes. This electric field has two 

forms of heterogeneity. First the field strength is varying along the z- axis in opposite direction 

from the middle of the Orbitrap analyzer and second, the direction of electric field vectors from 

different points along the z-axis is not parallel to each other. This inhomogeneity results in the 

mass dependent oscillation of ions along the z axis simultaneous to the circular motion around 

the central electrode. This oscillation is the measure of the mass of ions in the field between the 

electrodes which is detected as image current by the electrically isolated sections of the outer 

barrel electrodes. This frequency of oscillation is independent of energy and spatial spread of 

ions.  

Since the oscillating frequency is a direct measure of the mass of the ions and 

independent of the energy, the Orbitrap mass analyzer boasts a very high resolving power given 

that the frequency can be measured with very high precision. The Orbitrap analyzer has 

significantly higher ion trapping capacity compared to the quadrupole ion trap and the FT ICR 

instruments, and therefore much higher space charge tolerance. The Orbitrap mass analyzer has a 

very low mass deviation of routinely less than 3 ppm.  However this mass accuracy of the 

Orbitrap requires very high vacuum as collisions with background molecules can cause 

dephasing of ions and thus deterioration  of the mass accuracy and resolution. For this reason, 

ion activation by collision to neutral gas molecules is not generally possible in Orbitrap 

analyzers. The Orbitrap analyzer has comparative resolution to FT ICR without the need for 

cooling any superconducting magnets. In routine practice, the mass accuracy of the Orbitrap 

analyzer is further improved to sub ppm level by real time calibration with ions present in 

ambient air (lock masses)96 which are frequently present in the spectra throughout the 

chromatography gradient. 

߱ = √	ቌ ݖ݉݇ ቍ 
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The mass dependent frequencies of ion motions are given by the above equation, where, ߱	is the 

frequency in rad/s and ݇is an instrumental constant. 

 

 

 
Figure 1.2.2.5 (a) Cross-sectional view of the Orbitrap. The ions move both along the axis and around the 
central electrode shaded in orange. The outer barrel electrode is split into two electrically isolated halves 
to detect the image current. Adopted from ref97  

 

Orbitrap in a hybrid instrument  

The Orbitrap analyzer is commercially available from Thermo Fisher Scientific in a tandem 

configuration coupled to a linear ion trap instrument. Since the Orbitrap has the single function 

of detection (in principle, the Orbitrap is nothing but an expensive detector!!) it cannot be used 

as a standalone device. It requires the C-trap for ion storage and injection. 

 In the hybrid configuration the full scans are usually acquired in the Orbitrap analyzer while 

simultaneously abundant peptide ions are selected, isolated, fragmented and analyzed in the ion 

trap. For the full scans, the ions are first accumulated in the ion trap and then axially ejected into 

the C-trap and subsequently into the Orbitrap. While the Orbitrap is acquiring the MS transients, 

the ion trap is programmed to perform several CID fragmentation events and to scan out the 

resulting peptide fragments to the multipliers by lateral ejection. In the latest version of the 

instrument (LTQ-Orbitrap Velos) the linear ion trap actually consists of two traps. This dual cell 
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ion trap is maintained at differential pressure so that the high pressure ion isolation and 

activation and low pressure scanning are performed98.  

 

 

 

 

 

 

 

 

 

Figure 1.2.2.5 (b) The hybrid mass spectrometer configuration of the LTQ-Orbitrap Velos. The dual cell 
linear ion trap is designed for fast CID fragmentation scans while a high resolution full scan is acquired it 
the Orbitrap. Adopted from ref98. 
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1.2.3 Different proteomic approaches and modes of operation  
 

1.2.3.1 Top down and bottom up proteomics 
 

In an MS-based proteomic experiment, the proteins can either be delivered to the mass 

spectrometer in an intact form or in the form of digested peptides produced by adding a 

proteolytic enzyme. Top down proteomics involves the analysis of whole proteins in the mass 

spectrometer and is a relatively young and immature field compared to bottom up proteomics 

where the peptides rather than proteins are introduced into the mass spectrometer. 

Top down proteomics has the potential advantage that the entire sequence of protein is 

presented for analysis. This could enable distinguishing isoforms of proteins and to characterize 

the post translation modifications (PTMs) directly on the protein. However the top down 

approach suffers from many limitations. Firstly the ions generated are multiply charged resulting 

in highly complex MS/MS spectra to be deconvoluted. This implies that only high mass accuracy 

and high resolution instruments like FT ICR and Orbitrap analyzers can handle the this 

complexity, and these instruments are very expensive. Further in order to perform protein 

sequencing, the fragmentation techniques that are amenable for top down approach like electron 

capture/transfer dissociation (ECD/ETD) can be less efficient than CID of peptides. Moreover 

the fragmentation behavior of proteins is less understood compared to peptides. Separation 

techniques that are commonly employed before MS analysis to reduce sample complexity are 

challenging for top down MS because insoluble proteins are difficult to handle. Therefore top 

down proteomics is generally not used in a high throughput manner and seldom on proteins 

larger than 50 kDa.  

In contrast, bottom up proteomics is a widely applied approach in variety of applications 

starting from simple mixtures to complex total cell and tissue lysates. The complex mixtures can 

be separated using different techniques including reversed phase, ion exchange chromatography, 

isoelectric focusing and others.  For peptide sequence identification, the peptide ions are isolated 

in the mass analyzer, fragmented and the fragmentation spectra are usually searched against a 

database containing the theoretical fragmentation spectra. Unlike the top down approach, bottom 

up proteomics can be carried out in many different instrument configurations. The most 
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commonly used analyzers for peptide fragmentation includes quadrupole and ion trap analyzer, 

where the peptides are usually fragmented by collision induced dissociation (CID). The poor 

resolution capabilities of ion trap are well compensated by the high speed and sensitivity of 

fragmentation.  The major advantages of bottom up proteomics include the possibility of 

automation of separation techniques prior to mass spectrometric analysis (for eg., reversed 

phased chromatography), tailor made software and instrumentation available and robust 

quantification techniques  well suited to this approach.  One of the major problems in bottom up 

proteomics is assigning the identified peptides back to proteins.  In many cases since only a part 

of the protein sequence is covered by the identified peptides, protein isoforms become 

indistinguishable. This makes analysis difficult for proteins whose isoforms have different and 

roles and different cellular localization. For the same reasons some of the crucial PTMs might be 

missed in single experiments or they may be entirely undetectable because they are located in 

unfavorable sequence contexts for the proteases employed.  

1.2.3.2 Tandem mass spectrometry and Ion fragmentation in bottom up proteomics 
 

As mentioned above peptides are fragmented in tandem mass spectrometry to decipher 

the peptide sequence.  Tandem mass spectrometry can be performed in two ways namely tandem 

in space mass spectrometry and tandem in time mass spectrometry. As the name suggests, the 

tandem in space mass spectrometry involves isolation of peptide ion in one analyzer followed by 

activation in the second analyzer and finally detection in the third analyzer. Typical examples 

include the TOF-TOF and triple quadrupole configurations. By its nature, in space separation 

places a limit on the number of MS/MS events that can be sequentially performed as for each 

MS/MS event additional analyzers would be required. Furthermore the transmission efficiency 

will keep decreasing with increasing numbers of analyzers.   

Tandem in time separation involves isolation, activation and detection of ions in the same 

analyzer however in a sequential manner. Tandem in time mass spectrometry is typically 

performed in ion trap and FT ICR instruments. For in time separation typically up to 6-7 MS/MS 

cycles can in principle be performed. However, as the fragmentation cycles increase the size of 

the ion population becomes smaller and smaller, eventually making analysis impossible.  In the 

Paul type ion trap analyzers the ions have to be ejected to be detected and hence can be observed 
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only once whereas in FT ICR, the fragments are analyzed non destructively and thus can be 

observed continuously through the cycle.  

In tandem mass spectrometry the generated fragments ideally constitute a ladder similar 

to the ladder generated in DNA sequencing, which can be read from high mass region to low 

mass region of spectra and vice versa with different ion series.  The types of fragment ions 

observed in tandem mass spectrometry are influenced by peptide sequence, amount of energy 

used, how the energy is transferred, charge state, the instrumentation used for fragmentation 

among other factors. The peptides can be fragmented in several different places apart from its 

peptide bond (CO=NH) making the phenomenon complex. A common  nomenclature for the 

fragment ions was proposed and it is still in general use99 (shown in the figure below).  The a, b 

and c ions retain a net positive charge on the N-terminal part of the peptide whereas the x, y and 

z ions retain the charge in the C-terminal part of the peptide.  The nomenclature can be further 

extended for the cleavage at other bonds but this in not shown here.  

 

 

 

 

 

 

 

 

Figure 1.2.3.1 Peptide fragment ions nomenclature. (Adopted from Wikipedia)  
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1.2.4 Ion activation and dissociation methods for tandem mass spectrometry  
 

The peptides mass alone will not suffice to determine the identity of the peptide and 

activation and fragmentation of the peptides is therefore essential100. The fragment peaks or 

product ions ideally allow reading out the amino acid sequence of the peptide.  Ion activation 

methods involve increasing the internal energy of ions resulting in fragmentation of these ions to 

yield structural information. There are many different dissociation techniques several of which 

require specific instrumental configurations. Collision induced dissociation (CID), surface 

induced dissociation (SID) dissociation from absorption of electromagnetic radiation, electron 

capture dissociation and electron transfer dissociation are examples of dissociation methods. The 

absorption of electromagnetic radiation can be subclassified into ultraviolet photo dissociation 

(PD), infrared multiphoton dissociation (IRMPD) and blackbody induced radiative dissociation 

(BIRD).  

 

Collision induced dissociation  
 

Collision induced dissociation is by far the most commonly used dissociation method that 

is used in peptide tandem mass spectrometry. It is one of the oldest techniques and used from the 

late 1960s. CID involves two steps namely collisional activation and unimolecular 

dissociation101.  In the collisional activation step, the selected peptide ions are collided against 

inert gas molecules like helium, nitrogen or argon and thus vibrationally excited. If during this 

process a fraction of the peptides have internal energy in excess of that needed to break bonds 

this will lead to a fragmentation process102. The kinetic energy that is converted to internal 

energy depends on the mass of the collision partners, for example helium imparts less energy per 

collision than argon. Fragmentation of peptides by CID usually cleaves them at the CO=NH 

bond and hence b and y ions are predominant in the spectra. 

Depending on the instrumental configuration, CID can be performed either at high energy 

or low energy mode. Higher energy CID usually occurs in TOF and magnetic sector instruments 

with translational energies up to 10 keV and is characterized by very short activation times.  The 

lower energy CID mode employs energy less than 200 eV in quadrupole instruments. In the ion 
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traps, multiple, low-energy collisions occur over relatively long activation times - typically 30 

ms in the linear ion trap instruments.   In the lower energy CID mode in quadrupoles, using 

larger gas molecules may be preferred as the amount of kinetic energy transferred is higher with 

larger gas molecules. Furthermore, when the gas molecules are larger like Xe, the cross sectional 

area of the gas atom is larger and thus the probability of collision is higher. The ladder of b and y 

ions obtained by CID fragmentation is usually sufficient in order to identify the peptide sequence 

by matching to a theoretical spectrum. In low energy CID fragmentation in ion traps, both b and 

y ions are observed prominently whereas in beam type instruments the b ions tend to fragment 

further resulting in y ion dominated spectrum. 

 

Electron capture dissociation 
 

ECD is an alternative fragmentation technique to CID which is based on the reaction of 

low energy electrons with multiply protonated peptides103. The electrons are captured by 

multiply-protonated peptides, and as a result the peptides undergo partial charge neutralization 

generating radical species in an excited state. The radicals within a very short time period 

undergo bond cleavage producing mostly c and z fragment ions104. The cleavage is very bond 

specific owing to the presence of radicals and disulphide bonds and halogen bonds dissociate 

with the highest rates105. The retention of labile PTMs is superior in ECD compared to the 

conventional MS/MS with CID106, 107. However, the loss of signal owing to charge neutralization 

in ECD makes may make it less attractive in large scale tandem mass spectrometry. In general 

ECD is thought to give  complementary data to the conventional CID, for example in de novo 

sequencing, PTM and disulphide bond mapping and in top down mass spectrometry108. 
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Figure 1.2.4 (a) Comparative illustration of tandem mass spectrometry by CID and ECD. Adopted from103  

 

Electron transfer dissociation  
 

Although ECD provides reliable and efficient mapping of PTMs in peptides it is not 

feasible to mix the peptides with low energy electron in a majority of trapping mass 

spectrometers that lack magnetic fields. The ion trap that uses radio frequency oscillating electric 

fields can trap thermal electrons only for few microseconds which is not sufficient for an 

efficient reaction to occur109. Further ECD often required averaging of spectra acquired over 

minutes precluding its use in large scale tandem mass spectrometry experiments110.  Electron 

Transfer Dissociation (ETD) is similar to ECD, but fluoranthene radical anions supply electrons 
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for the reaction, making ETD feasible in quadrupole ion traps. It was developed in the Hunt lab 

in 2004109. ETD has also been proposed to tackle the problem of highly charged peptides and 

proteins and hold promise in top down and PTM analysis.  

 

Higher energy collisional dissociation (HCD) 
 

 It is well known that CID fragmentation in an ion trap configuration can result in the loss 

of labile PTMs like phosphorylations of serine and threonine residues.  However, numerous 

advances like improved scan functionality111, 112, injection of externally formed ions113, 114, 

extended mass range capabilities, use of helium buffer gas, the control of number of ions in the 

trap called “automatic gain control” propelled the popularity and wide-spread use of ion trap 

based tandem mass spectrometry in proteomic research. The loss of phosphorylation and any 

similar modification from the peptide during CID in ion trap was elegantly circumvented by the 

application of pseudo-MS3 which is otherwise known as ‘multi-stage activation’. However one 

more limitation of the ion trap fragmentation includes the ‘one-third rule’, where the low mass 

fragment ions are not retained in the ion-trap. This is a severe limitation for quantitative 

proteomics that employ low molecular mass reported ions that are isotopically labeled like in 

iTRAQ quantification.  

Recently higher energy collisional dissociation was introduced in which the ions are 

accumulated and fragmented either in the C-trap or in the adjacent collision cell present in the 

LTQ-Orbitrap instrument configuration115. The fragment ions are then sent into the Orbitrap 

analyzer for detection. The main implications of this technique are first, that the fragment mass 

accuracy is at the ppm level facilitating stringent database searches and de novo sequencing. 

Second, the collision energy is higher than the energy used for ion trap CID resulting in a ‘triple 

quadrupole like’ fragmentation. Together this means that there is no loss of low molecular 

weight reporter ions, and the fragmentation spectra are dominated by y ions because the b ions 

undergo further fragmentation and only low molecular weight b ions are observed in the 

spectrum.  
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HCD (or CID with detection in the Orbitrap analyzer) need about tenfold more ions than 

CID in the ion trap. In the new LTQ-Orbitrap Velos, this fragmentation mode is feasible on a 

large scale because of greatly improved ion current of the instrument98.  

 

 

 

 

 

Figure 1.2.4 (b) Schematic representation of HCD fragmentation in a LTQ-Orbitrap Velos instrument. 
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1.3 MS proteomics for urinary biomarker discovery 

platform 

  

1.3.1. Urine as a source of biomarkers 
 

One of the major functions of body fluids is to serve as a means of transport of chemicals, 

enzymes, metabolic waste to the appropriate destinations. Thus these body fluids like plasma, 

cerebrospinal fluid (CSF) or urine reflect the physiological status of the living system and 

consequently have been being exploited for clinical examination and disease diagnosis for 

decades.  

The ready availability of urine by non-invasive collection makes it an attractive source 

for biomarker discovery. This is in contrast to other body fluids such as cerebrospinal fluid 

(CSF) or even blood. Intuitively, urine could be an ideal source of biomarker discovery with high 

relevance to patho-physiological conditions of urogenital and associated proximal systems like 

renal failure, bladder cancer, and prostate cancer. Even attempts to find urinary biomarkers for 

conditions that are not directly linked to kidney and proximal organs are not scarce in the 

literature. Furthermore, urine samples from bio banks are readily available for pathological 

conditions along with associated patient history. Thus the potential advantages of urinary 

proteomic biomarker discovery and the already existing annotated urine sample collection has 

made the proteome analysis of urine samples a very attractive proposition.  

Urine is produced in the kidney as part of maintaining whole body homeostasis. The 

kidney has a major role in removing metabolic waste from the body by filtering the blood 

plasma. It maintains the homeostasis of the body by regulating the water and electrolyte content 

and maintaining the acid base equilibrium of the body.  More than 150 L of plasma are filtered in 

the kidney corresponding to a rate of 125 mL/min and on average 1.5 L of urine is produced per 

day.  The entire process of urine formation is carried out by nephrons or malpighian bodies that 

are the fundamental units of the kidney; each kidney is made up of up to 1.3 million nephrons. 

These nephrons consist of a capsule like structure called glomerulus or Bowman’s capsule and a 
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tubular structure called the renal tubules. The entire process of urine formation occurs in three 

steps (i) glomerular filtration (ii) tubular reabsorption and (iii) tubular secretion following which 

the urine is collected and stored in the bladder until excretion. Because of this extensive filtration 

and reabsorption process the protein content in the final urine is much diluted compared to 

plasma. Approximately 150 mg of proteins are excreted through urine in a normal individual per 

day. Increased protein content in the urine is termed proteinuria; a physiological condition 

indicating the malfunctioning of kidney in glomerular filtration or in the tubular reabsorption 

process.  

 

Figure 1.3.1 Diagram of nephron the fundamental unit of kidney involved in urine production. Adopted 

from ref116  
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1.3.2 Urinary proteome map  
 

 Second only to plasma, urine is a source of diagnostic molecules (biomarkers) for a wide 

range of diseases116 therefore urine should be an attractive source for biomarker discovery117-119. 

Though serum/plasma is a preferred source for biomarker discovery the dynamic range problem 

makes analysis very difficult. Since the majority of the plasma proteins are filtered out, urine 

should be a simpler mixture to handle compared to plasma. It is thought that potential biomarkers 

relevant not only to kidney, proximal and urogenital tract but also to distal organs like brain and 

lung are present in urine. In spite of numerous attempts in identifying the proteins in urinary 

proteome120-123, until recently the number of proteins in urine appeared low at under 300118, 124. 

One of the studies on urinary exosome, membrane bound vesicles present in this body fluid, 

reported the presence of 1000 proteins125. The first large scale urinary proteome map employing 

high resolution mass spectrometry, reported the presence of more than 1, 500 proteins in urine126.  

It was observed that a large proportion of urinary proteins are membrane proteins. A recent study 

employing extensive fractionation techniques in addition to employing similar high resolution 

mass spectrometry has even reported more than 2,300 proteins in urine. Together all these 

studies indicate that at least 3,000 proteins in urine. Furthermore, the urinary proteome consists 

of significant population of proteins that have a molecular weight larger than 40 kDa. This was 

unexpected as glomerular filtration of the kidney was thought to removed all proteins above this 

weight.  The presence of many disease related proteins in urine further accentuates the potential 

of finding new biomarkers in urine. 

 

1.3.3 Source of proteins in urine and relevance of urinary biomarkers to different 
patho-physiological states 
 

The main sources of proteins in urine include plasma, cells and membrane components 

from cell debris from epithelial lining in urine. The proteins derived from plasma are soluble 

reportedly constituting nearly 50% of the protein source.  The proteins of the cell debris are 

usually sediment at low speed centrifugation and in contrast to those derived from exosomes that 

sediment only under very high centrifugation speeds. A study by Zhou et al reported that the 
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exosomes contribute only about 5% of the total urinary protein content127.  Current literature 

suggest that the urinary proteome can aid in the investigation of non-cancerous urogenital 

conditions, cancer pathology of urogenital system and non urogenital conditions, as described 

below. 

Urogenital disease: non-cancerous  

One of the main interests of urinary biomarker discovery is in the area of kidney 

transplantation. Avoidance of complications in kidney transplantation like acute rejection could 

play a pivotal role in the survival of renal transplant patients and in the organ resource 

management and should in principle be possible by urinary proteomics128, 129. SELDI is a low 

resolution from of MALDI using a linear TOF instrument without sequencing capability, and this 

somewhat controversial technology has been applied to urinary proteomics. In three independent 

reports, potential protein biomarkers have been described that could predict acute allograft 

rejection in kidney transplant patients130-132. Notably, the three studies came up with different 

sets of biomarkers presumably due to the different chip surfaces used in the SELDI technique 

and the different instrumental settings used. The potential biomarkers identified in these studies 

were not tested against separate patient cohorts for validation.  Limitations of the SEDI method 

are further described below.  

Capillary electrophoresis (CE) has also been used to identify a peptide signature that 

could differentiate patients with evidence of different levels of rejections and patients with no 

evidence of rejection133.  

Chronic kidney disease (CKD) is a condition where kidney function deteriorates over 

time primarily due to previous conditions like diabetes and high blood pressure134.  Detection of 

a reliable and sensitive biomarker pattern for prediction of CKD is of prime importance given the 

wide prevalence of the condition, and complications that occur in other organs because of CKD. 

Few studies have been undertaken in proteomic biomarker discovery for CKD and they are 

dominated by SELDI and CE platforms135, 136. However, these studies are not completely global 

(or ‘unbiased’) as only a subset of proteins binds to the SELDI surface and neither SELDI nor 

CE are ideal techniques for analysis of polypeptides of more than 20 kDa. Preliminary studies 
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aimed at finding biomarkers for diabetic nephropathy and obstructive nephropathy have also 

been undertaken135, 137-140.  

Urogenital cancers 

The most common examples of urogenital cancer include renal cell carcinoma (RCC), 

bladder cancer and prostate cancer. Biomarker discovery studies for RCC have been carried out 

by SELDI TOF technology however no significant marker discovery has been reported.  Bladder 

cancer is one of the top 5 malignancies in the USA. There are only few proteomics studies of this 

disease and they have only lead to a list of candidate biomarkers that have not been validated.  

Non-urogenital disease 

In addition, reports have identified markers for non-urogenital diseases related to distal 

organs. Clinical follow up profiling of patients after allogeneic hematopoietic stem cell 

transplantation revealed a pattern that is currently being followed up in a larger population 141. 

Zimmerli et al identified peptide patterns that may identify coronary artery disease (CAD)142. 

This peptide patterns was reported to be more than 90% specific and sensitive.  

 

1.3.4 Evaluation of technology applied for biomarker discovery 
 

  In summary, different technological platforms have been used for urinary 

proteome biomarker discovery. Most investigations used capillary electrophoresis, SELDI and a 

few used low resolution LC-MS/MS135, 143-150. However, to my knowledge, the candidate 

biomarkers that came out of such studies have are not been validated. The 2 DE technique used 

in urinary biomarker discovery has many limitations as discussed earlier. Low resolution LC-

MS/MS approaches cannot quantify large numbers of proteins and peptides owing to the overlap 

of co-eluting peptide species in complex mixtures. The SELDI technology is in principle a high 

throughput technique suitable for analysis of large number of samples. However SELDI based 

techniques lack robustness in terms of quantification and reproducibility between sample plates. 

Furthermore, SELDI similar to protein microarrays has limited depth of coverage.  
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Figure 1.3.2 Technological platforms applied to urinary biomarker discovery. Adopted from ref151. Only 
one of these techniques (LC MS/MS) is a high accuracy, quantitative biomarker platform. 

 
   

 Capillary electrophoresis has dominated the platform for early biomarker discovery in 

urine.  CE is a peptidomic technology and lacks essential information on most full length 

proteins. Furthermore, like SELDI, most of the CE platform based biomarker studies did not 

involve MS/MS and therefore need a second round of LC-MS/MS experiments to identify the 

sequence of the candidate peptide biomarkers.  
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2. Projects / Manuscripts  
 

 

1. Analysis of detergent solubilized  membrane proteome by LC-

MS/MS 

2. Universal sample preparation method for proteome analysis 

3. Large scale phosphoproteomics using HCD  

4. Variation of normal human urinary proteome   
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2.1 A detergent based method for efficient analysis of 

membrane proteome  

 
  

 

Plasma membrane proteins play a crucial role in relaying signal information from the 

exterior into the cell and vice versa and proteins present in organellar membranes have analogous 

functions.  Membrane proteins constitute a significant proportion of the membrane structure152. 

Their analysis by mass spectrometry is of prime importance in clinical proteomics, given the 

association of cancer phenotypes with alterations in membrane proteins. However, studying 

membrane proteins is technically challenging even in bottom up proteomics, a main difficulty 

being the solubilizing the membrane proteins for enzymatic digestion.  Unfortunately, while 

detergents are the best solubilizing agents for membrane proteins, they are notorious 

contaminants in LC-MS/MS experiments. The detergent from the sample is therefore usually 

removed by SDS-PAGE separation followed by in-gel digestion.  In this project, we show that 

detergents can be used to solubilize the membrane proteins but later removed by urea 

displacement prior to in-solution protease digestion. By performing in-solution rather than in-gel 

digestion it was possible to identify several hundred membrane proteins in a high throughput 

manner. After detergent removal and by digesting in solution we obtained almost twice the 

number of proteins as were identified by the conventional in-gel method with concomitant 

improvements in the sequence coverage of the proteins.  

This work is published as a research article in the “Journal of proteome research” as follows.  
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2.2 Filter aided sample preparation method an universal 

method for proteome samples 
 

 Sample preparation is the first and crucial step in large scale proteomic experiments. In a 

system wide approach, when the expression pattern of all proteins expressed in the cell or tissue 

is investigated, owing to the physiochemical properties of different proteins, ’difficult’ protein 

classes can be underrepresented. This project involved development of an efficient sample 

preparation strategy that combines the advantages of digestion in solution with those of digestion 

in gel. The cell or tissue lysate is efficiently solublized in up to 5% SDS, and followed by 

detergent exchange by urea and by reduction alkylation and enzyme digestion all occurring in a 

single filter unit that serves as a ‘chemical reactor’. The detergent is replaced by urea based on a 

similar principle of detergent removal method described before. This method is called Filter-

aided sample preparation (FASP) and it has excellent peptide recovery (an attribute of in-

solution digestion) and facilitates the use of strong and ionic detergents (so far an exclusive 

attribute of in-gel digestion). Additionally, peptides are in a cleaner state resulting in higher 

identification rates of the mass spectra. The absence of interfering substances increases the 

resolution of pre-fractionation techniques like OFFGEL electrophoresis. Application of this 

method led to identification of close to 3,000 proteins in single LC-MS/MS runs from cell lines, 

mouse brain and liver tissues. The unbiased nature of the method is demonstrated by the high 

percentage of membrane proteins among the identified proteins. When combined with OFFGEL 

electrophoresis, FASP resulted in identification of more than 7,000 proteins within 2 days. This 

remains the largest proteome data set for such a short measurement time.  

 

The manuscript is published in the journal Nature methods as follows.  
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2.3 Large scale phospho-proteomics by higher energy 

collision dissociation  

 

Phosphorylation of proteins is one of the key post translation modifications and is regularly 

studied by MS based proteomics. Phosphorylation on serine and threonine residues is labile 

while phosphorylated tyrosine is relatively stable. Over the years, the ion trap based tandem mass 

spectrometry has gained in popularity over the quadrupole mass spectrometer. Thus most of 

phosphoproteomics analysis is performed in a low energy CID regime in ion trap instruments. 

Advantages of the ion trap include high sensitivity, fast scan speeds and parallel operation with 

the Orbitrap or FT instrument. However, since the phospho group is lost in the CID 

fragmentation (neutral loss), the analysis includes an additional fragmentation step called pseudo 

MS3 or multi-stage activation (MSA).  This multi-stage activation results in complex spectra and 

further the low molecular weight cut-off precludes low molecular weight reporter ion analysis. In 

contrast, HCD fragmentation yields high resolution spectra potentially at the cost of lower 

sensitivity. In this project, we investigated the feasibility of large scale phosphoproteomics by 

HCD collision and detection of fragment ions in the Orbitrap analyzer. We observed that 

phosphoproteomics by HCD fragmentation is superior to CID fragmentation. We identified more 

phosphosites by HCD fragmentation in spite of low throughput and lack of parallel operation in 

the LTQ-Orbitrap tandem mass spectrometer. As a result of this project, in our laboratory we 

now routinely analyze phosphopeptides by HCD fragmentation.  

 

A manuscript has been submitted to the Journal of proteome research. It has gotten positive 

reviews and a revision is being prepared.  
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Abstract 

Mass spectrometry (MS)-based proteomics now enables the analysis of thousands of 

phosphorylation sites in single projects. Among a wide range of analytical approaches, the 

combination of high resolution MS scans in an Orbitrap analyzer with low resolution 

MS/MS scans in a linear ion trap has proven to be particularly successful (‘high-low’ 

strategy). Here we investigate if the improved sensitivity of higher energy collisional 

dissociation (HCD) on an LTQ-Orbitrap Velos instrument allows a ‘high-high’ strategy.  A 

high resolution MS scan was followed by up to 10 HCD MS/MS scans and we achieved 

cycle times of about 3 s making the method compatible with chromatographic time scales. 

Fragment mass accuracy increased about 50-fold compared to the ‘high-low’ strategy. 

Unexpectedly, the HCD approach mapped up to 16,000 total phosphorylation sites in one 

day’s measuring time – the same or better than the standard high-low strategy. Reducing 

the target values from a standard of 30,000 to 5,000 ions did not severely affect 

identification rates but did decrease identification and localization scores for 

phosphorylation sites. We conclude that HCD in the new configuration is now a viable 

method for large-scale phosphoproteome analysis alongside CID and electron capture / 

transfer dissociation (ECD/ETD). 
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INTRODUCTION 

Global mapping and localization of post-translational modifications (PTMs) such as 

phosphorylation is crucial for understanding the activity of the cell. Phosphorylation acts as a 

molecular switch in various signaling pathways and plays a pivotal role in many biological 

processes1. Mass spectrometry (MS)-based proteomics has emerged as a powerful technique for 

studying PTMs2-4. Among many different versions of MS-based phosphoproteomics, hybrid 

instruments with quadrupole and time of flight analyzers (quadrupole – TOF) or with two 

different types of ion traps have gained popularity in the last decade5.  In particular, the 

combination of high mass accuracy for the precursor ion and low mass accuracy for the fragment 

ions from linear ion trap – Orbitrap instruments (LTQ-Orbitrap) is a widely applied instrumental 

configuration. Employing this ‘high-low’ strategy in large scale phosphoproteomic approaches 

has led to the identification and quantification of several thousand phosphosites in single 

projects6-8. However, analyzing phosphopeptides by Collision Induced Dissociation (CID) in the 

ion trap (resonant excitation mediated collision) results in significant neutral loss for phospho-

serine (pS) and phospho-threonine (pT) containing peptides and this can require multiple 

activation steps to efficiently fragment them9, 10. Furthermore, in ion trap fragmentation the ‘one 

third rule’ (loss of low mass ions depending on the fragmentation q value) 11 precludes the 

analysis of low molecular weight reporter ions that are very informative for example in the case 

of phospho-tyrosine (pY) ions12, 13. A different class of fragmentation techniques, electron 

capture dissociation (ECD)14 or electron transfer dissociation (ETD) 15, complements CID, 

particularly for labile phosphopeptides16.  

Higher energy C-trap fragmentation (HCD) is an additional fragmentation technique that can be 

used on the LTQ-Orbitrap17. HCD is performed by injecting peptide ions into a collision cell and 

by analyzing fragments at high resolution and mass accuracy in the Orbitrap analyzer. HCD 

fragmentation is similar to the fragmentation in triple-quadrupole or quadrupole – TOF 

instruments and it overcomes the problem of low mass cut-off of ion trap fragmentation. In 

addition, high accuracy at both the precursor mass and fragment levels (a ‘high-high’ strategy) 

should be very desirable as it would dramatically improve the quality of fragmentation spectra. 

For example, charge states can easily be distinguished in high resolution spectra and fragments 

are less likely to be assigned to the wrong peptide sequence. High-high strategies based on HCD 
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fragmentation have been adopted for proteomic and phosphoproteomics studies but they have 

previously been restricted to specialized applications because of lower sensitivity compared to 

CID, resulting in extended injection times and a slower duty cycle18 19, 20. The newly developed 

LTQ Orbitrap Velos features an S-lens, improving ion current into the instrument by at least ten-

fold, as well as a more efficient HCD cell21. This improved sensitivity could make routine HCD 

measurements of phosphopeptides feasible within the short MS and MS/MS duty cycles required 

in large-scale phosphoproteomics.  

Here we investigate the feasibility of routine large scale phosphoproteomics by HCD 

fragmentation on a LTQ Orbitrap Velos instrument. We analyze key parameters such as 

sensitivity and fill times, cycle times for MS/MS experiments, identification success rates and 

depth of phosphoproteome coverage that are of prime importance for designing a large scale 

phosphoproteome study. Comparison with high-low strategy showed a similar or superior 

performance.  

 

EXPERIMENTAL PROCEDURES 

Cell culture and peptide preparation  

HeLa S3 cells (ATCC)) were cultured in roller bottles in RPMI 1640 (Gibco) supplemented with 

10% fetal bovine serum (Invitrogen) and 1% penicillin/streptomycin (Invitrogen). On reaching 

sufficient confluence in suspension, the cells were centrifuged at 1000 rpm. The HeLa cell pellet 

was lysed in a buffer of 4% SDS and 100 mM DTT in 100 mM tris-HCl pH 7.5. The lysate was 

processed by the FASP method22. Briefly, the lysate was sonicated and heated in the SDS buffer 

to ensure complete homogenization and denaturation. The protein concentration was measured 

and lysate was loaded onto 15 ml Amicon filter units (10 kDa MWCO) (Millipore) and washed 

with Tris buffer (UA buffer) containing 8 M urea to remove SDS23. Proteins were alkylated with 

50 mM iodoacetamide in urea buffer and incubated for 20 minutes followed by removal of 

excess iodoacetamide by multiple washes with urea buffer. After reduction and alkylation the 

proteins were equilibrated in 20 mM ammonium bicarbonate and digested with trypsin 

(Promega) in a protein to enzyme ratio of 100:1 at 37 oC overnight. After digestion the peptides 

were eluted by centrifugation with an additional elution with 50 µl of water. Elution with water 
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avoids the desalting step for further processing of the peptides. Peptide yields for the first large-

scale HCD experiment were 4 mg and 2.5 mg for the second experiment.  

 

Fractionation of peptides by Strong Cation Exchange (SCX) chromatography 

Peptides were concentrated into a volume of seven ml, the pH adjusted to 2.7 and then adjusted 

to 10 ml with 100% ACN. The peptides were then separated by strong cationic exchange 

chromatography (SCX) as described6, 7. The peptide mixture was loaded onto a cation exchanger 

column equilibrated with 30% ACN containing 5 mM KH2PO4. The flow-through which 

predominantly contains multiply phosphorylated peptides was collected. The peptides bound to 

the column were eluted in an increasing salt gradient with buffer containing 5 mM KH2PO4 and 

150 mM KCl. The fractions generated by SCX were then pooled to 7 fractions based on UV 

absorbance. The flow-through from the SCX column was also used as one fraction.  

 

Enrichment of phosphopeptide by TiO2 beads 

The flow through and the seven SCX fractions were subjected to TiO2 enrichment with 3 

consecutive incubations for the flow through and one incubation each for the remaining 7 

fractions as described . First the UV absorbance of the fractions was measured and they were 

incubated with TiO2 (MZ-Analysentechnik, Germany) with a peptide to bead ratio of 1:2 to 1:8 
24. Before mixing with the fractions the TiO2 beads were re-suspended in 30 mg/ml solution of 

dihydrobenzoic acid (Sigma) to prevent non-specific binding. Next the phospho-peptide bound 

beads were washed with 30% ACN and 3% TFA twice followed by two washes with 75% ACN 

and 0.3% TFA. The phospho-peptides were then eluted under basic conditions using 25% 

ammonium hydroxide and ACN. Finally, the eluted phospho-peptides were loaded on C18 

StageTips25. 

 

Reverse phase chromatography and mass spectrometry 
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Peptides were separated in a 15 cm column (75 µm inner diameter) packed in-house with 3 µm 

C18 beads (Reprosil-AQ Pur, Dr. Maisch) on a Proxeon EASY-nLC system (Proxeon 

Biosystems, Odense, Denmark)  using a binary gradient provided by buffer A (0.5 % acetic acid) 

and buffer B (0.5% acetic acid and 80% ACN). The peptides (4 µl) were loaded directly without 

any trapping column with buffer A at a flow rate of 500 nl/min. Elution was carried out at a flow 

rate of 250 nl/min, with a linear gradient from 10%  to 35% buffer B in 95 minutes followed by 

50% B for 15 minutes. At the end of the gradient the column was washed with 90% B and 

equilibrated with 5% B for 10 min.  The LC system was directly coupled in-line with a LTQ-

Orbitrap Velos instrument (Thermo Fisher Scientific) via the Proxeon Biosystems 

nanoelectrospray source. The source was operated at 2.1-2.25 kV, with no sheath gas flow, with 

the ion transfer tube at 200 oC.  

The mass spectrometer was programmed to acquire in a data dependent mode. For the high-high 

strategy, survey scans were acquired in the Orbitrap mass analyzer with resolution 30,000 at m/z 

400 with lock mass option enabled for the 445.120025 ion26. However the target lock mass 

abundance was set to 0% instead of 5-10% in order to save the injection time for the lock mass.  

For the full scans, 1E6 ions were accumulated within a maximum injection time of 250 ms in the 

C trap and detected in the Orbitrap analyzer. The ten most intense ions with charge states ≥ 2 

were sequentially isolated (signal threshold of 10,000) to a target value of 3E4 or 4E4 with a 

maximum injection time of 150 ms and fragmented by HCD in the collision cell (normalized 

collision energy of 40%) and detected in the Orbitrap analyzer at 7,500 resolution.  For the high–

low strategy, full scans were acquired in the Orbitrap analyzer at 60,000 resolution as parallel 

acquisition is enabled in the high-low mode. Up to the 20 most intense peaks with charge state ≥ 

2 were selected for sequencing (signal threshold of 1000) to a target value of 5,000 with a 

maximum injection time of 25 ms and fragmented in the ion trap by collisional induced 

dissociation with normalized collision energy of 35%, activation q=0.25 and activation time of 

10 ms. For CID ‘wideband activation’ and ‘multi-stage activation’ options were enabled with the 

appropriate neutral loss mass list for singly, doubly and triply phosphorylated peptides. The 

fragmentation spectra were acquired in the ion trap at normal scan rate by lateral ejection and 

recorded by the dynode-multiplier system.   
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For all sequencing events dynamic exclusion was enabled to minimize repeated sequencing. 

Peaks selected for fragmentation more than once within 30 s were excluded from selection (10 

ppm window) for 60 s.  

 

Data processing and analysis 

The raw data acquired were processed with the MaxQuant software version and processed as per 

the standard workflow. Since the HCD spectra were acquired  in profile mode, de-isotoping was 

performed similar to the survey MS scans to obtain singly charged peak lists. Peaks lists 

generated from the ‘quant’ module were searched against IPI Human version 3.46 database  

using the Mascot search engine version 2.2 (Matrix Science, UK) with initial precursor mass 

tolerance of 7 ppm and fragment mass deviation of 0.02 Da  for the ‘high-high’ strategy. For the 

‘high-low’ strategy these values were 7 ppm and 0.5 Th, respectively. The search included 

cysteine carbamidomethylation as a fixed modification and N-acetylation of protein and 

oxidation of methionine as variable modifications. Up to two missed cleavages were allowed for 

protease digestion and peptide had to be fully tryptic.  The ‘identify’ module in MaxQuant was 

used to filter identifications at 1% False Discovery Rate (FDR) at three levels namely, site, 

peptide and protein. As such there is no fixed cut-off score threshold but instead spectra are 

accepted until the 1% FDR rate is reached27. Only peptides with minimum six amino acid length 

were considered for identification. The identified phosphosites are listed in Supplementary Table 

1 and annotated spectra can be visualized as described at the end of the document. 
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RESULTS AND DISCUSSION 

Although the phosphoproteome is very complex, phosphopeptides only constitute a small 

minority of all peptides after enzymatic degradation of mammalian cell lysates. We digested 20 

mg of HeLa cell lysate using the FASP method22 and divided the resulting peptides into two 

parts. Both were separated by SCX into 10 fractions (three flow-through and seven SCX 

fractions). Each fraction was enriched by TiO2 beads using DHB28, providing a rich and diverse 

source of phosphopeptides. To minimize the variations owing to sample processing, the enriched 

fractions were pooled and for each injection half of the samples were used. Peptides were loaded 

onto a reverse phase column and separated by 140 min chromatographic runs (100 min gradient 

time). For mass spectrometric analysis the eluent of the column was electrosprayed into the LTQ 

Orbitrap Velos instrument. Making use of the more than ten-fold increased ion current and more 

efficient HCD of this instrument21, we devised a top10 method consisting of an MS scan with 

30,000 resolution at 400 m/z (0.5 s scan) in the Orbitrap analyzer, followed by up to 10 MS/MS 

scans at 7,500 resolution (0.95 s) also in the Orbitrap analyzer. Total measurement time for 

phosphoproteome analysis of HeLa cells was one day. In this experiment, through analysis by 

MaxQuant27 we identified 16,559 distinct phosphorylation sites with 99% confidence (1% FDR). 

Of all identified peptides, 76% were phosphorylated. For the 9,668 Class I sites mean 

localization probability7 was higher than 0.997 (Supplementary Table 1).  

The experiment was then repeated with the other half of the sample but with the difference that 

CID and a top20 method was used. Due to parallel operation, MS resolution was set to 60,000 at 

400 m/z (1 s scan). In this ‘high-low’ mode and within one day of measuring time we identified 

11,893 sites (9,016 Class I sites). For accessing overlap of identifications we also repeated the 

HCD experiment with another preparation of HeLa cell lysate.  

Proportions of pS/pT/pY were similar between HCD and CID (Supplementary Table 1). 

However, HCD was somewhat more efficient at identifying doubly and more highly 

phosphorylated peptides than CID (singly:doubly:higher phosphorylated peptides were 

51.4%:43.4%:5.2% for HCD whereas they were 64.6%:32.6%:2.8% for CID). Apart from these 

three large-scale data sets, several other data sets were acquired with parameters described 

below.  
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General features of phosphopeptides in high- high strategy 

For phosphopeptide detection in HCD mode, peptides are fragmented in the collision cell and the 

fragment ions are sent back to the C-trap from where they are injected into the Orbitrap analyzer 

for detection. In CID mode, in contrast, phosphopeptides are isolated and fragmented by ‘pseudo 

MS3’, meaning that both the precursor mass and the mass of potential dominant fragments due to 

neutral loss of one or more phospho groups are excited together. Furthermore, potential water 

loss fragments of the precursor are also excited. The resulting fragment spectrum is recorded in 

the ion linear ion trap at normal scan speed (16,700 Th/s). 

From the large-scale experiments described above, we inspected dozens of identified spectra to 

obtain a qualitative view of the differences between the HCD and the CID spectra. Figure 1 

shows representative examples visualizing these differences. The most striking distinction is the 

mass accuracy of the fragments, which generally deviated 0.1 to 0.3 Da from calculated values 

for ion trap measurements, whereas they deviated only a few ppm for the Orbitrap measurements 

expected. Figure 1A shows the HCD spectrum of the doubly phosphorylated peptide 

PIpSPSPpSAILER, which features the typical characteristics of extensive sequence coverage by 

y ions and a few low mass b ions (Figure 1A). The a2b2 ion pair is among the intense peaks. In 

the corresponding spectrum of this peptide for CID fragmentation acquired in the ion trap 

(Figure 1B), the a2 ion is not recorded owing to the low mass cut-off and the b2 ion is less than 

2% of the base peak intensity and has a mass deviation of 0.104 Da. The noise level in the 

spectrum is high compared to HCD spectra, which consequently have larger dynamic range 

(Note that exact noise levels are difficult to compare because the Orbitrap data system employs 

noise filtering). For peptides of typical length we observe similar amino acid coverage in both 

CID and HCD. CID spectra have more b-type ions compared to the HCD. This is because b-ions 

are less stable and fragment further in HCD21, 29.  

For the longer peptides the high resolution of the HCD method allowed unambiguous assignment 

of charge states of multiply charged fragment ions. Due to the many possible fragmentation 

pathways, charge states and the low resolution, the CID spectra tend to become crowded and 

unambiguous peak assignment becomes difficult. This is illustrated by the singly phosphorylated 
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peptide AAAAAALSGAGTPPAGGGAGGGAGGGGpSPPGGWAVAR, the MS/MS spectra of 

which appear much cleaner in HCD than in CID. The dynamic range of the HCD spectrum was 

much higher than in CID as exemplified with one of the fragments annotated in the HCD but not 

the CID spectrum (Figure 1C and D). Together this led to better amino acid sequence coverage 

of 84% for HCD as compared to 53% in CID. Of the total ion current in the MS/MS spectra 78% 

corresponds to annotated peaks in HCD versus 44% in CID. As a consequence the Mascot score 

is 115.8 for the HCD and 34.4 for the CID spectrum. Furthermore, the Mascot search engine 

does not take account of mass accuracies better than +- 0.25 Da in the score. If this would be 

done, the database identification score of the HCD Orbitrap spectra in general would be several 

fold higher than the scores for CID linear ion trap spectra. Note, however, that the high mass 

accuracy is still incorporated into database searching, because decoy hits at high mass accuracy 

are less likely, which has the effect of lowering the score for statistically significant database 

hits.  

 

High mass accuracy of fragment ions  

To assess the overall mass accuracy of in the HCD experiments we plotted the mass deviation 

between calculated and measured fragments for all identified peptides (1.6 million data points; 

Figure 2A,C). Almost all the fragment peaks were identified within 20 ppm with 95% of the 

peaks falling within a 12.5 ppm window. In contrast the fragment mass deviations resulting from 

ion trap detection were spread much more widely and 95% of the peaks fall within 542 ppm 

(Figure 2B). Thus HCD mass accuracy was about 50-fold improved over CID with detection in 

the ion trap.  

While fragment mass accuracy in HCD was much higher than in CID, it was nevertheless much 

lower than the sub-ppm mass accuracy that can be achieved for precursors with Orbitrap 

measurements27. This can mainly be attributed to the fact that precursor ions are measured 

several times across the elution peak and with higher resolution. To test if the low abundance of 

phosphopeptides and their fragments influences the mass accuracy, we plotted measured mass 

deviations against fragment peak intensity (Figure 2C). Mass accuracy is indeed dependent on 

intensity. However, as the Orbitrap analyzer has a large dynamic range also for mass 
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measurement accuracy30, mass deviations do not generally exceed 15 ppm even for very weak 

peaks.  

 

Cycle time for the top 10 HCD method 

One of the obstacles to using high resolution MS/MS for phosphopeptide analysis at a large scale 

has been their very low abundance, which led to long fill times for peptide fragmentation. In 

complex peptide mixtures that are separated by HPLC the resulting MS and MS/MS cycle times 

were previously too long compared to LC peak widths. Our top10 method with 30,000 resolution 

for MS and 7,500 for MS/MS uses 2.5 s measurement time in the Orbitrap analyzer21 and should 

therefore be compatible with the LC time scale. However, fill times to reach the desired target 

values have to be added to the scan time.  

To investigate the actual cycle times in our experiment, we classified all cycles into 10 groups 

according to number of sequencing events. As this number increased from 1 through 10 the cycle 

times increased (Figure 3). Maximum fill time for MS/MS was set to 150 ms; therefore the 

maximum total time for filling of the C-trap and for acquiring all transient should be 4 s. The 

median cycle time for the full 10 MS/MS events was 3.4 s (the longest cycle time was 4.24s), 

indicating that relatively fast cycles were achieved even in this case.  

With our parameters, only 12% of scan cycles with MS/MS events had all 10 fragmentation 

events (Supplementary Figure 1A). Many such cycles had only one MS/MS event (35%) and the 

median number was two. We expected that this number would vary as a function of elution time. 

Indeed, the median number of MS/MS events per cycle was zero until the first peptides eluted 

from the column at 20 min, then rose to 10 at 42 min where the density of phosphopeptides was 

highest and gradually dropped towards zero at the end of the gradient (Supplementary Figure 

1B). This indicates that the top10 method was a good choice under these conditions because at 

all points in the gradient there were sufficient MS/MS events to target the peptides recognized by 

the instrument data system. However, this does not imply that all peaks were chosen for 

fragmentation. While the number of MS/MS events peaks at 40-45 minutes the total ion current 

(TIC) was spread evenly across the gradient for the first but not for later fractions 

(Supplementary Figure 1C). 
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The data system had been programmed to accumulate 30,000 ions or – if calculated injection 

times were longer than 150 ms – to accumulate for that time interval (‘maxing out’). We found 

that due to the low intensity of the phosphopeptides overall a substantial proportion of all 

MS/MS events reached the 150 ms maximum injection time (Figure 4A). This is in contrast to 

complex mixture analysis of unmodified peptides on the same instrument, for which we 

previously determined a mean injection time 8.7 ms with the same HCD target values21.  Thus 

sensitivity remains a critical parameter in phosphoproteome analysis; much more so than in the 

analysis of unmodified peptides. Fortunately, under-filling of the Orbitrap analyzer has no 

deleterious effects on the mass accuracy apart from reducing the signal of the fragments.  

Given the very large number of phosphopeptide identifications of our experiment, we suspected 

that identification rates were high despite the under-filling. In total, 38.8 % of all MS/MS events 

led to peptide identifications and 84% of these were phosphopeptides. We first determined the 

identification percentage of the SCX flow-through fractions, which have more concentrated 

phosphopeptide populations and therefore had a median injection time of only 118 ms. These 

fractions indeed had somewhat higher identification rates (47.8%) than non-flowthrough 

fractions (29.9%). This clearly indicated that increased peptide intensity was beneficial but also 

that it was possible to identify phosphopeptides with fewer than 30,000 accumulated ions.  

Next, we divided the MS/MS spectra into those for which the injection time was within 150 ms 

and those for which injection time maxed out at 150 ms. Approximately 27.83% of the maxed 

out fragmentation spectra were still assigned to a peptide sequence and these were binned into 

four quantile based on the total ion signal in the MSMS spectra (Figure 4B). Interestingly, the 

apparent total ion signal varied over more than two orders of magnitude and the identification 

rates were not reduced significantly at least for the two most intense quartiles. These have similar 

identification rates as compared to the least intense quantile of the spectra that did reach their 

target values within 150 ms.  For the second least intense quantile the identification rate went 

down to 30% and for the least intense quantile it dropped to less than 15%. This suggested that 

far less than 30,000 ions were still sufficient for spectra identification in many cases. To 

investigate this phenomenon in more detail we performed experiments with different target 

values for each run. 
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Phosphopeptide identification rates at different target values for MS/MS 

To test the identification success rate at defined lower target values we enriched the HeLa lysates 

for phospho-peptides by TiO2 beads without any prior separation by SCX. Peptides were 

separated and analyzed with a 90 min reversed phase LC MS/MS method (70 min gradient). The 

target value of 30,000 ions served as a reference value for comparison. In duplicate experiments, 

we decreased target values to 15,000, 10,000 and 5,000 ions. Because the phosphopeptides were 

concentrated into one fraction median fill times ranged from 6.3 ms for the 30,000 target value to 

1.2 ms for the 5,000 target value. Accordingly, only a few percent of the spectra maxed out. The 

identification rate of MS/MS spectra for the reference target value run was 66%, which is 

comparable to overall HCD identification rates for non-phosphopeptides in our experience. 

Remarkably, the number of identified phosphosites dropped only slightly from 1,661 for the 

reference run at the 30,000 target value to an average of 1,332 for the runs with 5,000 target 

value (about a 20% reduction in both the number of identifications and the MS/MS identification 

percentage). For the 10,000 ion target value, the reduction was less than 10% (Table 1). 

However, the quality of the tandem mass spectra was affected as the target values were reduced. 

For all different target values and runs 752 sites were identified in common. Mean Mascot or 

PTM scores7, 31 reduced to 90% of the reference value for these sites already at the 15,000 ion 

target value and further reduced to about half at the 5,000 ion target value.   

In each of the identified phosphopeptides the site of phosphorylation was assigned and the 

quality of this assignment quantified by the localization probability, which is the probability 

value for a site to be phosphorylated among other possible sites in the same peptide7. While the 

Mascot or PTM scores are a measure of quality of identification of phosphopeptides, localization 

probability is a quality measure of how well the site of phosphorylation can be pinpointed with 

the available information in the fragmentation spectrum. The median localization probability was 

larger than 0.99 for the reference run at the 30,000 target value. It did not change appreciably at 

the 15,000 target value but then declined to about 0.9 for the run with 5,000 target value. This 

implies that at the lower target values fragmentation peaks that are important to pinpoint the site 

of phosphorylation start to be lost. This apparently happens before the quality of the spectrum 

deteriorates such that the peptide cannot be identified with high confidence any more. Cycle 
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times did not improve markedly between the reference and the low target values (median of 2.71 

s vs. 2.67 s).  

These findings explain why the overall number and the identification percentage were very high 

in our large-scale experiment. Despite the fact that many spectra did not reach their target values, 

their reliable identification was generally not impaired even though the localization confidence 

dropped for a subset of the spectra.  

Together, the above results suggest that top5 to top10 methods with about 30,000 target values 

and about 150 ms maximum injection times are a good choice for HCD phosphopeptide 

experiments. Values larger than 10 MS/MS events per cycle or much larger than 150 ms 

injection times risk extending cycle times to more than 4 s in complex mixtures. In less complex 

mixtures, however, a large maximum injection time at the expense of the number of MS/MS 

events may be advantageous. In any case, many phosphopeptides are confidently identified with 

one tenth or even fewer ions than the target value of 30,000. As a practical point, we have found 

it important to regularly clean the S-lens as otherwise ion currents can drop drastically 

(presumably due to charging effects) leading to very long fill times.  

 

Comparison of HCD and CID for large-scale phosphoproteomics 

Next we analyzed the second half of the sample on the same machine and with the same 

methods, except that we fragmented phosphopeptides by CID with analysis in the ion trap 

instead of HCD and detection in the Orbitrap analyzer. We used a top20 method with a target 

value of 5,000 ions. Distribution of MS/MS events actually performed by the instrument was 

similar to the HCD case and there were roughly similar number of full scans (HCD: 91,245; 

CID: 87,338) and MS/MS scans (HCD 129,468; CID 145,776). In particular, the instrument only 

performed 10 or more CID scans in 1% of the cases and in most cases only fragmented none or 

one precursor ion (Supplementary Figure 2).  

Interestingly, both fragmentation methods identified similar number of Class I sites (9,668 for 

HCD and 9,016 for CID) but HCD identified more phosphorylation sites overall (16,559 vs. 

11,893). We therefore checked the quality of identification in both methods. For all 
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phosphorylation states of peptides with Class I sites, the high-high strategy yields better 

identification quality (Supplementary Figure 3A,B) as the Mascot scores are 30% higher as 

compared to the high-low strategy (Figure 6) . As mentioned above, this is despite the fact that 

the Mascot score does not increase with high mass accuracy.  For the non-Class I 

phosphorylation sites the mean peptide Mascot score is still higher in HCD compared to CID but 

the localization probabilities are not significantly different. Further the CID and HCD runs have 

near identical peptide intensity distribution indicating that HCD detection in Orbitrap analyzer is 

not biased against low abundant peptides compared to CID measurement in ion trap 

(Supplementary Figure 4). 

We next compared both data sets with our previous phospho-proteomic study of EGF signaling 

in HeLa cells where we identified 5,849 Class I sites in a high-low strategy using CID7. Overlap 

with the HCD data was even higher than that with the CID data as we covered 2,985 (51.0%) and 

2,408 (41.2%) sites, respectively. Even though the experimental situations are not directly 

comparable because one experiment employed growth factor stimulation, these results suggest 

that HCD does not miss specific subsets of phosphosites previously identified in large-scale 

phosphoproteomics studies.  

To address the question of overlap in phosphosites between CID and HCD in more detail we 

classified phosphopeptides into four quantiles by intensity. As shown in Figure 7 for the most 

intense quantile, more than 80% of the sites identified in the CID experiment were also identified 

by HCD measurement whereas in the least intense quantile the overlap is only 35%. When we 

compared the overlap between two large-scale HCD experiments we found the same result. This 

demonstrates that the degree of overlap is given by the probability of the peptide to be ‘picked 

for sequencing’ by the instrument rather than any difference between the fragmentation methods.  

We also combined the results of the two large-scale HCD experiments and this resulted in 13,529 

Class I sites which covered all but 2,691 sites of the CID experiment. We were not able to 

identify any attribute that distinguishes these peptides from the other peptides. Together our 

results demonstrate that HCD is capable of identifying phosphopeptides to at least the same 

depths as CID and suggest that it does not discriminate against any particular phosphopeptide 

populations.  
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CONCLUSION AND OUTLOOK 

Our experiments show that the data quality of HCD makes it an attractive method for 

phosphopeptide characterization. In contrast to its implementation on previous LTQ-Orbitrap 

instruments, HCD in conjunction with the S-lens and higher efficiency HCD on the Velos 

instrument now make it a viable method for large-scale phosphoproteomics. Interestingly despite 

the somewhat slower measurement cycle of our “high-high” strategy HCD showed similar or 

even better performance compared to CID. Furthermore, there was no indication of 

subpopulations of phosphopeptides that were preferentially better suited to CID than to HCD. 

Therefore, there appears to be no reason against using HCD in a routine manner on the Velos 

instrument.  

Advantages of HCD with the Orbitrap analyzer detection compared to CID with ion trap 

detection include ready determination of charge states, assignment of neutral loss ions and the 

presence of reporter ions such as the 216.041 ion for phosphotyrosine. HCD spectra generally 

have higher dynamic range and are less noisy. Conversely, CID spectra often retain high mass b-

ions that are absent in HCD because they fragment further.  

The nominal number of ions requested for HCD spectra was 30,000 as opposed to 5,000 for CID. 

This should have given an advantage to CID for the preferential detection of low abundance 

phosphopeptides. However, we did not observe such a trend and precursor peptide intensity 

distributions were identical between HCD and CID. Indeed, phosphopeptides were still 

efficiently identified with as little as 5,000 ion target values (even though identification and 

localization scores started to deteriorate). Nevertheless, we found that it is important to load a 

relatively high amount of phosphopeptides as this increased the percentage of MS/MS spectra 

identified and the total number of detected phosphosites. Therefore, improvement of sensitivity 

for phosphopeptide analysis remains an important research and development goal.  

Here we have not systematically compared CID with fragment detection in the Orbitrap analyzer 

to HCD. That approach should also gain from the sensitivity improvement due to the S-lens and 

should offer many of the advantages of HCD that are related to the excellent fragment mass 

accuracy. Likewise, comparison of HCD to ETD with low or high resolution32 would be of 
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interest on the Velos platform. Another important area for future study is the scoring and 

localization of phosphogroups using algorithms specifically designed for high mass accuracy 

data. Database search scores should increase several fold for high resolution MS/MS spectra 

once this high mass accuracy is taken into account. Additionally, we expect that HCD will 

further improve relative to CID if MS/MS speed, which is currently only half as fast for HCD as 

for CID in the ion trap, could be increased.  

 

 

Acknowledgement 

We thank other members of the department for proteomics and signal transduction, for sharing 

insights. This work was partially supported by PROSPECTS, a 7th Framework grant by the 

European Directorate (grant agreement HEALTH-F4-2008-201648/PROSPECTS) and by the 

Max Planck Society for the advancement of Science. 

 

 

 

 

 

 

 

 

  



 

 75

Table 1 Measurement of phosphosites with different target values for MS/MS fragmentation. 

 

Ion Target value Number 

of sites 

identified 

Median  

mascot score 

Median PTM 

score 

Median 

localization 

probability 

30,000 1,661 41.91 114.15 0.997 

 

15,000 1,457 35.69 96.33 0.993 

 

15,000 1,548 39.02 96.33 0.995 

 

10,000 1,461 30.33 80.46 0.978 

 

10,000 1,516 32.01 81.30 0.985 

 

5,000 1,361 22.15 57.67 0.903 

 

5,000 1,304 21.59 56.73 0.912 
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FIGURE LEGENDS 

Figure 1. Comparison of CID and HCD fragment spectra. A. HCD spectrum of the double 

phosphorylated peptide ‘PISphPSPSphAILER’. The peptide has near complete coverage by y 

ions and low mass b ions.  The characteristic a2,b2  ion pair is clearly visible (low mass inset) and 

all peaks are clearly isotope resolved (high mass inset). Mass deviations between calculated and 

measured fragment masses are given in parentheses. B. CID spectrum for the same peptide. Y-

ion coverage is less but the spectrum shows high mass b-ions absent from the HCD spectrum.  C. 

HCD spectrum of the longer peptide 

AAAAAALSGAGTPPAGGGAGGGAGGGGpSPPGGWAVAR and the corresponding CID 

spectrum in D. Note that HCD but not CID allows confident charge state assignment of the 

fragments as seen in the inset for the y26
2+ ion. The y6 ion is not present in CID because it was 

fragmented by pseudo MS3 of the neutral phospho-loss of the precursor.  

 

Figure 2.  Distribution of fragment-ion mass deviations. Mass deviation of fragment ions 

from calculated values in ppm is plotted as a histogram. HCD data are in blue (A) and CID data 

in red (B). C. Mass deviations for 1.8 million fragments of identified phosphopeptides. The two-

dimensional density distribution of mass deviation and number of fragment peaks is shown as a 

function of the fragment peak intensity. 

 

Figure 3.  Duty cycle for different number of MS/MS events. The box plots show the 

distribution of cycle times for scan cycles with different numbers of MS/MS events per cycle. 

Cycles with no MSMS events are not shown. Even when 10 peptides were sequenced in one 

cycle, total cycle time is within the chromatographic width of most phosphopeptides. Unlike 

standard complex peptide mixtures of non-modified peptides the phosphopeptides are not 

abundant and, this is reflected in the distribution of cycle times using up to 150 ms fill times per 

MS/MS event. The black bars in the plot represent the median and the circles represent the 

outliers 
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Figure 4.  Injection times and MS/MS spectra identification rates.  A. Density distribution of 

injection time for MS/MS events for scan cycles. B. Distribution of total ion signal for all the 

MS/MS spectra that maxed out the injection time. The distribution is divided into four quantiles.  

C. Identification rates in each quantiles of the histogram are shown. The two most intense 

quantiles have identification rates of about 40%. The identification rate drops drastically only for 

the two least intense quantiles of the distribution, which have one or two orders of magnitude 

fewer ions. 

 

Figure 5. Identification and localization scores as a function of different target values. A. 

Percentage reduction in the number and quality of identification with respect to the reference ion 

target value used (30,000).  While peptides are still efficiently identified, identification score 

decreases below a target value of 10,000. B. In tandem with the identification scores median 

localization probability is considerably decreased below 10,000 target value.  

 

Figure 6. Comparison of HCD and CID database identification scores. The histogram of 

Mascot scores for all Class I sites of HCD (blue) and CID (red) shows a higher average and 

mean value for HCD. Very high identification scores were only achieved with HCD even though 

Mascot scores are insensitive to mass accuracy.  

 

Figure 7. Overlap of phosphosites identified with HCD and CID. A. All phosphorylation 

sites were divided into four quantiles based on total intensity of the precursor phosphopeptide 

ion. 85% of the peptides in the most intense quantile identified in CID were also identified by 

HCD, whereas only 34% of the ones in the lowest quantile overlapped. B. Overlap determined as 

in A but between the two HCD experiments.  
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Supplementary figures 

Figure S1. MS/MS events over the gradient for HCD. A. Bar plot showing the numbers of 

MS/MS scan events in every duty cycle with at least one fragmentation event.  Only 12% of 

scans have the full 10 fragmentation events. B. Distribution of MS/MS events over the gradient. 

Most sequencing events took place between 20 and 80 minutes. C. Distribution of Total Ion 

Current (TIC) over the gradient.  

 

Figure S1. MS/MS events over the gradient for CID. A. Bar plot showing the numbers of 

MS/MS scan events in every duty cycle with at least one fragmentation event.  Only 1% of scans 

have more than 10 fragmentation events even though a top20 method was used. B. Distribution 

of MS/MS events over the gradient. Most sequencing events took place between 20 and 80 

minutes. C. Distribution of Total Ion Current (TIC) over the gradient. 

 

Figure S3. Localization probabilities for phosphorylation sites in HCD. A. For all 

phosphorylation states HCD has a better Mascot score than CID. B. For all phosphorylation 

states HCD has a better localization probability than CID. 

 

Figure S4. Density plot of phosphopeptide precursors. Intensities of peptides from HCD 

(blue) and CID (red) are the same, demonstrating that HCD is not biased to high abundance 

peptides as compared to CID.   
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Supplementary material 

Supplementary Table 1_A: 

Information about all phosphopeptides from the large scale experiment HCD1 

Supplementary Table 1_B: 

Information about all phosphopeptides from the large scale experiment CID1 

Supplementary Table 1_C: 

Information about all phosphopeptides from the large scale experiment HCD2 

 

Viewing annotated spectra for any phosphorylation site: 

Annotated phosphorylation spectra can be viewed at TRANCHE (www.proteomecommons.org) 

using the hash key below. For any phosphorylation site of interest, note the raw file name and 

scan number from Supplementary Table 1 and open the file with this information as the 

concatenated name. An annotated MS/MS spectrum in png format will appear (png files can be 
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viewed in almost all imaging applications, for example Adobe Illustrator or Microsoft picture 

manager).   

 

Accession codes for raw mass spectrometry files: 

The data associated with this manuscript may be downloaded from ProteomeCommons.org 

Tranche using the following hash: 

/Gyf6Csx8Xlx8aUTof4/OcFDVdL3TDb6J4UPLceZSTXL2kdZr9OUb5j6NdIduK6+ehqHJ

3Td9GZSQTKaDtUM4/gMsNYAAAAAAAATLQ==  

 

For the annotated phospho HCD spectra (more than 30,000): 

w/ouOjs+THet/KE1R91+8O3zh/4xQ2X8I5AvTslHFC3yvcC9tF/5qIOJhDDhkYNuLXfLw

CObF1tvbav4Y5eG7hLPZe8AAAAAAFKvRQ== 
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2.4 LC-MS/MS based platform for urinary proteomics and 

investigation of variation of normal human urinary 

proteome  
 

Urine is a readily available non-invasive source for clinical biomarker discovery.  Large scale 

proteome mapping studies have shown that urine contains more than 3,000 proteins and thus it is 

rich in information for biomarker discovery125, 126, 153.  These studies involved pooling different 

samples and extensive fractionation in order to achieve greater depth of proteome coverage. 

However, a proteomics based biomarker discovery platform requires analyzing large number of 

samples and thus fractionation is not an optimal choice. Furthermore, before comparing the 

urinary proteome of normal versus patient samples, it is important to investigate the extent of 

variation of urinary proteome among normal individuals, and also to study the variation of a 

single person’s urinary proteome over time.  A previous study reported on the extent of random 

variation of the urinary proteome but it analyzed less than 50 proteins154. In this project we show 

identification of 600 to 800 proteins in single run LC-MS/MS without any pre-fractionation 

techniques and we quantify of about 600 proteins across seven individuals using label free 

quantification.  We observe that label-free quantification is highly reproducible and accurate and 

that the urinary proteome varies significantly within the same person over three consecutive 

days. This has to be taken in to account in large scale biomarker studies.  

 

A manuscript on this project has been submitted to the Journal of proteome research as follows 
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Abstract 

 

Urine is a readily and non-invasively obtainable body fluid. Mass spectrometry (MS)-based 

proteomics has shown that urine contains thousands of proteins. It is a potential source of 

biomarkers for diseases of proximal and distal tissues but it is thought to be more variable 

than the more commonly used plasma. By LC MS/MS analysis on an LTQ-Orbitrap 

without pre-fractionation we characterized the urinary proteome of seven normal human 

donors over three consecutive days.  Label free quantification of triplicate single runs 

covered the urinary proteome to a depth of more than 600 proteins. The median coefficient 

of variation (cv) of technical replicates was 0.18. Inter-day variability was markedly higher 

with a cv of 0.48 and the overall variation of the urinary proteome between individuals was 

0.66. Thus technical variability in our data was 7.5% whereas intra-personal variability 

contributed 45.5% and inter-personal variability contributed 47.1% to total variability. 

Determination of the normal fluctuation of individual urinary proteins should be useful in 

establishing significance thresholds in biomarker studies.  Our data also allowed definition 

of a common and abundant set of 500 proteins that are readily detectable in all studied 

individuals. This core urinary proteome has a high proportion of secreted, membrane and 

relatively high molecular weight proteins.     
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Introduction 

 

Human urine is one of the major body fluids and its use in medical diagnostics is second 

only to plasma1. It should therefore be an attractive source for proteomics based biomarker 

discovery2-4. Urinary proteomics has been pursued for a number of years, first with techniques 

like 2D gel electrophoresis5, 6 and SELDI7, 8. However, coverage of the proteome was very 

limited and robust quantitation was lacking. As an alternative to the proteome, the peptidome has 

also been analyzed early on, often by capillary electrophoresis coupled to MS or MS/MS 

instruments9-11.  

During the last few years great technological advances have occurred in proteomics, 

especially in workflows based on liquid chromatography – tandem mass spectrometry (LC-

MS/MS). MS-based proteomics is now routinely applied to the large-scale analysis of cellular 

proteomes12-15. It has also led to the identification of a large number of proteins in the urinary 

proteome16, 17. Employing a range of fractionation techniques and high resolution MS we 

previously reported more than 1,500 proteins in this body fluid18 and Steen and co-workers 

identified 2,362 proteins – the largest urinary proteome to date19. Apart from showing that many 

disease-related proteins can be identified in urine, these studies uncovered a great proportion of 

membrane and high molecular weight proteins. This was unexpected given the 40 kDa cutoff of 

the glomerular filtration apparatus in the kidney but may be explained by the presence of 

extracellular vesicles – termed exosomes. In fact, dedicated exosome urinary proteomics has 

resulted in the identification of more than 1000 proteins in this fraction alone20, 21.       

The ultimate goal of urinary proteomics is the identification of biomarkers. Efforts so far 

have mainly focused on diseases of proximal tissues, such as bladder, prostate and kidney.  

Potential biomarkers have been reported for bladder cancer, rejection of kidney transplants and 

renal failure in diabetic nephropathy (for examples see refs.22-30). However, the obstacles to 

establish true biomarkers are daunting and most candidates proposed so far are not likely to be 

specific to the disease under investigation. Clearly the proteomics workflows employed need to 

be further developed in sensitivity, throughput and quantitative accuracy. This is also the 

conclusion of large community efforts to study body fluids such as human plasma31, 32. 
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A central question to be addressed in urinary proteomics is the variability of the proteome. 

Because most of the proteins do not have a functional role in this fluid, there is no physiological 

need for precise homeostatic control. As a result, variability of the urinary proteome is thought to 

be much larger than in plasma. The quantitative degree of urinary proteome variability - or any 

other body fluid - has, however, not been established. Lee et al. investigated the dynamic urinary 

proteome during rat development33. They found that the presence of some proteins appeared to 

be associated with specific developmental stages. Sun et al used low resolution shotgun 

proteomics to identify proteins in urine collected from a number of individuals during the course 

of a single day and between days34.  Only very few proteins were identified in common between 

the individuals and quantification was performed by spectral counting, limiting the conclusions 

that could be drawn from the data.  

Studying the variability of a body fluid proteome, in common with biomarker studies, 

requires establishing protocols with reasonable depth of proteome coverage, while limiting 

overall analysis time. Preparation of urinary samples is not trivial because proteins are dilute and 

interfering substances are present35-38. Furthermore, to achieve good proteome coverage in 

urinary biomarker studies, additional fractionation steps upstream of LC MS/MS like ion 

exchange have so far been required. Here we set out to establish a robust workflow for analysis 

of the urinary proteome that employs single run LC MS/MS analysis and label-free 

quantification. We then applied this platform to determine the technical, daily and inter 

individual variations of the urinary proteome. Finally, we used our results to define and 

investigate the core urinary proteome in normal individuals.   

 

Experimental Procedures 

 

Urine collection and concentration 

Second morning urine was collected from healthy donors for three consecutive days. The 

samples were immediately centrifuged at 5,000 g for 15 min at 4o C to remove cell debris. The 

supernatant was stored at -20oC until usage. For each donor approximately 50 ml of urine was 

concentrated by ultrafiltration. Urine was sequentially passed through a filtration membrane of 3 
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kDa cut-off at 2,500 g and at 4o C. The final concentrate was washed twice with 50 mM Tris 

buffer, pH 8.0 to remove excess salt occasionally present in urine. Final protein concentration 

was estimated by the Bradford method. 

 

Protein digestion and peptide preparation 

The urinary proteome was digested in-solution in three ways: direct digestion, after 

acetone precipitation and after a combination of acetone precipitation and supplemental heat 

treatment. The  direct in-solution digestion was performed as described in Shi et al39. Briefly, an 

initial reaction volume of 100 µl was obtained by adding 100 μg of protein to Tris buffer 50 mM, 

pH 8.0 containing 8 M final concentration of urea. The proteins were reduced with 10 mM DTT 

for 30 min and alkylated with 50 mM iodoacetamide. The alkylated proteins were digested with 

2 μg of endoproteinase Lys-C for two hours. Following the initial digestion the reaction mixture 

was diluted to 2 M urea with 10mM Tris, pH 8.0. To the diluted sample an additional 2 μg of 

endoproteinase Lys-C or alternatively trypsin was added to the incubated at room temperature 

for overnight digestion. For acetone precipitation, the urine concentrates from ultra-filtration 

were mixed with four volumes of cold acetone and incubated at -20o C for two hours followed by 

centrifugation at 13, 000 g for 10 min. The protein precipitate thus obtained was digested directly 

as above or heat treated before enzyme digestion. Heat treatment was carried out by re-

suspending the protein precipitate in 20 µl of 10 mM Tris and heating at 95 oC for 5 min.   

After overnight digestion, enzymatic activity was stopped by adding trifluoroacetic acid 

(TFA) to a final concentration of 0.3%. The resulting peptides were purified in a C18 StageTip as 

described40.   

 

 

LC MS/MS analysis  

The StageTip purified peptides were eluted to a final volume of 4 µl. Liquid 

chromatography was performed with an Agilent 1100 system (Agilent Technologies, Palo Alto, 
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CA). Peptides were separated on a 15 cm fused silica column   packed in-house with the reverse 

phase material ReproSil-Pur C18–AQ, 3 µm resin (Dr. Maisch, Ammerbuch-Entringen, 

Germany). The reversed-phase separation was carried out by a 120 minute gradient from 2% to 

80% of 80% (v/v) CH3CN, 0.5% (v/v) acetic acid at flow rate of 250 nl/min unless otherwise 

noted.   

The LC system was coupled to the LTQ-Orbitrap XL (Thermo Fischer Scientific) via a 

Proxeon nanoelectrospray ionization system (Proxeon Biosystems, now Thermo Fischer 

Scientific). The spray voltage was set to 2.1-2.35 kV and the heated capillary temperature was 

set at 175 oC.  The mass spectrometer was operated in a data dependent fashion. Full scans were 

acquired in the Orbitrap analyzer with 60,000 resolution at 400 m/z.  In order to achieve very 

high mass accuracy the lock mass option was enabled41 and the real time internal calibration was 

performed using the 445.120025 ion.  In data dependent scan events, up to the 5 most abundant 

ions were isolated (isolation width 2 Th), fragmented by collision induced dissociation (CID) in 

the linear ion trap with normalized collision energy of 35 and activation time of 30 ms. Fragment 

ions were subsequently ejected laterally for detection by the electron multipliers. For CID 

fragmentation, the wide band activation option was enabled and dynamic exclusion was used to 

minimize the extent of repeat sequencing of the peptides. Singly charged peptides were excluded 

from sequencing throughout the run.  

 

Data Analysis  

The MS data were analyzed using the MaxQuant software42, 43, version 1.0.12.36. For 

MS/MS peak list file construction, up to top 8 peaks per 100 Da window were included for data 

base searching. The generated peak lists were searched against the decoy version of the 

international protein index (IPI) human database (version 3.68) with an initial precursor mass 

window of 7 ppm and a fragment mass window of 0.5 Th. Carbamidomethylation of cysteines 

was set as fixed modification and protein N-terminal acetylation and methionine oxidation were 

set as variable modifications for the database search. The cut-off false discovery rate for proteins 

and peptides were set to 0.01 and peptides with minimum 7 amino acids were considered for 
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identification.  Additionally, we required at least two peptide identification per protein, of which 

at least one peptide had to be unique to the protein group.  

Label free analysis was performed in MaxQuant44 for protein quantitation. This included 

quantification of peptides recognized on the basis of mass and retention time but identified in 

other LC MS/MS runs (“match between the runs” option in MaxQuant). Only proteins that had a 

label free quantification intensity in at least 32 (50%) of the 63 samples were included for 

clustering analysis. 

 

Statistical analysis 

Pearson correlation and Spearman rank correlation were used for hierarchical clustering and 

rank ordering the quantitative results of the proteomic experiments respectively. (The Spearman 

rank correlation measures the degree of rank consensus between two ordered lists.) Percentages 

of variances were calculated from the median coefficient of variation (cv), which is the standard 

deviation divided by the mean of a measurement. For visualization of the cluster, the Perseus 

program in the MaxQuant environment and Genesis software45 were used.  

 

Results 

 

An LC MS/MS method without pre-fractionation suitable for the urinary proteome 

In our previous study, we had aimed at identifying as many proteins as possible in pooled 

urine18. Here we needed to analyze a relatively large number of different urinary proteomes. We 

therefore developed a single run LC MS/MS method that would enable identification of a 

reasonable number of urinary proteins. Mass spectrometric analysis was performed on a linear 

ion trap Orbitrap analyzer (LTQ-Orbitrap XL) at a precursor resolution of 60,000. Concurrently, 

peptides were fragmented by CID in the linear ion trap with a ‘top5’ method (Experimental 

Procedures). Data analysis was done in MaxQuant42, resulting in sub-ppm average absolute mass 
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deviations and peptide identification rates of about 33%, somewhat lower than typically 

observed for cellular lysates under otherwise similar conditions.  

Standard in-solution digestion conditions as normally employed in our laboratory at first 

resulted in the identification of only about 100 proteins in single runs (Figure 1A, Supplementary 

Table 1). As the same protocol routinely leads to the detection of more than 1,000 proteins in cell 

lysates, we suspected that digestion was inhibited by small molecular weight compounds in urine 

or by abundant protease inhibitors. Indeed, when using acetone for denaturing and precipitation, 

we detected close to 300 proteins. This number increased slightly when additionally heating the 

sample to 95 oC for five minutes (Figure 1A).  

 For greatest simplicity, these initial experiments were performed with endoprotease LysC 

digestion alone, which is the first digestion step in our digestion protocols. This is then followed 

by trypsin digestion under less denaturing conditions to produce smaller and more easily 

identified peptides. However, when we coupled acetone precipitation with LysC and subsequent 

trypsin digestion, the number of identifications increased substantially to 462+-21 urinary 

proteins in single runs (Figure 1A). The final workflow for analysis of urinary proteomes in this 

study is shown in Suppl. Figure 1.  

The single LC MS/MS runs contain information on many more peptides and proteins than 

apparent from the above numbers. First our identification criteria were very conservative and 

they excluded single peptide identifications of proteins, even those with greater 99% confidence 

for protein identification. Additionally, many peptides that are clearly present are not ‘picked for 

sequencing’ by the mass spectrometer in single runs. In our experiments the total number of 

identifications increased to 624 in triplicate single runs of the same sample, even when keeping 

the requirement of two independent peptides for protein identification, because different peptides 

were fragmented and identified (Figure 1B). This number would then be the expected depth of 

proteome coverage of a single donor sample analyzed in triplicate in a biomarker study. 

Measurement time for the triplicate analysis was slightly more than six hours and total sample 

consumption was 6 µg (one urinary sample typically yields 1 mg of protein).  In quadruple runs 

654 proteins were identified (Figure 1B).  
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The very high mass accuracy achieved by the Orbitrap analyzer in conjunction with 

MaxQuant analysis facilitates accurate matching of peptide identities between LC MS/MS runs, 

even when the peptide was not sequenced in a given run.  Using ‘match between runs’ of the 

quadruple analysis, we obtained an average of 633 protein identifications in each single run 

(Figure 1C).   

 

The variability of the normal human proteome 

To investigate intra and inter individual changes in normal urinary proteomes, we 

obtained second morning urine from a total of seven persons on three consecutive days. These 

five males and two females of different ethnicities were apparently healthy and their ages were 

between 25 to 35 years, a range where normal kidney function is expected.  

We performed triplicate analysis of each of the 21 samples according to the protocol 

described above, resulting in a total of 63 LC MS/MS runs of 140 min each and a total 

measurement time of slightly less than one week. One additional ‘random test’ sample was 

obtained from one of the donors on a different day. The resulting 64 raw mass spectrometric files 

were analyzed together in MaxQuant using common criteria. The false positive rate for 

identifications as determined from a reverse database was less than 1%. This analysis resulted in 

the identification of 808 proteins from 4,871 sequence unique peptides. Each protein was 

identified by a mean of 6 peptides and a median of 4 peptides. Average absolute peptide mass 

deviation was 0.9 ppm for the entire data set. Raw MS data files as well as the MaxQuant peptide 

and protein evidence files are uploaded to the Tranche repository. 

Rank order statistics is very robust and frequently applied in functional genomics. For 

each of the 64 measured proteomes, we ordered proteins by summed peptide intensity from most 

abundant to least abundant. To obtain a first general overview of the urinary proteome 

measurements we performed pair-wise rank order correlation between the protein intensities. All 

Spearman rank order coefficients were above 0.66, the intra-individual average was 0.92 and 

between technical replicates it was 0.97. For visualization, we color-coded the rank order 

coefficients. Figure 2A clearly shows seven blocks, corresponding to the seven individuals. 

These blocks are further divided into three sub-blocks, indicating the triplicate measurements of 
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samples obtained on three days (zoom in Figure 2A). The high rank coefficients imply that the 

data are sufficiently precise to capture differences in urinary proteomes within the samples of 

one person and between different persons.  

Next, we directly quantified proteins levels by label-free methods between all 64 LC-

MS/MS runs. This analysis makes use of much more of the raw data and should therefore be 

much more accurate than the rank order statistics described above. The total intensity values of 

all proteins in all samples were determined by MaxQuant, converted to z-scores and subjected to 

unsupervised 2-dimensional hierarchical clustering (Experimental Procedures). As shown in 

Figure 2B, all triplicate measurements of the same proteome sample clustered together, followed 

by clustering of each of the individual urinary proteomes. This demonstrates that in our data set 

technical variation was less than intra individual variation (urinary samples obtained on different 

days). Moreover, the urinary proteomes of different subjects were clearly distinguishable from 

each other by our proteomic workflow. To further confirm this finding, we tested where a 

‘random’ proteome sample, obtained on a different day from one of the individuals, would align 

with respect to the other samples. Indeed, this single run clustered along with the other samples 

of the same donor (black arrow in Figure 2B).  

We then determined the coefficients of variation (cv) for each of the three levels of 

sample variation. Within the 21 technical triplicate repeat measurements, the average cv was 

0.18 (Figure 3A). This is an excellent value, considering that it was achieved by a label-free 

method on hundreds of proteins in a body fluid proteome.  The variation of the proteome of each 

of the seven individuals over three days was 0.48. This figure includes the technical as well as 

the intra-individual variation. However, because it is significantly higher than the technical 

variability, the day to day variation of the urinary proteome must be the major contributor to this 

cv value. The inter individual cv values were 0.66, again significantly larger than either the 

technical or the intra-individual variations (Figure 3A). Variances (squares of standard deviation) 

are additive and because the mean is same at all three levels, allows estimating the quantitative 

contribution of each level. In our data, the contribution of technical variability to the total 

variability is only 7.45 % = 0.182/0.662, the contribution of day to day variation is 45.45 %  = 

(0.482-0.182)/0.662 and the contribution of the differences between the individuals is 47.1 % = 
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(0.662 – 0.482)/0.662. We found no further obvious relation between the individual proteomes; 

for example they did not cluster by gender.  

On a protein by protein basis, total variability ranged from 0.24 to 3 (disregarding three 

outliers). The apparent variability of a protein did not strongly depend on its abundance as might 

have been expected (Figure 3B). This finding suggests that these variabilities capture 

physiological rather than technical aspects. Inspection of protein names did not point to obvious 

associations of cv values with specific molecular characteristics.  

 

The core urinary proteome 

Measurement of the normal urinary proteome of seven different individuals should allow 

not only the determination of the variability of the urinary proteome but also of its commonality. 

When we inspected the proteins in the 23 urinary proteomes, we found that a large subset was 

identified in all of them. These proteins represent the common and most easily identifiable 

proteins of urine and we term this subset the ‘core urinary proteome’. Note that this is an 

operational definition because the core urinary proteome will expand as better instrumentation 

becomes available (see also below).  

The total number of proteins identified with two peptides in urine was 808 as noted above 

and remarkably, a full 587 of them were found in each of the participant’s urinary proteomes on 

each day (Figure 4A). Only a small number of proteins were found in all except one person on 

every day. Almost no proteins appeared to be unique to a single person - meaning it was only 

identified in one person on each day (28 of 808 proteins).  

We and others have found that the added peptide intensity of each protein correlates well 

with the total protein amount14, 46. By this measure the absolute protein abundances of the core 

urinary proteome varied over almost 5 orders of magnitude, whereas apparent protein 

abundances in the total proteome measured here varied over six orders of magnitude. There are a 

few high abundance proteins whereas the majority clusters within a factor ten around an average 

value and a small fraction appears to have much lower abundance (Figure 4B). The most 
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abundant proteins are equally present in the core and entire protein set but some proteins of 

medium abundance are not found in the core proteome (Figure 4B).  

In concordance with the above observations, a plot of the contribution of each protein to 

the cumulative proteome fraction revealed relatively few dominant proteins (Figure 5). Human 

serum albumin (HSA) is the most abundant protein in the core urinary proteome, accounting for 

25% of its mass. The 20 most abundant proteins each contribute on average a few percent and 

together they make up about 2/3rd to the core proteome (Table 1). Almost all of them are secreted 

glycoproteins, with the exception of the plasma protein HSA. Ubiquitin was the other exception 

and the only intracellular protein (15th most abundant protein; 1.5%).  

Zinc-alpha-2-glycoprotein (AZGP1) was the 4th most abundant protein but according to 

the UniProt database its existence has so far only been inferred by homology. Another interesting 

protein is epidermal growth factor (EGF) a small protein much studied in cell signaling and 

cancer, which appeared to be the 9th most abundant protein in urine. We have previously found 

EGF to be difficult to detect in an equimolar mixture of 50 proteins47, which suggests that its 

levels in urine are even higher than estimated here. Urine is a known source of EGF, and growth 

factors are reported to be secreted by glomerular podocytes to support the integrity of the 

endothelium.  

Table 1 also lists the individual cv values for the 20 most abundant proteins. They are 

between 0.2 to 1, roughly the same range as that of the core urinary proteome, showing that high 

protein abundance per se is not strongly correlated with a low degree of variability.  

The 100 most abundant proteins account for 88% and the 200 most abundant for 94.7% 

of the core urinary proteome, which itself makes up 92% of the total urinary protein mass 

measured in our experiments. The lower abundant 50% of all core urinary proteins together only 

account for 2.6% of its total mass.  

We also compared the absolute quantities of proteins in urine with those in a cell line 

proteome. In HeLa cells, more than 1500 proteins can readily be detected in triplicate 2h gradient 

runs of total cell lysate. Their quantitative distributions are less extreme, with fewer very high 

abundance proteins and a delayed falloff to very low apparent protein intensities. The observed 
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dynamic range is somewhat lower than in the total urinary proteome, presumably because there 

are more proteins of medium abundance (Supplementary Figure 2A, B).  

Gene Ontology (GO) analysis48 of the core urinary proteome showed a preponderance of 

extracellular and membrane compartments, in agreement with our previous findings18. 

Intracellular and especially nuclear compartments were underrepresented compared to the total 

proteome (Figure 6A). The overlap of the core urinary proteome with our previous data set was 

87% (Figure 6B).  The size distributions were very comparable, with roughly half of all proteins 

of molecular weights above the glomerular cut-off of roughly 40 kDa (Figure 4C). This also held 

true with considering the quantitative contribution of the different size classes of proteins found 

in urine. Note that our analysis does not preclude that only fragments of proteins were present. 

However, previous analyses employed 1D gel electrophoresis, where high molecular weight 

proteins were found at the expected locations18 19.  

 

Discussion and Outlook  

Here we have described a proteomic workflow that allows the label-free quantification of 

more than 500 proteins in single LC MS/MS runs. Sample preparation only involving acetone 

precipitation and in-solution digest but no depletion of abundant proteins was found to be 

adequate for this depth of proteome coverage. The absence of pre-fractionation, in particular, 

means that relatively large numbers of proteome samples can be analyzed. This is in contrast to 

previous in-depth measurements, which required pooling of samples and extensive fractionation. 

We used this ability to measure the proteomes of a number of normal individuals at different 

time points allowing an assessment of both the variability and the commonality of the normal 

human urinary proteome.  

By label-free quantification we found that differences between technical replicates 

contributed less than 8% to the total variability. This was substantially less than the contribution 

of either intra-individual (45%) or inter-individual variation (47%) to total variance. These 

values suggest that label free quantification may be of sufficient accuracy for the discovery of 

urinary biomarkers. They also suggest that analysis time may be best allocated to single 

measurements of proteomes obtained at different time points, rather than repeat measurements of 
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pooled samples from an individual. This conclusion agrees with current practice in microarray 

measurements, which are now considered sufficiently precise that usually only biological and not 

technical replicates are performed49.    

Label free quantification of the normal proteomes was also used to cluster the samples. 

Except two LC-MS/MS runs, the triplicate proteome measurements clustered together and then 

these triplicate measurements clustered together according to the donor. This further 

demonstrates that label-free quantification of urinary proteomes by high resolution MS/MS is 

robust and that it captures characteristics of individual body fluid proteomes.   

Based on the diverse normal proteome measurements, we defined a ‘core urinary’ 

proteome containing all those proteins that were measured in each proteome sample of each 

person. This core proteome contained close to 600 proteins and accounted for 92% of total 

proteome mass compared to all quantified urinary proteins. The 20 most abundant proteins of the 

urinary proteome contribute about 2/3rd of the core proteome mass. Almost all of its members are 

secreted glycoproteins. In agreement with our and other high resolution measurements of the 

urinary proteome, we found a large proportion of membrane proteins, relatively high molecular 

weight proteins, and a corresponding underrepresentation of intracellular and especially nuclear 

proteins. The apparent dynamic range of the urinary core proteome spans almost five orders of 

magnitude, which is somewhat more than the apparent dynamic range of a cell line proteome 

measured under similar conditions. This is likely due to the fact that the quantitative distribution 

of urinary proteins is more extreme than that of cell lines.  

Although we have been able to quantify a relatively large number in a short time, it 

would still be desirable to further extend the depth of analysis for potential urinary proteome 

biomarker studies. To investigate if this is possible, we implemented a number of improvements 

made in our general proteomics work-flow after this study had been completed. Indeed, when 

employing the Filter Aided Sample Preparation (FASP) method50 in conjunction with longer LC 

gradients (4h instead of 2h), we increased the number of identifications in triplicate single runs to 

811 and in quadruple runs to 836 proteins (Supplementary Table 3).  We believe that 

quantification of about 1000 proteins with 2h gradients should be possible in the future, given 

ongoing improvements in instrumentation and computational methods. Thus it appears feasible 

to conduct medium scale urinary proteomics efforts on the basis of high resolution LC MS/MS 
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technology. For example, measuring the urinary proteome of 500 cases and 500 controls with the 

above technology would theoretically involve total instrument time of 100 days and 

correspondingly less if several mass spectrometers were used. This seems a reasonable 

instrument commitment compared to the resources needed for other parts of a biomarker study 

such as patient acquisition and downstream validation and assay development.  

Data of the type acquired here could also readily be obtained for other body fluids. We 

suggest that this would be useful for several reasons. Definition of a core body fluid proteome 

and its individual variability on a protein by protein basis would help in deciding how distinctive 

a putative biomarker is likely to be. If the candidate is present and highly variable in the normal 

population then it would need to be highly upregulated in a specific condition to be a useful 

marker. Conversely, a putative biomarker may be promising for further study if is not a member 

of the core body fluid proteome but if it has a rank position in the case group clearly within the 

core body fluid proteome.  

In summary, the technology of high resolution LC MS/MS employing single runs appears 

to be approaching sufficient maturity to contemplate biomarker studies on the urinary proteome. 

Measurement of the composition and variability of the normal urinary proteome will greatly help 

in interpreting the results of such studies.  
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Abundance Rank Protein Name Gene name CV Protein 

amount % 

Cumulative 

amount % 

1 Serum albumin ALB 0.4
1 

25.45 25.5 

2 Kininogen-1 KNG1 0.3
8 

4.33 29 

3 Prosaposin PSAP 0.6
2 

2.99 33 

4 Zinc-alpha-2-glycoprotein AZGP1 1.0
1 

2.77 35.5 

5 Apolipoprotein D APOD 0.3
1 

2.73 38.3 

6 Ig  kappa chainC region IGKC 0.4
6 

2.73 41.0 

7 Alpha-1-microglobulin AMBP 0.6
3 

2.67 43.7 

8 Alpha-1-antitrypsin SERPINA
1 

0.3
0 

2.34 46.03 

9 Pro-epidermal growth factor EGF 0.4
7 

2.07 48.11 

10 Prostaglandin D2 synthase 21kDa (Brain)  PTGDS 0.4
5 

1.92 50 

11 Osteopontin SPP1 0.2 1.80 51.8 
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 8 

12 Serotransferrin TF 0.6
9 

1.7 53.5 

13 Pancreatic alpha-amylase AMY2A 0.9
1 

1.7 55.24 

14 Inter-alpha-trypsin inhibitor heavy chain H ITIH4 0.2
8 

1.6 56.9 

15 Ubiquitin C UBC 0.2
2 

1.4 58.3 

16 Uromodulin UMOD 0.3
4 

1.3 59.6 

17 CD59 glycoprotein CD59 0.4
8 

1.27 60.8 

18 Plasma protease C1 inhibitor SERPING
1 

0.2
6 

1.2 62.02 

19 Polymeric immunoglobulin receptor PIGR 0.3
8 

1.1 63.1 

20 cDNA FLJ55606, highly similar to Alpha-2-HS-
glycoprotein 

AHSG 0.6
7 

0.96 64.1 
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Figure legends` 

 

Figure 1. Proteome coverage with different sample preparation and replicate runs. A. The 

number of proteins identified by the different sample preparation methods are shown. Error bars 

as determined by quadruple runs. B. The cumulative increase in the number of proteins identified 

from two, three and four replicate runs of the same sample by acetone precipitation and trypsin 

digestion. C. Number of proteins identified in each of the replicate runs with (green) and without 

(brown) matching between the runs.  Matching between the runs uses the high mass accuracy to 

transfer identifications to previously unidentified peptides from different LC-MS/MS runs where 

they were fragmented and identified. 

 

Figure 2. Rank order correlation and hierarchical clustering. A Matrix of Spearman rank 

correlation coefficients for each LC-MS/MS run against every other run. The matrix is color 

coded as shown in the figure. The left inset shows the zoom of one particular individual 

indicating the high rank correlation for the technical replicates within the same proteome sample. 

B. Hierarchical clustering of 64 LC-MS/MS runs shows that the technical triplicates are much 

closer than the intra-individual and inter-individual samples. A random sample clustered together 

with the correct donor, as shown by the arrow.  

 

Figure 3. Distribution of coefficient of variation. A. The distribution of co-efficient for 

technical, intra-individual and inter-individual variation is shown in the box plot. The cv for 

technical variation was much lower than the intra and inter individual variation. B. A plot of co-

efficient of variation against the logarithmic summed peptide intensity of the proteins show that 

there is no strong correlation between the abundance level of the protein and the extent of 

variation.  
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Figure 4. The core proteome.  A. The core proteome was defined as those proteins that were 

detected on all three days in all seven individuals. The core proteome constitutes the majority of 

the total proteome data set (64%). B. The dynamic range of the core proteome (orange) in 

comparison to the total proteome (red). The logarithmic summed peptide intensity is used as a 

measure of the abundance of the proteins. The core proteome has a dynamic range of about 5 

orders of magnitude.  

 

Figure 5.  Cumulative abundance of the core proteins.  Contribution of  each of the proteins 

to total core urinary proteome mass. Human serum albumin, kininogen, epidermal growth factor 

and uromodulin are a few of the top 20 most abundant proteins that contribute to more than 60% 

of the proteome (see also Table 1).  

 

Figure 6.   Gene ontology analysis of core proteome. A. GO annotations for the proteins in the 

core proteome agree with the previous observations that the urinary proteome contains a large 

proportion of membrane proteins. Nuclear and cytoplasmic proteins are under-represented in the 

urinary proteome. The GO annotation distribution is similar for the core proteome, the total 

protein set and the large-scale urinary proteome dataset (Adachi et al). B. The core proteome is 

almost entirely contained within the Adachi et al data set. C. The size distribution of the core 

proteome agrees with previously published datasets and indicates many proteins above the 40 

kDa glomerular filtration cut-off.  

 

Supplementary Figure 1. Sample preparation and digestion for urinary proteomics by LC-

MS/MS.  The urine protein sample is concentrated by ultra-filtration and processed in the three 

different ways. The peptides obtained from overnight digestion are purified by C18  Stage Tips 

and loaded injected for LC-MS/MS analysis.  
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Supplementary Figure 2. Comparison of dynamic range of urine and cell line proteome.  A. 

The logarithmic summed peptide intensity of urine and HeLa cell line proteome is shown. The 

proteome of HeLa was obtained by three technical replicates of whole cell lysate peptides in 

similar 2 hour gradients in a LTQ-Orbitrap instrument. B. The cumulative proteome fraction of 

urine contributed by the most abundant proteins is much higher than that of the HeLa proteome.  

 

 

Supplementary materials 

Supplementary Table 1. List of proteins and peptides identified by different sample preparation 

methods and enzyme digestion.  

Supplementary Table 2. List of proteins in the core proteome and their cumulative proteome 

fraction  

Supplementary Table 3. List of proteins identified with FASP and long gradient methods.  
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Conclusion and outlook 
 

 The interdisciplinary nature of scientific research is crucial for the advancement of 

mankind and application of mass spectrometry and fluorescence spectroscopy to biological 

sciences are among the best examples for this happening.  Without such techniques, 

identification of protein inside a cell, localization of a protein etc would be a too difficult 

problem to solve requiring a large consortium of scientist. Mass spectrometry based proteomics 

in its current state has finally enabled the investigation of proteomic phenotype of a cell/tissue in 

a “systems-wide’ perspective.  

 During my PhD thesis, I have been very lucky to be involved in different themes of MS 

based proteomics as a main driver or as a collaborator. Sample preparation techniques and 

separation techniques are ever evolving and the most favorite technique/method that I would 

love to see is a development that can tackle the dynamic range problem in plasma and other 

samples. This could cause a dramatic change in the field even in terms of analysis time, cost etc.  

The continuous development of mass spectrometric technology is fascinating and the recent 

development of bench top high resolution mass spectrometers clearly suggests that mass 

spectrometry will be a routine tool that every biologist will be able to use in general laboratories.  

  With the parallel improvements in technology and sample preparation, I believe that real 

clinical proteomic is very near. Increasing number of reports using LC-MS/MS based proteomics 

applied to clinical samples indicate the rapid development in the field. Recent reports suggest 

preservation of proteome and its PTMs in the frozen samples and FFPE samples will open a 

window of opportunity to investigate the proteome and phosphoproteome of tumor samples that 

may prove vital in the field of medical oncology.  

Though spending four years in one of the best proteomics laboratories in the world, there 

are several subjects like peptide pull down and immuno-precipitation coupled to mass 

spectrometry in which I lack practical experience. In the near future I look forward to make 

further progress in understanding mass spectrometry and related principles and applying them to 

clinical and biological questions that are plentiful in our environment. 
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