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1 INTRODUCTION 
 

Highly informative genetic markers are essential to study the origin, history and evolution of 

livestock populations (Troy et al. 2001; Li et al. 2009; Medugorac et al. 2009). After a decade 

of domination by microsatellite markers, recently Single Nucleotide Polymorphisms (SNPs) 

are becoming more attractive to population genetic studies (Behar et al. 2010). High-

throughput sequencing (Käller et al. 2007), have led that SNPs are the most technologically 

developed abundant markers in genetic science. Additionally it is becoming increasingly 

feasible to genotype hundreds or even thousands of individuals for these large numbers of 

SNPs. 

 

These advantages in genetic science provide new insights into complex population structures 

(Gompert et al. 2010). It simultaneously supports the need of new approaches to study 

population structure based on whole genome-wide SNP panels spanning hundreds of 

thousands of loci. The large number of loci and the complexity to assign each individual to 

exactly one corresponding population poses significant challenges for conventional 

population structure analyses using commonly applied methods because most of these 

methods have been focused on small sets of microsatellite loci (Goudet 1995; Pritchard et al. 

2000) e.g. within cattle most studies have been focused on a small set of microsatellite loci, 

mostly including the 30 microsatellite markers recommended by ISAG/FAO working group 

(http://dad.fao.org/) (Cymbron et al. 2005; Tapio et al. 2006; Li et al. 2007). At the same 

time, it has been predicted that at least tow to six times more SNPs will be necessary to 

achieve the same resolution as microsatellites when used for individual identification and the 

study of parentage assessment and relatedness (Morin et al. 2004). Furthermore it has been 

noted that classical population analyses still rely on a priori ancestry information that not 

always respect the natural population structure. 

 

In order to meet these recent issues in population genetics, this study introduces the idea of 

network analysis into studies of population structures and focuses on a recently developed 

method (Paschou et al. 2007), which identifies highly informative markers applying a method 

derived from Principal Components Analysis (PCA) on a whole-genome SNP survey. Most 

informative markers are hereby identified as PCA informative markers (PCAIMs). Given the 

current interest to detect genome-wide selection signatures in livestock, we have additional 

investigated the application of PCAIMs to detect breed specific markers, since common 
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applied methods are computational demanding, while PCAIMs can be detected within 

seconds. 

 

Hence the three major objectives addressed in this study are: 

 

(i) To ascertain if animals can be allocated accurately to their respective breeds 

without any a priori ancestry information exploiting a whole-genome SNP survey. 

 

(ii) To identify the minimum number of highly informative SNPs needed to guarantee 

a true assignment of animals to their respective breed/population. 

 

(iii) To examine the utility of PCAIMs to detect putative selection signatures in cattle 

breeds. 
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2 LITERATURE REVIEW 
 

2.1 Genetic Markers 

 

To understand the history and evolution of populations it is usually necessary to study a large 

number of polymorphisms (Cavalli-Sforza 1998). Through molecular revolution over the last 

few decades, a lot of techniques have been developed to study population structure using 

genetic markers. At the first stage of research almost all markers identified have been protein 

and blood group polymorphism, and only a few hundred were previously known (Nei & 

Roychodhury 1988). These markers are also known as ‘classical polymorphisms’ to 

distinguish them from those obtained by direct Deoxyribonucleic acid (DNA) analyses. The 

use of DNA segments to analyze genetic polymorphisms has resulted in the identification of a 

great number of markers and genetic polymorphisms, which is of great benefit as a lot of 

markers are needed to detect population structure and selection signatures within populations, 

consequently identifying quantitative trait loci (QTL) affecting traits of economic interest 

(MacNeil & Grosz 2002; Thaller et al. 2003), as well as qualitative trait loci (Drögemüller et 

al. 2005; Drögemüller et al. 2009; Fontanesi et al. 2010). Commonly considered DNA 

markers are Microsatellites and Single Nucleotide Polymorphisms (SNPs or ‘snips’). 

 

2.1.1 Microsatellites 

 

Microsatellites are direct tandem repeated sequences of DNA with a repeat size ranging from 

1 to 6 base pairs (bp). Hence, a microsatellite is also called a simple sequence repeat (SSR). 

To identify microsatellite loci suitable for use as genetic markers, different approaches have 

been developed. One of the prevailing methods to identify microsatellites is the use of 

primers, which are commonly designed directly from the sequence data. In this context, the 

primers serve to detect the variation of microsatellites, by flanking the different numbers of 

repeats provided by Polymerase Chain Reaction (PCR) (Saiki et al. 1988; Newton & Graham 

1997). Microsatellites are highly polymorphic in many animal and plant species (Morgante & 

Olivieri 1993; Queller et al. 1993; Kim et al. 2004). Especially the high variation of this DNA 

marker have led that during the past decade a large number of population structure studies 

have extensively used microsatellite loci e.g. within livestock approximately 90% of all 

projects, microsatellite loci were used as genetic markers, while Single Nucleotide 
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Polymorphism (SNP) markers were only investigated in about 10% of all projects (Baumung 

et al. 2004). In contrast to the past decade, recent analyses in human (Hannelius et al. 2008), 

cattle (The Bovine HapMap Consortium 2009) and sheep (Kijas et al. 2009) show that 

currently SNPs regaining favour for uncovering genome-wide population structures. 

 

2.1.2 Single Nucleotide Polymorphisms (SNPs) 

 

A SNP is a small (single base pair) genetic change, or variation, that can occur within an 

individuals DNA sequence. This property of SNPs allows us to make associations between 

marker alleles with QTL’s affecting important economic traits in livestock. It has been 

hypothesized that these genome-wide studies are our most powerful method identifying genes 

that are responsible for important traits, e.g. Myostatin (MSTN) for double muscling within 

animals (Hill et al. 2010) as well as for undesirable genes such as bovine leukocyte adhesion 

deficiency (BLAD), complex vertebral malformation (CVM) and congenital muscular 

dystony (CMD) (Charlier et al. 2008). Single Nucleotide Polymorphisms are a good choice of 

marker for these studies because of their low mutation rate, high incidence throughout the 

genome and bi-allelic nature making them amenable to automated detection techniques 

(Dawson 1999). It has been estimated that a well-designed genome-wide SNP map requires as 

many as 500,000 SNPs in human (Vega & Kreitman 2000) and likely up to 300,000 SNPs in 

cattle (Eck et al. 2009; Shannon 2010). Hence, the numbers of available SNP chips are 

increasing annually e.g. within cattle three different SNP chips have been released the last 

three years namely 10K, 25K and 50K BovineSNPchip. Through the ongoing innovations in 

high-throughput sequencing and array technology the number of SNPs is rapidly increasing, 

e.g. The Human International HapMap Consortium is currently using a second generation 

haplotype map spanning up to 3.1 Million SNPs (www.hapmap.org) (The International 

HapMap Consortium 2007). This rapid development in the SNP chip technology also 

provides new insights into the population structure of cattle breeds since previous studies 

have been focused on small sets of microsatellite loci. 

 

2.2 Genetic Distances in Population genetics 

 

The measure of genetics distance allows one to quantify genetic relationships between two 

individuals. It is used to describe the proportion of genetic elements (alleles, genes, gametes 
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and genotypes) that the two individuals do not share. Depending on the kind of similarities (S) 

between individuals most genetic distances vary from 0 to 1 e.g. there is a genetic distance of 

1, when two samples have no genetic element in common. Depending on the similarities of 

individuals (S) genetic distances (D) can be calculated in three different ways (The 

International Plant Genetic Resources Institute & Cornell University 2003). 

 

1. D = 1 – S, known as linear distance, because it assumes that the relationship with S is 

linear (Figure 1A). 

 

2. D = )1( S− , known as quadratic distances, the similarity relationship follows a 

quadratic function, so that, to make it linear, the square root must be calculated 

(Figure 1B). 

 

3.  D = ( )21 S− , describes a circular distance (Figure 1C). 

 

 

 
Figure 1 The different kinds of relatedness between Similarity (S) and Genetic Distance (D). (A) Linear 

Distance, (B) Quadratic Distance and (C) Circular Distance. Source: (The International Plant Genetic Resources 

Institute & Cornell University 2003) 

 

2.2.1 Genetic distances between individuals using the proportion of shared alleles 

 
The most frequently used measures to determine the proportion of shared alleles between two 

individuals are the interrelated parameters identical by state (IBS) and identical by descent 

(IBD), covering very different ranges where IBS describes a stronger genetic relationship 

A B C 
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between unrelated individuals compared to IBD. Considering a simple four-allele marker 

system, where the parents carry the marker alleles (ab) and (cd), the two siblings could 

possibly share zero, one, or two alleles. Within such a simple model the alleles shared by IBS 

and IBD are identical e.g. the two siblings have no alleles in common (ac) and (bd), so IBS 

and IBD is 0, if the siblings share a common allele from the father (ac) and (ad) IBS and IBD 

becomes 1 and finally the siblings can possibly share two alleles, where their source is 

ambiguous, then IBS and IBD is 2. However, in more complex situations as illustrated in 

Figure 2 the alleles shared by IBS and IBD are different from each other. The main difference 

between IBS and IBD is that at the calculation of alleles shared by IBD also considers the 

origins of the alleles, e.g. in Figure 2A, the siblings share the b allele by state, but it is evident 

that these two copies may not have come from the same parent, since both parents carry the b 

allele. In this instance, the siblings do not share an allele identical by descent, because the 

brothers b allele must have come from his father, while the sisters b allele originating from 

her mother. Thus it can also happen that IBD, cannot be directly determined, especially if a 

parent is homozygous (Figure 2B) and if both parents carry the same pair of alleles  

(Figure 2C). 

 

 

 
Figure 2 Two generation pedigrees illustrating the difference between IBD and IBS allele sharing 

considering a simple four-allele marker system. (A) In the first pedigree, the two siblings share allele b, which 

is identical by state (IBS = 1) but not identical by descent (IBD = 0), since the first child received the b allele 

from his father (box), whereas the second received it from his mother (circle). (B) In the second pedigree, the 

two siblings share two alleles (ac), which are identical by state (IBS = 2), in this situation the siblings can share 

one or two alleles identical by descent (IBD = 1 or 2), since the father carries a copy of one allele (cc). (C) The 

third pedigree demonstrates a similar situation where the two siblings share two alleles (ab), which are identical 

by state (IBS = 2), while the shared alleles identical by descent can be 0 or 2, since both parents carry the same 

pair of alleles. Source: (Sham & Zhao 1998) 
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In situations as presented in Figure 2 the haplotypes of the F1 generation has to be inferred to 

reveal alleles shared by IBD, which is carried out by phasing the genotype data (Gusev et al. 

2009) (Browning & Yu 2009). The examples illustrated in Figure 2 additionally present, that 

IBS expresses a stronger relationship compared to IBD. 

 

To determine the genome-wide average proportion of shared alleles between two animals we 

have used PLINK software (Purcell et al. 2007), where the genome-wide average proportion of 

alleles shared identical by state (IBS) between animals i and j is generally defined as 

 

∑
=

=
L

l

la
L

AS
1

1
 

 

where al = 0, if animal i and j have no allele in common at the l-th locus, 

 al = 1, if animal i and j have only a single allele in common at l-th locus, 

 al = 2, if animal i and j have two alleles in common at the l-th locus, 

  and L is the number of SNP loci used. 

 

The genome wide proportion of shared alleles generally describes a linear relationship 

between animals, thus this value can be easily transformed into a so-called allele sharing 

distance (ASD) by subtracting it from 1 (see Chapter 2.2). Another widely used method in 

cattle breed analyses is the genomic relationship matrix presented by VanRaden (2008), since 

this approach additional considers allele frequencies within populations besides the alleles 

shared by IBS. Another possibility to determine genetic distances are based on genetic models 

considering allele frequencies e.g. Wright’s F statistics (Wright 1931) and Nei`s standard 

genetic distance (Nei 1972). The major difference between ASD and the classical model 

based distances is that in the computation of classical ASD allele frequencies are completely 

ignored (Gao & Starmer 2007). 

 

2.2.2 Genetic distances between subpopulations 

 

One of the classical methods to measure population differences is the aforementioned  

F statistics. Wright`s F statistics use genotypes of predefined subgroups to calculate variance 

in allele frequencies, which may also be used to measure the genetic distance of 
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subpopulations. This concept is based on the idea that those subpopulations that are not 

intermating will have different allele frequencies to those of the whole population. The 

genetic distance calculated by F statistics is termed FST. The FST values ranges from 0 (no 

genetic divergence) to 1 (fixation of alternate alleles in different subpopulations), with values 

approaching 0.25 determining a high degree of genetic differentiation between populations 

(Mousadik & Petit 1996; Davies et al. 1997). The determined FST values between 

subpopulations are normally presented by distance matrices and phylogenetic networks using 

common available software packages e.g. TREEVIEW (Page 1996) and SPLITSTREE (Huson & 

Bryant 2006). The two additional indexes provided are FIS and FIT which measure the 

deficiency of average heterozygotes in each population and the excess of average 

heterozygotes in a group of populations respectively. For a preferable veridical interpretation 

of the results provided by this analysis it is necessary to separate the individuals into 

appropriate subgroups. At present, this population separation is mostly based upon 

geographical origin of samples or phenotypes (Liron et al. 2006). 

 

2.3 Methodologies in Population structure analysis 

 

To date, many statistical methods have been proposed to examine the relatedness among 

populations and to assign individuals to their population of origin. The two major methods 

currently applied are distance-based clustering methods, which utilize dimensionality 

reduction techniques e.g. Principal Component Analysis (PCA) in combination with standard 

clustering tool e.g. k-means (Liu & Zhao 2006; Paschou et al. 2007; Lee et al. 2009) and 

model-based methods e.g. STRUCTURE (Pritchard et al. 2000; Falush et al. 2003). 

2.3.1 Distance based Methods 

 

Principal Component Analysis (PCA) is a technique for linear dimension reduction of data 

complexity, by transforming original vector of correlated variables to the vectors of principal 

components which are uncorrelated. Through this process a new coordinate system with 

inherent statistical properties emerges, with the first principal components explaining the 

main variance in the data (Menozzi et al. 1978). In this context, PCA is providing an optimal 

subspace to investigate data variation in complex population structures and to allocate 

individuals to their respective population using a common applied clustering algorithm 

(Patterson et al. 2006; Price et al. 2006). 
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The k-means algorithm is an iterative descent algorithm that minimizes the within-cluster sum 

of squares (WSS) given the number of cluster K (Lloyd 1957; MacQueen 1967). 

 

,
2

1
ij

K

i Cj

K xW
i

µ−= ∑∑
= ∈

 

 

where xj is the feature vector representing sample j, µi is the center of cluster i, and Ci is the 

set of samples in cluster i.  

 

Principal component analysis followed by k-means describes a two-stage design that utilizes 

the proportion of shared alleles between individuals to infer population clusters. The main 

features of this two-stage design are, that it is computational efficient and assigns individuals 

to subpopulations without the need of any modelling of data (Liu & Zhao 2006). Principal 

component analysis is closely related to multivariate technique called Multi Dimensional 

Scaling (MDS). Indeed, PCA is equivalent to applying MDS on the distance matrix 

representing the data. Hence, this approach is also termed distance-based clustering method 

(Gao & Starmer 2007). Both approaches have been recently introduced in population 

structure analyses (Paschou et al. 2007) (Kijas et al. 2009). They are providing an optimal 

subspace to investigate genome-wide data sets including thousands of individuals by 

maximising variance on the first components (Behar et al. 2010). However, the current 

Bovine HapMap study reported that PCA is becoming impractical and less useful for the 

analysis of larger data sets (The Bovine HapMap Consortium 2009). Furthermore, it has been 

noted that the first two Principal components (PCs) only accounted for up to 40 % of the 

variation in this data set. 

 

2.3.2 Model based methods (STRUCTURE) 

 

Model-based methods use standard statistical methods to estimate population parameters, and 

usually assume Hardy-Weinberg equilibrium for each population. The inference may not be 

good in the presence of small sample sizes due to the inaccurate estimation of allele 

frequencies (Gao & Starmer 2007). Model-based inference also depends heavily on the 

modeling assumptions. The program STRUCTURE is a popular model-based program using 

Markov chain Monte Carlo (MCMC) within a Bayesian framework (Pritchard et al. 2000). 
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This method has been shown to be an effective and popular procedure in numerous studies 

(Kim et al. 2005) (Lao et al. 2006). However, the detailed modelling of the data causes 

intensive computational demands and associated costs (Liu & Zhao 2006) (Patterson et al. 

2006) (Price et al. 2006), making this algorithm impractical to be applied on high density 

genome-wide SNP panels. Furthermore, it has been noted that the identification of the true 

number of clusters (K) in a sample of individuals is not sufficiently accurate by the algorithm 

applied (Evanno et al. 2005). Therefore, Evanno et al. (2005) introduced an ad hoc statistic 

∆K for STRUCTURE to identify stable cluster solutions. However, the final cluster assignments 

are still very sensitive on the choice of prior distribution parameters of the data used. For 

example in the study of McKay et al. (2008) the ad hoc statistic ∆K identified two clusters in 

a data subset containing eight distinct cattle breeds. 

 

Recently, alternative model-based algorithms as implemented in the programs ADMIXTURE 

(Alexander et al. 2009) and FRAPPE (Tang et al. 2005) have been used for uncovering 

genome-wide population structures. These algorithms are computationally efficient and can 

be easily applied on genome-wide data sets to infer individual ancestry. However, these 

methods are still sensitive to the choice of prior distributions of model parameters and rely on 

a priori ancestry information (e.g. ADMIXTURE should only be considered for unrelated 

individuals).  

 

2.4 Network Theory 

 

Network ideas are attracting the attention of mathematicians, physicians, computer scientists 

and practitioners of many branches and have already been successfully applied to many 

different topics as diverse as the Internet and the World Wide Web (Broder et al. 2000), 

epidemiology (May & Lloyd 2001), scientific citation and collaboration (Newman & Girvan 

2004), metabolism and ecosystems (Wagner & Fell 2001). A property that seems common to 

many networks is community structure, the division of network nodes into groups based on 

the density of the connections within and between different sub-graphs (Figure 3). To extract 

community structures within a commonly used distance matrix representing the relationship 

between each individual, the number of interactions (edges) is strictly minimized according to 

a mutual neighborhood criterion. The best known criteria’s currently applied are the  

ε neighborhood and k-nearest neighborhood criterion.  
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Figure 3 Network representation with three communities. Each individual is presented by a dot. The 

individuals are connected with an edge, illustrating their connectivity. The distinct communities are denoted by 

dashed lines, which have dense internal links but between which there is only a lower density of external links. 

Source: (Newman & Girvan 2004) 

 
Given the number of individuals an the respective distances to each other, using the  

ε neighborhood criterion each individual will be connected to all other individuals which have 

a distance smaller than ε, whereas at the second criterion each individual will be connected to 

its k nearest neighbors (k-NN). The main difference between the two criteria’s is, that k-NN 

are determined considering the pair-wise distance between two individuals (Xi,Xj) and the 

distances of Xi and Xj to all other individuals in the data set, while ε neighbors only depend 

on the pair-wise distance (Xi,Xj). However, the k-NN criterion is the one mostly applied in 

practice. Once, the community structures have been extracted different approaches can be 

applied to detect and characterize these structures including vertex similarity (Leicht et al. 

2006), the vertex degree gradient (Bagrow & Bollt 2005), the resistor network (Wu & 

Huberman 2004) and the Potts Hamiltonian Model (Reichardt & Bernholdt 2004). 

 

The study of community structure in networks is closely related to the ideas of graph 

partitioning in graph theory and computer science, and hierarchical clustering in sociology. 

Graph partitioning is a problem that arises to allocate a number of individuals or objects into 

an adequate number of clusters that respects the associations between the individuals. Finding 

an exact solution for this kind of partitioning task describes an NP (Non-deterministic 

Polynomial-time - hard problem), which is extremely difficult to solve for large graphs. To 

solve such problems a wide variety of heuristic algorithms have been developed that give 

acceptably good solutions in many cases e.g. the Kernighan-Lin algorithm, which runs in time 

O(n³) on sparse graphs (Kernighan & Lin 1973). A solution to the graph partitioning problem 

is, however not helpful for analyzing and understanding networks. In general networks 

describe a more complex situation, where besides the number of adequate clusters also the 

hierarchical structure of cluster within a given network is of main interest. Hence, the 

aforementioned approaches applied to detect and characterize community structures are based 
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upon the principles of hierarchical clustering. Using these procedures a hierarchical structure 

of clusters is generated in the form of a tree or dendrogram, where the clustering can be 

halted at any point, and the resulting components in the network are taken to be the 

communities. 

 

Contrary to traditional methods currently applied in population genetic studies (phylogenetic 

networks), which primary objective is to study the difference between subpopulations, 

network analyses additional provide insights into the population structure within the studied 

subpopulations (see Figure 3). In this context, the network of subpopulations can be further 

described by network centrality measures. The three centrality measures frequently used in 

network analyses are degree centrality, closeness centrality and betweenness centrality. 

 

Degree centrality measures the number of direct connections that an individual node has to 

other nodes within the network (Freeman 1978). For example in a social network it measures 

the number of friends one has, that is, how many people a person is directly connected to. It 

has been shown that nodes with higher degree centrality than other in the network are more 

active and important as members within the community (Frivolt & Bielikova 2005). In this 

study, we will show that within population analysis this measure can be used to identify 

important founder individuals within breeds. 

 

Closeness centrality measures how many steps on average it takes for an individual node to 

reach every other node in the network (Freeman 1978). Thus closeness centrality measures 

how close, on average, an individual is to other individuals in the network. Closeness 

centrality has been used to identify important nodes within social networks  

(Kurida et al. 2007). 

 

Betweenness centrality measures the extent to which a node can act as an intermediary or 

broker to other nodes (Freeman 1978). The more times that a particular node lies on paths that 

exist between other pairs of nodes in the network, the higher the betweenness centrality is for 

that node. Nodes that have a high betweenness centrality may act as brokers between 

subgroups and they may have stronger membership in surrounding communities (Girvan & 

Newman 2002) (Donetti & Munoz 2004). Betweenness centrality has been already introduced 

into population genetics analyses by Rozenfeld et al. (2008) to study the gene flow in a 

metapopulation system. 
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2.5 Resume 

 

The limitations of the current approaches in population structure analyses (see Chapter 2.3) 

demonstrate that inferring population structure without prior knowledge of individual 

ancestry, given the amount of data derived from thousands of individuals and thousands of 

markers, is still a major challenge. We solved these problems by introducing an unsupervised 

network clustering approach, so-called Super Paramagnetic Clustering (SPC) as implemented 

in the software package SORTING POINTS INTO NEIGHBORHOOD (SPIN), which uses the Potts 

Hamiltonian Model to identify community structures in population networks. We evaluate the 

performance of SPC extensively on a data set of 260 animals representing six cattle breeds 

genotyped for 54,001 SNPs. Analyzing these six cattle breeds, we demonstrate the utility of 

SPC to assign individuals to their breeds and to detect fine-scale population structures 

simultaneously. Additionally, we show that introducing network analysis to population 

genetics is becoming feasible to identify genetically important founder and recently admixed 

animals in livestock populations. 

 

Furthermore, we study its application on significant reduced SNP data sets using a novel 

algorithm developed by Paschou et al. (2007) to identify most informative SNP panels within 

cattle breeds (exact definition see Chapter 3). Contrary to the results in human (Paschou et al. 

2007), were only 30 SNPs have been used to allocate individuals to the respective 

subpopulations, we show that in bovine, due to the close relationships of cattle breeds, at least 

200 so called PCA-informative SNPs (PCAIMs) are needed to guarantee a true assignment of 

animals. Furthermore, this study will show that highly informative SNPs can be additionally 

used to detect selection signatures between breeds. 
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3 MATERIALS AND METHODS 

 

3.1 Studied Populations 

 

In this study a total of 260 animals from six cattle breeds representing three different selection 

criteria’s (dairy, dual purpose and beef) were analyzed. The breeds included European 

Braunvieh (BBV) upgraded by US Brown-Swiss, Original Braunvieh (OBV), German 

Fleckvieh (DFV), Red Holstein (RH), Blue Belgian (BB) and Galloway (GLW). From 

geographical point of view, the studied breeds can be classified in two groups: (i) Alpine 

breeds covering the three breeds BBV, OBV and DFV, while breeders of BBV population 

strongly emphasize dairy production. (ii) North-western breeds, represented by BB, RH and 

GLW, where RH represents pure dairy and BB and GLW beef breeds.  

 

Table 1 Summary of sampled subpopulations. The breed origin, country of sampling, breed characteristics 

and respective subpopulations are indicated, together with the number of sampled animals (n).  

 

Breeds and  

subpopulations 

Breed 

code 

n Country Characteristics Origin 

      
European Braunvieh BBV 48 Germany and 

worldwide 
medium-large framed cattle, 
especially selected on high milk 
yield 

Alpine 

Original Braunvieh 
German Original Braunvieh 
Swiss Original Braunvieh  

OBV 
OBV-G 
OBV-S 

41 
8 

33 

 
Germany 

Switzerland 

medium framed, one coloured 
dual purpose breed form alpine 
region 

Alpine 

German Fleckvieh DFV 42 Germany medium-large framed dual 
purpose breed from alpine 
region 

Alpine 

Red Holstein RH 47 Germany and 
worldwide 

selected on high milk yield, 
large framed Holstein cattle 

North-
Western 

Belgian Blue 
Belgian Blue Belgian 
Danish Blue Belgian 
BB-D with BB-B sire 

BB 
BB-B 
BB-D 

BB-BD 

45 
30 
10 
5 

 
Belgium  
Denmark 
Denmark 

medium-large framed beef 
cattle, with extreme muscled 
exterior 

North-
Western 

Galloway 
Black  
White  

White-Black-Pointed  
Belted 
Dun  

GLW 
GLW-B 
GLW-W 

GLW-WBP 
GLW-BEL 
GLW-DUN 

38 
23 
2 
2 
7 
4 

Germany and 
worldwide 

small, robust beef cattle, selected 
for beef production in extensive 
region.  

North-
Western 

 

According to sample origin and pedigree information three of these breeds can be subdivided 

in the following subpopulations or strains: German Original Braunvieh (OBV-G) and Swiss 

Original Braunvieh (OBV-S), Belgian Blue Belgian (BB-B) and Danish Blue Belgian  

(BB-D), Black Galloway (GLW-B), Dun Galloway (GLW-DUN), White-Black-Pointed 
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Galloway (GLW-WBP), White Galloway (GLW-W) and Belted (GLW-BEL). Concerning 

BB-D it should be noted, that this subpopulation shows evidence of recent extensive use of 

key BB-B animals in the pedigree, including five animals which have a Belgian sire in the 

first generation (BB-BD). In this context, we would have preferred animals that did not share 

a common ancestor for at least 2 generations. Table 1 summarizes the sampled sub-

populations. 

 

3.2 SNP Genotypes 

 

The SNP genotypes of all animals were determined by Tierzuchtforschung e.V. München 

using commercially available service (http://www.illumina.com/; Illumina, San Diego). The 

returned number of markers was 53,725 SNPs for each animal with an average minor allele 

frequency (MAF) of 0.25 across all loci. The SNPs were further edited for genotyping errors 

including only markers with a marker call rate > 95%, MAF < 0.05, departure from Hardy 

Weinberg equilibrium (HWE) (Wiggintion et al. 2005) P < 0.01 in at least one population and 

P < 0.02 in at least two populations. This resulted in a total of 46,147 autosomal SNPs that 

passed the quality control and were used as the final data set for the model and procedure. 

 

3.3 Population Parameters 

 

Genetic diversity within each population was determined by the proportion of polymorphic 

markers (PN), allelic richness (AR), private allelic richness (pAR) and estimates of gene 

diversity (HE). 

 

The proportion of polymorphic markers (PN) was easily computed by determining the 

percentage of heterozygous markers within each breed. The AR and pAR has been computed 

with the general applied rarefaction method, which trims unequal samples to the same 

standardized sample g (Hurlbert 1971; Petit et al. 1998; Kalinowski 2004, 2005) The final 

estimates of AR for each breed are hereby determined by the number of distinct alleles 

expected in a random subsample of size g drawn from the respective breed (Hurlbert 1971; 

Petit et al. 1998), while pAR estimates the number of private alleles expected in the breed 

when random subsamples of size g are taken from each of K breeds included in the analysis 

(Kalinowski 2004). 
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The gene diversity or expected heterozygosity (HE) estimates the probability that two 

randomly chosen alleles from the breed are different. The unbiased estimator of HE provided 

by Weir (1989, 1996) at the l-th locus is hereby defined as 
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where pl is the frequency of the l-th of k alleles and f is the inbreeding coefficient across 

animals (n). 

 

It should be noted, that estimates of AR and pAR were obtained using ADZE-SOFTWARE 

(Szpiech et al. 2008), while HE was computed using POWERMARKER (Liu & Muse 2005). To 

account the existence of subpopulations within the aforementioned breeds, we have calculated 

the population parameters using two different data sets for these breeds (with and without the 

respective subpopulations). 

 

3.4 Network clustering (SPC) 

 

Super Paramagnetic Clustering is a hierarchical cluster method that aims to group subjects 

with similar genetic profiles into stable clusters. The major advantages of this method are the 

computational efficiency, the robust and reliable clustering results and more importantly the 

ability to extract community structures without any prior knowledge of data distribution. 

Based on these features, SPC ascertains population structure without any prior knowledge of 

individual ancestry given the information of whole-genome SNP panels. Since initial 

development this method has been successfully applied to genomic analyses as diverse as the 

analysis of yeast gene expression profiles (Getz et al. 2000a), the automatic classification of 

protein sequences (Tetko et al. 2005) and the identification of DNA sequences with active 

promoter region (Radjiman et al. 2006). Full details of the algorithm are described in Blatt et 

al. (1996). Since the method implemented in SPIN differs slightly from the one illustrated, a 

brief introduction to the method modified and applied in this study is provided. 
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The input to SPC is a symmetric distance matrix D of dimension n x n, with the genetic 

distances for all samples being calculated by subtracting pair-wise identities by state (IBS), as 

provided by PLINK version 1.07 (Purcell et al. 2007), from 1 (see Chapter 12.3). Given D, 

each data point gets associated with a Pott spin variable s, which randomly takes on of q 

integer values: s = 1,2,….q (since the clustering result is insensitive to the choice of q (Blatt et 

al. 1996), we have worked with common applied q = 20 (Blatt et al. 1996; Getz et al. 2000b; 

Tetko et al. 2005). Once the Pott spins have been associated, an initial network is created by 

connecting neighbour pairs with edges, limiting the interactions to the given number of k 

nearest neighbours (k-NN). Since the cluster performance is based on a connected graph 

(Blatt et al. 1997), which links all the existing data, the edges have been superimposed 

corresponding to a minimal spanning tree associated with the data. The final result is the SPC 

graph onto the clustering is performed. 

 

Consequently, the cluster performance of SPC is strongly dependent on the number of k-NN, 

e.g. as k-NN decreases the number of clusters increases. In previous studies different k-NN 

values have been applied (Blatt et al. 1996, 1997), stating that k-NN = 10 works well for most 

typical data sets (Blatt et al. 1997). Here we introduced the modularity (Q) (Newman & 

Girvan 2004) as a quality measure of sub-divided networks to determine optimal k-NN in a 

post-evaluation process (e.g. by calculating Q on various SPC graphs and corresponding 

cluster solutions using different k-NN values in the range of 3-105). Modularity ranges from 0 

to 1 with values approaching Q = 1 indicating better community divisions (Holmström et al. 

2009). Here it should be noted, that SPC in some situations generates some unclassified data 

especially at small k-NN values. Since Q does not allow any unclassified animals, we decided 

to put these animals in a separate cluster. 

 

To evaluate the clustering performance in a multi-dimensional space, a cost function is used, 

which is similar to methods used in problems which are hard to optimize (e.g. Traveling 

Salesman Problem) (Krentel 1988). The cost function applied to SPC is the Hamiltonian of an 

inhomogeneous ferromagnetic Potts model, 
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where the classification (S) is determined by so-called spin-spin correlation function (Gij) and 

coupling constant Jij, which is some positive decreasing function of distance. Ferromagnetic 

Potts models are simulated at a sequence of temperature (T) given a stable ∆T, so that the 

clustering can be expressed at any level of T. At very low T, all data remain uncorrelated. 

With increasing temperature the spin-spin correlation between neighbouring points increases 

and the data points are clustered along the temperature (0 ≤ T < Tmax) by calculating Gij using 

mean field approximation (Barad 2003). Finally the level of T clusters emerging is determined 

by identifying the edge (ij) with maximal Gij(T) for each data point, which is supplemented by 

directed growth procedure (Barad 2003). Thus the range of temperatures ∆T = T2 – T1 a 

cluster splits from its parent is used as a measure of the stability and significance of the 

corresponding data cluster. The more stable the cluster, the larger the range ∆T. 

 

For the final visualization of the SPC graph and corresponding clustering results, open source 

software CYTOSCAPE (http://www.cytoscape.org) (Shannon et al. 2003) was applied. For this 

purpose we used various additional tools for the analysis of networks as provided by the 

network analysis tools (NeAT) (Brohee et al. 2008). In the final network presentation the 

nodes represent animals and an edge between two nodes represents the relationship of the 

corresponding animals, which is expressed by the thickness of edges varying in the proportion 

of genetic distance (1-IBS). To easily detect important founder animals within breeds the 

node size has been associated with number of direct connections per node (degree centrality). 

To identify key animals that are responsible for the gene flow between subpopulations we 

additional associated the node size with the betweenness centrality. The two different 

associations of the node size have been determined with NeAT and visualized separately from 

each other. 

 

Within this study the degree-dependent betweeness, bc(k) has been determined with the 

general applied formula (Freeman 1977; Narayanan 2005; Rozenfeld et al. 2008), 

 

∑
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where σij denotes the number of shortest paths connecting nodes i and j and σij(v) the number 

of those passing through the node i. 
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Applying SPC to population genetics leads to an essential difference compared to classical 

algorithms for construction of phylogenetic trees based on individual distances e.g. Neighbor 

Joining (NJ) algorithm introduced by Saitou and Nei (1987). NJ algorithm begins with a star 

tree, which is produced under the assumption that there is no clustering of data points and try 

to find true neighbours (two data points that are connected by a single node in an unrooted 

tree) by minimizing the sum of all branch lengths. Therefore, NJ algorithm starts with the 

closest and finishes with most distant neighbors. Contrary to NJ algorithm, SPC starts at  

T = 0, where all data points form one cluster. This initial hypothetical taxonomic unit splits 

successively within a continuous temperature gradient. Thereby, the splitting occurs in an 

opposite order compared to the NJ algorithm, i.e. SPC algorithm starts to split most distant 

composed data objects hereby producing a hierarchical structure of clusters. 

 

3.5 Comparative cluster analysis 

 

To evaluate the clustering performance of SPC, the population structure of six cattle breeds 

was first analysed with PCA coupled with k-means (distance-based clustering approach) and 

STRUCTURE (model-based clustering approach).  

 

3.5.1  Distance-based clustering (PCA and k-means) 

 

Given the genome-wide proportions of alleles shared by state between individuals (A), we 

directly applied PCA on A to compute its singular principle components (PCs). We would like 

to note that, from mathematical perspective, this procedure is exactly equivalent to applying 

MDS on the distance matrix (D) of A. After determining the total genetic variance explained 

by the first three components, k-means clustering as implemented in R.2.10  

(www.R-project.org) was applied with 10,000 iterations on low-dimensional data to separate 

the individuals to their respective populations. In order to investigate the genetic relationship 

between the breeds, different k-means runs have been completed increasing the numbers of 

clusters (K) from 2 to 12.  

 

3.5.2 Model-based clustering (STRUCTURE) 

 

Contrary to PCA, STRUCTURE V2.3 software could not be applied to the full SNP data set 

because of software and computational limitations. We applied STRUCTURE on a subset of 
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4,930 SNPs, constructed by LD-based SNP pruning with r² < 0.06. The pruned SNP set 

overcame the computational limitations of this algorithm. Five runs of STRUCTURE were 

performed with K increasing from 2 to 9. We chose 10,000 iterations of the Gibbs sampler 

after a burn-in of 10,000 iterations, applying the admixture model. In order to determine the 

true number of clusters in 260 samples from six cattle breeds, we plotted values of LnP(D) 

(the log probability of data) for each K and estimated the delta K (∆K) statistics, which is 

based on the rate of change in LnP(D) between successive K values (Evanno et al. 2005). 

Subsequently we compared the numbers of clusters determined by SPC with the ad hoc 

statistic ∆K. 

 

3.6 Phylogenetic Network 

 

To statistically evaluate the general hierarchical structure of SPC analysis, we calculated  

pair-wise FST among the six cattle breeds from population allele frequencies across all 46,147 

autosomal SNPs (Weir & Cockerham 1984). The resulting FST distance matrix was plotted 

using program SPLITSTREE4 (Huson & Bryant 2006). The variation within populations 

containing subpopulations has been calculated separately. 

 

3.7 PCA informative Markers (PCAIMS) 

 

A detailed description of the algorithm to identify PCA Informative Markers (PCAIMs) used 

in this study is presented in Paschou et al. (2007). The inputs required for the algorithm is a 

properly encoded SNP genotype data matrix G between m subjects and n SNPs with 

genotypes encoded -1 for (AA), 0 for (AB) and 1 for (BB) and a positive integer k 

corresponding to the number of principal components. The input data matrix does not allow 

any missing entries and without rejecting too many informative SNPs, we filled in the missing 

genotypes by simulating HWE using all available information from respective SNPs in every 

single breed. To determine the number of k principle components we have used the empirical 

method Horn’s parallel analysis as implemented in the statistical programme package paran 

as implemented in R software (http://www.r-project.org). This method employs Monte Carlo 

estimates to retrain most significant principal components, according to the significance level 

and number of iterations. Here, we chose a significance level of p = 0.01 and 10,000 

iterations, which have been suggested in the modified version of parallel analysis (Glorfeld 

1995). The fact, that we have applied PCA onto A (pair-wise allele sharing proportions 
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between individuals) to determine the genetic variance explained by the first components and 

to allocate the individuals to their respective breeds. We found it most attractive to use this 

matrix to determine the k numbers of significant components. Using k principle components 

and input matrix G the PCA informative score (pj) for each SNP has been determined as 

described in Paschou et al. (2007) with 
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where v
i
j are the coefficients of the linear combinations and k is the number of significant 

principal components. 

 

After determining pj for each SNP, where SNPs with highest scores are most informative to 

represent the structure of the analysed populations, A has been computed along a decreasing 

number of informative SNPs (using 40,000 to 10 PCAIMs). The final number of PCAIMs that 

still allows to identification of subpopulations and allocation of individuals has been 

determined using SPC. 

 

In order to determine the agreement between the SPC solutions on the different number of 

PCAIMs, we have used the adjusted rand index by Hubert and Arabie (1985). The adjusted 

rand index ranges between 0 and 1, with values approaching 1 reflect a perfect agreement 

between two cluster solutions. This method can deal with different numbers of clusters, but 

does not allow any unclassified data, while SPC in some situations (especially on low density 

SNP panels) generates some unclassified data; we decided to put these in a separate cluster. 
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4 RESULTS 

 

4.1 Overall genetic diversity parameters 

 

Genome-wide examination of the variability within breeds was used to compare levels of 

heterogeneity between breeds and to demonstrate the effect of subpopulations on the 

interpretation of diversity parameters within breeds. This analysis revealed that RH breed 

displayed the highest genetic diversity as measured by allelic richness (AR = 1.855), private 

allelic richness (pAR = 0.006) and gene diversity (HE = 0.357). Conversely the strongly 

selected alpine breed BBV was ranked lowest using most measures (AR = 1.800; pAR = 0.002; 

HE = 0.322). 

 

Table 2 Summary of overall genetic diversity parameters in cattle breeds. With abbreviations, (N) number 

of individuals tested per population, (PN) the proportion of SNP which displayed polymorphism (AR) allelic 

richness, (pAR) private allelic richness and (HE) expected heterozygosity or gene diversity. The maximum and 

minimum values are expressed in bold, *indicating the main population (OBV-S, BB-B and GLW-B). 

 

   Indices of Genetic Diversity 

Population Code N PN Ar pAr He 

       

European Braunvieh BBV 48 0.915 1.800 0.002 0.322 

Original Braunvieh OBV 41 0.929 1.840 0.001 0.337 

Original Braunvieh* OBV-S 33 0.881 1.761 0.001 0.320 

German Fleckvieh DFV 42 0.938 1.839 0.005 0.344 

Red Holstein RH 47 0.944 1.855 0.006 0.357 

Belgian Blue BB 45 0.930 1,849 0.003 0.348 

Belgian Blue* BB-B 30 0.897 1.760 0.002 0.320 

Galloway GLW 38 0.915 1.800 0.005 0.325 

Galloway* GLW* 23 0.831 1.610 0.002 0.290 

 

The examination within breeds further revealed that up to 91% of SNPs displayed both alleles 

within all analyzed breeds with a highest value in RH and lowest values in BBV and GLW 

respectively (Table 2). Averaged across breeds, 92% indicates that the majority of SNPs 

display a high degree of polymorphism within all breeds. However, this result also reveals the 

important position of Holstein Friesian population in the design of the current SNP chip 

(Bovine SNP50). Concerning the breeds with respective subpopulations namely OBV, BB 



   RESULTS 
 

 23 

and GLW the genetic diversity parameters have been computed a second time excluding 

animals with different origin and phenotype. The results of this second analysis show that the 

existence of subpopulations falsifies the aforementioned genetic parameters within these 

breeds. In this context, the highest differences have been noted within GLW (AR = -0.190; 

pAR = -0.003; HE = -0.035) followed by BB (AR = -0.089; pAR = -0.001; HE = -0.028) and 

OBV (AR = -0.079; pAR = -0.000; HE = -0.027). 

 

4.2 Distance based clustering (PCA and k-means) 

 

The results of the PCA analysis are shown in Figure 4. The first dimension (PC1) accounts for 

35% of total variance and separates the six cattle breeds into the known geographical regions 

namely Alpine breeds [BBV-OBV-DFV] and North-Western breeds [BB-RH-GLW]. The 

second dimension (PC2) summarizes 15% of the variation and clearly distinguishes GLW 

from two other north-western European breeds (Figure 4A). Additionally, PC2 further 

distinguishes RH and BB, reveals the existence of substructures within GLW and forebode 

such in BB breed. The third dimension (PC3), which accounts for 8 %, differentiates the close 

positioned breeds [BB-RH] and [OBV-DFV] (Figure 4B). Within OBV and BB the respective 

subpopulations were indistinguishable. 

 

 

 
Figure 4 PCA plot of the six cattle breeds respecting the existence of subpopulations. Individual animals are 

projected onto the subspace of the first three PCs, covering a total variance of 58%, computed using the 

proportion of allele sharing (IBS) between animals. (A) Scatter-plot using the first and second principal 

components (PC1 vs. PC2). (B) Scatter-plot using first and third principal components (PC1 vs. PC3). 

A B 
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To investigate the relatedness between breeds and to determine the significance of the 

existence of subpopulations we did additional k-means clustering runs with 10,000 iterations 

on low dimensional data increasing the number of clusters (K). Starting with K = 2  

(Figure 5A), the six breeds have been separated into the aforementioned geographical regions. 

Sequentially increasing K to 6, all animals have been ascertained to their respective breeds, 

while the single breeds have been identified as follows: GLW (Figure 5B), BBV (Figure 5C), 

RH (Figure 5D), BB (Figure 5D), OBV (Figure 5E) and DFV (Figure 5E). Here it is 

remarkable that BBV has been separated from the Alpine cluster, while RH and BB have been 

grouped together. Given K = 7 (Figure 5F) and K = 8 (Figure 5G) the substructures GLW-

BEL and BB-D could have been revealed, where one BB-BD animal has been misclassified. 

Finally, also the subpopulation OBV-G emerged with K = 10 (Figure 5I), but here it should be 

noted that RH has been separated into two clusters before (Figure 5H). Increasing K to 12 

resulted in further differentiation of BBV (Figure 5J) and RH (Figure 5K) but has not 

revealed the outstanding substructures, namely GLW-W, GLW-WBP and  

GLW-DUN. 

 

 

 

 

 

A B C 

D E F 
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Figure 5 Distance-based clustering result assessed with PCA and k-means. The given number of clusters 

varied from 2 to 12. Individual animals are projected on the first two PCs, divided into K colours. The panels A 

to K summarize the different k-means cluster solutions, where each cluster is represented by different colours. 

 

4.3 Model based clustering (STRUCTURE) 

 

To determine the uppermost hierarchical structure within investigated cattle samples, we 

analyzed the results of five STRUCTURE runs increasing K from 2 to 9 (the total number of 

breeds; respecting the existence of additional subpopulations) with distribution of LnP(D) 

values and ∆K statistic presented in (Figure 6). The graph of LnP(D) did not show a clear 

point of change in the slope increasing K from 2 to 7 (Figure 6A). Additional raising K to 9, 

we observed an increase in LnP(D) variance and a significant decrease of mean LnP(D), 

which suggests an uppermost hierarchical structure at K = 7. The distribution of ∆K 

impressively confirmed this result, with a significant maximum at this K value (Figure 6B). 

 

I H G 

K J 
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Figure 6 Uppermost hierarchical structure based on LnP(D) and ∆K values. (A) Estimated likelihood, 

LnP(D) for values of K ranging from 2 to 9. The mean LnP(D) for each K over five runs are represented by blue 

dots. (B) ∆K calculated according to Evanno et al. (2005). The modal value of this distribution corresponds to 

the true K(*) or the uppermost level of structure, here K = 7. 

 

The assignment of individuals to separate clusters with five independent runs per K value 

revealed that only with K = 2, 3 and 6 consistent cluster solutions could have been achieved 

for five runs. Given K = 2 and K = 3 STRUCTURE confirmed the PCA findings by assigning all 

Alpine breeds to one and north-western breeds to the other cluster (Figure 7A) and separating 

GLW from all the other breeds (Figure 7B). At K = 4, three runs resulted in a differentiation 

of BBV from [OBV-DFV] (Figure 7C) where the remaining breeds cluster like K = 3. In two 

additional runs, all Alpine breeds stay in a common cluster and North-Western animals split 

into three distinct clusters according to their breed origin. Assuming K = 5 in three runs 

[BB- RH] built one cluster while the Alpine breeds have been separated into single clusters 

(Figure 7D). In another two runs [OBV-DFV] have been assigned to the same cluster, while 

BB and RH were found in separate clusters. At K = 6 all individual animals have been 

associated with their breed origin (Figure 7E). Given optimal K = 7, in three runs GLW-BEL 

has been identified as a subpopulation of GLW with a significant genetic membership 

proportion of 62% ± 12% (Figure 7F). Referring to the additional subpopulations within 

Galloway two GLW-W and one GLW-WBP animal have been associated with a membership 

proportion of 16% ± 3% within the GLW-B cluster, while the other animals (1 GLW-WBP 

and 4 GLW-DUN) do not differentiate from GLW-B. In the remaining two runs, the 

subpopulations BB-D and OBV-G have been discovered instead of GLW-BEL with a 

membership proportion of 39% ± 15% and 52% ± 16% respectively. Under the assumption 

K = 8, GLW-BEL has been associated into a single cluster at all runs, whilst BB-D has been 
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represented by a separate cluster in four runs (Figure 7G). In one additional run OBV-G was 

identified instead of BB-D. With K = 9, one run revealed the simultaneous existence of all 

three subpopulations (Figure 7H). The remaining four runs have provided new cluster 

solutions, particularly separating BB and RH population into additional clusters. 

 

 

 
Figure 7 Cluster assignment assessed with STRUCTURE. The given number of clusters (K) varied from  

2 to 9. Individual animals are presented by a single vertical column divided into K colours. Each colour 

represents one cluster, and the length of the coloured segment corresponds to the individuals estimated 

proportion of membership in that cluster. For each K, five runs were performed. Each run shown here was 

chosen based on frequency at each run. The panels A to H represent the most frequent patterns at K = 2 to K = 9. 
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4.4 Network clustering (SPC) of 6 cattle breeds 

 

To determine whether SPC could automatically expose the population structures of cattle 

breeds without any prior ancestry information, we previously investigated the optimal number 

of k-NN suitable for our data. Consequently, evaluating each clustering at a given number of 

k-NN, starting with k-NN = 105, where all animals were assigned to one single cluster, the 

number was subsequently decreased in steps of 5 until 15, followed by single steps until 

k-NN = 3. Since the number of clusters increases as k-NN decreases, the animals have been 

clustered according to the different levels of k-NN, e.g. at k-NN = 100-85 the animals have 

been clustered into Alpine breeds and North-Western breeds (Figure 8A), while at  

k-NN = 80-50 the animals have been separated into 3 clusters, separating GLW from the 

North-Western breeds (Figure 8B). The additional number of clusters identified were 4  

(k-NN = 45) with a further separation of North-Western breeds into single breeds (Figure 8C), 

K = 6 (k-NN = 40-30) where all animals have been ascertained to their respective breeds  

(Figure 8D), K = 7 (k-NN = 25) which provides a differentiation between GLW and  

GLW-BEL (Figure 8E), K = 9 (k-NN = 20-6) where animals of the subpopulations GLW-W 

and OBV-G have been assigned to separate clusters (Figure 8F). Using less than k-NN = 6 

particularly BBV breed have been further differentiated (e.g. at k-NN = 5 BBV splits into 3 

different clusters). It has been further noted that especially with small neighbourhoods  

(k-NN = 5-3) the number of unclassified animals rapidly increased. Nevertheless, unclassified 

animals have been also noted at runs with k-NN = 11 and 12. 

 

 

A B 
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Figure 8 SPC cluster solutions at various numbers of k-NN. Presented are the cluster solutions from K = 2 to 

9 (panels A to F), given the respective number of k-NN. Each identified cluster is symbolized by a box; with 

vertical positions determining the significance of each cluster, while horizontal positions are indicating the 

proximity between clusters. The clusters are presented in different colours, where next to the identified clusters 

the respective breed abbreviations are given. 

 

Hence, runs at k-NN < 5 have been removed from further analysis. The optimal choice of  

k-NN was determined by plotting Q values for the range of k-NN 105-5 as is shown in  

Figure 9. Although no significant differences were detected in the range of k-NN 6-40, a local 

C D 

E F 
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maximum was reached at k-NN = 10, with Q = 0.835 (Figure 9). The final settings for SPC 

algorithm were this taken at 20 components (q) Potts spins, and 10 nearest neighbours (k-NN) 

for all further analyses. 

 

 

Figure 9 Determining the optimal number of k-NN. Modularity measures (Q) for each SPC run reducing the 

number of k-NN form 105 to 5. As modularity is strongly influenced by the number of determined clusters at 

respective k-NN, the detected numbers of clusters is also given. Since some runs reproduce the same cluster 

solutions with small variation in Q, the average Q values for these runs have been plotted, with horizontal lines 

indicating the range of the determined cluster result, while the run with the local maximum for each number of 

clusters identified is recognized by (*). 

 

A typical hierarchical tree of clusters achieved from this analysis is presented in Figure 10. As 

shown in the figure, the tree starts to split into three major groups and ends up with a final 

organization of clusters, where the animals have been successively allocated to single breeds 

and subpopulations along a continuous temperature gradient (T).  
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Figure 10 Super Paramagnetic Clustering of cattle breeds including 260 animals. Dendrogram representing 

the clustering of animals with optimal k-NN = 10. The individual animals have been separated into nine clusters, 

representing the six cattle breeds and the additional existence of three subpopulations. Each cluster is represented 

by a box; with vertical positions determining the stability of each cluster, while horizontal positions are 

indicating the proximity between clusters.  

 

The shape of the hierarchical tree observed perfectly reflects the geographical origin of the 

breeds by separating the breeds into Alpine region [BBV-OBV-DFV] including a further 

differentiation into Braunvieh populations [BBV-OBV] and [DFV], Western Europe  

[BB-RH] and North Europe [GLW]. To visualize the genetic relationships between the 

determined subpopulations more detailed, the SPC cluster solution has been further presented 

in a heat map (Figure 11). From this reordered distance matrix D one can easily infer the 

shapes of the identified subpopulations and the genetic relationship between them, with red 

indicating small genetic distances and white/yellow suggesting large genetic distances 

between the individuals and subpopulations respectively. 
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Figure 11 SPC reordered distance matrix (1-IBS). From this organized matrix one can easily infer the shapes 

of the identified breeds and the relationship between them, with white (red) indicating large (small) distances 

between individuals. Each of the colored bars along the top horizontal and left vertical axes represents the 

determined breeds and sub-populations. With the determined clusters colored brown (BBV), yellow-green 

(OBV-G), green (OBV-S), orange (DFV), blue (BB), white (GLW-W), black (GLW-B) and gray (GLW-BEL). 

 
The only exception of a clear cluster solution concerns GLW strains with a small number of 

analysed samples, where GLW-DUN and one white-black-pointed animal has been assigned 

to the GLW-B, whilst the other white-black-pointed sample has been allocated to the white 

grouping. Within BB population SPC fails to cluster the animals into Belgian (BB-B) and 

Danish (BB-D) origin (Figure 10 and Figure 11). However, the comparable low temperature 

level is indicating that substructure exists within this breed because a high temperature level is 

reflecting the robustness of the clusters obtained, i.e., if it contains a fair number of closely 

connected animals. Within RH the low temperature level directly refers to high diversity level 

determined for this breed (see Chapter 4.1), which causes that RH animals are comparable 

less related than animals from the other breeds. 
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In order to investigate individual relationships within breeds in more detail, we additional 

visualized the extracted SPC graph used for the final clustering solution (Figure 12). To 

determine close related animals within this graph, the edge line width varies in proportion of 

the genetic distances, with thick edges representing small genetic distances. Furthermore, the 

node size has been associated with the degree centrality, hereby detecting important founder 

individuals  

 

 

Figure 12 The network of interactions between cattle breeds as provided by the SPC graph. Each animal is 

represented by a node; with the different shades denote the sample origin. The network has been drawn with 

longer edges between vertices in different breeds than between those in the same community, to make 

community groupings clearer. The thickness of edges, which varies in the proportion to the genetic distance, has 

been used to visualize individual relationships within breeds. The node size, which varies in proportion of the 

number of edges per node (degree centrality), illustrates how well each individual is connected within the breed, 

hereby detecting important founder animals namely Elegant within BBV, Haxl within DFV and Jordan Red 

within RH. 

 

The community structure as presented in the figure clearly reflects the aforementioned cluster 

solution (Figure 10), concurrently providing illuminating information about each animal, 

simultaneously revealing important founder individuals in the respective populations, namely 
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Jordan Red within RH as well as Elegant and Haxl within BBV and DFV respectively. 

Additionally, the topology of this network highlights the population structure within breeds 

and the transitional positions of animals acting as hubs between subpopulations (Figure 12). 

In this context, it is very interesting to see that Danish bred Belgian Blue animals with 

Belgian Blue sire (BB-BD) (except one animal) strongly link BB-D to BB-B. Concerning the 

animal, that does not connect to BB-B animals although it stems from a BB-B sire  

(Figure 12), it has to be noted that this bull has been directly exported to Denmark for cross-

breeding and has not been used as an artificial insemination sire in Belgium. Hence, the only 

common ancestor this animal shares with the other BB-B animals has been found in the fifth 

generation of his pedigree. To further investigate the complex population structure within BB 

we have determined the betweenness centrality of the individuals (Figure 13). Given this 

network structure particularly the aforementioned BB-BD animals and BB animals that 

directly connect to these transitional animals have been associated with high betweenness 

values. However, the highest betweenness value has been associated to a BB-D animal that 

directly connects to three BB-BD animals. Screening the pedigree of this animal has shown 

that this animal has a BB-B sire in second generation. Concerning the BB-D samples it has 

been further noticed that more than half of the samples do share a common BB sire namely 

Opticen d`au Chêne, which is simultaneously an important founder within the whole BB 

population. 

 

 

 
Figure 13 Network of Belgian Blue (BB) individuals from two subpopulations of Danish (BB-D) and 

Belgian (B-BB) ancestry. The edges between individuals have been associated with the genetic distance, while 

the size of each node indicates its betweenness centrality (i.e., the proportion of all shortest paths getting through 

the node). The different node shades identify BB-B individuals (dark blue), BB-BD individuals (light blue) and 

BB-D individuals (white with blue borders). 
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To investigate, if the Danish subpopulation (BB-D) can be separated from the main Belgian 

population a reduced data set, without the five BB-BD animals have been designed. 

According to the modularity measures SPC has been applied with an optimal k-NN = 7 (Q = 

0.837). Excluding the five BB-BD animals and re-running SPC on this data, BB-D individuals 

have been ascertained to a single cluster, simultaneously increasing the significance of the 

whole BB cluster (Figure 14). However, the high temperature level of the differentiation and 

the fact, that the individuals have been separated with a low number of k-NN, indicate that 

these two breeds are genetically strongly related. 

 

 

 

Figure 14 Super Paramagnetic Clustering excluding BB-BD individuals. Within this analysis the five BB-D 

animals with a Belgian sire in the first generation (BB-BD) have been excluded. Dendrogram representing the 

clustering of animals with optimal k-NN = 7. At this SPC run the animals have been separated into 10 clusters, 

respecting the differentiation of BB-D and BB-B into single clusters. Each cluster is represented by a box; with 

vertical positions determining the stability of each cluster, while horizontal positions are indicating the proximity 

between clusters.  
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Within GLW a similar situation was noticed, where one GLW-WBP animal has been assigned 

to the white population, whilst another animal has been loosely connected to GLW-B 

(Figure 12). According to GLW-DUN it has been observed, that these animals have been 

peripherally connected to GLW-B, where animals linked to GLW-B do show a high 

admixture with GLW-B, according to pedigree information. However, for more significant 

results in this case, additional animals have to be analyzed.  

 

4.5 Phylogenetic network 

 

The pair-wise FST estimates between the six breeds (upper triangle) and between nine 

subpopulations (lower triangle) based on a total of 46,147 markers are illustrated in Table 3.  

 

Table 3 The pair-wise FST values between breeds and subpopulations. The upper triangle shows pair-wise 

FST values between six generally recognized breeds. The lower triangle recognizes the post hoc information on 

the substructure within GLW, BB and OBV. Minimum and maximum values are expressed in bold. 

 

Breed    OBV DFV BB RH GLW Breed 

BBV    0.068 0.089 0.116 0.119 0.142 BBV 

OBV-S 0.076    0.059 0.090 0.093 0.116 OBV 

OBV-G 0.064 0.032    0.093 0.095 0.118 DFV 

DFV 0.089 0.066 0.053    0.073 0.113 BB 

BB-B 0.123 0.104 0.091 0.100    0.118 RH 

BB-D 0.119 0.097 0.083 0.092 0.023     

RH 0.119 0.099 0.084 0.095 0.079 0.071    

GLW-B 0.152 0.133 0.122 0.127 0.130 0.123 0.127   

GLW-BEL 0.152 0.130 0.119 0.124 0.125 0.119 0.119 0.076  

Breed BBV OBV-S OBV-G DFV BB-B BB-D RH GLW-B  

 

The additional subpopulations GLW-W, GLW-WBP and GLW-DUN have been analyzed 

separately see results below. Considering the design with six breeds the lowest FST value 

(0.059) was estimated for [OBV-DFV] and highest (0.142) for [BBV-GLW], where the 

average over all pairs is 0.100. Regarding the existence of three additional subpopulations 

namely OBV-G, BB-D and GLW-BEL the lowest FST value (0.023) was estimated for  

[BB-B-BB-D] and highest (0.152) for [BBV-GLW-B] and [BBV-GLW-BEL], whereas an 

average over all pairs amounts 0.101. Comparing the variation of respective subpopulations 

within OBV (FST [OBV-S-OBV-G] = 0.032) and BB (FST [BB-B-BB-D] = 0.023), suggests that OBV-S 
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and OBV-G are genetically more differentiated from each other compared to BB-B and  

BB-D, hereby reflecting more diffuse barrier between BB strains. For instance, removing the 

five BB-BD animals has slightly increased the breed differentiations between the two 

subpopulations (FST = 0.025), which is still smaller compared to OBV subpopulations. The 

analysis of variation within GLW identified and showed that GLW-BEL is most distinct from 

GLW-B (FST [GLW-B-GLW-BEL] = 0.0763), followed by GLW-W (FST [GLW-B-GLW-W] = 0.0401) and 

GLW-DUN (FST [GLW-B-GLW-DUN] = 0.0238). 

 

The topology of the phylogenetic network constructed with FST distances between the six 

cattle breeds perfectly coincides with SPC analysis (Figure 15), hereby confirming the 

grouping of the Alpine cluster into [BBV-OBV] and [DFV].  

 

 

 
Figure 15 Phylogenetic Network. Phylogenetic network constructed from FST distances among six cattle breeds 

using all autosomal SNPs. 
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4.6 Network clustering (SPC) on low density SNP panels 

 

Finally we investigated the performance of SPC on a low density SNP panel, therefore we 

applied SPC on subsets of D, subsequently decreasing the number of high informative SNPs 

(in steps of 10,000 until 5,000, followed by steps of 1,000 until 1,000 and finally in steps of 

100, 50 and 10 until a set of 10 markers). Concerning the calculation of high informative 

SNPs it should be noted, that we have used k = 5 principal components according to Horn’s 

parallel analysis. The cluster solutions provided by SPC on the reduced SNP data sets were 

highly accurate in accordance with the population structures extracted using all autosomal 

markers (46,147 SNPs) down to 200 PCAIMS. Concerning the number of clusters it has been 

noted that the subpopulations GLW-W and OBV-G could not have been identified as a single 

cluster with less than 20,000 PCAIMs. However, using 200 and down to 50 PCAIMs we still 

have recognized seven distinct clusters but this was not possible with less then 50 PCAIMs. 

These results are illustrated in Figure 16.  

 

 

 

Figure 16 Adjusted Rand Index results between the cluster solutions generated with SPC on sets of 10 to 

200 PCAIMs. The Rand index attains its maximum 1 only if the determined numbers of clusters and predicted 

membership of animals coincide with the original cluster solution. As this index is influenced by the number of 

clusters, the detected number of clusters is also given at the decreased number of PCAIMs. 
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Decreasing the PCAIMS from to 200 to 50 it was very interesting to see, that the 

subpopulation GLW-BEL still could have been identified as a single cluster, while the cluster 

solutions between BBV and OBV become more diffuse. In this context, we additional noted 

that animals from GLW-W clusters have been allocated to GLW-BEL cluster. The fact, that 

the population structure from some breeds can be still detected with small sets of PCAIMs 

(e.g. with the top 30 PCAIMs GLW and DFV animals have been correctly clustered, while 

OBV and BBV as well as BB and RH animals have been assigned to single clusters) shows 

that especially for close related breeds more PCAIMs are required to separate them into single 

clusters compared to less related ones. Furthermore, this cluster solutions lead to the 

assumption that the algorithm introduced by Paschou et al. (2007) supports SNPs that are 

strongly selected in the breeds analysed. Therefore we plotted the PCA scores of each SNP 

and tagged the regions, which have been previously associated with important phenotypes in 

our samples namely the absence of horns (polled locus) which is selected in GLW and 

mapped on proximal part of BTA1 (Drögemüller et al. 2005), belt pattern on BTA3 selected 

in GLW-BEL (Drögemüller et al. 2009), double muscling on BTA2 selected in BB (Grobet et 

al. 1997) and spotted loci on BTA6 selected in DFV (Fontanesi et al. 2010) (Figure 17). 

 

 
 

Figure 17 PCA scores for each SNP differentiating the six cattle breeds. PCA scores pj for each SNP, with 

SNPs sorted by chromosome and physical position along chromosome. Presented pj were multiplied by 10-3. The 

dashed boxes indicate the position of the known phenotypes, while the horizontal dotted line represents the 

threshold for the top 30 PCAIMs. 
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As shown in the figure three out of the four aforementioned phenotypes have been associated 

with relatively high PCA scores (pj), while SNPs associated with highest scores are located on 

BTA4 and BTA6. 

 

According to Paschou et al. (2007) and applied method for the estimation of PCA-correlated 

SNPs (PCAIMs; Chapter 3.7) this approach should detect breed specific regions, i.e. markers 

under differential selection in applied design. Table 4 presents 30 most informative PCAIMs 

in the data design including six cattle breeds, i.e. PCAIMs over horizontal dotted line in 

Figure 17. These most probably differentially selected markers are sorted by chromosome and 

physical position along the chromosome. The known and putative selection signatures are 

listed along chromosomes.  

 

Table 4 Top 30 PCAIMs and known selection signatures. The comments hereby summarize the current 

information about the listed SNPs according to present differentiation analyses and literature. SNPs with known 

function are deposited with the colour of the respective breed, while SNPs with unknown function stay blank. 

Presented pj were multiplied by 10-3. 

 

BTA SNPs Position (bp) PCA-
scores  

Comments 

     
1 ARS-BFGL-BAC-4401 1547169 0.531 polled locus (GLW) (Drögemüller et al. 2005) 

1 BTA-95639-no-rs 77706623 0.623  

2 BFGL-NGS-112454 7025774 0.579 double muscling (BB) (Grobet et al 1997) 

2 Hapmap54028-rs29023584 7136739 0.682 double muscling (BB) (Grobet et al 1997) 

4 ARS-BFGL-NGS-102407 78358392 0.515 selection signature in RH (Medugorac 2010) 

4 ARS-BFGL-NGS-16805 79217610 0.531 selection signature in RH (Medugorac 2010) 

4 Hapmap53144-ss46525999 79623055 0.744 selection signature in RH (Medugorac 2010) 

4 BFGL-NGS-116590 79701138 0.754 selection signature in RH (Medugorac 2010) 

5 ARS-BFGL-NGS-10032 19603246 0.515 Selection signature in BBV (Medugorac 2010) 

5 UA-IFASA-5221 21082215 0.516 Selection signature in BBV (Medugorac 2010) 

5 BTA-37834-no-rs 99617785 0.511  

5 ARS-BFGL-NGS-7711 122241829 0.560  

6 Hapmap52018-BTA-75646 29803112 0.502  

6 Hapmap33117-BTC-032493 33761326 0.522  

6 Hapmap26308-BTC-057761 37963148 0.799 selection signature in OBV (Medugorac 2010) 

6 ARS-BFGL-NGS-45457 38102328 0.727 selection signature in OBV (Medugorac 2010) 

6 Hapmap31285-BTC-041097 38256890 0.567 selection signature in OBV (Medugorac 2010) 

6 Hapmap33628-BTC-041023 38326148 0.758 selection signature in OBV (Medugorac 2010) 

6 Hapmap33128-BTC-041916 72346412 0.588 selection signature in DFV (Fontanesi et al 2010) 
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BTA SNPs Position (bp) PCA-
scores  

Comments 

     
6 Hapmap26269-BTC-041695 72377595 0.506 selection signature in DFV (Fontanesi et al 2010) 

6 ARS-BFGL-NGS-38827 72401391 0.539 selection signature in DFV (Fontanesi et al 2010) 

6 Hapmap27692-BTC-042876 72445235 0.528 selection signature in DFV (Fontanesi et al 2010) 

6 Hapmap32220-BTC-042831 72478577 0.562 selection signature in DFV (Fontanesi et al 2010) 

6 Hapmap56688-rs29025335 83365546 0.517  

8 BTB-00348223 54529421 0.530  

14 BTB-01532239 22634363 0.551  

17 ARS-BFGL-NGS-24012 76186394 0.542 QTL affecting live weight (MacNeil and Grosz 2002) 

17 ARS-BFGL-NGS-108169 76208699 0.574 QTL affecting live weight (MacNeil and Grosz 2002) 

17 ARS-BFGL-NGS-18349 76454249 0.545 QTL affecting live weight (MacNeil and Grosz 2002) 

20 BTA-103550-no-rs 32979501 0.561  

 

To further investigate and illustrate the ability of the PCAIM approach to detect breed specific 

markers or selection signatures, we analyzed a dataset including only GLW-B and GLW-BEL 

samples (30 animals, 41,174 SNPs). Within this data set two principal components were 

found significant. Screening the 30 top PCAIMs especially SNPs located on BTA3 and 

BTA21 have been associated with highest PCA scores (Figure 18). 

 

 

Figure 18 PCA scores for each SNP differentiating GLW-B from GLW-BEL. PCA scores pj for each SNP, 

with SNPs sorted by chromosome and physical position along chromosome. Presented pj were multiplied by  

10-3.The SNPs with highest PCA scores are hereby most informative to separate these two breeds. The horizontal 

dotted line represents the threshold for the top 30 PCAIMs. 
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5 DISCUSSION 

 

5.1 General Features of network clustering (SPC) 

 

Genotypic data is now widely used to infer population structures of a wide range of living 

organisms (Baumung et al. 2004; Li et al. 2007; Li et al. 2008; Li et al. 2009). The two main 

tools currently applied for identification of population structure and subdivision are based on 

parametric e.g. STRUCTURE software (Pritchard et al. 2000) and non-parametric approaches 

e.g. PCA (Menozzi et al. 1978; Pritchard et al. 2000). Consequently recent studies have 

started to use both approaches to ascertain population structure in livestock populations 

(Salmela et al. 2008; Kijas et al. 2009; The Bovine HapMap Consortium 2009). However, 

with current genotyping technologies, the vast amount of data derived from thousands of 

individuals and thousands of markers, both approaches are becoming operationally 

impractical to provide an optimal solution to assess population structure. STRUCTURE can only 

be applied on a reduced SNP data sets within a reasonable amount of computational time, and 

requires a priori complicated linkage disequilibrium (LD) modelling, under assumptions that 

do not hold when SNPs are densely genotyped (Gao & Starmer 2007). PCA is limited to the 

utilization of a clustering algorithm (e.g. k-means) which can not give the optimal number of 

clusters objectively (Gao & Starmer 2007) furthermore visualization of a large number of 

PCAs simultaneously to reveal population structure is not possible, limiting complex 

interpretation of relationships to a series of two dimensional visual expressions., To over 

come these limitations, we have introduced a hierarchical clustering method (SPC) that can 

take advantage of the vast amount of SNP markers available, simultaneously revealing the 

degree of population structure without any a priori ancestry information. 

 

In order to evaluate the efficiency to detect population structure without any ancestry 

information, we have compared the findings of SPC with common applied methods namely 

PCA and STRUCTURE. The latter two methods are performing well to separate the animals into 

the single breeds. However, these methods could neither reproduce the phylogenetic 

relationships between breeds, nor reveal the correct clustering of subpopulations that would 

have suggested recent admixture in some breeds. They were even less suited to highlight the 

central position of important founder animals within breeds. By contrast SPC analyses of 

these breeds (Figure 10) revealed a hierarchical structure between breeds that perfectly 

corresponds to the known phylogenetic relationship between breeds, hereby suggesting the 
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existence of subpopulations within breeds. Given the network structure (Figure 12) which 

arises trough the clustering procedure, additionally highlighted important founder individuals 

within breeds and the important roles of admixed animals, which account for the clustering 

solution. The combination of all these findings implies that cattle breeds can be structured 

into different subpopulation respective to coat-colour strains and geographic origin and reveal 

degrees of admixture on a very fine scale. These results are therefore in agreement with the 

genetic structure revealed with classical population genetic analysis (Wrights FST) (Weir & 

Cockerham 1984) revealing shortest FST distances between GLW-DUN and GLW-B and 

recently admixed subpopulation BB-D and BB-B. We are aware that these breed differences 

are not significant, due to the small sample sizes. However, in this case, they highlight the 

advantages of the network clustering approach since the findings provided by SPC perfectly 

reflect the known breed history. 

 

A major advantage of SPC is that it has a single global optimum that can be obtained 

analytically, and so multiple runs of SPC unambiguously produces the same results. By 

contrast admixture-based models can have multiple local optima, and the computational 

algorithms used can produce different results depending on their starting point. The program 

STRUCTURE detected the existence of subpopulations at an optimal K = 7, but only in different 

runs and on average with lower LnP(D). Super Paramagnetic Clustering supports the results 

of STRUCTURE at optimal K = 7 but additionally provides essential add-on information about 

population structure and suggests an optimal number of clusters K = 9 at k-NN = 10 chosen at 

maximal modularity (Q). The admixture-based models like STRUCTURE are more effective in 

discrete settings while PCA performs better on continuous settings (Engelhardt & Stephens 

2010). 

 

The analysis of population structure and individual relationships in subdivided populations of 

domesticated farm animals as well as in subpopulations of most wild species presents the 

combination of some discrete and continuous subpopulations. According to our experience 

the admixture-based model is strongly affected by the presence of isolated and effectively 

small subpopulations within a continuous setting (Medugorac et al. 2009; Ramljak et al. 

2011). The delta K approach (Evanno et al. 2005) applied to such data sets underestimates the 

true number of clusters (McKay et al. 2008; Medugorac et al. 2009; Ramljak et al. 2011). The 

results presented here demonstrate the superiority of SPC to handle the combination of 

discrete and continuous subpopulations by not imposing a partition on BB population when 
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there are no natural subpopulations present (Blatt et al. 1996). In this context, we have 

demonstrated the ability to identify key animals and to maximise population differences 

within breeds, which is exceedingly useful for the design of genome-wide association 

analyses (Matukumalli et al. 2009). 

 

There are further developments of the model-based algorithms as implemented in the program 

STRUCTURE (ADMIXTURE and FRAPPE). These programs are faster than STRUCTURE and 

consequently are amenable to the analysis of larger data sets in reasonable computing time. 

Nonetheless, all other attributes of the program STRUCTURE are kept, e.g. multiple local 

optima during multiple runs and sensibility to presence of isolates within a continuous setting.  

 

Besides the self-organized determination of the number of clusters, SPC additionally 

determines the robustness of each cluster identified in a hierarchical tree of clusters. As a 

consequence, clusters identified at lower hierarchical level are less stable. Concerning our 

results the low robustness of some clusters identified can be interpreted as follows: 

 

(i) Within BBV it reveals a close relationship between BBV and OBV, since BBV contains 

admixed animals showing an OBV contribution from up to 50% according to pedigree 

informations. In this context, we have demonstrated that removing admixed animals from the 

data the stability of the cluster increases and that clusters detected at low temperatures might 

contain putative substructures (Figure 14). 

 

(ii) At RH the low cluster stability directly relates to the reported ascertainment bias 

introduced in the construction of the BovineSNP50 chip assay (Gautier et al. 2009; 

Matukumalli et al. 2009; Gautier et al. 2010; Neto & Barendse 2010), since SNPs are 

enriched and thus biased with sequences derived from Holstein Friesian populations, which is 

resulting in less related animals compared to the other breeds analysed (Figure 10). According 

this result the determined genetic parameters can be taken as evidence, with RH showing 

highest diversity values at all parameters (Table 2). 

 

(iii) Within the determined subpopulations (OBV-G, GLW-W and GLW-BEL) the low 

robustness reveals the close relationships of these animals to the main population. However 

these results are not representative due to the small sample sizes within these groups. 
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Our results demonstrate that network analyses provide a holistic and powerful approach to 

detect fine-resolution population structure without any a priori ancestry information. In this 

context, network tools can be of major importance for association and phylogeny studies. 

Furthermore, our results suggest that network analyses can be especially useful to study the 

population structures of indigenous breeds with unknown or considerably reduced population 

information, hereby providing essential information for conservation and genetic resource 

management decisions in domesticated species (Ruane 1999). At the same time, it is 

becoming feasible to detect putative important founders within breeds and to accurately study 

gene flow between and within populations (Rozenfeld et al. 2008) by applying specific 

network properties such as the degree centrality and betweenness centrality. These properties 

emphasize again the advantages of network illustrations and analysis in the characterization of 

livestock populations. In essence, this study shows, in contrast to previous assertions 

(Turakulov & Easteal 2003), that it is possible to detect fine-scale population structures only 

from genetic distances. 
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5.2 Specific Features of network clustering (SPC) 

 

The main feature of SPC is that the multi-dimensional interactions of individuals are limited 

to the mutual neighbourhood criterion (k-NN). With this criterion, computational efficiency is 

increasing and running time is greatly reduced. For example, a complete run given a whole-

genome SNP panel has not taken longer than two minutes on an Intel Core2, 3 GHz CPU with 

3.48 GB of RAM. Another feature of our approach is the lack of manually-tuneable 

parameters other than the k-NN which can be automatically chosen by maximisation of 

modularity (Q).  

 

However, it has been shown that the clustering is strongly dependent on the given numbers of 

k-NN. In order to determine optimal k-NN we have introduced Q to SPC. Maximizing Q in 

different subsets of data, e.g. with (260 samples) and without (255 samples) crossed Danish-

Belgian sire we have consistently received higher Q values and a community structure which 

is in an agreement with the expected genetic structure according to pedigree data and the 

known breed history. However, determination of an optimal k-NN still remains challenging, 

since Q shows a flat distribution around k-NN = 6-40. Our results demonstrate that a step-

wise reduction of the numbers of k-NN offer additional insight into underlying population 

structure, hereby concentrating on k-NN = 10, since that number has been found to be 

appropriate for most data sets (Blatt et al. 1997). However, in near future better methods 

should be available on the optimal choice of k-NN for such partitioning problems (Maier et al. 

2009). At present the four steps involved to detect fine-scale population structures are:  

 

(i) Estimate allele sharing distances from genome-wide SNP survey for all pair-wise 

combinations of individuals; 

 
(ii) Determine optimal k-NN in a post-evaluation process using modularity (Q); 

 
(iii) Create a network clustering using the SPC algorithm; 

 
(iv) Visualize the SPC graph with software tool like CYTOSCAPE. 
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5.3 Performance on low density SNP Panels (PCAIMs) 

 

Microsatellites and SNPs are used for a diversity of scientific studies and commercial 

applications in cattle, such as linkage mapping (Grosse et al. 1999), genetic diversity and 

differentiation (Ibeagha-Awemu & Erhardt 2005), individual identification and kinship 

investigations (Heaton et al. 2002). Simulation-based studies show that genetic analysis 

requires a large number of SNP markers compared to microsatellite markers (reviewed by 

Morin et al., 2004) e.g. previous studies have been focused only on a small set of 

microsatellite loci, mostly considering the 30 microsatellite markers recommended by 

ISAG/FAO working group (http://dad.fao.org) (Kantanen et al. 2000; Wiener et al. 2004; 

Cymbron et al. 2005; Tapio et al. 2006; Li et al. 2007). Recent developments since this 

recommendation has been the interest to investigate genome wide informative (population 

specific) SNPs. To obtain informative SNP marker sets within populations, various 

parameters have been suggested (e.g. estimations of paternity exclusion (PE), cumulative 

paternal exclusion probability (PEP) and polymorphism information content (PIC). These 

criteria’s are based on the allelic frequencies of each marker within the studied population. 

Hence, these measures are more powerful to determine high informative microsatellite marker 

sets, due to the higher information content (i.e. heterozygosity, allele frequencies) of multi-

allelic microsatellites over that of the bi-allelic SNPs (Herraez et al. 2005). 

 

For SNP marker sets the currently applied methods to determine informative marker sets are 

the informativeness for assignment (In) as defined by Rosenberg et al. (2003) (Kijas et al. 

2009) and the method introduced by Paschou et al. (2007) that describes so called PCA-

correlated SNPs (PCAIMs) (Lewis et al. 2010). Informativeness for assignment is an FST-

correlated measure that computes the mutual information on allele frequencies, while 

PCAIMs are determined by the correlation within the subspace spanned by the number of 

significant principal components. The major advantage of this method is, that compared to In, 

the informative SNPs are not determined based on allele frequencies, where the knowledge of 

individual membership to a studied population is a prerequisite. Furthermore, Paschou et al. 

(2007) demonstrated on a data set covering 10,805 SNPs genotyped in 11 populations, that 

PCAIMs performs slightly better than In-SNPs. Since the final number of SNPs needed to 

describe population structure is not directly provided by the method, we found it most 

attractive to couple this approach with SPC. In previous studies (Paschou et al. 2007; Lewis et 

al. 2010) particularly k-means clustering have been used to determine the number of 
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minimum SNPs needed to describe population structure, due to the simplicity of this 

algorithm. The fact that k-means can not give the optimal number of clusters objectively (Gao 

& Starmer 2007), we suggest SPC is a more suitable method to determine the optimal number 

of PCAIMs due to its superiority by not imposing a partition on the data when there are no 

natural subdivisions present (Blatt et al. 1997). Hence, in this study, we have attempted to 

determine a minimum number of SNPs that guarantee a true assignment of animals respecting 

the existence of subpopulations by applying SPC on subsets of PCAIMs. 

 

Comparing the results achieved in this study using cattle with those presented in human 

(Paschou et al. 2007), we needed slightly more PCAIMs to guarantee a true assignment of the 

animals. The underlying population structure of these two species as well as applied data sets 

is fairly different and different numbers are to be expected. However, the reason that 

obviously more markers are needed to investigate the population structure of cattle breeds 

may reflect the relative high relationships among investigated cattle breeds compared to 

human samples and likely differences in effective population size (Ne). The relationships 

between livestock samples are generally expected to be higher than in humans, where 

artificial insemination and cross-breeding is widespread. As our results demonstrate, 

especially closely related populations namely the subpopulations GLW-W, GLW-WBP and 

GLW-W, which could be detected using all autosomal SNPs (46,147), were not detectable 

with even hundreds of PCAIMs. Considering only the main populations we showed that using 

200 PCA-correlated SNPs, we were able to assign the studied animals with 100% accuracy to 

their population of origin. However, a final advice on an optimal number of PCAIMs can not 

be provided at this stage. As our results show, the identification of the optimal number of 

PCAIMs is highly variable and strongly relies on the structure of the investigated data (e.g. 

Lewis et al. 2010 suggested an optimal number of 2,000 PCAIMs analysing 13 different cattle 

breeds as presented in the BovineHapMap project). 

 

Concerning the general application of the determined PCAIMs in this study, the screening of 

the top PCAIMs shows, that SNPs identified as population structure informative in this study 

are likely to refer to selection signatures within the breeds analyzed. This suggests that 

population structure in the formation of breeds has influenced different parts of the genome. 

Hence, to get a similar recommendation comparable with that presented by ISAG/FAO 

working group for microsatellite markers a large number of studies excluding ascertainment 

bias at population and marker level is required to develop a SNP marker set suitable for use in 
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different cattle breeds and populations. Concerning the number of markers, we expect that the 

number of SNPs has to be at least four times more compared to microsatellites to achieve the 

same resolution as suggested by Morin et al. (2004). In this context it should be noted that 

Paschou et al. (2008) introduced an additional method, a so-called Rank Revealing 

Decomposition, which corrects PCAIMs for linkage disequilibrium (LD). Through this 

process the number of PCAIMs can be further reduced, simultaneously supporting a true 

clustering of animals. In this study, this approach has not been examined due to low density of 

SNPs in bovine compared to human samples. However, since the number of SNPs is steadily 

increasing in bovine, this approach should be also implemented in future studies. 

 

5.4 Performance of PCAIMs to detect selection signatures in cattle breeds 

 

Besides the possibility to investigate the population structure on low informative SNP panels, 

we have also demonstrated that PCAIMs could possibly be used to detect population specific 

markers (Table 4). As shown in this table, the derived set of PCAIMs identify well known 

breed specific regions namely polled locus on BTA1 (Drögemüller et al. 2009) (GLW), 

double muscling on BTA2 (Grobet et al. 1997) and a QTL region on BTA17 affecting live 

weight (MacNeil & Grosz 2002) (BB) as well as the recently published spotted loci on BTA6 

(DFV) (Fontanesi et al. 2010). The high informative markers detected on BTA4 and BTA5 

show high evidence with selection signatures associated with RH and Braunvieh population 

(BBV and OBV) (Medugorac et al. 2010) using the commonly applied association mapping 

approach as suggested by Charlier et al. (2008) and the Cross Population Extended Haplotype 

Homozygosity (XP-EHH) (Sabeti et al. 2007). As our results demonstrate PCAIMs are 

especially useful in a variety of different research scenarios, such as association mapping, 

conservation studies and population genetics (Pritchard & Donnelly 2001; McKeigue 2005; 

Wan et al. 2010). 

 

The PCAIMs could also be potentially useful for investigators conducting genome-wide 

association studies considering a pair-wise breed comparison e.g. comparing GLW-BEL with 

GLW-B. In particular we detected a SNP with genome-wide highest PCA-Score on BTA3 

matching exactly the belted locus (Drögemüller et al. 2009). The SNP associated with the 

second highest value is located on BTA21, where Bos Taurus Syntaxin binding protein 6 

(STXBP6) have been mapped (Zimin et al. 2009). Hence, we suggest implementing this 

approach in a pair-wise breed comparison as suggested by Matukumalli et al. (2009) to 
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effectively detect breed specific markers and possible selection signatures related to breed 

formation. 

 

The SPC method is simple and computationally fast (e.g. the genome-wide analysis 

undertaken in this study required less than one minute) and thus allows the analysis of very 

large genome-wide data sets with thousands of individuals. Furthermore, this method does not 

rely on any assumptions (e.g. inheritance pattern, ancestral alleles and selection variations) or 

modeling of the data. Therefore it is conceivable to combine PCA-scores with commonly 

applied test statistics e.g. XP-EHH (Sabeti et al. 2007) and integrated Haplotype Score (iHS) 

(Voight et al. 2006) as suggested by Grossman et al. (2010) to improve genome-wide 

detection and characterization of positive selection in livestock populations. 
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6 CONCLUSION 

 

6.1 General conclusion on the Utility of network clustering 

 

In this study, we have described and demonstrated that network-based analysis can be applied 

successfully to infer the genetic structure in subdivided populations at low levels of genetic 

differentiation without any a priori knowledge of clustering and stratification. This tool 

provides new insights into the history of domesticated breeds of livestock because of its 

ability to reduce the level of complexity of large-scale data sets. It would be of valuable help 

to extract the population structure and stratification within single populations with appropriate 

relevance to association studies. Hence, this new approach described here is a very valuable 

complement and alternative to the time-consuming clustering programs because this 

algorithm detects fine-scale population structures with a remarkable reduction of computing 

time and effort, as it works within seconds exploiting a whole-genome SNP survey. 

 

6.2 General conclusion on the Utility of PCAIMs 

 

Applying SPC on small sets of PCAIMs shows that it becomes feasible to uncover the 

structure of cattle breeds without knowing a priori the origin of individuals. In comparison to 

some studies of human subpopulations more SNPs are needed to guarantee a true clustering of 

cattle individuals in here investigated samples. Furthermore, we have shown that for fine-

scale population structures considerable more markers are needed. However, our results 

suggest that PCAIMs maybe a valuable help for geneticists in analyzing complex population 

structures using ever-increasing genome-wide data sets. Furthermore, it has been 

demonstrated that PCAIMs are potentially useful to determine population specific SNPs 

hereby identifying putative selection signatures within breeds. The preliminary results of this 

study demonstrate that PCAIMs could be very powerful to detect these signatures carrying 

out a pair-wise breed comparison. The results from this study suggest that PCAIMs derived 

from SPC as a possible independent selection signature test.  

 

Hence the three stated objectives considering the application of network theory in population 

genetics, to identify the minimum number of SNPs and the application of PCAIMs to detect 

selection signatures could have been met. 
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7 SUMMARY 

 

The aim of this study was to develop and approve a new procedure for determining genome-

wide population structures with a high density SNP chip in cattle (BovineSNP50 BeadChip). 

Furthermore, this study investigates the application of population informative SNPs regarding 

the allocation of animals to their respective breeds with low density SNP panels and regarding 

the detection of breed specific markers or selection signatures within cattle breeds. 

 

The identification of groups with similar genetic profiles is one of the major challenges in 

population genetics. Since most existing methods still rely on a priori information of 

individual ancestry and underlying assumptions that not always respect the natural population 

structure. Based on network theory and recent advances in single nucleotide polymorphism 

(SNP) chip technology, we investigated an unsupervised network clustering approach called 

Super Paramagnetic Clustering (SPC) that when applied on genome-wide SNP data identifies 

the natural divisions of individuals into densely connected subgroups without use of any 

ancestry information. This methodology allows a straightforward characterization of 

hierarchical population structure and the detection of ascertainment bias in population 

structures. At the same time we investigated the application of SPC on low-density SNP 

panels by determining population specific SNPs so called PCA informative SNPs (PCAIMs) 

as introduced by Paschou et al.(2007). Screening the top 30 PCAIMs we also observed that 

these SNPs simultaneously detect regions under selection within the breeds analyzed.  

 

We first applied SPC procedure on a whole genome-wide SNP panel of 46,147 SNPs 

genotyped in 260 bovine samples containing six outbred cattle breeds. Performing SPC on our 

bovine data, it was possible to effectively assign animals to their breed simultaneously 

revealing the degree of population structure within and between breeds. Analyzing closely 

related breeds namely Black Galloway, White Galloway and Belted Galloway, as well as 

German- and Swiss Original Braunvieh we show that SPC can be used to detected fine-scale 

subpopulation structures. Furthermore, it is becoming feasible to reveal genetically important 

founder individuals within breeds (e.g. Haxl in German Fleckvieh). To evaluate the 

performance of SPC, population structure was further examined using Principal Components 

Analysis (PCA) coupled with a standard clustering tool (k-means) and software STRUCTURE.  

Applying SPC on low density SNP panels, it was possible to effectively assign animals to 

their breeds down to 200 informative SNPs. However, with this minimum SNP number a 
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fine-scale population structure could not have been reproduced and especially the cluster 

solutions concerning close related breeds namely between Braunvieh and Original Braunvieh 

became more diffuse. Comparing these results with studies in human, where meaningful 

cluster solutions could have been achieved with just 30 informative SNPs, obviously more 

SNPs are needed in cattle to guarantee a true assignment of animals. Plotting the genome 

wide PCA-Score of each SNPs we have noticed that the top PCAIMs indicate regions of 

strong selection e.g. from the top 30 PCAIMs, 21 PCAIMs (70%) could have been associated 

to regions with known selection signatures in the breeds analyzed. In this context, we have 

also demonstrated that PCAIMs effectively identify selection signatures by performing a pair-

wise breed comparison. For example by comparing belted Galloways (GLW-BEL) with black 

Galloways (GLW-B), SNPs covering the region causing the belt pattern were strongly 

associated with highest PCA scores. 

 

In summary the methods presented in this thesis addresses consequential questions in 

ecology, evolution, behavior or conservation and simultaneously describe new approaches to 

study genome-wide population structure moving from high to low density SNP panels. The 

major advantages of SPC and PCAIMs presented in this study are that they are simple, 

computationally extremely efficient and less dependent on a priori assumptions and thus 

allow the analysis of very large genome-wide datasets with thousands of animals without 

prior breed and pedigree information. Furthermore, here introduced methods can be very 

useful for the detection of fine stratification in associations or mapping populations. 
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8 ZUSAMMENFASSUNG 

 

Das Ziel dieser Arbeit war es, ein neues Verfahren für die Erfassung von 

Populationsstrukturen in Rinderrassen, basierend auf genomweiten SNP-Genotypen 

(BovineSNP50 BeadChip), zu entwickeln. Des Weiteren wurde in dieser Studie die 

Anwendung von hoch informativen SNPs bezüglich der Erfassung von Populationsstrukturen 

anhand weniger informativen SNP-Genotypen und der Identifikation von Selektion 

Signaturen in Rinderrassen, untersucht. 

 

In der Populationsgenetik ist die Identifikation von genetisch homogenen Gruppen noch 

immer eines der am intensivsten diskutierten Themen, da die meisten Methoden für die 

Erfassung von Populationsstrukturen Informationen über die Abstammung benötigen. Da 

diese Informationen in manchen Situationen nicht zur Verfügung stehen oder die natürliche 

Populationsstruktur nicht korrekt wiedergeben, haben wir uns entschieden die 

Anwendungspotentiale der sozialen Netzwerktheorie für die Erfassung von 

Populationsstrukturen basierend auf genomweiten SNP-Genotypen zu analysieren. In dieser 

Studie wurde für die Analyse von genomweiten Populationsstrukturen die hierarchische 

Clustermethode Super Paramagnetic Clustering (SPC) verwendet. Bei dieser Methode werden 

für das Clustern, nur Beziehungen zwischen Individuen in nächster Nachbarschaft 

herangezogen, wodurch sich ein Netzwerk von Individuen ergibt. Die Anwendung dieser 

Methode ermöglicht eine rasche Charakterisierung der hierarchischen Populationsstruktur 

ohne jegliche Abstammungsinformationen und das Auffinden von Erfassungsverzerrungen in 

Populationsstrukturen. Gleichzeitig untersuchten wir die Anwendung von SPC für die 

Rekonstruktion von Populationsstrukturen anhand weniger informativen SNPs, so genannten 

PCA informativen SNPs (PCAIMS) (Paschou et al. 2008). Eine detaillierte Darstellung dieser 

SNP-Genotypen zeigte, dass diese SNPs gleichzeitig Regionen unter starker Selektion, in den 

untersuchten Rinderrassen, kennzeichnen. 

 

Für die ersten vorliegenden Untersuchungen haben wir den SPC Algorithmus an einem 

genomweiten SNP-Genotypen Datensatz angewendet, welcher 46.147 SNPs und 260 Tiere 

aus sechs verschiedenen Rinderrassen umfasste. Unter der Anwendung von SPC konnten die 

einzelnen Tiere den entsprechenden Rassen zugeordnet und die hierarchische 

Populationsstruktur zwischen den Rassen aufgezeigt werden. Durch die Analyse von eng 

verwandten Populationen (z.B.: Deutsches Original Braunvieh und Schweizer Original 
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Braunvieh, sowie Schwarzen Galloways und Belted Galloways) konnte gezeigt werden, dass 

diese Methode in der Lage ist Subpopulationen zu erkennen und auszuweisen. Mit Hilfe von 

weiteren Netzwerkanalysen konnten wir zusätzlich den Einfluss von wichtigen Gründertieren 

(z.B. Haxl bei Deutschen Fleckvieh) relativ einfach nachweisen. Zur Evaluierung der SPC 

Methode wurden vergleichende Ergebnisse mit der Hauptkomponentenanalyse (PCA) und der 

Computersoftware STRUCTURE aufgestellt. 

 

Die Ergebnisse der hoch informativen SNP Genotypen (PCAIMs) zeigten, dass es möglich ist 

mit einer signifikant reduzierten Anzahl von Markern (200 PCAIMs) die einzelnen 

Populationen zu unterscheiden und die Herkunft der Tiere zu bestimmen. Eine detaillierte 

Strukturierung innerhalb der Populationen ist bei dieser reduzierten Anzahl von SNPs jedoch 

nicht mehr möglich. Vergleicht man dieses Ergebnis mit aktuellen Resultaten bei Menschen 

(30 PCAIMs), werden bei Rindern offenbar mehr informative SNPs benötigt um eine 

100%ige Herkunft der Tiere zu garantieren. Durch die detaillierte Darstellung der 

genomweiten PCAIMs haben wir festgestellt, dass diese SNPs gleichzeitig Regionen unter 

starker Selektion kennzeichnen z.B.: Von den 30 informativsten SNPs konnten 21 (70%) 

bekannten Selektions- Signaturen zugeordnet werden. In diesem Zusammenhang haben wir 

gezeigt, dass die Identifikation von Selektions-Signaturen mit Hilfe von PCAIMs am 

effektivsten in einem paarweisen Rassenvergleich angewendet werden kann (z.B.: In einem 

Vergleich von Schwarzen Galloways und Belted Galloways, sind vor allem SNPs welche die 

bekannte Belted Region kennzeichnen mit hohen PCA Werten assoziiert worden. 

 

Die, in dieser Arbeit, präsentierten Methoden beziehen sich auf essentielle Fragen in der 

Populationsgenetik und beschreiben gleichzeitig neue Ansätze für die Erfassung von 

Populationsstrukturen unter der Anwendung von genomweiten und informativen SNP-

Genotypen. Die wesentlichen Vorteile der hier vorgestellten Methoden sind, dass sie einfach, 

rechnerisch effizient und ohne individuelle Abstammungsinformationen angewendet werden 

können. Daher können relativ einfach große Datensätze mit tausenden von Tieren ohne die 

Kenntnis von Abstammungen objektiv analysiert werden und gleichzeitig Erhebungsfehler 

aufgezeigt werden. Darüber hinaus liefern diese Methode wichtige Erkenntnisse über die 

Populationsstruktur, welche ein wesentlicher Bestandteil von Assoziationsstudien ist. 
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11 GLOSSARY 

 

Allele      One form of a gene or a genetic marker. 

 

BLAD      Bovine leukocyte adhesion deficiency 

 

CentiMorgan (cM)    A unit for measuring genetic distance; 

      A Morgan is 100 cMs. A cM is approximately 

      Equivalent to a 1 % recombination value if 

      (double) high levels of crossover are ignored. 

 

Deoxyribonucleic Acid (DNA)  The genetic material and main focus of molecular 

      genetics and genomics. 

 

DNA marker     A small piece of DNA that can be identified and 

      Used as genetic marker 

 

Dominant markers    Genetic markers showing dominant inheritance. 

      In genomics, most PCR-based markers are 

      dominant markers, e.g., presence or absence of 

      a PCR product. 

 

Chromosome     (chroma = color, soma = body), part of the 

      nucleus and carrier of DNA. 

 

CVM      Complex vertebral malformation 

 

Genetic distance (D)    A measure to quantify genetic relationship 

      between individuals, e.g. Fst values  

 

Genome     The complete set of DNA carried by a gamete. 

 

Genotype     Genetic constitution of an individual. 
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Haplotype     Set of closely linked genetic markers present on 

      one chromosome, which trend to be inherited 

      together. 

 

Hardy-Weinberg Equilibrium (HWE) A state in which gene and genotypic frequencies 

      Remain constant from generation to generation in 

      a large random mating population without 

      mutation, selection or migration. 

 

Heterozygosity    State of an individual having 2 different alleles of  

      a gene. 

 

Identical by Descent (IBD)   Two alleles are identical by descent (IBD) if they 

      are identical copies of the same ancestral allele. 

 

Identical by State (IBS)   Two alleles are identical by state (IBS) if they 

      share the same mutational expression. 

 

Linkage disequilibrium (LD)  Gametic disequilibrium 

 

Microsatellites    Repetitive DNA with repeats ranging in size from 

      1 to 6 bp. It is also referred to as simple sequence 

      Repeat (SSR). 

 

Minor allele frequency (MAF)  The lowest allele frequency at a locus that is 

      observed in a population. 

 

Network theory    The study of graphs representing the relationships 

      of individuals. 

 

Polymerase chain reaction (PCR)  A technique for amplifying a target portion of a 

      DNA molecule. Some genetic markers used in 

      genomic analyses, such as microsatellites are 

      PCR-based markers. 



   GLOSSARY 
 

 60 

PCA informative Markers (PCAIMs) Population informative markers, e.g. SNPs which 

      are strongly selected in one population. 

 

Principal Components Analysis (PCA) Linear dimensionality reduction technique that 

      Seeks to identify a small number of “dimensions” 

      or “components” that capture most of the relevant 

      structure in the data. 

 

Quantitative trait loci (QTL)  Genes controlling quantitative traits, 

      e.g. milk yield (MY). 

 

QTL mapping    A set of procedures for detecting genes 

      controlling quantitative traits (QTL) and 

      estimating their genetic effects and genome 

      locations. 

 

Single Nucleotide Polymorphisms  Bi-allelic co-dominant genetic markers see 

(SNPs)      dominant markers. 

 

Super Paramagnetic Clustering (SPC) Algorithm that identifies robust clusters based 

      upon network structures. 
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12 APPENDIX 

 

12.1 Article for the 9
th

 World Congress on Genetics applied to Livestock 

Production (2010) 

 

SpinNet: A New Tool To Study The Genetic Structure Of Cattle 

Breeds With A Genome-Wide SNP Survey 
M. Neuditschko

1, J. Maxa2, I. Russ1, J. Schär2
 and I. Medugorac2

 

 

Introduction 

Recent technical advances in single nucleotide polymorphism (SNP) chip technology have led to SNPs 
becoming the most developed and abundant markers in livestock science. However, current available 
applications of algorithms in population genetics turn out to be impractical due to intensive computational 
demand (e.g. STRUCTURE) (Price et al. (2006)) given the vast amount of data derived from thousands of 
individuals and thousands of markers. This study addresses this problem and introduces the idea of network 
analysis into the field of studies on population structure. Network theory describes the ability to sub-divide a 
network of nodes into community structures, which provides help in understanding and visualizing the structure 
of the respective network. To identify these community structures, many different approaches have been 
developed, including vertex similarity, the vertex degree gradient, the resistor network and the Potts Hamiltonian 
model. In this study, we have used an unsupervised clustering approach, so-called Super Paramagnetic 
Clustering (SPC) (Blatt et al. (1996)), which uses the Potts Hamiltonian model (Reichardt and Bornholdt 2004)) 
to identify community structures in bovine networks. Since SPC uses a so-called spin-spin correlation function 
to extract the community structure in networks, we call this method SpinNet. The objective of this study was to 
test a new method, which automatically identifies population structures without any prior ancestry information in 
panel bovine samples genotyped with a high density a whole-genome SNP panel. 

Material and methods 

SNP genotyping. A total of 260 individuals representing six cattle populations were analyzed. The breeds 
included were European Braunvieh upgraded by US Brown-Swiss (BBV, Germany, [47]), Original Braunvieh 
(OBV, Germany [7], Switzerland [38]), German Fleckvieh (DFV, Germany [41]), Red Holstein (RH, Germany 
[47]), Blue Belgian (BBB, Belgium [30], Denmark [15]) and Galloway containing two sub-populations namely 
White- and Belted Galloway (GLW, sampled in Germany but originating from Scotland, with the color 
variations black [28], dun [4], white black pointed [2], white [2] and belted [7]). As pedigree information was 
available, we preferred individuals that did not share a common ancestor for at least 2 generations. The SNP 
genotypes were determined by a commercially available service (http://www.illumina.com/; Illumina, San 
Diego). The returned number of SNPs was 53,725 SNPs for each individual with an average minor allele 
frequency (MAF) of 0.25 across all loci. The SNPs were further been edited for genotyping errors, MAF < 0.05, 
HWE, P < 0.01 in at least one population and P < 0.02 in at least two populations respectively. This resulted in a 
total of 46,147 autosomal SNPs that passed the quality control and were used for the final course of the 
model/procedure. 
 
Algorithm to identify community structures. The input for the Super Paramagnetic Clustering (SPC) 
algorithm represents a symmetric distance matrix D of dimension n x n, with the genetic distances for all 
samples being calculated by easily subtracting pair-wise identities by state (IBS) from 1. Additional important 
inputs to SPC are the number of k-nearest neighbors (k-NN), a stable delta T and the minimal cluster size. To 
evaluate the clustering performance in high-dimensional space, a cost function is used, which is similar to 
methods used in hard-optimization problems (e.g. Traveling Salesman Problem). The cost function applied to 
SPC is the Hamiltonian of an inhomogeneous ferromagnetic Potts model, 

                                                 
1 Tierzuchtforschung  e.V. Munich, 85586 Grub, Germany 
2 LMU Munich, Chair of Animal Genetics and Husbandry, 80539 Munich, Germany 
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where the classification {s} is determined by a so-called spin-spin correlation function (δsi,sj) and the nearest 
neighbor interaction Jij, which is some positive decreasing function of the increasing distance between 
neighboring points i and j. Ferromagnetic Potts models are simulated at a sequence of temperatures (T), so that 
the clustering can be expressed at any level of T. At very low T, all data points remain uncorrelated. With 
increasing temperature the spin-spin correlation between neighboring points increases and the data points are 
clustered along the temperature by measuring the correlation of the nearest-neighbor spins. Consequently, the 
clustering result of the Potts model is strongly dependent on the number of k-NN, e.g. as k-NN decreases the 
number of clusters increases. Here we introduce the modularity (Q) (Newman (2006) as a quality measure of 
sub-divided networks to determine optimal k-NN. 

Results and discussion 

To determine whether SPC could automatically expose the population structures of cattle breeds without any 
previous information, the algorithm was used with q=20 component Potts spins, each interacting with k-NN = 
10, with respect to modularity measures and a minimal cluster size of two. Applying SPC to the network of 
cattle breeds, 9 communities have been extracted (Figure 1), which perfectly corresponds to our previous 
knowledge (breed and geographical origin) (Medugorac et al. (2009)) and investigations with the benefit of 
hindsight. As the figure shows, the network starts to split into three major groups, each represented by the 
dashed circles, and ends up with a fine-scale community structure, in which the relationship between breeds and 
animals is expressed by the thickness of edges varying in the proportion of genetic distance. This nature of 
network theory perfectly reflects the geographical origin of the breeds (Alpine region [BBV-OBV-DFV], 
Western Europe [BBB-RH] and North-Europe [GLW]). Additionally, it expresses the relationships of 
individuals within breeds and reveals the existence of sub-populations that are German Original Braunvieh, 
Belted Galloway and White Galloway.  

 
Figure 1: Community structure in cattle breeds extracted with the SPC algorithm. The breeds have firstly 

been separated into three major groups, denoted by the dashed circles, before they have been separated 

into communities. The 9 communities shown are Galloway in black dots (covering the colour variations 

black, dun and white black pointed), Belgian Blue (blue dots), Red Hostein (red dots), Deutsches 

Fleckvieh] (brown dots), European Braunvieh (dark green dots), Original Braunvieh with an separation 

into Swiss (cyan dots) and German (green dots) origin coloured and the sub- populations White Galloway 

(white dots) and Belted Galloway (grey dots). The network has been drawn with longer edges between 

vertices in different breeds than between those in the same community, to make the community groupings 

clearer. The thickness of edges, which varies in proportion to the genetic distance, has been used to 

visualize individual’s relationships within breeds. The node size, which varies in proportion of the number 

of edges per node (degree), illustrates how well each individual is connected within the breed. 
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The only exception of a clear cluster solution concerns two Galloway animals, where one white-black-pointed 
animal has been assigned to the white, while the other one has been loosely connected to the black ones. This 
result possibly indicates the different levels of White/Black within these animals. However, for more significant 
results in this case, additional animals have to be analyzed. Within the Blue Belgian population the algorithm 
fails to cluster the animals into Belgian and Danish origin, since this data set contains five Danish animals which 
have a Belgian sire in the first generation. Excluding these “crossbred” animals in a second data set, the Danish 
subpopulation could be extracted (result not shown). To determine optimal k-NN in different data sets we have 
introduced modularity (Q) to SPC, e.g. with and without crossed Danish-Belgian animals. Optimal k-NN = 10 
for complete data set and k-NN = 7 for data set without crossbred animals. This result indicates that optimal k-
NN varies with input data, hence should be determined for each data set separately. 
 

Conclusion 

These results clearly show that network clustering can be applied successfully to study the genetic structure of 
domesticated subpopulations without any a priori knowledge of clustering and stratification. This tool provides 
new insights into the history of domesticated breeds because of its ability to reduce the level of complexity of 
large-scale data sets. It will be of invaluable help to extract the population structure and stratification within 
single breeds with appropriate relevance to association studies. Hence this new approach described here is a very 
valuable alternative to the time-consuming clustering programs, e.g. STRUCTURE program, because this 
algorithm detects fine-scale population structure with a remarkable reduction in time and effort, as it works 
within seconds exploiting a whole-genome SNP survey. 
 

Acknowledgements 

Researchers are grateful for funding form Deutsche Forschungsgemeinschaft (DFG) through project number 
(ME3404/2-1) and Tierzuchforschung e.V. Munich. Furthermore we thank the numerous breeding associations 
who sent us samples free of charge to support this study. 
 

References 

Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., and Reich, D. (2006). Nat. Genet., 
38:904-909. 

Blatt, M., Wiseman, S., and Domany, E. (1996) Phys. Rev. Lett., 76:3251–3255. 

Reichardt, J., and Bornholdt, S. (2004). Phys. Rev. Lett., 93:218701–218704. 

Newman, M.E.J., (2006). PNAS., 103:8577–8582. 

Medugorac, I., Medugorac, A., Russ, I., Veit-Kensch, C.E., Tarberlet, P., Luntz, B., Mix, H.M., and Förster, 
M., (2009). Mol. Ecol., 18:3394-3410 

 



   APPENDIX 
 

 64 

12.2 Poster for the 9
th

 World Congress on Genetics applied to Livestock 

Production (2010) 
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12.3 Program files 

 

IBS similarity matrix (PLINK) 

 

1: plink --cow --file test--cluster --matrix 

 

IBS similarity matrix (VanRaden) Herman Schwarzenbacher 9.6.2010 (R.2.10) 

 

#p   = vector of allele frequencies 

#M = genotype matrix: rows = animals, col = SNP coded 0,1,2 

#G = IBS matrix 

 

1: M = M-1 

2: P = 2*(p-.5) 

3: Z = t(t(M) –P) 

4: scl = (2*sum(p*(1-p))) 

5: G = Z %*%(Z)/scl 

 

PCA analysis and plot (R.2.10) 

 

1: a1 = read.table("ibs_260animals.txt") 

2: a= a1 

3: an_pca = prcomp(a) 

4: summary(an_pca) 

5: plot(an_pca) #identifying the variance explained by the PCAs 

 

#calculation of PCAs 

 

6: center = an_pca$center 

7: scale = an_pca$scale 

8: hm = as.matrix(a) 

 

9: pca1 = drop (scale(hm, center = center, scale = scale ) %*% 

        an_pca$rotation[,1]) 

10: pca2 = drop (scale(hm, center = center, scale = scale ) %*% 

        an_pca$rotation[,2]) 

11: pca3 = drop (scale(hm, center = center, scale = scale ) %*% 
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        an_pca$rotation[,3]) 

12: x = cbind(pca1,pca2) 

13: dbb =    x[1:45,1:2] 

14: dbbb =    x[11:15,1:2] 

15: bbb =    x[16:45,1:2] 

16: bbv =    x[46:93,1:2] 

17: dfv =    x[94:134,1:2] 

18. belglw = x[135:141,1:2] 

19: wglw   = x[142:143,1:2] 

20: wpglw  = x[144:145,1:2] 

21: dglw   = x[146:149,1:2] 

22: bglw   = x[150:172,1:2] 

23: dobv   = x[173:180,1:2] 

24: sobv   = x[181:213,1:2] 

25: rh     = x[214:260,1:2] 

26: plot(pca1,pca2, type="n", xlab="", ylab="") 

27: title(xlab="PC1 (35%)", ylab="PC2 (15%)", font.lab=4, cex.lab 

  =1.25) 

28: abline(h=0, v=0, col = "lightgray", lty=2) 

29: points(dbb,pch=21,col="blue") 

30: points(dbbb,pch=19, col="lightblue") 

31: points(bbb,pch=19,col="blue") 

32: points(bbv,pch=19,col="tan4") 

33: points(dfv,pch=19,col="orange") 

34: points(belglw,pch=19,col="darkgray") 

35: points(wglw,pch=21,col= "black") 

36: points(wpglw,pch=19,col="violet") 

37: points(dglw,pch=19,col="gold") 

38: points(bglw,pch=19,col="black") 

39: points(dobv,pch=21,col="green") 

40: points(sobv,pch=19,col="green") 

41: points(rh,pch=19,col="red") 

42: legend(0.205, -0.06, c("BBV","OBV-S","OBV-D","DFV","BB-D","BB- 

 BD", "BB-B", "RH", "GLW-BEL", "GLW-W", "GLW-WBP", "GLW-DUN", 

 "GLW-B"), col = 

 c("tan4","green","green","orange","blue","lightblue","blue","red 

 ","darkgray","black","violet","gold","black"), pch =  

 c(19,19,21,19,21,19,19,19,19,21,19,19,19), cex=.9) 
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Modularity (Q) (R.2.10) 

 

1: a = read.table("wmatrix_10edges.txt") 

2: A = as.matrix(a) 

3: sum_A = sum(A) 

4: x = 1/sum_A 

5: y = p_m%*%A%*%p_t 

6: e = x*y 

7: z = sum(diag(e)) 

8: s = sum(e^2) 

9: Q = z-s 

10: Q 

 

Modularity plot 

 

1: a1 = read.table("input_modularity_mean.txt", header=TRUE) 

2: b1 = read.table("input_modularity_limit.txt", header=TRUE) 

3: c1 = read.table("input_modularity_avg.txt", header=TRUE) 

4: x = as.vector(a1$knn) 

5: y = as.vector(a1$modularity) 

6: k2  = a1[1:4,1:3] 

7: k2x = as.vector(k2$knn) 

8: k2y = as.vector(k2$modularity)  

9: k3  = a1[5:11,1:3] 

10: k3x = as.vector(k3$knn) 

11: k3y = as.vector(k3$modularity) 

12: k6  = a1[13:15,1:3] 

13: k6x = as.vector(k6$knn) 

14: k6y = as.vector(k6$modularity) 

15: k9  = a1[17:27,1:3] 

16: k9x = as.vector(k9$knn) 

17: k9y = as.vector(k9$modularity) 

18: limx = as.vector(b1$knn) 

19: limy = as.vector(b1$modularity) 

 

20: avgx = as.vector(c1$knn) 

21: avgy = as.vector(c1$modularity) 

 



   APPENDIX 
 

 68 

22: library(grid) 

23: plot(x,y, type="n", ylim=c(0.4,0.9), xlab="", ylab="", 

 axes=FALSE) 

24: points(k2x,k2y, type="l") 

25: points(k3x,k3y, type="l") 

26: points(k3x,k3y, type="l") 

27: points(k6x,k6y, type="l") 

28: points(k9x,k9y, type="l") 

29: points(limx,limy, pch=21, col="blue", bg="blue", cex=0.7) 

30: points(avgx,avgy, pch=8, col="red", cex=1.2) 

31: grid.text("K=2", vjust=10.5, hjust=-7.5,gp=gpar(fontsize=12, 

 fontface=1)) 

32: grid.text("K=3", vjust=4, hjust=-2.5,gp=gpar(fontsize=12, 

 fontface=1)) 

33: grid.text("K=4", vjust=-3.3, hjust= 1,gp=gpar(fontsize=12, 

 fontface=1)) 

34: grid.text("K=6", vjust=-16.3, hjust=2.8,gp=gpar(fontsize=12, 

 fontface=1)) 

35: grid.text("K=7", vjust=-16.3, hjust=4.6,gp=gpar(fontsize=12, 

 fontface=1)) 

36: grid.text("K=9", vjust=-16.3, hjust=6.9,gp=gpar(fontsize=12, 

 fontface=2)) 

37: grid.text("K=11", vjust=-12.5, hjust=6.4,gp=gpar(fontsize=12, 

 fontface=1)) 

38: axis(1,  

 c(0,5,10,15,20,25,30,35,40,50,60,70,80,90,100),cex.axis=0.7) 

39: axis(2, las=2,c(0.4,0.5,0.6,0.7,0.8,0.9),cex.axis=0.8) 

40: box() 

41: title(xlab="k-NN", ylab="Modularity (Q)", font.lab=4, 

 cex.lab=1.25) 

 

Heatmap (R.2.10) 

 

1: require(plotrix) 

2: library(grid) 

 

3: a1 = read.table("heatmap_spc_sorted.txt") 

4: a = a1[,-1] 



   APPENDIX 
 

 69 

5: mat = as.matrix(a) 

6: b1 = read.table("colorbar.txt", header=TRUE) 

7: col = as.vector(b1$col) 

8: rlab = col 

9: clab = col 

 

10: library(gplots) 

 

11: heatmap.2(mat, Rowv=FALSE, Colv=FALSE, dendrogram="none",^ 

 density.info="none", key=FALSE,trace="none", 

 labRow=FALSE,labCol=FALSE,symm=TRUE, margins=c(7, 7), 

 ColSideColors=clab, RowSideColors=rlab)  

 

Determining the Number of Significant Principal Components (R.2.10) 

 

1: require(paran) 

2: a1 = read.table("ibs_matrix.txt") 

3: paran(a1) 

 

Selecting PCA-Correlated (SNPs) Paschou et al. (2008) Matlab 

 

1: Load test.txt –ASCII 

2: [scores] = PCAscores(test,k); 

 

Genome-wide PCAIMs plot (R.2.10) 

 

1: a1 = read.table("pcaim_scores.txt") 

2: x = 1:46147 

3: v = a1*1000 

4: z = cbind(x,v) 

 

5: chr1 =  z[1:3023,1:2] 

6: chr2 =  z[3024:5476,1:2] 

7: chr3 =  z[5477:7810,1:2] 

8: chr4 =  z[7811:10090,1:2] 

9: chr5 =  z[10091:12026,1:2] 

10: chr6 =  z[12027:14332,1:2] 
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11: chr7 =  z[14333:16341,1:2] 

12: chr8 =  z[16342:18484,1:2] 

13: chr9 =  z[18485:20328,1:2] 

14: chr10 = z[20329:22284,1:2] 

15: chr11 = z[22285:24325,1:2] 

16: chr12 = z[24326:25796,1:2] 

17: chr13 = z[25797:27381,1:2] 

18: chr14 = z[27382:28909,1:2] 

19: chr15 = z[28910:30417,1:2] 

20: chr16 = z[30418:31838,1:2] 

21: chr17 = z[31839:33285,1:2] 

22: chr18 = z[33286:34481,1:2] 

23: chr19 = z[34482:35703,1:2] 

24: chr20 = z[35704:37143,1:2] 

25: chr21 = z[37144:38371,1:2] 

26: chr22 = z[38372:39525,1:2] 

27: chr23 = z[39526:40494,1:2] 

28: chr24 = z[40495:41651,1:2] 

29: chr25 = z[41652:42526,1:2] 

30: chr26 = z[42527:43486,1:2] 

31: chr27 = z[43487:44363,1:2] 

32: chr28 = z[44364:45215,1:2] 

33: chr29 = z[45216:46147,1:2] 

 

34: library(grid) 

35: plot(z, las=1, xlim = c(0, 46147),ylim = c(0.1,0.8), type="n", 

 axes=F, xlab="Chromosomes", ylab="PCA scores") 

36: axis(2, ylim = c(0.1,0.8), col="black", las=2) 

 

37: abline(h=0.5, v=NULL, col = "black", lty=3) 

38: abline(h=0.465, v=NULL, col = "gray",  lty=3) 

 

39: points(chr1, pch=19, col="red", cex =.6) 

40: mtext("1",side=1,line=0.5,at= 1512, cex =.7, las=2)  

41: points(chr2, pch=19, col="blue", cex =.6) 

42: mtext("2",side=1,line=0.5,at= 4250,cex =.7, las=2)  

43: points(chr3, pch=19, col="red", cex=.6) 

44: mtext("3",side=1,line=0.5,at= 6644, cex =.7, las=2)  
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45: points(chr4, pch=19, col="blue", cex=.6) 

46: mtext("4",side=1,line=0.5,at= 8951, cex =.7, las=2)  

47: points(chr5, pch=19, col="red", cex=.6) 

48: mtext("5",side=1,line=0.5,at= 11059, cex =.7, las=2)  

49: points(chr6, pch=19, col="blue", cex=.6) 

50: mtext("6",side=1,line=0.5,at= 13180, cex =.7, las=2)  

51: points(chr7, pch=19, col="red", cex=.6) 

52: mtext("7",side=1,line=0.5,at= 15337, cex =.7, las=2)  

53: points(chr8, pch=19, col="blue", cex=.6) 

54: mtext("8",side=1,line=0.5,at= 17413, cex =.7, las=2)  

55: points(chr9, pch=19, col="red", cex=.6) 

56: mtext("9",side=1,line=0.5,at= 19407, cex =.7, las=2)  

57: points(chr10, pch=19, col="blue", cex=.6) 

58: mtext("10",side=1,line=0.5,at= 21307, cex =.7, las=2)  

59: points(chr11, pch=19, col="red", cex=.6) 

60: mtext("11",side=1,line=0.5,at= 23305, cex =.7, las=2)  

61: points(chr12, pch=19, col="blue", cex=.6) 

62: mtext("12",side=1,line=0.5,at= 25061, cex =.7, las=2)  

63: points(chr13, pch=19, col="red", cex=.6) 

64: mtext("13",side=1,line=0.5,at= 26589, cex =.7, las=2)  

65: points(chr14, pch=19, col="blue", cex=.6) 

66: mtext("14",side=1,line=0.5,at= 28146, cex =.7, las=2)  

67: points(chr15, pch=19, col="red", cex=.6) 

68: mtext("15",side=1,line=0.5,at= 29664, cex =.7, las=2)  

69: points(chr16, pch=19, col="blue", cex=.6) 

70: mtext("16",side=1,line=0.5,at= 31128, cex =.7, las=2)  

71: points(chr17, pch=19, col="red", cex=.6) 

72: mtext("17",side=1,line=0.5,at= 32562, cex =.7, las=2)  

73: points(chr18, pch=19, col="blue", cex=.6) 

74: mtext("18",side=1,line=0.5,at= 33884, cex =.7, las=2)  

75: points(chr19, pch=19, col="red", cex=.6) 

76: mtext("19",side=1,line=0.5,at= 35093, cex =.7, las=2)  

77: points(chr20, pch=19, col="blue", cex=.6) 

78: mtext("20",side=1,line=0.5,at= 36424, cex =.7, las=2)  

79: points(chr21, pch=19, col="red", cex=.6) 

80: mtext("21",side=1,line=0.5,at= 37758, cex =.7, las=2)  

81: points(chr22, pch=19, col="blue", cex=.6) 

82: mtext("22",side=1,line=0.5,at= 38949, cex =.7, las=2)  
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83: points(chr23, pch=19, col="red", cex=.6) 

84: mtext("23",side=1,line=0.5,at= 40010, cex =.7, las=2)  

85: points(chr24, pch=19, col="blue", cex=.6) 

86: mtext("24",side=1,line=0.5,at= 41073, cex =.7, las=2)  

87: points(chr25, pch=19, col="red", cex=.6) 

88: mtext("25",side=1,line=0.5,at= 42089, cex =.7, las=2)  

89: points(chr26, pch=19, col="blue", cex=.6) 

90: mtext("26",side=1,line=0.5,at= 43007, cex =.7, las=2)  

91: points(chr27, pch=19, col="red", cex=.6) 

92: mtext("27",side=1,line=0.5,at= 43925, cex =.7, las=2)  

93: points(chr28, pch=19, col="blue", cex=.6) 

94: mtext("28",side=1,line=0.5,at= 44790, cex =.7, las=2)  

95: points(chr29, pch=19, col="red", cex=.6) 

96: mtext("29",side=1,line=0.5,at= 45682, cex =.7, las=2)  

97: box() 

 

Scatter plot smoothing (R.2.10) 

 

a1 <- read.table("SSP_LD.txt", header=TRUE) 

 

y <- a1$Xdf 

x <- a1$Dist 

a <- as.data.frame(cbind(x,y)) 

low <- lowess(a) 

x <- low$x 

y <- low$y 

plot(x,y, type="l") 

z <- data.frame(low) 

 

write.table(z, file="SSP_LD_rg.txt", sep="\t") 
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